1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 94 { 95 unsigned long delta; 96 ktime_t soft, hard, now; 97 98 for (;;) { 99 if (hrtimer_active(period_timer)) 100 break; 101 102 now = hrtimer_cb_get_time(period_timer); 103 hrtimer_forward(period_timer, now, period); 104 105 soft = hrtimer_get_softexpires(period_timer); 106 hard = hrtimer_get_expires(period_timer); 107 delta = ktime_to_ns(ktime_sub(hard, soft)); 108 __hrtimer_start_range_ns(period_timer, soft, delta, 109 HRTIMER_MODE_ABS_PINNED, 0); 110 } 111 } 112 113 DEFINE_MUTEX(sched_domains_mutex); 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 static void update_rq_clock_task(struct rq *rq, s64 delta); 117 118 void update_rq_clock(struct rq *rq) 119 { 120 s64 delta; 121 122 lockdep_assert_held(&rq->lock); 123 124 if (rq->clock_skip_update & RQCF_ACT_SKIP) 125 return; 126 127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 128 if (delta < 0) 129 return; 130 rq->clock += delta; 131 update_rq_clock_task(rq, delta); 132 } 133 134 /* 135 * Debugging: various feature bits 136 */ 137 138 #define SCHED_FEAT(name, enabled) \ 139 (1UL << __SCHED_FEAT_##name) * enabled | 140 141 const_debug unsigned int sysctl_sched_features = 142 #include "features.h" 143 0; 144 145 #undef SCHED_FEAT 146 147 #ifdef CONFIG_SCHED_DEBUG 148 #define SCHED_FEAT(name, enabled) \ 149 #name , 150 151 static const char * const sched_feat_names[] = { 152 #include "features.h" 153 }; 154 155 #undef SCHED_FEAT 156 157 static int sched_feat_show(struct seq_file *m, void *v) 158 { 159 int i; 160 161 for (i = 0; i < __SCHED_FEAT_NR; i++) { 162 if (!(sysctl_sched_features & (1UL << i))) 163 seq_puts(m, "NO_"); 164 seq_printf(m, "%s ", sched_feat_names[i]); 165 } 166 seq_puts(m, "\n"); 167 168 return 0; 169 } 170 171 #ifdef HAVE_JUMP_LABEL 172 173 #define jump_label_key__true STATIC_KEY_INIT_TRUE 174 #define jump_label_key__false STATIC_KEY_INIT_FALSE 175 176 #define SCHED_FEAT(name, enabled) \ 177 jump_label_key__##enabled , 178 179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 180 #include "features.h" 181 }; 182 183 #undef SCHED_FEAT 184 185 static void sched_feat_disable(int i) 186 { 187 if (static_key_enabled(&sched_feat_keys[i])) 188 static_key_slow_dec(&sched_feat_keys[i]); 189 } 190 191 static void sched_feat_enable(int i) 192 { 193 if (!static_key_enabled(&sched_feat_keys[i])) 194 static_key_slow_inc(&sched_feat_keys[i]); 195 } 196 #else 197 static void sched_feat_disable(int i) { }; 198 static void sched_feat_enable(int i) { }; 199 #endif /* HAVE_JUMP_LABEL */ 200 201 static int sched_feat_set(char *cmp) 202 { 203 int i; 204 int neg = 0; 205 206 if (strncmp(cmp, "NO_", 3) == 0) { 207 neg = 1; 208 cmp += 3; 209 } 210 211 for (i = 0; i < __SCHED_FEAT_NR; i++) { 212 if (strcmp(cmp, sched_feat_names[i]) == 0) { 213 if (neg) { 214 sysctl_sched_features &= ~(1UL << i); 215 sched_feat_disable(i); 216 } else { 217 sysctl_sched_features |= (1UL << i); 218 sched_feat_enable(i); 219 } 220 break; 221 } 222 } 223 224 return i; 225 } 226 227 static ssize_t 228 sched_feat_write(struct file *filp, const char __user *ubuf, 229 size_t cnt, loff_t *ppos) 230 { 231 char buf[64]; 232 char *cmp; 233 int i; 234 struct inode *inode; 235 236 if (cnt > 63) 237 cnt = 63; 238 239 if (copy_from_user(&buf, ubuf, cnt)) 240 return -EFAULT; 241 242 buf[cnt] = 0; 243 cmp = strstrip(buf); 244 245 /* Ensure the static_key remains in a consistent state */ 246 inode = file_inode(filp); 247 mutex_lock(&inode->i_mutex); 248 i = sched_feat_set(cmp); 249 mutex_unlock(&inode->i_mutex); 250 if (i == __SCHED_FEAT_NR) 251 return -EINVAL; 252 253 *ppos += cnt; 254 255 return cnt; 256 } 257 258 static int sched_feat_open(struct inode *inode, struct file *filp) 259 { 260 return single_open(filp, sched_feat_show, NULL); 261 } 262 263 static const struct file_operations sched_feat_fops = { 264 .open = sched_feat_open, 265 .write = sched_feat_write, 266 .read = seq_read, 267 .llseek = seq_lseek, 268 .release = single_release, 269 }; 270 271 static __init int sched_init_debug(void) 272 { 273 debugfs_create_file("sched_features", 0644, NULL, NULL, 274 &sched_feat_fops); 275 276 return 0; 277 } 278 late_initcall(sched_init_debug); 279 #endif /* CONFIG_SCHED_DEBUG */ 280 281 /* 282 * Number of tasks to iterate in a single balance run. 283 * Limited because this is done with IRQs disabled. 284 */ 285 const_debug unsigned int sysctl_sched_nr_migrate = 32; 286 287 /* 288 * period over which we average the RT time consumption, measured 289 * in ms. 290 * 291 * default: 1s 292 */ 293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 294 295 /* 296 * period over which we measure -rt task cpu usage in us. 297 * default: 1s 298 */ 299 unsigned int sysctl_sched_rt_period = 1000000; 300 301 __read_mostly int scheduler_running; 302 303 /* 304 * part of the period that we allow rt tasks to run in us. 305 * default: 0.95s 306 */ 307 int sysctl_sched_rt_runtime = 950000; 308 309 /* 310 * this_rq_lock - lock this runqueue and disable interrupts. 311 */ 312 static struct rq *this_rq_lock(void) 313 __acquires(rq->lock) 314 { 315 struct rq *rq; 316 317 local_irq_disable(); 318 rq = this_rq(); 319 raw_spin_lock(&rq->lock); 320 321 return rq; 322 } 323 324 #ifdef CONFIG_SCHED_HRTICK 325 /* 326 * Use HR-timers to deliver accurate preemption points. 327 */ 328 329 static void hrtick_clear(struct rq *rq) 330 { 331 if (hrtimer_active(&rq->hrtick_timer)) 332 hrtimer_cancel(&rq->hrtick_timer); 333 } 334 335 /* 336 * High-resolution timer tick. 337 * Runs from hardirq context with interrupts disabled. 338 */ 339 static enum hrtimer_restart hrtick(struct hrtimer *timer) 340 { 341 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 342 343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 344 345 raw_spin_lock(&rq->lock); 346 update_rq_clock(rq); 347 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 348 raw_spin_unlock(&rq->lock); 349 350 return HRTIMER_NORESTART; 351 } 352 353 #ifdef CONFIG_SMP 354 355 static int __hrtick_restart(struct rq *rq) 356 { 357 struct hrtimer *timer = &rq->hrtick_timer; 358 ktime_t time = hrtimer_get_softexpires(timer); 359 360 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 361 } 362 363 /* 364 * called from hardirq (IPI) context 365 */ 366 static void __hrtick_start(void *arg) 367 { 368 struct rq *rq = arg; 369 370 raw_spin_lock(&rq->lock); 371 __hrtick_restart(rq); 372 rq->hrtick_csd_pending = 0; 373 raw_spin_unlock(&rq->lock); 374 } 375 376 /* 377 * Called to set the hrtick timer state. 378 * 379 * called with rq->lock held and irqs disabled 380 */ 381 void hrtick_start(struct rq *rq, u64 delay) 382 { 383 struct hrtimer *timer = &rq->hrtick_timer; 384 ktime_t time; 385 s64 delta; 386 387 /* 388 * Don't schedule slices shorter than 10000ns, that just 389 * doesn't make sense and can cause timer DoS. 390 */ 391 delta = max_t(s64, delay, 10000LL); 392 time = ktime_add_ns(timer->base->get_time(), delta); 393 394 hrtimer_set_expires(timer, time); 395 396 if (rq == this_rq()) { 397 __hrtick_restart(rq); 398 } else if (!rq->hrtick_csd_pending) { 399 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 400 rq->hrtick_csd_pending = 1; 401 } 402 } 403 404 static int 405 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 406 { 407 int cpu = (int)(long)hcpu; 408 409 switch (action) { 410 case CPU_UP_CANCELED: 411 case CPU_UP_CANCELED_FROZEN: 412 case CPU_DOWN_PREPARE: 413 case CPU_DOWN_PREPARE_FROZEN: 414 case CPU_DEAD: 415 case CPU_DEAD_FROZEN: 416 hrtick_clear(cpu_rq(cpu)); 417 return NOTIFY_OK; 418 } 419 420 return NOTIFY_DONE; 421 } 422 423 static __init void init_hrtick(void) 424 { 425 hotcpu_notifier(hotplug_hrtick, 0); 426 } 427 #else 428 /* 429 * Called to set the hrtick timer state. 430 * 431 * called with rq->lock held and irqs disabled 432 */ 433 void hrtick_start(struct rq *rq, u64 delay) 434 { 435 /* 436 * Don't schedule slices shorter than 10000ns, that just 437 * doesn't make sense. Rely on vruntime for fairness. 438 */ 439 delay = max_t(u64, delay, 10000LL); 440 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 441 HRTIMER_MODE_REL_PINNED, 0); 442 } 443 444 static inline void init_hrtick(void) 445 { 446 } 447 #endif /* CONFIG_SMP */ 448 449 static void init_rq_hrtick(struct rq *rq) 450 { 451 #ifdef CONFIG_SMP 452 rq->hrtick_csd_pending = 0; 453 454 rq->hrtick_csd.flags = 0; 455 rq->hrtick_csd.func = __hrtick_start; 456 rq->hrtick_csd.info = rq; 457 #endif 458 459 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 460 rq->hrtick_timer.function = hrtick; 461 } 462 #else /* CONFIG_SCHED_HRTICK */ 463 static inline void hrtick_clear(struct rq *rq) 464 { 465 } 466 467 static inline void init_rq_hrtick(struct rq *rq) 468 { 469 } 470 471 static inline void init_hrtick(void) 472 { 473 } 474 #endif /* CONFIG_SCHED_HRTICK */ 475 476 /* 477 * cmpxchg based fetch_or, macro so it works for different integer types 478 */ 479 #define fetch_or(ptr, val) \ 480 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 481 for (;;) { \ 482 __old = cmpxchg((ptr), __val, __val | (val)); \ 483 if (__old == __val) \ 484 break; \ 485 __val = __old; \ 486 } \ 487 __old; \ 488 }) 489 490 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 491 /* 492 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 493 * this avoids any races wrt polling state changes and thereby avoids 494 * spurious IPIs. 495 */ 496 static bool set_nr_and_not_polling(struct task_struct *p) 497 { 498 struct thread_info *ti = task_thread_info(p); 499 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 500 } 501 502 /* 503 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 504 * 505 * If this returns true, then the idle task promises to call 506 * sched_ttwu_pending() and reschedule soon. 507 */ 508 static bool set_nr_if_polling(struct task_struct *p) 509 { 510 struct thread_info *ti = task_thread_info(p); 511 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); 512 513 for (;;) { 514 if (!(val & _TIF_POLLING_NRFLAG)) 515 return false; 516 if (val & _TIF_NEED_RESCHED) 517 return true; 518 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 519 if (old == val) 520 break; 521 val = old; 522 } 523 return true; 524 } 525 526 #else 527 static bool set_nr_and_not_polling(struct task_struct *p) 528 { 529 set_tsk_need_resched(p); 530 return true; 531 } 532 533 #ifdef CONFIG_SMP 534 static bool set_nr_if_polling(struct task_struct *p) 535 { 536 return false; 537 } 538 #endif 539 #endif 540 541 /* 542 * resched_curr - mark rq's current task 'to be rescheduled now'. 543 * 544 * On UP this means the setting of the need_resched flag, on SMP it 545 * might also involve a cross-CPU call to trigger the scheduler on 546 * the target CPU. 547 */ 548 void resched_curr(struct rq *rq) 549 { 550 struct task_struct *curr = rq->curr; 551 int cpu; 552 553 lockdep_assert_held(&rq->lock); 554 555 if (test_tsk_need_resched(curr)) 556 return; 557 558 cpu = cpu_of(rq); 559 560 if (cpu == smp_processor_id()) { 561 set_tsk_need_resched(curr); 562 set_preempt_need_resched(); 563 return; 564 } 565 566 if (set_nr_and_not_polling(curr)) 567 smp_send_reschedule(cpu); 568 else 569 trace_sched_wake_idle_without_ipi(cpu); 570 } 571 572 void resched_cpu(int cpu) 573 { 574 struct rq *rq = cpu_rq(cpu); 575 unsigned long flags; 576 577 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 578 return; 579 resched_curr(rq); 580 raw_spin_unlock_irqrestore(&rq->lock, flags); 581 } 582 583 #ifdef CONFIG_SMP 584 #ifdef CONFIG_NO_HZ_COMMON 585 /* 586 * In the semi idle case, use the nearest busy cpu for migrating timers 587 * from an idle cpu. This is good for power-savings. 588 * 589 * We don't do similar optimization for completely idle system, as 590 * selecting an idle cpu will add more delays to the timers than intended 591 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 592 */ 593 int get_nohz_timer_target(int pinned) 594 { 595 int cpu = smp_processor_id(); 596 int i; 597 struct sched_domain *sd; 598 599 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 600 return cpu; 601 602 rcu_read_lock(); 603 for_each_domain(cpu, sd) { 604 for_each_cpu(i, sched_domain_span(sd)) { 605 if (!idle_cpu(i)) { 606 cpu = i; 607 goto unlock; 608 } 609 } 610 } 611 unlock: 612 rcu_read_unlock(); 613 return cpu; 614 } 615 /* 616 * When add_timer_on() enqueues a timer into the timer wheel of an 617 * idle CPU then this timer might expire before the next timer event 618 * which is scheduled to wake up that CPU. In case of a completely 619 * idle system the next event might even be infinite time into the 620 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 621 * leaves the inner idle loop so the newly added timer is taken into 622 * account when the CPU goes back to idle and evaluates the timer 623 * wheel for the next timer event. 624 */ 625 static void wake_up_idle_cpu(int cpu) 626 { 627 struct rq *rq = cpu_rq(cpu); 628 629 if (cpu == smp_processor_id()) 630 return; 631 632 if (set_nr_and_not_polling(rq->idle)) 633 smp_send_reschedule(cpu); 634 else 635 trace_sched_wake_idle_without_ipi(cpu); 636 } 637 638 static bool wake_up_full_nohz_cpu(int cpu) 639 { 640 /* 641 * We just need the target to call irq_exit() and re-evaluate 642 * the next tick. The nohz full kick at least implies that. 643 * If needed we can still optimize that later with an 644 * empty IRQ. 645 */ 646 if (tick_nohz_full_cpu(cpu)) { 647 if (cpu != smp_processor_id() || 648 tick_nohz_tick_stopped()) 649 tick_nohz_full_kick_cpu(cpu); 650 return true; 651 } 652 653 return false; 654 } 655 656 void wake_up_nohz_cpu(int cpu) 657 { 658 if (!wake_up_full_nohz_cpu(cpu)) 659 wake_up_idle_cpu(cpu); 660 } 661 662 static inline bool got_nohz_idle_kick(void) 663 { 664 int cpu = smp_processor_id(); 665 666 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 667 return false; 668 669 if (idle_cpu(cpu) && !need_resched()) 670 return true; 671 672 /* 673 * We can't run Idle Load Balance on this CPU for this time so we 674 * cancel it and clear NOHZ_BALANCE_KICK 675 */ 676 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 677 return false; 678 } 679 680 #else /* CONFIG_NO_HZ_COMMON */ 681 682 static inline bool got_nohz_idle_kick(void) 683 { 684 return false; 685 } 686 687 #endif /* CONFIG_NO_HZ_COMMON */ 688 689 #ifdef CONFIG_NO_HZ_FULL 690 bool sched_can_stop_tick(void) 691 { 692 /* 693 * More than one running task need preemption. 694 * nr_running update is assumed to be visible 695 * after IPI is sent from wakers. 696 */ 697 if (this_rq()->nr_running > 1) 698 return false; 699 700 return true; 701 } 702 #endif /* CONFIG_NO_HZ_FULL */ 703 704 void sched_avg_update(struct rq *rq) 705 { 706 s64 period = sched_avg_period(); 707 708 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 709 /* 710 * Inline assembly required to prevent the compiler 711 * optimising this loop into a divmod call. 712 * See __iter_div_u64_rem() for another example of this. 713 */ 714 asm("" : "+rm" (rq->age_stamp)); 715 rq->age_stamp += period; 716 rq->rt_avg /= 2; 717 } 718 } 719 720 #endif /* CONFIG_SMP */ 721 722 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 723 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 724 /* 725 * Iterate task_group tree rooted at *from, calling @down when first entering a 726 * node and @up when leaving it for the final time. 727 * 728 * Caller must hold rcu_lock or sufficient equivalent. 729 */ 730 int walk_tg_tree_from(struct task_group *from, 731 tg_visitor down, tg_visitor up, void *data) 732 { 733 struct task_group *parent, *child; 734 int ret; 735 736 parent = from; 737 738 down: 739 ret = (*down)(parent, data); 740 if (ret) 741 goto out; 742 list_for_each_entry_rcu(child, &parent->children, siblings) { 743 parent = child; 744 goto down; 745 746 up: 747 continue; 748 } 749 ret = (*up)(parent, data); 750 if (ret || parent == from) 751 goto out; 752 753 child = parent; 754 parent = parent->parent; 755 if (parent) 756 goto up; 757 out: 758 return ret; 759 } 760 761 int tg_nop(struct task_group *tg, void *data) 762 { 763 return 0; 764 } 765 #endif 766 767 static void set_load_weight(struct task_struct *p) 768 { 769 int prio = p->static_prio - MAX_RT_PRIO; 770 struct load_weight *load = &p->se.load; 771 772 /* 773 * SCHED_IDLE tasks get minimal weight: 774 */ 775 if (p->policy == SCHED_IDLE) { 776 load->weight = scale_load(WEIGHT_IDLEPRIO); 777 load->inv_weight = WMULT_IDLEPRIO; 778 return; 779 } 780 781 load->weight = scale_load(prio_to_weight[prio]); 782 load->inv_weight = prio_to_wmult[prio]; 783 } 784 785 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 786 { 787 update_rq_clock(rq); 788 sched_info_queued(rq, p); 789 p->sched_class->enqueue_task(rq, p, flags); 790 } 791 792 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 793 { 794 update_rq_clock(rq); 795 sched_info_dequeued(rq, p); 796 p->sched_class->dequeue_task(rq, p, flags); 797 } 798 799 void activate_task(struct rq *rq, struct task_struct *p, int flags) 800 { 801 if (task_contributes_to_load(p)) 802 rq->nr_uninterruptible--; 803 804 enqueue_task(rq, p, flags); 805 } 806 807 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 808 { 809 if (task_contributes_to_load(p)) 810 rq->nr_uninterruptible++; 811 812 dequeue_task(rq, p, flags); 813 } 814 815 static void update_rq_clock_task(struct rq *rq, s64 delta) 816 { 817 /* 818 * In theory, the compile should just see 0 here, and optimize out the call 819 * to sched_rt_avg_update. But I don't trust it... 820 */ 821 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 822 s64 steal = 0, irq_delta = 0; 823 #endif 824 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 825 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 826 827 /* 828 * Since irq_time is only updated on {soft,}irq_exit, we might run into 829 * this case when a previous update_rq_clock() happened inside a 830 * {soft,}irq region. 831 * 832 * When this happens, we stop ->clock_task and only update the 833 * prev_irq_time stamp to account for the part that fit, so that a next 834 * update will consume the rest. This ensures ->clock_task is 835 * monotonic. 836 * 837 * It does however cause some slight miss-attribution of {soft,}irq 838 * time, a more accurate solution would be to update the irq_time using 839 * the current rq->clock timestamp, except that would require using 840 * atomic ops. 841 */ 842 if (irq_delta > delta) 843 irq_delta = delta; 844 845 rq->prev_irq_time += irq_delta; 846 delta -= irq_delta; 847 #endif 848 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 849 if (static_key_false((¶virt_steal_rq_enabled))) { 850 steal = paravirt_steal_clock(cpu_of(rq)); 851 steal -= rq->prev_steal_time_rq; 852 853 if (unlikely(steal > delta)) 854 steal = delta; 855 856 rq->prev_steal_time_rq += steal; 857 delta -= steal; 858 } 859 #endif 860 861 rq->clock_task += delta; 862 863 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 864 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 865 sched_rt_avg_update(rq, irq_delta + steal); 866 #endif 867 } 868 869 void sched_set_stop_task(int cpu, struct task_struct *stop) 870 { 871 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 872 struct task_struct *old_stop = cpu_rq(cpu)->stop; 873 874 if (stop) { 875 /* 876 * Make it appear like a SCHED_FIFO task, its something 877 * userspace knows about and won't get confused about. 878 * 879 * Also, it will make PI more or less work without too 880 * much confusion -- but then, stop work should not 881 * rely on PI working anyway. 882 */ 883 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 884 885 stop->sched_class = &stop_sched_class; 886 } 887 888 cpu_rq(cpu)->stop = stop; 889 890 if (old_stop) { 891 /* 892 * Reset it back to a normal scheduling class so that 893 * it can die in pieces. 894 */ 895 old_stop->sched_class = &rt_sched_class; 896 } 897 } 898 899 /* 900 * __normal_prio - return the priority that is based on the static prio 901 */ 902 static inline int __normal_prio(struct task_struct *p) 903 { 904 return p->static_prio; 905 } 906 907 /* 908 * Calculate the expected normal priority: i.e. priority 909 * without taking RT-inheritance into account. Might be 910 * boosted by interactivity modifiers. Changes upon fork, 911 * setprio syscalls, and whenever the interactivity 912 * estimator recalculates. 913 */ 914 static inline int normal_prio(struct task_struct *p) 915 { 916 int prio; 917 918 if (task_has_dl_policy(p)) 919 prio = MAX_DL_PRIO-1; 920 else if (task_has_rt_policy(p)) 921 prio = MAX_RT_PRIO-1 - p->rt_priority; 922 else 923 prio = __normal_prio(p); 924 return prio; 925 } 926 927 /* 928 * Calculate the current priority, i.e. the priority 929 * taken into account by the scheduler. This value might 930 * be boosted by RT tasks, or might be boosted by 931 * interactivity modifiers. Will be RT if the task got 932 * RT-boosted. If not then it returns p->normal_prio. 933 */ 934 static int effective_prio(struct task_struct *p) 935 { 936 p->normal_prio = normal_prio(p); 937 /* 938 * If we are RT tasks or we were boosted to RT priority, 939 * keep the priority unchanged. Otherwise, update priority 940 * to the normal priority: 941 */ 942 if (!rt_prio(p->prio)) 943 return p->normal_prio; 944 return p->prio; 945 } 946 947 /** 948 * task_curr - is this task currently executing on a CPU? 949 * @p: the task in question. 950 * 951 * Return: 1 if the task is currently executing. 0 otherwise. 952 */ 953 inline int task_curr(const struct task_struct *p) 954 { 955 return cpu_curr(task_cpu(p)) == p; 956 } 957 958 /* 959 * Can drop rq->lock because from sched_class::switched_from() methods drop it. 960 */ 961 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 962 const struct sched_class *prev_class, 963 int oldprio) 964 { 965 if (prev_class != p->sched_class) { 966 if (prev_class->switched_from) 967 prev_class->switched_from(rq, p); 968 /* Possble rq->lock 'hole'. */ 969 p->sched_class->switched_to(rq, p); 970 } else if (oldprio != p->prio || dl_task(p)) 971 p->sched_class->prio_changed(rq, p, oldprio); 972 } 973 974 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 975 { 976 const struct sched_class *class; 977 978 if (p->sched_class == rq->curr->sched_class) { 979 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 980 } else { 981 for_each_class(class) { 982 if (class == rq->curr->sched_class) 983 break; 984 if (class == p->sched_class) { 985 resched_curr(rq); 986 break; 987 } 988 } 989 } 990 991 /* 992 * A queue event has occurred, and we're going to schedule. In 993 * this case, we can save a useless back to back clock update. 994 */ 995 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 996 rq_clock_skip_update(rq, true); 997 } 998 999 #ifdef CONFIG_SMP 1000 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1001 { 1002 #ifdef CONFIG_SCHED_DEBUG 1003 /* 1004 * We should never call set_task_cpu() on a blocked task, 1005 * ttwu() will sort out the placement. 1006 */ 1007 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1008 !p->on_rq); 1009 1010 #ifdef CONFIG_LOCKDEP 1011 /* 1012 * The caller should hold either p->pi_lock or rq->lock, when changing 1013 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1014 * 1015 * sched_move_task() holds both and thus holding either pins the cgroup, 1016 * see task_group(). 1017 * 1018 * Furthermore, all task_rq users should acquire both locks, see 1019 * task_rq_lock(). 1020 */ 1021 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1022 lockdep_is_held(&task_rq(p)->lock))); 1023 #endif 1024 #endif 1025 1026 trace_sched_migrate_task(p, new_cpu); 1027 1028 if (task_cpu(p) != new_cpu) { 1029 if (p->sched_class->migrate_task_rq) 1030 p->sched_class->migrate_task_rq(p, new_cpu); 1031 p->se.nr_migrations++; 1032 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1033 } 1034 1035 __set_task_cpu(p, new_cpu); 1036 } 1037 1038 static void __migrate_swap_task(struct task_struct *p, int cpu) 1039 { 1040 if (task_on_rq_queued(p)) { 1041 struct rq *src_rq, *dst_rq; 1042 1043 src_rq = task_rq(p); 1044 dst_rq = cpu_rq(cpu); 1045 1046 deactivate_task(src_rq, p, 0); 1047 set_task_cpu(p, cpu); 1048 activate_task(dst_rq, p, 0); 1049 check_preempt_curr(dst_rq, p, 0); 1050 } else { 1051 /* 1052 * Task isn't running anymore; make it appear like we migrated 1053 * it before it went to sleep. This means on wakeup we make the 1054 * previous cpu our targer instead of where it really is. 1055 */ 1056 p->wake_cpu = cpu; 1057 } 1058 } 1059 1060 struct migration_swap_arg { 1061 struct task_struct *src_task, *dst_task; 1062 int src_cpu, dst_cpu; 1063 }; 1064 1065 static int migrate_swap_stop(void *data) 1066 { 1067 struct migration_swap_arg *arg = data; 1068 struct rq *src_rq, *dst_rq; 1069 int ret = -EAGAIN; 1070 1071 src_rq = cpu_rq(arg->src_cpu); 1072 dst_rq = cpu_rq(arg->dst_cpu); 1073 1074 double_raw_lock(&arg->src_task->pi_lock, 1075 &arg->dst_task->pi_lock); 1076 double_rq_lock(src_rq, dst_rq); 1077 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1078 goto unlock; 1079 1080 if (task_cpu(arg->src_task) != arg->src_cpu) 1081 goto unlock; 1082 1083 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1084 goto unlock; 1085 1086 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1087 goto unlock; 1088 1089 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1090 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1091 1092 ret = 0; 1093 1094 unlock: 1095 double_rq_unlock(src_rq, dst_rq); 1096 raw_spin_unlock(&arg->dst_task->pi_lock); 1097 raw_spin_unlock(&arg->src_task->pi_lock); 1098 1099 return ret; 1100 } 1101 1102 /* 1103 * Cross migrate two tasks 1104 */ 1105 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1106 { 1107 struct migration_swap_arg arg; 1108 int ret = -EINVAL; 1109 1110 arg = (struct migration_swap_arg){ 1111 .src_task = cur, 1112 .src_cpu = task_cpu(cur), 1113 .dst_task = p, 1114 .dst_cpu = task_cpu(p), 1115 }; 1116 1117 if (arg.src_cpu == arg.dst_cpu) 1118 goto out; 1119 1120 /* 1121 * These three tests are all lockless; this is OK since all of them 1122 * will be re-checked with proper locks held further down the line. 1123 */ 1124 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1125 goto out; 1126 1127 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1128 goto out; 1129 1130 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1131 goto out; 1132 1133 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1134 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1135 1136 out: 1137 return ret; 1138 } 1139 1140 struct migration_arg { 1141 struct task_struct *task; 1142 int dest_cpu; 1143 }; 1144 1145 static int migration_cpu_stop(void *data); 1146 1147 /* 1148 * wait_task_inactive - wait for a thread to unschedule. 1149 * 1150 * If @match_state is nonzero, it's the @p->state value just checked and 1151 * not expected to change. If it changes, i.e. @p might have woken up, 1152 * then return zero. When we succeed in waiting for @p to be off its CPU, 1153 * we return a positive number (its total switch count). If a second call 1154 * a short while later returns the same number, the caller can be sure that 1155 * @p has remained unscheduled the whole time. 1156 * 1157 * The caller must ensure that the task *will* unschedule sometime soon, 1158 * else this function might spin for a *long* time. This function can't 1159 * be called with interrupts off, or it may introduce deadlock with 1160 * smp_call_function() if an IPI is sent by the same process we are 1161 * waiting to become inactive. 1162 */ 1163 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1164 { 1165 unsigned long flags; 1166 int running, queued; 1167 unsigned long ncsw; 1168 struct rq *rq; 1169 1170 for (;;) { 1171 /* 1172 * We do the initial early heuristics without holding 1173 * any task-queue locks at all. We'll only try to get 1174 * the runqueue lock when things look like they will 1175 * work out! 1176 */ 1177 rq = task_rq(p); 1178 1179 /* 1180 * If the task is actively running on another CPU 1181 * still, just relax and busy-wait without holding 1182 * any locks. 1183 * 1184 * NOTE! Since we don't hold any locks, it's not 1185 * even sure that "rq" stays as the right runqueue! 1186 * But we don't care, since "task_running()" will 1187 * return false if the runqueue has changed and p 1188 * is actually now running somewhere else! 1189 */ 1190 while (task_running(rq, p)) { 1191 if (match_state && unlikely(p->state != match_state)) 1192 return 0; 1193 cpu_relax(); 1194 } 1195 1196 /* 1197 * Ok, time to look more closely! We need the rq 1198 * lock now, to be *sure*. If we're wrong, we'll 1199 * just go back and repeat. 1200 */ 1201 rq = task_rq_lock(p, &flags); 1202 trace_sched_wait_task(p); 1203 running = task_running(rq, p); 1204 queued = task_on_rq_queued(p); 1205 ncsw = 0; 1206 if (!match_state || p->state == match_state) 1207 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1208 task_rq_unlock(rq, p, &flags); 1209 1210 /* 1211 * If it changed from the expected state, bail out now. 1212 */ 1213 if (unlikely(!ncsw)) 1214 break; 1215 1216 /* 1217 * Was it really running after all now that we 1218 * checked with the proper locks actually held? 1219 * 1220 * Oops. Go back and try again.. 1221 */ 1222 if (unlikely(running)) { 1223 cpu_relax(); 1224 continue; 1225 } 1226 1227 /* 1228 * It's not enough that it's not actively running, 1229 * it must be off the runqueue _entirely_, and not 1230 * preempted! 1231 * 1232 * So if it was still runnable (but just not actively 1233 * running right now), it's preempted, and we should 1234 * yield - it could be a while. 1235 */ 1236 if (unlikely(queued)) { 1237 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1238 1239 set_current_state(TASK_UNINTERRUPTIBLE); 1240 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1241 continue; 1242 } 1243 1244 /* 1245 * Ahh, all good. It wasn't running, and it wasn't 1246 * runnable, which means that it will never become 1247 * running in the future either. We're all done! 1248 */ 1249 break; 1250 } 1251 1252 return ncsw; 1253 } 1254 1255 /*** 1256 * kick_process - kick a running thread to enter/exit the kernel 1257 * @p: the to-be-kicked thread 1258 * 1259 * Cause a process which is running on another CPU to enter 1260 * kernel-mode, without any delay. (to get signals handled.) 1261 * 1262 * NOTE: this function doesn't have to take the runqueue lock, 1263 * because all it wants to ensure is that the remote task enters 1264 * the kernel. If the IPI races and the task has been migrated 1265 * to another CPU then no harm is done and the purpose has been 1266 * achieved as well. 1267 */ 1268 void kick_process(struct task_struct *p) 1269 { 1270 int cpu; 1271 1272 preempt_disable(); 1273 cpu = task_cpu(p); 1274 if ((cpu != smp_processor_id()) && task_curr(p)) 1275 smp_send_reschedule(cpu); 1276 preempt_enable(); 1277 } 1278 EXPORT_SYMBOL_GPL(kick_process); 1279 #endif /* CONFIG_SMP */ 1280 1281 #ifdef CONFIG_SMP 1282 /* 1283 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1284 */ 1285 static int select_fallback_rq(int cpu, struct task_struct *p) 1286 { 1287 int nid = cpu_to_node(cpu); 1288 const struct cpumask *nodemask = NULL; 1289 enum { cpuset, possible, fail } state = cpuset; 1290 int dest_cpu; 1291 1292 /* 1293 * If the node that the cpu is on has been offlined, cpu_to_node() 1294 * will return -1. There is no cpu on the node, and we should 1295 * select the cpu on the other node. 1296 */ 1297 if (nid != -1) { 1298 nodemask = cpumask_of_node(nid); 1299 1300 /* Look for allowed, online CPU in same node. */ 1301 for_each_cpu(dest_cpu, nodemask) { 1302 if (!cpu_online(dest_cpu)) 1303 continue; 1304 if (!cpu_active(dest_cpu)) 1305 continue; 1306 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1307 return dest_cpu; 1308 } 1309 } 1310 1311 for (;;) { 1312 /* Any allowed, online CPU? */ 1313 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1314 if (!cpu_online(dest_cpu)) 1315 continue; 1316 if (!cpu_active(dest_cpu)) 1317 continue; 1318 goto out; 1319 } 1320 1321 switch (state) { 1322 case cpuset: 1323 /* No more Mr. Nice Guy. */ 1324 cpuset_cpus_allowed_fallback(p); 1325 state = possible; 1326 break; 1327 1328 case possible: 1329 do_set_cpus_allowed(p, cpu_possible_mask); 1330 state = fail; 1331 break; 1332 1333 case fail: 1334 BUG(); 1335 break; 1336 } 1337 } 1338 1339 out: 1340 if (state != cpuset) { 1341 /* 1342 * Don't tell them about moving exiting tasks or 1343 * kernel threads (both mm NULL), since they never 1344 * leave kernel. 1345 */ 1346 if (p->mm && printk_ratelimit()) { 1347 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1348 task_pid_nr(p), p->comm, cpu); 1349 } 1350 } 1351 1352 return dest_cpu; 1353 } 1354 1355 /* 1356 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1357 */ 1358 static inline 1359 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1360 { 1361 if (p->nr_cpus_allowed > 1) 1362 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1363 1364 /* 1365 * In order not to call set_task_cpu() on a blocking task we need 1366 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1367 * cpu. 1368 * 1369 * Since this is common to all placement strategies, this lives here. 1370 * 1371 * [ this allows ->select_task() to simply return task_cpu(p) and 1372 * not worry about this generic constraint ] 1373 */ 1374 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1375 !cpu_online(cpu))) 1376 cpu = select_fallback_rq(task_cpu(p), p); 1377 1378 return cpu; 1379 } 1380 1381 static void update_avg(u64 *avg, u64 sample) 1382 { 1383 s64 diff = sample - *avg; 1384 *avg += diff >> 3; 1385 } 1386 #endif 1387 1388 static void 1389 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1390 { 1391 #ifdef CONFIG_SCHEDSTATS 1392 struct rq *rq = this_rq(); 1393 1394 #ifdef CONFIG_SMP 1395 int this_cpu = smp_processor_id(); 1396 1397 if (cpu == this_cpu) { 1398 schedstat_inc(rq, ttwu_local); 1399 schedstat_inc(p, se.statistics.nr_wakeups_local); 1400 } else { 1401 struct sched_domain *sd; 1402 1403 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1404 rcu_read_lock(); 1405 for_each_domain(this_cpu, sd) { 1406 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1407 schedstat_inc(sd, ttwu_wake_remote); 1408 break; 1409 } 1410 } 1411 rcu_read_unlock(); 1412 } 1413 1414 if (wake_flags & WF_MIGRATED) 1415 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1416 1417 #endif /* CONFIG_SMP */ 1418 1419 schedstat_inc(rq, ttwu_count); 1420 schedstat_inc(p, se.statistics.nr_wakeups); 1421 1422 if (wake_flags & WF_SYNC) 1423 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1424 1425 #endif /* CONFIG_SCHEDSTATS */ 1426 } 1427 1428 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1429 { 1430 activate_task(rq, p, en_flags); 1431 p->on_rq = TASK_ON_RQ_QUEUED; 1432 1433 /* if a worker is waking up, notify workqueue */ 1434 if (p->flags & PF_WQ_WORKER) 1435 wq_worker_waking_up(p, cpu_of(rq)); 1436 } 1437 1438 /* 1439 * Mark the task runnable and perform wakeup-preemption. 1440 */ 1441 static void 1442 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1443 { 1444 check_preempt_curr(rq, p, wake_flags); 1445 trace_sched_wakeup(p, true); 1446 1447 p->state = TASK_RUNNING; 1448 #ifdef CONFIG_SMP 1449 if (p->sched_class->task_woken) 1450 p->sched_class->task_woken(rq, p); 1451 1452 if (rq->idle_stamp) { 1453 u64 delta = rq_clock(rq) - rq->idle_stamp; 1454 u64 max = 2*rq->max_idle_balance_cost; 1455 1456 update_avg(&rq->avg_idle, delta); 1457 1458 if (rq->avg_idle > max) 1459 rq->avg_idle = max; 1460 1461 rq->idle_stamp = 0; 1462 } 1463 #endif 1464 } 1465 1466 static void 1467 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1468 { 1469 #ifdef CONFIG_SMP 1470 if (p->sched_contributes_to_load) 1471 rq->nr_uninterruptible--; 1472 #endif 1473 1474 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1475 ttwu_do_wakeup(rq, p, wake_flags); 1476 } 1477 1478 /* 1479 * Called in case the task @p isn't fully descheduled from its runqueue, 1480 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1481 * since all we need to do is flip p->state to TASK_RUNNING, since 1482 * the task is still ->on_rq. 1483 */ 1484 static int ttwu_remote(struct task_struct *p, int wake_flags) 1485 { 1486 struct rq *rq; 1487 int ret = 0; 1488 1489 rq = __task_rq_lock(p); 1490 if (task_on_rq_queued(p)) { 1491 /* check_preempt_curr() may use rq clock */ 1492 update_rq_clock(rq); 1493 ttwu_do_wakeup(rq, p, wake_flags); 1494 ret = 1; 1495 } 1496 __task_rq_unlock(rq); 1497 1498 return ret; 1499 } 1500 1501 #ifdef CONFIG_SMP 1502 void sched_ttwu_pending(void) 1503 { 1504 struct rq *rq = this_rq(); 1505 struct llist_node *llist = llist_del_all(&rq->wake_list); 1506 struct task_struct *p; 1507 unsigned long flags; 1508 1509 if (!llist) 1510 return; 1511 1512 raw_spin_lock_irqsave(&rq->lock, flags); 1513 1514 while (llist) { 1515 p = llist_entry(llist, struct task_struct, wake_entry); 1516 llist = llist_next(llist); 1517 ttwu_do_activate(rq, p, 0); 1518 } 1519 1520 raw_spin_unlock_irqrestore(&rq->lock, flags); 1521 } 1522 1523 void scheduler_ipi(void) 1524 { 1525 /* 1526 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1527 * TIF_NEED_RESCHED remotely (for the first time) will also send 1528 * this IPI. 1529 */ 1530 preempt_fold_need_resched(); 1531 1532 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1533 return; 1534 1535 /* 1536 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1537 * traditionally all their work was done from the interrupt return 1538 * path. Now that we actually do some work, we need to make sure 1539 * we do call them. 1540 * 1541 * Some archs already do call them, luckily irq_enter/exit nest 1542 * properly. 1543 * 1544 * Arguably we should visit all archs and update all handlers, 1545 * however a fair share of IPIs are still resched only so this would 1546 * somewhat pessimize the simple resched case. 1547 */ 1548 irq_enter(); 1549 sched_ttwu_pending(); 1550 1551 /* 1552 * Check if someone kicked us for doing the nohz idle load balance. 1553 */ 1554 if (unlikely(got_nohz_idle_kick())) { 1555 this_rq()->idle_balance = 1; 1556 raise_softirq_irqoff(SCHED_SOFTIRQ); 1557 } 1558 irq_exit(); 1559 } 1560 1561 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1562 { 1563 struct rq *rq = cpu_rq(cpu); 1564 1565 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1566 if (!set_nr_if_polling(rq->idle)) 1567 smp_send_reschedule(cpu); 1568 else 1569 trace_sched_wake_idle_without_ipi(cpu); 1570 } 1571 } 1572 1573 void wake_up_if_idle(int cpu) 1574 { 1575 struct rq *rq = cpu_rq(cpu); 1576 unsigned long flags; 1577 1578 rcu_read_lock(); 1579 1580 if (!is_idle_task(rcu_dereference(rq->curr))) 1581 goto out; 1582 1583 if (set_nr_if_polling(rq->idle)) { 1584 trace_sched_wake_idle_without_ipi(cpu); 1585 } else { 1586 raw_spin_lock_irqsave(&rq->lock, flags); 1587 if (is_idle_task(rq->curr)) 1588 smp_send_reschedule(cpu); 1589 /* Else cpu is not in idle, do nothing here */ 1590 raw_spin_unlock_irqrestore(&rq->lock, flags); 1591 } 1592 1593 out: 1594 rcu_read_unlock(); 1595 } 1596 1597 bool cpus_share_cache(int this_cpu, int that_cpu) 1598 { 1599 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1600 } 1601 #endif /* CONFIG_SMP */ 1602 1603 static void ttwu_queue(struct task_struct *p, int cpu) 1604 { 1605 struct rq *rq = cpu_rq(cpu); 1606 1607 #if defined(CONFIG_SMP) 1608 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1609 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1610 ttwu_queue_remote(p, cpu); 1611 return; 1612 } 1613 #endif 1614 1615 raw_spin_lock(&rq->lock); 1616 ttwu_do_activate(rq, p, 0); 1617 raw_spin_unlock(&rq->lock); 1618 } 1619 1620 /** 1621 * try_to_wake_up - wake up a thread 1622 * @p: the thread to be awakened 1623 * @state: the mask of task states that can be woken 1624 * @wake_flags: wake modifier flags (WF_*) 1625 * 1626 * Put it on the run-queue if it's not already there. The "current" 1627 * thread is always on the run-queue (except when the actual 1628 * re-schedule is in progress), and as such you're allowed to do 1629 * the simpler "current->state = TASK_RUNNING" to mark yourself 1630 * runnable without the overhead of this. 1631 * 1632 * Return: %true if @p was woken up, %false if it was already running. 1633 * or @state didn't match @p's state. 1634 */ 1635 static int 1636 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1637 { 1638 unsigned long flags; 1639 int cpu, success = 0; 1640 1641 /* 1642 * If we are going to wake up a thread waiting for CONDITION we 1643 * need to ensure that CONDITION=1 done by the caller can not be 1644 * reordered with p->state check below. This pairs with mb() in 1645 * set_current_state() the waiting thread does. 1646 */ 1647 smp_mb__before_spinlock(); 1648 raw_spin_lock_irqsave(&p->pi_lock, flags); 1649 if (!(p->state & state)) 1650 goto out; 1651 1652 success = 1; /* we're going to change ->state */ 1653 cpu = task_cpu(p); 1654 1655 if (p->on_rq && ttwu_remote(p, wake_flags)) 1656 goto stat; 1657 1658 #ifdef CONFIG_SMP 1659 /* 1660 * If the owning (remote) cpu is still in the middle of schedule() with 1661 * this task as prev, wait until its done referencing the task. 1662 */ 1663 while (p->on_cpu) 1664 cpu_relax(); 1665 /* 1666 * Pairs with the smp_wmb() in finish_lock_switch(). 1667 */ 1668 smp_rmb(); 1669 1670 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1671 p->state = TASK_WAKING; 1672 1673 if (p->sched_class->task_waking) 1674 p->sched_class->task_waking(p); 1675 1676 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1677 if (task_cpu(p) != cpu) { 1678 wake_flags |= WF_MIGRATED; 1679 set_task_cpu(p, cpu); 1680 } 1681 #endif /* CONFIG_SMP */ 1682 1683 ttwu_queue(p, cpu); 1684 stat: 1685 ttwu_stat(p, cpu, wake_flags); 1686 out: 1687 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1688 1689 return success; 1690 } 1691 1692 /** 1693 * try_to_wake_up_local - try to wake up a local task with rq lock held 1694 * @p: the thread to be awakened 1695 * 1696 * Put @p on the run-queue if it's not already there. The caller must 1697 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1698 * the current task. 1699 */ 1700 static void try_to_wake_up_local(struct task_struct *p) 1701 { 1702 struct rq *rq = task_rq(p); 1703 1704 if (WARN_ON_ONCE(rq != this_rq()) || 1705 WARN_ON_ONCE(p == current)) 1706 return; 1707 1708 lockdep_assert_held(&rq->lock); 1709 1710 if (!raw_spin_trylock(&p->pi_lock)) { 1711 raw_spin_unlock(&rq->lock); 1712 raw_spin_lock(&p->pi_lock); 1713 raw_spin_lock(&rq->lock); 1714 } 1715 1716 if (!(p->state & TASK_NORMAL)) 1717 goto out; 1718 1719 if (!task_on_rq_queued(p)) 1720 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1721 1722 ttwu_do_wakeup(rq, p, 0); 1723 ttwu_stat(p, smp_processor_id(), 0); 1724 out: 1725 raw_spin_unlock(&p->pi_lock); 1726 } 1727 1728 /** 1729 * wake_up_process - Wake up a specific process 1730 * @p: The process to be woken up. 1731 * 1732 * Attempt to wake up the nominated process and move it to the set of runnable 1733 * processes. 1734 * 1735 * Return: 1 if the process was woken up, 0 if it was already running. 1736 * 1737 * It may be assumed that this function implies a write memory barrier before 1738 * changing the task state if and only if any tasks are woken up. 1739 */ 1740 int wake_up_process(struct task_struct *p) 1741 { 1742 WARN_ON(task_is_stopped_or_traced(p)); 1743 return try_to_wake_up(p, TASK_NORMAL, 0); 1744 } 1745 EXPORT_SYMBOL(wake_up_process); 1746 1747 int wake_up_state(struct task_struct *p, unsigned int state) 1748 { 1749 return try_to_wake_up(p, state, 0); 1750 } 1751 1752 /* 1753 * This function clears the sched_dl_entity static params. 1754 */ 1755 void __dl_clear_params(struct task_struct *p) 1756 { 1757 struct sched_dl_entity *dl_se = &p->dl; 1758 1759 dl_se->dl_runtime = 0; 1760 dl_se->dl_deadline = 0; 1761 dl_se->dl_period = 0; 1762 dl_se->flags = 0; 1763 dl_se->dl_bw = 0; 1764 1765 dl_se->dl_throttled = 0; 1766 dl_se->dl_new = 1; 1767 dl_se->dl_yielded = 0; 1768 } 1769 1770 /* 1771 * Perform scheduler related setup for a newly forked process p. 1772 * p is forked by current. 1773 * 1774 * __sched_fork() is basic setup used by init_idle() too: 1775 */ 1776 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1777 { 1778 p->on_rq = 0; 1779 1780 p->se.on_rq = 0; 1781 p->se.exec_start = 0; 1782 p->se.sum_exec_runtime = 0; 1783 p->se.prev_sum_exec_runtime = 0; 1784 p->se.nr_migrations = 0; 1785 p->se.vruntime = 0; 1786 #ifdef CONFIG_SMP 1787 p->se.avg.decay_count = 0; 1788 #endif 1789 INIT_LIST_HEAD(&p->se.group_node); 1790 1791 #ifdef CONFIG_SCHEDSTATS 1792 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1793 #endif 1794 1795 RB_CLEAR_NODE(&p->dl.rb_node); 1796 init_dl_task_timer(&p->dl); 1797 __dl_clear_params(p); 1798 1799 INIT_LIST_HEAD(&p->rt.run_list); 1800 1801 #ifdef CONFIG_PREEMPT_NOTIFIERS 1802 INIT_HLIST_HEAD(&p->preempt_notifiers); 1803 #endif 1804 1805 #ifdef CONFIG_NUMA_BALANCING 1806 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1807 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1808 p->mm->numa_scan_seq = 0; 1809 } 1810 1811 if (clone_flags & CLONE_VM) 1812 p->numa_preferred_nid = current->numa_preferred_nid; 1813 else 1814 p->numa_preferred_nid = -1; 1815 1816 p->node_stamp = 0ULL; 1817 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1818 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1819 p->numa_work.next = &p->numa_work; 1820 p->numa_faults = NULL; 1821 p->last_task_numa_placement = 0; 1822 p->last_sum_exec_runtime = 0; 1823 1824 p->numa_group = NULL; 1825 #endif /* CONFIG_NUMA_BALANCING */ 1826 } 1827 1828 #ifdef CONFIG_NUMA_BALANCING 1829 #ifdef CONFIG_SCHED_DEBUG 1830 void set_numabalancing_state(bool enabled) 1831 { 1832 if (enabled) 1833 sched_feat_set("NUMA"); 1834 else 1835 sched_feat_set("NO_NUMA"); 1836 } 1837 #else 1838 __read_mostly bool numabalancing_enabled; 1839 1840 void set_numabalancing_state(bool enabled) 1841 { 1842 numabalancing_enabled = enabled; 1843 } 1844 #endif /* CONFIG_SCHED_DEBUG */ 1845 1846 #ifdef CONFIG_PROC_SYSCTL 1847 int sysctl_numa_balancing(struct ctl_table *table, int write, 1848 void __user *buffer, size_t *lenp, loff_t *ppos) 1849 { 1850 struct ctl_table t; 1851 int err; 1852 int state = numabalancing_enabled; 1853 1854 if (write && !capable(CAP_SYS_ADMIN)) 1855 return -EPERM; 1856 1857 t = *table; 1858 t.data = &state; 1859 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1860 if (err < 0) 1861 return err; 1862 if (write) 1863 set_numabalancing_state(state); 1864 return err; 1865 } 1866 #endif 1867 #endif 1868 1869 /* 1870 * fork()/clone()-time setup: 1871 */ 1872 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1873 { 1874 unsigned long flags; 1875 int cpu = get_cpu(); 1876 1877 __sched_fork(clone_flags, p); 1878 /* 1879 * We mark the process as running here. This guarantees that 1880 * nobody will actually run it, and a signal or other external 1881 * event cannot wake it up and insert it on the runqueue either. 1882 */ 1883 p->state = TASK_RUNNING; 1884 1885 /* 1886 * Make sure we do not leak PI boosting priority to the child. 1887 */ 1888 p->prio = current->normal_prio; 1889 1890 /* 1891 * Revert to default priority/policy on fork if requested. 1892 */ 1893 if (unlikely(p->sched_reset_on_fork)) { 1894 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1895 p->policy = SCHED_NORMAL; 1896 p->static_prio = NICE_TO_PRIO(0); 1897 p->rt_priority = 0; 1898 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1899 p->static_prio = NICE_TO_PRIO(0); 1900 1901 p->prio = p->normal_prio = __normal_prio(p); 1902 set_load_weight(p); 1903 1904 /* 1905 * We don't need the reset flag anymore after the fork. It has 1906 * fulfilled its duty: 1907 */ 1908 p->sched_reset_on_fork = 0; 1909 } 1910 1911 if (dl_prio(p->prio)) { 1912 put_cpu(); 1913 return -EAGAIN; 1914 } else if (rt_prio(p->prio)) { 1915 p->sched_class = &rt_sched_class; 1916 } else { 1917 p->sched_class = &fair_sched_class; 1918 } 1919 1920 if (p->sched_class->task_fork) 1921 p->sched_class->task_fork(p); 1922 1923 /* 1924 * The child is not yet in the pid-hash so no cgroup attach races, 1925 * and the cgroup is pinned to this child due to cgroup_fork() 1926 * is ran before sched_fork(). 1927 * 1928 * Silence PROVE_RCU. 1929 */ 1930 raw_spin_lock_irqsave(&p->pi_lock, flags); 1931 set_task_cpu(p, cpu); 1932 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1933 1934 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1935 if (likely(sched_info_on())) 1936 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1937 #endif 1938 #if defined(CONFIG_SMP) 1939 p->on_cpu = 0; 1940 #endif 1941 init_task_preempt_count(p); 1942 #ifdef CONFIG_SMP 1943 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1944 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1945 #endif 1946 1947 put_cpu(); 1948 return 0; 1949 } 1950 1951 unsigned long to_ratio(u64 period, u64 runtime) 1952 { 1953 if (runtime == RUNTIME_INF) 1954 return 1ULL << 20; 1955 1956 /* 1957 * Doing this here saves a lot of checks in all 1958 * the calling paths, and returning zero seems 1959 * safe for them anyway. 1960 */ 1961 if (period == 0) 1962 return 0; 1963 1964 return div64_u64(runtime << 20, period); 1965 } 1966 1967 #ifdef CONFIG_SMP 1968 inline struct dl_bw *dl_bw_of(int i) 1969 { 1970 rcu_lockdep_assert(rcu_read_lock_sched_held(), 1971 "sched RCU must be held"); 1972 return &cpu_rq(i)->rd->dl_bw; 1973 } 1974 1975 static inline int dl_bw_cpus(int i) 1976 { 1977 struct root_domain *rd = cpu_rq(i)->rd; 1978 int cpus = 0; 1979 1980 rcu_lockdep_assert(rcu_read_lock_sched_held(), 1981 "sched RCU must be held"); 1982 for_each_cpu_and(i, rd->span, cpu_active_mask) 1983 cpus++; 1984 1985 return cpus; 1986 } 1987 #else 1988 inline struct dl_bw *dl_bw_of(int i) 1989 { 1990 return &cpu_rq(i)->dl.dl_bw; 1991 } 1992 1993 static inline int dl_bw_cpus(int i) 1994 { 1995 return 1; 1996 } 1997 #endif 1998 1999 /* 2000 * We must be sure that accepting a new task (or allowing changing the 2001 * parameters of an existing one) is consistent with the bandwidth 2002 * constraints. If yes, this function also accordingly updates the currently 2003 * allocated bandwidth to reflect the new situation. 2004 * 2005 * This function is called while holding p's rq->lock. 2006 * 2007 * XXX we should delay bw change until the task's 0-lag point, see 2008 * __setparam_dl(). 2009 */ 2010 static int dl_overflow(struct task_struct *p, int policy, 2011 const struct sched_attr *attr) 2012 { 2013 2014 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2015 u64 period = attr->sched_period ?: attr->sched_deadline; 2016 u64 runtime = attr->sched_runtime; 2017 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2018 int cpus, err = -1; 2019 2020 if (new_bw == p->dl.dl_bw) 2021 return 0; 2022 2023 /* 2024 * Either if a task, enters, leave, or stays -deadline but changes 2025 * its parameters, we may need to update accordingly the total 2026 * allocated bandwidth of the container. 2027 */ 2028 raw_spin_lock(&dl_b->lock); 2029 cpus = dl_bw_cpus(task_cpu(p)); 2030 if (dl_policy(policy) && !task_has_dl_policy(p) && 2031 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2032 __dl_add(dl_b, new_bw); 2033 err = 0; 2034 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2035 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2036 __dl_clear(dl_b, p->dl.dl_bw); 2037 __dl_add(dl_b, new_bw); 2038 err = 0; 2039 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2040 __dl_clear(dl_b, p->dl.dl_bw); 2041 err = 0; 2042 } 2043 raw_spin_unlock(&dl_b->lock); 2044 2045 return err; 2046 } 2047 2048 extern void init_dl_bw(struct dl_bw *dl_b); 2049 2050 /* 2051 * wake_up_new_task - wake up a newly created task for the first time. 2052 * 2053 * This function will do some initial scheduler statistics housekeeping 2054 * that must be done for every newly created context, then puts the task 2055 * on the runqueue and wakes it. 2056 */ 2057 void wake_up_new_task(struct task_struct *p) 2058 { 2059 unsigned long flags; 2060 struct rq *rq; 2061 2062 raw_spin_lock_irqsave(&p->pi_lock, flags); 2063 #ifdef CONFIG_SMP 2064 /* 2065 * Fork balancing, do it here and not earlier because: 2066 * - cpus_allowed can change in the fork path 2067 * - any previously selected cpu might disappear through hotplug 2068 */ 2069 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2070 #endif 2071 2072 /* Initialize new task's runnable average */ 2073 init_task_runnable_average(p); 2074 rq = __task_rq_lock(p); 2075 activate_task(rq, p, 0); 2076 p->on_rq = TASK_ON_RQ_QUEUED; 2077 trace_sched_wakeup_new(p, true); 2078 check_preempt_curr(rq, p, WF_FORK); 2079 #ifdef CONFIG_SMP 2080 if (p->sched_class->task_woken) 2081 p->sched_class->task_woken(rq, p); 2082 #endif 2083 task_rq_unlock(rq, p, &flags); 2084 } 2085 2086 #ifdef CONFIG_PREEMPT_NOTIFIERS 2087 2088 /** 2089 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2090 * @notifier: notifier struct to register 2091 */ 2092 void preempt_notifier_register(struct preempt_notifier *notifier) 2093 { 2094 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2095 } 2096 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2097 2098 /** 2099 * preempt_notifier_unregister - no longer interested in preemption notifications 2100 * @notifier: notifier struct to unregister 2101 * 2102 * This is safe to call from within a preemption notifier. 2103 */ 2104 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2105 { 2106 hlist_del(¬ifier->link); 2107 } 2108 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2109 2110 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2111 { 2112 struct preempt_notifier *notifier; 2113 2114 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2115 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2116 } 2117 2118 static void 2119 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2120 struct task_struct *next) 2121 { 2122 struct preempt_notifier *notifier; 2123 2124 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2125 notifier->ops->sched_out(notifier, next); 2126 } 2127 2128 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2129 2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2131 { 2132 } 2133 2134 static void 2135 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2136 struct task_struct *next) 2137 { 2138 } 2139 2140 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2141 2142 /** 2143 * prepare_task_switch - prepare to switch tasks 2144 * @rq: the runqueue preparing to switch 2145 * @prev: the current task that is being switched out 2146 * @next: the task we are going to switch to. 2147 * 2148 * This is called with the rq lock held and interrupts off. It must 2149 * be paired with a subsequent finish_task_switch after the context 2150 * switch. 2151 * 2152 * prepare_task_switch sets up locking and calls architecture specific 2153 * hooks. 2154 */ 2155 static inline void 2156 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2157 struct task_struct *next) 2158 { 2159 trace_sched_switch(prev, next); 2160 sched_info_switch(rq, prev, next); 2161 perf_event_task_sched_out(prev, next); 2162 fire_sched_out_preempt_notifiers(prev, next); 2163 prepare_lock_switch(rq, next); 2164 prepare_arch_switch(next); 2165 } 2166 2167 /** 2168 * finish_task_switch - clean up after a task-switch 2169 * @prev: the thread we just switched away from. 2170 * 2171 * finish_task_switch must be called after the context switch, paired 2172 * with a prepare_task_switch call before the context switch. 2173 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2174 * and do any other architecture-specific cleanup actions. 2175 * 2176 * Note that we may have delayed dropping an mm in context_switch(). If 2177 * so, we finish that here outside of the runqueue lock. (Doing it 2178 * with the lock held can cause deadlocks; see schedule() for 2179 * details.) 2180 * 2181 * The context switch have flipped the stack from under us and restored the 2182 * local variables which were saved when this task called schedule() in the 2183 * past. prev == current is still correct but we need to recalculate this_rq 2184 * because prev may have moved to another CPU. 2185 */ 2186 static struct rq *finish_task_switch(struct task_struct *prev) 2187 __releases(rq->lock) 2188 { 2189 struct rq *rq = this_rq(); 2190 struct mm_struct *mm = rq->prev_mm; 2191 long prev_state; 2192 2193 rq->prev_mm = NULL; 2194 2195 /* 2196 * A task struct has one reference for the use as "current". 2197 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2198 * schedule one last time. The schedule call will never return, and 2199 * the scheduled task must drop that reference. 2200 * The test for TASK_DEAD must occur while the runqueue locks are 2201 * still held, otherwise prev could be scheduled on another cpu, die 2202 * there before we look at prev->state, and then the reference would 2203 * be dropped twice. 2204 * Manfred Spraul <manfred@colorfullife.com> 2205 */ 2206 prev_state = prev->state; 2207 vtime_task_switch(prev); 2208 finish_arch_switch(prev); 2209 perf_event_task_sched_in(prev, current); 2210 finish_lock_switch(rq, prev); 2211 finish_arch_post_lock_switch(); 2212 2213 fire_sched_in_preempt_notifiers(current); 2214 if (mm) 2215 mmdrop(mm); 2216 if (unlikely(prev_state == TASK_DEAD)) { 2217 if (prev->sched_class->task_dead) 2218 prev->sched_class->task_dead(prev); 2219 2220 /* 2221 * Remove function-return probe instances associated with this 2222 * task and put them back on the free list. 2223 */ 2224 kprobe_flush_task(prev); 2225 put_task_struct(prev); 2226 } 2227 2228 tick_nohz_task_switch(current); 2229 return rq; 2230 } 2231 2232 #ifdef CONFIG_SMP 2233 2234 /* rq->lock is NOT held, but preemption is disabled */ 2235 static inline void post_schedule(struct rq *rq) 2236 { 2237 if (rq->post_schedule) { 2238 unsigned long flags; 2239 2240 raw_spin_lock_irqsave(&rq->lock, flags); 2241 if (rq->curr->sched_class->post_schedule) 2242 rq->curr->sched_class->post_schedule(rq); 2243 raw_spin_unlock_irqrestore(&rq->lock, flags); 2244 2245 rq->post_schedule = 0; 2246 } 2247 } 2248 2249 #else 2250 2251 static inline void post_schedule(struct rq *rq) 2252 { 2253 } 2254 2255 #endif 2256 2257 /** 2258 * schedule_tail - first thing a freshly forked thread must call. 2259 * @prev: the thread we just switched away from. 2260 */ 2261 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2262 __releases(rq->lock) 2263 { 2264 struct rq *rq; 2265 2266 /* finish_task_switch() drops rq->lock and enables preemtion */ 2267 preempt_disable(); 2268 rq = finish_task_switch(prev); 2269 post_schedule(rq); 2270 preempt_enable(); 2271 2272 if (current->set_child_tid) 2273 put_user(task_pid_vnr(current), current->set_child_tid); 2274 } 2275 2276 /* 2277 * context_switch - switch to the new MM and the new thread's register state. 2278 */ 2279 static inline struct rq * 2280 context_switch(struct rq *rq, struct task_struct *prev, 2281 struct task_struct *next) 2282 { 2283 struct mm_struct *mm, *oldmm; 2284 2285 prepare_task_switch(rq, prev, next); 2286 2287 mm = next->mm; 2288 oldmm = prev->active_mm; 2289 /* 2290 * For paravirt, this is coupled with an exit in switch_to to 2291 * combine the page table reload and the switch backend into 2292 * one hypercall. 2293 */ 2294 arch_start_context_switch(prev); 2295 2296 if (!mm) { 2297 next->active_mm = oldmm; 2298 atomic_inc(&oldmm->mm_count); 2299 enter_lazy_tlb(oldmm, next); 2300 } else 2301 switch_mm(oldmm, mm, next); 2302 2303 if (!prev->mm) { 2304 prev->active_mm = NULL; 2305 rq->prev_mm = oldmm; 2306 } 2307 /* 2308 * Since the runqueue lock will be released by the next 2309 * task (which is an invalid locking op but in the case 2310 * of the scheduler it's an obvious special-case), so we 2311 * do an early lockdep release here: 2312 */ 2313 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2314 2315 context_tracking_task_switch(prev, next); 2316 /* Here we just switch the register state and the stack. */ 2317 switch_to(prev, next, prev); 2318 barrier(); 2319 2320 return finish_task_switch(prev); 2321 } 2322 2323 /* 2324 * nr_running and nr_context_switches: 2325 * 2326 * externally visible scheduler statistics: current number of runnable 2327 * threads, total number of context switches performed since bootup. 2328 */ 2329 unsigned long nr_running(void) 2330 { 2331 unsigned long i, sum = 0; 2332 2333 for_each_online_cpu(i) 2334 sum += cpu_rq(i)->nr_running; 2335 2336 return sum; 2337 } 2338 2339 /* 2340 * Check if only the current task is running on the cpu. 2341 */ 2342 bool single_task_running(void) 2343 { 2344 if (cpu_rq(smp_processor_id())->nr_running == 1) 2345 return true; 2346 else 2347 return false; 2348 } 2349 EXPORT_SYMBOL(single_task_running); 2350 2351 unsigned long long nr_context_switches(void) 2352 { 2353 int i; 2354 unsigned long long sum = 0; 2355 2356 for_each_possible_cpu(i) 2357 sum += cpu_rq(i)->nr_switches; 2358 2359 return sum; 2360 } 2361 2362 unsigned long nr_iowait(void) 2363 { 2364 unsigned long i, sum = 0; 2365 2366 for_each_possible_cpu(i) 2367 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2368 2369 return sum; 2370 } 2371 2372 unsigned long nr_iowait_cpu(int cpu) 2373 { 2374 struct rq *this = cpu_rq(cpu); 2375 return atomic_read(&this->nr_iowait); 2376 } 2377 2378 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2379 { 2380 struct rq *this = this_rq(); 2381 *nr_waiters = atomic_read(&this->nr_iowait); 2382 *load = this->cpu_load[0]; 2383 } 2384 2385 #ifdef CONFIG_SMP 2386 2387 /* 2388 * sched_exec - execve() is a valuable balancing opportunity, because at 2389 * this point the task has the smallest effective memory and cache footprint. 2390 */ 2391 void sched_exec(void) 2392 { 2393 struct task_struct *p = current; 2394 unsigned long flags; 2395 int dest_cpu; 2396 2397 raw_spin_lock_irqsave(&p->pi_lock, flags); 2398 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2399 if (dest_cpu == smp_processor_id()) 2400 goto unlock; 2401 2402 if (likely(cpu_active(dest_cpu))) { 2403 struct migration_arg arg = { p, dest_cpu }; 2404 2405 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2406 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2407 return; 2408 } 2409 unlock: 2410 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2411 } 2412 2413 #endif 2414 2415 DEFINE_PER_CPU(struct kernel_stat, kstat); 2416 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2417 2418 EXPORT_PER_CPU_SYMBOL(kstat); 2419 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2420 2421 /* 2422 * Return accounted runtime for the task. 2423 * In case the task is currently running, return the runtime plus current's 2424 * pending runtime that have not been accounted yet. 2425 */ 2426 unsigned long long task_sched_runtime(struct task_struct *p) 2427 { 2428 unsigned long flags; 2429 struct rq *rq; 2430 u64 ns; 2431 2432 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2433 /* 2434 * 64-bit doesn't need locks to atomically read a 64bit value. 2435 * So we have a optimization chance when the task's delta_exec is 0. 2436 * Reading ->on_cpu is racy, but this is ok. 2437 * 2438 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2439 * If we race with it entering cpu, unaccounted time is 0. This is 2440 * indistinguishable from the read occurring a few cycles earlier. 2441 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2442 * been accounted, so we're correct here as well. 2443 */ 2444 if (!p->on_cpu || !task_on_rq_queued(p)) 2445 return p->se.sum_exec_runtime; 2446 #endif 2447 2448 rq = task_rq_lock(p, &flags); 2449 /* 2450 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2451 * project cycles that may never be accounted to this 2452 * thread, breaking clock_gettime(). 2453 */ 2454 if (task_current(rq, p) && task_on_rq_queued(p)) { 2455 update_rq_clock(rq); 2456 p->sched_class->update_curr(rq); 2457 } 2458 ns = p->se.sum_exec_runtime; 2459 task_rq_unlock(rq, p, &flags); 2460 2461 return ns; 2462 } 2463 2464 /* 2465 * This function gets called by the timer code, with HZ frequency. 2466 * We call it with interrupts disabled. 2467 */ 2468 void scheduler_tick(void) 2469 { 2470 int cpu = smp_processor_id(); 2471 struct rq *rq = cpu_rq(cpu); 2472 struct task_struct *curr = rq->curr; 2473 2474 sched_clock_tick(); 2475 2476 raw_spin_lock(&rq->lock); 2477 update_rq_clock(rq); 2478 curr->sched_class->task_tick(rq, curr, 0); 2479 update_cpu_load_active(rq); 2480 raw_spin_unlock(&rq->lock); 2481 2482 perf_event_task_tick(); 2483 2484 #ifdef CONFIG_SMP 2485 rq->idle_balance = idle_cpu(cpu); 2486 trigger_load_balance(rq); 2487 #endif 2488 rq_last_tick_reset(rq); 2489 } 2490 2491 #ifdef CONFIG_NO_HZ_FULL 2492 /** 2493 * scheduler_tick_max_deferment 2494 * 2495 * Keep at least one tick per second when a single 2496 * active task is running because the scheduler doesn't 2497 * yet completely support full dynticks environment. 2498 * 2499 * This makes sure that uptime, CFS vruntime, load 2500 * balancing, etc... continue to move forward, even 2501 * with a very low granularity. 2502 * 2503 * Return: Maximum deferment in nanoseconds. 2504 */ 2505 u64 scheduler_tick_max_deferment(void) 2506 { 2507 struct rq *rq = this_rq(); 2508 unsigned long next, now = ACCESS_ONCE(jiffies); 2509 2510 next = rq->last_sched_tick + HZ; 2511 2512 if (time_before_eq(next, now)) 2513 return 0; 2514 2515 return jiffies_to_nsecs(next - now); 2516 } 2517 #endif 2518 2519 notrace unsigned long get_parent_ip(unsigned long addr) 2520 { 2521 if (in_lock_functions(addr)) { 2522 addr = CALLER_ADDR2; 2523 if (in_lock_functions(addr)) 2524 addr = CALLER_ADDR3; 2525 } 2526 return addr; 2527 } 2528 2529 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2530 defined(CONFIG_PREEMPT_TRACER)) 2531 2532 void preempt_count_add(int val) 2533 { 2534 #ifdef CONFIG_DEBUG_PREEMPT 2535 /* 2536 * Underflow? 2537 */ 2538 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2539 return; 2540 #endif 2541 __preempt_count_add(val); 2542 #ifdef CONFIG_DEBUG_PREEMPT 2543 /* 2544 * Spinlock count overflowing soon? 2545 */ 2546 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2547 PREEMPT_MASK - 10); 2548 #endif 2549 if (preempt_count() == val) { 2550 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2551 #ifdef CONFIG_DEBUG_PREEMPT 2552 current->preempt_disable_ip = ip; 2553 #endif 2554 trace_preempt_off(CALLER_ADDR0, ip); 2555 } 2556 } 2557 EXPORT_SYMBOL(preempt_count_add); 2558 NOKPROBE_SYMBOL(preempt_count_add); 2559 2560 void preempt_count_sub(int val) 2561 { 2562 #ifdef CONFIG_DEBUG_PREEMPT 2563 /* 2564 * Underflow? 2565 */ 2566 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2567 return; 2568 /* 2569 * Is the spinlock portion underflowing? 2570 */ 2571 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2572 !(preempt_count() & PREEMPT_MASK))) 2573 return; 2574 #endif 2575 2576 if (preempt_count() == val) 2577 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2578 __preempt_count_sub(val); 2579 } 2580 EXPORT_SYMBOL(preempt_count_sub); 2581 NOKPROBE_SYMBOL(preempt_count_sub); 2582 2583 #endif 2584 2585 /* 2586 * Print scheduling while atomic bug: 2587 */ 2588 static noinline void __schedule_bug(struct task_struct *prev) 2589 { 2590 if (oops_in_progress) 2591 return; 2592 2593 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2594 prev->comm, prev->pid, preempt_count()); 2595 2596 debug_show_held_locks(prev); 2597 print_modules(); 2598 if (irqs_disabled()) 2599 print_irqtrace_events(prev); 2600 #ifdef CONFIG_DEBUG_PREEMPT 2601 if (in_atomic_preempt_off()) { 2602 pr_err("Preemption disabled at:"); 2603 print_ip_sym(current->preempt_disable_ip); 2604 pr_cont("\n"); 2605 } 2606 #endif 2607 dump_stack(); 2608 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2609 } 2610 2611 /* 2612 * Various schedule()-time debugging checks and statistics: 2613 */ 2614 static inline void schedule_debug(struct task_struct *prev) 2615 { 2616 #ifdef CONFIG_SCHED_STACK_END_CHECK 2617 BUG_ON(unlikely(task_stack_end_corrupted(prev))); 2618 #endif 2619 /* 2620 * Test if we are atomic. Since do_exit() needs to call into 2621 * schedule() atomically, we ignore that path. Otherwise whine 2622 * if we are scheduling when we should not. 2623 */ 2624 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2625 __schedule_bug(prev); 2626 rcu_sleep_check(); 2627 2628 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2629 2630 schedstat_inc(this_rq(), sched_count); 2631 } 2632 2633 /* 2634 * Pick up the highest-prio task: 2635 */ 2636 static inline struct task_struct * 2637 pick_next_task(struct rq *rq, struct task_struct *prev) 2638 { 2639 const struct sched_class *class = &fair_sched_class; 2640 struct task_struct *p; 2641 2642 /* 2643 * Optimization: we know that if all tasks are in 2644 * the fair class we can call that function directly: 2645 */ 2646 if (likely(prev->sched_class == class && 2647 rq->nr_running == rq->cfs.h_nr_running)) { 2648 p = fair_sched_class.pick_next_task(rq, prev); 2649 if (unlikely(p == RETRY_TASK)) 2650 goto again; 2651 2652 /* assumes fair_sched_class->next == idle_sched_class */ 2653 if (unlikely(!p)) 2654 p = idle_sched_class.pick_next_task(rq, prev); 2655 2656 return p; 2657 } 2658 2659 again: 2660 for_each_class(class) { 2661 p = class->pick_next_task(rq, prev); 2662 if (p) { 2663 if (unlikely(p == RETRY_TASK)) 2664 goto again; 2665 return p; 2666 } 2667 } 2668 2669 BUG(); /* the idle class will always have a runnable task */ 2670 } 2671 2672 /* 2673 * __schedule() is the main scheduler function. 2674 * 2675 * The main means of driving the scheduler and thus entering this function are: 2676 * 2677 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2678 * 2679 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2680 * paths. For example, see arch/x86/entry_64.S. 2681 * 2682 * To drive preemption between tasks, the scheduler sets the flag in timer 2683 * interrupt handler scheduler_tick(). 2684 * 2685 * 3. Wakeups don't really cause entry into schedule(). They add a 2686 * task to the run-queue and that's it. 2687 * 2688 * Now, if the new task added to the run-queue preempts the current 2689 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2690 * called on the nearest possible occasion: 2691 * 2692 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2693 * 2694 * - in syscall or exception context, at the next outmost 2695 * preempt_enable(). (this might be as soon as the wake_up()'s 2696 * spin_unlock()!) 2697 * 2698 * - in IRQ context, return from interrupt-handler to 2699 * preemptible context 2700 * 2701 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2702 * then at the next: 2703 * 2704 * - cond_resched() call 2705 * - explicit schedule() call 2706 * - return from syscall or exception to user-space 2707 * - return from interrupt-handler to user-space 2708 * 2709 * WARNING: all callers must re-check need_resched() afterward and reschedule 2710 * accordingly in case an event triggered the need for rescheduling (such as 2711 * an interrupt waking up a task) while preemption was disabled in __schedule(). 2712 */ 2713 static void __sched __schedule(void) 2714 { 2715 struct task_struct *prev, *next; 2716 unsigned long *switch_count; 2717 struct rq *rq; 2718 int cpu; 2719 2720 preempt_disable(); 2721 cpu = smp_processor_id(); 2722 rq = cpu_rq(cpu); 2723 rcu_note_context_switch(); 2724 prev = rq->curr; 2725 2726 schedule_debug(prev); 2727 2728 if (sched_feat(HRTICK)) 2729 hrtick_clear(rq); 2730 2731 /* 2732 * Make sure that signal_pending_state()->signal_pending() below 2733 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2734 * done by the caller to avoid the race with signal_wake_up(). 2735 */ 2736 smp_mb__before_spinlock(); 2737 raw_spin_lock_irq(&rq->lock); 2738 2739 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 2740 2741 switch_count = &prev->nivcsw; 2742 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2743 if (unlikely(signal_pending_state(prev->state, prev))) { 2744 prev->state = TASK_RUNNING; 2745 } else { 2746 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2747 prev->on_rq = 0; 2748 2749 /* 2750 * If a worker went to sleep, notify and ask workqueue 2751 * whether it wants to wake up a task to maintain 2752 * concurrency. 2753 */ 2754 if (prev->flags & PF_WQ_WORKER) { 2755 struct task_struct *to_wakeup; 2756 2757 to_wakeup = wq_worker_sleeping(prev, cpu); 2758 if (to_wakeup) 2759 try_to_wake_up_local(to_wakeup); 2760 } 2761 } 2762 switch_count = &prev->nvcsw; 2763 } 2764 2765 if (task_on_rq_queued(prev)) 2766 update_rq_clock(rq); 2767 2768 next = pick_next_task(rq, prev); 2769 clear_tsk_need_resched(prev); 2770 clear_preempt_need_resched(); 2771 rq->clock_skip_update = 0; 2772 2773 if (likely(prev != next)) { 2774 rq->nr_switches++; 2775 rq->curr = next; 2776 ++*switch_count; 2777 2778 rq = context_switch(rq, prev, next); /* unlocks the rq */ 2779 cpu = cpu_of(rq); 2780 } else 2781 raw_spin_unlock_irq(&rq->lock); 2782 2783 post_schedule(rq); 2784 2785 sched_preempt_enable_no_resched(); 2786 } 2787 2788 static inline void sched_submit_work(struct task_struct *tsk) 2789 { 2790 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2791 return; 2792 /* 2793 * If we are going to sleep and we have plugged IO queued, 2794 * make sure to submit it to avoid deadlocks. 2795 */ 2796 if (blk_needs_flush_plug(tsk)) 2797 blk_schedule_flush_plug(tsk); 2798 } 2799 2800 asmlinkage __visible void __sched schedule(void) 2801 { 2802 struct task_struct *tsk = current; 2803 2804 sched_submit_work(tsk); 2805 do { 2806 __schedule(); 2807 } while (need_resched()); 2808 } 2809 EXPORT_SYMBOL(schedule); 2810 2811 #ifdef CONFIG_CONTEXT_TRACKING 2812 asmlinkage __visible void __sched schedule_user(void) 2813 { 2814 /* 2815 * If we come here after a random call to set_need_resched(), 2816 * or we have been woken up remotely but the IPI has not yet arrived, 2817 * we haven't yet exited the RCU idle mode. Do it here manually until 2818 * we find a better solution. 2819 * 2820 * NB: There are buggy callers of this function. Ideally we 2821 * should warn if prev_state != IN_USER, but that will trigger 2822 * too frequently to make sense yet. 2823 */ 2824 enum ctx_state prev_state = exception_enter(); 2825 schedule(); 2826 exception_exit(prev_state); 2827 } 2828 #endif 2829 2830 /** 2831 * schedule_preempt_disabled - called with preemption disabled 2832 * 2833 * Returns with preemption disabled. Note: preempt_count must be 1 2834 */ 2835 void __sched schedule_preempt_disabled(void) 2836 { 2837 sched_preempt_enable_no_resched(); 2838 schedule(); 2839 preempt_disable(); 2840 } 2841 2842 static void __sched notrace preempt_schedule_common(void) 2843 { 2844 do { 2845 __preempt_count_add(PREEMPT_ACTIVE); 2846 __schedule(); 2847 __preempt_count_sub(PREEMPT_ACTIVE); 2848 2849 /* 2850 * Check again in case we missed a preemption opportunity 2851 * between schedule and now. 2852 */ 2853 barrier(); 2854 } while (need_resched()); 2855 } 2856 2857 #ifdef CONFIG_PREEMPT 2858 /* 2859 * this is the entry point to schedule() from in-kernel preemption 2860 * off of preempt_enable. Kernel preemptions off return from interrupt 2861 * occur there and call schedule directly. 2862 */ 2863 asmlinkage __visible void __sched notrace preempt_schedule(void) 2864 { 2865 /* 2866 * If there is a non-zero preempt_count or interrupts are disabled, 2867 * we do not want to preempt the current task. Just return.. 2868 */ 2869 if (likely(!preemptible())) 2870 return; 2871 2872 preempt_schedule_common(); 2873 } 2874 NOKPROBE_SYMBOL(preempt_schedule); 2875 EXPORT_SYMBOL(preempt_schedule); 2876 2877 #ifdef CONFIG_CONTEXT_TRACKING 2878 /** 2879 * preempt_schedule_context - preempt_schedule called by tracing 2880 * 2881 * The tracing infrastructure uses preempt_enable_notrace to prevent 2882 * recursion and tracing preempt enabling caused by the tracing 2883 * infrastructure itself. But as tracing can happen in areas coming 2884 * from userspace or just about to enter userspace, a preempt enable 2885 * can occur before user_exit() is called. This will cause the scheduler 2886 * to be called when the system is still in usermode. 2887 * 2888 * To prevent this, the preempt_enable_notrace will use this function 2889 * instead of preempt_schedule() to exit user context if needed before 2890 * calling the scheduler. 2891 */ 2892 asmlinkage __visible void __sched notrace preempt_schedule_context(void) 2893 { 2894 enum ctx_state prev_ctx; 2895 2896 if (likely(!preemptible())) 2897 return; 2898 2899 do { 2900 __preempt_count_add(PREEMPT_ACTIVE); 2901 /* 2902 * Needs preempt disabled in case user_exit() is traced 2903 * and the tracer calls preempt_enable_notrace() causing 2904 * an infinite recursion. 2905 */ 2906 prev_ctx = exception_enter(); 2907 __schedule(); 2908 exception_exit(prev_ctx); 2909 2910 __preempt_count_sub(PREEMPT_ACTIVE); 2911 barrier(); 2912 } while (need_resched()); 2913 } 2914 EXPORT_SYMBOL_GPL(preempt_schedule_context); 2915 #endif /* CONFIG_CONTEXT_TRACKING */ 2916 2917 #endif /* CONFIG_PREEMPT */ 2918 2919 /* 2920 * this is the entry point to schedule() from kernel preemption 2921 * off of irq context. 2922 * Note, that this is called and return with irqs disabled. This will 2923 * protect us against recursive calling from irq. 2924 */ 2925 asmlinkage __visible void __sched preempt_schedule_irq(void) 2926 { 2927 enum ctx_state prev_state; 2928 2929 /* Catch callers which need to be fixed */ 2930 BUG_ON(preempt_count() || !irqs_disabled()); 2931 2932 prev_state = exception_enter(); 2933 2934 do { 2935 __preempt_count_add(PREEMPT_ACTIVE); 2936 local_irq_enable(); 2937 __schedule(); 2938 local_irq_disable(); 2939 __preempt_count_sub(PREEMPT_ACTIVE); 2940 2941 /* 2942 * Check again in case we missed a preemption opportunity 2943 * between schedule and now. 2944 */ 2945 barrier(); 2946 } while (need_resched()); 2947 2948 exception_exit(prev_state); 2949 } 2950 2951 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2952 void *key) 2953 { 2954 return try_to_wake_up(curr->private, mode, wake_flags); 2955 } 2956 EXPORT_SYMBOL(default_wake_function); 2957 2958 #ifdef CONFIG_RT_MUTEXES 2959 2960 /* 2961 * rt_mutex_setprio - set the current priority of a task 2962 * @p: task 2963 * @prio: prio value (kernel-internal form) 2964 * 2965 * This function changes the 'effective' priority of a task. It does 2966 * not touch ->normal_prio like __setscheduler(). 2967 * 2968 * Used by the rt_mutex code to implement priority inheritance 2969 * logic. Call site only calls if the priority of the task changed. 2970 */ 2971 void rt_mutex_setprio(struct task_struct *p, int prio) 2972 { 2973 int oldprio, queued, running, enqueue_flag = 0; 2974 struct rq *rq; 2975 const struct sched_class *prev_class; 2976 2977 BUG_ON(prio > MAX_PRIO); 2978 2979 rq = __task_rq_lock(p); 2980 2981 /* 2982 * Idle task boosting is a nono in general. There is one 2983 * exception, when PREEMPT_RT and NOHZ is active: 2984 * 2985 * The idle task calls get_next_timer_interrupt() and holds 2986 * the timer wheel base->lock on the CPU and another CPU wants 2987 * to access the timer (probably to cancel it). We can safely 2988 * ignore the boosting request, as the idle CPU runs this code 2989 * with interrupts disabled and will complete the lock 2990 * protected section without being interrupted. So there is no 2991 * real need to boost. 2992 */ 2993 if (unlikely(p == rq->idle)) { 2994 WARN_ON(p != rq->curr); 2995 WARN_ON(p->pi_blocked_on); 2996 goto out_unlock; 2997 } 2998 2999 trace_sched_pi_setprio(p, prio); 3000 oldprio = p->prio; 3001 prev_class = p->sched_class; 3002 queued = task_on_rq_queued(p); 3003 running = task_current(rq, p); 3004 if (queued) 3005 dequeue_task(rq, p, 0); 3006 if (running) 3007 put_prev_task(rq, p); 3008 3009 /* 3010 * Boosting condition are: 3011 * 1. -rt task is running and holds mutex A 3012 * --> -dl task blocks on mutex A 3013 * 3014 * 2. -dl task is running and holds mutex A 3015 * --> -dl task blocks on mutex A and could preempt the 3016 * running task 3017 */ 3018 if (dl_prio(prio)) { 3019 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3020 if (!dl_prio(p->normal_prio) || 3021 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3022 p->dl.dl_boosted = 1; 3023 p->dl.dl_throttled = 0; 3024 enqueue_flag = ENQUEUE_REPLENISH; 3025 } else 3026 p->dl.dl_boosted = 0; 3027 p->sched_class = &dl_sched_class; 3028 } else if (rt_prio(prio)) { 3029 if (dl_prio(oldprio)) 3030 p->dl.dl_boosted = 0; 3031 if (oldprio < prio) 3032 enqueue_flag = ENQUEUE_HEAD; 3033 p->sched_class = &rt_sched_class; 3034 } else { 3035 if (dl_prio(oldprio)) 3036 p->dl.dl_boosted = 0; 3037 if (rt_prio(oldprio)) 3038 p->rt.timeout = 0; 3039 p->sched_class = &fair_sched_class; 3040 } 3041 3042 p->prio = prio; 3043 3044 if (running) 3045 p->sched_class->set_curr_task(rq); 3046 if (queued) 3047 enqueue_task(rq, p, enqueue_flag); 3048 3049 check_class_changed(rq, p, prev_class, oldprio); 3050 out_unlock: 3051 __task_rq_unlock(rq); 3052 } 3053 #endif 3054 3055 void set_user_nice(struct task_struct *p, long nice) 3056 { 3057 int old_prio, delta, queued; 3058 unsigned long flags; 3059 struct rq *rq; 3060 3061 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3062 return; 3063 /* 3064 * We have to be careful, if called from sys_setpriority(), 3065 * the task might be in the middle of scheduling on another CPU. 3066 */ 3067 rq = task_rq_lock(p, &flags); 3068 /* 3069 * The RT priorities are set via sched_setscheduler(), but we still 3070 * allow the 'normal' nice value to be set - but as expected 3071 * it wont have any effect on scheduling until the task is 3072 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3073 */ 3074 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3075 p->static_prio = NICE_TO_PRIO(nice); 3076 goto out_unlock; 3077 } 3078 queued = task_on_rq_queued(p); 3079 if (queued) 3080 dequeue_task(rq, p, 0); 3081 3082 p->static_prio = NICE_TO_PRIO(nice); 3083 set_load_weight(p); 3084 old_prio = p->prio; 3085 p->prio = effective_prio(p); 3086 delta = p->prio - old_prio; 3087 3088 if (queued) { 3089 enqueue_task(rq, p, 0); 3090 /* 3091 * If the task increased its priority or is running and 3092 * lowered its priority, then reschedule its CPU: 3093 */ 3094 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3095 resched_curr(rq); 3096 } 3097 out_unlock: 3098 task_rq_unlock(rq, p, &flags); 3099 } 3100 EXPORT_SYMBOL(set_user_nice); 3101 3102 /* 3103 * can_nice - check if a task can reduce its nice value 3104 * @p: task 3105 * @nice: nice value 3106 */ 3107 int can_nice(const struct task_struct *p, const int nice) 3108 { 3109 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3110 int nice_rlim = nice_to_rlimit(nice); 3111 3112 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3113 capable(CAP_SYS_NICE)); 3114 } 3115 3116 #ifdef __ARCH_WANT_SYS_NICE 3117 3118 /* 3119 * sys_nice - change the priority of the current process. 3120 * @increment: priority increment 3121 * 3122 * sys_setpriority is a more generic, but much slower function that 3123 * does similar things. 3124 */ 3125 SYSCALL_DEFINE1(nice, int, increment) 3126 { 3127 long nice, retval; 3128 3129 /* 3130 * Setpriority might change our priority at the same moment. 3131 * We don't have to worry. Conceptually one call occurs first 3132 * and we have a single winner. 3133 */ 3134 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3135 nice = task_nice(current) + increment; 3136 3137 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3138 if (increment < 0 && !can_nice(current, nice)) 3139 return -EPERM; 3140 3141 retval = security_task_setnice(current, nice); 3142 if (retval) 3143 return retval; 3144 3145 set_user_nice(current, nice); 3146 return 0; 3147 } 3148 3149 #endif 3150 3151 /** 3152 * task_prio - return the priority value of a given task. 3153 * @p: the task in question. 3154 * 3155 * Return: The priority value as seen by users in /proc. 3156 * RT tasks are offset by -200. Normal tasks are centered 3157 * around 0, value goes from -16 to +15. 3158 */ 3159 int task_prio(const struct task_struct *p) 3160 { 3161 return p->prio - MAX_RT_PRIO; 3162 } 3163 3164 /** 3165 * idle_cpu - is a given cpu idle currently? 3166 * @cpu: the processor in question. 3167 * 3168 * Return: 1 if the CPU is currently idle. 0 otherwise. 3169 */ 3170 int idle_cpu(int cpu) 3171 { 3172 struct rq *rq = cpu_rq(cpu); 3173 3174 if (rq->curr != rq->idle) 3175 return 0; 3176 3177 if (rq->nr_running) 3178 return 0; 3179 3180 #ifdef CONFIG_SMP 3181 if (!llist_empty(&rq->wake_list)) 3182 return 0; 3183 #endif 3184 3185 return 1; 3186 } 3187 3188 /** 3189 * idle_task - return the idle task for a given cpu. 3190 * @cpu: the processor in question. 3191 * 3192 * Return: The idle task for the cpu @cpu. 3193 */ 3194 struct task_struct *idle_task(int cpu) 3195 { 3196 return cpu_rq(cpu)->idle; 3197 } 3198 3199 /** 3200 * find_process_by_pid - find a process with a matching PID value. 3201 * @pid: the pid in question. 3202 * 3203 * The task of @pid, if found. %NULL otherwise. 3204 */ 3205 static struct task_struct *find_process_by_pid(pid_t pid) 3206 { 3207 return pid ? find_task_by_vpid(pid) : current; 3208 } 3209 3210 /* 3211 * This function initializes the sched_dl_entity of a newly becoming 3212 * SCHED_DEADLINE task. 3213 * 3214 * Only the static values are considered here, the actual runtime and the 3215 * absolute deadline will be properly calculated when the task is enqueued 3216 * for the first time with its new policy. 3217 */ 3218 static void 3219 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3220 { 3221 struct sched_dl_entity *dl_se = &p->dl; 3222 3223 dl_se->dl_runtime = attr->sched_runtime; 3224 dl_se->dl_deadline = attr->sched_deadline; 3225 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3226 dl_se->flags = attr->sched_flags; 3227 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3228 3229 /* 3230 * Changing the parameters of a task is 'tricky' and we're not doing 3231 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3232 * 3233 * What we SHOULD do is delay the bandwidth release until the 0-lag 3234 * point. This would include retaining the task_struct until that time 3235 * and change dl_overflow() to not immediately decrement the current 3236 * amount. 3237 * 3238 * Instead we retain the current runtime/deadline and let the new 3239 * parameters take effect after the current reservation period lapses. 3240 * This is safe (albeit pessimistic) because the 0-lag point is always 3241 * before the current scheduling deadline. 3242 * 3243 * We can still have temporary overloads because we do not delay the 3244 * change in bandwidth until that time; so admission control is 3245 * not on the safe side. It does however guarantee tasks will never 3246 * consume more than promised. 3247 */ 3248 } 3249 3250 /* 3251 * sched_setparam() passes in -1 for its policy, to let the functions 3252 * it calls know not to change it. 3253 */ 3254 #define SETPARAM_POLICY -1 3255 3256 static void __setscheduler_params(struct task_struct *p, 3257 const struct sched_attr *attr) 3258 { 3259 int policy = attr->sched_policy; 3260 3261 if (policy == SETPARAM_POLICY) 3262 policy = p->policy; 3263 3264 p->policy = policy; 3265 3266 if (dl_policy(policy)) 3267 __setparam_dl(p, attr); 3268 else if (fair_policy(policy)) 3269 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3270 3271 /* 3272 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3273 * !rt_policy. Always setting this ensures that things like 3274 * getparam()/getattr() don't report silly values for !rt tasks. 3275 */ 3276 p->rt_priority = attr->sched_priority; 3277 p->normal_prio = normal_prio(p); 3278 set_load_weight(p); 3279 } 3280 3281 /* Actually do priority change: must hold pi & rq lock. */ 3282 static void __setscheduler(struct rq *rq, struct task_struct *p, 3283 const struct sched_attr *attr) 3284 { 3285 __setscheduler_params(p, attr); 3286 3287 /* 3288 * If we get here, there was no pi waiters boosting the 3289 * task. It is safe to use the normal prio. 3290 */ 3291 p->prio = normal_prio(p); 3292 3293 if (dl_prio(p->prio)) 3294 p->sched_class = &dl_sched_class; 3295 else if (rt_prio(p->prio)) 3296 p->sched_class = &rt_sched_class; 3297 else 3298 p->sched_class = &fair_sched_class; 3299 } 3300 3301 static void 3302 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3303 { 3304 struct sched_dl_entity *dl_se = &p->dl; 3305 3306 attr->sched_priority = p->rt_priority; 3307 attr->sched_runtime = dl_se->dl_runtime; 3308 attr->sched_deadline = dl_se->dl_deadline; 3309 attr->sched_period = dl_se->dl_period; 3310 attr->sched_flags = dl_se->flags; 3311 } 3312 3313 /* 3314 * This function validates the new parameters of a -deadline task. 3315 * We ask for the deadline not being zero, and greater or equal 3316 * than the runtime, as well as the period of being zero or 3317 * greater than deadline. Furthermore, we have to be sure that 3318 * user parameters are above the internal resolution of 1us (we 3319 * check sched_runtime only since it is always the smaller one) and 3320 * below 2^63 ns (we have to check both sched_deadline and 3321 * sched_period, as the latter can be zero). 3322 */ 3323 static bool 3324 __checkparam_dl(const struct sched_attr *attr) 3325 { 3326 /* deadline != 0 */ 3327 if (attr->sched_deadline == 0) 3328 return false; 3329 3330 /* 3331 * Since we truncate DL_SCALE bits, make sure we're at least 3332 * that big. 3333 */ 3334 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3335 return false; 3336 3337 /* 3338 * Since we use the MSB for wrap-around and sign issues, make 3339 * sure it's not set (mind that period can be equal to zero). 3340 */ 3341 if (attr->sched_deadline & (1ULL << 63) || 3342 attr->sched_period & (1ULL << 63)) 3343 return false; 3344 3345 /* runtime <= deadline <= period (if period != 0) */ 3346 if ((attr->sched_period != 0 && 3347 attr->sched_period < attr->sched_deadline) || 3348 attr->sched_deadline < attr->sched_runtime) 3349 return false; 3350 3351 return true; 3352 } 3353 3354 /* 3355 * check the target process has a UID that matches the current process's 3356 */ 3357 static bool check_same_owner(struct task_struct *p) 3358 { 3359 const struct cred *cred = current_cred(), *pcred; 3360 bool match; 3361 3362 rcu_read_lock(); 3363 pcred = __task_cred(p); 3364 match = (uid_eq(cred->euid, pcred->euid) || 3365 uid_eq(cred->euid, pcred->uid)); 3366 rcu_read_unlock(); 3367 return match; 3368 } 3369 3370 static bool dl_param_changed(struct task_struct *p, 3371 const struct sched_attr *attr) 3372 { 3373 struct sched_dl_entity *dl_se = &p->dl; 3374 3375 if (dl_se->dl_runtime != attr->sched_runtime || 3376 dl_se->dl_deadline != attr->sched_deadline || 3377 dl_se->dl_period != attr->sched_period || 3378 dl_se->flags != attr->sched_flags) 3379 return true; 3380 3381 return false; 3382 } 3383 3384 static int __sched_setscheduler(struct task_struct *p, 3385 const struct sched_attr *attr, 3386 bool user) 3387 { 3388 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3389 MAX_RT_PRIO - 1 - attr->sched_priority; 3390 int retval, oldprio, oldpolicy = -1, queued, running; 3391 int policy = attr->sched_policy; 3392 unsigned long flags; 3393 const struct sched_class *prev_class; 3394 struct rq *rq; 3395 int reset_on_fork; 3396 3397 /* may grab non-irq protected spin_locks */ 3398 BUG_ON(in_interrupt()); 3399 recheck: 3400 /* double check policy once rq lock held */ 3401 if (policy < 0) { 3402 reset_on_fork = p->sched_reset_on_fork; 3403 policy = oldpolicy = p->policy; 3404 } else { 3405 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3406 3407 if (policy != SCHED_DEADLINE && 3408 policy != SCHED_FIFO && policy != SCHED_RR && 3409 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3410 policy != SCHED_IDLE) 3411 return -EINVAL; 3412 } 3413 3414 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3415 return -EINVAL; 3416 3417 /* 3418 * Valid priorities for SCHED_FIFO and SCHED_RR are 3419 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3420 * SCHED_BATCH and SCHED_IDLE is 0. 3421 */ 3422 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3423 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3424 return -EINVAL; 3425 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3426 (rt_policy(policy) != (attr->sched_priority != 0))) 3427 return -EINVAL; 3428 3429 /* 3430 * Allow unprivileged RT tasks to decrease priority: 3431 */ 3432 if (user && !capable(CAP_SYS_NICE)) { 3433 if (fair_policy(policy)) { 3434 if (attr->sched_nice < task_nice(p) && 3435 !can_nice(p, attr->sched_nice)) 3436 return -EPERM; 3437 } 3438 3439 if (rt_policy(policy)) { 3440 unsigned long rlim_rtprio = 3441 task_rlimit(p, RLIMIT_RTPRIO); 3442 3443 /* can't set/change the rt policy */ 3444 if (policy != p->policy && !rlim_rtprio) 3445 return -EPERM; 3446 3447 /* can't increase priority */ 3448 if (attr->sched_priority > p->rt_priority && 3449 attr->sched_priority > rlim_rtprio) 3450 return -EPERM; 3451 } 3452 3453 /* 3454 * Can't set/change SCHED_DEADLINE policy at all for now 3455 * (safest behavior); in the future we would like to allow 3456 * unprivileged DL tasks to increase their relative deadline 3457 * or reduce their runtime (both ways reducing utilization) 3458 */ 3459 if (dl_policy(policy)) 3460 return -EPERM; 3461 3462 /* 3463 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3464 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3465 */ 3466 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3467 if (!can_nice(p, task_nice(p))) 3468 return -EPERM; 3469 } 3470 3471 /* can't change other user's priorities */ 3472 if (!check_same_owner(p)) 3473 return -EPERM; 3474 3475 /* Normal users shall not reset the sched_reset_on_fork flag */ 3476 if (p->sched_reset_on_fork && !reset_on_fork) 3477 return -EPERM; 3478 } 3479 3480 if (user) { 3481 retval = security_task_setscheduler(p); 3482 if (retval) 3483 return retval; 3484 } 3485 3486 /* 3487 * make sure no PI-waiters arrive (or leave) while we are 3488 * changing the priority of the task: 3489 * 3490 * To be able to change p->policy safely, the appropriate 3491 * runqueue lock must be held. 3492 */ 3493 rq = task_rq_lock(p, &flags); 3494 3495 /* 3496 * Changing the policy of the stop threads its a very bad idea 3497 */ 3498 if (p == rq->stop) { 3499 task_rq_unlock(rq, p, &flags); 3500 return -EINVAL; 3501 } 3502 3503 /* 3504 * If not changing anything there's no need to proceed further, 3505 * but store a possible modification of reset_on_fork. 3506 */ 3507 if (unlikely(policy == p->policy)) { 3508 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3509 goto change; 3510 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3511 goto change; 3512 if (dl_policy(policy) && dl_param_changed(p, attr)) 3513 goto change; 3514 3515 p->sched_reset_on_fork = reset_on_fork; 3516 task_rq_unlock(rq, p, &flags); 3517 return 0; 3518 } 3519 change: 3520 3521 if (user) { 3522 #ifdef CONFIG_RT_GROUP_SCHED 3523 /* 3524 * Do not allow realtime tasks into groups that have no runtime 3525 * assigned. 3526 */ 3527 if (rt_bandwidth_enabled() && rt_policy(policy) && 3528 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3529 !task_group_is_autogroup(task_group(p))) { 3530 task_rq_unlock(rq, p, &flags); 3531 return -EPERM; 3532 } 3533 #endif 3534 #ifdef CONFIG_SMP 3535 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3536 cpumask_t *span = rq->rd->span; 3537 3538 /* 3539 * Don't allow tasks with an affinity mask smaller than 3540 * the entire root_domain to become SCHED_DEADLINE. We 3541 * will also fail if there's no bandwidth available. 3542 */ 3543 if (!cpumask_subset(span, &p->cpus_allowed) || 3544 rq->rd->dl_bw.bw == 0) { 3545 task_rq_unlock(rq, p, &flags); 3546 return -EPERM; 3547 } 3548 } 3549 #endif 3550 } 3551 3552 /* recheck policy now with rq lock held */ 3553 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3554 policy = oldpolicy = -1; 3555 task_rq_unlock(rq, p, &flags); 3556 goto recheck; 3557 } 3558 3559 /* 3560 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3561 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3562 * is available. 3563 */ 3564 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3565 task_rq_unlock(rq, p, &flags); 3566 return -EBUSY; 3567 } 3568 3569 p->sched_reset_on_fork = reset_on_fork; 3570 oldprio = p->prio; 3571 3572 /* 3573 * Special case for priority boosted tasks. 3574 * 3575 * If the new priority is lower or equal (user space view) 3576 * than the current (boosted) priority, we just store the new 3577 * normal parameters and do not touch the scheduler class and 3578 * the runqueue. This will be done when the task deboost 3579 * itself. 3580 */ 3581 if (rt_mutex_check_prio(p, newprio)) { 3582 __setscheduler_params(p, attr); 3583 task_rq_unlock(rq, p, &flags); 3584 return 0; 3585 } 3586 3587 queued = task_on_rq_queued(p); 3588 running = task_current(rq, p); 3589 if (queued) 3590 dequeue_task(rq, p, 0); 3591 if (running) 3592 put_prev_task(rq, p); 3593 3594 prev_class = p->sched_class; 3595 __setscheduler(rq, p, attr); 3596 3597 if (running) 3598 p->sched_class->set_curr_task(rq); 3599 if (queued) { 3600 /* 3601 * We enqueue to tail when the priority of a task is 3602 * increased (user space view). 3603 */ 3604 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3605 } 3606 3607 check_class_changed(rq, p, prev_class, oldprio); 3608 task_rq_unlock(rq, p, &flags); 3609 3610 rt_mutex_adjust_pi(p); 3611 3612 return 0; 3613 } 3614 3615 static int _sched_setscheduler(struct task_struct *p, int policy, 3616 const struct sched_param *param, bool check) 3617 { 3618 struct sched_attr attr = { 3619 .sched_policy = policy, 3620 .sched_priority = param->sched_priority, 3621 .sched_nice = PRIO_TO_NICE(p->static_prio), 3622 }; 3623 3624 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3625 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3626 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3627 policy &= ~SCHED_RESET_ON_FORK; 3628 attr.sched_policy = policy; 3629 } 3630 3631 return __sched_setscheduler(p, &attr, check); 3632 } 3633 /** 3634 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3635 * @p: the task in question. 3636 * @policy: new policy. 3637 * @param: structure containing the new RT priority. 3638 * 3639 * Return: 0 on success. An error code otherwise. 3640 * 3641 * NOTE that the task may be already dead. 3642 */ 3643 int sched_setscheduler(struct task_struct *p, int policy, 3644 const struct sched_param *param) 3645 { 3646 return _sched_setscheduler(p, policy, param, true); 3647 } 3648 EXPORT_SYMBOL_GPL(sched_setscheduler); 3649 3650 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3651 { 3652 return __sched_setscheduler(p, attr, true); 3653 } 3654 EXPORT_SYMBOL_GPL(sched_setattr); 3655 3656 /** 3657 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3658 * @p: the task in question. 3659 * @policy: new policy. 3660 * @param: structure containing the new RT priority. 3661 * 3662 * Just like sched_setscheduler, only don't bother checking if the 3663 * current context has permission. For example, this is needed in 3664 * stop_machine(): we create temporary high priority worker threads, 3665 * but our caller might not have that capability. 3666 * 3667 * Return: 0 on success. An error code otherwise. 3668 */ 3669 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3670 const struct sched_param *param) 3671 { 3672 return _sched_setscheduler(p, policy, param, false); 3673 } 3674 3675 static int 3676 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3677 { 3678 struct sched_param lparam; 3679 struct task_struct *p; 3680 int retval; 3681 3682 if (!param || pid < 0) 3683 return -EINVAL; 3684 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3685 return -EFAULT; 3686 3687 rcu_read_lock(); 3688 retval = -ESRCH; 3689 p = find_process_by_pid(pid); 3690 if (p != NULL) 3691 retval = sched_setscheduler(p, policy, &lparam); 3692 rcu_read_unlock(); 3693 3694 return retval; 3695 } 3696 3697 /* 3698 * Mimics kernel/events/core.c perf_copy_attr(). 3699 */ 3700 static int sched_copy_attr(struct sched_attr __user *uattr, 3701 struct sched_attr *attr) 3702 { 3703 u32 size; 3704 int ret; 3705 3706 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3707 return -EFAULT; 3708 3709 /* 3710 * zero the full structure, so that a short copy will be nice. 3711 */ 3712 memset(attr, 0, sizeof(*attr)); 3713 3714 ret = get_user(size, &uattr->size); 3715 if (ret) 3716 return ret; 3717 3718 if (size > PAGE_SIZE) /* silly large */ 3719 goto err_size; 3720 3721 if (!size) /* abi compat */ 3722 size = SCHED_ATTR_SIZE_VER0; 3723 3724 if (size < SCHED_ATTR_SIZE_VER0) 3725 goto err_size; 3726 3727 /* 3728 * If we're handed a bigger struct than we know of, 3729 * ensure all the unknown bits are 0 - i.e. new 3730 * user-space does not rely on any kernel feature 3731 * extensions we dont know about yet. 3732 */ 3733 if (size > sizeof(*attr)) { 3734 unsigned char __user *addr; 3735 unsigned char __user *end; 3736 unsigned char val; 3737 3738 addr = (void __user *)uattr + sizeof(*attr); 3739 end = (void __user *)uattr + size; 3740 3741 for (; addr < end; addr++) { 3742 ret = get_user(val, addr); 3743 if (ret) 3744 return ret; 3745 if (val) 3746 goto err_size; 3747 } 3748 size = sizeof(*attr); 3749 } 3750 3751 ret = copy_from_user(attr, uattr, size); 3752 if (ret) 3753 return -EFAULT; 3754 3755 /* 3756 * XXX: do we want to be lenient like existing syscalls; or do we want 3757 * to be strict and return an error on out-of-bounds values? 3758 */ 3759 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3760 3761 return 0; 3762 3763 err_size: 3764 put_user(sizeof(*attr), &uattr->size); 3765 return -E2BIG; 3766 } 3767 3768 /** 3769 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3770 * @pid: the pid in question. 3771 * @policy: new policy. 3772 * @param: structure containing the new RT priority. 3773 * 3774 * Return: 0 on success. An error code otherwise. 3775 */ 3776 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3777 struct sched_param __user *, param) 3778 { 3779 /* negative values for policy are not valid */ 3780 if (policy < 0) 3781 return -EINVAL; 3782 3783 return do_sched_setscheduler(pid, policy, param); 3784 } 3785 3786 /** 3787 * sys_sched_setparam - set/change the RT priority of a thread 3788 * @pid: the pid in question. 3789 * @param: structure containing the new RT priority. 3790 * 3791 * Return: 0 on success. An error code otherwise. 3792 */ 3793 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3794 { 3795 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 3796 } 3797 3798 /** 3799 * sys_sched_setattr - same as above, but with extended sched_attr 3800 * @pid: the pid in question. 3801 * @uattr: structure containing the extended parameters. 3802 * @flags: for future extension. 3803 */ 3804 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3805 unsigned int, flags) 3806 { 3807 struct sched_attr attr; 3808 struct task_struct *p; 3809 int retval; 3810 3811 if (!uattr || pid < 0 || flags) 3812 return -EINVAL; 3813 3814 retval = sched_copy_attr(uattr, &attr); 3815 if (retval) 3816 return retval; 3817 3818 if ((int)attr.sched_policy < 0) 3819 return -EINVAL; 3820 3821 rcu_read_lock(); 3822 retval = -ESRCH; 3823 p = find_process_by_pid(pid); 3824 if (p != NULL) 3825 retval = sched_setattr(p, &attr); 3826 rcu_read_unlock(); 3827 3828 return retval; 3829 } 3830 3831 /** 3832 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3833 * @pid: the pid in question. 3834 * 3835 * Return: On success, the policy of the thread. Otherwise, a negative error 3836 * code. 3837 */ 3838 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3839 { 3840 struct task_struct *p; 3841 int retval; 3842 3843 if (pid < 0) 3844 return -EINVAL; 3845 3846 retval = -ESRCH; 3847 rcu_read_lock(); 3848 p = find_process_by_pid(pid); 3849 if (p) { 3850 retval = security_task_getscheduler(p); 3851 if (!retval) 3852 retval = p->policy 3853 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3854 } 3855 rcu_read_unlock(); 3856 return retval; 3857 } 3858 3859 /** 3860 * sys_sched_getparam - get the RT priority of a thread 3861 * @pid: the pid in question. 3862 * @param: structure containing the RT priority. 3863 * 3864 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3865 * code. 3866 */ 3867 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3868 { 3869 struct sched_param lp = { .sched_priority = 0 }; 3870 struct task_struct *p; 3871 int retval; 3872 3873 if (!param || pid < 0) 3874 return -EINVAL; 3875 3876 rcu_read_lock(); 3877 p = find_process_by_pid(pid); 3878 retval = -ESRCH; 3879 if (!p) 3880 goto out_unlock; 3881 3882 retval = security_task_getscheduler(p); 3883 if (retval) 3884 goto out_unlock; 3885 3886 if (task_has_rt_policy(p)) 3887 lp.sched_priority = p->rt_priority; 3888 rcu_read_unlock(); 3889 3890 /* 3891 * This one might sleep, we cannot do it with a spinlock held ... 3892 */ 3893 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3894 3895 return retval; 3896 3897 out_unlock: 3898 rcu_read_unlock(); 3899 return retval; 3900 } 3901 3902 static int sched_read_attr(struct sched_attr __user *uattr, 3903 struct sched_attr *attr, 3904 unsigned int usize) 3905 { 3906 int ret; 3907 3908 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3909 return -EFAULT; 3910 3911 /* 3912 * If we're handed a smaller struct than we know of, 3913 * ensure all the unknown bits are 0 - i.e. old 3914 * user-space does not get uncomplete information. 3915 */ 3916 if (usize < sizeof(*attr)) { 3917 unsigned char *addr; 3918 unsigned char *end; 3919 3920 addr = (void *)attr + usize; 3921 end = (void *)attr + sizeof(*attr); 3922 3923 for (; addr < end; addr++) { 3924 if (*addr) 3925 return -EFBIG; 3926 } 3927 3928 attr->size = usize; 3929 } 3930 3931 ret = copy_to_user(uattr, attr, attr->size); 3932 if (ret) 3933 return -EFAULT; 3934 3935 return 0; 3936 } 3937 3938 /** 3939 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3940 * @pid: the pid in question. 3941 * @uattr: structure containing the extended parameters. 3942 * @size: sizeof(attr) for fwd/bwd comp. 3943 * @flags: for future extension. 3944 */ 3945 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3946 unsigned int, size, unsigned int, flags) 3947 { 3948 struct sched_attr attr = { 3949 .size = sizeof(struct sched_attr), 3950 }; 3951 struct task_struct *p; 3952 int retval; 3953 3954 if (!uattr || pid < 0 || size > PAGE_SIZE || 3955 size < SCHED_ATTR_SIZE_VER0 || flags) 3956 return -EINVAL; 3957 3958 rcu_read_lock(); 3959 p = find_process_by_pid(pid); 3960 retval = -ESRCH; 3961 if (!p) 3962 goto out_unlock; 3963 3964 retval = security_task_getscheduler(p); 3965 if (retval) 3966 goto out_unlock; 3967 3968 attr.sched_policy = p->policy; 3969 if (p->sched_reset_on_fork) 3970 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3971 if (task_has_dl_policy(p)) 3972 __getparam_dl(p, &attr); 3973 else if (task_has_rt_policy(p)) 3974 attr.sched_priority = p->rt_priority; 3975 else 3976 attr.sched_nice = task_nice(p); 3977 3978 rcu_read_unlock(); 3979 3980 retval = sched_read_attr(uattr, &attr, size); 3981 return retval; 3982 3983 out_unlock: 3984 rcu_read_unlock(); 3985 return retval; 3986 } 3987 3988 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 3989 { 3990 cpumask_var_t cpus_allowed, new_mask; 3991 struct task_struct *p; 3992 int retval; 3993 3994 rcu_read_lock(); 3995 3996 p = find_process_by_pid(pid); 3997 if (!p) { 3998 rcu_read_unlock(); 3999 return -ESRCH; 4000 } 4001 4002 /* Prevent p going away */ 4003 get_task_struct(p); 4004 rcu_read_unlock(); 4005 4006 if (p->flags & PF_NO_SETAFFINITY) { 4007 retval = -EINVAL; 4008 goto out_put_task; 4009 } 4010 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4011 retval = -ENOMEM; 4012 goto out_put_task; 4013 } 4014 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4015 retval = -ENOMEM; 4016 goto out_free_cpus_allowed; 4017 } 4018 retval = -EPERM; 4019 if (!check_same_owner(p)) { 4020 rcu_read_lock(); 4021 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4022 rcu_read_unlock(); 4023 goto out_free_new_mask; 4024 } 4025 rcu_read_unlock(); 4026 } 4027 4028 retval = security_task_setscheduler(p); 4029 if (retval) 4030 goto out_free_new_mask; 4031 4032 4033 cpuset_cpus_allowed(p, cpus_allowed); 4034 cpumask_and(new_mask, in_mask, cpus_allowed); 4035 4036 /* 4037 * Since bandwidth control happens on root_domain basis, 4038 * if admission test is enabled, we only admit -deadline 4039 * tasks allowed to run on all the CPUs in the task's 4040 * root_domain. 4041 */ 4042 #ifdef CONFIG_SMP 4043 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4044 rcu_read_lock(); 4045 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4046 retval = -EBUSY; 4047 rcu_read_unlock(); 4048 goto out_free_new_mask; 4049 } 4050 rcu_read_unlock(); 4051 } 4052 #endif 4053 again: 4054 retval = set_cpus_allowed_ptr(p, new_mask); 4055 4056 if (!retval) { 4057 cpuset_cpus_allowed(p, cpus_allowed); 4058 if (!cpumask_subset(new_mask, cpus_allowed)) { 4059 /* 4060 * We must have raced with a concurrent cpuset 4061 * update. Just reset the cpus_allowed to the 4062 * cpuset's cpus_allowed 4063 */ 4064 cpumask_copy(new_mask, cpus_allowed); 4065 goto again; 4066 } 4067 } 4068 out_free_new_mask: 4069 free_cpumask_var(new_mask); 4070 out_free_cpus_allowed: 4071 free_cpumask_var(cpus_allowed); 4072 out_put_task: 4073 put_task_struct(p); 4074 return retval; 4075 } 4076 4077 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4078 struct cpumask *new_mask) 4079 { 4080 if (len < cpumask_size()) 4081 cpumask_clear(new_mask); 4082 else if (len > cpumask_size()) 4083 len = cpumask_size(); 4084 4085 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4086 } 4087 4088 /** 4089 * sys_sched_setaffinity - set the cpu affinity of a process 4090 * @pid: pid of the process 4091 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4092 * @user_mask_ptr: user-space pointer to the new cpu mask 4093 * 4094 * Return: 0 on success. An error code otherwise. 4095 */ 4096 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4097 unsigned long __user *, user_mask_ptr) 4098 { 4099 cpumask_var_t new_mask; 4100 int retval; 4101 4102 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4103 return -ENOMEM; 4104 4105 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4106 if (retval == 0) 4107 retval = sched_setaffinity(pid, new_mask); 4108 free_cpumask_var(new_mask); 4109 return retval; 4110 } 4111 4112 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4113 { 4114 struct task_struct *p; 4115 unsigned long flags; 4116 int retval; 4117 4118 rcu_read_lock(); 4119 4120 retval = -ESRCH; 4121 p = find_process_by_pid(pid); 4122 if (!p) 4123 goto out_unlock; 4124 4125 retval = security_task_getscheduler(p); 4126 if (retval) 4127 goto out_unlock; 4128 4129 raw_spin_lock_irqsave(&p->pi_lock, flags); 4130 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4131 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4132 4133 out_unlock: 4134 rcu_read_unlock(); 4135 4136 return retval; 4137 } 4138 4139 /** 4140 * sys_sched_getaffinity - get the cpu affinity of a process 4141 * @pid: pid of the process 4142 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4143 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4144 * 4145 * Return: 0 on success. An error code otherwise. 4146 */ 4147 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4148 unsigned long __user *, user_mask_ptr) 4149 { 4150 int ret; 4151 cpumask_var_t mask; 4152 4153 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4154 return -EINVAL; 4155 if (len & (sizeof(unsigned long)-1)) 4156 return -EINVAL; 4157 4158 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4159 return -ENOMEM; 4160 4161 ret = sched_getaffinity(pid, mask); 4162 if (ret == 0) { 4163 size_t retlen = min_t(size_t, len, cpumask_size()); 4164 4165 if (copy_to_user(user_mask_ptr, mask, retlen)) 4166 ret = -EFAULT; 4167 else 4168 ret = retlen; 4169 } 4170 free_cpumask_var(mask); 4171 4172 return ret; 4173 } 4174 4175 /** 4176 * sys_sched_yield - yield the current processor to other threads. 4177 * 4178 * This function yields the current CPU to other tasks. If there are no 4179 * other threads running on this CPU then this function will return. 4180 * 4181 * Return: 0. 4182 */ 4183 SYSCALL_DEFINE0(sched_yield) 4184 { 4185 struct rq *rq = this_rq_lock(); 4186 4187 schedstat_inc(rq, yld_count); 4188 current->sched_class->yield_task(rq); 4189 4190 /* 4191 * Since we are going to call schedule() anyway, there's 4192 * no need to preempt or enable interrupts: 4193 */ 4194 __release(rq->lock); 4195 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4196 do_raw_spin_unlock(&rq->lock); 4197 sched_preempt_enable_no_resched(); 4198 4199 schedule(); 4200 4201 return 0; 4202 } 4203 4204 int __sched _cond_resched(void) 4205 { 4206 if (should_resched()) { 4207 preempt_schedule_common(); 4208 return 1; 4209 } 4210 return 0; 4211 } 4212 EXPORT_SYMBOL(_cond_resched); 4213 4214 /* 4215 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4216 * call schedule, and on return reacquire the lock. 4217 * 4218 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4219 * operations here to prevent schedule() from being called twice (once via 4220 * spin_unlock(), once by hand). 4221 */ 4222 int __cond_resched_lock(spinlock_t *lock) 4223 { 4224 int resched = should_resched(); 4225 int ret = 0; 4226 4227 lockdep_assert_held(lock); 4228 4229 if (spin_needbreak(lock) || resched) { 4230 spin_unlock(lock); 4231 if (resched) 4232 preempt_schedule_common(); 4233 else 4234 cpu_relax(); 4235 ret = 1; 4236 spin_lock(lock); 4237 } 4238 return ret; 4239 } 4240 EXPORT_SYMBOL(__cond_resched_lock); 4241 4242 int __sched __cond_resched_softirq(void) 4243 { 4244 BUG_ON(!in_softirq()); 4245 4246 if (should_resched()) { 4247 local_bh_enable(); 4248 preempt_schedule_common(); 4249 local_bh_disable(); 4250 return 1; 4251 } 4252 return 0; 4253 } 4254 EXPORT_SYMBOL(__cond_resched_softirq); 4255 4256 /** 4257 * yield - yield the current processor to other threads. 4258 * 4259 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4260 * 4261 * The scheduler is at all times free to pick the calling task as the most 4262 * eligible task to run, if removing the yield() call from your code breaks 4263 * it, its already broken. 4264 * 4265 * Typical broken usage is: 4266 * 4267 * while (!event) 4268 * yield(); 4269 * 4270 * where one assumes that yield() will let 'the other' process run that will 4271 * make event true. If the current task is a SCHED_FIFO task that will never 4272 * happen. Never use yield() as a progress guarantee!! 4273 * 4274 * If you want to use yield() to wait for something, use wait_event(). 4275 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4276 * If you still want to use yield(), do not! 4277 */ 4278 void __sched yield(void) 4279 { 4280 set_current_state(TASK_RUNNING); 4281 sys_sched_yield(); 4282 } 4283 EXPORT_SYMBOL(yield); 4284 4285 /** 4286 * yield_to - yield the current processor to another thread in 4287 * your thread group, or accelerate that thread toward the 4288 * processor it's on. 4289 * @p: target task 4290 * @preempt: whether task preemption is allowed or not 4291 * 4292 * It's the caller's job to ensure that the target task struct 4293 * can't go away on us before we can do any checks. 4294 * 4295 * Return: 4296 * true (>0) if we indeed boosted the target task. 4297 * false (0) if we failed to boost the target. 4298 * -ESRCH if there's no task to yield to. 4299 */ 4300 int __sched yield_to(struct task_struct *p, bool preempt) 4301 { 4302 struct task_struct *curr = current; 4303 struct rq *rq, *p_rq; 4304 unsigned long flags; 4305 int yielded = 0; 4306 4307 local_irq_save(flags); 4308 rq = this_rq(); 4309 4310 again: 4311 p_rq = task_rq(p); 4312 /* 4313 * If we're the only runnable task on the rq and target rq also 4314 * has only one task, there's absolutely no point in yielding. 4315 */ 4316 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4317 yielded = -ESRCH; 4318 goto out_irq; 4319 } 4320 4321 double_rq_lock(rq, p_rq); 4322 if (task_rq(p) != p_rq) { 4323 double_rq_unlock(rq, p_rq); 4324 goto again; 4325 } 4326 4327 if (!curr->sched_class->yield_to_task) 4328 goto out_unlock; 4329 4330 if (curr->sched_class != p->sched_class) 4331 goto out_unlock; 4332 4333 if (task_running(p_rq, p) || p->state) 4334 goto out_unlock; 4335 4336 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4337 if (yielded) { 4338 schedstat_inc(rq, yld_count); 4339 /* 4340 * Make p's CPU reschedule; pick_next_entity takes care of 4341 * fairness. 4342 */ 4343 if (preempt && rq != p_rq) 4344 resched_curr(p_rq); 4345 } 4346 4347 out_unlock: 4348 double_rq_unlock(rq, p_rq); 4349 out_irq: 4350 local_irq_restore(flags); 4351 4352 if (yielded > 0) 4353 schedule(); 4354 4355 return yielded; 4356 } 4357 EXPORT_SYMBOL_GPL(yield_to); 4358 4359 /* 4360 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4361 * that process accounting knows that this is a task in IO wait state. 4362 */ 4363 long __sched io_schedule_timeout(long timeout) 4364 { 4365 int old_iowait = current->in_iowait; 4366 struct rq *rq; 4367 long ret; 4368 4369 current->in_iowait = 1; 4370 if (old_iowait) 4371 blk_schedule_flush_plug(current); 4372 else 4373 blk_flush_plug(current); 4374 4375 delayacct_blkio_start(); 4376 rq = raw_rq(); 4377 atomic_inc(&rq->nr_iowait); 4378 ret = schedule_timeout(timeout); 4379 current->in_iowait = old_iowait; 4380 atomic_dec(&rq->nr_iowait); 4381 delayacct_blkio_end(); 4382 4383 return ret; 4384 } 4385 EXPORT_SYMBOL(io_schedule_timeout); 4386 4387 /** 4388 * sys_sched_get_priority_max - return maximum RT priority. 4389 * @policy: scheduling class. 4390 * 4391 * Return: On success, this syscall returns the maximum 4392 * rt_priority that can be used by a given scheduling class. 4393 * On failure, a negative error code is returned. 4394 */ 4395 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4396 { 4397 int ret = -EINVAL; 4398 4399 switch (policy) { 4400 case SCHED_FIFO: 4401 case SCHED_RR: 4402 ret = MAX_USER_RT_PRIO-1; 4403 break; 4404 case SCHED_DEADLINE: 4405 case SCHED_NORMAL: 4406 case SCHED_BATCH: 4407 case SCHED_IDLE: 4408 ret = 0; 4409 break; 4410 } 4411 return ret; 4412 } 4413 4414 /** 4415 * sys_sched_get_priority_min - return minimum RT priority. 4416 * @policy: scheduling class. 4417 * 4418 * Return: On success, this syscall returns the minimum 4419 * rt_priority that can be used by a given scheduling class. 4420 * On failure, a negative error code is returned. 4421 */ 4422 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4423 { 4424 int ret = -EINVAL; 4425 4426 switch (policy) { 4427 case SCHED_FIFO: 4428 case SCHED_RR: 4429 ret = 1; 4430 break; 4431 case SCHED_DEADLINE: 4432 case SCHED_NORMAL: 4433 case SCHED_BATCH: 4434 case SCHED_IDLE: 4435 ret = 0; 4436 } 4437 return ret; 4438 } 4439 4440 /** 4441 * sys_sched_rr_get_interval - return the default timeslice of a process. 4442 * @pid: pid of the process. 4443 * @interval: userspace pointer to the timeslice value. 4444 * 4445 * this syscall writes the default timeslice value of a given process 4446 * into the user-space timespec buffer. A value of '0' means infinity. 4447 * 4448 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4449 * an error code. 4450 */ 4451 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4452 struct timespec __user *, interval) 4453 { 4454 struct task_struct *p; 4455 unsigned int time_slice; 4456 unsigned long flags; 4457 struct rq *rq; 4458 int retval; 4459 struct timespec t; 4460 4461 if (pid < 0) 4462 return -EINVAL; 4463 4464 retval = -ESRCH; 4465 rcu_read_lock(); 4466 p = find_process_by_pid(pid); 4467 if (!p) 4468 goto out_unlock; 4469 4470 retval = security_task_getscheduler(p); 4471 if (retval) 4472 goto out_unlock; 4473 4474 rq = task_rq_lock(p, &flags); 4475 time_slice = 0; 4476 if (p->sched_class->get_rr_interval) 4477 time_slice = p->sched_class->get_rr_interval(rq, p); 4478 task_rq_unlock(rq, p, &flags); 4479 4480 rcu_read_unlock(); 4481 jiffies_to_timespec(time_slice, &t); 4482 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4483 return retval; 4484 4485 out_unlock: 4486 rcu_read_unlock(); 4487 return retval; 4488 } 4489 4490 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4491 4492 void sched_show_task(struct task_struct *p) 4493 { 4494 unsigned long free = 0; 4495 int ppid; 4496 unsigned long state = p->state; 4497 4498 if (state) 4499 state = __ffs(state) + 1; 4500 printk(KERN_INFO "%-15.15s %c", p->comm, 4501 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4502 #if BITS_PER_LONG == 32 4503 if (state == TASK_RUNNING) 4504 printk(KERN_CONT " running "); 4505 else 4506 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4507 #else 4508 if (state == TASK_RUNNING) 4509 printk(KERN_CONT " running task "); 4510 else 4511 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4512 #endif 4513 #ifdef CONFIG_DEBUG_STACK_USAGE 4514 free = stack_not_used(p); 4515 #endif 4516 ppid = 0; 4517 rcu_read_lock(); 4518 if (pid_alive(p)) 4519 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4520 rcu_read_unlock(); 4521 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4522 task_pid_nr(p), ppid, 4523 (unsigned long)task_thread_info(p)->flags); 4524 4525 print_worker_info(KERN_INFO, p); 4526 show_stack(p, NULL); 4527 } 4528 4529 void show_state_filter(unsigned long state_filter) 4530 { 4531 struct task_struct *g, *p; 4532 4533 #if BITS_PER_LONG == 32 4534 printk(KERN_INFO 4535 " task PC stack pid father\n"); 4536 #else 4537 printk(KERN_INFO 4538 " task PC stack pid father\n"); 4539 #endif 4540 rcu_read_lock(); 4541 for_each_process_thread(g, p) { 4542 /* 4543 * reset the NMI-timeout, listing all files on a slow 4544 * console might take a lot of time: 4545 */ 4546 touch_nmi_watchdog(); 4547 if (!state_filter || (p->state & state_filter)) 4548 sched_show_task(p); 4549 } 4550 4551 touch_all_softlockup_watchdogs(); 4552 4553 #ifdef CONFIG_SCHED_DEBUG 4554 sysrq_sched_debug_show(); 4555 #endif 4556 rcu_read_unlock(); 4557 /* 4558 * Only show locks if all tasks are dumped: 4559 */ 4560 if (!state_filter) 4561 debug_show_all_locks(); 4562 } 4563 4564 void init_idle_bootup_task(struct task_struct *idle) 4565 { 4566 idle->sched_class = &idle_sched_class; 4567 } 4568 4569 /** 4570 * init_idle - set up an idle thread for a given CPU 4571 * @idle: task in question 4572 * @cpu: cpu the idle task belongs to 4573 * 4574 * NOTE: this function does not set the idle thread's NEED_RESCHED 4575 * flag, to make booting more robust. 4576 */ 4577 void init_idle(struct task_struct *idle, int cpu) 4578 { 4579 struct rq *rq = cpu_rq(cpu); 4580 unsigned long flags; 4581 4582 raw_spin_lock_irqsave(&rq->lock, flags); 4583 4584 __sched_fork(0, idle); 4585 idle->state = TASK_RUNNING; 4586 idle->se.exec_start = sched_clock(); 4587 4588 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4589 /* 4590 * We're having a chicken and egg problem, even though we are 4591 * holding rq->lock, the cpu isn't yet set to this cpu so the 4592 * lockdep check in task_group() will fail. 4593 * 4594 * Similar case to sched_fork(). / Alternatively we could 4595 * use task_rq_lock() here and obtain the other rq->lock. 4596 * 4597 * Silence PROVE_RCU 4598 */ 4599 rcu_read_lock(); 4600 __set_task_cpu(idle, cpu); 4601 rcu_read_unlock(); 4602 4603 rq->curr = rq->idle = idle; 4604 idle->on_rq = TASK_ON_RQ_QUEUED; 4605 #if defined(CONFIG_SMP) 4606 idle->on_cpu = 1; 4607 #endif 4608 raw_spin_unlock_irqrestore(&rq->lock, flags); 4609 4610 /* Set the preempt count _outside_ the spinlocks! */ 4611 init_idle_preempt_count(idle, cpu); 4612 4613 /* 4614 * The idle tasks have their own, simple scheduling class: 4615 */ 4616 idle->sched_class = &idle_sched_class; 4617 ftrace_graph_init_idle_task(idle, cpu); 4618 vtime_init_idle(idle, cpu); 4619 #if defined(CONFIG_SMP) 4620 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4621 #endif 4622 } 4623 4624 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 4625 const struct cpumask *trial) 4626 { 4627 int ret = 1, trial_cpus; 4628 struct dl_bw *cur_dl_b; 4629 unsigned long flags; 4630 4631 if (!cpumask_weight(cur)) 4632 return ret; 4633 4634 rcu_read_lock_sched(); 4635 cur_dl_b = dl_bw_of(cpumask_any(cur)); 4636 trial_cpus = cpumask_weight(trial); 4637 4638 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 4639 if (cur_dl_b->bw != -1 && 4640 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 4641 ret = 0; 4642 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 4643 rcu_read_unlock_sched(); 4644 4645 return ret; 4646 } 4647 4648 int task_can_attach(struct task_struct *p, 4649 const struct cpumask *cs_cpus_allowed) 4650 { 4651 int ret = 0; 4652 4653 /* 4654 * Kthreads which disallow setaffinity shouldn't be moved 4655 * to a new cpuset; we don't want to change their cpu 4656 * affinity and isolating such threads by their set of 4657 * allowed nodes is unnecessary. Thus, cpusets are not 4658 * applicable for such threads. This prevents checking for 4659 * success of set_cpus_allowed_ptr() on all attached tasks 4660 * before cpus_allowed may be changed. 4661 */ 4662 if (p->flags & PF_NO_SETAFFINITY) { 4663 ret = -EINVAL; 4664 goto out; 4665 } 4666 4667 #ifdef CONFIG_SMP 4668 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 4669 cs_cpus_allowed)) { 4670 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 4671 cs_cpus_allowed); 4672 struct dl_bw *dl_b; 4673 bool overflow; 4674 int cpus; 4675 unsigned long flags; 4676 4677 rcu_read_lock_sched(); 4678 dl_b = dl_bw_of(dest_cpu); 4679 raw_spin_lock_irqsave(&dl_b->lock, flags); 4680 cpus = dl_bw_cpus(dest_cpu); 4681 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 4682 if (overflow) 4683 ret = -EBUSY; 4684 else { 4685 /* 4686 * We reserve space for this task in the destination 4687 * root_domain, as we can't fail after this point. 4688 * We will free resources in the source root_domain 4689 * later on (see set_cpus_allowed_dl()). 4690 */ 4691 __dl_add(dl_b, p->dl.dl_bw); 4692 } 4693 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 4694 rcu_read_unlock_sched(); 4695 4696 } 4697 #endif 4698 out: 4699 return ret; 4700 } 4701 4702 #ifdef CONFIG_SMP 4703 /* 4704 * move_queued_task - move a queued task to new rq. 4705 * 4706 * Returns (locked) new rq. Old rq's lock is released. 4707 */ 4708 static struct rq *move_queued_task(struct task_struct *p, int new_cpu) 4709 { 4710 struct rq *rq = task_rq(p); 4711 4712 lockdep_assert_held(&rq->lock); 4713 4714 dequeue_task(rq, p, 0); 4715 p->on_rq = TASK_ON_RQ_MIGRATING; 4716 set_task_cpu(p, new_cpu); 4717 raw_spin_unlock(&rq->lock); 4718 4719 rq = cpu_rq(new_cpu); 4720 4721 raw_spin_lock(&rq->lock); 4722 BUG_ON(task_cpu(p) != new_cpu); 4723 p->on_rq = TASK_ON_RQ_QUEUED; 4724 enqueue_task(rq, p, 0); 4725 check_preempt_curr(rq, p, 0); 4726 4727 return rq; 4728 } 4729 4730 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4731 { 4732 if (p->sched_class->set_cpus_allowed) 4733 p->sched_class->set_cpus_allowed(p, new_mask); 4734 4735 cpumask_copy(&p->cpus_allowed, new_mask); 4736 p->nr_cpus_allowed = cpumask_weight(new_mask); 4737 } 4738 4739 /* 4740 * This is how migration works: 4741 * 4742 * 1) we invoke migration_cpu_stop() on the target CPU using 4743 * stop_one_cpu(). 4744 * 2) stopper starts to run (implicitly forcing the migrated thread 4745 * off the CPU) 4746 * 3) it checks whether the migrated task is still in the wrong runqueue. 4747 * 4) if it's in the wrong runqueue then the migration thread removes 4748 * it and puts it into the right queue. 4749 * 5) stopper completes and stop_one_cpu() returns and the migration 4750 * is done. 4751 */ 4752 4753 /* 4754 * Change a given task's CPU affinity. Migrate the thread to a 4755 * proper CPU and schedule it away if the CPU it's executing on 4756 * is removed from the allowed bitmask. 4757 * 4758 * NOTE: the caller must have a valid reference to the task, the 4759 * task must not exit() & deallocate itself prematurely. The 4760 * call is not atomic; no spinlocks may be held. 4761 */ 4762 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4763 { 4764 unsigned long flags; 4765 struct rq *rq; 4766 unsigned int dest_cpu; 4767 int ret = 0; 4768 4769 rq = task_rq_lock(p, &flags); 4770 4771 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4772 goto out; 4773 4774 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4775 ret = -EINVAL; 4776 goto out; 4777 } 4778 4779 do_set_cpus_allowed(p, new_mask); 4780 4781 /* Can the task run on the task's current CPU? If so, we're done */ 4782 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4783 goto out; 4784 4785 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4786 if (task_running(rq, p) || p->state == TASK_WAKING) { 4787 struct migration_arg arg = { p, dest_cpu }; 4788 /* Need help from migration thread: drop lock and wait. */ 4789 task_rq_unlock(rq, p, &flags); 4790 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4791 tlb_migrate_finish(p->mm); 4792 return 0; 4793 } else if (task_on_rq_queued(p)) 4794 rq = move_queued_task(p, dest_cpu); 4795 out: 4796 task_rq_unlock(rq, p, &flags); 4797 4798 return ret; 4799 } 4800 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4801 4802 /* 4803 * Move (not current) task off this cpu, onto dest cpu. We're doing 4804 * this because either it can't run here any more (set_cpus_allowed() 4805 * away from this CPU, or CPU going down), or because we're 4806 * attempting to rebalance this task on exec (sched_exec). 4807 * 4808 * So we race with normal scheduler movements, but that's OK, as long 4809 * as the task is no longer on this CPU. 4810 * 4811 * Returns non-zero if task was successfully migrated. 4812 */ 4813 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4814 { 4815 struct rq *rq; 4816 int ret = 0; 4817 4818 if (unlikely(!cpu_active(dest_cpu))) 4819 return ret; 4820 4821 rq = cpu_rq(src_cpu); 4822 4823 raw_spin_lock(&p->pi_lock); 4824 raw_spin_lock(&rq->lock); 4825 /* Already moved. */ 4826 if (task_cpu(p) != src_cpu) 4827 goto done; 4828 4829 /* Affinity changed (again). */ 4830 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4831 goto fail; 4832 4833 /* 4834 * If we're not on a rq, the next wake-up will ensure we're 4835 * placed properly. 4836 */ 4837 if (task_on_rq_queued(p)) 4838 rq = move_queued_task(p, dest_cpu); 4839 done: 4840 ret = 1; 4841 fail: 4842 raw_spin_unlock(&rq->lock); 4843 raw_spin_unlock(&p->pi_lock); 4844 return ret; 4845 } 4846 4847 #ifdef CONFIG_NUMA_BALANCING 4848 /* Migrate current task p to target_cpu */ 4849 int migrate_task_to(struct task_struct *p, int target_cpu) 4850 { 4851 struct migration_arg arg = { p, target_cpu }; 4852 int curr_cpu = task_cpu(p); 4853 4854 if (curr_cpu == target_cpu) 4855 return 0; 4856 4857 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4858 return -EINVAL; 4859 4860 /* TODO: This is not properly updating schedstats */ 4861 4862 trace_sched_move_numa(p, curr_cpu, target_cpu); 4863 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4864 } 4865 4866 /* 4867 * Requeue a task on a given node and accurately track the number of NUMA 4868 * tasks on the runqueues 4869 */ 4870 void sched_setnuma(struct task_struct *p, int nid) 4871 { 4872 struct rq *rq; 4873 unsigned long flags; 4874 bool queued, running; 4875 4876 rq = task_rq_lock(p, &flags); 4877 queued = task_on_rq_queued(p); 4878 running = task_current(rq, p); 4879 4880 if (queued) 4881 dequeue_task(rq, p, 0); 4882 if (running) 4883 put_prev_task(rq, p); 4884 4885 p->numa_preferred_nid = nid; 4886 4887 if (running) 4888 p->sched_class->set_curr_task(rq); 4889 if (queued) 4890 enqueue_task(rq, p, 0); 4891 task_rq_unlock(rq, p, &flags); 4892 } 4893 #endif 4894 4895 /* 4896 * migration_cpu_stop - this will be executed by a highprio stopper thread 4897 * and performs thread migration by bumping thread off CPU then 4898 * 'pushing' onto another runqueue. 4899 */ 4900 static int migration_cpu_stop(void *data) 4901 { 4902 struct migration_arg *arg = data; 4903 4904 /* 4905 * The original target cpu might have gone down and we might 4906 * be on another cpu but it doesn't matter. 4907 */ 4908 local_irq_disable(); 4909 /* 4910 * We need to explicitly wake pending tasks before running 4911 * __migrate_task() such that we will not miss enforcing cpus_allowed 4912 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 4913 */ 4914 sched_ttwu_pending(); 4915 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4916 local_irq_enable(); 4917 return 0; 4918 } 4919 4920 #ifdef CONFIG_HOTPLUG_CPU 4921 4922 /* 4923 * Ensures that the idle task is using init_mm right before its cpu goes 4924 * offline. 4925 */ 4926 void idle_task_exit(void) 4927 { 4928 struct mm_struct *mm = current->active_mm; 4929 4930 BUG_ON(cpu_online(smp_processor_id())); 4931 4932 if (mm != &init_mm) { 4933 switch_mm(mm, &init_mm, current); 4934 finish_arch_post_lock_switch(); 4935 } 4936 mmdrop(mm); 4937 } 4938 4939 /* 4940 * Since this CPU is going 'away' for a while, fold any nr_active delta 4941 * we might have. Assumes we're called after migrate_tasks() so that the 4942 * nr_active count is stable. 4943 * 4944 * Also see the comment "Global load-average calculations". 4945 */ 4946 static void calc_load_migrate(struct rq *rq) 4947 { 4948 long delta = calc_load_fold_active(rq); 4949 if (delta) 4950 atomic_long_add(delta, &calc_load_tasks); 4951 } 4952 4953 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 4954 { 4955 } 4956 4957 static const struct sched_class fake_sched_class = { 4958 .put_prev_task = put_prev_task_fake, 4959 }; 4960 4961 static struct task_struct fake_task = { 4962 /* 4963 * Avoid pull_{rt,dl}_task() 4964 */ 4965 .prio = MAX_PRIO + 1, 4966 .sched_class = &fake_sched_class, 4967 }; 4968 4969 /* 4970 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4971 * try_to_wake_up()->select_task_rq(). 4972 * 4973 * Called with rq->lock held even though we'er in stop_machine() and 4974 * there's no concurrency possible, we hold the required locks anyway 4975 * because of lock validation efforts. 4976 */ 4977 static void migrate_tasks(unsigned int dead_cpu) 4978 { 4979 struct rq *rq = cpu_rq(dead_cpu); 4980 struct task_struct *next, *stop = rq->stop; 4981 int dest_cpu; 4982 4983 /* 4984 * Fudge the rq selection such that the below task selection loop 4985 * doesn't get stuck on the currently eligible stop task. 4986 * 4987 * We're currently inside stop_machine() and the rq is either stuck 4988 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4989 * either way we should never end up calling schedule() until we're 4990 * done here. 4991 */ 4992 rq->stop = NULL; 4993 4994 /* 4995 * put_prev_task() and pick_next_task() sched 4996 * class method both need to have an up-to-date 4997 * value of rq->clock[_task] 4998 */ 4999 update_rq_clock(rq); 5000 5001 for ( ; ; ) { 5002 /* 5003 * There's this thread running, bail when that's the only 5004 * remaining thread. 5005 */ 5006 if (rq->nr_running == 1) 5007 break; 5008 5009 next = pick_next_task(rq, &fake_task); 5010 BUG_ON(!next); 5011 next->sched_class->put_prev_task(rq, next); 5012 5013 /* Find suitable destination for @next, with force if needed. */ 5014 dest_cpu = select_fallback_rq(dead_cpu, next); 5015 raw_spin_unlock(&rq->lock); 5016 5017 __migrate_task(next, dead_cpu, dest_cpu); 5018 5019 raw_spin_lock(&rq->lock); 5020 } 5021 5022 rq->stop = stop; 5023 } 5024 5025 #endif /* CONFIG_HOTPLUG_CPU */ 5026 5027 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5028 5029 static struct ctl_table sd_ctl_dir[] = { 5030 { 5031 .procname = "sched_domain", 5032 .mode = 0555, 5033 }, 5034 {} 5035 }; 5036 5037 static struct ctl_table sd_ctl_root[] = { 5038 { 5039 .procname = "kernel", 5040 .mode = 0555, 5041 .child = sd_ctl_dir, 5042 }, 5043 {} 5044 }; 5045 5046 static struct ctl_table *sd_alloc_ctl_entry(int n) 5047 { 5048 struct ctl_table *entry = 5049 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5050 5051 return entry; 5052 } 5053 5054 static void sd_free_ctl_entry(struct ctl_table **tablep) 5055 { 5056 struct ctl_table *entry; 5057 5058 /* 5059 * In the intermediate directories, both the child directory and 5060 * procname are dynamically allocated and could fail but the mode 5061 * will always be set. In the lowest directory the names are 5062 * static strings and all have proc handlers. 5063 */ 5064 for (entry = *tablep; entry->mode; entry++) { 5065 if (entry->child) 5066 sd_free_ctl_entry(&entry->child); 5067 if (entry->proc_handler == NULL) 5068 kfree(entry->procname); 5069 } 5070 5071 kfree(*tablep); 5072 *tablep = NULL; 5073 } 5074 5075 static int min_load_idx = 0; 5076 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5077 5078 static void 5079 set_table_entry(struct ctl_table *entry, 5080 const char *procname, void *data, int maxlen, 5081 umode_t mode, proc_handler *proc_handler, 5082 bool load_idx) 5083 { 5084 entry->procname = procname; 5085 entry->data = data; 5086 entry->maxlen = maxlen; 5087 entry->mode = mode; 5088 entry->proc_handler = proc_handler; 5089 5090 if (load_idx) { 5091 entry->extra1 = &min_load_idx; 5092 entry->extra2 = &max_load_idx; 5093 } 5094 } 5095 5096 static struct ctl_table * 5097 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5098 { 5099 struct ctl_table *table = sd_alloc_ctl_entry(14); 5100 5101 if (table == NULL) 5102 return NULL; 5103 5104 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5105 sizeof(long), 0644, proc_doulongvec_minmax, false); 5106 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5107 sizeof(long), 0644, proc_doulongvec_minmax, false); 5108 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5109 sizeof(int), 0644, proc_dointvec_minmax, true); 5110 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5111 sizeof(int), 0644, proc_dointvec_minmax, true); 5112 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5113 sizeof(int), 0644, proc_dointvec_minmax, true); 5114 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5115 sizeof(int), 0644, proc_dointvec_minmax, true); 5116 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5117 sizeof(int), 0644, proc_dointvec_minmax, true); 5118 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5119 sizeof(int), 0644, proc_dointvec_minmax, false); 5120 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5121 sizeof(int), 0644, proc_dointvec_minmax, false); 5122 set_table_entry(&table[9], "cache_nice_tries", 5123 &sd->cache_nice_tries, 5124 sizeof(int), 0644, proc_dointvec_minmax, false); 5125 set_table_entry(&table[10], "flags", &sd->flags, 5126 sizeof(int), 0644, proc_dointvec_minmax, false); 5127 set_table_entry(&table[11], "max_newidle_lb_cost", 5128 &sd->max_newidle_lb_cost, 5129 sizeof(long), 0644, proc_doulongvec_minmax, false); 5130 set_table_entry(&table[12], "name", sd->name, 5131 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5132 /* &table[13] is terminator */ 5133 5134 return table; 5135 } 5136 5137 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5138 { 5139 struct ctl_table *entry, *table; 5140 struct sched_domain *sd; 5141 int domain_num = 0, i; 5142 char buf[32]; 5143 5144 for_each_domain(cpu, sd) 5145 domain_num++; 5146 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5147 if (table == NULL) 5148 return NULL; 5149 5150 i = 0; 5151 for_each_domain(cpu, sd) { 5152 snprintf(buf, 32, "domain%d", i); 5153 entry->procname = kstrdup(buf, GFP_KERNEL); 5154 entry->mode = 0555; 5155 entry->child = sd_alloc_ctl_domain_table(sd); 5156 entry++; 5157 i++; 5158 } 5159 return table; 5160 } 5161 5162 static struct ctl_table_header *sd_sysctl_header; 5163 static void register_sched_domain_sysctl(void) 5164 { 5165 int i, cpu_num = num_possible_cpus(); 5166 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5167 char buf[32]; 5168 5169 WARN_ON(sd_ctl_dir[0].child); 5170 sd_ctl_dir[0].child = entry; 5171 5172 if (entry == NULL) 5173 return; 5174 5175 for_each_possible_cpu(i) { 5176 snprintf(buf, 32, "cpu%d", i); 5177 entry->procname = kstrdup(buf, GFP_KERNEL); 5178 entry->mode = 0555; 5179 entry->child = sd_alloc_ctl_cpu_table(i); 5180 entry++; 5181 } 5182 5183 WARN_ON(sd_sysctl_header); 5184 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5185 } 5186 5187 /* may be called multiple times per register */ 5188 static void unregister_sched_domain_sysctl(void) 5189 { 5190 if (sd_sysctl_header) 5191 unregister_sysctl_table(sd_sysctl_header); 5192 sd_sysctl_header = NULL; 5193 if (sd_ctl_dir[0].child) 5194 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5195 } 5196 #else 5197 static void register_sched_domain_sysctl(void) 5198 { 5199 } 5200 static void unregister_sched_domain_sysctl(void) 5201 { 5202 } 5203 #endif 5204 5205 static void set_rq_online(struct rq *rq) 5206 { 5207 if (!rq->online) { 5208 const struct sched_class *class; 5209 5210 cpumask_set_cpu(rq->cpu, rq->rd->online); 5211 rq->online = 1; 5212 5213 for_each_class(class) { 5214 if (class->rq_online) 5215 class->rq_online(rq); 5216 } 5217 } 5218 } 5219 5220 static void set_rq_offline(struct rq *rq) 5221 { 5222 if (rq->online) { 5223 const struct sched_class *class; 5224 5225 for_each_class(class) { 5226 if (class->rq_offline) 5227 class->rq_offline(rq); 5228 } 5229 5230 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5231 rq->online = 0; 5232 } 5233 } 5234 5235 /* 5236 * migration_call - callback that gets triggered when a CPU is added. 5237 * Here we can start up the necessary migration thread for the new CPU. 5238 */ 5239 static int 5240 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5241 { 5242 int cpu = (long)hcpu; 5243 unsigned long flags; 5244 struct rq *rq = cpu_rq(cpu); 5245 5246 switch (action & ~CPU_TASKS_FROZEN) { 5247 5248 case CPU_UP_PREPARE: 5249 rq->calc_load_update = calc_load_update; 5250 break; 5251 5252 case CPU_ONLINE: 5253 /* Update our root-domain */ 5254 raw_spin_lock_irqsave(&rq->lock, flags); 5255 if (rq->rd) { 5256 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5257 5258 set_rq_online(rq); 5259 } 5260 raw_spin_unlock_irqrestore(&rq->lock, flags); 5261 break; 5262 5263 #ifdef CONFIG_HOTPLUG_CPU 5264 case CPU_DYING: 5265 sched_ttwu_pending(); 5266 /* Update our root-domain */ 5267 raw_spin_lock_irqsave(&rq->lock, flags); 5268 if (rq->rd) { 5269 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5270 set_rq_offline(rq); 5271 } 5272 migrate_tasks(cpu); 5273 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5274 raw_spin_unlock_irqrestore(&rq->lock, flags); 5275 break; 5276 5277 case CPU_DEAD: 5278 calc_load_migrate(rq); 5279 break; 5280 #endif 5281 } 5282 5283 update_max_interval(); 5284 5285 return NOTIFY_OK; 5286 } 5287 5288 /* 5289 * Register at high priority so that task migration (migrate_all_tasks) 5290 * happens before everything else. This has to be lower priority than 5291 * the notifier in the perf_event subsystem, though. 5292 */ 5293 static struct notifier_block migration_notifier = { 5294 .notifier_call = migration_call, 5295 .priority = CPU_PRI_MIGRATION, 5296 }; 5297 5298 static void __cpuinit set_cpu_rq_start_time(void) 5299 { 5300 int cpu = smp_processor_id(); 5301 struct rq *rq = cpu_rq(cpu); 5302 rq->age_stamp = sched_clock_cpu(cpu); 5303 } 5304 5305 static int sched_cpu_active(struct notifier_block *nfb, 5306 unsigned long action, void *hcpu) 5307 { 5308 switch (action & ~CPU_TASKS_FROZEN) { 5309 case CPU_STARTING: 5310 set_cpu_rq_start_time(); 5311 return NOTIFY_OK; 5312 case CPU_DOWN_FAILED: 5313 set_cpu_active((long)hcpu, true); 5314 return NOTIFY_OK; 5315 default: 5316 return NOTIFY_DONE; 5317 } 5318 } 5319 5320 static int sched_cpu_inactive(struct notifier_block *nfb, 5321 unsigned long action, void *hcpu) 5322 { 5323 unsigned long flags; 5324 long cpu = (long)hcpu; 5325 struct dl_bw *dl_b; 5326 5327 switch (action & ~CPU_TASKS_FROZEN) { 5328 case CPU_DOWN_PREPARE: 5329 set_cpu_active(cpu, false); 5330 5331 /* explicitly allow suspend */ 5332 if (!(action & CPU_TASKS_FROZEN)) { 5333 bool overflow; 5334 int cpus; 5335 5336 rcu_read_lock_sched(); 5337 dl_b = dl_bw_of(cpu); 5338 5339 raw_spin_lock_irqsave(&dl_b->lock, flags); 5340 cpus = dl_bw_cpus(cpu); 5341 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5342 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5343 5344 rcu_read_unlock_sched(); 5345 5346 if (overflow) 5347 return notifier_from_errno(-EBUSY); 5348 } 5349 return NOTIFY_OK; 5350 } 5351 5352 return NOTIFY_DONE; 5353 } 5354 5355 static int __init migration_init(void) 5356 { 5357 void *cpu = (void *)(long)smp_processor_id(); 5358 int err; 5359 5360 /* Initialize migration for the boot CPU */ 5361 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5362 BUG_ON(err == NOTIFY_BAD); 5363 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5364 register_cpu_notifier(&migration_notifier); 5365 5366 /* Register cpu active notifiers */ 5367 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5368 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5369 5370 return 0; 5371 } 5372 early_initcall(migration_init); 5373 #endif 5374 5375 #ifdef CONFIG_SMP 5376 5377 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5378 5379 #ifdef CONFIG_SCHED_DEBUG 5380 5381 static __read_mostly int sched_debug_enabled; 5382 5383 static int __init sched_debug_setup(char *str) 5384 { 5385 sched_debug_enabled = 1; 5386 5387 return 0; 5388 } 5389 early_param("sched_debug", sched_debug_setup); 5390 5391 static inline bool sched_debug(void) 5392 { 5393 return sched_debug_enabled; 5394 } 5395 5396 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5397 struct cpumask *groupmask) 5398 { 5399 struct sched_group *group = sd->groups; 5400 5401 cpumask_clear(groupmask); 5402 5403 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5404 5405 if (!(sd->flags & SD_LOAD_BALANCE)) { 5406 printk("does not load-balance\n"); 5407 if (sd->parent) 5408 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5409 " has parent"); 5410 return -1; 5411 } 5412 5413 printk(KERN_CONT "span %*pbl level %s\n", 5414 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5415 5416 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5417 printk(KERN_ERR "ERROR: domain->span does not contain " 5418 "CPU%d\n", cpu); 5419 } 5420 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5421 printk(KERN_ERR "ERROR: domain->groups does not contain" 5422 " CPU%d\n", cpu); 5423 } 5424 5425 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5426 do { 5427 if (!group) { 5428 printk("\n"); 5429 printk(KERN_ERR "ERROR: group is NULL\n"); 5430 break; 5431 } 5432 5433 /* 5434 * Even though we initialize ->capacity to something semi-sane, 5435 * we leave capacity_orig unset. This allows us to detect if 5436 * domain iteration is still funny without causing /0 traps. 5437 */ 5438 if (!group->sgc->capacity_orig) { 5439 printk(KERN_CONT "\n"); 5440 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n"); 5441 break; 5442 } 5443 5444 if (!cpumask_weight(sched_group_cpus(group))) { 5445 printk(KERN_CONT "\n"); 5446 printk(KERN_ERR "ERROR: empty group\n"); 5447 break; 5448 } 5449 5450 if (!(sd->flags & SD_OVERLAP) && 5451 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5452 printk(KERN_CONT "\n"); 5453 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5454 break; 5455 } 5456 5457 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5458 5459 printk(KERN_CONT " %*pbl", 5460 cpumask_pr_args(sched_group_cpus(group))); 5461 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5462 printk(KERN_CONT " (cpu_capacity = %d)", 5463 group->sgc->capacity); 5464 } 5465 5466 group = group->next; 5467 } while (group != sd->groups); 5468 printk(KERN_CONT "\n"); 5469 5470 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5471 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5472 5473 if (sd->parent && 5474 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5475 printk(KERN_ERR "ERROR: parent span is not a superset " 5476 "of domain->span\n"); 5477 return 0; 5478 } 5479 5480 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5481 { 5482 int level = 0; 5483 5484 if (!sched_debug_enabled) 5485 return; 5486 5487 if (!sd) { 5488 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5489 return; 5490 } 5491 5492 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5493 5494 for (;;) { 5495 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5496 break; 5497 level++; 5498 sd = sd->parent; 5499 if (!sd) 5500 break; 5501 } 5502 } 5503 #else /* !CONFIG_SCHED_DEBUG */ 5504 # define sched_domain_debug(sd, cpu) do { } while (0) 5505 static inline bool sched_debug(void) 5506 { 5507 return false; 5508 } 5509 #endif /* CONFIG_SCHED_DEBUG */ 5510 5511 static int sd_degenerate(struct sched_domain *sd) 5512 { 5513 if (cpumask_weight(sched_domain_span(sd)) == 1) 5514 return 1; 5515 5516 /* Following flags need at least 2 groups */ 5517 if (sd->flags & (SD_LOAD_BALANCE | 5518 SD_BALANCE_NEWIDLE | 5519 SD_BALANCE_FORK | 5520 SD_BALANCE_EXEC | 5521 SD_SHARE_CPUCAPACITY | 5522 SD_SHARE_PKG_RESOURCES | 5523 SD_SHARE_POWERDOMAIN)) { 5524 if (sd->groups != sd->groups->next) 5525 return 0; 5526 } 5527 5528 /* Following flags don't use groups */ 5529 if (sd->flags & (SD_WAKE_AFFINE)) 5530 return 0; 5531 5532 return 1; 5533 } 5534 5535 static int 5536 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5537 { 5538 unsigned long cflags = sd->flags, pflags = parent->flags; 5539 5540 if (sd_degenerate(parent)) 5541 return 1; 5542 5543 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5544 return 0; 5545 5546 /* Flags needing groups don't count if only 1 group in parent */ 5547 if (parent->groups == parent->groups->next) { 5548 pflags &= ~(SD_LOAD_BALANCE | 5549 SD_BALANCE_NEWIDLE | 5550 SD_BALANCE_FORK | 5551 SD_BALANCE_EXEC | 5552 SD_SHARE_CPUCAPACITY | 5553 SD_SHARE_PKG_RESOURCES | 5554 SD_PREFER_SIBLING | 5555 SD_SHARE_POWERDOMAIN); 5556 if (nr_node_ids == 1) 5557 pflags &= ~SD_SERIALIZE; 5558 } 5559 if (~cflags & pflags) 5560 return 0; 5561 5562 return 1; 5563 } 5564 5565 static void free_rootdomain(struct rcu_head *rcu) 5566 { 5567 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5568 5569 cpupri_cleanup(&rd->cpupri); 5570 cpudl_cleanup(&rd->cpudl); 5571 free_cpumask_var(rd->dlo_mask); 5572 free_cpumask_var(rd->rto_mask); 5573 free_cpumask_var(rd->online); 5574 free_cpumask_var(rd->span); 5575 kfree(rd); 5576 } 5577 5578 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5579 { 5580 struct root_domain *old_rd = NULL; 5581 unsigned long flags; 5582 5583 raw_spin_lock_irqsave(&rq->lock, flags); 5584 5585 if (rq->rd) { 5586 old_rd = rq->rd; 5587 5588 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5589 set_rq_offline(rq); 5590 5591 cpumask_clear_cpu(rq->cpu, old_rd->span); 5592 5593 /* 5594 * If we dont want to free the old_rd yet then 5595 * set old_rd to NULL to skip the freeing later 5596 * in this function: 5597 */ 5598 if (!atomic_dec_and_test(&old_rd->refcount)) 5599 old_rd = NULL; 5600 } 5601 5602 atomic_inc(&rd->refcount); 5603 rq->rd = rd; 5604 5605 cpumask_set_cpu(rq->cpu, rd->span); 5606 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5607 set_rq_online(rq); 5608 5609 raw_spin_unlock_irqrestore(&rq->lock, flags); 5610 5611 if (old_rd) 5612 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5613 } 5614 5615 static int init_rootdomain(struct root_domain *rd) 5616 { 5617 memset(rd, 0, sizeof(*rd)); 5618 5619 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5620 goto out; 5621 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5622 goto free_span; 5623 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5624 goto free_online; 5625 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5626 goto free_dlo_mask; 5627 5628 init_dl_bw(&rd->dl_bw); 5629 if (cpudl_init(&rd->cpudl) != 0) 5630 goto free_dlo_mask; 5631 5632 if (cpupri_init(&rd->cpupri) != 0) 5633 goto free_rto_mask; 5634 return 0; 5635 5636 free_rto_mask: 5637 free_cpumask_var(rd->rto_mask); 5638 free_dlo_mask: 5639 free_cpumask_var(rd->dlo_mask); 5640 free_online: 5641 free_cpumask_var(rd->online); 5642 free_span: 5643 free_cpumask_var(rd->span); 5644 out: 5645 return -ENOMEM; 5646 } 5647 5648 /* 5649 * By default the system creates a single root-domain with all cpus as 5650 * members (mimicking the global state we have today). 5651 */ 5652 struct root_domain def_root_domain; 5653 5654 static void init_defrootdomain(void) 5655 { 5656 init_rootdomain(&def_root_domain); 5657 5658 atomic_set(&def_root_domain.refcount, 1); 5659 } 5660 5661 static struct root_domain *alloc_rootdomain(void) 5662 { 5663 struct root_domain *rd; 5664 5665 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5666 if (!rd) 5667 return NULL; 5668 5669 if (init_rootdomain(rd) != 0) { 5670 kfree(rd); 5671 return NULL; 5672 } 5673 5674 return rd; 5675 } 5676 5677 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5678 { 5679 struct sched_group *tmp, *first; 5680 5681 if (!sg) 5682 return; 5683 5684 first = sg; 5685 do { 5686 tmp = sg->next; 5687 5688 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5689 kfree(sg->sgc); 5690 5691 kfree(sg); 5692 sg = tmp; 5693 } while (sg != first); 5694 } 5695 5696 static void free_sched_domain(struct rcu_head *rcu) 5697 { 5698 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5699 5700 /* 5701 * If its an overlapping domain it has private groups, iterate and 5702 * nuke them all. 5703 */ 5704 if (sd->flags & SD_OVERLAP) { 5705 free_sched_groups(sd->groups, 1); 5706 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5707 kfree(sd->groups->sgc); 5708 kfree(sd->groups); 5709 } 5710 kfree(sd); 5711 } 5712 5713 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5714 { 5715 call_rcu(&sd->rcu, free_sched_domain); 5716 } 5717 5718 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5719 { 5720 for (; sd; sd = sd->parent) 5721 destroy_sched_domain(sd, cpu); 5722 } 5723 5724 /* 5725 * Keep a special pointer to the highest sched_domain that has 5726 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5727 * allows us to avoid some pointer chasing select_idle_sibling(). 5728 * 5729 * Also keep a unique ID per domain (we use the first cpu number in 5730 * the cpumask of the domain), this allows us to quickly tell if 5731 * two cpus are in the same cache domain, see cpus_share_cache(). 5732 */ 5733 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5734 DEFINE_PER_CPU(int, sd_llc_size); 5735 DEFINE_PER_CPU(int, sd_llc_id); 5736 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5737 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5738 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5739 5740 static void update_top_cache_domain(int cpu) 5741 { 5742 struct sched_domain *sd; 5743 struct sched_domain *busy_sd = NULL; 5744 int id = cpu; 5745 int size = 1; 5746 5747 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5748 if (sd) { 5749 id = cpumask_first(sched_domain_span(sd)); 5750 size = cpumask_weight(sched_domain_span(sd)); 5751 busy_sd = sd->parent; /* sd_busy */ 5752 } 5753 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5754 5755 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5756 per_cpu(sd_llc_size, cpu) = size; 5757 per_cpu(sd_llc_id, cpu) = id; 5758 5759 sd = lowest_flag_domain(cpu, SD_NUMA); 5760 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5761 5762 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5763 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5764 } 5765 5766 /* 5767 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5768 * hold the hotplug lock. 5769 */ 5770 static void 5771 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5772 { 5773 struct rq *rq = cpu_rq(cpu); 5774 struct sched_domain *tmp; 5775 5776 /* Remove the sched domains which do not contribute to scheduling. */ 5777 for (tmp = sd; tmp; ) { 5778 struct sched_domain *parent = tmp->parent; 5779 if (!parent) 5780 break; 5781 5782 if (sd_parent_degenerate(tmp, parent)) { 5783 tmp->parent = parent->parent; 5784 if (parent->parent) 5785 parent->parent->child = tmp; 5786 /* 5787 * Transfer SD_PREFER_SIBLING down in case of a 5788 * degenerate parent; the spans match for this 5789 * so the property transfers. 5790 */ 5791 if (parent->flags & SD_PREFER_SIBLING) 5792 tmp->flags |= SD_PREFER_SIBLING; 5793 destroy_sched_domain(parent, cpu); 5794 } else 5795 tmp = tmp->parent; 5796 } 5797 5798 if (sd && sd_degenerate(sd)) { 5799 tmp = sd; 5800 sd = sd->parent; 5801 destroy_sched_domain(tmp, cpu); 5802 if (sd) 5803 sd->child = NULL; 5804 } 5805 5806 sched_domain_debug(sd, cpu); 5807 5808 rq_attach_root(rq, rd); 5809 tmp = rq->sd; 5810 rcu_assign_pointer(rq->sd, sd); 5811 destroy_sched_domains(tmp, cpu); 5812 5813 update_top_cache_domain(cpu); 5814 } 5815 5816 /* cpus with isolated domains */ 5817 static cpumask_var_t cpu_isolated_map; 5818 5819 /* Setup the mask of cpus configured for isolated domains */ 5820 static int __init isolated_cpu_setup(char *str) 5821 { 5822 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5823 cpulist_parse(str, cpu_isolated_map); 5824 return 1; 5825 } 5826 5827 __setup("isolcpus=", isolated_cpu_setup); 5828 5829 struct s_data { 5830 struct sched_domain ** __percpu sd; 5831 struct root_domain *rd; 5832 }; 5833 5834 enum s_alloc { 5835 sa_rootdomain, 5836 sa_sd, 5837 sa_sd_storage, 5838 sa_none, 5839 }; 5840 5841 /* 5842 * Build an iteration mask that can exclude certain CPUs from the upwards 5843 * domain traversal. 5844 * 5845 * Asymmetric node setups can result in situations where the domain tree is of 5846 * unequal depth, make sure to skip domains that already cover the entire 5847 * range. 5848 * 5849 * In that case build_sched_domains() will have terminated the iteration early 5850 * and our sibling sd spans will be empty. Domains should always include the 5851 * cpu they're built on, so check that. 5852 * 5853 */ 5854 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5855 { 5856 const struct cpumask *span = sched_domain_span(sd); 5857 struct sd_data *sdd = sd->private; 5858 struct sched_domain *sibling; 5859 int i; 5860 5861 for_each_cpu(i, span) { 5862 sibling = *per_cpu_ptr(sdd->sd, i); 5863 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5864 continue; 5865 5866 cpumask_set_cpu(i, sched_group_mask(sg)); 5867 } 5868 } 5869 5870 /* 5871 * Return the canonical balance cpu for this group, this is the first cpu 5872 * of this group that's also in the iteration mask. 5873 */ 5874 int group_balance_cpu(struct sched_group *sg) 5875 { 5876 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5877 } 5878 5879 static int 5880 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5881 { 5882 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5883 const struct cpumask *span = sched_domain_span(sd); 5884 struct cpumask *covered = sched_domains_tmpmask; 5885 struct sd_data *sdd = sd->private; 5886 struct sched_domain *sibling; 5887 int i; 5888 5889 cpumask_clear(covered); 5890 5891 for_each_cpu(i, span) { 5892 struct cpumask *sg_span; 5893 5894 if (cpumask_test_cpu(i, covered)) 5895 continue; 5896 5897 sibling = *per_cpu_ptr(sdd->sd, i); 5898 5899 /* See the comment near build_group_mask(). */ 5900 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5901 continue; 5902 5903 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5904 GFP_KERNEL, cpu_to_node(cpu)); 5905 5906 if (!sg) 5907 goto fail; 5908 5909 sg_span = sched_group_cpus(sg); 5910 if (sibling->child) 5911 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 5912 else 5913 cpumask_set_cpu(i, sg_span); 5914 5915 cpumask_or(covered, covered, sg_span); 5916 5917 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 5918 if (atomic_inc_return(&sg->sgc->ref) == 1) 5919 build_group_mask(sd, sg); 5920 5921 /* 5922 * Initialize sgc->capacity such that even if we mess up the 5923 * domains and no possible iteration will get us here, we won't 5924 * die on a /0 trap. 5925 */ 5926 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 5927 sg->sgc->capacity_orig = sg->sgc->capacity; 5928 5929 /* 5930 * Make sure the first group of this domain contains the 5931 * canonical balance cpu. Otherwise the sched_domain iteration 5932 * breaks. See update_sg_lb_stats(). 5933 */ 5934 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5935 group_balance_cpu(sg) == cpu) 5936 groups = sg; 5937 5938 if (!first) 5939 first = sg; 5940 if (last) 5941 last->next = sg; 5942 last = sg; 5943 last->next = first; 5944 } 5945 sd->groups = groups; 5946 5947 return 0; 5948 5949 fail: 5950 free_sched_groups(first, 0); 5951 5952 return -ENOMEM; 5953 } 5954 5955 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5956 { 5957 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5958 struct sched_domain *child = sd->child; 5959 5960 if (child) 5961 cpu = cpumask_first(sched_domain_span(child)); 5962 5963 if (sg) { 5964 *sg = *per_cpu_ptr(sdd->sg, cpu); 5965 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 5966 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 5967 } 5968 5969 return cpu; 5970 } 5971 5972 /* 5973 * build_sched_groups will build a circular linked list of the groups 5974 * covered by the given span, and will set each group's ->cpumask correctly, 5975 * and ->cpu_capacity to 0. 5976 * 5977 * Assumes the sched_domain tree is fully constructed 5978 */ 5979 static int 5980 build_sched_groups(struct sched_domain *sd, int cpu) 5981 { 5982 struct sched_group *first = NULL, *last = NULL; 5983 struct sd_data *sdd = sd->private; 5984 const struct cpumask *span = sched_domain_span(sd); 5985 struct cpumask *covered; 5986 int i; 5987 5988 get_group(cpu, sdd, &sd->groups); 5989 atomic_inc(&sd->groups->ref); 5990 5991 if (cpu != cpumask_first(span)) 5992 return 0; 5993 5994 lockdep_assert_held(&sched_domains_mutex); 5995 covered = sched_domains_tmpmask; 5996 5997 cpumask_clear(covered); 5998 5999 for_each_cpu(i, span) { 6000 struct sched_group *sg; 6001 int group, j; 6002 6003 if (cpumask_test_cpu(i, covered)) 6004 continue; 6005 6006 group = get_group(i, sdd, &sg); 6007 cpumask_setall(sched_group_mask(sg)); 6008 6009 for_each_cpu(j, span) { 6010 if (get_group(j, sdd, NULL) != group) 6011 continue; 6012 6013 cpumask_set_cpu(j, covered); 6014 cpumask_set_cpu(j, sched_group_cpus(sg)); 6015 } 6016 6017 if (!first) 6018 first = sg; 6019 if (last) 6020 last->next = sg; 6021 last = sg; 6022 } 6023 last->next = first; 6024 6025 return 0; 6026 } 6027 6028 /* 6029 * Initialize sched groups cpu_capacity. 6030 * 6031 * cpu_capacity indicates the capacity of sched group, which is used while 6032 * distributing the load between different sched groups in a sched domain. 6033 * Typically cpu_capacity for all the groups in a sched domain will be same 6034 * unless there are asymmetries in the topology. If there are asymmetries, 6035 * group having more cpu_capacity will pickup more load compared to the 6036 * group having less cpu_capacity. 6037 */ 6038 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6039 { 6040 struct sched_group *sg = sd->groups; 6041 6042 WARN_ON(!sg); 6043 6044 do { 6045 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6046 sg = sg->next; 6047 } while (sg != sd->groups); 6048 6049 if (cpu != group_balance_cpu(sg)) 6050 return; 6051 6052 update_group_capacity(sd, cpu); 6053 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6054 } 6055 6056 /* 6057 * Initializers for schedule domains 6058 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6059 */ 6060 6061 static int default_relax_domain_level = -1; 6062 int sched_domain_level_max; 6063 6064 static int __init setup_relax_domain_level(char *str) 6065 { 6066 if (kstrtoint(str, 0, &default_relax_domain_level)) 6067 pr_warn("Unable to set relax_domain_level\n"); 6068 6069 return 1; 6070 } 6071 __setup("relax_domain_level=", setup_relax_domain_level); 6072 6073 static void set_domain_attribute(struct sched_domain *sd, 6074 struct sched_domain_attr *attr) 6075 { 6076 int request; 6077 6078 if (!attr || attr->relax_domain_level < 0) { 6079 if (default_relax_domain_level < 0) 6080 return; 6081 else 6082 request = default_relax_domain_level; 6083 } else 6084 request = attr->relax_domain_level; 6085 if (request < sd->level) { 6086 /* turn off idle balance on this domain */ 6087 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6088 } else { 6089 /* turn on idle balance on this domain */ 6090 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6091 } 6092 } 6093 6094 static void __sdt_free(const struct cpumask *cpu_map); 6095 static int __sdt_alloc(const struct cpumask *cpu_map); 6096 6097 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6098 const struct cpumask *cpu_map) 6099 { 6100 switch (what) { 6101 case sa_rootdomain: 6102 if (!atomic_read(&d->rd->refcount)) 6103 free_rootdomain(&d->rd->rcu); /* fall through */ 6104 case sa_sd: 6105 free_percpu(d->sd); /* fall through */ 6106 case sa_sd_storage: 6107 __sdt_free(cpu_map); /* fall through */ 6108 case sa_none: 6109 break; 6110 } 6111 } 6112 6113 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6114 const struct cpumask *cpu_map) 6115 { 6116 memset(d, 0, sizeof(*d)); 6117 6118 if (__sdt_alloc(cpu_map)) 6119 return sa_sd_storage; 6120 d->sd = alloc_percpu(struct sched_domain *); 6121 if (!d->sd) 6122 return sa_sd_storage; 6123 d->rd = alloc_rootdomain(); 6124 if (!d->rd) 6125 return sa_sd; 6126 return sa_rootdomain; 6127 } 6128 6129 /* 6130 * NULL the sd_data elements we've used to build the sched_domain and 6131 * sched_group structure so that the subsequent __free_domain_allocs() 6132 * will not free the data we're using. 6133 */ 6134 static void claim_allocations(int cpu, struct sched_domain *sd) 6135 { 6136 struct sd_data *sdd = sd->private; 6137 6138 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6139 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6140 6141 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6142 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6143 6144 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6145 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6146 } 6147 6148 #ifdef CONFIG_NUMA 6149 static int sched_domains_numa_levels; 6150 enum numa_topology_type sched_numa_topology_type; 6151 static int *sched_domains_numa_distance; 6152 int sched_max_numa_distance; 6153 static struct cpumask ***sched_domains_numa_masks; 6154 static int sched_domains_curr_level; 6155 #endif 6156 6157 /* 6158 * SD_flags allowed in topology descriptions. 6159 * 6160 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6161 * SD_SHARE_PKG_RESOURCES - describes shared caches 6162 * SD_NUMA - describes NUMA topologies 6163 * SD_SHARE_POWERDOMAIN - describes shared power domain 6164 * 6165 * Odd one out: 6166 * SD_ASYM_PACKING - describes SMT quirks 6167 */ 6168 #define TOPOLOGY_SD_FLAGS \ 6169 (SD_SHARE_CPUCAPACITY | \ 6170 SD_SHARE_PKG_RESOURCES | \ 6171 SD_NUMA | \ 6172 SD_ASYM_PACKING | \ 6173 SD_SHARE_POWERDOMAIN) 6174 6175 static struct sched_domain * 6176 sd_init(struct sched_domain_topology_level *tl, int cpu) 6177 { 6178 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6179 int sd_weight, sd_flags = 0; 6180 6181 #ifdef CONFIG_NUMA 6182 /* 6183 * Ugly hack to pass state to sd_numa_mask()... 6184 */ 6185 sched_domains_curr_level = tl->numa_level; 6186 #endif 6187 6188 sd_weight = cpumask_weight(tl->mask(cpu)); 6189 6190 if (tl->sd_flags) 6191 sd_flags = (*tl->sd_flags)(); 6192 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6193 "wrong sd_flags in topology description\n")) 6194 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6195 6196 *sd = (struct sched_domain){ 6197 .min_interval = sd_weight, 6198 .max_interval = 2*sd_weight, 6199 .busy_factor = 32, 6200 .imbalance_pct = 125, 6201 6202 .cache_nice_tries = 0, 6203 .busy_idx = 0, 6204 .idle_idx = 0, 6205 .newidle_idx = 0, 6206 .wake_idx = 0, 6207 .forkexec_idx = 0, 6208 6209 .flags = 1*SD_LOAD_BALANCE 6210 | 1*SD_BALANCE_NEWIDLE 6211 | 1*SD_BALANCE_EXEC 6212 | 1*SD_BALANCE_FORK 6213 | 0*SD_BALANCE_WAKE 6214 | 1*SD_WAKE_AFFINE 6215 | 0*SD_SHARE_CPUCAPACITY 6216 | 0*SD_SHARE_PKG_RESOURCES 6217 | 0*SD_SERIALIZE 6218 | 0*SD_PREFER_SIBLING 6219 | 0*SD_NUMA 6220 | sd_flags 6221 , 6222 6223 .last_balance = jiffies, 6224 .balance_interval = sd_weight, 6225 .smt_gain = 0, 6226 .max_newidle_lb_cost = 0, 6227 .next_decay_max_lb_cost = jiffies, 6228 #ifdef CONFIG_SCHED_DEBUG 6229 .name = tl->name, 6230 #endif 6231 }; 6232 6233 /* 6234 * Convert topological properties into behaviour. 6235 */ 6236 6237 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6238 sd->imbalance_pct = 110; 6239 sd->smt_gain = 1178; /* ~15% */ 6240 6241 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6242 sd->imbalance_pct = 117; 6243 sd->cache_nice_tries = 1; 6244 sd->busy_idx = 2; 6245 6246 #ifdef CONFIG_NUMA 6247 } else if (sd->flags & SD_NUMA) { 6248 sd->cache_nice_tries = 2; 6249 sd->busy_idx = 3; 6250 sd->idle_idx = 2; 6251 6252 sd->flags |= SD_SERIALIZE; 6253 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6254 sd->flags &= ~(SD_BALANCE_EXEC | 6255 SD_BALANCE_FORK | 6256 SD_WAKE_AFFINE); 6257 } 6258 6259 #endif 6260 } else { 6261 sd->flags |= SD_PREFER_SIBLING; 6262 sd->cache_nice_tries = 1; 6263 sd->busy_idx = 2; 6264 sd->idle_idx = 1; 6265 } 6266 6267 sd->private = &tl->data; 6268 6269 return sd; 6270 } 6271 6272 /* 6273 * Topology list, bottom-up. 6274 */ 6275 static struct sched_domain_topology_level default_topology[] = { 6276 #ifdef CONFIG_SCHED_SMT 6277 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6278 #endif 6279 #ifdef CONFIG_SCHED_MC 6280 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6281 #endif 6282 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6283 { NULL, }, 6284 }; 6285 6286 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6287 6288 #define for_each_sd_topology(tl) \ 6289 for (tl = sched_domain_topology; tl->mask; tl++) 6290 6291 void set_sched_topology(struct sched_domain_topology_level *tl) 6292 { 6293 sched_domain_topology = tl; 6294 } 6295 6296 #ifdef CONFIG_NUMA 6297 6298 static const struct cpumask *sd_numa_mask(int cpu) 6299 { 6300 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6301 } 6302 6303 static void sched_numa_warn(const char *str) 6304 { 6305 static int done = false; 6306 int i,j; 6307 6308 if (done) 6309 return; 6310 6311 done = true; 6312 6313 printk(KERN_WARNING "ERROR: %s\n\n", str); 6314 6315 for (i = 0; i < nr_node_ids; i++) { 6316 printk(KERN_WARNING " "); 6317 for (j = 0; j < nr_node_ids; j++) 6318 printk(KERN_CONT "%02d ", node_distance(i,j)); 6319 printk(KERN_CONT "\n"); 6320 } 6321 printk(KERN_WARNING "\n"); 6322 } 6323 6324 bool find_numa_distance(int distance) 6325 { 6326 int i; 6327 6328 if (distance == node_distance(0, 0)) 6329 return true; 6330 6331 for (i = 0; i < sched_domains_numa_levels; i++) { 6332 if (sched_domains_numa_distance[i] == distance) 6333 return true; 6334 } 6335 6336 return false; 6337 } 6338 6339 /* 6340 * A system can have three types of NUMA topology: 6341 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6342 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6343 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6344 * 6345 * The difference between a glueless mesh topology and a backplane 6346 * topology lies in whether communication between not directly 6347 * connected nodes goes through intermediary nodes (where programs 6348 * could run), or through backplane controllers. This affects 6349 * placement of programs. 6350 * 6351 * The type of topology can be discerned with the following tests: 6352 * - If the maximum distance between any nodes is 1 hop, the system 6353 * is directly connected. 6354 * - If for two nodes A and B, located N > 1 hops away from each other, 6355 * there is an intermediary node C, which is < N hops away from both 6356 * nodes A and B, the system is a glueless mesh. 6357 */ 6358 static void init_numa_topology_type(void) 6359 { 6360 int a, b, c, n; 6361 6362 n = sched_max_numa_distance; 6363 6364 if (n <= 1) 6365 sched_numa_topology_type = NUMA_DIRECT; 6366 6367 for_each_online_node(a) { 6368 for_each_online_node(b) { 6369 /* Find two nodes furthest removed from each other. */ 6370 if (node_distance(a, b) < n) 6371 continue; 6372 6373 /* Is there an intermediary node between a and b? */ 6374 for_each_online_node(c) { 6375 if (node_distance(a, c) < n && 6376 node_distance(b, c) < n) { 6377 sched_numa_topology_type = 6378 NUMA_GLUELESS_MESH; 6379 return; 6380 } 6381 } 6382 6383 sched_numa_topology_type = NUMA_BACKPLANE; 6384 return; 6385 } 6386 } 6387 } 6388 6389 static void sched_init_numa(void) 6390 { 6391 int next_distance, curr_distance = node_distance(0, 0); 6392 struct sched_domain_topology_level *tl; 6393 int level = 0; 6394 int i, j, k; 6395 6396 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6397 if (!sched_domains_numa_distance) 6398 return; 6399 6400 /* 6401 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6402 * unique distances in the node_distance() table. 6403 * 6404 * Assumes node_distance(0,j) includes all distances in 6405 * node_distance(i,j) in order to avoid cubic time. 6406 */ 6407 next_distance = curr_distance; 6408 for (i = 0; i < nr_node_ids; i++) { 6409 for (j = 0; j < nr_node_ids; j++) { 6410 for (k = 0; k < nr_node_ids; k++) { 6411 int distance = node_distance(i, k); 6412 6413 if (distance > curr_distance && 6414 (distance < next_distance || 6415 next_distance == curr_distance)) 6416 next_distance = distance; 6417 6418 /* 6419 * While not a strong assumption it would be nice to know 6420 * about cases where if node A is connected to B, B is not 6421 * equally connected to A. 6422 */ 6423 if (sched_debug() && node_distance(k, i) != distance) 6424 sched_numa_warn("Node-distance not symmetric"); 6425 6426 if (sched_debug() && i && !find_numa_distance(distance)) 6427 sched_numa_warn("Node-0 not representative"); 6428 } 6429 if (next_distance != curr_distance) { 6430 sched_domains_numa_distance[level++] = next_distance; 6431 sched_domains_numa_levels = level; 6432 curr_distance = next_distance; 6433 } else break; 6434 } 6435 6436 /* 6437 * In case of sched_debug() we verify the above assumption. 6438 */ 6439 if (!sched_debug()) 6440 break; 6441 } 6442 6443 if (!level) 6444 return; 6445 6446 /* 6447 * 'level' contains the number of unique distances, excluding the 6448 * identity distance node_distance(i,i). 6449 * 6450 * The sched_domains_numa_distance[] array includes the actual distance 6451 * numbers. 6452 */ 6453 6454 /* 6455 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6456 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6457 * the array will contain less then 'level' members. This could be 6458 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6459 * in other functions. 6460 * 6461 * We reset it to 'level' at the end of this function. 6462 */ 6463 sched_domains_numa_levels = 0; 6464 6465 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6466 if (!sched_domains_numa_masks) 6467 return; 6468 6469 /* 6470 * Now for each level, construct a mask per node which contains all 6471 * cpus of nodes that are that many hops away from us. 6472 */ 6473 for (i = 0; i < level; i++) { 6474 sched_domains_numa_masks[i] = 6475 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6476 if (!sched_domains_numa_masks[i]) 6477 return; 6478 6479 for (j = 0; j < nr_node_ids; j++) { 6480 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6481 if (!mask) 6482 return; 6483 6484 sched_domains_numa_masks[i][j] = mask; 6485 6486 for (k = 0; k < nr_node_ids; k++) { 6487 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6488 continue; 6489 6490 cpumask_or(mask, mask, cpumask_of_node(k)); 6491 } 6492 } 6493 } 6494 6495 /* Compute default topology size */ 6496 for (i = 0; sched_domain_topology[i].mask; i++); 6497 6498 tl = kzalloc((i + level + 1) * 6499 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6500 if (!tl) 6501 return; 6502 6503 /* 6504 * Copy the default topology bits.. 6505 */ 6506 for (i = 0; sched_domain_topology[i].mask; i++) 6507 tl[i] = sched_domain_topology[i]; 6508 6509 /* 6510 * .. and append 'j' levels of NUMA goodness. 6511 */ 6512 for (j = 0; j < level; i++, j++) { 6513 tl[i] = (struct sched_domain_topology_level){ 6514 .mask = sd_numa_mask, 6515 .sd_flags = cpu_numa_flags, 6516 .flags = SDTL_OVERLAP, 6517 .numa_level = j, 6518 SD_INIT_NAME(NUMA) 6519 }; 6520 } 6521 6522 sched_domain_topology = tl; 6523 6524 sched_domains_numa_levels = level; 6525 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6526 6527 init_numa_topology_type(); 6528 } 6529 6530 static void sched_domains_numa_masks_set(int cpu) 6531 { 6532 int i, j; 6533 int node = cpu_to_node(cpu); 6534 6535 for (i = 0; i < sched_domains_numa_levels; i++) { 6536 for (j = 0; j < nr_node_ids; j++) { 6537 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6538 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6539 } 6540 } 6541 } 6542 6543 static void sched_domains_numa_masks_clear(int cpu) 6544 { 6545 int i, j; 6546 for (i = 0; i < sched_domains_numa_levels; i++) { 6547 for (j = 0; j < nr_node_ids; j++) 6548 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6549 } 6550 } 6551 6552 /* 6553 * Update sched_domains_numa_masks[level][node] array when new cpus 6554 * are onlined. 6555 */ 6556 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6557 unsigned long action, 6558 void *hcpu) 6559 { 6560 int cpu = (long)hcpu; 6561 6562 switch (action & ~CPU_TASKS_FROZEN) { 6563 case CPU_ONLINE: 6564 sched_domains_numa_masks_set(cpu); 6565 break; 6566 6567 case CPU_DEAD: 6568 sched_domains_numa_masks_clear(cpu); 6569 break; 6570 6571 default: 6572 return NOTIFY_DONE; 6573 } 6574 6575 return NOTIFY_OK; 6576 } 6577 #else 6578 static inline void sched_init_numa(void) 6579 { 6580 } 6581 6582 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6583 unsigned long action, 6584 void *hcpu) 6585 { 6586 return 0; 6587 } 6588 #endif /* CONFIG_NUMA */ 6589 6590 static int __sdt_alloc(const struct cpumask *cpu_map) 6591 { 6592 struct sched_domain_topology_level *tl; 6593 int j; 6594 6595 for_each_sd_topology(tl) { 6596 struct sd_data *sdd = &tl->data; 6597 6598 sdd->sd = alloc_percpu(struct sched_domain *); 6599 if (!sdd->sd) 6600 return -ENOMEM; 6601 6602 sdd->sg = alloc_percpu(struct sched_group *); 6603 if (!sdd->sg) 6604 return -ENOMEM; 6605 6606 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6607 if (!sdd->sgc) 6608 return -ENOMEM; 6609 6610 for_each_cpu(j, cpu_map) { 6611 struct sched_domain *sd; 6612 struct sched_group *sg; 6613 struct sched_group_capacity *sgc; 6614 6615 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6616 GFP_KERNEL, cpu_to_node(j)); 6617 if (!sd) 6618 return -ENOMEM; 6619 6620 *per_cpu_ptr(sdd->sd, j) = sd; 6621 6622 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6623 GFP_KERNEL, cpu_to_node(j)); 6624 if (!sg) 6625 return -ENOMEM; 6626 6627 sg->next = sg; 6628 6629 *per_cpu_ptr(sdd->sg, j) = sg; 6630 6631 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6632 GFP_KERNEL, cpu_to_node(j)); 6633 if (!sgc) 6634 return -ENOMEM; 6635 6636 *per_cpu_ptr(sdd->sgc, j) = sgc; 6637 } 6638 } 6639 6640 return 0; 6641 } 6642 6643 static void __sdt_free(const struct cpumask *cpu_map) 6644 { 6645 struct sched_domain_topology_level *tl; 6646 int j; 6647 6648 for_each_sd_topology(tl) { 6649 struct sd_data *sdd = &tl->data; 6650 6651 for_each_cpu(j, cpu_map) { 6652 struct sched_domain *sd; 6653 6654 if (sdd->sd) { 6655 sd = *per_cpu_ptr(sdd->sd, j); 6656 if (sd && (sd->flags & SD_OVERLAP)) 6657 free_sched_groups(sd->groups, 0); 6658 kfree(*per_cpu_ptr(sdd->sd, j)); 6659 } 6660 6661 if (sdd->sg) 6662 kfree(*per_cpu_ptr(sdd->sg, j)); 6663 if (sdd->sgc) 6664 kfree(*per_cpu_ptr(sdd->sgc, j)); 6665 } 6666 free_percpu(sdd->sd); 6667 sdd->sd = NULL; 6668 free_percpu(sdd->sg); 6669 sdd->sg = NULL; 6670 free_percpu(sdd->sgc); 6671 sdd->sgc = NULL; 6672 } 6673 } 6674 6675 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6676 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6677 struct sched_domain *child, int cpu) 6678 { 6679 struct sched_domain *sd = sd_init(tl, cpu); 6680 if (!sd) 6681 return child; 6682 6683 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6684 if (child) { 6685 sd->level = child->level + 1; 6686 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6687 child->parent = sd; 6688 sd->child = child; 6689 6690 if (!cpumask_subset(sched_domain_span(child), 6691 sched_domain_span(sd))) { 6692 pr_err("BUG: arch topology borken\n"); 6693 #ifdef CONFIG_SCHED_DEBUG 6694 pr_err(" the %s domain not a subset of the %s domain\n", 6695 child->name, sd->name); 6696 #endif 6697 /* Fixup, ensure @sd has at least @child cpus. */ 6698 cpumask_or(sched_domain_span(sd), 6699 sched_domain_span(sd), 6700 sched_domain_span(child)); 6701 } 6702 6703 } 6704 set_domain_attribute(sd, attr); 6705 6706 return sd; 6707 } 6708 6709 /* 6710 * Build sched domains for a given set of cpus and attach the sched domains 6711 * to the individual cpus 6712 */ 6713 static int build_sched_domains(const struct cpumask *cpu_map, 6714 struct sched_domain_attr *attr) 6715 { 6716 enum s_alloc alloc_state; 6717 struct sched_domain *sd; 6718 struct s_data d; 6719 int i, ret = -ENOMEM; 6720 6721 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6722 if (alloc_state != sa_rootdomain) 6723 goto error; 6724 6725 /* Set up domains for cpus specified by the cpu_map. */ 6726 for_each_cpu(i, cpu_map) { 6727 struct sched_domain_topology_level *tl; 6728 6729 sd = NULL; 6730 for_each_sd_topology(tl) { 6731 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6732 if (tl == sched_domain_topology) 6733 *per_cpu_ptr(d.sd, i) = sd; 6734 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6735 sd->flags |= SD_OVERLAP; 6736 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6737 break; 6738 } 6739 } 6740 6741 /* Build the groups for the domains */ 6742 for_each_cpu(i, cpu_map) { 6743 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6744 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6745 if (sd->flags & SD_OVERLAP) { 6746 if (build_overlap_sched_groups(sd, i)) 6747 goto error; 6748 } else { 6749 if (build_sched_groups(sd, i)) 6750 goto error; 6751 } 6752 } 6753 } 6754 6755 /* Calculate CPU capacity for physical packages and nodes */ 6756 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6757 if (!cpumask_test_cpu(i, cpu_map)) 6758 continue; 6759 6760 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6761 claim_allocations(i, sd); 6762 init_sched_groups_capacity(i, sd); 6763 } 6764 } 6765 6766 /* Attach the domains */ 6767 rcu_read_lock(); 6768 for_each_cpu(i, cpu_map) { 6769 sd = *per_cpu_ptr(d.sd, i); 6770 cpu_attach_domain(sd, d.rd, i); 6771 } 6772 rcu_read_unlock(); 6773 6774 ret = 0; 6775 error: 6776 __free_domain_allocs(&d, alloc_state, cpu_map); 6777 return ret; 6778 } 6779 6780 static cpumask_var_t *doms_cur; /* current sched domains */ 6781 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6782 static struct sched_domain_attr *dattr_cur; 6783 /* attribues of custom domains in 'doms_cur' */ 6784 6785 /* 6786 * Special case: If a kmalloc of a doms_cur partition (array of 6787 * cpumask) fails, then fallback to a single sched domain, 6788 * as determined by the single cpumask fallback_doms. 6789 */ 6790 static cpumask_var_t fallback_doms; 6791 6792 /* 6793 * arch_update_cpu_topology lets virtualized architectures update the 6794 * cpu core maps. It is supposed to return 1 if the topology changed 6795 * or 0 if it stayed the same. 6796 */ 6797 int __weak arch_update_cpu_topology(void) 6798 { 6799 return 0; 6800 } 6801 6802 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6803 { 6804 int i; 6805 cpumask_var_t *doms; 6806 6807 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6808 if (!doms) 6809 return NULL; 6810 for (i = 0; i < ndoms; i++) { 6811 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6812 free_sched_domains(doms, i); 6813 return NULL; 6814 } 6815 } 6816 return doms; 6817 } 6818 6819 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6820 { 6821 unsigned int i; 6822 for (i = 0; i < ndoms; i++) 6823 free_cpumask_var(doms[i]); 6824 kfree(doms); 6825 } 6826 6827 /* 6828 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6829 * For now this just excludes isolated cpus, but could be used to 6830 * exclude other special cases in the future. 6831 */ 6832 static int init_sched_domains(const struct cpumask *cpu_map) 6833 { 6834 int err; 6835 6836 arch_update_cpu_topology(); 6837 ndoms_cur = 1; 6838 doms_cur = alloc_sched_domains(ndoms_cur); 6839 if (!doms_cur) 6840 doms_cur = &fallback_doms; 6841 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6842 err = build_sched_domains(doms_cur[0], NULL); 6843 register_sched_domain_sysctl(); 6844 6845 return err; 6846 } 6847 6848 /* 6849 * Detach sched domains from a group of cpus specified in cpu_map 6850 * These cpus will now be attached to the NULL domain 6851 */ 6852 static void detach_destroy_domains(const struct cpumask *cpu_map) 6853 { 6854 int i; 6855 6856 rcu_read_lock(); 6857 for_each_cpu(i, cpu_map) 6858 cpu_attach_domain(NULL, &def_root_domain, i); 6859 rcu_read_unlock(); 6860 } 6861 6862 /* handle null as "default" */ 6863 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6864 struct sched_domain_attr *new, int idx_new) 6865 { 6866 struct sched_domain_attr tmp; 6867 6868 /* fast path */ 6869 if (!new && !cur) 6870 return 1; 6871 6872 tmp = SD_ATTR_INIT; 6873 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6874 new ? (new + idx_new) : &tmp, 6875 sizeof(struct sched_domain_attr)); 6876 } 6877 6878 /* 6879 * Partition sched domains as specified by the 'ndoms_new' 6880 * cpumasks in the array doms_new[] of cpumasks. This compares 6881 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6882 * It destroys each deleted domain and builds each new domain. 6883 * 6884 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6885 * The masks don't intersect (don't overlap.) We should setup one 6886 * sched domain for each mask. CPUs not in any of the cpumasks will 6887 * not be load balanced. If the same cpumask appears both in the 6888 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6889 * it as it is. 6890 * 6891 * The passed in 'doms_new' should be allocated using 6892 * alloc_sched_domains. This routine takes ownership of it and will 6893 * free_sched_domains it when done with it. If the caller failed the 6894 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6895 * and partition_sched_domains() will fallback to the single partition 6896 * 'fallback_doms', it also forces the domains to be rebuilt. 6897 * 6898 * If doms_new == NULL it will be replaced with cpu_online_mask. 6899 * ndoms_new == 0 is a special case for destroying existing domains, 6900 * and it will not create the default domain. 6901 * 6902 * Call with hotplug lock held 6903 */ 6904 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6905 struct sched_domain_attr *dattr_new) 6906 { 6907 int i, j, n; 6908 int new_topology; 6909 6910 mutex_lock(&sched_domains_mutex); 6911 6912 /* always unregister in case we don't destroy any domains */ 6913 unregister_sched_domain_sysctl(); 6914 6915 /* Let architecture update cpu core mappings. */ 6916 new_topology = arch_update_cpu_topology(); 6917 6918 n = doms_new ? ndoms_new : 0; 6919 6920 /* Destroy deleted domains */ 6921 for (i = 0; i < ndoms_cur; i++) { 6922 for (j = 0; j < n && !new_topology; j++) { 6923 if (cpumask_equal(doms_cur[i], doms_new[j]) 6924 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6925 goto match1; 6926 } 6927 /* no match - a current sched domain not in new doms_new[] */ 6928 detach_destroy_domains(doms_cur[i]); 6929 match1: 6930 ; 6931 } 6932 6933 n = ndoms_cur; 6934 if (doms_new == NULL) { 6935 n = 0; 6936 doms_new = &fallback_doms; 6937 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6938 WARN_ON_ONCE(dattr_new); 6939 } 6940 6941 /* Build new domains */ 6942 for (i = 0; i < ndoms_new; i++) { 6943 for (j = 0; j < n && !new_topology; j++) { 6944 if (cpumask_equal(doms_new[i], doms_cur[j]) 6945 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6946 goto match2; 6947 } 6948 /* no match - add a new doms_new */ 6949 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6950 match2: 6951 ; 6952 } 6953 6954 /* Remember the new sched domains */ 6955 if (doms_cur != &fallback_doms) 6956 free_sched_domains(doms_cur, ndoms_cur); 6957 kfree(dattr_cur); /* kfree(NULL) is safe */ 6958 doms_cur = doms_new; 6959 dattr_cur = dattr_new; 6960 ndoms_cur = ndoms_new; 6961 6962 register_sched_domain_sysctl(); 6963 6964 mutex_unlock(&sched_domains_mutex); 6965 } 6966 6967 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6968 6969 /* 6970 * Update cpusets according to cpu_active mask. If cpusets are 6971 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6972 * around partition_sched_domains(). 6973 * 6974 * If we come here as part of a suspend/resume, don't touch cpusets because we 6975 * want to restore it back to its original state upon resume anyway. 6976 */ 6977 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6978 void *hcpu) 6979 { 6980 switch (action) { 6981 case CPU_ONLINE_FROZEN: 6982 case CPU_DOWN_FAILED_FROZEN: 6983 6984 /* 6985 * num_cpus_frozen tracks how many CPUs are involved in suspend 6986 * resume sequence. As long as this is not the last online 6987 * operation in the resume sequence, just build a single sched 6988 * domain, ignoring cpusets. 6989 */ 6990 num_cpus_frozen--; 6991 if (likely(num_cpus_frozen)) { 6992 partition_sched_domains(1, NULL, NULL); 6993 break; 6994 } 6995 6996 /* 6997 * This is the last CPU online operation. So fall through and 6998 * restore the original sched domains by considering the 6999 * cpuset configurations. 7000 */ 7001 7002 case CPU_ONLINE: 7003 case CPU_DOWN_FAILED: 7004 cpuset_update_active_cpus(true); 7005 break; 7006 default: 7007 return NOTIFY_DONE; 7008 } 7009 return NOTIFY_OK; 7010 } 7011 7012 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 7013 void *hcpu) 7014 { 7015 switch (action) { 7016 case CPU_DOWN_PREPARE: 7017 cpuset_update_active_cpus(false); 7018 break; 7019 case CPU_DOWN_PREPARE_FROZEN: 7020 num_cpus_frozen++; 7021 partition_sched_domains(1, NULL, NULL); 7022 break; 7023 default: 7024 return NOTIFY_DONE; 7025 } 7026 return NOTIFY_OK; 7027 } 7028 7029 void __init sched_init_smp(void) 7030 { 7031 cpumask_var_t non_isolated_cpus; 7032 7033 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7034 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7035 7036 sched_init_numa(); 7037 7038 /* 7039 * There's no userspace yet to cause hotplug operations; hence all the 7040 * cpu masks are stable and all blatant races in the below code cannot 7041 * happen. 7042 */ 7043 mutex_lock(&sched_domains_mutex); 7044 init_sched_domains(cpu_active_mask); 7045 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7046 if (cpumask_empty(non_isolated_cpus)) 7047 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7048 mutex_unlock(&sched_domains_mutex); 7049 7050 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7051 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7052 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7053 7054 init_hrtick(); 7055 7056 /* Move init over to a non-isolated CPU */ 7057 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7058 BUG(); 7059 sched_init_granularity(); 7060 free_cpumask_var(non_isolated_cpus); 7061 7062 init_sched_rt_class(); 7063 init_sched_dl_class(); 7064 } 7065 #else 7066 void __init sched_init_smp(void) 7067 { 7068 sched_init_granularity(); 7069 } 7070 #endif /* CONFIG_SMP */ 7071 7072 const_debug unsigned int sysctl_timer_migration = 1; 7073 7074 int in_sched_functions(unsigned long addr) 7075 { 7076 return in_lock_functions(addr) || 7077 (addr >= (unsigned long)__sched_text_start 7078 && addr < (unsigned long)__sched_text_end); 7079 } 7080 7081 #ifdef CONFIG_CGROUP_SCHED 7082 /* 7083 * Default task group. 7084 * Every task in system belongs to this group at bootup. 7085 */ 7086 struct task_group root_task_group; 7087 LIST_HEAD(task_groups); 7088 #endif 7089 7090 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7091 7092 void __init sched_init(void) 7093 { 7094 int i, j; 7095 unsigned long alloc_size = 0, ptr; 7096 7097 #ifdef CONFIG_FAIR_GROUP_SCHED 7098 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7099 #endif 7100 #ifdef CONFIG_RT_GROUP_SCHED 7101 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7102 #endif 7103 if (alloc_size) { 7104 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7105 7106 #ifdef CONFIG_FAIR_GROUP_SCHED 7107 root_task_group.se = (struct sched_entity **)ptr; 7108 ptr += nr_cpu_ids * sizeof(void **); 7109 7110 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7111 ptr += nr_cpu_ids * sizeof(void **); 7112 7113 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7114 #ifdef CONFIG_RT_GROUP_SCHED 7115 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7116 ptr += nr_cpu_ids * sizeof(void **); 7117 7118 root_task_group.rt_rq = (struct rt_rq **)ptr; 7119 ptr += nr_cpu_ids * sizeof(void **); 7120 7121 #endif /* CONFIG_RT_GROUP_SCHED */ 7122 } 7123 #ifdef CONFIG_CPUMASK_OFFSTACK 7124 for_each_possible_cpu(i) { 7125 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7126 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7127 } 7128 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7129 7130 init_rt_bandwidth(&def_rt_bandwidth, 7131 global_rt_period(), global_rt_runtime()); 7132 init_dl_bandwidth(&def_dl_bandwidth, 7133 global_rt_period(), global_rt_runtime()); 7134 7135 #ifdef CONFIG_SMP 7136 init_defrootdomain(); 7137 #endif 7138 7139 #ifdef CONFIG_RT_GROUP_SCHED 7140 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7141 global_rt_period(), global_rt_runtime()); 7142 #endif /* CONFIG_RT_GROUP_SCHED */ 7143 7144 #ifdef CONFIG_CGROUP_SCHED 7145 list_add(&root_task_group.list, &task_groups); 7146 INIT_LIST_HEAD(&root_task_group.children); 7147 INIT_LIST_HEAD(&root_task_group.siblings); 7148 autogroup_init(&init_task); 7149 7150 #endif /* CONFIG_CGROUP_SCHED */ 7151 7152 for_each_possible_cpu(i) { 7153 struct rq *rq; 7154 7155 rq = cpu_rq(i); 7156 raw_spin_lock_init(&rq->lock); 7157 rq->nr_running = 0; 7158 rq->calc_load_active = 0; 7159 rq->calc_load_update = jiffies + LOAD_FREQ; 7160 init_cfs_rq(&rq->cfs); 7161 init_rt_rq(&rq->rt, rq); 7162 init_dl_rq(&rq->dl, rq); 7163 #ifdef CONFIG_FAIR_GROUP_SCHED 7164 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7165 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7166 /* 7167 * How much cpu bandwidth does root_task_group get? 7168 * 7169 * In case of task-groups formed thr' the cgroup filesystem, it 7170 * gets 100% of the cpu resources in the system. This overall 7171 * system cpu resource is divided among the tasks of 7172 * root_task_group and its child task-groups in a fair manner, 7173 * based on each entity's (task or task-group's) weight 7174 * (se->load.weight). 7175 * 7176 * In other words, if root_task_group has 10 tasks of weight 7177 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7178 * then A0's share of the cpu resource is: 7179 * 7180 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7181 * 7182 * We achieve this by letting root_task_group's tasks sit 7183 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7184 */ 7185 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7186 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7187 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7188 7189 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7190 #ifdef CONFIG_RT_GROUP_SCHED 7191 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7192 #endif 7193 7194 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7195 rq->cpu_load[j] = 0; 7196 7197 rq->last_load_update_tick = jiffies; 7198 7199 #ifdef CONFIG_SMP 7200 rq->sd = NULL; 7201 rq->rd = NULL; 7202 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 7203 rq->post_schedule = 0; 7204 rq->active_balance = 0; 7205 rq->next_balance = jiffies; 7206 rq->push_cpu = 0; 7207 rq->cpu = i; 7208 rq->online = 0; 7209 rq->idle_stamp = 0; 7210 rq->avg_idle = 2*sysctl_sched_migration_cost; 7211 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7212 7213 INIT_LIST_HEAD(&rq->cfs_tasks); 7214 7215 rq_attach_root(rq, &def_root_domain); 7216 #ifdef CONFIG_NO_HZ_COMMON 7217 rq->nohz_flags = 0; 7218 #endif 7219 #ifdef CONFIG_NO_HZ_FULL 7220 rq->last_sched_tick = 0; 7221 #endif 7222 #endif 7223 init_rq_hrtick(rq); 7224 atomic_set(&rq->nr_iowait, 0); 7225 } 7226 7227 set_load_weight(&init_task); 7228 7229 #ifdef CONFIG_PREEMPT_NOTIFIERS 7230 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7231 #endif 7232 7233 /* 7234 * The boot idle thread does lazy MMU switching as well: 7235 */ 7236 atomic_inc(&init_mm.mm_count); 7237 enter_lazy_tlb(&init_mm, current); 7238 7239 /* 7240 * During early bootup we pretend to be a normal task: 7241 */ 7242 current->sched_class = &fair_sched_class; 7243 7244 /* 7245 * Make us the idle thread. Technically, schedule() should not be 7246 * called from this thread, however somewhere below it might be, 7247 * but because we are the idle thread, we just pick up running again 7248 * when this runqueue becomes "idle". 7249 */ 7250 init_idle(current, smp_processor_id()); 7251 7252 calc_load_update = jiffies + LOAD_FREQ; 7253 7254 #ifdef CONFIG_SMP 7255 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7256 /* May be allocated at isolcpus cmdline parse time */ 7257 if (cpu_isolated_map == NULL) 7258 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7259 idle_thread_set_boot_cpu(); 7260 set_cpu_rq_start_time(); 7261 #endif 7262 init_sched_fair_class(); 7263 7264 scheduler_running = 1; 7265 } 7266 7267 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7268 static inline int preempt_count_equals(int preempt_offset) 7269 { 7270 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7271 7272 return (nested == preempt_offset); 7273 } 7274 7275 void __might_sleep(const char *file, int line, int preempt_offset) 7276 { 7277 /* 7278 * Blocking primitives will set (and therefore destroy) current->state, 7279 * since we will exit with TASK_RUNNING make sure we enter with it, 7280 * otherwise we will destroy state. 7281 */ 7282 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7283 "do not call blocking ops when !TASK_RUNNING; " 7284 "state=%lx set at [<%p>] %pS\n", 7285 current->state, 7286 (void *)current->task_state_change, 7287 (void *)current->task_state_change); 7288 7289 ___might_sleep(file, line, preempt_offset); 7290 } 7291 EXPORT_SYMBOL(__might_sleep); 7292 7293 void ___might_sleep(const char *file, int line, int preempt_offset) 7294 { 7295 static unsigned long prev_jiffy; /* ratelimiting */ 7296 7297 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7298 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7299 !is_idle_task(current)) || 7300 system_state != SYSTEM_RUNNING || oops_in_progress) 7301 return; 7302 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7303 return; 7304 prev_jiffy = jiffies; 7305 7306 printk(KERN_ERR 7307 "BUG: sleeping function called from invalid context at %s:%d\n", 7308 file, line); 7309 printk(KERN_ERR 7310 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7311 in_atomic(), irqs_disabled(), 7312 current->pid, current->comm); 7313 7314 if (task_stack_end_corrupted(current)) 7315 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7316 7317 debug_show_held_locks(current); 7318 if (irqs_disabled()) 7319 print_irqtrace_events(current); 7320 #ifdef CONFIG_DEBUG_PREEMPT 7321 if (!preempt_count_equals(preempt_offset)) { 7322 pr_err("Preemption disabled at:"); 7323 print_ip_sym(current->preempt_disable_ip); 7324 pr_cont("\n"); 7325 } 7326 #endif 7327 dump_stack(); 7328 } 7329 EXPORT_SYMBOL(___might_sleep); 7330 #endif 7331 7332 #ifdef CONFIG_MAGIC_SYSRQ 7333 static void normalize_task(struct rq *rq, struct task_struct *p) 7334 { 7335 const struct sched_class *prev_class = p->sched_class; 7336 struct sched_attr attr = { 7337 .sched_policy = SCHED_NORMAL, 7338 }; 7339 int old_prio = p->prio; 7340 int queued; 7341 7342 queued = task_on_rq_queued(p); 7343 if (queued) 7344 dequeue_task(rq, p, 0); 7345 __setscheduler(rq, p, &attr); 7346 if (queued) { 7347 enqueue_task(rq, p, 0); 7348 resched_curr(rq); 7349 } 7350 7351 check_class_changed(rq, p, prev_class, old_prio); 7352 } 7353 7354 void normalize_rt_tasks(void) 7355 { 7356 struct task_struct *g, *p; 7357 unsigned long flags; 7358 struct rq *rq; 7359 7360 read_lock(&tasklist_lock); 7361 for_each_process_thread(g, p) { 7362 /* 7363 * Only normalize user tasks: 7364 */ 7365 if (p->flags & PF_KTHREAD) 7366 continue; 7367 7368 p->se.exec_start = 0; 7369 #ifdef CONFIG_SCHEDSTATS 7370 p->se.statistics.wait_start = 0; 7371 p->se.statistics.sleep_start = 0; 7372 p->se.statistics.block_start = 0; 7373 #endif 7374 7375 if (!dl_task(p) && !rt_task(p)) { 7376 /* 7377 * Renice negative nice level userspace 7378 * tasks back to 0: 7379 */ 7380 if (task_nice(p) < 0) 7381 set_user_nice(p, 0); 7382 continue; 7383 } 7384 7385 rq = task_rq_lock(p, &flags); 7386 normalize_task(rq, p); 7387 task_rq_unlock(rq, p, &flags); 7388 } 7389 read_unlock(&tasklist_lock); 7390 } 7391 7392 #endif /* CONFIG_MAGIC_SYSRQ */ 7393 7394 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7395 /* 7396 * These functions are only useful for the IA64 MCA handling, or kdb. 7397 * 7398 * They can only be called when the whole system has been 7399 * stopped - every CPU needs to be quiescent, and no scheduling 7400 * activity can take place. Using them for anything else would 7401 * be a serious bug, and as a result, they aren't even visible 7402 * under any other configuration. 7403 */ 7404 7405 /** 7406 * curr_task - return the current task for a given cpu. 7407 * @cpu: the processor in question. 7408 * 7409 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7410 * 7411 * Return: The current task for @cpu. 7412 */ 7413 struct task_struct *curr_task(int cpu) 7414 { 7415 return cpu_curr(cpu); 7416 } 7417 7418 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7419 7420 #ifdef CONFIG_IA64 7421 /** 7422 * set_curr_task - set the current task for a given cpu. 7423 * @cpu: the processor in question. 7424 * @p: the task pointer to set. 7425 * 7426 * Description: This function must only be used when non-maskable interrupts 7427 * are serviced on a separate stack. It allows the architecture to switch the 7428 * notion of the current task on a cpu in a non-blocking manner. This function 7429 * must be called with all CPU's synchronized, and interrupts disabled, the 7430 * and caller must save the original value of the current task (see 7431 * curr_task() above) and restore that value before reenabling interrupts and 7432 * re-starting the system. 7433 * 7434 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7435 */ 7436 void set_curr_task(int cpu, struct task_struct *p) 7437 { 7438 cpu_curr(cpu) = p; 7439 } 7440 7441 #endif 7442 7443 #ifdef CONFIG_CGROUP_SCHED 7444 /* task_group_lock serializes the addition/removal of task groups */ 7445 static DEFINE_SPINLOCK(task_group_lock); 7446 7447 static void free_sched_group(struct task_group *tg) 7448 { 7449 free_fair_sched_group(tg); 7450 free_rt_sched_group(tg); 7451 autogroup_free(tg); 7452 kfree(tg); 7453 } 7454 7455 /* allocate runqueue etc for a new task group */ 7456 struct task_group *sched_create_group(struct task_group *parent) 7457 { 7458 struct task_group *tg; 7459 7460 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7461 if (!tg) 7462 return ERR_PTR(-ENOMEM); 7463 7464 if (!alloc_fair_sched_group(tg, parent)) 7465 goto err; 7466 7467 if (!alloc_rt_sched_group(tg, parent)) 7468 goto err; 7469 7470 return tg; 7471 7472 err: 7473 free_sched_group(tg); 7474 return ERR_PTR(-ENOMEM); 7475 } 7476 7477 void sched_online_group(struct task_group *tg, struct task_group *parent) 7478 { 7479 unsigned long flags; 7480 7481 spin_lock_irqsave(&task_group_lock, flags); 7482 list_add_rcu(&tg->list, &task_groups); 7483 7484 WARN_ON(!parent); /* root should already exist */ 7485 7486 tg->parent = parent; 7487 INIT_LIST_HEAD(&tg->children); 7488 list_add_rcu(&tg->siblings, &parent->children); 7489 spin_unlock_irqrestore(&task_group_lock, flags); 7490 } 7491 7492 /* rcu callback to free various structures associated with a task group */ 7493 static void free_sched_group_rcu(struct rcu_head *rhp) 7494 { 7495 /* now it should be safe to free those cfs_rqs */ 7496 free_sched_group(container_of(rhp, struct task_group, rcu)); 7497 } 7498 7499 /* Destroy runqueue etc associated with a task group */ 7500 void sched_destroy_group(struct task_group *tg) 7501 { 7502 /* wait for possible concurrent references to cfs_rqs complete */ 7503 call_rcu(&tg->rcu, free_sched_group_rcu); 7504 } 7505 7506 void sched_offline_group(struct task_group *tg) 7507 { 7508 unsigned long flags; 7509 int i; 7510 7511 /* end participation in shares distribution */ 7512 for_each_possible_cpu(i) 7513 unregister_fair_sched_group(tg, i); 7514 7515 spin_lock_irqsave(&task_group_lock, flags); 7516 list_del_rcu(&tg->list); 7517 list_del_rcu(&tg->siblings); 7518 spin_unlock_irqrestore(&task_group_lock, flags); 7519 } 7520 7521 /* change task's runqueue when it moves between groups. 7522 * The caller of this function should have put the task in its new group 7523 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7524 * reflect its new group. 7525 */ 7526 void sched_move_task(struct task_struct *tsk) 7527 { 7528 struct task_group *tg; 7529 int queued, running; 7530 unsigned long flags; 7531 struct rq *rq; 7532 7533 rq = task_rq_lock(tsk, &flags); 7534 7535 running = task_current(rq, tsk); 7536 queued = task_on_rq_queued(tsk); 7537 7538 if (queued) 7539 dequeue_task(rq, tsk, 0); 7540 if (unlikely(running)) 7541 put_prev_task(rq, tsk); 7542 7543 /* 7544 * All callers are synchronized by task_rq_lock(); we do not use RCU 7545 * which is pointless here. Thus, we pass "true" to task_css_check() 7546 * to prevent lockdep warnings. 7547 */ 7548 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7549 struct task_group, css); 7550 tg = autogroup_task_group(tsk, tg); 7551 tsk->sched_task_group = tg; 7552 7553 #ifdef CONFIG_FAIR_GROUP_SCHED 7554 if (tsk->sched_class->task_move_group) 7555 tsk->sched_class->task_move_group(tsk, queued); 7556 else 7557 #endif 7558 set_task_rq(tsk, task_cpu(tsk)); 7559 7560 if (unlikely(running)) 7561 tsk->sched_class->set_curr_task(rq); 7562 if (queued) 7563 enqueue_task(rq, tsk, 0); 7564 7565 task_rq_unlock(rq, tsk, &flags); 7566 } 7567 #endif /* CONFIG_CGROUP_SCHED */ 7568 7569 #ifdef CONFIG_RT_GROUP_SCHED 7570 /* 7571 * Ensure that the real time constraints are schedulable. 7572 */ 7573 static DEFINE_MUTEX(rt_constraints_mutex); 7574 7575 /* Must be called with tasklist_lock held */ 7576 static inline int tg_has_rt_tasks(struct task_group *tg) 7577 { 7578 struct task_struct *g, *p; 7579 7580 /* 7581 * Autogroups do not have RT tasks; see autogroup_create(). 7582 */ 7583 if (task_group_is_autogroup(tg)) 7584 return 0; 7585 7586 for_each_process_thread(g, p) { 7587 if (rt_task(p) && task_group(p) == tg) 7588 return 1; 7589 } 7590 7591 return 0; 7592 } 7593 7594 struct rt_schedulable_data { 7595 struct task_group *tg; 7596 u64 rt_period; 7597 u64 rt_runtime; 7598 }; 7599 7600 static int tg_rt_schedulable(struct task_group *tg, void *data) 7601 { 7602 struct rt_schedulable_data *d = data; 7603 struct task_group *child; 7604 unsigned long total, sum = 0; 7605 u64 period, runtime; 7606 7607 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7608 runtime = tg->rt_bandwidth.rt_runtime; 7609 7610 if (tg == d->tg) { 7611 period = d->rt_period; 7612 runtime = d->rt_runtime; 7613 } 7614 7615 /* 7616 * Cannot have more runtime than the period. 7617 */ 7618 if (runtime > period && runtime != RUNTIME_INF) 7619 return -EINVAL; 7620 7621 /* 7622 * Ensure we don't starve existing RT tasks. 7623 */ 7624 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7625 return -EBUSY; 7626 7627 total = to_ratio(period, runtime); 7628 7629 /* 7630 * Nobody can have more than the global setting allows. 7631 */ 7632 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7633 return -EINVAL; 7634 7635 /* 7636 * The sum of our children's runtime should not exceed our own. 7637 */ 7638 list_for_each_entry_rcu(child, &tg->children, siblings) { 7639 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7640 runtime = child->rt_bandwidth.rt_runtime; 7641 7642 if (child == d->tg) { 7643 period = d->rt_period; 7644 runtime = d->rt_runtime; 7645 } 7646 7647 sum += to_ratio(period, runtime); 7648 } 7649 7650 if (sum > total) 7651 return -EINVAL; 7652 7653 return 0; 7654 } 7655 7656 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7657 { 7658 int ret; 7659 7660 struct rt_schedulable_data data = { 7661 .tg = tg, 7662 .rt_period = period, 7663 .rt_runtime = runtime, 7664 }; 7665 7666 rcu_read_lock(); 7667 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7668 rcu_read_unlock(); 7669 7670 return ret; 7671 } 7672 7673 static int tg_set_rt_bandwidth(struct task_group *tg, 7674 u64 rt_period, u64 rt_runtime) 7675 { 7676 int i, err = 0; 7677 7678 /* 7679 * Disallowing the root group RT runtime is BAD, it would disallow the 7680 * kernel creating (and or operating) RT threads. 7681 */ 7682 if (tg == &root_task_group && rt_runtime == 0) 7683 return -EINVAL; 7684 7685 /* No period doesn't make any sense. */ 7686 if (rt_period == 0) 7687 return -EINVAL; 7688 7689 mutex_lock(&rt_constraints_mutex); 7690 read_lock(&tasklist_lock); 7691 err = __rt_schedulable(tg, rt_period, rt_runtime); 7692 if (err) 7693 goto unlock; 7694 7695 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7696 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7697 tg->rt_bandwidth.rt_runtime = rt_runtime; 7698 7699 for_each_possible_cpu(i) { 7700 struct rt_rq *rt_rq = tg->rt_rq[i]; 7701 7702 raw_spin_lock(&rt_rq->rt_runtime_lock); 7703 rt_rq->rt_runtime = rt_runtime; 7704 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7705 } 7706 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7707 unlock: 7708 read_unlock(&tasklist_lock); 7709 mutex_unlock(&rt_constraints_mutex); 7710 7711 return err; 7712 } 7713 7714 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7715 { 7716 u64 rt_runtime, rt_period; 7717 7718 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7719 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7720 if (rt_runtime_us < 0) 7721 rt_runtime = RUNTIME_INF; 7722 7723 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7724 } 7725 7726 static long sched_group_rt_runtime(struct task_group *tg) 7727 { 7728 u64 rt_runtime_us; 7729 7730 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7731 return -1; 7732 7733 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7734 do_div(rt_runtime_us, NSEC_PER_USEC); 7735 return rt_runtime_us; 7736 } 7737 7738 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7739 { 7740 u64 rt_runtime, rt_period; 7741 7742 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7743 rt_runtime = tg->rt_bandwidth.rt_runtime; 7744 7745 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7746 } 7747 7748 static long sched_group_rt_period(struct task_group *tg) 7749 { 7750 u64 rt_period_us; 7751 7752 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7753 do_div(rt_period_us, NSEC_PER_USEC); 7754 return rt_period_us; 7755 } 7756 #endif /* CONFIG_RT_GROUP_SCHED */ 7757 7758 #ifdef CONFIG_RT_GROUP_SCHED 7759 static int sched_rt_global_constraints(void) 7760 { 7761 int ret = 0; 7762 7763 mutex_lock(&rt_constraints_mutex); 7764 read_lock(&tasklist_lock); 7765 ret = __rt_schedulable(NULL, 0, 0); 7766 read_unlock(&tasklist_lock); 7767 mutex_unlock(&rt_constraints_mutex); 7768 7769 return ret; 7770 } 7771 7772 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7773 { 7774 /* Don't accept realtime tasks when there is no way for them to run */ 7775 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7776 return 0; 7777 7778 return 1; 7779 } 7780 7781 #else /* !CONFIG_RT_GROUP_SCHED */ 7782 static int sched_rt_global_constraints(void) 7783 { 7784 unsigned long flags; 7785 int i, ret = 0; 7786 7787 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7788 for_each_possible_cpu(i) { 7789 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7790 7791 raw_spin_lock(&rt_rq->rt_runtime_lock); 7792 rt_rq->rt_runtime = global_rt_runtime(); 7793 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7794 } 7795 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7796 7797 return ret; 7798 } 7799 #endif /* CONFIG_RT_GROUP_SCHED */ 7800 7801 static int sched_dl_global_constraints(void) 7802 { 7803 u64 runtime = global_rt_runtime(); 7804 u64 period = global_rt_period(); 7805 u64 new_bw = to_ratio(period, runtime); 7806 struct dl_bw *dl_b; 7807 int cpu, ret = 0; 7808 unsigned long flags; 7809 7810 /* 7811 * Here we want to check the bandwidth not being set to some 7812 * value smaller than the currently allocated bandwidth in 7813 * any of the root_domains. 7814 * 7815 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7816 * cycling on root_domains... Discussion on different/better 7817 * solutions is welcome! 7818 */ 7819 for_each_possible_cpu(cpu) { 7820 rcu_read_lock_sched(); 7821 dl_b = dl_bw_of(cpu); 7822 7823 raw_spin_lock_irqsave(&dl_b->lock, flags); 7824 if (new_bw < dl_b->total_bw) 7825 ret = -EBUSY; 7826 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7827 7828 rcu_read_unlock_sched(); 7829 7830 if (ret) 7831 break; 7832 } 7833 7834 return ret; 7835 } 7836 7837 static void sched_dl_do_global(void) 7838 { 7839 u64 new_bw = -1; 7840 struct dl_bw *dl_b; 7841 int cpu; 7842 unsigned long flags; 7843 7844 def_dl_bandwidth.dl_period = global_rt_period(); 7845 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7846 7847 if (global_rt_runtime() != RUNTIME_INF) 7848 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7849 7850 /* 7851 * FIXME: As above... 7852 */ 7853 for_each_possible_cpu(cpu) { 7854 rcu_read_lock_sched(); 7855 dl_b = dl_bw_of(cpu); 7856 7857 raw_spin_lock_irqsave(&dl_b->lock, flags); 7858 dl_b->bw = new_bw; 7859 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7860 7861 rcu_read_unlock_sched(); 7862 } 7863 } 7864 7865 static int sched_rt_global_validate(void) 7866 { 7867 if (sysctl_sched_rt_period <= 0) 7868 return -EINVAL; 7869 7870 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7871 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7872 return -EINVAL; 7873 7874 return 0; 7875 } 7876 7877 static void sched_rt_do_global(void) 7878 { 7879 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7880 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7881 } 7882 7883 int sched_rt_handler(struct ctl_table *table, int write, 7884 void __user *buffer, size_t *lenp, 7885 loff_t *ppos) 7886 { 7887 int old_period, old_runtime; 7888 static DEFINE_MUTEX(mutex); 7889 int ret; 7890 7891 mutex_lock(&mutex); 7892 old_period = sysctl_sched_rt_period; 7893 old_runtime = sysctl_sched_rt_runtime; 7894 7895 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7896 7897 if (!ret && write) { 7898 ret = sched_rt_global_validate(); 7899 if (ret) 7900 goto undo; 7901 7902 ret = sched_rt_global_constraints(); 7903 if (ret) 7904 goto undo; 7905 7906 ret = sched_dl_global_constraints(); 7907 if (ret) 7908 goto undo; 7909 7910 sched_rt_do_global(); 7911 sched_dl_do_global(); 7912 } 7913 if (0) { 7914 undo: 7915 sysctl_sched_rt_period = old_period; 7916 sysctl_sched_rt_runtime = old_runtime; 7917 } 7918 mutex_unlock(&mutex); 7919 7920 return ret; 7921 } 7922 7923 int sched_rr_handler(struct ctl_table *table, int write, 7924 void __user *buffer, size_t *lenp, 7925 loff_t *ppos) 7926 { 7927 int ret; 7928 static DEFINE_MUTEX(mutex); 7929 7930 mutex_lock(&mutex); 7931 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7932 /* make sure that internally we keep jiffies */ 7933 /* also, writing zero resets timeslice to default */ 7934 if (!ret && write) { 7935 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7936 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7937 } 7938 mutex_unlock(&mutex); 7939 return ret; 7940 } 7941 7942 #ifdef CONFIG_CGROUP_SCHED 7943 7944 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7945 { 7946 return css ? container_of(css, struct task_group, css) : NULL; 7947 } 7948 7949 static struct cgroup_subsys_state * 7950 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7951 { 7952 struct task_group *parent = css_tg(parent_css); 7953 struct task_group *tg; 7954 7955 if (!parent) { 7956 /* This is early initialization for the top cgroup */ 7957 return &root_task_group.css; 7958 } 7959 7960 tg = sched_create_group(parent); 7961 if (IS_ERR(tg)) 7962 return ERR_PTR(-ENOMEM); 7963 7964 return &tg->css; 7965 } 7966 7967 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7968 { 7969 struct task_group *tg = css_tg(css); 7970 struct task_group *parent = css_tg(css->parent); 7971 7972 if (parent) 7973 sched_online_group(tg, parent); 7974 return 0; 7975 } 7976 7977 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7978 { 7979 struct task_group *tg = css_tg(css); 7980 7981 sched_destroy_group(tg); 7982 } 7983 7984 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7985 { 7986 struct task_group *tg = css_tg(css); 7987 7988 sched_offline_group(tg); 7989 } 7990 7991 static void cpu_cgroup_fork(struct task_struct *task) 7992 { 7993 sched_move_task(task); 7994 } 7995 7996 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7997 struct cgroup_taskset *tset) 7998 { 7999 struct task_struct *task; 8000 8001 cgroup_taskset_for_each(task, tset) { 8002 #ifdef CONFIG_RT_GROUP_SCHED 8003 if (!sched_rt_can_attach(css_tg(css), task)) 8004 return -EINVAL; 8005 #else 8006 /* We don't support RT-tasks being in separate groups */ 8007 if (task->sched_class != &fair_sched_class) 8008 return -EINVAL; 8009 #endif 8010 } 8011 return 0; 8012 } 8013 8014 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 8015 struct cgroup_taskset *tset) 8016 { 8017 struct task_struct *task; 8018 8019 cgroup_taskset_for_each(task, tset) 8020 sched_move_task(task); 8021 } 8022 8023 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 8024 struct cgroup_subsys_state *old_css, 8025 struct task_struct *task) 8026 { 8027 /* 8028 * cgroup_exit() is called in the copy_process() failure path. 8029 * Ignore this case since the task hasn't ran yet, this avoids 8030 * trying to poke a half freed task state from generic code. 8031 */ 8032 if (!(task->flags & PF_EXITING)) 8033 return; 8034 8035 sched_move_task(task); 8036 } 8037 8038 #ifdef CONFIG_FAIR_GROUP_SCHED 8039 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8040 struct cftype *cftype, u64 shareval) 8041 { 8042 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8043 } 8044 8045 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8046 struct cftype *cft) 8047 { 8048 struct task_group *tg = css_tg(css); 8049 8050 return (u64) scale_load_down(tg->shares); 8051 } 8052 8053 #ifdef CONFIG_CFS_BANDWIDTH 8054 static DEFINE_MUTEX(cfs_constraints_mutex); 8055 8056 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8057 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8058 8059 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8060 8061 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8062 { 8063 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8064 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8065 8066 if (tg == &root_task_group) 8067 return -EINVAL; 8068 8069 /* 8070 * Ensure we have at some amount of bandwidth every period. This is 8071 * to prevent reaching a state of large arrears when throttled via 8072 * entity_tick() resulting in prolonged exit starvation. 8073 */ 8074 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8075 return -EINVAL; 8076 8077 /* 8078 * Likewise, bound things on the otherside by preventing insane quota 8079 * periods. This also allows us to normalize in computing quota 8080 * feasibility. 8081 */ 8082 if (period > max_cfs_quota_period) 8083 return -EINVAL; 8084 8085 /* 8086 * Prevent race between setting of cfs_rq->runtime_enabled and 8087 * unthrottle_offline_cfs_rqs(). 8088 */ 8089 get_online_cpus(); 8090 mutex_lock(&cfs_constraints_mutex); 8091 ret = __cfs_schedulable(tg, period, quota); 8092 if (ret) 8093 goto out_unlock; 8094 8095 runtime_enabled = quota != RUNTIME_INF; 8096 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8097 /* 8098 * If we need to toggle cfs_bandwidth_used, off->on must occur 8099 * before making related changes, and on->off must occur afterwards 8100 */ 8101 if (runtime_enabled && !runtime_was_enabled) 8102 cfs_bandwidth_usage_inc(); 8103 raw_spin_lock_irq(&cfs_b->lock); 8104 cfs_b->period = ns_to_ktime(period); 8105 cfs_b->quota = quota; 8106 8107 __refill_cfs_bandwidth_runtime(cfs_b); 8108 /* restart the period timer (if active) to handle new period expiry */ 8109 if (runtime_enabled && cfs_b->timer_active) { 8110 /* force a reprogram */ 8111 __start_cfs_bandwidth(cfs_b, true); 8112 } 8113 raw_spin_unlock_irq(&cfs_b->lock); 8114 8115 for_each_online_cpu(i) { 8116 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8117 struct rq *rq = cfs_rq->rq; 8118 8119 raw_spin_lock_irq(&rq->lock); 8120 cfs_rq->runtime_enabled = runtime_enabled; 8121 cfs_rq->runtime_remaining = 0; 8122 8123 if (cfs_rq->throttled) 8124 unthrottle_cfs_rq(cfs_rq); 8125 raw_spin_unlock_irq(&rq->lock); 8126 } 8127 if (runtime_was_enabled && !runtime_enabled) 8128 cfs_bandwidth_usage_dec(); 8129 out_unlock: 8130 mutex_unlock(&cfs_constraints_mutex); 8131 put_online_cpus(); 8132 8133 return ret; 8134 } 8135 8136 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8137 { 8138 u64 quota, period; 8139 8140 period = ktime_to_ns(tg->cfs_bandwidth.period); 8141 if (cfs_quota_us < 0) 8142 quota = RUNTIME_INF; 8143 else 8144 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8145 8146 return tg_set_cfs_bandwidth(tg, period, quota); 8147 } 8148 8149 long tg_get_cfs_quota(struct task_group *tg) 8150 { 8151 u64 quota_us; 8152 8153 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8154 return -1; 8155 8156 quota_us = tg->cfs_bandwidth.quota; 8157 do_div(quota_us, NSEC_PER_USEC); 8158 8159 return quota_us; 8160 } 8161 8162 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8163 { 8164 u64 quota, period; 8165 8166 period = (u64)cfs_period_us * NSEC_PER_USEC; 8167 quota = tg->cfs_bandwidth.quota; 8168 8169 return tg_set_cfs_bandwidth(tg, period, quota); 8170 } 8171 8172 long tg_get_cfs_period(struct task_group *tg) 8173 { 8174 u64 cfs_period_us; 8175 8176 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8177 do_div(cfs_period_us, NSEC_PER_USEC); 8178 8179 return cfs_period_us; 8180 } 8181 8182 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8183 struct cftype *cft) 8184 { 8185 return tg_get_cfs_quota(css_tg(css)); 8186 } 8187 8188 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8189 struct cftype *cftype, s64 cfs_quota_us) 8190 { 8191 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8192 } 8193 8194 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8195 struct cftype *cft) 8196 { 8197 return tg_get_cfs_period(css_tg(css)); 8198 } 8199 8200 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8201 struct cftype *cftype, u64 cfs_period_us) 8202 { 8203 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8204 } 8205 8206 struct cfs_schedulable_data { 8207 struct task_group *tg; 8208 u64 period, quota; 8209 }; 8210 8211 /* 8212 * normalize group quota/period to be quota/max_period 8213 * note: units are usecs 8214 */ 8215 static u64 normalize_cfs_quota(struct task_group *tg, 8216 struct cfs_schedulable_data *d) 8217 { 8218 u64 quota, period; 8219 8220 if (tg == d->tg) { 8221 period = d->period; 8222 quota = d->quota; 8223 } else { 8224 period = tg_get_cfs_period(tg); 8225 quota = tg_get_cfs_quota(tg); 8226 } 8227 8228 /* note: these should typically be equivalent */ 8229 if (quota == RUNTIME_INF || quota == -1) 8230 return RUNTIME_INF; 8231 8232 return to_ratio(period, quota); 8233 } 8234 8235 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8236 { 8237 struct cfs_schedulable_data *d = data; 8238 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8239 s64 quota = 0, parent_quota = -1; 8240 8241 if (!tg->parent) { 8242 quota = RUNTIME_INF; 8243 } else { 8244 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8245 8246 quota = normalize_cfs_quota(tg, d); 8247 parent_quota = parent_b->hierarchical_quota; 8248 8249 /* 8250 * ensure max(child_quota) <= parent_quota, inherit when no 8251 * limit is set 8252 */ 8253 if (quota == RUNTIME_INF) 8254 quota = parent_quota; 8255 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8256 return -EINVAL; 8257 } 8258 cfs_b->hierarchical_quota = quota; 8259 8260 return 0; 8261 } 8262 8263 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8264 { 8265 int ret; 8266 struct cfs_schedulable_data data = { 8267 .tg = tg, 8268 .period = period, 8269 .quota = quota, 8270 }; 8271 8272 if (quota != RUNTIME_INF) { 8273 do_div(data.period, NSEC_PER_USEC); 8274 do_div(data.quota, NSEC_PER_USEC); 8275 } 8276 8277 rcu_read_lock(); 8278 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8279 rcu_read_unlock(); 8280 8281 return ret; 8282 } 8283 8284 static int cpu_stats_show(struct seq_file *sf, void *v) 8285 { 8286 struct task_group *tg = css_tg(seq_css(sf)); 8287 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8288 8289 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8290 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8291 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8292 8293 return 0; 8294 } 8295 #endif /* CONFIG_CFS_BANDWIDTH */ 8296 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8297 8298 #ifdef CONFIG_RT_GROUP_SCHED 8299 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8300 struct cftype *cft, s64 val) 8301 { 8302 return sched_group_set_rt_runtime(css_tg(css), val); 8303 } 8304 8305 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8306 struct cftype *cft) 8307 { 8308 return sched_group_rt_runtime(css_tg(css)); 8309 } 8310 8311 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8312 struct cftype *cftype, u64 rt_period_us) 8313 { 8314 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8315 } 8316 8317 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8318 struct cftype *cft) 8319 { 8320 return sched_group_rt_period(css_tg(css)); 8321 } 8322 #endif /* CONFIG_RT_GROUP_SCHED */ 8323 8324 static struct cftype cpu_files[] = { 8325 #ifdef CONFIG_FAIR_GROUP_SCHED 8326 { 8327 .name = "shares", 8328 .read_u64 = cpu_shares_read_u64, 8329 .write_u64 = cpu_shares_write_u64, 8330 }, 8331 #endif 8332 #ifdef CONFIG_CFS_BANDWIDTH 8333 { 8334 .name = "cfs_quota_us", 8335 .read_s64 = cpu_cfs_quota_read_s64, 8336 .write_s64 = cpu_cfs_quota_write_s64, 8337 }, 8338 { 8339 .name = "cfs_period_us", 8340 .read_u64 = cpu_cfs_period_read_u64, 8341 .write_u64 = cpu_cfs_period_write_u64, 8342 }, 8343 { 8344 .name = "stat", 8345 .seq_show = cpu_stats_show, 8346 }, 8347 #endif 8348 #ifdef CONFIG_RT_GROUP_SCHED 8349 { 8350 .name = "rt_runtime_us", 8351 .read_s64 = cpu_rt_runtime_read, 8352 .write_s64 = cpu_rt_runtime_write, 8353 }, 8354 { 8355 .name = "rt_period_us", 8356 .read_u64 = cpu_rt_period_read_uint, 8357 .write_u64 = cpu_rt_period_write_uint, 8358 }, 8359 #endif 8360 { } /* terminate */ 8361 }; 8362 8363 struct cgroup_subsys cpu_cgrp_subsys = { 8364 .css_alloc = cpu_cgroup_css_alloc, 8365 .css_free = cpu_cgroup_css_free, 8366 .css_online = cpu_cgroup_css_online, 8367 .css_offline = cpu_cgroup_css_offline, 8368 .fork = cpu_cgroup_fork, 8369 .can_attach = cpu_cgroup_can_attach, 8370 .attach = cpu_cgroup_attach, 8371 .exit = cpu_cgroup_exit, 8372 .legacy_cftypes = cpu_files, 8373 .early_init = 1, 8374 }; 8375 8376 #endif /* CONFIG_CGROUP_SCHED */ 8377 8378 void dump_cpu_task(int cpu) 8379 { 8380 pr_info("Task dump for CPU %d:\n", cpu); 8381 sched_show_task(cpu_curr(cpu)); 8382 } 8383