xref: /linux/kernel/sched/core.c (revision 7e92e1d7629b00578cef22b1f4c6ada726663701)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 	unsigned long delta;
96 	ktime_t soft, hard, now;
97 
98 	for (;;) {
99 		if (hrtimer_active(period_timer))
100 			break;
101 
102 		now = hrtimer_cb_get_time(period_timer);
103 		hrtimer_forward(period_timer, now, period);
104 
105 		soft = hrtimer_get_softexpires(period_timer);
106 		hard = hrtimer_get_expires(period_timer);
107 		delta = ktime_to_ns(ktime_sub(hard, soft));
108 		__hrtimer_start_range_ns(period_timer, soft, delta,
109 					 HRTIMER_MODE_ABS_PINNED, 0);
110 	}
111 }
112 
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 
118 void update_rq_clock(struct rq *rq)
119 {
120 	s64 delta;
121 
122 	lockdep_assert_held(&rq->lock);
123 
124 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
125 		return;
126 
127 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 	if (delta < 0)
129 		return;
130 	rq->clock += delta;
131 	update_rq_clock_task(rq, delta);
132 }
133 
134 /*
135  * Debugging: various feature bits
136  */
137 
138 #define SCHED_FEAT(name, enabled)	\
139 	(1UL << __SCHED_FEAT_##name) * enabled |
140 
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
143 	0;
144 
145 #undef SCHED_FEAT
146 
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled)	\
149 	#name ,
150 
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
153 };
154 
155 #undef SCHED_FEAT
156 
157 static int sched_feat_show(struct seq_file *m, void *v)
158 {
159 	int i;
160 
161 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 		if (!(sysctl_sched_features & (1UL << i)))
163 			seq_puts(m, "NO_");
164 		seq_printf(m, "%s ", sched_feat_names[i]);
165 	}
166 	seq_puts(m, "\n");
167 
168 	return 0;
169 }
170 
171 #ifdef HAVE_JUMP_LABEL
172 
173 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
175 
176 #define SCHED_FEAT(name, enabled)	\
177 	jump_label_key__##enabled ,
178 
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
181 };
182 
183 #undef SCHED_FEAT
184 
185 static void sched_feat_disable(int i)
186 {
187 	if (static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_dec(&sched_feat_keys[i]);
189 }
190 
191 static void sched_feat_enable(int i)
192 {
193 	if (!static_key_enabled(&sched_feat_keys[i]))
194 		static_key_slow_inc(&sched_feat_keys[i]);
195 }
196 #else
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
200 
201 static int sched_feat_set(char *cmp)
202 {
203 	int i;
204 	int neg = 0;
205 
206 	if (strncmp(cmp, "NO_", 3) == 0) {
207 		neg = 1;
208 		cmp += 3;
209 	}
210 
211 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
212 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
213 			if (neg) {
214 				sysctl_sched_features &= ~(1UL << i);
215 				sched_feat_disable(i);
216 			} else {
217 				sysctl_sched_features |= (1UL << i);
218 				sched_feat_enable(i);
219 			}
220 			break;
221 		}
222 	}
223 
224 	return i;
225 }
226 
227 static ssize_t
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229 		size_t cnt, loff_t *ppos)
230 {
231 	char buf[64];
232 	char *cmp;
233 	int i;
234 	struct inode *inode;
235 
236 	if (cnt > 63)
237 		cnt = 63;
238 
239 	if (copy_from_user(&buf, ubuf, cnt))
240 		return -EFAULT;
241 
242 	buf[cnt] = 0;
243 	cmp = strstrip(buf);
244 
245 	/* Ensure the static_key remains in a consistent state */
246 	inode = file_inode(filp);
247 	mutex_lock(&inode->i_mutex);
248 	i = sched_feat_set(cmp);
249 	mutex_unlock(&inode->i_mutex);
250 	if (i == __SCHED_FEAT_NR)
251 		return -EINVAL;
252 
253 	*ppos += cnt;
254 
255 	return cnt;
256 }
257 
258 static int sched_feat_open(struct inode *inode, struct file *filp)
259 {
260 	return single_open(filp, sched_feat_show, NULL);
261 }
262 
263 static const struct file_operations sched_feat_fops = {
264 	.open		= sched_feat_open,
265 	.write		= sched_feat_write,
266 	.read		= seq_read,
267 	.llseek		= seq_lseek,
268 	.release	= single_release,
269 };
270 
271 static __init int sched_init_debug(void)
272 {
273 	debugfs_create_file("sched_features", 0644, NULL, NULL,
274 			&sched_feat_fops);
275 
276 	return 0;
277 }
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
280 
281 /*
282  * Number of tasks to iterate in a single balance run.
283  * Limited because this is done with IRQs disabled.
284  */
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
286 
287 /*
288  * period over which we average the RT time consumption, measured
289  * in ms.
290  *
291  * default: 1s
292  */
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294 
295 /*
296  * period over which we measure -rt task cpu usage in us.
297  * default: 1s
298  */
299 unsigned int sysctl_sched_rt_period = 1000000;
300 
301 __read_mostly int scheduler_running;
302 
303 /*
304  * part of the period that we allow rt tasks to run in us.
305  * default: 0.95s
306  */
307 int sysctl_sched_rt_runtime = 950000;
308 
309 /*
310  * this_rq_lock - lock this runqueue and disable interrupts.
311  */
312 static struct rq *this_rq_lock(void)
313 	__acquires(rq->lock)
314 {
315 	struct rq *rq;
316 
317 	local_irq_disable();
318 	rq = this_rq();
319 	raw_spin_lock(&rq->lock);
320 
321 	return rq;
322 }
323 
324 #ifdef CONFIG_SCHED_HRTICK
325 /*
326  * Use HR-timers to deliver accurate preemption points.
327  */
328 
329 static void hrtick_clear(struct rq *rq)
330 {
331 	if (hrtimer_active(&rq->hrtick_timer))
332 		hrtimer_cancel(&rq->hrtick_timer);
333 }
334 
335 /*
336  * High-resolution timer tick.
337  * Runs from hardirq context with interrupts disabled.
338  */
339 static enum hrtimer_restart hrtick(struct hrtimer *timer)
340 {
341 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
342 
343 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344 
345 	raw_spin_lock(&rq->lock);
346 	update_rq_clock(rq);
347 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 	raw_spin_unlock(&rq->lock);
349 
350 	return HRTIMER_NORESTART;
351 }
352 
353 #ifdef CONFIG_SMP
354 
355 static int __hrtick_restart(struct rq *rq)
356 {
357 	struct hrtimer *timer = &rq->hrtick_timer;
358 	ktime_t time = hrtimer_get_softexpires(timer);
359 
360 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
361 }
362 
363 /*
364  * called from hardirq (IPI) context
365  */
366 static void __hrtick_start(void *arg)
367 {
368 	struct rq *rq = arg;
369 
370 	raw_spin_lock(&rq->lock);
371 	__hrtick_restart(rq);
372 	rq->hrtick_csd_pending = 0;
373 	raw_spin_unlock(&rq->lock);
374 }
375 
376 /*
377  * Called to set the hrtick timer state.
378  *
379  * called with rq->lock held and irqs disabled
380  */
381 void hrtick_start(struct rq *rq, u64 delay)
382 {
383 	struct hrtimer *timer = &rq->hrtick_timer;
384 	ktime_t time;
385 	s64 delta;
386 
387 	/*
388 	 * Don't schedule slices shorter than 10000ns, that just
389 	 * doesn't make sense and can cause timer DoS.
390 	 */
391 	delta = max_t(s64, delay, 10000LL);
392 	time = ktime_add_ns(timer->base->get_time(), delta);
393 
394 	hrtimer_set_expires(timer, time);
395 
396 	if (rq == this_rq()) {
397 		__hrtick_restart(rq);
398 	} else if (!rq->hrtick_csd_pending) {
399 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
400 		rq->hrtick_csd_pending = 1;
401 	}
402 }
403 
404 static int
405 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
406 {
407 	int cpu = (int)(long)hcpu;
408 
409 	switch (action) {
410 	case CPU_UP_CANCELED:
411 	case CPU_UP_CANCELED_FROZEN:
412 	case CPU_DOWN_PREPARE:
413 	case CPU_DOWN_PREPARE_FROZEN:
414 	case CPU_DEAD:
415 	case CPU_DEAD_FROZEN:
416 		hrtick_clear(cpu_rq(cpu));
417 		return NOTIFY_OK;
418 	}
419 
420 	return NOTIFY_DONE;
421 }
422 
423 static __init void init_hrtick(void)
424 {
425 	hotcpu_notifier(hotplug_hrtick, 0);
426 }
427 #else
428 /*
429  * Called to set the hrtick timer state.
430  *
431  * called with rq->lock held and irqs disabled
432  */
433 void hrtick_start(struct rq *rq, u64 delay)
434 {
435 	/*
436 	 * Don't schedule slices shorter than 10000ns, that just
437 	 * doesn't make sense. Rely on vruntime for fairness.
438 	 */
439 	delay = max_t(u64, delay, 10000LL);
440 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
441 			HRTIMER_MODE_REL_PINNED, 0);
442 }
443 
444 static inline void init_hrtick(void)
445 {
446 }
447 #endif /* CONFIG_SMP */
448 
449 static void init_rq_hrtick(struct rq *rq)
450 {
451 #ifdef CONFIG_SMP
452 	rq->hrtick_csd_pending = 0;
453 
454 	rq->hrtick_csd.flags = 0;
455 	rq->hrtick_csd.func = __hrtick_start;
456 	rq->hrtick_csd.info = rq;
457 #endif
458 
459 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
460 	rq->hrtick_timer.function = hrtick;
461 }
462 #else	/* CONFIG_SCHED_HRTICK */
463 static inline void hrtick_clear(struct rq *rq)
464 {
465 }
466 
467 static inline void init_rq_hrtick(struct rq *rq)
468 {
469 }
470 
471 static inline void init_hrtick(void)
472 {
473 }
474 #endif	/* CONFIG_SCHED_HRTICK */
475 
476 /*
477  * cmpxchg based fetch_or, macro so it works for different integer types
478  */
479 #define fetch_or(ptr, val)						\
480 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
481  	for (;;) {							\
482  		__old = cmpxchg((ptr), __val, __val | (val));		\
483  		if (__old == __val)					\
484  			break;						\
485  		__val = __old;						\
486  	}								\
487  	__old;								\
488 })
489 
490 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
491 /*
492  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
493  * this avoids any races wrt polling state changes and thereby avoids
494  * spurious IPIs.
495  */
496 static bool set_nr_and_not_polling(struct task_struct *p)
497 {
498 	struct thread_info *ti = task_thread_info(p);
499 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
500 }
501 
502 /*
503  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
504  *
505  * If this returns true, then the idle task promises to call
506  * sched_ttwu_pending() and reschedule soon.
507  */
508 static bool set_nr_if_polling(struct task_struct *p)
509 {
510 	struct thread_info *ti = task_thread_info(p);
511 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
512 
513 	for (;;) {
514 		if (!(val & _TIF_POLLING_NRFLAG))
515 			return false;
516 		if (val & _TIF_NEED_RESCHED)
517 			return true;
518 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
519 		if (old == val)
520 			break;
521 		val = old;
522 	}
523 	return true;
524 }
525 
526 #else
527 static bool set_nr_and_not_polling(struct task_struct *p)
528 {
529 	set_tsk_need_resched(p);
530 	return true;
531 }
532 
533 #ifdef CONFIG_SMP
534 static bool set_nr_if_polling(struct task_struct *p)
535 {
536 	return false;
537 }
538 #endif
539 #endif
540 
541 /*
542  * resched_curr - mark rq's current task 'to be rescheduled now'.
543  *
544  * On UP this means the setting of the need_resched flag, on SMP it
545  * might also involve a cross-CPU call to trigger the scheduler on
546  * the target CPU.
547  */
548 void resched_curr(struct rq *rq)
549 {
550 	struct task_struct *curr = rq->curr;
551 	int cpu;
552 
553 	lockdep_assert_held(&rq->lock);
554 
555 	if (test_tsk_need_resched(curr))
556 		return;
557 
558 	cpu = cpu_of(rq);
559 
560 	if (cpu == smp_processor_id()) {
561 		set_tsk_need_resched(curr);
562 		set_preempt_need_resched();
563 		return;
564 	}
565 
566 	if (set_nr_and_not_polling(curr))
567 		smp_send_reschedule(cpu);
568 	else
569 		trace_sched_wake_idle_without_ipi(cpu);
570 }
571 
572 void resched_cpu(int cpu)
573 {
574 	struct rq *rq = cpu_rq(cpu);
575 	unsigned long flags;
576 
577 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
578 		return;
579 	resched_curr(rq);
580 	raw_spin_unlock_irqrestore(&rq->lock, flags);
581 }
582 
583 #ifdef CONFIG_SMP
584 #ifdef CONFIG_NO_HZ_COMMON
585 /*
586  * In the semi idle case, use the nearest busy cpu for migrating timers
587  * from an idle cpu.  This is good for power-savings.
588  *
589  * We don't do similar optimization for completely idle system, as
590  * selecting an idle cpu will add more delays to the timers than intended
591  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
592  */
593 int get_nohz_timer_target(int pinned)
594 {
595 	int cpu = smp_processor_id();
596 	int i;
597 	struct sched_domain *sd;
598 
599 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
600 		return cpu;
601 
602 	rcu_read_lock();
603 	for_each_domain(cpu, sd) {
604 		for_each_cpu(i, sched_domain_span(sd)) {
605 			if (!idle_cpu(i)) {
606 				cpu = i;
607 				goto unlock;
608 			}
609 		}
610 	}
611 unlock:
612 	rcu_read_unlock();
613 	return cpu;
614 }
615 /*
616  * When add_timer_on() enqueues a timer into the timer wheel of an
617  * idle CPU then this timer might expire before the next timer event
618  * which is scheduled to wake up that CPU. In case of a completely
619  * idle system the next event might even be infinite time into the
620  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
621  * leaves the inner idle loop so the newly added timer is taken into
622  * account when the CPU goes back to idle and evaluates the timer
623  * wheel for the next timer event.
624  */
625 static void wake_up_idle_cpu(int cpu)
626 {
627 	struct rq *rq = cpu_rq(cpu);
628 
629 	if (cpu == smp_processor_id())
630 		return;
631 
632 	if (set_nr_and_not_polling(rq->idle))
633 		smp_send_reschedule(cpu);
634 	else
635 		trace_sched_wake_idle_without_ipi(cpu);
636 }
637 
638 static bool wake_up_full_nohz_cpu(int cpu)
639 {
640 	/*
641 	 * We just need the target to call irq_exit() and re-evaluate
642 	 * the next tick. The nohz full kick at least implies that.
643 	 * If needed we can still optimize that later with an
644 	 * empty IRQ.
645 	 */
646 	if (tick_nohz_full_cpu(cpu)) {
647 		if (cpu != smp_processor_id() ||
648 		    tick_nohz_tick_stopped())
649 			tick_nohz_full_kick_cpu(cpu);
650 		return true;
651 	}
652 
653 	return false;
654 }
655 
656 void wake_up_nohz_cpu(int cpu)
657 {
658 	if (!wake_up_full_nohz_cpu(cpu))
659 		wake_up_idle_cpu(cpu);
660 }
661 
662 static inline bool got_nohz_idle_kick(void)
663 {
664 	int cpu = smp_processor_id();
665 
666 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
667 		return false;
668 
669 	if (idle_cpu(cpu) && !need_resched())
670 		return true;
671 
672 	/*
673 	 * We can't run Idle Load Balance on this CPU for this time so we
674 	 * cancel it and clear NOHZ_BALANCE_KICK
675 	 */
676 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
677 	return false;
678 }
679 
680 #else /* CONFIG_NO_HZ_COMMON */
681 
682 static inline bool got_nohz_idle_kick(void)
683 {
684 	return false;
685 }
686 
687 #endif /* CONFIG_NO_HZ_COMMON */
688 
689 #ifdef CONFIG_NO_HZ_FULL
690 bool sched_can_stop_tick(void)
691 {
692 	/*
693 	 * More than one running task need preemption.
694 	 * nr_running update is assumed to be visible
695 	 * after IPI is sent from wakers.
696 	 */
697 	if (this_rq()->nr_running > 1)
698 		return false;
699 
700 	return true;
701 }
702 #endif /* CONFIG_NO_HZ_FULL */
703 
704 void sched_avg_update(struct rq *rq)
705 {
706 	s64 period = sched_avg_period();
707 
708 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
709 		/*
710 		 * Inline assembly required to prevent the compiler
711 		 * optimising this loop into a divmod call.
712 		 * See __iter_div_u64_rem() for another example of this.
713 		 */
714 		asm("" : "+rm" (rq->age_stamp));
715 		rq->age_stamp += period;
716 		rq->rt_avg /= 2;
717 	}
718 }
719 
720 #endif /* CONFIG_SMP */
721 
722 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
723 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
724 /*
725  * Iterate task_group tree rooted at *from, calling @down when first entering a
726  * node and @up when leaving it for the final time.
727  *
728  * Caller must hold rcu_lock or sufficient equivalent.
729  */
730 int walk_tg_tree_from(struct task_group *from,
731 			     tg_visitor down, tg_visitor up, void *data)
732 {
733 	struct task_group *parent, *child;
734 	int ret;
735 
736 	parent = from;
737 
738 down:
739 	ret = (*down)(parent, data);
740 	if (ret)
741 		goto out;
742 	list_for_each_entry_rcu(child, &parent->children, siblings) {
743 		parent = child;
744 		goto down;
745 
746 up:
747 		continue;
748 	}
749 	ret = (*up)(parent, data);
750 	if (ret || parent == from)
751 		goto out;
752 
753 	child = parent;
754 	parent = parent->parent;
755 	if (parent)
756 		goto up;
757 out:
758 	return ret;
759 }
760 
761 int tg_nop(struct task_group *tg, void *data)
762 {
763 	return 0;
764 }
765 #endif
766 
767 static void set_load_weight(struct task_struct *p)
768 {
769 	int prio = p->static_prio - MAX_RT_PRIO;
770 	struct load_weight *load = &p->se.load;
771 
772 	/*
773 	 * SCHED_IDLE tasks get minimal weight:
774 	 */
775 	if (p->policy == SCHED_IDLE) {
776 		load->weight = scale_load(WEIGHT_IDLEPRIO);
777 		load->inv_weight = WMULT_IDLEPRIO;
778 		return;
779 	}
780 
781 	load->weight = scale_load(prio_to_weight[prio]);
782 	load->inv_weight = prio_to_wmult[prio];
783 }
784 
785 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
786 {
787 	update_rq_clock(rq);
788 	sched_info_queued(rq, p);
789 	p->sched_class->enqueue_task(rq, p, flags);
790 }
791 
792 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
793 {
794 	update_rq_clock(rq);
795 	sched_info_dequeued(rq, p);
796 	p->sched_class->dequeue_task(rq, p, flags);
797 }
798 
799 void activate_task(struct rq *rq, struct task_struct *p, int flags)
800 {
801 	if (task_contributes_to_load(p))
802 		rq->nr_uninterruptible--;
803 
804 	enqueue_task(rq, p, flags);
805 }
806 
807 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
808 {
809 	if (task_contributes_to_load(p))
810 		rq->nr_uninterruptible++;
811 
812 	dequeue_task(rq, p, flags);
813 }
814 
815 static void update_rq_clock_task(struct rq *rq, s64 delta)
816 {
817 /*
818  * In theory, the compile should just see 0 here, and optimize out the call
819  * to sched_rt_avg_update. But I don't trust it...
820  */
821 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
822 	s64 steal = 0, irq_delta = 0;
823 #endif
824 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
825 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
826 
827 	/*
828 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
829 	 * this case when a previous update_rq_clock() happened inside a
830 	 * {soft,}irq region.
831 	 *
832 	 * When this happens, we stop ->clock_task and only update the
833 	 * prev_irq_time stamp to account for the part that fit, so that a next
834 	 * update will consume the rest. This ensures ->clock_task is
835 	 * monotonic.
836 	 *
837 	 * It does however cause some slight miss-attribution of {soft,}irq
838 	 * time, a more accurate solution would be to update the irq_time using
839 	 * the current rq->clock timestamp, except that would require using
840 	 * atomic ops.
841 	 */
842 	if (irq_delta > delta)
843 		irq_delta = delta;
844 
845 	rq->prev_irq_time += irq_delta;
846 	delta -= irq_delta;
847 #endif
848 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
849 	if (static_key_false((&paravirt_steal_rq_enabled))) {
850 		steal = paravirt_steal_clock(cpu_of(rq));
851 		steal -= rq->prev_steal_time_rq;
852 
853 		if (unlikely(steal > delta))
854 			steal = delta;
855 
856 		rq->prev_steal_time_rq += steal;
857 		delta -= steal;
858 	}
859 #endif
860 
861 	rq->clock_task += delta;
862 
863 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
864 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
865 		sched_rt_avg_update(rq, irq_delta + steal);
866 #endif
867 }
868 
869 void sched_set_stop_task(int cpu, struct task_struct *stop)
870 {
871 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
872 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
873 
874 	if (stop) {
875 		/*
876 		 * Make it appear like a SCHED_FIFO task, its something
877 		 * userspace knows about and won't get confused about.
878 		 *
879 		 * Also, it will make PI more or less work without too
880 		 * much confusion -- but then, stop work should not
881 		 * rely on PI working anyway.
882 		 */
883 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
884 
885 		stop->sched_class = &stop_sched_class;
886 	}
887 
888 	cpu_rq(cpu)->stop = stop;
889 
890 	if (old_stop) {
891 		/*
892 		 * Reset it back to a normal scheduling class so that
893 		 * it can die in pieces.
894 		 */
895 		old_stop->sched_class = &rt_sched_class;
896 	}
897 }
898 
899 /*
900  * __normal_prio - return the priority that is based on the static prio
901  */
902 static inline int __normal_prio(struct task_struct *p)
903 {
904 	return p->static_prio;
905 }
906 
907 /*
908  * Calculate the expected normal priority: i.e. priority
909  * without taking RT-inheritance into account. Might be
910  * boosted by interactivity modifiers. Changes upon fork,
911  * setprio syscalls, and whenever the interactivity
912  * estimator recalculates.
913  */
914 static inline int normal_prio(struct task_struct *p)
915 {
916 	int prio;
917 
918 	if (task_has_dl_policy(p))
919 		prio = MAX_DL_PRIO-1;
920 	else if (task_has_rt_policy(p))
921 		prio = MAX_RT_PRIO-1 - p->rt_priority;
922 	else
923 		prio = __normal_prio(p);
924 	return prio;
925 }
926 
927 /*
928  * Calculate the current priority, i.e. the priority
929  * taken into account by the scheduler. This value might
930  * be boosted by RT tasks, or might be boosted by
931  * interactivity modifiers. Will be RT if the task got
932  * RT-boosted. If not then it returns p->normal_prio.
933  */
934 static int effective_prio(struct task_struct *p)
935 {
936 	p->normal_prio = normal_prio(p);
937 	/*
938 	 * If we are RT tasks or we were boosted to RT priority,
939 	 * keep the priority unchanged. Otherwise, update priority
940 	 * to the normal priority:
941 	 */
942 	if (!rt_prio(p->prio))
943 		return p->normal_prio;
944 	return p->prio;
945 }
946 
947 /**
948  * task_curr - is this task currently executing on a CPU?
949  * @p: the task in question.
950  *
951  * Return: 1 if the task is currently executing. 0 otherwise.
952  */
953 inline int task_curr(const struct task_struct *p)
954 {
955 	return cpu_curr(task_cpu(p)) == p;
956 }
957 
958 /*
959  * Can drop rq->lock because from sched_class::switched_from() methods drop it.
960  */
961 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
962 				       const struct sched_class *prev_class,
963 				       int oldprio)
964 {
965 	if (prev_class != p->sched_class) {
966 		if (prev_class->switched_from)
967 			prev_class->switched_from(rq, p);
968 		/* Possble rq->lock 'hole'.  */
969 		p->sched_class->switched_to(rq, p);
970 	} else if (oldprio != p->prio || dl_task(p))
971 		p->sched_class->prio_changed(rq, p, oldprio);
972 }
973 
974 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
975 {
976 	const struct sched_class *class;
977 
978 	if (p->sched_class == rq->curr->sched_class) {
979 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
980 	} else {
981 		for_each_class(class) {
982 			if (class == rq->curr->sched_class)
983 				break;
984 			if (class == p->sched_class) {
985 				resched_curr(rq);
986 				break;
987 			}
988 		}
989 	}
990 
991 	/*
992 	 * A queue event has occurred, and we're going to schedule.  In
993 	 * this case, we can save a useless back to back clock update.
994 	 */
995 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
996 		rq_clock_skip_update(rq, true);
997 }
998 
999 #ifdef CONFIG_SMP
1000 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1001 {
1002 #ifdef CONFIG_SCHED_DEBUG
1003 	/*
1004 	 * We should never call set_task_cpu() on a blocked task,
1005 	 * ttwu() will sort out the placement.
1006 	 */
1007 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1008 			!p->on_rq);
1009 
1010 #ifdef CONFIG_LOCKDEP
1011 	/*
1012 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1013 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1014 	 *
1015 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1016 	 * see task_group().
1017 	 *
1018 	 * Furthermore, all task_rq users should acquire both locks, see
1019 	 * task_rq_lock().
1020 	 */
1021 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1022 				      lockdep_is_held(&task_rq(p)->lock)));
1023 #endif
1024 #endif
1025 
1026 	trace_sched_migrate_task(p, new_cpu);
1027 
1028 	if (task_cpu(p) != new_cpu) {
1029 		if (p->sched_class->migrate_task_rq)
1030 			p->sched_class->migrate_task_rq(p, new_cpu);
1031 		p->se.nr_migrations++;
1032 		perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1033 	}
1034 
1035 	__set_task_cpu(p, new_cpu);
1036 }
1037 
1038 static void __migrate_swap_task(struct task_struct *p, int cpu)
1039 {
1040 	if (task_on_rq_queued(p)) {
1041 		struct rq *src_rq, *dst_rq;
1042 
1043 		src_rq = task_rq(p);
1044 		dst_rq = cpu_rq(cpu);
1045 
1046 		deactivate_task(src_rq, p, 0);
1047 		set_task_cpu(p, cpu);
1048 		activate_task(dst_rq, p, 0);
1049 		check_preempt_curr(dst_rq, p, 0);
1050 	} else {
1051 		/*
1052 		 * Task isn't running anymore; make it appear like we migrated
1053 		 * it before it went to sleep. This means on wakeup we make the
1054 		 * previous cpu our targer instead of where it really is.
1055 		 */
1056 		p->wake_cpu = cpu;
1057 	}
1058 }
1059 
1060 struct migration_swap_arg {
1061 	struct task_struct *src_task, *dst_task;
1062 	int src_cpu, dst_cpu;
1063 };
1064 
1065 static int migrate_swap_stop(void *data)
1066 {
1067 	struct migration_swap_arg *arg = data;
1068 	struct rq *src_rq, *dst_rq;
1069 	int ret = -EAGAIN;
1070 
1071 	src_rq = cpu_rq(arg->src_cpu);
1072 	dst_rq = cpu_rq(arg->dst_cpu);
1073 
1074 	double_raw_lock(&arg->src_task->pi_lock,
1075 			&arg->dst_task->pi_lock);
1076 	double_rq_lock(src_rq, dst_rq);
1077 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1078 		goto unlock;
1079 
1080 	if (task_cpu(arg->src_task) != arg->src_cpu)
1081 		goto unlock;
1082 
1083 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1084 		goto unlock;
1085 
1086 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1087 		goto unlock;
1088 
1089 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1090 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1091 
1092 	ret = 0;
1093 
1094 unlock:
1095 	double_rq_unlock(src_rq, dst_rq);
1096 	raw_spin_unlock(&arg->dst_task->pi_lock);
1097 	raw_spin_unlock(&arg->src_task->pi_lock);
1098 
1099 	return ret;
1100 }
1101 
1102 /*
1103  * Cross migrate two tasks
1104  */
1105 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1106 {
1107 	struct migration_swap_arg arg;
1108 	int ret = -EINVAL;
1109 
1110 	arg = (struct migration_swap_arg){
1111 		.src_task = cur,
1112 		.src_cpu = task_cpu(cur),
1113 		.dst_task = p,
1114 		.dst_cpu = task_cpu(p),
1115 	};
1116 
1117 	if (arg.src_cpu == arg.dst_cpu)
1118 		goto out;
1119 
1120 	/*
1121 	 * These three tests are all lockless; this is OK since all of them
1122 	 * will be re-checked with proper locks held further down the line.
1123 	 */
1124 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1125 		goto out;
1126 
1127 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1128 		goto out;
1129 
1130 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1131 		goto out;
1132 
1133 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1134 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1135 
1136 out:
1137 	return ret;
1138 }
1139 
1140 struct migration_arg {
1141 	struct task_struct *task;
1142 	int dest_cpu;
1143 };
1144 
1145 static int migration_cpu_stop(void *data);
1146 
1147 /*
1148  * wait_task_inactive - wait for a thread to unschedule.
1149  *
1150  * If @match_state is nonzero, it's the @p->state value just checked and
1151  * not expected to change.  If it changes, i.e. @p might have woken up,
1152  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1153  * we return a positive number (its total switch count).  If a second call
1154  * a short while later returns the same number, the caller can be sure that
1155  * @p has remained unscheduled the whole time.
1156  *
1157  * The caller must ensure that the task *will* unschedule sometime soon,
1158  * else this function might spin for a *long* time. This function can't
1159  * be called with interrupts off, or it may introduce deadlock with
1160  * smp_call_function() if an IPI is sent by the same process we are
1161  * waiting to become inactive.
1162  */
1163 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1164 {
1165 	unsigned long flags;
1166 	int running, queued;
1167 	unsigned long ncsw;
1168 	struct rq *rq;
1169 
1170 	for (;;) {
1171 		/*
1172 		 * We do the initial early heuristics without holding
1173 		 * any task-queue locks at all. We'll only try to get
1174 		 * the runqueue lock when things look like they will
1175 		 * work out!
1176 		 */
1177 		rq = task_rq(p);
1178 
1179 		/*
1180 		 * If the task is actively running on another CPU
1181 		 * still, just relax and busy-wait without holding
1182 		 * any locks.
1183 		 *
1184 		 * NOTE! Since we don't hold any locks, it's not
1185 		 * even sure that "rq" stays as the right runqueue!
1186 		 * But we don't care, since "task_running()" will
1187 		 * return false if the runqueue has changed and p
1188 		 * is actually now running somewhere else!
1189 		 */
1190 		while (task_running(rq, p)) {
1191 			if (match_state && unlikely(p->state != match_state))
1192 				return 0;
1193 			cpu_relax();
1194 		}
1195 
1196 		/*
1197 		 * Ok, time to look more closely! We need the rq
1198 		 * lock now, to be *sure*. If we're wrong, we'll
1199 		 * just go back and repeat.
1200 		 */
1201 		rq = task_rq_lock(p, &flags);
1202 		trace_sched_wait_task(p);
1203 		running = task_running(rq, p);
1204 		queued = task_on_rq_queued(p);
1205 		ncsw = 0;
1206 		if (!match_state || p->state == match_state)
1207 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1208 		task_rq_unlock(rq, p, &flags);
1209 
1210 		/*
1211 		 * If it changed from the expected state, bail out now.
1212 		 */
1213 		if (unlikely(!ncsw))
1214 			break;
1215 
1216 		/*
1217 		 * Was it really running after all now that we
1218 		 * checked with the proper locks actually held?
1219 		 *
1220 		 * Oops. Go back and try again..
1221 		 */
1222 		if (unlikely(running)) {
1223 			cpu_relax();
1224 			continue;
1225 		}
1226 
1227 		/*
1228 		 * It's not enough that it's not actively running,
1229 		 * it must be off the runqueue _entirely_, and not
1230 		 * preempted!
1231 		 *
1232 		 * So if it was still runnable (but just not actively
1233 		 * running right now), it's preempted, and we should
1234 		 * yield - it could be a while.
1235 		 */
1236 		if (unlikely(queued)) {
1237 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1238 
1239 			set_current_state(TASK_UNINTERRUPTIBLE);
1240 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1241 			continue;
1242 		}
1243 
1244 		/*
1245 		 * Ahh, all good. It wasn't running, and it wasn't
1246 		 * runnable, which means that it will never become
1247 		 * running in the future either. We're all done!
1248 		 */
1249 		break;
1250 	}
1251 
1252 	return ncsw;
1253 }
1254 
1255 /***
1256  * kick_process - kick a running thread to enter/exit the kernel
1257  * @p: the to-be-kicked thread
1258  *
1259  * Cause a process which is running on another CPU to enter
1260  * kernel-mode, without any delay. (to get signals handled.)
1261  *
1262  * NOTE: this function doesn't have to take the runqueue lock,
1263  * because all it wants to ensure is that the remote task enters
1264  * the kernel. If the IPI races and the task has been migrated
1265  * to another CPU then no harm is done and the purpose has been
1266  * achieved as well.
1267  */
1268 void kick_process(struct task_struct *p)
1269 {
1270 	int cpu;
1271 
1272 	preempt_disable();
1273 	cpu = task_cpu(p);
1274 	if ((cpu != smp_processor_id()) && task_curr(p))
1275 		smp_send_reschedule(cpu);
1276 	preempt_enable();
1277 }
1278 EXPORT_SYMBOL_GPL(kick_process);
1279 #endif /* CONFIG_SMP */
1280 
1281 #ifdef CONFIG_SMP
1282 /*
1283  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1284  */
1285 static int select_fallback_rq(int cpu, struct task_struct *p)
1286 {
1287 	int nid = cpu_to_node(cpu);
1288 	const struct cpumask *nodemask = NULL;
1289 	enum { cpuset, possible, fail } state = cpuset;
1290 	int dest_cpu;
1291 
1292 	/*
1293 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1294 	 * will return -1. There is no cpu on the node, and we should
1295 	 * select the cpu on the other node.
1296 	 */
1297 	if (nid != -1) {
1298 		nodemask = cpumask_of_node(nid);
1299 
1300 		/* Look for allowed, online CPU in same node. */
1301 		for_each_cpu(dest_cpu, nodemask) {
1302 			if (!cpu_online(dest_cpu))
1303 				continue;
1304 			if (!cpu_active(dest_cpu))
1305 				continue;
1306 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1307 				return dest_cpu;
1308 		}
1309 	}
1310 
1311 	for (;;) {
1312 		/* Any allowed, online CPU? */
1313 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1314 			if (!cpu_online(dest_cpu))
1315 				continue;
1316 			if (!cpu_active(dest_cpu))
1317 				continue;
1318 			goto out;
1319 		}
1320 
1321 		switch (state) {
1322 		case cpuset:
1323 			/* No more Mr. Nice Guy. */
1324 			cpuset_cpus_allowed_fallback(p);
1325 			state = possible;
1326 			break;
1327 
1328 		case possible:
1329 			do_set_cpus_allowed(p, cpu_possible_mask);
1330 			state = fail;
1331 			break;
1332 
1333 		case fail:
1334 			BUG();
1335 			break;
1336 		}
1337 	}
1338 
1339 out:
1340 	if (state != cpuset) {
1341 		/*
1342 		 * Don't tell them about moving exiting tasks or
1343 		 * kernel threads (both mm NULL), since they never
1344 		 * leave kernel.
1345 		 */
1346 		if (p->mm && printk_ratelimit()) {
1347 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1348 					task_pid_nr(p), p->comm, cpu);
1349 		}
1350 	}
1351 
1352 	return dest_cpu;
1353 }
1354 
1355 /*
1356  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1357  */
1358 static inline
1359 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1360 {
1361 	if (p->nr_cpus_allowed > 1)
1362 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1363 
1364 	/*
1365 	 * In order not to call set_task_cpu() on a blocking task we need
1366 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1367 	 * cpu.
1368 	 *
1369 	 * Since this is common to all placement strategies, this lives here.
1370 	 *
1371 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1372 	 *   not worry about this generic constraint ]
1373 	 */
1374 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1375 		     !cpu_online(cpu)))
1376 		cpu = select_fallback_rq(task_cpu(p), p);
1377 
1378 	return cpu;
1379 }
1380 
1381 static void update_avg(u64 *avg, u64 sample)
1382 {
1383 	s64 diff = sample - *avg;
1384 	*avg += diff >> 3;
1385 }
1386 #endif
1387 
1388 static void
1389 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1390 {
1391 #ifdef CONFIG_SCHEDSTATS
1392 	struct rq *rq = this_rq();
1393 
1394 #ifdef CONFIG_SMP
1395 	int this_cpu = smp_processor_id();
1396 
1397 	if (cpu == this_cpu) {
1398 		schedstat_inc(rq, ttwu_local);
1399 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1400 	} else {
1401 		struct sched_domain *sd;
1402 
1403 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1404 		rcu_read_lock();
1405 		for_each_domain(this_cpu, sd) {
1406 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1407 				schedstat_inc(sd, ttwu_wake_remote);
1408 				break;
1409 			}
1410 		}
1411 		rcu_read_unlock();
1412 	}
1413 
1414 	if (wake_flags & WF_MIGRATED)
1415 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1416 
1417 #endif /* CONFIG_SMP */
1418 
1419 	schedstat_inc(rq, ttwu_count);
1420 	schedstat_inc(p, se.statistics.nr_wakeups);
1421 
1422 	if (wake_flags & WF_SYNC)
1423 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1424 
1425 #endif /* CONFIG_SCHEDSTATS */
1426 }
1427 
1428 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1429 {
1430 	activate_task(rq, p, en_flags);
1431 	p->on_rq = TASK_ON_RQ_QUEUED;
1432 
1433 	/* if a worker is waking up, notify workqueue */
1434 	if (p->flags & PF_WQ_WORKER)
1435 		wq_worker_waking_up(p, cpu_of(rq));
1436 }
1437 
1438 /*
1439  * Mark the task runnable and perform wakeup-preemption.
1440  */
1441 static void
1442 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1443 {
1444 	check_preempt_curr(rq, p, wake_flags);
1445 	trace_sched_wakeup(p, true);
1446 
1447 	p->state = TASK_RUNNING;
1448 #ifdef CONFIG_SMP
1449 	if (p->sched_class->task_woken)
1450 		p->sched_class->task_woken(rq, p);
1451 
1452 	if (rq->idle_stamp) {
1453 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1454 		u64 max = 2*rq->max_idle_balance_cost;
1455 
1456 		update_avg(&rq->avg_idle, delta);
1457 
1458 		if (rq->avg_idle > max)
1459 			rq->avg_idle = max;
1460 
1461 		rq->idle_stamp = 0;
1462 	}
1463 #endif
1464 }
1465 
1466 static void
1467 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1468 {
1469 #ifdef CONFIG_SMP
1470 	if (p->sched_contributes_to_load)
1471 		rq->nr_uninterruptible--;
1472 #endif
1473 
1474 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1475 	ttwu_do_wakeup(rq, p, wake_flags);
1476 }
1477 
1478 /*
1479  * Called in case the task @p isn't fully descheduled from its runqueue,
1480  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1481  * since all we need to do is flip p->state to TASK_RUNNING, since
1482  * the task is still ->on_rq.
1483  */
1484 static int ttwu_remote(struct task_struct *p, int wake_flags)
1485 {
1486 	struct rq *rq;
1487 	int ret = 0;
1488 
1489 	rq = __task_rq_lock(p);
1490 	if (task_on_rq_queued(p)) {
1491 		/* check_preempt_curr() may use rq clock */
1492 		update_rq_clock(rq);
1493 		ttwu_do_wakeup(rq, p, wake_flags);
1494 		ret = 1;
1495 	}
1496 	__task_rq_unlock(rq);
1497 
1498 	return ret;
1499 }
1500 
1501 #ifdef CONFIG_SMP
1502 void sched_ttwu_pending(void)
1503 {
1504 	struct rq *rq = this_rq();
1505 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1506 	struct task_struct *p;
1507 	unsigned long flags;
1508 
1509 	if (!llist)
1510 		return;
1511 
1512 	raw_spin_lock_irqsave(&rq->lock, flags);
1513 
1514 	while (llist) {
1515 		p = llist_entry(llist, struct task_struct, wake_entry);
1516 		llist = llist_next(llist);
1517 		ttwu_do_activate(rq, p, 0);
1518 	}
1519 
1520 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1521 }
1522 
1523 void scheduler_ipi(void)
1524 {
1525 	/*
1526 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1527 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1528 	 * this IPI.
1529 	 */
1530 	preempt_fold_need_resched();
1531 
1532 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1533 		return;
1534 
1535 	/*
1536 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1537 	 * traditionally all their work was done from the interrupt return
1538 	 * path. Now that we actually do some work, we need to make sure
1539 	 * we do call them.
1540 	 *
1541 	 * Some archs already do call them, luckily irq_enter/exit nest
1542 	 * properly.
1543 	 *
1544 	 * Arguably we should visit all archs and update all handlers,
1545 	 * however a fair share of IPIs are still resched only so this would
1546 	 * somewhat pessimize the simple resched case.
1547 	 */
1548 	irq_enter();
1549 	sched_ttwu_pending();
1550 
1551 	/*
1552 	 * Check if someone kicked us for doing the nohz idle load balance.
1553 	 */
1554 	if (unlikely(got_nohz_idle_kick())) {
1555 		this_rq()->idle_balance = 1;
1556 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1557 	}
1558 	irq_exit();
1559 }
1560 
1561 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1562 {
1563 	struct rq *rq = cpu_rq(cpu);
1564 
1565 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1566 		if (!set_nr_if_polling(rq->idle))
1567 			smp_send_reschedule(cpu);
1568 		else
1569 			trace_sched_wake_idle_without_ipi(cpu);
1570 	}
1571 }
1572 
1573 void wake_up_if_idle(int cpu)
1574 {
1575 	struct rq *rq = cpu_rq(cpu);
1576 	unsigned long flags;
1577 
1578 	rcu_read_lock();
1579 
1580 	if (!is_idle_task(rcu_dereference(rq->curr)))
1581 		goto out;
1582 
1583 	if (set_nr_if_polling(rq->idle)) {
1584 		trace_sched_wake_idle_without_ipi(cpu);
1585 	} else {
1586 		raw_spin_lock_irqsave(&rq->lock, flags);
1587 		if (is_idle_task(rq->curr))
1588 			smp_send_reschedule(cpu);
1589 		/* Else cpu is not in idle, do nothing here */
1590 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1591 	}
1592 
1593 out:
1594 	rcu_read_unlock();
1595 }
1596 
1597 bool cpus_share_cache(int this_cpu, int that_cpu)
1598 {
1599 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1600 }
1601 #endif /* CONFIG_SMP */
1602 
1603 static void ttwu_queue(struct task_struct *p, int cpu)
1604 {
1605 	struct rq *rq = cpu_rq(cpu);
1606 
1607 #if defined(CONFIG_SMP)
1608 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1609 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1610 		ttwu_queue_remote(p, cpu);
1611 		return;
1612 	}
1613 #endif
1614 
1615 	raw_spin_lock(&rq->lock);
1616 	ttwu_do_activate(rq, p, 0);
1617 	raw_spin_unlock(&rq->lock);
1618 }
1619 
1620 /**
1621  * try_to_wake_up - wake up a thread
1622  * @p: the thread to be awakened
1623  * @state: the mask of task states that can be woken
1624  * @wake_flags: wake modifier flags (WF_*)
1625  *
1626  * Put it on the run-queue if it's not already there. The "current"
1627  * thread is always on the run-queue (except when the actual
1628  * re-schedule is in progress), and as such you're allowed to do
1629  * the simpler "current->state = TASK_RUNNING" to mark yourself
1630  * runnable without the overhead of this.
1631  *
1632  * Return: %true if @p was woken up, %false if it was already running.
1633  * or @state didn't match @p's state.
1634  */
1635 static int
1636 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1637 {
1638 	unsigned long flags;
1639 	int cpu, success = 0;
1640 
1641 	/*
1642 	 * If we are going to wake up a thread waiting for CONDITION we
1643 	 * need to ensure that CONDITION=1 done by the caller can not be
1644 	 * reordered with p->state check below. This pairs with mb() in
1645 	 * set_current_state() the waiting thread does.
1646 	 */
1647 	smp_mb__before_spinlock();
1648 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1649 	if (!(p->state & state))
1650 		goto out;
1651 
1652 	success = 1; /* we're going to change ->state */
1653 	cpu = task_cpu(p);
1654 
1655 	if (p->on_rq && ttwu_remote(p, wake_flags))
1656 		goto stat;
1657 
1658 #ifdef CONFIG_SMP
1659 	/*
1660 	 * If the owning (remote) cpu is still in the middle of schedule() with
1661 	 * this task as prev, wait until its done referencing the task.
1662 	 */
1663 	while (p->on_cpu)
1664 		cpu_relax();
1665 	/*
1666 	 * Pairs with the smp_wmb() in finish_lock_switch().
1667 	 */
1668 	smp_rmb();
1669 
1670 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1671 	p->state = TASK_WAKING;
1672 
1673 	if (p->sched_class->task_waking)
1674 		p->sched_class->task_waking(p);
1675 
1676 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1677 	if (task_cpu(p) != cpu) {
1678 		wake_flags |= WF_MIGRATED;
1679 		set_task_cpu(p, cpu);
1680 	}
1681 #endif /* CONFIG_SMP */
1682 
1683 	ttwu_queue(p, cpu);
1684 stat:
1685 	ttwu_stat(p, cpu, wake_flags);
1686 out:
1687 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1688 
1689 	return success;
1690 }
1691 
1692 /**
1693  * try_to_wake_up_local - try to wake up a local task with rq lock held
1694  * @p: the thread to be awakened
1695  *
1696  * Put @p on the run-queue if it's not already there. The caller must
1697  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1698  * the current task.
1699  */
1700 static void try_to_wake_up_local(struct task_struct *p)
1701 {
1702 	struct rq *rq = task_rq(p);
1703 
1704 	if (WARN_ON_ONCE(rq != this_rq()) ||
1705 	    WARN_ON_ONCE(p == current))
1706 		return;
1707 
1708 	lockdep_assert_held(&rq->lock);
1709 
1710 	if (!raw_spin_trylock(&p->pi_lock)) {
1711 		raw_spin_unlock(&rq->lock);
1712 		raw_spin_lock(&p->pi_lock);
1713 		raw_spin_lock(&rq->lock);
1714 	}
1715 
1716 	if (!(p->state & TASK_NORMAL))
1717 		goto out;
1718 
1719 	if (!task_on_rq_queued(p))
1720 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1721 
1722 	ttwu_do_wakeup(rq, p, 0);
1723 	ttwu_stat(p, smp_processor_id(), 0);
1724 out:
1725 	raw_spin_unlock(&p->pi_lock);
1726 }
1727 
1728 /**
1729  * wake_up_process - Wake up a specific process
1730  * @p: The process to be woken up.
1731  *
1732  * Attempt to wake up the nominated process and move it to the set of runnable
1733  * processes.
1734  *
1735  * Return: 1 if the process was woken up, 0 if it was already running.
1736  *
1737  * It may be assumed that this function implies a write memory barrier before
1738  * changing the task state if and only if any tasks are woken up.
1739  */
1740 int wake_up_process(struct task_struct *p)
1741 {
1742 	WARN_ON(task_is_stopped_or_traced(p));
1743 	return try_to_wake_up(p, TASK_NORMAL, 0);
1744 }
1745 EXPORT_SYMBOL(wake_up_process);
1746 
1747 int wake_up_state(struct task_struct *p, unsigned int state)
1748 {
1749 	return try_to_wake_up(p, state, 0);
1750 }
1751 
1752 /*
1753  * This function clears the sched_dl_entity static params.
1754  */
1755 void __dl_clear_params(struct task_struct *p)
1756 {
1757 	struct sched_dl_entity *dl_se = &p->dl;
1758 
1759 	dl_se->dl_runtime = 0;
1760 	dl_se->dl_deadline = 0;
1761 	dl_se->dl_period = 0;
1762 	dl_se->flags = 0;
1763 	dl_se->dl_bw = 0;
1764 
1765 	dl_se->dl_throttled = 0;
1766 	dl_se->dl_new = 1;
1767 	dl_se->dl_yielded = 0;
1768 }
1769 
1770 /*
1771  * Perform scheduler related setup for a newly forked process p.
1772  * p is forked by current.
1773  *
1774  * __sched_fork() is basic setup used by init_idle() too:
1775  */
1776 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1777 {
1778 	p->on_rq			= 0;
1779 
1780 	p->se.on_rq			= 0;
1781 	p->se.exec_start		= 0;
1782 	p->se.sum_exec_runtime		= 0;
1783 	p->se.prev_sum_exec_runtime	= 0;
1784 	p->se.nr_migrations		= 0;
1785 	p->se.vruntime			= 0;
1786 #ifdef CONFIG_SMP
1787 	p->se.avg.decay_count		= 0;
1788 #endif
1789 	INIT_LIST_HEAD(&p->se.group_node);
1790 
1791 #ifdef CONFIG_SCHEDSTATS
1792 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1793 #endif
1794 
1795 	RB_CLEAR_NODE(&p->dl.rb_node);
1796 	init_dl_task_timer(&p->dl);
1797 	__dl_clear_params(p);
1798 
1799 	INIT_LIST_HEAD(&p->rt.run_list);
1800 
1801 #ifdef CONFIG_PREEMPT_NOTIFIERS
1802 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1803 #endif
1804 
1805 #ifdef CONFIG_NUMA_BALANCING
1806 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1807 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1808 		p->mm->numa_scan_seq = 0;
1809 	}
1810 
1811 	if (clone_flags & CLONE_VM)
1812 		p->numa_preferred_nid = current->numa_preferred_nid;
1813 	else
1814 		p->numa_preferred_nid = -1;
1815 
1816 	p->node_stamp = 0ULL;
1817 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1818 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1819 	p->numa_work.next = &p->numa_work;
1820 	p->numa_faults = NULL;
1821 	p->last_task_numa_placement = 0;
1822 	p->last_sum_exec_runtime = 0;
1823 
1824 	p->numa_group = NULL;
1825 #endif /* CONFIG_NUMA_BALANCING */
1826 }
1827 
1828 #ifdef CONFIG_NUMA_BALANCING
1829 #ifdef CONFIG_SCHED_DEBUG
1830 void set_numabalancing_state(bool enabled)
1831 {
1832 	if (enabled)
1833 		sched_feat_set("NUMA");
1834 	else
1835 		sched_feat_set("NO_NUMA");
1836 }
1837 #else
1838 __read_mostly bool numabalancing_enabled;
1839 
1840 void set_numabalancing_state(bool enabled)
1841 {
1842 	numabalancing_enabled = enabled;
1843 }
1844 #endif /* CONFIG_SCHED_DEBUG */
1845 
1846 #ifdef CONFIG_PROC_SYSCTL
1847 int sysctl_numa_balancing(struct ctl_table *table, int write,
1848 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1849 {
1850 	struct ctl_table t;
1851 	int err;
1852 	int state = numabalancing_enabled;
1853 
1854 	if (write && !capable(CAP_SYS_ADMIN))
1855 		return -EPERM;
1856 
1857 	t = *table;
1858 	t.data = &state;
1859 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1860 	if (err < 0)
1861 		return err;
1862 	if (write)
1863 		set_numabalancing_state(state);
1864 	return err;
1865 }
1866 #endif
1867 #endif
1868 
1869 /*
1870  * fork()/clone()-time setup:
1871  */
1872 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1873 {
1874 	unsigned long flags;
1875 	int cpu = get_cpu();
1876 
1877 	__sched_fork(clone_flags, p);
1878 	/*
1879 	 * We mark the process as running here. This guarantees that
1880 	 * nobody will actually run it, and a signal or other external
1881 	 * event cannot wake it up and insert it on the runqueue either.
1882 	 */
1883 	p->state = TASK_RUNNING;
1884 
1885 	/*
1886 	 * Make sure we do not leak PI boosting priority to the child.
1887 	 */
1888 	p->prio = current->normal_prio;
1889 
1890 	/*
1891 	 * Revert to default priority/policy on fork if requested.
1892 	 */
1893 	if (unlikely(p->sched_reset_on_fork)) {
1894 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1895 			p->policy = SCHED_NORMAL;
1896 			p->static_prio = NICE_TO_PRIO(0);
1897 			p->rt_priority = 0;
1898 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1899 			p->static_prio = NICE_TO_PRIO(0);
1900 
1901 		p->prio = p->normal_prio = __normal_prio(p);
1902 		set_load_weight(p);
1903 
1904 		/*
1905 		 * We don't need the reset flag anymore after the fork. It has
1906 		 * fulfilled its duty:
1907 		 */
1908 		p->sched_reset_on_fork = 0;
1909 	}
1910 
1911 	if (dl_prio(p->prio)) {
1912 		put_cpu();
1913 		return -EAGAIN;
1914 	} else if (rt_prio(p->prio)) {
1915 		p->sched_class = &rt_sched_class;
1916 	} else {
1917 		p->sched_class = &fair_sched_class;
1918 	}
1919 
1920 	if (p->sched_class->task_fork)
1921 		p->sched_class->task_fork(p);
1922 
1923 	/*
1924 	 * The child is not yet in the pid-hash so no cgroup attach races,
1925 	 * and the cgroup is pinned to this child due to cgroup_fork()
1926 	 * is ran before sched_fork().
1927 	 *
1928 	 * Silence PROVE_RCU.
1929 	 */
1930 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1931 	set_task_cpu(p, cpu);
1932 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1933 
1934 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1935 	if (likely(sched_info_on()))
1936 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1937 #endif
1938 #if defined(CONFIG_SMP)
1939 	p->on_cpu = 0;
1940 #endif
1941 	init_task_preempt_count(p);
1942 #ifdef CONFIG_SMP
1943 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1944 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1945 #endif
1946 
1947 	put_cpu();
1948 	return 0;
1949 }
1950 
1951 unsigned long to_ratio(u64 period, u64 runtime)
1952 {
1953 	if (runtime == RUNTIME_INF)
1954 		return 1ULL << 20;
1955 
1956 	/*
1957 	 * Doing this here saves a lot of checks in all
1958 	 * the calling paths, and returning zero seems
1959 	 * safe for them anyway.
1960 	 */
1961 	if (period == 0)
1962 		return 0;
1963 
1964 	return div64_u64(runtime << 20, period);
1965 }
1966 
1967 #ifdef CONFIG_SMP
1968 inline struct dl_bw *dl_bw_of(int i)
1969 {
1970 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
1971 			   "sched RCU must be held");
1972 	return &cpu_rq(i)->rd->dl_bw;
1973 }
1974 
1975 static inline int dl_bw_cpus(int i)
1976 {
1977 	struct root_domain *rd = cpu_rq(i)->rd;
1978 	int cpus = 0;
1979 
1980 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
1981 			   "sched RCU must be held");
1982 	for_each_cpu_and(i, rd->span, cpu_active_mask)
1983 		cpus++;
1984 
1985 	return cpus;
1986 }
1987 #else
1988 inline struct dl_bw *dl_bw_of(int i)
1989 {
1990 	return &cpu_rq(i)->dl.dl_bw;
1991 }
1992 
1993 static inline int dl_bw_cpus(int i)
1994 {
1995 	return 1;
1996 }
1997 #endif
1998 
1999 /*
2000  * We must be sure that accepting a new task (or allowing changing the
2001  * parameters of an existing one) is consistent with the bandwidth
2002  * constraints. If yes, this function also accordingly updates the currently
2003  * allocated bandwidth to reflect the new situation.
2004  *
2005  * This function is called while holding p's rq->lock.
2006  *
2007  * XXX we should delay bw change until the task's 0-lag point, see
2008  * __setparam_dl().
2009  */
2010 static int dl_overflow(struct task_struct *p, int policy,
2011 		       const struct sched_attr *attr)
2012 {
2013 
2014 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2015 	u64 period = attr->sched_period ?: attr->sched_deadline;
2016 	u64 runtime = attr->sched_runtime;
2017 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2018 	int cpus, err = -1;
2019 
2020 	if (new_bw == p->dl.dl_bw)
2021 		return 0;
2022 
2023 	/*
2024 	 * Either if a task, enters, leave, or stays -deadline but changes
2025 	 * its parameters, we may need to update accordingly the total
2026 	 * allocated bandwidth of the container.
2027 	 */
2028 	raw_spin_lock(&dl_b->lock);
2029 	cpus = dl_bw_cpus(task_cpu(p));
2030 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2031 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2032 		__dl_add(dl_b, new_bw);
2033 		err = 0;
2034 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2035 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2036 		__dl_clear(dl_b, p->dl.dl_bw);
2037 		__dl_add(dl_b, new_bw);
2038 		err = 0;
2039 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2040 		__dl_clear(dl_b, p->dl.dl_bw);
2041 		err = 0;
2042 	}
2043 	raw_spin_unlock(&dl_b->lock);
2044 
2045 	return err;
2046 }
2047 
2048 extern void init_dl_bw(struct dl_bw *dl_b);
2049 
2050 /*
2051  * wake_up_new_task - wake up a newly created task for the first time.
2052  *
2053  * This function will do some initial scheduler statistics housekeeping
2054  * that must be done for every newly created context, then puts the task
2055  * on the runqueue and wakes it.
2056  */
2057 void wake_up_new_task(struct task_struct *p)
2058 {
2059 	unsigned long flags;
2060 	struct rq *rq;
2061 
2062 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2063 #ifdef CONFIG_SMP
2064 	/*
2065 	 * Fork balancing, do it here and not earlier because:
2066 	 *  - cpus_allowed can change in the fork path
2067 	 *  - any previously selected cpu might disappear through hotplug
2068 	 */
2069 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2070 #endif
2071 
2072 	/* Initialize new task's runnable average */
2073 	init_task_runnable_average(p);
2074 	rq = __task_rq_lock(p);
2075 	activate_task(rq, p, 0);
2076 	p->on_rq = TASK_ON_RQ_QUEUED;
2077 	trace_sched_wakeup_new(p, true);
2078 	check_preempt_curr(rq, p, WF_FORK);
2079 #ifdef CONFIG_SMP
2080 	if (p->sched_class->task_woken)
2081 		p->sched_class->task_woken(rq, p);
2082 #endif
2083 	task_rq_unlock(rq, p, &flags);
2084 }
2085 
2086 #ifdef CONFIG_PREEMPT_NOTIFIERS
2087 
2088 /**
2089  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2090  * @notifier: notifier struct to register
2091  */
2092 void preempt_notifier_register(struct preempt_notifier *notifier)
2093 {
2094 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2095 }
2096 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2097 
2098 /**
2099  * preempt_notifier_unregister - no longer interested in preemption notifications
2100  * @notifier: notifier struct to unregister
2101  *
2102  * This is safe to call from within a preemption notifier.
2103  */
2104 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2105 {
2106 	hlist_del(&notifier->link);
2107 }
2108 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2109 
2110 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2111 {
2112 	struct preempt_notifier *notifier;
2113 
2114 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2115 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2116 }
2117 
2118 static void
2119 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2120 				 struct task_struct *next)
2121 {
2122 	struct preempt_notifier *notifier;
2123 
2124 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2125 		notifier->ops->sched_out(notifier, next);
2126 }
2127 
2128 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2129 
2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2131 {
2132 }
2133 
2134 static void
2135 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2136 				 struct task_struct *next)
2137 {
2138 }
2139 
2140 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2141 
2142 /**
2143  * prepare_task_switch - prepare to switch tasks
2144  * @rq: the runqueue preparing to switch
2145  * @prev: the current task that is being switched out
2146  * @next: the task we are going to switch to.
2147  *
2148  * This is called with the rq lock held and interrupts off. It must
2149  * be paired with a subsequent finish_task_switch after the context
2150  * switch.
2151  *
2152  * prepare_task_switch sets up locking and calls architecture specific
2153  * hooks.
2154  */
2155 static inline void
2156 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2157 		    struct task_struct *next)
2158 {
2159 	trace_sched_switch(prev, next);
2160 	sched_info_switch(rq, prev, next);
2161 	perf_event_task_sched_out(prev, next);
2162 	fire_sched_out_preempt_notifiers(prev, next);
2163 	prepare_lock_switch(rq, next);
2164 	prepare_arch_switch(next);
2165 }
2166 
2167 /**
2168  * finish_task_switch - clean up after a task-switch
2169  * @prev: the thread we just switched away from.
2170  *
2171  * finish_task_switch must be called after the context switch, paired
2172  * with a prepare_task_switch call before the context switch.
2173  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2174  * and do any other architecture-specific cleanup actions.
2175  *
2176  * Note that we may have delayed dropping an mm in context_switch(). If
2177  * so, we finish that here outside of the runqueue lock. (Doing it
2178  * with the lock held can cause deadlocks; see schedule() for
2179  * details.)
2180  *
2181  * The context switch have flipped the stack from under us and restored the
2182  * local variables which were saved when this task called schedule() in the
2183  * past. prev == current is still correct but we need to recalculate this_rq
2184  * because prev may have moved to another CPU.
2185  */
2186 static struct rq *finish_task_switch(struct task_struct *prev)
2187 	__releases(rq->lock)
2188 {
2189 	struct rq *rq = this_rq();
2190 	struct mm_struct *mm = rq->prev_mm;
2191 	long prev_state;
2192 
2193 	rq->prev_mm = NULL;
2194 
2195 	/*
2196 	 * A task struct has one reference for the use as "current".
2197 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2198 	 * schedule one last time. The schedule call will never return, and
2199 	 * the scheduled task must drop that reference.
2200 	 * The test for TASK_DEAD must occur while the runqueue locks are
2201 	 * still held, otherwise prev could be scheduled on another cpu, die
2202 	 * there before we look at prev->state, and then the reference would
2203 	 * be dropped twice.
2204 	 *		Manfred Spraul <manfred@colorfullife.com>
2205 	 */
2206 	prev_state = prev->state;
2207 	vtime_task_switch(prev);
2208 	finish_arch_switch(prev);
2209 	perf_event_task_sched_in(prev, current);
2210 	finish_lock_switch(rq, prev);
2211 	finish_arch_post_lock_switch();
2212 
2213 	fire_sched_in_preempt_notifiers(current);
2214 	if (mm)
2215 		mmdrop(mm);
2216 	if (unlikely(prev_state == TASK_DEAD)) {
2217 		if (prev->sched_class->task_dead)
2218 			prev->sched_class->task_dead(prev);
2219 
2220 		/*
2221 		 * Remove function-return probe instances associated with this
2222 		 * task and put them back on the free list.
2223 		 */
2224 		kprobe_flush_task(prev);
2225 		put_task_struct(prev);
2226 	}
2227 
2228 	tick_nohz_task_switch(current);
2229 	return rq;
2230 }
2231 
2232 #ifdef CONFIG_SMP
2233 
2234 /* rq->lock is NOT held, but preemption is disabled */
2235 static inline void post_schedule(struct rq *rq)
2236 {
2237 	if (rq->post_schedule) {
2238 		unsigned long flags;
2239 
2240 		raw_spin_lock_irqsave(&rq->lock, flags);
2241 		if (rq->curr->sched_class->post_schedule)
2242 			rq->curr->sched_class->post_schedule(rq);
2243 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2244 
2245 		rq->post_schedule = 0;
2246 	}
2247 }
2248 
2249 #else
2250 
2251 static inline void post_schedule(struct rq *rq)
2252 {
2253 }
2254 
2255 #endif
2256 
2257 /**
2258  * schedule_tail - first thing a freshly forked thread must call.
2259  * @prev: the thread we just switched away from.
2260  */
2261 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2262 	__releases(rq->lock)
2263 {
2264 	struct rq *rq;
2265 
2266 	/* finish_task_switch() drops rq->lock and enables preemtion */
2267 	preempt_disable();
2268 	rq = finish_task_switch(prev);
2269 	post_schedule(rq);
2270 	preempt_enable();
2271 
2272 	if (current->set_child_tid)
2273 		put_user(task_pid_vnr(current), current->set_child_tid);
2274 }
2275 
2276 /*
2277  * context_switch - switch to the new MM and the new thread's register state.
2278  */
2279 static inline struct rq *
2280 context_switch(struct rq *rq, struct task_struct *prev,
2281 	       struct task_struct *next)
2282 {
2283 	struct mm_struct *mm, *oldmm;
2284 
2285 	prepare_task_switch(rq, prev, next);
2286 
2287 	mm = next->mm;
2288 	oldmm = prev->active_mm;
2289 	/*
2290 	 * For paravirt, this is coupled with an exit in switch_to to
2291 	 * combine the page table reload and the switch backend into
2292 	 * one hypercall.
2293 	 */
2294 	arch_start_context_switch(prev);
2295 
2296 	if (!mm) {
2297 		next->active_mm = oldmm;
2298 		atomic_inc(&oldmm->mm_count);
2299 		enter_lazy_tlb(oldmm, next);
2300 	} else
2301 		switch_mm(oldmm, mm, next);
2302 
2303 	if (!prev->mm) {
2304 		prev->active_mm = NULL;
2305 		rq->prev_mm = oldmm;
2306 	}
2307 	/*
2308 	 * Since the runqueue lock will be released by the next
2309 	 * task (which is an invalid locking op but in the case
2310 	 * of the scheduler it's an obvious special-case), so we
2311 	 * do an early lockdep release here:
2312 	 */
2313 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2314 
2315 	context_tracking_task_switch(prev, next);
2316 	/* Here we just switch the register state and the stack. */
2317 	switch_to(prev, next, prev);
2318 	barrier();
2319 
2320 	return finish_task_switch(prev);
2321 }
2322 
2323 /*
2324  * nr_running and nr_context_switches:
2325  *
2326  * externally visible scheduler statistics: current number of runnable
2327  * threads, total number of context switches performed since bootup.
2328  */
2329 unsigned long nr_running(void)
2330 {
2331 	unsigned long i, sum = 0;
2332 
2333 	for_each_online_cpu(i)
2334 		sum += cpu_rq(i)->nr_running;
2335 
2336 	return sum;
2337 }
2338 
2339 /*
2340  * Check if only the current task is running on the cpu.
2341  */
2342 bool single_task_running(void)
2343 {
2344 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2345 		return true;
2346 	else
2347 		return false;
2348 }
2349 EXPORT_SYMBOL(single_task_running);
2350 
2351 unsigned long long nr_context_switches(void)
2352 {
2353 	int i;
2354 	unsigned long long sum = 0;
2355 
2356 	for_each_possible_cpu(i)
2357 		sum += cpu_rq(i)->nr_switches;
2358 
2359 	return sum;
2360 }
2361 
2362 unsigned long nr_iowait(void)
2363 {
2364 	unsigned long i, sum = 0;
2365 
2366 	for_each_possible_cpu(i)
2367 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2368 
2369 	return sum;
2370 }
2371 
2372 unsigned long nr_iowait_cpu(int cpu)
2373 {
2374 	struct rq *this = cpu_rq(cpu);
2375 	return atomic_read(&this->nr_iowait);
2376 }
2377 
2378 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2379 {
2380 	struct rq *this = this_rq();
2381 	*nr_waiters = atomic_read(&this->nr_iowait);
2382 	*load = this->cpu_load[0];
2383 }
2384 
2385 #ifdef CONFIG_SMP
2386 
2387 /*
2388  * sched_exec - execve() is a valuable balancing opportunity, because at
2389  * this point the task has the smallest effective memory and cache footprint.
2390  */
2391 void sched_exec(void)
2392 {
2393 	struct task_struct *p = current;
2394 	unsigned long flags;
2395 	int dest_cpu;
2396 
2397 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2398 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2399 	if (dest_cpu == smp_processor_id())
2400 		goto unlock;
2401 
2402 	if (likely(cpu_active(dest_cpu))) {
2403 		struct migration_arg arg = { p, dest_cpu };
2404 
2405 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2406 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2407 		return;
2408 	}
2409 unlock:
2410 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2411 }
2412 
2413 #endif
2414 
2415 DEFINE_PER_CPU(struct kernel_stat, kstat);
2416 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2417 
2418 EXPORT_PER_CPU_SYMBOL(kstat);
2419 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2420 
2421 /*
2422  * Return accounted runtime for the task.
2423  * In case the task is currently running, return the runtime plus current's
2424  * pending runtime that have not been accounted yet.
2425  */
2426 unsigned long long task_sched_runtime(struct task_struct *p)
2427 {
2428 	unsigned long flags;
2429 	struct rq *rq;
2430 	u64 ns;
2431 
2432 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2433 	/*
2434 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2435 	 * So we have a optimization chance when the task's delta_exec is 0.
2436 	 * Reading ->on_cpu is racy, but this is ok.
2437 	 *
2438 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2439 	 * If we race with it entering cpu, unaccounted time is 0. This is
2440 	 * indistinguishable from the read occurring a few cycles earlier.
2441 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2442 	 * been accounted, so we're correct here as well.
2443 	 */
2444 	if (!p->on_cpu || !task_on_rq_queued(p))
2445 		return p->se.sum_exec_runtime;
2446 #endif
2447 
2448 	rq = task_rq_lock(p, &flags);
2449 	/*
2450 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2451 	 * project cycles that may never be accounted to this
2452 	 * thread, breaking clock_gettime().
2453 	 */
2454 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2455 		update_rq_clock(rq);
2456 		p->sched_class->update_curr(rq);
2457 	}
2458 	ns = p->se.sum_exec_runtime;
2459 	task_rq_unlock(rq, p, &flags);
2460 
2461 	return ns;
2462 }
2463 
2464 /*
2465  * This function gets called by the timer code, with HZ frequency.
2466  * We call it with interrupts disabled.
2467  */
2468 void scheduler_tick(void)
2469 {
2470 	int cpu = smp_processor_id();
2471 	struct rq *rq = cpu_rq(cpu);
2472 	struct task_struct *curr = rq->curr;
2473 
2474 	sched_clock_tick();
2475 
2476 	raw_spin_lock(&rq->lock);
2477 	update_rq_clock(rq);
2478 	curr->sched_class->task_tick(rq, curr, 0);
2479 	update_cpu_load_active(rq);
2480 	raw_spin_unlock(&rq->lock);
2481 
2482 	perf_event_task_tick();
2483 
2484 #ifdef CONFIG_SMP
2485 	rq->idle_balance = idle_cpu(cpu);
2486 	trigger_load_balance(rq);
2487 #endif
2488 	rq_last_tick_reset(rq);
2489 }
2490 
2491 #ifdef CONFIG_NO_HZ_FULL
2492 /**
2493  * scheduler_tick_max_deferment
2494  *
2495  * Keep at least one tick per second when a single
2496  * active task is running because the scheduler doesn't
2497  * yet completely support full dynticks environment.
2498  *
2499  * This makes sure that uptime, CFS vruntime, load
2500  * balancing, etc... continue to move forward, even
2501  * with a very low granularity.
2502  *
2503  * Return: Maximum deferment in nanoseconds.
2504  */
2505 u64 scheduler_tick_max_deferment(void)
2506 {
2507 	struct rq *rq = this_rq();
2508 	unsigned long next, now = ACCESS_ONCE(jiffies);
2509 
2510 	next = rq->last_sched_tick + HZ;
2511 
2512 	if (time_before_eq(next, now))
2513 		return 0;
2514 
2515 	return jiffies_to_nsecs(next - now);
2516 }
2517 #endif
2518 
2519 notrace unsigned long get_parent_ip(unsigned long addr)
2520 {
2521 	if (in_lock_functions(addr)) {
2522 		addr = CALLER_ADDR2;
2523 		if (in_lock_functions(addr))
2524 			addr = CALLER_ADDR3;
2525 	}
2526 	return addr;
2527 }
2528 
2529 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2530 				defined(CONFIG_PREEMPT_TRACER))
2531 
2532 void preempt_count_add(int val)
2533 {
2534 #ifdef CONFIG_DEBUG_PREEMPT
2535 	/*
2536 	 * Underflow?
2537 	 */
2538 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2539 		return;
2540 #endif
2541 	__preempt_count_add(val);
2542 #ifdef CONFIG_DEBUG_PREEMPT
2543 	/*
2544 	 * Spinlock count overflowing soon?
2545 	 */
2546 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2547 				PREEMPT_MASK - 10);
2548 #endif
2549 	if (preempt_count() == val) {
2550 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2551 #ifdef CONFIG_DEBUG_PREEMPT
2552 		current->preempt_disable_ip = ip;
2553 #endif
2554 		trace_preempt_off(CALLER_ADDR0, ip);
2555 	}
2556 }
2557 EXPORT_SYMBOL(preempt_count_add);
2558 NOKPROBE_SYMBOL(preempt_count_add);
2559 
2560 void preempt_count_sub(int val)
2561 {
2562 #ifdef CONFIG_DEBUG_PREEMPT
2563 	/*
2564 	 * Underflow?
2565 	 */
2566 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2567 		return;
2568 	/*
2569 	 * Is the spinlock portion underflowing?
2570 	 */
2571 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2572 			!(preempt_count() & PREEMPT_MASK)))
2573 		return;
2574 #endif
2575 
2576 	if (preempt_count() == val)
2577 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2578 	__preempt_count_sub(val);
2579 }
2580 EXPORT_SYMBOL(preempt_count_sub);
2581 NOKPROBE_SYMBOL(preempt_count_sub);
2582 
2583 #endif
2584 
2585 /*
2586  * Print scheduling while atomic bug:
2587  */
2588 static noinline void __schedule_bug(struct task_struct *prev)
2589 {
2590 	if (oops_in_progress)
2591 		return;
2592 
2593 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2594 		prev->comm, prev->pid, preempt_count());
2595 
2596 	debug_show_held_locks(prev);
2597 	print_modules();
2598 	if (irqs_disabled())
2599 		print_irqtrace_events(prev);
2600 #ifdef CONFIG_DEBUG_PREEMPT
2601 	if (in_atomic_preempt_off()) {
2602 		pr_err("Preemption disabled at:");
2603 		print_ip_sym(current->preempt_disable_ip);
2604 		pr_cont("\n");
2605 	}
2606 #endif
2607 	dump_stack();
2608 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2609 }
2610 
2611 /*
2612  * Various schedule()-time debugging checks and statistics:
2613  */
2614 static inline void schedule_debug(struct task_struct *prev)
2615 {
2616 #ifdef CONFIG_SCHED_STACK_END_CHECK
2617 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2618 #endif
2619 	/*
2620 	 * Test if we are atomic. Since do_exit() needs to call into
2621 	 * schedule() atomically, we ignore that path. Otherwise whine
2622 	 * if we are scheduling when we should not.
2623 	 */
2624 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2625 		__schedule_bug(prev);
2626 	rcu_sleep_check();
2627 
2628 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2629 
2630 	schedstat_inc(this_rq(), sched_count);
2631 }
2632 
2633 /*
2634  * Pick up the highest-prio task:
2635  */
2636 static inline struct task_struct *
2637 pick_next_task(struct rq *rq, struct task_struct *prev)
2638 {
2639 	const struct sched_class *class = &fair_sched_class;
2640 	struct task_struct *p;
2641 
2642 	/*
2643 	 * Optimization: we know that if all tasks are in
2644 	 * the fair class we can call that function directly:
2645 	 */
2646 	if (likely(prev->sched_class == class &&
2647 		   rq->nr_running == rq->cfs.h_nr_running)) {
2648 		p = fair_sched_class.pick_next_task(rq, prev);
2649 		if (unlikely(p == RETRY_TASK))
2650 			goto again;
2651 
2652 		/* assumes fair_sched_class->next == idle_sched_class */
2653 		if (unlikely(!p))
2654 			p = idle_sched_class.pick_next_task(rq, prev);
2655 
2656 		return p;
2657 	}
2658 
2659 again:
2660 	for_each_class(class) {
2661 		p = class->pick_next_task(rq, prev);
2662 		if (p) {
2663 			if (unlikely(p == RETRY_TASK))
2664 				goto again;
2665 			return p;
2666 		}
2667 	}
2668 
2669 	BUG(); /* the idle class will always have a runnable task */
2670 }
2671 
2672 /*
2673  * __schedule() is the main scheduler function.
2674  *
2675  * The main means of driving the scheduler and thus entering this function are:
2676  *
2677  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2678  *
2679  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2680  *      paths. For example, see arch/x86/entry_64.S.
2681  *
2682  *      To drive preemption between tasks, the scheduler sets the flag in timer
2683  *      interrupt handler scheduler_tick().
2684  *
2685  *   3. Wakeups don't really cause entry into schedule(). They add a
2686  *      task to the run-queue and that's it.
2687  *
2688  *      Now, if the new task added to the run-queue preempts the current
2689  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2690  *      called on the nearest possible occasion:
2691  *
2692  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2693  *
2694  *         - in syscall or exception context, at the next outmost
2695  *           preempt_enable(). (this might be as soon as the wake_up()'s
2696  *           spin_unlock()!)
2697  *
2698  *         - in IRQ context, return from interrupt-handler to
2699  *           preemptible context
2700  *
2701  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2702  *         then at the next:
2703  *
2704  *          - cond_resched() call
2705  *          - explicit schedule() call
2706  *          - return from syscall or exception to user-space
2707  *          - return from interrupt-handler to user-space
2708  *
2709  * WARNING: all callers must re-check need_resched() afterward and reschedule
2710  * accordingly in case an event triggered the need for rescheduling (such as
2711  * an interrupt waking up a task) while preemption was disabled in __schedule().
2712  */
2713 static void __sched __schedule(void)
2714 {
2715 	struct task_struct *prev, *next;
2716 	unsigned long *switch_count;
2717 	struct rq *rq;
2718 	int cpu;
2719 
2720 	preempt_disable();
2721 	cpu = smp_processor_id();
2722 	rq = cpu_rq(cpu);
2723 	rcu_note_context_switch();
2724 	prev = rq->curr;
2725 
2726 	schedule_debug(prev);
2727 
2728 	if (sched_feat(HRTICK))
2729 		hrtick_clear(rq);
2730 
2731 	/*
2732 	 * Make sure that signal_pending_state()->signal_pending() below
2733 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2734 	 * done by the caller to avoid the race with signal_wake_up().
2735 	 */
2736 	smp_mb__before_spinlock();
2737 	raw_spin_lock_irq(&rq->lock);
2738 
2739 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2740 
2741 	switch_count = &prev->nivcsw;
2742 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2743 		if (unlikely(signal_pending_state(prev->state, prev))) {
2744 			prev->state = TASK_RUNNING;
2745 		} else {
2746 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2747 			prev->on_rq = 0;
2748 
2749 			/*
2750 			 * If a worker went to sleep, notify and ask workqueue
2751 			 * whether it wants to wake up a task to maintain
2752 			 * concurrency.
2753 			 */
2754 			if (prev->flags & PF_WQ_WORKER) {
2755 				struct task_struct *to_wakeup;
2756 
2757 				to_wakeup = wq_worker_sleeping(prev, cpu);
2758 				if (to_wakeup)
2759 					try_to_wake_up_local(to_wakeup);
2760 			}
2761 		}
2762 		switch_count = &prev->nvcsw;
2763 	}
2764 
2765 	if (task_on_rq_queued(prev))
2766 		update_rq_clock(rq);
2767 
2768 	next = pick_next_task(rq, prev);
2769 	clear_tsk_need_resched(prev);
2770 	clear_preempt_need_resched();
2771 	rq->clock_skip_update = 0;
2772 
2773 	if (likely(prev != next)) {
2774 		rq->nr_switches++;
2775 		rq->curr = next;
2776 		++*switch_count;
2777 
2778 		rq = context_switch(rq, prev, next); /* unlocks the rq */
2779 		cpu = cpu_of(rq);
2780 	} else
2781 		raw_spin_unlock_irq(&rq->lock);
2782 
2783 	post_schedule(rq);
2784 
2785 	sched_preempt_enable_no_resched();
2786 }
2787 
2788 static inline void sched_submit_work(struct task_struct *tsk)
2789 {
2790 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2791 		return;
2792 	/*
2793 	 * If we are going to sleep and we have plugged IO queued,
2794 	 * make sure to submit it to avoid deadlocks.
2795 	 */
2796 	if (blk_needs_flush_plug(tsk))
2797 		blk_schedule_flush_plug(tsk);
2798 }
2799 
2800 asmlinkage __visible void __sched schedule(void)
2801 {
2802 	struct task_struct *tsk = current;
2803 
2804 	sched_submit_work(tsk);
2805 	do {
2806 		__schedule();
2807 	} while (need_resched());
2808 }
2809 EXPORT_SYMBOL(schedule);
2810 
2811 #ifdef CONFIG_CONTEXT_TRACKING
2812 asmlinkage __visible void __sched schedule_user(void)
2813 {
2814 	/*
2815 	 * If we come here after a random call to set_need_resched(),
2816 	 * or we have been woken up remotely but the IPI has not yet arrived,
2817 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2818 	 * we find a better solution.
2819 	 *
2820 	 * NB: There are buggy callers of this function.  Ideally we
2821 	 * should warn if prev_state != IN_USER, but that will trigger
2822 	 * too frequently to make sense yet.
2823 	 */
2824 	enum ctx_state prev_state = exception_enter();
2825 	schedule();
2826 	exception_exit(prev_state);
2827 }
2828 #endif
2829 
2830 /**
2831  * schedule_preempt_disabled - called with preemption disabled
2832  *
2833  * Returns with preemption disabled. Note: preempt_count must be 1
2834  */
2835 void __sched schedule_preempt_disabled(void)
2836 {
2837 	sched_preempt_enable_no_resched();
2838 	schedule();
2839 	preempt_disable();
2840 }
2841 
2842 static void __sched notrace preempt_schedule_common(void)
2843 {
2844 	do {
2845 		__preempt_count_add(PREEMPT_ACTIVE);
2846 		__schedule();
2847 		__preempt_count_sub(PREEMPT_ACTIVE);
2848 
2849 		/*
2850 		 * Check again in case we missed a preemption opportunity
2851 		 * between schedule and now.
2852 		 */
2853 		barrier();
2854 	} while (need_resched());
2855 }
2856 
2857 #ifdef CONFIG_PREEMPT
2858 /*
2859  * this is the entry point to schedule() from in-kernel preemption
2860  * off of preempt_enable. Kernel preemptions off return from interrupt
2861  * occur there and call schedule directly.
2862  */
2863 asmlinkage __visible void __sched notrace preempt_schedule(void)
2864 {
2865 	/*
2866 	 * If there is a non-zero preempt_count or interrupts are disabled,
2867 	 * we do not want to preempt the current task. Just return..
2868 	 */
2869 	if (likely(!preemptible()))
2870 		return;
2871 
2872 	preempt_schedule_common();
2873 }
2874 NOKPROBE_SYMBOL(preempt_schedule);
2875 EXPORT_SYMBOL(preempt_schedule);
2876 
2877 #ifdef CONFIG_CONTEXT_TRACKING
2878 /**
2879  * preempt_schedule_context - preempt_schedule called by tracing
2880  *
2881  * The tracing infrastructure uses preempt_enable_notrace to prevent
2882  * recursion and tracing preempt enabling caused by the tracing
2883  * infrastructure itself. But as tracing can happen in areas coming
2884  * from userspace or just about to enter userspace, a preempt enable
2885  * can occur before user_exit() is called. This will cause the scheduler
2886  * to be called when the system is still in usermode.
2887  *
2888  * To prevent this, the preempt_enable_notrace will use this function
2889  * instead of preempt_schedule() to exit user context if needed before
2890  * calling the scheduler.
2891  */
2892 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2893 {
2894 	enum ctx_state prev_ctx;
2895 
2896 	if (likely(!preemptible()))
2897 		return;
2898 
2899 	do {
2900 		__preempt_count_add(PREEMPT_ACTIVE);
2901 		/*
2902 		 * Needs preempt disabled in case user_exit() is traced
2903 		 * and the tracer calls preempt_enable_notrace() causing
2904 		 * an infinite recursion.
2905 		 */
2906 		prev_ctx = exception_enter();
2907 		__schedule();
2908 		exception_exit(prev_ctx);
2909 
2910 		__preempt_count_sub(PREEMPT_ACTIVE);
2911 		barrier();
2912 	} while (need_resched());
2913 }
2914 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2915 #endif /* CONFIG_CONTEXT_TRACKING */
2916 
2917 #endif /* CONFIG_PREEMPT */
2918 
2919 /*
2920  * this is the entry point to schedule() from kernel preemption
2921  * off of irq context.
2922  * Note, that this is called and return with irqs disabled. This will
2923  * protect us against recursive calling from irq.
2924  */
2925 asmlinkage __visible void __sched preempt_schedule_irq(void)
2926 {
2927 	enum ctx_state prev_state;
2928 
2929 	/* Catch callers which need to be fixed */
2930 	BUG_ON(preempt_count() || !irqs_disabled());
2931 
2932 	prev_state = exception_enter();
2933 
2934 	do {
2935 		__preempt_count_add(PREEMPT_ACTIVE);
2936 		local_irq_enable();
2937 		__schedule();
2938 		local_irq_disable();
2939 		__preempt_count_sub(PREEMPT_ACTIVE);
2940 
2941 		/*
2942 		 * Check again in case we missed a preemption opportunity
2943 		 * between schedule and now.
2944 		 */
2945 		barrier();
2946 	} while (need_resched());
2947 
2948 	exception_exit(prev_state);
2949 }
2950 
2951 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2952 			  void *key)
2953 {
2954 	return try_to_wake_up(curr->private, mode, wake_flags);
2955 }
2956 EXPORT_SYMBOL(default_wake_function);
2957 
2958 #ifdef CONFIG_RT_MUTEXES
2959 
2960 /*
2961  * rt_mutex_setprio - set the current priority of a task
2962  * @p: task
2963  * @prio: prio value (kernel-internal form)
2964  *
2965  * This function changes the 'effective' priority of a task. It does
2966  * not touch ->normal_prio like __setscheduler().
2967  *
2968  * Used by the rt_mutex code to implement priority inheritance
2969  * logic. Call site only calls if the priority of the task changed.
2970  */
2971 void rt_mutex_setprio(struct task_struct *p, int prio)
2972 {
2973 	int oldprio, queued, running, enqueue_flag = 0;
2974 	struct rq *rq;
2975 	const struct sched_class *prev_class;
2976 
2977 	BUG_ON(prio > MAX_PRIO);
2978 
2979 	rq = __task_rq_lock(p);
2980 
2981 	/*
2982 	 * Idle task boosting is a nono in general. There is one
2983 	 * exception, when PREEMPT_RT and NOHZ is active:
2984 	 *
2985 	 * The idle task calls get_next_timer_interrupt() and holds
2986 	 * the timer wheel base->lock on the CPU and another CPU wants
2987 	 * to access the timer (probably to cancel it). We can safely
2988 	 * ignore the boosting request, as the idle CPU runs this code
2989 	 * with interrupts disabled and will complete the lock
2990 	 * protected section without being interrupted. So there is no
2991 	 * real need to boost.
2992 	 */
2993 	if (unlikely(p == rq->idle)) {
2994 		WARN_ON(p != rq->curr);
2995 		WARN_ON(p->pi_blocked_on);
2996 		goto out_unlock;
2997 	}
2998 
2999 	trace_sched_pi_setprio(p, prio);
3000 	oldprio = p->prio;
3001 	prev_class = p->sched_class;
3002 	queued = task_on_rq_queued(p);
3003 	running = task_current(rq, p);
3004 	if (queued)
3005 		dequeue_task(rq, p, 0);
3006 	if (running)
3007 		put_prev_task(rq, p);
3008 
3009 	/*
3010 	 * Boosting condition are:
3011 	 * 1. -rt task is running and holds mutex A
3012 	 *      --> -dl task blocks on mutex A
3013 	 *
3014 	 * 2. -dl task is running and holds mutex A
3015 	 *      --> -dl task blocks on mutex A and could preempt the
3016 	 *          running task
3017 	 */
3018 	if (dl_prio(prio)) {
3019 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3020 		if (!dl_prio(p->normal_prio) ||
3021 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3022 			p->dl.dl_boosted = 1;
3023 			p->dl.dl_throttled = 0;
3024 			enqueue_flag = ENQUEUE_REPLENISH;
3025 		} else
3026 			p->dl.dl_boosted = 0;
3027 		p->sched_class = &dl_sched_class;
3028 	} else if (rt_prio(prio)) {
3029 		if (dl_prio(oldprio))
3030 			p->dl.dl_boosted = 0;
3031 		if (oldprio < prio)
3032 			enqueue_flag = ENQUEUE_HEAD;
3033 		p->sched_class = &rt_sched_class;
3034 	} else {
3035 		if (dl_prio(oldprio))
3036 			p->dl.dl_boosted = 0;
3037 		if (rt_prio(oldprio))
3038 			p->rt.timeout = 0;
3039 		p->sched_class = &fair_sched_class;
3040 	}
3041 
3042 	p->prio = prio;
3043 
3044 	if (running)
3045 		p->sched_class->set_curr_task(rq);
3046 	if (queued)
3047 		enqueue_task(rq, p, enqueue_flag);
3048 
3049 	check_class_changed(rq, p, prev_class, oldprio);
3050 out_unlock:
3051 	__task_rq_unlock(rq);
3052 }
3053 #endif
3054 
3055 void set_user_nice(struct task_struct *p, long nice)
3056 {
3057 	int old_prio, delta, queued;
3058 	unsigned long flags;
3059 	struct rq *rq;
3060 
3061 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3062 		return;
3063 	/*
3064 	 * We have to be careful, if called from sys_setpriority(),
3065 	 * the task might be in the middle of scheduling on another CPU.
3066 	 */
3067 	rq = task_rq_lock(p, &flags);
3068 	/*
3069 	 * The RT priorities are set via sched_setscheduler(), but we still
3070 	 * allow the 'normal' nice value to be set - but as expected
3071 	 * it wont have any effect on scheduling until the task is
3072 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3073 	 */
3074 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3075 		p->static_prio = NICE_TO_PRIO(nice);
3076 		goto out_unlock;
3077 	}
3078 	queued = task_on_rq_queued(p);
3079 	if (queued)
3080 		dequeue_task(rq, p, 0);
3081 
3082 	p->static_prio = NICE_TO_PRIO(nice);
3083 	set_load_weight(p);
3084 	old_prio = p->prio;
3085 	p->prio = effective_prio(p);
3086 	delta = p->prio - old_prio;
3087 
3088 	if (queued) {
3089 		enqueue_task(rq, p, 0);
3090 		/*
3091 		 * If the task increased its priority or is running and
3092 		 * lowered its priority, then reschedule its CPU:
3093 		 */
3094 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3095 			resched_curr(rq);
3096 	}
3097 out_unlock:
3098 	task_rq_unlock(rq, p, &flags);
3099 }
3100 EXPORT_SYMBOL(set_user_nice);
3101 
3102 /*
3103  * can_nice - check if a task can reduce its nice value
3104  * @p: task
3105  * @nice: nice value
3106  */
3107 int can_nice(const struct task_struct *p, const int nice)
3108 {
3109 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3110 	int nice_rlim = nice_to_rlimit(nice);
3111 
3112 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3113 		capable(CAP_SYS_NICE));
3114 }
3115 
3116 #ifdef __ARCH_WANT_SYS_NICE
3117 
3118 /*
3119  * sys_nice - change the priority of the current process.
3120  * @increment: priority increment
3121  *
3122  * sys_setpriority is a more generic, but much slower function that
3123  * does similar things.
3124  */
3125 SYSCALL_DEFINE1(nice, int, increment)
3126 {
3127 	long nice, retval;
3128 
3129 	/*
3130 	 * Setpriority might change our priority at the same moment.
3131 	 * We don't have to worry. Conceptually one call occurs first
3132 	 * and we have a single winner.
3133 	 */
3134 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3135 	nice = task_nice(current) + increment;
3136 
3137 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3138 	if (increment < 0 && !can_nice(current, nice))
3139 		return -EPERM;
3140 
3141 	retval = security_task_setnice(current, nice);
3142 	if (retval)
3143 		return retval;
3144 
3145 	set_user_nice(current, nice);
3146 	return 0;
3147 }
3148 
3149 #endif
3150 
3151 /**
3152  * task_prio - return the priority value of a given task.
3153  * @p: the task in question.
3154  *
3155  * Return: The priority value as seen by users in /proc.
3156  * RT tasks are offset by -200. Normal tasks are centered
3157  * around 0, value goes from -16 to +15.
3158  */
3159 int task_prio(const struct task_struct *p)
3160 {
3161 	return p->prio - MAX_RT_PRIO;
3162 }
3163 
3164 /**
3165  * idle_cpu - is a given cpu idle currently?
3166  * @cpu: the processor in question.
3167  *
3168  * Return: 1 if the CPU is currently idle. 0 otherwise.
3169  */
3170 int idle_cpu(int cpu)
3171 {
3172 	struct rq *rq = cpu_rq(cpu);
3173 
3174 	if (rq->curr != rq->idle)
3175 		return 0;
3176 
3177 	if (rq->nr_running)
3178 		return 0;
3179 
3180 #ifdef CONFIG_SMP
3181 	if (!llist_empty(&rq->wake_list))
3182 		return 0;
3183 #endif
3184 
3185 	return 1;
3186 }
3187 
3188 /**
3189  * idle_task - return the idle task for a given cpu.
3190  * @cpu: the processor in question.
3191  *
3192  * Return: The idle task for the cpu @cpu.
3193  */
3194 struct task_struct *idle_task(int cpu)
3195 {
3196 	return cpu_rq(cpu)->idle;
3197 }
3198 
3199 /**
3200  * find_process_by_pid - find a process with a matching PID value.
3201  * @pid: the pid in question.
3202  *
3203  * The task of @pid, if found. %NULL otherwise.
3204  */
3205 static struct task_struct *find_process_by_pid(pid_t pid)
3206 {
3207 	return pid ? find_task_by_vpid(pid) : current;
3208 }
3209 
3210 /*
3211  * This function initializes the sched_dl_entity of a newly becoming
3212  * SCHED_DEADLINE task.
3213  *
3214  * Only the static values are considered here, the actual runtime and the
3215  * absolute deadline will be properly calculated when the task is enqueued
3216  * for the first time with its new policy.
3217  */
3218 static void
3219 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3220 {
3221 	struct sched_dl_entity *dl_se = &p->dl;
3222 
3223 	dl_se->dl_runtime = attr->sched_runtime;
3224 	dl_se->dl_deadline = attr->sched_deadline;
3225 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3226 	dl_se->flags = attr->sched_flags;
3227 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3228 
3229 	/*
3230 	 * Changing the parameters of a task is 'tricky' and we're not doing
3231 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3232 	 *
3233 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3234 	 * point. This would include retaining the task_struct until that time
3235 	 * and change dl_overflow() to not immediately decrement the current
3236 	 * amount.
3237 	 *
3238 	 * Instead we retain the current runtime/deadline and let the new
3239 	 * parameters take effect after the current reservation period lapses.
3240 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3241 	 * before the current scheduling deadline.
3242 	 *
3243 	 * We can still have temporary overloads because we do not delay the
3244 	 * change in bandwidth until that time; so admission control is
3245 	 * not on the safe side. It does however guarantee tasks will never
3246 	 * consume more than promised.
3247 	 */
3248 }
3249 
3250 /*
3251  * sched_setparam() passes in -1 for its policy, to let the functions
3252  * it calls know not to change it.
3253  */
3254 #define SETPARAM_POLICY	-1
3255 
3256 static void __setscheduler_params(struct task_struct *p,
3257 		const struct sched_attr *attr)
3258 {
3259 	int policy = attr->sched_policy;
3260 
3261 	if (policy == SETPARAM_POLICY)
3262 		policy = p->policy;
3263 
3264 	p->policy = policy;
3265 
3266 	if (dl_policy(policy))
3267 		__setparam_dl(p, attr);
3268 	else if (fair_policy(policy))
3269 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3270 
3271 	/*
3272 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3273 	 * !rt_policy. Always setting this ensures that things like
3274 	 * getparam()/getattr() don't report silly values for !rt tasks.
3275 	 */
3276 	p->rt_priority = attr->sched_priority;
3277 	p->normal_prio = normal_prio(p);
3278 	set_load_weight(p);
3279 }
3280 
3281 /* Actually do priority change: must hold pi & rq lock. */
3282 static void __setscheduler(struct rq *rq, struct task_struct *p,
3283 			   const struct sched_attr *attr)
3284 {
3285 	__setscheduler_params(p, attr);
3286 
3287 	/*
3288 	 * If we get here, there was no pi waiters boosting the
3289 	 * task. It is safe to use the normal prio.
3290 	 */
3291 	p->prio = normal_prio(p);
3292 
3293 	if (dl_prio(p->prio))
3294 		p->sched_class = &dl_sched_class;
3295 	else if (rt_prio(p->prio))
3296 		p->sched_class = &rt_sched_class;
3297 	else
3298 		p->sched_class = &fair_sched_class;
3299 }
3300 
3301 static void
3302 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3303 {
3304 	struct sched_dl_entity *dl_se = &p->dl;
3305 
3306 	attr->sched_priority = p->rt_priority;
3307 	attr->sched_runtime = dl_se->dl_runtime;
3308 	attr->sched_deadline = dl_se->dl_deadline;
3309 	attr->sched_period = dl_se->dl_period;
3310 	attr->sched_flags = dl_se->flags;
3311 }
3312 
3313 /*
3314  * This function validates the new parameters of a -deadline task.
3315  * We ask for the deadline not being zero, and greater or equal
3316  * than the runtime, as well as the period of being zero or
3317  * greater than deadline. Furthermore, we have to be sure that
3318  * user parameters are above the internal resolution of 1us (we
3319  * check sched_runtime only since it is always the smaller one) and
3320  * below 2^63 ns (we have to check both sched_deadline and
3321  * sched_period, as the latter can be zero).
3322  */
3323 static bool
3324 __checkparam_dl(const struct sched_attr *attr)
3325 {
3326 	/* deadline != 0 */
3327 	if (attr->sched_deadline == 0)
3328 		return false;
3329 
3330 	/*
3331 	 * Since we truncate DL_SCALE bits, make sure we're at least
3332 	 * that big.
3333 	 */
3334 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3335 		return false;
3336 
3337 	/*
3338 	 * Since we use the MSB for wrap-around and sign issues, make
3339 	 * sure it's not set (mind that period can be equal to zero).
3340 	 */
3341 	if (attr->sched_deadline & (1ULL << 63) ||
3342 	    attr->sched_period & (1ULL << 63))
3343 		return false;
3344 
3345 	/* runtime <= deadline <= period (if period != 0) */
3346 	if ((attr->sched_period != 0 &&
3347 	     attr->sched_period < attr->sched_deadline) ||
3348 	    attr->sched_deadline < attr->sched_runtime)
3349 		return false;
3350 
3351 	return true;
3352 }
3353 
3354 /*
3355  * check the target process has a UID that matches the current process's
3356  */
3357 static bool check_same_owner(struct task_struct *p)
3358 {
3359 	const struct cred *cred = current_cred(), *pcred;
3360 	bool match;
3361 
3362 	rcu_read_lock();
3363 	pcred = __task_cred(p);
3364 	match = (uid_eq(cred->euid, pcred->euid) ||
3365 		 uid_eq(cred->euid, pcred->uid));
3366 	rcu_read_unlock();
3367 	return match;
3368 }
3369 
3370 static bool dl_param_changed(struct task_struct *p,
3371 		const struct sched_attr *attr)
3372 {
3373 	struct sched_dl_entity *dl_se = &p->dl;
3374 
3375 	if (dl_se->dl_runtime != attr->sched_runtime ||
3376 		dl_se->dl_deadline != attr->sched_deadline ||
3377 		dl_se->dl_period != attr->sched_period ||
3378 		dl_se->flags != attr->sched_flags)
3379 		return true;
3380 
3381 	return false;
3382 }
3383 
3384 static int __sched_setscheduler(struct task_struct *p,
3385 				const struct sched_attr *attr,
3386 				bool user)
3387 {
3388 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3389 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3390 	int retval, oldprio, oldpolicy = -1, queued, running;
3391 	int policy = attr->sched_policy;
3392 	unsigned long flags;
3393 	const struct sched_class *prev_class;
3394 	struct rq *rq;
3395 	int reset_on_fork;
3396 
3397 	/* may grab non-irq protected spin_locks */
3398 	BUG_ON(in_interrupt());
3399 recheck:
3400 	/* double check policy once rq lock held */
3401 	if (policy < 0) {
3402 		reset_on_fork = p->sched_reset_on_fork;
3403 		policy = oldpolicy = p->policy;
3404 	} else {
3405 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3406 
3407 		if (policy != SCHED_DEADLINE &&
3408 				policy != SCHED_FIFO && policy != SCHED_RR &&
3409 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3410 				policy != SCHED_IDLE)
3411 			return -EINVAL;
3412 	}
3413 
3414 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3415 		return -EINVAL;
3416 
3417 	/*
3418 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3419 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3420 	 * SCHED_BATCH and SCHED_IDLE is 0.
3421 	 */
3422 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3423 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3424 		return -EINVAL;
3425 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3426 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3427 		return -EINVAL;
3428 
3429 	/*
3430 	 * Allow unprivileged RT tasks to decrease priority:
3431 	 */
3432 	if (user && !capable(CAP_SYS_NICE)) {
3433 		if (fair_policy(policy)) {
3434 			if (attr->sched_nice < task_nice(p) &&
3435 			    !can_nice(p, attr->sched_nice))
3436 				return -EPERM;
3437 		}
3438 
3439 		if (rt_policy(policy)) {
3440 			unsigned long rlim_rtprio =
3441 					task_rlimit(p, RLIMIT_RTPRIO);
3442 
3443 			/* can't set/change the rt policy */
3444 			if (policy != p->policy && !rlim_rtprio)
3445 				return -EPERM;
3446 
3447 			/* can't increase priority */
3448 			if (attr->sched_priority > p->rt_priority &&
3449 			    attr->sched_priority > rlim_rtprio)
3450 				return -EPERM;
3451 		}
3452 
3453 		 /*
3454 		  * Can't set/change SCHED_DEADLINE policy at all for now
3455 		  * (safest behavior); in the future we would like to allow
3456 		  * unprivileged DL tasks to increase their relative deadline
3457 		  * or reduce their runtime (both ways reducing utilization)
3458 		  */
3459 		if (dl_policy(policy))
3460 			return -EPERM;
3461 
3462 		/*
3463 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3464 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3465 		 */
3466 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3467 			if (!can_nice(p, task_nice(p)))
3468 				return -EPERM;
3469 		}
3470 
3471 		/* can't change other user's priorities */
3472 		if (!check_same_owner(p))
3473 			return -EPERM;
3474 
3475 		/* Normal users shall not reset the sched_reset_on_fork flag */
3476 		if (p->sched_reset_on_fork && !reset_on_fork)
3477 			return -EPERM;
3478 	}
3479 
3480 	if (user) {
3481 		retval = security_task_setscheduler(p);
3482 		if (retval)
3483 			return retval;
3484 	}
3485 
3486 	/*
3487 	 * make sure no PI-waiters arrive (or leave) while we are
3488 	 * changing the priority of the task:
3489 	 *
3490 	 * To be able to change p->policy safely, the appropriate
3491 	 * runqueue lock must be held.
3492 	 */
3493 	rq = task_rq_lock(p, &flags);
3494 
3495 	/*
3496 	 * Changing the policy of the stop threads its a very bad idea
3497 	 */
3498 	if (p == rq->stop) {
3499 		task_rq_unlock(rq, p, &flags);
3500 		return -EINVAL;
3501 	}
3502 
3503 	/*
3504 	 * If not changing anything there's no need to proceed further,
3505 	 * but store a possible modification of reset_on_fork.
3506 	 */
3507 	if (unlikely(policy == p->policy)) {
3508 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3509 			goto change;
3510 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3511 			goto change;
3512 		if (dl_policy(policy) && dl_param_changed(p, attr))
3513 			goto change;
3514 
3515 		p->sched_reset_on_fork = reset_on_fork;
3516 		task_rq_unlock(rq, p, &flags);
3517 		return 0;
3518 	}
3519 change:
3520 
3521 	if (user) {
3522 #ifdef CONFIG_RT_GROUP_SCHED
3523 		/*
3524 		 * Do not allow realtime tasks into groups that have no runtime
3525 		 * assigned.
3526 		 */
3527 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3528 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3529 				!task_group_is_autogroup(task_group(p))) {
3530 			task_rq_unlock(rq, p, &flags);
3531 			return -EPERM;
3532 		}
3533 #endif
3534 #ifdef CONFIG_SMP
3535 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3536 			cpumask_t *span = rq->rd->span;
3537 
3538 			/*
3539 			 * Don't allow tasks with an affinity mask smaller than
3540 			 * the entire root_domain to become SCHED_DEADLINE. We
3541 			 * will also fail if there's no bandwidth available.
3542 			 */
3543 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3544 			    rq->rd->dl_bw.bw == 0) {
3545 				task_rq_unlock(rq, p, &flags);
3546 				return -EPERM;
3547 			}
3548 		}
3549 #endif
3550 	}
3551 
3552 	/* recheck policy now with rq lock held */
3553 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3554 		policy = oldpolicy = -1;
3555 		task_rq_unlock(rq, p, &flags);
3556 		goto recheck;
3557 	}
3558 
3559 	/*
3560 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3561 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3562 	 * is available.
3563 	 */
3564 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3565 		task_rq_unlock(rq, p, &flags);
3566 		return -EBUSY;
3567 	}
3568 
3569 	p->sched_reset_on_fork = reset_on_fork;
3570 	oldprio = p->prio;
3571 
3572 	/*
3573 	 * Special case for priority boosted tasks.
3574 	 *
3575 	 * If the new priority is lower or equal (user space view)
3576 	 * than the current (boosted) priority, we just store the new
3577 	 * normal parameters and do not touch the scheduler class and
3578 	 * the runqueue. This will be done when the task deboost
3579 	 * itself.
3580 	 */
3581 	if (rt_mutex_check_prio(p, newprio)) {
3582 		__setscheduler_params(p, attr);
3583 		task_rq_unlock(rq, p, &flags);
3584 		return 0;
3585 	}
3586 
3587 	queued = task_on_rq_queued(p);
3588 	running = task_current(rq, p);
3589 	if (queued)
3590 		dequeue_task(rq, p, 0);
3591 	if (running)
3592 		put_prev_task(rq, p);
3593 
3594 	prev_class = p->sched_class;
3595 	__setscheduler(rq, p, attr);
3596 
3597 	if (running)
3598 		p->sched_class->set_curr_task(rq);
3599 	if (queued) {
3600 		/*
3601 		 * We enqueue to tail when the priority of a task is
3602 		 * increased (user space view).
3603 		 */
3604 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3605 	}
3606 
3607 	check_class_changed(rq, p, prev_class, oldprio);
3608 	task_rq_unlock(rq, p, &flags);
3609 
3610 	rt_mutex_adjust_pi(p);
3611 
3612 	return 0;
3613 }
3614 
3615 static int _sched_setscheduler(struct task_struct *p, int policy,
3616 			       const struct sched_param *param, bool check)
3617 {
3618 	struct sched_attr attr = {
3619 		.sched_policy   = policy,
3620 		.sched_priority = param->sched_priority,
3621 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3622 	};
3623 
3624 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3625 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3626 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3627 		policy &= ~SCHED_RESET_ON_FORK;
3628 		attr.sched_policy = policy;
3629 	}
3630 
3631 	return __sched_setscheduler(p, &attr, check);
3632 }
3633 /**
3634  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3635  * @p: the task in question.
3636  * @policy: new policy.
3637  * @param: structure containing the new RT priority.
3638  *
3639  * Return: 0 on success. An error code otherwise.
3640  *
3641  * NOTE that the task may be already dead.
3642  */
3643 int sched_setscheduler(struct task_struct *p, int policy,
3644 		       const struct sched_param *param)
3645 {
3646 	return _sched_setscheduler(p, policy, param, true);
3647 }
3648 EXPORT_SYMBOL_GPL(sched_setscheduler);
3649 
3650 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3651 {
3652 	return __sched_setscheduler(p, attr, true);
3653 }
3654 EXPORT_SYMBOL_GPL(sched_setattr);
3655 
3656 /**
3657  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3658  * @p: the task in question.
3659  * @policy: new policy.
3660  * @param: structure containing the new RT priority.
3661  *
3662  * Just like sched_setscheduler, only don't bother checking if the
3663  * current context has permission.  For example, this is needed in
3664  * stop_machine(): we create temporary high priority worker threads,
3665  * but our caller might not have that capability.
3666  *
3667  * Return: 0 on success. An error code otherwise.
3668  */
3669 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3670 			       const struct sched_param *param)
3671 {
3672 	return _sched_setscheduler(p, policy, param, false);
3673 }
3674 
3675 static int
3676 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3677 {
3678 	struct sched_param lparam;
3679 	struct task_struct *p;
3680 	int retval;
3681 
3682 	if (!param || pid < 0)
3683 		return -EINVAL;
3684 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3685 		return -EFAULT;
3686 
3687 	rcu_read_lock();
3688 	retval = -ESRCH;
3689 	p = find_process_by_pid(pid);
3690 	if (p != NULL)
3691 		retval = sched_setscheduler(p, policy, &lparam);
3692 	rcu_read_unlock();
3693 
3694 	return retval;
3695 }
3696 
3697 /*
3698  * Mimics kernel/events/core.c perf_copy_attr().
3699  */
3700 static int sched_copy_attr(struct sched_attr __user *uattr,
3701 			   struct sched_attr *attr)
3702 {
3703 	u32 size;
3704 	int ret;
3705 
3706 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3707 		return -EFAULT;
3708 
3709 	/*
3710 	 * zero the full structure, so that a short copy will be nice.
3711 	 */
3712 	memset(attr, 0, sizeof(*attr));
3713 
3714 	ret = get_user(size, &uattr->size);
3715 	if (ret)
3716 		return ret;
3717 
3718 	if (size > PAGE_SIZE)	/* silly large */
3719 		goto err_size;
3720 
3721 	if (!size)		/* abi compat */
3722 		size = SCHED_ATTR_SIZE_VER0;
3723 
3724 	if (size < SCHED_ATTR_SIZE_VER0)
3725 		goto err_size;
3726 
3727 	/*
3728 	 * If we're handed a bigger struct than we know of,
3729 	 * ensure all the unknown bits are 0 - i.e. new
3730 	 * user-space does not rely on any kernel feature
3731 	 * extensions we dont know about yet.
3732 	 */
3733 	if (size > sizeof(*attr)) {
3734 		unsigned char __user *addr;
3735 		unsigned char __user *end;
3736 		unsigned char val;
3737 
3738 		addr = (void __user *)uattr + sizeof(*attr);
3739 		end  = (void __user *)uattr + size;
3740 
3741 		for (; addr < end; addr++) {
3742 			ret = get_user(val, addr);
3743 			if (ret)
3744 				return ret;
3745 			if (val)
3746 				goto err_size;
3747 		}
3748 		size = sizeof(*attr);
3749 	}
3750 
3751 	ret = copy_from_user(attr, uattr, size);
3752 	if (ret)
3753 		return -EFAULT;
3754 
3755 	/*
3756 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3757 	 * to be strict and return an error on out-of-bounds values?
3758 	 */
3759 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3760 
3761 	return 0;
3762 
3763 err_size:
3764 	put_user(sizeof(*attr), &uattr->size);
3765 	return -E2BIG;
3766 }
3767 
3768 /**
3769  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3770  * @pid: the pid in question.
3771  * @policy: new policy.
3772  * @param: structure containing the new RT priority.
3773  *
3774  * Return: 0 on success. An error code otherwise.
3775  */
3776 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3777 		struct sched_param __user *, param)
3778 {
3779 	/* negative values for policy are not valid */
3780 	if (policy < 0)
3781 		return -EINVAL;
3782 
3783 	return do_sched_setscheduler(pid, policy, param);
3784 }
3785 
3786 /**
3787  * sys_sched_setparam - set/change the RT priority of a thread
3788  * @pid: the pid in question.
3789  * @param: structure containing the new RT priority.
3790  *
3791  * Return: 0 on success. An error code otherwise.
3792  */
3793 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3794 {
3795 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3796 }
3797 
3798 /**
3799  * sys_sched_setattr - same as above, but with extended sched_attr
3800  * @pid: the pid in question.
3801  * @uattr: structure containing the extended parameters.
3802  * @flags: for future extension.
3803  */
3804 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3805 			       unsigned int, flags)
3806 {
3807 	struct sched_attr attr;
3808 	struct task_struct *p;
3809 	int retval;
3810 
3811 	if (!uattr || pid < 0 || flags)
3812 		return -EINVAL;
3813 
3814 	retval = sched_copy_attr(uattr, &attr);
3815 	if (retval)
3816 		return retval;
3817 
3818 	if ((int)attr.sched_policy < 0)
3819 		return -EINVAL;
3820 
3821 	rcu_read_lock();
3822 	retval = -ESRCH;
3823 	p = find_process_by_pid(pid);
3824 	if (p != NULL)
3825 		retval = sched_setattr(p, &attr);
3826 	rcu_read_unlock();
3827 
3828 	return retval;
3829 }
3830 
3831 /**
3832  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3833  * @pid: the pid in question.
3834  *
3835  * Return: On success, the policy of the thread. Otherwise, a negative error
3836  * code.
3837  */
3838 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3839 {
3840 	struct task_struct *p;
3841 	int retval;
3842 
3843 	if (pid < 0)
3844 		return -EINVAL;
3845 
3846 	retval = -ESRCH;
3847 	rcu_read_lock();
3848 	p = find_process_by_pid(pid);
3849 	if (p) {
3850 		retval = security_task_getscheduler(p);
3851 		if (!retval)
3852 			retval = p->policy
3853 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3854 	}
3855 	rcu_read_unlock();
3856 	return retval;
3857 }
3858 
3859 /**
3860  * sys_sched_getparam - get the RT priority of a thread
3861  * @pid: the pid in question.
3862  * @param: structure containing the RT priority.
3863  *
3864  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3865  * code.
3866  */
3867 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3868 {
3869 	struct sched_param lp = { .sched_priority = 0 };
3870 	struct task_struct *p;
3871 	int retval;
3872 
3873 	if (!param || pid < 0)
3874 		return -EINVAL;
3875 
3876 	rcu_read_lock();
3877 	p = find_process_by_pid(pid);
3878 	retval = -ESRCH;
3879 	if (!p)
3880 		goto out_unlock;
3881 
3882 	retval = security_task_getscheduler(p);
3883 	if (retval)
3884 		goto out_unlock;
3885 
3886 	if (task_has_rt_policy(p))
3887 		lp.sched_priority = p->rt_priority;
3888 	rcu_read_unlock();
3889 
3890 	/*
3891 	 * This one might sleep, we cannot do it with a spinlock held ...
3892 	 */
3893 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3894 
3895 	return retval;
3896 
3897 out_unlock:
3898 	rcu_read_unlock();
3899 	return retval;
3900 }
3901 
3902 static int sched_read_attr(struct sched_attr __user *uattr,
3903 			   struct sched_attr *attr,
3904 			   unsigned int usize)
3905 {
3906 	int ret;
3907 
3908 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3909 		return -EFAULT;
3910 
3911 	/*
3912 	 * If we're handed a smaller struct than we know of,
3913 	 * ensure all the unknown bits are 0 - i.e. old
3914 	 * user-space does not get uncomplete information.
3915 	 */
3916 	if (usize < sizeof(*attr)) {
3917 		unsigned char *addr;
3918 		unsigned char *end;
3919 
3920 		addr = (void *)attr + usize;
3921 		end  = (void *)attr + sizeof(*attr);
3922 
3923 		for (; addr < end; addr++) {
3924 			if (*addr)
3925 				return -EFBIG;
3926 		}
3927 
3928 		attr->size = usize;
3929 	}
3930 
3931 	ret = copy_to_user(uattr, attr, attr->size);
3932 	if (ret)
3933 		return -EFAULT;
3934 
3935 	return 0;
3936 }
3937 
3938 /**
3939  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3940  * @pid: the pid in question.
3941  * @uattr: structure containing the extended parameters.
3942  * @size: sizeof(attr) for fwd/bwd comp.
3943  * @flags: for future extension.
3944  */
3945 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3946 		unsigned int, size, unsigned int, flags)
3947 {
3948 	struct sched_attr attr = {
3949 		.size = sizeof(struct sched_attr),
3950 	};
3951 	struct task_struct *p;
3952 	int retval;
3953 
3954 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3955 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3956 		return -EINVAL;
3957 
3958 	rcu_read_lock();
3959 	p = find_process_by_pid(pid);
3960 	retval = -ESRCH;
3961 	if (!p)
3962 		goto out_unlock;
3963 
3964 	retval = security_task_getscheduler(p);
3965 	if (retval)
3966 		goto out_unlock;
3967 
3968 	attr.sched_policy = p->policy;
3969 	if (p->sched_reset_on_fork)
3970 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3971 	if (task_has_dl_policy(p))
3972 		__getparam_dl(p, &attr);
3973 	else if (task_has_rt_policy(p))
3974 		attr.sched_priority = p->rt_priority;
3975 	else
3976 		attr.sched_nice = task_nice(p);
3977 
3978 	rcu_read_unlock();
3979 
3980 	retval = sched_read_attr(uattr, &attr, size);
3981 	return retval;
3982 
3983 out_unlock:
3984 	rcu_read_unlock();
3985 	return retval;
3986 }
3987 
3988 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3989 {
3990 	cpumask_var_t cpus_allowed, new_mask;
3991 	struct task_struct *p;
3992 	int retval;
3993 
3994 	rcu_read_lock();
3995 
3996 	p = find_process_by_pid(pid);
3997 	if (!p) {
3998 		rcu_read_unlock();
3999 		return -ESRCH;
4000 	}
4001 
4002 	/* Prevent p going away */
4003 	get_task_struct(p);
4004 	rcu_read_unlock();
4005 
4006 	if (p->flags & PF_NO_SETAFFINITY) {
4007 		retval = -EINVAL;
4008 		goto out_put_task;
4009 	}
4010 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4011 		retval = -ENOMEM;
4012 		goto out_put_task;
4013 	}
4014 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4015 		retval = -ENOMEM;
4016 		goto out_free_cpus_allowed;
4017 	}
4018 	retval = -EPERM;
4019 	if (!check_same_owner(p)) {
4020 		rcu_read_lock();
4021 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4022 			rcu_read_unlock();
4023 			goto out_free_new_mask;
4024 		}
4025 		rcu_read_unlock();
4026 	}
4027 
4028 	retval = security_task_setscheduler(p);
4029 	if (retval)
4030 		goto out_free_new_mask;
4031 
4032 
4033 	cpuset_cpus_allowed(p, cpus_allowed);
4034 	cpumask_and(new_mask, in_mask, cpus_allowed);
4035 
4036 	/*
4037 	 * Since bandwidth control happens on root_domain basis,
4038 	 * if admission test is enabled, we only admit -deadline
4039 	 * tasks allowed to run on all the CPUs in the task's
4040 	 * root_domain.
4041 	 */
4042 #ifdef CONFIG_SMP
4043 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4044 		rcu_read_lock();
4045 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4046 			retval = -EBUSY;
4047 			rcu_read_unlock();
4048 			goto out_free_new_mask;
4049 		}
4050 		rcu_read_unlock();
4051 	}
4052 #endif
4053 again:
4054 	retval = set_cpus_allowed_ptr(p, new_mask);
4055 
4056 	if (!retval) {
4057 		cpuset_cpus_allowed(p, cpus_allowed);
4058 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4059 			/*
4060 			 * We must have raced with a concurrent cpuset
4061 			 * update. Just reset the cpus_allowed to the
4062 			 * cpuset's cpus_allowed
4063 			 */
4064 			cpumask_copy(new_mask, cpus_allowed);
4065 			goto again;
4066 		}
4067 	}
4068 out_free_new_mask:
4069 	free_cpumask_var(new_mask);
4070 out_free_cpus_allowed:
4071 	free_cpumask_var(cpus_allowed);
4072 out_put_task:
4073 	put_task_struct(p);
4074 	return retval;
4075 }
4076 
4077 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4078 			     struct cpumask *new_mask)
4079 {
4080 	if (len < cpumask_size())
4081 		cpumask_clear(new_mask);
4082 	else if (len > cpumask_size())
4083 		len = cpumask_size();
4084 
4085 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4086 }
4087 
4088 /**
4089  * sys_sched_setaffinity - set the cpu affinity of a process
4090  * @pid: pid of the process
4091  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4092  * @user_mask_ptr: user-space pointer to the new cpu mask
4093  *
4094  * Return: 0 on success. An error code otherwise.
4095  */
4096 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4097 		unsigned long __user *, user_mask_ptr)
4098 {
4099 	cpumask_var_t new_mask;
4100 	int retval;
4101 
4102 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4103 		return -ENOMEM;
4104 
4105 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4106 	if (retval == 0)
4107 		retval = sched_setaffinity(pid, new_mask);
4108 	free_cpumask_var(new_mask);
4109 	return retval;
4110 }
4111 
4112 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4113 {
4114 	struct task_struct *p;
4115 	unsigned long flags;
4116 	int retval;
4117 
4118 	rcu_read_lock();
4119 
4120 	retval = -ESRCH;
4121 	p = find_process_by_pid(pid);
4122 	if (!p)
4123 		goto out_unlock;
4124 
4125 	retval = security_task_getscheduler(p);
4126 	if (retval)
4127 		goto out_unlock;
4128 
4129 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4130 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4131 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4132 
4133 out_unlock:
4134 	rcu_read_unlock();
4135 
4136 	return retval;
4137 }
4138 
4139 /**
4140  * sys_sched_getaffinity - get the cpu affinity of a process
4141  * @pid: pid of the process
4142  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4143  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4144  *
4145  * Return: 0 on success. An error code otherwise.
4146  */
4147 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4148 		unsigned long __user *, user_mask_ptr)
4149 {
4150 	int ret;
4151 	cpumask_var_t mask;
4152 
4153 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4154 		return -EINVAL;
4155 	if (len & (sizeof(unsigned long)-1))
4156 		return -EINVAL;
4157 
4158 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4159 		return -ENOMEM;
4160 
4161 	ret = sched_getaffinity(pid, mask);
4162 	if (ret == 0) {
4163 		size_t retlen = min_t(size_t, len, cpumask_size());
4164 
4165 		if (copy_to_user(user_mask_ptr, mask, retlen))
4166 			ret = -EFAULT;
4167 		else
4168 			ret = retlen;
4169 	}
4170 	free_cpumask_var(mask);
4171 
4172 	return ret;
4173 }
4174 
4175 /**
4176  * sys_sched_yield - yield the current processor to other threads.
4177  *
4178  * This function yields the current CPU to other tasks. If there are no
4179  * other threads running on this CPU then this function will return.
4180  *
4181  * Return: 0.
4182  */
4183 SYSCALL_DEFINE0(sched_yield)
4184 {
4185 	struct rq *rq = this_rq_lock();
4186 
4187 	schedstat_inc(rq, yld_count);
4188 	current->sched_class->yield_task(rq);
4189 
4190 	/*
4191 	 * Since we are going to call schedule() anyway, there's
4192 	 * no need to preempt or enable interrupts:
4193 	 */
4194 	__release(rq->lock);
4195 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4196 	do_raw_spin_unlock(&rq->lock);
4197 	sched_preempt_enable_no_resched();
4198 
4199 	schedule();
4200 
4201 	return 0;
4202 }
4203 
4204 int __sched _cond_resched(void)
4205 {
4206 	if (should_resched()) {
4207 		preempt_schedule_common();
4208 		return 1;
4209 	}
4210 	return 0;
4211 }
4212 EXPORT_SYMBOL(_cond_resched);
4213 
4214 /*
4215  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4216  * call schedule, and on return reacquire the lock.
4217  *
4218  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4219  * operations here to prevent schedule() from being called twice (once via
4220  * spin_unlock(), once by hand).
4221  */
4222 int __cond_resched_lock(spinlock_t *lock)
4223 {
4224 	int resched = should_resched();
4225 	int ret = 0;
4226 
4227 	lockdep_assert_held(lock);
4228 
4229 	if (spin_needbreak(lock) || resched) {
4230 		spin_unlock(lock);
4231 		if (resched)
4232 			preempt_schedule_common();
4233 		else
4234 			cpu_relax();
4235 		ret = 1;
4236 		spin_lock(lock);
4237 	}
4238 	return ret;
4239 }
4240 EXPORT_SYMBOL(__cond_resched_lock);
4241 
4242 int __sched __cond_resched_softirq(void)
4243 {
4244 	BUG_ON(!in_softirq());
4245 
4246 	if (should_resched()) {
4247 		local_bh_enable();
4248 		preempt_schedule_common();
4249 		local_bh_disable();
4250 		return 1;
4251 	}
4252 	return 0;
4253 }
4254 EXPORT_SYMBOL(__cond_resched_softirq);
4255 
4256 /**
4257  * yield - yield the current processor to other threads.
4258  *
4259  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4260  *
4261  * The scheduler is at all times free to pick the calling task as the most
4262  * eligible task to run, if removing the yield() call from your code breaks
4263  * it, its already broken.
4264  *
4265  * Typical broken usage is:
4266  *
4267  * while (!event)
4268  * 	yield();
4269  *
4270  * where one assumes that yield() will let 'the other' process run that will
4271  * make event true. If the current task is a SCHED_FIFO task that will never
4272  * happen. Never use yield() as a progress guarantee!!
4273  *
4274  * If you want to use yield() to wait for something, use wait_event().
4275  * If you want to use yield() to be 'nice' for others, use cond_resched().
4276  * If you still want to use yield(), do not!
4277  */
4278 void __sched yield(void)
4279 {
4280 	set_current_state(TASK_RUNNING);
4281 	sys_sched_yield();
4282 }
4283 EXPORT_SYMBOL(yield);
4284 
4285 /**
4286  * yield_to - yield the current processor to another thread in
4287  * your thread group, or accelerate that thread toward the
4288  * processor it's on.
4289  * @p: target task
4290  * @preempt: whether task preemption is allowed or not
4291  *
4292  * It's the caller's job to ensure that the target task struct
4293  * can't go away on us before we can do any checks.
4294  *
4295  * Return:
4296  *	true (>0) if we indeed boosted the target task.
4297  *	false (0) if we failed to boost the target.
4298  *	-ESRCH if there's no task to yield to.
4299  */
4300 int __sched yield_to(struct task_struct *p, bool preempt)
4301 {
4302 	struct task_struct *curr = current;
4303 	struct rq *rq, *p_rq;
4304 	unsigned long flags;
4305 	int yielded = 0;
4306 
4307 	local_irq_save(flags);
4308 	rq = this_rq();
4309 
4310 again:
4311 	p_rq = task_rq(p);
4312 	/*
4313 	 * If we're the only runnable task on the rq and target rq also
4314 	 * has only one task, there's absolutely no point in yielding.
4315 	 */
4316 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4317 		yielded = -ESRCH;
4318 		goto out_irq;
4319 	}
4320 
4321 	double_rq_lock(rq, p_rq);
4322 	if (task_rq(p) != p_rq) {
4323 		double_rq_unlock(rq, p_rq);
4324 		goto again;
4325 	}
4326 
4327 	if (!curr->sched_class->yield_to_task)
4328 		goto out_unlock;
4329 
4330 	if (curr->sched_class != p->sched_class)
4331 		goto out_unlock;
4332 
4333 	if (task_running(p_rq, p) || p->state)
4334 		goto out_unlock;
4335 
4336 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4337 	if (yielded) {
4338 		schedstat_inc(rq, yld_count);
4339 		/*
4340 		 * Make p's CPU reschedule; pick_next_entity takes care of
4341 		 * fairness.
4342 		 */
4343 		if (preempt && rq != p_rq)
4344 			resched_curr(p_rq);
4345 	}
4346 
4347 out_unlock:
4348 	double_rq_unlock(rq, p_rq);
4349 out_irq:
4350 	local_irq_restore(flags);
4351 
4352 	if (yielded > 0)
4353 		schedule();
4354 
4355 	return yielded;
4356 }
4357 EXPORT_SYMBOL_GPL(yield_to);
4358 
4359 /*
4360  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4361  * that process accounting knows that this is a task in IO wait state.
4362  */
4363 long __sched io_schedule_timeout(long timeout)
4364 {
4365 	int old_iowait = current->in_iowait;
4366 	struct rq *rq;
4367 	long ret;
4368 
4369 	current->in_iowait = 1;
4370 	if (old_iowait)
4371 		blk_schedule_flush_plug(current);
4372 	else
4373 		blk_flush_plug(current);
4374 
4375 	delayacct_blkio_start();
4376 	rq = raw_rq();
4377 	atomic_inc(&rq->nr_iowait);
4378 	ret = schedule_timeout(timeout);
4379 	current->in_iowait = old_iowait;
4380 	atomic_dec(&rq->nr_iowait);
4381 	delayacct_blkio_end();
4382 
4383 	return ret;
4384 }
4385 EXPORT_SYMBOL(io_schedule_timeout);
4386 
4387 /**
4388  * sys_sched_get_priority_max - return maximum RT priority.
4389  * @policy: scheduling class.
4390  *
4391  * Return: On success, this syscall returns the maximum
4392  * rt_priority that can be used by a given scheduling class.
4393  * On failure, a negative error code is returned.
4394  */
4395 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4396 {
4397 	int ret = -EINVAL;
4398 
4399 	switch (policy) {
4400 	case SCHED_FIFO:
4401 	case SCHED_RR:
4402 		ret = MAX_USER_RT_PRIO-1;
4403 		break;
4404 	case SCHED_DEADLINE:
4405 	case SCHED_NORMAL:
4406 	case SCHED_BATCH:
4407 	case SCHED_IDLE:
4408 		ret = 0;
4409 		break;
4410 	}
4411 	return ret;
4412 }
4413 
4414 /**
4415  * sys_sched_get_priority_min - return minimum RT priority.
4416  * @policy: scheduling class.
4417  *
4418  * Return: On success, this syscall returns the minimum
4419  * rt_priority that can be used by a given scheduling class.
4420  * On failure, a negative error code is returned.
4421  */
4422 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4423 {
4424 	int ret = -EINVAL;
4425 
4426 	switch (policy) {
4427 	case SCHED_FIFO:
4428 	case SCHED_RR:
4429 		ret = 1;
4430 		break;
4431 	case SCHED_DEADLINE:
4432 	case SCHED_NORMAL:
4433 	case SCHED_BATCH:
4434 	case SCHED_IDLE:
4435 		ret = 0;
4436 	}
4437 	return ret;
4438 }
4439 
4440 /**
4441  * sys_sched_rr_get_interval - return the default timeslice of a process.
4442  * @pid: pid of the process.
4443  * @interval: userspace pointer to the timeslice value.
4444  *
4445  * this syscall writes the default timeslice value of a given process
4446  * into the user-space timespec buffer. A value of '0' means infinity.
4447  *
4448  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4449  * an error code.
4450  */
4451 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4452 		struct timespec __user *, interval)
4453 {
4454 	struct task_struct *p;
4455 	unsigned int time_slice;
4456 	unsigned long flags;
4457 	struct rq *rq;
4458 	int retval;
4459 	struct timespec t;
4460 
4461 	if (pid < 0)
4462 		return -EINVAL;
4463 
4464 	retval = -ESRCH;
4465 	rcu_read_lock();
4466 	p = find_process_by_pid(pid);
4467 	if (!p)
4468 		goto out_unlock;
4469 
4470 	retval = security_task_getscheduler(p);
4471 	if (retval)
4472 		goto out_unlock;
4473 
4474 	rq = task_rq_lock(p, &flags);
4475 	time_slice = 0;
4476 	if (p->sched_class->get_rr_interval)
4477 		time_slice = p->sched_class->get_rr_interval(rq, p);
4478 	task_rq_unlock(rq, p, &flags);
4479 
4480 	rcu_read_unlock();
4481 	jiffies_to_timespec(time_slice, &t);
4482 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4483 	return retval;
4484 
4485 out_unlock:
4486 	rcu_read_unlock();
4487 	return retval;
4488 }
4489 
4490 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4491 
4492 void sched_show_task(struct task_struct *p)
4493 {
4494 	unsigned long free = 0;
4495 	int ppid;
4496 	unsigned long state = p->state;
4497 
4498 	if (state)
4499 		state = __ffs(state) + 1;
4500 	printk(KERN_INFO "%-15.15s %c", p->comm,
4501 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4502 #if BITS_PER_LONG == 32
4503 	if (state == TASK_RUNNING)
4504 		printk(KERN_CONT " running  ");
4505 	else
4506 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4507 #else
4508 	if (state == TASK_RUNNING)
4509 		printk(KERN_CONT "  running task    ");
4510 	else
4511 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4512 #endif
4513 #ifdef CONFIG_DEBUG_STACK_USAGE
4514 	free = stack_not_used(p);
4515 #endif
4516 	ppid = 0;
4517 	rcu_read_lock();
4518 	if (pid_alive(p))
4519 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4520 	rcu_read_unlock();
4521 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4522 		task_pid_nr(p), ppid,
4523 		(unsigned long)task_thread_info(p)->flags);
4524 
4525 	print_worker_info(KERN_INFO, p);
4526 	show_stack(p, NULL);
4527 }
4528 
4529 void show_state_filter(unsigned long state_filter)
4530 {
4531 	struct task_struct *g, *p;
4532 
4533 #if BITS_PER_LONG == 32
4534 	printk(KERN_INFO
4535 		"  task                PC stack   pid father\n");
4536 #else
4537 	printk(KERN_INFO
4538 		"  task                        PC stack   pid father\n");
4539 #endif
4540 	rcu_read_lock();
4541 	for_each_process_thread(g, p) {
4542 		/*
4543 		 * reset the NMI-timeout, listing all files on a slow
4544 		 * console might take a lot of time:
4545 		 */
4546 		touch_nmi_watchdog();
4547 		if (!state_filter || (p->state & state_filter))
4548 			sched_show_task(p);
4549 	}
4550 
4551 	touch_all_softlockup_watchdogs();
4552 
4553 #ifdef CONFIG_SCHED_DEBUG
4554 	sysrq_sched_debug_show();
4555 #endif
4556 	rcu_read_unlock();
4557 	/*
4558 	 * Only show locks if all tasks are dumped:
4559 	 */
4560 	if (!state_filter)
4561 		debug_show_all_locks();
4562 }
4563 
4564 void init_idle_bootup_task(struct task_struct *idle)
4565 {
4566 	idle->sched_class = &idle_sched_class;
4567 }
4568 
4569 /**
4570  * init_idle - set up an idle thread for a given CPU
4571  * @idle: task in question
4572  * @cpu: cpu the idle task belongs to
4573  *
4574  * NOTE: this function does not set the idle thread's NEED_RESCHED
4575  * flag, to make booting more robust.
4576  */
4577 void init_idle(struct task_struct *idle, int cpu)
4578 {
4579 	struct rq *rq = cpu_rq(cpu);
4580 	unsigned long flags;
4581 
4582 	raw_spin_lock_irqsave(&rq->lock, flags);
4583 
4584 	__sched_fork(0, idle);
4585 	idle->state = TASK_RUNNING;
4586 	idle->se.exec_start = sched_clock();
4587 
4588 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4589 	/*
4590 	 * We're having a chicken and egg problem, even though we are
4591 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4592 	 * lockdep check in task_group() will fail.
4593 	 *
4594 	 * Similar case to sched_fork(). / Alternatively we could
4595 	 * use task_rq_lock() here and obtain the other rq->lock.
4596 	 *
4597 	 * Silence PROVE_RCU
4598 	 */
4599 	rcu_read_lock();
4600 	__set_task_cpu(idle, cpu);
4601 	rcu_read_unlock();
4602 
4603 	rq->curr = rq->idle = idle;
4604 	idle->on_rq = TASK_ON_RQ_QUEUED;
4605 #if defined(CONFIG_SMP)
4606 	idle->on_cpu = 1;
4607 #endif
4608 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4609 
4610 	/* Set the preempt count _outside_ the spinlocks! */
4611 	init_idle_preempt_count(idle, cpu);
4612 
4613 	/*
4614 	 * The idle tasks have their own, simple scheduling class:
4615 	 */
4616 	idle->sched_class = &idle_sched_class;
4617 	ftrace_graph_init_idle_task(idle, cpu);
4618 	vtime_init_idle(idle, cpu);
4619 #if defined(CONFIG_SMP)
4620 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4621 #endif
4622 }
4623 
4624 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4625 			      const struct cpumask *trial)
4626 {
4627 	int ret = 1, trial_cpus;
4628 	struct dl_bw *cur_dl_b;
4629 	unsigned long flags;
4630 
4631 	if (!cpumask_weight(cur))
4632 		return ret;
4633 
4634 	rcu_read_lock_sched();
4635 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4636 	trial_cpus = cpumask_weight(trial);
4637 
4638 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4639 	if (cur_dl_b->bw != -1 &&
4640 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4641 		ret = 0;
4642 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4643 	rcu_read_unlock_sched();
4644 
4645 	return ret;
4646 }
4647 
4648 int task_can_attach(struct task_struct *p,
4649 		    const struct cpumask *cs_cpus_allowed)
4650 {
4651 	int ret = 0;
4652 
4653 	/*
4654 	 * Kthreads which disallow setaffinity shouldn't be moved
4655 	 * to a new cpuset; we don't want to change their cpu
4656 	 * affinity and isolating such threads by their set of
4657 	 * allowed nodes is unnecessary.  Thus, cpusets are not
4658 	 * applicable for such threads.  This prevents checking for
4659 	 * success of set_cpus_allowed_ptr() on all attached tasks
4660 	 * before cpus_allowed may be changed.
4661 	 */
4662 	if (p->flags & PF_NO_SETAFFINITY) {
4663 		ret = -EINVAL;
4664 		goto out;
4665 	}
4666 
4667 #ifdef CONFIG_SMP
4668 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4669 					      cs_cpus_allowed)) {
4670 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4671 							cs_cpus_allowed);
4672 		struct dl_bw *dl_b;
4673 		bool overflow;
4674 		int cpus;
4675 		unsigned long flags;
4676 
4677 		rcu_read_lock_sched();
4678 		dl_b = dl_bw_of(dest_cpu);
4679 		raw_spin_lock_irqsave(&dl_b->lock, flags);
4680 		cpus = dl_bw_cpus(dest_cpu);
4681 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4682 		if (overflow)
4683 			ret = -EBUSY;
4684 		else {
4685 			/*
4686 			 * We reserve space for this task in the destination
4687 			 * root_domain, as we can't fail after this point.
4688 			 * We will free resources in the source root_domain
4689 			 * later on (see set_cpus_allowed_dl()).
4690 			 */
4691 			__dl_add(dl_b, p->dl.dl_bw);
4692 		}
4693 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4694 		rcu_read_unlock_sched();
4695 
4696 	}
4697 #endif
4698 out:
4699 	return ret;
4700 }
4701 
4702 #ifdef CONFIG_SMP
4703 /*
4704  * move_queued_task - move a queued task to new rq.
4705  *
4706  * Returns (locked) new rq. Old rq's lock is released.
4707  */
4708 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4709 {
4710 	struct rq *rq = task_rq(p);
4711 
4712 	lockdep_assert_held(&rq->lock);
4713 
4714 	dequeue_task(rq, p, 0);
4715 	p->on_rq = TASK_ON_RQ_MIGRATING;
4716 	set_task_cpu(p, new_cpu);
4717 	raw_spin_unlock(&rq->lock);
4718 
4719 	rq = cpu_rq(new_cpu);
4720 
4721 	raw_spin_lock(&rq->lock);
4722 	BUG_ON(task_cpu(p) != new_cpu);
4723 	p->on_rq = TASK_ON_RQ_QUEUED;
4724 	enqueue_task(rq, p, 0);
4725 	check_preempt_curr(rq, p, 0);
4726 
4727 	return rq;
4728 }
4729 
4730 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4731 {
4732 	if (p->sched_class->set_cpus_allowed)
4733 		p->sched_class->set_cpus_allowed(p, new_mask);
4734 
4735 	cpumask_copy(&p->cpus_allowed, new_mask);
4736 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4737 }
4738 
4739 /*
4740  * This is how migration works:
4741  *
4742  * 1) we invoke migration_cpu_stop() on the target CPU using
4743  *    stop_one_cpu().
4744  * 2) stopper starts to run (implicitly forcing the migrated thread
4745  *    off the CPU)
4746  * 3) it checks whether the migrated task is still in the wrong runqueue.
4747  * 4) if it's in the wrong runqueue then the migration thread removes
4748  *    it and puts it into the right queue.
4749  * 5) stopper completes and stop_one_cpu() returns and the migration
4750  *    is done.
4751  */
4752 
4753 /*
4754  * Change a given task's CPU affinity. Migrate the thread to a
4755  * proper CPU and schedule it away if the CPU it's executing on
4756  * is removed from the allowed bitmask.
4757  *
4758  * NOTE: the caller must have a valid reference to the task, the
4759  * task must not exit() & deallocate itself prematurely. The
4760  * call is not atomic; no spinlocks may be held.
4761  */
4762 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4763 {
4764 	unsigned long flags;
4765 	struct rq *rq;
4766 	unsigned int dest_cpu;
4767 	int ret = 0;
4768 
4769 	rq = task_rq_lock(p, &flags);
4770 
4771 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4772 		goto out;
4773 
4774 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4775 		ret = -EINVAL;
4776 		goto out;
4777 	}
4778 
4779 	do_set_cpus_allowed(p, new_mask);
4780 
4781 	/* Can the task run on the task's current CPU? If so, we're done */
4782 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4783 		goto out;
4784 
4785 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4786 	if (task_running(rq, p) || p->state == TASK_WAKING) {
4787 		struct migration_arg arg = { p, dest_cpu };
4788 		/* Need help from migration thread: drop lock and wait. */
4789 		task_rq_unlock(rq, p, &flags);
4790 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4791 		tlb_migrate_finish(p->mm);
4792 		return 0;
4793 	} else if (task_on_rq_queued(p))
4794 		rq = move_queued_task(p, dest_cpu);
4795 out:
4796 	task_rq_unlock(rq, p, &flags);
4797 
4798 	return ret;
4799 }
4800 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4801 
4802 /*
4803  * Move (not current) task off this cpu, onto dest cpu. We're doing
4804  * this because either it can't run here any more (set_cpus_allowed()
4805  * away from this CPU, or CPU going down), or because we're
4806  * attempting to rebalance this task on exec (sched_exec).
4807  *
4808  * So we race with normal scheduler movements, but that's OK, as long
4809  * as the task is no longer on this CPU.
4810  *
4811  * Returns non-zero if task was successfully migrated.
4812  */
4813 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4814 {
4815 	struct rq *rq;
4816 	int ret = 0;
4817 
4818 	if (unlikely(!cpu_active(dest_cpu)))
4819 		return ret;
4820 
4821 	rq = cpu_rq(src_cpu);
4822 
4823 	raw_spin_lock(&p->pi_lock);
4824 	raw_spin_lock(&rq->lock);
4825 	/* Already moved. */
4826 	if (task_cpu(p) != src_cpu)
4827 		goto done;
4828 
4829 	/* Affinity changed (again). */
4830 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4831 		goto fail;
4832 
4833 	/*
4834 	 * If we're not on a rq, the next wake-up will ensure we're
4835 	 * placed properly.
4836 	 */
4837 	if (task_on_rq_queued(p))
4838 		rq = move_queued_task(p, dest_cpu);
4839 done:
4840 	ret = 1;
4841 fail:
4842 	raw_spin_unlock(&rq->lock);
4843 	raw_spin_unlock(&p->pi_lock);
4844 	return ret;
4845 }
4846 
4847 #ifdef CONFIG_NUMA_BALANCING
4848 /* Migrate current task p to target_cpu */
4849 int migrate_task_to(struct task_struct *p, int target_cpu)
4850 {
4851 	struct migration_arg arg = { p, target_cpu };
4852 	int curr_cpu = task_cpu(p);
4853 
4854 	if (curr_cpu == target_cpu)
4855 		return 0;
4856 
4857 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4858 		return -EINVAL;
4859 
4860 	/* TODO: This is not properly updating schedstats */
4861 
4862 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4863 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4864 }
4865 
4866 /*
4867  * Requeue a task on a given node and accurately track the number of NUMA
4868  * tasks on the runqueues
4869  */
4870 void sched_setnuma(struct task_struct *p, int nid)
4871 {
4872 	struct rq *rq;
4873 	unsigned long flags;
4874 	bool queued, running;
4875 
4876 	rq = task_rq_lock(p, &flags);
4877 	queued = task_on_rq_queued(p);
4878 	running = task_current(rq, p);
4879 
4880 	if (queued)
4881 		dequeue_task(rq, p, 0);
4882 	if (running)
4883 		put_prev_task(rq, p);
4884 
4885 	p->numa_preferred_nid = nid;
4886 
4887 	if (running)
4888 		p->sched_class->set_curr_task(rq);
4889 	if (queued)
4890 		enqueue_task(rq, p, 0);
4891 	task_rq_unlock(rq, p, &flags);
4892 }
4893 #endif
4894 
4895 /*
4896  * migration_cpu_stop - this will be executed by a highprio stopper thread
4897  * and performs thread migration by bumping thread off CPU then
4898  * 'pushing' onto another runqueue.
4899  */
4900 static int migration_cpu_stop(void *data)
4901 {
4902 	struct migration_arg *arg = data;
4903 
4904 	/*
4905 	 * The original target cpu might have gone down and we might
4906 	 * be on another cpu but it doesn't matter.
4907 	 */
4908 	local_irq_disable();
4909 	/*
4910 	 * We need to explicitly wake pending tasks before running
4911 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4912 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4913 	 */
4914 	sched_ttwu_pending();
4915 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4916 	local_irq_enable();
4917 	return 0;
4918 }
4919 
4920 #ifdef CONFIG_HOTPLUG_CPU
4921 
4922 /*
4923  * Ensures that the idle task is using init_mm right before its cpu goes
4924  * offline.
4925  */
4926 void idle_task_exit(void)
4927 {
4928 	struct mm_struct *mm = current->active_mm;
4929 
4930 	BUG_ON(cpu_online(smp_processor_id()));
4931 
4932 	if (mm != &init_mm) {
4933 		switch_mm(mm, &init_mm, current);
4934 		finish_arch_post_lock_switch();
4935 	}
4936 	mmdrop(mm);
4937 }
4938 
4939 /*
4940  * Since this CPU is going 'away' for a while, fold any nr_active delta
4941  * we might have. Assumes we're called after migrate_tasks() so that the
4942  * nr_active count is stable.
4943  *
4944  * Also see the comment "Global load-average calculations".
4945  */
4946 static void calc_load_migrate(struct rq *rq)
4947 {
4948 	long delta = calc_load_fold_active(rq);
4949 	if (delta)
4950 		atomic_long_add(delta, &calc_load_tasks);
4951 }
4952 
4953 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4954 {
4955 }
4956 
4957 static const struct sched_class fake_sched_class = {
4958 	.put_prev_task = put_prev_task_fake,
4959 };
4960 
4961 static struct task_struct fake_task = {
4962 	/*
4963 	 * Avoid pull_{rt,dl}_task()
4964 	 */
4965 	.prio = MAX_PRIO + 1,
4966 	.sched_class = &fake_sched_class,
4967 };
4968 
4969 /*
4970  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4971  * try_to_wake_up()->select_task_rq().
4972  *
4973  * Called with rq->lock held even though we'er in stop_machine() and
4974  * there's no concurrency possible, we hold the required locks anyway
4975  * because of lock validation efforts.
4976  */
4977 static void migrate_tasks(unsigned int dead_cpu)
4978 {
4979 	struct rq *rq = cpu_rq(dead_cpu);
4980 	struct task_struct *next, *stop = rq->stop;
4981 	int dest_cpu;
4982 
4983 	/*
4984 	 * Fudge the rq selection such that the below task selection loop
4985 	 * doesn't get stuck on the currently eligible stop task.
4986 	 *
4987 	 * We're currently inside stop_machine() and the rq is either stuck
4988 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4989 	 * either way we should never end up calling schedule() until we're
4990 	 * done here.
4991 	 */
4992 	rq->stop = NULL;
4993 
4994 	/*
4995 	 * put_prev_task() and pick_next_task() sched
4996 	 * class method both need to have an up-to-date
4997 	 * value of rq->clock[_task]
4998 	 */
4999 	update_rq_clock(rq);
5000 
5001 	for ( ; ; ) {
5002 		/*
5003 		 * There's this thread running, bail when that's the only
5004 		 * remaining thread.
5005 		 */
5006 		if (rq->nr_running == 1)
5007 			break;
5008 
5009 		next = pick_next_task(rq, &fake_task);
5010 		BUG_ON(!next);
5011 		next->sched_class->put_prev_task(rq, next);
5012 
5013 		/* Find suitable destination for @next, with force if needed. */
5014 		dest_cpu = select_fallback_rq(dead_cpu, next);
5015 		raw_spin_unlock(&rq->lock);
5016 
5017 		__migrate_task(next, dead_cpu, dest_cpu);
5018 
5019 		raw_spin_lock(&rq->lock);
5020 	}
5021 
5022 	rq->stop = stop;
5023 }
5024 
5025 #endif /* CONFIG_HOTPLUG_CPU */
5026 
5027 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5028 
5029 static struct ctl_table sd_ctl_dir[] = {
5030 	{
5031 		.procname	= "sched_domain",
5032 		.mode		= 0555,
5033 	},
5034 	{}
5035 };
5036 
5037 static struct ctl_table sd_ctl_root[] = {
5038 	{
5039 		.procname	= "kernel",
5040 		.mode		= 0555,
5041 		.child		= sd_ctl_dir,
5042 	},
5043 	{}
5044 };
5045 
5046 static struct ctl_table *sd_alloc_ctl_entry(int n)
5047 {
5048 	struct ctl_table *entry =
5049 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5050 
5051 	return entry;
5052 }
5053 
5054 static void sd_free_ctl_entry(struct ctl_table **tablep)
5055 {
5056 	struct ctl_table *entry;
5057 
5058 	/*
5059 	 * In the intermediate directories, both the child directory and
5060 	 * procname are dynamically allocated and could fail but the mode
5061 	 * will always be set. In the lowest directory the names are
5062 	 * static strings and all have proc handlers.
5063 	 */
5064 	for (entry = *tablep; entry->mode; entry++) {
5065 		if (entry->child)
5066 			sd_free_ctl_entry(&entry->child);
5067 		if (entry->proc_handler == NULL)
5068 			kfree(entry->procname);
5069 	}
5070 
5071 	kfree(*tablep);
5072 	*tablep = NULL;
5073 }
5074 
5075 static int min_load_idx = 0;
5076 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5077 
5078 static void
5079 set_table_entry(struct ctl_table *entry,
5080 		const char *procname, void *data, int maxlen,
5081 		umode_t mode, proc_handler *proc_handler,
5082 		bool load_idx)
5083 {
5084 	entry->procname = procname;
5085 	entry->data = data;
5086 	entry->maxlen = maxlen;
5087 	entry->mode = mode;
5088 	entry->proc_handler = proc_handler;
5089 
5090 	if (load_idx) {
5091 		entry->extra1 = &min_load_idx;
5092 		entry->extra2 = &max_load_idx;
5093 	}
5094 }
5095 
5096 static struct ctl_table *
5097 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5098 {
5099 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5100 
5101 	if (table == NULL)
5102 		return NULL;
5103 
5104 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5105 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5106 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5107 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5108 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5109 		sizeof(int), 0644, proc_dointvec_minmax, true);
5110 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5111 		sizeof(int), 0644, proc_dointvec_minmax, true);
5112 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5113 		sizeof(int), 0644, proc_dointvec_minmax, true);
5114 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5115 		sizeof(int), 0644, proc_dointvec_minmax, true);
5116 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5117 		sizeof(int), 0644, proc_dointvec_minmax, true);
5118 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5119 		sizeof(int), 0644, proc_dointvec_minmax, false);
5120 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5121 		sizeof(int), 0644, proc_dointvec_minmax, false);
5122 	set_table_entry(&table[9], "cache_nice_tries",
5123 		&sd->cache_nice_tries,
5124 		sizeof(int), 0644, proc_dointvec_minmax, false);
5125 	set_table_entry(&table[10], "flags", &sd->flags,
5126 		sizeof(int), 0644, proc_dointvec_minmax, false);
5127 	set_table_entry(&table[11], "max_newidle_lb_cost",
5128 		&sd->max_newidle_lb_cost,
5129 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5130 	set_table_entry(&table[12], "name", sd->name,
5131 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5132 	/* &table[13] is terminator */
5133 
5134 	return table;
5135 }
5136 
5137 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5138 {
5139 	struct ctl_table *entry, *table;
5140 	struct sched_domain *sd;
5141 	int domain_num = 0, i;
5142 	char buf[32];
5143 
5144 	for_each_domain(cpu, sd)
5145 		domain_num++;
5146 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5147 	if (table == NULL)
5148 		return NULL;
5149 
5150 	i = 0;
5151 	for_each_domain(cpu, sd) {
5152 		snprintf(buf, 32, "domain%d", i);
5153 		entry->procname = kstrdup(buf, GFP_KERNEL);
5154 		entry->mode = 0555;
5155 		entry->child = sd_alloc_ctl_domain_table(sd);
5156 		entry++;
5157 		i++;
5158 	}
5159 	return table;
5160 }
5161 
5162 static struct ctl_table_header *sd_sysctl_header;
5163 static void register_sched_domain_sysctl(void)
5164 {
5165 	int i, cpu_num = num_possible_cpus();
5166 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5167 	char buf[32];
5168 
5169 	WARN_ON(sd_ctl_dir[0].child);
5170 	sd_ctl_dir[0].child = entry;
5171 
5172 	if (entry == NULL)
5173 		return;
5174 
5175 	for_each_possible_cpu(i) {
5176 		snprintf(buf, 32, "cpu%d", i);
5177 		entry->procname = kstrdup(buf, GFP_KERNEL);
5178 		entry->mode = 0555;
5179 		entry->child = sd_alloc_ctl_cpu_table(i);
5180 		entry++;
5181 	}
5182 
5183 	WARN_ON(sd_sysctl_header);
5184 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5185 }
5186 
5187 /* may be called multiple times per register */
5188 static void unregister_sched_domain_sysctl(void)
5189 {
5190 	if (sd_sysctl_header)
5191 		unregister_sysctl_table(sd_sysctl_header);
5192 	sd_sysctl_header = NULL;
5193 	if (sd_ctl_dir[0].child)
5194 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5195 }
5196 #else
5197 static void register_sched_domain_sysctl(void)
5198 {
5199 }
5200 static void unregister_sched_domain_sysctl(void)
5201 {
5202 }
5203 #endif
5204 
5205 static void set_rq_online(struct rq *rq)
5206 {
5207 	if (!rq->online) {
5208 		const struct sched_class *class;
5209 
5210 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5211 		rq->online = 1;
5212 
5213 		for_each_class(class) {
5214 			if (class->rq_online)
5215 				class->rq_online(rq);
5216 		}
5217 	}
5218 }
5219 
5220 static void set_rq_offline(struct rq *rq)
5221 {
5222 	if (rq->online) {
5223 		const struct sched_class *class;
5224 
5225 		for_each_class(class) {
5226 			if (class->rq_offline)
5227 				class->rq_offline(rq);
5228 		}
5229 
5230 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5231 		rq->online = 0;
5232 	}
5233 }
5234 
5235 /*
5236  * migration_call - callback that gets triggered when a CPU is added.
5237  * Here we can start up the necessary migration thread for the new CPU.
5238  */
5239 static int
5240 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5241 {
5242 	int cpu = (long)hcpu;
5243 	unsigned long flags;
5244 	struct rq *rq = cpu_rq(cpu);
5245 
5246 	switch (action & ~CPU_TASKS_FROZEN) {
5247 
5248 	case CPU_UP_PREPARE:
5249 		rq->calc_load_update = calc_load_update;
5250 		break;
5251 
5252 	case CPU_ONLINE:
5253 		/* Update our root-domain */
5254 		raw_spin_lock_irqsave(&rq->lock, flags);
5255 		if (rq->rd) {
5256 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5257 
5258 			set_rq_online(rq);
5259 		}
5260 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5261 		break;
5262 
5263 #ifdef CONFIG_HOTPLUG_CPU
5264 	case CPU_DYING:
5265 		sched_ttwu_pending();
5266 		/* Update our root-domain */
5267 		raw_spin_lock_irqsave(&rq->lock, flags);
5268 		if (rq->rd) {
5269 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5270 			set_rq_offline(rq);
5271 		}
5272 		migrate_tasks(cpu);
5273 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5274 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5275 		break;
5276 
5277 	case CPU_DEAD:
5278 		calc_load_migrate(rq);
5279 		break;
5280 #endif
5281 	}
5282 
5283 	update_max_interval();
5284 
5285 	return NOTIFY_OK;
5286 }
5287 
5288 /*
5289  * Register at high priority so that task migration (migrate_all_tasks)
5290  * happens before everything else.  This has to be lower priority than
5291  * the notifier in the perf_event subsystem, though.
5292  */
5293 static struct notifier_block migration_notifier = {
5294 	.notifier_call = migration_call,
5295 	.priority = CPU_PRI_MIGRATION,
5296 };
5297 
5298 static void __cpuinit set_cpu_rq_start_time(void)
5299 {
5300 	int cpu = smp_processor_id();
5301 	struct rq *rq = cpu_rq(cpu);
5302 	rq->age_stamp = sched_clock_cpu(cpu);
5303 }
5304 
5305 static int sched_cpu_active(struct notifier_block *nfb,
5306 				      unsigned long action, void *hcpu)
5307 {
5308 	switch (action & ~CPU_TASKS_FROZEN) {
5309 	case CPU_STARTING:
5310 		set_cpu_rq_start_time();
5311 		return NOTIFY_OK;
5312 	case CPU_DOWN_FAILED:
5313 		set_cpu_active((long)hcpu, true);
5314 		return NOTIFY_OK;
5315 	default:
5316 		return NOTIFY_DONE;
5317 	}
5318 }
5319 
5320 static int sched_cpu_inactive(struct notifier_block *nfb,
5321 					unsigned long action, void *hcpu)
5322 {
5323 	unsigned long flags;
5324 	long cpu = (long)hcpu;
5325 	struct dl_bw *dl_b;
5326 
5327 	switch (action & ~CPU_TASKS_FROZEN) {
5328 	case CPU_DOWN_PREPARE:
5329 		set_cpu_active(cpu, false);
5330 
5331 		/* explicitly allow suspend */
5332 		if (!(action & CPU_TASKS_FROZEN)) {
5333 			bool overflow;
5334 			int cpus;
5335 
5336 			rcu_read_lock_sched();
5337 			dl_b = dl_bw_of(cpu);
5338 
5339 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5340 			cpus = dl_bw_cpus(cpu);
5341 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5342 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5343 
5344 			rcu_read_unlock_sched();
5345 
5346 			if (overflow)
5347 				return notifier_from_errno(-EBUSY);
5348 		}
5349 		return NOTIFY_OK;
5350 	}
5351 
5352 	return NOTIFY_DONE;
5353 }
5354 
5355 static int __init migration_init(void)
5356 {
5357 	void *cpu = (void *)(long)smp_processor_id();
5358 	int err;
5359 
5360 	/* Initialize migration for the boot CPU */
5361 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5362 	BUG_ON(err == NOTIFY_BAD);
5363 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5364 	register_cpu_notifier(&migration_notifier);
5365 
5366 	/* Register cpu active notifiers */
5367 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5368 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5369 
5370 	return 0;
5371 }
5372 early_initcall(migration_init);
5373 #endif
5374 
5375 #ifdef CONFIG_SMP
5376 
5377 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5378 
5379 #ifdef CONFIG_SCHED_DEBUG
5380 
5381 static __read_mostly int sched_debug_enabled;
5382 
5383 static int __init sched_debug_setup(char *str)
5384 {
5385 	sched_debug_enabled = 1;
5386 
5387 	return 0;
5388 }
5389 early_param("sched_debug", sched_debug_setup);
5390 
5391 static inline bool sched_debug(void)
5392 {
5393 	return sched_debug_enabled;
5394 }
5395 
5396 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5397 				  struct cpumask *groupmask)
5398 {
5399 	struct sched_group *group = sd->groups;
5400 
5401 	cpumask_clear(groupmask);
5402 
5403 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5404 
5405 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5406 		printk("does not load-balance\n");
5407 		if (sd->parent)
5408 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5409 					" has parent");
5410 		return -1;
5411 	}
5412 
5413 	printk(KERN_CONT "span %*pbl level %s\n",
5414 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5415 
5416 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5417 		printk(KERN_ERR "ERROR: domain->span does not contain "
5418 				"CPU%d\n", cpu);
5419 	}
5420 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5421 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5422 				" CPU%d\n", cpu);
5423 	}
5424 
5425 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5426 	do {
5427 		if (!group) {
5428 			printk("\n");
5429 			printk(KERN_ERR "ERROR: group is NULL\n");
5430 			break;
5431 		}
5432 
5433 		/*
5434 		 * Even though we initialize ->capacity to something semi-sane,
5435 		 * we leave capacity_orig unset. This allows us to detect if
5436 		 * domain iteration is still funny without causing /0 traps.
5437 		 */
5438 		if (!group->sgc->capacity_orig) {
5439 			printk(KERN_CONT "\n");
5440 			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5441 			break;
5442 		}
5443 
5444 		if (!cpumask_weight(sched_group_cpus(group))) {
5445 			printk(KERN_CONT "\n");
5446 			printk(KERN_ERR "ERROR: empty group\n");
5447 			break;
5448 		}
5449 
5450 		if (!(sd->flags & SD_OVERLAP) &&
5451 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5452 			printk(KERN_CONT "\n");
5453 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5454 			break;
5455 		}
5456 
5457 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5458 
5459 		printk(KERN_CONT " %*pbl",
5460 		       cpumask_pr_args(sched_group_cpus(group)));
5461 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5462 			printk(KERN_CONT " (cpu_capacity = %d)",
5463 				group->sgc->capacity);
5464 		}
5465 
5466 		group = group->next;
5467 	} while (group != sd->groups);
5468 	printk(KERN_CONT "\n");
5469 
5470 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5471 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5472 
5473 	if (sd->parent &&
5474 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5475 		printk(KERN_ERR "ERROR: parent span is not a superset "
5476 			"of domain->span\n");
5477 	return 0;
5478 }
5479 
5480 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5481 {
5482 	int level = 0;
5483 
5484 	if (!sched_debug_enabled)
5485 		return;
5486 
5487 	if (!sd) {
5488 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5489 		return;
5490 	}
5491 
5492 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5493 
5494 	for (;;) {
5495 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5496 			break;
5497 		level++;
5498 		sd = sd->parent;
5499 		if (!sd)
5500 			break;
5501 	}
5502 }
5503 #else /* !CONFIG_SCHED_DEBUG */
5504 # define sched_domain_debug(sd, cpu) do { } while (0)
5505 static inline bool sched_debug(void)
5506 {
5507 	return false;
5508 }
5509 #endif /* CONFIG_SCHED_DEBUG */
5510 
5511 static int sd_degenerate(struct sched_domain *sd)
5512 {
5513 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5514 		return 1;
5515 
5516 	/* Following flags need at least 2 groups */
5517 	if (sd->flags & (SD_LOAD_BALANCE |
5518 			 SD_BALANCE_NEWIDLE |
5519 			 SD_BALANCE_FORK |
5520 			 SD_BALANCE_EXEC |
5521 			 SD_SHARE_CPUCAPACITY |
5522 			 SD_SHARE_PKG_RESOURCES |
5523 			 SD_SHARE_POWERDOMAIN)) {
5524 		if (sd->groups != sd->groups->next)
5525 			return 0;
5526 	}
5527 
5528 	/* Following flags don't use groups */
5529 	if (sd->flags & (SD_WAKE_AFFINE))
5530 		return 0;
5531 
5532 	return 1;
5533 }
5534 
5535 static int
5536 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5537 {
5538 	unsigned long cflags = sd->flags, pflags = parent->flags;
5539 
5540 	if (sd_degenerate(parent))
5541 		return 1;
5542 
5543 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5544 		return 0;
5545 
5546 	/* Flags needing groups don't count if only 1 group in parent */
5547 	if (parent->groups == parent->groups->next) {
5548 		pflags &= ~(SD_LOAD_BALANCE |
5549 				SD_BALANCE_NEWIDLE |
5550 				SD_BALANCE_FORK |
5551 				SD_BALANCE_EXEC |
5552 				SD_SHARE_CPUCAPACITY |
5553 				SD_SHARE_PKG_RESOURCES |
5554 				SD_PREFER_SIBLING |
5555 				SD_SHARE_POWERDOMAIN);
5556 		if (nr_node_ids == 1)
5557 			pflags &= ~SD_SERIALIZE;
5558 	}
5559 	if (~cflags & pflags)
5560 		return 0;
5561 
5562 	return 1;
5563 }
5564 
5565 static void free_rootdomain(struct rcu_head *rcu)
5566 {
5567 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5568 
5569 	cpupri_cleanup(&rd->cpupri);
5570 	cpudl_cleanup(&rd->cpudl);
5571 	free_cpumask_var(rd->dlo_mask);
5572 	free_cpumask_var(rd->rto_mask);
5573 	free_cpumask_var(rd->online);
5574 	free_cpumask_var(rd->span);
5575 	kfree(rd);
5576 }
5577 
5578 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5579 {
5580 	struct root_domain *old_rd = NULL;
5581 	unsigned long flags;
5582 
5583 	raw_spin_lock_irqsave(&rq->lock, flags);
5584 
5585 	if (rq->rd) {
5586 		old_rd = rq->rd;
5587 
5588 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5589 			set_rq_offline(rq);
5590 
5591 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5592 
5593 		/*
5594 		 * If we dont want to free the old_rd yet then
5595 		 * set old_rd to NULL to skip the freeing later
5596 		 * in this function:
5597 		 */
5598 		if (!atomic_dec_and_test(&old_rd->refcount))
5599 			old_rd = NULL;
5600 	}
5601 
5602 	atomic_inc(&rd->refcount);
5603 	rq->rd = rd;
5604 
5605 	cpumask_set_cpu(rq->cpu, rd->span);
5606 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5607 		set_rq_online(rq);
5608 
5609 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5610 
5611 	if (old_rd)
5612 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5613 }
5614 
5615 static int init_rootdomain(struct root_domain *rd)
5616 {
5617 	memset(rd, 0, sizeof(*rd));
5618 
5619 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5620 		goto out;
5621 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5622 		goto free_span;
5623 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5624 		goto free_online;
5625 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5626 		goto free_dlo_mask;
5627 
5628 	init_dl_bw(&rd->dl_bw);
5629 	if (cpudl_init(&rd->cpudl) != 0)
5630 		goto free_dlo_mask;
5631 
5632 	if (cpupri_init(&rd->cpupri) != 0)
5633 		goto free_rto_mask;
5634 	return 0;
5635 
5636 free_rto_mask:
5637 	free_cpumask_var(rd->rto_mask);
5638 free_dlo_mask:
5639 	free_cpumask_var(rd->dlo_mask);
5640 free_online:
5641 	free_cpumask_var(rd->online);
5642 free_span:
5643 	free_cpumask_var(rd->span);
5644 out:
5645 	return -ENOMEM;
5646 }
5647 
5648 /*
5649  * By default the system creates a single root-domain with all cpus as
5650  * members (mimicking the global state we have today).
5651  */
5652 struct root_domain def_root_domain;
5653 
5654 static void init_defrootdomain(void)
5655 {
5656 	init_rootdomain(&def_root_domain);
5657 
5658 	atomic_set(&def_root_domain.refcount, 1);
5659 }
5660 
5661 static struct root_domain *alloc_rootdomain(void)
5662 {
5663 	struct root_domain *rd;
5664 
5665 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5666 	if (!rd)
5667 		return NULL;
5668 
5669 	if (init_rootdomain(rd) != 0) {
5670 		kfree(rd);
5671 		return NULL;
5672 	}
5673 
5674 	return rd;
5675 }
5676 
5677 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5678 {
5679 	struct sched_group *tmp, *first;
5680 
5681 	if (!sg)
5682 		return;
5683 
5684 	first = sg;
5685 	do {
5686 		tmp = sg->next;
5687 
5688 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5689 			kfree(sg->sgc);
5690 
5691 		kfree(sg);
5692 		sg = tmp;
5693 	} while (sg != first);
5694 }
5695 
5696 static void free_sched_domain(struct rcu_head *rcu)
5697 {
5698 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5699 
5700 	/*
5701 	 * If its an overlapping domain it has private groups, iterate and
5702 	 * nuke them all.
5703 	 */
5704 	if (sd->flags & SD_OVERLAP) {
5705 		free_sched_groups(sd->groups, 1);
5706 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5707 		kfree(sd->groups->sgc);
5708 		kfree(sd->groups);
5709 	}
5710 	kfree(sd);
5711 }
5712 
5713 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5714 {
5715 	call_rcu(&sd->rcu, free_sched_domain);
5716 }
5717 
5718 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5719 {
5720 	for (; sd; sd = sd->parent)
5721 		destroy_sched_domain(sd, cpu);
5722 }
5723 
5724 /*
5725  * Keep a special pointer to the highest sched_domain that has
5726  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5727  * allows us to avoid some pointer chasing select_idle_sibling().
5728  *
5729  * Also keep a unique ID per domain (we use the first cpu number in
5730  * the cpumask of the domain), this allows us to quickly tell if
5731  * two cpus are in the same cache domain, see cpus_share_cache().
5732  */
5733 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5734 DEFINE_PER_CPU(int, sd_llc_size);
5735 DEFINE_PER_CPU(int, sd_llc_id);
5736 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5737 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5738 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5739 
5740 static void update_top_cache_domain(int cpu)
5741 {
5742 	struct sched_domain *sd;
5743 	struct sched_domain *busy_sd = NULL;
5744 	int id = cpu;
5745 	int size = 1;
5746 
5747 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5748 	if (sd) {
5749 		id = cpumask_first(sched_domain_span(sd));
5750 		size = cpumask_weight(sched_domain_span(sd));
5751 		busy_sd = sd->parent; /* sd_busy */
5752 	}
5753 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5754 
5755 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5756 	per_cpu(sd_llc_size, cpu) = size;
5757 	per_cpu(sd_llc_id, cpu) = id;
5758 
5759 	sd = lowest_flag_domain(cpu, SD_NUMA);
5760 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5761 
5762 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5763 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5764 }
5765 
5766 /*
5767  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5768  * hold the hotplug lock.
5769  */
5770 static void
5771 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5772 {
5773 	struct rq *rq = cpu_rq(cpu);
5774 	struct sched_domain *tmp;
5775 
5776 	/* Remove the sched domains which do not contribute to scheduling. */
5777 	for (tmp = sd; tmp; ) {
5778 		struct sched_domain *parent = tmp->parent;
5779 		if (!parent)
5780 			break;
5781 
5782 		if (sd_parent_degenerate(tmp, parent)) {
5783 			tmp->parent = parent->parent;
5784 			if (parent->parent)
5785 				parent->parent->child = tmp;
5786 			/*
5787 			 * Transfer SD_PREFER_SIBLING down in case of a
5788 			 * degenerate parent; the spans match for this
5789 			 * so the property transfers.
5790 			 */
5791 			if (parent->flags & SD_PREFER_SIBLING)
5792 				tmp->flags |= SD_PREFER_SIBLING;
5793 			destroy_sched_domain(parent, cpu);
5794 		} else
5795 			tmp = tmp->parent;
5796 	}
5797 
5798 	if (sd && sd_degenerate(sd)) {
5799 		tmp = sd;
5800 		sd = sd->parent;
5801 		destroy_sched_domain(tmp, cpu);
5802 		if (sd)
5803 			sd->child = NULL;
5804 	}
5805 
5806 	sched_domain_debug(sd, cpu);
5807 
5808 	rq_attach_root(rq, rd);
5809 	tmp = rq->sd;
5810 	rcu_assign_pointer(rq->sd, sd);
5811 	destroy_sched_domains(tmp, cpu);
5812 
5813 	update_top_cache_domain(cpu);
5814 }
5815 
5816 /* cpus with isolated domains */
5817 static cpumask_var_t cpu_isolated_map;
5818 
5819 /* Setup the mask of cpus configured for isolated domains */
5820 static int __init isolated_cpu_setup(char *str)
5821 {
5822 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5823 	cpulist_parse(str, cpu_isolated_map);
5824 	return 1;
5825 }
5826 
5827 __setup("isolcpus=", isolated_cpu_setup);
5828 
5829 struct s_data {
5830 	struct sched_domain ** __percpu sd;
5831 	struct root_domain	*rd;
5832 };
5833 
5834 enum s_alloc {
5835 	sa_rootdomain,
5836 	sa_sd,
5837 	sa_sd_storage,
5838 	sa_none,
5839 };
5840 
5841 /*
5842  * Build an iteration mask that can exclude certain CPUs from the upwards
5843  * domain traversal.
5844  *
5845  * Asymmetric node setups can result in situations where the domain tree is of
5846  * unequal depth, make sure to skip domains that already cover the entire
5847  * range.
5848  *
5849  * In that case build_sched_domains() will have terminated the iteration early
5850  * and our sibling sd spans will be empty. Domains should always include the
5851  * cpu they're built on, so check that.
5852  *
5853  */
5854 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5855 {
5856 	const struct cpumask *span = sched_domain_span(sd);
5857 	struct sd_data *sdd = sd->private;
5858 	struct sched_domain *sibling;
5859 	int i;
5860 
5861 	for_each_cpu(i, span) {
5862 		sibling = *per_cpu_ptr(sdd->sd, i);
5863 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5864 			continue;
5865 
5866 		cpumask_set_cpu(i, sched_group_mask(sg));
5867 	}
5868 }
5869 
5870 /*
5871  * Return the canonical balance cpu for this group, this is the first cpu
5872  * of this group that's also in the iteration mask.
5873  */
5874 int group_balance_cpu(struct sched_group *sg)
5875 {
5876 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5877 }
5878 
5879 static int
5880 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5881 {
5882 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5883 	const struct cpumask *span = sched_domain_span(sd);
5884 	struct cpumask *covered = sched_domains_tmpmask;
5885 	struct sd_data *sdd = sd->private;
5886 	struct sched_domain *sibling;
5887 	int i;
5888 
5889 	cpumask_clear(covered);
5890 
5891 	for_each_cpu(i, span) {
5892 		struct cpumask *sg_span;
5893 
5894 		if (cpumask_test_cpu(i, covered))
5895 			continue;
5896 
5897 		sibling = *per_cpu_ptr(sdd->sd, i);
5898 
5899 		/* See the comment near build_group_mask(). */
5900 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5901 			continue;
5902 
5903 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5904 				GFP_KERNEL, cpu_to_node(cpu));
5905 
5906 		if (!sg)
5907 			goto fail;
5908 
5909 		sg_span = sched_group_cpus(sg);
5910 		if (sibling->child)
5911 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5912 		else
5913 			cpumask_set_cpu(i, sg_span);
5914 
5915 		cpumask_or(covered, covered, sg_span);
5916 
5917 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5918 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5919 			build_group_mask(sd, sg);
5920 
5921 		/*
5922 		 * Initialize sgc->capacity such that even if we mess up the
5923 		 * domains and no possible iteration will get us here, we won't
5924 		 * die on a /0 trap.
5925 		 */
5926 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5927 		sg->sgc->capacity_orig = sg->sgc->capacity;
5928 
5929 		/*
5930 		 * Make sure the first group of this domain contains the
5931 		 * canonical balance cpu. Otherwise the sched_domain iteration
5932 		 * breaks. See update_sg_lb_stats().
5933 		 */
5934 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5935 		    group_balance_cpu(sg) == cpu)
5936 			groups = sg;
5937 
5938 		if (!first)
5939 			first = sg;
5940 		if (last)
5941 			last->next = sg;
5942 		last = sg;
5943 		last->next = first;
5944 	}
5945 	sd->groups = groups;
5946 
5947 	return 0;
5948 
5949 fail:
5950 	free_sched_groups(first, 0);
5951 
5952 	return -ENOMEM;
5953 }
5954 
5955 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5956 {
5957 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5958 	struct sched_domain *child = sd->child;
5959 
5960 	if (child)
5961 		cpu = cpumask_first(sched_domain_span(child));
5962 
5963 	if (sg) {
5964 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5965 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5966 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5967 	}
5968 
5969 	return cpu;
5970 }
5971 
5972 /*
5973  * build_sched_groups will build a circular linked list of the groups
5974  * covered by the given span, and will set each group's ->cpumask correctly,
5975  * and ->cpu_capacity to 0.
5976  *
5977  * Assumes the sched_domain tree is fully constructed
5978  */
5979 static int
5980 build_sched_groups(struct sched_domain *sd, int cpu)
5981 {
5982 	struct sched_group *first = NULL, *last = NULL;
5983 	struct sd_data *sdd = sd->private;
5984 	const struct cpumask *span = sched_domain_span(sd);
5985 	struct cpumask *covered;
5986 	int i;
5987 
5988 	get_group(cpu, sdd, &sd->groups);
5989 	atomic_inc(&sd->groups->ref);
5990 
5991 	if (cpu != cpumask_first(span))
5992 		return 0;
5993 
5994 	lockdep_assert_held(&sched_domains_mutex);
5995 	covered = sched_domains_tmpmask;
5996 
5997 	cpumask_clear(covered);
5998 
5999 	for_each_cpu(i, span) {
6000 		struct sched_group *sg;
6001 		int group, j;
6002 
6003 		if (cpumask_test_cpu(i, covered))
6004 			continue;
6005 
6006 		group = get_group(i, sdd, &sg);
6007 		cpumask_setall(sched_group_mask(sg));
6008 
6009 		for_each_cpu(j, span) {
6010 			if (get_group(j, sdd, NULL) != group)
6011 				continue;
6012 
6013 			cpumask_set_cpu(j, covered);
6014 			cpumask_set_cpu(j, sched_group_cpus(sg));
6015 		}
6016 
6017 		if (!first)
6018 			first = sg;
6019 		if (last)
6020 			last->next = sg;
6021 		last = sg;
6022 	}
6023 	last->next = first;
6024 
6025 	return 0;
6026 }
6027 
6028 /*
6029  * Initialize sched groups cpu_capacity.
6030  *
6031  * cpu_capacity indicates the capacity of sched group, which is used while
6032  * distributing the load between different sched groups in a sched domain.
6033  * Typically cpu_capacity for all the groups in a sched domain will be same
6034  * unless there are asymmetries in the topology. If there are asymmetries,
6035  * group having more cpu_capacity will pickup more load compared to the
6036  * group having less cpu_capacity.
6037  */
6038 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6039 {
6040 	struct sched_group *sg = sd->groups;
6041 
6042 	WARN_ON(!sg);
6043 
6044 	do {
6045 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6046 		sg = sg->next;
6047 	} while (sg != sd->groups);
6048 
6049 	if (cpu != group_balance_cpu(sg))
6050 		return;
6051 
6052 	update_group_capacity(sd, cpu);
6053 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6054 }
6055 
6056 /*
6057  * Initializers for schedule domains
6058  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6059  */
6060 
6061 static int default_relax_domain_level = -1;
6062 int sched_domain_level_max;
6063 
6064 static int __init setup_relax_domain_level(char *str)
6065 {
6066 	if (kstrtoint(str, 0, &default_relax_domain_level))
6067 		pr_warn("Unable to set relax_domain_level\n");
6068 
6069 	return 1;
6070 }
6071 __setup("relax_domain_level=", setup_relax_domain_level);
6072 
6073 static void set_domain_attribute(struct sched_domain *sd,
6074 				 struct sched_domain_attr *attr)
6075 {
6076 	int request;
6077 
6078 	if (!attr || attr->relax_domain_level < 0) {
6079 		if (default_relax_domain_level < 0)
6080 			return;
6081 		else
6082 			request = default_relax_domain_level;
6083 	} else
6084 		request = attr->relax_domain_level;
6085 	if (request < sd->level) {
6086 		/* turn off idle balance on this domain */
6087 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6088 	} else {
6089 		/* turn on idle balance on this domain */
6090 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6091 	}
6092 }
6093 
6094 static void __sdt_free(const struct cpumask *cpu_map);
6095 static int __sdt_alloc(const struct cpumask *cpu_map);
6096 
6097 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6098 				 const struct cpumask *cpu_map)
6099 {
6100 	switch (what) {
6101 	case sa_rootdomain:
6102 		if (!atomic_read(&d->rd->refcount))
6103 			free_rootdomain(&d->rd->rcu); /* fall through */
6104 	case sa_sd:
6105 		free_percpu(d->sd); /* fall through */
6106 	case sa_sd_storage:
6107 		__sdt_free(cpu_map); /* fall through */
6108 	case sa_none:
6109 		break;
6110 	}
6111 }
6112 
6113 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6114 						   const struct cpumask *cpu_map)
6115 {
6116 	memset(d, 0, sizeof(*d));
6117 
6118 	if (__sdt_alloc(cpu_map))
6119 		return sa_sd_storage;
6120 	d->sd = alloc_percpu(struct sched_domain *);
6121 	if (!d->sd)
6122 		return sa_sd_storage;
6123 	d->rd = alloc_rootdomain();
6124 	if (!d->rd)
6125 		return sa_sd;
6126 	return sa_rootdomain;
6127 }
6128 
6129 /*
6130  * NULL the sd_data elements we've used to build the sched_domain and
6131  * sched_group structure so that the subsequent __free_domain_allocs()
6132  * will not free the data we're using.
6133  */
6134 static void claim_allocations(int cpu, struct sched_domain *sd)
6135 {
6136 	struct sd_data *sdd = sd->private;
6137 
6138 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6139 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6140 
6141 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6142 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6143 
6144 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6145 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6146 }
6147 
6148 #ifdef CONFIG_NUMA
6149 static int sched_domains_numa_levels;
6150 enum numa_topology_type sched_numa_topology_type;
6151 static int *sched_domains_numa_distance;
6152 int sched_max_numa_distance;
6153 static struct cpumask ***sched_domains_numa_masks;
6154 static int sched_domains_curr_level;
6155 #endif
6156 
6157 /*
6158  * SD_flags allowed in topology descriptions.
6159  *
6160  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6161  * SD_SHARE_PKG_RESOURCES - describes shared caches
6162  * SD_NUMA                - describes NUMA topologies
6163  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6164  *
6165  * Odd one out:
6166  * SD_ASYM_PACKING        - describes SMT quirks
6167  */
6168 #define TOPOLOGY_SD_FLAGS		\
6169 	(SD_SHARE_CPUCAPACITY |		\
6170 	 SD_SHARE_PKG_RESOURCES |	\
6171 	 SD_NUMA |			\
6172 	 SD_ASYM_PACKING |		\
6173 	 SD_SHARE_POWERDOMAIN)
6174 
6175 static struct sched_domain *
6176 sd_init(struct sched_domain_topology_level *tl, int cpu)
6177 {
6178 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6179 	int sd_weight, sd_flags = 0;
6180 
6181 #ifdef CONFIG_NUMA
6182 	/*
6183 	 * Ugly hack to pass state to sd_numa_mask()...
6184 	 */
6185 	sched_domains_curr_level = tl->numa_level;
6186 #endif
6187 
6188 	sd_weight = cpumask_weight(tl->mask(cpu));
6189 
6190 	if (tl->sd_flags)
6191 		sd_flags = (*tl->sd_flags)();
6192 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6193 			"wrong sd_flags in topology description\n"))
6194 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6195 
6196 	*sd = (struct sched_domain){
6197 		.min_interval		= sd_weight,
6198 		.max_interval		= 2*sd_weight,
6199 		.busy_factor		= 32,
6200 		.imbalance_pct		= 125,
6201 
6202 		.cache_nice_tries	= 0,
6203 		.busy_idx		= 0,
6204 		.idle_idx		= 0,
6205 		.newidle_idx		= 0,
6206 		.wake_idx		= 0,
6207 		.forkexec_idx		= 0,
6208 
6209 		.flags			= 1*SD_LOAD_BALANCE
6210 					| 1*SD_BALANCE_NEWIDLE
6211 					| 1*SD_BALANCE_EXEC
6212 					| 1*SD_BALANCE_FORK
6213 					| 0*SD_BALANCE_WAKE
6214 					| 1*SD_WAKE_AFFINE
6215 					| 0*SD_SHARE_CPUCAPACITY
6216 					| 0*SD_SHARE_PKG_RESOURCES
6217 					| 0*SD_SERIALIZE
6218 					| 0*SD_PREFER_SIBLING
6219 					| 0*SD_NUMA
6220 					| sd_flags
6221 					,
6222 
6223 		.last_balance		= jiffies,
6224 		.balance_interval	= sd_weight,
6225 		.smt_gain		= 0,
6226 		.max_newidle_lb_cost	= 0,
6227 		.next_decay_max_lb_cost	= jiffies,
6228 #ifdef CONFIG_SCHED_DEBUG
6229 		.name			= tl->name,
6230 #endif
6231 	};
6232 
6233 	/*
6234 	 * Convert topological properties into behaviour.
6235 	 */
6236 
6237 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6238 		sd->imbalance_pct = 110;
6239 		sd->smt_gain = 1178; /* ~15% */
6240 
6241 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6242 		sd->imbalance_pct = 117;
6243 		sd->cache_nice_tries = 1;
6244 		sd->busy_idx = 2;
6245 
6246 #ifdef CONFIG_NUMA
6247 	} else if (sd->flags & SD_NUMA) {
6248 		sd->cache_nice_tries = 2;
6249 		sd->busy_idx = 3;
6250 		sd->idle_idx = 2;
6251 
6252 		sd->flags |= SD_SERIALIZE;
6253 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6254 			sd->flags &= ~(SD_BALANCE_EXEC |
6255 				       SD_BALANCE_FORK |
6256 				       SD_WAKE_AFFINE);
6257 		}
6258 
6259 #endif
6260 	} else {
6261 		sd->flags |= SD_PREFER_SIBLING;
6262 		sd->cache_nice_tries = 1;
6263 		sd->busy_idx = 2;
6264 		sd->idle_idx = 1;
6265 	}
6266 
6267 	sd->private = &tl->data;
6268 
6269 	return sd;
6270 }
6271 
6272 /*
6273  * Topology list, bottom-up.
6274  */
6275 static struct sched_domain_topology_level default_topology[] = {
6276 #ifdef CONFIG_SCHED_SMT
6277 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6278 #endif
6279 #ifdef CONFIG_SCHED_MC
6280 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6281 #endif
6282 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6283 	{ NULL, },
6284 };
6285 
6286 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6287 
6288 #define for_each_sd_topology(tl)			\
6289 	for (tl = sched_domain_topology; tl->mask; tl++)
6290 
6291 void set_sched_topology(struct sched_domain_topology_level *tl)
6292 {
6293 	sched_domain_topology = tl;
6294 }
6295 
6296 #ifdef CONFIG_NUMA
6297 
6298 static const struct cpumask *sd_numa_mask(int cpu)
6299 {
6300 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6301 }
6302 
6303 static void sched_numa_warn(const char *str)
6304 {
6305 	static int done = false;
6306 	int i,j;
6307 
6308 	if (done)
6309 		return;
6310 
6311 	done = true;
6312 
6313 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6314 
6315 	for (i = 0; i < nr_node_ids; i++) {
6316 		printk(KERN_WARNING "  ");
6317 		for (j = 0; j < nr_node_ids; j++)
6318 			printk(KERN_CONT "%02d ", node_distance(i,j));
6319 		printk(KERN_CONT "\n");
6320 	}
6321 	printk(KERN_WARNING "\n");
6322 }
6323 
6324 bool find_numa_distance(int distance)
6325 {
6326 	int i;
6327 
6328 	if (distance == node_distance(0, 0))
6329 		return true;
6330 
6331 	for (i = 0; i < sched_domains_numa_levels; i++) {
6332 		if (sched_domains_numa_distance[i] == distance)
6333 			return true;
6334 	}
6335 
6336 	return false;
6337 }
6338 
6339 /*
6340  * A system can have three types of NUMA topology:
6341  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6342  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6343  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6344  *
6345  * The difference between a glueless mesh topology and a backplane
6346  * topology lies in whether communication between not directly
6347  * connected nodes goes through intermediary nodes (where programs
6348  * could run), or through backplane controllers. This affects
6349  * placement of programs.
6350  *
6351  * The type of topology can be discerned with the following tests:
6352  * - If the maximum distance between any nodes is 1 hop, the system
6353  *   is directly connected.
6354  * - If for two nodes A and B, located N > 1 hops away from each other,
6355  *   there is an intermediary node C, which is < N hops away from both
6356  *   nodes A and B, the system is a glueless mesh.
6357  */
6358 static void init_numa_topology_type(void)
6359 {
6360 	int a, b, c, n;
6361 
6362 	n = sched_max_numa_distance;
6363 
6364 	if (n <= 1)
6365 		sched_numa_topology_type = NUMA_DIRECT;
6366 
6367 	for_each_online_node(a) {
6368 		for_each_online_node(b) {
6369 			/* Find two nodes furthest removed from each other. */
6370 			if (node_distance(a, b) < n)
6371 				continue;
6372 
6373 			/* Is there an intermediary node between a and b? */
6374 			for_each_online_node(c) {
6375 				if (node_distance(a, c) < n &&
6376 				    node_distance(b, c) < n) {
6377 					sched_numa_topology_type =
6378 							NUMA_GLUELESS_MESH;
6379 					return;
6380 				}
6381 			}
6382 
6383 			sched_numa_topology_type = NUMA_BACKPLANE;
6384 			return;
6385 		}
6386 	}
6387 }
6388 
6389 static void sched_init_numa(void)
6390 {
6391 	int next_distance, curr_distance = node_distance(0, 0);
6392 	struct sched_domain_topology_level *tl;
6393 	int level = 0;
6394 	int i, j, k;
6395 
6396 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6397 	if (!sched_domains_numa_distance)
6398 		return;
6399 
6400 	/*
6401 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6402 	 * unique distances in the node_distance() table.
6403 	 *
6404 	 * Assumes node_distance(0,j) includes all distances in
6405 	 * node_distance(i,j) in order to avoid cubic time.
6406 	 */
6407 	next_distance = curr_distance;
6408 	for (i = 0; i < nr_node_ids; i++) {
6409 		for (j = 0; j < nr_node_ids; j++) {
6410 			for (k = 0; k < nr_node_ids; k++) {
6411 				int distance = node_distance(i, k);
6412 
6413 				if (distance > curr_distance &&
6414 				    (distance < next_distance ||
6415 				     next_distance == curr_distance))
6416 					next_distance = distance;
6417 
6418 				/*
6419 				 * While not a strong assumption it would be nice to know
6420 				 * about cases where if node A is connected to B, B is not
6421 				 * equally connected to A.
6422 				 */
6423 				if (sched_debug() && node_distance(k, i) != distance)
6424 					sched_numa_warn("Node-distance not symmetric");
6425 
6426 				if (sched_debug() && i && !find_numa_distance(distance))
6427 					sched_numa_warn("Node-0 not representative");
6428 			}
6429 			if (next_distance != curr_distance) {
6430 				sched_domains_numa_distance[level++] = next_distance;
6431 				sched_domains_numa_levels = level;
6432 				curr_distance = next_distance;
6433 			} else break;
6434 		}
6435 
6436 		/*
6437 		 * In case of sched_debug() we verify the above assumption.
6438 		 */
6439 		if (!sched_debug())
6440 			break;
6441 	}
6442 
6443 	if (!level)
6444 		return;
6445 
6446 	/*
6447 	 * 'level' contains the number of unique distances, excluding the
6448 	 * identity distance node_distance(i,i).
6449 	 *
6450 	 * The sched_domains_numa_distance[] array includes the actual distance
6451 	 * numbers.
6452 	 */
6453 
6454 	/*
6455 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6456 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6457 	 * the array will contain less then 'level' members. This could be
6458 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6459 	 * in other functions.
6460 	 *
6461 	 * We reset it to 'level' at the end of this function.
6462 	 */
6463 	sched_domains_numa_levels = 0;
6464 
6465 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6466 	if (!sched_domains_numa_masks)
6467 		return;
6468 
6469 	/*
6470 	 * Now for each level, construct a mask per node which contains all
6471 	 * cpus of nodes that are that many hops away from us.
6472 	 */
6473 	for (i = 0; i < level; i++) {
6474 		sched_domains_numa_masks[i] =
6475 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6476 		if (!sched_domains_numa_masks[i])
6477 			return;
6478 
6479 		for (j = 0; j < nr_node_ids; j++) {
6480 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6481 			if (!mask)
6482 				return;
6483 
6484 			sched_domains_numa_masks[i][j] = mask;
6485 
6486 			for (k = 0; k < nr_node_ids; k++) {
6487 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6488 					continue;
6489 
6490 				cpumask_or(mask, mask, cpumask_of_node(k));
6491 			}
6492 		}
6493 	}
6494 
6495 	/* Compute default topology size */
6496 	for (i = 0; sched_domain_topology[i].mask; i++);
6497 
6498 	tl = kzalloc((i + level + 1) *
6499 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6500 	if (!tl)
6501 		return;
6502 
6503 	/*
6504 	 * Copy the default topology bits..
6505 	 */
6506 	for (i = 0; sched_domain_topology[i].mask; i++)
6507 		tl[i] = sched_domain_topology[i];
6508 
6509 	/*
6510 	 * .. and append 'j' levels of NUMA goodness.
6511 	 */
6512 	for (j = 0; j < level; i++, j++) {
6513 		tl[i] = (struct sched_domain_topology_level){
6514 			.mask = sd_numa_mask,
6515 			.sd_flags = cpu_numa_flags,
6516 			.flags = SDTL_OVERLAP,
6517 			.numa_level = j,
6518 			SD_INIT_NAME(NUMA)
6519 		};
6520 	}
6521 
6522 	sched_domain_topology = tl;
6523 
6524 	sched_domains_numa_levels = level;
6525 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6526 
6527 	init_numa_topology_type();
6528 }
6529 
6530 static void sched_domains_numa_masks_set(int cpu)
6531 {
6532 	int i, j;
6533 	int node = cpu_to_node(cpu);
6534 
6535 	for (i = 0; i < sched_domains_numa_levels; i++) {
6536 		for (j = 0; j < nr_node_ids; j++) {
6537 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6538 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6539 		}
6540 	}
6541 }
6542 
6543 static void sched_domains_numa_masks_clear(int cpu)
6544 {
6545 	int i, j;
6546 	for (i = 0; i < sched_domains_numa_levels; i++) {
6547 		for (j = 0; j < nr_node_ids; j++)
6548 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6549 	}
6550 }
6551 
6552 /*
6553  * Update sched_domains_numa_masks[level][node] array when new cpus
6554  * are onlined.
6555  */
6556 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6557 					   unsigned long action,
6558 					   void *hcpu)
6559 {
6560 	int cpu = (long)hcpu;
6561 
6562 	switch (action & ~CPU_TASKS_FROZEN) {
6563 	case CPU_ONLINE:
6564 		sched_domains_numa_masks_set(cpu);
6565 		break;
6566 
6567 	case CPU_DEAD:
6568 		sched_domains_numa_masks_clear(cpu);
6569 		break;
6570 
6571 	default:
6572 		return NOTIFY_DONE;
6573 	}
6574 
6575 	return NOTIFY_OK;
6576 }
6577 #else
6578 static inline void sched_init_numa(void)
6579 {
6580 }
6581 
6582 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6583 					   unsigned long action,
6584 					   void *hcpu)
6585 {
6586 	return 0;
6587 }
6588 #endif /* CONFIG_NUMA */
6589 
6590 static int __sdt_alloc(const struct cpumask *cpu_map)
6591 {
6592 	struct sched_domain_topology_level *tl;
6593 	int j;
6594 
6595 	for_each_sd_topology(tl) {
6596 		struct sd_data *sdd = &tl->data;
6597 
6598 		sdd->sd = alloc_percpu(struct sched_domain *);
6599 		if (!sdd->sd)
6600 			return -ENOMEM;
6601 
6602 		sdd->sg = alloc_percpu(struct sched_group *);
6603 		if (!sdd->sg)
6604 			return -ENOMEM;
6605 
6606 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6607 		if (!sdd->sgc)
6608 			return -ENOMEM;
6609 
6610 		for_each_cpu(j, cpu_map) {
6611 			struct sched_domain *sd;
6612 			struct sched_group *sg;
6613 			struct sched_group_capacity *sgc;
6614 
6615 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6616 					GFP_KERNEL, cpu_to_node(j));
6617 			if (!sd)
6618 				return -ENOMEM;
6619 
6620 			*per_cpu_ptr(sdd->sd, j) = sd;
6621 
6622 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6623 					GFP_KERNEL, cpu_to_node(j));
6624 			if (!sg)
6625 				return -ENOMEM;
6626 
6627 			sg->next = sg;
6628 
6629 			*per_cpu_ptr(sdd->sg, j) = sg;
6630 
6631 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6632 					GFP_KERNEL, cpu_to_node(j));
6633 			if (!sgc)
6634 				return -ENOMEM;
6635 
6636 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6637 		}
6638 	}
6639 
6640 	return 0;
6641 }
6642 
6643 static void __sdt_free(const struct cpumask *cpu_map)
6644 {
6645 	struct sched_domain_topology_level *tl;
6646 	int j;
6647 
6648 	for_each_sd_topology(tl) {
6649 		struct sd_data *sdd = &tl->data;
6650 
6651 		for_each_cpu(j, cpu_map) {
6652 			struct sched_domain *sd;
6653 
6654 			if (sdd->sd) {
6655 				sd = *per_cpu_ptr(sdd->sd, j);
6656 				if (sd && (sd->flags & SD_OVERLAP))
6657 					free_sched_groups(sd->groups, 0);
6658 				kfree(*per_cpu_ptr(sdd->sd, j));
6659 			}
6660 
6661 			if (sdd->sg)
6662 				kfree(*per_cpu_ptr(sdd->sg, j));
6663 			if (sdd->sgc)
6664 				kfree(*per_cpu_ptr(sdd->sgc, j));
6665 		}
6666 		free_percpu(sdd->sd);
6667 		sdd->sd = NULL;
6668 		free_percpu(sdd->sg);
6669 		sdd->sg = NULL;
6670 		free_percpu(sdd->sgc);
6671 		sdd->sgc = NULL;
6672 	}
6673 }
6674 
6675 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6676 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6677 		struct sched_domain *child, int cpu)
6678 {
6679 	struct sched_domain *sd = sd_init(tl, cpu);
6680 	if (!sd)
6681 		return child;
6682 
6683 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6684 	if (child) {
6685 		sd->level = child->level + 1;
6686 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6687 		child->parent = sd;
6688 		sd->child = child;
6689 
6690 		if (!cpumask_subset(sched_domain_span(child),
6691 				    sched_domain_span(sd))) {
6692 			pr_err("BUG: arch topology borken\n");
6693 #ifdef CONFIG_SCHED_DEBUG
6694 			pr_err("     the %s domain not a subset of the %s domain\n",
6695 					child->name, sd->name);
6696 #endif
6697 			/* Fixup, ensure @sd has at least @child cpus. */
6698 			cpumask_or(sched_domain_span(sd),
6699 				   sched_domain_span(sd),
6700 				   sched_domain_span(child));
6701 		}
6702 
6703 	}
6704 	set_domain_attribute(sd, attr);
6705 
6706 	return sd;
6707 }
6708 
6709 /*
6710  * Build sched domains for a given set of cpus and attach the sched domains
6711  * to the individual cpus
6712  */
6713 static int build_sched_domains(const struct cpumask *cpu_map,
6714 			       struct sched_domain_attr *attr)
6715 {
6716 	enum s_alloc alloc_state;
6717 	struct sched_domain *sd;
6718 	struct s_data d;
6719 	int i, ret = -ENOMEM;
6720 
6721 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6722 	if (alloc_state != sa_rootdomain)
6723 		goto error;
6724 
6725 	/* Set up domains for cpus specified by the cpu_map. */
6726 	for_each_cpu(i, cpu_map) {
6727 		struct sched_domain_topology_level *tl;
6728 
6729 		sd = NULL;
6730 		for_each_sd_topology(tl) {
6731 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6732 			if (tl == sched_domain_topology)
6733 				*per_cpu_ptr(d.sd, i) = sd;
6734 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6735 				sd->flags |= SD_OVERLAP;
6736 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6737 				break;
6738 		}
6739 	}
6740 
6741 	/* Build the groups for the domains */
6742 	for_each_cpu(i, cpu_map) {
6743 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6744 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6745 			if (sd->flags & SD_OVERLAP) {
6746 				if (build_overlap_sched_groups(sd, i))
6747 					goto error;
6748 			} else {
6749 				if (build_sched_groups(sd, i))
6750 					goto error;
6751 			}
6752 		}
6753 	}
6754 
6755 	/* Calculate CPU capacity for physical packages and nodes */
6756 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6757 		if (!cpumask_test_cpu(i, cpu_map))
6758 			continue;
6759 
6760 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6761 			claim_allocations(i, sd);
6762 			init_sched_groups_capacity(i, sd);
6763 		}
6764 	}
6765 
6766 	/* Attach the domains */
6767 	rcu_read_lock();
6768 	for_each_cpu(i, cpu_map) {
6769 		sd = *per_cpu_ptr(d.sd, i);
6770 		cpu_attach_domain(sd, d.rd, i);
6771 	}
6772 	rcu_read_unlock();
6773 
6774 	ret = 0;
6775 error:
6776 	__free_domain_allocs(&d, alloc_state, cpu_map);
6777 	return ret;
6778 }
6779 
6780 static cpumask_var_t *doms_cur;	/* current sched domains */
6781 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6782 static struct sched_domain_attr *dattr_cur;
6783 				/* attribues of custom domains in 'doms_cur' */
6784 
6785 /*
6786  * Special case: If a kmalloc of a doms_cur partition (array of
6787  * cpumask) fails, then fallback to a single sched domain,
6788  * as determined by the single cpumask fallback_doms.
6789  */
6790 static cpumask_var_t fallback_doms;
6791 
6792 /*
6793  * arch_update_cpu_topology lets virtualized architectures update the
6794  * cpu core maps. It is supposed to return 1 if the topology changed
6795  * or 0 if it stayed the same.
6796  */
6797 int __weak arch_update_cpu_topology(void)
6798 {
6799 	return 0;
6800 }
6801 
6802 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6803 {
6804 	int i;
6805 	cpumask_var_t *doms;
6806 
6807 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6808 	if (!doms)
6809 		return NULL;
6810 	for (i = 0; i < ndoms; i++) {
6811 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6812 			free_sched_domains(doms, i);
6813 			return NULL;
6814 		}
6815 	}
6816 	return doms;
6817 }
6818 
6819 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6820 {
6821 	unsigned int i;
6822 	for (i = 0; i < ndoms; i++)
6823 		free_cpumask_var(doms[i]);
6824 	kfree(doms);
6825 }
6826 
6827 /*
6828  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6829  * For now this just excludes isolated cpus, but could be used to
6830  * exclude other special cases in the future.
6831  */
6832 static int init_sched_domains(const struct cpumask *cpu_map)
6833 {
6834 	int err;
6835 
6836 	arch_update_cpu_topology();
6837 	ndoms_cur = 1;
6838 	doms_cur = alloc_sched_domains(ndoms_cur);
6839 	if (!doms_cur)
6840 		doms_cur = &fallback_doms;
6841 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6842 	err = build_sched_domains(doms_cur[0], NULL);
6843 	register_sched_domain_sysctl();
6844 
6845 	return err;
6846 }
6847 
6848 /*
6849  * Detach sched domains from a group of cpus specified in cpu_map
6850  * These cpus will now be attached to the NULL domain
6851  */
6852 static void detach_destroy_domains(const struct cpumask *cpu_map)
6853 {
6854 	int i;
6855 
6856 	rcu_read_lock();
6857 	for_each_cpu(i, cpu_map)
6858 		cpu_attach_domain(NULL, &def_root_domain, i);
6859 	rcu_read_unlock();
6860 }
6861 
6862 /* handle null as "default" */
6863 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6864 			struct sched_domain_attr *new, int idx_new)
6865 {
6866 	struct sched_domain_attr tmp;
6867 
6868 	/* fast path */
6869 	if (!new && !cur)
6870 		return 1;
6871 
6872 	tmp = SD_ATTR_INIT;
6873 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6874 			new ? (new + idx_new) : &tmp,
6875 			sizeof(struct sched_domain_attr));
6876 }
6877 
6878 /*
6879  * Partition sched domains as specified by the 'ndoms_new'
6880  * cpumasks in the array doms_new[] of cpumasks. This compares
6881  * doms_new[] to the current sched domain partitioning, doms_cur[].
6882  * It destroys each deleted domain and builds each new domain.
6883  *
6884  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6885  * The masks don't intersect (don't overlap.) We should setup one
6886  * sched domain for each mask. CPUs not in any of the cpumasks will
6887  * not be load balanced. If the same cpumask appears both in the
6888  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6889  * it as it is.
6890  *
6891  * The passed in 'doms_new' should be allocated using
6892  * alloc_sched_domains.  This routine takes ownership of it and will
6893  * free_sched_domains it when done with it. If the caller failed the
6894  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6895  * and partition_sched_domains() will fallback to the single partition
6896  * 'fallback_doms', it also forces the domains to be rebuilt.
6897  *
6898  * If doms_new == NULL it will be replaced with cpu_online_mask.
6899  * ndoms_new == 0 is a special case for destroying existing domains,
6900  * and it will not create the default domain.
6901  *
6902  * Call with hotplug lock held
6903  */
6904 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6905 			     struct sched_domain_attr *dattr_new)
6906 {
6907 	int i, j, n;
6908 	int new_topology;
6909 
6910 	mutex_lock(&sched_domains_mutex);
6911 
6912 	/* always unregister in case we don't destroy any domains */
6913 	unregister_sched_domain_sysctl();
6914 
6915 	/* Let architecture update cpu core mappings. */
6916 	new_topology = arch_update_cpu_topology();
6917 
6918 	n = doms_new ? ndoms_new : 0;
6919 
6920 	/* Destroy deleted domains */
6921 	for (i = 0; i < ndoms_cur; i++) {
6922 		for (j = 0; j < n && !new_topology; j++) {
6923 			if (cpumask_equal(doms_cur[i], doms_new[j])
6924 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6925 				goto match1;
6926 		}
6927 		/* no match - a current sched domain not in new doms_new[] */
6928 		detach_destroy_domains(doms_cur[i]);
6929 match1:
6930 		;
6931 	}
6932 
6933 	n = ndoms_cur;
6934 	if (doms_new == NULL) {
6935 		n = 0;
6936 		doms_new = &fallback_doms;
6937 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6938 		WARN_ON_ONCE(dattr_new);
6939 	}
6940 
6941 	/* Build new domains */
6942 	for (i = 0; i < ndoms_new; i++) {
6943 		for (j = 0; j < n && !new_topology; j++) {
6944 			if (cpumask_equal(doms_new[i], doms_cur[j])
6945 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6946 				goto match2;
6947 		}
6948 		/* no match - add a new doms_new */
6949 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6950 match2:
6951 		;
6952 	}
6953 
6954 	/* Remember the new sched domains */
6955 	if (doms_cur != &fallback_doms)
6956 		free_sched_domains(doms_cur, ndoms_cur);
6957 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6958 	doms_cur = doms_new;
6959 	dattr_cur = dattr_new;
6960 	ndoms_cur = ndoms_new;
6961 
6962 	register_sched_domain_sysctl();
6963 
6964 	mutex_unlock(&sched_domains_mutex);
6965 }
6966 
6967 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6968 
6969 /*
6970  * Update cpusets according to cpu_active mask.  If cpusets are
6971  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6972  * around partition_sched_domains().
6973  *
6974  * If we come here as part of a suspend/resume, don't touch cpusets because we
6975  * want to restore it back to its original state upon resume anyway.
6976  */
6977 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6978 			     void *hcpu)
6979 {
6980 	switch (action) {
6981 	case CPU_ONLINE_FROZEN:
6982 	case CPU_DOWN_FAILED_FROZEN:
6983 
6984 		/*
6985 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6986 		 * resume sequence. As long as this is not the last online
6987 		 * operation in the resume sequence, just build a single sched
6988 		 * domain, ignoring cpusets.
6989 		 */
6990 		num_cpus_frozen--;
6991 		if (likely(num_cpus_frozen)) {
6992 			partition_sched_domains(1, NULL, NULL);
6993 			break;
6994 		}
6995 
6996 		/*
6997 		 * This is the last CPU online operation. So fall through and
6998 		 * restore the original sched domains by considering the
6999 		 * cpuset configurations.
7000 		 */
7001 
7002 	case CPU_ONLINE:
7003 	case CPU_DOWN_FAILED:
7004 		cpuset_update_active_cpus(true);
7005 		break;
7006 	default:
7007 		return NOTIFY_DONE;
7008 	}
7009 	return NOTIFY_OK;
7010 }
7011 
7012 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7013 			       void *hcpu)
7014 {
7015 	switch (action) {
7016 	case CPU_DOWN_PREPARE:
7017 		cpuset_update_active_cpus(false);
7018 		break;
7019 	case CPU_DOWN_PREPARE_FROZEN:
7020 		num_cpus_frozen++;
7021 		partition_sched_domains(1, NULL, NULL);
7022 		break;
7023 	default:
7024 		return NOTIFY_DONE;
7025 	}
7026 	return NOTIFY_OK;
7027 }
7028 
7029 void __init sched_init_smp(void)
7030 {
7031 	cpumask_var_t non_isolated_cpus;
7032 
7033 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7034 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7035 
7036 	sched_init_numa();
7037 
7038 	/*
7039 	 * There's no userspace yet to cause hotplug operations; hence all the
7040 	 * cpu masks are stable and all blatant races in the below code cannot
7041 	 * happen.
7042 	 */
7043 	mutex_lock(&sched_domains_mutex);
7044 	init_sched_domains(cpu_active_mask);
7045 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7046 	if (cpumask_empty(non_isolated_cpus))
7047 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7048 	mutex_unlock(&sched_domains_mutex);
7049 
7050 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7051 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7052 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7053 
7054 	init_hrtick();
7055 
7056 	/* Move init over to a non-isolated CPU */
7057 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7058 		BUG();
7059 	sched_init_granularity();
7060 	free_cpumask_var(non_isolated_cpus);
7061 
7062 	init_sched_rt_class();
7063 	init_sched_dl_class();
7064 }
7065 #else
7066 void __init sched_init_smp(void)
7067 {
7068 	sched_init_granularity();
7069 }
7070 #endif /* CONFIG_SMP */
7071 
7072 const_debug unsigned int sysctl_timer_migration = 1;
7073 
7074 int in_sched_functions(unsigned long addr)
7075 {
7076 	return in_lock_functions(addr) ||
7077 		(addr >= (unsigned long)__sched_text_start
7078 		&& addr < (unsigned long)__sched_text_end);
7079 }
7080 
7081 #ifdef CONFIG_CGROUP_SCHED
7082 /*
7083  * Default task group.
7084  * Every task in system belongs to this group at bootup.
7085  */
7086 struct task_group root_task_group;
7087 LIST_HEAD(task_groups);
7088 #endif
7089 
7090 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7091 
7092 void __init sched_init(void)
7093 {
7094 	int i, j;
7095 	unsigned long alloc_size = 0, ptr;
7096 
7097 #ifdef CONFIG_FAIR_GROUP_SCHED
7098 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7099 #endif
7100 #ifdef CONFIG_RT_GROUP_SCHED
7101 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7102 #endif
7103 	if (alloc_size) {
7104 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7105 
7106 #ifdef CONFIG_FAIR_GROUP_SCHED
7107 		root_task_group.se = (struct sched_entity **)ptr;
7108 		ptr += nr_cpu_ids * sizeof(void **);
7109 
7110 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7111 		ptr += nr_cpu_ids * sizeof(void **);
7112 
7113 #endif /* CONFIG_FAIR_GROUP_SCHED */
7114 #ifdef CONFIG_RT_GROUP_SCHED
7115 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7116 		ptr += nr_cpu_ids * sizeof(void **);
7117 
7118 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7119 		ptr += nr_cpu_ids * sizeof(void **);
7120 
7121 #endif /* CONFIG_RT_GROUP_SCHED */
7122 	}
7123 #ifdef CONFIG_CPUMASK_OFFSTACK
7124 	for_each_possible_cpu(i) {
7125 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7126 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7127 	}
7128 #endif /* CONFIG_CPUMASK_OFFSTACK */
7129 
7130 	init_rt_bandwidth(&def_rt_bandwidth,
7131 			global_rt_period(), global_rt_runtime());
7132 	init_dl_bandwidth(&def_dl_bandwidth,
7133 			global_rt_period(), global_rt_runtime());
7134 
7135 #ifdef CONFIG_SMP
7136 	init_defrootdomain();
7137 #endif
7138 
7139 #ifdef CONFIG_RT_GROUP_SCHED
7140 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7141 			global_rt_period(), global_rt_runtime());
7142 #endif /* CONFIG_RT_GROUP_SCHED */
7143 
7144 #ifdef CONFIG_CGROUP_SCHED
7145 	list_add(&root_task_group.list, &task_groups);
7146 	INIT_LIST_HEAD(&root_task_group.children);
7147 	INIT_LIST_HEAD(&root_task_group.siblings);
7148 	autogroup_init(&init_task);
7149 
7150 #endif /* CONFIG_CGROUP_SCHED */
7151 
7152 	for_each_possible_cpu(i) {
7153 		struct rq *rq;
7154 
7155 		rq = cpu_rq(i);
7156 		raw_spin_lock_init(&rq->lock);
7157 		rq->nr_running = 0;
7158 		rq->calc_load_active = 0;
7159 		rq->calc_load_update = jiffies + LOAD_FREQ;
7160 		init_cfs_rq(&rq->cfs);
7161 		init_rt_rq(&rq->rt, rq);
7162 		init_dl_rq(&rq->dl, rq);
7163 #ifdef CONFIG_FAIR_GROUP_SCHED
7164 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7165 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7166 		/*
7167 		 * How much cpu bandwidth does root_task_group get?
7168 		 *
7169 		 * In case of task-groups formed thr' the cgroup filesystem, it
7170 		 * gets 100% of the cpu resources in the system. This overall
7171 		 * system cpu resource is divided among the tasks of
7172 		 * root_task_group and its child task-groups in a fair manner,
7173 		 * based on each entity's (task or task-group's) weight
7174 		 * (se->load.weight).
7175 		 *
7176 		 * In other words, if root_task_group has 10 tasks of weight
7177 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7178 		 * then A0's share of the cpu resource is:
7179 		 *
7180 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7181 		 *
7182 		 * We achieve this by letting root_task_group's tasks sit
7183 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7184 		 */
7185 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7186 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7187 #endif /* CONFIG_FAIR_GROUP_SCHED */
7188 
7189 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7190 #ifdef CONFIG_RT_GROUP_SCHED
7191 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7192 #endif
7193 
7194 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7195 			rq->cpu_load[j] = 0;
7196 
7197 		rq->last_load_update_tick = jiffies;
7198 
7199 #ifdef CONFIG_SMP
7200 		rq->sd = NULL;
7201 		rq->rd = NULL;
7202 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7203 		rq->post_schedule = 0;
7204 		rq->active_balance = 0;
7205 		rq->next_balance = jiffies;
7206 		rq->push_cpu = 0;
7207 		rq->cpu = i;
7208 		rq->online = 0;
7209 		rq->idle_stamp = 0;
7210 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7211 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7212 
7213 		INIT_LIST_HEAD(&rq->cfs_tasks);
7214 
7215 		rq_attach_root(rq, &def_root_domain);
7216 #ifdef CONFIG_NO_HZ_COMMON
7217 		rq->nohz_flags = 0;
7218 #endif
7219 #ifdef CONFIG_NO_HZ_FULL
7220 		rq->last_sched_tick = 0;
7221 #endif
7222 #endif
7223 		init_rq_hrtick(rq);
7224 		atomic_set(&rq->nr_iowait, 0);
7225 	}
7226 
7227 	set_load_weight(&init_task);
7228 
7229 #ifdef CONFIG_PREEMPT_NOTIFIERS
7230 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7231 #endif
7232 
7233 	/*
7234 	 * The boot idle thread does lazy MMU switching as well:
7235 	 */
7236 	atomic_inc(&init_mm.mm_count);
7237 	enter_lazy_tlb(&init_mm, current);
7238 
7239 	/*
7240 	 * During early bootup we pretend to be a normal task:
7241 	 */
7242 	current->sched_class = &fair_sched_class;
7243 
7244 	/*
7245 	 * Make us the idle thread. Technically, schedule() should not be
7246 	 * called from this thread, however somewhere below it might be,
7247 	 * but because we are the idle thread, we just pick up running again
7248 	 * when this runqueue becomes "idle".
7249 	 */
7250 	init_idle(current, smp_processor_id());
7251 
7252 	calc_load_update = jiffies + LOAD_FREQ;
7253 
7254 #ifdef CONFIG_SMP
7255 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7256 	/* May be allocated at isolcpus cmdline parse time */
7257 	if (cpu_isolated_map == NULL)
7258 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7259 	idle_thread_set_boot_cpu();
7260 	set_cpu_rq_start_time();
7261 #endif
7262 	init_sched_fair_class();
7263 
7264 	scheduler_running = 1;
7265 }
7266 
7267 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7268 static inline int preempt_count_equals(int preempt_offset)
7269 {
7270 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7271 
7272 	return (nested == preempt_offset);
7273 }
7274 
7275 void __might_sleep(const char *file, int line, int preempt_offset)
7276 {
7277 	/*
7278 	 * Blocking primitives will set (and therefore destroy) current->state,
7279 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7280 	 * otherwise we will destroy state.
7281 	 */
7282 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7283 			"do not call blocking ops when !TASK_RUNNING; "
7284 			"state=%lx set at [<%p>] %pS\n",
7285 			current->state,
7286 			(void *)current->task_state_change,
7287 			(void *)current->task_state_change);
7288 
7289 	___might_sleep(file, line, preempt_offset);
7290 }
7291 EXPORT_SYMBOL(__might_sleep);
7292 
7293 void ___might_sleep(const char *file, int line, int preempt_offset)
7294 {
7295 	static unsigned long prev_jiffy;	/* ratelimiting */
7296 
7297 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7298 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7299 	     !is_idle_task(current)) ||
7300 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7301 		return;
7302 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7303 		return;
7304 	prev_jiffy = jiffies;
7305 
7306 	printk(KERN_ERR
7307 		"BUG: sleeping function called from invalid context at %s:%d\n",
7308 			file, line);
7309 	printk(KERN_ERR
7310 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7311 			in_atomic(), irqs_disabled(),
7312 			current->pid, current->comm);
7313 
7314 	if (task_stack_end_corrupted(current))
7315 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7316 
7317 	debug_show_held_locks(current);
7318 	if (irqs_disabled())
7319 		print_irqtrace_events(current);
7320 #ifdef CONFIG_DEBUG_PREEMPT
7321 	if (!preempt_count_equals(preempt_offset)) {
7322 		pr_err("Preemption disabled at:");
7323 		print_ip_sym(current->preempt_disable_ip);
7324 		pr_cont("\n");
7325 	}
7326 #endif
7327 	dump_stack();
7328 }
7329 EXPORT_SYMBOL(___might_sleep);
7330 #endif
7331 
7332 #ifdef CONFIG_MAGIC_SYSRQ
7333 static void normalize_task(struct rq *rq, struct task_struct *p)
7334 {
7335 	const struct sched_class *prev_class = p->sched_class;
7336 	struct sched_attr attr = {
7337 		.sched_policy = SCHED_NORMAL,
7338 	};
7339 	int old_prio = p->prio;
7340 	int queued;
7341 
7342 	queued = task_on_rq_queued(p);
7343 	if (queued)
7344 		dequeue_task(rq, p, 0);
7345 	__setscheduler(rq, p, &attr);
7346 	if (queued) {
7347 		enqueue_task(rq, p, 0);
7348 		resched_curr(rq);
7349 	}
7350 
7351 	check_class_changed(rq, p, prev_class, old_prio);
7352 }
7353 
7354 void normalize_rt_tasks(void)
7355 {
7356 	struct task_struct *g, *p;
7357 	unsigned long flags;
7358 	struct rq *rq;
7359 
7360 	read_lock(&tasklist_lock);
7361 	for_each_process_thread(g, p) {
7362 		/*
7363 		 * Only normalize user tasks:
7364 		 */
7365 		if (p->flags & PF_KTHREAD)
7366 			continue;
7367 
7368 		p->se.exec_start		= 0;
7369 #ifdef CONFIG_SCHEDSTATS
7370 		p->se.statistics.wait_start	= 0;
7371 		p->se.statistics.sleep_start	= 0;
7372 		p->se.statistics.block_start	= 0;
7373 #endif
7374 
7375 		if (!dl_task(p) && !rt_task(p)) {
7376 			/*
7377 			 * Renice negative nice level userspace
7378 			 * tasks back to 0:
7379 			 */
7380 			if (task_nice(p) < 0)
7381 				set_user_nice(p, 0);
7382 			continue;
7383 		}
7384 
7385 		rq = task_rq_lock(p, &flags);
7386 		normalize_task(rq, p);
7387 		task_rq_unlock(rq, p, &flags);
7388 	}
7389 	read_unlock(&tasklist_lock);
7390 }
7391 
7392 #endif /* CONFIG_MAGIC_SYSRQ */
7393 
7394 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7395 /*
7396  * These functions are only useful for the IA64 MCA handling, or kdb.
7397  *
7398  * They can only be called when the whole system has been
7399  * stopped - every CPU needs to be quiescent, and no scheduling
7400  * activity can take place. Using them for anything else would
7401  * be a serious bug, and as a result, they aren't even visible
7402  * under any other configuration.
7403  */
7404 
7405 /**
7406  * curr_task - return the current task for a given cpu.
7407  * @cpu: the processor in question.
7408  *
7409  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7410  *
7411  * Return: The current task for @cpu.
7412  */
7413 struct task_struct *curr_task(int cpu)
7414 {
7415 	return cpu_curr(cpu);
7416 }
7417 
7418 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7419 
7420 #ifdef CONFIG_IA64
7421 /**
7422  * set_curr_task - set the current task for a given cpu.
7423  * @cpu: the processor in question.
7424  * @p: the task pointer to set.
7425  *
7426  * Description: This function must only be used when non-maskable interrupts
7427  * are serviced on a separate stack. It allows the architecture to switch the
7428  * notion of the current task on a cpu in a non-blocking manner. This function
7429  * must be called with all CPU's synchronized, and interrupts disabled, the
7430  * and caller must save the original value of the current task (see
7431  * curr_task() above) and restore that value before reenabling interrupts and
7432  * re-starting the system.
7433  *
7434  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7435  */
7436 void set_curr_task(int cpu, struct task_struct *p)
7437 {
7438 	cpu_curr(cpu) = p;
7439 }
7440 
7441 #endif
7442 
7443 #ifdef CONFIG_CGROUP_SCHED
7444 /* task_group_lock serializes the addition/removal of task groups */
7445 static DEFINE_SPINLOCK(task_group_lock);
7446 
7447 static void free_sched_group(struct task_group *tg)
7448 {
7449 	free_fair_sched_group(tg);
7450 	free_rt_sched_group(tg);
7451 	autogroup_free(tg);
7452 	kfree(tg);
7453 }
7454 
7455 /* allocate runqueue etc for a new task group */
7456 struct task_group *sched_create_group(struct task_group *parent)
7457 {
7458 	struct task_group *tg;
7459 
7460 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7461 	if (!tg)
7462 		return ERR_PTR(-ENOMEM);
7463 
7464 	if (!alloc_fair_sched_group(tg, parent))
7465 		goto err;
7466 
7467 	if (!alloc_rt_sched_group(tg, parent))
7468 		goto err;
7469 
7470 	return tg;
7471 
7472 err:
7473 	free_sched_group(tg);
7474 	return ERR_PTR(-ENOMEM);
7475 }
7476 
7477 void sched_online_group(struct task_group *tg, struct task_group *parent)
7478 {
7479 	unsigned long flags;
7480 
7481 	spin_lock_irqsave(&task_group_lock, flags);
7482 	list_add_rcu(&tg->list, &task_groups);
7483 
7484 	WARN_ON(!parent); /* root should already exist */
7485 
7486 	tg->parent = parent;
7487 	INIT_LIST_HEAD(&tg->children);
7488 	list_add_rcu(&tg->siblings, &parent->children);
7489 	spin_unlock_irqrestore(&task_group_lock, flags);
7490 }
7491 
7492 /* rcu callback to free various structures associated with a task group */
7493 static void free_sched_group_rcu(struct rcu_head *rhp)
7494 {
7495 	/* now it should be safe to free those cfs_rqs */
7496 	free_sched_group(container_of(rhp, struct task_group, rcu));
7497 }
7498 
7499 /* Destroy runqueue etc associated with a task group */
7500 void sched_destroy_group(struct task_group *tg)
7501 {
7502 	/* wait for possible concurrent references to cfs_rqs complete */
7503 	call_rcu(&tg->rcu, free_sched_group_rcu);
7504 }
7505 
7506 void sched_offline_group(struct task_group *tg)
7507 {
7508 	unsigned long flags;
7509 	int i;
7510 
7511 	/* end participation in shares distribution */
7512 	for_each_possible_cpu(i)
7513 		unregister_fair_sched_group(tg, i);
7514 
7515 	spin_lock_irqsave(&task_group_lock, flags);
7516 	list_del_rcu(&tg->list);
7517 	list_del_rcu(&tg->siblings);
7518 	spin_unlock_irqrestore(&task_group_lock, flags);
7519 }
7520 
7521 /* change task's runqueue when it moves between groups.
7522  *	The caller of this function should have put the task in its new group
7523  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7524  *	reflect its new group.
7525  */
7526 void sched_move_task(struct task_struct *tsk)
7527 {
7528 	struct task_group *tg;
7529 	int queued, running;
7530 	unsigned long flags;
7531 	struct rq *rq;
7532 
7533 	rq = task_rq_lock(tsk, &flags);
7534 
7535 	running = task_current(rq, tsk);
7536 	queued = task_on_rq_queued(tsk);
7537 
7538 	if (queued)
7539 		dequeue_task(rq, tsk, 0);
7540 	if (unlikely(running))
7541 		put_prev_task(rq, tsk);
7542 
7543 	/*
7544 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7545 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7546 	 * to prevent lockdep warnings.
7547 	 */
7548 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7549 			  struct task_group, css);
7550 	tg = autogroup_task_group(tsk, tg);
7551 	tsk->sched_task_group = tg;
7552 
7553 #ifdef CONFIG_FAIR_GROUP_SCHED
7554 	if (tsk->sched_class->task_move_group)
7555 		tsk->sched_class->task_move_group(tsk, queued);
7556 	else
7557 #endif
7558 		set_task_rq(tsk, task_cpu(tsk));
7559 
7560 	if (unlikely(running))
7561 		tsk->sched_class->set_curr_task(rq);
7562 	if (queued)
7563 		enqueue_task(rq, tsk, 0);
7564 
7565 	task_rq_unlock(rq, tsk, &flags);
7566 }
7567 #endif /* CONFIG_CGROUP_SCHED */
7568 
7569 #ifdef CONFIG_RT_GROUP_SCHED
7570 /*
7571  * Ensure that the real time constraints are schedulable.
7572  */
7573 static DEFINE_MUTEX(rt_constraints_mutex);
7574 
7575 /* Must be called with tasklist_lock held */
7576 static inline int tg_has_rt_tasks(struct task_group *tg)
7577 {
7578 	struct task_struct *g, *p;
7579 
7580 	/*
7581 	 * Autogroups do not have RT tasks; see autogroup_create().
7582 	 */
7583 	if (task_group_is_autogroup(tg))
7584 		return 0;
7585 
7586 	for_each_process_thread(g, p) {
7587 		if (rt_task(p) && task_group(p) == tg)
7588 			return 1;
7589 	}
7590 
7591 	return 0;
7592 }
7593 
7594 struct rt_schedulable_data {
7595 	struct task_group *tg;
7596 	u64 rt_period;
7597 	u64 rt_runtime;
7598 };
7599 
7600 static int tg_rt_schedulable(struct task_group *tg, void *data)
7601 {
7602 	struct rt_schedulable_data *d = data;
7603 	struct task_group *child;
7604 	unsigned long total, sum = 0;
7605 	u64 period, runtime;
7606 
7607 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7608 	runtime = tg->rt_bandwidth.rt_runtime;
7609 
7610 	if (tg == d->tg) {
7611 		period = d->rt_period;
7612 		runtime = d->rt_runtime;
7613 	}
7614 
7615 	/*
7616 	 * Cannot have more runtime than the period.
7617 	 */
7618 	if (runtime > period && runtime != RUNTIME_INF)
7619 		return -EINVAL;
7620 
7621 	/*
7622 	 * Ensure we don't starve existing RT tasks.
7623 	 */
7624 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7625 		return -EBUSY;
7626 
7627 	total = to_ratio(period, runtime);
7628 
7629 	/*
7630 	 * Nobody can have more than the global setting allows.
7631 	 */
7632 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7633 		return -EINVAL;
7634 
7635 	/*
7636 	 * The sum of our children's runtime should not exceed our own.
7637 	 */
7638 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7639 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7640 		runtime = child->rt_bandwidth.rt_runtime;
7641 
7642 		if (child == d->tg) {
7643 			period = d->rt_period;
7644 			runtime = d->rt_runtime;
7645 		}
7646 
7647 		sum += to_ratio(period, runtime);
7648 	}
7649 
7650 	if (sum > total)
7651 		return -EINVAL;
7652 
7653 	return 0;
7654 }
7655 
7656 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7657 {
7658 	int ret;
7659 
7660 	struct rt_schedulable_data data = {
7661 		.tg = tg,
7662 		.rt_period = period,
7663 		.rt_runtime = runtime,
7664 	};
7665 
7666 	rcu_read_lock();
7667 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7668 	rcu_read_unlock();
7669 
7670 	return ret;
7671 }
7672 
7673 static int tg_set_rt_bandwidth(struct task_group *tg,
7674 		u64 rt_period, u64 rt_runtime)
7675 {
7676 	int i, err = 0;
7677 
7678 	/*
7679 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7680 	 * kernel creating (and or operating) RT threads.
7681 	 */
7682 	if (tg == &root_task_group && rt_runtime == 0)
7683 		return -EINVAL;
7684 
7685 	/* No period doesn't make any sense. */
7686 	if (rt_period == 0)
7687 		return -EINVAL;
7688 
7689 	mutex_lock(&rt_constraints_mutex);
7690 	read_lock(&tasklist_lock);
7691 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7692 	if (err)
7693 		goto unlock;
7694 
7695 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7696 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7697 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7698 
7699 	for_each_possible_cpu(i) {
7700 		struct rt_rq *rt_rq = tg->rt_rq[i];
7701 
7702 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7703 		rt_rq->rt_runtime = rt_runtime;
7704 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7705 	}
7706 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7707 unlock:
7708 	read_unlock(&tasklist_lock);
7709 	mutex_unlock(&rt_constraints_mutex);
7710 
7711 	return err;
7712 }
7713 
7714 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7715 {
7716 	u64 rt_runtime, rt_period;
7717 
7718 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7719 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7720 	if (rt_runtime_us < 0)
7721 		rt_runtime = RUNTIME_INF;
7722 
7723 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7724 }
7725 
7726 static long sched_group_rt_runtime(struct task_group *tg)
7727 {
7728 	u64 rt_runtime_us;
7729 
7730 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7731 		return -1;
7732 
7733 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7734 	do_div(rt_runtime_us, NSEC_PER_USEC);
7735 	return rt_runtime_us;
7736 }
7737 
7738 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7739 {
7740 	u64 rt_runtime, rt_period;
7741 
7742 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7743 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7744 
7745 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7746 }
7747 
7748 static long sched_group_rt_period(struct task_group *tg)
7749 {
7750 	u64 rt_period_us;
7751 
7752 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7753 	do_div(rt_period_us, NSEC_PER_USEC);
7754 	return rt_period_us;
7755 }
7756 #endif /* CONFIG_RT_GROUP_SCHED */
7757 
7758 #ifdef CONFIG_RT_GROUP_SCHED
7759 static int sched_rt_global_constraints(void)
7760 {
7761 	int ret = 0;
7762 
7763 	mutex_lock(&rt_constraints_mutex);
7764 	read_lock(&tasklist_lock);
7765 	ret = __rt_schedulable(NULL, 0, 0);
7766 	read_unlock(&tasklist_lock);
7767 	mutex_unlock(&rt_constraints_mutex);
7768 
7769 	return ret;
7770 }
7771 
7772 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7773 {
7774 	/* Don't accept realtime tasks when there is no way for them to run */
7775 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7776 		return 0;
7777 
7778 	return 1;
7779 }
7780 
7781 #else /* !CONFIG_RT_GROUP_SCHED */
7782 static int sched_rt_global_constraints(void)
7783 {
7784 	unsigned long flags;
7785 	int i, ret = 0;
7786 
7787 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7788 	for_each_possible_cpu(i) {
7789 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7790 
7791 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7792 		rt_rq->rt_runtime = global_rt_runtime();
7793 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7794 	}
7795 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7796 
7797 	return ret;
7798 }
7799 #endif /* CONFIG_RT_GROUP_SCHED */
7800 
7801 static int sched_dl_global_constraints(void)
7802 {
7803 	u64 runtime = global_rt_runtime();
7804 	u64 period = global_rt_period();
7805 	u64 new_bw = to_ratio(period, runtime);
7806 	struct dl_bw *dl_b;
7807 	int cpu, ret = 0;
7808 	unsigned long flags;
7809 
7810 	/*
7811 	 * Here we want to check the bandwidth not being set to some
7812 	 * value smaller than the currently allocated bandwidth in
7813 	 * any of the root_domains.
7814 	 *
7815 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7816 	 * cycling on root_domains... Discussion on different/better
7817 	 * solutions is welcome!
7818 	 */
7819 	for_each_possible_cpu(cpu) {
7820 		rcu_read_lock_sched();
7821 		dl_b = dl_bw_of(cpu);
7822 
7823 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7824 		if (new_bw < dl_b->total_bw)
7825 			ret = -EBUSY;
7826 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7827 
7828 		rcu_read_unlock_sched();
7829 
7830 		if (ret)
7831 			break;
7832 	}
7833 
7834 	return ret;
7835 }
7836 
7837 static void sched_dl_do_global(void)
7838 {
7839 	u64 new_bw = -1;
7840 	struct dl_bw *dl_b;
7841 	int cpu;
7842 	unsigned long flags;
7843 
7844 	def_dl_bandwidth.dl_period = global_rt_period();
7845 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7846 
7847 	if (global_rt_runtime() != RUNTIME_INF)
7848 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7849 
7850 	/*
7851 	 * FIXME: As above...
7852 	 */
7853 	for_each_possible_cpu(cpu) {
7854 		rcu_read_lock_sched();
7855 		dl_b = dl_bw_of(cpu);
7856 
7857 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7858 		dl_b->bw = new_bw;
7859 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7860 
7861 		rcu_read_unlock_sched();
7862 	}
7863 }
7864 
7865 static int sched_rt_global_validate(void)
7866 {
7867 	if (sysctl_sched_rt_period <= 0)
7868 		return -EINVAL;
7869 
7870 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7871 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7872 		return -EINVAL;
7873 
7874 	return 0;
7875 }
7876 
7877 static void sched_rt_do_global(void)
7878 {
7879 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7880 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7881 }
7882 
7883 int sched_rt_handler(struct ctl_table *table, int write,
7884 		void __user *buffer, size_t *lenp,
7885 		loff_t *ppos)
7886 {
7887 	int old_period, old_runtime;
7888 	static DEFINE_MUTEX(mutex);
7889 	int ret;
7890 
7891 	mutex_lock(&mutex);
7892 	old_period = sysctl_sched_rt_period;
7893 	old_runtime = sysctl_sched_rt_runtime;
7894 
7895 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7896 
7897 	if (!ret && write) {
7898 		ret = sched_rt_global_validate();
7899 		if (ret)
7900 			goto undo;
7901 
7902 		ret = sched_rt_global_constraints();
7903 		if (ret)
7904 			goto undo;
7905 
7906 		ret = sched_dl_global_constraints();
7907 		if (ret)
7908 			goto undo;
7909 
7910 		sched_rt_do_global();
7911 		sched_dl_do_global();
7912 	}
7913 	if (0) {
7914 undo:
7915 		sysctl_sched_rt_period = old_period;
7916 		sysctl_sched_rt_runtime = old_runtime;
7917 	}
7918 	mutex_unlock(&mutex);
7919 
7920 	return ret;
7921 }
7922 
7923 int sched_rr_handler(struct ctl_table *table, int write,
7924 		void __user *buffer, size_t *lenp,
7925 		loff_t *ppos)
7926 {
7927 	int ret;
7928 	static DEFINE_MUTEX(mutex);
7929 
7930 	mutex_lock(&mutex);
7931 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7932 	/* make sure that internally we keep jiffies */
7933 	/* also, writing zero resets timeslice to default */
7934 	if (!ret && write) {
7935 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7936 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7937 	}
7938 	mutex_unlock(&mutex);
7939 	return ret;
7940 }
7941 
7942 #ifdef CONFIG_CGROUP_SCHED
7943 
7944 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7945 {
7946 	return css ? container_of(css, struct task_group, css) : NULL;
7947 }
7948 
7949 static struct cgroup_subsys_state *
7950 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7951 {
7952 	struct task_group *parent = css_tg(parent_css);
7953 	struct task_group *tg;
7954 
7955 	if (!parent) {
7956 		/* This is early initialization for the top cgroup */
7957 		return &root_task_group.css;
7958 	}
7959 
7960 	tg = sched_create_group(parent);
7961 	if (IS_ERR(tg))
7962 		return ERR_PTR(-ENOMEM);
7963 
7964 	return &tg->css;
7965 }
7966 
7967 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7968 {
7969 	struct task_group *tg = css_tg(css);
7970 	struct task_group *parent = css_tg(css->parent);
7971 
7972 	if (parent)
7973 		sched_online_group(tg, parent);
7974 	return 0;
7975 }
7976 
7977 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7978 {
7979 	struct task_group *tg = css_tg(css);
7980 
7981 	sched_destroy_group(tg);
7982 }
7983 
7984 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7985 {
7986 	struct task_group *tg = css_tg(css);
7987 
7988 	sched_offline_group(tg);
7989 }
7990 
7991 static void cpu_cgroup_fork(struct task_struct *task)
7992 {
7993 	sched_move_task(task);
7994 }
7995 
7996 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7997 				 struct cgroup_taskset *tset)
7998 {
7999 	struct task_struct *task;
8000 
8001 	cgroup_taskset_for_each(task, tset) {
8002 #ifdef CONFIG_RT_GROUP_SCHED
8003 		if (!sched_rt_can_attach(css_tg(css), task))
8004 			return -EINVAL;
8005 #else
8006 		/* We don't support RT-tasks being in separate groups */
8007 		if (task->sched_class != &fair_sched_class)
8008 			return -EINVAL;
8009 #endif
8010 	}
8011 	return 0;
8012 }
8013 
8014 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8015 			      struct cgroup_taskset *tset)
8016 {
8017 	struct task_struct *task;
8018 
8019 	cgroup_taskset_for_each(task, tset)
8020 		sched_move_task(task);
8021 }
8022 
8023 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8024 			    struct cgroup_subsys_state *old_css,
8025 			    struct task_struct *task)
8026 {
8027 	/*
8028 	 * cgroup_exit() is called in the copy_process() failure path.
8029 	 * Ignore this case since the task hasn't ran yet, this avoids
8030 	 * trying to poke a half freed task state from generic code.
8031 	 */
8032 	if (!(task->flags & PF_EXITING))
8033 		return;
8034 
8035 	sched_move_task(task);
8036 }
8037 
8038 #ifdef CONFIG_FAIR_GROUP_SCHED
8039 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8040 				struct cftype *cftype, u64 shareval)
8041 {
8042 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8043 }
8044 
8045 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8046 			       struct cftype *cft)
8047 {
8048 	struct task_group *tg = css_tg(css);
8049 
8050 	return (u64) scale_load_down(tg->shares);
8051 }
8052 
8053 #ifdef CONFIG_CFS_BANDWIDTH
8054 static DEFINE_MUTEX(cfs_constraints_mutex);
8055 
8056 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8057 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8058 
8059 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8060 
8061 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8062 {
8063 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8064 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8065 
8066 	if (tg == &root_task_group)
8067 		return -EINVAL;
8068 
8069 	/*
8070 	 * Ensure we have at some amount of bandwidth every period.  This is
8071 	 * to prevent reaching a state of large arrears when throttled via
8072 	 * entity_tick() resulting in prolonged exit starvation.
8073 	 */
8074 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8075 		return -EINVAL;
8076 
8077 	/*
8078 	 * Likewise, bound things on the otherside by preventing insane quota
8079 	 * periods.  This also allows us to normalize in computing quota
8080 	 * feasibility.
8081 	 */
8082 	if (period > max_cfs_quota_period)
8083 		return -EINVAL;
8084 
8085 	/*
8086 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8087 	 * unthrottle_offline_cfs_rqs().
8088 	 */
8089 	get_online_cpus();
8090 	mutex_lock(&cfs_constraints_mutex);
8091 	ret = __cfs_schedulable(tg, period, quota);
8092 	if (ret)
8093 		goto out_unlock;
8094 
8095 	runtime_enabled = quota != RUNTIME_INF;
8096 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8097 	/*
8098 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8099 	 * before making related changes, and on->off must occur afterwards
8100 	 */
8101 	if (runtime_enabled && !runtime_was_enabled)
8102 		cfs_bandwidth_usage_inc();
8103 	raw_spin_lock_irq(&cfs_b->lock);
8104 	cfs_b->period = ns_to_ktime(period);
8105 	cfs_b->quota = quota;
8106 
8107 	__refill_cfs_bandwidth_runtime(cfs_b);
8108 	/* restart the period timer (if active) to handle new period expiry */
8109 	if (runtime_enabled && cfs_b->timer_active) {
8110 		/* force a reprogram */
8111 		__start_cfs_bandwidth(cfs_b, true);
8112 	}
8113 	raw_spin_unlock_irq(&cfs_b->lock);
8114 
8115 	for_each_online_cpu(i) {
8116 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8117 		struct rq *rq = cfs_rq->rq;
8118 
8119 		raw_spin_lock_irq(&rq->lock);
8120 		cfs_rq->runtime_enabled = runtime_enabled;
8121 		cfs_rq->runtime_remaining = 0;
8122 
8123 		if (cfs_rq->throttled)
8124 			unthrottle_cfs_rq(cfs_rq);
8125 		raw_spin_unlock_irq(&rq->lock);
8126 	}
8127 	if (runtime_was_enabled && !runtime_enabled)
8128 		cfs_bandwidth_usage_dec();
8129 out_unlock:
8130 	mutex_unlock(&cfs_constraints_mutex);
8131 	put_online_cpus();
8132 
8133 	return ret;
8134 }
8135 
8136 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8137 {
8138 	u64 quota, period;
8139 
8140 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8141 	if (cfs_quota_us < 0)
8142 		quota = RUNTIME_INF;
8143 	else
8144 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8145 
8146 	return tg_set_cfs_bandwidth(tg, period, quota);
8147 }
8148 
8149 long tg_get_cfs_quota(struct task_group *tg)
8150 {
8151 	u64 quota_us;
8152 
8153 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8154 		return -1;
8155 
8156 	quota_us = tg->cfs_bandwidth.quota;
8157 	do_div(quota_us, NSEC_PER_USEC);
8158 
8159 	return quota_us;
8160 }
8161 
8162 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8163 {
8164 	u64 quota, period;
8165 
8166 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8167 	quota = tg->cfs_bandwidth.quota;
8168 
8169 	return tg_set_cfs_bandwidth(tg, period, quota);
8170 }
8171 
8172 long tg_get_cfs_period(struct task_group *tg)
8173 {
8174 	u64 cfs_period_us;
8175 
8176 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8177 	do_div(cfs_period_us, NSEC_PER_USEC);
8178 
8179 	return cfs_period_us;
8180 }
8181 
8182 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8183 				  struct cftype *cft)
8184 {
8185 	return tg_get_cfs_quota(css_tg(css));
8186 }
8187 
8188 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8189 				   struct cftype *cftype, s64 cfs_quota_us)
8190 {
8191 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8192 }
8193 
8194 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8195 				   struct cftype *cft)
8196 {
8197 	return tg_get_cfs_period(css_tg(css));
8198 }
8199 
8200 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8201 				    struct cftype *cftype, u64 cfs_period_us)
8202 {
8203 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8204 }
8205 
8206 struct cfs_schedulable_data {
8207 	struct task_group *tg;
8208 	u64 period, quota;
8209 };
8210 
8211 /*
8212  * normalize group quota/period to be quota/max_period
8213  * note: units are usecs
8214  */
8215 static u64 normalize_cfs_quota(struct task_group *tg,
8216 			       struct cfs_schedulable_data *d)
8217 {
8218 	u64 quota, period;
8219 
8220 	if (tg == d->tg) {
8221 		period = d->period;
8222 		quota = d->quota;
8223 	} else {
8224 		period = tg_get_cfs_period(tg);
8225 		quota = tg_get_cfs_quota(tg);
8226 	}
8227 
8228 	/* note: these should typically be equivalent */
8229 	if (quota == RUNTIME_INF || quota == -1)
8230 		return RUNTIME_INF;
8231 
8232 	return to_ratio(period, quota);
8233 }
8234 
8235 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8236 {
8237 	struct cfs_schedulable_data *d = data;
8238 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8239 	s64 quota = 0, parent_quota = -1;
8240 
8241 	if (!tg->parent) {
8242 		quota = RUNTIME_INF;
8243 	} else {
8244 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8245 
8246 		quota = normalize_cfs_quota(tg, d);
8247 		parent_quota = parent_b->hierarchical_quota;
8248 
8249 		/*
8250 		 * ensure max(child_quota) <= parent_quota, inherit when no
8251 		 * limit is set
8252 		 */
8253 		if (quota == RUNTIME_INF)
8254 			quota = parent_quota;
8255 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8256 			return -EINVAL;
8257 	}
8258 	cfs_b->hierarchical_quota = quota;
8259 
8260 	return 0;
8261 }
8262 
8263 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8264 {
8265 	int ret;
8266 	struct cfs_schedulable_data data = {
8267 		.tg = tg,
8268 		.period = period,
8269 		.quota = quota,
8270 	};
8271 
8272 	if (quota != RUNTIME_INF) {
8273 		do_div(data.period, NSEC_PER_USEC);
8274 		do_div(data.quota, NSEC_PER_USEC);
8275 	}
8276 
8277 	rcu_read_lock();
8278 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8279 	rcu_read_unlock();
8280 
8281 	return ret;
8282 }
8283 
8284 static int cpu_stats_show(struct seq_file *sf, void *v)
8285 {
8286 	struct task_group *tg = css_tg(seq_css(sf));
8287 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8288 
8289 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8290 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8291 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8292 
8293 	return 0;
8294 }
8295 #endif /* CONFIG_CFS_BANDWIDTH */
8296 #endif /* CONFIG_FAIR_GROUP_SCHED */
8297 
8298 #ifdef CONFIG_RT_GROUP_SCHED
8299 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8300 				struct cftype *cft, s64 val)
8301 {
8302 	return sched_group_set_rt_runtime(css_tg(css), val);
8303 }
8304 
8305 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8306 			       struct cftype *cft)
8307 {
8308 	return sched_group_rt_runtime(css_tg(css));
8309 }
8310 
8311 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8312 				    struct cftype *cftype, u64 rt_period_us)
8313 {
8314 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8315 }
8316 
8317 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8318 				   struct cftype *cft)
8319 {
8320 	return sched_group_rt_period(css_tg(css));
8321 }
8322 #endif /* CONFIG_RT_GROUP_SCHED */
8323 
8324 static struct cftype cpu_files[] = {
8325 #ifdef CONFIG_FAIR_GROUP_SCHED
8326 	{
8327 		.name = "shares",
8328 		.read_u64 = cpu_shares_read_u64,
8329 		.write_u64 = cpu_shares_write_u64,
8330 	},
8331 #endif
8332 #ifdef CONFIG_CFS_BANDWIDTH
8333 	{
8334 		.name = "cfs_quota_us",
8335 		.read_s64 = cpu_cfs_quota_read_s64,
8336 		.write_s64 = cpu_cfs_quota_write_s64,
8337 	},
8338 	{
8339 		.name = "cfs_period_us",
8340 		.read_u64 = cpu_cfs_period_read_u64,
8341 		.write_u64 = cpu_cfs_period_write_u64,
8342 	},
8343 	{
8344 		.name = "stat",
8345 		.seq_show = cpu_stats_show,
8346 	},
8347 #endif
8348 #ifdef CONFIG_RT_GROUP_SCHED
8349 	{
8350 		.name = "rt_runtime_us",
8351 		.read_s64 = cpu_rt_runtime_read,
8352 		.write_s64 = cpu_rt_runtime_write,
8353 	},
8354 	{
8355 		.name = "rt_period_us",
8356 		.read_u64 = cpu_rt_period_read_uint,
8357 		.write_u64 = cpu_rt_period_write_uint,
8358 	},
8359 #endif
8360 	{ }	/* terminate */
8361 };
8362 
8363 struct cgroup_subsys cpu_cgrp_subsys = {
8364 	.css_alloc	= cpu_cgroup_css_alloc,
8365 	.css_free	= cpu_cgroup_css_free,
8366 	.css_online	= cpu_cgroup_css_online,
8367 	.css_offline	= cpu_cgroup_css_offline,
8368 	.fork		= cpu_cgroup_fork,
8369 	.can_attach	= cpu_cgroup_can_attach,
8370 	.attach		= cpu_cgroup_attach,
8371 	.exit		= cpu_cgroup_exit,
8372 	.legacy_cftypes	= cpu_files,
8373 	.early_init	= 1,
8374 };
8375 
8376 #endif	/* CONFIG_CGROUP_SCHED */
8377 
8378 void dump_cpu_task(int cpu)
8379 {
8380 	pr_info("Task dump for CPU %d:\n", cpu);
8381 	sched_show_task(cpu_curr(cpu));
8382 }
8383