xref: /linux/kernel/sched/core.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #define INSTANTIATE_EXPORTED_MIGRATE_DISABLE
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hrtimer_api.h>
14 #include <linux/ktime_api.h>
15 #include <linux/sched/signal.h>
16 #include <linux/syscalls_api.h>
17 #include <linux/debug_locks.h>
18 #include <linux/prefetch.h>
19 #include <linux/capability.h>
20 #include <linux/pgtable_api.h>
21 #include <linux/wait_bit.h>
22 #include <linux/jiffies.h>
23 #include <linux/spinlock_api.h>
24 #include <linux/cpumask_api.h>
25 #include <linux/lockdep_api.h>
26 #include <linux/hardirq.h>
27 #include <linux/softirq.h>
28 #include <linux/refcount_api.h>
29 #include <linux/topology.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/cond_resched.h>
32 #include <linux/sched/cputime.h>
33 #include <linux/sched/debug.h>
34 #include <linux/sched/hotplug.h>
35 #include <linux/sched/init.h>
36 #include <linux/sched/isolation.h>
37 #include <linux/sched/loadavg.h>
38 #include <linux/sched/mm.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/rseq_api.h>
41 #include <linux/sched/rt.h>
42 
43 #include <linux/blkdev.h>
44 #include <linux/context_tracking.h>
45 #include <linux/cpuset.h>
46 #include <linux/delayacct.h>
47 #include <linux/init_task.h>
48 #include <linux/interrupt.h>
49 #include <linux/ioprio.h>
50 #include <linux/kallsyms.h>
51 #include <linux/kcov.h>
52 #include <linux/kprobes.h>
53 #include <linux/llist_api.h>
54 #include <linux/mmu_context.h>
55 #include <linux/mmzone.h>
56 #include <linux/mutex_api.h>
57 #include <linux/nmi.h>
58 #include <linux/nospec.h>
59 #include <linux/perf_event_api.h>
60 #include <linux/profile.h>
61 #include <linux/psi.h>
62 #include <linux/rcuwait_api.h>
63 #include <linux/rseq.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/scs.h>
66 #include <linux/slab.h>
67 #include <linux/syscalls.h>
68 #include <linux/vtime.h>
69 #include <linux/wait_api.h>
70 #include <linux/workqueue_api.h>
71 #include <linux/livepatch_sched.h>
72 
73 #ifdef CONFIG_PREEMPT_DYNAMIC
74 # ifdef CONFIG_GENERIC_IRQ_ENTRY
75 #  include <linux/irq-entry-common.h>
76 # endif
77 #endif
78 
79 #include <uapi/linux/sched/types.h>
80 
81 #include <asm/irq_regs.h>
82 #include <asm/switch_to.h>
83 #include <asm/tlb.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include <linux/sched/rseq_api.h>
87 #include <trace/events/sched.h>
88 #include <trace/events/ipi.h>
89 #undef CREATE_TRACE_POINTS
90 
91 #include "sched.h"
92 #include "stats.h"
93 
94 #include "autogroup.h"
95 #include "pelt.h"
96 #include "smp.h"
97 
98 #include "../workqueue_internal.h"
99 #include "../../io_uring/io-wq.h"
100 #include "../smpboot.h"
101 #include "../locking/mutex.h"
102 
103 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
105 
106 /*
107  * Export tracepoints that act as a bare tracehook (ie: have no trace event
108  * associated with them) to allow external modules to probe them.
109  */
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
120 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
121 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
122 
123 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
124 DEFINE_PER_CPU(struct rnd_state, sched_rnd_state);
125 
126 #ifdef CONFIG_SCHED_PROXY_EXEC
127 DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec);
128 static int __init setup_proxy_exec(char *str)
129 {
130 	bool proxy_enable = true;
131 
132 	if (*str && kstrtobool(str + 1, &proxy_enable)) {
133 		pr_warn("Unable to parse sched_proxy_exec=\n");
134 		return 0;
135 	}
136 
137 	if (proxy_enable) {
138 		pr_info("sched_proxy_exec enabled via boot arg\n");
139 		static_branch_enable(&__sched_proxy_exec);
140 	} else {
141 		pr_info("sched_proxy_exec disabled via boot arg\n");
142 		static_branch_disable(&__sched_proxy_exec);
143 	}
144 	return 1;
145 }
146 #else
147 static int __init setup_proxy_exec(char *str)
148 {
149 	pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n");
150 	return 0;
151 }
152 #endif
153 __setup("sched_proxy_exec", setup_proxy_exec);
154 
155 /*
156  * Debugging: various feature bits
157  *
158  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
159  * sysctl_sched_features, defined in sched.h, to allow constants propagation
160  * at compile time and compiler optimization based on features default.
161  */
162 #define SCHED_FEAT(name, enabled)	\
163 	(1UL << __SCHED_FEAT_##name) * enabled |
164 __read_mostly unsigned int sysctl_sched_features =
165 #include "features.h"
166 	0;
167 #undef SCHED_FEAT
168 
169 /*
170  * Print a warning if need_resched is set for the given duration (if
171  * LATENCY_WARN is enabled).
172  *
173  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
174  * per boot.
175  */
176 __read_mostly int sysctl_resched_latency_warn_ms = 100;
177 __read_mostly int sysctl_resched_latency_warn_once = 1;
178 
179 /*
180  * Number of tasks to iterate in a single balance run.
181  * Limited because this is done with IRQs disabled.
182  */
183 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
184 
185 __read_mostly int scheduler_running;
186 
187 #ifdef CONFIG_SCHED_CORE
188 
189 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
190 
191 /* kernel prio, less is more */
192 static inline int __task_prio(const struct task_struct *p)
193 {
194 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
195 		return -2;
196 
197 	if (p->dl_server)
198 		return -1; /* deadline */
199 
200 	if (rt_or_dl_prio(p->prio))
201 		return p->prio; /* [-1, 99] */
202 
203 	if (p->sched_class == &idle_sched_class)
204 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
205 
206 	if (task_on_scx(p))
207 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
208 
209 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
210 }
211 
212 /*
213  * l(a,b)
214  * le(a,b) := !l(b,a)
215  * g(a,b)  := l(b,a)
216  * ge(a,b) := !l(a,b)
217  */
218 
219 /* real prio, less is less */
220 static inline bool prio_less(const struct task_struct *a,
221 			     const struct task_struct *b, bool in_fi)
222 {
223 
224 	int pa = __task_prio(a), pb = __task_prio(b);
225 
226 	if (-pa < -pb)
227 		return true;
228 
229 	if (-pb < -pa)
230 		return false;
231 
232 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
233 		const struct sched_dl_entity *a_dl, *b_dl;
234 
235 		a_dl = &a->dl;
236 		/*
237 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
238 		 * __task_prio() can return -1 (for DL) even for those. In that
239 		 * case, get to the dl_server's DL entity.
240 		 */
241 		if (a->dl_server)
242 			a_dl = a->dl_server;
243 
244 		b_dl = &b->dl;
245 		if (b->dl_server)
246 			b_dl = b->dl_server;
247 
248 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
249 	}
250 
251 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
252 		return cfs_prio_less(a, b, in_fi);
253 
254 #ifdef CONFIG_SCHED_CLASS_EXT
255 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
256 		return scx_prio_less(a, b, in_fi);
257 #endif
258 
259 	return false;
260 }
261 
262 static inline bool __sched_core_less(const struct task_struct *a,
263 				     const struct task_struct *b)
264 {
265 	if (a->core_cookie < b->core_cookie)
266 		return true;
267 
268 	if (a->core_cookie > b->core_cookie)
269 		return false;
270 
271 	/* flip prio, so high prio is leftmost */
272 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
273 		return true;
274 
275 	return false;
276 }
277 
278 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
279 
280 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
281 {
282 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
283 }
284 
285 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
286 {
287 	const struct task_struct *p = __node_2_sc(node);
288 	unsigned long cookie = (unsigned long)key;
289 
290 	if (cookie < p->core_cookie)
291 		return -1;
292 
293 	if (cookie > p->core_cookie)
294 		return 1;
295 
296 	return 0;
297 }
298 
299 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
300 {
301 	if (p->se.sched_delayed)
302 		return;
303 
304 	rq->core->core_task_seq++;
305 
306 	if (!p->core_cookie)
307 		return;
308 
309 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
310 }
311 
312 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
313 {
314 	if (p->se.sched_delayed)
315 		return;
316 
317 	rq->core->core_task_seq++;
318 
319 	if (sched_core_enqueued(p)) {
320 		rb_erase(&p->core_node, &rq->core_tree);
321 		RB_CLEAR_NODE(&p->core_node);
322 	}
323 
324 	/*
325 	 * Migrating the last task off the cpu, with the cpu in forced idle
326 	 * state. Reschedule to create an accounting edge for forced idle,
327 	 * and re-examine whether the core is still in forced idle state.
328 	 */
329 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
330 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
331 		resched_curr(rq);
332 }
333 
334 static int sched_task_is_throttled(struct task_struct *p, int cpu)
335 {
336 	if (p->sched_class->task_is_throttled)
337 		return p->sched_class->task_is_throttled(p, cpu);
338 
339 	return 0;
340 }
341 
342 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
343 {
344 	struct rb_node *node = &p->core_node;
345 	int cpu = task_cpu(p);
346 
347 	do {
348 		node = rb_next(node);
349 		if (!node)
350 			return NULL;
351 
352 		p = __node_2_sc(node);
353 		if (p->core_cookie != cookie)
354 			return NULL;
355 
356 	} while (sched_task_is_throttled(p, cpu));
357 
358 	return p;
359 }
360 
361 /*
362  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
363  * If no suitable task is found, NULL will be returned.
364  */
365 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
366 {
367 	struct task_struct *p;
368 	struct rb_node *node;
369 
370 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
371 	if (!node)
372 		return NULL;
373 
374 	p = __node_2_sc(node);
375 	if (!sched_task_is_throttled(p, rq->cpu))
376 		return p;
377 
378 	return sched_core_next(p, cookie);
379 }
380 
381 /*
382  * Magic required such that:
383  *
384  *	raw_spin_rq_lock(rq);
385  *	...
386  *	raw_spin_rq_unlock(rq);
387  *
388  * ends up locking and unlocking the _same_ lock, and all CPUs
389  * always agree on what rq has what lock.
390  *
391  * XXX entirely possible to selectively enable cores, don't bother for now.
392  */
393 
394 static DEFINE_MUTEX(sched_core_mutex);
395 static atomic_t sched_core_count;
396 static struct cpumask sched_core_mask;
397 
398 static void sched_core_lock(int cpu, unsigned long *flags)
399 {
400 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
401 	int t, i = 0;
402 
403 	local_irq_save(*flags);
404 	for_each_cpu(t, smt_mask)
405 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
406 }
407 
408 static void sched_core_unlock(int cpu, unsigned long *flags)
409 {
410 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
411 	int t;
412 
413 	for_each_cpu(t, smt_mask)
414 		raw_spin_unlock(&cpu_rq(t)->__lock);
415 	local_irq_restore(*flags);
416 }
417 
418 static void __sched_core_flip(bool enabled)
419 {
420 	unsigned long flags;
421 	int cpu, t;
422 
423 	cpus_read_lock();
424 
425 	/*
426 	 * Toggle the online cores, one by one.
427 	 */
428 	cpumask_copy(&sched_core_mask, cpu_online_mask);
429 	for_each_cpu(cpu, &sched_core_mask) {
430 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
431 
432 		sched_core_lock(cpu, &flags);
433 
434 		for_each_cpu(t, smt_mask)
435 			cpu_rq(t)->core_enabled = enabled;
436 
437 		cpu_rq(cpu)->core->core_forceidle_start = 0;
438 
439 		sched_core_unlock(cpu, &flags);
440 
441 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
442 	}
443 
444 	/*
445 	 * Toggle the offline CPUs.
446 	 */
447 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
448 		cpu_rq(cpu)->core_enabled = enabled;
449 
450 	cpus_read_unlock();
451 }
452 
453 static void sched_core_assert_empty(void)
454 {
455 	int cpu;
456 
457 	for_each_possible_cpu(cpu)
458 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
459 }
460 
461 static void __sched_core_enable(void)
462 {
463 	static_branch_enable(&__sched_core_enabled);
464 	/*
465 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
466 	 * and future ones will observe !sched_core_disabled().
467 	 */
468 	synchronize_rcu();
469 	__sched_core_flip(true);
470 	sched_core_assert_empty();
471 }
472 
473 static void __sched_core_disable(void)
474 {
475 	sched_core_assert_empty();
476 	__sched_core_flip(false);
477 	static_branch_disable(&__sched_core_enabled);
478 }
479 
480 void sched_core_get(void)
481 {
482 	if (atomic_inc_not_zero(&sched_core_count))
483 		return;
484 
485 	mutex_lock(&sched_core_mutex);
486 	if (!atomic_read(&sched_core_count))
487 		__sched_core_enable();
488 
489 	smp_mb__before_atomic();
490 	atomic_inc(&sched_core_count);
491 	mutex_unlock(&sched_core_mutex);
492 }
493 
494 static void __sched_core_put(struct work_struct *work)
495 {
496 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
497 		__sched_core_disable();
498 		mutex_unlock(&sched_core_mutex);
499 	}
500 }
501 
502 void sched_core_put(void)
503 {
504 	static DECLARE_WORK(_work, __sched_core_put);
505 
506 	/*
507 	 * "There can be only one"
508 	 *
509 	 * Either this is the last one, or we don't actually need to do any
510 	 * 'work'. If it is the last *again*, we rely on
511 	 * WORK_STRUCT_PENDING_BIT.
512 	 */
513 	if (!atomic_add_unless(&sched_core_count, -1, 1))
514 		schedule_work(&_work);
515 }
516 
517 #else /* !CONFIG_SCHED_CORE: */
518 
519 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
520 static inline void
521 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
522 
523 #endif /* !CONFIG_SCHED_CORE */
524 
525 /* need a wrapper since we may need to trace from modules */
526 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp);
527 
528 /* Call via the helper macro trace_set_current_state. */
529 void __trace_set_current_state(int state_value)
530 {
531 	trace_sched_set_state_tp(current, state_value);
532 }
533 EXPORT_SYMBOL(__trace_set_current_state);
534 
535 /*
536  * Serialization rules:
537  *
538  * Lock order:
539  *
540  *   p->pi_lock
541  *     rq->lock
542  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
543  *
544  *  rq1->lock
545  *    rq2->lock  where: rq1 < rq2
546  *
547  * Regular state:
548  *
549  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
550  * local CPU's rq->lock, it optionally removes the task from the runqueue and
551  * always looks at the local rq data structures to find the most eligible task
552  * to run next.
553  *
554  * Task enqueue is also under rq->lock, possibly taken from another CPU.
555  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
556  * the local CPU to avoid bouncing the runqueue state around [ see
557  * ttwu_queue_wakelist() ]
558  *
559  * Task wakeup, specifically wakeups that involve migration, are horribly
560  * complicated to avoid having to take two rq->locks.
561  *
562  * Special state:
563  *
564  * System-calls and anything external will use task_rq_lock() which acquires
565  * both p->pi_lock and rq->lock. As a consequence the state they change is
566  * stable while holding either lock:
567  *
568  *  - sched_setaffinity()/
569  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
570  *  - set_user_nice():		p->se.load, p->*prio
571  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
572  *				p->se.load, p->rt_priority,
573  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
574  *  - sched_setnuma():		p->numa_preferred_nid
575  *  - sched_move_task():	p->sched_task_group
576  *  - uclamp_update_active()	p->uclamp*
577  *
578  * p->state <- TASK_*:
579  *
580  *   is changed locklessly using set_current_state(), __set_current_state() or
581  *   set_special_state(), see their respective comments, or by
582  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
583  *   concurrent self.
584  *
585  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
586  *
587  *   is set by activate_task() and cleared by deactivate_task()/block_task(),
588  *   under rq->lock. Non-zero indicates the task is runnable, the special
589  *   ON_RQ_MIGRATING state is used for migration without holding both
590  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
591  *
592  *   Additionally it is possible to be ->on_rq but still be considered not
593  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
594  *   but will be dequeued as soon as they get picked again. See the
595  *   task_is_runnable() helper.
596  *
597  * p->on_cpu <- { 0, 1 }:
598  *
599  *   is set by prepare_task() and cleared by finish_task() such that it will be
600  *   set before p is scheduled-in and cleared after p is scheduled-out, both
601  *   under rq->lock. Non-zero indicates the task is running on its CPU.
602  *
603  *   [ The astute reader will observe that it is possible for two tasks on one
604  *     CPU to have ->on_cpu = 1 at the same time. ]
605  *
606  * task_cpu(p): is changed by set_task_cpu(), the rules are:
607  *
608  *  - Don't call set_task_cpu() on a blocked task:
609  *
610  *    We don't care what CPU we're not running on, this simplifies hotplug,
611  *    the CPU assignment of blocked tasks isn't required to be valid.
612  *
613  *  - for try_to_wake_up(), called under p->pi_lock:
614  *
615  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
616  *
617  *  - for migration called under rq->lock:
618  *    [ see task_on_rq_migrating() in task_rq_lock() ]
619  *
620  *    o move_queued_task()
621  *    o detach_task()
622  *
623  *  - for migration called under double_rq_lock():
624  *
625  *    o __migrate_swap_task()
626  *    o push_rt_task() / pull_rt_task()
627  *    o push_dl_task() / pull_dl_task()
628  *    o dl_task_offline_migration()
629  *
630  */
631 
632 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
633 {
634 	raw_spinlock_t *lock;
635 
636 	/* Matches synchronize_rcu() in __sched_core_enable() */
637 	preempt_disable();
638 	if (sched_core_disabled()) {
639 		raw_spin_lock_nested(&rq->__lock, subclass);
640 		/* preempt_count *MUST* be > 1 */
641 		preempt_enable_no_resched();
642 		return;
643 	}
644 
645 	for (;;) {
646 		lock = __rq_lockp(rq);
647 		raw_spin_lock_nested(lock, subclass);
648 		if (likely(lock == __rq_lockp(rq))) {
649 			/* preempt_count *MUST* be > 1 */
650 			preempt_enable_no_resched();
651 			return;
652 		}
653 		raw_spin_unlock(lock);
654 	}
655 }
656 
657 bool raw_spin_rq_trylock(struct rq *rq)
658 {
659 	raw_spinlock_t *lock;
660 	bool ret;
661 
662 	/* Matches synchronize_rcu() in __sched_core_enable() */
663 	preempt_disable();
664 	if (sched_core_disabled()) {
665 		ret = raw_spin_trylock(&rq->__lock);
666 		preempt_enable();
667 		return ret;
668 	}
669 
670 	for (;;) {
671 		lock = __rq_lockp(rq);
672 		ret = raw_spin_trylock(lock);
673 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
674 			preempt_enable();
675 			return ret;
676 		}
677 		raw_spin_unlock(lock);
678 	}
679 }
680 
681 void raw_spin_rq_unlock(struct rq *rq)
682 {
683 	raw_spin_unlock(rq_lockp(rq));
684 }
685 
686 /*
687  * double_rq_lock - safely lock two runqueues
688  */
689 void double_rq_lock(struct rq *rq1, struct rq *rq2)
690 {
691 	lockdep_assert_irqs_disabled();
692 
693 	if (rq_order_less(rq2, rq1))
694 		swap(rq1, rq2);
695 
696 	raw_spin_rq_lock(rq1);
697 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
698 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
699 
700 	double_rq_clock_clear_update(rq1, rq2);
701 }
702 
703 /*
704  * __task_rq_lock - lock the rq @p resides on.
705  */
706 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
707 	__acquires(rq->lock)
708 {
709 	struct rq *rq;
710 
711 	lockdep_assert_held(&p->pi_lock);
712 
713 	for (;;) {
714 		rq = task_rq(p);
715 		raw_spin_rq_lock(rq);
716 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
717 			rq_pin_lock(rq, rf);
718 			return rq;
719 		}
720 		raw_spin_rq_unlock(rq);
721 
722 		while (unlikely(task_on_rq_migrating(p)))
723 			cpu_relax();
724 	}
725 }
726 
727 /*
728  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
729  */
730 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
731 	__acquires(p->pi_lock)
732 	__acquires(rq->lock)
733 {
734 	struct rq *rq;
735 
736 	for (;;) {
737 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
738 		rq = task_rq(p);
739 		raw_spin_rq_lock(rq);
740 		/*
741 		 *	move_queued_task()		task_rq_lock()
742 		 *
743 		 *	ACQUIRE (rq->lock)
744 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
745 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
746 		 *	[S] ->cpu = new_cpu		[L] task_rq()
747 		 *					[L] ->on_rq
748 		 *	RELEASE (rq->lock)
749 		 *
750 		 * If we observe the old CPU in task_rq_lock(), the acquire of
751 		 * the old rq->lock will fully serialize against the stores.
752 		 *
753 		 * If we observe the new CPU in task_rq_lock(), the address
754 		 * dependency headed by '[L] rq = task_rq()' and the acquire
755 		 * will pair with the WMB to ensure we then also see migrating.
756 		 */
757 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
758 			rq_pin_lock(rq, rf);
759 			return rq;
760 		}
761 		raw_spin_rq_unlock(rq);
762 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
763 
764 		while (unlikely(task_on_rq_migrating(p)))
765 			cpu_relax();
766 	}
767 }
768 
769 /*
770  * RQ-clock updating methods:
771  */
772 
773 static void update_rq_clock_task(struct rq *rq, s64 delta)
774 {
775 /*
776  * In theory, the compile should just see 0 here, and optimize out the call
777  * to sched_rt_avg_update. But I don't trust it...
778  */
779 	s64 __maybe_unused steal = 0, irq_delta = 0;
780 
781 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
782 	if (irqtime_enabled()) {
783 		irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
784 
785 		/*
786 		 * Since irq_time is only updated on {soft,}irq_exit, we might run into
787 		 * this case when a previous update_rq_clock() happened inside a
788 		 * {soft,}IRQ region.
789 		 *
790 		 * When this happens, we stop ->clock_task and only update the
791 		 * prev_irq_time stamp to account for the part that fit, so that a next
792 		 * update will consume the rest. This ensures ->clock_task is
793 		 * monotonic.
794 		 *
795 		 * It does however cause some slight miss-attribution of {soft,}IRQ
796 		 * time, a more accurate solution would be to update the irq_time using
797 		 * the current rq->clock timestamp, except that would require using
798 		 * atomic ops.
799 		 */
800 		if (irq_delta > delta)
801 			irq_delta = delta;
802 
803 		rq->prev_irq_time += irq_delta;
804 		delta -= irq_delta;
805 		delayacct_irq(rq->curr, irq_delta);
806 	}
807 #endif
808 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
809 	if (static_key_false((&paravirt_steal_rq_enabled))) {
810 		u64 prev_steal;
811 
812 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
813 		steal -= rq->prev_steal_time_rq;
814 
815 		if (unlikely(steal > delta))
816 			steal = delta;
817 
818 		rq->prev_steal_time_rq = prev_steal;
819 		delta -= steal;
820 	}
821 #endif
822 
823 	rq->clock_task += delta;
824 
825 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
826 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
827 		update_irq_load_avg(rq, irq_delta + steal);
828 #endif
829 	update_rq_clock_pelt(rq, delta);
830 }
831 
832 void update_rq_clock(struct rq *rq)
833 {
834 	s64 delta;
835 	u64 clock;
836 
837 	lockdep_assert_rq_held(rq);
838 
839 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
840 		return;
841 
842 	if (sched_feat(WARN_DOUBLE_CLOCK))
843 		WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED);
844 	rq->clock_update_flags |= RQCF_UPDATED;
845 
846 	clock = sched_clock_cpu(cpu_of(rq));
847 	scx_rq_clock_update(rq, clock);
848 
849 	delta = clock - rq->clock;
850 	if (delta < 0)
851 		return;
852 	rq->clock += delta;
853 
854 	update_rq_clock_task(rq, delta);
855 }
856 
857 #ifdef CONFIG_SCHED_HRTICK
858 /*
859  * Use HR-timers to deliver accurate preemption points.
860  */
861 
862 static void hrtick_clear(struct rq *rq)
863 {
864 	if (hrtimer_active(&rq->hrtick_timer))
865 		hrtimer_cancel(&rq->hrtick_timer);
866 }
867 
868 /*
869  * High-resolution timer tick.
870  * Runs from hardirq context with interrupts disabled.
871  */
872 static enum hrtimer_restart hrtick(struct hrtimer *timer)
873 {
874 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
875 	struct rq_flags rf;
876 
877 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
878 
879 	rq_lock(rq, &rf);
880 	update_rq_clock(rq);
881 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
882 	rq_unlock(rq, &rf);
883 
884 	return HRTIMER_NORESTART;
885 }
886 
887 static void __hrtick_restart(struct rq *rq)
888 {
889 	struct hrtimer *timer = &rq->hrtick_timer;
890 	ktime_t time = rq->hrtick_time;
891 
892 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
893 }
894 
895 /*
896  * called from hardirq (IPI) context
897  */
898 static void __hrtick_start(void *arg)
899 {
900 	struct rq *rq = arg;
901 	struct rq_flags rf;
902 
903 	rq_lock(rq, &rf);
904 	__hrtick_restart(rq);
905 	rq_unlock(rq, &rf);
906 }
907 
908 /*
909  * Called to set the hrtick timer state.
910  *
911  * called with rq->lock held and IRQs disabled
912  */
913 void hrtick_start(struct rq *rq, u64 delay)
914 {
915 	struct hrtimer *timer = &rq->hrtick_timer;
916 	s64 delta;
917 
918 	/*
919 	 * Don't schedule slices shorter than 10000ns, that just
920 	 * doesn't make sense and can cause timer DoS.
921 	 */
922 	delta = max_t(s64, delay, 10000LL);
923 	rq->hrtick_time = ktime_add_ns(hrtimer_cb_get_time(timer), delta);
924 
925 	if (rq == this_rq())
926 		__hrtick_restart(rq);
927 	else
928 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
929 }
930 
931 static void hrtick_rq_init(struct rq *rq)
932 {
933 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
934 	hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
935 }
936 #else /* !CONFIG_SCHED_HRTICK: */
937 static inline void hrtick_clear(struct rq *rq)
938 {
939 }
940 
941 static inline void hrtick_rq_init(struct rq *rq)
942 {
943 }
944 #endif /* !CONFIG_SCHED_HRTICK */
945 
946 /*
947  * try_cmpxchg based fetch_or() macro so it works for different integer types:
948  */
949 #define fetch_or(ptr, mask)						\
950 	({								\
951 		typeof(ptr) _ptr = (ptr);				\
952 		typeof(mask) _mask = (mask);				\
953 		typeof(*_ptr) _val = *_ptr;				\
954 									\
955 		do {							\
956 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
957 	_val;								\
958 })
959 
960 #ifdef TIF_POLLING_NRFLAG
961 /*
962  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
963  * this avoids any races wrt polling state changes and thereby avoids
964  * spurious IPIs.
965  */
966 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
967 {
968 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
969 }
970 
971 /*
972  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
973  *
974  * If this returns true, then the idle task promises to call
975  * sched_ttwu_pending() and reschedule soon.
976  */
977 static bool set_nr_if_polling(struct task_struct *p)
978 {
979 	struct thread_info *ti = task_thread_info(p);
980 	typeof(ti->flags) val = READ_ONCE(ti->flags);
981 
982 	do {
983 		if (!(val & _TIF_POLLING_NRFLAG))
984 			return false;
985 		if (val & _TIF_NEED_RESCHED)
986 			return true;
987 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
988 
989 	return true;
990 }
991 
992 #else
993 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
994 {
995 	set_ti_thread_flag(ti, tif);
996 	return true;
997 }
998 
999 static inline bool set_nr_if_polling(struct task_struct *p)
1000 {
1001 	return false;
1002 }
1003 #endif
1004 
1005 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
1006 {
1007 	struct wake_q_node *node = &task->wake_q;
1008 
1009 	/*
1010 	 * Atomically grab the task, if ->wake_q is !nil already it means
1011 	 * it's already queued (either by us or someone else) and will get the
1012 	 * wakeup due to that.
1013 	 *
1014 	 * In order to ensure that a pending wakeup will observe our pending
1015 	 * state, even in the failed case, an explicit smp_mb() must be used.
1016 	 */
1017 	smp_mb__before_atomic();
1018 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1019 		return false;
1020 
1021 	/*
1022 	 * The head is context local, there can be no concurrency.
1023 	 */
1024 	*head->lastp = node;
1025 	head->lastp = &node->next;
1026 	return true;
1027 }
1028 
1029 /**
1030  * wake_q_add() - queue a wakeup for 'later' waking.
1031  * @head: the wake_q_head to add @task to
1032  * @task: the task to queue for 'later' wakeup
1033  *
1034  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1035  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1036  * instantly.
1037  *
1038  * This function must be used as-if it were wake_up_process(); IOW the task
1039  * must be ready to be woken at this location.
1040  */
1041 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1042 {
1043 	if (__wake_q_add(head, task))
1044 		get_task_struct(task);
1045 }
1046 
1047 /**
1048  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1049  * @head: the wake_q_head to add @task to
1050  * @task: the task to queue for 'later' wakeup
1051  *
1052  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1053  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1054  * instantly.
1055  *
1056  * This function must be used as-if it were wake_up_process(); IOW the task
1057  * must be ready to be woken at this location.
1058  *
1059  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1060  * that already hold reference to @task can call the 'safe' version and trust
1061  * wake_q to do the right thing depending whether or not the @task is already
1062  * queued for wakeup.
1063  */
1064 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1065 {
1066 	if (!__wake_q_add(head, task))
1067 		put_task_struct(task);
1068 }
1069 
1070 void wake_up_q(struct wake_q_head *head)
1071 {
1072 	struct wake_q_node *node = head->first;
1073 
1074 	while (node != WAKE_Q_TAIL) {
1075 		struct task_struct *task;
1076 
1077 		task = container_of(node, struct task_struct, wake_q);
1078 		node = node->next;
1079 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1080 		WRITE_ONCE(task->wake_q.next, NULL);
1081 		/* Task can safely be re-inserted now. */
1082 
1083 		/*
1084 		 * wake_up_process() executes a full barrier, which pairs with
1085 		 * the queueing in wake_q_add() so as not to miss wakeups.
1086 		 */
1087 		wake_up_process(task);
1088 		put_task_struct(task);
1089 	}
1090 }
1091 
1092 /*
1093  * resched_curr - mark rq's current task 'to be rescheduled now'.
1094  *
1095  * On UP this means the setting of the need_resched flag, on SMP it
1096  * might also involve a cross-CPU call to trigger the scheduler on
1097  * the target CPU.
1098  */
1099 static void __resched_curr(struct rq *rq, int tif)
1100 {
1101 	struct task_struct *curr = rq->curr;
1102 	struct thread_info *cti = task_thread_info(curr);
1103 	int cpu;
1104 
1105 	lockdep_assert_rq_held(rq);
1106 
1107 	/*
1108 	 * Always immediately preempt the idle task; no point in delaying doing
1109 	 * actual work.
1110 	 */
1111 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1112 		tif = TIF_NEED_RESCHED;
1113 
1114 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1115 		return;
1116 
1117 	cpu = cpu_of(rq);
1118 
1119 	trace_sched_set_need_resched_tp(curr, cpu, tif);
1120 	if (cpu == smp_processor_id()) {
1121 		set_ti_thread_flag(cti, tif);
1122 		if (tif == TIF_NEED_RESCHED)
1123 			set_preempt_need_resched();
1124 		return;
1125 	}
1126 
1127 	if (set_nr_and_not_polling(cti, tif)) {
1128 		if (tif == TIF_NEED_RESCHED)
1129 			smp_send_reschedule(cpu);
1130 	} else {
1131 		trace_sched_wake_idle_without_ipi(cpu);
1132 	}
1133 }
1134 
1135 void __trace_set_need_resched(struct task_struct *curr, int tif)
1136 {
1137 	trace_sched_set_need_resched_tp(curr, smp_processor_id(), tif);
1138 }
1139 
1140 void resched_curr(struct rq *rq)
1141 {
1142 	__resched_curr(rq, TIF_NEED_RESCHED);
1143 }
1144 
1145 #ifdef CONFIG_PREEMPT_DYNAMIC
1146 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1147 static __always_inline bool dynamic_preempt_lazy(void)
1148 {
1149 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1150 }
1151 #else
1152 static __always_inline bool dynamic_preempt_lazy(void)
1153 {
1154 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1155 }
1156 #endif
1157 
1158 static __always_inline int get_lazy_tif_bit(void)
1159 {
1160 	if (dynamic_preempt_lazy())
1161 		return TIF_NEED_RESCHED_LAZY;
1162 
1163 	return TIF_NEED_RESCHED;
1164 }
1165 
1166 void resched_curr_lazy(struct rq *rq)
1167 {
1168 	__resched_curr(rq, get_lazy_tif_bit());
1169 }
1170 
1171 void resched_cpu(int cpu)
1172 {
1173 	struct rq *rq = cpu_rq(cpu);
1174 	unsigned long flags;
1175 
1176 	raw_spin_rq_lock_irqsave(rq, flags);
1177 	if (cpu_online(cpu) || cpu == smp_processor_id())
1178 		resched_curr(rq);
1179 	raw_spin_rq_unlock_irqrestore(rq, flags);
1180 }
1181 
1182 #ifdef CONFIG_NO_HZ_COMMON
1183 /*
1184  * In the semi idle case, use the nearest busy CPU for migrating timers
1185  * from an idle CPU.  This is good for power-savings.
1186  *
1187  * We don't do similar optimization for completely idle system, as
1188  * selecting an idle CPU will add more delays to the timers than intended
1189  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1190  */
1191 int get_nohz_timer_target(void)
1192 {
1193 	int i, cpu = smp_processor_id(), default_cpu = -1;
1194 	struct sched_domain *sd;
1195 	const struct cpumask *hk_mask;
1196 
1197 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1198 		if (!idle_cpu(cpu))
1199 			return cpu;
1200 		default_cpu = cpu;
1201 	}
1202 
1203 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1204 
1205 	guard(rcu)();
1206 
1207 	for_each_domain(cpu, sd) {
1208 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1209 			if (cpu == i)
1210 				continue;
1211 
1212 			if (!idle_cpu(i))
1213 				return i;
1214 		}
1215 	}
1216 
1217 	if (default_cpu == -1)
1218 		default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1219 
1220 	return default_cpu;
1221 }
1222 
1223 /*
1224  * When add_timer_on() enqueues a timer into the timer wheel of an
1225  * idle CPU then this timer might expire before the next timer event
1226  * which is scheduled to wake up that CPU. In case of a completely
1227  * idle system the next event might even be infinite time into the
1228  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1229  * leaves the inner idle loop so the newly added timer is taken into
1230  * account when the CPU goes back to idle and evaluates the timer
1231  * wheel for the next timer event.
1232  */
1233 static void wake_up_idle_cpu(int cpu)
1234 {
1235 	struct rq *rq = cpu_rq(cpu);
1236 
1237 	if (cpu == smp_processor_id())
1238 		return;
1239 
1240 	/*
1241 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1242 	 * part of the idle loop. This forces an exit from the idle loop
1243 	 * and a round trip to schedule(). Now this could be optimized
1244 	 * because a simple new idle loop iteration is enough to
1245 	 * re-evaluate the next tick. Provided some re-ordering of tick
1246 	 * nohz functions that would need to follow TIF_NR_POLLING
1247 	 * clearing:
1248 	 *
1249 	 * - On most architectures, a simple fetch_or on ti::flags with a
1250 	 *   "0" value would be enough to know if an IPI needs to be sent.
1251 	 *
1252 	 * - x86 needs to perform a last need_resched() check between
1253 	 *   monitor and mwait which doesn't take timers into account.
1254 	 *   There a dedicated TIF_TIMER flag would be required to
1255 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1256 	 *   before mwait().
1257 	 *
1258 	 * However, remote timer enqueue is not such a frequent event
1259 	 * and testing of the above solutions didn't appear to report
1260 	 * much benefits.
1261 	 */
1262 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1263 		smp_send_reschedule(cpu);
1264 	else
1265 		trace_sched_wake_idle_without_ipi(cpu);
1266 }
1267 
1268 static bool wake_up_full_nohz_cpu(int cpu)
1269 {
1270 	/*
1271 	 * We just need the target to call irq_exit() and re-evaluate
1272 	 * the next tick. The nohz full kick at least implies that.
1273 	 * If needed we can still optimize that later with an
1274 	 * empty IRQ.
1275 	 */
1276 	if (cpu_is_offline(cpu))
1277 		return true;  /* Don't try to wake offline CPUs. */
1278 	if (tick_nohz_full_cpu(cpu)) {
1279 		if (cpu != smp_processor_id() ||
1280 		    tick_nohz_tick_stopped())
1281 			tick_nohz_full_kick_cpu(cpu);
1282 		return true;
1283 	}
1284 
1285 	return false;
1286 }
1287 
1288 /*
1289  * Wake up the specified CPU.  If the CPU is going offline, it is the
1290  * caller's responsibility to deal with the lost wakeup, for example,
1291  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1292  */
1293 void wake_up_nohz_cpu(int cpu)
1294 {
1295 	if (!wake_up_full_nohz_cpu(cpu))
1296 		wake_up_idle_cpu(cpu);
1297 }
1298 
1299 static void nohz_csd_func(void *info)
1300 {
1301 	struct rq *rq = info;
1302 	int cpu = cpu_of(rq);
1303 	unsigned int flags;
1304 
1305 	/*
1306 	 * Release the rq::nohz_csd.
1307 	 */
1308 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1309 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1310 
1311 	rq->idle_balance = idle_cpu(cpu);
1312 	if (rq->idle_balance) {
1313 		rq->nohz_idle_balance = flags;
1314 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1315 	}
1316 }
1317 
1318 #endif /* CONFIG_NO_HZ_COMMON */
1319 
1320 #ifdef CONFIG_NO_HZ_FULL
1321 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1322 {
1323 	if (rq->nr_running != 1)
1324 		return false;
1325 
1326 	if (p->sched_class != &fair_sched_class)
1327 		return false;
1328 
1329 	if (!task_on_rq_queued(p))
1330 		return false;
1331 
1332 	return true;
1333 }
1334 
1335 bool sched_can_stop_tick(struct rq *rq)
1336 {
1337 	int fifo_nr_running;
1338 
1339 	/* Deadline tasks, even if single, need the tick */
1340 	if (rq->dl.dl_nr_running)
1341 		return false;
1342 
1343 	/*
1344 	 * If there are more than one RR tasks, we need the tick to affect the
1345 	 * actual RR behaviour.
1346 	 */
1347 	if (rq->rt.rr_nr_running) {
1348 		if (rq->rt.rr_nr_running == 1)
1349 			return true;
1350 		else
1351 			return false;
1352 	}
1353 
1354 	/*
1355 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1356 	 * forced preemption between FIFO tasks.
1357 	 */
1358 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1359 	if (fifo_nr_running)
1360 		return true;
1361 
1362 	/*
1363 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1364 	 * left. For CFS, if there's more than one we need the tick for
1365 	 * involuntary preemption. For SCX, ask.
1366 	 */
1367 	if (scx_enabled() && !scx_can_stop_tick(rq))
1368 		return false;
1369 
1370 	if (rq->cfs.h_nr_queued > 1)
1371 		return false;
1372 
1373 	/*
1374 	 * If there is one task and it has CFS runtime bandwidth constraints
1375 	 * and it's on the cpu now we don't want to stop the tick.
1376 	 * This check prevents clearing the bit if a newly enqueued task here is
1377 	 * dequeued by migrating while the constrained task continues to run.
1378 	 * E.g. going from 2->1 without going through pick_next_task().
1379 	 */
1380 	if (__need_bw_check(rq, rq->curr)) {
1381 		if (cfs_task_bw_constrained(rq->curr))
1382 			return false;
1383 	}
1384 
1385 	return true;
1386 }
1387 #endif /* CONFIG_NO_HZ_FULL */
1388 
1389 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED)
1390 /*
1391  * Iterate task_group tree rooted at *from, calling @down when first entering a
1392  * node and @up when leaving it for the final time.
1393  *
1394  * Caller must hold rcu_lock or sufficient equivalent.
1395  */
1396 int walk_tg_tree_from(struct task_group *from,
1397 			     tg_visitor down, tg_visitor up, void *data)
1398 {
1399 	struct task_group *parent, *child;
1400 	int ret;
1401 
1402 	parent = from;
1403 
1404 down:
1405 	ret = (*down)(parent, data);
1406 	if (ret)
1407 		goto out;
1408 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1409 		parent = child;
1410 		goto down;
1411 
1412 up:
1413 		continue;
1414 	}
1415 	ret = (*up)(parent, data);
1416 	if (ret || parent == from)
1417 		goto out;
1418 
1419 	child = parent;
1420 	parent = parent->parent;
1421 	if (parent)
1422 		goto up;
1423 out:
1424 	return ret;
1425 }
1426 
1427 int tg_nop(struct task_group *tg, void *data)
1428 {
1429 	return 0;
1430 }
1431 #endif
1432 
1433 void set_load_weight(struct task_struct *p, bool update_load)
1434 {
1435 	int prio = p->static_prio - MAX_RT_PRIO;
1436 	struct load_weight lw;
1437 
1438 	if (task_has_idle_policy(p)) {
1439 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1440 		lw.inv_weight = WMULT_IDLEPRIO;
1441 	} else {
1442 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1443 		lw.inv_weight = sched_prio_to_wmult[prio];
1444 	}
1445 
1446 	/*
1447 	 * SCHED_OTHER tasks have to update their load when changing their
1448 	 * weight
1449 	 */
1450 	if (update_load && p->sched_class->reweight_task)
1451 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1452 	else
1453 		p->se.load = lw;
1454 }
1455 
1456 #ifdef CONFIG_UCLAMP_TASK
1457 /*
1458  * Serializes updates of utilization clamp values
1459  *
1460  * The (slow-path) user-space triggers utilization clamp value updates which
1461  * can require updates on (fast-path) scheduler's data structures used to
1462  * support enqueue/dequeue operations.
1463  * While the per-CPU rq lock protects fast-path update operations, user-space
1464  * requests are serialized using a mutex to reduce the risk of conflicting
1465  * updates or API abuses.
1466  */
1467 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1468 
1469 /* Max allowed minimum utilization */
1470 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1471 
1472 /* Max allowed maximum utilization */
1473 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1474 
1475 /*
1476  * By default RT tasks run at the maximum performance point/capacity of the
1477  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1478  * SCHED_CAPACITY_SCALE.
1479  *
1480  * This knob allows admins to change the default behavior when uclamp is being
1481  * used. In battery powered devices, particularly, running at the maximum
1482  * capacity and frequency will increase energy consumption and shorten the
1483  * battery life.
1484  *
1485  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1486  *
1487  * This knob will not override the system default sched_util_clamp_min defined
1488  * above.
1489  */
1490 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1491 
1492 /* All clamps are required to be less or equal than these values */
1493 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1494 
1495 /*
1496  * This static key is used to reduce the uclamp overhead in the fast path. It
1497  * primarily disables the call to uclamp_rq_{inc, dec}() in
1498  * enqueue/dequeue_task().
1499  *
1500  * This allows users to continue to enable uclamp in their kernel config with
1501  * minimum uclamp overhead in the fast path.
1502  *
1503  * As soon as userspace modifies any of the uclamp knobs, the static key is
1504  * enabled, since we have an actual users that make use of uclamp
1505  * functionality.
1506  *
1507  * The knobs that would enable this static key are:
1508  *
1509  *   * A task modifying its uclamp value with sched_setattr().
1510  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1511  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1512  */
1513 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1514 
1515 static inline unsigned int
1516 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1517 		  unsigned int clamp_value)
1518 {
1519 	/*
1520 	 * Avoid blocked utilization pushing up the frequency when we go
1521 	 * idle (which drops the max-clamp) by retaining the last known
1522 	 * max-clamp.
1523 	 */
1524 	if (clamp_id == UCLAMP_MAX) {
1525 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1526 		return clamp_value;
1527 	}
1528 
1529 	return uclamp_none(UCLAMP_MIN);
1530 }
1531 
1532 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1533 				     unsigned int clamp_value)
1534 {
1535 	/* Reset max-clamp retention only on idle exit */
1536 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1537 		return;
1538 
1539 	uclamp_rq_set(rq, clamp_id, clamp_value);
1540 }
1541 
1542 static inline
1543 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1544 				   unsigned int clamp_value)
1545 {
1546 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1547 	int bucket_id = UCLAMP_BUCKETS - 1;
1548 
1549 	/*
1550 	 * Since both min and max clamps are max aggregated, find the
1551 	 * top most bucket with tasks in.
1552 	 */
1553 	for ( ; bucket_id >= 0; bucket_id--) {
1554 		if (!bucket[bucket_id].tasks)
1555 			continue;
1556 		return bucket[bucket_id].value;
1557 	}
1558 
1559 	/* No tasks -- default clamp values */
1560 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1561 }
1562 
1563 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1564 {
1565 	unsigned int default_util_min;
1566 	struct uclamp_se *uc_se;
1567 
1568 	lockdep_assert_held(&p->pi_lock);
1569 
1570 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1571 
1572 	/* Only sync if user didn't override the default */
1573 	if (uc_se->user_defined)
1574 		return;
1575 
1576 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1577 	uclamp_se_set(uc_se, default_util_min, false);
1578 }
1579 
1580 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1581 {
1582 	if (!rt_task(p))
1583 		return;
1584 
1585 	/* Protect updates to p->uclamp_* */
1586 	guard(task_rq_lock)(p);
1587 	__uclamp_update_util_min_rt_default(p);
1588 }
1589 
1590 static inline struct uclamp_se
1591 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1592 {
1593 	/* Copy by value as we could modify it */
1594 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1595 #ifdef CONFIG_UCLAMP_TASK_GROUP
1596 	unsigned int tg_min, tg_max, value;
1597 
1598 	/*
1599 	 * Tasks in autogroups or root task group will be
1600 	 * restricted by system defaults.
1601 	 */
1602 	if (task_group_is_autogroup(task_group(p)))
1603 		return uc_req;
1604 	if (task_group(p) == &root_task_group)
1605 		return uc_req;
1606 
1607 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1608 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1609 	value = uc_req.value;
1610 	value = clamp(value, tg_min, tg_max);
1611 	uclamp_se_set(&uc_req, value, false);
1612 #endif
1613 
1614 	return uc_req;
1615 }
1616 
1617 /*
1618  * The effective clamp bucket index of a task depends on, by increasing
1619  * priority:
1620  * - the task specific clamp value, when explicitly requested from userspace
1621  * - the task group effective clamp value, for tasks not either in the root
1622  *   group or in an autogroup
1623  * - the system default clamp value, defined by the sysadmin
1624  */
1625 static inline struct uclamp_se
1626 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1627 {
1628 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1629 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1630 
1631 	/* System default restrictions always apply */
1632 	if (unlikely(uc_req.value > uc_max.value))
1633 		return uc_max;
1634 
1635 	return uc_req;
1636 }
1637 
1638 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1639 {
1640 	struct uclamp_se uc_eff;
1641 
1642 	/* Task currently refcounted: use back-annotated (effective) value */
1643 	if (p->uclamp[clamp_id].active)
1644 		return (unsigned long)p->uclamp[clamp_id].value;
1645 
1646 	uc_eff = uclamp_eff_get(p, clamp_id);
1647 
1648 	return (unsigned long)uc_eff.value;
1649 }
1650 
1651 /*
1652  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1653  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1654  * updates the rq's clamp value if required.
1655  *
1656  * Tasks can have a task-specific value requested from user-space, track
1657  * within each bucket the maximum value for tasks refcounted in it.
1658  * This "local max aggregation" allows to track the exact "requested" value
1659  * for each bucket when all its RUNNABLE tasks require the same clamp.
1660  */
1661 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1662 				    enum uclamp_id clamp_id)
1663 {
1664 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1665 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1666 	struct uclamp_bucket *bucket;
1667 
1668 	lockdep_assert_rq_held(rq);
1669 
1670 	/* Update task effective clamp */
1671 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1672 
1673 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1674 	bucket->tasks++;
1675 	uc_se->active = true;
1676 
1677 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1678 
1679 	/*
1680 	 * Local max aggregation: rq buckets always track the max
1681 	 * "requested" clamp value of its RUNNABLE tasks.
1682 	 */
1683 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1684 		bucket->value = uc_se->value;
1685 
1686 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1687 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1688 }
1689 
1690 /*
1691  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1692  * is released. If this is the last task reference counting the rq's max
1693  * active clamp value, then the rq's clamp value is updated.
1694  *
1695  * Both refcounted tasks and rq's cached clamp values are expected to be
1696  * always valid. If it's detected they are not, as defensive programming,
1697  * enforce the expected state and warn.
1698  */
1699 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1700 				    enum uclamp_id clamp_id)
1701 {
1702 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1703 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1704 	struct uclamp_bucket *bucket;
1705 	unsigned int bkt_clamp;
1706 	unsigned int rq_clamp;
1707 
1708 	lockdep_assert_rq_held(rq);
1709 
1710 	/*
1711 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1712 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1713 	 *
1714 	 * In this case the uc_se->active flag should be false since no uclamp
1715 	 * accounting was performed at enqueue time and we can just return
1716 	 * here.
1717 	 *
1718 	 * Need to be careful of the following enqueue/dequeue ordering
1719 	 * problem too
1720 	 *
1721 	 *	enqueue(taskA)
1722 	 *	// sched_uclamp_used gets enabled
1723 	 *	enqueue(taskB)
1724 	 *	dequeue(taskA)
1725 	 *	// Must not decrement bucket->tasks here
1726 	 *	dequeue(taskB)
1727 	 *
1728 	 * where we could end up with stale data in uc_se and
1729 	 * bucket[uc_se->bucket_id].
1730 	 *
1731 	 * The following check here eliminates the possibility of such race.
1732 	 */
1733 	if (unlikely(!uc_se->active))
1734 		return;
1735 
1736 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1737 
1738 	WARN_ON_ONCE(!bucket->tasks);
1739 	if (likely(bucket->tasks))
1740 		bucket->tasks--;
1741 
1742 	uc_se->active = false;
1743 
1744 	/*
1745 	 * Keep "local max aggregation" simple and accept to (possibly)
1746 	 * overboost some RUNNABLE tasks in the same bucket.
1747 	 * The rq clamp bucket value is reset to its base value whenever
1748 	 * there are no more RUNNABLE tasks refcounting it.
1749 	 */
1750 	if (likely(bucket->tasks))
1751 		return;
1752 
1753 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1754 	/*
1755 	 * Defensive programming: this should never happen. If it happens,
1756 	 * e.g. due to future modification, warn and fix up the expected value.
1757 	 */
1758 	WARN_ON_ONCE(bucket->value > rq_clamp);
1759 	if (bucket->value >= rq_clamp) {
1760 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1761 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1762 	}
1763 }
1764 
1765 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags)
1766 {
1767 	enum uclamp_id clamp_id;
1768 
1769 	/*
1770 	 * Avoid any overhead until uclamp is actually used by the userspace.
1771 	 *
1772 	 * The condition is constructed such that a NOP is generated when
1773 	 * sched_uclamp_used is disabled.
1774 	 */
1775 	if (!uclamp_is_used())
1776 		return;
1777 
1778 	if (unlikely(!p->sched_class->uclamp_enabled))
1779 		return;
1780 
1781 	/* Only inc the delayed task which being woken up. */
1782 	if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED))
1783 		return;
1784 
1785 	for_each_clamp_id(clamp_id)
1786 		uclamp_rq_inc_id(rq, p, clamp_id);
1787 
1788 	/* Reset clamp idle holding when there is one RUNNABLE task */
1789 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1790 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1791 }
1792 
1793 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1794 {
1795 	enum uclamp_id clamp_id;
1796 
1797 	/*
1798 	 * Avoid any overhead until uclamp is actually used by the userspace.
1799 	 *
1800 	 * The condition is constructed such that a NOP is generated when
1801 	 * sched_uclamp_used is disabled.
1802 	 */
1803 	if (!uclamp_is_used())
1804 		return;
1805 
1806 	if (unlikely(!p->sched_class->uclamp_enabled))
1807 		return;
1808 
1809 	if (p->se.sched_delayed)
1810 		return;
1811 
1812 	for_each_clamp_id(clamp_id)
1813 		uclamp_rq_dec_id(rq, p, clamp_id);
1814 }
1815 
1816 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1817 				      enum uclamp_id clamp_id)
1818 {
1819 	if (!p->uclamp[clamp_id].active)
1820 		return;
1821 
1822 	uclamp_rq_dec_id(rq, p, clamp_id);
1823 	uclamp_rq_inc_id(rq, p, clamp_id);
1824 
1825 	/*
1826 	 * Make sure to clear the idle flag if we've transiently reached 0
1827 	 * active tasks on rq.
1828 	 */
1829 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1830 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1831 }
1832 
1833 static inline void
1834 uclamp_update_active(struct task_struct *p)
1835 {
1836 	enum uclamp_id clamp_id;
1837 	struct rq_flags rf;
1838 	struct rq *rq;
1839 
1840 	/*
1841 	 * Lock the task and the rq where the task is (or was) queued.
1842 	 *
1843 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1844 	 * price to pay to safely serialize util_{min,max} updates with
1845 	 * enqueues, dequeues and migration operations.
1846 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1847 	 */
1848 	rq = task_rq_lock(p, &rf);
1849 
1850 	/*
1851 	 * Setting the clamp bucket is serialized by task_rq_lock().
1852 	 * If the task is not yet RUNNABLE and its task_struct is not
1853 	 * affecting a valid clamp bucket, the next time it's enqueued,
1854 	 * it will already see the updated clamp bucket value.
1855 	 */
1856 	for_each_clamp_id(clamp_id)
1857 		uclamp_rq_reinc_id(rq, p, clamp_id);
1858 
1859 	task_rq_unlock(rq, p, &rf);
1860 }
1861 
1862 #ifdef CONFIG_UCLAMP_TASK_GROUP
1863 static inline void
1864 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1865 {
1866 	struct css_task_iter it;
1867 	struct task_struct *p;
1868 
1869 	css_task_iter_start(css, 0, &it);
1870 	while ((p = css_task_iter_next(&it)))
1871 		uclamp_update_active(p);
1872 	css_task_iter_end(&it);
1873 }
1874 
1875 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1876 #endif
1877 
1878 #ifdef CONFIG_SYSCTL
1879 #ifdef CONFIG_UCLAMP_TASK_GROUP
1880 static void uclamp_update_root_tg(void)
1881 {
1882 	struct task_group *tg = &root_task_group;
1883 
1884 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1885 		      sysctl_sched_uclamp_util_min, false);
1886 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1887 		      sysctl_sched_uclamp_util_max, false);
1888 
1889 	guard(rcu)();
1890 	cpu_util_update_eff(&root_task_group.css);
1891 }
1892 #else
1893 static void uclamp_update_root_tg(void) { }
1894 #endif
1895 
1896 static void uclamp_sync_util_min_rt_default(void)
1897 {
1898 	struct task_struct *g, *p;
1899 
1900 	/*
1901 	 * copy_process()			sysctl_uclamp
1902 	 *					  uclamp_min_rt = X;
1903 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1904 	 *   // link thread			  smp_mb__after_spinlock()
1905 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1906 	 *   sched_post_fork()			  for_each_process_thread()
1907 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1908 	 *
1909 	 * Ensures that either sched_post_fork() will observe the new
1910 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1911 	 * task.
1912 	 */
1913 	read_lock(&tasklist_lock);
1914 	smp_mb__after_spinlock();
1915 	read_unlock(&tasklist_lock);
1916 
1917 	guard(rcu)();
1918 	for_each_process_thread(g, p)
1919 		uclamp_update_util_min_rt_default(p);
1920 }
1921 
1922 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1923 				void *buffer, size_t *lenp, loff_t *ppos)
1924 {
1925 	bool update_root_tg = false;
1926 	int old_min, old_max, old_min_rt;
1927 	int result;
1928 
1929 	guard(mutex)(&uclamp_mutex);
1930 
1931 	old_min = sysctl_sched_uclamp_util_min;
1932 	old_max = sysctl_sched_uclamp_util_max;
1933 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1934 
1935 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1936 	if (result)
1937 		goto undo;
1938 	if (!write)
1939 		return 0;
1940 
1941 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1942 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1943 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1944 
1945 		result = -EINVAL;
1946 		goto undo;
1947 	}
1948 
1949 	if (old_min != sysctl_sched_uclamp_util_min) {
1950 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1951 			      sysctl_sched_uclamp_util_min, false);
1952 		update_root_tg = true;
1953 	}
1954 	if (old_max != sysctl_sched_uclamp_util_max) {
1955 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1956 			      sysctl_sched_uclamp_util_max, false);
1957 		update_root_tg = true;
1958 	}
1959 
1960 	if (update_root_tg) {
1961 		sched_uclamp_enable();
1962 		uclamp_update_root_tg();
1963 	}
1964 
1965 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1966 		sched_uclamp_enable();
1967 		uclamp_sync_util_min_rt_default();
1968 	}
1969 
1970 	/*
1971 	 * We update all RUNNABLE tasks only when task groups are in use.
1972 	 * Otherwise, keep it simple and do just a lazy update at each next
1973 	 * task enqueue time.
1974 	 */
1975 	return 0;
1976 
1977 undo:
1978 	sysctl_sched_uclamp_util_min = old_min;
1979 	sysctl_sched_uclamp_util_max = old_max;
1980 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1981 	return result;
1982 }
1983 #endif /* CONFIG_SYSCTL */
1984 
1985 static void uclamp_fork(struct task_struct *p)
1986 {
1987 	enum uclamp_id clamp_id;
1988 
1989 	/*
1990 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1991 	 * as the task is still at its early fork stages.
1992 	 */
1993 	for_each_clamp_id(clamp_id)
1994 		p->uclamp[clamp_id].active = false;
1995 
1996 	if (likely(!p->sched_reset_on_fork))
1997 		return;
1998 
1999 	for_each_clamp_id(clamp_id) {
2000 		uclamp_se_set(&p->uclamp_req[clamp_id],
2001 			      uclamp_none(clamp_id), false);
2002 	}
2003 }
2004 
2005 static void uclamp_post_fork(struct task_struct *p)
2006 {
2007 	uclamp_update_util_min_rt_default(p);
2008 }
2009 
2010 static void __init init_uclamp_rq(struct rq *rq)
2011 {
2012 	enum uclamp_id clamp_id;
2013 	struct uclamp_rq *uc_rq = rq->uclamp;
2014 
2015 	for_each_clamp_id(clamp_id) {
2016 		uc_rq[clamp_id] = (struct uclamp_rq) {
2017 			.value = uclamp_none(clamp_id)
2018 		};
2019 	}
2020 
2021 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2022 }
2023 
2024 static void __init init_uclamp(void)
2025 {
2026 	struct uclamp_se uc_max = {};
2027 	enum uclamp_id clamp_id;
2028 	int cpu;
2029 
2030 	for_each_possible_cpu(cpu)
2031 		init_uclamp_rq(cpu_rq(cpu));
2032 
2033 	for_each_clamp_id(clamp_id) {
2034 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2035 			      uclamp_none(clamp_id), false);
2036 	}
2037 
2038 	/* System defaults allow max clamp values for both indexes */
2039 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2040 	for_each_clamp_id(clamp_id) {
2041 		uclamp_default[clamp_id] = uc_max;
2042 #ifdef CONFIG_UCLAMP_TASK_GROUP
2043 		root_task_group.uclamp_req[clamp_id] = uc_max;
2044 		root_task_group.uclamp[clamp_id] = uc_max;
2045 #endif
2046 	}
2047 }
2048 
2049 #else /* !CONFIG_UCLAMP_TASK: */
2050 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { }
2051 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2052 static inline void uclamp_fork(struct task_struct *p) { }
2053 static inline void uclamp_post_fork(struct task_struct *p) { }
2054 static inline void init_uclamp(void) { }
2055 #endif /* !CONFIG_UCLAMP_TASK */
2056 
2057 bool sched_task_on_rq(struct task_struct *p)
2058 {
2059 	return task_on_rq_queued(p);
2060 }
2061 
2062 unsigned long get_wchan(struct task_struct *p)
2063 {
2064 	unsigned long ip = 0;
2065 	unsigned int state;
2066 
2067 	if (!p || p == current)
2068 		return 0;
2069 
2070 	/* Only get wchan if task is blocked and we can keep it that way. */
2071 	raw_spin_lock_irq(&p->pi_lock);
2072 	state = READ_ONCE(p->__state);
2073 	smp_rmb(); /* see try_to_wake_up() */
2074 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2075 		ip = __get_wchan(p);
2076 	raw_spin_unlock_irq(&p->pi_lock);
2077 
2078 	return ip;
2079 }
2080 
2081 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2082 {
2083 	if (!(flags & ENQUEUE_NOCLOCK))
2084 		update_rq_clock(rq);
2085 
2086 	/*
2087 	 * Can be before ->enqueue_task() because uclamp considers the
2088 	 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared
2089 	 * in ->enqueue_task().
2090 	 */
2091 	uclamp_rq_inc(rq, p, flags);
2092 
2093 	rq->queue_mask |= p->sched_class->queue_mask;
2094 	p->sched_class->enqueue_task(rq, p, flags);
2095 
2096 	psi_enqueue(p, flags);
2097 
2098 	if (!(flags & ENQUEUE_RESTORE))
2099 		sched_info_enqueue(rq, p);
2100 
2101 	if (sched_core_enabled(rq))
2102 		sched_core_enqueue(rq, p);
2103 }
2104 
2105 /*
2106  * Must only return false when DEQUEUE_SLEEP.
2107  */
2108 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2109 {
2110 	if (sched_core_enabled(rq))
2111 		sched_core_dequeue(rq, p, flags);
2112 
2113 	if (!(flags & DEQUEUE_NOCLOCK))
2114 		update_rq_clock(rq);
2115 
2116 	if (!(flags & DEQUEUE_SAVE))
2117 		sched_info_dequeue(rq, p);
2118 
2119 	psi_dequeue(p, flags);
2120 
2121 	/*
2122 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2123 	 * and mark the task ->sched_delayed.
2124 	 */
2125 	uclamp_rq_dec(rq, p);
2126 	rq->queue_mask |= p->sched_class->queue_mask;
2127 	return p->sched_class->dequeue_task(rq, p, flags);
2128 }
2129 
2130 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2131 {
2132 	if (task_on_rq_migrating(p))
2133 		flags |= ENQUEUE_MIGRATED;
2134 
2135 	enqueue_task(rq, p, flags);
2136 
2137 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2138 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2139 }
2140 
2141 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2142 {
2143 	WARN_ON_ONCE(flags & DEQUEUE_SLEEP);
2144 
2145 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2146 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2147 
2148 	/*
2149 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2150 	 * dequeue_task() and cleared *after* enqueue_task().
2151 	 */
2152 
2153 	dequeue_task(rq, p, flags);
2154 }
2155 
2156 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2157 {
2158 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2159 		__block_task(rq, p);
2160 }
2161 
2162 /**
2163  * task_curr - is this task currently executing on a CPU?
2164  * @p: the task in question.
2165  *
2166  * Return: 1 if the task is currently executing. 0 otherwise.
2167  */
2168 inline int task_curr(const struct task_struct *p)
2169 {
2170 	return cpu_curr(task_cpu(p)) == p;
2171 }
2172 
2173 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2174 {
2175 	struct task_struct *donor = rq->donor;
2176 
2177 	if (p->sched_class == donor->sched_class)
2178 		donor->sched_class->wakeup_preempt(rq, p, flags);
2179 	else if (sched_class_above(p->sched_class, donor->sched_class))
2180 		resched_curr(rq);
2181 
2182 	/*
2183 	 * A queue event has occurred, and we're going to schedule.  In
2184 	 * this case, we can save a useless back to back clock update.
2185 	 */
2186 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2187 		rq_clock_skip_update(rq);
2188 }
2189 
2190 static __always_inline
2191 int __task_state_match(struct task_struct *p, unsigned int state)
2192 {
2193 	if (READ_ONCE(p->__state) & state)
2194 		return 1;
2195 
2196 	if (READ_ONCE(p->saved_state) & state)
2197 		return -1;
2198 
2199 	return 0;
2200 }
2201 
2202 static __always_inline
2203 int task_state_match(struct task_struct *p, unsigned int state)
2204 {
2205 	/*
2206 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2207 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2208 	 */
2209 	guard(raw_spinlock_irq)(&p->pi_lock);
2210 	return __task_state_match(p, state);
2211 }
2212 
2213 /*
2214  * wait_task_inactive - wait for a thread to unschedule.
2215  *
2216  * Wait for the thread to block in any of the states set in @match_state.
2217  * If it changes, i.e. @p might have woken up, then return zero.  When we
2218  * succeed in waiting for @p to be off its CPU, we return a positive number
2219  * (its total switch count).  If a second call a short while later returns the
2220  * same number, the caller can be sure that @p has remained unscheduled the
2221  * whole time.
2222  *
2223  * The caller must ensure that the task *will* unschedule sometime soon,
2224  * else this function might spin for a *long* time. This function can't
2225  * be called with interrupts off, or it may introduce deadlock with
2226  * smp_call_function() if an IPI is sent by the same process we are
2227  * waiting to become inactive.
2228  */
2229 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2230 {
2231 	int running, queued, match;
2232 	struct rq_flags rf;
2233 	unsigned long ncsw;
2234 	struct rq *rq;
2235 
2236 	for (;;) {
2237 		/*
2238 		 * We do the initial early heuristics without holding
2239 		 * any task-queue locks at all. We'll only try to get
2240 		 * the runqueue lock when things look like they will
2241 		 * work out!
2242 		 */
2243 		rq = task_rq(p);
2244 
2245 		/*
2246 		 * If the task is actively running on another CPU
2247 		 * still, just relax and busy-wait without holding
2248 		 * any locks.
2249 		 *
2250 		 * NOTE! Since we don't hold any locks, it's not
2251 		 * even sure that "rq" stays as the right runqueue!
2252 		 * But we don't care, since "task_on_cpu()" will
2253 		 * return false if the runqueue has changed and p
2254 		 * is actually now running somewhere else!
2255 		 */
2256 		while (task_on_cpu(rq, p)) {
2257 			if (!task_state_match(p, match_state))
2258 				return 0;
2259 			cpu_relax();
2260 		}
2261 
2262 		/*
2263 		 * Ok, time to look more closely! We need the rq
2264 		 * lock now, to be *sure*. If we're wrong, we'll
2265 		 * just go back and repeat.
2266 		 */
2267 		rq = task_rq_lock(p, &rf);
2268 		/*
2269 		 * If task is sched_delayed, force dequeue it, to avoid always
2270 		 * hitting the tick timeout in the queued case
2271 		 */
2272 		if (p->se.sched_delayed)
2273 			dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
2274 		trace_sched_wait_task(p);
2275 		running = task_on_cpu(rq, p);
2276 		queued = task_on_rq_queued(p);
2277 		ncsw = 0;
2278 		if ((match = __task_state_match(p, match_state))) {
2279 			/*
2280 			 * When matching on p->saved_state, consider this task
2281 			 * still queued so it will wait.
2282 			 */
2283 			if (match < 0)
2284 				queued = 1;
2285 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2286 		}
2287 		task_rq_unlock(rq, p, &rf);
2288 
2289 		/*
2290 		 * If it changed from the expected state, bail out now.
2291 		 */
2292 		if (unlikely(!ncsw))
2293 			break;
2294 
2295 		/*
2296 		 * Was it really running after all now that we
2297 		 * checked with the proper locks actually held?
2298 		 *
2299 		 * Oops. Go back and try again..
2300 		 */
2301 		if (unlikely(running)) {
2302 			cpu_relax();
2303 			continue;
2304 		}
2305 
2306 		/*
2307 		 * It's not enough that it's not actively running,
2308 		 * it must be off the runqueue _entirely_, and not
2309 		 * preempted!
2310 		 *
2311 		 * So if it was still runnable (but just not actively
2312 		 * running right now), it's preempted, and we should
2313 		 * yield - it could be a while.
2314 		 */
2315 		if (unlikely(queued)) {
2316 			ktime_t to = NSEC_PER_SEC / HZ;
2317 
2318 			set_current_state(TASK_UNINTERRUPTIBLE);
2319 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2320 			continue;
2321 		}
2322 
2323 		/*
2324 		 * Ahh, all good. It wasn't running, and it wasn't
2325 		 * runnable, which means that it will never become
2326 		 * running in the future either. We're all done!
2327 		 */
2328 		break;
2329 	}
2330 
2331 	return ncsw;
2332 }
2333 
2334 static void
2335 do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2336 
2337 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2338 {
2339 	struct affinity_context ac = {
2340 		.new_mask  = cpumask_of(rq->cpu),
2341 		.flags     = SCA_MIGRATE_DISABLE,
2342 	};
2343 
2344 	if (likely(!p->migration_disabled))
2345 		return;
2346 
2347 	if (p->cpus_ptr != &p->cpus_mask)
2348 		return;
2349 
2350 	scoped_guard (task_rq_lock, p)
2351 		do_set_cpus_allowed(p, &ac);
2352 }
2353 
2354 void ___migrate_enable(void)
2355 {
2356 	struct task_struct *p = current;
2357 	struct affinity_context ac = {
2358 		.new_mask  = &p->cpus_mask,
2359 		.flags     = SCA_MIGRATE_ENABLE,
2360 	};
2361 
2362 	__set_cpus_allowed_ptr(p, &ac);
2363 }
2364 EXPORT_SYMBOL_GPL(___migrate_enable);
2365 
2366 void migrate_disable(void)
2367 {
2368 	__migrate_disable();
2369 }
2370 EXPORT_SYMBOL_GPL(migrate_disable);
2371 
2372 void migrate_enable(void)
2373 {
2374 	__migrate_enable();
2375 }
2376 EXPORT_SYMBOL_GPL(migrate_enable);
2377 
2378 static inline bool rq_has_pinned_tasks(struct rq *rq)
2379 {
2380 	return rq->nr_pinned;
2381 }
2382 
2383 /*
2384  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2385  * __set_cpus_allowed_ptr() and select_fallback_rq().
2386  */
2387 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2388 {
2389 	/* When not in the task's cpumask, no point in looking further. */
2390 	if (!task_allowed_on_cpu(p, cpu))
2391 		return false;
2392 
2393 	/* migrate_disabled() must be allowed to finish. */
2394 	if (is_migration_disabled(p))
2395 		return cpu_online(cpu);
2396 
2397 	/* Non kernel threads are not allowed during either online or offline. */
2398 	if (!(p->flags & PF_KTHREAD))
2399 		return cpu_active(cpu);
2400 
2401 	/* KTHREAD_IS_PER_CPU is always allowed. */
2402 	if (kthread_is_per_cpu(p))
2403 		return cpu_online(cpu);
2404 
2405 	/* Regular kernel threads don't get to stay during offline. */
2406 	if (cpu_dying(cpu))
2407 		return false;
2408 
2409 	/* But are allowed during online. */
2410 	return cpu_online(cpu);
2411 }
2412 
2413 /*
2414  * This is how migration works:
2415  *
2416  * 1) we invoke migration_cpu_stop() on the target CPU using
2417  *    stop_one_cpu().
2418  * 2) stopper starts to run (implicitly forcing the migrated thread
2419  *    off the CPU)
2420  * 3) it checks whether the migrated task is still in the wrong runqueue.
2421  * 4) if it's in the wrong runqueue then the migration thread removes
2422  *    it and puts it into the right queue.
2423  * 5) stopper completes and stop_one_cpu() returns and the migration
2424  *    is done.
2425  */
2426 
2427 /*
2428  * move_queued_task - move a queued task to new rq.
2429  *
2430  * Returns (locked) new rq. Old rq's lock is released.
2431  */
2432 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2433 				   struct task_struct *p, int new_cpu)
2434 {
2435 	lockdep_assert_rq_held(rq);
2436 
2437 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2438 	set_task_cpu(p, new_cpu);
2439 	rq_unlock(rq, rf);
2440 
2441 	rq = cpu_rq(new_cpu);
2442 
2443 	rq_lock(rq, rf);
2444 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2445 	activate_task(rq, p, 0);
2446 	wakeup_preempt(rq, p, 0);
2447 
2448 	return rq;
2449 }
2450 
2451 struct migration_arg {
2452 	struct task_struct		*task;
2453 	int				dest_cpu;
2454 	struct set_affinity_pending	*pending;
2455 };
2456 
2457 /*
2458  * @refs: number of wait_for_completion()
2459  * @stop_pending: is @stop_work in use
2460  */
2461 struct set_affinity_pending {
2462 	refcount_t		refs;
2463 	unsigned int		stop_pending;
2464 	struct completion	done;
2465 	struct cpu_stop_work	stop_work;
2466 	struct migration_arg	arg;
2467 };
2468 
2469 /*
2470  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2471  * this because either it can't run here any more (set_cpus_allowed()
2472  * away from this CPU, or CPU going down), or because we're
2473  * attempting to rebalance this task on exec (sched_exec).
2474  *
2475  * So we race with normal scheduler movements, but that's OK, as long
2476  * as the task is no longer on this CPU.
2477  */
2478 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2479 				 struct task_struct *p, int dest_cpu)
2480 {
2481 	/* Affinity changed (again). */
2482 	if (!is_cpu_allowed(p, dest_cpu))
2483 		return rq;
2484 
2485 	rq = move_queued_task(rq, rf, p, dest_cpu);
2486 
2487 	return rq;
2488 }
2489 
2490 /*
2491  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2492  * and performs thread migration by bumping thread off CPU then
2493  * 'pushing' onto another runqueue.
2494  */
2495 static int migration_cpu_stop(void *data)
2496 {
2497 	struct migration_arg *arg = data;
2498 	struct set_affinity_pending *pending = arg->pending;
2499 	struct task_struct *p = arg->task;
2500 	struct rq *rq = this_rq();
2501 	bool complete = false;
2502 	struct rq_flags rf;
2503 
2504 	/*
2505 	 * The original target CPU might have gone down and we might
2506 	 * be on another CPU but it doesn't matter.
2507 	 */
2508 	local_irq_save(rf.flags);
2509 	/*
2510 	 * We need to explicitly wake pending tasks before running
2511 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2512 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2513 	 */
2514 	flush_smp_call_function_queue();
2515 
2516 	raw_spin_lock(&p->pi_lock);
2517 	rq_lock(rq, &rf);
2518 
2519 	/*
2520 	 * If we were passed a pending, then ->stop_pending was set, thus
2521 	 * p->migration_pending must have remained stable.
2522 	 */
2523 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2524 
2525 	/*
2526 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2527 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2528 	 * we're holding p->pi_lock.
2529 	 */
2530 	if (task_rq(p) == rq) {
2531 		if (is_migration_disabled(p))
2532 			goto out;
2533 
2534 		if (pending) {
2535 			p->migration_pending = NULL;
2536 			complete = true;
2537 
2538 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2539 				goto out;
2540 		}
2541 
2542 		if (task_on_rq_queued(p)) {
2543 			update_rq_clock(rq);
2544 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2545 		} else {
2546 			p->wake_cpu = arg->dest_cpu;
2547 		}
2548 
2549 		/*
2550 		 * XXX __migrate_task() can fail, at which point we might end
2551 		 * up running on a dodgy CPU, AFAICT this can only happen
2552 		 * during CPU hotplug, at which point we'll get pushed out
2553 		 * anyway, so it's probably not a big deal.
2554 		 */
2555 
2556 	} else if (pending) {
2557 		/*
2558 		 * This happens when we get migrated between migrate_enable()'s
2559 		 * preempt_enable() and scheduling the stopper task. At that
2560 		 * point we're a regular task again and not current anymore.
2561 		 *
2562 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2563 		 * more likely.
2564 		 */
2565 
2566 		/*
2567 		 * The task moved before the stopper got to run. We're holding
2568 		 * ->pi_lock, so the allowed mask is stable - if it got
2569 		 * somewhere allowed, we're done.
2570 		 */
2571 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2572 			p->migration_pending = NULL;
2573 			complete = true;
2574 			goto out;
2575 		}
2576 
2577 		/*
2578 		 * When migrate_enable() hits a rq mis-match we can't reliably
2579 		 * determine is_migration_disabled() and so have to chase after
2580 		 * it.
2581 		 */
2582 		WARN_ON_ONCE(!pending->stop_pending);
2583 		preempt_disable();
2584 		rq_unlock(rq, &rf);
2585 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2586 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2587 				    &pending->arg, &pending->stop_work);
2588 		preempt_enable();
2589 		return 0;
2590 	}
2591 out:
2592 	if (pending)
2593 		pending->stop_pending = false;
2594 	rq_unlock(rq, &rf);
2595 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2596 
2597 	if (complete)
2598 		complete_all(&pending->done);
2599 
2600 	return 0;
2601 }
2602 
2603 int push_cpu_stop(void *arg)
2604 {
2605 	struct rq *lowest_rq = NULL, *rq = this_rq();
2606 	struct task_struct *p = arg;
2607 
2608 	raw_spin_lock_irq(&p->pi_lock);
2609 	raw_spin_rq_lock(rq);
2610 
2611 	if (task_rq(p) != rq)
2612 		goto out_unlock;
2613 
2614 	if (is_migration_disabled(p)) {
2615 		p->migration_flags |= MDF_PUSH;
2616 		goto out_unlock;
2617 	}
2618 
2619 	p->migration_flags &= ~MDF_PUSH;
2620 
2621 	if (p->sched_class->find_lock_rq)
2622 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2623 
2624 	if (!lowest_rq)
2625 		goto out_unlock;
2626 
2627 	// XXX validate p is still the highest prio task
2628 	if (task_rq(p) == rq) {
2629 		move_queued_task_locked(rq, lowest_rq, p);
2630 		resched_curr(lowest_rq);
2631 	}
2632 
2633 	double_unlock_balance(rq, lowest_rq);
2634 
2635 out_unlock:
2636 	rq->push_busy = false;
2637 	raw_spin_rq_unlock(rq);
2638 	raw_spin_unlock_irq(&p->pi_lock);
2639 
2640 	put_task_struct(p);
2641 	return 0;
2642 }
2643 
2644 static inline void mm_update_cpus_allowed(struct mm_struct *mm, const cpumask_t *affmask);
2645 
2646 /*
2647  * sched_class::set_cpus_allowed must do the below, but is not required to
2648  * actually call this function.
2649  */
2650 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2651 {
2652 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2653 		p->cpus_ptr = ctx->new_mask;
2654 		return;
2655 	}
2656 
2657 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2658 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2659 	mm_update_cpus_allowed(p->mm, ctx->new_mask);
2660 
2661 	/*
2662 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2663 	 */
2664 	if (ctx->flags & SCA_USER)
2665 		swap(p->user_cpus_ptr, ctx->user_mask);
2666 }
2667 
2668 static void
2669 do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2670 {
2671 	scoped_guard (sched_change, p, DEQUEUE_SAVE)
2672 		p->sched_class->set_cpus_allowed(p, ctx);
2673 }
2674 
2675 /*
2676  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2677  * affinity (if any) should be destroyed too.
2678  */
2679 void set_cpus_allowed_force(struct task_struct *p, const struct cpumask *new_mask)
2680 {
2681 	struct affinity_context ac = {
2682 		.new_mask  = new_mask,
2683 		.user_mask = NULL,
2684 		.flags     = SCA_USER,	/* clear the user requested mask */
2685 	};
2686 	union cpumask_rcuhead {
2687 		cpumask_t cpumask;
2688 		struct rcu_head rcu;
2689 	};
2690 
2691 	scoped_guard (__task_rq_lock, p)
2692 		do_set_cpus_allowed(p, &ac);
2693 
2694 	/*
2695 	 * Because this is called with p->pi_lock held, it is not possible
2696 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2697 	 * kfree_rcu().
2698 	 */
2699 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2700 }
2701 
2702 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2703 		      int node)
2704 {
2705 	cpumask_t *user_mask;
2706 	unsigned long flags;
2707 
2708 	/*
2709 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2710 	 * may differ by now due to racing.
2711 	 */
2712 	dst->user_cpus_ptr = NULL;
2713 
2714 	/*
2715 	 * This check is racy and losing the race is a valid situation.
2716 	 * It is not worth the extra overhead of taking the pi_lock on
2717 	 * every fork/clone.
2718 	 */
2719 	if (data_race(!src->user_cpus_ptr))
2720 		return 0;
2721 
2722 	user_mask = alloc_user_cpus_ptr(node);
2723 	if (!user_mask)
2724 		return -ENOMEM;
2725 
2726 	/*
2727 	 * Use pi_lock to protect content of user_cpus_ptr
2728 	 *
2729 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2730 	 * set_cpus_allowed_force().
2731 	 */
2732 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2733 	if (src->user_cpus_ptr) {
2734 		swap(dst->user_cpus_ptr, user_mask);
2735 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2736 	}
2737 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2738 
2739 	if (unlikely(user_mask))
2740 		kfree(user_mask);
2741 
2742 	return 0;
2743 }
2744 
2745 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2746 {
2747 	struct cpumask *user_mask = NULL;
2748 
2749 	swap(p->user_cpus_ptr, user_mask);
2750 
2751 	return user_mask;
2752 }
2753 
2754 void release_user_cpus_ptr(struct task_struct *p)
2755 {
2756 	kfree(clear_user_cpus_ptr(p));
2757 }
2758 
2759 /*
2760  * This function is wildly self concurrent; here be dragons.
2761  *
2762  *
2763  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2764  * designated task is enqueued on an allowed CPU. If that task is currently
2765  * running, we have to kick it out using the CPU stopper.
2766  *
2767  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2768  * Consider:
2769  *
2770  *     Initial conditions: P0->cpus_mask = [0, 1]
2771  *
2772  *     P0@CPU0                  P1
2773  *
2774  *     migrate_disable();
2775  *     <preempted>
2776  *                              set_cpus_allowed_ptr(P0, [1]);
2777  *
2778  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2779  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2780  * This means we need the following scheme:
2781  *
2782  *     P0@CPU0                  P1
2783  *
2784  *     migrate_disable();
2785  *     <preempted>
2786  *                              set_cpus_allowed_ptr(P0, [1]);
2787  *                                <blocks>
2788  *     <resumes>
2789  *     migrate_enable();
2790  *       __set_cpus_allowed_ptr();
2791  *       <wakes local stopper>
2792  *                         `--> <woken on migration completion>
2793  *
2794  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2795  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2796  * task p are serialized by p->pi_lock, which we can leverage: the one that
2797  * should come into effect at the end of the Migrate-Disable region is the last
2798  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2799  * but we still need to properly signal those waiting tasks at the appropriate
2800  * moment.
2801  *
2802  * This is implemented using struct set_affinity_pending. The first
2803  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2804  * setup an instance of that struct and install it on the targeted task_struct.
2805  * Any and all further callers will reuse that instance. Those then wait for
2806  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2807  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2808  *
2809  *
2810  * (1) In the cases covered above. There is one more where the completion is
2811  * signaled within affine_move_task() itself: when a subsequent affinity request
2812  * occurs after the stopper bailed out due to the targeted task still being
2813  * Migrate-Disable. Consider:
2814  *
2815  *     Initial conditions: P0->cpus_mask = [0, 1]
2816  *
2817  *     CPU0		  P1				P2
2818  *     <P0>
2819  *       migrate_disable();
2820  *       <preempted>
2821  *                        set_cpus_allowed_ptr(P0, [1]);
2822  *                          <blocks>
2823  *     <migration/0>
2824  *       migration_cpu_stop()
2825  *         is_migration_disabled()
2826  *           <bails>
2827  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2828  *                                                         <signal completion>
2829  *                          <awakes>
2830  *
2831  * Note that the above is safe vs a concurrent migrate_enable(), as any
2832  * pending affinity completion is preceded by an uninstallation of
2833  * p->migration_pending done with p->pi_lock held.
2834  */
2835 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2836 			    int dest_cpu, unsigned int flags)
2837 	__releases(rq->lock)
2838 	__releases(p->pi_lock)
2839 {
2840 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2841 	bool stop_pending, complete = false;
2842 
2843 	/*
2844 	 * Can the task run on the task's current CPU? If so, we're done
2845 	 *
2846 	 * We are also done if the task is the current donor, boosting a lock-
2847 	 * holding proxy, (and potentially has been migrated outside its
2848 	 * current or previous affinity mask)
2849 	 */
2850 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) ||
2851 	    (task_current_donor(rq, p) && !task_current(rq, p))) {
2852 		struct task_struct *push_task = NULL;
2853 
2854 		if ((flags & SCA_MIGRATE_ENABLE) &&
2855 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2856 			rq->push_busy = true;
2857 			push_task = get_task_struct(p);
2858 		}
2859 
2860 		/*
2861 		 * If there are pending waiters, but no pending stop_work,
2862 		 * then complete now.
2863 		 */
2864 		pending = p->migration_pending;
2865 		if (pending && !pending->stop_pending) {
2866 			p->migration_pending = NULL;
2867 			complete = true;
2868 		}
2869 
2870 		preempt_disable();
2871 		task_rq_unlock(rq, p, rf);
2872 		if (push_task) {
2873 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2874 					    p, &rq->push_work);
2875 		}
2876 		preempt_enable();
2877 
2878 		if (complete)
2879 			complete_all(&pending->done);
2880 
2881 		return 0;
2882 	}
2883 
2884 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2885 		/* serialized by p->pi_lock */
2886 		if (!p->migration_pending) {
2887 			/* Install the request */
2888 			refcount_set(&my_pending.refs, 1);
2889 			init_completion(&my_pending.done);
2890 			my_pending.arg = (struct migration_arg) {
2891 				.task = p,
2892 				.dest_cpu = dest_cpu,
2893 				.pending = &my_pending,
2894 			};
2895 
2896 			p->migration_pending = &my_pending;
2897 		} else {
2898 			pending = p->migration_pending;
2899 			refcount_inc(&pending->refs);
2900 			/*
2901 			 * Affinity has changed, but we've already installed a
2902 			 * pending. migration_cpu_stop() *must* see this, else
2903 			 * we risk a completion of the pending despite having a
2904 			 * task on a disallowed CPU.
2905 			 *
2906 			 * Serialized by p->pi_lock, so this is safe.
2907 			 */
2908 			pending->arg.dest_cpu = dest_cpu;
2909 		}
2910 	}
2911 	pending = p->migration_pending;
2912 	/*
2913 	 * - !MIGRATE_ENABLE:
2914 	 *   we'll have installed a pending if there wasn't one already.
2915 	 *
2916 	 * - MIGRATE_ENABLE:
2917 	 *   we're here because the current CPU isn't matching anymore,
2918 	 *   the only way that can happen is because of a concurrent
2919 	 *   set_cpus_allowed_ptr() call, which should then still be
2920 	 *   pending completion.
2921 	 *
2922 	 * Either way, we really should have a @pending here.
2923 	 */
2924 	if (WARN_ON_ONCE(!pending)) {
2925 		task_rq_unlock(rq, p, rf);
2926 		return -EINVAL;
2927 	}
2928 
2929 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2930 		/*
2931 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2932 		 * anything else we cannot do is_migration_disabled(), punt
2933 		 * and have the stopper function handle it all race-free.
2934 		 */
2935 		stop_pending = pending->stop_pending;
2936 		if (!stop_pending)
2937 			pending->stop_pending = true;
2938 
2939 		if (flags & SCA_MIGRATE_ENABLE)
2940 			p->migration_flags &= ~MDF_PUSH;
2941 
2942 		preempt_disable();
2943 		task_rq_unlock(rq, p, rf);
2944 		if (!stop_pending) {
2945 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2946 					    &pending->arg, &pending->stop_work);
2947 		}
2948 		preempt_enable();
2949 
2950 		if (flags & SCA_MIGRATE_ENABLE)
2951 			return 0;
2952 	} else {
2953 
2954 		if (!is_migration_disabled(p)) {
2955 			if (task_on_rq_queued(p))
2956 				rq = move_queued_task(rq, rf, p, dest_cpu);
2957 
2958 			if (!pending->stop_pending) {
2959 				p->migration_pending = NULL;
2960 				complete = true;
2961 			}
2962 		}
2963 		task_rq_unlock(rq, p, rf);
2964 
2965 		if (complete)
2966 			complete_all(&pending->done);
2967 	}
2968 
2969 	wait_for_completion(&pending->done);
2970 
2971 	if (refcount_dec_and_test(&pending->refs))
2972 		wake_up_var(&pending->refs); /* No UaF, just an address */
2973 
2974 	/*
2975 	 * Block the original owner of &pending until all subsequent callers
2976 	 * have seen the completion and decremented the refcount
2977 	 */
2978 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2979 
2980 	/* ARGH */
2981 	WARN_ON_ONCE(my_pending.stop_pending);
2982 
2983 	return 0;
2984 }
2985 
2986 /*
2987  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2988  */
2989 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2990 					 struct affinity_context *ctx,
2991 					 struct rq *rq,
2992 					 struct rq_flags *rf)
2993 	__releases(rq->lock)
2994 	__releases(p->pi_lock)
2995 {
2996 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2997 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2998 	bool kthread = p->flags & PF_KTHREAD;
2999 	unsigned int dest_cpu;
3000 	int ret = 0;
3001 
3002 	if (kthread || is_migration_disabled(p)) {
3003 		/*
3004 		 * Kernel threads are allowed on online && !active CPUs,
3005 		 * however, during cpu-hot-unplug, even these might get pushed
3006 		 * away if not KTHREAD_IS_PER_CPU.
3007 		 *
3008 		 * Specifically, migration_disabled() tasks must not fail the
3009 		 * cpumask_any_and_distribute() pick below, esp. so on
3010 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3011 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3012 		 */
3013 		cpu_valid_mask = cpu_online_mask;
3014 	}
3015 
3016 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3017 		ret = -EINVAL;
3018 		goto out;
3019 	}
3020 
3021 	/*
3022 	 * Must re-check here, to close a race against __kthread_bind(),
3023 	 * sched_setaffinity() is not guaranteed to observe the flag.
3024 	 */
3025 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3026 		ret = -EINVAL;
3027 		goto out;
3028 	}
3029 
3030 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3031 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3032 			if (ctx->flags & SCA_USER)
3033 				swap(p->user_cpus_ptr, ctx->user_mask);
3034 			goto out;
3035 		}
3036 
3037 		if (WARN_ON_ONCE(p == current &&
3038 				 is_migration_disabled(p) &&
3039 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3040 			ret = -EBUSY;
3041 			goto out;
3042 		}
3043 	}
3044 
3045 	/*
3046 	 * Picking a ~random cpu helps in cases where we are changing affinity
3047 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3048 	 * immediately required to distribute the tasks within their new mask.
3049 	 */
3050 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3051 	if (dest_cpu >= nr_cpu_ids) {
3052 		ret = -EINVAL;
3053 		goto out;
3054 	}
3055 
3056 	do_set_cpus_allowed(p, ctx);
3057 
3058 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3059 
3060 out:
3061 	task_rq_unlock(rq, p, rf);
3062 
3063 	return ret;
3064 }
3065 
3066 /*
3067  * Change a given task's CPU affinity. Migrate the thread to a
3068  * proper CPU and schedule it away if the CPU it's executing on
3069  * is removed from the allowed bitmask.
3070  *
3071  * NOTE: the caller must have a valid reference to the task, the
3072  * task must not exit() & deallocate itself prematurely. The
3073  * call is not atomic; no spinlocks may be held.
3074  */
3075 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3076 {
3077 	struct rq_flags rf;
3078 	struct rq *rq;
3079 
3080 	rq = task_rq_lock(p, &rf);
3081 	/*
3082 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3083 	 * flags are set.
3084 	 */
3085 	if (p->user_cpus_ptr &&
3086 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3087 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3088 		ctx->new_mask = rq->scratch_mask;
3089 
3090 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3091 }
3092 
3093 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3094 {
3095 	struct affinity_context ac = {
3096 		.new_mask  = new_mask,
3097 		.flags     = 0,
3098 	};
3099 
3100 	return __set_cpus_allowed_ptr(p, &ac);
3101 }
3102 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3103 
3104 /*
3105  * Change a given task's CPU affinity to the intersection of its current
3106  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3107  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3108  * affinity or use cpu_online_mask instead.
3109  *
3110  * If the resulting mask is empty, leave the affinity unchanged and return
3111  * -EINVAL.
3112  */
3113 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3114 				     struct cpumask *new_mask,
3115 				     const struct cpumask *subset_mask)
3116 {
3117 	struct affinity_context ac = {
3118 		.new_mask  = new_mask,
3119 		.flags     = 0,
3120 	};
3121 	struct rq_flags rf;
3122 	struct rq *rq;
3123 	int err;
3124 
3125 	rq = task_rq_lock(p, &rf);
3126 
3127 	/*
3128 	 * Forcefully restricting the affinity of a deadline task is
3129 	 * likely to cause problems, so fail and noisily override the
3130 	 * mask entirely.
3131 	 */
3132 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3133 		err = -EPERM;
3134 		goto err_unlock;
3135 	}
3136 
3137 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3138 		err = -EINVAL;
3139 		goto err_unlock;
3140 	}
3141 
3142 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3143 
3144 err_unlock:
3145 	task_rq_unlock(rq, p, &rf);
3146 	return err;
3147 }
3148 
3149 /*
3150  * Restrict the CPU affinity of task @p so that it is a subset of
3151  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3152  * old affinity mask. If the resulting mask is empty, we warn and walk
3153  * up the cpuset hierarchy until we find a suitable mask.
3154  */
3155 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3156 {
3157 	cpumask_var_t new_mask;
3158 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3159 
3160 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3161 
3162 	/*
3163 	 * __migrate_task() can fail silently in the face of concurrent
3164 	 * offlining of the chosen destination CPU, so take the hotplug
3165 	 * lock to ensure that the migration succeeds.
3166 	 */
3167 	cpus_read_lock();
3168 	if (!cpumask_available(new_mask))
3169 		goto out_set_mask;
3170 
3171 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3172 		goto out_free_mask;
3173 
3174 	/*
3175 	 * We failed to find a valid subset of the affinity mask for the
3176 	 * task, so override it based on its cpuset hierarchy.
3177 	 */
3178 	cpuset_cpus_allowed(p, new_mask);
3179 	override_mask = new_mask;
3180 
3181 out_set_mask:
3182 	if (printk_ratelimit()) {
3183 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3184 				task_pid_nr(p), p->comm,
3185 				cpumask_pr_args(override_mask));
3186 	}
3187 
3188 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3189 out_free_mask:
3190 	cpus_read_unlock();
3191 	free_cpumask_var(new_mask);
3192 }
3193 
3194 /*
3195  * Restore the affinity of a task @p which was previously restricted by a
3196  * call to force_compatible_cpus_allowed_ptr().
3197  *
3198  * It is the caller's responsibility to serialise this with any calls to
3199  * force_compatible_cpus_allowed_ptr(@p).
3200  */
3201 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3202 {
3203 	struct affinity_context ac = {
3204 		.new_mask  = task_user_cpus(p),
3205 		.flags     = 0,
3206 	};
3207 	int ret;
3208 
3209 	/*
3210 	 * Try to restore the old affinity mask with __sched_setaffinity().
3211 	 * Cpuset masking will be done there too.
3212 	 */
3213 	ret = __sched_setaffinity(p, &ac);
3214 	WARN_ON_ONCE(ret);
3215 }
3216 
3217 #ifdef CONFIG_SMP
3218 
3219 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3220 {
3221 	unsigned int state = READ_ONCE(p->__state);
3222 
3223 	/*
3224 	 * We should never call set_task_cpu() on a blocked task,
3225 	 * ttwu() will sort out the placement.
3226 	 */
3227 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3228 
3229 	/*
3230 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3231 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3232 	 * time relying on p->on_rq.
3233 	 */
3234 	WARN_ON_ONCE(state == TASK_RUNNING &&
3235 		     p->sched_class == &fair_sched_class &&
3236 		     (p->on_rq && !task_on_rq_migrating(p)));
3237 
3238 #ifdef CONFIG_LOCKDEP
3239 	/*
3240 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3241 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3242 	 *
3243 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3244 	 * see task_group().
3245 	 *
3246 	 * Furthermore, all task_rq users should acquire both locks, see
3247 	 * task_rq_lock().
3248 	 */
3249 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3250 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3251 #endif
3252 	/*
3253 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3254 	 */
3255 	WARN_ON_ONCE(!cpu_online(new_cpu));
3256 
3257 	WARN_ON_ONCE(is_migration_disabled(p));
3258 
3259 	trace_sched_migrate_task(p, new_cpu);
3260 
3261 	if (task_cpu(p) != new_cpu) {
3262 		if (p->sched_class->migrate_task_rq)
3263 			p->sched_class->migrate_task_rq(p, new_cpu);
3264 		p->se.nr_migrations++;
3265 		perf_event_task_migrate(p);
3266 	}
3267 
3268 	__set_task_cpu(p, new_cpu);
3269 }
3270 #endif /* CONFIG_SMP */
3271 
3272 #ifdef CONFIG_NUMA_BALANCING
3273 static void __migrate_swap_task(struct task_struct *p, int cpu)
3274 {
3275 	if (task_on_rq_queued(p)) {
3276 		struct rq *src_rq, *dst_rq;
3277 		struct rq_flags srf, drf;
3278 
3279 		src_rq = task_rq(p);
3280 		dst_rq = cpu_rq(cpu);
3281 
3282 		rq_pin_lock(src_rq, &srf);
3283 		rq_pin_lock(dst_rq, &drf);
3284 
3285 		move_queued_task_locked(src_rq, dst_rq, p);
3286 		wakeup_preempt(dst_rq, p, 0);
3287 
3288 		rq_unpin_lock(dst_rq, &drf);
3289 		rq_unpin_lock(src_rq, &srf);
3290 
3291 	} else {
3292 		/*
3293 		 * Task isn't running anymore; make it appear like we migrated
3294 		 * it before it went to sleep. This means on wakeup we make the
3295 		 * previous CPU our target instead of where it really is.
3296 		 */
3297 		p->wake_cpu = cpu;
3298 	}
3299 }
3300 
3301 struct migration_swap_arg {
3302 	struct task_struct *src_task, *dst_task;
3303 	int src_cpu, dst_cpu;
3304 };
3305 
3306 static int migrate_swap_stop(void *data)
3307 {
3308 	struct migration_swap_arg *arg = data;
3309 	struct rq *src_rq, *dst_rq;
3310 
3311 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3312 		return -EAGAIN;
3313 
3314 	src_rq = cpu_rq(arg->src_cpu);
3315 	dst_rq = cpu_rq(arg->dst_cpu);
3316 
3317 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3318 	guard(double_rq_lock)(src_rq, dst_rq);
3319 
3320 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3321 		return -EAGAIN;
3322 
3323 	if (task_cpu(arg->src_task) != arg->src_cpu)
3324 		return -EAGAIN;
3325 
3326 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3327 		return -EAGAIN;
3328 
3329 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3330 		return -EAGAIN;
3331 
3332 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3333 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3334 
3335 	return 0;
3336 }
3337 
3338 /*
3339  * Cross migrate two tasks
3340  */
3341 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3342 		int target_cpu, int curr_cpu)
3343 {
3344 	struct migration_swap_arg arg;
3345 	int ret = -EINVAL;
3346 
3347 	arg = (struct migration_swap_arg){
3348 		.src_task = cur,
3349 		.src_cpu = curr_cpu,
3350 		.dst_task = p,
3351 		.dst_cpu = target_cpu,
3352 	};
3353 
3354 	if (arg.src_cpu == arg.dst_cpu)
3355 		goto out;
3356 
3357 	/*
3358 	 * These three tests are all lockless; this is OK since all of them
3359 	 * will be re-checked with proper locks held further down the line.
3360 	 */
3361 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3362 		goto out;
3363 
3364 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3365 		goto out;
3366 
3367 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3368 		goto out;
3369 
3370 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3371 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3372 
3373 out:
3374 	return ret;
3375 }
3376 #endif /* CONFIG_NUMA_BALANCING */
3377 
3378 /***
3379  * kick_process - kick a running thread to enter/exit the kernel
3380  * @p: the to-be-kicked thread
3381  *
3382  * Cause a process which is running on another CPU to enter
3383  * kernel-mode, without any delay. (to get signals handled.)
3384  *
3385  * NOTE: this function doesn't have to take the runqueue lock,
3386  * because all it wants to ensure is that the remote task enters
3387  * the kernel. If the IPI races and the task has been migrated
3388  * to another CPU then no harm is done and the purpose has been
3389  * achieved as well.
3390  */
3391 void kick_process(struct task_struct *p)
3392 {
3393 	guard(preempt)();
3394 	int cpu = task_cpu(p);
3395 
3396 	if ((cpu != smp_processor_id()) && task_curr(p))
3397 		smp_send_reschedule(cpu);
3398 }
3399 EXPORT_SYMBOL_GPL(kick_process);
3400 
3401 /*
3402  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3403  *
3404  * A few notes on cpu_active vs cpu_online:
3405  *
3406  *  - cpu_active must be a subset of cpu_online
3407  *
3408  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3409  *    see __set_cpus_allowed_ptr(). At this point the newly online
3410  *    CPU isn't yet part of the sched domains, and balancing will not
3411  *    see it.
3412  *
3413  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3414  *    avoid the load balancer to place new tasks on the to be removed
3415  *    CPU. Existing tasks will remain running there and will be taken
3416  *    off.
3417  *
3418  * This means that fallback selection must not select !active CPUs.
3419  * And can assume that any active CPU must be online. Conversely
3420  * select_task_rq() below may allow selection of !active CPUs in order
3421  * to satisfy the above rules.
3422  */
3423 static int select_fallback_rq(int cpu, struct task_struct *p)
3424 {
3425 	int nid = cpu_to_node(cpu);
3426 	const struct cpumask *nodemask = NULL;
3427 	enum { cpuset, possible, fail } state = cpuset;
3428 	int dest_cpu;
3429 
3430 	/*
3431 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3432 	 * will return -1. There is no CPU on the node, and we should
3433 	 * select the CPU on the other node.
3434 	 */
3435 	if (nid != -1) {
3436 		nodemask = cpumask_of_node(nid);
3437 
3438 		/* Look for allowed, online CPU in same node. */
3439 		for_each_cpu(dest_cpu, nodemask) {
3440 			if (is_cpu_allowed(p, dest_cpu))
3441 				return dest_cpu;
3442 		}
3443 	}
3444 
3445 	for (;;) {
3446 		/* Any allowed, online CPU? */
3447 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3448 			if (!is_cpu_allowed(p, dest_cpu))
3449 				continue;
3450 
3451 			goto out;
3452 		}
3453 
3454 		/* No more Mr. Nice Guy. */
3455 		switch (state) {
3456 		case cpuset:
3457 			if (cpuset_cpus_allowed_fallback(p)) {
3458 				state = possible;
3459 				break;
3460 			}
3461 			fallthrough;
3462 		case possible:
3463 			set_cpus_allowed_force(p, task_cpu_fallback_mask(p));
3464 			state = fail;
3465 			break;
3466 		case fail:
3467 			BUG();
3468 			break;
3469 		}
3470 	}
3471 
3472 out:
3473 	if (state != cpuset) {
3474 		/*
3475 		 * Don't tell them about moving exiting tasks or
3476 		 * kernel threads (both mm NULL), since they never
3477 		 * leave kernel.
3478 		 */
3479 		if (p->mm && printk_ratelimit()) {
3480 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3481 					task_pid_nr(p), p->comm, cpu);
3482 		}
3483 	}
3484 
3485 	return dest_cpu;
3486 }
3487 
3488 /*
3489  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3490  */
3491 static inline
3492 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3493 {
3494 	lockdep_assert_held(&p->pi_lock);
3495 
3496 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3497 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3498 		*wake_flags |= WF_RQ_SELECTED;
3499 	} else {
3500 		cpu = cpumask_any(p->cpus_ptr);
3501 	}
3502 
3503 	/*
3504 	 * In order not to call set_task_cpu() on a blocking task we need
3505 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3506 	 * CPU.
3507 	 *
3508 	 * Since this is common to all placement strategies, this lives here.
3509 	 *
3510 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3511 	 *   not worry about this generic constraint ]
3512 	 */
3513 	if (unlikely(!is_cpu_allowed(p, cpu)))
3514 		cpu = select_fallback_rq(task_cpu(p), p);
3515 
3516 	return cpu;
3517 }
3518 
3519 void sched_set_stop_task(int cpu, struct task_struct *stop)
3520 {
3521 	static struct lock_class_key stop_pi_lock;
3522 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3523 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3524 
3525 	if (stop) {
3526 		/*
3527 		 * Make it appear like a SCHED_FIFO task, its something
3528 		 * userspace knows about and won't get confused about.
3529 		 *
3530 		 * Also, it will make PI more or less work without too
3531 		 * much confusion -- but then, stop work should not
3532 		 * rely on PI working anyway.
3533 		 */
3534 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3535 
3536 		stop->sched_class = &stop_sched_class;
3537 
3538 		/*
3539 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3540 		 * adjust the effective priority of a task. As a result,
3541 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3542 		 * which can then trigger wakeups of the stop thread to push
3543 		 * around the current task.
3544 		 *
3545 		 * The stop task itself will never be part of the PI-chain, it
3546 		 * never blocks, therefore that ->pi_lock recursion is safe.
3547 		 * Tell lockdep about this by placing the stop->pi_lock in its
3548 		 * own class.
3549 		 */
3550 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3551 	}
3552 
3553 	cpu_rq(cpu)->stop = stop;
3554 
3555 	if (old_stop) {
3556 		/*
3557 		 * Reset it back to a normal scheduling class so that
3558 		 * it can die in pieces.
3559 		 */
3560 		old_stop->sched_class = &rt_sched_class;
3561 	}
3562 }
3563 
3564 static void
3565 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3566 {
3567 	struct rq *rq;
3568 
3569 	if (!schedstat_enabled())
3570 		return;
3571 
3572 	rq = this_rq();
3573 
3574 	if (cpu == rq->cpu) {
3575 		__schedstat_inc(rq->ttwu_local);
3576 		__schedstat_inc(p->stats.nr_wakeups_local);
3577 	} else {
3578 		struct sched_domain *sd;
3579 
3580 		__schedstat_inc(p->stats.nr_wakeups_remote);
3581 
3582 		guard(rcu)();
3583 		for_each_domain(rq->cpu, sd) {
3584 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3585 				__schedstat_inc(sd->ttwu_wake_remote);
3586 				break;
3587 			}
3588 		}
3589 	}
3590 
3591 	if (wake_flags & WF_MIGRATED)
3592 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3593 
3594 	__schedstat_inc(rq->ttwu_count);
3595 	__schedstat_inc(p->stats.nr_wakeups);
3596 
3597 	if (wake_flags & WF_SYNC)
3598 		__schedstat_inc(p->stats.nr_wakeups_sync);
3599 }
3600 
3601 /*
3602  * Mark the task runnable.
3603  */
3604 static inline void ttwu_do_wakeup(struct task_struct *p)
3605 {
3606 	WRITE_ONCE(p->__state, TASK_RUNNING);
3607 	trace_sched_wakeup(p);
3608 }
3609 
3610 static void
3611 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3612 		 struct rq_flags *rf)
3613 {
3614 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3615 
3616 	lockdep_assert_rq_held(rq);
3617 
3618 	if (p->sched_contributes_to_load)
3619 		rq->nr_uninterruptible--;
3620 
3621 	if (wake_flags & WF_RQ_SELECTED)
3622 		en_flags |= ENQUEUE_RQ_SELECTED;
3623 	if (wake_flags & WF_MIGRATED)
3624 		en_flags |= ENQUEUE_MIGRATED;
3625 	else
3626 	if (p->in_iowait) {
3627 		delayacct_blkio_end(p);
3628 		atomic_dec(&task_rq(p)->nr_iowait);
3629 	}
3630 
3631 	activate_task(rq, p, en_flags);
3632 	wakeup_preempt(rq, p, wake_flags);
3633 
3634 	ttwu_do_wakeup(p);
3635 
3636 	if (p->sched_class->task_woken) {
3637 		/*
3638 		 * Our task @p is fully woken up and running; so it's safe to
3639 		 * drop the rq->lock, hereafter rq is only used for statistics.
3640 		 */
3641 		rq_unpin_lock(rq, rf);
3642 		p->sched_class->task_woken(rq, p);
3643 		rq_repin_lock(rq, rf);
3644 	}
3645 
3646 	if (rq->idle_stamp) {
3647 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3648 		u64 max = 2*rq->max_idle_balance_cost;
3649 
3650 		update_avg(&rq->avg_idle, delta);
3651 
3652 		if (rq->avg_idle > max)
3653 			rq->avg_idle = max;
3654 
3655 		rq->idle_stamp = 0;
3656 	}
3657 }
3658 
3659 /*
3660  * Consider @p being inside a wait loop:
3661  *
3662  *   for (;;) {
3663  *      set_current_state(TASK_UNINTERRUPTIBLE);
3664  *
3665  *      if (CONDITION)
3666  *         break;
3667  *
3668  *      schedule();
3669  *   }
3670  *   __set_current_state(TASK_RUNNING);
3671  *
3672  * between set_current_state() and schedule(). In this case @p is still
3673  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3674  * an atomic manner.
3675  *
3676  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3677  * then schedule() must still happen and p->state can be changed to
3678  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3679  * need to do a full wakeup with enqueue.
3680  *
3681  * Returns: %true when the wakeup is done,
3682  *          %false otherwise.
3683  */
3684 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3685 {
3686 	struct rq_flags rf;
3687 	struct rq *rq;
3688 	int ret = 0;
3689 
3690 	rq = __task_rq_lock(p, &rf);
3691 	if (task_on_rq_queued(p)) {
3692 		update_rq_clock(rq);
3693 		if (p->se.sched_delayed)
3694 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3695 		if (!task_on_cpu(rq, p)) {
3696 			/*
3697 			 * When on_rq && !on_cpu the task is preempted, see if
3698 			 * it should preempt the task that is current now.
3699 			 */
3700 			wakeup_preempt(rq, p, wake_flags);
3701 		}
3702 		ttwu_do_wakeup(p);
3703 		ret = 1;
3704 	}
3705 	__task_rq_unlock(rq, p, &rf);
3706 
3707 	return ret;
3708 }
3709 
3710 void sched_ttwu_pending(void *arg)
3711 {
3712 	struct llist_node *llist = arg;
3713 	struct rq *rq = this_rq();
3714 	struct task_struct *p, *t;
3715 	struct rq_flags rf;
3716 
3717 	if (!llist)
3718 		return;
3719 
3720 	rq_lock_irqsave(rq, &rf);
3721 	update_rq_clock(rq);
3722 
3723 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3724 		if (WARN_ON_ONCE(p->on_cpu))
3725 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3726 
3727 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3728 			set_task_cpu(p, cpu_of(rq));
3729 
3730 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3731 	}
3732 
3733 	/*
3734 	 * Must be after enqueueing at least once task such that
3735 	 * idle_cpu() does not observe a false-negative -- if it does,
3736 	 * it is possible for select_idle_siblings() to stack a number
3737 	 * of tasks on this CPU during that window.
3738 	 *
3739 	 * It is OK to clear ttwu_pending when another task pending.
3740 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3741 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3742 	 */
3743 	WRITE_ONCE(rq->ttwu_pending, 0);
3744 	rq_unlock_irqrestore(rq, &rf);
3745 }
3746 
3747 /*
3748  * Prepare the scene for sending an IPI for a remote smp_call
3749  *
3750  * Returns true if the caller can proceed with sending the IPI.
3751  * Returns false otherwise.
3752  */
3753 bool call_function_single_prep_ipi(int cpu)
3754 {
3755 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3756 		trace_sched_wake_idle_without_ipi(cpu);
3757 		return false;
3758 	}
3759 
3760 	return true;
3761 }
3762 
3763 /*
3764  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3765  * necessary. The wakee CPU on receipt of the IPI will queue the task
3766  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3767  * of the wakeup instead of the waker.
3768  */
3769 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3770 {
3771 	struct rq *rq = cpu_rq(cpu);
3772 
3773 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3774 
3775 	WRITE_ONCE(rq->ttwu_pending, 1);
3776 #ifdef CONFIG_SMP
3777 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3778 #endif
3779 }
3780 
3781 void wake_up_if_idle(int cpu)
3782 {
3783 	struct rq *rq = cpu_rq(cpu);
3784 
3785 	guard(rcu)();
3786 	if (is_idle_task(rcu_dereference(rq->curr))) {
3787 		guard(rq_lock_irqsave)(rq);
3788 		if (is_idle_task(rq->curr))
3789 			resched_curr(rq);
3790 	}
3791 }
3792 
3793 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3794 {
3795 	if (!sched_asym_cpucap_active())
3796 		return true;
3797 
3798 	if (this_cpu == that_cpu)
3799 		return true;
3800 
3801 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3802 }
3803 
3804 bool cpus_share_cache(int this_cpu, int that_cpu)
3805 {
3806 	if (this_cpu == that_cpu)
3807 		return true;
3808 
3809 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3810 }
3811 
3812 /*
3813  * Whether CPUs are share cache resources, which means LLC on non-cluster
3814  * machines and LLC tag or L2 on machines with clusters.
3815  */
3816 bool cpus_share_resources(int this_cpu, int that_cpu)
3817 {
3818 	if (this_cpu == that_cpu)
3819 		return true;
3820 
3821 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3822 }
3823 
3824 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3825 {
3826 	/* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */
3827 	if (!scx_allow_ttwu_queue(p))
3828 		return false;
3829 
3830 #ifdef CONFIG_SMP
3831 	if (p->sched_class == &stop_sched_class)
3832 		return false;
3833 #endif
3834 
3835 	/*
3836 	 * Do not complicate things with the async wake_list while the CPU is
3837 	 * in hotplug state.
3838 	 */
3839 	if (!cpu_active(cpu))
3840 		return false;
3841 
3842 	/* Ensure the task will still be allowed to run on the CPU. */
3843 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3844 		return false;
3845 
3846 	/*
3847 	 * If the CPU does not share cache, then queue the task on the
3848 	 * remote rqs wakelist to avoid accessing remote data.
3849 	 */
3850 	if (!cpus_share_cache(smp_processor_id(), cpu))
3851 		return true;
3852 
3853 	if (cpu == smp_processor_id())
3854 		return false;
3855 
3856 	/*
3857 	 * If the wakee cpu is idle, or the task is descheduling and the
3858 	 * only running task on the CPU, then use the wakelist to offload
3859 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3860 	 * the current CPU is likely busy. nr_running is checked to
3861 	 * avoid unnecessary task stacking.
3862 	 *
3863 	 * Note that we can only get here with (wakee) p->on_rq=0,
3864 	 * p->on_cpu can be whatever, we've done the dequeue, so
3865 	 * the wakee has been accounted out of ->nr_running.
3866 	 */
3867 	if (!cpu_rq(cpu)->nr_running)
3868 		return true;
3869 
3870 	return false;
3871 }
3872 
3873 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3874 {
3875 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3876 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3877 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3878 		return true;
3879 	}
3880 
3881 	return false;
3882 }
3883 
3884 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3885 {
3886 	struct rq *rq = cpu_rq(cpu);
3887 	struct rq_flags rf;
3888 
3889 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3890 		return;
3891 
3892 	rq_lock(rq, &rf);
3893 	update_rq_clock(rq);
3894 	ttwu_do_activate(rq, p, wake_flags, &rf);
3895 	rq_unlock(rq, &rf);
3896 }
3897 
3898 /*
3899  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3900  *
3901  * The caller holds p::pi_lock if p != current or has preemption
3902  * disabled when p == current.
3903  *
3904  * The rules of saved_state:
3905  *
3906  *   The related locking code always holds p::pi_lock when updating
3907  *   p::saved_state, which means the code is fully serialized in both cases.
3908  *
3909  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
3910  *   No other bits set. This allows to distinguish all wakeup scenarios.
3911  *
3912  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
3913  *   allows us to prevent early wakeup of tasks before they can be run on
3914  *   asymmetric ISA architectures (eg ARMv9).
3915  */
3916 static __always_inline
3917 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3918 {
3919 	int match;
3920 
3921 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3922 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3923 			     state != TASK_RTLOCK_WAIT);
3924 	}
3925 
3926 	*success = !!(match = __task_state_match(p, state));
3927 
3928 	/*
3929 	 * Saved state preserves the task state across blocking on
3930 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
3931 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
3932 	 * because it waits for a lock wakeup or __thaw_task(). Also
3933 	 * indicate success because from the regular waker's point of
3934 	 * view this has succeeded.
3935 	 *
3936 	 * After acquiring the lock the task will restore p::__state
3937 	 * from p::saved_state which ensures that the regular
3938 	 * wakeup is not lost. The restore will also set
3939 	 * p::saved_state to TASK_RUNNING so any further tests will
3940 	 * not result in false positives vs. @success
3941 	 */
3942 	if (match < 0)
3943 		p->saved_state = TASK_RUNNING;
3944 
3945 	return match > 0;
3946 }
3947 
3948 /*
3949  * Notes on Program-Order guarantees on SMP systems.
3950  *
3951  *  MIGRATION
3952  *
3953  * The basic program-order guarantee on SMP systems is that when a task [t]
3954  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3955  * execution on its new CPU [c1].
3956  *
3957  * For migration (of runnable tasks) this is provided by the following means:
3958  *
3959  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3960  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3961  *     rq(c1)->lock (if not at the same time, then in that order).
3962  *  C) LOCK of the rq(c1)->lock scheduling in task
3963  *
3964  * Release/acquire chaining guarantees that B happens after A and C after B.
3965  * Note: the CPU doing B need not be c0 or c1
3966  *
3967  * Example:
3968  *
3969  *   CPU0            CPU1            CPU2
3970  *
3971  *   LOCK rq(0)->lock
3972  *   sched-out X
3973  *   sched-in Y
3974  *   UNLOCK rq(0)->lock
3975  *
3976  *                                   LOCK rq(0)->lock // orders against CPU0
3977  *                                   dequeue X
3978  *                                   UNLOCK rq(0)->lock
3979  *
3980  *                                   LOCK rq(1)->lock
3981  *                                   enqueue X
3982  *                                   UNLOCK rq(1)->lock
3983  *
3984  *                   LOCK rq(1)->lock // orders against CPU2
3985  *                   sched-out Z
3986  *                   sched-in X
3987  *                   UNLOCK rq(1)->lock
3988  *
3989  *
3990  *  BLOCKING -- aka. SLEEP + WAKEUP
3991  *
3992  * For blocking we (obviously) need to provide the same guarantee as for
3993  * migration. However the means are completely different as there is no lock
3994  * chain to provide order. Instead we do:
3995  *
3996  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3997  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3998  *
3999  * Example:
4000  *
4001  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4002  *
4003  *   LOCK rq(0)->lock LOCK X->pi_lock
4004  *   dequeue X
4005  *   sched-out X
4006  *   smp_store_release(X->on_cpu, 0);
4007  *
4008  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4009  *                    X->state = WAKING
4010  *                    set_task_cpu(X,2)
4011  *
4012  *                    LOCK rq(2)->lock
4013  *                    enqueue X
4014  *                    X->state = RUNNING
4015  *                    UNLOCK rq(2)->lock
4016  *
4017  *                                          LOCK rq(2)->lock // orders against CPU1
4018  *                                          sched-out Z
4019  *                                          sched-in X
4020  *                                          UNLOCK rq(2)->lock
4021  *
4022  *                    UNLOCK X->pi_lock
4023  *   UNLOCK rq(0)->lock
4024  *
4025  *
4026  * However, for wakeups there is a second guarantee we must provide, namely we
4027  * must ensure that CONDITION=1 done by the caller can not be reordered with
4028  * accesses to the task state; see try_to_wake_up() and set_current_state().
4029  */
4030 
4031 /**
4032  * try_to_wake_up - wake up a thread
4033  * @p: the thread to be awakened
4034  * @state: the mask of task states that can be woken
4035  * @wake_flags: wake modifier flags (WF_*)
4036  *
4037  * Conceptually does:
4038  *
4039  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4040  *
4041  * If the task was not queued/runnable, also place it back on a runqueue.
4042  *
4043  * This function is atomic against schedule() which would dequeue the task.
4044  *
4045  * It issues a full memory barrier before accessing @p->state, see the comment
4046  * with set_current_state().
4047  *
4048  * Uses p->pi_lock to serialize against concurrent wake-ups.
4049  *
4050  * Relies on p->pi_lock stabilizing:
4051  *  - p->sched_class
4052  *  - p->cpus_ptr
4053  *  - p->sched_task_group
4054  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4055  *
4056  * Tries really hard to only take one task_rq(p)->lock for performance.
4057  * Takes rq->lock in:
4058  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4059  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4060  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4061  *
4062  * As a consequence we race really badly with just about everything. See the
4063  * many memory barriers and their comments for details.
4064  *
4065  * Return: %true if @p->state changes (an actual wakeup was done),
4066  *	   %false otherwise.
4067  */
4068 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4069 {
4070 	guard(preempt)();
4071 	int cpu, success = 0;
4072 
4073 	wake_flags |= WF_TTWU;
4074 
4075 	if (p == current) {
4076 		/*
4077 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4078 		 * == smp_processor_id()'. Together this means we can special
4079 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4080 		 * without taking any locks.
4081 		 *
4082 		 * Specifically, given current runs ttwu() we must be before
4083 		 * schedule()'s block_task(), as such this must not observe
4084 		 * sched_delayed.
4085 		 *
4086 		 * In particular:
4087 		 *  - we rely on Program-Order guarantees for all the ordering,
4088 		 *  - we're serialized against set_special_state() by virtue of
4089 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4090 		 */
4091 		WARN_ON_ONCE(p->se.sched_delayed);
4092 		if (!ttwu_state_match(p, state, &success))
4093 			goto out;
4094 
4095 		trace_sched_waking(p);
4096 		ttwu_do_wakeup(p);
4097 		goto out;
4098 	}
4099 
4100 	/*
4101 	 * If we are going to wake up a thread waiting for CONDITION we
4102 	 * need to ensure that CONDITION=1 done by the caller can not be
4103 	 * reordered with p->state check below. This pairs with smp_store_mb()
4104 	 * in set_current_state() that the waiting thread does.
4105 	 */
4106 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4107 		smp_mb__after_spinlock();
4108 		if (!ttwu_state_match(p, state, &success))
4109 			break;
4110 
4111 		trace_sched_waking(p);
4112 
4113 		/*
4114 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4115 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4116 		 * in smp_cond_load_acquire() below.
4117 		 *
4118 		 * sched_ttwu_pending()			try_to_wake_up()
4119 		 *   STORE p->on_rq = 1			  LOAD p->state
4120 		 *   UNLOCK rq->lock
4121 		 *
4122 		 * __schedule() (switch to task 'p')
4123 		 *   LOCK rq->lock			  smp_rmb();
4124 		 *   smp_mb__after_spinlock();
4125 		 *   UNLOCK rq->lock
4126 		 *
4127 		 * [task p]
4128 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4129 		 *
4130 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4131 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4132 		 *
4133 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4134 		 */
4135 		smp_rmb();
4136 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4137 			break;
4138 
4139 		/*
4140 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4141 		 * possible to, falsely, observe p->on_cpu == 0.
4142 		 *
4143 		 * One must be running (->on_cpu == 1) in order to remove oneself
4144 		 * from the runqueue.
4145 		 *
4146 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4147 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4148 		 *   UNLOCK rq->lock
4149 		 *
4150 		 * __schedule() (put 'p' to sleep)
4151 		 *   LOCK rq->lock			  smp_rmb();
4152 		 *   smp_mb__after_spinlock();
4153 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4154 		 *
4155 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4156 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4157 		 *
4158 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4159 		 * schedule()'s block_task() has 'happened' and p will no longer
4160 		 * care about it's own p->state. See the comment in __schedule().
4161 		 */
4162 		smp_acquire__after_ctrl_dep();
4163 
4164 		/*
4165 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4166 		 * == 0), which means we need to do an enqueue, change p->state to
4167 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4168 		 * enqueue, such as ttwu_queue_wakelist().
4169 		 */
4170 		WRITE_ONCE(p->__state, TASK_WAKING);
4171 
4172 		/*
4173 		 * If the owning (remote) CPU is still in the middle of schedule() with
4174 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4175 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4176 		 * let the waker make forward progress. This is safe because IRQs are
4177 		 * disabled and the IPI will deliver after on_cpu is cleared.
4178 		 *
4179 		 * Ensure we load task_cpu(p) after p->on_cpu:
4180 		 *
4181 		 * set_task_cpu(p, cpu);
4182 		 *   STORE p->cpu = @cpu
4183 		 * __schedule() (switch to task 'p')
4184 		 *   LOCK rq->lock
4185 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4186 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4187 		 *
4188 		 * to ensure we observe the correct CPU on which the task is currently
4189 		 * scheduling.
4190 		 */
4191 		if (smp_load_acquire(&p->on_cpu) &&
4192 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4193 			break;
4194 
4195 		/*
4196 		 * If the owning (remote) CPU is still in the middle of schedule() with
4197 		 * this task as prev, wait until it's done referencing the task.
4198 		 *
4199 		 * Pairs with the smp_store_release() in finish_task().
4200 		 *
4201 		 * This ensures that tasks getting woken will be fully ordered against
4202 		 * their previous state and preserve Program Order.
4203 		 */
4204 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4205 
4206 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4207 		if (task_cpu(p) != cpu) {
4208 			if (p->in_iowait) {
4209 				delayacct_blkio_end(p);
4210 				atomic_dec(&task_rq(p)->nr_iowait);
4211 			}
4212 
4213 			wake_flags |= WF_MIGRATED;
4214 			psi_ttwu_dequeue(p);
4215 			set_task_cpu(p, cpu);
4216 		}
4217 
4218 		ttwu_queue(p, cpu, wake_flags);
4219 	}
4220 out:
4221 	if (success)
4222 		ttwu_stat(p, task_cpu(p), wake_flags);
4223 
4224 	return success;
4225 }
4226 
4227 static bool __task_needs_rq_lock(struct task_struct *p)
4228 {
4229 	unsigned int state = READ_ONCE(p->__state);
4230 
4231 	/*
4232 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4233 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4234 	 * locks at the end, see ttwu_queue_wakelist().
4235 	 */
4236 	if (state == TASK_RUNNING || state == TASK_WAKING)
4237 		return true;
4238 
4239 	/*
4240 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4241 	 * possible to, falsely, observe p->on_rq == 0.
4242 	 *
4243 	 * See try_to_wake_up() for a longer comment.
4244 	 */
4245 	smp_rmb();
4246 	if (p->on_rq)
4247 		return true;
4248 
4249 	/*
4250 	 * Ensure the task has finished __schedule() and will not be referenced
4251 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4252 	 */
4253 	smp_rmb();
4254 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4255 
4256 	return false;
4257 }
4258 
4259 /**
4260  * task_call_func - Invoke a function on task in fixed state
4261  * @p: Process for which the function is to be invoked, can be @current.
4262  * @func: Function to invoke.
4263  * @arg: Argument to function.
4264  *
4265  * Fix the task in it's current state by avoiding wakeups and or rq operations
4266  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4267  * task_curr() to work out what the state is, if required.  Given that @func
4268  * can be invoked with a runqueue lock held, it had better be quite
4269  * lightweight.
4270  *
4271  * Returns:
4272  *   Whatever @func returns
4273  */
4274 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4275 {
4276 	struct rq *rq = NULL;
4277 	struct rq_flags rf;
4278 	int ret;
4279 
4280 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4281 
4282 	if (__task_needs_rq_lock(p))
4283 		rq = __task_rq_lock(p, &rf);
4284 
4285 	/*
4286 	 * At this point the task is pinned; either:
4287 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4288 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4289 	 *  - queued, and we're holding off schedule	 (rq->lock)
4290 	 *  - running, and we're holding off de-schedule (rq->lock)
4291 	 *
4292 	 * The called function (@func) can use: task_curr(), p->on_rq and
4293 	 * p->__state to differentiate between these states.
4294 	 */
4295 	ret = func(p, arg);
4296 
4297 	if (rq)
4298 		__task_rq_unlock(rq, p, &rf);
4299 
4300 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4301 	return ret;
4302 }
4303 
4304 /**
4305  * cpu_curr_snapshot - Return a snapshot of the currently running task
4306  * @cpu: The CPU on which to snapshot the task.
4307  *
4308  * Returns the task_struct pointer of the task "currently" running on
4309  * the specified CPU.
4310  *
4311  * If the specified CPU was offline, the return value is whatever it
4312  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4313  * task, but there is no guarantee.  Callers wishing a useful return
4314  * value must take some action to ensure that the specified CPU remains
4315  * online throughout.
4316  *
4317  * This function executes full memory barriers before and after fetching
4318  * the pointer, which permits the caller to confine this function's fetch
4319  * with respect to the caller's accesses to other shared variables.
4320  */
4321 struct task_struct *cpu_curr_snapshot(int cpu)
4322 {
4323 	struct rq *rq = cpu_rq(cpu);
4324 	struct task_struct *t;
4325 	struct rq_flags rf;
4326 
4327 	rq_lock_irqsave(rq, &rf);
4328 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4329 	t = rcu_dereference(cpu_curr(cpu));
4330 	rq_unlock_irqrestore(rq, &rf);
4331 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4332 
4333 	return t;
4334 }
4335 
4336 /**
4337  * wake_up_process - Wake up a specific process
4338  * @p: The process to be woken up.
4339  *
4340  * Attempt to wake up the nominated process and move it to the set of runnable
4341  * processes.
4342  *
4343  * Return: 1 if the process was woken up, 0 if it was already running.
4344  *
4345  * This function executes a full memory barrier before accessing the task state.
4346  */
4347 int wake_up_process(struct task_struct *p)
4348 {
4349 	return try_to_wake_up(p, TASK_NORMAL, 0);
4350 }
4351 EXPORT_SYMBOL(wake_up_process);
4352 
4353 int wake_up_state(struct task_struct *p, unsigned int state)
4354 {
4355 	return try_to_wake_up(p, state, 0);
4356 }
4357 
4358 /*
4359  * Perform scheduler related setup for a newly forked process p.
4360  * p is forked by current.
4361  *
4362  * __sched_fork() is basic setup which is also used by sched_init() to
4363  * initialize the boot CPU's idle task.
4364  */
4365 static void __sched_fork(u64 clone_flags, struct task_struct *p)
4366 {
4367 	p->on_rq			= 0;
4368 
4369 	p->se.on_rq			= 0;
4370 	p->se.exec_start		= 0;
4371 	p->se.sum_exec_runtime		= 0;
4372 	p->se.prev_sum_exec_runtime	= 0;
4373 	p->se.nr_migrations		= 0;
4374 	p->se.vruntime			= 0;
4375 	p->se.vlag			= 0;
4376 	INIT_LIST_HEAD(&p->se.group_node);
4377 
4378 	/* A delayed task cannot be in clone(). */
4379 	WARN_ON_ONCE(p->se.sched_delayed);
4380 
4381 #ifdef CONFIG_FAIR_GROUP_SCHED
4382 	p->se.cfs_rq			= NULL;
4383 #ifdef CONFIG_CFS_BANDWIDTH
4384 	init_cfs_throttle_work(p);
4385 #endif
4386 #endif
4387 
4388 #ifdef CONFIG_SCHEDSTATS
4389 	/* Even if schedstat is disabled, there should not be garbage */
4390 	memset(&p->stats, 0, sizeof(p->stats));
4391 #endif
4392 
4393 	init_dl_entity(&p->dl);
4394 
4395 	INIT_LIST_HEAD(&p->rt.run_list);
4396 	p->rt.timeout		= 0;
4397 	p->rt.time_slice	= sched_rr_timeslice;
4398 	p->rt.on_rq		= 0;
4399 	p->rt.on_list		= 0;
4400 
4401 #ifdef CONFIG_SCHED_CLASS_EXT
4402 	init_scx_entity(&p->scx);
4403 #endif
4404 
4405 #ifdef CONFIG_PREEMPT_NOTIFIERS
4406 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4407 #endif
4408 
4409 #ifdef CONFIG_COMPACTION
4410 	p->capture_control = NULL;
4411 #endif
4412 	init_numa_balancing(clone_flags, p);
4413 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4414 	p->migration_pending = NULL;
4415 }
4416 
4417 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4418 
4419 #ifdef CONFIG_NUMA_BALANCING
4420 
4421 int sysctl_numa_balancing_mode;
4422 
4423 static void __set_numabalancing_state(bool enabled)
4424 {
4425 	if (enabled)
4426 		static_branch_enable(&sched_numa_balancing);
4427 	else
4428 		static_branch_disable(&sched_numa_balancing);
4429 }
4430 
4431 void set_numabalancing_state(bool enabled)
4432 {
4433 	if (enabled)
4434 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4435 	else
4436 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4437 	__set_numabalancing_state(enabled);
4438 }
4439 
4440 #ifdef CONFIG_PROC_SYSCTL
4441 static void reset_memory_tiering(void)
4442 {
4443 	struct pglist_data *pgdat;
4444 
4445 	for_each_online_pgdat(pgdat) {
4446 		pgdat->nbp_threshold = 0;
4447 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4448 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4449 	}
4450 }
4451 
4452 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4453 			  void *buffer, size_t *lenp, loff_t *ppos)
4454 {
4455 	struct ctl_table t;
4456 	int err;
4457 	int state = sysctl_numa_balancing_mode;
4458 
4459 	if (write && !capable(CAP_SYS_ADMIN))
4460 		return -EPERM;
4461 
4462 	t = *table;
4463 	t.data = &state;
4464 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4465 	if (err < 0)
4466 		return err;
4467 	if (write) {
4468 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4469 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4470 			reset_memory_tiering();
4471 		sysctl_numa_balancing_mode = state;
4472 		__set_numabalancing_state(state);
4473 	}
4474 	return err;
4475 }
4476 #endif /* CONFIG_PROC_SYSCTL */
4477 #endif /* CONFIG_NUMA_BALANCING */
4478 
4479 #ifdef CONFIG_SCHEDSTATS
4480 
4481 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4482 
4483 static void set_schedstats(bool enabled)
4484 {
4485 	if (enabled)
4486 		static_branch_enable(&sched_schedstats);
4487 	else
4488 		static_branch_disable(&sched_schedstats);
4489 }
4490 
4491 void force_schedstat_enabled(void)
4492 {
4493 	if (!schedstat_enabled()) {
4494 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4495 		static_branch_enable(&sched_schedstats);
4496 	}
4497 }
4498 
4499 static int __init setup_schedstats(char *str)
4500 {
4501 	int ret = 0;
4502 	if (!str)
4503 		goto out;
4504 
4505 	if (!strcmp(str, "enable")) {
4506 		set_schedstats(true);
4507 		ret = 1;
4508 	} else if (!strcmp(str, "disable")) {
4509 		set_schedstats(false);
4510 		ret = 1;
4511 	}
4512 out:
4513 	if (!ret)
4514 		pr_warn("Unable to parse schedstats=\n");
4515 
4516 	return ret;
4517 }
4518 __setup("schedstats=", setup_schedstats);
4519 
4520 #ifdef CONFIG_PROC_SYSCTL
4521 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4522 		size_t *lenp, loff_t *ppos)
4523 {
4524 	struct ctl_table t;
4525 	int err;
4526 	int state = static_branch_likely(&sched_schedstats);
4527 
4528 	if (write && !capable(CAP_SYS_ADMIN))
4529 		return -EPERM;
4530 
4531 	t = *table;
4532 	t.data = &state;
4533 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4534 	if (err < 0)
4535 		return err;
4536 	if (write)
4537 		set_schedstats(state);
4538 	return err;
4539 }
4540 #endif /* CONFIG_PROC_SYSCTL */
4541 #endif /* CONFIG_SCHEDSTATS */
4542 
4543 #ifdef CONFIG_SYSCTL
4544 static const struct ctl_table sched_core_sysctls[] = {
4545 #ifdef CONFIG_SCHEDSTATS
4546 	{
4547 		.procname       = "sched_schedstats",
4548 		.data           = NULL,
4549 		.maxlen         = sizeof(unsigned int),
4550 		.mode           = 0644,
4551 		.proc_handler   = sysctl_schedstats,
4552 		.extra1         = SYSCTL_ZERO,
4553 		.extra2         = SYSCTL_ONE,
4554 	},
4555 #endif /* CONFIG_SCHEDSTATS */
4556 #ifdef CONFIG_UCLAMP_TASK
4557 	{
4558 		.procname       = "sched_util_clamp_min",
4559 		.data           = &sysctl_sched_uclamp_util_min,
4560 		.maxlen         = sizeof(unsigned int),
4561 		.mode           = 0644,
4562 		.proc_handler   = sysctl_sched_uclamp_handler,
4563 	},
4564 	{
4565 		.procname       = "sched_util_clamp_max",
4566 		.data           = &sysctl_sched_uclamp_util_max,
4567 		.maxlen         = sizeof(unsigned int),
4568 		.mode           = 0644,
4569 		.proc_handler   = sysctl_sched_uclamp_handler,
4570 	},
4571 	{
4572 		.procname       = "sched_util_clamp_min_rt_default",
4573 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4574 		.maxlen         = sizeof(unsigned int),
4575 		.mode           = 0644,
4576 		.proc_handler   = sysctl_sched_uclamp_handler,
4577 	},
4578 #endif /* CONFIG_UCLAMP_TASK */
4579 #ifdef CONFIG_NUMA_BALANCING
4580 	{
4581 		.procname	= "numa_balancing",
4582 		.data		= NULL, /* filled in by handler */
4583 		.maxlen		= sizeof(unsigned int),
4584 		.mode		= 0644,
4585 		.proc_handler	= sysctl_numa_balancing,
4586 		.extra1		= SYSCTL_ZERO,
4587 		.extra2		= SYSCTL_FOUR,
4588 	},
4589 #endif /* CONFIG_NUMA_BALANCING */
4590 };
4591 static int __init sched_core_sysctl_init(void)
4592 {
4593 	register_sysctl_init("kernel", sched_core_sysctls);
4594 	return 0;
4595 }
4596 late_initcall(sched_core_sysctl_init);
4597 #endif /* CONFIG_SYSCTL */
4598 
4599 /*
4600  * fork()/clone()-time setup:
4601  */
4602 int sched_fork(u64 clone_flags, struct task_struct *p)
4603 {
4604 	__sched_fork(clone_flags, p);
4605 	/*
4606 	 * We mark the process as NEW here. This guarantees that
4607 	 * nobody will actually run it, and a signal or other external
4608 	 * event cannot wake it up and insert it on the runqueue either.
4609 	 */
4610 	p->__state = TASK_NEW;
4611 
4612 	/*
4613 	 * Make sure we do not leak PI boosting priority to the child.
4614 	 */
4615 	p->prio = current->normal_prio;
4616 
4617 	uclamp_fork(p);
4618 
4619 	/*
4620 	 * Revert to default priority/policy on fork if requested.
4621 	 */
4622 	if (unlikely(p->sched_reset_on_fork)) {
4623 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4624 			p->policy = SCHED_NORMAL;
4625 			p->static_prio = NICE_TO_PRIO(0);
4626 			p->rt_priority = 0;
4627 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4628 			p->static_prio = NICE_TO_PRIO(0);
4629 
4630 		p->prio = p->normal_prio = p->static_prio;
4631 		set_load_weight(p, false);
4632 		p->se.custom_slice = 0;
4633 		p->se.slice = sysctl_sched_base_slice;
4634 
4635 		/*
4636 		 * We don't need the reset flag anymore after the fork. It has
4637 		 * fulfilled its duty:
4638 		 */
4639 		p->sched_reset_on_fork = 0;
4640 	}
4641 
4642 	if (dl_prio(p->prio))
4643 		return -EAGAIN;
4644 
4645 	scx_pre_fork(p);
4646 
4647 	if (rt_prio(p->prio)) {
4648 		p->sched_class = &rt_sched_class;
4649 #ifdef CONFIG_SCHED_CLASS_EXT
4650 	} else if (task_should_scx(p->policy)) {
4651 		p->sched_class = &ext_sched_class;
4652 #endif
4653 	} else {
4654 		p->sched_class = &fair_sched_class;
4655 	}
4656 
4657 	init_entity_runnable_average(&p->se);
4658 
4659 
4660 #ifdef CONFIG_SCHED_INFO
4661 	if (likely(sched_info_on()))
4662 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4663 #endif
4664 	p->on_cpu = 0;
4665 	init_task_preempt_count(p);
4666 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4667 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4668 
4669 	return 0;
4670 }
4671 
4672 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4673 {
4674 	unsigned long flags;
4675 
4676 	/*
4677 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4678 	 * required yet, but lockdep gets upset if rules are violated.
4679 	 */
4680 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4681 #ifdef CONFIG_CGROUP_SCHED
4682 	if (1) {
4683 		struct task_group *tg;
4684 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4685 				  struct task_group, css);
4686 		tg = autogroup_task_group(p, tg);
4687 		p->sched_task_group = tg;
4688 	}
4689 #endif
4690 	/*
4691 	 * We're setting the CPU for the first time, we don't migrate,
4692 	 * so use __set_task_cpu().
4693 	 */
4694 	__set_task_cpu(p, smp_processor_id());
4695 	if (p->sched_class->task_fork)
4696 		p->sched_class->task_fork(p);
4697 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4698 
4699 	return scx_fork(p);
4700 }
4701 
4702 void sched_cancel_fork(struct task_struct *p)
4703 {
4704 	scx_cancel_fork(p);
4705 }
4706 
4707 void sched_post_fork(struct task_struct *p)
4708 {
4709 	uclamp_post_fork(p);
4710 	scx_post_fork(p);
4711 }
4712 
4713 unsigned long to_ratio(u64 period, u64 runtime)
4714 {
4715 	if (runtime == RUNTIME_INF)
4716 		return BW_UNIT;
4717 
4718 	/*
4719 	 * Doing this here saves a lot of checks in all
4720 	 * the calling paths, and returning zero seems
4721 	 * safe for them anyway.
4722 	 */
4723 	if (period == 0)
4724 		return 0;
4725 
4726 	return div64_u64(runtime << BW_SHIFT, period);
4727 }
4728 
4729 /*
4730  * wake_up_new_task - wake up a newly created task for the first time.
4731  *
4732  * This function will do some initial scheduler statistics housekeeping
4733  * that must be done for every newly created context, then puts the task
4734  * on the runqueue and wakes it.
4735  */
4736 void wake_up_new_task(struct task_struct *p)
4737 {
4738 	struct rq_flags rf;
4739 	struct rq *rq;
4740 	int wake_flags = WF_FORK;
4741 
4742 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4743 	WRITE_ONCE(p->__state, TASK_RUNNING);
4744 	/*
4745 	 * Fork balancing, do it here and not earlier because:
4746 	 *  - cpus_ptr can change in the fork path
4747 	 *  - any previously selected CPU might disappear through hotplug
4748 	 *
4749 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4750 	 * as we're not fully set-up yet.
4751 	 */
4752 	p->recent_used_cpu = task_cpu(p);
4753 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4754 	rq = __task_rq_lock(p, &rf);
4755 	update_rq_clock(rq);
4756 	post_init_entity_util_avg(p);
4757 
4758 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4759 	trace_sched_wakeup_new(p);
4760 	wakeup_preempt(rq, p, wake_flags);
4761 	if (p->sched_class->task_woken) {
4762 		/*
4763 		 * Nothing relies on rq->lock after this, so it's fine to
4764 		 * drop it.
4765 		 */
4766 		rq_unpin_lock(rq, &rf);
4767 		p->sched_class->task_woken(rq, p);
4768 		rq_repin_lock(rq, &rf);
4769 	}
4770 	task_rq_unlock(rq, p, &rf);
4771 }
4772 
4773 #ifdef CONFIG_PREEMPT_NOTIFIERS
4774 
4775 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4776 
4777 void preempt_notifier_inc(void)
4778 {
4779 	static_branch_inc(&preempt_notifier_key);
4780 }
4781 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4782 
4783 void preempt_notifier_dec(void)
4784 {
4785 	static_branch_dec(&preempt_notifier_key);
4786 }
4787 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4788 
4789 /**
4790  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4791  * @notifier: notifier struct to register
4792  */
4793 void preempt_notifier_register(struct preempt_notifier *notifier)
4794 {
4795 	if (!static_branch_unlikely(&preempt_notifier_key))
4796 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4797 
4798 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4799 }
4800 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4801 
4802 /**
4803  * preempt_notifier_unregister - no longer interested in preemption notifications
4804  * @notifier: notifier struct to unregister
4805  *
4806  * This is *not* safe to call from within a preemption notifier.
4807  */
4808 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4809 {
4810 	hlist_del(&notifier->link);
4811 }
4812 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4813 
4814 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4815 {
4816 	struct preempt_notifier *notifier;
4817 
4818 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4819 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4820 }
4821 
4822 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4823 {
4824 	if (static_branch_unlikely(&preempt_notifier_key))
4825 		__fire_sched_in_preempt_notifiers(curr);
4826 }
4827 
4828 static void
4829 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4830 				   struct task_struct *next)
4831 {
4832 	struct preempt_notifier *notifier;
4833 
4834 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4835 		notifier->ops->sched_out(notifier, next);
4836 }
4837 
4838 static __always_inline void
4839 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4840 				 struct task_struct *next)
4841 {
4842 	if (static_branch_unlikely(&preempt_notifier_key))
4843 		__fire_sched_out_preempt_notifiers(curr, next);
4844 }
4845 
4846 #else /* !CONFIG_PREEMPT_NOTIFIERS: */
4847 
4848 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4849 {
4850 }
4851 
4852 static inline void
4853 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4854 				 struct task_struct *next)
4855 {
4856 }
4857 
4858 #endif /* !CONFIG_PREEMPT_NOTIFIERS */
4859 
4860 static inline void prepare_task(struct task_struct *next)
4861 {
4862 	/*
4863 	 * Claim the task as running, we do this before switching to it
4864 	 * such that any running task will have this set.
4865 	 *
4866 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4867 	 * its ordering comment.
4868 	 */
4869 	WRITE_ONCE(next->on_cpu, 1);
4870 }
4871 
4872 static inline void finish_task(struct task_struct *prev)
4873 {
4874 	/*
4875 	 * This must be the very last reference to @prev from this CPU. After
4876 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4877 	 * must ensure this doesn't happen until the switch is completely
4878 	 * finished.
4879 	 *
4880 	 * In particular, the load of prev->state in finish_task_switch() must
4881 	 * happen before this.
4882 	 *
4883 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4884 	 */
4885 	smp_store_release(&prev->on_cpu, 0);
4886 }
4887 
4888 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4889 {
4890 	void (*func)(struct rq *rq);
4891 	struct balance_callback *next;
4892 
4893 	lockdep_assert_rq_held(rq);
4894 
4895 	while (head) {
4896 		func = (void (*)(struct rq *))head->func;
4897 		next = head->next;
4898 		head->next = NULL;
4899 		head = next;
4900 
4901 		func(rq);
4902 	}
4903 }
4904 
4905 static void balance_push(struct rq *rq);
4906 
4907 /*
4908  * balance_push_callback is a right abuse of the callback interface and plays
4909  * by significantly different rules.
4910  *
4911  * Where the normal balance_callback's purpose is to be ran in the same context
4912  * that queued it (only later, when it's safe to drop rq->lock again),
4913  * balance_push_callback is specifically targeted at __schedule().
4914  *
4915  * This abuse is tolerated because it places all the unlikely/odd cases behind
4916  * a single test, namely: rq->balance_callback == NULL.
4917  */
4918 struct balance_callback balance_push_callback = {
4919 	.next = NULL,
4920 	.func = balance_push,
4921 };
4922 
4923 static inline struct balance_callback *
4924 __splice_balance_callbacks(struct rq *rq, bool split)
4925 {
4926 	struct balance_callback *head = rq->balance_callback;
4927 
4928 	if (likely(!head))
4929 		return NULL;
4930 
4931 	lockdep_assert_rq_held(rq);
4932 	/*
4933 	 * Must not take balance_push_callback off the list when
4934 	 * splice_balance_callbacks() and balance_callbacks() are not
4935 	 * in the same rq->lock section.
4936 	 *
4937 	 * In that case it would be possible for __schedule() to interleave
4938 	 * and observe the list empty.
4939 	 */
4940 	if (split && head == &balance_push_callback)
4941 		head = NULL;
4942 	else
4943 		rq->balance_callback = NULL;
4944 
4945 	return head;
4946 }
4947 
4948 struct balance_callback *splice_balance_callbacks(struct rq *rq)
4949 {
4950 	return __splice_balance_callbacks(rq, true);
4951 }
4952 
4953 static void __balance_callbacks(struct rq *rq)
4954 {
4955 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4956 }
4957 
4958 void balance_callbacks(struct rq *rq, struct balance_callback *head)
4959 {
4960 	unsigned long flags;
4961 
4962 	if (unlikely(head)) {
4963 		raw_spin_rq_lock_irqsave(rq, flags);
4964 		do_balance_callbacks(rq, head);
4965 		raw_spin_rq_unlock_irqrestore(rq, flags);
4966 	}
4967 }
4968 
4969 static inline void
4970 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4971 {
4972 	/*
4973 	 * Since the runqueue lock will be released by the next
4974 	 * task (which is an invalid locking op but in the case
4975 	 * of the scheduler it's an obvious special-case), so we
4976 	 * do an early lockdep release here:
4977 	 */
4978 	rq_unpin_lock(rq, rf);
4979 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4980 #ifdef CONFIG_DEBUG_SPINLOCK
4981 	/* this is a valid case when another task releases the spinlock */
4982 	rq_lockp(rq)->owner = next;
4983 #endif
4984 }
4985 
4986 static inline void finish_lock_switch(struct rq *rq)
4987 {
4988 	/*
4989 	 * If we are tracking spinlock dependencies then we have to
4990 	 * fix up the runqueue lock - which gets 'carried over' from
4991 	 * prev into current:
4992 	 */
4993 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4994 	__balance_callbacks(rq);
4995 	raw_spin_rq_unlock_irq(rq);
4996 }
4997 
4998 /*
4999  * NOP if the arch has not defined these:
5000  */
5001 
5002 #ifndef prepare_arch_switch
5003 # define prepare_arch_switch(next)	do { } while (0)
5004 #endif
5005 
5006 #ifndef finish_arch_post_lock_switch
5007 # define finish_arch_post_lock_switch()	do { } while (0)
5008 #endif
5009 
5010 static inline void kmap_local_sched_out(void)
5011 {
5012 #ifdef CONFIG_KMAP_LOCAL
5013 	if (unlikely(current->kmap_ctrl.idx))
5014 		__kmap_local_sched_out();
5015 #endif
5016 }
5017 
5018 static inline void kmap_local_sched_in(void)
5019 {
5020 #ifdef CONFIG_KMAP_LOCAL
5021 	if (unlikely(current->kmap_ctrl.idx))
5022 		__kmap_local_sched_in();
5023 #endif
5024 }
5025 
5026 /**
5027  * prepare_task_switch - prepare to switch tasks
5028  * @rq: the runqueue preparing to switch
5029  * @prev: the current task that is being switched out
5030  * @next: the task we are going to switch to.
5031  *
5032  * This is called with the rq lock held and interrupts off. It must
5033  * be paired with a subsequent finish_task_switch after the context
5034  * switch.
5035  *
5036  * prepare_task_switch sets up locking and calls architecture specific
5037  * hooks.
5038  */
5039 static inline void
5040 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5041 		    struct task_struct *next)
5042 {
5043 	kcov_prepare_switch(prev);
5044 	sched_info_switch(rq, prev, next);
5045 	perf_event_task_sched_out(prev, next);
5046 	fire_sched_out_preempt_notifiers(prev, next);
5047 	kmap_local_sched_out();
5048 	prepare_task(next);
5049 	prepare_arch_switch(next);
5050 }
5051 
5052 /**
5053  * finish_task_switch - clean up after a task-switch
5054  * @prev: the thread we just switched away from.
5055  *
5056  * finish_task_switch must be called after the context switch, paired
5057  * with a prepare_task_switch call before the context switch.
5058  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5059  * and do any other architecture-specific cleanup actions.
5060  *
5061  * Note that we may have delayed dropping an mm in context_switch(). If
5062  * so, we finish that here outside of the runqueue lock. (Doing it
5063  * with the lock held can cause deadlocks; see schedule() for
5064  * details.)
5065  *
5066  * The context switch have flipped the stack from under us and restored the
5067  * local variables which were saved when this task called schedule() in the
5068  * past. 'prev == current' is still correct but we need to recalculate this_rq
5069  * because prev may have moved to another CPU.
5070  */
5071 static struct rq *finish_task_switch(struct task_struct *prev)
5072 	__releases(rq->lock)
5073 {
5074 	struct rq *rq = this_rq();
5075 	struct mm_struct *mm = rq->prev_mm;
5076 	unsigned int prev_state;
5077 
5078 	/*
5079 	 * The previous task will have left us with a preempt_count of 2
5080 	 * because it left us after:
5081 	 *
5082 	 *	schedule()
5083 	 *	  preempt_disable();			// 1
5084 	 *	  __schedule()
5085 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5086 	 *
5087 	 * Also, see FORK_PREEMPT_COUNT.
5088 	 */
5089 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5090 		      "corrupted preempt_count: %s/%d/0x%x\n",
5091 		      current->comm, current->pid, preempt_count()))
5092 		preempt_count_set(FORK_PREEMPT_COUNT);
5093 
5094 	rq->prev_mm = NULL;
5095 
5096 	/*
5097 	 * A task struct has one reference for the use as "current".
5098 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5099 	 * schedule one last time. The schedule call will never return, and
5100 	 * the scheduled task must drop that reference.
5101 	 *
5102 	 * We must observe prev->state before clearing prev->on_cpu (in
5103 	 * finish_task), otherwise a concurrent wakeup can get prev
5104 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5105 	 * transition, resulting in a double drop.
5106 	 */
5107 	prev_state = READ_ONCE(prev->__state);
5108 	vtime_task_switch(prev);
5109 	perf_event_task_sched_in(prev, current);
5110 	finish_task(prev);
5111 	tick_nohz_task_switch();
5112 	finish_lock_switch(rq);
5113 	finish_arch_post_lock_switch();
5114 	kcov_finish_switch(current);
5115 	/*
5116 	 * kmap_local_sched_out() is invoked with rq::lock held and
5117 	 * interrupts disabled. There is no requirement for that, but the
5118 	 * sched out code does not have an interrupt enabled section.
5119 	 * Restoring the maps on sched in does not require interrupts being
5120 	 * disabled either.
5121 	 */
5122 	kmap_local_sched_in();
5123 
5124 	fire_sched_in_preempt_notifiers(current);
5125 	/*
5126 	 * When switching through a kernel thread, the loop in
5127 	 * membarrier_{private,global}_expedited() may have observed that
5128 	 * kernel thread and not issued an IPI. It is therefore possible to
5129 	 * schedule between user->kernel->user threads without passing though
5130 	 * switch_mm(). Membarrier requires a barrier after storing to
5131 	 * rq->curr, before returning to userspace, so provide them here:
5132 	 *
5133 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5134 	 *   provided by mmdrop_lazy_tlb(),
5135 	 * - a sync_core for SYNC_CORE.
5136 	 */
5137 	if (mm) {
5138 		membarrier_mm_sync_core_before_usermode(mm);
5139 		mmdrop_lazy_tlb_sched(mm);
5140 	}
5141 
5142 	if (unlikely(prev_state == TASK_DEAD)) {
5143 		if (prev->sched_class->task_dead)
5144 			prev->sched_class->task_dead(prev);
5145 
5146 		/* Task is done with its stack. */
5147 		put_task_stack(prev);
5148 
5149 		put_task_struct_rcu_user(prev);
5150 	}
5151 
5152 	return rq;
5153 }
5154 
5155 /**
5156  * schedule_tail - first thing a freshly forked thread must call.
5157  * @prev: the thread we just switched away from.
5158  */
5159 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5160 	__releases(rq->lock)
5161 {
5162 	/*
5163 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5164 	 * finish_task_switch() for details.
5165 	 *
5166 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5167 	 * and the preempt_enable() will end up enabling preemption (on
5168 	 * PREEMPT_COUNT kernels).
5169 	 */
5170 
5171 	finish_task_switch(prev);
5172 	/*
5173 	 * This is a special case: the newly created task has just
5174 	 * switched the context for the first time. It is returning from
5175 	 * schedule for the first time in this path.
5176 	 */
5177 	trace_sched_exit_tp(true);
5178 	preempt_enable();
5179 
5180 	if (current->set_child_tid)
5181 		put_user(task_pid_vnr(current), current->set_child_tid);
5182 
5183 	calculate_sigpending();
5184 }
5185 
5186 /*
5187  * context_switch - switch to the new MM and the new thread's register state.
5188  */
5189 static __always_inline struct rq *
5190 context_switch(struct rq *rq, struct task_struct *prev,
5191 	       struct task_struct *next, struct rq_flags *rf)
5192 {
5193 	prepare_task_switch(rq, prev, next);
5194 
5195 	/*
5196 	 * For paravirt, this is coupled with an exit in switch_to to
5197 	 * combine the page table reload and the switch backend into
5198 	 * one hypercall.
5199 	 */
5200 	arch_start_context_switch(prev);
5201 
5202 	/*
5203 	 * kernel -> kernel   lazy + transfer active
5204 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5205 	 *
5206 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5207 	 *   user ->   user   switch
5208 	 */
5209 	if (!next->mm) {				// to kernel
5210 		enter_lazy_tlb(prev->active_mm, next);
5211 
5212 		next->active_mm = prev->active_mm;
5213 		if (prev->mm)				// from user
5214 			mmgrab_lazy_tlb(prev->active_mm);
5215 		else
5216 			prev->active_mm = NULL;
5217 	} else {					// to user
5218 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5219 		/*
5220 		 * sys_membarrier() requires an smp_mb() between setting
5221 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5222 		 *
5223 		 * The below provides this either through switch_mm(), or in
5224 		 * case 'prev->active_mm == next->mm' through
5225 		 * finish_task_switch()'s mmdrop().
5226 		 */
5227 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5228 		lru_gen_use_mm(next->mm);
5229 
5230 		if (!prev->mm) {			// from kernel
5231 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5232 			rq->prev_mm = prev->active_mm;
5233 			prev->active_mm = NULL;
5234 		}
5235 	}
5236 
5237 	mm_cid_switch_to(prev, next);
5238 
5239 	/*
5240 	 * Tell rseq that the task was scheduled in. Must be after
5241 	 * switch_mm_cid() to get the TIF flag set.
5242 	 */
5243 	rseq_sched_switch_event(next);
5244 
5245 	prepare_lock_switch(rq, next, rf);
5246 
5247 	/* Here we just switch the register state and the stack. */
5248 	switch_to(prev, next, prev);
5249 	barrier();
5250 
5251 	return finish_task_switch(prev);
5252 }
5253 
5254 /*
5255  * nr_running and nr_context_switches:
5256  *
5257  * externally visible scheduler statistics: current number of runnable
5258  * threads, total number of context switches performed since bootup.
5259  */
5260 unsigned int nr_running(void)
5261 {
5262 	unsigned int i, sum = 0;
5263 
5264 	for_each_online_cpu(i)
5265 		sum += cpu_rq(i)->nr_running;
5266 
5267 	return sum;
5268 }
5269 
5270 /*
5271  * Check if only the current task is running on the CPU.
5272  *
5273  * Caution: this function does not check that the caller has disabled
5274  * preemption, thus the result might have a time-of-check-to-time-of-use
5275  * race.  The caller is responsible to use it correctly, for example:
5276  *
5277  * - from a non-preemptible section (of course)
5278  *
5279  * - from a thread that is bound to a single CPU
5280  *
5281  * - in a loop with very short iterations (e.g. a polling loop)
5282  */
5283 bool single_task_running(void)
5284 {
5285 	return raw_rq()->nr_running == 1;
5286 }
5287 EXPORT_SYMBOL(single_task_running);
5288 
5289 unsigned long long nr_context_switches_cpu(int cpu)
5290 {
5291 	return cpu_rq(cpu)->nr_switches;
5292 }
5293 
5294 unsigned long long nr_context_switches(void)
5295 {
5296 	int i;
5297 	unsigned long long sum = 0;
5298 
5299 	for_each_possible_cpu(i)
5300 		sum += cpu_rq(i)->nr_switches;
5301 
5302 	return sum;
5303 }
5304 
5305 /*
5306  * Consumers of these two interfaces, like for example the cpuidle menu
5307  * governor, are using nonsensical data. Preferring shallow idle state selection
5308  * for a CPU that has IO-wait which might not even end up running the task when
5309  * it does become runnable.
5310  */
5311 
5312 unsigned int nr_iowait_cpu(int cpu)
5313 {
5314 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5315 }
5316 
5317 /*
5318  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5319  *
5320  * The idea behind IO-wait account is to account the idle time that we could
5321  * have spend running if it were not for IO. That is, if we were to improve the
5322  * storage performance, we'd have a proportional reduction in IO-wait time.
5323  *
5324  * This all works nicely on UP, where, when a task blocks on IO, we account
5325  * idle time as IO-wait, because if the storage were faster, it could've been
5326  * running and we'd not be idle.
5327  *
5328  * This has been extended to SMP, by doing the same for each CPU. This however
5329  * is broken.
5330  *
5331  * Imagine for instance the case where two tasks block on one CPU, only the one
5332  * CPU will have IO-wait accounted, while the other has regular idle. Even
5333  * though, if the storage were faster, both could've ran at the same time,
5334  * utilising both CPUs.
5335  *
5336  * This means, that when looking globally, the current IO-wait accounting on
5337  * SMP is a lower bound, by reason of under accounting.
5338  *
5339  * Worse, since the numbers are provided per CPU, they are sometimes
5340  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5341  * associated with any one particular CPU, it can wake to another CPU than it
5342  * blocked on. This means the per CPU IO-wait number is meaningless.
5343  *
5344  * Task CPU affinities can make all that even more 'interesting'.
5345  */
5346 
5347 unsigned int nr_iowait(void)
5348 {
5349 	unsigned int i, sum = 0;
5350 
5351 	for_each_possible_cpu(i)
5352 		sum += nr_iowait_cpu(i);
5353 
5354 	return sum;
5355 }
5356 
5357 /*
5358  * sched_exec - execve() is a valuable balancing opportunity, because at
5359  * this point the task has the smallest effective memory and cache footprint.
5360  */
5361 void sched_exec(void)
5362 {
5363 	struct task_struct *p = current;
5364 	struct migration_arg arg;
5365 	int dest_cpu;
5366 
5367 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5368 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5369 		if (dest_cpu == smp_processor_id())
5370 			return;
5371 
5372 		if (unlikely(!cpu_active(dest_cpu)))
5373 			return;
5374 
5375 		arg = (struct migration_arg){ p, dest_cpu };
5376 	}
5377 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5378 }
5379 
5380 DEFINE_PER_CPU(struct kernel_stat, kstat);
5381 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5382 
5383 EXPORT_PER_CPU_SYMBOL(kstat);
5384 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5385 
5386 /*
5387  * The function fair_sched_class.update_curr accesses the struct curr
5388  * and its field curr->exec_start; when called from task_sched_runtime(),
5389  * we observe a high rate of cache misses in practice.
5390  * Prefetching this data results in improved performance.
5391  */
5392 static inline void prefetch_curr_exec_start(struct task_struct *p)
5393 {
5394 #ifdef CONFIG_FAIR_GROUP_SCHED
5395 	struct sched_entity *curr = p->se.cfs_rq->curr;
5396 #else
5397 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5398 #endif
5399 	prefetch(curr);
5400 	prefetch(&curr->exec_start);
5401 }
5402 
5403 /*
5404  * Return accounted runtime for the task.
5405  * In case the task is currently running, return the runtime plus current's
5406  * pending runtime that have not been accounted yet.
5407  */
5408 unsigned long long task_sched_runtime(struct task_struct *p)
5409 {
5410 	struct rq_flags rf;
5411 	struct rq *rq;
5412 	u64 ns;
5413 
5414 #ifdef CONFIG_64BIT
5415 	/*
5416 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5417 	 * So we have a optimization chance when the task's delta_exec is 0.
5418 	 * Reading ->on_cpu is racy, but this is OK.
5419 	 *
5420 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5421 	 * If we race with it entering CPU, unaccounted time is 0. This is
5422 	 * indistinguishable from the read occurring a few cycles earlier.
5423 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5424 	 * been accounted, so we're correct here as well.
5425 	 */
5426 	if (!p->on_cpu || !task_on_rq_queued(p))
5427 		return p->se.sum_exec_runtime;
5428 #endif
5429 
5430 	rq = task_rq_lock(p, &rf);
5431 	/*
5432 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5433 	 * project cycles that may never be accounted to this
5434 	 * thread, breaking clock_gettime().
5435 	 */
5436 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5437 		prefetch_curr_exec_start(p);
5438 		update_rq_clock(rq);
5439 		p->sched_class->update_curr(rq);
5440 	}
5441 	ns = p->se.sum_exec_runtime;
5442 	task_rq_unlock(rq, p, &rf);
5443 
5444 	return ns;
5445 }
5446 
5447 static u64 cpu_resched_latency(struct rq *rq)
5448 {
5449 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5450 	u64 resched_latency, now = rq_clock(rq);
5451 	static bool warned_once;
5452 
5453 	if (sysctl_resched_latency_warn_once && warned_once)
5454 		return 0;
5455 
5456 	if (!need_resched() || !latency_warn_ms)
5457 		return 0;
5458 
5459 	if (system_state == SYSTEM_BOOTING)
5460 		return 0;
5461 
5462 	if (!rq->last_seen_need_resched_ns) {
5463 		rq->last_seen_need_resched_ns = now;
5464 		rq->ticks_without_resched = 0;
5465 		return 0;
5466 	}
5467 
5468 	rq->ticks_without_resched++;
5469 	resched_latency = now - rq->last_seen_need_resched_ns;
5470 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5471 		return 0;
5472 
5473 	warned_once = true;
5474 
5475 	return resched_latency;
5476 }
5477 
5478 static int __init setup_resched_latency_warn_ms(char *str)
5479 {
5480 	long val;
5481 
5482 	if ((kstrtol(str, 0, &val))) {
5483 		pr_warn("Unable to set resched_latency_warn_ms\n");
5484 		return 1;
5485 	}
5486 
5487 	sysctl_resched_latency_warn_ms = val;
5488 	return 1;
5489 }
5490 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5491 
5492 /*
5493  * This function gets called by the timer code, with HZ frequency.
5494  * We call it with interrupts disabled.
5495  */
5496 void sched_tick(void)
5497 {
5498 	int cpu = smp_processor_id();
5499 	struct rq *rq = cpu_rq(cpu);
5500 	/* accounting goes to the donor task */
5501 	struct task_struct *donor;
5502 	struct rq_flags rf;
5503 	unsigned long hw_pressure;
5504 	u64 resched_latency;
5505 
5506 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5507 		arch_scale_freq_tick();
5508 
5509 	sched_clock_tick();
5510 
5511 	rq_lock(rq, &rf);
5512 	donor = rq->donor;
5513 
5514 	psi_account_irqtime(rq, donor, NULL);
5515 
5516 	update_rq_clock(rq);
5517 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5518 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5519 
5520 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5521 		resched_curr(rq);
5522 
5523 	donor->sched_class->task_tick(rq, donor, 0);
5524 	if (sched_feat(LATENCY_WARN))
5525 		resched_latency = cpu_resched_latency(rq);
5526 	calc_global_load_tick(rq);
5527 	sched_core_tick(rq);
5528 	scx_tick(rq);
5529 
5530 	rq_unlock(rq, &rf);
5531 
5532 	if (sched_feat(LATENCY_WARN) && resched_latency)
5533 		resched_latency_warn(cpu, resched_latency);
5534 
5535 	perf_event_task_tick();
5536 
5537 	if (donor->flags & PF_WQ_WORKER)
5538 		wq_worker_tick(donor);
5539 
5540 	if (!scx_switched_all()) {
5541 		rq->idle_balance = idle_cpu(cpu);
5542 		sched_balance_trigger(rq);
5543 	}
5544 }
5545 
5546 #ifdef CONFIG_NO_HZ_FULL
5547 
5548 struct tick_work {
5549 	int			cpu;
5550 	atomic_t		state;
5551 	struct delayed_work	work;
5552 };
5553 /* Values for ->state, see diagram below. */
5554 #define TICK_SCHED_REMOTE_OFFLINE	0
5555 #define TICK_SCHED_REMOTE_OFFLINING	1
5556 #define TICK_SCHED_REMOTE_RUNNING	2
5557 
5558 /*
5559  * State diagram for ->state:
5560  *
5561  *
5562  *          TICK_SCHED_REMOTE_OFFLINE
5563  *                    |   ^
5564  *                    |   |
5565  *                    |   | sched_tick_remote()
5566  *                    |   |
5567  *                    |   |
5568  *                    +--TICK_SCHED_REMOTE_OFFLINING
5569  *                    |   ^
5570  *                    |   |
5571  * sched_tick_start() |   | sched_tick_stop()
5572  *                    |   |
5573  *                    V   |
5574  *          TICK_SCHED_REMOTE_RUNNING
5575  *
5576  *
5577  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5578  * and sched_tick_start() are happy to leave the state in RUNNING.
5579  */
5580 
5581 static struct tick_work __percpu *tick_work_cpu;
5582 
5583 static void sched_tick_remote(struct work_struct *work)
5584 {
5585 	struct delayed_work *dwork = to_delayed_work(work);
5586 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5587 	int cpu = twork->cpu;
5588 	struct rq *rq = cpu_rq(cpu);
5589 	int os;
5590 
5591 	/*
5592 	 * Handle the tick only if it appears the remote CPU is running in full
5593 	 * dynticks mode. The check is racy by nature, but missing a tick or
5594 	 * having one too much is no big deal because the scheduler tick updates
5595 	 * statistics and checks timeslices in a time-independent way, regardless
5596 	 * of when exactly it is running.
5597 	 */
5598 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5599 		guard(rq_lock_irq)(rq);
5600 		struct task_struct *curr = rq->curr;
5601 
5602 		if (cpu_online(cpu)) {
5603 			/*
5604 			 * Since this is a remote tick for full dynticks mode,
5605 			 * we are always sure that there is no proxy (only a
5606 			 * single task is running).
5607 			 */
5608 			WARN_ON_ONCE(rq->curr != rq->donor);
5609 			update_rq_clock(rq);
5610 
5611 			if (!is_idle_task(curr)) {
5612 				/*
5613 				 * Make sure the next tick runs within a
5614 				 * reasonable amount of time.
5615 				 */
5616 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5617 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 30);
5618 			}
5619 			curr->sched_class->task_tick(rq, curr, 0);
5620 
5621 			calc_load_nohz_remote(rq);
5622 		}
5623 	}
5624 
5625 	/*
5626 	 * Run the remote tick once per second (1Hz). This arbitrary
5627 	 * frequency is large enough to avoid overload but short enough
5628 	 * to keep scheduler internal stats reasonably up to date.  But
5629 	 * first update state to reflect hotplug activity if required.
5630 	 */
5631 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5632 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5633 	if (os == TICK_SCHED_REMOTE_RUNNING)
5634 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5635 }
5636 
5637 static void sched_tick_start(int cpu)
5638 {
5639 	int os;
5640 	struct tick_work *twork;
5641 
5642 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5643 		return;
5644 
5645 	WARN_ON_ONCE(!tick_work_cpu);
5646 
5647 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5648 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5649 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5650 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5651 		twork->cpu = cpu;
5652 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5653 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5654 	}
5655 }
5656 
5657 #ifdef CONFIG_HOTPLUG_CPU
5658 static void sched_tick_stop(int cpu)
5659 {
5660 	struct tick_work *twork;
5661 	int os;
5662 
5663 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5664 		return;
5665 
5666 	WARN_ON_ONCE(!tick_work_cpu);
5667 
5668 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5669 	/* There cannot be competing actions, but don't rely on stop-machine. */
5670 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5671 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5672 	/* Don't cancel, as this would mess up the state machine. */
5673 }
5674 #endif /* CONFIG_HOTPLUG_CPU */
5675 
5676 int __init sched_tick_offload_init(void)
5677 {
5678 	tick_work_cpu = alloc_percpu(struct tick_work);
5679 	BUG_ON(!tick_work_cpu);
5680 	return 0;
5681 }
5682 
5683 #else /* !CONFIG_NO_HZ_FULL: */
5684 static inline void sched_tick_start(int cpu) { }
5685 static inline void sched_tick_stop(int cpu) { }
5686 #endif /* !CONFIG_NO_HZ_FULL */
5687 
5688 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5689 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5690 /*
5691  * If the value passed in is equal to the current preempt count
5692  * then we just disabled preemption. Start timing the latency.
5693  */
5694 static inline void preempt_latency_start(int val)
5695 {
5696 	if (preempt_count() == val) {
5697 		unsigned long ip = get_lock_parent_ip();
5698 #ifdef CONFIG_DEBUG_PREEMPT
5699 		current->preempt_disable_ip = ip;
5700 #endif
5701 		trace_preempt_off(CALLER_ADDR0, ip);
5702 	}
5703 }
5704 
5705 void preempt_count_add(int val)
5706 {
5707 #ifdef CONFIG_DEBUG_PREEMPT
5708 	/*
5709 	 * Underflow?
5710 	 */
5711 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5712 		return;
5713 #endif
5714 	__preempt_count_add(val);
5715 #ifdef CONFIG_DEBUG_PREEMPT
5716 	/*
5717 	 * Spinlock count overflowing soon?
5718 	 */
5719 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5720 				PREEMPT_MASK - 10);
5721 #endif
5722 	preempt_latency_start(val);
5723 }
5724 EXPORT_SYMBOL(preempt_count_add);
5725 NOKPROBE_SYMBOL(preempt_count_add);
5726 
5727 /*
5728  * If the value passed in equals to the current preempt count
5729  * then we just enabled preemption. Stop timing the latency.
5730  */
5731 static inline void preempt_latency_stop(int val)
5732 {
5733 	if (preempt_count() == val)
5734 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5735 }
5736 
5737 void preempt_count_sub(int val)
5738 {
5739 #ifdef CONFIG_DEBUG_PREEMPT
5740 	/*
5741 	 * Underflow?
5742 	 */
5743 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5744 		return;
5745 	/*
5746 	 * Is the spinlock portion underflowing?
5747 	 */
5748 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5749 			!(preempt_count() & PREEMPT_MASK)))
5750 		return;
5751 #endif
5752 
5753 	preempt_latency_stop(val);
5754 	__preempt_count_sub(val);
5755 }
5756 EXPORT_SYMBOL(preempt_count_sub);
5757 NOKPROBE_SYMBOL(preempt_count_sub);
5758 
5759 #else
5760 static inline void preempt_latency_start(int val) { }
5761 static inline void preempt_latency_stop(int val) { }
5762 #endif
5763 
5764 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5765 {
5766 #ifdef CONFIG_DEBUG_PREEMPT
5767 	return p->preempt_disable_ip;
5768 #else
5769 	return 0;
5770 #endif
5771 }
5772 
5773 /*
5774  * Print scheduling while atomic bug:
5775  */
5776 static noinline void __schedule_bug(struct task_struct *prev)
5777 {
5778 	/* Save this before calling printk(), since that will clobber it */
5779 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5780 
5781 	if (oops_in_progress)
5782 		return;
5783 
5784 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5785 		prev->comm, prev->pid, preempt_count());
5786 
5787 	debug_show_held_locks(prev);
5788 	print_modules();
5789 	if (irqs_disabled())
5790 		print_irqtrace_events(prev);
5791 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5792 		pr_err("Preemption disabled at:");
5793 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5794 	}
5795 	check_panic_on_warn("scheduling while atomic");
5796 
5797 	dump_stack();
5798 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5799 }
5800 
5801 /*
5802  * Various schedule()-time debugging checks and statistics:
5803  */
5804 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5805 {
5806 #ifdef CONFIG_SCHED_STACK_END_CHECK
5807 	if (task_stack_end_corrupted(prev))
5808 		panic("corrupted stack end detected inside scheduler\n");
5809 
5810 	if (task_scs_end_corrupted(prev))
5811 		panic("corrupted shadow stack detected inside scheduler\n");
5812 #endif
5813 
5814 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5815 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5816 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5817 			prev->comm, prev->pid, prev->non_block_count);
5818 		dump_stack();
5819 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5820 	}
5821 #endif
5822 
5823 	if (unlikely(in_atomic_preempt_off())) {
5824 		__schedule_bug(prev);
5825 		preempt_count_set(PREEMPT_DISABLED);
5826 	}
5827 	rcu_sleep_check();
5828 	WARN_ON_ONCE(ct_state() == CT_STATE_USER);
5829 
5830 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5831 
5832 	schedstat_inc(this_rq()->sched_count);
5833 }
5834 
5835 static void prev_balance(struct rq *rq, struct task_struct *prev,
5836 			 struct rq_flags *rf)
5837 {
5838 	const struct sched_class *start_class = prev->sched_class;
5839 	const struct sched_class *class;
5840 
5841 	/*
5842 	 * We must do the balancing pass before put_prev_task(), such
5843 	 * that when we release the rq->lock the task is in the same
5844 	 * state as before we took rq->lock.
5845 	 *
5846 	 * We can terminate the balance pass as soon as we know there is
5847 	 * a runnable task of @class priority or higher.
5848 	 */
5849 	for_active_class_range(class, start_class, &idle_sched_class) {
5850 		if (class->balance && class->balance(rq, prev, rf))
5851 			break;
5852 	}
5853 }
5854 
5855 /*
5856  * Pick up the highest-prio task:
5857  */
5858 static inline struct task_struct *
5859 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5860 {
5861 	const struct sched_class *class;
5862 	struct task_struct *p;
5863 
5864 	rq->dl_server = NULL;
5865 
5866 	if (scx_enabled())
5867 		goto restart;
5868 
5869 	/*
5870 	 * Optimization: we know that if all tasks are in the fair class we can
5871 	 * call that function directly, but only if the @prev task wasn't of a
5872 	 * higher scheduling class, because otherwise those lose the
5873 	 * opportunity to pull in more work from other CPUs.
5874 	 */
5875 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5876 		   rq->nr_running == rq->cfs.h_nr_queued)) {
5877 
5878 		p = pick_next_task_fair(rq, prev, rf);
5879 		if (unlikely(p == RETRY_TASK))
5880 			goto restart;
5881 
5882 		/* Assume the next prioritized class is idle_sched_class */
5883 		if (!p) {
5884 			p = pick_task_idle(rq, rf);
5885 			put_prev_set_next_task(rq, prev, p);
5886 		}
5887 
5888 		return p;
5889 	}
5890 
5891 restart:
5892 	prev_balance(rq, prev, rf);
5893 
5894 	for_each_active_class(class) {
5895 		if (class->pick_next_task) {
5896 			p = class->pick_next_task(rq, prev, rf);
5897 			if (unlikely(p == RETRY_TASK))
5898 				goto restart;
5899 			if (p)
5900 				return p;
5901 		} else {
5902 			p = class->pick_task(rq, rf);
5903 			if (unlikely(p == RETRY_TASK))
5904 				goto restart;
5905 			if (p) {
5906 				put_prev_set_next_task(rq, prev, p);
5907 				return p;
5908 			}
5909 		}
5910 	}
5911 
5912 	BUG(); /* The idle class should always have a runnable task. */
5913 }
5914 
5915 #ifdef CONFIG_SCHED_CORE
5916 static inline bool is_task_rq_idle(struct task_struct *t)
5917 {
5918 	return (task_rq(t)->idle == t);
5919 }
5920 
5921 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5922 {
5923 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5924 }
5925 
5926 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5927 {
5928 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5929 		return true;
5930 
5931 	return a->core_cookie == b->core_cookie;
5932 }
5933 
5934 /*
5935  * Careful; this can return RETRY_TASK, it does not include the retry-loop
5936  * itself due to the whole SMT pick retry thing below.
5937  */
5938 static inline struct task_struct *pick_task(struct rq *rq, struct rq_flags *rf)
5939 {
5940 	const struct sched_class *class;
5941 	struct task_struct *p;
5942 
5943 	rq->dl_server = NULL;
5944 
5945 	for_each_active_class(class) {
5946 		p = class->pick_task(rq, rf);
5947 		if (p)
5948 			return p;
5949 	}
5950 
5951 	BUG(); /* The idle class should always have a runnable task. */
5952 }
5953 
5954 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5955 
5956 static void queue_core_balance(struct rq *rq);
5957 
5958 static struct task_struct *
5959 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5960 {
5961 	struct task_struct *next, *p, *max;
5962 	const struct cpumask *smt_mask;
5963 	bool fi_before = false;
5964 	bool core_clock_updated = (rq == rq->core);
5965 	unsigned long cookie;
5966 	int i, cpu, occ = 0;
5967 	struct rq *rq_i;
5968 	bool need_sync;
5969 
5970 	if (!sched_core_enabled(rq))
5971 		return __pick_next_task(rq, prev, rf);
5972 
5973 	cpu = cpu_of(rq);
5974 
5975 	/* Stopper task is switching into idle, no need core-wide selection. */
5976 	if (cpu_is_offline(cpu)) {
5977 		/*
5978 		 * Reset core_pick so that we don't enter the fastpath when
5979 		 * coming online. core_pick would already be migrated to
5980 		 * another cpu during offline.
5981 		 */
5982 		rq->core_pick = NULL;
5983 		rq->core_dl_server = NULL;
5984 		return __pick_next_task(rq, prev, rf);
5985 	}
5986 
5987 	/*
5988 	 * If there were no {en,de}queues since we picked (IOW, the task
5989 	 * pointers are all still valid), and we haven't scheduled the last
5990 	 * pick yet, do so now.
5991 	 *
5992 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5993 	 * it was either offline or went offline during a sibling's core-wide
5994 	 * selection. In this case, do a core-wide selection.
5995 	 */
5996 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5997 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5998 	    rq->core_pick) {
5999 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6000 
6001 		next = rq->core_pick;
6002 		rq->dl_server = rq->core_dl_server;
6003 		rq->core_pick = NULL;
6004 		rq->core_dl_server = NULL;
6005 		goto out_set_next;
6006 	}
6007 
6008 	prev_balance(rq, prev, rf);
6009 
6010 	smt_mask = cpu_smt_mask(cpu);
6011 	need_sync = !!rq->core->core_cookie;
6012 
6013 	/* reset state */
6014 	rq->core->core_cookie = 0UL;
6015 	if (rq->core->core_forceidle_count) {
6016 		if (!core_clock_updated) {
6017 			update_rq_clock(rq->core);
6018 			core_clock_updated = true;
6019 		}
6020 		sched_core_account_forceidle(rq);
6021 		/* reset after accounting force idle */
6022 		rq->core->core_forceidle_start = 0;
6023 		rq->core->core_forceidle_count = 0;
6024 		rq->core->core_forceidle_occupation = 0;
6025 		need_sync = true;
6026 		fi_before = true;
6027 	}
6028 
6029 	/*
6030 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6031 	 *
6032 	 * @task_seq guards the task state ({en,de}queues)
6033 	 * @pick_seq is the @task_seq we did a selection on
6034 	 * @sched_seq is the @pick_seq we scheduled
6035 	 *
6036 	 * However, preemptions can cause multiple picks on the same task set.
6037 	 * 'Fix' this by also increasing @task_seq for every pick.
6038 	 */
6039 	rq->core->core_task_seq++;
6040 
6041 	/*
6042 	 * Optimize for common case where this CPU has no cookies
6043 	 * and there are no cookied tasks running on siblings.
6044 	 */
6045 	if (!need_sync) {
6046 restart_single:
6047 		next = pick_task(rq, rf);
6048 		if (unlikely(next == RETRY_TASK))
6049 			goto restart_single;
6050 		if (!next->core_cookie) {
6051 			rq->core_pick = NULL;
6052 			rq->core_dl_server = NULL;
6053 			/*
6054 			 * For robustness, update the min_vruntime_fi for
6055 			 * unconstrained picks as well.
6056 			 */
6057 			WARN_ON_ONCE(fi_before);
6058 			task_vruntime_update(rq, next, false);
6059 			goto out_set_next;
6060 		}
6061 	}
6062 
6063 	/*
6064 	 * For each thread: do the regular task pick and find the max prio task
6065 	 * amongst them.
6066 	 *
6067 	 * Tie-break prio towards the current CPU
6068 	 */
6069 restart_multi:
6070 	max = NULL;
6071 	for_each_cpu_wrap(i, smt_mask, cpu) {
6072 		rq_i = cpu_rq(i);
6073 
6074 		/*
6075 		 * Current cpu always has its clock updated on entrance to
6076 		 * pick_next_task(). If the current cpu is not the core,
6077 		 * the core may also have been updated above.
6078 		 */
6079 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6080 			update_rq_clock(rq_i);
6081 
6082 		p = pick_task(rq_i, rf);
6083 		if (unlikely(p == RETRY_TASK))
6084 			goto restart_multi;
6085 
6086 		rq_i->core_pick = p;
6087 		rq_i->core_dl_server = rq_i->dl_server;
6088 
6089 		if (!max || prio_less(max, p, fi_before))
6090 			max = p;
6091 	}
6092 
6093 	cookie = rq->core->core_cookie = max->core_cookie;
6094 
6095 	/*
6096 	 * For each thread: try and find a runnable task that matches @max or
6097 	 * force idle.
6098 	 */
6099 	for_each_cpu(i, smt_mask) {
6100 		rq_i = cpu_rq(i);
6101 		p = rq_i->core_pick;
6102 
6103 		if (!cookie_equals(p, cookie)) {
6104 			p = NULL;
6105 			if (cookie)
6106 				p = sched_core_find(rq_i, cookie);
6107 			if (!p)
6108 				p = idle_sched_class.pick_task(rq_i, rf);
6109 		}
6110 
6111 		rq_i->core_pick = p;
6112 		rq_i->core_dl_server = NULL;
6113 
6114 		if (p == rq_i->idle) {
6115 			if (rq_i->nr_running) {
6116 				rq->core->core_forceidle_count++;
6117 				if (!fi_before)
6118 					rq->core->core_forceidle_seq++;
6119 			}
6120 		} else {
6121 			occ++;
6122 		}
6123 	}
6124 
6125 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6126 		rq->core->core_forceidle_start = rq_clock(rq->core);
6127 		rq->core->core_forceidle_occupation = occ;
6128 	}
6129 
6130 	rq->core->core_pick_seq = rq->core->core_task_seq;
6131 	next = rq->core_pick;
6132 	rq->core_sched_seq = rq->core->core_pick_seq;
6133 
6134 	/* Something should have been selected for current CPU */
6135 	WARN_ON_ONCE(!next);
6136 
6137 	/*
6138 	 * Reschedule siblings
6139 	 *
6140 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6141 	 * sending an IPI (below) ensures the sibling will no longer be running
6142 	 * their task. This ensures there is no inter-sibling overlap between
6143 	 * non-matching user state.
6144 	 */
6145 	for_each_cpu(i, smt_mask) {
6146 		rq_i = cpu_rq(i);
6147 
6148 		/*
6149 		 * An online sibling might have gone offline before a task
6150 		 * could be picked for it, or it might be offline but later
6151 		 * happen to come online, but its too late and nothing was
6152 		 * picked for it.  That's Ok - it will pick tasks for itself,
6153 		 * so ignore it.
6154 		 */
6155 		if (!rq_i->core_pick)
6156 			continue;
6157 
6158 		/*
6159 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6160 		 * fi_before     fi      update?
6161 		 *  0            0       1
6162 		 *  0            1       1
6163 		 *  1            0       1
6164 		 *  1            1       0
6165 		 */
6166 		if (!(fi_before && rq->core->core_forceidle_count))
6167 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6168 
6169 		rq_i->core_pick->core_occupation = occ;
6170 
6171 		if (i == cpu) {
6172 			rq_i->core_pick = NULL;
6173 			rq_i->core_dl_server = NULL;
6174 			continue;
6175 		}
6176 
6177 		/* Did we break L1TF mitigation requirements? */
6178 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6179 
6180 		if (rq_i->curr == rq_i->core_pick) {
6181 			rq_i->core_pick = NULL;
6182 			rq_i->core_dl_server = NULL;
6183 			continue;
6184 		}
6185 
6186 		resched_curr(rq_i);
6187 	}
6188 
6189 out_set_next:
6190 	put_prev_set_next_task(rq, prev, next);
6191 	if (rq->core->core_forceidle_count && next == rq->idle)
6192 		queue_core_balance(rq);
6193 
6194 	return next;
6195 }
6196 
6197 static bool try_steal_cookie(int this, int that)
6198 {
6199 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6200 	struct task_struct *p;
6201 	unsigned long cookie;
6202 	bool success = false;
6203 
6204 	guard(irq)();
6205 	guard(double_rq_lock)(dst, src);
6206 
6207 	cookie = dst->core->core_cookie;
6208 	if (!cookie)
6209 		return false;
6210 
6211 	if (dst->curr != dst->idle)
6212 		return false;
6213 
6214 	p = sched_core_find(src, cookie);
6215 	if (!p)
6216 		return false;
6217 
6218 	do {
6219 		if (p == src->core_pick || p == src->curr)
6220 			goto next;
6221 
6222 		if (!is_cpu_allowed(p, this))
6223 			goto next;
6224 
6225 		if (p->core_occupation > dst->idle->core_occupation)
6226 			goto next;
6227 		/*
6228 		 * sched_core_find() and sched_core_next() will ensure
6229 		 * that task @p is not throttled now, we also need to
6230 		 * check whether the runqueue of the destination CPU is
6231 		 * being throttled.
6232 		 */
6233 		if (sched_task_is_throttled(p, this))
6234 			goto next;
6235 
6236 		move_queued_task_locked(src, dst, p);
6237 		resched_curr(dst);
6238 
6239 		success = true;
6240 		break;
6241 
6242 next:
6243 		p = sched_core_next(p, cookie);
6244 	} while (p);
6245 
6246 	return success;
6247 }
6248 
6249 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6250 {
6251 	int i;
6252 
6253 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6254 		if (i == cpu)
6255 			continue;
6256 
6257 		if (need_resched())
6258 			break;
6259 
6260 		if (try_steal_cookie(cpu, i))
6261 			return true;
6262 	}
6263 
6264 	return false;
6265 }
6266 
6267 static void sched_core_balance(struct rq *rq)
6268 {
6269 	struct sched_domain *sd;
6270 	int cpu = cpu_of(rq);
6271 
6272 	guard(preempt)();
6273 	guard(rcu)();
6274 
6275 	raw_spin_rq_unlock_irq(rq);
6276 	for_each_domain(cpu, sd) {
6277 		if (need_resched())
6278 			break;
6279 
6280 		if (steal_cookie_task(cpu, sd))
6281 			break;
6282 	}
6283 	raw_spin_rq_lock_irq(rq);
6284 }
6285 
6286 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6287 
6288 static void queue_core_balance(struct rq *rq)
6289 {
6290 	if (!sched_core_enabled(rq))
6291 		return;
6292 
6293 	if (!rq->core->core_cookie)
6294 		return;
6295 
6296 	if (!rq->nr_running) /* not forced idle */
6297 		return;
6298 
6299 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6300 }
6301 
6302 DEFINE_LOCK_GUARD_1(core_lock, int,
6303 		    sched_core_lock(*_T->lock, &_T->flags),
6304 		    sched_core_unlock(*_T->lock, &_T->flags),
6305 		    unsigned long flags)
6306 
6307 static void sched_core_cpu_starting(unsigned int cpu)
6308 {
6309 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6310 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6311 	int t;
6312 
6313 	guard(core_lock)(&cpu);
6314 
6315 	WARN_ON_ONCE(rq->core != rq);
6316 
6317 	/* if we're the first, we'll be our own leader */
6318 	if (cpumask_weight(smt_mask) == 1)
6319 		return;
6320 
6321 	/* find the leader */
6322 	for_each_cpu(t, smt_mask) {
6323 		if (t == cpu)
6324 			continue;
6325 		rq = cpu_rq(t);
6326 		if (rq->core == rq) {
6327 			core_rq = rq;
6328 			break;
6329 		}
6330 	}
6331 
6332 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6333 		return;
6334 
6335 	/* install and validate core_rq */
6336 	for_each_cpu(t, smt_mask) {
6337 		rq = cpu_rq(t);
6338 
6339 		if (t == cpu)
6340 			rq->core = core_rq;
6341 
6342 		WARN_ON_ONCE(rq->core != core_rq);
6343 	}
6344 }
6345 
6346 static void sched_core_cpu_deactivate(unsigned int cpu)
6347 {
6348 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6349 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6350 	int t;
6351 
6352 	guard(core_lock)(&cpu);
6353 
6354 	/* if we're the last man standing, nothing to do */
6355 	if (cpumask_weight(smt_mask) == 1) {
6356 		WARN_ON_ONCE(rq->core != rq);
6357 		return;
6358 	}
6359 
6360 	/* if we're not the leader, nothing to do */
6361 	if (rq->core != rq)
6362 		return;
6363 
6364 	/* find a new leader */
6365 	for_each_cpu(t, smt_mask) {
6366 		if (t == cpu)
6367 			continue;
6368 		core_rq = cpu_rq(t);
6369 		break;
6370 	}
6371 
6372 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6373 		return;
6374 
6375 	/* copy the shared state to the new leader */
6376 	core_rq->core_task_seq             = rq->core_task_seq;
6377 	core_rq->core_pick_seq             = rq->core_pick_seq;
6378 	core_rq->core_cookie               = rq->core_cookie;
6379 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6380 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6381 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6382 
6383 	/*
6384 	 * Accounting edge for forced idle is handled in pick_next_task().
6385 	 * Don't need another one here, since the hotplug thread shouldn't
6386 	 * have a cookie.
6387 	 */
6388 	core_rq->core_forceidle_start = 0;
6389 
6390 	/* install new leader */
6391 	for_each_cpu(t, smt_mask) {
6392 		rq = cpu_rq(t);
6393 		rq->core = core_rq;
6394 	}
6395 }
6396 
6397 static inline void sched_core_cpu_dying(unsigned int cpu)
6398 {
6399 	struct rq *rq = cpu_rq(cpu);
6400 
6401 	if (rq->core != rq)
6402 		rq->core = rq;
6403 }
6404 
6405 #else /* !CONFIG_SCHED_CORE: */
6406 
6407 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6408 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6409 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6410 
6411 static struct task_struct *
6412 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6413 {
6414 	return __pick_next_task(rq, prev, rf);
6415 }
6416 
6417 #endif /* !CONFIG_SCHED_CORE */
6418 
6419 /*
6420  * Constants for the sched_mode argument of __schedule().
6421  *
6422  * The mode argument allows RT enabled kernels to differentiate a
6423  * preemption from blocking on an 'sleeping' spin/rwlock.
6424  */
6425 #define SM_IDLE			(-1)
6426 #define SM_NONE			0
6427 #define SM_PREEMPT		1
6428 #define SM_RTLOCK_WAIT		2
6429 
6430 /*
6431  * Helper function for __schedule()
6432  *
6433  * Tries to deactivate the task, unless the should_block arg
6434  * is false or if a signal is pending. In the case a signal
6435  * is pending, marks the task's __state as RUNNING (and clear
6436  * blocked_on).
6437  */
6438 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6439 			      unsigned long *task_state_p, bool should_block)
6440 {
6441 	unsigned long task_state = *task_state_p;
6442 	int flags = DEQUEUE_NOCLOCK;
6443 
6444 	if (signal_pending_state(task_state, p)) {
6445 		WRITE_ONCE(p->__state, TASK_RUNNING);
6446 		*task_state_p = TASK_RUNNING;
6447 		return false;
6448 	}
6449 
6450 	/*
6451 	 * We check should_block after signal_pending because we
6452 	 * will want to wake the task in that case. But if
6453 	 * should_block is false, its likely due to the task being
6454 	 * blocked on a mutex, and we want to keep it on the runqueue
6455 	 * to be selectable for proxy-execution.
6456 	 */
6457 	if (!should_block)
6458 		return false;
6459 
6460 	p->sched_contributes_to_load =
6461 		(task_state & TASK_UNINTERRUPTIBLE) &&
6462 		!(task_state & TASK_NOLOAD) &&
6463 		!(task_state & TASK_FROZEN);
6464 
6465 	if (unlikely(is_special_task_state(task_state)))
6466 		flags |= DEQUEUE_SPECIAL;
6467 
6468 	/*
6469 	 * __schedule()			ttwu()
6470 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6471 	 *   if (prev_state)		    goto out;
6472 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6473 	 *				  p->state = TASK_WAKING
6474 	 *
6475 	 * Where __schedule() and ttwu() have matching control dependencies.
6476 	 *
6477 	 * After this, schedule() must not care about p->state any more.
6478 	 */
6479 	block_task(rq, p, flags);
6480 	return true;
6481 }
6482 
6483 #ifdef CONFIG_SCHED_PROXY_EXEC
6484 static inline struct task_struct *proxy_resched_idle(struct rq *rq)
6485 {
6486 	put_prev_set_next_task(rq, rq->donor, rq->idle);
6487 	rq_set_donor(rq, rq->idle);
6488 	set_tsk_need_resched(rq->idle);
6489 	return rq->idle;
6490 }
6491 
6492 static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor)
6493 {
6494 	unsigned long state = READ_ONCE(donor->__state);
6495 
6496 	/* Don't deactivate if the state has been changed to TASK_RUNNING */
6497 	if (state == TASK_RUNNING)
6498 		return false;
6499 	/*
6500 	 * Because we got donor from pick_next_task(), it is *crucial*
6501 	 * that we call proxy_resched_idle() before we deactivate it.
6502 	 * As once we deactivate donor, donor->on_rq is set to zero,
6503 	 * which allows ttwu() to immediately try to wake the task on
6504 	 * another rq. So we cannot use *any* references to donor
6505 	 * after that point. So things like cfs_rq->curr or rq->donor
6506 	 * need to be changed from next *before* we deactivate.
6507 	 */
6508 	proxy_resched_idle(rq);
6509 	return try_to_block_task(rq, donor, &state, true);
6510 }
6511 
6512 static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor)
6513 {
6514 	if (!__proxy_deactivate(rq, donor)) {
6515 		/*
6516 		 * XXX: For now, if deactivation failed, set donor
6517 		 * as unblocked, as we aren't doing proxy-migrations
6518 		 * yet (more logic will be needed then).
6519 		 */
6520 		donor->blocked_on = NULL;
6521 	}
6522 	return NULL;
6523 }
6524 
6525 /*
6526  * Find runnable lock owner to proxy for mutex blocked donor
6527  *
6528  * Follow the blocked-on relation:
6529  *   task->blocked_on -> mutex->owner -> task...
6530  *
6531  * Lock order:
6532  *
6533  *   p->pi_lock
6534  *     rq->lock
6535  *       mutex->wait_lock
6536  *
6537  * Returns the task that is going to be used as execution context (the one
6538  * that is actually going to be run on cpu_of(rq)).
6539  */
6540 static struct task_struct *
6541 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf)
6542 {
6543 	struct task_struct *owner = NULL;
6544 	int this_cpu = cpu_of(rq);
6545 	struct task_struct *p;
6546 	struct mutex *mutex;
6547 
6548 	/* Follow blocked_on chain. */
6549 	for (p = donor; task_is_blocked(p); p = owner) {
6550 		mutex = p->blocked_on;
6551 		/* Something changed in the chain, so pick again */
6552 		if (!mutex)
6553 			return NULL;
6554 		/*
6555 		 * By taking mutex->wait_lock we hold off concurrent mutex_unlock()
6556 		 * and ensure @owner sticks around.
6557 		 */
6558 		guard(raw_spinlock)(&mutex->wait_lock);
6559 
6560 		/* Check again that p is blocked with wait_lock held */
6561 		if (mutex != __get_task_blocked_on(p)) {
6562 			/*
6563 			 * Something changed in the blocked_on chain and
6564 			 * we don't know if only at this level. So, let's
6565 			 * just bail out completely and let __schedule()
6566 			 * figure things out (pick_again loop).
6567 			 */
6568 			return NULL;
6569 		}
6570 
6571 		owner = __mutex_owner(mutex);
6572 		if (!owner) {
6573 			__clear_task_blocked_on(p, mutex);
6574 			return p;
6575 		}
6576 
6577 		if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) {
6578 			/* XXX Don't handle blocked owners/delayed dequeue yet */
6579 			return proxy_deactivate(rq, donor);
6580 		}
6581 
6582 		if (task_cpu(owner) != this_cpu) {
6583 			/* XXX Don't handle migrations yet */
6584 			return proxy_deactivate(rq, donor);
6585 		}
6586 
6587 		if (task_on_rq_migrating(owner)) {
6588 			/*
6589 			 * One of the chain of mutex owners is currently migrating to this
6590 			 * CPU, but has not yet been enqueued because we are holding the
6591 			 * rq lock. As a simple solution, just schedule rq->idle to give
6592 			 * the migration a chance to complete. Much like the migrate_task
6593 			 * case we should end up back in find_proxy_task(), this time
6594 			 * hopefully with all relevant tasks already enqueued.
6595 			 */
6596 			return proxy_resched_idle(rq);
6597 		}
6598 
6599 		/*
6600 		 * Its possible to race where after we check owner->on_rq
6601 		 * but before we check (owner_cpu != this_cpu) that the
6602 		 * task on another cpu was migrated back to this cpu. In
6603 		 * that case it could slip by our  checks. So double check
6604 		 * we are still on this cpu and not migrating. If we get
6605 		 * inconsistent results, try again.
6606 		 */
6607 		if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu)
6608 			return NULL;
6609 
6610 		if (owner == p) {
6611 			/*
6612 			 * It's possible we interleave with mutex_unlock like:
6613 			 *
6614 			 *				lock(&rq->lock);
6615 			 *				  find_proxy_task()
6616 			 * mutex_unlock()
6617 			 *   lock(&wait_lock);
6618 			 *   donor(owner) = current->blocked_donor;
6619 			 *   unlock(&wait_lock);
6620 			 *
6621 			 *   wake_up_q();
6622 			 *     ...
6623 			 *       ttwu_runnable()
6624 			 *         __task_rq_lock()
6625 			 *				  lock(&wait_lock);
6626 			 *				  owner == p
6627 			 *
6628 			 * Which leaves us to finish the ttwu_runnable() and make it go.
6629 			 *
6630 			 * So schedule rq->idle so that ttwu_runnable() can get the rq
6631 			 * lock and mark owner as running.
6632 			 */
6633 			return proxy_resched_idle(rq);
6634 		}
6635 		/*
6636 		 * OK, now we're absolutely sure @owner is on this
6637 		 * rq, therefore holding @rq->lock is sufficient to
6638 		 * guarantee its existence, as per ttwu_remote().
6639 		 */
6640 	}
6641 
6642 	WARN_ON_ONCE(owner && !owner->on_rq);
6643 	return owner;
6644 }
6645 #else /* SCHED_PROXY_EXEC */
6646 static struct task_struct *
6647 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf)
6648 {
6649 	WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n");
6650 	return donor;
6651 }
6652 #endif /* SCHED_PROXY_EXEC */
6653 
6654 static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner)
6655 {
6656 	if (!sched_proxy_exec())
6657 		return;
6658 	/*
6659 	 * pick_next_task() calls set_next_task() on the chosen task
6660 	 * at some point, which ensures it is not push/pullable.
6661 	 * However, the chosen/donor task *and* the mutex owner form an
6662 	 * atomic pair wrt push/pull.
6663 	 *
6664 	 * Make sure owner we run is not pushable. Unfortunately we can
6665 	 * only deal with that by means of a dequeue/enqueue cycle. :-/
6666 	 */
6667 	dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE);
6668 	enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE);
6669 }
6670 
6671 /*
6672  * __schedule() is the main scheduler function.
6673  *
6674  * The main means of driving the scheduler and thus entering this function are:
6675  *
6676  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6677  *
6678  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6679  *      paths. For example, see arch/x86/entry_64.S.
6680  *
6681  *      To drive preemption between tasks, the scheduler sets the flag in timer
6682  *      interrupt handler sched_tick().
6683  *
6684  *   3. Wakeups don't really cause entry into schedule(). They add a
6685  *      task to the run-queue and that's it.
6686  *
6687  *      Now, if the new task added to the run-queue preempts the current
6688  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6689  *      called on the nearest possible occasion:
6690  *
6691  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6692  *
6693  *         - in syscall or exception context, at the next outmost
6694  *           preempt_enable(). (this might be as soon as the wake_up()'s
6695  *           spin_unlock()!)
6696  *
6697  *         - in IRQ context, return from interrupt-handler to
6698  *           preemptible context
6699  *
6700  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6701  *         then at the next:
6702  *
6703  *          - cond_resched() call
6704  *          - explicit schedule() call
6705  *          - return from syscall or exception to user-space
6706  *          - return from interrupt-handler to user-space
6707  *
6708  * WARNING: must be called with preemption disabled!
6709  */
6710 static void __sched notrace __schedule(int sched_mode)
6711 {
6712 	struct task_struct *prev, *next;
6713 	/*
6714 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6715 	 * as a preemption by schedule_debug() and RCU.
6716 	 */
6717 	bool preempt = sched_mode > SM_NONE;
6718 	bool is_switch = false;
6719 	unsigned long *switch_count;
6720 	unsigned long prev_state;
6721 	struct rq_flags rf;
6722 	struct rq *rq;
6723 	int cpu;
6724 
6725 	/* Trace preemptions consistently with task switches */
6726 	trace_sched_entry_tp(sched_mode == SM_PREEMPT);
6727 
6728 	cpu = smp_processor_id();
6729 	rq = cpu_rq(cpu);
6730 	prev = rq->curr;
6731 
6732 	schedule_debug(prev, preempt);
6733 
6734 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6735 		hrtick_clear(rq);
6736 
6737 	klp_sched_try_switch(prev);
6738 
6739 	local_irq_disable();
6740 	rcu_note_context_switch(preempt);
6741 	migrate_disable_switch(rq, prev);
6742 
6743 	/*
6744 	 * Make sure that signal_pending_state()->signal_pending() below
6745 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6746 	 * done by the caller to avoid the race with signal_wake_up():
6747 	 *
6748 	 * __set_current_state(@state)		signal_wake_up()
6749 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6750 	 *					  wake_up_state(p, state)
6751 	 *   LOCK rq->lock			    LOCK p->pi_state
6752 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6753 	 *     if (signal_pending_state())	    if (p->state & @state)
6754 	 *
6755 	 * Also, the membarrier system call requires a full memory barrier
6756 	 * after coming from user-space, before storing to rq->curr; this
6757 	 * barrier matches a full barrier in the proximity of the membarrier
6758 	 * system call exit.
6759 	 */
6760 	rq_lock(rq, &rf);
6761 	smp_mb__after_spinlock();
6762 
6763 	/* Promote REQ to ACT */
6764 	rq->clock_update_flags <<= 1;
6765 	update_rq_clock(rq);
6766 	rq->clock_update_flags = RQCF_UPDATED;
6767 
6768 	switch_count = &prev->nivcsw;
6769 
6770 	/* Task state changes only considers SM_PREEMPT as preemption */
6771 	preempt = sched_mode == SM_PREEMPT;
6772 
6773 	/*
6774 	 * We must load prev->state once (task_struct::state is volatile), such
6775 	 * that we form a control dependency vs deactivate_task() below.
6776 	 */
6777 	prev_state = READ_ONCE(prev->__state);
6778 	if (sched_mode == SM_IDLE) {
6779 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6780 		if (!rq->nr_running && !scx_enabled()) {
6781 			next = prev;
6782 			goto picked;
6783 		}
6784 	} else if (!preempt && prev_state) {
6785 		/*
6786 		 * We pass task_is_blocked() as the should_block arg
6787 		 * in order to keep mutex-blocked tasks on the runqueue
6788 		 * for slection with proxy-exec (without proxy-exec
6789 		 * task_is_blocked() will always be false).
6790 		 */
6791 		try_to_block_task(rq, prev, &prev_state,
6792 				  !task_is_blocked(prev));
6793 		switch_count = &prev->nvcsw;
6794 	}
6795 
6796 pick_again:
6797 	next = pick_next_task(rq, rq->donor, &rf);
6798 	rq_set_donor(rq, next);
6799 	if (unlikely(task_is_blocked(next))) {
6800 		next = find_proxy_task(rq, next, &rf);
6801 		if (!next)
6802 			goto pick_again;
6803 		if (next == rq->idle)
6804 			goto keep_resched;
6805 	}
6806 picked:
6807 	clear_tsk_need_resched(prev);
6808 	clear_preempt_need_resched();
6809 keep_resched:
6810 	rq->last_seen_need_resched_ns = 0;
6811 
6812 	is_switch = prev != next;
6813 	if (likely(is_switch)) {
6814 		rq->nr_switches++;
6815 		/*
6816 		 * RCU users of rcu_dereference(rq->curr) may not see
6817 		 * changes to task_struct made by pick_next_task().
6818 		 */
6819 		RCU_INIT_POINTER(rq->curr, next);
6820 
6821 		if (!task_current_donor(rq, next))
6822 			proxy_tag_curr(rq, next);
6823 
6824 		/*
6825 		 * The membarrier system call requires each architecture
6826 		 * to have a full memory barrier after updating
6827 		 * rq->curr, before returning to user-space.
6828 		 *
6829 		 * Here are the schemes providing that barrier on the
6830 		 * various architectures:
6831 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6832 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6833 		 *   on PowerPC and on RISC-V.
6834 		 * - finish_lock_switch() for weakly-ordered
6835 		 *   architectures where spin_unlock is a full barrier,
6836 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6837 		 *   is a RELEASE barrier),
6838 		 *
6839 		 * The barrier matches a full barrier in the proximity of
6840 		 * the membarrier system call entry.
6841 		 *
6842 		 * On RISC-V, this barrier pairing is also needed for the
6843 		 * SYNC_CORE command when switching between processes, cf.
6844 		 * the inline comments in membarrier_arch_switch_mm().
6845 		 */
6846 		++*switch_count;
6847 
6848 		psi_account_irqtime(rq, prev, next);
6849 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6850 					     prev->se.sched_delayed);
6851 
6852 		trace_sched_switch(preempt, prev, next, prev_state);
6853 
6854 		/* Also unlocks the rq: */
6855 		rq = context_switch(rq, prev, next, &rf);
6856 	} else {
6857 		/* In case next was already curr but just got blocked_donor */
6858 		if (!task_current_donor(rq, next))
6859 			proxy_tag_curr(rq, next);
6860 
6861 		rq_unpin_lock(rq, &rf);
6862 		__balance_callbacks(rq);
6863 		raw_spin_rq_unlock_irq(rq);
6864 	}
6865 	trace_sched_exit_tp(is_switch);
6866 }
6867 
6868 void __noreturn do_task_dead(void)
6869 {
6870 	/* Causes final put_task_struct in finish_task_switch(): */
6871 	set_special_state(TASK_DEAD);
6872 
6873 	/* Tell freezer to ignore us: */
6874 	current->flags |= PF_NOFREEZE;
6875 
6876 	__schedule(SM_NONE);
6877 	BUG();
6878 
6879 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6880 	for (;;)
6881 		cpu_relax();
6882 }
6883 
6884 static inline void sched_submit_work(struct task_struct *tsk)
6885 {
6886 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6887 	unsigned int task_flags;
6888 
6889 	/*
6890 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6891 	 * will use a blocking primitive -- which would lead to recursion.
6892 	 */
6893 	lock_map_acquire_try(&sched_map);
6894 
6895 	task_flags = tsk->flags;
6896 	/*
6897 	 * If a worker goes to sleep, notify and ask workqueue whether it
6898 	 * wants to wake up a task to maintain concurrency.
6899 	 */
6900 	if (task_flags & PF_WQ_WORKER)
6901 		wq_worker_sleeping(tsk);
6902 	else if (task_flags & PF_IO_WORKER)
6903 		io_wq_worker_sleeping(tsk);
6904 
6905 	/*
6906 	 * spinlock and rwlock must not flush block requests.  This will
6907 	 * deadlock if the callback attempts to acquire a lock which is
6908 	 * already acquired.
6909 	 */
6910 	WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT);
6911 
6912 	/*
6913 	 * If we are going to sleep and we have plugged IO queued,
6914 	 * make sure to submit it to avoid deadlocks.
6915 	 */
6916 	blk_flush_plug(tsk->plug, true);
6917 
6918 	lock_map_release(&sched_map);
6919 }
6920 
6921 static void sched_update_worker(struct task_struct *tsk)
6922 {
6923 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6924 		if (tsk->flags & PF_BLOCK_TS)
6925 			blk_plug_invalidate_ts(tsk);
6926 		if (tsk->flags & PF_WQ_WORKER)
6927 			wq_worker_running(tsk);
6928 		else if (tsk->flags & PF_IO_WORKER)
6929 			io_wq_worker_running(tsk);
6930 	}
6931 }
6932 
6933 static __always_inline void __schedule_loop(int sched_mode)
6934 {
6935 	do {
6936 		preempt_disable();
6937 		__schedule(sched_mode);
6938 		sched_preempt_enable_no_resched();
6939 	} while (need_resched());
6940 }
6941 
6942 asmlinkage __visible void __sched schedule(void)
6943 {
6944 	struct task_struct *tsk = current;
6945 
6946 #ifdef CONFIG_RT_MUTEXES
6947 	lockdep_assert(!tsk->sched_rt_mutex);
6948 #endif
6949 
6950 	if (!task_is_running(tsk))
6951 		sched_submit_work(tsk);
6952 	__schedule_loop(SM_NONE);
6953 	sched_update_worker(tsk);
6954 }
6955 EXPORT_SYMBOL(schedule);
6956 
6957 /*
6958  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6959  * state (have scheduled out non-voluntarily) by making sure that all
6960  * tasks have either left the run queue or have gone into user space.
6961  * As idle tasks do not do either, they must not ever be preempted
6962  * (schedule out non-voluntarily).
6963  *
6964  * schedule_idle() is similar to schedule_preempt_disable() except that it
6965  * never enables preemption because it does not call sched_submit_work().
6966  */
6967 void __sched schedule_idle(void)
6968 {
6969 	/*
6970 	 * As this skips calling sched_submit_work(), which the idle task does
6971 	 * regardless because that function is a NOP when the task is in a
6972 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6973 	 * current task can be in any other state. Note, idle is always in the
6974 	 * TASK_RUNNING state.
6975 	 */
6976 	WARN_ON_ONCE(current->__state);
6977 	do {
6978 		__schedule(SM_IDLE);
6979 	} while (need_resched());
6980 }
6981 
6982 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6983 asmlinkage __visible void __sched schedule_user(void)
6984 {
6985 	/*
6986 	 * If we come here after a random call to set_need_resched(),
6987 	 * or we have been woken up remotely but the IPI has not yet arrived,
6988 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6989 	 * we find a better solution.
6990 	 *
6991 	 * NB: There are buggy callers of this function.  Ideally we
6992 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6993 	 * too frequently to make sense yet.
6994 	 */
6995 	enum ctx_state prev_state = exception_enter();
6996 	schedule();
6997 	exception_exit(prev_state);
6998 }
6999 #endif
7000 
7001 /**
7002  * schedule_preempt_disabled - called with preemption disabled
7003  *
7004  * Returns with preemption disabled. Note: preempt_count must be 1
7005  */
7006 void __sched schedule_preempt_disabled(void)
7007 {
7008 	sched_preempt_enable_no_resched();
7009 	schedule();
7010 	preempt_disable();
7011 }
7012 
7013 #ifdef CONFIG_PREEMPT_RT
7014 void __sched notrace schedule_rtlock(void)
7015 {
7016 	__schedule_loop(SM_RTLOCK_WAIT);
7017 }
7018 NOKPROBE_SYMBOL(schedule_rtlock);
7019 #endif
7020 
7021 static void __sched notrace preempt_schedule_common(void)
7022 {
7023 	do {
7024 		/*
7025 		 * Because the function tracer can trace preempt_count_sub()
7026 		 * and it also uses preempt_enable/disable_notrace(), if
7027 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7028 		 * by the function tracer will call this function again and
7029 		 * cause infinite recursion.
7030 		 *
7031 		 * Preemption must be disabled here before the function
7032 		 * tracer can trace. Break up preempt_disable() into two
7033 		 * calls. One to disable preemption without fear of being
7034 		 * traced. The other to still record the preemption latency,
7035 		 * which can also be traced by the function tracer.
7036 		 */
7037 		preempt_disable_notrace();
7038 		preempt_latency_start(1);
7039 		__schedule(SM_PREEMPT);
7040 		preempt_latency_stop(1);
7041 		preempt_enable_no_resched_notrace();
7042 
7043 		/*
7044 		 * Check again in case we missed a preemption opportunity
7045 		 * between schedule and now.
7046 		 */
7047 	} while (need_resched());
7048 }
7049 
7050 #ifdef CONFIG_PREEMPTION
7051 /*
7052  * This is the entry point to schedule() from in-kernel preemption
7053  * off of preempt_enable.
7054  */
7055 asmlinkage __visible void __sched notrace preempt_schedule(void)
7056 {
7057 	/*
7058 	 * If there is a non-zero preempt_count or interrupts are disabled,
7059 	 * we do not want to preempt the current task. Just return..
7060 	 */
7061 	if (likely(!preemptible()))
7062 		return;
7063 	preempt_schedule_common();
7064 }
7065 NOKPROBE_SYMBOL(preempt_schedule);
7066 EXPORT_SYMBOL(preempt_schedule);
7067 
7068 #ifdef CONFIG_PREEMPT_DYNAMIC
7069 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7070 #  ifndef preempt_schedule_dynamic_enabled
7071 #   define preempt_schedule_dynamic_enabled	preempt_schedule
7072 #   define preempt_schedule_dynamic_disabled	NULL
7073 #  endif
7074 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
7075 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
7076 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7077 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
7078 void __sched notrace dynamic_preempt_schedule(void)
7079 {
7080 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
7081 		return;
7082 	preempt_schedule();
7083 }
7084 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
7085 EXPORT_SYMBOL(dynamic_preempt_schedule);
7086 # endif
7087 #endif /* CONFIG_PREEMPT_DYNAMIC */
7088 
7089 /**
7090  * preempt_schedule_notrace - preempt_schedule called by tracing
7091  *
7092  * The tracing infrastructure uses preempt_enable_notrace to prevent
7093  * recursion and tracing preempt enabling caused by the tracing
7094  * infrastructure itself. But as tracing can happen in areas coming
7095  * from userspace or just about to enter userspace, a preempt enable
7096  * can occur before user_exit() is called. This will cause the scheduler
7097  * to be called when the system is still in usermode.
7098  *
7099  * To prevent this, the preempt_enable_notrace will use this function
7100  * instead of preempt_schedule() to exit user context if needed before
7101  * calling the scheduler.
7102  */
7103 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7104 {
7105 	enum ctx_state prev_ctx;
7106 
7107 	if (likely(!preemptible()))
7108 		return;
7109 
7110 	do {
7111 		/*
7112 		 * Because the function tracer can trace preempt_count_sub()
7113 		 * and it also uses preempt_enable/disable_notrace(), if
7114 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7115 		 * by the function tracer will call this function again and
7116 		 * cause infinite recursion.
7117 		 *
7118 		 * Preemption must be disabled here before the function
7119 		 * tracer can trace. Break up preempt_disable() into two
7120 		 * calls. One to disable preemption without fear of being
7121 		 * traced. The other to still record the preemption latency,
7122 		 * which can also be traced by the function tracer.
7123 		 */
7124 		preempt_disable_notrace();
7125 		preempt_latency_start(1);
7126 		/*
7127 		 * Needs preempt disabled in case user_exit() is traced
7128 		 * and the tracer calls preempt_enable_notrace() causing
7129 		 * an infinite recursion.
7130 		 */
7131 		prev_ctx = exception_enter();
7132 		__schedule(SM_PREEMPT);
7133 		exception_exit(prev_ctx);
7134 
7135 		preempt_latency_stop(1);
7136 		preempt_enable_no_resched_notrace();
7137 	} while (need_resched());
7138 }
7139 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7140 
7141 #ifdef CONFIG_PREEMPT_DYNAMIC
7142 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7143 #  ifndef preempt_schedule_notrace_dynamic_enabled
7144 #   define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7145 #   define preempt_schedule_notrace_dynamic_disabled	NULL
7146 #  endif
7147 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7148 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7149 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7150 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7151 void __sched notrace dynamic_preempt_schedule_notrace(void)
7152 {
7153 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7154 		return;
7155 	preempt_schedule_notrace();
7156 }
7157 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7158 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7159 # endif
7160 #endif
7161 
7162 #endif /* CONFIG_PREEMPTION */
7163 
7164 /*
7165  * This is the entry point to schedule() from kernel preemption
7166  * off of IRQ context.
7167  * Note, that this is called and return with IRQs disabled. This will
7168  * protect us against recursive calling from IRQ contexts.
7169  */
7170 asmlinkage __visible void __sched preempt_schedule_irq(void)
7171 {
7172 	enum ctx_state prev_state;
7173 
7174 	/* Catch callers which need to be fixed */
7175 	BUG_ON(preempt_count() || !irqs_disabled());
7176 
7177 	prev_state = exception_enter();
7178 
7179 	do {
7180 		preempt_disable();
7181 		local_irq_enable();
7182 		__schedule(SM_PREEMPT);
7183 		local_irq_disable();
7184 		sched_preempt_enable_no_resched();
7185 	} while (need_resched());
7186 
7187 	exception_exit(prev_state);
7188 }
7189 
7190 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7191 			  void *key)
7192 {
7193 	WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7194 	return try_to_wake_up(curr->private, mode, wake_flags);
7195 }
7196 EXPORT_SYMBOL(default_wake_function);
7197 
7198 const struct sched_class *__setscheduler_class(int policy, int prio)
7199 {
7200 	if (dl_prio(prio))
7201 		return &dl_sched_class;
7202 
7203 	if (rt_prio(prio))
7204 		return &rt_sched_class;
7205 
7206 #ifdef CONFIG_SCHED_CLASS_EXT
7207 	if (task_should_scx(policy))
7208 		return &ext_sched_class;
7209 #endif
7210 
7211 	return &fair_sched_class;
7212 }
7213 
7214 #ifdef CONFIG_RT_MUTEXES
7215 
7216 /*
7217  * Would be more useful with typeof()/auto_type but they don't mix with
7218  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7219  * name such that if someone were to implement this function we get to compare
7220  * notes.
7221  */
7222 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7223 
7224 void rt_mutex_pre_schedule(void)
7225 {
7226 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7227 	sched_submit_work(current);
7228 }
7229 
7230 void rt_mutex_schedule(void)
7231 {
7232 	lockdep_assert(current->sched_rt_mutex);
7233 	__schedule_loop(SM_NONE);
7234 }
7235 
7236 void rt_mutex_post_schedule(void)
7237 {
7238 	sched_update_worker(current);
7239 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7240 }
7241 
7242 /*
7243  * rt_mutex_setprio - set the current priority of a task
7244  * @p: task to boost
7245  * @pi_task: donor task
7246  *
7247  * This function changes the 'effective' priority of a task. It does
7248  * not touch ->normal_prio like __setscheduler().
7249  *
7250  * Used by the rt_mutex code to implement priority inheritance
7251  * logic. Call site only calls if the priority of the task changed.
7252  */
7253 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7254 {
7255 	int prio, oldprio, queue_flag =
7256 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7257 	const struct sched_class *prev_class, *next_class;
7258 	struct rq_flags rf;
7259 	struct rq *rq;
7260 
7261 	/* XXX used to be waiter->prio, not waiter->task->prio */
7262 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7263 
7264 	/*
7265 	 * If nothing changed; bail early.
7266 	 */
7267 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7268 		return;
7269 
7270 	rq = __task_rq_lock(p, &rf);
7271 	update_rq_clock(rq);
7272 	/*
7273 	 * Set under pi_lock && rq->lock, such that the value can be used under
7274 	 * either lock.
7275 	 *
7276 	 * Note that there is loads of tricky to make this pointer cache work
7277 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7278 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7279 	 * task is allowed to run again (and can exit). This ensures the pointer
7280 	 * points to a blocked task -- which guarantees the task is present.
7281 	 */
7282 	p->pi_top_task = pi_task;
7283 
7284 	/*
7285 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7286 	 */
7287 	if (prio == p->prio && !dl_prio(prio))
7288 		goto out_unlock;
7289 
7290 	/*
7291 	 * Idle task boosting is a no-no in general. There is one
7292 	 * exception, when PREEMPT_RT and NOHZ is active:
7293 	 *
7294 	 * The idle task calls get_next_timer_interrupt() and holds
7295 	 * the timer wheel base->lock on the CPU and another CPU wants
7296 	 * to access the timer (probably to cancel it). We can safely
7297 	 * ignore the boosting request, as the idle CPU runs this code
7298 	 * with interrupts disabled and will complete the lock
7299 	 * protected section without being interrupted. So there is no
7300 	 * real need to boost.
7301 	 */
7302 	if (unlikely(p == rq->idle)) {
7303 		WARN_ON(p != rq->curr);
7304 		WARN_ON(p->pi_blocked_on);
7305 		goto out_unlock;
7306 	}
7307 
7308 	trace_sched_pi_setprio(p, pi_task);
7309 	oldprio = p->prio;
7310 
7311 	if (oldprio == prio)
7312 		queue_flag &= ~DEQUEUE_MOVE;
7313 
7314 	prev_class = p->sched_class;
7315 	next_class = __setscheduler_class(p->policy, prio);
7316 
7317 	if (prev_class != next_class)
7318 		queue_flag |= DEQUEUE_CLASS;
7319 
7320 	scoped_guard (sched_change, p, queue_flag) {
7321 		/*
7322 		 * Boosting condition are:
7323 		 * 1. -rt task is running and holds mutex A
7324 		 *      --> -dl task blocks on mutex A
7325 		 *
7326 		 * 2. -dl task is running and holds mutex A
7327 		 *      --> -dl task blocks on mutex A and could preempt the
7328 		 *          running task
7329 		 */
7330 		if (dl_prio(prio)) {
7331 			if (!dl_prio(p->normal_prio) ||
7332 			    (pi_task && dl_prio(pi_task->prio) &&
7333 			     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7334 				p->dl.pi_se = pi_task->dl.pi_se;
7335 				scope->flags |= ENQUEUE_REPLENISH;
7336 			} else {
7337 				p->dl.pi_se = &p->dl;
7338 			}
7339 		} else if (rt_prio(prio)) {
7340 			if (dl_prio(oldprio))
7341 				p->dl.pi_se = &p->dl;
7342 			if (oldprio < prio)
7343 				scope->flags |= ENQUEUE_HEAD;
7344 		} else {
7345 			if (dl_prio(oldprio))
7346 				p->dl.pi_se = &p->dl;
7347 			if (rt_prio(oldprio))
7348 				p->rt.timeout = 0;
7349 		}
7350 
7351 		p->sched_class = next_class;
7352 		p->prio = prio;
7353 	}
7354 out_unlock:
7355 	/* Avoid rq from going away on us: */
7356 	preempt_disable();
7357 
7358 	rq_unpin_lock(rq, &rf);
7359 	__balance_callbacks(rq);
7360 	rq_repin_lock(rq, &rf);
7361 	__task_rq_unlock(rq, p, &rf);
7362 
7363 	preempt_enable();
7364 }
7365 #endif /* CONFIG_RT_MUTEXES */
7366 
7367 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7368 int __sched __cond_resched(void)
7369 {
7370 	if (should_resched(0) && !irqs_disabled()) {
7371 		preempt_schedule_common();
7372 		return 1;
7373 	}
7374 	/*
7375 	 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick
7376 	 * whether the current CPU is in an RCU read-side critical section,
7377 	 * so the tick can report quiescent states even for CPUs looping
7378 	 * in kernel context.  In contrast, in non-preemptible kernels,
7379 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7380 	 * processes executing in kernel context might never report an
7381 	 * RCU quiescent state.  Therefore, the following code causes
7382 	 * cond_resched() to report a quiescent state, but only when RCU
7383 	 * is in urgent need of one.
7384 	 * A third case, preemptible, but non-PREEMPT_RCU provides for
7385 	 * urgently needed quiescent states via rcu_flavor_sched_clock_irq().
7386 	 */
7387 #ifndef CONFIG_PREEMPT_RCU
7388 	rcu_all_qs();
7389 #endif
7390 	return 0;
7391 }
7392 EXPORT_SYMBOL(__cond_resched);
7393 #endif
7394 
7395 #ifdef CONFIG_PREEMPT_DYNAMIC
7396 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7397 #  define cond_resched_dynamic_enabled	__cond_resched
7398 #  define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7399 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7400 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7401 
7402 #  define might_resched_dynamic_enabled	__cond_resched
7403 #  define might_resched_dynamic_disabled ((void *)&__static_call_return0)
7404 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7405 EXPORT_STATIC_CALL_TRAMP(might_resched);
7406 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7407 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7408 int __sched dynamic_cond_resched(void)
7409 {
7410 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7411 		return 0;
7412 	return __cond_resched();
7413 }
7414 EXPORT_SYMBOL(dynamic_cond_resched);
7415 
7416 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7417 int __sched dynamic_might_resched(void)
7418 {
7419 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7420 		return 0;
7421 	return __cond_resched();
7422 }
7423 EXPORT_SYMBOL(dynamic_might_resched);
7424 # endif
7425 #endif /* CONFIG_PREEMPT_DYNAMIC */
7426 
7427 /*
7428  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7429  * call schedule, and on return reacquire the lock.
7430  *
7431  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7432  * operations here to prevent schedule() from being called twice (once via
7433  * spin_unlock(), once by hand).
7434  */
7435 int __cond_resched_lock(spinlock_t *lock)
7436 {
7437 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7438 	int ret = 0;
7439 
7440 	lockdep_assert_held(lock);
7441 
7442 	if (spin_needbreak(lock) || resched) {
7443 		spin_unlock(lock);
7444 		if (!_cond_resched())
7445 			cpu_relax();
7446 		ret = 1;
7447 		spin_lock(lock);
7448 	}
7449 	return ret;
7450 }
7451 EXPORT_SYMBOL(__cond_resched_lock);
7452 
7453 int __cond_resched_rwlock_read(rwlock_t *lock)
7454 {
7455 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7456 	int ret = 0;
7457 
7458 	lockdep_assert_held_read(lock);
7459 
7460 	if (rwlock_needbreak(lock) || resched) {
7461 		read_unlock(lock);
7462 		if (!_cond_resched())
7463 			cpu_relax();
7464 		ret = 1;
7465 		read_lock(lock);
7466 	}
7467 	return ret;
7468 }
7469 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7470 
7471 int __cond_resched_rwlock_write(rwlock_t *lock)
7472 {
7473 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7474 	int ret = 0;
7475 
7476 	lockdep_assert_held_write(lock);
7477 
7478 	if (rwlock_needbreak(lock) || resched) {
7479 		write_unlock(lock);
7480 		if (!_cond_resched())
7481 			cpu_relax();
7482 		ret = 1;
7483 		write_lock(lock);
7484 	}
7485 	return ret;
7486 }
7487 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7488 
7489 #ifdef CONFIG_PREEMPT_DYNAMIC
7490 
7491 # ifdef CONFIG_GENERIC_IRQ_ENTRY
7492 #  include <linux/irq-entry-common.h>
7493 # endif
7494 
7495 /*
7496  * SC:cond_resched
7497  * SC:might_resched
7498  * SC:preempt_schedule
7499  * SC:preempt_schedule_notrace
7500  * SC:irqentry_exit_cond_resched
7501  *
7502  *
7503  * NONE:
7504  *   cond_resched               <- __cond_resched
7505  *   might_resched              <- RET0
7506  *   preempt_schedule           <- NOP
7507  *   preempt_schedule_notrace   <- NOP
7508  *   irqentry_exit_cond_resched <- NOP
7509  *   dynamic_preempt_lazy       <- false
7510  *
7511  * VOLUNTARY:
7512  *   cond_resched               <- __cond_resched
7513  *   might_resched              <- __cond_resched
7514  *   preempt_schedule           <- NOP
7515  *   preempt_schedule_notrace   <- NOP
7516  *   irqentry_exit_cond_resched <- NOP
7517  *   dynamic_preempt_lazy       <- false
7518  *
7519  * FULL:
7520  *   cond_resched               <- RET0
7521  *   might_resched              <- RET0
7522  *   preempt_schedule           <- preempt_schedule
7523  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7524  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7525  *   dynamic_preempt_lazy       <- false
7526  *
7527  * LAZY:
7528  *   cond_resched               <- RET0
7529  *   might_resched              <- RET0
7530  *   preempt_schedule           <- preempt_schedule
7531  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7532  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7533  *   dynamic_preempt_lazy       <- true
7534  */
7535 
7536 enum {
7537 	preempt_dynamic_undefined = -1,
7538 	preempt_dynamic_none,
7539 	preempt_dynamic_voluntary,
7540 	preempt_dynamic_full,
7541 	preempt_dynamic_lazy,
7542 };
7543 
7544 int preempt_dynamic_mode = preempt_dynamic_undefined;
7545 
7546 int sched_dynamic_mode(const char *str)
7547 {
7548 # ifndef CONFIG_PREEMPT_RT
7549 	if (!strcmp(str, "none"))
7550 		return preempt_dynamic_none;
7551 
7552 	if (!strcmp(str, "voluntary"))
7553 		return preempt_dynamic_voluntary;
7554 # endif
7555 
7556 	if (!strcmp(str, "full"))
7557 		return preempt_dynamic_full;
7558 
7559 # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7560 	if (!strcmp(str, "lazy"))
7561 		return preempt_dynamic_lazy;
7562 # endif
7563 
7564 	return -EINVAL;
7565 }
7566 
7567 # define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7568 # define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7569 
7570 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7571 #  define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7572 #  define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7573 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7574 #  define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7575 #  define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7576 # else
7577 #  error "Unsupported PREEMPT_DYNAMIC mechanism"
7578 # endif
7579 
7580 static DEFINE_MUTEX(sched_dynamic_mutex);
7581 
7582 static void __sched_dynamic_update(int mode)
7583 {
7584 	/*
7585 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7586 	 * the ZERO state, which is invalid.
7587 	 */
7588 	preempt_dynamic_enable(cond_resched);
7589 	preempt_dynamic_enable(might_resched);
7590 	preempt_dynamic_enable(preempt_schedule);
7591 	preempt_dynamic_enable(preempt_schedule_notrace);
7592 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7593 	preempt_dynamic_key_disable(preempt_lazy);
7594 
7595 	switch (mode) {
7596 	case preempt_dynamic_none:
7597 		preempt_dynamic_enable(cond_resched);
7598 		preempt_dynamic_disable(might_resched);
7599 		preempt_dynamic_disable(preempt_schedule);
7600 		preempt_dynamic_disable(preempt_schedule_notrace);
7601 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7602 		preempt_dynamic_key_disable(preempt_lazy);
7603 		if (mode != preempt_dynamic_mode)
7604 			pr_info("Dynamic Preempt: none\n");
7605 		break;
7606 
7607 	case preempt_dynamic_voluntary:
7608 		preempt_dynamic_enable(cond_resched);
7609 		preempt_dynamic_enable(might_resched);
7610 		preempt_dynamic_disable(preempt_schedule);
7611 		preempt_dynamic_disable(preempt_schedule_notrace);
7612 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7613 		preempt_dynamic_key_disable(preempt_lazy);
7614 		if (mode != preempt_dynamic_mode)
7615 			pr_info("Dynamic Preempt: voluntary\n");
7616 		break;
7617 
7618 	case preempt_dynamic_full:
7619 		preempt_dynamic_disable(cond_resched);
7620 		preempt_dynamic_disable(might_resched);
7621 		preempt_dynamic_enable(preempt_schedule);
7622 		preempt_dynamic_enable(preempt_schedule_notrace);
7623 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7624 		preempt_dynamic_key_disable(preempt_lazy);
7625 		if (mode != preempt_dynamic_mode)
7626 			pr_info("Dynamic Preempt: full\n");
7627 		break;
7628 
7629 	case preempt_dynamic_lazy:
7630 		preempt_dynamic_disable(cond_resched);
7631 		preempt_dynamic_disable(might_resched);
7632 		preempt_dynamic_enable(preempt_schedule);
7633 		preempt_dynamic_enable(preempt_schedule_notrace);
7634 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7635 		preempt_dynamic_key_enable(preempt_lazy);
7636 		if (mode != preempt_dynamic_mode)
7637 			pr_info("Dynamic Preempt: lazy\n");
7638 		break;
7639 	}
7640 
7641 	preempt_dynamic_mode = mode;
7642 }
7643 
7644 void sched_dynamic_update(int mode)
7645 {
7646 	mutex_lock(&sched_dynamic_mutex);
7647 	__sched_dynamic_update(mode);
7648 	mutex_unlock(&sched_dynamic_mutex);
7649 }
7650 
7651 static int __init setup_preempt_mode(char *str)
7652 {
7653 	int mode = sched_dynamic_mode(str);
7654 	if (mode < 0) {
7655 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7656 		return 0;
7657 	}
7658 
7659 	sched_dynamic_update(mode);
7660 	return 1;
7661 }
7662 __setup("preempt=", setup_preempt_mode);
7663 
7664 static void __init preempt_dynamic_init(void)
7665 {
7666 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7667 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7668 			sched_dynamic_update(preempt_dynamic_none);
7669 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7670 			sched_dynamic_update(preempt_dynamic_voluntary);
7671 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7672 			sched_dynamic_update(preempt_dynamic_lazy);
7673 		} else {
7674 			/* Default static call setting, nothing to do */
7675 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7676 			preempt_dynamic_mode = preempt_dynamic_full;
7677 			pr_info("Dynamic Preempt: full\n");
7678 		}
7679 	}
7680 }
7681 
7682 # define PREEMPT_MODEL_ACCESSOR(mode) \
7683 	bool preempt_model_##mode(void)						 \
7684 	{									 \
7685 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7686 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7687 	}									 \
7688 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7689 
7690 PREEMPT_MODEL_ACCESSOR(none);
7691 PREEMPT_MODEL_ACCESSOR(voluntary);
7692 PREEMPT_MODEL_ACCESSOR(full);
7693 PREEMPT_MODEL_ACCESSOR(lazy);
7694 
7695 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7696 
7697 #define preempt_dynamic_mode -1
7698 
7699 static inline void preempt_dynamic_init(void) { }
7700 
7701 #endif /* CONFIG_PREEMPT_DYNAMIC */
7702 
7703 const char *preempt_modes[] = {
7704 	"none", "voluntary", "full", "lazy", NULL,
7705 };
7706 
7707 const char *preempt_model_str(void)
7708 {
7709 	bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) &&
7710 		(IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) ||
7711 		 IS_ENABLED(CONFIG_PREEMPT_LAZY));
7712 	static char buf[128];
7713 
7714 	if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) {
7715 		struct seq_buf s;
7716 
7717 		seq_buf_init(&s, buf, sizeof(buf));
7718 		seq_buf_puts(&s, "PREEMPT");
7719 
7720 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
7721 			seq_buf_printf(&s, "%sRT%s",
7722 				       brace ? "_{" : "_",
7723 				       brace ? "," : "");
7724 
7725 		if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) {
7726 			seq_buf_printf(&s, "(%s)%s",
7727 				       preempt_dynamic_mode >= 0 ?
7728 				       preempt_modes[preempt_dynamic_mode] : "undef",
7729 				       brace ? "}" : "");
7730 			return seq_buf_str(&s);
7731 		}
7732 
7733 		if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7734 			seq_buf_printf(&s, "LAZY%s",
7735 				       brace ? "}" : "");
7736 			return seq_buf_str(&s);
7737 		}
7738 
7739 		return seq_buf_str(&s);
7740 	}
7741 
7742 	if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD))
7743 		return "VOLUNTARY";
7744 
7745 	return "NONE";
7746 }
7747 
7748 int io_schedule_prepare(void)
7749 {
7750 	int old_iowait = current->in_iowait;
7751 
7752 	current->in_iowait = 1;
7753 	blk_flush_plug(current->plug, true);
7754 	return old_iowait;
7755 }
7756 
7757 void io_schedule_finish(int token)
7758 {
7759 	current->in_iowait = token;
7760 }
7761 
7762 /*
7763  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7764  * that process accounting knows that this is a task in IO wait state.
7765  */
7766 long __sched io_schedule_timeout(long timeout)
7767 {
7768 	int token;
7769 	long ret;
7770 
7771 	token = io_schedule_prepare();
7772 	ret = schedule_timeout(timeout);
7773 	io_schedule_finish(token);
7774 
7775 	return ret;
7776 }
7777 EXPORT_SYMBOL(io_schedule_timeout);
7778 
7779 void __sched io_schedule(void)
7780 {
7781 	int token;
7782 
7783 	token = io_schedule_prepare();
7784 	schedule();
7785 	io_schedule_finish(token);
7786 }
7787 EXPORT_SYMBOL(io_schedule);
7788 
7789 void sched_show_task(struct task_struct *p)
7790 {
7791 	unsigned long free;
7792 	int ppid;
7793 
7794 	if (!try_get_task_stack(p))
7795 		return;
7796 
7797 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7798 
7799 	if (task_is_running(p))
7800 		pr_cont("  running task    ");
7801 	free = stack_not_used(p);
7802 	ppid = 0;
7803 	rcu_read_lock();
7804 	if (pid_alive(p))
7805 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7806 	rcu_read_unlock();
7807 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7808 		free, task_pid_nr(p), task_tgid_nr(p),
7809 		ppid, p->flags, read_task_thread_flags(p));
7810 
7811 	print_worker_info(KERN_INFO, p);
7812 	print_stop_info(KERN_INFO, p);
7813 	print_scx_info(KERN_INFO, p);
7814 	show_stack(p, NULL, KERN_INFO);
7815 	put_task_stack(p);
7816 }
7817 EXPORT_SYMBOL_GPL(sched_show_task);
7818 
7819 static inline bool
7820 state_filter_match(unsigned long state_filter, struct task_struct *p)
7821 {
7822 	unsigned int state = READ_ONCE(p->__state);
7823 
7824 	/* no filter, everything matches */
7825 	if (!state_filter)
7826 		return true;
7827 
7828 	/* filter, but doesn't match */
7829 	if (!(state & state_filter))
7830 		return false;
7831 
7832 	/*
7833 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7834 	 * TASK_KILLABLE).
7835 	 */
7836 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7837 		return false;
7838 
7839 	return true;
7840 }
7841 
7842 
7843 void show_state_filter(unsigned int state_filter)
7844 {
7845 	struct task_struct *g, *p;
7846 
7847 	rcu_read_lock();
7848 	for_each_process_thread(g, p) {
7849 		/*
7850 		 * reset the NMI-timeout, listing all files on a slow
7851 		 * console might take a lot of time:
7852 		 * Also, reset softlockup watchdogs on all CPUs, because
7853 		 * another CPU might be blocked waiting for us to process
7854 		 * an IPI.
7855 		 */
7856 		touch_nmi_watchdog();
7857 		touch_all_softlockup_watchdogs();
7858 		if (state_filter_match(state_filter, p))
7859 			sched_show_task(p);
7860 	}
7861 
7862 	if (!state_filter)
7863 		sysrq_sched_debug_show();
7864 
7865 	rcu_read_unlock();
7866 	/*
7867 	 * Only show locks if all tasks are dumped:
7868 	 */
7869 	if (!state_filter)
7870 		debug_show_all_locks();
7871 }
7872 
7873 /**
7874  * init_idle - set up an idle thread for a given CPU
7875  * @idle: task in question
7876  * @cpu: CPU the idle task belongs to
7877  *
7878  * NOTE: this function does not set the idle thread's NEED_RESCHED
7879  * flag, to make booting more robust.
7880  */
7881 void __init init_idle(struct task_struct *idle, int cpu)
7882 {
7883 	struct affinity_context ac = (struct affinity_context) {
7884 		.new_mask  = cpumask_of(cpu),
7885 		.flags     = 0,
7886 	};
7887 	struct rq *rq = cpu_rq(cpu);
7888 	unsigned long flags;
7889 
7890 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7891 	raw_spin_rq_lock(rq);
7892 
7893 	idle->__state = TASK_RUNNING;
7894 	idle->se.exec_start = sched_clock();
7895 	/*
7896 	 * PF_KTHREAD should already be set at this point; regardless, make it
7897 	 * look like a proper per-CPU kthread.
7898 	 */
7899 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7900 	kthread_set_per_cpu(idle, cpu);
7901 
7902 	/*
7903 	 * No validation and serialization required at boot time and for
7904 	 * setting up the idle tasks of not yet online CPUs.
7905 	 */
7906 	set_cpus_allowed_common(idle, &ac);
7907 	/*
7908 	 * We're having a chicken and egg problem, even though we are
7909 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7910 	 * lockdep check in task_group() will fail.
7911 	 *
7912 	 * Similar case to sched_fork(). / Alternatively we could
7913 	 * use task_rq_lock() here and obtain the other rq->lock.
7914 	 *
7915 	 * Silence PROVE_RCU
7916 	 */
7917 	rcu_read_lock();
7918 	__set_task_cpu(idle, cpu);
7919 	rcu_read_unlock();
7920 
7921 	rq->idle = idle;
7922 	rq_set_donor(rq, idle);
7923 	rcu_assign_pointer(rq->curr, idle);
7924 	idle->on_rq = TASK_ON_RQ_QUEUED;
7925 	idle->on_cpu = 1;
7926 	raw_spin_rq_unlock(rq);
7927 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7928 
7929 	/* Set the preempt count _outside_ the spinlocks! */
7930 	init_idle_preempt_count(idle, cpu);
7931 
7932 	/*
7933 	 * The idle tasks have their own, simple scheduling class:
7934 	 */
7935 	idle->sched_class = &idle_sched_class;
7936 	ftrace_graph_init_idle_task(idle, cpu);
7937 	vtime_init_idle(idle, cpu);
7938 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7939 }
7940 
7941 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7942 			      const struct cpumask *trial)
7943 {
7944 	int ret = 1;
7945 
7946 	if (cpumask_empty(cur))
7947 		return ret;
7948 
7949 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7950 
7951 	return ret;
7952 }
7953 
7954 int task_can_attach(struct task_struct *p)
7955 {
7956 	int ret = 0;
7957 
7958 	/*
7959 	 * Kthreads which disallow setaffinity shouldn't be moved
7960 	 * to a new cpuset; we don't want to change their CPU
7961 	 * affinity and isolating such threads by their set of
7962 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7963 	 * applicable for such threads.  This prevents checking for
7964 	 * success of set_cpus_allowed_ptr() on all attached tasks
7965 	 * before cpus_mask may be changed.
7966 	 */
7967 	if (p->flags & PF_NO_SETAFFINITY)
7968 		ret = -EINVAL;
7969 
7970 	return ret;
7971 }
7972 
7973 bool sched_smp_initialized __read_mostly;
7974 
7975 #ifdef CONFIG_NUMA_BALANCING
7976 /* Migrate current task p to target_cpu */
7977 int migrate_task_to(struct task_struct *p, int target_cpu)
7978 {
7979 	struct migration_arg arg = { p, target_cpu };
7980 	int curr_cpu = task_cpu(p);
7981 
7982 	if (curr_cpu == target_cpu)
7983 		return 0;
7984 
7985 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7986 		return -EINVAL;
7987 
7988 	/* TODO: This is not properly updating schedstats */
7989 
7990 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7991 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7992 }
7993 
7994 /*
7995  * Requeue a task on a given node and accurately track the number of NUMA
7996  * tasks on the runqueues
7997  */
7998 void sched_setnuma(struct task_struct *p, int nid)
7999 {
8000 	guard(task_rq_lock)(p);
8001 	scoped_guard (sched_change, p, DEQUEUE_SAVE)
8002 		p->numa_preferred_nid = nid;
8003 }
8004 #endif /* CONFIG_NUMA_BALANCING */
8005 
8006 #ifdef CONFIG_HOTPLUG_CPU
8007 /*
8008  * Invoked on the outgoing CPU in context of the CPU hotplug thread
8009  * after ensuring that there are no user space tasks left on the CPU.
8010  *
8011  * If there is a lazy mm in use on the hotplug thread, drop it and
8012  * switch to init_mm.
8013  *
8014  * The reference count on init_mm is dropped in finish_cpu().
8015  */
8016 static void sched_force_init_mm(void)
8017 {
8018 	struct mm_struct *mm = current->active_mm;
8019 
8020 	if (mm != &init_mm) {
8021 		mmgrab_lazy_tlb(&init_mm);
8022 		local_irq_disable();
8023 		current->active_mm = &init_mm;
8024 		switch_mm_irqs_off(mm, &init_mm, current);
8025 		local_irq_enable();
8026 		finish_arch_post_lock_switch();
8027 		mmdrop_lazy_tlb(mm);
8028 	}
8029 
8030 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8031 }
8032 
8033 static int __balance_push_cpu_stop(void *arg)
8034 {
8035 	struct task_struct *p = arg;
8036 	struct rq *rq = this_rq();
8037 	struct rq_flags rf;
8038 	int cpu;
8039 
8040 	scoped_guard (raw_spinlock_irq, &p->pi_lock) {
8041 		cpu = select_fallback_rq(rq->cpu, p);
8042 
8043 		rq_lock(rq, &rf);
8044 		update_rq_clock(rq);
8045 		if (task_rq(p) == rq && task_on_rq_queued(p))
8046 			rq = __migrate_task(rq, &rf, p, cpu);
8047 		rq_unlock(rq, &rf);
8048 	}
8049 
8050 	put_task_struct(p);
8051 
8052 	return 0;
8053 }
8054 
8055 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8056 
8057 /*
8058  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8059  *
8060  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8061  * effective when the hotplug motion is down.
8062  */
8063 static void balance_push(struct rq *rq)
8064 {
8065 	struct task_struct *push_task = rq->curr;
8066 
8067 	lockdep_assert_rq_held(rq);
8068 
8069 	/*
8070 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8071 	 */
8072 	rq->balance_callback = &balance_push_callback;
8073 
8074 	/*
8075 	 * Only active while going offline and when invoked on the outgoing
8076 	 * CPU.
8077 	 */
8078 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8079 		return;
8080 
8081 	/*
8082 	 * Both the cpu-hotplug and stop task are in this case and are
8083 	 * required to complete the hotplug process.
8084 	 */
8085 	if (kthread_is_per_cpu(push_task) ||
8086 	    is_migration_disabled(push_task)) {
8087 
8088 		/*
8089 		 * If this is the idle task on the outgoing CPU try to wake
8090 		 * up the hotplug control thread which might wait for the
8091 		 * last task to vanish. The rcuwait_active() check is
8092 		 * accurate here because the waiter is pinned on this CPU
8093 		 * and can't obviously be running in parallel.
8094 		 *
8095 		 * On RT kernels this also has to check whether there are
8096 		 * pinned and scheduled out tasks on the runqueue. They
8097 		 * need to leave the migrate disabled section first.
8098 		 */
8099 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8100 		    rcuwait_active(&rq->hotplug_wait)) {
8101 			raw_spin_rq_unlock(rq);
8102 			rcuwait_wake_up(&rq->hotplug_wait);
8103 			raw_spin_rq_lock(rq);
8104 		}
8105 		return;
8106 	}
8107 
8108 	get_task_struct(push_task);
8109 	/*
8110 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8111 	 * Both preemption and IRQs are still disabled.
8112 	 */
8113 	preempt_disable();
8114 	raw_spin_rq_unlock(rq);
8115 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8116 			    this_cpu_ptr(&push_work));
8117 	preempt_enable();
8118 	/*
8119 	 * At this point need_resched() is true and we'll take the loop in
8120 	 * schedule(). The next pick is obviously going to be the stop task
8121 	 * which kthread_is_per_cpu() and will push this task away.
8122 	 */
8123 	raw_spin_rq_lock(rq);
8124 }
8125 
8126 static void balance_push_set(int cpu, bool on)
8127 {
8128 	struct rq *rq = cpu_rq(cpu);
8129 	struct rq_flags rf;
8130 
8131 	rq_lock_irqsave(rq, &rf);
8132 	if (on) {
8133 		WARN_ON_ONCE(rq->balance_callback);
8134 		rq->balance_callback = &balance_push_callback;
8135 	} else if (rq->balance_callback == &balance_push_callback) {
8136 		rq->balance_callback = NULL;
8137 	}
8138 	rq_unlock_irqrestore(rq, &rf);
8139 }
8140 
8141 /*
8142  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8143  * inactive. All tasks which are not per CPU kernel threads are either
8144  * pushed off this CPU now via balance_push() or placed on a different CPU
8145  * during wakeup. Wait until the CPU is quiescent.
8146  */
8147 static void balance_hotplug_wait(void)
8148 {
8149 	struct rq *rq = this_rq();
8150 
8151 	rcuwait_wait_event(&rq->hotplug_wait,
8152 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8153 			   TASK_UNINTERRUPTIBLE);
8154 }
8155 
8156 #else /* !CONFIG_HOTPLUG_CPU: */
8157 
8158 static inline void balance_push(struct rq *rq)
8159 {
8160 }
8161 
8162 static inline void balance_push_set(int cpu, bool on)
8163 {
8164 }
8165 
8166 static inline void balance_hotplug_wait(void)
8167 {
8168 }
8169 
8170 #endif /* !CONFIG_HOTPLUG_CPU */
8171 
8172 void set_rq_online(struct rq *rq)
8173 {
8174 	if (!rq->online) {
8175 		const struct sched_class *class;
8176 
8177 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8178 		rq->online = 1;
8179 
8180 		for_each_class(class) {
8181 			if (class->rq_online)
8182 				class->rq_online(rq);
8183 		}
8184 	}
8185 }
8186 
8187 void set_rq_offline(struct rq *rq)
8188 {
8189 	if (rq->online) {
8190 		const struct sched_class *class;
8191 
8192 		update_rq_clock(rq);
8193 		for_each_class(class) {
8194 			if (class->rq_offline)
8195 				class->rq_offline(rq);
8196 		}
8197 
8198 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8199 		rq->online = 0;
8200 	}
8201 }
8202 
8203 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8204 {
8205 	struct rq_flags rf;
8206 
8207 	rq_lock_irqsave(rq, &rf);
8208 	if (rq->rd) {
8209 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8210 		set_rq_online(rq);
8211 	}
8212 	rq_unlock_irqrestore(rq, &rf);
8213 }
8214 
8215 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8216 {
8217 	struct rq_flags rf;
8218 
8219 	rq_lock_irqsave(rq, &rf);
8220 	if (rq->rd) {
8221 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8222 		set_rq_offline(rq);
8223 	}
8224 	rq_unlock_irqrestore(rq, &rf);
8225 }
8226 
8227 /*
8228  * used to mark begin/end of suspend/resume:
8229  */
8230 static int num_cpus_frozen;
8231 
8232 /*
8233  * Update cpusets according to cpu_active mask.  If cpusets are
8234  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8235  * around partition_sched_domains().
8236  *
8237  * If we come here as part of a suspend/resume, don't touch cpusets because we
8238  * want to restore it back to its original state upon resume anyway.
8239  */
8240 static void cpuset_cpu_active(void)
8241 {
8242 	if (cpuhp_tasks_frozen) {
8243 		/*
8244 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8245 		 * resume sequence. As long as this is not the last online
8246 		 * operation in the resume sequence, just build a single sched
8247 		 * domain, ignoring cpusets.
8248 		 */
8249 		cpuset_reset_sched_domains();
8250 		if (--num_cpus_frozen)
8251 			return;
8252 		/*
8253 		 * This is the last CPU online operation. So fall through and
8254 		 * restore the original sched domains by considering the
8255 		 * cpuset configurations.
8256 		 */
8257 		cpuset_force_rebuild();
8258 	}
8259 	cpuset_update_active_cpus();
8260 }
8261 
8262 static void cpuset_cpu_inactive(unsigned int cpu)
8263 {
8264 	if (!cpuhp_tasks_frozen) {
8265 		cpuset_update_active_cpus();
8266 	} else {
8267 		num_cpus_frozen++;
8268 		cpuset_reset_sched_domains();
8269 	}
8270 }
8271 
8272 static inline void sched_smt_present_inc(int cpu)
8273 {
8274 #ifdef CONFIG_SCHED_SMT
8275 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8276 		static_branch_inc_cpuslocked(&sched_smt_present);
8277 #endif
8278 }
8279 
8280 static inline void sched_smt_present_dec(int cpu)
8281 {
8282 #ifdef CONFIG_SCHED_SMT
8283 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8284 		static_branch_dec_cpuslocked(&sched_smt_present);
8285 #endif
8286 }
8287 
8288 int sched_cpu_activate(unsigned int cpu)
8289 {
8290 	struct rq *rq = cpu_rq(cpu);
8291 
8292 	/*
8293 	 * Clear the balance_push callback and prepare to schedule
8294 	 * regular tasks.
8295 	 */
8296 	balance_push_set(cpu, false);
8297 
8298 	/*
8299 	 * When going up, increment the number of cores with SMT present.
8300 	 */
8301 	sched_smt_present_inc(cpu);
8302 	set_cpu_active(cpu, true);
8303 
8304 	if (sched_smp_initialized) {
8305 		sched_update_numa(cpu, true);
8306 		sched_domains_numa_masks_set(cpu);
8307 		cpuset_cpu_active();
8308 	}
8309 
8310 	scx_rq_activate(rq);
8311 
8312 	/*
8313 	 * Put the rq online, if not already. This happens:
8314 	 *
8315 	 * 1) In the early boot process, because we build the real domains
8316 	 *    after all CPUs have been brought up.
8317 	 *
8318 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8319 	 *    domains.
8320 	 */
8321 	sched_set_rq_online(rq, cpu);
8322 
8323 	return 0;
8324 }
8325 
8326 int sched_cpu_deactivate(unsigned int cpu)
8327 {
8328 	struct rq *rq = cpu_rq(cpu);
8329 	int ret;
8330 
8331 	ret = dl_bw_deactivate(cpu);
8332 
8333 	if (ret)
8334 		return ret;
8335 
8336 	/*
8337 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8338 	 * load balancing when not active
8339 	 */
8340 	nohz_balance_exit_idle(rq);
8341 
8342 	set_cpu_active(cpu, false);
8343 
8344 	/*
8345 	 * From this point forward, this CPU will refuse to run any task that
8346 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8347 	 * push those tasks away until this gets cleared, see
8348 	 * sched_cpu_dying().
8349 	 */
8350 	balance_push_set(cpu, true);
8351 
8352 	/*
8353 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8354 	 * preempt-disabled and RCU users of this state to go away such that
8355 	 * all new such users will observe it.
8356 	 *
8357 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8358 	 * ttwu_queue_cond() and is_cpu_allowed().
8359 	 *
8360 	 * Do sync before park smpboot threads to take care the RCU boost case.
8361 	 */
8362 	synchronize_rcu();
8363 
8364 	sched_set_rq_offline(rq, cpu);
8365 
8366 	scx_rq_deactivate(rq);
8367 
8368 	/*
8369 	 * When going down, decrement the number of cores with SMT present.
8370 	 */
8371 	sched_smt_present_dec(cpu);
8372 
8373 #ifdef CONFIG_SCHED_SMT
8374 	sched_core_cpu_deactivate(cpu);
8375 #endif
8376 
8377 	if (!sched_smp_initialized)
8378 		return 0;
8379 
8380 	sched_update_numa(cpu, false);
8381 	cpuset_cpu_inactive(cpu);
8382 	sched_domains_numa_masks_clear(cpu);
8383 	return 0;
8384 }
8385 
8386 static void sched_rq_cpu_starting(unsigned int cpu)
8387 {
8388 	struct rq *rq = cpu_rq(cpu);
8389 
8390 	rq->calc_load_update = calc_load_update;
8391 	update_max_interval();
8392 }
8393 
8394 int sched_cpu_starting(unsigned int cpu)
8395 {
8396 	sched_core_cpu_starting(cpu);
8397 	sched_rq_cpu_starting(cpu);
8398 	sched_tick_start(cpu);
8399 	return 0;
8400 }
8401 
8402 #ifdef CONFIG_HOTPLUG_CPU
8403 
8404 /*
8405  * Invoked immediately before the stopper thread is invoked to bring the
8406  * CPU down completely. At this point all per CPU kthreads except the
8407  * hotplug thread (current) and the stopper thread (inactive) have been
8408  * either parked or have been unbound from the outgoing CPU. Ensure that
8409  * any of those which might be on the way out are gone.
8410  *
8411  * If after this point a bound task is being woken on this CPU then the
8412  * responsible hotplug callback has failed to do it's job.
8413  * sched_cpu_dying() will catch it with the appropriate fireworks.
8414  */
8415 int sched_cpu_wait_empty(unsigned int cpu)
8416 {
8417 	balance_hotplug_wait();
8418 	sched_force_init_mm();
8419 	return 0;
8420 }
8421 
8422 /*
8423  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8424  * might have. Called from the CPU stopper task after ensuring that the
8425  * stopper is the last running task on the CPU, so nr_active count is
8426  * stable. We need to take the tear-down thread which is calling this into
8427  * account, so we hand in adjust = 1 to the load calculation.
8428  *
8429  * Also see the comment "Global load-average calculations".
8430  */
8431 static void calc_load_migrate(struct rq *rq)
8432 {
8433 	long delta = calc_load_fold_active(rq, 1);
8434 
8435 	if (delta)
8436 		atomic_long_add(delta, &calc_load_tasks);
8437 }
8438 
8439 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8440 {
8441 	struct task_struct *g, *p;
8442 	int cpu = cpu_of(rq);
8443 
8444 	lockdep_assert_rq_held(rq);
8445 
8446 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8447 	for_each_process_thread(g, p) {
8448 		if (task_cpu(p) != cpu)
8449 			continue;
8450 
8451 		if (!task_on_rq_queued(p))
8452 			continue;
8453 
8454 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8455 	}
8456 }
8457 
8458 int sched_cpu_dying(unsigned int cpu)
8459 {
8460 	struct rq *rq = cpu_rq(cpu);
8461 	struct rq_flags rf;
8462 
8463 	/* Handle pending wakeups and then migrate everything off */
8464 	sched_tick_stop(cpu);
8465 
8466 	rq_lock_irqsave(rq, &rf);
8467 	update_rq_clock(rq);
8468 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8469 		WARN(true, "Dying CPU not properly vacated!");
8470 		dump_rq_tasks(rq, KERN_WARNING);
8471 	}
8472 	dl_server_stop(&rq->fair_server);
8473 	rq_unlock_irqrestore(rq, &rf);
8474 
8475 	calc_load_migrate(rq);
8476 	update_max_interval();
8477 	hrtick_clear(rq);
8478 	sched_core_cpu_dying(cpu);
8479 	return 0;
8480 }
8481 #endif /* CONFIG_HOTPLUG_CPU */
8482 
8483 void __init sched_init_smp(void)
8484 {
8485 	sched_init_numa(NUMA_NO_NODE);
8486 
8487 	prandom_init_once(&sched_rnd_state);
8488 
8489 	/*
8490 	 * There's no userspace yet to cause hotplug operations; hence all the
8491 	 * CPU masks are stable and all blatant races in the below code cannot
8492 	 * happen.
8493 	 */
8494 	sched_domains_mutex_lock();
8495 	sched_init_domains(cpu_active_mask);
8496 	sched_domains_mutex_unlock();
8497 
8498 	/* Move init over to a non-isolated CPU */
8499 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8500 		BUG();
8501 	current->flags &= ~PF_NO_SETAFFINITY;
8502 	sched_init_granularity();
8503 
8504 	init_sched_rt_class();
8505 	init_sched_dl_class();
8506 
8507 	sched_init_dl_servers();
8508 
8509 	sched_smp_initialized = true;
8510 }
8511 
8512 static int __init migration_init(void)
8513 {
8514 	sched_cpu_starting(smp_processor_id());
8515 	return 0;
8516 }
8517 early_initcall(migration_init);
8518 
8519 int in_sched_functions(unsigned long addr)
8520 {
8521 	return in_lock_functions(addr) ||
8522 		(addr >= (unsigned long)__sched_text_start
8523 		&& addr < (unsigned long)__sched_text_end);
8524 }
8525 
8526 #ifdef CONFIG_CGROUP_SCHED
8527 /*
8528  * Default task group.
8529  * Every task in system belongs to this group at bootup.
8530  */
8531 struct task_group root_task_group;
8532 LIST_HEAD(task_groups);
8533 
8534 /* Cacheline aligned slab cache for task_group */
8535 static struct kmem_cache *task_group_cache __ro_after_init;
8536 #endif
8537 
8538 void __init sched_init(void)
8539 {
8540 	unsigned long ptr = 0;
8541 	int i;
8542 
8543 	/* Make sure the linker didn't screw up */
8544 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8545 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8546 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8547 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8548 #ifdef CONFIG_SCHED_CLASS_EXT
8549 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8550 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8551 #endif
8552 
8553 	wait_bit_init();
8554 
8555 #ifdef CONFIG_FAIR_GROUP_SCHED
8556 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8557 #endif
8558 #ifdef CONFIG_RT_GROUP_SCHED
8559 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8560 #endif
8561 	if (ptr) {
8562 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8563 
8564 #ifdef CONFIG_FAIR_GROUP_SCHED
8565 		root_task_group.se = (struct sched_entity **)ptr;
8566 		ptr += nr_cpu_ids * sizeof(void **);
8567 
8568 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8569 		ptr += nr_cpu_ids * sizeof(void **);
8570 
8571 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8572 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8573 #endif /* CONFIG_FAIR_GROUP_SCHED */
8574 #ifdef CONFIG_EXT_GROUP_SCHED
8575 		scx_tg_init(&root_task_group);
8576 #endif /* CONFIG_EXT_GROUP_SCHED */
8577 #ifdef CONFIG_RT_GROUP_SCHED
8578 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8579 		ptr += nr_cpu_ids * sizeof(void **);
8580 
8581 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8582 		ptr += nr_cpu_ids * sizeof(void **);
8583 
8584 #endif /* CONFIG_RT_GROUP_SCHED */
8585 	}
8586 
8587 	init_defrootdomain();
8588 
8589 #ifdef CONFIG_RT_GROUP_SCHED
8590 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8591 			global_rt_period(), global_rt_runtime());
8592 #endif /* CONFIG_RT_GROUP_SCHED */
8593 
8594 #ifdef CONFIG_CGROUP_SCHED
8595 	task_group_cache = KMEM_CACHE(task_group, 0);
8596 
8597 	list_add(&root_task_group.list, &task_groups);
8598 	INIT_LIST_HEAD(&root_task_group.children);
8599 	INIT_LIST_HEAD(&root_task_group.siblings);
8600 	autogroup_init(&init_task);
8601 #endif /* CONFIG_CGROUP_SCHED */
8602 
8603 	for_each_possible_cpu(i) {
8604 		struct rq *rq;
8605 
8606 		rq = cpu_rq(i);
8607 		raw_spin_lock_init(&rq->__lock);
8608 		rq->nr_running = 0;
8609 		rq->calc_load_active = 0;
8610 		rq->calc_load_update = jiffies + LOAD_FREQ;
8611 		init_cfs_rq(&rq->cfs);
8612 		init_rt_rq(&rq->rt);
8613 		init_dl_rq(&rq->dl);
8614 #ifdef CONFIG_FAIR_GROUP_SCHED
8615 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8616 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8617 		/*
8618 		 * How much CPU bandwidth does root_task_group get?
8619 		 *
8620 		 * In case of task-groups formed through the cgroup filesystem, it
8621 		 * gets 100% of the CPU resources in the system. This overall
8622 		 * system CPU resource is divided among the tasks of
8623 		 * root_task_group and its child task-groups in a fair manner,
8624 		 * based on each entity's (task or task-group's) weight
8625 		 * (se->load.weight).
8626 		 *
8627 		 * In other words, if root_task_group has 10 tasks of weight
8628 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8629 		 * then A0's share of the CPU resource is:
8630 		 *
8631 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8632 		 *
8633 		 * We achieve this by letting root_task_group's tasks sit
8634 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8635 		 */
8636 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8637 #endif /* CONFIG_FAIR_GROUP_SCHED */
8638 
8639 #ifdef CONFIG_RT_GROUP_SCHED
8640 		/*
8641 		 * This is required for init cpu because rt.c:__enable_runtime()
8642 		 * starts working after scheduler_running, which is not the case
8643 		 * yet.
8644 		 */
8645 		rq->rt.rt_runtime = global_rt_runtime();
8646 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8647 #endif
8648 		rq->sd = NULL;
8649 		rq->rd = NULL;
8650 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8651 		rq->balance_callback = &balance_push_callback;
8652 		rq->active_balance = 0;
8653 		rq->next_balance = jiffies;
8654 		rq->push_cpu = 0;
8655 		rq->cpu = i;
8656 		rq->online = 0;
8657 		rq->idle_stamp = 0;
8658 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8659 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8660 
8661 		INIT_LIST_HEAD(&rq->cfs_tasks);
8662 
8663 		rq_attach_root(rq, &def_root_domain);
8664 #ifdef CONFIG_NO_HZ_COMMON
8665 		rq->last_blocked_load_update_tick = jiffies;
8666 		atomic_set(&rq->nohz_flags, 0);
8667 
8668 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8669 #endif
8670 #ifdef CONFIG_HOTPLUG_CPU
8671 		rcuwait_init(&rq->hotplug_wait);
8672 #endif
8673 		hrtick_rq_init(rq);
8674 		atomic_set(&rq->nr_iowait, 0);
8675 		fair_server_init(rq);
8676 
8677 #ifdef CONFIG_SCHED_CORE
8678 		rq->core = rq;
8679 		rq->core_pick = NULL;
8680 		rq->core_dl_server = NULL;
8681 		rq->core_enabled = 0;
8682 		rq->core_tree = RB_ROOT;
8683 		rq->core_forceidle_count = 0;
8684 		rq->core_forceidle_occupation = 0;
8685 		rq->core_forceidle_start = 0;
8686 
8687 		rq->core_cookie = 0UL;
8688 #endif
8689 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8690 	}
8691 
8692 	set_load_weight(&init_task, false);
8693 	init_task.se.slice = sysctl_sched_base_slice,
8694 
8695 	/*
8696 	 * The boot idle thread does lazy MMU switching as well:
8697 	 */
8698 	mmgrab_lazy_tlb(&init_mm);
8699 	enter_lazy_tlb(&init_mm, current);
8700 
8701 	/*
8702 	 * The idle task doesn't need the kthread struct to function, but it
8703 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8704 	 * if we want to avoid special-casing it in code that deals with per-CPU
8705 	 * kthreads.
8706 	 */
8707 	WARN_ON(!set_kthread_struct(current));
8708 
8709 	/*
8710 	 * Make us the idle thread. Technically, schedule() should not be
8711 	 * called from this thread, however somewhere below it might be,
8712 	 * but because we are the idle thread, we just pick up running again
8713 	 * when this runqueue becomes "idle".
8714 	 */
8715 	__sched_fork(0, current);
8716 	init_idle(current, smp_processor_id());
8717 
8718 	calc_load_update = jiffies + LOAD_FREQ;
8719 
8720 	idle_thread_set_boot_cpu();
8721 
8722 	balance_push_set(smp_processor_id(), false);
8723 	init_sched_fair_class();
8724 	init_sched_ext_class();
8725 
8726 	psi_init();
8727 
8728 	init_uclamp();
8729 
8730 	preempt_dynamic_init();
8731 
8732 	scheduler_running = 1;
8733 }
8734 
8735 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8736 
8737 void __might_sleep(const char *file, int line)
8738 {
8739 	unsigned int state = get_current_state();
8740 	/*
8741 	 * Blocking primitives will set (and therefore destroy) current->state,
8742 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8743 	 * otherwise we will destroy state.
8744 	 */
8745 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8746 			"do not call blocking ops when !TASK_RUNNING; "
8747 			"state=%x set at [<%p>] %pS\n", state,
8748 			(void *)current->task_state_change,
8749 			(void *)current->task_state_change);
8750 
8751 	__might_resched(file, line, 0);
8752 }
8753 EXPORT_SYMBOL(__might_sleep);
8754 
8755 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8756 {
8757 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8758 		return;
8759 
8760 	if (preempt_count() == preempt_offset)
8761 		return;
8762 
8763 	pr_err("Preemption disabled at:");
8764 	print_ip_sym(KERN_ERR, ip);
8765 }
8766 
8767 static inline bool resched_offsets_ok(unsigned int offsets)
8768 {
8769 	unsigned int nested = preempt_count();
8770 
8771 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8772 
8773 	return nested == offsets;
8774 }
8775 
8776 void __might_resched(const char *file, int line, unsigned int offsets)
8777 {
8778 	/* Ratelimiting timestamp: */
8779 	static unsigned long prev_jiffy;
8780 
8781 	unsigned long preempt_disable_ip;
8782 
8783 	/* WARN_ON_ONCE() by default, no rate limit required: */
8784 	rcu_sleep_check();
8785 
8786 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8787 	     !is_idle_task(current) && !current->non_block_count) ||
8788 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8789 	    oops_in_progress)
8790 		return;
8791 
8792 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8793 		return;
8794 	prev_jiffy = jiffies;
8795 
8796 	/* Save this before calling printk(), since that will clobber it: */
8797 	preempt_disable_ip = get_preempt_disable_ip(current);
8798 
8799 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8800 	       file, line);
8801 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8802 	       in_atomic(), irqs_disabled(), current->non_block_count,
8803 	       current->pid, current->comm);
8804 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8805 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8806 
8807 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8808 		pr_err("RCU nest depth: %d, expected: %u\n",
8809 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8810 	}
8811 
8812 	if (task_stack_end_corrupted(current))
8813 		pr_emerg("Thread overran stack, or stack corrupted\n");
8814 
8815 	debug_show_held_locks(current);
8816 	if (irqs_disabled())
8817 		print_irqtrace_events(current);
8818 
8819 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8820 				 preempt_disable_ip);
8821 
8822 	dump_stack();
8823 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8824 }
8825 EXPORT_SYMBOL(__might_resched);
8826 
8827 void __cant_sleep(const char *file, int line, int preempt_offset)
8828 {
8829 	static unsigned long prev_jiffy;
8830 
8831 	if (irqs_disabled())
8832 		return;
8833 
8834 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8835 		return;
8836 
8837 	if (preempt_count() > preempt_offset)
8838 		return;
8839 
8840 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8841 		return;
8842 	prev_jiffy = jiffies;
8843 
8844 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8845 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8846 			in_atomic(), irqs_disabled(),
8847 			current->pid, current->comm);
8848 
8849 	debug_show_held_locks(current);
8850 	dump_stack();
8851 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8852 }
8853 EXPORT_SYMBOL_GPL(__cant_sleep);
8854 
8855 # ifdef CONFIG_SMP
8856 void __cant_migrate(const char *file, int line)
8857 {
8858 	static unsigned long prev_jiffy;
8859 
8860 	if (irqs_disabled())
8861 		return;
8862 
8863 	if (is_migration_disabled(current))
8864 		return;
8865 
8866 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8867 		return;
8868 
8869 	if (preempt_count() > 0)
8870 		return;
8871 
8872 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8873 		return;
8874 	prev_jiffy = jiffies;
8875 
8876 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8877 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8878 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8879 	       current->pid, current->comm);
8880 
8881 	debug_show_held_locks(current);
8882 	dump_stack();
8883 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8884 }
8885 EXPORT_SYMBOL_GPL(__cant_migrate);
8886 # endif /* CONFIG_SMP */
8887 #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */
8888 
8889 #ifdef CONFIG_MAGIC_SYSRQ
8890 void normalize_rt_tasks(void)
8891 {
8892 	struct task_struct *g, *p;
8893 	struct sched_attr attr = {
8894 		.sched_policy = SCHED_NORMAL,
8895 	};
8896 
8897 	read_lock(&tasklist_lock);
8898 	for_each_process_thread(g, p) {
8899 		/*
8900 		 * Only normalize user tasks:
8901 		 */
8902 		if (p->flags & PF_KTHREAD)
8903 			continue;
8904 
8905 		p->se.exec_start = 0;
8906 		schedstat_set(p->stats.wait_start,  0);
8907 		schedstat_set(p->stats.sleep_start, 0);
8908 		schedstat_set(p->stats.block_start, 0);
8909 
8910 		if (!rt_or_dl_task(p)) {
8911 			/*
8912 			 * Renice negative nice level userspace
8913 			 * tasks back to 0:
8914 			 */
8915 			if (task_nice(p) < 0)
8916 				set_user_nice(p, 0);
8917 			continue;
8918 		}
8919 
8920 		__sched_setscheduler(p, &attr, false, false);
8921 	}
8922 	read_unlock(&tasklist_lock);
8923 }
8924 
8925 #endif /* CONFIG_MAGIC_SYSRQ */
8926 
8927 #ifdef CONFIG_KGDB_KDB
8928 /*
8929  * These functions are only useful for KDB.
8930  *
8931  * They can only be called when the whole system has been
8932  * stopped - every CPU needs to be quiescent, and no scheduling
8933  * activity can take place. Using them for anything else would
8934  * be a serious bug, and as a result, they aren't even visible
8935  * under any other configuration.
8936  */
8937 
8938 /**
8939  * curr_task - return the current task for a given CPU.
8940  * @cpu: the processor in question.
8941  *
8942  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8943  *
8944  * Return: The current task for @cpu.
8945  */
8946 struct task_struct *curr_task(int cpu)
8947 {
8948 	return cpu_curr(cpu);
8949 }
8950 
8951 #endif /* CONFIG_KGDB_KDB */
8952 
8953 #ifdef CONFIG_CGROUP_SCHED
8954 /* task_group_lock serializes the addition/removal of task groups */
8955 static DEFINE_SPINLOCK(task_group_lock);
8956 
8957 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8958 					    struct task_group *parent)
8959 {
8960 #ifdef CONFIG_UCLAMP_TASK_GROUP
8961 	enum uclamp_id clamp_id;
8962 
8963 	for_each_clamp_id(clamp_id) {
8964 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8965 			      uclamp_none(clamp_id), false);
8966 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8967 	}
8968 #endif
8969 }
8970 
8971 static void sched_free_group(struct task_group *tg)
8972 {
8973 	free_fair_sched_group(tg);
8974 	free_rt_sched_group(tg);
8975 	autogroup_free(tg);
8976 	kmem_cache_free(task_group_cache, tg);
8977 }
8978 
8979 static void sched_free_group_rcu(struct rcu_head *rcu)
8980 {
8981 	sched_free_group(container_of(rcu, struct task_group, rcu));
8982 }
8983 
8984 static void sched_unregister_group(struct task_group *tg)
8985 {
8986 	unregister_fair_sched_group(tg);
8987 	unregister_rt_sched_group(tg);
8988 	/*
8989 	 * We have to wait for yet another RCU grace period to expire, as
8990 	 * print_cfs_stats() might run concurrently.
8991 	 */
8992 	call_rcu(&tg->rcu, sched_free_group_rcu);
8993 }
8994 
8995 /* allocate runqueue etc for a new task group */
8996 struct task_group *sched_create_group(struct task_group *parent)
8997 {
8998 	struct task_group *tg;
8999 
9000 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9001 	if (!tg)
9002 		return ERR_PTR(-ENOMEM);
9003 
9004 	if (!alloc_fair_sched_group(tg, parent))
9005 		goto err;
9006 
9007 	if (!alloc_rt_sched_group(tg, parent))
9008 		goto err;
9009 
9010 	scx_tg_init(tg);
9011 	alloc_uclamp_sched_group(tg, parent);
9012 
9013 	return tg;
9014 
9015 err:
9016 	sched_free_group(tg);
9017 	return ERR_PTR(-ENOMEM);
9018 }
9019 
9020 void sched_online_group(struct task_group *tg, struct task_group *parent)
9021 {
9022 	unsigned long flags;
9023 
9024 	spin_lock_irqsave(&task_group_lock, flags);
9025 	list_add_tail_rcu(&tg->list, &task_groups);
9026 
9027 	/* Root should already exist: */
9028 	WARN_ON(!parent);
9029 
9030 	tg->parent = parent;
9031 	INIT_LIST_HEAD(&tg->children);
9032 	list_add_rcu(&tg->siblings, &parent->children);
9033 	spin_unlock_irqrestore(&task_group_lock, flags);
9034 
9035 	online_fair_sched_group(tg);
9036 }
9037 
9038 /* RCU callback to free various structures associated with a task group */
9039 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9040 {
9041 	/* Now it should be safe to free those cfs_rqs: */
9042 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9043 }
9044 
9045 void sched_destroy_group(struct task_group *tg)
9046 {
9047 	/* Wait for possible concurrent references to cfs_rqs complete: */
9048 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9049 }
9050 
9051 void sched_release_group(struct task_group *tg)
9052 {
9053 	unsigned long flags;
9054 
9055 	/*
9056 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9057 	 * sched_cfs_period_timer()).
9058 	 *
9059 	 * For this to be effective, we have to wait for all pending users of
9060 	 * this task group to leave their RCU critical section to ensure no new
9061 	 * user will see our dying task group any more. Specifically ensure
9062 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9063 	 *
9064 	 * We therefore defer calling unregister_fair_sched_group() to
9065 	 * sched_unregister_group() which is guarantied to get called only after the
9066 	 * current RCU grace period has expired.
9067 	 */
9068 	spin_lock_irqsave(&task_group_lock, flags);
9069 	list_del_rcu(&tg->list);
9070 	list_del_rcu(&tg->siblings);
9071 	spin_unlock_irqrestore(&task_group_lock, flags);
9072 }
9073 
9074 static void sched_change_group(struct task_struct *tsk)
9075 {
9076 	struct task_group *tg;
9077 
9078 	/*
9079 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9080 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9081 	 * to prevent lockdep warnings.
9082 	 */
9083 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9084 			  struct task_group, css);
9085 	tg = autogroup_task_group(tsk, tg);
9086 	tsk->sched_task_group = tg;
9087 
9088 #ifdef CONFIG_FAIR_GROUP_SCHED
9089 	if (tsk->sched_class->task_change_group)
9090 		tsk->sched_class->task_change_group(tsk);
9091 	else
9092 #endif
9093 		set_task_rq(tsk, task_cpu(tsk));
9094 }
9095 
9096 /*
9097  * Change task's runqueue when it moves between groups.
9098  *
9099  * The caller of this function should have put the task in its new group by
9100  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9101  * its new group.
9102  */
9103 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9104 {
9105 	unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
9106 	bool resched = false;
9107 	struct rq *rq;
9108 
9109 	CLASS(task_rq_lock, rq_guard)(tsk);
9110 	rq = rq_guard.rq;
9111 
9112 	scoped_guard (sched_change, tsk, queue_flags) {
9113 		sched_change_group(tsk);
9114 		if (!for_autogroup)
9115 			scx_cgroup_move_task(tsk);
9116 		if (scope->running)
9117 			resched = true;
9118 	}
9119 
9120 	if (resched)
9121 		resched_curr(rq);
9122 }
9123 
9124 static struct cgroup_subsys_state *
9125 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9126 {
9127 	struct task_group *parent = css_tg(parent_css);
9128 	struct task_group *tg;
9129 
9130 	if (!parent) {
9131 		/* This is early initialization for the top cgroup */
9132 		return &root_task_group.css;
9133 	}
9134 
9135 	tg = sched_create_group(parent);
9136 	if (IS_ERR(tg))
9137 		return ERR_PTR(-ENOMEM);
9138 
9139 	return &tg->css;
9140 }
9141 
9142 /* Expose task group only after completing cgroup initialization */
9143 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9144 {
9145 	struct task_group *tg = css_tg(css);
9146 	struct task_group *parent = css_tg(css->parent);
9147 	int ret;
9148 
9149 	ret = scx_tg_online(tg);
9150 	if (ret)
9151 		return ret;
9152 
9153 	if (parent)
9154 		sched_online_group(tg, parent);
9155 
9156 #ifdef CONFIG_UCLAMP_TASK_GROUP
9157 	/* Propagate the effective uclamp value for the new group */
9158 	guard(mutex)(&uclamp_mutex);
9159 	guard(rcu)();
9160 	cpu_util_update_eff(css);
9161 #endif
9162 
9163 	return 0;
9164 }
9165 
9166 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9167 {
9168 	struct task_group *tg = css_tg(css);
9169 
9170 	scx_tg_offline(tg);
9171 }
9172 
9173 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9174 {
9175 	struct task_group *tg = css_tg(css);
9176 
9177 	sched_release_group(tg);
9178 }
9179 
9180 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9181 {
9182 	struct task_group *tg = css_tg(css);
9183 
9184 	/*
9185 	 * Relies on the RCU grace period between css_released() and this.
9186 	 */
9187 	sched_unregister_group(tg);
9188 }
9189 
9190 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9191 {
9192 #ifdef CONFIG_RT_GROUP_SCHED
9193 	struct task_struct *task;
9194 	struct cgroup_subsys_state *css;
9195 
9196 	if (!rt_group_sched_enabled())
9197 		goto scx_check;
9198 
9199 	cgroup_taskset_for_each(task, css, tset) {
9200 		if (!sched_rt_can_attach(css_tg(css), task))
9201 			return -EINVAL;
9202 	}
9203 scx_check:
9204 #endif /* CONFIG_RT_GROUP_SCHED */
9205 	return scx_cgroup_can_attach(tset);
9206 }
9207 
9208 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9209 {
9210 	struct task_struct *task;
9211 	struct cgroup_subsys_state *css;
9212 
9213 	cgroup_taskset_for_each(task, css, tset)
9214 		sched_move_task(task, false);
9215 }
9216 
9217 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9218 {
9219 	scx_cgroup_cancel_attach(tset);
9220 }
9221 
9222 #ifdef CONFIG_UCLAMP_TASK_GROUP
9223 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9224 {
9225 	struct cgroup_subsys_state *top_css = css;
9226 	struct uclamp_se *uc_parent = NULL;
9227 	struct uclamp_se *uc_se = NULL;
9228 	unsigned int eff[UCLAMP_CNT];
9229 	enum uclamp_id clamp_id;
9230 	unsigned int clamps;
9231 
9232 	lockdep_assert_held(&uclamp_mutex);
9233 	WARN_ON_ONCE(!rcu_read_lock_held());
9234 
9235 	css_for_each_descendant_pre(css, top_css) {
9236 		uc_parent = css_tg(css)->parent
9237 			? css_tg(css)->parent->uclamp : NULL;
9238 
9239 		for_each_clamp_id(clamp_id) {
9240 			/* Assume effective clamps matches requested clamps */
9241 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9242 			/* Cap effective clamps with parent's effective clamps */
9243 			if (uc_parent &&
9244 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9245 				eff[clamp_id] = uc_parent[clamp_id].value;
9246 			}
9247 		}
9248 		/* Ensure protection is always capped by limit */
9249 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9250 
9251 		/* Propagate most restrictive effective clamps */
9252 		clamps = 0x0;
9253 		uc_se = css_tg(css)->uclamp;
9254 		for_each_clamp_id(clamp_id) {
9255 			if (eff[clamp_id] == uc_se[clamp_id].value)
9256 				continue;
9257 			uc_se[clamp_id].value = eff[clamp_id];
9258 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9259 			clamps |= (0x1 << clamp_id);
9260 		}
9261 		if (!clamps) {
9262 			css = css_rightmost_descendant(css);
9263 			continue;
9264 		}
9265 
9266 		/* Immediately update descendants RUNNABLE tasks */
9267 		uclamp_update_active_tasks(css);
9268 	}
9269 }
9270 
9271 /*
9272  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9273  * C expression. Since there is no way to convert a macro argument (N) into a
9274  * character constant, use two levels of macros.
9275  */
9276 #define _POW10(exp) ((unsigned int)1e##exp)
9277 #define POW10(exp) _POW10(exp)
9278 
9279 struct uclamp_request {
9280 #define UCLAMP_PERCENT_SHIFT	2
9281 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9282 	s64 percent;
9283 	u64 util;
9284 	int ret;
9285 };
9286 
9287 static inline struct uclamp_request
9288 capacity_from_percent(char *buf)
9289 {
9290 	struct uclamp_request req = {
9291 		.percent = UCLAMP_PERCENT_SCALE,
9292 		.util = SCHED_CAPACITY_SCALE,
9293 		.ret = 0,
9294 	};
9295 
9296 	buf = strim(buf);
9297 	if (strcmp(buf, "max")) {
9298 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9299 					     &req.percent);
9300 		if (req.ret)
9301 			return req;
9302 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9303 			req.ret = -ERANGE;
9304 			return req;
9305 		}
9306 
9307 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9308 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9309 	}
9310 
9311 	return req;
9312 }
9313 
9314 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9315 				size_t nbytes, loff_t off,
9316 				enum uclamp_id clamp_id)
9317 {
9318 	struct uclamp_request req;
9319 	struct task_group *tg;
9320 
9321 	req = capacity_from_percent(buf);
9322 	if (req.ret)
9323 		return req.ret;
9324 
9325 	sched_uclamp_enable();
9326 
9327 	guard(mutex)(&uclamp_mutex);
9328 	guard(rcu)();
9329 
9330 	tg = css_tg(of_css(of));
9331 	if (tg->uclamp_req[clamp_id].value != req.util)
9332 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9333 
9334 	/*
9335 	 * Because of not recoverable conversion rounding we keep track of the
9336 	 * exact requested value
9337 	 */
9338 	tg->uclamp_pct[clamp_id] = req.percent;
9339 
9340 	/* Update effective clamps to track the most restrictive value */
9341 	cpu_util_update_eff(of_css(of));
9342 
9343 	return nbytes;
9344 }
9345 
9346 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9347 				    char *buf, size_t nbytes,
9348 				    loff_t off)
9349 {
9350 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9351 }
9352 
9353 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9354 				    char *buf, size_t nbytes,
9355 				    loff_t off)
9356 {
9357 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9358 }
9359 
9360 static inline void cpu_uclamp_print(struct seq_file *sf,
9361 				    enum uclamp_id clamp_id)
9362 {
9363 	struct task_group *tg;
9364 	u64 util_clamp;
9365 	u64 percent;
9366 	u32 rem;
9367 
9368 	scoped_guard (rcu) {
9369 		tg = css_tg(seq_css(sf));
9370 		util_clamp = tg->uclamp_req[clamp_id].value;
9371 	}
9372 
9373 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9374 		seq_puts(sf, "max\n");
9375 		return;
9376 	}
9377 
9378 	percent = tg->uclamp_pct[clamp_id];
9379 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9380 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9381 }
9382 
9383 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9384 {
9385 	cpu_uclamp_print(sf, UCLAMP_MIN);
9386 	return 0;
9387 }
9388 
9389 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9390 {
9391 	cpu_uclamp_print(sf, UCLAMP_MAX);
9392 	return 0;
9393 }
9394 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9395 
9396 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9397 static unsigned long tg_weight(struct task_group *tg)
9398 {
9399 #ifdef CONFIG_FAIR_GROUP_SCHED
9400 	return scale_load_down(tg->shares);
9401 #else
9402 	return sched_weight_from_cgroup(tg->scx.weight);
9403 #endif
9404 }
9405 
9406 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9407 				struct cftype *cftype, u64 shareval)
9408 {
9409 	int ret;
9410 
9411 	if (shareval > scale_load_down(ULONG_MAX))
9412 		shareval = MAX_SHARES;
9413 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9414 	if (!ret)
9415 		scx_group_set_weight(css_tg(css),
9416 				     sched_weight_to_cgroup(shareval));
9417 	return ret;
9418 }
9419 
9420 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9421 			       struct cftype *cft)
9422 {
9423 	return tg_weight(css_tg(css));
9424 }
9425 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9426 
9427 #ifdef CONFIG_CFS_BANDWIDTH
9428 static DEFINE_MUTEX(cfs_constraints_mutex);
9429 
9430 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9431 
9432 static int tg_set_cfs_bandwidth(struct task_group *tg,
9433 				u64 period_us, u64 quota_us, u64 burst_us)
9434 {
9435 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9436 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9437 	u64 period, quota, burst;
9438 
9439 	period = (u64)period_us * NSEC_PER_USEC;
9440 
9441 	if (quota_us == RUNTIME_INF)
9442 		quota = RUNTIME_INF;
9443 	else
9444 		quota = (u64)quota_us * NSEC_PER_USEC;
9445 
9446 	burst = (u64)burst_us * NSEC_PER_USEC;
9447 
9448 	/*
9449 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9450 	 * unthrottle_offline_cfs_rqs().
9451 	 */
9452 	guard(cpus_read_lock)();
9453 	guard(mutex)(&cfs_constraints_mutex);
9454 
9455 	ret = __cfs_schedulable(tg, period, quota);
9456 	if (ret)
9457 		return ret;
9458 
9459 	runtime_enabled = quota != RUNTIME_INF;
9460 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9461 	/*
9462 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9463 	 * before making related changes, and on->off must occur afterwards
9464 	 */
9465 	if (runtime_enabled && !runtime_was_enabled)
9466 		cfs_bandwidth_usage_inc();
9467 
9468 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9469 		cfs_b->period = ns_to_ktime(period);
9470 		cfs_b->quota = quota;
9471 		cfs_b->burst = burst;
9472 
9473 		__refill_cfs_bandwidth_runtime(cfs_b);
9474 
9475 		/*
9476 		 * Restart the period timer (if active) to handle new
9477 		 * period expiry:
9478 		 */
9479 		if (runtime_enabled)
9480 			start_cfs_bandwidth(cfs_b);
9481 	}
9482 
9483 	for_each_online_cpu(i) {
9484 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9485 		struct rq *rq = cfs_rq->rq;
9486 
9487 		guard(rq_lock_irq)(rq);
9488 		cfs_rq->runtime_enabled = runtime_enabled;
9489 		cfs_rq->runtime_remaining = 1;
9490 
9491 		if (cfs_rq->throttled)
9492 			unthrottle_cfs_rq(cfs_rq);
9493 	}
9494 
9495 	if (runtime_was_enabled && !runtime_enabled)
9496 		cfs_bandwidth_usage_dec();
9497 
9498 	return 0;
9499 }
9500 
9501 static u64 tg_get_cfs_period(struct task_group *tg)
9502 {
9503 	u64 cfs_period_us;
9504 
9505 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9506 	do_div(cfs_period_us, NSEC_PER_USEC);
9507 
9508 	return cfs_period_us;
9509 }
9510 
9511 static u64 tg_get_cfs_quota(struct task_group *tg)
9512 {
9513 	u64 quota_us;
9514 
9515 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9516 		return RUNTIME_INF;
9517 
9518 	quota_us = tg->cfs_bandwidth.quota;
9519 	do_div(quota_us, NSEC_PER_USEC);
9520 
9521 	return quota_us;
9522 }
9523 
9524 static u64 tg_get_cfs_burst(struct task_group *tg)
9525 {
9526 	u64 burst_us;
9527 
9528 	burst_us = tg->cfs_bandwidth.burst;
9529 	do_div(burst_us, NSEC_PER_USEC);
9530 
9531 	return burst_us;
9532 }
9533 
9534 struct cfs_schedulable_data {
9535 	struct task_group *tg;
9536 	u64 period, quota;
9537 };
9538 
9539 /*
9540  * normalize group quota/period to be quota/max_period
9541  * note: units are usecs
9542  */
9543 static u64 normalize_cfs_quota(struct task_group *tg,
9544 			       struct cfs_schedulable_data *d)
9545 {
9546 	u64 quota, period;
9547 
9548 	if (tg == d->tg) {
9549 		period = d->period;
9550 		quota = d->quota;
9551 	} else {
9552 		period = tg_get_cfs_period(tg);
9553 		quota = tg_get_cfs_quota(tg);
9554 	}
9555 
9556 	/* note: these should typically be equivalent */
9557 	if (quota == RUNTIME_INF || quota == -1)
9558 		return RUNTIME_INF;
9559 
9560 	return to_ratio(period, quota);
9561 }
9562 
9563 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9564 {
9565 	struct cfs_schedulable_data *d = data;
9566 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9567 	s64 quota = 0, parent_quota = -1;
9568 
9569 	if (!tg->parent) {
9570 		quota = RUNTIME_INF;
9571 	} else {
9572 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9573 
9574 		quota = normalize_cfs_quota(tg, d);
9575 		parent_quota = parent_b->hierarchical_quota;
9576 
9577 		/*
9578 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9579 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9580 		 * inherit when no limit is set. In both cases this is used
9581 		 * by the scheduler to determine if a given CFS task has a
9582 		 * bandwidth constraint at some higher level.
9583 		 */
9584 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9585 			if (quota == RUNTIME_INF)
9586 				quota = parent_quota;
9587 			else if (parent_quota != RUNTIME_INF)
9588 				quota = min(quota, parent_quota);
9589 		} else {
9590 			if (quota == RUNTIME_INF)
9591 				quota = parent_quota;
9592 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9593 				return -EINVAL;
9594 		}
9595 	}
9596 	cfs_b->hierarchical_quota = quota;
9597 
9598 	return 0;
9599 }
9600 
9601 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9602 {
9603 	struct cfs_schedulable_data data = {
9604 		.tg = tg,
9605 		.period = period,
9606 		.quota = quota,
9607 	};
9608 
9609 	if (quota != RUNTIME_INF) {
9610 		do_div(data.period, NSEC_PER_USEC);
9611 		do_div(data.quota, NSEC_PER_USEC);
9612 	}
9613 
9614 	guard(rcu)();
9615 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9616 }
9617 
9618 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9619 {
9620 	struct task_group *tg = css_tg(seq_css(sf));
9621 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9622 
9623 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9624 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9625 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9626 
9627 	if (schedstat_enabled() && tg != &root_task_group) {
9628 		struct sched_statistics *stats;
9629 		u64 ws = 0;
9630 		int i;
9631 
9632 		for_each_possible_cpu(i) {
9633 			stats = __schedstats_from_se(tg->se[i]);
9634 			ws += schedstat_val(stats->wait_sum);
9635 		}
9636 
9637 		seq_printf(sf, "wait_sum %llu\n", ws);
9638 	}
9639 
9640 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9641 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9642 
9643 	return 0;
9644 }
9645 
9646 static u64 throttled_time_self(struct task_group *tg)
9647 {
9648 	int i;
9649 	u64 total = 0;
9650 
9651 	for_each_possible_cpu(i) {
9652 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9653 	}
9654 
9655 	return total;
9656 }
9657 
9658 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9659 {
9660 	struct task_group *tg = css_tg(seq_css(sf));
9661 
9662 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9663 
9664 	return 0;
9665 }
9666 #endif /* CONFIG_CFS_BANDWIDTH */
9667 
9668 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH
9669 const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */
9670 static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */
9671 /* More than 203 days if BW_SHIFT equals 20. */
9672 static const u64 max_bw_runtime_us = MAX_BW;
9673 
9674 static void tg_bandwidth(struct task_group *tg,
9675 			 u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p)
9676 {
9677 #ifdef CONFIG_CFS_BANDWIDTH
9678 	if (period_us_p)
9679 		*period_us_p = tg_get_cfs_period(tg);
9680 	if (quota_us_p)
9681 		*quota_us_p = tg_get_cfs_quota(tg);
9682 	if (burst_us_p)
9683 		*burst_us_p = tg_get_cfs_burst(tg);
9684 #else /* !CONFIG_CFS_BANDWIDTH */
9685 	if (period_us_p)
9686 		*period_us_p = tg->scx.bw_period_us;
9687 	if (quota_us_p)
9688 		*quota_us_p = tg->scx.bw_quota_us;
9689 	if (burst_us_p)
9690 		*burst_us_p = tg->scx.bw_burst_us;
9691 #endif /* CONFIG_CFS_BANDWIDTH */
9692 }
9693 
9694 static u64 cpu_period_read_u64(struct cgroup_subsys_state *css,
9695 			       struct cftype *cft)
9696 {
9697 	u64 period_us;
9698 
9699 	tg_bandwidth(css_tg(css), &period_us, NULL, NULL);
9700 	return period_us;
9701 }
9702 
9703 static int tg_set_bandwidth(struct task_group *tg,
9704 			    u64 period_us, u64 quota_us, u64 burst_us)
9705 {
9706 	const u64 max_usec = U64_MAX / NSEC_PER_USEC;
9707 	int ret = 0;
9708 
9709 	if (tg == &root_task_group)
9710 		return -EINVAL;
9711 
9712 	/* Values should survive translation to nsec */
9713 	if (period_us > max_usec ||
9714 	    (quota_us != RUNTIME_INF && quota_us > max_usec) ||
9715 	    burst_us > max_usec)
9716 		return -EINVAL;
9717 
9718 	/*
9719 	 * Ensure we have some amount of bandwidth every period. This is to
9720 	 * prevent reaching a state of large arrears when throttled via
9721 	 * entity_tick() resulting in prolonged exit starvation.
9722 	 */
9723 	if (quota_us < min_bw_quota_period_us ||
9724 	    period_us < min_bw_quota_period_us)
9725 		return -EINVAL;
9726 
9727 	/*
9728 	 * Likewise, bound things on the other side by preventing insane quota
9729 	 * periods.  This also allows us to normalize in computing quota
9730 	 * feasibility.
9731 	 */
9732 	if (period_us > max_bw_quota_period_us)
9733 		return -EINVAL;
9734 
9735 	/*
9736 	 * Bound quota to defend quota against overflow during bandwidth shift.
9737 	 */
9738 	if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us)
9739 		return -EINVAL;
9740 
9741 	if (quota_us != RUNTIME_INF && (burst_us > quota_us ||
9742 					burst_us + quota_us > max_bw_runtime_us))
9743 		return -EINVAL;
9744 
9745 #ifdef CONFIG_CFS_BANDWIDTH
9746 	ret = tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us);
9747 #endif /* CONFIG_CFS_BANDWIDTH */
9748 	if (!ret)
9749 		scx_group_set_bandwidth(tg, period_us, quota_us, burst_us);
9750 	return ret;
9751 }
9752 
9753 static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css,
9754 			      struct cftype *cft)
9755 {
9756 	u64 quota_us;
9757 
9758 	tg_bandwidth(css_tg(css), NULL, &quota_us, NULL);
9759 	return quota_us;	/* (s64)RUNTIME_INF becomes -1 */
9760 }
9761 
9762 static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css,
9763 			      struct cftype *cft)
9764 {
9765 	u64 burst_us;
9766 
9767 	tg_bandwidth(css_tg(css), NULL, NULL, &burst_us);
9768 	return burst_us;
9769 }
9770 
9771 static int cpu_period_write_u64(struct cgroup_subsys_state *css,
9772 				struct cftype *cftype, u64 period_us)
9773 {
9774 	struct task_group *tg = css_tg(css);
9775 	u64 quota_us, burst_us;
9776 
9777 	tg_bandwidth(tg, NULL, &quota_us, &burst_us);
9778 	return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9779 }
9780 
9781 static int cpu_quota_write_s64(struct cgroup_subsys_state *css,
9782 			       struct cftype *cftype, s64 quota_us)
9783 {
9784 	struct task_group *tg = css_tg(css);
9785 	u64 period_us, burst_us;
9786 
9787 	if (quota_us < 0)
9788 		quota_us = RUNTIME_INF;
9789 
9790 	tg_bandwidth(tg, &period_us, NULL, &burst_us);
9791 	return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9792 }
9793 
9794 static int cpu_burst_write_u64(struct cgroup_subsys_state *css,
9795 			       struct cftype *cftype, u64 burst_us)
9796 {
9797 	struct task_group *tg = css_tg(css);
9798 	u64 period_us, quota_us;
9799 
9800 	tg_bandwidth(tg, &period_us, &quota_us, NULL);
9801 	return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9802 }
9803 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */
9804 
9805 #ifdef CONFIG_RT_GROUP_SCHED
9806 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9807 				struct cftype *cft, s64 val)
9808 {
9809 	return sched_group_set_rt_runtime(css_tg(css), val);
9810 }
9811 
9812 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9813 			       struct cftype *cft)
9814 {
9815 	return sched_group_rt_runtime(css_tg(css));
9816 }
9817 
9818 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9819 				    struct cftype *cftype, u64 rt_period_us)
9820 {
9821 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9822 }
9823 
9824 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9825 				   struct cftype *cft)
9826 {
9827 	return sched_group_rt_period(css_tg(css));
9828 }
9829 #endif /* CONFIG_RT_GROUP_SCHED */
9830 
9831 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9832 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9833 			       struct cftype *cft)
9834 {
9835 	return css_tg(css)->idle;
9836 }
9837 
9838 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9839 				struct cftype *cft, s64 idle)
9840 {
9841 	int ret;
9842 
9843 	ret = sched_group_set_idle(css_tg(css), idle);
9844 	if (!ret)
9845 		scx_group_set_idle(css_tg(css), idle);
9846 	return ret;
9847 }
9848 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9849 
9850 static struct cftype cpu_legacy_files[] = {
9851 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9852 	{
9853 		.name = "shares",
9854 		.read_u64 = cpu_shares_read_u64,
9855 		.write_u64 = cpu_shares_write_u64,
9856 	},
9857 	{
9858 		.name = "idle",
9859 		.read_s64 = cpu_idle_read_s64,
9860 		.write_s64 = cpu_idle_write_s64,
9861 	},
9862 #endif
9863 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH
9864 	{
9865 		.name = "cfs_period_us",
9866 		.read_u64 = cpu_period_read_u64,
9867 		.write_u64 = cpu_period_write_u64,
9868 	},
9869 	{
9870 		.name = "cfs_quota_us",
9871 		.read_s64 = cpu_quota_read_s64,
9872 		.write_s64 = cpu_quota_write_s64,
9873 	},
9874 	{
9875 		.name = "cfs_burst_us",
9876 		.read_u64 = cpu_burst_read_u64,
9877 		.write_u64 = cpu_burst_write_u64,
9878 	},
9879 #endif
9880 #ifdef CONFIG_CFS_BANDWIDTH
9881 	{
9882 		.name = "stat",
9883 		.seq_show = cpu_cfs_stat_show,
9884 	},
9885 	{
9886 		.name = "stat.local",
9887 		.seq_show = cpu_cfs_local_stat_show,
9888 	},
9889 #endif
9890 #ifdef CONFIG_UCLAMP_TASK_GROUP
9891 	{
9892 		.name = "uclamp.min",
9893 		.flags = CFTYPE_NOT_ON_ROOT,
9894 		.seq_show = cpu_uclamp_min_show,
9895 		.write = cpu_uclamp_min_write,
9896 	},
9897 	{
9898 		.name = "uclamp.max",
9899 		.flags = CFTYPE_NOT_ON_ROOT,
9900 		.seq_show = cpu_uclamp_max_show,
9901 		.write = cpu_uclamp_max_write,
9902 	},
9903 #endif
9904 	{ }	/* Terminate */
9905 };
9906 
9907 #ifdef CONFIG_RT_GROUP_SCHED
9908 static struct cftype rt_group_files[] = {
9909 	{
9910 		.name = "rt_runtime_us",
9911 		.read_s64 = cpu_rt_runtime_read,
9912 		.write_s64 = cpu_rt_runtime_write,
9913 	},
9914 	{
9915 		.name = "rt_period_us",
9916 		.read_u64 = cpu_rt_period_read_uint,
9917 		.write_u64 = cpu_rt_period_write_uint,
9918 	},
9919 	{ }	/* Terminate */
9920 };
9921 
9922 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
9923 DEFINE_STATIC_KEY_FALSE(rt_group_sched);
9924 # else
9925 DEFINE_STATIC_KEY_TRUE(rt_group_sched);
9926 # endif
9927 
9928 static int __init setup_rt_group_sched(char *str)
9929 {
9930 	long val;
9931 
9932 	if (kstrtol(str, 0, &val) || val < 0 || val > 1) {
9933 		pr_warn("Unable to set rt_group_sched\n");
9934 		return 1;
9935 	}
9936 	if (val)
9937 		static_branch_enable(&rt_group_sched);
9938 	else
9939 		static_branch_disable(&rt_group_sched);
9940 
9941 	return 1;
9942 }
9943 __setup("rt_group_sched=", setup_rt_group_sched);
9944 
9945 static int __init cpu_rt_group_init(void)
9946 {
9947 	if (!rt_group_sched_enabled())
9948 		return 0;
9949 
9950 	WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files));
9951 	return 0;
9952 }
9953 subsys_initcall(cpu_rt_group_init);
9954 #endif /* CONFIG_RT_GROUP_SCHED */
9955 
9956 static int cpu_extra_stat_show(struct seq_file *sf,
9957 			       struct cgroup_subsys_state *css)
9958 {
9959 #ifdef CONFIG_CFS_BANDWIDTH
9960 	{
9961 		struct task_group *tg = css_tg(css);
9962 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9963 		u64 throttled_usec, burst_usec;
9964 
9965 		throttled_usec = cfs_b->throttled_time;
9966 		do_div(throttled_usec, NSEC_PER_USEC);
9967 		burst_usec = cfs_b->burst_time;
9968 		do_div(burst_usec, NSEC_PER_USEC);
9969 
9970 		seq_printf(sf, "nr_periods %d\n"
9971 			   "nr_throttled %d\n"
9972 			   "throttled_usec %llu\n"
9973 			   "nr_bursts %d\n"
9974 			   "burst_usec %llu\n",
9975 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9976 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9977 	}
9978 #endif /* CONFIG_CFS_BANDWIDTH */
9979 	return 0;
9980 }
9981 
9982 static int cpu_local_stat_show(struct seq_file *sf,
9983 			       struct cgroup_subsys_state *css)
9984 {
9985 #ifdef CONFIG_CFS_BANDWIDTH
9986 	{
9987 		struct task_group *tg = css_tg(css);
9988 		u64 throttled_self_usec;
9989 
9990 		throttled_self_usec = throttled_time_self(tg);
9991 		do_div(throttled_self_usec, NSEC_PER_USEC);
9992 
9993 		seq_printf(sf, "throttled_usec %llu\n",
9994 			   throttled_self_usec);
9995 	}
9996 #endif
9997 	return 0;
9998 }
9999 
10000 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10001 
10002 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10003 			       struct cftype *cft)
10004 {
10005 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
10006 }
10007 
10008 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10009 				struct cftype *cft, u64 cgrp_weight)
10010 {
10011 	unsigned long weight;
10012 	int ret;
10013 
10014 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
10015 		return -ERANGE;
10016 
10017 	weight = sched_weight_from_cgroup(cgrp_weight);
10018 
10019 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10020 	if (!ret)
10021 		scx_group_set_weight(css_tg(css), cgrp_weight);
10022 	return ret;
10023 }
10024 
10025 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10026 				    struct cftype *cft)
10027 {
10028 	unsigned long weight = tg_weight(css_tg(css));
10029 	int last_delta = INT_MAX;
10030 	int prio, delta;
10031 
10032 	/* find the closest nice value to the current weight */
10033 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10034 		delta = abs(sched_prio_to_weight[prio] - weight);
10035 		if (delta >= last_delta)
10036 			break;
10037 		last_delta = delta;
10038 	}
10039 
10040 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10041 }
10042 
10043 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10044 				     struct cftype *cft, s64 nice)
10045 {
10046 	unsigned long weight;
10047 	int idx, ret;
10048 
10049 	if (nice < MIN_NICE || nice > MAX_NICE)
10050 		return -ERANGE;
10051 
10052 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10053 	idx = array_index_nospec(idx, 40);
10054 	weight = sched_prio_to_weight[idx];
10055 
10056 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10057 	if (!ret)
10058 		scx_group_set_weight(css_tg(css),
10059 				     sched_weight_to_cgroup(weight));
10060 	return ret;
10061 }
10062 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
10063 
10064 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10065 						  long period, long quota)
10066 {
10067 	if (quota < 0)
10068 		seq_puts(sf, "max");
10069 	else
10070 		seq_printf(sf, "%ld", quota);
10071 
10072 	seq_printf(sf, " %ld\n", period);
10073 }
10074 
10075 /* caller should put the current value in *@periodp before calling */
10076 static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p,
10077 						 u64 *quota_us_p)
10078 {
10079 	char tok[21];	/* U64_MAX */
10080 
10081 	if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1)
10082 		return -EINVAL;
10083 
10084 	if (sscanf(tok, "%llu", quota_us_p) < 1) {
10085 		if (!strcmp(tok, "max"))
10086 			*quota_us_p = RUNTIME_INF;
10087 		else
10088 			return -EINVAL;
10089 	}
10090 
10091 	return 0;
10092 }
10093 
10094 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH
10095 static int cpu_max_show(struct seq_file *sf, void *v)
10096 {
10097 	struct task_group *tg = css_tg(seq_css(sf));
10098 	u64 period_us, quota_us;
10099 
10100 	tg_bandwidth(tg, &period_us, &quota_us, NULL);
10101 	cpu_period_quota_print(sf, period_us, quota_us);
10102 	return 0;
10103 }
10104 
10105 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10106 			     char *buf, size_t nbytes, loff_t off)
10107 {
10108 	struct task_group *tg = css_tg(of_css(of));
10109 	u64 period_us, quota_us, burst_us;
10110 	int ret;
10111 
10112 	tg_bandwidth(tg, &period_us, NULL, &burst_us);
10113 	ret = cpu_period_quota_parse(buf, &period_us, &quota_us);
10114 	if (!ret)
10115 		ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us);
10116 	return ret ?: nbytes;
10117 }
10118 #endif /* CONFIG_CFS_BANDWIDTH */
10119 
10120 static struct cftype cpu_files[] = {
10121 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10122 	{
10123 		.name = "weight",
10124 		.flags = CFTYPE_NOT_ON_ROOT,
10125 		.read_u64 = cpu_weight_read_u64,
10126 		.write_u64 = cpu_weight_write_u64,
10127 	},
10128 	{
10129 		.name = "weight.nice",
10130 		.flags = CFTYPE_NOT_ON_ROOT,
10131 		.read_s64 = cpu_weight_nice_read_s64,
10132 		.write_s64 = cpu_weight_nice_write_s64,
10133 	},
10134 	{
10135 		.name = "idle",
10136 		.flags = CFTYPE_NOT_ON_ROOT,
10137 		.read_s64 = cpu_idle_read_s64,
10138 		.write_s64 = cpu_idle_write_s64,
10139 	},
10140 #endif
10141 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH
10142 	{
10143 		.name = "max",
10144 		.flags = CFTYPE_NOT_ON_ROOT,
10145 		.seq_show = cpu_max_show,
10146 		.write = cpu_max_write,
10147 	},
10148 	{
10149 		.name = "max.burst",
10150 		.flags = CFTYPE_NOT_ON_ROOT,
10151 		.read_u64 = cpu_burst_read_u64,
10152 		.write_u64 = cpu_burst_write_u64,
10153 	},
10154 #endif /* CONFIG_CFS_BANDWIDTH */
10155 #ifdef CONFIG_UCLAMP_TASK_GROUP
10156 	{
10157 		.name = "uclamp.min",
10158 		.flags = CFTYPE_NOT_ON_ROOT,
10159 		.seq_show = cpu_uclamp_min_show,
10160 		.write = cpu_uclamp_min_write,
10161 	},
10162 	{
10163 		.name = "uclamp.max",
10164 		.flags = CFTYPE_NOT_ON_ROOT,
10165 		.seq_show = cpu_uclamp_max_show,
10166 		.write = cpu_uclamp_max_write,
10167 	},
10168 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10169 	{ }	/* terminate */
10170 };
10171 
10172 struct cgroup_subsys cpu_cgrp_subsys = {
10173 	.css_alloc	= cpu_cgroup_css_alloc,
10174 	.css_online	= cpu_cgroup_css_online,
10175 	.css_offline	= cpu_cgroup_css_offline,
10176 	.css_released	= cpu_cgroup_css_released,
10177 	.css_free	= cpu_cgroup_css_free,
10178 	.css_extra_stat_show = cpu_extra_stat_show,
10179 	.css_local_stat_show = cpu_local_stat_show,
10180 	.can_attach	= cpu_cgroup_can_attach,
10181 	.attach		= cpu_cgroup_attach,
10182 	.cancel_attach	= cpu_cgroup_cancel_attach,
10183 	.legacy_cftypes	= cpu_legacy_files,
10184 	.dfl_cftypes	= cpu_files,
10185 	.early_init	= true,
10186 	.threaded	= true,
10187 };
10188 
10189 #endif /* CONFIG_CGROUP_SCHED */
10190 
10191 void dump_cpu_task(int cpu)
10192 {
10193 	if (in_hardirq() && cpu == smp_processor_id()) {
10194 		struct pt_regs *regs;
10195 
10196 		regs = get_irq_regs();
10197 		if (regs) {
10198 			show_regs(regs);
10199 			return;
10200 		}
10201 	}
10202 
10203 	if (trigger_single_cpu_backtrace(cpu))
10204 		return;
10205 
10206 	pr_info("Task dump for CPU %d:\n", cpu);
10207 	sched_show_task(cpu_curr(cpu));
10208 }
10209 
10210 /*
10211  * Nice levels are multiplicative, with a gentle 10% change for every
10212  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10213  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10214  * that remained on nice 0.
10215  *
10216  * The "10% effect" is relative and cumulative: from _any_ nice level,
10217  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10218  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10219  * If a task goes up by ~10% and another task goes down by ~10% then
10220  * the relative distance between them is ~25%.)
10221  */
10222 const int sched_prio_to_weight[40] = {
10223  /* -20 */     88761,     71755,     56483,     46273,     36291,
10224  /* -15 */     29154,     23254,     18705,     14949,     11916,
10225  /* -10 */      9548,      7620,      6100,      4904,      3906,
10226  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10227  /*   0 */      1024,       820,       655,       526,       423,
10228  /*   5 */       335,       272,       215,       172,       137,
10229  /*  10 */       110,        87,        70,        56,        45,
10230  /*  15 */        36,        29,        23,        18,        15,
10231 };
10232 
10233 /*
10234  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10235  *
10236  * In cases where the weight does not change often, we can use the
10237  * pre-calculated inverse to speed up arithmetics by turning divisions
10238  * into multiplications:
10239  */
10240 const u32 sched_prio_to_wmult[40] = {
10241  /* -20 */     48388,     59856,     76040,     92818,    118348,
10242  /* -15 */    147320,    184698,    229616,    287308,    360437,
10243  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10244  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10245  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10246  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10247  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10248  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10249 };
10250 
10251 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10252 {
10253         trace_sched_update_nr_running_tp(rq, count);
10254 }
10255 
10256 #ifdef CONFIG_SCHED_MM_CID
10257 /*
10258  * Concurrency IDentifier management
10259  *
10260  * Serialization rules:
10261  *
10262  * mm::mm_cid::mutex:	Serializes fork() and exit() and therefore
10263  *			protects mm::mm_cid::users.
10264  *
10265  * mm::mm_cid::lock:	Serializes mm_update_max_cids() and
10266  *			mm_update_cpus_allowed(). Nests in mm_cid::mutex
10267  *			and runqueue lock.
10268  *
10269  * The mm_cidmask bitmap is not protected by any of the mm::mm_cid locks
10270  * and can only be modified with atomic operations.
10271  *
10272  * The mm::mm_cid:pcpu per CPU storage is protected by the CPUs runqueue
10273  * lock.
10274  *
10275  * CID ownership:
10276  *
10277  * A CID is either owned by a task (stored in task_struct::mm_cid.cid) or
10278  * by a CPU (stored in mm::mm_cid.pcpu::cid). CIDs owned by CPUs have the
10279  * MM_CID_ONCPU bit set. During transition from CPU to task ownership mode,
10280  * MM_CID_TRANSIT is set on the per task CIDs. When this bit is set the
10281  * task needs to drop the CID into the pool when scheduling out.  Both bits
10282  * (ONCPU and TRANSIT) are filtered out by task_cid() when the CID is
10283  * actually handed over to user space in the RSEQ memory.
10284  *
10285  * Mode switching:
10286  *
10287  * Switching to per CPU mode happens when the user count becomes greater
10288  * than the maximum number of CIDs, which is calculated by:
10289  *
10290  *	opt_cids = min(mm_cid::nr_cpus_allowed, mm_cid::users);
10291  *	max_cids = min(1.25 * opt_cids, num_possible_cpus());
10292  *
10293  * The +25% allowance is useful for tight CPU masks in scenarios where only
10294  * a few threads are created and destroyed to avoid frequent mode
10295  * switches. Though this allowance shrinks, the closer opt_cids becomes to
10296  * num_possible_cpus(), which is the (unfortunate) hard ABI limit.
10297  *
10298  * At the point of switching to per CPU mode the new user is not yet
10299  * visible in the system, so the task which initiated the fork() runs the
10300  * fixup function: mm_cid_fixup_tasks_to_cpu() walks the thread list and
10301  * either transfers each tasks owned CID to the CPU the task runs on or
10302  * drops it into the CID pool if a task is not on a CPU at that point in
10303  * time. Tasks which schedule in before the task walk reaches them do the
10304  * handover in mm_cid_schedin(). When mm_cid_fixup_tasks_to_cpus() completes
10305  * it's guaranteed that no task related to that MM owns a CID anymore.
10306  *
10307  * Switching back to task mode happens when the user count goes below the
10308  * threshold which was recorded on the per CPU mode switch:
10309  *
10310  *	pcpu_thrs = min(opt_cids - (opt_cids / 4), num_possible_cpus() / 2);
10311  *
10312  * This threshold is updated when a affinity change increases the number of
10313  * allowed CPUs for the MM, which might cause a switch back to per task
10314  * mode.
10315  *
10316  * If the switch back was initiated by a exiting task, then that task runs
10317  * the fixup function. If it was initiated by a affinity change, then it's
10318  * run either in the deferred update function in context of a workqueue or
10319  * by a task which forks a new one or by a task which exits. Whatever
10320  * happens first. mm_cid_fixup_cpus_to_task() walks through the possible
10321  * CPUs and either transfers the CPU owned CIDs to a related task which
10322  * runs on the CPU or drops it into the pool. Tasks which schedule in on a
10323  * CPU which the walk did not cover yet do the handover themself.
10324  *
10325  * This transition from CPU to per task ownership happens in two phases:
10326  *
10327  *  1) mm:mm_cid.transit contains MM_CID_TRANSIT This is OR'ed on the task
10328  *     CID and denotes that the CID is only temporarily owned by the
10329  *     task. When it schedules out the task drops the CID back into the
10330  *     pool if this bit is set.
10331  *
10332  *  2) The initiating context walks the per CPU space and after completion
10333  *     clears mm:mm_cid.transit. So after that point the CIDs are strictly
10334  *     task owned again.
10335  *
10336  * This two phase transition is required to prevent CID space exhaustion
10337  * during the transition as a direct transfer of ownership would fail if
10338  * two tasks are scheduled in on the same CPU before the fixup freed per
10339  * CPU CIDs.
10340  *
10341  * When mm_cid_fixup_cpus_to_tasks() completes it's guaranteed that no CID
10342  * related to that MM is owned by a CPU anymore.
10343  */
10344 
10345 /*
10346  * Update the CID range properties when the constraints change. Invoked via
10347  * fork(), exit() and affinity changes
10348  */
10349 static void __mm_update_max_cids(struct mm_mm_cid *mc)
10350 {
10351 	unsigned int opt_cids, max_cids;
10352 
10353 	/* Calculate the new optimal constraint */
10354 	opt_cids = min(mc->nr_cpus_allowed, mc->users);
10355 
10356 	/* Adjust the maximum CIDs to +25% limited by the number of possible CPUs */
10357 	max_cids = min(opt_cids + (opt_cids / 4), num_possible_cpus());
10358 	WRITE_ONCE(mc->max_cids, max_cids);
10359 }
10360 
10361 static inline unsigned int mm_cid_calc_pcpu_thrs(struct mm_mm_cid *mc)
10362 {
10363 	unsigned int opt_cids;
10364 
10365 	opt_cids = min(mc->nr_cpus_allowed, mc->users);
10366 	/* Has to be at least 1 because 0 indicates PCPU mode off */
10367 	return max(min(opt_cids - opt_cids / 4, num_possible_cpus() / 2), 1);
10368 }
10369 
10370 static bool mm_update_max_cids(struct mm_struct *mm)
10371 {
10372 	struct mm_mm_cid *mc = &mm->mm_cid;
10373 
10374 	lockdep_assert_held(&mm->mm_cid.lock);
10375 
10376 	/* Clear deferred mode switch flag. A change is handled by the caller */
10377 	mc->update_deferred = false;
10378 	__mm_update_max_cids(mc);
10379 
10380 	/* Check whether owner mode must be changed */
10381 	if (!mc->percpu) {
10382 		/* Enable per CPU mode when the number of users is above max_cids */
10383 		if (mc->users > mc->max_cids)
10384 			mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc);
10385 	} else {
10386 		/* Switch back to per task if user count under threshold */
10387 		if (mc->users < mc->pcpu_thrs)
10388 			mc->pcpu_thrs = 0;
10389 	}
10390 
10391 	/* Mode change required? */
10392 	if (!!mc->percpu == !!mc->pcpu_thrs)
10393 		return false;
10394 	/* When switching back to per TASK mode, set the transition flag */
10395 	if (!mc->pcpu_thrs)
10396 		WRITE_ONCE(mc->transit, MM_CID_TRANSIT);
10397 	WRITE_ONCE(mc->percpu, !!mc->pcpu_thrs);
10398 	return true;
10399 }
10400 
10401 static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk)
10402 {
10403 	struct cpumask *mm_allowed;
10404 	struct mm_mm_cid *mc;
10405 	unsigned int weight;
10406 
10407 	if (!mm || !READ_ONCE(mm->mm_cid.users))
10408 		return;
10409 	/*
10410 	 * mm::mm_cid::mm_cpus_allowed is the superset of each threads
10411 	 * allowed CPUs mask which means it can only grow.
10412 	 */
10413 	mc = &mm->mm_cid;
10414 	guard(raw_spinlock)(&mc->lock);
10415 	mm_allowed = mm_cpus_allowed(mm);
10416 	weight = cpumask_weighted_or(mm_allowed, mm_allowed, affmsk);
10417 	if (weight == mc->nr_cpus_allowed)
10418 		return;
10419 
10420 	WRITE_ONCE(mc->nr_cpus_allowed, weight);
10421 	__mm_update_max_cids(mc);
10422 	if (!mc->percpu)
10423 		return;
10424 
10425 	/* Adjust the threshold to the wider set */
10426 	mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc);
10427 	/* Switch back to per task mode? */
10428 	if (mc->users >= mc->pcpu_thrs)
10429 		return;
10430 
10431 	/* Don't queue twice */
10432 	if (mc->update_deferred)
10433 		return;
10434 
10435 	/* Queue the irq work, which schedules the real work */
10436 	mc->update_deferred = true;
10437 	irq_work_queue(&mc->irq_work);
10438 }
10439 
10440 static inline void mm_cid_transit_to_task(struct task_struct *t, struct mm_cid_pcpu *pcp)
10441 {
10442 	if (cid_on_cpu(t->mm_cid.cid)) {
10443 		unsigned int cid = cpu_cid_to_cid(t->mm_cid.cid);
10444 
10445 		t->mm_cid.cid = cid_to_transit_cid(cid);
10446 		pcp->cid = t->mm_cid.cid;
10447 	}
10448 }
10449 
10450 static void mm_cid_fixup_cpus_to_tasks(struct mm_struct *mm)
10451 {
10452 	unsigned int cpu;
10453 
10454 	/* Walk the CPUs and fixup all stale CIDs */
10455 	for_each_possible_cpu(cpu) {
10456 		struct mm_cid_pcpu *pcp = per_cpu_ptr(mm->mm_cid.pcpu, cpu);
10457 		struct rq *rq = cpu_rq(cpu);
10458 
10459 		/* Remote access to mm::mm_cid::pcpu requires rq_lock */
10460 		guard(rq_lock_irq)(rq);
10461 		/* Is the CID still owned by the CPU? */
10462 		if (cid_on_cpu(pcp->cid)) {
10463 			/*
10464 			 * If rq->curr has @mm, transfer it with the
10465 			 * transition bit set. Otherwise drop it.
10466 			 */
10467 			if (rq->curr->mm == mm && rq->curr->mm_cid.active)
10468 				mm_cid_transit_to_task(rq->curr, pcp);
10469 			else
10470 				mm_drop_cid_on_cpu(mm, pcp);
10471 
10472 		} else if (rq->curr->mm == mm && rq->curr->mm_cid.active) {
10473 			unsigned int cid = rq->curr->mm_cid.cid;
10474 
10475 			/* Ensure it has the transition bit set */
10476 			if (!cid_in_transit(cid)) {
10477 				cid = cid_to_transit_cid(cid);
10478 				rq->curr->mm_cid.cid = cid;
10479 				pcp->cid = cid;
10480 			}
10481 		}
10482 	}
10483 	/* Clear the transition bit */
10484 	WRITE_ONCE(mm->mm_cid.transit, 0);
10485 }
10486 
10487 static inline void mm_cid_transfer_to_cpu(struct task_struct *t, struct mm_cid_pcpu *pcp)
10488 {
10489 	if (cid_on_task(t->mm_cid.cid)) {
10490 		t->mm_cid.cid = cid_to_cpu_cid(t->mm_cid.cid);
10491 		pcp->cid = t->mm_cid.cid;
10492 	}
10493 }
10494 
10495 static bool mm_cid_fixup_task_to_cpu(struct task_struct *t, struct mm_struct *mm)
10496 {
10497 	/* Remote access to mm::mm_cid::pcpu requires rq_lock */
10498 	guard(task_rq_lock)(t);
10499 	/* If the task is not active it is not in the users count */
10500 	if (!t->mm_cid.active)
10501 		return false;
10502 	if (cid_on_task(t->mm_cid.cid)) {
10503 		/* If running on the CPU, transfer the CID, otherwise drop it */
10504 		if (task_rq(t)->curr == t)
10505 			mm_cid_transfer_to_cpu(t, per_cpu_ptr(mm->mm_cid.pcpu, task_cpu(t)));
10506 		else
10507 			mm_unset_cid_on_task(t);
10508 	}
10509 	return true;
10510 }
10511 
10512 static void mm_cid_fixup_tasks_to_cpus(void)
10513 {
10514 	struct mm_struct *mm = current->mm;
10515 	struct task_struct *p, *t;
10516 	unsigned int users;
10517 
10518 	/*
10519 	 * This can obviously race with a concurrent affinity change, which
10520 	 * increases the number of allowed CPUs for this mm, but that does
10521 	 * not affect the mode and only changes the CID constraints. A
10522 	 * possible switch back to per task mode happens either in the
10523 	 * deferred handler function or in the next fork()/exit().
10524 	 *
10525 	 * The caller has already transferred. The newly incoming task is
10526 	 * already accounted for, but not yet visible.
10527 	 */
10528 	users = mm->mm_cid.users - 2;
10529 	if (!users)
10530 		return;
10531 
10532 	guard(rcu)();
10533 	for_other_threads(current, t) {
10534 		if (mm_cid_fixup_task_to_cpu(t, mm))
10535 			users--;
10536 	}
10537 
10538 	if (!users)
10539 		return;
10540 
10541 	/* Happens only for VM_CLONE processes. */
10542 	for_each_process_thread(p, t) {
10543 		if (t == current || t->mm != mm)
10544 			continue;
10545 		if (mm_cid_fixup_task_to_cpu(t, mm)) {
10546 			if (--users == 0)
10547 				return;
10548 		}
10549 	}
10550 }
10551 
10552 static bool sched_mm_cid_add_user(struct task_struct *t, struct mm_struct *mm)
10553 {
10554 	t->mm_cid.active = 1;
10555 	mm->mm_cid.users++;
10556 	return mm_update_max_cids(mm);
10557 }
10558 
10559 void sched_mm_cid_fork(struct task_struct *t)
10560 {
10561 	struct mm_struct *mm = t->mm;
10562 	bool percpu;
10563 
10564 	WARN_ON_ONCE(!mm || t->mm_cid.cid != MM_CID_UNSET);
10565 
10566 	guard(mutex)(&mm->mm_cid.mutex);
10567 	scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) {
10568 		struct mm_cid_pcpu *pcp = this_cpu_ptr(mm->mm_cid.pcpu);
10569 
10570 		/* First user ? */
10571 		if (!mm->mm_cid.users) {
10572 			sched_mm_cid_add_user(t, mm);
10573 			t->mm_cid.cid = mm_get_cid(mm);
10574 			/* Required for execve() */
10575 			pcp->cid = t->mm_cid.cid;
10576 			return;
10577 		}
10578 
10579 		if (!sched_mm_cid_add_user(t, mm)) {
10580 			if (!mm->mm_cid.percpu)
10581 				t->mm_cid.cid = mm_get_cid(mm);
10582 			return;
10583 		}
10584 
10585 		/* Handle the mode change and transfer current's CID */
10586 		percpu = !!mm->mm_cid.percpu;
10587 		if (!percpu)
10588 			mm_cid_transit_to_task(current, pcp);
10589 		else
10590 			mm_cid_transfer_to_cpu(current, pcp);
10591 	}
10592 
10593 	if (percpu) {
10594 		mm_cid_fixup_tasks_to_cpus();
10595 	} else {
10596 		mm_cid_fixup_cpus_to_tasks(mm);
10597 		t->mm_cid.cid = mm_get_cid(mm);
10598 	}
10599 }
10600 
10601 static bool sched_mm_cid_remove_user(struct task_struct *t)
10602 {
10603 	t->mm_cid.active = 0;
10604 	scoped_guard(preempt) {
10605 		/* Clear the transition bit */
10606 		t->mm_cid.cid = cid_from_transit_cid(t->mm_cid.cid);
10607 		mm_unset_cid_on_task(t);
10608 	}
10609 	t->mm->mm_cid.users--;
10610 	return mm_update_max_cids(t->mm);
10611 }
10612 
10613 static bool __sched_mm_cid_exit(struct task_struct *t)
10614 {
10615 	struct mm_struct *mm = t->mm;
10616 
10617 	if (!sched_mm_cid_remove_user(t))
10618 		return false;
10619 	/*
10620 	 * Contrary to fork() this only deals with a switch back to per
10621 	 * task mode either because the above decreased users or an
10622 	 * affinity change increased the number of allowed CPUs and the
10623 	 * deferred fixup did not run yet.
10624 	 */
10625 	if (WARN_ON_ONCE(mm->mm_cid.percpu))
10626 		return false;
10627 	/*
10628 	 * A failed fork(2) cleanup never gets here, so @current must have
10629 	 * the same MM as @t. That's true for exit() and the failed
10630 	 * pthread_create() cleanup case.
10631 	 */
10632 	if (WARN_ON_ONCE(current->mm != mm))
10633 		return false;
10634 	return true;
10635 }
10636 
10637 /*
10638  * When a task exits, the MM CID held by the task is not longer required as
10639  * the task cannot return to user space.
10640  */
10641 void sched_mm_cid_exit(struct task_struct *t)
10642 {
10643 	struct mm_struct *mm = t->mm;
10644 
10645 	if (!mm || !t->mm_cid.active)
10646 		return;
10647 	/*
10648 	 * Ensure that only one instance is doing MM CID operations within
10649 	 * a MM. The common case is uncontended. The rare fixup case adds
10650 	 * some overhead.
10651 	 */
10652 	scoped_guard(mutex, &mm->mm_cid.mutex) {
10653 		/* mm_cid::mutex is sufficient to protect mm_cid::users */
10654 		if (likely(mm->mm_cid.users > 1)) {
10655 			scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) {
10656 				if (!__sched_mm_cid_exit(t))
10657 					return;
10658 				/* Mode change required. Transfer currents CID */
10659 				mm_cid_transit_to_task(current, this_cpu_ptr(mm->mm_cid.pcpu));
10660 			}
10661 			mm_cid_fixup_cpus_to_tasks(mm);
10662 			return;
10663 		}
10664 		/* Last user */
10665 		scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) {
10666 			/* Required across execve() */
10667 			if (t == current)
10668 				mm_cid_transit_to_task(t, this_cpu_ptr(mm->mm_cid.pcpu));
10669 			/* Ignore mode change. There is nothing to do. */
10670 			sched_mm_cid_remove_user(t);
10671 		}
10672 	}
10673 
10674 	/*
10675 	 * As this is the last user (execve(), process exit or failed
10676 	 * fork(2)) there is no concurrency anymore.
10677 	 *
10678 	 * Synchronize eventually pending work to ensure that there are no
10679 	 * dangling references left. @t->mm_cid.users is zero so nothing
10680 	 * can queue this work anymore.
10681 	 */
10682 	irq_work_sync(&mm->mm_cid.irq_work);
10683 	cancel_work_sync(&mm->mm_cid.work);
10684 }
10685 
10686 /* Deactivate MM CID allocation across execve() */
10687 void sched_mm_cid_before_execve(struct task_struct *t)
10688 {
10689 	sched_mm_cid_exit(t);
10690 }
10691 
10692 /* Reactivate MM CID after successful execve() */
10693 void sched_mm_cid_after_execve(struct task_struct *t)
10694 {
10695 	sched_mm_cid_fork(t);
10696 }
10697 
10698 static void mm_cid_work_fn(struct work_struct *work)
10699 {
10700 	struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.work);
10701 
10702 	guard(mutex)(&mm->mm_cid.mutex);
10703 	/* Did the last user task exit already? */
10704 	if (!mm->mm_cid.users)
10705 		return;
10706 
10707 	scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) {
10708 		/* Have fork() or exit() handled it already? */
10709 		if (!mm->mm_cid.update_deferred)
10710 			return;
10711 		/* This clears mm_cid::update_deferred */
10712 		if (!mm_update_max_cids(mm))
10713 			return;
10714 		/* Affinity changes can only switch back to task mode */
10715 		if (WARN_ON_ONCE(mm->mm_cid.percpu))
10716 			return;
10717 	}
10718 	mm_cid_fixup_cpus_to_tasks(mm);
10719 }
10720 
10721 static void mm_cid_irq_work(struct irq_work *work)
10722 {
10723 	struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.irq_work);
10724 
10725 	/*
10726 	 * Needs to be unconditional because mm_cid::lock cannot be held
10727 	 * when scheduling work as mm_update_cpus_allowed() nests inside
10728 	 * rq::lock and schedule_work() might end up in wakeup...
10729 	 */
10730 	schedule_work(&mm->mm_cid.work);
10731 }
10732 
10733 void mm_init_cid(struct mm_struct *mm, struct task_struct *p)
10734 {
10735 	mm->mm_cid.max_cids = 0;
10736 	mm->mm_cid.percpu = 0;
10737 	mm->mm_cid.transit = 0;
10738 	mm->mm_cid.nr_cpus_allowed = p->nr_cpus_allowed;
10739 	mm->mm_cid.users = 0;
10740 	mm->mm_cid.pcpu_thrs = 0;
10741 	mm->mm_cid.update_deferred = 0;
10742 	raw_spin_lock_init(&mm->mm_cid.lock);
10743 	mutex_init(&mm->mm_cid.mutex);
10744 	mm->mm_cid.irq_work = IRQ_WORK_INIT_HARD(mm_cid_irq_work);
10745 	INIT_WORK(&mm->mm_cid.work, mm_cid_work_fn);
10746 	cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask);
10747 	bitmap_zero(mm_cidmask(mm), num_possible_cpus());
10748 }
10749 #else /* CONFIG_SCHED_MM_CID */
10750 static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk) { }
10751 #endif /* !CONFIG_SCHED_MM_CID */
10752 
10753 static DEFINE_PER_CPU(struct sched_change_ctx, sched_change_ctx);
10754 
10755 struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags)
10756 {
10757 	struct sched_change_ctx *ctx = this_cpu_ptr(&sched_change_ctx);
10758 	struct rq *rq = task_rq(p);
10759 
10760 	/*
10761 	 * Must exclusively use matched flags since this is both dequeue and
10762 	 * enqueue.
10763 	 */
10764 	WARN_ON_ONCE(flags & 0xFFFF0000);
10765 
10766 	lockdep_assert_rq_held(rq);
10767 
10768 	if (!(flags & DEQUEUE_NOCLOCK)) {
10769 		update_rq_clock(rq);
10770 		flags |= DEQUEUE_NOCLOCK;
10771 	}
10772 
10773 	if (flags & DEQUEUE_CLASS) {
10774 		if (p->sched_class->switching_from)
10775 			p->sched_class->switching_from(rq, p);
10776 	}
10777 
10778 	*ctx = (struct sched_change_ctx){
10779 		.p = p,
10780 		.flags = flags,
10781 		.queued = task_on_rq_queued(p),
10782 		.running = task_current_donor(rq, p),
10783 	};
10784 
10785 	if (!(flags & DEQUEUE_CLASS)) {
10786 		if (p->sched_class->get_prio)
10787 			ctx->prio = p->sched_class->get_prio(rq, p);
10788 		else
10789 			ctx->prio = p->prio;
10790 	}
10791 
10792 	if (ctx->queued)
10793 		dequeue_task(rq, p, flags);
10794 	if (ctx->running)
10795 		put_prev_task(rq, p);
10796 
10797 	if ((flags & DEQUEUE_CLASS) && p->sched_class->switched_from)
10798 		p->sched_class->switched_from(rq, p);
10799 
10800 	return ctx;
10801 }
10802 
10803 void sched_change_end(struct sched_change_ctx *ctx)
10804 {
10805 	struct task_struct *p = ctx->p;
10806 	struct rq *rq = task_rq(p);
10807 
10808 	lockdep_assert_rq_held(rq);
10809 
10810 	if ((ctx->flags & ENQUEUE_CLASS) && p->sched_class->switching_to)
10811 		p->sched_class->switching_to(rq, p);
10812 
10813 	if (ctx->queued)
10814 		enqueue_task(rq, p, ctx->flags);
10815 	if (ctx->running)
10816 		set_next_task(rq, p);
10817 
10818 	if (ctx->flags & ENQUEUE_CLASS) {
10819 		if (p->sched_class->switched_to)
10820 			p->sched_class->switched_to(rq, p);
10821 	} else {
10822 		p->sched_class->prio_changed(rq, p, ctx->prio);
10823 	}
10824 }
10825