1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 #include <asm/irq_regs.h> 80 #include <asm/mutex.h> 81 #ifdef CONFIG_PARAVIRT 82 #include <asm/paravirt.h> 83 #endif 84 85 #include "sched.h" 86 #include "../workqueue_internal.h" 87 #include "../smpboot.h" 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/sched.h> 91 92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 93 { 94 unsigned long delta; 95 ktime_t soft, hard, now; 96 97 for (;;) { 98 if (hrtimer_active(period_timer)) 99 break; 100 101 now = hrtimer_cb_get_time(period_timer); 102 hrtimer_forward(period_timer, now, period); 103 104 soft = hrtimer_get_softexpires(period_timer); 105 hard = hrtimer_get_expires(period_timer); 106 delta = ktime_to_ns(ktime_sub(hard, soft)); 107 __hrtimer_start_range_ns(period_timer, soft, delta, 108 HRTIMER_MODE_ABS_PINNED, 0); 109 } 110 } 111 112 DEFINE_MUTEX(sched_domains_mutex); 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 static void update_rq_clock_task(struct rq *rq, s64 delta); 116 117 void update_rq_clock(struct rq *rq) 118 { 119 s64 delta; 120 121 if (rq->skip_clock_update > 0) 122 return; 123 124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 125 rq->clock += delta; 126 update_rq_clock_task(rq, delta); 127 } 128 129 /* 130 * Debugging: various feature bits 131 */ 132 133 #define SCHED_FEAT(name, enabled) \ 134 (1UL << __SCHED_FEAT_##name) * enabled | 135 136 const_debug unsigned int sysctl_sched_features = 137 #include "features.h" 138 0; 139 140 #undef SCHED_FEAT 141 142 #ifdef CONFIG_SCHED_DEBUG 143 #define SCHED_FEAT(name, enabled) \ 144 #name , 145 146 static const char * const sched_feat_names[] = { 147 #include "features.h" 148 }; 149 150 #undef SCHED_FEAT 151 152 static int sched_feat_show(struct seq_file *m, void *v) 153 { 154 int i; 155 156 for (i = 0; i < __SCHED_FEAT_NR; i++) { 157 if (!(sysctl_sched_features & (1UL << i))) 158 seq_puts(m, "NO_"); 159 seq_printf(m, "%s ", sched_feat_names[i]); 160 } 161 seq_puts(m, "\n"); 162 163 return 0; 164 } 165 166 #ifdef HAVE_JUMP_LABEL 167 168 #define jump_label_key__true STATIC_KEY_INIT_TRUE 169 #define jump_label_key__false STATIC_KEY_INIT_FALSE 170 171 #define SCHED_FEAT(name, enabled) \ 172 jump_label_key__##enabled , 173 174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 175 #include "features.h" 176 }; 177 178 #undef SCHED_FEAT 179 180 static void sched_feat_disable(int i) 181 { 182 if (static_key_enabled(&sched_feat_keys[i])) 183 static_key_slow_dec(&sched_feat_keys[i]); 184 } 185 186 static void sched_feat_enable(int i) 187 { 188 if (!static_key_enabled(&sched_feat_keys[i])) 189 static_key_slow_inc(&sched_feat_keys[i]); 190 } 191 #else 192 static void sched_feat_disable(int i) { }; 193 static void sched_feat_enable(int i) { }; 194 #endif /* HAVE_JUMP_LABEL */ 195 196 static int sched_feat_set(char *cmp) 197 { 198 int i; 199 int neg = 0; 200 201 if (strncmp(cmp, "NO_", 3) == 0) { 202 neg = 1; 203 cmp += 3; 204 } 205 206 for (i = 0; i < __SCHED_FEAT_NR; i++) { 207 if (strcmp(cmp, sched_feat_names[i]) == 0) { 208 if (neg) { 209 sysctl_sched_features &= ~(1UL << i); 210 sched_feat_disable(i); 211 } else { 212 sysctl_sched_features |= (1UL << i); 213 sched_feat_enable(i); 214 } 215 break; 216 } 217 } 218 219 return i; 220 } 221 222 static ssize_t 223 sched_feat_write(struct file *filp, const char __user *ubuf, 224 size_t cnt, loff_t *ppos) 225 { 226 char buf[64]; 227 char *cmp; 228 int i; 229 230 if (cnt > 63) 231 cnt = 63; 232 233 if (copy_from_user(&buf, ubuf, cnt)) 234 return -EFAULT; 235 236 buf[cnt] = 0; 237 cmp = strstrip(buf); 238 239 i = sched_feat_set(cmp); 240 if (i == __SCHED_FEAT_NR) 241 return -EINVAL; 242 243 *ppos += cnt; 244 245 return cnt; 246 } 247 248 static int sched_feat_open(struct inode *inode, struct file *filp) 249 { 250 return single_open(filp, sched_feat_show, NULL); 251 } 252 253 static const struct file_operations sched_feat_fops = { 254 .open = sched_feat_open, 255 .write = sched_feat_write, 256 .read = seq_read, 257 .llseek = seq_lseek, 258 .release = single_release, 259 }; 260 261 static __init int sched_init_debug(void) 262 { 263 debugfs_create_file("sched_features", 0644, NULL, NULL, 264 &sched_feat_fops); 265 266 return 0; 267 } 268 late_initcall(sched_init_debug); 269 #endif /* CONFIG_SCHED_DEBUG */ 270 271 /* 272 * Number of tasks to iterate in a single balance run. 273 * Limited because this is done with IRQs disabled. 274 */ 275 const_debug unsigned int sysctl_sched_nr_migrate = 32; 276 277 /* 278 * period over which we average the RT time consumption, measured 279 * in ms. 280 * 281 * default: 1s 282 */ 283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 284 285 /* 286 * period over which we measure -rt task cpu usage in us. 287 * default: 1s 288 */ 289 unsigned int sysctl_sched_rt_period = 1000000; 290 291 __read_mostly int scheduler_running; 292 293 /* 294 * part of the period that we allow rt tasks to run in us. 295 * default: 0.95s 296 */ 297 int sysctl_sched_rt_runtime = 950000; 298 299 300 301 /* 302 * __task_rq_lock - lock the rq @p resides on. 303 */ 304 static inline struct rq *__task_rq_lock(struct task_struct *p) 305 __acquires(rq->lock) 306 { 307 struct rq *rq; 308 309 lockdep_assert_held(&p->pi_lock); 310 311 for (;;) { 312 rq = task_rq(p); 313 raw_spin_lock(&rq->lock); 314 if (likely(rq == task_rq(p))) 315 return rq; 316 raw_spin_unlock(&rq->lock); 317 } 318 } 319 320 /* 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 322 */ 323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 324 __acquires(p->pi_lock) 325 __acquires(rq->lock) 326 { 327 struct rq *rq; 328 329 for (;;) { 330 raw_spin_lock_irqsave(&p->pi_lock, *flags); 331 rq = task_rq(p); 332 raw_spin_lock(&rq->lock); 333 if (likely(rq == task_rq(p))) 334 return rq; 335 raw_spin_unlock(&rq->lock); 336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 337 } 338 } 339 340 static void __task_rq_unlock(struct rq *rq) 341 __releases(rq->lock) 342 { 343 raw_spin_unlock(&rq->lock); 344 } 345 346 static inline void 347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 348 __releases(rq->lock) 349 __releases(p->pi_lock) 350 { 351 raw_spin_unlock(&rq->lock); 352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 353 } 354 355 /* 356 * this_rq_lock - lock this runqueue and disable interrupts. 357 */ 358 static struct rq *this_rq_lock(void) 359 __acquires(rq->lock) 360 { 361 struct rq *rq; 362 363 local_irq_disable(); 364 rq = this_rq(); 365 raw_spin_lock(&rq->lock); 366 367 return rq; 368 } 369 370 #ifdef CONFIG_SCHED_HRTICK 371 /* 372 * Use HR-timers to deliver accurate preemption points. 373 * 374 * Its all a bit involved since we cannot program an hrt while holding the 375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 376 * reschedule event. 377 * 378 * When we get rescheduled we reprogram the hrtick_timer outside of the 379 * rq->lock. 380 */ 381 382 static void hrtick_clear(struct rq *rq) 383 { 384 if (hrtimer_active(&rq->hrtick_timer)) 385 hrtimer_cancel(&rq->hrtick_timer); 386 } 387 388 /* 389 * High-resolution timer tick. 390 * Runs from hardirq context with interrupts disabled. 391 */ 392 static enum hrtimer_restart hrtick(struct hrtimer *timer) 393 { 394 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 395 396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 397 398 raw_spin_lock(&rq->lock); 399 update_rq_clock(rq); 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 401 raw_spin_unlock(&rq->lock); 402 403 return HRTIMER_NORESTART; 404 } 405 406 #ifdef CONFIG_SMP 407 /* 408 * called from hardirq (IPI) context 409 */ 410 static void __hrtick_start(void *arg) 411 { 412 struct rq *rq = arg; 413 414 raw_spin_lock(&rq->lock); 415 hrtimer_restart(&rq->hrtick_timer); 416 rq->hrtick_csd_pending = 0; 417 raw_spin_unlock(&rq->lock); 418 } 419 420 /* 421 * Called to set the hrtick timer state. 422 * 423 * called with rq->lock held and irqs disabled 424 */ 425 void hrtick_start(struct rq *rq, u64 delay) 426 { 427 struct hrtimer *timer = &rq->hrtick_timer; 428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 429 430 hrtimer_set_expires(timer, time); 431 432 if (rq == this_rq()) { 433 hrtimer_restart(timer); 434 } else if (!rq->hrtick_csd_pending) { 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 436 rq->hrtick_csd_pending = 1; 437 } 438 } 439 440 static int 441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 442 { 443 int cpu = (int)(long)hcpu; 444 445 switch (action) { 446 case CPU_UP_CANCELED: 447 case CPU_UP_CANCELED_FROZEN: 448 case CPU_DOWN_PREPARE: 449 case CPU_DOWN_PREPARE_FROZEN: 450 case CPU_DEAD: 451 case CPU_DEAD_FROZEN: 452 hrtick_clear(cpu_rq(cpu)); 453 return NOTIFY_OK; 454 } 455 456 return NOTIFY_DONE; 457 } 458 459 static __init void init_hrtick(void) 460 { 461 hotcpu_notifier(hotplug_hrtick, 0); 462 } 463 #else 464 /* 465 * Called to set the hrtick timer state. 466 * 467 * called with rq->lock held and irqs disabled 468 */ 469 void hrtick_start(struct rq *rq, u64 delay) 470 { 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 472 HRTIMER_MODE_REL_PINNED, 0); 473 } 474 475 static inline void init_hrtick(void) 476 { 477 } 478 #endif /* CONFIG_SMP */ 479 480 static void init_rq_hrtick(struct rq *rq) 481 { 482 #ifdef CONFIG_SMP 483 rq->hrtick_csd_pending = 0; 484 485 rq->hrtick_csd.flags = 0; 486 rq->hrtick_csd.func = __hrtick_start; 487 rq->hrtick_csd.info = rq; 488 #endif 489 490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 491 rq->hrtick_timer.function = hrtick; 492 } 493 #else /* CONFIG_SCHED_HRTICK */ 494 static inline void hrtick_clear(struct rq *rq) 495 { 496 } 497 498 static inline void init_rq_hrtick(struct rq *rq) 499 { 500 } 501 502 static inline void init_hrtick(void) 503 { 504 } 505 #endif /* CONFIG_SCHED_HRTICK */ 506 507 /* 508 * resched_task - mark a task 'to be rescheduled now'. 509 * 510 * On UP this means the setting of the need_resched flag, on SMP it 511 * might also involve a cross-CPU call to trigger the scheduler on 512 * the target CPU. 513 */ 514 #ifdef CONFIG_SMP 515 void resched_task(struct task_struct *p) 516 { 517 int cpu; 518 519 assert_raw_spin_locked(&task_rq(p)->lock); 520 521 if (test_tsk_need_resched(p)) 522 return; 523 524 set_tsk_need_resched(p); 525 526 cpu = task_cpu(p); 527 if (cpu == smp_processor_id()) 528 return; 529 530 /* NEED_RESCHED must be visible before we test polling */ 531 smp_mb(); 532 if (!tsk_is_polling(p)) 533 smp_send_reschedule(cpu); 534 } 535 536 void resched_cpu(int cpu) 537 { 538 struct rq *rq = cpu_rq(cpu); 539 unsigned long flags; 540 541 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 542 return; 543 resched_task(cpu_curr(cpu)); 544 raw_spin_unlock_irqrestore(&rq->lock, flags); 545 } 546 547 #ifdef CONFIG_NO_HZ_COMMON 548 /* 549 * In the semi idle case, use the nearest busy cpu for migrating timers 550 * from an idle cpu. This is good for power-savings. 551 * 552 * We don't do similar optimization for completely idle system, as 553 * selecting an idle cpu will add more delays to the timers than intended 554 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 555 */ 556 int get_nohz_timer_target(void) 557 { 558 int cpu = smp_processor_id(); 559 int i; 560 struct sched_domain *sd; 561 562 rcu_read_lock(); 563 for_each_domain(cpu, sd) { 564 for_each_cpu(i, sched_domain_span(sd)) { 565 if (!idle_cpu(i)) { 566 cpu = i; 567 goto unlock; 568 } 569 } 570 } 571 unlock: 572 rcu_read_unlock(); 573 return cpu; 574 } 575 /* 576 * When add_timer_on() enqueues a timer into the timer wheel of an 577 * idle CPU then this timer might expire before the next timer event 578 * which is scheduled to wake up that CPU. In case of a completely 579 * idle system the next event might even be infinite time into the 580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 581 * leaves the inner idle loop so the newly added timer is taken into 582 * account when the CPU goes back to idle and evaluates the timer 583 * wheel for the next timer event. 584 */ 585 static void wake_up_idle_cpu(int cpu) 586 { 587 struct rq *rq = cpu_rq(cpu); 588 589 if (cpu == smp_processor_id()) 590 return; 591 592 /* 593 * This is safe, as this function is called with the timer 594 * wheel base lock of (cpu) held. When the CPU is on the way 595 * to idle and has not yet set rq->curr to idle then it will 596 * be serialized on the timer wheel base lock and take the new 597 * timer into account automatically. 598 */ 599 if (rq->curr != rq->idle) 600 return; 601 602 /* 603 * We can set TIF_RESCHED on the idle task of the other CPU 604 * lockless. The worst case is that the other CPU runs the 605 * idle task through an additional NOOP schedule() 606 */ 607 set_tsk_need_resched(rq->idle); 608 609 /* NEED_RESCHED must be visible before we test polling */ 610 smp_mb(); 611 if (!tsk_is_polling(rq->idle)) 612 smp_send_reschedule(cpu); 613 } 614 615 static bool wake_up_full_nohz_cpu(int cpu) 616 { 617 if (tick_nohz_full_cpu(cpu)) { 618 if (cpu != smp_processor_id() || 619 tick_nohz_tick_stopped()) 620 smp_send_reschedule(cpu); 621 return true; 622 } 623 624 return false; 625 } 626 627 void wake_up_nohz_cpu(int cpu) 628 { 629 if (!wake_up_full_nohz_cpu(cpu)) 630 wake_up_idle_cpu(cpu); 631 } 632 633 static inline bool got_nohz_idle_kick(void) 634 { 635 int cpu = smp_processor_id(); 636 637 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 638 return false; 639 640 if (idle_cpu(cpu) && !need_resched()) 641 return true; 642 643 /* 644 * We can't run Idle Load Balance on this CPU for this time so we 645 * cancel it and clear NOHZ_BALANCE_KICK 646 */ 647 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 648 return false; 649 } 650 651 #else /* CONFIG_NO_HZ_COMMON */ 652 653 static inline bool got_nohz_idle_kick(void) 654 { 655 return false; 656 } 657 658 #endif /* CONFIG_NO_HZ_COMMON */ 659 660 #ifdef CONFIG_NO_HZ_FULL 661 bool sched_can_stop_tick(void) 662 { 663 struct rq *rq; 664 665 rq = this_rq(); 666 667 /* Make sure rq->nr_running update is visible after the IPI */ 668 smp_rmb(); 669 670 /* More than one running task need preemption */ 671 if (rq->nr_running > 1) 672 return false; 673 674 return true; 675 } 676 #endif /* CONFIG_NO_HZ_FULL */ 677 678 void sched_avg_update(struct rq *rq) 679 { 680 s64 period = sched_avg_period(); 681 682 while ((s64)(rq->clock - rq->age_stamp) > period) { 683 /* 684 * Inline assembly required to prevent the compiler 685 * optimising this loop into a divmod call. 686 * See __iter_div_u64_rem() for another example of this. 687 */ 688 asm("" : "+rm" (rq->age_stamp)); 689 rq->age_stamp += period; 690 rq->rt_avg /= 2; 691 } 692 } 693 694 #else /* !CONFIG_SMP */ 695 void resched_task(struct task_struct *p) 696 { 697 assert_raw_spin_locked(&task_rq(p)->lock); 698 set_tsk_need_resched(p); 699 } 700 #endif /* CONFIG_SMP */ 701 702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 704 /* 705 * Iterate task_group tree rooted at *from, calling @down when first entering a 706 * node and @up when leaving it for the final time. 707 * 708 * Caller must hold rcu_lock or sufficient equivalent. 709 */ 710 int walk_tg_tree_from(struct task_group *from, 711 tg_visitor down, tg_visitor up, void *data) 712 { 713 struct task_group *parent, *child; 714 int ret; 715 716 parent = from; 717 718 down: 719 ret = (*down)(parent, data); 720 if (ret) 721 goto out; 722 list_for_each_entry_rcu(child, &parent->children, siblings) { 723 parent = child; 724 goto down; 725 726 up: 727 continue; 728 } 729 ret = (*up)(parent, data); 730 if (ret || parent == from) 731 goto out; 732 733 child = parent; 734 parent = parent->parent; 735 if (parent) 736 goto up; 737 out: 738 return ret; 739 } 740 741 int tg_nop(struct task_group *tg, void *data) 742 { 743 return 0; 744 } 745 #endif 746 747 static void set_load_weight(struct task_struct *p) 748 { 749 int prio = p->static_prio - MAX_RT_PRIO; 750 struct load_weight *load = &p->se.load; 751 752 /* 753 * SCHED_IDLE tasks get minimal weight: 754 */ 755 if (p->policy == SCHED_IDLE) { 756 load->weight = scale_load(WEIGHT_IDLEPRIO); 757 load->inv_weight = WMULT_IDLEPRIO; 758 return; 759 } 760 761 load->weight = scale_load(prio_to_weight[prio]); 762 load->inv_weight = prio_to_wmult[prio]; 763 } 764 765 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 766 { 767 update_rq_clock(rq); 768 sched_info_queued(p); 769 p->sched_class->enqueue_task(rq, p, flags); 770 } 771 772 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 773 { 774 update_rq_clock(rq); 775 sched_info_dequeued(p); 776 p->sched_class->dequeue_task(rq, p, flags); 777 } 778 779 void activate_task(struct rq *rq, struct task_struct *p, int flags) 780 { 781 if (task_contributes_to_load(p)) 782 rq->nr_uninterruptible--; 783 784 enqueue_task(rq, p, flags); 785 } 786 787 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 788 { 789 if (task_contributes_to_load(p)) 790 rq->nr_uninterruptible++; 791 792 dequeue_task(rq, p, flags); 793 } 794 795 static void update_rq_clock_task(struct rq *rq, s64 delta) 796 { 797 /* 798 * In theory, the compile should just see 0 here, and optimize out the call 799 * to sched_rt_avg_update. But I don't trust it... 800 */ 801 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 802 s64 steal = 0, irq_delta = 0; 803 #endif 804 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 806 807 /* 808 * Since irq_time is only updated on {soft,}irq_exit, we might run into 809 * this case when a previous update_rq_clock() happened inside a 810 * {soft,}irq region. 811 * 812 * When this happens, we stop ->clock_task and only update the 813 * prev_irq_time stamp to account for the part that fit, so that a next 814 * update will consume the rest. This ensures ->clock_task is 815 * monotonic. 816 * 817 * It does however cause some slight miss-attribution of {soft,}irq 818 * time, a more accurate solution would be to update the irq_time using 819 * the current rq->clock timestamp, except that would require using 820 * atomic ops. 821 */ 822 if (irq_delta > delta) 823 irq_delta = delta; 824 825 rq->prev_irq_time += irq_delta; 826 delta -= irq_delta; 827 #endif 828 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 829 if (static_key_false((¶virt_steal_rq_enabled))) { 830 u64 st; 831 832 steal = paravirt_steal_clock(cpu_of(rq)); 833 steal -= rq->prev_steal_time_rq; 834 835 if (unlikely(steal > delta)) 836 steal = delta; 837 838 st = steal_ticks(steal); 839 steal = st * TICK_NSEC; 840 841 rq->prev_steal_time_rq += steal; 842 843 delta -= steal; 844 } 845 #endif 846 847 rq->clock_task += delta; 848 849 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 850 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 851 sched_rt_avg_update(rq, irq_delta + steal); 852 #endif 853 } 854 855 void sched_set_stop_task(int cpu, struct task_struct *stop) 856 { 857 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 858 struct task_struct *old_stop = cpu_rq(cpu)->stop; 859 860 if (stop) { 861 /* 862 * Make it appear like a SCHED_FIFO task, its something 863 * userspace knows about and won't get confused about. 864 * 865 * Also, it will make PI more or less work without too 866 * much confusion -- but then, stop work should not 867 * rely on PI working anyway. 868 */ 869 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 870 871 stop->sched_class = &stop_sched_class; 872 } 873 874 cpu_rq(cpu)->stop = stop; 875 876 if (old_stop) { 877 /* 878 * Reset it back to a normal scheduling class so that 879 * it can die in pieces. 880 */ 881 old_stop->sched_class = &rt_sched_class; 882 } 883 } 884 885 /* 886 * __normal_prio - return the priority that is based on the static prio 887 */ 888 static inline int __normal_prio(struct task_struct *p) 889 { 890 return p->static_prio; 891 } 892 893 /* 894 * Calculate the expected normal priority: i.e. priority 895 * without taking RT-inheritance into account. Might be 896 * boosted by interactivity modifiers. Changes upon fork, 897 * setprio syscalls, and whenever the interactivity 898 * estimator recalculates. 899 */ 900 static inline int normal_prio(struct task_struct *p) 901 { 902 int prio; 903 904 if (task_has_rt_policy(p)) 905 prio = MAX_RT_PRIO-1 - p->rt_priority; 906 else 907 prio = __normal_prio(p); 908 return prio; 909 } 910 911 /* 912 * Calculate the current priority, i.e. the priority 913 * taken into account by the scheduler. This value might 914 * be boosted by RT tasks, or might be boosted by 915 * interactivity modifiers. Will be RT if the task got 916 * RT-boosted. If not then it returns p->normal_prio. 917 */ 918 static int effective_prio(struct task_struct *p) 919 { 920 p->normal_prio = normal_prio(p); 921 /* 922 * If we are RT tasks or we were boosted to RT priority, 923 * keep the priority unchanged. Otherwise, update priority 924 * to the normal priority: 925 */ 926 if (!rt_prio(p->prio)) 927 return p->normal_prio; 928 return p->prio; 929 } 930 931 /** 932 * task_curr - is this task currently executing on a CPU? 933 * @p: the task in question. 934 */ 935 inline int task_curr(const struct task_struct *p) 936 { 937 return cpu_curr(task_cpu(p)) == p; 938 } 939 940 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 941 const struct sched_class *prev_class, 942 int oldprio) 943 { 944 if (prev_class != p->sched_class) { 945 if (prev_class->switched_from) 946 prev_class->switched_from(rq, p); 947 p->sched_class->switched_to(rq, p); 948 } else if (oldprio != p->prio) 949 p->sched_class->prio_changed(rq, p, oldprio); 950 } 951 952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 953 { 954 const struct sched_class *class; 955 956 if (p->sched_class == rq->curr->sched_class) { 957 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 958 } else { 959 for_each_class(class) { 960 if (class == rq->curr->sched_class) 961 break; 962 if (class == p->sched_class) { 963 resched_task(rq->curr); 964 break; 965 } 966 } 967 } 968 969 /* 970 * A queue event has occurred, and we're going to schedule. In 971 * this case, we can save a useless back to back clock update. 972 */ 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 974 rq->skip_clock_update = 1; 975 } 976 977 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier); 978 979 void register_task_migration_notifier(struct notifier_block *n) 980 { 981 atomic_notifier_chain_register(&task_migration_notifier, n); 982 } 983 984 #ifdef CONFIG_SMP 985 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 986 { 987 #ifdef CONFIG_SCHED_DEBUG 988 /* 989 * We should never call set_task_cpu() on a blocked task, 990 * ttwu() will sort out the placement. 991 */ 992 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 993 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 994 995 #ifdef CONFIG_LOCKDEP 996 /* 997 * The caller should hold either p->pi_lock or rq->lock, when changing 998 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 999 * 1000 * sched_move_task() holds both and thus holding either pins the cgroup, 1001 * see task_group(). 1002 * 1003 * Furthermore, all task_rq users should acquire both locks, see 1004 * task_rq_lock(). 1005 */ 1006 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1007 lockdep_is_held(&task_rq(p)->lock))); 1008 #endif 1009 #endif 1010 1011 trace_sched_migrate_task(p, new_cpu); 1012 1013 if (task_cpu(p) != new_cpu) { 1014 struct task_migration_notifier tmn; 1015 1016 if (p->sched_class->migrate_task_rq) 1017 p->sched_class->migrate_task_rq(p, new_cpu); 1018 p->se.nr_migrations++; 1019 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1020 1021 tmn.task = p; 1022 tmn.from_cpu = task_cpu(p); 1023 tmn.to_cpu = new_cpu; 1024 1025 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn); 1026 } 1027 1028 __set_task_cpu(p, new_cpu); 1029 } 1030 1031 struct migration_arg { 1032 struct task_struct *task; 1033 int dest_cpu; 1034 }; 1035 1036 static int migration_cpu_stop(void *data); 1037 1038 /* 1039 * wait_task_inactive - wait for a thread to unschedule. 1040 * 1041 * If @match_state is nonzero, it's the @p->state value just checked and 1042 * not expected to change. If it changes, i.e. @p might have woken up, 1043 * then return zero. When we succeed in waiting for @p to be off its CPU, 1044 * we return a positive number (its total switch count). If a second call 1045 * a short while later returns the same number, the caller can be sure that 1046 * @p has remained unscheduled the whole time. 1047 * 1048 * The caller must ensure that the task *will* unschedule sometime soon, 1049 * else this function might spin for a *long* time. This function can't 1050 * be called with interrupts off, or it may introduce deadlock with 1051 * smp_call_function() if an IPI is sent by the same process we are 1052 * waiting to become inactive. 1053 */ 1054 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1055 { 1056 unsigned long flags; 1057 int running, on_rq; 1058 unsigned long ncsw; 1059 struct rq *rq; 1060 1061 for (;;) { 1062 /* 1063 * We do the initial early heuristics without holding 1064 * any task-queue locks at all. We'll only try to get 1065 * the runqueue lock when things look like they will 1066 * work out! 1067 */ 1068 rq = task_rq(p); 1069 1070 /* 1071 * If the task is actively running on another CPU 1072 * still, just relax and busy-wait without holding 1073 * any locks. 1074 * 1075 * NOTE! Since we don't hold any locks, it's not 1076 * even sure that "rq" stays as the right runqueue! 1077 * But we don't care, since "task_running()" will 1078 * return false if the runqueue has changed and p 1079 * is actually now running somewhere else! 1080 */ 1081 while (task_running(rq, p)) { 1082 if (match_state && unlikely(p->state != match_state)) 1083 return 0; 1084 cpu_relax(); 1085 } 1086 1087 /* 1088 * Ok, time to look more closely! We need the rq 1089 * lock now, to be *sure*. If we're wrong, we'll 1090 * just go back and repeat. 1091 */ 1092 rq = task_rq_lock(p, &flags); 1093 trace_sched_wait_task(p); 1094 running = task_running(rq, p); 1095 on_rq = p->on_rq; 1096 ncsw = 0; 1097 if (!match_state || p->state == match_state) 1098 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1099 task_rq_unlock(rq, p, &flags); 1100 1101 /* 1102 * If it changed from the expected state, bail out now. 1103 */ 1104 if (unlikely(!ncsw)) 1105 break; 1106 1107 /* 1108 * Was it really running after all now that we 1109 * checked with the proper locks actually held? 1110 * 1111 * Oops. Go back and try again.. 1112 */ 1113 if (unlikely(running)) { 1114 cpu_relax(); 1115 continue; 1116 } 1117 1118 /* 1119 * It's not enough that it's not actively running, 1120 * it must be off the runqueue _entirely_, and not 1121 * preempted! 1122 * 1123 * So if it was still runnable (but just not actively 1124 * running right now), it's preempted, and we should 1125 * yield - it could be a while. 1126 */ 1127 if (unlikely(on_rq)) { 1128 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1129 1130 set_current_state(TASK_UNINTERRUPTIBLE); 1131 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1132 continue; 1133 } 1134 1135 /* 1136 * Ahh, all good. It wasn't running, and it wasn't 1137 * runnable, which means that it will never become 1138 * running in the future either. We're all done! 1139 */ 1140 break; 1141 } 1142 1143 return ncsw; 1144 } 1145 1146 /*** 1147 * kick_process - kick a running thread to enter/exit the kernel 1148 * @p: the to-be-kicked thread 1149 * 1150 * Cause a process which is running on another CPU to enter 1151 * kernel-mode, without any delay. (to get signals handled.) 1152 * 1153 * NOTE: this function doesn't have to take the runqueue lock, 1154 * because all it wants to ensure is that the remote task enters 1155 * the kernel. If the IPI races and the task has been migrated 1156 * to another CPU then no harm is done and the purpose has been 1157 * achieved as well. 1158 */ 1159 void kick_process(struct task_struct *p) 1160 { 1161 int cpu; 1162 1163 preempt_disable(); 1164 cpu = task_cpu(p); 1165 if ((cpu != smp_processor_id()) && task_curr(p)) 1166 smp_send_reschedule(cpu); 1167 preempt_enable(); 1168 } 1169 EXPORT_SYMBOL_GPL(kick_process); 1170 #endif /* CONFIG_SMP */ 1171 1172 #ifdef CONFIG_SMP 1173 /* 1174 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1175 */ 1176 static int select_fallback_rq(int cpu, struct task_struct *p) 1177 { 1178 int nid = cpu_to_node(cpu); 1179 const struct cpumask *nodemask = NULL; 1180 enum { cpuset, possible, fail } state = cpuset; 1181 int dest_cpu; 1182 1183 /* 1184 * If the node that the cpu is on has been offlined, cpu_to_node() 1185 * will return -1. There is no cpu on the node, and we should 1186 * select the cpu on the other node. 1187 */ 1188 if (nid != -1) { 1189 nodemask = cpumask_of_node(nid); 1190 1191 /* Look for allowed, online CPU in same node. */ 1192 for_each_cpu(dest_cpu, nodemask) { 1193 if (!cpu_online(dest_cpu)) 1194 continue; 1195 if (!cpu_active(dest_cpu)) 1196 continue; 1197 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1198 return dest_cpu; 1199 } 1200 } 1201 1202 for (;;) { 1203 /* Any allowed, online CPU? */ 1204 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1205 if (!cpu_online(dest_cpu)) 1206 continue; 1207 if (!cpu_active(dest_cpu)) 1208 continue; 1209 goto out; 1210 } 1211 1212 switch (state) { 1213 case cpuset: 1214 /* No more Mr. Nice Guy. */ 1215 cpuset_cpus_allowed_fallback(p); 1216 state = possible; 1217 break; 1218 1219 case possible: 1220 do_set_cpus_allowed(p, cpu_possible_mask); 1221 state = fail; 1222 break; 1223 1224 case fail: 1225 BUG(); 1226 break; 1227 } 1228 } 1229 1230 out: 1231 if (state != cpuset) { 1232 /* 1233 * Don't tell them about moving exiting tasks or 1234 * kernel threads (both mm NULL), since they never 1235 * leave kernel. 1236 */ 1237 if (p->mm && printk_ratelimit()) { 1238 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1239 task_pid_nr(p), p->comm, cpu); 1240 } 1241 } 1242 1243 return dest_cpu; 1244 } 1245 1246 /* 1247 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1248 */ 1249 static inline 1250 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1251 { 1252 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1253 1254 /* 1255 * In order not to call set_task_cpu() on a blocking task we need 1256 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1257 * cpu. 1258 * 1259 * Since this is common to all placement strategies, this lives here. 1260 * 1261 * [ this allows ->select_task() to simply return task_cpu(p) and 1262 * not worry about this generic constraint ] 1263 */ 1264 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1265 !cpu_online(cpu))) 1266 cpu = select_fallback_rq(task_cpu(p), p); 1267 1268 return cpu; 1269 } 1270 1271 static void update_avg(u64 *avg, u64 sample) 1272 { 1273 s64 diff = sample - *avg; 1274 *avg += diff >> 3; 1275 } 1276 #endif 1277 1278 static void 1279 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1280 { 1281 #ifdef CONFIG_SCHEDSTATS 1282 struct rq *rq = this_rq(); 1283 1284 #ifdef CONFIG_SMP 1285 int this_cpu = smp_processor_id(); 1286 1287 if (cpu == this_cpu) { 1288 schedstat_inc(rq, ttwu_local); 1289 schedstat_inc(p, se.statistics.nr_wakeups_local); 1290 } else { 1291 struct sched_domain *sd; 1292 1293 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1294 rcu_read_lock(); 1295 for_each_domain(this_cpu, sd) { 1296 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1297 schedstat_inc(sd, ttwu_wake_remote); 1298 break; 1299 } 1300 } 1301 rcu_read_unlock(); 1302 } 1303 1304 if (wake_flags & WF_MIGRATED) 1305 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1306 1307 #endif /* CONFIG_SMP */ 1308 1309 schedstat_inc(rq, ttwu_count); 1310 schedstat_inc(p, se.statistics.nr_wakeups); 1311 1312 if (wake_flags & WF_SYNC) 1313 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1314 1315 #endif /* CONFIG_SCHEDSTATS */ 1316 } 1317 1318 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1319 { 1320 activate_task(rq, p, en_flags); 1321 p->on_rq = 1; 1322 1323 /* if a worker is waking up, notify workqueue */ 1324 if (p->flags & PF_WQ_WORKER) 1325 wq_worker_waking_up(p, cpu_of(rq)); 1326 } 1327 1328 /* 1329 * Mark the task runnable and perform wakeup-preemption. 1330 */ 1331 static void 1332 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1333 { 1334 check_preempt_curr(rq, p, wake_flags); 1335 trace_sched_wakeup(p, true); 1336 1337 p->state = TASK_RUNNING; 1338 #ifdef CONFIG_SMP 1339 if (p->sched_class->task_woken) 1340 p->sched_class->task_woken(rq, p); 1341 1342 if (rq->idle_stamp) { 1343 u64 delta = rq->clock - rq->idle_stamp; 1344 u64 max = 2*sysctl_sched_migration_cost; 1345 1346 if (delta > max) 1347 rq->avg_idle = max; 1348 else 1349 update_avg(&rq->avg_idle, delta); 1350 rq->idle_stamp = 0; 1351 } 1352 #endif 1353 } 1354 1355 static void 1356 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1357 { 1358 #ifdef CONFIG_SMP 1359 if (p->sched_contributes_to_load) 1360 rq->nr_uninterruptible--; 1361 #endif 1362 1363 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1364 ttwu_do_wakeup(rq, p, wake_flags); 1365 } 1366 1367 /* 1368 * Called in case the task @p isn't fully descheduled from its runqueue, 1369 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1370 * since all we need to do is flip p->state to TASK_RUNNING, since 1371 * the task is still ->on_rq. 1372 */ 1373 static int ttwu_remote(struct task_struct *p, int wake_flags) 1374 { 1375 struct rq *rq; 1376 int ret = 0; 1377 1378 rq = __task_rq_lock(p); 1379 if (p->on_rq) { 1380 ttwu_do_wakeup(rq, p, wake_flags); 1381 ret = 1; 1382 } 1383 __task_rq_unlock(rq); 1384 1385 return ret; 1386 } 1387 1388 #ifdef CONFIG_SMP 1389 static void sched_ttwu_pending(void) 1390 { 1391 struct rq *rq = this_rq(); 1392 struct llist_node *llist = llist_del_all(&rq->wake_list); 1393 struct task_struct *p; 1394 1395 raw_spin_lock(&rq->lock); 1396 1397 while (llist) { 1398 p = llist_entry(llist, struct task_struct, wake_entry); 1399 llist = llist_next(llist); 1400 ttwu_do_activate(rq, p, 0); 1401 } 1402 1403 raw_spin_unlock(&rq->lock); 1404 } 1405 1406 void scheduler_ipi(void) 1407 { 1408 if (llist_empty(&this_rq()->wake_list) 1409 && !tick_nohz_full_cpu(smp_processor_id()) 1410 && !got_nohz_idle_kick()) 1411 return; 1412 1413 /* 1414 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1415 * traditionally all their work was done from the interrupt return 1416 * path. Now that we actually do some work, we need to make sure 1417 * we do call them. 1418 * 1419 * Some archs already do call them, luckily irq_enter/exit nest 1420 * properly. 1421 * 1422 * Arguably we should visit all archs and update all handlers, 1423 * however a fair share of IPIs are still resched only so this would 1424 * somewhat pessimize the simple resched case. 1425 */ 1426 irq_enter(); 1427 tick_nohz_full_check(); 1428 sched_ttwu_pending(); 1429 1430 /* 1431 * Check if someone kicked us for doing the nohz idle load balance. 1432 */ 1433 if (unlikely(got_nohz_idle_kick())) { 1434 this_rq()->idle_balance = 1; 1435 raise_softirq_irqoff(SCHED_SOFTIRQ); 1436 } 1437 irq_exit(); 1438 } 1439 1440 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1441 { 1442 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1443 smp_send_reschedule(cpu); 1444 } 1445 1446 bool cpus_share_cache(int this_cpu, int that_cpu) 1447 { 1448 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1449 } 1450 #endif /* CONFIG_SMP */ 1451 1452 static void ttwu_queue(struct task_struct *p, int cpu) 1453 { 1454 struct rq *rq = cpu_rq(cpu); 1455 1456 #if defined(CONFIG_SMP) 1457 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1458 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1459 ttwu_queue_remote(p, cpu); 1460 return; 1461 } 1462 #endif 1463 1464 raw_spin_lock(&rq->lock); 1465 ttwu_do_activate(rq, p, 0); 1466 raw_spin_unlock(&rq->lock); 1467 } 1468 1469 /** 1470 * try_to_wake_up - wake up a thread 1471 * @p: the thread to be awakened 1472 * @state: the mask of task states that can be woken 1473 * @wake_flags: wake modifier flags (WF_*) 1474 * 1475 * Put it on the run-queue if it's not already there. The "current" 1476 * thread is always on the run-queue (except when the actual 1477 * re-schedule is in progress), and as such you're allowed to do 1478 * the simpler "current->state = TASK_RUNNING" to mark yourself 1479 * runnable without the overhead of this. 1480 * 1481 * Returns %true if @p was woken up, %false if it was already running 1482 * or @state didn't match @p's state. 1483 */ 1484 static int 1485 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1486 { 1487 unsigned long flags; 1488 int cpu, success = 0; 1489 1490 smp_wmb(); 1491 raw_spin_lock_irqsave(&p->pi_lock, flags); 1492 if (!(p->state & state)) 1493 goto out; 1494 1495 success = 1; /* we're going to change ->state */ 1496 cpu = task_cpu(p); 1497 1498 if (p->on_rq && ttwu_remote(p, wake_flags)) 1499 goto stat; 1500 1501 #ifdef CONFIG_SMP 1502 /* 1503 * If the owning (remote) cpu is still in the middle of schedule() with 1504 * this task as prev, wait until its done referencing the task. 1505 */ 1506 while (p->on_cpu) 1507 cpu_relax(); 1508 /* 1509 * Pairs with the smp_wmb() in finish_lock_switch(). 1510 */ 1511 smp_rmb(); 1512 1513 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1514 p->state = TASK_WAKING; 1515 1516 if (p->sched_class->task_waking) 1517 p->sched_class->task_waking(p); 1518 1519 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1520 if (task_cpu(p) != cpu) { 1521 wake_flags |= WF_MIGRATED; 1522 set_task_cpu(p, cpu); 1523 } 1524 #endif /* CONFIG_SMP */ 1525 1526 ttwu_queue(p, cpu); 1527 stat: 1528 ttwu_stat(p, cpu, wake_flags); 1529 out: 1530 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1531 1532 return success; 1533 } 1534 1535 /** 1536 * try_to_wake_up_local - try to wake up a local task with rq lock held 1537 * @p: the thread to be awakened 1538 * 1539 * Put @p on the run-queue if it's not already there. The caller must 1540 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1541 * the current task. 1542 */ 1543 static void try_to_wake_up_local(struct task_struct *p) 1544 { 1545 struct rq *rq = task_rq(p); 1546 1547 if (WARN_ON_ONCE(rq != this_rq()) || 1548 WARN_ON_ONCE(p == current)) 1549 return; 1550 1551 lockdep_assert_held(&rq->lock); 1552 1553 if (!raw_spin_trylock(&p->pi_lock)) { 1554 raw_spin_unlock(&rq->lock); 1555 raw_spin_lock(&p->pi_lock); 1556 raw_spin_lock(&rq->lock); 1557 } 1558 1559 if (!(p->state & TASK_NORMAL)) 1560 goto out; 1561 1562 if (!p->on_rq) 1563 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1564 1565 ttwu_do_wakeup(rq, p, 0); 1566 ttwu_stat(p, smp_processor_id(), 0); 1567 out: 1568 raw_spin_unlock(&p->pi_lock); 1569 } 1570 1571 /** 1572 * wake_up_process - Wake up a specific process 1573 * @p: The process to be woken up. 1574 * 1575 * Attempt to wake up the nominated process and move it to the set of runnable 1576 * processes. Returns 1 if the process was woken up, 0 if it was already 1577 * running. 1578 * 1579 * It may be assumed that this function implies a write memory barrier before 1580 * changing the task state if and only if any tasks are woken up. 1581 */ 1582 int wake_up_process(struct task_struct *p) 1583 { 1584 WARN_ON(task_is_stopped_or_traced(p)); 1585 return try_to_wake_up(p, TASK_NORMAL, 0); 1586 } 1587 EXPORT_SYMBOL(wake_up_process); 1588 1589 int wake_up_state(struct task_struct *p, unsigned int state) 1590 { 1591 return try_to_wake_up(p, state, 0); 1592 } 1593 1594 /* 1595 * Perform scheduler related setup for a newly forked process p. 1596 * p is forked by current. 1597 * 1598 * __sched_fork() is basic setup used by init_idle() too: 1599 */ 1600 static void __sched_fork(struct task_struct *p) 1601 { 1602 p->on_rq = 0; 1603 1604 p->se.on_rq = 0; 1605 p->se.exec_start = 0; 1606 p->se.sum_exec_runtime = 0; 1607 p->se.prev_sum_exec_runtime = 0; 1608 p->se.nr_migrations = 0; 1609 p->se.vruntime = 0; 1610 INIT_LIST_HEAD(&p->se.group_node); 1611 1612 /* 1613 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 1614 * removed when useful for applications beyond shares distribution (e.g. 1615 * load-balance). 1616 */ 1617 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1618 p->se.avg.runnable_avg_period = 0; 1619 p->se.avg.runnable_avg_sum = 0; 1620 #endif 1621 #ifdef CONFIG_SCHEDSTATS 1622 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1623 #endif 1624 1625 INIT_LIST_HEAD(&p->rt.run_list); 1626 1627 #ifdef CONFIG_PREEMPT_NOTIFIERS 1628 INIT_HLIST_HEAD(&p->preempt_notifiers); 1629 #endif 1630 1631 #ifdef CONFIG_NUMA_BALANCING 1632 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1633 p->mm->numa_next_scan = jiffies; 1634 p->mm->numa_next_reset = jiffies; 1635 p->mm->numa_scan_seq = 0; 1636 } 1637 1638 p->node_stamp = 0ULL; 1639 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1640 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0; 1641 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1642 p->numa_work.next = &p->numa_work; 1643 #endif /* CONFIG_NUMA_BALANCING */ 1644 } 1645 1646 #ifdef CONFIG_NUMA_BALANCING 1647 #ifdef CONFIG_SCHED_DEBUG 1648 void set_numabalancing_state(bool enabled) 1649 { 1650 if (enabled) 1651 sched_feat_set("NUMA"); 1652 else 1653 sched_feat_set("NO_NUMA"); 1654 } 1655 #else 1656 __read_mostly bool numabalancing_enabled; 1657 1658 void set_numabalancing_state(bool enabled) 1659 { 1660 numabalancing_enabled = enabled; 1661 } 1662 #endif /* CONFIG_SCHED_DEBUG */ 1663 #endif /* CONFIG_NUMA_BALANCING */ 1664 1665 /* 1666 * fork()/clone()-time setup: 1667 */ 1668 void sched_fork(struct task_struct *p) 1669 { 1670 unsigned long flags; 1671 int cpu = get_cpu(); 1672 1673 __sched_fork(p); 1674 /* 1675 * We mark the process as running here. This guarantees that 1676 * nobody will actually run it, and a signal or other external 1677 * event cannot wake it up and insert it on the runqueue either. 1678 */ 1679 p->state = TASK_RUNNING; 1680 1681 /* 1682 * Make sure we do not leak PI boosting priority to the child. 1683 */ 1684 p->prio = current->normal_prio; 1685 1686 /* 1687 * Revert to default priority/policy on fork if requested. 1688 */ 1689 if (unlikely(p->sched_reset_on_fork)) { 1690 if (task_has_rt_policy(p)) { 1691 p->policy = SCHED_NORMAL; 1692 p->static_prio = NICE_TO_PRIO(0); 1693 p->rt_priority = 0; 1694 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1695 p->static_prio = NICE_TO_PRIO(0); 1696 1697 p->prio = p->normal_prio = __normal_prio(p); 1698 set_load_weight(p); 1699 1700 /* 1701 * We don't need the reset flag anymore after the fork. It has 1702 * fulfilled its duty: 1703 */ 1704 p->sched_reset_on_fork = 0; 1705 } 1706 1707 if (!rt_prio(p->prio)) 1708 p->sched_class = &fair_sched_class; 1709 1710 if (p->sched_class->task_fork) 1711 p->sched_class->task_fork(p); 1712 1713 /* 1714 * The child is not yet in the pid-hash so no cgroup attach races, 1715 * and the cgroup is pinned to this child due to cgroup_fork() 1716 * is ran before sched_fork(). 1717 * 1718 * Silence PROVE_RCU. 1719 */ 1720 raw_spin_lock_irqsave(&p->pi_lock, flags); 1721 set_task_cpu(p, cpu); 1722 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1723 1724 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1725 if (likely(sched_info_on())) 1726 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1727 #endif 1728 #if defined(CONFIG_SMP) 1729 p->on_cpu = 0; 1730 #endif 1731 #ifdef CONFIG_PREEMPT_COUNT 1732 /* Want to start with kernel preemption disabled. */ 1733 task_thread_info(p)->preempt_count = 1; 1734 #endif 1735 #ifdef CONFIG_SMP 1736 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1737 #endif 1738 1739 put_cpu(); 1740 } 1741 1742 /* 1743 * wake_up_new_task - wake up a newly created task for the first time. 1744 * 1745 * This function will do some initial scheduler statistics housekeeping 1746 * that must be done for every newly created context, then puts the task 1747 * on the runqueue and wakes it. 1748 */ 1749 void wake_up_new_task(struct task_struct *p) 1750 { 1751 unsigned long flags; 1752 struct rq *rq; 1753 1754 raw_spin_lock_irqsave(&p->pi_lock, flags); 1755 #ifdef CONFIG_SMP 1756 /* 1757 * Fork balancing, do it here and not earlier because: 1758 * - cpus_allowed can change in the fork path 1759 * - any previously selected cpu might disappear through hotplug 1760 */ 1761 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1762 #endif 1763 1764 rq = __task_rq_lock(p); 1765 activate_task(rq, p, 0); 1766 p->on_rq = 1; 1767 trace_sched_wakeup_new(p, true); 1768 check_preempt_curr(rq, p, WF_FORK); 1769 #ifdef CONFIG_SMP 1770 if (p->sched_class->task_woken) 1771 p->sched_class->task_woken(rq, p); 1772 #endif 1773 task_rq_unlock(rq, p, &flags); 1774 } 1775 1776 #ifdef CONFIG_PREEMPT_NOTIFIERS 1777 1778 /** 1779 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1780 * @notifier: notifier struct to register 1781 */ 1782 void preempt_notifier_register(struct preempt_notifier *notifier) 1783 { 1784 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1785 } 1786 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1787 1788 /** 1789 * preempt_notifier_unregister - no longer interested in preemption notifications 1790 * @notifier: notifier struct to unregister 1791 * 1792 * This is safe to call from within a preemption notifier. 1793 */ 1794 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1795 { 1796 hlist_del(¬ifier->link); 1797 } 1798 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1799 1800 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1801 { 1802 struct preempt_notifier *notifier; 1803 1804 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1805 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1806 } 1807 1808 static void 1809 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1810 struct task_struct *next) 1811 { 1812 struct preempt_notifier *notifier; 1813 1814 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1815 notifier->ops->sched_out(notifier, next); 1816 } 1817 1818 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1819 1820 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1821 { 1822 } 1823 1824 static void 1825 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1826 struct task_struct *next) 1827 { 1828 } 1829 1830 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1831 1832 /** 1833 * prepare_task_switch - prepare to switch tasks 1834 * @rq: the runqueue preparing to switch 1835 * @prev: the current task that is being switched out 1836 * @next: the task we are going to switch to. 1837 * 1838 * This is called with the rq lock held and interrupts off. It must 1839 * be paired with a subsequent finish_task_switch after the context 1840 * switch. 1841 * 1842 * prepare_task_switch sets up locking and calls architecture specific 1843 * hooks. 1844 */ 1845 static inline void 1846 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1847 struct task_struct *next) 1848 { 1849 trace_sched_switch(prev, next); 1850 sched_info_switch(prev, next); 1851 perf_event_task_sched_out(prev, next); 1852 fire_sched_out_preempt_notifiers(prev, next); 1853 prepare_lock_switch(rq, next); 1854 prepare_arch_switch(next); 1855 } 1856 1857 /** 1858 * finish_task_switch - clean up after a task-switch 1859 * @rq: runqueue associated with task-switch 1860 * @prev: the thread we just switched away from. 1861 * 1862 * finish_task_switch must be called after the context switch, paired 1863 * with a prepare_task_switch call before the context switch. 1864 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1865 * and do any other architecture-specific cleanup actions. 1866 * 1867 * Note that we may have delayed dropping an mm in context_switch(). If 1868 * so, we finish that here outside of the runqueue lock. (Doing it 1869 * with the lock held can cause deadlocks; see schedule() for 1870 * details.) 1871 */ 1872 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1873 __releases(rq->lock) 1874 { 1875 struct mm_struct *mm = rq->prev_mm; 1876 long prev_state; 1877 1878 rq->prev_mm = NULL; 1879 1880 /* 1881 * A task struct has one reference for the use as "current". 1882 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1883 * schedule one last time. The schedule call will never return, and 1884 * the scheduled task must drop that reference. 1885 * The test for TASK_DEAD must occur while the runqueue locks are 1886 * still held, otherwise prev could be scheduled on another cpu, die 1887 * there before we look at prev->state, and then the reference would 1888 * be dropped twice. 1889 * Manfred Spraul <manfred@colorfullife.com> 1890 */ 1891 prev_state = prev->state; 1892 vtime_task_switch(prev); 1893 finish_arch_switch(prev); 1894 perf_event_task_sched_in(prev, current); 1895 finish_lock_switch(rq, prev); 1896 finish_arch_post_lock_switch(); 1897 1898 fire_sched_in_preempt_notifiers(current); 1899 if (mm) 1900 mmdrop(mm); 1901 if (unlikely(prev_state == TASK_DEAD)) { 1902 /* 1903 * Remove function-return probe instances associated with this 1904 * task and put them back on the free list. 1905 */ 1906 kprobe_flush_task(prev); 1907 put_task_struct(prev); 1908 } 1909 1910 tick_nohz_task_switch(current); 1911 } 1912 1913 #ifdef CONFIG_SMP 1914 1915 /* assumes rq->lock is held */ 1916 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1917 { 1918 if (prev->sched_class->pre_schedule) 1919 prev->sched_class->pre_schedule(rq, prev); 1920 } 1921 1922 /* rq->lock is NOT held, but preemption is disabled */ 1923 static inline void post_schedule(struct rq *rq) 1924 { 1925 if (rq->post_schedule) { 1926 unsigned long flags; 1927 1928 raw_spin_lock_irqsave(&rq->lock, flags); 1929 if (rq->curr->sched_class->post_schedule) 1930 rq->curr->sched_class->post_schedule(rq); 1931 raw_spin_unlock_irqrestore(&rq->lock, flags); 1932 1933 rq->post_schedule = 0; 1934 } 1935 } 1936 1937 #else 1938 1939 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 1940 { 1941 } 1942 1943 static inline void post_schedule(struct rq *rq) 1944 { 1945 } 1946 1947 #endif 1948 1949 /** 1950 * schedule_tail - first thing a freshly forked thread must call. 1951 * @prev: the thread we just switched away from. 1952 */ 1953 asmlinkage void schedule_tail(struct task_struct *prev) 1954 __releases(rq->lock) 1955 { 1956 struct rq *rq = this_rq(); 1957 1958 finish_task_switch(rq, prev); 1959 1960 /* 1961 * FIXME: do we need to worry about rq being invalidated by the 1962 * task_switch? 1963 */ 1964 post_schedule(rq); 1965 1966 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1967 /* In this case, finish_task_switch does not reenable preemption */ 1968 preempt_enable(); 1969 #endif 1970 if (current->set_child_tid) 1971 put_user(task_pid_vnr(current), current->set_child_tid); 1972 } 1973 1974 /* 1975 * context_switch - switch to the new MM and the new 1976 * thread's register state. 1977 */ 1978 static inline void 1979 context_switch(struct rq *rq, struct task_struct *prev, 1980 struct task_struct *next) 1981 { 1982 struct mm_struct *mm, *oldmm; 1983 1984 prepare_task_switch(rq, prev, next); 1985 1986 mm = next->mm; 1987 oldmm = prev->active_mm; 1988 /* 1989 * For paravirt, this is coupled with an exit in switch_to to 1990 * combine the page table reload and the switch backend into 1991 * one hypercall. 1992 */ 1993 arch_start_context_switch(prev); 1994 1995 if (!mm) { 1996 next->active_mm = oldmm; 1997 atomic_inc(&oldmm->mm_count); 1998 enter_lazy_tlb(oldmm, next); 1999 } else 2000 switch_mm(oldmm, mm, next); 2001 2002 if (!prev->mm) { 2003 prev->active_mm = NULL; 2004 rq->prev_mm = oldmm; 2005 } 2006 /* 2007 * Since the runqueue lock will be released by the next 2008 * task (which is an invalid locking op but in the case 2009 * of the scheduler it's an obvious special-case), so we 2010 * do an early lockdep release here: 2011 */ 2012 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2013 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2014 #endif 2015 2016 context_tracking_task_switch(prev, next); 2017 /* Here we just switch the register state and the stack. */ 2018 switch_to(prev, next, prev); 2019 2020 barrier(); 2021 /* 2022 * this_rq must be evaluated again because prev may have moved 2023 * CPUs since it called schedule(), thus the 'rq' on its stack 2024 * frame will be invalid. 2025 */ 2026 finish_task_switch(this_rq(), prev); 2027 } 2028 2029 /* 2030 * nr_running and nr_context_switches: 2031 * 2032 * externally visible scheduler statistics: current number of runnable 2033 * threads, total number of context switches performed since bootup. 2034 */ 2035 unsigned long nr_running(void) 2036 { 2037 unsigned long i, sum = 0; 2038 2039 for_each_online_cpu(i) 2040 sum += cpu_rq(i)->nr_running; 2041 2042 return sum; 2043 } 2044 2045 unsigned long long nr_context_switches(void) 2046 { 2047 int i; 2048 unsigned long long sum = 0; 2049 2050 for_each_possible_cpu(i) 2051 sum += cpu_rq(i)->nr_switches; 2052 2053 return sum; 2054 } 2055 2056 unsigned long nr_iowait(void) 2057 { 2058 unsigned long i, sum = 0; 2059 2060 for_each_possible_cpu(i) 2061 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2062 2063 return sum; 2064 } 2065 2066 unsigned long nr_iowait_cpu(int cpu) 2067 { 2068 struct rq *this = cpu_rq(cpu); 2069 return atomic_read(&this->nr_iowait); 2070 } 2071 2072 unsigned long this_cpu_load(void) 2073 { 2074 struct rq *this = this_rq(); 2075 return this->cpu_load[0]; 2076 } 2077 2078 2079 /* 2080 * Global load-average calculations 2081 * 2082 * We take a distributed and async approach to calculating the global load-avg 2083 * in order to minimize overhead. 2084 * 2085 * The global load average is an exponentially decaying average of nr_running + 2086 * nr_uninterruptible. 2087 * 2088 * Once every LOAD_FREQ: 2089 * 2090 * nr_active = 0; 2091 * for_each_possible_cpu(cpu) 2092 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; 2093 * 2094 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) 2095 * 2096 * Due to a number of reasons the above turns in the mess below: 2097 * 2098 * - for_each_possible_cpu() is prohibitively expensive on machines with 2099 * serious number of cpus, therefore we need to take a distributed approach 2100 * to calculating nr_active. 2101 * 2102 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 2103 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } 2104 * 2105 * So assuming nr_active := 0 when we start out -- true per definition, we 2106 * can simply take per-cpu deltas and fold those into a global accumulate 2107 * to obtain the same result. See calc_load_fold_active(). 2108 * 2109 * Furthermore, in order to avoid synchronizing all per-cpu delta folding 2110 * across the machine, we assume 10 ticks is sufficient time for every 2111 * cpu to have completed this task. 2112 * 2113 * This places an upper-bound on the IRQ-off latency of the machine. Then 2114 * again, being late doesn't loose the delta, just wrecks the sample. 2115 * 2116 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because 2117 * this would add another cross-cpu cacheline miss and atomic operation 2118 * to the wakeup path. Instead we increment on whatever cpu the task ran 2119 * when it went into uninterruptible state and decrement on whatever cpu 2120 * did the wakeup. This means that only the sum of nr_uninterruptible over 2121 * all cpus yields the correct result. 2122 * 2123 * This covers the NO_HZ=n code, for extra head-aches, see the comment below. 2124 */ 2125 2126 /* Variables and functions for calc_load */ 2127 static atomic_long_t calc_load_tasks; 2128 static unsigned long calc_load_update; 2129 unsigned long avenrun[3]; 2130 EXPORT_SYMBOL(avenrun); /* should be removed */ 2131 2132 /** 2133 * get_avenrun - get the load average array 2134 * @loads: pointer to dest load array 2135 * @offset: offset to add 2136 * @shift: shift count to shift the result left 2137 * 2138 * These values are estimates at best, so no need for locking. 2139 */ 2140 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2141 { 2142 loads[0] = (avenrun[0] + offset) << shift; 2143 loads[1] = (avenrun[1] + offset) << shift; 2144 loads[2] = (avenrun[2] + offset) << shift; 2145 } 2146 2147 static long calc_load_fold_active(struct rq *this_rq) 2148 { 2149 long nr_active, delta = 0; 2150 2151 nr_active = this_rq->nr_running; 2152 nr_active += (long) this_rq->nr_uninterruptible; 2153 2154 if (nr_active != this_rq->calc_load_active) { 2155 delta = nr_active - this_rq->calc_load_active; 2156 this_rq->calc_load_active = nr_active; 2157 } 2158 2159 return delta; 2160 } 2161 2162 /* 2163 * a1 = a0 * e + a * (1 - e) 2164 */ 2165 static unsigned long 2166 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2167 { 2168 load *= exp; 2169 load += active * (FIXED_1 - exp); 2170 load += 1UL << (FSHIFT - 1); 2171 return load >> FSHIFT; 2172 } 2173 2174 #ifdef CONFIG_NO_HZ_COMMON 2175 /* 2176 * Handle NO_HZ for the global load-average. 2177 * 2178 * Since the above described distributed algorithm to compute the global 2179 * load-average relies on per-cpu sampling from the tick, it is affected by 2180 * NO_HZ. 2181 * 2182 * The basic idea is to fold the nr_active delta into a global idle-delta upon 2183 * entering NO_HZ state such that we can include this as an 'extra' cpu delta 2184 * when we read the global state. 2185 * 2186 * Obviously reality has to ruin such a delightfully simple scheme: 2187 * 2188 * - When we go NO_HZ idle during the window, we can negate our sample 2189 * contribution, causing under-accounting. 2190 * 2191 * We avoid this by keeping two idle-delta counters and flipping them 2192 * when the window starts, thus separating old and new NO_HZ load. 2193 * 2194 * The only trick is the slight shift in index flip for read vs write. 2195 * 2196 * 0s 5s 10s 15s 2197 * +10 +10 +10 +10 2198 * |-|-----------|-|-----------|-|-----------|-| 2199 * r:0 0 1 1 0 0 1 1 0 2200 * w:0 1 1 0 0 1 1 0 0 2201 * 2202 * This ensures we'll fold the old idle contribution in this window while 2203 * accumlating the new one. 2204 * 2205 * - When we wake up from NO_HZ idle during the window, we push up our 2206 * contribution, since we effectively move our sample point to a known 2207 * busy state. 2208 * 2209 * This is solved by pushing the window forward, and thus skipping the 2210 * sample, for this cpu (effectively using the idle-delta for this cpu which 2211 * was in effect at the time the window opened). This also solves the issue 2212 * of having to deal with a cpu having been in NOHZ idle for multiple 2213 * LOAD_FREQ intervals. 2214 * 2215 * When making the ILB scale, we should try to pull this in as well. 2216 */ 2217 static atomic_long_t calc_load_idle[2]; 2218 static int calc_load_idx; 2219 2220 static inline int calc_load_write_idx(void) 2221 { 2222 int idx = calc_load_idx; 2223 2224 /* 2225 * See calc_global_nohz(), if we observe the new index, we also 2226 * need to observe the new update time. 2227 */ 2228 smp_rmb(); 2229 2230 /* 2231 * If the folding window started, make sure we start writing in the 2232 * next idle-delta. 2233 */ 2234 if (!time_before(jiffies, calc_load_update)) 2235 idx++; 2236 2237 return idx & 1; 2238 } 2239 2240 static inline int calc_load_read_idx(void) 2241 { 2242 return calc_load_idx & 1; 2243 } 2244 2245 void calc_load_enter_idle(void) 2246 { 2247 struct rq *this_rq = this_rq(); 2248 long delta; 2249 2250 /* 2251 * We're going into NOHZ mode, if there's any pending delta, fold it 2252 * into the pending idle delta. 2253 */ 2254 delta = calc_load_fold_active(this_rq); 2255 if (delta) { 2256 int idx = calc_load_write_idx(); 2257 atomic_long_add(delta, &calc_load_idle[idx]); 2258 } 2259 } 2260 2261 void calc_load_exit_idle(void) 2262 { 2263 struct rq *this_rq = this_rq(); 2264 2265 /* 2266 * If we're still before the sample window, we're done. 2267 */ 2268 if (time_before(jiffies, this_rq->calc_load_update)) 2269 return; 2270 2271 /* 2272 * We woke inside or after the sample window, this means we're already 2273 * accounted through the nohz accounting, so skip the entire deal and 2274 * sync up for the next window. 2275 */ 2276 this_rq->calc_load_update = calc_load_update; 2277 if (time_before(jiffies, this_rq->calc_load_update + 10)) 2278 this_rq->calc_load_update += LOAD_FREQ; 2279 } 2280 2281 static long calc_load_fold_idle(void) 2282 { 2283 int idx = calc_load_read_idx(); 2284 long delta = 0; 2285 2286 if (atomic_long_read(&calc_load_idle[idx])) 2287 delta = atomic_long_xchg(&calc_load_idle[idx], 0); 2288 2289 return delta; 2290 } 2291 2292 /** 2293 * fixed_power_int - compute: x^n, in O(log n) time 2294 * 2295 * @x: base of the power 2296 * @frac_bits: fractional bits of @x 2297 * @n: power to raise @x to. 2298 * 2299 * By exploiting the relation between the definition of the natural power 2300 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2301 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2302 * (where: n_i \elem {0, 1}, the binary vector representing n), 2303 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2304 * of course trivially computable in O(log_2 n), the length of our binary 2305 * vector. 2306 */ 2307 static unsigned long 2308 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2309 { 2310 unsigned long result = 1UL << frac_bits; 2311 2312 if (n) for (;;) { 2313 if (n & 1) { 2314 result *= x; 2315 result += 1UL << (frac_bits - 1); 2316 result >>= frac_bits; 2317 } 2318 n >>= 1; 2319 if (!n) 2320 break; 2321 x *= x; 2322 x += 1UL << (frac_bits - 1); 2323 x >>= frac_bits; 2324 } 2325 2326 return result; 2327 } 2328 2329 /* 2330 * a1 = a0 * e + a * (1 - e) 2331 * 2332 * a2 = a1 * e + a * (1 - e) 2333 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2334 * = a0 * e^2 + a * (1 - e) * (1 + e) 2335 * 2336 * a3 = a2 * e + a * (1 - e) 2337 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2338 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2339 * 2340 * ... 2341 * 2342 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2343 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2344 * = a0 * e^n + a * (1 - e^n) 2345 * 2346 * [1] application of the geometric series: 2347 * 2348 * n 1 - x^(n+1) 2349 * S_n := \Sum x^i = ------------- 2350 * i=0 1 - x 2351 */ 2352 static unsigned long 2353 calc_load_n(unsigned long load, unsigned long exp, 2354 unsigned long active, unsigned int n) 2355 { 2356 2357 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2358 } 2359 2360 /* 2361 * NO_HZ can leave us missing all per-cpu ticks calling 2362 * calc_load_account_active(), but since an idle CPU folds its delta into 2363 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2364 * in the pending idle delta if our idle period crossed a load cycle boundary. 2365 * 2366 * Once we've updated the global active value, we need to apply the exponential 2367 * weights adjusted to the number of cycles missed. 2368 */ 2369 static void calc_global_nohz(void) 2370 { 2371 long delta, active, n; 2372 2373 if (!time_before(jiffies, calc_load_update + 10)) { 2374 /* 2375 * Catch-up, fold however many we are behind still 2376 */ 2377 delta = jiffies - calc_load_update - 10; 2378 n = 1 + (delta / LOAD_FREQ); 2379 2380 active = atomic_long_read(&calc_load_tasks); 2381 active = active > 0 ? active * FIXED_1 : 0; 2382 2383 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2384 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2385 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2386 2387 calc_load_update += n * LOAD_FREQ; 2388 } 2389 2390 /* 2391 * Flip the idle index... 2392 * 2393 * Make sure we first write the new time then flip the index, so that 2394 * calc_load_write_idx() will see the new time when it reads the new 2395 * index, this avoids a double flip messing things up. 2396 */ 2397 smp_wmb(); 2398 calc_load_idx++; 2399 } 2400 #else /* !CONFIG_NO_HZ_COMMON */ 2401 2402 static inline long calc_load_fold_idle(void) { return 0; } 2403 static inline void calc_global_nohz(void) { } 2404 2405 #endif /* CONFIG_NO_HZ_COMMON */ 2406 2407 /* 2408 * calc_load - update the avenrun load estimates 10 ticks after the 2409 * CPUs have updated calc_load_tasks. 2410 */ 2411 void calc_global_load(unsigned long ticks) 2412 { 2413 long active, delta; 2414 2415 if (time_before(jiffies, calc_load_update + 10)) 2416 return; 2417 2418 /* 2419 * Fold the 'old' idle-delta to include all NO_HZ cpus. 2420 */ 2421 delta = calc_load_fold_idle(); 2422 if (delta) 2423 atomic_long_add(delta, &calc_load_tasks); 2424 2425 active = atomic_long_read(&calc_load_tasks); 2426 active = active > 0 ? active * FIXED_1 : 0; 2427 2428 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2429 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2430 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2431 2432 calc_load_update += LOAD_FREQ; 2433 2434 /* 2435 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. 2436 */ 2437 calc_global_nohz(); 2438 } 2439 2440 /* 2441 * Called from update_cpu_load() to periodically update this CPU's 2442 * active count. 2443 */ 2444 static void calc_load_account_active(struct rq *this_rq) 2445 { 2446 long delta; 2447 2448 if (time_before(jiffies, this_rq->calc_load_update)) 2449 return; 2450 2451 delta = calc_load_fold_active(this_rq); 2452 if (delta) 2453 atomic_long_add(delta, &calc_load_tasks); 2454 2455 this_rq->calc_load_update += LOAD_FREQ; 2456 } 2457 2458 /* 2459 * End of global load-average stuff 2460 */ 2461 2462 /* 2463 * The exact cpuload at various idx values, calculated at every tick would be 2464 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2465 * 2466 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2467 * on nth tick when cpu may be busy, then we have: 2468 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2469 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2470 * 2471 * decay_load_missed() below does efficient calculation of 2472 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2473 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2474 * 2475 * The calculation is approximated on a 128 point scale. 2476 * degrade_zero_ticks is the number of ticks after which load at any 2477 * particular idx is approximated to be zero. 2478 * degrade_factor is a precomputed table, a row for each load idx. 2479 * Each column corresponds to degradation factor for a power of two ticks, 2480 * based on 128 point scale. 2481 * Example: 2482 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2483 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2484 * 2485 * With this power of 2 load factors, we can degrade the load n times 2486 * by looking at 1 bits in n and doing as many mult/shift instead of 2487 * n mult/shifts needed by the exact degradation. 2488 */ 2489 #define DEGRADE_SHIFT 7 2490 static const unsigned char 2491 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2492 static const unsigned char 2493 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2494 {0, 0, 0, 0, 0, 0, 0, 0}, 2495 {64, 32, 8, 0, 0, 0, 0, 0}, 2496 {96, 72, 40, 12, 1, 0, 0}, 2497 {112, 98, 75, 43, 15, 1, 0}, 2498 {120, 112, 98, 76, 45, 16, 2} }; 2499 2500 /* 2501 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2502 * would be when CPU is idle and so we just decay the old load without 2503 * adding any new load. 2504 */ 2505 static unsigned long 2506 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2507 { 2508 int j = 0; 2509 2510 if (!missed_updates) 2511 return load; 2512 2513 if (missed_updates >= degrade_zero_ticks[idx]) 2514 return 0; 2515 2516 if (idx == 1) 2517 return load >> missed_updates; 2518 2519 while (missed_updates) { 2520 if (missed_updates % 2) 2521 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2522 2523 missed_updates >>= 1; 2524 j++; 2525 } 2526 return load; 2527 } 2528 2529 /* 2530 * Update rq->cpu_load[] statistics. This function is usually called every 2531 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2532 * every tick. We fix it up based on jiffies. 2533 */ 2534 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, 2535 unsigned long pending_updates) 2536 { 2537 int i, scale; 2538 2539 this_rq->nr_load_updates++; 2540 2541 /* Update our load: */ 2542 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2543 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2544 unsigned long old_load, new_load; 2545 2546 /* scale is effectively 1 << i now, and >> i divides by scale */ 2547 2548 old_load = this_rq->cpu_load[i]; 2549 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2550 new_load = this_load; 2551 /* 2552 * Round up the averaging division if load is increasing. This 2553 * prevents us from getting stuck on 9 if the load is 10, for 2554 * example. 2555 */ 2556 if (new_load > old_load) 2557 new_load += scale - 1; 2558 2559 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2560 } 2561 2562 sched_avg_update(this_rq); 2563 } 2564 2565 #ifdef CONFIG_NO_HZ_COMMON 2566 /* 2567 * There is no sane way to deal with nohz on smp when using jiffies because the 2568 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 2569 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 2570 * 2571 * Therefore we cannot use the delta approach from the regular tick since that 2572 * would seriously skew the load calculation. However we'll make do for those 2573 * updates happening while idle (nohz_idle_balance) or coming out of idle 2574 * (tick_nohz_idle_exit). 2575 * 2576 * This means we might still be one tick off for nohz periods. 2577 */ 2578 2579 /* 2580 * Called from nohz_idle_balance() to update the load ratings before doing the 2581 * idle balance. 2582 */ 2583 void update_idle_cpu_load(struct rq *this_rq) 2584 { 2585 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2586 unsigned long load = this_rq->load.weight; 2587 unsigned long pending_updates; 2588 2589 /* 2590 * bail if there's load or we're actually up-to-date. 2591 */ 2592 if (load || curr_jiffies == this_rq->last_load_update_tick) 2593 return; 2594 2595 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2596 this_rq->last_load_update_tick = curr_jiffies; 2597 2598 __update_cpu_load(this_rq, load, pending_updates); 2599 } 2600 2601 /* 2602 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. 2603 */ 2604 void update_cpu_load_nohz(void) 2605 { 2606 struct rq *this_rq = this_rq(); 2607 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2608 unsigned long pending_updates; 2609 2610 if (curr_jiffies == this_rq->last_load_update_tick) 2611 return; 2612 2613 raw_spin_lock(&this_rq->lock); 2614 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2615 if (pending_updates) { 2616 this_rq->last_load_update_tick = curr_jiffies; 2617 /* 2618 * We were idle, this means load 0, the current load might be 2619 * !0 due to remote wakeups and the sort. 2620 */ 2621 __update_cpu_load(this_rq, 0, pending_updates); 2622 } 2623 raw_spin_unlock(&this_rq->lock); 2624 } 2625 #endif /* CONFIG_NO_HZ_COMMON */ 2626 2627 /* 2628 * Called from scheduler_tick() 2629 */ 2630 static void update_cpu_load_active(struct rq *this_rq) 2631 { 2632 /* 2633 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). 2634 */ 2635 this_rq->last_load_update_tick = jiffies; 2636 __update_cpu_load(this_rq, this_rq->load.weight, 1); 2637 2638 calc_load_account_active(this_rq); 2639 } 2640 2641 #ifdef CONFIG_SMP 2642 2643 /* 2644 * sched_exec - execve() is a valuable balancing opportunity, because at 2645 * this point the task has the smallest effective memory and cache footprint. 2646 */ 2647 void sched_exec(void) 2648 { 2649 struct task_struct *p = current; 2650 unsigned long flags; 2651 int dest_cpu; 2652 2653 raw_spin_lock_irqsave(&p->pi_lock, flags); 2654 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2655 if (dest_cpu == smp_processor_id()) 2656 goto unlock; 2657 2658 if (likely(cpu_active(dest_cpu))) { 2659 struct migration_arg arg = { p, dest_cpu }; 2660 2661 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2662 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2663 return; 2664 } 2665 unlock: 2666 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2667 } 2668 2669 #endif 2670 2671 DEFINE_PER_CPU(struct kernel_stat, kstat); 2672 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2673 2674 EXPORT_PER_CPU_SYMBOL(kstat); 2675 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2676 2677 /* 2678 * Return any ns on the sched_clock that have not yet been accounted in 2679 * @p in case that task is currently running. 2680 * 2681 * Called with task_rq_lock() held on @rq. 2682 */ 2683 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2684 { 2685 u64 ns = 0; 2686 2687 if (task_current(rq, p)) { 2688 update_rq_clock(rq); 2689 ns = rq->clock_task - p->se.exec_start; 2690 if ((s64)ns < 0) 2691 ns = 0; 2692 } 2693 2694 return ns; 2695 } 2696 2697 unsigned long long task_delta_exec(struct task_struct *p) 2698 { 2699 unsigned long flags; 2700 struct rq *rq; 2701 u64 ns = 0; 2702 2703 rq = task_rq_lock(p, &flags); 2704 ns = do_task_delta_exec(p, rq); 2705 task_rq_unlock(rq, p, &flags); 2706 2707 return ns; 2708 } 2709 2710 /* 2711 * Return accounted runtime for the task. 2712 * In case the task is currently running, return the runtime plus current's 2713 * pending runtime that have not been accounted yet. 2714 */ 2715 unsigned long long task_sched_runtime(struct task_struct *p) 2716 { 2717 unsigned long flags; 2718 struct rq *rq; 2719 u64 ns = 0; 2720 2721 rq = task_rq_lock(p, &flags); 2722 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2723 task_rq_unlock(rq, p, &flags); 2724 2725 return ns; 2726 } 2727 2728 /* 2729 * This function gets called by the timer code, with HZ frequency. 2730 * We call it with interrupts disabled. 2731 */ 2732 void scheduler_tick(void) 2733 { 2734 int cpu = smp_processor_id(); 2735 struct rq *rq = cpu_rq(cpu); 2736 struct task_struct *curr = rq->curr; 2737 2738 sched_clock_tick(); 2739 2740 raw_spin_lock(&rq->lock); 2741 update_rq_clock(rq); 2742 update_cpu_load_active(rq); 2743 curr->sched_class->task_tick(rq, curr, 0); 2744 raw_spin_unlock(&rq->lock); 2745 2746 perf_event_task_tick(); 2747 2748 #ifdef CONFIG_SMP 2749 rq->idle_balance = idle_cpu(cpu); 2750 trigger_load_balance(rq, cpu); 2751 #endif 2752 rq_last_tick_reset(rq); 2753 } 2754 2755 #ifdef CONFIG_NO_HZ_FULL 2756 /** 2757 * scheduler_tick_max_deferment 2758 * 2759 * Keep at least one tick per second when a single 2760 * active task is running because the scheduler doesn't 2761 * yet completely support full dynticks environment. 2762 * 2763 * This makes sure that uptime, CFS vruntime, load 2764 * balancing, etc... continue to move forward, even 2765 * with a very low granularity. 2766 */ 2767 u64 scheduler_tick_max_deferment(void) 2768 { 2769 struct rq *rq = this_rq(); 2770 unsigned long next, now = ACCESS_ONCE(jiffies); 2771 2772 next = rq->last_sched_tick + HZ; 2773 2774 if (time_before_eq(next, now)) 2775 return 0; 2776 2777 return jiffies_to_usecs(next - now) * NSEC_PER_USEC; 2778 } 2779 #endif 2780 2781 notrace unsigned long get_parent_ip(unsigned long addr) 2782 { 2783 if (in_lock_functions(addr)) { 2784 addr = CALLER_ADDR2; 2785 if (in_lock_functions(addr)) 2786 addr = CALLER_ADDR3; 2787 } 2788 return addr; 2789 } 2790 2791 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2792 defined(CONFIG_PREEMPT_TRACER)) 2793 2794 void __kprobes add_preempt_count(int val) 2795 { 2796 #ifdef CONFIG_DEBUG_PREEMPT 2797 /* 2798 * Underflow? 2799 */ 2800 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2801 return; 2802 #endif 2803 preempt_count() += val; 2804 #ifdef CONFIG_DEBUG_PREEMPT 2805 /* 2806 * Spinlock count overflowing soon? 2807 */ 2808 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2809 PREEMPT_MASK - 10); 2810 #endif 2811 if (preempt_count() == val) 2812 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2813 } 2814 EXPORT_SYMBOL(add_preempt_count); 2815 2816 void __kprobes sub_preempt_count(int val) 2817 { 2818 #ifdef CONFIG_DEBUG_PREEMPT 2819 /* 2820 * Underflow? 2821 */ 2822 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2823 return; 2824 /* 2825 * Is the spinlock portion underflowing? 2826 */ 2827 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2828 !(preempt_count() & PREEMPT_MASK))) 2829 return; 2830 #endif 2831 2832 if (preempt_count() == val) 2833 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2834 preempt_count() -= val; 2835 } 2836 EXPORT_SYMBOL(sub_preempt_count); 2837 2838 #endif 2839 2840 /* 2841 * Print scheduling while atomic bug: 2842 */ 2843 static noinline void __schedule_bug(struct task_struct *prev) 2844 { 2845 if (oops_in_progress) 2846 return; 2847 2848 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2849 prev->comm, prev->pid, preempt_count()); 2850 2851 debug_show_held_locks(prev); 2852 print_modules(); 2853 if (irqs_disabled()) 2854 print_irqtrace_events(prev); 2855 dump_stack(); 2856 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2857 } 2858 2859 /* 2860 * Various schedule()-time debugging checks and statistics: 2861 */ 2862 static inline void schedule_debug(struct task_struct *prev) 2863 { 2864 /* 2865 * Test if we are atomic. Since do_exit() needs to call into 2866 * schedule() atomically, we ignore that path for now. 2867 * Otherwise, whine if we are scheduling when we should not be. 2868 */ 2869 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 2870 __schedule_bug(prev); 2871 rcu_sleep_check(); 2872 2873 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2874 2875 schedstat_inc(this_rq(), sched_count); 2876 } 2877 2878 static void put_prev_task(struct rq *rq, struct task_struct *prev) 2879 { 2880 if (prev->on_rq || rq->skip_clock_update < 0) 2881 update_rq_clock(rq); 2882 prev->sched_class->put_prev_task(rq, prev); 2883 } 2884 2885 /* 2886 * Pick up the highest-prio task: 2887 */ 2888 static inline struct task_struct * 2889 pick_next_task(struct rq *rq) 2890 { 2891 const struct sched_class *class; 2892 struct task_struct *p; 2893 2894 /* 2895 * Optimization: we know that if all tasks are in 2896 * the fair class we can call that function directly: 2897 */ 2898 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 2899 p = fair_sched_class.pick_next_task(rq); 2900 if (likely(p)) 2901 return p; 2902 } 2903 2904 for_each_class(class) { 2905 p = class->pick_next_task(rq); 2906 if (p) 2907 return p; 2908 } 2909 2910 BUG(); /* the idle class will always have a runnable task */ 2911 } 2912 2913 /* 2914 * __schedule() is the main scheduler function. 2915 * 2916 * The main means of driving the scheduler and thus entering this function are: 2917 * 2918 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2919 * 2920 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2921 * paths. For example, see arch/x86/entry_64.S. 2922 * 2923 * To drive preemption between tasks, the scheduler sets the flag in timer 2924 * interrupt handler scheduler_tick(). 2925 * 2926 * 3. Wakeups don't really cause entry into schedule(). They add a 2927 * task to the run-queue and that's it. 2928 * 2929 * Now, if the new task added to the run-queue preempts the current 2930 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2931 * called on the nearest possible occasion: 2932 * 2933 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2934 * 2935 * - in syscall or exception context, at the next outmost 2936 * preempt_enable(). (this might be as soon as the wake_up()'s 2937 * spin_unlock()!) 2938 * 2939 * - in IRQ context, return from interrupt-handler to 2940 * preemptible context 2941 * 2942 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2943 * then at the next: 2944 * 2945 * - cond_resched() call 2946 * - explicit schedule() call 2947 * - return from syscall or exception to user-space 2948 * - return from interrupt-handler to user-space 2949 */ 2950 static void __sched __schedule(void) 2951 { 2952 struct task_struct *prev, *next; 2953 unsigned long *switch_count; 2954 struct rq *rq; 2955 int cpu; 2956 2957 need_resched: 2958 preempt_disable(); 2959 cpu = smp_processor_id(); 2960 rq = cpu_rq(cpu); 2961 rcu_note_context_switch(cpu); 2962 prev = rq->curr; 2963 2964 schedule_debug(prev); 2965 2966 if (sched_feat(HRTICK)) 2967 hrtick_clear(rq); 2968 2969 raw_spin_lock_irq(&rq->lock); 2970 2971 switch_count = &prev->nivcsw; 2972 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2973 if (unlikely(signal_pending_state(prev->state, prev))) { 2974 prev->state = TASK_RUNNING; 2975 } else { 2976 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2977 prev->on_rq = 0; 2978 2979 /* 2980 * If a worker went to sleep, notify and ask workqueue 2981 * whether it wants to wake up a task to maintain 2982 * concurrency. 2983 */ 2984 if (prev->flags & PF_WQ_WORKER) { 2985 struct task_struct *to_wakeup; 2986 2987 to_wakeup = wq_worker_sleeping(prev, cpu); 2988 if (to_wakeup) 2989 try_to_wake_up_local(to_wakeup); 2990 } 2991 } 2992 switch_count = &prev->nvcsw; 2993 } 2994 2995 pre_schedule(rq, prev); 2996 2997 if (unlikely(!rq->nr_running)) 2998 idle_balance(cpu, rq); 2999 3000 put_prev_task(rq, prev); 3001 next = pick_next_task(rq); 3002 clear_tsk_need_resched(prev); 3003 rq->skip_clock_update = 0; 3004 3005 if (likely(prev != next)) { 3006 rq->nr_switches++; 3007 rq->curr = next; 3008 ++*switch_count; 3009 3010 context_switch(rq, prev, next); /* unlocks the rq */ 3011 /* 3012 * The context switch have flipped the stack from under us 3013 * and restored the local variables which were saved when 3014 * this task called schedule() in the past. prev == current 3015 * is still correct, but it can be moved to another cpu/rq. 3016 */ 3017 cpu = smp_processor_id(); 3018 rq = cpu_rq(cpu); 3019 } else 3020 raw_spin_unlock_irq(&rq->lock); 3021 3022 post_schedule(rq); 3023 3024 sched_preempt_enable_no_resched(); 3025 if (need_resched()) 3026 goto need_resched; 3027 } 3028 3029 static inline void sched_submit_work(struct task_struct *tsk) 3030 { 3031 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3032 return; 3033 /* 3034 * If we are going to sleep and we have plugged IO queued, 3035 * make sure to submit it to avoid deadlocks. 3036 */ 3037 if (blk_needs_flush_plug(tsk)) 3038 blk_schedule_flush_plug(tsk); 3039 } 3040 3041 asmlinkage void __sched schedule(void) 3042 { 3043 struct task_struct *tsk = current; 3044 3045 sched_submit_work(tsk); 3046 __schedule(); 3047 } 3048 EXPORT_SYMBOL(schedule); 3049 3050 #ifdef CONFIG_CONTEXT_TRACKING 3051 asmlinkage void __sched schedule_user(void) 3052 { 3053 /* 3054 * If we come here after a random call to set_need_resched(), 3055 * or we have been woken up remotely but the IPI has not yet arrived, 3056 * we haven't yet exited the RCU idle mode. Do it here manually until 3057 * we find a better solution. 3058 */ 3059 user_exit(); 3060 schedule(); 3061 user_enter(); 3062 } 3063 #endif 3064 3065 /** 3066 * schedule_preempt_disabled - called with preemption disabled 3067 * 3068 * Returns with preemption disabled. Note: preempt_count must be 1 3069 */ 3070 void __sched schedule_preempt_disabled(void) 3071 { 3072 sched_preempt_enable_no_resched(); 3073 schedule(); 3074 preempt_disable(); 3075 } 3076 3077 #ifdef CONFIG_PREEMPT 3078 /* 3079 * this is the entry point to schedule() from in-kernel preemption 3080 * off of preempt_enable. Kernel preemptions off return from interrupt 3081 * occur there and call schedule directly. 3082 */ 3083 asmlinkage void __sched notrace preempt_schedule(void) 3084 { 3085 struct thread_info *ti = current_thread_info(); 3086 3087 /* 3088 * If there is a non-zero preempt_count or interrupts are disabled, 3089 * we do not want to preempt the current task. Just return.. 3090 */ 3091 if (likely(ti->preempt_count || irqs_disabled())) 3092 return; 3093 3094 do { 3095 add_preempt_count_notrace(PREEMPT_ACTIVE); 3096 __schedule(); 3097 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3098 3099 /* 3100 * Check again in case we missed a preemption opportunity 3101 * between schedule and now. 3102 */ 3103 barrier(); 3104 } while (need_resched()); 3105 } 3106 EXPORT_SYMBOL(preempt_schedule); 3107 3108 /* 3109 * this is the entry point to schedule() from kernel preemption 3110 * off of irq context. 3111 * Note, that this is called and return with irqs disabled. This will 3112 * protect us against recursive calling from irq. 3113 */ 3114 asmlinkage void __sched preempt_schedule_irq(void) 3115 { 3116 struct thread_info *ti = current_thread_info(); 3117 enum ctx_state prev_state; 3118 3119 /* Catch callers which need to be fixed */ 3120 BUG_ON(ti->preempt_count || !irqs_disabled()); 3121 3122 prev_state = exception_enter(); 3123 3124 do { 3125 add_preempt_count(PREEMPT_ACTIVE); 3126 local_irq_enable(); 3127 __schedule(); 3128 local_irq_disable(); 3129 sub_preempt_count(PREEMPT_ACTIVE); 3130 3131 /* 3132 * Check again in case we missed a preemption opportunity 3133 * between schedule and now. 3134 */ 3135 barrier(); 3136 } while (need_resched()); 3137 3138 exception_exit(prev_state); 3139 } 3140 3141 #endif /* CONFIG_PREEMPT */ 3142 3143 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3144 void *key) 3145 { 3146 return try_to_wake_up(curr->private, mode, wake_flags); 3147 } 3148 EXPORT_SYMBOL(default_wake_function); 3149 3150 /* 3151 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3152 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3153 * number) then we wake all the non-exclusive tasks and one exclusive task. 3154 * 3155 * There are circumstances in which we can try to wake a task which has already 3156 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3157 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3158 */ 3159 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3160 int nr_exclusive, int wake_flags, void *key) 3161 { 3162 wait_queue_t *curr, *next; 3163 3164 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3165 unsigned flags = curr->flags; 3166 3167 if (curr->func(curr, mode, wake_flags, key) && 3168 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3169 break; 3170 } 3171 } 3172 3173 /** 3174 * __wake_up - wake up threads blocked on a waitqueue. 3175 * @q: the waitqueue 3176 * @mode: which threads 3177 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3178 * @key: is directly passed to the wakeup function 3179 * 3180 * It may be assumed that this function implies a write memory barrier before 3181 * changing the task state if and only if any tasks are woken up. 3182 */ 3183 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3184 int nr_exclusive, void *key) 3185 { 3186 unsigned long flags; 3187 3188 spin_lock_irqsave(&q->lock, flags); 3189 __wake_up_common(q, mode, nr_exclusive, 0, key); 3190 spin_unlock_irqrestore(&q->lock, flags); 3191 } 3192 EXPORT_SYMBOL(__wake_up); 3193 3194 /* 3195 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3196 */ 3197 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 3198 { 3199 __wake_up_common(q, mode, nr, 0, NULL); 3200 } 3201 EXPORT_SYMBOL_GPL(__wake_up_locked); 3202 3203 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3204 { 3205 __wake_up_common(q, mode, 1, 0, key); 3206 } 3207 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3208 3209 /** 3210 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3211 * @q: the waitqueue 3212 * @mode: which threads 3213 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3214 * @key: opaque value to be passed to wakeup targets 3215 * 3216 * The sync wakeup differs that the waker knows that it will schedule 3217 * away soon, so while the target thread will be woken up, it will not 3218 * be migrated to another CPU - ie. the two threads are 'synchronized' 3219 * with each other. This can prevent needless bouncing between CPUs. 3220 * 3221 * On UP it can prevent extra preemption. 3222 * 3223 * It may be assumed that this function implies a write memory barrier before 3224 * changing the task state if and only if any tasks are woken up. 3225 */ 3226 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3227 int nr_exclusive, void *key) 3228 { 3229 unsigned long flags; 3230 int wake_flags = WF_SYNC; 3231 3232 if (unlikely(!q)) 3233 return; 3234 3235 if (unlikely(!nr_exclusive)) 3236 wake_flags = 0; 3237 3238 spin_lock_irqsave(&q->lock, flags); 3239 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3240 spin_unlock_irqrestore(&q->lock, flags); 3241 } 3242 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3243 3244 /* 3245 * __wake_up_sync - see __wake_up_sync_key() 3246 */ 3247 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3248 { 3249 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3250 } 3251 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3252 3253 /** 3254 * complete: - signals a single thread waiting on this completion 3255 * @x: holds the state of this particular completion 3256 * 3257 * This will wake up a single thread waiting on this completion. Threads will be 3258 * awakened in the same order in which they were queued. 3259 * 3260 * See also complete_all(), wait_for_completion() and related routines. 3261 * 3262 * It may be assumed that this function implies a write memory barrier before 3263 * changing the task state if and only if any tasks are woken up. 3264 */ 3265 void complete(struct completion *x) 3266 { 3267 unsigned long flags; 3268 3269 spin_lock_irqsave(&x->wait.lock, flags); 3270 x->done++; 3271 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3272 spin_unlock_irqrestore(&x->wait.lock, flags); 3273 } 3274 EXPORT_SYMBOL(complete); 3275 3276 /** 3277 * complete_all: - signals all threads waiting on this completion 3278 * @x: holds the state of this particular completion 3279 * 3280 * This will wake up all threads waiting on this particular completion event. 3281 * 3282 * It may be assumed that this function implies a write memory barrier before 3283 * changing the task state if and only if any tasks are woken up. 3284 */ 3285 void complete_all(struct completion *x) 3286 { 3287 unsigned long flags; 3288 3289 spin_lock_irqsave(&x->wait.lock, flags); 3290 x->done += UINT_MAX/2; 3291 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3292 spin_unlock_irqrestore(&x->wait.lock, flags); 3293 } 3294 EXPORT_SYMBOL(complete_all); 3295 3296 static inline long __sched 3297 do_wait_for_common(struct completion *x, 3298 long (*action)(long), long timeout, int state) 3299 { 3300 if (!x->done) { 3301 DECLARE_WAITQUEUE(wait, current); 3302 3303 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3304 do { 3305 if (signal_pending_state(state, current)) { 3306 timeout = -ERESTARTSYS; 3307 break; 3308 } 3309 __set_current_state(state); 3310 spin_unlock_irq(&x->wait.lock); 3311 timeout = action(timeout); 3312 spin_lock_irq(&x->wait.lock); 3313 } while (!x->done && timeout); 3314 __remove_wait_queue(&x->wait, &wait); 3315 if (!x->done) 3316 return timeout; 3317 } 3318 x->done--; 3319 return timeout ?: 1; 3320 } 3321 3322 static inline long __sched 3323 __wait_for_common(struct completion *x, 3324 long (*action)(long), long timeout, int state) 3325 { 3326 might_sleep(); 3327 3328 spin_lock_irq(&x->wait.lock); 3329 timeout = do_wait_for_common(x, action, timeout, state); 3330 spin_unlock_irq(&x->wait.lock); 3331 return timeout; 3332 } 3333 3334 static long __sched 3335 wait_for_common(struct completion *x, long timeout, int state) 3336 { 3337 return __wait_for_common(x, schedule_timeout, timeout, state); 3338 } 3339 3340 static long __sched 3341 wait_for_common_io(struct completion *x, long timeout, int state) 3342 { 3343 return __wait_for_common(x, io_schedule_timeout, timeout, state); 3344 } 3345 3346 /** 3347 * wait_for_completion: - waits for completion of a task 3348 * @x: holds the state of this particular completion 3349 * 3350 * This waits to be signaled for completion of a specific task. It is NOT 3351 * interruptible and there is no timeout. 3352 * 3353 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3354 * and interrupt capability. Also see complete(). 3355 */ 3356 void __sched wait_for_completion(struct completion *x) 3357 { 3358 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3359 } 3360 EXPORT_SYMBOL(wait_for_completion); 3361 3362 /** 3363 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3364 * @x: holds the state of this particular completion 3365 * @timeout: timeout value in jiffies 3366 * 3367 * This waits for either a completion of a specific task to be signaled or for a 3368 * specified timeout to expire. The timeout is in jiffies. It is not 3369 * interruptible. 3370 * 3371 * The return value is 0 if timed out, and positive (at least 1, or number of 3372 * jiffies left till timeout) if completed. 3373 */ 3374 unsigned long __sched 3375 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3376 { 3377 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3378 } 3379 EXPORT_SYMBOL(wait_for_completion_timeout); 3380 3381 /** 3382 * wait_for_completion_io: - waits for completion of a task 3383 * @x: holds the state of this particular completion 3384 * 3385 * This waits to be signaled for completion of a specific task. It is NOT 3386 * interruptible and there is no timeout. The caller is accounted as waiting 3387 * for IO. 3388 */ 3389 void __sched wait_for_completion_io(struct completion *x) 3390 { 3391 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3392 } 3393 EXPORT_SYMBOL(wait_for_completion_io); 3394 3395 /** 3396 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout) 3397 * @x: holds the state of this particular completion 3398 * @timeout: timeout value in jiffies 3399 * 3400 * This waits for either a completion of a specific task to be signaled or for a 3401 * specified timeout to expire. The timeout is in jiffies. It is not 3402 * interruptible. The caller is accounted as waiting for IO. 3403 * 3404 * The return value is 0 if timed out, and positive (at least 1, or number of 3405 * jiffies left till timeout) if completed. 3406 */ 3407 unsigned long __sched 3408 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout) 3409 { 3410 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE); 3411 } 3412 EXPORT_SYMBOL(wait_for_completion_io_timeout); 3413 3414 /** 3415 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3416 * @x: holds the state of this particular completion 3417 * 3418 * This waits for completion of a specific task to be signaled. It is 3419 * interruptible. 3420 * 3421 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3422 */ 3423 int __sched wait_for_completion_interruptible(struct completion *x) 3424 { 3425 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3426 if (t == -ERESTARTSYS) 3427 return t; 3428 return 0; 3429 } 3430 EXPORT_SYMBOL(wait_for_completion_interruptible); 3431 3432 /** 3433 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3434 * @x: holds the state of this particular completion 3435 * @timeout: timeout value in jiffies 3436 * 3437 * This waits for either a completion of a specific task to be signaled or for a 3438 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3439 * 3440 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3441 * positive (at least 1, or number of jiffies left till timeout) if completed. 3442 */ 3443 long __sched 3444 wait_for_completion_interruptible_timeout(struct completion *x, 3445 unsigned long timeout) 3446 { 3447 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3448 } 3449 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3450 3451 /** 3452 * wait_for_completion_killable: - waits for completion of a task (killable) 3453 * @x: holds the state of this particular completion 3454 * 3455 * This waits to be signaled for completion of a specific task. It can be 3456 * interrupted by a kill signal. 3457 * 3458 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3459 */ 3460 int __sched wait_for_completion_killable(struct completion *x) 3461 { 3462 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3463 if (t == -ERESTARTSYS) 3464 return t; 3465 return 0; 3466 } 3467 EXPORT_SYMBOL(wait_for_completion_killable); 3468 3469 /** 3470 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3471 * @x: holds the state of this particular completion 3472 * @timeout: timeout value in jiffies 3473 * 3474 * This waits for either a completion of a specific task to be 3475 * signaled or for a specified timeout to expire. It can be 3476 * interrupted by a kill signal. The timeout is in jiffies. 3477 * 3478 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3479 * positive (at least 1, or number of jiffies left till timeout) if completed. 3480 */ 3481 long __sched 3482 wait_for_completion_killable_timeout(struct completion *x, 3483 unsigned long timeout) 3484 { 3485 return wait_for_common(x, timeout, TASK_KILLABLE); 3486 } 3487 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3488 3489 /** 3490 * try_wait_for_completion - try to decrement a completion without blocking 3491 * @x: completion structure 3492 * 3493 * Returns: 0 if a decrement cannot be done without blocking 3494 * 1 if a decrement succeeded. 3495 * 3496 * If a completion is being used as a counting completion, 3497 * attempt to decrement the counter without blocking. This 3498 * enables us to avoid waiting if the resource the completion 3499 * is protecting is not available. 3500 */ 3501 bool try_wait_for_completion(struct completion *x) 3502 { 3503 unsigned long flags; 3504 int ret = 1; 3505 3506 spin_lock_irqsave(&x->wait.lock, flags); 3507 if (!x->done) 3508 ret = 0; 3509 else 3510 x->done--; 3511 spin_unlock_irqrestore(&x->wait.lock, flags); 3512 return ret; 3513 } 3514 EXPORT_SYMBOL(try_wait_for_completion); 3515 3516 /** 3517 * completion_done - Test to see if a completion has any waiters 3518 * @x: completion structure 3519 * 3520 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3521 * 1 if there are no waiters. 3522 * 3523 */ 3524 bool completion_done(struct completion *x) 3525 { 3526 unsigned long flags; 3527 int ret = 1; 3528 3529 spin_lock_irqsave(&x->wait.lock, flags); 3530 if (!x->done) 3531 ret = 0; 3532 spin_unlock_irqrestore(&x->wait.lock, flags); 3533 return ret; 3534 } 3535 EXPORT_SYMBOL(completion_done); 3536 3537 static long __sched 3538 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3539 { 3540 unsigned long flags; 3541 wait_queue_t wait; 3542 3543 init_waitqueue_entry(&wait, current); 3544 3545 __set_current_state(state); 3546 3547 spin_lock_irqsave(&q->lock, flags); 3548 __add_wait_queue(q, &wait); 3549 spin_unlock(&q->lock); 3550 timeout = schedule_timeout(timeout); 3551 spin_lock_irq(&q->lock); 3552 __remove_wait_queue(q, &wait); 3553 spin_unlock_irqrestore(&q->lock, flags); 3554 3555 return timeout; 3556 } 3557 3558 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3559 { 3560 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3561 } 3562 EXPORT_SYMBOL(interruptible_sleep_on); 3563 3564 long __sched 3565 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3566 { 3567 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3568 } 3569 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3570 3571 void __sched sleep_on(wait_queue_head_t *q) 3572 { 3573 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3574 } 3575 EXPORT_SYMBOL(sleep_on); 3576 3577 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3578 { 3579 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3580 } 3581 EXPORT_SYMBOL(sleep_on_timeout); 3582 3583 #ifdef CONFIG_RT_MUTEXES 3584 3585 /* 3586 * rt_mutex_setprio - set the current priority of a task 3587 * @p: task 3588 * @prio: prio value (kernel-internal form) 3589 * 3590 * This function changes the 'effective' priority of a task. It does 3591 * not touch ->normal_prio like __setscheduler(). 3592 * 3593 * Used by the rt_mutex code to implement priority inheritance logic. 3594 */ 3595 void rt_mutex_setprio(struct task_struct *p, int prio) 3596 { 3597 int oldprio, on_rq, running; 3598 struct rq *rq; 3599 const struct sched_class *prev_class; 3600 3601 BUG_ON(prio < 0 || prio > MAX_PRIO); 3602 3603 rq = __task_rq_lock(p); 3604 3605 /* 3606 * Idle task boosting is a nono in general. There is one 3607 * exception, when PREEMPT_RT and NOHZ is active: 3608 * 3609 * The idle task calls get_next_timer_interrupt() and holds 3610 * the timer wheel base->lock on the CPU and another CPU wants 3611 * to access the timer (probably to cancel it). We can safely 3612 * ignore the boosting request, as the idle CPU runs this code 3613 * with interrupts disabled and will complete the lock 3614 * protected section without being interrupted. So there is no 3615 * real need to boost. 3616 */ 3617 if (unlikely(p == rq->idle)) { 3618 WARN_ON(p != rq->curr); 3619 WARN_ON(p->pi_blocked_on); 3620 goto out_unlock; 3621 } 3622 3623 trace_sched_pi_setprio(p, prio); 3624 oldprio = p->prio; 3625 prev_class = p->sched_class; 3626 on_rq = p->on_rq; 3627 running = task_current(rq, p); 3628 if (on_rq) 3629 dequeue_task(rq, p, 0); 3630 if (running) 3631 p->sched_class->put_prev_task(rq, p); 3632 3633 if (rt_prio(prio)) 3634 p->sched_class = &rt_sched_class; 3635 else 3636 p->sched_class = &fair_sched_class; 3637 3638 p->prio = prio; 3639 3640 if (running) 3641 p->sched_class->set_curr_task(rq); 3642 if (on_rq) 3643 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3644 3645 check_class_changed(rq, p, prev_class, oldprio); 3646 out_unlock: 3647 __task_rq_unlock(rq); 3648 } 3649 #endif 3650 void set_user_nice(struct task_struct *p, long nice) 3651 { 3652 int old_prio, delta, on_rq; 3653 unsigned long flags; 3654 struct rq *rq; 3655 3656 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3657 return; 3658 /* 3659 * We have to be careful, if called from sys_setpriority(), 3660 * the task might be in the middle of scheduling on another CPU. 3661 */ 3662 rq = task_rq_lock(p, &flags); 3663 /* 3664 * The RT priorities are set via sched_setscheduler(), but we still 3665 * allow the 'normal' nice value to be set - but as expected 3666 * it wont have any effect on scheduling until the task is 3667 * SCHED_FIFO/SCHED_RR: 3668 */ 3669 if (task_has_rt_policy(p)) { 3670 p->static_prio = NICE_TO_PRIO(nice); 3671 goto out_unlock; 3672 } 3673 on_rq = p->on_rq; 3674 if (on_rq) 3675 dequeue_task(rq, p, 0); 3676 3677 p->static_prio = NICE_TO_PRIO(nice); 3678 set_load_weight(p); 3679 old_prio = p->prio; 3680 p->prio = effective_prio(p); 3681 delta = p->prio - old_prio; 3682 3683 if (on_rq) { 3684 enqueue_task(rq, p, 0); 3685 /* 3686 * If the task increased its priority or is running and 3687 * lowered its priority, then reschedule its CPU: 3688 */ 3689 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3690 resched_task(rq->curr); 3691 } 3692 out_unlock: 3693 task_rq_unlock(rq, p, &flags); 3694 } 3695 EXPORT_SYMBOL(set_user_nice); 3696 3697 /* 3698 * can_nice - check if a task can reduce its nice value 3699 * @p: task 3700 * @nice: nice value 3701 */ 3702 int can_nice(const struct task_struct *p, const int nice) 3703 { 3704 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3705 int nice_rlim = 20 - nice; 3706 3707 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3708 capable(CAP_SYS_NICE)); 3709 } 3710 3711 #ifdef __ARCH_WANT_SYS_NICE 3712 3713 /* 3714 * sys_nice - change the priority of the current process. 3715 * @increment: priority increment 3716 * 3717 * sys_setpriority is a more generic, but much slower function that 3718 * does similar things. 3719 */ 3720 SYSCALL_DEFINE1(nice, int, increment) 3721 { 3722 long nice, retval; 3723 3724 /* 3725 * Setpriority might change our priority at the same moment. 3726 * We don't have to worry. Conceptually one call occurs first 3727 * and we have a single winner. 3728 */ 3729 if (increment < -40) 3730 increment = -40; 3731 if (increment > 40) 3732 increment = 40; 3733 3734 nice = TASK_NICE(current) + increment; 3735 if (nice < -20) 3736 nice = -20; 3737 if (nice > 19) 3738 nice = 19; 3739 3740 if (increment < 0 && !can_nice(current, nice)) 3741 return -EPERM; 3742 3743 retval = security_task_setnice(current, nice); 3744 if (retval) 3745 return retval; 3746 3747 set_user_nice(current, nice); 3748 return 0; 3749 } 3750 3751 #endif 3752 3753 /** 3754 * task_prio - return the priority value of a given task. 3755 * @p: the task in question. 3756 * 3757 * This is the priority value as seen by users in /proc. 3758 * RT tasks are offset by -200. Normal tasks are centered 3759 * around 0, value goes from -16 to +15. 3760 */ 3761 int task_prio(const struct task_struct *p) 3762 { 3763 return p->prio - MAX_RT_PRIO; 3764 } 3765 3766 /** 3767 * task_nice - return the nice value of a given task. 3768 * @p: the task in question. 3769 */ 3770 int task_nice(const struct task_struct *p) 3771 { 3772 return TASK_NICE(p); 3773 } 3774 EXPORT_SYMBOL(task_nice); 3775 3776 /** 3777 * idle_cpu - is a given cpu idle currently? 3778 * @cpu: the processor in question. 3779 */ 3780 int idle_cpu(int cpu) 3781 { 3782 struct rq *rq = cpu_rq(cpu); 3783 3784 if (rq->curr != rq->idle) 3785 return 0; 3786 3787 if (rq->nr_running) 3788 return 0; 3789 3790 #ifdef CONFIG_SMP 3791 if (!llist_empty(&rq->wake_list)) 3792 return 0; 3793 #endif 3794 3795 return 1; 3796 } 3797 3798 /** 3799 * idle_task - return the idle task for a given cpu. 3800 * @cpu: the processor in question. 3801 */ 3802 struct task_struct *idle_task(int cpu) 3803 { 3804 return cpu_rq(cpu)->idle; 3805 } 3806 3807 /** 3808 * find_process_by_pid - find a process with a matching PID value. 3809 * @pid: the pid in question. 3810 */ 3811 static struct task_struct *find_process_by_pid(pid_t pid) 3812 { 3813 return pid ? find_task_by_vpid(pid) : current; 3814 } 3815 3816 /* Actually do priority change: must hold rq lock. */ 3817 static void 3818 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 3819 { 3820 p->policy = policy; 3821 p->rt_priority = prio; 3822 p->normal_prio = normal_prio(p); 3823 /* we are holding p->pi_lock already */ 3824 p->prio = rt_mutex_getprio(p); 3825 if (rt_prio(p->prio)) 3826 p->sched_class = &rt_sched_class; 3827 else 3828 p->sched_class = &fair_sched_class; 3829 set_load_weight(p); 3830 } 3831 3832 /* 3833 * check the target process has a UID that matches the current process's 3834 */ 3835 static bool check_same_owner(struct task_struct *p) 3836 { 3837 const struct cred *cred = current_cred(), *pcred; 3838 bool match; 3839 3840 rcu_read_lock(); 3841 pcred = __task_cred(p); 3842 match = (uid_eq(cred->euid, pcred->euid) || 3843 uid_eq(cred->euid, pcred->uid)); 3844 rcu_read_unlock(); 3845 return match; 3846 } 3847 3848 static int __sched_setscheduler(struct task_struct *p, int policy, 3849 const struct sched_param *param, bool user) 3850 { 3851 int retval, oldprio, oldpolicy = -1, on_rq, running; 3852 unsigned long flags; 3853 const struct sched_class *prev_class; 3854 struct rq *rq; 3855 int reset_on_fork; 3856 3857 /* may grab non-irq protected spin_locks */ 3858 BUG_ON(in_interrupt()); 3859 recheck: 3860 /* double check policy once rq lock held */ 3861 if (policy < 0) { 3862 reset_on_fork = p->sched_reset_on_fork; 3863 policy = oldpolicy = p->policy; 3864 } else { 3865 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 3866 policy &= ~SCHED_RESET_ON_FORK; 3867 3868 if (policy != SCHED_FIFO && policy != SCHED_RR && 3869 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3870 policy != SCHED_IDLE) 3871 return -EINVAL; 3872 } 3873 3874 /* 3875 * Valid priorities for SCHED_FIFO and SCHED_RR are 3876 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3877 * SCHED_BATCH and SCHED_IDLE is 0. 3878 */ 3879 if (param->sched_priority < 0 || 3880 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 3881 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 3882 return -EINVAL; 3883 if (rt_policy(policy) != (param->sched_priority != 0)) 3884 return -EINVAL; 3885 3886 /* 3887 * Allow unprivileged RT tasks to decrease priority: 3888 */ 3889 if (user && !capable(CAP_SYS_NICE)) { 3890 if (rt_policy(policy)) { 3891 unsigned long rlim_rtprio = 3892 task_rlimit(p, RLIMIT_RTPRIO); 3893 3894 /* can't set/change the rt policy */ 3895 if (policy != p->policy && !rlim_rtprio) 3896 return -EPERM; 3897 3898 /* can't increase priority */ 3899 if (param->sched_priority > p->rt_priority && 3900 param->sched_priority > rlim_rtprio) 3901 return -EPERM; 3902 } 3903 3904 /* 3905 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3906 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3907 */ 3908 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3909 if (!can_nice(p, TASK_NICE(p))) 3910 return -EPERM; 3911 } 3912 3913 /* can't change other user's priorities */ 3914 if (!check_same_owner(p)) 3915 return -EPERM; 3916 3917 /* Normal users shall not reset the sched_reset_on_fork flag */ 3918 if (p->sched_reset_on_fork && !reset_on_fork) 3919 return -EPERM; 3920 } 3921 3922 if (user) { 3923 retval = security_task_setscheduler(p); 3924 if (retval) 3925 return retval; 3926 } 3927 3928 /* 3929 * make sure no PI-waiters arrive (or leave) while we are 3930 * changing the priority of the task: 3931 * 3932 * To be able to change p->policy safely, the appropriate 3933 * runqueue lock must be held. 3934 */ 3935 rq = task_rq_lock(p, &flags); 3936 3937 /* 3938 * Changing the policy of the stop threads its a very bad idea 3939 */ 3940 if (p == rq->stop) { 3941 task_rq_unlock(rq, p, &flags); 3942 return -EINVAL; 3943 } 3944 3945 /* 3946 * If not changing anything there's no need to proceed further: 3947 */ 3948 if (unlikely(policy == p->policy && (!rt_policy(policy) || 3949 param->sched_priority == p->rt_priority))) { 3950 task_rq_unlock(rq, p, &flags); 3951 return 0; 3952 } 3953 3954 #ifdef CONFIG_RT_GROUP_SCHED 3955 if (user) { 3956 /* 3957 * Do not allow realtime tasks into groups that have no runtime 3958 * assigned. 3959 */ 3960 if (rt_bandwidth_enabled() && rt_policy(policy) && 3961 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3962 !task_group_is_autogroup(task_group(p))) { 3963 task_rq_unlock(rq, p, &flags); 3964 return -EPERM; 3965 } 3966 } 3967 #endif 3968 3969 /* recheck policy now with rq lock held */ 3970 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3971 policy = oldpolicy = -1; 3972 task_rq_unlock(rq, p, &flags); 3973 goto recheck; 3974 } 3975 on_rq = p->on_rq; 3976 running = task_current(rq, p); 3977 if (on_rq) 3978 dequeue_task(rq, p, 0); 3979 if (running) 3980 p->sched_class->put_prev_task(rq, p); 3981 3982 p->sched_reset_on_fork = reset_on_fork; 3983 3984 oldprio = p->prio; 3985 prev_class = p->sched_class; 3986 __setscheduler(rq, p, policy, param->sched_priority); 3987 3988 if (running) 3989 p->sched_class->set_curr_task(rq); 3990 if (on_rq) 3991 enqueue_task(rq, p, 0); 3992 3993 check_class_changed(rq, p, prev_class, oldprio); 3994 task_rq_unlock(rq, p, &flags); 3995 3996 rt_mutex_adjust_pi(p); 3997 3998 return 0; 3999 } 4000 4001 /** 4002 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4003 * @p: the task in question. 4004 * @policy: new policy. 4005 * @param: structure containing the new RT priority. 4006 * 4007 * NOTE that the task may be already dead. 4008 */ 4009 int sched_setscheduler(struct task_struct *p, int policy, 4010 const struct sched_param *param) 4011 { 4012 return __sched_setscheduler(p, policy, param, true); 4013 } 4014 EXPORT_SYMBOL_GPL(sched_setscheduler); 4015 4016 /** 4017 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4018 * @p: the task in question. 4019 * @policy: new policy. 4020 * @param: structure containing the new RT priority. 4021 * 4022 * Just like sched_setscheduler, only don't bother checking if the 4023 * current context has permission. For example, this is needed in 4024 * stop_machine(): we create temporary high priority worker threads, 4025 * but our caller might not have that capability. 4026 */ 4027 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4028 const struct sched_param *param) 4029 { 4030 return __sched_setscheduler(p, policy, param, false); 4031 } 4032 4033 static int 4034 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4035 { 4036 struct sched_param lparam; 4037 struct task_struct *p; 4038 int retval; 4039 4040 if (!param || pid < 0) 4041 return -EINVAL; 4042 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4043 return -EFAULT; 4044 4045 rcu_read_lock(); 4046 retval = -ESRCH; 4047 p = find_process_by_pid(pid); 4048 if (p != NULL) 4049 retval = sched_setscheduler(p, policy, &lparam); 4050 rcu_read_unlock(); 4051 4052 return retval; 4053 } 4054 4055 /** 4056 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4057 * @pid: the pid in question. 4058 * @policy: new policy. 4059 * @param: structure containing the new RT priority. 4060 */ 4061 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4062 struct sched_param __user *, param) 4063 { 4064 /* negative values for policy are not valid */ 4065 if (policy < 0) 4066 return -EINVAL; 4067 4068 return do_sched_setscheduler(pid, policy, param); 4069 } 4070 4071 /** 4072 * sys_sched_setparam - set/change the RT priority of a thread 4073 * @pid: the pid in question. 4074 * @param: structure containing the new RT priority. 4075 */ 4076 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4077 { 4078 return do_sched_setscheduler(pid, -1, param); 4079 } 4080 4081 /** 4082 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4083 * @pid: the pid in question. 4084 */ 4085 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4086 { 4087 struct task_struct *p; 4088 int retval; 4089 4090 if (pid < 0) 4091 return -EINVAL; 4092 4093 retval = -ESRCH; 4094 rcu_read_lock(); 4095 p = find_process_by_pid(pid); 4096 if (p) { 4097 retval = security_task_getscheduler(p); 4098 if (!retval) 4099 retval = p->policy 4100 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4101 } 4102 rcu_read_unlock(); 4103 return retval; 4104 } 4105 4106 /** 4107 * sys_sched_getparam - get the RT priority of a thread 4108 * @pid: the pid in question. 4109 * @param: structure containing the RT priority. 4110 */ 4111 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4112 { 4113 struct sched_param lp; 4114 struct task_struct *p; 4115 int retval; 4116 4117 if (!param || pid < 0) 4118 return -EINVAL; 4119 4120 rcu_read_lock(); 4121 p = find_process_by_pid(pid); 4122 retval = -ESRCH; 4123 if (!p) 4124 goto out_unlock; 4125 4126 retval = security_task_getscheduler(p); 4127 if (retval) 4128 goto out_unlock; 4129 4130 lp.sched_priority = p->rt_priority; 4131 rcu_read_unlock(); 4132 4133 /* 4134 * This one might sleep, we cannot do it with a spinlock held ... 4135 */ 4136 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4137 4138 return retval; 4139 4140 out_unlock: 4141 rcu_read_unlock(); 4142 return retval; 4143 } 4144 4145 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4146 { 4147 cpumask_var_t cpus_allowed, new_mask; 4148 struct task_struct *p; 4149 int retval; 4150 4151 get_online_cpus(); 4152 rcu_read_lock(); 4153 4154 p = find_process_by_pid(pid); 4155 if (!p) { 4156 rcu_read_unlock(); 4157 put_online_cpus(); 4158 return -ESRCH; 4159 } 4160 4161 /* Prevent p going away */ 4162 get_task_struct(p); 4163 rcu_read_unlock(); 4164 4165 if (p->flags & PF_NO_SETAFFINITY) { 4166 retval = -EINVAL; 4167 goto out_put_task; 4168 } 4169 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4170 retval = -ENOMEM; 4171 goto out_put_task; 4172 } 4173 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4174 retval = -ENOMEM; 4175 goto out_free_cpus_allowed; 4176 } 4177 retval = -EPERM; 4178 if (!check_same_owner(p)) { 4179 rcu_read_lock(); 4180 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4181 rcu_read_unlock(); 4182 goto out_unlock; 4183 } 4184 rcu_read_unlock(); 4185 } 4186 4187 retval = security_task_setscheduler(p); 4188 if (retval) 4189 goto out_unlock; 4190 4191 cpuset_cpus_allowed(p, cpus_allowed); 4192 cpumask_and(new_mask, in_mask, cpus_allowed); 4193 again: 4194 retval = set_cpus_allowed_ptr(p, new_mask); 4195 4196 if (!retval) { 4197 cpuset_cpus_allowed(p, cpus_allowed); 4198 if (!cpumask_subset(new_mask, cpus_allowed)) { 4199 /* 4200 * We must have raced with a concurrent cpuset 4201 * update. Just reset the cpus_allowed to the 4202 * cpuset's cpus_allowed 4203 */ 4204 cpumask_copy(new_mask, cpus_allowed); 4205 goto again; 4206 } 4207 } 4208 out_unlock: 4209 free_cpumask_var(new_mask); 4210 out_free_cpus_allowed: 4211 free_cpumask_var(cpus_allowed); 4212 out_put_task: 4213 put_task_struct(p); 4214 put_online_cpus(); 4215 return retval; 4216 } 4217 4218 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4219 struct cpumask *new_mask) 4220 { 4221 if (len < cpumask_size()) 4222 cpumask_clear(new_mask); 4223 else if (len > cpumask_size()) 4224 len = cpumask_size(); 4225 4226 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4227 } 4228 4229 /** 4230 * sys_sched_setaffinity - set the cpu affinity of a process 4231 * @pid: pid of the process 4232 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4233 * @user_mask_ptr: user-space pointer to the new cpu mask 4234 */ 4235 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4236 unsigned long __user *, user_mask_ptr) 4237 { 4238 cpumask_var_t new_mask; 4239 int retval; 4240 4241 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4242 return -ENOMEM; 4243 4244 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4245 if (retval == 0) 4246 retval = sched_setaffinity(pid, new_mask); 4247 free_cpumask_var(new_mask); 4248 return retval; 4249 } 4250 4251 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4252 { 4253 struct task_struct *p; 4254 unsigned long flags; 4255 int retval; 4256 4257 get_online_cpus(); 4258 rcu_read_lock(); 4259 4260 retval = -ESRCH; 4261 p = find_process_by_pid(pid); 4262 if (!p) 4263 goto out_unlock; 4264 4265 retval = security_task_getscheduler(p); 4266 if (retval) 4267 goto out_unlock; 4268 4269 raw_spin_lock_irqsave(&p->pi_lock, flags); 4270 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4271 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4272 4273 out_unlock: 4274 rcu_read_unlock(); 4275 put_online_cpus(); 4276 4277 return retval; 4278 } 4279 4280 /** 4281 * sys_sched_getaffinity - get the cpu affinity of a process 4282 * @pid: pid of the process 4283 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4284 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4285 */ 4286 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4287 unsigned long __user *, user_mask_ptr) 4288 { 4289 int ret; 4290 cpumask_var_t mask; 4291 4292 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4293 return -EINVAL; 4294 if (len & (sizeof(unsigned long)-1)) 4295 return -EINVAL; 4296 4297 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4298 return -ENOMEM; 4299 4300 ret = sched_getaffinity(pid, mask); 4301 if (ret == 0) { 4302 size_t retlen = min_t(size_t, len, cpumask_size()); 4303 4304 if (copy_to_user(user_mask_ptr, mask, retlen)) 4305 ret = -EFAULT; 4306 else 4307 ret = retlen; 4308 } 4309 free_cpumask_var(mask); 4310 4311 return ret; 4312 } 4313 4314 /** 4315 * sys_sched_yield - yield the current processor to other threads. 4316 * 4317 * This function yields the current CPU to other tasks. If there are no 4318 * other threads running on this CPU then this function will return. 4319 */ 4320 SYSCALL_DEFINE0(sched_yield) 4321 { 4322 struct rq *rq = this_rq_lock(); 4323 4324 schedstat_inc(rq, yld_count); 4325 current->sched_class->yield_task(rq); 4326 4327 /* 4328 * Since we are going to call schedule() anyway, there's 4329 * no need to preempt or enable interrupts: 4330 */ 4331 __release(rq->lock); 4332 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4333 do_raw_spin_unlock(&rq->lock); 4334 sched_preempt_enable_no_resched(); 4335 4336 schedule(); 4337 4338 return 0; 4339 } 4340 4341 static inline int should_resched(void) 4342 { 4343 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4344 } 4345 4346 static void __cond_resched(void) 4347 { 4348 add_preempt_count(PREEMPT_ACTIVE); 4349 __schedule(); 4350 sub_preempt_count(PREEMPT_ACTIVE); 4351 } 4352 4353 int __sched _cond_resched(void) 4354 { 4355 if (should_resched()) { 4356 __cond_resched(); 4357 return 1; 4358 } 4359 return 0; 4360 } 4361 EXPORT_SYMBOL(_cond_resched); 4362 4363 /* 4364 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4365 * call schedule, and on return reacquire the lock. 4366 * 4367 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4368 * operations here to prevent schedule() from being called twice (once via 4369 * spin_unlock(), once by hand). 4370 */ 4371 int __cond_resched_lock(spinlock_t *lock) 4372 { 4373 int resched = should_resched(); 4374 int ret = 0; 4375 4376 lockdep_assert_held(lock); 4377 4378 if (spin_needbreak(lock) || resched) { 4379 spin_unlock(lock); 4380 if (resched) 4381 __cond_resched(); 4382 else 4383 cpu_relax(); 4384 ret = 1; 4385 spin_lock(lock); 4386 } 4387 return ret; 4388 } 4389 EXPORT_SYMBOL(__cond_resched_lock); 4390 4391 int __sched __cond_resched_softirq(void) 4392 { 4393 BUG_ON(!in_softirq()); 4394 4395 if (should_resched()) { 4396 local_bh_enable(); 4397 __cond_resched(); 4398 local_bh_disable(); 4399 return 1; 4400 } 4401 return 0; 4402 } 4403 EXPORT_SYMBOL(__cond_resched_softirq); 4404 4405 /** 4406 * yield - yield the current processor to other threads. 4407 * 4408 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4409 * 4410 * The scheduler is at all times free to pick the calling task as the most 4411 * eligible task to run, if removing the yield() call from your code breaks 4412 * it, its already broken. 4413 * 4414 * Typical broken usage is: 4415 * 4416 * while (!event) 4417 * yield(); 4418 * 4419 * where one assumes that yield() will let 'the other' process run that will 4420 * make event true. If the current task is a SCHED_FIFO task that will never 4421 * happen. Never use yield() as a progress guarantee!! 4422 * 4423 * If you want to use yield() to wait for something, use wait_event(). 4424 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4425 * If you still want to use yield(), do not! 4426 */ 4427 void __sched yield(void) 4428 { 4429 set_current_state(TASK_RUNNING); 4430 sys_sched_yield(); 4431 } 4432 EXPORT_SYMBOL(yield); 4433 4434 /** 4435 * yield_to - yield the current processor to another thread in 4436 * your thread group, or accelerate that thread toward the 4437 * processor it's on. 4438 * @p: target task 4439 * @preempt: whether task preemption is allowed or not 4440 * 4441 * It's the caller's job to ensure that the target task struct 4442 * can't go away on us before we can do any checks. 4443 * 4444 * Returns: 4445 * true (>0) if we indeed boosted the target task. 4446 * false (0) if we failed to boost the target. 4447 * -ESRCH if there's no task to yield to. 4448 */ 4449 bool __sched yield_to(struct task_struct *p, bool preempt) 4450 { 4451 struct task_struct *curr = current; 4452 struct rq *rq, *p_rq; 4453 unsigned long flags; 4454 int yielded = 0; 4455 4456 local_irq_save(flags); 4457 rq = this_rq(); 4458 4459 again: 4460 p_rq = task_rq(p); 4461 /* 4462 * If we're the only runnable task on the rq and target rq also 4463 * has only one task, there's absolutely no point in yielding. 4464 */ 4465 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4466 yielded = -ESRCH; 4467 goto out_irq; 4468 } 4469 4470 double_rq_lock(rq, p_rq); 4471 while (task_rq(p) != p_rq) { 4472 double_rq_unlock(rq, p_rq); 4473 goto again; 4474 } 4475 4476 if (!curr->sched_class->yield_to_task) 4477 goto out_unlock; 4478 4479 if (curr->sched_class != p->sched_class) 4480 goto out_unlock; 4481 4482 if (task_running(p_rq, p) || p->state) 4483 goto out_unlock; 4484 4485 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4486 if (yielded) { 4487 schedstat_inc(rq, yld_count); 4488 /* 4489 * Make p's CPU reschedule; pick_next_entity takes care of 4490 * fairness. 4491 */ 4492 if (preempt && rq != p_rq) 4493 resched_task(p_rq->curr); 4494 } 4495 4496 out_unlock: 4497 double_rq_unlock(rq, p_rq); 4498 out_irq: 4499 local_irq_restore(flags); 4500 4501 if (yielded > 0) 4502 schedule(); 4503 4504 return yielded; 4505 } 4506 EXPORT_SYMBOL_GPL(yield_to); 4507 4508 /* 4509 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4510 * that process accounting knows that this is a task in IO wait state. 4511 */ 4512 void __sched io_schedule(void) 4513 { 4514 struct rq *rq = raw_rq(); 4515 4516 delayacct_blkio_start(); 4517 atomic_inc(&rq->nr_iowait); 4518 blk_flush_plug(current); 4519 current->in_iowait = 1; 4520 schedule(); 4521 current->in_iowait = 0; 4522 atomic_dec(&rq->nr_iowait); 4523 delayacct_blkio_end(); 4524 } 4525 EXPORT_SYMBOL(io_schedule); 4526 4527 long __sched io_schedule_timeout(long timeout) 4528 { 4529 struct rq *rq = raw_rq(); 4530 long ret; 4531 4532 delayacct_blkio_start(); 4533 atomic_inc(&rq->nr_iowait); 4534 blk_flush_plug(current); 4535 current->in_iowait = 1; 4536 ret = schedule_timeout(timeout); 4537 current->in_iowait = 0; 4538 atomic_dec(&rq->nr_iowait); 4539 delayacct_blkio_end(); 4540 return ret; 4541 } 4542 4543 /** 4544 * sys_sched_get_priority_max - return maximum RT priority. 4545 * @policy: scheduling class. 4546 * 4547 * this syscall returns the maximum rt_priority that can be used 4548 * by a given scheduling class. 4549 */ 4550 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4551 { 4552 int ret = -EINVAL; 4553 4554 switch (policy) { 4555 case SCHED_FIFO: 4556 case SCHED_RR: 4557 ret = MAX_USER_RT_PRIO-1; 4558 break; 4559 case SCHED_NORMAL: 4560 case SCHED_BATCH: 4561 case SCHED_IDLE: 4562 ret = 0; 4563 break; 4564 } 4565 return ret; 4566 } 4567 4568 /** 4569 * sys_sched_get_priority_min - return minimum RT priority. 4570 * @policy: scheduling class. 4571 * 4572 * this syscall returns the minimum rt_priority that can be used 4573 * by a given scheduling class. 4574 */ 4575 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4576 { 4577 int ret = -EINVAL; 4578 4579 switch (policy) { 4580 case SCHED_FIFO: 4581 case SCHED_RR: 4582 ret = 1; 4583 break; 4584 case SCHED_NORMAL: 4585 case SCHED_BATCH: 4586 case SCHED_IDLE: 4587 ret = 0; 4588 } 4589 return ret; 4590 } 4591 4592 /** 4593 * sys_sched_rr_get_interval - return the default timeslice of a process. 4594 * @pid: pid of the process. 4595 * @interval: userspace pointer to the timeslice value. 4596 * 4597 * this syscall writes the default timeslice value of a given process 4598 * into the user-space timespec buffer. A value of '0' means infinity. 4599 */ 4600 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4601 struct timespec __user *, interval) 4602 { 4603 struct task_struct *p; 4604 unsigned int time_slice; 4605 unsigned long flags; 4606 struct rq *rq; 4607 int retval; 4608 struct timespec t; 4609 4610 if (pid < 0) 4611 return -EINVAL; 4612 4613 retval = -ESRCH; 4614 rcu_read_lock(); 4615 p = find_process_by_pid(pid); 4616 if (!p) 4617 goto out_unlock; 4618 4619 retval = security_task_getscheduler(p); 4620 if (retval) 4621 goto out_unlock; 4622 4623 rq = task_rq_lock(p, &flags); 4624 time_slice = p->sched_class->get_rr_interval(rq, p); 4625 task_rq_unlock(rq, p, &flags); 4626 4627 rcu_read_unlock(); 4628 jiffies_to_timespec(time_slice, &t); 4629 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4630 return retval; 4631 4632 out_unlock: 4633 rcu_read_unlock(); 4634 return retval; 4635 } 4636 4637 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4638 4639 void sched_show_task(struct task_struct *p) 4640 { 4641 unsigned long free = 0; 4642 int ppid; 4643 unsigned state; 4644 4645 state = p->state ? __ffs(p->state) + 1 : 0; 4646 printk(KERN_INFO "%-15.15s %c", p->comm, 4647 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4648 #if BITS_PER_LONG == 32 4649 if (state == TASK_RUNNING) 4650 printk(KERN_CONT " running "); 4651 else 4652 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4653 #else 4654 if (state == TASK_RUNNING) 4655 printk(KERN_CONT " running task "); 4656 else 4657 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4658 #endif 4659 #ifdef CONFIG_DEBUG_STACK_USAGE 4660 free = stack_not_used(p); 4661 #endif 4662 rcu_read_lock(); 4663 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4664 rcu_read_unlock(); 4665 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4666 task_pid_nr(p), ppid, 4667 (unsigned long)task_thread_info(p)->flags); 4668 4669 print_worker_info(KERN_INFO, p); 4670 show_stack(p, NULL); 4671 } 4672 4673 void show_state_filter(unsigned long state_filter) 4674 { 4675 struct task_struct *g, *p; 4676 4677 #if BITS_PER_LONG == 32 4678 printk(KERN_INFO 4679 " task PC stack pid father\n"); 4680 #else 4681 printk(KERN_INFO 4682 " task PC stack pid father\n"); 4683 #endif 4684 rcu_read_lock(); 4685 do_each_thread(g, p) { 4686 /* 4687 * reset the NMI-timeout, listing all files on a slow 4688 * console might take a lot of time: 4689 */ 4690 touch_nmi_watchdog(); 4691 if (!state_filter || (p->state & state_filter)) 4692 sched_show_task(p); 4693 } while_each_thread(g, p); 4694 4695 touch_all_softlockup_watchdogs(); 4696 4697 #ifdef CONFIG_SCHED_DEBUG 4698 sysrq_sched_debug_show(); 4699 #endif 4700 rcu_read_unlock(); 4701 /* 4702 * Only show locks if all tasks are dumped: 4703 */ 4704 if (!state_filter) 4705 debug_show_all_locks(); 4706 } 4707 4708 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4709 { 4710 idle->sched_class = &idle_sched_class; 4711 } 4712 4713 /** 4714 * init_idle - set up an idle thread for a given CPU 4715 * @idle: task in question 4716 * @cpu: cpu the idle task belongs to 4717 * 4718 * NOTE: this function does not set the idle thread's NEED_RESCHED 4719 * flag, to make booting more robust. 4720 */ 4721 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4722 { 4723 struct rq *rq = cpu_rq(cpu); 4724 unsigned long flags; 4725 4726 raw_spin_lock_irqsave(&rq->lock, flags); 4727 4728 __sched_fork(idle); 4729 idle->state = TASK_RUNNING; 4730 idle->se.exec_start = sched_clock(); 4731 4732 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4733 /* 4734 * We're having a chicken and egg problem, even though we are 4735 * holding rq->lock, the cpu isn't yet set to this cpu so the 4736 * lockdep check in task_group() will fail. 4737 * 4738 * Similar case to sched_fork(). / Alternatively we could 4739 * use task_rq_lock() here and obtain the other rq->lock. 4740 * 4741 * Silence PROVE_RCU 4742 */ 4743 rcu_read_lock(); 4744 __set_task_cpu(idle, cpu); 4745 rcu_read_unlock(); 4746 4747 rq->curr = rq->idle = idle; 4748 #if defined(CONFIG_SMP) 4749 idle->on_cpu = 1; 4750 #endif 4751 raw_spin_unlock_irqrestore(&rq->lock, flags); 4752 4753 /* Set the preempt count _outside_ the spinlocks! */ 4754 task_thread_info(idle)->preempt_count = 0; 4755 4756 /* 4757 * The idle tasks have their own, simple scheduling class: 4758 */ 4759 idle->sched_class = &idle_sched_class; 4760 ftrace_graph_init_idle_task(idle, cpu); 4761 vtime_init_idle(idle, cpu); 4762 #if defined(CONFIG_SMP) 4763 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4764 #endif 4765 } 4766 4767 #ifdef CONFIG_SMP 4768 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4769 { 4770 if (p->sched_class && p->sched_class->set_cpus_allowed) 4771 p->sched_class->set_cpus_allowed(p, new_mask); 4772 4773 cpumask_copy(&p->cpus_allowed, new_mask); 4774 p->nr_cpus_allowed = cpumask_weight(new_mask); 4775 } 4776 4777 /* 4778 * This is how migration works: 4779 * 4780 * 1) we invoke migration_cpu_stop() on the target CPU using 4781 * stop_one_cpu(). 4782 * 2) stopper starts to run (implicitly forcing the migrated thread 4783 * off the CPU) 4784 * 3) it checks whether the migrated task is still in the wrong runqueue. 4785 * 4) if it's in the wrong runqueue then the migration thread removes 4786 * it and puts it into the right queue. 4787 * 5) stopper completes and stop_one_cpu() returns and the migration 4788 * is done. 4789 */ 4790 4791 /* 4792 * Change a given task's CPU affinity. Migrate the thread to a 4793 * proper CPU and schedule it away if the CPU it's executing on 4794 * is removed from the allowed bitmask. 4795 * 4796 * NOTE: the caller must have a valid reference to the task, the 4797 * task must not exit() & deallocate itself prematurely. The 4798 * call is not atomic; no spinlocks may be held. 4799 */ 4800 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4801 { 4802 unsigned long flags; 4803 struct rq *rq; 4804 unsigned int dest_cpu; 4805 int ret = 0; 4806 4807 rq = task_rq_lock(p, &flags); 4808 4809 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4810 goto out; 4811 4812 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4813 ret = -EINVAL; 4814 goto out; 4815 } 4816 4817 do_set_cpus_allowed(p, new_mask); 4818 4819 /* Can the task run on the task's current CPU? If so, we're done */ 4820 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4821 goto out; 4822 4823 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4824 if (p->on_rq) { 4825 struct migration_arg arg = { p, dest_cpu }; 4826 /* Need help from migration thread: drop lock and wait. */ 4827 task_rq_unlock(rq, p, &flags); 4828 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4829 tlb_migrate_finish(p->mm); 4830 return 0; 4831 } 4832 out: 4833 task_rq_unlock(rq, p, &flags); 4834 4835 return ret; 4836 } 4837 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4838 4839 /* 4840 * Move (not current) task off this cpu, onto dest cpu. We're doing 4841 * this because either it can't run here any more (set_cpus_allowed() 4842 * away from this CPU, or CPU going down), or because we're 4843 * attempting to rebalance this task on exec (sched_exec). 4844 * 4845 * So we race with normal scheduler movements, but that's OK, as long 4846 * as the task is no longer on this CPU. 4847 * 4848 * Returns non-zero if task was successfully migrated. 4849 */ 4850 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4851 { 4852 struct rq *rq_dest, *rq_src; 4853 int ret = 0; 4854 4855 if (unlikely(!cpu_active(dest_cpu))) 4856 return ret; 4857 4858 rq_src = cpu_rq(src_cpu); 4859 rq_dest = cpu_rq(dest_cpu); 4860 4861 raw_spin_lock(&p->pi_lock); 4862 double_rq_lock(rq_src, rq_dest); 4863 /* Already moved. */ 4864 if (task_cpu(p) != src_cpu) 4865 goto done; 4866 /* Affinity changed (again). */ 4867 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4868 goto fail; 4869 4870 /* 4871 * If we're not on a rq, the next wake-up will ensure we're 4872 * placed properly. 4873 */ 4874 if (p->on_rq) { 4875 dequeue_task(rq_src, p, 0); 4876 set_task_cpu(p, dest_cpu); 4877 enqueue_task(rq_dest, p, 0); 4878 check_preempt_curr(rq_dest, p, 0); 4879 } 4880 done: 4881 ret = 1; 4882 fail: 4883 double_rq_unlock(rq_src, rq_dest); 4884 raw_spin_unlock(&p->pi_lock); 4885 return ret; 4886 } 4887 4888 /* 4889 * migration_cpu_stop - this will be executed by a highprio stopper thread 4890 * and performs thread migration by bumping thread off CPU then 4891 * 'pushing' onto another runqueue. 4892 */ 4893 static int migration_cpu_stop(void *data) 4894 { 4895 struct migration_arg *arg = data; 4896 4897 /* 4898 * The original target cpu might have gone down and we might 4899 * be on another cpu but it doesn't matter. 4900 */ 4901 local_irq_disable(); 4902 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4903 local_irq_enable(); 4904 return 0; 4905 } 4906 4907 #ifdef CONFIG_HOTPLUG_CPU 4908 4909 /* 4910 * Ensures that the idle task is using init_mm right before its cpu goes 4911 * offline. 4912 */ 4913 void idle_task_exit(void) 4914 { 4915 struct mm_struct *mm = current->active_mm; 4916 4917 BUG_ON(cpu_online(smp_processor_id())); 4918 4919 if (mm != &init_mm) 4920 switch_mm(mm, &init_mm, current); 4921 mmdrop(mm); 4922 } 4923 4924 /* 4925 * Since this CPU is going 'away' for a while, fold any nr_active delta 4926 * we might have. Assumes we're called after migrate_tasks() so that the 4927 * nr_active count is stable. 4928 * 4929 * Also see the comment "Global load-average calculations". 4930 */ 4931 static void calc_load_migrate(struct rq *rq) 4932 { 4933 long delta = calc_load_fold_active(rq); 4934 if (delta) 4935 atomic_long_add(delta, &calc_load_tasks); 4936 } 4937 4938 /* 4939 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4940 * try_to_wake_up()->select_task_rq(). 4941 * 4942 * Called with rq->lock held even though we'er in stop_machine() and 4943 * there's no concurrency possible, we hold the required locks anyway 4944 * because of lock validation efforts. 4945 */ 4946 static void migrate_tasks(unsigned int dead_cpu) 4947 { 4948 struct rq *rq = cpu_rq(dead_cpu); 4949 struct task_struct *next, *stop = rq->stop; 4950 int dest_cpu; 4951 4952 /* 4953 * Fudge the rq selection such that the below task selection loop 4954 * doesn't get stuck on the currently eligible stop task. 4955 * 4956 * We're currently inside stop_machine() and the rq is either stuck 4957 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4958 * either way we should never end up calling schedule() until we're 4959 * done here. 4960 */ 4961 rq->stop = NULL; 4962 4963 for ( ; ; ) { 4964 /* 4965 * There's this thread running, bail when that's the only 4966 * remaining thread. 4967 */ 4968 if (rq->nr_running == 1) 4969 break; 4970 4971 next = pick_next_task(rq); 4972 BUG_ON(!next); 4973 next->sched_class->put_prev_task(rq, next); 4974 4975 /* Find suitable destination for @next, with force if needed. */ 4976 dest_cpu = select_fallback_rq(dead_cpu, next); 4977 raw_spin_unlock(&rq->lock); 4978 4979 __migrate_task(next, dead_cpu, dest_cpu); 4980 4981 raw_spin_lock(&rq->lock); 4982 } 4983 4984 rq->stop = stop; 4985 } 4986 4987 #endif /* CONFIG_HOTPLUG_CPU */ 4988 4989 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4990 4991 static struct ctl_table sd_ctl_dir[] = { 4992 { 4993 .procname = "sched_domain", 4994 .mode = 0555, 4995 }, 4996 {} 4997 }; 4998 4999 static struct ctl_table sd_ctl_root[] = { 5000 { 5001 .procname = "kernel", 5002 .mode = 0555, 5003 .child = sd_ctl_dir, 5004 }, 5005 {} 5006 }; 5007 5008 static struct ctl_table *sd_alloc_ctl_entry(int n) 5009 { 5010 struct ctl_table *entry = 5011 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5012 5013 return entry; 5014 } 5015 5016 static void sd_free_ctl_entry(struct ctl_table **tablep) 5017 { 5018 struct ctl_table *entry; 5019 5020 /* 5021 * In the intermediate directories, both the child directory and 5022 * procname are dynamically allocated and could fail but the mode 5023 * will always be set. In the lowest directory the names are 5024 * static strings and all have proc handlers. 5025 */ 5026 for (entry = *tablep; entry->mode; entry++) { 5027 if (entry->child) 5028 sd_free_ctl_entry(&entry->child); 5029 if (entry->proc_handler == NULL) 5030 kfree(entry->procname); 5031 } 5032 5033 kfree(*tablep); 5034 *tablep = NULL; 5035 } 5036 5037 static int min_load_idx = 0; 5038 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5039 5040 static void 5041 set_table_entry(struct ctl_table *entry, 5042 const char *procname, void *data, int maxlen, 5043 umode_t mode, proc_handler *proc_handler, 5044 bool load_idx) 5045 { 5046 entry->procname = procname; 5047 entry->data = data; 5048 entry->maxlen = maxlen; 5049 entry->mode = mode; 5050 entry->proc_handler = proc_handler; 5051 5052 if (load_idx) { 5053 entry->extra1 = &min_load_idx; 5054 entry->extra2 = &max_load_idx; 5055 } 5056 } 5057 5058 static struct ctl_table * 5059 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5060 { 5061 struct ctl_table *table = sd_alloc_ctl_entry(13); 5062 5063 if (table == NULL) 5064 return NULL; 5065 5066 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5067 sizeof(long), 0644, proc_doulongvec_minmax, false); 5068 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5069 sizeof(long), 0644, proc_doulongvec_minmax, false); 5070 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5071 sizeof(int), 0644, proc_dointvec_minmax, true); 5072 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5073 sizeof(int), 0644, proc_dointvec_minmax, true); 5074 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5075 sizeof(int), 0644, proc_dointvec_minmax, true); 5076 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5077 sizeof(int), 0644, proc_dointvec_minmax, true); 5078 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5079 sizeof(int), 0644, proc_dointvec_minmax, true); 5080 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5081 sizeof(int), 0644, proc_dointvec_minmax, false); 5082 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5083 sizeof(int), 0644, proc_dointvec_minmax, false); 5084 set_table_entry(&table[9], "cache_nice_tries", 5085 &sd->cache_nice_tries, 5086 sizeof(int), 0644, proc_dointvec_minmax, false); 5087 set_table_entry(&table[10], "flags", &sd->flags, 5088 sizeof(int), 0644, proc_dointvec_minmax, false); 5089 set_table_entry(&table[11], "name", sd->name, 5090 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5091 /* &table[12] is terminator */ 5092 5093 return table; 5094 } 5095 5096 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5097 { 5098 struct ctl_table *entry, *table; 5099 struct sched_domain *sd; 5100 int domain_num = 0, i; 5101 char buf[32]; 5102 5103 for_each_domain(cpu, sd) 5104 domain_num++; 5105 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5106 if (table == NULL) 5107 return NULL; 5108 5109 i = 0; 5110 for_each_domain(cpu, sd) { 5111 snprintf(buf, 32, "domain%d", i); 5112 entry->procname = kstrdup(buf, GFP_KERNEL); 5113 entry->mode = 0555; 5114 entry->child = sd_alloc_ctl_domain_table(sd); 5115 entry++; 5116 i++; 5117 } 5118 return table; 5119 } 5120 5121 static struct ctl_table_header *sd_sysctl_header; 5122 static void register_sched_domain_sysctl(void) 5123 { 5124 int i, cpu_num = num_possible_cpus(); 5125 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5126 char buf[32]; 5127 5128 WARN_ON(sd_ctl_dir[0].child); 5129 sd_ctl_dir[0].child = entry; 5130 5131 if (entry == NULL) 5132 return; 5133 5134 for_each_possible_cpu(i) { 5135 snprintf(buf, 32, "cpu%d", i); 5136 entry->procname = kstrdup(buf, GFP_KERNEL); 5137 entry->mode = 0555; 5138 entry->child = sd_alloc_ctl_cpu_table(i); 5139 entry++; 5140 } 5141 5142 WARN_ON(sd_sysctl_header); 5143 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5144 } 5145 5146 /* may be called multiple times per register */ 5147 static void unregister_sched_domain_sysctl(void) 5148 { 5149 if (sd_sysctl_header) 5150 unregister_sysctl_table(sd_sysctl_header); 5151 sd_sysctl_header = NULL; 5152 if (sd_ctl_dir[0].child) 5153 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5154 } 5155 #else 5156 static void register_sched_domain_sysctl(void) 5157 { 5158 } 5159 static void unregister_sched_domain_sysctl(void) 5160 { 5161 } 5162 #endif 5163 5164 static void set_rq_online(struct rq *rq) 5165 { 5166 if (!rq->online) { 5167 const struct sched_class *class; 5168 5169 cpumask_set_cpu(rq->cpu, rq->rd->online); 5170 rq->online = 1; 5171 5172 for_each_class(class) { 5173 if (class->rq_online) 5174 class->rq_online(rq); 5175 } 5176 } 5177 } 5178 5179 static void set_rq_offline(struct rq *rq) 5180 { 5181 if (rq->online) { 5182 const struct sched_class *class; 5183 5184 for_each_class(class) { 5185 if (class->rq_offline) 5186 class->rq_offline(rq); 5187 } 5188 5189 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5190 rq->online = 0; 5191 } 5192 } 5193 5194 /* 5195 * migration_call - callback that gets triggered when a CPU is added. 5196 * Here we can start up the necessary migration thread for the new CPU. 5197 */ 5198 static int __cpuinit 5199 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5200 { 5201 int cpu = (long)hcpu; 5202 unsigned long flags; 5203 struct rq *rq = cpu_rq(cpu); 5204 5205 switch (action & ~CPU_TASKS_FROZEN) { 5206 5207 case CPU_UP_PREPARE: 5208 rq->calc_load_update = calc_load_update; 5209 break; 5210 5211 case CPU_ONLINE: 5212 /* Update our root-domain */ 5213 raw_spin_lock_irqsave(&rq->lock, flags); 5214 if (rq->rd) { 5215 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5216 5217 set_rq_online(rq); 5218 } 5219 raw_spin_unlock_irqrestore(&rq->lock, flags); 5220 break; 5221 5222 #ifdef CONFIG_HOTPLUG_CPU 5223 case CPU_DYING: 5224 sched_ttwu_pending(); 5225 /* Update our root-domain */ 5226 raw_spin_lock_irqsave(&rq->lock, flags); 5227 if (rq->rd) { 5228 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5229 set_rq_offline(rq); 5230 } 5231 migrate_tasks(cpu); 5232 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5233 raw_spin_unlock_irqrestore(&rq->lock, flags); 5234 break; 5235 5236 case CPU_DEAD: 5237 calc_load_migrate(rq); 5238 break; 5239 #endif 5240 } 5241 5242 update_max_interval(); 5243 5244 return NOTIFY_OK; 5245 } 5246 5247 /* 5248 * Register at high priority so that task migration (migrate_all_tasks) 5249 * happens before everything else. This has to be lower priority than 5250 * the notifier in the perf_event subsystem, though. 5251 */ 5252 static struct notifier_block __cpuinitdata migration_notifier = { 5253 .notifier_call = migration_call, 5254 .priority = CPU_PRI_MIGRATION, 5255 }; 5256 5257 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5258 unsigned long action, void *hcpu) 5259 { 5260 switch (action & ~CPU_TASKS_FROZEN) { 5261 case CPU_STARTING: 5262 case CPU_DOWN_FAILED: 5263 set_cpu_active((long)hcpu, true); 5264 return NOTIFY_OK; 5265 default: 5266 return NOTIFY_DONE; 5267 } 5268 } 5269 5270 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5271 unsigned long action, void *hcpu) 5272 { 5273 switch (action & ~CPU_TASKS_FROZEN) { 5274 case CPU_DOWN_PREPARE: 5275 set_cpu_active((long)hcpu, false); 5276 return NOTIFY_OK; 5277 default: 5278 return NOTIFY_DONE; 5279 } 5280 } 5281 5282 static int __init migration_init(void) 5283 { 5284 void *cpu = (void *)(long)smp_processor_id(); 5285 int err; 5286 5287 /* Initialize migration for the boot CPU */ 5288 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5289 BUG_ON(err == NOTIFY_BAD); 5290 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5291 register_cpu_notifier(&migration_notifier); 5292 5293 /* Register cpu active notifiers */ 5294 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5295 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5296 5297 return 0; 5298 } 5299 early_initcall(migration_init); 5300 #endif 5301 5302 #ifdef CONFIG_SMP 5303 5304 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5305 5306 #ifdef CONFIG_SCHED_DEBUG 5307 5308 static __read_mostly int sched_debug_enabled; 5309 5310 static int __init sched_debug_setup(char *str) 5311 { 5312 sched_debug_enabled = 1; 5313 5314 return 0; 5315 } 5316 early_param("sched_debug", sched_debug_setup); 5317 5318 static inline bool sched_debug(void) 5319 { 5320 return sched_debug_enabled; 5321 } 5322 5323 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5324 struct cpumask *groupmask) 5325 { 5326 struct sched_group *group = sd->groups; 5327 char str[256]; 5328 5329 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5330 cpumask_clear(groupmask); 5331 5332 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5333 5334 if (!(sd->flags & SD_LOAD_BALANCE)) { 5335 printk("does not load-balance\n"); 5336 if (sd->parent) 5337 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5338 " has parent"); 5339 return -1; 5340 } 5341 5342 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5343 5344 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5345 printk(KERN_ERR "ERROR: domain->span does not contain " 5346 "CPU%d\n", cpu); 5347 } 5348 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5349 printk(KERN_ERR "ERROR: domain->groups does not contain" 5350 " CPU%d\n", cpu); 5351 } 5352 5353 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5354 do { 5355 if (!group) { 5356 printk("\n"); 5357 printk(KERN_ERR "ERROR: group is NULL\n"); 5358 break; 5359 } 5360 5361 /* 5362 * Even though we initialize ->power to something semi-sane, 5363 * we leave power_orig unset. This allows us to detect if 5364 * domain iteration is still funny without causing /0 traps. 5365 */ 5366 if (!group->sgp->power_orig) { 5367 printk(KERN_CONT "\n"); 5368 printk(KERN_ERR "ERROR: domain->cpu_power not " 5369 "set\n"); 5370 break; 5371 } 5372 5373 if (!cpumask_weight(sched_group_cpus(group))) { 5374 printk(KERN_CONT "\n"); 5375 printk(KERN_ERR "ERROR: empty group\n"); 5376 break; 5377 } 5378 5379 if (!(sd->flags & SD_OVERLAP) && 5380 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5381 printk(KERN_CONT "\n"); 5382 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5383 break; 5384 } 5385 5386 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5387 5388 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5389 5390 printk(KERN_CONT " %s", str); 5391 if (group->sgp->power != SCHED_POWER_SCALE) { 5392 printk(KERN_CONT " (cpu_power = %d)", 5393 group->sgp->power); 5394 } 5395 5396 group = group->next; 5397 } while (group != sd->groups); 5398 printk(KERN_CONT "\n"); 5399 5400 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5401 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5402 5403 if (sd->parent && 5404 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5405 printk(KERN_ERR "ERROR: parent span is not a superset " 5406 "of domain->span\n"); 5407 return 0; 5408 } 5409 5410 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5411 { 5412 int level = 0; 5413 5414 if (!sched_debug_enabled) 5415 return; 5416 5417 if (!sd) { 5418 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5419 return; 5420 } 5421 5422 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5423 5424 for (;;) { 5425 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5426 break; 5427 level++; 5428 sd = sd->parent; 5429 if (!sd) 5430 break; 5431 } 5432 } 5433 #else /* !CONFIG_SCHED_DEBUG */ 5434 # define sched_domain_debug(sd, cpu) do { } while (0) 5435 static inline bool sched_debug(void) 5436 { 5437 return false; 5438 } 5439 #endif /* CONFIG_SCHED_DEBUG */ 5440 5441 static int sd_degenerate(struct sched_domain *sd) 5442 { 5443 if (cpumask_weight(sched_domain_span(sd)) == 1) 5444 return 1; 5445 5446 /* Following flags need at least 2 groups */ 5447 if (sd->flags & (SD_LOAD_BALANCE | 5448 SD_BALANCE_NEWIDLE | 5449 SD_BALANCE_FORK | 5450 SD_BALANCE_EXEC | 5451 SD_SHARE_CPUPOWER | 5452 SD_SHARE_PKG_RESOURCES)) { 5453 if (sd->groups != sd->groups->next) 5454 return 0; 5455 } 5456 5457 /* Following flags don't use groups */ 5458 if (sd->flags & (SD_WAKE_AFFINE)) 5459 return 0; 5460 5461 return 1; 5462 } 5463 5464 static int 5465 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5466 { 5467 unsigned long cflags = sd->flags, pflags = parent->flags; 5468 5469 if (sd_degenerate(parent)) 5470 return 1; 5471 5472 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5473 return 0; 5474 5475 /* Flags needing groups don't count if only 1 group in parent */ 5476 if (parent->groups == parent->groups->next) { 5477 pflags &= ~(SD_LOAD_BALANCE | 5478 SD_BALANCE_NEWIDLE | 5479 SD_BALANCE_FORK | 5480 SD_BALANCE_EXEC | 5481 SD_SHARE_CPUPOWER | 5482 SD_SHARE_PKG_RESOURCES); 5483 if (nr_node_ids == 1) 5484 pflags &= ~SD_SERIALIZE; 5485 } 5486 if (~cflags & pflags) 5487 return 0; 5488 5489 return 1; 5490 } 5491 5492 static void free_rootdomain(struct rcu_head *rcu) 5493 { 5494 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5495 5496 cpupri_cleanup(&rd->cpupri); 5497 free_cpumask_var(rd->rto_mask); 5498 free_cpumask_var(rd->online); 5499 free_cpumask_var(rd->span); 5500 kfree(rd); 5501 } 5502 5503 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5504 { 5505 struct root_domain *old_rd = NULL; 5506 unsigned long flags; 5507 5508 raw_spin_lock_irqsave(&rq->lock, flags); 5509 5510 if (rq->rd) { 5511 old_rd = rq->rd; 5512 5513 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5514 set_rq_offline(rq); 5515 5516 cpumask_clear_cpu(rq->cpu, old_rd->span); 5517 5518 /* 5519 * If we dont want to free the old_rt yet then 5520 * set old_rd to NULL to skip the freeing later 5521 * in this function: 5522 */ 5523 if (!atomic_dec_and_test(&old_rd->refcount)) 5524 old_rd = NULL; 5525 } 5526 5527 atomic_inc(&rd->refcount); 5528 rq->rd = rd; 5529 5530 cpumask_set_cpu(rq->cpu, rd->span); 5531 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5532 set_rq_online(rq); 5533 5534 raw_spin_unlock_irqrestore(&rq->lock, flags); 5535 5536 if (old_rd) 5537 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5538 } 5539 5540 static int init_rootdomain(struct root_domain *rd) 5541 { 5542 memset(rd, 0, sizeof(*rd)); 5543 5544 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5545 goto out; 5546 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5547 goto free_span; 5548 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5549 goto free_online; 5550 5551 if (cpupri_init(&rd->cpupri) != 0) 5552 goto free_rto_mask; 5553 return 0; 5554 5555 free_rto_mask: 5556 free_cpumask_var(rd->rto_mask); 5557 free_online: 5558 free_cpumask_var(rd->online); 5559 free_span: 5560 free_cpumask_var(rd->span); 5561 out: 5562 return -ENOMEM; 5563 } 5564 5565 /* 5566 * By default the system creates a single root-domain with all cpus as 5567 * members (mimicking the global state we have today). 5568 */ 5569 struct root_domain def_root_domain; 5570 5571 static void init_defrootdomain(void) 5572 { 5573 init_rootdomain(&def_root_domain); 5574 5575 atomic_set(&def_root_domain.refcount, 1); 5576 } 5577 5578 static struct root_domain *alloc_rootdomain(void) 5579 { 5580 struct root_domain *rd; 5581 5582 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5583 if (!rd) 5584 return NULL; 5585 5586 if (init_rootdomain(rd) != 0) { 5587 kfree(rd); 5588 return NULL; 5589 } 5590 5591 return rd; 5592 } 5593 5594 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5595 { 5596 struct sched_group *tmp, *first; 5597 5598 if (!sg) 5599 return; 5600 5601 first = sg; 5602 do { 5603 tmp = sg->next; 5604 5605 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5606 kfree(sg->sgp); 5607 5608 kfree(sg); 5609 sg = tmp; 5610 } while (sg != first); 5611 } 5612 5613 static void free_sched_domain(struct rcu_head *rcu) 5614 { 5615 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5616 5617 /* 5618 * If its an overlapping domain it has private groups, iterate and 5619 * nuke them all. 5620 */ 5621 if (sd->flags & SD_OVERLAP) { 5622 free_sched_groups(sd->groups, 1); 5623 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5624 kfree(sd->groups->sgp); 5625 kfree(sd->groups); 5626 } 5627 kfree(sd); 5628 } 5629 5630 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5631 { 5632 call_rcu(&sd->rcu, free_sched_domain); 5633 } 5634 5635 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5636 { 5637 for (; sd; sd = sd->parent) 5638 destroy_sched_domain(sd, cpu); 5639 } 5640 5641 /* 5642 * Keep a special pointer to the highest sched_domain that has 5643 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5644 * allows us to avoid some pointer chasing select_idle_sibling(). 5645 * 5646 * Also keep a unique ID per domain (we use the first cpu number in 5647 * the cpumask of the domain), this allows us to quickly tell if 5648 * two cpus are in the same cache domain, see cpus_share_cache(). 5649 */ 5650 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5651 DEFINE_PER_CPU(int, sd_llc_id); 5652 5653 static void update_top_cache_domain(int cpu) 5654 { 5655 struct sched_domain *sd; 5656 int id = cpu; 5657 5658 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5659 if (sd) 5660 id = cpumask_first(sched_domain_span(sd)); 5661 5662 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5663 per_cpu(sd_llc_id, cpu) = id; 5664 } 5665 5666 /* 5667 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5668 * hold the hotplug lock. 5669 */ 5670 static void 5671 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5672 { 5673 struct rq *rq = cpu_rq(cpu); 5674 struct sched_domain *tmp; 5675 5676 /* Remove the sched domains which do not contribute to scheduling. */ 5677 for (tmp = sd; tmp; ) { 5678 struct sched_domain *parent = tmp->parent; 5679 if (!parent) 5680 break; 5681 5682 if (sd_parent_degenerate(tmp, parent)) { 5683 tmp->parent = parent->parent; 5684 if (parent->parent) 5685 parent->parent->child = tmp; 5686 destroy_sched_domain(parent, cpu); 5687 } else 5688 tmp = tmp->parent; 5689 } 5690 5691 if (sd && sd_degenerate(sd)) { 5692 tmp = sd; 5693 sd = sd->parent; 5694 destroy_sched_domain(tmp, cpu); 5695 if (sd) 5696 sd->child = NULL; 5697 } 5698 5699 sched_domain_debug(sd, cpu); 5700 5701 rq_attach_root(rq, rd); 5702 tmp = rq->sd; 5703 rcu_assign_pointer(rq->sd, sd); 5704 destroy_sched_domains(tmp, cpu); 5705 5706 update_top_cache_domain(cpu); 5707 } 5708 5709 /* cpus with isolated domains */ 5710 static cpumask_var_t cpu_isolated_map; 5711 5712 /* Setup the mask of cpus configured for isolated domains */ 5713 static int __init isolated_cpu_setup(char *str) 5714 { 5715 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5716 cpulist_parse(str, cpu_isolated_map); 5717 return 1; 5718 } 5719 5720 __setup("isolcpus=", isolated_cpu_setup); 5721 5722 static const struct cpumask *cpu_cpu_mask(int cpu) 5723 { 5724 return cpumask_of_node(cpu_to_node(cpu)); 5725 } 5726 5727 struct sd_data { 5728 struct sched_domain **__percpu sd; 5729 struct sched_group **__percpu sg; 5730 struct sched_group_power **__percpu sgp; 5731 }; 5732 5733 struct s_data { 5734 struct sched_domain ** __percpu sd; 5735 struct root_domain *rd; 5736 }; 5737 5738 enum s_alloc { 5739 sa_rootdomain, 5740 sa_sd, 5741 sa_sd_storage, 5742 sa_none, 5743 }; 5744 5745 struct sched_domain_topology_level; 5746 5747 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5748 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5749 5750 #define SDTL_OVERLAP 0x01 5751 5752 struct sched_domain_topology_level { 5753 sched_domain_init_f init; 5754 sched_domain_mask_f mask; 5755 int flags; 5756 int numa_level; 5757 struct sd_data data; 5758 }; 5759 5760 /* 5761 * Build an iteration mask that can exclude certain CPUs from the upwards 5762 * domain traversal. 5763 * 5764 * Asymmetric node setups can result in situations where the domain tree is of 5765 * unequal depth, make sure to skip domains that already cover the entire 5766 * range. 5767 * 5768 * In that case build_sched_domains() will have terminated the iteration early 5769 * and our sibling sd spans will be empty. Domains should always include the 5770 * cpu they're built on, so check that. 5771 * 5772 */ 5773 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5774 { 5775 const struct cpumask *span = sched_domain_span(sd); 5776 struct sd_data *sdd = sd->private; 5777 struct sched_domain *sibling; 5778 int i; 5779 5780 for_each_cpu(i, span) { 5781 sibling = *per_cpu_ptr(sdd->sd, i); 5782 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5783 continue; 5784 5785 cpumask_set_cpu(i, sched_group_mask(sg)); 5786 } 5787 } 5788 5789 /* 5790 * Return the canonical balance cpu for this group, this is the first cpu 5791 * of this group that's also in the iteration mask. 5792 */ 5793 int group_balance_cpu(struct sched_group *sg) 5794 { 5795 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5796 } 5797 5798 static int 5799 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5800 { 5801 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5802 const struct cpumask *span = sched_domain_span(sd); 5803 struct cpumask *covered = sched_domains_tmpmask; 5804 struct sd_data *sdd = sd->private; 5805 struct sched_domain *child; 5806 int i; 5807 5808 cpumask_clear(covered); 5809 5810 for_each_cpu(i, span) { 5811 struct cpumask *sg_span; 5812 5813 if (cpumask_test_cpu(i, covered)) 5814 continue; 5815 5816 child = *per_cpu_ptr(sdd->sd, i); 5817 5818 /* See the comment near build_group_mask(). */ 5819 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5820 continue; 5821 5822 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5823 GFP_KERNEL, cpu_to_node(cpu)); 5824 5825 if (!sg) 5826 goto fail; 5827 5828 sg_span = sched_group_cpus(sg); 5829 if (child->child) { 5830 child = child->child; 5831 cpumask_copy(sg_span, sched_domain_span(child)); 5832 } else 5833 cpumask_set_cpu(i, sg_span); 5834 5835 cpumask_or(covered, covered, sg_span); 5836 5837 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5838 if (atomic_inc_return(&sg->sgp->ref) == 1) 5839 build_group_mask(sd, sg); 5840 5841 /* 5842 * Initialize sgp->power such that even if we mess up the 5843 * domains and no possible iteration will get us here, we won't 5844 * die on a /0 trap. 5845 */ 5846 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5847 5848 /* 5849 * Make sure the first group of this domain contains the 5850 * canonical balance cpu. Otherwise the sched_domain iteration 5851 * breaks. See update_sg_lb_stats(). 5852 */ 5853 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5854 group_balance_cpu(sg) == cpu) 5855 groups = sg; 5856 5857 if (!first) 5858 first = sg; 5859 if (last) 5860 last->next = sg; 5861 last = sg; 5862 last->next = first; 5863 } 5864 sd->groups = groups; 5865 5866 return 0; 5867 5868 fail: 5869 free_sched_groups(first, 0); 5870 5871 return -ENOMEM; 5872 } 5873 5874 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5875 { 5876 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5877 struct sched_domain *child = sd->child; 5878 5879 if (child) 5880 cpu = cpumask_first(sched_domain_span(child)); 5881 5882 if (sg) { 5883 *sg = *per_cpu_ptr(sdd->sg, cpu); 5884 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5885 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5886 } 5887 5888 return cpu; 5889 } 5890 5891 /* 5892 * build_sched_groups will build a circular linked list of the groups 5893 * covered by the given span, and will set each group's ->cpumask correctly, 5894 * and ->cpu_power to 0. 5895 * 5896 * Assumes the sched_domain tree is fully constructed 5897 */ 5898 static int 5899 build_sched_groups(struct sched_domain *sd, int cpu) 5900 { 5901 struct sched_group *first = NULL, *last = NULL; 5902 struct sd_data *sdd = sd->private; 5903 const struct cpumask *span = sched_domain_span(sd); 5904 struct cpumask *covered; 5905 int i; 5906 5907 get_group(cpu, sdd, &sd->groups); 5908 atomic_inc(&sd->groups->ref); 5909 5910 if (cpu != cpumask_first(sched_domain_span(sd))) 5911 return 0; 5912 5913 lockdep_assert_held(&sched_domains_mutex); 5914 covered = sched_domains_tmpmask; 5915 5916 cpumask_clear(covered); 5917 5918 for_each_cpu(i, span) { 5919 struct sched_group *sg; 5920 int group = get_group(i, sdd, &sg); 5921 int j; 5922 5923 if (cpumask_test_cpu(i, covered)) 5924 continue; 5925 5926 cpumask_clear(sched_group_cpus(sg)); 5927 sg->sgp->power = 0; 5928 cpumask_setall(sched_group_mask(sg)); 5929 5930 for_each_cpu(j, span) { 5931 if (get_group(j, sdd, NULL) != group) 5932 continue; 5933 5934 cpumask_set_cpu(j, covered); 5935 cpumask_set_cpu(j, sched_group_cpus(sg)); 5936 } 5937 5938 if (!first) 5939 first = sg; 5940 if (last) 5941 last->next = sg; 5942 last = sg; 5943 } 5944 last->next = first; 5945 5946 return 0; 5947 } 5948 5949 /* 5950 * Initialize sched groups cpu_power. 5951 * 5952 * cpu_power indicates the capacity of sched group, which is used while 5953 * distributing the load between different sched groups in a sched domain. 5954 * Typically cpu_power for all the groups in a sched domain will be same unless 5955 * there are asymmetries in the topology. If there are asymmetries, group 5956 * having more cpu_power will pickup more load compared to the group having 5957 * less cpu_power. 5958 */ 5959 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5960 { 5961 struct sched_group *sg = sd->groups; 5962 5963 WARN_ON(!sd || !sg); 5964 5965 do { 5966 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5967 sg = sg->next; 5968 } while (sg != sd->groups); 5969 5970 if (cpu != group_balance_cpu(sg)) 5971 return; 5972 5973 update_group_power(sd, cpu); 5974 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5975 } 5976 5977 int __weak arch_sd_sibling_asym_packing(void) 5978 { 5979 return 0*SD_ASYM_PACKING; 5980 } 5981 5982 /* 5983 * Initializers for schedule domains 5984 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5985 */ 5986 5987 #ifdef CONFIG_SCHED_DEBUG 5988 # define SD_INIT_NAME(sd, type) sd->name = #type 5989 #else 5990 # define SD_INIT_NAME(sd, type) do { } while (0) 5991 #endif 5992 5993 #define SD_INIT_FUNC(type) \ 5994 static noinline struct sched_domain * \ 5995 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5996 { \ 5997 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5998 *sd = SD_##type##_INIT; \ 5999 SD_INIT_NAME(sd, type); \ 6000 sd->private = &tl->data; \ 6001 return sd; \ 6002 } 6003 6004 SD_INIT_FUNC(CPU) 6005 #ifdef CONFIG_SCHED_SMT 6006 SD_INIT_FUNC(SIBLING) 6007 #endif 6008 #ifdef CONFIG_SCHED_MC 6009 SD_INIT_FUNC(MC) 6010 #endif 6011 #ifdef CONFIG_SCHED_BOOK 6012 SD_INIT_FUNC(BOOK) 6013 #endif 6014 6015 static int default_relax_domain_level = -1; 6016 int sched_domain_level_max; 6017 6018 static int __init setup_relax_domain_level(char *str) 6019 { 6020 if (kstrtoint(str, 0, &default_relax_domain_level)) 6021 pr_warn("Unable to set relax_domain_level\n"); 6022 6023 return 1; 6024 } 6025 __setup("relax_domain_level=", setup_relax_domain_level); 6026 6027 static void set_domain_attribute(struct sched_domain *sd, 6028 struct sched_domain_attr *attr) 6029 { 6030 int request; 6031 6032 if (!attr || attr->relax_domain_level < 0) { 6033 if (default_relax_domain_level < 0) 6034 return; 6035 else 6036 request = default_relax_domain_level; 6037 } else 6038 request = attr->relax_domain_level; 6039 if (request < sd->level) { 6040 /* turn off idle balance on this domain */ 6041 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6042 } else { 6043 /* turn on idle balance on this domain */ 6044 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6045 } 6046 } 6047 6048 static void __sdt_free(const struct cpumask *cpu_map); 6049 static int __sdt_alloc(const struct cpumask *cpu_map); 6050 6051 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6052 const struct cpumask *cpu_map) 6053 { 6054 switch (what) { 6055 case sa_rootdomain: 6056 if (!atomic_read(&d->rd->refcount)) 6057 free_rootdomain(&d->rd->rcu); /* fall through */ 6058 case sa_sd: 6059 free_percpu(d->sd); /* fall through */ 6060 case sa_sd_storage: 6061 __sdt_free(cpu_map); /* fall through */ 6062 case sa_none: 6063 break; 6064 } 6065 } 6066 6067 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6068 const struct cpumask *cpu_map) 6069 { 6070 memset(d, 0, sizeof(*d)); 6071 6072 if (__sdt_alloc(cpu_map)) 6073 return sa_sd_storage; 6074 d->sd = alloc_percpu(struct sched_domain *); 6075 if (!d->sd) 6076 return sa_sd_storage; 6077 d->rd = alloc_rootdomain(); 6078 if (!d->rd) 6079 return sa_sd; 6080 return sa_rootdomain; 6081 } 6082 6083 /* 6084 * NULL the sd_data elements we've used to build the sched_domain and 6085 * sched_group structure so that the subsequent __free_domain_allocs() 6086 * will not free the data we're using. 6087 */ 6088 static void claim_allocations(int cpu, struct sched_domain *sd) 6089 { 6090 struct sd_data *sdd = sd->private; 6091 6092 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6093 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6094 6095 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6096 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6097 6098 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6099 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6100 } 6101 6102 #ifdef CONFIG_SCHED_SMT 6103 static const struct cpumask *cpu_smt_mask(int cpu) 6104 { 6105 return topology_thread_cpumask(cpu); 6106 } 6107 #endif 6108 6109 /* 6110 * Topology list, bottom-up. 6111 */ 6112 static struct sched_domain_topology_level default_topology[] = { 6113 #ifdef CONFIG_SCHED_SMT 6114 { sd_init_SIBLING, cpu_smt_mask, }, 6115 #endif 6116 #ifdef CONFIG_SCHED_MC 6117 { sd_init_MC, cpu_coregroup_mask, }, 6118 #endif 6119 #ifdef CONFIG_SCHED_BOOK 6120 { sd_init_BOOK, cpu_book_mask, }, 6121 #endif 6122 { sd_init_CPU, cpu_cpu_mask, }, 6123 { NULL, }, 6124 }; 6125 6126 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6127 6128 #ifdef CONFIG_NUMA 6129 6130 static int sched_domains_numa_levels; 6131 static int *sched_domains_numa_distance; 6132 static struct cpumask ***sched_domains_numa_masks; 6133 static int sched_domains_curr_level; 6134 6135 static inline int sd_local_flags(int level) 6136 { 6137 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 6138 return 0; 6139 6140 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 6141 } 6142 6143 static struct sched_domain * 6144 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 6145 { 6146 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6147 int level = tl->numa_level; 6148 int sd_weight = cpumask_weight( 6149 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 6150 6151 *sd = (struct sched_domain){ 6152 .min_interval = sd_weight, 6153 .max_interval = 2*sd_weight, 6154 .busy_factor = 32, 6155 .imbalance_pct = 125, 6156 .cache_nice_tries = 2, 6157 .busy_idx = 3, 6158 .idle_idx = 2, 6159 .newidle_idx = 0, 6160 .wake_idx = 0, 6161 .forkexec_idx = 0, 6162 6163 .flags = 1*SD_LOAD_BALANCE 6164 | 1*SD_BALANCE_NEWIDLE 6165 | 0*SD_BALANCE_EXEC 6166 | 0*SD_BALANCE_FORK 6167 | 0*SD_BALANCE_WAKE 6168 | 0*SD_WAKE_AFFINE 6169 | 0*SD_SHARE_CPUPOWER 6170 | 0*SD_SHARE_PKG_RESOURCES 6171 | 1*SD_SERIALIZE 6172 | 0*SD_PREFER_SIBLING 6173 | sd_local_flags(level) 6174 , 6175 .last_balance = jiffies, 6176 .balance_interval = sd_weight, 6177 }; 6178 SD_INIT_NAME(sd, NUMA); 6179 sd->private = &tl->data; 6180 6181 /* 6182 * Ugly hack to pass state to sd_numa_mask()... 6183 */ 6184 sched_domains_curr_level = tl->numa_level; 6185 6186 return sd; 6187 } 6188 6189 static const struct cpumask *sd_numa_mask(int cpu) 6190 { 6191 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6192 } 6193 6194 static void sched_numa_warn(const char *str) 6195 { 6196 static int done = false; 6197 int i,j; 6198 6199 if (done) 6200 return; 6201 6202 done = true; 6203 6204 printk(KERN_WARNING "ERROR: %s\n\n", str); 6205 6206 for (i = 0; i < nr_node_ids; i++) { 6207 printk(KERN_WARNING " "); 6208 for (j = 0; j < nr_node_ids; j++) 6209 printk(KERN_CONT "%02d ", node_distance(i,j)); 6210 printk(KERN_CONT "\n"); 6211 } 6212 printk(KERN_WARNING "\n"); 6213 } 6214 6215 static bool find_numa_distance(int distance) 6216 { 6217 int i; 6218 6219 if (distance == node_distance(0, 0)) 6220 return true; 6221 6222 for (i = 0; i < sched_domains_numa_levels; i++) { 6223 if (sched_domains_numa_distance[i] == distance) 6224 return true; 6225 } 6226 6227 return false; 6228 } 6229 6230 static void sched_init_numa(void) 6231 { 6232 int next_distance, curr_distance = node_distance(0, 0); 6233 struct sched_domain_topology_level *tl; 6234 int level = 0; 6235 int i, j, k; 6236 6237 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6238 if (!sched_domains_numa_distance) 6239 return; 6240 6241 /* 6242 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6243 * unique distances in the node_distance() table. 6244 * 6245 * Assumes node_distance(0,j) includes all distances in 6246 * node_distance(i,j) in order to avoid cubic time. 6247 */ 6248 next_distance = curr_distance; 6249 for (i = 0; i < nr_node_ids; i++) { 6250 for (j = 0; j < nr_node_ids; j++) { 6251 for (k = 0; k < nr_node_ids; k++) { 6252 int distance = node_distance(i, k); 6253 6254 if (distance > curr_distance && 6255 (distance < next_distance || 6256 next_distance == curr_distance)) 6257 next_distance = distance; 6258 6259 /* 6260 * While not a strong assumption it would be nice to know 6261 * about cases where if node A is connected to B, B is not 6262 * equally connected to A. 6263 */ 6264 if (sched_debug() && node_distance(k, i) != distance) 6265 sched_numa_warn("Node-distance not symmetric"); 6266 6267 if (sched_debug() && i && !find_numa_distance(distance)) 6268 sched_numa_warn("Node-0 not representative"); 6269 } 6270 if (next_distance != curr_distance) { 6271 sched_domains_numa_distance[level++] = next_distance; 6272 sched_domains_numa_levels = level; 6273 curr_distance = next_distance; 6274 } else break; 6275 } 6276 6277 /* 6278 * In case of sched_debug() we verify the above assumption. 6279 */ 6280 if (!sched_debug()) 6281 break; 6282 } 6283 /* 6284 * 'level' contains the number of unique distances, excluding the 6285 * identity distance node_distance(i,i). 6286 * 6287 * The sched_domains_numa_distance[] array includes the actual distance 6288 * numbers. 6289 */ 6290 6291 /* 6292 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6293 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6294 * the array will contain less then 'level' members. This could be 6295 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6296 * in other functions. 6297 * 6298 * We reset it to 'level' at the end of this function. 6299 */ 6300 sched_domains_numa_levels = 0; 6301 6302 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6303 if (!sched_domains_numa_masks) 6304 return; 6305 6306 /* 6307 * Now for each level, construct a mask per node which contains all 6308 * cpus of nodes that are that many hops away from us. 6309 */ 6310 for (i = 0; i < level; i++) { 6311 sched_domains_numa_masks[i] = 6312 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6313 if (!sched_domains_numa_masks[i]) 6314 return; 6315 6316 for (j = 0; j < nr_node_ids; j++) { 6317 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6318 if (!mask) 6319 return; 6320 6321 sched_domains_numa_masks[i][j] = mask; 6322 6323 for (k = 0; k < nr_node_ids; k++) { 6324 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6325 continue; 6326 6327 cpumask_or(mask, mask, cpumask_of_node(k)); 6328 } 6329 } 6330 } 6331 6332 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6333 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6334 if (!tl) 6335 return; 6336 6337 /* 6338 * Copy the default topology bits.. 6339 */ 6340 for (i = 0; default_topology[i].init; i++) 6341 tl[i] = default_topology[i]; 6342 6343 /* 6344 * .. and append 'j' levels of NUMA goodness. 6345 */ 6346 for (j = 0; j < level; i++, j++) { 6347 tl[i] = (struct sched_domain_topology_level){ 6348 .init = sd_numa_init, 6349 .mask = sd_numa_mask, 6350 .flags = SDTL_OVERLAP, 6351 .numa_level = j, 6352 }; 6353 } 6354 6355 sched_domain_topology = tl; 6356 6357 sched_domains_numa_levels = level; 6358 } 6359 6360 static void sched_domains_numa_masks_set(int cpu) 6361 { 6362 int i, j; 6363 int node = cpu_to_node(cpu); 6364 6365 for (i = 0; i < sched_domains_numa_levels; i++) { 6366 for (j = 0; j < nr_node_ids; j++) { 6367 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6368 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6369 } 6370 } 6371 } 6372 6373 static void sched_domains_numa_masks_clear(int cpu) 6374 { 6375 int i, j; 6376 for (i = 0; i < sched_domains_numa_levels; i++) { 6377 for (j = 0; j < nr_node_ids; j++) 6378 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6379 } 6380 } 6381 6382 /* 6383 * Update sched_domains_numa_masks[level][node] array when new cpus 6384 * are onlined. 6385 */ 6386 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6387 unsigned long action, 6388 void *hcpu) 6389 { 6390 int cpu = (long)hcpu; 6391 6392 switch (action & ~CPU_TASKS_FROZEN) { 6393 case CPU_ONLINE: 6394 sched_domains_numa_masks_set(cpu); 6395 break; 6396 6397 case CPU_DEAD: 6398 sched_domains_numa_masks_clear(cpu); 6399 break; 6400 6401 default: 6402 return NOTIFY_DONE; 6403 } 6404 6405 return NOTIFY_OK; 6406 } 6407 #else 6408 static inline void sched_init_numa(void) 6409 { 6410 } 6411 6412 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6413 unsigned long action, 6414 void *hcpu) 6415 { 6416 return 0; 6417 } 6418 #endif /* CONFIG_NUMA */ 6419 6420 static int __sdt_alloc(const struct cpumask *cpu_map) 6421 { 6422 struct sched_domain_topology_level *tl; 6423 int j; 6424 6425 for (tl = sched_domain_topology; tl->init; tl++) { 6426 struct sd_data *sdd = &tl->data; 6427 6428 sdd->sd = alloc_percpu(struct sched_domain *); 6429 if (!sdd->sd) 6430 return -ENOMEM; 6431 6432 sdd->sg = alloc_percpu(struct sched_group *); 6433 if (!sdd->sg) 6434 return -ENOMEM; 6435 6436 sdd->sgp = alloc_percpu(struct sched_group_power *); 6437 if (!sdd->sgp) 6438 return -ENOMEM; 6439 6440 for_each_cpu(j, cpu_map) { 6441 struct sched_domain *sd; 6442 struct sched_group *sg; 6443 struct sched_group_power *sgp; 6444 6445 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6446 GFP_KERNEL, cpu_to_node(j)); 6447 if (!sd) 6448 return -ENOMEM; 6449 6450 *per_cpu_ptr(sdd->sd, j) = sd; 6451 6452 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6453 GFP_KERNEL, cpu_to_node(j)); 6454 if (!sg) 6455 return -ENOMEM; 6456 6457 sg->next = sg; 6458 6459 *per_cpu_ptr(sdd->sg, j) = sg; 6460 6461 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6462 GFP_KERNEL, cpu_to_node(j)); 6463 if (!sgp) 6464 return -ENOMEM; 6465 6466 *per_cpu_ptr(sdd->sgp, j) = sgp; 6467 } 6468 } 6469 6470 return 0; 6471 } 6472 6473 static void __sdt_free(const struct cpumask *cpu_map) 6474 { 6475 struct sched_domain_topology_level *tl; 6476 int j; 6477 6478 for (tl = sched_domain_topology; tl->init; tl++) { 6479 struct sd_data *sdd = &tl->data; 6480 6481 for_each_cpu(j, cpu_map) { 6482 struct sched_domain *sd; 6483 6484 if (sdd->sd) { 6485 sd = *per_cpu_ptr(sdd->sd, j); 6486 if (sd && (sd->flags & SD_OVERLAP)) 6487 free_sched_groups(sd->groups, 0); 6488 kfree(*per_cpu_ptr(sdd->sd, j)); 6489 } 6490 6491 if (sdd->sg) 6492 kfree(*per_cpu_ptr(sdd->sg, j)); 6493 if (sdd->sgp) 6494 kfree(*per_cpu_ptr(sdd->sgp, j)); 6495 } 6496 free_percpu(sdd->sd); 6497 sdd->sd = NULL; 6498 free_percpu(sdd->sg); 6499 sdd->sg = NULL; 6500 free_percpu(sdd->sgp); 6501 sdd->sgp = NULL; 6502 } 6503 } 6504 6505 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6506 struct s_data *d, const struct cpumask *cpu_map, 6507 struct sched_domain_attr *attr, struct sched_domain *child, 6508 int cpu) 6509 { 6510 struct sched_domain *sd = tl->init(tl, cpu); 6511 if (!sd) 6512 return child; 6513 6514 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6515 if (child) { 6516 sd->level = child->level + 1; 6517 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6518 child->parent = sd; 6519 } 6520 sd->child = child; 6521 set_domain_attribute(sd, attr); 6522 6523 return sd; 6524 } 6525 6526 /* 6527 * Build sched domains for a given set of cpus and attach the sched domains 6528 * to the individual cpus 6529 */ 6530 static int build_sched_domains(const struct cpumask *cpu_map, 6531 struct sched_domain_attr *attr) 6532 { 6533 enum s_alloc alloc_state = sa_none; 6534 struct sched_domain *sd; 6535 struct s_data d; 6536 int i, ret = -ENOMEM; 6537 6538 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6539 if (alloc_state != sa_rootdomain) 6540 goto error; 6541 6542 /* Set up domains for cpus specified by the cpu_map. */ 6543 for_each_cpu(i, cpu_map) { 6544 struct sched_domain_topology_level *tl; 6545 6546 sd = NULL; 6547 for (tl = sched_domain_topology; tl->init; tl++) { 6548 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6549 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6550 sd->flags |= SD_OVERLAP; 6551 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6552 break; 6553 } 6554 6555 while (sd->child) 6556 sd = sd->child; 6557 6558 *per_cpu_ptr(d.sd, i) = sd; 6559 } 6560 6561 /* Build the groups for the domains */ 6562 for_each_cpu(i, cpu_map) { 6563 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6564 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6565 if (sd->flags & SD_OVERLAP) { 6566 if (build_overlap_sched_groups(sd, i)) 6567 goto error; 6568 } else { 6569 if (build_sched_groups(sd, i)) 6570 goto error; 6571 } 6572 } 6573 } 6574 6575 /* Calculate CPU power for physical packages and nodes */ 6576 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6577 if (!cpumask_test_cpu(i, cpu_map)) 6578 continue; 6579 6580 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6581 claim_allocations(i, sd); 6582 init_sched_groups_power(i, sd); 6583 } 6584 } 6585 6586 /* Attach the domains */ 6587 rcu_read_lock(); 6588 for_each_cpu(i, cpu_map) { 6589 sd = *per_cpu_ptr(d.sd, i); 6590 cpu_attach_domain(sd, d.rd, i); 6591 } 6592 rcu_read_unlock(); 6593 6594 ret = 0; 6595 error: 6596 __free_domain_allocs(&d, alloc_state, cpu_map); 6597 return ret; 6598 } 6599 6600 static cpumask_var_t *doms_cur; /* current sched domains */ 6601 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6602 static struct sched_domain_attr *dattr_cur; 6603 /* attribues of custom domains in 'doms_cur' */ 6604 6605 /* 6606 * Special case: If a kmalloc of a doms_cur partition (array of 6607 * cpumask) fails, then fallback to a single sched domain, 6608 * as determined by the single cpumask fallback_doms. 6609 */ 6610 static cpumask_var_t fallback_doms; 6611 6612 /* 6613 * arch_update_cpu_topology lets virtualized architectures update the 6614 * cpu core maps. It is supposed to return 1 if the topology changed 6615 * or 0 if it stayed the same. 6616 */ 6617 int __attribute__((weak)) arch_update_cpu_topology(void) 6618 { 6619 return 0; 6620 } 6621 6622 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6623 { 6624 int i; 6625 cpumask_var_t *doms; 6626 6627 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6628 if (!doms) 6629 return NULL; 6630 for (i = 0; i < ndoms; i++) { 6631 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6632 free_sched_domains(doms, i); 6633 return NULL; 6634 } 6635 } 6636 return doms; 6637 } 6638 6639 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6640 { 6641 unsigned int i; 6642 for (i = 0; i < ndoms; i++) 6643 free_cpumask_var(doms[i]); 6644 kfree(doms); 6645 } 6646 6647 /* 6648 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6649 * For now this just excludes isolated cpus, but could be used to 6650 * exclude other special cases in the future. 6651 */ 6652 static int init_sched_domains(const struct cpumask *cpu_map) 6653 { 6654 int err; 6655 6656 arch_update_cpu_topology(); 6657 ndoms_cur = 1; 6658 doms_cur = alloc_sched_domains(ndoms_cur); 6659 if (!doms_cur) 6660 doms_cur = &fallback_doms; 6661 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6662 err = build_sched_domains(doms_cur[0], NULL); 6663 register_sched_domain_sysctl(); 6664 6665 return err; 6666 } 6667 6668 /* 6669 * Detach sched domains from a group of cpus specified in cpu_map 6670 * These cpus will now be attached to the NULL domain 6671 */ 6672 static void detach_destroy_domains(const struct cpumask *cpu_map) 6673 { 6674 int i; 6675 6676 rcu_read_lock(); 6677 for_each_cpu(i, cpu_map) 6678 cpu_attach_domain(NULL, &def_root_domain, i); 6679 rcu_read_unlock(); 6680 } 6681 6682 /* handle null as "default" */ 6683 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6684 struct sched_domain_attr *new, int idx_new) 6685 { 6686 struct sched_domain_attr tmp; 6687 6688 /* fast path */ 6689 if (!new && !cur) 6690 return 1; 6691 6692 tmp = SD_ATTR_INIT; 6693 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6694 new ? (new + idx_new) : &tmp, 6695 sizeof(struct sched_domain_attr)); 6696 } 6697 6698 /* 6699 * Partition sched domains as specified by the 'ndoms_new' 6700 * cpumasks in the array doms_new[] of cpumasks. This compares 6701 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6702 * It destroys each deleted domain and builds each new domain. 6703 * 6704 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6705 * The masks don't intersect (don't overlap.) We should setup one 6706 * sched domain for each mask. CPUs not in any of the cpumasks will 6707 * not be load balanced. If the same cpumask appears both in the 6708 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6709 * it as it is. 6710 * 6711 * The passed in 'doms_new' should be allocated using 6712 * alloc_sched_domains. This routine takes ownership of it and will 6713 * free_sched_domains it when done with it. If the caller failed the 6714 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6715 * and partition_sched_domains() will fallback to the single partition 6716 * 'fallback_doms', it also forces the domains to be rebuilt. 6717 * 6718 * If doms_new == NULL it will be replaced with cpu_online_mask. 6719 * ndoms_new == 0 is a special case for destroying existing domains, 6720 * and it will not create the default domain. 6721 * 6722 * Call with hotplug lock held 6723 */ 6724 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6725 struct sched_domain_attr *dattr_new) 6726 { 6727 int i, j, n; 6728 int new_topology; 6729 6730 mutex_lock(&sched_domains_mutex); 6731 6732 /* always unregister in case we don't destroy any domains */ 6733 unregister_sched_domain_sysctl(); 6734 6735 /* Let architecture update cpu core mappings. */ 6736 new_topology = arch_update_cpu_topology(); 6737 6738 n = doms_new ? ndoms_new : 0; 6739 6740 /* Destroy deleted domains */ 6741 for (i = 0; i < ndoms_cur; i++) { 6742 for (j = 0; j < n && !new_topology; j++) { 6743 if (cpumask_equal(doms_cur[i], doms_new[j]) 6744 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6745 goto match1; 6746 } 6747 /* no match - a current sched domain not in new doms_new[] */ 6748 detach_destroy_domains(doms_cur[i]); 6749 match1: 6750 ; 6751 } 6752 6753 if (doms_new == NULL) { 6754 ndoms_cur = 0; 6755 doms_new = &fallback_doms; 6756 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6757 WARN_ON_ONCE(dattr_new); 6758 } 6759 6760 /* Build new domains */ 6761 for (i = 0; i < ndoms_new; i++) { 6762 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6763 if (cpumask_equal(doms_new[i], doms_cur[j]) 6764 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6765 goto match2; 6766 } 6767 /* no match - add a new doms_new */ 6768 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6769 match2: 6770 ; 6771 } 6772 6773 /* Remember the new sched domains */ 6774 if (doms_cur != &fallback_doms) 6775 free_sched_domains(doms_cur, ndoms_cur); 6776 kfree(dattr_cur); /* kfree(NULL) is safe */ 6777 doms_cur = doms_new; 6778 dattr_cur = dattr_new; 6779 ndoms_cur = ndoms_new; 6780 6781 register_sched_domain_sysctl(); 6782 6783 mutex_unlock(&sched_domains_mutex); 6784 } 6785 6786 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6787 6788 /* 6789 * Update cpusets according to cpu_active mask. If cpusets are 6790 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6791 * around partition_sched_domains(). 6792 * 6793 * If we come here as part of a suspend/resume, don't touch cpusets because we 6794 * want to restore it back to its original state upon resume anyway. 6795 */ 6796 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6797 void *hcpu) 6798 { 6799 switch (action) { 6800 case CPU_ONLINE_FROZEN: 6801 case CPU_DOWN_FAILED_FROZEN: 6802 6803 /* 6804 * num_cpus_frozen tracks how many CPUs are involved in suspend 6805 * resume sequence. As long as this is not the last online 6806 * operation in the resume sequence, just build a single sched 6807 * domain, ignoring cpusets. 6808 */ 6809 num_cpus_frozen--; 6810 if (likely(num_cpus_frozen)) { 6811 partition_sched_domains(1, NULL, NULL); 6812 break; 6813 } 6814 6815 /* 6816 * This is the last CPU online operation. So fall through and 6817 * restore the original sched domains by considering the 6818 * cpuset configurations. 6819 */ 6820 6821 case CPU_ONLINE: 6822 case CPU_DOWN_FAILED: 6823 cpuset_update_active_cpus(true); 6824 break; 6825 default: 6826 return NOTIFY_DONE; 6827 } 6828 return NOTIFY_OK; 6829 } 6830 6831 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6832 void *hcpu) 6833 { 6834 switch (action) { 6835 case CPU_DOWN_PREPARE: 6836 cpuset_update_active_cpus(false); 6837 break; 6838 case CPU_DOWN_PREPARE_FROZEN: 6839 num_cpus_frozen++; 6840 partition_sched_domains(1, NULL, NULL); 6841 break; 6842 default: 6843 return NOTIFY_DONE; 6844 } 6845 return NOTIFY_OK; 6846 } 6847 6848 void __init sched_init_smp(void) 6849 { 6850 cpumask_var_t non_isolated_cpus; 6851 6852 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6853 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6854 6855 sched_init_numa(); 6856 6857 get_online_cpus(); 6858 mutex_lock(&sched_domains_mutex); 6859 init_sched_domains(cpu_active_mask); 6860 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6861 if (cpumask_empty(non_isolated_cpus)) 6862 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6863 mutex_unlock(&sched_domains_mutex); 6864 put_online_cpus(); 6865 6866 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6867 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6868 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6869 6870 /* RT runtime code needs to handle some hotplug events */ 6871 hotcpu_notifier(update_runtime, 0); 6872 6873 init_hrtick(); 6874 6875 /* Move init over to a non-isolated CPU */ 6876 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6877 BUG(); 6878 sched_init_granularity(); 6879 free_cpumask_var(non_isolated_cpus); 6880 6881 init_sched_rt_class(); 6882 } 6883 #else 6884 void __init sched_init_smp(void) 6885 { 6886 sched_init_granularity(); 6887 } 6888 #endif /* CONFIG_SMP */ 6889 6890 const_debug unsigned int sysctl_timer_migration = 1; 6891 6892 int in_sched_functions(unsigned long addr) 6893 { 6894 return in_lock_functions(addr) || 6895 (addr >= (unsigned long)__sched_text_start 6896 && addr < (unsigned long)__sched_text_end); 6897 } 6898 6899 #ifdef CONFIG_CGROUP_SCHED 6900 /* 6901 * Default task group. 6902 * Every task in system belongs to this group at bootup. 6903 */ 6904 struct task_group root_task_group; 6905 LIST_HEAD(task_groups); 6906 #endif 6907 6908 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6909 6910 void __init sched_init(void) 6911 { 6912 int i, j; 6913 unsigned long alloc_size = 0, ptr; 6914 6915 #ifdef CONFIG_FAIR_GROUP_SCHED 6916 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6917 #endif 6918 #ifdef CONFIG_RT_GROUP_SCHED 6919 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6920 #endif 6921 #ifdef CONFIG_CPUMASK_OFFSTACK 6922 alloc_size += num_possible_cpus() * cpumask_size(); 6923 #endif 6924 if (alloc_size) { 6925 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6926 6927 #ifdef CONFIG_FAIR_GROUP_SCHED 6928 root_task_group.se = (struct sched_entity **)ptr; 6929 ptr += nr_cpu_ids * sizeof(void **); 6930 6931 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6932 ptr += nr_cpu_ids * sizeof(void **); 6933 6934 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6935 #ifdef CONFIG_RT_GROUP_SCHED 6936 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6937 ptr += nr_cpu_ids * sizeof(void **); 6938 6939 root_task_group.rt_rq = (struct rt_rq **)ptr; 6940 ptr += nr_cpu_ids * sizeof(void **); 6941 6942 #endif /* CONFIG_RT_GROUP_SCHED */ 6943 #ifdef CONFIG_CPUMASK_OFFSTACK 6944 for_each_possible_cpu(i) { 6945 per_cpu(load_balance_mask, i) = (void *)ptr; 6946 ptr += cpumask_size(); 6947 } 6948 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6949 } 6950 6951 #ifdef CONFIG_SMP 6952 init_defrootdomain(); 6953 #endif 6954 6955 init_rt_bandwidth(&def_rt_bandwidth, 6956 global_rt_period(), global_rt_runtime()); 6957 6958 #ifdef CONFIG_RT_GROUP_SCHED 6959 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6960 global_rt_period(), global_rt_runtime()); 6961 #endif /* CONFIG_RT_GROUP_SCHED */ 6962 6963 #ifdef CONFIG_CGROUP_SCHED 6964 list_add(&root_task_group.list, &task_groups); 6965 INIT_LIST_HEAD(&root_task_group.children); 6966 INIT_LIST_HEAD(&root_task_group.siblings); 6967 autogroup_init(&init_task); 6968 6969 #endif /* CONFIG_CGROUP_SCHED */ 6970 6971 for_each_possible_cpu(i) { 6972 struct rq *rq; 6973 6974 rq = cpu_rq(i); 6975 raw_spin_lock_init(&rq->lock); 6976 rq->nr_running = 0; 6977 rq->calc_load_active = 0; 6978 rq->calc_load_update = jiffies + LOAD_FREQ; 6979 init_cfs_rq(&rq->cfs); 6980 init_rt_rq(&rq->rt, rq); 6981 #ifdef CONFIG_FAIR_GROUP_SCHED 6982 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6983 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6984 /* 6985 * How much cpu bandwidth does root_task_group get? 6986 * 6987 * In case of task-groups formed thr' the cgroup filesystem, it 6988 * gets 100% of the cpu resources in the system. This overall 6989 * system cpu resource is divided among the tasks of 6990 * root_task_group and its child task-groups in a fair manner, 6991 * based on each entity's (task or task-group's) weight 6992 * (se->load.weight). 6993 * 6994 * In other words, if root_task_group has 10 tasks of weight 6995 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6996 * then A0's share of the cpu resource is: 6997 * 6998 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6999 * 7000 * We achieve this by letting root_task_group's tasks sit 7001 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7002 */ 7003 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7004 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7005 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7006 7007 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7008 #ifdef CONFIG_RT_GROUP_SCHED 7009 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 7010 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7011 #endif 7012 7013 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7014 rq->cpu_load[j] = 0; 7015 7016 rq->last_load_update_tick = jiffies; 7017 7018 #ifdef CONFIG_SMP 7019 rq->sd = NULL; 7020 rq->rd = NULL; 7021 rq->cpu_power = SCHED_POWER_SCALE; 7022 rq->post_schedule = 0; 7023 rq->active_balance = 0; 7024 rq->next_balance = jiffies; 7025 rq->push_cpu = 0; 7026 rq->cpu = i; 7027 rq->online = 0; 7028 rq->idle_stamp = 0; 7029 rq->avg_idle = 2*sysctl_sched_migration_cost; 7030 7031 INIT_LIST_HEAD(&rq->cfs_tasks); 7032 7033 rq_attach_root(rq, &def_root_domain); 7034 #ifdef CONFIG_NO_HZ_COMMON 7035 rq->nohz_flags = 0; 7036 #endif 7037 #ifdef CONFIG_NO_HZ_FULL 7038 rq->last_sched_tick = 0; 7039 #endif 7040 #endif 7041 init_rq_hrtick(rq); 7042 atomic_set(&rq->nr_iowait, 0); 7043 } 7044 7045 set_load_weight(&init_task); 7046 7047 #ifdef CONFIG_PREEMPT_NOTIFIERS 7048 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7049 #endif 7050 7051 #ifdef CONFIG_RT_MUTEXES 7052 plist_head_init(&init_task.pi_waiters); 7053 #endif 7054 7055 /* 7056 * The boot idle thread does lazy MMU switching as well: 7057 */ 7058 atomic_inc(&init_mm.mm_count); 7059 enter_lazy_tlb(&init_mm, current); 7060 7061 /* 7062 * Make us the idle thread. Technically, schedule() should not be 7063 * called from this thread, however somewhere below it might be, 7064 * but because we are the idle thread, we just pick up running again 7065 * when this runqueue becomes "idle". 7066 */ 7067 init_idle(current, smp_processor_id()); 7068 7069 calc_load_update = jiffies + LOAD_FREQ; 7070 7071 /* 7072 * During early bootup we pretend to be a normal task: 7073 */ 7074 current->sched_class = &fair_sched_class; 7075 7076 #ifdef CONFIG_SMP 7077 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7078 /* May be allocated at isolcpus cmdline parse time */ 7079 if (cpu_isolated_map == NULL) 7080 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7081 idle_thread_set_boot_cpu(); 7082 #endif 7083 init_sched_fair_class(); 7084 7085 scheduler_running = 1; 7086 } 7087 7088 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7089 static inline int preempt_count_equals(int preempt_offset) 7090 { 7091 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7092 7093 return (nested == preempt_offset); 7094 } 7095 7096 void __might_sleep(const char *file, int line, int preempt_offset) 7097 { 7098 static unsigned long prev_jiffy; /* ratelimiting */ 7099 7100 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7101 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7102 system_state != SYSTEM_RUNNING || oops_in_progress) 7103 return; 7104 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7105 return; 7106 prev_jiffy = jiffies; 7107 7108 printk(KERN_ERR 7109 "BUG: sleeping function called from invalid context at %s:%d\n", 7110 file, line); 7111 printk(KERN_ERR 7112 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7113 in_atomic(), irqs_disabled(), 7114 current->pid, current->comm); 7115 7116 debug_show_held_locks(current); 7117 if (irqs_disabled()) 7118 print_irqtrace_events(current); 7119 dump_stack(); 7120 } 7121 EXPORT_SYMBOL(__might_sleep); 7122 #endif 7123 7124 #ifdef CONFIG_MAGIC_SYSRQ 7125 static void normalize_task(struct rq *rq, struct task_struct *p) 7126 { 7127 const struct sched_class *prev_class = p->sched_class; 7128 int old_prio = p->prio; 7129 int on_rq; 7130 7131 on_rq = p->on_rq; 7132 if (on_rq) 7133 dequeue_task(rq, p, 0); 7134 __setscheduler(rq, p, SCHED_NORMAL, 0); 7135 if (on_rq) { 7136 enqueue_task(rq, p, 0); 7137 resched_task(rq->curr); 7138 } 7139 7140 check_class_changed(rq, p, prev_class, old_prio); 7141 } 7142 7143 void normalize_rt_tasks(void) 7144 { 7145 struct task_struct *g, *p; 7146 unsigned long flags; 7147 struct rq *rq; 7148 7149 read_lock_irqsave(&tasklist_lock, flags); 7150 do_each_thread(g, p) { 7151 /* 7152 * Only normalize user tasks: 7153 */ 7154 if (!p->mm) 7155 continue; 7156 7157 p->se.exec_start = 0; 7158 #ifdef CONFIG_SCHEDSTATS 7159 p->se.statistics.wait_start = 0; 7160 p->se.statistics.sleep_start = 0; 7161 p->se.statistics.block_start = 0; 7162 #endif 7163 7164 if (!rt_task(p)) { 7165 /* 7166 * Renice negative nice level userspace 7167 * tasks back to 0: 7168 */ 7169 if (TASK_NICE(p) < 0 && p->mm) 7170 set_user_nice(p, 0); 7171 continue; 7172 } 7173 7174 raw_spin_lock(&p->pi_lock); 7175 rq = __task_rq_lock(p); 7176 7177 normalize_task(rq, p); 7178 7179 __task_rq_unlock(rq); 7180 raw_spin_unlock(&p->pi_lock); 7181 } while_each_thread(g, p); 7182 7183 read_unlock_irqrestore(&tasklist_lock, flags); 7184 } 7185 7186 #endif /* CONFIG_MAGIC_SYSRQ */ 7187 7188 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7189 /* 7190 * These functions are only useful for the IA64 MCA handling, or kdb. 7191 * 7192 * They can only be called when the whole system has been 7193 * stopped - every CPU needs to be quiescent, and no scheduling 7194 * activity can take place. Using them for anything else would 7195 * be a serious bug, and as a result, they aren't even visible 7196 * under any other configuration. 7197 */ 7198 7199 /** 7200 * curr_task - return the current task for a given cpu. 7201 * @cpu: the processor in question. 7202 * 7203 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7204 */ 7205 struct task_struct *curr_task(int cpu) 7206 { 7207 return cpu_curr(cpu); 7208 } 7209 7210 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7211 7212 #ifdef CONFIG_IA64 7213 /** 7214 * set_curr_task - set the current task for a given cpu. 7215 * @cpu: the processor in question. 7216 * @p: the task pointer to set. 7217 * 7218 * Description: This function must only be used when non-maskable interrupts 7219 * are serviced on a separate stack. It allows the architecture to switch the 7220 * notion of the current task on a cpu in a non-blocking manner. This function 7221 * must be called with all CPU's synchronized, and interrupts disabled, the 7222 * and caller must save the original value of the current task (see 7223 * curr_task() above) and restore that value before reenabling interrupts and 7224 * re-starting the system. 7225 * 7226 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7227 */ 7228 void set_curr_task(int cpu, struct task_struct *p) 7229 { 7230 cpu_curr(cpu) = p; 7231 } 7232 7233 #endif 7234 7235 #ifdef CONFIG_CGROUP_SCHED 7236 /* task_group_lock serializes the addition/removal of task groups */ 7237 static DEFINE_SPINLOCK(task_group_lock); 7238 7239 static void free_sched_group(struct task_group *tg) 7240 { 7241 free_fair_sched_group(tg); 7242 free_rt_sched_group(tg); 7243 autogroup_free(tg); 7244 kfree(tg); 7245 } 7246 7247 /* allocate runqueue etc for a new task group */ 7248 struct task_group *sched_create_group(struct task_group *parent) 7249 { 7250 struct task_group *tg; 7251 7252 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7253 if (!tg) 7254 return ERR_PTR(-ENOMEM); 7255 7256 if (!alloc_fair_sched_group(tg, parent)) 7257 goto err; 7258 7259 if (!alloc_rt_sched_group(tg, parent)) 7260 goto err; 7261 7262 return tg; 7263 7264 err: 7265 free_sched_group(tg); 7266 return ERR_PTR(-ENOMEM); 7267 } 7268 7269 void sched_online_group(struct task_group *tg, struct task_group *parent) 7270 { 7271 unsigned long flags; 7272 7273 spin_lock_irqsave(&task_group_lock, flags); 7274 list_add_rcu(&tg->list, &task_groups); 7275 7276 WARN_ON(!parent); /* root should already exist */ 7277 7278 tg->parent = parent; 7279 INIT_LIST_HEAD(&tg->children); 7280 list_add_rcu(&tg->siblings, &parent->children); 7281 spin_unlock_irqrestore(&task_group_lock, flags); 7282 } 7283 7284 /* rcu callback to free various structures associated with a task group */ 7285 static void free_sched_group_rcu(struct rcu_head *rhp) 7286 { 7287 /* now it should be safe to free those cfs_rqs */ 7288 free_sched_group(container_of(rhp, struct task_group, rcu)); 7289 } 7290 7291 /* Destroy runqueue etc associated with a task group */ 7292 void sched_destroy_group(struct task_group *tg) 7293 { 7294 /* wait for possible concurrent references to cfs_rqs complete */ 7295 call_rcu(&tg->rcu, free_sched_group_rcu); 7296 } 7297 7298 void sched_offline_group(struct task_group *tg) 7299 { 7300 unsigned long flags; 7301 int i; 7302 7303 /* end participation in shares distribution */ 7304 for_each_possible_cpu(i) 7305 unregister_fair_sched_group(tg, i); 7306 7307 spin_lock_irqsave(&task_group_lock, flags); 7308 list_del_rcu(&tg->list); 7309 list_del_rcu(&tg->siblings); 7310 spin_unlock_irqrestore(&task_group_lock, flags); 7311 } 7312 7313 /* change task's runqueue when it moves between groups. 7314 * The caller of this function should have put the task in its new group 7315 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7316 * reflect its new group. 7317 */ 7318 void sched_move_task(struct task_struct *tsk) 7319 { 7320 struct task_group *tg; 7321 int on_rq, running; 7322 unsigned long flags; 7323 struct rq *rq; 7324 7325 rq = task_rq_lock(tsk, &flags); 7326 7327 running = task_current(rq, tsk); 7328 on_rq = tsk->on_rq; 7329 7330 if (on_rq) 7331 dequeue_task(rq, tsk, 0); 7332 if (unlikely(running)) 7333 tsk->sched_class->put_prev_task(rq, tsk); 7334 7335 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id, 7336 lockdep_is_held(&tsk->sighand->siglock)), 7337 struct task_group, css); 7338 tg = autogroup_task_group(tsk, tg); 7339 tsk->sched_task_group = tg; 7340 7341 #ifdef CONFIG_FAIR_GROUP_SCHED 7342 if (tsk->sched_class->task_move_group) 7343 tsk->sched_class->task_move_group(tsk, on_rq); 7344 else 7345 #endif 7346 set_task_rq(tsk, task_cpu(tsk)); 7347 7348 if (unlikely(running)) 7349 tsk->sched_class->set_curr_task(rq); 7350 if (on_rq) 7351 enqueue_task(rq, tsk, 0); 7352 7353 task_rq_unlock(rq, tsk, &flags); 7354 } 7355 #endif /* CONFIG_CGROUP_SCHED */ 7356 7357 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7358 static unsigned long to_ratio(u64 period, u64 runtime) 7359 { 7360 if (runtime == RUNTIME_INF) 7361 return 1ULL << 20; 7362 7363 return div64_u64(runtime << 20, period); 7364 } 7365 #endif 7366 7367 #ifdef CONFIG_RT_GROUP_SCHED 7368 /* 7369 * Ensure that the real time constraints are schedulable. 7370 */ 7371 static DEFINE_MUTEX(rt_constraints_mutex); 7372 7373 /* Must be called with tasklist_lock held */ 7374 static inline int tg_has_rt_tasks(struct task_group *tg) 7375 { 7376 struct task_struct *g, *p; 7377 7378 do_each_thread(g, p) { 7379 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7380 return 1; 7381 } while_each_thread(g, p); 7382 7383 return 0; 7384 } 7385 7386 struct rt_schedulable_data { 7387 struct task_group *tg; 7388 u64 rt_period; 7389 u64 rt_runtime; 7390 }; 7391 7392 static int tg_rt_schedulable(struct task_group *tg, void *data) 7393 { 7394 struct rt_schedulable_data *d = data; 7395 struct task_group *child; 7396 unsigned long total, sum = 0; 7397 u64 period, runtime; 7398 7399 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7400 runtime = tg->rt_bandwidth.rt_runtime; 7401 7402 if (tg == d->tg) { 7403 period = d->rt_period; 7404 runtime = d->rt_runtime; 7405 } 7406 7407 /* 7408 * Cannot have more runtime than the period. 7409 */ 7410 if (runtime > period && runtime != RUNTIME_INF) 7411 return -EINVAL; 7412 7413 /* 7414 * Ensure we don't starve existing RT tasks. 7415 */ 7416 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7417 return -EBUSY; 7418 7419 total = to_ratio(period, runtime); 7420 7421 /* 7422 * Nobody can have more than the global setting allows. 7423 */ 7424 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7425 return -EINVAL; 7426 7427 /* 7428 * The sum of our children's runtime should not exceed our own. 7429 */ 7430 list_for_each_entry_rcu(child, &tg->children, siblings) { 7431 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7432 runtime = child->rt_bandwidth.rt_runtime; 7433 7434 if (child == d->tg) { 7435 period = d->rt_period; 7436 runtime = d->rt_runtime; 7437 } 7438 7439 sum += to_ratio(period, runtime); 7440 } 7441 7442 if (sum > total) 7443 return -EINVAL; 7444 7445 return 0; 7446 } 7447 7448 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7449 { 7450 int ret; 7451 7452 struct rt_schedulable_data data = { 7453 .tg = tg, 7454 .rt_period = period, 7455 .rt_runtime = runtime, 7456 }; 7457 7458 rcu_read_lock(); 7459 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7460 rcu_read_unlock(); 7461 7462 return ret; 7463 } 7464 7465 static int tg_set_rt_bandwidth(struct task_group *tg, 7466 u64 rt_period, u64 rt_runtime) 7467 { 7468 int i, err = 0; 7469 7470 mutex_lock(&rt_constraints_mutex); 7471 read_lock(&tasklist_lock); 7472 err = __rt_schedulable(tg, rt_period, rt_runtime); 7473 if (err) 7474 goto unlock; 7475 7476 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7477 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7478 tg->rt_bandwidth.rt_runtime = rt_runtime; 7479 7480 for_each_possible_cpu(i) { 7481 struct rt_rq *rt_rq = tg->rt_rq[i]; 7482 7483 raw_spin_lock(&rt_rq->rt_runtime_lock); 7484 rt_rq->rt_runtime = rt_runtime; 7485 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7486 } 7487 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7488 unlock: 7489 read_unlock(&tasklist_lock); 7490 mutex_unlock(&rt_constraints_mutex); 7491 7492 return err; 7493 } 7494 7495 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7496 { 7497 u64 rt_runtime, rt_period; 7498 7499 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7500 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7501 if (rt_runtime_us < 0) 7502 rt_runtime = RUNTIME_INF; 7503 7504 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7505 } 7506 7507 static long sched_group_rt_runtime(struct task_group *tg) 7508 { 7509 u64 rt_runtime_us; 7510 7511 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7512 return -1; 7513 7514 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7515 do_div(rt_runtime_us, NSEC_PER_USEC); 7516 return rt_runtime_us; 7517 } 7518 7519 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7520 { 7521 u64 rt_runtime, rt_period; 7522 7523 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7524 rt_runtime = tg->rt_bandwidth.rt_runtime; 7525 7526 if (rt_period == 0) 7527 return -EINVAL; 7528 7529 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7530 } 7531 7532 static long sched_group_rt_period(struct task_group *tg) 7533 { 7534 u64 rt_period_us; 7535 7536 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7537 do_div(rt_period_us, NSEC_PER_USEC); 7538 return rt_period_us; 7539 } 7540 7541 static int sched_rt_global_constraints(void) 7542 { 7543 u64 runtime, period; 7544 int ret = 0; 7545 7546 if (sysctl_sched_rt_period <= 0) 7547 return -EINVAL; 7548 7549 runtime = global_rt_runtime(); 7550 period = global_rt_period(); 7551 7552 /* 7553 * Sanity check on the sysctl variables. 7554 */ 7555 if (runtime > period && runtime != RUNTIME_INF) 7556 return -EINVAL; 7557 7558 mutex_lock(&rt_constraints_mutex); 7559 read_lock(&tasklist_lock); 7560 ret = __rt_schedulable(NULL, 0, 0); 7561 read_unlock(&tasklist_lock); 7562 mutex_unlock(&rt_constraints_mutex); 7563 7564 return ret; 7565 } 7566 7567 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7568 { 7569 /* Don't accept realtime tasks when there is no way for them to run */ 7570 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7571 return 0; 7572 7573 return 1; 7574 } 7575 7576 #else /* !CONFIG_RT_GROUP_SCHED */ 7577 static int sched_rt_global_constraints(void) 7578 { 7579 unsigned long flags; 7580 int i; 7581 7582 if (sysctl_sched_rt_period <= 0) 7583 return -EINVAL; 7584 7585 /* 7586 * There's always some RT tasks in the root group 7587 * -- migration, kstopmachine etc.. 7588 */ 7589 if (sysctl_sched_rt_runtime == 0) 7590 return -EBUSY; 7591 7592 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7593 for_each_possible_cpu(i) { 7594 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7595 7596 raw_spin_lock(&rt_rq->rt_runtime_lock); 7597 rt_rq->rt_runtime = global_rt_runtime(); 7598 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7599 } 7600 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7601 7602 return 0; 7603 } 7604 #endif /* CONFIG_RT_GROUP_SCHED */ 7605 7606 int sched_rr_handler(struct ctl_table *table, int write, 7607 void __user *buffer, size_t *lenp, 7608 loff_t *ppos) 7609 { 7610 int ret; 7611 static DEFINE_MUTEX(mutex); 7612 7613 mutex_lock(&mutex); 7614 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7615 /* make sure that internally we keep jiffies */ 7616 /* also, writing zero resets timeslice to default */ 7617 if (!ret && write) { 7618 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7619 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7620 } 7621 mutex_unlock(&mutex); 7622 return ret; 7623 } 7624 7625 int sched_rt_handler(struct ctl_table *table, int write, 7626 void __user *buffer, size_t *lenp, 7627 loff_t *ppos) 7628 { 7629 int ret; 7630 int old_period, old_runtime; 7631 static DEFINE_MUTEX(mutex); 7632 7633 mutex_lock(&mutex); 7634 old_period = sysctl_sched_rt_period; 7635 old_runtime = sysctl_sched_rt_runtime; 7636 7637 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7638 7639 if (!ret && write) { 7640 ret = sched_rt_global_constraints(); 7641 if (ret) { 7642 sysctl_sched_rt_period = old_period; 7643 sysctl_sched_rt_runtime = old_runtime; 7644 } else { 7645 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7646 def_rt_bandwidth.rt_period = 7647 ns_to_ktime(global_rt_period()); 7648 } 7649 } 7650 mutex_unlock(&mutex); 7651 7652 return ret; 7653 } 7654 7655 #ifdef CONFIG_CGROUP_SCHED 7656 7657 /* return corresponding task_group object of a cgroup */ 7658 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7659 { 7660 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7661 struct task_group, css); 7662 } 7663 7664 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp) 7665 { 7666 struct task_group *tg, *parent; 7667 7668 if (!cgrp->parent) { 7669 /* This is early initialization for the top cgroup */ 7670 return &root_task_group.css; 7671 } 7672 7673 parent = cgroup_tg(cgrp->parent); 7674 tg = sched_create_group(parent); 7675 if (IS_ERR(tg)) 7676 return ERR_PTR(-ENOMEM); 7677 7678 return &tg->css; 7679 } 7680 7681 static int cpu_cgroup_css_online(struct cgroup *cgrp) 7682 { 7683 struct task_group *tg = cgroup_tg(cgrp); 7684 struct task_group *parent; 7685 7686 if (!cgrp->parent) 7687 return 0; 7688 7689 parent = cgroup_tg(cgrp->parent); 7690 sched_online_group(tg, parent); 7691 return 0; 7692 } 7693 7694 static void cpu_cgroup_css_free(struct cgroup *cgrp) 7695 { 7696 struct task_group *tg = cgroup_tg(cgrp); 7697 7698 sched_destroy_group(tg); 7699 } 7700 7701 static void cpu_cgroup_css_offline(struct cgroup *cgrp) 7702 { 7703 struct task_group *tg = cgroup_tg(cgrp); 7704 7705 sched_offline_group(tg); 7706 } 7707 7708 static int cpu_cgroup_can_attach(struct cgroup *cgrp, 7709 struct cgroup_taskset *tset) 7710 { 7711 struct task_struct *task; 7712 7713 cgroup_taskset_for_each(task, cgrp, tset) { 7714 #ifdef CONFIG_RT_GROUP_SCHED 7715 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7716 return -EINVAL; 7717 #else 7718 /* We don't support RT-tasks being in separate groups */ 7719 if (task->sched_class != &fair_sched_class) 7720 return -EINVAL; 7721 #endif 7722 } 7723 return 0; 7724 } 7725 7726 static void cpu_cgroup_attach(struct cgroup *cgrp, 7727 struct cgroup_taskset *tset) 7728 { 7729 struct task_struct *task; 7730 7731 cgroup_taskset_for_each(task, cgrp, tset) 7732 sched_move_task(task); 7733 } 7734 7735 static void 7736 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7737 struct task_struct *task) 7738 { 7739 /* 7740 * cgroup_exit() is called in the copy_process() failure path. 7741 * Ignore this case since the task hasn't ran yet, this avoids 7742 * trying to poke a half freed task state from generic code. 7743 */ 7744 if (!(task->flags & PF_EXITING)) 7745 return; 7746 7747 sched_move_task(task); 7748 } 7749 7750 #ifdef CONFIG_FAIR_GROUP_SCHED 7751 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7752 u64 shareval) 7753 { 7754 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7755 } 7756 7757 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7758 { 7759 struct task_group *tg = cgroup_tg(cgrp); 7760 7761 return (u64) scale_load_down(tg->shares); 7762 } 7763 7764 #ifdef CONFIG_CFS_BANDWIDTH 7765 static DEFINE_MUTEX(cfs_constraints_mutex); 7766 7767 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7768 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7769 7770 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7771 7772 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7773 { 7774 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7775 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7776 7777 if (tg == &root_task_group) 7778 return -EINVAL; 7779 7780 /* 7781 * Ensure we have at some amount of bandwidth every period. This is 7782 * to prevent reaching a state of large arrears when throttled via 7783 * entity_tick() resulting in prolonged exit starvation. 7784 */ 7785 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7786 return -EINVAL; 7787 7788 /* 7789 * Likewise, bound things on the otherside by preventing insane quota 7790 * periods. This also allows us to normalize in computing quota 7791 * feasibility. 7792 */ 7793 if (period > max_cfs_quota_period) 7794 return -EINVAL; 7795 7796 mutex_lock(&cfs_constraints_mutex); 7797 ret = __cfs_schedulable(tg, period, quota); 7798 if (ret) 7799 goto out_unlock; 7800 7801 runtime_enabled = quota != RUNTIME_INF; 7802 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7803 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7804 raw_spin_lock_irq(&cfs_b->lock); 7805 cfs_b->period = ns_to_ktime(period); 7806 cfs_b->quota = quota; 7807 7808 __refill_cfs_bandwidth_runtime(cfs_b); 7809 /* restart the period timer (if active) to handle new period expiry */ 7810 if (runtime_enabled && cfs_b->timer_active) { 7811 /* force a reprogram */ 7812 cfs_b->timer_active = 0; 7813 __start_cfs_bandwidth(cfs_b); 7814 } 7815 raw_spin_unlock_irq(&cfs_b->lock); 7816 7817 for_each_possible_cpu(i) { 7818 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7819 struct rq *rq = cfs_rq->rq; 7820 7821 raw_spin_lock_irq(&rq->lock); 7822 cfs_rq->runtime_enabled = runtime_enabled; 7823 cfs_rq->runtime_remaining = 0; 7824 7825 if (cfs_rq->throttled) 7826 unthrottle_cfs_rq(cfs_rq); 7827 raw_spin_unlock_irq(&rq->lock); 7828 } 7829 out_unlock: 7830 mutex_unlock(&cfs_constraints_mutex); 7831 7832 return ret; 7833 } 7834 7835 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7836 { 7837 u64 quota, period; 7838 7839 period = ktime_to_ns(tg->cfs_bandwidth.period); 7840 if (cfs_quota_us < 0) 7841 quota = RUNTIME_INF; 7842 else 7843 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7844 7845 return tg_set_cfs_bandwidth(tg, period, quota); 7846 } 7847 7848 long tg_get_cfs_quota(struct task_group *tg) 7849 { 7850 u64 quota_us; 7851 7852 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7853 return -1; 7854 7855 quota_us = tg->cfs_bandwidth.quota; 7856 do_div(quota_us, NSEC_PER_USEC); 7857 7858 return quota_us; 7859 } 7860 7861 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7862 { 7863 u64 quota, period; 7864 7865 period = (u64)cfs_period_us * NSEC_PER_USEC; 7866 quota = tg->cfs_bandwidth.quota; 7867 7868 return tg_set_cfs_bandwidth(tg, period, quota); 7869 } 7870 7871 long tg_get_cfs_period(struct task_group *tg) 7872 { 7873 u64 cfs_period_us; 7874 7875 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7876 do_div(cfs_period_us, NSEC_PER_USEC); 7877 7878 return cfs_period_us; 7879 } 7880 7881 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7882 { 7883 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7884 } 7885 7886 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7887 s64 cfs_quota_us) 7888 { 7889 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7890 } 7891 7892 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7893 { 7894 return tg_get_cfs_period(cgroup_tg(cgrp)); 7895 } 7896 7897 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7898 u64 cfs_period_us) 7899 { 7900 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7901 } 7902 7903 struct cfs_schedulable_data { 7904 struct task_group *tg; 7905 u64 period, quota; 7906 }; 7907 7908 /* 7909 * normalize group quota/period to be quota/max_period 7910 * note: units are usecs 7911 */ 7912 static u64 normalize_cfs_quota(struct task_group *tg, 7913 struct cfs_schedulable_data *d) 7914 { 7915 u64 quota, period; 7916 7917 if (tg == d->tg) { 7918 period = d->period; 7919 quota = d->quota; 7920 } else { 7921 period = tg_get_cfs_period(tg); 7922 quota = tg_get_cfs_quota(tg); 7923 } 7924 7925 /* note: these should typically be equivalent */ 7926 if (quota == RUNTIME_INF || quota == -1) 7927 return RUNTIME_INF; 7928 7929 return to_ratio(period, quota); 7930 } 7931 7932 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7933 { 7934 struct cfs_schedulable_data *d = data; 7935 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7936 s64 quota = 0, parent_quota = -1; 7937 7938 if (!tg->parent) { 7939 quota = RUNTIME_INF; 7940 } else { 7941 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7942 7943 quota = normalize_cfs_quota(tg, d); 7944 parent_quota = parent_b->hierarchal_quota; 7945 7946 /* 7947 * ensure max(child_quota) <= parent_quota, inherit when no 7948 * limit is set 7949 */ 7950 if (quota == RUNTIME_INF) 7951 quota = parent_quota; 7952 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7953 return -EINVAL; 7954 } 7955 cfs_b->hierarchal_quota = quota; 7956 7957 return 0; 7958 } 7959 7960 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7961 { 7962 int ret; 7963 struct cfs_schedulable_data data = { 7964 .tg = tg, 7965 .period = period, 7966 .quota = quota, 7967 }; 7968 7969 if (quota != RUNTIME_INF) { 7970 do_div(data.period, NSEC_PER_USEC); 7971 do_div(data.quota, NSEC_PER_USEC); 7972 } 7973 7974 rcu_read_lock(); 7975 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7976 rcu_read_unlock(); 7977 7978 return ret; 7979 } 7980 7981 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7982 struct cgroup_map_cb *cb) 7983 { 7984 struct task_group *tg = cgroup_tg(cgrp); 7985 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7986 7987 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7988 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7989 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7990 7991 return 0; 7992 } 7993 #endif /* CONFIG_CFS_BANDWIDTH */ 7994 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7995 7996 #ifdef CONFIG_RT_GROUP_SCHED 7997 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7998 s64 val) 7999 { 8000 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 8001 } 8002 8003 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 8004 { 8005 return sched_group_rt_runtime(cgroup_tg(cgrp)); 8006 } 8007 8008 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 8009 u64 rt_period_us) 8010 { 8011 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 8012 } 8013 8014 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 8015 { 8016 return sched_group_rt_period(cgroup_tg(cgrp)); 8017 } 8018 #endif /* CONFIG_RT_GROUP_SCHED */ 8019 8020 static struct cftype cpu_files[] = { 8021 #ifdef CONFIG_FAIR_GROUP_SCHED 8022 { 8023 .name = "shares", 8024 .read_u64 = cpu_shares_read_u64, 8025 .write_u64 = cpu_shares_write_u64, 8026 }, 8027 #endif 8028 #ifdef CONFIG_CFS_BANDWIDTH 8029 { 8030 .name = "cfs_quota_us", 8031 .read_s64 = cpu_cfs_quota_read_s64, 8032 .write_s64 = cpu_cfs_quota_write_s64, 8033 }, 8034 { 8035 .name = "cfs_period_us", 8036 .read_u64 = cpu_cfs_period_read_u64, 8037 .write_u64 = cpu_cfs_period_write_u64, 8038 }, 8039 { 8040 .name = "stat", 8041 .read_map = cpu_stats_show, 8042 }, 8043 #endif 8044 #ifdef CONFIG_RT_GROUP_SCHED 8045 { 8046 .name = "rt_runtime_us", 8047 .read_s64 = cpu_rt_runtime_read, 8048 .write_s64 = cpu_rt_runtime_write, 8049 }, 8050 { 8051 .name = "rt_period_us", 8052 .read_u64 = cpu_rt_period_read_uint, 8053 .write_u64 = cpu_rt_period_write_uint, 8054 }, 8055 #endif 8056 { } /* terminate */ 8057 }; 8058 8059 struct cgroup_subsys cpu_cgroup_subsys = { 8060 .name = "cpu", 8061 .css_alloc = cpu_cgroup_css_alloc, 8062 .css_free = cpu_cgroup_css_free, 8063 .css_online = cpu_cgroup_css_online, 8064 .css_offline = cpu_cgroup_css_offline, 8065 .can_attach = cpu_cgroup_can_attach, 8066 .attach = cpu_cgroup_attach, 8067 .exit = cpu_cgroup_exit, 8068 .subsys_id = cpu_cgroup_subsys_id, 8069 .base_cftypes = cpu_files, 8070 .early_init = 1, 8071 }; 8072 8073 #endif /* CONFIG_CGROUP_SCHED */ 8074 8075 void dump_cpu_task(int cpu) 8076 { 8077 pr_info("Task dump for CPU %d:\n", cpu); 8078 sched_show_task(cpu_curr(cpu)); 8079 } 8080