1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 75 #include <asm/tlb.h> 76 #include <asm/irq_regs.h> 77 #ifdef CONFIG_PARAVIRT 78 #include <asm/paravirt.h> 79 #endif 80 81 #include "sched.h" 82 #include "../workqueue_sched.h" 83 84 #define CREATE_TRACE_POINTS 85 #include <trace/events/sched.h> 86 87 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 88 { 89 unsigned long delta; 90 ktime_t soft, hard, now; 91 92 for (;;) { 93 if (hrtimer_active(period_timer)) 94 break; 95 96 now = hrtimer_cb_get_time(period_timer); 97 hrtimer_forward(period_timer, now, period); 98 99 soft = hrtimer_get_softexpires(period_timer); 100 hard = hrtimer_get_expires(period_timer); 101 delta = ktime_to_ns(ktime_sub(hard, soft)); 102 __hrtimer_start_range_ns(period_timer, soft, delta, 103 HRTIMER_MODE_ABS_PINNED, 0); 104 } 105 } 106 107 DEFINE_MUTEX(sched_domains_mutex); 108 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 109 110 static void update_rq_clock_task(struct rq *rq, s64 delta); 111 112 void update_rq_clock(struct rq *rq) 113 { 114 s64 delta; 115 116 if (rq->skip_clock_update > 0) 117 return; 118 119 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 120 rq->clock += delta; 121 update_rq_clock_task(rq, delta); 122 } 123 124 /* 125 * Debugging: various feature bits 126 */ 127 128 #define SCHED_FEAT(name, enabled) \ 129 (1UL << __SCHED_FEAT_##name) * enabled | 130 131 const_debug unsigned int sysctl_sched_features = 132 #include "features.h" 133 0; 134 135 #undef SCHED_FEAT 136 137 #ifdef CONFIG_SCHED_DEBUG 138 #define SCHED_FEAT(name, enabled) \ 139 #name , 140 141 static __read_mostly char *sched_feat_names[] = { 142 #include "features.h" 143 NULL 144 }; 145 146 #undef SCHED_FEAT 147 148 static int sched_feat_show(struct seq_file *m, void *v) 149 { 150 int i; 151 152 for (i = 0; i < __SCHED_FEAT_NR; i++) { 153 if (!(sysctl_sched_features & (1UL << i))) 154 seq_puts(m, "NO_"); 155 seq_printf(m, "%s ", sched_feat_names[i]); 156 } 157 seq_puts(m, "\n"); 158 159 return 0; 160 } 161 162 #ifdef HAVE_JUMP_LABEL 163 164 #define jump_label_key__true jump_label_key_enabled 165 #define jump_label_key__false jump_label_key_disabled 166 167 #define SCHED_FEAT(name, enabled) \ 168 jump_label_key__##enabled , 169 170 struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = { 171 #include "features.h" 172 }; 173 174 #undef SCHED_FEAT 175 176 static void sched_feat_disable(int i) 177 { 178 if (jump_label_enabled(&sched_feat_keys[i])) 179 jump_label_dec(&sched_feat_keys[i]); 180 } 181 182 static void sched_feat_enable(int i) 183 { 184 if (!jump_label_enabled(&sched_feat_keys[i])) 185 jump_label_inc(&sched_feat_keys[i]); 186 } 187 #else 188 static void sched_feat_disable(int i) { }; 189 static void sched_feat_enable(int i) { }; 190 #endif /* HAVE_JUMP_LABEL */ 191 192 static ssize_t 193 sched_feat_write(struct file *filp, const char __user *ubuf, 194 size_t cnt, loff_t *ppos) 195 { 196 char buf[64]; 197 char *cmp; 198 int neg = 0; 199 int i; 200 201 if (cnt > 63) 202 cnt = 63; 203 204 if (copy_from_user(&buf, ubuf, cnt)) 205 return -EFAULT; 206 207 buf[cnt] = 0; 208 cmp = strstrip(buf); 209 210 if (strncmp(cmp, "NO_", 3) == 0) { 211 neg = 1; 212 cmp += 3; 213 } 214 215 for (i = 0; i < __SCHED_FEAT_NR; i++) { 216 if (strcmp(cmp, sched_feat_names[i]) == 0) { 217 if (neg) { 218 sysctl_sched_features &= ~(1UL << i); 219 sched_feat_disable(i); 220 } else { 221 sysctl_sched_features |= (1UL << i); 222 sched_feat_enable(i); 223 } 224 break; 225 } 226 } 227 228 if (i == __SCHED_FEAT_NR) 229 return -EINVAL; 230 231 *ppos += cnt; 232 233 return cnt; 234 } 235 236 static int sched_feat_open(struct inode *inode, struct file *filp) 237 { 238 return single_open(filp, sched_feat_show, NULL); 239 } 240 241 static const struct file_operations sched_feat_fops = { 242 .open = sched_feat_open, 243 .write = sched_feat_write, 244 .read = seq_read, 245 .llseek = seq_lseek, 246 .release = single_release, 247 }; 248 249 static __init int sched_init_debug(void) 250 { 251 debugfs_create_file("sched_features", 0644, NULL, NULL, 252 &sched_feat_fops); 253 254 return 0; 255 } 256 late_initcall(sched_init_debug); 257 #endif /* CONFIG_SCHED_DEBUG */ 258 259 /* 260 * Number of tasks to iterate in a single balance run. 261 * Limited because this is done with IRQs disabled. 262 */ 263 const_debug unsigned int sysctl_sched_nr_migrate = 32; 264 265 /* 266 * period over which we average the RT time consumption, measured 267 * in ms. 268 * 269 * default: 1s 270 */ 271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 272 273 /* 274 * period over which we measure -rt task cpu usage in us. 275 * default: 1s 276 */ 277 unsigned int sysctl_sched_rt_period = 1000000; 278 279 __read_mostly int scheduler_running; 280 281 /* 282 * part of the period that we allow rt tasks to run in us. 283 * default: 0.95s 284 */ 285 int sysctl_sched_rt_runtime = 950000; 286 287 288 289 /* 290 * __task_rq_lock - lock the rq @p resides on. 291 */ 292 static inline struct rq *__task_rq_lock(struct task_struct *p) 293 __acquires(rq->lock) 294 { 295 struct rq *rq; 296 297 lockdep_assert_held(&p->pi_lock); 298 299 for (;;) { 300 rq = task_rq(p); 301 raw_spin_lock(&rq->lock); 302 if (likely(rq == task_rq(p))) 303 return rq; 304 raw_spin_unlock(&rq->lock); 305 } 306 } 307 308 /* 309 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 310 */ 311 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 312 __acquires(p->pi_lock) 313 __acquires(rq->lock) 314 { 315 struct rq *rq; 316 317 for (;;) { 318 raw_spin_lock_irqsave(&p->pi_lock, *flags); 319 rq = task_rq(p); 320 raw_spin_lock(&rq->lock); 321 if (likely(rq == task_rq(p))) 322 return rq; 323 raw_spin_unlock(&rq->lock); 324 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 325 } 326 } 327 328 static void __task_rq_unlock(struct rq *rq) 329 __releases(rq->lock) 330 { 331 raw_spin_unlock(&rq->lock); 332 } 333 334 static inline void 335 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 336 __releases(rq->lock) 337 __releases(p->pi_lock) 338 { 339 raw_spin_unlock(&rq->lock); 340 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 341 } 342 343 /* 344 * this_rq_lock - lock this runqueue and disable interrupts. 345 */ 346 static struct rq *this_rq_lock(void) 347 __acquires(rq->lock) 348 { 349 struct rq *rq; 350 351 local_irq_disable(); 352 rq = this_rq(); 353 raw_spin_lock(&rq->lock); 354 355 return rq; 356 } 357 358 #ifdef CONFIG_SCHED_HRTICK 359 /* 360 * Use HR-timers to deliver accurate preemption points. 361 * 362 * Its all a bit involved since we cannot program an hrt while holding the 363 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 364 * reschedule event. 365 * 366 * When we get rescheduled we reprogram the hrtick_timer outside of the 367 * rq->lock. 368 */ 369 370 static void hrtick_clear(struct rq *rq) 371 { 372 if (hrtimer_active(&rq->hrtick_timer)) 373 hrtimer_cancel(&rq->hrtick_timer); 374 } 375 376 /* 377 * High-resolution timer tick. 378 * Runs from hardirq context with interrupts disabled. 379 */ 380 static enum hrtimer_restart hrtick(struct hrtimer *timer) 381 { 382 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 383 384 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 385 386 raw_spin_lock(&rq->lock); 387 update_rq_clock(rq); 388 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 389 raw_spin_unlock(&rq->lock); 390 391 return HRTIMER_NORESTART; 392 } 393 394 #ifdef CONFIG_SMP 395 /* 396 * called from hardirq (IPI) context 397 */ 398 static void __hrtick_start(void *arg) 399 { 400 struct rq *rq = arg; 401 402 raw_spin_lock(&rq->lock); 403 hrtimer_restart(&rq->hrtick_timer); 404 rq->hrtick_csd_pending = 0; 405 raw_spin_unlock(&rq->lock); 406 } 407 408 /* 409 * Called to set the hrtick timer state. 410 * 411 * called with rq->lock held and irqs disabled 412 */ 413 void hrtick_start(struct rq *rq, u64 delay) 414 { 415 struct hrtimer *timer = &rq->hrtick_timer; 416 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 417 418 hrtimer_set_expires(timer, time); 419 420 if (rq == this_rq()) { 421 hrtimer_restart(timer); 422 } else if (!rq->hrtick_csd_pending) { 423 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 424 rq->hrtick_csd_pending = 1; 425 } 426 } 427 428 static int 429 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 430 { 431 int cpu = (int)(long)hcpu; 432 433 switch (action) { 434 case CPU_UP_CANCELED: 435 case CPU_UP_CANCELED_FROZEN: 436 case CPU_DOWN_PREPARE: 437 case CPU_DOWN_PREPARE_FROZEN: 438 case CPU_DEAD: 439 case CPU_DEAD_FROZEN: 440 hrtick_clear(cpu_rq(cpu)); 441 return NOTIFY_OK; 442 } 443 444 return NOTIFY_DONE; 445 } 446 447 static __init void init_hrtick(void) 448 { 449 hotcpu_notifier(hotplug_hrtick, 0); 450 } 451 #else 452 /* 453 * Called to set the hrtick timer state. 454 * 455 * called with rq->lock held and irqs disabled 456 */ 457 void hrtick_start(struct rq *rq, u64 delay) 458 { 459 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 460 HRTIMER_MODE_REL_PINNED, 0); 461 } 462 463 static inline void init_hrtick(void) 464 { 465 } 466 #endif /* CONFIG_SMP */ 467 468 static void init_rq_hrtick(struct rq *rq) 469 { 470 #ifdef CONFIG_SMP 471 rq->hrtick_csd_pending = 0; 472 473 rq->hrtick_csd.flags = 0; 474 rq->hrtick_csd.func = __hrtick_start; 475 rq->hrtick_csd.info = rq; 476 #endif 477 478 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 479 rq->hrtick_timer.function = hrtick; 480 } 481 #else /* CONFIG_SCHED_HRTICK */ 482 static inline void hrtick_clear(struct rq *rq) 483 { 484 } 485 486 static inline void init_rq_hrtick(struct rq *rq) 487 { 488 } 489 490 static inline void init_hrtick(void) 491 { 492 } 493 #endif /* CONFIG_SCHED_HRTICK */ 494 495 /* 496 * resched_task - mark a task 'to be rescheduled now'. 497 * 498 * On UP this means the setting of the need_resched flag, on SMP it 499 * might also involve a cross-CPU call to trigger the scheduler on 500 * the target CPU. 501 */ 502 #ifdef CONFIG_SMP 503 504 #ifndef tsk_is_polling 505 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) 506 #endif 507 508 void resched_task(struct task_struct *p) 509 { 510 int cpu; 511 512 assert_raw_spin_locked(&task_rq(p)->lock); 513 514 if (test_tsk_need_resched(p)) 515 return; 516 517 set_tsk_need_resched(p); 518 519 cpu = task_cpu(p); 520 if (cpu == smp_processor_id()) 521 return; 522 523 /* NEED_RESCHED must be visible before we test polling */ 524 smp_mb(); 525 if (!tsk_is_polling(p)) 526 smp_send_reschedule(cpu); 527 } 528 529 void resched_cpu(int cpu) 530 { 531 struct rq *rq = cpu_rq(cpu); 532 unsigned long flags; 533 534 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 535 return; 536 resched_task(cpu_curr(cpu)); 537 raw_spin_unlock_irqrestore(&rq->lock, flags); 538 } 539 540 #ifdef CONFIG_NO_HZ 541 /* 542 * In the semi idle case, use the nearest busy cpu for migrating timers 543 * from an idle cpu. This is good for power-savings. 544 * 545 * We don't do similar optimization for completely idle system, as 546 * selecting an idle cpu will add more delays to the timers than intended 547 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 548 */ 549 int get_nohz_timer_target(void) 550 { 551 int cpu = smp_processor_id(); 552 int i; 553 struct sched_domain *sd; 554 555 rcu_read_lock(); 556 for_each_domain(cpu, sd) { 557 for_each_cpu(i, sched_domain_span(sd)) { 558 if (!idle_cpu(i)) { 559 cpu = i; 560 goto unlock; 561 } 562 } 563 } 564 unlock: 565 rcu_read_unlock(); 566 return cpu; 567 } 568 /* 569 * When add_timer_on() enqueues a timer into the timer wheel of an 570 * idle CPU then this timer might expire before the next timer event 571 * which is scheduled to wake up that CPU. In case of a completely 572 * idle system the next event might even be infinite time into the 573 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 574 * leaves the inner idle loop so the newly added timer is taken into 575 * account when the CPU goes back to idle and evaluates the timer 576 * wheel for the next timer event. 577 */ 578 void wake_up_idle_cpu(int cpu) 579 { 580 struct rq *rq = cpu_rq(cpu); 581 582 if (cpu == smp_processor_id()) 583 return; 584 585 /* 586 * This is safe, as this function is called with the timer 587 * wheel base lock of (cpu) held. When the CPU is on the way 588 * to idle and has not yet set rq->curr to idle then it will 589 * be serialized on the timer wheel base lock and take the new 590 * timer into account automatically. 591 */ 592 if (rq->curr != rq->idle) 593 return; 594 595 /* 596 * We can set TIF_RESCHED on the idle task of the other CPU 597 * lockless. The worst case is that the other CPU runs the 598 * idle task through an additional NOOP schedule() 599 */ 600 set_tsk_need_resched(rq->idle); 601 602 /* NEED_RESCHED must be visible before we test polling */ 603 smp_mb(); 604 if (!tsk_is_polling(rq->idle)) 605 smp_send_reschedule(cpu); 606 } 607 608 static inline bool got_nohz_idle_kick(void) 609 { 610 int cpu = smp_processor_id(); 611 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 612 } 613 614 #else /* CONFIG_NO_HZ */ 615 616 static inline bool got_nohz_idle_kick(void) 617 { 618 return false; 619 } 620 621 #endif /* CONFIG_NO_HZ */ 622 623 void sched_avg_update(struct rq *rq) 624 { 625 s64 period = sched_avg_period(); 626 627 while ((s64)(rq->clock - rq->age_stamp) > period) { 628 /* 629 * Inline assembly required to prevent the compiler 630 * optimising this loop into a divmod call. 631 * See __iter_div_u64_rem() for another example of this. 632 */ 633 asm("" : "+rm" (rq->age_stamp)); 634 rq->age_stamp += period; 635 rq->rt_avg /= 2; 636 } 637 } 638 639 #else /* !CONFIG_SMP */ 640 void resched_task(struct task_struct *p) 641 { 642 assert_raw_spin_locked(&task_rq(p)->lock); 643 set_tsk_need_resched(p); 644 } 645 #endif /* CONFIG_SMP */ 646 647 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 649 /* 650 * Iterate task_group tree rooted at *from, calling @down when first entering a 651 * node and @up when leaving it for the final time. 652 * 653 * Caller must hold rcu_lock or sufficient equivalent. 654 */ 655 int walk_tg_tree_from(struct task_group *from, 656 tg_visitor down, tg_visitor up, void *data) 657 { 658 struct task_group *parent, *child; 659 int ret; 660 661 parent = from; 662 663 down: 664 ret = (*down)(parent, data); 665 if (ret) 666 goto out; 667 list_for_each_entry_rcu(child, &parent->children, siblings) { 668 parent = child; 669 goto down; 670 671 up: 672 continue; 673 } 674 ret = (*up)(parent, data); 675 if (ret || parent == from) 676 goto out; 677 678 child = parent; 679 parent = parent->parent; 680 if (parent) 681 goto up; 682 out: 683 return ret; 684 } 685 686 int tg_nop(struct task_group *tg, void *data) 687 { 688 return 0; 689 } 690 #endif 691 692 void update_cpu_load(struct rq *this_rq); 693 694 static void set_load_weight(struct task_struct *p) 695 { 696 int prio = p->static_prio - MAX_RT_PRIO; 697 struct load_weight *load = &p->se.load; 698 699 /* 700 * SCHED_IDLE tasks get minimal weight: 701 */ 702 if (p->policy == SCHED_IDLE) { 703 load->weight = scale_load(WEIGHT_IDLEPRIO); 704 load->inv_weight = WMULT_IDLEPRIO; 705 return; 706 } 707 708 load->weight = scale_load(prio_to_weight[prio]); 709 load->inv_weight = prio_to_wmult[prio]; 710 } 711 712 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 713 { 714 update_rq_clock(rq); 715 sched_info_queued(p); 716 p->sched_class->enqueue_task(rq, p, flags); 717 } 718 719 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 720 { 721 update_rq_clock(rq); 722 sched_info_dequeued(p); 723 p->sched_class->dequeue_task(rq, p, flags); 724 } 725 726 /* 727 * activate_task - move a task to the runqueue. 728 */ 729 void activate_task(struct rq *rq, struct task_struct *p, int flags) 730 { 731 if (task_contributes_to_load(p)) 732 rq->nr_uninterruptible--; 733 734 enqueue_task(rq, p, flags); 735 } 736 737 /* 738 * deactivate_task - remove a task from the runqueue. 739 */ 740 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 741 { 742 if (task_contributes_to_load(p)) 743 rq->nr_uninterruptible++; 744 745 dequeue_task(rq, p, flags); 746 } 747 748 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 749 750 /* 751 * There are no locks covering percpu hardirq/softirq time. 752 * They are only modified in account_system_vtime, on corresponding CPU 753 * with interrupts disabled. So, writes are safe. 754 * They are read and saved off onto struct rq in update_rq_clock(). 755 * This may result in other CPU reading this CPU's irq time and can 756 * race with irq/account_system_vtime on this CPU. We would either get old 757 * or new value with a side effect of accounting a slice of irq time to wrong 758 * task when irq is in progress while we read rq->clock. That is a worthy 759 * compromise in place of having locks on each irq in account_system_time. 760 */ 761 static DEFINE_PER_CPU(u64, cpu_hardirq_time); 762 static DEFINE_PER_CPU(u64, cpu_softirq_time); 763 764 static DEFINE_PER_CPU(u64, irq_start_time); 765 static int sched_clock_irqtime; 766 767 void enable_sched_clock_irqtime(void) 768 { 769 sched_clock_irqtime = 1; 770 } 771 772 void disable_sched_clock_irqtime(void) 773 { 774 sched_clock_irqtime = 0; 775 } 776 777 #ifndef CONFIG_64BIT 778 static DEFINE_PER_CPU(seqcount_t, irq_time_seq); 779 780 static inline void irq_time_write_begin(void) 781 { 782 __this_cpu_inc(irq_time_seq.sequence); 783 smp_wmb(); 784 } 785 786 static inline void irq_time_write_end(void) 787 { 788 smp_wmb(); 789 __this_cpu_inc(irq_time_seq.sequence); 790 } 791 792 static inline u64 irq_time_read(int cpu) 793 { 794 u64 irq_time; 795 unsigned seq; 796 797 do { 798 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 799 irq_time = per_cpu(cpu_softirq_time, cpu) + 800 per_cpu(cpu_hardirq_time, cpu); 801 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 802 803 return irq_time; 804 } 805 #else /* CONFIG_64BIT */ 806 static inline void irq_time_write_begin(void) 807 { 808 } 809 810 static inline void irq_time_write_end(void) 811 { 812 } 813 814 static inline u64 irq_time_read(int cpu) 815 { 816 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 817 } 818 #endif /* CONFIG_64BIT */ 819 820 /* 821 * Called before incrementing preempt_count on {soft,}irq_enter 822 * and before decrementing preempt_count on {soft,}irq_exit. 823 */ 824 void account_system_vtime(struct task_struct *curr) 825 { 826 unsigned long flags; 827 s64 delta; 828 int cpu; 829 830 if (!sched_clock_irqtime) 831 return; 832 833 local_irq_save(flags); 834 835 cpu = smp_processor_id(); 836 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 837 __this_cpu_add(irq_start_time, delta); 838 839 irq_time_write_begin(); 840 /* 841 * We do not account for softirq time from ksoftirqd here. 842 * We want to continue accounting softirq time to ksoftirqd thread 843 * in that case, so as not to confuse scheduler with a special task 844 * that do not consume any time, but still wants to run. 845 */ 846 if (hardirq_count()) 847 __this_cpu_add(cpu_hardirq_time, delta); 848 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 849 __this_cpu_add(cpu_softirq_time, delta); 850 851 irq_time_write_end(); 852 local_irq_restore(flags); 853 } 854 EXPORT_SYMBOL_GPL(account_system_vtime); 855 856 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 857 858 #ifdef CONFIG_PARAVIRT 859 static inline u64 steal_ticks(u64 steal) 860 { 861 if (unlikely(steal > NSEC_PER_SEC)) 862 return div_u64(steal, TICK_NSEC); 863 864 return __iter_div_u64_rem(steal, TICK_NSEC, &steal); 865 } 866 #endif 867 868 static void update_rq_clock_task(struct rq *rq, s64 delta) 869 { 870 /* 871 * In theory, the compile should just see 0 here, and optimize out the call 872 * to sched_rt_avg_update. But I don't trust it... 873 */ 874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 875 s64 steal = 0, irq_delta = 0; 876 #endif 877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 879 880 /* 881 * Since irq_time is only updated on {soft,}irq_exit, we might run into 882 * this case when a previous update_rq_clock() happened inside a 883 * {soft,}irq region. 884 * 885 * When this happens, we stop ->clock_task and only update the 886 * prev_irq_time stamp to account for the part that fit, so that a next 887 * update will consume the rest. This ensures ->clock_task is 888 * monotonic. 889 * 890 * It does however cause some slight miss-attribution of {soft,}irq 891 * time, a more accurate solution would be to update the irq_time using 892 * the current rq->clock timestamp, except that would require using 893 * atomic ops. 894 */ 895 if (irq_delta > delta) 896 irq_delta = delta; 897 898 rq->prev_irq_time += irq_delta; 899 delta -= irq_delta; 900 #endif 901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 902 if (static_branch((¶virt_steal_rq_enabled))) { 903 u64 st; 904 905 steal = paravirt_steal_clock(cpu_of(rq)); 906 steal -= rq->prev_steal_time_rq; 907 908 if (unlikely(steal > delta)) 909 steal = delta; 910 911 st = steal_ticks(steal); 912 steal = st * TICK_NSEC; 913 914 rq->prev_steal_time_rq += steal; 915 916 delta -= steal; 917 } 918 #endif 919 920 rq->clock_task += delta; 921 922 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 923 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 924 sched_rt_avg_update(rq, irq_delta + steal); 925 #endif 926 } 927 928 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 929 static int irqtime_account_hi_update(void) 930 { 931 u64 *cpustat = kcpustat_this_cpu->cpustat; 932 unsigned long flags; 933 u64 latest_ns; 934 int ret = 0; 935 936 local_irq_save(flags); 937 latest_ns = this_cpu_read(cpu_hardirq_time); 938 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 939 ret = 1; 940 local_irq_restore(flags); 941 return ret; 942 } 943 944 static int irqtime_account_si_update(void) 945 { 946 u64 *cpustat = kcpustat_this_cpu->cpustat; 947 unsigned long flags; 948 u64 latest_ns; 949 int ret = 0; 950 951 local_irq_save(flags); 952 latest_ns = this_cpu_read(cpu_softirq_time); 953 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 954 ret = 1; 955 local_irq_restore(flags); 956 return ret; 957 } 958 959 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 960 961 #define sched_clock_irqtime (0) 962 963 #endif 964 965 void sched_set_stop_task(int cpu, struct task_struct *stop) 966 { 967 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 968 struct task_struct *old_stop = cpu_rq(cpu)->stop; 969 970 if (stop) { 971 /* 972 * Make it appear like a SCHED_FIFO task, its something 973 * userspace knows about and won't get confused about. 974 * 975 * Also, it will make PI more or less work without too 976 * much confusion -- but then, stop work should not 977 * rely on PI working anyway. 978 */ 979 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 980 981 stop->sched_class = &stop_sched_class; 982 } 983 984 cpu_rq(cpu)->stop = stop; 985 986 if (old_stop) { 987 /* 988 * Reset it back to a normal scheduling class so that 989 * it can die in pieces. 990 */ 991 old_stop->sched_class = &rt_sched_class; 992 } 993 } 994 995 /* 996 * __normal_prio - return the priority that is based on the static prio 997 */ 998 static inline int __normal_prio(struct task_struct *p) 999 { 1000 return p->static_prio; 1001 } 1002 1003 /* 1004 * Calculate the expected normal priority: i.e. priority 1005 * without taking RT-inheritance into account. Might be 1006 * boosted by interactivity modifiers. Changes upon fork, 1007 * setprio syscalls, and whenever the interactivity 1008 * estimator recalculates. 1009 */ 1010 static inline int normal_prio(struct task_struct *p) 1011 { 1012 int prio; 1013 1014 if (task_has_rt_policy(p)) 1015 prio = MAX_RT_PRIO-1 - p->rt_priority; 1016 else 1017 prio = __normal_prio(p); 1018 return prio; 1019 } 1020 1021 /* 1022 * Calculate the current priority, i.e. the priority 1023 * taken into account by the scheduler. This value might 1024 * be boosted by RT tasks, or might be boosted by 1025 * interactivity modifiers. Will be RT if the task got 1026 * RT-boosted. If not then it returns p->normal_prio. 1027 */ 1028 static int effective_prio(struct task_struct *p) 1029 { 1030 p->normal_prio = normal_prio(p); 1031 /* 1032 * If we are RT tasks or we were boosted to RT priority, 1033 * keep the priority unchanged. Otherwise, update priority 1034 * to the normal priority: 1035 */ 1036 if (!rt_prio(p->prio)) 1037 return p->normal_prio; 1038 return p->prio; 1039 } 1040 1041 /** 1042 * task_curr - is this task currently executing on a CPU? 1043 * @p: the task in question. 1044 */ 1045 inline int task_curr(const struct task_struct *p) 1046 { 1047 return cpu_curr(task_cpu(p)) == p; 1048 } 1049 1050 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1051 const struct sched_class *prev_class, 1052 int oldprio) 1053 { 1054 if (prev_class != p->sched_class) { 1055 if (prev_class->switched_from) 1056 prev_class->switched_from(rq, p); 1057 p->sched_class->switched_to(rq, p); 1058 } else if (oldprio != p->prio) 1059 p->sched_class->prio_changed(rq, p, oldprio); 1060 } 1061 1062 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1063 { 1064 const struct sched_class *class; 1065 1066 if (p->sched_class == rq->curr->sched_class) { 1067 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1068 } else { 1069 for_each_class(class) { 1070 if (class == rq->curr->sched_class) 1071 break; 1072 if (class == p->sched_class) { 1073 resched_task(rq->curr); 1074 break; 1075 } 1076 } 1077 } 1078 1079 /* 1080 * A queue event has occurred, and we're going to schedule. In 1081 * this case, we can save a useless back to back clock update. 1082 */ 1083 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 1084 rq->skip_clock_update = 1; 1085 } 1086 1087 #ifdef CONFIG_SMP 1088 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1089 { 1090 #ifdef CONFIG_SCHED_DEBUG 1091 /* 1092 * We should never call set_task_cpu() on a blocked task, 1093 * ttwu() will sort out the placement. 1094 */ 1095 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1096 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 1097 1098 #ifdef CONFIG_LOCKDEP 1099 /* 1100 * The caller should hold either p->pi_lock or rq->lock, when changing 1101 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1102 * 1103 * sched_move_task() holds both and thus holding either pins the cgroup, 1104 * see set_task_rq(). 1105 * 1106 * Furthermore, all task_rq users should acquire both locks, see 1107 * task_rq_lock(). 1108 */ 1109 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1110 lockdep_is_held(&task_rq(p)->lock))); 1111 #endif 1112 #endif 1113 1114 trace_sched_migrate_task(p, new_cpu); 1115 1116 if (task_cpu(p) != new_cpu) { 1117 p->se.nr_migrations++; 1118 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1119 } 1120 1121 __set_task_cpu(p, new_cpu); 1122 } 1123 1124 struct migration_arg { 1125 struct task_struct *task; 1126 int dest_cpu; 1127 }; 1128 1129 static int migration_cpu_stop(void *data); 1130 1131 /* 1132 * wait_task_inactive - wait for a thread to unschedule. 1133 * 1134 * If @match_state is nonzero, it's the @p->state value just checked and 1135 * not expected to change. If it changes, i.e. @p might have woken up, 1136 * then return zero. When we succeed in waiting for @p to be off its CPU, 1137 * we return a positive number (its total switch count). If a second call 1138 * a short while later returns the same number, the caller can be sure that 1139 * @p has remained unscheduled the whole time. 1140 * 1141 * The caller must ensure that the task *will* unschedule sometime soon, 1142 * else this function might spin for a *long* time. This function can't 1143 * be called with interrupts off, or it may introduce deadlock with 1144 * smp_call_function() if an IPI is sent by the same process we are 1145 * waiting to become inactive. 1146 */ 1147 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1148 { 1149 unsigned long flags; 1150 int running, on_rq; 1151 unsigned long ncsw; 1152 struct rq *rq; 1153 1154 for (;;) { 1155 /* 1156 * We do the initial early heuristics without holding 1157 * any task-queue locks at all. We'll only try to get 1158 * the runqueue lock when things look like they will 1159 * work out! 1160 */ 1161 rq = task_rq(p); 1162 1163 /* 1164 * If the task is actively running on another CPU 1165 * still, just relax and busy-wait without holding 1166 * any locks. 1167 * 1168 * NOTE! Since we don't hold any locks, it's not 1169 * even sure that "rq" stays as the right runqueue! 1170 * But we don't care, since "task_running()" will 1171 * return false if the runqueue has changed and p 1172 * is actually now running somewhere else! 1173 */ 1174 while (task_running(rq, p)) { 1175 if (match_state && unlikely(p->state != match_state)) 1176 return 0; 1177 cpu_relax(); 1178 } 1179 1180 /* 1181 * Ok, time to look more closely! We need the rq 1182 * lock now, to be *sure*. If we're wrong, we'll 1183 * just go back and repeat. 1184 */ 1185 rq = task_rq_lock(p, &flags); 1186 trace_sched_wait_task(p); 1187 running = task_running(rq, p); 1188 on_rq = p->on_rq; 1189 ncsw = 0; 1190 if (!match_state || p->state == match_state) 1191 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1192 task_rq_unlock(rq, p, &flags); 1193 1194 /* 1195 * If it changed from the expected state, bail out now. 1196 */ 1197 if (unlikely(!ncsw)) 1198 break; 1199 1200 /* 1201 * Was it really running after all now that we 1202 * checked with the proper locks actually held? 1203 * 1204 * Oops. Go back and try again.. 1205 */ 1206 if (unlikely(running)) { 1207 cpu_relax(); 1208 continue; 1209 } 1210 1211 /* 1212 * It's not enough that it's not actively running, 1213 * it must be off the runqueue _entirely_, and not 1214 * preempted! 1215 * 1216 * So if it was still runnable (but just not actively 1217 * running right now), it's preempted, and we should 1218 * yield - it could be a while. 1219 */ 1220 if (unlikely(on_rq)) { 1221 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1222 1223 set_current_state(TASK_UNINTERRUPTIBLE); 1224 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1225 continue; 1226 } 1227 1228 /* 1229 * Ahh, all good. It wasn't running, and it wasn't 1230 * runnable, which means that it will never become 1231 * running in the future either. We're all done! 1232 */ 1233 break; 1234 } 1235 1236 return ncsw; 1237 } 1238 1239 /*** 1240 * kick_process - kick a running thread to enter/exit the kernel 1241 * @p: the to-be-kicked thread 1242 * 1243 * Cause a process which is running on another CPU to enter 1244 * kernel-mode, without any delay. (to get signals handled.) 1245 * 1246 * NOTE: this function doesn't have to take the runqueue lock, 1247 * because all it wants to ensure is that the remote task enters 1248 * the kernel. If the IPI races and the task has been migrated 1249 * to another CPU then no harm is done and the purpose has been 1250 * achieved as well. 1251 */ 1252 void kick_process(struct task_struct *p) 1253 { 1254 int cpu; 1255 1256 preempt_disable(); 1257 cpu = task_cpu(p); 1258 if ((cpu != smp_processor_id()) && task_curr(p)) 1259 smp_send_reschedule(cpu); 1260 preempt_enable(); 1261 } 1262 EXPORT_SYMBOL_GPL(kick_process); 1263 #endif /* CONFIG_SMP */ 1264 1265 #ifdef CONFIG_SMP 1266 /* 1267 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1268 */ 1269 static int select_fallback_rq(int cpu, struct task_struct *p) 1270 { 1271 int dest_cpu; 1272 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); 1273 1274 /* Look for allowed, online CPU in same node. */ 1275 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) 1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1277 return dest_cpu; 1278 1279 /* Any allowed, online CPU? */ 1280 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask); 1281 if (dest_cpu < nr_cpu_ids) 1282 return dest_cpu; 1283 1284 /* No more Mr. Nice Guy. */ 1285 dest_cpu = cpuset_cpus_allowed_fallback(p); 1286 /* 1287 * Don't tell them about moving exiting tasks or 1288 * kernel threads (both mm NULL), since they never 1289 * leave kernel. 1290 */ 1291 if (p->mm && printk_ratelimit()) { 1292 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n", 1293 task_pid_nr(p), p->comm, cpu); 1294 } 1295 1296 return dest_cpu; 1297 } 1298 1299 /* 1300 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1301 */ 1302 static inline 1303 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1304 { 1305 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1306 1307 /* 1308 * In order not to call set_task_cpu() on a blocking task we need 1309 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1310 * cpu. 1311 * 1312 * Since this is common to all placement strategies, this lives here. 1313 * 1314 * [ this allows ->select_task() to simply return task_cpu(p) and 1315 * not worry about this generic constraint ] 1316 */ 1317 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1318 !cpu_online(cpu))) 1319 cpu = select_fallback_rq(task_cpu(p), p); 1320 1321 return cpu; 1322 } 1323 1324 static void update_avg(u64 *avg, u64 sample) 1325 { 1326 s64 diff = sample - *avg; 1327 *avg += diff >> 3; 1328 } 1329 #endif 1330 1331 static void 1332 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1333 { 1334 #ifdef CONFIG_SCHEDSTATS 1335 struct rq *rq = this_rq(); 1336 1337 #ifdef CONFIG_SMP 1338 int this_cpu = smp_processor_id(); 1339 1340 if (cpu == this_cpu) { 1341 schedstat_inc(rq, ttwu_local); 1342 schedstat_inc(p, se.statistics.nr_wakeups_local); 1343 } else { 1344 struct sched_domain *sd; 1345 1346 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1347 rcu_read_lock(); 1348 for_each_domain(this_cpu, sd) { 1349 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1350 schedstat_inc(sd, ttwu_wake_remote); 1351 break; 1352 } 1353 } 1354 rcu_read_unlock(); 1355 } 1356 1357 if (wake_flags & WF_MIGRATED) 1358 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1359 1360 #endif /* CONFIG_SMP */ 1361 1362 schedstat_inc(rq, ttwu_count); 1363 schedstat_inc(p, se.statistics.nr_wakeups); 1364 1365 if (wake_flags & WF_SYNC) 1366 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1367 1368 #endif /* CONFIG_SCHEDSTATS */ 1369 } 1370 1371 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1372 { 1373 activate_task(rq, p, en_flags); 1374 p->on_rq = 1; 1375 1376 /* if a worker is waking up, notify workqueue */ 1377 if (p->flags & PF_WQ_WORKER) 1378 wq_worker_waking_up(p, cpu_of(rq)); 1379 } 1380 1381 /* 1382 * Mark the task runnable and perform wakeup-preemption. 1383 */ 1384 static void 1385 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1386 { 1387 trace_sched_wakeup(p, true); 1388 check_preempt_curr(rq, p, wake_flags); 1389 1390 p->state = TASK_RUNNING; 1391 #ifdef CONFIG_SMP 1392 if (p->sched_class->task_woken) 1393 p->sched_class->task_woken(rq, p); 1394 1395 if (rq->idle_stamp) { 1396 u64 delta = rq->clock - rq->idle_stamp; 1397 u64 max = 2*sysctl_sched_migration_cost; 1398 1399 if (delta > max) 1400 rq->avg_idle = max; 1401 else 1402 update_avg(&rq->avg_idle, delta); 1403 rq->idle_stamp = 0; 1404 } 1405 #endif 1406 } 1407 1408 static void 1409 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1410 { 1411 #ifdef CONFIG_SMP 1412 if (p->sched_contributes_to_load) 1413 rq->nr_uninterruptible--; 1414 #endif 1415 1416 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1417 ttwu_do_wakeup(rq, p, wake_flags); 1418 } 1419 1420 /* 1421 * Called in case the task @p isn't fully descheduled from its runqueue, 1422 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1423 * since all we need to do is flip p->state to TASK_RUNNING, since 1424 * the task is still ->on_rq. 1425 */ 1426 static int ttwu_remote(struct task_struct *p, int wake_flags) 1427 { 1428 struct rq *rq; 1429 int ret = 0; 1430 1431 rq = __task_rq_lock(p); 1432 if (p->on_rq) { 1433 ttwu_do_wakeup(rq, p, wake_flags); 1434 ret = 1; 1435 } 1436 __task_rq_unlock(rq); 1437 1438 return ret; 1439 } 1440 1441 #ifdef CONFIG_SMP 1442 static void sched_ttwu_pending(void) 1443 { 1444 struct rq *rq = this_rq(); 1445 struct llist_node *llist = llist_del_all(&rq->wake_list); 1446 struct task_struct *p; 1447 1448 raw_spin_lock(&rq->lock); 1449 1450 while (llist) { 1451 p = llist_entry(llist, struct task_struct, wake_entry); 1452 llist = llist_next(llist); 1453 ttwu_do_activate(rq, p, 0); 1454 } 1455 1456 raw_spin_unlock(&rq->lock); 1457 } 1458 1459 void scheduler_ipi(void) 1460 { 1461 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1462 return; 1463 1464 /* 1465 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1466 * traditionally all their work was done from the interrupt return 1467 * path. Now that we actually do some work, we need to make sure 1468 * we do call them. 1469 * 1470 * Some archs already do call them, luckily irq_enter/exit nest 1471 * properly. 1472 * 1473 * Arguably we should visit all archs and update all handlers, 1474 * however a fair share of IPIs are still resched only so this would 1475 * somewhat pessimize the simple resched case. 1476 */ 1477 irq_enter(); 1478 sched_ttwu_pending(); 1479 1480 /* 1481 * Check if someone kicked us for doing the nohz idle load balance. 1482 */ 1483 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1484 this_rq()->idle_balance = 1; 1485 raise_softirq_irqoff(SCHED_SOFTIRQ); 1486 } 1487 irq_exit(); 1488 } 1489 1490 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1491 { 1492 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1493 smp_send_reschedule(cpu); 1494 } 1495 1496 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1497 static int ttwu_activate_remote(struct task_struct *p, int wake_flags) 1498 { 1499 struct rq *rq; 1500 int ret = 0; 1501 1502 rq = __task_rq_lock(p); 1503 if (p->on_cpu) { 1504 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1505 ttwu_do_wakeup(rq, p, wake_flags); 1506 ret = 1; 1507 } 1508 __task_rq_unlock(rq); 1509 1510 return ret; 1511 1512 } 1513 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1514 1515 static inline int ttwu_share_cache(int this_cpu, int that_cpu) 1516 { 1517 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1518 } 1519 #endif /* CONFIG_SMP */ 1520 1521 static void ttwu_queue(struct task_struct *p, int cpu) 1522 { 1523 struct rq *rq = cpu_rq(cpu); 1524 1525 #if defined(CONFIG_SMP) 1526 if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) { 1527 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1528 ttwu_queue_remote(p, cpu); 1529 return; 1530 } 1531 #endif 1532 1533 raw_spin_lock(&rq->lock); 1534 ttwu_do_activate(rq, p, 0); 1535 raw_spin_unlock(&rq->lock); 1536 } 1537 1538 /** 1539 * try_to_wake_up - wake up a thread 1540 * @p: the thread to be awakened 1541 * @state: the mask of task states that can be woken 1542 * @wake_flags: wake modifier flags (WF_*) 1543 * 1544 * Put it on the run-queue if it's not already there. The "current" 1545 * thread is always on the run-queue (except when the actual 1546 * re-schedule is in progress), and as such you're allowed to do 1547 * the simpler "current->state = TASK_RUNNING" to mark yourself 1548 * runnable without the overhead of this. 1549 * 1550 * Returns %true if @p was woken up, %false if it was already running 1551 * or @state didn't match @p's state. 1552 */ 1553 static int 1554 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1555 { 1556 unsigned long flags; 1557 int cpu, success = 0; 1558 1559 smp_wmb(); 1560 raw_spin_lock_irqsave(&p->pi_lock, flags); 1561 if (!(p->state & state)) 1562 goto out; 1563 1564 success = 1; /* we're going to change ->state */ 1565 cpu = task_cpu(p); 1566 1567 if (p->on_rq && ttwu_remote(p, wake_flags)) 1568 goto stat; 1569 1570 #ifdef CONFIG_SMP 1571 /* 1572 * If the owning (remote) cpu is still in the middle of schedule() with 1573 * this task as prev, wait until its done referencing the task. 1574 */ 1575 while (p->on_cpu) { 1576 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1577 /* 1578 * In case the architecture enables interrupts in 1579 * context_switch(), we cannot busy wait, since that 1580 * would lead to deadlocks when an interrupt hits and 1581 * tries to wake up @prev. So bail and do a complete 1582 * remote wakeup. 1583 */ 1584 if (ttwu_activate_remote(p, wake_flags)) 1585 goto stat; 1586 #else 1587 cpu_relax(); 1588 #endif 1589 } 1590 /* 1591 * Pairs with the smp_wmb() in finish_lock_switch(). 1592 */ 1593 smp_rmb(); 1594 1595 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1596 p->state = TASK_WAKING; 1597 1598 if (p->sched_class->task_waking) 1599 p->sched_class->task_waking(p); 1600 1601 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1602 if (task_cpu(p) != cpu) { 1603 wake_flags |= WF_MIGRATED; 1604 set_task_cpu(p, cpu); 1605 } 1606 #endif /* CONFIG_SMP */ 1607 1608 ttwu_queue(p, cpu); 1609 stat: 1610 ttwu_stat(p, cpu, wake_flags); 1611 out: 1612 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1613 1614 return success; 1615 } 1616 1617 /** 1618 * try_to_wake_up_local - try to wake up a local task with rq lock held 1619 * @p: the thread to be awakened 1620 * 1621 * Put @p on the run-queue if it's not already there. The caller must 1622 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1623 * the current task. 1624 */ 1625 static void try_to_wake_up_local(struct task_struct *p) 1626 { 1627 struct rq *rq = task_rq(p); 1628 1629 BUG_ON(rq != this_rq()); 1630 BUG_ON(p == current); 1631 lockdep_assert_held(&rq->lock); 1632 1633 if (!raw_spin_trylock(&p->pi_lock)) { 1634 raw_spin_unlock(&rq->lock); 1635 raw_spin_lock(&p->pi_lock); 1636 raw_spin_lock(&rq->lock); 1637 } 1638 1639 if (!(p->state & TASK_NORMAL)) 1640 goto out; 1641 1642 if (!p->on_rq) 1643 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1644 1645 ttwu_do_wakeup(rq, p, 0); 1646 ttwu_stat(p, smp_processor_id(), 0); 1647 out: 1648 raw_spin_unlock(&p->pi_lock); 1649 } 1650 1651 /** 1652 * wake_up_process - Wake up a specific process 1653 * @p: The process to be woken up. 1654 * 1655 * Attempt to wake up the nominated process and move it to the set of runnable 1656 * processes. Returns 1 if the process was woken up, 0 if it was already 1657 * running. 1658 * 1659 * It may be assumed that this function implies a write memory barrier before 1660 * changing the task state if and only if any tasks are woken up. 1661 */ 1662 int wake_up_process(struct task_struct *p) 1663 { 1664 return try_to_wake_up(p, TASK_ALL, 0); 1665 } 1666 EXPORT_SYMBOL(wake_up_process); 1667 1668 int wake_up_state(struct task_struct *p, unsigned int state) 1669 { 1670 return try_to_wake_up(p, state, 0); 1671 } 1672 1673 /* 1674 * Perform scheduler related setup for a newly forked process p. 1675 * p is forked by current. 1676 * 1677 * __sched_fork() is basic setup used by init_idle() too: 1678 */ 1679 static void __sched_fork(struct task_struct *p) 1680 { 1681 p->on_rq = 0; 1682 1683 p->se.on_rq = 0; 1684 p->se.exec_start = 0; 1685 p->se.sum_exec_runtime = 0; 1686 p->se.prev_sum_exec_runtime = 0; 1687 p->se.nr_migrations = 0; 1688 p->se.vruntime = 0; 1689 INIT_LIST_HEAD(&p->se.group_node); 1690 1691 #ifdef CONFIG_SCHEDSTATS 1692 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1693 #endif 1694 1695 INIT_LIST_HEAD(&p->rt.run_list); 1696 1697 #ifdef CONFIG_PREEMPT_NOTIFIERS 1698 INIT_HLIST_HEAD(&p->preempt_notifiers); 1699 #endif 1700 } 1701 1702 /* 1703 * fork()/clone()-time setup: 1704 */ 1705 void sched_fork(struct task_struct *p) 1706 { 1707 unsigned long flags; 1708 int cpu = get_cpu(); 1709 1710 __sched_fork(p); 1711 /* 1712 * We mark the process as running here. This guarantees that 1713 * nobody will actually run it, and a signal or other external 1714 * event cannot wake it up and insert it on the runqueue either. 1715 */ 1716 p->state = TASK_RUNNING; 1717 1718 /* 1719 * Make sure we do not leak PI boosting priority to the child. 1720 */ 1721 p->prio = current->normal_prio; 1722 1723 /* 1724 * Revert to default priority/policy on fork if requested. 1725 */ 1726 if (unlikely(p->sched_reset_on_fork)) { 1727 if (task_has_rt_policy(p)) { 1728 p->policy = SCHED_NORMAL; 1729 p->static_prio = NICE_TO_PRIO(0); 1730 p->rt_priority = 0; 1731 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1732 p->static_prio = NICE_TO_PRIO(0); 1733 1734 p->prio = p->normal_prio = __normal_prio(p); 1735 set_load_weight(p); 1736 1737 /* 1738 * We don't need the reset flag anymore after the fork. It has 1739 * fulfilled its duty: 1740 */ 1741 p->sched_reset_on_fork = 0; 1742 } 1743 1744 if (!rt_prio(p->prio)) 1745 p->sched_class = &fair_sched_class; 1746 1747 if (p->sched_class->task_fork) 1748 p->sched_class->task_fork(p); 1749 1750 /* 1751 * The child is not yet in the pid-hash so no cgroup attach races, 1752 * and the cgroup is pinned to this child due to cgroup_fork() 1753 * is ran before sched_fork(). 1754 * 1755 * Silence PROVE_RCU. 1756 */ 1757 raw_spin_lock_irqsave(&p->pi_lock, flags); 1758 set_task_cpu(p, cpu); 1759 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1760 1761 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1762 if (likely(sched_info_on())) 1763 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1764 #endif 1765 #if defined(CONFIG_SMP) 1766 p->on_cpu = 0; 1767 #endif 1768 #ifdef CONFIG_PREEMPT_COUNT 1769 /* Want to start with kernel preemption disabled. */ 1770 task_thread_info(p)->preempt_count = 1; 1771 #endif 1772 #ifdef CONFIG_SMP 1773 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1774 #endif 1775 1776 put_cpu(); 1777 } 1778 1779 /* 1780 * wake_up_new_task - wake up a newly created task for the first time. 1781 * 1782 * This function will do some initial scheduler statistics housekeeping 1783 * that must be done for every newly created context, then puts the task 1784 * on the runqueue and wakes it. 1785 */ 1786 void wake_up_new_task(struct task_struct *p) 1787 { 1788 unsigned long flags; 1789 struct rq *rq; 1790 1791 raw_spin_lock_irqsave(&p->pi_lock, flags); 1792 #ifdef CONFIG_SMP 1793 /* 1794 * Fork balancing, do it here and not earlier because: 1795 * - cpus_allowed can change in the fork path 1796 * - any previously selected cpu might disappear through hotplug 1797 */ 1798 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1799 #endif 1800 1801 rq = __task_rq_lock(p); 1802 activate_task(rq, p, 0); 1803 p->on_rq = 1; 1804 trace_sched_wakeup_new(p, true); 1805 check_preempt_curr(rq, p, WF_FORK); 1806 #ifdef CONFIG_SMP 1807 if (p->sched_class->task_woken) 1808 p->sched_class->task_woken(rq, p); 1809 #endif 1810 task_rq_unlock(rq, p, &flags); 1811 } 1812 1813 #ifdef CONFIG_PREEMPT_NOTIFIERS 1814 1815 /** 1816 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1817 * @notifier: notifier struct to register 1818 */ 1819 void preempt_notifier_register(struct preempt_notifier *notifier) 1820 { 1821 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1822 } 1823 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1824 1825 /** 1826 * preempt_notifier_unregister - no longer interested in preemption notifications 1827 * @notifier: notifier struct to unregister 1828 * 1829 * This is safe to call from within a preemption notifier. 1830 */ 1831 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1832 { 1833 hlist_del(¬ifier->link); 1834 } 1835 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1836 1837 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1838 { 1839 struct preempt_notifier *notifier; 1840 struct hlist_node *node; 1841 1842 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1843 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1844 } 1845 1846 static void 1847 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1848 struct task_struct *next) 1849 { 1850 struct preempt_notifier *notifier; 1851 struct hlist_node *node; 1852 1853 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1854 notifier->ops->sched_out(notifier, next); 1855 } 1856 1857 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1858 1859 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1860 { 1861 } 1862 1863 static void 1864 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1865 struct task_struct *next) 1866 { 1867 } 1868 1869 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1870 1871 /** 1872 * prepare_task_switch - prepare to switch tasks 1873 * @rq: the runqueue preparing to switch 1874 * @prev: the current task that is being switched out 1875 * @next: the task we are going to switch to. 1876 * 1877 * This is called with the rq lock held and interrupts off. It must 1878 * be paired with a subsequent finish_task_switch after the context 1879 * switch. 1880 * 1881 * prepare_task_switch sets up locking and calls architecture specific 1882 * hooks. 1883 */ 1884 static inline void 1885 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1886 struct task_struct *next) 1887 { 1888 sched_info_switch(prev, next); 1889 perf_event_task_sched_out(prev, next); 1890 fire_sched_out_preempt_notifiers(prev, next); 1891 prepare_lock_switch(rq, next); 1892 prepare_arch_switch(next); 1893 trace_sched_switch(prev, next); 1894 } 1895 1896 /** 1897 * finish_task_switch - clean up after a task-switch 1898 * @rq: runqueue associated with task-switch 1899 * @prev: the thread we just switched away from. 1900 * 1901 * finish_task_switch must be called after the context switch, paired 1902 * with a prepare_task_switch call before the context switch. 1903 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1904 * and do any other architecture-specific cleanup actions. 1905 * 1906 * Note that we may have delayed dropping an mm in context_switch(). If 1907 * so, we finish that here outside of the runqueue lock. (Doing it 1908 * with the lock held can cause deadlocks; see schedule() for 1909 * details.) 1910 */ 1911 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1912 __releases(rq->lock) 1913 { 1914 struct mm_struct *mm = rq->prev_mm; 1915 long prev_state; 1916 1917 rq->prev_mm = NULL; 1918 1919 /* 1920 * A task struct has one reference for the use as "current". 1921 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1922 * schedule one last time. The schedule call will never return, and 1923 * the scheduled task must drop that reference. 1924 * The test for TASK_DEAD must occur while the runqueue locks are 1925 * still held, otherwise prev could be scheduled on another cpu, die 1926 * there before we look at prev->state, and then the reference would 1927 * be dropped twice. 1928 * Manfred Spraul <manfred@colorfullife.com> 1929 */ 1930 prev_state = prev->state; 1931 finish_arch_switch(prev); 1932 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1933 local_irq_disable(); 1934 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1935 perf_event_task_sched_in(prev, current); 1936 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1937 local_irq_enable(); 1938 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1939 finish_lock_switch(rq, prev); 1940 trace_sched_stat_sleeptime(current, rq->clock); 1941 1942 fire_sched_in_preempt_notifiers(current); 1943 if (mm) 1944 mmdrop(mm); 1945 if (unlikely(prev_state == TASK_DEAD)) { 1946 /* 1947 * Remove function-return probe instances associated with this 1948 * task and put them back on the free list. 1949 */ 1950 kprobe_flush_task(prev); 1951 put_task_struct(prev); 1952 } 1953 } 1954 1955 #ifdef CONFIG_SMP 1956 1957 /* assumes rq->lock is held */ 1958 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1959 { 1960 if (prev->sched_class->pre_schedule) 1961 prev->sched_class->pre_schedule(rq, prev); 1962 } 1963 1964 /* rq->lock is NOT held, but preemption is disabled */ 1965 static inline void post_schedule(struct rq *rq) 1966 { 1967 if (rq->post_schedule) { 1968 unsigned long flags; 1969 1970 raw_spin_lock_irqsave(&rq->lock, flags); 1971 if (rq->curr->sched_class->post_schedule) 1972 rq->curr->sched_class->post_schedule(rq); 1973 raw_spin_unlock_irqrestore(&rq->lock, flags); 1974 1975 rq->post_schedule = 0; 1976 } 1977 } 1978 1979 #else 1980 1981 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 1982 { 1983 } 1984 1985 static inline void post_schedule(struct rq *rq) 1986 { 1987 } 1988 1989 #endif 1990 1991 /** 1992 * schedule_tail - first thing a freshly forked thread must call. 1993 * @prev: the thread we just switched away from. 1994 */ 1995 asmlinkage void schedule_tail(struct task_struct *prev) 1996 __releases(rq->lock) 1997 { 1998 struct rq *rq = this_rq(); 1999 2000 finish_task_switch(rq, prev); 2001 2002 /* 2003 * FIXME: do we need to worry about rq being invalidated by the 2004 * task_switch? 2005 */ 2006 post_schedule(rq); 2007 2008 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2009 /* In this case, finish_task_switch does not reenable preemption */ 2010 preempt_enable(); 2011 #endif 2012 if (current->set_child_tid) 2013 put_user(task_pid_vnr(current), current->set_child_tid); 2014 } 2015 2016 /* 2017 * context_switch - switch to the new MM and the new 2018 * thread's register state. 2019 */ 2020 static inline void 2021 context_switch(struct rq *rq, struct task_struct *prev, 2022 struct task_struct *next) 2023 { 2024 struct mm_struct *mm, *oldmm; 2025 2026 prepare_task_switch(rq, prev, next); 2027 2028 mm = next->mm; 2029 oldmm = prev->active_mm; 2030 /* 2031 * For paravirt, this is coupled with an exit in switch_to to 2032 * combine the page table reload and the switch backend into 2033 * one hypercall. 2034 */ 2035 arch_start_context_switch(prev); 2036 2037 if (!mm) { 2038 next->active_mm = oldmm; 2039 atomic_inc(&oldmm->mm_count); 2040 enter_lazy_tlb(oldmm, next); 2041 } else 2042 switch_mm(oldmm, mm, next); 2043 2044 if (!prev->mm) { 2045 prev->active_mm = NULL; 2046 rq->prev_mm = oldmm; 2047 } 2048 /* 2049 * Since the runqueue lock will be released by the next 2050 * task (which is an invalid locking op but in the case 2051 * of the scheduler it's an obvious special-case), so we 2052 * do an early lockdep release here: 2053 */ 2054 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2055 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2056 #endif 2057 2058 /* Here we just switch the register state and the stack. */ 2059 switch_to(prev, next, prev); 2060 2061 barrier(); 2062 /* 2063 * this_rq must be evaluated again because prev may have moved 2064 * CPUs since it called schedule(), thus the 'rq' on its stack 2065 * frame will be invalid. 2066 */ 2067 finish_task_switch(this_rq(), prev); 2068 } 2069 2070 /* 2071 * nr_running, nr_uninterruptible and nr_context_switches: 2072 * 2073 * externally visible scheduler statistics: current number of runnable 2074 * threads, current number of uninterruptible-sleeping threads, total 2075 * number of context switches performed since bootup. 2076 */ 2077 unsigned long nr_running(void) 2078 { 2079 unsigned long i, sum = 0; 2080 2081 for_each_online_cpu(i) 2082 sum += cpu_rq(i)->nr_running; 2083 2084 return sum; 2085 } 2086 2087 unsigned long nr_uninterruptible(void) 2088 { 2089 unsigned long i, sum = 0; 2090 2091 for_each_possible_cpu(i) 2092 sum += cpu_rq(i)->nr_uninterruptible; 2093 2094 /* 2095 * Since we read the counters lockless, it might be slightly 2096 * inaccurate. Do not allow it to go below zero though: 2097 */ 2098 if (unlikely((long)sum < 0)) 2099 sum = 0; 2100 2101 return sum; 2102 } 2103 2104 unsigned long long nr_context_switches(void) 2105 { 2106 int i; 2107 unsigned long long sum = 0; 2108 2109 for_each_possible_cpu(i) 2110 sum += cpu_rq(i)->nr_switches; 2111 2112 return sum; 2113 } 2114 2115 unsigned long nr_iowait(void) 2116 { 2117 unsigned long i, sum = 0; 2118 2119 for_each_possible_cpu(i) 2120 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2121 2122 return sum; 2123 } 2124 2125 unsigned long nr_iowait_cpu(int cpu) 2126 { 2127 struct rq *this = cpu_rq(cpu); 2128 return atomic_read(&this->nr_iowait); 2129 } 2130 2131 unsigned long this_cpu_load(void) 2132 { 2133 struct rq *this = this_rq(); 2134 return this->cpu_load[0]; 2135 } 2136 2137 2138 /* Variables and functions for calc_load */ 2139 static atomic_long_t calc_load_tasks; 2140 static unsigned long calc_load_update; 2141 unsigned long avenrun[3]; 2142 EXPORT_SYMBOL(avenrun); 2143 2144 static long calc_load_fold_active(struct rq *this_rq) 2145 { 2146 long nr_active, delta = 0; 2147 2148 nr_active = this_rq->nr_running; 2149 nr_active += (long) this_rq->nr_uninterruptible; 2150 2151 if (nr_active != this_rq->calc_load_active) { 2152 delta = nr_active - this_rq->calc_load_active; 2153 this_rq->calc_load_active = nr_active; 2154 } 2155 2156 return delta; 2157 } 2158 2159 static unsigned long 2160 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2161 { 2162 load *= exp; 2163 load += active * (FIXED_1 - exp); 2164 load += 1UL << (FSHIFT - 1); 2165 return load >> FSHIFT; 2166 } 2167 2168 #ifdef CONFIG_NO_HZ 2169 /* 2170 * For NO_HZ we delay the active fold to the next LOAD_FREQ update. 2171 * 2172 * When making the ILB scale, we should try to pull this in as well. 2173 */ 2174 static atomic_long_t calc_load_tasks_idle; 2175 2176 void calc_load_account_idle(struct rq *this_rq) 2177 { 2178 long delta; 2179 2180 delta = calc_load_fold_active(this_rq); 2181 if (delta) 2182 atomic_long_add(delta, &calc_load_tasks_idle); 2183 } 2184 2185 static long calc_load_fold_idle(void) 2186 { 2187 long delta = 0; 2188 2189 /* 2190 * Its got a race, we don't care... 2191 */ 2192 if (atomic_long_read(&calc_load_tasks_idle)) 2193 delta = atomic_long_xchg(&calc_load_tasks_idle, 0); 2194 2195 return delta; 2196 } 2197 2198 /** 2199 * fixed_power_int - compute: x^n, in O(log n) time 2200 * 2201 * @x: base of the power 2202 * @frac_bits: fractional bits of @x 2203 * @n: power to raise @x to. 2204 * 2205 * By exploiting the relation between the definition of the natural power 2206 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2207 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2208 * (where: n_i \elem {0, 1}, the binary vector representing n), 2209 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2210 * of course trivially computable in O(log_2 n), the length of our binary 2211 * vector. 2212 */ 2213 static unsigned long 2214 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2215 { 2216 unsigned long result = 1UL << frac_bits; 2217 2218 if (n) for (;;) { 2219 if (n & 1) { 2220 result *= x; 2221 result += 1UL << (frac_bits - 1); 2222 result >>= frac_bits; 2223 } 2224 n >>= 1; 2225 if (!n) 2226 break; 2227 x *= x; 2228 x += 1UL << (frac_bits - 1); 2229 x >>= frac_bits; 2230 } 2231 2232 return result; 2233 } 2234 2235 /* 2236 * a1 = a0 * e + a * (1 - e) 2237 * 2238 * a2 = a1 * e + a * (1 - e) 2239 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2240 * = a0 * e^2 + a * (1 - e) * (1 + e) 2241 * 2242 * a3 = a2 * e + a * (1 - e) 2243 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2244 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2245 * 2246 * ... 2247 * 2248 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2249 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2250 * = a0 * e^n + a * (1 - e^n) 2251 * 2252 * [1] application of the geometric series: 2253 * 2254 * n 1 - x^(n+1) 2255 * S_n := \Sum x^i = ------------- 2256 * i=0 1 - x 2257 */ 2258 static unsigned long 2259 calc_load_n(unsigned long load, unsigned long exp, 2260 unsigned long active, unsigned int n) 2261 { 2262 2263 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2264 } 2265 2266 /* 2267 * NO_HZ can leave us missing all per-cpu ticks calling 2268 * calc_load_account_active(), but since an idle CPU folds its delta into 2269 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2270 * in the pending idle delta if our idle period crossed a load cycle boundary. 2271 * 2272 * Once we've updated the global active value, we need to apply the exponential 2273 * weights adjusted to the number of cycles missed. 2274 */ 2275 static void calc_global_nohz(unsigned long ticks) 2276 { 2277 long delta, active, n; 2278 2279 if (time_before(jiffies, calc_load_update)) 2280 return; 2281 2282 /* 2283 * If we crossed a calc_load_update boundary, make sure to fold 2284 * any pending idle changes, the respective CPUs might have 2285 * missed the tick driven calc_load_account_active() update 2286 * due to NO_HZ. 2287 */ 2288 delta = calc_load_fold_idle(); 2289 if (delta) 2290 atomic_long_add(delta, &calc_load_tasks); 2291 2292 /* 2293 * If we were idle for multiple load cycles, apply them. 2294 */ 2295 if (ticks >= LOAD_FREQ) { 2296 n = ticks / LOAD_FREQ; 2297 2298 active = atomic_long_read(&calc_load_tasks); 2299 active = active > 0 ? active * FIXED_1 : 0; 2300 2301 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2302 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2303 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2304 2305 calc_load_update += n * LOAD_FREQ; 2306 } 2307 2308 /* 2309 * Its possible the remainder of the above division also crosses 2310 * a LOAD_FREQ period, the regular check in calc_global_load() 2311 * which comes after this will take care of that. 2312 * 2313 * Consider us being 11 ticks before a cycle completion, and us 2314 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will 2315 * age us 4 cycles, and the test in calc_global_load() will 2316 * pick up the final one. 2317 */ 2318 } 2319 #else 2320 void calc_load_account_idle(struct rq *this_rq) 2321 { 2322 } 2323 2324 static inline long calc_load_fold_idle(void) 2325 { 2326 return 0; 2327 } 2328 2329 static void calc_global_nohz(unsigned long ticks) 2330 { 2331 } 2332 #endif 2333 2334 /** 2335 * get_avenrun - get the load average array 2336 * @loads: pointer to dest load array 2337 * @offset: offset to add 2338 * @shift: shift count to shift the result left 2339 * 2340 * These values are estimates at best, so no need for locking. 2341 */ 2342 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2343 { 2344 loads[0] = (avenrun[0] + offset) << shift; 2345 loads[1] = (avenrun[1] + offset) << shift; 2346 loads[2] = (avenrun[2] + offset) << shift; 2347 } 2348 2349 /* 2350 * calc_load - update the avenrun load estimates 10 ticks after the 2351 * CPUs have updated calc_load_tasks. 2352 */ 2353 void calc_global_load(unsigned long ticks) 2354 { 2355 long active; 2356 2357 calc_global_nohz(ticks); 2358 2359 if (time_before(jiffies, calc_load_update + 10)) 2360 return; 2361 2362 active = atomic_long_read(&calc_load_tasks); 2363 active = active > 0 ? active * FIXED_1 : 0; 2364 2365 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2366 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2367 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2368 2369 calc_load_update += LOAD_FREQ; 2370 } 2371 2372 /* 2373 * Called from update_cpu_load() to periodically update this CPU's 2374 * active count. 2375 */ 2376 static void calc_load_account_active(struct rq *this_rq) 2377 { 2378 long delta; 2379 2380 if (time_before(jiffies, this_rq->calc_load_update)) 2381 return; 2382 2383 delta = calc_load_fold_active(this_rq); 2384 delta += calc_load_fold_idle(); 2385 if (delta) 2386 atomic_long_add(delta, &calc_load_tasks); 2387 2388 this_rq->calc_load_update += LOAD_FREQ; 2389 } 2390 2391 /* 2392 * The exact cpuload at various idx values, calculated at every tick would be 2393 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2394 * 2395 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2396 * on nth tick when cpu may be busy, then we have: 2397 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2398 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2399 * 2400 * decay_load_missed() below does efficient calculation of 2401 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2402 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2403 * 2404 * The calculation is approximated on a 128 point scale. 2405 * degrade_zero_ticks is the number of ticks after which load at any 2406 * particular idx is approximated to be zero. 2407 * degrade_factor is a precomputed table, a row for each load idx. 2408 * Each column corresponds to degradation factor for a power of two ticks, 2409 * based on 128 point scale. 2410 * Example: 2411 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2412 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2413 * 2414 * With this power of 2 load factors, we can degrade the load n times 2415 * by looking at 1 bits in n and doing as many mult/shift instead of 2416 * n mult/shifts needed by the exact degradation. 2417 */ 2418 #define DEGRADE_SHIFT 7 2419 static const unsigned char 2420 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2421 static const unsigned char 2422 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2423 {0, 0, 0, 0, 0, 0, 0, 0}, 2424 {64, 32, 8, 0, 0, 0, 0, 0}, 2425 {96, 72, 40, 12, 1, 0, 0}, 2426 {112, 98, 75, 43, 15, 1, 0}, 2427 {120, 112, 98, 76, 45, 16, 2} }; 2428 2429 /* 2430 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2431 * would be when CPU is idle and so we just decay the old load without 2432 * adding any new load. 2433 */ 2434 static unsigned long 2435 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2436 { 2437 int j = 0; 2438 2439 if (!missed_updates) 2440 return load; 2441 2442 if (missed_updates >= degrade_zero_ticks[idx]) 2443 return 0; 2444 2445 if (idx == 1) 2446 return load >> missed_updates; 2447 2448 while (missed_updates) { 2449 if (missed_updates % 2) 2450 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2451 2452 missed_updates >>= 1; 2453 j++; 2454 } 2455 return load; 2456 } 2457 2458 /* 2459 * Update rq->cpu_load[] statistics. This function is usually called every 2460 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2461 * every tick. We fix it up based on jiffies. 2462 */ 2463 void update_cpu_load(struct rq *this_rq) 2464 { 2465 unsigned long this_load = this_rq->load.weight; 2466 unsigned long curr_jiffies = jiffies; 2467 unsigned long pending_updates; 2468 int i, scale; 2469 2470 this_rq->nr_load_updates++; 2471 2472 /* Avoid repeated calls on same jiffy, when moving in and out of idle */ 2473 if (curr_jiffies == this_rq->last_load_update_tick) 2474 return; 2475 2476 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2477 this_rq->last_load_update_tick = curr_jiffies; 2478 2479 /* Update our load: */ 2480 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2481 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2482 unsigned long old_load, new_load; 2483 2484 /* scale is effectively 1 << i now, and >> i divides by scale */ 2485 2486 old_load = this_rq->cpu_load[i]; 2487 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2488 new_load = this_load; 2489 /* 2490 * Round up the averaging division if load is increasing. This 2491 * prevents us from getting stuck on 9 if the load is 10, for 2492 * example. 2493 */ 2494 if (new_load > old_load) 2495 new_load += scale - 1; 2496 2497 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2498 } 2499 2500 sched_avg_update(this_rq); 2501 } 2502 2503 static void update_cpu_load_active(struct rq *this_rq) 2504 { 2505 update_cpu_load(this_rq); 2506 2507 calc_load_account_active(this_rq); 2508 } 2509 2510 #ifdef CONFIG_SMP 2511 2512 /* 2513 * sched_exec - execve() is a valuable balancing opportunity, because at 2514 * this point the task has the smallest effective memory and cache footprint. 2515 */ 2516 void sched_exec(void) 2517 { 2518 struct task_struct *p = current; 2519 unsigned long flags; 2520 int dest_cpu; 2521 2522 raw_spin_lock_irqsave(&p->pi_lock, flags); 2523 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2524 if (dest_cpu == smp_processor_id()) 2525 goto unlock; 2526 2527 if (likely(cpu_active(dest_cpu))) { 2528 struct migration_arg arg = { p, dest_cpu }; 2529 2530 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2531 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2532 return; 2533 } 2534 unlock: 2535 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2536 } 2537 2538 #endif 2539 2540 DEFINE_PER_CPU(struct kernel_stat, kstat); 2541 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2542 2543 EXPORT_PER_CPU_SYMBOL(kstat); 2544 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2545 2546 /* 2547 * Return any ns on the sched_clock that have not yet been accounted in 2548 * @p in case that task is currently running. 2549 * 2550 * Called with task_rq_lock() held on @rq. 2551 */ 2552 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2553 { 2554 u64 ns = 0; 2555 2556 if (task_current(rq, p)) { 2557 update_rq_clock(rq); 2558 ns = rq->clock_task - p->se.exec_start; 2559 if ((s64)ns < 0) 2560 ns = 0; 2561 } 2562 2563 return ns; 2564 } 2565 2566 unsigned long long task_delta_exec(struct task_struct *p) 2567 { 2568 unsigned long flags; 2569 struct rq *rq; 2570 u64 ns = 0; 2571 2572 rq = task_rq_lock(p, &flags); 2573 ns = do_task_delta_exec(p, rq); 2574 task_rq_unlock(rq, p, &flags); 2575 2576 return ns; 2577 } 2578 2579 /* 2580 * Return accounted runtime for the task. 2581 * In case the task is currently running, return the runtime plus current's 2582 * pending runtime that have not been accounted yet. 2583 */ 2584 unsigned long long task_sched_runtime(struct task_struct *p) 2585 { 2586 unsigned long flags; 2587 struct rq *rq; 2588 u64 ns = 0; 2589 2590 rq = task_rq_lock(p, &flags); 2591 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2592 task_rq_unlock(rq, p, &flags); 2593 2594 return ns; 2595 } 2596 2597 #ifdef CONFIG_CGROUP_CPUACCT 2598 struct cgroup_subsys cpuacct_subsys; 2599 struct cpuacct root_cpuacct; 2600 #endif 2601 2602 static inline void task_group_account_field(struct task_struct *p, int index, 2603 u64 tmp) 2604 { 2605 #ifdef CONFIG_CGROUP_CPUACCT 2606 struct kernel_cpustat *kcpustat; 2607 struct cpuacct *ca; 2608 #endif 2609 /* 2610 * Since all updates are sure to touch the root cgroup, we 2611 * get ourselves ahead and touch it first. If the root cgroup 2612 * is the only cgroup, then nothing else should be necessary. 2613 * 2614 */ 2615 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; 2616 2617 #ifdef CONFIG_CGROUP_CPUACCT 2618 if (unlikely(!cpuacct_subsys.active)) 2619 return; 2620 2621 rcu_read_lock(); 2622 ca = task_ca(p); 2623 while (ca && (ca != &root_cpuacct)) { 2624 kcpustat = this_cpu_ptr(ca->cpustat); 2625 kcpustat->cpustat[index] += tmp; 2626 ca = parent_ca(ca); 2627 } 2628 rcu_read_unlock(); 2629 #endif 2630 } 2631 2632 2633 /* 2634 * Account user cpu time to a process. 2635 * @p: the process that the cpu time gets accounted to 2636 * @cputime: the cpu time spent in user space since the last update 2637 * @cputime_scaled: cputime scaled by cpu frequency 2638 */ 2639 void account_user_time(struct task_struct *p, cputime_t cputime, 2640 cputime_t cputime_scaled) 2641 { 2642 int index; 2643 2644 /* Add user time to process. */ 2645 p->utime += cputime; 2646 p->utimescaled += cputime_scaled; 2647 account_group_user_time(p, cputime); 2648 2649 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 2650 2651 /* Add user time to cpustat. */ 2652 task_group_account_field(p, index, (__force u64) cputime); 2653 2654 /* Account for user time used */ 2655 acct_update_integrals(p); 2656 } 2657 2658 /* 2659 * Account guest cpu time to a process. 2660 * @p: the process that the cpu time gets accounted to 2661 * @cputime: the cpu time spent in virtual machine since the last update 2662 * @cputime_scaled: cputime scaled by cpu frequency 2663 */ 2664 static void account_guest_time(struct task_struct *p, cputime_t cputime, 2665 cputime_t cputime_scaled) 2666 { 2667 u64 *cpustat = kcpustat_this_cpu->cpustat; 2668 2669 /* Add guest time to process. */ 2670 p->utime += cputime; 2671 p->utimescaled += cputime_scaled; 2672 account_group_user_time(p, cputime); 2673 p->gtime += cputime; 2674 2675 /* Add guest time to cpustat. */ 2676 if (TASK_NICE(p) > 0) { 2677 cpustat[CPUTIME_NICE] += (__force u64) cputime; 2678 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 2679 } else { 2680 cpustat[CPUTIME_USER] += (__force u64) cputime; 2681 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 2682 } 2683 } 2684 2685 /* 2686 * Account system cpu time to a process and desired cpustat field 2687 * @p: the process that the cpu time gets accounted to 2688 * @cputime: the cpu time spent in kernel space since the last update 2689 * @cputime_scaled: cputime scaled by cpu frequency 2690 * @target_cputime64: pointer to cpustat field that has to be updated 2691 */ 2692 static inline 2693 void __account_system_time(struct task_struct *p, cputime_t cputime, 2694 cputime_t cputime_scaled, int index) 2695 { 2696 /* Add system time to process. */ 2697 p->stime += cputime; 2698 p->stimescaled += cputime_scaled; 2699 account_group_system_time(p, cputime); 2700 2701 /* Add system time to cpustat. */ 2702 task_group_account_field(p, index, (__force u64) cputime); 2703 2704 /* Account for system time used */ 2705 acct_update_integrals(p); 2706 } 2707 2708 /* 2709 * Account system cpu time to a process. 2710 * @p: the process that the cpu time gets accounted to 2711 * @hardirq_offset: the offset to subtract from hardirq_count() 2712 * @cputime: the cpu time spent in kernel space since the last update 2713 * @cputime_scaled: cputime scaled by cpu frequency 2714 */ 2715 void account_system_time(struct task_struct *p, int hardirq_offset, 2716 cputime_t cputime, cputime_t cputime_scaled) 2717 { 2718 int index; 2719 2720 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 2721 account_guest_time(p, cputime, cputime_scaled); 2722 return; 2723 } 2724 2725 if (hardirq_count() - hardirq_offset) 2726 index = CPUTIME_IRQ; 2727 else if (in_serving_softirq()) 2728 index = CPUTIME_SOFTIRQ; 2729 else 2730 index = CPUTIME_SYSTEM; 2731 2732 __account_system_time(p, cputime, cputime_scaled, index); 2733 } 2734 2735 /* 2736 * Account for involuntary wait time. 2737 * @cputime: the cpu time spent in involuntary wait 2738 */ 2739 void account_steal_time(cputime_t cputime) 2740 { 2741 u64 *cpustat = kcpustat_this_cpu->cpustat; 2742 2743 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 2744 } 2745 2746 /* 2747 * Account for idle time. 2748 * @cputime: the cpu time spent in idle wait 2749 */ 2750 void account_idle_time(cputime_t cputime) 2751 { 2752 u64 *cpustat = kcpustat_this_cpu->cpustat; 2753 struct rq *rq = this_rq(); 2754 2755 if (atomic_read(&rq->nr_iowait) > 0) 2756 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 2757 else 2758 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 2759 } 2760 2761 static __always_inline bool steal_account_process_tick(void) 2762 { 2763 #ifdef CONFIG_PARAVIRT 2764 if (static_branch(¶virt_steal_enabled)) { 2765 u64 steal, st = 0; 2766 2767 steal = paravirt_steal_clock(smp_processor_id()); 2768 steal -= this_rq()->prev_steal_time; 2769 2770 st = steal_ticks(steal); 2771 this_rq()->prev_steal_time += st * TICK_NSEC; 2772 2773 account_steal_time(st); 2774 return st; 2775 } 2776 #endif 2777 return false; 2778 } 2779 2780 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 2781 2782 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2783 /* 2784 * Account a tick to a process and cpustat 2785 * @p: the process that the cpu time gets accounted to 2786 * @user_tick: is the tick from userspace 2787 * @rq: the pointer to rq 2788 * 2789 * Tick demultiplexing follows the order 2790 * - pending hardirq update 2791 * - pending softirq update 2792 * - user_time 2793 * - idle_time 2794 * - system time 2795 * - check for guest_time 2796 * - else account as system_time 2797 * 2798 * Check for hardirq is done both for system and user time as there is 2799 * no timer going off while we are on hardirq and hence we may never get an 2800 * opportunity to update it solely in system time. 2801 * p->stime and friends are only updated on system time and not on irq 2802 * softirq as those do not count in task exec_runtime any more. 2803 */ 2804 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2805 struct rq *rq) 2806 { 2807 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2808 u64 *cpustat = kcpustat_this_cpu->cpustat; 2809 2810 if (steal_account_process_tick()) 2811 return; 2812 2813 if (irqtime_account_hi_update()) { 2814 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; 2815 } else if (irqtime_account_si_update()) { 2816 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; 2817 } else if (this_cpu_ksoftirqd() == p) { 2818 /* 2819 * ksoftirqd time do not get accounted in cpu_softirq_time. 2820 * So, we have to handle it separately here. 2821 * Also, p->stime needs to be updated for ksoftirqd. 2822 */ 2823 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2824 CPUTIME_SOFTIRQ); 2825 } else if (user_tick) { 2826 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2827 } else if (p == rq->idle) { 2828 account_idle_time(cputime_one_jiffy); 2829 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 2830 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); 2831 } else { 2832 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2833 CPUTIME_SYSTEM); 2834 } 2835 } 2836 2837 static void irqtime_account_idle_ticks(int ticks) 2838 { 2839 int i; 2840 struct rq *rq = this_rq(); 2841 2842 for (i = 0; i < ticks; i++) 2843 irqtime_account_process_tick(current, 0, rq); 2844 } 2845 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 2846 static void irqtime_account_idle_ticks(int ticks) {} 2847 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2848 struct rq *rq) {} 2849 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2850 2851 /* 2852 * Account a single tick of cpu time. 2853 * @p: the process that the cpu time gets accounted to 2854 * @user_tick: indicates if the tick is a user or a system tick 2855 */ 2856 void account_process_tick(struct task_struct *p, int user_tick) 2857 { 2858 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2859 struct rq *rq = this_rq(); 2860 2861 if (sched_clock_irqtime) { 2862 irqtime_account_process_tick(p, user_tick, rq); 2863 return; 2864 } 2865 2866 if (steal_account_process_tick()) 2867 return; 2868 2869 if (user_tick) 2870 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2871 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 2872 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 2873 one_jiffy_scaled); 2874 else 2875 account_idle_time(cputime_one_jiffy); 2876 } 2877 2878 /* 2879 * Account multiple ticks of steal time. 2880 * @p: the process from which the cpu time has been stolen 2881 * @ticks: number of stolen ticks 2882 */ 2883 void account_steal_ticks(unsigned long ticks) 2884 { 2885 account_steal_time(jiffies_to_cputime(ticks)); 2886 } 2887 2888 /* 2889 * Account multiple ticks of idle time. 2890 * @ticks: number of stolen ticks 2891 */ 2892 void account_idle_ticks(unsigned long ticks) 2893 { 2894 2895 if (sched_clock_irqtime) { 2896 irqtime_account_idle_ticks(ticks); 2897 return; 2898 } 2899 2900 account_idle_time(jiffies_to_cputime(ticks)); 2901 } 2902 2903 #endif 2904 2905 /* 2906 * Use precise platform statistics if available: 2907 */ 2908 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 2909 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2910 { 2911 *ut = p->utime; 2912 *st = p->stime; 2913 } 2914 2915 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2916 { 2917 struct task_cputime cputime; 2918 2919 thread_group_cputime(p, &cputime); 2920 2921 *ut = cputime.utime; 2922 *st = cputime.stime; 2923 } 2924 #else 2925 2926 #ifndef nsecs_to_cputime 2927 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) 2928 #endif 2929 2930 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2931 { 2932 cputime_t rtime, utime = p->utime, total = utime + p->stime; 2933 2934 /* 2935 * Use CFS's precise accounting: 2936 */ 2937 rtime = nsecs_to_cputime(p->se.sum_exec_runtime); 2938 2939 if (total) { 2940 u64 temp = (__force u64) rtime; 2941 2942 temp *= (__force u64) utime; 2943 do_div(temp, (__force u32) total); 2944 utime = (__force cputime_t) temp; 2945 } else 2946 utime = rtime; 2947 2948 /* 2949 * Compare with previous values, to keep monotonicity: 2950 */ 2951 p->prev_utime = max(p->prev_utime, utime); 2952 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); 2953 2954 *ut = p->prev_utime; 2955 *st = p->prev_stime; 2956 } 2957 2958 /* 2959 * Must be called with siglock held. 2960 */ 2961 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2962 { 2963 struct signal_struct *sig = p->signal; 2964 struct task_cputime cputime; 2965 cputime_t rtime, utime, total; 2966 2967 thread_group_cputime(p, &cputime); 2968 2969 total = cputime.utime + cputime.stime; 2970 rtime = nsecs_to_cputime(cputime.sum_exec_runtime); 2971 2972 if (total) { 2973 u64 temp = (__force u64) rtime; 2974 2975 temp *= (__force u64) cputime.utime; 2976 do_div(temp, (__force u32) total); 2977 utime = (__force cputime_t) temp; 2978 } else 2979 utime = rtime; 2980 2981 sig->prev_utime = max(sig->prev_utime, utime); 2982 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); 2983 2984 *ut = sig->prev_utime; 2985 *st = sig->prev_stime; 2986 } 2987 #endif 2988 2989 /* 2990 * This function gets called by the timer code, with HZ frequency. 2991 * We call it with interrupts disabled. 2992 */ 2993 void scheduler_tick(void) 2994 { 2995 int cpu = smp_processor_id(); 2996 struct rq *rq = cpu_rq(cpu); 2997 struct task_struct *curr = rq->curr; 2998 2999 sched_clock_tick(); 3000 3001 raw_spin_lock(&rq->lock); 3002 update_rq_clock(rq); 3003 update_cpu_load_active(rq); 3004 curr->sched_class->task_tick(rq, curr, 0); 3005 raw_spin_unlock(&rq->lock); 3006 3007 perf_event_task_tick(); 3008 3009 #ifdef CONFIG_SMP 3010 rq->idle_balance = idle_cpu(cpu); 3011 trigger_load_balance(rq, cpu); 3012 #endif 3013 } 3014 3015 notrace unsigned long get_parent_ip(unsigned long addr) 3016 { 3017 if (in_lock_functions(addr)) { 3018 addr = CALLER_ADDR2; 3019 if (in_lock_functions(addr)) 3020 addr = CALLER_ADDR3; 3021 } 3022 return addr; 3023 } 3024 3025 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3026 defined(CONFIG_PREEMPT_TRACER)) 3027 3028 void __kprobes add_preempt_count(int val) 3029 { 3030 #ifdef CONFIG_DEBUG_PREEMPT 3031 /* 3032 * Underflow? 3033 */ 3034 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3035 return; 3036 #endif 3037 preempt_count() += val; 3038 #ifdef CONFIG_DEBUG_PREEMPT 3039 /* 3040 * Spinlock count overflowing soon? 3041 */ 3042 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3043 PREEMPT_MASK - 10); 3044 #endif 3045 if (preempt_count() == val) 3046 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3047 } 3048 EXPORT_SYMBOL(add_preempt_count); 3049 3050 void __kprobes sub_preempt_count(int val) 3051 { 3052 #ifdef CONFIG_DEBUG_PREEMPT 3053 /* 3054 * Underflow? 3055 */ 3056 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3057 return; 3058 /* 3059 * Is the spinlock portion underflowing? 3060 */ 3061 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3062 !(preempt_count() & PREEMPT_MASK))) 3063 return; 3064 #endif 3065 3066 if (preempt_count() == val) 3067 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3068 preempt_count() -= val; 3069 } 3070 EXPORT_SYMBOL(sub_preempt_count); 3071 3072 #endif 3073 3074 /* 3075 * Print scheduling while atomic bug: 3076 */ 3077 static noinline void __schedule_bug(struct task_struct *prev) 3078 { 3079 struct pt_regs *regs = get_irq_regs(); 3080 3081 if (oops_in_progress) 3082 return; 3083 3084 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3085 prev->comm, prev->pid, preempt_count()); 3086 3087 debug_show_held_locks(prev); 3088 print_modules(); 3089 if (irqs_disabled()) 3090 print_irqtrace_events(prev); 3091 3092 if (regs) 3093 show_regs(regs); 3094 else 3095 dump_stack(); 3096 } 3097 3098 /* 3099 * Various schedule()-time debugging checks and statistics: 3100 */ 3101 static inline void schedule_debug(struct task_struct *prev) 3102 { 3103 /* 3104 * Test if we are atomic. Since do_exit() needs to call into 3105 * schedule() atomically, we ignore that path for now. 3106 * Otherwise, whine if we are scheduling when we should not be. 3107 */ 3108 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 3109 __schedule_bug(prev); 3110 rcu_sleep_check(); 3111 3112 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3113 3114 schedstat_inc(this_rq(), sched_count); 3115 } 3116 3117 static void put_prev_task(struct rq *rq, struct task_struct *prev) 3118 { 3119 if (prev->on_rq || rq->skip_clock_update < 0) 3120 update_rq_clock(rq); 3121 prev->sched_class->put_prev_task(rq, prev); 3122 } 3123 3124 /* 3125 * Pick up the highest-prio task: 3126 */ 3127 static inline struct task_struct * 3128 pick_next_task(struct rq *rq) 3129 { 3130 const struct sched_class *class; 3131 struct task_struct *p; 3132 3133 /* 3134 * Optimization: we know that if all tasks are in 3135 * the fair class we can call that function directly: 3136 */ 3137 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 3138 p = fair_sched_class.pick_next_task(rq); 3139 if (likely(p)) 3140 return p; 3141 } 3142 3143 for_each_class(class) { 3144 p = class->pick_next_task(rq); 3145 if (p) 3146 return p; 3147 } 3148 3149 BUG(); /* the idle class will always have a runnable task */ 3150 } 3151 3152 /* 3153 * __schedule() is the main scheduler function. 3154 */ 3155 static void __sched __schedule(void) 3156 { 3157 struct task_struct *prev, *next; 3158 unsigned long *switch_count; 3159 struct rq *rq; 3160 int cpu; 3161 3162 need_resched: 3163 preempt_disable(); 3164 cpu = smp_processor_id(); 3165 rq = cpu_rq(cpu); 3166 rcu_note_context_switch(cpu); 3167 prev = rq->curr; 3168 3169 schedule_debug(prev); 3170 3171 if (sched_feat(HRTICK)) 3172 hrtick_clear(rq); 3173 3174 raw_spin_lock_irq(&rq->lock); 3175 3176 switch_count = &prev->nivcsw; 3177 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3178 if (unlikely(signal_pending_state(prev->state, prev))) { 3179 prev->state = TASK_RUNNING; 3180 } else { 3181 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3182 prev->on_rq = 0; 3183 3184 /* 3185 * If a worker went to sleep, notify and ask workqueue 3186 * whether it wants to wake up a task to maintain 3187 * concurrency. 3188 */ 3189 if (prev->flags & PF_WQ_WORKER) { 3190 struct task_struct *to_wakeup; 3191 3192 to_wakeup = wq_worker_sleeping(prev, cpu); 3193 if (to_wakeup) 3194 try_to_wake_up_local(to_wakeup); 3195 } 3196 } 3197 switch_count = &prev->nvcsw; 3198 } 3199 3200 pre_schedule(rq, prev); 3201 3202 if (unlikely(!rq->nr_running)) 3203 idle_balance(cpu, rq); 3204 3205 put_prev_task(rq, prev); 3206 next = pick_next_task(rq); 3207 clear_tsk_need_resched(prev); 3208 rq->skip_clock_update = 0; 3209 3210 if (likely(prev != next)) { 3211 rq->nr_switches++; 3212 rq->curr = next; 3213 ++*switch_count; 3214 3215 context_switch(rq, prev, next); /* unlocks the rq */ 3216 /* 3217 * The context switch have flipped the stack from under us 3218 * and restored the local variables which were saved when 3219 * this task called schedule() in the past. prev == current 3220 * is still correct, but it can be moved to another cpu/rq. 3221 */ 3222 cpu = smp_processor_id(); 3223 rq = cpu_rq(cpu); 3224 } else 3225 raw_spin_unlock_irq(&rq->lock); 3226 3227 post_schedule(rq); 3228 3229 preempt_enable_no_resched(); 3230 if (need_resched()) 3231 goto need_resched; 3232 } 3233 3234 static inline void sched_submit_work(struct task_struct *tsk) 3235 { 3236 if (!tsk->state) 3237 return; 3238 /* 3239 * If we are going to sleep and we have plugged IO queued, 3240 * make sure to submit it to avoid deadlocks. 3241 */ 3242 if (blk_needs_flush_plug(tsk)) 3243 blk_schedule_flush_plug(tsk); 3244 } 3245 3246 asmlinkage void __sched schedule(void) 3247 { 3248 struct task_struct *tsk = current; 3249 3250 sched_submit_work(tsk); 3251 __schedule(); 3252 } 3253 EXPORT_SYMBOL(schedule); 3254 3255 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3256 3257 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 3258 { 3259 if (lock->owner != owner) 3260 return false; 3261 3262 /* 3263 * Ensure we emit the owner->on_cpu, dereference _after_ checking 3264 * lock->owner still matches owner, if that fails, owner might 3265 * point to free()d memory, if it still matches, the rcu_read_lock() 3266 * ensures the memory stays valid. 3267 */ 3268 barrier(); 3269 3270 return owner->on_cpu; 3271 } 3272 3273 /* 3274 * Look out! "owner" is an entirely speculative pointer 3275 * access and not reliable. 3276 */ 3277 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 3278 { 3279 if (!sched_feat(OWNER_SPIN)) 3280 return 0; 3281 3282 rcu_read_lock(); 3283 while (owner_running(lock, owner)) { 3284 if (need_resched()) 3285 break; 3286 3287 arch_mutex_cpu_relax(); 3288 } 3289 rcu_read_unlock(); 3290 3291 /* 3292 * We break out the loop above on need_resched() and when the 3293 * owner changed, which is a sign for heavy contention. Return 3294 * success only when lock->owner is NULL. 3295 */ 3296 return lock->owner == NULL; 3297 } 3298 #endif 3299 3300 #ifdef CONFIG_PREEMPT 3301 /* 3302 * this is the entry point to schedule() from in-kernel preemption 3303 * off of preempt_enable. Kernel preemptions off return from interrupt 3304 * occur there and call schedule directly. 3305 */ 3306 asmlinkage void __sched notrace preempt_schedule(void) 3307 { 3308 struct thread_info *ti = current_thread_info(); 3309 3310 /* 3311 * If there is a non-zero preempt_count or interrupts are disabled, 3312 * we do not want to preempt the current task. Just return.. 3313 */ 3314 if (likely(ti->preempt_count || irqs_disabled())) 3315 return; 3316 3317 do { 3318 add_preempt_count_notrace(PREEMPT_ACTIVE); 3319 __schedule(); 3320 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3321 3322 /* 3323 * Check again in case we missed a preemption opportunity 3324 * between schedule and now. 3325 */ 3326 barrier(); 3327 } while (need_resched()); 3328 } 3329 EXPORT_SYMBOL(preempt_schedule); 3330 3331 /* 3332 * this is the entry point to schedule() from kernel preemption 3333 * off of irq context. 3334 * Note, that this is called and return with irqs disabled. This will 3335 * protect us against recursive calling from irq. 3336 */ 3337 asmlinkage void __sched preempt_schedule_irq(void) 3338 { 3339 struct thread_info *ti = current_thread_info(); 3340 3341 /* Catch callers which need to be fixed */ 3342 BUG_ON(ti->preempt_count || !irqs_disabled()); 3343 3344 do { 3345 add_preempt_count(PREEMPT_ACTIVE); 3346 local_irq_enable(); 3347 __schedule(); 3348 local_irq_disable(); 3349 sub_preempt_count(PREEMPT_ACTIVE); 3350 3351 /* 3352 * Check again in case we missed a preemption opportunity 3353 * between schedule and now. 3354 */ 3355 barrier(); 3356 } while (need_resched()); 3357 } 3358 3359 #endif /* CONFIG_PREEMPT */ 3360 3361 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3362 void *key) 3363 { 3364 return try_to_wake_up(curr->private, mode, wake_flags); 3365 } 3366 EXPORT_SYMBOL(default_wake_function); 3367 3368 /* 3369 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3370 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3371 * number) then we wake all the non-exclusive tasks and one exclusive task. 3372 * 3373 * There are circumstances in which we can try to wake a task which has already 3374 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3375 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3376 */ 3377 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3378 int nr_exclusive, int wake_flags, void *key) 3379 { 3380 wait_queue_t *curr, *next; 3381 3382 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3383 unsigned flags = curr->flags; 3384 3385 if (curr->func(curr, mode, wake_flags, key) && 3386 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3387 break; 3388 } 3389 } 3390 3391 /** 3392 * __wake_up - wake up threads blocked on a waitqueue. 3393 * @q: the waitqueue 3394 * @mode: which threads 3395 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3396 * @key: is directly passed to the wakeup function 3397 * 3398 * It may be assumed that this function implies a write memory barrier before 3399 * changing the task state if and only if any tasks are woken up. 3400 */ 3401 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3402 int nr_exclusive, void *key) 3403 { 3404 unsigned long flags; 3405 3406 spin_lock_irqsave(&q->lock, flags); 3407 __wake_up_common(q, mode, nr_exclusive, 0, key); 3408 spin_unlock_irqrestore(&q->lock, flags); 3409 } 3410 EXPORT_SYMBOL(__wake_up); 3411 3412 /* 3413 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3414 */ 3415 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) 3416 { 3417 __wake_up_common(q, mode, 1, 0, NULL); 3418 } 3419 EXPORT_SYMBOL_GPL(__wake_up_locked); 3420 3421 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3422 { 3423 __wake_up_common(q, mode, 1, 0, key); 3424 } 3425 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3426 3427 /** 3428 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3429 * @q: the waitqueue 3430 * @mode: which threads 3431 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3432 * @key: opaque value to be passed to wakeup targets 3433 * 3434 * The sync wakeup differs that the waker knows that it will schedule 3435 * away soon, so while the target thread will be woken up, it will not 3436 * be migrated to another CPU - ie. the two threads are 'synchronized' 3437 * with each other. This can prevent needless bouncing between CPUs. 3438 * 3439 * On UP it can prevent extra preemption. 3440 * 3441 * It may be assumed that this function implies a write memory barrier before 3442 * changing the task state if and only if any tasks are woken up. 3443 */ 3444 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3445 int nr_exclusive, void *key) 3446 { 3447 unsigned long flags; 3448 int wake_flags = WF_SYNC; 3449 3450 if (unlikely(!q)) 3451 return; 3452 3453 if (unlikely(!nr_exclusive)) 3454 wake_flags = 0; 3455 3456 spin_lock_irqsave(&q->lock, flags); 3457 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3458 spin_unlock_irqrestore(&q->lock, flags); 3459 } 3460 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3461 3462 /* 3463 * __wake_up_sync - see __wake_up_sync_key() 3464 */ 3465 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3466 { 3467 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3468 } 3469 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3470 3471 /** 3472 * complete: - signals a single thread waiting on this completion 3473 * @x: holds the state of this particular completion 3474 * 3475 * This will wake up a single thread waiting on this completion. Threads will be 3476 * awakened in the same order in which they were queued. 3477 * 3478 * See also complete_all(), wait_for_completion() and related routines. 3479 * 3480 * It may be assumed that this function implies a write memory barrier before 3481 * changing the task state if and only if any tasks are woken up. 3482 */ 3483 void complete(struct completion *x) 3484 { 3485 unsigned long flags; 3486 3487 spin_lock_irqsave(&x->wait.lock, flags); 3488 x->done++; 3489 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3490 spin_unlock_irqrestore(&x->wait.lock, flags); 3491 } 3492 EXPORT_SYMBOL(complete); 3493 3494 /** 3495 * complete_all: - signals all threads waiting on this completion 3496 * @x: holds the state of this particular completion 3497 * 3498 * This will wake up all threads waiting on this particular completion event. 3499 * 3500 * It may be assumed that this function implies a write memory barrier before 3501 * changing the task state if and only if any tasks are woken up. 3502 */ 3503 void complete_all(struct completion *x) 3504 { 3505 unsigned long flags; 3506 3507 spin_lock_irqsave(&x->wait.lock, flags); 3508 x->done += UINT_MAX/2; 3509 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3510 spin_unlock_irqrestore(&x->wait.lock, flags); 3511 } 3512 EXPORT_SYMBOL(complete_all); 3513 3514 static inline long __sched 3515 do_wait_for_common(struct completion *x, long timeout, int state) 3516 { 3517 if (!x->done) { 3518 DECLARE_WAITQUEUE(wait, current); 3519 3520 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3521 do { 3522 if (signal_pending_state(state, current)) { 3523 timeout = -ERESTARTSYS; 3524 break; 3525 } 3526 __set_current_state(state); 3527 spin_unlock_irq(&x->wait.lock); 3528 timeout = schedule_timeout(timeout); 3529 spin_lock_irq(&x->wait.lock); 3530 } while (!x->done && timeout); 3531 __remove_wait_queue(&x->wait, &wait); 3532 if (!x->done) 3533 return timeout; 3534 } 3535 x->done--; 3536 return timeout ?: 1; 3537 } 3538 3539 static long __sched 3540 wait_for_common(struct completion *x, long timeout, int state) 3541 { 3542 might_sleep(); 3543 3544 spin_lock_irq(&x->wait.lock); 3545 timeout = do_wait_for_common(x, timeout, state); 3546 spin_unlock_irq(&x->wait.lock); 3547 return timeout; 3548 } 3549 3550 /** 3551 * wait_for_completion: - waits for completion of a task 3552 * @x: holds the state of this particular completion 3553 * 3554 * This waits to be signaled for completion of a specific task. It is NOT 3555 * interruptible and there is no timeout. 3556 * 3557 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3558 * and interrupt capability. Also see complete(). 3559 */ 3560 void __sched wait_for_completion(struct completion *x) 3561 { 3562 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3563 } 3564 EXPORT_SYMBOL(wait_for_completion); 3565 3566 /** 3567 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3568 * @x: holds the state of this particular completion 3569 * @timeout: timeout value in jiffies 3570 * 3571 * This waits for either a completion of a specific task to be signaled or for a 3572 * specified timeout to expire. The timeout is in jiffies. It is not 3573 * interruptible. 3574 * 3575 * The return value is 0 if timed out, and positive (at least 1, or number of 3576 * jiffies left till timeout) if completed. 3577 */ 3578 unsigned long __sched 3579 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3580 { 3581 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3582 } 3583 EXPORT_SYMBOL(wait_for_completion_timeout); 3584 3585 /** 3586 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3587 * @x: holds the state of this particular completion 3588 * 3589 * This waits for completion of a specific task to be signaled. It is 3590 * interruptible. 3591 * 3592 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3593 */ 3594 int __sched wait_for_completion_interruptible(struct completion *x) 3595 { 3596 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3597 if (t == -ERESTARTSYS) 3598 return t; 3599 return 0; 3600 } 3601 EXPORT_SYMBOL(wait_for_completion_interruptible); 3602 3603 /** 3604 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3605 * @x: holds the state of this particular completion 3606 * @timeout: timeout value in jiffies 3607 * 3608 * This waits for either a completion of a specific task to be signaled or for a 3609 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3610 * 3611 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3612 * positive (at least 1, or number of jiffies left till timeout) if completed. 3613 */ 3614 long __sched 3615 wait_for_completion_interruptible_timeout(struct completion *x, 3616 unsigned long timeout) 3617 { 3618 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3619 } 3620 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3621 3622 /** 3623 * wait_for_completion_killable: - waits for completion of a task (killable) 3624 * @x: holds the state of this particular completion 3625 * 3626 * This waits to be signaled for completion of a specific task. It can be 3627 * interrupted by a kill signal. 3628 * 3629 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3630 */ 3631 int __sched wait_for_completion_killable(struct completion *x) 3632 { 3633 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3634 if (t == -ERESTARTSYS) 3635 return t; 3636 return 0; 3637 } 3638 EXPORT_SYMBOL(wait_for_completion_killable); 3639 3640 /** 3641 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3642 * @x: holds the state of this particular completion 3643 * @timeout: timeout value in jiffies 3644 * 3645 * This waits for either a completion of a specific task to be 3646 * signaled or for a specified timeout to expire. It can be 3647 * interrupted by a kill signal. The timeout is in jiffies. 3648 * 3649 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3650 * positive (at least 1, or number of jiffies left till timeout) if completed. 3651 */ 3652 long __sched 3653 wait_for_completion_killable_timeout(struct completion *x, 3654 unsigned long timeout) 3655 { 3656 return wait_for_common(x, timeout, TASK_KILLABLE); 3657 } 3658 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3659 3660 /** 3661 * try_wait_for_completion - try to decrement a completion without blocking 3662 * @x: completion structure 3663 * 3664 * Returns: 0 if a decrement cannot be done without blocking 3665 * 1 if a decrement succeeded. 3666 * 3667 * If a completion is being used as a counting completion, 3668 * attempt to decrement the counter without blocking. This 3669 * enables us to avoid waiting if the resource the completion 3670 * is protecting is not available. 3671 */ 3672 bool try_wait_for_completion(struct completion *x) 3673 { 3674 unsigned long flags; 3675 int ret = 1; 3676 3677 spin_lock_irqsave(&x->wait.lock, flags); 3678 if (!x->done) 3679 ret = 0; 3680 else 3681 x->done--; 3682 spin_unlock_irqrestore(&x->wait.lock, flags); 3683 return ret; 3684 } 3685 EXPORT_SYMBOL(try_wait_for_completion); 3686 3687 /** 3688 * completion_done - Test to see if a completion has any waiters 3689 * @x: completion structure 3690 * 3691 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3692 * 1 if there are no waiters. 3693 * 3694 */ 3695 bool completion_done(struct completion *x) 3696 { 3697 unsigned long flags; 3698 int ret = 1; 3699 3700 spin_lock_irqsave(&x->wait.lock, flags); 3701 if (!x->done) 3702 ret = 0; 3703 spin_unlock_irqrestore(&x->wait.lock, flags); 3704 return ret; 3705 } 3706 EXPORT_SYMBOL(completion_done); 3707 3708 static long __sched 3709 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3710 { 3711 unsigned long flags; 3712 wait_queue_t wait; 3713 3714 init_waitqueue_entry(&wait, current); 3715 3716 __set_current_state(state); 3717 3718 spin_lock_irqsave(&q->lock, flags); 3719 __add_wait_queue(q, &wait); 3720 spin_unlock(&q->lock); 3721 timeout = schedule_timeout(timeout); 3722 spin_lock_irq(&q->lock); 3723 __remove_wait_queue(q, &wait); 3724 spin_unlock_irqrestore(&q->lock, flags); 3725 3726 return timeout; 3727 } 3728 3729 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3730 { 3731 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3732 } 3733 EXPORT_SYMBOL(interruptible_sleep_on); 3734 3735 long __sched 3736 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3737 { 3738 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3739 } 3740 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3741 3742 void __sched sleep_on(wait_queue_head_t *q) 3743 { 3744 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3745 } 3746 EXPORT_SYMBOL(sleep_on); 3747 3748 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3749 { 3750 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3751 } 3752 EXPORT_SYMBOL(sleep_on_timeout); 3753 3754 #ifdef CONFIG_RT_MUTEXES 3755 3756 /* 3757 * rt_mutex_setprio - set the current priority of a task 3758 * @p: task 3759 * @prio: prio value (kernel-internal form) 3760 * 3761 * This function changes the 'effective' priority of a task. It does 3762 * not touch ->normal_prio like __setscheduler(). 3763 * 3764 * Used by the rt_mutex code to implement priority inheritance logic. 3765 */ 3766 void rt_mutex_setprio(struct task_struct *p, int prio) 3767 { 3768 int oldprio, on_rq, running; 3769 struct rq *rq; 3770 const struct sched_class *prev_class; 3771 3772 BUG_ON(prio < 0 || prio > MAX_PRIO); 3773 3774 rq = __task_rq_lock(p); 3775 3776 trace_sched_pi_setprio(p, prio); 3777 oldprio = p->prio; 3778 prev_class = p->sched_class; 3779 on_rq = p->on_rq; 3780 running = task_current(rq, p); 3781 if (on_rq) 3782 dequeue_task(rq, p, 0); 3783 if (running) 3784 p->sched_class->put_prev_task(rq, p); 3785 3786 if (rt_prio(prio)) 3787 p->sched_class = &rt_sched_class; 3788 else 3789 p->sched_class = &fair_sched_class; 3790 3791 p->prio = prio; 3792 3793 if (running) 3794 p->sched_class->set_curr_task(rq); 3795 if (on_rq) 3796 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3797 3798 check_class_changed(rq, p, prev_class, oldprio); 3799 __task_rq_unlock(rq); 3800 } 3801 3802 #endif 3803 3804 void set_user_nice(struct task_struct *p, long nice) 3805 { 3806 int old_prio, delta, on_rq; 3807 unsigned long flags; 3808 struct rq *rq; 3809 3810 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3811 return; 3812 /* 3813 * We have to be careful, if called from sys_setpriority(), 3814 * the task might be in the middle of scheduling on another CPU. 3815 */ 3816 rq = task_rq_lock(p, &flags); 3817 /* 3818 * The RT priorities are set via sched_setscheduler(), but we still 3819 * allow the 'normal' nice value to be set - but as expected 3820 * it wont have any effect on scheduling until the task is 3821 * SCHED_FIFO/SCHED_RR: 3822 */ 3823 if (task_has_rt_policy(p)) { 3824 p->static_prio = NICE_TO_PRIO(nice); 3825 goto out_unlock; 3826 } 3827 on_rq = p->on_rq; 3828 if (on_rq) 3829 dequeue_task(rq, p, 0); 3830 3831 p->static_prio = NICE_TO_PRIO(nice); 3832 set_load_weight(p); 3833 old_prio = p->prio; 3834 p->prio = effective_prio(p); 3835 delta = p->prio - old_prio; 3836 3837 if (on_rq) { 3838 enqueue_task(rq, p, 0); 3839 /* 3840 * If the task increased its priority or is running and 3841 * lowered its priority, then reschedule its CPU: 3842 */ 3843 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3844 resched_task(rq->curr); 3845 } 3846 out_unlock: 3847 task_rq_unlock(rq, p, &flags); 3848 } 3849 EXPORT_SYMBOL(set_user_nice); 3850 3851 /* 3852 * can_nice - check if a task can reduce its nice value 3853 * @p: task 3854 * @nice: nice value 3855 */ 3856 int can_nice(const struct task_struct *p, const int nice) 3857 { 3858 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3859 int nice_rlim = 20 - nice; 3860 3861 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3862 capable(CAP_SYS_NICE)); 3863 } 3864 3865 #ifdef __ARCH_WANT_SYS_NICE 3866 3867 /* 3868 * sys_nice - change the priority of the current process. 3869 * @increment: priority increment 3870 * 3871 * sys_setpriority is a more generic, but much slower function that 3872 * does similar things. 3873 */ 3874 SYSCALL_DEFINE1(nice, int, increment) 3875 { 3876 long nice, retval; 3877 3878 /* 3879 * Setpriority might change our priority at the same moment. 3880 * We don't have to worry. Conceptually one call occurs first 3881 * and we have a single winner. 3882 */ 3883 if (increment < -40) 3884 increment = -40; 3885 if (increment > 40) 3886 increment = 40; 3887 3888 nice = TASK_NICE(current) + increment; 3889 if (nice < -20) 3890 nice = -20; 3891 if (nice > 19) 3892 nice = 19; 3893 3894 if (increment < 0 && !can_nice(current, nice)) 3895 return -EPERM; 3896 3897 retval = security_task_setnice(current, nice); 3898 if (retval) 3899 return retval; 3900 3901 set_user_nice(current, nice); 3902 return 0; 3903 } 3904 3905 #endif 3906 3907 /** 3908 * task_prio - return the priority value of a given task. 3909 * @p: the task in question. 3910 * 3911 * This is the priority value as seen by users in /proc. 3912 * RT tasks are offset by -200. Normal tasks are centered 3913 * around 0, value goes from -16 to +15. 3914 */ 3915 int task_prio(const struct task_struct *p) 3916 { 3917 return p->prio - MAX_RT_PRIO; 3918 } 3919 3920 /** 3921 * task_nice - return the nice value of a given task. 3922 * @p: the task in question. 3923 */ 3924 int task_nice(const struct task_struct *p) 3925 { 3926 return TASK_NICE(p); 3927 } 3928 EXPORT_SYMBOL(task_nice); 3929 3930 /** 3931 * idle_cpu - is a given cpu idle currently? 3932 * @cpu: the processor in question. 3933 */ 3934 int idle_cpu(int cpu) 3935 { 3936 struct rq *rq = cpu_rq(cpu); 3937 3938 if (rq->curr != rq->idle) 3939 return 0; 3940 3941 if (rq->nr_running) 3942 return 0; 3943 3944 #ifdef CONFIG_SMP 3945 if (!llist_empty(&rq->wake_list)) 3946 return 0; 3947 #endif 3948 3949 return 1; 3950 } 3951 3952 /** 3953 * idle_task - return the idle task for a given cpu. 3954 * @cpu: the processor in question. 3955 */ 3956 struct task_struct *idle_task(int cpu) 3957 { 3958 return cpu_rq(cpu)->idle; 3959 } 3960 3961 /** 3962 * find_process_by_pid - find a process with a matching PID value. 3963 * @pid: the pid in question. 3964 */ 3965 static struct task_struct *find_process_by_pid(pid_t pid) 3966 { 3967 return pid ? find_task_by_vpid(pid) : current; 3968 } 3969 3970 /* Actually do priority change: must hold rq lock. */ 3971 static void 3972 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 3973 { 3974 p->policy = policy; 3975 p->rt_priority = prio; 3976 p->normal_prio = normal_prio(p); 3977 /* we are holding p->pi_lock already */ 3978 p->prio = rt_mutex_getprio(p); 3979 if (rt_prio(p->prio)) 3980 p->sched_class = &rt_sched_class; 3981 else 3982 p->sched_class = &fair_sched_class; 3983 set_load_weight(p); 3984 } 3985 3986 /* 3987 * check the target process has a UID that matches the current process's 3988 */ 3989 static bool check_same_owner(struct task_struct *p) 3990 { 3991 const struct cred *cred = current_cred(), *pcred; 3992 bool match; 3993 3994 rcu_read_lock(); 3995 pcred = __task_cred(p); 3996 if (cred->user->user_ns == pcred->user->user_ns) 3997 match = (cred->euid == pcred->euid || 3998 cred->euid == pcred->uid); 3999 else 4000 match = false; 4001 rcu_read_unlock(); 4002 return match; 4003 } 4004 4005 static int __sched_setscheduler(struct task_struct *p, int policy, 4006 const struct sched_param *param, bool user) 4007 { 4008 int retval, oldprio, oldpolicy = -1, on_rq, running; 4009 unsigned long flags; 4010 const struct sched_class *prev_class; 4011 struct rq *rq; 4012 int reset_on_fork; 4013 4014 /* may grab non-irq protected spin_locks */ 4015 BUG_ON(in_interrupt()); 4016 recheck: 4017 /* double check policy once rq lock held */ 4018 if (policy < 0) { 4019 reset_on_fork = p->sched_reset_on_fork; 4020 policy = oldpolicy = p->policy; 4021 } else { 4022 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 4023 policy &= ~SCHED_RESET_ON_FORK; 4024 4025 if (policy != SCHED_FIFO && policy != SCHED_RR && 4026 policy != SCHED_NORMAL && policy != SCHED_BATCH && 4027 policy != SCHED_IDLE) 4028 return -EINVAL; 4029 } 4030 4031 /* 4032 * Valid priorities for SCHED_FIFO and SCHED_RR are 4033 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4034 * SCHED_BATCH and SCHED_IDLE is 0. 4035 */ 4036 if (param->sched_priority < 0 || 4037 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 4038 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 4039 return -EINVAL; 4040 if (rt_policy(policy) != (param->sched_priority != 0)) 4041 return -EINVAL; 4042 4043 /* 4044 * Allow unprivileged RT tasks to decrease priority: 4045 */ 4046 if (user && !capable(CAP_SYS_NICE)) { 4047 if (rt_policy(policy)) { 4048 unsigned long rlim_rtprio = 4049 task_rlimit(p, RLIMIT_RTPRIO); 4050 4051 /* can't set/change the rt policy */ 4052 if (policy != p->policy && !rlim_rtprio) 4053 return -EPERM; 4054 4055 /* can't increase priority */ 4056 if (param->sched_priority > p->rt_priority && 4057 param->sched_priority > rlim_rtprio) 4058 return -EPERM; 4059 } 4060 4061 /* 4062 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4063 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4064 */ 4065 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 4066 if (!can_nice(p, TASK_NICE(p))) 4067 return -EPERM; 4068 } 4069 4070 /* can't change other user's priorities */ 4071 if (!check_same_owner(p)) 4072 return -EPERM; 4073 4074 /* Normal users shall not reset the sched_reset_on_fork flag */ 4075 if (p->sched_reset_on_fork && !reset_on_fork) 4076 return -EPERM; 4077 } 4078 4079 if (user) { 4080 retval = security_task_setscheduler(p); 4081 if (retval) 4082 return retval; 4083 } 4084 4085 /* 4086 * make sure no PI-waiters arrive (or leave) while we are 4087 * changing the priority of the task: 4088 * 4089 * To be able to change p->policy safely, the appropriate 4090 * runqueue lock must be held. 4091 */ 4092 rq = task_rq_lock(p, &flags); 4093 4094 /* 4095 * Changing the policy of the stop threads its a very bad idea 4096 */ 4097 if (p == rq->stop) { 4098 task_rq_unlock(rq, p, &flags); 4099 return -EINVAL; 4100 } 4101 4102 /* 4103 * If not changing anything there's no need to proceed further: 4104 */ 4105 if (unlikely(policy == p->policy && (!rt_policy(policy) || 4106 param->sched_priority == p->rt_priority))) { 4107 4108 __task_rq_unlock(rq); 4109 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4110 return 0; 4111 } 4112 4113 #ifdef CONFIG_RT_GROUP_SCHED 4114 if (user) { 4115 /* 4116 * Do not allow realtime tasks into groups that have no runtime 4117 * assigned. 4118 */ 4119 if (rt_bandwidth_enabled() && rt_policy(policy) && 4120 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4121 !task_group_is_autogroup(task_group(p))) { 4122 task_rq_unlock(rq, p, &flags); 4123 return -EPERM; 4124 } 4125 } 4126 #endif 4127 4128 /* recheck policy now with rq lock held */ 4129 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4130 policy = oldpolicy = -1; 4131 task_rq_unlock(rq, p, &flags); 4132 goto recheck; 4133 } 4134 on_rq = p->on_rq; 4135 running = task_current(rq, p); 4136 if (on_rq) 4137 deactivate_task(rq, p, 0); 4138 if (running) 4139 p->sched_class->put_prev_task(rq, p); 4140 4141 p->sched_reset_on_fork = reset_on_fork; 4142 4143 oldprio = p->prio; 4144 prev_class = p->sched_class; 4145 __setscheduler(rq, p, policy, param->sched_priority); 4146 4147 if (running) 4148 p->sched_class->set_curr_task(rq); 4149 if (on_rq) 4150 activate_task(rq, p, 0); 4151 4152 check_class_changed(rq, p, prev_class, oldprio); 4153 task_rq_unlock(rq, p, &flags); 4154 4155 rt_mutex_adjust_pi(p); 4156 4157 return 0; 4158 } 4159 4160 /** 4161 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4162 * @p: the task in question. 4163 * @policy: new policy. 4164 * @param: structure containing the new RT priority. 4165 * 4166 * NOTE that the task may be already dead. 4167 */ 4168 int sched_setscheduler(struct task_struct *p, int policy, 4169 const struct sched_param *param) 4170 { 4171 return __sched_setscheduler(p, policy, param, true); 4172 } 4173 EXPORT_SYMBOL_GPL(sched_setscheduler); 4174 4175 /** 4176 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4177 * @p: the task in question. 4178 * @policy: new policy. 4179 * @param: structure containing the new RT priority. 4180 * 4181 * Just like sched_setscheduler, only don't bother checking if the 4182 * current context has permission. For example, this is needed in 4183 * stop_machine(): we create temporary high priority worker threads, 4184 * but our caller might not have that capability. 4185 */ 4186 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4187 const struct sched_param *param) 4188 { 4189 return __sched_setscheduler(p, policy, param, false); 4190 } 4191 4192 static int 4193 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4194 { 4195 struct sched_param lparam; 4196 struct task_struct *p; 4197 int retval; 4198 4199 if (!param || pid < 0) 4200 return -EINVAL; 4201 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4202 return -EFAULT; 4203 4204 rcu_read_lock(); 4205 retval = -ESRCH; 4206 p = find_process_by_pid(pid); 4207 if (p != NULL) 4208 retval = sched_setscheduler(p, policy, &lparam); 4209 rcu_read_unlock(); 4210 4211 return retval; 4212 } 4213 4214 /** 4215 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4216 * @pid: the pid in question. 4217 * @policy: new policy. 4218 * @param: structure containing the new RT priority. 4219 */ 4220 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4221 struct sched_param __user *, param) 4222 { 4223 /* negative values for policy are not valid */ 4224 if (policy < 0) 4225 return -EINVAL; 4226 4227 return do_sched_setscheduler(pid, policy, param); 4228 } 4229 4230 /** 4231 * sys_sched_setparam - set/change the RT priority of a thread 4232 * @pid: the pid in question. 4233 * @param: structure containing the new RT priority. 4234 */ 4235 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4236 { 4237 return do_sched_setscheduler(pid, -1, param); 4238 } 4239 4240 /** 4241 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4242 * @pid: the pid in question. 4243 */ 4244 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4245 { 4246 struct task_struct *p; 4247 int retval; 4248 4249 if (pid < 0) 4250 return -EINVAL; 4251 4252 retval = -ESRCH; 4253 rcu_read_lock(); 4254 p = find_process_by_pid(pid); 4255 if (p) { 4256 retval = security_task_getscheduler(p); 4257 if (!retval) 4258 retval = p->policy 4259 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4260 } 4261 rcu_read_unlock(); 4262 return retval; 4263 } 4264 4265 /** 4266 * sys_sched_getparam - get the RT priority of a thread 4267 * @pid: the pid in question. 4268 * @param: structure containing the RT priority. 4269 */ 4270 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4271 { 4272 struct sched_param lp; 4273 struct task_struct *p; 4274 int retval; 4275 4276 if (!param || pid < 0) 4277 return -EINVAL; 4278 4279 rcu_read_lock(); 4280 p = find_process_by_pid(pid); 4281 retval = -ESRCH; 4282 if (!p) 4283 goto out_unlock; 4284 4285 retval = security_task_getscheduler(p); 4286 if (retval) 4287 goto out_unlock; 4288 4289 lp.sched_priority = p->rt_priority; 4290 rcu_read_unlock(); 4291 4292 /* 4293 * This one might sleep, we cannot do it with a spinlock held ... 4294 */ 4295 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4296 4297 return retval; 4298 4299 out_unlock: 4300 rcu_read_unlock(); 4301 return retval; 4302 } 4303 4304 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4305 { 4306 cpumask_var_t cpus_allowed, new_mask; 4307 struct task_struct *p; 4308 int retval; 4309 4310 get_online_cpus(); 4311 rcu_read_lock(); 4312 4313 p = find_process_by_pid(pid); 4314 if (!p) { 4315 rcu_read_unlock(); 4316 put_online_cpus(); 4317 return -ESRCH; 4318 } 4319 4320 /* Prevent p going away */ 4321 get_task_struct(p); 4322 rcu_read_unlock(); 4323 4324 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4325 retval = -ENOMEM; 4326 goto out_put_task; 4327 } 4328 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4329 retval = -ENOMEM; 4330 goto out_free_cpus_allowed; 4331 } 4332 retval = -EPERM; 4333 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE)) 4334 goto out_unlock; 4335 4336 retval = security_task_setscheduler(p); 4337 if (retval) 4338 goto out_unlock; 4339 4340 cpuset_cpus_allowed(p, cpus_allowed); 4341 cpumask_and(new_mask, in_mask, cpus_allowed); 4342 again: 4343 retval = set_cpus_allowed_ptr(p, new_mask); 4344 4345 if (!retval) { 4346 cpuset_cpus_allowed(p, cpus_allowed); 4347 if (!cpumask_subset(new_mask, cpus_allowed)) { 4348 /* 4349 * We must have raced with a concurrent cpuset 4350 * update. Just reset the cpus_allowed to the 4351 * cpuset's cpus_allowed 4352 */ 4353 cpumask_copy(new_mask, cpus_allowed); 4354 goto again; 4355 } 4356 } 4357 out_unlock: 4358 free_cpumask_var(new_mask); 4359 out_free_cpus_allowed: 4360 free_cpumask_var(cpus_allowed); 4361 out_put_task: 4362 put_task_struct(p); 4363 put_online_cpus(); 4364 return retval; 4365 } 4366 4367 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4368 struct cpumask *new_mask) 4369 { 4370 if (len < cpumask_size()) 4371 cpumask_clear(new_mask); 4372 else if (len > cpumask_size()) 4373 len = cpumask_size(); 4374 4375 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4376 } 4377 4378 /** 4379 * sys_sched_setaffinity - set the cpu affinity of a process 4380 * @pid: pid of the process 4381 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4382 * @user_mask_ptr: user-space pointer to the new cpu mask 4383 */ 4384 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4385 unsigned long __user *, user_mask_ptr) 4386 { 4387 cpumask_var_t new_mask; 4388 int retval; 4389 4390 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4391 return -ENOMEM; 4392 4393 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4394 if (retval == 0) 4395 retval = sched_setaffinity(pid, new_mask); 4396 free_cpumask_var(new_mask); 4397 return retval; 4398 } 4399 4400 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4401 { 4402 struct task_struct *p; 4403 unsigned long flags; 4404 int retval; 4405 4406 get_online_cpus(); 4407 rcu_read_lock(); 4408 4409 retval = -ESRCH; 4410 p = find_process_by_pid(pid); 4411 if (!p) 4412 goto out_unlock; 4413 4414 retval = security_task_getscheduler(p); 4415 if (retval) 4416 goto out_unlock; 4417 4418 raw_spin_lock_irqsave(&p->pi_lock, flags); 4419 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4420 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4421 4422 out_unlock: 4423 rcu_read_unlock(); 4424 put_online_cpus(); 4425 4426 return retval; 4427 } 4428 4429 /** 4430 * sys_sched_getaffinity - get the cpu affinity of a process 4431 * @pid: pid of the process 4432 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4433 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4434 */ 4435 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4436 unsigned long __user *, user_mask_ptr) 4437 { 4438 int ret; 4439 cpumask_var_t mask; 4440 4441 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4442 return -EINVAL; 4443 if (len & (sizeof(unsigned long)-1)) 4444 return -EINVAL; 4445 4446 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4447 return -ENOMEM; 4448 4449 ret = sched_getaffinity(pid, mask); 4450 if (ret == 0) { 4451 size_t retlen = min_t(size_t, len, cpumask_size()); 4452 4453 if (copy_to_user(user_mask_ptr, mask, retlen)) 4454 ret = -EFAULT; 4455 else 4456 ret = retlen; 4457 } 4458 free_cpumask_var(mask); 4459 4460 return ret; 4461 } 4462 4463 /** 4464 * sys_sched_yield - yield the current processor to other threads. 4465 * 4466 * This function yields the current CPU to other tasks. If there are no 4467 * other threads running on this CPU then this function will return. 4468 */ 4469 SYSCALL_DEFINE0(sched_yield) 4470 { 4471 struct rq *rq = this_rq_lock(); 4472 4473 schedstat_inc(rq, yld_count); 4474 current->sched_class->yield_task(rq); 4475 4476 /* 4477 * Since we are going to call schedule() anyway, there's 4478 * no need to preempt or enable interrupts: 4479 */ 4480 __release(rq->lock); 4481 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4482 do_raw_spin_unlock(&rq->lock); 4483 preempt_enable_no_resched(); 4484 4485 schedule(); 4486 4487 return 0; 4488 } 4489 4490 static inline int should_resched(void) 4491 { 4492 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4493 } 4494 4495 static void __cond_resched(void) 4496 { 4497 add_preempt_count(PREEMPT_ACTIVE); 4498 __schedule(); 4499 sub_preempt_count(PREEMPT_ACTIVE); 4500 } 4501 4502 int __sched _cond_resched(void) 4503 { 4504 if (should_resched()) { 4505 __cond_resched(); 4506 return 1; 4507 } 4508 return 0; 4509 } 4510 EXPORT_SYMBOL(_cond_resched); 4511 4512 /* 4513 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4514 * call schedule, and on return reacquire the lock. 4515 * 4516 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4517 * operations here to prevent schedule() from being called twice (once via 4518 * spin_unlock(), once by hand). 4519 */ 4520 int __cond_resched_lock(spinlock_t *lock) 4521 { 4522 int resched = should_resched(); 4523 int ret = 0; 4524 4525 lockdep_assert_held(lock); 4526 4527 if (spin_needbreak(lock) || resched) { 4528 spin_unlock(lock); 4529 if (resched) 4530 __cond_resched(); 4531 else 4532 cpu_relax(); 4533 ret = 1; 4534 spin_lock(lock); 4535 } 4536 return ret; 4537 } 4538 EXPORT_SYMBOL(__cond_resched_lock); 4539 4540 int __sched __cond_resched_softirq(void) 4541 { 4542 BUG_ON(!in_softirq()); 4543 4544 if (should_resched()) { 4545 local_bh_enable(); 4546 __cond_resched(); 4547 local_bh_disable(); 4548 return 1; 4549 } 4550 return 0; 4551 } 4552 EXPORT_SYMBOL(__cond_resched_softirq); 4553 4554 /** 4555 * yield - yield the current processor to other threads. 4556 * 4557 * This is a shortcut for kernel-space yielding - it marks the 4558 * thread runnable and calls sys_sched_yield(). 4559 */ 4560 void __sched yield(void) 4561 { 4562 set_current_state(TASK_RUNNING); 4563 sys_sched_yield(); 4564 } 4565 EXPORT_SYMBOL(yield); 4566 4567 /** 4568 * yield_to - yield the current processor to another thread in 4569 * your thread group, or accelerate that thread toward the 4570 * processor it's on. 4571 * @p: target task 4572 * @preempt: whether task preemption is allowed or not 4573 * 4574 * It's the caller's job to ensure that the target task struct 4575 * can't go away on us before we can do any checks. 4576 * 4577 * Returns true if we indeed boosted the target task. 4578 */ 4579 bool __sched yield_to(struct task_struct *p, bool preempt) 4580 { 4581 struct task_struct *curr = current; 4582 struct rq *rq, *p_rq; 4583 unsigned long flags; 4584 bool yielded = 0; 4585 4586 local_irq_save(flags); 4587 rq = this_rq(); 4588 4589 again: 4590 p_rq = task_rq(p); 4591 double_rq_lock(rq, p_rq); 4592 while (task_rq(p) != p_rq) { 4593 double_rq_unlock(rq, p_rq); 4594 goto again; 4595 } 4596 4597 if (!curr->sched_class->yield_to_task) 4598 goto out; 4599 4600 if (curr->sched_class != p->sched_class) 4601 goto out; 4602 4603 if (task_running(p_rq, p) || p->state) 4604 goto out; 4605 4606 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4607 if (yielded) { 4608 schedstat_inc(rq, yld_count); 4609 /* 4610 * Make p's CPU reschedule; pick_next_entity takes care of 4611 * fairness. 4612 */ 4613 if (preempt && rq != p_rq) 4614 resched_task(p_rq->curr); 4615 } else { 4616 /* 4617 * We might have set it in task_yield_fair(), but are 4618 * not going to schedule(), so don't want to skip 4619 * the next update. 4620 */ 4621 rq->skip_clock_update = 0; 4622 } 4623 4624 out: 4625 double_rq_unlock(rq, p_rq); 4626 local_irq_restore(flags); 4627 4628 if (yielded) 4629 schedule(); 4630 4631 return yielded; 4632 } 4633 EXPORT_SYMBOL_GPL(yield_to); 4634 4635 /* 4636 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4637 * that process accounting knows that this is a task in IO wait state. 4638 */ 4639 void __sched io_schedule(void) 4640 { 4641 struct rq *rq = raw_rq(); 4642 4643 delayacct_blkio_start(); 4644 atomic_inc(&rq->nr_iowait); 4645 blk_flush_plug(current); 4646 current->in_iowait = 1; 4647 schedule(); 4648 current->in_iowait = 0; 4649 atomic_dec(&rq->nr_iowait); 4650 delayacct_blkio_end(); 4651 } 4652 EXPORT_SYMBOL(io_schedule); 4653 4654 long __sched io_schedule_timeout(long timeout) 4655 { 4656 struct rq *rq = raw_rq(); 4657 long ret; 4658 4659 delayacct_blkio_start(); 4660 atomic_inc(&rq->nr_iowait); 4661 blk_flush_plug(current); 4662 current->in_iowait = 1; 4663 ret = schedule_timeout(timeout); 4664 current->in_iowait = 0; 4665 atomic_dec(&rq->nr_iowait); 4666 delayacct_blkio_end(); 4667 return ret; 4668 } 4669 4670 /** 4671 * sys_sched_get_priority_max - return maximum RT priority. 4672 * @policy: scheduling class. 4673 * 4674 * this syscall returns the maximum rt_priority that can be used 4675 * by a given scheduling class. 4676 */ 4677 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4678 { 4679 int ret = -EINVAL; 4680 4681 switch (policy) { 4682 case SCHED_FIFO: 4683 case SCHED_RR: 4684 ret = MAX_USER_RT_PRIO-1; 4685 break; 4686 case SCHED_NORMAL: 4687 case SCHED_BATCH: 4688 case SCHED_IDLE: 4689 ret = 0; 4690 break; 4691 } 4692 return ret; 4693 } 4694 4695 /** 4696 * sys_sched_get_priority_min - return minimum RT priority. 4697 * @policy: scheduling class. 4698 * 4699 * this syscall returns the minimum rt_priority that can be used 4700 * by a given scheduling class. 4701 */ 4702 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4703 { 4704 int ret = -EINVAL; 4705 4706 switch (policy) { 4707 case SCHED_FIFO: 4708 case SCHED_RR: 4709 ret = 1; 4710 break; 4711 case SCHED_NORMAL: 4712 case SCHED_BATCH: 4713 case SCHED_IDLE: 4714 ret = 0; 4715 } 4716 return ret; 4717 } 4718 4719 /** 4720 * sys_sched_rr_get_interval - return the default timeslice of a process. 4721 * @pid: pid of the process. 4722 * @interval: userspace pointer to the timeslice value. 4723 * 4724 * this syscall writes the default timeslice value of a given process 4725 * into the user-space timespec buffer. A value of '0' means infinity. 4726 */ 4727 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4728 struct timespec __user *, interval) 4729 { 4730 struct task_struct *p; 4731 unsigned int time_slice; 4732 unsigned long flags; 4733 struct rq *rq; 4734 int retval; 4735 struct timespec t; 4736 4737 if (pid < 0) 4738 return -EINVAL; 4739 4740 retval = -ESRCH; 4741 rcu_read_lock(); 4742 p = find_process_by_pid(pid); 4743 if (!p) 4744 goto out_unlock; 4745 4746 retval = security_task_getscheduler(p); 4747 if (retval) 4748 goto out_unlock; 4749 4750 rq = task_rq_lock(p, &flags); 4751 time_slice = p->sched_class->get_rr_interval(rq, p); 4752 task_rq_unlock(rq, p, &flags); 4753 4754 rcu_read_unlock(); 4755 jiffies_to_timespec(time_slice, &t); 4756 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4757 return retval; 4758 4759 out_unlock: 4760 rcu_read_unlock(); 4761 return retval; 4762 } 4763 4764 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4765 4766 void sched_show_task(struct task_struct *p) 4767 { 4768 unsigned long free = 0; 4769 unsigned state; 4770 4771 state = p->state ? __ffs(p->state) + 1 : 0; 4772 printk(KERN_INFO "%-15.15s %c", p->comm, 4773 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4774 #if BITS_PER_LONG == 32 4775 if (state == TASK_RUNNING) 4776 printk(KERN_CONT " running "); 4777 else 4778 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4779 #else 4780 if (state == TASK_RUNNING) 4781 printk(KERN_CONT " running task "); 4782 else 4783 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4784 #endif 4785 #ifdef CONFIG_DEBUG_STACK_USAGE 4786 free = stack_not_used(p); 4787 #endif 4788 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4789 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), 4790 (unsigned long)task_thread_info(p)->flags); 4791 4792 show_stack(p, NULL); 4793 } 4794 4795 void show_state_filter(unsigned long state_filter) 4796 { 4797 struct task_struct *g, *p; 4798 4799 #if BITS_PER_LONG == 32 4800 printk(KERN_INFO 4801 " task PC stack pid father\n"); 4802 #else 4803 printk(KERN_INFO 4804 " task PC stack pid father\n"); 4805 #endif 4806 rcu_read_lock(); 4807 do_each_thread(g, p) { 4808 /* 4809 * reset the NMI-timeout, listing all files on a slow 4810 * console might take a lot of time: 4811 */ 4812 touch_nmi_watchdog(); 4813 if (!state_filter || (p->state & state_filter)) 4814 sched_show_task(p); 4815 } while_each_thread(g, p); 4816 4817 touch_all_softlockup_watchdogs(); 4818 4819 #ifdef CONFIG_SCHED_DEBUG 4820 sysrq_sched_debug_show(); 4821 #endif 4822 rcu_read_unlock(); 4823 /* 4824 * Only show locks if all tasks are dumped: 4825 */ 4826 if (!state_filter) 4827 debug_show_all_locks(); 4828 } 4829 4830 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4831 { 4832 idle->sched_class = &idle_sched_class; 4833 } 4834 4835 /** 4836 * init_idle - set up an idle thread for a given CPU 4837 * @idle: task in question 4838 * @cpu: cpu the idle task belongs to 4839 * 4840 * NOTE: this function does not set the idle thread's NEED_RESCHED 4841 * flag, to make booting more robust. 4842 */ 4843 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4844 { 4845 struct rq *rq = cpu_rq(cpu); 4846 unsigned long flags; 4847 4848 raw_spin_lock_irqsave(&rq->lock, flags); 4849 4850 __sched_fork(idle); 4851 idle->state = TASK_RUNNING; 4852 idle->se.exec_start = sched_clock(); 4853 4854 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4855 /* 4856 * We're having a chicken and egg problem, even though we are 4857 * holding rq->lock, the cpu isn't yet set to this cpu so the 4858 * lockdep check in task_group() will fail. 4859 * 4860 * Similar case to sched_fork(). / Alternatively we could 4861 * use task_rq_lock() here and obtain the other rq->lock. 4862 * 4863 * Silence PROVE_RCU 4864 */ 4865 rcu_read_lock(); 4866 __set_task_cpu(idle, cpu); 4867 rcu_read_unlock(); 4868 4869 rq->curr = rq->idle = idle; 4870 #if defined(CONFIG_SMP) 4871 idle->on_cpu = 1; 4872 #endif 4873 raw_spin_unlock_irqrestore(&rq->lock, flags); 4874 4875 /* Set the preempt count _outside_ the spinlocks! */ 4876 task_thread_info(idle)->preempt_count = 0; 4877 4878 /* 4879 * The idle tasks have their own, simple scheduling class: 4880 */ 4881 idle->sched_class = &idle_sched_class; 4882 ftrace_graph_init_idle_task(idle, cpu); 4883 #if defined(CONFIG_SMP) 4884 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4885 #endif 4886 } 4887 4888 #ifdef CONFIG_SMP 4889 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4890 { 4891 if (p->sched_class && p->sched_class->set_cpus_allowed) 4892 p->sched_class->set_cpus_allowed(p, new_mask); 4893 4894 cpumask_copy(&p->cpus_allowed, new_mask); 4895 p->rt.nr_cpus_allowed = cpumask_weight(new_mask); 4896 } 4897 4898 /* 4899 * This is how migration works: 4900 * 4901 * 1) we invoke migration_cpu_stop() on the target CPU using 4902 * stop_one_cpu(). 4903 * 2) stopper starts to run (implicitly forcing the migrated thread 4904 * off the CPU) 4905 * 3) it checks whether the migrated task is still in the wrong runqueue. 4906 * 4) if it's in the wrong runqueue then the migration thread removes 4907 * it and puts it into the right queue. 4908 * 5) stopper completes and stop_one_cpu() returns and the migration 4909 * is done. 4910 */ 4911 4912 /* 4913 * Change a given task's CPU affinity. Migrate the thread to a 4914 * proper CPU and schedule it away if the CPU it's executing on 4915 * is removed from the allowed bitmask. 4916 * 4917 * NOTE: the caller must have a valid reference to the task, the 4918 * task must not exit() & deallocate itself prematurely. The 4919 * call is not atomic; no spinlocks may be held. 4920 */ 4921 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4922 { 4923 unsigned long flags; 4924 struct rq *rq; 4925 unsigned int dest_cpu; 4926 int ret = 0; 4927 4928 rq = task_rq_lock(p, &flags); 4929 4930 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4931 goto out; 4932 4933 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4934 ret = -EINVAL; 4935 goto out; 4936 } 4937 4938 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { 4939 ret = -EINVAL; 4940 goto out; 4941 } 4942 4943 do_set_cpus_allowed(p, new_mask); 4944 4945 /* Can the task run on the task's current CPU? If so, we're done */ 4946 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4947 goto out; 4948 4949 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4950 if (p->on_rq) { 4951 struct migration_arg arg = { p, dest_cpu }; 4952 /* Need help from migration thread: drop lock and wait. */ 4953 task_rq_unlock(rq, p, &flags); 4954 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4955 tlb_migrate_finish(p->mm); 4956 return 0; 4957 } 4958 out: 4959 task_rq_unlock(rq, p, &flags); 4960 4961 return ret; 4962 } 4963 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4964 4965 /* 4966 * Move (not current) task off this cpu, onto dest cpu. We're doing 4967 * this because either it can't run here any more (set_cpus_allowed() 4968 * away from this CPU, or CPU going down), or because we're 4969 * attempting to rebalance this task on exec (sched_exec). 4970 * 4971 * So we race with normal scheduler movements, but that's OK, as long 4972 * as the task is no longer on this CPU. 4973 * 4974 * Returns non-zero if task was successfully migrated. 4975 */ 4976 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4977 { 4978 struct rq *rq_dest, *rq_src; 4979 int ret = 0; 4980 4981 if (unlikely(!cpu_active(dest_cpu))) 4982 return ret; 4983 4984 rq_src = cpu_rq(src_cpu); 4985 rq_dest = cpu_rq(dest_cpu); 4986 4987 raw_spin_lock(&p->pi_lock); 4988 double_rq_lock(rq_src, rq_dest); 4989 /* Already moved. */ 4990 if (task_cpu(p) != src_cpu) 4991 goto done; 4992 /* Affinity changed (again). */ 4993 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4994 goto fail; 4995 4996 /* 4997 * If we're not on a rq, the next wake-up will ensure we're 4998 * placed properly. 4999 */ 5000 if (p->on_rq) { 5001 deactivate_task(rq_src, p, 0); 5002 set_task_cpu(p, dest_cpu); 5003 activate_task(rq_dest, p, 0); 5004 check_preempt_curr(rq_dest, p, 0); 5005 } 5006 done: 5007 ret = 1; 5008 fail: 5009 double_rq_unlock(rq_src, rq_dest); 5010 raw_spin_unlock(&p->pi_lock); 5011 return ret; 5012 } 5013 5014 /* 5015 * migration_cpu_stop - this will be executed by a highprio stopper thread 5016 * and performs thread migration by bumping thread off CPU then 5017 * 'pushing' onto another runqueue. 5018 */ 5019 static int migration_cpu_stop(void *data) 5020 { 5021 struct migration_arg *arg = data; 5022 5023 /* 5024 * The original target cpu might have gone down and we might 5025 * be on another cpu but it doesn't matter. 5026 */ 5027 local_irq_disable(); 5028 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 5029 local_irq_enable(); 5030 return 0; 5031 } 5032 5033 #ifdef CONFIG_HOTPLUG_CPU 5034 5035 /* 5036 * Ensures that the idle task is using init_mm right before its cpu goes 5037 * offline. 5038 */ 5039 void idle_task_exit(void) 5040 { 5041 struct mm_struct *mm = current->active_mm; 5042 5043 BUG_ON(cpu_online(smp_processor_id())); 5044 5045 if (mm != &init_mm) 5046 switch_mm(mm, &init_mm, current); 5047 mmdrop(mm); 5048 } 5049 5050 /* 5051 * While a dead CPU has no uninterruptible tasks queued at this point, 5052 * it might still have a nonzero ->nr_uninterruptible counter, because 5053 * for performance reasons the counter is not stricly tracking tasks to 5054 * their home CPUs. So we just add the counter to another CPU's counter, 5055 * to keep the global sum constant after CPU-down: 5056 */ 5057 static void migrate_nr_uninterruptible(struct rq *rq_src) 5058 { 5059 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); 5060 5061 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; 5062 rq_src->nr_uninterruptible = 0; 5063 } 5064 5065 /* 5066 * remove the tasks which were accounted by rq from calc_load_tasks. 5067 */ 5068 static void calc_global_load_remove(struct rq *rq) 5069 { 5070 atomic_long_sub(rq->calc_load_active, &calc_load_tasks); 5071 rq->calc_load_active = 0; 5072 } 5073 5074 /* 5075 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5076 * try_to_wake_up()->select_task_rq(). 5077 * 5078 * Called with rq->lock held even though we'er in stop_machine() and 5079 * there's no concurrency possible, we hold the required locks anyway 5080 * because of lock validation efforts. 5081 */ 5082 static void migrate_tasks(unsigned int dead_cpu) 5083 { 5084 struct rq *rq = cpu_rq(dead_cpu); 5085 struct task_struct *next, *stop = rq->stop; 5086 int dest_cpu; 5087 5088 /* 5089 * Fudge the rq selection such that the below task selection loop 5090 * doesn't get stuck on the currently eligible stop task. 5091 * 5092 * We're currently inside stop_machine() and the rq is either stuck 5093 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5094 * either way we should never end up calling schedule() until we're 5095 * done here. 5096 */ 5097 rq->stop = NULL; 5098 5099 /* Ensure any throttled groups are reachable by pick_next_task */ 5100 unthrottle_offline_cfs_rqs(rq); 5101 5102 for ( ; ; ) { 5103 /* 5104 * There's this thread running, bail when that's the only 5105 * remaining thread. 5106 */ 5107 if (rq->nr_running == 1) 5108 break; 5109 5110 next = pick_next_task(rq); 5111 BUG_ON(!next); 5112 next->sched_class->put_prev_task(rq, next); 5113 5114 /* Find suitable destination for @next, with force if needed. */ 5115 dest_cpu = select_fallback_rq(dead_cpu, next); 5116 raw_spin_unlock(&rq->lock); 5117 5118 __migrate_task(next, dead_cpu, dest_cpu); 5119 5120 raw_spin_lock(&rq->lock); 5121 } 5122 5123 rq->stop = stop; 5124 } 5125 5126 #endif /* CONFIG_HOTPLUG_CPU */ 5127 5128 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5129 5130 static struct ctl_table sd_ctl_dir[] = { 5131 { 5132 .procname = "sched_domain", 5133 .mode = 0555, 5134 }, 5135 {} 5136 }; 5137 5138 static struct ctl_table sd_ctl_root[] = { 5139 { 5140 .procname = "kernel", 5141 .mode = 0555, 5142 .child = sd_ctl_dir, 5143 }, 5144 {} 5145 }; 5146 5147 static struct ctl_table *sd_alloc_ctl_entry(int n) 5148 { 5149 struct ctl_table *entry = 5150 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5151 5152 return entry; 5153 } 5154 5155 static void sd_free_ctl_entry(struct ctl_table **tablep) 5156 { 5157 struct ctl_table *entry; 5158 5159 /* 5160 * In the intermediate directories, both the child directory and 5161 * procname are dynamically allocated and could fail but the mode 5162 * will always be set. In the lowest directory the names are 5163 * static strings and all have proc handlers. 5164 */ 5165 for (entry = *tablep; entry->mode; entry++) { 5166 if (entry->child) 5167 sd_free_ctl_entry(&entry->child); 5168 if (entry->proc_handler == NULL) 5169 kfree(entry->procname); 5170 } 5171 5172 kfree(*tablep); 5173 *tablep = NULL; 5174 } 5175 5176 static void 5177 set_table_entry(struct ctl_table *entry, 5178 const char *procname, void *data, int maxlen, 5179 umode_t mode, proc_handler *proc_handler) 5180 { 5181 entry->procname = procname; 5182 entry->data = data; 5183 entry->maxlen = maxlen; 5184 entry->mode = mode; 5185 entry->proc_handler = proc_handler; 5186 } 5187 5188 static struct ctl_table * 5189 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5190 { 5191 struct ctl_table *table = sd_alloc_ctl_entry(13); 5192 5193 if (table == NULL) 5194 return NULL; 5195 5196 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5197 sizeof(long), 0644, proc_doulongvec_minmax); 5198 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5199 sizeof(long), 0644, proc_doulongvec_minmax); 5200 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5201 sizeof(int), 0644, proc_dointvec_minmax); 5202 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5203 sizeof(int), 0644, proc_dointvec_minmax); 5204 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5205 sizeof(int), 0644, proc_dointvec_minmax); 5206 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5207 sizeof(int), 0644, proc_dointvec_minmax); 5208 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5209 sizeof(int), 0644, proc_dointvec_minmax); 5210 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5211 sizeof(int), 0644, proc_dointvec_minmax); 5212 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5213 sizeof(int), 0644, proc_dointvec_minmax); 5214 set_table_entry(&table[9], "cache_nice_tries", 5215 &sd->cache_nice_tries, 5216 sizeof(int), 0644, proc_dointvec_minmax); 5217 set_table_entry(&table[10], "flags", &sd->flags, 5218 sizeof(int), 0644, proc_dointvec_minmax); 5219 set_table_entry(&table[11], "name", sd->name, 5220 CORENAME_MAX_SIZE, 0444, proc_dostring); 5221 /* &table[12] is terminator */ 5222 5223 return table; 5224 } 5225 5226 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5227 { 5228 struct ctl_table *entry, *table; 5229 struct sched_domain *sd; 5230 int domain_num = 0, i; 5231 char buf[32]; 5232 5233 for_each_domain(cpu, sd) 5234 domain_num++; 5235 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5236 if (table == NULL) 5237 return NULL; 5238 5239 i = 0; 5240 for_each_domain(cpu, sd) { 5241 snprintf(buf, 32, "domain%d", i); 5242 entry->procname = kstrdup(buf, GFP_KERNEL); 5243 entry->mode = 0555; 5244 entry->child = sd_alloc_ctl_domain_table(sd); 5245 entry++; 5246 i++; 5247 } 5248 return table; 5249 } 5250 5251 static struct ctl_table_header *sd_sysctl_header; 5252 static void register_sched_domain_sysctl(void) 5253 { 5254 int i, cpu_num = num_possible_cpus(); 5255 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5256 char buf[32]; 5257 5258 WARN_ON(sd_ctl_dir[0].child); 5259 sd_ctl_dir[0].child = entry; 5260 5261 if (entry == NULL) 5262 return; 5263 5264 for_each_possible_cpu(i) { 5265 snprintf(buf, 32, "cpu%d", i); 5266 entry->procname = kstrdup(buf, GFP_KERNEL); 5267 entry->mode = 0555; 5268 entry->child = sd_alloc_ctl_cpu_table(i); 5269 entry++; 5270 } 5271 5272 WARN_ON(sd_sysctl_header); 5273 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5274 } 5275 5276 /* may be called multiple times per register */ 5277 static void unregister_sched_domain_sysctl(void) 5278 { 5279 if (sd_sysctl_header) 5280 unregister_sysctl_table(sd_sysctl_header); 5281 sd_sysctl_header = NULL; 5282 if (sd_ctl_dir[0].child) 5283 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5284 } 5285 #else 5286 static void register_sched_domain_sysctl(void) 5287 { 5288 } 5289 static void unregister_sched_domain_sysctl(void) 5290 { 5291 } 5292 #endif 5293 5294 static void set_rq_online(struct rq *rq) 5295 { 5296 if (!rq->online) { 5297 const struct sched_class *class; 5298 5299 cpumask_set_cpu(rq->cpu, rq->rd->online); 5300 rq->online = 1; 5301 5302 for_each_class(class) { 5303 if (class->rq_online) 5304 class->rq_online(rq); 5305 } 5306 } 5307 } 5308 5309 static void set_rq_offline(struct rq *rq) 5310 { 5311 if (rq->online) { 5312 const struct sched_class *class; 5313 5314 for_each_class(class) { 5315 if (class->rq_offline) 5316 class->rq_offline(rq); 5317 } 5318 5319 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5320 rq->online = 0; 5321 } 5322 } 5323 5324 /* 5325 * migration_call - callback that gets triggered when a CPU is added. 5326 * Here we can start up the necessary migration thread for the new CPU. 5327 */ 5328 static int __cpuinit 5329 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5330 { 5331 int cpu = (long)hcpu; 5332 unsigned long flags; 5333 struct rq *rq = cpu_rq(cpu); 5334 5335 switch (action & ~CPU_TASKS_FROZEN) { 5336 5337 case CPU_UP_PREPARE: 5338 rq->calc_load_update = calc_load_update; 5339 break; 5340 5341 case CPU_ONLINE: 5342 /* Update our root-domain */ 5343 raw_spin_lock_irqsave(&rq->lock, flags); 5344 if (rq->rd) { 5345 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5346 5347 set_rq_online(rq); 5348 } 5349 raw_spin_unlock_irqrestore(&rq->lock, flags); 5350 break; 5351 5352 #ifdef CONFIG_HOTPLUG_CPU 5353 case CPU_DYING: 5354 sched_ttwu_pending(); 5355 /* Update our root-domain */ 5356 raw_spin_lock_irqsave(&rq->lock, flags); 5357 if (rq->rd) { 5358 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5359 set_rq_offline(rq); 5360 } 5361 migrate_tasks(cpu); 5362 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5363 raw_spin_unlock_irqrestore(&rq->lock, flags); 5364 5365 migrate_nr_uninterruptible(rq); 5366 calc_global_load_remove(rq); 5367 break; 5368 #endif 5369 } 5370 5371 update_max_interval(); 5372 5373 return NOTIFY_OK; 5374 } 5375 5376 /* 5377 * Register at high priority so that task migration (migrate_all_tasks) 5378 * happens before everything else. This has to be lower priority than 5379 * the notifier in the perf_event subsystem, though. 5380 */ 5381 static struct notifier_block __cpuinitdata migration_notifier = { 5382 .notifier_call = migration_call, 5383 .priority = CPU_PRI_MIGRATION, 5384 }; 5385 5386 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5387 unsigned long action, void *hcpu) 5388 { 5389 switch (action & ~CPU_TASKS_FROZEN) { 5390 case CPU_ONLINE: 5391 case CPU_DOWN_FAILED: 5392 set_cpu_active((long)hcpu, true); 5393 return NOTIFY_OK; 5394 default: 5395 return NOTIFY_DONE; 5396 } 5397 } 5398 5399 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5400 unsigned long action, void *hcpu) 5401 { 5402 switch (action & ~CPU_TASKS_FROZEN) { 5403 case CPU_DOWN_PREPARE: 5404 set_cpu_active((long)hcpu, false); 5405 return NOTIFY_OK; 5406 default: 5407 return NOTIFY_DONE; 5408 } 5409 } 5410 5411 static int __init migration_init(void) 5412 { 5413 void *cpu = (void *)(long)smp_processor_id(); 5414 int err; 5415 5416 /* Initialize migration for the boot CPU */ 5417 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5418 BUG_ON(err == NOTIFY_BAD); 5419 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5420 register_cpu_notifier(&migration_notifier); 5421 5422 /* Register cpu active notifiers */ 5423 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5424 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5425 5426 return 0; 5427 } 5428 early_initcall(migration_init); 5429 #endif 5430 5431 #ifdef CONFIG_SMP 5432 5433 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5434 5435 #ifdef CONFIG_SCHED_DEBUG 5436 5437 static __read_mostly int sched_domain_debug_enabled; 5438 5439 static int __init sched_domain_debug_setup(char *str) 5440 { 5441 sched_domain_debug_enabled = 1; 5442 5443 return 0; 5444 } 5445 early_param("sched_debug", sched_domain_debug_setup); 5446 5447 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5448 struct cpumask *groupmask) 5449 { 5450 struct sched_group *group = sd->groups; 5451 char str[256]; 5452 5453 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5454 cpumask_clear(groupmask); 5455 5456 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5457 5458 if (!(sd->flags & SD_LOAD_BALANCE)) { 5459 printk("does not load-balance\n"); 5460 if (sd->parent) 5461 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5462 " has parent"); 5463 return -1; 5464 } 5465 5466 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5467 5468 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5469 printk(KERN_ERR "ERROR: domain->span does not contain " 5470 "CPU%d\n", cpu); 5471 } 5472 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5473 printk(KERN_ERR "ERROR: domain->groups does not contain" 5474 " CPU%d\n", cpu); 5475 } 5476 5477 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5478 do { 5479 if (!group) { 5480 printk("\n"); 5481 printk(KERN_ERR "ERROR: group is NULL\n"); 5482 break; 5483 } 5484 5485 if (!group->sgp->power) { 5486 printk(KERN_CONT "\n"); 5487 printk(KERN_ERR "ERROR: domain->cpu_power not " 5488 "set\n"); 5489 break; 5490 } 5491 5492 if (!cpumask_weight(sched_group_cpus(group))) { 5493 printk(KERN_CONT "\n"); 5494 printk(KERN_ERR "ERROR: empty group\n"); 5495 break; 5496 } 5497 5498 if (cpumask_intersects(groupmask, sched_group_cpus(group))) { 5499 printk(KERN_CONT "\n"); 5500 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5501 break; 5502 } 5503 5504 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5505 5506 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5507 5508 printk(KERN_CONT " %s", str); 5509 if (group->sgp->power != SCHED_POWER_SCALE) { 5510 printk(KERN_CONT " (cpu_power = %d)", 5511 group->sgp->power); 5512 } 5513 5514 group = group->next; 5515 } while (group != sd->groups); 5516 printk(KERN_CONT "\n"); 5517 5518 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5519 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5520 5521 if (sd->parent && 5522 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5523 printk(KERN_ERR "ERROR: parent span is not a superset " 5524 "of domain->span\n"); 5525 return 0; 5526 } 5527 5528 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5529 { 5530 int level = 0; 5531 5532 if (!sched_domain_debug_enabled) 5533 return; 5534 5535 if (!sd) { 5536 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5537 return; 5538 } 5539 5540 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5541 5542 for (;;) { 5543 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5544 break; 5545 level++; 5546 sd = sd->parent; 5547 if (!sd) 5548 break; 5549 } 5550 } 5551 #else /* !CONFIG_SCHED_DEBUG */ 5552 # define sched_domain_debug(sd, cpu) do { } while (0) 5553 #endif /* CONFIG_SCHED_DEBUG */ 5554 5555 static int sd_degenerate(struct sched_domain *sd) 5556 { 5557 if (cpumask_weight(sched_domain_span(sd)) == 1) 5558 return 1; 5559 5560 /* Following flags need at least 2 groups */ 5561 if (sd->flags & (SD_LOAD_BALANCE | 5562 SD_BALANCE_NEWIDLE | 5563 SD_BALANCE_FORK | 5564 SD_BALANCE_EXEC | 5565 SD_SHARE_CPUPOWER | 5566 SD_SHARE_PKG_RESOURCES)) { 5567 if (sd->groups != sd->groups->next) 5568 return 0; 5569 } 5570 5571 /* Following flags don't use groups */ 5572 if (sd->flags & (SD_WAKE_AFFINE)) 5573 return 0; 5574 5575 return 1; 5576 } 5577 5578 static int 5579 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5580 { 5581 unsigned long cflags = sd->flags, pflags = parent->flags; 5582 5583 if (sd_degenerate(parent)) 5584 return 1; 5585 5586 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5587 return 0; 5588 5589 /* Flags needing groups don't count if only 1 group in parent */ 5590 if (parent->groups == parent->groups->next) { 5591 pflags &= ~(SD_LOAD_BALANCE | 5592 SD_BALANCE_NEWIDLE | 5593 SD_BALANCE_FORK | 5594 SD_BALANCE_EXEC | 5595 SD_SHARE_CPUPOWER | 5596 SD_SHARE_PKG_RESOURCES); 5597 if (nr_node_ids == 1) 5598 pflags &= ~SD_SERIALIZE; 5599 } 5600 if (~cflags & pflags) 5601 return 0; 5602 5603 return 1; 5604 } 5605 5606 static void free_rootdomain(struct rcu_head *rcu) 5607 { 5608 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5609 5610 cpupri_cleanup(&rd->cpupri); 5611 free_cpumask_var(rd->rto_mask); 5612 free_cpumask_var(rd->online); 5613 free_cpumask_var(rd->span); 5614 kfree(rd); 5615 } 5616 5617 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5618 { 5619 struct root_domain *old_rd = NULL; 5620 unsigned long flags; 5621 5622 raw_spin_lock_irqsave(&rq->lock, flags); 5623 5624 if (rq->rd) { 5625 old_rd = rq->rd; 5626 5627 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5628 set_rq_offline(rq); 5629 5630 cpumask_clear_cpu(rq->cpu, old_rd->span); 5631 5632 /* 5633 * If we dont want to free the old_rt yet then 5634 * set old_rd to NULL to skip the freeing later 5635 * in this function: 5636 */ 5637 if (!atomic_dec_and_test(&old_rd->refcount)) 5638 old_rd = NULL; 5639 } 5640 5641 atomic_inc(&rd->refcount); 5642 rq->rd = rd; 5643 5644 cpumask_set_cpu(rq->cpu, rd->span); 5645 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5646 set_rq_online(rq); 5647 5648 raw_spin_unlock_irqrestore(&rq->lock, flags); 5649 5650 if (old_rd) 5651 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5652 } 5653 5654 static int init_rootdomain(struct root_domain *rd) 5655 { 5656 memset(rd, 0, sizeof(*rd)); 5657 5658 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5659 goto out; 5660 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5661 goto free_span; 5662 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5663 goto free_online; 5664 5665 if (cpupri_init(&rd->cpupri) != 0) 5666 goto free_rto_mask; 5667 return 0; 5668 5669 free_rto_mask: 5670 free_cpumask_var(rd->rto_mask); 5671 free_online: 5672 free_cpumask_var(rd->online); 5673 free_span: 5674 free_cpumask_var(rd->span); 5675 out: 5676 return -ENOMEM; 5677 } 5678 5679 /* 5680 * By default the system creates a single root-domain with all cpus as 5681 * members (mimicking the global state we have today). 5682 */ 5683 struct root_domain def_root_domain; 5684 5685 static void init_defrootdomain(void) 5686 { 5687 init_rootdomain(&def_root_domain); 5688 5689 atomic_set(&def_root_domain.refcount, 1); 5690 } 5691 5692 static struct root_domain *alloc_rootdomain(void) 5693 { 5694 struct root_domain *rd; 5695 5696 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5697 if (!rd) 5698 return NULL; 5699 5700 if (init_rootdomain(rd) != 0) { 5701 kfree(rd); 5702 return NULL; 5703 } 5704 5705 return rd; 5706 } 5707 5708 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5709 { 5710 struct sched_group *tmp, *first; 5711 5712 if (!sg) 5713 return; 5714 5715 first = sg; 5716 do { 5717 tmp = sg->next; 5718 5719 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5720 kfree(sg->sgp); 5721 5722 kfree(sg); 5723 sg = tmp; 5724 } while (sg != first); 5725 } 5726 5727 static void free_sched_domain(struct rcu_head *rcu) 5728 { 5729 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5730 5731 /* 5732 * If its an overlapping domain it has private groups, iterate and 5733 * nuke them all. 5734 */ 5735 if (sd->flags & SD_OVERLAP) { 5736 free_sched_groups(sd->groups, 1); 5737 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5738 kfree(sd->groups->sgp); 5739 kfree(sd->groups); 5740 } 5741 kfree(sd); 5742 } 5743 5744 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5745 { 5746 call_rcu(&sd->rcu, free_sched_domain); 5747 } 5748 5749 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5750 { 5751 for (; sd; sd = sd->parent) 5752 destroy_sched_domain(sd, cpu); 5753 } 5754 5755 /* 5756 * Keep a special pointer to the highest sched_domain that has 5757 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5758 * allows us to avoid some pointer chasing select_idle_sibling(). 5759 * 5760 * Also keep a unique ID per domain (we use the first cpu number in 5761 * the cpumask of the domain), this allows us to quickly tell if 5762 * two cpus are in the same cache domain, see ttwu_share_cache(). 5763 */ 5764 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5765 DEFINE_PER_CPU(int, sd_llc_id); 5766 5767 static void update_top_cache_domain(int cpu) 5768 { 5769 struct sched_domain *sd; 5770 int id = cpu; 5771 5772 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5773 if (sd) 5774 id = cpumask_first(sched_domain_span(sd)); 5775 5776 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5777 per_cpu(sd_llc_id, cpu) = id; 5778 } 5779 5780 /* 5781 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5782 * hold the hotplug lock. 5783 */ 5784 static void 5785 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5786 { 5787 struct rq *rq = cpu_rq(cpu); 5788 struct sched_domain *tmp; 5789 5790 /* Remove the sched domains which do not contribute to scheduling. */ 5791 for (tmp = sd; tmp; ) { 5792 struct sched_domain *parent = tmp->parent; 5793 if (!parent) 5794 break; 5795 5796 if (sd_parent_degenerate(tmp, parent)) { 5797 tmp->parent = parent->parent; 5798 if (parent->parent) 5799 parent->parent->child = tmp; 5800 destroy_sched_domain(parent, cpu); 5801 } else 5802 tmp = tmp->parent; 5803 } 5804 5805 if (sd && sd_degenerate(sd)) { 5806 tmp = sd; 5807 sd = sd->parent; 5808 destroy_sched_domain(tmp, cpu); 5809 if (sd) 5810 sd->child = NULL; 5811 } 5812 5813 sched_domain_debug(sd, cpu); 5814 5815 rq_attach_root(rq, rd); 5816 tmp = rq->sd; 5817 rcu_assign_pointer(rq->sd, sd); 5818 destroy_sched_domains(tmp, cpu); 5819 5820 update_top_cache_domain(cpu); 5821 } 5822 5823 /* cpus with isolated domains */ 5824 static cpumask_var_t cpu_isolated_map; 5825 5826 /* Setup the mask of cpus configured for isolated domains */ 5827 static int __init isolated_cpu_setup(char *str) 5828 { 5829 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5830 cpulist_parse(str, cpu_isolated_map); 5831 return 1; 5832 } 5833 5834 __setup("isolcpus=", isolated_cpu_setup); 5835 5836 #ifdef CONFIG_NUMA 5837 5838 /** 5839 * find_next_best_node - find the next node to include in a sched_domain 5840 * @node: node whose sched_domain we're building 5841 * @used_nodes: nodes already in the sched_domain 5842 * 5843 * Find the next node to include in a given scheduling domain. Simply 5844 * finds the closest node not already in the @used_nodes map. 5845 * 5846 * Should use nodemask_t. 5847 */ 5848 static int find_next_best_node(int node, nodemask_t *used_nodes) 5849 { 5850 int i, n, val, min_val, best_node = -1; 5851 5852 min_val = INT_MAX; 5853 5854 for (i = 0; i < nr_node_ids; i++) { 5855 /* Start at @node */ 5856 n = (node + i) % nr_node_ids; 5857 5858 if (!nr_cpus_node(n)) 5859 continue; 5860 5861 /* Skip already used nodes */ 5862 if (node_isset(n, *used_nodes)) 5863 continue; 5864 5865 /* Simple min distance search */ 5866 val = node_distance(node, n); 5867 5868 if (val < min_val) { 5869 min_val = val; 5870 best_node = n; 5871 } 5872 } 5873 5874 if (best_node != -1) 5875 node_set(best_node, *used_nodes); 5876 return best_node; 5877 } 5878 5879 /** 5880 * sched_domain_node_span - get a cpumask for a node's sched_domain 5881 * @node: node whose cpumask we're constructing 5882 * @span: resulting cpumask 5883 * 5884 * Given a node, construct a good cpumask for its sched_domain to span. It 5885 * should be one that prevents unnecessary balancing, but also spreads tasks 5886 * out optimally. 5887 */ 5888 static void sched_domain_node_span(int node, struct cpumask *span) 5889 { 5890 nodemask_t used_nodes; 5891 int i; 5892 5893 cpumask_clear(span); 5894 nodes_clear(used_nodes); 5895 5896 cpumask_or(span, span, cpumask_of_node(node)); 5897 node_set(node, used_nodes); 5898 5899 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { 5900 int next_node = find_next_best_node(node, &used_nodes); 5901 if (next_node < 0) 5902 break; 5903 cpumask_or(span, span, cpumask_of_node(next_node)); 5904 } 5905 } 5906 5907 static const struct cpumask *cpu_node_mask(int cpu) 5908 { 5909 lockdep_assert_held(&sched_domains_mutex); 5910 5911 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask); 5912 5913 return sched_domains_tmpmask; 5914 } 5915 5916 static const struct cpumask *cpu_allnodes_mask(int cpu) 5917 { 5918 return cpu_possible_mask; 5919 } 5920 #endif /* CONFIG_NUMA */ 5921 5922 static const struct cpumask *cpu_cpu_mask(int cpu) 5923 { 5924 return cpumask_of_node(cpu_to_node(cpu)); 5925 } 5926 5927 int sched_smt_power_savings = 0, sched_mc_power_savings = 0; 5928 5929 struct sd_data { 5930 struct sched_domain **__percpu sd; 5931 struct sched_group **__percpu sg; 5932 struct sched_group_power **__percpu sgp; 5933 }; 5934 5935 struct s_data { 5936 struct sched_domain ** __percpu sd; 5937 struct root_domain *rd; 5938 }; 5939 5940 enum s_alloc { 5941 sa_rootdomain, 5942 sa_sd, 5943 sa_sd_storage, 5944 sa_none, 5945 }; 5946 5947 struct sched_domain_topology_level; 5948 5949 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5950 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5951 5952 #define SDTL_OVERLAP 0x01 5953 5954 struct sched_domain_topology_level { 5955 sched_domain_init_f init; 5956 sched_domain_mask_f mask; 5957 int flags; 5958 struct sd_data data; 5959 }; 5960 5961 static int 5962 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5963 { 5964 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5965 const struct cpumask *span = sched_domain_span(sd); 5966 struct cpumask *covered = sched_domains_tmpmask; 5967 struct sd_data *sdd = sd->private; 5968 struct sched_domain *child; 5969 int i; 5970 5971 cpumask_clear(covered); 5972 5973 for_each_cpu(i, span) { 5974 struct cpumask *sg_span; 5975 5976 if (cpumask_test_cpu(i, covered)) 5977 continue; 5978 5979 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5980 GFP_KERNEL, cpu_to_node(cpu)); 5981 5982 if (!sg) 5983 goto fail; 5984 5985 sg_span = sched_group_cpus(sg); 5986 5987 child = *per_cpu_ptr(sdd->sd, i); 5988 if (child->child) { 5989 child = child->child; 5990 cpumask_copy(sg_span, sched_domain_span(child)); 5991 } else 5992 cpumask_set_cpu(i, sg_span); 5993 5994 cpumask_or(covered, covered, sg_span); 5995 5996 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span)); 5997 atomic_inc(&sg->sgp->ref); 5998 5999 if (cpumask_test_cpu(cpu, sg_span)) 6000 groups = sg; 6001 6002 if (!first) 6003 first = sg; 6004 if (last) 6005 last->next = sg; 6006 last = sg; 6007 last->next = first; 6008 } 6009 sd->groups = groups; 6010 6011 return 0; 6012 6013 fail: 6014 free_sched_groups(first, 0); 6015 6016 return -ENOMEM; 6017 } 6018 6019 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6020 { 6021 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6022 struct sched_domain *child = sd->child; 6023 6024 if (child) 6025 cpu = cpumask_first(sched_domain_span(child)); 6026 6027 if (sg) { 6028 *sg = *per_cpu_ptr(sdd->sg, cpu); 6029 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 6030 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 6031 } 6032 6033 return cpu; 6034 } 6035 6036 /* 6037 * build_sched_groups will build a circular linked list of the groups 6038 * covered by the given span, and will set each group's ->cpumask correctly, 6039 * and ->cpu_power to 0. 6040 * 6041 * Assumes the sched_domain tree is fully constructed 6042 */ 6043 static int 6044 build_sched_groups(struct sched_domain *sd, int cpu) 6045 { 6046 struct sched_group *first = NULL, *last = NULL; 6047 struct sd_data *sdd = sd->private; 6048 const struct cpumask *span = sched_domain_span(sd); 6049 struct cpumask *covered; 6050 int i; 6051 6052 get_group(cpu, sdd, &sd->groups); 6053 atomic_inc(&sd->groups->ref); 6054 6055 if (cpu != cpumask_first(sched_domain_span(sd))) 6056 return 0; 6057 6058 lockdep_assert_held(&sched_domains_mutex); 6059 covered = sched_domains_tmpmask; 6060 6061 cpumask_clear(covered); 6062 6063 for_each_cpu(i, span) { 6064 struct sched_group *sg; 6065 int group = get_group(i, sdd, &sg); 6066 int j; 6067 6068 if (cpumask_test_cpu(i, covered)) 6069 continue; 6070 6071 cpumask_clear(sched_group_cpus(sg)); 6072 sg->sgp->power = 0; 6073 6074 for_each_cpu(j, span) { 6075 if (get_group(j, sdd, NULL) != group) 6076 continue; 6077 6078 cpumask_set_cpu(j, covered); 6079 cpumask_set_cpu(j, sched_group_cpus(sg)); 6080 } 6081 6082 if (!first) 6083 first = sg; 6084 if (last) 6085 last->next = sg; 6086 last = sg; 6087 } 6088 last->next = first; 6089 6090 return 0; 6091 } 6092 6093 /* 6094 * Initialize sched groups cpu_power. 6095 * 6096 * cpu_power indicates the capacity of sched group, which is used while 6097 * distributing the load between different sched groups in a sched domain. 6098 * Typically cpu_power for all the groups in a sched domain will be same unless 6099 * there are asymmetries in the topology. If there are asymmetries, group 6100 * having more cpu_power will pickup more load compared to the group having 6101 * less cpu_power. 6102 */ 6103 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 6104 { 6105 struct sched_group *sg = sd->groups; 6106 6107 WARN_ON(!sd || !sg); 6108 6109 do { 6110 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6111 sg = sg->next; 6112 } while (sg != sd->groups); 6113 6114 if (cpu != group_first_cpu(sg)) 6115 return; 6116 6117 update_group_power(sd, cpu); 6118 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 6119 } 6120 6121 int __weak arch_sd_sibling_asym_packing(void) 6122 { 6123 return 0*SD_ASYM_PACKING; 6124 } 6125 6126 /* 6127 * Initializers for schedule domains 6128 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6129 */ 6130 6131 #ifdef CONFIG_SCHED_DEBUG 6132 # define SD_INIT_NAME(sd, type) sd->name = #type 6133 #else 6134 # define SD_INIT_NAME(sd, type) do { } while (0) 6135 #endif 6136 6137 #define SD_INIT_FUNC(type) \ 6138 static noinline struct sched_domain * \ 6139 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 6140 { \ 6141 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 6142 *sd = SD_##type##_INIT; \ 6143 SD_INIT_NAME(sd, type); \ 6144 sd->private = &tl->data; \ 6145 return sd; \ 6146 } 6147 6148 SD_INIT_FUNC(CPU) 6149 #ifdef CONFIG_NUMA 6150 SD_INIT_FUNC(ALLNODES) 6151 SD_INIT_FUNC(NODE) 6152 #endif 6153 #ifdef CONFIG_SCHED_SMT 6154 SD_INIT_FUNC(SIBLING) 6155 #endif 6156 #ifdef CONFIG_SCHED_MC 6157 SD_INIT_FUNC(MC) 6158 #endif 6159 #ifdef CONFIG_SCHED_BOOK 6160 SD_INIT_FUNC(BOOK) 6161 #endif 6162 6163 static int default_relax_domain_level = -1; 6164 int sched_domain_level_max; 6165 6166 static int __init setup_relax_domain_level(char *str) 6167 { 6168 unsigned long val; 6169 6170 val = simple_strtoul(str, NULL, 0); 6171 if (val < sched_domain_level_max) 6172 default_relax_domain_level = val; 6173 6174 return 1; 6175 } 6176 __setup("relax_domain_level=", setup_relax_domain_level); 6177 6178 static void set_domain_attribute(struct sched_domain *sd, 6179 struct sched_domain_attr *attr) 6180 { 6181 int request; 6182 6183 if (!attr || attr->relax_domain_level < 0) { 6184 if (default_relax_domain_level < 0) 6185 return; 6186 else 6187 request = default_relax_domain_level; 6188 } else 6189 request = attr->relax_domain_level; 6190 if (request < sd->level) { 6191 /* turn off idle balance on this domain */ 6192 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6193 } else { 6194 /* turn on idle balance on this domain */ 6195 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6196 } 6197 } 6198 6199 static void __sdt_free(const struct cpumask *cpu_map); 6200 static int __sdt_alloc(const struct cpumask *cpu_map); 6201 6202 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6203 const struct cpumask *cpu_map) 6204 { 6205 switch (what) { 6206 case sa_rootdomain: 6207 if (!atomic_read(&d->rd->refcount)) 6208 free_rootdomain(&d->rd->rcu); /* fall through */ 6209 case sa_sd: 6210 free_percpu(d->sd); /* fall through */ 6211 case sa_sd_storage: 6212 __sdt_free(cpu_map); /* fall through */ 6213 case sa_none: 6214 break; 6215 } 6216 } 6217 6218 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6219 const struct cpumask *cpu_map) 6220 { 6221 memset(d, 0, sizeof(*d)); 6222 6223 if (__sdt_alloc(cpu_map)) 6224 return sa_sd_storage; 6225 d->sd = alloc_percpu(struct sched_domain *); 6226 if (!d->sd) 6227 return sa_sd_storage; 6228 d->rd = alloc_rootdomain(); 6229 if (!d->rd) 6230 return sa_sd; 6231 return sa_rootdomain; 6232 } 6233 6234 /* 6235 * NULL the sd_data elements we've used to build the sched_domain and 6236 * sched_group structure so that the subsequent __free_domain_allocs() 6237 * will not free the data we're using. 6238 */ 6239 static void claim_allocations(int cpu, struct sched_domain *sd) 6240 { 6241 struct sd_data *sdd = sd->private; 6242 6243 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6244 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6245 6246 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6247 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6248 6249 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6250 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6251 } 6252 6253 #ifdef CONFIG_SCHED_SMT 6254 static const struct cpumask *cpu_smt_mask(int cpu) 6255 { 6256 return topology_thread_cpumask(cpu); 6257 } 6258 #endif 6259 6260 /* 6261 * Topology list, bottom-up. 6262 */ 6263 static struct sched_domain_topology_level default_topology[] = { 6264 #ifdef CONFIG_SCHED_SMT 6265 { sd_init_SIBLING, cpu_smt_mask, }, 6266 #endif 6267 #ifdef CONFIG_SCHED_MC 6268 { sd_init_MC, cpu_coregroup_mask, }, 6269 #endif 6270 #ifdef CONFIG_SCHED_BOOK 6271 { sd_init_BOOK, cpu_book_mask, }, 6272 #endif 6273 { sd_init_CPU, cpu_cpu_mask, }, 6274 #ifdef CONFIG_NUMA 6275 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, }, 6276 { sd_init_ALLNODES, cpu_allnodes_mask, }, 6277 #endif 6278 { NULL, }, 6279 }; 6280 6281 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6282 6283 static int __sdt_alloc(const struct cpumask *cpu_map) 6284 { 6285 struct sched_domain_topology_level *tl; 6286 int j; 6287 6288 for (tl = sched_domain_topology; tl->init; tl++) { 6289 struct sd_data *sdd = &tl->data; 6290 6291 sdd->sd = alloc_percpu(struct sched_domain *); 6292 if (!sdd->sd) 6293 return -ENOMEM; 6294 6295 sdd->sg = alloc_percpu(struct sched_group *); 6296 if (!sdd->sg) 6297 return -ENOMEM; 6298 6299 sdd->sgp = alloc_percpu(struct sched_group_power *); 6300 if (!sdd->sgp) 6301 return -ENOMEM; 6302 6303 for_each_cpu(j, cpu_map) { 6304 struct sched_domain *sd; 6305 struct sched_group *sg; 6306 struct sched_group_power *sgp; 6307 6308 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6309 GFP_KERNEL, cpu_to_node(j)); 6310 if (!sd) 6311 return -ENOMEM; 6312 6313 *per_cpu_ptr(sdd->sd, j) = sd; 6314 6315 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6316 GFP_KERNEL, cpu_to_node(j)); 6317 if (!sg) 6318 return -ENOMEM; 6319 6320 *per_cpu_ptr(sdd->sg, j) = sg; 6321 6322 sgp = kzalloc_node(sizeof(struct sched_group_power), 6323 GFP_KERNEL, cpu_to_node(j)); 6324 if (!sgp) 6325 return -ENOMEM; 6326 6327 *per_cpu_ptr(sdd->sgp, j) = sgp; 6328 } 6329 } 6330 6331 return 0; 6332 } 6333 6334 static void __sdt_free(const struct cpumask *cpu_map) 6335 { 6336 struct sched_domain_topology_level *tl; 6337 int j; 6338 6339 for (tl = sched_domain_topology; tl->init; tl++) { 6340 struct sd_data *sdd = &tl->data; 6341 6342 for_each_cpu(j, cpu_map) { 6343 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j); 6344 if (sd && (sd->flags & SD_OVERLAP)) 6345 free_sched_groups(sd->groups, 0); 6346 kfree(*per_cpu_ptr(sdd->sd, j)); 6347 kfree(*per_cpu_ptr(sdd->sg, j)); 6348 kfree(*per_cpu_ptr(sdd->sgp, j)); 6349 } 6350 free_percpu(sdd->sd); 6351 free_percpu(sdd->sg); 6352 free_percpu(sdd->sgp); 6353 } 6354 } 6355 6356 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6357 struct s_data *d, const struct cpumask *cpu_map, 6358 struct sched_domain_attr *attr, struct sched_domain *child, 6359 int cpu) 6360 { 6361 struct sched_domain *sd = tl->init(tl, cpu); 6362 if (!sd) 6363 return child; 6364 6365 set_domain_attribute(sd, attr); 6366 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6367 if (child) { 6368 sd->level = child->level + 1; 6369 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6370 child->parent = sd; 6371 } 6372 sd->child = child; 6373 6374 return sd; 6375 } 6376 6377 /* 6378 * Build sched domains for a given set of cpus and attach the sched domains 6379 * to the individual cpus 6380 */ 6381 static int build_sched_domains(const struct cpumask *cpu_map, 6382 struct sched_domain_attr *attr) 6383 { 6384 enum s_alloc alloc_state = sa_none; 6385 struct sched_domain *sd; 6386 struct s_data d; 6387 int i, ret = -ENOMEM; 6388 6389 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6390 if (alloc_state != sa_rootdomain) 6391 goto error; 6392 6393 /* Set up domains for cpus specified by the cpu_map. */ 6394 for_each_cpu(i, cpu_map) { 6395 struct sched_domain_topology_level *tl; 6396 6397 sd = NULL; 6398 for (tl = sched_domain_topology; tl->init; tl++) { 6399 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6400 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6401 sd->flags |= SD_OVERLAP; 6402 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6403 break; 6404 } 6405 6406 while (sd->child) 6407 sd = sd->child; 6408 6409 *per_cpu_ptr(d.sd, i) = sd; 6410 } 6411 6412 /* Build the groups for the domains */ 6413 for_each_cpu(i, cpu_map) { 6414 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6415 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6416 if (sd->flags & SD_OVERLAP) { 6417 if (build_overlap_sched_groups(sd, i)) 6418 goto error; 6419 } else { 6420 if (build_sched_groups(sd, i)) 6421 goto error; 6422 } 6423 } 6424 } 6425 6426 /* Calculate CPU power for physical packages and nodes */ 6427 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6428 if (!cpumask_test_cpu(i, cpu_map)) 6429 continue; 6430 6431 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6432 claim_allocations(i, sd); 6433 init_sched_groups_power(i, sd); 6434 } 6435 } 6436 6437 /* Attach the domains */ 6438 rcu_read_lock(); 6439 for_each_cpu(i, cpu_map) { 6440 sd = *per_cpu_ptr(d.sd, i); 6441 cpu_attach_domain(sd, d.rd, i); 6442 } 6443 rcu_read_unlock(); 6444 6445 ret = 0; 6446 error: 6447 __free_domain_allocs(&d, alloc_state, cpu_map); 6448 return ret; 6449 } 6450 6451 static cpumask_var_t *doms_cur; /* current sched domains */ 6452 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6453 static struct sched_domain_attr *dattr_cur; 6454 /* attribues of custom domains in 'doms_cur' */ 6455 6456 /* 6457 * Special case: If a kmalloc of a doms_cur partition (array of 6458 * cpumask) fails, then fallback to a single sched domain, 6459 * as determined by the single cpumask fallback_doms. 6460 */ 6461 static cpumask_var_t fallback_doms; 6462 6463 /* 6464 * arch_update_cpu_topology lets virtualized architectures update the 6465 * cpu core maps. It is supposed to return 1 if the topology changed 6466 * or 0 if it stayed the same. 6467 */ 6468 int __attribute__((weak)) arch_update_cpu_topology(void) 6469 { 6470 return 0; 6471 } 6472 6473 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6474 { 6475 int i; 6476 cpumask_var_t *doms; 6477 6478 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6479 if (!doms) 6480 return NULL; 6481 for (i = 0; i < ndoms; i++) { 6482 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6483 free_sched_domains(doms, i); 6484 return NULL; 6485 } 6486 } 6487 return doms; 6488 } 6489 6490 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6491 { 6492 unsigned int i; 6493 for (i = 0; i < ndoms; i++) 6494 free_cpumask_var(doms[i]); 6495 kfree(doms); 6496 } 6497 6498 /* 6499 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6500 * For now this just excludes isolated cpus, but could be used to 6501 * exclude other special cases in the future. 6502 */ 6503 static int init_sched_domains(const struct cpumask *cpu_map) 6504 { 6505 int err; 6506 6507 arch_update_cpu_topology(); 6508 ndoms_cur = 1; 6509 doms_cur = alloc_sched_domains(ndoms_cur); 6510 if (!doms_cur) 6511 doms_cur = &fallback_doms; 6512 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6513 dattr_cur = NULL; 6514 err = build_sched_domains(doms_cur[0], NULL); 6515 register_sched_domain_sysctl(); 6516 6517 return err; 6518 } 6519 6520 /* 6521 * Detach sched domains from a group of cpus specified in cpu_map 6522 * These cpus will now be attached to the NULL domain 6523 */ 6524 static void detach_destroy_domains(const struct cpumask *cpu_map) 6525 { 6526 int i; 6527 6528 rcu_read_lock(); 6529 for_each_cpu(i, cpu_map) 6530 cpu_attach_domain(NULL, &def_root_domain, i); 6531 rcu_read_unlock(); 6532 } 6533 6534 /* handle null as "default" */ 6535 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6536 struct sched_domain_attr *new, int idx_new) 6537 { 6538 struct sched_domain_attr tmp; 6539 6540 /* fast path */ 6541 if (!new && !cur) 6542 return 1; 6543 6544 tmp = SD_ATTR_INIT; 6545 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6546 new ? (new + idx_new) : &tmp, 6547 sizeof(struct sched_domain_attr)); 6548 } 6549 6550 /* 6551 * Partition sched domains as specified by the 'ndoms_new' 6552 * cpumasks in the array doms_new[] of cpumasks. This compares 6553 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6554 * It destroys each deleted domain and builds each new domain. 6555 * 6556 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6557 * The masks don't intersect (don't overlap.) We should setup one 6558 * sched domain for each mask. CPUs not in any of the cpumasks will 6559 * not be load balanced. If the same cpumask appears both in the 6560 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6561 * it as it is. 6562 * 6563 * The passed in 'doms_new' should be allocated using 6564 * alloc_sched_domains. This routine takes ownership of it and will 6565 * free_sched_domains it when done with it. If the caller failed the 6566 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6567 * and partition_sched_domains() will fallback to the single partition 6568 * 'fallback_doms', it also forces the domains to be rebuilt. 6569 * 6570 * If doms_new == NULL it will be replaced with cpu_online_mask. 6571 * ndoms_new == 0 is a special case for destroying existing domains, 6572 * and it will not create the default domain. 6573 * 6574 * Call with hotplug lock held 6575 */ 6576 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6577 struct sched_domain_attr *dattr_new) 6578 { 6579 int i, j, n; 6580 int new_topology; 6581 6582 mutex_lock(&sched_domains_mutex); 6583 6584 /* always unregister in case we don't destroy any domains */ 6585 unregister_sched_domain_sysctl(); 6586 6587 /* Let architecture update cpu core mappings. */ 6588 new_topology = arch_update_cpu_topology(); 6589 6590 n = doms_new ? ndoms_new : 0; 6591 6592 /* Destroy deleted domains */ 6593 for (i = 0; i < ndoms_cur; i++) { 6594 for (j = 0; j < n && !new_topology; j++) { 6595 if (cpumask_equal(doms_cur[i], doms_new[j]) 6596 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6597 goto match1; 6598 } 6599 /* no match - a current sched domain not in new doms_new[] */ 6600 detach_destroy_domains(doms_cur[i]); 6601 match1: 6602 ; 6603 } 6604 6605 if (doms_new == NULL) { 6606 ndoms_cur = 0; 6607 doms_new = &fallback_doms; 6608 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6609 WARN_ON_ONCE(dattr_new); 6610 } 6611 6612 /* Build new domains */ 6613 for (i = 0; i < ndoms_new; i++) { 6614 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6615 if (cpumask_equal(doms_new[i], doms_cur[j]) 6616 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6617 goto match2; 6618 } 6619 /* no match - add a new doms_new */ 6620 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6621 match2: 6622 ; 6623 } 6624 6625 /* Remember the new sched domains */ 6626 if (doms_cur != &fallback_doms) 6627 free_sched_domains(doms_cur, ndoms_cur); 6628 kfree(dattr_cur); /* kfree(NULL) is safe */ 6629 doms_cur = doms_new; 6630 dattr_cur = dattr_new; 6631 ndoms_cur = ndoms_new; 6632 6633 register_sched_domain_sysctl(); 6634 6635 mutex_unlock(&sched_domains_mutex); 6636 } 6637 6638 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 6639 static void reinit_sched_domains(void) 6640 { 6641 get_online_cpus(); 6642 6643 /* Destroy domains first to force the rebuild */ 6644 partition_sched_domains(0, NULL, NULL); 6645 6646 rebuild_sched_domains(); 6647 put_online_cpus(); 6648 } 6649 6650 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) 6651 { 6652 unsigned int level = 0; 6653 6654 if (sscanf(buf, "%u", &level) != 1) 6655 return -EINVAL; 6656 6657 /* 6658 * level is always be positive so don't check for 6659 * level < POWERSAVINGS_BALANCE_NONE which is 0 6660 * What happens on 0 or 1 byte write, 6661 * need to check for count as well? 6662 */ 6663 6664 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) 6665 return -EINVAL; 6666 6667 if (smt) 6668 sched_smt_power_savings = level; 6669 else 6670 sched_mc_power_savings = level; 6671 6672 reinit_sched_domains(); 6673 6674 return count; 6675 } 6676 6677 #ifdef CONFIG_SCHED_MC 6678 static ssize_t sched_mc_power_savings_show(struct device *dev, 6679 struct device_attribute *attr, 6680 char *buf) 6681 { 6682 return sprintf(buf, "%u\n", sched_mc_power_savings); 6683 } 6684 static ssize_t sched_mc_power_savings_store(struct device *dev, 6685 struct device_attribute *attr, 6686 const char *buf, size_t count) 6687 { 6688 return sched_power_savings_store(buf, count, 0); 6689 } 6690 static DEVICE_ATTR(sched_mc_power_savings, 0644, 6691 sched_mc_power_savings_show, 6692 sched_mc_power_savings_store); 6693 #endif 6694 6695 #ifdef CONFIG_SCHED_SMT 6696 static ssize_t sched_smt_power_savings_show(struct device *dev, 6697 struct device_attribute *attr, 6698 char *buf) 6699 { 6700 return sprintf(buf, "%u\n", sched_smt_power_savings); 6701 } 6702 static ssize_t sched_smt_power_savings_store(struct device *dev, 6703 struct device_attribute *attr, 6704 const char *buf, size_t count) 6705 { 6706 return sched_power_savings_store(buf, count, 1); 6707 } 6708 static DEVICE_ATTR(sched_smt_power_savings, 0644, 6709 sched_smt_power_savings_show, 6710 sched_smt_power_savings_store); 6711 #endif 6712 6713 int __init sched_create_sysfs_power_savings_entries(struct device *dev) 6714 { 6715 int err = 0; 6716 6717 #ifdef CONFIG_SCHED_SMT 6718 if (smt_capable()) 6719 err = device_create_file(dev, &dev_attr_sched_smt_power_savings); 6720 #endif 6721 #ifdef CONFIG_SCHED_MC 6722 if (!err && mc_capable()) 6723 err = device_create_file(dev, &dev_attr_sched_mc_power_savings); 6724 #endif 6725 return err; 6726 } 6727 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 6728 6729 /* 6730 * Update cpusets according to cpu_active mask. If cpusets are 6731 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6732 * around partition_sched_domains(). 6733 */ 6734 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6735 void *hcpu) 6736 { 6737 switch (action & ~CPU_TASKS_FROZEN) { 6738 case CPU_ONLINE: 6739 case CPU_DOWN_FAILED: 6740 cpuset_update_active_cpus(); 6741 return NOTIFY_OK; 6742 default: 6743 return NOTIFY_DONE; 6744 } 6745 } 6746 6747 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6748 void *hcpu) 6749 { 6750 switch (action & ~CPU_TASKS_FROZEN) { 6751 case CPU_DOWN_PREPARE: 6752 cpuset_update_active_cpus(); 6753 return NOTIFY_OK; 6754 default: 6755 return NOTIFY_DONE; 6756 } 6757 } 6758 6759 void __init sched_init_smp(void) 6760 { 6761 cpumask_var_t non_isolated_cpus; 6762 6763 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6764 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6765 6766 get_online_cpus(); 6767 mutex_lock(&sched_domains_mutex); 6768 init_sched_domains(cpu_active_mask); 6769 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6770 if (cpumask_empty(non_isolated_cpus)) 6771 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6772 mutex_unlock(&sched_domains_mutex); 6773 put_online_cpus(); 6774 6775 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6776 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6777 6778 /* RT runtime code needs to handle some hotplug events */ 6779 hotcpu_notifier(update_runtime, 0); 6780 6781 init_hrtick(); 6782 6783 /* Move init over to a non-isolated CPU */ 6784 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6785 BUG(); 6786 sched_init_granularity(); 6787 free_cpumask_var(non_isolated_cpus); 6788 6789 init_sched_rt_class(); 6790 } 6791 #else 6792 void __init sched_init_smp(void) 6793 { 6794 sched_init_granularity(); 6795 } 6796 #endif /* CONFIG_SMP */ 6797 6798 const_debug unsigned int sysctl_timer_migration = 1; 6799 6800 int in_sched_functions(unsigned long addr) 6801 { 6802 return in_lock_functions(addr) || 6803 (addr >= (unsigned long)__sched_text_start 6804 && addr < (unsigned long)__sched_text_end); 6805 } 6806 6807 #ifdef CONFIG_CGROUP_SCHED 6808 struct task_group root_task_group; 6809 #endif 6810 6811 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 6812 6813 void __init sched_init(void) 6814 { 6815 int i, j; 6816 unsigned long alloc_size = 0, ptr; 6817 6818 #ifdef CONFIG_FAIR_GROUP_SCHED 6819 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6820 #endif 6821 #ifdef CONFIG_RT_GROUP_SCHED 6822 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6823 #endif 6824 #ifdef CONFIG_CPUMASK_OFFSTACK 6825 alloc_size += num_possible_cpus() * cpumask_size(); 6826 #endif 6827 if (alloc_size) { 6828 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6829 6830 #ifdef CONFIG_FAIR_GROUP_SCHED 6831 root_task_group.se = (struct sched_entity **)ptr; 6832 ptr += nr_cpu_ids * sizeof(void **); 6833 6834 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6835 ptr += nr_cpu_ids * sizeof(void **); 6836 6837 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6838 #ifdef CONFIG_RT_GROUP_SCHED 6839 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6840 ptr += nr_cpu_ids * sizeof(void **); 6841 6842 root_task_group.rt_rq = (struct rt_rq **)ptr; 6843 ptr += nr_cpu_ids * sizeof(void **); 6844 6845 #endif /* CONFIG_RT_GROUP_SCHED */ 6846 #ifdef CONFIG_CPUMASK_OFFSTACK 6847 for_each_possible_cpu(i) { 6848 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 6849 ptr += cpumask_size(); 6850 } 6851 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6852 } 6853 6854 #ifdef CONFIG_SMP 6855 init_defrootdomain(); 6856 #endif 6857 6858 init_rt_bandwidth(&def_rt_bandwidth, 6859 global_rt_period(), global_rt_runtime()); 6860 6861 #ifdef CONFIG_RT_GROUP_SCHED 6862 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6863 global_rt_period(), global_rt_runtime()); 6864 #endif /* CONFIG_RT_GROUP_SCHED */ 6865 6866 #ifdef CONFIG_CGROUP_SCHED 6867 list_add(&root_task_group.list, &task_groups); 6868 INIT_LIST_HEAD(&root_task_group.children); 6869 INIT_LIST_HEAD(&root_task_group.siblings); 6870 autogroup_init(&init_task); 6871 6872 #endif /* CONFIG_CGROUP_SCHED */ 6873 6874 #ifdef CONFIG_CGROUP_CPUACCT 6875 root_cpuacct.cpustat = &kernel_cpustat; 6876 root_cpuacct.cpuusage = alloc_percpu(u64); 6877 /* Too early, not expected to fail */ 6878 BUG_ON(!root_cpuacct.cpuusage); 6879 #endif 6880 for_each_possible_cpu(i) { 6881 struct rq *rq; 6882 6883 rq = cpu_rq(i); 6884 raw_spin_lock_init(&rq->lock); 6885 rq->nr_running = 0; 6886 rq->calc_load_active = 0; 6887 rq->calc_load_update = jiffies + LOAD_FREQ; 6888 init_cfs_rq(&rq->cfs); 6889 init_rt_rq(&rq->rt, rq); 6890 #ifdef CONFIG_FAIR_GROUP_SCHED 6891 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6892 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6893 /* 6894 * How much cpu bandwidth does root_task_group get? 6895 * 6896 * In case of task-groups formed thr' the cgroup filesystem, it 6897 * gets 100% of the cpu resources in the system. This overall 6898 * system cpu resource is divided among the tasks of 6899 * root_task_group and its child task-groups in a fair manner, 6900 * based on each entity's (task or task-group's) weight 6901 * (se->load.weight). 6902 * 6903 * In other words, if root_task_group has 10 tasks of weight 6904 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6905 * then A0's share of the cpu resource is: 6906 * 6907 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6908 * 6909 * We achieve this by letting root_task_group's tasks sit 6910 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6911 */ 6912 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6913 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6914 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6915 6916 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6917 #ifdef CONFIG_RT_GROUP_SCHED 6918 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6919 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6920 #endif 6921 6922 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6923 rq->cpu_load[j] = 0; 6924 6925 rq->last_load_update_tick = jiffies; 6926 6927 #ifdef CONFIG_SMP 6928 rq->sd = NULL; 6929 rq->rd = NULL; 6930 rq->cpu_power = SCHED_POWER_SCALE; 6931 rq->post_schedule = 0; 6932 rq->active_balance = 0; 6933 rq->next_balance = jiffies; 6934 rq->push_cpu = 0; 6935 rq->cpu = i; 6936 rq->online = 0; 6937 rq->idle_stamp = 0; 6938 rq->avg_idle = 2*sysctl_sched_migration_cost; 6939 rq_attach_root(rq, &def_root_domain); 6940 #ifdef CONFIG_NO_HZ 6941 rq->nohz_flags = 0; 6942 #endif 6943 #endif 6944 init_rq_hrtick(rq); 6945 atomic_set(&rq->nr_iowait, 0); 6946 } 6947 6948 set_load_weight(&init_task); 6949 6950 #ifdef CONFIG_PREEMPT_NOTIFIERS 6951 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6952 #endif 6953 6954 #ifdef CONFIG_RT_MUTEXES 6955 plist_head_init(&init_task.pi_waiters); 6956 #endif 6957 6958 /* 6959 * The boot idle thread does lazy MMU switching as well: 6960 */ 6961 atomic_inc(&init_mm.mm_count); 6962 enter_lazy_tlb(&init_mm, current); 6963 6964 /* 6965 * Make us the idle thread. Technically, schedule() should not be 6966 * called from this thread, however somewhere below it might be, 6967 * but because we are the idle thread, we just pick up running again 6968 * when this runqueue becomes "idle". 6969 */ 6970 init_idle(current, smp_processor_id()); 6971 6972 calc_load_update = jiffies + LOAD_FREQ; 6973 6974 /* 6975 * During early bootup we pretend to be a normal task: 6976 */ 6977 current->sched_class = &fair_sched_class; 6978 6979 #ifdef CONFIG_SMP 6980 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6981 /* May be allocated at isolcpus cmdline parse time */ 6982 if (cpu_isolated_map == NULL) 6983 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6984 #endif 6985 init_sched_fair_class(); 6986 6987 scheduler_running = 1; 6988 } 6989 6990 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6991 static inline int preempt_count_equals(int preempt_offset) 6992 { 6993 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 6994 6995 return (nested == preempt_offset); 6996 } 6997 6998 void __might_sleep(const char *file, int line, int preempt_offset) 6999 { 7000 static unsigned long prev_jiffy; /* ratelimiting */ 7001 7002 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7003 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7004 system_state != SYSTEM_RUNNING || oops_in_progress) 7005 return; 7006 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7007 return; 7008 prev_jiffy = jiffies; 7009 7010 printk(KERN_ERR 7011 "BUG: sleeping function called from invalid context at %s:%d\n", 7012 file, line); 7013 printk(KERN_ERR 7014 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7015 in_atomic(), irqs_disabled(), 7016 current->pid, current->comm); 7017 7018 debug_show_held_locks(current); 7019 if (irqs_disabled()) 7020 print_irqtrace_events(current); 7021 dump_stack(); 7022 } 7023 EXPORT_SYMBOL(__might_sleep); 7024 #endif 7025 7026 #ifdef CONFIG_MAGIC_SYSRQ 7027 static void normalize_task(struct rq *rq, struct task_struct *p) 7028 { 7029 const struct sched_class *prev_class = p->sched_class; 7030 int old_prio = p->prio; 7031 int on_rq; 7032 7033 on_rq = p->on_rq; 7034 if (on_rq) 7035 deactivate_task(rq, p, 0); 7036 __setscheduler(rq, p, SCHED_NORMAL, 0); 7037 if (on_rq) { 7038 activate_task(rq, p, 0); 7039 resched_task(rq->curr); 7040 } 7041 7042 check_class_changed(rq, p, prev_class, old_prio); 7043 } 7044 7045 void normalize_rt_tasks(void) 7046 { 7047 struct task_struct *g, *p; 7048 unsigned long flags; 7049 struct rq *rq; 7050 7051 read_lock_irqsave(&tasklist_lock, flags); 7052 do_each_thread(g, p) { 7053 /* 7054 * Only normalize user tasks: 7055 */ 7056 if (!p->mm) 7057 continue; 7058 7059 p->se.exec_start = 0; 7060 #ifdef CONFIG_SCHEDSTATS 7061 p->se.statistics.wait_start = 0; 7062 p->se.statistics.sleep_start = 0; 7063 p->se.statistics.block_start = 0; 7064 #endif 7065 7066 if (!rt_task(p)) { 7067 /* 7068 * Renice negative nice level userspace 7069 * tasks back to 0: 7070 */ 7071 if (TASK_NICE(p) < 0 && p->mm) 7072 set_user_nice(p, 0); 7073 continue; 7074 } 7075 7076 raw_spin_lock(&p->pi_lock); 7077 rq = __task_rq_lock(p); 7078 7079 normalize_task(rq, p); 7080 7081 __task_rq_unlock(rq); 7082 raw_spin_unlock(&p->pi_lock); 7083 } while_each_thread(g, p); 7084 7085 read_unlock_irqrestore(&tasklist_lock, flags); 7086 } 7087 7088 #endif /* CONFIG_MAGIC_SYSRQ */ 7089 7090 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7091 /* 7092 * These functions are only useful for the IA64 MCA handling, or kdb. 7093 * 7094 * They can only be called when the whole system has been 7095 * stopped - every CPU needs to be quiescent, and no scheduling 7096 * activity can take place. Using them for anything else would 7097 * be a serious bug, and as a result, they aren't even visible 7098 * under any other configuration. 7099 */ 7100 7101 /** 7102 * curr_task - return the current task for a given cpu. 7103 * @cpu: the processor in question. 7104 * 7105 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7106 */ 7107 struct task_struct *curr_task(int cpu) 7108 { 7109 return cpu_curr(cpu); 7110 } 7111 7112 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7113 7114 #ifdef CONFIG_IA64 7115 /** 7116 * set_curr_task - set the current task for a given cpu. 7117 * @cpu: the processor in question. 7118 * @p: the task pointer to set. 7119 * 7120 * Description: This function must only be used when non-maskable interrupts 7121 * are serviced on a separate stack. It allows the architecture to switch the 7122 * notion of the current task on a cpu in a non-blocking manner. This function 7123 * must be called with all CPU's synchronized, and interrupts disabled, the 7124 * and caller must save the original value of the current task (see 7125 * curr_task() above) and restore that value before reenabling interrupts and 7126 * re-starting the system. 7127 * 7128 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7129 */ 7130 void set_curr_task(int cpu, struct task_struct *p) 7131 { 7132 cpu_curr(cpu) = p; 7133 } 7134 7135 #endif 7136 7137 #ifdef CONFIG_CGROUP_SCHED 7138 /* task_group_lock serializes the addition/removal of task groups */ 7139 static DEFINE_SPINLOCK(task_group_lock); 7140 7141 static void free_sched_group(struct task_group *tg) 7142 { 7143 free_fair_sched_group(tg); 7144 free_rt_sched_group(tg); 7145 autogroup_free(tg); 7146 kfree(tg); 7147 } 7148 7149 /* allocate runqueue etc for a new task group */ 7150 struct task_group *sched_create_group(struct task_group *parent) 7151 { 7152 struct task_group *tg; 7153 unsigned long flags; 7154 7155 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7156 if (!tg) 7157 return ERR_PTR(-ENOMEM); 7158 7159 if (!alloc_fair_sched_group(tg, parent)) 7160 goto err; 7161 7162 if (!alloc_rt_sched_group(tg, parent)) 7163 goto err; 7164 7165 spin_lock_irqsave(&task_group_lock, flags); 7166 list_add_rcu(&tg->list, &task_groups); 7167 7168 WARN_ON(!parent); /* root should already exist */ 7169 7170 tg->parent = parent; 7171 INIT_LIST_HEAD(&tg->children); 7172 list_add_rcu(&tg->siblings, &parent->children); 7173 spin_unlock_irqrestore(&task_group_lock, flags); 7174 7175 return tg; 7176 7177 err: 7178 free_sched_group(tg); 7179 return ERR_PTR(-ENOMEM); 7180 } 7181 7182 /* rcu callback to free various structures associated with a task group */ 7183 static void free_sched_group_rcu(struct rcu_head *rhp) 7184 { 7185 /* now it should be safe to free those cfs_rqs */ 7186 free_sched_group(container_of(rhp, struct task_group, rcu)); 7187 } 7188 7189 /* Destroy runqueue etc associated with a task group */ 7190 void sched_destroy_group(struct task_group *tg) 7191 { 7192 unsigned long flags; 7193 int i; 7194 7195 /* end participation in shares distribution */ 7196 for_each_possible_cpu(i) 7197 unregister_fair_sched_group(tg, i); 7198 7199 spin_lock_irqsave(&task_group_lock, flags); 7200 list_del_rcu(&tg->list); 7201 list_del_rcu(&tg->siblings); 7202 spin_unlock_irqrestore(&task_group_lock, flags); 7203 7204 /* wait for possible concurrent references to cfs_rqs complete */ 7205 call_rcu(&tg->rcu, free_sched_group_rcu); 7206 } 7207 7208 /* change task's runqueue when it moves between groups. 7209 * The caller of this function should have put the task in its new group 7210 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7211 * reflect its new group. 7212 */ 7213 void sched_move_task(struct task_struct *tsk) 7214 { 7215 int on_rq, running; 7216 unsigned long flags; 7217 struct rq *rq; 7218 7219 rq = task_rq_lock(tsk, &flags); 7220 7221 running = task_current(rq, tsk); 7222 on_rq = tsk->on_rq; 7223 7224 if (on_rq) 7225 dequeue_task(rq, tsk, 0); 7226 if (unlikely(running)) 7227 tsk->sched_class->put_prev_task(rq, tsk); 7228 7229 #ifdef CONFIG_FAIR_GROUP_SCHED 7230 if (tsk->sched_class->task_move_group) 7231 tsk->sched_class->task_move_group(tsk, on_rq); 7232 else 7233 #endif 7234 set_task_rq(tsk, task_cpu(tsk)); 7235 7236 if (unlikely(running)) 7237 tsk->sched_class->set_curr_task(rq); 7238 if (on_rq) 7239 enqueue_task(rq, tsk, 0); 7240 7241 task_rq_unlock(rq, tsk, &flags); 7242 } 7243 #endif /* CONFIG_CGROUP_SCHED */ 7244 7245 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7246 static unsigned long to_ratio(u64 period, u64 runtime) 7247 { 7248 if (runtime == RUNTIME_INF) 7249 return 1ULL << 20; 7250 7251 return div64_u64(runtime << 20, period); 7252 } 7253 #endif 7254 7255 #ifdef CONFIG_RT_GROUP_SCHED 7256 /* 7257 * Ensure that the real time constraints are schedulable. 7258 */ 7259 static DEFINE_MUTEX(rt_constraints_mutex); 7260 7261 /* Must be called with tasklist_lock held */ 7262 static inline int tg_has_rt_tasks(struct task_group *tg) 7263 { 7264 struct task_struct *g, *p; 7265 7266 do_each_thread(g, p) { 7267 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7268 return 1; 7269 } while_each_thread(g, p); 7270 7271 return 0; 7272 } 7273 7274 struct rt_schedulable_data { 7275 struct task_group *tg; 7276 u64 rt_period; 7277 u64 rt_runtime; 7278 }; 7279 7280 static int tg_rt_schedulable(struct task_group *tg, void *data) 7281 { 7282 struct rt_schedulable_data *d = data; 7283 struct task_group *child; 7284 unsigned long total, sum = 0; 7285 u64 period, runtime; 7286 7287 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7288 runtime = tg->rt_bandwidth.rt_runtime; 7289 7290 if (tg == d->tg) { 7291 period = d->rt_period; 7292 runtime = d->rt_runtime; 7293 } 7294 7295 /* 7296 * Cannot have more runtime than the period. 7297 */ 7298 if (runtime > period && runtime != RUNTIME_INF) 7299 return -EINVAL; 7300 7301 /* 7302 * Ensure we don't starve existing RT tasks. 7303 */ 7304 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7305 return -EBUSY; 7306 7307 total = to_ratio(period, runtime); 7308 7309 /* 7310 * Nobody can have more than the global setting allows. 7311 */ 7312 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7313 return -EINVAL; 7314 7315 /* 7316 * The sum of our children's runtime should not exceed our own. 7317 */ 7318 list_for_each_entry_rcu(child, &tg->children, siblings) { 7319 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7320 runtime = child->rt_bandwidth.rt_runtime; 7321 7322 if (child == d->tg) { 7323 period = d->rt_period; 7324 runtime = d->rt_runtime; 7325 } 7326 7327 sum += to_ratio(period, runtime); 7328 } 7329 7330 if (sum > total) 7331 return -EINVAL; 7332 7333 return 0; 7334 } 7335 7336 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7337 { 7338 int ret; 7339 7340 struct rt_schedulable_data data = { 7341 .tg = tg, 7342 .rt_period = period, 7343 .rt_runtime = runtime, 7344 }; 7345 7346 rcu_read_lock(); 7347 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7348 rcu_read_unlock(); 7349 7350 return ret; 7351 } 7352 7353 static int tg_set_rt_bandwidth(struct task_group *tg, 7354 u64 rt_period, u64 rt_runtime) 7355 { 7356 int i, err = 0; 7357 7358 mutex_lock(&rt_constraints_mutex); 7359 read_lock(&tasklist_lock); 7360 err = __rt_schedulable(tg, rt_period, rt_runtime); 7361 if (err) 7362 goto unlock; 7363 7364 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7365 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7366 tg->rt_bandwidth.rt_runtime = rt_runtime; 7367 7368 for_each_possible_cpu(i) { 7369 struct rt_rq *rt_rq = tg->rt_rq[i]; 7370 7371 raw_spin_lock(&rt_rq->rt_runtime_lock); 7372 rt_rq->rt_runtime = rt_runtime; 7373 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7374 } 7375 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7376 unlock: 7377 read_unlock(&tasklist_lock); 7378 mutex_unlock(&rt_constraints_mutex); 7379 7380 return err; 7381 } 7382 7383 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7384 { 7385 u64 rt_runtime, rt_period; 7386 7387 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7388 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7389 if (rt_runtime_us < 0) 7390 rt_runtime = RUNTIME_INF; 7391 7392 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7393 } 7394 7395 long sched_group_rt_runtime(struct task_group *tg) 7396 { 7397 u64 rt_runtime_us; 7398 7399 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7400 return -1; 7401 7402 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7403 do_div(rt_runtime_us, NSEC_PER_USEC); 7404 return rt_runtime_us; 7405 } 7406 7407 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7408 { 7409 u64 rt_runtime, rt_period; 7410 7411 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7412 rt_runtime = tg->rt_bandwidth.rt_runtime; 7413 7414 if (rt_period == 0) 7415 return -EINVAL; 7416 7417 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7418 } 7419 7420 long sched_group_rt_period(struct task_group *tg) 7421 { 7422 u64 rt_period_us; 7423 7424 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7425 do_div(rt_period_us, NSEC_PER_USEC); 7426 return rt_period_us; 7427 } 7428 7429 static int sched_rt_global_constraints(void) 7430 { 7431 u64 runtime, period; 7432 int ret = 0; 7433 7434 if (sysctl_sched_rt_period <= 0) 7435 return -EINVAL; 7436 7437 runtime = global_rt_runtime(); 7438 period = global_rt_period(); 7439 7440 /* 7441 * Sanity check on the sysctl variables. 7442 */ 7443 if (runtime > period && runtime != RUNTIME_INF) 7444 return -EINVAL; 7445 7446 mutex_lock(&rt_constraints_mutex); 7447 read_lock(&tasklist_lock); 7448 ret = __rt_schedulable(NULL, 0, 0); 7449 read_unlock(&tasklist_lock); 7450 mutex_unlock(&rt_constraints_mutex); 7451 7452 return ret; 7453 } 7454 7455 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7456 { 7457 /* Don't accept realtime tasks when there is no way for them to run */ 7458 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7459 return 0; 7460 7461 return 1; 7462 } 7463 7464 #else /* !CONFIG_RT_GROUP_SCHED */ 7465 static int sched_rt_global_constraints(void) 7466 { 7467 unsigned long flags; 7468 int i; 7469 7470 if (sysctl_sched_rt_period <= 0) 7471 return -EINVAL; 7472 7473 /* 7474 * There's always some RT tasks in the root group 7475 * -- migration, kstopmachine etc.. 7476 */ 7477 if (sysctl_sched_rt_runtime == 0) 7478 return -EBUSY; 7479 7480 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7481 for_each_possible_cpu(i) { 7482 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7483 7484 raw_spin_lock(&rt_rq->rt_runtime_lock); 7485 rt_rq->rt_runtime = global_rt_runtime(); 7486 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7487 } 7488 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7489 7490 return 0; 7491 } 7492 #endif /* CONFIG_RT_GROUP_SCHED */ 7493 7494 int sched_rt_handler(struct ctl_table *table, int write, 7495 void __user *buffer, size_t *lenp, 7496 loff_t *ppos) 7497 { 7498 int ret; 7499 int old_period, old_runtime; 7500 static DEFINE_MUTEX(mutex); 7501 7502 mutex_lock(&mutex); 7503 old_period = sysctl_sched_rt_period; 7504 old_runtime = sysctl_sched_rt_runtime; 7505 7506 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7507 7508 if (!ret && write) { 7509 ret = sched_rt_global_constraints(); 7510 if (ret) { 7511 sysctl_sched_rt_period = old_period; 7512 sysctl_sched_rt_runtime = old_runtime; 7513 } else { 7514 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7515 def_rt_bandwidth.rt_period = 7516 ns_to_ktime(global_rt_period()); 7517 } 7518 } 7519 mutex_unlock(&mutex); 7520 7521 return ret; 7522 } 7523 7524 #ifdef CONFIG_CGROUP_SCHED 7525 7526 /* return corresponding task_group object of a cgroup */ 7527 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7528 { 7529 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7530 struct task_group, css); 7531 } 7532 7533 static struct cgroup_subsys_state * 7534 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) 7535 { 7536 struct task_group *tg, *parent; 7537 7538 if (!cgrp->parent) { 7539 /* This is early initialization for the top cgroup */ 7540 return &root_task_group.css; 7541 } 7542 7543 parent = cgroup_tg(cgrp->parent); 7544 tg = sched_create_group(parent); 7545 if (IS_ERR(tg)) 7546 return ERR_PTR(-ENOMEM); 7547 7548 return &tg->css; 7549 } 7550 7551 static void 7552 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) 7553 { 7554 struct task_group *tg = cgroup_tg(cgrp); 7555 7556 sched_destroy_group(tg); 7557 } 7558 7559 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 7560 struct cgroup_taskset *tset) 7561 { 7562 struct task_struct *task; 7563 7564 cgroup_taskset_for_each(task, cgrp, tset) { 7565 #ifdef CONFIG_RT_GROUP_SCHED 7566 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7567 return -EINVAL; 7568 #else 7569 /* We don't support RT-tasks being in separate groups */ 7570 if (task->sched_class != &fair_sched_class) 7571 return -EINVAL; 7572 #endif 7573 } 7574 return 0; 7575 } 7576 7577 static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 7578 struct cgroup_taskset *tset) 7579 { 7580 struct task_struct *task; 7581 7582 cgroup_taskset_for_each(task, cgrp, tset) 7583 sched_move_task(task); 7584 } 7585 7586 static void 7587 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, 7588 struct cgroup *old_cgrp, struct task_struct *task) 7589 { 7590 /* 7591 * cgroup_exit() is called in the copy_process() failure path. 7592 * Ignore this case since the task hasn't ran yet, this avoids 7593 * trying to poke a half freed task state from generic code. 7594 */ 7595 if (!(task->flags & PF_EXITING)) 7596 return; 7597 7598 sched_move_task(task); 7599 } 7600 7601 #ifdef CONFIG_FAIR_GROUP_SCHED 7602 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7603 u64 shareval) 7604 { 7605 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7606 } 7607 7608 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7609 { 7610 struct task_group *tg = cgroup_tg(cgrp); 7611 7612 return (u64) scale_load_down(tg->shares); 7613 } 7614 7615 #ifdef CONFIG_CFS_BANDWIDTH 7616 static DEFINE_MUTEX(cfs_constraints_mutex); 7617 7618 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7619 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7620 7621 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7622 7623 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7624 { 7625 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7626 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7627 7628 if (tg == &root_task_group) 7629 return -EINVAL; 7630 7631 /* 7632 * Ensure we have at some amount of bandwidth every period. This is 7633 * to prevent reaching a state of large arrears when throttled via 7634 * entity_tick() resulting in prolonged exit starvation. 7635 */ 7636 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7637 return -EINVAL; 7638 7639 /* 7640 * Likewise, bound things on the otherside by preventing insane quota 7641 * periods. This also allows us to normalize in computing quota 7642 * feasibility. 7643 */ 7644 if (period > max_cfs_quota_period) 7645 return -EINVAL; 7646 7647 mutex_lock(&cfs_constraints_mutex); 7648 ret = __cfs_schedulable(tg, period, quota); 7649 if (ret) 7650 goto out_unlock; 7651 7652 runtime_enabled = quota != RUNTIME_INF; 7653 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7654 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7655 raw_spin_lock_irq(&cfs_b->lock); 7656 cfs_b->period = ns_to_ktime(period); 7657 cfs_b->quota = quota; 7658 7659 __refill_cfs_bandwidth_runtime(cfs_b); 7660 /* restart the period timer (if active) to handle new period expiry */ 7661 if (runtime_enabled && cfs_b->timer_active) { 7662 /* force a reprogram */ 7663 cfs_b->timer_active = 0; 7664 __start_cfs_bandwidth(cfs_b); 7665 } 7666 raw_spin_unlock_irq(&cfs_b->lock); 7667 7668 for_each_possible_cpu(i) { 7669 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7670 struct rq *rq = cfs_rq->rq; 7671 7672 raw_spin_lock_irq(&rq->lock); 7673 cfs_rq->runtime_enabled = runtime_enabled; 7674 cfs_rq->runtime_remaining = 0; 7675 7676 if (cfs_rq->throttled) 7677 unthrottle_cfs_rq(cfs_rq); 7678 raw_spin_unlock_irq(&rq->lock); 7679 } 7680 out_unlock: 7681 mutex_unlock(&cfs_constraints_mutex); 7682 7683 return ret; 7684 } 7685 7686 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7687 { 7688 u64 quota, period; 7689 7690 period = ktime_to_ns(tg->cfs_bandwidth.period); 7691 if (cfs_quota_us < 0) 7692 quota = RUNTIME_INF; 7693 else 7694 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7695 7696 return tg_set_cfs_bandwidth(tg, period, quota); 7697 } 7698 7699 long tg_get_cfs_quota(struct task_group *tg) 7700 { 7701 u64 quota_us; 7702 7703 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7704 return -1; 7705 7706 quota_us = tg->cfs_bandwidth.quota; 7707 do_div(quota_us, NSEC_PER_USEC); 7708 7709 return quota_us; 7710 } 7711 7712 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7713 { 7714 u64 quota, period; 7715 7716 period = (u64)cfs_period_us * NSEC_PER_USEC; 7717 quota = tg->cfs_bandwidth.quota; 7718 7719 return tg_set_cfs_bandwidth(tg, period, quota); 7720 } 7721 7722 long tg_get_cfs_period(struct task_group *tg) 7723 { 7724 u64 cfs_period_us; 7725 7726 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7727 do_div(cfs_period_us, NSEC_PER_USEC); 7728 7729 return cfs_period_us; 7730 } 7731 7732 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7733 { 7734 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7735 } 7736 7737 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7738 s64 cfs_quota_us) 7739 { 7740 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7741 } 7742 7743 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7744 { 7745 return tg_get_cfs_period(cgroup_tg(cgrp)); 7746 } 7747 7748 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7749 u64 cfs_period_us) 7750 { 7751 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7752 } 7753 7754 struct cfs_schedulable_data { 7755 struct task_group *tg; 7756 u64 period, quota; 7757 }; 7758 7759 /* 7760 * normalize group quota/period to be quota/max_period 7761 * note: units are usecs 7762 */ 7763 static u64 normalize_cfs_quota(struct task_group *tg, 7764 struct cfs_schedulable_data *d) 7765 { 7766 u64 quota, period; 7767 7768 if (tg == d->tg) { 7769 period = d->period; 7770 quota = d->quota; 7771 } else { 7772 period = tg_get_cfs_period(tg); 7773 quota = tg_get_cfs_quota(tg); 7774 } 7775 7776 /* note: these should typically be equivalent */ 7777 if (quota == RUNTIME_INF || quota == -1) 7778 return RUNTIME_INF; 7779 7780 return to_ratio(period, quota); 7781 } 7782 7783 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7784 { 7785 struct cfs_schedulable_data *d = data; 7786 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7787 s64 quota = 0, parent_quota = -1; 7788 7789 if (!tg->parent) { 7790 quota = RUNTIME_INF; 7791 } else { 7792 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7793 7794 quota = normalize_cfs_quota(tg, d); 7795 parent_quota = parent_b->hierarchal_quota; 7796 7797 /* 7798 * ensure max(child_quota) <= parent_quota, inherit when no 7799 * limit is set 7800 */ 7801 if (quota == RUNTIME_INF) 7802 quota = parent_quota; 7803 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7804 return -EINVAL; 7805 } 7806 cfs_b->hierarchal_quota = quota; 7807 7808 return 0; 7809 } 7810 7811 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7812 { 7813 int ret; 7814 struct cfs_schedulable_data data = { 7815 .tg = tg, 7816 .period = period, 7817 .quota = quota, 7818 }; 7819 7820 if (quota != RUNTIME_INF) { 7821 do_div(data.period, NSEC_PER_USEC); 7822 do_div(data.quota, NSEC_PER_USEC); 7823 } 7824 7825 rcu_read_lock(); 7826 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7827 rcu_read_unlock(); 7828 7829 return ret; 7830 } 7831 7832 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7833 struct cgroup_map_cb *cb) 7834 { 7835 struct task_group *tg = cgroup_tg(cgrp); 7836 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7837 7838 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7839 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7840 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7841 7842 return 0; 7843 } 7844 #endif /* CONFIG_CFS_BANDWIDTH */ 7845 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7846 7847 #ifdef CONFIG_RT_GROUP_SCHED 7848 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7849 s64 val) 7850 { 7851 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 7852 } 7853 7854 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 7855 { 7856 return sched_group_rt_runtime(cgroup_tg(cgrp)); 7857 } 7858 7859 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 7860 u64 rt_period_us) 7861 { 7862 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 7863 } 7864 7865 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 7866 { 7867 return sched_group_rt_period(cgroup_tg(cgrp)); 7868 } 7869 #endif /* CONFIG_RT_GROUP_SCHED */ 7870 7871 static struct cftype cpu_files[] = { 7872 #ifdef CONFIG_FAIR_GROUP_SCHED 7873 { 7874 .name = "shares", 7875 .read_u64 = cpu_shares_read_u64, 7876 .write_u64 = cpu_shares_write_u64, 7877 }, 7878 #endif 7879 #ifdef CONFIG_CFS_BANDWIDTH 7880 { 7881 .name = "cfs_quota_us", 7882 .read_s64 = cpu_cfs_quota_read_s64, 7883 .write_s64 = cpu_cfs_quota_write_s64, 7884 }, 7885 { 7886 .name = "cfs_period_us", 7887 .read_u64 = cpu_cfs_period_read_u64, 7888 .write_u64 = cpu_cfs_period_write_u64, 7889 }, 7890 { 7891 .name = "stat", 7892 .read_map = cpu_stats_show, 7893 }, 7894 #endif 7895 #ifdef CONFIG_RT_GROUP_SCHED 7896 { 7897 .name = "rt_runtime_us", 7898 .read_s64 = cpu_rt_runtime_read, 7899 .write_s64 = cpu_rt_runtime_write, 7900 }, 7901 { 7902 .name = "rt_period_us", 7903 .read_u64 = cpu_rt_period_read_uint, 7904 .write_u64 = cpu_rt_period_write_uint, 7905 }, 7906 #endif 7907 }; 7908 7909 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) 7910 { 7911 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); 7912 } 7913 7914 struct cgroup_subsys cpu_cgroup_subsys = { 7915 .name = "cpu", 7916 .create = cpu_cgroup_create, 7917 .destroy = cpu_cgroup_destroy, 7918 .can_attach = cpu_cgroup_can_attach, 7919 .attach = cpu_cgroup_attach, 7920 .exit = cpu_cgroup_exit, 7921 .populate = cpu_cgroup_populate, 7922 .subsys_id = cpu_cgroup_subsys_id, 7923 .early_init = 1, 7924 }; 7925 7926 #endif /* CONFIG_CGROUP_SCHED */ 7927 7928 #ifdef CONFIG_CGROUP_CPUACCT 7929 7930 /* 7931 * CPU accounting code for task groups. 7932 * 7933 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 7934 * (balbir@in.ibm.com). 7935 */ 7936 7937 /* create a new cpu accounting group */ 7938 static struct cgroup_subsys_state *cpuacct_create( 7939 struct cgroup_subsys *ss, struct cgroup *cgrp) 7940 { 7941 struct cpuacct *ca; 7942 7943 if (!cgrp->parent) 7944 return &root_cpuacct.css; 7945 7946 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 7947 if (!ca) 7948 goto out; 7949 7950 ca->cpuusage = alloc_percpu(u64); 7951 if (!ca->cpuusage) 7952 goto out_free_ca; 7953 7954 ca->cpustat = alloc_percpu(struct kernel_cpustat); 7955 if (!ca->cpustat) 7956 goto out_free_cpuusage; 7957 7958 return &ca->css; 7959 7960 out_free_cpuusage: 7961 free_percpu(ca->cpuusage); 7962 out_free_ca: 7963 kfree(ca); 7964 out: 7965 return ERR_PTR(-ENOMEM); 7966 } 7967 7968 /* destroy an existing cpu accounting group */ 7969 static void 7970 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) 7971 { 7972 struct cpuacct *ca = cgroup_ca(cgrp); 7973 7974 free_percpu(ca->cpustat); 7975 free_percpu(ca->cpuusage); 7976 kfree(ca); 7977 } 7978 7979 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 7980 { 7981 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 7982 u64 data; 7983 7984 #ifndef CONFIG_64BIT 7985 /* 7986 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 7987 */ 7988 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 7989 data = *cpuusage; 7990 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 7991 #else 7992 data = *cpuusage; 7993 #endif 7994 7995 return data; 7996 } 7997 7998 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 7999 { 8000 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8001 8002 #ifndef CONFIG_64BIT 8003 /* 8004 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8005 */ 8006 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8007 *cpuusage = val; 8008 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8009 #else 8010 *cpuusage = val; 8011 #endif 8012 } 8013 8014 /* return total cpu usage (in nanoseconds) of a group */ 8015 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8016 { 8017 struct cpuacct *ca = cgroup_ca(cgrp); 8018 u64 totalcpuusage = 0; 8019 int i; 8020 8021 for_each_present_cpu(i) 8022 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8023 8024 return totalcpuusage; 8025 } 8026 8027 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8028 u64 reset) 8029 { 8030 struct cpuacct *ca = cgroup_ca(cgrp); 8031 int err = 0; 8032 int i; 8033 8034 if (reset) { 8035 err = -EINVAL; 8036 goto out; 8037 } 8038 8039 for_each_present_cpu(i) 8040 cpuacct_cpuusage_write(ca, i, 0); 8041 8042 out: 8043 return err; 8044 } 8045 8046 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8047 struct seq_file *m) 8048 { 8049 struct cpuacct *ca = cgroup_ca(cgroup); 8050 u64 percpu; 8051 int i; 8052 8053 for_each_present_cpu(i) { 8054 percpu = cpuacct_cpuusage_read(ca, i); 8055 seq_printf(m, "%llu ", (unsigned long long) percpu); 8056 } 8057 seq_printf(m, "\n"); 8058 return 0; 8059 } 8060 8061 static const char *cpuacct_stat_desc[] = { 8062 [CPUACCT_STAT_USER] = "user", 8063 [CPUACCT_STAT_SYSTEM] = "system", 8064 }; 8065 8066 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8067 struct cgroup_map_cb *cb) 8068 { 8069 struct cpuacct *ca = cgroup_ca(cgrp); 8070 int cpu; 8071 s64 val = 0; 8072 8073 for_each_online_cpu(cpu) { 8074 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8075 val += kcpustat->cpustat[CPUTIME_USER]; 8076 val += kcpustat->cpustat[CPUTIME_NICE]; 8077 } 8078 val = cputime64_to_clock_t(val); 8079 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); 8080 8081 val = 0; 8082 for_each_online_cpu(cpu) { 8083 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8084 val += kcpustat->cpustat[CPUTIME_SYSTEM]; 8085 val += kcpustat->cpustat[CPUTIME_IRQ]; 8086 val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; 8087 } 8088 8089 val = cputime64_to_clock_t(val); 8090 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); 8091 8092 return 0; 8093 } 8094 8095 static struct cftype files[] = { 8096 { 8097 .name = "usage", 8098 .read_u64 = cpuusage_read, 8099 .write_u64 = cpuusage_write, 8100 }, 8101 { 8102 .name = "usage_percpu", 8103 .read_seq_string = cpuacct_percpu_seq_read, 8104 }, 8105 { 8106 .name = "stat", 8107 .read_map = cpuacct_stats_show, 8108 }, 8109 }; 8110 8111 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) 8112 { 8113 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); 8114 } 8115 8116 /* 8117 * charge this task's execution time to its accounting group. 8118 * 8119 * called with rq->lock held. 8120 */ 8121 void cpuacct_charge(struct task_struct *tsk, u64 cputime) 8122 { 8123 struct cpuacct *ca; 8124 int cpu; 8125 8126 if (unlikely(!cpuacct_subsys.active)) 8127 return; 8128 8129 cpu = task_cpu(tsk); 8130 8131 rcu_read_lock(); 8132 8133 ca = task_ca(tsk); 8134 8135 for (; ca; ca = parent_ca(ca)) { 8136 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8137 *cpuusage += cputime; 8138 } 8139 8140 rcu_read_unlock(); 8141 } 8142 8143 struct cgroup_subsys cpuacct_subsys = { 8144 .name = "cpuacct", 8145 .create = cpuacct_create, 8146 .destroy = cpuacct_destroy, 8147 .populate = cpuacct_populate, 8148 .subsys_id = cpuacct_subsys_id, 8149 }; 8150 #endif /* CONFIG_CGROUP_CPUACCT */ 8151