xref: /linux/kernel/sched/core.c (revision 6fb5ff63b35b7e849cc8510957f25753f87f63d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 #include <linux/livepatch_sched.h>
70 
71 #ifdef CONFIG_PREEMPT_DYNAMIC
72 # ifdef CONFIG_GENERIC_IRQ_ENTRY
73 #  include <linux/irq-entry-common.h>
74 # endif
75 #endif
76 
77 #include <uapi/linux/sched/types.h>
78 
79 #include <asm/irq_regs.h>
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <linux/sched/rseq_api.h>
85 #include <trace/events/sched.h>
86 #include <trace/events/ipi.h>
87 #undef CREATE_TRACE_POINTS
88 
89 #include "sched.h"
90 #include "stats.h"
91 
92 #include "autogroup.h"
93 #include "pelt.h"
94 #include "smp.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 #include "../locking/mutex.h"
100 
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
102 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
103 
104 /*
105  * Export tracepoints that act as a bare tracehook (ie: have no trace event
106  * associated with them) to allow external modules to probe them.
107  */
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
120 
121 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
122 
123 #ifdef CONFIG_SCHED_PROXY_EXEC
124 DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec);
125 static int __init setup_proxy_exec(char *str)
126 {
127 	bool proxy_enable = true;
128 
129 	if (*str && kstrtobool(str + 1, &proxy_enable)) {
130 		pr_warn("Unable to parse sched_proxy_exec=\n");
131 		return 0;
132 	}
133 
134 	if (proxy_enable) {
135 		pr_info("sched_proxy_exec enabled via boot arg\n");
136 		static_branch_enable(&__sched_proxy_exec);
137 	} else {
138 		pr_info("sched_proxy_exec disabled via boot arg\n");
139 		static_branch_disable(&__sched_proxy_exec);
140 	}
141 	return 1;
142 }
143 #else
144 static int __init setup_proxy_exec(char *str)
145 {
146 	pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n");
147 	return 0;
148 }
149 #endif
150 __setup("sched_proxy_exec", setup_proxy_exec);
151 
152 /*
153  * Debugging: various feature bits
154  *
155  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
156  * sysctl_sched_features, defined in sched.h, to allow constants propagation
157  * at compile time and compiler optimization based on features default.
158  */
159 #define SCHED_FEAT(name, enabled)	\
160 	(1UL << __SCHED_FEAT_##name) * enabled |
161 __read_mostly unsigned int sysctl_sched_features =
162 #include "features.h"
163 	0;
164 #undef SCHED_FEAT
165 
166 /*
167  * Print a warning if need_resched is set for the given duration (if
168  * LATENCY_WARN is enabled).
169  *
170  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
171  * per boot.
172  */
173 __read_mostly int sysctl_resched_latency_warn_ms = 100;
174 __read_mostly int sysctl_resched_latency_warn_once = 1;
175 
176 /*
177  * Number of tasks to iterate in a single balance run.
178  * Limited because this is done with IRQs disabled.
179  */
180 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
181 
182 __read_mostly int scheduler_running;
183 
184 #ifdef CONFIG_SCHED_CORE
185 
186 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
187 
188 /* kernel prio, less is more */
189 static inline int __task_prio(const struct task_struct *p)
190 {
191 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
192 		return -2;
193 
194 	if (p->dl_server)
195 		return -1; /* deadline */
196 
197 	if (rt_or_dl_prio(p->prio))
198 		return p->prio; /* [-1, 99] */
199 
200 	if (p->sched_class == &idle_sched_class)
201 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
202 
203 	if (task_on_scx(p))
204 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
205 
206 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
207 }
208 
209 /*
210  * l(a,b)
211  * le(a,b) := !l(b,a)
212  * g(a,b)  := l(b,a)
213  * ge(a,b) := !l(a,b)
214  */
215 
216 /* real prio, less is less */
217 static inline bool prio_less(const struct task_struct *a,
218 			     const struct task_struct *b, bool in_fi)
219 {
220 
221 	int pa = __task_prio(a), pb = __task_prio(b);
222 
223 	if (-pa < -pb)
224 		return true;
225 
226 	if (-pb < -pa)
227 		return false;
228 
229 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
230 		const struct sched_dl_entity *a_dl, *b_dl;
231 
232 		a_dl = &a->dl;
233 		/*
234 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
235 		 * __task_prio() can return -1 (for DL) even for those. In that
236 		 * case, get to the dl_server's DL entity.
237 		 */
238 		if (a->dl_server)
239 			a_dl = a->dl_server;
240 
241 		b_dl = &b->dl;
242 		if (b->dl_server)
243 			b_dl = b->dl_server;
244 
245 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
246 	}
247 
248 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
249 		return cfs_prio_less(a, b, in_fi);
250 
251 #ifdef CONFIG_SCHED_CLASS_EXT
252 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
253 		return scx_prio_less(a, b, in_fi);
254 #endif
255 
256 	return false;
257 }
258 
259 static inline bool __sched_core_less(const struct task_struct *a,
260 				     const struct task_struct *b)
261 {
262 	if (a->core_cookie < b->core_cookie)
263 		return true;
264 
265 	if (a->core_cookie > b->core_cookie)
266 		return false;
267 
268 	/* flip prio, so high prio is leftmost */
269 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
270 		return true;
271 
272 	return false;
273 }
274 
275 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
276 
277 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
278 {
279 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
280 }
281 
282 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
283 {
284 	const struct task_struct *p = __node_2_sc(node);
285 	unsigned long cookie = (unsigned long)key;
286 
287 	if (cookie < p->core_cookie)
288 		return -1;
289 
290 	if (cookie > p->core_cookie)
291 		return 1;
292 
293 	return 0;
294 }
295 
296 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
297 {
298 	if (p->se.sched_delayed)
299 		return;
300 
301 	rq->core->core_task_seq++;
302 
303 	if (!p->core_cookie)
304 		return;
305 
306 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
307 }
308 
309 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
310 {
311 	if (p->se.sched_delayed)
312 		return;
313 
314 	rq->core->core_task_seq++;
315 
316 	if (sched_core_enqueued(p)) {
317 		rb_erase(&p->core_node, &rq->core_tree);
318 		RB_CLEAR_NODE(&p->core_node);
319 	}
320 
321 	/*
322 	 * Migrating the last task off the cpu, with the cpu in forced idle
323 	 * state. Reschedule to create an accounting edge for forced idle,
324 	 * and re-examine whether the core is still in forced idle state.
325 	 */
326 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
327 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
328 		resched_curr(rq);
329 }
330 
331 static int sched_task_is_throttled(struct task_struct *p, int cpu)
332 {
333 	if (p->sched_class->task_is_throttled)
334 		return p->sched_class->task_is_throttled(p, cpu);
335 
336 	return 0;
337 }
338 
339 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
340 {
341 	struct rb_node *node = &p->core_node;
342 	int cpu = task_cpu(p);
343 
344 	do {
345 		node = rb_next(node);
346 		if (!node)
347 			return NULL;
348 
349 		p = __node_2_sc(node);
350 		if (p->core_cookie != cookie)
351 			return NULL;
352 
353 	} while (sched_task_is_throttled(p, cpu));
354 
355 	return p;
356 }
357 
358 /*
359  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
360  * If no suitable task is found, NULL will be returned.
361  */
362 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
363 {
364 	struct task_struct *p;
365 	struct rb_node *node;
366 
367 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
368 	if (!node)
369 		return NULL;
370 
371 	p = __node_2_sc(node);
372 	if (!sched_task_is_throttled(p, rq->cpu))
373 		return p;
374 
375 	return sched_core_next(p, cookie);
376 }
377 
378 /*
379  * Magic required such that:
380  *
381  *	raw_spin_rq_lock(rq);
382  *	...
383  *	raw_spin_rq_unlock(rq);
384  *
385  * ends up locking and unlocking the _same_ lock, and all CPUs
386  * always agree on what rq has what lock.
387  *
388  * XXX entirely possible to selectively enable cores, don't bother for now.
389  */
390 
391 static DEFINE_MUTEX(sched_core_mutex);
392 static atomic_t sched_core_count;
393 static struct cpumask sched_core_mask;
394 
395 static void sched_core_lock(int cpu, unsigned long *flags)
396 {
397 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
398 	int t, i = 0;
399 
400 	local_irq_save(*flags);
401 	for_each_cpu(t, smt_mask)
402 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
403 }
404 
405 static void sched_core_unlock(int cpu, unsigned long *flags)
406 {
407 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
408 	int t;
409 
410 	for_each_cpu(t, smt_mask)
411 		raw_spin_unlock(&cpu_rq(t)->__lock);
412 	local_irq_restore(*flags);
413 }
414 
415 static void __sched_core_flip(bool enabled)
416 {
417 	unsigned long flags;
418 	int cpu, t;
419 
420 	cpus_read_lock();
421 
422 	/*
423 	 * Toggle the online cores, one by one.
424 	 */
425 	cpumask_copy(&sched_core_mask, cpu_online_mask);
426 	for_each_cpu(cpu, &sched_core_mask) {
427 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
428 
429 		sched_core_lock(cpu, &flags);
430 
431 		for_each_cpu(t, smt_mask)
432 			cpu_rq(t)->core_enabled = enabled;
433 
434 		cpu_rq(cpu)->core->core_forceidle_start = 0;
435 
436 		sched_core_unlock(cpu, &flags);
437 
438 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
439 	}
440 
441 	/*
442 	 * Toggle the offline CPUs.
443 	 */
444 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
445 		cpu_rq(cpu)->core_enabled = enabled;
446 
447 	cpus_read_unlock();
448 }
449 
450 static void sched_core_assert_empty(void)
451 {
452 	int cpu;
453 
454 	for_each_possible_cpu(cpu)
455 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
456 }
457 
458 static void __sched_core_enable(void)
459 {
460 	static_branch_enable(&__sched_core_enabled);
461 	/*
462 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
463 	 * and future ones will observe !sched_core_disabled().
464 	 */
465 	synchronize_rcu();
466 	__sched_core_flip(true);
467 	sched_core_assert_empty();
468 }
469 
470 static void __sched_core_disable(void)
471 {
472 	sched_core_assert_empty();
473 	__sched_core_flip(false);
474 	static_branch_disable(&__sched_core_enabled);
475 }
476 
477 void sched_core_get(void)
478 {
479 	if (atomic_inc_not_zero(&sched_core_count))
480 		return;
481 
482 	mutex_lock(&sched_core_mutex);
483 	if (!atomic_read(&sched_core_count))
484 		__sched_core_enable();
485 
486 	smp_mb__before_atomic();
487 	atomic_inc(&sched_core_count);
488 	mutex_unlock(&sched_core_mutex);
489 }
490 
491 static void __sched_core_put(struct work_struct *work)
492 {
493 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
494 		__sched_core_disable();
495 		mutex_unlock(&sched_core_mutex);
496 	}
497 }
498 
499 void sched_core_put(void)
500 {
501 	static DECLARE_WORK(_work, __sched_core_put);
502 
503 	/*
504 	 * "There can be only one"
505 	 *
506 	 * Either this is the last one, or we don't actually need to do any
507 	 * 'work'. If it is the last *again*, we rely on
508 	 * WORK_STRUCT_PENDING_BIT.
509 	 */
510 	if (!atomic_add_unless(&sched_core_count, -1, 1))
511 		schedule_work(&_work);
512 }
513 
514 #else /* !CONFIG_SCHED_CORE: */
515 
516 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
517 static inline void
518 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
519 
520 #endif /* !CONFIG_SCHED_CORE */
521 
522 /* need a wrapper since we may need to trace from modules */
523 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp);
524 
525 /* Call via the helper macro trace_set_current_state. */
526 void __trace_set_current_state(int state_value)
527 {
528 	trace_sched_set_state_tp(current, state_value);
529 }
530 EXPORT_SYMBOL(__trace_set_current_state);
531 
532 /*
533  * Serialization rules:
534  *
535  * Lock order:
536  *
537  *   p->pi_lock
538  *     rq->lock
539  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
540  *
541  *  rq1->lock
542  *    rq2->lock  where: rq1 < rq2
543  *
544  * Regular state:
545  *
546  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
547  * local CPU's rq->lock, it optionally removes the task from the runqueue and
548  * always looks at the local rq data structures to find the most eligible task
549  * to run next.
550  *
551  * Task enqueue is also under rq->lock, possibly taken from another CPU.
552  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
553  * the local CPU to avoid bouncing the runqueue state around [ see
554  * ttwu_queue_wakelist() ]
555  *
556  * Task wakeup, specifically wakeups that involve migration, are horribly
557  * complicated to avoid having to take two rq->locks.
558  *
559  * Special state:
560  *
561  * System-calls and anything external will use task_rq_lock() which acquires
562  * both p->pi_lock and rq->lock. As a consequence the state they change is
563  * stable while holding either lock:
564  *
565  *  - sched_setaffinity()/
566  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
567  *  - set_user_nice():		p->se.load, p->*prio
568  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
569  *				p->se.load, p->rt_priority,
570  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
571  *  - sched_setnuma():		p->numa_preferred_nid
572  *  - sched_move_task():	p->sched_task_group
573  *  - uclamp_update_active()	p->uclamp*
574  *
575  * p->state <- TASK_*:
576  *
577  *   is changed locklessly using set_current_state(), __set_current_state() or
578  *   set_special_state(), see their respective comments, or by
579  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
580  *   concurrent self.
581  *
582  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
583  *
584  *   is set by activate_task() and cleared by deactivate_task(), under
585  *   rq->lock. Non-zero indicates the task is runnable, the special
586  *   ON_RQ_MIGRATING state is used for migration without holding both
587  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
588  *
589  *   Additionally it is possible to be ->on_rq but still be considered not
590  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
591  *   but will be dequeued as soon as they get picked again. See the
592  *   task_is_runnable() helper.
593  *
594  * p->on_cpu <- { 0, 1 }:
595  *
596  *   is set by prepare_task() and cleared by finish_task() such that it will be
597  *   set before p is scheduled-in and cleared after p is scheduled-out, both
598  *   under rq->lock. Non-zero indicates the task is running on its CPU.
599  *
600  *   [ The astute reader will observe that it is possible for two tasks on one
601  *     CPU to have ->on_cpu = 1 at the same time. ]
602  *
603  * task_cpu(p): is changed by set_task_cpu(), the rules are:
604  *
605  *  - Don't call set_task_cpu() on a blocked task:
606  *
607  *    We don't care what CPU we're not running on, this simplifies hotplug,
608  *    the CPU assignment of blocked tasks isn't required to be valid.
609  *
610  *  - for try_to_wake_up(), called under p->pi_lock:
611  *
612  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
613  *
614  *  - for migration called under rq->lock:
615  *    [ see task_on_rq_migrating() in task_rq_lock() ]
616  *
617  *    o move_queued_task()
618  *    o detach_task()
619  *
620  *  - for migration called under double_rq_lock():
621  *
622  *    o __migrate_swap_task()
623  *    o push_rt_task() / pull_rt_task()
624  *    o push_dl_task() / pull_dl_task()
625  *    o dl_task_offline_migration()
626  *
627  */
628 
629 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
630 {
631 	raw_spinlock_t *lock;
632 
633 	/* Matches synchronize_rcu() in __sched_core_enable() */
634 	preempt_disable();
635 	if (sched_core_disabled()) {
636 		raw_spin_lock_nested(&rq->__lock, subclass);
637 		/* preempt_count *MUST* be > 1 */
638 		preempt_enable_no_resched();
639 		return;
640 	}
641 
642 	for (;;) {
643 		lock = __rq_lockp(rq);
644 		raw_spin_lock_nested(lock, subclass);
645 		if (likely(lock == __rq_lockp(rq))) {
646 			/* preempt_count *MUST* be > 1 */
647 			preempt_enable_no_resched();
648 			return;
649 		}
650 		raw_spin_unlock(lock);
651 	}
652 }
653 
654 bool raw_spin_rq_trylock(struct rq *rq)
655 {
656 	raw_spinlock_t *lock;
657 	bool ret;
658 
659 	/* Matches synchronize_rcu() in __sched_core_enable() */
660 	preempt_disable();
661 	if (sched_core_disabled()) {
662 		ret = raw_spin_trylock(&rq->__lock);
663 		preempt_enable();
664 		return ret;
665 	}
666 
667 	for (;;) {
668 		lock = __rq_lockp(rq);
669 		ret = raw_spin_trylock(lock);
670 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
671 			preempt_enable();
672 			return ret;
673 		}
674 		raw_spin_unlock(lock);
675 	}
676 }
677 
678 void raw_spin_rq_unlock(struct rq *rq)
679 {
680 	raw_spin_unlock(rq_lockp(rq));
681 }
682 
683 /*
684  * double_rq_lock - safely lock two runqueues
685  */
686 void double_rq_lock(struct rq *rq1, struct rq *rq2)
687 {
688 	lockdep_assert_irqs_disabled();
689 
690 	if (rq_order_less(rq2, rq1))
691 		swap(rq1, rq2);
692 
693 	raw_spin_rq_lock(rq1);
694 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
695 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
696 
697 	double_rq_clock_clear_update(rq1, rq2);
698 }
699 
700 /*
701  * __task_rq_lock - lock the rq @p resides on.
702  */
703 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
704 	__acquires(rq->lock)
705 {
706 	struct rq *rq;
707 
708 	lockdep_assert_held(&p->pi_lock);
709 
710 	for (;;) {
711 		rq = task_rq(p);
712 		raw_spin_rq_lock(rq);
713 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
714 			rq_pin_lock(rq, rf);
715 			return rq;
716 		}
717 		raw_spin_rq_unlock(rq);
718 
719 		while (unlikely(task_on_rq_migrating(p)))
720 			cpu_relax();
721 	}
722 }
723 
724 /*
725  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
726  */
727 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
728 	__acquires(p->pi_lock)
729 	__acquires(rq->lock)
730 {
731 	struct rq *rq;
732 
733 	for (;;) {
734 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
735 		rq = task_rq(p);
736 		raw_spin_rq_lock(rq);
737 		/*
738 		 *	move_queued_task()		task_rq_lock()
739 		 *
740 		 *	ACQUIRE (rq->lock)
741 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
742 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
743 		 *	[S] ->cpu = new_cpu		[L] task_rq()
744 		 *					[L] ->on_rq
745 		 *	RELEASE (rq->lock)
746 		 *
747 		 * If we observe the old CPU in task_rq_lock(), the acquire of
748 		 * the old rq->lock will fully serialize against the stores.
749 		 *
750 		 * If we observe the new CPU in task_rq_lock(), the address
751 		 * dependency headed by '[L] rq = task_rq()' and the acquire
752 		 * will pair with the WMB to ensure we then also see migrating.
753 		 */
754 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
755 			rq_pin_lock(rq, rf);
756 			return rq;
757 		}
758 		raw_spin_rq_unlock(rq);
759 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
760 
761 		while (unlikely(task_on_rq_migrating(p)))
762 			cpu_relax();
763 	}
764 }
765 
766 /*
767  * RQ-clock updating methods:
768  */
769 
770 static void update_rq_clock_task(struct rq *rq, s64 delta)
771 {
772 /*
773  * In theory, the compile should just see 0 here, and optimize out the call
774  * to sched_rt_avg_update. But I don't trust it...
775  */
776 	s64 __maybe_unused steal = 0, irq_delta = 0;
777 
778 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
779 	if (irqtime_enabled()) {
780 		irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
781 
782 		/*
783 		 * Since irq_time is only updated on {soft,}irq_exit, we might run into
784 		 * this case when a previous update_rq_clock() happened inside a
785 		 * {soft,}IRQ region.
786 		 *
787 		 * When this happens, we stop ->clock_task and only update the
788 		 * prev_irq_time stamp to account for the part that fit, so that a next
789 		 * update will consume the rest. This ensures ->clock_task is
790 		 * monotonic.
791 		 *
792 		 * It does however cause some slight miss-attribution of {soft,}IRQ
793 		 * time, a more accurate solution would be to update the irq_time using
794 		 * the current rq->clock timestamp, except that would require using
795 		 * atomic ops.
796 		 */
797 		if (irq_delta > delta)
798 			irq_delta = delta;
799 
800 		rq->prev_irq_time += irq_delta;
801 		delta -= irq_delta;
802 		delayacct_irq(rq->curr, irq_delta);
803 	}
804 #endif
805 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
806 	if (static_key_false((&paravirt_steal_rq_enabled))) {
807 		u64 prev_steal;
808 
809 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
810 		steal -= rq->prev_steal_time_rq;
811 
812 		if (unlikely(steal > delta))
813 			steal = delta;
814 
815 		rq->prev_steal_time_rq = prev_steal;
816 		delta -= steal;
817 	}
818 #endif
819 
820 	rq->clock_task += delta;
821 
822 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
823 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
824 		update_irq_load_avg(rq, irq_delta + steal);
825 #endif
826 	update_rq_clock_pelt(rq, delta);
827 }
828 
829 void update_rq_clock(struct rq *rq)
830 {
831 	s64 delta;
832 	u64 clock;
833 
834 	lockdep_assert_rq_held(rq);
835 
836 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
837 		return;
838 
839 	if (sched_feat(WARN_DOUBLE_CLOCK))
840 		WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED);
841 	rq->clock_update_flags |= RQCF_UPDATED;
842 
843 	clock = sched_clock_cpu(cpu_of(rq));
844 	scx_rq_clock_update(rq, clock);
845 
846 	delta = clock - rq->clock;
847 	if (delta < 0)
848 		return;
849 	rq->clock += delta;
850 
851 	update_rq_clock_task(rq, delta);
852 }
853 
854 #ifdef CONFIG_SCHED_HRTICK
855 /*
856  * Use HR-timers to deliver accurate preemption points.
857  */
858 
859 static void hrtick_clear(struct rq *rq)
860 {
861 	if (hrtimer_active(&rq->hrtick_timer))
862 		hrtimer_cancel(&rq->hrtick_timer);
863 }
864 
865 /*
866  * High-resolution timer tick.
867  * Runs from hardirq context with interrupts disabled.
868  */
869 static enum hrtimer_restart hrtick(struct hrtimer *timer)
870 {
871 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
872 	struct rq_flags rf;
873 
874 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
875 
876 	rq_lock(rq, &rf);
877 	update_rq_clock(rq);
878 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
879 	rq_unlock(rq, &rf);
880 
881 	return HRTIMER_NORESTART;
882 }
883 
884 static void __hrtick_restart(struct rq *rq)
885 {
886 	struct hrtimer *timer = &rq->hrtick_timer;
887 	ktime_t time = rq->hrtick_time;
888 
889 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
890 }
891 
892 /*
893  * called from hardirq (IPI) context
894  */
895 static void __hrtick_start(void *arg)
896 {
897 	struct rq *rq = arg;
898 	struct rq_flags rf;
899 
900 	rq_lock(rq, &rf);
901 	__hrtick_restart(rq);
902 	rq_unlock(rq, &rf);
903 }
904 
905 /*
906  * Called to set the hrtick timer state.
907  *
908  * called with rq->lock held and IRQs disabled
909  */
910 void hrtick_start(struct rq *rq, u64 delay)
911 {
912 	struct hrtimer *timer = &rq->hrtick_timer;
913 	s64 delta;
914 
915 	/*
916 	 * Don't schedule slices shorter than 10000ns, that just
917 	 * doesn't make sense and can cause timer DoS.
918 	 */
919 	delta = max_t(s64, delay, 10000LL);
920 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
921 
922 	if (rq == this_rq())
923 		__hrtick_restart(rq);
924 	else
925 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
926 }
927 
928 static void hrtick_rq_init(struct rq *rq)
929 {
930 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
931 	hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
932 }
933 #else /* !CONFIG_SCHED_HRTICK: */
934 static inline void hrtick_clear(struct rq *rq)
935 {
936 }
937 
938 static inline void hrtick_rq_init(struct rq *rq)
939 {
940 }
941 #endif /* !CONFIG_SCHED_HRTICK */
942 
943 /*
944  * try_cmpxchg based fetch_or() macro so it works for different integer types:
945  */
946 #define fetch_or(ptr, mask)						\
947 	({								\
948 		typeof(ptr) _ptr = (ptr);				\
949 		typeof(mask) _mask = (mask);				\
950 		typeof(*_ptr) _val = *_ptr;				\
951 									\
952 		do {							\
953 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
954 	_val;								\
955 })
956 
957 #ifdef TIF_POLLING_NRFLAG
958 /*
959  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
960  * this avoids any races wrt polling state changes and thereby avoids
961  * spurious IPIs.
962  */
963 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
964 {
965 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
966 }
967 
968 /*
969  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
970  *
971  * If this returns true, then the idle task promises to call
972  * sched_ttwu_pending() and reschedule soon.
973  */
974 static bool set_nr_if_polling(struct task_struct *p)
975 {
976 	struct thread_info *ti = task_thread_info(p);
977 	typeof(ti->flags) val = READ_ONCE(ti->flags);
978 
979 	do {
980 		if (!(val & _TIF_POLLING_NRFLAG))
981 			return false;
982 		if (val & _TIF_NEED_RESCHED)
983 			return true;
984 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
985 
986 	return true;
987 }
988 
989 #else
990 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
991 {
992 	set_ti_thread_flag(ti, tif);
993 	return true;
994 }
995 
996 static inline bool set_nr_if_polling(struct task_struct *p)
997 {
998 	return false;
999 }
1000 #endif
1001 
1002 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
1003 {
1004 	struct wake_q_node *node = &task->wake_q;
1005 
1006 	/*
1007 	 * Atomically grab the task, if ->wake_q is !nil already it means
1008 	 * it's already queued (either by us or someone else) and will get the
1009 	 * wakeup due to that.
1010 	 *
1011 	 * In order to ensure that a pending wakeup will observe our pending
1012 	 * state, even in the failed case, an explicit smp_mb() must be used.
1013 	 */
1014 	smp_mb__before_atomic();
1015 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1016 		return false;
1017 
1018 	/*
1019 	 * The head is context local, there can be no concurrency.
1020 	 */
1021 	*head->lastp = node;
1022 	head->lastp = &node->next;
1023 	return true;
1024 }
1025 
1026 /**
1027  * wake_q_add() - queue a wakeup for 'later' waking.
1028  * @head: the wake_q_head to add @task to
1029  * @task: the task to queue for 'later' wakeup
1030  *
1031  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1032  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1033  * instantly.
1034  *
1035  * This function must be used as-if it were wake_up_process(); IOW the task
1036  * must be ready to be woken at this location.
1037  */
1038 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1039 {
1040 	if (__wake_q_add(head, task))
1041 		get_task_struct(task);
1042 }
1043 
1044 /**
1045  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1046  * @head: the wake_q_head to add @task to
1047  * @task: the task to queue for 'later' wakeup
1048  *
1049  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1050  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1051  * instantly.
1052  *
1053  * This function must be used as-if it were wake_up_process(); IOW the task
1054  * must be ready to be woken at this location.
1055  *
1056  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1057  * that already hold reference to @task can call the 'safe' version and trust
1058  * wake_q to do the right thing depending whether or not the @task is already
1059  * queued for wakeup.
1060  */
1061 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1062 {
1063 	if (!__wake_q_add(head, task))
1064 		put_task_struct(task);
1065 }
1066 
1067 void wake_up_q(struct wake_q_head *head)
1068 {
1069 	struct wake_q_node *node = head->first;
1070 
1071 	while (node != WAKE_Q_TAIL) {
1072 		struct task_struct *task;
1073 
1074 		task = container_of(node, struct task_struct, wake_q);
1075 		node = node->next;
1076 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1077 		WRITE_ONCE(task->wake_q.next, NULL);
1078 		/* Task can safely be re-inserted now. */
1079 
1080 		/*
1081 		 * wake_up_process() executes a full barrier, which pairs with
1082 		 * the queueing in wake_q_add() so as not to miss wakeups.
1083 		 */
1084 		wake_up_process(task);
1085 		put_task_struct(task);
1086 	}
1087 }
1088 
1089 /*
1090  * resched_curr - mark rq's current task 'to be rescheduled now'.
1091  *
1092  * On UP this means the setting of the need_resched flag, on SMP it
1093  * might also involve a cross-CPU call to trigger the scheduler on
1094  * the target CPU.
1095  */
1096 static void __resched_curr(struct rq *rq, int tif)
1097 {
1098 	struct task_struct *curr = rq->curr;
1099 	struct thread_info *cti = task_thread_info(curr);
1100 	int cpu;
1101 
1102 	lockdep_assert_rq_held(rq);
1103 
1104 	/*
1105 	 * Always immediately preempt the idle task; no point in delaying doing
1106 	 * actual work.
1107 	 */
1108 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1109 		tif = TIF_NEED_RESCHED;
1110 
1111 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1112 		return;
1113 
1114 	cpu = cpu_of(rq);
1115 
1116 	if (cpu == smp_processor_id()) {
1117 		set_ti_thread_flag(cti, tif);
1118 		if (tif == TIF_NEED_RESCHED)
1119 			set_preempt_need_resched();
1120 		return;
1121 	}
1122 
1123 	if (set_nr_and_not_polling(cti, tif)) {
1124 		if (tif == TIF_NEED_RESCHED)
1125 			smp_send_reschedule(cpu);
1126 	} else {
1127 		trace_sched_wake_idle_without_ipi(cpu);
1128 	}
1129 }
1130 
1131 void resched_curr(struct rq *rq)
1132 {
1133 	__resched_curr(rq, TIF_NEED_RESCHED);
1134 }
1135 
1136 #ifdef CONFIG_PREEMPT_DYNAMIC
1137 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1138 static __always_inline bool dynamic_preempt_lazy(void)
1139 {
1140 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1141 }
1142 #else
1143 static __always_inline bool dynamic_preempt_lazy(void)
1144 {
1145 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1146 }
1147 #endif
1148 
1149 static __always_inline int get_lazy_tif_bit(void)
1150 {
1151 	if (dynamic_preempt_lazy())
1152 		return TIF_NEED_RESCHED_LAZY;
1153 
1154 	return TIF_NEED_RESCHED;
1155 }
1156 
1157 void resched_curr_lazy(struct rq *rq)
1158 {
1159 	__resched_curr(rq, get_lazy_tif_bit());
1160 }
1161 
1162 void resched_cpu(int cpu)
1163 {
1164 	struct rq *rq = cpu_rq(cpu);
1165 	unsigned long flags;
1166 
1167 	raw_spin_rq_lock_irqsave(rq, flags);
1168 	if (cpu_online(cpu) || cpu == smp_processor_id())
1169 		resched_curr(rq);
1170 	raw_spin_rq_unlock_irqrestore(rq, flags);
1171 }
1172 
1173 #ifdef CONFIG_NO_HZ_COMMON
1174 /*
1175  * In the semi idle case, use the nearest busy CPU for migrating timers
1176  * from an idle CPU.  This is good for power-savings.
1177  *
1178  * We don't do similar optimization for completely idle system, as
1179  * selecting an idle CPU will add more delays to the timers than intended
1180  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1181  */
1182 int get_nohz_timer_target(void)
1183 {
1184 	int i, cpu = smp_processor_id(), default_cpu = -1;
1185 	struct sched_domain *sd;
1186 	const struct cpumask *hk_mask;
1187 
1188 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1189 		if (!idle_cpu(cpu))
1190 			return cpu;
1191 		default_cpu = cpu;
1192 	}
1193 
1194 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1195 
1196 	guard(rcu)();
1197 
1198 	for_each_domain(cpu, sd) {
1199 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1200 			if (cpu == i)
1201 				continue;
1202 
1203 			if (!idle_cpu(i))
1204 				return i;
1205 		}
1206 	}
1207 
1208 	if (default_cpu == -1)
1209 		default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1210 
1211 	return default_cpu;
1212 }
1213 
1214 /*
1215  * When add_timer_on() enqueues a timer into the timer wheel of an
1216  * idle CPU then this timer might expire before the next timer event
1217  * which is scheduled to wake up that CPU. In case of a completely
1218  * idle system the next event might even be infinite time into the
1219  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1220  * leaves the inner idle loop so the newly added timer is taken into
1221  * account when the CPU goes back to idle and evaluates the timer
1222  * wheel for the next timer event.
1223  */
1224 static void wake_up_idle_cpu(int cpu)
1225 {
1226 	struct rq *rq = cpu_rq(cpu);
1227 
1228 	if (cpu == smp_processor_id())
1229 		return;
1230 
1231 	/*
1232 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1233 	 * part of the idle loop. This forces an exit from the idle loop
1234 	 * and a round trip to schedule(). Now this could be optimized
1235 	 * because a simple new idle loop iteration is enough to
1236 	 * re-evaluate the next tick. Provided some re-ordering of tick
1237 	 * nohz functions that would need to follow TIF_NR_POLLING
1238 	 * clearing:
1239 	 *
1240 	 * - On most architectures, a simple fetch_or on ti::flags with a
1241 	 *   "0" value would be enough to know if an IPI needs to be sent.
1242 	 *
1243 	 * - x86 needs to perform a last need_resched() check between
1244 	 *   monitor and mwait which doesn't take timers into account.
1245 	 *   There a dedicated TIF_TIMER flag would be required to
1246 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1247 	 *   before mwait().
1248 	 *
1249 	 * However, remote timer enqueue is not such a frequent event
1250 	 * and testing of the above solutions didn't appear to report
1251 	 * much benefits.
1252 	 */
1253 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1254 		smp_send_reschedule(cpu);
1255 	else
1256 		trace_sched_wake_idle_without_ipi(cpu);
1257 }
1258 
1259 static bool wake_up_full_nohz_cpu(int cpu)
1260 {
1261 	/*
1262 	 * We just need the target to call irq_exit() and re-evaluate
1263 	 * the next tick. The nohz full kick at least implies that.
1264 	 * If needed we can still optimize that later with an
1265 	 * empty IRQ.
1266 	 */
1267 	if (cpu_is_offline(cpu))
1268 		return true;  /* Don't try to wake offline CPUs. */
1269 	if (tick_nohz_full_cpu(cpu)) {
1270 		if (cpu != smp_processor_id() ||
1271 		    tick_nohz_tick_stopped())
1272 			tick_nohz_full_kick_cpu(cpu);
1273 		return true;
1274 	}
1275 
1276 	return false;
1277 }
1278 
1279 /*
1280  * Wake up the specified CPU.  If the CPU is going offline, it is the
1281  * caller's responsibility to deal with the lost wakeup, for example,
1282  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1283  */
1284 void wake_up_nohz_cpu(int cpu)
1285 {
1286 	if (!wake_up_full_nohz_cpu(cpu))
1287 		wake_up_idle_cpu(cpu);
1288 }
1289 
1290 static void nohz_csd_func(void *info)
1291 {
1292 	struct rq *rq = info;
1293 	int cpu = cpu_of(rq);
1294 	unsigned int flags;
1295 
1296 	/*
1297 	 * Release the rq::nohz_csd.
1298 	 */
1299 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1300 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1301 
1302 	rq->idle_balance = idle_cpu(cpu);
1303 	if (rq->idle_balance) {
1304 		rq->nohz_idle_balance = flags;
1305 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1306 	}
1307 }
1308 
1309 #endif /* CONFIG_NO_HZ_COMMON */
1310 
1311 #ifdef CONFIG_NO_HZ_FULL
1312 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1313 {
1314 	if (rq->nr_running != 1)
1315 		return false;
1316 
1317 	if (p->sched_class != &fair_sched_class)
1318 		return false;
1319 
1320 	if (!task_on_rq_queued(p))
1321 		return false;
1322 
1323 	return true;
1324 }
1325 
1326 bool sched_can_stop_tick(struct rq *rq)
1327 {
1328 	int fifo_nr_running;
1329 
1330 	/* Deadline tasks, even if single, need the tick */
1331 	if (rq->dl.dl_nr_running)
1332 		return false;
1333 
1334 	/*
1335 	 * If there are more than one RR tasks, we need the tick to affect the
1336 	 * actual RR behaviour.
1337 	 */
1338 	if (rq->rt.rr_nr_running) {
1339 		if (rq->rt.rr_nr_running == 1)
1340 			return true;
1341 		else
1342 			return false;
1343 	}
1344 
1345 	/*
1346 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1347 	 * forced preemption between FIFO tasks.
1348 	 */
1349 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1350 	if (fifo_nr_running)
1351 		return true;
1352 
1353 	/*
1354 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1355 	 * left. For CFS, if there's more than one we need the tick for
1356 	 * involuntary preemption. For SCX, ask.
1357 	 */
1358 	if (scx_enabled() && !scx_can_stop_tick(rq))
1359 		return false;
1360 
1361 	if (rq->cfs.h_nr_queued > 1)
1362 		return false;
1363 
1364 	/*
1365 	 * If there is one task and it has CFS runtime bandwidth constraints
1366 	 * and it's on the cpu now we don't want to stop the tick.
1367 	 * This check prevents clearing the bit if a newly enqueued task here is
1368 	 * dequeued by migrating while the constrained task continues to run.
1369 	 * E.g. going from 2->1 without going through pick_next_task().
1370 	 */
1371 	if (__need_bw_check(rq, rq->curr)) {
1372 		if (cfs_task_bw_constrained(rq->curr))
1373 			return false;
1374 	}
1375 
1376 	return true;
1377 }
1378 #endif /* CONFIG_NO_HZ_FULL */
1379 
1380 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED)
1381 /*
1382  * Iterate task_group tree rooted at *from, calling @down when first entering a
1383  * node and @up when leaving it for the final time.
1384  *
1385  * Caller must hold rcu_lock or sufficient equivalent.
1386  */
1387 int walk_tg_tree_from(struct task_group *from,
1388 			     tg_visitor down, tg_visitor up, void *data)
1389 {
1390 	struct task_group *parent, *child;
1391 	int ret;
1392 
1393 	parent = from;
1394 
1395 down:
1396 	ret = (*down)(parent, data);
1397 	if (ret)
1398 		goto out;
1399 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1400 		parent = child;
1401 		goto down;
1402 
1403 up:
1404 		continue;
1405 	}
1406 	ret = (*up)(parent, data);
1407 	if (ret || parent == from)
1408 		goto out;
1409 
1410 	child = parent;
1411 	parent = parent->parent;
1412 	if (parent)
1413 		goto up;
1414 out:
1415 	return ret;
1416 }
1417 
1418 int tg_nop(struct task_group *tg, void *data)
1419 {
1420 	return 0;
1421 }
1422 #endif
1423 
1424 void set_load_weight(struct task_struct *p, bool update_load)
1425 {
1426 	int prio = p->static_prio - MAX_RT_PRIO;
1427 	struct load_weight lw;
1428 
1429 	if (task_has_idle_policy(p)) {
1430 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1431 		lw.inv_weight = WMULT_IDLEPRIO;
1432 	} else {
1433 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1434 		lw.inv_weight = sched_prio_to_wmult[prio];
1435 	}
1436 
1437 	/*
1438 	 * SCHED_OTHER tasks have to update their load when changing their
1439 	 * weight
1440 	 */
1441 	if (update_load && p->sched_class->reweight_task)
1442 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1443 	else
1444 		p->se.load = lw;
1445 }
1446 
1447 #ifdef CONFIG_UCLAMP_TASK
1448 /*
1449  * Serializes updates of utilization clamp values
1450  *
1451  * The (slow-path) user-space triggers utilization clamp value updates which
1452  * can require updates on (fast-path) scheduler's data structures used to
1453  * support enqueue/dequeue operations.
1454  * While the per-CPU rq lock protects fast-path update operations, user-space
1455  * requests are serialized using a mutex to reduce the risk of conflicting
1456  * updates or API abuses.
1457  */
1458 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1459 
1460 /* Max allowed minimum utilization */
1461 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1462 
1463 /* Max allowed maximum utilization */
1464 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1465 
1466 /*
1467  * By default RT tasks run at the maximum performance point/capacity of the
1468  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1469  * SCHED_CAPACITY_SCALE.
1470  *
1471  * This knob allows admins to change the default behavior when uclamp is being
1472  * used. In battery powered devices, particularly, running at the maximum
1473  * capacity and frequency will increase energy consumption and shorten the
1474  * battery life.
1475  *
1476  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1477  *
1478  * This knob will not override the system default sched_util_clamp_min defined
1479  * above.
1480  */
1481 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1482 
1483 /* All clamps are required to be less or equal than these values */
1484 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1485 
1486 /*
1487  * This static key is used to reduce the uclamp overhead in the fast path. It
1488  * primarily disables the call to uclamp_rq_{inc, dec}() in
1489  * enqueue/dequeue_task().
1490  *
1491  * This allows users to continue to enable uclamp in their kernel config with
1492  * minimum uclamp overhead in the fast path.
1493  *
1494  * As soon as userspace modifies any of the uclamp knobs, the static key is
1495  * enabled, since we have an actual users that make use of uclamp
1496  * functionality.
1497  *
1498  * The knobs that would enable this static key are:
1499  *
1500  *   * A task modifying its uclamp value with sched_setattr().
1501  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1502  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1503  */
1504 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1505 
1506 static inline unsigned int
1507 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1508 		  unsigned int clamp_value)
1509 {
1510 	/*
1511 	 * Avoid blocked utilization pushing up the frequency when we go
1512 	 * idle (which drops the max-clamp) by retaining the last known
1513 	 * max-clamp.
1514 	 */
1515 	if (clamp_id == UCLAMP_MAX) {
1516 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1517 		return clamp_value;
1518 	}
1519 
1520 	return uclamp_none(UCLAMP_MIN);
1521 }
1522 
1523 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1524 				     unsigned int clamp_value)
1525 {
1526 	/* Reset max-clamp retention only on idle exit */
1527 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1528 		return;
1529 
1530 	uclamp_rq_set(rq, clamp_id, clamp_value);
1531 }
1532 
1533 static inline
1534 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1535 				   unsigned int clamp_value)
1536 {
1537 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1538 	int bucket_id = UCLAMP_BUCKETS - 1;
1539 
1540 	/*
1541 	 * Since both min and max clamps are max aggregated, find the
1542 	 * top most bucket with tasks in.
1543 	 */
1544 	for ( ; bucket_id >= 0; bucket_id--) {
1545 		if (!bucket[bucket_id].tasks)
1546 			continue;
1547 		return bucket[bucket_id].value;
1548 	}
1549 
1550 	/* No tasks -- default clamp values */
1551 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1552 }
1553 
1554 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1555 {
1556 	unsigned int default_util_min;
1557 	struct uclamp_se *uc_se;
1558 
1559 	lockdep_assert_held(&p->pi_lock);
1560 
1561 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1562 
1563 	/* Only sync if user didn't override the default */
1564 	if (uc_se->user_defined)
1565 		return;
1566 
1567 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1568 	uclamp_se_set(uc_se, default_util_min, false);
1569 }
1570 
1571 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1572 {
1573 	if (!rt_task(p))
1574 		return;
1575 
1576 	/* Protect updates to p->uclamp_* */
1577 	guard(task_rq_lock)(p);
1578 	__uclamp_update_util_min_rt_default(p);
1579 }
1580 
1581 static inline struct uclamp_se
1582 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1583 {
1584 	/* Copy by value as we could modify it */
1585 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1586 #ifdef CONFIG_UCLAMP_TASK_GROUP
1587 	unsigned int tg_min, tg_max, value;
1588 
1589 	/*
1590 	 * Tasks in autogroups or root task group will be
1591 	 * restricted by system defaults.
1592 	 */
1593 	if (task_group_is_autogroup(task_group(p)))
1594 		return uc_req;
1595 	if (task_group(p) == &root_task_group)
1596 		return uc_req;
1597 
1598 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1599 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1600 	value = uc_req.value;
1601 	value = clamp(value, tg_min, tg_max);
1602 	uclamp_se_set(&uc_req, value, false);
1603 #endif
1604 
1605 	return uc_req;
1606 }
1607 
1608 /*
1609  * The effective clamp bucket index of a task depends on, by increasing
1610  * priority:
1611  * - the task specific clamp value, when explicitly requested from userspace
1612  * - the task group effective clamp value, for tasks not either in the root
1613  *   group or in an autogroup
1614  * - the system default clamp value, defined by the sysadmin
1615  */
1616 static inline struct uclamp_se
1617 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1618 {
1619 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1620 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1621 
1622 	/* System default restrictions always apply */
1623 	if (unlikely(uc_req.value > uc_max.value))
1624 		return uc_max;
1625 
1626 	return uc_req;
1627 }
1628 
1629 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1630 {
1631 	struct uclamp_se uc_eff;
1632 
1633 	/* Task currently refcounted: use back-annotated (effective) value */
1634 	if (p->uclamp[clamp_id].active)
1635 		return (unsigned long)p->uclamp[clamp_id].value;
1636 
1637 	uc_eff = uclamp_eff_get(p, clamp_id);
1638 
1639 	return (unsigned long)uc_eff.value;
1640 }
1641 
1642 /*
1643  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1644  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1645  * updates the rq's clamp value if required.
1646  *
1647  * Tasks can have a task-specific value requested from user-space, track
1648  * within each bucket the maximum value for tasks refcounted in it.
1649  * This "local max aggregation" allows to track the exact "requested" value
1650  * for each bucket when all its RUNNABLE tasks require the same clamp.
1651  */
1652 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1653 				    enum uclamp_id clamp_id)
1654 {
1655 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1656 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1657 	struct uclamp_bucket *bucket;
1658 
1659 	lockdep_assert_rq_held(rq);
1660 
1661 	/* Update task effective clamp */
1662 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1663 
1664 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1665 	bucket->tasks++;
1666 	uc_se->active = true;
1667 
1668 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1669 
1670 	/*
1671 	 * Local max aggregation: rq buckets always track the max
1672 	 * "requested" clamp value of its RUNNABLE tasks.
1673 	 */
1674 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1675 		bucket->value = uc_se->value;
1676 
1677 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1678 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1679 }
1680 
1681 /*
1682  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1683  * is released. If this is the last task reference counting the rq's max
1684  * active clamp value, then the rq's clamp value is updated.
1685  *
1686  * Both refcounted tasks and rq's cached clamp values are expected to be
1687  * always valid. If it's detected they are not, as defensive programming,
1688  * enforce the expected state and warn.
1689  */
1690 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1691 				    enum uclamp_id clamp_id)
1692 {
1693 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1694 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1695 	struct uclamp_bucket *bucket;
1696 	unsigned int bkt_clamp;
1697 	unsigned int rq_clamp;
1698 
1699 	lockdep_assert_rq_held(rq);
1700 
1701 	/*
1702 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1703 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1704 	 *
1705 	 * In this case the uc_se->active flag should be false since no uclamp
1706 	 * accounting was performed at enqueue time and we can just return
1707 	 * here.
1708 	 *
1709 	 * Need to be careful of the following enqueue/dequeue ordering
1710 	 * problem too
1711 	 *
1712 	 *	enqueue(taskA)
1713 	 *	// sched_uclamp_used gets enabled
1714 	 *	enqueue(taskB)
1715 	 *	dequeue(taskA)
1716 	 *	// Must not decrement bucket->tasks here
1717 	 *	dequeue(taskB)
1718 	 *
1719 	 * where we could end up with stale data in uc_se and
1720 	 * bucket[uc_se->bucket_id].
1721 	 *
1722 	 * The following check here eliminates the possibility of such race.
1723 	 */
1724 	if (unlikely(!uc_se->active))
1725 		return;
1726 
1727 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1728 
1729 	WARN_ON_ONCE(!bucket->tasks);
1730 	if (likely(bucket->tasks))
1731 		bucket->tasks--;
1732 
1733 	uc_se->active = false;
1734 
1735 	/*
1736 	 * Keep "local max aggregation" simple and accept to (possibly)
1737 	 * overboost some RUNNABLE tasks in the same bucket.
1738 	 * The rq clamp bucket value is reset to its base value whenever
1739 	 * there are no more RUNNABLE tasks refcounting it.
1740 	 */
1741 	if (likely(bucket->tasks))
1742 		return;
1743 
1744 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1745 	/*
1746 	 * Defensive programming: this should never happen. If it happens,
1747 	 * e.g. due to future modification, warn and fix up the expected value.
1748 	 */
1749 	WARN_ON_ONCE(bucket->value > rq_clamp);
1750 	if (bucket->value >= rq_clamp) {
1751 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1752 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1753 	}
1754 }
1755 
1756 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags)
1757 {
1758 	enum uclamp_id clamp_id;
1759 
1760 	/*
1761 	 * Avoid any overhead until uclamp is actually used by the userspace.
1762 	 *
1763 	 * The condition is constructed such that a NOP is generated when
1764 	 * sched_uclamp_used is disabled.
1765 	 */
1766 	if (!uclamp_is_used())
1767 		return;
1768 
1769 	if (unlikely(!p->sched_class->uclamp_enabled))
1770 		return;
1771 
1772 	/* Only inc the delayed task which being woken up. */
1773 	if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED))
1774 		return;
1775 
1776 	for_each_clamp_id(clamp_id)
1777 		uclamp_rq_inc_id(rq, p, clamp_id);
1778 
1779 	/* Reset clamp idle holding when there is one RUNNABLE task */
1780 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1781 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1782 }
1783 
1784 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1785 {
1786 	enum uclamp_id clamp_id;
1787 
1788 	/*
1789 	 * Avoid any overhead until uclamp is actually used by the userspace.
1790 	 *
1791 	 * The condition is constructed such that a NOP is generated when
1792 	 * sched_uclamp_used is disabled.
1793 	 */
1794 	if (!uclamp_is_used())
1795 		return;
1796 
1797 	if (unlikely(!p->sched_class->uclamp_enabled))
1798 		return;
1799 
1800 	if (p->se.sched_delayed)
1801 		return;
1802 
1803 	for_each_clamp_id(clamp_id)
1804 		uclamp_rq_dec_id(rq, p, clamp_id);
1805 }
1806 
1807 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1808 				      enum uclamp_id clamp_id)
1809 {
1810 	if (!p->uclamp[clamp_id].active)
1811 		return;
1812 
1813 	uclamp_rq_dec_id(rq, p, clamp_id);
1814 	uclamp_rq_inc_id(rq, p, clamp_id);
1815 
1816 	/*
1817 	 * Make sure to clear the idle flag if we've transiently reached 0
1818 	 * active tasks on rq.
1819 	 */
1820 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1821 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1822 }
1823 
1824 static inline void
1825 uclamp_update_active(struct task_struct *p)
1826 {
1827 	enum uclamp_id clamp_id;
1828 	struct rq_flags rf;
1829 	struct rq *rq;
1830 
1831 	/*
1832 	 * Lock the task and the rq where the task is (or was) queued.
1833 	 *
1834 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1835 	 * price to pay to safely serialize util_{min,max} updates with
1836 	 * enqueues, dequeues and migration operations.
1837 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1838 	 */
1839 	rq = task_rq_lock(p, &rf);
1840 
1841 	/*
1842 	 * Setting the clamp bucket is serialized by task_rq_lock().
1843 	 * If the task is not yet RUNNABLE and its task_struct is not
1844 	 * affecting a valid clamp bucket, the next time it's enqueued,
1845 	 * it will already see the updated clamp bucket value.
1846 	 */
1847 	for_each_clamp_id(clamp_id)
1848 		uclamp_rq_reinc_id(rq, p, clamp_id);
1849 
1850 	task_rq_unlock(rq, p, &rf);
1851 }
1852 
1853 #ifdef CONFIG_UCLAMP_TASK_GROUP
1854 static inline void
1855 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1856 {
1857 	struct css_task_iter it;
1858 	struct task_struct *p;
1859 
1860 	css_task_iter_start(css, 0, &it);
1861 	while ((p = css_task_iter_next(&it)))
1862 		uclamp_update_active(p);
1863 	css_task_iter_end(&it);
1864 }
1865 
1866 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1867 #endif
1868 
1869 #ifdef CONFIG_SYSCTL
1870 #ifdef CONFIG_UCLAMP_TASK_GROUP
1871 static void uclamp_update_root_tg(void)
1872 {
1873 	struct task_group *tg = &root_task_group;
1874 
1875 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1876 		      sysctl_sched_uclamp_util_min, false);
1877 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1878 		      sysctl_sched_uclamp_util_max, false);
1879 
1880 	guard(rcu)();
1881 	cpu_util_update_eff(&root_task_group.css);
1882 }
1883 #else
1884 static void uclamp_update_root_tg(void) { }
1885 #endif
1886 
1887 static void uclamp_sync_util_min_rt_default(void)
1888 {
1889 	struct task_struct *g, *p;
1890 
1891 	/*
1892 	 * copy_process()			sysctl_uclamp
1893 	 *					  uclamp_min_rt = X;
1894 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1895 	 *   // link thread			  smp_mb__after_spinlock()
1896 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1897 	 *   sched_post_fork()			  for_each_process_thread()
1898 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1899 	 *
1900 	 * Ensures that either sched_post_fork() will observe the new
1901 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1902 	 * task.
1903 	 */
1904 	read_lock(&tasklist_lock);
1905 	smp_mb__after_spinlock();
1906 	read_unlock(&tasklist_lock);
1907 
1908 	guard(rcu)();
1909 	for_each_process_thread(g, p)
1910 		uclamp_update_util_min_rt_default(p);
1911 }
1912 
1913 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1914 				void *buffer, size_t *lenp, loff_t *ppos)
1915 {
1916 	bool update_root_tg = false;
1917 	int old_min, old_max, old_min_rt;
1918 	int result;
1919 
1920 	guard(mutex)(&uclamp_mutex);
1921 
1922 	old_min = sysctl_sched_uclamp_util_min;
1923 	old_max = sysctl_sched_uclamp_util_max;
1924 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1925 
1926 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1927 	if (result)
1928 		goto undo;
1929 	if (!write)
1930 		return 0;
1931 
1932 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1933 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1934 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1935 
1936 		result = -EINVAL;
1937 		goto undo;
1938 	}
1939 
1940 	if (old_min != sysctl_sched_uclamp_util_min) {
1941 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1942 			      sysctl_sched_uclamp_util_min, false);
1943 		update_root_tg = true;
1944 	}
1945 	if (old_max != sysctl_sched_uclamp_util_max) {
1946 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1947 			      sysctl_sched_uclamp_util_max, false);
1948 		update_root_tg = true;
1949 	}
1950 
1951 	if (update_root_tg) {
1952 		sched_uclamp_enable();
1953 		uclamp_update_root_tg();
1954 	}
1955 
1956 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1957 		sched_uclamp_enable();
1958 		uclamp_sync_util_min_rt_default();
1959 	}
1960 
1961 	/*
1962 	 * We update all RUNNABLE tasks only when task groups are in use.
1963 	 * Otherwise, keep it simple and do just a lazy update at each next
1964 	 * task enqueue time.
1965 	 */
1966 	return 0;
1967 
1968 undo:
1969 	sysctl_sched_uclamp_util_min = old_min;
1970 	sysctl_sched_uclamp_util_max = old_max;
1971 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1972 	return result;
1973 }
1974 #endif /* CONFIG_SYSCTL */
1975 
1976 static void uclamp_fork(struct task_struct *p)
1977 {
1978 	enum uclamp_id clamp_id;
1979 
1980 	/*
1981 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1982 	 * as the task is still at its early fork stages.
1983 	 */
1984 	for_each_clamp_id(clamp_id)
1985 		p->uclamp[clamp_id].active = false;
1986 
1987 	if (likely(!p->sched_reset_on_fork))
1988 		return;
1989 
1990 	for_each_clamp_id(clamp_id) {
1991 		uclamp_se_set(&p->uclamp_req[clamp_id],
1992 			      uclamp_none(clamp_id), false);
1993 	}
1994 }
1995 
1996 static void uclamp_post_fork(struct task_struct *p)
1997 {
1998 	uclamp_update_util_min_rt_default(p);
1999 }
2000 
2001 static void __init init_uclamp_rq(struct rq *rq)
2002 {
2003 	enum uclamp_id clamp_id;
2004 	struct uclamp_rq *uc_rq = rq->uclamp;
2005 
2006 	for_each_clamp_id(clamp_id) {
2007 		uc_rq[clamp_id] = (struct uclamp_rq) {
2008 			.value = uclamp_none(clamp_id)
2009 		};
2010 	}
2011 
2012 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2013 }
2014 
2015 static void __init init_uclamp(void)
2016 {
2017 	struct uclamp_se uc_max = {};
2018 	enum uclamp_id clamp_id;
2019 	int cpu;
2020 
2021 	for_each_possible_cpu(cpu)
2022 		init_uclamp_rq(cpu_rq(cpu));
2023 
2024 	for_each_clamp_id(clamp_id) {
2025 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2026 			      uclamp_none(clamp_id), false);
2027 	}
2028 
2029 	/* System defaults allow max clamp values for both indexes */
2030 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2031 	for_each_clamp_id(clamp_id) {
2032 		uclamp_default[clamp_id] = uc_max;
2033 #ifdef CONFIG_UCLAMP_TASK_GROUP
2034 		root_task_group.uclamp_req[clamp_id] = uc_max;
2035 		root_task_group.uclamp[clamp_id] = uc_max;
2036 #endif
2037 	}
2038 }
2039 
2040 #else /* !CONFIG_UCLAMP_TASK: */
2041 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { }
2042 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2043 static inline void uclamp_fork(struct task_struct *p) { }
2044 static inline void uclamp_post_fork(struct task_struct *p) { }
2045 static inline void init_uclamp(void) { }
2046 #endif /* !CONFIG_UCLAMP_TASK */
2047 
2048 bool sched_task_on_rq(struct task_struct *p)
2049 {
2050 	return task_on_rq_queued(p);
2051 }
2052 
2053 unsigned long get_wchan(struct task_struct *p)
2054 {
2055 	unsigned long ip = 0;
2056 	unsigned int state;
2057 
2058 	if (!p || p == current)
2059 		return 0;
2060 
2061 	/* Only get wchan if task is blocked and we can keep it that way. */
2062 	raw_spin_lock_irq(&p->pi_lock);
2063 	state = READ_ONCE(p->__state);
2064 	smp_rmb(); /* see try_to_wake_up() */
2065 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2066 		ip = __get_wchan(p);
2067 	raw_spin_unlock_irq(&p->pi_lock);
2068 
2069 	return ip;
2070 }
2071 
2072 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2073 {
2074 	if (!(flags & ENQUEUE_NOCLOCK))
2075 		update_rq_clock(rq);
2076 
2077 	/*
2078 	 * Can be before ->enqueue_task() because uclamp considers the
2079 	 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared
2080 	 * in ->enqueue_task().
2081 	 */
2082 	uclamp_rq_inc(rq, p, flags);
2083 
2084 	p->sched_class->enqueue_task(rq, p, flags);
2085 
2086 	psi_enqueue(p, flags);
2087 
2088 	if (!(flags & ENQUEUE_RESTORE))
2089 		sched_info_enqueue(rq, p);
2090 
2091 	if (sched_core_enabled(rq))
2092 		sched_core_enqueue(rq, p);
2093 }
2094 
2095 /*
2096  * Must only return false when DEQUEUE_SLEEP.
2097  */
2098 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2099 {
2100 	if (sched_core_enabled(rq))
2101 		sched_core_dequeue(rq, p, flags);
2102 
2103 	if (!(flags & DEQUEUE_NOCLOCK))
2104 		update_rq_clock(rq);
2105 
2106 	if (!(flags & DEQUEUE_SAVE))
2107 		sched_info_dequeue(rq, p);
2108 
2109 	psi_dequeue(p, flags);
2110 
2111 	/*
2112 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2113 	 * and mark the task ->sched_delayed.
2114 	 */
2115 	uclamp_rq_dec(rq, p);
2116 	return p->sched_class->dequeue_task(rq, p, flags);
2117 }
2118 
2119 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2120 {
2121 	if (task_on_rq_migrating(p))
2122 		flags |= ENQUEUE_MIGRATED;
2123 	if (flags & ENQUEUE_MIGRATED)
2124 		sched_mm_cid_migrate_to(rq, p);
2125 
2126 	enqueue_task(rq, p, flags);
2127 
2128 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2129 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2130 }
2131 
2132 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2133 {
2134 	WARN_ON_ONCE(flags & DEQUEUE_SLEEP);
2135 
2136 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2137 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2138 
2139 	/*
2140 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2141 	 * dequeue_task() and cleared *after* enqueue_task().
2142 	 */
2143 
2144 	dequeue_task(rq, p, flags);
2145 }
2146 
2147 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2148 {
2149 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2150 		__block_task(rq, p);
2151 }
2152 
2153 /**
2154  * task_curr - is this task currently executing on a CPU?
2155  * @p: the task in question.
2156  *
2157  * Return: 1 if the task is currently executing. 0 otherwise.
2158  */
2159 inline int task_curr(const struct task_struct *p)
2160 {
2161 	return cpu_curr(task_cpu(p)) == p;
2162 }
2163 
2164 /*
2165  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2166  * mess with locking.
2167  */
2168 void check_class_changing(struct rq *rq, struct task_struct *p,
2169 			  const struct sched_class *prev_class)
2170 {
2171 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2172 		p->sched_class->switching_to(rq, p);
2173 }
2174 
2175 /*
2176  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2177  * use the balance_callback list if you want balancing.
2178  *
2179  * this means any call to check_class_changed() must be followed by a call to
2180  * balance_callback().
2181  */
2182 void check_class_changed(struct rq *rq, struct task_struct *p,
2183 			 const struct sched_class *prev_class,
2184 			 int oldprio)
2185 {
2186 	if (prev_class != p->sched_class) {
2187 		if (prev_class->switched_from)
2188 			prev_class->switched_from(rq, p);
2189 
2190 		p->sched_class->switched_to(rq, p);
2191 	} else if (oldprio != p->prio || dl_task(p))
2192 		p->sched_class->prio_changed(rq, p, oldprio);
2193 }
2194 
2195 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2196 {
2197 	struct task_struct *donor = rq->donor;
2198 
2199 	if (p->sched_class == donor->sched_class)
2200 		donor->sched_class->wakeup_preempt(rq, p, flags);
2201 	else if (sched_class_above(p->sched_class, donor->sched_class))
2202 		resched_curr(rq);
2203 
2204 	/*
2205 	 * A queue event has occurred, and we're going to schedule.  In
2206 	 * this case, we can save a useless back to back clock update.
2207 	 */
2208 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2209 		rq_clock_skip_update(rq);
2210 }
2211 
2212 static __always_inline
2213 int __task_state_match(struct task_struct *p, unsigned int state)
2214 {
2215 	if (READ_ONCE(p->__state) & state)
2216 		return 1;
2217 
2218 	if (READ_ONCE(p->saved_state) & state)
2219 		return -1;
2220 
2221 	return 0;
2222 }
2223 
2224 static __always_inline
2225 int task_state_match(struct task_struct *p, unsigned int state)
2226 {
2227 	/*
2228 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2229 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2230 	 */
2231 	guard(raw_spinlock_irq)(&p->pi_lock);
2232 	return __task_state_match(p, state);
2233 }
2234 
2235 /*
2236  * wait_task_inactive - wait for a thread to unschedule.
2237  *
2238  * Wait for the thread to block in any of the states set in @match_state.
2239  * If it changes, i.e. @p might have woken up, then return zero.  When we
2240  * succeed in waiting for @p to be off its CPU, we return a positive number
2241  * (its total switch count).  If a second call a short while later returns the
2242  * same number, the caller can be sure that @p has remained unscheduled the
2243  * whole time.
2244  *
2245  * The caller must ensure that the task *will* unschedule sometime soon,
2246  * else this function might spin for a *long* time. This function can't
2247  * be called with interrupts off, or it may introduce deadlock with
2248  * smp_call_function() if an IPI is sent by the same process we are
2249  * waiting to become inactive.
2250  */
2251 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2252 {
2253 	int running, queued, match;
2254 	struct rq_flags rf;
2255 	unsigned long ncsw;
2256 	struct rq *rq;
2257 
2258 	for (;;) {
2259 		/*
2260 		 * We do the initial early heuristics without holding
2261 		 * any task-queue locks at all. We'll only try to get
2262 		 * the runqueue lock when things look like they will
2263 		 * work out!
2264 		 */
2265 		rq = task_rq(p);
2266 
2267 		/*
2268 		 * If the task is actively running on another CPU
2269 		 * still, just relax and busy-wait without holding
2270 		 * any locks.
2271 		 *
2272 		 * NOTE! Since we don't hold any locks, it's not
2273 		 * even sure that "rq" stays as the right runqueue!
2274 		 * But we don't care, since "task_on_cpu()" will
2275 		 * return false if the runqueue has changed and p
2276 		 * is actually now running somewhere else!
2277 		 */
2278 		while (task_on_cpu(rq, p)) {
2279 			if (!task_state_match(p, match_state))
2280 				return 0;
2281 			cpu_relax();
2282 		}
2283 
2284 		/*
2285 		 * Ok, time to look more closely! We need the rq
2286 		 * lock now, to be *sure*. If we're wrong, we'll
2287 		 * just go back and repeat.
2288 		 */
2289 		rq = task_rq_lock(p, &rf);
2290 		/*
2291 		 * If task is sched_delayed, force dequeue it, to avoid always
2292 		 * hitting the tick timeout in the queued case
2293 		 */
2294 		if (p->se.sched_delayed)
2295 			dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
2296 		trace_sched_wait_task(p);
2297 		running = task_on_cpu(rq, p);
2298 		queued = task_on_rq_queued(p);
2299 		ncsw = 0;
2300 		if ((match = __task_state_match(p, match_state))) {
2301 			/*
2302 			 * When matching on p->saved_state, consider this task
2303 			 * still queued so it will wait.
2304 			 */
2305 			if (match < 0)
2306 				queued = 1;
2307 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2308 		}
2309 		task_rq_unlock(rq, p, &rf);
2310 
2311 		/*
2312 		 * If it changed from the expected state, bail out now.
2313 		 */
2314 		if (unlikely(!ncsw))
2315 			break;
2316 
2317 		/*
2318 		 * Was it really running after all now that we
2319 		 * checked with the proper locks actually held?
2320 		 *
2321 		 * Oops. Go back and try again..
2322 		 */
2323 		if (unlikely(running)) {
2324 			cpu_relax();
2325 			continue;
2326 		}
2327 
2328 		/*
2329 		 * It's not enough that it's not actively running,
2330 		 * it must be off the runqueue _entirely_, and not
2331 		 * preempted!
2332 		 *
2333 		 * So if it was still runnable (but just not actively
2334 		 * running right now), it's preempted, and we should
2335 		 * yield - it could be a while.
2336 		 */
2337 		if (unlikely(queued)) {
2338 			ktime_t to = NSEC_PER_SEC / HZ;
2339 
2340 			set_current_state(TASK_UNINTERRUPTIBLE);
2341 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2342 			continue;
2343 		}
2344 
2345 		/*
2346 		 * Ahh, all good. It wasn't running, and it wasn't
2347 		 * runnable, which means that it will never become
2348 		 * running in the future either. We're all done!
2349 		 */
2350 		break;
2351 	}
2352 
2353 	return ncsw;
2354 }
2355 
2356 static void
2357 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2358 
2359 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2360 {
2361 	struct affinity_context ac = {
2362 		.new_mask  = cpumask_of(rq->cpu),
2363 		.flags     = SCA_MIGRATE_DISABLE,
2364 	};
2365 
2366 	if (likely(!p->migration_disabled))
2367 		return;
2368 
2369 	if (p->cpus_ptr != &p->cpus_mask)
2370 		return;
2371 
2372 	/*
2373 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2374 	 */
2375 	__do_set_cpus_allowed(p, &ac);
2376 }
2377 
2378 void migrate_disable(void)
2379 {
2380 	struct task_struct *p = current;
2381 
2382 	if (p->migration_disabled) {
2383 #ifdef CONFIG_DEBUG_PREEMPT
2384 		/*
2385 		 *Warn about overflow half-way through the range.
2386 		 */
2387 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2388 #endif
2389 		p->migration_disabled++;
2390 		return;
2391 	}
2392 
2393 	guard(preempt)();
2394 	this_rq()->nr_pinned++;
2395 	p->migration_disabled = 1;
2396 }
2397 EXPORT_SYMBOL_GPL(migrate_disable);
2398 
2399 void migrate_enable(void)
2400 {
2401 	struct task_struct *p = current;
2402 	struct affinity_context ac = {
2403 		.new_mask  = &p->cpus_mask,
2404 		.flags     = SCA_MIGRATE_ENABLE,
2405 	};
2406 
2407 #ifdef CONFIG_DEBUG_PREEMPT
2408 	/*
2409 	 * Check both overflow from migrate_disable() and superfluous
2410 	 * migrate_enable().
2411 	 */
2412 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2413 		return;
2414 #endif
2415 
2416 	if (p->migration_disabled > 1) {
2417 		p->migration_disabled--;
2418 		return;
2419 	}
2420 
2421 	/*
2422 	 * Ensure stop_task runs either before or after this, and that
2423 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2424 	 */
2425 	guard(preempt)();
2426 	if (p->cpus_ptr != &p->cpus_mask)
2427 		__set_cpus_allowed_ptr(p, &ac);
2428 	/*
2429 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2430 	 * regular cpus_mask, otherwise things that race (eg.
2431 	 * select_fallback_rq) get confused.
2432 	 */
2433 	barrier();
2434 	p->migration_disabled = 0;
2435 	this_rq()->nr_pinned--;
2436 }
2437 EXPORT_SYMBOL_GPL(migrate_enable);
2438 
2439 static inline bool rq_has_pinned_tasks(struct rq *rq)
2440 {
2441 	return rq->nr_pinned;
2442 }
2443 
2444 /*
2445  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2446  * __set_cpus_allowed_ptr() and select_fallback_rq().
2447  */
2448 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2449 {
2450 	/* When not in the task's cpumask, no point in looking further. */
2451 	if (!task_allowed_on_cpu(p, cpu))
2452 		return false;
2453 
2454 	/* migrate_disabled() must be allowed to finish. */
2455 	if (is_migration_disabled(p))
2456 		return cpu_online(cpu);
2457 
2458 	/* Non kernel threads are not allowed during either online or offline. */
2459 	if (!(p->flags & PF_KTHREAD))
2460 		return cpu_active(cpu);
2461 
2462 	/* KTHREAD_IS_PER_CPU is always allowed. */
2463 	if (kthread_is_per_cpu(p))
2464 		return cpu_online(cpu);
2465 
2466 	/* Regular kernel threads don't get to stay during offline. */
2467 	if (cpu_dying(cpu))
2468 		return false;
2469 
2470 	/* But are allowed during online. */
2471 	return cpu_online(cpu);
2472 }
2473 
2474 /*
2475  * This is how migration works:
2476  *
2477  * 1) we invoke migration_cpu_stop() on the target CPU using
2478  *    stop_one_cpu().
2479  * 2) stopper starts to run (implicitly forcing the migrated thread
2480  *    off the CPU)
2481  * 3) it checks whether the migrated task is still in the wrong runqueue.
2482  * 4) if it's in the wrong runqueue then the migration thread removes
2483  *    it and puts it into the right queue.
2484  * 5) stopper completes and stop_one_cpu() returns and the migration
2485  *    is done.
2486  */
2487 
2488 /*
2489  * move_queued_task - move a queued task to new rq.
2490  *
2491  * Returns (locked) new rq. Old rq's lock is released.
2492  */
2493 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2494 				   struct task_struct *p, int new_cpu)
2495 {
2496 	lockdep_assert_rq_held(rq);
2497 
2498 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2499 	set_task_cpu(p, new_cpu);
2500 	rq_unlock(rq, rf);
2501 
2502 	rq = cpu_rq(new_cpu);
2503 
2504 	rq_lock(rq, rf);
2505 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2506 	activate_task(rq, p, 0);
2507 	wakeup_preempt(rq, p, 0);
2508 
2509 	return rq;
2510 }
2511 
2512 struct migration_arg {
2513 	struct task_struct		*task;
2514 	int				dest_cpu;
2515 	struct set_affinity_pending	*pending;
2516 };
2517 
2518 /*
2519  * @refs: number of wait_for_completion()
2520  * @stop_pending: is @stop_work in use
2521  */
2522 struct set_affinity_pending {
2523 	refcount_t		refs;
2524 	unsigned int		stop_pending;
2525 	struct completion	done;
2526 	struct cpu_stop_work	stop_work;
2527 	struct migration_arg	arg;
2528 };
2529 
2530 /*
2531  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2532  * this because either it can't run here any more (set_cpus_allowed()
2533  * away from this CPU, or CPU going down), or because we're
2534  * attempting to rebalance this task on exec (sched_exec).
2535  *
2536  * So we race with normal scheduler movements, but that's OK, as long
2537  * as the task is no longer on this CPU.
2538  */
2539 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2540 				 struct task_struct *p, int dest_cpu)
2541 {
2542 	/* Affinity changed (again). */
2543 	if (!is_cpu_allowed(p, dest_cpu))
2544 		return rq;
2545 
2546 	rq = move_queued_task(rq, rf, p, dest_cpu);
2547 
2548 	return rq;
2549 }
2550 
2551 /*
2552  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2553  * and performs thread migration by bumping thread off CPU then
2554  * 'pushing' onto another runqueue.
2555  */
2556 static int migration_cpu_stop(void *data)
2557 {
2558 	struct migration_arg *arg = data;
2559 	struct set_affinity_pending *pending = arg->pending;
2560 	struct task_struct *p = arg->task;
2561 	struct rq *rq = this_rq();
2562 	bool complete = false;
2563 	struct rq_flags rf;
2564 
2565 	/*
2566 	 * The original target CPU might have gone down and we might
2567 	 * be on another CPU but it doesn't matter.
2568 	 */
2569 	local_irq_save(rf.flags);
2570 	/*
2571 	 * We need to explicitly wake pending tasks before running
2572 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2573 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2574 	 */
2575 	flush_smp_call_function_queue();
2576 
2577 	raw_spin_lock(&p->pi_lock);
2578 	rq_lock(rq, &rf);
2579 
2580 	/*
2581 	 * If we were passed a pending, then ->stop_pending was set, thus
2582 	 * p->migration_pending must have remained stable.
2583 	 */
2584 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2585 
2586 	/*
2587 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2588 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2589 	 * we're holding p->pi_lock.
2590 	 */
2591 	if (task_rq(p) == rq) {
2592 		if (is_migration_disabled(p))
2593 			goto out;
2594 
2595 		if (pending) {
2596 			p->migration_pending = NULL;
2597 			complete = true;
2598 
2599 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2600 				goto out;
2601 		}
2602 
2603 		if (task_on_rq_queued(p)) {
2604 			update_rq_clock(rq);
2605 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2606 		} else {
2607 			p->wake_cpu = arg->dest_cpu;
2608 		}
2609 
2610 		/*
2611 		 * XXX __migrate_task() can fail, at which point we might end
2612 		 * up running on a dodgy CPU, AFAICT this can only happen
2613 		 * during CPU hotplug, at which point we'll get pushed out
2614 		 * anyway, so it's probably not a big deal.
2615 		 */
2616 
2617 	} else if (pending) {
2618 		/*
2619 		 * This happens when we get migrated between migrate_enable()'s
2620 		 * preempt_enable() and scheduling the stopper task. At that
2621 		 * point we're a regular task again and not current anymore.
2622 		 *
2623 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2624 		 * more likely.
2625 		 */
2626 
2627 		/*
2628 		 * The task moved before the stopper got to run. We're holding
2629 		 * ->pi_lock, so the allowed mask is stable - if it got
2630 		 * somewhere allowed, we're done.
2631 		 */
2632 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2633 			p->migration_pending = NULL;
2634 			complete = true;
2635 			goto out;
2636 		}
2637 
2638 		/*
2639 		 * When migrate_enable() hits a rq mis-match we can't reliably
2640 		 * determine is_migration_disabled() and so have to chase after
2641 		 * it.
2642 		 */
2643 		WARN_ON_ONCE(!pending->stop_pending);
2644 		preempt_disable();
2645 		task_rq_unlock(rq, p, &rf);
2646 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2647 				    &pending->arg, &pending->stop_work);
2648 		preempt_enable();
2649 		return 0;
2650 	}
2651 out:
2652 	if (pending)
2653 		pending->stop_pending = false;
2654 	task_rq_unlock(rq, p, &rf);
2655 
2656 	if (complete)
2657 		complete_all(&pending->done);
2658 
2659 	return 0;
2660 }
2661 
2662 int push_cpu_stop(void *arg)
2663 {
2664 	struct rq *lowest_rq = NULL, *rq = this_rq();
2665 	struct task_struct *p = arg;
2666 
2667 	raw_spin_lock_irq(&p->pi_lock);
2668 	raw_spin_rq_lock(rq);
2669 
2670 	if (task_rq(p) != rq)
2671 		goto out_unlock;
2672 
2673 	if (is_migration_disabled(p)) {
2674 		p->migration_flags |= MDF_PUSH;
2675 		goto out_unlock;
2676 	}
2677 
2678 	p->migration_flags &= ~MDF_PUSH;
2679 
2680 	if (p->sched_class->find_lock_rq)
2681 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2682 
2683 	if (!lowest_rq)
2684 		goto out_unlock;
2685 
2686 	// XXX validate p is still the highest prio task
2687 	if (task_rq(p) == rq) {
2688 		move_queued_task_locked(rq, lowest_rq, p);
2689 		resched_curr(lowest_rq);
2690 	}
2691 
2692 	double_unlock_balance(rq, lowest_rq);
2693 
2694 out_unlock:
2695 	rq->push_busy = false;
2696 	raw_spin_rq_unlock(rq);
2697 	raw_spin_unlock_irq(&p->pi_lock);
2698 
2699 	put_task_struct(p);
2700 	return 0;
2701 }
2702 
2703 /*
2704  * sched_class::set_cpus_allowed must do the below, but is not required to
2705  * actually call this function.
2706  */
2707 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2708 {
2709 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2710 		p->cpus_ptr = ctx->new_mask;
2711 		return;
2712 	}
2713 
2714 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2715 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2716 
2717 	/*
2718 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2719 	 */
2720 	if (ctx->flags & SCA_USER)
2721 		swap(p->user_cpus_ptr, ctx->user_mask);
2722 }
2723 
2724 static void
2725 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2726 {
2727 	struct rq *rq = task_rq(p);
2728 	bool queued, running;
2729 
2730 	/*
2731 	 * This here violates the locking rules for affinity, since we're only
2732 	 * supposed to change these variables while holding both rq->lock and
2733 	 * p->pi_lock.
2734 	 *
2735 	 * HOWEVER, it magically works, because ttwu() is the only code that
2736 	 * accesses these variables under p->pi_lock and only does so after
2737 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2738 	 * before finish_task().
2739 	 *
2740 	 * XXX do further audits, this smells like something putrid.
2741 	 */
2742 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2743 		WARN_ON_ONCE(!p->on_cpu);
2744 	else
2745 		lockdep_assert_held(&p->pi_lock);
2746 
2747 	queued = task_on_rq_queued(p);
2748 	running = task_current_donor(rq, p);
2749 
2750 	if (queued) {
2751 		/*
2752 		 * Because __kthread_bind() calls this on blocked tasks without
2753 		 * holding rq->lock.
2754 		 */
2755 		lockdep_assert_rq_held(rq);
2756 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2757 	}
2758 	if (running)
2759 		put_prev_task(rq, p);
2760 
2761 	p->sched_class->set_cpus_allowed(p, ctx);
2762 	mm_set_cpus_allowed(p->mm, ctx->new_mask);
2763 
2764 	if (queued)
2765 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2766 	if (running)
2767 		set_next_task(rq, p);
2768 }
2769 
2770 /*
2771  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2772  * affinity (if any) should be destroyed too.
2773  */
2774 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2775 {
2776 	struct affinity_context ac = {
2777 		.new_mask  = new_mask,
2778 		.user_mask = NULL,
2779 		.flags     = SCA_USER,	/* clear the user requested mask */
2780 	};
2781 	union cpumask_rcuhead {
2782 		cpumask_t cpumask;
2783 		struct rcu_head rcu;
2784 	};
2785 
2786 	__do_set_cpus_allowed(p, &ac);
2787 
2788 	/*
2789 	 * Because this is called with p->pi_lock held, it is not possible
2790 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2791 	 * kfree_rcu().
2792 	 */
2793 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2794 }
2795 
2796 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2797 		      int node)
2798 {
2799 	cpumask_t *user_mask;
2800 	unsigned long flags;
2801 
2802 	/*
2803 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2804 	 * may differ by now due to racing.
2805 	 */
2806 	dst->user_cpus_ptr = NULL;
2807 
2808 	/*
2809 	 * This check is racy and losing the race is a valid situation.
2810 	 * It is not worth the extra overhead of taking the pi_lock on
2811 	 * every fork/clone.
2812 	 */
2813 	if (data_race(!src->user_cpus_ptr))
2814 		return 0;
2815 
2816 	user_mask = alloc_user_cpus_ptr(node);
2817 	if (!user_mask)
2818 		return -ENOMEM;
2819 
2820 	/*
2821 	 * Use pi_lock to protect content of user_cpus_ptr
2822 	 *
2823 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2824 	 * do_set_cpus_allowed().
2825 	 */
2826 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2827 	if (src->user_cpus_ptr) {
2828 		swap(dst->user_cpus_ptr, user_mask);
2829 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2830 	}
2831 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2832 
2833 	if (unlikely(user_mask))
2834 		kfree(user_mask);
2835 
2836 	return 0;
2837 }
2838 
2839 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2840 {
2841 	struct cpumask *user_mask = NULL;
2842 
2843 	swap(p->user_cpus_ptr, user_mask);
2844 
2845 	return user_mask;
2846 }
2847 
2848 void release_user_cpus_ptr(struct task_struct *p)
2849 {
2850 	kfree(clear_user_cpus_ptr(p));
2851 }
2852 
2853 /*
2854  * This function is wildly self concurrent; here be dragons.
2855  *
2856  *
2857  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2858  * designated task is enqueued on an allowed CPU. If that task is currently
2859  * running, we have to kick it out using the CPU stopper.
2860  *
2861  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2862  * Consider:
2863  *
2864  *     Initial conditions: P0->cpus_mask = [0, 1]
2865  *
2866  *     P0@CPU0                  P1
2867  *
2868  *     migrate_disable();
2869  *     <preempted>
2870  *                              set_cpus_allowed_ptr(P0, [1]);
2871  *
2872  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2873  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2874  * This means we need the following scheme:
2875  *
2876  *     P0@CPU0                  P1
2877  *
2878  *     migrate_disable();
2879  *     <preempted>
2880  *                              set_cpus_allowed_ptr(P0, [1]);
2881  *                                <blocks>
2882  *     <resumes>
2883  *     migrate_enable();
2884  *       __set_cpus_allowed_ptr();
2885  *       <wakes local stopper>
2886  *                         `--> <woken on migration completion>
2887  *
2888  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2889  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2890  * task p are serialized by p->pi_lock, which we can leverage: the one that
2891  * should come into effect at the end of the Migrate-Disable region is the last
2892  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2893  * but we still need to properly signal those waiting tasks at the appropriate
2894  * moment.
2895  *
2896  * This is implemented using struct set_affinity_pending. The first
2897  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2898  * setup an instance of that struct and install it on the targeted task_struct.
2899  * Any and all further callers will reuse that instance. Those then wait for
2900  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2901  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2902  *
2903  *
2904  * (1) In the cases covered above. There is one more where the completion is
2905  * signaled within affine_move_task() itself: when a subsequent affinity request
2906  * occurs after the stopper bailed out due to the targeted task still being
2907  * Migrate-Disable. Consider:
2908  *
2909  *     Initial conditions: P0->cpus_mask = [0, 1]
2910  *
2911  *     CPU0		  P1				P2
2912  *     <P0>
2913  *       migrate_disable();
2914  *       <preempted>
2915  *                        set_cpus_allowed_ptr(P0, [1]);
2916  *                          <blocks>
2917  *     <migration/0>
2918  *       migration_cpu_stop()
2919  *         is_migration_disabled()
2920  *           <bails>
2921  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2922  *                                                         <signal completion>
2923  *                          <awakes>
2924  *
2925  * Note that the above is safe vs a concurrent migrate_enable(), as any
2926  * pending affinity completion is preceded by an uninstallation of
2927  * p->migration_pending done with p->pi_lock held.
2928  */
2929 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2930 			    int dest_cpu, unsigned int flags)
2931 	__releases(rq->lock)
2932 	__releases(p->pi_lock)
2933 {
2934 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2935 	bool stop_pending, complete = false;
2936 
2937 	/*
2938 	 * Can the task run on the task's current CPU? If so, we're done
2939 	 *
2940 	 * We are also done if the task is the current donor, boosting a lock-
2941 	 * holding proxy, (and potentially has been migrated outside its
2942 	 * current or previous affinity mask)
2943 	 */
2944 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) ||
2945 	    (task_current_donor(rq, p) && !task_current(rq, p))) {
2946 		struct task_struct *push_task = NULL;
2947 
2948 		if ((flags & SCA_MIGRATE_ENABLE) &&
2949 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2950 			rq->push_busy = true;
2951 			push_task = get_task_struct(p);
2952 		}
2953 
2954 		/*
2955 		 * If there are pending waiters, but no pending stop_work,
2956 		 * then complete now.
2957 		 */
2958 		pending = p->migration_pending;
2959 		if (pending && !pending->stop_pending) {
2960 			p->migration_pending = NULL;
2961 			complete = true;
2962 		}
2963 
2964 		preempt_disable();
2965 		task_rq_unlock(rq, p, rf);
2966 		if (push_task) {
2967 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2968 					    p, &rq->push_work);
2969 		}
2970 		preempt_enable();
2971 
2972 		if (complete)
2973 			complete_all(&pending->done);
2974 
2975 		return 0;
2976 	}
2977 
2978 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2979 		/* serialized by p->pi_lock */
2980 		if (!p->migration_pending) {
2981 			/* Install the request */
2982 			refcount_set(&my_pending.refs, 1);
2983 			init_completion(&my_pending.done);
2984 			my_pending.arg = (struct migration_arg) {
2985 				.task = p,
2986 				.dest_cpu = dest_cpu,
2987 				.pending = &my_pending,
2988 			};
2989 
2990 			p->migration_pending = &my_pending;
2991 		} else {
2992 			pending = p->migration_pending;
2993 			refcount_inc(&pending->refs);
2994 			/*
2995 			 * Affinity has changed, but we've already installed a
2996 			 * pending. migration_cpu_stop() *must* see this, else
2997 			 * we risk a completion of the pending despite having a
2998 			 * task on a disallowed CPU.
2999 			 *
3000 			 * Serialized by p->pi_lock, so this is safe.
3001 			 */
3002 			pending->arg.dest_cpu = dest_cpu;
3003 		}
3004 	}
3005 	pending = p->migration_pending;
3006 	/*
3007 	 * - !MIGRATE_ENABLE:
3008 	 *   we'll have installed a pending if there wasn't one already.
3009 	 *
3010 	 * - MIGRATE_ENABLE:
3011 	 *   we're here because the current CPU isn't matching anymore,
3012 	 *   the only way that can happen is because of a concurrent
3013 	 *   set_cpus_allowed_ptr() call, which should then still be
3014 	 *   pending completion.
3015 	 *
3016 	 * Either way, we really should have a @pending here.
3017 	 */
3018 	if (WARN_ON_ONCE(!pending)) {
3019 		task_rq_unlock(rq, p, rf);
3020 		return -EINVAL;
3021 	}
3022 
3023 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3024 		/*
3025 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3026 		 * anything else we cannot do is_migration_disabled(), punt
3027 		 * and have the stopper function handle it all race-free.
3028 		 */
3029 		stop_pending = pending->stop_pending;
3030 		if (!stop_pending)
3031 			pending->stop_pending = true;
3032 
3033 		if (flags & SCA_MIGRATE_ENABLE)
3034 			p->migration_flags &= ~MDF_PUSH;
3035 
3036 		preempt_disable();
3037 		task_rq_unlock(rq, p, rf);
3038 		if (!stop_pending) {
3039 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3040 					    &pending->arg, &pending->stop_work);
3041 		}
3042 		preempt_enable();
3043 
3044 		if (flags & SCA_MIGRATE_ENABLE)
3045 			return 0;
3046 	} else {
3047 
3048 		if (!is_migration_disabled(p)) {
3049 			if (task_on_rq_queued(p))
3050 				rq = move_queued_task(rq, rf, p, dest_cpu);
3051 
3052 			if (!pending->stop_pending) {
3053 				p->migration_pending = NULL;
3054 				complete = true;
3055 			}
3056 		}
3057 		task_rq_unlock(rq, p, rf);
3058 
3059 		if (complete)
3060 			complete_all(&pending->done);
3061 	}
3062 
3063 	wait_for_completion(&pending->done);
3064 
3065 	if (refcount_dec_and_test(&pending->refs))
3066 		wake_up_var(&pending->refs); /* No UaF, just an address */
3067 
3068 	/*
3069 	 * Block the original owner of &pending until all subsequent callers
3070 	 * have seen the completion and decremented the refcount
3071 	 */
3072 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3073 
3074 	/* ARGH */
3075 	WARN_ON_ONCE(my_pending.stop_pending);
3076 
3077 	return 0;
3078 }
3079 
3080 /*
3081  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3082  */
3083 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3084 					 struct affinity_context *ctx,
3085 					 struct rq *rq,
3086 					 struct rq_flags *rf)
3087 	__releases(rq->lock)
3088 	__releases(p->pi_lock)
3089 {
3090 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3091 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3092 	bool kthread = p->flags & PF_KTHREAD;
3093 	unsigned int dest_cpu;
3094 	int ret = 0;
3095 
3096 	update_rq_clock(rq);
3097 
3098 	if (kthread || is_migration_disabled(p)) {
3099 		/*
3100 		 * Kernel threads are allowed on online && !active CPUs,
3101 		 * however, during cpu-hot-unplug, even these might get pushed
3102 		 * away if not KTHREAD_IS_PER_CPU.
3103 		 *
3104 		 * Specifically, migration_disabled() tasks must not fail the
3105 		 * cpumask_any_and_distribute() pick below, esp. so on
3106 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3107 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3108 		 */
3109 		cpu_valid_mask = cpu_online_mask;
3110 	}
3111 
3112 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3113 		ret = -EINVAL;
3114 		goto out;
3115 	}
3116 
3117 	/*
3118 	 * Must re-check here, to close a race against __kthread_bind(),
3119 	 * sched_setaffinity() is not guaranteed to observe the flag.
3120 	 */
3121 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3122 		ret = -EINVAL;
3123 		goto out;
3124 	}
3125 
3126 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3127 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3128 			if (ctx->flags & SCA_USER)
3129 				swap(p->user_cpus_ptr, ctx->user_mask);
3130 			goto out;
3131 		}
3132 
3133 		if (WARN_ON_ONCE(p == current &&
3134 				 is_migration_disabled(p) &&
3135 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3136 			ret = -EBUSY;
3137 			goto out;
3138 		}
3139 	}
3140 
3141 	/*
3142 	 * Picking a ~random cpu helps in cases where we are changing affinity
3143 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3144 	 * immediately required to distribute the tasks within their new mask.
3145 	 */
3146 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3147 	if (dest_cpu >= nr_cpu_ids) {
3148 		ret = -EINVAL;
3149 		goto out;
3150 	}
3151 
3152 	__do_set_cpus_allowed(p, ctx);
3153 
3154 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3155 
3156 out:
3157 	task_rq_unlock(rq, p, rf);
3158 
3159 	return ret;
3160 }
3161 
3162 /*
3163  * Change a given task's CPU affinity. Migrate the thread to a
3164  * proper CPU and schedule it away if the CPU it's executing on
3165  * is removed from the allowed bitmask.
3166  *
3167  * NOTE: the caller must have a valid reference to the task, the
3168  * task must not exit() & deallocate itself prematurely. The
3169  * call is not atomic; no spinlocks may be held.
3170  */
3171 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3172 {
3173 	struct rq_flags rf;
3174 	struct rq *rq;
3175 
3176 	rq = task_rq_lock(p, &rf);
3177 	/*
3178 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3179 	 * flags are set.
3180 	 */
3181 	if (p->user_cpus_ptr &&
3182 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3183 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3184 		ctx->new_mask = rq->scratch_mask;
3185 
3186 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3187 }
3188 
3189 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3190 {
3191 	struct affinity_context ac = {
3192 		.new_mask  = new_mask,
3193 		.flags     = 0,
3194 	};
3195 
3196 	return __set_cpus_allowed_ptr(p, &ac);
3197 }
3198 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3199 
3200 /*
3201  * Change a given task's CPU affinity to the intersection of its current
3202  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3203  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3204  * affinity or use cpu_online_mask instead.
3205  *
3206  * If the resulting mask is empty, leave the affinity unchanged and return
3207  * -EINVAL.
3208  */
3209 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3210 				     struct cpumask *new_mask,
3211 				     const struct cpumask *subset_mask)
3212 {
3213 	struct affinity_context ac = {
3214 		.new_mask  = new_mask,
3215 		.flags     = 0,
3216 	};
3217 	struct rq_flags rf;
3218 	struct rq *rq;
3219 	int err;
3220 
3221 	rq = task_rq_lock(p, &rf);
3222 
3223 	/*
3224 	 * Forcefully restricting the affinity of a deadline task is
3225 	 * likely to cause problems, so fail and noisily override the
3226 	 * mask entirely.
3227 	 */
3228 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3229 		err = -EPERM;
3230 		goto err_unlock;
3231 	}
3232 
3233 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3234 		err = -EINVAL;
3235 		goto err_unlock;
3236 	}
3237 
3238 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3239 
3240 err_unlock:
3241 	task_rq_unlock(rq, p, &rf);
3242 	return err;
3243 }
3244 
3245 /*
3246  * Restrict the CPU affinity of task @p so that it is a subset of
3247  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3248  * old affinity mask. If the resulting mask is empty, we warn and walk
3249  * up the cpuset hierarchy until we find a suitable mask.
3250  */
3251 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3252 {
3253 	cpumask_var_t new_mask;
3254 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3255 
3256 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3257 
3258 	/*
3259 	 * __migrate_task() can fail silently in the face of concurrent
3260 	 * offlining of the chosen destination CPU, so take the hotplug
3261 	 * lock to ensure that the migration succeeds.
3262 	 */
3263 	cpus_read_lock();
3264 	if (!cpumask_available(new_mask))
3265 		goto out_set_mask;
3266 
3267 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3268 		goto out_free_mask;
3269 
3270 	/*
3271 	 * We failed to find a valid subset of the affinity mask for the
3272 	 * task, so override it based on its cpuset hierarchy.
3273 	 */
3274 	cpuset_cpus_allowed(p, new_mask);
3275 	override_mask = new_mask;
3276 
3277 out_set_mask:
3278 	if (printk_ratelimit()) {
3279 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3280 				task_pid_nr(p), p->comm,
3281 				cpumask_pr_args(override_mask));
3282 	}
3283 
3284 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3285 out_free_mask:
3286 	cpus_read_unlock();
3287 	free_cpumask_var(new_mask);
3288 }
3289 
3290 /*
3291  * Restore the affinity of a task @p which was previously restricted by a
3292  * call to force_compatible_cpus_allowed_ptr().
3293  *
3294  * It is the caller's responsibility to serialise this with any calls to
3295  * force_compatible_cpus_allowed_ptr(@p).
3296  */
3297 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3298 {
3299 	struct affinity_context ac = {
3300 		.new_mask  = task_user_cpus(p),
3301 		.flags     = 0,
3302 	};
3303 	int ret;
3304 
3305 	/*
3306 	 * Try to restore the old affinity mask with __sched_setaffinity().
3307 	 * Cpuset masking will be done there too.
3308 	 */
3309 	ret = __sched_setaffinity(p, &ac);
3310 	WARN_ON_ONCE(ret);
3311 }
3312 
3313 #ifdef CONFIG_SMP
3314 
3315 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3316 {
3317 	unsigned int state = READ_ONCE(p->__state);
3318 
3319 	/*
3320 	 * We should never call set_task_cpu() on a blocked task,
3321 	 * ttwu() will sort out the placement.
3322 	 */
3323 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3324 
3325 	/*
3326 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3327 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3328 	 * time relying on p->on_rq.
3329 	 */
3330 	WARN_ON_ONCE(state == TASK_RUNNING &&
3331 		     p->sched_class == &fair_sched_class &&
3332 		     (p->on_rq && !task_on_rq_migrating(p)));
3333 
3334 #ifdef CONFIG_LOCKDEP
3335 	/*
3336 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3337 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3338 	 *
3339 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3340 	 * see task_group().
3341 	 *
3342 	 * Furthermore, all task_rq users should acquire both locks, see
3343 	 * task_rq_lock().
3344 	 */
3345 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3346 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3347 #endif
3348 	/*
3349 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3350 	 */
3351 	WARN_ON_ONCE(!cpu_online(new_cpu));
3352 
3353 	WARN_ON_ONCE(is_migration_disabled(p));
3354 
3355 	trace_sched_migrate_task(p, new_cpu);
3356 
3357 	if (task_cpu(p) != new_cpu) {
3358 		if (p->sched_class->migrate_task_rq)
3359 			p->sched_class->migrate_task_rq(p, new_cpu);
3360 		p->se.nr_migrations++;
3361 		rseq_migrate(p);
3362 		sched_mm_cid_migrate_from(p);
3363 		perf_event_task_migrate(p);
3364 	}
3365 
3366 	__set_task_cpu(p, new_cpu);
3367 }
3368 #endif /* CONFIG_SMP */
3369 
3370 #ifdef CONFIG_NUMA_BALANCING
3371 static void __migrate_swap_task(struct task_struct *p, int cpu)
3372 {
3373 	if (task_on_rq_queued(p)) {
3374 		struct rq *src_rq, *dst_rq;
3375 		struct rq_flags srf, drf;
3376 
3377 		src_rq = task_rq(p);
3378 		dst_rq = cpu_rq(cpu);
3379 
3380 		rq_pin_lock(src_rq, &srf);
3381 		rq_pin_lock(dst_rq, &drf);
3382 
3383 		move_queued_task_locked(src_rq, dst_rq, p);
3384 		wakeup_preempt(dst_rq, p, 0);
3385 
3386 		rq_unpin_lock(dst_rq, &drf);
3387 		rq_unpin_lock(src_rq, &srf);
3388 
3389 	} else {
3390 		/*
3391 		 * Task isn't running anymore; make it appear like we migrated
3392 		 * it before it went to sleep. This means on wakeup we make the
3393 		 * previous CPU our target instead of where it really is.
3394 		 */
3395 		p->wake_cpu = cpu;
3396 	}
3397 }
3398 
3399 struct migration_swap_arg {
3400 	struct task_struct *src_task, *dst_task;
3401 	int src_cpu, dst_cpu;
3402 };
3403 
3404 static int migrate_swap_stop(void *data)
3405 {
3406 	struct migration_swap_arg *arg = data;
3407 	struct rq *src_rq, *dst_rq;
3408 
3409 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3410 		return -EAGAIN;
3411 
3412 	src_rq = cpu_rq(arg->src_cpu);
3413 	dst_rq = cpu_rq(arg->dst_cpu);
3414 
3415 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3416 	guard(double_rq_lock)(src_rq, dst_rq);
3417 
3418 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3419 		return -EAGAIN;
3420 
3421 	if (task_cpu(arg->src_task) != arg->src_cpu)
3422 		return -EAGAIN;
3423 
3424 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3425 		return -EAGAIN;
3426 
3427 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3428 		return -EAGAIN;
3429 
3430 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3431 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3432 
3433 	return 0;
3434 }
3435 
3436 /*
3437  * Cross migrate two tasks
3438  */
3439 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3440 		int target_cpu, int curr_cpu)
3441 {
3442 	struct migration_swap_arg arg;
3443 	int ret = -EINVAL;
3444 
3445 	arg = (struct migration_swap_arg){
3446 		.src_task = cur,
3447 		.src_cpu = curr_cpu,
3448 		.dst_task = p,
3449 		.dst_cpu = target_cpu,
3450 	};
3451 
3452 	if (arg.src_cpu == arg.dst_cpu)
3453 		goto out;
3454 
3455 	/*
3456 	 * These three tests are all lockless; this is OK since all of them
3457 	 * will be re-checked with proper locks held further down the line.
3458 	 */
3459 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3460 		goto out;
3461 
3462 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3463 		goto out;
3464 
3465 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3466 		goto out;
3467 
3468 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3469 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3470 
3471 out:
3472 	return ret;
3473 }
3474 #endif /* CONFIG_NUMA_BALANCING */
3475 
3476 /***
3477  * kick_process - kick a running thread to enter/exit the kernel
3478  * @p: the to-be-kicked thread
3479  *
3480  * Cause a process which is running on another CPU to enter
3481  * kernel-mode, without any delay. (to get signals handled.)
3482  *
3483  * NOTE: this function doesn't have to take the runqueue lock,
3484  * because all it wants to ensure is that the remote task enters
3485  * the kernel. If the IPI races and the task has been migrated
3486  * to another CPU then no harm is done and the purpose has been
3487  * achieved as well.
3488  */
3489 void kick_process(struct task_struct *p)
3490 {
3491 	guard(preempt)();
3492 	int cpu = task_cpu(p);
3493 
3494 	if ((cpu != smp_processor_id()) && task_curr(p))
3495 		smp_send_reschedule(cpu);
3496 }
3497 EXPORT_SYMBOL_GPL(kick_process);
3498 
3499 /*
3500  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3501  *
3502  * A few notes on cpu_active vs cpu_online:
3503  *
3504  *  - cpu_active must be a subset of cpu_online
3505  *
3506  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3507  *    see __set_cpus_allowed_ptr(). At this point the newly online
3508  *    CPU isn't yet part of the sched domains, and balancing will not
3509  *    see it.
3510  *
3511  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3512  *    avoid the load balancer to place new tasks on the to be removed
3513  *    CPU. Existing tasks will remain running there and will be taken
3514  *    off.
3515  *
3516  * This means that fallback selection must not select !active CPUs.
3517  * And can assume that any active CPU must be online. Conversely
3518  * select_task_rq() below may allow selection of !active CPUs in order
3519  * to satisfy the above rules.
3520  */
3521 static int select_fallback_rq(int cpu, struct task_struct *p)
3522 {
3523 	int nid = cpu_to_node(cpu);
3524 	const struct cpumask *nodemask = NULL;
3525 	enum { cpuset, possible, fail } state = cpuset;
3526 	int dest_cpu;
3527 
3528 	/*
3529 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3530 	 * will return -1. There is no CPU on the node, and we should
3531 	 * select the CPU on the other node.
3532 	 */
3533 	if (nid != -1) {
3534 		nodemask = cpumask_of_node(nid);
3535 
3536 		/* Look for allowed, online CPU in same node. */
3537 		for_each_cpu(dest_cpu, nodemask) {
3538 			if (is_cpu_allowed(p, dest_cpu))
3539 				return dest_cpu;
3540 		}
3541 	}
3542 
3543 	for (;;) {
3544 		/* Any allowed, online CPU? */
3545 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3546 			if (!is_cpu_allowed(p, dest_cpu))
3547 				continue;
3548 
3549 			goto out;
3550 		}
3551 
3552 		/* No more Mr. Nice Guy. */
3553 		switch (state) {
3554 		case cpuset:
3555 			if (cpuset_cpus_allowed_fallback(p)) {
3556 				state = possible;
3557 				break;
3558 			}
3559 			fallthrough;
3560 		case possible:
3561 			/*
3562 			 * XXX When called from select_task_rq() we only
3563 			 * hold p->pi_lock and again violate locking order.
3564 			 *
3565 			 * More yuck to audit.
3566 			 */
3567 			do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
3568 			state = fail;
3569 			break;
3570 		case fail:
3571 			BUG();
3572 			break;
3573 		}
3574 	}
3575 
3576 out:
3577 	if (state != cpuset) {
3578 		/*
3579 		 * Don't tell them about moving exiting tasks or
3580 		 * kernel threads (both mm NULL), since they never
3581 		 * leave kernel.
3582 		 */
3583 		if (p->mm && printk_ratelimit()) {
3584 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3585 					task_pid_nr(p), p->comm, cpu);
3586 		}
3587 	}
3588 
3589 	return dest_cpu;
3590 }
3591 
3592 /*
3593  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3594  */
3595 static inline
3596 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3597 {
3598 	lockdep_assert_held(&p->pi_lock);
3599 
3600 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3601 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3602 		*wake_flags |= WF_RQ_SELECTED;
3603 	} else {
3604 		cpu = cpumask_any(p->cpus_ptr);
3605 	}
3606 
3607 	/*
3608 	 * In order not to call set_task_cpu() on a blocking task we need
3609 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3610 	 * CPU.
3611 	 *
3612 	 * Since this is common to all placement strategies, this lives here.
3613 	 *
3614 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3615 	 *   not worry about this generic constraint ]
3616 	 */
3617 	if (unlikely(!is_cpu_allowed(p, cpu)))
3618 		cpu = select_fallback_rq(task_cpu(p), p);
3619 
3620 	return cpu;
3621 }
3622 
3623 void sched_set_stop_task(int cpu, struct task_struct *stop)
3624 {
3625 	static struct lock_class_key stop_pi_lock;
3626 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3627 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3628 
3629 	if (stop) {
3630 		/*
3631 		 * Make it appear like a SCHED_FIFO task, its something
3632 		 * userspace knows about and won't get confused about.
3633 		 *
3634 		 * Also, it will make PI more or less work without too
3635 		 * much confusion -- but then, stop work should not
3636 		 * rely on PI working anyway.
3637 		 */
3638 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3639 
3640 		stop->sched_class = &stop_sched_class;
3641 
3642 		/*
3643 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3644 		 * adjust the effective priority of a task. As a result,
3645 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3646 		 * which can then trigger wakeups of the stop thread to push
3647 		 * around the current task.
3648 		 *
3649 		 * The stop task itself will never be part of the PI-chain, it
3650 		 * never blocks, therefore that ->pi_lock recursion is safe.
3651 		 * Tell lockdep about this by placing the stop->pi_lock in its
3652 		 * own class.
3653 		 */
3654 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3655 	}
3656 
3657 	cpu_rq(cpu)->stop = stop;
3658 
3659 	if (old_stop) {
3660 		/*
3661 		 * Reset it back to a normal scheduling class so that
3662 		 * it can die in pieces.
3663 		 */
3664 		old_stop->sched_class = &rt_sched_class;
3665 	}
3666 }
3667 
3668 static void
3669 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3670 {
3671 	struct rq *rq;
3672 
3673 	if (!schedstat_enabled())
3674 		return;
3675 
3676 	rq = this_rq();
3677 
3678 	if (cpu == rq->cpu) {
3679 		__schedstat_inc(rq->ttwu_local);
3680 		__schedstat_inc(p->stats.nr_wakeups_local);
3681 	} else {
3682 		struct sched_domain *sd;
3683 
3684 		__schedstat_inc(p->stats.nr_wakeups_remote);
3685 
3686 		guard(rcu)();
3687 		for_each_domain(rq->cpu, sd) {
3688 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3689 				__schedstat_inc(sd->ttwu_wake_remote);
3690 				break;
3691 			}
3692 		}
3693 	}
3694 
3695 	if (wake_flags & WF_MIGRATED)
3696 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3697 
3698 	__schedstat_inc(rq->ttwu_count);
3699 	__schedstat_inc(p->stats.nr_wakeups);
3700 
3701 	if (wake_flags & WF_SYNC)
3702 		__schedstat_inc(p->stats.nr_wakeups_sync);
3703 }
3704 
3705 /*
3706  * Mark the task runnable.
3707  */
3708 static inline void ttwu_do_wakeup(struct task_struct *p)
3709 {
3710 	WRITE_ONCE(p->__state, TASK_RUNNING);
3711 	trace_sched_wakeup(p);
3712 }
3713 
3714 static void
3715 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3716 		 struct rq_flags *rf)
3717 {
3718 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3719 
3720 	lockdep_assert_rq_held(rq);
3721 
3722 	if (p->sched_contributes_to_load)
3723 		rq->nr_uninterruptible--;
3724 
3725 	if (wake_flags & WF_RQ_SELECTED)
3726 		en_flags |= ENQUEUE_RQ_SELECTED;
3727 	if (wake_flags & WF_MIGRATED)
3728 		en_flags |= ENQUEUE_MIGRATED;
3729 	else
3730 	if (p->in_iowait) {
3731 		delayacct_blkio_end(p);
3732 		atomic_dec(&task_rq(p)->nr_iowait);
3733 	}
3734 
3735 	activate_task(rq, p, en_flags);
3736 	wakeup_preempt(rq, p, wake_flags);
3737 
3738 	ttwu_do_wakeup(p);
3739 
3740 	if (p->sched_class->task_woken) {
3741 		/*
3742 		 * Our task @p is fully woken up and running; so it's safe to
3743 		 * drop the rq->lock, hereafter rq is only used for statistics.
3744 		 */
3745 		rq_unpin_lock(rq, rf);
3746 		p->sched_class->task_woken(rq, p);
3747 		rq_repin_lock(rq, rf);
3748 	}
3749 
3750 	if (rq->idle_stamp) {
3751 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3752 		u64 max = 2*rq->max_idle_balance_cost;
3753 
3754 		update_avg(&rq->avg_idle, delta);
3755 
3756 		if (rq->avg_idle > max)
3757 			rq->avg_idle = max;
3758 
3759 		rq->idle_stamp = 0;
3760 	}
3761 }
3762 
3763 /*
3764  * Consider @p being inside a wait loop:
3765  *
3766  *   for (;;) {
3767  *      set_current_state(TASK_UNINTERRUPTIBLE);
3768  *
3769  *      if (CONDITION)
3770  *         break;
3771  *
3772  *      schedule();
3773  *   }
3774  *   __set_current_state(TASK_RUNNING);
3775  *
3776  * between set_current_state() and schedule(). In this case @p is still
3777  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3778  * an atomic manner.
3779  *
3780  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3781  * then schedule() must still happen and p->state can be changed to
3782  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3783  * need to do a full wakeup with enqueue.
3784  *
3785  * Returns: %true when the wakeup is done,
3786  *          %false otherwise.
3787  */
3788 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3789 {
3790 	struct rq_flags rf;
3791 	struct rq *rq;
3792 	int ret = 0;
3793 
3794 	rq = __task_rq_lock(p, &rf);
3795 	if (task_on_rq_queued(p)) {
3796 		update_rq_clock(rq);
3797 		if (p->se.sched_delayed)
3798 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3799 		if (!task_on_cpu(rq, p)) {
3800 			/*
3801 			 * When on_rq && !on_cpu the task is preempted, see if
3802 			 * it should preempt the task that is current now.
3803 			 */
3804 			wakeup_preempt(rq, p, wake_flags);
3805 		}
3806 		ttwu_do_wakeup(p);
3807 		ret = 1;
3808 	}
3809 	__task_rq_unlock(rq, &rf);
3810 
3811 	return ret;
3812 }
3813 
3814 void sched_ttwu_pending(void *arg)
3815 {
3816 	struct llist_node *llist = arg;
3817 	struct rq *rq = this_rq();
3818 	struct task_struct *p, *t;
3819 	struct rq_flags rf;
3820 
3821 	if (!llist)
3822 		return;
3823 
3824 	rq_lock_irqsave(rq, &rf);
3825 	update_rq_clock(rq);
3826 
3827 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3828 		if (WARN_ON_ONCE(p->on_cpu))
3829 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3830 
3831 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3832 			set_task_cpu(p, cpu_of(rq));
3833 
3834 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3835 	}
3836 
3837 	/*
3838 	 * Must be after enqueueing at least once task such that
3839 	 * idle_cpu() does not observe a false-negative -- if it does,
3840 	 * it is possible for select_idle_siblings() to stack a number
3841 	 * of tasks on this CPU during that window.
3842 	 *
3843 	 * It is OK to clear ttwu_pending when another task pending.
3844 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3845 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3846 	 */
3847 	WRITE_ONCE(rq->ttwu_pending, 0);
3848 	rq_unlock_irqrestore(rq, &rf);
3849 }
3850 
3851 /*
3852  * Prepare the scene for sending an IPI for a remote smp_call
3853  *
3854  * Returns true if the caller can proceed with sending the IPI.
3855  * Returns false otherwise.
3856  */
3857 bool call_function_single_prep_ipi(int cpu)
3858 {
3859 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3860 		trace_sched_wake_idle_without_ipi(cpu);
3861 		return false;
3862 	}
3863 
3864 	return true;
3865 }
3866 
3867 /*
3868  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3869  * necessary. The wakee CPU on receipt of the IPI will queue the task
3870  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3871  * of the wakeup instead of the waker.
3872  */
3873 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3874 {
3875 	struct rq *rq = cpu_rq(cpu);
3876 
3877 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3878 
3879 	WRITE_ONCE(rq->ttwu_pending, 1);
3880 #ifdef CONFIG_SMP
3881 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3882 #endif
3883 }
3884 
3885 void wake_up_if_idle(int cpu)
3886 {
3887 	struct rq *rq = cpu_rq(cpu);
3888 
3889 	guard(rcu)();
3890 	if (is_idle_task(rcu_dereference(rq->curr))) {
3891 		guard(rq_lock_irqsave)(rq);
3892 		if (is_idle_task(rq->curr))
3893 			resched_curr(rq);
3894 	}
3895 }
3896 
3897 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3898 {
3899 	if (!sched_asym_cpucap_active())
3900 		return true;
3901 
3902 	if (this_cpu == that_cpu)
3903 		return true;
3904 
3905 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3906 }
3907 
3908 bool cpus_share_cache(int this_cpu, int that_cpu)
3909 {
3910 	if (this_cpu == that_cpu)
3911 		return true;
3912 
3913 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3914 }
3915 
3916 /*
3917  * Whether CPUs are share cache resources, which means LLC on non-cluster
3918  * machines and LLC tag or L2 on machines with clusters.
3919  */
3920 bool cpus_share_resources(int this_cpu, int that_cpu)
3921 {
3922 	if (this_cpu == that_cpu)
3923 		return true;
3924 
3925 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3926 }
3927 
3928 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3929 {
3930 	/* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */
3931 	if (!scx_allow_ttwu_queue(p))
3932 		return false;
3933 
3934 #ifdef CONFIG_SMP
3935 	if (p->sched_class == &stop_sched_class)
3936 		return false;
3937 #endif
3938 
3939 	/*
3940 	 * Do not complicate things with the async wake_list while the CPU is
3941 	 * in hotplug state.
3942 	 */
3943 	if (!cpu_active(cpu))
3944 		return false;
3945 
3946 	/* Ensure the task will still be allowed to run on the CPU. */
3947 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3948 		return false;
3949 
3950 	/*
3951 	 * If the CPU does not share cache, then queue the task on the
3952 	 * remote rqs wakelist to avoid accessing remote data.
3953 	 */
3954 	if (!cpus_share_cache(smp_processor_id(), cpu))
3955 		return true;
3956 
3957 	if (cpu == smp_processor_id())
3958 		return false;
3959 
3960 	/*
3961 	 * If the wakee cpu is idle, or the task is descheduling and the
3962 	 * only running task on the CPU, then use the wakelist to offload
3963 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3964 	 * the current CPU is likely busy. nr_running is checked to
3965 	 * avoid unnecessary task stacking.
3966 	 *
3967 	 * Note that we can only get here with (wakee) p->on_rq=0,
3968 	 * p->on_cpu can be whatever, we've done the dequeue, so
3969 	 * the wakee has been accounted out of ->nr_running.
3970 	 */
3971 	if (!cpu_rq(cpu)->nr_running)
3972 		return true;
3973 
3974 	return false;
3975 }
3976 
3977 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3978 {
3979 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3980 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3981 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3982 		return true;
3983 	}
3984 
3985 	return false;
3986 }
3987 
3988 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3989 {
3990 	struct rq *rq = cpu_rq(cpu);
3991 	struct rq_flags rf;
3992 
3993 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3994 		return;
3995 
3996 	rq_lock(rq, &rf);
3997 	update_rq_clock(rq);
3998 	ttwu_do_activate(rq, p, wake_flags, &rf);
3999 	rq_unlock(rq, &rf);
4000 }
4001 
4002 /*
4003  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4004  *
4005  * The caller holds p::pi_lock if p != current or has preemption
4006  * disabled when p == current.
4007  *
4008  * The rules of saved_state:
4009  *
4010  *   The related locking code always holds p::pi_lock when updating
4011  *   p::saved_state, which means the code is fully serialized in both cases.
4012  *
4013  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4014  *   No other bits set. This allows to distinguish all wakeup scenarios.
4015  *
4016  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4017  *   allows us to prevent early wakeup of tasks before they can be run on
4018  *   asymmetric ISA architectures (eg ARMv9).
4019  */
4020 static __always_inline
4021 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4022 {
4023 	int match;
4024 
4025 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4026 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4027 			     state != TASK_RTLOCK_WAIT);
4028 	}
4029 
4030 	*success = !!(match = __task_state_match(p, state));
4031 
4032 	/*
4033 	 * Saved state preserves the task state across blocking on
4034 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4035 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4036 	 * because it waits for a lock wakeup or __thaw_task(). Also
4037 	 * indicate success because from the regular waker's point of
4038 	 * view this has succeeded.
4039 	 *
4040 	 * After acquiring the lock the task will restore p::__state
4041 	 * from p::saved_state which ensures that the regular
4042 	 * wakeup is not lost. The restore will also set
4043 	 * p::saved_state to TASK_RUNNING so any further tests will
4044 	 * not result in false positives vs. @success
4045 	 */
4046 	if (match < 0)
4047 		p->saved_state = TASK_RUNNING;
4048 
4049 	return match > 0;
4050 }
4051 
4052 /*
4053  * Notes on Program-Order guarantees on SMP systems.
4054  *
4055  *  MIGRATION
4056  *
4057  * The basic program-order guarantee on SMP systems is that when a task [t]
4058  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4059  * execution on its new CPU [c1].
4060  *
4061  * For migration (of runnable tasks) this is provided by the following means:
4062  *
4063  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4064  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4065  *     rq(c1)->lock (if not at the same time, then in that order).
4066  *  C) LOCK of the rq(c1)->lock scheduling in task
4067  *
4068  * Release/acquire chaining guarantees that B happens after A and C after B.
4069  * Note: the CPU doing B need not be c0 or c1
4070  *
4071  * Example:
4072  *
4073  *   CPU0            CPU1            CPU2
4074  *
4075  *   LOCK rq(0)->lock
4076  *   sched-out X
4077  *   sched-in Y
4078  *   UNLOCK rq(0)->lock
4079  *
4080  *                                   LOCK rq(0)->lock // orders against CPU0
4081  *                                   dequeue X
4082  *                                   UNLOCK rq(0)->lock
4083  *
4084  *                                   LOCK rq(1)->lock
4085  *                                   enqueue X
4086  *                                   UNLOCK rq(1)->lock
4087  *
4088  *                   LOCK rq(1)->lock // orders against CPU2
4089  *                   sched-out Z
4090  *                   sched-in X
4091  *                   UNLOCK rq(1)->lock
4092  *
4093  *
4094  *  BLOCKING -- aka. SLEEP + WAKEUP
4095  *
4096  * For blocking we (obviously) need to provide the same guarantee as for
4097  * migration. However the means are completely different as there is no lock
4098  * chain to provide order. Instead we do:
4099  *
4100  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4101  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4102  *
4103  * Example:
4104  *
4105  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4106  *
4107  *   LOCK rq(0)->lock LOCK X->pi_lock
4108  *   dequeue X
4109  *   sched-out X
4110  *   smp_store_release(X->on_cpu, 0);
4111  *
4112  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4113  *                    X->state = WAKING
4114  *                    set_task_cpu(X,2)
4115  *
4116  *                    LOCK rq(2)->lock
4117  *                    enqueue X
4118  *                    X->state = RUNNING
4119  *                    UNLOCK rq(2)->lock
4120  *
4121  *                                          LOCK rq(2)->lock // orders against CPU1
4122  *                                          sched-out Z
4123  *                                          sched-in X
4124  *                                          UNLOCK rq(2)->lock
4125  *
4126  *                    UNLOCK X->pi_lock
4127  *   UNLOCK rq(0)->lock
4128  *
4129  *
4130  * However, for wakeups there is a second guarantee we must provide, namely we
4131  * must ensure that CONDITION=1 done by the caller can not be reordered with
4132  * accesses to the task state; see try_to_wake_up() and set_current_state().
4133  */
4134 
4135 /**
4136  * try_to_wake_up - wake up a thread
4137  * @p: the thread to be awakened
4138  * @state: the mask of task states that can be woken
4139  * @wake_flags: wake modifier flags (WF_*)
4140  *
4141  * Conceptually does:
4142  *
4143  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4144  *
4145  * If the task was not queued/runnable, also place it back on a runqueue.
4146  *
4147  * This function is atomic against schedule() which would dequeue the task.
4148  *
4149  * It issues a full memory barrier before accessing @p->state, see the comment
4150  * with set_current_state().
4151  *
4152  * Uses p->pi_lock to serialize against concurrent wake-ups.
4153  *
4154  * Relies on p->pi_lock stabilizing:
4155  *  - p->sched_class
4156  *  - p->cpus_ptr
4157  *  - p->sched_task_group
4158  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4159  *
4160  * Tries really hard to only take one task_rq(p)->lock for performance.
4161  * Takes rq->lock in:
4162  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4163  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4164  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4165  *
4166  * As a consequence we race really badly with just about everything. See the
4167  * many memory barriers and their comments for details.
4168  *
4169  * Return: %true if @p->state changes (an actual wakeup was done),
4170  *	   %false otherwise.
4171  */
4172 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4173 {
4174 	guard(preempt)();
4175 	int cpu, success = 0;
4176 
4177 	wake_flags |= WF_TTWU;
4178 
4179 	if (p == current) {
4180 		/*
4181 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4182 		 * == smp_processor_id()'. Together this means we can special
4183 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4184 		 * without taking any locks.
4185 		 *
4186 		 * Specifically, given current runs ttwu() we must be before
4187 		 * schedule()'s block_task(), as such this must not observe
4188 		 * sched_delayed.
4189 		 *
4190 		 * In particular:
4191 		 *  - we rely on Program-Order guarantees for all the ordering,
4192 		 *  - we're serialized against set_special_state() by virtue of
4193 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4194 		 */
4195 		WARN_ON_ONCE(p->se.sched_delayed);
4196 		if (!ttwu_state_match(p, state, &success))
4197 			goto out;
4198 
4199 		trace_sched_waking(p);
4200 		ttwu_do_wakeup(p);
4201 		goto out;
4202 	}
4203 
4204 	/*
4205 	 * If we are going to wake up a thread waiting for CONDITION we
4206 	 * need to ensure that CONDITION=1 done by the caller can not be
4207 	 * reordered with p->state check below. This pairs with smp_store_mb()
4208 	 * in set_current_state() that the waiting thread does.
4209 	 */
4210 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4211 		smp_mb__after_spinlock();
4212 		if (!ttwu_state_match(p, state, &success))
4213 			break;
4214 
4215 		trace_sched_waking(p);
4216 
4217 		/*
4218 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4219 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4220 		 * in smp_cond_load_acquire() below.
4221 		 *
4222 		 * sched_ttwu_pending()			try_to_wake_up()
4223 		 *   STORE p->on_rq = 1			  LOAD p->state
4224 		 *   UNLOCK rq->lock
4225 		 *
4226 		 * __schedule() (switch to task 'p')
4227 		 *   LOCK rq->lock			  smp_rmb();
4228 		 *   smp_mb__after_spinlock();
4229 		 *   UNLOCK rq->lock
4230 		 *
4231 		 * [task p]
4232 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4233 		 *
4234 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4235 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4236 		 *
4237 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4238 		 */
4239 		smp_rmb();
4240 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4241 			break;
4242 
4243 		/*
4244 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4245 		 * possible to, falsely, observe p->on_cpu == 0.
4246 		 *
4247 		 * One must be running (->on_cpu == 1) in order to remove oneself
4248 		 * from the runqueue.
4249 		 *
4250 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4251 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4252 		 *   UNLOCK rq->lock
4253 		 *
4254 		 * __schedule() (put 'p' to sleep)
4255 		 *   LOCK rq->lock			  smp_rmb();
4256 		 *   smp_mb__after_spinlock();
4257 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4258 		 *
4259 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4260 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4261 		 *
4262 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4263 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4264 		 * care about it's own p->state. See the comment in __schedule().
4265 		 */
4266 		smp_acquire__after_ctrl_dep();
4267 
4268 		/*
4269 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4270 		 * == 0), which means we need to do an enqueue, change p->state to
4271 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4272 		 * enqueue, such as ttwu_queue_wakelist().
4273 		 */
4274 		WRITE_ONCE(p->__state, TASK_WAKING);
4275 
4276 		/*
4277 		 * If the owning (remote) CPU is still in the middle of schedule() with
4278 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4279 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4280 		 * let the waker make forward progress. This is safe because IRQs are
4281 		 * disabled and the IPI will deliver after on_cpu is cleared.
4282 		 *
4283 		 * Ensure we load task_cpu(p) after p->on_cpu:
4284 		 *
4285 		 * set_task_cpu(p, cpu);
4286 		 *   STORE p->cpu = @cpu
4287 		 * __schedule() (switch to task 'p')
4288 		 *   LOCK rq->lock
4289 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4290 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4291 		 *
4292 		 * to ensure we observe the correct CPU on which the task is currently
4293 		 * scheduling.
4294 		 */
4295 		if (smp_load_acquire(&p->on_cpu) &&
4296 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4297 			break;
4298 
4299 		/*
4300 		 * If the owning (remote) CPU is still in the middle of schedule() with
4301 		 * this task as prev, wait until it's done referencing the task.
4302 		 *
4303 		 * Pairs with the smp_store_release() in finish_task().
4304 		 *
4305 		 * This ensures that tasks getting woken will be fully ordered against
4306 		 * their previous state and preserve Program Order.
4307 		 */
4308 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4309 
4310 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4311 		if (task_cpu(p) != cpu) {
4312 			if (p->in_iowait) {
4313 				delayacct_blkio_end(p);
4314 				atomic_dec(&task_rq(p)->nr_iowait);
4315 			}
4316 
4317 			wake_flags |= WF_MIGRATED;
4318 			psi_ttwu_dequeue(p);
4319 			set_task_cpu(p, cpu);
4320 		}
4321 
4322 		ttwu_queue(p, cpu, wake_flags);
4323 	}
4324 out:
4325 	if (success)
4326 		ttwu_stat(p, task_cpu(p), wake_flags);
4327 
4328 	return success;
4329 }
4330 
4331 static bool __task_needs_rq_lock(struct task_struct *p)
4332 {
4333 	unsigned int state = READ_ONCE(p->__state);
4334 
4335 	/*
4336 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4337 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4338 	 * locks at the end, see ttwu_queue_wakelist().
4339 	 */
4340 	if (state == TASK_RUNNING || state == TASK_WAKING)
4341 		return true;
4342 
4343 	/*
4344 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4345 	 * possible to, falsely, observe p->on_rq == 0.
4346 	 *
4347 	 * See try_to_wake_up() for a longer comment.
4348 	 */
4349 	smp_rmb();
4350 	if (p->on_rq)
4351 		return true;
4352 
4353 	/*
4354 	 * Ensure the task has finished __schedule() and will not be referenced
4355 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4356 	 */
4357 	smp_rmb();
4358 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4359 
4360 	return false;
4361 }
4362 
4363 /**
4364  * task_call_func - Invoke a function on task in fixed state
4365  * @p: Process for which the function is to be invoked, can be @current.
4366  * @func: Function to invoke.
4367  * @arg: Argument to function.
4368  *
4369  * Fix the task in it's current state by avoiding wakeups and or rq operations
4370  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4371  * task_curr() to work out what the state is, if required.  Given that @func
4372  * can be invoked with a runqueue lock held, it had better be quite
4373  * lightweight.
4374  *
4375  * Returns:
4376  *   Whatever @func returns
4377  */
4378 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4379 {
4380 	struct rq *rq = NULL;
4381 	struct rq_flags rf;
4382 	int ret;
4383 
4384 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4385 
4386 	if (__task_needs_rq_lock(p))
4387 		rq = __task_rq_lock(p, &rf);
4388 
4389 	/*
4390 	 * At this point the task is pinned; either:
4391 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4392 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4393 	 *  - queued, and we're holding off schedule	 (rq->lock)
4394 	 *  - running, and we're holding off de-schedule (rq->lock)
4395 	 *
4396 	 * The called function (@func) can use: task_curr(), p->on_rq and
4397 	 * p->__state to differentiate between these states.
4398 	 */
4399 	ret = func(p, arg);
4400 
4401 	if (rq)
4402 		rq_unlock(rq, &rf);
4403 
4404 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4405 	return ret;
4406 }
4407 
4408 /**
4409  * cpu_curr_snapshot - Return a snapshot of the currently running task
4410  * @cpu: The CPU on which to snapshot the task.
4411  *
4412  * Returns the task_struct pointer of the task "currently" running on
4413  * the specified CPU.
4414  *
4415  * If the specified CPU was offline, the return value is whatever it
4416  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4417  * task, but there is no guarantee.  Callers wishing a useful return
4418  * value must take some action to ensure that the specified CPU remains
4419  * online throughout.
4420  *
4421  * This function executes full memory barriers before and after fetching
4422  * the pointer, which permits the caller to confine this function's fetch
4423  * with respect to the caller's accesses to other shared variables.
4424  */
4425 struct task_struct *cpu_curr_snapshot(int cpu)
4426 {
4427 	struct rq *rq = cpu_rq(cpu);
4428 	struct task_struct *t;
4429 	struct rq_flags rf;
4430 
4431 	rq_lock_irqsave(rq, &rf);
4432 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4433 	t = rcu_dereference(cpu_curr(cpu));
4434 	rq_unlock_irqrestore(rq, &rf);
4435 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4436 
4437 	return t;
4438 }
4439 
4440 /**
4441  * wake_up_process - Wake up a specific process
4442  * @p: The process to be woken up.
4443  *
4444  * Attempt to wake up the nominated process and move it to the set of runnable
4445  * processes.
4446  *
4447  * Return: 1 if the process was woken up, 0 if it was already running.
4448  *
4449  * This function executes a full memory barrier before accessing the task state.
4450  */
4451 int wake_up_process(struct task_struct *p)
4452 {
4453 	return try_to_wake_up(p, TASK_NORMAL, 0);
4454 }
4455 EXPORT_SYMBOL(wake_up_process);
4456 
4457 int wake_up_state(struct task_struct *p, unsigned int state)
4458 {
4459 	return try_to_wake_up(p, state, 0);
4460 }
4461 
4462 /*
4463  * Perform scheduler related setup for a newly forked process p.
4464  * p is forked by current.
4465  *
4466  * __sched_fork() is basic setup which is also used by sched_init() to
4467  * initialize the boot CPU's idle task.
4468  */
4469 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4470 {
4471 	p->on_rq			= 0;
4472 
4473 	p->se.on_rq			= 0;
4474 	p->se.exec_start		= 0;
4475 	p->se.sum_exec_runtime		= 0;
4476 	p->se.prev_sum_exec_runtime	= 0;
4477 	p->se.nr_migrations		= 0;
4478 	p->se.vruntime			= 0;
4479 	p->se.vlag			= 0;
4480 	INIT_LIST_HEAD(&p->se.group_node);
4481 
4482 	/* A delayed task cannot be in clone(). */
4483 	WARN_ON_ONCE(p->se.sched_delayed);
4484 
4485 #ifdef CONFIG_FAIR_GROUP_SCHED
4486 	p->se.cfs_rq			= NULL;
4487 #endif
4488 
4489 #ifdef CONFIG_SCHEDSTATS
4490 	/* Even if schedstat is disabled, there should not be garbage */
4491 	memset(&p->stats, 0, sizeof(p->stats));
4492 #endif
4493 
4494 	init_dl_entity(&p->dl);
4495 
4496 	INIT_LIST_HEAD(&p->rt.run_list);
4497 	p->rt.timeout		= 0;
4498 	p->rt.time_slice	= sched_rr_timeslice;
4499 	p->rt.on_rq		= 0;
4500 	p->rt.on_list		= 0;
4501 
4502 #ifdef CONFIG_SCHED_CLASS_EXT
4503 	init_scx_entity(&p->scx);
4504 #endif
4505 
4506 #ifdef CONFIG_PREEMPT_NOTIFIERS
4507 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4508 #endif
4509 
4510 #ifdef CONFIG_COMPACTION
4511 	p->capture_control = NULL;
4512 #endif
4513 	init_numa_balancing(clone_flags, p);
4514 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4515 	p->migration_pending = NULL;
4516 	init_sched_mm_cid(p);
4517 }
4518 
4519 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4520 
4521 #ifdef CONFIG_NUMA_BALANCING
4522 
4523 int sysctl_numa_balancing_mode;
4524 
4525 static void __set_numabalancing_state(bool enabled)
4526 {
4527 	if (enabled)
4528 		static_branch_enable(&sched_numa_balancing);
4529 	else
4530 		static_branch_disable(&sched_numa_balancing);
4531 }
4532 
4533 void set_numabalancing_state(bool enabled)
4534 {
4535 	if (enabled)
4536 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4537 	else
4538 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4539 	__set_numabalancing_state(enabled);
4540 }
4541 
4542 #ifdef CONFIG_PROC_SYSCTL
4543 static void reset_memory_tiering(void)
4544 {
4545 	struct pglist_data *pgdat;
4546 
4547 	for_each_online_pgdat(pgdat) {
4548 		pgdat->nbp_threshold = 0;
4549 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4550 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4551 	}
4552 }
4553 
4554 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4555 			  void *buffer, size_t *lenp, loff_t *ppos)
4556 {
4557 	struct ctl_table t;
4558 	int err;
4559 	int state = sysctl_numa_balancing_mode;
4560 
4561 	if (write && !capable(CAP_SYS_ADMIN))
4562 		return -EPERM;
4563 
4564 	t = *table;
4565 	t.data = &state;
4566 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4567 	if (err < 0)
4568 		return err;
4569 	if (write) {
4570 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4571 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4572 			reset_memory_tiering();
4573 		sysctl_numa_balancing_mode = state;
4574 		__set_numabalancing_state(state);
4575 	}
4576 	return err;
4577 }
4578 #endif /* CONFIG_PROC_SYSCTL */
4579 #endif /* CONFIG_NUMA_BALANCING */
4580 
4581 #ifdef CONFIG_SCHEDSTATS
4582 
4583 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4584 
4585 static void set_schedstats(bool enabled)
4586 {
4587 	if (enabled)
4588 		static_branch_enable(&sched_schedstats);
4589 	else
4590 		static_branch_disable(&sched_schedstats);
4591 }
4592 
4593 void force_schedstat_enabled(void)
4594 {
4595 	if (!schedstat_enabled()) {
4596 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4597 		static_branch_enable(&sched_schedstats);
4598 	}
4599 }
4600 
4601 static int __init setup_schedstats(char *str)
4602 {
4603 	int ret = 0;
4604 	if (!str)
4605 		goto out;
4606 
4607 	if (!strcmp(str, "enable")) {
4608 		set_schedstats(true);
4609 		ret = 1;
4610 	} else if (!strcmp(str, "disable")) {
4611 		set_schedstats(false);
4612 		ret = 1;
4613 	}
4614 out:
4615 	if (!ret)
4616 		pr_warn("Unable to parse schedstats=\n");
4617 
4618 	return ret;
4619 }
4620 __setup("schedstats=", setup_schedstats);
4621 
4622 #ifdef CONFIG_PROC_SYSCTL
4623 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4624 		size_t *lenp, loff_t *ppos)
4625 {
4626 	struct ctl_table t;
4627 	int err;
4628 	int state = static_branch_likely(&sched_schedstats);
4629 
4630 	if (write && !capable(CAP_SYS_ADMIN))
4631 		return -EPERM;
4632 
4633 	t = *table;
4634 	t.data = &state;
4635 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4636 	if (err < 0)
4637 		return err;
4638 	if (write)
4639 		set_schedstats(state);
4640 	return err;
4641 }
4642 #endif /* CONFIG_PROC_SYSCTL */
4643 #endif /* CONFIG_SCHEDSTATS */
4644 
4645 #ifdef CONFIG_SYSCTL
4646 static const struct ctl_table sched_core_sysctls[] = {
4647 #ifdef CONFIG_SCHEDSTATS
4648 	{
4649 		.procname       = "sched_schedstats",
4650 		.data           = NULL,
4651 		.maxlen         = sizeof(unsigned int),
4652 		.mode           = 0644,
4653 		.proc_handler   = sysctl_schedstats,
4654 		.extra1         = SYSCTL_ZERO,
4655 		.extra2         = SYSCTL_ONE,
4656 	},
4657 #endif /* CONFIG_SCHEDSTATS */
4658 #ifdef CONFIG_UCLAMP_TASK
4659 	{
4660 		.procname       = "sched_util_clamp_min",
4661 		.data           = &sysctl_sched_uclamp_util_min,
4662 		.maxlen         = sizeof(unsigned int),
4663 		.mode           = 0644,
4664 		.proc_handler   = sysctl_sched_uclamp_handler,
4665 	},
4666 	{
4667 		.procname       = "sched_util_clamp_max",
4668 		.data           = &sysctl_sched_uclamp_util_max,
4669 		.maxlen         = sizeof(unsigned int),
4670 		.mode           = 0644,
4671 		.proc_handler   = sysctl_sched_uclamp_handler,
4672 	},
4673 	{
4674 		.procname       = "sched_util_clamp_min_rt_default",
4675 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4676 		.maxlen         = sizeof(unsigned int),
4677 		.mode           = 0644,
4678 		.proc_handler   = sysctl_sched_uclamp_handler,
4679 	},
4680 #endif /* CONFIG_UCLAMP_TASK */
4681 #ifdef CONFIG_NUMA_BALANCING
4682 	{
4683 		.procname	= "numa_balancing",
4684 		.data		= NULL, /* filled in by handler */
4685 		.maxlen		= sizeof(unsigned int),
4686 		.mode		= 0644,
4687 		.proc_handler	= sysctl_numa_balancing,
4688 		.extra1		= SYSCTL_ZERO,
4689 		.extra2		= SYSCTL_FOUR,
4690 	},
4691 #endif /* CONFIG_NUMA_BALANCING */
4692 };
4693 static int __init sched_core_sysctl_init(void)
4694 {
4695 	register_sysctl_init("kernel", sched_core_sysctls);
4696 	return 0;
4697 }
4698 late_initcall(sched_core_sysctl_init);
4699 #endif /* CONFIG_SYSCTL */
4700 
4701 /*
4702  * fork()/clone()-time setup:
4703  */
4704 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4705 {
4706 	__sched_fork(clone_flags, p);
4707 	/*
4708 	 * We mark the process as NEW here. This guarantees that
4709 	 * nobody will actually run it, and a signal or other external
4710 	 * event cannot wake it up and insert it on the runqueue either.
4711 	 */
4712 	p->__state = TASK_NEW;
4713 
4714 	/*
4715 	 * Make sure we do not leak PI boosting priority to the child.
4716 	 */
4717 	p->prio = current->normal_prio;
4718 
4719 	uclamp_fork(p);
4720 
4721 	/*
4722 	 * Revert to default priority/policy on fork if requested.
4723 	 */
4724 	if (unlikely(p->sched_reset_on_fork)) {
4725 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4726 			p->policy = SCHED_NORMAL;
4727 			p->static_prio = NICE_TO_PRIO(0);
4728 			p->rt_priority = 0;
4729 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4730 			p->static_prio = NICE_TO_PRIO(0);
4731 
4732 		p->prio = p->normal_prio = p->static_prio;
4733 		set_load_weight(p, false);
4734 		p->se.custom_slice = 0;
4735 		p->se.slice = sysctl_sched_base_slice;
4736 
4737 		/*
4738 		 * We don't need the reset flag anymore after the fork. It has
4739 		 * fulfilled its duty:
4740 		 */
4741 		p->sched_reset_on_fork = 0;
4742 	}
4743 
4744 	if (dl_prio(p->prio))
4745 		return -EAGAIN;
4746 
4747 	scx_pre_fork(p);
4748 
4749 	if (rt_prio(p->prio)) {
4750 		p->sched_class = &rt_sched_class;
4751 #ifdef CONFIG_SCHED_CLASS_EXT
4752 	} else if (task_should_scx(p->policy)) {
4753 		p->sched_class = &ext_sched_class;
4754 #endif
4755 	} else {
4756 		p->sched_class = &fair_sched_class;
4757 	}
4758 
4759 	init_entity_runnable_average(&p->se);
4760 
4761 
4762 #ifdef CONFIG_SCHED_INFO
4763 	if (likely(sched_info_on()))
4764 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4765 #endif
4766 	p->on_cpu = 0;
4767 	init_task_preempt_count(p);
4768 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4769 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4770 
4771 	return 0;
4772 }
4773 
4774 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4775 {
4776 	unsigned long flags;
4777 
4778 	/*
4779 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4780 	 * required yet, but lockdep gets upset if rules are violated.
4781 	 */
4782 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4783 #ifdef CONFIG_CGROUP_SCHED
4784 	if (1) {
4785 		struct task_group *tg;
4786 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4787 				  struct task_group, css);
4788 		tg = autogroup_task_group(p, tg);
4789 		p->sched_task_group = tg;
4790 	}
4791 #endif
4792 	rseq_migrate(p);
4793 	/*
4794 	 * We're setting the CPU for the first time, we don't migrate,
4795 	 * so use __set_task_cpu().
4796 	 */
4797 	__set_task_cpu(p, smp_processor_id());
4798 	if (p->sched_class->task_fork)
4799 		p->sched_class->task_fork(p);
4800 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4801 
4802 	return scx_fork(p);
4803 }
4804 
4805 void sched_cancel_fork(struct task_struct *p)
4806 {
4807 	scx_cancel_fork(p);
4808 }
4809 
4810 void sched_post_fork(struct task_struct *p)
4811 {
4812 	uclamp_post_fork(p);
4813 	scx_post_fork(p);
4814 }
4815 
4816 unsigned long to_ratio(u64 period, u64 runtime)
4817 {
4818 	if (runtime == RUNTIME_INF)
4819 		return BW_UNIT;
4820 
4821 	/*
4822 	 * Doing this here saves a lot of checks in all
4823 	 * the calling paths, and returning zero seems
4824 	 * safe for them anyway.
4825 	 */
4826 	if (period == 0)
4827 		return 0;
4828 
4829 	return div64_u64(runtime << BW_SHIFT, period);
4830 }
4831 
4832 /*
4833  * wake_up_new_task - wake up a newly created task for the first time.
4834  *
4835  * This function will do some initial scheduler statistics housekeeping
4836  * that must be done for every newly created context, then puts the task
4837  * on the runqueue and wakes it.
4838  */
4839 void wake_up_new_task(struct task_struct *p)
4840 {
4841 	struct rq_flags rf;
4842 	struct rq *rq;
4843 	int wake_flags = WF_FORK;
4844 
4845 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4846 	WRITE_ONCE(p->__state, TASK_RUNNING);
4847 	/*
4848 	 * Fork balancing, do it here and not earlier because:
4849 	 *  - cpus_ptr can change in the fork path
4850 	 *  - any previously selected CPU might disappear through hotplug
4851 	 *
4852 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4853 	 * as we're not fully set-up yet.
4854 	 */
4855 	p->recent_used_cpu = task_cpu(p);
4856 	rseq_migrate(p);
4857 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4858 	rq = __task_rq_lock(p, &rf);
4859 	update_rq_clock(rq);
4860 	post_init_entity_util_avg(p);
4861 
4862 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4863 	trace_sched_wakeup_new(p);
4864 	wakeup_preempt(rq, p, wake_flags);
4865 	if (p->sched_class->task_woken) {
4866 		/*
4867 		 * Nothing relies on rq->lock after this, so it's fine to
4868 		 * drop it.
4869 		 */
4870 		rq_unpin_lock(rq, &rf);
4871 		p->sched_class->task_woken(rq, p);
4872 		rq_repin_lock(rq, &rf);
4873 	}
4874 	task_rq_unlock(rq, p, &rf);
4875 }
4876 
4877 #ifdef CONFIG_PREEMPT_NOTIFIERS
4878 
4879 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4880 
4881 void preempt_notifier_inc(void)
4882 {
4883 	static_branch_inc(&preempt_notifier_key);
4884 }
4885 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4886 
4887 void preempt_notifier_dec(void)
4888 {
4889 	static_branch_dec(&preempt_notifier_key);
4890 }
4891 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4892 
4893 /**
4894  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4895  * @notifier: notifier struct to register
4896  */
4897 void preempt_notifier_register(struct preempt_notifier *notifier)
4898 {
4899 	if (!static_branch_unlikely(&preempt_notifier_key))
4900 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4901 
4902 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4903 }
4904 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4905 
4906 /**
4907  * preempt_notifier_unregister - no longer interested in preemption notifications
4908  * @notifier: notifier struct to unregister
4909  *
4910  * This is *not* safe to call from within a preemption notifier.
4911  */
4912 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4913 {
4914 	hlist_del(&notifier->link);
4915 }
4916 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4917 
4918 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4919 {
4920 	struct preempt_notifier *notifier;
4921 
4922 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4923 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4924 }
4925 
4926 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4927 {
4928 	if (static_branch_unlikely(&preempt_notifier_key))
4929 		__fire_sched_in_preempt_notifiers(curr);
4930 }
4931 
4932 static void
4933 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4934 				   struct task_struct *next)
4935 {
4936 	struct preempt_notifier *notifier;
4937 
4938 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4939 		notifier->ops->sched_out(notifier, next);
4940 }
4941 
4942 static __always_inline void
4943 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4944 				 struct task_struct *next)
4945 {
4946 	if (static_branch_unlikely(&preempt_notifier_key))
4947 		__fire_sched_out_preempt_notifiers(curr, next);
4948 }
4949 
4950 #else /* !CONFIG_PREEMPT_NOTIFIERS: */
4951 
4952 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4953 {
4954 }
4955 
4956 static inline void
4957 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4958 				 struct task_struct *next)
4959 {
4960 }
4961 
4962 #endif /* !CONFIG_PREEMPT_NOTIFIERS */
4963 
4964 static inline void prepare_task(struct task_struct *next)
4965 {
4966 	/*
4967 	 * Claim the task as running, we do this before switching to it
4968 	 * such that any running task will have this set.
4969 	 *
4970 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4971 	 * its ordering comment.
4972 	 */
4973 	WRITE_ONCE(next->on_cpu, 1);
4974 }
4975 
4976 static inline void finish_task(struct task_struct *prev)
4977 {
4978 	/*
4979 	 * This must be the very last reference to @prev from this CPU. After
4980 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4981 	 * must ensure this doesn't happen until the switch is completely
4982 	 * finished.
4983 	 *
4984 	 * In particular, the load of prev->state in finish_task_switch() must
4985 	 * happen before this.
4986 	 *
4987 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4988 	 */
4989 	smp_store_release(&prev->on_cpu, 0);
4990 }
4991 
4992 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4993 {
4994 	void (*func)(struct rq *rq);
4995 	struct balance_callback *next;
4996 
4997 	lockdep_assert_rq_held(rq);
4998 
4999 	while (head) {
5000 		func = (void (*)(struct rq *))head->func;
5001 		next = head->next;
5002 		head->next = NULL;
5003 		head = next;
5004 
5005 		func(rq);
5006 	}
5007 }
5008 
5009 static void balance_push(struct rq *rq);
5010 
5011 /*
5012  * balance_push_callback is a right abuse of the callback interface and plays
5013  * by significantly different rules.
5014  *
5015  * Where the normal balance_callback's purpose is to be ran in the same context
5016  * that queued it (only later, when it's safe to drop rq->lock again),
5017  * balance_push_callback is specifically targeted at __schedule().
5018  *
5019  * This abuse is tolerated because it places all the unlikely/odd cases behind
5020  * a single test, namely: rq->balance_callback == NULL.
5021  */
5022 struct balance_callback balance_push_callback = {
5023 	.next = NULL,
5024 	.func = balance_push,
5025 };
5026 
5027 static inline struct balance_callback *
5028 __splice_balance_callbacks(struct rq *rq, bool split)
5029 {
5030 	struct balance_callback *head = rq->balance_callback;
5031 
5032 	if (likely(!head))
5033 		return NULL;
5034 
5035 	lockdep_assert_rq_held(rq);
5036 	/*
5037 	 * Must not take balance_push_callback off the list when
5038 	 * splice_balance_callbacks() and balance_callbacks() are not
5039 	 * in the same rq->lock section.
5040 	 *
5041 	 * In that case it would be possible for __schedule() to interleave
5042 	 * and observe the list empty.
5043 	 */
5044 	if (split && head == &balance_push_callback)
5045 		head = NULL;
5046 	else
5047 		rq->balance_callback = NULL;
5048 
5049 	return head;
5050 }
5051 
5052 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5053 {
5054 	return __splice_balance_callbacks(rq, true);
5055 }
5056 
5057 static void __balance_callbacks(struct rq *rq)
5058 {
5059 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5060 }
5061 
5062 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5063 {
5064 	unsigned long flags;
5065 
5066 	if (unlikely(head)) {
5067 		raw_spin_rq_lock_irqsave(rq, flags);
5068 		do_balance_callbacks(rq, head);
5069 		raw_spin_rq_unlock_irqrestore(rq, flags);
5070 	}
5071 }
5072 
5073 static inline void
5074 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5075 {
5076 	/*
5077 	 * Since the runqueue lock will be released by the next
5078 	 * task (which is an invalid locking op but in the case
5079 	 * of the scheduler it's an obvious special-case), so we
5080 	 * do an early lockdep release here:
5081 	 */
5082 	rq_unpin_lock(rq, rf);
5083 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5084 #ifdef CONFIG_DEBUG_SPINLOCK
5085 	/* this is a valid case when another task releases the spinlock */
5086 	rq_lockp(rq)->owner = next;
5087 #endif
5088 }
5089 
5090 static inline void finish_lock_switch(struct rq *rq)
5091 {
5092 	/*
5093 	 * If we are tracking spinlock dependencies then we have to
5094 	 * fix up the runqueue lock - which gets 'carried over' from
5095 	 * prev into current:
5096 	 */
5097 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5098 	__balance_callbacks(rq);
5099 	raw_spin_rq_unlock_irq(rq);
5100 }
5101 
5102 /*
5103  * NOP if the arch has not defined these:
5104  */
5105 
5106 #ifndef prepare_arch_switch
5107 # define prepare_arch_switch(next)	do { } while (0)
5108 #endif
5109 
5110 #ifndef finish_arch_post_lock_switch
5111 # define finish_arch_post_lock_switch()	do { } while (0)
5112 #endif
5113 
5114 static inline void kmap_local_sched_out(void)
5115 {
5116 #ifdef CONFIG_KMAP_LOCAL
5117 	if (unlikely(current->kmap_ctrl.idx))
5118 		__kmap_local_sched_out();
5119 #endif
5120 }
5121 
5122 static inline void kmap_local_sched_in(void)
5123 {
5124 #ifdef CONFIG_KMAP_LOCAL
5125 	if (unlikely(current->kmap_ctrl.idx))
5126 		__kmap_local_sched_in();
5127 #endif
5128 }
5129 
5130 /**
5131  * prepare_task_switch - prepare to switch tasks
5132  * @rq: the runqueue preparing to switch
5133  * @prev: the current task that is being switched out
5134  * @next: the task we are going to switch to.
5135  *
5136  * This is called with the rq lock held and interrupts off. It must
5137  * be paired with a subsequent finish_task_switch after the context
5138  * switch.
5139  *
5140  * prepare_task_switch sets up locking and calls architecture specific
5141  * hooks.
5142  */
5143 static inline void
5144 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5145 		    struct task_struct *next)
5146 {
5147 	kcov_prepare_switch(prev);
5148 	sched_info_switch(rq, prev, next);
5149 	perf_event_task_sched_out(prev, next);
5150 	rseq_preempt(prev);
5151 	fire_sched_out_preempt_notifiers(prev, next);
5152 	kmap_local_sched_out();
5153 	prepare_task(next);
5154 	prepare_arch_switch(next);
5155 }
5156 
5157 /**
5158  * finish_task_switch - clean up after a task-switch
5159  * @prev: the thread we just switched away from.
5160  *
5161  * finish_task_switch must be called after the context switch, paired
5162  * with a prepare_task_switch call before the context switch.
5163  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5164  * and do any other architecture-specific cleanup actions.
5165  *
5166  * Note that we may have delayed dropping an mm in context_switch(). If
5167  * so, we finish that here outside of the runqueue lock. (Doing it
5168  * with the lock held can cause deadlocks; see schedule() for
5169  * details.)
5170  *
5171  * The context switch have flipped the stack from under us and restored the
5172  * local variables which were saved when this task called schedule() in the
5173  * past. 'prev == current' is still correct but we need to recalculate this_rq
5174  * because prev may have moved to another CPU.
5175  */
5176 static struct rq *finish_task_switch(struct task_struct *prev)
5177 	__releases(rq->lock)
5178 {
5179 	struct rq *rq = this_rq();
5180 	struct mm_struct *mm = rq->prev_mm;
5181 	unsigned int prev_state;
5182 
5183 	/*
5184 	 * The previous task will have left us with a preempt_count of 2
5185 	 * because it left us after:
5186 	 *
5187 	 *	schedule()
5188 	 *	  preempt_disable();			// 1
5189 	 *	  __schedule()
5190 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5191 	 *
5192 	 * Also, see FORK_PREEMPT_COUNT.
5193 	 */
5194 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5195 		      "corrupted preempt_count: %s/%d/0x%x\n",
5196 		      current->comm, current->pid, preempt_count()))
5197 		preempt_count_set(FORK_PREEMPT_COUNT);
5198 
5199 	rq->prev_mm = NULL;
5200 
5201 	/*
5202 	 * A task struct has one reference for the use as "current".
5203 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5204 	 * schedule one last time. The schedule call will never return, and
5205 	 * the scheduled task must drop that reference.
5206 	 *
5207 	 * We must observe prev->state before clearing prev->on_cpu (in
5208 	 * finish_task), otherwise a concurrent wakeup can get prev
5209 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5210 	 * transition, resulting in a double drop.
5211 	 */
5212 	prev_state = READ_ONCE(prev->__state);
5213 	vtime_task_switch(prev);
5214 	perf_event_task_sched_in(prev, current);
5215 	finish_task(prev);
5216 	tick_nohz_task_switch();
5217 	finish_lock_switch(rq);
5218 	finish_arch_post_lock_switch();
5219 	kcov_finish_switch(current);
5220 	/*
5221 	 * kmap_local_sched_out() is invoked with rq::lock held and
5222 	 * interrupts disabled. There is no requirement for that, but the
5223 	 * sched out code does not have an interrupt enabled section.
5224 	 * Restoring the maps on sched in does not require interrupts being
5225 	 * disabled either.
5226 	 */
5227 	kmap_local_sched_in();
5228 
5229 	fire_sched_in_preempt_notifiers(current);
5230 	/*
5231 	 * When switching through a kernel thread, the loop in
5232 	 * membarrier_{private,global}_expedited() may have observed that
5233 	 * kernel thread and not issued an IPI. It is therefore possible to
5234 	 * schedule between user->kernel->user threads without passing though
5235 	 * switch_mm(). Membarrier requires a barrier after storing to
5236 	 * rq->curr, before returning to userspace, so provide them here:
5237 	 *
5238 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5239 	 *   provided by mmdrop_lazy_tlb(),
5240 	 * - a sync_core for SYNC_CORE.
5241 	 */
5242 	if (mm) {
5243 		membarrier_mm_sync_core_before_usermode(mm);
5244 		mmdrop_lazy_tlb_sched(mm);
5245 	}
5246 
5247 	if (unlikely(prev_state == TASK_DEAD)) {
5248 		if (prev->sched_class->task_dead)
5249 			prev->sched_class->task_dead(prev);
5250 
5251 		/* Task is done with its stack. */
5252 		put_task_stack(prev);
5253 
5254 		put_task_struct_rcu_user(prev);
5255 	}
5256 
5257 	return rq;
5258 }
5259 
5260 /**
5261  * schedule_tail - first thing a freshly forked thread must call.
5262  * @prev: the thread we just switched away from.
5263  */
5264 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5265 	__releases(rq->lock)
5266 {
5267 	/*
5268 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5269 	 * finish_task_switch() for details.
5270 	 *
5271 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5272 	 * and the preempt_enable() will end up enabling preemption (on
5273 	 * PREEMPT_COUNT kernels).
5274 	 */
5275 
5276 	finish_task_switch(prev);
5277 	/*
5278 	 * This is a special case: the newly created task has just
5279 	 * switched the context for the first time. It is returning from
5280 	 * schedule for the first time in this path.
5281 	 */
5282 	trace_sched_exit_tp(true, CALLER_ADDR0);
5283 	preempt_enable();
5284 
5285 	if (current->set_child_tid)
5286 		put_user(task_pid_vnr(current), current->set_child_tid);
5287 
5288 	calculate_sigpending();
5289 }
5290 
5291 /*
5292  * context_switch - switch to the new MM and the new thread's register state.
5293  */
5294 static __always_inline struct rq *
5295 context_switch(struct rq *rq, struct task_struct *prev,
5296 	       struct task_struct *next, struct rq_flags *rf)
5297 {
5298 	prepare_task_switch(rq, prev, next);
5299 
5300 	/*
5301 	 * For paravirt, this is coupled with an exit in switch_to to
5302 	 * combine the page table reload and the switch backend into
5303 	 * one hypercall.
5304 	 */
5305 	arch_start_context_switch(prev);
5306 
5307 	/*
5308 	 * kernel -> kernel   lazy + transfer active
5309 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5310 	 *
5311 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5312 	 *   user ->   user   switch
5313 	 *
5314 	 * switch_mm_cid() needs to be updated if the barriers provided
5315 	 * by context_switch() are modified.
5316 	 */
5317 	if (!next->mm) {                                // to kernel
5318 		enter_lazy_tlb(prev->active_mm, next);
5319 
5320 		next->active_mm = prev->active_mm;
5321 		if (prev->mm)                           // from user
5322 			mmgrab_lazy_tlb(prev->active_mm);
5323 		else
5324 			prev->active_mm = NULL;
5325 	} else {                                        // to user
5326 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5327 		/*
5328 		 * sys_membarrier() requires an smp_mb() between setting
5329 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5330 		 *
5331 		 * The below provides this either through switch_mm(), or in
5332 		 * case 'prev->active_mm == next->mm' through
5333 		 * finish_task_switch()'s mmdrop().
5334 		 */
5335 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5336 		lru_gen_use_mm(next->mm);
5337 
5338 		if (!prev->mm) {                        // from kernel
5339 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5340 			rq->prev_mm = prev->active_mm;
5341 			prev->active_mm = NULL;
5342 		}
5343 	}
5344 
5345 	/* switch_mm_cid() requires the memory barriers above. */
5346 	switch_mm_cid(rq, prev, next);
5347 
5348 	prepare_lock_switch(rq, next, rf);
5349 
5350 	/* Here we just switch the register state and the stack. */
5351 	switch_to(prev, next, prev);
5352 	barrier();
5353 
5354 	return finish_task_switch(prev);
5355 }
5356 
5357 /*
5358  * nr_running and nr_context_switches:
5359  *
5360  * externally visible scheduler statistics: current number of runnable
5361  * threads, total number of context switches performed since bootup.
5362  */
5363 unsigned int nr_running(void)
5364 {
5365 	unsigned int i, sum = 0;
5366 
5367 	for_each_online_cpu(i)
5368 		sum += cpu_rq(i)->nr_running;
5369 
5370 	return sum;
5371 }
5372 
5373 /*
5374  * Check if only the current task is running on the CPU.
5375  *
5376  * Caution: this function does not check that the caller has disabled
5377  * preemption, thus the result might have a time-of-check-to-time-of-use
5378  * race.  The caller is responsible to use it correctly, for example:
5379  *
5380  * - from a non-preemptible section (of course)
5381  *
5382  * - from a thread that is bound to a single CPU
5383  *
5384  * - in a loop with very short iterations (e.g. a polling loop)
5385  */
5386 bool single_task_running(void)
5387 {
5388 	return raw_rq()->nr_running == 1;
5389 }
5390 EXPORT_SYMBOL(single_task_running);
5391 
5392 unsigned long long nr_context_switches_cpu(int cpu)
5393 {
5394 	return cpu_rq(cpu)->nr_switches;
5395 }
5396 
5397 unsigned long long nr_context_switches(void)
5398 {
5399 	int i;
5400 	unsigned long long sum = 0;
5401 
5402 	for_each_possible_cpu(i)
5403 		sum += cpu_rq(i)->nr_switches;
5404 
5405 	return sum;
5406 }
5407 
5408 /*
5409  * Consumers of these two interfaces, like for example the cpuidle menu
5410  * governor, are using nonsensical data. Preferring shallow idle state selection
5411  * for a CPU that has IO-wait which might not even end up running the task when
5412  * it does become runnable.
5413  */
5414 
5415 unsigned int nr_iowait_cpu(int cpu)
5416 {
5417 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5418 }
5419 
5420 /*
5421  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5422  *
5423  * The idea behind IO-wait account is to account the idle time that we could
5424  * have spend running if it were not for IO. That is, if we were to improve the
5425  * storage performance, we'd have a proportional reduction in IO-wait time.
5426  *
5427  * This all works nicely on UP, where, when a task blocks on IO, we account
5428  * idle time as IO-wait, because if the storage were faster, it could've been
5429  * running and we'd not be idle.
5430  *
5431  * This has been extended to SMP, by doing the same for each CPU. This however
5432  * is broken.
5433  *
5434  * Imagine for instance the case where two tasks block on one CPU, only the one
5435  * CPU will have IO-wait accounted, while the other has regular idle. Even
5436  * though, if the storage were faster, both could've ran at the same time,
5437  * utilising both CPUs.
5438  *
5439  * This means, that when looking globally, the current IO-wait accounting on
5440  * SMP is a lower bound, by reason of under accounting.
5441  *
5442  * Worse, since the numbers are provided per CPU, they are sometimes
5443  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5444  * associated with any one particular CPU, it can wake to another CPU than it
5445  * blocked on. This means the per CPU IO-wait number is meaningless.
5446  *
5447  * Task CPU affinities can make all that even more 'interesting'.
5448  */
5449 
5450 unsigned int nr_iowait(void)
5451 {
5452 	unsigned int i, sum = 0;
5453 
5454 	for_each_possible_cpu(i)
5455 		sum += nr_iowait_cpu(i);
5456 
5457 	return sum;
5458 }
5459 
5460 /*
5461  * sched_exec - execve() is a valuable balancing opportunity, because at
5462  * this point the task has the smallest effective memory and cache footprint.
5463  */
5464 void sched_exec(void)
5465 {
5466 	struct task_struct *p = current;
5467 	struct migration_arg arg;
5468 	int dest_cpu;
5469 
5470 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5471 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5472 		if (dest_cpu == smp_processor_id())
5473 			return;
5474 
5475 		if (unlikely(!cpu_active(dest_cpu)))
5476 			return;
5477 
5478 		arg = (struct migration_arg){ p, dest_cpu };
5479 	}
5480 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5481 }
5482 
5483 DEFINE_PER_CPU(struct kernel_stat, kstat);
5484 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5485 
5486 EXPORT_PER_CPU_SYMBOL(kstat);
5487 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5488 
5489 /*
5490  * The function fair_sched_class.update_curr accesses the struct curr
5491  * and its field curr->exec_start; when called from task_sched_runtime(),
5492  * we observe a high rate of cache misses in practice.
5493  * Prefetching this data results in improved performance.
5494  */
5495 static inline void prefetch_curr_exec_start(struct task_struct *p)
5496 {
5497 #ifdef CONFIG_FAIR_GROUP_SCHED
5498 	struct sched_entity *curr = p->se.cfs_rq->curr;
5499 #else
5500 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5501 #endif
5502 	prefetch(curr);
5503 	prefetch(&curr->exec_start);
5504 }
5505 
5506 /*
5507  * Return accounted runtime for the task.
5508  * In case the task is currently running, return the runtime plus current's
5509  * pending runtime that have not been accounted yet.
5510  */
5511 unsigned long long task_sched_runtime(struct task_struct *p)
5512 {
5513 	struct rq_flags rf;
5514 	struct rq *rq;
5515 	u64 ns;
5516 
5517 #ifdef CONFIG_64BIT
5518 	/*
5519 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5520 	 * So we have a optimization chance when the task's delta_exec is 0.
5521 	 * Reading ->on_cpu is racy, but this is OK.
5522 	 *
5523 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5524 	 * If we race with it entering CPU, unaccounted time is 0. This is
5525 	 * indistinguishable from the read occurring a few cycles earlier.
5526 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5527 	 * been accounted, so we're correct here as well.
5528 	 */
5529 	if (!p->on_cpu || !task_on_rq_queued(p))
5530 		return p->se.sum_exec_runtime;
5531 #endif
5532 
5533 	rq = task_rq_lock(p, &rf);
5534 	/*
5535 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5536 	 * project cycles that may never be accounted to this
5537 	 * thread, breaking clock_gettime().
5538 	 */
5539 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5540 		prefetch_curr_exec_start(p);
5541 		update_rq_clock(rq);
5542 		p->sched_class->update_curr(rq);
5543 	}
5544 	ns = p->se.sum_exec_runtime;
5545 	task_rq_unlock(rq, p, &rf);
5546 
5547 	return ns;
5548 }
5549 
5550 static u64 cpu_resched_latency(struct rq *rq)
5551 {
5552 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5553 	u64 resched_latency, now = rq_clock(rq);
5554 	static bool warned_once;
5555 
5556 	if (sysctl_resched_latency_warn_once && warned_once)
5557 		return 0;
5558 
5559 	if (!need_resched() || !latency_warn_ms)
5560 		return 0;
5561 
5562 	if (system_state == SYSTEM_BOOTING)
5563 		return 0;
5564 
5565 	if (!rq->last_seen_need_resched_ns) {
5566 		rq->last_seen_need_resched_ns = now;
5567 		rq->ticks_without_resched = 0;
5568 		return 0;
5569 	}
5570 
5571 	rq->ticks_without_resched++;
5572 	resched_latency = now - rq->last_seen_need_resched_ns;
5573 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5574 		return 0;
5575 
5576 	warned_once = true;
5577 
5578 	return resched_latency;
5579 }
5580 
5581 static int __init setup_resched_latency_warn_ms(char *str)
5582 {
5583 	long val;
5584 
5585 	if ((kstrtol(str, 0, &val))) {
5586 		pr_warn("Unable to set resched_latency_warn_ms\n");
5587 		return 1;
5588 	}
5589 
5590 	sysctl_resched_latency_warn_ms = val;
5591 	return 1;
5592 }
5593 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5594 
5595 /*
5596  * This function gets called by the timer code, with HZ frequency.
5597  * We call it with interrupts disabled.
5598  */
5599 void sched_tick(void)
5600 {
5601 	int cpu = smp_processor_id();
5602 	struct rq *rq = cpu_rq(cpu);
5603 	/* accounting goes to the donor task */
5604 	struct task_struct *donor;
5605 	struct rq_flags rf;
5606 	unsigned long hw_pressure;
5607 	u64 resched_latency;
5608 
5609 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5610 		arch_scale_freq_tick();
5611 
5612 	sched_clock_tick();
5613 
5614 	rq_lock(rq, &rf);
5615 	donor = rq->donor;
5616 
5617 	psi_account_irqtime(rq, donor, NULL);
5618 
5619 	update_rq_clock(rq);
5620 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5621 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5622 
5623 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5624 		resched_curr(rq);
5625 
5626 	donor->sched_class->task_tick(rq, donor, 0);
5627 	if (sched_feat(LATENCY_WARN))
5628 		resched_latency = cpu_resched_latency(rq);
5629 	calc_global_load_tick(rq);
5630 	sched_core_tick(rq);
5631 	task_tick_mm_cid(rq, donor);
5632 	scx_tick(rq);
5633 
5634 	rq_unlock(rq, &rf);
5635 
5636 	if (sched_feat(LATENCY_WARN) && resched_latency)
5637 		resched_latency_warn(cpu, resched_latency);
5638 
5639 	perf_event_task_tick();
5640 
5641 	if (donor->flags & PF_WQ_WORKER)
5642 		wq_worker_tick(donor);
5643 
5644 	if (!scx_switched_all()) {
5645 		rq->idle_balance = idle_cpu(cpu);
5646 		sched_balance_trigger(rq);
5647 	}
5648 }
5649 
5650 #ifdef CONFIG_NO_HZ_FULL
5651 
5652 struct tick_work {
5653 	int			cpu;
5654 	atomic_t		state;
5655 	struct delayed_work	work;
5656 };
5657 /* Values for ->state, see diagram below. */
5658 #define TICK_SCHED_REMOTE_OFFLINE	0
5659 #define TICK_SCHED_REMOTE_OFFLINING	1
5660 #define TICK_SCHED_REMOTE_RUNNING	2
5661 
5662 /*
5663  * State diagram for ->state:
5664  *
5665  *
5666  *          TICK_SCHED_REMOTE_OFFLINE
5667  *                    |   ^
5668  *                    |   |
5669  *                    |   | sched_tick_remote()
5670  *                    |   |
5671  *                    |   |
5672  *                    +--TICK_SCHED_REMOTE_OFFLINING
5673  *                    |   ^
5674  *                    |   |
5675  * sched_tick_start() |   | sched_tick_stop()
5676  *                    |   |
5677  *                    V   |
5678  *          TICK_SCHED_REMOTE_RUNNING
5679  *
5680  *
5681  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5682  * and sched_tick_start() are happy to leave the state in RUNNING.
5683  */
5684 
5685 static struct tick_work __percpu *tick_work_cpu;
5686 
5687 static void sched_tick_remote(struct work_struct *work)
5688 {
5689 	struct delayed_work *dwork = to_delayed_work(work);
5690 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5691 	int cpu = twork->cpu;
5692 	struct rq *rq = cpu_rq(cpu);
5693 	int os;
5694 
5695 	/*
5696 	 * Handle the tick only if it appears the remote CPU is running in full
5697 	 * dynticks mode. The check is racy by nature, but missing a tick or
5698 	 * having one too much is no big deal because the scheduler tick updates
5699 	 * statistics and checks timeslices in a time-independent way, regardless
5700 	 * of when exactly it is running.
5701 	 */
5702 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5703 		guard(rq_lock_irq)(rq);
5704 		struct task_struct *curr = rq->curr;
5705 
5706 		if (cpu_online(cpu)) {
5707 			/*
5708 			 * Since this is a remote tick for full dynticks mode,
5709 			 * we are always sure that there is no proxy (only a
5710 			 * single task is running).
5711 			 */
5712 			WARN_ON_ONCE(rq->curr != rq->donor);
5713 			update_rq_clock(rq);
5714 
5715 			if (!is_idle_task(curr)) {
5716 				/*
5717 				 * Make sure the next tick runs within a
5718 				 * reasonable amount of time.
5719 				 */
5720 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5721 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5722 			}
5723 			curr->sched_class->task_tick(rq, curr, 0);
5724 
5725 			calc_load_nohz_remote(rq);
5726 		}
5727 	}
5728 
5729 	/*
5730 	 * Run the remote tick once per second (1Hz). This arbitrary
5731 	 * frequency is large enough to avoid overload but short enough
5732 	 * to keep scheduler internal stats reasonably up to date.  But
5733 	 * first update state to reflect hotplug activity if required.
5734 	 */
5735 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5736 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5737 	if (os == TICK_SCHED_REMOTE_RUNNING)
5738 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5739 }
5740 
5741 static void sched_tick_start(int cpu)
5742 {
5743 	int os;
5744 	struct tick_work *twork;
5745 
5746 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5747 		return;
5748 
5749 	WARN_ON_ONCE(!tick_work_cpu);
5750 
5751 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5752 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5753 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5754 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5755 		twork->cpu = cpu;
5756 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5757 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5758 	}
5759 }
5760 
5761 #ifdef CONFIG_HOTPLUG_CPU
5762 static void sched_tick_stop(int cpu)
5763 {
5764 	struct tick_work *twork;
5765 	int os;
5766 
5767 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5768 		return;
5769 
5770 	WARN_ON_ONCE(!tick_work_cpu);
5771 
5772 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5773 	/* There cannot be competing actions, but don't rely on stop-machine. */
5774 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5775 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5776 	/* Don't cancel, as this would mess up the state machine. */
5777 }
5778 #endif /* CONFIG_HOTPLUG_CPU */
5779 
5780 int __init sched_tick_offload_init(void)
5781 {
5782 	tick_work_cpu = alloc_percpu(struct tick_work);
5783 	BUG_ON(!tick_work_cpu);
5784 	return 0;
5785 }
5786 
5787 #else /* !CONFIG_NO_HZ_FULL: */
5788 static inline void sched_tick_start(int cpu) { }
5789 static inline void sched_tick_stop(int cpu) { }
5790 #endif /* !CONFIG_NO_HZ_FULL */
5791 
5792 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5793 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5794 /*
5795  * If the value passed in is equal to the current preempt count
5796  * then we just disabled preemption. Start timing the latency.
5797  */
5798 static inline void preempt_latency_start(int val)
5799 {
5800 	if (preempt_count() == val) {
5801 		unsigned long ip = get_lock_parent_ip();
5802 #ifdef CONFIG_DEBUG_PREEMPT
5803 		current->preempt_disable_ip = ip;
5804 #endif
5805 		trace_preempt_off(CALLER_ADDR0, ip);
5806 	}
5807 }
5808 
5809 void preempt_count_add(int val)
5810 {
5811 #ifdef CONFIG_DEBUG_PREEMPT
5812 	/*
5813 	 * Underflow?
5814 	 */
5815 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5816 		return;
5817 #endif
5818 	__preempt_count_add(val);
5819 #ifdef CONFIG_DEBUG_PREEMPT
5820 	/*
5821 	 * Spinlock count overflowing soon?
5822 	 */
5823 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5824 				PREEMPT_MASK - 10);
5825 #endif
5826 	preempt_latency_start(val);
5827 }
5828 EXPORT_SYMBOL(preempt_count_add);
5829 NOKPROBE_SYMBOL(preempt_count_add);
5830 
5831 /*
5832  * If the value passed in equals to the current preempt count
5833  * then we just enabled preemption. Stop timing the latency.
5834  */
5835 static inline void preempt_latency_stop(int val)
5836 {
5837 	if (preempt_count() == val)
5838 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5839 }
5840 
5841 void preempt_count_sub(int val)
5842 {
5843 #ifdef CONFIG_DEBUG_PREEMPT
5844 	/*
5845 	 * Underflow?
5846 	 */
5847 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5848 		return;
5849 	/*
5850 	 * Is the spinlock portion underflowing?
5851 	 */
5852 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5853 			!(preempt_count() & PREEMPT_MASK)))
5854 		return;
5855 #endif
5856 
5857 	preempt_latency_stop(val);
5858 	__preempt_count_sub(val);
5859 }
5860 EXPORT_SYMBOL(preempt_count_sub);
5861 NOKPROBE_SYMBOL(preempt_count_sub);
5862 
5863 #else
5864 static inline void preempt_latency_start(int val) { }
5865 static inline void preempt_latency_stop(int val) { }
5866 #endif
5867 
5868 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5869 {
5870 #ifdef CONFIG_DEBUG_PREEMPT
5871 	return p->preempt_disable_ip;
5872 #else
5873 	return 0;
5874 #endif
5875 }
5876 
5877 /*
5878  * Print scheduling while atomic bug:
5879  */
5880 static noinline void __schedule_bug(struct task_struct *prev)
5881 {
5882 	/* Save this before calling printk(), since that will clobber it */
5883 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5884 
5885 	if (oops_in_progress)
5886 		return;
5887 
5888 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5889 		prev->comm, prev->pid, preempt_count());
5890 
5891 	debug_show_held_locks(prev);
5892 	print_modules();
5893 	if (irqs_disabled())
5894 		print_irqtrace_events(prev);
5895 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5896 		pr_err("Preemption disabled at:");
5897 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5898 	}
5899 	check_panic_on_warn("scheduling while atomic");
5900 
5901 	dump_stack();
5902 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5903 }
5904 
5905 /*
5906  * Various schedule()-time debugging checks and statistics:
5907  */
5908 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5909 {
5910 #ifdef CONFIG_SCHED_STACK_END_CHECK
5911 	if (task_stack_end_corrupted(prev))
5912 		panic("corrupted stack end detected inside scheduler\n");
5913 
5914 	if (task_scs_end_corrupted(prev))
5915 		panic("corrupted shadow stack detected inside scheduler\n");
5916 #endif
5917 
5918 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5919 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5920 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5921 			prev->comm, prev->pid, prev->non_block_count);
5922 		dump_stack();
5923 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5924 	}
5925 #endif
5926 
5927 	if (unlikely(in_atomic_preempt_off())) {
5928 		__schedule_bug(prev);
5929 		preempt_count_set(PREEMPT_DISABLED);
5930 	}
5931 	rcu_sleep_check();
5932 	WARN_ON_ONCE(ct_state() == CT_STATE_USER);
5933 
5934 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5935 
5936 	schedstat_inc(this_rq()->sched_count);
5937 }
5938 
5939 static void prev_balance(struct rq *rq, struct task_struct *prev,
5940 			 struct rq_flags *rf)
5941 {
5942 	const struct sched_class *start_class = prev->sched_class;
5943 	const struct sched_class *class;
5944 
5945 #ifdef CONFIG_SCHED_CLASS_EXT
5946 	/*
5947 	 * SCX requires a balance() call before every pick_task() including when
5948 	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
5949 	 * SCX instead. Also, set a flag to detect missing balance() call.
5950 	 */
5951 	if (scx_enabled()) {
5952 		rq->scx.flags |= SCX_RQ_BAL_PENDING;
5953 		if (sched_class_above(&ext_sched_class, start_class))
5954 			start_class = &ext_sched_class;
5955 	}
5956 #endif
5957 
5958 	/*
5959 	 * We must do the balancing pass before put_prev_task(), such
5960 	 * that when we release the rq->lock the task is in the same
5961 	 * state as before we took rq->lock.
5962 	 *
5963 	 * We can terminate the balance pass as soon as we know there is
5964 	 * a runnable task of @class priority or higher.
5965 	 */
5966 	for_active_class_range(class, start_class, &idle_sched_class) {
5967 		if (class->balance && class->balance(rq, prev, rf))
5968 			break;
5969 	}
5970 }
5971 
5972 /*
5973  * Pick up the highest-prio task:
5974  */
5975 static inline struct task_struct *
5976 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5977 {
5978 	const struct sched_class *class;
5979 	struct task_struct *p;
5980 
5981 	rq->dl_server = NULL;
5982 
5983 	if (scx_enabled())
5984 		goto restart;
5985 
5986 	/*
5987 	 * Optimization: we know that if all tasks are in the fair class we can
5988 	 * call that function directly, but only if the @prev task wasn't of a
5989 	 * higher scheduling class, because otherwise those lose the
5990 	 * opportunity to pull in more work from other CPUs.
5991 	 */
5992 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5993 		   rq->nr_running == rq->cfs.h_nr_queued)) {
5994 
5995 		p = pick_next_task_fair(rq, prev, rf);
5996 		if (unlikely(p == RETRY_TASK))
5997 			goto restart;
5998 
5999 		/* Assume the next prioritized class is idle_sched_class */
6000 		if (!p) {
6001 			p = pick_task_idle(rq);
6002 			put_prev_set_next_task(rq, prev, p);
6003 		}
6004 
6005 		return p;
6006 	}
6007 
6008 restart:
6009 	prev_balance(rq, prev, rf);
6010 
6011 	for_each_active_class(class) {
6012 		if (class->pick_next_task) {
6013 			p = class->pick_next_task(rq, prev);
6014 			if (p)
6015 				return p;
6016 		} else {
6017 			p = class->pick_task(rq);
6018 			if (p) {
6019 				put_prev_set_next_task(rq, prev, p);
6020 				return p;
6021 			}
6022 		}
6023 	}
6024 
6025 	BUG(); /* The idle class should always have a runnable task. */
6026 }
6027 
6028 #ifdef CONFIG_SCHED_CORE
6029 static inline bool is_task_rq_idle(struct task_struct *t)
6030 {
6031 	return (task_rq(t)->idle == t);
6032 }
6033 
6034 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6035 {
6036 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6037 }
6038 
6039 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6040 {
6041 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6042 		return true;
6043 
6044 	return a->core_cookie == b->core_cookie;
6045 }
6046 
6047 static inline struct task_struct *pick_task(struct rq *rq)
6048 {
6049 	const struct sched_class *class;
6050 	struct task_struct *p;
6051 
6052 	rq->dl_server = NULL;
6053 
6054 	for_each_active_class(class) {
6055 		p = class->pick_task(rq);
6056 		if (p)
6057 			return p;
6058 	}
6059 
6060 	BUG(); /* The idle class should always have a runnable task. */
6061 }
6062 
6063 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6064 
6065 static void queue_core_balance(struct rq *rq);
6066 
6067 static struct task_struct *
6068 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6069 {
6070 	struct task_struct *next, *p, *max = NULL;
6071 	const struct cpumask *smt_mask;
6072 	bool fi_before = false;
6073 	bool core_clock_updated = (rq == rq->core);
6074 	unsigned long cookie;
6075 	int i, cpu, occ = 0;
6076 	struct rq *rq_i;
6077 	bool need_sync;
6078 
6079 	if (!sched_core_enabled(rq))
6080 		return __pick_next_task(rq, prev, rf);
6081 
6082 	cpu = cpu_of(rq);
6083 
6084 	/* Stopper task is switching into idle, no need core-wide selection. */
6085 	if (cpu_is_offline(cpu)) {
6086 		/*
6087 		 * Reset core_pick so that we don't enter the fastpath when
6088 		 * coming online. core_pick would already be migrated to
6089 		 * another cpu during offline.
6090 		 */
6091 		rq->core_pick = NULL;
6092 		rq->core_dl_server = NULL;
6093 		return __pick_next_task(rq, prev, rf);
6094 	}
6095 
6096 	/*
6097 	 * If there were no {en,de}queues since we picked (IOW, the task
6098 	 * pointers are all still valid), and we haven't scheduled the last
6099 	 * pick yet, do so now.
6100 	 *
6101 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6102 	 * it was either offline or went offline during a sibling's core-wide
6103 	 * selection. In this case, do a core-wide selection.
6104 	 */
6105 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6106 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6107 	    rq->core_pick) {
6108 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6109 
6110 		next = rq->core_pick;
6111 		rq->dl_server = rq->core_dl_server;
6112 		rq->core_pick = NULL;
6113 		rq->core_dl_server = NULL;
6114 		goto out_set_next;
6115 	}
6116 
6117 	prev_balance(rq, prev, rf);
6118 
6119 	smt_mask = cpu_smt_mask(cpu);
6120 	need_sync = !!rq->core->core_cookie;
6121 
6122 	/* reset state */
6123 	rq->core->core_cookie = 0UL;
6124 	if (rq->core->core_forceidle_count) {
6125 		if (!core_clock_updated) {
6126 			update_rq_clock(rq->core);
6127 			core_clock_updated = true;
6128 		}
6129 		sched_core_account_forceidle(rq);
6130 		/* reset after accounting force idle */
6131 		rq->core->core_forceidle_start = 0;
6132 		rq->core->core_forceidle_count = 0;
6133 		rq->core->core_forceidle_occupation = 0;
6134 		need_sync = true;
6135 		fi_before = true;
6136 	}
6137 
6138 	/*
6139 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6140 	 *
6141 	 * @task_seq guards the task state ({en,de}queues)
6142 	 * @pick_seq is the @task_seq we did a selection on
6143 	 * @sched_seq is the @pick_seq we scheduled
6144 	 *
6145 	 * However, preemptions can cause multiple picks on the same task set.
6146 	 * 'Fix' this by also increasing @task_seq for every pick.
6147 	 */
6148 	rq->core->core_task_seq++;
6149 
6150 	/*
6151 	 * Optimize for common case where this CPU has no cookies
6152 	 * and there are no cookied tasks running on siblings.
6153 	 */
6154 	if (!need_sync) {
6155 		next = pick_task(rq);
6156 		if (!next->core_cookie) {
6157 			rq->core_pick = NULL;
6158 			rq->core_dl_server = NULL;
6159 			/*
6160 			 * For robustness, update the min_vruntime_fi for
6161 			 * unconstrained picks as well.
6162 			 */
6163 			WARN_ON_ONCE(fi_before);
6164 			task_vruntime_update(rq, next, false);
6165 			goto out_set_next;
6166 		}
6167 	}
6168 
6169 	/*
6170 	 * For each thread: do the regular task pick and find the max prio task
6171 	 * amongst them.
6172 	 *
6173 	 * Tie-break prio towards the current CPU
6174 	 */
6175 	for_each_cpu_wrap(i, smt_mask, cpu) {
6176 		rq_i = cpu_rq(i);
6177 
6178 		/*
6179 		 * Current cpu always has its clock updated on entrance to
6180 		 * pick_next_task(). If the current cpu is not the core,
6181 		 * the core may also have been updated above.
6182 		 */
6183 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6184 			update_rq_clock(rq_i);
6185 
6186 		rq_i->core_pick = p = pick_task(rq_i);
6187 		rq_i->core_dl_server = rq_i->dl_server;
6188 
6189 		if (!max || prio_less(max, p, fi_before))
6190 			max = p;
6191 	}
6192 
6193 	cookie = rq->core->core_cookie = max->core_cookie;
6194 
6195 	/*
6196 	 * For each thread: try and find a runnable task that matches @max or
6197 	 * force idle.
6198 	 */
6199 	for_each_cpu(i, smt_mask) {
6200 		rq_i = cpu_rq(i);
6201 		p = rq_i->core_pick;
6202 
6203 		if (!cookie_equals(p, cookie)) {
6204 			p = NULL;
6205 			if (cookie)
6206 				p = sched_core_find(rq_i, cookie);
6207 			if (!p)
6208 				p = idle_sched_class.pick_task(rq_i);
6209 		}
6210 
6211 		rq_i->core_pick = p;
6212 		rq_i->core_dl_server = NULL;
6213 
6214 		if (p == rq_i->idle) {
6215 			if (rq_i->nr_running) {
6216 				rq->core->core_forceidle_count++;
6217 				if (!fi_before)
6218 					rq->core->core_forceidle_seq++;
6219 			}
6220 		} else {
6221 			occ++;
6222 		}
6223 	}
6224 
6225 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6226 		rq->core->core_forceidle_start = rq_clock(rq->core);
6227 		rq->core->core_forceidle_occupation = occ;
6228 	}
6229 
6230 	rq->core->core_pick_seq = rq->core->core_task_seq;
6231 	next = rq->core_pick;
6232 	rq->core_sched_seq = rq->core->core_pick_seq;
6233 
6234 	/* Something should have been selected for current CPU */
6235 	WARN_ON_ONCE(!next);
6236 
6237 	/*
6238 	 * Reschedule siblings
6239 	 *
6240 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6241 	 * sending an IPI (below) ensures the sibling will no longer be running
6242 	 * their task. This ensures there is no inter-sibling overlap between
6243 	 * non-matching user state.
6244 	 */
6245 	for_each_cpu(i, smt_mask) {
6246 		rq_i = cpu_rq(i);
6247 
6248 		/*
6249 		 * An online sibling might have gone offline before a task
6250 		 * could be picked for it, or it might be offline but later
6251 		 * happen to come online, but its too late and nothing was
6252 		 * picked for it.  That's Ok - it will pick tasks for itself,
6253 		 * so ignore it.
6254 		 */
6255 		if (!rq_i->core_pick)
6256 			continue;
6257 
6258 		/*
6259 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6260 		 * fi_before     fi      update?
6261 		 *  0            0       1
6262 		 *  0            1       1
6263 		 *  1            0       1
6264 		 *  1            1       0
6265 		 */
6266 		if (!(fi_before && rq->core->core_forceidle_count))
6267 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6268 
6269 		rq_i->core_pick->core_occupation = occ;
6270 
6271 		if (i == cpu) {
6272 			rq_i->core_pick = NULL;
6273 			rq_i->core_dl_server = NULL;
6274 			continue;
6275 		}
6276 
6277 		/* Did we break L1TF mitigation requirements? */
6278 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6279 
6280 		if (rq_i->curr == rq_i->core_pick) {
6281 			rq_i->core_pick = NULL;
6282 			rq_i->core_dl_server = NULL;
6283 			continue;
6284 		}
6285 
6286 		resched_curr(rq_i);
6287 	}
6288 
6289 out_set_next:
6290 	put_prev_set_next_task(rq, prev, next);
6291 	if (rq->core->core_forceidle_count && next == rq->idle)
6292 		queue_core_balance(rq);
6293 
6294 	return next;
6295 }
6296 
6297 static bool try_steal_cookie(int this, int that)
6298 {
6299 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6300 	struct task_struct *p;
6301 	unsigned long cookie;
6302 	bool success = false;
6303 
6304 	guard(irq)();
6305 	guard(double_rq_lock)(dst, src);
6306 
6307 	cookie = dst->core->core_cookie;
6308 	if (!cookie)
6309 		return false;
6310 
6311 	if (dst->curr != dst->idle)
6312 		return false;
6313 
6314 	p = sched_core_find(src, cookie);
6315 	if (!p)
6316 		return false;
6317 
6318 	do {
6319 		if (p == src->core_pick || p == src->curr)
6320 			goto next;
6321 
6322 		if (!is_cpu_allowed(p, this))
6323 			goto next;
6324 
6325 		if (p->core_occupation > dst->idle->core_occupation)
6326 			goto next;
6327 		/*
6328 		 * sched_core_find() and sched_core_next() will ensure
6329 		 * that task @p is not throttled now, we also need to
6330 		 * check whether the runqueue of the destination CPU is
6331 		 * being throttled.
6332 		 */
6333 		if (sched_task_is_throttled(p, this))
6334 			goto next;
6335 
6336 		move_queued_task_locked(src, dst, p);
6337 		resched_curr(dst);
6338 
6339 		success = true;
6340 		break;
6341 
6342 next:
6343 		p = sched_core_next(p, cookie);
6344 	} while (p);
6345 
6346 	return success;
6347 }
6348 
6349 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6350 {
6351 	int i;
6352 
6353 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6354 		if (i == cpu)
6355 			continue;
6356 
6357 		if (need_resched())
6358 			break;
6359 
6360 		if (try_steal_cookie(cpu, i))
6361 			return true;
6362 	}
6363 
6364 	return false;
6365 }
6366 
6367 static void sched_core_balance(struct rq *rq)
6368 {
6369 	struct sched_domain *sd;
6370 	int cpu = cpu_of(rq);
6371 
6372 	guard(preempt)();
6373 	guard(rcu)();
6374 
6375 	raw_spin_rq_unlock_irq(rq);
6376 	for_each_domain(cpu, sd) {
6377 		if (need_resched())
6378 			break;
6379 
6380 		if (steal_cookie_task(cpu, sd))
6381 			break;
6382 	}
6383 	raw_spin_rq_lock_irq(rq);
6384 }
6385 
6386 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6387 
6388 static void queue_core_balance(struct rq *rq)
6389 {
6390 	if (!sched_core_enabled(rq))
6391 		return;
6392 
6393 	if (!rq->core->core_cookie)
6394 		return;
6395 
6396 	if (!rq->nr_running) /* not forced idle */
6397 		return;
6398 
6399 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6400 }
6401 
6402 DEFINE_LOCK_GUARD_1(core_lock, int,
6403 		    sched_core_lock(*_T->lock, &_T->flags),
6404 		    sched_core_unlock(*_T->lock, &_T->flags),
6405 		    unsigned long flags)
6406 
6407 static void sched_core_cpu_starting(unsigned int cpu)
6408 {
6409 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6410 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6411 	int t;
6412 
6413 	guard(core_lock)(&cpu);
6414 
6415 	WARN_ON_ONCE(rq->core != rq);
6416 
6417 	/* if we're the first, we'll be our own leader */
6418 	if (cpumask_weight(smt_mask) == 1)
6419 		return;
6420 
6421 	/* find the leader */
6422 	for_each_cpu(t, smt_mask) {
6423 		if (t == cpu)
6424 			continue;
6425 		rq = cpu_rq(t);
6426 		if (rq->core == rq) {
6427 			core_rq = rq;
6428 			break;
6429 		}
6430 	}
6431 
6432 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6433 		return;
6434 
6435 	/* install and validate core_rq */
6436 	for_each_cpu(t, smt_mask) {
6437 		rq = cpu_rq(t);
6438 
6439 		if (t == cpu)
6440 			rq->core = core_rq;
6441 
6442 		WARN_ON_ONCE(rq->core != core_rq);
6443 	}
6444 }
6445 
6446 static void sched_core_cpu_deactivate(unsigned int cpu)
6447 {
6448 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6449 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6450 	int t;
6451 
6452 	guard(core_lock)(&cpu);
6453 
6454 	/* if we're the last man standing, nothing to do */
6455 	if (cpumask_weight(smt_mask) == 1) {
6456 		WARN_ON_ONCE(rq->core != rq);
6457 		return;
6458 	}
6459 
6460 	/* if we're not the leader, nothing to do */
6461 	if (rq->core != rq)
6462 		return;
6463 
6464 	/* find a new leader */
6465 	for_each_cpu(t, smt_mask) {
6466 		if (t == cpu)
6467 			continue;
6468 		core_rq = cpu_rq(t);
6469 		break;
6470 	}
6471 
6472 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6473 		return;
6474 
6475 	/* copy the shared state to the new leader */
6476 	core_rq->core_task_seq             = rq->core_task_seq;
6477 	core_rq->core_pick_seq             = rq->core_pick_seq;
6478 	core_rq->core_cookie               = rq->core_cookie;
6479 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6480 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6481 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6482 
6483 	/*
6484 	 * Accounting edge for forced idle is handled in pick_next_task().
6485 	 * Don't need another one here, since the hotplug thread shouldn't
6486 	 * have a cookie.
6487 	 */
6488 	core_rq->core_forceidle_start = 0;
6489 
6490 	/* install new leader */
6491 	for_each_cpu(t, smt_mask) {
6492 		rq = cpu_rq(t);
6493 		rq->core = core_rq;
6494 	}
6495 }
6496 
6497 static inline void sched_core_cpu_dying(unsigned int cpu)
6498 {
6499 	struct rq *rq = cpu_rq(cpu);
6500 
6501 	if (rq->core != rq)
6502 		rq->core = rq;
6503 }
6504 
6505 #else /* !CONFIG_SCHED_CORE: */
6506 
6507 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6508 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6509 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6510 
6511 static struct task_struct *
6512 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6513 {
6514 	return __pick_next_task(rq, prev, rf);
6515 }
6516 
6517 #endif /* !CONFIG_SCHED_CORE */
6518 
6519 /*
6520  * Constants for the sched_mode argument of __schedule().
6521  *
6522  * The mode argument allows RT enabled kernels to differentiate a
6523  * preemption from blocking on an 'sleeping' spin/rwlock.
6524  */
6525 #define SM_IDLE			(-1)
6526 #define SM_NONE			0
6527 #define SM_PREEMPT		1
6528 #define SM_RTLOCK_WAIT		2
6529 
6530 /*
6531  * Helper function for __schedule()
6532  *
6533  * Tries to deactivate the task, unless the should_block arg
6534  * is false or if a signal is pending. In the case a signal
6535  * is pending, marks the task's __state as RUNNING (and clear
6536  * blocked_on).
6537  */
6538 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6539 			      unsigned long *task_state_p, bool should_block)
6540 {
6541 	unsigned long task_state = *task_state_p;
6542 	int flags = DEQUEUE_NOCLOCK;
6543 
6544 	if (signal_pending_state(task_state, p)) {
6545 		WRITE_ONCE(p->__state, TASK_RUNNING);
6546 		*task_state_p = TASK_RUNNING;
6547 		return false;
6548 	}
6549 
6550 	/*
6551 	 * We check should_block after signal_pending because we
6552 	 * will want to wake the task in that case. But if
6553 	 * should_block is false, its likely due to the task being
6554 	 * blocked on a mutex, and we want to keep it on the runqueue
6555 	 * to be selectable for proxy-execution.
6556 	 */
6557 	if (!should_block)
6558 		return false;
6559 
6560 	p->sched_contributes_to_load =
6561 		(task_state & TASK_UNINTERRUPTIBLE) &&
6562 		!(task_state & TASK_NOLOAD) &&
6563 		!(task_state & TASK_FROZEN);
6564 
6565 	if (unlikely(is_special_task_state(task_state)))
6566 		flags |= DEQUEUE_SPECIAL;
6567 
6568 	/*
6569 	 * __schedule()			ttwu()
6570 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6571 	 *   if (prev_state)		    goto out;
6572 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6573 	 *				  p->state = TASK_WAKING
6574 	 *
6575 	 * Where __schedule() and ttwu() have matching control dependencies.
6576 	 *
6577 	 * After this, schedule() must not care about p->state any more.
6578 	 */
6579 	block_task(rq, p, flags);
6580 	return true;
6581 }
6582 
6583 #ifdef CONFIG_SCHED_PROXY_EXEC
6584 static inline struct task_struct *proxy_resched_idle(struct rq *rq)
6585 {
6586 	put_prev_set_next_task(rq, rq->donor, rq->idle);
6587 	rq_set_donor(rq, rq->idle);
6588 	set_tsk_need_resched(rq->idle);
6589 	return rq->idle;
6590 }
6591 
6592 static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor)
6593 {
6594 	unsigned long state = READ_ONCE(donor->__state);
6595 
6596 	/* Don't deactivate if the state has been changed to TASK_RUNNING */
6597 	if (state == TASK_RUNNING)
6598 		return false;
6599 	/*
6600 	 * Because we got donor from pick_next_task(), it is *crucial*
6601 	 * that we call proxy_resched_idle() before we deactivate it.
6602 	 * As once we deactivate donor, donor->on_rq is set to zero,
6603 	 * which allows ttwu() to immediately try to wake the task on
6604 	 * another rq. So we cannot use *any* references to donor
6605 	 * after that point. So things like cfs_rq->curr or rq->donor
6606 	 * need to be changed from next *before* we deactivate.
6607 	 */
6608 	proxy_resched_idle(rq);
6609 	return try_to_block_task(rq, donor, &state, true);
6610 }
6611 
6612 static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor)
6613 {
6614 	if (!__proxy_deactivate(rq, donor)) {
6615 		/*
6616 		 * XXX: For now, if deactivation failed, set donor
6617 		 * as unblocked, as we aren't doing proxy-migrations
6618 		 * yet (more logic will be needed then).
6619 		 */
6620 		donor->blocked_on = NULL;
6621 	}
6622 	return NULL;
6623 }
6624 
6625 /*
6626  * Find runnable lock owner to proxy for mutex blocked donor
6627  *
6628  * Follow the blocked-on relation:
6629  *   task->blocked_on -> mutex->owner -> task...
6630  *
6631  * Lock order:
6632  *
6633  *   p->pi_lock
6634  *     rq->lock
6635  *       mutex->wait_lock
6636  *
6637  * Returns the task that is going to be used as execution context (the one
6638  * that is actually going to be run on cpu_of(rq)).
6639  */
6640 static struct task_struct *
6641 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf)
6642 {
6643 	struct task_struct *owner = NULL;
6644 	int this_cpu = cpu_of(rq);
6645 	struct task_struct *p;
6646 	struct mutex *mutex;
6647 
6648 	/* Follow blocked_on chain. */
6649 	for (p = donor; task_is_blocked(p); p = owner) {
6650 		mutex = p->blocked_on;
6651 		/* Something changed in the chain, so pick again */
6652 		if (!mutex)
6653 			return NULL;
6654 		/*
6655 		 * By taking mutex->wait_lock we hold off concurrent mutex_unlock()
6656 		 * and ensure @owner sticks around.
6657 		 */
6658 		guard(raw_spinlock)(&mutex->wait_lock);
6659 
6660 		/* Check again that p is blocked with wait_lock held */
6661 		if (mutex != __get_task_blocked_on(p)) {
6662 			/*
6663 			 * Something changed in the blocked_on chain and
6664 			 * we don't know if only at this level. So, let's
6665 			 * just bail out completely and let __schedule()
6666 			 * figure things out (pick_again loop).
6667 			 */
6668 			return NULL;
6669 		}
6670 
6671 		owner = __mutex_owner(mutex);
6672 		if (!owner) {
6673 			__clear_task_blocked_on(p, mutex);
6674 			return p;
6675 		}
6676 
6677 		if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) {
6678 			/* XXX Don't handle blocked owners/delayed dequeue yet */
6679 			return proxy_deactivate(rq, donor);
6680 		}
6681 
6682 		if (task_cpu(owner) != this_cpu) {
6683 			/* XXX Don't handle migrations yet */
6684 			return proxy_deactivate(rq, donor);
6685 		}
6686 
6687 		if (task_on_rq_migrating(owner)) {
6688 			/*
6689 			 * One of the chain of mutex owners is currently migrating to this
6690 			 * CPU, but has not yet been enqueued because we are holding the
6691 			 * rq lock. As a simple solution, just schedule rq->idle to give
6692 			 * the migration a chance to complete. Much like the migrate_task
6693 			 * case we should end up back in find_proxy_task(), this time
6694 			 * hopefully with all relevant tasks already enqueued.
6695 			 */
6696 			return proxy_resched_idle(rq);
6697 		}
6698 
6699 		/*
6700 		 * Its possible to race where after we check owner->on_rq
6701 		 * but before we check (owner_cpu != this_cpu) that the
6702 		 * task on another cpu was migrated back to this cpu. In
6703 		 * that case it could slip by our  checks. So double check
6704 		 * we are still on this cpu and not migrating. If we get
6705 		 * inconsistent results, try again.
6706 		 */
6707 		if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu)
6708 			return NULL;
6709 
6710 		if (owner == p) {
6711 			/*
6712 			 * It's possible we interleave with mutex_unlock like:
6713 			 *
6714 			 *				lock(&rq->lock);
6715 			 *				  find_proxy_task()
6716 			 * mutex_unlock()
6717 			 *   lock(&wait_lock);
6718 			 *   donor(owner) = current->blocked_donor;
6719 			 *   unlock(&wait_lock);
6720 			 *
6721 			 *   wake_up_q();
6722 			 *     ...
6723 			 *       ttwu_runnable()
6724 			 *         __task_rq_lock()
6725 			 *				  lock(&wait_lock);
6726 			 *				  owner == p
6727 			 *
6728 			 * Which leaves us to finish the ttwu_runnable() and make it go.
6729 			 *
6730 			 * So schedule rq->idle so that ttwu_runnable() can get the rq
6731 			 * lock and mark owner as running.
6732 			 */
6733 			return proxy_resched_idle(rq);
6734 		}
6735 		/*
6736 		 * OK, now we're absolutely sure @owner is on this
6737 		 * rq, therefore holding @rq->lock is sufficient to
6738 		 * guarantee its existence, as per ttwu_remote().
6739 		 */
6740 	}
6741 
6742 	WARN_ON_ONCE(owner && !owner->on_rq);
6743 	return owner;
6744 }
6745 #else /* SCHED_PROXY_EXEC */
6746 static struct task_struct *
6747 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf)
6748 {
6749 	WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n");
6750 	return donor;
6751 }
6752 #endif /* SCHED_PROXY_EXEC */
6753 
6754 static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner)
6755 {
6756 	if (!sched_proxy_exec())
6757 		return;
6758 	/*
6759 	 * pick_next_task() calls set_next_task() on the chosen task
6760 	 * at some point, which ensures it is not push/pullable.
6761 	 * However, the chosen/donor task *and* the mutex owner form an
6762 	 * atomic pair wrt push/pull.
6763 	 *
6764 	 * Make sure owner we run is not pushable. Unfortunately we can
6765 	 * only deal with that by means of a dequeue/enqueue cycle. :-/
6766 	 */
6767 	dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE);
6768 	enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE);
6769 }
6770 
6771 /*
6772  * __schedule() is the main scheduler function.
6773  *
6774  * The main means of driving the scheduler and thus entering this function are:
6775  *
6776  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6777  *
6778  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6779  *      paths. For example, see arch/x86/entry_64.S.
6780  *
6781  *      To drive preemption between tasks, the scheduler sets the flag in timer
6782  *      interrupt handler sched_tick().
6783  *
6784  *   3. Wakeups don't really cause entry into schedule(). They add a
6785  *      task to the run-queue and that's it.
6786  *
6787  *      Now, if the new task added to the run-queue preempts the current
6788  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6789  *      called on the nearest possible occasion:
6790  *
6791  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6792  *
6793  *         - in syscall or exception context, at the next outmost
6794  *           preempt_enable(). (this might be as soon as the wake_up()'s
6795  *           spin_unlock()!)
6796  *
6797  *         - in IRQ context, return from interrupt-handler to
6798  *           preemptible context
6799  *
6800  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6801  *         then at the next:
6802  *
6803  *          - cond_resched() call
6804  *          - explicit schedule() call
6805  *          - return from syscall or exception to user-space
6806  *          - return from interrupt-handler to user-space
6807  *
6808  * WARNING: must be called with preemption disabled!
6809  */
6810 static void __sched notrace __schedule(int sched_mode)
6811 {
6812 	struct task_struct *prev, *next;
6813 	/*
6814 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6815 	 * as a preemption by schedule_debug() and RCU.
6816 	 */
6817 	bool preempt = sched_mode > SM_NONE;
6818 	bool is_switch = false;
6819 	unsigned long *switch_count;
6820 	unsigned long prev_state;
6821 	struct rq_flags rf;
6822 	struct rq *rq;
6823 	int cpu;
6824 
6825 	trace_sched_entry_tp(preempt, CALLER_ADDR0);
6826 
6827 	cpu = smp_processor_id();
6828 	rq = cpu_rq(cpu);
6829 	prev = rq->curr;
6830 
6831 	schedule_debug(prev, preempt);
6832 
6833 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6834 		hrtick_clear(rq);
6835 
6836 	klp_sched_try_switch(prev);
6837 
6838 	local_irq_disable();
6839 	rcu_note_context_switch(preempt);
6840 
6841 	/*
6842 	 * Make sure that signal_pending_state()->signal_pending() below
6843 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6844 	 * done by the caller to avoid the race with signal_wake_up():
6845 	 *
6846 	 * __set_current_state(@state)		signal_wake_up()
6847 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6848 	 *					  wake_up_state(p, state)
6849 	 *   LOCK rq->lock			    LOCK p->pi_state
6850 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6851 	 *     if (signal_pending_state())	    if (p->state & @state)
6852 	 *
6853 	 * Also, the membarrier system call requires a full memory barrier
6854 	 * after coming from user-space, before storing to rq->curr; this
6855 	 * barrier matches a full barrier in the proximity of the membarrier
6856 	 * system call exit.
6857 	 */
6858 	rq_lock(rq, &rf);
6859 	smp_mb__after_spinlock();
6860 
6861 	/* Promote REQ to ACT */
6862 	rq->clock_update_flags <<= 1;
6863 	update_rq_clock(rq);
6864 	rq->clock_update_flags = RQCF_UPDATED;
6865 
6866 	switch_count = &prev->nivcsw;
6867 
6868 	/* Task state changes only considers SM_PREEMPT as preemption */
6869 	preempt = sched_mode == SM_PREEMPT;
6870 
6871 	/*
6872 	 * We must load prev->state once (task_struct::state is volatile), such
6873 	 * that we form a control dependency vs deactivate_task() below.
6874 	 */
6875 	prev_state = READ_ONCE(prev->__state);
6876 	if (sched_mode == SM_IDLE) {
6877 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6878 		if (!rq->nr_running && !scx_enabled()) {
6879 			next = prev;
6880 			goto picked;
6881 		}
6882 	} else if (!preempt && prev_state) {
6883 		/*
6884 		 * We pass task_is_blocked() as the should_block arg
6885 		 * in order to keep mutex-blocked tasks on the runqueue
6886 		 * for slection with proxy-exec (without proxy-exec
6887 		 * task_is_blocked() will always be false).
6888 		 */
6889 		try_to_block_task(rq, prev, &prev_state,
6890 				  !task_is_blocked(prev));
6891 		switch_count = &prev->nvcsw;
6892 	}
6893 
6894 pick_again:
6895 	next = pick_next_task(rq, rq->donor, &rf);
6896 	rq_set_donor(rq, next);
6897 	if (unlikely(task_is_blocked(next))) {
6898 		next = find_proxy_task(rq, next, &rf);
6899 		if (!next)
6900 			goto pick_again;
6901 		if (next == rq->idle)
6902 			goto keep_resched;
6903 	}
6904 picked:
6905 	clear_tsk_need_resched(prev);
6906 	clear_preempt_need_resched();
6907 keep_resched:
6908 	rq->last_seen_need_resched_ns = 0;
6909 
6910 	is_switch = prev != next;
6911 	if (likely(is_switch)) {
6912 		rq->nr_switches++;
6913 		/*
6914 		 * RCU users of rcu_dereference(rq->curr) may not see
6915 		 * changes to task_struct made by pick_next_task().
6916 		 */
6917 		RCU_INIT_POINTER(rq->curr, next);
6918 
6919 		if (!task_current_donor(rq, next))
6920 			proxy_tag_curr(rq, next);
6921 
6922 		/*
6923 		 * The membarrier system call requires each architecture
6924 		 * to have a full memory barrier after updating
6925 		 * rq->curr, before returning to user-space.
6926 		 *
6927 		 * Here are the schemes providing that barrier on the
6928 		 * various architectures:
6929 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6930 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6931 		 *   on PowerPC and on RISC-V.
6932 		 * - finish_lock_switch() for weakly-ordered
6933 		 *   architectures where spin_unlock is a full barrier,
6934 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6935 		 *   is a RELEASE barrier),
6936 		 *
6937 		 * The barrier matches a full barrier in the proximity of
6938 		 * the membarrier system call entry.
6939 		 *
6940 		 * On RISC-V, this barrier pairing is also needed for the
6941 		 * SYNC_CORE command when switching between processes, cf.
6942 		 * the inline comments in membarrier_arch_switch_mm().
6943 		 */
6944 		++*switch_count;
6945 
6946 		migrate_disable_switch(rq, prev);
6947 		psi_account_irqtime(rq, prev, next);
6948 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6949 					     prev->se.sched_delayed);
6950 
6951 		trace_sched_switch(preempt, prev, next, prev_state);
6952 
6953 		/* Also unlocks the rq: */
6954 		rq = context_switch(rq, prev, next, &rf);
6955 	} else {
6956 		/* In case next was already curr but just got blocked_donor */
6957 		if (!task_current_donor(rq, next))
6958 			proxy_tag_curr(rq, next);
6959 
6960 		rq_unpin_lock(rq, &rf);
6961 		__balance_callbacks(rq);
6962 		raw_spin_rq_unlock_irq(rq);
6963 	}
6964 	trace_sched_exit_tp(is_switch, CALLER_ADDR0);
6965 }
6966 
6967 void __noreturn do_task_dead(void)
6968 {
6969 	/* Causes final put_task_struct in finish_task_switch(): */
6970 	set_special_state(TASK_DEAD);
6971 
6972 	/* Tell freezer to ignore us: */
6973 	current->flags |= PF_NOFREEZE;
6974 
6975 	__schedule(SM_NONE);
6976 	BUG();
6977 
6978 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6979 	for (;;)
6980 		cpu_relax();
6981 }
6982 
6983 static inline void sched_submit_work(struct task_struct *tsk)
6984 {
6985 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6986 	unsigned int task_flags;
6987 
6988 	/*
6989 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6990 	 * will use a blocking primitive -- which would lead to recursion.
6991 	 */
6992 	lock_map_acquire_try(&sched_map);
6993 
6994 	task_flags = tsk->flags;
6995 	/*
6996 	 * If a worker goes to sleep, notify and ask workqueue whether it
6997 	 * wants to wake up a task to maintain concurrency.
6998 	 */
6999 	if (task_flags & PF_WQ_WORKER)
7000 		wq_worker_sleeping(tsk);
7001 	else if (task_flags & PF_IO_WORKER)
7002 		io_wq_worker_sleeping(tsk);
7003 
7004 	/*
7005 	 * spinlock and rwlock must not flush block requests.  This will
7006 	 * deadlock if the callback attempts to acquire a lock which is
7007 	 * already acquired.
7008 	 */
7009 	WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT);
7010 
7011 	/*
7012 	 * If we are going to sleep and we have plugged IO queued,
7013 	 * make sure to submit it to avoid deadlocks.
7014 	 */
7015 	blk_flush_plug(tsk->plug, true);
7016 
7017 	lock_map_release(&sched_map);
7018 }
7019 
7020 static void sched_update_worker(struct task_struct *tsk)
7021 {
7022 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
7023 		if (tsk->flags & PF_BLOCK_TS)
7024 			blk_plug_invalidate_ts(tsk);
7025 		if (tsk->flags & PF_WQ_WORKER)
7026 			wq_worker_running(tsk);
7027 		else if (tsk->flags & PF_IO_WORKER)
7028 			io_wq_worker_running(tsk);
7029 	}
7030 }
7031 
7032 static __always_inline void __schedule_loop(int sched_mode)
7033 {
7034 	do {
7035 		preempt_disable();
7036 		__schedule(sched_mode);
7037 		sched_preempt_enable_no_resched();
7038 	} while (need_resched());
7039 }
7040 
7041 asmlinkage __visible void __sched schedule(void)
7042 {
7043 	struct task_struct *tsk = current;
7044 
7045 #ifdef CONFIG_RT_MUTEXES
7046 	lockdep_assert(!tsk->sched_rt_mutex);
7047 #endif
7048 
7049 	if (!task_is_running(tsk))
7050 		sched_submit_work(tsk);
7051 	__schedule_loop(SM_NONE);
7052 	sched_update_worker(tsk);
7053 }
7054 EXPORT_SYMBOL(schedule);
7055 
7056 /*
7057  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
7058  * state (have scheduled out non-voluntarily) by making sure that all
7059  * tasks have either left the run queue or have gone into user space.
7060  * As idle tasks do not do either, they must not ever be preempted
7061  * (schedule out non-voluntarily).
7062  *
7063  * schedule_idle() is similar to schedule_preempt_disable() except that it
7064  * never enables preemption because it does not call sched_submit_work().
7065  */
7066 void __sched schedule_idle(void)
7067 {
7068 	/*
7069 	 * As this skips calling sched_submit_work(), which the idle task does
7070 	 * regardless because that function is a NOP when the task is in a
7071 	 * TASK_RUNNING state, make sure this isn't used someplace that the
7072 	 * current task can be in any other state. Note, idle is always in the
7073 	 * TASK_RUNNING state.
7074 	 */
7075 	WARN_ON_ONCE(current->__state);
7076 	do {
7077 		__schedule(SM_IDLE);
7078 	} while (need_resched());
7079 }
7080 
7081 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
7082 asmlinkage __visible void __sched schedule_user(void)
7083 {
7084 	/*
7085 	 * If we come here after a random call to set_need_resched(),
7086 	 * or we have been woken up remotely but the IPI has not yet arrived,
7087 	 * we haven't yet exited the RCU idle mode. Do it here manually until
7088 	 * we find a better solution.
7089 	 *
7090 	 * NB: There are buggy callers of this function.  Ideally we
7091 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
7092 	 * too frequently to make sense yet.
7093 	 */
7094 	enum ctx_state prev_state = exception_enter();
7095 	schedule();
7096 	exception_exit(prev_state);
7097 }
7098 #endif
7099 
7100 /**
7101  * schedule_preempt_disabled - called with preemption disabled
7102  *
7103  * Returns with preemption disabled. Note: preempt_count must be 1
7104  */
7105 void __sched schedule_preempt_disabled(void)
7106 {
7107 	sched_preempt_enable_no_resched();
7108 	schedule();
7109 	preempt_disable();
7110 }
7111 
7112 #ifdef CONFIG_PREEMPT_RT
7113 void __sched notrace schedule_rtlock(void)
7114 {
7115 	__schedule_loop(SM_RTLOCK_WAIT);
7116 }
7117 NOKPROBE_SYMBOL(schedule_rtlock);
7118 #endif
7119 
7120 static void __sched notrace preempt_schedule_common(void)
7121 {
7122 	do {
7123 		/*
7124 		 * Because the function tracer can trace preempt_count_sub()
7125 		 * and it also uses preempt_enable/disable_notrace(), if
7126 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7127 		 * by the function tracer will call this function again and
7128 		 * cause infinite recursion.
7129 		 *
7130 		 * Preemption must be disabled here before the function
7131 		 * tracer can trace. Break up preempt_disable() into two
7132 		 * calls. One to disable preemption without fear of being
7133 		 * traced. The other to still record the preemption latency,
7134 		 * which can also be traced by the function tracer.
7135 		 */
7136 		preempt_disable_notrace();
7137 		preempt_latency_start(1);
7138 		__schedule(SM_PREEMPT);
7139 		preempt_latency_stop(1);
7140 		preempt_enable_no_resched_notrace();
7141 
7142 		/*
7143 		 * Check again in case we missed a preemption opportunity
7144 		 * between schedule and now.
7145 		 */
7146 	} while (need_resched());
7147 }
7148 
7149 #ifdef CONFIG_PREEMPTION
7150 /*
7151  * This is the entry point to schedule() from in-kernel preemption
7152  * off of preempt_enable.
7153  */
7154 asmlinkage __visible void __sched notrace preempt_schedule(void)
7155 {
7156 	/*
7157 	 * If there is a non-zero preempt_count or interrupts are disabled,
7158 	 * we do not want to preempt the current task. Just return..
7159 	 */
7160 	if (likely(!preemptible()))
7161 		return;
7162 	preempt_schedule_common();
7163 }
7164 NOKPROBE_SYMBOL(preempt_schedule);
7165 EXPORT_SYMBOL(preempt_schedule);
7166 
7167 #ifdef CONFIG_PREEMPT_DYNAMIC
7168 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7169 #  ifndef preempt_schedule_dynamic_enabled
7170 #   define preempt_schedule_dynamic_enabled	preempt_schedule
7171 #   define preempt_schedule_dynamic_disabled	NULL
7172 #  endif
7173 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
7174 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
7175 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7176 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
7177 void __sched notrace dynamic_preempt_schedule(void)
7178 {
7179 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
7180 		return;
7181 	preempt_schedule();
7182 }
7183 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
7184 EXPORT_SYMBOL(dynamic_preempt_schedule);
7185 # endif
7186 #endif /* CONFIG_PREEMPT_DYNAMIC */
7187 
7188 /**
7189  * preempt_schedule_notrace - preempt_schedule called by tracing
7190  *
7191  * The tracing infrastructure uses preempt_enable_notrace to prevent
7192  * recursion and tracing preempt enabling caused by the tracing
7193  * infrastructure itself. But as tracing can happen in areas coming
7194  * from userspace or just about to enter userspace, a preempt enable
7195  * can occur before user_exit() is called. This will cause the scheduler
7196  * to be called when the system is still in usermode.
7197  *
7198  * To prevent this, the preempt_enable_notrace will use this function
7199  * instead of preempt_schedule() to exit user context if needed before
7200  * calling the scheduler.
7201  */
7202 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7203 {
7204 	enum ctx_state prev_ctx;
7205 
7206 	if (likely(!preemptible()))
7207 		return;
7208 
7209 	do {
7210 		/*
7211 		 * Because the function tracer can trace preempt_count_sub()
7212 		 * and it also uses preempt_enable/disable_notrace(), if
7213 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7214 		 * by the function tracer will call this function again and
7215 		 * cause infinite recursion.
7216 		 *
7217 		 * Preemption must be disabled here before the function
7218 		 * tracer can trace. Break up preempt_disable() into two
7219 		 * calls. One to disable preemption without fear of being
7220 		 * traced. The other to still record the preemption latency,
7221 		 * which can also be traced by the function tracer.
7222 		 */
7223 		preempt_disable_notrace();
7224 		preempt_latency_start(1);
7225 		/*
7226 		 * Needs preempt disabled in case user_exit() is traced
7227 		 * and the tracer calls preempt_enable_notrace() causing
7228 		 * an infinite recursion.
7229 		 */
7230 		prev_ctx = exception_enter();
7231 		__schedule(SM_PREEMPT);
7232 		exception_exit(prev_ctx);
7233 
7234 		preempt_latency_stop(1);
7235 		preempt_enable_no_resched_notrace();
7236 	} while (need_resched());
7237 }
7238 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7239 
7240 #ifdef CONFIG_PREEMPT_DYNAMIC
7241 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7242 #  ifndef preempt_schedule_notrace_dynamic_enabled
7243 #   define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7244 #   define preempt_schedule_notrace_dynamic_disabled	NULL
7245 #  endif
7246 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7247 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7248 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7249 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7250 void __sched notrace dynamic_preempt_schedule_notrace(void)
7251 {
7252 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7253 		return;
7254 	preempt_schedule_notrace();
7255 }
7256 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7257 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7258 # endif
7259 #endif
7260 
7261 #endif /* CONFIG_PREEMPTION */
7262 
7263 /*
7264  * This is the entry point to schedule() from kernel preemption
7265  * off of IRQ context.
7266  * Note, that this is called and return with IRQs disabled. This will
7267  * protect us against recursive calling from IRQ contexts.
7268  */
7269 asmlinkage __visible void __sched preempt_schedule_irq(void)
7270 {
7271 	enum ctx_state prev_state;
7272 
7273 	/* Catch callers which need to be fixed */
7274 	BUG_ON(preempt_count() || !irqs_disabled());
7275 
7276 	prev_state = exception_enter();
7277 
7278 	do {
7279 		preempt_disable();
7280 		local_irq_enable();
7281 		__schedule(SM_PREEMPT);
7282 		local_irq_disable();
7283 		sched_preempt_enable_no_resched();
7284 	} while (need_resched());
7285 
7286 	exception_exit(prev_state);
7287 }
7288 
7289 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7290 			  void *key)
7291 {
7292 	WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7293 	return try_to_wake_up(curr->private, mode, wake_flags);
7294 }
7295 EXPORT_SYMBOL(default_wake_function);
7296 
7297 const struct sched_class *__setscheduler_class(int policy, int prio)
7298 {
7299 	if (dl_prio(prio))
7300 		return &dl_sched_class;
7301 
7302 	if (rt_prio(prio))
7303 		return &rt_sched_class;
7304 
7305 #ifdef CONFIG_SCHED_CLASS_EXT
7306 	if (task_should_scx(policy))
7307 		return &ext_sched_class;
7308 #endif
7309 
7310 	return &fair_sched_class;
7311 }
7312 
7313 #ifdef CONFIG_RT_MUTEXES
7314 
7315 /*
7316  * Would be more useful with typeof()/auto_type but they don't mix with
7317  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7318  * name such that if someone were to implement this function we get to compare
7319  * notes.
7320  */
7321 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7322 
7323 void rt_mutex_pre_schedule(void)
7324 {
7325 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7326 	sched_submit_work(current);
7327 }
7328 
7329 void rt_mutex_schedule(void)
7330 {
7331 	lockdep_assert(current->sched_rt_mutex);
7332 	__schedule_loop(SM_NONE);
7333 }
7334 
7335 void rt_mutex_post_schedule(void)
7336 {
7337 	sched_update_worker(current);
7338 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7339 }
7340 
7341 /*
7342  * rt_mutex_setprio - set the current priority of a task
7343  * @p: task to boost
7344  * @pi_task: donor task
7345  *
7346  * This function changes the 'effective' priority of a task. It does
7347  * not touch ->normal_prio like __setscheduler().
7348  *
7349  * Used by the rt_mutex code to implement priority inheritance
7350  * logic. Call site only calls if the priority of the task changed.
7351  */
7352 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7353 {
7354 	int prio, oldprio, queued, running, queue_flag =
7355 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7356 	const struct sched_class *prev_class, *next_class;
7357 	struct rq_flags rf;
7358 	struct rq *rq;
7359 
7360 	/* XXX used to be waiter->prio, not waiter->task->prio */
7361 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7362 
7363 	/*
7364 	 * If nothing changed; bail early.
7365 	 */
7366 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7367 		return;
7368 
7369 	rq = __task_rq_lock(p, &rf);
7370 	update_rq_clock(rq);
7371 	/*
7372 	 * Set under pi_lock && rq->lock, such that the value can be used under
7373 	 * either lock.
7374 	 *
7375 	 * Note that there is loads of tricky to make this pointer cache work
7376 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7377 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7378 	 * task is allowed to run again (and can exit). This ensures the pointer
7379 	 * points to a blocked task -- which guarantees the task is present.
7380 	 */
7381 	p->pi_top_task = pi_task;
7382 
7383 	/*
7384 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7385 	 */
7386 	if (prio == p->prio && !dl_prio(prio))
7387 		goto out_unlock;
7388 
7389 	/*
7390 	 * Idle task boosting is a no-no in general. There is one
7391 	 * exception, when PREEMPT_RT and NOHZ is active:
7392 	 *
7393 	 * The idle task calls get_next_timer_interrupt() and holds
7394 	 * the timer wheel base->lock on the CPU and another CPU wants
7395 	 * to access the timer (probably to cancel it). We can safely
7396 	 * ignore the boosting request, as the idle CPU runs this code
7397 	 * with interrupts disabled and will complete the lock
7398 	 * protected section without being interrupted. So there is no
7399 	 * real need to boost.
7400 	 */
7401 	if (unlikely(p == rq->idle)) {
7402 		WARN_ON(p != rq->curr);
7403 		WARN_ON(p->pi_blocked_on);
7404 		goto out_unlock;
7405 	}
7406 
7407 	trace_sched_pi_setprio(p, pi_task);
7408 	oldprio = p->prio;
7409 
7410 	if (oldprio == prio)
7411 		queue_flag &= ~DEQUEUE_MOVE;
7412 
7413 	prev_class = p->sched_class;
7414 	next_class = __setscheduler_class(p->policy, prio);
7415 
7416 	if (prev_class != next_class && p->se.sched_delayed)
7417 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7418 
7419 	queued = task_on_rq_queued(p);
7420 	running = task_current_donor(rq, p);
7421 	if (queued)
7422 		dequeue_task(rq, p, queue_flag);
7423 	if (running)
7424 		put_prev_task(rq, p);
7425 
7426 	/*
7427 	 * Boosting condition are:
7428 	 * 1. -rt task is running and holds mutex A
7429 	 *      --> -dl task blocks on mutex A
7430 	 *
7431 	 * 2. -dl task is running and holds mutex A
7432 	 *      --> -dl task blocks on mutex A and could preempt the
7433 	 *          running task
7434 	 */
7435 	if (dl_prio(prio)) {
7436 		if (!dl_prio(p->normal_prio) ||
7437 		    (pi_task && dl_prio(pi_task->prio) &&
7438 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7439 			p->dl.pi_se = pi_task->dl.pi_se;
7440 			queue_flag |= ENQUEUE_REPLENISH;
7441 		} else {
7442 			p->dl.pi_se = &p->dl;
7443 		}
7444 	} else if (rt_prio(prio)) {
7445 		if (dl_prio(oldprio))
7446 			p->dl.pi_se = &p->dl;
7447 		if (oldprio < prio)
7448 			queue_flag |= ENQUEUE_HEAD;
7449 	} else {
7450 		if (dl_prio(oldprio))
7451 			p->dl.pi_se = &p->dl;
7452 		if (rt_prio(oldprio))
7453 			p->rt.timeout = 0;
7454 	}
7455 
7456 	p->sched_class = next_class;
7457 	p->prio = prio;
7458 
7459 	check_class_changing(rq, p, prev_class);
7460 
7461 	if (queued)
7462 		enqueue_task(rq, p, queue_flag);
7463 	if (running)
7464 		set_next_task(rq, p);
7465 
7466 	check_class_changed(rq, p, prev_class, oldprio);
7467 out_unlock:
7468 	/* Avoid rq from going away on us: */
7469 	preempt_disable();
7470 
7471 	rq_unpin_lock(rq, &rf);
7472 	__balance_callbacks(rq);
7473 	raw_spin_rq_unlock(rq);
7474 
7475 	preempt_enable();
7476 }
7477 #endif /* CONFIG_RT_MUTEXES */
7478 
7479 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7480 int __sched __cond_resched(void)
7481 {
7482 	if (should_resched(0) && !irqs_disabled()) {
7483 		preempt_schedule_common();
7484 		return 1;
7485 	}
7486 	/*
7487 	 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick
7488 	 * whether the current CPU is in an RCU read-side critical section,
7489 	 * so the tick can report quiescent states even for CPUs looping
7490 	 * in kernel context.  In contrast, in non-preemptible kernels,
7491 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7492 	 * processes executing in kernel context might never report an
7493 	 * RCU quiescent state.  Therefore, the following code causes
7494 	 * cond_resched() to report a quiescent state, but only when RCU
7495 	 * is in urgent need of one.
7496 	 * A third case, preemptible, but non-PREEMPT_RCU provides for
7497 	 * urgently needed quiescent states via rcu_flavor_sched_clock_irq().
7498 	 */
7499 #ifndef CONFIG_PREEMPT_RCU
7500 	rcu_all_qs();
7501 #endif
7502 	return 0;
7503 }
7504 EXPORT_SYMBOL(__cond_resched);
7505 #endif
7506 
7507 #ifdef CONFIG_PREEMPT_DYNAMIC
7508 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7509 #  define cond_resched_dynamic_enabled	__cond_resched
7510 #  define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7511 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7512 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7513 
7514 #  define might_resched_dynamic_enabled	__cond_resched
7515 #  define might_resched_dynamic_disabled ((void *)&__static_call_return0)
7516 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7517 EXPORT_STATIC_CALL_TRAMP(might_resched);
7518 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7519 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7520 int __sched dynamic_cond_resched(void)
7521 {
7522 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7523 		return 0;
7524 	return __cond_resched();
7525 }
7526 EXPORT_SYMBOL(dynamic_cond_resched);
7527 
7528 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7529 int __sched dynamic_might_resched(void)
7530 {
7531 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7532 		return 0;
7533 	return __cond_resched();
7534 }
7535 EXPORT_SYMBOL(dynamic_might_resched);
7536 # endif
7537 #endif /* CONFIG_PREEMPT_DYNAMIC */
7538 
7539 /*
7540  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7541  * call schedule, and on return reacquire the lock.
7542  *
7543  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7544  * operations here to prevent schedule() from being called twice (once via
7545  * spin_unlock(), once by hand).
7546  */
7547 int __cond_resched_lock(spinlock_t *lock)
7548 {
7549 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7550 	int ret = 0;
7551 
7552 	lockdep_assert_held(lock);
7553 
7554 	if (spin_needbreak(lock) || resched) {
7555 		spin_unlock(lock);
7556 		if (!_cond_resched())
7557 			cpu_relax();
7558 		ret = 1;
7559 		spin_lock(lock);
7560 	}
7561 	return ret;
7562 }
7563 EXPORT_SYMBOL(__cond_resched_lock);
7564 
7565 int __cond_resched_rwlock_read(rwlock_t *lock)
7566 {
7567 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7568 	int ret = 0;
7569 
7570 	lockdep_assert_held_read(lock);
7571 
7572 	if (rwlock_needbreak(lock) || resched) {
7573 		read_unlock(lock);
7574 		if (!_cond_resched())
7575 			cpu_relax();
7576 		ret = 1;
7577 		read_lock(lock);
7578 	}
7579 	return ret;
7580 }
7581 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7582 
7583 int __cond_resched_rwlock_write(rwlock_t *lock)
7584 {
7585 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7586 	int ret = 0;
7587 
7588 	lockdep_assert_held_write(lock);
7589 
7590 	if (rwlock_needbreak(lock) || resched) {
7591 		write_unlock(lock);
7592 		if (!_cond_resched())
7593 			cpu_relax();
7594 		ret = 1;
7595 		write_lock(lock);
7596 	}
7597 	return ret;
7598 }
7599 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7600 
7601 #ifdef CONFIG_PREEMPT_DYNAMIC
7602 
7603 # ifdef CONFIG_GENERIC_IRQ_ENTRY
7604 #  include <linux/irq-entry-common.h>
7605 # endif
7606 
7607 /*
7608  * SC:cond_resched
7609  * SC:might_resched
7610  * SC:preempt_schedule
7611  * SC:preempt_schedule_notrace
7612  * SC:irqentry_exit_cond_resched
7613  *
7614  *
7615  * NONE:
7616  *   cond_resched               <- __cond_resched
7617  *   might_resched              <- RET0
7618  *   preempt_schedule           <- NOP
7619  *   preempt_schedule_notrace   <- NOP
7620  *   irqentry_exit_cond_resched <- NOP
7621  *   dynamic_preempt_lazy       <- false
7622  *
7623  * VOLUNTARY:
7624  *   cond_resched               <- __cond_resched
7625  *   might_resched              <- __cond_resched
7626  *   preempt_schedule           <- NOP
7627  *   preempt_schedule_notrace   <- NOP
7628  *   irqentry_exit_cond_resched <- NOP
7629  *   dynamic_preempt_lazy       <- false
7630  *
7631  * FULL:
7632  *   cond_resched               <- RET0
7633  *   might_resched              <- RET0
7634  *   preempt_schedule           <- preempt_schedule
7635  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7636  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7637  *   dynamic_preempt_lazy       <- false
7638  *
7639  * LAZY:
7640  *   cond_resched               <- RET0
7641  *   might_resched              <- RET0
7642  *   preempt_schedule           <- preempt_schedule
7643  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7644  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7645  *   dynamic_preempt_lazy       <- true
7646  */
7647 
7648 enum {
7649 	preempt_dynamic_undefined = -1,
7650 	preempt_dynamic_none,
7651 	preempt_dynamic_voluntary,
7652 	preempt_dynamic_full,
7653 	preempt_dynamic_lazy,
7654 };
7655 
7656 int preempt_dynamic_mode = preempt_dynamic_undefined;
7657 
7658 int sched_dynamic_mode(const char *str)
7659 {
7660 # ifndef CONFIG_PREEMPT_RT
7661 	if (!strcmp(str, "none"))
7662 		return preempt_dynamic_none;
7663 
7664 	if (!strcmp(str, "voluntary"))
7665 		return preempt_dynamic_voluntary;
7666 # endif
7667 
7668 	if (!strcmp(str, "full"))
7669 		return preempt_dynamic_full;
7670 
7671 # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7672 	if (!strcmp(str, "lazy"))
7673 		return preempt_dynamic_lazy;
7674 # endif
7675 
7676 	return -EINVAL;
7677 }
7678 
7679 # define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7680 # define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7681 
7682 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7683 #  define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7684 #  define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7685 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7686 #  define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7687 #  define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7688 # else
7689 #  error "Unsupported PREEMPT_DYNAMIC mechanism"
7690 # endif
7691 
7692 static DEFINE_MUTEX(sched_dynamic_mutex);
7693 
7694 static void __sched_dynamic_update(int mode)
7695 {
7696 	/*
7697 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7698 	 * the ZERO state, which is invalid.
7699 	 */
7700 	preempt_dynamic_enable(cond_resched);
7701 	preempt_dynamic_enable(might_resched);
7702 	preempt_dynamic_enable(preempt_schedule);
7703 	preempt_dynamic_enable(preempt_schedule_notrace);
7704 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7705 	preempt_dynamic_key_disable(preempt_lazy);
7706 
7707 	switch (mode) {
7708 	case preempt_dynamic_none:
7709 		preempt_dynamic_enable(cond_resched);
7710 		preempt_dynamic_disable(might_resched);
7711 		preempt_dynamic_disable(preempt_schedule);
7712 		preempt_dynamic_disable(preempt_schedule_notrace);
7713 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7714 		preempt_dynamic_key_disable(preempt_lazy);
7715 		if (mode != preempt_dynamic_mode)
7716 			pr_info("Dynamic Preempt: none\n");
7717 		break;
7718 
7719 	case preempt_dynamic_voluntary:
7720 		preempt_dynamic_enable(cond_resched);
7721 		preempt_dynamic_enable(might_resched);
7722 		preempt_dynamic_disable(preempt_schedule);
7723 		preempt_dynamic_disable(preempt_schedule_notrace);
7724 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7725 		preempt_dynamic_key_disable(preempt_lazy);
7726 		if (mode != preempt_dynamic_mode)
7727 			pr_info("Dynamic Preempt: voluntary\n");
7728 		break;
7729 
7730 	case preempt_dynamic_full:
7731 		preempt_dynamic_disable(cond_resched);
7732 		preempt_dynamic_disable(might_resched);
7733 		preempt_dynamic_enable(preempt_schedule);
7734 		preempt_dynamic_enable(preempt_schedule_notrace);
7735 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7736 		preempt_dynamic_key_disable(preempt_lazy);
7737 		if (mode != preempt_dynamic_mode)
7738 			pr_info("Dynamic Preempt: full\n");
7739 		break;
7740 
7741 	case preempt_dynamic_lazy:
7742 		preempt_dynamic_disable(cond_resched);
7743 		preempt_dynamic_disable(might_resched);
7744 		preempt_dynamic_enable(preempt_schedule);
7745 		preempt_dynamic_enable(preempt_schedule_notrace);
7746 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7747 		preempt_dynamic_key_enable(preempt_lazy);
7748 		if (mode != preempt_dynamic_mode)
7749 			pr_info("Dynamic Preempt: lazy\n");
7750 		break;
7751 	}
7752 
7753 	preempt_dynamic_mode = mode;
7754 }
7755 
7756 void sched_dynamic_update(int mode)
7757 {
7758 	mutex_lock(&sched_dynamic_mutex);
7759 	__sched_dynamic_update(mode);
7760 	mutex_unlock(&sched_dynamic_mutex);
7761 }
7762 
7763 static int __init setup_preempt_mode(char *str)
7764 {
7765 	int mode = sched_dynamic_mode(str);
7766 	if (mode < 0) {
7767 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7768 		return 0;
7769 	}
7770 
7771 	sched_dynamic_update(mode);
7772 	return 1;
7773 }
7774 __setup("preempt=", setup_preempt_mode);
7775 
7776 static void __init preempt_dynamic_init(void)
7777 {
7778 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7779 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7780 			sched_dynamic_update(preempt_dynamic_none);
7781 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7782 			sched_dynamic_update(preempt_dynamic_voluntary);
7783 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7784 			sched_dynamic_update(preempt_dynamic_lazy);
7785 		} else {
7786 			/* Default static call setting, nothing to do */
7787 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7788 			preempt_dynamic_mode = preempt_dynamic_full;
7789 			pr_info("Dynamic Preempt: full\n");
7790 		}
7791 	}
7792 }
7793 
7794 # define PREEMPT_MODEL_ACCESSOR(mode) \
7795 	bool preempt_model_##mode(void)						 \
7796 	{									 \
7797 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7798 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7799 	}									 \
7800 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7801 
7802 PREEMPT_MODEL_ACCESSOR(none);
7803 PREEMPT_MODEL_ACCESSOR(voluntary);
7804 PREEMPT_MODEL_ACCESSOR(full);
7805 PREEMPT_MODEL_ACCESSOR(lazy);
7806 
7807 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7808 
7809 #define preempt_dynamic_mode -1
7810 
7811 static inline void preempt_dynamic_init(void) { }
7812 
7813 #endif /* CONFIG_PREEMPT_DYNAMIC */
7814 
7815 const char *preempt_modes[] = {
7816 	"none", "voluntary", "full", "lazy", NULL,
7817 };
7818 
7819 const char *preempt_model_str(void)
7820 {
7821 	bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) &&
7822 		(IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) ||
7823 		 IS_ENABLED(CONFIG_PREEMPT_LAZY));
7824 	static char buf[128];
7825 
7826 	if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) {
7827 		struct seq_buf s;
7828 
7829 		seq_buf_init(&s, buf, sizeof(buf));
7830 		seq_buf_puts(&s, "PREEMPT");
7831 
7832 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
7833 			seq_buf_printf(&s, "%sRT%s",
7834 				       brace ? "_{" : "_",
7835 				       brace ? "," : "");
7836 
7837 		if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) {
7838 			seq_buf_printf(&s, "(%s)%s",
7839 				       preempt_dynamic_mode >= 0 ?
7840 				       preempt_modes[preempt_dynamic_mode] : "undef",
7841 				       brace ? "}" : "");
7842 			return seq_buf_str(&s);
7843 		}
7844 
7845 		if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7846 			seq_buf_printf(&s, "LAZY%s",
7847 				       brace ? "}" : "");
7848 			return seq_buf_str(&s);
7849 		}
7850 
7851 		return seq_buf_str(&s);
7852 	}
7853 
7854 	if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD))
7855 		return "VOLUNTARY";
7856 
7857 	return "NONE";
7858 }
7859 
7860 int io_schedule_prepare(void)
7861 {
7862 	int old_iowait = current->in_iowait;
7863 
7864 	current->in_iowait = 1;
7865 	blk_flush_plug(current->plug, true);
7866 	return old_iowait;
7867 }
7868 
7869 void io_schedule_finish(int token)
7870 {
7871 	current->in_iowait = token;
7872 }
7873 
7874 /*
7875  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7876  * that process accounting knows that this is a task in IO wait state.
7877  */
7878 long __sched io_schedule_timeout(long timeout)
7879 {
7880 	int token;
7881 	long ret;
7882 
7883 	token = io_schedule_prepare();
7884 	ret = schedule_timeout(timeout);
7885 	io_schedule_finish(token);
7886 
7887 	return ret;
7888 }
7889 EXPORT_SYMBOL(io_schedule_timeout);
7890 
7891 void __sched io_schedule(void)
7892 {
7893 	int token;
7894 
7895 	token = io_schedule_prepare();
7896 	schedule();
7897 	io_schedule_finish(token);
7898 }
7899 EXPORT_SYMBOL(io_schedule);
7900 
7901 void sched_show_task(struct task_struct *p)
7902 {
7903 	unsigned long free;
7904 	int ppid;
7905 
7906 	if (!try_get_task_stack(p))
7907 		return;
7908 
7909 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7910 
7911 	if (task_is_running(p))
7912 		pr_cont("  running task    ");
7913 	free = stack_not_used(p);
7914 	ppid = 0;
7915 	rcu_read_lock();
7916 	if (pid_alive(p))
7917 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7918 	rcu_read_unlock();
7919 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7920 		free, task_pid_nr(p), task_tgid_nr(p),
7921 		ppid, p->flags, read_task_thread_flags(p));
7922 
7923 	print_worker_info(KERN_INFO, p);
7924 	print_stop_info(KERN_INFO, p);
7925 	print_scx_info(KERN_INFO, p);
7926 	show_stack(p, NULL, KERN_INFO);
7927 	put_task_stack(p);
7928 }
7929 EXPORT_SYMBOL_GPL(sched_show_task);
7930 
7931 static inline bool
7932 state_filter_match(unsigned long state_filter, struct task_struct *p)
7933 {
7934 	unsigned int state = READ_ONCE(p->__state);
7935 
7936 	/* no filter, everything matches */
7937 	if (!state_filter)
7938 		return true;
7939 
7940 	/* filter, but doesn't match */
7941 	if (!(state & state_filter))
7942 		return false;
7943 
7944 	/*
7945 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7946 	 * TASK_KILLABLE).
7947 	 */
7948 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7949 		return false;
7950 
7951 	return true;
7952 }
7953 
7954 
7955 void show_state_filter(unsigned int state_filter)
7956 {
7957 	struct task_struct *g, *p;
7958 
7959 	rcu_read_lock();
7960 	for_each_process_thread(g, p) {
7961 		/*
7962 		 * reset the NMI-timeout, listing all files on a slow
7963 		 * console might take a lot of time:
7964 		 * Also, reset softlockup watchdogs on all CPUs, because
7965 		 * another CPU might be blocked waiting for us to process
7966 		 * an IPI.
7967 		 */
7968 		touch_nmi_watchdog();
7969 		touch_all_softlockup_watchdogs();
7970 		if (state_filter_match(state_filter, p))
7971 			sched_show_task(p);
7972 	}
7973 
7974 	if (!state_filter)
7975 		sysrq_sched_debug_show();
7976 
7977 	rcu_read_unlock();
7978 	/*
7979 	 * Only show locks if all tasks are dumped:
7980 	 */
7981 	if (!state_filter)
7982 		debug_show_all_locks();
7983 }
7984 
7985 /**
7986  * init_idle - set up an idle thread for a given CPU
7987  * @idle: task in question
7988  * @cpu: CPU the idle task belongs to
7989  *
7990  * NOTE: this function does not set the idle thread's NEED_RESCHED
7991  * flag, to make booting more robust.
7992  */
7993 void __init init_idle(struct task_struct *idle, int cpu)
7994 {
7995 	struct affinity_context ac = (struct affinity_context) {
7996 		.new_mask  = cpumask_of(cpu),
7997 		.flags     = 0,
7998 	};
7999 	struct rq *rq = cpu_rq(cpu);
8000 	unsigned long flags;
8001 
8002 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8003 	raw_spin_rq_lock(rq);
8004 
8005 	idle->__state = TASK_RUNNING;
8006 	idle->se.exec_start = sched_clock();
8007 	/*
8008 	 * PF_KTHREAD should already be set at this point; regardless, make it
8009 	 * look like a proper per-CPU kthread.
8010 	 */
8011 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
8012 	kthread_set_per_cpu(idle, cpu);
8013 
8014 	/*
8015 	 * No validation and serialization required at boot time and for
8016 	 * setting up the idle tasks of not yet online CPUs.
8017 	 */
8018 	set_cpus_allowed_common(idle, &ac);
8019 	/*
8020 	 * We're having a chicken and egg problem, even though we are
8021 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8022 	 * lockdep check in task_group() will fail.
8023 	 *
8024 	 * Similar case to sched_fork(). / Alternatively we could
8025 	 * use task_rq_lock() here and obtain the other rq->lock.
8026 	 *
8027 	 * Silence PROVE_RCU
8028 	 */
8029 	rcu_read_lock();
8030 	__set_task_cpu(idle, cpu);
8031 	rcu_read_unlock();
8032 
8033 	rq->idle = idle;
8034 	rq_set_donor(rq, idle);
8035 	rcu_assign_pointer(rq->curr, idle);
8036 	idle->on_rq = TASK_ON_RQ_QUEUED;
8037 	idle->on_cpu = 1;
8038 	raw_spin_rq_unlock(rq);
8039 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8040 
8041 	/* Set the preempt count _outside_ the spinlocks! */
8042 	init_idle_preempt_count(idle, cpu);
8043 
8044 	/*
8045 	 * The idle tasks have their own, simple scheduling class:
8046 	 */
8047 	idle->sched_class = &idle_sched_class;
8048 	ftrace_graph_init_idle_task(idle, cpu);
8049 	vtime_init_idle(idle, cpu);
8050 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8051 }
8052 
8053 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8054 			      const struct cpumask *trial)
8055 {
8056 	int ret = 1;
8057 
8058 	if (cpumask_empty(cur))
8059 		return ret;
8060 
8061 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8062 
8063 	return ret;
8064 }
8065 
8066 int task_can_attach(struct task_struct *p)
8067 {
8068 	int ret = 0;
8069 
8070 	/*
8071 	 * Kthreads which disallow setaffinity shouldn't be moved
8072 	 * to a new cpuset; we don't want to change their CPU
8073 	 * affinity and isolating such threads by their set of
8074 	 * allowed nodes is unnecessary.  Thus, cpusets are not
8075 	 * applicable for such threads.  This prevents checking for
8076 	 * success of set_cpus_allowed_ptr() on all attached tasks
8077 	 * before cpus_mask may be changed.
8078 	 */
8079 	if (p->flags & PF_NO_SETAFFINITY)
8080 		ret = -EINVAL;
8081 
8082 	return ret;
8083 }
8084 
8085 bool sched_smp_initialized __read_mostly;
8086 
8087 #ifdef CONFIG_NUMA_BALANCING
8088 /* Migrate current task p to target_cpu */
8089 int migrate_task_to(struct task_struct *p, int target_cpu)
8090 {
8091 	struct migration_arg arg = { p, target_cpu };
8092 	int curr_cpu = task_cpu(p);
8093 
8094 	if (curr_cpu == target_cpu)
8095 		return 0;
8096 
8097 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8098 		return -EINVAL;
8099 
8100 	/* TODO: This is not properly updating schedstats */
8101 
8102 	trace_sched_move_numa(p, curr_cpu, target_cpu);
8103 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8104 }
8105 
8106 /*
8107  * Requeue a task on a given node and accurately track the number of NUMA
8108  * tasks on the runqueues
8109  */
8110 void sched_setnuma(struct task_struct *p, int nid)
8111 {
8112 	bool queued, running;
8113 	struct rq_flags rf;
8114 	struct rq *rq;
8115 
8116 	rq = task_rq_lock(p, &rf);
8117 	queued = task_on_rq_queued(p);
8118 	running = task_current_donor(rq, p);
8119 
8120 	if (queued)
8121 		dequeue_task(rq, p, DEQUEUE_SAVE);
8122 	if (running)
8123 		put_prev_task(rq, p);
8124 
8125 	p->numa_preferred_nid = nid;
8126 
8127 	if (queued)
8128 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8129 	if (running)
8130 		set_next_task(rq, p);
8131 	task_rq_unlock(rq, p, &rf);
8132 }
8133 #endif /* CONFIG_NUMA_BALANCING */
8134 
8135 #ifdef CONFIG_HOTPLUG_CPU
8136 /*
8137  * Invoked on the outgoing CPU in context of the CPU hotplug thread
8138  * after ensuring that there are no user space tasks left on the CPU.
8139  *
8140  * If there is a lazy mm in use on the hotplug thread, drop it and
8141  * switch to init_mm.
8142  *
8143  * The reference count on init_mm is dropped in finish_cpu().
8144  */
8145 static void sched_force_init_mm(void)
8146 {
8147 	struct mm_struct *mm = current->active_mm;
8148 
8149 	if (mm != &init_mm) {
8150 		mmgrab_lazy_tlb(&init_mm);
8151 		local_irq_disable();
8152 		current->active_mm = &init_mm;
8153 		switch_mm_irqs_off(mm, &init_mm, current);
8154 		local_irq_enable();
8155 		finish_arch_post_lock_switch();
8156 		mmdrop_lazy_tlb(mm);
8157 	}
8158 
8159 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8160 }
8161 
8162 static int __balance_push_cpu_stop(void *arg)
8163 {
8164 	struct task_struct *p = arg;
8165 	struct rq *rq = this_rq();
8166 	struct rq_flags rf;
8167 	int cpu;
8168 
8169 	raw_spin_lock_irq(&p->pi_lock);
8170 	rq_lock(rq, &rf);
8171 
8172 	update_rq_clock(rq);
8173 
8174 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8175 		cpu = select_fallback_rq(rq->cpu, p);
8176 		rq = __migrate_task(rq, &rf, p, cpu);
8177 	}
8178 
8179 	rq_unlock(rq, &rf);
8180 	raw_spin_unlock_irq(&p->pi_lock);
8181 
8182 	put_task_struct(p);
8183 
8184 	return 0;
8185 }
8186 
8187 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8188 
8189 /*
8190  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8191  *
8192  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8193  * effective when the hotplug motion is down.
8194  */
8195 static void balance_push(struct rq *rq)
8196 {
8197 	struct task_struct *push_task = rq->curr;
8198 
8199 	lockdep_assert_rq_held(rq);
8200 
8201 	/*
8202 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8203 	 */
8204 	rq->balance_callback = &balance_push_callback;
8205 
8206 	/*
8207 	 * Only active while going offline and when invoked on the outgoing
8208 	 * CPU.
8209 	 */
8210 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8211 		return;
8212 
8213 	/*
8214 	 * Both the cpu-hotplug and stop task are in this case and are
8215 	 * required to complete the hotplug process.
8216 	 */
8217 	if (kthread_is_per_cpu(push_task) ||
8218 	    is_migration_disabled(push_task)) {
8219 
8220 		/*
8221 		 * If this is the idle task on the outgoing CPU try to wake
8222 		 * up the hotplug control thread which might wait for the
8223 		 * last task to vanish. The rcuwait_active() check is
8224 		 * accurate here because the waiter is pinned on this CPU
8225 		 * and can't obviously be running in parallel.
8226 		 *
8227 		 * On RT kernels this also has to check whether there are
8228 		 * pinned and scheduled out tasks on the runqueue. They
8229 		 * need to leave the migrate disabled section first.
8230 		 */
8231 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8232 		    rcuwait_active(&rq->hotplug_wait)) {
8233 			raw_spin_rq_unlock(rq);
8234 			rcuwait_wake_up(&rq->hotplug_wait);
8235 			raw_spin_rq_lock(rq);
8236 		}
8237 		return;
8238 	}
8239 
8240 	get_task_struct(push_task);
8241 	/*
8242 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8243 	 * Both preemption and IRQs are still disabled.
8244 	 */
8245 	preempt_disable();
8246 	raw_spin_rq_unlock(rq);
8247 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8248 			    this_cpu_ptr(&push_work));
8249 	preempt_enable();
8250 	/*
8251 	 * At this point need_resched() is true and we'll take the loop in
8252 	 * schedule(). The next pick is obviously going to be the stop task
8253 	 * which kthread_is_per_cpu() and will push this task away.
8254 	 */
8255 	raw_spin_rq_lock(rq);
8256 }
8257 
8258 static void balance_push_set(int cpu, bool on)
8259 {
8260 	struct rq *rq = cpu_rq(cpu);
8261 	struct rq_flags rf;
8262 
8263 	rq_lock_irqsave(rq, &rf);
8264 	if (on) {
8265 		WARN_ON_ONCE(rq->balance_callback);
8266 		rq->balance_callback = &balance_push_callback;
8267 	} else if (rq->balance_callback == &balance_push_callback) {
8268 		rq->balance_callback = NULL;
8269 	}
8270 	rq_unlock_irqrestore(rq, &rf);
8271 }
8272 
8273 /*
8274  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8275  * inactive. All tasks which are not per CPU kernel threads are either
8276  * pushed off this CPU now via balance_push() or placed on a different CPU
8277  * during wakeup. Wait until the CPU is quiescent.
8278  */
8279 static void balance_hotplug_wait(void)
8280 {
8281 	struct rq *rq = this_rq();
8282 
8283 	rcuwait_wait_event(&rq->hotplug_wait,
8284 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8285 			   TASK_UNINTERRUPTIBLE);
8286 }
8287 
8288 #else /* !CONFIG_HOTPLUG_CPU: */
8289 
8290 static inline void balance_push(struct rq *rq)
8291 {
8292 }
8293 
8294 static inline void balance_push_set(int cpu, bool on)
8295 {
8296 }
8297 
8298 static inline void balance_hotplug_wait(void)
8299 {
8300 }
8301 
8302 #endif /* !CONFIG_HOTPLUG_CPU */
8303 
8304 void set_rq_online(struct rq *rq)
8305 {
8306 	if (!rq->online) {
8307 		const struct sched_class *class;
8308 
8309 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8310 		rq->online = 1;
8311 
8312 		for_each_class(class) {
8313 			if (class->rq_online)
8314 				class->rq_online(rq);
8315 		}
8316 	}
8317 }
8318 
8319 void set_rq_offline(struct rq *rq)
8320 {
8321 	if (rq->online) {
8322 		const struct sched_class *class;
8323 
8324 		update_rq_clock(rq);
8325 		for_each_class(class) {
8326 			if (class->rq_offline)
8327 				class->rq_offline(rq);
8328 		}
8329 
8330 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8331 		rq->online = 0;
8332 	}
8333 }
8334 
8335 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8336 {
8337 	struct rq_flags rf;
8338 
8339 	rq_lock_irqsave(rq, &rf);
8340 	if (rq->rd) {
8341 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8342 		set_rq_online(rq);
8343 	}
8344 	rq_unlock_irqrestore(rq, &rf);
8345 }
8346 
8347 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8348 {
8349 	struct rq_flags rf;
8350 
8351 	rq_lock_irqsave(rq, &rf);
8352 	if (rq->rd) {
8353 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8354 		set_rq_offline(rq);
8355 	}
8356 	rq_unlock_irqrestore(rq, &rf);
8357 }
8358 
8359 /*
8360  * used to mark begin/end of suspend/resume:
8361  */
8362 static int num_cpus_frozen;
8363 
8364 /*
8365  * Update cpusets according to cpu_active mask.  If cpusets are
8366  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8367  * around partition_sched_domains().
8368  *
8369  * If we come here as part of a suspend/resume, don't touch cpusets because we
8370  * want to restore it back to its original state upon resume anyway.
8371  */
8372 static void cpuset_cpu_active(void)
8373 {
8374 	if (cpuhp_tasks_frozen) {
8375 		/*
8376 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8377 		 * resume sequence. As long as this is not the last online
8378 		 * operation in the resume sequence, just build a single sched
8379 		 * domain, ignoring cpusets.
8380 		 */
8381 		cpuset_reset_sched_domains();
8382 		if (--num_cpus_frozen)
8383 			return;
8384 		/*
8385 		 * This is the last CPU online operation. So fall through and
8386 		 * restore the original sched domains by considering the
8387 		 * cpuset configurations.
8388 		 */
8389 		cpuset_force_rebuild();
8390 	}
8391 	cpuset_update_active_cpus();
8392 }
8393 
8394 static void cpuset_cpu_inactive(unsigned int cpu)
8395 {
8396 	if (!cpuhp_tasks_frozen) {
8397 		cpuset_update_active_cpus();
8398 	} else {
8399 		num_cpus_frozen++;
8400 		cpuset_reset_sched_domains();
8401 	}
8402 }
8403 
8404 static inline void sched_smt_present_inc(int cpu)
8405 {
8406 #ifdef CONFIG_SCHED_SMT
8407 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8408 		static_branch_inc_cpuslocked(&sched_smt_present);
8409 #endif
8410 }
8411 
8412 static inline void sched_smt_present_dec(int cpu)
8413 {
8414 #ifdef CONFIG_SCHED_SMT
8415 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8416 		static_branch_dec_cpuslocked(&sched_smt_present);
8417 #endif
8418 }
8419 
8420 int sched_cpu_activate(unsigned int cpu)
8421 {
8422 	struct rq *rq = cpu_rq(cpu);
8423 
8424 	/*
8425 	 * Clear the balance_push callback and prepare to schedule
8426 	 * regular tasks.
8427 	 */
8428 	balance_push_set(cpu, false);
8429 
8430 	/*
8431 	 * When going up, increment the number of cores with SMT present.
8432 	 */
8433 	sched_smt_present_inc(cpu);
8434 	set_cpu_active(cpu, true);
8435 
8436 	if (sched_smp_initialized) {
8437 		sched_update_numa(cpu, true);
8438 		sched_domains_numa_masks_set(cpu);
8439 		cpuset_cpu_active();
8440 	}
8441 
8442 	scx_rq_activate(rq);
8443 
8444 	/*
8445 	 * Put the rq online, if not already. This happens:
8446 	 *
8447 	 * 1) In the early boot process, because we build the real domains
8448 	 *    after all CPUs have been brought up.
8449 	 *
8450 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8451 	 *    domains.
8452 	 */
8453 	sched_set_rq_online(rq, cpu);
8454 
8455 	return 0;
8456 }
8457 
8458 int sched_cpu_deactivate(unsigned int cpu)
8459 {
8460 	struct rq *rq = cpu_rq(cpu);
8461 	int ret;
8462 
8463 	ret = dl_bw_deactivate(cpu);
8464 
8465 	if (ret)
8466 		return ret;
8467 
8468 	/*
8469 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8470 	 * load balancing when not active
8471 	 */
8472 	nohz_balance_exit_idle(rq);
8473 
8474 	set_cpu_active(cpu, false);
8475 
8476 	/*
8477 	 * From this point forward, this CPU will refuse to run any task that
8478 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8479 	 * push those tasks away until this gets cleared, see
8480 	 * sched_cpu_dying().
8481 	 */
8482 	balance_push_set(cpu, true);
8483 
8484 	/*
8485 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8486 	 * preempt-disabled and RCU users of this state to go away such that
8487 	 * all new such users will observe it.
8488 	 *
8489 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8490 	 * ttwu_queue_cond() and is_cpu_allowed().
8491 	 *
8492 	 * Do sync before park smpboot threads to take care the RCU boost case.
8493 	 */
8494 	synchronize_rcu();
8495 
8496 	sched_set_rq_offline(rq, cpu);
8497 
8498 	scx_rq_deactivate(rq);
8499 
8500 	/*
8501 	 * When going down, decrement the number of cores with SMT present.
8502 	 */
8503 	sched_smt_present_dec(cpu);
8504 
8505 #ifdef CONFIG_SCHED_SMT
8506 	sched_core_cpu_deactivate(cpu);
8507 #endif
8508 
8509 	if (!sched_smp_initialized)
8510 		return 0;
8511 
8512 	sched_update_numa(cpu, false);
8513 	cpuset_cpu_inactive(cpu);
8514 	sched_domains_numa_masks_clear(cpu);
8515 	return 0;
8516 }
8517 
8518 static void sched_rq_cpu_starting(unsigned int cpu)
8519 {
8520 	struct rq *rq = cpu_rq(cpu);
8521 
8522 	rq->calc_load_update = calc_load_update;
8523 	update_max_interval();
8524 }
8525 
8526 int sched_cpu_starting(unsigned int cpu)
8527 {
8528 	sched_core_cpu_starting(cpu);
8529 	sched_rq_cpu_starting(cpu);
8530 	sched_tick_start(cpu);
8531 	return 0;
8532 }
8533 
8534 #ifdef CONFIG_HOTPLUG_CPU
8535 
8536 /*
8537  * Invoked immediately before the stopper thread is invoked to bring the
8538  * CPU down completely. At this point all per CPU kthreads except the
8539  * hotplug thread (current) and the stopper thread (inactive) have been
8540  * either parked or have been unbound from the outgoing CPU. Ensure that
8541  * any of those which might be on the way out are gone.
8542  *
8543  * If after this point a bound task is being woken on this CPU then the
8544  * responsible hotplug callback has failed to do it's job.
8545  * sched_cpu_dying() will catch it with the appropriate fireworks.
8546  */
8547 int sched_cpu_wait_empty(unsigned int cpu)
8548 {
8549 	balance_hotplug_wait();
8550 	sched_force_init_mm();
8551 	return 0;
8552 }
8553 
8554 /*
8555  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8556  * might have. Called from the CPU stopper task after ensuring that the
8557  * stopper is the last running task on the CPU, so nr_active count is
8558  * stable. We need to take the tear-down thread which is calling this into
8559  * account, so we hand in adjust = 1 to the load calculation.
8560  *
8561  * Also see the comment "Global load-average calculations".
8562  */
8563 static void calc_load_migrate(struct rq *rq)
8564 {
8565 	long delta = calc_load_fold_active(rq, 1);
8566 
8567 	if (delta)
8568 		atomic_long_add(delta, &calc_load_tasks);
8569 }
8570 
8571 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8572 {
8573 	struct task_struct *g, *p;
8574 	int cpu = cpu_of(rq);
8575 
8576 	lockdep_assert_rq_held(rq);
8577 
8578 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8579 	for_each_process_thread(g, p) {
8580 		if (task_cpu(p) != cpu)
8581 			continue;
8582 
8583 		if (!task_on_rq_queued(p))
8584 			continue;
8585 
8586 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8587 	}
8588 }
8589 
8590 int sched_cpu_dying(unsigned int cpu)
8591 {
8592 	struct rq *rq = cpu_rq(cpu);
8593 	struct rq_flags rf;
8594 
8595 	/* Handle pending wakeups and then migrate everything off */
8596 	sched_tick_stop(cpu);
8597 
8598 	rq_lock_irqsave(rq, &rf);
8599 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8600 		WARN(true, "Dying CPU not properly vacated!");
8601 		dump_rq_tasks(rq, KERN_WARNING);
8602 	}
8603 	rq_unlock_irqrestore(rq, &rf);
8604 
8605 	calc_load_migrate(rq);
8606 	update_max_interval();
8607 	hrtick_clear(rq);
8608 	sched_core_cpu_dying(cpu);
8609 	return 0;
8610 }
8611 #endif /* CONFIG_HOTPLUG_CPU */
8612 
8613 void __init sched_init_smp(void)
8614 {
8615 	sched_init_numa(NUMA_NO_NODE);
8616 
8617 	/*
8618 	 * There's no userspace yet to cause hotplug operations; hence all the
8619 	 * CPU masks are stable and all blatant races in the below code cannot
8620 	 * happen.
8621 	 */
8622 	sched_domains_mutex_lock();
8623 	sched_init_domains(cpu_active_mask);
8624 	sched_domains_mutex_unlock();
8625 
8626 	/* Move init over to a non-isolated CPU */
8627 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8628 		BUG();
8629 	current->flags &= ~PF_NO_SETAFFINITY;
8630 	sched_init_granularity();
8631 
8632 	init_sched_rt_class();
8633 	init_sched_dl_class();
8634 
8635 	sched_init_dl_servers();
8636 
8637 	sched_smp_initialized = true;
8638 }
8639 
8640 static int __init migration_init(void)
8641 {
8642 	sched_cpu_starting(smp_processor_id());
8643 	return 0;
8644 }
8645 early_initcall(migration_init);
8646 
8647 int in_sched_functions(unsigned long addr)
8648 {
8649 	return in_lock_functions(addr) ||
8650 		(addr >= (unsigned long)__sched_text_start
8651 		&& addr < (unsigned long)__sched_text_end);
8652 }
8653 
8654 #ifdef CONFIG_CGROUP_SCHED
8655 /*
8656  * Default task group.
8657  * Every task in system belongs to this group at bootup.
8658  */
8659 struct task_group root_task_group;
8660 LIST_HEAD(task_groups);
8661 
8662 /* Cacheline aligned slab cache for task_group */
8663 static struct kmem_cache *task_group_cache __ro_after_init;
8664 #endif
8665 
8666 void __init sched_init(void)
8667 {
8668 	unsigned long ptr = 0;
8669 	int i;
8670 
8671 	/* Make sure the linker didn't screw up */
8672 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8673 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8674 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8675 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8676 #ifdef CONFIG_SCHED_CLASS_EXT
8677 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8678 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8679 #endif
8680 
8681 	wait_bit_init();
8682 
8683 #ifdef CONFIG_FAIR_GROUP_SCHED
8684 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8685 #endif
8686 #ifdef CONFIG_RT_GROUP_SCHED
8687 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8688 #endif
8689 	if (ptr) {
8690 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8691 
8692 #ifdef CONFIG_FAIR_GROUP_SCHED
8693 		root_task_group.se = (struct sched_entity **)ptr;
8694 		ptr += nr_cpu_ids * sizeof(void **);
8695 
8696 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8697 		ptr += nr_cpu_ids * sizeof(void **);
8698 
8699 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8700 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8701 #endif /* CONFIG_FAIR_GROUP_SCHED */
8702 #ifdef CONFIG_EXT_GROUP_SCHED
8703 		scx_tg_init(&root_task_group);
8704 #endif /* CONFIG_EXT_GROUP_SCHED */
8705 #ifdef CONFIG_RT_GROUP_SCHED
8706 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8707 		ptr += nr_cpu_ids * sizeof(void **);
8708 
8709 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8710 		ptr += nr_cpu_ids * sizeof(void **);
8711 
8712 #endif /* CONFIG_RT_GROUP_SCHED */
8713 	}
8714 
8715 	init_defrootdomain();
8716 
8717 #ifdef CONFIG_RT_GROUP_SCHED
8718 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8719 			global_rt_period(), global_rt_runtime());
8720 #endif /* CONFIG_RT_GROUP_SCHED */
8721 
8722 #ifdef CONFIG_CGROUP_SCHED
8723 	task_group_cache = KMEM_CACHE(task_group, 0);
8724 
8725 	list_add(&root_task_group.list, &task_groups);
8726 	INIT_LIST_HEAD(&root_task_group.children);
8727 	INIT_LIST_HEAD(&root_task_group.siblings);
8728 	autogroup_init(&init_task);
8729 #endif /* CONFIG_CGROUP_SCHED */
8730 
8731 	for_each_possible_cpu(i) {
8732 		struct rq *rq;
8733 
8734 		rq = cpu_rq(i);
8735 		raw_spin_lock_init(&rq->__lock);
8736 		rq->nr_running = 0;
8737 		rq->calc_load_active = 0;
8738 		rq->calc_load_update = jiffies + LOAD_FREQ;
8739 		init_cfs_rq(&rq->cfs);
8740 		init_rt_rq(&rq->rt);
8741 		init_dl_rq(&rq->dl);
8742 #ifdef CONFIG_FAIR_GROUP_SCHED
8743 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8744 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8745 		/*
8746 		 * How much CPU bandwidth does root_task_group get?
8747 		 *
8748 		 * In case of task-groups formed through the cgroup filesystem, it
8749 		 * gets 100% of the CPU resources in the system. This overall
8750 		 * system CPU resource is divided among the tasks of
8751 		 * root_task_group and its child task-groups in a fair manner,
8752 		 * based on each entity's (task or task-group's) weight
8753 		 * (se->load.weight).
8754 		 *
8755 		 * In other words, if root_task_group has 10 tasks of weight
8756 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8757 		 * then A0's share of the CPU resource is:
8758 		 *
8759 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8760 		 *
8761 		 * We achieve this by letting root_task_group's tasks sit
8762 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8763 		 */
8764 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8765 #endif /* CONFIG_FAIR_GROUP_SCHED */
8766 
8767 #ifdef CONFIG_RT_GROUP_SCHED
8768 		/*
8769 		 * This is required for init cpu because rt.c:__enable_runtime()
8770 		 * starts working after scheduler_running, which is not the case
8771 		 * yet.
8772 		 */
8773 		rq->rt.rt_runtime = global_rt_runtime();
8774 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8775 #endif
8776 		rq->sd = NULL;
8777 		rq->rd = NULL;
8778 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8779 		rq->balance_callback = &balance_push_callback;
8780 		rq->active_balance = 0;
8781 		rq->next_balance = jiffies;
8782 		rq->push_cpu = 0;
8783 		rq->cpu = i;
8784 		rq->online = 0;
8785 		rq->idle_stamp = 0;
8786 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8787 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8788 
8789 		INIT_LIST_HEAD(&rq->cfs_tasks);
8790 
8791 		rq_attach_root(rq, &def_root_domain);
8792 #ifdef CONFIG_NO_HZ_COMMON
8793 		rq->last_blocked_load_update_tick = jiffies;
8794 		atomic_set(&rq->nohz_flags, 0);
8795 
8796 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8797 #endif
8798 #ifdef CONFIG_HOTPLUG_CPU
8799 		rcuwait_init(&rq->hotplug_wait);
8800 #endif
8801 		hrtick_rq_init(rq);
8802 		atomic_set(&rq->nr_iowait, 0);
8803 		fair_server_init(rq);
8804 
8805 #ifdef CONFIG_SCHED_CORE
8806 		rq->core = rq;
8807 		rq->core_pick = NULL;
8808 		rq->core_dl_server = NULL;
8809 		rq->core_enabled = 0;
8810 		rq->core_tree = RB_ROOT;
8811 		rq->core_forceidle_count = 0;
8812 		rq->core_forceidle_occupation = 0;
8813 		rq->core_forceidle_start = 0;
8814 
8815 		rq->core_cookie = 0UL;
8816 #endif
8817 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8818 	}
8819 
8820 	set_load_weight(&init_task, false);
8821 	init_task.se.slice = sysctl_sched_base_slice,
8822 
8823 	/*
8824 	 * The boot idle thread does lazy MMU switching as well:
8825 	 */
8826 	mmgrab_lazy_tlb(&init_mm);
8827 	enter_lazy_tlb(&init_mm, current);
8828 
8829 	/*
8830 	 * The idle task doesn't need the kthread struct to function, but it
8831 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8832 	 * if we want to avoid special-casing it in code that deals with per-CPU
8833 	 * kthreads.
8834 	 */
8835 	WARN_ON(!set_kthread_struct(current));
8836 
8837 	/*
8838 	 * Make us the idle thread. Technically, schedule() should not be
8839 	 * called from this thread, however somewhere below it might be,
8840 	 * but because we are the idle thread, we just pick up running again
8841 	 * when this runqueue becomes "idle".
8842 	 */
8843 	__sched_fork(0, current);
8844 	init_idle(current, smp_processor_id());
8845 
8846 	calc_load_update = jiffies + LOAD_FREQ;
8847 
8848 	idle_thread_set_boot_cpu();
8849 
8850 	balance_push_set(smp_processor_id(), false);
8851 	init_sched_fair_class();
8852 	init_sched_ext_class();
8853 
8854 	psi_init();
8855 
8856 	init_uclamp();
8857 
8858 	preempt_dynamic_init();
8859 
8860 	scheduler_running = 1;
8861 }
8862 
8863 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8864 
8865 void __might_sleep(const char *file, int line)
8866 {
8867 	unsigned int state = get_current_state();
8868 	/*
8869 	 * Blocking primitives will set (and therefore destroy) current->state,
8870 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8871 	 * otherwise we will destroy state.
8872 	 */
8873 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8874 			"do not call blocking ops when !TASK_RUNNING; "
8875 			"state=%x set at [<%p>] %pS\n", state,
8876 			(void *)current->task_state_change,
8877 			(void *)current->task_state_change);
8878 
8879 	__might_resched(file, line, 0);
8880 }
8881 EXPORT_SYMBOL(__might_sleep);
8882 
8883 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8884 {
8885 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8886 		return;
8887 
8888 	if (preempt_count() == preempt_offset)
8889 		return;
8890 
8891 	pr_err("Preemption disabled at:");
8892 	print_ip_sym(KERN_ERR, ip);
8893 }
8894 
8895 static inline bool resched_offsets_ok(unsigned int offsets)
8896 {
8897 	unsigned int nested = preempt_count();
8898 
8899 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8900 
8901 	return nested == offsets;
8902 }
8903 
8904 void __might_resched(const char *file, int line, unsigned int offsets)
8905 {
8906 	/* Ratelimiting timestamp: */
8907 	static unsigned long prev_jiffy;
8908 
8909 	unsigned long preempt_disable_ip;
8910 
8911 	/* WARN_ON_ONCE() by default, no rate limit required: */
8912 	rcu_sleep_check();
8913 
8914 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8915 	     !is_idle_task(current) && !current->non_block_count) ||
8916 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8917 	    oops_in_progress)
8918 		return;
8919 
8920 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8921 		return;
8922 	prev_jiffy = jiffies;
8923 
8924 	/* Save this before calling printk(), since that will clobber it: */
8925 	preempt_disable_ip = get_preempt_disable_ip(current);
8926 
8927 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8928 	       file, line);
8929 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8930 	       in_atomic(), irqs_disabled(), current->non_block_count,
8931 	       current->pid, current->comm);
8932 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8933 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8934 
8935 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8936 		pr_err("RCU nest depth: %d, expected: %u\n",
8937 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8938 	}
8939 
8940 	if (task_stack_end_corrupted(current))
8941 		pr_emerg("Thread overran stack, or stack corrupted\n");
8942 
8943 	debug_show_held_locks(current);
8944 	if (irqs_disabled())
8945 		print_irqtrace_events(current);
8946 
8947 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8948 				 preempt_disable_ip);
8949 
8950 	dump_stack();
8951 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8952 }
8953 EXPORT_SYMBOL(__might_resched);
8954 
8955 void __cant_sleep(const char *file, int line, int preempt_offset)
8956 {
8957 	static unsigned long prev_jiffy;
8958 
8959 	if (irqs_disabled())
8960 		return;
8961 
8962 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8963 		return;
8964 
8965 	if (preempt_count() > preempt_offset)
8966 		return;
8967 
8968 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8969 		return;
8970 	prev_jiffy = jiffies;
8971 
8972 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8973 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8974 			in_atomic(), irqs_disabled(),
8975 			current->pid, current->comm);
8976 
8977 	debug_show_held_locks(current);
8978 	dump_stack();
8979 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8980 }
8981 EXPORT_SYMBOL_GPL(__cant_sleep);
8982 
8983 # ifdef CONFIG_SMP
8984 void __cant_migrate(const char *file, int line)
8985 {
8986 	static unsigned long prev_jiffy;
8987 
8988 	if (irqs_disabled())
8989 		return;
8990 
8991 	if (is_migration_disabled(current))
8992 		return;
8993 
8994 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8995 		return;
8996 
8997 	if (preempt_count() > 0)
8998 		return;
8999 
9000 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9001 		return;
9002 	prev_jiffy = jiffies;
9003 
9004 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9005 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9006 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9007 	       current->pid, current->comm);
9008 
9009 	debug_show_held_locks(current);
9010 	dump_stack();
9011 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9012 }
9013 EXPORT_SYMBOL_GPL(__cant_migrate);
9014 # endif /* CONFIG_SMP */
9015 #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */
9016 
9017 #ifdef CONFIG_MAGIC_SYSRQ
9018 void normalize_rt_tasks(void)
9019 {
9020 	struct task_struct *g, *p;
9021 	struct sched_attr attr = {
9022 		.sched_policy = SCHED_NORMAL,
9023 	};
9024 
9025 	read_lock(&tasklist_lock);
9026 	for_each_process_thread(g, p) {
9027 		/*
9028 		 * Only normalize user tasks:
9029 		 */
9030 		if (p->flags & PF_KTHREAD)
9031 			continue;
9032 
9033 		p->se.exec_start = 0;
9034 		schedstat_set(p->stats.wait_start,  0);
9035 		schedstat_set(p->stats.sleep_start, 0);
9036 		schedstat_set(p->stats.block_start, 0);
9037 
9038 		if (!rt_or_dl_task(p)) {
9039 			/*
9040 			 * Renice negative nice level userspace
9041 			 * tasks back to 0:
9042 			 */
9043 			if (task_nice(p) < 0)
9044 				set_user_nice(p, 0);
9045 			continue;
9046 		}
9047 
9048 		__sched_setscheduler(p, &attr, false, false);
9049 	}
9050 	read_unlock(&tasklist_lock);
9051 }
9052 
9053 #endif /* CONFIG_MAGIC_SYSRQ */
9054 
9055 #ifdef CONFIG_KGDB_KDB
9056 /*
9057  * These functions are only useful for KDB.
9058  *
9059  * They can only be called when the whole system has been
9060  * stopped - every CPU needs to be quiescent, and no scheduling
9061  * activity can take place. Using them for anything else would
9062  * be a serious bug, and as a result, they aren't even visible
9063  * under any other configuration.
9064  */
9065 
9066 /**
9067  * curr_task - return the current task for a given CPU.
9068  * @cpu: the processor in question.
9069  *
9070  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9071  *
9072  * Return: The current task for @cpu.
9073  */
9074 struct task_struct *curr_task(int cpu)
9075 {
9076 	return cpu_curr(cpu);
9077 }
9078 
9079 #endif /* CONFIG_KGDB_KDB */
9080 
9081 #ifdef CONFIG_CGROUP_SCHED
9082 /* task_group_lock serializes the addition/removal of task groups */
9083 static DEFINE_SPINLOCK(task_group_lock);
9084 
9085 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9086 					    struct task_group *parent)
9087 {
9088 #ifdef CONFIG_UCLAMP_TASK_GROUP
9089 	enum uclamp_id clamp_id;
9090 
9091 	for_each_clamp_id(clamp_id) {
9092 		uclamp_se_set(&tg->uclamp_req[clamp_id],
9093 			      uclamp_none(clamp_id), false);
9094 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9095 	}
9096 #endif
9097 }
9098 
9099 static void sched_free_group(struct task_group *tg)
9100 {
9101 	free_fair_sched_group(tg);
9102 	free_rt_sched_group(tg);
9103 	autogroup_free(tg);
9104 	kmem_cache_free(task_group_cache, tg);
9105 }
9106 
9107 static void sched_free_group_rcu(struct rcu_head *rcu)
9108 {
9109 	sched_free_group(container_of(rcu, struct task_group, rcu));
9110 }
9111 
9112 static void sched_unregister_group(struct task_group *tg)
9113 {
9114 	unregister_fair_sched_group(tg);
9115 	unregister_rt_sched_group(tg);
9116 	/*
9117 	 * We have to wait for yet another RCU grace period to expire, as
9118 	 * print_cfs_stats() might run concurrently.
9119 	 */
9120 	call_rcu(&tg->rcu, sched_free_group_rcu);
9121 }
9122 
9123 /* allocate runqueue etc for a new task group */
9124 struct task_group *sched_create_group(struct task_group *parent)
9125 {
9126 	struct task_group *tg;
9127 
9128 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9129 	if (!tg)
9130 		return ERR_PTR(-ENOMEM);
9131 
9132 	if (!alloc_fair_sched_group(tg, parent))
9133 		goto err;
9134 
9135 	if (!alloc_rt_sched_group(tg, parent))
9136 		goto err;
9137 
9138 	scx_tg_init(tg);
9139 	alloc_uclamp_sched_group(tg, parent);
9140 
9141 	return tg;
9142 
9143 err:
9144 	sched_free_group(tg);
9145 	return ERR_PTR(-ENOMEM);
9146 }
9147 
9148 void sched_online_group(struct task_group *tg, struct task_group *parent)
9149 {
9150 	unsigned long flags;
9151 
9152 	spin_lock_irqsave(&task_group_lock, flags);
9153 	list_add_tail_rcu(&tg->list, &task_groups);
9154 
9155 	/* Root should already exist: */
9156 	WARN_ON(!parent);
9157 
9158 	tg->parent = parent;
9159 	INIT_LIST_HEAD(&tg->children);
9160 	list_add_rcu(&tg->siblings, &parent->children);
9161 	spin_unlock_irqrestore(&task_group_lock, flags);
9162 
9163 	online_fair_sched_group(tg);
9164 }
9165 
9166 /* RCU callback to free various structures associated with a task group */
9167 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9168 {
9169 	/* Now it should be safe to free those cfs_rqs: */
9170 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9171 }
9172 
9173 void sched_destroy_group(struct task_group *tg)
9174 {
9175 	/* Wait for possible concurrent references to cfs_rqs complete: */
9176 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9177 }
9178 
9179 void sched_release_group(struct task_group *tg)
9180 {
9181 	unsigned long flags;
9182 
9183 	/*
9184 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9185 	 * sched_cfs_period_timer()).
9186 	 *
9187 	 * For this to be effective, we have to wait for all pending users of
9188 	 * this task group to leave their RCU critical section to ensure no new
9189 	 * user will see our dying task group any more. Specifically ensure
9190 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9191 	 *
9192 	 * We therefore defer calling unregister_fair_sched_group() to
9193 	 * sched_unregister_group() which is guarantied to get called only after the
9194 	 * current RCU grace period has expired.
9195 	 */
9196 	spin_lock_irqsave(&task_group_lock, flags);
9197 	list_del_rcu(&tg->list);
9198 	list_del_rcu(&tg->siblings);
9199 	spin_unlock_irqrestore(&task_group_lock, flags);
9200 }
9201 
9202 static void sched_change_group(struct task_struct *tsk)
9203 {
9204 	struct task_group *tg;
9205 
9206 	/*
9207 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9208 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9209 	 * to prevent lockdep warnings.
9210 	 */
9211 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9212 			  struct task_group, css);
9213 	tg = autogroup_task_group(tsk, tg);
9214 	tsk->sched_task_group = tg;
9215 
9216 #ifdef CONFIG_FAIR_GROUP_SCHED
9217 	if (tsk->sched_class->task_change_group)
9218 		tsk->sched_class->task_change_group(tsk);
9219 	else
9220 #endif
9221 		set_task_rq(tsk, task_cpu(tsk));
9222 }
9223 
9224 /*
9225  * Change task's runqueue when it moves between groups.
9226  *
9227  * The caller of this function should have put the task in its new group by
9228  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9229  * its new group.
9230  */
9231 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9232 {
9233 	int queued, running, queue_flags =
9234 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9235 	struct rq *rq;
9236 
9237 	CLASS(task_rq_lock, rq_guard)(tsk);
9238 	rq = rq_guard.rq;
9239 
9240 	update_rq_clock(rq);
9241 
9242 	running = task_current_donor(rq, tsk);
9243 	queued = task_on_rq_queued(tsk);
9244 
9245 	if (queued)
9246 		dequeue_task(rq, tsk, queue_flags);
9247 	if (running)
9248 		put_prev_task(rq, tsk);
9249 
9250 	sched_change_group(tsk);
9251 	if (!for_autogroup)
9252 		scx_cgroup_move_task(tsk);
9253 
9254 	if (queued)
9255 		enqueue_task(rq, tsk, queue_flags);
9256 	if (running) {
9257 		set_next_task(rq, tsk);
9258 		/*
9259 		 * After changing group, the running task may have joined a
9260 		 * throttled one but it's still the running task. Trigger a
9261 		 * resched to make sure that task can still run.
9262 		 */
9263 		resched_curr(rq);
9264 	}
9265 }
9266 
9267 static struct cgroup_subsys_state *
9268 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9269 {
9270 	struct task_group *parent = css_tg(parent_css);
9271 	struct task_group *tg;
9272 
9273 	if (!parent) {
9274 		/* This is early initialization for the top cgroup */
9275 		return &root_task_group.css;
9276 	}
9277 
9278 	tg = sched_create_group(parent);
9279 	if (IS_ERR(tg))
9280 		return ERR_PTR(-ENOMEM);
9281 
9282 	return &tg->css;
9283 }
9284 
9285 /* Expose task group only after completing cgroup initialization */
9286 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9287 {
9288 	struct task_group *tg = css_tg(css);
9289 	struct task_group *parent = css_tg(css->parent);
9290 	int ret;
9291 
9292 	ret = scx_tg_online(tg);
9293 	if (ret)
9294 		return ret;
9295 
9296 	if (parent)
9297 		sched_online_group(tg, parent);
9298 
9299 #ifdef CONFIG_UCLAMP_TASK_GROUP
9300 	/* Propagate the effective uclamp value for the new group */
9301 	guard(mutex)(&uclamp_mutex);
9302 	guard(rcu)();
9303 	cpu_util_update_eff(css);
9304 #endif
9305 
9306 	return 0;
9307 }
9308 
9309 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9310 {
9311 	struct task_group *tg = css_tg(css);
9312 
9313 	scx_tg_offline(tg);
9314 }
9315 
9316 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9317 {
9318 	struct task_group *tg = css_tg(css);
9319 
9320 	sched_release_group(tg);
9321 }
9322 
9323 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9324 {
9325 	struct task_group *tg = css_tg(css);
9326 
9327 	/*
9328 	 * Relies on the RCU grace period between css_released() and this.
9329 	 */
9330 	sched_unregister_group(tg);
9331 }
9332 
9333 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9334 {
9335 #ifdef CONFIG_RT_GROUP_SCHED
9336 	struct task_struct *task;
9337 	struct cgroup_subsys_state *css;
9338 
9339 	if (!rt_group_sched_enabled())
9340 		goto scx_check;
9341 
9342 	cgroup_taskset_for_each(task, css, tset) {
9343 		if (!sched_rt_can_attach(css_tg(css), task))
9344 			return -EINVAL;
9345 	}
9346 scx_check:
9347 #endif /* CONFIG_RT_GROUP_SCHED */
9348 	return scx_cgroup_can_attach(tset);
9349 }
9350 
9351 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9352 {
9353 	struct task_struct *task;
9354 	struct cgroup_subsys_state *css;
9355 
9356 	cgroup_taskset_for_each(task, css, tset)
9357 		sched_move_task(task, false);
9358 
9359 	scx_cgroup_finish_attach();
9360 }
9361 
9362 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9363 {
9364 	scx_cgroup_cancel_attach(tset);
9365 }
9366 
9367 #ifdef CONFIG_UCLAMP_TASK_GROUP
9368 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9369 {
9370 	struct cgroup_subsys_state *top_css = css;
9371 	struct uclamp_se *uc_parent = NULL;
9372 	struct uclamp_se *uc_se = NULL;
9373 	unsigned int eff[UCLAMP_CNT];
9374 	enum uclamp_id clamp_id;
9375 	unsigned int clamps;
9376 
9377 	lockdep_assert_held(&uclamp_mutex);
9378 	WARN_ON_ONCE(!rcu_read_lock_held());
9379 
9380 	css_for_each_descendant_pre(css, top_css) {
9381 		uc_parent = css_tg(css)->parent
9382 			? css_tg(css)->parent->uclamp : NULL;
9383 
9384 		for_each_clamp_id(clamp_id) {
9385 			/* Assume effective clamps matches requested clamps */
9386 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9387 			/* Cap effective clamps with parent's effective clamps */
9388 			if (uc_parent &&
9389 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9390 				eff[clamp_id] = uc_parent[clamp_id].value;
9391 			}
9392 		}
9393 		/* Ensure protection is always capped by limit */
9394 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9395 
9396 		/* Propagate most restrictive effective clamps */
9397 		clamps = 0x0;
9398 		uc_se = css_tg(css)->uclamp;
9399 		for_each_clamp_id(clamp_id) {
9400 			if (eff[clamp_id] == uc_se[clamp_id].value)
9401 				continue;
9402 			uc_se[clamp_id].value = eff[clamp_id];
9403 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9404 			clamps |= (0x1 << clamp_id);
9405 		}
9406 		if (!clamps) {
9407 			css = css_rightmost_descendant(css);
9408 			continue;
9409 		}
9410 
9411 		/* Immediately update descendants RUNNABLE tasks */
9412 		uclamp_update_active_tasks(css);
9413 	}
9414 }
9415 
9416 /*
9417  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9418  * C expression. Since there is no way to convert a macro argument (N) into a
9419  * character constant, use two levels of macros.
9420  */
9421 #define _POW10(exp) ((unsigned int)1e##exp)
9422 #define POW10(exp) _POW10(exp)
9423 
9424 struct uclamp_request {
9425 #define UCLAMP_PERCENT_SHIFT	2
9426 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9427 	s64 percent;
9428 	u64 util;
9429 	int ret;
9430 };
9431 
9432 static inline struct uclamp_request
9433 capacity_from_percent(char *buf)
9434 {
9435 	struct uclamp_request req = {
9436 		.percent = UCLAMP_PERCENT_SCALE,
9437 		.util = SCHED_CAPACITY_SCALE,
9438 		.ret = 0,
9439 	};
9440 
9441 	buf = strim(buf);
9442 	if (strcmp(buf, "max")) {
9443 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9444 					     &req.percent);
9445 		if (req.ret)
9446 			return req;
9447 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9448 			req.ret = -ERANGE;
9449 			return req;
9450 		}
9451 
9452 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9453 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9454 	}
9455 
9456 	return req;
9457 }
9458 
9459 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9460 				size_t nbytes, loff_t off,
9461 				enum uclamp_id clamp_id)
9462 {
9463 	struct uclamp_request req;
9464 	struct task_group *tg;
9465 
9466 	req = capacity_from_percent(buf);
9467 	if (req.ret)
9468 		return req.ret;
9469 
9470 	sched_uclamp_enable();
9471 
9472 	guard(mutex)(&uclamp_mutex);
9473 	guard(rcu)();
9474 
9475 	tg = css_tg(of_css(of));
9476 	if (tg->uclamp_req[clamp_id].value != req.util)
9477 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9478 
9479 	/*
9480 	 * Because of not recoverable conversion rounding we keep track of the
9481 	 * exact requested value
9482 	 */
9483 	tg->uclamp_pct[clamp_id] = req.percent;
9484 
9485 	/* Update effective clamps to track the most restrictive value */
9486 	cpu_util_update_eff(of_css(of));
9487 
9488 	return nbytes;
9489 }
9490 
9491 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9492 				    char *buf, size_t nbytes,
9493 				    loff_t off)
9494 {
9495 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9496 }
9497 
9498 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9499 				    char *buf, size_t nbytes,
9500 				    loff_t off)
9501 {
9502 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9503 }
9504 
9505 static inline void cpu_uclamp_print(struct seq_file *sf,
9506 				    enum uclamp_id clamp_id)
9507 {
9508 	struct task_group *tg;
9509 	u64 util_clamp;
9510 	u64 percent;
9511 	u32 rem;
9512 
9513 	scoped_guard (rcu) {
9514 		tg = css_tg(seq_css(sf));
9515 		util_clamp = tg->uclamp_req[clamp_id].value;
9516 	}
9517 
9518 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9519 		seq_puts(sf, "max\n");
9520 		return;
9521 	}
9522 
9523 	percent = tg->uclamp_pct[clamp_id];
9524 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9525 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9526 }
9527 
9528 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9529 {
9530 	cpu_uclamp_print(sf, UCLAMP_MIN);
9531 	return 0;
9532 }
9533 
9534 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9535 {
9536 	cpu_uclamp_print(sf, UCLAMP_MAX);
9537 	return 0;
9538 }
9539 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9540 
9541 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9542 static unsigned long tg_weight(struct task_group *tg)
9543 {
9544 #ifdef CONFIG_FAIR_GROUP_SCHED
9545 	return scale_load_down(tg->shares);
9546 #else
9547 	return sched_weight_from_cgroup(tg->scx_weight);
9548 #endif
9549 }
9550 
9551 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9552 				struct cftype *cftype, u64 shareval)
9553 {
9554 	int ret;
9555 
9556 	if (shareval > scale_load_down(ULONG_MAX))
9557 		shareval = MAX_SHARES;
9558 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9559 	if (!ret)
9560 		scx_group_set_weight(css_tg(css),
9561 				     sched_weight_to_cgroup(shareval));
9562 	return ret;
9563 }
9564 
9565 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9566 			       struct cftype *cft)
9567 {
9568 	return tg_weight(css_tg(css));
9569 }
9570 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9571 
9572 #ifdef CONFIG_CFS_BANDWIDTH
9573 static DEFINE_MUTEX(cfs_constraints_mutex);
9574 
9575 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9576 
9577 static int tg_set_cfs_bandwidth(struct task_group *tg,
9578 				u64 period_us, u64 quota_us, u64 burst_us)
9579 {
9580 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9581 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9582 	u64 period, quota, burst;
9583 
9584 	period = (u64)period_us * NSEC_PER_USEC;
9585 
9586 	if (quota_us == RUNTIME_INF)
9587 		quota = RUNTIME_INF;
9588 	else
9589 		quota = (u64)quota_us * NSEC_PER_USEC;
9590 
9591 	burst = (u64)burst_us * NSEC_PER_USEC;
9592 
9593 	/*
9594 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9595 	 * unthrottle_offline_cfs_rqs().
9596 	 */
9597 	guard(cpus_read_lock)();
9598 	guard(mutex)(&cfs_constraints_mutex);
9599 
9600 	ret = __cfs_schedulable(tg, period, quota);
9601 	if (ret)
9602 		return ret;
9603 
9604 	runtime_enabled = quota != RUNTIME_INF;
9605 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9606 	/*
9607 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9608 	 * before making related changes, and on->off must occur afterwards
9609 	 */
9610 	if (runtime_enabled && !runtime_was_enabled)
9611 		cfs_bandwidth_usage_inc();
9612 
9613 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9614 		cfs_b->period = ns_to_ktime(period);
9615 		cfs_b->quota = quota;
9616 		cfs_b->burst = burst;
9617 
9618 		__refill_cfs_bandwidth_runtime(cfs_b);
9619 
9620 		/*
9621 		 * Restart the period timer (if active) to handle new
9622 		 * period expiry:
9623 		 */
9624 		if (runtime_enabled)
9625 			start_cfs_bandwidth(cfs_b);
9626 	}
9627 
9628 	for_each_online_cpu(i) {
9629 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9630 		struct rq *rq = cfs_rq->rq;
9631 
9632 		guard(rq_lock_irq)(rq);
9633 		cfs_rq->runtime_enabled = runtime_enabled;
9634 		cfs_rq->runtime_remaining = 0;
9635 
9636 		if (cfs_rq->throttled)
9637 			unthrottle_cfs_rq(cfs_rq);
9638 	}
9639 
9640 	if (runtime_was_enabled && !runtime_enabled)
9641 		cfs_bandwidth_usage_dec();
9642 
9643 	return 0;
9644 }
9645 
9646 static u64 tg_get_cfs_period(struct task_group *tg)
9647 {
9648 	u64 cfs_period_us;
9649 
9650 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9651 	do_div(cfs_period_us, NSEC_PER_USEC);
9652 
9653 	return cfs_period_us;
9654 }
9655 
9656 static u64 tg_get_cfs_quota(struct task_group *tg)
9657 {
9658 	u64 quota_us;
9659 
9660 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9661 		return RUNTIME_INF;
9662 
9663 	quota_us = tg->cfs_bandwidth.quota;
9664 	do_div(quota_us, NSEC_PER_USEC);
9665 
9666 	return quota_us;
9667 }
9668 
9669 static u64 tg_get_cfs_burst(struct task_group *tg)
9670 {
9671 	u64 burst_us;
9672 
9673 	burst_us = tg->cfs_bandwidth.burst;
9674 	do_div(burst_us, NSEC_PER_USEC);
9675 
9676 	return burst_us;
9677 }
9678 
9679 struct cfs_schedulable_data {
9680 	struct task_group *tg;
9681 	u64 period, quota;
9682 };
9683 
9684 /*
9685  * normalize group quota/period to be quota/max_period
9686  * note: units are usecs
9687  */
9688 static u64 normalize_cfs_quota(struct task_group *tg,
9689 			       struct cfs_schedulable_data *d)
9690 {
9691 	u64 quota, period;
9692 
9693 	if (tg == d->tg) {
9694 		period = d->period;
9695 		quota = d->quota;
9696 	} else {
9697 		period = tg_get_cfs_period(tg);
9698 		quota = tg_get_cfs_quota(tg);
9699 	}
9700 
9701 	/* note: these should typically be equivalent */
9702 	if (quota == RUNTIME_INF || quota == -1)
9703 		return RUNTIME_INF;
9704 
9705 	return to_ratio(period, quota);
9706 }
9707 
9708 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9709 {
9710 	struct cfs_schedulable_data *d = data;
9711 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9712 	s64 quota = 0, parent_quota = -1;
9713 
9714 	if (!tg->parent) {
9715 		quota = RUNTIME_INF;
9716 	} else {
9717 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9718 
9719 		quota = normalize_cfs_quota(tg, d);
9720 		parent_quota = parent_b->hierarchical_quota;
9721 
9722 		/*
9723 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9724 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9725 		 * inherit when no limit is set. In both cases this is used
9726 		 * by the scheduler to determine if a given CFS task has a
9727 		 * bandwidth constraint at some higher level.
9728 		 */
9729 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9730 			if (quota == RUNTIME_INF)
9731 				quota = parent_quota;
9732 			else if (parent_quota != RUNTIME_INF)
9733 				quota = min(quota, parent_quota);
9734 		} else {
9735 			if (quota == RUNTIME_INF)
9736 				quota = parent_quota;
9737 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9738 				return -EINVAL;
9739 		}
9740 	}
9741 	cfs_b->hierarchical_quota = quota;
9742 
9743 	return 0;
9744 }
9745 
9746 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9747 {
9748 	struct cfs_schedulable_data data = {
9749 		.tg = tg,
9750 		.period = period,
9751 		.quota = quota,
9752 	};
9753 
9754 	if (quota != RUNTIME_INF) {
9755 		do_div(data.period, NSEC_PER_USEC);
9756 		do_div(data.quota, NSEC_PER_USEC);
9757 	}
9758 
9759 	guard(rcu)();
9760 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9761 }
9762 
9763 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9764 {
9765 	struct task_group *tg = css_tg(seq_css(sf));
9766 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9767 
9768 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9769 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9770 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9771 
9772 	if (schedstat_enabled() && tg != &root_task_group) {
9773 		struct sched_statistics *stats;
9774 		u64 ws = 0;
9775 		int i;
9776 
9777 		for_each_possible_cpu(i) {
9778 			stats = __schedstats_from_se(tg->se[i]);
9779 			ws += schedstat_val(stats->wait_sum);
9780 		}
9781 
9782 		seq_printf(sf, "wait_sum %llu\n", ws);
9783 	}
9784 
9785 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9786 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9787 
9788 	return 0;
9789 }
9790 
9791 static u64 throttled_time_self(struct task_group *tg)
9792 {
9793 	int i;
9794 	u64 total = 0;
9795 
9796 	for_each_possible_cpu(i) {
9797 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9798 	}
9799 
9800 	return total;
9801 }
9802 
9803 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9804 {
9805 	struct task_group *tg = css_tg(seq_css(sf));
9806 
9807 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9808 
9809 	return 0;
9810 }
9811 
9812 const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */
9813 static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */
9814 /* More than 203 days if BW_SHIFT equals 20. */
9815 static const u64 max_bw_runtime_us = MAX_BW;
9816 
9817 static void tg_bandwidth(struct task_group *tg,
9818 			 u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p)
9819 {
9820 	if (period_us_p)
9821 		*period_us_p = tg_get_cfs_period(tg);
9822 	if (quota_us_p)
9823 		*quota_us_p = tg_get_cfs_quota(tg);
9824 	if (burst_us_p)
9825 		*burst_us_p = tg_get_cfs_burst(tg);
9826 }
9827 
9828 static u64 cpu_period_read_u64(struct cgroup_subsys_state *css,
9829 			       struct cftype *cft)
9830 {
9831 	u64 period_us;
9832 
9833 	tg_bandwidth(css_tg(css), &period_us, NULL, NULL);
9834 	return period_us;
9835 }
9836 
9837 static int tg_set_bandwidth(struct task_group *tg,
9838 			    u64 period_us, u64 quota_us, u64 burst_us)
9839 {
9840 	const u64 max_usec = U64_MAX / NSEC_PER_USEC;
9841 
9842 	if (tg == &root_task_group)
9843 		return -EINVAL;
9844 
9845 	/* Values should survive translation to nsec */
9846 	if (period_us > max_usec ||
9847 	    (quota_us != RUNTIME_INF && quota_us > max_usec) ||
9848 	    burst_us > max_usec)
9849 		return -EINVAL;
9850 
9851 	/*
9852 	 * Ensure we have some amount of bandwidth every period. This is to
9853 	 * prevent reaching a state of large arrears when throttled via
9854 	 * entity_tick() resulting in prolonged exit starvation.
9855 	 */
9856 	if (quota_us < min_bw_quota_period_us ||
9857 	    period_us < min_bw_quota_period_us)
9858 		return -EINVAL;
9859 
9860 	/*
9861 	 * Likewise, bound things on the other side by preventing insane quota
9862 	 * periods.  This also allows us to normalize in computing quota
9863 	 * feasibility.
9864 	 */
9865 	if (period_us > max_bw_quota_period_us)
9866 		return -EINVAL;
9867 
9868 	/*
9869 	 * Bound quota to defend quota against overflow during bandwidth shift.
9870 	 */
9871 	if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us)
9872 		return -EINVAL;
9873 
9874 	if (quota_us != RUNTIME_INF && (burst_us > quota_us ||
9875 					burst_us + quota_us > max_bw_runtime_us))
9876 		return -EINVAL;
9877 
9878 	return tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us);
9879 }
9880 
9881 static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css,
9882 			      struct cftype *cft)
9883 {
9884 	u64 quota_us;
9885 
9886 	tg_bandwidth(css_tg(css), NULL, &quota_us, NULL);
9887 	return quota_us;	/* (s64)RUNTIME_INF becomes -1 */
9888 }
9889 
9890 static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css,
9891 			      struct cftype *cft)
9892 {
9893 	u64 burst_us;
9894 
9895 	tg_bandwidth(css_tg(css), NULL, NULL, &burst_us);
9896 	return burst_us;
9897 }
9898 
9899 static int cpu_period_write_u64(struct cgroup_subsys_state *css,
9900 				struct cftype *cftype, u64 period_us)
9901 {
9902 	struct task_group *tg = css_tg(css);
9903 	u64 quota_us, burst_us;
9904 
9905 	tg_bandwidth(tg, NULL, &quota_us, &burst_us);
9906 	return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9907 }
9908 
9909 static int cpu_quota_write_s64(struct cgroup_subsys_state *css,
9910 			       struct cftype *cftype, s64 quota_us)
9911 {
9912 	struct task_group *tg = css_tg(css);
9913 	u64 period_us, burst_us;
9914 
9915 	if (quota_us < 0)
9916 		quota_us = RUNTIME_INF;
9917 
9918 	tg_bandwidth(tg, &period_us, NULL, &burst_us);
9919 	return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9920 }
9921 
9922 static int cpu_burst_write_u64(struct cgroup_subsys_state *css,
9923 			       struct cftype *cftype, u64 burst_us)
9924 {
9925 	struct task_group *tg = css_tg(css);
9926 	u64 period_us, quota_us;
9927 
9928 	tg_bandwidth(tg, &period_us, &quota_us, NULL);
9929 	return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9930 }
9931 #endif /* CONFIG_CFS_BANDWIDTH */
9932 
9933 #ifdef CONFIG_RT_GROUP_SCHED
9934 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9935 				struct cftype *cft, s64 val)
9936 {
9937 	return sched_group_set_rt_runtime(css_tg(css), val);
9938 }
9939 
9940 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9941 			       struct cftype *cft)
9942 {
9943 	return sched_group_rt_runtime(css_tg(css));
9944 }
9945 
9946 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9947 				    struct cftype *cftype, u64 rt_period_us)
9948 {
9949 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9950 }
9951 
9952 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9953 				   struct cftype *cft)
9954 {
9955 	return sched_group_rt_period(css_tg(css));
9956 }
9957 #endif /* CONFIG_RT_GROUP_SCHED */
9958 
9959 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9960 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9961 			       struct cftype *cft)
9962 {
9963 	return css_tg(css)->idle;
9964 }
9965 
9966 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9967 				struct cftype *cft, s64 idle)
9968 {
9969 	int ret;
9970 
9971 	ret = sched_group_set_idle(css_tg(css), idle);
9972 	if (!ret)
9973 		scx_group_set_idle(css_tg(css), idle);
9974 	return ret;
9975 }
9976 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9977 
9978 static struct cftype cpu_legacy_files[] = {
9979 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9980 	{
9981 		.name = "shares",
9982 		.read_u64 = cpu_shares_read_u64,
9983 		.write_u64 = cpu_shares_write_u64,
9984 	},
9985 	{
9986 		.name = "idle",
9987 		.read_s64 = cpu_idle_read_s64,
9988 		.write_s64 = cpu_idle_write_s64,
9989 	},
9990 #endif
9991 #ifdef CONFIG_CFS_BANDWIDTH
9992 	{
9993 		.name = "cfs_period_us",
9994 		.read_u64 = cpu_period_read_u64,
9995 		.write_u64 = cpu_period_write_u64,
9996 	},
9997 	{
9998 		.name = "cfs_quota_us",
9999 		.read_s64 = cpu_quota_read_s64,
10000 		.write_s64 = cpu_quota_write_s64,
10001 	},
10002 	{
10003 		.name = "cfs_burst_us",
10004 		.read_u64 = cpu_burst_read_u64,
10005 		.write_u64 = cpu_burst_write_u64,
10006 	},
10007 	{
10008 		.name = "stat",
10009 		.seq_show = cpu_cfs_stat_show,
10010 	},
10011 	{
10012 		.name = "stat.local",
10013 		.seq_show = cpu_cfs_local_stat_show,
10014 	},
10015 #endif
10016 #ifdef CONFIG_UCLAMP_TASK_GROUP
10017 	{
10018 		.name = "uclamp.min",
10019 		.flags = CFTYPE_NOT_ON_ROOT,
10020 		.seq_show = cpu_uclamp_min_show,
10021 		.write = cpu_uclamp_min_write,
10022 	},
10023 	{
10024 		.name = "uclamp.max",
10025 		.flags = CFTYPE_NOT_ON_ROOT,
10026 		.seq_show = cpu_uclamp_max_show,
10027 		.write = cpu_uclamp_max_write,
10028 	},
10029 #endif
10030 	{ }	/* Terminate */
10031 };
10032 
10033 #ifdef CONFIG_RT_GROUP_SCHED
10034 static struct cftype rt_group_files[] = {
10035 	{
10036 		.name = "rt_runtime_us",
10037 		.read_s64 = cpu_rt_runtime_read,
10038 		.write_s64 = cpu_rt_runtime_write,
10039 	},
10040 	{
10041 		.name = "rt_period_us",
10042 		.read_u64 = cpu_rt_period_read_uint,
10043 		.write_u64 = cpu_rt_period_write_uint,
10044 	},
10045 	{ }	/* Terminate */
10046 };
10047 
10048 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
10049 DEFINE_STATIC_KEY_FALSE(rt_group_sched);
10050 # else
10051 DEFINE_STATIC_KEY_TRUE(rt_group_sched);
10052 # endif
10053 
10054 static int __init setup_rt_group_sched(char *str)
10055 {
10056 	long val;
10057 
10058 	if (kstrtol(str, 0, &val) || val < 0 || val > 1) {
10059 		pr_warn("Unable to set rt_group_sched\n");
10060 		return 1;
10061 	}
10062 	if (val)
10063 		static_branch_enable(&rt_group_sched);
10064 	else
10065 		static_branch_disable(&rt_group_sched);
10066 
10067 	return 1;
10068 }
10069 __setup("rt_group_sched=", setup_rt_group_sched);
10070 
10071 static int __init cpu_rt_group_init(void)
10072 {
10073 	if (!rt_group_sched_enabled())
10074 		return 0;
10075 
10076 	WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files));
10077 	return 0;
10078 }
10079 subsys_initcall(cpu_rt_group_init);
10080 #endif /* CONFIG_RT_GROUP_SCHED */
10081 
10082 static int cpu_extra_stat_show(struct seq_file *sf,
10083 			       struct cgroup_subsys_state *css)
10084 {
10085 #ifdef CONFIG_CFS_BANDWIDTH
10086 	{
10087 		struct task_group *tg = css_tg(css);
10088 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10089 		u64 throttled_usec, burst_usec;
10090 
10091 		throttled_usec = cfs_b->throttled_time;
10092 		do_div(throttled_usec, NSEC_PER_USEC);
10093 		burst_usec = cfs_b->burst_time;
10094 		do_div(burst_usec, NSEC_PER_USEC);
10095 
10096 		seq_printf(sf, "nr_periods %d\n"
10097 			   "nr_throttled %d\n"
10098 			   "throttled_usec %llu\n"
10099 			   "nr_bursts %d\n"
10100 			   "burst_usec %llu\n",
10101 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10102 			   throttled_usec, cfs_b->nr_burst, burst_usec);
10103 	}
10104 #endif /* CONFIG_CFS_BANDWIDTH */
10105 	return 0;
10106 }
10107 
10108 static int cpu_local_stat_show(struct seq_file *sf,
10109 			       struct cgroup_subsys_state *css)
10110 {
10111 #ifdef CONFIG_CFS_BANDWIDTH
10112 	{
10113 		struct task_group *tg = css_tg(css);
10114 		u64 throttled_self_usec;
10115 
10116 		throttled_self_usec = throttled_time_self(tg);
10117 		do_div(throttled_self_usec, NSEC_PER_USEC);
10118 
10119 		seq_printf(sf, "throttled_usec %llu\n",
10120 			   throttled_self_usec);
10121 	}
10122 #endif
10123 	return 0;
10124 }
10125 
10126 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10127 
10128 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10129 			       struct cftype *cft)
10130 {
10131 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
10132 }
10133 
10134 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10135 				struct cftype *cft, u64 cgrp_weight)
10136 {
10137 	unsigned long weight;
10138 	int ret;
10139 
10140 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
10141 		return -ERANGE;
10142 
10143 	weight = sched_weight_from_cgroup(cgrp_weight);
10144 
10145 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10146 	if (!ret)
10147 		scx_group_set_weight(css_tg(css), cgrp_weight);
10148 	return ret;
10149 }
10150 
10151 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10152 				    struct cftype *cft)
10153 {
10154 	unsigned long weight = tg_weight(css_tg(css));
10155 	int last_delta = INT_MAX;
10156 	int prio, delta;
10157 
10158 	/* find the closest nice value to the current weight */
10159 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10160 		delta = abs(sched_prio_to_weight[prio] - weight);
10161 		if (delta >= last_delta)
10162 			break;
10163 		last_delta = delta;
10164 	}
10165 
10166 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10167 }
10168 
10169 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10170 				     struct cftype *cft, s64 nice)
10171 {
10172 	unsigned long weight;
10173 	int idx, ret;
10174 
10175 	if (nice < MIN_NICE || nice > MAX_NICE)
10176 		return -ERANGE;
10177 
10178 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10179 	idx = array_index_nospec(idx, 40);
10180 	weight = sched_prio_to_weight[idx];
10181 
10182 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10183 	if (!ret)
10184 		scx_group_set_weight(css_tg(css),
10185 				     sched_weight_to_cgroup(weight));
10186 	return ret;
10187 }
10188 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
10189 
10190 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10191 						  long period, long quota)
10192 {
10193 	if (quota < 0)
10194 		seq_puts(sf, "max");
10195 	else
10196 		seq_printf(sf, "%ld", quota);
10197 
10198 	seq_printf(sf, " %ld\n", period);
10199 }
10200 
10201 /* caller should put the current value in *@periodp before calling */
10202 static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p,
10203 						 u64 *quota_us_p)
10204 {
10205 	char tok[21];	/* U64_MAX */
10206 
10207 	if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1)
10208 		return -EINVAL;
10209 
10210 	if (sscanf(tok, "%llu", quota_us_p) < 1) {
10211 		if (!strcmp(tok, "max"))
10212 			*quota_us_p = RUNTIME_INF;
10213 		else
10214 			return -EINVAL;
10215 	}
10216 
10217 	return 0;
10218 }
10219 
10220 #ifdef CONFIG_CFS_BANDWIDTH
10221 static int cpu_max_show(struct seq_file *sf, void *v)
10222 {
10223 	struct task_group *tg = css_tg(seq_css(sf));
10224 	u64 period_us, quota_us;
10225 
10226 	tg_bandwidth(tg, &period_us, &quota_us, NULL);
10227 	cpu_period_quota_print(sf, period_us, quota_us);
10228 	return 0;
10229 }
10230 
10231 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10232 			     char *buf, size_t nbytes, loff_t off)
10233 {
10234 	struct task_group *tg = css_tg(of_css(of));
10235 	u64 period_us, quota_us, burst_us;
10236 	int ret;
10237 
10238 	tg_bandwidth(tg, &period_us, NULL, &burst_us);
10239 	ret = cpu_period_quota_parse(buf, &period_us, &quota_us);
10240 	if (!ret)
10241 		ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us);
10242 	return ret ?: nbytes;
10243 }
10244 #endif /* CONFIG_CFS_BANDWIDTH */
10245 
10246 static struct cftype cpu_files[] = {
10247 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10248 	{
10249 		.name = "weight",
10250 		.flags = CFTYPE_NOT_ON_ROOT,
10251 		.read_u64 = cpu_weight_read_u64,
10252 		.write_u64 = cpu_weight_write_u64,
10253 	},
10254 	{
10255 		.name = "weight.nice",
10256 		.flags = CFTYPE_NOT_ON_ROOT,
10257 		.read_s64 = cpu_weight_nice_read_s64,
10258 		.write_s64 = cpu_weight_nice_write_s64,
10259 	},
10260 	{
10261 		.name = "idle",
10262 		.flags = CFTYPE_NOT_ON_ROOT,
10263 		.read_s64 = cpu_idle_read_s64,
10264 		.write_s64 = cpu_idle_write_s64,
10265 	},
10266 #endif
10267 #ifdef CONFIG_CFS_BANDWIDTH
10268 	{
10269 		.name = "max",
10270 		.flags = CFTYPE_NOT_ON_ROOT,
10271 		.seq_show = cpu_max_show,
10272 		.write = cpu_max_write,
10273 	},
10274 	{
10275 		.name = "max.burst",
10276 		.flags = CFTYPE_NOT_ON_ROOT,
10277 		.read_u64 = cpu_burst_read_u64,
10278 		.write_u64 = cpu_burst_write_u64,
10279 	},
10280 #endif /* CONFIG_CFS_BANDWIDTH */
10281 #ifdef CONFIG_UCLAMP_TASK_GROUP
10282 	{
10283 		.name = "uclamp.min",
10284 		.flags = CFTYPE_NOT_ON_ROOT,
10285 		.seq_show = cpu_uclamp_min_show,
10286 		.write = cpu_uclamp_min_write,
10287 	},
10288 	{
10289 		.name = "uclamp.max",
10290 		.flags = CFTYPE_NOT_ON_ROOT,
10291 		.seq_show = cpu_uclamp_max_show,
10292 		.write = cpu_uclamp_max_write,
10293 	},
10294 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10295 	{ }	/* terminate */
10296 };
10297 
10298 struct cgroup_subsys cpu_cgrp_subsys = {
10299 	.css_alloc	= cpu_cgroup_css_alloc,
10300 	.css_online	= cpu_cgroup_css_online,
10301 	.css_offline	= cpu_cgroup_css_offline,
10302 	.css_released	= cpu_cgroup_css_released,
10303 	.css_free	= cpu_cgroup_css_free,
10304 	.css_extra_stat_show = cpu_extra_stat_show,
10305 	.css_local_stat_show = cpu_local_stat_show,
10306 	.can_attach	= cpu_cgroup_can_attach,
10307 	.attach		= cpu_cgroup_attach,
10308 	.cancel_attach	= cpu_cgroup_cancel_attach,
10309 	.legacy_cftypes	= cpu_legacy_files,
10310 	.dfl_cftypes	= cpu_files,
10311 	.early_init	= true,
10312 	.threaded	= true,
10313 };
10314 
10315 #endif /* CONFIG_CGROUP_SCHED */
10316 
10317 void dump_cpu_task(int cpu)
10318 {
10319 	if (in_hardirq() && cpu == smp_processor_id()) {
10320 		struct pt_regs *regs;
10321 
10322 		regs = get_irq_regs();
10323 		if (regs) {
10324 			show_regs(regs);
10325 			return;
10326 		}
10327 	}
10328 
10329 	if (trigger_single_cpu_backtrace(cpu))
10330 		return;
10331 
10332 	pr_info("Task dump for CPU %d:\n", cpu);
10333 	sched_show_task(cpu_curr(cpu));
10334 }
10335 
10336 /*
10337  * Nice levels are multiplicative, with a gentle 10% change for every
10338  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10339  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10340  * that remained on nice 0.
10341  *
10342  * The "10% effect" is relative and cumulative: from _any_ nice level,
10343  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10344  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10345  * If a task goes up by ~10% and another task goes down by ~10% then
10346  * the relative distance between them is ~25%.)
10347  */
10348 const int sched_prio_to_weight[40] = {
10349  /* -20 */     88761,     71755,     56483,     46273,     36291,
10350  /* -15 */     29154,     23254,     18705,     14949,     11916,
10351  /* -10 */      9548,      7620,      6100,      4904,      3906,
10352  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10353  /*   0 */      1024,       820,       655,       526,       423,
10354  /*   5 */       335,       272,       215,       172,       137,
10355  /*  10 */       110,        87,        70,        56,        45,
10356  /*  15 */        36,        29,        23,        18,        15,
10357 };
10358 
10359 /*
10360  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10361  *
10362  * In cases where the weight does not change often, we can use the
10363  * pre-calculated inverse to speed up arithmetics by turning divisions
10364  * into multiplications:
10365  */
10366 const u32 sched_prio_to_wmult[40] = {
10367  /* -20 */     48388,     59856,     76040,     92818,    118348,
10368  /* -15 */    147320,    184698,    229616,    287308,    360437,
10369  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10370  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10371  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10372  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10373  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10374  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10375 };
10376 
10377 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10378 {
10379         trace_sched_update_nr_running_tp(rq, count);
10380 }
10381 
10382 #ifdef CONFIG_SCHED_MM_CID
10383 
10384 /*
10385  * @cid_lock: Guarantee forward-progress of cid allocation.
10386  *
10387  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10388  * is only used when contention is detected by the lock-free allocation so
10389  * forward progress can be guaranteed.
10390  */
10391 DEFINE_RAW_SPINLOCK(cid_lock);
10392 
10393 /*
10394  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10395  *
10396  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10397  * detected, it is set to 1 to ensure that all newly coming allocations are
10398  * serialized by @cid_lock until the allocation which detected contention
10399  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10400  * of a cid allocation.
10401  */
10402 int use_cid_lock;
10403 
10404 /*
10405  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10406  * concurrently with respect to the execution of the source runqueue context
10407  * switch.
10408  *
10409  * There is one basic properties we want to guarantee here:
10410  *
10411  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10412  * used by a task. That would lead to concurrent allocation of the cid and
10413  * userspace corruption.
10414  *
10415  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10416  * that a pair of loads observe at least one of a pair of stores, which can be
10417  * shown as:
10418  *
10419  *      X = Y = 0
10420  *
10421  *      w[X]=1          w[Y]=1
10422  *      MB              MB
10423  *      r[Y]=y          r[X]=x
10424  *
10425  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10426  * values 0 and 1, this algorithm cares about specific state transitions of the
10427  * runqueue current task (as updated by the scheduler context switch), and the
10428  * per-mm/cpu cid value.
10429  *
10430  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10431  * task->mm != mm for the rest of the discussion. There are two scheduler state
10432  * transitions on context switch we care about:
10433  *
10434  * (TSA) Store to rq->curr with transition from (N) to (Y)
10435  *
10436  * (TSB) Store to rq->curr with transition from (Y) to (N)
10437  *
10438  * On the remote-clear side, there is one transition we care about:
10439  *
10440  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10441  *
10442  * There is also a transition to UNSET state which can be performed from all
10443  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10444  * guarantees that only a single thread will succeed:
10445  *
10446  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10447  *
10448  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10449  * when a thread is actively using the cid (property (1)).
10450  *
10451  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10452  *
10453  * Scenario A) (TSA)+(TMA) (from next task perspective)
10454  *
10455  * CPU0                                      CPU1
10456  *
10457  * Context switch CS-1                       Remote-clear
10458  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10459  *                                             (implied barrier after cmpxchg)
10460  *   - switch_mm_cid()
10461  *     - memory barrier (see switch_mm_cid()
10462  *       comment explaining how this barrier
10463  *       is combined with other scheduler
10464  *       barriers)
10465  *     - mm_cid_get (next)
10466  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10467  *
10468  * This Dekker ensures that either task (Y) is observed by the
10469  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10470  * observed.
10471  *
10472  * If task (Y) store is observed by rcu_dereference(), it means that there is
10473  * still an active task on the cpu. Remote-clear will therefore not transition
10474  * to UNSET, which fulfills property (1).
10475  *
10476  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10477  * it will move its state to UNSET, which clears the percpu cid perhaps
10478  * uselessly (which is not an issue for correctness). Because task (Y) is not
10479  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10480  * state to UNSET is done with a cmpxchg expecting that the old state has the
10481  * LAZY flag set, only one thread will successfully UNSET.
10482  *
10483  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10484  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10485  * CPU1 will observe task (Y) and do nothing more, which is fine.
10486  *
10487  * What we are effectively preventing with this Dekker is a scenario where
10488  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10489  * because this would UNSET a cid which is actively used.
10490  */
10491 
10492 void sched_mm_cid_migrate_from(struct task_struct *t)
10493 {
10494 	t->migrate_from_cpu = task_cpu(t);
10495 }
10496 
10497 static
10498 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10499 					  struct task_struct *t,
10500 					  struct mm_cid *src_pcpu_cid)
10501 {
10502 	struct mm_struct *mm = t->mm;
10503 	struct task_struct *src_task;
10504 	int src_cid, last_mm_cid;
10505 
10506 	if (!mm)
10507 		return -1;
10508 
10509 	last_mm_cid = t->last_mm_cid;
10510 	/*
10511 	 * If the migrated task has no last cid, or if the current
10512 	 * task on src rq uses the cid, it means the source cid does not need
10513 	 * to be moved to the destination cpu.
10514 	 */
10515 	if (last_mm_cid == -1)
10516 		return -1;
10517 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10518 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10519 		return -1;
10520 
10521 	/*
10522 	 * If we observe an active task using the mm on this rq, it means we
10523 	 * are not the last task to be migrated from this cpu for this mm, so
10524 	 * there is no need to move src_cid to the destination cpu.
10525 	 */
10526 	guard(rcu)();
10527 	src_task = rcu_dereference(src_rq->curr);
10528 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10529 		t->last_mm_cid = -1;
10530 		return -1;
10531 	}
10532 
10533 	return src_cid;
10534 }
10535 
10536 static
10537 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10538 					      struct task_struct *t,
10539 					      struct mm_cid *src_pcpu_cid,
10540 					      int src_cid)
10541 {
10542 	struct task_struct *src_task;
10543 	struct mm_struct *mm = t->mm;
10544 	int lazy_cid;
10545 
10546 	if (src_cid == -1)
10547 		return -1;
10548 
10549 	/*
10550 	 * Attempt to clear the source cpu cid to move it to the destination
10551 	 * cpu.
10552 	 */
10553 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10554 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10555 		return -1;
10556 
10557 	/*
10558 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10559 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10560 	 * between store to rq->curr and load of prev and next task's
10561 	 * per-mm/cpu cid.
10562 	 *
10563 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10564 	 * rq->curr->mm_cid_active matches the barrier in
10565 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10566 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10567 	 * load of per-mm/cpu cid.
10568 	 */
10569 
10570 	/*
10571 	 * If we observe an active task using the mm on this rq after setting
10572 	 * the lazy-put flag, this task will be responsible for transitioning
10573 	 * from lazy-put flag set to MM_CID_UNSET.
10574 	 */
10575 	scoped_guard (rcu) {
10576 		src_task = rcu_dereference(src_rq->curr);
10577 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10578 			/*
10579 			 * We observed an active task for this mm, there is therefore
10580 			 * no point in moving this cid to the destination cpu.
10581 			 */
10582 			t->last_mm_cid = -1;
10583 			return -1;
10584 		}
10585 	}
10586 
10587 	/*
10588 	 * The src_cid is unused, so it can be unset.
10589 	 */
10590 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10591 		return -1;
10592 	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10593 	return src_cid;
10594 }
10595 
10596 /*
10597  * Migration to dst cpu. Called with dst_rq lock held.
10598  * Interrupts are disabled, which keeps the window of cid ownership without the
10599  * source rq lock held small.
10600  */
10601 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10602 {
10603 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10604 	struct mm_struct *mm = t->mm;
10605 	int src_cid, src_cpu;
10606 	bool dst_cid_is_set;
10607 	struct rq *src_rq;
10608 
10609 	lockdep_assert_rq_held(dst_rq);
10610 
10611 	if (!mm)
10612 		return;
10613 	src_cpu = t->migrate_from_cpu;
10614 	if (src_cpu == -1) {
10615 		t->last_mm_cid = -1;
10616 		return;
10617 	}
10618 	/*
10619 	 * Move the src cid if the dst cid is unset. This keeps id
10620 	 * allocation closest to 0 in cases where few threads migrate around
10621 	 * many CPUs.
10622 	 *
10623 	 * If destination cid or recent cid is already set, we may have
10624 	 * to just clear the src cid to ensure compactness in frequent
10625 	 * migrations scenarios.
10626 	 *
10627 	 * It is not useful to clear the src cid when the number of threads is
10628 	 * greater or equal to the number of allowed CPUs, because user-space
10629 	 * can expect that the number of allowed cids can reach the number of
10630 	 * allowed CPUs.
10631 	 */
10632 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10633 	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10634 			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10635 	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10636 		return;
10637 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10638 	src_rq = cpu_rq(src_cpu);
10639 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10640 	if (src_cid == -1)
10641 		return;
10642 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10643 							    src_cid);
10644 	if (src_cid == -1)
10645 		return;
10646 	if (dst_cid_is_set) {
10647 		__mm_cid_put(mm, src_cid);
10648 		return;
10649 	}
10650 	/* Move src_cid to dst cpu. */
10651 	mm_cid_snapshot_time(dst_rq, mm);
10652 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10653 	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10654 }
10655 
10656 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10657 				      int cpu)
10658 {
10659 	struct rq *rq = cpu_rq(cpu);
10660 	struct task_struct *t;
10661 	int cid, lazy_cid;
10662 
10663 	cid = READ_ONCE(pcpu_cid->cid);
10664 	if (!mm_cid_is_valid(cid))
10665 		return;
10666 
10667 	/*
10668 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10669 	 * there happens to be other tasks left on the source cpu using this
10670 	 * mm, the next task using this mm will reallocate its cid on context
10671 	 * switch.
10672 	 */
10673 	lazy_cid = mm_cid_set_lazy_put(cid);
10674 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10675 		return;
10676 
10677 	/*
10678 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10679 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10680 	 * between store to rq->curr and load of prev and next task's
10681 	 * per-mm/cpu cid.
10682 	 *
10683 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10684 	 * rq->curr->mm_cid_active matches the barrier in
10685 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10686 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10687 	 * load of per-mm/cpu cid.
10688 	 */
10689 
10690 	/*
10691 	 * If we observe an active task using the mm on this rq after setting
10692 	 * the lazy-put flag, that task will be responsible for transitioning
10693 	 * from lazy-put flag set to MM_CID_UNSET.
10694 	 */
10695 	scoped_guard (rcu) {
10696 		t = rcu_dereference(rq->curr);
10697 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10698 			return;
10699 	}
10700 
10701 	/*
10702 	 * The cid is unused, so it can be unset.
10703 	 * Disable interrupts to keep the window of cid ownership without rq
10704 	 * lock small.
10705 	 */
10706 	scoped_guard (irqsave) {
10707 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10708 			__mm_cid_put(mm, cid);
10709 	}
10710 }
10711 
10712 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10713 {
10714 	struct rq *rq = cpu_rq(cpu);
10715 	struct mm_cid *pcpu_cid;
10716 	struct task_struct *curr;
10717 	u64 rq_clock;
10718 
10719 	/*
10720 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10721 	 * while is irrelevant.
10722 	 */
10723 	rq_clock = READ_ONCE(rq->clock);
10724 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10725 
10726 	/*
10727 	 * In order to take care of infrequently scheduled tasks, bump the time
10728 	 * snapshot associated with this cid if an active task using the mm is
10729 	 * observed on this rq.
10730 	 */
10731 	scoped_guard (rcu) {
10732 		curr = rcu_dereference(rq->curr);
10733 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10734 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10735 			return;
10736 		}
10737 	}
10738 
10739 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10740 		return;
10741 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10742 }
10743 
10744 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10745 					     int weight)
10746 {
10747 	struct mm_cid *pcpu_cid;
10748 	int cid;
10749 
10750 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10751 	cid = READ_ONCE(pcpu_cid->cid);
10752 	if (!mm_cid_is_valid(cid) || cid < weight)
10753 		return;
10754 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10755 }
10756 
10757 static void task_mm_cid_work(struct callback_head *work)
10758 {
10759 	unsigned long now = jiffies, old_scan, next_scan;
10760 	struct task_struct *t = current;
10761 	struct cpumask *cidmask;
10762 	struct mm_struct *mm;
10763 	int weight, cpu;
10764 
10765 	WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work));
10766 
10767 	work->next = work;	/* Prevent double-add */
10768 	if (t->flags & PF_EXITING)
10769 		return;
10770 	mm = t->mm;
10771 	if (!mm)
10772 		return;
10773 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10774 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10775 	if (!old_scan) {
10776 		unsigned long res;
10777 
10778 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10779 		if (res != old_scan)
10780 			old_scan = res;
10781 		else
10782 			old_scan = next_scan;
10783 	}
10784 	if (time_before(now, old_scan))
10785 		return;
10786 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10787 		return;
10788 	cidmask = mm_cidmask(mm);
10789 	/* Clear cids that were not recently used. */
10790 	for_each_possible_cpu(cpu)
10791 		sched_mm_cid_remote_clear_old(mm, cpu);
10792 	weight = cpumask_weight(cidmask);
10793 	/*
10794 	 * Clear cids that are greater or equal to the cidmask weight to
10795 	 * recompact it.
10796 	 */
10797 	for_each_possible_cpu(cpu)
10798 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10799 }
10800 
10801 void init_sched_mm_cid(struct task_struct *t)
10802 {
10803 	struct mm_struct *mm = t->mm;
10804 	int mm_users = 0;
10805 
10806 	if (mm) {
10807 		mm_users = atomic_read(&mm->mm_users);
10808 		if (mm_users == 1)
10809 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10810 	}
10811 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10812 	init_task_work(&t->cid_work, task_mm_cid_work);
10813 }
10814 
10815 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10816 {
10817 	struct callback_head *work = &curr->cid_work;
10818 	unsigned long now = jiffies;
10819 
10820 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10821 	    work->next != work)
10822 		return;
10823 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10824 		return;
10825 
10826 	/* No page allocation under rq lock */
10827 	task_work_add(curr, work, TWA_RESUME);
10828 }
10829 
10830 void sched_mm_cid_exit_signals(struct task_struct *t)
10831 {
10832 	struct mm_struct *mm = t->mm;
10833 	struct rq *rq;
10834 
10835 	if (!mm)
10836 		return;
10837 
10838 	preempt_disable();
10839 	rq = this_rq();
10840 	guard(rq_lock_irqsave)(rq);
10841 	preempt_enable_no_resched();	/* holding spinlock */
10842 	WRITE_ONCE(t->mm_cid_active, 0);
10843 	/*
10844 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10845 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10846 	 */
10847 	smp_mb();
10848 	mm_cid_put(mm);
10849 	t->last_mm_cid = t->mm_cid = -1;
10850 }
10851 
10852 void sched_mm_cid_before_execve(struct task_struct *t)
10853 {
10854 	struct mm_struct *mm = t->mm;
10855 	struct rq *rq;
10856 
10857 	if (!mm)
10858 		return;
10859 
10860 	preempt_disable();
10861 	rq = this_rq();
10862 	guard(rq_lock_irqsave)(rq);
10863 	preempt_enable_no_resched();	/* holding spinlock */
10864 	WRITE_ONCE(t->mm_cid_active, 0);
10865 	/*
10866 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10867 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10868 	 */
10869 	smp_mb();
10870 	mm_cid_put(mm);
10871 	t->last_mm_cid = t->mm_cid = -1;
10872 }
10873 
10874 void sched_mm_cid_after_execve(struct task_struct *t)
10875 {
10876 	struct mm_struct *mm = t->mm;
10877 	struct rq *rq;
10878 
10879 	if (!mm)
10880 		return;
10881 
10882 	preempt_disable();
10883 	rq = this_rq();
10884 	scoped_guard (rq_lock_irqsave, rq) {
10885 		preempt_enable_no_resched();	/* holding spinlock */
10886 		WRITE_ONCE(t->mm_cid_active, 1);
10887 		/*
10888 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10889 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10890 		 */
10891 		smp_mb();
10892 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10893 	}
10894 }
10895 
10896 void sched_mm_cid_fork(struct task_struct *t)
10897 {
10898 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10899 	t->mm_cid_active = 1;
10900 }
10901 #endif /* CONFIG_SCHED_MM_CID */
10902 
10903 #ifdef CONFIG_SCHED_CLASS_EXT
10904 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10905 			    struct sched_enq_and_set_ctx *ctx)
10906 {
10907 	struct rq *rq = task_rq(p);
10908 
10909 	lockdep_assert_rq_held(rq);
10910 
10911 	*ctx = (struct sched_enq_and_set_ctx){
10912 		.p = p,
10913 		.queue_flags = queue_flags,
10914 		.queued = task_on_rq_queued(p),
10915 		.running = task_current(rq, p),
10916 	};
10917 
10918 	update_rq_clock(rq);
10919 	if (ctx->queued)
10920 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10921 	if (ctx->running)
10922 		put_prev_task(rq, p);
10923 }
10924 
10925 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10926 {
10927 	struct rq *rq = task_rq(ctx->p);
10928 
10929 	lockdep_assert_rq_held(rq);
10930 
10931 	if (ctx->queued)
10932 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10933 	if (ctx->running)
10934 		set_next_task(rq, ctx->p);
10935 }
10936 #endif /* CONFIG_SCHED_CLASS_EXT */
10937