xref: /linux/kernel/sched/core.c (revision 7e611710acf966df1e14bcf4e067385e38e549a1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 #include <linux/livepatch_sched.h>
70 
71 #ifdef CONFIG_PREEMPT_DYNAMIC
72 # ifdef CONFIG_GENERIC_ENTRY
73 #  include <linux/entry-common.h>
74 # endif
75 #endif
76 
77 #include <uapi/linux/sched/types.h>
78 
79 #include <asm/irq_regs.h>
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <linux/sched/rseq_api.h>
85 #include <trace/events/sched.h>
86 #include <trace/events/ipi.h>
87 #undef CREATE_TRACE_POINTS
88 
89 #include "sched.h"
90 #include "stats.h"
91 
92 #include "autogroup.h"
93 #include "pelt.h"
94 #include "smp.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 
103 /*
104  * Export tracepoints that act as a bare tracehook (ie: have no trace event
105  * associated with them) to allow external modules to probe them.
106  */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119 
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121 
122 /*
123  * Debugging: various feature bits
124  *
125  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
126  * sysctl_sched_features, defined in sched.h, to allow constants propagation
127  * at compile time and compiler optimization based on features default.
128  */
129 #define SCHED_FEAT(name, enabled)	\
130 	(1UL << __SCHED_FEAT_##name) * enabled |
131 __read_mostly unsigned int sysctl_sched_features =
132 #include "features.h"
133 	0;
134 #undef SCHED_FEAT
135 
136 /*
137  * Print a warning if need_resched is set for the given duration (if
138  * LATENCY_WARN is enabled).
139  *
140  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
141  * per boot.
142  */
143 __read_mostly int sysctl_resched_latency_warn_ms = 100;
144 __read_mostly int sysctl_resched_latency_warn_once = 1;
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (p->dl_server)
165 		return -1; /* deadline */
166 
167 	if (rt_or_dl_prio(p->prio))
168 		return p->prio; /* [-1, 99] */
169 
170 	if (p->sched_class == &idle_sched_class)
171 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
172 
173 	if (task_on_scx(p))
174 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
175 
176 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
177 }
178 
179 /*
180  * l(a,b)
181  * le(a,b) := !l(b,a)
182  * g(a,b)  := l(b,a)
183  * ge(a,b) := !l(a,b)
184  */
185 
186 /* real prio, less is less */
187 static inline bool prio_less(const struct task_struct *a,
188 			     const struct task_struct *b, bool in_fi)
189 {
190 
191 	int pa = __task_prio(a), pb = __task_prio(b);
192 
193 	if (-pa < -pb)
194 		return true;
195 
196 	if (-pb < -pa)
197 		return false;
198 
199 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
200 		const struct sched_dl_entity *a_dl, *b_dl;
201 
202 		a_dl = &a->dl;
203 		/*
204 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
205 		 * __task_prio() can return -1 (for DL) even for those. In that
206 		 * case, get to the dl_server's DL entity.
207 		 */
208 		if (a->dl_server)
209 			a_dl = a->dl_server;
210 
211 		b_dl = &b->dl;
212 		if (b->dl_server)
213 			b_dl = b->dl_server;
214 
215 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
216 	}
217 
218 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
219 		return cfs_prio_less(a, b, in_fi);
220 
221 #ifdef CONFIG_SCHED_CLASS_EXT
222 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
223 		return scx_prio_less(a, b, in_fi);
224 #endif
225 
226 	return false;
227 }
228 
229 static inline bool __sched_core_less(const struct task_struct *a,
230 				     const struct task_struct *b)
231 {
232 	if (a->core_cookie < b->core_cookie)
233 		return true;
234 
235 	if (a->core_cookie > b->core_cookie)
236 		return false;
237 
238 	/* flip prio, so high prio is leftmost */
239 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
240 		return true;
241 
242 	return false;
243 }
244 
245 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
246 
247 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
248 {
249 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
250 }
251 
252 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
253 {
254 	const struct task_struct *p = __node_2_sc(node);
255 	unsigned long cookie = (unsigned long)key;
256 
257 	if (cookie < p->core_cookie)
258 		return -1;
259 
260 	if (cookie > p->core_cookie)
261 		return 1;
262 
263 	return 0;
264 }
265 
266 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
267 {
268 	if (p->se.sched_delayed)
269 		return;
270 
271 	rq->core->core_task_seq++;
272 
273 	if (!p->core_cookie)
274 		return;
275 
276 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
277 }
278 
279 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
280 {
281 	if (p->se.sched_delayed)
282 		return;
283 
284 	rq->core->core_task_seq++;
285 
286 	if (sched_core_enqueued(p)) {
287 		rb_erase(&p->core_node, &rq->core_tree);
288 		RB_CLEAR_NODE(&p->core_node);
289 	}
290 
291 	/*
292 	 * Migrating the last task off the cpu, with the cpu in forced idle
293 	 * state. Reschedule to create an accounting edge for forced idle,
294 	 * and re-examine whether the core is still in forced idle state.
295 	 */
296 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
297 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
298 		resched_curr(rq);
299 }
300 
301 static int sched_task_is_throttled(struct task_struct *p, int cpu)
302 {
303 	if (p->sched_class->task_is_throttled)
304 		return p->sched_class->task_is_throttled(p, cpu);
305 
306 	return 0;
307 }
308 
309 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
310 {
311 	struct rb_node *node = &p->core_node;
312 	int cpu = task_cpu(p);
313 
314 	do {
315 		node = rb_next(node);
316 		if (!node)
317 			return NULL;
318 
319 		p = __node_2_sc(node);
320 		if (p->core_cookie != cookie)
321 			return NULL;
322 
323 	} while (sched_task_is_throttled(p, cpu));
324 
325 	return p;
326 }
327 
328 /*
329  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
330  * If no suitable task is found, NULL will be returned.
331  */
332 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
333 {
334 	struct task_struct *p;
335 	struct rb_node *node;
336 
337 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
338 	if (!node)
339 		return NULL;
340 
341 	p = __node_2_sc(node);
342 	if (!sched_task_is_throttled(p, rq->cpu))
343 		return p;
344 
345 	return sched_core_next(p, cookie);
346 }
347 
348 /*
349  * Magic required such that:
350  *
351  *	raw_spin_rq_lock(rq);
352  *	...
353  *	raw_spin_rq_unlock(rq);
354  *
355  * ends up locking and unlocking the _same_ lock, and all CPUs
356  * always agree on what rq has what lock.
357  *
358  * XXX entirely possible to selectively enable cores, don't bother for now.
359  */
360 
361 static DEFINE_MUTEX(sched_core_mutex);
362 static atomic_t sched_core_count;
363 static struct cpumask sched_core_mask;
364 
365 static void sched_core_lock(int cpu, unsigned long *flags)
366 {
367 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
368 	int t, i = 0;
369 
370 	local_irq_save(*flags);
371 	for_each_cpu(t, smt_mask)
372 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
373 }
374 
375 static void sched_core_unlock(int cpu, unsigned long *flags)
376 {
377 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
378 	int t;
379 
380 	for_each_cpu(t, smt_mask)
381 		raw_spin_unlock(&cpu_rq(t)->__lock);
382 	local_irq_restore(*flags);
383 }
384 
385 static void __sched_core_flip(bool enabled)
386 {
387 	unsigned long flags;
388 	int cpu, t;
389 
390 	cpus_read_lock();
391 
392 	/*
393 	 * Toggle the online cores, one by one.
394 	 */
395 	cpumask_copy(&sched_core_mask, cpu_online_mask);
396 	for_each_cpu(cpu, &sched_core_mask) {
397 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
398 
399 		sched_core_lock(cpu, &flags);
400 
401 		for_each_cpu(t, smt_mask)
402 			cpu_rq(t)->core_enabled = enabled;
403 
404 		cpu_rq(cpu)->core->core_forceidle_start = 0;
405 
406 		sched_core_unlock(cpu, &flags);
407 
408 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
409 	}
410 
411 	/*
412 	 * Toggle the offline CPUs.
413 	 */
414 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
415 		cpu_rq(cpu)->core_enabled = enabled;
416 
417 	cpus_read_unlock();
418 }
419 
420 static void sched_core_assert_empty(void)
421 {
422 	int cpu;
423 
424 	for_each_possible_cpu(cpu)
425 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
426 }
427 
428 static void __sched_core_enable(void)
429 {
430 	static_branch_enable(&__sched_core_enabled);
431 	/*
432 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
433 	 * and future ones will observe !sched_core_disabled().
434 	 */
435 	synchronize_rcu();
436 	__sched_core_flip(true);
437 	sched_core_assert_empty();
438 }
439 
440 static void __sched_core_disable(void)
441 {
442 	sched_core_assert_empty();
443 	__sched_core_flip(false);
444 	static_branch_disable(&__sched_core_enabled);
445 }
446 
447 void sched_core_get(void)
448 {
449 	if (atomic_inc_not_zero(&sched_core_count))
450 		return;
451 
452 	mutex_lock(&sched_core_mutex);
453 	if (!atomic_read(&sched_core_count))
454 		__sched_core_enable();
455 
456 	smp_mb__before_atomic();
457 	atomic_inc(&sched_core_count);
458 	mutex_unlock(&sched_core_mutex);
459 }
460 
461 static void __sched_core_put(struct work_struct *work)
462 {
463 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
464 		__sched_core_disable();
465 		mutex_unlock(&sched_core_mutex);
466 	}
467 }
468 
469 void sched_core_put(void)
470 {
471 	static DECLARE_WORK(_work, __sched_core_put);
472 
473 	/*
474 	 * "There can be only one"
475 	 *
476 	 * Either this is the last one, or we don't actually need to do any
477 	 * 'work'. If it is the last *again*, we rely on
478 	 * WORK_STRUCT_PENDING_BIT.
479 	 */
480 	if (!atomic_add_unless(&sched_core_count, -1, 1))
481 		schedule_work(&_work);
482 }
483 
484 #else /* !CONFIG_SCHED_CORE: */
485 
486 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
487 static inline void
488 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
489 
490 #endif /* !CONFIG_SCHED_CORE */
491 
492 /* need a wrapper since we may need to trace from modules */
493 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp);
494 
495 /* Call via the helper macro trace_set_current_state. */
496 void __trace_set_current_state(int state_value)
497 {
498 	trace_sched_set_state_tp(current, state_value);
499 }
500 EXPORT_SYMBOL(__trace_set_current_state);
501 
502 /*
503  * Serialization rules:
504  *
505  * Lock order:
506  *
507  *   p->pi_lock
508  *     rq->lock
509  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
510  *
511  *  rq1->lock
512  *    rq2->lock  where: rq1 < rq2
513  *
514  * Regular state:
515  *
516  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
517  * local CPU's rq->lock, it optionally removes the task from the runqueue and
518  * always looks at the local rq data structures to find the most eligible task
519  * to run next.
520  *
521  * Task enqueue is also under rq->lock, possibly taken from another CPU.
522  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
523  * the local CPU to avoid bouncing the runqueue state around [ see
524  * ttwu_queue_wakelist() ]
525  *
526  * Task wakeup, specifically wakeups that involve migration, are horribly
527  * complicated to avoid having to take two rq->locks.
528  *
529  * Special state:
530  *
531  * System-calls and anything external will use task_rq_lock() which acquires
532  * both p->pi_lock and rq->lock. As a consequence the state they change is
533  * stable while holding either lock:
534  *
535  *  - sched_setaffinity()/
536  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
537  *  - set_user_nice():		p->se.load, p->*prio
538  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
539  *				p->se.load, p->rt_priority,
540  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
541  *  - sched_setnuma():		p->numa_preferred_nid
542  *  - sched_move_task():	p->sched_task_group
543  *  - uclamp_update_active()	p->uclamp*
544  *
545  * p->state <- TASK_*:
546  *
547  *   is changed locklessly using set_current_state(), __set_current_state() or
548  *   set_special_state(), see their respective comments, or by
549  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
550  *   concurrent self.
551  *
552  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
553  *
554  *   is set by activate_task() and cleared by deactivate_task(), under
555  *   rq->lock. Non-zero indicates the task is runnable, the special
556  *   ON_RQ_MIGRATING state is used for migration without holding both
557  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
558  *
559  *   Additionally it is possible to be ->on_rq but still be considered not
560  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
561  *   but will be dequeued as soon as they get picked again. See the
562  *   task_is_runnable() helper.
563  *
564  * p->on_cpu <- { 0, 1 }:
565  *
566  *   is set by prepare_task() and cleared by finish_task() such that it will be
567  *   set before p is scheduled-in and cleared after p is scheduled-out, both
568  *   under rq->lock. Non-zero indicates the task is running on its CPU.
569  *
570  *   [ The astute reader will observe that it is possible for two tasks on one
571  *     CPU to have ->on_cpu = 1 at the same time. ]
572  *
573  * task_cpu(p): is changed by set_task_cpu(), the rules are:
574  *
575  *  - Don't call set_task_cpu() on a blocked task:
576  *
577  *    We don't care what CPU we're not running on, this simplifies hotplug,
578  *    the CPU assignment of blocked tasks isn't required to be valid.
579  *
580  *  - for try_to_wake_up(), called under p->pi_lock:
581  *
582  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
583  *
584  *  - for migration called under rq->lock:
585  *    [ see task_on_rq_migrating() in task_rq_lock() ]
586  *
587  *    o move_queued_task()
588  *    o detach_task()
589  *
590  *  - for migration called under double_rq_lock():
591  *
592  *    o __migrate_swap_task()
593  *    o push_rt_task() / pull_rt_task()
594  *    o push_dl_task() / pull_dl_task()
595  *    o dl_task_offline_migration()
596  *
597  */
598 
599 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
600 {
601 	raw_spinlock_t *lock;
602 
603 	/* Matches synchronize_rcu() in __sched_core_enable() */
604 	preempt_disable();
605 	if (sched_core_disabled()) {
606 		raw_spin_lock_nested(&rq->__lock, subclass);
607 		/* preempt_count *MUST* be > 1 */
608 		preempt_enable_no_resched();
609 		return;
610 	}
611 
612 	for (;;) {
613 		lock = __rq_lockp(rq);
614 		raw_spin_lock_nested(lock, subclass);
615 		if (likely(lock == __rq_lockp(rq))) {
616 			/* preempt_count *MUST* be > 1 */
617 			preempt_enable_no_resched();
618 			return;
619 		}
620 		raw_spin_unlock(lock);
621 	}
622 }
623 
624 bool raw_spin_rq_trylock(struct rq *rq)
625 {
626 	raw_spinlock_t *lock;
627 	bool ret;
628 
629 	/* Matches synchronize_rcu() in __sched_core_enable() */
630 	preempt_disable();
631 	if (sched_core_disabled()) {
632 		ret = raw_spin_trylock(&rq->__lock);
633 		preempt_enable();
634 		return ret;
635 	}
636 
637 	for (;;) {
638 		lock = __rq_lockp(rq);
639 		ret = raw_spin_trylock(lock);
640 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
641 			preempt_enable();
642 			return ret;
643 		}
644 		raw_spin_unlock(lock);
645 	}
646 }
647 
648 void raw_spin_rq_unlock(struct rq *rq)
649 {
650 	raw_spin_unlock(rq_lockp(rq));
651 }
652 
653 /*
654  * double_rq_lock - safely lock two runqueues
655  */
656 void double_rq_lock(struct rq *rq1, struct rq *rq2)
657 {
658 	lockdep_assert_irqs_disabled();
659 
660 	if (rq_order_less(rq2, rq1))
661 		swap(rq1, rq2);
662 
663 	raw_spin_rq_lock(rq1);
664 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
665 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
666 
667 	double_rq_clock_clear_update(rq1, rq2);
668 }
669 
670 /*
671  * __task_rq_lock - lock the rq @p resides on.
672  */
673 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
674 	__acquires(rq->lock)
675 {
676 	struct rq *rq;
677 
678 	lockdep_assert_held(&p->pi_lock);
679 
680 	for (;;) {
681 		rq = task_rq(p);
682 		raw_spin_rq_lock(rq);
683 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
684 			rq_pin_lock(rq, rf);
685 			return rq;
686 		}
687 		raw_spin_rq_unlock(rq);
688 
689 		while (unlikely(task_on_rq_migrating(p)))
690 			cpu_relax();
691 	}
692 }
693 
694 /*
695  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
696  */
697 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
698 	__acquires(p->pi_lock)
699 	__acquires(rq->lock)
700 {
701 	struct rq *rq;
702 
703 	for (;;) {
704 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
705 		rq = task_rq(p);
706 		raw_spin_rq_lock(rq);
707 		/*
708 		 *	move_queued_task()		task_rq_lock()
709 		 *
710 		 *	ACQUIRE (rq->lock)
711 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
712 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
713 		 *	[S] ->cpu = new_cpu		[L] task_rq()
714 		 *					[L] ->on_rq
715 		 *	RELEASE (rq->lock)
716 		 *
717 		 * If we observe the old CPU in task_rq_lock(), the acquire of
718 		 * the old rq->lock will fully serialize against the stores.
719 		 *
720 		 * If we observe the new CPU in task_rq_lock(), the address
721 		 * dependency headed by '[L] rq = task_rq()' and the acquire
722 		 * will pair with the WMB to ensure we then also see migrating.
723 		 */
724 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
725 			rq_pin_lock(rq, rf);
726 			return rq;
727 		}
728 		raw_spin_rq_unlock(rq);
729 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
730 
731 		while (unlikely(task_on_rq_migrating(p)))
732 			cpu_relax();
733 	}
734 }
735 
736 /*
737  * RQ-clock updating methods:
738  */
739 
740 static void update_rq_clock_task(struct rq *rq, s64 delta)
741 {
742 /*
743  * In theory, the compile should just see 0 here, and optimize out the call
744  * to sched_rt_avg_update. But I don't trust it...
745  */
746 	s64 __maybe_unused steal = 0, irq_delta = 0;
747 
748 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
749 	if (irqtime_enabled()) {
750 		irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
751 
752 		/*
753 		 * Since irq_time is only updated on {soft,}irq_exit, we might run into
754 		 * this case when a previous update_rq_clock() happened inside a
755 		 * {soft,}IRQ region.
756 		 *
757 		 * When this happens, we stop ->clock_task and only update the
758 		 * prev_irq_time stamp to account for the part that fit, so that a next
759 		 * update will consume the rest. This ensures ->clock_task is
760 		 * monotonic.
761 		 *
762 		 * It does however cause some slight miss-attribution of {soft,}IRQ
763 		 * time, a more accurate solution would be to update the irq_time using
764 		 * the current rq->clock timestamp, except that would require using
765 		 * atomic ops.
766 		 */
767 		if (irq_delta > delta)
768 			irq_delta = delta;
769 
770 		rq->prev_irq_time += irq_delta;
771 		delta -= irq_delta;
772 		delayacct_irq(rq->curr, irq_delta);
773 	}
774 #endif
775 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
776 	if (static_key_false((&paravirt_steal_rq_enabled))) {
777 		u64 prev_steal;
778 
779 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
780 		steal -= rq->prev_steal_time_rq;
781 
782 		if (unlikely(steal > delta))
783 			steal = delta;
784 
785 		rq->prev_steal_time_rq = prev_steal;
786 		delta -= steal;
787 	}
788 #endif
789 
790 	rq->clock_task += delta;
791 
792 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
793 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
794 		update_irq_load_avg(rq, irq_delta + steal);
795 #endif
796 	update_rq_clock_pelt(rq, delta);
797 }
798 
799 void update_rq_clock(struct rq *rq)
800 {
801 	s64 delta;
802 	u64 clock;
803 
804 	lockdep_assert_rq_held(rq);
805 
806 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
807 		return;
808 
809 	if (sched_feat(WARN_DOUBLE_CLOCK))
810 		WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED);
811 	rq->clock_update_flags |= RQCF_UPDATED;
812 
813 	clock = sched_clock_cpu(cpu_of(rq));
814 	scx_rq_clock_update(rq, clock);
815 
816 	delta = clock - rq->clock;
817 	if (delta < 0)
818 		return;
819 	rq->clock += delta;
820 
821 	update_rq_clock_task(rq, delta);
822 }
823 
824 #ifdef CONFIG_SCHED_HRTICK
825 /*
826  * Use HR-timers to deliver accurate preemption points.
827  */
828 
829 static void hrtick_clear(struct rq *rq)
830 {
831 	if (hrtimer_active(&rq->hrtick_timer))
832 		hrtimer_cancel(&rq->hrtick_timer);
833 }
834 
835 /*
836  * High-resolution timer tick.
837  * Runs from hardirq context with interrupts disabled.
838  */
839 static enum hrtimer_restart hrtick(struct hrtimer *timer)
840 {
841 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
842 	struct rq_flags rf;
843 
844 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
845 
846 	rq_lock(rq, &rf);
847 	update_rq_clock(rq);
848 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
849 	rq_unlock(rq, &rf);
850 
851 	return HRTIMER_NORESTART;
852 }
853 
854 static void __hrtick_restart(struct rq *rq)
855 {
856 	struct hrtimer *timer = &rq->hrtick_timer;
857 	ktime_t time = rq->hrtick_time;
858 
859 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
860 }
861 
862 /*
863  * called from hardirq (IPI) context
864  */
865 static void __hrtick_start(void *arg)
866 {
867 	struct rq *rq = arg;
868 	struct rq_flags rf;
869 
870 	rq_lock(rq, &rf);
871 	__hrtick_restart(rq);
872 	rq_unlock(rq, &rf);
873 }
874 
875 /*
876  * Called to set the hrtick timer state.
877  *
878  * called with rq->lock held and IRQs disabled
879  */
880 void hrtick_start(struct rq *rq, u64 delay)
881 {
882 	struct hrtimer *timer = &rq->hrtick_timer;
883 	s64 delta;
884 
885 	/*
886 	 * Don't schedule slices shorter than 10000ns, that just
887 	 * doesn't make sense and can cause timer DoS.
888 	 */
889 	delta = max_t(s64, delay, 10000LL);
890 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
891 
892 	if (rq == this_rq())
893 		__hrtick_restart(rq);
894 	else
895 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
896 }
897 
898 static void hrtick_rq_init(struct rq *rq)
899 {
900 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
901 	hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
902 }
903 #else /* !CONFIG_SCHED_HRTICK: */
904 static inline void hrtick_clear(struct rq *rq)
905 {
906 }
907 
908 static inline void hrtick_rq_init(struct rq *rq)
909 {
910 }
911 #endif /* !CONFIG_SCHED_HRTICK */
912 
913 /*
914  * try_cmpxchg based fetch_or() macro so it works for different integer types:
915  */
916 #define fetch_or(ptr, mask)						\
917 	({								\
918 		typeof(ptr) _ptr = (ptr);				\
919 		typeof(mask) _mask = (mask);				\
920 		typeof(*_ptr) _val = *_ptr;				\
921 									\
922 		do {							\
923 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
924 	_val;								\
925 })
926 
927 #ifdef TIF_POLLING_NRFLAG
928 /*
929  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
930  * this avoids any races wrt polling state changes and thereby avoids
931  * spurious IPIs.
932  */
933 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
934 {
935 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
936 }
937 
938 /*
939  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
940  *
941  * If this returns true, then the idle task promises to call
942  * sched_ttwu_pending() and reschedule soon.
943  */
944 static bool set_nr_if_polling(struct task_struct *p)
945 {
946 	struct thread_info *ti = task_thread_info(p);
947 	typeof(ti->flags) val = READ_ONCE(ti->flags);
948 
949 	do {
950 		if (!(val & _TIF_POLLING_NRFLAG))
951 			return false;
952 		if (val & _TIF_NEED_RESCHED)
953 			return true;
954 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
955 
956 	return true;
957 }
958 
959 #else
960 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
961 {
962 	set_ti_thread_flag(ti, tif);
963 	return true;
964 }
965 
966 static inline bool set_nr_if_polling(struct task_struct *p)
967 {
968 	return false;
969 }
970 #endif
971 
972 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
973 {
974 	struct wake_q_node *node = &task->wake_q;
975 
976 	/*
977 	 * Atomically grab the task, if ->wake_q is !nil already it means
978 	 * it's already queued (either by us or someone else) and will get the
979 	 * wakeup due to that.
980 	 *
981 	 * In order to ensure that a pending wakeup will observe our pending
982 	 * state, even in the failed case, an explicit smp_mb() must be used.
983 	 */
984 	smp_mb__before_atomic();
985 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
986 		return false;
987 
988 	/*
989 	 * The head is context local, there can be no concurrency.
990 	 */
991 	*head->lastp = node;
992 	head->lastp = &node->next;
993 	return true;
994 }
995 
996 /**
997  * wake_q_add() - queue a wakeup for 'later' waking.
998  * @head: the wake_q_head to add @task to
999  * @task: the task to queue for 'later' wakeup
1000  *
1001  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1002  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1003  * instantly.
1004  *
1005  * This function must be used as-if it were wake_up_process(); IOW the task
1006  * must be ready to be woken at this location.
1007  */
1008 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1009 {
1010 	if (__wake_q_add(head, task))
1011 		get_task_struct(task);
1012 }
1013 
1014 /**
1015  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1016  * @head: the wake_q_head to add @task to
1017  * @task: the task to queue for 'later' wakeup
1018  *
1019  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1020  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1021  * instantly.
1022  *
1023  * This function must be used as-if it were wake_up_process(); IOW the task
1024  * must be ready to be woken at this location.
1025  *
1026  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1027  * that already hold reference to @task can call the 'safe' version and trust
1028  * wake_q to do the right thing depending whether or not the @task is already
1029  * queued for wakeup.
1030  */
1031 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1032 {
1033 	if (!__wake_q_add(head, task))
1034 		put_task_struct(task);
1035 }
1036 
1037 void wake_up_q(struct wake_q_head *head)
1038 {
1039 	struct wake_q_node *node = head->first;
1040 
1041 	while (node != WAKE_Q_TAIL) {
1042 		struct task_struct *task;
1043 
1044 		task = container_of(node, struct task_struct, wake_q);
1045 		node = node->next;
1046 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1047 		WRITE_ONCE(task->wake_q.next, NULL);
1048 		/* Task can safely be re-inserted now. */
1049 
1050 		/*
1051 		 * wake_up_process() executes a full barrier, which pairs with
1052 		 * the queueing in wake_q_add() so as not to miss wakeups.
1053 		 */
1054 		wake_up_process(task);
1055 		put_task_struct(task);
1056 	}
1057 }
1058 
1059 /*
1060  * resched_curr - mark rq's current task 'to be rescheduled now'.
1061  *
1062  * On UP this means the setting of the need_resched flag, on SMP it
1063  * might also involve a cross-CPU call to trigger the scheduler on
1064  * the target CPU.
1065  */
1066 static void __resched_curr(struct rq *rq, int tif)
1067 {
1068 	struct task_struct *curr = rq->curr;
1069 	struct thread_info *cti = task_thread_info(curr);
1070 	int cpu;
1071 
1072 	lockdep_assert_rq_held(rq);
1073 
1074 	/*
1075 	 * Always immediately preempt the idle task; no point in delaying doing
1076 	 * actual work.
1077 	 */
1078 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1079 		tif = TIF_NEED_RESCHED;
1080 
1081 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1082 		return;
1083 
1084 	cpu = cpu_of(rq);
1085 
1086 	if (cpu == smp_processor_id()) {
1087 		set_ti_thread_flag(cti, tif);
1088 		if (tif == TIF_NEED_RESCHED)
1089 			set_preempt_need_resched();
1090 		return;
1091 	}
1092 
1093 	if (set_nr_and_not_polling(cti, tif)) {
1094 		if (tif == TIF_NEED_RESCHED)
1095 			smp_send_reschedule(cpu);
1096 	} else {
1097 		trace_sched_wake_idle_without_ipi(cpu);
1098 	}
1099 }
1100 
1101 void resched_curr(struct rq *rq)
1102 {
1103 	__resched_curr(rq, TIF_NEED_RESCHED);
1104 }
1105 
1106 #ifdef CONFIG_PREEMPT_DYNAMIC
1107 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1108 static __always_inline bool dynamic_preempt_lazy(void)
1109 {
1110 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1111 }
1112 #else
1113 static __always_inline bool dynamic_preempt_lazy(void)
1114 {
1115 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1116 }
1117 #endif
1118 
1119 static __always_inline int get_lazy_tif_bit(void)
1120 {
1121 	if (dynamic_preempt_lazy())
1122 		return TIF_NEED_RESCHED_LAZY;
1123 
1124 	return TIF_NEED_RESCHED;
1125 }
1126 
1127 void resched_curr_lazy(struct rq *rq)
1128 {
1129 	__resched_curr(rq, get_lazy_tif_bit());
1130 }
1131 
1132 void resched_cpu(int cpu)
1133 {
1134 	struct rq *rq = cpu_rq(cpu);
1135 	unsigned long flags;
1136 
1137 	raw_spin_rq_lock_irqsave(rq, flags);
1138 	if (cpu_online(cpu) || cpu == smp_processor_id())
1139 		resched_curr(rq);
1140 	raw_spin_rq_unlock_irqrestore(rq, flags);
1141 }
1142 
1143 #ifdef CONFIG_NO_HZ_COMMON
1144 /*
1145  * In the semi idle case, use the nearest busy CPU for migrating timers
1146  * from an idle CPU.  This is good for power-savings.
1147  *
1148  * We don't do similar optimization for completely idle system, as
1149  * selecting an idle CPU will add more delays to the timers than intended
1150  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1151  */
1152 int get_nohz_timer_target(void)
1153 {
1154 	int i, cpu = smp_processor_id(), default_cpu = -1;
1155 	struct sched_domain *sd;
1156 	const struct cpumask *hk_mask;
1157 
1158 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1159 		if (!idle_cpu(cpu))
1160 			return cpu;
1161 		default_cpu = cpu;
1162 	}
1163 
1164 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1165 
1166 	guard(rcu)();
1167 
1168 	for_each_domain(cpu, sd) {
1169 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1170 			if (cpu == i)
1171 				continue;
1172 
1173 			if (!idle_cpu(i))
1174 				return i;
1175 		}
1176 	}
1177 
1178 	if (default_cpu == -1)
1179 		default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1180 
1181 	return default_cpu;
1182 }
1183 
1184 /*
1185  * When add_timer_on() enqueues a timer into the timer wheel of an
1186  * idle CPU then this timer might expire before the next timer event
1187  * which is scheduled to wake up that CPU. In case of a completely
1188  * idle system the next event might even be infinite time into the
1189  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1190  * leaves the inner idle loop so the newly added timer is taken into
1191  * account when the CPU goes back to idle and evaluates the timer
1192  * wheel for the next timer event.
1193  */
1194 static void wake_up_idle_cpu(int cpu)
1195 {
1196 	struct rq *rq = cpu_rq(cpu);
1197 
1198 	if (cpu == smp_processor_id())
1199 		return;
1200 
1201 	/*
1202 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1203 	 * part of the idle loop. This forces an exit from the idle loop
1204 	 * and a round trip to schedule(). Now this could be optimized
1205 	 * because a simple new idle loop iteration is enough to
1206 	 * re-evaluate the next tick. Provided some re-ordering of tick
1207 	 * nohz functions that would need to follow TIF_NR_POLLING
1208 	 * clearing:
1209 	 *
1210 	 * - On most architectures, a simple fetch_or on ti::flags with a
1211 	 *   "0" value would be enough to know if an IPI needs to be sent.
1212 	 *
1213 	 * - x86 needs to perform a last need_resched() check between
1214 	 *   monitor and mwait which doesn't take timers into account.
1215 	 *   There a dedicated TIF_TIMER flag would be required to
1216 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1217 	 *   before mwait().
1218 	 *
1219 	 * However, remote timer enqueue is not such a frequent event
1220 	 * and testing of the above solutions didn't appear to report
1221 	 * much benefits.
1222 	 */
1223 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1224 		smp_send_reschedule(cpu);
1225 	else
1226 		trace_sched_wake_idle_without_ipi(cpu);
1227 }
1228 
1229 static bool wake_up_full_nohz_cpu(int cpu)
1230 {
1231 	/*
1232 	 * We just need the target to call irq_exit() and re-evaluate
1233 	 * the next tick. The nohz full kick at least implies that.
1234 	 * If needed we can still optimize that later with an
1235 	 * empty IRQ.
1236 	 */
1237 	if (cpu_is_offline(cpu))
1238 		return true;  /* Don't try to wake offline CPUs. */
1239 	if (tick_nohz_full_cpu(cpu)) {
1240 		if (cpu != smp_processor_id() ||
1241 		    tick_nohz_tick_stopped())
1242 			tick_nohz_full_kick_cpu(cpu);
1243 		return true;
1244 	}
1245 
1246 	return false;
1247 }
1248 
1249 /*
1250  * Wake up the specified CPU.  If the CPU is going offline, it is the
1251  * caller's responsibility to deal with the lost wakeup, for example,
1252  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1253  */
1254 void wake_up_nohz_cpu(int cpu)
1255 {
1256 	if (!wake_up_full_nohz_cpu(cpu))
1257 		wake_up_idle_cpu(cpu);
1258 }
1259 
1260 static void nohz_csd_func(void *info)
1261 {
1262 	struct rq *rq = info;
1263 	int cpu = cpu_of(rq);
1264 	unsigned int flags;
1265 
1266 	/*
1267 	 * Release the rq::nohz_csd.
1268 	 */
1269 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1270 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1271 
1272 	rq->idle_balance = idle_cpu(cpu);
1273 	if (rq->idle_balance) {
1274 		rq->nohz_idle_balance = flags;
1275 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1276 	}
1277 }
1278 
1279 #endif /* CONFIG_NO_HZ_COMMON */
1280 
1281 #ifdef CONFIG_NO_HZ_FULL
1282 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1283 {
1284 	if (rq->nr_running != 1)
1285 		return false;
1286 
1287 	if (p->sched_class != &fair_sched_class)
1288 		return false;
1289 
1290 	if (!task_on_rq_queued(p))
1291 		return false;
1292 
1293 	return true;
1294 }
1295 
1296 bool sched_can_stop_tick(struct rq *rq)
1297 {
1298 	int fifo_nr_running;
1299 
1300 	/* Deadline tasks, even if single, need the tick */
1301 	if (rq->dl.dl_nr_running)
1302 		return false;
1303 
1304 	/*
1305 	 * If there are more than one RR tasks, we need the tick to affect the
1306 	 * actual RR behaviour.
1307 	 */
1308 	if (rq->rt.rr_nr_running) {
1309 		if (rq->rt.rr_nr_running == 1)
1310 			return true;
1311 		else
1312 			return false;
1313 	}
1314 
1315 	/*
1316 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1317 	 * forced preemption between FIFO tasks.
1318 	 */
1319 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1320 	if (fifo_nr_running)
1321 		return true;
1322 
1323 	/*
1324 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1325 	 * left. For CFS, if there's more than one we need the tick for
1326 	 * involuntary preemption. For SCX, ask.
1327 	 */
1328 	if (scx_enabled() && !scx_can_stop_tick(rq))
1329 		return false;
1330 
1331 	if (rq->cfs.h_nr_queued > 1)
1332 		return false;
1333 
1334 	/*
1335 	 * If there is one task and it has CFS runtime bandwidth constraints
1336 	 * and it's on the cpu now we don't want to stop the tick.
1337 	 * This check prevents clearing the bit if a newly enqueued task here is
1338 	 * dequeued by migrating while the constrained task continues to run.
1339 	 * E.g. going from 2->1 without going through pick_next_task().
1340 	 */
1341 	if (__need_bw_check(rq, rq->curr)) {
1342 		if (cfs_task_bw_constrained(rq->curr))
1343 			return false;
1344 	}
1345 
1346 	return true;
1347 }
1348 #endif /* CONFIG_NO_HZ_FULL */
1349 
1350 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED)
1351 /*
1352  * Iterate task_group tree rooted at *from, calling @down when first entering a
1353  * node and @up when leaving it for the final time.
1354  *
1355  * Caller must hold rcu_lock or sufficient equivalent.
1356  */
1357 int walk_tg_tree_from(struct task_group *from,
1358 			     tg_visitor down, tg_visitor up, void *data)
1359 {
1360 	struct task_group *parent, *child;
1361 	int ret;
1362 
1363 	parent = from;
1364 
1365 down:
1366 	ret = (*down)(parent, data);
1367 	if (ret)
1368 		goto out;
1369 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1370 		parent = child;
1371 		goto down;
1372 
1373 up:
1374 		continue;
1375 	}
1376 	ret = (*up)(parent, data);
1377 	if (ret || parent == from)
1378 		goto out;
1379 
1380 	child = parent;
1381 	parent = parent->parent;
1382 	if (parent)
1383 		goto up;
1384 out:
1385 	return ret;
1386 }
1387 
1388 int tg_nop(struct task_group *tg, void *data)
1389 {
1390 	return 0;
1391 }
1392 #endif
1393 
1394 void set_load_weight(struct task_struct *p, bool update_load)
1395 {
1396 	int prio = p->static_prio - MAX_RT_PRIO;
1397 	struct load_weight lw;
1398 
1399 	if (task_has_idle_policy(p)) {
1400 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1401 		lw.inv_weight = WMULT_IDLEPRIO;
1402 	} else {
1403 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1404 		lw.inv_weight = sched_prio_to_wmult[prio];
1405 	}
1406 
1407 	/*
1408 	 * SCHED_OTHER tasks have to update their load when changing their
1409 	 * weight
1410 	 */
1411 	if (update_load && p->sched_class->reweight_task)
1412 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1413 	else
1414 		p->se.load = lw;
1415 }
1416 
1417 #ifdef CONFIG_UCLAMP_TASK
1418 /*
1419  * Serializes updates of utilization clamp values
1420  *
1421  * The (slow-path) user-space triggers utilization clamp value updates which
1422  * can require updates on (fast-path) scheduler's data structures used to
1423  * support enqueue/dequeue operations.
1424  * While the per-CPU rq lock protects fast-path update operations, user-space
1425  * requests are serialized using a mutex to reduce the risk of conflicting
1426  * updates or API abuses.
1427  */
1428 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1429 
1430 /* Max allowed minimum utilization */
1431 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1432 
1433 /* Max allowed maximum utilization */
1434 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1435 
1436 /*
1437  * By default RT tasks run at the maximum performance point/capacity of the
1438  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1439  * SCHED_CAPACITY_SCALE.
1440  *
1441  * This knob allows admins to change the default behavior when uclamp is being
1442  * used. In battery powered devices, particularly, running at the maximum
1443  * capacity and frequency will increase energy consumption and shorten the
1444  * battery life.
1445  *
1446  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1447  *
1448  * This knob will not override the system default sched_util_clamp_min defined
1449  * above.
1450  */
1451 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1452 
1453 /* All clamps are required to be less or equal than these values */
1454 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1455 
1456 /*
1457  * This static key is used to reduce the uclamp overhead in the fast path. It
1458  * primarily disables the call to uclamp_rq_{inc, dec}() in
1459  * enqueue/dequeue_task().
1460  *
1461  * This allows users to continue to enable uclamp in their kernel config with
1462  * minimum uclamp overhead in the fast path.
1463  *
1464  * As soon as userspace modifies any of the uclamp knobs, the static key is
1465  * enabled, since we have an actual users that make use of uclamp
1466  * functionality.
1467  *
1468  * The knobs that would enable this static key are:
1469  *
1470  *   * A task modifying its uclamp value with sched_setattr().
1471  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1472  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1473  */
1474 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1475 
1476 static inline unsigned int
1477 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1478 		  unsigned int clamp_value)
1479 {
1480 	/*
1481 	 * Avoid blocked utilization pushing up the frequency when we go
1482 	 * idle (which drops the max-clamp) by retaining the last known
1483 	 * max-clamp.
1484 	 */
1485 	if (clamp_id == UCLAMP_MAX) {
1486 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1487 		return clamp_value;
1488 	}
1489 
1490 	return uclamp_none(UCLAMP_MIN);
1491 }
1492 
1493 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1494 				     unsigned int clamp_value)
1495 {
1496 	/* Reset max-clamp retention only on idle exit */
1497 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1498 		return;
1499 
1500 	uclamp_rq_set(rq, clamp_id, clamp_value);
1501 }
1502 
1503 static inline
1504 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1505 				   unsigned int clamp_value)
1506 {
1507 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1508 	int bucket_id = UCLAMP_BUCKETS - 1;
1509 
1510 	/*
1511 	 * Since both min and max clamps are max aggregated, find the
1512 	 * top most bucket with tasks in.
1513 	 */
1514 	for ( ; bucket_id >= 0; bucket_id--) {
1515 		if (!bucket[bucket_id].tasks)
1516 			continue;
1517 		return bucket[bucket_id].value;
1518 	}
1519 
1520 	/* No tasks -- default clamp values */
1521 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1522 }
1523 
1524 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1525 {
1526 	unsigned int default_util_min;
1527 	struct uclamp_se *uc_se;
1528 
1529 	lockdep_assert_held(&p->pi_lock);
1530 
1531 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1532 
1533 	/* Only sync if user didn't override the default */
1534 	if (uc_se->user_defined)
1535 		return;
1536 
1537 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1538 	uclamp_se_set(uc_se, default_util_min, false);
1539 }
1540 
1541 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1542 {
1543 	if (!rt_task(p))
1544 		return;
1545 
1546 	/* Protect updates to p->uclamp_* */
1547 	guard(task_rq_lock)(p);
1548 	__uclamp_update_util_min_rt_default(p);
1549 }
1550 
1551 static inline struct uclamp_se
1552 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1553 {
1554 	/* Copy by value as we could modify it */
1555 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1556 #ifdef CONFIG_UCLAMP_TASK_GROUP
1557 	unsigned int tg_min, tg_max, value;
1558 
1559 	/*
1560 	 * Tasks in autogroups or root task group will be
1561 	 * restricted by system defaults.
1562 	 */
1563 	if (task_group_is_autogroup(task_group(p)))
1564 		return uc_req;
1565 	if (task_group(p) == &root_task_group)
1566 		return uc_req;
1567 
1568 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1569 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1570 	value = uc_req.value;
1571 	value = clamp(value, tg_min, tg_max);
1572 	uclamp_se_set(&uc_req, value, false);
1573 #endif
1574 
1575 	return uc_req;
1576 }
1577 
1578 /*
1579  * The effective clamp bucket index of a task depends on, by increasing
1580  * priority:
1581  * - the task specific clamp value, when explicitly requested from userspace
1582  * - the task group effective clamp value, for tasks not either in the root
1583  *   group or in an autogroup
1584  * - the system default clamp value, defined by the sysadmin
1585  */
1586 static inline struct uclamp_se
1587 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1588 {
1589 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1590 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1591 
1592 	/* System default restrictions always apply */
1593 	if (unlikely(uc_req.value > uc_max.value))
1594 		return uc_max;
1595 
1596 	return uc_req;
1597 }
1598 
1599 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1600 {
1601 	struct uclamp_se uc_eff;
1602 
1603 	/* Task currently refcounted: use back-annotated (effective) value */
1604 	if (p->uclamp[clamp_id].active)
1605 		return (unsigned long)p->uclamp[clamp_id].value;
1606 
1607 	uc_eff = uclamp_eff_get(p, clamp_id);
1608 
1609 	return (unsigned long)uc_eff.value;
1610 }
1611 
1612 /*
1613  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1614  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1615  * updates the rq's clamp value if required.
1616  *
1617  * Tasks can have a task-specific value requested from user-space, track
1618  * within each bucket the maximum value for tasks refcounted in it.
1619  * This "local max aggregation" allows to track the exact "requested" value
1620  * for each bucket when all its RUNNABLE tasks require the same clamp.
1621  */
1622 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1623 				    enum uclamp_id clamp_id)
1624 {
1625 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1626 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1627 	struct uclamp_bucket *bucket;
1628 
1629 	lockdep_assert_rq_held(rq);
1630 
1631 	/* Update task effective clamp */
1632 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1633 
1634 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1635 	bucket->tasks++;
1636 	uc_se->active = true;
1637 
1638 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1639 
1640 	/*
1641 	 * Local max aggregation: rq buckets always track the max
1642 	 * "requested" clamp value of its RUNNABLE tasks.
1643 	 */
1644 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1645 		bucket->value = uc_se->value;
1646 
1647 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1648 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1649 }
1650 
1651 /*
1652  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1653  * is released. If this is the last task reference counting the rq's max
1654  * active clamp value, then the rq's clamp value is updated.
1655  *
1656  * Both refcounted tasks and rq's cached clamp values are expected to be
1657  * always valid. If it's detected they are not, as defensive programming,
1658  * enforce the expected state and warn.
1659  */
1660 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1661 				    enum uclamp_id clamp_id)
1662 {
1663 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1664 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1665 	struct uclamp_bucket *bucket;
1666 	unsigned int bkt_clamp;
1667 	unsigned int rq_clamp;
1668 
1669 	lockdep_assert_rq_held(rq);
1670 
1671 	/*
1672 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1673 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1674 	 *
1675 	 * In this case the uc_se->active flag should be false since no uclamp
1676 	 * accounting was performed at enqueue time and we can just return
1677 	 * here.
1678 	 *
1679 	 * Need to be careful of the following enqueue/dequeue ordering
1680 	 * problem too
1681 	 *
1682 	 *	enqueue(taskA)
1683 	 *	// sched_uclamp_used gets enabled
1684 	 *	enqueue(taskB)
1685 	 *	dequeue(taskA)
1686 	 *	// Must not decrement bucket->tasks here
1687 	 *	dequeue(taskB)
1688 	 *
1689 	 * where we could end up with stale data in uc_se and
1690 	 * bucket[uc_se->bucket_id].
1691 	 *
1692 	 * The following check here eliminates the possibility of such race.
1693 	 */
1694 	if (unlikely(!uc_se->active))
1695 		return;
1696 
1697 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1698 
1699 	WARN_ON_ONCE(!bucket->tasks);
1700 	if (likely(bucket->tasks))
1701 		bucket->tasks--;
1702 
1703 	uc_se->active = false;
1704 
1705 	/*
1706 	 * Keep "local max aggregation" simple and accept to (possibly)
1707 	 * overboost some RUNNABLE tasks in the same bucket.
1708 	 * The rq clamp bucket value is reset to its base value whenever
1709 	 * there are no more RUNNABLE tasks refcounting it.
1710 	 */
1711 	if (likely(bucket->tasks))
1712 		return;
1713 
1714 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1715 	/*
1716 	 * Defensive programming: this should never happen. If it happens,
1717 	 * e.g. due to future modification, warn and fix up the expected value.
1718 	 */
1719 	WARN_ON_ONCE(bucket->value > rq_clamp);
1720 	if (bucket->value >= rq_clamp) {
1721 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1722 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1723 	}
1724 }
1725 
1726 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags)
1727 {
1728 	enum uclamp_id clamp_id;
1729 
1730 	/*
1731 	 * Avoid any overhead until uclamp is actually used by the userspace.
1732 	 *
1733 	 * The condition is constructed such that a NOP is generated when
1734 	 * sched_uclamp_used is disabled.
1735 	 */
1736 	if (!uclamp_is_used())
1737 		return;
1738 
1739 	if (unlikely(!p->sched_class->uclamp_enabled))
1740 		return;
1741 
1742 	/* Only inc the delayed task which being woken up. */
1743 	if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED))
1744 		return;
1745 
1746 	for_each_clamp_id(clamp_id)
1747 		uclamp_rq_inc_id(rq, p, clamp_id);
1748 
1749 	/* Reset clamp idle holding when there is one RUNNABLE task */
1750 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1751 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1752 }
1753 
1754 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1755 {
1756 	enum uclamp_id clamp_id;
1757 
1758 	/*
1759 	 * Avoid any overhead until uclamp is actually used by the userspace.
1760 	 *
1761 	 * The condition is constructed such that a NOP is generated when
1762 	 * sched_uclamp_used is disabled.
1763 	 */
1764 	if (!uclamp_is_used())
1765 		return;
1766 
1767 	if (unlikely(!p->sched_class->uclamp_enabled))
1768 		return;
1769 
1770 	if (p->se.sched_delayed)
1771 		return;
1772 
1773 	for_each_clamp_id(clamp_id)
1774 		uclamp_rq_dec_id(rq, p, clamp_id);
1775 }
1776 
1777 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1778 				      enum uclamp_id clamp_id)
1779 {
1780 	if (!p->uclamp[clamp_id].active)
1781 		return;
1782 
1783 	uclamp_rq_dec_id(rq, p, clamp_id);
1784 	uclamp_rq_inc_id(rq, p, clamp_id);
1785 
1786 	/*
1787 	 * Make sure to clear the idle flag if we've transiently reached 0
1788 	 * active tasks on rq.
1789 	 */
1790 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1791 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1792 }
1793 
1794 static inline void
1795 uclamp_update_active(struct task_struct *p)
1796 {
1797 	enum uclamp_id clamp_id;
1798 	struct rq_flags rf;
1799 	struct rq *rq;
1800 
1801 	/*
1802 	 * Lock the task and the rq where the task is (or was) queued.
1803 	 *
1804 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1805 	 * price to pay to safely serialize util_{min,max} updates with
1806 	 * enqueues, dequeues and migration operations.
1807 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1808 	 */
1809 	rq = task_rq_lock(p, &rf);
1810 
1811 	/*
1812 	 * Setting the clamp bucket is serialized by task_rq_lock().
1813 	 * If the task is not yet RUNNABLE and its task_struct is not
1814 	 * affecting a valid clamp bucket, the next time it's enqueued,
1815 	 * it will already see the updated clamp bucket value.
1816 	 */
1817 	for_each_clamp_id(clamp_id)
1818 		uclamp_rq_reinc_id(rq, p, clamp_id);
1819 
1820 	task_rq_unlock(rq, p, &rf);
1821 }
1822 
1823 #ifdef CONFIG_UCLAMP_TASK_GROUP
1824 static inline void
1825 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1826 {
1827 	struct css_task_iter it;
1828 	struct task_struct *p;
1829 
1830 	css_task_iter_start(css, 0, &it);
1831 	while ((p = css_task_iter_next(&it)))
1832 		uclamp_update_active(p);
1833 	css_task_iter_end(&it);
1834 }
1835 
1836 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1837 #endif
1838 
1839 #ifdef CONFIG_SYSCTL
1840 #ifdef CONFIG_UCLAMP_TASK_GROUP
1841 static void uclamp_update_root_tg(void)
1842 {
1843 	struct task_group *tg = &root_task_group;
1844 
1845 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1846 		      sysctl_sched_uclamp_util_min, false);
1847 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1848 		      sysctl_sched_uclamp_util_max, false);
1849 
1850 	guard(rcu)();
1851 	cpu_util_update_eff(&root_task_group.css);
1852 }
1853 #else
1854 static void uclamp_update_root_tg(void) { }
1855 #endif
1856 
1857 static void uclamp_sync_util_min_rt_default(void)
1858 {
1859 	struct task_struct *g, *p;
1860 
1861 	/*
1862 	 * copy_process()			sysctl_uclamp
1863 	 *					  uclamp_min_rt = X;
1864 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1865 	 *   // link thread			  smp_mb__after_spinlock()
1866 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1867 	 *   sched_post_fork()			  for_each_process_thread()
1868 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1869 	 *
1870 	 * Ensures that either sched_post_fork() will observe the new
1871 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1872 	 * task.
1873 	 */
1874 	read_lock(&tasklist_lock);
1875 	smp_mb__after_spinlock();
1876 	read_unlock(&tasklist_lock);
1877 
1878 	guard(rcu)();
1879 	for_each_process_thread(g, p)
1880 		uclamp_update_util_min_rt_default(p);
1881 }
1882 
1883 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1884 				void *buffer, size_t *lenp, loff_t *ppos)
1885 {
1886 	bool update_root_tg = false;
1887 	int old_min, old_max, old_min_rt;
1888 	int result;
1889 
1890 	guard(mutex)(&uclamp_mutex);
1891 
1892 	old_min = sysctl_sched_uclamp_util_min;
1893 	old_max = sysctl_sched_uclamp_util_max;
1894 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1895 
1896 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1897 	if (result)
1898 		goto undo;
1899 	if (!write)
1900 		return 0;
1901 
1902 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1903 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1904 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1905 
1906 		result = -EINVAL;
1907 		goto undo;
1908 	}
1909 
1910 	if (old_min != sysctl_sched_uclamp_util_min) {
1911 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1912 			      sysctl_sched_uclamp_util_min, false);
1913 		update_root_tg = true;
1914 	}
1915 	if (old_max != sysctl_sched_uclamp_util_max) {
1916 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1917 			      sysctl_sched_uclamp_util_max, false);
1918 		update_root_tg = true;
1919 	}
1920 
1921 	if (update_root_tg) {
1922 		sched_uclamp_enable();
1923 		uclamp_update_root_tg();
1924 	}
1925 
1926 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1927 		sched_uclamp_enable();
1928 		uclamp_sync_util_min_rt_default();
1929 	}
1930 
1931 	/*
1932 	 * We update all RUNNABLE tasks only when task groups are in use.
1933 	 * Otherwise, keep it simple and do just a lazy update at each next
1934 	 * task enqueue time.
1935 	 */
1936 	return 0;
1937 
1938 undo:
1939 	sysctl_sched_uclamp_util_min = old_min;
1940 	sysctl_sched_uclamp_util_max = old_max;
1941 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1942 	return result;
1943 }
1944 #endif /* CONFIG_SYSCTL */
1945 
1946 static void uclamp_fork(struct task_struct *p)
1947 {
1948 	enum uclamp_id clamp_id;
1949 
1950 	/*
1951 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1952 	 * as the task is still at its early fork stages.
1953 	 */
1954 	for_each_clamp_id(clamp_id)
1955 		p->uclamp[clamp_id].active = false;
1956 
1957 	if (likely(!p->sched_reset_on_fork))
1958 		return;
1959 
1960 	for_each_clamp_id(clamp_id) {
1961 		uclamp_se_set(&p->uclamp_req[clamp_id],
1962 			      uclamp_none(clamp_id), false);
1963 	}
1964 }
1965 
1966 static void uclamp_post_fork(struct task_struct *p)
1967 {
1968 	uclamp_update_util_min_rt_default(p);
1969 }
1970 
1971 static void __init init_uclamp_rq(struct rq *rq)
1972 {
1973 	enum uclamp_id clamp_id;
1974 	struct uclamp_rq *uc_rq = rq->uclamp;
1975 
1976 	for_each_clamp_id(clamp_id) {
1977 		uc_rq[clamp_id] = (struct uclamp_rq) {
1978 			.value = uclamp_none(clamp_id)
1979 		};
1980 	}
1981 
1982 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1983 }
1984 
1985 static void __init init_uclamp(void)
1986 {
1987 	struct uclamp_se uc_max = {};
1988 	enum uclamp_id clamp_id;
1989 	int cpu;
1990 
1991 	for_each_possible_cpu(cpu)
1992 		init_uclamp_rq(cpu_rq(cpu));
1993 
1994 	for_each_clamp_id(clamp_id) {
1995 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1996 			      uclamp_none(clamp_id), false);
1997 	}
1998 
1999 	/* System defaults allow max clamp values for both indexes */
2000 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2001 	for_each_clamp_id(clamp_id) {
2002 		uclamp_default[clamp_id] = uc_max;
2003 #ifdef CONFIG_UCLAMP_TASK_GROUP
2004 		root_task_group.uclamp_req[clamp_id] = uc_max;
2005 		root_task_group.uclamp[clamp_id] = uc_max;
2006 #endif
2007 	}
2008 }
2009 
2010 #else /* !CONFIG_UCLAMP_TASK: */
2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { }
2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2013 static inline void uclamp_fork(struct task_struct *p) { }
2014 static inline void uclamp_post_fork(struct task_struct *p) { }
2015 static inline void init_uclamp(void) { }
2016 #endif /* !CONFIG_UCLAMP_TASK */
2017 
2018 bool sched_task_on_rq(struct task_struct *p)
2019 {
2020 	return task_on_rq_queued(p);
2021 }
2022 
2023 unsigned long get_wchan(struct task_struct *p)
2024 {
2025 	unsigned long ip = 0;
2026 	unsigned int state;
2027 
2028 	if (!p || p == current)
2029 		return 0;
2030 
2031 	/* Only get wchan if task is blocked and we can keep it that way. */
2032 	raw_spin_lock_irq(&p->pi_lock);
2033 	state = READ_ONCE(p->__state);
2034 	smp_rmb(); /* see try_to_wake_up() */
2035 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2036 		ip = __get_wchan(p);
2037 	raw_spin_unlock_irq(&p->pi_lock);
2038 
2039 	return ip;
2040 }
2041 
2042 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2043 {
2044 	if (!(flags & ENQUEUE_NOCLOCK))
2045 		update_rq_clock(rq);
2046 
2047 	/*
2048 	 * Can be before ->enqueue_task() because uclamp considers the
2049 	 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared
2050 	 * in ->enqueue_task().
2051 	 */
2052 	uclamp_rq_inc(rq, p, flags);
2053 
2054 	p->sched_class->enqueue_task(rq, p, flags);
2055 
2056 	psi_enqueue(p, flags);
2057 
2058 	if (!(flags & ENQUEUE_RESTORE))
2059 		sched_info_enqueue(rq, p);
2060 
2061 	if (sched_core_enabled(rq))
2062 		sched_core_enqueue(rq, p);
2063 }
2064 
2065 /*
2066  * Must only return false when DEQUEUE_SLEEP.
2067  */
2068 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2069 {
2070 	if (sched_core_enabled(rq))
2071 		sched_core_dequeue(rq, p, flags);
2072 
2073 	if (!(flags & DEQUEUE_NOCLOCK))
2074 		update_rq_clock(rq);
2075 
2076 	if (!(flags & DEQUEUE_SAVE))
2077 		sched_info_dequeue(rq, p);
2078 
2079 	psi_dequeue(p, flags);
2080 
2081 	/*
2082 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2083 	 * and mark the task ->sched_delayed.
2084 	 */
2085 	uclamp_rq_dec(rq, p);
2086 	return p->sched_class->dequeue_task(rq, p, flags);
2087 }
2088 
2089 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2090 {
2091 	if (task_on_rq_migrating(p))
2092 		flags |= ENQUEUE_MIGRATED;
2093 	if (flags & ENQUEUE_MIGRATED)
2094 		sched_mm_cid_migrate_to(rq, p);
2095 
2096 	enqueue_task(rq, p, flags);
2097 
2098 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2099 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2100 }
2101 
2102 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2103 {
2104 	WARN_ON_ONCE(flags & DEQUEUE_SLEEP);
2105 
2106 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2107 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2108 
2109 	/*
2110 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2111 	 * dequeue_task() and cleared *after* enqueue_task().
2112 	 */
2113 
2114 	dequeue_task(rq, p, flags);
2115 }
2116 
2117 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2118 {
2119 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2120 		__block_task(rq, p);
2121 }
2122 
2123 /**
2124  * task_curr - is this task currently executing on a CPU?
2125  * @p: the task in question.
2126  *
2127  * Return: 1 if the task is currently executing. 0 otherwise.
2128  */
2129 inline int task_curr(const struct task_struct *p)
2130 {
2131 	return cpu_curr(task_cpu(p)) == p;
2132 }
2133 
2134 /*
2135  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2136  * mess with locking.
2137  */
2138 void check_class_changing(struct rq *rq, struct task_struct *p,
2139 			  const struct sched_class *prev_class)
2140 {
2141 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2142 		p->sched_class->switching_to(rq, p);
2143 }
2144 
2145 /*
2146  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2147  * use the balance_callback list if you want balancing.
2148  *
2149  * this means any call to check_class_changed() must be followed by a call to
2150  * balance_callback().
2151  */
2152 void check_class_changed(struct rq *rq, struct task_struct *p,
2153 			 const struct sched_class *prev_class,
2154 			 int oldprio)
2155 {
2156 	if (prev_class != p->sched_class) {
2157 		if (prev_class->switched_from)
2158 			prev_class->switched_from(rq, p);
2159 
2160 		p->sched_class->switched_to(rq, p);
2161 	} else if (oldprio != p->prio || dl_task(p))
2162 		p->sched_class->prio_changed(rq, p, oldprio);
2163 }
2164 
2165 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2166 {
2167 	struct task_struct *donor = rq->donor;
2168 
2169 	if (p->sched_class == donor->sched_class)
2170 		donor->sched_class->wakeup_preempt(rq, p, flags);
2171 	else if (sched_class_above(p->sched_class, donor->sched_class))
2172 		resched_curr(rq);
2173 
2174 	/*
2175 	 * A queue event has occurred, and we're going to schedule.  In
2176 	 * this case, we can save a useless back to back clock update.
2177 	 */
2178 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2179 		rq_clock_skip_update(rq);
2180 }
2181 
2182 static __always_inline
2183 int __task_state_match(struct task_struct *p, unsigned int state)
2184 {
2185 	if (READ_ONCE(p->__state) & state)
2186 		return 1;
2187 
2188 	if (READ_ONCE(p->saved_state) & state)
2189 		return -1;
2190 
2191 	return 0;
2192 }
2193 
2194 static __always_inline
2195 int task_state_match(struct task_struct *p, unsigned int state)
2196 {
2197 	/*
2198 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2199 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2200 	 */
2201 	guard(raw_spinlock_irq)(&p->pi_lock);
2202 	return __task_state_match(p, state);
2203 }
2204 
2205 /*
2206  * wait_task_inactive - wait for a thread to unschedule.
2207  *
2208  * Wait for the thread to block in any of the states set in @match_state.
2209  * If it changes, i.e. @p might have woken up, then return zero.  When we
2210  * succeed in waiting for @p to be off its CPU, we return a positive number
2211  * (its total switch count).  If a second call a short while later returns the
2212  * same number, the caller can be sure that @p has remained unscheduled the
2213  * whole time.
2214  *
2215  * The caller must ensure that the task *will* unschedule sometime soon,
2216  * else this function might spin for a *long* time. This function can't
2217  * be called with interrupts off, or it may introduce deadlock with
2218  * smp_call_function() if an IPI is sent by the same process we are
2219  * waiting to become inactive.
2220  */
2221 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2222 {
2223 	int running, queued, match;
2224 	struct rq_flags rf;
2225 	unsigned long ncsw;
2226 	struct rq *rq;
2227 
2228 	for (;;) {
2229 		/*
2230 		 * We do the initial early heuristics without holding
2231 		 * any task-queue locks at all. We'll only try to get
2232 		 * the runqueue lock when things look like they will
2233 		 * work out!
2234 		 */
2235 		rq = task_rq(p);
2236 
2237 		/*
2238 		 * If the task is actively running on another CPU
2239 		 * still, just relax and busy-wait without holding
2240 		 * any locks.
2241 		 *
2242 		 * NOTE! Since we don't hold any locks, it's not
2243 		 * even sure that "rq" stays as the right runqueue!
2244 		 * But we don't care, since "task_on_cpu()" will
2245 		 * return false if the runqueue has changed and p
2246 		 * is actually now running somewhere else!
2247 		 */
2248 		while (task_on_cpu(rq, p)) {
2249 			if (!task_state_match(p, match_state))
2250 				return 0;
2251 			cpu_relax();
2252 		}
2253 
2254 		/*
2255 		 * Ok, time to look more closely! We need the rq
2256 		 * lock now, to be *sure*. If we're wrong, we'll
2257 		 * just go back and repeat.
2258 		 */
2259 		rq = task_rq_lock(p, &rf);
2260 		/*
2261 		 * If task is sched_delayed, force dequeue it, to avoid always
2262 		 * hitting the tick timeout in the queued case
2263 		 */
2264 		if (p->se.sched_delayed)
2265 			dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
2266 		trace_sched_wait_task(p);
2267 		running = task_on_cpu(rq, p);
2268 		queued = task_on_rq_queued(p);
2269 		ncsw = 0;
2270 		if ((match = __task_state_match(p, match_state))) {
2271 			/*
2272 			 * When matching on p->saved_state, consider this task
2273 			 * still queued so it will wait.
2274 			 */
2275 			if (match < 0)
2276 				queued = 1;
2277 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2278 		}
2279 		task_rq_unlock(rq, p, &rf);
2280 
2281 		/*
2282 		 * If it changed from the expected state, bail out now.
2283 		 */
2284 		if (unlikely(!ncsw))
2285 			break;
2286 
2287 		/*
2288 		 * Was it really running after all now that we
2289 		 * checked with the proper locks actually held?
2290 		 *
2291 		 * Oops. Go back and try again..
2292 		 */
2293 		if (unlikely(running)) {
2294 			cpu_relax();
2295 			continue;
2296 		}
2297 
2298 		/*
2299 		 * It's not enough that it's not actively running,
2300 		 * it must be off the runqueue _entirely_, and not
2301 		 * preempted!
2302 		 *
2303 		 * So if it was still runnable (but just not actively
2304 		 * running right now), it's preempted, and we should
2305 		 * yield - it could be a while.
2306 		 */
2307 		if (unlikely(queued)) {
2308 			ktime_t to = NSEC_PER_SEC / HZ;
2309 
2310 			set_current_state(TASK_UNINTERRUPTIBLE);
2311 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2312 			continue;
2313 		}
2314 
2315 		/*
2316 		 * Ahh, all good. It wasn't running, and it wasn't
2317 		 * runnable, which means that it will never become
2318 		 * running in the future either. We're all done!
2319 		 */
2320 		break;
2321 	}
2322 
2323 	return ncsw;
2324 }
2325 
2326 static void
2327 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2328 
2329 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2330 {
2331 	struct affinity_context ac = {
2332 		.new_mask  = cpumask_of(rq->cpu),
2333 		.flags     = SCA_MIGRATE_DISABLE,
2334 	};
2335 
2336 	if (likely(!p->migration_disabled))
2337 		return;
2338 
2339 	if (p->cpus_ptr != &p->cpus_mask)
2340 		return;
2341 
2342 	/*
2343 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2344 	 */
2345 	__do_set_cpus_allowed(p, &ac);
2346 }
2347 
2348 void migrate_disable(void)
2349 {
2350 	struct task_struct *p = current;
2351 
2352 	if (p->migration_disabled) {
2353 #ifdef CONFIG_DEBUG_PREEMPT
2354 		/*
2355 		 *Warn about overflow half-way through the range.
2356 		 */
2357 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2358 #endif
2359 		p->migration_disabled++;
2360 		return;
2361 	}
2362 
2363 	guard(preempt)();
2364 	this_rq()->nr_pinned++;
2365 	p->migration_disabled = 1;
2366 }
2367 EXPORT_SYMBOL_GPL(migrate_disable);
2368 
2369 void migrate_enable(void)
2370 {
2371 	struct task_struct *p = current;
2372 	struct affinity_context ac = {
2373 		.new_mask  = &p->cpus_mask,
2374 		.flags     = SCA_MIGRATE_ENABLE,
2375 	};
2376 
2377 #ifdef CONFIG_DEBUG_PREEMPT
2378 	/*
2379 	 * Check both overflow from migrate_disable() and superfluous
2380 	 * migrate_enable().
2381 	 */
2382 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2383 		return;
2384 #endif
2385 
2386 	if (p->migration_disabled > 1) {
2387 		p->migration_disabled--;
2388 		return;
2389 	}
2390 
2391 	/*
2392 	 * Ensure stop_task runs either before or after this, and that
2393 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2394 	 */
2395 	guard(preempt)();
2396 	if (p->cpus_ptr != &p->cpus_mask)
2397 		__set_cpus_allowed_ptr(p, &ac);
2398 	/*
2399 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2400 	 * regular cpus_mask, otherwise things that race (eg.
2401 	 * select_fallback_rq) get confused.
2402 	 */
2403 	barrier();
2404 	p->migration_disabled = 0;
2405 	this_rq()->nr_pinned--;
2406 }
2407 EXPORT_SYMBOL_GPL(migrate_enable);
2408 
2409 static inline bool rq_has_pinned_tasks(struct rq *rq)
2410 {
2411 	return rq->nr_pinned;
2412 }
2413 
2414 /*
2415  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2416  * __set_cpus_allowed_ptr() and select_fallback_rq().
2417  */
2418 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2419 {
2420 	/* When not in the task's cpumask, no point in looking further. */
2421 	if (!task_allowed_on_cpu(p, cpu))
2422 		return false;
2423 
2424 	/* migrate_disabled() must be allowed to finish. */
2425 	if (is_migration_disabled(p))
2426 		return cpu_online(cpu);
2427 
2428 	/* Non kernel threads are not allowed during either online or offline. */
2429 	if (!(p->flags & PF_KTHREAD))
2430 		return cpu_active(cpu);
2431 
2432 	/* KTHREAD_IS_PER_CPU is always allowed. */
2433 	if (kthread_is_per_cpu(p))
2434 		return cpu_online(cpu);
2435 
2436 	/* Regular kernel threads don't get to stay during offline. */
2437 	if (cpu_dying(cpu))
2438 		return false;
2439 
2440 	/* But are allowed during online. */
2441 	return cpu_online(cpu);
2442 }
2443 
2444 /*
2445  * This is how migration works:
2446  *
2447  * 1) we invoke migration_cpu_stop() on the target CPU using
2448  *    stop_one_cpu().
2449  * 2) stopper starts to run (implicitly forcing the migrated thread
2450  *    off the CPU)
2451  * 3) it checks whether the migrated task is still in the wrong runqueue.
2452  * 4) if it's in the wrong runqueue then the migration thread removes
2453  *    it and puts it into the right queue.
2454  * 5) stopper completes and stop_one_cpu() returns and the migration
2455  *    is done.
2456  */
2457 
2458 /*
2459  * move_queued_task - move a queued task to new rq.
2460  *
2461  * Returns (locked) new rq. Old rq's lock is released.
2462  */
2463 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2464 				   struct task_struct *p, int new_cpu)
2465 {
2466 	lockdep_assert_rq_held(rq);
2467 
2468 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2469 	set_task_cpu(p, new_cpu);
2470 	rq_unlock(rq, rf);
2471 
2472 	rq = cpu_rq(new_cpu);
2473 
2474 	rq_lock(rq, rf);
2475 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2476 	activate_task(rq, p, 0);
2477 	wakeup_preempt(rq, p, 0);
2478 
2479 	return rq;
2480 }
2481 
2482 struct migration_arg {
2483 	struct task_struct		*task;
2484 	int				dest_cpu;
2485 	struct set_affinity_pending	*pending;
2486 };
2487 
2488 /*
2489  * @refs: number of wait_for_completion()
2490  * @stop_pending: is @stop_work in use
2491  */
2492 struct set_affinity_pending {
2493 	refcount_t		refs;
2494 	unsigned int		stop_pending;
2495 	struct completion	done;
2496 	struct cpu_stop_work	stop_work;
2497 	struct migration_arg	arg;
2498 };
2499 
2500 /*
2501  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2502  * this because either it can't run here any more (set_cpus_allowed()
2503  * away from this CPU, or CPU going down), or because we're
2504  * attempting to rebalance this task on exec (sched_exec).
2505  *
2506  * So we race with normal scheduler movements, but that's OK, as long
2507  * as the task is no longer on this CPU.
2508  */
2509 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2510 				 struct task_struct *p, int dest_cpu)
2511 {
2512 	/* Affinity changed (again). */
2513 	if (!is_cpu_allowed(p, dest_cpu))
2514 		return rq;
2515 
2516 	rq = move_queued_task(rq, rf, p, dest_cpu);
2517 
2518 	return rq;
2519 }
2520 
2521 /*
2522  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2523  * and performs thread migration by bumping thread off CPU then
2524  * 'pushing' onto another runqueue.
2525  */
2526 static int migration_cpu_stop(void *data)
2527 {
2528 	struct migration_arg *arg = data;
2529 	struct set_affinity_pending *pending = arg->pending;
2530 	struct task_struct *p = arg->task;
2531 	struct rq *rq = this_rq();
2532 	bool complete = false;
2533 	struct rq_flags rf;
2534 
2535 	/*
2536 	 * The original target CPU might have gone down and we might
2537 	 * be on another CPU but it doesn't matter.
2538 	 */
2539 	local_irq_save(rf.flags);
2540 	/*
2541 	 * We need to explicitly wake pending tasks before running
2542 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2543 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2544 	 */
2545 	flush_smp_call_function_queue();
2546 
2547 	raw_spin_lock(&p->pi_lock);
2548 	rq_lock(rq, &rf);
2549 
2550 	/*
2551 	 * If we were passed a pending, then ->stop_pending was set, thus
2552 	 * p->migration_pending must have remained stable.
2553 	 */
2554 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2555 
2556 	/*
2557 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2558 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2559 	 * we're holding p->pi_lock.
2560 	 */
2561 	if (task_rq(p) == rq) {
2562 		if (is_migration_disabled(p))
2563 			goto out;
2564 
2565 		if (pending) {
2566 			p->migration_pending = NULL;
2567 			complete = true;
2568 
2569 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2570 				goto out;
2571 		}
2572 
2573 		if (task_on_rq_queued(p)) {
2574 			update_rq_clock(rq);
2575 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2576 		} else {
2577 			p->wake_cpu = arg->dest_cpu;
2578 		}
2579 
2580 		/*
2581 		 * XXX __migrate_task() can fail, at which point we might end
2582 		 * up running on a dodgy CPU, AFAICT this can only happen
2583 		 * during CPU hotplug, at which point we'll get pushed out
2584 		 * anyway, so it's probably not a big deal.
2585 		 */
2586 
2587 	} else if (pending) {
2588 		/*
2589 		 * This happens when we get migrated between migrate_enable()'s
2590 		 * preempt_enable() and scheduling the stopper task. At that
2591 		 * point we're a regular task again and not current anymore.
2592 		 *
2593 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2594 		 * more likely.
2595 		 */
2596 
2597 		/*
2598 		 * The task moved before the stopper got to run. We're holding
2599 		 * ->pi_lock, so the allowed mask is stable - if it got
2600 		 * somewhere allowed, we're done.
2601 		 */
2602 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2603 			p->migration_pending = NULL;
2604 			complete = true;
2605 			goto out;
2606 		}
2607 
2608 		/*
2609 		 * When migrate_enable() hits a rq mis-match we can't reliably
2610 		 * determine is_migration_disabled() and so have to chase after
2611 		 * it.
2612 		 */
2613 		WARN_ON_ONCE(!pending->stop_pending);
2614 		preempt_disable();
2615 		task_rq_unlock(rq, p, &rf);
2616 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2617 				    &pending->arg, &pending->stop_work);
2618 		preempt_enable();
2619 		return 0;
2620 	}
2621 out:
2622 	if (pending)
2623 		pending->stop_pending = false;
2624 	task_rq_unlock(rq, p, &rf);
2625 
2626 	if (complete)
2627 		complete_all(&pending->done);
2628 
2629 	return 0;
2630 }
2631 
2632 int push_cpu_stop(void *arg)
2633 {
2634 	struct rq *lowest_rq = NULL, *rq = this_rq();
2635 	struct task_struct *p = arg;
2636 
2637 	raw_spin_lock_irq(&p->pi_lock);
2638 	raw_spin_rq_lock(rq);
2639 
2640 	if (task_rq(p) != rq)
2641 		goto out_unlock;
2642 
2643 	if (is_migration_disabled(p)) {
2644 		p->migration_flags |= MDF_PUSH;
2645 		goto out_unlock;
2646 	}
2647 
2648 	p->migration_flags &= ~MDF_PUSH;
2649 
2650 	if (p->sched_class->find_lock_rq)
2651 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2652 
2653 	if (!lowest_rq)
2654 		goto out_unlock;
2655 
2656 	// XXX validate p is still the highest prio task
2657 	if (task_rq(p) == rq) {
2658 		move_queued_task_locked(rq, lowest_rq, p);
2659 		resched_curr(lowest_rq);
2660 	}
2661 
2662 	double_unlock_balance(rq, lowest_rq);
2663 
2664 out_unlock:
2665 	rq->push_busy = false;
2666 	raw_spin_rq_unlock(rq);
2667 	raw_spin_unlock_irq(&p->pi_lock);
2668 
2669 	put_task_struct(p);
2670 	return 0;
2671 }
2672 
2673 /*
2674  * sched_class::set_cpus_allowed must do the below, but is not required to
2675  * actually call this function.
2676  */
2677 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2678 {
2679 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2680 		p->cpus_ptr = ctx->new_mask;
2681 		return;
2682 	}
2683 
2684 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2685 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2686 
2687 	/*
2688 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2689 	 */
2690 	if (ctx->flags & SCA_USER)
2691 		swap(p->user_cpus_ptr, ctx->user_mask);
2692 }
2693 
2694 static void
2695 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2696 {
2697 	struct rq *rq = task_rq(p);
2698 	bool queued, running;
2699 
2700 	/*
2701 	 * This here violates the locking rules for affinity, since we're only
2702 	 * supposed to change these variables while holding both rq->lock and
2703 	 * p->pi_lock.
2704 	 *
2705 	 * HOWEVER, it magically works, because ttwu() is the only code that
2706 	 * accesses these variables under p->pi_lock and only does so after
2707 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2708 	 * before finish_task().
2709 	 *
2710 	 * XXX do further audits, this smells like something putrid.
2711 	 */
2712 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2713 		WARN_ON_ONCE(!p->on_cpu);
2714 	else
2715 		lockdep_assert_held(&p->pi_lock);
2716 
2717 	queued = task_on_rq_queued(p);
2718 	running = task_current_donor(rq, p);
2719 
2720 	if (queued) {
2721 		/*
2722 		 * Because __kthread_bind() calls this on blocked tasks without
2723 		 * holding rq->lock.
2724 		 */
2725 		lockdep_assert_rq_held(rq);
2726 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2727 	}
2728 	if (running)
2729 		put_prev_task(rq, p);
2730 
2731 	p->sched_class->set_cpus_allowed(p, ctx);
2732 	mm_set_cpus_allowed(p->mm, ctx->new_mask);
2733 
2734 	if (queued)
2735 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2736 	if (running)
2737 		set_next_task(rq, p);
2738 }
2739 
2740 /*
2741  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2742  * affinity (if any) should be destroyed too.
2743  */
2744 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2745 {
2746 	struct affinity_context ac = {
2747 		.new_mask  = new_mask,
2748 		.user_mask = NULL,
2749 		.flags     = SCA_USER,	/* clear the user requested mask */
2750 	};
2751 	union cpumask_rcuhead {
2752 		cpumask_t cpumask;
2753 		struct rcu_head rcu;
2754 	};
2755 
2756 	__do_set_cpus_allowed(p, &ac);
2757 
2758 	/*
2759 	 * Because this is called with p->pi_lock held, it is not possible
2760 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2761 	 * kfree_rcu().
2762 	 */
2763 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2764 }
2765 
2766 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2767 		      int node)
2768 {
2769 	cpumask_t *user_mask;
2770 	unsigned long flags;
2771 
2772 	/*
2773 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2774 	 * may differ by now due to racing.
2775 	 */
2776 	dst->user_cpus_ptr = NULL;
2777 
2778 	/*
2779 	 * This check is racy and losing the race is a valid situation.
2780 	 * It is not worth the extra overhead of taking the pi_lock on
2781 	 * every fork/clone.
2782 	 */
2783 	if (data_race(!src->user_cpus_ptr))
2784 		return 0;
2785 
2786 	user_mask = alloc_user_cpus_ptr(node);
2787 	if (!user_mask)
2788 		return -ENOMEM;
2789 
2790 	/*
2791 	 * Use pi_lock to protect content of user_cpus_ptr
2792 	 *
2793 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2794 	 * do_set_cpus_allowed().
2795 	 */
2796 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2797 	if (src->user_cpus_ptr) {
2798 		swap(dst->user_cpus_ptr, user_mask);
2799 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2800 	}
2801 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2802 
2803 	if (unlikely(user_mask))
2804 		kfree(user_mask);
2805 
2806 	return 0;
2807 }
2808 
2809 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2810 {
2811 	struct cpumask *user_mask = NULL;
2812 
2813 	swap(p->user_cpus_ptr, user_mask);
2814 
2815 	return user_mask;
2816 }
2817 
2818 void release_user_cpus_ptr(struct task_struct *p)
2819 {
2820 	kfree(clear_user_cpus_ptr(p));
2821 }
2822 
2823 /*
2824  * This function is wildly self concurrent; here be dragons.
2825  *
2826  *
2827  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2828  * designated task is enqueued on an allowed CPU. If that task is currently
2829  * running, we have to kick it out using the CPU stopper.
2830  *
2831  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2832  * Consider:
2833  *
2834  *     Initial conditions: P0->cpus_mask = [0, 1]
2835  *
2836  *     P0@CPU0                  P1
2837  *
2838  *     migrate_disable();
2839  *     <preempted>
2840  *                              set_cpus_allowed_ptr(P0, [1]);
2841  *
2842  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2843  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2844  * This means we need the following scheme:
2845  *
2846  *     P0@CPU0                  P1
2847  *
2848  *     migrate_disable();
2849  *     <preempted>
2850  *                              set_cpus_allowed_ptr(P0, [1]);
2851  *                                <blocks>
2852  *     <resumes>
2853  *     migrate_enable();
2854  *       __set_cpus_allowed_ptr();
2855  *       <wakes local stopper>
2856  *                         `--> <woken on migration completion>
2857  *
2858  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2859  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2860  * task p are serialized by p->pi_lock, which we can leverage: the one that
2861  * should come into effect at the end of the Migrate-Disable region is the last
2862  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2863  * but we still need to properly signal those waiting tasks at the appropriate
2864  * moment.
2865  *
2866  * This is implemented using struct set_affinity_pending. The first
2867  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2868  * setup an instance of that struct and install it on the targeted task_struct.
2869  * Any and all further callers will reuse that instance. Those then wait for
2870  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2871  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2872  *
2873  *
2874  * (1) In the cases covered above. There is one more where the completion is
2875  * signaled within affine_move_task() itself: when a subsequent affinity request
2876  * occurs after the stopper bailed out due to the targeted task still being
2877  * Migrate-Disable. Consider:
2878  *
2879  *     Initial conditions: P0->cpus_mask = [0, 1]
2880  *
2881  *     CPU0		  P1				P2
2882  *     <P0>
2883  *       migrate_disable();
2884  *       <preempted>
2885  *                        set_cpus_allowed_ptr(P0, [1]);
2886  *                          <blocks>
2887  *     <migration/0>
2888  *       migration_cpu_stop()
2889  *         is_migration_disabled()
2890  *           <bails>
2891  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2892  *                                                         <signal completion>
2893  *                          <awakes>
2894  *
2895  * Note that the above is safe vs a concurrent migrate_enable(), as any
2896  * pending affinity completion is preceded by an uninstallation of
2897  * p->migration_pending done with p->pi_lock held.
2898  */
2899 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2900 			    int dest_cpu, unsigned int flags)
2901 	__releases(rq->lock)
2902 	__releases(p->pi_lock)
2903 {
2904 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2905 	bool stop_pending, complete = false;
2906 
2907 	/* Can the task run on the task's current CPU? If so, we're done */
2908 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2909 		struct task_struct *push_task = NULL;
2910 
2911 		if ((flags & SCA_MIGRATE_ENABLE) &&
2912 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2913 			rq->push_busy = true;
2914 			push_task = get_task_struct(p);
2915 		}
2916 
2917 		/*
2918 		 * If there are pending waiters, but no pending stop_work,
2919 		 * then complete now.
2920 		 */
2921 		pending = p->migration_pending;
2922 		if (pending && !pending->stop_pending) {
2923 			p->migration_pending = NULL;
2924 			complete = true;
2925 		}
2926 
2927 		preempt_disable();
2928 		task_rq_unlock(rq, p, rf);
2929 		if (push_task) {
2930 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2931 					    p, &rq->push_work);
2932 		}
2933 		preempt_enable();
2934 
2935 		if (complete)
2936 			complete_all(&pending->done);
2937 
2938 		return 0;
2939 	}
2940 
2941 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2942 		/* serialized by p->pi_lock */
2943 		if (!p->migration_pending) {
2944 			/* Install the request */
2945 			refcount_set(&my_pending.refs, 1);
2946 			init_completion(&my_pending.done);
2947 			my_pending.arg = (struct migration_arg) {
2948 				.task = p,
2949 				.dest_cpu = dest_cpu,
2950 				.pending = &my_pending,
2951 			};
2952 
2953 			p->migration_pending = &my_pending;
2954 		} else {
2955 			pending = p->migration_pending;
2956 			refcount_inc(&pending->refs);
2957 			/*
2958 			 * Affinity has changed, but we've already installed a
2959 			 * pending. migration_cpu_stop() *must* see this, else
2960 			 * we risk a completion of the pending despite having a
2961 			 * task on a disallowed CPU.
2962 			 *
2963 			 * Serialized by p->pi_lock, so this is safe.
2964 			 */
2965 			pending->arg.dest_cpu = dest_cpu;
2966 		}
2967 	}
2968 	pending = p->migration_pending;
2969 	/*
2970 	 * - !MIGRATE_ENABLE:
2971 	 *   we'll have installed a pending if there wasn't one already.
2972 	 *
2973 	 * - MIGRATE_ENABLE:
2974 	 *   we're here because the current CPU isn't matching anymore,
2975 	 *   the only way that can happen is because of a concurrent
2976 	 *   set_cpus_allowed_ptr() call, which should then still be
2977 	 *   pending completion.
2978 	 *
2979 	 * Either way, we really should have a @pending here.
2980 	 */
2981 	if (WARN_ON_ONCE(!pending)) {
2982 		task_rq_unlock(rq, p, rf);
2983 		return -EINVAL;
2984 	}
2985 
2986 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2987 		/*
2988 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2989 		 * anything else we cannot do is_migration_disabled(), punt
2990 		 * and have the stopper function handle it all race-free.
2991 		 */
2992 		stop_pending = pending->stop_pending;
2993 		if (!stop_pending)
2994 			pending->stop_pending = true;
2995 
2996 		if (flags & SCA_MIGRATE_ENABLE)
2997 			p->migration_flags &= ~MDF_PUSH;
2998 
2999 		preempt_disable();
3000 		task_rq_unlock(rq, p, rf);
3001 		if (!stop_pending) {
3002 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3003 					    &pending->arg, &pending->stop_work);
3004 		}
3005 		preempt_enable();
3006 
3007 		if (flags & SCA_MIGRATE_ENABLE)
3008 			return 0;
3009 	} else {
3010 
3011 		if (!is_migration_disabled(p)) {
3012 			if (task_on_rq_queued(p))
3013 				rq = move_queued_task(rq, rf, p, dest_cpu);
3014 
3015 			if (!pending->stop_pending) {
3016 				p->migration_pending = NULL;
3017 				complete = true;
3018 			}
3019 		}
3020 		task_rq_unlock(rq, p, rf);
3021 
3022 		if (complete)
3023 			complete_all(&pending->done);
3024 	}
3025 
3026 	wait_for_completion(&pending->done);
3027 
3028 	if (refcount_dec_and_test(&pending->refs))
3029 		wake_up_var(&pending->refs); /* No UaF, just an address */
3030 
3031 	/*
3032 	 * Block the original owner of &pending until all subsequent callers
3033 	 * have seen the completion and decremented the refcount
3034 	 */
3035 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3036 
3037 	/* ARGH */
3038 	WARN_ON_ONCE(my_pending.stop_pending);
3039 
3040 	return 0;
3041 }
3042 
3043 /*
3044  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3045  */
3046 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3047 					 struct affinity_context *ctx,
3048 					 struct rq *rq,
3049 					 struct rq_flags *rf)
3050 	__releases(rq->lock)
3051 	__releases(p->pi_lock)
3052 {
3053 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3054 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3055 	bool kthread = p->flags & PF_KTHREAD;
3056 	unsigned int dest_cpu;
3057 	int ret = 0;
3058 
3059 	update_rq_clock(rq);
3060 
3061 	if (kthread || is_migration_disabled(p)) {
3062 		/*
3063 		 * Kernel threads are allowed on online && !active CPUs,
3064 		 * however, during cpu-hot-unplug, even these might get pushed
3065 		 * away if not KTHREAD_IS_PER_CPU.
3066 		 *
3067 		 * Specifically, migration_disabled() tasks must not fail the
3068 		 * cpumask_any_and_distribute() pick below, esp. so on
3069 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3070 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3071 		 */
3072 		cpu_valid_mask = cpu_online_mask;
3073 	}
3074 
3075 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3076 		ret = -EINVAL;
3077 		goto out;
3078 	}
3079 
3080 	/*
3081 	 * Must re-check here, to close a race against __kthread_bind(),
3082 	 * sched_setaffinity() is not guaranteed to observe the flag.
3083 	 */
3084 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3085 		ret = -EINVAL;
3086 		goto out;
3087 	}
3088 
3089 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3090 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3091 			if (ctx->flags & SCA_USER)
3092 				swap(p->user_cpus_ptr, ctx->user_mask);
3093 			goto out;
3094 		}
3095 
3096 		if (WARN_ON_ONCE(p == current &&
3097 				 is_migration_disabled(p) &&
3098 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3099 			ret = -EBUSY;
3100 			goto out;
3101 		}
3102 	}
3103 
3104 	/*
3105 	 * Picking a ~random cpu helps in cases where we are changing affinity
3106 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3107 	 * immediately required to distribute the tasks within their new mask.
3108 	 */
3109 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3110 	if (dest_cpu >= nr_cpu_ids) {
3111 		ret = -EINVAL;
3112 		goto out;
3113 	}
3114 
3115 	__do_set_cpus_allowed(p, ctx);
3116 
3117 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3118 
3119 out:
3120 	task_rq_unlock(rq, p, rf);
3121 
3122 	return ret;
3123 }
3124 
3125 /*
3126  * Change a given task's CPU affinity. Migrate the thread to a
3127  * proper CPU and schedule it away if the CPU it's executing on
3128  * is removed from the allowed bitmask.
3129  *
3130  * NOTE: the caller must have a valid reference to the task, the
3131  * task must not exit() & deallocate itself prematurely. The
3132  * call is not atomic; no spinlocks may be held.
3133  */
3134 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3135 {
3136 	struct rq_flags rf;
3137 	struct rq *rq;
3138 
3139 	rq = task_rq_lock(p, &rf);
3140 	/*
3141 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3142 	 * flags are set.
3143 	 */
3144 	if (p->user_cpus_ptr &&
3145 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3146 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3147 		ctx->new_mask = rq->scratch_mask;
3148 
3149 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3150 }
3151 
3152 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3153 {
3154 	struct affinity_context ac = {
3155 		.new_mask  = new_mask,
3156 		.flags     = 0,
3157 	};
3158 
3159 	return __set_cpus_allowed_ptr(p, &ac);
3160 }
3161 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3162 
3163 /*
3164  * Change a given task's CPU affinity to the intersection of its current
3165  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3166  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3167  * affinity or use cpu_online_mask instead.
3168  *
3169  * If the resulting mask is empty, leave the affinity unchanged and return
3170  * -EINVAL.
3171  */
3172 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3173 				     struct cpumask *new_mask,
3174 				     const struct cpumask *subset_mask)
3175 {
3176 	struct affinity_context ac = {
3177 		.new_mask  = new_mask,
3178 		.flags     = 0,
3179 	};
3180 	struct rq_flags rf;
3181 	struct rq *rq;
3182 	int err;
3183 
3184 	rq = task_rq_lock(p, &rf);
3185 
3186 	/*
3187 	 * Forcefully restricting the affinity of a deadline task is
3188 	 * likely to cause problems, so fail and noisily override the
3189 	 * mask entirely.
3190 	 */
3191 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3192 		err = -EPERM;
3193 		goto err_unlock;
3194 	}
3195 
3196 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3197 		err = -EINVAL;
3198 		goto err_unlock;
3199 	}
3200 
3201 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3202 
3203 err_unlock:
3204 	task_rq_unlock(rq, p, &rf);
3205 	return err;
3206 }
3207 
3208 /*
3209  * Restrict the CPU affinity of task @p so that it is a subset of
3210  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3211  * old affinity mask. If the resulting mask is empty, we warn and walk
3212  * up the cpuset hierarchy until we find a suitable mask.
3213  */
3214 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3215 {
3216 	cpumask_var_t new_mask;
3217 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3218 
3219 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3220 
3221 	/*
3222 	 * __migrate_task() can fail silently in the face of concurrent
3223 	 * offlining of the chosen destination CPU, so take the hotplug
3224 	 * lock to ensure that the migration succeeds.
3225 	 */
3226 	cpus_read_lock();
3227 	if (!cpumask_available(new_mask))
3228 		goto out_set_mask;
3229 
3230 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3231 		goto out_free_mask;
3232 
3233 	/*
3234 	 * We failed to find a valid subset of the affinity mask for the
3235 	 * task, so override it based on its cpuset hierarchy.
3236 	 */
3237 	cpuset_cpus_allowed(p, new_mask);
3238 	override_mask = new_mask;
3239 
3240 out_set_mask:
3241 	if (printk_ratelimit()) {
3242 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3243 				task_pid_nr(p), p->comm,
3244 				cpumask_pr_args(override_mask));
3245 	}
3246 
3247 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3248 out_free_mask:
3249 	cpus_read_unlock();
3250 	free_cpumask_var(new_mask);
3251 }
3252 
3253 /*
3254  * Restore the affinity of a task @p which was previously restricted by a
3255  * call to force_compatible_cpus_allowed_ptr().
3256  *
3257  * It is the caller's responsibility to serialise this with any calls to
3258  * force_compatible_cpus_allowed_ptr(@p).
3259  */
3260 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3261 {
3262 	struct affinity_context ac = {
3263 		.new_mask  = task_user_cpus(p),
3264 		.flags     = 0,
3265 	};
3266 	int ret;
3267 
3268 	/*
3269 	 * Try to restore the old affinity mask with __sched_setaffinity().
3270 	 * Cpuset masking will be done there too.
3271 	 */
3272 	ret = __sched_setaffinity(p, &ac);
3273 	WARN_ON_ONCE(ret);
3274 }
3275 
3276 #ifdef CONFIG_SMP
3277 
3278 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3279 {
3280 	unsigned int state = READ_ONCE(p->__state);
3281 
3282 	/*
3283 	 * We should never call set_task_cpu() on a blocked task,
3284 	 * ttwu() will sort out the placement.
3285 	 */
3286 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3287 
3288 	/*
3289 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3290 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3291 	 * time relying on p->on_rq.
3292 	 */
3293 	WARN_ON_ONCE(state == TASK_RUNNING &&
3294 		     p->sched_class == &fair_sched_class &&
3295 		     (p->on_rq && !task_on_rq_migrating(p)));
3296 
3297 #ifdef CONFIG_LOCKDEP
3298 	/*
3299 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3300 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3301 	 *
3302 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3303 	 * see task_group().
3304 	 *
3305 	 * Furthermore, all task_rq users should acquire both locks, see
3306 	 * task_rq_lock().
3307 	 */
3308 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3309 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3310 #endif
3311 	/*
3312 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3313 	 */
3314 	WARN_ON_ONCE(!cpu_online(new_cpu));
3315 
3316 	WARN_ON_ONCE(is_migration_disabled(p));
3317 
3318 	trace_sched_migrate_task(p, new_cpu);
3319 
3320 	if (task_cpu(p) != new_cpu) {
3321 		if (p->sched_class->migrate_task_rq)
3322 			p->sched_class->migrate_task_rq(p, new_cpu);
3323 		p->se.nr_migrations++;
3324 		rseq_migrate(p);
3325 		sched_mm_cid_migrate_from(p);
3326 		perf_event_task_migrate(p);
3327 	}
3328 
3329 	__set_task_cpu(p, new_cpu);
3330 }
3331 #endif /* CONFIG_SMP */
3332 
3333 #ifdef CONFIG_NUMA_BALANCING
3334 static void __migrate_swap_task(struct task_struct *p, int cpu)
3335 {
3336 	__schedstat_inc(p->stats.numa_task_swapped);
3337 	count_vm_numa_event(NUMA_TASK_SWAP);
3338 	count_memcg_event_mm(p->mm, NUMA_TASK_SWAP);
3339 
3340 	if (task_on_rq_queued(p)) {
3341 		struct rq *src_rq, *dst_rq;
3342 		struct rq_flags srf, drf;
3343 
3344 		src_rq = task_rq(p);
3345 		dst_rq = cpu_rq(cpu);
3346 
3347 		rq_pin_lock(src_rq, &srf);
3348 		rq_pin_lock(dst_rq, &drf);
3349 
3350 		move_queued_task_locked(src_rq, dst_rq, p);
3351 		wakeup_preempt(dst_rq, p, 0);
3352 
3353 		rq_unpin_lock(dst_rq, &drf);
3354 		rq_unpin_lock(src_rq, &srf);
3355 
3356 	} else {
3357 		/*
3358 		 * Task isn't running anymore; make it appear like we migrated
3359 		 * it before it went to sleep. This means on wakeup we make the
3360 		 * previous CPU our target instead of where it really is.
3361 		 */
3362 		p->wake_cpu = cpu;
3363 	}
3364 }
3365 
3366 struct migration_swap_arg {
3367 	struct task_struct *src_task, *dst_task;
3368 	int src_cpu, dst_cpu;
3369 };
3370 
3371 static int migrate_swap_stop(void *data)
3372 {
3373 	struct migration_swap_arg *arg = data;
3374 	struct rq *src_rq, *dst_rq;
3375 
3376 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3377 		return -EAGAIN;
3378 
3379 	src_rq = cpu_rq(arg->src_cpu);
3380 	dst_rq = cpu_rq(arg->dst_cpu);
3381 
3382 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3383 	guard(double_rq_lock)(src_rq, dst_rq);
3384 
3385 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3386 		return -EAGAIN;
3387 
3388 	if (task_cpu(arg->src_task) != arg->src_cpu)
3389 		return -EAGAIN;
3390 
3391 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3392 		return -EAGAIN;
3393 
3394 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3395 		return -EAGAIN;
3396 
3397 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3398 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3399 
3400 	return 0;
3401 }
3402 
3403 /*
3404  * Cross migrate two tasks
3405  */
3406 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3407 		int target_cpu, int curr_cpu)
3408 {
3409 	struct migration_swap_arg arg;
3410 	int ret = -EINVAL;
3411 
3412 	arg = (struct migration_swap_arg){
3413 		.src_task = cur,
3414 		.src_cpu = curr_cpu,
3415 		.dst_task = p,
3416 		.dst_cpu = target_cpu,
3417 	};
3418 
3419 	if (arg.src_cpu == arg.dst_cpu)
3420 		goto out;
3421 
3422 	/*
3423 	 * These three tests are all lockless; this is OK since all of them
3424 	 * will be re-checked with proper locks held further down the line.
3425 	 */
3426 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3427 		goto out;
3428 
3429 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3430 		goto out;
3431 
3432 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3433 		goto out;
3434 
3435 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3436 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3437 
3438 out:
3439 	return ret;
3440 }
3441 #endif /* CONFIG_NUMA_BALANCING */
3442 
3443 /***
3444  * kick_process - kick a running thread to enter/exit the kernel
3445  * @p: the to-be-kicked thread
3446  *
3447  * Cause a process which is running on another CPU to enter
3448  * kernel-mode, without any delay. (to get signals handled.)
3449  *
3450  * NOTE: this function doesn't have to take the runqueue lock,
3451  * because all it wants to ensure is that the remote task enters
3452  * the kernel. If the IPI races and the task has been migrated
3453  * to another CPU then no harm is done and the purpose has been
3454  * achieved as well.
3455  */
3456 void kick_process(struct task_struct *p)
3457 {
3458 	guard(preempt)();
3459 	int cpu = task_cpu(p);
3460 
3461 	if ((cpu != smp_processor_id()) && task_curr(p))
3462 		smp_send_reschedule(cpu);
3463 }
3464 EXPORT_SYMBOL_GPL(kick_process);
3465 
3466 /*
3467  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3468  *
3469  * A few notes on cpu_active vs cpu_online:
3470  *
3471  *  - cpu_active must be a subset of cpu_online
3472  *
3473  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3474  *    see __set_cpus_allowed_ptr(). At this point the newly online
3475  *    CPU isn't yet part of the sched domains, and balancing will not
3476  *    see it.
3477  *
3478  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3479  *    avoid the load balancer to place new tasks on the to be removed
3480  *    CPU. Existing tasks will remain running there and will be taken
3481  *    off.
3482  *
3483  * This means that fallback selection must not select !active CPUs.
3484  * And can assume that any active CPU must be online. Conversely
3485  * select_task_rq() below may allow selection of !active CPUs in order
3486  * to satisfy the above rules.
3487  */
3488 static int select_fallback_rq(int cpu, struct task_struct *p)
3489 {
3490 	int nid = cpu_to_node(cpu);
3491 	const struct cpumask *nodemask = NULL;
3492 	enum { cpuset, possible, fail } state = cpuset;
3493 	int dest_cpu;
3494 
3495 	/*
3496 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3497 	 * will return -1. There is no CPU on the node, and we should
3498 	 * select the CPU on the other node.
3499 	 */
3500 	if (nid != -1) {
3501 		nodemask = cpumask_of_node(nid);
3502 
3503 		/* Look for allowed, online CPU in same node. */
3504 		for_each_cpu(dest_cpu, nodemask) {
3505 			if (is_cpu_allowed(p, dest_cpu))
3506 				return dest_cpu;
3507 		}
3508 	}
3509 
3510 	for (;;) {
3511 		/* Any allowed, online CPU? */
3512 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3513 			if (!is_cpu_allowed(p, dest_cpu))
3514 				continue;
3515 
3516 			goto out;
3517 		}
3518 
3519 		/* No more Mr. Nice Guy. */
3520 		switch (state) {
3521 		case cpuset:
3522 			if (cpuset_cpus_allowed_fallback(p)) {
3523 				state = possible;
3524 				break;
3525 			}
3526 			fallthrough;
3527 		case possible:
3528 			/*
3529 			 * XXX When called from select_task_rq() we only
3530 			 * hold p->pi_lock and again violate locking order.
3531 			 *
3532 			 * More yuck to audit.
3533 			 */
3534 			do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
3535 			state = fail;
3536 			break;
3537 		case fail:
3538 			BUG();
3539 			break;
3540 		}
3541 	}
3542 
3543 out:
3544 	if (state != cpuset) {
3545 		/*
3546 		 * Don't tell them about moving exiting tasks or
3547 		 * kernel threads (both mm NULL), since they never
3548 		 * leave kernel.
3549 		 */
3550 		if (p->mm && printk_ratelimit()) {
3551 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3552 					task_pid_nr(p), p->comm, cpu);
3553 		}
3554 	}
3555 
3556 	return dest_cpu;
3557 }
3558 
3559 /*
3560  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3561  */
3562 static inline
3563 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3564 {
3565 	lockdep_assert_held(&p->pi_lock);
3566 
3567 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3568 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3569 		*wake_flags |= WF_RQ_SELECTED;
3570 	} else {
3571 		cpu = cpumask_any(p->cpus_ptr);
3572 	}
3573 
3574 	/*
3575 	 * In order not to call set_task_cpu() on a blocking task we need
3576 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3577 	 * CPU.
3578 	 *
3579 	 * Since this is common to all placement strategies, this lives here.
3580 	 *
3581 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3582 	 *   not worry about this generic constraint ]
3583 	 */
3584 	if (unlikely(!is_cpu_allowed(p, cpu)))
3585 		cpu = select_fallback_rq(task_cpu(p), p);
3586 
3587 	return cpu;
3588 }
3589 
3590 void sched_set_stop_task(int cpu, struct task_struct *stop)
3591 {
3592 	static struct lock_class_key stop_pi_lock;
3593 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3594 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3595 
3596 	if (stop) {
3597 		/*
3598 		 * Make it appear like a SCHED_FIFO task, its something
3599 		 * userspace knows about and won't get confused about.
3600 		 *
3601 		 * Also, it will make PI more or less work without too
3602 		 * much confusion -- but then, stop work should not
3603 		 * rely on PI working anyway.
3604 		 */
3605 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3606 
3607 		stop->sched_class = &stop_sched_class;
3608 
3609 		/*
3610 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3611 		 * adjust the effective priority of a task. As a result,
3612 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3613 		 * which can then trigger wakeups of the stop thread to push
3614 		 * around the current task.
3615 		 *
3616 		 * The stop task itself will never be part of the PI-chain, it
3617 		 * never blocks, therefore that ->pi_lock recursion is safe.
3618 		 * Tell lockdep about this by placing the stop->pi_lock in its
3619 		 * own class.
3620 		 */
3621 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3622 	}
3623 
3624 	cpu_rq(cpu)->stop = stop;
3625 
3626 	if (old_stop) {
3627 		/*
3628 		 * Reset it back to a normal scheduling class so that
3629 		 * it can die in pieces.
3630 		 */
3631 		old_stop->sched_class = &rt_sched_class;
3632 	}
3633 }
3634 
3635 static void
3636 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3637 {
3638 	struct rq *rq;
3639 
3640 	if (!schedstat_enabled())
3641 		return;
3642 
3643 	rq = this_rq();
3644 
3645 	if (cpu == rq->cpu) {
3646 		__schedstat_inc(rq->ttwu_local);
3647 		__schedstat_inc(p->stats.nr_wakeups_local);
3648 	} else {
3649 		struct sched_domain *sd;
3650 
3651 		__schedstat_inc(p->stats.nr_wakeups_remote);
3652 
3653 		guard(rcu)();
3654 		for_each_domain(rq->cpu, sd) {
3655 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3656 				__schedstat_inc(sd->ttwu_wake_remote);
3657 				break;
3658 			}
3659 		}
3660 	}
3661 
3662 	if (wake_flags & WF_MIGRATED)
3663 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3664 
3665 	__schedstat_inc(rq->ttwu_count);
3666 	__schedstat_inc(p->stats.nr_wakeups);
3667 
3668 	if (wake_flags & WF_SYNC)
3669 		__schedstat_inc(p->stats.nr_wakeups_sync);
3670 }
3671 
3672 /*
3673  * Mark the task runnable.
3674  */
3675 static inline void ttwu_do_wakeup(struct task_struct *p)
3676 {
3677 	WRITE_ONCE(p->__state, TASK_RUNNING);
3678 	trace_sched_wakeup(p);
3679 }
3680 
3681 static void
3682 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3683 		 struct rq_flags *rf)
3684 {
3685 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3686 
3687 	lockdep_assert_rq_held(rq);
3688 
3689 	if (p->sched_contributes_to_load)
3690 		rq->nr_uninterruptible--;
3691 
3692 	if (wake_flags & WF_RQ_SELECTED)
3693 		en_flags |= ENQUEUE_RQ_SELECTED;
3694 	if (wake_flags & WF_MIGRATED)
3695 		en_flags |= ENQUEUE_MIGRATED;
3696 	else
3697 	if (p->in_iowait) {
3698 		delayacct_blkio_end(p);
3699 		atomic_dec(&task_rq(p)->nr_iowait);
3700 	}
3701 
3702 	activate_task(rq, p, en_flags);
3703 	wakeup_preempt(rq, p, wake_flags);
3704 
3705 	ttwu_do_wakeup(p);
3706 
3707 	if (p->sched_class->task_woken) {
3708 		/*
3709 		 * Our task @p is fully woken up and running; so it's safe to
3710 		 * drop the rq->lock, hereafter rq is only used for statistics.
3711 		 */
3712 		rq_unpin_lock(rq, rf);
3713 		p->sched_class->task_woken(rq, p);
3714 		rq_repin_lock(rq, rf);
3715 	}
3716 
3717 	if (rq->idle_stamp) {
3718 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3719 		u64 max = 2*rq->max_idle_balance_cost;
3720 
3721 		update_avg(&rq->avg_idle, delta);
3722 
3723 		if (rq->avg_idle > max)
3724 			rq->avg_idle = max;
3725 
3726 		rq->idle_stamp = 0;
3727 	}
3728 }
3729 
3730 /*
3731  * Consider @p being inside a wait loop:
3732  *
3733  *   for (;;) {
3734  *      set_current_state(TASK_UNINTERRUPTIBLE);
3735  *
3736  *      if (CONDITION)
3737  *         break;
3738  *
3739  *      schedule();
3740  *   }
3741  *   __set_current_state(TASK_RUNNING);
3742  *
3743  * between set_current_state() and schedule(). In this case @p is still
3744  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3745  * an atomic manner.
3746  *
3747  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3748  * then schedule() must still happen and p->state can be changed to
3749  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3750  * need to do a full wakeup with enqueue.
3751  *
3752  * Returns: %true when the wakeup is done,
3753  *          %false otherwise.
3754  */
3755 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3756 {
3757 	struct rq_flags rf;
3758 	struct rq *rq;
3759 	int ret = 0;
3760 
3761 	rq = __task_rq_lock(p, &rf);
3762 	if (task_on_rq_queued(p)) {
3763 		update_rq_clock(rq);
3764 		if (p->se.sched_delayed)
3765 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3766 		if (!task_on_cpu(rq, p)) {
3767 			/*
3768 			 * When on_rq && !on_cpu the task is preempted, see if
3769 			 * it should preempt the task that is current now.
3770 			 */
3771 			wakeup_preempt(rq, p, wake_flags);
3772 		}
3773 		ttwu_do_wakeup(p);
3774 		ret = 1;
3775 	}
3776 	__task_rq_unlock(rq, &rf);
3777 
3778 	return ret;
3779 }
3780 
3781 void sched_ttwu_pending(void *arg)
3782 {
3783 	struct llist_node *llist = arg;
3784 	struct rq *rq = this_rq();
3785 	struct task_struct *p, *t;
3786 	struct rq_flags rf;
3787 
3788 	if (!llist)
3789 		return;
3790 
3791 	rq_lock_irqsave(rq, &rf);
3792 	update_rq_clock(rq);
3793 
3794 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3795 		if (WARN_ON_ONCE(p->on_cpu))
3796 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3797 
3798 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3799 			set_task_cpu(p, cpu_of(rq));
3800 
3801 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3802 	}
3803 
3804 	/*
3805 	 * Must be after enqueueing at least once task such that
3806 	 * idle_cpu() does not observe a false-negative -- if it does,
3807 	 * it is possible for select_idle_siblings() to stack a number
3808 	 * of tasks on this CPU during that window.
3809 	 *
3810 	 * It is OK to clear ttwu_pending when another task pending.
3811 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3812 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3813 	 */
3814 	WRITE_ONCE(rq->ttwu_pending, 0);
3815 	rq_unlock_irqrestore(rq, &rf);
3816 }
3817 
3818 /*
3819  * Prepare the scene for sending an IPI for a remote smp_call
3820  *
3821  * Returns true if the caller can proceed with sending the IPI.
3822  * Returns false otherwise.
3823  */
3824 bool call_function_single_prep_ipi(int cpu)
3825 {
3826 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3827 		trace_sched_wake_idle_without_ipi(cpu);
3828 		return false;
3829 	}
3830 
3831 	return true;
3832 }
3833 
3834 /*
3835  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3836  * necessary. The wakee CPU on receipt of the IPI will queue the task
3837  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3838  * of the wakeup instead of the waker.
3839  */
3840 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3841 {
3842 	struct rq *rq = cpu_rq(cpu);
3843 
3844 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3845 
3846 	WRITE_ONCE(rq->ttwu_pending, 1);
3847 #ifdef CONFIG_SMP
3848 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3849 #endif
3850 }
3851 
3852 void wake_up_if_idle(int cpu)
3853 {
3854 	struct rq *rq = cpu_rq(cpu);
3855 
3856 	guard(rcu)();
3857 	if (is_idle_task(rcu_dereference(rq->curr))) {
3858 		guard(rq_lock_irqsave)(rq);
3859 		if (is_idle_task(rq->curr))
3860 			resched_curr(rq);
3861 	}
3862 }
3863 
3864 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3865 {
3866 	if (!sched_asym_cpucap_active())
3867 		return true;
3868 
3869 	if (this_cpu == that_cpu)
3870 		return true;
3871 
3872 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3873 }
3874 
3875 bool cpus_share_cache(int this_cpu, int that_cpu)
3876 {
3877 	if (this_cpu == that_cpu)
3878 		return true;
3879 
3880 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3881 }
3882 
3883 /*
3884  * Whether CPUs are share cache resources, which means LLC on non-cluster
3885  * machines and LLC tag or L2 on machines with clusters.
3886  */
3887 bool cpus_share_resources(int this_cpu, int that_cpu)
3888 {
3889 	if (this_cpu == that_cpu)
3890 		return true;
3891 
3892 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3893 }
3894 
3895 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3896 {
3897 	/* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */
3898 	if (!scx_allow_ttwu_queue(p))
3899 		return false;
3900 
3901 	/*
3902 	 * Do not complicate things with the async wake_list while the CPU is
3903 	 * in hotplug state.
3904 	 */
3905 	if (!cpu_active(cpu))
3906 		return false;
3907 
3908 	/* Ensure the task will still be allowed to run on the CPU. */
3909 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3910 		return false;
3911 
3912 	/*
3913 	 * If the CPU does not share cache, then queue the task on the
3914 	 * remote rqs wakelist to avoid accessing remote data.
3915 	 */
3916 	if (!cpus_share_cache(smp_processor_id(), cpu))
3917 		return true;
3918 
3919 	if (cpu == smp_processor_id())
3920 		return false;
3921 
3922 	/*
3923 	 * If the wakee cpu is idle, or the task is descheduling and the
3924 	 * only running task on the CPU, then use the wakelist to offload
3925 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3926 	 * the current CPU is likely busy. nr_running is checked to
3927 	 * avoid unnecessary task stacking.
3928 	 *
3929 	 * Note that we can only get here with (wakee) p->on_rq=0,
3930 	 * p->on_cpu can be whatever, we've done the dequeue, so
3931 	 * the wakee has been accounted out of ->nr_running.
3932 	 */
3933 	if (!cpu_rq(cpu)->nr_running)
3934 		return true;
3935 
3936 	return false;
3937 }
3938 
3939 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3940 {
3941 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3942 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3943 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3944 		return true;
3945 	}
3946 
3947 	return false;
3948 }
3949 
3950 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3951 {
3952 	struct rq *rq = cpu_rq(cpu);
3953 	struct rq_flags rf;
3954 
3955 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3956 		return;
3957 
3958 	rq_lock(rq, &rf);
3959 	update_rq_clock(rq);
3960 	ttwu_do_activate(rq, p, wake_flags, &rf);
3961 	rq_unlock(rq, &rf);
3962 }
3963 
3964 /*
3965  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3966  *
3967  * The caller holds p::pi_lock if p != current or has preemption
3968  * disabled when p == current.
3969  *
3970  * The rules of saved_state:
3971  *
3972  *   The related locking code always holds p::pi_lock when updating
3973  *   p::saved_state, which means the code is fully serialized in both cases.
3974  *
3975  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
3976  *   No other bits set. This allows to distinguish all wakeup scenarios.
3977  *
3978  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
3979  *   allows us to prevent early wakeup of tasks before they can be run on
3980  *   asymmetric ISA architectures (eg ARMv9).
3981  */
3982 static __always_inline
3983 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3984 {
3985 	int match;
3986 
3987 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3988 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3989 			     state != TASK_RTLOCK_WAIT);
3990 	}
3991 
3992 	*success = !!(match = __task_state_match(p, state));
3993 
3994 	/*
3995 	 * Saved state preserves the task state across blocking on
3996 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
3997 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
3998 	 * because it waits for a lock wakeup or __thaw_task(). Also
3999 	 * indicate success because from the regular waker's point of
4000 	 * view this has succeeded.
4001 	 *
4002 	 * After acquiring the lock the task will restore p::__state
4003 	 * from p::saved_state which ensures that the regular
4004 	 * wakeup is not lost. The restore will also set
4005 	 * p::saved_state to TASK_RUNNING so any further tests will
4006 	 * not result in false positives vs. @success
4007 	 */
4008 	if (match < 0)
4009 		p->saved_state = TASK_RUNNING;
4010 
4011 	return match > 0;
4012 }
4013 
4014 /*
4015  * Notes on Program-Order guarantees on SMP systems.
4016  *
4017  *  MIGRATION
4018  *
4019  * The basic program-order guarantee on SMP systems is that when a task [t]
4020  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4021  * execution on its new CPU [c1].
4022  *
4023  * For migration (of runnable tasks) this is provided by the following means:
4024  *
4025  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4026  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4027  *     rq(c1)->lock (if not at the same time, then in that order).
4028  *  C) LOCK of the rq(c1)->lock scheduling in task
4029  *
4030  * Release/acquire chaining guarantees that B happens after A and C after B.
4031  * Note: the CPU doing B need not be c0 or c1
4032  *
4033  * Example:
4034  *
4035  *   CPU0            CPU1            CPU2
4036  *
4037  *   LOCK rq(0)->lock
4038  *   sched-out X
4039  *   sched-in Y
4040  *   UNLOCK rq(0)->lock
4041  *
4042  *                                   LOCK rq(0)->lock // orders against CPU0
4043  *                                   dequeue X
4044  *                                   UNLOCK rq(0)->lock
4045  *
4046  *                                   LOCK rq(1)->lock
4047  *                                   enqueue X
4048  *                                   UNLOCK rq(1)->lock
4049  *
4050  *                   LOCK rq(1)->lock // orders against CPU2
4051  *                   sched-out Z
4052  *                   sched-in X
4053  *                   UNLOCK rq(1)->lock
4054  *
4055  *
4056  *  BLOCKING -- aka. SLEEP + WAKEUP
4057  *
4058  * For blocking we (obviously) need to provide the same guarantee as for
4059  * migration. However the means are completely different as there is no lock
4060  * chain to provide order. Instead we do:
4061  *
4062  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4063  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4064  *
4065  * Example:
4066  *
4067  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4068  *
4069  *   LOCK rq(0)->lock LOCK X->pi_lock
4070  *   dequeue X
4071  *   sched-out X
4072  *   smp_store_release(X->on_cpu, 0);
4073  *
4074  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4075  *                    X->state = WAKING
4076  *                    set_task_cpu(X,2)
4077  *
4078  *                    LOCK rq(2)->lock
4079  *                    enqueue X
4080  *                    X->state = RUNNING
4081  *                    UNLOCK rq(2)->lock
4082  *
4083  *                                          LOCK rq(2)->lock // orders against CPU1
4084  *                                          sched-out Z
4085  *                                          sched-in X
4086  *                                          UNLOCK rq(2)->lock
4087  *
4088  *                    UNLOCK X->pi_lock
4089  *   UNLOCK rq(0)->lock
4090  *
4091  *
4092  * However, for wakeups there is a second guarantee we must provide, namely we
4093  * must ensure that CONDITION=1 done by the caller can not be reordered with
4094  * accesses to the task state; see try_to_wake_up() and set_current_state().
4095  */
4096 
4097 /**
4098  * try_to_wake_up - wake up a thread
4099  * @p: the thread to be awakened
4100  * @state: the mask of task states that can be woken
4101  * @wake_flags: wake modifier flags (WF_*)
4102  *
4103  * Conceptually does:
4104  *
4105  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4106  *
4107  * If the task was not queued/runnable, also place it back on a runqueue.
4108  *
4109  * This function is atomic against schedule() which would dequeue the task.
4110  *
4111  * It issues a full memory barrier before accessing @p->state, see the comment
4112  * with set_current_state().
4113  *
4114  * Uses p->pi_lock to serialize against concurrent wake-ups.
4115  *
4116  * Relies on p->pi_lock stabilizing:
4117  *  - p->sched_class
4118  *  - p->cpus_ptr
4119  *  - p->sched_task_group
4120  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4121  *
4122  * Tries really hard to only take one task_rq(p)->lock for performance.
4123  * Takes rq->lock in:
4124  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4125  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4126  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4127  *
4128  * As a consequence we race really badly with just about everything. See the
4129  * many memory barriers and their comments for details.
4130  *
4131  * Return: %true if @p->state changes (an actual wakeup was done),
4132  *	   %false otherwise.
4133  */
4134 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4135 {
4136 	guard(preempt)();
4137 	int cpu, success = 0;
4138 
4139 	wake_flags |= WF_TTWU;
4140 
4141 	if (p == current) {
4142 		/*
4143 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4144 		 * == smp_processor_id()'. Together this means we can special
4145 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4146 		 * without taking any locks.
4147 		 *
4148 		 * Specifically, given current runs ttwu() we must be before
4149 		 * schedule()'s block_task(), as such this must not observe
4150 		 * sched_delayed.
4151 		 *
4152 		 * In particular:
4153 		 *  - we rely on Program-Order guarantees for all the ordering,
4154 		 *  - we're serialized against set_special_state() by virtue of
4155 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4156 		 */
4157 		WARN_ON_ONCE(p->se.sched_delayed);
4158 		if (!ttwu_state_match(p, state, &success))
4159 			goto out;
4160 
4161 		trace_sched_waking(p);
4162 		ttwu_do_wakeup(p);
4163 		goto out;
4164 	}
4165 
4166 	/*
4167 	 * If we are going to wake up a thread waiting for CONDITION we
4168 	 * need to ensure that CONDITION=1 done by the caller can not be
4169 	 * reordered with p->state check below. This pairs with smp_store_mb()
4170 	 * in set_current_state() that the waiting thread does.
4171 	 */
4172 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4173 		smp_mb__after_spinlock();
4174 		if (!ttwu_state_match(p, state, &success))
4175 			break;
4176 
4177 		trace_sched_waking(p);
4178 
4179 		/*
4180 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4181 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4182 		 * in smp_cond_load_acquire() below.
4183 		 *
4184 		 * sched_ttwu_pending()			try_to_wake_up()
4185 		 *   STORE p->on_rq = 1			  LOAD p->state
4186 		 *   UNLOCK rq->lock
4187 		 *
4188 		 * __schedule() (switch to task 'p')
4189 		 *   LOCK rq->lock			  smp_rmb();
4190 		 *   smp_mb__after_spinlock();
4191 		 *   UNLOCK rq->lock
4192 		 *
4193 		 * [task p]
4194 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4195 		 *
4196 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4197 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4198 		 *
4199 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4200 		 */
4201 		smp_rmb();
4202 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4203 			break;
4204 
4205 		/*
4206 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4207 		 * possible to, falsely, observe p->on_cpu == 0.
4208 		 *
4209 		 * One must be running (->on_cpu == 1) in order to remove oneself
4210 		 * from the runqueue.
4211 		 *
4212 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4213 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4214 		 *   UNLOCK rq->lock
4215 		 *
4216 		 * __schedule() (put 'p' to sleep)
4217 		 *   LOCK rq->lock			  smp_rmb();
4218 		 *   smp_mb__after_spinlock();
4219 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4220 		 *
4221 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4222 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4223 		 *
4224 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4225 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4226 		 * care about it's own p->state. See the comment in __schedule().
4227 		 */
4228 		smp_acquire__after_ctrl_dep();
4229 
4230 		/*
4231 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4232 		 * == 0), which means we need to do an enqueue, change p->state to
4233 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4234 		 * enqueue, such as ttwu_queue_wakelist().
4235 		 */
4236 		WRITE_ONCE(p->__state, TASK_WAKING);
4237 
4238 		/*
4239 		 * If the owning (remote) CPU is still in the middle of schedule() with
4240 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4241 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4242 		 * let the waker make forward progress. This is safe because IRQs are
4243 		 * disabled and the IPI will deliver after on_cpu is cleared.
4244 		 *
4245 		 * Ensure we load task_cpu(p) after p->on_cpu:
4246 		 *
4247 		 * set_task_cpu(p, cpu);
4248 		 *   STORE p->cpu = @cpu
4249 		 * __schedule() (switch to task 'p')
4250 		 *   LOCK rq->lock
4251 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4252 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4253 		 *
4254 		 * to ensure we observe the correct CPU on which the task is currently
4255 		 * scheduling.
4256 		 */
4257 		if (smp_load_acquire(&p->on_cpu) &&
4258 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4259 			break;
4260 
4261 		/*
4262 		 * If the owning (remote) CPU is still in the middle of schedule() with
4263 		 * this task as prev, wait until it's done referencing the task.
4264 		 *
4265 		 * Pairs with the smp_store_release() in finish_task().
4266 		 *
4267 		 * This ensures that tasks getting woken will be fully ordered against
4268 		 * their previous state and preserve Program Order.
4269 		 */
4270 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4271 
4272 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4273 		if (task_cpu(p) != cpu) {
4274 			if (p->in_iowait) {
4275 				delayacct_blkio_end(p);
4276 				atomic_dec(&task_rq(p)->nr_iowait);
4277 			}
4278 
4279 			wake_flags |= WF_MIGRATED;
4280 			psi_ttwu_dequeue(p);
4281 			set_task_cpu(p, cpu);
4282 		}
4283 
4284 		ttwu_queue(p, cpu, wake_flags);
4285 	}
4286 out:
4287 	if (success)
4288 		ttwu_stat(p, task_cpu(p), wake_flags);
4289 
4290 	return success;
4291 }
4292 
4293 static bool __task_needs_rq_lock(struct task_struct *p)
4294 {
4295 	unsigned int state = READ_ONCE(p->__state);
4296 
4297 	/*
4298 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4299 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4300 	 * locks at the end, see ttwu_queue_wakelist().
4301 	 */
4302 	if (state == TASK_RUNNING || state == TASK_WAKING)
4303 		return true;
4304 
4305 	/*
4306 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4307 	 * possible to, falsely, observe p->on_rq == 0.
4308 	 *
4309 	 * See try_to_wake_up() for a longer comment.
4310 	 */
4311 	smp_rmb();
4312 	if (p->on_rq)
4313 		return true;
4314 
4315 	/*
4316 	 * Ensure the task has finished __schedule() and will not be referenced
4317 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4318 	 */
4319 	smp_rmb();
4320 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4321 
4322 	return false;
4323 }
4324 
4325 /**
4326  * task_call_func - Invoke a function on task in fixed state
4327  * @p: Process for which the function is to be invoked, can be @current.
4328  * @func: Function to invoke.
4329  * @arg: Argument to function.
4330  *
4331  * Fix the task in it's current state by avoiding wakeups and or rq operations
4332  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4333  * task_curr() to work out what the state is, if required.  Given that @func
4334  * can be invoked with a runqueue lock held, it had better be quite
4335  * lightweight.
4336  *
4337  * Returns:
4338  *   Whatever @func returns
4339  */
4340 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4341 {
4342 	struct rq *rq = NULL;
4343 	struct rq_flags rf;
4344 	int ret;
4345 
4346 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4347 
4348 	if (__task_needs_rq_lock(p))
4349 		rq = __task_rq_lock(p, &rf);
4350 
4351 	/*
4352 	 * At this point the task is pinned; either:
4353 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4354 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4355 	 *  - queued, and we're holding off schedule	 (rq->lock)
4356 	 *  - running, and we're holding off de-schedule (rq->lock)
4357 	 *
4358 	 * The called function (@func) can use: task_curr(), p->on_rq and
4359 	 * p->__state to differentiate between these states.
4360 	 */
4361 	ret = func(p, arg);
4362 
4363 	if (rq)
4364 		rq_unlock(rq, &rf);
4365 
4366 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4367 	return ret;
4368 }
4369 
4370 /**
4371  * cpu_curr_snapshot - Return a snapshot of the currently running task
4372  * @cpu: The CPU on which to snapshot the task.
4373  *
4374  * Returns the task_struct pointer of the task "currently" running on
4375  * the specified CPU.
4376  *
4377  * If the specified CPU was offline, the return value is whatever it
4378  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4379  * task, but there is no guarantee.  Callers wishing a useful return
4380  * value must take some action to ensure that the specified CPU remains
4381  * online throughout.
4382  *
4383  * This function executes full memory barriers before and after fetching
4384  * the pointer, which permits the caller to confine this function's fetch
4385  * with respect to the caller's accesses to other shared variables.
4386  */
4387 struct task_struct *cpu_curr_snapshot(int cpu)
4388 {
4389 	struct rq *rq = cpu_rq(cpu);
4390 	struct task_struct *t;
4391 	struct rq_flags rf;
4392 
4393 	rq_lock_irqsave(rq, &rf);
4394 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4395 	t = rcu_dereference(cpu_curr(cpu));
4396 	rq_unlock_irqrestore(rq, &rf);
4397 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4398 
4399 	return t;
4400 }
4401 
4402 /**
4403  * wake_up_process - Wake up a specific process
4404  * @p: The process to be woken up.
4405  *
4406  * Attempt to wake up the nominated process and move it to the set of runnable
4407  * processes.
4408  *
4409  * Return: 1 if the process was woken up, 0 if it was already running.
4410  *
4411  * This function executes a full memory barrier before accessing the task state.
4412  */
4413 int wake_up_process(struct task_struct *p)
4414 {
4415 	return try_to_wake_up(p, TASK_NORMAL, 0);
4416 }
4417 EXPORT_SYMBOL(wake_up_process);
4418 
4419 int wake_up_state(struct task_struct *p, unsigned int state)
4420 {
4421 	return try_to_wake_up(p, state, 0);
4422 }
4423 
4424 /*
4425  * Perform scheduler related setup for a newly forked process p.
4426  * p is forked by current.
4427  *
4428  * __sched_fork() is basic setup which is also used by sched_init() to
4429  * initialize the boot CPU's idle task.
4430  */
4431 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4432 {
4433 	p->on_rq			= 0;
4434 
4435 	p->se.on_rq			= 0;
4436 	p->se.exec_start		= 0;
4437 	p->se.sum_exec_runtime		= 0;
4438 	p->se.prev_sum_exec_runtime	= 0;
4439 	p->se.nr_migrations		= 0;
4440 	p->se.vruntime			= 0;
4441 	p->se.vlag			= 0;
4442 	INIT_LIST_HEAD(&p->se.group_node);
4443 
4444 	/* A delayed task cannot be in clone(). */
4445 	WARN_ON_ONCE(p->se.sched_delayed);
4446 
4447 #ifdef CONFIG_FAIR_GROUP_SCHED
4448 	p->se.cfs_rq			= NULL;
4449 #endif
4450 
4451 #ifdef CONFIG_SCHEDSTATS
4452 	/* Even if schedstat is disabled, there should not be garbage */
4453 	memset(&p->stats, 0, sizeof(p->stats));
4454 #endif
4455 
4456 	init_dl_entity(&p->dl);
4457 
4458 	INIT_LIST_HEAD(&p->rt.run_list);
4459 	p->rt.timeout		= 0;
4460 	p->rt.time_slice	= sched_rr_timeslice;
4461 	p->rt.on_rq		= 0;
4462 	p->rt.on_list		= 0;
4463 
4464 #ifdef CONFIG_SCHED_CLASS_EXT
4465 	init_scx_entity(&p->scx);
4466 #endif
4467 
4468 #ifdef CONFIG_PREEMPT_NOTIFIERS
4469 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4470 #endif
4471 
4472 #ifdef CONFIG_COMPACTION
4473 	p->capture_control = NULL;
4474 #endif
4475 	init_numa_balancing(clone_flags, p);
4476 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4477 	p->migration_pending = NULL;
4478 	init_sched_mm_cid(p);
4479 }
4480 
4481 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4482 
4483 #ifdef CONFIG_NUMA_BALANCING
4484 
4485 int sysctl_numa_balancing_mode;
4486 
4487 static void __set_numabalancing_state(bool enabled)
4488 {
4489 	if (enabled)
4490 		static_branch_enable(&sched_numa_balancing);
4491 	else
4492 		static_branch_disable(&sched_numa_balancing);
4493 }
4494 
4495 void set_numabalancing_state(bool enabled)
4496 {
4497 	if (enabled)
4498 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4499 	else
4500 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4501 	__set_numabalancing_state(enabled);
4502 }
4503 
4504 #ifdef CONFIG_PROC_SYSCTL
4505 static void reset_memory_tiering(void)
4506 {
4507 	struct pglist_data *pgdat;
4508 
4509 	for_each_online_pgdat(pgdat) {
4510 		pgdat->nbp_threshold = 0;
4511 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4512 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4513 	}
4514 }
4515 
4516 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4517 			  void *buffer, size_t *lenp, loff_t *ppos)
4518 {
4519 	struct ctl_table t;
4520 	int err;
4521 	int state = sysctl_numa_balancing_mode;
4522 
4523 	if (write && !capable(CAP_SYS_ADMIN))
4524 		return -EPERM;
4525 
4526 	t = *table;
4527 	t.data = &state;
4528 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4529 	if (err < 0)
4530 		return err;
4531 	if (write) {
4532 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4533 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4534 			reset_memory_tiering();
4535 		sysctl_numa_balancing_mode = state;
4536 		__set_numabalancing_state(state);
4537 	}
4538 	return err;
4539 }
4540 #endif /* CONFIG_PROC_SYSCTL */
4541 #endif /* CONFIG_NUMA_BALANCING */
4542 
4543 #ifdef CONFIG_SCHEDSTATS
4544 
4545 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4546 
4547 static void set_schedstats(bool enabled)
4548 {
4549 	if (enabled)
4550 		static_branch_enable(&sched_schedstats);
4551 	else
4552 		static_branch_disable(&sched_schedstats);
4553 }
4554 
4555 void force_schedstat_enabled(void)
4556 {
4557 	if (!schedstat_enabled()) {
4558 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4559 		static_branch_enable(&sched_schedstats);
4560 	}
4561 }
4562 
4563 static int __init setup_schedstats(char *str)
4564 {
4565 	int ret = 0;
4566 	if (!str)
4567 		goto out;
4568 
4569 	if (!strcmp(str, "enable")) {
4570 		set_schedstats(true);
4571 		ret = 1;
4572 	} else if (!strcmp(str, "disable")) {
4573 		set_schedstats(false);
4574 		ret = 1;
4575 	}
4576 out:
4577 	if (!ret)
4578 		pr_warn("Unable to parse schedstats=\n");
4579 
4580 	return ret;
4581 }
4582 __setup("schedstats=", setup_schedstats);
4583 
4584 #ifdef CONFIG_PROC_SYSCTL
4585 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4586 		size_t *lenp, loff_t *ppos)
4587 {
4588 	struct ctl_table t;
4589 	int err;
4590 	int state = static_branch_likely(&sched_schedstats);
4591 
4592 	if (write && !capable(CAP_SYS_ADMIN))
4593 		return -EPERM;
4594 
4595 	t = *table;
4596 	t.data = &state;
4597 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4598 	if (err < 0)
4599 		return err;
4600 	if (write)
4601 		set_schedstats(state);
4602 	return err;
4603 }
4604 #endif /* CONFIG_PROC_SYSCTL */
4605 #endif /* CONFIG_SCHEDSTATS */
4606 
4607 #ifdef CONFIG_SYSCTL
4608 static const struct ctl_table sched_core_sysctls[] = {
4609 #ifdef CONFIG_SCHEDSTATS
4610 	{
4611 		.procname       = "sched_schedstats",
4612 		.data           = NULL,
4613 		.maxlen         = sizeof(unsigned int),
4614 		.mode           = 0644,
4615 		.proc_handler   = sysctl_schedstats,
4616 		.extra1         = SYSCTL_ZERO,
4617 		.extra2         = SYSCTL_ONE,
4618 	},
4619 #endif /* CONFIG_SCHEDSTATS */
4620 #ifdef CONFIG_UCLAMP_TASK
4621 	{
4622 		.procname       = "sched_util_clamp_min",
4623 		.data           = &sysctl_sched_uclamp_util_min,
4624 		.maxlen         = sizeof(unsigned int),
4625 		.mode           = 0644,
4626 		.proc_handler   = sysctl_sched_uclamp_handler,
4627 	},
4628 	{
4629 		.procname       = "sched_util_clamp_max",
4630 		.data           = &sysctl_sched_uclamp_util_max,
4631 		.maxlen         = sizeof(unsigned int),
4632 		.mode           = 0644,
4633 		.proc_handler   = sysctl_sched_uclamp_handler,
4634 	},
4635 	{
4636 		.procname       = "sched_util_clamp_min_rt_default",
4637 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4638 		.maxlen         = sizeof(unsigned int),
4639 		.mode           = 0644,
4640 		.proc_handler   = sysctl_sched_uclamp_handler,
4641 	},
4642 #endif /* CONFIG_UCLAMP_TASK */
4643 #ifdef CONFIG_NUMA_BALANCING
4644 	{
4645 		.procname	= "numa_balancing",
4646 		.data		= NULL, /* filled in by handler */
4647 		.maxlen		= sizeof(unsigned int),
4648 		.mode		= 0644,
4649 		.proc_handler	= sysctl_numa_balancing,
4650 		.extra1		= SYSCTL_ZERO,
4651 		.extra2		= SYSCTL_FOUR,
4652 	},
4653 #endif /* CONFIG_NUMA_BALANCING */
4654 };
4655 static int __init sched_core_sysctl_init(void)
4656 {
4657 	register_sysctl_init("kernel", sched_core_sysctls);
4658 	return 0;
4659 }
4660 late_initcall(sched_core_sysctl_init);
4661 #endif /* CONFIG_SYSCTL */
4662 
4663 /*
4664  * fork()/clone()-time setup:
4665  */
4666 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4667 {
4668 	__sched_fork(clone_flags, p);
4669 	/*
4670 	 * We mark the process as NEW here. This guarantees that
4671 	 * nobody will actually run it, and a signal or other external
4672 	 * event cannot wake it up and insert it on the runqueue either.
4673 	 */
4674 	p->__state = TASK_NEW;
4675 
4676 	/*
4677 	 * Make sure we do not leak PI boosting priority to the child.
4678 	 */
4679 	p->prio = current->normal_prio;
4680 
4681 	uclamp_fork(p);
4682 
4683 	/*
4684 	 * Revert to default priority/policy on fork if requested.
4685 	 */
4686 	if (unlikely(p->sched_reset_on_fork)) {
4687 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4688 			p->policy = SCHED_NORMAL;
4689 			p->static_prio = NICE_TO_PRIO(0);
4690 			p->rt_priority = 0;
4691 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4692 			p->static_prio = NICE_TO_PRIO(0);
4693 
4694 		p->prio = p->normal_prio = p->static_prio;
4695 		set_load_weight(p, false);
4696 		p->se.custom_slice = 0;
4697 		p->se.slice = sysctl_sched_base_slice;
4698 
4699 		/*
4700 		 * We don't need the reset flag anymore after the fork. It has
4701 		 * fulfilled its duty:
4702 		 */
4703 		p->sched_reset_on_fork = 0;
4704 	}
4705 
4706 	if (dl_prio(p->prio))
4707 		return -EAGAIN;
4708 
4709 	scx_pre_fork(p);
4710 
4711 	if (rt_prio(p->prio)) {
4712 		p->sched_class = &rt_sched_class;
4713 #ifdef CONFIG_SCHED_CLASS_EXT
4714 	} else if (task_should_scx(p->policy)) {
4715 		p->sched_class = &ext_sched_class;
4716 #endif
4717 	} else {
4718 		p->sched_class = &fair_sched_class;
4719 	}
4720 
4721 	init_entity_runnable_average(&p->se);
4722 
4723 
4724 #ifdef CONFIG_SCHED_INFO
4725 	if (likely(sched_info_on()))
4726 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4727 #endif
4728 	p->on_cpu = 0;
4729 	init_task_preempt_count(p);
4730 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4731 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4732 
4733 	return 0;
4734 }
4735 
4736 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4737 {
4738 	unsigned long flags;
4739 
4740 	/*
4741 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4742 	 * required yet, but lockdep gets upset if rules are violated.
4743 	 */
4744 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4745 #ifdef CONFIG_CGROUP_SCHED
4746 	if (1) {
4747 		struct task_group *tg;
4748 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4749 				  struct task_group, css);
4750 		tg = autogroup_task_group(p, tg);
4751 		p->sched_task_group = tg;
4752 	}
4753 #endif
4754 	rseq_migrate(p);
4755 	/*
4756 	 * We're setting the CPU for the first time, we don't migrate,
4757 	 * so use __set_task_cpu().
4758 	 */
4759 	__set_task_cpu(p, smp_processor_id());
4760 	if (p->sched_class->task_fork)
4761 		p->sched_class->task_fork(p);
4762 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4763 
4764 	return scx_fork(p);
4765 }
4766 
4767 void sched_cancel_fork(struct task_struct *p)
4768 {
4769 	scx_cancel_fork(p);
4770 }
4771 
4772 void sched_post_fork(struct task_struct *p)
4773 {
4774 	uclamp_post_fork(p);
4775 	scx_post_fork(p);
4776 }
4777 
4778 unsigned long to_ratio(u64 period, u64 runtime)
4779 {
4780 	if (runtime == RUNTIME_INF)
4781 		return BW_UNIT;
4782 
4783 	/*
4784 	 * Doing this here saves a lot of checks in all
4785 	 * the calling paths, and returning zero seems
4786 	 * safe for them anyway.
4787 	 */
4788 	if (period == 0)
4789 		return 0;
4790 
4791 	return div64_u64(runtime << BW_SHIFT, period);
4792 }
4793 
4794 /*
4795  * wake_up_new_task - wake up a newly created task for the first time.
4796  *
4797  * This function will do some initial scheduler statistics housekeeping
4798  * that must be done for every newly created context, then puts the task
4799  * on the runqueue and wakes it.
4800  */
4801 void wake_up_new_task(struct task_struct *p)
4802 {
4803 	struct rq_flags rf;
4804 	struct rq *rq;
4805 	int wake_flags = WF_FORK;
4806 
4807 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4808 	WRITE_ONCE(p->__state, TASK_RUNNING);
4809 	/*
4810 	 * Fork balancing, do it here and not earlier because:
4811 	 *  - cpus_ptr can change in the fork path
4812 	 *  - any previously selected CPU might disappear through hotplug
4813 	 *
4814 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4815 	 * as we're not fully set-up yet.
4816 	 */
4817 	p->recent_used_cpu = task_cpu(p);
4818 	rseq_migrate(p);
4819 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4820 	rq = __task_rq_lock(p, &rf);
4821 	update_rq_clock(rq);
4822 	post_init_entity_util_avg(p);
4823 
4824 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4825 	trace_sched_wakeup_new(p);
4826 	wakeup_preempt(rq, p, wake_flags);
4827 	if (p->sched_class->task_woken) {
4828 		/*
4829 		 * Nothing relies on rq->lock after this, so it's fine to
4830 		 * drop it.
4831 		 */
4832 		rq_unpin_lock(rq, &rf);
4833 		p->sched_class->task_woken(rq, p);
4834 		rq_repin_lock(rq, &rf);
4835 	}
4836 	task_rq_unlock(rq, p, &rf);
4837 }
4838 
4839 #ifdef CONFIG_PREEMPT_NOTIFIERS
4840 
4841 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4842 
4843 void preempt_notifier_inc(void)
4844 {
4845 	static_branch_inc(&preempt_notifier_key);
4846 }
4847 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4848 
4849 void preempt_notifier_dec(void)
4850 {
4851 	static_branch_dec(&preempt_notifier_key);
4852 }
4853 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4854 
4855 /**
4856  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4857  * @notifier: notifier struct to register
4858  */
4859 void preempt_notifier_register(struct preempt_notifier *notifier)
4860 {
4861 	if (!static_branch_unlikely(&preempt_notifier_key))
4862 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4863 
4864 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4865 }
4866 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4867 
4868 /**
4869  * preempt_notifier_unregister - no longer interested in preemption notifications
4870  * @notifier: notifier struct to unregister
4871  *
4872  * This is *not* safe to call from within a preemption notifier.
4873  */
4874 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4875 {
4876 	hlist_del(&notifier->link);
4877 }
4878 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4879 
4880 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4881 {
4882 	struct preempt_notifier *notifier;
4883 
4884 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4885 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4886 }
4887 
4888 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4889 {
4890 	if (static_branch_unlikely(&preempt_notifier_key))
4891 		__fire_sched_in_preempt_notifiers(curr);
4892 }
4893 
4894 static void
4895 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4896 				   struct task_struct *next)
4897 {
4898 	struct preempt_notifier *notifier;
4899 
4900 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4901 		notifier->ops->sched_out(notifier, next);
4902 }
4903 
4904 static __always_inline void
4905 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4906 				 struct task_struct *next)
4907 {
4908 	if (static_branch_unlikely(&preempt_notifier_key))
4909 		__fire_sched_out_preempt_notifiers(curr, next);
4910 }
4911 
4912 #else /* !CONFIG_PREEMPT_NOTIFIERS: */
4913 
4914 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4915 {
4916 }
4917 
4918 static inline void
4919 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4920 				 struct task_struct *next)
4921 {
4922 }
4923 
4924 #endif /* !CONFIG_PREEMPT_NOTIFIERS */
4925 
4926 static inline void prepare_task(struct task_struct *next)
4927 {
4928 	/*
4929 	 * Claim the task as running, we do this before switching to it
4930 	 * such that any running task will have this set.
4931 	 *
4932 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4933 	 * its ordering comment.
4934 	 */
4935 	WRITE_ONCE(next->on_cpu, 1);
4936 }
4937 
4938 static inline void finish_task(struct task_struct *prev)
4939 {
4940 	/*
4941 	 * This must be the very last reference to @prev from this CPU. After
4942 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4943 	 * must ensure this doesn't happen until the switch is completely
4944 	 * finished.
4945 	 *
4946 	 * In particular, the load of prev->state in finish_task_switch() must
4947 	 * happen before this.
4948 	 *
4949 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4950 	 */
4951 	smp_store_release(&prev->on_cpu, 0);
4952 }
4953 
4954 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4955 {
4956 	void (*func)(struct rq *rq);
4957 	struct balance_callback *next;
4958 
4959 	lockdep_assert_rq_held(rq);
4960 
4961 	while (head) {
4962 		func = (void (*)(struct rq *))head->func;
4963 		next = head->next;
4964 		head->next = NULL;
4965 		head = next;
4966 
4967 		func(rq);
4968 	}
4969 }
4970 
4971 static void balance_push(struct rq *rq);
4972 
4973 /*
4974  * balance_push_callback is a right abuse of the callback interface and plays
4975  * by significantly different rules.
4976  *
4977  * Where the normal balance_callback's purpose is to be ran in the same context
4978  * that queued it (only later, when it's safe to drop rq->lock again),
4979  * balance_push_callback is specifically targeted at __schedule().
4980  *
4981  * This abuse is tolerated because it places all the unlikely/odd cases behind
4982  * a single test, namely: rq->balance_callback == NULL.
4983  */
4984 struct balance_callback balance_push_callback = {
4985 	.next = NULL,
4986 	.func = balance_push,
4987 };
4988 
4989 static inline struct balance_callback *
4990 __splice_balance_callbacks(struct rq *rq, bool split)
4991 {
4992 	struct balance_callback *head = rq->balance_callback;
4993 
4994 	if (likely(!head))
4995 		return NULL;
4996 
4997 	lockdep_assert_rq_held(rq);
4998 	/*
4999 	 * Must not take balance_push_callback off the list when
5000 	 * splice_balance_callbacks() and balance_callbacks() are not
5001 	 * in the same rq->lock section.
5002 	 *
5003 	 * In that case it would be possible for __schedule() to interleave
5004 	 * and observe the list empty.
5005 	 */
5006 	if (split && head == &balance_push_callback)
5007 		head = NULL;
5008 	else
5009 		rq->balance_callback = NULL;
5010 
5011 	return head;
5012 }
5013 
5014 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5015 {
5016 	return __splice_balance_callbacks(rq, true);
5017 }
5018 
5019 static void __balance_callbacks(struct rq *rq)
5020 {
5021 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5022 }
5023 
5024 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5025 {
5026 	unsigned long flags;
5027 
5028 	if (unlikely(head)) {
5029 		raw_spin_rq_lock_irqsave(rq, flags);
5030 		do_balance_callbacks(rq, head);
5031 		raw_spin_rq_unlock_irqrestore(rq, flags);
5032 	}
5033 }
5034 
5035 static inline void
5036 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5037 {
5038 	/*
5039 	 * Since the runqueue lock will be released by the next
5040 	 * task (which is an invalid locking op but in the case
5041 	 * of the scheduler it's an obvious special-case), so we
5042 	 * do an early lockdep release here:
5043 	 */
5044 	rq_unpin_lock(rq, rf);
5045 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5046 #ifdef CONFIG_DEBUG_SPINLOCK
5047 	/* this is a valid case when another task releases the spinlock */
5048 	rq_lockp(rq)->owner = next;
5049 #endif
5050 }
5051 
5052 static inline void finish_lock_switch(struct rq *rq)
5053 {
5054 	/*
5055 	 * If we are tracking spinlock dependencies then we have to
5056 	 * fix up the runqueue lock - which gets 'carried over' from
5057 	 * prev into current:
5058 	 */
5059 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5060 	__balance_callbacks(rq);
5061 	raw_spin_rq_unlock_irq(rq);
5062 }
5063 
5064 /*
5065  * NOP if the arch has not defined these:
5066  */
5067 
5068 #ifndef prepare_arch_switch
5069 # define prepare_arch_switch(next)	do { } while (0)
5070 #endif
5071 
5072 #ifndef finish_arch_post_lock_switch
5073 # define finish_arch_post_lock_switch()	do { } while (0)
5074 #endif
5075 
5076 static inline void kmap_local_sched_out(void)
5077 {
5078 #ifdef CONFIG_KMAP_LOCAL
5079 	if (unlikely(current->kmap_ctrl.idx))
5080 		__kmap_local_sched_out();
5081 #endif
5082 }
5083 
5084 static inline void kmap_local_sched_in(void)
5085 {
5086 #ifdef CONFIG_KMAP_LOCAL
5087 	if (unlikely(current->kmap_ctrl.idx))
5088 		__kmap_local_sched_in();
5089 #endif
5090 }
5091 
5092 /**
5093  * prepare_task_switch - prepare to switch tasks
5094  * @rq: the runqueue preparing to switch
5095  * @prev: the current task that is being switched out
5096  * @next: the task we are going to switch to.
5097  *
5098  * This is called with the rq lock held and interrupts off. It must
5099  * be paired with a subsequent finish_task_switch after the context
5100  * switch.
5101  *
5102  * prepare_task_switch sets up locking and calls architecture specific
5103  * hooks.
5104  */
5105 static inline void
5106 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5107 		    struct task_struct *next)
5108 {
5109 	kcov_prepare_switch(prev);
5110 	sched_info_switch(rq, prev, next);
5111 	perf_event_task_sched_out(prev, next);
5112 	rseq_preempt(prev);
5113 	fire_sched_out_preempt_notifiers(prev, next);
5114 	kmap_local_sched_out();
5115 	prepare_task(next);
5116 	prepare_arch_switch(next);
5117 }
5118 
5119 /**
5120  * finish_task_switch - clean up after a task-switch
5121  * @prev: the thread we just switched away from.
5122  *
5123  * finish_task_switch must be called after the context switch, paired
5124  * with a prepare_task_switch call before the context switch.
5125  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5126  * and do any other architecture-specific cleanup actions.
5127  *
5128  * Note that we may have delayed dropping an mm in context_switch(). If
5129  * so, we finish that here outside of the runqueue lock. (Doing it
5130  * with the lock held can cause deadlocks; see schedule() for
5131  * details.)
5132  *
5133  * The context switch have flipped the stack from under us and restored the
5134  * local variables which were saved when this task called schedule() in the
5135  * past. 'prev == current' is still correct but we need to recalculate this_rq
5136  * because prev may have moved to another CPU.
5137  */
5138 static struct rq *finish_task_switch(struct task_struct *prev)
5139 	__releases(rq->lock)
5140 {
5141 	struct rq *rq = this_rq();
5142 	struct mm_struct *mm = rq->prev_mm;
5143 	unsigned int prev_state;
5144 
5145 	/*
5146 	 * The previous task will have left us with a preempt_count of 2
5147 	 * because it left us after:
5148 	 *
5149 	 *	schedule()
5150 	 *	  preempt_disable();			// 1
5151 	 *	  __schedule()
5152 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5153 	 *
5154 	 * Also, see FORK_PREEMPT_COUNT.
5155 	 */
5156 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5157 		      "corrupted preempt_count: %s/%d/0x%x\n",
5158 		      current->comm, current->pid, preempt_count()))
5159 		preempt_count_set(FORK_PREEMPT_COUNT);
5160 
5161 	rq->prev_mm = NULL;
5162 
5163 	/*
5164 	 * A task struct has one reference for the use as "current".
5165 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5166 	 * schedule one last time. The schedule call will never return, and
5167 	 * the scheduled task must drop that reference.
5168 	 *
5169 	 * We must observe prev->state before clearing prev->on_cpu (in
5170 	 * finish_task), otherwise a concurrent wakeup can get prev
5171 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5172 	 * transition, resulting in a double drop.
5173 	 */
5174 	prev_state = READ_ONCE(prev->__state);
5175 	vtime_task_switch(prev);
5176 	perf_event_task_sched_in(prev, current);
5177 	finish_task(prev);
5178 	tick_nohz_task_switch();
5179 	finish_lock_switch(rq);
5180 	finish_arch_post_lock_switch();
5181 	kcov_finish_switch(current);
5182 	/*
5183 	 * kmap_local_sched_out() is invoked with rq::lock held and
5184 	 * interrupts disabled. There is no requirement for that, but the
5185 	 * sched out code does not have an interrupt enabled section.
5186 	 * Restoring the maps on sched in does not require interrupts being
5187 	 * disabled either.
5188 	 */
5189 	kmap_local_sched_in();
5190 
5191 	fire_sched_in_preempt_notifiers(current);
5192 	/*
5193 	 * When switching through a kernel thread, the loop in
5194 	 * membarrier_{private,global}_expedited() may have observed that
5195 	 * kernel thread and not issued an IPI. It is therefore possible to
5196 	 * schedule between user->kernel->user threads without passing though
5197 	 * switch_mm(). Membarrier requires a barrier after storing to
5198 	 * rq->curr, before returning to userspace, so provide them here:
5199 	 *
5200 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5201 	 *   provided by mmdrop_lazy_tlb(),
5202 	 * - a sync_core for SYNC_CORE.
5203 	 */
5204 	if (mm) {
5205 		membarrier_mm_sync_core_before_usermode(mm);
5206 		mmdrop_lazy_tlb_sched(mm);
5207 	}
5208 
5209 	if (unlikely(prev_state == TASK_DEAD)) {
5210 		if (prev->sched_class->task_dead)
5211 			prev->sched_class->task_dead(prev);
5212 
5213 		/* Task is done with its stack. */
5214 		put_task_stack(prev);
5215 
5216 		put_task_struct_rcu_user(prev);
5217 	}
5218 
5219 	return rq;
5220 }
5221 
5222 /**
5223  * schedule_tail - first thing a freshly forked thread must call.
5224  * @prev: the thread we just switched away from.
5225  */
5226 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5227 	__releases(rq->lock)
5228 {
5229 	/*
5230 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5231 	 * finish_task_switch() for details.
5232 	 *
5233 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5234 	 * and the preempt_enable() will end up enabling preemption (on
5235 	 * PREEMPT_COUNT kernels).
5236 	 */
5237 
5238 	finish_task_switch(prev);
5239 	/*
5240 	 * This is a special case: the newly created task has just
5241 	 * switched the context for the first time. It is returning from
5242 	 * schedule for the first time in this path.
5243 	 */
5244 	trace_sched_exit_tp(true, CALLER_ADDR0);
5245 	preempt_enable();
5246 
5247 	if (current->set_child_tid)
5248 		put_user(task_pid_vnr(current), current->set_child_tid);
5249 
5250 	calculate_sigpending();
5251 }
5252 
5253 /*
5254  * context_switch - switch to the new MM and the new thread's register state.
5255  */
5256 static __always_inline struct rq *
5257 context_switch(struct rq *rq, struct task_struct *prev,
5258 	       struct task_struct *next, struct rq_flags *rf)
5259 {
5260 	prepare_task_switch(rq, prev, next);
5261 
5262 	/*
5263 	 * For paravirt, this is coupled with an exit in switch_to to
5264 	 * combine the page table reload and the switch backend into
5265 	 * one hypercall.
5266 	 */
5267 	arch_start_context_switch(prev);
5268 
5269 	/*
5270 	 * kernel -> kernel   lazy + transfer active
5271 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5272 	 *
5273 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5274 	 *   user ->   user   switch
5275 	 *
5276 	 * switch_mm_cid() needs to be updated if the barriers provided
5277 	 * by context_switch() are modified.
5278 	 */
5279 	if (!next->mm) {                                // to kernel
5280 		enter_lazy_tlb(prev->active_mm, next);
5281 
5282 		next->active_mm = prev->active_mm;
5283 		if (prev->mm)                           // from user
5284 			mmgrab_lazy_tlb(prev->active_mm);
5285 		else
5286 			prev->active_mm = NULL;
5287 	} else {                                        // to user
5288 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5289 		/*
5290 		 * sys_membarrier() requires an smp_mb() between setting
5291 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5292 		 *
5293 		 * The below provides this either through switch_mm(), or in
5294 		 * case 'prev->active_mm == next->mm' through
5295 		 * finish_task_switch()'s mmdrop().
5296 		 */
5297 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5298 		lru_gen_use_mm(next->mm);
5299 
5300 		if (!prev->mm) {                        // from kernel
5301 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5302 			rq->prev_mm = prev->active_mm;
5303 			prev->active_mm = NULL;
5304 		}
5305 	}
5306 
5307 	/* switch_mm_cid() requires the memory barriers above. */
5308 	switch_mm_cid(rq, prev, next);
5309 
5310 	prepare_lock_switch(rq, next, rf);
5311 
5312 	/* Here we just switch the register state and the stack. */
5313 	switch_to(prev, next, prev);
5314 	barrier();
5315 
5316 	return finish_task_switch(prev);
5317 }
5318 
5319 /*
5320  * nr_running and nr_context_switches:
5321  *
5322  * externally visible scheduler statistics: current number of runnable
5323  * threads, total number of context switches performed since bootup.
5324  */
5325 unsigned int nr_running(void)
5326 {
5327 	unsigned int i, sum = 0;
5328 
5329 	for_each_online_cpu(i)
5330 		sum += cpu_rq(i)->nr_running;
5331 
5332 	return sum;
5333 }
5334 
5335 /*
5336  * Check if only the current task is running on the CPU.
5337  *
5338  * Caution: this function does not check that the caller has disabled
5339  * preemption, thus the result might have a time-of-check-to-time-of-use
5340  * race.  The caller is responsible to use it correctly, for example:
5341  *
5342  * - from a non-preemptible section (of course)
5343  *
5344  * - from a thread that is bound to a single CPU
5345  *
5346  * - in a loop with very short iterations (e.g. a polling loop)
5347  */
5348 bool single_task_running(void)
5349 {
5350 	return raw_rq()->nr_running == 1;
5351 }
5352 EXPORT_SYMBOL(single_task_running);
5353 
5354 unsigned long long nr_context_switches_cpu(int cpu)
5355 {
5356 	return cpu_rq(cpu)->nr_switches;
5357 }
5358 
5359 unsigned long long nr_context_switches(void)
5360 {
5361 	int i;
5362 	unsigned long long sum = 0;
5363 
5364 	for_each_possible_cpu(i)
5365 		sum += cpu_rq(i)->nr_switches;
5366 
5367 	return sum;
5368 }
5369 
5370 /*
5371  * Consumers of these two interfaces, like for example the cpuidle menu
5372  * governor, are using nonsensical data. Preferring shallow idle state selection
5373  * for a CPU that has IO-wait which might not even end up running the task when
5374  * it does become runnable.
5375  */
5376 
5377 unsigned int nr_iowait_cpu(int cpu)
5378 {
5379 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5380 }
5381 
5382 /*
5383  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5384  *
5385  * The idea behind IO-wait account is to account the idle time that we could
5386  * have spend running if it were not for IO. That is, if we were to improve the
5387  * storage performance, we'd have a proportional reduction in IO-wait time.
5388  *
5389  * This all works nicely on UP, where, when a task blocks on IO, we account
5390  * idle time as IO-wait, because if the storage were faster, it could've been
5391  * running and we'd not be idle.
5392  *
5393  * This has been extended to SMP, by doing the same for each CPU. This however
5394  * is broken.
5395  *
5396  * Imagine for instance the case where two tasks block on one CPU, only the one
5397  * CPU will have IO-wait accounted, while the other has regular idle. Even
5398  * though, if the storage were faster, both could've ran at the same time,
5399  * utilising both CPUs.
5400  *
5401  * This means, that when looking globally, the current IO-wait accounting on
5402  * SMP is a lower bound, by reason of under accounting.
5403  *
5404  * Worse, since the numbers are provided per CPU, they are sometimes
5405  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5406  * associated with any one particular CPU, it can wake to another CPU than it
5407  * blocked on. This means the per CPU IO-wait number is meaningless.
5408  *
5409  * Task CPU affinities can make all that even more 'interesting'.
5410  */
5411 
5412 unsigned int nr_iowait(void)
5413 {
5414 	unsigned int i, sum = 0;
5415 
5416 	for_each_possible_cpu(i)
5417 		sum += nr_iowait_cpu(i);
5418 
5419 	return sum;
5420 }
5421 
5422 /*
5423  * sched_exec - execve() is a valuable balancing opportunity, because at
5424  * this point the task has the smallest effective memory and cache footprint.
5425  */
5426 void sched_exec(void)
5427 {
5428 	struct task_struct *p = current;
5429 	struct migration_arg arg;
5430 	int dest_cpu;
5431 
5432 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5433 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5434 		if (dest_cpu == smp_processor_id())
5435 			return;
5436 
5437 		if (unlikely(!cpu_active(dest_cpu)))
5438 			return;
5439 
5440 		arg = (struct migration_arg){ p, dest_cpu };
5441 	}
5442 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5443 }
5444 
5445 DEFINE_PER_CPU(struct kernel_stat, kstat);
5446 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5447 
5448 EXPORT_PER_CPU_SYMBOL(kstat);
5449 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5450 
5451 /*
5452  * The function fair_sched_class.update_curr accesses the struct curr
5453  * and its field curr->exec_start; when called from task_sched_runtime(),
5454  * we observe a high rate of cache misses in practice.
5455  * Prefetching this data results in improved performance.
5456  */
5457 static inline void prefetch_curr_exec_start(struct task_struct *p)
5458 {
5459 #ifdef CONFIG_FAIR_GROUP_SCHED
5460 	struct sched_entity *curr = p->se.cfs_rq->curr;
5461 #else
5462 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5463 #endif
5464 	prefetch(curr);
5465 	prefetch(&curr->exec_start);
5466 }
5467 
5468 /*
5469  * Return accounted runtime for the task.
5470  * In case the task is currently running, return the runtime plus current's
5471  * pending runtime that have not been accounted yet.
5472  */
5473 unsigned long long task_sched_runtime(struct task_struct *p)
5474 {
5475 	struct rq_flags rf;
5476 	struct rq *rq;
5477 	u64 ns;
5478 
5479 #ifdef CONFIG_64BIT
5480 	/*
5481 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5482 	 * So we have a optimization chance when the task's delta_exec is 0.
5483 	 * Reading ->on_cpu is racy, but this is OK.
5484 	 *
5485 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5486 	 * If we race with it entering CPU, unaccounted time is 0. This is
5487 	 * indistinguishable from the read occurring a few cycles earlier.
5488 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5489 	 * been accounted, so we're correct here as well.
5490 	 */
5491 	if (!p->on_cpu || !task_on_rq_queued(p))
5492 		return p->se.sum_exec_runtime;
5493 #endif
5494 
5495 	rq = task_rq_lock(p, &rf);
5496 	/*
5497 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5498 	 * project cycles that may never be accounted to this
5499 	 * thread, breaking clock_gettime().
5500 	 */
5501 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5502 		prefetch_curr_exec_start(p);
5503 		update_rq_clock(rq);
5504 		p->sched_class->update_curr(rq);
5505 	}
5506 	ns = p->se.sum_exec_runtime;
5507 	task_rq_unlock(rq, p, &rf);
5508 
5509 	return ns;
5510 }
5511 
5512 static u64 cpu_resched_latency(struct rq *rq)
5513 {
5514 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5515 	u64 resched_latency, now = rq_clock(rq);
5516 	static bool warned_once;
5517 
5518 	if (sysctl_resched_latency_warn_once && warned_once)
5519 		return 0;
5520 
5521 	if (!need_resched() || !latency_warn_ms)
5522 		return 0;
5523 
5524 	if (system_state == SYSTEM_BOOTING)
5525 		return 0;
5526 
5527 	if (!rq->last_seen_need_resched_ns) {
5528 		rq->last_seen_need_resched_ns = now;
5529 		rq->ticks_without_resched = 0;
5530 		return 0;
5531 	}
5532 
5533 	rq->ticks_without_resched++;
5534 	resched_latency = now - rq->last_seen_need_resched_ns;
5535 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5536 		return 0;
5537 
5538 	warned_once = true;
5539 
5540 	return resched_latency;
5541 }
5542 
5543 static int __init setup_resched_latency_warn_ms(char *str)
5544 {
5545 	long val;
5546 
5547 	if ((kstrtol(str, 0, &val))) {
5548 		pr_warn("Unable to set resched_latency_warn_ms\n");
5549 		return 1;
5550 	}
5551 
5552 	sysctl_resched_latency_warn_ms = val;
5553 	return 1;
5554 }
5555 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5556 
5557 /*
5558  * This function gets called by the timer code, with HZ frequency.
5559  * We call it with interrupts disabled.
5560  */
5561 void sched_tick(void)
5562 {
5563 	int cpu = smp_processor_id();
5564 	struct rq *rq = cpu_rq(cpu);
5565 	/* accounting goes to the donor task */
5566 	struct task_struct *donor;
5567 	struct rq_flags rf;
5568 	unsigned long hw_pressure;
5569 	u64 resched_latency;
5570 
5571 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5572 		arch_scale_freq_tick();
5573 
5574 	sched_clock_tick();
5575 
5576 	rq_lock(rq, &rf);
5577 	donor = rq->donor;
5578 
5579 	psi_account_irqtime(rq, donor, NULL);
5580 
5581 	update_rq_clock(rq);
5582 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5583 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5584 
5585 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5586 		resched_curr(rq);
5587 
5588 	donor->sched_class->task_tick(rq, donor, 0);
5589 	if (sched_feat(LATENCY_WARN))
5590 		resched_latency = cpu_resched_latency(rq);
5591 	calc_global_load_tick(rq);
5592 	sched_core_tick(rq);
5593 	task_tick_mm_cid(rq, donor);
5594 	scx_tick(rq);
5595 
5596 	rq_unlock(rq, &rf);
5597 
5598 	if (sched_feat(LATENCY_WARN) && resched_latency)
5599 		resched_latency_warn(cpu, resched_latency);
5600 
5601 	perf_event_task_tick();
5602 
5603 	if (donor->flags & PF_WQ_WORKER)
5604 		wq_worker_tick(donor);
5605 
5606 	if (!scx_switched_all()) {
5607 		rq->idle_balance = idle_cpu(cpu);
5608 		sched_balance_trigger(rq);
5609 	}
5610 }
5611 
5612 #ifdef CONFIG_NO_HZ_FULL
5613 
5614 struct tick_work {
5615 	int			cpu;
5616 	atomic_t		state;
5617 	struct delayed_work	work;
5618 };
5619 /* Values for ->state, see diagram below. */
5620 #define TICK_SCHED_REMOTE_OFFLINE	0
5621 #define TICK_SCHED_REMOTE_OFFLINING	1
5622 #define TICK_SCHED_REMOTE_RUNNING	2
5623 
5624 /*
5625  * State diagram for ->state:
5626  *
5627  *
5628  *          TICK_SCHED_REMOTE_OFFLINE
5629  *                    |   ^
5630  *                    |   |
5631  *                    |   | sched_tick_remote()
5632  *                    |   |
5633  *                    |   |
5634  *                    +--TICK_SCHED_REMOTE_OFFLINING
5635  *                    |   ^
5636  *                    |   |
5637  * sched_tick_start() |   | sched_tick_stop()
5638  *                    |   |
5639  *                    V   |
5640  *          TICK_SCHED_REMOTE_RUNNING
5641  *
5642  *
5643  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5644  * and sched_tick_start() are happy to leave the state in RUNNING.
5645  */
5646 
5647 static struct tick_work __percpu *tick_work_cpu;
5648 
5649 static void sched_tick_remote(struct work_struct *work)
5650 {
5651 	struct delayed_work *dwork = to_delayed_work(work);
5652 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5653 	int cpu = twork->cpu;
5654 	struct rq *rq = cpu_rq(cpu);
5655 	int os;
5656 
5657 	/*
5658 	 * Handle the tick only if it appears the remote CPU is running in full
5659 	 * dynticks mode. The check is racy by nature, but missing a tick or
5660 	 * having one too much is no big deal because the scheduler tick updates
5661 	 * statistics and checks timeslices in a time-independent way, regardless
5662 	 * of when exactly it is running.
5663 	 */
5664 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5665 		guard(rq_lock_irq)(rq);
5666 		struct task_struct *curr = rq->curr;
5667 
5668 		if (cpu_online(cpu)) {
5669 			/*
5670 			 * Since this is a remote tick for full dynticks mode,
5671 			 * we are always sure that there is no proxy (only a
5672 			 * single task is running).
5673 			 */
5674 			WARN_ON_ONCE(rq->curr != rq->donor);
5675 			update_rq_clock(rq);
5676 
5677 			if (!is_idle_task(curr)) {
5678 				/*
5679 				 * Make sure the next tick runs within a
5680 				 * reasonable amount of time.
5681 				 */
5682 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5683 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5684 			}
5685 			curr->sched_class->task_tick(rq, curr, 0);
5686 
5687 			calc_load_nohz_remote(rq);
5688 		}
5689 	}
5690 
5691 	/*
5692 	 * Run the remote tick once per second (1Hz). This arbitrary
5693 	 * frequency is large enough to avoid overload but short enough
5694 	 * to keep scheduler internal stats reasonably up to date.  But
5695 	 * first update state to reflect hotplug activity if required.
5696 	 */
5697 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5698 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5699 	if (os == TICK_SCHED_REMOTE_RUNNING)
5700 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5701 }
5702 
5703 static void sched_tick_start(int cpu)
5704 {
5705 	int os;
5706 	struct tick_work *twork;
5707 
5708 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5709 		return;
5710 
5711 	WARN_ON_ONCE(!tick_work_cpu);
5712 
5713 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5714 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5715 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5716 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5717 		twork->cpu = cpu;
5718 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5719 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5720 	}
5721 }
5722 
5723 #ifdef CONFIG_HOTPLUG_CPU
5724 static void sched_tick_stop(int cpu)
5725 {
5726 	struct tick_work *twork;
5727 	int os;
5728 
5729 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5730 		return;
5731 
5732 	WARN_ON_ONCE(!tick_work_cpu);
5733 
5734 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5735 	/* There cannot be competing actions, but don't rely on stop-machine. */
5736 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5737 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5738 	/* Don't cancel, as this would mess up the state machine. */
5739 }
5740 #endif /* CONFIG_HOTPLUG_CPU */
5741 
5742 int __init sched_tick_offload_init(void)
5743 {
5744 	tick_work_cpu = alloc_percpu(struct tick_work);
5745 	BUG_ON(!tick_work_cpu);
5746 	return 0;
5747 }
5748 
5749 #else /* !CONFIG_NO_HZ_FULL: */
5750 static inline void sched_tick_start(int cpu) { }
5751 static inline void sched_tick_stop(int cpu) { }
5752 #endif /* !CONFIG_NO_HZ_FULL */
5753 
5754 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5755 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5756 /*
5757  * If the value passed in is equal to the current preempt count
5758  * then we just disabled preemption. Start timing the latency.
5759  */
5760 static inline void preempt_latency_start(int val)
5761 {
5762 	if (preempt_count() == val) {
5763 		unsigned long ip = get_lock_parent_ip();
5764 #ifdef CONFIG_DEBUG_PREEMPT
5765 		current->preempt_disable_ip = ip;
5766 #endif
5767 		trace_preempt_off(CALLER_ADDR0, ip);
5768 	}
5769 }
5770 
5771 void preempt_count_add(int val)
5772 {
5773 #ifdef CONFIG_DEBUG_PREEMPT
5774 	/*
5775 	 * Underflow?
5776 	 */
5777 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5778 		return;
5779 #endif
5780 	__preempt_count_add(val);
5781 #ifdef CONFIG_DEBUG_PREEMPT
5782 	/*
5783 	 * Spinlock count overflowing soon?
5784 	 */
5785 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5786 				PREEMPT_MASK - 10);
5787 #endif
5788 	preempt_latency_start(val);
5789 }
5790 EXPORT_SYMBOL(preempt_count_add);
5791 NOKPROBE_SYMBOL(preempt_count_add);
5792 
5793 /*
5794  * If the value passed in equals to the current preempt count
5795  * then we just enabled preemption. Stop timing the latency.
5796  */
5797 static inline void preempt_latency_stop(int val)
5798 {
5799 	if (preempt_count() == val)
5800 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5801 }
5802 
5803 void preempt_count_sub(int val)
5804 {
5805 #ifdef CONFIG_DEBUG_PREEMPT
5806 	/*
5807 	 * Underflow?
5808 	 */
5809 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5810 		return;
5811 	/*
5812 	 * Is the spinlock portion underflowing?
5813 	 */
5814 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5815 			!(preempt_count() & PREEMPT_MASK)))
5816 		return;
5817 #endif
5818 
5819 	preempt_latency_stop(val);
5820 	__preempt_count_sub(val);
5821 }
5822 EXPORT_SYMBOL(preempt_count_sub);
5823 NOKPROBE_SYMBOL(preempt_count_sub);
5824 
5825 #else
5826 static inline void preempt_latency_start(int val) { }
5827 static inline void preempt_latency_stop(int val) { }
5828 #endif
5829 
5830 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5831 {
5832 #ifdef CONFIG_DEBUG_PREEMPT
5833 	return p->preempt_disable_ip;
5834 #else
5835 	return 0;
5836 #endif
5837 }
5838 
5839 /*
5840  * Print scheduling while atomic bug:
5841  */
5842 static noinline void __schedule_bug(struct task_struct *prev)
5843 {
5844 	/* Save this before calling printk(), since that will clobber it */
5845 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5846 
5847 	if (oops_in_progress)
5848 		return;
5849 
5850 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5851 		prev->comm, prev->pid, preempt_count());
5852 
5853 	debug_show_held_locks(prev);
5854 	print_modules();
5855 	if (irqs_disabled())
5856 		print_irqtrace_events(prev);
5857 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5858 		pr_err("Preemption disabled at:");
5859 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5860 	}
5861 	check_panic_on_warn("scheduling while atomic");
5862 
5863 	dump_stack();
5864 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5865 }
5866 
5867 /*
5868  * Various schedule()-time debugging checks and statistics:
5869  */
5870 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5871 {
5872 #ifdef CONFIG_SCHED_STACK_END_CHECK
5873 	if (task_stack_end_corrupted(prev))
5874 		panic("corrupted stack end detected inside scheduler\n");
5875 
5876 	if (task_scs_end_corrupted(prev))
5877 		panic("corrupted shadow stack detected inside scheduler\n");
5878 #endif
5879 
5880 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5881 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5882 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5883 			prev->comm, prev->pid, prev->non_block_count);
5884 		dump_stack();
5885 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5886 	}
5887 #endif
5888 
5889 	if (unlikely(in_atomic_preempt_off())) {
5890 		__schedule_bug(prev);
5891 		preempt_count_set(PREEMPT_DISABLED);
5892 	}
5893 	rcu_sleep_check();
5894 	WARN_ON_ONCE(ct_state() == CT_STATE_USER);
5895 
5896 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5897 
5898 	schedstat_inc(this_rq()->sched_count);
5899 }
5900 
5901 static void prev_balance(struct rq *rq, struct task_struct *prev,
5902 			 struct rq_flags *rf)
5903 {
5904 	const struct sched_class *start_class = prev->sched_class;
5905 	const struct sched_class *class;
5906 
5907 #ifdef CONFIG_SCHED_CLASS_EXT
5908 	/*
5909 	 * SCX requires a balance() call before every pick_task() including when
5910 	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
5911 	 * SCX instead. Also, set a flag to detect missing balance() call.
5912 	 */
5913 	if (scx_enabled()) {
5914 		rq->scx.flags |= SCX_RQ_BAL_PENDING;
5915 		if (sched_class_above(&ext_sched_class, start_class))
5916 			start_class = &ext_sched_class;
5917 	}
5918 #endif
5919 
5920 	/*
5921 	 * We must do the balancing pass before put_prev_task(), such
5922 	 * that when we release the rq->lock the task is in the same
5923 	 * state as before we took rq->lock.
5924 	 *
5925 	 * We can terminate the balance pass as soon as we know there is
5926 	 * a runnable task of @class priority or higher.
5927 	 */
5928 	for_active_class_range(class, start_class, &idle_sched_class) {
5929 		if (class->balance && class->balance(rq, prev, rf))
5930 			break;
5931 	}
5932 }
5933 
5934 /*
5935  * Pick up the highest-prio task:
5936  */
5937 static inline struct task_struct *
5938 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5939 {
5940 	const struct sched_class *class;
5941 	struct task_struct *p;
5942 
5943 	rq->dl_server = NULL;
5944 
5945 	if (scx_enabled())
5946 		goto restart;
5947 
5948 	/*
5949 	 * Optimization: we know that if all tasks are in the fair class we can
5950 	 * call that function directly, but only if the @prev task wasn't of a
5951 	 * higher scheduling class, because otherwise those lose the
5952 	 * opportunity to pull in more work from other CPUs.
5953 	 */
5954 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5955 		   rq->nr_running == rq->cfs.h_nr_queued)) {
5956 
5957 		p = pick_next_task_fair(rq, prev, rf);
5958 		if (unlikely(p == RETRY_TASK))
5959 			goto restart;
5960 
5961 		/* Assume the next prioritized class is idle_sched_class */
5962 		if (!p) {
5963 			p = pick_task_idle(rq);
5964 			put_prev_set_next_task(rq, prev, p);
5965 		}
5966 
5967 		return p;
5968 	}
5969 
5970 restart:
5971 	prev_balance(rq, prev, rf);
5972 
5973 	for_each_active_class(class) {
5974 		if (class->pick_next_task) {
5975 			p = class->pick_next_task(rq, prev);
5976 			if (p)
5977 				return p;
5978 		} else {
5979 			p = class->pick_task(rq);
5980 			if (p) {
5981 				put_prev_set_next_task(rq, prev, p);
5982 				return p;
5983 			}
5984 		}
5985 	}
5986 
5987 	BUG(); /* The idle class should always have a runnable task. */
5988 }
5989 
5990 #ifdef CONFIG_SCHED_CORE
5991 static inline bool is_task_rq_idle(struct task_struct *t)
5992 {
5993 	return (task_rq(t)->idle == t);
5994 }
5995 
5996 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5997 {
5998 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5999 }
6000 
6001 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6002 {
6003 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6004 		return true;
6005 
6006 	return a->core_cookie == b->core_cookie;
6007 }
6008 
6009 static inline struct task_struct *pick_task(struct rq *rq)
6010 {
6011 	const struct sched_class *class;
6012 	struct task_struct *p;
6013 
6014 	rq->dl_server = NULL;
6015 
6016 	for_each_active_class(class) {
6017 		p = class->pick_task(rq);
6018 		if (p)
6019 			return p;
6020 	}
6021 
6022 	BUG(); /* The idle class should always have a runnable task. */
6023 }
6024 
6025 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6026 
6027 static void queue_core_balance(struct rq *rq);
6028 
6029 static struct task_struct *
6030 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6031 {
6032 	struct task_struct *next, *p, *max = NULL;
6033 	const struct cpumask *smt_mask;
6034 	bool fi_before = false;
6035 	bool core_clock_updated = (rq == rq->core);
6036 	unsigned long cookie;
6037 	int i, cpu, occ = 0;
6038 	struct rq *rq_i;
6039 	bool need_sync;
6040 
6041 	if (!sched_core_enabled(rq))
6042 		return __pick_next_task(rq, prev, rf);
6043 
6044 	cpu = cpu_of(rq);
6045 
6046 	/* Stopper task is switching into idle, no need core-wide selection. */
6047 	if (cpu_is_offline(cpu)) {
6048 		/*
6049 		 * Reset core_pick so that we don't enter the fastpath when
6050 		 * coming online. core_pick would already be migrated to
6051 		 * another cpu during offline.
6052 		 */
6053 		rq->core_pick = NULL;
6054 		rq->core_dl_server = NULL;
6055 		return __pick_next_task(rq, prev, rf);
6056 	}
6057 
6058 	/*
6059 	 * If there were no {en,de}queues since we picked (IOW, the task
6060 	 * pointers are all still valid), and we haven't scheduled the last
6061 	 * pick yet, do so now.
6062 	 *
6063 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6064 	 * it was either offline or went offline during a sibling's core-wide
6065 	 * selection. In this case, do a core-wide selection.
6066 	 */
6067 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6068 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6069 	    rq->core_pick) {
6070 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6071 
6072 		next = rq->core_pick;
6073 		rq->dl_server = rq->core_dl_server;
6074 		rq->core_pick = NULL;
6075 		rq->core_dl_server = NULL;
6076 		goto out_set_next;
6077 	}
6078 
6079 	prev_balance(rq, prev, rf);
6080 
6081 	smt_mask = cpu_smt_mask(cpu);
6082 	need_sync = !!rq->core->core_cookie;
6083 
6084 	/* reset state */
6085 	rq->core->core_cookie = 0UL;
6086 	if (rq->core->core_forceidle_count) {
6087 		if (!core_clock_updated) {
6088 			update_rq_clock(rq->core);
6089 			core_clock_updated = true;
6090 		}
6091 		sched_core_account_forceidle(rq);
6092 		/* reset after accounting force idle */
6093 		rq->core->core_forceidle_start = 0;
6094 		rq->core->core_forceidle_count = 0;
6095 		rq->core->core_forceidle_occupation = 0;
6096 		need_sync = true;
6097 		fi_before = true;
6098 	}
6099 
6100 	/*
6101 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6102 	 *
6103 	 * @task_seq guards the task state ({en,de}queues)
6104 	 * @pick_seq is the @task_seq we did a selection on
6105 	 * @sched_seq is the @pick_seq we scheduled
6106 	 *
6107 	 * However, preemptions can cause multiple picks on the same task set.
6108 	 * 'Fix' this by also increasing @task_seq for every pick.
6109 	 */
6110 	rq->core->core_task_seq++;
6111 
6112 	/*
6113 	 * Optimize for common case where this CPU has no cookies
6114 	 * and there are no cookied tasks running on siblings.
6115 	 */
6116 	if (!need_sync) {
6117 		next = pick_task(rq);
6118 		if (!next->core_cookie) {
6119 			rq->core_pick = NULL;
6120 			rq->core_dl_server = NULL;
6121 			/*
6122 			 * For robustness, update the min_vruntime_fi for
6123 			 * unconstrained picks as well.
6124 			 */
6125 			WARN_ON_ONCE(fi_before);
6126 			task_vruntime_update(rq, next, false);
6127 			goto out_set_next;
6128 		}
6129 	}
6130 
6131 	/*
6132 	 * For each thread: do the regular task pick and find the max prio task
6133 	 * amongst them.
6134 	 *
6135 	 * Tie-break prio towards the current CPU
6136 	 */
6137 	for_each_cpu_wrap(i, smt_mask, cpu) {
6138 		rq_i = cpu_rq(i);
6139 
6140 		/*
6141 		 * Current cpu always has its clock updated on entrance to
6142 		 * pick_next_task(). If the current cpu is not the core,
6143 		 * the core may also have been updated above.
6144 		 */
6145 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6146 			update_rq_clock(rq_i);
6147 
6148 		rq_i->core_pick = p = pick_task(rq_i);
6149 		rq_i->core_dl_server = rq_i->dl_server;
6150 
6151 		if (!max || prio_less(max, p, fi_before))
6152 			max = p;
6153 	}
6154 
6155 	cookie = rq->core->core_cookie = max->core_cookie;
6156 
6157 	/*
6158 	 * For each thread: try and find a runnable task that matches @max or
6159 	 * force idle.
6160 	 */
6161 	for_each_cpu(i, smt_mask) {
6162 		rq_i = cpu_rq(i);
6163 		p = rq_i->core_pick;
6164 
6165 		if (!cookie_equals(p, cookie)) {
6166 			p = NULL;
6167 			if (cookie)
6168 				p = sched_core_find(rq_i, cookie);
6169 			if (!p)
6170 				p = idle_sched_class.pick_task(rq_i);
6171 		}
6172 
6173 		rq_i->core_pick = p;
6174 		rq_i->core_dl_server = NULL;
6175 
6176 		if (p == rq_i->idle) {
6177 			if (rq_i->nr_running) {
6178 				rq->core->core_forceidle_count++;
6179 				if (!fi_before)
6180 					rq->core->core_forceidle_seq++;
6181 			}
6182 		} else {
6183 			occ++;
6184 		}
6185 	}
6186 
6187 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6188 		rq->core->core_forceidle_start = rq_clock(rq->core);
6189 		rq->core->core_forceidle_occupation = occ;
6190 	}
6191 
6192 	rq->core->core_pick_seq = rq->core->core_task_seq;
6193 	next = rq->core_pick;
6194 	rq->core_sched_seq = rq->core->core_pick_seq;
6195 
6196 	/* Something should have been selected for current CPU */
6197 	WARN_ON_ONCE(!next);
6198 
6199 	/*
6200 	 * Reschedule siblings
6201 	 *
6202 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6203 	 * sending an IPI (below) ensures the sibling will no longer be running
6204 	 * their task. This ensures there is no inter-sibling overlap between
6205 	 * non-matching user state.
6206 	 */
6207 	for_each_cpu(i, smt_mask) {
6208 		rq_i = cpu_rq(i);
6209 
6210 		/*
6211 		 * An online sibling might have gone offline before a task
6212 		 * could be picked for it, or it might be offline but later
6213 		 * happen to come online, but its too late and nothing was
6214 		 * picked for it.  That's Ok - it will pick tasks for itself,
6215 		 * so ignore it.
6216 		 */
6217 		if (!rq_i->core_pick)
6218 			continue;
6219 
6220 		/*
6221 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6222 		 * fi_before     fi      update?
6223 		 *  0            0       1
6224 		 *  0            1       1
6225 		 *  1            0       1
6226 		 *  1            1       0
6227 		 */
6228 		if (!(fi_before && rq->core->core_forceidle_count))
6229 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6230 
6231 		rq_i->core_pick->core_occupation = occ;
6232 
6233 		if (i == cpu) {
6234 			rq_i->core_pick = NULL;
6235 			rq_i->core_dl_server = NULL;
6236 			continue;
6237 		}
6238 
6239 		/* Did we break L1TF mitigation requirements? */
6240 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6241 
6242 		if (rq_i->curr == rq_i->core_pick) {
6243 			rq_i->core_pick = NULL;
6244 			rq_i->core_dl_server = NULL;
6245 			continue;
6246 		}
6247 
6248 		resched_curr(rq_i);
6249 	}
6250 
6251 out_set_next:
6252 	put_prev_set_next_task(rq, prev, next);
6253 	if (rq->core->core_forceidle_count && next == rq->idle)
6254 		queue_core_balance(rq);
6255 
6256 	return next;
6257 }
6258 
6259 static bool try_steal_cookie(int this, int that)
6260 {
6261 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6262 	struct task_struct *p;
6263 	unsigned long cookie;
6264 	bool success = false;
6265 
6266 	guard(irq)();
6267 	guard(double_rq_lock)(dst, src);
6268 
6269 	cookie = dst->core->core_cookie;
6270 	if (!cookie)
6271 		return false;
6272 
6273 	if (dst->curr != dst->idle)
6274 		return false;
6275 
6276 	p = sched_core_find(src, cookie);
6277 	if (!p)
6278 		return false;
6279 
6280 	do {
6281 		if (p == src->core_pick || p == src->curr)
6282 			goto next;
6283 
6284 		if (!is_cpu_allowed(p, this))
6285 			goto next;
6286 
6287 		if (p->core_occupation > dst->idle->core_occupation)
6288 			goto next;
6289 		/*
6290 		 * sched_core_find() and sched_core_next() will ensure
6291 		 * that task @p is not throttled now, we also need to
6292 		 * check whether the runqueue of the destination CPU is
6293 		 * being throttled.
6294 		 */
6295 		if (sched_task_is_throttled(p, this))
6296 			goto next;
6297 
6298 		move_queued_task_locked(src, dst, p);
6299 		resched_curr(dst);
6300 
6301 		success = true;
6302 		break;
6303 
6304 next:
6305 		p = sched_core_next(p, cookie);
6306 	} while (p);
6307 
6308 	return success;
6309 }
6310 
6311 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6312 {
6313 	int i;
6314 
6315 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6316 		if (i == cpu)
6317 			continue;
6318 
6319 		if (need_resched())
6320 			break;
6321 
6322 		if (try_steal_cookie(cpu, i))
6323 			return true;
6324 	}
6325 
6326 	return false;
6327 }
6328 
6329 static void sched_core_balance(struct rq *rq)
6330 {
6331 	struct sched_domain *sd;
6332 	int cpu = cpu_of(rq);
6333 
6334 	guard(preempt)();
6335 	guard(rcu)();
6336 
6337 	raw_spin_rq_unlock_irq(rq);
6338 	for_each_domain(cpu, sd) {
6339 		if (need_resched())
6340 			break;
6341 
6342 		if (steal_cookie_task(cpu, sd))
6343 			break;
6344 	}
6345 	raw_spin_rq_lock_irq(rq);
6346 }
6347 
6348 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6349 
6350 static void queue_core_balance(struct rq *rq)
6351 {
6352 	if (!sched_core_enabled(rq))
6353 		return;
6354 
6355 	if (!rq->core->core_cookie)
6356 		return;
6357 
6358 	if (!rq->nr_running) /* not forced idle */
6359 		return;
6360 
6361 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6362 }
6363 
6364 DEFINE_LOCK_GUARD_1(core_lock, int,
6365 		    sched_core_lock(*_T->lock, &_T->flags),
6366 		    sched_core_unlock(*_T->lock, &_T->flags),
6367 		    unsigned long flags)
6368 
6369 static void sched_core_cpu_starting(unsigned int cpu)
6370 {
6371 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6372 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6373 	int t;
6374 
6375 	guard(core_lock)(&cpu);
6376 
6377 	WARN_ON_ONCE(rq->core != rq);
6378 
6379 	/* if we're the first, we'll be our own leader */
6380 	if (cpumask_weight(smt_mask) == 1)
6381 		return;
6382 
6383 	/* find the leader */
6384 	for_each_cpu(t, smt_mask) {
6385 		if (t == cpu)
6386 			continue;
6387 		rq = cpu_rq(t);
6388 		if (rq->core == rq) {
6389 			core_rq = rq;
6390 			break;
6391 		}
6392 	}
6393 
6394 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6395 		return;
6396 
6397 	/* install and validate core_rq */
6398 	for_each_cpu(t, smt_mask) {
6399 		rq = cpu_rq(t);
6400 
6401 		if (t == cpu)
6402 			rq->core = core_rq;
6403 
6404 		WARN_ON_ONCE(rq->core != core_rq);
6405 	}
6406 }
6407 
6408 static void sched_core_cpu_deactivate(unsigned int cpu)
6409 {
6410 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6411 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6412 	int t;
6413 
6414 	guard(core_lock)(&cpu);
6415 
6416 	/* if we're the last man standing, nothing to do */
6417 	if (cpumask_weight(smt_mask) == 1) {
6418 		WARN_ON_ONCE(rq->core != rq);
6419 		return;
6420 	}
6421 
6422 	/* if we're not the leader, nothing to do */
6423 	if (rq->core != rq)
6424 		return;
6425 
6426 	/* find a new leader */
6427 	for_each_cpu(t, smt_mask) {
6428 		if (t == cpu)
6429 			continue;
6430 		core_rq = cpu_rq(t);
6431 		break;
6432 	}
6433 
6434 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6435 		return;
6436 
6437 	/* copy the shared state to the new leader */
6438 	core_rq->core_task_seq             = rq->core_task_seq;
6439 	core_rq->core_pick_seq             = rq->core_pick_seq;
6440 	core_rq->core_cookie               = rq->core_cookie;
6441 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6442 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6443 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6444 
6445 	/*
6446 	 * Accounting edge for forced idle is handled in pick_next_task().
6447 	 * Don't need another one here, since the hotplug thread shouldn't
6448 	 * have a cookie.
6449 	 */
6450 	core_rq->core_forceidle_start = 0;
6451 
6452 	/* install new leader */
6453 	for_each_cpu(t, smt_mask) {
6454 		rq = cpu_rq(t);
6455 		rq->core = core_rq;
6456 	}
6457 }
6458 
6459 static inline void sched_core_cpu_dying(unsigned int cpu)
6460 {
6461 	struct rq *rq = cpu_rq(cpu);
6462 
6463 	if (rq->core != rq)
6464 		rq->core = rq;
6465 }
6466 
6467 #else /* !CONFIG_SCHED_CORE: */
6468 
6469 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6470 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6471 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6472 
6473 static struct task_struct *
6474 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6475 {
6476 	return __pick_next_task(rq, prev, rf);
6477 }
6478 
6479 #endif /* !CONFIG_SCHED_CORE */
6480 
6481 /*
6482  * Constants for the sched_mode argument of __schedule().
6483  *
6484  * The mode argument allows RT enabled kernels to differentiate a
6485  * preemption from blocking on an 'sleeping' spin/rwlock.
6486  */
6487 #define SM_IDLE			(-1)
6488 #define SM_NONE			0
6489 #define SM_PREEMPT		1
6490 #define SM_RTLOCK_WAIT		2
6491 
6492 /*
6493  * Helper function for __schedule()
6494  *
6495  * If a task does not have signals pending, deactivate it
6496  * Otherwise marks the task's __state as RUNNING
6497  */
6498 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6499 			      unsigned long *task_state_p)
6500 {
6501 	unsigned long task_state = *task_state_p;
6502 	int flags = DEQUEUE_NOCLOCK;
6503 
6504 	if (signal_pending_state(task_state, p)) {
6505 		WRITE_ONCE(p->__state, TASK_RUNNING);
6506 		*task_state_p = TASK_RUNNING;
6507 		return false;
6508 	}
6509 
6510 	p->sched_contributes_to_load =
6511 		(task_state & TASK_UNINTERRUPTIBLE) &&
6512 		!(task_state & TASK_NOLOAD) &&
6513 		!(task_state & TASK_FROZEN);
6514 
6515 	if (unlikely(is_special_task_state(task_state)))
6516 		flags |= DEQUEUE_SPECIAL;
6517 
6518 	/*
6519 	 * __schedule()			ttwu()
6520 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6521 	 *   if (prev_state)		    goto out;
6522 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6523 	 *				  p->state = TASK_WAKING
6524 	 *
6525 	 * Where __schedule() and ttwu() have matching control dependencies.
6526 	 *
6527 	 * After this, schedule() must not care about p->state any more.
6528 	 */
6529 	block_task(rq, p, flags);
6530 	return true;
6531 }
6532 
6533 /*
6534  * __schedule() is the main scheduler function.
6535  *
6536  * The main means of driving the scheduler and thus entering this function are:
6537  *
6538  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6539  *
6540  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6541  *      paths. For example, see arch/x86/entry_64.S.
6542  *
6543  *      To drive preemption between tasks, the scheduler sets the flag in timer
6544  *      interrupt handler sched_tick().
6545  *
6546  *   3. Wakeups don't really cause entry into schedule(). They add a
6547  *      task to the run-queue and that's it.
6548  *
6549  *      Now, if the new task added to the run-queue preempts the current
6550  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6551  *      called on the nearest possible occasion:
6552  *
6553  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6554  *
6555  *         - in syscall or exception context, at the next outmost
6556  *           preempt_enable(). (this might be as soon as the wake_up()'s
6557  *           spin_unlock()!)
6558  *
6559  *         - in IRQ context, return from interrupt-handler to
6560  *           preemptible context
6561  *
6562  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6563  *         then at the next:
6564  *
6565  *          - cond_resched() call
6566  *          - explicit schedule() call
6567  *          - return from syscall or exception to user-space
6568  *          - return from interrupt-handler to user-space
6569  *
6570  * WARNING: must be called with preemption disabled!
6571  */
6572 static void __sched notrace __schedule(int sched_mode)
6573 {
6574 	struct task_struct *prev, *next;
6575 	/*
6576 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6577 	 * as a preemption by schedule_debug() and RCU.
6578 	 */
6579 	bool preempt = sched_mode > SM_NONE;
6580 	bool is_switch = false;
6581 	unsigned long *switch_count;
6582 	unsigned long prev_state;
6583 	struct rq_flags rf;
6584 	struct rq *rq;
6585 	int cpu;
6586 
6587 	trace_sched_entry_tp(preempt, CALLER_ADDR0);
6588 
6589 	cpu = smp_processor_id();
6590 	rq = cpu_rq(cpu);
6591 	prev = rq->curr;
6592 
6593 	schedule_debug(prev, preempt);
6594 
6595 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6596 		hrtick_clear(rq);
6597 
6598 	klp_sched_try_switch(prev);
6599 
6600 	local_irq_disable();
6601 	rcu_note_context_switch(preempt);
6602 
6603 	/*
6604 	 * Make sure that signal_pending_state()->signal_pending() below
6605 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6606 	 * done by the caller to avoid the race with signal_wake_up():
6607 	 *
6608 	 * __set_current_state(@state)		signal_wake_up()
6609 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6610 	 *					  wake_up_state(p, state)
6611 	 *   LOCK rq->lock			    LOCK p->pi_state
6612 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6613 	 *     if (signal_pending_state())	    if (p->state & @state)
6614 	 *
6615 	 * Also, the membarrier system call requires a full memory barrier
6616 	 * after coming from user-space, before storing to rq->curr; this
6617 	 * barrier matches a full barrier in the proximity of the membarrier
6618 	 * system call exit.
6619 	 */
6620 	rq_lock(rq, &rf);
6621 	smp_mb__after_spinlock();
6622 
6623 	/* Promote REQ to ACT */
6624 	rq->clock_update_flags <<= 1;
6625 	update_rq_clock(rq);
6626 	rq->clock_update_flags = RQCF_UPDATED;
6627 
6628 	switch_count = &prev->nivcsw;
6629 
6630 	/* Task state changes only considers SM_PREEMPT as preemption */
6631 	preempt = sched_mode == SM_PREEMPT;
6632 
6633 	/*
6634 	 * We must load prev->state once (task_struct::state is volatile), such
6635 	 * that we form a control dependency vs deactivate_task() below.
6636 	 */
6637 	prev_state = READ_ONCE(prev->__state);
6638 	if (sched_mode == SM_IDLE) {
6639 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6640 		if (!rq->nr_running && !scx_enabled()) {
6641 			next = prev;
6642 			goto picked;
6643 		}
6644 	} else if (!preempt && prev_state) {
6645 		try_to_block_task(rq, prev, &prev_state);
6646 		switch_count = &prev->nvcsw;
6647 	}
6648 
6649 	next = pick_next_task(rq, prev, &rf);
6650 	rq_set_donor(rq, next);
6651 picked:
6652 	clear_tsk_need_resched(prev);
6653 	clear_preempt_need_resched();
6654 	rq->last_seen_need_resched_ns = 0;
6655 
6656 	is_switch = prev != next;
6657 	if (likely(is_switch)) {
6658 		rq->nr_switches++;
6659 		/*
6660 		 * RCU users of rcu_dereference(rq->curr) may not see
6661 		 * changes to task_struct made by pick_next_task().
6662 		 */
6663 		RCU_INIT_POINTER(rq->curr, next);
6664 		/*
6665 		 * The membarrier system call requires each architecture
6666 		 * to have a full memory barrier after updating
6667 		 * rq->curr, before returning to user-space.
6668 		 *
6669 		 * Here are the schemes providing that barrier on the
6670 		 * various architectures:
6671 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6672 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6673 		 *   on PowerPC and on RISC-V.
6674 		 * - finish_lock_switch() for weakly-ordered
6675 		 *   architectures where spin_unlock is a full barrier,
6676 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6677 		 *   is a RELEASE barrier),
6678 		 *
6679 		 * The barrier matches a full barrier in the proximity of
6680 		 * the membarrier system call entry.
6681 		 *
6682 		 * On RISC-V, this barrier pairing is also needed for the
6683 		 * SYNC_CORE command when switching between processes, cf.
6684 		 * the inline comments in membarrier_arch_switch_mm().
6685 		 */
6686 		++*switch_count;
6687 
6688 		migrate_disable_switch(rq, prev);
6689 		psi_account_irqtime(rq, prev, next);
6690 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6691 					     prev->se.sched_delayed);
6692 
6693 		trace_sched_switch(preempt, prev, next, prev_state);
6694 
6695 		/* Also unlocks the rq: */
6696 		rq = context_switch(rq, prev, next, &rf);
6697 	} else {
6698 		rq_unpin_lock(rq, &rf);
6699 		__balance_callbacks(rq);
6700 		raw_spin_rq_unlock_irq(rq);
6701 	}
6702 	trace_sched_exit_tp(is_switch, CALLER_ADDR0);
6703 }
6704 
6705 void __noreturn do_task_dead(void)
6706 {
6707 	/* Causes final put_task_struct in finish_task_switch(): */
6708 	set_special_state(TASK_DEAD);
6709 
6710 	/* Tell freezer to ignore us: */
6711 	current->flags |= PF_NOFREEZE;
6712 
6713 	__schedule(SM_NONE);
6714 	BUG();
6715 
6716 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6717 	for (;;)
6718 		cpu_relax();
6719 }
6720 
6721 static inline void sched_submit_work(struct task_struct *tsk)
6722 {
6723 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6724 	unsigned int task_flags;
6725 
6726 	/*
6727 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6728 	 * will use a blocking primitive -- which would lead to recursion.
6729 	 */
6730 	lock_map_acquire_try(&sched_map);
6731 
6732 	task_flags = tsk->flags;
6733 	/*
6734 	 * If a worker goes to sleep, notify and ask workqueue whether it
6735 	 * wants to wake up a task to maintain concurrency.
6736 	 */
6737 	if (task_flags & PF_WQ_WORKER)
6738 		wq_worker_sleeping(tsk);
6739 	else if (task_flags & PF_IO_WORKER)
6740 		io_wq_worker_sleeping(tsk);
6741 
6742 	/*
6743 	 * spinlock and rwlock must not flush block requests.  This will
6744 	 * deadlock if the callback attempts to acquire a lock which is
6745 	 * already acquired.
6746 	 */
6747 	WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT);
6748 
6749 	/*
6750 	 * If we are going to sleep and we have plugged IO queued,
6751 	 * make sure to submit it to avoid deadlocks.
6752 	 */
6753 	blk_flush_plug(tsk->plug, true);
6754 
6755 	lock_map_release(&sched_map);
6756 }
6757 
6758 static void sched_update_worker(struct task_struct *tsk)
6759 {
6760 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6761 		if (tsk->flags & PF_BLOCK_TS)
6762 			blk_plug_invalidate_ts(tsk);
6763 		if (tsk->flags & PF_WQ_WORKER)
6764 			wq_worker_running(tsk);
6765 		else if (tsk->flags & PF_IO_WORKER)
6766 			io_wq_worker_running(tsk);
6767 	}
6768 }
6769 
6770 static __always_inline void __schedule_loop(int sched_mode)
6771 {
6772 	do {
6773 		preempt_disable();
6774 		__schedule(sched_mode);
6775 		sched_preempt_enable_no_resched();
6776 	} while (need_resched());
6777 }
6778 
6779 asmlinkage __visible void __sched schedule(void)
6780 {
6781 	struct task_struct *tsk = current;
6782 
6783 #ifdef CONFIG_RT_MUTEXES
6784 	lockdep_assert(!tsk->sched_rt_mutex);
6785 #endif
6786 
6787 	if (!task_is_running(tsk))
6788 		sched_submit_work(tsk);
6789 	__schedule_loop(SM_NONE);
6790 	sched_update_worker(tsk);
6791 }
6792 EXPORT_SYMBOL(schedule);
6793 
6794 /*
6795  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6796  * state (have scheduled out non-voluntarily) by making sure that all
6797  * tasks have either left the run queue or have gone into user space.
6798  * As idle tasks do not do either, they must not ever be preempted
6799  * (schedule out non-voluntarily).
6800  *
6801  * schedule_idle() is similar to schedule_preempt_disable() except that it
6802  * never enables preemption because it does not call sched_submit_work().
6803  */
6804 void __sched schedule_idle(void)
6805 {
6806 	/*
6807 	 * As this skips calling sched_submit_work(), which the idle task does
6808 	 * regardless because that function is a NOP when the task is in a
6809 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6810 	 * current task can be in any other state. Note, idle is always in the
6811 	 * TASK_RUNNING state.
6812 	 */
6813 	WARN_ON_ONCE(current->__state);
6814 	do {
6815 		__schedule(SM_IDLE);
6816 	} while (need_resched());
6817 }
6818 
6819 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6820 asmlinkage __visible void __sched schedule_user(void)
6821 {
6822 	/*
6823 	 * If we come here after a random call to set_need_resched(),
6824 	 * or we have been woken up remotely but the IPI has not yet arrived,
6825 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6826 	 * we find a better solution.
6827 	 *
6828 	 * NB: There are buggy callers of this function.  Ideally we
6829 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6830 	 * too frequently to make sense yet.
6831 	 */
6832 	enum ctx_state prev_state = exception_enter();
6833 	schedule();
6834 	exception_exit(prev_state);
6835 }
6836 #endif
6837 
6838 /**
6839  * schedule_preempt_disabled - called with preemption disabled
6840  *
6841  * Returns with preemption disabled. Note: preempt_count must be 1
6842  */
6843 void __sched schedule_preempt_disabled(void)
6844 {
6845 	sched_preempt_enable_no_resched();
6846 	schedule();
6847 	preempt_disable();
6848 }
6849 
6850 #ifdef CONFIG_PREEMPT_RT
6851 void __sched notrace schedule_rtlock(void)
6852 {
6853 	__schedule_loop(SM_RTLOCK_WAIT);
6854 }
6855 NOKPROBE_SYMBOL(schedule_rtlock);
6856 #endif
6857 
6858 static void __sched notrace preempt_schedule_common(void)
6859 {
6860 	do {
6861 		/*
6862 		 * Because the function tracer can trace preempt_count_sub()
6863 		 * and it also uses preempt_enable/disable_notrace(), if
6864 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6865 		 * by the function tracer will call this function again and
6866 		 * cause infinite recursion.
6867 		 *
6868 		 * Preemption must be disabled here before the function
6869 		 * tracer can trace. Break up preempt_disable() into two
6870 		 * calls. One to disable preemption without fear of being
6871 		 * traced. The other to still record the preemption latency,
6872 		 * which can also be traced by the function tracer.
6873 		 */
6874 		preempt_disable_notrace();
6875 		preempt_latency_start(1);
6876 		__schedule(SM_PREEMPT);
6877 		preempt_latency_stop(1);
6878 		preempt_enable_no_resched_notrace();
6879 
6880 		/*
6881 		 * Check again in case we missed a preemption opportunity
6882 		 * between schedule and now.
6883 		 */
6884 	} while (need_resched());
6885 }
6886 
6887 #ifdef CONFIG_PREEMPTION
6888 /*
6889  * This is the entry point to schedule() from in-kernel preemption
6890  * off of preempt_enable.
6891  */
6892 asmlinkage __visible void __sched notrace preempt_schedule(void)
6893 {
6894 	/*
6895 	 * If there is a non-zero preempt_count or interrupts are disabled,
6896 	 * we do not want to preempt the current task. Just return..
6897 	 */
6898 	if (likely(!preemptible()))
6899 		return;
6900 	preempt_schedule_common();
6901 }
6902 NOKPROBE_SYMBOL(preempt_schedule);
6903 EXPORT_SYMBOL(preempt_schedule);
6904 
6905 #ifdef CONFIG_PREEMPT_DYNAMIC
6906 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
6907 #  ifndef preempt_schedule_dynamic_enabled
6908 #   define preempt_schedule_dynamic_enabled	preempt_schedule
6909 #   define preempt_schedule_dynamic_disabled	NULL
6910 #  endif
6911 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6912 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6913 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6914 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6915 void __sched notrace dynamic_preempt_schedule(void)
6916 {
6917 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6918 		return;
6919 	preempt_schedule();
6920 }
6921 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6922 EXPORT_SYMBOL(dynamic_preempt_schedule);
6923 # endif
6924 #endif /* CONFIG_PREEMPT_DYNAMIC */
6925 
6926 /**
6927  * preempt_schedule_notrace - preempt_schedule called by tracing
6928  *
6929  * The tracing infrastructure uses preempt_enable_notrace to prevent
6930  * recursion and tracing preempt enabling caused by the tracing
6931  * infrastructure itself. But as tracing can happen in areas coming
6932  * from userspace or just about to enter userspace, a preempt enable
6933  * can occur before user_exit() is called. This will cause the scheduler
6934  * to be called when the system is still in usermode.
6935  *
6936  * To prevent this, the preempt_enable_notrace will use this function
6937  * instead of preempt_schedule() to exit user context if needed before
6938  * calling the scheduler.
6939  */
6940 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6941 {
6942 	enum ctx_state prev_ctx;
6943 
6944 	if (likely(!preemptible()))
6945 		return;
6946 
6947 	do {
6948 		/*
6949 		 * Because the function tracer can trace preempt_count_sub()
6950 		 * and it also uses preempt_enable/disable_notrace(), if
6951 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6952 		 * by the function tracer will call this function again and
6953 		 * cause infinite recursion.
6954 		 *
6955 		 * Preemption must be disabled here before the function
6956 		 * tracer can trace. Break up preempt_disable() into two
6957 		 * calls. One to disable preemption without fear of being
6958 		 * traced. The other to still record the preemption latency,
6959 		 * which can also be traced by the function tracer.
6960 		 */
6961 		preempt_disable_notrace();
6962 		preempt_latency_start(1);
6963 		/*
6964 		 * Needs preempt disabled in case user_exit() is traced
6965 		 * and the tracer calls preempt_enable_notrace() causing
6966 		 * an infinite recursion.
6967 		 */
6968 		prev_ctx = exception_enter();
6969 		__schedule(SM_PREEMPT);
6970 		exception_exit(prev_ctx);
6971 
6972 		preempt_latency_stop(1);
6973 		preempt_enable_no_resched_notrace();
6974 	} while (need_resched());
6975 }
6976 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6977 
6978 #ifdef CONFIG_PREEMPT_DYNAMIC
6979 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6980 #  ifndef preempt_schedule_notrace_dynamic_enabled
6981 #   define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6982 #   define preempt_schedule_notrace_dynamic_disabled	NULL
6983 #  endif
6984 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6985 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6986 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6987 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6988 void __sched notrace dynamic_preempt_schedule_notrace(void)
6989 {
6990 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6991 		return;
6992 	preempt_schedule_notrace();
6993 }
6994 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6995 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6996 # endif
6997 #endif
6998 
6999 #endif /* CONFIG_PREEMPTION */
7000 
7001 /*
7002  * This is the entry point to schedule() from kernel preemption
7003  * off of IRQ context.
7004  * Note, that this is called and return with IRQs disabled. This will
7005  * protect us against recursive calling from IRQ contexts.
7006  */
7007 asmlinkage __visible void __sched preempt_schedule_irq(void)
7008 {
7009 	enum ctx_state prev_state;
7010 
7011 	/* Catch callers which need to be fixed */
7012 	BUG_ON(preempt_count() || !irqs_disabled());
7013 
7014 	prev_state = exception_enter();
7015 
7016 	do {
7017 		preempt_disable();
7018 		local_irq_enable();
7019 		__schedule(SM_PREEMPT);
7020 		local_irq_disable();
7021 		sched_preempt_enable_no_resched();
7022 	} while (need_resched());
7023 
7024 	exception_exit(prev_state);
7025 }
7026 
7027 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7028 			  void *key)
7029 {
7030 	WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7031 	return try_to_wake_up(curr->private, mode, wake_flags);
7032 }
7033 EXPORT_SYMBOL(default_wake_function);
7034 
7035 const struct sched_class *__setscheduler_class(int policy, int prio)
7036 {
7037 	if (dl_prio(prio))
7038 		return &dl_sched_class;
7039 
7040 	if (rt_prio(prio))
7041 		return &rt_sched_class;
7042 
7043 #ifdef CONFIG_SCHED_CLASS_EXT
7044 	if (task_should_scx(policy))
7045 		return &ext_sched_class;
7046 #endif
7047 
7048 	return &fair_sched_class;
7049 }
7050 
7051 #ifdef CONFIG_RT_MUTEXES
7052 
7053 /*
7054  * Would be more useful with typeof()/auto_type but they don't mix with
7055  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7056  * name such that if someone were to implement this function we get to compare
7057  * notes.
7058  */
7059 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7060 
7061 void rt_mutex_pre_schedule(void)
7062 {
7063 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7064 	sched_submit_work(current);
7065 }
7066 
7067 void rt_mutex_schedule(void)
7068 {
7069 	lockdep_assert(current->sched_rt_mutex);
7070 	__schedule_loop(SM_NONE);
7071 }
7072 
7073 void rt_mutex_post_schedule(void)
7074 {
7075 	sched_update_worker(current);
7076 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7077 }
7078 
7079 /*
7080  * rt_mutex_setprio - set the current priority of a task
7081  * @p: task to boost
7082  * @pi_task: donor task
7083  *
7084  * This function changes the 'effective' priority of a task. It does
7085  * not touch ->normal_prio like __setscheduler().
7086  *
7087  * Used by the rt_mutex code to implement priority inheritance
7088  * logic. Call site only calls if the priority of the task changed.
7089  */
7090 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7091 {
7092 	int prio, oldprio, queued, running, queue_flag =
7093 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7094 	const struct sched_class *prev_class, *next_class;
7095 	struct rq_flags rf;
7096 	struct rq *rq;
7097 
7098 	/* XXX used to be waiter->prio, not waiter->task->prio */
7099 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7100 
7101 	/*
7102 	 * If nothing changed; bail early.
7103 	 */
7104 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7105 		return;
7106 
7107 	rq = __task_rq_lock(p, &rf);
7108 	update_rq_clock(rq);
7109 	/*
7110 	 * Set under pi_lock && rq->lock, such that the value can be used under
7111 	 * either lock.
7112 	 *
7113 	 * Note that there is loads of tricky to make this pointer cache work
7114 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7115 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7116 	 * task is allowed to run again (and can exit). This ensures the pointer
7117 	 * points to a blocked task -- which guarantees the task is present.
7118 	 */
7119 	p->pi_top_task = pi_task;
7120 
7121 	/*
7122 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7123 	 */
7124 	if (prio == p->prio && !dl_prio(prio))
7125 		goto out_unlock;
7126 
7127 	/*
7128 	 * Idle task boosting is a no-no in general. There is one
7129 	 * exception, when PREEMPT_RT and NOHZ is active:
7130 	 *
7131 	 * The idle task calls get_next_timer_interrupt() and holds
7132 	 * the timer wheel base->lock on the CPU and another CPU wants
7133 	 * to access the timer (probably to cancel it). We can safely
7134 	 * ignore the boosting request, as the idle CPU runs this code
7135 	 * with interrupts disabled and will complete the lock
7136 	 * protected section without being interrupted. So there is no
7137 	 * real need to boost.
7138 	 */
7139 	if (unlikely(p == rq->idle)) {
7140 		WARN_ON(p != rq->curr);
7141 		WARN_ON(p->pi_blocked_on);
7142 		goto out_unlock;
7143 	}
7144 
7145 	trace_sched_pi_setprio(p, pi_task);
7146 	oldprio = p->prio;
7147 
7148 	if (oldprio == prio)
7149 		queue_flag &= ~DEQUEUE_MOVE;
7150 
7151 	prev_class = p->sched_class;
7152 	next_class = __setscheduler_class(p->policy, prio);
7153 
7154 	if (prev_class != next_class && p->se.sched_delayed)
7155 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7156 
7157 	queued = task_on_rq_queued(p);
7158 	running = task_current_donor(rq, p);
7159 	if (queued)
7160 		dequeue_task(rq, p, queue_flag);
7161 	if (running)
7162 		put_prev_task(rq, p);
7163 
7164 	/*
7165 	 * Boosting condition are:
7166 	 * 1. -rt task is running and holds mutex A
7167 	 *      --> -dl task blocks on mutex A
7168 	 *
7169 	 * 2. -dl task is running and holds mutex A
7170 	 *      --> -dl task blocks on mutex A and could preempt the
7171 	 *          running task
7172 	 */
7173 	if (dl_prio(prio)) {
7174 		if (!dl_prio(p->normal_prio) ||
7175 		    (pi_task && dl_prio(pi_task->prio) &&
7176 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7177 			p->dl.pi_se = pi_task->dl.pi_se;
7178 			queue_flag |= ENQUEUE_REPLENISH;
7179 		} else {
7180 			p->dl.pi_se = &p->dl;
7181 		}
7182 	} else if (rt_prio(prio)) {
7183 		if (dl_prio(oldprio))
7184 			p->dl.pi_se = &p->dl;
7185 		if (oldprio < prio)
7186 			queue_flag |= ENQUEUE_HEAD;
7187 	} else {
7188 		if (dl_prio(oldprio))
7189 			p->dl.pi_se = &p->dl;
7190 		if (rt_prio(oldprio))
7191 			p->rt.timeout = 0;
7192 	}
7193 
7194 	p->sched_class = next_class;
7195 	p->prio = prio;
7196 
7197 	check_class_changing(rq, p, prev_class);
7198 
7199 	if (queued)
7200 		enqueue_task(rq, p, queue_flag);
7201 	if (running)
7202 		set_next_task(rq, p);
7203 
7204 	check_class_changed(rq, p, prev_class, oldprio);
7205 out_unlock:
7206 	/* Avoid rq from going away on us: */
7207 	preempt_disable();
7208 
7209 	rq_unpin_lock(rq, &rf);
7210 	__balance_callbacks(rq);
7211 	raw_spin_rq_unlock(rq);
7212 
7213 	preempt_enable();
7214 }
7215 #endif /* CONFIG_RT_MUTEXES */
7216 
7217 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7218 int __sched __cond_resched(void)
7219 {
7220 	if (should_resched(0) && !irqs_disabled()) {
7221 		preempt_schedule_common();
7222 		return 1;
7223 	}
7224 	/*
7225 	 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick
7226 	 * whether the current CPU is in an RCU read-side critical section,
7227 	 * so the tick can report quiescent states even for CPUs looping
7228 	 * in kernel context.  In contrast, in non-preemptible kernels,
7229 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7230 	 * processes executing in kernel context might never report an
7231 	 * RCU quiescent state.  Therefore, the following code causes
7232 	 * cond_resched() to report a quiescent state, but only when RCU
7233 	 * is in urgent need of one.
7234 	 * A third case, preemptible, but non-PREEMPT_RCU provides for
7235 	 * urgently needed quiescent states via rcu_flavor_sched_clock_irq().
7236 	 */
7237 #ifndef CONFIG_PREEMPT_RCU
7238 	rcu_all_qs();
7239 #endif
7240 	return 0;
7241 }
7242 EXPORT_SYMBOL(__cond_resched);
7243 #endif
7244 
7245 #ifdef CONFIG_PREEMPT_DYNAMIC
7246 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7247 #  define cond_resched_dynamic_enabled	__cond_resched
7248 #  define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7249 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7250 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7251 
7252 #  define might_resched_dynamic_enabled	__cond_resched
7253 #  define might_resched_dynamic_disabled ((void *)&__static_call_return0)
7254 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7255 EXPORT_STATIC_CALL_TRAMP(might_resched);
7256 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7257 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7258 int __sched dynamic_cond_resched(void)
7259 {
7260 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7261 		return 0;
7262 	return __cond_resched();
7263 }
7264 EXPORT_SYMBOL(dynamic_cond_resched);
7265 
7266 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7267 int __sched dynamic_might_resched(void)
7268 {
7269 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7270 		return 0;
7271 	return __cond_resched();
7272 }
7273 EXPORT_SYMBOL(dynamic_might_resched);
7274 # endif
7275 #endif /* CONFIG_PREEMPT_DYNAMIC */
7276 
7277 /*
7278  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7279  * call schedule, and on return reacquire the lock.
7280  *
7281  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7282  * operations here to prevent schedule() from being called twice (once via
7283  * spin_unlock(), once by hand).
7284  */
7285 int __cond_resched_lock(spinlock_t *lock)
7286 {
7287 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7288 	int ret = 0;
7289 
7290 	lockdep_assert_held(lock);
7291 
7292 	if (spin_needbreak(lock) || resched) {
7293 		spin_unlock(lock);
7294 		if (!_cond_resched())
7295 			cpu_relax();
7296 		ret = 1;
7297 		spin_lock(lock);
7298 	}
7299 	return ret;
7300 }
7301 EXPORT_SYMBOL(__cond_resched_lock);
7302 
7303 int __cond_resched_rwlock_read(rwlock_t *lock)
7304 {
7305 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7306 	int ret = 0;
7307 
7308 	lockdep_assert_held_read(lock);
7309 
7310 	if (rwlock_needbreak(lock) || resched) {
7311 		read_unlock(lock);
7312 		if (!_cond_resched())
7313 			cpu_relax();
7314 		ret = 1;
7315 		read_lock(lock);
7316 	}
7317 	return ret;
7318 }
7319 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7320 
7321 int __cond_resched_rwlock_write(rwlock_t *lock)
7322 {
7323 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7324 	int ret = 0;
7325 
7326 	lockdep_assert_held_write(lock);
7327 
7328 	if (rwlock_needbreak(lock) || resched) {
7329 		write_unlock(lock);
7330 		if (!_cond_resched())
7331 			cpu_relax();
7332 		ret = 1;
7333 		write_lock(lock);
7334 	}
7335 	return ret;
7336 }
7337 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7338 
7339 #ifdef CONFIG_PREEMPT_DYNAMIC
7340 
7341 # ifdef CONFIG_GENERIC_ENTRY
7342 #  include <linux/entry-common.h>
7343 # endif
7344 
7345 /*
7346  * SC:cond_resched
7347  * SC:might_resched
7348  * SC:preempt_schedule
7349  * SC:preempt_schedule_notrace
7350  * SC:irqentry_exit_cond_resched
7351  *
7352  *
7353  * NONE:
7354  *   cond_resched               <- __cond_resched
7355  *   might_resched              <- RET0
7356  *   preempt_schedule           <- NOP
7357  *   preempt_schedule_notrace   <- NOP
7358  *   irqentry_exit_cond_resched <- NOP
7359  *   dynamic_preempt_lazy       <- false
7360  *
7361  * VOLUNTARY:
7362  *   cond_resched               <- __cond_resched
7363  *   might_resched              <- __cond_resched
7364  *   preempt_schedule           <- NOP
7365  *   preempt_schedule_notrace   <- NOP
7366  *   irqentry_exit_cond_resched <- NOP
7367  *   dynamic_preempt_lazy       <- false
7368  *
7369  * FULL:
7370  *   cond_resched               <- RET0
7371  *   might_resched              <- RET0
7372  *   preempt_schedule           <- preempt_schedule
7373  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7374  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7375  *   dynamic_preempt_lazy       <- false
7376  *
7377  * LAZY:
7378  *   cond_resched               <- RET0
7379  *   might_resched              <- RET0
7380  *   preempt_schedule           <- preempt_schedule
7381  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7382  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7383  *   dynamic_preempt_lazy       <- true
7384  */
7385 
7386 enum {
7387 	preempt_dynamic_undefined = -1,
7388 	preempt_dynamic_none,
7389 	preempt_dynamic_voluntary,
7390 	preempt_dynamic_full,
7391 	preempt_dynamic_lazy,
7392 };
7393 
7394 int preempt_dynamic_mode = preempt_dynamic_undefined;
7395 
7396 int sched_dynamic_mode(const char *str)
7397 {
7398 # ifndef CONFIG_PREEMPT_RT
7399 	if (!strcmp(str, "none"))
7400 		return preempt_dynamic_none;
7401 
7402 	if (!strcmp(str, "voluntary"))
7403 		return preempt_dynamic_voluntary;
7404 # endif
7405 
7406 	if (!strcmp(str, "full"))
7407 		return preempt_dynamic_full;
7408 
7409 # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7410 	if (!strcmp(str, "lazy"))
7411 		return preempt_dynamic_lazy;
7412 # endif
7413 
7414 	return -EINVAL;
7415 }
7416 
7417 # define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7418 # define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7419 
7420 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7421 #  define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7422 #  define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7423 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7424 #  define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7425 #  define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7426 # else
7427 #  error "Unsupported PREEMPT_DYNAMIC mechanism"
7428 # endif
7429 
7430 static DEFINE_MUTEX(sched_dynamic_mutex);
7431 
7432 static void __sched_dynamic_update(int mode)
7433 {
7434 	/*
7435 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7436 	 * the ZERO state, which is invalid.
7437 	 */
7438 	preempt_dynamic_enable(cond_resched);
7439 	preempt_dynamic_enable(might_resched);
7440 	preempt_dynamic_enable(preempt_schedule);
7441 	preempt_dynamic_enable(preempt_schedule_notrace);
7442 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7443 	preempt_dynamic_key_disable(preempt_lazy);
7444 
7445 	switch (mode) {
7446 	case preempt_dynamic_none:
7447 		preempt_dynamic_enable(cond_resched);
7448 		preempt_dynamic_disable(might_resched);
7449 		preempt_dynamic_disable(preempt_schedule);
7450 		preempt_dynamic_disable(preempt_schedule_notrace);
7451 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7452 		preempt_dynamic_key_disable(preempt_lazy);
7453 		if (mode != preempt_dynamic_mode)
7454 			pr_info("Dynamic Preempt: none\n");
7455 		break;
7456 
7457 	case preempt_dynamic_voluntary:
7458 		preempt_dynamic_enable(cond_resched);
7459 		preempt_dynamic_enable(might_resched);
7460 		preempt_dynamic_disable(preempt_schedule);
7461 		preempt_dynamic_disable(preempt_schedule_notrace);
7462 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7463 		preempt_dynamic_key_disable(preempt_lazy);
7464 		if (mode != preempt_dynamic_mode)
7465 			pr_info("Dynamic Preempt: voluntary\n");
7466 		break;
7467 
7468 	case preempt_dynamic_full:
7469 		preempt_dynamic_disable(cond_resched);
7470 		preempt_dynamic_disable(might_resched);
7471 		preempt_dynamic_enable(preempt_schedule);
7472 		preempt_dynamic_enable(preempt_schedule_notrace);
7473 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7474 		preempt_dynamic_key_disable(preempt_lazy);
7475 		if (mode != preempt_dynamic_mode)
7476 			pr_info("Dynamic Preempt: full\n");
7477 		break;
7478 
7479 	case preempt_dynamic_lazy:
7480 		preempt_dynamic_disable(cond_resched);
7481 		preempt_dynamic_disable(might_resched);
7482 		preempt_dynamic_enable(preempt_schedule);
7483 		preempt_dynamic_enable(preempt_schedule_notrace);
7484 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7485 		preempt_dynamic_key_enable(preempt_lazy);
7486 		if (mode != preempt_dynamic_mode)
7487 			pr_info("Dynamic Preempt: lazy\n");
7488 		break;
7489 	}
7490 
7491 	preempt_dynamic_mode = mode;
7492 }
7493 
7494 void sched_dynamic_update(int mode)
7495 {
7496 	mutex_lock(&sched_dynamic_mutex);
7497 	__sched_dynamic_update(mode);
7498 	mutex_unlock(&sched_dynamic_mutex);
7499 }
7500 
7501 static int __init setup_preempt_mode(char *str)
7502 {
7503 	int mode = sched_dynamic_mode(str);
7504 	if (mode < 0) {
7505 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7506 		return 0;
7507 	}
7508 
7509 	sched_dynamic_update(mode);
7510 	return 1;
7511 }
7512 __setup("preempt=", setup_preempt_mode);
7513 
7514 static void __init preempt_dynamic_init(void)
7515 {
7516 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7517 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7518 			sched_dynamic_update(preempt_dynamic_none);
7519 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7520 			sched_dynamic_update(preempt_dynamic_voluntary);
7521 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7522 			sched_dynamic_update(preempt_dynamic_lazy);
7523 		} else {
7524 			/* Default static call setting, nothing to do */
7525 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7526 			preempt_dynamic_mode = preempt_dynamic_full;
7527 			pr_info("Dynamic Preempt: full\n");
7528 		}
7529 	}
7530 }
7531 
7532 # define PREEMPT_MODEL_ACCESSOR(mode) \
7533 	bool preempt_model_##mode(void)						 \
7534 	{									 \
7535 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7536 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7537 	}									 \
7538 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7539 
7540 PREEMPT_MODEL_ACCESSOR(none);
7541 PREEMPT_MODEL_ACCESSOR(voluntary);
7542 PREEMPT_MODEL_ACCESSOR(full);
7543 PREEMPT_MODEL_ACCESSOR(lazy);
7544 
7545 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7546 
7547 #define preempt_dynamic_mode -1
7548 
7549 static inline void preempt_dynamic_init(void) { }
7550 
7551 #endif /* CONFIG_PREEMPT_DYNAMIC */
7552 
7553 const char *preempt_modes[] = {
7554 	"none", "voluntary", "full", "lazy", NULL,
7555 };
7556 
7557 const char *preempt_model_str(void)
7558 {
7559 	bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) &&
7560 		(IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) ||
7561 		 IS_ENABLED(CONFIG_PREEMPT_LAZY));
7562 	static char buf[128];
7563 
7564 	if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) {
7565 		struct seq_buf s;
7566 
7567 		seq_buf_init(&s, buf, sizeof(buf));
7568 		seq_buf_puts(&s, "PREEMPT");
7569 
7570 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
7571 			seq_buf_printf(&s, "%sRT%s",
7572 				       brace ? "_{" : "_",
7573 				       brace ? "," : "");
7574 
7575 		if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) {
7576 			seq_buf_printf(&s, "(%s)%s",
7577 				       preempt_dynamic_mode > 0 ?
7578 				       preempt_modes[preempt_dynamic_mode] : "undef",
7579 				       brace ? "}" : "");
7580 			return seq_buf_str(&s);
7581 		}
7582 
7583 		if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7584 			seq_buf_printf(&s, "LAZY%s",
7585 				       brace ? "}" : "");
7586 			return seq_buf_str(&s);
7587 		}
7588 
7589 		return seq_buf_str(&s);
7590 	}
7591 
7592 	if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD))
7593 		return "VOLUNTARY";
7594 
7595 	return "NONE";
7596 }
7597 
7598 int io_schedule_prepare(void)
7599 {
7600 	int old_iowait = current->in_iowait;
7601 
7602 	current->in_iowait = 1;
7603 	blk_flush_plug(current->plug, true);
7604 	return old_iowait;
7605 }
7606 
7607 void io_schedule_finish(int token)
7608 {
7609 	current->in_iowait = token;
7610 }
7611 
7612 /*
7613  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7614  * that process accounting knows that this is a task in IO wait state.
7615  */
7616 long __sched io_schedule_timeout(long timeout)
7617 {
7618 	int token;
7619 	long ret;
7620 
7621 	token = io_schedule_prepare();
7622 	ret = schedule_timeout(timeout);
7623 	io_schedule_finish(token);
7624 
7625 	return ret;
7626 }
7627 EXPORT_SYMBOL(io_schedule_timeout);
7628 
7629 void __sched io_schedule(void)
7630 {
7631 	int token;
7632 
7633 	token = io_schedule_prepare();
7634 	schedule();
7635 	io_schedule_finish(token);
7636 }
7637 EXPORT_SYMBOL(io_schedule);
7638 
7639 void sched_show_task(struct task_struct *p)
7640 {
7641 	unsigned long free;
7642 	int ppid;
7643 
7644 	if (!try_get_task_stack(p))
7645 		return;
7646 
7647 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7648 
7649 	if (task_is_running(p))
7650 		pr_cont("  running task    ");
7651 	free = stack_not_used(p);
7652 	ppid = 0;
7653 	rcu_read_lock();
7654 	if (pid_alive(p))
7655 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7656 	rcu_read_unlock();
7657 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7658 		free, task_pid_nr(p), task_tgid_nr(p),
7659 		ppid, p->flags, read_task_thread_flags(p));
7660 
7661 	print_worker_info(KERN_INFO, p);
7662 	print_stop_info(KERN_INFO, p);
7663 	print_scx_info(KERN_INFO, p);
7664 	show_stack(p, NULL, KERN_INFO);
7665 	put_task_stack(p);
7666 }
7667 EXPORT_SYMBOL_GPL(sched_show_task);
7668 
7669 static inline bool
7670 state_filter_match(unsigned long state_filter, struct task_struct *p)
7671 {
7672 	unsigned int state = READ_ONCE(p->__state);
7673 
7674 	/* no filter, everything matches */
7675 	if (!state_filter)
7676 		return true;
7677 
7678 	/* filter, but doesn't match */
7679 	if (!(state & state_filter))
7680 		return false;
7681 
7682 	/*
7683 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7684 	 * TASK_KILLABLE).
7685 	 */
7686 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7687 		return false;
7688 
7689 	return true;
7690 }
7691 
7692 
7693 void show_state_filter(unsigned int state_filter)
7694 {
7695 	struct task_struct *g, *p;
7696 
7697 	rcu_read_lock();
7698 	for_each_process_thread(g, p) {
7699 		/*
7700 		 * reset the NMI-timeout, listing all files on a slow
7701 		 * console might take a lot of time:
7702 		 * Also, reset softlockup watchdogs on all CPUs, because
7703 		 * another CPU might be blocked waiting for us to process
7704 		 * an IPI.
7705 		 */
7706 		touch_nmi_watchdog();
7707 		touch_all_softlockup_watchdogs();
7708 		if (state_filter_match(state_filter, p))
7709 			sched_show_task(p);
7710 	}
7711 
7712 	if (!state_filter)
7713 		sysrq_sched_debug_show();
7714 
7715 	rcu_read_unlock();
7716 	/*
7717 	 * Only show locks if all tasks are dumped:
7718 	 */
7719 	if (!state_filter)
7720 		debug_show_all_locks();
7721 }
7722 
7723 /**
7724  * init_idle - set up an idle thread for a given CPU
7725  * @idle: task in question
7726  * @cpu: CPU the idle task belongs to
7727  *
7728  * NOTE: this function does not set the idle thread's NEED_RESCHED
7729  * flag, to make booting more robust.
7730  */
7731 void __init init_idle(struct task_struct *idle, int cpu)
7732 {
7733 	struct affinity_context ac = (struct affinity_context) {
7734 		.new_mask  = cpumask_of(cpu),
7735 		.flags     = 0,
7736 	};
7737 	struct rq *rq = cpu_rq(cpu);
7738 	unsigned long flags;
7739 
7740 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7741 	raw_spin_rq_lock(rq);
7742 
7743 	idle->__state = TASK_RUNNING;
7744 	idle->se.exec_start = sched_clock();
7745 	/*
7746 	 * PF_KTHREAD should already be set at this point; regardless, make it
7747 	 * look like a proper per-CPU kthread.
7748 	 */
7749 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7750 	kthread_set_per_cpu(idle, cpu);
7751 
7752 	/*
7753 	 * No validation and serialization required at boot time and for
7754 	 * setting up the idle tasks of not yet online CPUs.
7755 	 */
7756 	set_cpus_allowed_common(idle, &ac);
7757 	/*
7758 	 * We're having a chicken and egg problem, even though we are
7759 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7760 	 * lockdep check in task_group() will fail.
7761 	 *
7762 	 * Similar case to sched_fork(). / Alternatively we could
7763 	 * use task_rq_lock() here and obtain the other rq->lock.
7764 	 *
7765 	 * Silence PROVE_RCU
7766 	 */
7767 	rcu_read_lock();
7768 	__set_task_cpu(idle, cpu);
7769 	rcu_read_unlock();
7770 
7771 	rq->idle = idle;
7772 	rq_set_donor(rq, idle);
7773 	rcu_assign_pointer(rq->curr, idle);
7774 	idle->on_rq = TASK_ON_RQ_QUEUED;
7775 	idle->on_cpu = 1;
7776 	raw_spin_rq_unlock(rq);
7777 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7778 
7779 	/* Set the preempt count _outside_ the spinlocks! */
7780 	init_idle_preempt_count(idle, cpu);
7781 
7782 	/*
7783 	 * The idle tasks have their own, simple scheduling class:
7784 	 */
7785 	idle->sched_class = &idle_sched_class;
7786 	ftrace_graph_init_idle_task(idle, cpu);
7787 	vtime_init_idle(idle, cpu);
7788 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7789 }
7790 
7791 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7792 			      const struct cpumask *trial)
7793 {
7794 	int ret = 1;
7795 
7796 	if (cpumask_empty(cur))
7797 		return ret;
7798 
7799 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7800 
7801 	return ret;
7802 }
7803 
7804 int task_can_attach(struct task_struct *p)
7805 {
7806 	int ret = 0;
7807 
7808 	/*
7809 	 * Kthreads which disallow setaffinity shouldn't be moved
7810 	 * to a new cpuset; we don't want to change their CPU
7811 	 * affinity and isolating such threads by their set of
7812 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7813 	 * applicable for such threads.  This prevents checking for
7814 	 * success of set_cpus_allowed_ptr() on all attached tasks
7815 	 * before cpus_mask may be changed.
7816 	 */
7817 	if (p->flags & PF_NO_SETAFFINITY)
7818 		ret = -EINVAL;
7819 
7820 	return ret;
7821 }
7822 
7823 bool sched_smp_initialized __read_mostly;
7824 
7825 #ifdef CONFIG_NUMA_BALANCING
7826 /* Migrate current task p to target_cpu */
7827 int migrate_task_to(struct task_struct *p, int target_cpu)
7828 {
7829 	struct migration_arg arg = { p, target_cpu };
7830 	int curr_cpu = task_cpu(p);
7831 
7832 	if (curr_cpu == target_cpu)
7833 		return 0;
7834 
7835 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7836 		return -EINVAL;
7837 
7838 	__schedstat_inc(p->stats.numa_task_migrated);
7839 	count_vm_numa_event(NUMA_TASK_MIGRATE);
7840 	count_memcg_event_mm(p->mm, NUMA_TASK_MIGRATE);
7841 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7842 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7843 }
7844 
7845 /*
7846  * Requeue a task on a given node and accurately track the number of NUMA
7847  * tasks on the runqueues
7848  */
7849 void sched_setnuma(struct task_struct *p, int nid)
7850 {
7851 	bool queued, running;
7852 	struct rq_flags rf;
7853 	struct rq *rq;
7854 
7855 	rq = task_rq_lock(p, &rf);
7856 	queued = task_on_rq_queued(p);
7857 	running = task_current_donor(rq, p);
7858 
7859 	if (queued)
7860 		dequeue_task(rq, p, DEQUEUE_SAVE);
7861 	if (running)
7862 		put_prev_task(rq, p);
7863 
7864 	p->numa_preferred_nid = nid;
7865 
7866 	if (queued)
7867 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7868 	if (running)
7869 		set_next_task(rq, p);
7870 	task_rq_unlock(rq, p, &rf);
7871 }
7872 #endif /* CONFIG_NUMA_BALANCING */
7873 
7874 #ifdef CONFIG_HOTPLUG_CPU
7875 /*
7876  * Invoked on the outgoing CPU in context of the CPU hotplug thread
7877  * after ensuring that there are no user space tasks left on the CPU.
7878  *
7879  * If there is a lazy mm in use on the hotplug thread, drop it and
7880  * switch to init_mm.
7881  *
7882  * The reference count on init_mm is dropped in finish_cpu().
7883  */
7884 static void sched_force_init_mm(void)
7885 {
7886 	struct mm_struct *mm = current->active_mm;
7887 
7888 	if (mm != &init_mm) {
7889 		mmgrab_lazy_tlb(&init_mm);
7890 		local_irq_disable();
7891 		current->active_mm = &init_mm;
7892 		switch_mm_irqs_off(mm, &init_mm, current);
7893 		local_irq_enable();
7894 		finish_arch_post_lock_switch();
7895 		mmdrop_lazy_tlb(mm);
7896 	}
7897 
7898 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7899 }
7900 
7901 static int __balance_push_cpu_stop(void *arg)
7902 {
7903 	struct task_struct *p = arg;
7904 	struct rq *rq = this_rq();
7905 	struct rq_flags rf;
7906 	int cpu;
7907 
7908 	raw_spin_lock_irq(&p->pi_lock);
7909 	rq_lock(rq, &rf);
7910 
7911 	update_rq_clock(rq);
7912 
7913 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7914 		cpu = select_fallback_rq(rq->cpu, p);
7915 		rq = __migrate_task(rq, &rf, p, cpu);
7916 	}
7917 
7918 	rq_unlock(rq, &rf);
7919 	raw_spin_unlock_irq(&p->pi_lock);
7920 
7921 	put_task_struct(p);
7922 
7923 	return 0;
7924 }
7925 
7926 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7927 
7928 /*
7929  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7930  *
7931  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7932  * effective when the hotplug motion is down.
7933  */
7934 static void balance_push(struct rq *rq)
7935 {
7936 	struct task_struct *push_task = rq->curr;
7937 
7938 	lockdep_assert_rq_held(rq);
7939 
7940 	/*
7941 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7942 	 */
7943 	rq->balance_callback = &balance_push_callback;
7944 
7945 	/*
7946 	 * Only active while going offline and when invoked on the outgoing
7947 	 * CPU.
7948 	 */
7949 	if (!cpu_dying(rq->cpu) || rq != this_rq())
7950 		return;
7951 
7952 	/*
7953 	 * Both the cpu-hotplug and stop task are in this case and are
7954 	 * required to complete the hotplug process.
7955 	 */
7956 	if (kthread_is_per_cpu(push_task) ||
7957 	    is_migration_disabled(push_task)) {
7958 
7959 		/*
7960 		 * If this is the idle task on the outgoing CPU try to wake
7961 		 * up the hotplug control thread which might wait for the
7962 		 * last task to vanish. The rcuwait_active() check is
7963 		 * accurate here because the waiter is pinned on this CPU
7964 		 * and can't obviously be running in parallel.
7965 		 *
7966 		 * On RT kernels this also has to check whether there are
7967 		 * pinned and scheduled out tasks on the runqueue. They
7968 		 * need to leave the migrate disabled section first.
7969 		 */
7970 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7971 		    rcuwait_active(&rq->hotplug_wait)) {
7972 			raw_spin_rq_unlock(rq);
7973 			rcuwait_wake_up(&rq->hotplug_wait);
7974 			raw_spin_rq_lock(rq);
7975 		}
7976 		return;
7977 	}
7978 
7979 	get_task_struct(push_task);
7980 	/*
7981 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7982 	 * Both preemption and IRQs are still disabled.
7983 	 */
7984 	preempt_disable();
7985 	raw_spin_rq_unlock(rq);
7986 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7987 			    this_cpu_ptr(&push_work));
7988 	preempt_enable();
7989 	/*
7990 	 * At this point need_resched() is true and we'll take the loop in
7991 	 * schedule(). The next pick is obviously going to be the stop task
7992 	 * which kthread_is_per_cpu() and will push this task away.
7993 	 */
7994 	raw_spin_rq_lock(rq);
7995 }
7996 
7997 static void balance_push_set(int cpu, bool on)
7998 {
7999 	struct rq *rq = cpu_rq(cpu);
8000 	struct rq_flags rf;
8001 
8002 	rq_lock_irqsave(rq, &rf);
8003 	if (on) {
8004 		WARN_ON_ONCE(rq->balance_callback);
8005 		rq->balance_callback = &balance_push_callback;
8006 	} else if (rq->balance_callback == &balance_push_callback) {
8007 		rq->balance_callback = NULL;
8008 	}
8009 	rq_unlock_irqrestore(rq, &rf);
8010 }
8011 
8012 /*
8013  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8014  * inactive. All tasks which are not per CPU kernel threads are either
8015  * pushed off this CPU now via balance_push() or placed on a different CPU
8016  * during wakeup. Wait until the CPU is quiescent.
8017  */
8018 static void balance_hotplug_wait(void)
8019 {
8020 	struct rq *rq = this_rq();
8021 
8022 	rcuwait_wait_event(&rq->hotplug_wait,
8023 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8024 			   TASK_UNINTERRUPTIBLE);
8025 }
8026 
8027 #else /* !CONFIG_HOTPLUG_CPU: */
8028 
8029 static inline void balance_push(struct rq *rq)
8030 {
8031 }
8032 
8033 static inline void balance_push_set(int cpu, bool on)
8034 {
8035 }
8036 
8037 static inline void balance_hotplug_wait(void)
8038 {
8039 }
8040 
8041 #endif /* !CONFIG_HOTPLUG_CPU */
8042 
8043 void set_rq_online(struct rq *rq)
8044 {
8045 	if (!rq->online) {
8046 		const struct sched_class *class;
8047 
8048 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8049 		rq->online = 1;
8050 
8051 		for_each_class(class) {
8052 			if (class->rq_online)
8053 				class->rq_online(rq);
8054 		}
8055 	}
8056 }
8057 
8058 void set_rq_offline(struct rq *rq)
8059 {
8060 	if (rq->online) {
8061 		const struct sched_class *class;
8062 
8063 		update_rq_clock(rq);
8064 		for_each_class(class) {
8065 			if (class->rq_offline)
8066 				class->rq_offline(rq);
8067 		}
8068 
8069 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8070 		rq->online = 0;
8071 	}
8072 }
8073 
8074 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8075 {
8076 	struct rq_flags rf;
8077 
8078 	rq_lock_irqsave(rq, &rf);
8079 	if (rq->rd) {
8080 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8081 		set_rq_online(rq);
8082 	}
8083 	rq_unlock_irqrestore(rq, &rf);
8084 }
8085 
8086 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8087 {
8088 	struct rq_flags rf;
8089 
8090 	rq_lock_irqsave(rq, &rf);
8091 	if (rq->rd) {
8092 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8093 		set_rq_offline(rq);
8094 	}
8095 	rq_unlock_irqrestore(rq, &rf);
8096 }
8097 
8098 /*
8099  * used to mark begin/end of suspend/resume:
8100  */
8101 static int num_cpus_frozen;
8102 
8103 /*
8104  * Update cpusets according to cpu_active mask.  If cpusets are
8105  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8106  * around partition_sched_domains().
8107  *
8108  * If we come here as part of a suspend/resume, don't touch cpusets because we
8109  * want to restore it back to its original state upon resume anyway.
8110  */
8111 static void cpuset_cpu_active(void)
8112 {
8113 	if (cpuhp_tasks_frozen) {
8114 		/*
8115 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8116 		 * resume sequence. As long as this is not the last online
8117 		 * operation in the resume sequence, just build a single sched
8118 		 * domain, ignoring cpusets.
8119 		 */
8120 		cpuset_reset_sched_domains();
8121 		if (--num_cpus_frozen)
8122 			return;
8123 		/*
8124 		 * This is the last CPU online operation. So fall through and
8125 		 * restore the original sched domains by considering the
8126 		 * cpuset configurations.
8127 		 */
8128 		cpuset_force_rebuild();
8129 	}
8130 	cpuset_update_active_cpus();
8131 }
8132 
8133 static void cpuset_cpu_inactive(unsigned int cpu)
8134 {
8135 	if (!cpuhp_tasks_frozen) {
8136 		cpuset_update_active_cpus();
8137 	} else {
8138 		num_cpus_frozen++;
8139 		cpuset_reset_sched_domains();
8140 	}
8141 }
8142 
8143 static inline void sched_smt_present_inc(int cpu)
8144 {
8145 #ifdef CONFIG_SCHED_SMT
8146 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8147 		static_branch_inc_cpuslocked(&sched_smt_present);
8148 #endif
8149 }
8150 
8151 static inline void sched_smt_present_dec(int cpu)
8152 {
8153 #ifdef CONFIG_SCHED_SMT
8154 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8155 		static_branch_dec_cpuslocked(&sched_smt_present);
8156 #endif
8157 }
8158 
8159 int sched_cpu_activate(unsigned int cpu)
8160 {
8161 	struct rq *rq = cpu_rq(cpu);
8162 
8163 	/*
8164 	 * Clear the balance_push callback and prepare to schedule
8165 	 * regular tasks.
8166 	 */
8167 	balance_push_set(cpu, false);
8168 
8169 	/*
8170 	 * When going up, increment the number of cores with SMT present.
8171 	 */
8172 	sched_smt_present_inc(cpu);
8173 	set_cpu_active(cpu, true);
8174 
8175 	if (sched_smp_initialized) {
8176 		sched_update_numa(cpu, true);
8177 		sched_domains_numa_masks_set(cpu);
8178 		cpuset_cpu_active();
8179 	}
8180 
8181 	scx_rq_activate(rq);
8182 
8183 	/*
8184 	 * Put the rq online, if not already. This happens:
8185 	 *
8186 	 * 1) In the early boot process, because we build the real domains
8187 	 *    after all CPUs have been brought up.
8188 	 *
8189 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8190 	 *    domains.
8191 	 */
8192 	sched_set_rq_online(rq, cpu);
8193 
8194 	return 0;
8195 }
8196 
8197 int sched_cpu_deactivate(unsigned int cpu)
8198 {
8199 	struct rq *rq = cpu_rq(cpu);
8200 	int ret;
8201 
8202 	ret = dl_bw_deactivate(cpu);
8203 
8204 	if (ret)
8205 		return ret;
8206 
8207 	/*
8208 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8209 	 * load balancing when not active
8210 	 */
8211 	nohz_balance_exit_idle(rq);
8212 
8213 	set_cpu_active(cpu, false);
8214 
8215 	/*
8216 	 * From this point forward, this CPU will refuse to run any task that
8217 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8218 	 * push those tasks away until this gets cleared, see
8219 	 * sched_cpu_dying().
8220 	 */
8221 	balance_push_set(cpu, true);
8222 
8223 	/*
8224 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8225 	 * preempt-disabled and RCU users of this state to go away such that
8226 	 * all new such users will observe it.
8227 	 *
8228 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8229 	 * ttwu_queue_cond() and is_cpu_allowed().
8230 	 *
8231 	 * Do sync before park smpboot threads to take care the RCU boost case.
8232 	 */
8233 	synchronize_rcu();
8234 
8235 	sched_set_rq_offline(rq, cpu);
8236 
8237 	scx_rq_deactivate(rq);
8238 
8239 	/*
8240 	 * When going down, decrement the number of cores with SMT present.
8241 	 */
8242 	sched_smt_present_dec(cpu);
8243 
8244 #ifdef CONFIG_SCHED_SMT
8245 	sched_core_cpu_deactivate(cpu);
8246 #endif
8247 
8248 	if (!sched_smp_initialized)
8249 		return 0;
8250 
8251 	sched_update_numa(cpu, false);
8252 	cpuset_cpu_inactive(cpu);
8253 	sched_domains_numa_masks_clear(cpu);
8254 	return 0;
8255 }
8256 
8257 static void sched_rq_cpu_starting(unsigned int cpu)
8258 {
8259 	struct rq *rq = cpu_rq(cpu);
8260 
8261 	rq->calc_load_update = calc_load_update;
8262 	update_max_interval();
8263 }
8264 
8265 int sched_cpu_starting(unsigned int cpu)
8266 {
8267 	sched_core_cpu_starting(cpu);
8268 	sched_rq_cpu_starting(cpu);
8269 	sched_tick_start(cpu);
8270 	return 0;
8271 }
8272 
8273 #ifdef CONFIG_HOTPLUG_CPU
8274 
8275 /*
8276  * Invoked immediately before the stopper thread is invoked to bring the
8277  * CPU down completely. At this point all per CPU kthreads except the
8278  * hotplug thread (current) and the stopper thread (inactive) have been
8279  * either parked or have been unbound from the outgoing CPU. Ensure that
8280  * any of those which might be on the way out are gone.
8281  *
8282  * If after this point a bound task is being woken on this CPU then the
8283  * responsible hotplug callback has failed to do it's job.
8284  * sched_cpu_dying() will catch it with the appropriate fireworks.
8285  */
8286 int sched_cpu_wait_empty(unsigned int cpu)
8287 {
8288 	balance_hotplug_wait();
8289 	sched_force_init_mm();
8290 	return 0;
8291 }
8292 
8293 /*
8294  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8295  * might have. Called from the CPU stopper task after ensuring that the
8296  * stopper is the last running task on the CPU, so nr_active count is
8297  * stable. We need to take the tear-down thread which is calling this into
8298  * account, so we hand in adjust = 1 to the load calculation.
8299  *
8300  * Also see the comment "Global load-average calculations".
8301  */
8302 static void calc_load_migrate(struct rq *rq)
8303 {
8304 	long delta = calc_load_fold_active(rq, 1);
8305 
8306 	if (delta)
8307 		atomic_long_add(delta, &calc_load_tasks);
8308 }
8309 
8310 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8311 {
8312 	struct task_struct *g, *p;
8313 	int cpu = cpu_of(rq);
8314 
8315 	lockdep_assert_rq_held(rq);
8316 
8317 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8318 	for_each_process_thread(g, p) {
8319 		if (task_cpu(p) != cpu)
8320 			continue;
8321 
8322 		if (!task_on_rq_queued(p))
8323 			continue;
8324 
8325 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8326 	}
8327 }
8328 
8329 int sched_cpu_dying(unsigned int cpu)
8330 {
8331 	struct rq *rq = cpu_rq(cpu);
8332 	struct rq_flags rf;
8333 
8334 	/* Handle pending wakeups and then migrate everything off */
8335 	sched_tick_stop(cpu);
8336 
8337 	rq_lock_irqsave(rq, &rf);
8338 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8339 		WARN(true, "Dying CPU not properly vacated!");
8340 		dump_rq_tasks(rq, KERN_WARNING);
8341 	}
8342 	rq_unlock_irqrestore(rq, &rf);
8343 
8344 	calc_load_migrate(rq);
8345 	update_max_interval();
8346 	hrtick_clear(rq);
8347 	sched_core_cpu_dying(cpu);
8348 	return 0;
8349 }
8350 #endif /* CONFIG_HOTPLUG_CPU */
8351 
8352 void __init sched_init_smp(void)
8353 {
8354 	sched_init_numa(NUMA_NO_NODE);
8355 
8356 	/*
8357 	 * There's no userspace yet to cause hotplug operations; hence all the
8358 	 * CPU masks are stable and all blatant races in the below code cannot
8359 	 * happen.
8360 	 */
8361 	sched_domains_mutex_lock();
8362 	sched_init_domains(cpu_active_mask);
8363 	sched_domains_mutex_unlock();
8364 
8365 	/* Move init over to a non-isolated CPU */
8366 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8367 		BUG();
8368 	current->flags &= ~PF_NO_SETAFFINITY;
8369 	sched_init_granularity();
8370 
8371 	init_sched_rt_class();
8372 	init_sched_dl_class();
8373 
8374 	sched_smp_initialized = true;
8375 }
8376 
8377 static int __init migration_init(void)
8378 {
8379 	sched_cpu_starting(smp_processor_id());
8380 	return 0;
8381 }
8382 early_initcall(migration_init);
8383 
8384 int in_sched_functions(unsigned long addr)
8385 {
8386 	return in_lock_functions(addr) ||
8387 		(addr >= (unsigned long)__sched_text_start
8388 		&& addr < (unsigned long)__sched_text_end);
8389 }
8390 
8391 #ifdef CONFIG_CGROUP_SCHED
8392 /*
8393  * Default task group.
8394  * Every task in system belongs to this group at bootup.
8395  */
8396 struct task_group root_task_group;
8397 LIST_HEAD(task_groups);
8398 
8399 /* Cacheline aligned slab cache for task_group */
8400 static struct kmem_cache *task_group_cache __ro_after_init;
8401 #endif
8402 
8403 void __init sched_init(void)
8404 {
8405 	unsigned long ptr = 0;
8406 	int i;
8407 
8408 	/* Make sure the linker didn't screw up */
8409 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8410 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8411 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8412 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8413 #ifdef CONFIG_SCHED_CLASS_EXT
8414 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8415 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8416 #endif
8417 
8418 	wait_bit_init();
8419 
8420 #ifdef CONFIG_FAIR_GROUP_SCHED
8421 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8422 #endif
8423 #ifdef CONFIG_RT_GROUP_SCHED
8424 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8425 #endif
8426 	if (ptr) {
8427 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8428 
8429 #ifdef CONFIG_FAIR_GROUP_SCHED
8430 		root_task_group.se = (struct sched_entity **)ptr;
8431 		ptr += nr_cpu_ids * sizeof(void **);
8432 
8433 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8434 		ptr += nr_cpu_ids * sizeof(void **);
8435 
8436 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8437 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8438 #endif /* CONFIG_FAIR_GROUP_SCHED */
8439 #ifdef CONFIG_EXT_GROUP_SCHED
8440 		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8441 #endif /* CONFIG_EXT_GROUP_SCHED */
8442 #ifdef CONFIG_RT_GROUP_SCHED
8443 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8444 		ptr += nr_cpu_ids * sizeof(void **);
8445 
8446 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8447 		ptr += nr_cpu_ids * sizeof(void **);
8448 
8449 #endif /* CONFIG_RT_GROUP_SCHED */
8450 	}
8451 
8452 	init_defrootdomain();
8453 
8454 #ifdef CONFIG_RT_GROUP_SCHED
8455 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8456 			global_rt_period(), global_rt_runtime());
8457 #endif /* CONFIG_RT_GROUP_SCHED */
8458 
8459 #ifdef CONFIG_CGROUP_SCHED
8460 	task_group_cache = KMEM_CACHE(task_group, 0);
8461 
8462 	list_add(&root_task_group.list, &task_groups);
8463 	INIT_LIST_HEAD(&root_task_group.children);
8464 	INIT_LIST_HEAD(&root_task_group.siblings);
8465 	autogroup_init(&init_task);
8466 #endif /* CONFIG_CGROUP_SCHED */
8467 
8468 	for_each_possible_cpu(i) {
8469 		struct rq *rq;
8470 
8471 		rq = cpu_rq(i);
8472 		raw_spin_lock_init(&rq->__lock);
8473 		rq->nr_running = 0;
8474 		rq->calc_load_active = 0;
8475 		rq->calc_load_update = jiffies + LOAD_FREQ;
8476 		init_cfs_rq(&rq->cfs);
8477 		init_rt_rq(&rq->rt);
8478 		init_dl_rq(&rq->dl);
8479 #ifdef CONFIG_FAIR_GROUP_SCHED
8480 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8481 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8482 		/*
8483 		 * How much CPU bandwidth does root_task_group get?
8484 		 *
8485 		 * In case of task-groups formed through the cgroup filesystem, it
8486 		 * gets 100% of the CPU resources in the system. This overall
8487 		 * system CPU resource is divided among the tasks of
8488 		 * root_task_group and its child task-groups in a fair manner,
8489 		 * based on each entity's (task or task-group's) weight
8490 		 * (se->load.weight).
8491 		 *
8492 		 * In other words, if root_task_group has 10 tasks of weight
8493 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8494 		 * then A0's share of the CPU resource is:
8495 		 *
8496 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8497 		 *
8498 		 * We achieve this by letting root_task_group's tasks sit
8499 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8500 		 */
8501 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8502 #endif /* CONFIG_FAIR_GROUP_SCHED */
8503 
8504 #ifdef CONFIG_RT_GROUP_SCHED
8505 		/*
8506 		 * This is required for init cpu because rt.c:__enable_runtime()
8507 		 * starts working after scheduler_running, which is not the case
8508 		 * yet.
8509 		 */
8510 		rq->rt.rt_runtime = global_rt_runtime();
8511 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8512 #endif
8513 		rq->sd = NULL;
8514 		rq->rd = NULL;
8515 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8516 		rq->balance_callback = &balance_push_callback;
8517 		rq->active_balance = 0;
8518 		rq->next_balance = jiffies;
8519 		rq->push_cpu = 0;
8520 		rq->cpu = i;
8521 		rq->online = 0;
8522 		rq->idle_stamp = 0;
8523 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8524 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8525 
8526 		INIT_LIST_HEAD(&rq->cfs_tasks);
8527 
8528 		rq_attach_root(rq, &def_root_domain);
8529 #ifdef CONFIG_NO_HZ_COMMON
8530 		rq->last_blocked_load_update_tick = jiffies;
8531 		atomic_set(&rq->nohz_flags, 0);
8532 
8533 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8534 #endif
8535 #ifdef CONFIG_HOTPLUG_CPU
8536 		rcuwait_init(&rq->hotplug_wait);
8537 #endif
8538 		hrtick_rq_init(rq);
8539 		atomic_set(&rq->nr_iowait, 0);
8540 		fair_server_init(rq);
8541 
8542 #ifdef CONFIG_SCHED_CORE
8543 		rq->core = rq;
8544 		rq->core_pick = NULL;
8545 		rq->core_dl_server = NULL;
8546 		rq->core_enabled = 0;
8547 		rq->core_tree = RB_ROOT;
8548 		rq->core_forceidle_count = 0;
8549 		rq->core_forceidle_occupation = 0;
8550 		rq->core_forceidle_start = 0;
8551 
8552 		rq->core_cookie = 0UL;
8553 #endif
8554 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8555 	}
8556 
8557 	set_load_weight(&init_task, false);
8558 	init_task.se.slice = sysctl_sched_base_slice,
8559 
8560 	/*
8561 	 * The boot idle thread does lazy MMU switching as well:
8562 	 */
8563 	mmgrab_lazy_tlb(&init_mm);
8564 	enter_lazy_tlb(&init_mm, current);
8565 
8566 	/*
8567 	 * The idle task doesn't need the kthread struct to function, but it
8568 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8569 	 * if we want to avoid special-casing it in code that deals with per-CPU
8570 	 * kthreads.
8571 	 */
8572 	WARN_ON(!set_kthread_struct(current));
8573 
8574 	/*
8575 	 * Make us the idle thread. Technically, schedule() should not be
8576 	 * called from this thread, however somewhere below it might be,
8577 	 * but because we are the idle thread, we just pick up running again
8578 	 * when this runqueue becomes "idle".
8579 	 */
8580 	__sched_fork(0, current);
8581 	init_idle(current, smp_processor_id());
8582 
8583 	calc_load_update = jiffies + LOAD_FREQ;
8584 
8585 	idle_thread_set_boot_cpu();
8586 
8587 	balance_push_set(smp_processor_id(), false);
8588 	init_sched_fair_class();
8589 	init_sched_ext_class();
8590 
8591 	psi_init();
8592 
8593 	init_uclamp();
8594 
8595 	preempt_dynamic_init();
8596 
8597 	scheduler_running = 1;
8598 }
8599 
8600 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8601 
8602 void __might_sleep(const char *file, int line)
8603 {
8604 	unsigned int state = get_current_state();
8605 	/*
8606 	 * Blocking primitives will set (and therefore destroy) current->state,
8607 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8608 	 * otherwise we will destroy state.
8609 	 */
8610 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8611 			"do not call blocking ops when !TASK_RUNNING; "
8612 			"state=%x set at [<%p>] %pS\n", state,
8613 			(void *)current->task_state_change,
8614 			(void *)current->task_state_change);
8615 
8616 	__might_resched(file, line, 0);
8617 }
8618 EXPORT_SYMBOL(__might_sleep);
8619 
8620 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8621 {
8622 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8623 		return;
8624 
8625 	if (preempt_count() == preempt_offset)
8626 		return;
8627 
8628 	pr_err("Preemption disabled at:");
8629 	print_ip_sym(KERN_ERR, ip);
8630 }
8631 
8632 static inline bool resched_offsets_ok(unsigned int offsets)
8633 {
8634 	unsigned int nested = preempt_count();
8635 
8636 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8637 
8638 	return nested == offsets;
8639 }
8640 
8641 void __might_resched(const char *file, int line, unsigned int offsets)
8642 {
8643 	/* Ratelimiting timestamp: */
8644 	static unsigned long prev_jiffy;
8645 
8646 	unsigned long preempt_disable_ip;
8647 
8648 	/* WARN_ON_ONCE() by default, no rate limit required: */
8649 	rcu_sleep_check();
8650 
8651 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8652 	     !is_idle_task(current) && !current->non_block_count) ||
8653 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8654 	    oops_in_progress)
8655 		return;
8656 
8657 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8658 		return;
8659 	prev_jiffy = jiffies;
8660 
8661 	/* Save this before calling printk(), since that will clobber it: */
8662 	preempt_disable_ip = get_preempt_disable_ip(current);
8663 
8664 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8665 	       file, line);
8666 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8667 	       in_atomic(), irqs_disabled(), current->non_block_count,
8668 	       current->pid, current->comm);
8669 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8670 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8671 
8672 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8673 		pr_err("RCU nest depth: %d, expected: %u\n",
8674 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8675 	}
8676 
8677 	if (task_stack_end_corrupted(current))
8678 		pr_emerg("Thread overran stack, or stack corrupted\n");
8679 
8680 	debug_show_held_locks(current);
8681 	if (irqs_disabled())
8682 		print_irqtrace_events(current);
8683 
8684 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8685 				 preempt_disable_ip);
8686 
8687 	dump_stack();
8688 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8689 }
8690 EXPORT_SYMBOL(__might_resched);
8691 
8692 void __cant_sleep(const char *file, int line, int preempt_offset)
8693 {
8694 	static unsigned long prev_jiffy;
8695 
8696 	if (irqs_disabled())
8697 		return;
8698 
8699 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8700 		return;
8701 
8702 	if (preempt_count() > preempt_offset)
8703 		return;
8704 
8705 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8706 		return;
8707 	prev_jiffy = jiffies;
8708 
8709 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8710 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8711 			in_atomic(), irqs_disabled(),
8712 			current->pid, current->comm);
8713 
8714 	debug_show_held_locks(current);
8715 	dump_stack();
8716 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8717 }
8718 EXPORT_SYMBOL_GPL(__cant_sleep);
8719 
8720 # ifdef CONFIG_SMP
8721 void __cant_migrate(const char *file, int line)
8722 {
8723 	static unsigned long prev_jiffy;
8724 
8725 	if (irqs_disabled())
8726 		return;
8727 
8728 	if (is_migration_disabled(current))
8729 		return;
8730 
8731 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8732 		return;
8733 
8734 	if (preempt_count() > 0)
8735 		return;
8736 
8737 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8738 		return;
8739 	prev_jiffy = jiffies;
8740 
8741 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8742 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8743 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8744 	       current->pid, current->comm);
8745 
8746 	debug_show_held_locks(current);
8747 	dump_stack();
8748 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8749 }
8750 EXPORT_SYMBOL_GPL(__cant_migrate);
8751 # endif /* CONFIG_SMP */
8752 #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */
8753 
8754 #ifdef CONFIG_MAGIC_SYSRQ
8755 void normalize_rt_tasks(void)
8756 {
8757 	struct task_struct *g, *p;
8758 	struct sched_attr attr = {
8759 		.sched_policy = SCHED_NORMAL,
8760 	};
8761 
8762 	read_lock(&tasklist_lock);
8763 	for_each_process_thread(g, p) {
8764 		/*
8765 		 * Only normalize user tasks:
8766 		 */
8767 		if (p->flags & PF_KTHREAD)
8768 			continue;
8769 
8770 		p->se.exec_start = 0;
8771 		schedstat_set(p->stats.wait_start,  0);
8772 		schedstat_set(p->stats.sleep_start, 0);
8773 		schedstat_set(p->stats.block_start, 0);
8774 
8775 		if (!rt_or_dl_task(p)) {
8776 			/*
8777 			 * Renice negative nice level userspace
8778 			 * tasks back to 0:
8779 			 */
8780 			if (task_nice(p) < 0)
8781 				set_user_nice(p, 0);
8782 			continue;
8783 		}
8784 
8785 		__sched_setscheduler(p, &attr, false, false);
8786 	}
8787 	read_unlock(&tasklist_lock);
8788 }
8789 
8790 #endif /* CONFIG_MAGIC_SYSRQ */
8791 
8792 #ifdef CONFIG_KGDB_KDB
8793 /*
8794  * These functions are only useful for KDB.
8795  *
8796  * They can only be called when the whole system has been
8797  * stopped - every CPU needs to be quiescent, and no scheduling
8798  * activity can take place. Using them for anything else would
8799  * be a serious bug, and as a result, they aren't even visible
8800  * under any other configuration.
8801  */
8802 
8803 /**
8804  * curr_task - return the current task for a given CPU.
8805  * @cpu: the processor in question.
8806  *
8807  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8808  *
8809  * Return: The current task for @cpu.
8810  */
8811 struct task_struct *curr_task(int cpu)
8812 {
8813 	return cpu_curr(cpu);
8814 }
8815 
8816 #endif /* CONFIG_KGDB_KDB */
8817 
8818 #ifdef CONFIG_CGROUP_SCHED
8819 /* task_group_lock serializes the addition/removal of task groups */
8820 static DEFINE_SPINLOCK(task_group_lock);
8821 
8822 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8823 					    struct task_group *parent)
8824 {
8825 #ifdef CONFIG_UCLAMP_TASK_GROUP
8826 	enum uclamp_id clamp_id;
8827 
8828 	for_each_clamp_id(clamp_id) {
8829 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8830 			      uclamp_none(clamp_id), false);
8831 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8832 	}
8833 #endif
8834 }
8835 
8836 static void sched_free_group(struct task_group *tg)
8837 {
8838 	free_fair_sched_group(tg);
8839 	free_rt_sched_group(tg);
8840 	autogroup_free(tg);
8841 	kmem_cache_free(task_group_cache, tg);
8842 }
8843 
8844 static void sched_free_group_rcu(struct rcu_head *rcu)
8845 {
8846 	sched_free_group(container_of(rcu, struct task_group, rcu));
8847 }
8848 
8849 static void sched_unregister_group(struct task_group *tg)
8850 {
8851 	unregister_fair_sched_group(tg);
8852 	unregister_rt_sched_group(tg);
8853 	/*
8854 	 * We have to wait for yet another RCU grace period to expire, as
8855 	 * print_cfs_stats() might run concurrently.
8856 	 */
8857 	call_rcu(&tg->rcu, sched_free_group_rcu);
8858 }
8859 
8860 /* allocate runqueue etc for a new task group */
8861 struct task_group *sched_create_group(struct task_group *parent)
8862 {
8863 	struct task_group *tg;
8864 
8865 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8866 	if (!tg)
8867 		return ERR_PTR(-ENOMEM);
8868 
8869 	if (!alloc_fair_sched_group(tg, parent))
8870 		goto err;
8871 
8872 	if (!alloc_rt_sched_group(tg, parent))
8873 		goto err;
8874 
8875 	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8876 	alloc_uclamp_sched_group(tg, parent);
8877 
8878 	return tg;
8879 
8880 err:
8881 	sched_free_group(tg);
8882 	return ERR_PTR(-ENOMEM);
8883 }
8884 
8885 void sched_online_group(struct task_group *tg, struct task_group *parent)
8886 {
8887 	unsigned long flags;
8888 
8889 	spin_lock_irqsave(&task_group_lock, flags);
8890 	list_add_tail_rcu(&tg->list, &task_groups);
8891 
8892 	/* Root should already exist: */
8893 	WARN_ON(!parent);
8894 
8895 	tg->parent = parent;
8896 	INIT_LIST_HEAD(&tg->children);
8897 	list_add_rcu(&tg->siblings, &parent->children);
8898 	spin_unlock_irqrestore(&task_group_lock, flags);
8899 
8900 	online_fair_sched_group(tg);
8901 }
8902 
8903 /* RCU callback to free various structures associated with a task group */
8904 static void sched_unregister_group_rcu(struct rcu_head *rhp)
8905 {
8906 	/* Now it should be safe to free those cfs_rqs: */
8907 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
8908 }
8909 
8910 void sched_destroy_group(struct task_group *tg)
8911 {
8912 	/* Wait for possible concurrent references to cfs_rqs complete: */
8913 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
8914 }
8915 
8916 void sched_release_group(struct task_group *tg)
8917 {
8918 	unsigned long flags;
8919 
8920 	/*
8921 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
8922 	 * sched_cfs_period_timer()).
8923 	 *
8924 	 * For this to be effective, we have to wait for all pending users of
8925 	 * this task group to leave their RCU critical section to ensure no new
8926 	 * user will see our dying task group any more. Specifically ensure
8927 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
8928 	 *
8929 	 * We therefore defer calling unregister_fair_sched_group() to
8930 	 * sched_unregister_group() which is guarantied to get called only after the
8931 	 * current RCU grace period has expired.
8932 	 */
8933 	spin_lock_irqsave(&task_group_lock, flags);
8934 	list_del_rcu(&tg->list);
8935 	list_del_rcu(&tg->siblings);
8936 	spin_unlock_irqrestore(&task_group_lock, flags);
8937 }
8938 
8939 static void sched_change_group(struct task_struct *tsk)
8940 {
8941 	struct task_group *tg;
8942 
8943 	/*
8944 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8945 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8946 	 * to prevent lockdep warnings.
8947 	 */
8948 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8949 			  struct task_group, css);
8950 	tg = autogroup_task_group(tsk, tg);
8951 	tsk->sched_task_group = tg;
8952 
8953 #ifdef CONFIG_FAIR_GROUP_SCHED
8954 	if (tsk->sched_class->task_change_group)
8955 		tsk->sched_class->task_change_group(tsk);
8956 	else
8957 #endif
8958 		set_task_rq(tsk, task_cpu(tsk));
8959 }
8960 
8961 /*
8962  * Change task's runqueue when it moves between groups.
8963  *
8964  * The caller of this function should have put the task in its new group by
8965  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8966  * its new group.
8967  */
8968 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
8969 {
8970 	int queued, running, queue_flags =
8971 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8972 	struct rq *rq;
8973 
8974 	CLASS(task_rq_lock, rq_guard)(tsk);
8975 	rq = rq_guard.rq;
8976 
8977 	update_rq_clock(rq);
8978 
8979 	running = task_current_donor(rq, tsk);
8980 	queued = task_on_rq_queued(tsk);
8981 
8982 	if (queued)
8983 		dequeue_task(rq, tsk, queue_flags);
8984 	if (running)
8985 		put_prev_task(rq, tsk);
8986 
8987 	sched_change_group(tsk);
8988 	if (!for_autogroup)
8989 		scx_cgroup_move_task(tsk);
8990 
8991 	if (queued)
8992 		enqueue_task(rq, tsk, queue_flags);
8993 	if (running) {
8994 		set_next_task(rq, tsk);
8995 		/*
8996 		 * After changing group, the running task may have joined a
8997 		 * throttled one but it's still the running task. Trigger a
8998 		 * resched to make sure that task can still run.
8999 		 */
9000 		resched_curr(rq);
9001 	}
9002 }
9003 
9004 static struct cgroup_subsys_state *
9005 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9006 {
9007 	struct task_group *parent = css_tg(parent_css);
9008 	struct task_group *tg;
9009 
9010 	if (!parent) {
9011 		/* This is early initialization for the top cgroup */
9012 		return &root_task_group.css;
9013 	}
9014 
9015 	tg = sched_create_group(parent);
9016 	if (IS_ERR(tg))
9017 		return ERR_PTR(-ENOMEM);
9018 
9019 	return &tg->css;
9020 }
9021 
9022 /* Expose task group only after completing cgroup initialization */
9023 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9024 {
9025 	struct task_group *tg = css_tg(css);
9026 	struct task_group *parent = css_tg(css->parent);
9027 	int ret;
9028 
9029 	ret = scx_tg_online(tg);
9030 	if (ret)
9031 		return ret;
9032 
9033 	if (parent)
9034 		sched_online_group(tg, parent);
9035 
9036 #ifdef CONFIG_UCLAMP_TASK_GROUP
9037 	/* Propagate the effective uclamp value for the new group */
9038 	guard(mutex)(&uclamp_mutex);
9039 	guard(rcu)();
9040 	cpu_util_update_eff(css);
9041 #endif
9042 
9043 	return 0;
9044 }
9045 
9046 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9047 {
9048 	struct task_group *tg = css_tg(css);
9049 
9050 	scx_tg_offline(tg);
9051 }
9052 
9053 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9054 {
9055 	struct task_group *tg = css_tg(css);
9056 
9057 	sched_release_group(tg);
9058 }
9059 
9060 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9061 {
9062 	struct task_group *tg = css_tg(css);
9063 
9064 	/*
9065 	 * Relies on the RCU grace period between css_released() and this.
9066 	 */
9067 	sched_unregister_group(tg);
9068 }
9069 
9070 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9071 {
9072 #ifdef CONFIG_RT_GROUP_SCHED
9073 	struct task_struct *task;
9074 	struct cgroup_subsys_state *css;
9075 
9076 	if (!rt_group_sched_enabled())
9077 		goto scx_check;
9078 
9079 	cgroup_taskset_for_each(task, css, tset) {
9080 		if (!sched_rt_can_attach(css_tg(css), task))
9081 			return -EINVAL;
9082 	}
9083 scx_check:
9084 #endif /* CONFIG_RT_GROUP_SCHED */
9085 	return scx_cgroup_can_attach(tset);
9086 }
9087 
9088 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9089 {
9090 	struct task_struct *task;
9091 	struct cgroup_subsys_state *css;
9092 
9093 	cgroup_taskset_for_each(task, css, tset)
9094 		sched_move_task(task, false);
9095 
9096 	scx_cgroup_finish_attach();
9097 }
9098 
9099 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9100 {
9101 	scx_cgroup_cancel_attach(tset);
9102 }
9103 
9104 #ifdef CONFIG_UCLAMP_TASK_GROUP
9105 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9106 {
9107 	struct cgroup_subsys_state *top_css = css;
9108 	struct uclamp_se *uc_parent = NULL;
9109 	struct uclamp_se *uc_se = NULL;
9110 	unsigned int eff[UCLAMP_CNT];
9111 	enum uclamp_id clamp_id;
9112 	unsigned int clamps;
9113 
9114 	lockdep_assert_held(&uclamp_mutex);
9115 	WARN_ON_ONCE(!rcu_read_lock_held());
9116 
9117 	css_for_each_descendant_pre(css, top_css) {
9118 		uc_parent = css_tg(css)->parent
9119 			? css_tg(css)->parent->uclamp : NULL;
9120 
9121 		for_each_clamp_id(clamp_id) {
9122 			/* Assume effective clamps matches requested clamps */
9123 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9124 			/* Cap effective clamps with parent's effective clamps */
9125 			if (uc_parent &&
9126 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9127 				eff[clamp_id] = uc_parent[clamp_id].value;
9128 			}
9129 		}
9130 		/* Ensure protection is always capped by limit */
9131 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9132 
9133 		/* Propagate most restrictive effective clamps */
9134 		clamps = 0x0;
9135 		uc_se = css_tg(css)->uclamp;
9136 		for_each_clamp_id(clamp_id) {
9137 			if (eff[clamp_id] == uc_se[clamp_id].value)
9138 				continue;
9139 			uc_se[clamp_id].value = eff[clamp_id];
9140 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9141 			clamps |= (0x1 << clamp_id);
9142 		}
9143 		if (!clamps) {
9144 			css = css_rightmost_descendant(css);
9145 			continue;
9146 		}
9147 
9148 		/* Immediately update descendants RUNNABLE tasks */
9149 		uclamp_update_active_tasks(css);
9150 	}
9151 }
9152 
9153 /*
9154  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9155  * C expression. Since there is no way to convert a macro argument (N) into a
9156  * character constant, use two levels of macros.
9157  */
9158 #define _POW10(exp) ((unsigned int)1e##exp)
9159 #define POW10(exp) _POW10(exp)
9160 
9161 struct uclamp_request {
9162 #define UCLAMP_PERCENT_SHIFT	2
9163 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9164 	s64 percent;
9165 	u64 util;
9166 	int ret;
9167 };
9168 
9169 static inline struct uclamp_request
9170 capacity_from_percent(char *buf)
9171 {
9172 	struct uclamp_request req = {
9173 		.percent = UCLAMP_PERCENT_SCALE,
9174 		.util = SCHED_CAPACITY_SCALE,
9175 		.ret = 0,
9176 	};
9177 
9178 	buf = strim(buf);
9179 	if (strcmp(buf, "max")) {
9180 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9181 					     &req.percent);
9182 		if (req.ret)
9183 			return req;
9184 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9185 			req.ret = -ERANGE;
9186 			return req;
9187 		}
9188 
9189 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9190 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9191 	}
9192 
9193 	return req;
9194 }
9195 
9196 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9197 				size_t nbytes, loff_t off,
9198 				enum uclamp_id clamp_id)
9199 {
9200 	struct uclamp_request req;
9201 	struct task_group *tg;
9202 
9203 	req = capacity_from_percent(buf);
9204 	if (req.ret)
9205 		return req.ret;
9206 
9207 	sched_uclamp_enable();
9208 
9209 	guard(mutex)(&uclamp_mutex);
9210 	guard(rcu)();
9211 
9212 	tg = css_tg(of_css(of));
9213 	if (tg->uclamp_req[clamp_id].value != req.util)
9214 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9215 
9216 	/*
9217 	 * Because of not recoverable conversion rounding we keep track of the
9218 	 * exact requested value
9219 	 */
9220 	tg->uclamp_pct[clamp_id] = req.percent;
9221 
9222 	/* Update effective clamps to track the most restrictive value */
9223 	cpu_util_update_eff(of_css(of));
9224 
9225 	return nbytes;
9226 }
9227 
9228 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9229 				    char *buf, size_t nbytes,
9230 				    loff_t off)
9231 {
9232 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9233 }
9234 
9235 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9236 				    char *buf, size_t nbytes,
9237 				    loff_t off)
9238 {
9239 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9240 }
9241 
9242 static inline void cpu_uclamp_print(struct seq_file *sf,
9243 				    enum uclamp_id clamp_id)
9244 {
9245 	struct task_group *tg;
9246 	u64 util_clamp;
9247 	u64 percent;
9248 	u32 rem;
9249 
9250 	scoped_guard (rcu) {
9251 		tg = css_tg(seq_css(sf));
9252 		util_clamp = tg->uclamp_req[clamp_id].value;
9253 	}
9254 
9255 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9256 		seq_puts(sf, "max\n");
9257 		return;
9258 	}
9259 
9260 	percent = tg->uclamp_pct[clamp_id];
9261 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9262 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9263 }
9264 
9265 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9266 {
9267 	cpu_uclamp_print(sf, UCLAMP_MIN);
9268 	return 0;
9269 }
9270 
9271 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9272 {
9273 	cpu_uclamp_print(sf, UCLAMP_MAX);
9274 	return 0;
9275 }
9276 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9277 
9278 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9279 static unsigned long tg_weight(struct task_group *tg)
9280 {
9281 #ifdef CONFIG_FAIR_GROUP_SCHED
9282 	return scale_load_down(tg->shares);
9283 #else
9284 	return sched_weight_from_cgroup(tg->scx_weight);
9285 #endif
9286 }
9287 
9288 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9289 				struct cftype *cftype, u64 shareval)
9290 {
9291 	int ret;
9292 
9293 	if (shareval > scale_load_down(ULONG_MAX))
9294 		shareval = MAX_SHARES;
9295 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9296 	if (!ret)
9297 		scx_group_set_weight(css_tg(css),
9298 				     sched_weight_to_cgroup(shareval));
9299 	return ret;
9300 }
9301 
9302 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9303 			       struct cftype *cft)
9304 {
9305 	return tg_weight(css_tg(css));
9306 }
9307 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9308 
9309 #ifdef CONFIG_CFS_BANDWIDTH
9310 static DEFINE_MUTEX(cfs_constraints_mutex);
9311 
9312 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9313 
9314 static int tg_set_cfs_bandwidth(struct task_group *tg,
9315 				u64 period_us, u64 quota_us, u64 burst_us)
9316 {
9317 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9318 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9319 	u64 period, quota, burst;
9320 
9321 	period = (u64)period_us * NSEC_PER_USEC;
9322 
9323 	if (quota_us == RUNTIME_INF)
9324 		quota = RUNTIME_INF;
9325 	else
9326 		quota = (u64)quota_us * NSEC_PER_USEC;
9327 
9328 	burst = (u64)burst_us * NSEC_PER_USEC;
9329 
9330 	/*
9331 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9332 	 * unthrottle_offline_cfs_rqs().
9333 	 */
9334 	guard(cpus_read_lock)();
9335 	guard(mutex)(&cfs_constraints_mutex);
9336 
9337 	ret = __cfs_schedulable(tg, period, quota);
9338 	if (ret)
9339 		return ret;
9340 
9341 	runtime_enabled = quota != RUNTIME_INF;
9342 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9343 	/*
9344 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9345 	 * before making related changes, and on->off must occur afterwards
9346 	 */
9347 	if (runtime_enabled && !runtime_was_enabled)
9348 		cfs_bandwidth_usage_inc();
9349 
9350 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9351 		cfs_b->period = ns_to_ktime(period);
9352 		cfs_b->quota = quota;
9353 		cfs_b->burst = burst;
9354 
9355 		__refill_cfs_bandwidth_runtime(cfs_b);
9356 
9357 		/*
9358 		 * Restart the period timer (if active) to handle new
9359 		 * period expiry:
9360 		 */
9361 		if (runtime_enabled)
9362 			start_cfs_bandwidth(cfs_b);
9363 	}
9364 
9365 	for_each_online_cpu(i) {
9366 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9367 		struct rq *rq = cfs_rq->rq;
9368 
9369 		guard(rq_lock_irq)(rq);
9370 		cfs_rq->runtime_enabled = runtime_enabled;
9371 		cfs_rq->runtime_remaining = 0;
9372 
9373 		if (cfs_rq->throttled)
9374 			unthrottle_cfs_rq(cfs_rq);
9375 	}
9376 
9377 	if (runtime_was_enabled && !runtime_enabled)
9378 		cfs_bandwidth_usage_dec();
9379 
9380 	return 0;
9381 }
9382 
9383 static u64 tg_get_cfs_period(struct task_group *tg)
9384 {
9385 	u64 cfs_period_us;
9386 
9387 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9388 	do_div(cfs_period_us, NSEC_PER_USEC);
9389 
9390 	return cfs_period_us;
9391 }
9392 
9393 static u64 tg_get_cfs_quota(struct task_group *tg)
9394 {
9395 	u64 quota_us;
9396 
9397 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9398 		return RUNTIME_INF;
9399 
9400 	quota_us = tg->cfs_bandwidth.quota;
9401 	do_div(quota_us, NSEC_PER_USEC);
9402 
9403 	return quota_us;
9404 }
9405 
9406 static u64 tg_get_cfs_burst(struct task_group *tg)
9407 {
9408 	u64 burst_us;
9409 
9410 	burst_us = tg->cfs_bandwidth.burst;
9411 	do_div(burst_us, NSEC_PER_USEC);
9412 
9413 	return burst_us;
9414 }
9415 
9416 struct cfs_schedulable_data {
9417 	struct task_group *tg;
9418 	u64 period, quota;
9419 };
9420 
9421 /*
9422  * normalize group quota/period to be quota/max_period
9423  * note: units are usecs
9424  */
9425 static u64 normalize_cfs_quota(struct task_group *tg,
9426 			       struct cfs_schedulable_data *d)
9427 {
9428 	u64 quota, period;
9429 
9430 	if (tg == d->tg) {
9431 		period = d->period;
9432 		quota = d->quota;
9433 	} else {
9434 		period = tg_get_cfs_period(tg);
9435 		quota = tg_get_cfs_quota(tg);
9436 	}
9437 
9438 	/* note: these should typically be equivalent */
9439 	if (quota == RUNTIME_INF || quota == -1)
9440 		return RUNTIME_INF;
9441 
9442 	return to_ratio(period, quota);
9443 }
9444 
9445 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9446 {
9447 	struct cfs_schedulable_data *d = data;
9448 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9449 	s64 quota = 0, parent_quota = -1;
9450 
9451 	if (!tg->parent) {
9452 		quota = RUNTIME_INF;
9453 	} else {
9454 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9455 
9456 		quota = normalize_cfs_quota(tg, d);
9457 		parent_quota = parent_b->hierarchical_quota;
9458 
9459 		/*
9460 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9461 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9462 		 * inherit when no limit is set. In both cases this is used
9463 		 * by the scheduler to determine if a given CFS task has a
9464 		 * bandwidth constraint at some higher level.
9465 		 */
9466 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9467 			if (quota == RUNTIME_INF)
9468 				quota = parent_quota;
9469 			else if (parent_quota != RUNTIME_INF)
9470 				quota = min(quota, parent_quota);
9471 		} else {
9472 			if (quota == RUNTIME_INF)
9473 				quota = parent_quota;
9474 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9475 				return -EINVAL;
9476 		}
9477 	}
9478 	cfs_b->hierarchical_quota = quota;
9479 
9480 	return 0;
9481 }
9482 
9483 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9484 {
9485 	struct cfs_schedulable_data data = {
9486 		.tg = tg,
9487 		.period = period,
9488 		.quota = quota,
9489 	};
9490 
9491 	if (quota != RUNTIME_INF) {
9492 		do_div(data.period, NSEC_PER_USEC);
9493 		do_div(data.quota, NSEC_PER_USEC);
9494 	}
9495 
9496 	guard(rcu)();
9497 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9498 }
9499 
9500 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9501 {
9502 	struct task_group *tg = css_tg(seq_css(sf));
9503 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9504 
9505 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9506 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9507 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9508 
9509 	if (schedstat_enabled() && tg != &root_task_group) {
9510 		struct sched_statistics *stats;
9511 		u64 ws = 0;
9512 		int i;
9513 
9514 		for_each_possible_cpu(i) {
9515 			stats = __schedstats_from_se(tg->se[i]);
9516 			ws += schedstat_val(stats->wait_sum);
9517 		}
9518 
9519 		seq_printf(sf, "wait_sum %llu\n", ws);
9520 	}
9521 
9522 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9523 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9524 
9525 	return 0;
9526 }
9527 
9528 static u64 throttled_time_self(struct task_group *tg)
9529 {
9530 	int i;
9531 	u64 total = 0;
9532 
9533 	for_each_possible_cpu(i) {
9534 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9535 	}
9536 
9537 	return total;
9538 }
9539 
9540 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9541 {
9542 	struct task_group *tg = css_tg(seq_css(sf));
9543 
9544 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9545 
9546 	return 0;
9547 }
9548 
9549 const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */
9550 static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */
9551 /* More than 203 days if BW_SHIFT equals 20. */
9552 static const u64 max_bw_runtime_us = MAX_BW;
9553 
9554 static void tg_bandwidth(struct task_group *tg,
9555 			 u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p)
9556 {
9557 	if (period_us_p)
9558 		*period_us_p = tg_get_cfs_period(tg);
9559 	if (quota_us_p)
9560 		*quota_us_p = tg_get_cfs_quota(tg);
9561 	if (burst_us_p)
9562 		*burst_us_p = tg_get_cfs_burst(tg);
9563 }
9564 
9565 static u64 cpu_period_read_u64(struct cgroup_subsys_state *css,
9566 			       struct cftype *cft)
9567 {
9568 	u64 period_us;
9569 
9570 	tg_bandwidth(css_tg(css), &period_us, NULL, NULL);
9571 	return period_us;
9572 }
9573 
9574 static int tg_set_bandwidth(struct task_group *tg,
9575 			    u64 period_us, u64 quota_us, u64 burst_us)
9576 {
9577 	const u64 max_usec = U64_MAX / NSEC_PER_USEC;
9578 
9579 	if (tg == &root_task_group)
9580 		return -EINVAL;
9581 
9582 	/* Values should survive translation to nsec */
9583 	if (period_us > max_usec ||
9584 	    (quota_us != RUNTIME_INF && quota_us > max_usec) ||
9585 	    burst_us > max_usec)
9586 		return -EINVAL;
9587 
9588 	/*
9589 	 * Ensure we have some amount of bandwidth every period. This is to
9590 	 * prevent reaching a state of large arrears when throttled via
9591 	 * entity_tick() resulting in prolonged exit starvation.
9592 	 */
9593 	if (quota_us < min_bw_quota_period_us ||
9594 	    period_us < min_bw_quota_period_us)
9595 		return -EINVAL;
9596 
9597 	/*
9598 	 * Likewise, bound things on the other side by preventing insane quota
9599 	 * periods.  This also allows us to normalize in computing quota
9600 	 * feasibility.
9601 	 */
9602 	if (period_us > max_bw_quota_period_us)
9603 		return -EINVAL;
9604 
9605 	/*
9606 	 * Bound quota to defend quota against overflow during bandwidth shift.
9607 	 */
9608 	if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us)
9609 		return -EINVAL;
9610 
9611 	if (quota_us != RUNTIME_INF && (burst_us > quota_us ||
9612 					burst_us + quota_us > max_bw_runtime_us))
9613 		return -EINVAL;
9614 
9615 	return tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us);
9616 }
9617 
9618 static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css,
9619 			      struct cftype *cft)
9620 {
9621 	u64 quota_us;
9622 
9623 	tg_bandwidth(css_tg(css), NULL, &quota_us, NULL);
9624 	return quota_us;	/* (s64)RUNTIME_INF becomes -1 */
9625 }
9626 
9627 static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css,
9628 			      struct cftype *cft)
9629 {
9630 	u64 burst_us;
9631 
9632 	tg_bandwidth(css_tg(css), NULL, NULL, &burst_us);
9633 	return burst_us;
9634 }
9635 
9636 static int cpu_period_write_u64(struct cgroup_subsys_state *css,
9637 				struct cftype *cftype, u64 period_us)
9638 {
9639 	struct task_group *tg = css_tg(css);
9640 	u64 quota_us, burst_us;
9641 
9642 	tg_bandwidth(tg, NULL, &quota_us, &burst_us);
9643 	return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9644 }
9645 
9646 static int cpu_quota_write_s64(struct cgroup_subsys_state *css,
9647 			       struct cftype *cftype, s64 quota_us)
9648 {
9649 	struct task_group *tg = css_tg(css);
9650 	u64 period_us, burst_us;
9651 
9652 	if (quota_us < 0)
9653 		quota_us = RUNTIME_INF;
9654 
9655 	tg_bandwidth(tg, &period_us, NULL, &burst_us);
9656 	return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9657 }
9658 
9659 static int cpu_burst_write_u64(struct cgroup_subsys_state *css,
9660 			       struct cftype *cftype, u64 burst_us)
9661 {
9662 	struct task_group *tg = css_tg(css);
9663 	u64 period_us, quota_us;
9664 
9665 	tg_bandwidth(tg, &period_us, &quota_us, NULL);
9666 	return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9667 }
9668 #endif /* CONFIG_CFS_BANDWIDTH */
9669 
9670 #ifdef CONFIG_RT_GROUP_SCHED
9671 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9672 				struct cftype *cft, s64 val)
9673 {
9674 	return sched_group_set_rt_runtime(css_tg(css), val);
9675 }
9676 
9677 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9678 			       struct cftype *cft)
9679 {
9680 	return sched_group_rt_runtime(css_tg(css));
9681 }
9682 
9683 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9684 				    struct cftype *cftype, u64 rt_period_us)
9685 {
9686 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9687 }
9688 
9689 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9690 				   struct cftype *cft)
9691 {
9692 	return sched_group_rt_period(css_tg(css));
9693 }
9694 #endif /* CONFIG_RT_GROUP_SCHED */
9695 
9696 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9697 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9698 			       struct cftype *cft)
9699 {
9700 	return css_tg(css)->idle;
9701 }
9702 
9703 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9704 				struct cftype *cft, s64 idle)
9705 {
9706 	int ret;
9707 
9708 	ret = sched_group_set_idle(css_tg(css), idle);
9709 	if (!ret)
9710 		scx_group_set_idle(css_tg(css), idle);
9711 	return ret;
9712 }
9713 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9714 
9715 static struct cftype cpu_legacy_files[] = {
9716 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9717 	{
9718 		.name = "shares",
9719 		.read_u64 = cpu_shares_read_u64,
9720 		.write_u64 = cpu_shares_write_u64,
9721 	},
9722 	{
9723 		.name = "idle",
9724 		.read_s64 = cpu_idle_read_s64,
9725 		.write_s64 = cpu_idle_write_s64,
9726 	},
9727 #endif
9728 #ifdef CONFIG_CFS_BANDWIDTH
9729 	{
9730 		.name = "cfs_period_us",
9731 		.read_u64 = cpu_period_read_u64,
9732 		.write_u64 = cpu_period_write_u64,
9733 	},
9734 	{
9735 		.name = "cfs_quota_us",
9736 		.read_s64 = cpu_quota_read_s64,
9737 		.write_s64 = cpu_quota_write_s64,
9738 	},
9739 	{
9740 		.name = "cfs_burst_us",
9741 		.read_u64 = cpu_burst_read_u64,
9742 		.write_u64 = cpu_burst_write_u64,
9743 	},
9744 	{
9745 		.name = "stat",
9746 		.seq_show = cpu_cfs_stat_show,
9747 	},
9748 	{
9749 		.name = "stat.local",
9750 		.seq_show = cpu_cfs_local_stat_show,
9751 	},
9752 #endif
9753 #ifdef CONFIG_UCLAMP_TASK_GROUP
9754 	{
9755 		.name = "uclamp.min",
9756 		.flags = CFTYPE_NOT_ON_ROOT,
9757 		.seq_show = cpu_uclamp_min_show,
9758 		.write = cpu_uclamp_min_write,
9759 	},
9760 	{
9761 		.name = "uclamp.max",
9762 		.flags = CFTYPE_NOT_ON_ROOT,
9763 		.seq_show = cpu_uclamp_max_show,
9764 		.write = cpu_uclamp_max_write,
9765 	},
9766 #endif
9767 	{ }	/* Terminate */
9768 };
9769 
9770 #ifdef CONFIG_RT_GROUP_SCHED
9771 static struct cftype rt_group_files[] = {
9772 	{
9773 		.name = "rt_runtime_us",
9774 		.read_s64 = cpu_rt_runtime_read,
9775 		.write_s64 = cpu_rt_runtime_write,
9776 	},
9777 	{
9778 		.name = "rt_period_us",
9779 		.read_u64 = cpu_rt_period_read_uint,
9780 		.write_u64 = cpu_rt_period_write_uint,
9781 	},
9782 	{ }	/* Terminate */
9783 };
9784 
9785 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
9786 DEFINE_STATIC_KEY_FALSE(rt_group_sched);
9787 # else
9788 DEFINE_STATIC_KEY_TRUE(rt_group_sched);
9789 # endif
9790 
9791 static int __init setup_rt_group_sched(char *str)
9792 {
9793 	long val;
9794 
9795 	if (kstrtol(str, 0, &val) || val < 0 || val > 1) {
9796 		pr_warn("Unable to set rt_group_sched\n");
9797 		return 1;
9798 	}
9799 	if (val)
9800 		static_branch_enable(&rt_group_sched);
9801 	else
9802 		static_branch_disable(&rt_group_sched);
9803 
9804 	return 1;
9805 }
9806 __setup("rt_group_sched=", setup_rt_group_sched);
9807 
9808 static int __init cpu_rt_group_init(void)
9809 {
9810 	if (!rt_group_sched_enabled())
9811 		return 0;
9812 
9813 	WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files));
9814 	return 0;
9815 }
9816 subsys_initcall(cpu_rt_group_init);
9817 #endif /* CONFIG_RT_GROUP_SCHED */
9818 
9819 static int cpu_extra_stat_show(struct seq_file *sf,
9820 			       struct cgroup_subsys_state *css)
9821 {
9822 #ifdef CONFIG_CFS_BANDWIDTH
9823 	{
9824 		struct task_group *tg = css_tg(css);
9825 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9826 		u64 throttled_usec, burst_usec;
9827 
9828 		throttled_usec = cfs_b->throttled_time;
9829 		do_div(throttled_usec, NSEC_PER_USEC);
9830 		burst_usec = cfs_b->burst_time;
9831 		do_div(burst_usec, NSEC_PER_USEC);
9832 
9833 		seq_printf(sf, "nr_periods %d\n"
9834 			   "nr_throttled %d\n"
9835 			   "throttled_usec %llu\n"
9836 			   "nr_bursts %d\n"
9837 			   "burst_usec %llu\n",
9838 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9839 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9840 	}
9841 #endif /* CONFIG_CFS_BANDWIDTH */
9842 	return 0;
9843 }
9844 
9845 static int cpu_local_stat_show(struct seq_file *sf,
9846 			       struct cgroup_subsys_state *css)
9847 {
9848 #ifdef CONFIG_CFS_BANDWIDTH
9849 	{
9850 		struct task_group *tg = css_tg(css);
9851 		u64 throttled_self_usec;
9852 
9853 		throttled_self_usec = throttled_time_self(tg);
9854 		do_div(throttled_self_usec, NSEC_PER_USEC);
9855 
9856 		seq_printf(sf, "throttled_usec %llu\n",
9857 			   throttled_self_usec);
9858 	}
9859 #endif
9860 	return 0;
9861 }
9862 
9863 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9864 
9865 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9866 			       struct cftype *cft)
9867 {
9868 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9869 }
9870 
9871 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9872 				struct cftype *cft, u64 cgrp_weight)
9873 {
9874 	unsigned long weight;
9875 	int ret;
9876 
9877 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9878 		return -ERANGE;
9879 
9880 	weight = sched_weight_from_cgroup(cgrp_weight);
9881 
9882 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9883 	if (!ret)
9884 		scx_group_set_weight(css_tg(css), cgrp_weight);
9885 	return ret;
9886 }
9887 
9888 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9889 				    struct cftype *cft)
9890 {
9891 	unsigned long weight = tg_weight(css_tg(css));
9892 	int last_delta = INT_MAX;
9893 	int prio, delta;
9894 
9895 	/* find the closest nice value to the current weight */
9896 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9897 		delta = abs(sched_prio_to_weight[prio] - weight);
9898 		if (delta >= last_delta)
9899 			break;
9900 		last_delta = delta;
9901 	}
9902 
9903 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9904 }
9905 
9906 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9907 				     struct cftype *cft, s64 nice)
9908 {
9909 	unsigned long weight;
9910 	int idx, ret;
9911 
9912 	if (nice < MIN_NICE || nice > MAX_NICE)
9913 		return -ERANGE;
9914 
9915 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9916 	idx = array_index_nospec(idx, 40);
9917 	weight = sched_prio_to_weight[idx];
9918 
9919 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9920 	if (!ret)
9921 		scx_group_set_weight(css_tg(css),
9922 				     sched_weight_to_cgroup(weight));
9923 	return ret;
9924 }
9925 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9926 
9927 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9928 						  long period, long quota)
9929 {
9930 	if (quota < 0)
9931 		seq_puts(sf, "max");
9932 	else
9933 		seq_printf(sf, "%ld", quota);
9934 
9935 	seq_printf(sf, " %ld\n", period);
9936 }
9937 
9938 /* caller should put the current value in *@periodp before calling */
9939 static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p,
9940 						 u64 *quota_us_p)
9941 {
9942 	char tok[21];	/* U64_MAX */
9943 
9944 	if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1)
9945 		return -EINVAL;
9946 
9947 	if (sscanf(tok, "%llu", quota_us_p) < 1) {
9948 		if (!strcmp(tok, "max"))
9949 			*quota_us_p = RUNTIME_INF;
9950 		else
9951 			return -EINVAL;
9952 	}
9953 
9954 	return 0;
9955 }
9956 
9957 #ifdef CONFIG_CFS_BANDWIDTH
9958 static int cpu_max_show(struct seq_file *sf, void *v)
9959 {
9960 	struct task_group *tg = css_tg(seq_css(sf));
9961 	u64 period_us, quota_us;
9962 
9963 	tg_bandwidth(tg, &period_us, &quota_us, NULL);
9964 	cpu_period_quota_print(sf, period_us, quota_us);
9965 	return 0;
9966 }
9967 
9968 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9969 			     char *buf, size_t nbytes, loff_t off)
9970 {
9971 	struct task_group *tg = css_tg(of_css(of));
9972 	u64 period_us, quota_us, burst_us;
9973 	int ret;
9974 
9975 	tg_bandwidth(tg, &period_us, NULL, &burst_us);
9976 	ret = cpu_period_quota_parse(buf, &period_us, &quota_us);
9977 	if (!ret)
9978 		ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9979 	return ret ?: nbytes;
9980 }
9981 #endif /* CONFIG_CFS_BANDWIDTH */
9982 
9983 static struct cftype cpu_files[] = {
9984 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9985 	{
9986 		.name = "weight",
9987 		.flags = CFTYPE_NOT_ON_ROOT,
9988 		.read_u64 = cpu_weight_read_u64,
9989 		.write_u64 = cpu_weight_write_u64,
9990 	},
9991 	{
9992 		.name = "weight.nice",
9993 		.flags = CFTYPE_NOT_ON_ROOT,
9994 		.read_s64 = cpu_weight_nice_read_s64,
9995 		.write_s64 = cpu_weight_nice_write_s64,
9996 	},
9997 	{
9998 		.name = "idle",
9999 		.flags = CFTYPE_NOT_ON_ROOT,
10000 		.read_s64 = cpu_idle_read_s64,
10001 		.write_s64 = cpu_idle_write_s64,
10002 	},
10003 #endif
10004 #ifdef CONFIG_CFS_BANDWIDTH
10005 	{
10006 		.name = "max",
10007 		.flags = CFTYPE_NOT_ON_ROOT,
10008 		.seq_show = cpu_max_show,
10009 		.write = cpu_max_write,
10010 	},
10011 	{
10012 		.name = "max.burst",
10013 		.flags = CFTYPE_NOT_ON_ROOT,
10014 		.read_u64 = cpu_burst_read_u64,
10015 		.write_u64 = cpu_burst_write_u64,
10016 	},
10017 #endif /* CONFIG_CFS_BANDWIDTH */
10018 #ifdef CONFIG_UCLAMP_TASK_GROUP
10019 	{
10020 		.name = "uclamp.min",
10021 		.flags = CFTYPE_NOT_ON_ROOT,
10022 		.seq_show = cpu_uclamp_min_show,
10023 		.write = cpu_uclamp_min_write,
10024 	},
10025 	{
10026 		.name = "uclamp.max",
10027 		.flags = CFTYPE_NOT_ON_ROOT,
10028 		.seq_show = cpu_uclamp_max_show,
10029 		.write = cpu_uclamp_max_write,
10030 	},
10031 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10032 	{ }	/* terminate */
10033 };
10034 
10035 struct cgroup_subsys cpu_cgrp_subsys = {
10036 	.css_alloc	= cpu_cgroup_css_alloc,
10037 	.css_online	= cpu_cgroup_css_online,
10038 	.css_offline	= cpu_cgroup_css_offline,
10039 	.css_released	= cpu_cgroup_css_released,
10040 	.css_free	= cpu_cgroup_css_free,
10041 	.css_extra_stat_show = cpu_extra_stat_show,
10042 	.css_local_stat_show = cpu_local_stat_show,
10043 	.can_attach	= cpu_cgroup_can_attach,
10044 	.attach		= cpu_cgroup_attach,
10045 	.cancel_attach	= cpu_cgroup_cancel_attach,
10046 	.legacy_cftypes	= cpu_legacy_files,
10047 	.dfl_cftypes	= cpu_files,
10048 	.early_init	= true,
10049 	.threaded	= true,
10050 };
10051 
10052 #endif /* CONFIG_CGROUP_SCHED */
10053 
10054 void dump_cpu_task(int cpu)
10055 {
10056 	if (in_hardirq() && cpu == smp_processor_id()) {
10057 		struct pt_regs *regs;
10058 
10059 		regs = get_irq_regs();
10060 		if (regs) {
10061 			show_regs(regs);
10062 			return;
10063 		}
10064 	}
10065 
10066 	if (trigger_single_cpu_backtrace(cpu))
10067 		return;
10068 
10069 	pr_info("Task dump for CPU %d:\n", cpu);
10070 	sched_show_task(cpu_curr(cpu));
10071 }
10072 
10073 /*
10074  * Nice levels are multiplicative, with a gentle 10% change for every
10075  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10076  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10077  * that remained on nice 0.
10078  *
10079  * The "10% effect" is relative and cumulative: from _any_ nice level,
10080  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10081  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10082  * If a task goes up by ~10% and another task goes down by ~10% then
10083  * the relative distance between them is ~25%.)
10084  */
10085 const int sched_prio_to_weight[40] = {
10086  /* -20 */     88761,     71755,     56483,     46273,     36291,
10087  /* -15 */     29154,     23254,     18705,     14949,     11916,
10088  /* -10 */      9548,      7620,      6100,      4904,      3906,
10089  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10090  /*   0 */      1024,       820,       655,       526,       423,
10091  /*   5 */       335,       272,       215,       172,       137,
10092  /*  10 */       110,        87,        70,        56,        45,
10093  /*  15 */        36,        29,        23,        18,        15,
10094 };
10095 
10096 /*
10097  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10098  *
10099  * In cases where the weight does not change often, we can use the
10100  * pre-calculated inverse to speed up arithmetics by turning divisions
10101  * into multiplications:
10102  */
10103 const u32 sched_prio_to_wmult[40] = {
10104  /* -20 */     48388,     59856,     76040,     92818,    118348,
10105  /* -15 */    147320,    184698,    229616,    287308,    360437,
10106  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10107  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10108  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10109  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10110  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10111  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10112 };
10113 
10114 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10115 {
10116         trace_sched_update_nr_running_tp(rq, count);
10117 }
10118 
10119 #ifdef CONFIG_SCHED_MM_CID
10120 
10121 /*
10122  * @cid_lock: Guarantee forward-progress of cid allocation.
10123  *
10124  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10125  * is only used when contention is detected by the lock-free allocation so
10126  * forward progress can be guaranteed.
10127  */
10128 DEFINE_RAW_SPINLOCK(cid_lock);
10129 
10130 /*
10131  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10132  *
10133  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10134  * detected, it is set to 1 to ensure that all newly coming allocations are
10135  * serialized by @cid_lock until the allocation which detected contention
10136  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10137  * of a cid allocation.
10138  */
10139 int use_cid_lock;
10140 
10141 /*
10142  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10143  * concurrently with respect to the execution of the source runqueue context
10144  * switch.
10145  *
10146  * There is one basic properties we want to guarantee here:
10147  *
10148  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10149  * used by a task. That would lead to concurrent allocation of the cid and
10150  * userspace corruption.
10151  *
10152  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10153  * that a pair of loads observe at least one of a pair of stores, which can be
10154  * shown as:
10155  *
10156  *      X = Y = 0
10157  *
10158  *      w[X]=1          w[Y]=1
10159  *      MB              MB
10160  *      r[Y]=y          r[X]=x
10161  *
10162  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10163  * values 0 and 1, this algorithm cares about specific state transitions of the
10164  * runqueue current task (as updated by the scheduler context switch), and the
10165  * per-mm/cpu cid value.
10166  *
10167  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10168  * task->mm != mm for the rest of the discussion. There are two scheduler state
10169  * transitions on context switch we care about:
10170  *
10171  * (TSA) Store to rq->curr with transition from (N) to (Y)
10172  *
10173  * (TSB) Store to rq->curr with transition from (Y) to (N)
10174  *
10175  * On the remote-clear side, there is one transition we care about:
10176  *
10177  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10178  *
10179  * There is also a transition to UNSET state which can be performed from all
10180  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10181  * guarantees that only a single thread will succeed:
10182  *
10183  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10184  *
10185  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10186  * when a thread is actively using the cid (property (1)).
10187  *
10188  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10189  *
10190  * Scenario A) (TSA)+(TMA) (from next task perspective)
10191  *
10192  * CPU0                                      CPU1
10193  *
10194  * Context switch CS-1                       Remote-clear
10195  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10196  *                                             (implied barrier after cmpxchg)
10197  *   - switch_mm_cid()
10198  *     - memory barrier (see switch_mm_cid()
10199  *       comment explaining how this barrier
10200  *       is combined with other scheduler
10201  *       barriers)
10202  *     - mm_cid_get (next)
10203  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10204  *
10205  * This Dekker ensures that either task (Y) is observed by the
10206  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10207  * observed.
10208  *
10209  * If task (Y) store is observed by rcu_dereference(), it means that there is
10210  * still an active task on the cpu. Remote-clear will therefore not transition
10211  * to UNSET, which fulfills property (1).
10212  *
10213  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10214  * it will move its state to UNSET, which clears the percpu cid perhaps
10215  * uselessly (which is not an issue for correctness). Because task (Y) is not
10216  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10217  * state to UNSET is done with a cmpxchg expecting that the old state has the
10218  * LAZY flag set, only one thread will successfully UNSET.
10219  *
10220  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10221  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10222  * CPU1 will observe task (Y) and do nothing more, which is fine.
10223  *
10224  * What we are effectively preventing with this Dekker is a scenario where
10225  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10226  * because this would UNSET a cid which is actively used.
10227  */
10228 
10229 void sched_mm_cid_migrate_from(struct task_struct *t)
10230 {
10231 	t->migrate_from_cpu = task_cpu(t);
10232 }
10233 
10234 static
10235 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10236 					  struct task_struct *t,
10237 					  struct mm_cid *src_pcpu_cid)
10238 {
10239 	struct mm_struct *mm = t->mm;
10240 	struct task_struct *src_task;
10241 	int src_cid, last_mm_cid;
10242 
10243 	if (!mm)
10244 		return -1;
10245 
10246 	last_mm_cid = t->last_mm_cid;
10247 	/*
10248 	 * If the migrated task has no last cid, or if the current
10249 	 * task on src rq uses the cid, it means the source cid does not need
10250 	 * to be moved to the destination cpu.
10251 	 */
10252 	if (last_mm_cid == -1)
10253 		return -1;
10254 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10255 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10256 		return -1;
10257 
10258 	/*
10259 	 * If we observe an active task using the mm on this rq, it means we
10260 	 * are not the last task to be migrated from this cpu for this mm, so
10261 	 * there is no need to move src_cid to the destination cpu.
10262 	 */
10263 	guard(rcu)();
10264 	src_task = rcu_dereference(src_rq->curr);
10265 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10266 		t->last_mm_cid = -1;
10267 		return -1;
10268 	}
10269 
10270 	return src_cid;
10271 }
10272 
10273 static
10274 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10275 					      struct task_struct *t,
10276 					      struct mm_cid *src_pcpu_cid,
10277 					      int src_cid)
10278 {
10279 	struct task_struct *src_task;
10280 	struct mm_struct *mm = t->mm;
10281 	int lazy_cid;
10282 
10283 	if (src_cid == -1)
10284 		return -1;
10285 
10286 	/*
10287 	 * Attempt to clear the source cpu cid to move it to the destination
10288 	 * cpu.
10289 	 */
10290 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10291 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10292 		return -1;
10293 
10294 	/*
10295 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10296 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10297 	 * between store to rq->curr and load of prev and next task's
10298 	 * per-mm/cpu cid.
10299 	 *
10300 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10301 	 * rq->curr->mm_cid_active matches the barrier in
10302 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10303 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10304 	 * load of per-mm/cpu cid.
10305 	 */
10306 
10307 	/*
10308 	 * If we observe an active task using the mm on this rq after setting
10309 	 * the lazy-put flag, this task will be responsible for transitioning
10310 	 * from lazy-put flag set to MM_CID_UNSET.
10311 	 */
10312 	scoped_guard (rcu) {
10313 		src_task = rcu_dereference(src_rq->curr);
10314 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10315 			/*
10316 			 * We observed an active task for this mm, there is therefore
10317 			 * no point in moving this cid to the destination cpu.
10318 			 */
10319 			t->last_mm_cid = -1;
10320 			return -1;
10321 		}
10322 	}
10323 
10324 	/*
10325 	 * The src_cid is unused, so it can be unset.
10326 	 */
10327 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10328 		return -1;
10329 	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10330 	return src_cid;
10331 }
10332 
10333 /*
10334  * Migration to dst cpu. Called with dst_rq lock held.
10335  * Interrupts are disabled, which keeps the window of cid ownership without the
10336  * source rq lock held small.
10337  */
10338 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10339 {
10340 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10341 	struct mm_struct *mm = t->mm;
10342 	int src_cid, src_cpu;
10343 	bool dst_cid_is_set;
10344 	struct rq *src_rq;
10345 
10346 	lockdep_assert_rq_held(dst_rq);
10347 
10348 	if (!mm)
10349 		return;
10350 	src_cpu = t->migrate_from_cpu;
10351 	if (src_cpu == -1) {
10352 		t->last_mm_cid = -1;
10353 		return;
10354 	}
10355 	/*
10356 	 * Move the src cid if the dst cid is unset. This keeps id
10357 	 * allocation closest to 0 in cases where few threads migrate around
10358 	 * many CPUs.
10359 	 *
10360 	 * If destination cid or recent cid is already set, we may have
10361 	 * to just clear the src cid to ensure compactness in frequent
10362 	 * migrations scenarios.
10363 	 *
10364 	 * It is not useful to clear the src cid when the number of threads is
10365 	 * greater or equal to the number of allowed CPUs, because user-space
10366 	 * can expect that the number of allowed cids can reach the number of
10367 	 * allowed CPUs.
10368 	 */
10369 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10370 	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10371 			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10372 	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10373 		return;
10374 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10375 	src_rq = cpu_rq(src_cpu);
10376 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10377 	if (src_cid == -1)
10378 		return;
10379 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10380 							    src_cid);
10381 	if (src_cid == -1)
10382 		return;
10383 	if (dst_cid_is_set) {
10384 		__mm_cid_put(mm, src_cid);
10385 		return;
10386 	}
10387 	/* Move src_cid to dst cpu. */
10388 	mm_cid_snapshot_time(dst_rq, mm);
10389 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10390 	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10391 }
10392 
10393 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10394 				      int cpu)
10395 {
10396 	struct rq *rq = cpu_rq(cpu);
10397 	struct task_struct *t;
10398 	int cid, lazy_cid;
10399 
10400 	cid = READ_ONCE(pcpu_cid->cid);
10401 	if (!mm_cid_is_valid(cid))
10402 		return;
10403 
10404 	/*
10405 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10406 	 * there happens to be other tasks left on the source cpu using this
10407 	 * mm, the next task using this mm will reallocate its cid on context
10408 	 * switch.
10409 	 */
10410 	lazy_cid = mm_cid_set_lazy_put(cid);
10411 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10412 		return;
10413 
10414 	/*
10415 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10416 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10417 	 * between store to rq->curr and load of prev and next task's
10418 	 * per-mm/cpu cid.
10419 	 *
10420 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10421 	 * rq->curr->mm_cid_active matches the barrier in
10422 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10423 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10424 	 * load of per-mm/cpu cid.
10425 	 */
10426 
10427 	/*
10428 	 * If we observe an active task using the mm on this rq after setting
10429 	 * the lazy-put flag, that task will be responsible for transitioning
10430 	 * from lazy-put flag set to MM_CID_UNSET.
10431 	 */
10432 	scoped_guard (rcu) {
10433 		t = rcu_dereference(rq->curr);
10434 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10435 			return;
10436 	}
10437 
10438 	/*
10439 	 * The cid is unused, so it can be unset.
10440 	 * Disable interrupts to keep the window of cid ownership without rq
10441 	 * lock small.
10442 	 */
10443 	scoped_guard (irqsave) {
10444 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10445 			__mm_cid_put(mm, cid);
10446 	}
10447 }
10448 
10449 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10450 {
10451 	struct rq *rq = cpu_rq(cpu);
10452 	struct mm_cid *pcpu_cid;
10453 	struct task_struct *curr;
10454 	u64 rq_clock;
10455 
10456 	/*
10457 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10458 	 * while is irrelevant.
10459 	 */
10460 	rq_clock = READ_ONCE(rq->clock);
10461 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10462 
10463 	/*
10464 	 * In order to take care of infrequently scheduled tasks, bump the time
10465 	 * snapshot associated with this cid if an active task using the mm is
10466 	 * observed on this rq.
10467 	 */
10468 	scoped_guard (rcu) {
10469 		curr = rcu_dereference(rq->curr);
10470 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10471 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10472 			return;
10473 		}
10474 	}
10475 
10476 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10477 		return;
10478 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10479 }
10480 
10481 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10482 					     int weight)
10483 {
10484 	struct mm_cid *pcpu_cid;
10485 	int cid;
10486 
10487 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10488 	cid = READ_ONCE(pcpu_cid->cid);
10489 	if (!mm_cid_is_valid(cid) || cid < weight)
10490 		return;
10491 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10492 }
10493 
10494 static void task_mm_cid_work(struct callback_head *work)
10495 {
10496 	unsigned long now = jiffies, old_scan, next_scan;
10497 	struct task_struct *t = current;
10498 	struct cpumask *cidmask;
10499 	struct mm_struct *mm;
10500 	int weight, cpu;
10501 
10502 	WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work));
10503 
10504 	work->next = work;	/* Prevent double-add */
10505 	if (t->flags & PF_EXITING)
10506 		return;
10507 	mm = t->mm;
10508 	if (!mm)
10509 		return;
10510 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10511 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10512 	if (!old_scan) {
10513 		unsigned long res;
10514 
10515 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10516 		if (res != old_scan)
10517 			old_scan = res;
10518 		else
10519 			old_scan = next_scan;
10520 	}
10521 	if (time_before(now, old_scan))
10522 		return;
10523 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10524 		return;
10525 	cidmask = mm_cidmask(mm);
10526 	/* Clear cids that were not recently used. */
10527 	for_each_possible_cpu(cpu)
10528 		sched_mm_cid_remote_clear_old(mm, cpu);
10529 	weight = cpumask_weight(cidmask);
10530 	/*
10531 	 * Clear cids that are greater or equal to the cidmask weight to
10532 	 * recompact it.
10533 	 */
10534 	for_each_possible_cpu(cpu)
10535 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10536 }
10537 
10538 void init_sched_mm_cid(struct task_struct *t)
10539 {
10540 	struct mm_struct *mm = t->mm;
10541 	int mm_users = 0;
10542 
10543 	if (mm) {
10544 		mm_users = atomic_read(&mm->mm_users);
10545 		if (mm_users == 1)
10546 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10547 	}
10548 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10549 	init_task_work(&t->cid_work, task_mm_cid_work);
10550 }
10551 
10552 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10553 {
10554 	struct callback_head *work = &curr->cid_work;
10555 	unsigned long now = jiffies;
10556 
10557 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10558 	    work->next != work)
10559 		return;
10560 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10561 		return;
10562 
10563 	/* No page allocation under rq lock */
10564 	task_work_add(curr, work, TWA_RESUME);
10565 }
10566 
10567 void sched_mm_cid_exit_signals(struct task_struct *t)
10568 {
10569 	struct mm_struct *mm = t->mm;
10570 	struct rq *rq;
10571 
10572 	if (!mm)
10573 		return;
10574 
10575 	preempt_disable();
10576 	rq = this_rq();
10577 	guard(rq_lock_irqsave)(rq);
10578 	preempt_enable_no_resched();	/* holding spinlock */
10579 	WRITE_ONCE(t->mm_cid_active, 0);
10580 	/*
10581 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10582 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10583 	 */
10584 	smp_mb();
10585 	mm_cid_put(mm);
10586 	t->last_mm_cid = t->mm_cid = -1;
10587 }
10588 
10589 void sched_mm_cid_before_execve(struct task_struct *t)
10590 {
10591 	struct mm_struct *mm = t->mm;
10592 	struct rq *rq;
10593 
10594 	if (!mm)
10595 		return;
10596 
10597 	preempt_disable();
10598 	rq = this_rq();
10599 	guard(rq_lock_irqsave)(rq);
10600 	preempt_enable_no_resched();	/* holding spinlock */
10601 	WRITE_ONCE(t->mm_cid_active, 0);
10602 	/*
10603 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10604 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10605 	 */
10606 	smp_mb();
10607 	mm_cid_put(mm);
10608 	t->last_mm_cid = t->mm_cid = -1;
10609 }
10610 
10611 void sched_mm_cid_after_execve(struct task_struct *t)
10612 {
10613 	struct mm_struct *mm = t->mm;
10614 	struct rq *rq;
10615 
10616 	if (!mm)
10617 		return;
10618 
10619 	preempt_disable();
10620 	rq = this_rq();
10621 	scoped_guard (rq_lock_irqsave, rq) {
10622 		preempt_enable_no_resched();	/* holding spinlock */
10623 		WRITE_ONCE(t->mm_cid_active, 1);
10624 		/*
10625 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10626 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10627 		 */
10628 		smp_mb();
10629 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10630 	}
10631 }
10632 
10633 void sched_mm_cid_fork(struct task_struct *t)
10634 {
10635 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10636 	t->mm_cid_active = 1;
10637 }
10638 #endif /* CONFIG_SCHED_MM_CID */
10639 
10640 #ifdef CONFIG_SCHED_CLASS_EXT
10641 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10642 			    struct sched_enq_and_set_ctx *ctx)
10643 {
10644 	struct rq *rq = task_rq(p);
10645 
10646 	lockdep_assert_rq_held(rq);
10647 
10648 	*ctx = (struct sched_enq_and_set_ctx){
10649 		.p = p,
10650 		.queue_flags = queue_flags,
10651 		.queued = task_on_rq_queued(p),
10652 		.running = task_current(rq, p),
10653 	};
10654 
10655 	update_rq_clock(rq);
10656 	if (ctx->queued)
10657 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10658 	if (ctx->running)
10659 		put_prev_task(rq, p);
10660 }
10661 
10662 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10663 {
10664 	struct rq *rq = task_rq(ctx->p);
10665 
10666 	lockdep_assert_rq_held(rq);
10667 
10668 	if (ctx->queued)
10669 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10670 	if (ctx->running)
10671 		set_next_task(rq, ctx->p);
10672 }
10673 #endif /* CONFIG_SCHED_CLASS_EXT */
10674