1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #define INSTANTIATE_EXPORTED_MIGRATE_DISABLE 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hrtimer_api.h> 14 #include <linux/ktime_api.h> 15 #include <linux/sched/signal.h> 16 #include <linux/syscalls_api.h> 17 #include <linux/debug_locks.h> 18 #include <linux/prefetch.h> 19 #include <linux/capability.h> 20 #include <linux/pgtable_api.h> 21 #include <linux/wait_bit.h> 22 #include <linux/jiffies.h> 23 #include <linux/spinlock_api.h> 24 #include <linux/cpumask_api.h> 25 #include <linux/lockdep_api.h> 26 #include <linux/hardirq.h> 27 #include <linux/softirq.h> 28 #include <linux/refcount_api.h> 29 #include <linux/topology.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/cond_resched.h> 32 #include <linux/sched/cputime.h> 33 #include <linux/sched/debug.h> 34 #include <linux/sched/hotplug.h> 35 #include <linux/sched/init.h> 36 #include <linux/sched/isolation.h> 37 #include <linux/sched/loadavg.h> 38 #include <linux/sched/mm.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/rseq_api.h> 41 #include <linux/sched/rt.h> 42 43 #include <linux/blkdev.h> 44 #include <linux/context_tracking.h> 45 #include <linux/cpuset.h> 46 #include <linux/delayacct.h> 47 #include <linux/init_task.h> 48 #include <linux/interrupt.h> 49 #include <linux/ioprio.h> 50 #include <linux/kallsyms.h> 51 #include <linux/kcov.h> 52 #include <linux/kprobes.h> 53 #include <linux/llist_api.h> 54 #include <linux/mmu_context.h> 55 #include <linux/mmzone.h> 56 #include <linux/mutex_api.h> 57 #include <linux/nmi.h> 58 #include <linux/nospec.h> 59 #include <linux/perf_event_api.h> 60 #include <linux/profile.h> 61 #include <linux/psi.h> 62 #include <linux/rcuwait_api.h> 63 #include <linux/rseq.h> 64 #include <linux/sched/wake_q.h> 65 #include <linux/scs.h> 66 #include <linux/slab.h> 67 #include <linux/syscalls.h> 68 #include <linux/vtime.h> 69 #include <linux/wait_api.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/livepatch_sched.h> 72 73 #ifdef CONFIG_PREEMPT_DYNAMIC 74 # ifdef CONFIG_GENERIC_IRQ_ENTRY 75 # include <linux/irq-entry-common.h> 76 # endif 77 #endif 78 79 #include <uapi/linux/sched/types.h> 80 81 #include <asm/irq_regs.h> 82 #include <asm/switch_to.h> 83 #include <asm/tlb.h> 84 85 #define CREATE_TRACE_POINTS 86 #include <linux/sched/rseq_api.h> 87 #include <trace/events/sched.h> 88 #include <trace/events/ipi.h> 89 #undef CREATE_TRACE_POINTS 90 91 #include "sched.h" 92 #include "stats.h" 93 94 #include "autogroup.h" 95 #include "pelt.h" 96 #include "smp.h" 97 98 #include "../workqueue_internal.h" 99 #include "../../io_uring/io-wq.h" 100 #include "../smpboot.h" 101 #include "../locking/mutex.h" 102 103 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 105 106 /* 107 * Export tracepoints that act as a bare tracehook (ie: have no trace event 108 * associated with them) to allow external modules to probe them. 109 */ 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 120 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 121 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 122 123 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 124 DEFINE_PER_CPU(struct rnd_state, sched_rnd_state); 125 126 #ifdef CONFIG_SCHED_PROXY_EXEC 127 DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec); 128 static int __init setup_proxy_exec(char *str) 129 { 130 bool proxy_enable = true; 131 132 if (*str && kstrtobool(str + 1, &proxy_enable)) { 133 pr_warn("Unable to parse sched_proxy_exec=\n"); 134 return 0; 135 } 136 137 if (proxy_enable) { 138 pr_info("sched_proxy_exec enabled via boot arg\n"); 139 static_branch_enable(&__sched_proxy_exec); 140 } else { 141 pr_info("sched_proxy_exec disabled via boot arg\n"); 142 static_branch_disable(&__sched_proxy_exec); 143 } 144 return 1; 145 } 146 #else 147 static int __init setup_proxy_exec(char *str) 148 { 149 pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n"); 150 return 0; 151 } 152 #endif 153 __setup("sched_proxy_exec", setup_proxy_exec); 154 155 /* 156 * Debugging: various feature bits 157 * 158 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 159 * sysctl_sched_features, defined in sched.h, to allow constants propagation 160 * at compile time and compiler optimization based on features default. 161 */ 162 #define SCHED_FEAT(name, enabled) \ 163 (1UL << __SCHED_FEAT_##name) * enabled | 164 __read_mostly unsigned int sysctl_sched_features = 165 #include "features.h" 166 0; 167 #undef SCHED_FEAT 168 169 /* 170 * Print a warning if need_resched is set for the given duration (if 171 * LATENCY_WARN is enabled). 172 * 173 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 174 * per boot. 175 */ 176 __read_mostly int sysctl_resched_latency_warn_ms = 100; 177 __read_mostly int sysctl_resched_latency_warn_once = 1; 178 179 /* 180 * Number of tasks to iterate in a single balance run. 181 * Limited because this is done with IRQs disabled. 182 */ 183 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 184 185 __read_mostly int scheduler_running; 186 187 #ifdef CONFIG_SCHED_CORE 188 189 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 190 191 /* kernel prio, less is more */ 192 static inline int __task_prio(const struct task_struct *p) 193 { 194 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 195 return -2; 196 197 if (p->dl_server) 198 return -1; /* deadline */ 199 200 if (rt_or_dl_prio(p->prio)) 201 return p->prio; /* [-1, 99] */ 202 203 if (p->sched_class == &idle_sched_class) 204 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 205 206 if (task_on_scx(p)) 207 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 208 209 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 210 } 211 212 /* 213 * l(a,b) 214 * le(a,b) := !l(b,a) 215 * g(a,b) := l(b,a) 216 * ge(a,b) := !l(a,b) 217 */ 218 219 /* real prio, less is less */ 220 static inline bool prio_less(const struct task_struct *a, 221 const struct task_struct *b, bool in_fi) 222 { 223 224 int pa = __task_prio(a), pb = __task_prio(b); 225 226 if (-pa < -pb) 227 return true; 228 229 if (-pb < -pa) 230 return false; 231 232 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 233 const struct sched_dl_entity *a_dl, *b_dl; 234 235 a_dl = &a->dl; 236 /* 237 * Since,'a' and 'b' can be CFS tasks served by DL server, 238 * __task_prio() can return -1 (for DL) even for those. In that 239 * case, get to the dl_server's DL entity. 240 */ 241 if (a->dl_server) 242 a_dl = a->dl_server; 243 244 b_dl = &b->dl; 245 if (b->dl_server) 246 b_dl = b->dl_server; 247 248 return !dl_time_before(a_dl->deadline, b_dl->deadline); 249 } 250 251 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 252 return cfs_prio_less(a, b, in_fi); 253 254 #ifdef CONFIG_SCHED_CLASS_EXT 255 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 256 return scx_prio_less(a, b, in_fi); 257 #endif 258 259 return false; 260 } 261 262 static inline bool __sched_core_less(const struct task_struct *a, 263 const struct task_struct *b) 264 { 265 if (a->core_cookie < b->core_cookie) 266 return true; 267 268 if (a->core_cookie > b->core_cookie) 269 return false; 270 271 /* flip prio, so high prio is leftmost */ 272 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 273 return true; 274 275 return false; 276 } 277 278 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 279 280 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 281 { 282 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 283 } 284 285 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 286 { 287 const struct task_struct *p = __node_2_sc(node); 288 unsigned long cookie = (unsigned long)key; 289 290 if (cookie < p->core_cookie) 291 return -1; 292 293 if (cookie > p->core_cookie) 294 return 1; 295 296 return 0; 297 } 298 299 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 300 { 301 if (p->se.sched_delayed) 302 return; 303 304 rq->core->core_task_seq++; 305 306 if (!p->core_cookie) 307 return; 308 309 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 310 } 311 312 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 313 { 314 if (p->se.sched_delayed) 315 return; 316 317 rq->core->core_task_seq++; 318 319 if (sched_core_enqueued(p)) { 320 rb_erase(&p->core_node, &rq->core_tree); 321 RB_CLEAR_NODE(&p->core_node); 322 } 323 324 /* 325 * Migrating the last task off the cpu, with the cpu in forced idle 326 * state. Reschedule to create an accounting edge for forced idle, 327 * and re-examine whether the core is still in forced idle state. 328 */ 329 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 330 rq->core->core_forceidle_count && rq->curr == rq->idle) 331 resched_curr(rq); 332 } 333 334 static int sched_task_is_throttled(struct task_struct *p, int cpu) 335 { 336 if (p->sched_class->task_is_throttled) 337 return p->sched_class->task_is_throttled(p, cpu); 338 339 return 0; 340 } 341 342 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 343 { 344 struct rb_node *node = &p->core_node; 345 int cpu = task_cpu(p); 346 347 do { 348 node = rb_next(node); 349 if (!node) 350 return NULL; 351 352 p = __node_2_sc(node); 353 if (p->core_cookie != cookie) 354 return NULL; 355 356 } while (sched_task_is_throttled(p, cpu)); 357 358 return p; 359 } 360 361 /* 362 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 363 * If no suitable task is found, NULL will be returned. 364 */ 365 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 366 { 367 struct task_struct *p; 368 struct rb_node *node; 369 370 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 371 if (!node) 372 return NULL; 373 374 p = __node_2_sc(node); 375 if (!sched_task_is_throttled(p, rq->cpu)) 376 return p; 377 378 return sched_core_next(p, cookie); 379 } 380 381 /* 382 * Magic required such that: 383 * 384 * raw_spin_rq_lock(rq); 385 * ... 386 * raw_spin_rq_unlock(rq); 387 * 388 * ends up locking and unlocking the _same_ lock, and all CPUs 389 * always agree on what rq has what lock. 390 * 391 * XXX entirely possible to selectively enable cores, don't bother for now. 392 */ 393 394 static DEFINE_MUTEX(sched_core_mutex); 395 static atomic_t sched_core_count; 396 static struct cpumask sched_core_mask; 397 398 static void sched_core_lock(int cpu, unsigned long *flags) 399 { 400 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 401 int t, i = 0; 402 403 local_irq_save(*flags); 404 for_each_cpu(t, smt_mask) 405 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 406 } 407 408 static void sched_core_unlock(int cpu, unsigned long *flags) 409 { 410 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 411 int t; 412 413 for_each_cpu(t, smt_mask) 414 raw_spin_unlock(&cpu_rq(t)->__lock); 415 local_irq_restore(*flags); 416 } 417 418 static void __sched_core_flip(bool enabled) 419 { 420 unsigned long flags; 421 int cpu, t; 422 423 cpus_read_lock(); 424 425 /* 426 * Toggle the online cores, one by one. 427 */ 428 cpumask_copy(&sched_core_mask, cpu_online_mask); 429 for_each_cpu(cpu, &sched_core_mask) { 430 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 431 432 sched_core_lock(cpu, &flags); 433 434 for_each_cpu(t, smt_mask) 435 cpu_rq(t)->core_enabled = enabled; 436 437 cpu_rq(cpu)->core->core_forceidle_start = 0; 438 439 sched_core_unlock(cpu, &flags); 440 441 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 442 } 443 444 /* 445 * Toggle the offline CPUs. 446 */ 447 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 448 cpu_rq(cpu)->core_enabled = enabled; 449 450 cpus_read_unlock(); 451 } 452 453 static void sched_core_assert_empty(void) 454 { 455 int cpu; 456 457 for_each_possible_cpu(cpu) 458 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 459 } 460 461 static void __sched_core_enable(void) 462 { 463 static_branch_enable(&__sched_core_enabled); 464 /* 465 * Ensure all previous instances of raw_spin_rq_*lock() have finished 466 * and future ones will observe !sched_core_disabled(). 467 */ 468 synchronize_rcu(); 469 __sched_core_flip(true); 470 sched_core_assert_empty(); 471 } 472 473 static void __sched_core_disable(void) 474 { 475 sched_core_assert_empty(); 476 __sched_core_flip(false); 477 static_branch_disable(&__sched_core_enabled); 478 } 479 480 void sched_core_get(void) 481 { 482 if (atomic_inc_not_zero(&sched_core_count)) 483 return; 484 485 mutex_lock(&sched_core_mutex); 486 if (!atomic_read(&sched_core_count)) 487 __sched_core_enable(); 488 489 smp_mb__before_atomic(); 490 atomic_inc(&sched_core_count); 491 mutex_unlock(&sched_core_mutex); 492 } 493 494 static void __sched_core_put(struct work_struct *work) 495 { 496 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 497 __sched_core_disable(); 498 mutex_unlock(&sched_core_mutex); 499 } 500 } 501 502 void sched_core_put(void) 503 { 504 static DECLARE_WORK(_work, __sched_core_put); 505 506 /* 507 * "There can be only one" 508 * 509 * Either this is the last one, or we don't actually need to do any 510 * 'work'. If it is the last *again*, we rely on 511 * WORK_STRUCT_PENDING_BIT. 512 */ 513 if (!atomic_add_unless(&sched_core_count, -1, 1)) 514 schedule_work(&_work); 515 } 516 517 #else /* !CONFIG_SCHED_CORE: */ 518 519 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 520 static inline void 521 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 522 523 #endif /* !CONFIG_SCHED_CORE */ 524 525 /* need a wrapper since we may need to trace from modules */ 526 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); 527 528 /* Call via the helper macro trace_set_current_state. */ 529 void __trace_set_current_state(int state_value) 530 { 531 trace_sched_set_state_tp(current, state_value); 532 } 533 EXPORT_SYMBOL(__trace_set_current_state); 534 535 /* 536 * Serialization rules: 537 * 538 * Lock order: 539 * 540 * p->pi_lock 541 * rq->lock 542 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 543 * 544 * rq1->lock 545 * rq2->lock where: rq1 < rq2 546 * 547 * Regular state: 548 * 549 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 550 * local CPU's rq->lock, it optionally removes the task from the runqueue and 551 * always looks at the local rq data structures to find the most eligible task 552 * to run next. 553 * 554 * Task enqueue is also under rq->lock, possibly taken from another CPU. 555 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 556 * the local CPU to avoid bouncing the runqueue state around [ see 557 * ttwu_queue_wakelist() ] 558 * 559 * Task wakeup, specifically wakeups that involve migration, are horribly 560 * complicated to avoid having to take two rq->locks. 561 * 562 * Special state: 563 * 564 * System-calls and anything external will use task_rq_lock() which acquires 565 * both p->pi_lock and rq->lock. As a consequence the state they change is 566 * stable while holding either lock: 567 * 568 * - sched_setaffinity()/ 569 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 570 * - set_user_nice(): p->se.load, p->*prio 571 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 572 * p->se.load, p->rt_priority, 573 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 574 * - sched_setnuma(): p->numa_preferred_nid 575 * - sched_move_task(): p->sched_task_group 576 * - uclamp_update_active() p->uclamp* 577 * 578 * p->state <- TASK_*: 579 * 580 * is changed locklessly using set_current_state(), __set_current_state() or 581 * set_special_state(), see their respective comments, or by 582 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 583 * concurrent self. 584 * 585 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 586 * 587 * is set by activate_task() and cleared by deactivate_task()/block_task(), 588 * under rq->lock. Non-zero indicates the task is runnable, the special 589 * ON_RQ_MIGRATING state is used for migration without holding both 590 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 591 * 592 * Additionally it is possible to be ->on_rq but still be considered not 593 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 594 * but will be dequeued as soon as they get picked again. See the 595 * task_is_runnable() helper. 596 * 597 * p->on_cpu <- { 0, 1 }: 598 * 599 * is set by prepare_task() and cleared by finish_task() such that it will be 600 * set before p is scheduled-in and cleared after p is scheduled-out, both 601 * under rq->lock. Non-zero indicates the task is running on its CPU. 602 * 603 * [ The astute reader will observe that it is possible for two tasks on one 604 * CPU to have ->on_cpu = 1 at the same time. ] 605 * 606 * task_cpu(p): is changed by set_task_cpu(), the rules are: 607 * 608 * - Don't call set_task_cpu() on a blocked task: 609 * 610 * We don't care what CPU we're not running on, this simplifies hotplug, 611 * the CPU assignment of blocked tasks isn't required to be valid. 612 * 613 * - for try_to_wake_up(), called under p->pi_lock: 614 * 615 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 616 * 617 * - for migration called under rq->lock: 618 * [ see task_on_rq_migrating() in task_rq_lock() ] 619 * 620 * o move_queued_task() 621 * o detach_task() 622 * 623 * - for migration called under double_rq_lock(): 624 * 625 * o __migrate_swap_task() 626 * o push_rt_task() / pull_rt_task() 627 * o push_dl_task() / pull_dl_task() 628 * o dl_task_offline_migration() 629 * 630 */ 631 632 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 633 { 634 raw_spinlock_t *lock; 635 636 /* Matches synchronize_rcu() in __sched_core_enable() */ 637 preempt_disable(); 638 if (sched_core_disabled()) { 639 raw_spin_lock_nested(&rq->__lock, subclass); 640 /* preempt_count *MUST* be > 1 */ 641 preempt_enable_no_resched(); 642 return; 643 } 644 645 for (;;) { 646 lock = __rq_lockp(rq); 647 raw_spin_lock_nested(lock, subclass); 648 if (likely(lock == __rq_lockp(rq))) { 649 /* preempt_count *MUST* be > 1 */ 650 preempt_enable_no_resched(); 651 return; 652 } 653 raw_spin_unlock(lock); 654 } 655 } 656 657 bool raw_spin_rq_trylock(struct rq *rq) 658 { 659 raw_spinlock_t *lock; 660 bool ret; 661 662 /* Matches synchronize_rcu() in __sched_core_enable() */ 663 preempt_disable(); 664 if (sched_core_disabled()) { 665 ret = raw_spin_trylock(&rq->__lock); 666 preempt_enable(); 667 return ret; 668 } 669 670 for (;;) { 671 lock = __rq_lockp(rq); 672 ret = raw_spin_trylock(lock); 673 if (!ret || (likely(lock == __rq_lockp(rq)))) { 674 preempt_enable(); 675 return ret; 676 } 677 raw_spin_unlock(lock); 678 } 679 } 680 681 void raw_spin_rq_unlock(struct rq *rq) 682 { 683 raw_spin_unlock(rq_lockp(rq)); 684 } 685 686 /* 687 * double_rq_lock - safely lock two runqueues 688 */ 689 void double_rq_lock(struct rq *rq1, struct rq *rq2) 690 { 691 lockdep_assert_irqs_disabled(); 692 693 if (rq_order_less(rq2, rq1)) 694 swap(rq1, rq2); 695 696 raw_spin_rq_lock(rq1); 697 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 698 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 699 700 double_rq_clock_clear_update(rq1, rq2); 701 } 702 703 /* 704 * __task_rq_lock - lock the rq @p resides on. 705 */ 706 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 707 __acquires(rq->lock) 708 { 709 struct rq *rq; 710 711 lockdep_assert_held(&p->pi_lock); 712 713 for (;;) { 714 rq = task_rq(p); 715 raw_spin_rq_lock(rq); 716 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 717 rq_pin_lock(rq, rf); 718 return rq; 719 } 720 raw_spin_rq_unlock(rq); 721 722 while (unlikely(task_on_rq_migrating(p))) 723 cpu_relax(); 724 } 725 } 726 727 /* 728 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 729 */ 730 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 731 __acquires(p->pi_lock) 732 __acquires(rq->lock) 733 { 734 struct rq *rq; 735 736 for (;;) { 737 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 738 rq = task_rq(p); 739 raw_spin_rq_lock(rq); 740 /* 741 * move_queued_task() task_rq_lock() 742 * 743 * ACQUIRE (rq->lock) 744 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 745 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 746 * [S] ->cpu = new_cpu [L] task_rq() 747 * [L] ->on_rq 748 * RELEASE (rq->lock) 749 * 750 * If we observe the old CPU in task_rq_lock(), the acquire of 751 * the old rq->lock will fully serialize against the stores. 752 * 753 * If we observe the new CPU in task_rq_lock(), the address 754 * dependency headed by '[L] rq = task_rq()' and the acquire 755 * will pair with the WMB to ensure we then also see migrating. 756 */ 757 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 758 rq_pin_lock(rq, rf); 759 return rq; 760 } 761 raw_spin_rq_unlock(rq); 762 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 763 764 while (unlikely(task_on_rq_migrating(p))) 765 cpu_relax(); 766 } 767 } 768 769 /* 770 * RQ-clock updating methods: 771 */ 772 773 static void update_rq_clock_task(struct rq *rq, s64 delta) 774 { 775 /* 776 * In theory, the compile should just see 0 here, and optimize out the call 777 * to sched_rt_avg_update. But I don't trust it... 778 */ 779 s64 __maybe_unused steal = 0, irq_delta = 0; 780 781 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 782 if (irqtime_enabled()) { 783 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 784 785 /* 786 * Since irq_time is only updated on {soft,}irq_exit, we might run into 787 * this case when a previous update_rq_clock() happened inside a 788 * {soft,}IRQ region. 789 * 790 * When this happens, we stop ->clock_task and only update the 791 * prev_irq_time stamp to account for the part that fit, so that a next 792 * update will consume the rest. This ensures ->clock_task is 793 * monotonic. 794 * 795 * It does however cause some slight miss-attribution of {soft,}IRQ 796 * time, a more accurate solution would be to update the irq_time using 797 * the current rq->clock timestamp, except that would require using 798 * atomic ops. 799 */ 800 if (irq_delta > delta) 801 irq_delta = delta; 802 803 rq->prev_irq_time += irq_delta; 804 delta -= irq_delta; 805 delayacct_irq(rq->curr, irq_delta); 806 } 807 #endif 808 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 809 if (static_key_false((¶virt_steal_rq_enabled))) { 810 u64 prev_steal; 811 812 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 813 steal -= rq->prev_steal_time_rq; 814 815 if (unlikely(steal > delta)) 816 steal = delta; 817 818 rq->prev_steal_time_rq = prev_steal; 819 delta -= steal; 820 } 821 #endif 822 823 rq->clock_task += delta; 824 825 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 826 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 827 update_irq_load_avg(rq, irq_delta + steal); 828 #endif 829 update_rq_clock_pelt(rq, delta); 830 } 831 832 void update_rq_clock(struct rq *rq) 833 { 834 s64 delta; 835 u64 clock; 836 837 lockdep_assert_rq_held(rq); 838 839 if (rq->clock_update_flags & RQCF_ACT_SKIP) 840 return; 841 842 if (sched_feat(WARN_DOUBLE_CLOCK)) 843 WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); 844 rq->clock_update_flags |= RQCF_UPDATED; 845 846 clock = sched_clock_cpu(cpu_of(rq)); 847 scx_rq_clock_update(rq, clock); 848 849 delta = clock - rq->clock; 850 if (delta < 0) 851 return; 852 rq->clock += delta; 853 854 update_rq_clock_task(rq, delta); 855 } 856 857 #ifdef CONFIG_SCHED_HRTICK 858 /* 859 * Use HR-timers to deliver accurate preemption points. 860 */ 861 862 static void hrtick_clear(struct rq *rq) 863 { 864 if (hrtimer_active(&rq->hrtick_timer)) 865 hrtimer_cancel(&rq->hrtick_timer); 866 } 867 868 /* 869 * High-resolution timer tick. 870 * Runs from hardirq context with interrupts disabled. 871 */ 872 static enum hrtimer_restart hrtick(struct hrtimer *timer) 873 { 874 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 875 struct rq_flags rf; 876 877 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 878 879 rq_lock(rq, &rf); 880 update_rq_clock(rq); 881 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 882 rq_unlock(rq, &rf); 883 884 return HRTIMER_NORESTART; 885 } 886 887 static void __hrtick_restart(struct rq *rq) 888 { 889 struct hrtimer *timer = &rq->hrtick_timer; 890 ktime_t time = rq->hrtick_time; 891 892 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 893 } 894 895 /* 896 * called from hardirq (IPI) context 897 */ 898 static void __hrtick_start(void *arg) 899 { 900 struct rq *rq = arg; 901 struct rq_flags rf; 902 903 rq_lock(rq, &rf); 904 __hrtick_restart(rq); 905 rq_unlock(rq, &rf); 906 } 907 908 /* 909 * Called to set the hrtick timer state. 910 * 911 * called with rq->lock held and IRQs disabled 912 */ 913 void hrtick_start(struct rq *rq, u64 delay) 914 { 915 struct hrtimer *timer = &rq->hrtick_timer; 916 s64 delta; 917 918 /* 919 * Don't schedule slices shorter than 10000ns, that just 920 * doesn't make sense and can cause timer DoS. 921 */ 922 delta = max_t(s64, delay, 10000LL); 923 rq->hrtick_time = ktime_add_ns(hrtimer_cb_get_time(timer), delta); 924 925 if (rq == this_rq()) 926 __hrtick_restart(rq); 927 else 928 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 929 } 930 931 static void hrtick_rq_init(struct rq *rq) 932 { 933 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 934 hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 935 } 936 #else /* !CONFIG_SCHED_HRTICK: */ 937 static inline void hrtick_clear(struct rq *rq) 938 { 939 } 940 941 static inline void hrtick_rq_init(struct rq *rq) 942 { 943 } 944 #endif /* !CONFIG_SCHED_HRTICK */ 945 946 /* 947 * try_cmpxchg based fetch_or() macro so it works for different integer types: 948 */ 949 #define fetch_or(ptr, mask) \ 950 ({ \ 951 typeof(ptr) _ptr = (ptr); \ 952 typeof(mask) _mask = (mask); \ 953 typeof(*_ptr) _val = *_ptr; \ 954 \ 955 do { \ 956 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 957 _val; \ 958 }) 959 960 #ifdef TIF_POLLING_NRFLAG 961 /* 962 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 963 * this avoids any races wrt polling state changes and thereby avoids 964 * spurious IPIs. 965 */ 966 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 967 { 968 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 969 } 970 971 /* 972 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 973 * 974 * If this returns true, then the idle task promises to call 975 * sched_ttwu_pending() and reschedule soon. 976 */ 977 static bool set_nr_if_polling(struct task_struct *p) 978 { 979 struct thread_info *ti = task_thread_info(p); 980 typeof(ti->flags) val = READ_ONCE(ti->flags); 981 982 do { 983 if (!(val & _TIF_POLLING_NRFLAG)) 984 return false; 985 if (val & _TIF_NEED_RESCHED) 986 return true; 987 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 988 989 return true; 990 } 991 992 #else 993 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 994 { 995 set_ti_thread_flag(ti, tif); 996 return true; 997 } 998 999 static inline bool set_nr_if_polling(struct task_struct *p) 1000 { 1001 return false; 1002 } 1003 #endif 1004 1005 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 1006 { 1007 struct wake_q_node *node = &task->wake_q; 1008 1009 /* 1010 * Atomically grab the task, if ->wake_q is !nil already it means 1011 * it's already queued (either by us or someone else) and will get the 1012 * wakeup due to that. 1013 * 1014 * In order to ensure that a pending wakeup will observe our pending 1015 * state, even in the failed case, an explicit smp_mb() must be used. 1016 */ 1017 smp_mb__before_atomic(); 1018 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1019 return false; 1020 1021 /* 1022 * The head is context local, there can be no concurrency. 1023 */ 1024 *head->lastp = node; 1025 head->lastp = &node->next; 1026 return true; 1027 } 1028 1029 /** 1030 * wake_q_add() - queue a wakeup for 'later' waking. 1031 * @head: the wake_q_head to add @task to 1032 * @task: the task to queue for 'later' wakeup 1033 * 1034 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1035 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1036 * instantly. 1037 * 1038 * This function must be used as-if it were wake_up_process(); IOW the task 1039 * must be ready to be woken at this location. 1040 */ 1041 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1042 { 1043 if (__wake_q_add(head, task)) 1044 get_task_struct(task); 1045 } 1046 1047 /** 1048 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1049 * @head: the wake_q_head to add @task to 1050 * @task: the task to queue for 'later' wakeup 1051 * 1052 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1053 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1054 * instantly. 1055 * 1056 * This function must be used as-if it were wake_up_process(); IOW the task 1057 * must be ready to be woken at this location. 1058 * 1059 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1060 * that already hold reference to @task can call the 'safe' version and trust 1061 * wake_q to do the right thing depending whether or not the @task is already 1062 * queued for wakeup. 1063 */ 1064 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1065 { 1066 if (!__wake_q_add(head, task)) 1067 put_task_struct(task); 1068 } 1069 1070 void wake_up_q(struct wake_q_head *head) 1071 { 1072 struct wake_q_node *node = head->first; 1073 1074 while (node != WAKE_Q_TAIL) { 1075 struct task_struct *task; 1076 1077 task = container_of(node, struct task_struct, wake_q); 1078 node = node->next; 1079 /* pairs with cmpxchg_relaxed() in __wake_q_add() */ 1080 WRITE_ONCE(task->wake_q.next, NULL); 1081 /* Task can safely be re-inserted now. */ 1082 1083 /* 1084 * wake_up_process() executes a full barrier, which pairs with 1085 * the queueing in wake_q_add() so as not to miss wakeups. 1086 */ 1087 wake_up_process(task); 1088 put_task_struct(task); 1089 } 1090 } 1091 1092 /* 1093 * resched_curr - mark rq's current task 'to be rescheduled now'. 1094 * 1095 * On UP this means the setting of the need_resched flag, on SMP it 1096 * might also involve a cross-CPU call to trigger the scheduler on 1097 * the target CPU. 1098 */ 1099 static void __resched_curr(struct rq *rq, int tif) 1100 { 1101 struct task_struct *curr = rq->curr; 1102 struct thread_info *cti = task_thread_info(curr); 1103 int cpu; 1104 1105 lockdep_assert_rq_held(rq); 1106 1107 /* 1108 * Always immediately preempt the idle task; no point in delaying doing 1109 * actual work. 1110 */ 1111 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1112 tif = TIF_NEED_RESCHED; 1113 1114 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1115 return; 1116 1117 cpu = cpu_of(rq); 1118 1119 trace_sched_set_need_resched_tp(curr, cpu, tif); 1120 if (cpu == smp_processor_id()) { 1121 set_ti_thread_flag(cti, tif); 1122 if (tif == TIF_NEED_RESCHED) 1123 set_preempt_need_resched(); 1124 return; 1125 } 1126 1127 if (set_nr_and_not_polling(cti, tif)) { 1128 if (tif == TIF_NEED_RESCHED) 1129 smp_send_reschedule(cpu); 1130 } else { 1131 trace_sched_wake_idle_without_ipi(cpu); 1132 } 1133 } 1134 1135 void __trace_set_need_resched(struct task_struct *curr, int tif) 1136 { 1137 trace_sched_set_need_resched_tp(curr, smp_processor_id(), tif); 1138 } 1139 1140 void resched_curr(struct rq *rq) 1141 { 1142 __resched_curr(rq, TIF_NEED_RESCHED); 1143 } 1144 1145 #ifdef CONFIG_PREEMPT_DYNAMIC 1146 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1147 static __always_inline bool dynamic_preempt_lazy(void) 1148 { 1149 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1150 } 1151 #else 1152 static __always_inline bool dynamic_preempt_lazy(void) 1153 { 1154 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1155 } 1156 #endif 1157 1158 static __always_inline int get_lazy_tif_bit(void) 1159 { 1160 if (dynamic_preempt_lazy()) 1161 return TIF_NEED_RESCHED_LAZY; 1162 1163 return TIF_NEED_RESCHED; 1164 } 1165 1166 void resched_curr_lazy(struct rq *rq) 1167 { 1168 __resched_curr(rq, get_lazy_tif_bit()); 1169 } 1170 1171 void resched_cpu(int cpu) 1172 { 1173 struct rq *rq = cpu_rq(cpu); 1174 unsigned long flags; 1175 1176 raw_spin_rq_lock_irqsave(rq, flags); 1177 if (cpu_online(cpu) || cpu == smp_processor_id()) 1178 resched_curr(rq); 1179 raw_spin_rq_unlock_irqrestore(rq, flags); 1180 } 1181 1182 #ifdef CONFIG_NO_HZ_COMMON 1183 /* 1184 * In the semi idle case, use the nearest busy CPU for migrating timers 1185 * from an idle CPU. This is good for power-savings. 1186 * 1187 * We don't do similar optimization for completely idle system, as 1188 * selecting an idle CPU will add more delays to the timers than intended 1189 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1190 */ 1191 int get_nohz_timer_target(void) 1192 { 1193 int i, cpu = smp_processor_id(), default_cpu = -1; 1194 struct sched_domain *sd; 1195 const struct cpumask *hk_mask; 1196 1197 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1198 if (!idle_cpu(cpu)) 1199 return cpu; 1200 default_cpu = cpu; 1201 } 1202 1203 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1204 1205 guard(rcu)(); 1206 1207 for_each_domain(cpu, sd) { 1208 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1209 if (cpu == i) 1210 continue; 1211 1212 if (!idle_cpu(i)) 1213 return i; 1214 } 1215 } 1216 1217 if (default_cpu == -1) 1218 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1219 1220 return default_cpu; 1221 } 1222 1223 /* 1224 * When add_timer_on() enqueues a timer into the timer wheel of an 1225 * idle CPU then this timer might expire before the next timer event 1226 * which is scheduled to wake up that CPU. In case of a completely 1227 * idle system the next event might even be infinite time into the 1228 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1229 * leaves the inner idle loop so the newly added timer is taken into 1230 * account when the CPU goes back to idle and evaluates the timer 1231 * wheel for the next timer event. 1232 */ 1233 static void wake_up_idle_cpu(int cpu) 1234 { 1235 struct rq *rq = cpu_rq(cpu); 1236 1237 if (cpu == smp_processor_id()) 1238 return; 1239 1240 /* 1241 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1242 * part of the idle loop. This forces an exit from the idle loop 1243 * and a round trip to schedule(). Now this could be optimized 1244 * because a simple new idle loop iteration is enough to 1245 * re-evaluate the next tick. Provided some re-ordering of tick 1246 * nohz functions that would need to follow TIF_NR_POLLING 1247 * clearing: 1248 * 1249 * - On most architectures, a simple fetch_or on ti::flags with a 1250 * "0" value would be enough to know if an IPI needs to be sent. 1251 * 1252 * - x86 needs to perform a last need_resched() check between 1253 * monitor and mwait which doesn't take timers into account. 1254 * There a dedicated TIF_TIMER flag would be required to 1255 * fetch_or here and be checked along with TIF_NEED_RESCHED 1256 * before mwait(). 1257 * 1258 * However, remote timer enqueue is not such a frequent event 1259 * and testing of the above solutions didn't appear to report 1260 * much benefits. 1261 */ 1262 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1263 smp_send_reschedule(cpu); 1264 else 1265 trace_sched_wake_idle_without_ipi(cpu); 1266 } 1267 1268 static bool wake_up_full_nohz_cpu(int cpu) 1269 { 1270 /* 1271 * We just need the target to call irq_exit() and re-evaluate 1272 * the next tick. The nohz full kick at least implies that. 1273 * If needed we can still optimize that later with an 1274 * empty IRQ. 1275 */ 1276 if (cpu_is_offline(cpu)) 1277 return true; /* Don't try to wake offline CPUs. */ 1278 if (tick_nohz_full_cpu(cpu)) { 1279 if (cpu != smp_processor_id() || 1280 tick_nohz_tick_stopped()) 1281 tick_nohz_full_kick_cpu(cpu); 1282 return true; 1283 } 1284 1285 return false; 1286 } 1287 1288 /* 1289 * Wake up the specified CPU. If the CPU is going offline, it is the 1290 * caller's responsibility to deal with the lost wakeup, for example, 1291 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1292 */ 1293 void wake_up_nohz_cpu(int cpu) 1294 { 1295 if (!wake_up_full_nohz_cpu(cpu)) 1296 wake_up_idle_cpu(cpu); 1297 } 1298 1299 static void nohz_csd_func(void *info) 1300 { 1301 struct rq *rq = info; 1302 int cpu = cpu_of(rq); 1303 unsigned int flags; 1304 1305 /* 1306 * Release the rq::nohz_csd. 1307 */ 1308 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1309 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1310 1311 rq->idle_balance = idle_cpu(cpu); 1312 if (rq->idle_balance) { 1313 rq->nohz_idle_balance = flags; 1314 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1315 } 1316 } 1317 1318 #endif /* CONFIG_NO_HZ_COMMON */ 1319 1320 #ifdef CONFIG_NO_HZ_FULL 1321 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1322 { 1323 if (rq->nr_running != 1) 1324 return false; 1325 1326 if (p->sched_class != &fair_sched_class) 1327 return false; 1328 1329 if (!task_on_rq_queued(p)) 1330 return false; 1331 1332 return true; 1333 } 1334 1335 bool sched_can_stop_tick(struct rq *rq) 1336 { 1337 int fifo_nr_running; 1338 1339 /* Deadline tasks, even if single, need the tick */ 1340 if (rq->dl.dl_nr_running) 1341 return false; 1342 1343 /* 1344 * If there are more than one RR tasks, we need the tick to affect the 1345 * actual RR behaviour. 1346 */ 1347 if (rq->rt.rr_nr_running) { 1348 if (rq->rt.rr_nr_running == 1) 1349 return true; 1350 else 1351 return false; 1352 } 1353 1354 /* 1355 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1356 * forced preemption between FIFO tasks. 1357 */ 1358 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1359 if (fifo_nr_running) 1360 return true; 1361 1362 /* 1363 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1364 * left. For CFS, if there's more than one we need the tick for 1365 * involuntary preemption. For SCX, ask. 1366 */ 1367 if (scx_enabled() && !scx_can_stop_tick(rq)) 1368 return false; 1369 1370 if (rq->cfs.h_nr_queued > 1) 1371 return false; 1372 1373 /* 1374 * If there is one task and it has CFS runtime bandwidth constraints 1375 * and it's on the cpu now we don't want to stop the tick. 1376 * This check prevents clearing the bit if a newly enqueued task here is 1377 * dequeued by migrating while the constrained task continues to run. 1378 * E.g. going from 2->1 without going through pick_next_task(). 1379 */ 1380 if (__need_bw_check(rq, rq->curr)) { 1381 if (cfs_task_bw_constrained(rq->curr)) 1382 return false; 1383 } 1384 1385 return true; 1386 } 1387 #endif /* CONFIG_NO_HZ_FULL */ 1388 1389 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED) 1390 /* 1391 * Iterate task_group tree rooted at *from, calling @down when first entering a 1392 * node and @up when leaving it for the final time. 1393 * 1394 * Caller must hold rcu_lock or sufficient equivalent. 1395 */ 1396 int walk_tg_tree_from(struct task_group *from, 1397 tg_visitor down, tg_visitor up, void *data) 1398 { 1399 struct task_group *parent, *child; 1400 int ret; 1401 1402 parent = from; 1403 1404 down: 1405 ret = (*down)(parent, data); 1406 if (ret) 1407 goto out; 1408 list_for_each_entry_rcu(child, &parent->children, siblings) { 1409 parent = child; 1410 goto down; 1411 1412 up: 1413 continue; 1414 } 1415 ret = (*up)(parent, data); 1416 if (ret || parent == from) 1417 goto out; 1418 1419 child = parent; 1420 parent = parent->parent; 1421 if (parent) 1422 goto up; 1423 out: 1424 return ret; 1425 } 1426 1427 int tg_nop(struct task_group *tg, void *data) 1428 { 1429 return 0; 1430 } 1431 #endif 1432 1433 void set_load_weight(struct task_struct *p, bool update_load) 1434 { 1435 int prio = p->static_prio - MAX_RT_PRIO; 1436 struct load_weight lw; 1437 1438 if (task_has_idle_policy(p)) { 1439 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1440 lw.inv_weight = WMULT_IDLEPRIO; 1441 } else { 1442 lw.weight = scale_load(sched_prio_to_weight[prio]); 1443 lw.inv_weight = sched_prio_to_wmult[prio]; 1444 } 1445 1446 /* 1447 * SCHED_OTHER tasks have to update their load when changing their 1448 * weight 1449 */ 1450 if (update_load && p->sched_class->reweight_task) 1451 p->sched_class->reweight_task(task_rq(p), p, &lw); 1452 else 1453 p->se.load = lw; 1454 } 1455 1456 #ifdef CONFIG_UCLAMP_TASK 1457 /* 1458 * Serializes updates of utilization clamp values 1459 * 1460 * The (slow-path) user-space triggers utilization clamp value updates which 1461 * can require updates on (fast-path) scheduler's data structures used to 1462 * support enqueue/dequeue operations. 1463 * While the per-CPU rq lock protects fast-path update operations, user-space 1464 * requests are serialized using a mutex to reduce the risk of conflicting 1465 * updates or API abuses. 1466 */ 1467 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1468 1469 /* Max allowed minimum utilization */ 1470 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1471 1472 /* Max allowed maximum utilization */ 1473 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1474 1475 /* 1476 * By default RT tasks run at the maximum performance point/capacity of the 1477 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1478 * SCHED_CAPACITY_SCALE. 1479 * 1480 * This knob allows admins to change the default behavior when uclamp is being 1481 * used. In battery powered devices, particularly, running at the maximum 1482 * capacity and frequency will increase energy consumption and shorten the 1483 * battery life. 1484 * 1485 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1486 * 1487 * This knob will not override the system default sched_util_clamp_min defined 1488 * above. 1489 */ 1490 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1491 1492 /* All clamps are required to be less or equal than these values */ 1493 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1494 1495 /* 1496 * This static key is used to reduce the uclamp overhead in the fast path. It 1497 * primarily disables the call to uclamp_rq_{inc, dec}() in 1498 * enqueue/dequeue_task(). 1499 * 1500 * This allows users to continue to enable uclamp in their kernel config with 1501 * minimum uclamp overhead in the fast path. 1502 * 1503 * As soon as userspace modifies any of the uclamp knobs, the static key is 1504 * enabled, since we have an actual users that make use of uclamp 1505 * functionality. 1506 * 1507 * The knobs that would enable this static key are: 1508 * 1509 * * A task modifying its uclamp value with sched_setattr(). 1510 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1511 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1512 */ 1513 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1514 1515 static inline unsigned int 1516 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1517 unsigned int clamp_value) 1518 { 1519 /* 1520 * Avoid blocked utilization pushing up the frequency when we go 1521 * idle (which drops the max-clamp) by retaining the last known 1522 * max-clamp. 1523 */ 1524 if (clamp_id == UCLAMP_MAX) { 1525 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1526 return clamp_value; 1527 } 1528 1529 return uclamp_none(UCLAMP_MIN); 1530 } 1531 1532 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1533 unsigned int clamp_value) 1534 { 1535 /* Reset max-clamp retention only on idle exit */ 1536 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1537 return; 1538 1539 uclamp_rq_set(rq, clamp_id, clamp_value); 1540 } 1541 1542 static inline 1543 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1544 unsigned int clamp_value) 1545 { 1546 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1547 int bucket_id = UCLAMP_BUCKETS - 1; 1548 1549 /* 1550 * Since both min and max clamps are max aggregated, find the 1551 * top most bucket with tasks in. 1552 */ 1553 for ( ; bucket_id >= 0; bucket_id--) { 1554 if (!bucket[bucket_id].tasks) 1555 continue; 1556 return bucket[bucket_id].value; 1557 } 1558 1559 /* No tasks -- default clamp values */ 1560 return uclamp_idle_value(rq, clamp_id, clamp_value); 1561 } 1562 1563 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1564 { 1565 unsigned int default_util_min; 1566 struct uclamp_se *uc_se; 1567 1568 lockdep_assert_held(&p->pi_lock); 1569 1570 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1571 1572 /* Only sync if user didn't override the default */ 1573 if (uc_se->user_defined) 1574 return; 1575 1576 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1577 uclamp_se_set(uc_se, default_util_min, false); 1578 } 1579 1580 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1581 { 1582 if (!rt_task(p)) 1583 return; 1584 1585 /* Protect updates to p->uclamp_* */ 1586 guard(task_rq_lock)(p); 1587 __uclamp_update_util_min_rt_default(p); 1588 } 1589 1590 static inline struct uclamp_se 1591 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1592 { 1593 /* Copy by value as we could modify it */ 1594 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1595 #ifdef CONFIG_UCLAMP_TASK_GROUP 1596 unsigned int tg_min, tg_max, value; 1597 1598 /* 1599 * Tasks in autogroups or root task group will be 1600 * restricted by system defaults. 1601 */ 1602 if (task_group_is_autogroup(task_group(p))) 1603 return uc_req; 1604 if (task_group(p) == &root_task_group) 1605 return uc_req; 1606 1607 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1608 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1609 value = uc_req.value; 1610 value = clamp(value, tg_min, tg_max); 1611 uclamp_se_set(&uc_req, value, false); 1612 #endif 1613 1614 return uc_req; 1615 } 1616 1617 /* 1618 * The effective clamp bucket index of a task depends on, by increasing 1619 * priority: 1620 * - the task specific clamp value, when explicitly requested from userspace 1621 * - the task group effective clamp value, for tasks not either in the root 1622 * group or in an autogroup 1623 * - the system default clamp value, defined by the sysadmin 1624 */ 1625 static inline struct uclamp_se 1626 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1627 { 1628 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1629 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1630 1631 /* System default restrictions always apply */ 1632 if (unlikely(uc_req.value > uc_max.value)) 1633 return uc_max; 1634 1635 return uc_req; 1636 } 1637 1638 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1639 { 1640 struct uclamp_se uc_eff; 1641 1642 /* Task currently refcounted: use back-annotated (effective) value */ 1643 if (p->uclamp[clamp_id].active) 1644 return (unsigned long)p->uclamp[clamp_id].value; 1645 1646 uc_eff = uclamp_eff_get(p, clamp_id); 1647 1648 return (unsigned long)uc_eff.value; 1649 } 1650 1651 /* 1652 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1653 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1654 * updates the rq's clamp value if required. 1655 * 1656 * Tasks can have a task-specific value requested from user-space, track 1657 * within each bucket the maximum value for tasks refcounted in it. 1658 * This "local max aggregation" allows to track the exact "requested" value 1659 * for each bucket when all its RUNNABLE tasks require the same clamp. 1660 */ 1661 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1662 enum uclamp_id clamp_id) 1663 { 1664 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1665 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1666 struct uclamp_bucket *bucket; 1667 1668 lockdep_assert_rq_held(rq); 1669 1670 /* Update task effective clamp */ 1671 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1672 1673 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1674 bucket->tasks++; 1675 uc_se->active = true; 1676 1677 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1678 1679 /* 1680 * Local max aggregation: rq buckets always track the max 1681 * "requested" clamp value of its RUNNABLE tasks. 1682 */ 1683 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1684 bucket->value = uc_se->value; 1685 1686 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1687 uclamp_rq_set(rq, clamp_id, uc_se->value); 1688 } 1689 1690 /* 1691 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1692 * is released. If this is the last task reference counting the rq's max 1693 * active clamp value, then the rq's clamp value is updated. 1694 * 1695 * Both refcounted tasks and rq's cached clamp values are expected to be 1696 * always valid. If it's detected they are not, as defensive programming, 1697 * enforce the expected state and warn. 1698 */ 1699 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1700 enum uclamp_id clamp_id) 1701 { 1702 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1703 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1704 struct uclamp_bucket *bucket; 1705 unsigned int bkt_clamp; 1706 unsigned int rq_clamp; 1707 1708 lockdep_assert_rq_held(rq); 1709 1710 /* 1711 * If sched_uclamp_used was enabled after task @p was enqueued, 1712 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1713 * 1714 * In this case the uc_se->active flag should be false since no uclamp 1715 * accounting was performed at enqueue time and we can just return 1716 * here. 1717 * 1718 * Need to be careful of the following enqueue/dequeue ordering 1719 * problem too 1720 * 1721 * enqueue(taskA) 1722 * // sched_uclamp_used gets enabled 1723 * enqueue(taskB) 1724 * dequeue(taskA) 1725 * // Must not decrement bucket->tasks here 1726 * dequeue(taskB) 1727 * 1728 * where we could end up with stale data in uc_se and 1729 * bucket[uc_se->bucket_id]. 1730 * 1731 * The following check here eliminates the possibility of such race. 1732 */ 1733 if (unlikely(!uc_se->active)) 1734 return; 1735 1736 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1737 1738 WARN_ON_ONCE(!bucket->tasks); 1739 if (likely(bucket->tasks)) 1740 bucket->tasks--; 1741 1742 uc_se->active = false; 1743 1744 /* 1745 * Keep "local max aggregation" simple and accept to (possibly) 1746 * overboost some RUNNABLE tasks in the same bucket. 1747 * The rq clamp bucket value is reset to its base value whenever 1748 * there are no more RUNNABLE tasks refcounting it. 1749 */ 1750 if (likely(bucket->tasks)) 1751 return; 1752 1753 rq_clamp = uclamp_rq_get(rq, clamp_id); 1754 /* 1755 * Defensive programming: this should never happen. If it happens, 1756 * e.g. due to future modification, warn and fix up the expected value. 1757 */ 1758 WARN_ON_ONCE(bucket->value > rq_clamp); 1759 if (bucket->value >= rq_clamp) { 1760 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1761 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1762 } 1763 } 1764 1765 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) 1766 { 1767 enum uclamp_id clamp_id; 1768 1769 /* 1770 * Avoid any overhead until uclamp is actually used by the userspace. 1771 * 1772 * The condition is constructed such that a NOP is generated when 1773 * sched_uclamp_used is disabled. 1774 */ 1775 if (!uclamp_is_used()) 1776 return; 1777 1778 if (unlikely(!p->sched_class->uclamp_enabled)) 1779 return; 1780 1781 /* Only inc the delayed task which being woken up. */ 1782 if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) 1783 return; 1784 1785 for_each_clamp_id(clamp_id) 1786 uclamp_rq_inc_id(rq, p, clamp_id); 1787 1788 /* Reset clamp idle holding when there is one RUNNABLE task */ 1789 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1790 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1791 } 1792 1793 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1794 { 1795 enum uclamp_id clamp_id; 1796 1797 /* 1798 * Avoid any overhead until uclamp is actually used by the userspace. 1799 * 1800 * The condition is constructed such that a NOP is generated when 1801 * sched_uclamp_used is disabled. 1802 */ 1803 if (!uclamp_is_used()) 1804 return; 1805 1806 if (unlikely(!p->sched_class->uclamp_enabled)) 1807 return; 1808 1809 if (p->se.sched_delayed) 1810 return; 1811 1812 for_each_clamp_id(clamp_id) 1813 uclamp_rq_dec_id(rq, p, clamp_id); 1814 } 1815 1816 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1817 enum uclamp_id clamp_id) 1818 { 1819 if (!p->uclamp[clamp_id].active) 1820 return; 1821 1822 uclamp_rq_dec_id(rq, p, clamp_id); 1823 uclamp_rq_inc_id(rq, p, clamp_id); 1824 1825 /* 1826 * Make sure to clear the idle flag if we've transiently reached 0 1827 * active tasks on rq. 1828 */ 1829 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1830 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1831 } 1832 1833 static inline void 1834 uclamp_update_active(struct task_struct *p) 1835 { 1836 enum uclamp_id clamp_id; 1837 struct rq_flags rf; 1838 struct rq *rq; 1839 1840 /* 1841 * Lock the task and the rq where the task is (or was) queued. 1842 * 1843 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1844 * price to pay to safely serialize util_{min,max} updates with 1845 * enqueues, dequeues and migration operations. 1846 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1847 */ 1848 rq = task_rq_lock(p, &rf); 1849 1850 /* 1851 * Setting the clamp bucket is serialized by task_rq_lock(). 1852 * If the task is not yet RUNNABLE and its task_struct is not 1853 * affecting a valid clamp bucket, the next time it's enqueued, 1854 * it will already see the updated clamp bucket value. 1855 */ 1856 for_each_clamp_id(clamp_id) 1857 uclamp_rq_reinc_id(rq, p, clamp_id); 1858 1859 task_rq_unlock(rq, p, &rf); 1860 } 1861 1862 #ifdef CONFIG_UCLAMP_TASK_GROUP 1863 static inline void 1864 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1865 { 1866 struct css_task_iter it; 1867 struct task_struct *p; 1868 1869 css_task_iter_start(css, 0, &it); 1870 while ((p = css_task_iter_next(&it))) 1871 uclamp_update_active(p); 1872 css_task_iter_end(&it); 1873 } 1874 1875 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1876 #endif 1877 1878 #ifdef CONFIG_SYSCTL 1879 #ifdef CONFIG_UCLAMP_TASK_GROUP 1880 static void uclamp_update_root_tg(void) 1881 { 1882 struct task_group *tg = &root_task_group; 1883 1884 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1885 sysctl_sched_uclamp_util_min, false); 1886 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1887 sysctl_sched_uclamp_util_max, false); 1888 1889 guard(rcu)(); 1890 cpu_util_update_eff(&root_task_group.css); 1891 } 1892 #else 1893 static void uclamp_update_root_tg(void) { } 1894 #endif 1895 1896 static void uclamp_sync_util_min_rt_default(void) 1897 { 1898 struct task_struct *g, *p; 1899 1900 /* 1901 * copy_process() sysctl_uclamp 1902 * uclamp_min_rt = X; 1903 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1904 * // link thread smp_mb__after_spinlock() 1905 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1906 * sched_post_fork() for_each_process_thread() 1907 * __uclamp_sync_rt() __uclamp_sync_rt() 1908 * 1909 * Ensures that either sched_post_fork() will observe the new 1910 * uclamp_min_rt or for_each_process_thread() will observe the new 1911 * task. 1912 */ 1913 read_lock(&tasklist_lock); 1914 smp_mb__after_spinlock(); 1915 read_unlock(&tasklist_lock); 1916 1917 guard(rcu)(); 1918 for_each_process_thread(g, p) 1919 uclamp_update_util_min_rt_default(p); 1920 } 1921 1922 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1923 void *buffer, size_t *lenp, loff_t *ppos) 1924 { 1925 bool update_root_tg = false; 1926 int old_min, old_max, old_min_rt; 1927 int result; 1928 1929 guard(mutex)(&uclamp_mutex); 1930 1931 old_min = sysctl_sched_uclamp_util_min; 1932 old_max = sysctl_sched_uclamp_util_max; 1933 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1934 1935 result = proc_dointvec(table, write, buffer, lenp, ppos); 1936 if (result) 1937 goto undo; 1938 if (!write) 1939 return 0; 1940 1941 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1942 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1943 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1944 1945 result = -EINVAL; 1946 goto undo; 1947 } 1948 1949 if (old_min != sysctl_sched_uclamp_util_min) { 1950 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1951 sysctl_sched_uclamp_util_min, false); 1952 update_root_tg = true; 1953 } 1954 if (old_max != sysctl_sched_uclamp_util_max) { 1955 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1956 sysctl_sched_uclamp_util_max, false); 1957 update_root_tg = true; 1958 } 1959 1960 if (update_root_tg) { 1961 sched_uclamp_enable(); 1962 uclamp_update_root_tg(); 1963 } 1964 1965 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1966 sched_uclamp_enable(); 1967 uclamp_sync_util_min_rt_default(); 1968 } 1969 1970 /* 1971 * We update all RUNNABLE tasks only when task groups are in use. 1972 * Otherwise, keep it simple and do just a lazy update at each next 1973 * task enqueue time. 1974 */ 1975 return 0; 1976 1977 undo: 1978 sysctl_sched_uclamp_util_min = old_min; 1979 sysctl_sched_uclamp_util_max = old_max; 1980 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1981 return result; 1982 } 1983 #endif /* CONFIG_SYSCTL */ 1984 1985 static void uclamp_fork(struct task_struct *p) 1986 { 1987 enum uclamp_id clamp_id; 1988 1989 /* 1990 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1991 * as the task is still at its early fork stages. 1992 */ 1993 for_each_clamp_id(clamp_id) 1994 p->uclamp[clamp_id].active = false; 1995 1996 if (likely(!p->sched_reset_on_fork)) 1997 return; 1998 1999 for_each_clamp_id(clamp_id) { 2000 uclamp_se_set(&p->uclamp_req[clamp_id], 2001 uclamp_none(clamp_id), false); 2002 } 2003 } 2004 2005 static void uclamp_post_fork(struct task_struct *p) 2006 { 2007 uclamp_update_util_min_rt_default(p); 2008 } 2009 2010 static void __init init_uclamp_rq(struct rq *rq) 2011 { 2012 enum uclamp_id clamp_id; 2013 struct uclamp_rq *uc_rq = rq->uclamp; 2014 2015 for_each_clamp_id(clamp_id) { 2016 uc_rq[clamp_id] = (struct uclamp_rq) { 2017 .value = uclamp_none(clamp_id) 2018 }; 2019 } 2020 2021 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2022 } 2023 2024 static void __init init_uclamp(void) 2025 { 2026 struct uclamp_se uc_max = {}; 2027 enum uclamp_id clamp_id; 2028 int cpu; 2029 2030 for_each_possible_cpu(cpu) 2031 init_uclamp_rq(cpu_rq(cpu)); 2032 2033 for_each_clamp_id(clamp_id) { 2034 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2035 uclamp_none(clamp_id), false); 2036 } 2037 2038 /* System defaults allow max clamp values for both indexes */ 2039 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2040 for_each_clamp_id(clamp_id) { 2041 uclamp_default[clamp_id] = uc_max; 2042 #ifdef CONFIG_UCLAMP_TASK_GROUP 2043 root_task_group.uclamp_req[clamp_id] = uc_max; 2044 root_task_group.uclamp[clamp_id] = uc_max; 2045 #endif 2046 } 2047 } 2048 2049 #else /* !CONFIG_UCLAMP_TASK: */ 2050 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } 2051 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2052 static inline void uclamp_fork(struct task_struct *p) { } 2053 static inline void uclamp_post_fork(struct task_struct *p) { } 2054 static inline void init_uclamp(void) { } 2055 #endif /* !CONFIG_UCLAMP_TASK */ 2056 2057 bool sched_task_on_rq(struct task_struct *p) 2058 { 2059 return task_on_rq_queued(p); 2060 } 2061 2062 unsigned long get_wchan(struct task_struct *p) 2063 { 2064 unsigned long ip = 0; 2065 unsigned int state; 2066 2067 if (!p || p == current) 2068 return 0; 2069 2070 /* Only get wchan if task is blocked and we can keep it that way. */ 2071 raw_spin_lock_irq(&p->pi_lock); 2072 state = READ_ONCE(p->__state); 2073 smp_rmb(); /* see try_to_wake_up() */ 2074 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2075 ip = __get_wchan(p); 2076 raw_spin_unlock_irq(&p->pi_lock); 2077 2078 return ip; 2079 } 2080 2081 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2082 { 2083 if (!(flags & ENQUEUE_NOCLOCK)) 2084 update_rq_clock(rq); 2085 2086 /* 2087 * Can be before ->enqueue_task() because uclamp considers the 2088 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared 2089 * in ->enqueue_task(). 2090 */ 2091 uclamp_rq_inc(rq, p, flags); 2092 2093 rq->queue_mask |= p->sched_class->queue_mask; 2094 p->sched_class->enqueue_task(rq, p, flags); 2095 2096 psi_enqueue(p, flags); 2097 2098 if (!(flags & ENQUEUE_RESTORE)) 2099 sched_info_enqueue(rq, p); 2100 2101 if (sched_core_enabled(rq)) 2102 sched_core_enqueue(rq, p); 2103 } 2104 2105 /* 2106 * Must only return false when DEQUEUE_SLEEP. 2107 */ 2108 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2109 { 2110 if (sched_core_enabled(rq)) 2111 sched_core_dequeue(rq, p, flags); 2112 2113 if (!(flags & DEQUEUE_NOCLOCK)) 2114 update_rq_clock(rq); 2115 2116 if (!(flags & DEQUEUE_SAVE)) 2117 sched_info_dequeue(rq, p); 2118 2119 psi_dequeue(p, flags); 2120 2121 /* 2122 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2123 * and mark the task ->sched_delayed. 2124 */ 2125 uclamp_rq_dec(rq, p); 2126 rq->queue_mask |= p->sched_class->queue_mask; 2127 return p->sched_class->dequeue_task(rq, p, flags); 2128 } 2129 2130 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2131 { 2132 if (task_on_rq_migrating(p)) 2133 flags |= ENQUEUE_MIGRATED; 2134 2135 enqueue_task(rq, p, flags); 2136 2137 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2138 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2139 } 2140 2141 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2142 { 2143 WARN_ON_ONCE(flags & DEQUEUE_SLEEP); 2144 2145 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2146 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2147 2148 /* 2149 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2150 * dequeue_task() and cleared *after* enqueue_task(). 2151 */ 2152 2153 dequeue_task(rq, p, flags); 2154 } 2155 2156 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2157 { 2158 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2159 __block_task(rq, p); 2160 } 2161 2162 /** 2163 * task_curr - is this task currently executing on a CPU? 2164 * @p: the task in question. 2165 * 2166 * Return: 1 if the task is currently executing. 0 otherwise. 2167 */ 2168 inline int task_curr(const struct task_struct *p) 2169 { 2170 return cpu_curr(task_cpu(p)) == p; 2171 } 2172 2173 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2174 { 2175 struct task_struct *donor = rq->donor; 2176 2177 if (p->sched_class == donor->sched_class) 2178 donor->sched_class->wakeup_preempt(rq, p, flags); 2179 else if (sched_class_above(p->sched_class, donor->sched_class)) 2180 resched_curr(rq); 2181 2182 /* 2183 * A queue event has occurred, and we're going to schedule. In 2184 * this case, we can save a useless back to back clock update. 2185 */ 2186 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2187 rq_clock_skip_update(rq); 2188 } 2189 2190 static __always_inline 2191 int __task_state_match(struct task_struct *p, unsigned int state) 2192 { 2193 if (READ_ONCE(p->__state) & state) 2194 return 1; 2195 2196 if (READ_ONCE(p->saved_state) & state) 2197 return -1; 2198 2199 return 0; 2200 } 2201 2202 static __always_inline 2203 int task_state_match(struct task_struct *p, unsigned int state) 2204 { 2205 /* 2206 * Serialize against current_save_and_set_rtlock_wait_state(), 2207 * current_restore_rtlock_saved_state(), and __refrigerator(). 2208 */ 2209 guard(raw_spinlock_irq)(&p->pi_lock); 2210 return __task_state_match(p, state); 2211 } 2212 2213 /* 2214 * wait_task_inactive - wait for a thread to unschedule. 2215 * 2216 * Wait for the thread to block in any of the states set in @match_state. 2217 * If it changes, i.e. @p might have woken up, then return zero. When we 2218 * succeed in waiting for @p to be off its CPU, we return a positive number 2219 * (its total switch count). If a second call a short while later returns the 2220 * same number, the caller can be sure that @p has remained unscheduled the 2221 * whole time. 2222 * 2223 * The caller must ensure that the task *will* unschedule sometime soon, 2224 * else this function might spin for a *long* time. This function can't 2225 * be called with interrupts off, or it may introduce deadlock with 2226 * smp_call_function() if an IPI is sent by the same process we are 2227 * waiting to become inactive. 2228 */ 2229 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2230 { 2231 int running, queued, match; 2232 struct rq_flags rf; 2233 unsigned long ncsw; 2234 struct rq *rq; 2235 2236 for (;;) { 2237 /* 2238 * We do the initial early heuristics without holding 2239 * any task-queue locks at all. We'll only try to get 2240 * the runqueue lock when things look like they will 2241 * work out! 2242 */ 2243 rq = task_rq(p); 2244 2245 /* 2246 * If the task is actively running on another CPU 2247 * still, just relax and busy-wait without holding 2248 * any locks. 2249 * 2250 * NOTE! Since we don't hold any locks, it's not 2251 * even sure that "rq" stays as the right runqueue! 2252 * But we don't care, since "task_on_cpu()" will 2253 * return false if the runqueue has changed and p 2254 * is actually now running somewhere else! 2255 */ 2256 while (task_on_cpu(rq, p)) { 2257 if (!task_state_match(p, match_state)) 2258 return 0; 2259 cpu_relax(); 2260 } 2261 2262 /* 2263 * Ok, time to look more closely! We need the rq 2264 * lock now, to be *sure*. If we're wrong, we'll 2265 * just go back and repeat. 2266 */ 2267 rq = task_rq_lock(p, &rf); 2268 /* 2269 * If task is sched_delayed, force dequeue it, to avoid always 2270 * hitting the tick timeout in the queued case 2271 */ 2272 if (p->se.sched_delayed) 2273 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 2274 trace_sched_wait_task(p); 2275 running = task_on_cpu(rq, p); 2276 queued = task_on_rq_queued(p); 2277 ncsw = 0; 2278 if ((match = __task_state_match(p, match_state))) { 2279 /* 2280 * When matching on p->saved_state, consider this task 2281 * still queued so it will wait. 2282 */ 2283 if (match < 0) 2284 queued = 1; 2285 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2286 } 2287 task_rq_unlock(rq, p, &rf); 2288 2289 /* 2290 * If it changed from the expected state, bail out now. 2291 */ 2292 if (unlikely(!ncsw)) 2293 break; 2294 2295 /* 2296 * Was it really running after all now that we 2297 * checked with the proper locks actually held? 2298 * 2299 * Oops. Go back and try again.. 2300 */ 2301 if (unlikely(running)) { 2302 cpu_relax(); 2303 continue; 2304 } 2305 2306 /* 2307 * It's not enough that it's not actively running, 2308 * it must be off the runqueue _entirely_, and not 2309 * preempted! 2310 * 2311 * So if it was still runnable (but just not actively 2312 * running right now), it's preempted, and we should 2313 * yield - it could be a while. 2314 */ 2315 if (unlikely(queued)) { 2316 ktime_t to = NSEC_PER_SEC / HZ; 2317 2318 set_current_state(TASK_UNINTERRUPTIBLE); 2319 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2320 continue; 2321 } 2322 2323 /* 2324 * Ahh, all good. It wasn't running, and it wasn't 2325 * runnable, which means that it will never become 2326 * running in the future either. We're all done! 2327 */ 2328 break; 2329 } 2330 2331 return ncsw; 2332 } 2333 2334 static void 2335 do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2336 2337 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2338 { 2339 struct affinity_context ac = { 2340 .new_mask = cpumask_of(rq->cpu), 2341 .flags = SCA_MIGRATE_DISABLE, 2342 }; 2343 2344 if (likely(!p->migration_disabled)) 2345 return; 2346 2347 if (p->cpus_ptr != &p->cpus_mask) 2348 return; 2349 2350 scoped_guard (task_rq_lock, p) 2351 do_set_cpus_allowed(p, &ac); 2352 } 2353 2354 void ___migrate_enable(void) 2355 { 2356 struct task_struct *p = current; 2357 struct affinity_context ac = { 2358 .new_mask = &p->cpus_mask, 2359 .flags = SCA_MIGRATE_ENABLE, 2360 }; 2361 2362 __set_cpus_allowed_ptr(p, &ac); 2363 } 2364 EXPORT_SYMBOL_GPL(___migrate_enable); 2365 2366 void migrate_disable(void) 2367 { 2368 __migrate_disable(); 2369 } 2370 EXPORT_SYMBOL_GPL(migrate_disable); 2371 2372 void migrate_enable(void) 2373 { 2374 __migrate_enable(); 2375 } 2376 EXPORT_SYMBOL_GPL(migrate_enable); 2377 2378 static inline bool rq_has_pinned_tasks(struct rq *rq) 2379 { 2380 return rq->nr_pinned; 2381 } 2382 2383 /* 2384 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2385 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2386 */ 2387 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2388 { 2389 /* When not in the task's cpumask, no point in looking further. */ 2390 if (!task_allowed_on_cpu(p, cpu)) 2391 return false; 2392 2393 /* migrate_disabled() must be allowed to finish. */ 2394 if (is_migration_disabled(p)) 2395 return cpu_online(cpu); 2396 2397 /* Non kernel threads are not allowed during either online or offline. */ 2398 if (!(p->flags & PF_KTHREAD)) 2399 return cpu_active(cpu); 2400 2401 /* KTHREAD_IS_PER_CPU is always allowed. */ 2402 if (kthread_is_per_cpu(p)) 2403 return cpu_online(cpu); 2404 2405 /* Regular kernel threads don't get to stay during offline. */ 2406 if (cpu_dying(cpu)) 2407 return false; 2408 2409 /* But are allowed during online. */ 2410 return cpu_online(cpu); 2411 } 2412 2413 /* 2414 * This is how migration works: 2415 * 2416 * 1) we invoke migration_cpu_stop() on the target CPU using 2417 * stop_one_cpu(). 2418 * 2) stopper starts to run (implicitly forcing the migrated thread 2419 * off the CPU) 2420 * 3) it checks whether the migrated task is still in the wrong runqueue. 2421 * 4) if it's in the wrong runqueue then the migration thread removes 2422 * it and puts it into the right queue. 2423 * 5) stopper completes and stop_one_cpu() returns and the migration 2424 * is done. 2425 */ 2426 2427 /* 2428 * move_queued_task - move a queued task to new rq. 2429 * 2430 * Returns (locked) new rq. Old rq's lock is released. 2431 */ 2432 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2433 struct task_struct *p, int new_cpu) 2434 { 2435 lockdep_assert_rq_held(rq); 2436 2437 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2438 set_task_cpu(p, new_cpu); 2439 rq_unlock(rq, rf); 2440 2441 rq = cpu_rq(new_cpu); 2442 2443 rq_lock(rq, rf); 2444 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2445 activate_task(rq, p, 0); 2446 wakeup_preempt(rq, p, 0); 2447 2448 return rq; 2449 } 2450 2451 struct migration_arg { 2452 struct task_struct *task; 2453 int dest_cpu; 2454 struct set_affinity_pending *pending; 2455 }; 2456 2457 /* 2458 * @refs: number of wait_for_completion() 2459 * @stop_pending: is @stop_work in use 2460 */ 2461 struct set_affinity_pending { 2462 refcount_t refs; 2463 unsigned int stop_pending; 2464 struct completion done; 2465 struct cpu_stop_work stop_work; 2466 struct migration_arg arg; 2467 }; 2468 2469 /* 2470 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2471 * this because either it can't run here any more (set_cpus_allowed() 2472 * away from this CPU, or CPU going down), or because we're 2473 * attempting to rebalance this task on exec (sched_exec). 2474 * 2475 * So we race with normal scheduler movements, but that's OK, as long 2476 * as the task is no longer on this CPU. 2477 */ 2478 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2479 struct task_struct *p, int dest_cpu) 2480 { 2481 /* Affinity changed (again). */ 2482 if (!is_cpu_allowed(p, dest_cpu)) 2483 return rq; 2484 2485 rq = move_queued_task(rq, rf, p, dest_cpu); 2486 2487 return rq; 2488 } 2489 2490 /* 2491 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2492 * and performs thread migration by bumping thread off CPU then 2493 * 'pushing' onto another runqueue. 2494 */ 2495 static int migration_cpu_stop(void *data) 2496 { 2497 struct migration_arg *arg = data; 2498 struct set_affinity_pending *pending = arg->pending; 2499 struct task_struct *p = arg->task; 2500 struct rq *rq = this_rq(); 2501 bool complete = false; 2502 struct rq_flags rf; 2503 2504 /* 2505 * The original target CPU might have gone down and we might 2506 * be on another CPU but it doesn't matter. 2507 */ 2508 local_irq_save(rf.flags); 2509 /* 2510 * We need to explicitly wake pending tasks before running 2511 * __migrate_task() such that we will not miss enforcing cpus_ptr 2512 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2513 */ 2514 flush_smp_call_function_queue(); 2515 2516 raw_spin_lock(&p->pi_lock); 2517 rq_lock(rq, &rf); 2518 2519 /* 2520 * If we were passed a pending, then ->stop_pending was set, thus 2521 * p->migration_pending must have remained stable. 2522 */ 2523 WARN_ON_ONCE(pending && pending != p->migration_pending); 2524 2525 /* 2526 * If task_rq(p) != rq, it cannot be migrated here, because we're 2527 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2528 * we're holding p->pi_lock. 2529 */ 2530 if (task_rq(p) == rq) { 2531 if (is_migration_disabled(p)) 2532 goto out; 2533 2534 if (pending) { 2535 p->migration_pending = NULL; 2536 complete = true; 2537 2538 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2539 goto out; 2540 } 2541 2542 if (task_on_rq_queued(p)) { 2543 update_rq_clock(rq); 2544 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2545 } else { 2546 p->wake_cpu = arg->dest_cpu; 2547 } 2548 2549 /* 2550 * XXX __migrate_task() can fail, at which point we might end 2551 * up running on a dodgy CPU, AFAICT this can only happen 2552 * during CPU hotplug, at which point we'll get pushed out 2553 * anyway, so it's probably not a big deal. 2554 */ 2555 2556 } else if (pending) { 2557 /* 2558 * This happens when we get migrated between migrate_enable()'s 2559 * preempt_enable() and scheduling the stopper task. At that 2560 * point we're a regular task again and not current anymore. 2561 * 2562 * A !PREEMPT kernel has a giant hole here, which makes it far 2563 * more likely. 2564 */ 2565 2566 /* 2567 * The task moved before the stopper got to run. We're holding 2568 * ->pi_lock, so the allowed mask is stable - if it got 2569 * somewhere allowed, we're done. 2570 */ 2571 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2572 p->migration_pending = NULL; 2573 complete = true; 2574 goto out; 2575 } 2576 2577 /* 2578 * When migrate_enable() hits a rq mis-match we can't reliably 2579 * determine is_migration_disabled() and so have to chase after 2580 * it. 2581 */ 2582 WARN_ON_ONCE(!pending->stop_pending); 2583 preempt_disable(); 2584 rq_unlock(rq, &rf); 2585 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2586 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2587 &pending->arg, &pending->stop_work); 2588 preempt_enable(); 2589 return 0; 2590 } 2591 out: 2592 if (pending) 2593 pending->stop_pending = false; 2594 rq_unlock(rq, &rf); 2595 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2596 2597 if (complete) 2598 complete_all(&pending->done); 2599 2600 return 0; 2601 } 2602 2603 int push_cpu_stop(void *arg) 2604 { 2605 struct rq *lowest_rq = NULL, *rq = this_rq(); 2606 struct task_struct *p = arg; 2607 2608 raw_spin_lock_irq(&p->pi_lock); 2609 raw_spin_rq_lock(rq); 2610 2611 if (task_rq(p) != rq) 2612 goto out_unlock; 2613 2614 if (is_migration_disabled(p)) { 2615 p->migration_flags |= MDF_PUSH; 2616 goto out_unlock; 2617 } 2618 2619 p->migration_flags &= ~MDF_PUSH; 2620 2621 if (p->sched_class->find_lock_rq) 2622 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2623 2624 if (!lowest_rq) 2625 goto out_unlock; 2626 2627 // XXX validate p is still the highest prio task 2628 if (task_rq(p) == rq) { 2629 move_queued_task_locked(rq, lowest_rq, p); 2630 resched_curr(lowest_rq); 2631 } 2632 2633 double_unlock_balance(rq, lowest_rq); 2634 2635 out_unlock: 2636 rq->push_busy = false; 2637 raw_spin_rq_unlock(rq); 2638 raw_spin_unlock_irq(&p->pi_lock); 2639 2640 put_task_struct(p); 2641 return 0; 2642 } 2643 2644 static inline void mm_update_cpus_allowed(struct mm_struct *mm, const cpumask_t *affmask); 2645 2646 /* 2647 * sched_class::set_cpus_allowed must do the below, but is not required to 2648 * actually call this function. 2649 */ 2650 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2651 { 2652 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2653 p->cpus_ptr = ctx->new_mask; 2654 return; 2655 } 2656 2657 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2658 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2659 mm_update_cpus_allowed(p->mm, ctx->new_mask); 2660 2661 /* 2662 * Swap in a new user_cpus_ptr if SCA_USER flag set 2663 */ 2664 if (ctx->flags & SCA_USER) 2665 swap(p->user_cpus_ptr, ctx->user_mask); 2666 } 2667 2668 static void 2669 do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2670 { 2671 scoped_guard (sched_change, p, DEQUEUE_SAVE) 2672 p->sched_class->set_cpus_allowed(p, ctx); 2673 } 2674 2675 /* 2676 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2677 * affinity (if any) should be destroyed too. 2678 */ 2679 void set_cpus_allowed_force(struct task_struct *p, const struct cpumask *new_mask) 2680 { 2681 struct affinity_context ac = { 2682 .new_mask = new_mask, 2683 .user_mask = NULL, 2684 .flags = SCA_USER, /* clear the user requested mask */ 2685 }; 2686 union cpumask_rcuhead { 2687 cpumask_t cpumask; 2688 struct rcu_head rcu; 2689 }; 2690 2691 scoped_guard (__task_rq_lock, p) 2692 do_set_cpus_allowed(p, &ac); 2693 2694 /* 2695 * Because this is called with p->pi_lock held, it is not possible 2696 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2697 * kfree_rcu(). 2698 */ 2699 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2700 } 2701 2702 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2703 int node) 2704 { 2705 cpumask_t *user_mask; 2706 unsigned long flags; 2707 2708 /* 2709 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2710 * may differ by now due to racing. 2711 */ 2712 dst->user_cpus_ptr = NULL; 2713 2714 /* 2715 * This check is racy and losing the race is a valid situation. 2716 * It is not worth the extra overhead of taking the pi_lock on 2717 * every fork/clone. 2718 */ 2719 if (data_race(!src->user_cpus_ptr)) 2720 return 0; 2721 2722 user_mask = alloc_user_cpus_ptr(node); 2723 if (!user_mask) 2724 return -ENOMEM; 2725 2726 /* 2727 * Use pi_lock to protect content of user_cpus_ptr 2728 * 2729 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2730 * set_cpus_allowed_force(). 2731 */ 2732 raw_spin_lock_irqsave(&src->pi_lock, flags); 2733 if (src->user_cpus_ptr) { 2734 swap(dst->user_cpus_ptr, user_mask); 2735 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2736 } 2737 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2738 2739 if (unlikely(user_mask)) 2740 kfree(user_mask); 2741 2742 return 0; 2743 } 2744 2745 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2746 { 2747 struct cpumask *user_mask = NULL; 2748 2749 swap(p->user_cpus_ptr, user_mask); 2750 2751 return user_mask; 2752 } 2753 2754 void release_user_cpus_ptr(struct task_struct *p) 2755 { 2756 kfree(clear_user_cpus_ptr(p)); 2757 } 2758 2759 /* 2760 * This function is wildly self concurrent; here be dragons. 2761 * 2762 * 2763 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2764 * designated task is enqueued on an allowed CPU. If that task is currently 2765 * running, we have to kick it out using the CPU stopper. 2766 * 2767 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2768 * Consider: 2769 * 2770 * Initial conditions: P0->cpus_mask = [0, 1] 2771 * 2772 * P0@CPU0 P1 2773 * 2774 * migrate_disable(); 2775 * <preempted> 2776 * set_cpus_allowed_ptr(P0, [1]); 2777 * 2778 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2779 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2780 * This means we need the following scheme: 2781 * 2782 * P0@CPU0 P1 2783 * 2784 * migrate_disable(); 2785 * <preempted> 2786 * set_cpus_allowed_ptr(P0, [1]); 2787 * <blocks> 2788 * <resumes> 2789 * migrate_enable(); 2790 * __set_cpus_allowed_ptr(); 2791 * <wakes local stopper> 2792 * `--> <woken on migration completion> 2793 * 2794 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2795 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2796 * task p are serialized by p->pi_lock, which we can leverage: the one that 2797 * should come into effect at the end of the Migrate-Disable region is the last 2798 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2799 * but we still need to properly signal those waiting tasks at the appropriate 2800 * moment. 2801 * 2802 * This is implemented using struct set_affinity_pending. The first 2803 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2804 * setup an instance of that struct and install it on the targeted task_struct. 2805 * Any and all further callers will reuse that instance. Those then wait for 2806 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2807 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2808 * 2809 * 2810 * (1) In the cases covered above. There is one more where the completion is 2811 * signaled within affine_move_task() itself: when a subsequent affinity request 2812 * occurs after the stopper bailed out due to the targeted task still being 2813 * Migrate-Disable. Consider: 2814 * 2815 * Initial conditions: P0->cpus_mask = [0, 1] 2816 * 2817 * CPU0 P1 P2 2818 * <P0> 2819 * migrate_disable(); 2820 * <preempted> 2821 * set_cpus_allowed_ptr(P0, [1]); 2822 * <blocks> 2823 * <migration/0> 2824 * migration_cpu_stop() 2825 * is_migration_disabled() 2826 * <bails> 2827 * set_cpus_allowed_ptr(P0, [0, 1]); 2828 * <signal completion> 2829 * <awakes> 2830 * 2831 * Note that the above is safe vs a concurrent migrate_enable(), as any 2832 * pending affinity completion is preceded by an uninstallation of 2833 * p->migration_pending done with p->pi_lock held. 2834 */ 2835 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2836 int dest_cpu, unsigned int flags) 2837 __releases(rq->lock) 2838 __releases(p->pi_lock) 2839 { 2840 struct set_affinity_pending my_pending = { }, *pending = NULL; 2841 bool stop_pending, complete = false; 2842 2843 /* 2844 * Can the task run on the task's current CPU? If so, we're done 2845 * 2846 * We are also done if the task is the current donor, boosting a lock- 2847 * holding proxy, (and potentially has been migrated outside its 2848 * current or previous affinity mask) 2849 */ 2850 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) || 2851 (task_current_donor(rq, p) && !task_current(rq, p))) { 2852 struct task_struct *push_task = NULL; 2853 2854 if ((flags & SCA_MIGRATE_ENABLE) && 2855 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2856 rq->push_busy = true; 2857 push_task = get_task_struct(p); 2858 } 2859 2860 /* 2861 * If there are pending waiters, but no pending stop_work, 2862 * then complete now. 2863 */ 2864 pending = p->migration_pending; 2865 if (pending && !pending->stop_pending) { 2866 p->migration_pending = NULL; 2867 complete = true; 2868 } 2869 2870 preempt_disable(); 2871 task_rq_unlock(rq, p, rf); 2872 if (push_task) { 2873 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2874 p, &rq->push_work); 2875 } 2876 preempt_enable(); 2877 2878 if (complete) 2879 complete_all(&pending->done); 2880 2881 return 0; 2882 } 2883 2884 if (!(flags & SCA_MIGRATE_ENABLE)) { 2885 /* serialized by p->pi_lock */ 2886 if (!p->migration_pending) { 2887 /* Install the request */ 2888 refcount_set(&my_pending.refs, 1); 2889 init_completion(&my_pending.done); 2890 my_pending.arg = (struct migration_arg) { 2891 .task = p, 2892 .dest_cpu = dest_cpu, 2893 .pending = &my_pending, 2894 }; 2895 2896 p->migration_pending = &my_pending; 2897 } else { 2898 pending = p->migration_pending; 2899 refcount_inc(&pending->refs); 2900 /* 2901 * Affinity has changed, but we've already installed a 2902 * pending. migration_cpu_stop() *must* see this, else 2903 * we risk a completion of the pending despite having a 2904 * task on a disallowed CPU. 2905 * 2906 * Serialized by p->pi_lock, so this is safe. 2907 */ 2908 pending->arg.dest_cpu = dest_cpu; 2909 } 2910 } 2911 pending = p->migration_pending; 2912 /* 2913 * - !MIGRATE_ENABLE: 2914 * we'll have installed a pending if there wasn't one already. 2915 * 2916 * - MIGRATE_ENABLE: 2917 * we're here because the current CPU isn't matching anymore, 2918 * the only way that can happen is because of a concurrent 2919 * set_cpus_allowed_ptr() call, which should then still be 2920 * pending completion. 2921 * 2922 * Either way, we really should have a @pending here. 2923 */ 2924 if (WARN_ON_ONCE(!pending)) { 2925 task_rq_unlock(rq, p, rf); 2926 return -EINVAL; 2927 } 2928 2929 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2930 /* 2931 * MIGRATE_ENABLE gets here because 'p == current', but for 2932 * anything else we cannot do is_migration_disabled(), punt 2933 * and have the stopper function handle it all race-free. 2934 */ 2935 stop_pending = pending->stop_pending; 2936 if (!stop_pending) 2937 pending->stop_pending = true; 2938 2939 if (flags & SCA_MIGRATE_ENABLE) 2940 p->migration_flags &= ~MDF_PUSH; 2941 2942 preempt_disable(); 2943 task_rq_unlock(rq, p, rf); 2944 if (!stop_pending) { 2945 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2946 &pending->arg, &pending->stop_work); 2947 } 2948 preempt_enable(); 2949 2950 if (flags & SCA_MIGRATE_ENABLE) 2951 return 0; 2952 } else { 2953 2954 if (!is_migration_disabled(p)) { 2955 if (task_on_rq_queued(p)) 2956 rq = move_queued_task(rq, rf, p, dest_cpu); 2957 2958 if (!pending->stop_pending) { 2959 p->migration_pending = NULL; 2960 complete = true; 2961 } 2962 } 2963 task_rq_unlock(rq, p, rf); 2964 2965 if (complete) 2966 complete_all(&pending->done); 2967 } 2968 2969 wait_for_completion(&pending->done); 2970 2971 if (refcount_dec_and_test(&pending->refs)) 2972 wake_up_var(&pending->refs); /* No UaF, just an address */ 2973 2974 /* 2975 * Block the original owner of &pending until all subsequent callers 2976 * have seen the completion and decremented the refcount 2977 */ 2978 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2979 2980 /* ARGH */ 2981 WARN_ON_ONCE(my_pending.stop_pending); 2982 2983 return 0; 2984 } 2985 2986 /* 2987 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2988 */ 2989 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2990 struct affinity_context *ctx, 2991 struct rq *rq, 2992 struct rq_flags *rf) 2993 __releases(rq->lock) 2994 __releases(p->pi_lock) 2995 { 2996 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2997 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2998 bool kthread = p->flags & PF_KTHREAD; 2999 unsigned int dest_cpu; 3000 int ret = 0; 3001 3002 if (kthread || is_migration_disabled(p)) { 3003 /* 3004 * Kernel threads are allowed on online && !active CPUs, 3005 * however, during cpu-hot-unplug, even these might get pushed 3006 * away if not KTHREAD_IS_PER_CPU. 3007 * 3008 * Specifically, migration_disabled() tasks must not fail the 3009 * cpumask_any_and_distribute() pick below, esp. so on 3010 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3011 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3012 */ 3013 cpu_valid_mask = cpu_online_mask; 3014 } 3015 3016 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3017 ret = -EINVAL; 3018 goto out; 3019 } 3020 3021 /* 3022 * Must re-check here, to close a race against __kthread_bind(), 3023 * sched_setaffinity() is not guaranteed to observe the flag. 3024 */ 3025 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3026 ret = -EINVAL; 3027 goto out; 3028 } 3029 3030 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3031 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3032 if (ctx->flags & SCA_USER) 3033 swap(p->user_cpus_ptr, ctx->user_mask); 3034 goto out; 3035 } 3036 3037 if (WARN_ON_ONCE(p == current && 3038 is_migration_disabled(p) && 3039 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3040 ret = -EBUSY; 3041 goto out; 3042 } 3043 } 3044 3045 /* 3046 * Picking a ~random cpu helps in cases where we are changing affinity 3047 * for groups of tasks (ie. cpuset), so that load balancing is not 3048 * immediately required to distribute the tasks within their new mask. 3049 */ 3050 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3051 if (dest_cpu >= nr_cpu_ids) { 3052 ret = -EINVAL; 3053 goto out; 3054 } 3055 3056 do_set_cpus_allowed(p, ctx); 3057 3058 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3059 3060 out: 3061 task_rq_unlock(rq, p, rf); 3062 3063 return ret; 3064 } 3065 3066 /* 3067 * Change a given task's CPU affinity. Migrate the thread to a 3068 * proper CPU and schedule it away if the CPU it's executing on 3069 * is removed from the allowed bitmask. 3070 * 3071 * NOTE: the caller must have a valid reference to the task, the 3072 * task must not exit() & deallocate itself prematurely. The 3073 * call is not atomic; no spinlocks may be held. 3074 */ 3075 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3076 { 3077 struct rq_flags rf; 3078 struct rq *rq; 3079 3080 rq = task_rq_lock(p, &rf); 3081 /* 3082 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3083 * flags are set. 3084 */ 3085 if (p->user_cpus_ptr && 3086 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3087 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3088 ctx->new_mask = rq->scratch_mask; 3089 3090 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3091 } 3092 3093 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3094 { 3095 struct affinity_context ac = { 3096 .new_mask = new_mask, 3097 .flags = 0, 3098 }; 3099 3100 return __set_cpus_allowed_ptr(p, &ac); 3101 } 3102 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3103 3104 /* 3105 * Change a given task's CPU affinity to the intersection of its current 3106 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3107 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3108 * affinity or use cpu_online_mask instead. 3109 * 3110 * If the resulting mask is empty, leave the affinity unchanged and return 3111 * -EINVAL. 3112 */ 3113 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3114 struct cpumask *new_mask, 3115 const struct cpumask *subset_mask) 3116 { 3117 struct affinity_context ac = { 3118 .new_mask = new_mask, 3119 .flags = 0, 3120 }; 3121 struct rq_flags rf; 3122 struct rq *rq; 3123 int err; 3124 3125 rq = task_rq_lock(p, &rf); 3126 3127 /* 3128 * Forcefully restricting the affinity of a deadline task is 3129 * likely to cause problems, so fail and noisily override the 3130 * mask entirely. 3131 */ 3132 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3133 err = -EPERM; 3134 goto err_unlock; 3135 } 3136 3137 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3138 err = -EINVAL; 3139 goto err_unlock; 3140 } 3141 3142 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3143 3144 err_unlock: 3145 task_rq_unlock(rq, p, &rf); 3146 return err; 3147 } 3148 3149 /* 3150 * Restrict the CPU affinity of task @p so that it is a subset of 3151 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3152 * old affinity mask. If the resulting mask is empty, we warn and walk 3153 * up the cpuset hierarchy until we find a suitable mask. 3154 */ 3155 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3156 { 3157 cpumask_var_t new_mask; 3158 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3159 3160 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3161 3162 /* 3163 * __migrate_task() can fail silently in the face of concurrent 3164 * offlining of the chosen destination CPU, so take the hotplug 3165 * lock to ensure that the migration succeeds. 3166 */ 3167 cpus_read_lock(); 3168 if (!cpumask_available(new_mask)) 3169 goto out_set_mask; 3170 3171 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3172 goto out_free_mask; 3173 3174 /* 3175 * We failed to find a valid subset of the affinity mask for the 3176 * task, so override it based on its cpuset hierarchy. 3177 */ 3178 cpuset_cpus_allowed(p, new_mask); 3179 override_mask = new_mask; 3180 3181 out_set_mask: 3182 if (printk_ratelimit()) { 3183 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3184 task_pid_nr(p), p->comm, 3185 cpumask_pr_args(override_mask)); 3186 } 3187 3188 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3189 out_free_mask: 3190 cpus_read_unlock(); 3191 free_cpumask_var(new_mask); 3192 } 3193 3194 /* 3195 * Restore the affinity of a task @p which was previously restricted by a 3196 * call to force_compatible_cpus_allowed_ptr(). 3197 * 3198 * It is the caller's responsibility to serialise this with any calls to 3199 * force_compatible_cpus_allowed_ptr(@p). 3200 */ 3201 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3202 { 3203 struct affinity_context ac = { 3204 .new_mask = task_user_cpus(p), 3205 .flags = 0, 3206 }; 3207 int ret; 3208 3209 /* 3210 * Try to restore the old affinity mask with __sched_setaffinity(). 3211 * Cpuset masking will be done there too. 3212 */ 3213 ret = __sched_setaffinity(p, &ac); 3214 WARN_ON_ONCE(ret); 3215 } 3216 3217 #ifdef CONFIG_SMP 3218 3219 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3220 { 3221 unsigned int state = READ_ONCE(p->__state); 3222 3223 /* 3224 * We should never call set_task_cpu() on a blocked task, 3225 * ttwu() will sort out the placement. 3226 */ 3227 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3228 3229 /* 3230 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3231 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3232 * time relying on p->on_rq. 3233 */ 3234 WARN_ON_ONCE(state == TASK_RUNNING && 3235 p->sched_class == &fair_sched_class && 3236 (p->on_rq && !task_on_rq_migrating(p))); 3237 3238 #ifdef CONFIG_LOCKDEP 3239 /* 3240 * The caller should hold either p->pi_lock or rq->lock, when changing 3241 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3242 * 3243 * sched_move_task() holds both and thus holding either pins the cgroup, 3244 * see task_group(). 3245 * 3246 * Furthermore, all task_rq users should acquire both locks, see 3247 * task_rq_lock(). 3248 */ 3249 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3250 lockdep_is_held(__rq_lockp(task_rq(p))))); 3251 #endif 3252 /* 3253 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3254 */ 3255 WARN_ON_ONCE(!cpu_online(new_cpu)); 3256 3257 WARN_ON_ONCE(is_migration_disabled(p)); 3258 3259 trace_sched_migrate_task(p, new_cpu); 3260 3261 if (task_cpu(p) != new_cpu) { 3262 if (p->sched_class->migrate_task_rq) 3263 p->sched_class->migrate_task_rq(p, new_cpu); 3264 p->se.nr_migrations++; 3265 perf_event_task_migrate(p); 3266 } 3267 3268 __set_task_cpu(p, new_cpu); 3269 } 3270 #endif /* CONFIG_SMP */ 3271 3272 #ifdef CONFIG_NUMA_BALANCING 3273 static void __migrate_swap_task(struct task_struct *p, int cpu) 3274 { 3275 if (task_on_rq_queued(p)) { 3276 struct rq *src_rq, *dst_rq; 3277 struct rq_flags srf, drf; 3278 3279 src_rq = task_rq(p); 3280 dst_rq = cpu_rq(cpu); 3281 3282 rq_pin_lock(src_rq, &srf); 3283 rq_pin_lock(dst_rq, &drf); 3284 3285 move_queued_task_locked(src_rq, dst_rq, p); 3286 wakeup_preempt(dst_rq, p, 0); 3287 3288 rq_unpin_lock(dst_rq, &drf); 3289 rq_unpin_lock(src_rq, &srf); 3290 3291 } else { 3292 /* 3293 * Task isn't running anymore; make it appear like we migrated 3294 * it before it went to sleep. This means on wakeup we make the 3295 * previous CPU our target instead of where it really is. 3296 */ 3297 p->wake_cpu = cpu; 3298 } 3299 } 3300 3301 struct migration_swap_arg { 3302 struct task_struct *src_task, *dst_task; 3303 int src_cpu, dst_cpu; 3304 }; 3305 3306 static int migrate_swap_stop(void *data) 3307 { 3308 struct migration_swap_arg *arg = data; 3309 struct rq *src_rq, *dst_rq; 3310 3311 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3312 return -EAGAIN; 3313 3314 src_rq = cpu_rq(arg->src_cpu); 3315 dst_rq = cpu_rq(arg->dst_cpu); 3316 3317 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3318 guard(double_rq_lock)(src_rq, dst_rq); 3319 3320 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3321 return -EAGAIN; 3322 3323 if (task_cpu(arg->src_task) != arg->src_cpu) 3324 return -EAGAIN; 3325 3326 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3327 return -EAGAIN; 3328 3329 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3330 return -EAGAIN; 3331 3332 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3333 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3334 3335 return 0; 3336 } 3337 3338 /* 3339 * Cross migrate two tasks 3340 */ 3341 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3342 int target_cpu, int curr_cpu) 3343 { 3344 struct migration_swap_arg arg; 3345 int ret = -EINVAL; 3346 3347 arg = (struct migration_swap_arg){ 3348 .src_task = cur, 3349 .src_cpu = curr_cpu, 3350 .dst_task = p, 3351 .dst_cpu = target_cpu, 3352 }; 3353 3354 if (arg.src_cpu == arg.dst_cpu) 3355 goto out; 3356 3357 /* 3358 * These three tests are all lockless; this is OK since all of them 3359 * will be re-checked with proper locks held further down the line. 3360 */ 3361 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3362 goto out; 3363 3364 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3365 goto out; 3366 3367 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3368 goto out; 3369 3370 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3371 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3372 3373 out: 3374 return ret; 3375 } 3376 #endif /* CONFIG_NUMA_BALANCING */ 3377 3378 /*** 3379 * kick_process - kick a running thread to enter/exit the kernel 3380 * @p: the to-be-kicked thread 3381 * 3382 * Cause a process which is running on another CPU to enter 3383 * kernel-mode, without any delay. (to get signals handled.) 3384 * 3385 * NOTE: this function doesn't have to take the runqueue lock, 3386 * because all it wants to ensure is that the remote task enters 3387 * the kernel. If the IPI races and the task has been migrated 3388 * to another CPU then no harm is done and the purpose has been 3389 * achieved as well. 3390 */ 3391 void kick_process(struct task_struct *p) 3392 { 3393 guard(preempt)(); 3394 int cpu = task_cpu(p); 3395 3396 if ((cpu != smp_processor_id()) && task_curr(p)) 3397 smp_send_reschedule(cpu); 3398 } 3399 EXPORT_SYMBOL_GPL(kick_process); 3400 3401 /* 3402 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3403 * 3404 * A few notes on cpu_active vs cpu_online: 3405 * 3406 * - cpu_active must be a subset of cpu_online 3407 * 3408 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3409 * see __set_cpus_allowed_ptr(). At this point the newly online 3410 * CPU isn't yet part of the sched domains, and balancing will not 3411 * see it. 3412 * 3413 * - on CPU-down we clear cpu_active() to mask the sched domains and 3414 * avoid the load balancer to place new tasks on the to be removed 3415 * CPU. Existing tasks will remain running there and will be taken 3416 * off. 3417 * 3418 * This means that fallback selection must not select !active CPUs. 3419 * And can assume that any active CPU must be online. Conversely 3420 * select_task_rq() below may allow selection of !active CPUs in order 3421 * to satisfy the above rules. 3422 */ 3423 static int select_fallback_rq(int cpu, struct task_struct *p) 3424 { 3425 int nid = cpu_to_node(cpu); 3426 const struct cpumask *nodemask = NULL; 3427 enum { cpuset, possible, fail } state = cpuset; 3428 int dest_cpu; 3429 3430 /* 3431 * If the node that the CPU is on has been offlined, cpu_to_node() 3432 * will return -1. There is no CPU on the node, and we should 3433 * select the CPU on the other node. 3434 */ 3435 if (nid != -1) { 3436 nodemask = cpumask_of_node(nid); 3437 3438 /* Look for allowed, online CPU in same node. */ 3439 for_each_cpu(dest_cpu, nodemask) { 3440 if (is_cpu_allowed(p, dest_cpu)) 3441 return dest_cpu; 3442 } 3443 } 3444 3445 for (;;) { 3446 /* Any allowed, online CPU? */ 3447 for_each_cpu(dest_cpu, p->cpus_ptr) { 3448 if (!is_cpu_allowed(p, dest_cpu)) 3449 continue; 3450 3451 goto out; 3452 } 3453 3454 /* No more Mr. Nice Guy. */ 3455 switch (state) { 3456 case cpuset: 3457 if (cpuset_cpus_allowed_fallback(p)) { 3458 state = possible; 3459 break; 3460 } 3461 fallthrough; 3462 case possible: 3463 set_cpus_allowed_force(p, task_cpu_fallback_mask(p)); 3464 state = fail; 3465 break; 3466 case fail: 3467 BUG(); 3468 break; 3469 } 3470 } 3471 3472 out: 3473 if (state != cpuset) { 3474 /* 3475 * Don't tell them about moving exiting tasks or 3476 * kernel threads (both mm NULL), since they never 3477 * leave kernel. 3478 */ 3479 if (p->mm && printk_ratelimit()) { 3480 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3481 task_pid_nr(p), p->comm, cpu); 3482 } 3483 } 3484 3485 return dest_cpu; 3486 } 3487 3488 /* 3489 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3490 */ 3491 static inline 3492 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3493 { 3494 lockdep_assert_held(&p->pi_lock); 3495 3496 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3497 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3498 *wake_flags |= WF_RQ_SELECTED; 3499 } else { 3500 cpu = cpumask_any(p->cpus_ptr); 3501 } 3502 3503 /* 3504 * In order not to call set_task_cpu() on a blocking task we need 3505 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3506 * CPU. 3507 * 3508 * Since this is common to all placement strategies, this lives here. 3509 * 3510 * [ this allows ->select_task() to simply return task_cpu(p) and 3511 * not worry about this generic constraint ] 3512 */ 3513 if (unlikely(!is_cpu_allowed(p, cpu))) 3514 cpu = select_fallback_rq(task_cpu(p), p); 3515 3516 return cpu; 3517 } 3518 3519 void sched_set_stop_task(int cpu, struct task_struct *stop) 3520 { 3521 static struct lock_class_key stop_pi_lock; 3522 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3523 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3524 3525 if (stop) { 3526 /* 3527 * Make it appear like a SCHED_FIFO task, its something 3528 * userspace knows about and won't get confused about. 3529 * 3530 * Also, it will make PI more or less work without too 3531 * much confusion -- but then, stop work should not 3532 * rely on PI working anyway. 3533 */ 3534 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3535 3536 stop->sched_class = &stop_sched_class; 3537 3538 /* 3539 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3540 * adjust the effective priority of a task. As a result, 3541 * rt_mutex_setprio() can trigger (RT) balancing operations, 3542 * which can then trigger wakeups of the stop thread to push 3543 * around the current task. 3544 * 3545 * The stop task itself will never be part of the PI-chain, it 3546 * never blocks, therefore that ->pi_lock recursion is safe. 3547 * Tell lockdep about this by placing the stop->pi_lock in its 3548 * own class. 3549 */ 3550 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3551 } 3552 3553 cpu_rq(cpu)->stop = stop; 3554 3555 if (old_stop) { 3556 /* 3557 * Reset it back to a normal scheduling class so that 3558 * it can die in pieces. 3559 */ 3560 old_stop->sched_class = &rt_sched_class; 3561 } 3562 } 3563 3564 static void 3565 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3566 { 3567 struct rq *rq; 3568 3569 if (!schedstat_enabled()) 3570 return; 3571 3572 rq = this_rq(); 3573 3574 if (cpu == rq->cpu) { 3575 __schedstat_inc(rq->ttwu_local); 3576 __schedstat_inc(p->stats.nr_wakeups_local); 3577 } else { 3578 struct sched_domain *sd; 3579 3580 __schedstat_inc(p->stats.nr_wakeups_remote); 3581 3582 guard(rcu)(); 3583 for_each_domain(rq->cpu, sd) { 3584 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3585 __schedstat_inc(sd->ttwu_wake_remote); 3586 break; 3587 } 3588 } 3589 } 3590 3591 if (wake_flags & WF_MIGRATED) 3592 __schedstat_inc(p->stats.nr_wakeups_migrate); 3593 3594 __schedstat_inc(rq->ttwu_count); 3595 __schedstat_inc(p->stats.nr_wakeups); 3596 3597 if (wake_flags & WF_SYNC) 3598 __schedstat_inc(p->stats.nr_wakeups_sync); 3599 } 3600 3601 /* 3602 * Mark the task runnable. 3603 */ 3604 static inline void ttwu_do_wakeup(struct task_struct *p) 3605 { 3606 WRITE_ONCE(p->__state, TASK_RUNNING); 3607 trace_sched_wakeup(p); 3608 } 3609 3610 static void 3611 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3612 struct rq_flags *rf) 3613 { 3614 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3615 3616 lockdep_assert_rq_held(rq); 3617 3618 if (p->sched_contributes_to_load) 3619 rq->nr_uninterruptible--; 3620 3621 if (wake_flags & WF_RQ_SELECTED) 3622 en_flags |= ENQUEUE_RQ_SELECTED; 3623 if (wake_flags & WF_MIGRATED) 3624 en_flags |= ENQUEUE_MIGRATED; 3625 else 3626 if (p->in_iowait) { 3627 delayacct_blkio_end(p); 3628 atomic_dec(&task_rq(p)->nr_iowait); 3629 } 3630 3631 activate_task(rq, p, en_flags); 3632 wakeup_preempt(rq, p, wake_flags); 3633 3634 ttwu_do_wakeup(p); 3635 3636 if (p->sched_class->task_woken) { 3637 /* 3638 * Our task @p is fully woken up and running; so it's safe to 3639 * drop the rq->lock, hereafter rq is only used for statistics. 3640 */ 3641 rq_unpin_lock(rq, rf); 3642 p->sched_class->task_woken(rq, p); 3643 rq_repin_lock(rq, rf); 3644 } 3645 3646 if (rq->idle_stamp) { 3647 u64 delta = rq_clock(rq) - rq->idle_stamp; 3648 u64 max = 2*rq->max_idle_balance_cost; 3649 3650 update_avg(&rq->avg_idle, delta); 3651 3652 if (rq->avg_idle > max) 3653 rq->avg_idle = max; 3654 3655 rq->idle_stamp = 0; 3656 } 3657 } 3658 3659 /* 3660 * Consider @p being inside a wait loop: 3661 * 3662 * for (;;) { 3663 * set_current_state(TASK_UNINTERRUPTIBLE); 3664 * 3665 * if (CONDITION) 3666 * break; 3667 * 3668 * schedule(); 3669 * } 3670 * __set_current_state(TASK_RUNNING); 3671 * 3672 * between set_current_state() and schedule(). In this case @p is still 3673 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3674 * an atomic manner. 3675 * 3676 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3677 * then schedule() must still happen and p->state can be changed to 3678 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3679 * need to do a full wakeup with enqueue. 3680 * 3681 * Returns: %true when the wakeup is done, 3682 * %false otherwise. 3683 */ 3684 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3685 { 3686 struct rq_flags rf; 3687 struct rq *rq; 3688 int ret = 0; 3689 3690 rq = __task_rq_lock(p, &rf); 3691 if (task_on_rq_queued(p)) { 3692 update_rq_clock(rq); 3693 if (p->se.sched_delayed) 3694 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3695 if (!task_on_cpu(rq, p)) { 3696 /* 3697 * When on_rq && !on_cpu the task is preempted, see if 3698 * it should preempt the task that is current now. 3699 */ 3700 wakeup_preempt(rq, p, wake_flags); 3701 } 3702 ttwu_do_wakeup(p); 3703 ret = 1; 3704 } 3705 __task_rq_unlock(rq, p, &rf); 3706 3707 return ret; 3708 } 3709 3710 void sched_ttwu_pending(void *arg) 3711 { 3712 struct llist_node *llist = arg; 3713 struct rq *rq = this_rq(); 3714 struct task_struct *p, *t; 3715 struct rq_flags rf; 3716 3717 if (!llist) 3718 return; 3719 3720 rq_lock_irqsave(rq, &rf); 3721 update_rq_clock(rq); 3722 3723 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3724 if (WARN_ON_ONCE(p->on_cpu)) 3725 smp_cond_load_acquire(&p->on_cpu, !VAL); 3726 3727 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3728 set_task_cpu(p, cpu_of(rq)); 3729 3730 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3731 } 3732 3733 /* 3734 * Must be after enqueueing at least once task such that 3735 * idle_cpu() does not observe a false-negative -- if it does, 3736 * it is possible for select_idle_siblings() to stack a number 3737 * of tasks on this CPU during that window. 3738 * 3739 * It is OK to clear ttwu_pending when another task pending. 3740 * We will receive IPI after local IRQ enabled and then enqueue it. 3741 * Since now nr_running > 0, idle_cpu() will always get correct result. 3742 */ 3743 WRITE_ONCE(rq->ttwu_pending, 0); 3744 rq_unlock_irqrestore(rq, &rf); 3745 } 3746 3747 /* 3748 * Prepare the scene for sending an IPI for a remote smp_call 3749 * 3750 * Returns true if the caller can proceed with sending the IPI. 3751 * Returns false otherwise. 3752 */ 3753 bool call_function_single_prep_ipi(int cpu) 3754 { 3755 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3756 trace_sched_wake_idle_without_ipi(cpu); 3757 return false; 3758 } 3759 3760 return true; 3761 } 3762 3763 /* 3764 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3765 * necessary. The wakee CPU on receipt of the IPI will queue the task 3766 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3767 * of the wakeup instead of the waker. 3768 */ 3769 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3770 { 3771 struct rq *rq = cpu_rq(cpu); 3772 3773 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3774 3775 WRITE_ONCE(rq->ttwu_pending, 1); 3776 #ifdef CONFIG_SMP 3777 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3778 #endif 3779 } 3780 3781 void wake_up_if_idle(int cpu) 3782 { 3783 struct rq *rq = cpu_rq(cpu); 3784 3785 guard(rcu)(); 3786 if (is_idle_task(rcu_dereference(rq->curr))) { 3787 guard(rq_lock_irqsave)(rq); 3788 if (is_idle_task(rq->curr)) 3789 resched_curr(rq); 3790 } 3791 } 3792 3793 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3794 { 3795 if (!sched_asym_cpucap_active()) 3796 return true; 3797 3798 if (this_cpu == that_cpu) 3799 return true; 3800 3801 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3802 } 3803 3804 bool cpus_share_cache(int this_cpu, int that_cpu) 3805 { 3806 if (this_cpu == that_cpu) 3807 return true; 3808 3809 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3810 } 3811 3812 /* 3813 * Whether CPUs are share cache resources, which means LLC on non-cluster 3814 * machines and LLC tag or L2 on machines with clusters. 3815 */ 3816 bool cpus_share_resources(int this_cpu, int that_cpu) 3817 { 3818 if (this_cpu == that_cpu) 3819 return true; 3820 3821 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3822 } 3823 3824 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3825 { 3826 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ 3827 if (!scx_allow_ttwu_queue(p)) 3828 return false; 3829 3830 #ifdef CONFIG_SMP 3831 if (p->sched_class == &stop_sched_class) 3832 return false; 3833 #endif 3834 3835 /* 3836 * Do not complicate things with the async wake_list while the CPU is 3837 * in hotplug state. 3838 */ 3839 if (!cpu_active(cpu)) 3840 return false; 3841 3842 /* Ensure the task will still be allowed to run on the CPU. */ 3843 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3844 return false; 3845 3846 /* 3847 * If the CPU does not share cache, then queue the task on the 3848 * remote rqs wakelist to avoid accessing remote data. 3849 */ 3850 if (!cpus_share_cache(smp_processor_id(), cpu)) 3851 return true; 3852 3853 if (cpu == smp_processor_id()) 3854 return false; 3855 3856 /* 3857 * If the wakee cpu is idle, or the task is descheduling and the 3858 * only running task on the CPU, then use the wakelist to offload 3859 * the task activation to the idle (or soon-to-be-idle) CPU as 3860 * the current CPU is likely busy. nr_running is checked to 3861 * avoid unnecessary task stacking. 3862 * 3863 * Note that we can only get here with (wakee) p->on_rq=0, 3864 * p->on_cpu can be whatever, we've done the dequeue, so 3865 * the wakee has been accounted out of ->nr_running. 3866 */ 3867 if (!cpu_rq(cpu)->nr_running) 3868 return true; 3869 3870 return false; 3871 } 3872 3873 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3874 { 3875 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3876 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3877 __ttwu_queue_wakelist(p, cpu, wake_flags); 3878 return true; 3879 } 3880 3881 return false; 3882 } 3883 3884 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3885 { 3886 struct rq *rq = cpu_rq(cpu); 3887 struct rq_flags rf; 3888 3889 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3890 return; 3891 3892 rq_lock(rq, &rf); 3893 update_rq_clock(rq); 3894 ttwu_do_activate(rq, p, wake_flags, &rf); 3895 rq_unlock(rq, &rf); 3896 } 3897 3898 /* 3899 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3900 * 3901 * The caller holds p::pi_lock if p != current or has preemption 3902 * disabled when p == current. 3903 * 3904 * The rules of saved_state: 3905 * 3906 * The related locking code always holds p::pi_lock when updating 3907 * p::saved_state, which means the code is fully serialized in both cases. 3908 * 3909 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3910 * No other bits set. This allows to distinguish all wakeup scenarios. 3911 * 3912 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3913 * allows us to prevent early wakeup of tasks before they can be run on 3914 * asymmetric ISA architectures (eg ARMv9). 3915 */ 3916 static __always_inline 3917 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3918 { 3919 int match; 3920 3921 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3922 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3923 state != TASK_RTLOCK_WAIT); 3924 } 3925 3926 *success = !!(match = __task_state_match(p, state)); 3927 3928 /* 3929 * Saved state preserves the task state across blocking on 3930 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3931 * set p::saved_state to TASK_RUNNING, but do not wake the task 3932 * because it waits for a lock wakeup or __thaw_task(). Also 3933 * indicate success because from the regular waker's point of 3934 * view this has succeeded. 3935 * 3936 * After acquiring the lock the task will restore p::__state 3937 * from p::saved_state which ensures that the regular 3938 * wakeup is not lost. The restore will also set 3939 * p::saved_state to TASK_RUNNING so any further tests will 3940 * not result in false positives vs. @success 3941 */ 3942 if (match < 0) 3943 p->saved_state = TASK_RUNNING; 3944 3945 return match > 0; 3946 } 3947 3948 /* 3949 * Notes on Program-Order guarantees on SMP systems. 3950 * 3951 * MIGRATION 3952 * 3953 * The basic program-order guarantee on SMP systems is that when a task [t] 3954 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3955 * execution on its new CPU [c1]. 3956 * 3957 * For migration (of runnable tasks) this is provided by the following means: 3958 * 3959 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3960 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3961 * rq(c1)->lock (if not at the same time, then in that order). 3962 * C) LOCK of the rq(c1)->lock scheduling in task 3963 * 3964 * Release/acquire chaining guarantees that B happens after A and C after B. 3965 * Note: the CPU doing B need not be c0 or c1 3966 * 3967 * Example: 3968 * 3969 * CPU0 CPU1 CPU2 3970 * 3971 * LOCK rq(0)->lock 3972 * sched-out X 3973 * sched-in Y 3974 * UNLOCK rq(0)->lock 3975 * 3976 * LOCK rq(0)->lock // orders against CPU0 3977 * dequeue X 3978 * UNLOCK rq(0)->lock 3979 * 3980 * LOCK rq(1)->lock 3981 * enqueue X 3982 * UNLOCK rq(1)->lock 3983 * 3984 * LOCK rq(1)->lock // orders against CPU2 3985 * sched-out Z 3986 * sched-in X 3987 * UNLOCK rq(1)->lock 3988 * 3989 * 3990 * BLOCKING -- aka. SLEEP + WAKEUP 3991 * 3992 * For blocking we (obviously) need to provide the same guarantee as for 3993 * migration. However the means are completely different as there is no lock 3994 * chain to provide order. Instead we do: 3995 * 3996 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3997 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3998 * 3999 * Example: 4000 * 4001 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4002 * 4003 * LOCK rq(0)->lock LOCK X->pi_lock 4004 * dequeue X 4005 * sched-out X 4006 * smp_store_release(X->on_cpu, 0); 4007 * 4008 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4009 * X->state = WAKING 4010 * set_task_cpu(X,2) 4011 * 4012 * LOCK rq(2)->lock 4013 * enqueue X 4014 * X->state = RUNNING 4015 * UNLOCK rq(2)->lock 4016 * 4017 * LOCK rq(2)->lock // orders against CPU1 4018 * sched-out Z 4019 * sched-in X 4020 * UNLOCK rq(2)->lock 4021 * 4022 * UNLOCK X->pi_lock 4023 * UNLOCK rq(0)->lock 4024 * 4025 * 4026 * However, for wakeups there is a second guarantee we must provide, namely we 4027 * must ensure that CONDITION=1 done by the caller can not be reordered with 4028 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4029 */ 4030 4031 /** 4032 * try_to_wake_up - wake up a thread 4033 * @p: the thread to be awakened 4034 * @state: the mask of task states that can be woken 4035 * @wake_flags: wake modifier flags (WF_*) 4036 * 4037 * Conceptually does: 4038 * 4039 * If (@state & @p->state) @p->state = TASK_RUNNING. 4040 * 4041 * If the task was not queued/runnable, also place it back on a runqueue. 4042 * 4043 * This function is atomic against schedule() which would dequeue the task. 4044 * 4045 * It issues a full memory barrier before accessing @p->state, see the comment 4046 * with set_current_state(). 4047 * 4048 * Uses p->pi_lock to serialize against concurrent wake-ups. 4049 * 4050 * Relies on p->pi_lock stabilizing: 4051 * - p->sched_class 4052 * - p->cpus_ptr 4053 * - p->sched_task_group 4054 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4055 * 4056 * Tries really hard to only take one task_rq(p)->lock for performance. 4057 * Takes rq->lock in: 4058 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4059 * - ttwu_queue() -- new rq, for enqueue of the task; 4060 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4061 * 4062 * As a consequence we race really badly with just about everything. See the 4063 * many memory barriers and their comments for details. 4064 * 4065 * Return: %true if @p->state changes (an actual wakeup was done), 4066 * %false otherwise. 4067 */ 4068 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4069 { 4070 guard(preempt)(); 4071 int cpu, success = 0; 4072 4073 wake_flags |= WF_TTWU; 4074 4075 if (p == current) { 4076 /* 4077 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4078 * == smp_processor_id()'. Together this means we can special 4079 * case the whole 'p->on_rq && ttwu_runnable()' case below 4080 * without taking any locks. 4081 * 4082 * Specifically, given current runs ttwu() we must be before 4083 * schedule()'s block_task(), as such this must not observe 4084 * sched_delayed. 4085 * 4086 * In particular: 4087 * - we rely on Program-Order guarantees for all the ordering, 4088 * - we're serialized against set_special_state() by virtue of 4089 * it disabling IRQs (this allows not taking ->pi_lock). 4090 */ 4091 WARN_ON_ONCE(p->se.sched_delayed); 4092 if (!ttwu_state_match(p, state, &success)) 4093 goto out; 4094 4095 trace_sched_waking(p); 4096 ttwu_do_wakeup(p); 4097 goto out; 4098 } 4099 4100 /* 4101 * If we are going to wake up a thread waiting for CONDITION we 4102 * need to ensure that CONDITION=1 done by the caller can not be 4103 * reordered with p->state check below. This pairs with smp_store_mb() 4104 * in set_current_state() that the waiting thread does. 4105 */ 4106 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4107 smp_mb__after_spinlock(); 4108 if (!ttwu_state_match(p, state, &success)) 4109 break; 4110 4111 trace_sched_waking(p); 4112 4113 /* 4114 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4115 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4116 * in smp_cond_load_acquire() below. 4117 * 4118 * sched_ttwu_pending() try_to_wake_up() 4119 * STORE p->on_rq = 1 LOAD p->state 4120 * UNLOCK rq->lock 4121 * 4122 * __schedule() (switch to task 'p') 4123 * LOCK rq->lock smp_rmb(); 4124 * smp_mb__after_spinlock(); 4125 * UNLOCK rq->lock 4126 * 4127 * [task p] 4128 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4129 * 4130 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4131 * __schedule(). See the comment for smp_mb__after_spinlock(). 4132 * 4133 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4134 */ 4135 smp_rmb(); 4136 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4137 break; 4138 4139 /* 4140 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4141 * possible to, falsely, observe p->on_cpu == 0. 4142 * 4143 * One must be running (->on_cpu == 1) in order to remove oneself 4144 * from the runqueue. 4145 * 4146 * __schedule() (switch to task 'p') try_to_wake_up() 4147 * STORE p->on_cpu = 1 LOAD p->on_rq 4148 * UNLOCK rq->lock 4149 * 4150 * __schedule() (put 'p' to sleep) 4151 * LOCK rq->lock smp_rmb(); 4152 * smp_mb__after_spinlock(); 4153 * STORE p->on_rq = 0 LOAD p->on_cpu 4154 * 4155 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4156 * __schedule(). See the comment for smp_mb__after_spinlock(). 4157 * 4158 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4159 * schedule()'s block_task() has 'happened' and p will no longer 4160 * care about it's own p->state. See the comment in __schedule(). 4161 */ 4162 smp_acquire__after_ctrl_dep(); 4163 4164 /* 4165 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4166 * == 0), which means we need to do an enqueue, change p->state to 4167 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4168 * enqueue, such as ttwu_queue_wakelist(). 4169 */ 4170 WRITE_ONCE(p->__state, TASK_WAKING); 4171 4172 /* 4173 * If the owning (remote) CPU is still in the middle of schedule() with 4174 * this task as prev, considering queueing p on the remote CPUs wake_list 4175 * which potentially sends an IPI instead of spinning on p->on_cpu to 4176 * let the waker make forward progress. This is safe because IRQs are 4177 * disabled and the IPI will deliver after on_cpu is cleared. 4178 * 4179 * Ensure we load task_cpu(p) after p->on_cpu: 4180 * 4181 * set_task_cpu(p, cpu); 4182 * STORE p->cpu = @cpu 4183 * __schedule() (switch to task 'p') 4184 * LOCK rq->lock 4185 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4186 * STORE p->on_cpu = 1 LOAD p->cpu 4187 * 4188 * to ensure we observe the correct CPU on which the task is currently 4189 * scheduling. 4190 */ 4191 if (smp_load_acquire(&p->on_cpu) && 4192 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4193 break; 4194 4195 /* 4196 * If the owning (remote) CPU is still in the middle of schedule() with 4197 * this task as prev, wait until it's done referencing the task. 4198 * 4199 * Pairs with the smp_store_release() in finish_task(). 4200 * 4201 * This ensures that tasks getting woken will be fully ordered against 4202 * their previous state and preserve Program Order. 4203 */ 4204 smp_cond_load_acquire(&p->on_cpu, !VAL); 4205 4206 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4207 if (task_cpu(p) != cpu) { 4208 if (p->in_iowait) { 4209 delayacct_blkio_end(p); 4210 atomic_dec(&task_rq(p)->nr_iowait); 4211 } 4212 4213 wake_flags |= WF_MIGRATED; 4214 psi_ttwu_dequeue(p); 4215 set_task_cpu(p, cpu); 4216 } 4217 4218 ttwu_queue(p, cpu, wake_flags); 4219 } 4220 out: 4221 if (success) 4222 ttwu_stat(p, task_cpu(p), wake_flags); 4223 4224 return success; 4225 } 4226 4227 static bool __task_needs_rq_lock(struct task_struct *p) 4228 { 4229 unsigned int state = READ_ONCE(p->__state); 4230 4231 /* 4232 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4233 * the task is blocked. Make sure to check @state since ttwu() can drop 4234 * locks at the end, see ttwu_queue_wakelist(). 4235 */ 4236 if (state == TASK_RUNNING || state == TASK_WAKING) 4237 return true; 4238 4239 /* 4240 * Ensure we load p->on_rq after p->__state, otherwise it would be 4241 * possible to, falsely, observe p->on_rq == 0. 4242 * 4243 * See try_to_wake_up() for a longer comment. 4244 */ 4245 smp_rmb(); 4246 if (p->on_rq) 4247 return true; 4248 4249 /* 4250 * Ensure the task has finished __schedule() and will not be referenced 4251 * anymore. Again, see try_to_wake_up() for a longer comment. 4252 */ 4253 smp_rmb(); 4254 smp_cond_load_acquire(&p->on_cpu, !VAL); 4255 4256 return false; 4257 } 4258 4259 /** 4260 * task_call_func - Invoke a function on task in fixed state 4261 * @p: Process for which the function is to be invoked, can be @current. 4262 * @func: Function to invoke. 4263 * @arg: Argument to function. 4264 * 4265 * Fix the task in it's current state by avoiding wakeups and or rq operations 4266 * and call @func(@arg) on it. This function can use task_is_runnable() and 4267 * task_curr() to work out what the state is, if required. Given that @func 4268 * can be invoked with a runqueue lock held, it had better be quite 4269 * lightweight. 4270 * 4271 * Returns: 4272 * Whatever @func returns 4273 */ 4274 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4275 { 4276 struct rq *rq = NULL; 4277 struct rq_flags rf; 4278 int ret; 4279 4280 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4281 4282 if (__task_needs_rq_lock(p)) 4283 rq = __task_rq_lock(p, &rf); 4284 4285 /* 4286 * At this point the task is pinned; either: 4287 * - blocked and we're holding off wakeups (pi->lock) 4288 * - woken, and we're holding off enqueue (rq->lock) 4289 * - queued, and we're holding off schedule (rq->lock) 4290 * - running, and we're holding off de-schedule (rq->lock) 4291 * 4292 * The called function (@func) can use: task_curr(), p->on_rq and 4293 * p->__state to differentiate between these states. 4294 */ 4295 ret = func(p, arg); 4296 4297 if (rq) 4298 __task_rq_unlock(rq, p, &rf); 4299 4300 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4301 return ret; 4302 } 4303 4304 /** 4305 * cpu_curr_snapshot - Return a snapshot of the currently running task 4306 * @cpu: The CPU on which to snapshot the task. 4307 * 4308 * Returns the task_struct pointer of the task "currently" running on 4309 * the specified CPU. 4310 * 4311 * If the specified CPU was offline, the return value is whatever it 4312 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4313 * task, but there is no guarantee. Callers wishing a useful return 4314 * value must take some action to ensure that the specified CPU remains 4315 * online throughout. 4316 * 4317 * This function executes full memory barriers before and after fetching 4318 * the pointer, which permits the caller to confine this function's fetch 4319 * with respect to the caller's accesses to other shared variables. 4320 */ 4321 struct task_struct *cpu_curr_snapshot(int cpu) 4322 { 4323 struct rq *rq = cpu_rq(cpu); 4324 struct task_struct *t; 4325 struct rq_flags rf; 4326 4327 rq_lock_irqsave(rq, &rf); 4328 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4329 t = rcu_dereference(cpu_curr(cpu)); 4330 rq_unlock_irqrestore(rq, &rf); 4331 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4332 4333 return t; 4334 } 4335 4336 /** 4337 * wake_up_process - Wake up a specific process 4338 * @p: The process to be woken up. 4339 * 4340 * Attempt to wake up the nominated process and move it to the set of runnable 4341 * processes. 4342 * 4343 * Return: 1 if the process was woken up, 0 if it was already running. 4344 * 4345 * This function executes a full memory barrier before accessing the task state. 4346 */ 4347 int wake_up_process(struct task_struct *p) 4348 { 4349 return try_to_wake_up(p, TASK_NORMAL, 0); 4350 } 4351 EXPORT_SYMBOL(wake_up_process); 4352 4353 int wake_up_state(struct task_struct *p, unsigned int state) 4354 { 4355 return try_to_wake_up(p, state, 0); 4356 } 4357 4358 /* 4359 * Perform scheduler related setup for a newly forked process p. 4360 * p is forked by current. 4361 * 4362 * __sched_fork() is basic setup which is also used by sched_init() to 4363 * initialize the boot CPU's idle task. 4364 */ 4365 static void __sched_fork(u64 clone_flags, struct task_struct *p) 4366 { 4367 p->on_rq = 0; 4368 4369 p->se.on_rq = 0; 4370 p->se.exec_start = 0; 4371 p->se.sum_exec_runtime = 0; 4372 p->se.prev_sum_exec_runtime = 0; 4373 p->se.nr_migrations = 0; 4374 p->se.vruntime = 0; 4375 p->se.vlag = 0; 4376 INIT_LIST_HEAD(&p->se.group_node); 4377 4378 /* A delayed task cannot be in clone(). */ 4379 WARN_ON_ONCE(p->se.sched_delayed); 4380 4381 #ifdef CONFIG_FAIR_GROUP_SCHED 4382 p->se.cfs_rq = NULL; 4383 #ifdef CONFIG_CFS_BANDWIDTH 4384 init_cfs_throttle_work(p); 4385 #endif 4386 #endif 4387 4388 #ifdef CONFIG_SCHEDSTATS 4389 /* Even if schedstat is disabled, there should not be garbage */ 4390 memset(&p->stats, 0, sizeof(p->stats)); 4391 #endif 4392 4393 init_dl_entity(&p->dl); 4394 4395 INIT_LIST_HEAD(&p->rt.run_list); 4396 p->rt.timeout = 0; 4397 p->rt.time_slice = sched_rr_timeslice; 4398 p->rt.on_rq = 0; 4399 p->rt.on_list = 0; 4400 4401 #ifdef CONFIG_SCHED_CLASS_EXT 4402 init_scx_entity(&p->scx); 4403 #endif 4404 4405 #ifdef CONFIG_PREEMPT_NOTIFIERS 4406 INIT_HLIST_HEAD(&p->preempt_notifiers); 4407 #endif 4408 4409 #ifdef CONFIG_COMPACTION 4410 p->capture_control = NULL; 4411 #endif 4412 init_numa_balancing(clone_flags, p); 4413 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4414 p->migration_pending = NULL; 4415 } 4416 4417 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4418 4419 #ifdef CONFIG_NUMA_BALANCING 4420 4421 int sysctl_numa_balancing_mode; 4422 4423 static void __set_numabalancing_state(bool enabled) 4424 { 4425 if (enabled) 4426 static_branch_enable(&sched_numa_balancing); 4427 else 4428 static_branch_disable(&sched_numa_balancing); 4429 } 4430 4431 void set_numabalancing_state(bool enabled) 4432 { 4433 if (enabled) 4434 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4435 else 4436 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4437 __set_numabalancing_state(enabled); 4438 } 4439 4440 #ifdef CONFIG_PROC_SYSCTL 4441 static void reset_memory_tiering(void) 4442 { 4443 struct pglist_data *pgdat; 4444 4445 for_each_online_pgdat(pgdat) { 4446 pgdat->nbp_threshold = 0; 4447 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4448 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4449 } 4450 } 4451 4452 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4453 void *buffer, size_t *lenp, loff_t *ppos) 4454 { 4455 struct ctl_table t; 4456 int err; 4457 int state = sysctl_numa_balancing_mode; 4458 4459 if (write && !capable(CAP_SYS_ADMIN)) 4460 return -EPERM; 4461 4462 t = *table; 4463 t.data = &state; 4464 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4465 if (err < 0) 4466 return err; 4467 if (write) { 4468 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4469 (state & NUMA_BALANCING_MEMORY_TIERING)) 4470 reset_memory_tiering(); 4471 sysctl_numa_balancing_mode = state; 4472 __set_numabalancing_state(state); 4473 } 4474 return err; 4475 } 4476 #endif /* CONFIG_PROC_SYSCTL */ 4477 #endif /* CONFIG_NUMA_BALANCING */ 4478 4479 #ifdef CONFIG_SCHEDSTATS 4480 4481 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4482 4483 static void set_schedstats(bool enabled) 4484 { 4485 if (enabled) 4486 static_branch_enable(&sched_schedstats); 4487 else 4488 static_branch_disable(&sched_schedstats); 4489 } 4490 4491 void force_schedstat_enabled(void) 4492 { 4493 if (!schedstat_enabled()) { 4494 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4495 static_branch_enable(&sched_schedstats); 4496 } 4497 } 4498 4499 static int __init setup_schedstats(char *str) 4500 { 4501 int ret = 0; 4502 if (!str) 4503 goto out; 4504 4505 if (!strcmp(str, "enable")) { 4506 set_schedstats(true); 4507 ret = 1; 4508 } else if (!strcmp(str, "disable")) { 4509 set_schedstats(false); 4510 ret = 1; 4511 } 4512 out: 4513 if (!ret) 4514 pr_warn("Unable to parse schedstats=\n"); 4515 4516 return ret; 4517 } 4518 __setup("schedstats=", setup_schedstats); 4519 4520 #ifdef CONFIG_PROC_SYSCTL 4521 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4522 size_t *lenp, loff_t *ppos) 4523 { 4524 struct ctl_table t; 4525 int err; 4526 int state = static_branch_likely(&sched_schedstats); 4527 4528 if (write && !capable(CAP_SYS_ADMIN)) 4529 return -EPERM; 4530 4531 t = *table; 4532 t.data = &state; 4533 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4534 if (err < 0) 4535 return err; 4536 if (write) 4537 set_schedstats(state); 4538 return err; 4539 } 4540 #endif /* CONFIG_PROC_SYSCTL */ 4541 #endif /* CONFIG_SCHEDSTATS */ 4542 4543 #ifdef CONFIG_SYSCTL 4544 static const struct ctl_table sched_core_sysctls[] = { 4545 #ifdef CONFIG_SCHEDSTATS 4546 { 4547 .procname = "sched_schedstats", 4548 .data = NULL, 4549 .maxlen = sizeof(unsigned int), 4550 .mode = 0644, 4551 .proc_handler = sysctl_schedstats, 4552 .extra1 = SYSCTL_ZERO, 4553 .extra2 = SYSCTL_ONE, 4554 }, 4555 #endif /* CONFIG_SCHEDSTATS */ 4556 #ifdef CONFIG_UCLAMP_TASK 4557 { 4558 .procname = "sched_util_clamp_min", 4559 .data = &sysctl_sched_uclamp_util_min, 4560 .maxlen = sizeof(unsigned int), 4561 .mode = 0644, 4562 .proc_handler = sysctl_sched_uclamp_handler, 4563 }, 4564 { 4565 .procname = "sched_util_clamp_max", 4566 .data = &sysctl_sched_uclamp_util_max, 4567 .maxlen = sizeof(unsigned int), 4568 .mode = 0644, 4569 .proc_handler = sysctl_sched_uclamp_handler, 4570 }, 4571 { 4572 .procname = "sched_util_clamp_min_rt_default", 4573 .data = &sysctl_sched_uclamp_util_min_rt_default, 4574 .maxlen = sizeof(unsigned int), 4575 .mode = 0644, 4576 .proc_handler = sysctl_sched_uclamp_handler, 4577 }, 4578 #endif /* CONFIG_UCLAMP_TASK */ 4579 #ifdef CONFIG_NUMA_BALANCING 4580 { 4581 .procname = "numa_balancing", 4582 .data = NULL, /* filled in by handler */ 4583 .maxlen = sizeof(unsigned int), 4584 .mode = 0644, 4585 .proc_handler = sysctl_numa_balancing, 4586 .extra1 = SYSCTL_ZERO, 4587 .extra2 = SYSCTL_FOUR, 4588 }, 4589 #endif /* CONFIG_NUMA_BALANCING */ 4590 }; 4591 static int __init sched_core_sysctl_init(void) 4592 { 4593 register_sysctl_init("kernel", sched_core_sysctls); 4594 return 0; 4595 } 4596 late_initcall(sched_core_sysctl_init); 4597 #endif /* CONFIG_SYSCTL */ 4598 4599 /* 4600 * fork()/clone()-time setup: 4601 */ 4602 int sched_fork(u64 clone_flags, struct task_struct *p) 4603 { 4604 __sched_fork(clone_flags, p); 4605 /* 4606 * We mark the process as NEW here. This guarantees that 4607 * nobody will actually run it, and a signal or other external 4608 * event cannot wake it up and insert it on the runqueue either. 4609 */ 4610 p->__state = TASK_NEW; 4611 4612 /* 4613 * Make sure we do not leak PI boosting priority to the child. 4614 */ 4615 p->prio = current->normal_prio; 4616 4617 uclamp_fork(p); 4618 4619 /* 4620 * Revert to default priority/policy on fork if requested. 4621 */ 4622 if (unlikely(p->sched_reset_on_fork)) { 4623 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4624 p->policy = SCHED_NORMAL; 4625 p->static_prio = NICE_TO_PRIO(0); 4626 p->rt_priority = 0; 4627 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4628 p->static_prio = NICE_TO_PRIO(0); 4629 4630 p->prio = p->normal_prio = p->static_prio; 4631 set_load_weight(p, false); 4632 p->se.custom_slice = 0; 4633 p->se.slice = sysctl_sched_base_slice; 4634 4635 /* 4636 * We don't need the reset flag anymore after the fork. It has 4637 * fulfilled its duty: 4638 */ 4639 p->sched_reset_on_fork = 0; 4640 } 4641 4642 if (dl_prio(p->prio)) 4643 return -EAGAIN; 4644 4645 scx_pre_fork(p); 4646 4647 if (rt_prio(p->prio)) { 4648 p->sched_class = &rt_sched_class; 4649 #ifdef CONFIG_SCHED_CLASS_EXT 4650 } else if (task_should_scx(p->policy)) { 4651 p->sched_class = &ext_sched_class; 4652 #endif 4653 } else { 4654 p->sched_class = &fair_sched_class; 4655 } 4656 4657 init_entity_runnable_average(&p->se); 4658 4659 4660 #ifdef CONFIG_SCHED_INFO 4661 if (likely(sched_info_on())) 4662 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4663 #endif 4664 p->on_cpu = 0; 4665 init_task_preempt_count(p); 4666 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4667 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4668 4669 return 0; 4670 } 4671 4672 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4673 { 4674 unsigned long flags; 4675 4676 /* 4677 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4678 * required yet, but lockdep gets upset if rules are violated. 4679 */ 4680 raw_spin_lock_irqsave(&p->pi_lock, flags); 4681 #ifdef CONFIG_CGROUP_SCHED 4682 if (1) { 4683 struct task_group *tg; 4684 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4685 struct task_group, css); 4686 tg = autogroup_task_group(p, tg); 4687 p->sched_task_group = tg; 4688 } 4689 #endif 4690 /* 4691 * We're setting the CPU for the first time, we don't migrate, 4692 * so use __set_task_cpu(). 4693 */ 4694 __set_task_cpu(p, smp_processor_id()); 4695 if (p->sched_class->task_fork) 4696 p->sched_class->task_fork(p); 4697 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4698 4699 return scx_fork(p); 4700 } 4701 4702 void sched_cancel_fork(struct task_struct *p) 4703 { 4704 scx_cancel_fork(p); 4705 } 4706 4707 void sched_post_fork(struct task_struct *p) 4708 { 4709 uclamp_post_fork(p); 4710 scx_post_fork(p); 4711 } 4712 4713 unsigned long to_ratio(u64 period, u64 runtime) 4714 { 4715 if (runtime == RUNTIME_INF) 4716 return BW_UNIT; 4717 4718 /* 4719 * Doing this here saves a lot of checks in all 4720 * the calling paths, and returning zero seems 4721 * safe for them anyway. 4722 */ 4723 if (period == 0) 4724 return 0; 4725 4726 return div64_u64(runtime << BW_SHIFT, period); 4727 } 4728 4729 /* 4730 * wake_up_new_task - wake up a newly created task for the first time. 4731 * 4732 * This function will do some initial scheduler statistics housekeeping 4733 * that must be done for every newly created context, then puts the task 4734 * on the runqueue and wakes it. 4735 */ 4736 void wake_up_new_task(struct task_struct *p) 4737 { 4738 struct rq_flags rf; 4739 struct rq *rq; 4740 int wake_flags = WF_FORK; 4741 4742 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4743 WRITE_ONCE(p->__state, TASK_RUNNING); 4744 /* 4745 * Fork balancing, do it here and not earlier because: 4746 * - cpus_ptr can change in the fork path 4747 * - any previously selected CPU might disappear through hotplug 4748 * 4749 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4750 * as we're not fully set-up yet. 4751 */ 4752 p->recent_used_cpu = task_cpu(p); 4753 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4754 rq = __task_rq_lock(p, &rf); 4755 update_rq_clock(rq); 4756 post_init_entity_util_avg(p); 4757 4758 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4759 trace_sched_wakeup_new(p); 4760 wakeup_preempt(rq, p, wake_flags); 4761 if (p->sched_class->task_woken) { 4762 /* 4763 * Nothing relies on rq->lock after this, so it's fine to 4764 * drop it. 4765 */ 4766 rq_unpin_lock(rq, &rf); 4767 p->sched_class->task_woken(rq, p); 4768 rq_repin_lock(rq, &rf); 4769 } 4770 task_rq_unlock(rq, p, &rf); 4771 } 4772 4773 #ifdef CONFIG_PREEMPT_NOTIFIERS 4774 4775 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4776 4777 void preempt_notifier_inc(void) 4778 { 4779 static_branch_inc(&preempt_notifier_key); 4780 } 4781 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4782 4783 void preempt_notifier_dec(void) 4784 { 4785 static_branch_dec(&preempt_notifier_key); 4786 } 4787 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4788 4789 /** 4790 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4791 * @notifier: notifier struct to register 4792 */ 4793 void preempt_notifier_register(struct preempt_notifier *notifier) 4794 { 4795 if (!static_branch_unlikely(&preempt_notifier_key)) 4796 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4797 4798 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4799 } 4800 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4801 4802 /** 4803 * preempt_notifier_unregister - no longer interested in preemption notifications 4804 * @notifier: notifier struct to unregister 4805 * 4806 * This is *not* safe to call from within a preemption notifier. 4807 */ 4808 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4809 { 4810 hlist_del(¬ifier->link); 4811 } 4812 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4813 4814 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4815 { 4816 struct preempt_notifier *notifier; 4817 4818 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4819 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4820 } 4821 4822 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4823 { 4824 if (static_branch_unlikely(&preempt_notifier_key)) 4825 __fire_sched_in_preempt_notifiers(curr); 4826 } 4827 4828 static void 4829 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4830 struct task_struct *next) 4831 { 4832 struct preempt_notifier *notifier; 4833 4834 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4835 notifier->ops->sched_out(notifier, next); 4836 } 4837 4838 static __always_inline void 4839 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4840 struct task_struct *next) 4841 { 4842 if (static_branch_unlikely(&preempt_notifier_key)) 4843 __fire_sched_out_preempt_notifiers(curr, next); 4844 } 4845 4846 #else /* !CONFIG_PREEMPT_NOTIFIERS: */ 4847 4848 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4849 { 4850 } 4851 4852 static inline void 4853 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4854 struct task_struct *next) 4855 { 4856 } 4857 4858 #endif /* !CONFIG_PREEMPT_NOTIFIERS */ 4859 4860 static inline void prepare_task(struct task_struct *next) 4861 { 4862 /* 4863 * Claim the task as running, we do this before switching to it 4864 * such that any running task will have this set. 4865 * 4866 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4867 * its ordering comment. 4868 */ 4869 WRITE_ONCE(next->on_cpu, 1); 4870 } 4871 4872 static inline void finish_task(struct task_struct *prev) 4873 { 4874 /* 4875 * This must be the very last reference to @prev from this CPU. After 4876 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4877 * must ensure this doesn't happen until the switch is completely 4878 * finished. 4879 * 4880 * In particular, the load of prev->state in finish_task_switch() must 4881 * happen before this. 4882 * 4883 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4884 */ 4885 smp_store_release(&prev->on_cpu, 0); 4886 } 4887 4888 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4889 { 4890 void (*func)(struct rq *rq); 4891 struct balance_callback *next; 4892 4893 lockdep_assert_rq_held(rq); 4894 4895 while (head) { 4896 func = (void (*)(struct rq *))head->func; 4897 next = head->next; 4898 head->next = NULL; 4899 head = next; 4900 4901 func(rq); 4902 } 4903 } 4904 4905 static void balance_push(struct rq *rq); 4906 4907 /* 4908 * balance_push_callback is a right abuse of the callback interface and plays 4909 * by significantly different rules. 4910 * 4911 * Where the normal balance_callback's purpose is to be ran in the same context 4912 * that queued it (only later, when it's safe to drop rq->lock again), 4913 * balance_push_callback is specifically targeted at __schedule(). 4914 * 4915 * This abuse is tolerated because it places all the unlikely/odd cases behind 4916 * a single test, namely: rq->balance_callback == NULL. 4917 */ 4918 struct balance_callback balance_push_callback = { 4919 .next = NULL, 4920 .func = balance_push, 4921 }; 4922 4923 static inline struct balance_callback * 4924 __splice_balance_callbacks(struct rq *rq, bool split) 4925 { 4926 struct balance_callback *head = rq->balance_callback; 4927 4928 if (likely(!head)) 4929 return NULL; 4930 4931 lockdep_assert_rq_held(rq); 4932 /* 4933 * Must not take balance_push_callback off the list when 4934 * splice_balance_callbacks() and balance_callbacks() are not 4935 * in the same rq->lock section. 4936 * 4937 * In that case it would be possible for __schedule() to interleave 4938 * and observe the list empty. 4939 */ 4940 if (split && head == &balance_push_callback) 4941 head = NULL; 4942 else 4943 rq->balance_callback = NULL; 4944 4945 return head; 4946 } 4947 4948 struct balance_callback *splice_balance_callbacks(struct rq *rq) 4949 { 4950 return __splice_balance_callbacks(rq, true); 4951 } 4952 4953 static void __balance_callbacks(struct rq *rq) 4954 { 4955 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4956 } 4957 4958 void balance_callbacks(struct rq *rq, struct balance_callback *head) 4959 { 4960 unsigned long flags; 4961 4962 if (unlikely(head)) { 4963 raw_spin_rq_lock_irqsave(rq, flags); 4964 do_balance_callbacks(rq, head); 4965 raw_spin_rq_unlock_irqrestore(rq, flags); 4966 } 4967 } 4968 4969 static inline void 4970 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4971 { 4972 /* 4973 * Since the runqueue lock will be released by the next 4974 * task (which is an invalid locking op but in the case 4975 * of the scheduler it's an obvious special-case), so we 4976 * do an early lockdep release here: 4977 */ 4978 rq_unpin_lock(rq, rf); 4979 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4980 #ifdef CONFIG_DEBUG_SPINLOCK 4981 /* this is a valid case when another task releases the spinlock */ 4982 rq_lockp(rq)->owner = next; 4983 #endif 4984 } 4985 4986 static inline void finish_lock_switch(struct rq *rq) 4987 { 4988 /* 4989 * If we are tracking spinlock dependencies then we have to 4990 * fix up the runqueue lock - which gets 'carried over' from 4991 * prev into current: 4992 */ 4993 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4994 __balance_callbacks(rq); 4995 raw_spin_rq_unlock_irq(rq); 4996 } 4997 4998 /* 4999 * NOP if the arch has not defined these: 5000 */ 5001 5002 #ifndef prepare_arch_switch 5003 # define prepare_arch_switch(next) do { } while (0) 5004 #endif 5005 5006 #ifndef finish_arch_post_lock_switch 5007 # define finish_arch_post_lock_switch() do { } while (0) 5008 #endif 5009 5010 static inline void kmap_local_sched_out(void) 5011 { 5012 #ifdef CONFIG_KMAP_LOCAL 5013 if (unlikely(current->kmap_ctrl.idx)) 5014 __kmap_local_sched_out(); 5015 #endif 5016 } 5017 5018 static inline void kmap_local_sched_in(void) 5019 { 5020 #ifdef CONFIG_KMAP_LOCAL 5021 if (unlikely(current->kmap_ctrl.idx)) 5022 __kmap_local_sched_in(); 5023 #endif 5024 } 5025 5026 /** 5027 * prepare_task_switch - prepare to switch tasks 5028 * @rq: the runqueue preparing to switch 5029 * @prev: the current task that is being switched out 5030 * @next: the task we are going to switch to. 5031 * 5032 * This is called with the rq lock held and interrupts off. It must 5033 * be paired with a subsequent finish_task_switch after the context 5034 * switch. 5035 * 5036 * prepare_task_switch sets up locking and calls architecture specific 5037 * hooks. 5038 */ 5039 static inline void 5040 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5041 struct task_struct *next) 5042 { 5043 kcov_prepare_switch(prev); 5044 sched_info_switch(rq, prev, next); 5045 perf_event_task_sched_out(prev, next); 5046 fire_sched_out_preempt_notifiers(prev, next); 5047 kmap_local_sched_out(); 5048 prepare_task(next); 5049 prepare_arch_switch(next); 5050 } 5051 5052 /** 5053 * finish_task_switch - clean up after a task-switch 5054 * @prev: the thread we just switched away from. 5055 * 5056 * finish_task_switch must be called after the context switch, paired 5057 * with a prepare_task_switch call before the context switch. 5058 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5059 * and do any other architecture-specific cleanup actions. 5060 * 5061 * Note that we may have delayed dropping an mm in context_switch(). If 5062 * so, we finish that here outside of the runqueue lock. (Doing it 5063 * with the lock held can cause deadlocks; see schedule() for 5064 * details.) 5065 * 5066 * The context switch have flipped the stack from under us and restored the 5067 * local variables which were saved when this task called schedule() in the 5068 * past. 'prev == current' is still correct but we need to recalculate this_rq 5069 * because prev may have moved to another CPU. 5070 */ 5071 static struct rq *finish_task_switch(struct task_struct *prev) 5072 __releases(rq->lock) 5073 { 5074 struct rq *rq = this_rq(); 5075 struct mm_struct *mm = rq->prev_mm; 5076 unsigned int prev_state; 5077 5078 /* 5079 * The previous task will have left us with a preempt_count of 2 5080 * because it left us after: 5081 * 5082 * schedule() 5083 * preempt_disable(); // 1 5084 * __schedule() 5085 * raw_spin_lock_irq(&rq->lock) // 2 5086 * 5087 * Also, see FORK_PREEMPT_COUNT. 5088 */ 5089 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5090 "corrupted preempt_count: %s/%d/0x%x\n", 5091 current->comm, current->pid, preempt_count())) 5092 preempt_count_set(FORK_PREEMPT_COUNT); 5093 5094 rq->prev_mm = NULL; 5095 5096 /* 5097 * A task struct has one reference for the use as "current". 5098 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5099 * schedule one last time. The schedule call will never return, and 5100 * the scheduled task must drop that reference. 5101 * 5102 * We must observe prev->state before clearing prev->on_cpu (in 5103 * finish_task), otherwise a concurrent wakeup can get prev 5104 * running on another CPU and we could rave with its RUNNING -> DEAD 5105 * transition, resulting in a double drop. 5106 */ 5107 prev_state = READ_ONCE(prev->__state); 5108 vtime_task_switch(prev); 5109 perf_event_task_sched_in(prev, current); 5110 finish_task(prev); 5111 tick_nohz_task_switch(); 5112 finish_lock_switch(rq); 5113 finish_arch_post_lock_switch(); 5114 kcov_finish_switch(current); 5115 /* 5116 * kmap_local_sched_out() is invoked with rq::lock held and 5117 * interrupts disabled. There is no requirement for that, but the 5118 * sched out code does not have an interrupt enabled section. 5119 * Restoring the maps on sched in does not require interrupts being 5120 * disabled either. 5121 */ 5122 kmap_local_sched_in(); 5123 5124 fire_sched_in_preempt_notifiers(current); 5125 /* 5126 * When switching through a kernel thread, the loop in 5127 * membarrier_{private,global}_expedited() may have observed that 5128 * kernel thread and not issued an IPI. It is therefore possible to 5129 * schedule between user->kernel->user threads without passing though 5130 * switch_mm(). Membarrier requires a barrier after storing to 5131 * rq->curr, before returning to userspace, so provide them here: 5132 * 5133 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5134 * provided by mmdrop_lazy_tlb(), 5135 * - a sync_core for SYNC_CORE. 5136 */ 5137 if (mm) { 5138 membarrier_mm_sync_core_before_usermode(mm); 5139 mmdrop_lazy_tlb_sched(mm); 5140 } 5141 5142 if (unlikely(prev_state == TASK_DEAD)) { 5143 if (prev->sched_class->task_dead) 5144 prev->sched_class->task_dead(prev); 5145 5146 /* Task is done with its stack. */ 5147 put_task_stack(prev); 5148 5149 put_task_struct_rcu_user(prev); 5150 } 5151 5152 return rq; 5153 } 5154 5155 /** 5156 * schedule_tail - first thing a freshly forked thread must call. 5157 * @prev: the thread we just switched away from. 5158 */ 5159 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5160 __releases(rq->lock) 5161 { 5162 /* 5163 * New tasks start with FORK_PREEMPT_COUNT, see there and 5164 * finish_task_switch() for details. 5165 * 5166 * finish_task_switch() will drop rq->lock() and lower preempt_count 5167 * and the preempt_enable() will end up enabling preemption (on 5168 * PREEMPT_COUNT kernels). 5169 */ 5170 5171 finish_task_switch(prev); 5172 /* 5173 * This is a special case: the newly created task has just 5174 * switched the context for the first time. It is returning from 5175 * schedule for the first time in this path. 5176 */ 5177 trace_sched_exit_tp(true); 5178 preempt_enable(); 5179 5180 if (current->set_child_tid) 5181 put_user(task_pid_vnr(current), current->set_child_tid); 5182 5183 calculate_sigpending(); 5184 } 5185 5186 /* 5187 * context_switch - switch to the new MM and the new thread's register state. 5188 */ 5189 static __always_inline struct rq * 5190 context_switch(struct rq *rq, struct task_struct *prev, 5191 struct task_struct *next, struct rq_flags *rf) 5192 { 5193 prepare_task_switch(rq, prev, next); 5194 5195 /* 5196 * For paravirt, this is coupled with an exit in switch_to to 5197 * combine the page table reload and the switch backend into 5198 * one hypercall. 5199 */ 5200 arch_start_context_switch(prev); 5201 5202 /* 5203 * kernel -> kernel lazy + transfer active 5204 * user -> kernel lazy + mmgrab_lazy_tlb() active 5205 * 5206 * kernel -> user switch + mmdrop_lazy_tlb() active 5207 * user -> user switch 5208 */ 5209 if (!next->mm) { // to kernel 5210 enter_lazy_tlb(prev->active_mm, next); 5211 5212 next->active_mm = prev->active_mm; 5213 if (prev->mm) // from user 5214 mmgrab_lazy_tlb(prev->active_mm); 5215 else 5216 prev->active_mm = NULL; 5217 } else { // to user 5218 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5219 /* 5220 * sys_membarrier() requires an smp_mb() between setting 5221 * rq->curr / membarrier_switch_mm() and returning to userspace. 5222 * 5223 * The below provides this either through switch_mm(), or in 5224 * case 'prev->active_mm == next->mm' through 5225 * finish_task_switch()'s mmdrop(). 5226 */ 5227 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5228 lru_gen_use_mm(next->mm); 5229 5230 if (!prev->mm) { // from kernel 5231 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5232 rq->prev_mm = prev->active_mm; 5233 prev->active_mm = NULL; 5234 } 5235 } 5236 5237 mm_cid_switch_to(prev, next); 5238 5239 /* 5240 * Tell rseq that the task was scheduled in. Must be after 5241 * switch_mm_cid() to get the TIF flag set. 5242 */ 5243 rseq_sched_switch_event(next); 5244 5245 prepare_lock_switch(rq, next, rf); 5246 5247 /* Here we just switch the register state and the stack. */ 5248 switch_to(prev, next, prev); 5249 barrier(); 5250 5251 return finish_task_switch(prev); 5252 } 5253 5254 /* 5255 * nr_running and nr_context_switches: 5256 * 5257 * externally visible scheduler statistics: current number of runnable 5258 * threads, total number of context switches performed since bootup. 5259 */ 5260 unsigned int nr_running(void) 5261 { 5262 unsigned int i, sum = 0; 5263 5264 for_each_online_cpu(i) 5265 sum += cpu_rq(i)->nr_running; 5266 5267 return sum; 5268 } 5269 5270 /* 5271 * Check if only the current task is running on the CPU. 5272 * 5273 * Caution: this function does not check that the caller has disabled 5274 * preemption, thus the result might have a time-of-check-to-time-of-use 5275 * race. The caller is responsible to use it correctly, for example: 5276 * 5277 * - from a non-preemptible section (of course) 5278 * 5279 * - from a thread that is bound to a single CPU 5280 * 5281 * - in a loop with very short iterations (e.g. a polling loop) 5282 */ 5283 bool single_task_running(void) 5284 { 5285 return raw_rq()->nr_running == 1; 5286 } 5287 EXPORT_SYMBOL(single_task_running); 5288 5289 unsigned long long nr_context_switches_cpu(int cpu) 5290 { 5291 return cpu_rq(cpu)->nr_switches; 5292 } 5293 5294 unsigned long long nr_context_switches(void) 5295 { 5296 int i; 5297 unsigned long long sum = 0; 5298 5299 for_each_possible_cpu(i) 5300 sum += cpu_rq(i)->nr_switches; 5301 5302 return sum; 5303 } 5304 5305 /* 5306 * Consumers of these two interfaces, like for example the cpuidle menu 5307 * governor, are using nonsensical data. Preferring shallow idle state selection 5308 * for a CPU that has IO-wait which might not even end up running the task when 5309 * it does become runnable. 5310 */ 5311 5312 unsigned int nr_iowait_cpu(int cpu) 5313 { 5314 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5315 } 5316 5317 /* 5318 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5319 * 5320 * The idea behind IO-wait account is to account the idle time that we could 5321 * have spend running if it were not for IO. That is, if we were to improve the 5322 * storage performance, we'd have a proportional reduction in IO-wait time. 5323 * 5324 * This all works nicely on UP, where, when a task blocks on IO, we account 5325 * idle time as IO-wait, because if the storage were faster, it could've been 5326 * running and we'd not be idle. 5327 * 5328 * This has been extended to SMP, by doing the same for each CPU. This however 5329 * is broken. 5330 * 5331 * Imagine for instance the case where two tasks block on one CPU, only the one 5332 * CPU will have IO-wait accounted, while the other has regular idle. Even 5333 * though, if the storage were faster, both could've ran at the same time, 5334 * utilising both CPUs. 5335 * 5336 * This means, that when looking globally, the current IO-wait accounting on 5337 * SMP is a lower bound, by reason of under accounting. 5338 * 5339 * Worse, since the numbers are provided per CPU, they are sometimes 5340 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5341 * associated with any one particular CPU, it can wake to another CPU than it 5342 * blocked on. This means the per CPU IO-wait number is meaningless. 5343 * 5344 * Task CPU affinities can make all that even more 'interesting'. 5345 */ 5346 5347 unsigned int nr_iowait(void) 5348 { 5349 unsigned int i, sum = 0; 5350 5351 for_each_possible_cpu(i) 5352 sum += nr_iowait_cpu(i); 5353 5354 return sum; 5355 } 5356 5357 /* 5358 * sched_exec - execve() is a valuable balancing opportunity, because at 5359 * this point the task has the smallest effective memory and cache footprint. 5360 */ 5361 void sched_exec(void) 5362 { 5363 struct task_struct *p = current; 5364 struct migration_arg arg; 5365 int dest_cpu; 5366 5367 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5368 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5369 if (dest_cpu == smp_processor_id()) 5370 return; 5371 5372 if (unlikely(!cpu_active(dest_cpu))) 5373 return; 5374 5375 arg = (struct migration_arg){ p, dest_cpu }; 5376 } 5377 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5378 } 5379 5380 DEFINE_PER_CPU(struct kernel_stat, kstat); 5381 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5382 5383 EXPORT_PER_CPU_SYMBOL(kstat); 5384 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5385 5386 /* 5387 * The function fair_sched_class.update_curr accesses the struct curr 5388 * and its field curr->exec_start; when called from task_sched_runtime(), 5389 * we observe a high rate of cache misses in practice. 5390 * Prefetching this data results in improved performance. 5391 */ 5392 static inline void prefetch_curr_exec_start(struct task_struct *p) 5393 { 5394 #ifdef CONFIG_FAIR_GROUP_SCHED 5395 struct sched_entity *curr = p->se.cfs_rq->curr; 5396 #else 5397 struct sched_entity *curr = task_rq(p)->cfs.curr; 5398 #endif 5399 prefetch(curr); 5400 prefetch(&curr->exec_start); 5401 } 5402 5403 /* 5404 * Return accounted runtime for the task. 5405 * In case the task is currently running, return the runtime plus current's 5406 * pending runtime that have not been accounted yet. 5407 */ 5408 unsigned long long task_sched_runtime(struct task_struct *p) 5409 { 5410 struct rq_flags rf; 5411 struct rq *rq; 5412 u64 ns; 5413 5414 #ifdef CONFIG_64BIT 5415 /* 5416 * 64-bit doesn't need locks to atomically read a 64-bit value. 5417 * So we have a optimization chance when the task's delta_exec is 0. 5418 * Reading ->on_cpu is racy, but this is OK. 5419 * 5420 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5421 * If we race with it entering CPU, unaccounted time is 0. This is 5422 * indistinguishable from the read occurring a few cycles earlier. 5423 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5424 * been accounted, so we're correct here as well. 5425 */ 5426 if (!p->on_cpu || !task_on_rq_queued(p)) 5427 return p->se.sum_exec_runtime; 5428 #endif 5429 5430 rq = task_rq_lock(p, &rf); 5431 /* 5432 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5433 * project cycles that may never be accounted to this 5434 * thread, breaking clock_gettime(). 5435 */ 5436 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5437 prefetch_curr_exec_start(p); 5438 update_rq_clock(rq); 5439 p->sched_class->update_curr(rq); 5440 } 5441 ns = p->se.sum_exec_runtime; 5442 task_rq_unlock(rq, p, &rf); 5443 5444 return ns; 5445 } 5446 5447 static u64 cpu_resched_latency(struct rq *rq) 5448 { 5449 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5450 u64 resched_latency, now = rq_clock(rq); 5451 static bool warned_once; 5452 5453 if (sysctl_resched_latency_warn_once && warned_once) 5454 return 0; 5455 5456 if (!need_resched() || !latency_warn_ms) 5457 return 0; 5458 5459 if (system_state == SYSTEM_BOOTING) 5460 return 0; 5461 5462 if (!rq->last_seen_need_resched_ns) { 5463 rq->last_seen_need_resched_ns = now; 5464 rq->ticks_without_resched = 0; 5465 return 0; 5466 } 5467 5468 rq->ticks_without_resched++; 5469 resched_latency = now - rq->last_seen_need_resched_ns; 5470 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5471 return 0; 5472 5473 warned_once = true; 5474 5475 return resched_latency; 5476 } 5477 5478 static int __init setup_resched_latency_warn_ms(char *str) 5479 { 5480 long val; 5481 5482 if ((kstrtol(str, 0, &val))) { 5483 pr_warn("Unable to set resched_latency_warn_ms\n"); 5484 return 1; 5485 } 5486 5487 sysctl_resched_latency_warn_ms = val; 5488 return 1; 5489 } 5490 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5491 5492 /* 5493 * This function gets called by the timer code, with HZ frequency. 5494 * We call it with interrupts disabled. 5495 */ 5496 void sched_tick(void) 5497 { 5498 int cpu = smp_processor_id(); 5499 struct rq *rq = cpu_rq(cpu); 5500 /* accounting goes to the donor task */ 5501 struct task_struct *donor; 5502 struct rq_flags rf; 5503 unsigned long hw_pressure; 5504 u64 resched_latency; 5505 5506 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5507 arch_scale_freq_tick(); 5508 5509 sched_clock_tick(); 5510 5511 rq_lock(rq, &rf); 5512 donor = rq->donor; 5513 5514 psi_account_irqtime(rq, donor, NULL); 5515 5516 update_rq_clock(rq); 5517 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5518 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5519 5520 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5521 resched_curr(rq); 5522 5523 donor->sched_class->task_tick(rq, donor, 0); 5524 if (sched_feat(LATENCY_WARN)) 5525 resched_latency = cpu_resched_latency(rq); 5526 calc_global_load_tick(rq); 5527 sched_core_tick(rq); 5528 scx_tick(rq); 5529 5530 rq_unlock(rq, &rf); 5531 5532 if (sched_feat(LATENCY_WARN) && resched_latency) 5533 resched_latency_warn(cpu, resched_latency); 5534 5535 perf_event_task_tick(); 5536 5537 if (donor->flags & PF_WQ_WORKER) 5538 wq_worker_tick(donor); 5539 5540 if (!scx_switched_all()) { 5541 rq->idle_balance = idle_cpu(cpu); 5542 sched_balance_trigger(rq); 5543 } 5544 } 5545 5546 #ifdef CONFIG_NO_HZ_FULL 5547 5548 struct tick_work { 5549 int cpu; 5550 atomic_t state; 5551 struct delayed_work work; 5552 }; 5553 /* Values for ->state, see diagram below. */ 5554 #define TICK_SCHED_REMOTE_OFFLINE 0 5555 #define TICK_SCHED_REMOTE_OFFLINING 1 5556 #define TICK_SCHED_REMOTE_RUNNING 2 5557 5558 /* 5559 * State diagram for ->state: 5560 * 5561 * 5562 * TICK_SCHED_REMOTE_OFFLINE 5563 * | ^ 5564 * | | 5565 * | | sched_tick_remote() 5566 * | | 5567 * | | 5568 * +--TICK_SCHED_REMOTE_OFFLINING 5569 * | ^ 5570 * | | 5571 * sched_tick_start() | | sched_tick_stop() 5572 * | | 5573 * V | 5574 * TICK_SCHED_REMOTE_RUNNING 5575 * 5576 * 5577 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5578 * and sched_tick_start() are happy to leave the state in RUNNING. 5579 */ 5580 5581 static struct tick_work __percpu *tick_work_cpu; 5582 5583 static void sched_tick_remote(struct work_struct *work) 5584 { 5585 struct delayed_work *dwork = to_delayed_work(work); 5586 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5587 int cpu = twork->cpu; 5588 struct rq *rq = cpu_rq(cpu); 5589 int os; 5590 5591 /* 5592 * Handle the tick only if it appears the remote CPU is running in full 5593 * dynticks mode. The check is racy by nature, but missing a tick or 5594 * having one too much is no big deal because the scheduler tick updates 5595 * statistics and checks timeslices in a time-independent way, regardless 5596 * of when exactly it is running. 5597 */ 5598 if (tick_nohz_tick_stopped_cpu(cpu)) { 5599 guard(rq_lock_irq)(rq); 5600 struct task_struct *curr = rq->curr; 5601 5602 if (cpu_online(cpu)) { 5603 /* 5604 * Since this is a remote tick for full dynticks mode, 5605 * we are always sure that there is no proxy (only a 5606 * single task is running). 5607 */ 5608 WARN_ON_ONCE(rq->curr != rq->donor); 5609 update_rq_clock(rq); 5610 5611 if (!is_idle_task(curr)) { 5612 /* 5613 * Make sure the next tick runs within a 5614 * reasonable amount of time. 5615 */ 5616 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5617 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 30); 5618 } 5619 curr->sched_class->task_tick(rq, curr, 0); 5620 5621 calc_load_nohz_remote(rq); 5622 } 5623 } 5624 5625 /* 5626 * Run the remote tick once per second (1Hz). This arbitrary 5627 * frequency is large enough to avoid overload but short enough 5628 * to keep scheduler internal stats reasonably up to date. But 5629 * first update state to reflect hotplug activity if required. 5630 */ 5631 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5632 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5633 if (os == TICK_SCHED_REMOTE_RUNNING) 5634 queue_delayed_work(system_unbound_wq, dwork, HZ); 5635 } 5636 5637 static void sched_tick_start(int cpu) 5638 { 5639 int os; 5640 struct tick_work *twork; 5641 5642 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5643 return; 5644 5645 WARN_ON_ONCE(!tick_work_cpu); 5646 5647 twork = per_cpu_ptr(tick_work_cpu, cpu); 5648 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5649 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5650 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5651 twork->cpu = cpu; 5652 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5653 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5654 } 5655 } 5656 5657 #ifdef CONFIG_HOTPLUG_CPU 5658 static void sched_tick_stop(int cpu) 5659 { 5660 struct tick_work *twork; 5661 int os; 5662 5663 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5664 return; 5665 5666 WARN_ON_ONCE(!tick_work_cpu); 5667 5668 twork = per_cpu_ptr(tick_work_cpu, cpu); 5669 /* There cannot be competing actions, but don't rely on stop-machine. */ 5670 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5671 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5672 /* Don't cancel, as this would mess up the state machine. */ 5673 } 5674 #endif /* CONFIG_HOTPLUG_CPU */ 5675 5676 int __init sched_tick_offload_init(void) 5677 { 5678 tick_work_cpu = alloc_percpu(struct tick_work); 5679 BUG_ON(!tick_work_cpu); 5680 return 0; 5681 } 5682 5683 #else /* !CONFIG_NO_HZ_FULL: */ 5684 static inline void sched_tick_start(int cpu) { } 5685 static inline void sched_tick_stop(int cpu) { } 5686 #endif /* !CONFIG_NO_HZ_FULL */ 5687 5688 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5689 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5690 /* 5691 * If the value passed in is equal to the current preempt count 5692 * then we just disabled preemption. Start timing the latency. 5693 */ 5694 static inline void preempt_latency_start(int val) 5695 { 5696 if (preempt_count() == val) { 5697 unsigned long ip = get_lock_parent_ip(); 5698 #ifdef CONFIG_DEBUG_PREEMPT 5699 current->preempt_disable_ip = ip; 5700 #endif 5701 trace_preempt_off(CALLER_ADDR0, ip); 5702 } 5703 } 5704 5705 void preempt_count_add(int val) 5706 { 5707 #ifdef CONFIG_DEBUG_PREEMPT 5708 /* 5709 * Underflow? 5710 */ 5711 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5712 return; 5713 #endif 5714 __preempt_count_add(val); 5715 #ifdef CONFIG_DEBUG_PREEMPT 5716 /* 5717 * Spinlock count overflowing soon? 5718 */ 5719 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5720 PREEMPT_MASK - 10); 5721 #endif 5722 preempt_latency_start(val); 5723 } 5724 EXPORT_SYMBOL(preempt_count_add); 5725 NOKPROBE_SYMBOL(preempt_count_add); 5726 5727 /* 5728 * If the value passed in equals to the current preempt count 5729 * then we just enabled preemption. Stop timing the latency. 5730 */ 5731 static inline void preempt_latency_stop(int val) 5732 { 5733 if (preempt_count() == val) 5734 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5735 } 5736 5737 void preempt_count_sub(int val) 5738 { 5739 #ifdef CONFIG_DEBUG_PREEMPT 5740 /* 5741 * Underflow? 5742 */ 5743 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5744 return; 5745 /* 5746 * Is the spinlock portion underflowing? 5747 */ 5748 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5749 !(preempt_count() & PREEMPT_MASK))) 5750 return; 5751 #endif 5752 5753 preempt_latency_stop(val); 5754 __preempt_count_sub(val); 5755 } 5756 EXPORT_SYMBOL(preempt_count_sub); 5757 NOKPROBE_SYMBOL(preempt_count_sub); 5758 5759 #else 5760 static inline void preempt_latency_start(int val) { } 5761 static inline void preempt_latency_stop(int val) { } 5762 #endif 5763 5764 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5765 { 5766 #ifdef CONFIG_DEBUG_PREEMPT 5767 return p->preempt_disable_ip; 5768 #else 5769 return 0; 5770 #endif 5771 } 5772 5773 /* 5774 * Print scheduling while atomic bug: 5775 */ 5776 static noinline void __schedule_bug(struct task_struct *prev) 5777 { 5778 /* Save this before calling printk(), since that will clobber it */ 5779 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5780 5781 if (oops_in_progress) 5782 return; 5783 5784 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5785 prev->comm, prev->pid, preempt_count()); 5786 5787 debug_show_held_locks(prev); 5788 print_modules(); 5789 if (irqs_disabled()) 5790 print_irqtrace_events(prev); 5791 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5792 pr_err("Preemption disabled at:"); 5793 print_ip_sym(KERN_ERR, preempt_disable_ip); 5794 } 5795 check_panic_on_warn("scheduling while atomic"); 5796 5797 dump_stack(); 5798 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5799 } 5800 5801 /* 5802 * Various schedule()-time debugging checks and statistics: 5803 */ 5804 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5805 { 5806 #ifdef CONFIG_SCHED_STACK_END_CHECK 5807 if (task_stack_end_corrupted(prev)) 5808 panic("corrupted stack end detected inside scheduler\n"); 5809 5810 if (task_scs_end_corrupted(prev)) 5811 panic("corrupted shadow stack detected inside scheduler\n"); 5812 #endif 5813 5814 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5815 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5816 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5817 prev->comm, prev->pid, prev->non_block_count); 5818 dump_stack(); 5819 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5820 } 5821 #endif 5822 5823 if (unlikely(in_atomic_preempt_off())) { 5824 __schedule_bug(prev); 5825 preempt_count_set(PREEMPT_DISABLED); 5826 } 5827 rcu_sleep_check(); 5828 WARN_ON_ONCE(ct_state() == CT_STATE_USER); 5829 5830 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5831 5832 schedstat_inc(this_rq()->sched_count); 5833 } 5834 5835 static void prev_balance(struct rq *rq, struct task_struct *prev, 5836 struct rq_flags *rf) 5837 { 5838 const struct sched_class *start_class = prev->sched_class; 5839 const struct sched_class *class; 5840 5841 /* 5842 * We must do the balancing pass before put_prev_task(), such 5843 * that when we release the rq->lock the task is in the same 5844 * state as before we took rq->lock. 5845 * 5846 * We can terminate the balance pass as soon as we know there is 5847 * a runnable task of @class priority or higher. 5848 */ 5849 for_active_class_range(class, start_class, &idle_sched_class) { 5850 if (class->balance && class->balance(rq, prev, rf)) 5851 break; 5852 } 5853 } 5854 5855 /* 5856 * Pick up the highest-prio task: 5857 */ 5858 static inline struct task_struct * 5859 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5860 { 5861 const struct sched_class *class; 5862 struct task_struct *p; 5863 5864 rq->dl_server = NULL; 5865 5866 if (scx_enabled()) 5867 goto restart; 5868 5869 /* 5870 * Optimization: we know that if all tasks are in the fair class we can 5871 * call that function directly, but only if the @prev task wasn't of a 5872 * higher scheduling class, because otherwise those lose the 5873 * opportunity to pull in more work from other CPUs. 5874 */ 5875 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5876 rq->nr_running == rq->cfs.h_nr_queued)) { 5877 5878 p = pick_next_task_fair(rq, prev, rf); 5879 if (unlikely(p == RETRY_TASK)) 5880 goto restart; 5881 5882 /* Assume the next prioritized class is idle_sched_class */ 5883 if (!p) { 5884 p = pick_task_idle(rq, rf); 5885 put_prev_set_next_task(rq, prev, p); 5886 } 5887 5888 return p; 5889 } 5890 5891 restart: 5892 prev_balance(rq, prev, rf); 5893 5894 for_each_active_class(class) { 5895 if (class->pick_next_task) { 5896 p = class->pick_next_task(rq, prev, rf); 5897 if (unlikely(p == RETRY_TASK)) 5898 goto restart; 5899 if (p) 5900 return p; 5901 } else { 5902 p = class->pick_task(rq, rf); 5903 if (unlikely(p == RETRY_TASK)) 5904 goto restart; 5905 if (p) { 5906 put_prev_set_next_task(rq, prev, p); 5907 return p; 5908 } 5909 } 5910 } 5911 5912 BUG(); /* The idle class should always have a runnable task. */ 5913 } 5914 5915 #ifdef CONFIG_SCHED_CORE 5916 static inline bool is_task_rq_idle(struct task_struct *t) 5917 { 5918 return (task_rq(t)->idle == t); 5919 } 5920 5921 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5922 { 5923 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5924 } 5925 5926 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5927 { 5928 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5929 return true; 5930 5931 return a->core_cookie == b->core_cookie; 5932 } 5933 5934 /* 5935 * Careful; this can return RETRY_TASK, it does not include the retry-loop 5936 * itself due to the whole SMT pick retry thing below. 5937 */ 5938 static inline struct task_struct *pick_task(struct rq *rq, struct rq_flags *rf) 5939 { 5940 const struct sched_class *class; 5941 struct task_struct *p; 5942 5943 rq->dl_server = NULL; 5944 5945 for_each_active_class(class) { 5946 p = class->pick_task(rq, rf); 5947 if (p) 5948 return p; 5949 } 5950 5951 BUG(); /* The idle class should always have a runnable task. */ 5952 } 5953 5954 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5955 5956 static void queue_core_balance(struct rq *rq); 5957 5958 static struct task_struct * 5959 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5960 { 5961 struct task_struct *next, *p, *max; 5962 const struct cpumask *smt_mask; 5963 bool fi_before = false; 5964 bool core_clock_updated = (rq == rq->core); 5965 unsigned long cookie; 5966 int i, cpu, occ = 0; 5967 struct rq *rq_i; 5968 bool need_sync; 5969 5970 if (!sched_core_enabled(rq)) 5971 return __pick_next_task(rq, prev, rf); 5972 5973 cpu = cpu_of(rq); 5974 5975 /* Stopper task is switching into idle, no need core-wide selection. */ 5976 if (cpu_is_offline(cpu)) { 5977 /* 5978 * Reset core_pick so that we don't enter the fastpath when 5979 * coming online. core_pick would already be migrated to 5980 * another cpu during offline. 5981 */ 5982 rq->core_pick = NULL; 5983 rq->core_dl_server = NULL; 5984 return __pick_next_task(rq, prev, rf); 5985 } 5986 5987 /* 5988 * If there were no {en,de}queues since we picked (IOW, the task 5989 * pointers are all still valid), and we haven't scheduled the last 5990 * pick yet, do so now. 5991 * 5992 * rq->core_pick can be NULL if no selection was made for a CPU because 5993 * it was either offline or went offline during a sibling's core-wide 5994 * selection. In this case, do a core-wide selection. 5995 */ 5996 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5997 rq->core->core_pick_seq != rq->core_sched_seq && 5998 rq->core_pick) { 5999 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6000 6001 next = rq->core_pick; 6002 rq->dl_server = rq->core_dl_server; 6003 rq->core_pick = NULL; 6004 rq->core_dl_server = NULL; 6005 goto out_set_next; 6006 } 6007 6008 prev_balance(rq, prev, rf); 6009 6010 smt_mask = cpu_smt_mask(cpu); 6011 need_sync = !!rq->core->core_cookie; 6012 6013 /* reset state */ 6014 rq->core->core_cookie = 0UL; 6015 if (rq->core->core_forceidle_count) { 6016 if (!core_clock_updated) { 6017 update_rq_clock(rq->core); 6018 core_clock_updated = true; 6019 } 6020 sched_core_account_forceidle(rq); 6021 /* reset after accounting force idle */ 6022 rq->core->core_forceidle_start = 0; 6023 rq->core->core_forceidle_count = 0; 6024 rq->core->core_forceidle_occupation = 0; 6025 need_sync = true; 6026 fi_before = true; 6027 } 6028 6029 /* 6030 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6031 * 6032 * @task_seq guards the task state ({en,de}queues) 6033 * @pick_seq is the @task_seq we did a selection on 6034 * @sched_seq is the @pick_seq we scheduled 6035 * 6036 * However, preemptions can cause multiple picks on the same task set. 6037 * 'Fix' this by also increasing @task_seq for every pick. 6038 */ 6039 rq->core->core_task_seq++; 6040 6041 /* 6042 * Optimize for common case where this CPU has no cookies 6043 * and there are no cookied tasks running on siblings. 6044 */ 6045 if (!need_sync) { 6046 restart_single: 6047 next = pick_task(rq, rf); 6048 if (unlikely(next == RETRY_TASK)) 6049 goto restart_single; 6050 if (!next->core_cookie) { 6051 rq->core_pick = NULL; 6052 rq->core_dl_server = NULL; 6053 /* 6054 * For robustness, update the min_vruntime_fi for 6055 * unconstrained picks as well. 6056 */ 6057 WARN_ON_ONCE(fi_before); 6058 task_vruntime_update(rq, next, false); 6059 goto out_set_next; 6060 } 6061 } 6062 6063 /* 6064 * For each thread: do the regular task pick and find the max prio task 6065 * amongst them. 6066 * 6067 * Tie-break prio towards the current CPU 6068 */ 6069 restart_multi: 6070 max = NULL; 6071 for_each_cpu_wrap(i, smt_mask, cpu) { 6072 rq_i = cpu_rq(i); 6073 6074 /* 6075 * Current cpu always has its clock updated on entrance to 6076 * pick_next_task(). If the current cpu is not the core, 6077 * the core may also have been updated above. 6078 */ 6079 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6080 update_rq_clock(rq_i); 6081 6082 p = pick_task(rq_i, rf); 6083 if (unlikely(p == RETRY_TASK)) 6084 goto restart_multi; 6085 6086 rq_i->core_pick = p; 6087 rq_i->core_dl_server = rq_i->dl_server; 6088 6089 if (!max || prio_less(max, p, fi_before)) 6090 max = p; 6091 } 6092 6093 cookie = rq->core->core_cookie = max->core_cookie; 6094 6095 /* 6096 * For each thread: try and find a runnable task that matches @max or 6097 * force idle. 6098 */ 6099 for_each_cpu(i, smt_mask) { 6100 rq_i = cpu_rq(i); 6101 p = rq_i->core_pick; 6102 6103 if (!cookie_equals(p, cookie)) { 6104 p = NULL; 6105 if (cookie) 6106 p = sched_core_find(rq_i, cookie); 6107 if (!p) 6108 p = idle_sched_class.pick_task(rq_i, rf); 6109 } 6110 6111 rq_i->core_pick = p; 6112 rq_i->core_dl_server = NULL; 6113 6114 if (p == rq_i->idle) { 6115 if (rq_i->nr_running) { 6116 rq->core->core_forceidle_count++; 6117 if (!fi_before) 6118 rq->core->core_forceidle_seq++; 6119 } 6120 } else { 6121 occ++; 6122 } 6123 } 6124 6125 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6126 rq->core->core_forceidle_start = rq_clock(rq->core); 6127 rq->core->core_forceidle_occupation = occ; 6128 } 6129 6130 rq->core->core_pick_seq = rq->core->core_task_seq; 6131 next = rq->core_pick; 6132 rq->core_sched_seq = rq->core->core_pick_seq; 6133 6134 /* Something should have been selected for current CPU */ 6135 WARN_ON_ONCE(!next); 6136 6137 /* 6138 * Reschedule siblings 6139 * 6140 * NOTE: L1TF -- at this point we're no longer running the old task and 6141 * sending an IPI (below) ensures the sibling will no longer be running 6142 * their task. This ensures there is no inter-sibling overlap between 6143 * non-matching user state. 6144 */ 6145 for_each_cpu(i, smt_mask) { 6146 rq_i = cpu_rq(i); 6147 6148 /* 6149 * An online sibling might have gone offline before a task 6150 * could be picked for it, or it might be offline but later 6151 * happen to come online, but its too late and nothing was 6152 * picked for it. That's Ok - it will pick tasks for itself, 6153 * so ignore it. 6154 */ 6155 if (!rq_i->core_pick) 6156 continue; 6157 6158 /* 6159 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6160 * fi_before fi update? 6161 * 0 0 1 6162 * 0 1 1 6163 * 1 0 1 6164 * 1 1 0 6165 */ 6166 if (!(fi_before && rq->core->core_forceidle_count)) 6167 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6168 6169 rq_i->core_pick->core_occupation = occ; 6170 6171 if (i == cpu) { 6172 rq_i->core_pick = NULL; 6173 rq_i->core_dl_server = NULL; 6174 continue; 6175 } 6176 6177 /* Did we break L1TF mitigation requirements? */ 6178 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6179 6180 if (rq_i->curr == rq_i->core_pick) { 6181 rq_i->core_pick = NULL; 6182 rq_i->core_dl_server = NULL; 6183 continue; 6184 } 6185 6186 resched_curr(rq_i); 6187 } 6188 6189 out_set_next: 6190 put_prev_set_next_task(rq, prev, next); 6191 if (rq->core->core_forceidle_count && next == rq->idle) 6192 queue_core_balance(rq); 6193 6194 return next; 6195 } 6196 6197 static bool try_steal_cookie(int this, int that) 6198 { 6199 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6200 struct task_struct *p; 6201 unsigned long cookie; 6202 bool success = false; 6203 6204 guard(irq)(); 6205 guard(double_rq_lock)(dst, src); 6206 6207 cookie = dst->core->core_cookie; 6208 if (!cookie) 6209 return false; 6210 6211 if (dst->curr != dst->idle) 6212 return false; 6213 6214 p = sched_core_find(src, cookie); 6215 if (!p) 6216 return false; 6217 6218 do { 6219 if (p == src->core_pick || p == src->curr) 6220 goto next; 6221 6222 if (!is_cpu_allowed(p, this)) 6223 goto next; 6224 6225 if (p->core_occupation > dst->idle->core_occupation) 6226 goto next; 6227 /* 6228 * sched_core_find() and sched_core_next() will ensure 6229 * that task @p is not throttled now, we also need to 6230 * check whether the runqueue of the destination CPU is 6231 * being throttled. 6232 */ 6233 if (sched_task_is_throttled(p, this)) 6234 goto next; 6235 6236 move_queued_task_locked(src, dst, p); 6237 resched_curr(dst); 6238 6239 success = true; 6240 break; 6241 6242 next: 6243 p = sched_core_next(p, cookie); 6244 } while (p); 6245 6246 return success; 6247 } 6248 6249 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6250 { 6251 int i; 6252 6253 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6254 if (i == cpu) 6255 continue; 6256 6257 if (need_resched()) 6258 break; 6259 6260 if (try_steal_cookie(cpu, i)) 6261 return true; 6262 } 6263 6264 return false; 6265 } 6266 6267 static void sched_core_balance(struct rq *rq) 6268 { 6269 struct sched_domain *sd; 6270 int cpu = cpu_of(rq); 6271 6272 guard(preempt)(); 6273 guard(rcu)(); 6274 6275 raw_spin_rq_unlock_irq(rq); 6276 for_each_domain(cpu, sd) { 6277 if (need_resched()) 6278 break; 6279 6280 if (steal_cookie_task(cpu, sd)) 6281 break; 6282 } 6283 raw_spin_rq_lock_irq(rq); 6284 } 6285 6286 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6287 6288 static void queue_core_balance(struct rq *rq) 6289 { 6290 if (!sched_core_enabled(rq)) 6291 return; 6292 6293 if (!rq->core->core_cookie) 6294 return; 6295 6296 if (!rq->nr_running) /* not forced idle */ 6297 return; 6298 6299 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6300 } 6301 6302 DEFINE_LOCK_GUARD_1(core_lock, int, 6303 sched_core_lock(*_T->lock, &_T->flags), 6304 sched_core_unlock(*_T->lock, &_T->flags), 6305 unsigned long flags) 6306 6307 static void sched_core_cpu_starting(unsigned int cpu) 6308 { 6309 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6310 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6311 int t; 6312 6313 guard(core_lock)(&cpu); 6314 6315 WARN_ON_ONCE(rq->core != rq); 6316 6317 /* if we're the first, we'll be our own leader */ 6318 if (cpumask_weight(smt_mask) == 1) 6319 return; 6320 6321 /* find the leader */ 6322 for_each_cpu(t, smt_mask) { 6323 if (t == cpu) 6324 continue; 6325 rq = cpu_rq(t); 6326 if (rq->core == rq) { 6327 core_rq = rq; 6328 break; 6329 } 6330 } 6331 6332 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6333 return; 6334 6335 /* install and validate core_rq */ 6336 for_each_cpu(t, smt_mask) { 6337 rq = cpu_rq(t); 6338 6339 if (t == cpu) 6340 rq->core = core_rq; 6341 6342 WARN_ON_ONCE(rq->core != core_rq); 6343 } 6344 } 6345 6346 static void sched_core_cpu_deactivate(unsigned int cpu) 6347 { 6348 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6349 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6350 int t; 6351 6352 guard(core_lock)(&cpu); 6353 6354 /* if we're the last man standing, nothing to do */ 6355 if (cpumask_weight(smt_mask) == 1) { 6356 WARN_ON_ONCE(rq->core != rq); 6357 return; 6358 } 6359 6360 /* if we're not the leader, nothing to do */ 6361 if (rq->core != rq) 6362 return; 6363 6364 /* find a new leader */ 6365 for_each_cpu(t, smt_mask) { 6366 if (t == cpu) 6367 continue; 6368 core_rq = cpu_rq(t); 6369 break; 6370 } 6371 6372 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6373 return; 6374 6375 /* copy the shared state to the new leader */ 6376 core_rq->core_task_seq = rq->core_task_seq; 6377 core_rq->core_pick_seq = rq->core_pick_seq; 6378 core_rq->core_cookie = rq->core_cookie; 6379 core_rq->core_forceidle_count = rq->core_forceidle_count; 6380 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6381 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6382 6383 /* 6384 * Accounting edge for forced idle is handled in pick_next_task(). 6385 * Don't need another one here, since the hotplug thread shouldn't 6386 * have a cookie. 6387 */ 6388 core_rq->core_forceidle_start = 0; 6389 6390 /* install new leader */ 6391 for_each_cpu(t, smt_mask) { 6392 rq = cpu_rq(t); 6393 rq->core = core_rq; 6394 } 6395 } 6396 6397 static inline void sched_core_cpu_dying(unsigned int cpu) 6398 { 6399 struct rq *rq = cpu_rq(cpu); 6400 6401 if (rq->core != rq) 6402 rq->core = rq; 6403 } 6404 6405 #else /* !CONFIG_SCHED_CORE: */ 6406 6407 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6408 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6409 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6410 6411 static struct task_struct * 6412 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6413 { 6414 return __pick_next_task(rq, prev, rf); 6415 } 6416 6417 #endif /* !CONFIG_SCHED_CORE */ 6418 6419 /* 6420 * Constants for the sched_mode argument of __schedule(). 6421 * 6422 * The mode argument allows RT enabled kernels to differentiate a 6423 * preemption from blocking on an 'sleeping' spin/rwlock. 6424 */ 6425 #define SM_IDLE (-1) 6426 #define SM_NONE 0 6427 #define SM_PREEMPT 1 6428 #define SM_RTLOCK_WAIT 2 6429 6430 /* 6431 * Helper function for __schedule() 6432 * 6433 * Tries to deactivate the task, unless the should_block arg 6434 * is false or if a signal is pending. In the case a signal 6435 * is pending, marks the task's __state as RUNNING (and clear 6436 * blocked_on). 6437 */ 6438 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6439 unsigned long *task_state_p, bool should_block) 6440 { 6441 unsigned long task_state = *task_state_p; 6442 int flags = DEQUEUE_NOCLOCK; 6443 6444 if (signal_pending_state(task_state, p)) { 6445 WRITE_ONCE(p->__state, TASK_RUNNING); 6446 *task_state_p = TASK_RUNNING; 6447 return false; 6448 } 6449 6450 /* 6451 * We check should_block after signal_pending because we 6452 * will want to wake the task in that case. But if 6453 * should_block is false, its likely due to the task being 6454 * blocked on a mutex, and we want to keep it on the runqueue 6455 * to be selectable for proxy-execution. 6456 */ 6457 if (!should_block) 6458 return false; 6459 6460 p->sched_contributes_to_load = 6461 (task_state & TASK_UNINTERRUPTIBLE) && 6462 !(task_state & TASK_NOLOAD) && 6463 !(task_state & TASK_FROZEN); 6464 6465 if (unlikely(is_special_task_state(task_state))) 6466 flags |= DEQUEUE_SPECIAL; 6467 6468 /* 6469 * __schedule() ttwu() 6470 * prev_state = prev->state; if (p->on_rq && ...) 6471 * if (prev_state) goto out; 6472 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6473 * p->state = TASK_WAKING 6474 * 6475 * Where __schedule() and ttwu() have matching control dependencies. 6476 * 6477 * After this, schedule() must not care about p->state any more. 6478 */ 6479 block_task(rq, p, flags); 6480 return true; 6481 } 6482 6483 #ifdef CONFIG_SCHED_PROXY_EXEC 6484 static inline struct task_struct *proxy_resched_idle(struct rq *rq) 6485 { 6486 put_prev_set_next_task(rq, rq->donor, rq->idle); 6487 rq_set_donor(rq, rq->idle); 6488 set_tsk_need_resched(rq->idle); 6489 return rq->idle; 6490 } 6491 6492 static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor) 6493 { 6494 unsigned long state = READ_ONCE(donor->__state); 6495 6496 /* Don't deactivate if the state has been changed to TASK_RUNNING */ 6497 if (state == TASK_RUNNING) 6498 return false; 6499 /* 6500 * Because we got donor from pick_next_task(), it is *crucial* 6501 * that we call proxy_resched_idle() before we deactivate it. 6502 * As once we deactivate donor, donor->on_rq is set to zero, 6503 * which allows ttwu() to immediately try to wake the task on 6504 * another rq. So we cannot use *any* references to donor 6505 * after that point. So things like cfs_rq->curr or rq->donor 6506 * need to be changed from next *before* we deactivate. 6507 */ 6508 proxy_resched_idle(rq); 6509 return try_to_block_task(rq, donor, &state, true); 6510 } 6511 6512 static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor) 6513 { 6514 if (!__proxy_deactivate(rq, donor)) { 6515 /* 6516 * XXX: For now, if deactivation failed, set donor 6517 * as unblocked, as we aren't doing proxy-migrations 6518 * yet (more logic will be needed then). 6519 */ 6520 donor->blocked_on = NULL; 6521 } 6522 return NULL; 6523 } 6524 6525 /* 6526 * Find runnable lock owner to proxy for mutex blocked donor 6527 * 6528 * Follow the blocked-on relation: 6529 * task->blocked_on -> mutex->owner -> task... 6530 * 6531 * Lock order: 6532 * 6533 * p->pi_lock 6534 * rq->lock 6535 * mutex->wait_lock 6536 * 6537 * Returns the task that is going to be used as execution context (the one 6538 * that is actually going to be run on cpu_of(rq)). 6539 */ 6540 static struct task_struct * 6541 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) 6542 { 6543 struct task_struct *owner = NULL; 6544 int this_cpu = cpu_of(rq); 6545 struct task_struct *p; 6546 struct mutex *mutex; 6547 6548 /* Follow blocked_on chain. */ 6549 for (p = donor; task_is_blocked(p); p = owner) { 6550 mutex = p->blocked_on; 6551 /* Something changed in the chain, so pick again */ 6552 if (!mutex) 6553 return NULL; 6554 /* 6555 * By taking mutex->wait_lock we hold off concurrent mutex_unlock() 6556 * and ensure @owner sticks around. 6557 */ 6558 guard(raw_spinlock)(&mutex->wait_lock); 6559 6560 /* Check again that p is blocked with wait_lock held */ 6561 if (mutex != __get_task_blocked_on(p)) { 6562 /* 6563 * Something changed in the blocked_on chain and 6564 * we don't know if only at this level. So, let's 6565 * just bail out completely and let __schedule() 6566 * figure things out (pick_again loop). 6567 */ 6568 return NULL; 6569 } 6570 6571 owner = __mutex_owner(mutex); 6572 if (!owner) { 6573 __clear_task_blocked_on(p, mutex); 6574 return p; 6575 } 6576 6577 if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) { 6578 /* XXX Don't handle blocked owners/delayed dequeue yet */ 6579 return proxy_deactivate(rq, donor); 6580 } 6581 6582 if (task_cpu(owner) != this_cpu) { 6583 /* XXX Don't handle migrations yet */ 6584 return proxy_deactivate(rq, donor); 6585 } 6586 6587 if (task_on_rq_migrating(owner)) { 6588 /* 6589 * One of the chain of mutex owners is currently migrating to this 6590 * CPU, but has not yet been enqueued because we are holding the 6591 * rq lock. As a simple solution, just schedule rq->idle to give 6592 * the migration a chance to complete. Much like the migrate_task 6593 * case we should end up back in find_proxy_task(), this time 6594 * hopefully with all relevant tasks already enqueued. 6595 */ 6596 return proxy_resched_idle(rq); 6597 } 6598 6599 /* 6600 * Its possible to race where after we check owner->on_rq 6601 * but before we check (owner_cpu != this_cpu) that the 6602 * task on another cpu was migrated back to this cpu. In 6603 * that case it could slip by our checks. So double check 6604 * we are still on this cpu and not migrating. If we get 6605 * inconsistent results, try again. 6606 */ 6607 if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu) 6608 return NULL; 6609 6610 if (owner == p) { 6611 /* 6612 * It's possible we interleave with mutex_unlock like: 6613 * 6614 * lock(&rq->lock); 6615 * find_proxy_task() 6616 * mutex_unlock() 6617 * lock(&wait_lock); 6618 * donor(owner) = current->blocked_donor; 6619 * unlock(&wait_lock); 6620 * 6621 * wake_up_q(); 6622 * ... 6623 * ttwu_runnable() 6624 * __task_rq_lock() 6625 * lock(&wait_lock); 6626 * owner == p 6627 * 6628 * Which leaves us to finish the ttwu_runnable() and make it go. 6629 * 6630 * So schedule rq->idle so that ttwu_runnable() can get the rq 6631 * lock and mark owner as running. 6632 */ 6633 return proxy_resched_idle(rq); 6634 } 6635 /* 6636 * OK, now we're absolutely sure @owner is on this 6637 * rq, therefore holding @rq->lock is sufficient to 6638 * guarantee its existence, as per ttwu_remote(). 6639 */ 6640 } 6641 6642 WARN_ON_ONCE(owner && !owner->on_rq); 6643 return owner; 6644 } 6645 #else /* SCHED_PROXY_EXEC */ 6646 static struct task_struct * 6647 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) 6648 { 6649 WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n"); 6650 return donor; 6651 } 6652 #endif /* SCHED_PROXY_EXEC */ 6653 6654 static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner) 6655 { 6656 if (!sched_proxy_exec()) 6657 return; 6658 /* 6659 * pick_next_task() calls set_next_task() on the chosen task 6660 * at some point, which ensures it is not push/pullable. 6661 * However, the chosen/donor task *and* the mutex owner form an 6662 * atomic pair wrt push/pull. 6663 * 6664 * Make sure owner we run is not pushable. Unfortunately we can 6665 * only deal with that by means of a dequeue/enqueue cycle. :-/ 6666 */ 6667 dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE); 6668 enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE); 6669 } 6670 6671 /* 6672 * __schedule() is the main scheduler function. 6673 * 6674 * The main means of driving the scheduler and thus entering this function are: 6675 * 6676 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6677 * 6678 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6679 * paths. For example, see arch/x86/entry_64.S. 6680 * 6681 * To drive preemption between tasks, the scheduler sets the flag in timer 6682 * interrupt handler sched_tick(). 6683 * 6684 * 3. Wakeups don't really cause entry into schedule(). They add a 6685 * task to the run-queue and that's it. 6686 * 6687 * Now, if the new task added to the run-queue preempts the current 6688 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6689 * called on the nearest possible occasion: 6690 * 6691 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6692 * 6693 * - in syscall or exception context, at the next outmost 6694 * preempt_enable(). (this might be as soon as the wake_up()'s 6695 * spin_unlock()!) 6696 * 6697 * - in IRQ context, return from interrupt-handler to 6698 * preemptible context 6699 * 6700 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6701 * then at the next: 6702 * 6703 * - cond_resched() call 6704 * - explicit schedule() call 6705 * - return from syscall or exception to user-space 6706 * - return from interrupt-handler to user-space 6707 * 6708 * WARNING: must be called with preemption disabled! 6709 */ 6710 static void __sched notrace __schedule(int sched_mode) 6711 { 6712 struct task_struct *prev, *next; 6713 /* 6714 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6715 * as a preemption by schedule_debug() and RCU. 6716 */ 6717 bool preempt = sched_mode > SM_NONE; 6718 bool is_switch = false; 6719 unsigned long *switch_count; 6720 unsigned long prev_state; 6721 struct rq_flags rf; 6722 struct rq *rq; 6723 int cpu; 6724 6725 /* Trace preemptions consistently with task switches */ 6726 trace_sched_entry_tp(sched_mode == SM_PREEMPT); 6727 6728 cpu = smp_processor_id(); 6729 rq = cpu_rq(cpu); 6730 prev = rq->curr; 6731 6732 schedule_debug(prev, preempt); 6733 6734 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6735 hrtick_clear(rq); 6736 6737 klp_sched_try_switch(prev); 6738 6739 local_irq_disable(); 6740 rcu_note_context_switch(preempt); 6741 migrate_disable_switch(rq, prev); 6742 6743 /* 6744 * Make sure that signal_pending_state()->signal_pending() below 6745 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6746 * done by the caller to avoid the race with signal_wake_up(): 6747 * 6748 * __set_current_state(@state) signal_wake_up() 6749 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6750 * wake_up_state(p, state) 6751 * LOCK rq->lock LOCK p->pi_state 6752 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6753 * if (signal_pending_state()) if (p->state & @state) 6754 * 6755 * Also, the membarrier system call requires a full memory barrier 6756 * after coming from user-space, before storing to rq->curr; this 6757 * barrier matches a full barrier in the proximity of the membarrier 6758 * system call exit. 6759 */ 6760 rq_lock(rq, &rf); 6761 smp_mb__after_spinlock(); 6762 6763 /* Promote REQ to ACT */ 6764 rq->clock_update_flags <<= 1; 6765 update_rq_clock(rq); 6766 rq->clock_update_flags = RQCF_UPDATED; 6767 6768 switch_count = &prev->nivcsw; 6769 6770 /* Task state changes only considers SM_PREEMPT as preemption */ 6771 preempt = sched_mode == SM_PREEMPT; 6772 6773 /* 6774 * We must load prev->state once (task_struct::state is volatile), such 6775 * that we form a control dependency vs deactivate_task() below. 6776 */ 6777 prev_state = READ_ONCE(prev->__state); 6778 if (sched_mode == SM_IDLE) { 6779 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6780 if (!rq->nr_running && !scx_enabled()) { 6781 next = prev; 6782 goto picked; 6783 } 6784 } else if (!preempt && prev_state) { 6785 /* 6786 * We pass task_is_blocked() as the should_block arg 6787 * in order to keep mutex-blocked tasks on the runqueue 6788 * for slection with proxy-exec (without proxy-exec 6789 * task_is_blocked() will always be false). 6790 */ 6791 try_to_block_task(rq, prev, &prev_state, 6792 !task_is_blocked(prev)); 6793 switch_count = &prev->nvcsw; 6794 } 6795 6796 pick_again: 6797 next = pick_next_task(rq, rq->donor, &rf); 6798 rq_set_donor(rq, next); 6799 if (unlikely(task_is_blocked(next))) { 6800 next = find_proxy_task(rq, next, &rf); 6801 if (!next) 6802 goto pick_again; 6803 if (next == rq->idle) 6804 goto keep_resched; 6805 } 6806 picked: 6807 clear_tsk_need_resched(prev); 6808 clear_preempt_need_resched(); 6809 keep_resched: 6810 rq->last_seen_need_resched_ns = 0; 6811 6812 is_switch = prev != next; 6813 if (likely(is_switch)) { 6814 rq->nr_switches++; 6815 /* 6816 * RCU users of rcu_dereference(rq->curr) may not see 6817 * changes to task_struct made by pick_next_task(). 6818 */ 6819 RCU_INIT_POINTER(rq->curr, next); 6820 6821 if (!task_current_donor(rq, next)) 6822 proxy_tag_curr(rq, next); 6823 6824 /* 6825 * The membarrier system call requires each architecture 6826 * to have a full memory barrier after updating 6827 * rq->curr, before returning to user-space. 6828 * 6829 * Here are the schemes providing that barrier on the 6830 * various architectures: 6831 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6832 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6833 * on PowerPC and on RISC-V. 6834 * - finish_lock_switch() for weakly-ordered 6835 * architectures where spin_unlock is a full barrier, 6836 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6837 * is a RELEASE barrier), 6838 * 6839 * The barrier matches a full barrier in the proximity of 6840 * the membarrier system call entry. 6841 * 6842 * On RISC-V, this barrier pairing is also needed for the 6843 * SYNC_CORE command when switching between processes, cf. 6844 * the inline comments in membarrier_arch_switch_mm(). 6845 */ 6846 ++*switch_count; 6847 6848 psi_account_irqtime(rq, prev, next); 6849 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6850 prev->se.sched_delayed); 6851 6852 trace_sched_switch(preempt, prev, next, prev_state); 6853 6854 /* Also unlocks the rq: */ 6855 rq = context_switch(rq, prev, next, &rf); 6856 } else { 6857 /* In case next was already curr but just got blocked_donor */ 6858 if (!task_current_donor(rq, next)) 6859 proxy_tag_curr(rq, next); 6860 6861 rq_unpin_lock(rq, &rf); 6862 __balance_callbacks(rq); 6863 raw_spin_rq_unlock_irq(rq); 6864 } 6865 trace_sched_exit_tp(is_switch); 6866 } 6867 6868 void __noreturn do_task_dead(void) 6869 { 6870 /* Causes final put_task_struct in finish_task_switch(): */ 6871 set_special_state(TASK_DEAD); 6872 6873 /* Tell freezer to ignore us: */ 6874 current->flags |= PF_NOFREEZE; 6875 6876 __schedule(SM_NONE); 6877 BUG(); 6878 6879 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6880 for (;;) 6881 cpu_relax(); 6882 } 6883 6884 static inline void sched_submit_work(struct task_struct *tsk) 6885 { 6886 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6887 unsigned int task_flags; 6888 6889 /* 6890 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6891 * will use a blocking primitive -- which would lead to recursion. 6892 */ 6893 lock_map_acquire_try(&sched_map); 6894 6895 task_flags = tsk->flags; 6896 /* 6897 * If a worker goes to sleep, notify and ask workqueue whether it 6898 * wants to wake up a task to maintain concurrency. 6899 */ 6900 if (task_flags & PF_WQ_WORKER) 6901 wq_worker_sleeping(tsk); 6902 else if (task_flags & PF_IO_WORKER) 6903 io_wq_worker_sleeping(tsk); 6904 6905 /* 6906 * spinlock and rwlock must not flush block requests. This will 6907 * deadlock if the callback attempts to acquire a lock which is 6908 * already acquired. 6909 */ 6910 WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); 6911 6912 /* 6913 * If we are going to sleep and we have plugged IO queued, 6914 * make sure to submit it to avoid deadlocks. 6915 */ 6916 blk_flush_plug(tsk->plug, true); 6917 6918 lock_map_release(&sched_map); 6919 } 6920 6921 static void sched_update_worker(struct task_struct *tsk) 6922 { 6923 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6924 if (tsk->flags & PF_BLOCK_TS) 6925 blk_plug_invalidate_ts(tsk); 6926 if (tsk->flags & PF_WQ_WORKER) 6927 wq_worker_running(tsk); 6928 else if (tsk->flags & PF_IO_WORKER) 6929 io_wq_worker_running(tsk); 6930 } 6931 } 6932 6933 static __always_inline void __schedule_loop(int sched_mode) 6934 { 6935 do { 6936 preempt_disable(); 6937 __schedule(sched_mode); 6938 sched_preempt_enable_no_resched(); 6939 } while (need_resched()); 6940 } 6941 6942 asmlinkage __visible void __sched schedule(void) 6943 { 6944 struct task_struct *tsk = current; 6945 6946 #ifdef CONFIG_RT_MUTEXES 6947 lockdep_assert(!tsk->sched_rt_mutex); 6948 #endif 6949 6950 if (!task_is_running(tsk)) 6951 sched_submit_work(tsk); 6952 __schedule_loop(SM_NONE); 6953 sched_update_worker(tsk); 6954 } 6955 EXPORT_SYMBOL(schedule); 6956 6957 /* 6958 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6959 * state (have scheduled out non-voluntarily) by making sure that all 6960 * tasks have either left the run queue or have gone into user space. 6961 * As idle tasks do not do either, they must not ever be preempted 6962 * (schedule out non-voluntarily). 6963 * 6964 * schedule_idle() is similar to schedule_preempt_disable() except that it 6965 * never enables preemption because it does not call sched_submit_work(). 6966 */ 6967 void __sched schedule_idle(void) 6968 { 6969 /* 6970 * As this skips calling sched_submit_work(), which the idle task does 6971 * regardless because that function is a NOP when the task is in a 6972 * TASK_RUNNING state, make sure this isn't used someplace that the 6973 * current task can be in any other state. Note, idle is always in the 6974 * TASK_RUNNING state. 6975 */ 6976 WARN_ON_ONCE(current->__state); 6977 do { 6978 __schedule(SM_IDLE); 6979 } while (need_resched()); 6980 } 6981 6982 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6983 asmlinkage __visible void __sched schedule_user(void) 6984 { 6985 /* 6986 * If we come here after a random call to set_need_resched(), 6987 * or we have been woken up remotely but the IPI has not yet arrived, 6988 * we haven't yet exited the RCU idle mode. Do it here manually until 6989 * we find a better solution. 6990 * 6991 * NB: There are buggy callers of this function. Ideally we 6992 * should warn if prev_state != CT_STATE_USER, but that will trigger 6993 * too frequently to make sense yet. 6994 */ 6995 enum ctx_state prev_state = exception_enter(); 6996 schedule(); 6997 exception_exit(prev_state); 6998 } 6999 #endif 7000 7001 /** 7002 * schedule_preempt_disabled - called with preemption disabled 7003 * 7004 * Returns with preemption disabled. Note: preempt_count must be 1 7005 */ 7006 void __sched schedule_preempt_disabled(void) 7007 { 7008 sched_preempt_enable_no_resched(); 7009 schedule(); 7010 preempt_disable(); 7011 } 7012 7013 #ifdef CONFIG_PREEMPT_RT 7014 void __sched notrace schedule_rtlock(void) 7015 { 7016 __schedule_loop(SM_RTLOCK_WAIT); 7017 } 7018 NOKPROBE_SYMBOL(schedule_rtlock); 7019 #endif 7020 7021 static void __sched notrace preempt_schedule_common(void) 7022 { 7023 do { 7024 /* 7025 * Because the function tracer can trace preempt_count_sub() 7026 * and it also uses preempt_enable/disable_notrace(), if 7027 * NEED_RESCHED is set, the preempt_enable_notrace() called 7028 * by the function tracer will call this function again and 7029 * cause infinite recursion. 7030 * 7031 * Preemption must be disabled here before the function 7032 * tracer can trace. Break up preempt_disable() into two 7033 * calls. One to disable preemption without fear of being 7034 * traced. The other to still record the preemption latency, 7035 * which can also be traced by the function tracer. 7036 */ 7037 preempt_disable_notrace(); 7038 preempt_latency_start(1); 7039 __schedule(SM_PREEMPT); 7040 preempt_latency_stop(1); 7041 preempt_enable_no_resched_notrace(); 7042 7043 /* 7044 * Check again in case we missed a preemption opportunity 7045 * between schedule and now. 7046 */ 7047 } while (need_resched()); 7048 } 7049 7050 #ifdef CONFIG_PREEMPTION 7051 /* 7052 * This is the entry point to schedule() from in-kernel preemption 7053 * off of preempt_enable. 7054 */ 7055 asmlinkage __visible void __sched notrace preempt_schedule(void) 7056 { 7057 /* 7058 * If there is a non-zero preempt_count or interrupts are disabled, 7059 * we do not want to preempt the current task. Just return.. 7060 */ 7061 if (likely(!preemptible())) 7062 return; 7063 preempt_schedule_common(); 7064 } 7065 NOKPROBE_SYMBOL(preempt_schedule); 7066 EXPORT_SYMBOL(preempt_schedule); 7067 7068 #ifdef CONFIG_PREEMPT_DYNAMIC 7069 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7070 # ifndef preempt_schedule_dynamic_enabled 7071 # define preempt_schedule_dynamic_enabled preempt_schedule 7072 # define preempt_schedule_dynamic_disabled NULL 7073 # endif 7074 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 7075 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 7076 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7077 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 7078 void __sched notrace dynamic_preempt_schedule(void) 7079 { 7080 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 7081 return; 7082 preempt_schedule(); 7083 } 7084 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 7085 EXPORT_SYMBOL(dynamic_preempt_schedule); 7086 # endif 7087 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7088 7089 /** 7090 * preempt_schedule_notrace - preempt_schedule called by tracing 7091 * 7092 * The tracing infrastructure uses preempt_enable_notrace to prevent 7093 * recursion and tracing preempt enabling caused by the tracing 7094 * infrastructure itself. But as tracing can happen in areas coming 7095 * from userspace or just about to enter userspace, a preempt enable 7096 * can occur before user_exit() is called. This will cause the scheduler 7097 * to be called when the system is still in usermode. 7098 * 7099 * To prevent this, the preempt_enable_notrace will use this function 7100 * instead of preempt_schedule() to exit user context if needed before 7101 * calling the scheduler. 7102 */ 7103 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7104 { 7105 enum ctx_state prev_ctx; 7106 7107 if (likely(!preemptible())) 7108 return; 7109 7110 do { 7111 /* 7112 * Because the function tracer can trace preempt_count_sub() 7113 * and it also uses preempt_enable/disable_notrace(), if 7114 * NEED_RESCHED is set, the preempt_enable_notrace() called 7115 * by the function tracer will call this function again and 7116 * cause infinite recursion. 7117 * 7118 * Preemption must be disabled here before the function 7119 * tracer can trace. Break up preempt_disable() into two 7120 * calls. One to disable preemption without fear of being 7121 * traced. The other to still record the preemption latency, 7122 * which can also be traced by the function tracer. 7123 */ 7124 preempt_disable_notrace(); 7125 preempt_latency_start(1); 7126 /* 7127 * Needs preempt disabled in case user_exit() is traced 7128 * and the tracer calls preempt_enable_notrace() causing 7129 * an infinite recursion. 7130 */ 7131 prev_ctx = exception_enter(); 7132 __schedule(SM_PREEMPT); 7133 exception_exit(prev_ctx); 7134 7135 preempt_latency_stop(1); 7136 preempt_enable_no_resched_notrace(); 7137 } while (need_resched()); 7138 } 7139 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7140 7141 #ifdef CONFIG_PREEMPT_DYNAMIC 7142 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7143 # ifndef preempt_schedule_notrace_dynamic_enabled 7144 # define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7145 # define preempt_schedule_notrace_dynamic_disabled NULL 7146 # endif 7147 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7148 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7149 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7150 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7151 void __sched notrace dynamic_preempt_schedule_notrace(void) 7152 { 7153 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7154 return; 7155 preempt_schedule_notrace(); 7156 } 7157 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7158 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7159 # endif 7160 #endif 7161 7162 #endif /* CONFIG_PREEMPTION */ 7163 7164 /* 7165 * This is the entry point to schedule() from kernel preemption 7166 * off of IRQ context. 7167 * Note, that this is called and return with IRQs disabled. This will 7168 * protect us against recursive calling from IRQ contexts. 7169 */ 7170 asmlinkage __visible void __sched preempt_schedule_irq(void) 7171 { 7172 enum ctx_state prev_state; 7173 7174 /* Catch callers which need to be fixed */ 7175 BUG_ON(preempt_count() || !irqs_disabled()); 7176 7177 prev_state = exception_enter(); 7178 7179 do { 7180 preempt_disable(); 7181 local_irq_enable(); 7182 __schedule(SM_PREEMPT); 7183 local_irq_disable(); 7184 sched_preempt_enable_no_resched(); 7185 } while (need_resched()); 7186 7187 exception_exit(prev_state); 7188 } 7189 7190 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7191 void *key) 7192 { 7193 WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7194 return try_to_wake_up(curr->private, mode, wake_flags); 7195 } 7196 EXPORT_SYMBOL(default_wake_function); 7197 7198 const struct sched_class *__setscheduler_class(int policy, int prio) 7199 { 7200 if (dl_prio(prio)) 7201 return &dl_sched_class; 7202 7203 if (rt_prio(prio)) 7204 return &rt_sched_class; 7205 7206 #ifdef CONFIG_SCHED_CLASS_EXT 7207 if (task_should_scx(policy)) 7208 return &ext_sched_class; 7209 #endif 7210 7211 return &fair_sched_class; 7212 } 7213 7214 #ifdef CONFIG_RT_MUTEXES 7215 7216 /* 7217 * Would be more useful with typeof()/auto_type but they don't mix with 7218 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7219 * name such that if someone were to implement this function we get to compare 7220 * notes. 7221 */ 7222 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7223 7224 void rt_mutex_pre_schedule(void) 7225 { 7226 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7227 sched_submit_work(current); 7228 } 7229 7230 void rt_mutex_schedule(void) 7231 { 7232 lockdep_assert(current->sched_rt_mutex); 7233 __schedule_loop(SM_NONE); 7234 } 7235 7236 void rt_mutex_post_schedule(void) 7237 { 7238 sched_update_worker(current); 7239 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7240 } 7241 7242 /* 7243 * rt_mutex_setprio - set the current priority of a task 7244 * @p: task to boost 7245 * @pi_task: donor task 7246 * 7247 * This function changes the 'effective' priority of a task. It does 7248 * not touch ->normal_prio like __setscheduler(). 7249 * 7250 * Used by the rt_mutex code to implement priority inheritance 7251 * logic. Call site only calls if the priority of the task changed. 7252 */ 7253 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7254 { 7255 int prio, oldprio, queue_flag = 7256 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7257 const struct sched_class *prev_class, *next_class; 7258 struct rq_flags rf; 7259 struct rq *rq; 7260 7261 /* XXX used to be waiter->prio, not waiter->task->prio */ 7262 prio = __rt_effective_prio(pi_task, p->normal_prio); 7263 7264 /* 7265 * If nothing changed; bail early. 7266 */ 7267 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7268 return; 7269 7270 rq = __task_rq_lock(p, &rf); 7271 update_rq_clock(rq); 7272 /* 7273 * Set under pi_lock && rq->lock, such that the value can be used under 7274 * either lock. 7275 * 7276 * Note that there is loads of tricky to make this pointer cache work 7277 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7278 * ensure a task is de-boosted (pi_task is set to NULL) before the 7279 * task is allowed to run again (and can exit). This ensures the pointer 7280 * points to a blocked task -- which guarantees the task is present. 7281 */ 7282 p->pi_top_task = pi_task; 7283 7284 /* 7285 * For FIFO/RR we only need to set prio, if that matches we're done. 7286 */ 7287 if (prio == p->prio && !dl_prio(prio)) 7288 goto out_unlock; 7289 7290 /* 7291 * Idle task boosting is a no-no in general. There is one 7292 * exception, when PREEMPT_RT and NOHZ is active: 7293 * 7294 * The idle task calls get_next_timer_interrupt() and holds 7295 * the timer wheel base->lock on the CPU and another CPU wants 7296 * to access the timer (probably to cancel it). We can safely 7297 * ignore the boosting request, as the idle CPU runs this code 7298 * with interrupts disabled and will complete the lock 7299 * protected section without being interrupted. So there is no 7300 * real need to boost. 7301 */ 7302 if (unlikely(p == rq->idle)) { 7303 WARN_ON(p != rq->curr); 7304 WARN_ON(p->pi_blocked_on); 7305 goto out_unlock; 7306 } 7307 7308 trace_sched_pi_setprio(p, pi_task); 7309 oldprio = p->prio; 7310 7311 if (oldprio == prio) 7312 queue_flag &= ~DEQUEUE_MOVE; 7313 7314 prev_class = p->sched_class; 7315 next_class = __setscheduler_class(p->policy, prio); 7316 7317 if (prev_class != next_class) 7318 queue_flag |= DEQUEUE_CLASS; 7319 7320 scoped_guard (sched_change, p, queue_flag) { 7321 /* 7322 * Boosting condition are: 7323 * 1. -rt task is running and holds mutex A 7324 * --> -dl task blocks on mutex A 7325 * 7326 * 2. -dl task is running and holds mutex A 7327 * --> -dl task blocks on mutex A and could preempt the 7328 * running task 7329 */ 7330 if (dl_prio(prio)) { 7331 if (!dl_prio(p->normal_prio) || 7332 (pi_task && dl_prio(pi_task->prio) && 7333 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7334 p->dl.pi_se = pi_task->dl.pi_se; 7335 scope->flags |= ENQUEUE_REPLENISH; 7336 } else { 7337 p->dl.pi_se = &p->dl; 7338 } 7339 } else if (rt_prio(prio)) { 7340 if (dl_prio(oldprio)) 7341 p->dl.pi_se = &p->dl; 7342 if (oldprio < prio) 7343 scope->flags |= ENQUEUE_HEAD; 7344 } else { 7345 if (dl_prio(oldprio)) 7346 p->dl.pi_se = &p->dl; 7347 if (rt_prio(oldprio)) 7348 p->rt.timeout = 0; 7349 } 7350 7351 p->sched_class = next_class; 7352 p->prio = prio; 7353 } 7354 out_unlock: 7355 /* Avoid rq from going away on us: */ 7356 preempt_disable(); 7357 7358 rq_unpin_lock(rq, &rf); 7359 __balance_callbacks(rq); 7360 rq_repin_lock(rq, &rf); 7361 __task_rq_unlock(rq, p, &rf); 7362 7363 preempt_enable(); 7364 } 7365 #endif /* CONFIG_RT_MUTEXES */ 7366 7367 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7368 int __sched __cond_resched(void) 7369 { 7370 if (should_resched(0) && !irqs_disabled()) { 7371 preempt_schedule_common(); 7372 return 1; 7373 } 7374 /* 7375 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick 7376 * whether the current CPU is in an RCU read-side critical section, 7377 * so the tick can report quiescent states even for CPUs looping 7378 * in kernel context. In contrast, in non-preemptible kernels, 7379 * RCU readers leave no in-memory hints, which means that CPU-bound 7380 * processes executing in kernel context might never report an 7381 * RCU quiescent state. Therefore, the following code causes 7382 * cond_resched() to report a quiescent state, but only when RCU 7383 * is in urgent need of one. 7384 * A third case, preemptible, but non-PREEMPT_RCU provides for 7385 * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). 7386 */ 7387 #ifndef CONFIG_PREEMPT_RCU 7388 rcu_all_qs(); 7389 #endif 7390 return 0; 7391 } 7392 EXPORT_SYMBOL(__cond_resched); 7393 #endif 7394 7395 #ifdef CONFIG_PREEMPT_DYNAMIC 7396 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7397 # define cond_resched_dynamic_enabled __cond_resched 7398 # define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7399 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7400 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7401 7402 # define might_resched_dynamic_enabled __cond_resched 7403 # define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7404 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7405 EXPORT_STATIC_CALL_TRAMP(might_resched); 7406 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7407 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7408 int __sched dynamic_cond_resched(void) 7409 { 7410 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7411 return 0; 7412 return __cond_resched(); 7413 } 7414 EXPORT_SYMBOL(dynamic_cond_resched); 7415 7416 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7417 int __sched dynamic_might_resched(void) 7418 { 7419 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7420 return 0; 7421 return __cond_resched(); 7422 } 7423 EXPORT_SYMBOL(dynamic_might_resched); 7424 # endif 7425 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7426 7427 /* 7428 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7429 * call schedule, and on return reacquire the lock. 7430 * 7431 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7432 * operations here to prevent schedule() from being called twice (once via 7433 * spin_unlock(), once by hand). 7434 */ 7435 int __cond_resched_lock(spinlock_t *lock) 7436 { 7437 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7438 int ret = 0; 7439 7440 lockdep_assert_held(lock); 7441 7442 if (spin_needbreak(lock) || resched) { 7443 spin_unlock(lock); 7444 if (!_cond_resched()) 7445 cpu_relax(); 7446 ret = 1; 7447 spin_lock(lock); 7448 } 7449 return ret; 7450 } 7451 EXPORT_SYMBOL(__cond_resched_lock); 7452 7453 int __cond_resched_rwlock_read(rwlock_t *lock) 7454 { 7455 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7456 int ret = 0; 7457 7458 lockdep_assert_held_read(lock); 7459 7460 if (rwlock_needbreak(lock) || resched) { 7461 read_unlock(lock); 7462 if (!_cond_resched()) 7463 cpu_relax(); 7464 ret = 1; 7465 read_lock(lock); 7466 } 7467 return ret; 7468 } 7469 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7470 7471 int __cond_resched_rwlock_write(rwlock_t *lock) 7472 { 7473 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7474 int ret = 0; 7475 7476 lockdep_assert_held_write(lock); 7477 7478 if (rwlock_needbreak(lock) || resched) { 7479 write_unlock(lock); 7480 if (!_cond_resched()) 7481 cpu_relax(); 7482 ret = 1; 7483 write_lock(lock); 7484 } 7485 return ret; 7486 } 7487 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7488 7489 #ifdef CONFIG_PREEMPT_DYNAMIC 7490 7491 # ifdef CONFIG_GENERIC_IRQ_ENTRY 7492 # include <linux/irq-entry-common.h> 7493 # endif 7494 7495 /* 7496 * SC:cond_resched 7497 * SC:might_resched 7498 * SC:preempt_schedule 7499 * SC:preempt_schedule_notrace 7500 * SC:irqentry_exit_cond_resched 7501 * 7502 * 7503 * NONE: 7504 * cond_resched <- __cond_resched 7505 * might_resched <- RET0 7506 * preempt_schedule <- NOP 7507 * preempt_schedule_notrace <- NOP 7508 * irqentry_exit_cond_resched <- NOP 7509 * dynamic_preempt_lazy <- false 7510 * 7511 * VOLUNTARY: 7512 * cond_resched <- __cond_resched 7513 * might_resched <- __cond_resched 7514 * preempt_schedule <- NOP 7515 * preempt_schedule_notrace <- NOP 7516 * irqentry_exit_cond_resched <- NOP 7517 * dynamic_preempt_lazy <- false 7518 * 7519 * FULL: 7520 * cond_resched <- RET0 7521 * might_resched <- RET0 7522 * preempt_schedule <- preempt_schedule 7523 * preempt_schedule_notrace <- preempt_schedule_notrace 7524 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7525 * dynamic_preempt_lazy <- false 7526 * 7527 * LAZY: 7528 * cond_resched <- RET0 7529 * might_resched <- RET0 7530 * preempt_schedule <- preempt_schedule 7531 * preempt_schedule_notrace <- preempt_schedule_notrace 7532 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7533 * dynamic_preempt_lazy <- true 7534 */ 7535 7536 enum { 7537 preempt_dynamic_undefined = -1, 7538 preempt_dynamic_none, 7539 preempt_dynamic_voluntary, 7540 preempt_dynamic_full, 7541 preempt_dynamic_lazy, 7542 }; 7543 7544 int preempt_dynamic_mode = preempt_dynamic_undefined; 7545 7546 int sched_dynamic_mode(const char *str) 7547 { 7548 # ifndef CONFIG_PREEMPT_RT 7549 if (!strcmp(str, "none")) 7550 return preempt_dynamic_none; 7551 7552 if (!strcmp(str, "voluntary")) 7553 return preempt_dynamic_voluntary; 7554 # endif 7555 7556 if (!strcmp(str, "full")) 7557 return preempt_dynamic_full; 7558 7559 # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7560 if (!strcmp(str, "lazy")) 7561 return preempt_dynamic_lazy; 7562 # endif 7563 7564 return -EINVAL; 7565 } 7566 7567 # define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7568 # define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7569 7570 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7571 # define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7572 # define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7573 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7574 # define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7575 # define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7576 # else 7577 # error "Unsupported PREEMPT_DYNAMIC mechanism" 7578 # endif 7579 7580 static DEFINE_MUTEX(sched_dynamic_mutex); 7581 7582 static void __sched_dynamic_update(int mode) 7583 { 7584 /* 7585 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7586 * the ZERO state, which is invalid. 7587 */ 7588 preempt_dynamic_enable(cond_resched); 7589 preempt_dynamic_enable(might_resched); 7590 preempt_dynamic_enable(preempt_schedule); 7591 preempt_dynamic_enable(preempt_schedule_notrace); 7592 preempt_dynamic_enable(irqentry_exit_cond_resched); 7593 preempt_dynamic_key_disable(preempt_lazy); 7594 7595 switch (mode) { 7596 case preempt_dynamic_none: 7597 preempt_dynamic_enable(cond_resched); 7598 preempt_dynamic_disable(might_resched); 7599 preempt_dynamic_disable(preempt_schedule); 7600 preempt_dynamic_disable(preempt_schedule_notrace); 7601 preempt_dynamic_disable(irqentry_exit_cond_resched); 7602 preempt_dynamic_key_disable(preempt_lazy); 7603 if (mode != preempt_dynamic_mode) 7604 pr_info("Dynamic Preempt: none\n"); 7605 break; 7606 7607 case preempt_dynamic_voluntary: 7608 preempt_dynamic_enable(cond_resched); 7609 preempt_dynamic_enable(might_resched); 7610 preempt_dynamic_disable(preempt_schedule); 7611 preempt_dynamic_disable(preempt_schedule_notrace); 7612 preempt_dynamic_disable(irqentry_exit_cond_resched); 7613 preempt_dynamic_key_disable(preempt_lazy); 7614 if (mode != preempt_dynamic_mode) 7615 pr_info("Dynamic Preempt: voluntary\n"); 7616 break; 7617 7618 case preempt_dynamic_full: 7619 preempt_dynamic_disable(cond_resched); 7620 preempt_dynamic_disable(might_resched); 7621 preempt_dynamic_enable(preempt_schedule); 7622 preempt_dynamic_enable(preempt_schedule_notrace); 7623 preempt_dynamic_enable(irqentry_exit_cond_resched); 7624 preempt_dynamic_key_disable(preempt_lazy); 7625 if (mode != preempt_dynamic_mode) 7626 pr_info("Dynamic Preempt: full\n"); 7627 break; 7628 7629 case preempt_dynamic_lazy: 7630 preempt_dynamic_disable(cond_resched); 7631 preempt_dynamic_disable(might_resched); 7632 preempt_dynamic_enable(preempt_schedule); 7633 preempt_dynamic_enable(preempt_schedule_notrace); 7634 preempt_dynamic_enable(irqentry_exit_cond_resched); 7635 preempt_dynamic_key_enable(preempt_lazy); 7636 if (mode != preempt_dynamic_mode) 7637 pr_info("Dynamic Preempt: lazy\n"); 7638 break; 7639 } 7640 7641 preempt_dynamic_mode = mode; 7642 } 7643 7644 void sched_dynamic_update(int mode) 7645 { 7646 mutex_lock(&sched_dynamic_mutex); 7647 __sched_dynamic_update(mode); 7648 mutex_unlock(&sched_dynamic_mutex); 7649 } 7650 7651 static int __init setup_preempt_mode(char *str) 7652 { 7653 int mode = sched_dynamic_mode(str); 7654 if (mode < 0) { 7655 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7656 return 0; 7657 } 7658 7659 sched_dynamic_update(mode); 7660 return 1; 7661 } 7662 __setup("preempt=", setup_preempt_mode); 7663 7664 static void __init preempt_dynamic_init(void) 7665 { 7666 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7667 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7668 sched_dynamic_update(preempt_dynamic_none); 7669 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7670 sched_dynamic_update(preempt_dynamic_voluntary); 7671 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7672 sched_dynamic_update(preempt_dynamic_lazy); 7673 } else { 7674 /* Default static call setting, nothing to do */ 7675 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7676 preempt_dynamic_mode = preempt_dynamic_full; 7677 pr_info("Dynamic Preempt: full\n"); 7678 } 7679 } 7680 } 7681 7682 # define PREEMPT_MODEL_ACCESSOR(mode) \ 7683 bool preempt_model_##mode(void) \ 7684 { \ 7685 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7686 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7687 } \ 7688 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7689 7690 PREEMPT_MODEL_ACCESSOR(none); 7691 PREEMPT_MODEL_ACCESSOR(voluntary); 7692 PREEMPT_MODEL_ACCESSOR(full); 7693 PREEMPT_MODEL_ACCESSOR(lazy); 7694 7695 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7696 7697 #define preempt_dynamic_mode -1 7698 7699 static inline void preempt_dynamic_init(void) { } 7700 7701 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7702 7703 const char *preempt_modes[] = { 7704 "none", "voluntary", "full", "lazy", NULL, 7705 }; 7706 7707 const char *preempt_model_str(void) 7708 { 7709 bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && 7710 (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || 7711 IS_ENABLED(CONFIG_PREEMPT_LAZY)); 7712 static char buf[128]; 7713 7714 if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { 7715 struct seq_buf s; 7716 7717 seq_buf_init(&s, buf, sizeof(buf)); 7718 seq_buf_puts(&s, "PREEMPT"); 7719 7720 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 7721 seq_buf_printf(&s, "%sRT%s", 7722 brace ? "_{" : "_", 7723 brace ? "," : ""); 7724 7725 if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { 7726 seq_buf_printf(&s, "(%s)%s", 7727 preempt_dynamic_mode >= 0 ? 7728 preempt_modes[preempt_dynamic_mode] : "undef", 7729 brace ? "}" : ""); 7730 return seq_buf_str(&s); 7731 } 7732 7733 if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7734 seq_buf_printf(&s, "LAZY%s", 7735 brace ? "}" : ""); 7736 return seq_buf_str(&s); 7737 } 7738 7739 return seq_buf_str(&s); 7740 } 7741 7742 if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) 7743 return "VOLUNTARY"; 7744 7745 return "NONE"; 7746 } 7747 7748 int io_schedule_prepare(void) 7749 { 7750 int old_iowait = current->in_iowait; 7751 7752 current->in_iowait = 1; 7753 blk_flush_plug(current->plug, true); 7754 return old_iowait; 7755 } 7756 7757 void io_schedule_finish(int token) 7758 { 7759 current->in_iowait = token; 7760 } 7761 7762 /* 7763 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7764 * that process accounting knows that this is a task in IO wait state. 7765 */ 7766 long __sched io_schedule_timeout(long timeout) 7767 { 7768 int token; 7769 long ret; 7770 7771 token = io_schedule_prepare(); 7772 ret = schedule_timeout(timeout); 7773 io_schedule_finish(token); 7774 7775 return ret; 7776 } 7777 EXPORT_SYMBOL(io_schedule_timeout); 7778 7779 void __sched io_schedule(void) 7780 { 7781 int token; 7782 7783 token = io_schedule_prepare(); 7784 schedule(); 7785 io_schedule_finish(token); 7786 } 7787 EXPORT_SYMBOL(io_schedule); 7788 7789 void sched_show_task(struct task_struct *p) 7790 { 7791 unsigned long free; 7792 int ppid; 7793 7794 if (!try_get_task_stack(p)) 7795 return; 7796 7797 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7798 7799 if (task_is_running(p)) 7800 pr_cont(" running task "); 7801 free = stack_not_used(p); 7802 ppid = 0; 7803 rcu_read_lock(); 7804 if (pid_alive(p)) 7805 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7806 rcu_read_unlock(); 7807 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", 7808 free, task_pid_nr(p), task_tgid_nr(p), 7809 ppid, p->flags, read_task_thread_flags(p)); 7810 7811 print_worker_info(KERN_INFO, p); 7812 print_stop_info(KERN_INFO, p); 7813 print_scx_info(KERN_INFO, p); 7814 show_stack(p, NULL, KERN_INFO); 7815 put_task_stack(p); 7816 } 7817 EXPORT_SYMBOL_GPL(sched_show_task); 7818 7819 static inline bool 7820 state_filter_match(unsigned long state_filter, struct task_struct *p) 7821 { 7822 unsigned int state = READ_ONCE(p->__state); 7823 7824 /* no filter, everything matches */ 7825 if (!state_filter) 7826 return true; 7827 7828 /* filter, but doesn't match */ 7829 if (!(state & state_filter)) 7830 return false; 7831 7832 /* 7833 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7834 * TASK_KILLABLE). 7835 */ 7836 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7837 return false; 7838 7839 return true; 7840 } 7841 7842 7843 void show_state_filter(unsigned int state_filter) 7844 { 7845 struct task_struct *g, *p; 7846 7847 rcu_read_lock(); 7848 for_each_process_thread(g, p) { 7849 /* 7850 * reset the NMI-timeout, listing all files on a slow 7851 * console might take a lot of time: 7852 * Also, reset softlockup watchdogs on all CPUs, because 7853 * another CPU might be blocked waiting for us to process 7854 * an IPI. 7855 */ 7856 touch_nmi_watchdog(); 7857 touch_all_softlockup_watchdogs(); 7858 if (state_filter_match(state_filter, p)) 7859 sched_show_task(p); 7860 } 7861 7862 if (!state_filter) 7863 sysrq_sched_debug_show(); 7864 7865 rcu_read_unlock(); 7866 /* 7867 * Only show locks if all tasks are dumped: 7868 */ 7869 if (!state_filter) 7870 debug_show_all_locks(); 7871 } 7872 7873 /** 7874 * init_idle - set up an idle thread for a given CPU 7875 * @idle: task in question 7876 * @cpu: CPU the idle task belongs to 7877 * 7878 * NOTE: this function does not set the idle thread's NEED_RESCHED 7879 * flag, to make booting more robust. 7880 */ 7881 void __init init_idle(struct task_struct *idle, int cpu) 7882 { 7883 struct affinity_context ac = (struct affinity_context) { 7884 .new_mask = cpumask_of(cpu), 7885 .flags = 0, 7886 }; 7887 struct rq *rq = cpu_rq(cpu); 7888 unsigned long flags; 7889 7890 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7891 raw_spin_rq_lock(rq); 7892 7893 idle->__state = TASK_RUNNING; 7894 idle->se.exec_start = sched_clock(); 7895 /* 7896 * PF_KTHREAD should already be set at this point; regardless, make it 7897 * look like a proper per-CPU kthread. 7898 */ 7899 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7900 kthread_set_per_cpu(idle, cpu); 7901 7902 /* 7903 * No validation and serialization required at boot time and for 7904 * setting up the idle tasks of not yet online CPUs. 7905 */ 7906 set_cpus_allowed_common(idle, &ac); 7907 /* 7908 * We're having a chicken and egg problem, even though we are 7909 * holding rq->lock, the CPU isn't yet set to this CPU so the 7910 * lockdep check in task_group() will fail. 7911 * 7912 * Similar case to sched_fork(). / Alternatively we could 7913 * use task_rq_lock() here and obtain the other rq->lock. 7914 * 7915 * Silence PROVE_RCU 7916 */ 7917 rcu_read_lock(); 7918 __set_task_cpu(idle, cpu); 7919 rcu_read_unlock(); 7920 7921 rq->idle = idle; 7922 rq_set_donor(rq, idle); 7923 rcu_assign_pointer(rq->curr, idle); 7924 idle->on_rq = TASK_ON_RQ_QUEUED; 7925 idle->on_cpu = 1; 7926 raw_spin_rq_unlock(rq); 7927 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7928 7929 /* Set the preempt count _outside_ the spinlocks! */ 7930 init_idle_preempt_count(idle, cpu); 7931 7932 /* 7933 * The idle tasks have their own, simple scheduling class: 7934 */ 7935 idle->sched_class = &idle_sched_class; 7936 ftrace_graph_init_idle_task(idle, cpu); 7937 vtime_init_idle(idle, cpu); 7938 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7939 } 7940 7941 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7942 const struct cpumask *trial) 7943 { 7944 int ret = 1; 7945 7946 if (cpumask_empty(cur)) 7947 return ret; 7948 7949 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7950 7951 return ret; 7952 } 7953 7954 int task_can_attach(struct task_struct *p) 7955 { 7956 int ret = 0; 7957 7958 /* 7959 * Kthreads which disallow setaffinity shouldn't be moved 7960 * to a new cpuset; we don't want to change their CPU 7961 * affinity and isolating such threads by their set of 7962 * allowed nodes is unnecessary. Thus, cpusets are not 7963 * applicable for such threads. This prevents checking for 7964 * success of set_cpus_allowed_ptr() on all attached tasks 7965 * before cpus_mask may be changed. 7966 */ 7967 if (p->flags & PF_NO_SETAFFINITY) 7968 ret = -EINVAL; 7969 7970 return ret; 7971 } 7972 7973 bool sched_smp_initialized __read_mostly; 7974 7975 #ifdef CONFIG_NUMA_BALANCING 7976 /* Migrate current task p to target_cpu */ 7977 int migrate_task_to(struct task_struct *p, int target_cpu) 7978 { 7979 struct migration_arg arg = { p, target_cpu }; 7980 int curr_cpu = task_cpu(p); 7981 7982 if (curr_cpu == target_cpu) 7983 return 0; 7984 7985 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7986 return -EINVAL; 7987 7988 /* TODO: This is not properly updating schedstats */ 7989 7990 trace_sched_move_numa(p, curr_cpu, target_cpu); 7991 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7992 } 7993 7994 /* 7995 * Requeue a task on a given node and accurately track the number of NUMA 7996 * tasks on the runqueues 7997 */ 7998 void sched_setnuma(struct task_struct *p, int nid) 7999 { 8000 guard(task_rq_lock)(p); 8001 scoped_guard (sched_change, p, DEQUEUE_SAVE) 8002 p->numa_preferred_nid = nid; 8003 } 8004 #endif /* CONFIG_NUMA_BALANCING */ 8005 8006 #ifdef CONFIG_HOTPLUG_CPU 8007 /* 8008 * Invoked on the outgoing CPU in context of the CPU hotplug thread 8009 * after ensuring that there are no user space tasks left on the CPU. 8010 * 8011 * If there is a lazy mm in use on the hotplug thread, drop it and 8012 * switch to init_mm. 8013 * 8014 * The reference count on init_mm is dropped in finish_cpu(). 8015 */ 8016 static void sched_force_init_mm(void) 8017 { 8018 struct mm_struct *mm = current->active_mm; 8019 8020 if (mm != &init_mm) { 8021 mmgrab_lazy_tlb(&init_mm); 8022 local_irq_disable(); 8023 current->active_mm = &init_mm; 8024 switch_mm_irqs_off(mm, &init_mm, current); 8025 local_irq_enable(); 8026 finish_arch_post_lock_switch(); 8027 mmdrop_lazy_tlb(mm); 8028 } 8029 8030 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8031 } 8032 8033 static int __balance_push_cpu_stop(void *arg) 8034 { 8035 struct task_struct *p = arg; 8036 struct rq *rq = this_rq(); 8037 struct rq_flags rf; 8038 int cpu; 8039 8040 scoped_guard (raw_spinlock_irq, &p->pi_lock) { 8041 cpu = select_fallback_rq(rq->cpu, p); 8042 8043 rq_lock(rq, &rf); 8044 update_rq_clock(rq); 8045 if (task_rq(p) == rq && task_on_rq_queued(p)) 8046 rq = __migrate_task(rq, &rf, p, cpu); 8047 rq_unlock(rq, &rf); 8048 } 8049 8050 put_task_struct(p); 8051 8052 return 0; 8053 } 8054 8055 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8056 8057 /* 8058 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8059 * 8060 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8061 * effective when the hotplug motion is down. 8062 */ 8063 static void balance_push(struct rq *rq) 8064 { 8065 struct task_struct *push_task = rq->curr; 8066 8067 lockdep_assert_rq_held(rq); 8068 8069 /* 8070 * Ensure the thing is persistent until balance_push_set(.on = false); 8071 */ 8072 rq->balance_callback = &balance_push_callback; 8073 8074 /* 8075 * Only active while going offline and when invoked on the outgoing 8076 * CPU. 8077 */ 8078 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8079 return; 8080 8081 /* 8082 * Both the cpu-hotplug and stop task are in this case and are 8083 * required to complete the hotplug process. 8084 */ 8085 if (kthread_is_per_cpu(push_task) || 8086 is_migration_disabled(push_task)) { 8087 8088 /* 8089 * If this is the idle task on the outgoing CPU try to wake 8090 * up the hotplug control thread which might wait for the 8091 * last task to vanish. The rcuwait_active() check is 8092 * accurate here because the waiter is pinned on this CPU 8093 * and can't obviously be running in parallel. 8094 * 8095 * On RT kernels this also has to check whether there are 8096 * pinned and scheduled out tasks on the runqueue. They 8097 * need to leave the migrate disabled section first. 8098 */ 8099 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8100 rcuwait_active(&rq->hotplug_wait)) { 8101 raw_spin_rq_unlock(rq); 8102 rcuwait_wake_up(&rq->hotplug_wait); 8103 raw_spin_rq_lock(rq); 8104 } 8105 return; 8106 } 8107 8108 get_task_struct(push_task); 8109 /* 8110 * Temporarily drop rq->lock such that we can wake-up the stop task. 8111 * Both preemption and IRQs are still disabled. 8112 */ 8113 preempt_disable(); 8114 raw_spin_rq_unlock(rq); 8115 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8116 this_cpu_ptr(&push_work)); 8117 preempt_enable(); 8118 /* 8119 * At this point need_resched() is true and we'll take the loop in 8120 * schedule(). The next pick is obviously going to be the stop task 8121 * which kthread_is_per_cpu() and will push this task away. 8122 */ 8123 raw_spin_rq_lock(rq); 8124 } 8125 8126 static void balance_push_set(int cpu, bool on) 8127 { 8128 struct rq *rq = cpu_rq(cpu); 8129 struct rq_flags rf; 8130 8131 rq_lock_irqsave(rq, &rf); 8132 if (on) { 8133 WARN_ON_ONCE(rq->balance_callback); 8134 rq->balance_callback = &balance_push_callback; 8135 } else if (rq->balance_callback == &balance_push_callback) { 8136 rq->balance_callback = NULL; 8137 } 8138 rq_unlock_irqrestore(rq, &rf); 8139 } 8140 8141 /* 8142 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8143 * inactive. All tasks which are not per CPU kernel threads are either 8144 * pushed off this CPU now via balance_push() or placed on a different CPU 8145 * during wakeup. Wait until the CPU is quiescent. 8146 */ 8147 static void balance_hotplug_wait(void) 8148 { 8149 struct rq *rq = this_rq(); 8150 8151 rcuwait_wait_event(&rq->hotplug_wait, 8152 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8153 TASK_UNINTERRUPTIBLE); 8154 } 8155 8156 #else /* !CONFIG_HOTPLUG_CPU: */ 8157 8158 static inline void balance_push(struct rq *rq) 8159 { 8160 } 8161 8162 static inline void balance_push_set(int cpu, bool on) 8163 { 8164 } 8165 8166 static inline void balance_hotplug_wait(void) 8167 { 8168 } 8169 8170 #endif /* !CONFIG_HOTPLUG_CPU */ 8171 8172 void set_rq_online(struct rq *rq) 8173 { 8174 if (!rq->online) { 8175 const struct sched_class *class; 8176 8177 cpumask_set_cpu(rq->cpu, rq->rd->online); 8178 rq->online = 1; 8179 8180 for_each_class(class) { 8181 if (class->rq_online) 8182 class->rq_online(rq); 8183 } 8184 } 8185 } 8186 8187 void set_rq_offline(struct rq *rq) 8188 { 8189 if (rq->online) { 8190 const struct sched_class *class; 8191 8192 update_rq_clock(rq); 8193 for_each_class(class) { 8194 if (class->rq_offline) 8195 class->rq_offline(rq); 8196 } 8197 8198 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8199 rq->online = 0; 8200 } 8201 } 8202 8203 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8204 { 8205 struct rq_flags rf; 8206 8207 rq_lock_irqsave(rq, &rf); 8208 if (rq->rd) { 8209 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8210 set_rq_online(rq); 8211 } 8212 rq_unlock_irqrestore(rq, &rf); 8213 } 8214 8215 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8216 { 8217 struct rq_flags rf; 8218 8219 rq_lock_irqsave(rq, &rf); 8220 if (rq->rd) { 8221 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8222 set_rq_offline(rq); 8223 } 8224 rq_unlock_irqrestore(rq, &rf); 8225 } 8226 8227 /* 8228 * used to mark begin/end of suspend/resume: 8229 */ 8230 static int num_cpus_frozen; 8231 8232 /* 8233 * Update cpusets according to cpu_active mask. If cpusets are 8234 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8235 * around partition_sched_domains(). 8236 * 8237 * If we come here as part of a suspend/resume, don't touch cpusets because we 8238 * want to restore it back to its original state upon resume anyway. 8239 */ 8240 static void cpuset_cpu_active(void) 8241 { 8242 if (cpuhp_tasks_frozen) { 8243 /* 8244 * num_cpus_frozen tracks how many CPUs are involved in suspend 8245 * resume sequence. As long as this is not the last online 8246 * operation in the resume sequence, just build a single sched 8247 * domain, ignoring cpusets. 8248 */ 8249 cpuset_reset_sched_domains(); 8250 if (--num_cpus_frozen) 8251 return; 8252 /* 8253 * This is the last CPU online operation. So fall through and 8254 * restore the original sched domains by considering the 8255 * cpuset configurations. 8256 */ 8257 cpuset_force_rebuild(); 8258 } 8259 cpuset_update_active_cpus(); 8260 } 8261 8262 static void cpuset_cpu_inactive(unsigned int cpu) 8263 { 8264 if (!cpuhp_tasks_frozen) { 8265 cpuset_update_active_cpus(); 8266 } else { 8267 num_cpus_frozen++; 8268 cpuset_reset_sched_domains(); 8269 } 8270 } 8271 8272 static inline void sched_smt_present_inc(int cpu) 8273 { 8274 #ifdef CONFIG_SCHED_SMT 8275 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8276 static_branch_inc_cpuslocked(&sched_smt_present); 8277 #endif 8278 } 8279 8280 static inline void sched_smt_present_dec(int cpu) 8281 { 8282 #ifdef CONFIG_SCHED_SMT 8283 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8284 static_branch_dec_cpuslocked(&sched_smt_present); 8285 #endif 8286 } 8287 8288 int sched_cpu_activate(unsigned int cpu) 8289 { 8290 struct rq *rq = cpu_rq(cpu); 8291 8292 /* 8293 * Clear the balance_push callback and prepare to schedule 8294 * regular tasks. 8295 */ 8296 balance_push_set(cpu, false); 8297 8298 /* 8299 * When going up, increment the number of cores with SMT present. 8300 */ 8301 sched_smt_present_inc(cpu); 8302 set_cpu_active(cpu, true); 8303 8304 if (sched_smp_initialized) { 8305 sched_update_numa(cpu, true); 8306 sched_domains_numa_masks_set(cpu); 8307 cpuset_cpu_active(); 8308 } 8309 8310 scx_rq_activate(rq); 8311 8312 /* 8313 * Put the rq online, if not already. This happens: 8314 * 8315 * 1) In the early boot process, because we build the real domains 8316 * after all CPUs have been brought up. 8317 * 8318 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8319 * domains. 8320 */ 8321 sched_set_rq_online(rq, cpu); 8322 8323 return 0; 8324 } 8325 8326 int sched_cpu_deactivate(unsigned int cpu) 8327 { 8328 struct rq *rq = cpu_rq(cpu); 8329 int ret; 8330 8331 ret = dl_bw_deactivate(cpu); 8332 8333 if (ret) 8334 return ret; 8335 8336 /* 8337 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8338 * load balancing when not active 8339 */ 8340 nohz_balance_exit_idle(rq); 8341 8342 set_cpu_active(cpu, false); 8343 8344 /* 8345 * From this point forward, this CPU will refuse to run any task that 8346 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8347 * push those tasks away until this gets cleared, see 8348 * sched_cpu_dying(). 8349 */ 8350 balance_push_set(cpu, true); 8351 8352 /* 8353 * We've cleared cpu_active_mask / set balance_push, wait for all 8354 * preempt-disabled and RCU users of this state to go away such that 8355 * all new such users will observe it. 8356 * 8357 * Specifically, we rely on ttwu to no longer target this CPU, see 8358 * ttwu_queue_cond() and is_cpu_allowed(). 8359 * 8360 * Do sync before park smpboot threads to take care the RCU boost case. 8361 */ 8362 synchronize_rcu(); 8363 8364 sched_set_rq_offline(rq, cpu); 8365 8366 scx_rq_deactivate(rq); 8367 8368 /* 8369 * When going down, decrement the number of cores with SMT present. 8370 */ 8371 sched_smt_present_dec(cpu); 8372 8373 #ifdef CONFIG_SCHED_SMT 8374 sched_core_cpu_deactivate(cpu); 8375 #endif 8376 8377 if (!sched_smp_initialized) 8378 return 0; 8379 8380 sched_update_numa(cpu, false); 8381 cpuset_cpu_inactive(cpu); 8382 sched_domains_numa_masks_clear(cpu); 8383 return 0; 8384 } 8385 8386 static void sched_rq_cpu_starting(unsigned int cpu) 8387 { 8388 struct rq *rq = cpu_rq(cpu); 8389 8390 rq->calc_load_update = calc_load_update; 8391 update_max_interval(); 8392 } 8393 8394 int sched_cpu_starting(unsigned int cpu) 8395 { 8396 sched_core_cpu_starting(cpu); 8397 sched_rq_cpu_starting(cpu); 8398 sched_tick_start(cpu); 8399 return 0; 8400 } 8401 8402 #ifdef CONFIG_HOTPLUG_CPU 8403 8404 /* 8405 * Invoked immediately before the stopper thread is invoked to bring the 8406 * CPU down completely. At this point all per CPU kthreads except the 8407 * hotplug thread (current) and the stopper thread (inactive) have been 8408 * either parked or have been unbound from the outgoing CPU. Ensure that 8409 * any of those which might be on the way out are gone. 8410 * 8411 * If after this point a bound task is being woken on this CPU then the 8412 * responsible hotplug callback has failed to do it's job. 8413 * sched_cpu_dying() will catch it with the appropriate fireworks. 8414 */ 8415 int sched_cpu_wait_empty(unsigned int cpu) 8416 { 8417 balance_hotplug_wait(); 8418 sched_force_init_mm(); 8419 return 0; 8420 } 8421 8422 /* 8423 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8424 * might have. Called from the CPU stopper task after ensuring that the 8425 * stopper is the last running task on the CPU, so nr_active count is 8426 * stable. We need to take the tear-down thread which is calling this into 8427 * account, so we hand in adjust = 1 to the load calculation. 8428 * 8429 * Also see the comment "Global load-average calculations". 8430 */ 8431 static void calc_load_migrate(struct rq *rq) 8432 { 8433 long delta = calc_load_fold_active(rq, 1); 8434 8435 if (delta) 8436 atomic_long_add(delta, &calc_load_tasks); 8437 } 8438 8439 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8440 { 8441 struct task_struct *g, *p; 8442 int cpu = cpu_of(rq); 8443 8444 lockdep_assert_rq_held(rq); 8445 8446 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8447 for_each_process_thread(g, p) { 8448 if (task_cpu(p) != cpu) 8449 continue; 8450 8451 if (!task_on_rq_queued(p)) 8452 continue; 8453 8454 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8455 } 8456 } 8457 8458 int sched_cpu_dying(unsigned int cpu) 8459 { 8460 struct rq *rq = cpu_rq(cpu); 8461 struct rq_flags rf; 8462 8463 /* Handle pending wakeups and then migrate everything off */ 8464 sched_tick_stop(cpu); 8465 8466 rq_lock_irqsave(rq, &rf); 8467 update_rq_clock(rq); 8468 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8469 WARN(true, "Dying CPU not properly vacated!"); 8470 dump_rq_tasks(rq, KERN_WARNING); 8471 } 8472 dl_server_stop(&rq->fair_server); 8473 rq_unlock_irqrestore(rq, &rf); 8474 8475 calc_load_migrate(rq); 8476 update_max_interval(); 8477 hrtick_clear(rq); 8478 sched_core_cpu_dying(cpu); 8479 return 0; 8480 } 8481 #endif /* CONFIG_HOTPLUG_CPU */ 8482 8483 void __init sched_init_smp(void) 8484 { 8485 sched_init_numa(NUMA_NO_NODE); 8486 8487 prandom_init_once(&sched_rnd_state); 8488 8489 /* 8490 * There's no userspace yet to cause hotplug operations; hence all the 8491 * CPU masks are stable and all blatant races in the below code cannot 8492 * happen. 8493 */ 8494 sched_domains_mutex_lock(); 8495 sched_init_domains(cpu_active_mask); 8496 sched_domains_mutex_unlock(); 8497 8498 /* Move init over to a non-isolated CPU */ 8499 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8500 BUG(); 8501 current->flags &= ~PF_NO_SETAFFINITY; 8502 sched_init_granularity(); 8503 8504 init_sched_rt_class(); 8505 init_sched_dl_class(); 8506 8507 sched_init_dl_servers(); 8508 8509 sched_smp_initialized = true; 8510 } 8511 8512 static int __init migration_init(void) 8513 { 8514 sched_cpu_starting(smp_processor_id()); 8515 return 0; 8516 } 8517 early_initcall(migration_init); 8518 8519 int in_sched_functions(unsigned long addr) 8520 { 8521 return in_lock_functions(addr) || 8522 (addr >= (unsigned long)__sched_text_start 8523 && addr < (unsigned long)__sched_text_end); 8524 } 8525 8526 #ifdef CONFIG_CGROUP_SCHED 8527 /* 8528 * Default task group. 8529 * Every task in system belongs to this group at bootup. 8530 */ 8531 struct task_group root_task_group; 8532 LIST_HEAD(task_groups); 8533 8534 /* Cacheline aligned slab cache for task_group */ 8535 static struct kmem_cache *task_group_cache __ro_after_init; 8536 #endif 8537 8538 void __init sched_init(void) 8539 { 8540 unsigned long ptr = 0; 8541 int i; 8542 8543 /* Make sure the linker didn't screw up */ 8544 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8545 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8546 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8547 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8548 #ifdef CONFIG_SCHED_CLASS_EXT 8549 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8550 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8551 #endif 8552 8553 wait_bit_init(); 8554 8555 #ifdef CONFIG_FAIR_GROUP_SCHED 8556 ptr += 2 * nr_cpu_ids * sizeof(void **); 8557 #endif 8558 #ifdef CONFIG_RT_GROUP_SCHED 8559 ptr += 2 * nr_cpu_ids * sizeof(void **); 8560 #endif 8561 if (ptr) { 8562 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8563 8564 #ifdef CONFIG_FAIR_GROUP_SCHED 8565 root_task_group.se = (struct sched_entity **)ptr; 8566 ptr += nr_cpu_ids * sizeof(void **); 8567 8568 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8569 ptr += nr_cpu_ids * sizeof(void **); 8570 8571 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8572 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8573 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8574 #ifdef CONFIG_EXT_GROUP_SCHED 8575 scx_tg_init(&root_task_group); 8576 #endif /* CONFIG_EXT_GROUP_SCHED */ 8577 #ifdef CONFIG_RT_GROUP_SCHED 8578 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8579 ptr += nr_cpu_ids * sizeof(void **); 8580 8581 root_task_group.rt_rq = (struct rt_rq **)ptr; 8582 ptr += nr_cpu_ids * sizeof(void **); 8583 8584 #endif /* CONFIG_RT_GROUP_SCHED */ 8585 } 8586 8587 init_defrootdomain(); 8588 8589 #ifdef CONFIG_RT_GROUP_SCHED 8590 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8591 global_rt_period(), global_rt_runtime()); 8592 #endif /* CONFIG_RT_GROUP_SCHED */ 8593 8594 #ifdef CONFIG_CGROUP_SCHED 8595 task_group_cache = KMEM_CACHE(task_group, 0); 8596 8597 list_add(&root_task_group.list, &task_groups); 8598 INIT_LIST_HEAD(&root_task_group.children); 8599 INIT_LIST_HEAD(&root_task_group.siblings); 8600 autogroup_init(&init_task); 8601 #endif /* CONFIG_CGROUP_SCHED */ 8602 8603 for_each_possible_cpu(i) { 8604 struct rq *rq; 8605 8606 rq = cpu_rq(i); 8607 raw_spin_lock_init(&rq->__lock); 8608 rq->nr_running = 0; 8609 rq->calc_load_active = 0; 8610 rq->calc_load_update = jiffies + LOAD_FREQ; 8611 init_cfs_rq(&rq->cfs); 8612 init_rt_rq(&rq->rt); 8613 init_dl_rq(&rq->dl); 8614 #ifdef CONFIG_FAIR_GROUP_SCHED 8615 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8616 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8617 /* 8618 * How much CPU bandwidth does root_task_group get? 8619 * 8620 * In case of task-groups formed through the cgroup filesystem, it 8621 * gets 100% of the CPU resources in the system. This overall 8622 * system CPU resource is divided among the tasks of 8623 * root_task_group and its child task-groups in a fair manner, 8624 * based on each entity's (task or task-group's) weight 8625 * (se->load.weight). 8626 * 8627 * In other words, if root_task_group has 10 tasks of weight 8628 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8629 * then A0's share of the CPU resource is: 8630 * 8631 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8632 * 8633 * We achieve this by letting root_task_group's tasks sit 8634 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8635 */ 8636 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8637 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8638 8639 #ifdef CONFIG_RT_GROUP_SCHED 8640 /* 8641 * This is required for init cpu because rt.c:__enable_runtime() 8642 * starts working after scheduler_running, which is not the case 8643 * yet. 8644 */ 8645 rq->rt.rt_runtime = global_rt_runtime(); 8646 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8647 #endif 8648 rq->sd = NULL; 8649 rq->rd = NULL; 8650 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8651 rq->balance_callback = &balance_push_callback; 8652 rq->active_balance = 0; 8653 rq->next_balance = jiffies; 8654 rq->push_cpu = 0; 8655 rq->cpu = i; 8656 rq->online = 0; 8657 rq->idle_stamp = 0; 8658 rq->avg_idle = 2*sysctl_sched_migration_cost; 8659 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8660 8661 INIT_LIST_HEAD(&rq->cfs_tasks); 8662 8663 rq_attach_root(rq, &def_root_domain); 8664 #ifdef CONFIG_NO_HZ_COMMON 8665 rq->last_blocked_load_update_tick = jiffies; 8666 atomic_set(&rq->nohz_flags, 0); 8667 8668 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8669 #endif 8670 #ifdef CONFIG_HOTPLUG_CPU 8671 rcuwait_init(&rq->hotplug_wait); 8672 #endif 8673 hrtick_rq_init(rq); 8674 atomic_set(&rq->nr_iowait, 0); 8675 fair_server_init(rq); 8676 8677 #ifdef CONFIG_SCHED_CORE 8678 rq->core = rq; 8679 rq->core_pick = NULL; 8680 rq->core_dl_server = NULL; 8681 rq->core_enabled = 0; 8682 rq->core_tree = RB_ROOT; 8683 rq->core_forceidle_count = 0; 8684 rq->core_forceidle_occupation = 0; 8685 rq->core_forceidle_start = 0; 8686 8687 rq->core_cookie = 0UL; 8688 #endif 8689 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8690 } 8691 8692 set_load_weight(&init_task, false); 8693 init_task.se.slice = sysctl_sched_base_slice, 8694 8695 /* 8696 * The boot idle thread does lazy MMU switching as well: 8697 */ 8698 mmgrab_lazy_tlb(&init_mm); 8699 enter_lazy_tlb(&init_mm, current); 8700 8701 /* 8702 * The idle task doesn't need the kthread struct to function, but it 8703 * is dressed up as a per-CPU kthread and thus needs to play the part 8704 * if we want to avoid special-casing it in code that deals with per-CPU 8705 * kthreads. 8706 */ 8707 WARN_ON(!set_kthread_struct(current)); 8708 8709 /* 8710 * Make us the idle thread. Technically, schedule() should not be 8711 * called from this thread, however somewhere below it might be, 8712 * but because we are the idle thread, we just pick up running again 8713 * when this runqueue becomes "idle". 8714 */ 8715 __sched_fork(0, current); 8716 init_idle(current, smp_processor_id()); 8717 8718 calc_load_update = jiffies + LOAD_FREQ; 8719 8720 idle_thread_set_boot_cpu(); 8721 8722 balance_push_set(smp_processor_id(), false); 8723 init_sched_fair_class(); 8724 init_sched_ext_class(); 8725 8726 psi_init(); 8727 8728 init_uclamp(); 8729 8730 preempt_dynamic_init(); 8731 8732 scheduler_running = 1; 8733 } 8734 8735 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8736 8737 void __might_sleep(const char *file, int line) 8738 { 8739 unsigned int state = get_current_state(); 8740 /* 8741 * Blocking primitives will set (and therefore destroy) current->state, 8742 * since we will exit with TASK_RUNNING make sure we enter with it, 8743 * otherwise we will destroy state. 8744 */ 8745 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8746 "do not call blocking ops when !TASK_RUNNING; " 8747 "state=%x set at [<%p>] %pS\n", state, 8748 (void *)current->task_state_change, 8749 (void *)current->task_state_change); 8750 8751 __might_resched(file, line, 0); 8752 } 8753 EXPORT_SYMBOL(__might_sleep); 8754 8755 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8756 { 8757 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8758 return; 8759 8760 if (preempt_count() == preempt_offset) 8761 return; 8762 8763 pr_err("Preemption disabled at:"); 8764 print_ip_sym(KERN_ERR, ip); 8765 } 8766 8767 static inline bool resched_offsets_ok(unsigned int offsets) 8768 { 8769 unsigned int nested = preempt_count(); 8770 8771 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8772 8773 return nested == offsets; 8774 } 8775 8776 void __might_resched(const char *file, int line, unsigned int offsets) 8777 { 8778 /* Ratelimiting timestamp: */ 8779 static unsigned long prev_jiffy; 8780 8781 unsigned long preempt_disable_ip; 8782 8783 /* WARN_ON_ONCE() by default, no rate limit required: */ 8784 rcu_sleep_check(); 8785 8786 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8787 !is_idle_task(current) && !current->non_block_count) || 8788 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8789 oops_in_progress) 8790 return; 8791 8792 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8793 return; 8794 prev_jiffy = jiffies; 8795 8796 /* Save this before calling printk(), since that will clobber it: */ 8797 preempt_disable_ip = get_preempt_disable_ip(current); 8798 8799 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8800 file, line); 8801 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8802 in_atomic(), irqs_disabled(), current->non_block_count, 8803 current->pid, current->comm); 8804 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8805 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8806 8807 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8808 pr_err("RCU nest depth: %d, expected: %u\n", 8809 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8810 } 8811 8812 if (task_stack_end_corrupted(current)) 8813 pr_emerg("Thread overran stack, or stack corrupted\n"); 8814 8815 debug_show_held_locks(current); 8816 if (irqs_disabled()) 8817 print_irqtrace_events(current); 8818 8819 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8820 preempt_disable_ip); 8821 8822 dump_stack(); 8823 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8824 } 8825 EXPORT_SYMBOL(__might_resched); 8826 8827 void __cant_sleep(const char *file, int line, int preempt_offset) 8828 { 8829 static unsigned long prev_jiffy; 8830 8831 if (irqs_disabled()) 8832 return; 8833 8834 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8835 return; 8836 8837 if (preempt_count() > preempt_offset) 8838 return; 8839 8840 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8841 return; 8842 prev_jiffy = jiffies; 8843 8844 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8845 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8846 in_atomic(), irqs_disabled(), 8847 current->pid, current->comm); 8848 8849 debug_show_held_locks(current); 8850 dump_stack(); 8851 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8852 } 8853 EXPORT_SYMBOL_GPL(__cant_sleep); 8854 8855 # ifdef CONFIG_SMP 8856 void __cant_migrate(const char *file, int line) 8857 { 8858 static unsigned long prev_jiffy; 8859 8860 if (irqs_disabled()) 8861 return; 8862 8863 if (is_migration_disabled(current)) 8864 return; 8865 8866 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8867 return; 8868 8869 if (preempt_count() > 0) 8870 return; 8871 8872 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8873 return; 8874 prev_jiffy = jiffies; 8875 8876 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8877 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8878 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8879 current->pid, current->comm); 8880 8881 debug_show_held_locks(current); 8882 dump_stack(); 8883 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8884 } 8885 EXPORT_SYMBOL_GPL(__cant_migrate); 8886 # endif /* CONFIG_SMP */ 8887 #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */ 8888 8889 #ifdef CONFIG_MAGIC_SYSRQ 8890 void normalize_rt_tasks(void) 8891 { 8892 struct task_struct *g, *p; 8893 struct sched_attr attr = { 8894 .sched_policy = SCHED_NORMAL, 8895 }; 8896 8897 read_lock(&tasklist_lock); 8898 for_each_process_thread(g, p) { 8899 /* 8900 * Only normalize user tasks: 8901 */ 8902 if (p->flags & PF_KTHREAD) 8903 continue; 8904 8905 p->se.exec_start = 0; 8906 schedstat_set(p->stats.wait_start, 0); 8907 schedstat_set(p->stats.sleep_start, 0); 8908 schedstat_set(p->stats.block_start, 0); 8909 8910 if (!rt_or_dl_task(p)) { 8911 /* 8912 * Renice negative nice level userspace 8913 * tasks back to 0: 8914 */ 8915 if (task_nice(p) < 0) 8916 set_user_nice(p, 0); 8917 continue; 8918 } 8919 8920 __sched_setscheduler(p, &attr, false, false); 8921 } 8922 read_unlock(&tasklist_lock); 8923 } 8924 8925 #endif /* CONFIG_MAGIC_SYSRQ */ 8926 8927 #ifdef CONFIG_KGDB_KDB 8928 /* 8929 * These functions are only useful for KDB. 8930 * 8931 * They can only be called when the whole system has been 8932 * stopped - every CPU needs to be quiescent, and no scheduling 8933 * activity can take place. Using them for anything else would 8934 * be a serious bug, and as a result, they aren't even visible 8935 * under any other configuration. 8936 */ 8937 8938 /** 8939 * curr_task - return the current task for a given CPU. 8940 * @cpu: the processor in question. 8941 * 8942 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8943 * 8944 * Return: The current task for @cpu. 8945 */ 8946 struct task_struct *curr_task(int cpu) 8947 { 8948 return cpu_curr(cpu); 8949 } 8950 8951 #endif /* CONFIG_KGDB_KDB */ 8952 8953 #ifdef CONFIG_CGROUP_SCHED 8954 /* task_group_lock serializes the addition/removal of task groups */ 8955 static DEFINE_SPINLOCK(task_group_lock); 8956 8957 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8958 struct task_group *parent) 8959 { 8960 #ifdef CONFIG_UCLAMP_TASK_GROUP 8961 enum uclamp_id clamp_id; 8962 8963 for_each_clamp_id(clamp_id) { 8964 uclamp_se_set(&tg->uclamp_req[clamp_id], 8965 uclamp_none(clamp_id), false); 8966 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8967 } 8968 #endif 8969 } 8970 8971 static void sched_free_group(struct task_group *tg) 8972 { 8973 free_fair_sched_group(tg); 8974 free_rt_sched_group(tg); 8975 autogroup_free(tg); 8976 kmem_cache_free(task_group_cache, tg); 8977 } 8978 8979 static void sched_free_group_rcu(struct rcu_head *rcu) 8980 { 8981 sched_free_group(container_of(rcu, struct task_group, rcu)); 8982 } 8983 8984 static void sched_unregister_group(struct task_group *tg) 8985 { 8986 unregister_fair_sched_group(tg); 8987 unregister_rt_sched_group(tg); 8988 /* 8989 * We have to wait for yet another RCU grace period to expire, as 8990 * print_cfs_stats() might run concurrently. 8991 */ 8992 call_rcu(&tg->rcu, sched_free_group_rcu); 8993 } 8994 8995 /* allocate runqueue etc for a new task group */ 8996 struct task_group *sched_create_group(struct task_group *parent) 8997 { 8998 struct task_group *tg; 8999 9000 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9001 if (!tg) 9002 return ERR_PTR(-ENOMEM); 9003 9004 if (!alloc_fair_sched_group(tg, parent)) 9005 goto err; 9006 9007 if (!alloc_rt_sched_group(tg, parent)) 9008 goto err; 9009 9010 scx_tg_init(tg); 9011 alloc_uclamp_sched_group(tg, parent); 9012 9013 return tg; 9014 9015 err: 9016 sched_free_group(tg); 9017 return ERR_PTR(-ENOMEM); 9018 } 9019 9020 void sched_online_group(struct task_group *tg, struct task_group *parent) 9021 { 9022 unsigned long flags; 9023 9024 spin_lock_irqsave(&task_group_lock, flags); 9025 list_add_tail_rcu(&tg->list, &task_groups); 9026 9027 /* Root should already exist: */ 9028 WARN_ON(!parent); 9029 9030 tg->parent = parent; 9031 INIT_LIST_HEAD(&tg->children); 9032 list_add_rcu(&tg->siblings, &parent->children); 9033 spin_unlock_irqrestore(&task_group_lock, flags); 9034 9035 online_fair_sched_group(tg); 9036 } 9037 9038 /* RCU callback to free various structures associated with a task group */ 9039 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9040 { 9041 /* Now it should be safe to free those cfs_rqs: */ 9042 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9043 } 9044 9045 void sched_destroy_group(struct task_group *tg) 9046 { 9047 /* Wait for possible concurrent references to cfs_rqs complete: */ 9048 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9049 } 9050 9051 void sched_release_group(struct task_group *tg) 9052 { 9053 unsigned long flags; 9054 9055 /* 9056 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9057 * sched_cfs_period_timer()). 9058 * 9059 * For this to be effective, we have to wait for all pending users of 9060 * this task group to leave their RCU critical section to ensure no new 9061 * user will see our dying task group any more. Specifically ensure 9062 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9063 * 9064 * We therefore defer calling unregister_fair_sched_group() to 9065 * sched_unregister_group() which is guarantied to get called only after the 9066 * current RCU grace period has expired. 9067 */ 9068 spin_lock_irqsave(&task_group_lock, flags); 9069 list_del_rcu(&tg->list); 9070 list_del_rcu(&tg->siblings); 9071 spin_unlock_irqrestore(&task_group_lock, flags); 9072 } 9073 9074 static void sched_change_group(struct task_struct *tsk) 9075 { 9076 struct task_group *tg; 9077 9078 /* 9079 * All callers are synchronized by task_rq_lock(); we do not use RCU 9080 * which is pointless here. Thus, we pass "true" to task_css_check() 9081 * to prevent lockdep warnings. 9082 */ 9083 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9084 struct task_group, css); 9085 tg = autogroup_task_group(tsk, tg); 9086 tsk->sched_task_group = tg; 9087 9088 #ifdef CONFIG_FAIR_GROUP_SCHED 9089 if (tsk->sched_class->task_change_group) 9090 tsk->sched_class->task_change_group(tsk); 9091 else 9092 #endif 9093 set_task_rq(tsk, task_cpu(tsk)); 9094 } 9095 9096 /* 9097 * Change task's runqueue when it moves between groups. 9098 * 9099 * The caller of this function should have put the task in its new group by 9100 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9101 * its new group. 9102 */ 9103 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 9104 { 9105 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 9106 bool resched = false; 9107 struct rq *rq; 9108 9109 CLASS(task_rq_lock, rq_guard)(tsk); 9110 rq = rq_guard.rq; 9111 9112 scoped_guard (sched_change, tsk, queue_flags) { 9113 sched_change_group(tsk); 9114 if (!for_autogroup) 9115 scx_cgroup_move_task(tsk); 9116 if (scope->running) 9117 resched = true; 9118 } 9119 9120 if (resched) 9121 resched_curr(rq); 9122 } 9123 9124 static struct cgroup_subsys_state * 9125 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9126 { 9127 struct task_group *parent = css_tg(parent_css); 9128 struct task_group *tg; 9129 9130 if (!parent) { 9131 /* This is early initialization for the top cgroup */ 9132 return &root_task_group.css; 9133 } 9134 9135 tg = sched_create_group(parent); 9136 if (IS_ERR(tg)) 9137 return ERR_PTR(-ENOMEM); 9138 9139 return &tg->css; 9140 } 9141 9142 /* Expose task group only after completing cgroup initialization */ 9143 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9144 { 9145 struct task_group *tg = css_tg(css); 9146 struct task_group *parent = css_tg(css->parent); 9147 int ret; 9148 9149 ret = scx_tg_online(tg); 9150 if (ret) 9151 return ret; 9152 9153 if (parent) 9154 sched_online_group(tg, parent); 9155 9156 #ifdef CONFIG_UCLAMP_TASK_GROUP 9157 /* Propagate the effective uclamp value for the new group */ 9158 guard(mutex)(&uclamp_mutex); 9159 guard(rcu)(); 9160 cpu_util_update_eff(css); 9161 #endif 9162 9163 return 0; 9164 } 9165 9166 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9167 { 9168 struct task_group *tg = css_tg(css); 9169 9170 scx_tg_offline(tg); 9171 } 9172 9173 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9174 { 9175 struct task_group *tg = css_tg(css); 9176 9177 sched_release_group(tg); 9178 } 9179 9180 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9181 { 9182 struct task_group *tg = css_tg(css); 9183 9184 /* 9185 * Relies on the RCU grace period between css_released() and this. 9186 */ 9187 sched_unregister_group(tg); 9188 } 9189 9190 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9191 { 9192 #ifdef CONFIG_RT_GROUP_SCHED 9193 struct task_struct *task; 9194 struct cgroup_subsys_state *css; 9195 9196 if (!rt_group_sched_enabled()) 9197 goto scx_check; 9198 9199 cgroup_taskset_for_each(task, css, tset) { 9200 if (!sched_rt_can_attach(css_tg(css), task)) 9201 return -EINVAL; 9202 } 9203 scx_check: 9204 #endif /* CONFIG_RT_GROUP_SCHED */ 9205 return scx_cgroup_can_attach(tset); 9206 } 9207 9208 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9209 { 9210 struct task_struct *task; 9211 struct cgroup_subsys_state *css; 9212 9213 cgroup_taskset_for_each(task, css, tset) 9214 sched_move_task(task, false); 9215 } 9216 9217 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9218 { 9219 scx_cgroup_cancel_attach(tset); 9220 } 9221 9222 #ifdef CONFIG_UCLAMP_TASK_GROUP 9223 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9224 { 9225 struct cgroup_subsys_state *top_css = css; 9226 struct uclamp_se *uc_parent = NULL; 9227 struct uclamp_se *uc_se = NULL; 9228 unsigned int eff[UCLAMP_CNT]; 9229 enum uclamp_id clamp_id; 9230 unsigned int clamps; 9231 9232 lockdep_assert_held(&uclamp_mutex); 9233 WARN_ON_ONCE(!rcu_read_lock_held()); 9234 9235 css_for_each_descendant_pre(css, top_css) { 9236 uc_parent = css_tg(css)->parent 9237 ? css_tg(css)->parent->uclamp : NULL; 9238 9239 for_each_clamp_id(clamp_id) { 9240 /* Assume effective clamps matches requested clamps */ 9241 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9242 /* Cap effective clamps with parent's effective clamps */ 9243 if (uc_parent && 9244 eff[clamp_id] > uc_parent[clamp_id].value) { 9245 eff[clamp_id] = uc_parent[clamp_id].value; 9246 } 9247 } 9248 /* Ensure protection is always capped by limit */ 9249 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9250 9251 /* Propagate most restrictive effective clamps */ 9252 clamps = 0x0; 9253 uc_se = css_tg(css)->uclamp; 9254 for_each_clamp_id(clamp_id) { 9255 if (eff[clamp_id] == uc_se[clamp_id].value) 9256 continue; 9257 uc_se[clamp_id].value = eff[clamp_id]; 9258 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9259 clamps |= (0x1 << clamp_id); 9260 } 9261 if (!clamps) { 9262 css = css_rightmost_descendant(css); 9263 continue; 9264 } 9265 9266 /* Immediately update descendants RUNNABLE tasks */ 9267 uclamp_update_active_tasks(css); 9268 } 9269 } 9270 9271 /* 9272 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9273 * C expression. Since there is no way to convert a macro argument (N) into a 9274 * character constant, use two levels of macros. 9275 */ 9276 #define _POW10(exp) ((unsigned int)1e##exp) 9277 #define POW10(exp) _POW10(exp) 9278 9279 struct uclamp_request { 9280 #define UCLAMP_PERCENT_SHIFT 2 9281 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9282 s64 percent; 9283 u64 util; 9284 int ret; 9285 }; 9286 9287 static inline struct uclamp_request 9288 capacity_from_percent(char *buf) 9289 { 9290 struct uclamp_request req = { 9291 .percent = UCLAMP_PERCENT_SCALE, 9292 .util = SCHED_CAPACITY_SCALE, 9293 .ret = 0, 9294 }; 9295 9296 buf = strim(buf); 9297 if (strcmp(buf, "max")) { 9298 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9299 &req.percent); 9300 if (req.ret) 9301 return req; 9302 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9303 req.ret = -ERANGE; 9304 return req; 9305 } 9306 9307 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9308 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9309 } 9310 9311 return req; 9312 } 9313 9314 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9315 size_t nbytes, loff_t off, 9316 enum uclamp_id clamp_id) 9317 { 9318 struct uclamp_request req; 9319 struct task_group *tg; 9320 9321 req = capacity_from_percent(buf); 9322 if (req.ret) 9323 return req.ret; 9324 9325 sched_uclamp_enable(); 9326 9327 guard(mutex)(&uclamp_mutex); 9328 guard(rcu)(); 9329 9330 tg = css_tg(of_css(of)); 9331 if (tg->uclamp_req[clamp_id].value != req.util) 9332 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9333 9334 /* 9335 * Because of not recoverable conversion rounding we keep track of the 9336 * exact requested value 9337 */ 9338 tg->uclamp_pct[clamp_id] = req.percent; 9339 9340 /* Update effective clamps to track the most restrictive value */ 9341 cpu_util_update_eff(of_css(of)); 9342 9343 return nbytes; 9344 } 9345 9346 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9347 char *buf, size_t nbytes, 9348 loff_t off) 9349 { 9350 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9351 } 9352 9353 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9354 char *buf, size_t nbytes, 9355 loff_t off) 9356 { 9357 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9358 } 9359 9360 static inline void cpu_uclamp_print(struct seq_file *sf, 9361 enum uclamp_id clamp_id) 9362 { 9363 struct task_group *tg; 9364 u64 util_clamp; 9365 u64 percent; 9366 u32 rem; 9367 9368 scoped_guard (rcu) { 9369 tg = css_tg(seq_css(sf)); 9370 util_clamp = tg->uclamp_req[clamp_id].value; 9371 } 9372 9373 if (util_clamp == SCHED_CAPACITY_SCALE) { 9374 seq_puts(sf, "max\n"); 9375 return; 9376 } 9377 9378 percent = tg->uclamp_pct[clamp_id]; 9379 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9380 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9381 } 9382 9383 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9384 { 9385 cpu_uclamp_print(sf, UCLAMP_MIN); 9386 return 0; 9387 } 9388 9389 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9390 { 9391 cpu_uclamp_print(sf, UCLAMP_MAX); 9392 return 0; 9393 } 9394 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9395 9396 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9397 static unsigned long tg_weight(struct task_group *tg) 9398 { 9399 #ifdef CONFIG_FAIR_GROUP_SCHED 9400 return scale_load_down(tg->shares); 9401 #else 9402 return sched_weight_from_cgroup(tg->scx.weight); 9403 #endif 9404 } 9405 9406 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9407 struct cftype *cftype, u64 shareval) 9408 { 9409 int ret; 9410 9411 if (shareval > scale_load_down(ULONG_MAX)) 9412 shareval = MAX_SHARES; 9413 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9414 if (!ret) 9415 scx_group_set_weight(css_tg(css), 9416 sched_weight_to_cgroup(shareval)); 9417 return ret; 9418 } 9419 9420 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9421 struct cftype *cft) 9422 { 9423 return tg_weight(css_tg(css)); 9424 } 9425 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9426 9427 #ifdef CONFIG_CFS_BANDWIDTH 9428 static DEFINE_MUTEX(cfs_constraints_mutex); 9429 9430 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9431 9432 static int tg_set_cfs_bandwidth(struct task_group *tg, 9433 u64 period_us, u64 quota_us, u64 burst_us) 9434 { 9435 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9436 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9437 u64 period, quota, burst; 9438 9439 period = (u64)period_us * NSEC_PER_USEC; 9440 9441 if (quota_us == RUNTIME_INF) 9442 quota = RUNTIME_INF; 9443 else 9444 quota = (u64)quota_us * NSEC_PER_USEC; 9445 9446 burst = (u64)burst_us * NSEC_PER_USEC; 9447 9448 /* 9449 * Prevent race between setting of cfs_rq->runtime_enabled and 9450 * unthrottle_offline_cfs_rqs(). 9451 */ 9452 guard(cpus_read_lock)(); 9453 guard(mutex)(&cfs_constraints_mutex); 9454 9455 ret = __cfs_schedulable(tg, period, quota); 9456 if (ret) 9457 return ret; 9458 9459 runtime_enabled = quota != RUNTIME_INF; 9460 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9461 /* 9462 * If we need to toggle cfs_bandwidth_used, off->on must occur 9463 * before making related changes, and on->off must occur afterwards 9464 */ 9465 if (runtime_enabled && !runtime_was_enabled) 9466 cfs_bandwidth_usage_inc(); 9467 9468 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9469 cfs_b->period = ns_to_ktime(period); 9470 cfs_b->quota = quota; 9471 cfs_b->burst = burst; 9472 9473 __refill_cfs_bandwidth_runtime(cfs_b); 9474 9475 /* 9476 * Restart the period timer (if active) to handle new 9477 * period expiry: 9478 */ 9479 if (runtime_enabled) 9480 start_cfs_bandwidth(cfs_b); 9481 } 9482 9483 for_each_online_cpu(i) { 9484 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9485 struct rq *rq = cfs_rq->rq; 9486 9487 guard(rq_lock_irq)(rq); 9488 cfs_rq->runtime_enabled = runtime_enabled; 9489 cfs_rq->runtime_remaining = 1; 9490 9491 if (cfs_rq->throttled) 9492 unthrottle_cfs_rq(cfs_rq); 9493 } 9494 9495 if (runtime_was_enabled && !runtime_enabled) 9496 cfs_bandwidth_usage_dec(); 9497 9498 return 0; 9499 } 9500 9501 static u64 tg_get_cfs_period(struct task_group *tg) 9502 { 9503 u64 cfs_period_us; 9504 9505 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9506 do_div(cfs_period_us, NSEC_PER_USEC); 9507 9508 return cfs_period_us; 9509 } 9510 9511 static u64 tg_get_cfs_quota(struct task_group *tg) 9512 { 9513 u64 quota_us; 9514 9515 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9516 return RUNTIME_INF; 9517 9518 quota_us = tg->cfs_bandwidth.quota; 9519 do_div(quota_us, NSEC_PER_USEC); 9520 9521 return quota_us; 9522 } 9523 9524 static u64 tg_get_cfs_burst(struct task_group *tg) 9525 { 9526 u64 burst_us; 9527 9528 burst_us = tg->cfs_bandwidth.burst; 9529 do_div(burst_us, NSEC_PER_USEC); 9530 9531 return burst_us; 9532 } 9533 9534 struct cfs_schedulable_data { 9535 struct task_group *tg; 9536 u64 period, quota; 9537 }; 9538 9539 /* 9540 * normalize group quota/period to be quota/max_period 9541 * note: units are usecs 9542 */ 9543 static u64 normalize_cfs_quota(struct task_group *tg, 9544 struct cfs_schedulable_data *d) 9545 { 9546 u64 quota, period; 9547 9548 if (tg == d->tg) { 9549 period = d->period; 9550 quota = d->quota; 9551 } else { 9552 period = tg_get_cfs_period(tg); 9553 quota = tg_get_cfs_quota(tg); 9554 } 9555 9556 /* note: these should typically be equivalent */ 9557 if (quota == RUNTIME_INF || quota == -1) 9558 return RUNTIME_INF; 9559 9560 return to_ratio(period, quota); 9561 } 9562 9563 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9564 { 9565 struct cfs_schedulable_data *d = data; 9566 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9567 s64 quota = 0, parent_quota = -1; 9568 9569 if (!tg->parent) { 9570 quota = RUNTIME_INF; 9571 } else { 9572 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9573 9574 quota = normalize_cfs_quota(tg, d); 9575 parent_quota = parent_b->hierarchical_quota; 9576 9577 /* 9578 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9579 * always take the non-RUNTIME_INF min. On cgroup1, only 9580 * inherit when no limit is set. In both cases this is used 9581 * by the scheduler to determine if a given CFS task has a 9582 * bandwidth constraint at some higher level. 9583 */ 9584 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9585 if (quota == RUNTIME_INF) 9586 quota = parent_quota; 9587 else if (parent_quota != RUNTIME_INF) 9588 quota = min(quota, parent_quota); 9589 } else { 9590 if (quota == RUNTIME_INF) 9591 quota = parent_quota; 9592 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9593 return -EINVAL; 9594 } 9595 } 9596 cfs_b->hierarchical_quota = quota; 9597 9598 return 0; 9599 } 9600 9601 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9602 { 9603 struct cfs_schedulable_data data = { 9604 .tg = tg, 9605 .period = period, 9606 .quota = quota, 9607 }; 9608 9609 if (quota != RUNTIME_INF) { 9610 do_div(data.period, NSEC_PER_USEC); 9611 do_div(data.quota, NSEC_PER_USEC); 9612 } 9613 9614 guard(rcu)(); 9615 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9616 } 9617 9618 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9619 { 9620 struct task_group *tg = css_tg(seq_css(sf)); 9621 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9622 9623 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9624 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9625 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9626 9627 if (schedstat_enabled() && tg != &root_task_group) { 9628 struct sched_statistics *stats; 9629 u64 ws = 0; 9630 int i; 9631 9632 for_each_possible_cpu(i) { 9633 stats = __schedstats_from_se(tg->se[i]); 9634 ws += schedstat_val(stats->wait_sum); 9635 } 9636 9637 seq_printf(sf, "wait_sum %llu\n", ws); 9638 } 9639 9640 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9641 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9642 9643 return 0; 9644 } 9645 9646 static u64 throttled_time_self(struct task_group *tg) 9647 { 9648 int i; 9649 u64 total = 0; 9650 9651 for_each_possible_cpu(i) { 9652 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9653 } 9654 9655 return total; 9656 } 9657 9658 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9659 { 9660 struct task_group *tg = css_tg(seq_css(sf)); 9661 9662 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9663 9664 return 0; 9665 } 9666 #endif /* CONFIG_CFS_BANDWIDTH */ 9667 9668 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 9669 const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */ 9670 static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */ 9671 /* More than 203 days if BW_SHIFT equals 20. */ 9672 static const u64 max_bw_runtime_us = MAX_BW; 9673 9674 static void tg_bandwidth(struct task_group *tg, 9675 u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p) 9676 { 9677 #ifdef CONFIG_CFS_BANDWIDTH 9678 if (period_us_p) 9679 *period_us_p = tg_get_cfs_period(tg); 9680 if (quota_us_p) 9681 *quota_us_p = tg_get_cfs_quota(tg); 9682 if (burst_us_p) 9683 *burst_us_p = tg_get_cfs_burst(tg); 9684 #else /* !CONFIG_CFS_BANDWIDTH */ 9685 if (period_us_p) 9686 *period_us_p = tg->scx.bw_period_us; 9687 if (quota_us_p) 9688 *quota_us_p = tg->scx.bw_quota_us; 9689 if (burst_us_p) 9690 *burst_us_p = tg->scx.bw_burst_us; 9691 #endif /* CONFIG_CFS_BANDWIDTH */ 9692 } 9693 9694 static u64 cpu_period_read_u64(struct cgroup_subsys_state *css, 9695 struct cftype *cft) 9696 { 9697 u64 period_us; 9698 9699 tg_bandwidth(css_tg(css), &period_us, NULL, NULL); 9700 return period_us; 9701 } 9702 9703 static int tg_set_bandwidth(struct task_group *tg, 9704 u64 period_us, u64 quota_us, u64 burst_us) 9705 { 9706 const u64 max_usec = U64_MAX / NSEC_PER_USEC; 9707 int ret = 0; 9708 9709 if (tg == &root_task_group) 9710 return -EINVAL; 9711 9712 /* Values should survive translation to nsec */ 9713 if (period_us > max_usec || 9714 (quota_us != RUNTIME_INF && quota_us > max_usec) || 9715 burst_us > max_usec) 9716 return -EINVAL; 9717 9718 /* 9719 * Ensure we have some amount of bandwidth every period. This is to 9720 * prevent reaching a state of large arrears when throttled via 9721 * entity_tick() resulting in prolonged exit starvation. 9722 */ 9723 if (quota_us < min_bw_quota_period_us || 9724 period_us < min_bw_quota_period_us) 9725 return -EINVAL; 9726 9727 /* 9728 * Likewise, bound things on the other side by preventing insane quota 9729 * periods. This also allows us to normalize in computing quota 9730 * feasibility. 9731 */ 9732 if (period_us > max_bw_quota_period_us) 9733 return -EINVAL; 9734 9735 /* 9736 * Bound quota to defend quota against overflow during bandwidth shift. 9737 */ 9738 if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us) 9739 return -EINVAL; 9740 9741 if (quota_us != RUNTIME_INF && (burst_us > quota_us || 9742 burst_us + quota_us > max_bw_runtime_us)) 9743 return -EINVAL; 9744 9745 #ifdef CONFIG_CFS_BANDWIDTH 9746 ret = tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us); 9747 #endif /* CONFIG_CFS_BANDWIDTH */ 9748 if (!ret) 9749 scx_group_set_bandwidth(tg, period_us, quota_us, burst_us); 9750 return ret; 9751 } 9752 9753 static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css, 9754 struct cftype *cft) 9755 { 9756 u64 quota_us; 9757 9758 tg_bandwidth(css_tg(css), NULL, "a_us, NULL); 9759 return quota_us; /* (s64)RUNTIME_INF becomes -1 */ 9760 } 9761 9762 static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css, 9763 struct cftype *cft) 9764 { 9765 u64 burst_us; 9766 9767 tg_bandwidth(css_tg(css), NULL, NULL, &burst_us); 9768 return burst_us; 9769 } 9770 9771 static int cpu_period_write_u64(struct cgroup_subsys_state *css, 9772 struct cftype *cftype, u64 period_us) 9773 { 9774 struct task_group *tg = css_tg(css); 9775 u64 quota_us, burst_us; 9776 9777 tg_bandwidth(tg, NULL, "a_us, &burst_us); 9778 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9779 } 9780 9781 static int cpu_quota_write_s64(struct cgroup_subsys_state *css, 9782 struct cftype *cftype, s64 quota_us) 9783 { 9784 struct task_group *tg = css_tg(css); 9785 u64 period_us, burst_us; 9786 9787 if (quota_us < 0) 9788 quota_us = RUNTIME_INF; 9789 9790 tg_bandwidth(tg, &period_us, NULL, &burst_us); 9791 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9792 } 9793 9794 static int cpu_burst_write_u64(struct cgroup_subsys_state *css, 9795 struct cftype *cftype, u64 burst_us) 9796 { 9797 struct task_group *tg = css_tg(css); 9798 u64 period_us, quota_us; 9799 9800 tg_bandwidth(tg, &period_us, "a_us, NULL); 9801 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9802 } 9803 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ 9804 9805 #ifdef CONFIG_RT_GROUP_SCHED 9806 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9807 struct cftype *cft, s64 val) 9808 { 9809 return sched_group_set_rt_runtime(css_tg(css), val); 9810 } 9811 9812 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9813 struct cftype *cft) 9814 { 9815 return sched_group_rt_runtime(css_tg(css)); 9816 } 9817 9818 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9819 struct cftype *cftype, u64 rt_period_us) 9820 { 9821 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9822 } 9823 9824 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9825 struct cftype *cft) 9826 { 9827 return sched_group_rt_period(css_tg(css)); 9828 } 9829 #endif /* CONFIG_RT_GROUP_SCHED */ 9830 9831 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9832 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9833 struct cftype *cft) 9834 { 9835 return css_tg(css)->idle; 9836 } 9837 9838 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9839 struct cftype *cft, s64 idle) 9840 { 9841 int ret; 9842 9843 ret = sched_group_set_idle(css_tg(css), idle); 9844 if (!ret) 9845 scx_group_set_idle(css_tg(css), idle); 9846 return ret; 9847 } 9848 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9849 9850 static struct cftype cpu_legacy_files[] = { 9851 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9852 { 9853 .name = "shares", 9854 .read_u64 = cpu_shares_read_u64, 9855 .write_u64 = cpu_shares_write_u64, 9856 }, 9857 { 9858 .name = "idle", 9859 .read_s64 = cpu_idle_read_s64, 9860 .write_s64 = cpu_idle_write_s64, 9861 }, 9862 #endif 9863 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 9864 { 9865 .name = "cfs_period_us", 9866 .read_u64 = cpu_period_read_u64, 9867 .write_u64 = cpu_period_write_u64, 9868 }, 9869 { 9870 .name = "cfs_quota_us", 9871 .read_s64 = cpu_quota_read_s64, 9872 .write_s64 = cpu_quota_write_s64, 9873 }, 9874 { 9875 .name = "cfs_burst_us", 9876 .read_u64 = cpu_burst_read_u64, 9877 .write_u64 = cpu_burst_write_u64, 9878 }, 9879 #endif 9880 #ifdef CONFIG_CFS_BANDWIDTH 9881 { 9882 .name = "stat", 9883 .seq_show = cpu_cfs_stat_show, 9884 }, 9885 { 9886 .name = "stat.local", 9887 .seq_show = cpu_cfs_local_stat_show, 9888 }, 9889 #endif 9890 #ifdef CONFIG_UCLAMP_TASK_GROUP 9891 { 9892 .name = "uclamp.min", 9893 .flags = CFTYPE_NOT_ON_ROOT, 9894 .seq_show = cpu_uclamp_min_show, 9895 .write = cpu_uclamp_min_write, 9896 }, 9897 { 9898 .name = "uclamp.max", 9899 .flags = CFTYPE_NOT_ON_ROOT, 9900 .seq_show = cpu_uclamp_max_show, 9901 .write = cpu_uclamp_max_write, 9902 }, 9903 #endif 9904 { } /* Terminate */ 9905 }; 9906 9907 #ifdef CONFIG_RT_GROUP_SCHED 9908 static struct cftype rt_group_files[] = { 9909 { 9910 .name = "rt_runtime_us", 9911 .read_s64 = cpu_rt_runtime_read, 9912 .write_s64 = cpu_rt_runtime_write, 9913 }, 9914 { 9915 .name = "rt_period_us", 9916 .read_u64 = cpu_rt_period_read_uint, 9917 .write_u64 = cpu_rt_period_write_uint, 9918 }, 9919 { } /* Terminate */ 9920 }; 9921 9922 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 9923 DEFINE_STATIC_KEY_FALSE(rt_group_sched); 9924 # else 9925 DEFINE_STATIC_KEY_TRUE(rt_group_sched); 9926 # endif 9927 9928 static int __init setup_rt_group_sched(char *str) 9929 { 9930 long val; 9931 9932 if (kstrtol(str, 0, &val) || val < 0 || val > 1) { 9933 pr_warn("Unable to set rt_group_sched\n"); 9934 return 1; 9935 } 9936 if (val) 9937 static_branch_enable(&rt_group_sched); 9938 else 9939 static_branch_disable(&rt_group_sched); 9940 9941 return 1; 9942 } 9943 __setup("rt_group_sched=", setup_rt_group_sched); 9944 9945 static int __init cpu_rt_group_init(void) 9946 { 9947 if (!rt_group_sched_enabled()) 9948 return 0; 9949 9950 WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); 9951 return 0; 9952 } 9953 subsys_initcall(cpu_rt_group_init); 9954 #endif /* CONFIG_RT_GROUP_SCHED */ 9955 9956 static int cpu_extra_stat_show(struct seq_file *sf, 9957 struct cgroup_subsys_state *css) 9958 { 9959 #ifdef CONFIG_CFS_BANDWIDTH 9960 { 9961 struct task_group *tg = css_tg(css); 9962 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9963 u64 throttled_usec, burst_usec; 9964 9965 throttled_usec = cfs_b->throttled_time; 9966 do_div(throttled_usec, NSEC_PER_USEC); 9967 burst_usec = cfs_b->burst_time; 9968 do_div(burst_usec, NSEC_PER_USEC); 9969 9970 seq_printf(sf, "nr_periods %d\n" 9971 "nr_throttled %d\n" 9972 "throttled_usec %llu\n" 9973 "nr_bursts %d\n" 9974 "burst_usec %llu\n", 9975 cfs_b->nr_periods, cfs_b->nr_throttled, 9976 throttled_usec, cfs_b->nr_burst, burst_usec); 9977 } 9978 #endif /* CONFIG_CFS_BANDWIDTH */ 9979 return 0; 9980 } 9981 9982 static int cpu_local_stat_show(struct seq_file *sf, 9983 struct cgroup_subsys_state *css) 9984 { 9985 #ifdef CONFIG_CFS_BANDWIDTH 9986 { 9987 struct task_group *tg = css_tg(css); 9988 u64 throttled_self_usec; 9989 9990 throttled_self_usec = throttled_time_self(tg); 9991 do_div(throttled_self_usec, NSEC_PER_USEC); 9992 9993 seq_printf(sf, "throttled_usec %llu\n", 9994 throttled_self_usec); 9995 } 9996 #endif 9997 return 0; 9998 } 9999 10000 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10001 10002 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10003 struct cftype *cft) 10004 { 10005 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 10006 } 10007 10008 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10009 struct cftype *cft, u64 cgrp_weight) 10010 { 10011 unsigned long weight; 10012 int ret; 10013 10014 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 10015 return -ERANGE; 10016 10017 weight = sched_weight_from_cgroup(cgrp_weight); 10018 10019 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10020 if (!ret) 10021 scx_group_set_weight(css_tg(css), cgrp_weight); 10022 return ret; 10023 } 10024 10025 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10026 struct cftype *cft) 10027 { 10028 unsigned long weight = tg_weight(css_tg(css)); 10029 int last_delta = INT_MAX; 10030 int prio, delta; 10031 10032 /* find the closest nice value to the current weight */ 10033 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10034 delta = abs(sched_prio_to_weight[prio] - weight); 10035 if (delta >= last_delta) 10036 break; 10037 last_delta = delta; 10038 } 10039 10040 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10041 } 10042 10043 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10044 struct cftype *cft, s64 nice) 10045 { 10046 unsigned long weight; 10047 int idx, ret; 10048 10049 if (nice < MIN_NICE || nice > MAX_NICE) 10050 return -ERANGE; 10051 10052 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10053 idx = array_index_nospec(idx, 40); 10054 weight = sched_prio_to_weight[idx]; 10055 10056 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10057 if (!ret) 10058 scx_group_set_weight(css_tg(css), 10059 sched_weight_to_cgroup(weight)); 10060 return ret; 10061 } 10062 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 10063 10064 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10065 long period, long quota) 10066 { 10067 if (quota < 0) 10068 seq_puts(sf, "max"); 10069 else 10070 seq_printf(sf, "%ld", quota); 10071 10072 seq_printf(sf, " %ld\n", period); 10073 } 10074 10075 /* caller should put the current value in *@periodp before calling */ 10076 static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p, 10077 u64 *quota_us_p) 10078 { 10079 char tok[21]; /* U64_MAX */ 10080 10081 if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1) 10082 return -EINVAL; 10083 10084 if (sscanf(tok, "%llu", quota_us_p) < 1) { 10085 if (!strcmp(tok, "max")) 10086 *quota_us_p = RUNTIME_INF; 10087 else 10088 return -EINVAL; 10089 } 10090 10091 return 0; 10092 } 10093 10094 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10095 static int cpu_max_show(struct seq_file *sf, void *v) 10096 { 10097 struct task_group *tg = css_tg(seq_css(sf)); 10098 u64 period_us, quota_us; 10099 10100 tg_bandwidth(tg, &period_us, "a_us, NULL); 10101 cpu_period_quota_print(sf, period_us, quota_us); 10102 return 0; 10103 } 10104 10105 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10106 char *buf, size_t nbytes, loff_t off) 10107 { 10108 struct task_group *tg = css_tg(of_css(of)); 10109 u64 period_us, quota_us, burst_us; 10110 int ret; 10111 10112 tg_bandwidth(tg, &period_us, NULL, &burst_us); 10113 ret = cpu_period_quota_parse(buf, &period_us, "a_us); 10114 if (!ret) 10115 ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us); 10116 return ret ?: nbytes; 10117 } 10118 #endif /* CONFIG_CFS_BANDWIDTH */ 10119 10120 static struct cftype cpu_files[] = { 10121 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10122 { 10123 .name = "weight", 10124 .flags = CFTYPE_NOT_ON_ROOT, 10125 .read_u64 = cpu_weight_read_u64, 10126 .write_u64 = cpu_weight_write_u64, 10127 }, 10128 { 10129 .name = "weight.nice", 10130 .flags = CFTYPE_NOT_ON_ROOT, 10131 .read_s64 = cpu_weight_nice_read_s64, 10132 .write_s64 = cpu_weight_nice_write_s64, 10133 }, 10134 { 10135 .name = "idle", 10136 .flags = CFTYPE_NOT_ON_ROOT, 10137 .read_s64 = cpu_idle_read_s64, 10138 .write_s64 = cpu_idle_write_s64, 10139 }, 10140 #endif 10141 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10142 { 10143 .name = "max", 10144 .flags = CFTYPE_NOT_ON_ROOT, 10145 .seq_show = cpu_max_show, 10146 .write = cpu_max_write, 10147 }, 10148 { 10149 .name = "max.burst", 10150 .flags = CFTYPE_NOT_ON_ROOT, 10151 .read_u64 = cpu_burst_read_u64, 10152 .write_u64 = cpu_burst_write_u64, 10153 }, 10154 #endif /* CONFIG_CFS_BANDWIDTH */ 10155 #ifdef CONFIG_UCLAMP_TASK_GROUP 10156 { 10157 .name = "uclamp.min", 10158 .flags = CFTYPE_NOT_ON_ROOT, 10159 .seq_show = cpu_uclamp_min_show, 10160 .write = cpu_uclamp_min_write, 10161 }, 10162 { 10163 .name = "uclamp.max", 10164 .flags = CFTYPE_NOT_ON_ROOT, 10165 .seq_show = cpu_uclamp_max_show, 10166 .write = cpu_uclamp_max_write, 10167 }, 10168 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10169 { } /* terminate */ 10170 }; 10171 10172 struct cgroup_subsys cpu_cgrp_subsys = { 10173 .css_alloc = cpu_cgroup_css_alloc, 10174 .css_online = cpu_cgroup_css_online, 10175 .css_offline = cpu_cgroup_css_offline, 10176 .css_released = cpu_cgroup_css_released, 10177 .css_free = cpu_cgroup_css_free, 10178 .css_extra_stat_show = cpu_extra_stat_show, 10179 .css_local_stat_show = cpu_local_stat_show, 10180 .can_attach = cpu_cgroup_can_attach, 10181 .attach = cpu_cgroup_attach, 10182 .cancel_attach = cpu_cgroup_cancel_attach, 10183 .legacy_cftypes = cpu_legacy_files, 10184 .dfl_cftypes = cpu_files, 10185 .early_init = true, 10186 .threaded = true, 10187 }; 10188 10189 #endif /* CONFIG_CGROUP_SCHED */ 10190 10191 void dump_cpu_task(int cpu) 10192 { 10193 if (in_hardirq() && cpu == smp_processor_id()) { 10194 struct pt_regs *regs; 10195 10196 regs = get_irq_regs(); 10197 if (regs) { 10198 show_regs(regs); 10199 return; 10200 } 10201 } 10202 10203 if (trigger_single_cpu_backtrace(cpu)) 10204 return; 10205 10206 pr_info("Task dump for CPU %d:\n", cpu); 10207 sched_show_task(cpu_curr(cpu)); 10208 } 10209 10210 /* 10211 * Nice levels are multiplicative, with a gentle 10% change for every 10212 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10213 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10214 * that remained on nice 0. 10215 * 10216 * The "10% effect" is relative and cumulative: from _any_ nice level, 10217 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10218 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10219 * If a task goes up by ~10% and another task goes down by ~10% then 10220 * the relative distance between them is ~25%.) 10221 */ 10222 const int sched_prio_to_weight[40] = { 10223 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10224 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10225 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10226 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10227 /* 0 */ 1024, 820, 655, 526, 423, 10228 /* 5 */ 335, 272, 215, 172, 137, 10229 /* 10 */ 110, 87, 70, 56, 45, 10230 /* 15 */ 36, 29, 23, 18, 15, 10231 }; 10232 10233 /* 10234 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10235 * 10236 * In cases where the weight does not change often, we can use the 10237 * pre-calculated inverse to speed up arithmetics by turning divisions 10238 * into multiplications: 10239 */ 10240 const u32 sched_prio_to_wmult[40] = { 10241 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10242 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10243 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10244 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10245 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10246 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10247 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10248 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10249 }; 10250 10251 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10252 { 10253 trace_sched_update_nr_running_tp(rq, count); 10254 } 10255 10256 #ifdef CONFIG_SCHED_MM_CID 10257 /* 10258 * Concurrency IDentifier management 10259 * 10260 * Serialization rules: 10261 * 10262 * mm::mm_cid::mutex: Serializes fork() and exit() and therefore 10263 * protects mm::mm_cid::users. 10264 * 10265 * mm::mm_cid::lock: Serializes mm_update_max_cids() and 10266 * mm_update_cpus_allowed(). Nests in mm_cid::mutex 10267 * and runqueue lock. 10268 * 10269 * The mm_cidmask bitmap is not protected by any of the mm::mm_cid locks 10270 * and can only be modified with atomic operations. 10271 * 10272 * The mm::mm_cid:pcpu per CPU storage is protected by the CPUs runqueue 10273 * lock. 10274 * 10275 * CID ownership: 10276 * 10277 * A CID is either owned by a task (stored in task_struct::mm_cid.cid) or 10278 * by a CPU (stored in mm::mm_cid.pcpu::cid). CIDs owned by CPUs have the 10279 * MM_CID_ONCPU bit set. During transition from CPU to task ownership mode, 10280 * MM_CID_TRANSIT is set on the per task CIDs. When this bit is set the 10281 * task needs to drop the CID into the pool when scheduling out. Both bits 10282 * (ONCPU and TRANSIT) are filtered out by task_cid() when the CID is 10283 * actually handed over to user space in the RSEQ memory. 10284 * 10285 * Mode switching: 10286 * 10287 * Switching to per CPU mode happens when the user count becomes greater 10288 * than the maximum number of CIDs, which is calculated by: 10289 * 10290 * opt_cids = min(mm_cid::nr_cpus_allowed, mm_cid::users); 10291 * max_cids = min(1.25 * opt_cids, num_possible_cpus()); 10292 * 10293 * The +25% allowance is useful for tight CPU masks in scenarios where only 10294 * a few threads are created and destroyed to avoid frequent mode 10295 * switches. Though this allowance shrinks, the closer opt_cids becomes to 10296 * num_possible_cpus(), which is the (unfortunate) hard ABI limit. 10297 * 10298 * At the point of switching to per CPU mode the new user is not yet 10299 * visible in the system, so the task which initiated the fork() runs the 10300 * fixup function: mm_cid_fixup_tasks_to_cpu() walks the thread list and 10301 * either transfers each tasks owned CID to the CPU the task runs on or 10302 * drops it into the CID pool if a task is not on a CPU at that point in 10303 * time. Tasks which schedule in before the task walk reaches them do the 10304 * handover in mm_cid_schedin(). When mm_cid_fixup_tasks_to_cpus() completes 10305 * it's guaranteed that no task related to that MM owns a CID anymore. 10306 * 10307 * Switching back to task mode happens when the user count goes below the 10308 * threshold which was recorded on the per CPU mode switch: 10309 * 10310 * pcpu_thrs = min(opt_cids - (opt_cids / 4), num_possible_cpus() / 2); 10311 * 10312 * This threshold is updated when a affinity change increases the number of 10313 * allowed CPUs for the MM, which might cause a switch back to per task 10314 * mode. 10315 * 10316 * If the switch back was initiated by a exiting task, then that task runs 10317 * the fixup function. If it was initiated by a affinity change, then it's 10318 * run either in the deferred update function in context of a workqueue or 10319 * by a task which forks a new one or by a task which exits. Whatever 10320 * happens first. mm_cid_fixup_cpus_to_task() walks through the possible 10321 * CPUs and either transfers the CPU owned CIDs to a related task which 10322 * runs on the CPU or drops it into the pool. Tasks which schedule in on a 10323 * CPU which the walk did not cover yet do the handover themself. 10324 * 10325 * This transition from CPU to per task ownership happens in two phases: 10326 * 10327 * 1) mm:mm_cid.transit contains MM_CID_TRANSIT This is OR'ed on the task 10328 * CID and denotes that the CID is only temporarily owned by the 10329 * task. When it schedules out the task drops the CID back into the 10330 * pool if this bit is set. 10331 * 10332 * 2) The initiating context walks the per CPU space and after completion 10333 * clears mm:mm_cid.transit. So after that point the CIDs are strictly 10334 * task owned again. 10335 * 10336 * This two phase transition is required to prevent CID space exhaustion 10337 * during the transition as a direct transfer of ownership would fail if 10338 * two tasks are scheduled in on the same CPU before the fixup freed per 10339 * CPU CIDs. 10340 * 10341 * When mm_cid_fixup_cpus_to_tasks() completes it's guaranteed that no CID 10342 * related to that MM is owned by a CPU anymore. 10343 */ 10344 10345 /* 10346 * Update the CID range properties when the constraints change. Invoked via 10347 * fork(), exit() and affinity changes 10348 */ 10349 static void __mm_update_max_cids(struct mm_mm_cid *mc) 10350 { 10351 unsigned int opt_cids, max_cids; 10352 10353 /* Calculate the new optimal constraint */ 10354 opt_cids = min(mc->nr_cpus_allowed, mc->users); 10355 10356 /* Adjust the maximum CIDs to +25% limited by the number of possible CPUs */ 10357 max_cids = min(opt_cids + (opt_cids / 4), num_possible_cpus()); 10358 WRITE_ONCE(mc->max_cids, max_cids); 10359 } 10360 10361 static inline unsigned int mm_cid_calc_pcpu_thrs(struct mm_mm_cid *mc) 10362 { 10363 unsigned int opt_cids; 10364 10365 opt_cids = min(mc->nr_cpus_allowed, mc->users); 10366 /* Has to be at least 1 because 0 indicates PCPU mode off */ 10367 return max(min(opt_cids - opt_cids / 4, num_possible_cpus() / 2), 1); 10368 } 10369 10370 static bool mm_update_max_cids(struct mm_struct *mm) 10371 { 10372 struct mm_mm_cid *mc = &mm->mm_cid; 10373 10374 lockdep_assert_held(&mm->mm_cid.lock); 10375 10376 /* Clear deferred mode switch flag. A change is handled by the caller */ 10377 mc->update_deferred = false; 10378 __mm_update_max_cids(mc); 10379 10380 /* Check whether owner mode must be changed */ 10381 if (!mc->percpu) { 10382 /* Enable per CPU mode when the number of users is above max_cids */ 10383 if (mc->users > mc->max_cids) 10384 mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc); 10385 } else { 10386 /* Switch back to per task if user count under threshold */ 10387 if (mc->users < mc->pcpu_thrs) 10388 mc->pcpu_thrs = 0; 10389 } 10390 10391 /* Mode change required? */ 10392 if (!!mc->percpu == !!mc->pcpu_thrs) 10393 return false; 10394 /* When switching back to per TASK mode, set the transition flag */ 10395 if (!mc->pcpu_thrs) 10396 WRITE_ONCE(mc->transit, MM_CID_TRANSIT); 10397 WRITE_ONCE(mc->percpu, !!mc->pcpu_thrs); 10398 return true; 10399 } 10400 10401 static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk) 10402 { 10403 struct cpumask *mm_allowed; 10404 struct mm_mm_cid *mc; 10405 unsigned int weight; 10406 10407 if (!mm || !READ_ONCE(mm->mm_cid.users)) 10408 return; 10409 /* 10410 * mm::mm_cid::mm_cpus_allowed is the superset of each threads 10411 * allowed CPUs mask which means it can only grow. 10412 */ 10413 mc = &mm->mm_cid; 10414 guard(raw_spinlock)(&mc->lock); 10415 mm_allowed = mm_cpus_allowed(mm); 10416 weight = cpumask_weighted_or(mm_allowed, mm_allowed, affmsk); 10417 if (weight == mc->nr_cpus_allowed) 10418 return; 10419 10420 WRITE_ONCE(mc->nr_cpus_allowed, weight); 10421 __mm_update_max_cids(mc); 10422 if (!mc->percpu) 10423 return; 10424 10425 /* Adjust the threshold to the wider set */ 10426 mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc); 10427 /* Switch back to per task mode? */ 10428 if (mc->users >= mc->pcpu_thrs) 10429 return; 10430 10431 /* Don't queue twice */ 10432 if (mc->update_deferred) 10433 return; 10434 10435 /* Queue the irq work, which schedules the real work */ 10436 mc->update_deferred = true; 10437 irq_work_queue(&mc->irq_work); 10438 } 10439 10440 static inline void mm_cid_transit_to_task(struct task_struct *t, struct mm_cid_pcpu *pcp) 10441 { 10442 if (cid_on_cpu(t->mm_cid.cid)) { 10443 unsigned int cid = cpu_cid_to_cid(t->mm_cid.cid); 10444 10445 t->mm_cid.cid = cid_to_transit_cid(cid); 10446 pcp->cid = t->mm_cid.cid; 10447 } 10448 } 10449 10450 static void mm_cid_fixup_cpus_to_tasks(struct mm_struct *mm) 10451 { 10452 unsigned int cpu; 10453 10454 /* Walk the CPUs and fixup all stale CIDs */ 10455 for_each_possible_cpu(cpu) { 10456 struct mm_cid_pcpu *pcp = per_cpu_ptr(mm->mm_cid.pcpu, cpu); 10457 struct rq *rq = cpu_rq(cpu); 10458 10459 /* Remote access to mm::mm_cid::pcpu requires rq_lock */ 10460 guard(rq_lock_irq)(rq); 10461 /* Is the CID still owned by the CPU? */ 10462 if (cid_on_cpu(pcp->cid)) { 10463 /* 10464 * If rq->curr has @mm, transfer it with the 10465 * transition bit set. Otherwise drop it. 10466 */ 10467 if (rq->curr->mm == mm && rq->curr->mm_cid.active) 10468 mm_cid_transit_to_task(rq->curr, pcp); 10469 else 10470 mm_drop_cid_on_cpu(mm, pcp); 10471 10472 } else if (rq->curr->mm == mm && rq->curr->mm_cid.active) { 10473 unsigned int cid = rq->curr->mm_cid.cid; 10474 10475 /* Ensure it has the transition bit set */ 10476 if (!cid_in_transit(cid)) { 10477 cid = cid_to_transit_cid(cid); 10478 rq->curr->mm_cid.cid = cid; 10479 pcp->cid = cid; 10480 } 10481 } 10482 } 10483 /* Clear the transition bit */ 10484 WRITE_ONCE(mm->mm_cid.transit, 0); 10485 } 10486 10487 static inline void mm_cid_transfer_to_cpu(struct task_struct *t, struct mm_cid_pcpu *pcp) 10488 { 10489 if (cid_on_task(t->mm_cid.cid)) { 10490 t->mm_cid.cid = cid_to_cpu_cid(t->mm_cid.cid); 10491 pcp->cid = t->mm_cid.cid; 10492 } 10493 } 10494 10495 static bool mm_cid_fixup_task_to_cpu(struct task_struct *t, struct mm_struct *mm) 10496 { 10497 /* Remote access to mm::mm_cid::pcpu requires rq_lock */ 10498 guard(task_rq_lock)(t); 10499 /* If the task is not active it is not in the users count */ 10500 if (!t->mm_cid.active) 10501 return false; 10502 if (cid_on_task(t->mm_cid.cid)) { 10503 /* If running on the CPU, transfer the CID, otherwise drop it */ 10504 if (task_rq(t)->curr == t) 10505 mm_cid_transfer_to_cpu(t, per_cpu_ptr(mm->mm_cid.pcpu, task_cpu(t))); 10506 else 10507 mm_unset_cid_on_task(t); 10508 } 10509 return true; 10510 } 10511 10512 static void mm_cid_fixup_tasks_to_cpus(void) 10513 { 10514 struct mm_struct *mm = current->mm; 10515 struct task_struct *p, *t; 10516 unsigned int users; 10517 10518 /* 10519 * This can obviously race with a concurrent affinity change, which 10520 * increases the number of allowed CPUs for this mm, but that does 10521 * not affect the mode and only changes the CID constraints. A 10522 * possible switch back to per task mode happens either in the 10523 * deferred handler function or in the next fork()/exit(). 10524 * 10525 * The caller has already transferred. The newly incoming task is 10526 * already accounted for, but not yet visible. 10527 */ 10528 users = mm->mm_cid.users - 2; 10529 if (!users) 10530 return; 10531 10532 guard(rcu)(); 10533 for_other_threads(current, t) { 10534 if (mm_cid_fixup_task_to_cpu(t, mm)) 10535 users--; 10536 } 10537 10538 if (!users) 10539 return; 10540 10541 /* Happens only for VM_CLONE processes. */ 10542 for_each_process_thread(p, t) { 10543 if (t == current || t->mm != mm) 10544 continue; 10545 if (mm_cid_fixup_task_to_cpu(t, mm)) { 10546 if (--users == 0) 10547 return; 10548 } 10549 } 10550 } 10551 10552 static bool sched_mm_cid_add_user(struct task_struct *t, struct mm_struct *mm) 10553 { 10554 t->mm_cid.active = 1; 10555 mm->mm_cid.users++; 10556 return mm_update_max_cids(mm); 10557 } 10558 10559 void sched_mm_cid_fork(struct task_struct *t) 10560 { 10561 struct mm_struct *mm = t->mm; 10562 bool percpu; 10563 10564 WARN_ON_ONCE(!mm || t->mm_cid.cid != MM_CID_UNSET); 10565 10566 guard(mutex)(&mm->mm_cid.mutex); 10567 scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { 10568 struct mm_cid_pcpu *pcp = this_cpu_ptr(mm->mm_cid.pcpu); 10569 10570 /* First user ? */ 10571 if (!mm->mm_cid.users) { 10572 sched_mm_cid_add_user(t, mm); 10573 t->mm_cid.cid = mm_get_cid(mm); 10574 /* Required for execve() */ 10575 pcp->cid = t->mm_cid.cid; 10576 return; 10577 } 10578 10579 if (!sched_mm_cid_add_user(t, mm)) { 10580 if (!mm->mm_cid.percpu) 10581 t->mm_cid.cid = mm_get_cid(mm); 10582 return; 10583 } 10584 10585 /* Handle the mode change and transfer current's CID */ 10586 percpu = !!mm->mm_cid.percpu; 10587 if (!percpu) 10588 mm_cid_transit_to_task(current, pcp); 10589 else 10590 mm_cid_transfer_to_cpu(current, pcp); 10591 } 10592 10593 if (percpu) { 10594 mm_cid_fixup_tasks_to_cpus(); 10595 } else { 10596 mm_cid_fixup_cpus_to_tasks(mm); 10597 t->mm_cid.cid = mm_get_cid(mm); 10598 } 10599 } 10600 10601 static bool sched_mm_cid_remove_user(struct task_struct *t) 10602 { 10603 t->mm_cid.active = 0; 10604 scoped_guard(preempt) { 10605 /* Clear the transition bit */ 10606 t->mm_cid.cid = cid_from_transit_cid(t->mm_cid.cid); 10607 mm_unset_cid_on_task(t); 10608 } 10609 t->mm->mm_cid.users--; 10610 return mm_update_max_cids(t->mm); 10611 } 10612 10613 static bool __sched_mm_cid_exit(struct task_struct *t) 10614 { 10615 struct mm_struct *mm = t->mm; 10616 10617 if (!sched_mm_cid_remove_user(t)) 10618 return false; 10619 /* 10620 * Contrary to fork() this only deals with a switch back to per 10621 * task mode either because the above decreased users or an 10622 * affinity change increased the number of allowed CPUs and the 10623 * deferred fixup did not run yet. 10624 */ 10625 if (WARN_ON_ONCE(mm->mm_cid.percpu)) 10626 return false; 10627 /* 10628 * A failed fork(2) cleanup never gets here, so @current must have 10629 * the same MM as @t. That's true for exit() and the failed 10630 * pthread_create() cleanup case. 10631 */ 10632 if (WARN_ON_ONCE(current->mm != mm)) 10633 return false; 10634 return true; 10635 } 10636 10637 /* 10638 * When a task exits, the MM CID held by the task is not longer required as 10639 * the task cannot return to user space. 10640 */ 10641 void sched_mm_cid_exit(struct task_struct *t) 10642 { 10643 struct mm_struct *mm = t->mm; 10644 10645 if (!mm || !t->mm_cid.active) 10646 return; 10647 /* 10648 * Ensure that only one instance is doing MM CID operations within 10649 * a MM. The common case is uncontended. The rare fixup case adds 10650 * some overhead. 10651 */ 10652 scoped_guard(mutex, &mm->mm_cid.mutex) { 10653 /* mm_cid::mutex is sufficient to protect mm_cid::users */ 10654 if (likely(mm->mm_cid.users > 1)) { 10655 scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { 10656 if (!__sched_mm_cid_exit(t)) 10657 return; 10658 /* Mode change required. Transfer currents CID */ 10659 mm_cid_transit_to_task(current, this_cpu_ptr(mm->mm_cid.pcpu)); 10660 } 10661 mm_cid_fixup_cpus_to_tasks(mm); 10662 return; 10663 } 10664 /* Last user */ 10665 scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { 10666 /* Required across execve() */ 10667 if (t == current) 10668 mm_cid_transit_to_task(t, this_cpu_ptr(mm->mm_cid.pcpu)); 10669 /* Ignore mode change. There is nothing to do. */ 10670 sched_mm_cid_remove_user(t); 10671 } 10672 } 10673 10674 /* 10675 * As this is the last user (execve(), process exit or failed 10676 * fork(2)) there is no concurrency anymore. 10677 * 10678 * Synchronize eventually pending work to ensure that there are no 10679 * dangling references left. @t->mm_cid.users is zero so nothing 10680 * can queue this work anymore. 10681 */ 10682 irq_work_sync(&mm->mm_cid.irq_work); 10683 cancel_work_sync(&mm->mm_cid.work); 10684 } 10685 10686 /* Deactivate MM CID allocation across execve() */ 10687 void sched_mm_cid_before_execve(struct task_struct *t) 10688 { 10689 sched_mm_cid_exit(t); 10690 } 10691 10692 /* Reactivate MM CID after successful execve() */ 10693 void sched_mm_cid_after_execve(struct task_struct *t) 10694 { 10695 sched_mm_cid_fork(t); 10696 } 10697 10698 static void mm_cid_work_fn(struct work_struct *work) 10699 { 10700 struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.work); 10701 10702 guard(mutex)(&mm->mm_cid.mutex); 10703 /* Did the last user task exit already? */ 10704 if (!mm->mm_cid.users) 10705 return; 10706 10707 scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { 10708 /* Have fork() or exit() handled it already? */ 10709 if (!mm->mm_cid.update_deferred) 10710 return; 10711 /* This clears mm_cid::update_deferred */ 10712 if (!mm_update_max_cids(mm)) 10713 return; 10714 /* Affinity changes can only switch back to task mode */ 10715 if (WARN_ON_ONCE(mm->mm_cid.percpu)) 10716 return; 10717 } 10718 mm_cid_fixup_cpus_to_tasks(mm); 10719 } 10720 10721 static void mm_cid_irq_work(struct irq_work *work) 10722 { 10723 struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.irq_work); 10724 10725 /* 10726 * Needs to be unconditional because mm_cid::lock cannot be held 10727 * when scheduling work as mm_update_cpus_allowed() nests inside 10728 * rq::lock and schedule_work() might end up in wakeup... 10729 */ 10730 schedule_work(&mm->mm_cid.work); 10731 } 10732 10733 void mm_init_cid(struct mm_struct *mm, struct task_struct *p) 10734 { 10735 mm->mm_cid.max_cids = 0; 10736 mm->mm_cid.percpu = 0; 10737 mm->mm_cid.transit = 0; 10738 mm->mm_cid.nr_cpus_allowed = p->nr_cpus_allowed; 10739 mm->mm_cid.users = 0; 10740 mm->mm_cid.pcpu_thrs = 0; 10741 mm->mm_cid.update_deferred = 0; 10742 raw_spin_lock_init(&mm->mm_cid.lock); 10743 mutex_init(&mm->mm_cid.mutex); 10744 mm->mm_cid.irq_work = IRQ_WORK_INIT_HARD(mm_cid_irq_work); 10745 INIT_WORK(&mm->mm_cid.work, mm_cid_work_fn); 10746 cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask); 10747 bitmap_zero(mm_cidmask(mm), num_possible_cpus()); 10748 } 10749 #else /* CONFIG_SCHED_MM_CID */ 10750 static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk) { } 10751 #endif /* !CONFIG_SCHED_MM_CID */ 10752 10753 static DEFINE_PER_CPU(struct sched_change_ctx, sched_change_ctx); 10754 10755 struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags) 10756 { 10757 struct sched_change_ctx *ctx = this_cpu_ptr(&sched_change_ctx); 10758 struct rq *rq = task_rq(p); 10759 10760 /* 10761 * Must exclusively use matched flags since this is both dequeue and 10762 * enqueue. 10763 */ 10764 WARN_ON_ONCE(flags & 0xFFFF0000); 10765 10766 lockdep_assert_rq_held(rq); 10767 10768 if (!(flags & DEQUEUE_NOCLOCK)) { 10769 update_rq_clock(rq); 10770 flags |= DEQUEUE_NOCLOCK; 10771 } 10772 10773 if (flags & DEQUEUE_CLASS) { 10774 if (p->sched_class->switching_from) 10775 p->sched_class->switching_from(rq, p); 10776 } 10777 10778 *ctx = (struct sched_change_ctx){ 10779 .p = p, 10780 .flags = flags, 10781 .queued = task_on_rq_queued(p), 10782 .running = task_current_donor(rq, p), 10783 }; 10784 10785 if (!(flags & DEQUEUE_CLASS)) { 10786 if (p->sched_class->get_prio) 10787 ctx->prio = p->sched_class->get_prio(rq, p); 10788 else 10789 ctx->prio = p->prio; 10790 } 10791 10792 if (ctx->queued) 10793 dequeue_task(rq, p, flags); 10794 if (ctx->running) 10795 put_prev_task(rq, p); 10796 10797 if ((flags & DEQUEUE_CLASS) && p->sched_class->switched_from) 10798 p->sched_class->switched_from(rq, p); 10799 10800 return ctx; 10801 } 10802 10803 void sched_change_end(struct sched_change_ctx *ctx) 10804 { 10805 struct task_struct *p = ctx->p; 10806 struct rq *rq = task_rq(p); 10807 10808 lockdep_assert_rq_held(rq); 10809 10810 if ((ctx->flags & ENQUEUE_CLASS) && p->sched_class->switching_to) 10811 p->sched_class->switching_to(rq, p); 10812 10813 if (ctx->queued) 10814 enqueue_task(rq, p, ctx->flags); 10815 if (ctx->running) 10816 set_next_task(rq, p); 10817 10818 if (ctx->flags & ENQUEUE_CLASS) { 10819 if (p->sched_class->switched_to) 10820 p->sched_class->switched_to(rq, p); 10821 } else { 10822 p->sched_class->prio_changed(rq, p, ctx->prio); 10823 } 10824 } 10825