xref: /linux/kernel/sched/core.c (revision 779b96d20ca97cfa19162b340bff0c27b405b4b2)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #ifdef CONFIG_PARAVIRT
78 #include <asm/paravirt.h>
79 #endif
80 
81 #include "sched.h"
82 #include "../workqueue_sched.h"
83 
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/sched.h>
86 
87 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
88 {
89 	unsigned long delta;
90 	ktime_t soft, hard, now;
91 
92 	for (;;) {
93 		if (hrtimer_active(period_timer))
94 			break;
95 
96 		now = hrtimer_cb_get_time(period_timer);
97 		hrtimer_forward(period_timer, now, period);
98 
99 		soft = hrtimer_get_softexpires(period_timer);
100 		hard = hrtimer_get_expires(period_timer);
101 		delta = ktime_to_ns(ktime_sub(hard, soft));
102 		__hrtimer_start_range_ns(period_timer, soft, delta,
103 					 HRTIMER_MODE_ABS_PINNED, 0);
104 	}
105 }
106 
107 DEFINE_MUTEX(sched_domains_mutex);
108 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
109 
110 static void update_rq_clock_task(struct rq *rq, s64 delta);
111 
112 void update_rq_clock(struct rq *rq)
113 {
114 	s64 delta;
115 
116 	if (rq->skip_clock_update > 0)
117 		return;
118 
119 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
120 	rq->clock += delta;
121 	update_rq_clock_task(rq, delta);
122 }
123 
124 /*
125  * Debugging: various feature bits
126  */
127 
128 #define SCHED_FEAT(name, enabled)	\
129 	(1UL << __SCHED_FEAT_##name) * enabled |
130 
131 const_debug unsigned int sysctl_sched_features =
132 #include "features.h"
133 	0;
134 
135 #undef SCHED_FEAT
136 
137 #ifdef CONFIG_SCHED_DEBUG
138 #define SCHED_FEAT(name, enabled)	\
139 	#name ,
140 
141 static __read_mostly char *sched_feat_names[] = {
142 #include "features.h"
143 	NULL
144 };
145 
146 #undef SCHED_FEAT
147 
148 static int sched_feat_show(struct seq_file *m, void *v)
149 {
150 	int i;
151 
152 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
153 		if (!(sysctl_sched_features & (1UL << i)))
154 			seq_puts(m, "NO_");
155 		seq_printf(m, "%s ", sched_feat_names[i]);
156 	}
157 	seq_puts(m, "\n");
158 
159 	return 0;
160 }
161 
162 #ifdef HAVE_JUMP_LABEL
163 
164 #define jump_label_key__true  jump_label_key_enabled
165 #define jump_label_key__false jump_label_key_disabled
166 
167 #define SCHED_FEAT(name, enabled)	\
168 	jump_label_key__##enabled ,
169 
170 struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
171 #include "features.h"
172 };
173 
174 #undef SCHED_FEAT
175 
176 static void sched_feat_disable(int i)
177 {
178 	if (jump_label_enabled(&sched_feat_keys[i]))
179 		jump_label_dec(&sched_feat_keys[i]);
180 }
181 
182 static void sched_feat_enable(int i)
183 {
184 	if (!jump_label_enabled(&sched_feat_keys[i]))
185 		jump_label_inc(&sched_feat_keys[i]);
186 }
187 #else
188 static void sched_feat_disable(int i) { };
189 static void sched_feat_enable(int i) { };
190 #endif /* HAVE_JUMP_LABEL */
191 
192 static ssize_t
193 sched_feat_write(struct file *filp, const char __user *ubuf,
194 		size_t cnt, loff_t *ppos)
195 {
196 	char buf[64];
197 	char *cmp;
198 	int neg = 0;
199 	int i;
200 
201 	if (cnt > 63)
202 		cnt = 63;
203 
204 	if (copy_from_user(&buf, ubuf, cnt))
205 		return -EFAULT;
206 
207 	buf[cnt] = 0;
208 	cmp = strstrip(buf);
209 
210 	if (strncmp(cmp, "NO_", 3) == 0) {
211 		neg = 1;
212 		cmp += 3;
213 	}
214 
215 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
216 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
217 			if (neg) {
218 				sysctl_sched_features &= ~(1UL << i);
219 				sched_feat_disable(i);
220 			} else {
221 				sysctl_sched_features |= (1UL << i);
222 				sched_feat_enable(i);
223 			}
224 			break;
225 		}
226 	}
227 
228 	if (i == __SCHED_FEAT_NR)
229 		return -EINVAL;
230 
231 	*ppos += cnt;
232 
233 	return cnt;
234 }
235 
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 	return single_open(filp, sched_feat_show, NULL);
239 }
240 
241 static const struct file_operations sched_feat_fops = {
242 	.open		= sched_feat_open,
243 	.write		= sched_feat_write,
244 	.read		= seq_read,
245 	.llseek		= seq_lseek,
246 	.release	= single_release,
247 };
248 
249 static __init int sched_init_debug(void)
250 {
251 	debugfs_create_file("sched_features", 0644, NULL, NULL,
252 			&sched_feat_fops);
253 
254 	return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258 
259 /*
260  * Number of tasks to iterate in a single balance run.
261  * Limited because this is done with IRQs disabled.
262  */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264 
265 /*
266  * period over which we average the RT time consumption, measured
267  * in ms.
268  *
269  * default: 1s
270  */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272 
273 /*
274  * period over which we measure -rt task cpu usage in us.
275  * default: 1s
276  */
277 unsigned int sysctl_sched_rt_period = 1000000;
278 
279 __read_mostly int scheduler_running;
280 
281 /*
282  * part of the period that we allow rt tasks to run in us.
283  * default: 0.95s
284  */
285 int sysctl_sched_rt_runtime = 950000;
286 
287 
288 
289 /*
290  * __task_rq_lock - lock the rq @p resides on.
291  */
292 static inline struct rq *__task_rq_lock(struct task_struct *p)
293 	__acquires(rq->lock)
294 {
295 	struct rq *rq;
296 
297 	lockdep_assert_held(&p->pi_lock);
298 
299 	for (;;) {
300 		rq = task_rq(p);
301 		raw_spin_lock(&rq->lock);
302 		if (likely(rq == task_rq(p)))
303 			return rq;
304 		raw_spin_unlock(&rq->lock);
305 	}
306 }
307 
308 /*
309  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
310  */
311 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
312 	__acquires(p->pi_lock)
313 	__acquires(rq->lock)
314 {
315 	struct rq *rq;
316 
317 	for (;;) {
318 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
319 		rq = task_rq(p);
320 		raw_spin_lock(&rq->lock);
321 		if (likely(rq == task_rq(p)))
322 			return rq;
323 		raw_spin_unlock(&rq->lock);
324 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
325 	}
326 }
327 
328 static void __task_rq_unlock(struct rq *rq)
329 	__releases(rq->lock)
330 {
331 	raw_spin_unlock(&rq->lock);
332 }
333 
334 static inline void
335 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
336 	__releases(rq->lock)
337 	__releases(p->pi_lock)
338 {
339 	raw_spin_unlock(&rq->lock);
340 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
341 }
342 
343 /*
344  * this_rq_lock - lock this runqueue and disable interrupts.
345  */
346 static struct rq *this_rq_lock(void)
347 	__acquires(rq->lock)
348 {
349 	struct rq *rq;
350 
351 	local_irq_disable();
352 	rq = this_rq();
353 	raw_spin_lock(&rq->lock);
354 
355 	return rq;
356 }
357 
358 #ifdef CONFIG_SCHED_HRTICK
359 /*
360  * Use HR-timers to deliver accurate preemption points.
361  *
362  * Its all a bit involved since we cannot program an hrt while holding the
363  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
364  * reschedule event.
365  *
366  * When we get rescheduled we reprogram the hrtick_timer outside of the
367  * rq->lock.
368  */
369 
370 static void hrtick_clear(struct rq *rq)
371 {
372 	if (hrtimer_active(&rq->hrtick_timer))
373 		hrtimer_cancel(&rq->hrtick_timer);
374 }
375 
376 /*
377  * High-resolution timer tick.
378  * Runs from hardirq context with interrupts disabled.
379  */
380 static enum hrtimer_restart hrtick(struct hrtimer *timer)
381 {
382 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
383 
384 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
385 
386 	raw_spin_lock(&rq->lock);
387 	update_rq_clock(rq);
388 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
389 	raw_spin_unlock(&rq->lock);
390 
391 	return HRTIMER_NORESTART;
392 }
393 
394 #ifdef CONFIG_SMP
395 /*
396  * called from hardirq (IPI) context
397  */
398 static void __hrtick_start(void *arg)
399 {
400 	struct rq *rq = arg;
401 
402 	raw_spin_lock(&rq->lock);
403 	hrtimer_restart(&rq->hrtick_timer);
404 	rq->hrtick_csd_pending = 0;
405 	raw_spin_unlock(&rq->lock);
406 }
407 
408 /*
409  * Called to set the hrtick timer state.
410  *
411  * called with rq->lock held and irqs disabled
412  */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 	struct hrtimer *timer = &rq->hrtick_timer;
416 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
417 
418 	hrtimer_set_expires(timer, time);
419 
420 	if (rq == this_rq()) {
421 		hrtimer_restart(timer);
422 	} else if (!rq->hrtick_csd_pending) {
423 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
424 		rq->hrtick_csd_pending = 1;
425 	}
426 }
427 
428 static int
429 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
430 {
431 	int cpu = (int)(long)hcpu;
432 
433 	switch (action) {
434 	case CPU_UP_CANCELED:
435 	case CPU_UP_CANCELED_FROZEN:
436 	case CPU_DOWN_PREPARE:
437 	case CPU_DOWN_PREPARE_FROZEN:
438 	case CPU_DEAD:
439 	case CPU_DEAD_FROZEN:
440 		hrtick_clear(cpu_rq(cpu));
441 		return NOTIFY_OK;
442 	}
443 
444 	return NOTIFY_DONE;
445 }
446 
447 static __init void init_hrtick(void)
448 {
449 	hotcpu_notifier(hotplug_hrtick, 0);
450 }
451 #else
452 /*
453  * Called to set the hrtick timer state.
454  *
455  * called with rq->lock held and irqs disabled
456  */
457 void hrtick_start(struct rq *rq, u64 delay)
458 {
459 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
460 			HRTIMER_MODE_REL_PINNED, 0);
461 }
462 
463 static inline void init_hrtick(void)
464 {
465 }
466 #endif /* CONFIG_SMP */
467 
468 static void init_rq_hrtick(struct rq *rq)
469 {
470 #ifdef CONFIG_SMP
471 	rq->hrtick_csd_pending = 0;
472 
473 	rq->hrtick_csd.flags = 0;
474 	rq->hrtick_csd.func = __hrtick_start;
475 	rq->hrtick_csd.info = rq;
476 #endif
477 
478 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
479 	rq->hrtick_timer.function = hrtick;
480 }
481 #else	/* CONFIG_SCHED_HRTICK */
482 static inline void hrtick_clear(struct rq *rq)
483 {
484 }
485 
486 static inline void init_rq_hrtick(struct rq *rq)
487 {
488 }
489 
490 static inline void init_hrtick(void)
491 {
492 }
493 #endif	/* CONFIG_SCHED_HRTICK */
494 
495 /*
496  * resched_task - mark a task 'to be rescheduled now'.
497  *
498  * On UP this means the setting of the need_resched flag, on SMP it
499  * might also involve a cross-CPU call to trigger the scheduler on
500  * the target CPU.
501  */
502 #ifdef CONFIG_SMP
503 
504 #ifndef tsk_is_polling
505 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
506 #endif
507 
508 void resched_task(struct task_struct *p)
509 {
510 	int cpu;
511 
512 	assert_raw_spin_locked(&task_rq(p)->lock);
513 
514 	if (test_tsk_need_resched(p))
515 		return;
516 
517 	set_tsk_need_resched(p);
518 
519 	cpu = task_cpu(p);
520 	if (cpu == smp_processor_id())
521 		return;
522 
523 	/* NEED_RESCHED must be visible before we test polling */
524 	smp_mb();
525 	if (!tsk_is_polling(p))
526 		smp_send_reschedule(cpu);
527 }
528 
529 void resched_cpu(int cpu)
530 {
531 	struct rq *rq = cpu_rq(cpu);
532 	unsigned long flags;
533 
534 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
535 		return;
536 	resched_task(cpu_curr(cpu));
537 	raw_spin_unlock_irqrestore(&rq->lock, flags);
538 }
539 
540 #ifdef CONFIG_NO_HZ
541 /*
542  * In the semi idle case, use the nearest busy cpu for migrating timers
543  * from an idle cpu.  This is good for power-savings.
544  *
545  * We don't do similar optimization for completely idle system, as
546  * selecting an idle cpu will add more delays to the timers than intended
547  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
548  */
549 int get_nohz_timer_target(void)
550 {
551 	int cpu = smp_processor_id();
552 	int i;
553 	struct sched_domain *sd;
554 
555 	rcu_read_lock();
556 	for_each_domain(cpu, sd) {
557 		for_each_cpu(i, sched_domain_span(sd)) {
558 			if (!idle_cpu(i)) {
559 				cpu = i;
560 				goto unlock;
561 			}
562 		}
563 	}
564 unlock:
565 	rcu_read_unlock();
566 	return cpu;
567 }
568 /*
569  * When add_timer_on() enqueues a timer into the timer wheel of an
570  * idle CPU then this timer might expire before the next timer event
571  * which is scheduled to wake up that CPU. In case of a completely
572  * idle system the next event might even be infinite time into the
573  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
574  * leaves the inner idle loop so the newly added timer is taken into
575  * account when the CPU goes back to idle and evaluates the timer
576  * wheel for the next timer event.
577  */
578 void wake_up_idle_cpu(int cpu)
579 {
580 	struct rq *rq = cpu_rq(cpu);
581 
582 	if (cpu == smp_processor_id())
583 		return;
584 
585 	/*
586 	 * This is safe, as this function is called with the timer
587 	 * wheel base lock of (cpu) held. When the CPU is on the way
588 	 * to idle and has not yet set rq->curr to idle then it will
589 	 * be serialized on the timer wheel base lock and take the new
590 	 * timer into account automatically.
591 	 */
592 	if (rq->curr != rq->idle)
593 		return;
594 
595 	/*
596 	 * We can set TIF_RESCHED on the idle task of the other CPU
597 	 * lockless. The worst case is that the other CPU runs the
598 	 * idle task through an additional NOOP schedule()
599 	 */
600 	set_tsk_need_resched(rq->idle);
601 
602 	/* NEED_RESCHED must be visible before we test polling */
603 	smp_mb();
604 	if (!tsk_is_polling(rq->idle))
605 		smp_send_reschedule(cpu);
606 }
607 
608 static inline bool got_nohz_idle_kick(void)
609 {
610 	int cpu = smp_processor_id();
611 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
612 }
613 
614 #else /* CONFIG_NO_HZ */
615 
616 static inline bool got_nohz_idle_kick(void)
617 {
618 	return false;
619 }
620 
621 #endif /* CONFIG_NO_HZ */
622 
623 void sched_avg_update(struct rq *rq)
624 {
625 	s64 period = sched_avg_period();
626 
627 	while ((s64)(rq->clock - rq->age_stamp) > period) {
628 		/*
629 		 * Inline assembly required to prevent the compiler
630 		 * optimising this loop into a divmod call.
631 		 * See __iter_div_u64_rem() for another example of this.
632 		 */
633 		asm("" : "+rm" (rq->age_stamp));
634 		rq->age_stamp += period;
635 		rq->rt_avg /= 2;
636 	}
637 }
638 
639 #else /* !CONFIG_SMP */
640 void resched_task(struct task_struct *p)
641 {
642 	assert_raw_spin_locked(&task_rq(p)->lock);
643 	set_tsk_need_resched(p);
644 }
645 #endif /* CONFIG_SMP */
646 
647 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649 /*
650  * Iterate task_group tree rooted at *from, calling @down when first entering a
651  * node and @up when leaving it for the final time.
652  *
653  * Caller must hold rcu_lock or sufficient equivalent.
654  */
655 int walk_tg_tree_from(struct task_group *from,
656 			     tg_visitor down, tg_visitor up, void *data)
657 {
658 	struct task_group *parent, *child;
659 	int ret;
660 
661 	parent = from;
662 
663 down:
664 	ret = (*down)(parent, data);
665 	if (ret)
666 		goto out;
667 	list_for_each_entry_rcu(child, &parent->children, siblings) {
668 		parent = child;
669 		goto down;
670 
671 up:
672 		continue;
673 	}
674 	ret = (*up)(parent, data);
675 	if (ret || parent == from)
676 		goto out;
677 
678 	child = parent;
679 	parent = parent->parent;
680 	if (parent)
681 		goto up;
682 out:
683 	return ret;
684 }
685 
686 int tg_nop(struct task_group *tg, void *data)
687 {
688 	return 0;
689 }
690 #endif
691 
692 void update_cpu_load(struct rq *this_rq);
693 
694 static void set_load_weight(struct task_struct *p)
695 {
696 	int prio = p->static_prio - MAX_RT_PRIO;
697 	struct load_weight *load = &p->se.load;
698 
699 	/*
700 	 * SCHED_IDLE tasks get minimal weight:
701 	 */
702 	if (p->policy == SCHED_IDLE) {
703 		load->weight = scale_load(WEIGHT_IDLEPRIO);
704 		load->inv_weight = WMULT_IDLEPRIO;
705 		return;
706 	}
707 
708 	load->weight = scale_load(prio_to_weight[prio]);
709 	load->inv_weight = prio_to_wmult[prio];
710 }
711 
712 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
713 {
714 	update_rq_clock(rq);
715 	sched_info_queued(p);
716 	p->sched_class->enqueue_task(rq, p, flags);
717 }
718 
719 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
720 {
721 	update_rq_clock(rq);
722 	sched_info_dequeued(p);
723 	p->sched_class->dequeue_task(rq, p, flags);
724 }
725 
726 /*
727  * activate_task - move a task to the runqueue.
728  */
729 void activate_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 	if (task_contributes_to_load(p))
732 		rq->nr_uninterruptible--;
733 
734 	enqueue_task(rq, p, flags);
735 }
736 
737 /*
738  * deactivate_task - remove a task from the runqueue.
739  */
740 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
741 {
742 	if (task_contributes_to_load(p))
743 		rq->nr_uninterruptible++;
744 
745 	dequeue_task(rq, p, flags);
746 }
747 
748 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
749 
750 /*
751  * There are no locks covering percpu hardirq/softirq time.
752  * They are only modified in account_system_vtime, on corresponding CPU
753  * with interrupts disabled. So, writes are safe.
754  * They are read and saved off onto struct rq in update_rq_clock().
755  * This may result in other CPU reading this CPU's irq time and can
756  * race with irq/account_system_vtime on this CPU. We would either get old
757  * or new value with a side effect of accounting a slice of irq time to wrong
758  * task when irq is in progress while we read rq->clock. That is a worthy
759  * compromise in place of having locks on each irq in account_system_time.
760  */
761 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
762 static DEFINE_PER_CPU(u64, cpu_softirq_time);
763 
764 static DEFINE_PER_CPU(u64, irq_start_time);
765 static int sched_clock_irqtime;
766 
767 void enable_sched_clock_irqtime(void)
768 {
769 	sched_clock_irqtime = 1;
770 }
771 
772 void disable_sched_clock_irqtime(void)
773 {
774 	sched_clock_irqtime = 0;
775 }
776 
777 #ifndef CONFIG_64BIT
778 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
779 
780 static inline void irq_time_write_begin(void)
781 {
782 	__this_cpu_inc(irq_time_seq.sequence);
783 	smp_wmb();
784 }
785 
786 static inline void irq_time_write_end(void)
787 {
788 	smp_wmb();
789 	__this_cpu_inc(irq_time_seq.sequence);
790 }
791 
792 static inline u64 irq_time_read(int cpu)
793 {
794 	u64 irq_time;
795 	unsigned seq;
796 
797 	do {
798 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
799 		irq_time = per_cpu(cpu_softirq_time, cpu) +
800 			   per_cpu(cpu_hardirq_time, cpu);
801 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
802 
803 	return irq_time;
804 }
805 #else /* CONFIG_64BIT */
806 static inline void irq_time_write_begin(void)
807 {
808 }
809 
810 static inline void irq_time_write_end(void)
811 {
812 }
813 
814 static inline u64 irq_time_read(int cpu)
815 {
816 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
817 }
818 #endif /* CONFIG_64BIT */
819 
820 /*
821  * Called before incrementing preempt_count on {soft,}irq_enter
822  * and before decrementing preempt_count on {soft,}irq_exit.
823  */
824 void account_system_vtime(struct task_struct *curr)
825 {
826 	unsigned long flags;
827 	s64 delta;
828 	int cpu;
829 
830 	if (!sched_clock_irqtime)
831 		return;
832 
833 	local_irq_save(flags);
834 
835 	cpu = smp_processor_id();
836 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
837 	__this_cpu_add(irq_start_time, delta);
838 
839 	irq_time_write_begin();
840 	/*
841 	 * We do not account for softirq time from ksoftirqd here.
842 	 * We want to continue accounting softirq time to ksoftirqd thread
843 	 * in that case, so as not to confuse scheduler with a special task
844 	 * that do not consume any time, but still wants to run.
845 	 */
846 	if (hardirq_count())
847 		__this_cpu_add(cpu_hardirq_time, delta);
848 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
849 		__this_cpu_add(cpu_softirq_time, delta);
850 
851 	irq_time_write_end();
852 	local_irq_restore(flags);
853 }
854 EXPORT_SYMBOL_GPL(account_system_vtime);
855 
856 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
857 
858 #ifdef CONFIG_PARAVIRT
859 static inline u64 steal_ticks(u64 steal)
860 {
861 	if (unlikely(steal > NSEC_PER_SEC))
862 		return div_u64(steal, TICK_NSEC);
863 
864 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
865 }
866 #endif
867 
868 static void update_rq_clock_task(struct rq *rq, s64 delta)
869 {
870 /*
871  * In theory, the compile should just see 0 here, and optimize out the call
872  * to sched_rt_avg_update. But I don't trust it...
873  */
874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 	s64 steal = 0, irq_delta = 0;
876 #endif
877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
878 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879 
880 	/*
881 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 	 * this case when a previous update_rq_clock() happened inside a
883 	 * {soft,}irq region.
884 	 *
885 	 * When this happens, we stop ->clock_task and only update the
886 	 * prev_irq_time stamp to account for the part that fit, so that a next
887 	 * update will consume the rest. This ensures ->clock_task is
888 	 * monotonic.
889 	 *
890 	 * It does however cause some slight miss-attribution of {soft,}irq
891 	 * time, a more accurate solution would be to update the irq_time using
892 	 * the current rq->clock timestamp, except that would require using
893 	 * atomic ops.
894 	 */
895 	if (irq_delta > delta)
896 		irq_delta = delta;
897 
898 	rq->prev_irq_time += irq_delta;
899 	delta -= irq_delta;
900 #endif
901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 	if (static_branch((&paravirt_steal_rq_enabled))) {
903 		u64 st;
904 
905 		steal = paravirt_steal_clock(cpu_of(rq));
906 		steal -= rq->prev_steal_time_rq;
907 
908 		if (unlikely(steal > delta))
909 			steal = delta;
910 
911 		st = steal_ticks(steal);
912 		steal = st * TICK_NSEC;
913 
914 		rq->prev_steal_time_rq += steal;
915 
916 		delta -= steal;
917 	}
918 #endif
919 
920 	rq->clock_task += delta;
921 
922 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
923 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
924 		sched_rt_avg_update(rq, irq_delta + steal);
925 #endif
926 }
927 
928 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
929 static int irqtime_account_hi_update(void)
930 {
931 	u64 *cpustat = kcpustat_this_cpu->cpustat;
932 	unsigned long flags;
933 	u64 latest_ns;
934 	int ret = 0;
935 
936 	local_irq_save(flags);
937 	latest_ns = this_cpu_read(cpu_hardirq_time);
938 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
939 		ret = 1;
940 	local_irq_restore(flags);
941 	return ret;
942 }
943 
944 static int irqtime_account_si_update(void)
945 {
946 	u64 *cpustat = kcpustat_this_cpu->cpustat;
947 	unsigned long flags;
948 	u64 latest_ns;
949 	int ret = 0;
950 
951 	local_irq_save(flags);
952 	latest_ns = this_cpu_read(cpu_softirq_time);
953 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
954 		ret = 1;
955 	local_irq_restore(flags);
956 	return ret;
957 }
958 
959 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
960 
961 #define sched_clock_irqtime	(0)
962 
963 #endif
964 
965 void sched_set_stop_task(int cpu, struct task_struct *stop)
966 {
967 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
968 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
969 
970 	if (stop) {
971 		/*
972 		 * Make it appear like a SCHED_FIFO task, its something
973 		 * userspace knows about and won't get confused about.
974 		 *
975 		 * Also, it will make PI more or less work without too
976 		 * much confusion -- but then, stop work should not
977 		 * rely on PI working anyway.
978 		 */
979 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
980 
981 		stop->sched_class = &stop_sched_class;
982 	}
983 
984 	cpu_rq(cpu)->stop = stop;
985 
986 	if (old_stop) {
987 		/*
988 		 * Reset it back to a normal scheduling class so that
989 		 * it can die in pieces.
990 		 */
991 		old_stop->sched_class = &rt_sched_class;
992 	}
993 }
994 
995 /*
996  * __normal_prio - return the priority that is based on the static prio
997  */
998 static inline int __normal_prio(struct task_struct *p)
999 {
1000 	return p->static_prio;
1001 }
1002 
1003 /*
1004  * Calculate the expected normal priority: i.e. priority
1005  * without taking RT-inheritance into account. Might be
1006  * boosted by interactivity modifiers. Changes upon fork,
1007  * setprio syscalls, and whenever the interactivity
1008  * estimator recalculates.
1009  */
1010 static inline int normal_prio(struct task_struct *p)
1011 {
1012 	int prio;
1013 
1014 	if (task_has_rt_policy(p))
1015 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1016 	else
1017 		prio = __normal_prio(p);
1018 	return prio;
1019 }
1020 
1021 /*
1022  * Calculate the current priority, i.e. the priority
1023  * taken into account by the scheduler. This value might
1024  * be boosted by RT tasks, or might be boosted by
1025  * interactivity modifiers. Will be RT if the task got
1026  * RT-boosted. If not then it returns p->normal_prio.
1027  */
1028 static int effective_prio(struct task_struct *p)
1029 {
1030 	p->normal_prio = normal_prio(p);
1031 	/*
1032 	 * If we are RT tasks or we were boosted to RT priority,
1033 	 * keep the priority unchanged. Otherwise, update priority
1034 	 * to the normal priority:
1035 	 */
1036 	if (!rt_prio(p->prio))
1037 		return p->normal_prio;
1038 	return p->prio;
1039 }
1040 
1041 /**
1042  * task_curr - is this task currently executing on a CPU?
1043  * @p: the task in question.
1044  */
1045 inline int task_curr(const struct task_struct *p)
1046 {
1047 	return cpu_curr(task_cpu(p)) == p;
1048 }
1049 
1050 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1051 				       const struct sched_class *prev_class,
1052 				       int oldprio)
1053 {
1054 	if (prev_class != p->sched_class) {
1055 		if (prev_class->switched_from)
1056 			prev_class->switched_from(rq, p);
1057 		p->sched_class->switched_to(rq, p);
1058 	} else if (oldprio != p->prio)
1059 		p->sched_class->prio_changed(rq, p, oldprio);
1060 }
1061 
1062 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1063 {
1064 	const struct sched_class *class;
1065 
1066 	if (p->sched_class == rq->curr->sched_class) {
1067 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1068 	} else {
1069 		for_each_class(class) {
1070 			if (class == rq->curr->sched_class)
1071 				break;
1072 			if (class == p->sched_class) {
1073 				resched_task(rq->curr);
1074 				break;
1075 			}
1076 		}
1077 	}
1078 
1079 	/*
1080 	 * A queue event has occurred, and we're going to schedule.  In
1081 	 * this case, we can save a useless back to back clock update.
1082 	 */
1083 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1084 		rq->skip_clock_update = 1;
1085 }
1086 
1087 #ifdef CONFIG_SMP
1088 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1089 {
1090 #ifdef CONFIG_SCHED_DEBUG
1091 	/*
1092 	 * We should never call set_task_cpu() on a blocked task,
1093 	 * ttwu() will sort out the placement.
1094 	 */
1095 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1096 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1097 
1098 #ifdef CONFIG_LOCKDEP
1099 	/*
1100 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1101 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1102 	 *
1103 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1104 	 * see set_task_rq().
1105 	 *
1106 	 * Furthermore, all task_rq users should acquire both locks, see
1107 	 * task_rq_lock().
1108 	 */
1109 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1110 				      lockdep_is_held(&task_rq(p)->lock)));
1111 #endif
1112 #endif
1113 
1114 	trace_sched_migrate_task(p, new_cpu);
1115 
1116 	if (task_cpu(p) != new_cpu) {
1117 		p->se.nr_migrations++;
1118 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1119 	}
1120 
1121 	__set_task_cpu(p, new_cpu);
1122 }
1123 
1124 struct migration_arg {
1125 	struct task_struct *task;
1126 	int dest_cpu;
1127 };
1128 
1129 static int migration_cpu_stop(void *data);
1130 
1131 /*
1132  * wait_task_inactive - wait for a thread to unschedule.
1133  *
1134  * If @match_state is nonzero, it's the @p->state value just checked and
1135  * not expected to change.  If it changes, i.e. @p might have woken up,
1136  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1137  * we return a positive number (its total switch count).  If a second call
1138  * a short while later returns the same number, the caller can be sure that
1139  * @p has remained unscheduled the whole time.
1140  *
1141  * The caller must ensure that the task *will* unschedule sometime soon,
1142  * else this function might spin for a *long* time. This function can't
1143  * be called with interrupts off, or it may introduce deadlock with
1144  * smp_call_function() if an IPI is sent by the same process we are
1145  * waiting to become inactive.
1146  */
1147 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1148 {
1149 	unsigned long flags;
1150 	int running, on_rq;
1151 	unsigned long ncsw;
1152 	struct rq *rq;
1153 
1154 	for (;;) {
1155 		/*
1156 		 * We do the initial early heuristics without holding
1157 		 * any task-queue locks at all. We'll only try to get
1158 		 * the runqueue lock when things look like they will
1159 		 * work out!
1160 		 */
1161 		rq = task_rq(p);
1162 
1163 		/*
1164 		 * If the task is actively running on another CPU
1165 		 * still, just relax and busy-wait without holding
1166 		 * any locks.
1167 		 *
1168 		 * NOTE! Since we don't hold any locks, it's not
1169 		 * even sure that "rq" stays as the right runqueue!
1170 		 * But we don't care, since "task_running()" will
1171 		 * return false if the runqueue has changed and p
1172 		 * is actually now running somewhere else!
1173 		 */
1174 		while (task_running(rq, p)) {
1175 			if (match_state && unlikely(p->state != match_state))
1176 				return 0;
1177 			cpu_relax();
1178 		}
1179 
1180 		/*
1181 		 * Ok, time to look more closely! We need the rq
1182 		 * lock now, to be *sure*. If we're wrong, we'll
1183 		 * just go back and repeat.
1184 		 */
1185 		rq = task_rq_lock(p, &flags);
1186 		trace_sched_wait_task(p);
1187 		running = task_running(rq, p);
1188 		on_rq = p->on_rq;
1189 		ncsw = 0;
1190 		if (!match_state || p->state == match_state)
1191 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1192 		task_rq_unlock(rq, p, &flags);
1193 
1194 		/*
1195 		 * If it changed from the expected state, bail out now.
1196 		 */
1197 		if (unlikely(!ncsw))
1198 			break;
1199 
1200 		/*
1201 		 * Was it really running after all now that we
1202 		 * checked with the proper locks actually held?
1203 		 *
1204 		 * Oops. Go back and try again..
1205 		 */
1206 		if (unlikely(running)) {
1207 			cpu_relax();
1208 			continue;
1209 		}
1210 
1211 		/*
1212 		 * It's not enough that it's not actively running,
1213 		 * it must be off the runqueue _entirely_, and not
1214 		 * preempted!
1215 		 *
1216 		 * So if it was still runnable (but just not actively
1217 		 * running right now), it's preempted, and we should
1218 		 * yield - it could be a while.
1219 		 */
1220 		if (unlikely(on_rq)) {
1221 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1222 
1223 			set_current_state(TASK_UNINTERRUPTIBLE);
1224 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1225 			continue;
1226 		}
1227 
1228 		/*
1229 		 * Ahh, all good. It wasn't running, and it wasn't
1230 		 * runnable, which means that it will never become
1231 		 * running in the future either. We're all done!
1232 		 */
1233 		break;
1234 	}
1235 
1236 	return ncsw;
1237 }
1238 
1239 /***
1240  * kick_process - kick a running thread to enter/exit the kernel
1241  * @p: the to-be-kicked thread
1242  *
1243  * Cause a process which is running on another CPU to enter
1244  * kernel-mode, without any delay. (to get signals handled.)
1245  *
1246  * NOTE: this function doesn't have to take the runqueue lock,
1247  * because all it wants to ensure is that the remote task enters
1248  * the kernel. If the IPI races and the task has been migrated
1249  * to another CPU then no harm is done and the purpose has been
1250  * achieved as well.
1251  */
1252 void kick_process(struct task_struct *p)
1253 {
1254 	int cpu;
1255 
1256 	preempt_disable();
1257 	cpu = task_cpu(p);
1258 	if ((cpu != smp_processor_id()) && task_curr(p))
1259 		smp_send_reschedule(cpu);
1260 	preempt_enable();
1261 }
1262 EXPORT_SYMBOL_GPL(kick_process);
1263 #endif /* CONFIG_SMP */
1264 
1265 #ifdef CONFIG_SMP
1266 /*
1267  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1268  */
1269 static int select_fallback_rq(int cpu, struct task_struct *p)
1270 {
1271 	int dest_cpu;
1272 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1273 
1274 	/* Look for allowed, online CPU in same node. */
1275 	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1276 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 			return dest_cpu;
1278 
1279 	/* Any allowed, online CPU? */
1280 	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1281 	if (dest_cpu < nr_cpu_ids)
1282 		return dest_cpu;
1283 
1284 	/* No more Mr. Nice Guy. */
1285 	dest_cpu = cpuset_cpus_allowed_fallback(p);
1286 	/*
1287 	 * Don't tell them about moving exiting tasks or
1288 	 * kernel threads (both mm NULL), since they never
1289 	 * leave kernel.
1290 	 */
1291 	if (p->mm && printk_ratelimit()) {
1292 		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1293 				task_pid_nr(p), p->comm, cpu);
1294 	}
1295 
1296 	return dest_cpu;
1297 }
1298 
1299 /*
1300  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1301  */
1302 static inline
1303 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1304 {
1305 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1306 
1307 	/*
1308 	 * In order not to call set_task_cpu() on a blocking task we need
1309 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1310 	 * cpu.
1311 	 *
1312 	 * Since this is common to all placement strategies, this lives here.
1313 	 *
1314 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1315 	 *   not worry about this generic constraint ]
1316 	 */
1317 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1318 		     !cpu_online(cpu)))
1319 		cpu = select_fallback_rq(task_cpu(p), p);
1320 
1321 	return cpu;
1322 }
1323 
1324 static void update_avg(u64 *avg, u64 sample)
1325 {
1326 	s64 diff = sample - *avg;
1327 	*avg += diff >> 3;
1328 }
1329 #endif
1330 
1331 static void
1332 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1333 {
1334 #ifdef CONFIG_SCHEDSTATS
1335 	struct rq *rq = this_rq();
1336 
1337 #ifdef CONFIG_SMP
1338 	int this_cpu = smp_processor_id();
1339 
1340 	if (cpu == this_cpu) {
1341 		schedstat_inc(rq, ttwu_local);
1342 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1343 	} else {
1344 		struct sched_domain *sd;
1345 
1346 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1347 		rcu_read_lock();
1348 		for_each_domain(this_cpu, sd) {
1349 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1350 				schedstat_inc(sd, ttwu_wake_remote);
1351 				break;
1352 			}
1353 		}
1354 		rcu_read_unlock();
1355 	}
1356 
1357 	if (wake_flags & WF_MIGRATED)
1358 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1359 
1360 #endif /* CONFIG_SMP */
1361 
1362 	schedstat_inc(rq, ttwu_count);
1363 	schedstat_inc(p, se.statistics.nr_wakeups);
1364 
1365 	if (wake_flags & WF_SYNC)
1366 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1367 
1368 #endif /* CONFIG_SCHEDSTATS */
1369 }
1370 
1371 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1372 {
1373 	activate_task(rq, p, en_flags);
1374 	p->on_rq = 1;
1375 
1376 	/* if a worker is waking up, notify workqueue */
1377 	if (p->flags & PF_WQ_WORKER)
1378 		wq_worker_waking_up(p, cpu_of(rq));
1379 }
1380 
1381 /*
1382  * Mark the task runnable and perform wakeup-preemption.
1383  */
1384 static void
1385 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1386 {
1387 	trace_sched_wakeup(p, true);
1388 	check_preempt_curr(rq, p, wake_flags);
1389 
1390 	p->state = TASK_RUNNING;
1391 #ifdef CONFIG_SMP
1392 	if (p->sched_class->task_woken)
1393 		p->sched_class->task_woken(rq, p);
1394 
1395 	if (rq->idle_stamp) {
1396 		u64 delta = rq->clock - rq->idle_stamp;
1397 		u64 max = 2*sysctl_sched_migration_cost;
1398 
1399 		if (delta > max)
1400 			rq->avg_idle = max;
1401 		else
1402 			update_avg(&rq->avg_idle, delta);
1403 		rq->idle_stamp = 0;
1404 	}
1405 #endif
1406 }
1407 
1408 static void
1409 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1410 {
1411 #ifdef CONFIG_SMP
1412 	if (p->sched_contributes_to_load)
1413 		rq->nr_uninterruptible--;
1414 #endif
1415 
1416 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1417 	ttwu_do_wakeup(rq, p, wake_flags);
1418 }
1419 
1420 /*
1421  * Called in case the task @p isn't fully descheduled from its runqueue,
1422  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1423  * since all we need to do is flip p->state to TASK_RUNNING, since
1424  * the task is still ->on_rq.
1425  */
1426 static int ttwu_remote(struct task_struct *p, int wake_flags)
1427 {
1428 	struct rq *rq;
1429 	int ret = 0;
1430 
1431 	rq = __task_rq_lock(p);
1432 	if (p->on_rq) {
1433 		ttwu_do_wakeup(rq, p, wake_flags);
1434 		ret = 1;
1435 	}
1436 	__task_rq_unlock(rq);
1437 
1438 	return ret;
1439 }
1440 
1441 #ifdef CONFIG_SMP
1442 static void sched_ttwu_pending(void)
1443 {
1444 	struct rq *rq = this_rq();
1445 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1446 	struct task_struct *p;
1447 
1448 	raw_spin_lock(&rq->lock);
1449 
1450 	while (llist) {
1451 		p = llist_entry(llist, struct task_struct, wake_entry);
1452 		llist = llist_next(llist);
1453 		ttwu_do_activate(rq, p, 0);
1454 	}
1455 
1456 	raw_spin_unlock(&rq->lock);
1457 }
1458 
1459 void scheduler_ipi(void)
1460 {
1461 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1462 		return;
1463 
1464 	/*
1465 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1466 	 * traditionally all their work was done from the interrupt return
1467 	 * path. Now that we actually do some work, we need to make sure
1468 	 * we do call them.
1469 	 *
1470 	 * Some archs already do call them, luckily irq_enter/exit nest
1471 	 * properly.
1472 	 *
1473 	 * Arguably we should visit all archs and update all handlers,
1474 	 * however a fair share of IPIs are still resched only so this would
1475 	 * somewhat pessimize the simple resched case.
1476 	 */
1477 	irq_enter();
1478 	sched_ttwu_pending();
1479 
1480 	/*
1481 	 * Check if someone kicked us for doing the nohz idle load balance.
1482 	 */
1483 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1484 		this_rq()->idle_balance = 1;
1485 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1486 	}
1487 	irq_exit();
1488 }
1489 
1490 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1491 {
1492 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1493 		smp_send_reschedule(cpu);
1494 }
1495 
1496 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1497 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1498 {
1499 	struct rq *rq;
1500 	int ret = 0;
1501 
1502 	rq = __task_rq_lock(p);
1503 	if (p->on_cpu) {
1504 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1505 		ttwu_do_wakeup(rq, p, wake_flags);
1506 		ret = 1;
1507 	}
1508 	__task_rq_unlock(rq);
1509 
1510 	return ret;
1511 
1512 }
1513 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1514 
1515 static inline int ttwu_share_cache(int this_cpu, int that_cpu)
1516 {
1517 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1518 }
1519 #endif /* CONFIG_SMP */
1520 
1521 static void ttwu_queue(struct task_struct *p, int cpu)
1522 {
1523 	struct rq *rq = cpu_rq(cpu);
1524 
1525 #if defined(CONFIG_SMP)
1526 	if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
1527 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1528 		ttwu_queue_remote(p, cpu);
1529 		return;
1530 	}
1531 #endif
1532 
1533 	raw_spin_lock(&rq->lock);
1534 	ttwu_do_activate(rq, p, 0);
1535 	raw_spin_unlock(&rq->lock);
1536 }
1537 
1538 /**
1539  * try_to_wake_up - wake up a thread
1540  * @p: the thread to be awakened
1541  * @state: the mask of task states that can be woken
1542  * @wake_flags: wake modifier flags (WF_*)
1543  *
1544  * Put it on the run-queue if it's not already there. The "current"
1545  * thread is always on the run-queue (except when the actual
1546  * re-schedule is in progress), and as such you're allowed to do
1547  * the simpler "current->state = TASK_RUNNING" to mark yourself
1548  * runnable without the overhead of this.
1549  *
1550  * Returns %true if @p was woken up, %false if it was already running
1551  * or @state didn't match @p's state.
1552  */
1553 static int
1554 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1555 {
1556 	unsigned long flags;
1557 	int cpu, success = 0;
1558 
1559 	smp_wmb();
1560 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1561 	if (!(p->state & state))
1562 		goto out;
1563 
1564 	success = 1; /* we're going to change ->state */
1565 	cpu = task_cpu(p);
1566 
1567 	if (p->on_rq && ttwu_remote(p, wake_flags))
1568 		goto stat;
1569 
1570 #ifdef CONFIG_SMP
1571 	/*
1572 	 * If the owning (remote) cpu is still in the middle of schedule() with
1573 	 * this task as prev, wait until its done referencing the task.
1574 	 */
1575 	while (p->on_cpu) {
1576 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1577 		/*
1578 		 * In case the architecture enables interrupts in
1579 		 * context_switch(), we cannot busy wait, since that
1580 		 * would lead to deadlocks when an interrupt hits and
1581 		 * tries to wake up @prev. So bail and do a complete
1582 		 * remote wakeup.
1583 		 */
1584 		if (ttwu_activate_remote(p, wake_flags))
1585 			goto stat;
1586 #else
1587 		cpu_relax();
1588 #endif
1589 	}
1590 	/*
1591 	 * Pairs with the smp_wmb() in finish_lock_switch().
1592 	 */
1593 	smp_rmb();
1594 
1595 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1596 	p->state = TASK_WAKING;
1597 
1598 	if (p->sched_class->task_waking)
1599 		p->sched_class->task_waking(p);
1600 
1601 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1602 	if (task_cpu(p) != cpu) {
1603 		wake_flags |= WF_MIGRATED;
1604 		set_task_cpu(p, cpu);
1605 	}
1606 #endif /* CONFIG_SMP */
1607 
1608 	ttwu_queue(p, cpu);
1609 stat:
1610 	ttwu_stat(p, cpu, wake_flags);
1611 out:
1612 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1613 
1614 	return success;
1615 }
1616 
1617 /**
1618  * try_to_wake_up_local - try to wake up a local task with rq lock held
1619  * @p: the thread to be awakened
1620  *
1621  * Put @p on the run-queue if it's not already there. The caller must
1622  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1623  * the current task.
1624  */
1625 static void try_to_wake_up_local(struct task_struct *p)
1626 {
1627 	struct rq *rq = task_rq(p);
1628 
1629 	BUG_ON(rq != this_rq());
1630 	BUG_ON(p == current);
1631 	lockdep_assert_held(&rq->lock);
1632 
1633 	if (!raw_spin_trylock(&p->pi_lock)) {
1634 		raw_spin_unlock(&rq->lock);
1635 		raw_spin_lock(&p->pi_lock);
1636 		raw_spin_lock(&rq->lock);
1637 	}
1638 
1639 	if (!(p->state & TASK_NORMAL))
1640 		goto out;
1641 
1642 	if (!p->on_rq)
1643 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1644 
1645 	ttwu_do_wakeup(rq, p, 0);
1646 	ttwu_stat(p, smp_processor_id(), 0);
1647 out:
1648 	raw_spin_unlock(&p->pi_lock);
1649 }
1650 
1651 /**
1652  * wake_up_process - Wake up a specific process
1653  * @p: The process to be woken up.
1654  *
1655  * Attempt to wake up the nominated process and move it to the set of runnable
1656  * processes.  Returns 1 if the process was woken up, 0 if it was already
1657  * running.
1658  *
1659  * It may be assumed that this function implies a write memory barrier before
1660  * changing the task state if and only if any tasks are woken up.
1661  */
1662 int wake_up_process(struct task_struct *p)
1663 {
1664 	return try_to_wake_up(p, TASK_ALL, 0);
1665 }
1666 EXPORT_SYMBOL(wake_up_process);
1667 
1668 int wake_up_state(struct task_struct *p, unsigned int state)
1669 {
1670 	return try_to_wake_up(p, state, 0);
1671 }
1672 
1673 /*
1674  * Perform scheduler related setup for a newly forked process p.
1675  * p is forked by current.
1676  *
1677  * __sched_fork() is basic setup used by init_idle() too:
1678  */
1679 static void __sched_fork(struct task_struct *p)
1680 {
1681 	p->on_rq			= 0;
1682 
1683 	p->se.on_rq			= 0;
1684 	p->se.exec_start		= 0;
1685 	p->se.sum_exec_runtime		= 0;
1686 	p->se.prev_sum_exec_runtime	= 0;
1687 	p->se.nr_migrations		= 0;
1688 	p->se.vruntime			= 0;
1689 	INIT_LIST_HEAD(&p->se.group_node);
1690 
1691 #ifdef CONFIG_SCHEDSTATS
1692 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1693 #endif
1694 
1695 	INIT_LIST_HEAD(&p->rt.run_list);
1696 
1697 #ifdef CONFIG_PREEMPT_NOTIFIERS
1698 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1699 #endif
1700 }
1701 
1702 /*
1703  * fork()/clone()-time setup:
1704  */
1705 void sched_fork(struct task_struct *p)
1706 {
1707 	unsigned long flags;
1708 	int cpu = get_cpu();
1709 
1710 	__sched_fork(p);
1711 	/*
1712 	 * We mark the process as running here. This guarantees that
1713 	 * nobody will actually run it, and a signal or other external
1714 	 * event cannot wake it up and insert it on the runqueue either.
1715 	 */
1716 	p->state = TASK_RUNNING;
1717 
1718 	/*
1719 	 * Make sure we do not leak PI boosting priority to the child.
1720 	 */
1721 	p->prio = current->normal_prio;
1722 
1723 	/*
1724 	 * Revert to default priority/policy on fork if requested.
1725 	 */
1726 	if (unlikely(p->sched_reset_on_fork)) {
1727 		if (task_has_rt_policy(p)) {
1728 			p->policy = SCHED_NORMAL;
1729 			p->static_prio = NICE_TO_PRIO(0);
1730 			p->rt_priority = 0;
1731 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1732 			p->static_prio = NICE_TO_PRIO(0);
1733 
1734 		p->prio = p->normal_prio = __normal_prio(p);
1735 		set_load_weight(p);
1736 
1737 		/*
1738 		 * We don't need the reset flag anymore after the fork. It has
1739 		 * fulfilled its duty:
1740 		 */
1741 		p->sched_reset_on_fork = 0;
1742 	}
1743 
1744 	if (!rt_prio(p->prio))
1745 		p->sched_class = &fair_sched_class;
1746 
1747 	if (p->sched_class->task_fork)
1748 		p->sched_class->task_fork(p);
1749 
1750 	/*
1751 	 * The child is not yet in the pid-hash so no cgroup attach races,
1752 	 * and the cgroup is pinned to this child due to cgroup_fork()
1753 	 * is ran before sched_fork().
1754 	 *
1755 	 * Silence PROVE_RCU.
1756 	 */
1757 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1758 	set_task_cpu(p, cpu);
1759 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1760 
1761 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1762 	if (likely(sched_info_on()))
1763 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1764 #endif
1765 #if defined(CONFIG_SMP)
1766 	p->on_cpu = 0;
1767 #endif
1768 #ifdef CONFIG_PREEMPT_COUNT
1769 	/* Want to start with kernel preemption disabled. */
1770 	task_thread_info(p)->preempt_count = 1;
1771 #endif
1772 #ifdef CONFIG_SMP
1773 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1774 #endif
1775 
1776 	put_cpu();
1777 }
1778 
1779 /*
1780  * wake_up_new_task - wake up a newly created task for the first time.
1781  *
1782  * This function will do some initial scheduler statistics housekeeping
1783  * that must be done for every newly created context, then puts the task
1784  * on the runqueue and wakes it.
1785  */
1786 void wake_up_new_task(struct task_struct *p)
1787 {
1788 	unsigned long flags;
1789 	struct rq *rq;
1790 
1791 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1792 #ifdef CONFIG_SMP
1793 	/*
1794 	 * Fork balancing, do it here and not earlier because:
1795 	 *  - cpus_allowed can change in the fork path
1796 	 *  - any previously selected cpu might disappear through hotplug
1797 	 */
1798 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1799 #endif
1800 
1801 	rq = __task_rq_lock(p);
1802 	activate_task(rq, p, 0);
1803 	p->on_rq = 1;
1804 	trace_sched_wakeup_new(p, true);
1805 	check_preempt_curr(rq, p, WF_FORK);
1806 #ifdef CONFIG_SMP
1807 	if (p->sched_class->task_woken)
1808 		p->sched_class->task_woken(rq, p);
1809 #endif
1810 	task_rq_unlock(rq, p, &flags);
1811 }
1812 
1813 #ifdef CONFIG_PREEMPT_NOTIFIERS
1814 
1815 /**
1816  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1817  * @notifier: notifier struct to register
1818  */
1819 void preempt_notifier_register(struct preempt_notifier *notifier)
1820 {
1821 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1822 }
1823 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1824 
1825 /**
1826  * preempt_notifier_unregister - no longer interested in preemption notifications
1827  * @notifier: notifier struct to unregister
1828  *
1829  * This is safe to call from within a preemption notifier.
1830  */
1831 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1832 {
1833 	hlist_del(&notifier->link);
1834 }
1835 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1836 
1837 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1838 {
1839 	struct preempt_notifier *notifier;
1840 	struct hlist_node *node;
1841 
1842 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1843 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1844 }
1845 
1846 static void
1847 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1848 				 struct task_struct *next)
1849 {
1850 	struct preempt_notifier *notifier;
1851 	struct hlist_node *node;
1852 
1853 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1854 		notifier->ops->sched_out(notifier, next);
1855 }
1856 
1857 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1858 
1859 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1860 {
1861 }
1862 
1863 static void
1864 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1865 				 struct task_struct *next)
1866 {
1867 }
1868 
1869 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1870 
1871 /**
1872  * prepare_task_switch - prepare to switch tasks
1873  * @rq: the runqueue preparing to switch
1874  * @prev: the current task that is being switched out
1875  * @next: the task we are going to switch to.
1876  *
1877  * This is called with the rq lock held and interrupts off. It must
1878  * be paired with a subsequent finish_task_switch after the context
1879  * switch.
1880  *
1881  * prepare_task_switch sets up locking and calls architecture specific
1882  * hooks.
1883  */
1884 static inline void
1885 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1886 		    struct task_struct *next)
1887 {
1888 	sched_info_switch(prev, next);
1889 	perf_event_task_sched_out(prev, next);
1890 	fire_sched_out_preempt_notifiers(prev, next);
1891 	prepare_lock_switch(rq, next);
1892 	prepare_arch_switch(next);
1893 	trace_sched_switch(prev, next);
1894 }
1895 
1896 /**
1897  * finish_task_switch - clean up after a task-switch
1898  * @rq: runqueue associated with task-switch
1899  * @prev: the thread we just switched away from.
1900  *
1901  * finish_task_switch must be called after the context switch, paired
1902  * with a prepare_task_switch call before the context switch.
1903  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1904  * and do any other architecture-specific cleanup actions.
1905  *
1906  * Note that we may have delayed dropping an mm in context_switch(). If
1907  * so, we finish that here outside of the runqueue lock. (Doing it
1908  * with the lock held can cause deadlocks; see schedule() for
1909  * details.)
1910  */
1911 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1912 	__releases(rq->lock)
1913 {
1914 	struct mm_struct *mm = rq->prev_mm;
1915 	long prev_state;
1916 
1917 	rq->prev_mm = NULL;
1918 
1919 	/*
1920 	 * A task struct has one reference for the use as "current".
1921 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1922 	 * schedule one last time. The schedule call will never return, and
1923 	 * the scheduled task must drop that reference.
1924 	 * The test for TASK_DEAD must occur while the runqueue locks are
1925 	 * still held, otherwise prev could be scheduled on another cpu, die
1926 	 * there before we look at prev->state, and then the reference would
1927 	 * be dropped twice.
1928 	 *		Manfred Spraul <manfred@colorfullife.com>
1929 	 */
1930 	prev_state = prev->state;
1931 	finish_arch_switch(prev);
1932 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1933 	local_irq_disable();
1934 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1935 	perf_event_task_sched_in(prev, current);
1936 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1937 	local_irq_enable();
1938 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1939 	finish_lock_switch(rq, prev);
1940 	trace_sched_stat_sleeptime(current, rq->clock);
1941 
1942 	fire_sched_in_preempt_notifiers(current);
1943 	if (mm)
1944 		mmdrop(mm);
1945 	if (unlikely(prev_state == TASK_DEAD)) {
1946 		/*
1947 		 * Remove function-return probe instances associated with this
1948 		 * task and put them back on the free list.
1949 		 */
1950 		kprobe_flush_task(prev);
1951 		put_task_struct(prev);
1952 	}
1953 }
1954 
1955 #ifdef CONFIG_SMP
1956 
1957 /* assumes rq->lock is held */
1958 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1959 {
1960 	if (prev->sched_class->pre_schedule)
1961 		prev->sched_class->pre_schedule(rq, prev);
1962 }
1963 
1964 /* rq->lock is NOT held, but preemption is disabled */
1965 static inline void post_schedule(struct rq *rq)
1966 {
1967 	if (rq->post_schedule) {
1968 		unsigned long flags;
1969 
1970 		raw_spin_lock_irqsave(&rq->lock, flags);
1971 		if (rq->curr->sched_class->post_schedule)
1972 			rq->curr->sched_class->post_schedule(rq);
1973 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1974 
1975 		rq->post_schedule = 0;
1976 	}
1977 }
1978 
1979 #else
1980 
1981 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1982 {
1983 }
1984 
1985 static inline void post_schedule(struct rq *rq)
1986 {
1987 }
1988 
1989 #endif
1990 
1991 /**
1992  * schedule_tail - first thing a freshly forked thread must call.
1993  * @prev: the thread we just switched away from.
1994  */
1995 asmlinkage void schedule_tail(struct task_struct *prev)
1996 	__releases(rq->lock)
1997 {
1998 	struct rq *rq = this_rq();
1999 
2000 	finish_task_switch(rq, prev);
2001 
2002 	/*
2003 	 * FIXME: do we need to worry about rq being invalidated by the
2004 	 * task_switch?
2005 	 */
2006 	post_schedule(rq);
2007 
2008 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2009 	/* In this case, finish_task_switch does not reenable preemption */
2010 	preempt_enable();
2011 #endif
2012 	if (current->set_child_tid)
2013 		put_user(task_pid_vnr(current), current->set_child_tid);
2014 }
2015 
2016 /*
2017  * context_switch - switch to the new MM and the new
2018  * thread's register state.
2019  */
2020 static inline void
2021 context_switch(struct rq *rq, struct task_struct *prev,
2022 	       struct task_struct *next)
2023 {
2024 	struct mm_struct *mm, *oldmm;
2025 
2026 	prepare_task_switch(rq, prev, next);
2027 
2028 	mm = next->mm;
2029 	oldmm = prev->active_mm;
2030 	/*
2031 	 * For paravirt, this is coupled with an exit in switch_to to
2032 	 * combine the page table reload and the switch backend into
2033 	 * one hypercall.
2034 	 */
2035 	arch_start_context_switch(prev);
2036 
2037 	if (!mm) {
2038 		next->active_mm = oldmm;
2039 		atomic_inc(&oldmm->mm_count);
2040 		enter_lazy_tlb(oldmm, next);
2041 	} else
2042 		switch_mm(oldmm, mm, next);
2043 
2044 	if (!prev->mm) {
2045 		prev->active_mm = NULL;
2046 		rq->prev_mm = oldmm;
2047 	}
2048 	/*
2049 	 * Since the runqueue lock will be released by the next
2050 	 * task (which is an invalid locking op but in the case
2051 	 * of the scheduler it's an obvious special-case), so we
2052 	 * do an early lockdep release here:
2053 	 */
2054 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2055 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2056 #endif
2057 
2058 	/* Here we just switch the register state and the stack. */
2059 	switch_to(prev, next, prev);
2060 
2061 	barrier();
2062 	/*
2063 	 * this_rq must be evaluated again because prev may have moved
2064 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2065 	 * frame will be invalid.
2066 	 */
2067 	finish_task_switch(this_rq(), prev);
2068 }
2069 
2070 /*
2071  * nr_running, nr_uninterruptible and nr_context_switches:
2072  *
2073  * externally visible scheduler statistics: current number of runnable
2074  * threads, current number of uninterruptible-sleeping threads, total
2075  * number of context switches performed since bootup.
2076  */
2077 unsigned long nr_running(void)
2078 {
2079 	unsigned long i, sum = 0;
2080 
2081 	for_each_online_cpu(i)
2082 		sum += cpu_rq(i)->nr_running;
2083 
2084 	return sum;
2085 }
2086 
2087 unsigned long nr_uninterruptible(void)
2088 {
2089 	unsigned long i, sum = 0;
2090 
2091 	for_each_possible_cpu(i)
2092 		sum += cpu_rq(i)->nr_uninterruptible;
2093 
2094 	/*
2095 	 * Since we read the counters lockless, it might be slightly
2096 	 * inaccurate. Do not allow it to go below zero though:
2097 	 */
2098 	if (unlikely((long)sum < 0))
2099 		sum = 0;
2100 
2101 	return sum;
2102 }
2103 
2104 unsigned long long nr_context_switches(void)
2105 {
2106 	int i;
2107 	unsigned long long sum = 0;
2108 
2109 	for_each_possible_cpu(i)
2110 		sum += cpu_rq(i)->nr_switches;
2111 
2112 	return sum;
2113 }
2114 
2115 unsigned long nr_iowait(void)
2116 {
2117 	unsigned long i, sum = 0;
2118 
2119 	for_each_possible_cpu(i)
2120 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2121 
2122 	return sum;
2123 }
2124 
2125 unsigned long nr_iowait_cpu(int cpu)
2126 {
2127 	struct rq *this = cpu_rq(cpu);
2128 	return atomic_read(&this->nr_iowait);
2129 }
2130 
2131 unsigned long this_cpu_load(void)
2132 {
2133 	struct rq *this = this_rq();
2134 	return this->cpu_load[0];
2135 }
2136 
2137 
2138 /* Variables and functions for calc_load */
2139 static atomic_long_t calc_load_tasks;
2140 static unsigned long calc_load_update;
2141 unsigned long avenrun[3];
2142 EXPORT_SYMBOL(avenrun);
2143 
2144 static long calc_load_fold_active(struct rq *this_rq)
2145 {
2146 	long nr_active, delta = 0;
2147 
2148 	nr_active = this_rq->nr_running;
2149 	nr_active += (long) this_rq->nr_uninterruptible;
2150 
2151 	if (nr_active != this_rq->calc_load_active) {
2152 		delta = nr_active - this_rq->calc_load_active;
2153 		this_rq->calc_load_active = nr_active;
2154 	}
2155 
2156 	return delta;
2157 }
2158 
2159 static unsigned long
2160 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2161 {
2162 	load *= exp;
2163 	load += active * (FIXED_1 - exp);
2164 	load += 1UL << (FSHIFT - 1);
2165 	return load >> FSHIFT;
2166 }
2167 
2168 #ifdef CONFIG_NO_HZ
2169 /*
2170  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2171  *
2172  * When making the ILB scale, we should try to pull this in as well.
2173  */
2174 static atomic_long_t calc_load_tasks_idle;
2175 
2176 void calc_load_account_idle(struct rq *this_rq)
2177 {
2178 	long delta;
2179 
2180 	delta = calc_load_fold_active(this_rq);
2181 	if (delta)
2182 		atomic_long_add(delta, &calc_load_tasks_idle);
2183 }
2184 
2185 static long calc_load_fold_idle(void)
2186 {
2187 	long delta = 0;
2188 
2189 	/*
2190 	 * Its got a race, we don't care...
2191 	 */
2192 	if (atomic_long_read(&calc_load_tasks_idle))
2193 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2194 
2195 	return delta;
2196 }
2197 
2198 /**
2199  * fixed_power_int - compute: x^n, in O(log n) time
2200  *
2201  * @x:         base of the power
2202  * @frac_bits: fractional bits of @x
2203  * @n:         power to raise @x to.
2204  *
2205  * By exploiting the relation between the definition of the natural power
2206  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2207  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2208  * (where: n_i \elem {0, 1}, the binary vector representing n),
2209  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2210  * of course trivially computable in O(log_2 n), the length of our binary
2211  * vector.
2212  */
2213 static unsigned long
2214 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2215 {
2216 	unsigned long result = 1UL << frac_bits;
2217 
2218 	if (n) for (;;) {
2219 		if (n & 1) {
2220 			result *= x;
2221 			result += 1UL << (frac_bits - 1);
2222 			result >>= frac_bits;
2223 		}
2224 		n >>= 1;
2225 		if (!n)
2226 			break;
2227 		x *= x;
2228 		x += 1UL << (frac_bits - 1);
2229 		x >>= frac_bits;
2230 	}
2231 
2232 	return result;
2233 }
2234 
2235 /*
2236  * a1 = a0 * e + a * (1 - e)
2237  *
2238  * a2 = a1 * e + a * (1 - e)
2239  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2240  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2241  *
2242  * a3 = a2 * e + a * (1 - e)
2243  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2244  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2245  *
2246  *  ...
2247  *
2248  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2249  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2250  *    = a0 * e^n + a * (1 - e^n)
2251  *
2252  * [1] application of the geometric series:
2253  *
2254  *              n         1 - x^(n+1)
2255  *     S_n := \Sum x^i = -------------
2256  *             i=0          1 - x
2257  */
2258 static unsigned long
2259 calc_load_n(unsigned long load, unsigned long exp,
2260 	    unsigned long active, unsigned int n)
2261 {
2262 
2263 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2264 }
2265 
2266 /*
2267  * NO_HZ can leave us missing all per-cpu ticks calling
2268  * calc_load_account_active(), but since an idle CPU folds its delta into
2269  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2270  * in the pending idle delta if our idle period crossed a load cycle boundary.
2271  *
2272  * Once we've updated the global active value, we need to apply the exponential
2273  * weights adjusted to the number of cycles missed.
2274  */
2275 static void calc_global_nohz(unsigned long ticks)
2276 {
2277 	long delta, active, n;
2278 
2279 	if (time_before(jiffies, calc_load_update))
2280 		return;
2281 
2282 	/*
2283 	 * If we crossed a calc_load_update boundary, make sure to fold
2284 	 * any pending idle changes, the respective CPUs might have
2285 	 * missed the tick driven calc_load_account_active() update
2286 	 * due to NO_HZ.
2287 	 */
2288 	delta = calc_load_fold_idle();
2289 	if (delta)
2290 		atomic_long_add(delta, &calc_load_tasks);
2291 
2292 	/*
2293 	 * If we were idle for multiple load cycles, apply them.
2294 	 */
2295 	if (ticks >= LOAD_FREQ) {
2296 		n = ticks / LOAD_FREQ;
2297 
2298 		active = atomic_long_read(&calc_load_tasks);
2299 		active = active > 0 ? active * FIXED_1 : 0;
2300 
2301 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2302 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2303 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2304 
2305 		calc_load_update += n * LOAD_FREQ;
2306 	}
2307 
2308 	/*
2309 	 * Its possible the remainder of the above division also crosses
2310 	 * a LOAD_FREQ period, the regular check in calc_global_load()
2311 	 * which comes after this will take care of that.
2312 	 *
2313 	 * Consider us being 11 ticks before a cycle completion, and us
2314 	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2315 	 * age us 4 cycles, and the test in calc_global_load() will
2316 	 * pick up the final one.
2317 	 */
2318 }
2319 #else
2320 void calc_load_account_idle(struct rq *this_rq)
2321 {
2322 }
2323 
2324 static inline long calc_load_fold_idle(void)
2325 {
2326 	return 0;
2327 }
2328 
2329 static void calc_global_nohz(unsigned long ticks)
2330 {
2331 }
2332 #endif
2333 
2334 /**
2335  * get_avenrun - get the load average array
2336  * @loads:	pointer to dest load array
2337  * @offset:	offset to add
2338  * @shift:	shift count to shift the result left
2339  *
2340  * These values are estimates at best, so no need for locking.
2341  */
2342 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2343 {
2344 	loads[0] = (avenrun[0] + offset) << shift;
2345 	loads[1] = (avenrun[1] + offset) << shift;
2346 	loads[2] = (avenrun[2] + offset) << shift;
2347 }
2348 
2349 /*
2350  * calc_load - update the avenrun load estimates 10 ticks after the
2351  * CPUs have updated calc_load_tasks.
2352  */
2353 void calc_global_load(unsigned long ticks)
2354 {
2355 	long active;
2356 
2357 	calc_global_nohz(ticks);
2358 
2359 	if (time_before(jiffies, calc_load_update + 10))
2360 		return;
2361 
2362 	active = atomic_long_read(&calc_load_tasks);
2363 	active = active > 0 ? active * FIXED_1 : 0;
2364 
2365 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2366 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2367 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2368 
2369 	calc_load_update += LOAD_FREQ;
2370 }
2371 
2372 /*
2373  * Called from update_cpu_load() to periodically update this CPU's
2374  * active count.
2375  */
2376 static void calc_load_account_active(struct rq *this_rq)
2377 {
2378 	long delta;
2379 
2380 	if (time_before(jiffies, this_rq->calc_load_update))
2381 		return;
2382 
2383 	delta  = calc_load_fold_active(this_rq);
2384 	delta += calc_load_fold_idle();
2385 	if (delta)
2386 		atomic_long_add(delta, &calc_load_tasks);
2387 
2388 	this_rq->calc_load_update += LOAD_FREQ;
2389 }
2390 
2391 /*
2392  * The exact cpuload at various idx values, calculated at every tick would be
2393  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2394  *
2395  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2396  * on nth tick when cpu may be busy, then we have:
2397  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2398  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2399  *
2400  * decay_load_missed() below does efficient calculation of
2401  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2402  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2403  *
2404  * The calculation is approximated on a 128 point scale.
2405  * degrade_zero_ticks is the number of ticks after which load at any
2406  * particular idx is approximated to be zero.
2407  * degrade_factor is a precomputed table, a row for each load idx.
2408  * Each column corresponds to degradation factor for a power of two ticks,
2409  * based on 128 point scale.
2410  * Example:
2411  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2412  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2413  *
2414  * With this power of 2 load factors, we can degrade the load n times
2415  * by looking at 1 bits in n and doing as many mult/shift instead of
2416  * n mult/shifts needed by the exact degradation.
2417  */
2418 #define DEGRADE_SHIFT		7
2419 static const unsigned char
2420 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2421 static const unsigned char
2422 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2423 					{0, 0, 0, 0, 0, 0, 0, 0},
2424 					{64, 32, 8, 0, 0, 0, 0, 0},
2425 					{96, 72, 40, 12, 1, 0, 0},
2426 					{112, 98, 75, 43, 15, 1, 0},
2427 					{120, 112, 98, 76, 45, 16, 2} };
2428 
2429 /*
2430  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2431  * would be when CPU is idle and so we just decay the old load without
2432  * adding any new load.
2433  */
2434 static unsigned long
2435 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2436 {
2437 	int j = 0;
2438 
2439 	if (!missed_updates)
2440 		return load;
2441 
2442 	if (missed_updates >= degrade_zero_ticks[idx])
2443 		return 0;
2444 
2445 	if (idx == 1)
2446 		return load >> missed_updates;
2447 
2448 	while (missed_updates) {
2449 		if (missed_updates % 2)
2450 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2451 
2452 		missed_updates >>= 1;
2453 		j++;
2454 	}
2455 	return load;
2456 }
2457 
2458 /*
2459  * Update rq->cpu_load[] statistics. This function is usually called every
2460  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2461  * every tick. We fix it up based on jiffies.
2462  */
2463 void update_cpu_load(struct rq *this_rq)
2464 {
2465 	unsigned long this_load = this_rq->load.weight;
2466 	unsigned long curr_jiffies = jiffies;
2467 	unsigned long pending_updates;
2468 	int i, scale;
2469 
2470 	this_rq->nr_load_updates++;
2471 
2472 	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
2473 	if (curr_jiffies == this_rq->last_load_update_tick)
2474 		return;
2475 
2476 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2477 	this_rq->last_load_update_tick = curr_jiffies;
2478 
2479 	/* Update our load: */
2480 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2481 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2482 		unsigned long old_load, new_load;
2483 
2484 		/* scale is effectively 1 << i now, and >> i divides by scale */
2485 
2486 		old_load = this_rq->cpu_load[i];
2487 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2488 		new_load = this_load;
2489 		/*
2490 		 * Round up the averaging division if load is increasing. This
2491 		 * prevents us from getting stuck on 9 if the load is 10, for
2492 		 * example.
2493 		 */
2494 		if (new_load > old_load)
2495 			new_load += scale - 1;
2496 
2497 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2498 	}
2499 
2500 	sched_avg_update(this_rq);
2501 }
2502 
2503 static void update_cpu_load_active(struct rq *this_rq)
2504 {
2505 	update_cpu_load(this_rq);
2506 
2507 	calc_load_account_active(this_rq);
2508 }
2509 
2510 #ifdef CONFIG_SMP
2511 
2512 /*
2513  * sched_exec - execve() is a valuable balancing opportunity, because at
2514  * this point the task has the smallest effective memory and cache footprint.
2515  */
2516 void sched_exec(void)
2517 {
2518 	struct task_struct *p = current;
2519 	unsigned long flags;
2520 	int dest_cpu;
2521 
2522 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2523 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2524 	if (dest_cpu == smp_processor_id())
2525 		goto unlock;
2526 
2527 	if (likely(cpu_active(dest_cpu))) {
2528 		struct migration_arg arg = { p, dest_cpu };
2529 
2530 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2531 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2532 		return;
2533 	}
2534 unlock:
2535 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2536 }
2537 
2538 #endif
2539 
2540 DEFINE_PER_CPU(struct kernel_stat, kstat);
2541 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2542 
2543 EXPORT_PER_CPU_SYMBOL(kstat);
2544 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2545 
2546 /*
2547  * Return any ns on the sched_clock that have not yet been accounted in
2548  * @p in case that task is currently running.
2549  *
2550  * Called with task_rq_lock() held on @rq.
2551  */
2552 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2553 {
2554 	u64 ns = 0;
2555 
2556 	if (task_current(rq, p)) {
2557 		update_rq_clock(rq);
2558 		ns = rq->clock_task - p->se.exec_start;
2559 		if ((s64)ns < 0)
2560 			ns = 0;
2561 	}
2562 
2563 	return ns;
2564 }
2565 
2566 unsigned long long task_delta_exec(struct task_struct *p)
2567 {
2568 	unsigned long flags;
2569 	struct rq *rq;
2570 	u64 ns = 0;
2571 
2572 	rq = task_rq_lock(p, &flags);
2573 	ns = do_task_delta_exec(p, rq);
2574 	task_rq_unlock(rq, p, &flags);
2575 
2576 	return ns;
2577 }
2578 
2579 /*
2580  * Return accounted runtime for the task.
2581  * In case the task is currently running, return the runtime plus current's
2582  * pending runtime that have not been accounted yet.
2583  */
2584 unsigned long long task_sched_runtime(struct task_struct *p)
2585 {
2586 	unsigned long flags;
2587 	struct rq *rq;
2588 	u64 ns = 0;
2589 
2590 	rq = task_rq_lock(p, &flags);
2591 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2592 	task_rq_unlock(rq, p, &flags);
2593 
2594 	return ns;
2595 }
2596 
2597 #ifdef CONFIG_CGROUP_CPUACCT
2598 struct cgroup_subsys cpuacct_subsys;
2599 struct cpuacct root_cpuacct;
2600 #endif
2601 
2602 static inline void task_group_account_field(struct task_struct *p, int index,
2603 					    u64 tmp)
2604 {
2605 #ifdef CONFIG_CGROUP_CPUACCT
2606 	struct kernel_cpustat *kcpustat;
2607 	struct cpuacct *ca;
2608 #endif
2609 	/*
2610 	 * Since all updates are sure to touch the root cgroup, we
2611 	 * get ourselves ahead and touch it first. If the root cgroup
2612 	 * is the only cgroup, then nothing else should be necessary.
2613 	 *
2614 	 */
2615 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2616 
2617 #ifdef CONFIG_CGROUP_CPUACCT
2618 	if (unlikely(!cpuacct_subsys.active))
2619 		return;
2620 
2621 	rcu_read_lock();
2622 	ca = task_ca(p);
2623 	while (ca && (ca != &root_cpuacct)) {
2624 		kcpustat = this_cpu_ptr(ca->cpustat);
2625 		kcpustat->cpustat[index] += tmp;
2626 		ca = parent_ca(ca);
2627 	}
2628 	rcu_read_unlock();
2629 #endif
2630 }
2631 
2632 
2633 /*
2634  * Account user cpu time to a process.
2635  * @p: the process that the cpu time gets accounted to
2636  * @cputime: the cpu time spent in user space since the last update
2637  * @cputime_scaled: cputime scaled by cpu frequency
2638  */
2639 void account_user_time(struct task_struct *p, cputime_t cputime,
2640 		       cputime_t cputime_scaled)
2641 {
2642 	int index;
2643 
2644 	/* Add user time to process. */
2645 	p->utime += cputime;
2646 	p->utimescaled += cputime_scaled;
2647 	account_group_user_time(p, cputime);
2648 
2649 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2650 
2651 	/* Add user time to cpustat. */
2652 	task_group_account_field(p, index, (__force u64) cputime);
2653 
2654 	/* Account for user time used */
2655 	acct_update_integrals(p);
2656 }
2657 
2658 /*
2659  * Account guest cpu time to a process.
2660  * @p: the process that the cpu time gets accounted to
2661  * @cputime: the cpu time spent in virtual machine since the last update
2662  * @cputime_scaled: cputime scaled by cpu frequency
2663  */
2664 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2665 			       cputime_t cputime_scaled)
2666 {
2667 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2668 
2669 	/* Add guest time to process. */
2670 	p->utime += cputime;
2671 	p->utimescaled += cputime_scaled;
2672 	account_group_user_time(p, cputime);
2673 	p->gtime += cputime;
2674 
2675 	/* Add guest time to cpustat. */
2676 	if (TASK_NICE(p) > 0) {
2677 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2678 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2679 	} else {
2680 		cpustat[CPUTIME_USER] += (__force u64) cputime;
2681 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2682 	}
2683 }
2684 
2685 /*
2686  * Account system cpu time to a process and desired cpustat field
2687  * @p: the process that the cpu time gets accounted to
2688  * @cputime: the cpu time spent in kernel space since the last update
2689  * @cputime_scaled: cputime scaled by cpu frequency
2690  * @target_cputime64: pointer to cpustat field that has to be updated
2691  */
2692 static inline
2693 void __account_system_time(struct task_struct *p, cputime_t cputime,
2694 			cputime_t cputime_scaled, int index)
2695 {
2696 	/* Add system time to process. */
2697 	p->stime += cputime;
2698 	p->stimescaled += cputime_scaled;
2699 	account_group_system_time(p, cputime);
2700 
2701 	/* Add system time to cpustat. */
2702 	task_group_account_field(p, index, (__force u64) cputime);
2703 
2704 	/* Account for system time used */
2705 	acct_update_integrals(p);
2706 }
2707 
2708 /*
2709  * Account system cpu time to a process.
2710  * @p: the process that the cpu time gets accounted to
2711  * @hardirq_offset: the offset to subtract from hardirq_count()
2712  * @cputime: the cpu time spent in kernel space since the last update
2713  * @cputime_scaled: cputime scaled by cpu frequency
2714  */
2715 void account_system_time(struct task_struct *p, int hardirq_offset,
2716 			 cputime_t cputime, cputime_t cputime_scaled)
2717 {
2718 	int index;
2719 
2720 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2721 		account_guest_time(p, cputime, cputime_scaled);
2722 		return;
2723 	}
2724 
2725 	if (hardirq_count() - hardirq_offset)
2726 		index = CPUTIME_IRQ;
2727 	else if (in_serving_softirq())
2728 		index = CPUTIME_SOFTIRQ;
2729 	else
2730 		index = CPUTIME_SYSTEM;
2731 
2732 	__account_system_time(p, cputime, cputime_scaled, index);
2733 }
2734 
2735 /*
2736  * Account for involuntary wait time.
2737  * @cputime: the cpu time spent in involuntary wait
2738  */
2739 void account_steal_time(cputime_t cputime)
2740 {
2741 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2742 
2743 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2744 }
2745 
2746 /*
2747  * Account for idle time.
2748  * @cputime: the cpu time spent in idle wait
2749  */
2750 void account_idle_time(cputime_t cputime)
2751 {
2752 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2753 	struct rq *rq = this_rq();
2754 
2755 	if (atomic_read(&rq->nr_iowait) > 0)
2756 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2757 	else
2758 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2759 }
2760 
2761 static __always_inline bool steal_account_process_tick(void)
2762 {
2763 #ifdef CONFIG_PARAVIRT
2764 	if (static_branch(&paravirt_steal_enabled)) {
2765 		u64 steal, st = 0;
2766 
2767 		steal = paravirt_steal_clock(smp_processor_id());
2768 		steal -= this_rq()->prev_steal_time;
2769 
2770 		st = steal_ticks(steal);
2771 		this_rq()->prev_steal_time += st * TICK_NSEC;
2772 
2773 		account_steal_time(st);
2774 		return st;
2775 	}
2776 #endif
2777 	return false;
2778 }
2779 
2780 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2781 
2782 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2783 /*
2784  * Account a tick to a process and cpustat
2785  * @p: the process that the cpu time gets accounted to
2786  * @user_tick: is the tick from userspace
2787  * @rq: the pointer to rq
2788  *
2789  * Tick demultiplexing follows the order
2790  * - pending hardirq update
2791  * - pending softirq update
2792  * - user_time
2793  * - idle_time
2794  * - system time
2795  *   - check for guest_time
2796  *   - else account as system_time
2797  *
2798  * Check for hardirq is done both for system and user time as there is
2799  * no timer going off while we are on hardirq and hence we may never get an
2800  * opportunity to update it solely in system time.
2801  * p->stime and friends are only updated on system time and not on irq
2802  * softirq as those do not count in task exec_runtime any more.
2803  */
2804 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2805 						struct rq *rq)
2806 {
2807 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2808 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2809 
2810 	if (steal_account_process_tick())
2811 		return;
2812 
2813 	if (irqtime_account_hi_update()) {
2814 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2815 	} else if (irqtime_account_si_update()) {
2816 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2817 	} else if (this_cpu_ksoftirqd() == p) {
2818 		/*
2819 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2820 		 * So, we have to handle it separately here.
2821 		 * Also, p->stime needs to be updated for ksoftirqd.
2822 		 */
2823 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2824 					CPUTIME_SOFTIRQ);
2825 	} else if (user_tick) {
2826 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2827 	} else if (p == rq->idle) {
2828 		account_idle_time(cputime_one_jiffy);
2829 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2830 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2831 	} else {
2832 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2833 					CPUTIME_SYSTEM);
2834 	}
2835 }
2836 
2837 static void irqtime_account_idle_ticks(int ticks)
2838 {
2839 	int i;
2840 	struct rq *rq = this_rq();
2841 
2842 	for (i = 0; i < ticks; i++)
2843 		irqtime_account_process_tick(current, 0, rq);
2844 }
2845 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2846 static void irqtime_account_idle_ticks(int ticks) {}
2847 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2848 						struct rq *rq) {}
2849 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2850 
2851 /*
2852  * Account a single tick of cpu time.
2853  * @p: the process that the cpu time gets accounted to
2854  * @user_tick: indicates if the tick is a user or a system tick
2855  */
2856 void account_process_tick(struct task_struct *p, int user_tick)
2857 {
2858 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2859 	struct rq *rq = this_rq();
2860 
2861 	if (sched_clock_irqtime) {
2862 		irqtime_account_process_tick(p, user_tick, rq);
2863 		return;
2864 	}
2865 
2866 	if (steal_account_process_tick())
2867 		return;
2868 
2869 	if (user_tick)
2870 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2871 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2872 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2873 				    one_jiffy_scaled);
2874 	else
2875 		account_idle_time(cputime_one_jiffy);
2876 }
2877 
2878 /*
2879  * Account multiple ticks of steal time.
2880  * @p: the process from which the cpu time has been stolen
2881  * @ticks: number of stolen ticks
2882  */
2883 void account_steal_ticks(unsigned long ticks)
2884 {
2885 	account_steal_time(jiffies_to_cputime(ticks));
2886 }
2887 
2888 /*
2889  * Account multiple ticks of idle time.
2890  * @ticks: number of stolen ticks
2891  */
2892 void account_idle_ticks(unsigned long ticks)
2893 {
2894 
2895 	if (sched_clock_irqtime) {
2896 		irqtime_account_idle_ticks(ticks);
2897 		return;
2898 	}
2899 
2900 	account_idle_time(jiffies_to_cputime(ticks));
2901 }
2902 
2903 #endif
2904 
2905 /*
2906  * Use precise platform statistics if available:
2907  */
2908 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2909 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2910 {
2911 	*ut = p->utime;
2912 	*st = p->stime;
2913 }
2914 
2915 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2916 {
2917 	struct task_cputime cputime;
2918 
2919 	thread_group_cputime(p, &cputime);
2920 
2921 	*ut = cputime.utime;
2922 	*st = cputime.stime;
2923 }
2924 #else
2925 
2926 #ifndef nsecs_to_cputime
2927 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2928 #endif
2929 
2930 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2931 {
2932 	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2933 
2934 	/*
2935 	 * Use CFS's precise accounting:
2936 	 */
2937 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2938 
2939 	if (total) {
2940 		u64 temp = (__force u64) rtime;
2941 
2942 		temp *= (__force u64) utime;
2943 		do_div(temp, (__force u32) total);
2944 		utime = (__force cputime_t) temp;
2945 	} else
2946 		utime = rtime;
2947 
2948 	/*
2949 	 * Compare with previous values, to keep monotonicity:
2950 	 */
2951 	p->prev_utime = max(p->prev_utime, utime);
2952 	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2953 
2954 	*ut = p->prev_utime;
2955 	*st = p->prev_stime;
2956 }
2957 
2958 /*
2959  * Must be called with siglock held.
2960  */
2961 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2962 {
2963 	struct signal_struct *sig = p->signal;
2964 	struct task_cputime cputime;
2965 	cputime_t rtime, utime, total;
2966 
2967 	thread_group_cputime(p, &cputime);
2968 
2969 	total = cputime.utime + cputime.stime;
2970 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2971 
2972 	if (total) {
2973 		u64 temp = (__force u64) rtime;
2974 
2975 		temp *= (__force u64) cputime.utime;
2976 		do_div(temp, (__force u32) total);
2977 		utime = (__force cputime_t) temp;
2978 	} else
2979 		utime = rtime;
2980 
2981 	sig->prev_utime = max(sig->prev_utime, utime);
2982 	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2983 
2984 	*ut = sig->prev_utime;
2985 	*st = sig->prev_stime;
2986 }
2987 #endif
2988 
2989 /*
2990  * This function gets called by the timer code, with HZ frequency.
2991  * We call it with interrupts disabled.
2992  */
2993 void scheduler_tick(void)
2994 {
2995 	int cpu = smp_processor_id();
2996 	struct rq *rq = cpu_rq(cpu);
2997 	struct task_struct *curr = rq->curr;
2998 
2999 	sched_clock_tick();
3000 
3001 	raw_spin_lock(&rq->lock);
3002 	update_rq_clock(rq);
3003 	update_cpu_load_active(rq);
3004 	curr->sched_class->task_tick(rq, curr, 0);
3005 	raw_spin_unlock(&rq->lock);
3006 
3007 	perf_event_task_tick();
3008 
3009 #ifdef CONFIG_SMP
3010 	rq->idle_balance = idle_cpu(cpu);
3011 	trigger_load_balance(rq, cpu);
3012 #endif
3013 }
3014 
3015 notrace unsigned long get_parent_ip(unsigned long addr)
3016 {
3017 	if (in_lock_functions(addr)) {
3018 		addr = CALLER_ADDR2;
3019 		if (in_lock_functions(addr))
3020 			addr = CALLER_ADDR3;
3021 	}
3022 	return addr;
3023 }
3024 
3025 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3026 				defined(CONFIG_PREEMPT_TRACER))
3027 
3028 void __kprobes add_preempt_count(int val)
3029 {
3030 #ifdef CONFIG_DEBUG_PREEMPT
3031 	/*
3032 	 * Underflow?
3033 	 */
3034 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3035 		return;
3036 #endif
3037 	preempt_count() += val;
3038 #ifdef CONFIG_DEBUG_PREEMPT
3039 	/*
3040 	 * Spinlock count overflowing soon?
3041 	 */
3042 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3043 				PREEMPT_MASK - 10);
3044 #endif
3045 	if (preempt_count() == val)
3046 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3047 }
3048 EXPORT_SYMBOL(add_preempt_count);
3049 
3050 void __kprobes sub_preempt_count(int val)
3051 {
3052 #ifdef CONFIG_DEBUG_PREEMPT
3053 	/*
3054 	 * Underflow?
3055 	 */
3056 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3057 		return;
3058 	/*
3059 	 * Is the spinlock portion underflowing?
3060 	 */
3061 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3062 			!(preempt_count() & PREEMPT_MASK)))
3063 		return;
3064 #endif
3065 
3066 	if (preempt_count() == val)
3067 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3068 	preempt_count() -= val;
3069 }
3070 EXPORT_SYMBOL(sub_preempt_count);
3071 
3072 #endif
3073 
3074 /*
3075  * Print scheduling while atomic bug:
3076  */
3077 static noinline void __schedule_bug(struct task_struct *prev)
3078 {
3079 	struct pt_regs *regs = get_irq_regs();
3080 
3081 	if (oops_in_progress)
3082 		return;
3083 
3084 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3085 		prev->comm, prev->pid, preempt_count());
3086 
3087 	debug_show_held_locks(prev);
3088 	print_modules();
3089 	if (irqs_disabled())
3090 		print_irqtrace_events(prev);
3091 
3092 	if (regs)
3093 		show_regs(regs);
3094 	else
3095 		dump_stack();
3096 }
3097 
3098 /*
3099  * Various schedule()-time debugging checks and statistics:
3100  */
3101 static inline void schedule_debug(struct task_struct *prev)
3102 {
3103 	/*
3104 	 * Test if we are atomic. Since do_exit() needs to call into
3105 	 * schedule() atomically, we ignore that path for now.
3106 	 * Otherwise, whine if we are scheduling when we should not be.
3107 	 */
3108 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3109 		__schedule_bug(prev);
3110 	rcu_sleep_check();
3111 
3112 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3113 
3114 	schedstat_inc(this_rq(), sched_count);
3115 }
3116 
3117 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3118 {
3119 	if (prev->on_rq || rq->skip_clock_update < 0)
3120 		update_rq_clock(rq);
3121 	prev->sched_class->put_prev_task(rq, prev);
3122 }
3123 
3124 /*
3125  * Pick up the highest-prio task:
3126  */
3127 static inline struct task_struct *
3128 pick_next_task(struct rq *rq)
3129 {
3130 	const struct sched_class *class;
3131 	struct task_struct *p;
3132 
3133 	/*
3134 	 * Optimization: we know that if all tasks are in
3135 	 * the fair class we can call that function directly:
3136 	 */
3137 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3138 		p = fair_sched_class.pick_next_task(rq);
3139 		if (likely(p))
3140 			return p;
3141 	}
3142 
3143 	for_each_class(class) {
3144 		p = class->pick_next_task(rq);
3145 		if (p)
3146 			return p;
3147 	}
3148 
3149 	BUG(); /* the idle class will always have a runnable task */
3150 }
3151 
3152 /*
3153  * __schedule() is the main scheduler function.
3154  */
3155 static void __sched __schedule(void)
3156 {
3157 	struct task_struct *prev, *next;
3158 	unsigned long *switch_count;
3159 	struct rq *rq;
3160 	int cpu;
3161 
3162 need_resched:
3163 	preempt_disable();
3164 	cpu = smp_processor_id();
3165 	rq = cpu_rq(cpu);
3166 	rcu_note_context_switch(cpu);
3167 	prev = rq->curr;
3168 
3169 	schedule_debug(prev);
3170 
3171 	if (sched_feat(HRTICK))
3172 		hrtick_clear(rq);
3173 
3174 	raw_spin_lock_irq(&rq->lock);
3175 
3176 	switch_count = &prev->nivcsw;
3177 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3178 		if (unlikely(signal_pending_state(prev->state, prev))) {
3179 			prev->state = TASK_RUNNING;
3180 		} else {
3181 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3182 			prev->on_rq = 0;
3183 
3184 			/*
3185 			 * If a worker went to sleep, notify and ask workqueue
3186 			 * whether it wants to wake up a task to maintain
3187 			 * concurrency.
3188 			 */
3189 			if (prev->flags & PF_WQ_WORKER) {
3190 				struct task_struct *to_wakeup;
3191 
3192 				to_wakeup = wq_worker_sleeping(prev, cpu);
3193 				if (to_wakeup)
3194 					try_to_wake_up_local(to_wakeup);
3195 			}
3196 		}
3197 		switch_count = &prev->nvcsw;
3198 	}
3199 
3200 	pre_schedule(rq, prev);
3201 
3202 	if (unlikely(!rq->nr_running))
3203 		idle_balance(cpu, rq);
3204 
3205 	put_prev_task(rq, prev);
3206 	next = pick_next_task(rq);
3207 	clear_tsk_need_resched(prev);
3208 	rq->skip_clock_update = 0;
3209 
3210 	if (likely(prev != next)) {
3211 		rq->nr_switches++;
3212 		rq->curr = next;
3213 		++*switch_count;
3214 
3215 		context_switch(rq, prev, next); /* unlocks the rq */
3216 		/*
3217 		 * The context switch have flipped the stack from under us
3218 		 * and restored the local variables which were saved when
3219 		 * this task called schedule() in the past. prev == current
3220 		 * is still correct, but it can be moved to another cpu/rq.
3221 		 */
3222 		cpu = smp_processor_id();
3223 		rq = cpu_rq(cpu);
3224 	} else
3225 		raw_spin_unlock_irq(&rq->lock);
3226 
3227 	post_schedule(rq);
3228 
3229 	preempt_enable_no_resched();
3230 	if (need_resched())
3231 		goto need_resched;
3232 }
3233 
3234 static inline void sched_submit_work(struct task_struct *tsk)
3235 {
3236 	if (!tsk->state)
3237 		return;
3238 	/*
3239 	 * If we are going to sleep and we have plugged IO queued,
3240 	 * make sure to submit it to avoid deadlocks.
3241 	 */
3242 	if (blk_needs_flush_plug(tsk))
3243 		blk_schedule_flush_plug(tsk);
3244 }
3245 
3246 asmlinkage void __sched schedule(void)
3247 {
3248 	struct task_struct *tsk = current;
3249 
3250 	sched_submit_work(tsk);
3251 	__schedule();
3252 }
3253 EXPORT_SYMBOL(schedule);
3254 
3255 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3256 
3257 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3258 {
3259 	if (lock->owner != owner)
3260 		return false;
3261 
3262 	/*
3263 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3264 	 * lock->owner still matches owner, if that fails, owner might
3265 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3266 	 * ensures the memory stays valid.
3267 	 */
3268 	barrier();
3269 
3270 	return owner->on_cpu;
3271 }
3272 
3273 /*
3274  * Look out! "owner" is an entirely speculative pointer
3275  * access and not reliable.
3276  */
3277 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3278 {
3279 	if (!sched_feat(OWNER_SPIN))
3280 		return 0;
3281 
3282 	rcu_read_lock();
3283 	while (owner_running(lock, owner)) {
3284 		if (need_resched())
3285 			break;
3286 
3287 		arch_mutex_cpu_relax();
3288 	}
3289 	rcu_read_unlock();
3290 
3291 	/*
3292 	 * We break out the loop above on need_resched() and when the
3293 	 * owner changed, which is a sign for heavy contention. Return
3294 	 * success only when lock->owner is NULL.
3295 	 */
3296 	return lock->owner == NULL;
3297 }
3298 #endif
3299 
3300 #ifdef CONFIG_PREEMPT
3301 /*
3302  * this is the entry point to schedule() from in-kernel preemption
3303  * off of preempt_enable. Kernel preemptions off return from interrupt
3304  * occur there and call schedule directly.
3305  */
3306 asmlinkage void __sched notrace preempt_schedule(void)
3307 {
3308 	struct thread_info *ti = current_thread_info();
3309 
3310 	/*
3311 	 * If there is a non-zero preempt_count or interrupts are disabled,
3312 	 * we do not want to preempt the current task. Just return..
3313 	 */
3314 	if (likely(ti->preempt_count || irqs_disabled()))
3315 		return;
3316 
3317 	do {
3318 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3319 		__schedule();
3320 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3321 
3322 		/*
3323 		 * Check again in case we missed a preemption opportunity
3324 		 * between schedule and now.
3325 		 */
3326 		barrier();
3327 	} while (need_resched());
3328 }
3329 EXPORT_SYMBOL(preempt_schedule);
3330 
3331 /*
3332  * this is the entry point to schedule() from kernel preemption
3333  * off of irq context.
3334  * Note, that this is called and return with irqs disabled. This will
3335  * protect us against recursive calling from irq.
3336  */
3337 asmlinkage void __sched preempt_schedule_irq(void)
3338 {
3339 	struct thread_info *ti = current_thread_info();
3340 
3341 	/* Catch callers which need to be fixed */
3342 	BUG_ON(ti->preempt_count || !irqs_disabled());
3343 
3344 	do {
3345 		add_preempt_count(PREEMPT_ACTIVE);
3346 		local_irq_enable();
3347 		__schedule();
3348 		local_irq_disable();
3349 		sub_preempt_count(PREEMPT_ACTIVE);
3350 
3351 		/*
3352 		 * Check again in case we missed a preemption opportunity
3353 		 * between schedule and now.
3354 		 */
3355 		barrier();
3356 	} while (need_resched());
3357 }
3358 
3359 #endif /* CONFIG_PREEMPT */
3360 
3361 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3362 			  void *key)
3363 {
3364 	return try_to_wake_up(curr->private, mode, wake_flags);
3365 }
3366 EXPORT_SYMBOL(default_wake_function);
3367 
3368 /*
3369  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3370  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3371  * number) then we wake all the non-exclusive tasks and one exclusive task.
3372  *
3373  * There are circumstances in which we can try to wake a task which has already
3374  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3375  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3376  */
3377 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3378 			int nr_exclusive, int wake_flags, void *key)
3379 {
3380 	wait_queue_t *curr, *next;
3381 
3382 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3383 		unsigned flags = curr->flags;
3384 
3385 		if (curr->func(curr, mode, wake_flags, key) &&
3386 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3387 			break;
3388 	}
3389 }
3390 
3391 /**
3392  * __wake_up - wake up threads blocked on a waitqueue.
3393  * @q: the waitqueue
3394  * @mode: which threads
3395  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3396  * @key: is directly passed to the wakeup function
3397  *
3398  * It may be assumed that this function implies a write memory barrier before
3399  * changing the task state if and only if any tasks are woken up.
3400  */
3401 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3402 			int nr_exclusive, void *key)
3403 {
3404 	unsigned long flags;
3405 
3406 	spin_lock_irqsave(&q->lock, flags);
3407 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3408 	spin_unlock_irqrestore(&q->lock, flags);
3409 }
3410 EXPORT_SYMBOL(__wake_up);
3411 
3412 /*
3413  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3414  */
3415 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3416 {
3417 	__wake_up_common(q, mode, 1, 0, NULL);
3418 }
3419 EXPORT_SYMBOL_GPL(__wake_up_locked);
3420 
3421 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3422 {
3423 	__wake_up_common(q, mode, 1, 0, key);
3424 }
3425 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3426 
3427 /**
3428  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3429  * @q: the waitqueue
3430  * @mode: which threads
3431  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3432  * @key: opaque value to be passed to wakeup targets
3433  *
3434  * The sync wakeup differs that the waker knows that it will schedule
3435  * away soon, so while the target thread will be woken up, it will not
3436  * be migrated to another CPU - ie. the two threads are 'synchronized'
3437  * with each other. This can prevent needless bouncing between CPUs.
3438  *
3439  * On UP it can prevent extra preemption.
3440  *
3441  * It may be assumed that this function implies a write memory barrier before
3442  * changing the task state if and only if any tasks are woken up.
3443  */
3444 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3445 			int nr_exclusive, void *key)
3446 {
3447 	unsigned long flags;
3448 	int wake_flags = WF_SYNC;
3449 
3450 	if (unlikely(!q))
3451 		return;
3452 
3453 	if (unlikely(!nr_exclusive))
3454 		wake_flags = 0;
3455 
3456 	spin_lock_irqsave(&q->lock, flags);
3457 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3458 	spin_unlock_irqrestore(&q->lock, flags);
3459 }
3460 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3461 
3462 /*
3463  * __wake_up_sync - see __wake_up_sync_key()
3464  */
3465 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3466 {
3467 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3468 }
3469 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3470 
3471 /**
3472  * complete: - signals a single thread waiting on this completion
3473  * @x:  holds the state of this particular completion
3474  *
3475  * This will wake up a single thread waiting on this completion. Threads will be
3476  * awakened in the same order in which they were queued.
3477  *
3478  * See also complete_all(), wait_for_completion() and related routines.
3479  *
3480  * It may be assumed that this function implies a write memory barrier before
3481  * changing the task state if and only if any tasks are woken up.
3482  */
3483 void complete(struct completion *x)
3484 {
3485 	unsigned long flags;
3486 
3487 	spin_lock_irqsave(&x->wait.lock, flags);
3488 	x->done++;
3489 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3490 	spin_unlock_irqrestore(&x->wait.lock, flags);
3491 }
3492 EXPORT_SYMBOL(complete);
3493 
3494 /**
3495  * complete_all: - signals all threads waiting on this completion
3496  * @x:  holds the state of this particular completion
3497  *
3498  * This will wake up all threads waiting on this particular completion event.
3499  *
3500  * It may be assumed that this function implies a write memory barrier before
3501  * changing the task state if and only if any tasks are woken up.
3502  */
3503 void complete_all(struct completion *x)
3504 {
3505 	unsigned long flags;
3506 
3507 	spin_lock_irqsave(&x->wait.lock, flags);
3508 	x->done += UINT_MAX/2;
3509 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3510 	spin_unlock_irqrestore(&x->wait.lock, flags);
3511 }
3512 EXPORT_SYMBOL(complete_all);
3513 
3514 static inline long __sched
3515 do_wait_for_common(struct completion *x, long timeout, int state)
3516 {
3517 	if (!x->done) {
3518 		DECLARE_WAITQUEUE(wait, current);
3519 
3520 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3521 		do {
3522 			if (signal_pending_state(state, current)) {
3523 				timeout = -ERESTARTSYS;
3524 				break;
3525 			}
3526 			__set_current_state(state);
3527 			spin_unlock_irq(&x->wait.lock);
3528 			timeout = schedule_timeout(timeout);
3529 			spin_lock_irq(&x->wait.lock);
3530 		} while (!x->done && timeout);
3531 		__remove_wait_queue(&x->wait, &wait);
3532 		if (!x->done)
3533 			return timeout;
3534 	}
3535 	x->done--;
3536 	return timeout ?: 1;
3537 }
3538 
3539 static long __sched
3540 wait_for_common(struct completion *x, long timeout, int state)
3541 {
3542 	might_sleep();
3543 
3544 	spin_lock_irq(&x->wait.lock);
3545 	timeout = do_wait_for_common(x, timeout, state);
3546 	spin_unlock_irq(&x->wait.lock);
3547 	return timeout;
3548 }
3549 
3550 /**
3551  * wait_for_completion: - waits for completion of a task
3552  * @x:  holds the state of this particular completion
3553  *
3554  * This waits to be signaled for completion of a specific task. It is NOT
3555  * interruptible and there is no timeout.
3556  *
3557  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3558  * and interrupt capability. Also see complete().
3559  */
3560 void __sched wait_for_completion(struct completion *x)
3561 {
3562 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3563 }
3564 EXPORT_SYMBOL(wait_for_completion);
3565 
3566 /**
3567  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3568  * @x:  holds the state of this particular completion
3569  * @timeout:  timeout value in jiffies
3570  *
3571  * This waits for either a completion of a specific task to be signaled or for a
3572  * specified timeout to expire. The timeout is in jiffies. It is not
3573  * interruptible.
3574  *
3575  * The return value is 0 if timed out, and positive (at least 1, or number of
3576  * jiffies left till timeout) if completed.
3577  */
3578 unsigned long __sched
3579 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3580 {
3581 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3582 }
3583 EXPORT_SYMBOL(wait_for_completion_timeout);
3584 
3585 /**
3586  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3587  * @x:  holds the state of this particular completion
3588  *
3589  * This waits for completion of a specific task to be signaled. It is
3590  * interruptible.
3591  *
3592  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3593  */
3594 int __sched wait_for_completion_interruptible(struct completion *x)
3595 {
3596 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3597 	if (t == -ERESTARTSYS)
3598 		return t;
3599 	return 0;
3600 }
3601 EXPORT_SYMBOL(wait_for_completion_interruptible);
3602 
3603 /**
3604  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3605  * @x:  holds the state of this particular completion
3606  * @timeout:  timeout value in jiffies
3607  *
3608  * This waits for either a completion of a specific task to be signaled or for a
3609  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3610  *
3611  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3612  * positive (at least 1, or number of jiffies left till timeout) if completed.
3613  */
3614 long __sched
3615 wait_for_completion_interruptible_timeout(struct completion *x,
3616 					  unsigned long timeout)
3617 {
3618 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3619 }
3620 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3621 
3622 /**
3623  * wait_for_completion_killable: - waits for completion of a task (killable)
3624  * @x:  holds the state of this particular completion
3625  *
3626  * This waits to be signaled for completion of a specific task. It can be
3627  * interrupted by a kill signal.
3628  *
3629  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3630  */
3631 int __sched wait_for_completion_killable(struct completion *x)
3632 {
3633 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3634 	if (t == -ERESTARTSYS)
3635 		return t;
3636 	return 0;
3637 }
3638 EXPORT_SYMBOL(wait_for_completion_killable);
3639 
3640 /**
3641  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3642  * @x:  holds the state of this particular completion
3643  * @timeout:  timeout value in jiffies
3644  *
3645  * This waits for either a completion of a specific task to be
3646  * signaled or for a specified timeout to expire. It can be
3647  * interrupted by a kill signal. The timeout is in jiffies.
3648  *
3649  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3650  * positive (at least 1, or number of jiffies left till timeout) if completed.
3651  */
3652 long __sched
3653 wait_for_completion_killable_timeout(struct completion *x,
3654 				     unsigned long timeout)
3655 {
3656 	return wait_for_common(x, timeout, TASK_KILLABLE);
3657 }
3658 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3659 
3660 /**
3661  *	try_wait_for_completion - try to decrement a completion without blocking
3662  *	@x:	completion structure
3663  *
3664  *	Returns: 0 if a decrement cannot be done without blocking
3665  *		 1 if a decrement succeeded.
3666  *
3667  *	If a completion is being used as a counting completion,
3668  *	attempt to decrement the counter without blocking. This
3669  *	enables us to avoid waiting if the resource the completion
3670  *	is protecting is not available.
3671  */
3672 bool try_wait_for_completion(struct completion *x)
3673 {
3674 	unsigned long flags;
3675 	int ret = 1;
3676 
3677 	spin_lock_irqsave(&x->wait.lock, flags);
3678 	if (!x->done)
3679 		ret = 0;
3680 	else
3681 		x->done--;
3682 	spin_unlock_irqrestore(&x->wait.lock, flags);
3683 	return ret;
3684 }
3685 EXPORT_SYMBOL(try_wait_for_completion);
3686 
3687 /**
3688  *	completion_done - Test to see if a completion has any waiters
3689  *	@x:	completion structure
3690  *
3691  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3692  *		 1 if there are no waiters.
3693  *
3694  */
3695 bool completion_done(struct completion *x)
3696 {
3697 	unsigned long flags;
3698 	int ret = 1;
3699 
3700 	spin_lock_irqsave(&x->wait.lock, flags);
3701 	if (!x->done)
3702 		ret = 0;
3703 	spin_unlock_irqrestore(&x->wait.lock, flags);
3704 	return ret;
3705 }
3706 EXPORT_SYMBOL(completion_done);
3707 
3708 static long __sched
3709 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3710 {
3711 	unsigned long flags;
3712 	wait_queue_t wait;
3713 
3714 	init_waitqueue_entry(&wait, current);
3715 
3716 	__set_current_state(state);
3717 
3718 	spin_lock_irqsave(&q->lock, flags);
3719 	__add_wait_queue(q, &wait);
3720 	spin_unlock(&q->lock);
3721 	timeout = schedule_timeout(timeout);
3722 	spin_lock_irq(&q->lock);
3723 	__remove_wait_queue(q, &wait);
3724 	spin_unlock_irqrestore(&q->lock, flags);
3725 
3726 	return timeout;
3727 }
3728 
3729 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3730 {
3731 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3732 }
3733 EXPORT_SYMBOL(interruptible_sleep_on);
3734 
3735 long __sched
3736 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3737 {
3738 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3739 }
3740 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3741 
3742 void __sched sleep_on(wait_queue_head_t *q)
3743 {
3744 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3745 }
3746 EXPORT_SYMBOL(sleep_on);
3747 
3748 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3749 {
3750 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3751 }
3752 EXPORT_SYMBOL(sleep_on_timeout);
3753 
3754 #ifdef CONFIG_RT_MUTEXES
3755 
3756 /*
3757  * rt_mutex_setprio - set the current priority of a task
3758  * @p: task
3759  * @prio: prio value (kernel-internal form)
3760  *
3761  * This function changes the 'effective' priority of a task. It does
3762  * not touch ->normal_prio like __setscheduler().
3763  *
3764  * Used by the rt_mutex code to implement priority inheritance logic.
3765  */
3766 void rt_mutex_setprio(struct task_struct *p, int prio)
3767 {
3768 	int oldprio, on_rq, running;
3769 	struct rq *rq;
3770 	const struct sched_class *prev_class;
3771 
3772 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3773 
3774 	rq = __task_rq_lock(p);
3775 
3776 	trace_sched_pi_setprio(p, prio);
3777 	oldprio = p->prio;
3778 	prev_class = p->sched_class;
3779 	on_rq = p->on_rq;
3780 	running = task_current(rq, p);
3781 	if (on_rq)
3782 		dequeue_task(rq, p, 0);
3783 	if (running)
3784 		p->sched_class->put_prev_task(rq, p);
3785 
3786 	if (rt_prio(prio))
3787 		p->sched_class = &rt_sched_class;
3788 	else
3789 		p->sched_class = &fair_sched_class;
3790 
3791 	p->prio = prio;
3792 
3793 	if (running)
3794 		p->sched_class->set_curr_task(rq);
3795 	if (on_rq)
3796 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3797 
3798 	check_class_changed(rq, p, prev_class, oldprio);
3799 	__task_rq_unlock(rq);
3800 }
3801 
3802 #endif
3803 
3804 void set_user_nice(struct task_struct *p, long nice)
3805 {
3806 	int old_prio, delta, on_rq;
3807 	unsigned long flags;
3808 	struct rq *rq;
3809 
3810 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3811 		return;
3812 	/*
3813 	 * We have to be careful, if called from sys_setpriority(),
3814 	 * the task might be in the middle of scheduling on another CPU.
3815 	 */
3816 	rq = task_rq_lock(p, &flags);
3817 	/*
3818 	 * The RT priorities are set via sched_setscheduler(), but we still
3819 	 * allow the 'normal' nice value to be set - but as expected
3820 	 * it wont have any effect on scheduling until the task is
3821 	 * SCHED_FIFO/SCHED_RR:
3822 	 */
3823 	if (task_has_rt_policy(p)) {
3824 		p->static_prio = NICE_TO_PRIO(nice);
3825 		goto out_unlock;
3826 	}
3827 	on_rq = p->on_rq;
3828 	if (on_rq)
3829 		dequeue_task(rq, p, 0);
3830 
3831 	p->static_prio = NICE_TO_PRIO(nice);
3832 	set_load_weight(p);
3833 	old_prio = p->prio;
3834 	p->prio = effective_prio(p);
3835 	delta = p->prio - old_prio;
3836 
3837 	if (on_rq) {
3838 		enqueue_task(rq, p, 0);
3839 		/*
3840 		 * If the task increased its priority or is running and
3841 		 * lowered its priority, then reschedule its CPU:
3842 		 */
3843 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3844 			resched_task(rq->curr);
3845 	}
3846 out_unlock:
3847 	task_rq_unlock(rq, p, &flags);
3848 }
3849 EXPORT_SYMBOL(set_user_nice);
3850 
3851 /*
3852  * can_nice - check if a task can reduce its nice value
3853  * @p: task
3854  * @nice: nice value
3855  */
3856 int can_nice(const struct task_struct *p, const int nice)
3857 {
3858 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3859 	int nice_rlim = 20 - nice;
3860 
3861 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3862 		capable(CAP_SYS_NICE));
3863 }
3864 
3865 #ifdef __ARCH_WANT_SYS_NICE
3866 
3867 /*
3868  * sys_nice - change the priority of the current process.
3869  * @increment: priority increment
3870  *
3871  * sys_setpriority is a more generic, but much slower function that
3872  * does similar things.
3873  */
3874 SYSCALL_DEFINE1(nice, int, increment)
3875 {
3876 	long nice, retval;
3877 
3878 	/*
3879 	 * Setpriority might change our priority at the same moment.
3880 	 * We don't have to worry. Conceptually one call occurs first
3881 	 * and we have a single winner.
3882 	 */
3883 	if (increment < -40)
3884 		increment = -40;
3885 	if (increment > 40)
3886 		increment = 40;
3887 
3888 	nice = TASK_NICE(current) + increment;
3889 	if (nice < -20)
3890 		nice = -20;
3891 	if (nice > 19)
3892 		nice = 19;
3893 
3894 	if (increment < 0 && !can_nice(current, nice))
3895 		return -EPERM;
3896 
3897 	retval = security_task_setnice(current, nice);
3898 	if (retval)
3899 		return retval;
3900 
3901 	set_user_nice(current, nice);
3902 	return 0;
3903 }
3904 
3905 #endif
3906 
3907 /**
3908  * task_prio - return the priority value of a given task.
3909  * @p: the task in question.
3910  *
3911  * This is the priority value as seen by users in /proc.
3912  * RT tasks are offset by -200. Normal tasks are centered
3913  * around 0, value goes from -16 to +15.
3914  */
3915 int task_prio(const struct task_struct *p)
3916 {
3917 	return p->prio - MAX_RT_PRIO;
3918 }
3919 
3920 /**
3921  * task_nice - return the nice value of a given task.
3922  * @p: the task in question.
3923  */
3924 int task_nice(const struct task_struct *p)
3925 {
3926 	return TASK_NICE(p);
3927 }
3928 EXPORT_SYMBOL(task_nice);
3929 
3930 /**
3931  * idle_cpu - is a given cpu idle currently?
3932  * @cpu: the processor in question.
3933  */
3934 int idle_cpu(int cpu)
3935 {
3936 	struct rq *rq = cpu_rq(cpu);
3937 
3938 	if (rq->curr != rq->idle)
3939 		return 0;
3940 
3941 	if (rq->nr_running)
3942 		return 0;
3943 
3944 #ifdef CONFIG_SMP
3945 	if (!llist_empty(&rq->wake_list))
3946 		return 0;
3947 #endif
3948 
3949 	return 1;
3950 }
3951 
3952 /**
3953  * idle_task - return the idle task for a given cpu.
3954  * @cpu: the processor in question.
3955  */
3956 struct task_struct *idle_task(int cpu)
3957 {
3958 	return cpu_rq(cpu)->idle;
3959 }
3960 
3961 /**
3962  * find_process_by_pid - find a process with a matching PID value.
3963  * @pid: the pid in question.
3964  */
3965 static struct task_struct *find_process_by_pid(pid_t pid)
3966 {
3967 	return pid ? find_task_by_vpid(pid) : current;
3968 }
3969 
3970 /* Actually do priority change: must hold rq lock. */
3971 static void
3972 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3973 {
3974 	p->policy = policy;
3975 	p->rt_priority = prio;
3976 	p->normal_prio = normal_prio(p);
3977 	/* we are holding p->pi_lock already */
3978 	p->prio = rt_mutex_getprio(p);
3979 	if (rt_prio(p->prio))
3980 		p->sched_class = &rt_sched_class;
3981 	else
3982 		p->sched_class = &fair_sched_class;
3983 	set_load_weight(p);
3984 }
3985 
3986 /*
3987  * check the target process has a UID that matches the current process's
3988  */
3989 static bool check_same_owner(struct task_struct *p)
3990 {
3991 	const struct cred *cred = current_cred(), *pcred;
3992 	bool match;
3993 
3994 	rcu_read_lock();
3995 	pcred = __task_cred(p);
3996 	if (cred->user->user_ns == pcred->user->user_ns)
3997 		match = (cred->euid == pcred->euid ||
3998 			 cred->euid == pcred->uid);
3999 	else
4000 		match = false;
4001 	rcu_read_unlock();
4002 	return match;
4003 }
4004 
4005 static int __sched_setscheduler(struct task_struct *p, int policy,
4006 				const struct sched_param *param, bool user)
4007 {
4008 	int retval, oldprio, oldpolicy = -1, on_rq, running;
4009 	unsigned long flags;
4010 	const struct sched_class *prev_class;
4011 	struct rq *rq;
4012 	int reset_on_fork;
4013 
4014 	/* may grab non-irq protected spin_locks */
4015 	BUG_ON(in_interrupt());
4016 recheck:
4017 	/* double check policy once rq lock held */
4018 	if (policy < 0) {
4019 		reset_on_fork = p->sched_reset_on_fork;
4020 		policy = oldpolicy = p->policy;
4021 	} else {
4022 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4023 		policy &= ~SCHED_RESET_ON_FORK;
4024 
4025 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4026 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4027 				policy != SCHED_IDLE)
4028 			return -EINVAL;
4029 	}
4030 
4031 	/*
4032 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4033 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4034 	 * SCHED_BATCH and SCHED_IDLE is 0.
4035 	 */
4036 	if (param->sched_priority < 0 ||
4037 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4038 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4039 		return -EINVAL;
4040 	if (rt_policy(policy) != (param->sched_priority != 0))
4041 		return -EINVAL;
4042 
4043 	/*
4044 	 * Allow unprivileged RT tasks to decrease priority:
4045 	 */
4046 	if (user && !capable(CAP_SYS_NICE)) {
4047 		if (rt_policy(policy)) {
4048 			unsigned long rlim_rtprio =
4049 					task_rlimit(p, RLIMIT_RTPRIO);
4050 
4051 			/* can't set/change the rt policy */
4052 			if (policy != p->policy && !rlim_rtprio)
4053 				return -EPERM;
4054 
4055 			/* can't increase priority */
4056 			if (param->sched_priority > p->rt_priority &&
4057 			    param->sched_priority > rlim_rtprio)
4058 				return -EPERM;
4059 		}
4060 
4061 		/*
4062 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4063 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4064 		 */
4065 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4066 			if (!can_nice(p, TASK_NICE(p)))
4067 				return -EPERM;
4068 		}
4069 
4070 		/* can't change other user's priorities */
4071 		if (!check_same_owner(p))
4072 			return -EPERM;
4073 
4074 		/* Normal users shall not reset the sched_reset_on_fork flag */
4075 		if (p->sched_reset_on_fork && !reset_on_fork)
4076 			return -EPERM;
4077 	}
4078 
4079 	if (user) {
4080 		retval = security_task_setscheduler(p);
4081 		if (retval)
4082 			return retval;
4083 	}
4084 
4085 	/*
4086 	 * make sure no PI-waiters arrive (or leave) while we are
4087 	 * changing the priority of the task:
4088 	 *
4089 	 * To be able to change p->policy safely, the appropriate
4090 	 * runqueue lock must be held.
4091 	 */
4092 	rq = task_rq_lock(p, &flags);
4093 
4094 	/*
4095 	 * Changing the policy of the stop threads its a very bad idea
4096 	 */
4097 	if (p == rq->stop) {
4098 		task_rq_unlock(rq, p, &flags);
4099 		return -EINVAL;
4100 	}
4101 
4102 	/*
4103 	 * If not changing anything there's no need to proceed further:
4104 	 */
4105 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4106 			param->sched_priority == p->rt_priority))) {
4107 
4108 		__task_rq_unlock(rq);
4109 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4110 		return 0;
4111 	}
4112 
4113 #ifdef CONFIG_RT_GROUP_SCHED
4114 	if (user) {
4115 		/*
4116 		 * Do not allow realtime tasks into groups that have no runtime
4117 		 * assigned.
4118 		 */
4119 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4120 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4121 				!task_group_is_autogroup(task_group(p))) {
4122 			task_rq_unlock(rq, p, &flags);
4123 			return -EPERM;
4124 		}
4125 	}
4126 #endif
4127 
4128 	/* recheck policy now with rq lock held */
4129 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4130 		policy = oldpolicy = -1;
4131 		task_rq_unlock(rq, p, &flags);
4132 		goto recheck;
4133 	}
4134 	on_rq = p->on_rq;
4135 	running = task_current(rq, p);
4136 	if (on_rq)
4137 		deactivate_task(rq, p, 0);
4138 	if (running)
4139 		p->sched_class->put_prev_task(rq, p);
4140 
4141 	p->sched_reset_on_fork = reset_on_fork;
4142 
4143 	oldprio = p->prio;
4144 	prev_class = p->sched_class;
4145 	__setscheduler(rq, p, policy, param->sched_priority);
4146 
4147 	if (running)
4148 		p->sched_class->set_curr_task(rq);
4149 	if (on_rq)
4150 		activate_task(rq, p, 0);
4151 
4152 	check_class_changed(rq, p, prev_class, oldprio);
4153 	task_rq_unlock(rq, p, &flags);
4154 
4155 	rt_mutex_adjust_pi(p);
4156 
4157 	return 0;
4158 }
4159 
4160 /**
4161  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4162  * @p: the task in question.
4163  * @policy: new policy.
4164  * @param: structure containing the new RT priority.
4165  *
4166  * NOTE that the task may be already dead.
4167  */
4168 int sched_setscheduler(struct task_struct *p, int policy,
4169 		       const struct sched_param *param)
4170 {
4171 	return __sched_setscheduler(p, policy, param, true);
4172 }
4173 EXPORT_SYMBOL_GPL(sched_setscheduler);
4174 
4175 /**
4176  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4177  * @p: the task in question.
4178  * @policy: new policy.
4179  * @param: structure containing the new RT priority.
4180  *
4181  * Just like sched_setscheduler, only don't bother checking if the
4182  * current context has permission.  For example, this is needed in
4183  * stop_machine(): we create temporary high priority worker threads,
4184  * but our caller might not have that capability.
4185  */
4186 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4187 			       const struct sched_param *param)
4188 {
4189 	return __sched_setscheduler(p, policy, param, false);
4190 }
4191 
4192 static int
4193 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4194 {
4195 	struct sched_param lparam;
4196 	struct task_struct *p;
4197 	int retval;
4198 
4199 	if (!param || pid < 0)
4200 		return -EINVAL;
4201 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4202 		return -EFAULT;
4203 
4204 	rcu_read_lock();
4205 	retval = -ESRCH;
4206 	p = find_process_by_pid(pid);
4207 	if (p != NULL)
4208 		retval = sched_setscheduler(p, policy, &lparam);
4209 	rcu_read_unlock();
4210 
4211 	return retval;
4212 }
4213 
4214 /**
4215  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4216  * @pid: the pid in question.
4217  * @policy: new policy.
4218  * @param: structure containing the new RT priority.
4219  */
4220 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4221 		struct sched_param __user *, param)
4222 {
4223 	/* negative values for policy are not valid */
4224 	if (policy < 0)
4225 		return -EINVAL;
4226 
4227 	return do_sched_setscheduler(pid, policy, param);
4228 }
4229 
4230 /**
4231  * sys_sched_setparam - set/change the RT priority of a thread
4232  * @pid: the pid in question.
4233  * @param: structure containing the new RT priority.
4234  */
4235 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4236 {
4237 	return do_sched_setscheduler(pid, -1, param);
4238 }
4239 
4240 /**
4241  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4242  * @pid: the pid in question.
4243  */
4244 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4245 {
4246 	struct task_struct *p;
4247 	int retval;
4248 
4249 	if (pid < 0)
4250 		return -EINVAL;
4251 
4252 	retval = -ESRCH;
4253 	rcu_read_lock();
4254 	p = find_process_by_pid(pid);
4255 	if (p) {
4256 		retval = security_task_getscheduler(p);
4257 		if (!retval)
4258 			retval = p->policy
4259 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4260 	}
4261 	rcu_read_unlock();
4262 	return retval;
4263 }
4264 
4265 /**
4266  * sys_sched_getparam - get the RT priority of a thread
4267  * @pid: the pid in question.
4268  * @param: structure containing the RT priority.
4269  */
4270 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4271 {
4272 	struct sched_param lp;
4273 	struct task_struct *p;
4274 	int retval;
4275 
4276 	if (!param || pid < 0)
4277 		return -EINVAL;
4278 
4279 	rcu_read_lock();
4280 	p = find_process_by_pid(pid);
4281 	retval = -ESRCH;
4282 	if (!p)
4283 		goto out_unlock;
4284 
4285 	retval = security_task_getscheduler(p);
4286 	if (retval)
4287 		goto out_unlock;
4288 
4289 	lp.sched_priority = p->rt_priority;
4290 	rcu_read_unlock();
4291 
4292 	/*
4293 	 * This one might sleep, we cannot do it with a spinlock held ...
4294 	 */
4295 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4296 
4297 	return retval;
4298 
4299 out_unlock:
4300 	rcu_read_unlock();
4301 	return retval;
4302 }
4303 
4304 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4305 {
4306 	cpumask_var_t cpus_allowed, new_mask;
4307 	struct task_struct *p;
4308 	int retval;
4309 
4310 	get_online_cpus();
4311 	rcu_read_lock();
4312 
4313 	p = find_process_by_pid(pid);
4314 	if (!p) {
4315 		rcu_read_unlock();
4316 		put_online_cpus();
4317 		return -ESRCH;
4318 	}
4319 
4320 	/* Prevent p going away */
4321 	get_task_struct(p);
4322 	rcu_read_unlock();
4323 
4324 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4325 		retval = -ENOMEM;
4326 		goto out_put_task;
4327 	}
4328 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4329 		retval = -ENOMEM;
4330 		goto out_free_cpus_allowed;
4331 	}
4332 	retval = -EPERM;
4333 	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4334 		goto out_unlock;
4335 
4336 	retval = security_task_setscheduler(p);
4337 	if (retval)
4338 		goto out_unlock;
4339 
4340 	cpuset_cpus_allowed(p, cpus_allowed);
4341 	cpumask_and(new_mask, in_mask, cpus_allowed);
4342 again:
4343 	retval = set_cpus_allowed_ptr(p, new_mask);
4344 
4345 	if (!retval) {
4346 		cpuset_cpus_allowed(p, cpus_allowed);
4347 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4348 			/*
4349 			 * We must have raced with a concurrent cpuset
4350 			 * update. Just reset the cpus_allowed to the
4351 			 * cpuset's cpus_allowed
4352 			 */
4353 			cpumask_copy(new_mask, cpus_allowed);
4354 			goto again;
4355 		}
4356 	}
4357 out_unlock:
4358 	free_cpumask_var(new_mask);
4359 out_free_cpus_allowed:
4360 	free_cpumask_var(cpus_allowed);
4361 out_put_task:
4362 	put_task_struct(p);
4363 	put_online_cpus();
4364 	return retval;
4365 }
4366 
4367 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4368 			     struct cpumask *new_mask)
4369 {
4370 	if (len < cpumask_size())
4371 		cpumask_clear(new_mask);
4372 	else if (len > cpumask_size())
4373 		len = cpumask_size();
4374 
4375 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4376 }
4377 
4378 /**
4379  * sys_sched_setaffinity - set the cpu affinity of a process
4380  * @pid: pid of the process
4381  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4382  * @user_mask_ptr: user-space pointer to the new cpu mask
4383  */
4384 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4385 		unsigned long __user *, user_mask_ptr)
4386 {
4387 	cpumask_var_t new_mask;
4388 	int retval;
4389 
4390 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4391 		return -ENOMEM;
4392 
4393 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4394 	if (retval == 0)
4395 		retval = sched_setaffinity(pid, new_mask);
4396 	free_cpumask_var(new_mask);
4397 	return retval;
4398 }
4399 
4400 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4401 {
4402 	struct task_struct *p;
4403 	unsigned long flags;
4404 	int retval;
4405 
4406 	get_online_cpus();
4407 	rcu_read_lock();
4408 
4409 	retval = -ESRCH;
4410 	p = find_process_by_pid(pid);
4411 	if (!p)
4412 		goto out_unlock;
4413 
4414 	retval = security_task_getscheduler(p);
4415 	if (retval)
4416 		goto out_unlock;
4417 
4418 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4419 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4420 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4421 
4422 out_unlock:
4423 	rcu_read_unlock();
4424 	put_online_cpus();
4425 
4426 	return retval;
4427 }
4428 
4429 /**
4430  * sys_sched_getaffinity - get the cpu affinity of a process
4431  * @pid: pid of the process
4432  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4433  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4434  */
4435 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4436 		unsigned long __user *, user_mask_ptr)
4437 {
4438 	int ret;
4439 	cpumask_var_t mask;
4440 
4441 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4442 		return -EINVAL;
4443 	if (len & (sizeof(unsigned long)-1))
4444 		return -EINVAL;
4445 
4446 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4447 		return -ENOMEM;
4448 
4449 	ret = sched_getaffinity(pid, mask);
4450 	if (ret == 0) {
4451 		size_t retlen = min_t(size_t, len, cpumask_size());
4452 
4453 		if (copy_to_user(user_mask_ptr, mask, retlen))
4454 			ret = -EFAULT;
4455 		else
4456 			ret = retlen;
4457 	}
4458 	free_cpumask_var(mask);
4459 
4460 	return ret;
4461 }
4462 
4463 /**
4464  * sys_sched_yield - yield the current processor to other threads.
4465  *
4466  * This function yields the current CPU to other tasks. If there are no
4467  * other threads running on this CPU then this function will return.
4468  */
4469 SYSCALL_DEFINE0(sched_yield)
4470 {
4471 	struct rq *rq = this_rq_lock();
4472 
4473 	schedstat_inc(rq, yld_count);
4474 	current->sched_class->yield_task(rq);
4475 
4476 	/*
4477 	 * Since we are going to call schedule() anyway, there's
4478 	 * no need to preempt or enable interrupts:
4479 	 */
4480 	__release(rq->lock);
4481 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4482 	do_raw_spin_unlock(&rq->lock);
4483 	preempt_enable_no_resched();
4484 
4485 	schedule();
4486 
4487 	return 0;
4488 }
4489 
4490 static inline int should_resched(void)
4491 {
4492 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4493 }
4494 
4495 static void __cond_resched(void)
4496 {
4497 	add_preempt_count(PREEMPT_ACTIVE);
4498 	__schedule();
4499 	sub_preempt_count(PREEMPT_ACTIVE);
4500 }
4501 
4502 int __sched _cond_resched(void)
4503 {
4504 	if (should_resched()) {
4505 		__cond_resched();
4506 		return 1;
4507 	}
4508 	return 0;
4509 }
4510 EXPORT_SYMBOL(_cond_resched);
4511 
4512 /*
4513  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4514  * call schedule, and on return reacquire the lock.
4515  *
4516  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4517  * operations here to prevent schedule() from being called twice (once via
4518  * spin_unlock(), once by hand).
4519  */
4520 int __cond_resched_lock(spinlock_t *lock)
4521 {
4522 	int resched = should_resched();
4523 	int ret = 0;
4524 
4525 	lockdep_assert_held(lock);
4526 
4527 	if (spin_needbreak(lock) || resched) {
4528 		spin_unlock(lock);
4529 		if (resched)
4530 			__cond_resched();
4531 		else
4532 			cpu_relax();
4533 		ret = 1;
4534 		spin_lock(lock);
4535 	}
4536 	return ret;
4537 }
4538 EXPORT_SYMBOL(__cond_resched_lock);
4539 
4540 int __sched __cond_resched_softirq(void)
4541 {
4542 	BUG_ON(!in_softirq());
4543 
4544 	if (should_resched()) {
4545 		local_bh_enable();
4546 		__cond_resched();
4547 		local_bh_disable();
4548 		return 1;
4549 	}
4550 	return 0;
4551 }
4552 EXPORT_SYMBOL(__cond_resched_softirq);
4553 
4554 /**
4555  * yield - yield the current processor to other threads.
4556  *
4557  * This is a shortcut for kernel-space yielding - it marks the
4558  * thread runnable and calls sys_sched_yield().
4559  */
4560 void __sched yield(void)
4561 {
4562 	set_current_state(TASK_RUNNING);
4563 	sys_sched_yield();
4564 }
4565 EXPORT_SYMBOL(yield);
4566 
4567 /**
4568  * yield_to - yield the current processor to another thread in
4569  * your thread group, or accelerate that thread toward the
4570  * processor it's on.
4571  * @p: target task
4572  * @preempt: whether task preemption is allowed or not
4573  *
4574  * It's the caller's job to ensure that the target task struct
4575  * can't go away on us before we can do any checks.
4576  *
4577  * Returns true if we indeed boosted the target task.
4578  */
4579 bool __sched yield_to(struct task_struct *p, bool preempt)
4580 {
4581 	struct task_struct *curr = current;
4582 	struct rq *rq, *p_rq;
4583 	unsigned long flags;
4584 	bool yielded = 0;
4585 
4586 	local_irq_save(flags);
4587 	rq = this_rq();
4588 
4589 again:
4590 	p_rq = task_rq(p);
4591 	double_rq_lock(rq, p_rq);
4592 	while (task_rq(p) != p_rq) {
4593 		double_rq_unlock(rq, p_rq);
4594 		goto again;
4595 	}
4596 
4597 	if (!curr->sched_class->yield_to_task)
4598 		goto out;
4599 
4600 	if (curr->sched_class != p->sched_class)
4601 		goto out;
4602 
4603 	if (task_running(p_rq, p) || p->state)
4604 		goto out;
4605 
4606 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4607 	if (yielded) {
4608 		schedstat_inc(rq, yld_count);
4609 		/*
4610 		 * Make p's CPU reschedule; pick_next_entity takes care of
4611 		 * fairness.
4612 		 */
4613 		if (preempt && rq != p_rq)
4614 			resched_task(p_rq->curr);
4615 	} else {
4616 		/*
4617 		 * We might have set it in task_yield_fair(), but are
4618 		 * not going to schedule(), so don't want to skip
4619 		 * the next update.
4620 		 */
4621 		rq->skip_clock_update = 0;
4622 	}
4623 
4624 out:
4625 	double_rq_unlock(rq, p_rq);
4626 	local_irq_restore(flags);
4627 
4628 	if (yielded)
4629 		schedule();
4630 
4631 	return yielded;
4632 }
4633 EXPORT_SYMBOL_GPL(yield_to);
4634 
4635 /*
4636  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4637  * that process accounting knows that this is a task in IO wait state.
4638  */
4639 void __sched io_schedule(void)
4640 {
4641 	struct rq *rq = raw_rq();
4642 
4643 	delayacct_blkio_start();
4644 	atomic_inc(&rq->nr_iowait);
4645 	blk_flush_plug(current);
4646 	current->in_iowait = 1;
4647 	schedule();
4648 	current->in_iowait = 0;
4649 	atomic_dec(&rq->nr_iowait);
4650 	delayacct_blkio_end();
4651 }
4652 EXPORT_SYMBOL(io_schedule);
4653 
4654 long __sched io_schedule_timeout(long timeout)
4655 {
4656 	struct rq *rq = raw_rq();
4657 	long ret;
4658 
4659 	delayacct_blkio_start();
4660 	atomic_inc(&rq->nr_iowait);
4661 	blk_flush_plug(current);
4662 	current->in_iowait = 1;
4663 	ret = schedule_timeout(timeout);
4664 	current->in_iowait = 0;
4665 	atomic_dec(&rq->nr_iowait);
4666 	delayacct_blkio_end();
4667 	return ret;
4668 }
4669 
4670 /**
4671  * sys_sched_get_priority_max - return maximum RT priority.
4672  * @policy: scheduling class.
4673  *
4674  * this syscall returns the maximum rt_priority that can be used
4675  * by a given scheduling class.
4676  */
4677 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4678 {
4679 	int ret = -EINVAL;
4680 
4681 	switch (policy) {
4682 	case SCHED_FIFO:
4683 	case SCHED_RR:
4684 		ret = MAX_USER_RT_PRIO-1;
4685 		break;
4686 	case SCHED_NORMAL:
4687 	case SCHED_BATCH:
4688 	case SCHED_IDLE:
4689 		ret = 0;
4690 		break;
4691 	}
4692 	return ret;
4693 }
4694 
4695 /**
4696  * sys_sched_get_priority_min - return minimum RT priority.
4697  * @policy: scheduling class.
4698  *
4699  * this syscall returns the minimum rt_priority that can be used
4700  * by a given scheduling class.
4701  */
4702 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4703 {
4704 	int ret = -EINVAL;
4705 
4706 	switch (policy) {
4707 	case SCHED_FIFO:
4708 	case SCHED_RR:
4709 		ret = 1;
4710 		break;
4711 	case SCHED_NORMAL:
4712 	case SCHED_BATCH:
4713 	case SCHED_IDLE:
4714 		ret = 0;
4715 	}
4716 	return ret;
4717 }
4718 
4719 /**
4720  * sys_sched_rr_get_interval - return the default timeslice of a process.
4721  * @pid: pid of the process.
4722  * @interval: userspace pointer to the timeslice value.
4723  *
4724  * this syscall writes the default timeslice value of a given process
4725  * into the user-space timespec buffer. A value of '0' means infinity.
4726  */
4727 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4728 		struct timespec __user *, interval)
4729 {
4730 	struct task_struct *p;
4731 	unsigned int time_slice;
4732 	unsigned long flags;
4733 	struct rq *rq;
4734 	int retval;
4735 	struct timespec t;
4736 
4737 	if (pid < 0)
4738 		return -EINVAL;
4739 
4740 	retval = -ESRCH;
4741 	rcu_read_lock();
4742 	p = find_process_by_pid(pid);
4743 	if (!p)
4744 		goto out_unlock;
4745 
4746 	retval = security_task_getscheduler(p);
4747 	if (retval)
4748 		goto out_unlock;
4749 
4750 	rq = task_rq_lock(p, &flags);
4751 	time_slice = p->sched_class->get_rr_interval(rq, p);
4752 	task_rq_unlock(rq, p, &flags);
4753 
4754 	rcu_read_unlock();
4755 	jiffies_to_timespec(time_slice, &t);
4756 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4757 	return retval;
4758 
4759 out_unlock:
4760 	rcu_read_unlock();
4761 	return retval;
4762 }
4763 
4764 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4765 
4766 void sched_show_task(struct task_struct *p)
4767 {
4768 	unsigned long free = 0;
4769 	unsigned state;
4770 
4771 	state = p->state ? __ffs(p->state) + 1 : 0;
4772 	printk(KERN_INFO "%-15.15s %c", p->comm,
4773 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4774 #if BITS_PER_LONG == 32
4775 	if (state == TASK_RUNNING)
4776 		printk(KERN_CONT " running  ");
4777 	else
4778 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4779 #else
4780 	if (state == TASK_RUNNING)
4781 		printk(KERN_CONT "  running task    ");
4782 	else
4783 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4784 #endif
4785 #ifdef CONFIG_DEBUG_STACK_USAGE
4786 	free = stack_not_used(p);
4787 #endif
4788 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4789 		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4790 		(unsigned long)task_thread_info(p)->flags);
4791 
4792 	show_stack(p, NULL);
4793 }
4794 
4795 void show_state_filter(unsigned long state_filter)
4796 {
4797 	struct task_struct *g, *p;
4798 
4799 #if BITS_PER_LONG == 32
4800 	printk(KERN_INFO
4801 		"  task                PC stack   pid father\n");
4802 #else
4803 	printk(KERN_INFO
4804 		"  task                        PC stack   pid father\n");
4805 #endif
4806 	rcu_read_lock();
4807 	do_each_thread(g, p) {
4808 		/*
4809 		 * reset the NMI-timeout, listing all files on a slow
4810 		 * console might take a lot of time:
4811 		 */
4812 		touch_nmi_watchdog();
4813 		if (!state_filter || (p->state & state_filter))
4814 			sched_show_task(p);
4815 	} while_each_thread(g, p);
4816 
4817 	touch_all_softlockup_watchdogs();
4818 
4819 #ifdef CONFIG_SCHED_DEBUG
4820 	sysrq_sched_debug_show();
4821 #endif
4822 	rcu_read_unlock();
4823 	/*
4824 	 * Only show locks if all tasks are dumped:
4825 	 */
4826 	if (!state_filter)
4827 		debug_show_all_locks();
4828 }
4829 
4830 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4831 {
4832 	idle->sched_class = &idle_sched_class;
4833 }
4834 
4835 /**
4836  * init_idle - set up an idle thread for a given CPU
4837  * @idle: task in question
4838  * @cpu: cpu the idle task belongs to
4839  *
4840  * NOTE: this function does not set the idle thread's NEED_RESCHED
4841  * flag, to make booting more robust.
4842  */
4843 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4844 {
4845 	struct rq *rq = cpu_rq(cpu);
4846 	unsigned long flags;
4847 
4848 	raw_spin_lock_irqsave(&rq->lock, flags);
4849 
4850 	__sched_fork(idle);
4851 	idle->state = TASK_RUNNING;
4852 	idle->se.exec_start = sched_clock();
4853 
4854 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4855 	/*
4856 	 * We're having a chicken and egg problem, even though we are
4857 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4858 	 * lockdep check in task_group() will fail.
4859 	 *
4860 	 * Similar case to sched_fork(). / Alternatively we could
4861 	 * use task_rq_lock() here and obtain the other rq->lock.
4862 	 *
4863 	 * Silence PROVE_RCU
4864 	 */
4865 	rcu_read_lock();
4866 	__set_task_cpu(idle, cpu);
4867 	rcu_read_unlock();
4868 
4869 	rq->curr = rq->idle = idle;
4870 #if defined(CONFIG_SMP)
4871 	idle->on_cpu = 1;
4872 #endif
4873 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4874 
4875 	/* Set the preempt count _outside_ the spinlocks! */
4876 	task_thread_info(idle)->preempt_count = 0;
4877 
4878 	/*
4879 	 * The idle tasks have their own, simple scheduling class:
4880 	 */
4881 	idle->sched_class = &idle_sched_class;
4882 	ftrace_graph_init_idle_task(idle, cpu);
4883 #if defined(CONFIG_SMP)
4884 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4885 #endif
4886 }
4887 
4888 #ifdef CONFIG_SMP
4889 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4890 {
4891 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4892 		p->sched_class->set_cpus_allowed(p, new_mask);
4893 
4894 	cpumask_copy(&p->cpus_allowed, new_mask);
4895 	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4896 }
4897 
4898 /*
4899  * This is how migration works:
4900  *
4901  * 1) we invoke migration_cpu_stop() on the target CPU using
4902  *    stop_one_cpu().
4903  * 2) stopper starts to run (implicitly forcing the migrated thread
4904  *    off the CPU)
4905  * 3) it checks whether the migrated task is still in the wrong runqueue.
4906  * 4) if it's in the wrong runqueue then the migration thread removes
4907  *    it and puts it into the right queue.
4908  * 5) stopper completes and stop_one_cpu() returns and the migration
4909  *    is done.
4910  */
4911 
4912 /*
4913  * Change a given task's CPU affinity. Migrate the thread to a
4914  * proper CPU and schedule it away if the CPU it's executing on
4915  * is removed from the allowed bitmask.
4916  *
4917  * NOTE: the caller must have a valid reference to the task, the
4918  * task must not exit() & deallocate itself prematurely. The
4919  * call is not atomic; no spinlocks may be held.
4920  */
4921 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4922 {
4923 	unsigned long flags;
4924 	struct rq *rq;
4925 	unsigned int dest_cpu;
4926 	int ret = 0;
4927 
4928 	rq = task_rq_lock(p, &flags);
4929 
4930 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4931 		goto out;
4932 
4933 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4934 		ret = -EINVAL;
4935 		goto out;
4936 	}
4937 
4938 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4939 		ret = -EINVAL;
4940 		goto out;
4941 	}
4942 
4943 	do_set_cpus_allowed(p, new_mask);
4944 
4945 	/* Can the task run on the task's current CPU? If so, we're done */
4946 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4947 		goto out;
4948 
4949 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4950 	if (p->on_rq) {
4951 		struct migration_arg arg = { p, dest_cpu };
4952 		/* Need help from migration thread: drop lock and wait. */
4953 		task_rq_unlock(rq, p, &flags);
4954 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4955 		tlb_migrate_finish(p->mm);
4956 		return 0;
4957 	}
4958 out:
4959 	task_rq_unlock(rq, p, &flags);
4960 
4961 	return ret;
4962 }
4963 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4964 
4965 /*
4966  * Move (not current) task off this cpu, onto dest cpu. We're doing
4967  * this because either it can't run here any more (set_cpus_allowed()
4968  * away from this CPU, or CPU going down), or because we're
4969  * attempting to rebalance this task on exec (sched_exec).
4970  *
4971  * So we race with normal scheduler movements, but that's OK, as long
4972  * as the task is no longer on this CPU.
4973  *
4974  * Returns non-zero if task was successfully migrated.
4975  */
4976 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4977 {
4978 	struct rq *rq_dest, *rq_src;
4979 	int ret = 0;
4980 
4981 	if (unlikely(!cpu_active(dest_cpu)))
4982 		return ret;
4983 
4984 	rq_src = cpu_rq(src_cpu);
4985 	rq_dest = cpu_rq(dest_cpu);
4986 
4987 	raw_spin_lock(&p->pi_lock);
4988 	double_rq_lock(rq_src, rq_dest);
4989 	/* Already moved. */
4990 	if (task_cpu(p) != src_cpu)
4991 		goto done;
4992 	/* Affinity changed (again). */
4993 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4994 		goto fail;
4995 
4996 	/*
4997 	 * If we're not on a rq, the next wake-up will ensure we're
4998 	 * placed properly.
4999 	 */
5000 	if (p->on_rq) {
5001 		deactivate_task(rq_src, p, 0);
5002 		set_task_cpu(p, dest_cpu);
5003 		activate_task(rq_dest, p, 0);
5004 		check_preempt_curr(rq_dest, p, 0);
5005 	}
5006 done:
5007 	ret = 1;
5008 fail:
5009 	double_rq_unlock(rq_src, rq_dest);
5010 	raw_spin_unlock(&p->pi_lock);
5011 	return ret;
5012 }
5013 
5014 /*
5015  * migration_cpu_stop - this will be executed by a highprio stopper thread
5016  * and performs thread migration by bumping thread off CPU then
5017  * 'pushing' onto another runqueue.
5018  */
5019 static int migration_cpu_stop(void *data)
5020 {
5021 	struct migration_arg *arg = data;
5022 
5023 	/*
5024 	 * The original target cpu might have gone down and we might
5025 	 * be on another cpu but it doesn't matter.
5026 	 */
5027 	local_irq_disable();
5028 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5029 	local_irq_enable();
5030 	return 0;
5031 }
5032 
5033 #ifdef CONFIG_HOTPLUG_CPU
5034 
5035 /*
5036  * Ensures that the idle task is using init_mm right before its cpu goes
5037  * offline.
5038  */
5039 void idle_task_exit(void)
5040 {
5041 	struct mm_struct *mm = current->active_mm;
5042 
5043 	BUG_ON(cpu_online(smp_processor_id()));
5044 
5045 	if (mm != &init_mm)
5046 		switch_mm(mm, &init_mm, current);
5047 	mmdrop(mm);
5048 }
5049 
5050 /*
5051  * While a dead CPU has no uninterruptible tasks queued at this point,
5052  * it might still have a nonzero ->nr_uninterruptible counter, because
5053  * for performance reasons the counter is not stricly tracking tasks to
5054  * their home CPUs. So we just add the counter to another CPU's counter,
5055  * to keep the global sum constant after CPU-down:
5056  */
5057 static void migrate_nr_uninterruptible(struct rq *rq_src)
5058 {
5059 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5060 
5061 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5062 	rq_src->nr_uninterruptible = 0;
5063 }
5064 
5065 /*
5066  * remove the tasks which were accounted by rq from calc_load_tasks.
5067  */
5068 static void calc_global_load_remove(struct rq *rq)
5069 {
5070 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5071 	rq->calc_load_active = 0;
5072 }
5073 
5074 /*
5075  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5076  * try_to_wake_up()->select_task_rq().
5077  *
5078  * Called with rq->lock held even though we'er in stop_machine() and
5079  * there's no concurrency possible, we hold the required locks anyway
5080  * because of lock validation efforts.
5081  */
5082 static void migrate_tasks(unsigned int dead_cpu)
5083 {
5084 	struct rq *rq = cpu_rq(dead_cpu);
5085 	struct task_struct *next, *stop = rq->stop;
5086 	int dest_cpu;
5087 
5088 	/*
5089 	 * Fudge the rq selection such that the below task selection loop
5090 	 * doesn't get stuck on the currently eligible stop task.
5091 	 *
5092 	 * We're currently inside stop_machine() and the rq is either stuck
5093 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5094 	 * either way we should never end up calling schedule() until we're
5095 	 * done here.
5096 	 */
5097 	rq->stop = NULL;
5098 
5099 	/* Ensure any throttled groups are reachable by pick_next_task */
5100 	unthrottle_offline_cfs_rqs(rq);
5101 
5102 	for ( ; ; ) {
5103 		/*
5104 		 * There's this thread running, bail when that's the only
5105 		 * remaining thread.
5106 		 */
5107 		if (rq->nr_running == 1)
5108 			break;
5109 
5110 		next = pick_next_task(rq);
5111 		BUG_ON(!next);
5112 		next->sched_class->put_prev_task(rq, next);
5113 
5114 		/* Find suitable destination for @next, with force if needed. */
5115 		dest_cpu = select_fallback_rq(dead_cpu, next);
5116 		raw_spin_unlock(&rq->lock);
5117 
5118 		__migrate_task(next, dead_cpu, dest_cpu);
5119 
5120 		raw_spin_lock(&rq->lock);
5121 	}
5122 
5123 	rq->stop = stop;
5124 }
5125 
5126 #endif /* CONFIG_HOTPLUG_CPU */
5127 
5128 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5129 
5130 static struct ctl_table sd_ctl_dir[] = {
5131 	{
5132 		.procname	= "sched_domain",
5133 		.mode		= 0555,
5134 	},
5135 	{}
5136 };
5137 
5138 static struct ctl_table sd_ctl_root[] = {
5139 	{
5140 		.procname	= "kernel",
5141 		.mode		= 0555,
5142 		.child		= sd_ctl_dir,
5143 	},
5144 	{}
5145 };
5146 
5147 static struct ctl_table *sd_alloc_ctl_entry(int n)
5148 {
5149 	struct ctl_table *entry =
5150 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5151 
5152 	return entry;
5153 }
5154 
5155 static void sd_free_ctl_entry(struct ctl_table **tablep)
5156 {
5157 	struct ctl_table *entry;
5158 
5159 	/*
5160 	 * In the intermediate directories, both the child directory and
5161 	 * procname are dynamically allocated and could fail but the mode
5162 	 * will always be set. In the lowest directory the names are
5163 	 * static strings and all have proc handlers.
5164 	 */
5165 	for (entry = *tablep; entry->mode; entry++) {
5166 		if (entry->child)
5167 			sd_free_ctl_entry(&entry->child);
5168 		if (entry->proc_handler == NULL)
5169 			kfree(entry->procname);
5170 	}
5171 
5172 	kfree(*tablep);
5173 	*tablep = NULL;
5174 }
5175 
5176 static void
5177 set_table_entry(struct ctl_table *entry,
5178 		const char *procname, void *data, int maxlen,
5179 		umode_t mode, proc_handler *proc_handler)
5180 {
5181 	entry->procname = procname;
5182 	entry->data = data;
5183 	entry->maxlen = maxlen;
5184 	entry->mode = mode;
5185 	entry->proc_handler = proc_handler;
5186 }
5187 
5188 static struct ctl_table *
5189 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5190 {
5191 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5192 
5193 	if (table == NULL)
5194 		return NULL;
5195 
5196 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5197 		sizeof(long), 0644, proc_doulongvec_minmax);
5198 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5199 		sizeof(long), 0644, proc_doulongvec_minmax);
5200 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5201 		sizeof(int), 0644, proc_dointvec_minmax);
5202 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5203 		sizeof(int), 0644, proc_dointvec_minmax);
5204 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5205 		sizeof(int), 0644, proc_dointvec_minmax);
5206 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5207 		sizeof(int), 0644, proc_dointvec_minmax);
5208 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5209 		sizeof(int), 0644, proc_dointvec_minmax);
5210 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5211 		sizeof(int), 0644, proc_dointvec_minmax);
5212 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5213 		sizeof(int), 0644, proc_dointvec_minmax);
5214 	set_table_entry(&table[9], "cache_nice_tries",
5215 		&sd->cache_nice_tries,
5216 		sizeof(int), 0644, proc_dointvec_minmax);
5217 	set_table_entry(&table[10], "flags", &sd->flags,
5218 		sizeof(int), 0644, proc_dointvec_minmax);
5219 	set_table_entry(&table[11], "name", sd->name,
5220 		CORENAME_MAX_SIZE, 0444, proc_dostring);
5221 	/* &table[12] is terminator */
5222 
5223 	return table;
5224 }
5225 
5226 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5227 {
5228 	struct ctl_table *entry, *table;
5229 	struct sched_domain *sd;
5230 	int domain_num = 0, i;
5231 	char buf[32];
5232 
5233 	for_each_domain(cpu, sd)
5234 		domain_num++;
5235 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5236 	if (table == NULL)
5237 		return NULL;
5238 
5239 	i = 0;
5240 	for_each_domain(cpu, sd) {
5241 		snprintf(buf, 32, "domain%d", i);
5242 		entry->procname = kstrdup(buf, GFP_KERNEL);
5243 		entry->mode = 0555;
5244 		entry->child = sd_alloc_ctl_domain_table(sd);
5245 		entry++;
5246 		i++;
5247 	}
5248 	return table;
5249 }
5250 
5251 static struct ctl_table_header *sd_sysctl_header;
5252 static void register_sched_domain_sysctl(void)
5253 {
5254 	int i, cpu_num = num_possible_cpus();
5255 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5256 	char buf[32];
5257 
5258 	WARN_ON(sd_ctl_dir[0].child);
5259 	sd_ctl_dir[0].child = entry;
5260 
5261 	if (entry == NULL)
5262 		return;
5263 
5264 	for_each_possible_cpu(i) {
5265 		snprintf(buf, 32, "cpu%d", i);
5266 		entry->procname = kstrdup(buf, GFP_KERNEL);
5267 		entry->mode = 0555;
5268 		entry->child = sd_alloc_ctl_cpu_table(i);
5269 		entry++;
5270 	}
5271 
5272 	WARN_ON(sd_sysctl_header);
5273 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5274 }
5275 
5276 /* may be called multiple times per register */
5277 static void unregister_sched_domain_sysctl(void)
5278 {
5279 	if (sd_sysctl_header)
5280 		unregister_sysctl_table(sd_sysctl_header);
5281 	sd_sysctl_header = NULL;
5282 	if (sd_ctl_dir[0].child)
5283 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5284 }
5285 #else
5286 static void register_sched_domain_sysctl(void)
5287 {
5288 }
5289 static void unregister_sched_domain_sysctl(void)
5290 {
5291 }
5292 #endif
5293 
5294 static void set_rq_online(struct rq *rq)
5295 {
5296 	if (!rq->online) {
5297 		const struct sched_class *class;
5298 
5299 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5300 		rq->online = 1;
5301 
5302 		for_each_class(class) {
5303 			if (class->rq_online)
5304 				class->rq_online(rq);
5305 		}
5306 	}
5307 }
5308 
5309 static void set_rq_offline(struct rq *rq)
5310 {
5311 	if (rq->online) {
5312 		const struct sched_class *class;
5313 
5314 		for_each_class(class) {
5315 			if (class->rq_offline)
5316 				class->rq_offline(rq);
5317 		}
5318 
5319 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5320 		rq->online = 0;
5321 	}
5322 }
5323 
5324 /*
5325  * migration_call - callback that gets triggered when a CPU is added.
5326  * Here we can start up the necessary migration thread for the new CPU.
5327  */
5328 static int __cpuinit
5329 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5330 {
5331 	int cpu = (long)hcpu;
5332 	unsigned long flags;
5333 	struct rq *rq = cpu_rq(cpu);
5334 
5335 	switch (action & ~CPU_TASKS_FROZEN) {
5336 
5337 	case CPU_UP_PREPARE:
5338 		rq->calc_load_update = calc_load_update;
5339 		break;
5340 
5341 	case CPU_ONLINE:
5342 		/* Update our root-domain */
5343 		raw_spin_lock_irqsave(&rq->lock, flags);
5344 		if (rq->rd) {
5345 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5346 
5347 			set_rq_online(rq);
5348 		}
5349 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5350 		break;
5351 
5352 #ifdef CONFIG_HOTPLUG_CPU
5353 	case CPU_DYING:
5354 		sched_ttwu_pending();
5355 		/* Update our root-domain */
5356 		raw_spin_lock_irqsave(&rq->lock, flags);
5357 		if (rq->rd) {
5358 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5359 			set_rq_offline(rq);
5360 		}
5361 		migrate_tasks(cpu);
5362 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5363 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5364 
5365 		migrate_nr_uninterruptible(rq);
5366 		calc_global_load_remove(rq);
5367 		break;
5368 #endif
5369 	}
5370 
5371 	update_max_interval();
5372 
5373 	return NOTIFY_OK;
5374 }
5375 
5376 /*
5377  * Register at high priority so that task migration (migrate_all_tasks)
5378  * happens before everything else.  This has to be lower priority than
5379  * the notifier in the perf_event subsystem, though.
5380  */
5381 static struct notifier_block __cpuinitdata migration_notifier = {
5382 	.notifier_call = migration_call,
5383 	.priority = CPU_PRI_MIGRATION,
5384 };
5385 
5386 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5387 				      unsigned long action, void *hcpu)
5388 {
5389 	switch (action & ~CPU_TASKS_FROZEN) {
5390 	case CPU_ONLINE:
5391 	case CPU_DOWN_FAILED:
5392 		set_cpu_active((long)hcpu, true);
5393 		return NOTIFY_OK;
5394 	default:
5395 		return NOTIFY_DONE;
5396 	}
5397 }
5398 
5399 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5400 					unsigned long action, void *hcpu)
5401 {
5402 	switch (action & ~CPU_TASKS_FROZEN) {
5403 	case CPU_DOWN_PREPARE:
5404 		set_cpu_active((long)hcpu, false);
5405 		return NOTIFY_OK;
5406 	default:
5407 		return NOTIFY_DONE;
5408 	}
5409 }
5410 
5411 static int __init migration_init(void)
5412 {
5413 	void *cpu = (void *)(long)smp_processor_id();
5414 	int err;
5415 
5416 	/* Initialize migration for the boot CPU */
5417 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5418 	BUG_ON(err == NOTIFY_BAD);
5419 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5420 	register_cpu_notifier(&migration_notifier);
5421 
5422 	/* Register cpu active notifiers */
5423 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5424 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5425 
5426 	return 0;
5427 }
5428 early_initcall(migration_init);
5429 #endif
5430 
5431 #ifdef CONFIG_SMP
5432 
5433 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5434 
5435 #ifdef CONFIG_SCHED_DEBUG
5436 
5437 static __read_mostly int sched_domain_debug_enabled;
5438 
5439 static int __init sched_domain_debug_setup(char *str)
5440 {
5441 	sched_domain_debug_enabled = 1;
5442 
5443 	return 0;
5444 }
5445 early_param("sched_debug", sched_domain_debug_setup);
5446 
5447 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5448 				  struct cpumask *groupmask)
5449 {
5450 	struct sched_group *group = sd->groups;
5451 	char str[256];
5452 
5453 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5454 	cpumask_clear(groupmask);
5455 
5456 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5457 
5458 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5459 		printk("does not load-balance\n");
5460 		if (sd->parent)
5461 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5462 					" has parent");
5463 		return -1;
5464 	}
5465 
5466 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5467 
5468 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5469 		printk(KERN_ERR "ERROR: domain->span does not contain "
5470 				"CPU%d\n", cpu);
5471 	}
5472 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5473 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5474 				" CPU%d\n", cpu);
5475 	}
5476 
5477 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5478 	do {
5479 		if (!group) {
5480 			printk("\n");
5481 			printk(KERN_ERR "ERROR: group is NULL\n");
5482 			break;
5483 		}
5484 
5485 		if (!group->sgp->power) {
5486 			printk(KERN_CONT "\n");
5487 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5488 					"set\n");
5489 			break;
5490 		}
5491 
5492 		if (!cpumask_weight(sched_group_cpus(group))) {
5493 			printk(KERN_CONT "\n");
5494 			printk(KERN_ERR "ERROR: empty group\n");
5495 			break;
5496 		}
5497 
5498 		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5499 			printk(KERN_CONT "\n");
5500 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5501 			break;
5502 		}
5503 
5504 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5505 
5506 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5507 
5508 		printk(KERN_CONT " %s", str);
5509 		if (group->sgp->power != SCHED_POWER_SCALE) {
5510 			printk(KERN_CONT " (cpu_power = %d)",
5511 				group->sgp->power);
5512 		}
5513 
5514 		group = group->next;
5515 	} while (group != sd->groups);
5516 	printk(KERN_CONT "\n");
5517 
5518 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5519 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5520 
5521 	if (sd->parent &&
5522 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5523 		printk(KERN_ERR "ERROR: parent span is not a superset "
5524 			"of domain->span\n");
5525 	return 0;
5526 }
5527 
5528 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5529 {
5530 	int level = 0;
5531 
5532 	if (!sched_domain_debug_enabled)
5533 		return;
5534 
5535 	if (!sd) {
5536 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5537 		return;
5538 	}
5539 
5540 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5541 
5542 	for (;;) {
5543 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5544 			break;
5545 		level++;
5546 		sd = sd->parent;
5547 		if (!sd)
5548 			break;
5549 	}
5550 }
5551 #else /* !CONFIG_SCHED_DEBUG */
5552 # define sched_domain_debug(sd, cpu) do { } while (0)
5553 #endif /* CONFIG_SCHED_DEBUG */
5554 
5555 static int sd_degenerate(struct sched_domain *sd)
5556 {
5557 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5558 		return 1;
5559 
5560 	/* Following flags need at least 2 groups */
5561 	if (sd->flags & (SD_LOAD_BALANCE |
5562 			 SD_BALANCE_NEWIDLE |
5563 			 SD_BALANCE_FORK |
5564 			 SD_BALANCE_EXEC |
5565 			 SD_SHARE_CPUPOWER |
5566 			 SD_SHARE_PKG_RESOURCES)) {
5567 		if (sd->groups != sd->groups->next)
5568 			return 0;
5569 	}
5570 
5571 	/* Following flags don't use groups */
5572 	if (sd->flags & (SD_WAKE_AFFINE))
5573 		return 0;
5574 
5575 	return 1;
5576 }
5577 
5578 static int
5579 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5580 {
5581 	unsigned long cflags = sd->flags, pflags = parent->flags;
5582 
5583 	if (sd_degenerate(parent))
5584 		return 1;
5585 
5586 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5587 		return 0;
5588 
5589 	/* Flags needing groups don't count if only 1 group in parent */
5590 	if (parent->groups == parent->groups->next) {
5591 		pflags &= ~(SD_LOAD_BALANCE |
5592 				SD_BALANCE_NEWIDLE |
5593 				SD_BALANCE_FORK |
5594 				SD_BALANCE_EXEC |
5595 				SD_SHARE_CPUPOWER |
5596 				SD_SHARE_PKG_RESOURCES);
5597 		if (nr_node_ids == 1)
5598 			pflags &= ~SD_SERIALIZE;
5599 	}
5600 	if (~cflags & pflags)
5601 		return 0;
5602 
5603 	return 1;
5604 }
5605 
5606 static void free_rootdomain(struct rcu_head *rcu)
5607 {
5608 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5609 
5610 	cpupri_cleanup(&rd->cpupri);
5611 	free_cpumask_var(rd->rto_mask);
5612 	free_cpumask_var(rd->online);
5613 	free_cpumask_var(rd->span);
5614 	kfree(rd);
5615 }
5616 
5617 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5618 {
5619 	struct root_domain *old_rd = NULL;
5620 	unsigned long flags;
5621 
5622 	raw_spin_lock_irqsave(&rq->lock, flags);
5623 
5624 	if (rq->rd) {
5625 		old_rd = rq->rd;
5626 
5627 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5628 			set_rq_offline(rq);
5629 
5630 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5631 
5632 		/*
5633 		 * If we dont want to free the old_rt yet then
5634 		 * set old_rd to NULL to skip the freeing later
5635 		 * in this function:
5636 		 */
5637 		if (!atomic_dec_and_test(&old_rd->refcount))
5638 			old_rd = NULL;
5639 	}
5640 
5641 	atomic_inc(&rd->refcount);
5642 	rq->rd = rd;
5643 
5644 	cpumask_set_cpu(rq->cpu, rd->span);
5645 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5646 		set_rq_online(rq);
5647 
5648 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5649 
5650 	if (old_rd)
5651 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5652 }
5653 
5654 static int init_rootdomain(struct root_domain *rd)
5655 {
5656 	memset(rd, 0, sizeof(*rd));
5657 
5658 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5659 		goto out;
5660 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5661 		goto free_span;
5662 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5663 		goto free_online;
5664 
5665 	if (cpupri_init(&rd->cpupri) != 0)
5666 		goto free_rto_mask;
5667 	return 0;
5668 
5669 free_rto_mask:
5670 	free_cpumask_var(rd->rto_mask);
5671 free_online:
5672 	free_cpumask_var(rd->online);
5673 free_span:
5674 	free_cpumask_var(rd->span);
5675 out:
5676 	return -ENOMEM;
5677 }
5678 
5679 /*
5680  * By default the system creates a single root-domain with all cpus as
5681  * members (mimicking the global state we have today).
5682  */
5683 struct root_domain def_root_domain;
5684 
5685 static void init_defrootdomain(void)
5686 {
5687 	init_rootdomain(&def_root_domain);
5688 
5689 	atomic_set(&def_root_domain.refcount, 1);
5690 }
5691 
5692 static struct root_domain *alloc_rootdomain(void)
5693 {
5694 	struct root_domain *rd;
5695 
5696 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5697 	if (!rd)
5698 		return NULL;
5699 
5700 	if (init_rootdomain(rd) != 0) {
5701 		kfree(rd);
5702 		return NULL;
5703 	}
5704 
5705 	return rd;
5706 }
5707 
5708 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5709 {
5710 	struct sched_group *tmp, *first;
5711 
5712 	if (!sg)
5713 		return;
5714 
5715 	first = sg;
5716 	do {
5717 		tmp = sg->next;
5718 
5719 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5720 			kfree(sg->sgp);
5721 
5722 		kfree(sg);
5723 		sg = tmp;
5724 	} while (sg != first);
5725 }
5726 
5727 static void free_sched_domain(struct rcu_head *rcu)
5728 {
5729 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5730 
5731 	/*
5732 	 * If its an overlapping domain it has private groups, iterate and
5733 	 * nuke them all.
5734 	 */
5735 	if (sd->flags & SD_OVERLAP) {
5736 		free_sched_groups(sd->groups, 1);
5737 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5738 		kfree(sd->groups->sgp);
5739 		kfree(sd->groups);
5740 	}
5741 	kfree(sd);
5742 }
5743 
5744 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5745 {
5746 	call_rcu(&sd->rcu, free_sched_domain);
5747 }
5748 
5749 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5750 {
5751 	for (; sd; sd = sd->parent)
5752 		destroy_sched_domain(sd, cpu);
5753 }
5754 
5755 /*
5756  * Keep a special pointer to the highest sched_domain that has
5757  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5758  * allows us to avoid some pointer chasing select_idle_sibling().
5759  *
5760  * Also keep a unique ID per domain (we use the first cpu number in
5761  * the cpumask of the domain), this allows us to quickly tell if
5762  * two cpus are in the same cache domain, see ttwu_share_cache().
5763  */
5764 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5765 DEFINE_PER_CPU(int, sd_llc_id);
5766 
5767 static void update_top_cache_domain(int cpu)
5768 {
5769 	struct sched_domain *sd;
5770 	int id = cpu;
5771 
5772 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5773 	if (sd)
5774 		id = cpumask_first(sched_domain_span(sd));
5775 
5776 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5777 	per_cpu(sd_llc_id, cpu) = id;
5778 }
5779 
5780 /*
5781  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5782  * hold the hotplug lock.
5783  */
5784 static void
5785 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5786 {
5787 	struct rq *rq = cpu_rq(cpu);
5788 	struct sched_domain *tmp;
5789 
5790 	/* Remove the sched domains which do not contribute to scheduling. */
5791 	for (tmp = sd; tmp; ) {
5792 		struct sched_domain *parent = tmp->parent;
5793 		if (!parent)
5794 			break;
5795 
5796 		if (sd_parent_degenerate(tmp, parent)) {
5797 			tmp->parent = parent->parent;
5798 			if (parent->parent)
5799 				parent->parent->child = tmp;
5800 			destroy_sched_domain(parent, cpu);
5801 		} else
5802 			tmp = tmp->parent;
5803 	}
5804 
5805 	if (sd && sd_degenerate(sd)) {
5806 		tmp = sd;
5807 		sd = sd->parent;
5808 		destroy_sched_domain(tmp, cpu);
5809 		if (sd)
5810 			sd->child = NULL;
5811 	}
5812 
5813 	sched_domain_debug(sd, cpu);
5814 
5815 	rq_attach_root(rq, rd);
5816 	tmp = rq->sd;
5817 	rcu_assign_pointer(rq->sd, sd);
5818 	destroy_sched_domains(tmp, cpu);
5819 
5820 	update_top_cache_domain(cpu);
5821 }
5822 
5823 /* cpus with isolated domains */
5824 static cpumask_var_t cpu_isolated_map;
5825 
5826 /* Setup the mask of cpus configured for isolated domains */
5827 static int __init isolated_cpu_setup(char *str)
5828 {
5829 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5830 	cpulist_parse(str, cpu_isolated_map);
5831 	return 1;
5832 }
5833 
5834 __setup("isolcpus=", isolated_cpu_setup);
5835 
5836 #ifdef CONFIG_NUMA
5837 
5838 /**
5839  * find_next_best_node - find the next node to include in a sched_domain
5840  * @node: node whose sched_domain we're building
5841  * @used_nodes: nodes already in the sched_domain
5842  *
5843  * Find the next node to include in a given scheduling domain. Simply
5844  * finds the closest node not already in the @used_nodes map.
5845  *
5846  * Should use nodemask_t.
5847  */
5848 static int find_next_best_node(int node, nodemask_t *used_nodes)
5849 {
5850 	int i, n, val, min_val, best_node = -1;
5851 
5852 	min_val = INT_MAX;
5853 
5854 	for (i = 0; i < nr_node_ids; i++) {
5855 		/* Start at @node */
5856 		n = (node + i) % nr_node_ids;
5857 
5858 		if (!nr_cpus_node(n))
5859 			continue;
5860 
5861 		/* Skip already used nodes */
5862 		if (node_isset(n, *used_nodes))
5863 			continue;
5864 
5865 		/* Simple min distance search */
5866 		val = node_distance(node, n);
5867 
5868 		if (val < min_val) {
5869 			min_val = val;
5870 			best_node = n;
5871 		}
5872 	}
5873 
5874 	if (best_node != -1)
5875 		node_set(best_node, *used_nodes);
5876 	return best_node;
5877 }
5878 
5879 /**
5880  * sched_domain_node_span - get a cpumask for a node's sched_domain
5881  * @node: node whose cpumask we're constructing
5882  * @span: resulting cpumask
5883  *
5884  * Given a node, construct a good cpumask for its sched_domain to span. It
5885  * should be one that prevents unnecessary balancing, but also spreads tasks
5886  * out optimally.
5887  */
5888 static void sched_domain_node_span(int node, struct cpumask *span)
5889 {
5890 	nodemask_t used_nodes;
5891 	int i;
5892 
5893 	cpumask_clear(span);
5894 	nodes_clear(used_nodes);
5895 
5896 	cpumask_or(span, span, cpumask_of_node(node));
5897 	node_set(node, used_nodes);
5898 
5899 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5900 		int next_node = find_next_best_node(node, &used_nodes);
5901 		if (next_node < 0)
5902 			break;
5903 		cpumask_or(span, span, cpumask_of_node(next_node));
5904 	}
5905 }
5906 
5907 static const struct cpumask *cpu_node_mask(int cpu)
5908 {
5909 	lockdep_assert_held(&sched_domains_mutex);
5910 
5911 	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5912 
5913 	return sched_domains_tmpmask;
5914 }
5915 
5916 static const struct cpumask *cpu_allnodes_mask(int cpu)
5917 {
5918 	return cpu_possible_mask;
5919 }
5920 #endif /* CONFIG_NUMA */
5921 
5922 static const struct cpumask *cpu_cpu_mask(int cpu)
5923 {
5924 	return cpumask_of_node(cpu_to_node(cpu));
5925 }
5926 
5927 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5928 
5929 struct sd_data {
5930 	struct sched_domain **__percpu sd;
5931 	struct sched_group **__percpu sg;
5932 	struct sched_group_power **__percpu sgp;
5933 };
5934 
5935 struct s_data {
5936 	struct sched_domain ** __percpu sd;
5937 	struct root_domain	*rd;
5938 };
5939 
5940 enum s_alloc {
5941 	sa_rootdomain,
5942 	sa_sd,
5943 	sa_sd_storage,
5944 	sa_none,
5945 };
5946 
5947 struct sched_domain_topology_level;
5948 
5949 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5950 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5951 
5952 #define SDTL_OVERLAP	0x01
5953 
5954 struct sched_domain_topology_level {
5955 	sched_domain_init_f init;
5956 	sched_domain_mask_f mask;
5957 	int		    flags;
5958 	struct sd_data      data;
5959 };
5960 
5961 static int
5962 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5963 {
5964 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5965 	const struct cpumask *span = sched_domain_span(sd);
5966 	struct cpumask *covered = sched_domains_tmpmask;
5967 	struct sd_data *sdd = sd->private;
5968 	struct sched_domain *child;
5969 	int i;
5970 
5971 	cpumask_clear(covered);
5972 
5973 	for_each_cpu(i, span) {
5974 		struct cpumask *sg_span;
5975 
5976 		if (cpumask_test_cpu(i, covered))
5977 			continue;
5978 
5979 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5980 				GFP_KERNEL, cpu_to_node(cpu));
5981 
5982 		if (!sg)
5983 			goto fail;
5984 
5985 		sg_span = sched_group_cpus(sg);
5986 
5987 		child = *per_cpu_ptr(sdd->sd, i);
5988 		if (child->child) {
5989 			child = child->child;
5990 			cpumask_copy(sg_span, sched_domain_span(child));
5991 		} else
5992 			cpumask_set_cpu(i, sg_span);
5993 
5994 		cpumask_or(covered, covered, sg_span);
5995 
5996 		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5997 		atomic_inc(&sg->sgp->ref);
5998 
5999 		if (cpumask_test_cpu(cpu, sg_span))
6000 			groups = sg;
6001 
6002 		if (!first)
6003 			first = sg;
6004 		if (last)
6005 			last->next = sg;
6006 		last = sg;
6007 		last->next = first;
6008 	}
6009 	sd->groups = groups;
6010 
6011 	return 0;
6012 
6013 fail:
6014 	free_sched_groups(first, 0);
6015 
6016 	return -ENOMEM;
6017 }
6018 
6019 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6020 {
6021 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6022 	struct sched_domain *child = sd->child;
6023 
6024 	if (child)
6025 		cpu = cpumask_first(sched_domain_span(child));
6026 
6027 	if (sg) {
6028 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6029 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6030 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6031 	}
6032 
6033 	return cpu;
6034 }
6035 
6036 /*
6037  * build_sched_groups will build a circular linked list of the groups
6038  * covered by the given span, and will set each group's ->cpumask correctly,
6039  * and ->cpu_power to 0.
6040  *
6041  * Assumes the sched_domain tree is fully constructed
6042  */
6043 static int
6044 build_sched_groups(struct sched_domain *sd, int cpu)
6045 {
6046 	struct sched_group *first = NULL, *last = NULL;
6047 	struct sd_data *sdd = sd->private;
6048 	const struct cpumask *span = sched_domain_span(sd);
6049 	struct cpumask *covered;
6050 	int i;
6051 
6052 	get_group(cpu, sdd, &sd->groups);
6053 	atomic_inc(&sd->groups->ref);
6054 
6055 	if (cpu != cpumask_first(sched_domain_span(sd)))
6056 		return 0;
6057 
6058 	lockdep_assert_held(&sched_domains_mutex);
6059 	covered = sched_domains_tmpmask;
6060 
6061 	cpumask_clear(covered);
6062 
6063 	for_each_cpu(i, span) {
6064 		struct sched_group *sg;
6065 		int group = get_group(i, sdd, &sg);
6066 		int j;
6067 
6068 		if (cpumask_test_cpu(i, covered))
6069 			continue;
6070 
6071 		cpumask_clear(sched_group_cpus(sg));
6072 		sg->sgp->power = 0;
6073 
6074 		for_each_cpu(j, span) {
6075 			if (get_group(j, sdd, NULL) != group)
6076 				continue;
6077 
6078 			cpumask_set_cpu(j, covered);
6079 			cpumask_set_cpu(j, sched_group_cpus(sg));
6080 		}
6081 
6082 		if (!first)
6083 			first = sg;
6084 		if (last)
6085 			last->next = sg;
6086 		last = sg;
6087 	}
6088 	last->next = first;
6089 
6090 	return 0;
6091 }
6092 
6093 /*
6094  * Initialize sched groups cpu_power.
6095  *
6096  * cpu_power indicates the capacity of sched group, which is used while
6097  * distributing the load between different sched groups in a sched domain.
6098  * Typically cpu_power for all the groups in a sched domain will be same unless
6099  * there are asymmetries in the topology. If there are asymmetries, group
6100  * having more cpu_power will pickup more load compared to the group having
6101  * less cpu_power.
6102  */
6103 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6104 {
6105 	struct sched_group *sg = sd->groups;
6106 
6107 	WARN_ON(!sd || !sg);
6108 
6109 	do {
6110 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6111 		sg = sg->next;
6112 	} while (sg != sd->groups);
6113 
6114 	if (cpu != group_first_cpu(sg))
6115 		return;
6116 
6117 	update_group_power(sd, cpu);
6118 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6119 }
6120 
6121 int __weak arch_sd_sibling_asym_packing(void)
6122 {
6123        return 0*SD_ASYM_PACKING;
6124 }
6125 
6126 /*
6127  * Initializers for schedule domains
6128  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6129  */
6130 
6131 #ifdef CONFIG_SCHED_DEBUG
6132 # define SD_INIT_NAME(sd, type)		sd->name = #type
6133 #else
6134 # define SD_INIT_NAME(sd, type)		do { } while (0)
6135 #endif
6136 
6137 #define SD_INIT_FUNC(type)						\
6138 static noinline struct sched_domain *					\
6139 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6140 {									\
6141 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6142 	*sd = SD_##type##_INIT;						\
6143 	SD_INIT_NAME(sd, type);						\
6144 	sd->private = &tl->data;					\
6145 	return sd;							\
6146 }
6147 
6148 SD_INIT_FUNC(CPU)
6149 #ifdef CONFIG_NUMA
6150  SD_INIT_FUNC(ALLNODES)
6151  SD_INIT_FUNC(NODE)
6152 #endif
6153 #ifdef CONFIG_SCHED_SMT
6154  SD_INIT_FUNC(SIBLING)
6155 #endif
6156 #ifdef CONFIG_SCHED_MC
6157  SD_INIT_FUNC(MC)
6158 #endif
6159 #ifdef CONFIG_SCHED_BOOK
6160  SD_INIT_FUNC(BOOK)
6161 #endif
6162 
6163 static int default_relax_domain_level = -1;
6164 int sched_domain_level_max;
6165 
6166 static int __init setup_relax_domain_level(char *str)
6167 {
6168 	unsigned long val;
6169 
6170 	val = simple_strtoul(str, NULL, 0);
6171 	if (val < sched_domain_level_max)
6172 		default_relax_domain_level = val;
6173 
6174 	return 1;
6175 }
6176 __setup("relax_domain_level=", setup_relax_domain_level);
6177 
6178 static void set_domain_attribute(struct sched_domain *sd,
6179 				 struct sched_domain_attr *attr)
6180 {
6181 	int request;
6182 
6183 	if (!attr || attr->relax_domain_level < 0) {
6184 		if (default_relax_domain_level < 0)
6185 			return;
6186 		else
6187 			request = default_relax_domain_level;
6188 	} else
6189 		request = attr->relax_domain_level;
6190 	if (request < sd->level) {
6191 		/* turn off idle balance on this domain */
6192 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6193 	} else {
6194 		/* turn on idle balance on this domain */
6195 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6196 	}
6197 }
6198 
6199 static void __sdt_free(const struct cpumask *cpu_map);
6200 static int __sdt_alloc(const struct cpumask *cpu_map);
6201 
6202 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6203 				 const struct cpumask *cpu_map)
6204 {
6205 	switch (what) {
6206 	case sa_rootdomain:
6207 		if (!atomic_read(&d->rd->refcount))
6208 			free_rootdomain(&d->rd->rcu); /* fall through */
6209 	case sa_sd:
6210 		free_percpu(d->sd); /* fall through */
6211 	case sa_sd_storage:
6212 		__sdt_free(cpu_map); /* fall through */
6213 	case sa_none:
6214 		break;
6215 	}
6216 }
6217 
6218 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6219 						   const struct cpumask *cpu_map)
6220 {
6221 	memset(d, 0, sizeof(*d));
6222 
6223 	if (__sdt_alloc(cpu_map))
6224 		return sa_sd_storage;
6225 	d->sd = alloc_percpu(struct sched_domain *);
6226 	if (!d->sd)
6227 		return sa_sd_storage;
6228 	d->rd = alloc_rootdomain();
6229 	if (!d->rd)
6230 		return sa_sd;
6231 	return sa_rootdomain;
6232 }
6233 
6234 /*
6235  * NULL the sd_data elements we've used to build the sched_domain and
6236  * sched_group structure so that the subsequent __free_domain_allocs()
6237  * will not free the data we're using.
6238  */
6239 static void claim_allocations(int cpu, struct sched_domain *sd)
6240 {
6241 	struct sd_data *sdd = sd->private;
6242 
6243 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6244 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6245 
6246 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6247 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6248 
6249 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6250 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6251 }
6252 
6253 #ifdef CONFIG_SCHED_SMT
6254 static const struct cpumask *cpu_smt_mask(int cpu)
6255 {
6256 	return topology_thread_cpumask(cpu);
6257 }
6258 #endif
6259 
6260 /*
6261  * Topology list, bottom-up.
6262  */
6263 static struct sched_domain_topology_level default_topology[] = {
6264 #ifdef CONFIG_SCHED_SMT
6265 	{ sd_init_SIBLING, cpu_smt_mask, },
6266 #endif
6267 #ifdef CONFIG_SCHED_MC
6268 	{ sd_init_MC, cpu_coregroup_mask, },
6269 #endif
6270 #ifdef CONFIG_SCHED_BOOK
6271 	{ sd_init_BOOK, cpu_book_mask, },
6272 #endif
6273 	{ sd_init_CPU, cpu_cpu_mask, },
6274 #ifdef CONFIG_NUMA
6275 	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6276 	{ sd_init_ALLNODES, cpu_allnodes_mask, },
6277 #endif
6278 	{ NULL, },
6279 };
6280 
6281 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6282 
6283 static int __sdt_alloc(const struct cpumask *cpu_map)
6284 {
6285 	struct sched_domain_topology_level *tl;
6286 	int j;
6287 
6288 	for (tl = sched_domain_topology; tl->init; tl++) {
6289 		struct sd_data *sdd = &tl->data;
6290 
6291 		sdd->sd = alloc_percpu(struct sched_domain *);
6292 		if (!sdd->sd)
6293 			return -ENOMEM;
6294 
6295 		sdd->sg = alloc_percpu(struct sched_group *);
6296 		if (!sdd->sg)
6297 			return -ENOMEM;
6298 
6299 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6300 		if (!sdd->sgp)
6301 			return -ENOMEM;
6302 
6303 		for_each_cpu(j, cpu_map) {
6304 			struct sched_domain *sd;
6305 			struct sched_group *sg;
6306 			struct sched_group_power *sgp;
6307 
6308 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6309 					GFP_KERNEL, cpu_to_node(j));
6310 			if (!sd)
6311 				return -ENOMEM;
6312 
6313 			*per_cpu_ptr(sdd->sd, j) = sd;
6314 
6315 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6316 					GFP_KERNEL, cpu_to_node(j));
6317 			if (!sg)
6318 				return -ENOMEM;
6319 
6320 			*per_cpu_ptr(sdd->sg, j) = sg;
6321 
6322 			sgp = kzalloc_node(sizeof(struct sched_group_power),
6323 					GFP_KERNEL, cpu_to_node(j));
6324 			if (!sgp)
6325 				return -ENOMEM;
6326 
6327 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6328 		}
6329 	}
6330 
6331 	return 0;
6332 }
6333 
6334 static void __sdt_free(const struct cpumask *cpu_map)
6335 {
6336 	struct sched_domain_topology_level *tl;
6337 	int j;
6338 
6339 	for (tl = sched_domain_topology; tl->init; tl++) {
6340 		struct sd_data *sdd = &tl->data;
6341 
6342 		for_each_cpu(j, cpu_map) {
6343 			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6344 			if (sd && (sd->flags & SD_OVERLAP))
6345 				free_sched_groups(sd->groups, 0);
6346 			kfree(*per_cpu_ptr(sdd->sd, j));
6347 			kfree(*per_cpu_ptr(sdd->sg, j));
6348 			kfree(*per_cpu_ptr(sdd->sgp, j));
6349 		}
6350 		free_percpu(sdd->sd);
6351 		free_percpu(sdd->sg);
6352 		free_percpu(sdd->sgp);
6353 	}
6354 }
6355 
6356 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6357 		struct s_data *d, const struct cpumask *cpu_map,
6358 		struct sched_domain_attr *attr, struct sched_domain *child,
6359 		int cpu)
6360 {
6361 	struct sched_domain *sd = tl->init(tl, cpu);
6362 	if (!sd)
6363 		return child;
6364 
6365 	set_domain_attribute(sd, attr);
6366 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6367 	if (child) {
6368 		sd->level = child->level + 1;
6369 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6370 		child->parent = sd;
6371 	}
6372 	sd->child = child;
6373 
6374 	return sd;
6375 }
6376 
6377 /*
6378  * Build sched domains for a given set of cpus and attach the sched domains
6379  * to the individual cpus
6380  */
6381 static int build_sched_domains(const struct cpumask *cpu_map,
6382 			       struct sched_domain_attr *attr)
6383 {
6384 	enum s_alloc alloc_state = sa_none;
6385 	struct sched_domain *sd;
6386 	struct s_data d;
6387 	int i, ret = -ENOMEM;
6388 
6389 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6390 	if (alloc_state != sa_rootdomain)
6391 		goto error;
6392 
6393 	/* Set up domains for cpus specified by the cpu_map. */
6394 	for_each_cpu(i, cpu_map) {
6395 		struct sched_domain_topology_level *tl;
6396 
6397 		sd = NULL;
6398 		for (tl = sched_domain_topology; tl->init; tl++) {
6399 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6400 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6401 				sd->flags |= SD_OVERLAP;
6402 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6403 				break;
6404 		}
6405 
6406 		while (sd->child)
6407 			sd = sd->child;
6408 
6409 		*per_cpu_ptr(d.sd, i) = sd;
6410 	}
6411 
6412 	/* Build the groups for the domains */
6413 	for_each_cpu(i, cpu_map) {
6414 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6415 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6416 			if (sd->flags & SD_OVERLAP) {
6417 				if (build_overlap_sched_groups(sd, i))
6418 					goto error;
6419 			} else {
6420 				if (build_sched_groups(sd, i))
6421 					goto error;
6422 			}
6423 		}
6424 	}
6425 
6426 	/* Calculate CPU power for physical packages and nodes */
6427 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6428 		if (!cpumask_test_cpu(i, cpu_map))
6429 			continue;
6430 
6431 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6432 			claim_allocations(i, sd);
6433 			init_sched_groups_power(i, sd);
6434 		}
6435 	}
6436 
6437 	/* Attach the domains */
6438 	rcu_read_lock();
6439 	for_each_cpu(i, cpu_map) {
6440 		sd = *per_cpu_ptr(d.sd, i);
6441 		cpu_attach_domain(sd, d.rd, i);
6442 	}
6443 	rcu_read_unlock();
6444 
6445 	ret = 0;
6446 error:
6447 	__free_domain_allocs(&d, alloc_state, cpu_map);
6448 	return ret;
6449 }
6450 
6451 static cpumask_var_t *doms_cur;	/* current sched domains */
6452 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6453 static struct sched_domain_attr *dattr_cur;
6454 				/* attribues of custom domains in 'doms_cur' */
6455 
6456 /*
6457  * Special case: If a kmalloc of a doms_cur partition (array of
6458  * cpumask) fails, then fallback to a single sched domain,
6459  * as determined by the single cpumask fallback_doms.
6460  */
6461 static cpumask_var_t fallback_doms;
6462 
6463 /*
6464  * arch_update_cpu_topology lets virtualized architectures update the
6465  * cpu core maps. It is supposed to return 1 if the topology changed
6466  * or 0 if it stayed the same.
6467  */
6468 int __attribute__((weak)) arch_update_cpu_topology(void)
6469 {
6470 	return 0;
6471 }
6472 
6473 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6474 {
6475 	int i;
6476 	cpumask_var_t *doms;
6477 
6478 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6479 	if (!doms)
6480 		return NULL;
6481 	for (i = 0; i < ndoms; i++) {
6482 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6483 			free_sched_domains(doms, i);
6484 			return NULL;
6485 		}
6486 	}
6487 	return doms;
6488 }
6489 
6490 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6491 {
6492 	unsigned int i;
6493 	for (i = 0; i < ndoms; i++)
6494 		free_cpumask_var(doms[i]);
6495 	kfree(doms);
6496 }
6497 
6498 /*
6499  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6500  * For now this just excludes isolated cpus, but could be used to
6501  * exclude other special cases in the future.
6502  */
6503 static int init_sched_domains(const struct cpumask *cpu_map)
6504 {
6505 	int err;
6506 
6507 	arch_update_cpu_topology();
6508 	ndoms_cur = 1;
6509 	doms_cur = alloc_sched_domains(ndoms_cur);
6510 	if (!doms_cur)
6511 		doms_cur = &fallback_doms;
6512 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6513 	dattr_cur = NULL;
6514 	err = build_sched_domains(doms_cur[0], NULL);
6515 	register_sched_domain_sysctl();
6516 
6517 	return err;
6518 }
6519 
6520 /*
6521  * Detach sched domains from a group of cpus specified in cpu_map
6522  * These cpus will now be attached to the NULL domain
6523  */
6524 static void detach_destroy_domains(const struct cpumask *cpu_map)
6525 {
6526 	int i;
6527 
6528 	rcu_read_lock();
6529 	for_each_cpu(i, cpu_map)
6530 		cpu_attach_domain(NULL, &def_root_domain, i);
6531 	rcu_read_unlock();
6532 }
6533 
6534 /* handle null as "default" */
6535 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6536 			struct sched_domain_attr *new, int idx_new)
6537 {
6538 	struct sched_domain_attr tmp;
6539 
6540 	/* fast path */
6541 	if (!new && !cur)
6542 		return 1;
6543 
6544 	tmp = SD_ATTR_INIT;
6545 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6546 			new ? (new + idx_new) : &tmp,
6547 			sizeof(struct sched_domain_attr));
6548 }
6549 
6550 /*
6551  * Partition sched domains as specified by the 'ndoms_new'
6552  * cpumasks in the array doms_new[] of cpumasks. This compares
6553  * doms_new[] to the current sched domain partitioning, doms_cur[].
6554  * It destroys each deleted domain and builds each new domain.
6555  *
6556  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6557  * The masks don't intersect (don't overlap.) We should setup one
6558  * sched domain for each mask. CPUs not in any of the cpumasks will
6559  * not be load balanced. If the same cpumask appears both in the
6560  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6561  * it as it is.
6562  *
6563  * The passed in 'doms_new' should be allocated using
6564  * alloc_sched_domains.  This routine takes ownership of it and will
6565  * free_sched_domains it when done with it. If the caller failed the
6566  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6567  * and partition_sched_domains() will fallback to the single partition
6568  * 'fallback_doms', it also forces the domains to be rebuilt.
6569  *
6570  * If doms_new == NULL it will be replaced with cpu_online_mask.
6571  * ndoms_new == 0 is a special case for destroying existing domains,
6572  * and it will not create the default domain.
6573  *
6574  * Call with hotplug lock held
6575  */
6576 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6577 			     struct sched_domain_attr *dattr_new)
6578 {
6579 	int i, j, n;
6580 	int new_topology;
6581 
6582 	mutex_lock(&sched_domains_mutex);
6583 
6584 	/* always unregister in case we don't destroy any domains */
6585 	unregister_sched_domain_sysctl();
6586 
6587 	/* Let architecture update cpu core mappings. */
6588 	new_topology = arch_update_cpu_topology();
6589 
6590 	n = doms_new ? ndoms_new : 0;
6591 
6592 	/* Destroy deleted domains */
6593 	for (i = 0; i < ndoms_cur; i++) {
6594 		for (j = 0; j < n && !new_topology; j++) {
6595 			if (cpumask_equal(doms_cur[i], doms_new[j])
6596 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6597 				goto match1;
6598 		}
6599 		/* no match - a current sched domain not in new doms_new[] */
6600 		detach_destroy_domains(doms_cur[i]);
6601 match1:
6602 		;
6603 	}
6604 
6605 	if (doms_new == NULL) {
6606 		ndoms_cur = 0;
6607 		doms_new = &fallback_doms;
6608 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6609 		WARN_ON_ONCE(dattr_new);
6610 	}
6611 
6612 	/* Build new domains */
6613 	for (i = 0; i < ndoms_new; i++) {
6614 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6615 			if (cpumask_equal(doms_new[i], doms_cur[j])
6616 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6617 				goto match2;
6618 		}
6619 		/* no match - add a new doms_new */
6620 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6621 match2:
6622 		;
6623 	}
6624 
6625 	/* Remember the new sched domains */
6626 	if (doms_cur != &fallback_doms)
6627 		free_sched_domains(doms_cur, ndoms_cur);
6628 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6629 	doms_cur = doms_new;
6630 	dattr_cur = dattr_new;
6631 	ndoms_cur = ndoms_new;
6632 
6633 	register_sched_domain_sysctl();
6634 
6635 	mutex_unlock(&sched_domains_mutex);
6636 }
6637 
6638 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6639 static void reinit_sched_domains(void)
6640 {
6641 	get_online_cpus();
6642 
6643 	/* Destroy domains first to force the rebuild */
6644 	partition_sched_domains(0, NULL, NULL);
6645 
6646 	rebuild_sched_domains();
6647 	put_online_cpus();
6648 }
6649 
6650 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6651 {
6652 	unsigned int level = 0;
6653 
6654 	if (sscanf(buf, "%u", &level) != 1)
6655 		return -EINVAL;
6656 
6657 	/*
6658 	 * level is always be positive so don't check for
6659 	 * level < POWERSAVINGS_BALANCE_NONE which is 0
6660 	 * What happens on 0 or 1 byte write,
6661 	 * need to check for count as well?
6662 	 */
6663 
6664 	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6665 		return -EINVAL;
6666 
6667 	if (smt)
6668 		sched_smt_power_savings = level;
6669 	else
6670 		sched_mc_power_savings = level;
6671 
6672 	reinit_sched_domains();
6673 
6674 	return count;
6675 }
6676 
6677 #ifdef CONFIG_SCHED_MC
6678 static ssize_t sched_mc_power_savings_show(struct device *dev,
6679 					   struct device_attribute *attr,
6680 					   char *buf)
6681 {
6682 	return sprintf(buf, "%u\n", sched_mc_power_savings);
6683 }
6684 static ssize_t sched_mc_power_savings_store(struct device *dev,
6685 					    struct device_attribute *attr,
6686 					    const char *buf, size_t count)
6687 {
6688 	return sched_power_savings_store(buf, count, 0);
6689 }
6690 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6691 		   sched_mc_power_savings_show,
6692 		   sched_mc_power_savings_store);
6693 #endif
6694 
6695 #ifdef CONFIG_SCHED_SMT
6696 static ssize_t sched_smt_power_savings_show(struct device *dev,
6697 					    struct device_attribute *attr,
6698 					    char *buf)
6699 {
6700 	return sprintf(buf, "%u\n", sched_smt_power_savings);
6701 }
6702 static ssize_t sched_smt_power_savings_store(struct device *dev,
6703 					    struct device_attribute *attr,
6704 					     const char *buf, size_t count)
6705 {
6706 	return sched_power_savings_store(buf, count, 1);
6707 }
6708 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6709 		   sched_smt_power_savings_show,
6710 		   sched_smt_power_savings_store);
6711 #endif
6712 
6713 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6714 {
6715 	int err = 0;
6716 
6717 #ifdef CONFIG_SCHED_SMT
6718 	if (smt_capable())
6719 		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6720 #endif
6721 #ifdef CONFIG_SCHED_MC
6722 	if (!err && mc_capable())
6723 		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6724 #endif
6725 	return err;
6726 }
6727 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6728 
6729 /*
6730  * Update cpusets according to cpu_active mask.  If cpusets are
6731  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6732  * around partition_sched_domains().
6733  */
6734 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6735 			     void *hcpu)
6736 {
6737 	switch (action & ~CPU_TASKS_FROZEN) {
6738 	case CPU_ONLINE:
6739 	case CPU_DOWN_FAILED:
6740 		cpuset_update_active_cpus();
6741 		return NOTIFY_OK;
6742 	default:
6743 		return NOTIFY_DONE;
6744 	}
6745 }
6746 
6747 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6748 			       void *hcpu)
6749 {
6750 	switch (action & ~CPU_TASKS_FROZEN) {
6751 	case CPU_DOWN_PREPARE:
6752 		cpuset_update_active_cpus();
6753 		return NOTIFY_OK;
6754 	default:
6755 		return NOTIFY_DONE;
6756 	}
6757 }
6758 
6759 void __init sched_init_smp(void)
6760 {
6761 	cpumask_var_t non_isolated_cpus;
6762 
6763 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6764 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6765 
6766 	get_online_cpus();
6767 	mutex_lock(&sched_domains_mutex);
6768 	init_sched_domains(cpu_active_mask);
6769 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6770 	if (cpumask_empty(non_isolated_cpus))
6771 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6772 	mutex_unlock(&sched_domains_mutex);
6773 	put_online_cpus();
6774 
6775 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6776 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6777 
6778 	/* RT runtime code needs to handle some hotplug events */
6779 	hotcpu_notifier(update_runtime, 0);
6780 
6781 	init_hrtick();
6782 
6783 	/* Move init over to a non-isolated CPU */
6784 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6785 		BUG();
6786 	sched_init_granularity();
6787 	free_cpumask_var(non_isolated_cpus);
6788 
6789 	init_sched_rt_class();
6790 }
6791 #else
6792 void __init sched_init_smp(void)
6793 {
6794 	sched_init_granularity();
6795 }
6796 #endif /* CONFIG_SMP */
6797 
6798 const_debug unsigned int sysctl_timer_migration = 1;
6799 
6800 int in_sched_functions(unsigned long addr)
6801 {
6802 	return in_lock_functions(addr) ||
6803 		(addr >= (unsigned long)__sched_text_start
6804 		&& addr < (unsigned long)__sched_text_end);
6805 }
6806 
6807 #ifdef CONFIG_CGROUP_SCHED
6808 struct task_group root_task_group;
6809 #endif
6810 
6811 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6812 
6813 void __init sched_init(void)
6814 {
6815 	int i, j;
6816 	unsigned long alloc_size = 0, ptr;
6817 
6818 #ifdef CONFIG_FAIR_GROUP_SCHED
6819 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6820 #endif
6821 #ifdef CONFIG_RT_GROUP_SCHED
6822 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6823 #endif
6824 #ifdef CONFIG_CPUMASK_OFFSTACK
6825 	alloc_size += num_possible_cpus() * cpumask_size();
6826 #endif
6827 	if (alloc_size) {
6828 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6829 
6830 #ifdef CONFIG_FAIR_GROUP_SCHED
6831 		root_task_group.se = (struct sched_entity **)ptr;
6832 		ptr += nr_cpu_ids * sizeof(void **);
6833 
6834 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6835 		ptr += nr_cpu_ids * sizeof(void **);
6836 
6837 #endif /* CONFIG_FAIR_GROUP_SCHED */
6838 #ifdef CONFIG_RT_GROUP_SCHED
6839 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6840 		ptr += nr_cpu_ids * sizeof(void **);
6841 
6842 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6843 		ptr += nr_cpu_ids * sizeof(void **);
6844 
6845 #endif /* CONFIG_RT_GROUP_SCHED */
6846 #ifdef CONFIG_CPUMASK_OFFSTACK
6847 		for_each_possible_cpu(i) {
6848 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6849 			ptr += cpumask_size();
6850 		}
6851 #endif /* CONFIG_CPUMASK_OFFSTACK */
6852 	}
6853 
6854 #ifdef CONFIG_SMP
6855 	init_defrootdomain();
6856 #endif
6857 
6858 	init_rt_bandwidth(&def_rt_bandwidth,
6859 			global_rt_period(), global_rt_runtime());
6860 
6861 #ifdef CONFIG_RT_GROUP_SCHED
6862 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6863 			global_rt_period(), global_rt_runtime());
6864 #endif /* CONFIG_RT_GROUP_SCHED */
6865 
6866 #ifdef CONFIG_CGROUP_SCHED
6867 	list_add(&root_task_group.list, &task_groups);
6868 	INIT_LIST_HEAD(&root_task_group.children);
6869 	INIT_LIST_HEAD(&root_task_group.siblings);
6870 	autogroup_init(&init_task);
6871 
6872 #endif /* CONFIG_CGROUP_SCHED */
6873 
6874 #ifdef CONFIG_CGROUP_CPUACCT
6875 	root_cpuacct.cpustat = &kernel_cpustat;
6876 	root_cpuacct.cpuusage = alloc_percpu(u64);
6877 	/* Too early, not expected to fail */
6878 	BUG_ON(!root_cpuacct.cpuusage);
6879 #endif
6880 	for_each_possible_cpu(i) {
6881 		struct rq *rq;
6882 
6883 		rq = cpu_rq(i);
6884 		raw_spin_lock_init(&rq->lock);
6885 		rq->nr_running = 0;
6886 		rq->calc_load_active = 0;
6887 		rq->calc_load_update = jiffies + LOAD_FREQ;
6888 		init_cfs_rq(&rq->cfs);
6889 		init_rt_rq(&rq->rt, rq);
6890 #ifdef CONFIG_FAIR_GROUP_SCHED
6891 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6892 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6893 		/*
6894 		 * How much cpu bandwidth does root_task_group get?
6895 		 *
6896 		 * In case of task-groups formed thr' the cgroup filesystem, it
6897 		 * gets 100% of the cpu resources in the system. This overall
6898 		 * system cpu resource is divided among the tasks of
6899 		 * root_task_group and its child task-groups in a fair manner,
6900 		 * based on each entity's (task or task-group's) weight
6901 		 * (se->load.weight).
6902 		 *
6903 		 * In other words, if root_task_group has 10 tasks of weight
6904 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6905 		 * then A0's share of the cpu resource is:
6906 		 *
6907 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6908 		 *
6909 		 * We achieve this by letting root_task_group's tasks sit
6910 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6911 		 */
6912 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6913 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6914 #endif /* CONFIG_FAIR_GROUP_SCHED */
6915 
6916 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6917 #ifdef CONFIG_RT_GROUP_SCHED
6918 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6919 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6920 #endif
6921 
6922 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6923 			rq->cpu_load[j] = 0;
6924 
6925 		rq->last_load_update_tick = jiffies;
6926 
6927 #ifdef CONFIG_SMP
6928 		rq->sd = NULL;
6929 		rq->rd = NULL;
6930 		rq->cpu_power = SCHED_POWER_SCALE;
6931 		rq->post_schedule = 0;
6932 		rq->active_balance = 0;
6933 		rq->next_balance = jiffies;
6934 		rq->push_cpu = 0;
6935 		rq->cpu = i;
6936 		rq->online = 0;
6937 		rq->idle_stamp = 0;
6938 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6939 		rq_attach_root(rq, &def_root_domain);
6940 #ifdef CONFIG_NO_HZ
6941 		rq->nohz_flags = 0;
6942 #endif
6943 #endif
6944 		init_rq_hrtick(rq);
6945 		atomic_set(&rq->nr_iowait, 0);
6946 	}
6947 
6948 	set_load_weight(&init_task);
6949 
6950 #ifdef CONFIG_PREEMPT_NOTIFIERS
6951 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6952 #endif
6953 
6954 #ifdef CONFIG_RT_MUTEXES
6955 	plist_head_init(&init_task.pi_waiters);
6956 #endif
6957 
6958 	/*
6959 	 * The boot idle thread does lazy MMU switching as well:
6960 	 */
6961 	atomic_inc(&init_mm.mm_count);
6962 	enter_lazy_tlb(&init_mm, current);
6963 
6964 	/*
6965 	 * Make us the idle thread. Technically, schedule() should not be
6966 	 * called from this thread, however somewhere below it might be,
6967 	 * but because we are the idle thread, we just pick up running again
6968 	 * when this runqueue becomes "idle".
6969 	 */
6970 	init_idle(current, smp_processor_id());
6971 
6972 	calc_load_update = jiffies + LOAD_FREQ;
6973 
6974 	/*
6975 	 * During early bootup we pretend to be a normal task:
6976 	 */
6977 	current->sched_class = &fair_sched_class;
6978 
6979 #ifdef CONFIG_SMP
6980 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6981 	/* May be allocated at isolcpus cmdline parse time */
6982 	if (cpu_isolated_map == NULL)
6983 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6984 #endif
6985 	init_sched_fair_class();
6986 
6987 	scheduler_running = 1;
6988 }
6989 
6990 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6991 static inline int preempt_count_equals(int preempt_offset)
6992 {
6993 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6994 
6995 	return (nested == preempt_offset);
6996 }
6997 
6998 void __might_sleep(const char *file, int line, int preempt_offset)
6999 {
7000 	static unsigned long prev_jiffy;	/* ratelimiting */
7001 
7002 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7003 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7004 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7005 		return;
7006 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7007 		return;
7008 	prev_jiffy = jiffies;
7009 
7010 	printk(KERN_ERR
7011 		"BUG: sleeping function called from invalid context at %s:%d\n",
7012 			file, line);
7013 	printk(KERN_ERR
7014 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7015 			in_atomic(), irqs_disabled(),
7016 			current->pid, current->comm);
7017 
7018 	debug_show_held_locks(current);
7019 	if (irqs_disabled())
7020 		print_irqtrace_events(current);
7021 	dump_stack();
7022 }
7023 EXPORT_SYMBOL(__might_sleep);
7024 #endif
7025 
7026 #ifdef CONFIG_MAGIC_SYSRQ
7027 static void normalize_task(struct rq *rq, struct task_struct *p)
7028 {
7029 	const struct sched_class *prev_class = p->sched_class;
7030 	int old_prio = p->prio;
7031 	int on_rq;
7032 
7033 	on_rq = p->on_rq;
7034 	if (on_rq)
7035 		deactivate_task(rq, p, 0);
7036 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7037 	if (on_rq) {
7038 		activate_task(rq, p, 0);
7039 		resched_task(rq->curr);
7040 	}
7041 
7042 	check_class_changed(rq, p, prev_class, old_prio);
7043 }
7044 
7045 void normalize_rt_tasks(void)
7046 {
7047 	struct task_struct *g, *p;
7048 	unsigned long flags;
7049 	struct rq *rq;
7050 
7051 	read_lock_irqsave(&tasklist_lock, flags);
7052 	do_each_thread(g, p) {
7053 		/*
7054 		 * Only normalize user tasks:
7055 		 */
7056 		if (!p->mm)
7057 			continue;
7058 
7059 		p->se.exec_start		= 0;
7060 #ifdef CONFIG_SCHEDSTATS
7061 		p->se.statistics.wait_start	= 0;
7062 		p->se.statistics.sleep_start	= 0;
7063 		p->se.statistics.block_start	= 0;
7064 #endif
7065 
7066 		if (!rt_task(p)) {
7067 			/*
7068 			 * Renice negative nice level userspace
7069 			 * tasks back to 0:
7070 			 */
7071 			if (TASK_NICE(p) < 0 && p->mm)
7072 				set_user_nice(p, 0);
7073 			continue;
7074 		}
7075 
7076 		raw_spin_lock(&p->pi_lock);
7077 		rq = __task_rq_lock(p);
7078 
7079 		normalize_task(rq, p);
7080 
7081 		__task_rq_unlock(rq);
7082 		raw_spin_unlock(&p->pi_lock);
7083 	} while_each_thread(g, p);
7084 
7085 	read_unlock_irqrestore(&tasklist_lock, flags);
7086 }
7087 
7088 #endif /* CONFIG_MAGIC_SYSRQ */
7089 
7090 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7091 /*
7092  * These functions are only useful for the IA64 MCA handling, or kdb.
7093  *
7094  * They can only be called when the whole system has been
7095  * stopped - every CPU needs to be quiescent, and no scheduling
7096  * activity can take place. Using them for anything else would
7097  * be a serious bug, and as a result, they aren't even visible
7098  * under any other configuration.
7099  */
7100 
7101 /**
7102  * curr_task - return the current task for a given cpu.
7103  * @cpu: the processor in question.
7104  *
7105  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7106  */
7107 struct task_struct *curr_task(int cpu)
7108 {
7109 	return cpu_curr(cpu);
7110 }
7111 
7112 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7113 
7114 #ifdef CONFIG_IA64
7115 /**
7116  * set_curr_task - set the current task for a given cpu.
7117  * @cpu: the processor in question.
7118  * @p: the task pointer to set.
7119  *
7120  * Description: This function must only be used when non-maskable interrupts
7121  * are serviced on a separate stack. It allows the architecture to switch the
7122  * notion of the current task on a cpu in a non-blocking manner. This function
7123  * must be called with all CPU's synchronized, and interrupts disabled, the
7124  * and caller must save the original value of the current task (see
7125  * curr_task() above) and restore that value before reenabling interrupts and
7126  * re-starting the system.
7127  *
7128  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7129  */
7130 void set_curr_task(int cpu, struct task_struct *p)
7131 {
7132 	cpu_curr(cpu) = p;
7133 }
7134 
7135 #endif
7136 
7137 #ifdef CONFIG_CGROUP_SCHED
7138 /* task_group_lock serializes the addition/removal of task groups */
7139 static DEFINE_SPINLOCK(task_group_lock);
7140 
7141 static void free_sched_group(struct task_group *tg)
7142 {
7143 	free_fair_sched_group(tg);
7144 	free_rt_sched_group(tg);
7145 	autogroup_free(tg);
7146 	kfree(tg);
7147 }
7148 
7149 /* allocate runqueue etc for a new task group */
7150 struct task_group *sched_create_group(struct task_group *parent)
7151 {
7152 	struct task_group *tg;
7153 	unsigned long flags;
7154 
7155 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7156 	if (!tg)
7157 		return ERR_PTR(-ENOMEM);
7158 
7159 	if (!alloc_fair_sched_group(tg, parent))
7160 		goto err;
7161 
7162 	if (!alloc_rt_sched_group(tg, parent))
7163 		goto err;
7164 
7165 	spin_lock_irqsave(&task_group_lock, flags);
7166 	list_add_rcu(&tg->list, &task_groups);
7167 
7168 	WARN_ON(!parent); /* root should already exist */
7169 
7170 	tg->parent = parent;
7171 	INIT_LIST_HEAD(&tg->children);
7172 	list_add_rcu(&tg->siblings, &parent->children);
7173 	spin_unlock_irqrestore(&task_group_lock, flags);
7174 
7175 	return tg;
7176 
7177 err:
7178 	free_sched_group(tg);
7179 	return ERR_PTR(-ENOMEM);
7180 }
7181 
7182 /* rcu callback to free various structures associated with a task group */
7183 static void free_sched_group_rcu(struct rcu_head *rhp)
7184 {
7185 	/* now it should be safe to free those cfs_rqs */
7186 	free_sched_group(container_of(rhp, struct task_group, rcu));
7187 }
7188 
7189 /* Destroy runqueue etc associated with a task group */
7190 void sched_destroy_group(struct task_group *tg)
7191 {
7192 	unsigned long flags;
7193 	int i;
7194 
7195 	/* end participation in shares distribution */
7196 	for_each_possible_cpu(i)
7197 		unregister_fair_sched_group(tg, i);
7198 
7199 	spin_lock_irqsave(&task_group_lock, flags);
7200 	list_del_rcu(&tg->list);
7201 	list_del_rcu(&tg->siblings);
7202 	spin_unlock_irqrestore(&task_group_lock, flags);
7203 
7204 	/* wait for possible concurrent references to cfs_rqs complete */
7205 	call_rcu(&tg->rcu, free_sched_group_rcu);
7206 }
7207 
7208 /* change task's runqueue when it moves between groups.
7209  *	The caller of this function should have put the task in its new group
7210  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7211  *	reflect its new group.
7212  */
7213 void sched_move_task(struct task_struct *tsk)
7214 {
7215 	int on_rq, running;
7216 	unsigned long flags;
7217 	struct rq *rq;
7218 
7219 	rq = task_rq_lock(tsk, &flags);
7220 
7221 	running = task_current(rq, tsk);
7222 	on_rq = tsk->on_rq;
7223 
7224 	if (on_rq)
7225 		dequeue_task(rq, tsk, 0);
7226 	if (unlikely(running))
7227 		tsk->sched_class->put_prev_task(rq, tsk);
7228 
7229 #ifdef CONFIG_FAIR_GROUP_SCHED
7230 	if (tsk->sched_class->task_move_group)
7231 		tsk->sched_class->task_move_group(tsk, on_rq);
7232 	else
7233 #endif
7234 		set_task_rq(tsk, task_cpu(tsk));
7235 
7236 	if (unlikely(running))
7237 		tsk->sched_class->set_curr_task(rq);
7238 	if (on_rq)
7239 		enqueue_task(rq, tsk, 0);
7240 
7241 	task_rq_unlock(rq, tsk, &flags);
7242 }
7243 #endif /* CONFIG_CGROUP_SCHED */
7244 
7245 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7246 static unsigned long to_ratio(u64 period, u64 runtime)
7247 {
7248 	if (runtime == RUNTIME_INF)
7249 		return 1ULL << 20;
7250 
7251 	return div64_u64(runtime << 20, period);
7252 }
7253 #endif
7254 
7255 #ifdef CONFIG_RT_GROUP_SCHED
7256 /*
7257  * Ensure that the real time constraints are schedulable.
7258  */
7259 static DEFINE_MUTEX(rt_constraints_mutex);
7260 
7261 /* Must be called with tasklist_lock held */
7262 static inline int tg_has_rt_tasks(struct task_group *tg)
7263 {
7264 	struct task_struct *g, *p;
7265 
7266 	do_each_thread(g, p) {
7267 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7268 			return 1;
7269 	} while_each_thread(g, p);
7270 
7271 	return 0;
7272 }
7273 
7274 struct rt_schedulable_data {
7275 	struct task_group *tg;
7276 	u64 rt_period;
7277 	u64 rt_runtime;
7278 };
7279 
7280 static int tg_rt_schedulable(struct task_group *tg, void *data)
7281 {
7282 	struct rt_schedulable_data *d = data;
7283 	struct task_group *child;
7284 	unsigned long total, sum = 0;
7285 	u64 period, runtime;
7286 
7287 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7288 	runtime = tg->rt_bandwidth.rt_runtime;
7289 
7290 	if (tg == d->tg) {
7291 		period = d->rt_period;
7292 		runtime = d->rt_runtime;
7293 	}
7294 
7295 	/*
7296 	 * Cannot have more runtime than the period.
7297 	 */
7298 	if (runtime > period && runtime != RUNTIME_INF)
7299 		return -EINVAL;
7300 
7301 	/*
7302 	 * Ensure we don't starve existing RT tasks.
7303 	 */
7304 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7305 		return -EBUSY;
7306 
7307 	total = to_ratio(period, runtime);
7308 
7309 	/*
7310 	 * Nobody can have more than the global setting allows.
7311 	 */
7312 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7313 		return -EINVAL;
7314 
7315 	/*
7316 	 * The sum of our children's runtime should not exceed our own.
7317 	 */
7318 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7319 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7320 		runtime = child->rt_bandwidth.rt_runtime;
7321 
7322 		if (child == d->tg) {
7323 			period = d->rt_period;
7324 			runtime = d->rt_runtime;
7325 		}
7326 
7327 		sum += to_ratio(period, runtime);
7328 	}
7329 
7330 	if (sum > total)
7331 		return -EINVAL;
7332 
7333 	return 0;
7334 }
7335 
7336 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7337 {
7338 	int ret;
7339 
7340 	struct rt_schedulable_data data = {
7341 		.tg = tg,
7342 		.rt_period = period,
7343 		.rt_runtime = runtime,
7344 	};
7345 
7346 	rcu_read_lock();
7347 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7348 	rcu_read_unlock();
7349 
7350 	return ret;
7351 }
7352 
7353 static int tg_set_rt_bandwidth(struct task_group *tg,
7354 		u64 rt_period, u64 rt_runtime)
7355 {
7356 	int i, err = 0;
7357 
7358 	mutex_lock(&rt_constraints_mutex);
7359 	read_lock(&tasklist_lock);
7360 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7361 	if (err)
7362 		goto unlock;
7363 
7364 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7365 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7366 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7367 
7368 	for_each_possible_cpu(i) {
7369 		struct rt_rq *rt_rq = tg->rt_rq[i];
7370 
7371 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7372 		rt_rq->rt_runtime = rt_runtime;
7373 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7374 	}
7375 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7376 unlock:
7377 	read_unlock(&tasklist_lock);
7378 	mutex_unlock(&rt_constraints_mutex);
7379 
7380 	return err;
7381 }
7382 
7383 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7384 {
7385 	u64 rt_runtime, rt_period;
7386 
7387 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7388 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7389 	if (rt_runtime_us < 0)
7390 		rt_runtime = RUNTIME_INF;
7391 
7392 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7393 }
7394 
7395 long sched_group_rt_runtime(struct task_group *tg)
7396 {
7397 	u64 rt_runtime_us;
7398 
7399 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7400 		return -1;
7401 
7402 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7403 	do_div(rt_runtime_us, NSEC_PER_USEC);
7404 	return rt_runtime_us;
7405 }
7406 
7407 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7408 {
7409 	u64 rt_runtime, rt_period;
7410 
7411 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7412 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7413 
7414 	if (rt_period == 0)
7415 		return -EINVAL;
7416 
7417 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7418 }
7419 
7420 long sched_group_rt_period(struct task_group *tg)
7421 {
7422 	u64 rt_period_us;
7423 
7424 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7425 	do_div(rt_period_us, NSEC_PER_USEC);
7426 	return rt_period_us;
7427 }
7428 
7429 static int sched_rt_global_constraints(void)
7430 {
7431 	u64 runtime, period;
7432 	int ret = 0;
7433 
7434 	if (sysctl_sched_rt_period <= 0)
7435 		return -EINVAL;
7436 
7437 	runtime = global_rt_runtime();
7438 	period = global_rt_period();
7439 
7440 	/*
7441 	 * Sanity check on the sysctl variables.
7442 	 */
7443 	if (runtime > period && runtime != RUNTIME_INF)
7444 		return -EINVAL;
7445 
7446 	mutex_lock(&rt_constraints_mutex);
7447 	read_lock(&tasklist_lock);
7448 	ret = __rt_schedulable(NULL, 0, 0);
7449 	read_unlock(&tasklist_lock);
7450 	mutex_unlock(&rt_constraints_mutex);
7451 
7452 	return ret;
7453 }
7454 
7455 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7456 {
7457 	/* Don't accept realtime tasks when there is no way for them to run */
7458 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7459 		return 0;
7460 
7461 	return 1;
7462 }
7463 
7464 #else /* !CONFIG_RT_GROUP_SCHED */
7465 static int sched_rt_global_constraints(void)
7466 {
7467 	unsigned long flags;
7468 	int i;
7469 
7470 	if (sysctl_sched_rt_period <= 0)
7471 		return -EINVAL;
7472 
7473 	/*
7474 	 * There's always some RT tasks in the root group
7475 	 * -- migration, kstopmachine etc..
7476 	 */
7477 	if (sysctl_sched_rt_runtime == 0)
7478 		return -EBUSY;
7479 
7480 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7481 	for_each_possible_cpu(i) {
7482 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7483 
7484 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7485 		rt_rq->rt_runtime = global_rt_runtime();
7486 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7487 	}
7488 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7489 
7490 	return 0;
7491 }
7492 #endif /* CONFIG_RT_GROUP_SCHED */
7493 
7494 int sched_rt_handler(struct ctl_table *table, int write,
7495 		void __user *buffer, size_t *lenp,
7496 		loff_t *ppos)
7497 {
7498 	int ret;
7499 	int old_period, old_runtime;
7500 	static DEFINE_MUTEX(mutex);
7501 
7502 	mutex_lock(&mutex);
7503 	old_period = sysctl_sched_rt_period;
7504 	old_runtime = sysctl_sched_rt_runtime;
7505 
7506 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7507 
7508 	if (!ret && write) {
7509 		ret = sched_rt_global_constraints();
7510 		if (ret) {
7511 			sysctl_sched_rt_period = old_period;
7512 			sysctl_sched_rt_runtime = old_runtime;
7513 		} else {
7514 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7515 			def_rt_bandwidth.rt_period =
7516 				ns_to_ktime(global_rt_period());
7517 		}
7518 	}
7519 	mutex_unlock(&mutex);
7520 
7521 	return ret;
7522 }
7523 
7524 #ifdef CONFIG_CGROUP_SCHED
7525 
7526 /* return corresponding task_group object of a cgroup */
7527 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7528 {
7529 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7530 			    struct task_group, css);
7531 }
7532 
7533 static struct cgroup_subsys_state *
7534 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7535 {
7536 	struct task_group *tg, *parent;
7537 
7538 	if (!cgrp->parent) {
7539 		/* This is early initialization for the top cgroup */
7540 		return &root_task_group.css;
7541 	}
7542 
7543 	parent = cgroup_tg(cgrp->parent);
7544 	tg = sched_create_group(parent);
7545 	if (IS_ERR(tg))
7546 		return ERR_PTR(-ENOMEM);
7547 
7548 	return &tg->css;
7549 }
7550 
7551 static void
7552 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7553 {
7554 	struct task_group *tg = cgroup_tg(cgrp);
7555 
7556 	sched_destroy_group(tg);
7557 }
7558 
7559 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7560 				 struct cgroup_taskset *tset)
7561 {
7562 	struct task_struct *task;
7563 
7564 	cgroup_taskset_for_each(task, cgrp, tset) {
7565 #ifdef CONFIG_RT_GROUP_SCHED
7566 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7567 			return -EINVAL;
7568 #else
7569 		/* We don't support RT-tasks being in separate groups */
7570 		if (task->sched_class != &fair_sched_class)
7571 			return -EINVAL;
7572 #endif
7573 	}
7574 	return 0;
7575 }
7576 
7577 static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7578 			      struct cgroup_taskset *tset)
7579 {
7580 	struct task_struct *task;
7581 
7582 	cgroup_taskset_for_each(task, cgrp, tset)
7583 		sched_move_task(task);
7584 }
7585 
7586 static void
7587 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7588 		struct cgroup *old_cgrp, struct task_struct *task)
7589 {
7590 	/*
7591 	 * cgroup_exit() is called in the copy_process() failure path.
7592 	 * Ignore this case since the task hasn't ran yet, this avoids
7593 	 * trying to poke a half freed task state from generic code.
7594 	 */
7595 	if (!(task->flags & PF_EXITING))
7596 		return;
7597 
7598 	sched_move_task(task);
7599 }
7600 
7601 #ifdef CONFIG_FAIR_GROUP_SCHED
7602 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7603 				u64 shareval)
7604 {
7605 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7606 }
7607 
7608 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7609 {
7610 	struct task_group *tg = cgroup_tg(cgrp);
7611 
7612 	return (u64) scale_load_down(tg->shares);
7613 }
7614 
7615 #ifdef CONFIG_CFS_BANDWIDTH
7616 static DEFINE_MUTEX(cfs_constraints_mutex);
7617 
7618 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7619 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7620 
7621 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7622 
7623 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7624 {
7625 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7626 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7627 
7628 	if (tg == &root_task_group)
7629 		return -EINVAL;
7630 
7631 	/*
7632 	 * Ensure we have at some amount of bandwidth every period.  This is
7633 	 * to prevent reaching a state of large arrears when throttled via
7634 	 * entity_tick() resulting in prolonged exit starvation.
7635 	 */
7636 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7637 		return -EINVAL;
7638 
7639 	/*
7640 	 * Likewise, bound things on the otherside by preventing insane quota
7641 	 * periods.  This also allows us to normalize in computing quota
7642 	 * feasibility.
7643 	 */
7644 	if (period > max_cfs_quota_period)
7645 		return -EINVAL;
7646 
7647 	mutex_lock(&cfs_constraints_mutex);
7648 	ret = __cfs_schedulable(tg, period, quota);
7649 	if (ret)
7650 		goto out_unlock;
7651 
7652 	runtime_enabled = quota != RUNTIME_INF;
7653 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7654 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7655 	raw_spin_lock_irq(&cfs_b->lock);
7656 	cfs_b->period = ns_to_ktime(period);
7657 	cfs_b->quota = quota;
7658 
7659 	__refill_cfs_bandwidth_runtime(cfs_b);
7660 	/* restart the period timer (if active) to handle new period expiry */
7661 	if (runtime_enabled && cfs_b->timer_active) {
7662 		/* force a reprogram */
7663 		cfs_b->timer_active = 0;
7664 		__start_cfs_bandwidth(cfs_b);
7665 	}
7666 	raw_spin_unlock_irq(&cfs_b->lock);
7667 
7668 	for_each_possible_cpu(i) {
7669 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7670 		struct rq *rq = cfs_rq->rq;
7671 
7672 		raw_spin_lock_irq(&rq->lock);
7673 		cfs_rq->runtime_enabled = runtime_enabled;
7674 		cfs_rq->runtime_remaining = 0;
7675 
7676 		if (cfs_rq->throttled)
7677 			unthrottle_cfs_rq(cfs_rq);
7678 		raw_spin_unlock_irq(&rq->lock);
7679 	}
7680 out_unlock:
7681 	mutex_unlock(&cfs_constraints_mutex);
7682 
7683 	return ret;
7684 }
7685 
7686 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7687 {
7688 	u64 quota, period;
7689 
7690 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7691 	if (cfs_quota_us < 0)
7692 		quota = RUNTIME_INF;
7693 	else
7694 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7695 
7696 	return tg_set_cfs_bandwidth(tg, period, quota);
7697 }
7698 
7699 long tg_get_cfs_quota(struct task_group *tg)
7700 {
7701 	u64 quota_us;
7702 
7703 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7704 		return -1;
7705 
7706 	quota_us = tg->cfs_bandwidth.quota;
7707 	do_div(quota_us, NSEC_PER_USEC);
7708 
7709 	return quota_us;
7710 }
7711 
7712 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7713 {
7714 	u64 quota, period;
7715 
7716 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7717 	quota = tg->cfs_bandwidth.quota;
7718 
7719 	return tg_set_cfs_bandwidth(tg, period, quota);
7720 }
7721 
7722 long tg_get_cfs_period(struct task_group *tg)
7723 {
7724 	u64 cfs_period_us;
7725 
7726 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7727 	do_div(cfs_period_us, NSEC_PER_USEC);
7728 
7729 	return cfs_period_us;
7730 }
7731 
7732 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7733 {
7734 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7735 }
7736 
7737 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7738 				s64 cfs_quota_us)
7739 {
7740 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7741 }
7742 
7743 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7744 {
7745 	return tg_get_cfs_period(cgroup_tg(cgrp));
7746 }
7747 
7748 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7749 				u64 cfs_period_us)
7750 {
7751 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7752 }
7753 
7754 struct cfs_schedulable_data {
7755 	struct task_group *tg;
7756 	u64 period, quota;
7757 };
7758 
7759 /*
7760  * normalize group quota/period to be quota/max_period
7761  * note: units are usecs
7762  */
7763 static u64 normalize_cfs_quota(struct task_group *tg,
7764 			       struct cfs_schedulable_data *d)
7765 {
7766 	u64 quota, period;
7767 
7768 	if (tg == d->tg) {
7769 		period = d->period;
7770 		quota = d->quota;
7771 	} else {
7772 		period = tg_get_cfs_period(tg);
7773 		quota = tg_get_cfs_quota(tg);
7774 	}
7775 
7776 	/* note: these should typically be equivalent */
7777 	if (quota == RUNTIME_INF || quota == -1)
7778 		return RUNTIME_INF;
7779 
7780 	return to_ratio(period, quota);
7781 }
7782 
7783 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7784 {
7785 	struct cfs_schedulable_data *d = data;
7786 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7787 	s64 quota = 0, parent_quota = -1;
7788 
7789 	if (!tg->parent) {
7790 		quota = RUNTIME_INF;
7791 	} else {
7792 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7793 
7794 		quota = normalize_cfs_quota(tg, d);
7795 		parent_quota = parent_b->hierarchal_quota;
7796 
7797 		/*
7798 		 * ensure max(child_quota) <= parent_quota, inherit when no
7799 		 * limit is set
7800 		 */
7801 		if (quota == RUNTIME_INF)
7802 			quota = parent_quota;
7803 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7804 			return -EINVAL;
7805 	}
7806 	cfs_b->hierarchal_quota = quota;
7807 
7808 	return 0;
7809 }
7810 
7811 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7812 {
7813 	int ret;
7814 	struct cfs_schedulable_data data = {
7815 		.tg = tg,
7816 		.period = period,
7817 		.quota = quota,
7818 	};
7819 
7820 	if (quota != RUNTIME_INF) {
7821 		do_div(data.period, NSEC_PER_USEC);
7822 		do_div(data.quota, NSEC_PER_USEC);
7823 	}
7824 
7825 	rcu_read_lock();
7826 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7827 	rcu_read_unlock();
7828 
7829 	return ret;
7830 }
7831 
7832 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7833 		struct cgroup_map_cb *cb)
7834 {
7835 	struct task_group *tg = cgroup_tg(cgrp);
7836 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7837 
7838 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7839 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7840 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7841 
7842 	return 0;
7843 }
7844 #endif /* CONFIG_CFS_BANDWIDTH */
7845 #endif /* CONFIG_FAIR_GROUP_SCHED */
7846 
7847 #ifdef CONFIG_RT_GROUP_SCHED
7848 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7849 				s64 val)
7850 {
7851 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7852 }
7853 
7854 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7855 {
7856 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7857 }
7858 
7859 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7860 		u64 rt_period_us)
7861 {
7862 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7863 }
7864 
7865 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7866 {
7867 	return sched_group_rt_period(cgroup_tg(cgrp));
7868 }
7869 #endif /* CONFIG_RT_GROUP_SCHED */
7870 
7871 static struct cftype cpu_files[] = {
7872 #ifdef CONFIG_FAIR_GROUP_SCHED
7873 	{
7874 		.name = "shares",
7875 		.read_u64 = cpu_shares_read_u64,
7876 		.write_u64 = cpu_shares_write_u64,
7877 	},
7878 #endif
7879 #ifdef CONFIG_CFS_BANDWIDTH
7880 	{
7881 		.name = "cfs_quota_us",
7882 		.read_s64 = cpu_cfs_quota_read_s64,
7883 		.write_s64 = cpu_cfs_quota_write_s64,
7884 	},
7885 	{
7886 		.name = "cfs_period_us",
7887 		.read_u64 = cpu_cfs_period_read_u64,
7888 		.write_u64 = cpu_cfs_period_write_u64,
7889 	},
7890 	{
7891 		.name = "stat",
7892 		.read_map = cpu_stats_show,
7893 	},
7894 #endif
7895 #ifdef CONFIG_RT_GROUP_SCHED
7896 	{
7897 		.name = "rt_runtime_us",
7898 		.read_s64 = cpu_rt_runtime_read,
7899 		.write_s64 = cpu_rt_runtime_write,
7900 	},
7901 	{
7902 		.name = "rt_period_us",
7903 		.read_u64 = cpu_rt_period_read_uint,
7904 		.write_u64 = cpu_rt_period_write_uint,
7905 	},
7906 #endif
7907 };
7908 
7909 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7910 {
7911 	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7912 }
7913 
7914 struct cgroup_subsys cpu_cgroup_subsys = {
7915 	.name		= "cpu",
7916 	.create		= cpu_cgroup_create,
7917 	.destroy	= cpu_cgroup_destroy,
7918 	.can_attach	= cpu_cgroup_can_attach,
7919 	.attach		= cpu_cgroup_attach,
7920 	.exit		= cpu_cgroup_exit,
7921 	.populate	= cpu_cgroup_populate,
7922 	.subsys_id	= cpu_cgroup_subsys_id,
7923 	.early_init	= 1,
7924 };
7925 
7926 #endif	/* CONFIG_CGROUP_SCHED */
7927 
7928 #ifdef CONFIG_CGROUP_CPUACCT
7929 
7930 /*
7931  * CPU accounting code for task groups.
7932  *
7933  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7934  * (balbir@in.ibm.com).
7935  */
7936 
7937 /* create a new cpu accounting group */
7938 static struct cgroup_subsys_state *cpuacct_create(
7939 	struct cgroup_subsys *ss, struct cgroup *cgrp)
7940 {
7941 	struct cpuacct *ca;
7942 
7943 	if (!cgrp->parent)
7944 		return &root_cpuacct.css;
7945 
7946 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7947 	if (!ca)
7948 		goto out;
7949 
7950 	ca->cpuusage = alloc_percpu(u64);
7951 	if (!ca->cpuusage)
7952 		goto out_free_ca;
7953 
7954 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7955 	if (!ca->cpustat)
7956 		goto out_free_cpuusage;
7957 
7958 	return &ca->css;
7959 
7960 out_free_cpuusage:
7961 	free_percpu(ca->cpuusage);
7962 out_free_ca:
7963 	kfree(ca);
7964 out:
7965 	return ERR_PTR(-ENOMEM);
7966 }
7967 
7968 /* destroy an existing cpu accounting group */
7969 static void
7970 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7971 {
7972 	struct cpuacct *ca = cgroup_ca(cgrp);
7973 
7974 	free_percpu(ca->cpustat);
7975 	free_percpu(ca->cpuusage);
7976 	kfree(ca);
7977 }
7978 
7979 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7980 {
7981 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7982 	u64 data;
7983 
7984 #ifndef CONFIG_64BIT
7985 	/*
7986 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7987 	 */
7988 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7989 	data = *cpuusage;
7990 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7991 #else
7992 	data = *cpuusage;
7993 #endif
7994 
7995 	return data;
7996 }
7997 
7998 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7999 {
8000 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8001 
8002 #ifndef CONFIG_64BIT
8003 	/*
8004 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8005 	 */
8006 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8007 	*cpuusage = val;
8008 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8009 #else
8010 	*cpuusage = val;
8011 #endif
8012 }
8013 
8014 /* return total cpu usage (in nanoseconds) of a group */
8015 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8016 {
8017 	struct cpuacct *ca = cgroup_ca(cgrp);
8018 	u64 totalcpuusage = 0;
8019 	int i;
8020 
8021 	for_each_present_cpu(i)
8022 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8023 
8024 	return totalcpuusage;
8025 }
8026 
8027 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8028 								u64 reset)
8029 {
8030 	struct cpuacct *ca = cgroup_ca(cgrp);
8031 	int err = 0;
8032 	int i;
8033 
8034 	if (reset) {
8035 		err = -EINVAL;
8036 		goto out;
8037 	}
8038 
8039 	for_each_present_cpu(i)
8040 		cpuacct_cpuusage_write(ca, i, 0);
8041 
8042 out:
8043 	return err;
8044 }
8045 
8046 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8047 				   struct seq_file *m)
8048 {
8049 	struct cpuacct *ca = cgroup_ca(cgroup);
8050 	u64 percpu;
8051 	int i;
8052 
8053 	for_each_present_cpu(i) {
8054 		percpu = cpuacct_cpuusage_read(ca, i);
8055 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8056 	}
8057 	seq_printf(m, "\n");
8058 	return 0;
8059 }
8060 
8061 static const char *cpuacct_stat_desc[] = {
8062 	[CPUACCT_STAT_USER] = "user",
8063 	[CPUACCT_STAT_SYSTEM] = "system",
8064 };
8065 
8066 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8067 			      struct cgroup_map_cb *cb)
8068 {
8069 	struct cpuacct *ca = cgroup_ca(cgrp);
8070 	int cpu;
8071 	s64 val = 0;
8072 
8073 	for_each_online_cpu(cpu) {
8074 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8075 		val += kcpustat->cpustat[CPUTIME_USER];
8076 		val += kcpustat->cpustat[CPUTIME_NICE];
8077 	}
8078 	val = cputime64_to_clock_t(val);
8079 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8080 
8081 	val = 0;
8082 	for_each_online_cpu(cpu) {
8083 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8084 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8085 		val += kcpustat->cpustat[CPUTIME_IRQ];
8086 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8087 	}
8088 
8089 	val = cputime64_to_clock_t(val);
8090 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8091 
8092 	return 0;
8093 }
8094 
8095 static struct cftype files[] = {
8096 	{
8097 		.name = "usage",
8098 		.read_u64 = cpuusage_read,
8099 		.write_u64 = cpuusage_write,
8100 	},
8101 	{
8102 		.name = "usage_percpu",
8103 		.read_seq_string = cpuacct_percpu_seq_read,
8104 	},
8105 	{
8106 		.name = "stat",
8107 		.read_map = cpuacct_stats_show,
8108 	},
8109 };
8110 
8111 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8112 {
8113 	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8114 }
8115 
8116 /*
8117  * charge this task's execution time to its accounting group.
8118  *
8119  * called with rq->lock held.
8120  */
8121 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8122 {
8123 	struct cpuacct *ca;
8124 	int cpu;
8125 
8126 	if (unlikely(!cpuacct_subsys.active))
8127 		return;
8128 
8129 	cpu = task_cpu(tsk);
8130 
8131 	rcu_read_lock();
8132 
8133 	ca = task_ca(tsk);
8134 
8135 	for (; ca; ca = parent_ca(ca)) {
8136 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8137 		*cpuusage += cputime;
8138 	}
8139 
8140 	rcu_read_unlock();
8141 }
8142 
8143 struct cgroup_subsys cpuacct_subsys = {
8144 	.name = "cpuacct",
8145 	.create = cpuacct_create,
8146 	.destroy = cpuacct_destroy,
8147 	.populate = cpuacct_populate,
8148 	.subsys_id = cpuacct_subsys_id,
8149 };
8150 #endif	/* CONFIG_CGROUP_CPUACCT */
8151