xref: /linux/kernel/sched/core.c (revision 63d6e721527e175edbbe8513cba8e4a0caf94da5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17 
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
21 
22 #include "pelt.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26 
27 /*
28  * Export tracepoints that act as a bare tracehook (ie: have no trace event
29  * associated with them) to allow external modules to probe them.
30  */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37 
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39 
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42  * Debugging: various feature bits
43  *
44  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45  * sysctl_sched_features, defined in sched.h, to allow constants propagation
46  * at compile time and compiler optimization based on features default.
47  */
48 #define SCHED_FEAT(name, enabled)	\
49 	(1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 	0;
53 #undef SCHED_FEAT
54 #endif
55 
56 /*
57  * Number of tasks to iterate in a single balance run.
58  * Limited because this is done with IRQs disabled.
59  */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61 
62 /*
63  * period over which we measure -rt task CPU usage in us.
64  * default: 1s
65  */
66 unsigned int sysctl_sched_rt_period = 1000000;
67 
68 __read_mostly int scheduler_running;
69 
70 /*
71  * part of the period that we allow rt tasks to run in us.
72  * default: 0.95s
73  */
74 int sysctl_sched_rt_runtime = 950000;
75 
76 /*
77  * __task_rq_lock - lock the rq @p resides on.
78  */
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 	__acquires(rq->lock)
81 {
82 	struct rq *rq;
83 
84 	lockdep_assert_held(&p->pi_lock);
85 
86 	for (;;) {
87 		rq = task_rq(p);
88 		raw_spin_lock(&rq->lock);
89 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 			rq_pin_lock(rq, rf);
91 			return rq;
92 		}
93 		raw_spin_unlock(&rq->lock);
94 
95 		while (unlikely(task_on_rq_migrating(p)))
96 			cpu_relax();
97 	}
98 }
99 
100 /*
101  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102  */
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 	__acquires(p->pi_lock)
105 	__acquires(rq->lock)
106 {
107 	struct rq *rq;
108 
109 	for (;;) {
110 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 		rq = task_rq(p);
112 		raw_spin_lock(&rq->lock);
113 		/*
114 		 *	move_queued_task()		task_rq_lock()
115 		 *
116 		 *	ACQUIRE (rq->lock)
117 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
118 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
119 		 *	[S] ->cpu = new_cpu		[L] task_rq()
120 		 *					[L] ->on_rq
121 		 *	RELEASE (rq->lock)
122 		 *
123 		 * If we observe the old CPU in task_rq_lock(), the acquire of
124 		 * the old rq->lock will fully serialize against the stores.
125 		 *
126 		 * If we observe the new CPU in task_rq_lock(), the address
127 		 * dependency headed by '[L] rq = task_rq()' and the acquire
128 		 * will pair with the WMB to ensure we then also see migrating.
129 		 */
130 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 			rq_pin_lock(rq, rf);
132 			return rq;
133 		}
134 		raw_spin_unlock(&rq->lock);
135 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136 
137 		while (unlikely(task_on_rq_migrating(p)))
138 			cpu_relax();
139 	}
140 }
141 
142 /*
143  * RQ-clock updating methods:
144  */
145 
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149  * In theory, the compile should just see 0 here, and optimize out the call
150  * to sched_rt_avg_update. But I don't trust it...
151  */
152 	s64 __maybe_unused steal = 0, irq_delta = 0;
153 
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156 
157 	/*
158 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 	 * this case when a previous update_rq_clock() happened inside a
160 	 * {soft,}irq region.
161 	 *
162 	 * When this happens, we stop ->clock_task and only update the
163 	 * prev_irq_time stamp to account for the part that fit, so that a next
164 	 * update will consume the rest. This ensures ->clock_task is
165 	 * monotonic.
166 	 *
167 	 * It does however cause some slight miss-attribution of {soft,}irq
168 	 * time, a more accurate solution would be to update the irq_time using
169 	 * the current rq->clock timestamp, except that would require using
170 	 * atomic ops.
171 	 */
172 	if (irq_delta > delta)
173 		irq_delta = delta;
174 
175 	rq->prev_irq_time += irq_delta;
176 	delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 	if (static_key_false((&paravirt_steal_rq_enabled))) {
180 		steal = paravirt_steal_clock(cpu_of(rq));
181 		steal -= rq->prev_steal_time_rq;
182 
183 		if (unlikely(steal > delta))
184 			steal = delta;
185 
186 		rq->prev_steal_time_rq += steal;
187 		delta -= steal;
188 	}
189 #endif
190 
191 	rq->clock_task += delta;
192 
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 		update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 	update_rq_clock_pelt(rq, delta);
198 }
199 
200 void update_rq_clock(struct rq *rq)
201 {
202 	s64 delta;
203 
204 	lockdep_assert_held(&rq->lock);
205 
206 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 		return;
208 
209 #ifdef CONFIG_SCHED_DEBUG
210 	if (sched_feat(WARN_DOUBLE_CLOCK))
211 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 	rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214 
215 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 	if (delta < 0)
217 		return;
218 	rq->clock += delta;
219 	update_rq_clock_task(rq, delta);
220 }
221 
222 
223 #ifdef CONFIG_SCHED_HRTICK
224 /*
225  * Use HR-timers to deliver accurate preemption points.
226  */
227 
228 static void hrtick_clear(struct rq *rq)
229 {
230 	if (hrtimer_active(&rq->hrtick_timer))
231 		hrtimer_cancel(&rq->hrtick_timer);
232 }
233 
234 /*
235  * High-resolution timer tick.
236  * Runs from hardirq context with interrupts disabled.
237  */
238 static enum hrtimer_restart hrtick(struct hrtimer *timer)
239 {
240 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
241 	struct rq_flags rf;
242 
243 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244 
245 	rq_lock(rq, &rf);
246 	update_rq_clock(rq);
247 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
248 	rq_unlock(rq, &rf);
249 
250 	return HRTIMER_NORESTART;
251 }
252 
253 #ifdef CONFIG_SMP
254 
255 static void __hrtick_restart(struct rq *rq)
256 {
257 	struct hrtimer *timer = &rq->hrtick_timer;
258 
259 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
260 }
261 
262 /*
263  * called from hardirq (IPI) context
264  */
265 static void __hrtick_start(void *arg)
266 {
267 	struct rq *rq = arg;
268 	struct rq_flags rf;
269 
270 	rq_lock(rq, &rf);
271 	__hrtick_restart(rq);
272 	rq->hrtick_csd_pending = 0;
273 	rq_unlock(rq, &rf);
274 }
275 
276 /*
277  * Called to set the hrtick timer state.
278  *
279  * called with rq->lock held and irqs disabled
280  */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 	struct hrtimer *timer = &rq->hrtick_timer;
284 	ktime_t time;
285 	s64 delta;
286 
287 	/*
288 	 * Don't schedule slices shorter than 10000ns, that just
289 	 * doesn't make sense and can cause timer DoS.
290 	 */
291 	delta = max_t(s64, delay, 10000LL);
292 	time = ktime_add_ns(timer->base->get_time(), delta);
293 
294 	hrtimer_set_expires(timer, time);
295 
296 	if (rq == this_rq()) {
297 		__hrtick_restart(rq);
298 	} else if (!rq->hrtick_csd_pending) {
299 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
300 		rq->hrtick_csd_pending = 1;
301 	}
302 }
303 
304 #else
305 /*
306  * Called to set the hrtick timer state.
307  *
308  * called with rq->lock held and irqs disabled
309  */
310 void hrtick_start(struct rq *rq, u64 delay)
311 {
312 	/*
313 	 * Don't schedule slices shorter than 10000ns, that just
314 	 * doesn't make sense. Rely on vruntime for fairness.
315 	 */
316 	delay = max_t(u64, delay, 10000LL);
317 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
318 		      HRTIMER_MODE_REL_PINNED_HARD);
319 }
320 #endif /* CONFIG_SMP */
321 
322 static void hrtick_rq_init(struct rq *rq)
323 {
324 #ifdef CONFIG_SMP
325 	rq->hrtick_csd_pending = 0;
326 
327 	rq->hrtick_csd.flags = 0;
328 	rq->hrtick_csd.func = __hrtick_start;
329 	rq->hrtick_csd.info = rq;
330 #endif
331 
332 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
333 	rq->hrtick_timer.function = hrtick;
334 }
335 #else	/* CONFIG_SCHED_HRTICK */
336 static inline void hrtick_clear(struct rq *rq)
337 {
338 }
339 
340 static inline void hrtick_rq_init(struct rq *rq)
341 {
342 }
343 #endif	/* CONFIG_SCHED_HRTICK */
344 
345 /*
346  * cmpxchg based fetch_or, macro so it works for different integer types
347  */
348 #define fetch_or(ptr, mask)						\
349 	({								\
350 		typeof(ptr) _ptr = (ptr);				\
351 		typeof(mask) _mask = (mask);				\
352 		typeof(*_ptr) _old, _val = *_ptr;			\
353 									\
354 		for (;;) {						\
355 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
356 			if (_old == _val)				\
357 				break;					\
358 			_val = _old;					\
359 		}							\
360 	_old;								\
361 })
362 
363 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
364 /*
365  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
366  * this avoids any races wrt polling state changes and thereby avoids
367  * spurious IPIs.
368  */
369 static bool set_nr_and_not_polling(struct task_struct *p)
370 {
371 	struct thread_info *ti = task_thread_info(p);
372 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
373 }
374 
375 /*
376  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
377  *
378  * If this returns true, then the idle task promises to call
379  * sched_ttwu_pending() and reschedule soon.
380  */
381 static bool set_nr_if_polling(struct task_struct *p)
382 {
383 	struct thread_info *ti = task_thread_info(p);
384 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
385 
386 	for (;;) {
387 		if (!(val & _TIF_POLLING_NRFLAG))
388 			return false;
389 		if (val & _TIF_NEED_RESCHED)
390 			return true;
391 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
392 		if (old == val)
393 			break;
394 		val = old;
395 	}
396 	return true;
397 }
398 
399 #else
400 static bool set_nr_and_not_polling(struct task_struct *p)
401 {
402 	set_tsk_need_resched(p);
403 	return true;
404 }
405 
406 #ifdef CONFIG_SMP
407 static bool set_nr_if_polling(struct task_struct *p)
408 {
409 	return false;
410 }
411 #endif
412 #endif
413 
414 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
415 {
416 	struct wake_q_node *node = &task->wake_q;
417 
418 	/*
419 	 * Atomically grab the task, if ->wake_q is !nil already it means
420 	 * its already queued (either by us or someone else) and will get the
421 	 * wakeup due to that.
422 	 *
423 	 * In order to ensure that a pending wakeup will observe our pending
424 	 * state, even in the failed case, an explicit smp_mb() must be used.
425 	 */
426 	smp_mb__before_atomic();
427 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
428 		return false;
429 
430 	/*
431 	 * The head is context local, there can be no concurrency.
432 	 */
433 	*head->lastp = node;
434 	head->lastp = &node->next;
435 	return true;
436 }
437 
438 /**
439  * wake_q_add() - queue a wakeup for 'later' waking.
440  * @head: the wake_q_head to add @task to
441  * @task: the task to queue for 'later' wakeup
442  *
443  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
444  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
445  * instantly.
446  *
447  * This function must be used as-if it were wake_up_process(); IOW the task
448  * must be ready to be woken at this location.
449  */
450 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
451 {
452 	if (__wake_q_add(head, task))
453 		get_task_struct(task);
454 }
455 
456 /**
457  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
458  * @head: the wake_q_head to add @task to
459  * @task: the task to queue for 'later' wakeup
460  *
461  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
462  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
463  * instantly.
464  *
465  * This function must be used as-if it were wake_up_process(); IOW the task
466  * must be ready to be woken at this location.
467  *
468  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
469  * that already hold reference to @task can call the 'safe' version and trust
470  * wake_q to do the right thing depending whether or not the @task is already
471  * queued for wakeup.
472  */
473 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
474 {
475 	if (!__wake_q_add(head, task))
476 		put_task_struct(task);
477 }
478 
479 void wake_up_q(struct wake_q_head *head)
480 {
481 	struct wake_q_node *node = head->first;
482 
483 	while (node != WAKE_Q_TAIL) {
484 		struct task_struct *task;
485 
486 		task = container_of(node, struct task_struct, wake_q);
487 		BUG_ON(!task);
488 		/* Task can safely be re-inserted now: */
489 		node = node->next;
490 		task->wake_q.next = NULL;
491 
492 		/*
493 		 * wake_up_process() executes a full barrier, which pairs with
494 		 * the queueing in wake_q_add() so as not to miss wakeups.
495 		 */
496 		wake_up_process(task);
497 		put_task_struct(task);
498 	}
499 }
500 
501 /*
502  * resched_curr - mark rq's current task 'to be rescheduled now'.
503  *
504  * On UP this means the setting of the need_resched flag, on SMP it
505  * might also involve a cross-CPU call to trigger the scheduler on
506  * the target CPU.
507  */
508 void resched_curr(struct rq *rq)
509 {
510 	struct task_struct *curr = rq->curr;
511 	int cpu;
512 
513 	lockdep_assert_held(&rq->lock);
514 
515 	if (test_tsk_need_resched(curr))
516 		return;
517 
518 	cpu = cpu_of(rq);
519 
520 	if (cpu == smp_processor_id()) {
521 		set_tsk_need_resched(curr);
522 		set_preempt_need_resched();
523 		return;
524 	}
525 
526 	if (set_nr_and_not_polling(curr))
527 		smp_send_reschedule(cpu);
528 	else
529 		trace_sched_wake_idle_without_ipi(cpu);
530 }
531 
532 void resched_cpu(int cpu)
533 {
534 	struct rq *rq = cpu_rq(cpu);
535 	unsigned long flags;
536 
537 	raw_spin_lock_irqsave(&rq->lock, flags);
538 	if (cpu_online(cpu) || cpu == smp_processor_id())
539 		resched_curr(rq);
540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542 
543 #ifdef CONFIG_SMP
544 #ifdef CONFIG_NO_HZ_COMMON
545 /*
546  * In the semi idle case, use the nearest busy CPU for migrating timers
547  * from an idle CPU.  This is good for power-savings.
548  *
549  * We don't do similar optimization for completely idle system, as
550  * selecting an idle CPU will add more delays to the timers than intended
551  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
552  */
553 int get_nohz_timer_target(void)
554 {
555 	int i, cpu = smp_processor_id();
556 	struct sched_domain *sd;
557 
558 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
559 		return cpu;
560 
561 	rcu_read_lock();
562 	for_each_domain(cpu, sd) {
563 		for_each_cpu(i, sched_domain_span(sd)) {
564 			if (cpu == i)
565 				continue;
566 
567 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
568 				cpu = i;
569 				goto unlock;
570 			}
571 		}
572 	}
573 
574 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
575 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
576 unlock:
577 	rcu_read_unlock();
578 	return cpu;
579 }
580 
581 /*
582  * When add_timer_on() enqueues a timer into the timer wheel of an
583  * idle CPU then this timer might expire before the next timer event
584  * which is scheduled to wake up that CPU. In case of a completely
585  * idle system the next event might even be infinite time into the
586  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587  * leaves the inner idle loop so the newly added timer is taken into
588  * account when the CPU goes back to idle and evaluates the timer
589  * wheel for the next timer event.
590  */
591 static void wake_up_idle_cpu(int cpu)
592 {
593 	struct rq *rq = cpu_rq(cpu);
594 
595 	if (cpu == smp_processor_id())
596 		return;
597 
598 	if (set_nr_and_not_polling(rq->idle))
599 		smp_send_reschedule(cpu);
600 	else
601 		trace_sched_wake_idle_without_ipi(cpu);
602 }
603 
604 static bool wake_up_full_nohz_cpu(int cpu)
605 {
606 	/*
607 	 * We just need the target to call irq_exit() and re-evaluate
608 	 * the next tick. The nohz full kick at least implies that.
609 	 * If needed we can still optimize that later with an
610 	 * empty IRQ.
611 	 */
612 	if (cpu_is_offline(cpu))
613 		return true;  /* Don't try to wake offline CPUs. */
614 	if (tick_nohz_full_cpu(cpu)) {
615 		if (cpu != smp_processor_id() ||
616 		    tick_nohz_tick_stopped())
617 			tick_nohz_full_kick_cpu(cpu);
618 		return true;
619 	}
620 
621 	return false;
622 }
623 
624 /*
625  * Wake up the specified CPU.  If the CPU is going offline, it is the
626  * caller's responsibility to deal with the lost wakeup, for example,
627  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
628  */
629 void wake_up_nohz_cpu(int cpu)
630 {
631 	if (!wake_up_full_nohz_cpu(cpu))
632 		wake_up_idle_cpu(cpu);
633 }
634 
635 static inline bool got_nohz_idle_kick(void)
636 {
637 	int cpu = smp_processor_id();
638 
639 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
640 		return false;
641 
642 	if (idle_cpu(cpu) && !need_resched())
643 		return true;
644 
645 	/*
646 	 * We can't run Idle Load Balance on this CPU for this time so we
647 	 * cancel it and clear NOHZ_BALANCE_KICK
648 	 */
649 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
650 	return false;
651 }
652 
653 #else /* CONFIG_NO_HZ_COMMON */
654 
655 static inline bool got_nohz_idle_kick(void)
656 {
657 	return false;
658 }
659 
660 #endif /* CONFIG_NO_HZ_COMMON */
661 
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(struct rq *rq)
664 {
665 	int fifo_nr_running;
666 
667 	/* Deadline tasks, even if single, need the tick */
668 	if (rq->dl.dl_nr_running)
669 		return false;
670 
671 	/*
672 	 * If there are more than one RR tasks, we need the tick to effect the
673 	 * actual RR behaviour.
674 	 */
675 	if (rq->rt.rr_nr_running) {
676 		if (rq->rt.rr_nr_running == 1)
677 			return true;
678 		else
679 			return false;
680 	}
681 
682 	/*
683 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
684 	 * forced preemption between FIFO tasks.
685 	 */
686 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
687 	if (fifo_nr_running)
688 		return true;
689 
690 	/*
691 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
692 	 * if there's more than one we need the tick for involuntary
693 	 * preemption.
694 	 */
695 	if (rq->nr_running > 1)
696 		return false;
697 
698 	return true;
699 }
700 #endif /* CONFIG_NO_HZ_FULL */
701 #endif /* CONFIG_SMP */
702 
703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
704 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
705 /*
706  * Iterate task_group tree rooted at *from, calling @down when first entering a
707  * node and @up when leaving it for the final time.
708  *
709  * Caller must hold rcu_lock or sufficient equivalent.
710  */
711 int walk_tg_tree_from(struct task_group *from,
712 			     tg_visitor down, tg_visitor up, void *data)
713 {
714 	struct task_group *parent, *child;
715 	int ret;
716 
717 	parent = from;
718 
719 down:
720 	ret = (*down)(parent, data);
721 	if (ret)
722 		goto out;
723 	list_for_each_entry_rcu(child, &parent->children, siblings) {
724 		parent = child;
725 		goto down;
726 
727 up:
728 		continue;
729 	}
730 	ret = (*up)(parent, data);
731 	if (ret || parent == from)
732 		goto out;
733 
734 	child = parent;
735 	parent = parent->parent;
736 	if (parent)
737 		goto up;
738 out:
739 	return ret;
740 }
741 
742 int tg_nop(struct task_group *tg, void *data)
743 {
744 	return 0;
745 }
746 #endif
747 
748 static void set_load_weight(struct task_struct *p, bool update_load)
749 {
750 	int prio = p->static_prio - MAX_RT_PRIO;
751 	struct load_weight *load = &p->se.load;
752 
753 	/*
754 	 * SCHED_IDLE tasks get minimal weight:
755 	 */
756 	if (task_has_idle_policy(p)) {
757 		load->weight = scale_load(WEIGHT_IDLEPRIO);
758 		load->inv_weight = WMULT_IDLEPRIO;
759 		p->se.runnable_weight = load->weight;
760 		return;
761 	}
762 
763 	/*
764 	 * SCHED_OTHER tasks have to update their load when changing their
765 	 * weight
766 	 */
767 	if (update_load && p->sched_class == &fair_sched_class) {
768 		reweight_task(p, prio);
769 	} else {
770 		load->weight = scale_load(sched_prio_to_weight[prio]);
771 		load->inv_weight = sched_prio_to_wmult[prio];
772 		p->se.runnable_weight = load->weight;
773 	}
774 }
775 
776 #ifdef CONFIG_UCLAMP_TASK
777 /*
778  * Serializes updates of utilization clamp values
779  *
780  * The (slow-path) user-space triggers utilization clamp value updates which
781  * can require updates on (fast-path) scheduler's data structures used to
782  * support enqueue/dequeue operations.
783  * While the per-CPU rq lock protects fast-path update operations, user-space
784  * requests are serialized using a mutex to reduce the risk of conflicting
785  * updates or API abuses.
786  */
787 static DEFINE_MUTEX(uclamp_mutex);
788 
789 /* Max allowed minimum utilization */
790 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
791 
792 /* Max allowed maximum utilization */
793 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
794 
795 /* All clamps are required to be less or equal than these values */
796 static struct uclamp_se uclamp_default[UCLAMP_CNT];
797 
798 /* Integer rounded range for each bucket */
799 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
800 
801 #define for_each_clamp_id(clamp_id) \
802 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
803 
804 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
805 {
806 	return clamp_value / UCLAMP_BUCKET_DELTA;
807 }
808 
809 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
810 {
811 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
812 }
813 
814 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
815 {
816 	if (clamp_id == UCLAMP_MIN)
817 		return 0;
818 	return SCHED_CAPACITY_SCALE;
819 }
820 
821 static inline void uclamp_se_set(struct uclamp_se *uc_se,
822 				 unsigned int value, bool user_defined)
823 {
824 	uc_se->value = value;
825 	uc_se->bucket_id = uclamp_bucket_id(value);
826 	uc_se->user_defined = user_defined;
827 }
828 
829 static inline unsigned int
830 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
831 		  unsigned int clamp_value)
832 {
833 	/*
834 	 * Avoid blocked utilization pushing up the frequency when we go
835 	 * idle (which drops the max-clamp) by retaining the last known
836 	 * max-clamp.
837 	 */
838 	if (clamp_id == UCLAMP_MAX) {
839 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
840 		return clamp_value;
841 	}
842 
843 	return uclamp_none(UCLAMP_MIN);
844 }
845 
846 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
847 				     unsigned int clamp_value)
848 {
849 	/* Reset max-clamp retention only on idle exit */
850 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
851 		return;
852 
853 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
854 }
855 
856 static inline
857 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
858 				   unsigned int clamp_value)
859 {
860 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
861 	int bucket_id = UCLAMP_BUCKETS - 1;
862 
863 	/*
864 	 * Since both min and max clamps are max aggregated, find the
865 	 * top most bucket with tasks in.
866 	 */
867 	for ( ; bucket_id >= 0; bucket_id--) {
868 		if (!bucket[bucket_id].tasks)
869 			continue;
870 		return bucket[bucket_id].value;
871 	}
872 
873 	/* No tasks -- default clamp values */
874 	return uclamp_idle_value(rq, clamp_id, clamp_value);
875 }
876 
877 static inline struct uclamp_se
878 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
879 {
880 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
881 #ifdef CONFIG_UCLAMP_TASK_GROUP
882 	struct uclamp_se uc_max;
883 
884 	/*
885 	 * Tasks in autogroups or root task group will be
886 	 * restricted by system defaults.
887 	 */
888 	if (task_group_is_autogroup(task_group(p)))
889 		return uc_req;
890 	if (task_group(p) == &root_task_group)
891 		return uc_req;
892 
893 	uc_max = task_group(p)->uclamp[clamp_id];
894 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
895 		return uc_max;
896 #endif
897 
898 	return uc_req;
899 }
900 
901 /*
902  * The effective clamp bucket index of a task depends on, by increasing
903  * priority:
904  * - the task specific clamp value, when explicitly requested from userspace
905  * - the task group effective clamp value, for tasks not either in the root
906  *   group or in an autogroup
907  * - the system default clamp value, defined by the sysadmin
908  */
909 static inline struct uclamp_se
910 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
911 {
912 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
913 	struct uclamp_se uc_max = uclamp_default[clamp_id];
914 
915 	/* System default restrictions always apply */
916 	if (unlikely(uc_req.value > uc_max.value))
917 		return uc_max;
918 
919 	return uc_req;
920 }
921 
922 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
923 {
924 	struct uclamp_se uc_eff;
925 
926 	/* Task currently refcounted: use back-annotated (effective) value */
927 	if (p->uclamp[clamp_id].active)
928 		return (unsigned long)p->uclamp[clamp_id].value;
929 
930 	uc_eff = uclamp_eff_get(p, clamp_id);
931 
932 	return (unsigned long)uc_eff.value;
933 }
934 
935 /*
936  * When a task is enqueued on a rq, the clamp bucket currently defined by the
937  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
938  * updates the rq's clamp value if required.
939  *
940  * Tasks can have a task-specific value requested from user-space, track
941  * within each bucket the maximum value for tasks refcounted in it.
942  * This "local max aggregation" allows to track the exact "requested" value
943  * for each bucket when all its RUNNABLE tasks require the same clamp.
944  */
945 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
946 				    enum uclamp_id clamp_id)
947 {
948 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
949 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
950 	struct uclamp_bucket *bucket;
951 
952 	lockdep_assert_held(&rq->lock);
953 
954 	/* Update task effective clamp */
955 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
956 
957 	bucket = &uc_rq->bucket[uc_se->bucket_id];
958 	bucket->tasks++;
959 	uc_se->active = true;
960 
961 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
962 
963 	/*
964 	 * Local max aggregation: rq buckets always track the max
965 	 * "requested" clamp value of its RUNNABLE tasks.
966 	 */
967 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
968 		bucket->value = uc_se->value;
969 
970 	if (uc_se->value > READ_ONCE(uc_rq->value))
971 		WRITE_ONCE(uc_rq->value, uc_se->value);
972 }
973 
974 /*
975  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
976  * is released. If this is the last task reference counting the rq's max
977  * active clamp value, then the rq's clamp value is updated.
978  *
979  * Both refcounted tasks and rq's cached clamp values are expected to be
980  * always valid. If it's detected they are not, as defensive programming,
981  * enforce the expected state and warn.
982  */
983 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
984 				    enum uclamp_id clamp_id)
985 {
986 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
987 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
988 	struct uclamp_bucket *bucket;
989 	unsigned int bkt_clamp;
990 	unsigned int rq_clamp;
991 
992 	lockdep_assert_held(&rq->lock);
993 
994 	bucket = &uc_rq->bucket[uc_se->bucket_id];
995 	SCHED_WARN_ON(!bucket->tasks);
996 	if (likely(bucket->tasks))
997 		bucket->tasks--;
998 	uc_se->active = false;
999 
1000 	/*
1001 	 * Keep "local max aggregation" simple and accept to (possibly)
1002 	 * overboost some RUNNABLE tasks in the same bucket.
1003 	 * The rq clamp bucket value is reset to its base value whenever
1004 	 * there are no more RUNNABLE tasks refcounting it.
1005 	 */
1006 	if (likely(bucket->tasks))
1007 		return;
1008 
1009 	rq_clamp = READ_ONCE(uc_rq->value);
1010 	/*
1011 	 * Defensive programming: this should never happen. If it happens,
1012 	 * e.g. due to future modification, warn and fixup the expected value.
1013 	 */
1014 	SCHED_WARN_ON(bucket->value > rq_clamp);
1015 	if (bucket->value >= rq_clamp) {
1016 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1017 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1018 	}
1019 }
1020 
1021 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1022 {
1023 	enum uclamp_id clamp_id;
1024 
1025 	if (unlikely(!p->sched_class->uclamp_enabled))
1026 		return;
1027 
1028 	for_each_clamp_id(clamp_id)
1029 		uclamp_rq_inc_id(rq, p, clamp_id);
1030 
1031 	/* Reset clamp idle holding when there is one RUNNABLE task */
1032 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1033 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1034 }
1035 
1036 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1037 {
1038 	enum uclamp_id clamp_id;
1039 
1040 	if (unlikely(!p->sched_class->uclamp_enabled))
1041 		return;
1042 
1043 	for_each_clamp_id(clamp_id)
1044 		uclamp_rq_dec_id(rq, p, clamp_id);
1045 }
1046 
1047 static inline void
1048 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1049 {
1050 	struct rq_flags rf;
1051 	struct rq *rq;
1052 
1053 	/*
1054 	 * Lock the task and the rq where the task is (or was) queued.
1055 	 *
1056 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1057 	 * price to pay to safely serialize util_{min,max} updates with
1058 	 * enqueues, dequeues and migration operations.
1059 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1060 	 */
1061 	rq = task_rq_lock(p, &rf);
1062 
1063 	/*
1064 	 * Setting the clamp bucket is serialized by task_rq_lock().
1065 	 * If the task is not yet RUNNABLE and its task_struct is not
1066 	 * affecting a valid clamp bucket, the next time it's enqueued,
1067 	 * it will already see the updated clamp bucket value.
1068 	 */
1069 	if (p->uclamp[clamp_id].active) {
1070 		uclamp_rq_dec_id(rq, p, clamp_id);
1071 		uclamp_rq_inc_id(rq, p, clamp_id);
1072 	}
1073 
1074 	task_rq_unlock(rq, p, &rf);
1075 }
1076 
1077 #ifdef CONFIG_UCLAMP_TASK_GROUP
1078 static inline void
1079 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1080 			   unsigned int clamps)
1081 {
1082 	enum uclamp_id clamp_id;
1083 	struct css_task_iter it;
1084 	struct task_struct *p;
1085 
1086 	css_task_iter_start(css, 0, &it);
1087 	while ((p = css_task_iter_next(&it))) {
1088 		for_each_clamp_id(clamp_id) {
1089 			if ((0x1 << clamp_id) & clamps)
1090 				uclamp_update_active(p, clamp_id);
1091 		}
1092 	}
1093 	css_task_iter_end(&it);
1094 }
1095 
1096 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1097 static void uclamp_update_root_tg(void)
1098 {
1099 	struct task_group *tg = &root_task_group;
1100 
1101 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1102 		      sysctl_sched_uclamp_util_min, false);
1103 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1104 		      sysctl_sched_uclamp_util_max, false);
1105 
1106 	rcu_read_lock();
1107 	cpu_util_update_eff(&root_task_group.css);
1108 	rcu_read_unlock();
1109 }
1110 #else
1111 static void uclamp_update_root_tg(void) { }
1112 #endif
1113 
1114 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1115 				void __user *buffer, size_t *lenp,
1116 				loff_t *ppos)
1117 {
1118 	bool update_root_tg = false;
1119 	int old_min, old_max;
1120 	int result;
1121 
1122 	mutex_lock(&uclamp_mutex);
1123 	old_min = sysctl_sched_uclamp_util_min;
1124 	old_max = sysctl_sched_uclamp_util_max;
1125 
1126 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1127 	if (result)
1128 		goto undo;
1129 	if (!write)
1130 		goto done;
1131 
1132 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1133 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1134 		result = -EINVAL;
1135 		goto undo;
1136 	}
1137 
1138 	if (old_min != sysctl_sched_uclamp_util_min) {
1139 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1140 			      sysctl_sched_uclamp_util_min, false);
1141 		update_root_tg = true;
1142 	}
1143 	if (old_max != sysctl_sched_uclamp_util_max) {
1144 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1145 			      sysctl_sched_uclamp_util_max, false);
1146 		update_root_tg = true;
1147 	}
1148 
1149 	if (update_root_tg)
1150 		uclamp_update_root_tg();
1151 
1152 	/*
1153 	 * We update all RUNNABLE tasks only when task groups are in use.
1154 	 * Otherwise, keep it simple and do just a lazy update at each next
1155 	 * task enqueue time.
1156 	 */
1157 
1158 	goto done;
1159 
1160 undo:
1161 	sysctl_sched_uclamp_util_min = old_min;
1162 	sysctl_sched_uclamp_util_max = old_max;
1163 done:
1164 	mutex_unlock(&uclamp_mutex);
1165 
1166 	return result;
1167 }
1168 
1169 static int uclamp_validate(struct task_struct *p,
1170 			   const struct sched_attr *attr)
1171 {
1172 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1173 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1174 
1175 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1176 		lower_bound = attr->sched_util_min;
1177 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1178 		upper_bound = attr->sched_util_max;
1179 
1180 	if (lower_bound > upper_bound)
1181 		return -EINVAL;
1182 	if (upper_bound > SCHED_CAPACITY_SCALE)
1183 		return -EINVAL;
1184 
1185 	return 0;
1186 }
1187 
1188 static void __setscheduler_uclamp(struct task_struct *p,
1189 				  const struct sched_attr *attr)
1190 {
1191 	enum uclamp_id clamp_id;
1192 
1193 	/*
1194 	 * On scheduling class change, reset to default clamps for tasks
1195 	 * without a task-specific value.
1196 	 */
1197 	for_each_clamp_id(clamp_id) {
1198 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1199 		unsigned int clamp_value = uclamp_none(clamp_id);
1200 
1201 		/* Keep using defined clamps across class changes */
1202 		if (uc_se->user_defined)
1203 			continue;
1204 
1205 		/* By default, RT tasks always get 100% boost */
1206 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1207 			clamp_value = uclamp_none(UCLAMP_MAX);
1208 
1209 		uclamp_se_set(uc_se, clamp_value, false);
1210 	}
1211 
1212 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1213 		return;
1214 
1215 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1216 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1217 			      attr->sched_util_min, true);
1218 	}
1219 
1220 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1221 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1222 			      attr->sched_util_max, true);
1223 	}
1224 }
1225 
1226 static void uclamp_fork(struct task_struct *p)
1227 {
1228 	enum uclamp_id clamp_id;
1229 
1230 	for_each_clamp_id(clamp_id)
1231 		p->uclamp[clamp_id].active = false;
1232 
1233 	if (likely(!p->sched_reset_on_fork))
1234 		return;
1235 
1236 	for_each_clamp_id(clamp_id) {
1237 		unsigned int clamp_value = uclamp_none(clamp_id);
1238 
1239 		/* By default, RT tasks always get 100% boost */
1240 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1241 			clamp_value = uclamp_none(UCLAMP_MAX);
1242 
1243 		uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1244 	}
1245 }
1246 
1247 static void __init init_uclamp(void)
1248 {
1249 	struct uclamp_se uc_max = {};
1250 	enum uclamp_id clamp_id;
1251 	int cpu;
1252 
1253 	mutex_init(&uclamp_mutex);
1254 
1255 	for_each_possible_cpu(cpu) {
1256 		memset(&cpu_rq(cpu)->uclamp, 0,
1257 				sizeof(struct uclamp_rq)*UCLAMP_CNT);
1258 		cpu_rq(cpu)->uclamp_flags = 0;
1259 	}
1260 
1261 	for_each_clamp_id(clamp_id) {
1262 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1263 			      uclamp_none(clamp_id), false);
1264 	}
1265 
1266 	/* System defaults allow max clamp values for both indexes */
1267 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1268 	for_each_clamp_id(clamp_id) {
1269 		uclamp_default[clamp_id] = uc_max;
1270 #ifdef CONFIG_UCLAMP_TASK_GROUP
1271 		root_task_group.uclamp_req[clamp_id] = uc_max;
1272 		root_task_group.uclamp[clamp_id] = uc_max;
1273 #endif
1274 	}
1275 }
1276 
1277 #else /* CONFIG_UCLAMP_TASK */
1278 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1279 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1280 static inline int uclamp_validate(struct task_struct *p,
1281 				  const struct sched_attr *attr)
1282 {
1283 	return -EOPNOTSUPP;
1284 }
1285 static void __setscheduler_uclamp(struct task_struct *p,
1286 				  const struct sched_attr *attr) { }
1287 static inline void uclamp_fork(struct task_struct *p) { }
1288 static inline void init_uclamp(void) { }
1289 #endif /* CONFIG_UCLAMP_TASK */
1290 
1291 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1292 {
1293 	if (!(flags & ENQUEUE_NOCLOCK))
1294 		update_rq_clock(rq);
1295 
1296 	if (!(flags & ENQUEUE_RESTORE)) {
1297 		sched_info_queued(rq, p);
1298 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1299 	}
1300 
1301 	uclamp_rq_inc(rq, p);
1302 	p->sched_class->enqueue_task(rq, p, flags);
1303 }
1304 
1305 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1306 {
1307 	if (!(flags & DEQUEUE_NOCLOCK))
1308 		update_rq_clock(rq);
1309 
1310 	if (!(flags & DEQUEUE_SAVE)) {
1311 		sched_info_dequeued(rq, p);
1312 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1313 	}
1314 
1315 	uclamp_rq_dec(rq, p);
1316 	p->sched_class->dequeue_task(rq, p, flags);
1317 }
1318 
1319 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1320 {
1321 	if (task_contributes_to_load(p))
1322 		rq->nr_uninterruptible--;
1323 
1324 	enqueue_task(rq, p, flags);
1325 
1326 	p->on_rq = TASK_ON_RQ_QUEUED;
1327 }
1328 
1329 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1330 {
1331 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1332 
1333 	if (task_contributes_to_load(p))
1334 		rq->nr_uninterruptible++;
1335 
1336 	dequeue_task(rq, p, flags);
1337 }
1338 
1339 /*
1340  * __normal_prio - return the priority that is based on the static prio
1341  */
1342 static inline int __normal_prio(struct task_struct *p)
1343 {
1344 	return p->static_prio;
1345 }
1346 
1347 /*
1348  * Calculate the expected normal priority: i.e. priority
1349  * without taking RT-inheritance into account. Might be
1350  * boosted by interactivity modifiers. Changes upon fork,
1351  * setprio syscalls, and whenever the interactivity
1352  * estimator recalculates.
1353  */
1354 static inline int normal_prio(struct task_struct *p)
1355 {
1356 	int prio;
1357 
1358 	if (task_has_dl_policy(p))
1359 		prio = MAX_DL_PRIO-1;
1360 	else if (task_has_rt_policy(p))
1361 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1362 	else
1363 		prio = __normal_prio(p);
1364 	return prio;
1365 }
1366 
1367 /*
1368  * Calculate the current priority, i.e. the priority
1369  * taken into account by the scheduler. This value might
1370  * be boosted by RT tasks, or might be boosted by
1371  * interactivity modifiers. Will be RT if the task got
1372  * RT-boosted. If not then it returns p->normal_prio.
1373  */
1374 static int effective_prio(struct task_struct *p)
1375 {
1376 	p->normal_prio = normal_prio(p);
1377 	/*
1378 	 * If we are RT tasks or we were boosted to RT priority,
1379 	 * keep the priority unchanged. Otherwise, update priority
1380 	 * to the normal priority:
1381 	 */
1382 	if (!rt_prio(p->prio))
1383 		return p->normal_prio;
1384 	return p->prio;
1385 }
1386 
1387 /**
1388  * task_curr - is this task currently executing on a CPU?
1389  * @p: the task in question.
1390  *
1391  * Return: 1 if the task is currently executing. 0 otherwise.
1392  */
1393 inline int task_curr(const struct task_struct *p)
1394 {
1395 	return cpu_curr(task_cpu(p)) == p;
1396 }
1397 
1398 /*
1399  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1400  * use the balance_callback list if you want balancing.
1401  *
1402  * this means any call to check_class_changed() must be followed by a call to
1403  * balance_callback().
1404  */
1405 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1406 				       const struct sched_class *prev_class,
1407 				       int oldprio)
1408 {
1409 	if (prev_class != p->sched_class) {
1410 		if (prev_class->switched_from)
1411 			prev_class->switched_from(rq, p);
1412 
1413 		p->sched_class->switched_to(rq, p);
1414 	} else if (oldprio != p->prio || dl_task(p))
1415 		p->sched_class->prio_changed(rq, p, oldprio);
1416 }
1417 
1418 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1419 {
1420 	const struct sched_class *class;
1421 
1422 	if (p->sched_class == rq->curr->sched_class) {
1423 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1424 	} else {
1425 		for_each_class(class) {
1426 			if (class == rq->curr->sched_class)
1427 				break;
1428 			if (class == p->sched_class) {
1429 				resched_curr(rq);
1430 				break;
1431 			}
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * A queue event has occurred, and we're going to schedule.  In
1437 	 * this case, we can save a useless back to back clock update.
1438 	 */
1439 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1440 		rq_clock_skip_update(rq);
1441 }
1442 
1443 #ifdef CONFIG_SMP
1444 
1445 static inline bool is_per_cpu_kthread(struct task_struct *p)
1446 {
1447 	if (!(p->flags & PF_KTHREAD))
1448 		return false;
1449 
1450 	if (p->nr_cpus_allowed != 1)
1451 		return false;
1452 
1453 	return true;
1454 }
1455 
1456 /*
1457  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1458  * __set_cpus_allowed_ptr() and select_fallback_rq().
1459  */
1460 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1461 {
1462 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1463 		return false;
1464 
1465 	if (is_per_cpu_kthread(p))
1466 		return cpu_online(cpu);
1467 
1468 	return cpu_active(cpu);
1469 }
1470 
1471 /*
1472  * This is how migration works:
1473  *
1474  * 1) we invoke migration_cpu_stop() on the target CPU using
1475  *    stop_one_cpu().
1476  * 2) stopper starts to run (implicitly forcing the migrated thread
1477  *    off the CPU)
1478  * 3) it checks whether the migrated task is still in the wrong runqueue.
1479  * 4) if it's in the wrong runqueue then the migration thread removes
1480  *    it and puts it into the right queue.
1481  * 5) stopper completes and stop_one_cpu() returns and the migration
1482  *    is done.
1483  */
1484 
1485 /*
1486  * move_queued_task - move a queued task to new rq.
1487  *
1488  * Returns (locked) new rq. Old rq's lock is released.
1489  */
1490 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1491 				   struct task_struct *p, int new_cpu)
1492 {
1493 	lockdep_assert_held(&rq->lock);
1494 
1495 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1496 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1497 	set_task_cpu(p, new_cpu);
1498 	rq_unlock(rq, rf);
1499 
1500 	rq = cpu_rq(new_cpu);
1501 
1502 	rq_lock(rq, rf);
1503 	BUG_ON(task_cpu(p) != new_cpu);
1504 	enqueue_task(rq, p, 0);
1505 	p->on_rq = TASK_ON_RQ_QUEUED;
1506 	check_preempt_curr(rq, p, 0);
1507 
1508 	return rq;
1509 }
1510 
1511 struct migration_arg {
1512 	struct task_struct *task;
1513 	int dest_cpu;
1514 };
1515 
1516 /*
1517  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1518  * this because either it can't run here any more (set_cpus_allowed()
1519  * away from this CPU, or CPU going down), or because we're
1520  * attempting to rebalance this task on exec (sched_exec).
1521  *
1522  * So we race with normal scheduler movements, but that's OK, as long
1523  * as the task is no longer on this CPU.
1524  */
1525 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1526 				 struct task_struct *p, int dest_cpu)
1527 {
1528 	/* Affinity changed (again). */
1529 	if (!is_cpu_allowed(p, dest_cpu))
1530 		return rq;
1531 
1532 	update_rq_clock(rq);
1533 	rq = move_queued_task(rq, rf, p, dest_cpu);
1534 
1535 	return rq;
1536 }
1537 
1538 /*
1539  * migration_cpu_stop - this will be executed by a highprio stopper thread
1540  * and performs thread migration by bumping thread off CPU then
1541  * 'pushing' onto another runqueue.
1542  */
1543 static int migration_cpu_stop(void *data)
1544 {
1545 	struct migration_arg *arg = data;
1546 	struct task_struct *p = arg->task;
1547 	struct rq *rq = this_rq();
1548 	struct rq_flags rf;
1549 
1550 	/*
1551 	 * The original target CPU might have gone down and we might
1552 	 * be on another CPU but it doesn't matter.
1553 	 */
1554 	local_irq_disable();
1555 	/*
1556 	 * We need to explicitly wake pending tasks before running
1557 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1558 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1559 	 */
1560 	sched_ttwu_pending();
1561 
1562 	raw_spin_lock(&p->pi_lock);
1563 	rq_lock(rq, &rf);
1564 	/*
1565 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1566 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1567 	 * we're holding p->pi_lock.
1568 	 */
1569 	if (task_rq(p) == rq) {
1570 		if (task_on_rq_queued(p))
1571 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1572 		else
1573 			p->wake_cpu = arg->dest_cpu;
1574 	}
1575 	rq_unlock(rq, &rf);
1576 	raw_spin_unlock(&p->pi_lock);
1577 
1578 	local_irq_enable();
1579 	return 0;
1580 }
1581 
1582 /*
1583  * sched_class::set_cpus_allowed must do the below, but is not required to
1584  * actually call this function.
1585  */
1586 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1587 {
1588 	cpumask_copy(&p->cpus_mask, new_mask);
1589 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1590 }
1591 
1592 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1593 {
1594 	struct rq *rq = task_rq(p);
1595 	bool queued, running;
1596 
1597 	lockdep_assert_held(&p->pi_lock);
1598 
1599 	queued = task_on_rq_queued(p);
1600 	running = task_current(rq, p);
1601 
1602 	if (queued) {
1603 		/*
1604 		 * Because __kthread_bind() calls this on blocked tasks without
1605 		 * holding rq->lock.
1606 		 */
1607 		lockdep_assert_held(&rq->lock);
1608 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1609 	}
1610 	if (running)
1611 		put_prev_task(rq, p);
1612 
1613 	p->sched_class->set_cpus_allowed(p, new_mask);
1614 
1615 	if (queued)
1616 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1617 	if (running)
1618 		set_next_task(rq, p);
1619 }
1620 
1621 /*
1622  * Change a given task's CPU affinity. Migrate the thread to a
1623  * proper CPU and schedule it away if the CPU it's executing on
1624  * is removed from the allowed bitmask.
1625  *
1626  * NOTE: the caller must have a valid reference to the task, the
1627  * task must not exit() & deallocate itself prematurely. The
1628  * call is not atomic; no spinlocks may be held.
1629  */
1630 static int __set_cpus_allowed_ptr(struct task_struct *p,
1631 				  const struct cpumask *new_mask, bool check)
1632 {
1633 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1634 	unsigned int dest_cpu;
1635 	struct rq_flags rf;
1636 	struct rq *rq;
1637 	int ret = 0;
1638 
1639 	rq = task_rq_lock(p, &rf);
1640 	update_rq_clock(rq);
1641 
1642 	if (p->flags & PF_KTHREAD) {
1643 		/*
1644 		 * Kernel threads are allowed on online && !active CPUs
1645 		 */
1646 		cpu_valid_mask = cpu_online_mask;
1647 	}
1648 
1649 	/*
1650 	 * Must re-check here, to close a race against __kthread_bind(),
1651 	 * sched_setaffinity() is not guaranteed to observe the flag.
1652 	 */
1653 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1654 		ret = -EINVAL;
1655 		goto out;
1656 	}
1657 
1658 	if (cpumask_equal(p->cpus_ptr, new_mask))
1659 		goto out;
1660 
1661 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1662 	if (dest_cpu >= nr_cpu_ids) {
1663 		ret = -EINVAL;
1664 		goto out;
1665 	}
1666 
1667 	do_set_cpus_allowed(p, new_mask);
1668 
1669 	if (p->flags & PF_KTHREAD) {
1670 		/*
1671 		 * For kernel threads that do indeed end up on online &&
1672 		 * !active we want to ensure they are strict per-CPU threads.
1673 		 */
1674 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1675 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1676 			p->nr_cpus_allowed != 1);
1677 	}
1678 
1679 	/* Can the task run on the task's current CPU? If so, we're done */
1680 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1681 		goto out;
1682 
1683 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1684 		struct migration_arg arg = { p, dest_cpu };
1685 		/* Need help from migration thread: drop lock and wait. */
1686 		task_rq_unlock(rq, p, &rf);
1687 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1688 		return 0;
1689 	} else if (task_on_rq_queued(p)) {
1690 		/*
1691 		 * OK, since we're going to drop the lock immediately
1692 		 * afterwards anyway.
1693 		 */
1694 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1695 	}
1696 out:
1697 	task_rq_unlock(rq, p, &rf);
1698 
1699 	return ret;
1700 }
1701 
1702 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1703 {
1704 	return __set_cpus_allowed_ptr(p, new_mask, false);
1705 }
1706 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1707 
1708 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1709 {
1710 #ifdef CONFIG_SCHED_DEBUG
1711 	/*
1712 	 * We should never call set_task_cpu() on a blocked task,
1713 	 * ttwu() will sort out the placement.
1714 	 */
1715 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1716 			!p->on_rq);
1717 
1718 	/*
1719 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1720 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1721 	 * time relying on p->on_rq.
1722 	 */
1723 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1724 		     p->sched_class == &fair_sched_class &&
1725 		     (p->on_rq && !task_on_rq_migrating(p)));
1726 
1727 #ifdef CONFIG_LOCKDEP
1728 	/*
1729 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1730 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1731 	 *
1732 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1733 	 * see task_group().
1734 	 *
1735 	 * Furthermore, all task_rq users should acquire both locks, see
1736 	 * task_rq_lock().
1737 	 */
1738 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1739 				      lockdep_is_held(&task_rq(p)->lock)));
1740 #endif
1741 	/*
1742 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1743 	 */
1744 	WARN_ON_ONCE(!cpu_online(new_cpu));
1745 #endif
1746 
1747 	trace_sched_migrate_task(p, new_cpu);
1748 
1749 	if (task_cpu(p) != new_cpu) {
1750 		if (p->sched_class->migrate_task_rq)
1751 			p->sched_class->migrate_task_rq(p, new_cpu);
1752 		p->se.nr_migrations++;
1753 		rseq_migrate(p);
1754 		perf_event_task_migrate(p);
1755 	}
1756 
1757 	__set_task_cpu(p, new_cpu);
1758 }
1759 
1760 #ifdef CONFIG_NUMA_BALANCING
1761 static void __migrate_swap_task(struct task_struct *p, int cpu)
1762 {
1763 	if (task_on_rq_queued(p)) {
1764 		struct rq *src_rq, *dst_rq;
1765 		struct rq_flags srf, drf;
1766 
1767 		src_rq = task_rq(p);
1768 		dst_rq = cpu_rq(cpu);
1769 
1770 		rq_pin_lock(src_rq, &srf);
1771 		rq_pin_lock(dst_rq, &drf);
1772 
1773 		deactivate_task(src_rq, p, 0);
1774 		set_task_cpu(p, cpu);
1775 		activate_task(dst_rq, p, 0);
1776 		check_preempt_curr(dst_rq, p, 0);
1777 
1778 		rq_unpin_lock(dst_rq, &drf);
1779 		rq_unpin_lock(src_rq, &srf);
1780 
1781 	} else {
1782 		/*
1783 		 * Task isn't running anymore; make it appear like we migrated
1784 		 * it before it went to sleep. This means on wakeup we make the
1785 		 * previous CPU our target instead of where it really is.
1786 		 */
1787 		p->wake_cpu = cpu;
1788 	}
1789 }
1790 
1791 struct migration_swap_arg {
1792 	struct task_struct *src_task, *dst_task;
1793 	int src_cpu, dst_cpu;
1794 };
1795 
1796 static int migrate_swap_stop(void *data)
1797 {
1798 	struct migration_swap_arg *arg = data;
1799 	struct rq *src_rq, *dst_rq;
1800 	int ret = -EAGAIN;
1801 
1802 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1803 		return -EAGAIN;
1804 
1805 	src_rq = cpu_rq(arg->src_cpu);
1806 	dst_rq = cpu_rq(arg->dst_cpu);
1807 
1808 	double_raw_lock(&arg->src_task->pi_lock,
1809 			&arg->dst_task->pi_lock);
1810 	double_rq_lock(src_rq, dst_rq);
1811 
1812 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1813 		goto unlock;
1814 
1815 	if (task_cpu(arg->src_task) != arg->src_cpu)
1816 		goto unlock;
1817 
1818 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1819 		goto unlock;
1820 
1821 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1822 		goto unlock;
1823 
1824 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1825 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1826 
1827 	ret = 0;
1828 
1829 unlock:
1830 	double_rq_unlock(src_rq, dst_rq);
1831 	raw_spin_unlock(&arg->dst_task->pi_lock);
1832 	raw_spin_unlock(&arg->src_task->pi_lock);
1833 
1834 	return ret;
1835 }
1836 
1837 /*
1838  * Cross migrate two tasks
1839  */
1840 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1841 		int target_cpu, int curr_cpu)
1842 {
1843 	struct migration_swap_arg arg;
1844 	int ret = -EINVAL;
1845 
1846 	arg = (struct migration_swap_arg){
1847 		.src_task = cur,
1848 		.src_cpu = curr_cpu,
1849 		.dst_task = p,
1850 		.dst_cpu = target_cpu,
1851 	};
1852 
1853 	if (arg.src_cpu == arg.dst_cpu)
1854 		goto out;
1855 
1856 	/*
1857 	 * These three tests are all lockless; this is OK since all of them
1858 	 * will be re-checked with proper locks held further down the line.
1859 	 */
1860 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1861 		goto out;
1862 
1863 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1864 		goto out;
1865 
1866 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1867 		goto out;
1868 
1869 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1870 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1871 
1872 out:
1873 	return ret;
1874 }
1875 #endif /* CONFIG_NUMA_BALANCING */
1876 
1877 /*
1878  * wait_task_inactive - wait for a thread to unschedule.
1879  *
1880  * If @match_state is nonzero, it's the @p->state value just checked and
1881  * not expected to change.  If it changes, i.e. @p might have woken up,
1882  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1883  * we return a positive number (its total switch count).  If a second call
1884  * a short while later returns the same number, the caller can be sure that
1885  * @p has remained unscheduled the whole time.
1886  *
1887  * The caller must ensure that the task *will* unschedule sometime soon,
1888  * else this function might spin for a *long* time. This function can't
1889  * be called with interrupts off, or it may introduce deadlock with
1890  * smp_call_function() if an IPI is sent by the same process we are
1891  * waiting to become inactive.
1892  */
1893 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1894 {
1895 	int running, queued;
1896 	struct rq_flags rf;
1897 	unsigned long ncsw;
1898 	struct rq *rq;
1899 
1900 	for (;;) {
1901 		/*
1902 		 * We do the initial early heuristics without holding
1903 		 * any task-queue locks at all. We'll only try to get
1904 		 * the runqueue lock when things look like they will
1905 		 * work out!
1906 		 */
1907 		rq = task_rq(p);
1908 
1909 		/*
1910 		 * If the task is actively running on another CPU
1911 		 * still, just relax and busy-wait without holding
1912 		 * any locks.
1913 		 *
1914 		 * NOTE! Since we don't hold any locks, it's not
1915 		 * even sure that "rq" stays as the right runqueue!
1916 		 * But we don't care, since "task_running()" will
1917 		 * return false if the runqueue has changed and p
1918 		 * is actually now running somewhere else!
1919 		 */
1920 		while (task_running(rq, p)) {
1921 			if (match_state && unlikely(p->state != match_state))
1922 				return 0;
1923 			cpu_relax();
1924 		}
1925 
1926 		/*
1927 		 * Ok, time to look more closely! We need the rq
1928 		 * lock now, to be *sure*. If we're wrong, we'll
1929 		 * just go back and repeat.
1930 		 */
1931 		rq = task_rq_lock(p, &rf);
1932 		trace_sched_wait_task(p);
1933 		running = task_running(rq, p);
1934 		queued = task_on_rq_queued(p);
1935 		ncsw = 0;
1936 		if (!match_state || p->state == match_state)
1937 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1938 		task_rq_unlock(rq, p, &rf);
1939 
1940 		/*
1941 		 * If it changed from the expected state, bail out now.
1942 		 */
1943 		if (unlikely(!ncsw))
1944 			break;
1945 
1946 		/*
1947 		 * Was it really running after all now that we
1948 		 * checked with the proper locks actually held?
1949 		 *
1950 		 * Oops. Go back and try again..
1951 		 */
1952 		if (unlikely(running)) {
1953 			cpu_relax();
1954 			continue;
1955 		}
1956 
1957 		/*
1958 		 * It's not enough that it's not actively running,
1959 		 * it must be off the runqueue _entirely_, and not
1960 		 * preempted!
1961 		 *
1962 		 * So if it was still runnable (but just not actively
1963 		 * running right now), it's preempted, and we should
1964 		 * yield - it could be a while.
1965 		 */
1966 		if (unlikely(queued)) {
1967 			ktime_t to = NSEC_PER_SEC / HZ;
1968 
1969 			set_current_state(TASK_UNINTERRUPTIBLE);
1970 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1971 			continue;
1972 		}
1973 
1974 		/*
1975 		 * Ahh, all good. It wasn't running, and it wasn't
1976 		 * runnable, which means that it will never become
1977 		 * running in the future either. We're all done!
1978 		 */
1979 		break;
1980 	}
1981 
1982 	return ncsw;
1983 }
1984 
1985 /***
1986  * kick_process - kick a running thread to enter/exit the kernel
1987  * @p: the to-be-kicked thread
1988  *
1989  * Cause a process which is running on another CPU to enter
1990  * kernel-mode, without any delay. (to get signals handled.)
1991  *
1992  * NOTE: this function doesn't have to take the runqueue lock,
1993  * because all it wants to ensure is that the remote task enters
1994  * the kernel. If the IPI races and the task has been migrated
1995  * to another CPU then no harm is done and the purpose has been
1996  * achieved as well.
1997  */
1998 void kick_process(struct task_struct *p)
1999 {
2000 	int cpu;
2001 
2002 	preempt_disable();
2003 	cpu = task_cpu(p);
2004 	if ((cpu != smp_processor_id()) && task_curr(p))
2005 		smp_send_reschedule(cpu);
2006 	preempt_enable();
2007 }
2008 EXPORT_SYMBOL_GPL(kick_process);
2009 
2010 /*
2011  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2012  *
2013  * A few notes on cpu_active vs cpu_online:
2014  *
2015  *  - cpu_active must be a subset of cpu_online
2016  *
2017  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2018  *    see __set_cpus_allowed_ptr(). At this point the newly online
2019  *    CPU isn't yet part of the sched domains, and balancing will not
2020  *    see it.
2021  *
2022  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2023  *    avoid the load balancer to place new tasks on the to be removed
2024  *    CPU. Existing tasks will remain running there and will be taken
2025  *    off.
2026  *
2027  * This means that fallback selection must not select !active CPUs.
2028  * And can assume that any active CPU must be online. Conversely
2029  * select_task_rq() below may allow selection of !active CPUs in order
2030  * to satisfy the above rules.
2031  */
2032 static int select_fallback_rq(int cpu, struct task_struct *p)
2033 {
2034 	int nid = cpu_to_node(cpu);
2035 	const struct cpumask *nodemask = NULL;
2036 	enum { cpuset, possible, fail } state = cpuset;
2037 	int dest_cpu;
2038 
2039 	/*
2040 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2041 	 * will return -1. There is no CPU on the node, and we should
2042 	 * select the CPU on the other node.
2043 	 */
2044 	if (nid != -1) {
2045 		nodemask = cpumask_of_node(nid);
2046 
2047 		/* Look for allowed, online CPU in same node. */
2048 		for_each_cpu(dest_cpu, nodemask) {
2049 			if (!cpu_active(dest_cpu))
2050 				continue;
2051 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2052 				return dest_cpu;
2053 		}
2054 	}
2055 
2056 	for (;;) {
2057 		/* Any allowed, online CPU? */
2058 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2059 			if (!is_cpu_allowed(p, dest_cpu))
2060 				continue;
2061 
2062 			goto out;
2063 		}
2064 
2065 		/* No more Mr. Nice Guy. */
2066 		switch (state) {
2067 		case cpuset:
2068 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2069 				cpuset_cpus_allowed_fallback(p);
2070 				state = possible;
2071 				break;
2072 			}
2073 			/* Fall-through */
2074 		case possible:
2075 			do_set_cpus_allowed(p, cpu_possible_mask);
2076 			state = fail;
2077 			break;
2078 
2079 		case fail:
2080 			BUG();
2081 			break;
2082 		}
2083 	}
2084 
2085 out:
2086 	if (state != cpuset) {
2087 		/*
2088 		 * Don't tell them about moving exiting tasks or
2089 		 * kernel threads (both mm NULL), since they never
2090 		 * leave kernel.
2091 		 */
2092 		if (p->mm && printk_ratelimit()) {
2093 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2094 					task_pid_nr(p), p->comm, cpu);
2095 		}
2096 	}
2097 
2098 	return dest_cpu;
2099 }
2100 
2101 /*
2102  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2103  */
2104 static inline
2105 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2106 {
2107 	lockdep_assert_held(&p->pi_lock);
2108 
2109 	if (p->nr_cpus_allowed > 1)
2110 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2111 	else
2112 		cpu = cpumask_any(p->cpus_ptr);
2113 
2114 	/*
2115 	 * In order not to call set_task_cpu() on a blocking task we need
2116 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2117 	 * CPU.
2118 	 *
2119 	 * Since this is common to all placement strategies, this lives here.
2120 	 *
2121 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2122 	 *   not worry about this generic constraint ]
2123 	 */
2124 	if (unlikely(!is_cpu_allowed(p, cpu)))
2125 		cpu = select_fallback_rq(task_cpu(p), p);
2126 
2127 	return cpu;
2128 }
2129 
2130 static void update_avg(u64 *avg, u64 sample)
2131 {
2132 	s64 diff = sample - *avg;
2133 	*avg += diff >> 3;
2134 }
2135 
2136 void sched_set_stop_task(int cpu, struct task_struct *stop)
2137 {
2138 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2139 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2140 
2141 	if (stop) {
2142 		/*
2143 		 * Make it appear like a SCHED_FIFO task, its something
2144 		 * userspace knows about and won't get confused about.
2145 		 *
2146 		 * Also, it will make PI more or less work without too
2147 		 * much confusion -- but then, stop work should not
2148 		 * rely on PI working anyway.
2149 		 */
2150 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2151 
2152 		stop->sched_class = &stop_sched_class;
2153 	}
2154 
2155 	cpu_rq(cpu)->stop = stop;
2156 
2157 	if (old_stop) {
2158 		/*
2159 		 * Reset it back to a normal scheduling class so that
2160 		 * it can die in pieces.
2161 		 */
2162 		old_stop->sched_class = &rt_sched_class;
2163 	}
2164 }
2165 
2166 #else
2167 
2168 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2169 					 const struct cpumask *new_mask, bool check)
2170 {
2171 	return set_cpus_allowed_ptr(p, new_mask);
2172 }
2173 
2174 #endif /* CONFIG_SMP */
2175 
2176 static void
2177 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2178 {
2179 	struct rq *rq;
2180 
2181 	if (!schedstat_enabled())
2182 		return;
2183 
2184 	rq = this_rq();
2185 
2186 #ifdef CONFIG_SMP
2187 	if (cpu == rq->cpu) {
2188 		__schedstat_inc(rq->ttwu_local);
2189 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2190 	} else {
2191 		struct sched_domain *sd;
2192 
2193 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2194 		rcu_read_lock();
2195 		for_each_domain(rq->cpu, sd) {
2196 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2197 				__schedstat_inc(sd->ttwu_wake_remote);
2198 				break;
2199 			}
2200 		}
2201 		rcu_read_unlock();
2202 	}
2203 
2204 	if (wake_flags & WF_MIGRATED)
2205 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2206 #endif /* CONFIG_SMP */
2207 
2208 	__schedstat_inc(rq->ttwu_count);
2209 	__schedstat_inc(p->se.statistics.nr_wakeups);
2210 
2211 	if (wake_flags & WF_SYNC)
2212 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2213 }
2214 
2215 /*
2216  * Mark the task runnable and perform wakeup-preemption.
2217  */
2218 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2219 			   struct rq_flags *rf)
2220 {
2221 	check_preempt_curr(rq, p, wake_flags);
2222 	p->state = TASK_RUNNING;
2223 	trace_sched_wakeup(p);
2224 
2225 #ifdef CONFIG_SMP
2226 	if (p->sched_class->task_woken) {
2227 		/*
2228 		 * Our task @p is fully woken up and running; so its safe to
2229 		 * drop the rq->lock, hereafter rq is only used for statistics.
2230 		 */
2231 		rq_unpin_lock(rq, rf);
2232 		p->sched_class->task_woken(rq, p);
2233 		rq_repin_lock(rq, rf);
2234 	}
2235 
2236 	if (rq->idle_stamp) {
2237 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2238 		u64 max = 2*rq->max_idle_balance_cost;
2239 
2240 		update_avg(&rq->avg_idle, delta);
2241 
2242 		if (rq->avg_idle > max)
2243 			rq->avg_idle = max;
2244 
2245 		rq->idle_stamp = 0;
2246 	}
2247 #endif
2248 }
2249 
2250 static void
2251 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2252 		 struct rq_flags *rf)
2253 {
2254 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2255 
2256 	lockdep_assert_held(&rq->lock);
2257 
2258 #ifdef CONFIG_SMP
2259 	if (p->sched_contributes_to_load)
2260 		rq->nr_uninterruptible--;
2261 
2262 	if (wake_flags & WF_MIGRATED)
2263 		en_flags |= ENQUEUE_MIGRATED;
2264 #endif
2265 
2266 	activate_task(rq, p, en_flags);
2267 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2268 }
2269 
2270 /*
2271  * Called in case the task @p isn't fully descheduled from its runqueue,
2272  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2273  * since all we need to do is flip p->state to TASK_RUNNING, since
2274  * the task is still ->on_rq.
2275  */
2276 static int ttwu_remote(struct task_struct *p, int wake_flags)
2277 {
2278 	struct rq_flags rf;
2279 	struct rq *rq;
2280 	int ret = 0;
2281 
2282 	rq = __task_rq_lock(p, &rf);
2283 	if (task_on_rq_queued(p)) {
2284 		/* check_preempt_curr() may use rq clock */
2285 		update_rq_clock(rq);
2286 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2287 		ret = 1;
2288 	}
2289 	__task_rq_unlock(rq, &rf);
2290 
2291 	return ret;
2292 }
2293 
2294 #ifdef CONFIG_SMP
2295 void sched_ttwu_pending(void)
2296 {
2297 	struct rq *rq = this_rq();
2298 	struct llist_node *llist = llist_del_all(&rq->wake_list);
2299 	struct task_struct *p, *t;
2300 	struct rq_flags rf;
2301 
2302 	if (!llist)
2303 		return;
2304 
2305 	rq_lock_irqsave(rq, &rf);
2306 	update_rq_clock(rq);
2307 
2308 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2309 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2310 
2311 	rq_unlock_irqrestore(rq, &rf);
2312 }
2313 
2314 void scheduler_ipi(void)
2315 {
2316 	/*
2317 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2318 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2319 	 * this IPI.
2320 	 */
2321 	preempt_fold_need_resched();
2322 
2323 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2324 		return;
2325 
2326 	/*
2327 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2328 	 * traditionally all their work was done from the interrupt return
2329 	 * path. Now that we actually do some work, we need to make sure
2330 	 * we do call them.
2331 	 *
2332 	 * Some archs already do call them, luckily irq_enter/exit nest
2333 	 * properly.
2334 	 *
2335 	 * Arguably we should visit all archs and update all handlers,
2336 	 * however a fair share of IPIs are still resched only so this would
2337 	 * somewhat pessimize the simple resched case.
2338 	 */
2339 	irq_enter();
2340 	sched_ttwu_pending();
2341 
2342 	/*
2343 	 * Check if someone kicked us for doing the nohz idle load balance.
2344 	 */
2345 	if (unlikely(got_nohz_idle_kick())) {
2346 		this_rq()->idle_balance = 1;
2347 		raise_softirq_irqoff(SCHED_SOFTIRQ);
2348 	}
2349 	irq_exit();
2350 }
2351 
2352 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2353 {
2354 	struct rq *rq = cpu_rq(cpu);
2355 
2356 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2357 
2358 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2359 		if (!set_nr_if_polling(rq->idle))
2360 			smp_send_reschedule(cpu);
2361 		else
2362 			trace_sched_wake_idle_without_ipi(cpu);
2363 	}
2364 }
2365 
2366 void wake_up_if_idle(int cpu)
2367 {
2368 	struct rq *rq = cpu_rq(cpu);
2369 	struct rq_flags rf;
2370 
2371 	rcu_read_lock();
2372 
2373 	if (!is_idle_task(rcu_dereference(rq->curr)))
2374 		goto out;
2375 
2376 	if (set_nr_if_polling(rq->idle)) {
2377 		trace_sched_wake_idle_without_ipi(cpu);
2378 	} else {
2379 		rq_lock_irqsave(rq, &rf);
2380 		if (is_idle_task(rq->curr))
2381 			smp_send_reschedule(cpu);
2382 		/* Else CPU is not idle, do nothing here: */
2383 		rq_unlock_irqrestore(rq, &rf);
2384 	}
2385 
2386 out:
2387 	rcu_read_unlock();
2388 }
2389 
2390 bool cpus_share_cache(int this_cpu, int that_cpu)
2391 {
2392 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2393 }
2394 #endif /* CONFIG_SMP */
2395 
2396 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2397 {
2398 	struct rq *rq = cpu_rq(cpu);
2399 	struct rq_flags rf;
2400 
2401 #if defined(CONFIG_SMP)
2402 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2403 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2404 		ttwu_queue_remote(p, cpu, wake_flags);
2405 		return;
2406 	}
2407 #endif
2408 
2409 	rq_lock(rq, &rf);
2410 	update_rq_clock(rq);
2411 	ttwu_do_activate(rq, p, wake_flags, &rf);
2412 	rq_unlock(rq, &rf);
2413 }
2414 
2415 /*
2416  * Notes on Program-Order guarantees on SMP systems.
2417  *
2418  *  MIGRATION
2419  *
2420  * The basic program-order guarantee on SMP systems is that when a task [t]
2421  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2422  * execution on its new CPU [c1].
2423  *
2424  * For migration (of runnable tasks) this is provided by the following means:
2425  *
2426  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2427  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2428  *     rq(c1)->lock (if not at the same time, then in that order).
2429  *  C) LOCK of the rq(c1)->lock scheduling in task
2430  *
2431  * Release/acquire chaining guarantees that B happens after A and C after B.
2432  * Note: the CPU doing B need not be c0 or c1
2433  *
2434  * Example:
2435  *
2436  *   CPU0            CPU1            CPU2
2437  *
2438  *   LOCK rq(0)->lock
2439  *   sched-out X
2440  *   sched-in Y
2441  *   UNLOCK rq(0)->lock
2442  *
2443  *                                   LOCK rq(0)->lock // orders against CPU0
2444  *                                   dequeue X
2445  *                                   UNLOCK rq(0)->lock
2446  *
2447  *                                   LOCK rq(1)->lock
2448  *                                   enqueue X
2449  *                                   UNLOCK rq(1)->lock
2450  *
2451  *                   LOCK rq(1)->lock // orders against CPU2
2452  *                   sched-out Z
2453  *                   sched-in X
2454  *                   UNLOCK rq(1)->lock
2455  *
2456  *
2457  *  BLOCKING -- aka. SLEEP + WAKEUP
2458  *
2459  * For blocking we (obviously) need to provide the same guarantee as for
2460  * migration. However the means are completely different as there is no lock
2461  * chain to provide order. Instead we do:
2462  *
2463  *   1) smp_store_release(X->on_cpu, 0)
2464  *   2) smp_cond_load_acquire(!X->on_cpu)
2465  *
2466  * Example:
2467  *
2468  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2469  *
2470  *   LOCK rq(0)->lock LOCK X->pi_lock
2471  *   dequeue X
2472  *   sched-out X
2473  *   smp_store_release(X->on_cpu, 0);
2474  *
2475  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2476  *                    X->state = WAKING
2477  *                    set_task_cpu(X,2)
2478  *
2479  *                    LOCK rq(2)->lock
2480  *                    enqueue X
2481  *                    X->state = RUNNING
2482  *                    UNLOCK rq(2)->lock
2483  *
2484  *                                          LOCK rq(2)->lock // orders against CPU1
2485  *                                          sched-out Z
2486  *                                          sched-in X
2487  *                                          UNLOCK rq(2)->lock
2488  *
2489  *                    UNLOCK X->pi_lock
2490  *   UNLOCK rq(0)->lock
2491  *
2492  *
2493  * However, for wakeups there is a second guarantee we must provide, namely we
2494  * must ensure that CONDITION=1 done by the caller can not be reordered with
2495  * accesses to the task state; see try_to_wake_up() and set_current_state().
2496  */
2497 
2498 /**
2499  * try_to_wake_up - wake up a thread
2500  * @p: the thread to be awakened
2501  * @state: the mask of task states that can be woken
2502  * @wake_flags: wake modifier flags (WF_*)
2503  *
2504  * If (@state & @p->state) @p->state = TASK_RUNNING.
2505  *
2506  * If the task was not queued/runnable, also place it back on a runqueue.
2507  *
2508  * Atomic against schedule() which would dequeue a task, also see
2509  * set_current_state().
2510  *
2511  * This function executes a full memory barrier before accessing the task
2512  * state; see set_current_state().
2513  *
2514  * Return: %true if @p->state changes (an actual wakeup was done),
2515  *	   %false otherwise.
2516  */
2517 static int
2518 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2519 {
2520 	unsigned long flags;
2521 	int cpu, success = 0;
2522 
2523 	preempt_disable();
2524 	if (p == current) {
2525 		/*
2526 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2527 		 * == smp_processor_id()'. Together this means we can special
2528 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2529 		 * without taking any locks.
2530 		 *
2531 		 * In particular:
2532 		 *  - we rely on Program-Order guarantees for all the ordering,
2533 		 *  - we're serialized against set_special_state() by virtue of
2534 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2535 		 */
2536 		if (!(p->state & state))
2537 			goto out;
2538 
2539 		success = 1;
2540 		cpu = task_cpu(p);
2541 		trace_sched_waking(p);
2542 		p->state = TASK_RUNNING;
2543 		trace_sched_wakeup(p);
2544 		goto out;
2545 	}
2546 
2547 	/*
2548 	 * If we are going to wake up a thread waiting for CONDITION we
2549 	 * need to ensure that CONDITION=1 done by the caller can not be
2550 	 * reordered with p->state check below. This pairs with mb() in
2551 	 * set_current_state() the waiting thread does.
2552 	 */
2553 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2554 	smp_mb__after_spinlock();
2555 	if (!(p->state & state))
2556 		goto unlock;
2557 
2558 	trace_sched_waking(p);
2559 
2560 	/* We're going to change ->state: */
2561 	success = 1;
2562 	cpu = task_cpu(p);
2563 
2564 	/*
2565 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2566 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2567 	 * in smp_cond_load_acquire() below.
2568 	 *
2569 	 * sched_ttwu_pending()			try_to_wake_up()
2570 	 *   STORE p->on_rq = 1			  LOAD p->state
2571 	 *   UNLOCK rq->lock
2572 	 *
2573 	 * __schedule() (switch to task 'p')
2574 	 *   LOCK rq->lock			  smp_rmb();
2575 	 *   smp_mb__after_spinlock();
2576 	 *   UNLOCK rq->lock
2577 	 *
2578 	 * [task p]
2579 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2580 	 *
2581 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2582 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2583 	 */
2584 	smp_rmb();
2585 	if (p->on_rq && ttwu_remote(p, wake_flags))
2586 		goto unlock;
2587 
2588 #ifdef CONFIG_SMP
2589 	/*
2590 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2591 	 * possible to, falsely, observe p->on_cpu == 0.
2592 	 *
2593 	 * One must be running (->on_cpu == 1) in order to remove oneself
2594 	 * from the runqueue.
2595 	 *
2596 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2597 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2598 	 *   UNLOCK rq->lock
2599 	 *
2600 	 * __schedule() (put 'p' to sleep)
2601 	 *   LOCK rq->lock			  smp_rmb();
2602 	 *   smp_mb__after_spinlock();
2603 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2604 	 *
2605 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2606 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2607 	 */
2608 	smp_rmb();
2609 
2610 	/*
2611 	 * If the owning (remote) CPU is still in the middle of schedule() with
2612 	 * this task as prev, wait until its done referencing the task.
2613 	 *
2614 	 * Pairs with the smp_store_release() in finish_task().
2615 	 *
2616 	 * This ensures that tasks getting woken will be fully ordered against
2617 	 * their previous state and preserve Program Order.
2618 	 */
2619 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2620 
2621 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2622 	p->state = TASK_WAKING;
2623 
2624 	if (p->in_iowait) {
2625 		delayacct_blkio_end(p);
2626 		atomic_dec(&task_rq(p)->nr_iowait);
2627 	}
2628 
2629 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2630 	if (task_cpu(p) != cpu) {
2631 		wake_flags |= WF_MIGRATED;
2632 		psi_ttwu_dequeue(p);
2633 		set_task_cpu(p, cpu);
2634 	}
2635 
2636 #else /* CONFIG_SMP */
2637 
2638 	if (p->in_iowait) {
2639 		delayacct_blkio_end(p);
2640 		atomic_dec(&task_rq(p)->nr_iowait);
2641 	}
2642 
2643 #endif /* CONFIG_SMP */
2644 
2645 	ttwu_queue(p, cpu, wake_flags);
2646 unlock:
2647 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2648 out:
2649 	if (success)
2650 		ttwu_stat(p, cpu, wake_flags);
2651 	preempt_enable();
2652 
2653 	return success;
2654 }
2655 
2656 /**
2657  * wake_up_process - Wake up a specific process
2658  * @p: The process to be woken up.
2659  *
2660  * Attempt to wake up the nominated process and move it to the set of runnable
2661  * processes.
2662  *
2663  * Return: 1 if the process was woken up, 0 if it was already running.
2664  *
2665  * This function executes a full memory barrier before accessing the task state.
2666  */
2667 int wake_up_process(struct task_struct *p)
2668 {
2669 	return try_to_wake_up(p, TASK_NORMAL, 0);
2670 }
2671 EXPORT_SYMBOL(wake_up_process);
2672 
2673 int wake_up_state(struct task_struct *p, unsigned int state)
2674 {
2675 	return try_to_wake_up(p, state, 0);
2676 }
2677 
2678 /*
2679  * Perform scheduler related setup for a newly forked process p.
2680  * p is forked by current.
2681  *
2682  * __sched_fork() is basic setup used by init_idle() too:
2683  */
2684 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2685 {
2686 	p->on_rq			= 0;
2687 
2688 	p->se.on_rq			= 0;
2689 	p->se.exec_start		= 0;
2690 	p->se.sum_exec_runtime		= 0;
2691 	p->se.prev_sum_exec_runtime	= 0;
2692 	p->se.nr_migrations		= 0;
2693 	p->se.vruntime			= 0;
2694 	INIT_LIST_HEAD(&p->se.group_node);
2695 
2696 #ifdef CONFIG_FAIR_GROUP_SCHED
2697 	p->se.cfs_rq			= NULL;
2698 #endif
2699 
2700 #ifdef CONFIG_SCHEDSTATS
2701 	/* Even if schedstat is disabled, there should not be garbage */
2702 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2703 #endif
2704 
2705 	RB_CLEAR_NODE(&p->dl.rb_node);
2706 	init_dl_task_timer(&p->dl);
2707 	init_dl_inactive_task_timer(&p->dl);
2708 	__dl_clear_params(p);
2709 
2710 	INIT_LIST_HEAD(&p->rt.run_list);
2711 	p->rt.timeout		= 0;
2712 	p->rt.time_slice	= sched_rr_timeslice;
2713 	p->rt.on_rq		= 0;
2714 	p->rt.on_list		= 0;
2715 
2716 #ifdef CONFIG_PREEMPT_NOTIFIERS
2717 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2718 #endif
2719 
2720 #ifdef CONFIG_COMPACTION
2721 	p->capture_control = NULL;
2722 #endif
2723 	init_numa_balancing(clone_flags, p);
2724 }
2725 
2726 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2727 
2728 #ifdef CONFIG_NUMA_BALANCING
2729 
2730 void set_numabalancing_state(bool enabled)
2731 {
2732 	if (enabled)
2733 		static_branch_enable(&sched_numa_balancing);
2734 	else
2735 		static_branch_disable(&sched_numa_balancing);
2736 }
2737 
2738 #ifdef CONFIG_PROC_SYSCTL
2739 int sysctl_numa_balancing(struct ctl_table *table, int write,
2740 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2741 {
2742 	struct ctl_table t;
2743 	int err;
2744 	int state = static_branch_likely(&sched_numa_balancing);
2745 
2746 	if (write && !capable(CAP_SYS_ADMIN))
2747 		return -EPERM;
2748 
2749 	t = *table;
2750 	t.data = &state;
2751 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2752 	if (err < 0)
2753 		return err;
2754 	if (write)
2755 		set_numabalancing_state(state);
2756 	return err;
2757 }
2758 #endif
2759 #endif
2760 
2761 #ifdef CONFIG_SCHEDSTATS
2762 
2763 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2764 static bool __initdata __sched_schedstats = false;
2765 
2766 static void set_schedstats(bool enabled)
2767 {
2768 	if (enabled)
2769 		static_branch_enable(&sched_schedstats);
2770 	else
2771 		static_branch_disable(&sched_schedstats);
2772 }
2773 
2774 void force_schedstat_enabled(void)
2775 {
2776 	if (!schedstat_enabled()) {
2777 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2778 		static_branch_enable(&sched_schedstats);
2779 	}
2780 }
2781 
2782 static int __init setup_schedstats(char *str)
2783 {
2784 	int ret = 0;
2785 	if (!str)
2786 		goto out;
2787 
2788 	/*
2789 	 * This code is called before jump labels have been set up, so we can't
2790 	 * change the static branch directly just yet.  Instead set a temporary
2791 	 * variable so init_schedstats() can do it later.
2792 	 */
2793 	if (!strcmp(str, "enable")) {
2794 		__sched_schedstats = true;
2795 		ret = 1;
2796 	} else if (!strcmp(str, "disable")) {
2797 		__sched_schedstats = false;
2798 		ret = 1;
2799 	}
2800 out:
2801 	if (!ret)
2802 		pr_warn("Unable to parse schedstats=\n");
2803 
2804 	return ret;
2805 }
2806 __setup("schedstats=", setup_schedstats);
2807 
2808 static void __init init_schedstats(void)
2809 {
2810 	set_schedstats(__sched_schedstats);
2811 }
2812 
2813 #ifdef CONFIG_PROC_SYSCTL
2814 int sysctl_schedstats(struct ctl_table *table, int write,
2815 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2816 {
2817 	struct ctl_table t;
2818 	int err;
2819 	int state = static_branch_likely(&sched_schedstats);
2820 
2821 	if (write && !capable(CAP_SYS_ADMIN))
2822 		return -EPERM;
2823 
2824 	t = *table;
2825 	t.data = &state;
2826 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2827 	if (err < 0)
2828 		return err;
2829 	if (write)
2830 		set_schedstats(state);
2831 	return err;
2832 }
2833 #endif /* CONFIG_PROC_SYSCTL */
2834 #else  /* !CONFIG_SCHEDSTATS */
2835 static inline void init_schedstats(void) {}
2836 #endif /* CONFIG_SCHEDSTATS */
2837 
2838 /*
2839  * fork()/clone()-time setup:
2840  */
2841 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2842 {
2843 	unsigned long flags;
2844 
2845 	__sched_fork(clone_flags, p);
2846 	/*
2847 	 * We mark the process as NEW here. This guarantees that
2848 	 * nobody will actually run it, and a signal or other external
2849 	 * event cannot wake it up and insert it on the runqueue either.
2850 	 */
2851 	p->state = TASK_NEW;
2852 
2853 	/*
2854 	 * Make sure we do not leak PI boosting priority to the child.
2855 	 */
2856 	p->prio = current->normal_prio;
2857 
2858 	uclamp_fork(p);
2859 
2860 	/*
2861 	 * Revert to default priority/policy on fork if requested.
2862 	 */
2863 	if (unlikely(p->sched_reset_on_fork)) {
2864 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2865 			p->policy = SCHED_NORMAL;
2866 			p->static_prio = NICE_TO_PRIO(0);
2867 			p->rt_priority = 0;
2868 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2869 			p->static_prio = NICE_TO_PRIO(0);
2870 
2871 		p->prio = p->normal_prio = __normal_prio(p);
2872 		set_load_weight(p, false);
2873 
2874 		/*
2875 		 * We don't need the reset flag anymore after the fork. It has
2876 		 * fulfilled its duty:
2877 		 */
2878 		p->sched_reset_on_fork = 0;
2879 	}
2880 
2881 	if (dl_prio(p->prio))
2882 		return -EAGAIN;
2883 	else if (rt_prio(p->prio))
2884 		p->sched_class = &rt_sched_class;
2885 	else
2886 		p->sched_class = &fair_sched_class;
2887 
2888 	init_entity_runnable_average(&p->se);
2889 
2890 	/*
2891 	 * The child is not yet in the pid-hash so no cgroup attach races,
2892 	 * and the cgroup is pinned to this child due to cgroup_fork()
2893 	 * is ran before sched_fork().
2894 	 *
2895 	 * Silence PROVE_RCU.
2896 	 */
2897 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2898 	/*
2899 	 * We're setting the CPU for the first time, we don't migrate,
2900 	 * so use __set_task_cpu().
2901 	 */
2902 	__set_task_cpu(p, smp_processor_id());
2903 	if (p->sched_class->task_fork)
2904 		p->sched_class->task_fork(p);
2905 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2906 
2907 #ifdef CONFIG_SCHED_INFO
2908 	if (likely(sched_info_on()))
2909 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2910 #endif
2911 #if defined(CONFIG_SMP)
2912 	p->on_cpu = 0;
2913 #endif
2914 	init_task_preempt_count(p);
2915 #ifdef CONFIG_SMP
2916 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2917 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2918 #endif
2919 	return 0;
2920 }
2921 
2922 unsigned long to_ratio(u64 period, u64 runtime)
2923 {
2924 	if (runtime == RUNTIME_INF)
2925 		return BW_UNIT;
2926 
2927 	/*
2928 	 * Doing this here saves a lot of checks in all
2929 	 * the calling paths, and returning zero seems
2930 	 * safe for them anyway.
2931 	 */
2932 	if (period == 0)
2933 		return 0;
2934 
2935 	return div64_u64(runtime << BW_SHIFT, period);
2936 }
2937 
2938 /*
2939  * wake_up_new_task - wake up a newly created task for the first time.
2940  *
2941  * This function will do some initial scheduler statistics housekeeping
2942  * that must be done for every newly created context, then puts the task
2943  * on the runqueue and wakes it.
2944  */
2945 void wake_up_new_task(struct task_struct *p)
2946 {
2947 	struct rq_flags rf;
2948 	struct rq *rq;
2949 
2950 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2951 	p->state = TASK_RUNNING;
2952 #ifdef CONFIG_SMP
2953 	/*
2954 	 * Fork balancing, do it here and not earlier because:
2955 	 *  - cpus_ptr can change in the fork path
2956 	 *  - any previously selected CPU might disappear through hotplug
2957 	 *
2958 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2959 	 * as we're not fully set-up yet.
2960 	 */
2961 	p->recent_used_cpu = task_cpu(p);
2962 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2963 #endif
2964 	rq = __task_rq_lock(p, &rf);
2965 	update_rq_clock(rq);
2966 	post_init_entity_util_avg(p);
2967 
2968 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2969 	trace_sched_wakeup_new(p);
2970 	check_preempt_curr(rq, p, WF_FORK);
2971 #ifdef CONFIG_SMP
2972 	if (p->sched_class->task_woken) {
2973 		/*
2974 		 * Nothing relies on rq->lock after this, so its fine to
2975 		 * drop it.
2976 		 */
2977 		rq_unpin_lock(rq, &rf);
2978 		p->sched_class->task_woken(rq, p);
2979 		rq_repin_lock(rq, &rf);
2980 	}
2981 #endif
2982 	task_rq_unlock(rq, p, &rf);
2983 }
2984 
2985 #ifdef CONFIG_PREEMPT_NOTIFIERS
2986 
2987 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2988 
2989 void preempt_notifier_inc(void)
2990 {
2991 	static_branch_inc(&preempt_notifier_key);
2992 }
2993 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2994 
2995 void preempt_notifier_dec(void)
2996 {
2997 	static_branch_dec(&preempt_notifier_key);
2998 }
2999 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3000 
3001 /**
3002  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3003  * @notifier: notifier struct to register
3004  */
3005 void preempt_notifier_register(struct preempt_notifier *notifier)
3006 {
3007 	if (!static_branch_unlikely(&preempt_notifier_key))
3008 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3009 
3010 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3011 }
3012 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3013 
3014 /**
3015  * preempt_notifier_unregister - no longer interested in preemption notifications
3016  * @notifier: notifier struct to unregister
3017  *
3018  * This is *not* safe to call from within a preemption notifier.
3019  */
3020 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3021 {
3022 	hlist_del(&notifier->link);
3023 }
3024 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3025 
3026 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3027 {
3028 	struct preempt_notifier *notifier;
3029 
3030 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3031 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3032 }
3033 
3034 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3035 {
3036 	if (static_branch_unlikely(&preempt_notifier_key))
3037 		__fire_sched_in_preempt_notifiers(curr);
3038 }
3039 
3040 static void
3041 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3042 				   struct task_struct *next)
3043 {
3044 	struct preempt_notifier *notifier;
3045 
3046 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3047 		notifier->ops->sched_out(notifier, next);
3048 }
3049 
3050 static __always_inline void
3051 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3052 				 struct task_struct *next)
3053 {
3054 	if (static_branch_unlikely(&preempt_notifier_key))
3055 		__fire_sched_out_preempt_notifiers(curr, next);
3056 }
3057 
3058 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3059 
3060 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3061 {
3062 }
3063 
3064 static inline void
3065 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3066 				 struct task_struct *next)
3067 {
3068 }
3069 
3070 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3071 
3072 static inline void prepare_task(struct task_struct *next)
3073 {
3074 #ifdef CONFIG_SMP
3075 	/*
3076 	 * Claim the task as running, we do this before switching to it
3077 	 * such that any running task will have this set.
3078 	 */
3079 	next->on_cpu = 1;
3080 #endif
3081 }
3082 
3083 static inline void finish_task(struct task_struct *prev)
3084 {
3085 #ifdef CONFIG_SMP
3086 	/*
3087 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3088 	 * We must ensure this doesn't happen until the switch is completely
3089 	 * finished.
3090 	 *
3091 	 * In particular, the load of prev->state in finish_task_switch() must
3092 	 * happen before this.
3093 	 *
3094 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3095 	 */
3096 	smp_store_release(&prev->on_cpu, 0);
3097 #endif
3098 }
3099 
3100 static inline void
3101 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3102 {
3103 	/*
3104 	 * Since the runqueue lock will be released by the next
3105 	 * task (which is an invalid locking op but in the case
3106 	 * of the scheduler it's an obvious special-case), so we
3107 	 * do an early lockdep release here:
3108 	 */
3109 	rq_unpin_lock(rq, rf);
3110 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3111 #ifdef CONFIG_DEBUG_SPINLOCK
3112 	/* this is a valid case when another task releases the spinlock */
3113 	rq->lock.owner = next;
3114 #endif
3115 }
3116 
3117 static inline void finish_lock_switch(struct rq *rq)
3118 {
3119 	/*
3120 	 * If we are tracking spinlock dependencies then we have to
3121 	 * fix up the runqueue lock - which gets 'carried over' from
3122 	 * prev into current:
3123 	 */
3124 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3125 	raw_spin_unlock_irq(&rq->lock);
3126 }
3127 
3128 /*
3129  * NOP if the arch has not defined these:
3130  */
3131 
3132 #ifndef prepare_arch_switch
3133 # define prepare_arch_switch(next)	do { } while (0)
3134 #endif
3135 
3136 #ifndef finish_arch_post_lock_switch
3137 # define finish_arch_post_lock_switch()	do { } while (0)
3138 #endif
3139 
3140 /**
3141  * prepare_task_switch - prepare to switch tasks
3142  * @rq: the runqueue preparing to switch
3143  * @prev: the current task that is being switched out
3144  * @next: the task we are going to switch to.
3145  *
3146  * This is called with the rq lock held and interrupts off. It must
3147  * be paired with a subsequent finish_task_switch after the context
3148  * switch.
3149  *
3150  * prepare_task_switch sets up locking and calls architecture specific
3151  * hooks.
3152  */
3153 static inline void
3154 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3155 		    struct task_struct *next)
3156 {
3157 	kcov_prepare_switch(prev);
3158 	sched_info_switch(rq, prev, next);
3159 	perf_event_task_sched_out(prev, next);
3160 	rseq_preempt(prev);
3161 	fire_sched_out_preempt_notifiers(prev, next);
3162 	prepare_task(next);
3163 	prepare_arch_switch(next);
3164 }
3165 
3166 /**
3167  * finish_task_switch - clean up after a task-switch
3168  * @prev: the thread we just switched away from.
3169  *
3170  * finish_task_switch must be called after the context switch, paired
3171  * with a prepare_task_switch call before the context switch.
3172  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3173  * and do any other architecture-specific cleanup actions.
3174  *
3175  * Note that we may have delayed dropping an mm in context_switch(). If
3176  * so, we finish that here outside of the runqueue lock. (Doing it
3177  * with the lock held can cause deadlocks; see schedule() for
3178  * details.)
3179  *
3180  * The context switch have flipped the stack from under us and restored the
3181  * local variables which were saved when this task called schedule() in the
3182  * past. prev == current is still correct but we need to recalculate this_rq
3183  * because prev may have moved to another CPU.
3184  */
3185 static struct rq *finish_task_switch(struct task_struct *prev)
3186 	__releases(rq->lock)
3187 {
3188 	struct rq *rq = this_rq();
3189 	struct mm_struct *mm = rq->prev_mm;
3190 	long prev_state;
3191 
3192 	/*
3193 	 * The previous task will have left us with a preempt_count of 2
3194 	 * because it left us after:
3195 	 *
3196 	 *	schedule()
3197 	 *	  preempt_disable();			// 1
3198 	 *	  __schedule()
3199 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3200 	 *
3201 	 * Also, see FORK_PREEMPT_COUNT.
3202 	 */
3203 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3204 		      "corrupted preempt_count: %s/%d/0x%x\n",
3205 		      current->comm, current->pid, preempt_count()))
3206 		preempt_count_set(FORK_PREEMPT_COUNT);
3207 
3208 	rq->prev_mm = NULL;
3209 
3210 	/*
3211 	 * A task struct has one reference for the use as "current".
3212 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3213 	 * schedule one last time. The schedule call will never return, and
3214 	 * the scheduled task must drop that reference.
3215 	 *
3216 	 * We must observe prev->state before clearing prev->on_cpu (in
3217 	 * finish_task), otherwise a concurrent wakeup can get prev
3218 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3219 	 * transition, resulting in a double drop.
3220 	 */
3221 	prev_state = prev->state;
3222 	vtime_task_switch(prev);
3223 	perf_event_task_sched_in(prev, current);
3224 	finish_task(prev);
3225 	finish_lock_switch(rq);
3226 	finish_arch_post_lock_switch();
3227 	kcov_finish_switch(current);
3228 
3229 	fire_sched_in_preempt_notifiers(current);
3230 	/*
3231 	 * When switching through a kernel thread, the loop in
3232 	 * membarrier_{private,global}_expedited() may have observed that
3233 	 * kernel thread and not issued an IPI. It is therefore possible to
3234 	 * schedule between user->kernel->user threads without passing though
3235 	 * switch_mm(). Membarrier requires a barrier after storing to
3236 	 * rq->curr, before returning to userspace, so provide them here:
3237 	 *
3238 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3239 	 *   provided by mmdrop(),
3240 	 * - a sync_core for SYNC_CORE.
3241 	 */
3242 	if (mm) {
3243 		membarrier_mm_sync_core_before_usermode(mm);
3244 		mmdrop(mm);
3245 	}
3246 	if (unlikely(prev_state == TASK_DEAD)) {
3247 		if (prev->sched_class->task_dead)
3248 			prev->sched_class->task_dead(prev);
3249 
3250 		/*
3251 		 * Remove function-return probe instances associated with this
3252 		 * task and put them back on the free list.
3253 		 */
3254 		kprobe_flush_task(prev);
3255 
3256 		/* Task is done with its stack. */
3257 		put_task_stack(prev);
3258 
3259 		put_task_struct_rcu_user(prev);
3260 	}
3261 
3262 	tick_nohz_task_switch();
3263 	return rq;
3264 }
3265 
3266 #ifdef CONFIG_SMP
3267 
3268 /* rq->lock is NOT held, but preemption is disabled */
3269 static void __balance_callback(struct rq *rq)
3270 {
3271 	struct callback_head *head, *next;
3272 	void (*func)(struct rq *rq);
3273 	unsigned long flags;
3274 
3275 	raw_spin_lock_irqsave(&rq->lock, flags);
3276 	head = rq->balance_callback;
3277 	rq->balance_callback = NULL;
3278 	while (head) {
3279 		func = (void (*)(struct rq *))head->func;
3280 		next = head->next;
3281 		head->next = NULL;
3282 		head = next;
3283 
3284 		func(rq);
3285 	}
3286 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3287 }
3288 
3289 static inline void balance_callback(struct rq *rq)
3290 {
3291 	if (unlikely(rq->balance_callback))
3292 		__balance_callback(rq);
3293 }
3294 
3295 #else
3296 
3297 static inline void balance_callback(struct rq *rq)
3298 {
3299 }
3300 
3301 #endif
3302 
3303 /**
3304  * schedule_tail - first thing a freshly forked thread must call.
3305  * @prev: the thread we just switched away from.
3306  */
3307 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3308 	__releases(rq->lock)
3309 {
3310 	struct rq *rq;
3311 
3312 	/*
3313 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3314 	 * finish_task_switch() for details.
3315 	 *
3316 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3317 	 * and the preempt_enable() will end up enabling preemption (on
3318 	 * PREEMPT_COUNT kernels).
3319 	 */
3320 
3321 	rq = finish_task_switch(prev);
3322 	balance_callback(rq);
3323 	preempt_enable();
3324 
3325 	if (current->set_child_tid)
3326 		put_user(task_pid_vnr(current), current->set_child_tid);
3327 
3328 	calculate_sigpending();
3329 }
3330 
3331 /*
3332  * context_switch - switch to the new MM and the new thread's register state.
3333  */
3334 static __always_inline struct rq *
3335 context_switch(struct rq *rq, struct task_struct *prev,
3336 	       struct task_struct *next, struct rq_flags *rf)
3337 {
3338 	prepare_task_switch(rq, prev, next);
3339 
3340 	/*
3341 	 * For paravirt, this is coupled with an exit in switch_to to
3342 	 * combine the page table reload and the switch backend into
3343 	 * one hypercall.
3344 	 */
3345 	arch_start_context_switch(prev);
3346 
3347 	/*
3348 	 * kernel -> kernel   lazy + transfer active
3349 	 *   user -> kernel   lazy + mmgrab() active
3350 	 *
3351 	 * kernel ->   user   switch + mmdrop() active
3352 	 *   user ->   user   switch
3353 	 */
3354 	if (!next->mm) {                                // to kernel
3355 		enter_lazy_tlb(prev->active_mm, next);
3356 
3357 		next->active_mm = prev->active_mm;
3358 		if (prev->mm)                           // from user
3359 			mmgrab(prev->active_mm);
3360 		else
3361 			prev->active_mm = NULL;
3362 	} else {                                        // to user
3363 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3364 		/*
3365 		 * sys_membarrier() requires an smp_mb() between setting
3366 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3367 		 *
3368 		 * The below provides this either through switch_mm(), or in
3369 		 * case 'prev->active_mm == next->mm' through
3370 		 * finish_task_switch()'s mmdrop().
3371 		 */
3372 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3373 
3374 		if (!prev->mm) {                        // from kernel
3375 			/* will mmdrop() in finish_task_switch(). */
3376 			rq->prev_mm = prev->active_mm;
3377 			prev->active_mm = NULL;
3378 		}
3379 	}
3380 
3381 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3382 
3383 	prepare_lock_switch(rq, next, rf);
3384 
3385 	/* Here we just switch the register state and the stack. */
3386 	switch_to(prev, next, prev);
3387 	barrier();
3388 
3389 	return finish_task_switch(prev);
3390 }
3391 
3392 /*
3393  * nr_running and nr_context_switches:
3394  *
3395  * externally visible scheduler statistics: current number of runnable
3396  * threads, total number of context switches performed since bootup.
3397  */
3398 unsigned long nr_running(void)
3399 {
3400 	unsigned long i, sum = 0;
3401 
3402 	for_each_online_cpu(i)
3403 		sum += cpu_rq(i)->nr_running;
3404 
3405 	return sum;
3406 }
3407 
3408 /*
3409  * Check if only the current task is running on the CPU.
3410  *
3411  * Caution: this function does not check that the caller has disabled
3412  * preemption, thus the result might have a time-of-check-to-time-of-use
3413  * race.  The caller is responsible to use it correctly, for example:
3414  *
3415  * - from a non-preemptible section (of course)
3416  *
3417  * - from a thread that is bound to a single CPU
3418  *
3419  * - in a loop with very short iterations (e.g. a polling loop)
3420  */
3421 bool single_task_running(void)
3422 {
3423 	return raw_rq()->nr_running == 1;
3424 }
3425 EXPORT_SYMBOL(single_task_running);
3426 
3427 unsigned long long nr_context_switches(void)
3428 {
3429 	int i;
3430 	unsigned long long sum = 0;
3431 
3432 	for_each_possible_cpu(i)
3433 		sum += cpu_rq(i)->nr_switches;
3434 
3435 	return sum;
3436 }
3437 
3438 /*
3439  * Consumers of these two interfaces, like for example the cpuidle menu
3440  * governor, are using nonsensical data. Preferring shallow idle state selection
3441  * for a CPU that has IO-wait which might not even end up running the task when
3442  * it does become runnable.
3443  */
3444 
3445 unsigned long nr_iowait_cpu(int cpu)
3446 {
3447 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3448 }
3449 
3450 /*
3451  * IO-wait accounting, and how its mostly bollocks (on SMP).
3452  *
3453  * The idea behind IO-wait account is to account the idle time that we could
3454  * have spend running if it were not for IO. That is, if we were to improve the
3455  * storage performance, we'd have a proportional reduction in IO-wait time.
3456  *
3457  * This all works nicely on UP, where, when a task blocks on IO, we account
3458  * idle time as IO-wait, because if the storage were faster, it could've been
3459  * running and we'd not be idle.
3460  *
3461  * This has been extended to SMP, by doing the same for each CPU. This however
3462  * is broken.
3463  *
3464  * Imagine for instance the case where two tasks block on one CPU, only the one
3465  * CPU will have IO-wait accounted, while the other has regular idle. Even
3466  * though, if the storage were faster, both could've ran at the same time,
3467  * utilising both CPUs.
3468  *
3469  * This means, that when looking globally, the current IO-wait accounting on
3470  * SMP is a lower bound, by reason of under accounting.
3471  *
3472  * Worse, since the numbers are provided per CPU, they are sometimes
3473  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3474  * associated with any one particular CPU, it can wake to another CPU than it
3475  * blocked on. This means the per CPU IO-wait number is meaningless.
3476  *
3477  * Task CPU affinities can make all that even more 'interesting'.
3478  */
3479 
3480 unsigned long nr_iowait(void)
3481 {
3482 	unsigned long i, sum = 0;
3483 
3484 	for_each_possible_cpu(i)
3485 		sum += nr_iowait_cpu(i);
3486 
3487 	return sum;
3488 }
3489 
3490 #ifdef CONFIG_SMP
3491 
3492 /*
3493  * sched_exec - execve() is a valuable balancing opportunity, because at
3494  * this point the task has the smallest effective memory and cache footprint.
3495  */
3496 void sched_exec(void)
3497 {
3498 	struct task_struct *p = current;
3499 	unsigned long flags;
3500 	int dest_cpu;
3501 
3502 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3503 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3504 	if (dest_cpu == smp_processor_id())
3505 		goto unlock;
3506 
3507 	if (likely(cpu_active(dest_cpu))) {
3508 		struct migration_arg arg = { p, dest_cpu };
3509 
3510 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3511 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3512 		return;
3513 	}
3514 unlock:
3515 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3516 }
3517 
3518 #endif
3519 
3520 DEFINE_PER_CPU(struct kernel_stat, kstat);
3521 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3522 
3523 EXPORT_PER_CPU_SYMBOL(kstat);
3524 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3525 
3526 /*
3527  * The function fair_sched_class.update_curr accesses the struct curr
3528  * and its field curr->exec_start; when called from task_sched_runtime(),
3529  * we observe a high rate of cache misses in practice.
3530  * Prefetching this data results in improved performance.
3531  */
3532 static inline void prefetch_curr_exec_start(struct task_struct *p)
3533 {
3534 #ifdef CONFIG_FAIR_GROUP_SCHED
3535 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3536 #else
3537 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3538 #endif
3539 	prefetch(curr);
3540 	prefetch(&curr->exec_start);
3541 }
3542 
3543 /*
3544  * Return accounted runtime for the task.
3545  * In case the task is currently running, return the runtime plus current's
3546  * pending runtime that have not been accounted yet.
3547  */
3548 unsigned long long task_sched_runtime(struct task_struct *p)
3549 {
3550 	struct rq_flags rf;
3551 	struct rq *rq;
3552 	u64 ns;
3553 
3554 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3555 	/*
3556 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3557 	 * So we have a optimization chance when the task's delta_exec is 0.
3558 	 * Reading ->on_cpu is racy, but this is ok.
3559 	 *
3560 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3561 	 * If we race with it entering CPU, unaccounted time is 0. This is
3562 	 * indistinguishable from the read occurring a few cycles earlier.
3563 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3564 	 * been accounted, so we're correct here as well.
3565 	 */
3566 	if (!p->on_cpu || !task_on_rq_queued(p))
3567 		return p->se.sum_exec_runtime;
3568 #endif
3569 
3570 	rq = task_rq_lock(p, &rf);
3571 	/*
3572 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3573 	 * project cycles that may never be accounted to this
3574 	 * thread, breaking clock_gettime().
3575 	 */
3576 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3577 		prefetch_curr_exec_start(p);
3578 		update_rq_clock(rq);
3579 		p->sched_class->update_curr(rq);
3580 	}
3581 	ns = p->se.sum_exec_runtime;
3582 	task_rq_unlock(rq, p, &rf);
3583 
3584 	return ns;
3585 }
3586 
3587 /*
3588  * This function gets called by the timer code, with HZ frequency.
3589  * We call it with interrupts disabled.
3590  */
3591 void scheduler_tick(void)
3592 {
3593 	int cpu = smp_processor_id();
3594 	struct rq *rq = cpu_rq(cpu);
3595 	struct task_struct *curr = rq->curr;
3596 	struct rq_flags rf;
3597 
3598 	sched_clock_tick();
3599 
3600 	rq_lock(rq, &rf);
3601 
3602 	update_rq_clock(rq);
3603 	curr->sched_class->task_tick(rq, curr, 0);
3604 	calc_global_load_tick(rq);
3605 	psi_task_tick(rq);
3606 
3607 	rq_unlock(rq, &rf);
3608 
3609 	perf_event_task_tick();
3610 
3611 #ifdef CONFIG_SMP
3612 	rq->idle_balance = idle_cpu(cpu);
3613 	trigger_load_balance(rq);
3614 #endif
3615 }
3616 
3617 #ifdef CONFIG_NO_HZ_FULL
3618 
3619 struct tick_work {
3620 	int			cpu;
3621 	atomic_t		state;
3622 	struct delayed_work	work;
3623 };
3624 /* Values for ->state, see diagram below. */
3625 #define TICK_SCHED_REMOTE_OFFLINE	0
3626 #define TICK_SCHED_REMOTE_OFFLINING	1
3627 #define TICK_SCHED_REMOTE_RUNNING	2
3628 
3629 /*
3630  * State diagram for ->state:
3631  *
3632  *
3633  *          TICK_SCHED_REMOTE_OFFLINE
3634  *                    |   ^
3635  *                    |   |
3636  *                    |   | sched_tick_remote()
3637  *                    |   |
3638  *                    |   |
3639  *                    +--TICK_SCHED_REMOTE_OFFLINING
3640  *                    |   ^
3641  *                    |   |
3642  * sched_tick_start() |   | sched_tick_stop()
3643  *                    |   |
3644  *                    V   |
3645  *          TICK_SCHED_REMOTE_RUNNING
3646  *
3647  *
3648  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3649  * and sched_tick_start() are happy to leave the state in RUNNING.
3650  */
3651 
3652 static struct tick_work __percpu *tick_work_cpu;
3653 
3654 static void sched_tick_remote(struct work_struct *work)
3655 {
3656 	struct delayed_work *dwork = to_delayed_work(work);
3657 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3658 	int cpu = twork->cpu;
3659 	struct rq *rq = cpu_rq(cpu);
3660 	struct task_struct *curr;
3661 	struct rq_flags rf;
3662 	u64 delta;
3663 	int os;
3664 
3665 	/*
3666 	 * Handle the tick only if it appears the remote CPU is running in full
3667 	 * dynticks mode. The check is racy by nature, but missing a tick or
3668 	 * having one too much is no big deal because the scheduler tick updates
3669 	 * statistics and checks timeslices in a time-independent way, regardless
3670 	 * of when exactly it is running.
3671 	 */
3672 	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3673 		goto out_requeue;
3674 
3675 	rq_lock_irq(rq, &rf);
3676 	curr = rq->curr;
3677 	if (is_idle_task(curr) || cpu_is_offline(cpu))
3678 		goto out_unlock;
3679 
3680 	update_rq_clock(rq);
3681 	delta = rq_clock_task(rq) - curr->se.exec_start;
3682 
3683 	/*
3684 	 * Make sure the next tick runs within a reasonable
3685 	 * amount of time.
3686 	 */
3687 	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3688 	curr->sched_class->task_tick(rq, curr, 0);
3689 
3690 out_unlock:
3691 	rq_unlock_irq(rq, &rf);
3692 
3693 out_requeue:
3694 	/*
3695 	 * Run the remote tick once per second (1Hz). This arbitrary
3696 	 * frequency is large enough to avoid overload but short enough
3697 	 * to keep scheduler internal stats reasonably up to date.  But
3698 	 * first update state to reflect hotplug activity if required.
3699 	 */
3700 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3701 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3702 	if (os == TICK_SCHED_REMOTE_RUNNING)
3703 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3704 }
3705 
3706 static void sched_tick_start(int cpu)
3707 {
3708 	int os;
3709 	struct tick_work *twork;
3710 
3711 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3712 		return;
3713 
3714 	WARN_ON_ONCE(!tick_work_cpu);
3715 
3716 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3717 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3718 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3719 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3720 		twork->cpu = cpu;
3721 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3722 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3723 	}
3724 }
3725 
3726 #ifdef CONFIG_HOTPLUG_CPU
3727 static void sched_tick_stop(int cpu)
3728 {
3729 	struct tick_work *twork;
3730 	int os;
3731 
3732 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3733 		return;
3734 
3735 	WARN_ON_ONCE(!tick_work_cpu);
3736 
3737 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3738 	/* There cannot be competing actions, but don't rely on stop-machine. */
3739 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3740 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3741 	/* Don't cancel, as this would mess up the state machine. */
3742 }
3743 #endif /* CONFIG_HOTPLUG_CPU */
3744 
3745 int __init sched_tick_offload_init(void)
3746 {
3747 	tick_work_cpu = alloc_percpu(struct tick_work);
3748 	BUG_ON(!tick_work_cpu);
3749 	return 0;
3750 }
3751 
3752 #else /* !CONFIG_NO_HZ_FULL */
3753 static inline void sched_tick_start(int cpu) { }
3754 static inline void sched_tick_stop(int cpu) { }
3755 #endif
3756 
3757 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3758 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3759 /*
3760  * If the value passed in is equal to the current preempt count
3761  * then we just disabled preemption. Start timing the latency.
3762  */
3763 static inline void preempt_latency_start(int val)
3764 {
3765 	if (preempt_count() == val) {
3766 		unsigned long ip = get_lock_parent_ip();
3767 #ifdef CONFIG_DEBUG_PREEMPT
3768 		current->preempt_disable_ip = ip;
3769 #endif
3770 		trace_preempt_off(CALLER_ADDR0, ip);
3771 	}
3772 }
3773 
3774 void preempt_count_add(int val)
3775 {
3776 #ifdef CONFIG_DEBUG_PREEMPT
3777 	/*
3778 	 * Underflow?
3779 	 */
3780 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3781 		return;
3782 #endif
3783 	__preempt_count_add(val);
3784 #ifdef CONFIG_DEBUG_PREEMPT
3785 	/*
3786 	 * Spinlock count overflowing soon?
3787 	 */
3788 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3789 				PREEMPT_MASK - 10);
3790 #endif
3791 	preempt_latency_start(val);
3792 }
3793 EXPORT_SYMBOL(preempt_count_add);
3794 NOKPROBE_SYMBOL(preempt_count_add);
3795 
3796 /*
3797  * If the value passed in equals to the current preempt count
3798  * then we just enabled preemption. Stop timing the latency.
3799  */
3800 static inline void preempt_latency_stop(int val)
3801 {
3802 	if (preempt_count() == val)
3803 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3804 }
3805 
3806 void preempt_count_sub(int val)
3807 {
3808 #ifdef CONFIG_DEBUG_PREEMPT
3809 	/*
3810 	 * Underflow?
3811 	 */
3812 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3813 		return;
3814 	/*
3815 	 * Is the spinlock portion underflowing?
3816 	 */
3817 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3818 			!(preempt_count() & PREEMPT_MASK)))
3819 		return;
3820 #endif
3821 
3822 	preempt_latency_stop(val);
3823 	__preempt_count_sub(val);
3824 }
3825 EXPORT_SYMBOL(preempt_count_sub);
3826 NOKPROBE_SYMBOL(preempt_count_sub);
3827 
3828 #else
3829 static inline void preempt_latency_start(int val) { }
3830 static inline void preempt_latency_stop(int val) { }
3831 #endif
3832 
3833 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3834 {
3835 #ifdef CONFIG_DEBUG_PREEMPT
3836 	return p->preempt_disable_ip;
3837 #else
3838 	return 0;
3839 #endif
3840 }
3841 
3842 /*
3843  * Print scheduling while atomic bug:
3844  */
3845 static noinline void __schedule_bug(struct task_struct *prev)
3846 {
3847 	/* Save this before calling printk(), since that will clobber it */
3848 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3849 
3850 	if (oops_in_progress)
3851 		return;
3852 
3853 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3854 		prev->comm, prev->pid, preempt_count());
3855 
3856 	debug_show_held_locks(prev);
3857 	print_modules();
3858 	if (irqs_disabled())
3859 		print_irqtrace_events(prev);
3860 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3861 	    && in_atomic_preempt_off()) {
3862 		pr_err("Preemption disabled at:");
3863 		print_ip_sym(preempt_disable_ip);
3864 		pr_cont("\n");
3865 	}
3866 	if (panic_on_warn)
3867 		panic("scheduling while atomic\n");
3868 
3869 	dump_stack();
3870 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3871 }
3872 
3873 /*
3874  * Various schedule()-time debugging checks and statistics:
3875  */
3876 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3877 {
3878 #ifdef CONFIG_SCHED_STACK_END_CHECK
3879 	if (task_stack_end_corrupted(prev))
3880 		panic("corrupted stack end detected inside scheduler\n");
3881 #endif
3882 
3883 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3884 	if (!preempt && prev->state && prev->non_block_count) {
3885 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3886 			prev->comm, prev->pid, prev->non_block_count);
3887 		dump_stack();
3888 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3889 	}
3890 #endif
3891 
3892 	if (unlikely(in_atomic_preempt_off())) {
3893 		__schedule_bug(prev);
3894 		preempt_count_set(PREEMPT_DISABLED);
3895 	}
3896 	rcu_sleep_check();
3897 
3898 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3899 
3900 	schedstat_inc(this_rq()->sched_count);
3901 }
3902 
3903 /*
3904  * Pick up the highest-prio task:
3905  */
3906 static inline struct task_struct *
3907 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3908 {
3909 	const struct sched_class *class;
3910 	struct task_struct *p;
3911 
3912 	/*
3913 	 * Optimization: we know that if all tasks are in the fair class we can
3914 	 * call that function directly, but only if the @prev task wasn't of a
3915 	 * higher scheduling class, because otherwise those loose the
3916 	 * opportunity to pull in more work from other CPUs.
3917 	 */
3918 	if (likely((prev->sched_class == &idle_sched_class ||
3919 		    prev->sched_class == &fair_sched_class) &&
3920 		   rq->nr_running == rq->cfs.h_nr_running)) {
3921 
3922 		p = pick_next_task_fair(rq, prev, rf);
3923 		if (unlikely(p == RETRY_TASK))
3924 			goto restart;
3925 
3926 		/* Assumes fair_sched_class->next == idle_sched_class */
3927 		if (!p) {
3928 			put_prev_task(rq, prev);
3929 			p = pick_next_task_idle(rq);
3930 		}
3931 
3932 		return p;
3933 	}
3934 
3935 restart:
3936 #ifdef CONFIG_SMP
3937 	/*
3938 	 * We must do the balancing pass before put_next_task(), such
3939 	 * that when we release the rq->lock the task is in the same
3940 	 * state as before we took rq->lock.
3941 	 *
3942 	 * We can terminate the balance pass as soon as we know there is
3943 	 * a runnable task of @class priority or higher.
3944 	 */
3945 	for_class_range(class, prev->sched_class, &idle_sched_class) {
3946 		if (class->balance(rq, prev, rf))
3947 			break;
3948 	}
3949 #endif
3950 
3951 	put_prev_task(rq, prev);
3952 
3953 	for_each_class(class) {
3954 		p = class->pick_next_task(rq);
3955 		if (p)
3956 			return p;
3957 	}
3958 
3959 	/* The idle class should always have a runnable task: */
3960 	BUG();
3961 }
3962 
3963 /*
3964  * __schedule() is the main scheduler function.
3965  *
3966  * The main means of driving the scheduler and thus entering this function are:
3967  *
3968  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3969  *
3970  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3971  *      paths. For example, see arch/x86/entry_64.S.
3972  *
3973  *      To drive preemption between tasks, the scheduler sets the flag in timer
3974  *      interrupt handler scheduler_tick().
3975  *
3976  *   3. Wakeups don't really cause entry into schedule(). They add a
3977  *      task to the run-queue and that's it.
3978  *
3979  *      Now, if the new task added to the run-queue preempts the current
3980  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3981  *      called on the nearest possible occasion:
3982  *
3983  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3984  *
3985  *         - in syscall or exception context, at the next outmost
3986  *           preempt_enable(). (this might be as soon as the wake_up()'s
3987  *           spin_unlock()!)
3988  *
3989  *         - in IRQ context, return from interrupt-handler to
3990  *           preemptible context
3991  *
3992  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3993  *         then at the next:
3994  *
3995  *          - cond_resched() call
3996  *          - explicit schedule() call
3997  *          - return from syscall or exception to user-space
3998  *          - return from interrupt-handler to user-space
3999  *
4000  * WARNING: must be called with preemption disabled!
4001  */
4002 static void __sched notrace __schedule(bool preempt)
4003 {
4004 	struct task_struct *prev, *next;
4005 	unsigned long *switch_count;
4006 	struct rq_flags rf;
4007 	struct rq *rq;
4008 	int cpu;
4009 
4010 	cpu = smp_processor_id();
4011 	rq = cpu_rq(cpu);
4012 	prev = rq->curr;
4013 
4014 	schedule_debug(prev, preempt);
4015 
4016 	if (sched_feat(HRTICK))
4017 		hrtick_clear(rq);
4018 
4019 	local_irq_disable();
4020 	rcu_note_context_switch(preempt);
4021 
4022 	/*
4023 	 * Make sure that signal_pending_state()->signal_pending() below
4024 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4025 	 * done by the caller to avoid the race with signal_wake_up().
4026 	 *
4027 	 * The membarrier system call requires a full memory barrier
4028 	 * after coming from user-space, before storing to rq->curr.
4029 	 */
4030 	rq_lock(rq, &rf);
4031 	smp_mb__after_spinlock();
4032 
4033 	/* Promote REQ to ACT */
4034 	rq->clock_update_flags <<= 1;
4035 	update_rq_clock(rq);
4036 
4037 	switch_count = &prev->nivcsw;
4038 	if (!preempt && prev->state) {
4039 		if (signal_pending_state(prev->state, prev)) {
4040 			prev->state = TASK_RUNNING;
4041 		} else {
4042 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4043 
4044 			if (prev->in_iowait) {
4045 				atomic_inc(&rq->nr_iowait);
4046 				delayacct_blkio_start();
4047 			}
4048 		}
4049 		switch_count = &prev->nvcsw;
4050 	}
4051 
4052 	next = pick_next_task(rq, prev, &rf);
4053 	clear_tsk_need_resched(prev);
4054 	clear_preempt_need_resched();
4055 
4056 	if (likely(prev != next)) {
4057 		rq->nr_switches++;
4058 		/*
4059 		 * RCU users of rcu_dereference(rq->curr) may not see
4060 		 * changes to task_struct made by pick_next_task().
4061 		 */
4062 		RCU_INIT_POINTER(rq->curr, next);
4063 		/*
4064 		 * The membarrier system call requires each architecture
4065 		 * to have a full memory barrier after updating
4066 		 * rq->curr, before returning to user-space.
4067 		 *
4068 		 * Here are the schemes providing that barrier on the
4069 		 * various architectures:
4070 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4071 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4072 		 * - finish_lock_switch() for weakly-ordered
4073 		 *   architectures where spin_unlock is a full barrier,
4074 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4075 		 *   is a RELEASE barrier),
4076 		 */
4077 		++*switch_count;
4078 
4079 		trace_sched_switch(preempt, prev, next);
4080 
4081 		/* Also unlocks the rq: */
4082 		rq = context_switch(rq, prev, next, &rf);
4083 	} else {
4084 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4085 		rq_unlock_irq(rq, &rf);
4086 	}
4087 
4088 	balance_callback(rq);
4089 }
4090 
4091 void __noreturn do_task_dead(void)
4092 {
4093 	/* Causes final put_task_struct in finish_task_switch(): */
4094 	set_special_state(TASK_DEAD);
4095 
4096 	/* Tell freezer to ignore us: */
4097 	current->flags |= PF_NOFREEZE;
4098 
4099 	__schedule(false);
4100 	BUG();
4101 
4102 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4103 	for (;;)
4104 		cpu_relax();
4105 }
4106 
4107 static inline void sched_submit_work(struct task_struct *tsk)
4108 {
4109 	if (!tsk->state)
4110 		return;
4111 
4112 	/*
4113 	 * If a worker went to sleep, notify and ask workqueue whether
4114 	 * it wants to wake up a task to maintain concurrency.
4115 	 * As this function is called inside the schedule() context,
4116 	 * we disable preemption to avoid it calling schedule() again
4117 	 * in the possible wakeup of a kworker.
4118 	 */
4119 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4120 		preempt_disable();
4121 		if (tsk->flags & PF_WQ_WORKER)
4122 			wq_worker_sleeping(tsk);
4123 		else
4124 			io_wq_worker_sleeping(tsk);
4125 		preempt_enable_no_resched();
4126 	}
4127 
4128 	if (tsk_is_pi_blocked(tsk))
4129 		return;
4130 
4131 	/*
4132 	 * If we are going to sleep and we have plugged IO queued,
4133 	 * make sure to submit it to avoid deadlocks.
4134 	 */
4135 	if (blk_needs_flush_plug(tsk))
4136 		blk_schedule_flush_plug(tsk);
4137 }
4138 
4139 static void sched_update_worker(struct task_struct *tsk)
4140 {
4141 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4142 		if (tsk->flags & PF_WQ_WORKER)
4143 			wq_worker_running(tsk);
4144 		else
4145 			io_wq_worker_running(tsk);
4146 	}
4147 }
4148 
4149 asmlinkage __visible void __sched schedule(void)
4150 {
4151 	struct task_struct *tsk = current;
4152 
4153 	sched_submit_work(tsk);
4154 	do {
4155 		preempt_disable();
4156 		__schedule(false);
4157 		sched_preempt_enable_no_resched();
4158 	} while (need_resched());
4159 	sched_update_worker(tsk);
4160 }
4161 EXPORT_SYMBOL(schedule);
4162 
4163 /*
4164  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4165  * state (have scheduled out non-voluntarily) by making sure that all
4166  * tasks have either left the run queue or have gone into user space.
4167  * As idle tasks do not do either, they must not ever be preempted
4168  * (schedule out non-voluntarily).
4169  *
4170  * schedule_idle() is similar to schedule_preempt_disable() except that it
4171  * never enables preemption because it does not call sched_submit_work().
4172  */
4173 void __sched schedule_idle(void)
4174 {
4175 	/*
4176 	 * As this skips calling sched_submit_work(), which the idle task does
4177 	 * regardless because that function is a nop when the task is in a
4178 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4179 	 * current task can be in any other state. Note, idle is always in the
4180 	 * TASK_RUNNING state.
4181 	 */
4182 	WARN_ON_ONCE(current->state);
4183 	do {
4184 		__schedule(false);
4185 	} while (need_resched());
4186 }
4187 
4188 #ifdef CONFIG_CONTEXT_TRACKING
4189 asmlinkage __visible void __sched schedule_user(void)
4190 {
4191 	/*
4192 	 * If we come here after a random call to set_need_resched(),
4193 	 * or we have been woken up remotely but the IPI has not yet arrived,
4194 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4195 	 * we find a better solution.
4196 	 *
4197 	 * NB: There are buggy callers of this function.  Ideally we
4198 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4199 	 * too frequently to make sense yet.
4200 	 */
4201 	enum ctx_state prev_state = exception_enter();
4202 	schedule();
4203 	exception_exit(prev_state);
4204 }
4205 #endif
4206 
4207 /**
4208  * schedule_preempt_disabled - called with preemption disabled
4209  *
4210  * Returns with preemption disabled. Note: preempt_count must be 1
4211  */
4212 void __sched schedule_preempt_disabled(void)
4213 {
4214 	sched_preempt_enable_no_resched();
4215 	schedule();
4216 	preempt_disable();
4217 }
4218 
4219 static void __sched notrace preempt_schedule_common(void)
4220 {
4221 	do {
4222 		/*
4223 		 * Because the function tracer can trace preempt_count_sub()
4224 		 * and it also uses preempt_enable/disable_notrace(), if
4225 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4226 		 * by the function tracer will call this function again and
4227 		 * cause infinite recursion.
4228 		 *
4229 		 * Preemption must be disabled here before the function
4230 		 * tracer can trace. Break up preempt_disable() into two
4231 		 * calls. One to disable preemption without fear of being
4232 		 * traced. The other to still record the preemption latency,
4233 		 * which can also be traced by the function tracer.
4234 		 */
4235 		preempt_disable_notrace();
4236 		preempt_latency_start(1);
4237 		__schedule(true);
4238 		preempt_latency_stop(1);
4239 		preempt_enable_no_resched_notrace();
4240 
4241 		/*
4242 		 * Check again in case we missed a preemption opportunity
4243 		 * between schedule and now.
4244 		 */
4245 	} while (need_resched());
4246 }
4247 
4248 #ifdef CONFIG_PREEMPTION
4249 /*
4250  * This is the entry point to schedule() from in-kernel preemption
4251  * off of preempt_enable.
4252  */
4253 asmlinkage __visible void __sched notrace preempt_schedule(void)
4254 {
4255 	/*
4256 	 * If there is a non-zero preempt_count or interrupts are disabled,
4257 	 * we do not want to preempt the current task. Just return..
4258 	 */
4259 	if (likely(!preemptible()))
4260 		return;
4261 
4262 	preempt_schedule_common();
4263 }
4264 NOKPROBE_SYMBOL(preempt_schedule);
4265 EXPORT_SYMBOL(preempt_schedule);
4266 
4267 /**
4268  * preempt_schedule_notrace - preempt_schedule called by tracing
4269  *
4270  * The tracing infrastructure uses preempt_enable_notrace to prevent
4271  * recursion and tracing preempt enabling caused by the tracing
4272  * infrastructure itself. But as tracing can happen in areas coming
4273  * from userspace or just about to enter userspace, a preempt enable
4274  * can occur before user_exit() is called. This will cause the scheduler
4275  * to be called when the system is still in usermode.
4276  *
4277  * To prevent this, the preempt_enable_notrace will use this function
4278  * instead of preempt_schedule() to exit user context if needed before
4279  * calling the scheduler.
4280  */
4281 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4282 {
4283 	enum ctx_state prev_ctx;
4284 
4285 	if (likely(!preemptible()))
4286 		return;
4287 
4288 	do {
4289 		/*
4290 		 * Because the function tracer can trace preempt_count_sub()
4291 		 * and it also uses preempt_enable/disable_notrace(), if
4292 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4293 		 * by the function tracer will call this function again and
4294 		 * cause infinite recursion.
4295 		 *
4296 		 * Preemption must be disabled here before the function
4297 		 * tracer can trace. Break up preempt_disable() into two
4298 		 * calls. One to disable preemption without fear of being
4299 		 * traced. The other to still record the preemption latency,
4300 		 * which can also be traced by the function tracer.
4301 		 */
4302 		preempt_disable_notrace();
4303 		preempt_latency_start(1);
4304 		/*
4305 		 * Needs preempt disabled in case user_exit() is traced
4306 		 * and the tracer calls preempt_enable_notrace() causing
4307 		 * an infinite recursion.
4308 		 */
4309 		prev_ctx = exception_enter();
4310 		__schedule(true);
4311 		exception_exit(prev_ctx);
4312 
4313 		preempt_latency_stop(1);
4314 		preempt_enable_no_resched_notrace();
4315 	} while (need_resched());
4316 }
4317 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4318 
4319 #endif /* CONFIG_PREEMPTION */
4320 
4321 /*
4322  * This is the entry point to schedule() from kernel preemption
4323  * off of irq context.
4324  * Note, that this is called and return with irqs disabled. This will
4325  * protect us against recursive calling from irq.
4326  */
4327 asmlinkage __visible void __sched preempt_schedule_irq(void)
4328 {
4329 	enum ctx_state prev_state;
4330 
4331 	/* Catch callers which need to be fixed */
4332 	BUG_ON(preempt_count() || !irqs_disabled());
4333 
4334 	prev_state = exception_enter();
4335 
4336 	do {
4337 		preempt_disable();
4338 		local_irq_enable();
4339 		__schedule(true);
4340 		local_irq_disable();
4341 		sched_preempt_enable_no_resched();
4342 	} while (need_resched());
4343 
4344 	exception_exit(prev_state);
4345 }
4346 
4347 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4348 			  void *key)
4349 {
4350 	return try_to_wake_up(curr->private, mode, wake_flags);
4351 }
4352 EXPORT_SYMBOL(default_wake_function);
4353 
4354 #ifdef CONFIG_RT_MUTEXES
4355 
4356 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4357 {
4358 	if (pi_task)
4359 		prio = min(prio, pi_task->prio);
4360 
4361 	return prio;
4362 }
4363 
4364 static inline int rt_effective_prio(struct task_struct *p, int prio)
4365 {
4366 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4367 
4368 	return __rt_effective_prio(pi_task, prio);
4369 }
4370 
4371 /*
4372  * rt_mutex_setprio - set the current priority of a task
4373  * @p: task to boost
4374  * @pi_task: donor task
4375  *
4376  * This function changes the 'effective' priority of a task. It does
4377  * not touch ->normal_prio like __setscheduler().
4378  *
4379  * Used by the rt_mutex code to implement priority inheritance
4380  * logic. Call site only calls if the priority of the task changed.
4381  */
4382 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4383 {
4384 	int prio, oldprio, queued, running, queue_flag =
4385 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4386 	const struct sched_class *prev_class;
4387 	struct rq_flags rf;
4388 	struct rq *rq;
4389 
4390 	/* XXX used to be waiter->prio, not waiter->task->prio */
4391 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4392 
4393 	/*
4394 	 * If nothing changed; bail early.
4395 	 */
4396 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4397 		return;
4398 
4399 	rq = __task_rq_lock(p, &rf);
4400 	update_rq_clock(rq);
4401 	/*
4402 	 * Set under pi_lock && rq->lock, such that the value can be used under
4403 	 * either lock.
4404 	 *
4405 	 * Note that there is loads of tricky to make this pointer cache work
4406 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4407 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4408 	 * task is allowed to run again (and can exit). This ensures the pointer
4409 	 * points to a blocked task -- which guaratees the task is present.
4410 	 */
4411 	p->pi_top_task = pi_task;
4412 
4413 	/*
4414 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4415 	 */
4416 	if (prio == p->prio && !dl_prio(prio))
4417 		goto out_unlock;
4418 
4419 	/*
4420 	 * Idle task boosting is a nono in general. There is one
4421 	 * exception, when PREEMPT_RT and NOHZ is active:
4422 	 *
4423 	 * The idle task calls get_next_timer_interrupt() and holds
4424 	 * the timer wheel base->lock on the CPU and another CPU wants
4425 	 * to access the timer (probably to cancel it). We can safely
4426 	 * ignore the boosting request, as the idle CPU runs this code
4427 	 * with interrupts disabled and will complete the lock
4428 	 * protected section without being interrupted. So there is no
4429 	 * real need to boost.
4430 	 */
4431 	if (unlikely(p == rq->idle)) {
4432 		WARN_ON(p != rq->curr);
4433 		WARN_ON(p->pi_blocked_on);
4434 		goto out_unlock;
4435 	}
4436 
4437 	trace_sched_pi_setprio(p, pi_task);
4438 	oldprio = p->prio;
4439 
4440 	if (oldprio == prio)
4441 		queue_flag &= ~DEQUEUE_MOVE;
4442 
4443 	prev_class = p->sched_class;
4444 	queued = task_on_rq_queued(p);
4445 	running = task_current(rq, p);
4446 	if (queued)
4447 		dequeue_task(rq, p, queue_flag);
4448 	if (running)
4449 		put_prev_task(rq, p);
4450 
4451 	/*
4452 	 * Boosting condition are:
4453 	 * 1. -rt task is running and holds mutex A
4454 	 *      --> -dl task blocks on mutex A
4455 	 *
4456 	 * 2. -dl task is running and holds mutex A
4457 	 *      --> -dl task blocks on mutex A and could preempt the
4458 	 *          running task
4459 	 */
4460 	if (dl_prio(prio)) {
4461 		if (!dl_prio(p->normal_prio) ||
4462 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4463 			p->dl.dl_boosted = 1;
4464 			queue_flag |= ENQUEUE_REPLENISH;
4465 		} else
4466 			p->dl.dl_boosted = 0;
4467 		p->sched_class = &dl_sched_class;
4468 	} else if (rt_prio(prio)) {
4469 		if (dl_prio(oldprio))
4470 			p->dl.dl_boosted = 0;
4471 		if (oldprio < prio)
4472 			queue_flag |= ENQUEUE_HEAD;
4473 		p->sched_class = &rt_sched_class;
4474 	} else {
4475 		if (dl_prio(oldprio))
4476 			p->dl.dl_boosted = 0;
4477 		if (rt_prio(oldprio))
4478 			p->rt.timeout = 0;
4479 		p->sched_class = &fair_sched_class;
4480 	}
4481 
4482 	p->prio = prio;
4483 
4484 	if (queued)
4485 		enqueue_task(rq, p, queue_flag);
4486 	if (running)
4487 		set_next_task(rq, p);
4488 
4489 	check_class_changed(rq, p, prev_class, oldprio);
4490 out_unlock:
4491 	/* Avoid rq from going away on us: */
4492 	preempt_disable();
4493 	__task_rq_unlock(rq, &rf);
4494 
4495 	balance_callback(rq);
4496 	preempt_enable();
4497 }
4498 #else
4499 static inline int rt_effective_prio(struct task_struct *p, int prio)
4500 {
4501 	return prio;
4502 }
4503 #endif
4504 
4505 void set_user_nice(struct task_struct *p, long nice)
4506 {
4507 	bool queued, running;
4508 	int old_prio;
4509 	struct rq_flags rf;
4510 	struct rq *rq;
4511 
4512 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4513 		return;
4514 	/*
4515 	 * We have to be careful, if called from sys_setpriority(),
4516 	 * the task might be in the middle of scheduling on another CPU.
4517 	 */
4518 	rq = task_rq_lock(p, &rf);
4519 	update_rq_clock(rq);
4520 
4521 	/*
4522 	 * The RT priorities are set via sched_setscheduler(), but we still
4523 	 * allow the 'normal' nice value to be set - but as expected
4524 	 * it wont have any effect on scheduling until the task is
4525 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4526 	 */
4527 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4528 		p->static_prio = NICE_TO_PRIO(nice);
4529 		goto out_unlock;
4530 	}
4531 	queued = task_on_rq_queued(p);
4532 	running = task_current(rq, p);
4533 	if (queued)
4534 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4535 	if (running)
4536 		put_prev_task(rq, p);
4537 
4538 	p->static_prio = NICE_TO_PRIO(nice);
4539 	set_load_weight(p, true);
4540 	old_prio = p->prio;
4541 	p->prio = effective_prio(p);
4542 
4543 	if (queued)
4544 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4545 	if (running)
4546 		set_next_task(rq, p);
4547 
4548 	/*
4549 	 * If the task increased its priority or is running and
4550 	 * lowered its priority, then reschedule its CPU:
4551 	 */
4552 	p->sched_class->prio_changed(rq, p, old_prio);
4553 
4554 out_unlock:
4555 	task_rq_unlock(rq, p, &rf);
4556 }
4557 EXPORT_SYMBOL(set_user_nice);
4558 
4559 /*
4560  * can_nice - check if a task can reduce its nice value
4561  * @p: task
4562  * @nice: nice value
4563  */
4564 int can_nice(const struct task_struct *p, const int nice)
4565 {
4566 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4567 	int nice_rlim = nice_to_rlimit(nice);
4568 
4569 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4570 		capable(CAP_SYS_NICE));
4571 }
4572 
4573 #ifdef __ARCH_WANT_SYS_NICE
4574 
4575 /*
4576  * sys_nice - change the priority of the current process.
4577  * @increment: priority increment
4578  *
4579  * sys_setpriority is a more generic, but much slower function that
4580  * does similar things.
4581  */
4582 SYSCALL_DEFINE1(nice, int, increment)
4583 {
4584 	long nice, retval;
4585 
4586 	/*
4587 	 * Setpriority might change our priority at the same moment.
4588 	 * We don't have to worry. Conceptually one call occurs first
4589 	 * and we have a single winner.
4590 	 */
4591 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4592 	nice = task_nice(current) + increment;
4593 
4594 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4595 	if (increment < 0 && !can_nice(current, nice))
4596 		return -EPERM;
4597 
4598 	retval = security_task_setnice(current, nice);
4599 	if (retval)
4600 		return retval;
4601 
4602 	set_user_nice(current, nice);
4603 	return 0;
4604 }
4605 
4606 #endif
4607 
4608 /**
4609  * task_prio - return the priority value of a given task.
4610  * @p: the task in question.
4611  *
4612  * Return: The priority value as seen by users in /proc.
4613  * RT tasks are offset by -200. Normal tasks are centered
4614  * around 0, value goes from -16 to +15.
4615  */
4616 int task_prio(const struct task_struct *p)
4617 {
4618 	return p->prio - MAX_RT_PRIO;
4619 }
4620 
4621 /**
4622  * idle_cpu - is a given CPU idle currently?
4623  * @cpu: the processor in question.
4624  *
4625  * Return: 1 if the CPU is currently idle. 0 otherwise.
4626  */
4627 int idle_cpu(int cpu)
4628 {
4629 	struct rq *rq = cpu_rq(cpu);
4630 
4631 	if (rq->curr != rq->idle)
4632 		return 0;
4633 
4634 	if (rq->nr_running)
4635 		return 0;
4636 
4637 #ifdef CONFIG_SMP
4638 	if (!llist_empty(&rq->wake_list))
4639 		return 0;
4640 #endif
4641 
4642 	return 1;
4643 }
4644 
4645 /**
4646  * available_idle_cpu - is a given CPU idle for enqueuing work.
4647  * @cpu: the CPU in question.
4648  *
4649  * Return: 1 if the CPU is currently idle. 0 otherwise.
4650  */
4651 int available_idle_cpu(int cpu)
4652 {
4653 	if (!idle_cpu(cpu))
4654 		return 0;
4655 
4656 	if (vcpu_is_preempted(cpu))
4657 		return 0;
4658 
4659 	return 1;
4660 }
4661 
4662 /**
4663  * idle_task - return the idle task for a given CPU.
4664  * @cpu: the processor in question.
4665  *
4666  * Return: The idle task for the CPU @cpu.
4667  */
4668 struct task_struct *idle_task(int cpu)
4669 {
4670 	return cpu_rq(cpu)->idle;
4671 }
4672 
4673 /**
4674  * find_process_by_pid - find a process with a matching PID value.
4675  * @pid: the pid in question.
4676  *
4677  * The task of @pid, if found. %NULL otherwise.
4678  */
4679 static struct task_struct *find_process_by_pid(pid_t pid)
4680 {
4681 	return pid ? find_task_by_vpid(pid) : current;
4682 }
4683 
4684 /*
4685  * sched_setparam() passes in -1 for its policy, to let the functions
4686  * it calls know not to change it.
4687  */
4688 #define SETPARAM_POLICY	-1
4689 
4690 static void __setscheduler_params(struct task_struct *p,
4691 		const struct sched_attr *attr)
4692 {
4693 	int policy = attr->sched_policy;
4694 
4695 	if (policy == SETPARAM_POLICY)
4696 		policy = p->policy;
4697 
4698 	p->policy = policy;
4699 
4700 	if (dl_policy(policy))
4701 		__setparam_dl(p, attr);
4702 	else if (fair_policy(policy))
4703 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4704 
4705 	/*
4706 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4707 	 * !rt_policy. Always setting this ensures that things like
4708 	 * getparam()/getattr() don't report silly values for !rt tasks.
4709 	 */
4710 	p->rt_priority = attr->sched_priority;
4711 	p->normal_prio = normal_prio(p);
4712 	set_load_weight(p, true);
4713 }
4714 
4715 /* Actually do priority change: must hold pi & rq lock. */
4716 static void __setscheduler(struct rq *rq, struct task_struct *p,
4717 			   const struct sched_attr *attr, bool keep_boost)
4718 {
4719 	/*
4720 	 * If params can't change scheduling class changes aren't allowed
4721 	 * either.
4722 	 */
4723 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4724 		return;
4725 
4726 	__setscheduler_params(p, attr);
4727 
4728 	/*
4729 	 * Keep a potential priority boosting if called from
4730 	 * sched_setscheduler().
4731 	 */
4732 	p->prio = normal_prio(p);
4733 	if (keep_boost)
4734 		p->prio = rt_effective_prio(p, p->prio);
4735 
4736 	if (dl_prio(p->prio))
4737 		p->sched_class = &dl_sched_class;
4738 	else if (rt_prio(p->prio))
4739 		p->sched_class = &rt_sched_class;
4740 	else
4741 		p->sched_class = &fair_sched_class;
4742 }
4743 
4744 /*
4745  * Check the target process has a UID that matches the current process's:
4746  */
4747 static bool check_same_owner(struct task_struct *p)
4748 {
4749 	const struct cred *cred = current_cred(), *pcred;
4750 	bool match;
4751 
4752 	rcu_read_lock();
4753 	pcred = __task_cred(p);
4754 	match = (uid_eq(cred->euid, pcred->euid) ||
4755 		 uid_eq(cred->euid, pcred->uid));
4756 	rcu_read_unlock();
4757 	return match;
4758 }
4759 
4760 static int __sched_setscheduler(struct task_struct *p,
4761 				const struct sched_attr *attr,
4762 				bool user, bool pi)
4763 {
4764 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4765 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4766 	int retval, oldprio, oldpolicy = -1, queued, running;
4767 	int new_effective_prio, policy = attr->sched_policy;
4768 	const struct sched_class *prev_class;
4769 	struct rq_flags rf;
4770 	int reset_on_fork;
4771 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4772 	struct rq *rq;
4773 
4774 	/* The pi code expects interrupts enabled */
4775 	BUG_ON(pi && in_interrupt());
4776 recheck:
4777 	/* Double check policy once rq lock held: */
4778 	if (policy < 0) {
4779 		reset_on_fork = p->sched_reset_on_fork;
4780 		policy = oldpolicy = p->policy;
4781 	} else {
4782 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4783 
4784 		if (!valid_policy(policy))
4785 			return -EINVAL;
4786 	}
4787 
4788 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4789 		return -EINVAL;
4790 
4791 	/*
4792 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4793 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4794 	 * SCHED_BATCH and SCHED_IDLE is 0.
4795 	 */
4796 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4797 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4798 		return -EINVAL;
4799 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4800 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4801 		return -EINVAL;
4802 
4803 	/*
4804 	 * Allow unprivileged RT tasks to decrease priority:
4805 	 */
4806 	if (user && !capable(CAP_SYS_NICE)) {
4807 		if (fair_policy(policy)) {
4808 			if (attr->sched_nice < task_nice(p) &&
4809 			    !can_nice(p, attr->sched_nice))
4810 				return -EPERM;
4811 		}
4812 
4813 		if (rt_policy(policy)) {
4814 			unsigned long rlim_rtprio =
4815 					task_rlimit(p, RLIMIT_RTPRIO);
4816 
4817 			/* Can't set/change the rt policy: */
4818 			if (policy != p->policy && !rlim_rtprio)
4819 				return -EPERM;
4820 
4821 			/* Can't increase priority: */
4822 			if (attr->sched_priority > p->rt_priority &&
4823 			    attr->sched_priority > rlim_rtprio)
4824 				return -EPERM;
4825 		}
4826 
4827 		 /*
4828 		  * Can't set/change SCHED_DEADLINE policy at all for now
4829 		  * (safest behavior); in the future we would like to allow
4830 		  * unprivileged DL tasks to increase their relative deadline
4831 		  * or reduce their runtime (both ways reducing utilization)
4832 		  */
4833 		if (dl_policy(policy))
4834 			return -EPERM;
4835 
4836 		/*
4837 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4838 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4839 		 */
4840 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4841 			if (!can_nice(p, task_nice(p)))
4842 				return -EPERM;
4843 		}
4844 
4845 		/* Can't change other user's priorities: */
4846 		if (!check_same_owner(p))
4847 			return -EPERM;
4848 
4849 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4850 		if (p->sched_reset_on_fork && !reset_on_fork)
4851 			return -EPERM;
4852 	}
4853 
4854 	if (user) {
4855 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4856 			return -EINVAL;
4857 
4858 		retval = security_task_setscheduler(p);
4859 		if (retval)
4860 			return retval;
4861 	}
4862 
4863 	/* Update task specific "requested" clamps */
4864 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4865 		retval = uclamp_validate(p, attr);
4866 		if (retval)
4867 			return retval;
4868 	}
4869 
4870 	if (pi)
4871 		cpuset_read_lock();
4872 
4873 	/*
4874 	 * Make sure no PI-waiters arrive (or leave) while we are
4875 	 * changing the priority of the task:
4876 	 *
4877 	 * To be able to change p->policy safely, the appropriate
4878 	 * runqueue lock must be held.
4879 	 */
4880 	rq = task_rq_lock(p, &rf);
4881 	update_rq_clock(rq);
4882 
4883 	/*
4884 	 * Changing the policy of the stop threads its a very bad idea:
4885 	 */
4886 	if (p == rq->stop) {
4887 		retval = -EINVAL;
4888 		goto unlock;
4889 	}
4890 
4891 	/*
4892 	 * If not changing anything there's no need to proceed further,
4893 	 * but store a possible modification of reset_on_fork.
4894 	 */
4895 	if (unlikely(policy == p->policy)) {
4896 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4897 			goto change;
4898 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4899 			goto change;
4900 		if (dl_policy(policy) && dl_param_changed(p, attr))
4901 			goto change;
4902 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4903 			goto change;
4904 
4905 		p->sched_reset_on_fork = reset_on_fork;
4906 		retval = 0;
4907 		goto unlock;
4908 	}
4909 change:
4910 
4911 	if (user) {
4912 #ifdef CONFIG_RT_GROUP_SCHED
4913 		/*
4914 		 * Do not allow realtime tasks into groups that have no runtime
4915 		 * assigned.
4916 		 */
4917 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4918 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4919 				!task_group_is_autogroup(task_group(p))) {
4920 			retval = -EPERM;
4921 			goto unlock;
4922 		}
4923 #endif
4924 #ifdef CONFIG_SMP
4925 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4926 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4927 			cpumask_t *span = rq->rd->span;
4928 
4929 			/*
4930 			 * Don't allow tasks with an affinity mask smaller than
4931 			 * the entire root_domain to become SCHED_DEADLINE. We
4932 			 * will also fail if there's no bandwidth available.
4933 			 */
4934 			if (!cpumask_subset(span, p->cpus_ptr) ||
4935 			    rq->rd->dl_bw.bw == 0) {
4936 				retval = -EPERM;
4937 				goto unlock;
4938 			}
4939 		}
4940 #endif
4941 	}
4942 
4943 	/* Re-check policy now with rq lock held: */
4944 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4945 		policy = oldpolicy = -1;
4946 		task_rq_unlock(rq, p, &rf);
4947 		if (pi)
4948 			cpuset_read_unlock();
4949 		goto recheck;
4950 	}
4951 
4952 	/*
4953 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4954 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4955 	 * is available.
4956 	 */
4957 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4958 		retval = -EBUSY;
4959 		goto unlock;
4960 	}
4961 
4962 	p->sched_reset_on_fork = reset_on_fork;
4963 	oldprio = p->prio;
4964 
4965 	if (pi) {
4966 		/*
4967 		 * Take priority boosted tasks into account. If the new
4968 		 * effective priority is unchanged, we just store the new
4969 		 * normal parameters and do not touch the scheduler class and
4970 		 * the runqueue. This will be done when the task deboost
4971 		 * itself.
4972 		 */
4973 		new_effective_prio = rt_effective_prio(p, newprio);
4974 		if (new_effective_prio == oldprio)
4975 			queue_flags &= ~DEQUEUE_MOVE;
4976 	}
4977 
4978 	queued = task_on_rq_queued(p);
4979 	running = task_current(rq, p);
4980 	if (queued)
4981 		dequeue_task(rq, p, queue_flags);
4982 	if (running)
4983 		put_prev_task(rq, p);
4984 
4985 	prev_class = p->sched_class;
4986 
4987 	__setscheduler(rq, p, attr, pi);
4988 	__setscheduler_uclamp(p, attr);
4989 
4990 	if (queued) {
4991 		/*
4992 		 * We enqueue to tail when the priority of a task is
4993 		 * increased (user space view).
4994 		 */
4995 		if (oldprio < p->prio)
4996 			queue_flags |= ENQUEUE_HEAD;
4997 
4998 		enqueue_task(rq, p, queue_flags);
4999 	}
5000 	if (running)
5001 		set_next_task(rq, p);
5002 
5003 	check_class_changed(rq, p, prev_class, oldprio);
5004 
5005 	/* Avoid rq from going away on us: */
5006 	preempt_disable();
5007 	task_rq_unlock(rq, p, &rf);
5008 
5009 	if (pi) {
5010 		cpuset_read_unlock();
5011 		rt_mutex_adjust_pi(p);
5012 	}
5013 
5014 	/* Run balance callbacks after we've adjusted the PI chain: */
5015 	balance_callback(rq);
5016 	preempt_enable();
5017 
5018 	return 0;
5019 
5020 unlock:
5021 	task_rq_unlock(rq, p, &rf);
5022 	if (pi)
5023 		cpuset_read_unlock();
5024 	return retval;
5025 }
5026 
5027 static int _sched_setscheduler(struct task_struct *p, int policy,
5028 			       const struct sched_param *param, bool check)
5029 {
5030 	struct sched_attr attr = {
5031 		.sched_policy   = policy,
5032 		.sched_priority = param->sched_priority,
5033 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5034 	};
5035 
5036 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5037 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5038 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5039 		policy &= ~SCHED_RESET_ON_FORK;
5040 		attr.sched_policy = policy;
5041 	}
5042 
5043 	return __sched_setscheduler(p, &attr, check, true);
5044 }
5045 /**
5046  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5047  * @p: the task in question.
5048  * @policy: new policy.
5049  * @param: structure containing the new RT priority.
5050  *
5051  * Return: 0 on success. An error code otherwise.
5052  *
5053  * NOTE that the task may be already dead.
5054  */
5055 int sched_setscheduler(struct task_struct *p, int policy,
5056 		       const struct sched_param *param)
5057 {
5058 	return _sched_setscheduler(p, policy, param, true);
5059 }
5060 EXPORT_SYMBOL_GPL(sched_setscheduler);
5061 
5062 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5063 {
5064 	return __sched_setscheduler(p, attr, true, true);
5065 }
5066 EXPORT_SYMBOL_GPL(sched_setattr);
5067 
5068 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5069 {
5070 	return __sched_setscheduler(p, attr, false, true);
5071 }
5072 
5073 /**
5074  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5075  * @p: the task in question.
5076  * @policy: new policy.
5077  * @param: structure containing the new RT priority.
5078  *
5079  * Just like sched_setscheduler, only don't bother checking if the
5080  * current context has permission.  For example, this is needed in
5081  * stop_machine(): we create temporary high priority worker threads,
5082  * but our caller might not have that capability.
5083  *
5084  * Return: 0 on success. An error code otherwise.
5085  */
5086 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5087 			       const struct sched_param *param)
5088 {
5089 	return _sched_setscheduler(p, policy, param, false);
5090 }
5091 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5092 
5093 static int
5094 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5095 {
5096 	struct sched_param lparam;
5097 	struct task_struct *p;
5098 	int retval;
5099 
5100 	if (!param || pid < 0)
5101 		return -EINVAL;
5102 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5103 		return -EFAULT;
5104 
5105 	rcu_read_lock();
5106 	retval = -ESRCH;
5107 	p = find_process_by_pid(pid);
5108 	if (likely(p))
5109 		get_task_struct(p);
5110 	rcu_read_unlock();
5111 
5112 	if (likely(p)) {
5113 		retval = sched_setscheduler(p, policy, &lparam);
5114 		put_task_struct(p);
5115 	}
5116 
5117 	return retval;
5118 }
5119 
5120 /*
5121  * Mimics kernel/events/core.c perf_copy_attr().
5122  */
5123 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5124 {
5125 	u32 size;
5126 	int ret;
5127 
5128 	/* Zero the full structure, so that a short copy will be nice: */
5129 	memset(attr, 0, sizeof(*attr));
5130 
5131 	ret = get_user(size, &uattr->size);
5132 	if (ret)
5133 		return ret;
5134 
5135 	/* ABI compatibility quirk: */
5136 	if (!size)
5137 		size = SCHED_ATTR_SIZE_VER0;
5138 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5139 		goto err_size;
5140 
5141 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5142 	if (ret) {
5143 		if (ret == -E2BIG)
5144 			goto err_size;
5145 		return ret;
5146 	}
5147 
5148 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5149 	    size < SCHED_ATTR_SIZE_VER1)
5150 		return -EINVAL;
5151 
5152 	/*
5153 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5154 	 * to be strict and return an error on out-of-bounds values?
5155 	 */
5156 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5157 
5158 	return 0;
5159 
5160 err_size:
5161 	put_user(sizeof(*attr), &uattr->size);
5162 	return -E2BIG;
5163 }
5164 
5165 /**
5166  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5167  * @pid: the pid in question.
5168  * @policy: new policy.
5169  * @param: structure containing the new RT priority.
5170  *
5171  * Return: 0 on success. An error code otherwise.
5172  */
5173 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5174 {
5175 	if (policy < 0)
5176 		return -EINVAL;
5177 
5178 	return do_sched_setscheduler(pid, policy, param);
5179 }
5180 
5181 /**
5182  * sys_sched_setparam - set/change the RT priority of a thread
5183  * @pid: the pid in question.
5184  * @param: structure containing the new RT priority.
5185  *
5186  * Return: 0 on success. An error code otherwise.
5187  */
5188 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5189 {
5190 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5191 }
5192 
5193 /**
5194  * sys_sched_setattr - same as above, but with extended sched_attr
5195  * @pid: the pid in question.
5196  * @uattr: structure containing the extended parameters.
5197  * @flags: for future extension.
5198  */
5199 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5200 			       unsigned int, flags)
5201 {
5202 	struct sched_attr attr;
5203 	struct task_struct *p;
5204 	int retval;
5205 
5206 	if (!uattr || pid < 0 || flags)
5207 		return -EINVAL;
5208 
5209 	retval = sched_copy_attr(uattr, &attr);
5210 	if (retval)
5211 		return retval;
5212 
5213 	if ((int)attr.sched_policy < 0)
5214 		return -EINVAL;
5215 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5216 		attr.sched_policy = SETPARAM_POLICY;
5217 
5218 	rcu_read_lock();
5219 	retval = -ESRCH;
5220 	p = find_process_by_pid(pid);
5221 	if (likely(p))
5222 		get_task_struct(p);
5223 	rcu_read_unlock();
5224 
5225 	if (likely(p)) {
5226 		retval = sched_setattr(p, &attr);
5227 		put_task_struct(p);
5228 	}
5229 
5230 	return retval;
5231 }
5232 
5233 /**
5234  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5235  * @pid: the pid in question.
5236  *
5237  * Return: On success, the policy of the thread. Otherwise, a negative error
5238  * code.
5239  */
5240 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5241 {
5242 	struct task_struct *p;
5243 	int retval;
5244 
5245 	if (pid < 0)
5246 		return -EINVAL;
5247 
5248 	retval = -ESRCH;
5249 	rcu_read_lock();
5250 	p = find_process_by_pid(pid);
5251 	if (p) {
5252 		retval = security_task_getscheduler(p);
5253 		if (!retval)
5254 			retval = p->policy
5255 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5256 	}
5257 	rcu_read_unlock();
5258 	return retval;
5259 }
5260 
5261 /**
5262  * sys_sched_getparam - get the RT priority of a thread
5263  * @pid: the pid in question.
5264  * @param: structure containing the RT priority.
5265  *
5266  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5267  * code.
5268  */
5269 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5270 {
5271 	struct sched_param lp = { .sched_priority = 0 };
5272 	struct task_struct *p;
5273 	int retval;
5274 
5275 	if (!param || pid < 0)
5276 		return -EINVAL;
5277 
5278 	rcu_read_lock();
5279 	p = find_process_by_pid(pid);
5280 	retval = -ESRCH;
5281 	if (!p)
5282 		goto out_unlock;
5283 
5284 	retval = security_task_getscheduler(p);
5285 	if (retval)
5286 		goto out_unlock;
5287 
5288 	if (task_has_rt_policy(p))
5289 		lp.sched_priority = p->rt_priority;
5290 	rcu_read_unlock();
5291 
5292 	/*
5293 	 * This one might sleep, we cannot do it with a spinlock held ...
5294 	 */
5295 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5296 
5297 	return retval;
5298 
5299 out_unlock:
5300 	rcu_read_unlock();
5301 	return retval;
5302 }
5303 
5304 /*
5305  * Copy the kernel size attribute structure (which might be larger
5306  * than what user-space knows about) to user-space.
5307  *
5308  * Note that all cases are valid: user-space buffer can be larger or
5309  * smaller than the kernel-space buffer. The usual case is that both
5310  * have the same size.
5311  */
5312 static int
5313 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5314 			struct sched_attr *kattr,
5315 			unsigned int usize)
5316 {
5317 	unsigned int ksize = sizeof(*kattr);
5318 
5319 	if (!access_ok(uattr, usize))
5320 		return -EFAULT;
5321 
5322 	/*
5323 	 * sched_getattr() ABI forwards and backwards compatibility:
5324 	 *
5325 	 * If usize == ksize then we just copy everything to user-space and all is good.
5326 	 *
5327 	 * If usize < ksize then we only copy as much as user-space has space for,
5328 	 * this keeps ABI compatibility as well. We skip the rest.
5329 	 *
5330 	 * If usize > ksize then user-space is using a newer version of the ABI,
5331 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5332 	 * detect the kernel's knowledge of attributes from the attr->size value
5333 	 * which is set to ksize in this case.
5334 	 */
5335 	kattr->size = min(usize, ksize);
5336 
5337 	if (copy_to_user(uattr, kattr, kattr->size))
5338 		return -EFAULT;
5339 
5340 	return 0;
5341 }
5342 
5343 /**
5344  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5345  * @pid: the pid in question.
5346  * @uattr: structure containing the extended parameters.
5347  * @usize: sizeof(attr) for fwd/bwd comp.
5348  * @flags: for future extension.
5349  */
5350 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5351 		unsigned int, usize, unsigned int, flags)
5352 {
5353 	struct sched_attr kattr = { };
5354 	struct task_struct *p;
5355 	int retval;
5356 
5357 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5358 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5359 		return -EINVAL;
5360 
5361 	rcu_read_lock();
5362 	p = find_process_by_pid(pid);
5363 	retval = -ESRCH;
5364 	if (!p)
5365 		goto out_unlock;
5366 
5367 	retval = security_task_getscheduler(p);
5368 	if (retval)
5369 		goto out_unlock;
5370 
5371 	kattr.sched_policy = p->policy;
5372 	if (p->sched_reset_on_fork)
5373 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5374 	if (task_has_dl_policy(p))
5375 		__getparam_dl(p, &kattr);
5376 	else if (task_has_rt_policy(p))
5377 		kattr.sched_priority = p->rt_priority;
5378 	else
5379 		kattr.sched_nice = task_nice(p);
5380 
5381 #ifdef CONFIG_UCLAMP_TASK
5382 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5383 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5384 #endif
5385 
5386 	rcu_read_unlock();
5387 
5388 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5389 
5390 out_unlock:
5391 	rcu_read_unlock();
5392 	return retval;
5393 }
5394 
5395 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5396 {
5397 	cpumask_var_t cpus_allowed, new_mask;
5398 	struct task_struct *p;
5399 	int retval;
5400 
5401 	rcu_read_lock();
5402 
5403 	p = find_process_by_pid(pid);
5404 	if (!p) {
5405 		rcu_read_unlock();
5406 		return -ESRCH;
5407 	}
5408 
5409 	/* Prevent p going away */
5410 	get_task_struct(p);
5411 	rcu_read_unlock();
5412 
5413 	if (p->flags & PF_NO_SETAFFINITY) {
5414 		retval = -EINVAL;
5415 		goto out_put_task;
5416 	}
5417 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5418 		retval = -ENOMEM;
5419 		goto out_put_task;
5420 	}
5421 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5422 		retval = -ENOMEM;
5423 		goto out_free_cpus_allowed;
5424 	}
5425 	retval = -EPERM;
5426 	if (!check_same_owner(p)) {
5427 		rcu_read_lock();
5428 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5429 			rcu_read_unlock();
5430 			goto out_free_new_mask;
5431 		}
5432 		rcu_read_unlock();
5433 	}
5434 
5435 	retval = security_task_setscheduler(p);
5436 	if (retval)
5437 		goto out_free_new_mask;
5438 
5439 
5440 	cpuset_cpus_allowed(p, cpus_allowed);
5441 	cpumask_and(new_mask, in_mask, cpus_allowed);
5442 
5443 	/*
5444 	 * Since bandwidth control happens on root_domain basis,
5445 	 * if admission test is enabled, we only admit -deadline
5446 	 * tasks allowed to run on all the CPUs in the task's
5447 	 * root_domain.
5448 	 */
5449 #ifdef CONFIG_SMP
5450 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5451 		rcu_read_lock();
5452 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5453 			retval = -EBUSY;
5454 			rcu_read_unlock();
5455 			goto out_free_new_mask;
5456 		}
5457 		rcu_read_unlock();
5458 	}
5459 #endif
5460 again:
5461 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5462 
5463 	if (!retval) {
5464 		cpuset_cpus_allowed(p, cpus_allowed);
5465 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5466 			/*
5467 			 * We must have raced with a concurrent cpuset
5468 			 * update. Just reset the cpus_allowed to the
5469 			 * cpuset's cpus_allowed
5470 			 */
5471 			cpumask_copy(new_mask, cpus_allowed);
5472 			goto again;
5473 		}
5474 	}
5475 out_free_new_mask:
5476 	free_cpumask_var(new_mask);
5477 out_free_cpus_allowed:
5478 	free_cpumask_var(cpus_allowed);
5479 out_put_task:
5480 	put_task_struct(p);
5481 	return retval;
5482 }
5483 
5484 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5485 			     struct cpumask *new_mask)
5486 {
5487 	if (len < cpumask_size())
5488 		cpumask_clear(new_mask);
5489 	else if (len > cpumask_size())
5490 		len = cpumask_size();
5491 
5492 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5493 }
5494 
5495 /**
5496  * sys_sched_setaffinity - set the CPU affinity of a process
5497  * @pid: pid of the process
5498  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5499  * @user_mask_ptr: user-space pointer to the new CPU mask
5500  *
5501  * Return: 0 on success. An error code otherwise.
5502  */
5503 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5504 		unsigned long __user *, user_mask_ptr)
5505 {
5506 	cpumask_var_t new_mask;
5507 	int retval;
5508 
5509 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5510 		return -ENOMEM;
5511 
5512 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5513 	if (retval == 0)
5514 		retval = sched_setaffinity(pid, new_mask);
5515 	free_cpumask_var(new_mask);
5516 	return retval;
5517 }
5518 
5519 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5520 {
5521 	struct task_struct *p;
5522 	unsigned long flags;
5523 	int retval;
5524 
5525 	rcu_read_lock();
5526 
5527 	retval = -ESRCH;
5528 	p = find_process_by_pid(pid);
5529 	if (!p)
5530 		goto out_unlock;
5531 
5532 	retval = security_task_getscheduler(p);
5533 	if (retval)
5534 		goto out_unlock;
5535 
5536 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5537 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5538 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5539 
5540 out_unlock:
5541 	rcu_read_unlock();
5542 
5543 	return retval;
5544 }
5545 
5546 /**
5547  * sys_sched_getaffinity - get the CPU affinity of a process
5548  * @pid: pid of the process
5549  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5550  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5551  *
5552  * Return: size of CPU mask copied to user_mask_ptr on success. An
5553  * error code otherwise.
5554  */
5555 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5556 		unsigned long __user *, user_mask_ptr)
5557 {
5558 	int ret;
5559 	cpumask_var_t mask;
5560 
5561 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5562 		return -EINVAL;
5563 	if (len & (sizeof(unsigned long)-1))
5564 		return -EINVAL;
5565 
5566 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5567 		return -ENOMEM;
5568 
5569 	ret = sched_getaffinity(pid, mask);
5570 	if (ret == 0) {
5571 		unsigned int retlen = min(len, cpumask_size());
5572 
5573 		if (copy_to_user(user_mask_ptr, mask, retlen))
5574 			ret = -EFAULT;
5575 		else
5576 			ret = retlen;
5577 	}
5578 	free_cpumask_var(mask);
5579 
5580 	return ret;
5581 }
5582 
5583 /**
5584  * sys_sched_yield - yield the current processor to other threads.
5585  *
5586  * This function yields the current CPU to other tasks. If there are no
5587  * other threads running on this CPU then this function will return.
5588  *
5589  * Return: 0.
5590  */
5591 static void do_sched_yield(void)
5592 {
5593 	struct rq_flags rf;
5594 	struct rq *rq;
5595 
5596 	rq = this_rq_lock_irq(&rf);
5597 
5598 	schedstat_inc(rq->yld_count);
5599 	current->sched_class->yield_task(rq);
5600 
5601 	/*
5602 	 * Since we are going to call schedule() anyway, there's
5603 	 * no need to preempt or enable interrupts:
5604 	 */
5605 	preempt_disable();
5606 	rq_unlock(rq, &rf);
5607 	sched_preempt_enable_no_resched();
5608 
5609 	schedule();
5610 }
5611 
5612 SYSCALL_DEFINE0(sched_yield)
5613 {
5614 	do_sched_yield();
5615 	return 0;
5616 }
5617 
5618 #ifndef CONFIG_PREEMPTION
5619 int __sched _cond_resched(void)
5620 {
5621 	if (should_resched(0)) {
5622 		preempt_schedule_common();
5623 		return 1;
5624 	}
5625 	rcu_all_qs();
5626 	return 0;
5627 }
5628 EXPORT_SYMBOL(_cond_resched);
5629 #endif
5630 
5631 /*
5632  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5633  * call schedule, and on return reacquire the lock.
5634  *
5635  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5636  * operations here to prevent schedule() from being called twice (once via
5637  * spin_unlock(), once by hand).
5638  */
5639 int __cond_resched_lock(spinlock_t *lock)
5640 {
5641 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5642 	int ret = 0;
5643 
5644 	lockdep_assert_held(lock);
5645 
5646 	if (spin_needbreak(lock) || resched) {
5647 		spin_unlock(lock);
5648 		if (resched)
5649 			preempt_schedule_common();
5650 		else
5651 			cpu_relax();
5652 		ret = 1;
5653 		spin_lock(lock);
5654 	}
5655 	return ret;
5656 }
5657 EXPORT_SYMBOL(__cond_resched_lock);
5658 
5659 /**
5660  * yield - yield the current processor to other threads.
5661  *
5662  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5663  *
5664  * The scheduler is at all times free to pick the calling task as the most
5665  * eligible task to run, if removing the yield() call from your code breaks
5666  * it, its already broken.
5667  *
5668  * Typical broken usage is:
5669  *
5670  * while (!event)
5671  *	yield();
5672  *
5673  * where one assumes that yield() will let 'the other' process run that will
5674  * make event true. If the current task is a SCHED_FIFO task that will never
5675  * happen. Never use yield() as a progress guarantee!!
5676  *
5677  * If you want to use yield() to wait for something, use wait_event().
5678  * If you want to use yield() to be 'nice' for others, use cond_resched().
5679  * If you still want to use yield(), do not!
5680  */
5681 void __sched yield(void)
5682 {
5683 	set_current_state(TASK_RUNNING);
5684 	do_sched_yield();
5685 }
5686 EXPORT_SYMBOL(yield);
5687 
5688 /**
5689  * yield_to - yield the current processor to another thread in
5690  * your thread group, or accelerate that thread toward the
5691  * processor it's on.
5692  * @p: target task
5693  * @preempt: whether task preemption is allowed or not
5694  *
5695  * It's the caller's job to ensure that the target task struct
5696  * can't go away on us before we can do any checks.
5697  *
5698  * Return:
5699  *	true (>0) if we indeed boosted the target task.
5700  *	false (0) if we failed to boost the target.
5701  *	-ESRCH if there's no task to yield to.
5702  */
5703 int __sched yield_to(struct task_struct *p, bool preempt)
5704 {
5705 	struct task_struct *curr = current;
5706 	struct rq *rq, *p_rq;
5707 	unsigned long flags;
5708 	int yielded = 0;
5709 
5710 	local_irq_save(flags);
5711 	rq = this_rq();
5712 
5713 again:
5714 	p_rq = task_rq(p);
5715 	/*
5716 	 * If we're the only runnable task on the rq and target rq also
5717 	 * has only one task, there's absolutely no point in yielding.
5718 	 */
5719 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5720 		yielded = -ESRCH;
5721 		goto out_irq;
5722 	}
5723 
5724 	double_rq_lock(rq, p_rq);
5725 	if (task_rq(p) != p_rq) {
5726 		double_rq_unlock(rq, p_rq);
5727 		goto again;
5728 	}
5729 
5730 	if (!curr->sched_class->yield_to_task)
5731 		goto out_unlock;
5732 
5733 	if (curr->sched_class != p->sched_class)
5734 		goto out_unlock;
5735 
5736 	if (task_running(p_rq, p) || p->state)
5737 		goto out_unlock;
5738 
5739 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5740 	if (yielded) {
5741 		schedstat_inc(rq->yld_count);
5742 		/*
5743 		 * Make p's CPU reschedule; pick_next_entity takes care of
5744 		 * fairness.
5745 		 */
5746 		if (preempt && rq != p_rq)
5747 			resched_curr(p_rq);
5748 	}
5749 
5750 out_unlock:
5751 	double_rq_unlock(rq, p_rq);
5752 out_irq:
5753 	local_irq_restore(flags);
5754 
5755 	if (yielded > 0)
5756 		schedule();
5757 
5758 	return yielded;
5759 }
5760 EXPORT_SYMBOL_GPL(yield_to);
5761 
5762 int io_schedule_prepare(void)
5763 {
5764 	int old_iowait = current->in_iowait;
5765 
5766 	current->in_iowait = 1;
5767 	blk_schedule_flush_plug(current);
5768 
5769 	return old_iowait;
5770 }
5771 
5772 void io_schedule_finish(int token)
5773 {
5774 	current->in_iowait = token;
5775 }
5776 
5777 /*
5778  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5779  * that process accounting knows that this is a task in IO wait state.
5780  */
5781 long __sched io_schedule_timeout(long timeout)
5782 {
5783 	int token;
5784 	long ret;
5785 
5786 	token = io_schedule_prepare();
5787 	ret = schedule_timeout(timeout);
5788 	io_schedule_finish(token);
5789 
5790 	return ret;
5791 }
5792 EXPORT_SYMBOL(io_schedule_timeout);
5793 
5794 void __sched io_schedule(void)
5795 {
5796 	int token;
5797 
5798 	token = io_schedule_prepare();
5799 	schedule();
5800 	io_schedule_finish(token);
5801 }
5802 EXPORT_SYMBOL(io_schedule);
5803 
5804 /**
5805  * sys_sched_get_priority_max - return maximum RT priority.
5806  * @policy: scheduling class.
5807  *
5808  * Return: On success, this syscall returns the maximum
5809  * rt_priority that can be used by a given scheduling class.
5810  * On failure, a negative error code is returned.
5811  */
5812 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5813 {
5814 	int ret = -EINVAL;
5815 
5816 	switch (policy) {
5817 	case SCHED_FIFO:
5818 	case SCHED_RR:
5819 		ret = MAX_USER_RT_PRIO-1;
5820 		break;
5821 	case SCHED_DEADLINE:
5822 	case SCHED_NORMAL:
5823 	case SCHED_BATCH:
5824 	case SCHED_IDLE:
5825 		ret = 0;
5826 		break;
5827 	}
5828 	return ret;
5829 }
5830 
5831 /**
5832  * sys_sched_get_priority_min - return minimum RT priority.
5833  * @policy: scheduling class.
5834  *
5835  * Return: On success, this syscall returns the minimum
5836  * rt_priority that can be used by a given scheduling class.
5837  * On failure, a negative error code is returned.
5838  */
5839 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5840 {
5841 	int ret = -EINVAL;
5842 
5843 	switch (policy) {
5844 	case SCHED_FIFO:
5845 	case SCHED_RR:
5846 		ret = 1;
5847 		break;
5848 	case SCHED_DEADLINE:
5849 	case SCHED_NORMAL:
5850 	case SCHED_BATCH:
5851 	case SCHED_IDLE:
5852 		ret = 0;
5853 	}
5854 	return ret;
5855 }
5856 
5857 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5858 {
5859 	struct task_struct *p;
5860 	unsigned int time_slice;
5861 	struct rq_flags rf;
5862 	struct rq *rq;
5863 	int retval;
5864 
5865 	if (pid < 0)
5866 		return -EINVAL;
5867 
5868 	retval = -ESRCH;
5869 	rcu_read_lock();
5870 	p = find_process_by_pid(pid);
5871 	if (!p)
5872 		goto out_unlock;
5873 
5874 	retval = security_task_getscheduler(p);
5875 	if (retval)
5876 		goto out_unlock;
5877 
5878 	rq = task_rq_lock(p, &rf);
5879 	time_slice = 0;
5880 	if (p->sched_class->get_rr_interval)
5881 		time_slice = p->sched_class->get_rr_interval(rq, p);
5882 	task_rq_unlock(rq, p, &rf);
5883 
5884 	rcu_read_unlock();
5885 	jiffies_to_timespec64(time_slice, t);
5886 	return 0;
5887 
5888 out_unlock:
5889 	rcu_read_unlock();
5890 	return retval;
5891 }
5892 
5893 /**
5894  * sys_sched_rr_get_interval - return the default timeslice of a process.
5895  * @pid: pid of the process.
5896  * @interval: userspace pointer to the timeslice value.
5897  *
5898  * this syscall writes the default timeslice value of a given process
5899  * into the user-space timespec buffer. A value of '0' means infinity.
5900  *
5901  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5902  * an error code.
5903  */
5904 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5905 		struct __kernel_timespec __user *, interval)
5906 {
5907 	struct timespec64 t;
5908 	int retval = sched_rr_get_interval(pid, &t);
5909 
5910 	if (retval == 0)
5911 		retval = put_timespec64(&t, interval);
5912 
5913 	return retval;
5914 }
5915 
5916 #ifdef CONFIG_COMPAT_32BIT_TIME
5917 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5918 		struct old_timespec32 __user *, interval)
5919 {
5920 	struct timespec64 t;
5921 	int retval = sched_rr_get_interval(pid, &t);
5922 
5923 	if (retval == 0)
5924 		retval = put_old_timespec32(&t, interval);
5925 	return retval;
5926 }
5927 #endif
5928 
5929 void sched_show_task(struct task_struct *p)
5930 {
5931 	unsigned long free = 0;
5932 	int ppid;
5933 
5934 	if (!try_get_task_stack(p))
5935 		return;
5936 
5937 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5938 
5939 	if (p->state == TASK_RUNNING)
5940 		printk(KERN_CONT "  running task    ");
5941 #ifdef CONFIG_DEBUG_STACK_USAGE
5942 	free = stack_not_used(p);
5943 #endif
5944 	ppid = 0;
5945 	rcu_read_lock();
5946 	if (pid_alive(p))
5947 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5948 	rcu_read_unlock();
5949 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5950 		task_pid_nr(p), ppid,
5951 		(unsigned long)task_thread_info(p)->flags);
5952 
5953 	print_worker_info(KERN_INFO, p);
5954 	show_stack(p, NULL);
5955 	put_task_stack(p);
5956 }
5957 EXPORT_SYMBOL_GPL(sched_show_task);
5958 
5959 static inline bool
5960 state_filter_match(unsigned long state_filter, struct task_struct *p)
5961 {
5962 	/* no filter, everything matches */
5963 	if (!state_filter)
5964 		return true;
5965 
5966 	/* filter, but doesn't match */
5967 	if (!(p->state & state_filter))
5968 		return false;
5969 
5970 	/*
5971 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5972 	 * TASK_KILLABLE).
5973 	 */
5974 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5975 		return false;
5976 
5977 	return true;
5978 }
5979 
5980 
5981 void show_state_filter(unsigned long state_filter)
5982 {
5983 	struct task_struct *g, *p;
5984 
5985 #if BITS_PER_LONG == 32
5986 	printk(KERN_INFO
5987 		"  task                PC stack   pid father\n");
5988 #else
5989 	printk(KERN_INFO
5990 		"  task                        PC stack   pid father\n");
5991 #endif
5992 	rcu_read_lock();
5993 	for_each_process_thread(g, p) {
5994 		/*
5995 		 * reset the NMI-timeout, listing all files on a slow
5996 		 * console might take a lot of time:
5997 		 * Also, reset softlockup watchdogs on all CPUs, because
5998 		 * another CPU might be blocked waiting for us to process
5999 		 * an IPI.
6000 		 */
6001 		touch_nmi_watchdog();
6002 		touch_all_softlockup_watchdogs();
6003 		if (state_filter_match(state_filter, p))
6004 			sched_show_task(p);
6005 	}
6006 
6007 #ifdef CONFIG_SCHED_DEBUG
6008 	if (!state_filter)
6009 		sysrq_sched_debug_show();
6010 #endif
6011 	rcu_read_unlock();
6012 	/*
6013 	 * Only show locks if all tasks are dumped:
6014 	 */
6015 	if (!state_filter)
6016 		debug_show_all_locks();
6017 }
6018 
6019 /**
6020  * init_idle - set up an idle thread for a given CPU
6021  * @idle: task in question
6022  * @cpu: CPU the idle task belongs to
6023  *
6024  * NOTE: this function does not set the idle thread's NEED_RESCHED
6025  * flag, to make booting more robust.
6026  */
6027 void init_idle(struct task_struct *idle, int cpu)
6028 {
6029 	struct rq *rq = cpu_rq(cpu);
6030 	unsigned long flags;
6031 
6032 	__sched_fork(0, idle);
6033 
6034 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6035 	raw_spin_lock(&rq->lock);
6036 
6037 	idle->state = TASK_RUNNING;
6038 	idle->se.exec_start = sched_clock();
6039 	idle->flags |= PF_IDLE;
6040 
6041 	kasan_unpoison_task_stack(idle);
6042 
6043 #ifdef CONFIG_SMP
6044 	/*
6045 	 * Its possible that init_idle() gets called multiple times on a task,
6046 	 * in that case do_set_cpus_allowed() will not do the right thing.
6047 	 *
6048 	 * And since this is boot we can forgo the serialization.
6049 	 */
6050 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6051 #endif
6052 	/*
6053 	 * We're having a chicken and egg problem, even though we are
6054 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6055 	 * lockdep check in task_group() will fail.
6056 	 *
6057 	 * Similar case to sched_fork(). / Alternatively we could
6058 	 * use task_rq_lock() here and obtain the other rq->lock.
6059 	 *
6060 	 * Silence PROVE_RCU
6061 	 */
6062 	rcu_read_lock();
6063 	__set_task_cpu(idle, cpu);
6064 	rcu_read_unlock();
6065 
6066 	rq->idle = idle;
6067 	rcu_assign_pointer(rq->curr, idle);
6068 	idle->on_rq = TASK_ON_RQ_QUEUED;
6069 #ifdef CONFIG_SMP
6070 	idle->on_cpu = 1;
6071 #endif
6072 	raw_spin_unlock(&rq->lock);
6073 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6074 
6075 	/* Set the preempt count _outside_ the spinlocks! */
6076 	init_idle_preempt_count(idle, cpu);
6077 
6078 	/*
6079 	 * The idle tasks have their own, simple scheduling class:
6080 	 */
6081 	idle->sched_class = &idle_sched_class;
6082 	ftrace_graph_init_idle_task(idle, cpu);
6083 	vtime_init_idle(idle, cpu);
6084 #ifdef CONFIG_SMP
6085 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6086 #endif
6087 }
6088 
6089 #ifdef CONFIG_SMP
6090 
6091 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6092 			      const struct cpumask *trial)
6093 {
6094 	int ret = 1;
6095 
6096 	if (!cpumask_weight(cur))
6097 		return ret;
6098 
6099 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6100 
6101 	return ret;
6102 }
6103 
6104 int task_can_attach(struct task_struct *p,
6105 		    const struct cpumask *cs_cpus_allowed)
6106 {
6107 	int ret = 0;
6108 
6109 	/*
6110 	 * Kthreads which disallow setaffinity shouldn't be moved
6111 	 * to a new cpuset; we don't want to change their CPU
6112 	 * affinity and isolating such threads by their set of
6113 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6114 	 * applicable for such threads.  This prevents checking for
6115 	 * success of set_cpus_allowed_ptr() on all attached tasks
6116 	 * before cpus_mask may be changed.
6117 	 */
6118 	if (p->flags & PF_NO_SETAFFINITY) {
6119 		ret = -EINVAL;
6120 		goto out;
6121 	}
6122 
6123 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6124 					      cs_cpus_allowed))
6125 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6126 
6127 out:
6128 	return ret;
6129 }
6130 
6131 bool sched_smp_initialized __read_mostly;
6132 
6133 #ifdef CONFIG_NUMA_BALANCING
6134 /* Migrate current task p to target_cpu */
6135 int migrate_task_to(struct task_struct *p, int target_cpu)
6136 {
6137 	struct migration_arg arg = { p, target_cpu };
6138 	int curr_cpu = task_cpu(p);
6139 
6140 	if (curr_cpu == target_cpu)
6141 		return 0;
6142 
6143 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6144 		return -EINVAL;
6145 
6146 	/* TODO: This is not properly updating schedstats */
6147 
6148 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6149 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6150 }
6151 
6152 /*
6153  * Requeue a task on a given node and accurately track the number of NUMA
6154  * tasks on the runqueues
6155  */
6156 void sched_setnuma(struct task_struct *p, int nid)
6157 {
6158 	bool queued, running;
6159 	struct rq_flags rf;
6160 	struct rq *rq;
6161 
6162 	rq = task_rq_lock(p, &rf);
6163 	queued = task_on_rq_queued(p);
6164 	running = task_current(rq, p);
6165 
6166 	if (queued)
6167 		dequeue_task(rq, p, DEQUEUE_SAVE);
6168 	if (running)
6169 		put_prev_task(rq, p);
6170 
6171 	p->numa_preferred_nid = nid;
6172 
6173 	if (queued)
6174 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6175 	if (running)
6176 		set_next_task(rq, p);
6177 	task_rq_unlock(rq, p, &rf);
6178 }
6179 #endif /* CONFIG_NUMA_BALANCING */
6180 
6181 #ifdef CONFIG_HOTPLUG_CPU
6182 /*
6183  * Ensure that the idle task is using init_mm right before its CPU goes
6184  * offline.
6185  */
6186 void idle_task_exit(void)
6187 {
6188 	struct mm_struct *mm = current->active_mm;
6189 
6190 	BUG_ON(cpu_online(smp_processor_id()));
6191 
6192 	if (mm != &init_mm) {
6193 		switch_mm(mm, &init_mm, current);
6194 		current->active_mm = &init_mm;
6195 		finish_arch_post_lock_switch();
6196 	}
6197 	mmdrop(mm);
6198 }
6199 
6200 /*
6201  * Since this CPU is going 'away' for a while, fold any nr_active delta
6202  * we might have. Assumes we're called after migrate_tasks() so that the
6203  * nr_active count is stable. We need to take the teardown thread which
6204  * is calling this into account, so we hand in adjust = 1 to the load
6205  * calculation.
6206  *
6207  * Also see the comment "Global load-average calculations".
6208  */
6209 static void calc_load_migrate(struct rq *rq)
6210 {
6211 	long delta = calc_load_fold_active(rq, 1);
6212 	if (delta)
6213 		atomic_long_add(delta, &calc_load_tasks);
6214 }
6215 
6216 static struct task_struct *__pick_migrate_task(struct rq *rq)
6217 {
6218 	const struct sched_class *class;
6219 	struct task_struct *next;
6220 
6221 	for_each_class(class) {
6222 		next = class->pick_next_task(rq);
6223 		if (next) {
6224 			next->sched_class->put_prev_task(rq, next);
6225 			return next;
6226 		}
6227 	}
6228 
6229 	/* The idle class should always have a runnable task */
6230 	BUG();
6231 }
6232 
6233 /*
6234  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6235  * try_to_wake_up()->select_task_rq().
6236  *
6237  * Called with rq->lock held even though we'er in stop_machine() and
6238  * there's no concurrency possible, we hold the required locks anyway
6239  * because of lock validation efforts.
6240  */
6241 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6242 {
6243 	struct rq *rq = dead_rq;
6244 	struct task_struct *next, *stop = rq->stop;
6245 	struct rq_flags orf = *rf;
6246 	int dest_cpu;
6247 
6248 	/*
6249 	 * Fudge the rq selection such that the below task selection loop
6250 	 * doesn't get stuck on the currently eligible stop task.
6251 	 *
6252 	 * We're currently inside stop_machine() and the rq is either stuck
6253 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6254 	 * either way we should never end up calling schedule() until we're
6255 	 * done here.
6256 	 */
6257 	rq->stop = NULL;
6258 
6259 	/*
6260 	 * put_prev_task() and pick_next_task() sched
6261 	 * class method both need to have an up-to-date
6262 	 * value of rq->clock[_task]
6263 	 */
6264 	update_rq_clock(rq);
6265 
6266 	for (;;) {
6267 		/*
6268 		 * There's this thread running, bail when that's the only
6269 		 * remaining thread:
6270 		 */
6271 		if (rq->nr_running == 1)
6272 			break;
6273 
6274 		next = __pick_migrate_task(rq);
6275 
6276 		/*
6277 		 * Rules for changing task_struct::cpus_mask are holding
6278 		 * both pi_lock and rq->lock, such that holding either
6279 		 * stabilizes the mask.
6280 		 *
6281 		 * Drop rq->lock is not quite as disastrous as it usually is
6282 		 * because !cpu_active at this point, which means load-balance
6283 		 * will not interfere. Also, stop-machine.
6284 		 */
6285 		rq_unlock(rq, rf);
6286 		raw_spin_lock(&next->pi_lock);
6287 		rq_relock(rq, rf);
6288 
6289 		/*
6290 		 * Since we're inside stop-machine, _nothing_ should have
6291 		 * changed the task, WARN if weird stuff happened, because in
6292 		 * that case the above rq->lock drop is a fail too.
6293 		 */
6294 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6295 			raw_spin_unlock(&next->pi_lock);
6296 			continue;
6297 		}
6298 
6299 		/* Find suitable destination for @next, with force if needed. */
6300 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6301 		rq = __migrate_task(rq, rf, next, dest_cpu);
6302 		if (rq != dead_rq) {
6303 			rq_unlock(rq, rf);
6304 			rq = dead_rq;
6305 			*rf = orf;
6306 			rq_relock(rq, rf);
6307 		}
6308 		raw_spin_unlock(&next->pi_lock);
6309 	}
6310 
6311 	rq->stop = stop;
6312 }
6313 #endif /* CONFIG_HOTPLUG_CPU */
6314 
6315 void set_rq_online(struct rq *rq)
6316 {
6317 	if (!rq->online) {
6318 		const struct sched_class *class;
6319 
6320 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6321 		rq->online = 1;
6322 
6323 		for_each_class(class) {
6324 			if (class->rq_online)
6325 				class->rq_online(rq);
6326 		}
6327 	}
6328 }
6329 
6330 void set_rq_offline(struct rq *rq)
6331 {
6332 	if (rq->online) {
6333 		const struct sched_class *class;
6334 
6335 		for_each_class(class) {
6336 			if (class->rq_offline)
6337 				class->rq_offline(rq);
6338 		}
6339 
6340 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6341 		rq->online = 0;
6342 	}
6343 }
6344 
6345 /*
6346  * used to mark begin/end of suspend/resume:
6347  */
6348 static int num_cpus_frozen;
6349 
6350 /*
6351  * Update cpusets according to cpu_active mask.  If cpusets are
6352  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6353  * around partition_sched_domains().
6354  *
6355  * If we come here as part of a suspend/resume, don't touch cpusets because we
6356  * want to restore it back to its original state upon resume anyway.
6357  */
6358 static void cpuset_cpu_active(void)
6359 {
6360 	if (cpuhp_tasks_frozen) {
6361 		/*
6362 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6363 		 * resume sequence. As long as this is not the last online
6364 		 * operation in the resume sequence, just build a single sched
6365 		 * domain, ignoring cpusets.
6366 		 */
6367 		partition_sched_domains(1, NULL, NULL);
6368 		if (--num_cpus_frozen)
6369 			return;
6370 		/*
6371 		 * This is the last CPU online operation. So fall through and
6372 		 * restore the original sched domains by considering the
6373 		 * cpuset configurations.
6374 		 */
6375 		cpuset_force_rebuild();
6376 	}
6377 	cpuset_update_active_cpus();
6378 }
6379 
6380 static int cpuset_cpu_inactive(unsigned int cpu)
6381 {
6382 	if (!cpuhp_tasks_frozen) {
6383 		if (dl_cpu_busy(cpu))
6384 			return -EBUSY;
6385 		cpuset_update_active_cpus();
6386 	} else {
6387 		num_cpus_frozen++;
6388 		partition_sched_domains(1, NULL, NULL);
6389 	}
6390 	return 0;
6391 }
6392 
6393 int sched_cpu_activate(unsigned int cpu)
6394 {
6395 	struct rq *rq = cpu_rq(cpu);
6396 	struct rq_flags rf;
6397 
6398 #ifdef CONFIG_SCHED_SMT
6399 	/*
6400 	 * When going up, increment the number of cores with SMT present.
6401 	 */
6402 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6403 		static_branch_inc_cpuslocked(&sched_smt_present);
6404 #endif
6405 	set_cpu_active(cpu, true);
6406 
6407 	if (sched_smp_initialized) {
6408 		sched_domains_numa_masks_set(cpu);
6409 		cpuset_cpu_active();
6410 	}
6411 
6412 	/*
6413 	 * Put the rq online, if not already. This happens:
6414 	 *
6415 	 * 1) In the early boot process, because we build the real domains
6416 	 *    after all CPUs have been brought up.
6417 	 *
6418 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6419 	 *    domains.
6420 	 */
6421 	rq_lock_irqsave(rq, &rf);
6422 	if (rq->rd) {
6423 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6424 		set_rq_online(rq);
6425 	}
6426 	rq_unlock_irqrestore(rq, &rf);
6427 
6428 	return 0;
6429 }
6430 
6431 int sched_cpu_deactivate(unsigned int cpu)
6432 {
6433 	int ret;
6434 
6435 	set_cpu_active(cpu, false);
6436 	/*
6437 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6438 	 * users of this state to go away such that all new such users will
6439 	 * observe it.
6440 	 *
6441 	 * Do sync before park smpboot threads to take care the rcu boost case.
6442 	 */
6443 	synchronize_rcu();
6444 
6445 #ifdef CONFIG_SCHED_SMT
6446 	/*
6447 	 * When going down, decrement the number of cores with SMT present.
6448 	 */
6449 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6450 		static_branch_dec_cpuslocked(&sched_smt_present);
6451 #endif
6452 
6453 	if (!sched_smp_initialized)
6454 		return 0;
6455 
6456 	ret = cpuset_cpu_inactive(cpu);
6457 	if (ret) {
6458 		set_cpu_active(cpu, true);
6459 		return ret;
6460 	}
6461 	sched_domains_numa_masks_clear(cpu);
6462 	return 0;
6463 }
6464 
6465 static void sched_rq_cpu_starting(unsigned int cpu)
6466 {
6467 	struct rq *rq = cpu_rq(cpu);
6468 
6469 	rq->calc_load_update = calc_load_update;
6470 	update_max_interval();
6471 }
6472 
6473 int sched_cpu_starting(unsigned int cpu)
6474 {
6475 	sched_rq_cpu_starting(cpu);
6476 	sched_tick_start(cpu);
6477 	return 0;
6478 }
6479 
6480 #ifdef CONFIG_HOTPLUG_CPU
6481 int sched_cpu_dying(unsigned int cpu)
6482 {
6483 	struct rq *rq = cpu_rq(cpu);
6484 	struct rq_flags rf;
6485 
6486 	/* Handle pending wakeups and then migrate everything off */
6487 	sched_ttwu_pending();
6488 	sched_tick_stop(cpu);
6489 
6490 	rq_lock_irqsave(rq, &rf);
6491 	if (rq->rd) {
6492 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6493 		set_rq_offline(rq);
6494 	}
6495 	migrate_tasks(rq, &rf);
6496 	BUG_ON(rq->nr_running != 1);
6497 	rq_unlock_irqrestore(rq, &rf);
6498 
6499 	calc_load_migrate(rq);
6500 	update_max_interval();
6501 	nohz_balance_exit_idle(rq);
6502 	hrtick_clear(rq);
6503 	return 0;
6504 }
6505 #endif
6506 
6507 void __init sched_init_smp(void)
6508 {
6509 	sched_init_numa();
6510 
6511 	/*
6512 	 * There's no userspace yet to cause hotplug operations; hence all the
6513 	 * CPU masks are stable and all blatant races in the below code cannot
6514 	 * happen.
6515 	 */
6516 	mutex_lock(&sched_domains_mutex);
6517 	sched_init_domains(cpu_active_mask);
6518 	mutex_unlock(&sched_domains_mutex);
6519 
6520 	/* Move init over to a non-isolated CPU */
6521 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6522 		BUG();
6523 	sched_init_granularity();
6524 
6525 	init_sched_rt_class();
6526 	init_sched_dl_class();
6527 
6528 	sched_smp_initialized = true;
6529 }
6530 
6531 static int __init migration_init(void)
6532 {
6533 	sched_cpu_starting(smp_processor_id());
6534 	return 0;
6535 }
6536 early_initcall(migration_init);
6537 
6538 #else
6539 void __init sched_init_smp(void)
6540 {
6541 	sched_init_granularity();
6542 }
6543 #endif /* CONFIG_SMP */
6544 
6545 int in_sched_functions(unsigned long addr)
6546 {
6547 	return in_lock_functions(addr) ||
6548 		(addr >= (unsigned long)__sched_text_start
6549 		&& addr < (unsigned long)__sched_text_end);
6550 }
6551 
6552 #ifdef CONFIG_CGROUP_SCHED
6553 /*
6554  * Default task group.
6555  * Every task in system belongs to this group at bootup.
6556  */
6557 struct task_group root_task_group;
6558 LIST_HEAD(task_groups);
6559 
6560 /* Cacheline aligned slab cache for task_group */
6561 static struct kmem_cache *task_group_cache __read_mostly;
6562 #endif
6563 
6564 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6565 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6566 
6567 void __init sched_init(void)
6568 {
6569 	unsigned long ptr = 0;
6570 	int i;
6571 
6572 	wait_bit_init();
6573 
6574 #ifdef CONFIG_FAIR_GROUP_SCHED
6575 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6576 #endif
6577 #ifdef CONFIG_RT_GROUP_SCHED
6578 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6579 #endif
6580 	if (ptr) {
6581 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6582 
6583 #ifdef CONFIG_FAIR_GROUP_SCHED
6584 		root_task_group.se = (struct sched_entity **)ptr;
6585 		ptr += nr_cpu_ids * sizeof(void **);
6586 
6587 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6588 		ptr += nr_cpu_ids * sizeof(void **);
6589 
6590 #endif /* CONFIG_FAIR_GROUP_SCHED */
6591 #ifdef CONFIG_RT_GROUP_SCHED
6592 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6593 		ptr += nr_cpu_ids * sizeof(void **);
6594 
6595 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6596 		ptr += nr_cpu_ids * sizeof(void **);
6597 
6598 #endif /* CONFIG_RT_GROUP_SCHED */
6599 	}
6600 #ifdef CONFIG_CPUMASK_OFFSTACK
6601 	for_each_possible_cpu(i) {
6602 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6603 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6604 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6605 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6606 	}
6607 #endif /* CONFIG_CPUMASK_OFFSTACK */
6608 
6609 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6610 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6611 
6612 #ifdef CONFIG_SMP
6613 	init_defrootdomain();
6614 #endif
6615 
6616 #ifdef CONFIG_RT_GROUP_SCHED
6617 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6618 			global_rt_period(), global_rt_runtime());
6619 #endif /* CONFIG_RT_GROUP_SCHED */
6620 
6621 #ifdef CONFIG_CGROUP_SCHED
6622 	task_group_cache = KMEM_CACHE(task_group, 0);
6623 
6624 	list_add(&root_task_group.list, &task_groups);
6625 	INIT_LIST_HEAD(&root_task_group.children);
6626 	INIT_LIST_HEAD(&root_task_group.siblings);
6627 	autogroup_init(&init_task);
6628 #endif /* CONFIG_CGROUP_SCHED */
6629 
6630 	for_each_possible_cpu(i) {
6631 		struct rq *rq;
6632 
6633 		rq = cpu_rq(i);
6634 		raw_spin_lock_init(&rq->lock);
6635 		rq->nr_running = 0;
6636 		rq->calc_load_active = 0;
6637 		rq->calc_load_update = jiffies + LOAD_FREQ;
6638 		init_cfs_rq(&rq->cfs);
6639 		init_rt_rq(&rq->rt);
6640 		init_dl_rq(&rq->dl);
6641 #ifdef CONFIG_FAIR_GROUP_SCHED
6642 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6643 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6644 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6645 		/*
6646 		 * How much CPU bandwidth does root_task_group get?
6647 		 *
6648 		 * In case of task-groups formed thr' the cgroup filesystem, it
6649 		 * gets 100% of the CPU resources in the system. This overall
6650 		 * system CPU resource is divided among the tasks of
6651 		 * root_task_group and its child task-groups in a fair manner,
6652 		 * based on each entity's (task or task-group's) weight
6653 		 * (se->load.weight).
6654 		 *
6655 		 * In other words, if root_task_group has 10 tasks of weight
6656 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6657 		 * then A0's share of the CPU resource is:
6658 		 *
6659 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6660 		 *
6661 		 * We achieve this by letting root_task_group's tasks sit
6662 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6663 		 */
6664 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6665 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6666 #endif /* CONFIG_FAIR_GROUP_SCHED */
6667 
6668 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6669 #ifdef CONFIG_RT_GROUP_SCHED
6670 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6671 #endif
6672 #ifdef CONFIG_SMP
6673 		rq->sd = NULL;
6674 		rq->rd = NULL;
6675 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6676 		rq->balance_callback = NULL;
6677 		rq->active_balance = 0;
6678 		rq->next_balance = jiffies;
6679 		rq->push_cpu = 0;
6680 		rq->cpu = i;
6681 		rq->online = 0;
6682 		rq->idle_stamp = 0;
6683 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6684 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6685 
6686 		INIT_LIST_HEAD(&rq->cfs_tasks);
6687 
6688 		rq_attach_root(rq, &def_root_domain);
6689 #ifdef CONFIG_NO_HZ_COMMON
6690 		rq->last_load_update_tick = jiffies;
6691 		rq->last_blocked_load_update_tick = jiffies;
6692 		atomic_set(&rq->nohz_flags, 0);
6693 #endif
6694 #endif /* CONFIG_SMP */
6695 		hrtick_rq_init(rq);
6696 		atomic_set(&rq->nr_iowait, 0);
6697 	}
6698 
6699 	set_load_weight(&init_task, false);
6700 
6701 	/*
6702 	 * The boot idle thread does lazy MMU switching as well:
6703 	 */
6704 	mmgrab(&init_mm);
6705 	enter_lazy_tlb(&init_mm, current);
6706 
6707 	/*
6708 	 * Make us the idle thread. Technically, schedule() should not be
6709 	 * called from this thread, however somewhere below it might be,
6710 	 * but because we are the idle thread, we just pick up running again
6711 	 * when this runqueue becomes "idle".
6712 	 */
6713 	init_idle(current, smp_processor_id());
6714 
6715 	calc_load_update = jiffies + LOAD_FREQ;
6716 
6717 #ifdef CONFIG_SMP
6718 	idle_thread_set_boot_cpu();
6719 #endif
6720 	init_sched_fair_class();
6721 
6722 	init_schedstats();
6723 
6724 	psi_init();
6725 
6726 	init_uclamp();
6727 
6728 	scheduler_running = 1;
6729 }
6730 
6731 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6732 static inline int preempt_count_equals(int preempt_offset)
6733 {
6734 	int nested = preempt_count() + rcu_preempt_depth();
6735 
6736 	return (nested == preempt_offset);
6737 }
6738 
6739 void __might_sleep(const char *file, int line, int preempt_offset)
6740 {
6741 	/*
6742 	 * Blocking primitives will set (and therefore destroy) current->state,
6743 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6744 	 * otherwise we will destroy state.
6745 	 */
6746 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6747 			"do not call blocking ops when !TASK_RUNNING; "
6748 			"state=%lx set at [<%p>] %pS\n",
6749 			current->state,
6750 			(void *)current->task_state_change,
6751 			(void *)current->task_state_change);
6752 
6753 	___might_sleep(file, line, preempt_offset);
6754 }
6755 EXPORT_SYMBOL(__might_sleep);
6756 
6757 void ___might_sleep(const char *file, int line, int preempt_offset)
6758 {
6759 	/* Ratelimiting timestamp: */
6760 	static unsigned long prev_jiffy;
6761 
6762 	unsigned long preempt_disable_ip;
6763 
6764 	/* WARN_ON_ONCE() by default, no rate limit required: */
6765 	rcu_sleep_check();
6766 
6767 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6768 	     !is_idle_task(current) && !current->non_block_count) ||
6769 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6770 	    oops_in_progress)
6771 		return;
6772 
6773 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6774 		return;
6775 	prev_jiffy = jiffies;
6776 
6777 	/* Save this before calling printk(), since that will clobber it: */
6778 	preempt_disable_ip = get_preempt_disable_ip(current);
6779 
6780 	printk(KERN_ERR
6781 		"BUG: sleeping function called from invalid context at %s:%d\n",
6782 			file, line);
6783 	printk(KERN_ERR
6784 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6785 			in_atomic(), irqs_disabled(), current->non_block_count,
6786 			current->pid, current->comm);
6787 
6788 	if (task_stack_end_corrupted(current))
6789 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6790 
6791 	debug_show_held_locks(current);
6792 	if (irqs_disabled())
6793 		print_irqtrace_events(current);
6794 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6795 	    && !preempt_count_equals(preempt_offset)) {
6796 		pr_err("Preemption disabled at:");
6797 		print_ip_sym(preempt_disable_ip);
6798 		pr_cont("\n");
6799 	}
6800 	dump_stack();
6801 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6802 }
6803 EXPORT_SYMBOL(___might_sleep);
6804 
6805 void __cant_sleep(const char *file, int line, int preempt_offset)
6806 {
6807 	static unsigned long prev_jiffy;
6808 
6809 	if (irqs_disabled())
6810 		return;
6811 
6812 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6813 		return;
6814 
6815 	if (preempt_count() > preempt_offset)
6816 		return;
6817 
6818 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6819 		return;
6820 	prev_jiffy = jiffies;
6821 
6822 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6823 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6824 			in_atomic(), irqs_disabled(),
6825 			current->pid, current->comm);
6826 
6827 	debug_show_held_locks(current);
6828 	dump_stack();
6829 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6830 }
6831 EXPORT_SYMBOL_GPL(__cant_sleep);
6832 #endif
6833 
6834 #ifdef CONFIG_MAGIC_SYSRQ
6835 void normalize_rt_tasks(void)
6836 {
6837 	struct task_struct *g, *p;
6838 	struct sched_attr attr = {
6839 		.sched_policy = SCHED_NORMAL,
6840 	};
6841 
6842 	read_lock(&tasklist_lock);
6843 	for_each_process_thread(g, p) {
6844 		/*
6845 		 * Only normalize user tasks:
6846 		 */
6847 		if (p->flags & PF_KTHREAD)
6848 			continue;
6849 
6850 		p->se.exec_start = 0;
6851 		schedstat_set(p->se.statistics.wait_start,  0);
6852 		schedstat_set(p->se.statistics.sleep_start, 0);
6853 		schedstat_set(p->se.statistics.block_start, 0);
6854 
6855 		if (!dl_task(p) && !rt_task(p)) {
6856 			/*
6857 			 * Renice negative nice level userspace
6858 			 * tasks back to 0:
6859 			 */
6860 			if (task_nice(p) < 0)
6861 				set_user_nice(p, 0);
6862 			continue;
6863 		}
6864 
6865 		__sched_setscheduler(p, &attr, false, false);
6866 	}
6867 	read_unlock(&tasklist_lock);
6868 }
6869 
6870 #endif /* CONFIG_MAGIC_SYSRQ */
6871 
6872 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6873 /*
6874  * These functions are only useful for the IA64 MCA handling, or kdb.
6875  *
6876  * They can only be called when the whole system has been
6877  * stopped - every CPU needs to be quiescent, and no scheduling
6878  * activity can take place. Using them for anything else would
6879  * be a serious bug, and as a result, they aren't even visible
6880  * under any other configuration.
6881  */
6882 
6883 /**
6884  * curr_task - return the current task for a given CPU.
6885  * @cpu: the processor in question.
6886  *
6887  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6888  *
6889  * Return: The current task for @cpu.
6890  */
6891 struct task_struct *curr_task(int cpu)
6892 {
6893 	return cpu_curr(cpu);
6894 }
6895 
6896 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6897 
6898 #ifdef CONFIG_IA64
6899 /**
6900  * ia64_set_curr_task - set the current task for a given CPU.
6901  * @cpu: the processor in question.
6902  * @p: the task pointer to set.
6903  *
6904  * Description: This function must only be used when non-maskable interrupts
6905  * are serviced on a separate stack. It allows the architecture to switch the
6906  * notion of the current task on a CPU in a non-blocking manner. This function
6907  * must be called with all CPU's synchronized, and interrupts disabled, the
6908  * and caller must save the original value of the current task (see
6909  * curr_task() above) and restore that value before reenabling interrupts and
6910  * re-starting the system.
6911  *
6912  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6913  */
6914 void ia64_set_curr_task(int cpu, struct task_struct *p)
6915 {
6916 	cpu_curr(cpu) = p;
6917 }
6918 
6919 #endif
6920 
6921 #ifdef CONFIG_CGROUP_SCHED
6922 /* task_group_lock serializes the addition/removal of task groups */
6923 static DEFINE_SPINLOCK(task_group_lock);
6924 
6925 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6926 					    struct task_group *parent)
6927 {
6928 #ifdef CONFIG_UCLAMP_TASK_GROUP
6929 	enum uclamp_id clamp_id;
6930 
6931 	for_each_clamp_id(clamp_id) {
6932 		uclamp_se_set(&tg->uclamp_req[clamp_id],
6933 			      uclamp_none(clamp_id), false);
6934 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6935 	}
6936 #endif
6937 }
6938 
6939 static void sched_free_group(struct task_group *tg)
6940 {
6941 	free_fair_sched_group(tg);
6942 	free_rt_sched_group(tg);
6943 	autogroup_free(tg);
6944 	kmem_cache_free(task_group_cache, tg);
6945 }
6946 
6947 /* allocate runqueue etc for a new task group */
6948 struct task_group *sched_create_group(struct task_group *parent)
6949 {
6950 	struct task_group *tg;
6951 
6952 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6953 	if (!tg)
6954 		return ERR_PTR(-ENOMEM);
6955 
6956 	if (!alloc_fair_sched_group(tg, parent))
6957 		goto err;
6958 
6959 	if (!alloc_rt_sched_group(tg, parent))
6960 		goto err;
6961 
6962 	alloc_uclamp_sched_group(tg, parent);
6963 
6964 	return tg;
6965 
6966 err:
6967 	sched_free_group(tg);
6968 	return ERR_PTR(-ENOMEM);
6969 }
6970 
6971 void sched_online_group(struct task_group *tg, struct task_group *parent)
6972 {
6973 	unsigned long flags;
6974 
6975 	spin_lock_irqsave(&task_group_lock, flags);
6976 	list_add_rcu(&tg->list, &task_groups);
6977 
6978 	/* Root should already exist: */
6979 	WARN_ON(!parent);
6980 
6981 	tg->parent = parent;
6982 	INIT_LIST_HEAD(&tg->children);
6983 	list_add_rcu(&tg->siblings, &parent->children);
6984 	spin_unlock_irqrestore(&task_group_lock, flags);
6985 
6986 	online_fair_sched_group(tg);
6987 }
6988 
6989 /* rcu callback to free various structures associated with a task group */
6990 static void sched_free_group_rcu(struct rcu_head *rhp)
6991 {
6992 	/* Now it should be safe to free those cfs_rqs: */
6993 	sched_free_group(container_of(rhp, struct task_group, rcu));
6994 }
6995 
6996 void sched_destroy_group(struct task_group *tg)
6997 {
6998 	/* Wait for possible concurrent references to cfs_rqs complete: */
6999 	call_rcu(&tg->rcu, sched_free_group_rcu);
7000 }
7001 
7002 void sched_offline_group(struct task_group *tg)
7003 {
7004 	unsigned long flags;
7005 
7006 	/* End participation in shares distribution: */
7007 	unregister_fair_sched_group(tg);
7008 
7009 	spin_lock_irqsave(&task_group_lock, flags);
7010 	list_del_rcu(&tg->list);
7011 	list_del_rcu(&tg->siblings);
7012 	spin_unlock_irqrestore(&task_group_lock, flags);
7013 }
7014 
7015 static void sched_change_group(struct task_struct *tsk, int type)
7016 {
7017 	struct task_group *tg;
7018 
7019 	/*
7020 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7021 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7022 	 * to prevent lockdep warnings.
7023 	 */
7024 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7025 			  struct task_group, css);
7026 	tg = autogroup_task_group(tsk, tg);
7027 	tsk->sched_task_group = tg;
7028 
7029 #ifdef CONFIG_FAIR_GROUP_SCHED
7030 	if (tsk->sched_class->task_change_group)
7031 		tsk->sched_class->task_change_group(tsk, type);
7032 	else
7033 #endif
7034 		set_task_rq(tsk, task_cpu(tsk));
7035 }
7036 
7037 /*
7038  * Change task's runqueue when it moves between groups.
7039  *
7040  * The caller of this function should have put the task in its new group by
7041  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7042  * its new group.
7043  */
7044 void sched_move_task(struct task_struct *tsk)
7045 {
7046 	int queued, running, queue_flags =
7047 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7048 	struct rq_flags rf;
7049 	struct rq *rq;
7050 
7051 	rq = task_rq_lock(tsk, &rf);
7052 	update_rq_clock(rq);
7053 
7054 	running = task_current(rq, tsk);
7055 	queued = task_on_rq_queued(tsk);
7056 
7057 	if (queued)
7058 		dequeue_task(rq, tsk, queue_flags);
7059 	if (running)
7060 		put_prev_task(rq, tsk);
7061 
7062 	sched_change_group(tsk, TASK_MOVE_GROUP);
7063 
7064 	if (queued)
7065 		enqueue_task(rq, tsk, queue_flags);
7066 	if (running)
7067 		set_next_task(rq, tsk);
7068 
7069 	task_rq_unlock(rq, tsk, &rf);
7070 }
7071 
7072 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7073 {
7074 	return css ? container_of(css, struct task_group, css) : NULL;
7075 }
7076 
7077 static struct cgroup_subsys_state *
7078 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7079 {
7080 	struct task_group *parent = css_tg(parent_css);
7081 	struct task_group *tg;
7082 
7083 	if (!parent) {
7084 		/* This is early initialization for the top cgroup */
7085 		return &root_task_group.css;
7086 	}
7087 
7088 	tg = sched_create_group(parent);
7089 	if (IS_ERR(tg))
7090 		return ERR_PTR(-ENOMEM);
7091 
7092 	return &tg->css;
7093 }
7094 
7095 /* Expose task group only after completing cgroup initialization */
7096 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7097 {
7098 	struct task_group *tg = css_tg(css);
7099 	struct task_group *parent = css_tg(css->parent);
7100 
7101 	if (parent)
7102 		sched_online_group(tg, parent);
7103 
7104 #ifdef CONFIG_UCLAMP_TASK_GROUP
7105 	/* Propagate the effective uclamp value for the new group */
7106 	cpu_util_update_eff(css);
7107 #endif
7108 
7109 	return 0;
7110 }
7111 
7112 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7113 {
7114 	struct task_group *tg = css_tg(css);
7115 
7116 	sched_offline_group(tg);
7117 }
7118 
7119 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7120 {
7121 	struct task_group *tg = css_tg(css);
7122 
7123 	/*
7124 	 * Relies on the RCU grace period between css_released() and this.
7125 	 */
7126 	sched_free_group(tg);
7127 }
7128 
7129 /*
7130  * This is called before wake_up_new_task(), therefore we really only
7131  * have to set its group bits, all the other stuff does not apply.
7132  */
7133 static void cpu_cgroup_fork(struct task_struct *task)
7134 {
7135 	struct rq_flags rf;
7136 	struct rq *rq;
7137 
7138 	rq = task_rq_lock(task, &rf);
7139 
7140 	update_rq_clock(rq);
7141 	sched_change_group(task, TASK_SET_GROUP);
7142 
7143 	task_rq_unlock(rq, task, &rf);
7144 }
7145 
7146 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7147 {
7148 	struct task_struct *task;
7149 	struct cgroup_subsys_state *css;
7150 	int ret = 0;
7151 
7152 	cgroup_taskset_for_each(task, css, tset) {
7153 #ifdef CONFIG_RT_GROUP_SCHED
7154 		if (!sched_rt_can_attach(css_tg(css), task))
7155 			return -EINVAL;
7156 #endif
7157 		/*
7158 		 * Serialize against wake_up_new_task() such that if its
7159 		 * running, we're sure to observe its full state.
7160 		 */
7161 		raw_spin_lock_irq(&task->pi_lock);
7162 		/*
7163 		 * Avoid calling sched_move_task() before wake_up_new_task()
7164 		 * has happened. This would lead to problems with PELT, due to
7165 		 * move wanting to detach+attach while we're not attached yet.
7166 		 */
7167 		if (task->state == TASK_NEW)
7168 			ret = -EINVAL;
7169 		raw_spin_unlock_irq(&task->pi_lock);
7170 
7171 		if (ret)
7172 			break;
7173 	}
7174 	return ret;
7175 }
7176 
7177 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7178 {
7179 	struct task_struct *task;
7180 	struct cgroup_subsys_state *css;
7181 
7182 	cgroup_taskset_for_each(task, css, tset)
7183 		sched_move_task(task);
7184 }
7185 
7186 #ifdef CONFIG_UCLAMP_TASK_GROUP
7187 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7188 {
7189 	struct cgroup_subsys_state *top_css = css;
7190 	struct uclamp_se *uc_parent = NULL;
7191 	struct uclamp_se *uc_se = NULL;
7192 	unsigned int eff[UCLAMP_CNT];
7193 	enum uclamp_id clamp_id;
7194 	unsigned int clamps;
7195 
7196 	css_for_each_descendant_pre(css, top_css) {
7197 		uc_parent = css_tg(css)->parent
7198 			? css_tg(css)->parent->uclamp : NULL;
7199 
7200 		for_each_clamp_id(clamp_id) {
7201 			/* Assume effective clamps matches requested clamps */
7202 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7203 			/* Cap effective clamps with parent's effective clamps */
7204 			if (uc_parent &&
7205 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7206 				eff[clamp_id] = uc_parent[clamp_id].value;
7207 			}
7208 		}
7209 		/* Ensure protection is always capped by limit */
7210 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7211 
7212 		/* Propagate most restrictive effective clamps */
7213 		clamps = 0x0;
7214 		uc_se = css_tg(css)->uclamp;
7215 		for_each_clamp_id(clamp_id) {
7216 			if (eff[clamp_id] == uc_se[clamp_id].value)
7217 				continue;
7218 			uc_se[clamp_id].value = eff[clamp_id];
7219 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7220 			clamps |= (0x1 << clamp_id);
7221 		}
7222 		if (!clamps) {
7223 			css = css_rightmost_descendant(css);
7224 			continue;
7225 		}
7226 
7227 		/* Immediately update descendants RUNNABLE tasks */
7228 		uclamp_update_active_tasks(css, clamps);
7229 	}
7230 }
7231 
7232 /*
7233  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7234  * C expression. Since there is no way to convert a macro argument (N) into a
7235  * character constant, use two levels of macros.
7236  */
7237 #define _POW10(exp) ((unsigned int)1e##exp)
7238 #define POW10(exp) _POW10(exp)
7239 
7240 struct uclamp_request {
7241 #define UCLAMP_PERCENT_SHIFT	2
7242 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7243 	s64 percent;
7244 	u64 util;
7245 	int ret;
7246 };
7247 
7248 static inline struct uclamp_request
7249 capacity_from_percent(char *buf)
7250 {
7251 	struct uclamp_request req = {
7252 		.percent = UCLAMP_PERCENT_SCALE,
7253 		.util = SCHED_CAPACITY_SCALE,
7254 		.ret = 0,
7255 	};
7256 
7257 	buf = strim(buf);
7258 	if (strcmp(buf, "max")) {
7259 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7260 					     &req.percent);
7261 		if (req.ret)
7262 			return req;
7263 		if (req.percent > UCLAMP_PERCENT_SCALE) {
7264 			req.ret = -ERANGE;
7265 			return req;
7266 		}
7267 
7268 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7269 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7270 	}
7271 
7272 	return req;
7273 }
7274 
7275 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7276 				size_t nbytes, loff_t off,
7277 				enum uclamp_id clamp_id)
7278 {
7279 	struct uclamp_request req;
7280 	struct task_group *tg;
7281 
7282 	req = capacity_from_percent(buf);
7283 	if (req.ret)
7284 		return req.ret;
7285 
7286 	mutex_lock(&uclamp_mutex);
7287 	rcu_read_lock();
7288 
7289 	tg = css_tg(of_css(of));
7290 	if (tg->uclamp_req[clamp_id].value != req.util)
7291 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7292 
7293 	/*
7294 	 * Because of not recoverable conversion rounding we keep track of the
7295 	 * exact requested value
7296 	 */
7297 	tg->uclamp_pct[clamp_id] = req.percent;
7298 
7299 	/* Update effective clamps to track the most restrictive value */
7300 	cpu_util_update_eff(of_css(of));
7301 
7302 	rcu_read_unlock();
7303 	mutex_unlock(&uclamp_mutex);
7304 
7305 	return nbytes;
7306 }
7307 
7308 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7309 				    char *buf, size_t nbytes,
7310 				    loff_t off)
7311 {
7312 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7313 }
7314 
7315 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7316 				    char *buf, size_t nbytes,
7317 				    loff_t off)
7318 {
7319 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7320 }
7321 
7322 static inline void cpu_uclamp_print(struct seq_file *sf,
7323 				    enum uclamp_id clamp_id)
7324 {
7325 	struct task_group *tg;
7326 	u64 util_clamp;
7327 	u64 percent;
7328 	u32 rem;
7329 
7330 	rcu_read_lock();
7331 	tg = css_tg(seq_css(sf));
7332 	util_clamp = tg->uclamp_req[clamp_id].value;
7333 	rcu_read_unlock();
7334 
7335 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7336 		seq_puts(sf, "max\n");
7337 		return;
7338 	}
7339 
7340 	percent = tg->uclamp_pct[clamp_id];
7341 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7342 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7343 }
7344 
7345 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7346 {
7347 	cpu_uclamp_print(sf, UCLAMP_MIN);
7348 	return 0;
7349 }
7350 
7351 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7352 {
7353 	cpu_uclamp_print(sf, UCLAMP_MAX);
7354 	return 0;
7355 }
7356 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7357 
7358 #ifdef CONFIG_FAIR_GROUP_SCHED
7359 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7360 				struct cftype *cftype, u64 shareval)
7361 {
7362 	if (shareval > scale_load_down(ULONG_MAX))
7363 		shareval = MAX_SHARES;
7364 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7365 }
7366 
7367 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7368 			       struct cftype *cft)
7369 {
7370 	struct task_group *tg = css_tg(css);
7371 
7372 	return (u64) scale_load_down(tg->shares);
7373 }
7374 
7375 #ifdef CONFIG_CFS_BANDWIDTH
7376 static DEFINE_MUTEX(cfs_constraints_mutex);
7377 
7378 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7379 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7380 
7381 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7382 
7383 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7384 {
7385 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7386 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7387 
7388 	if (tg == &root_task_group)
7389 		return -EINVAL;
7390 
7391 	/*
7392 	 * Ensure we have at some amount of bandwidth every period.  This is
7393 	 * to prevent reaching a state of large arrears when throttled via
7394 	 * entity_tick() resulting in prolonged exit starvation.
7395 	 */
7396 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7397 		return -EINVAL;
7398 
7399 	/*
7400 	 * Likewise, bound things on the otherside by preventing insane quota
7401 	 * periods.  This also allows us to normalize in computing quota
7402 	 * feasibility.
7403 	 */
7404 	if (period > max_cfs_quota_period)
7405 		return -EINVAL;
7406 
7407 	/*
7408 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7409 	 * unthrottle_offline_cfs_rqs().
7410 	 */
7411 	get_online_cpus();
7412 	mutex_lock(&cfs_constraints_mutex);
7413 	ret = __cfs_schedulable(tg, period, quota);
7414 	if (ret)
7415 		goto out_unlock;
7416 
7417 	runtime_enabled = quota != RUNTIME_INF;
7418 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7419 	/*
7420 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7421 	 * before making related changes, and on->off must occur afterwards
7422 	 */
7423 	if (runtime_enabled && !runtime_was_enabled)
7424 		cfs_bandwidth_usage_inc();
7425 	raw_spin_lock_irq(&cfs_b->lock);
7426 	cfs_b->period = ns_to_ktime(period);
7427 	cfs_b->quota = quota;
7428 
7429 	__refill_cfs_bandwidth_runtime(cfs_b);
7430 
7431 	/* Restart the period timer (if active) to handle new period expiry: */
7432 	if (runtime_enabled)
7433 		start_cfs_bandwidth(cfs_b);
7434 
7435 	raw_spin_unlock_irq(&cfs_b->lock);
7436 
7437 	for_each_online_cpu(i) {
7438 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7439 		struct rq *rq = cfs_rq->rq;
7440 		struct rq_flags rf;
7441 
7442 		rq_lock_irq(rq, &rf);
7443 		cfs_rq->runtime_enabled = runtime_enabled;
7444 		cfs_rq->runtime_remaining = 0;
7445 
7446 		if (cfs_rq->throttled)
7447 			unthrottle_cfs_rq(cfs_rq);
7448 		rq_unlock_irq(rq, &rf);
7449 	}
7450 	if (runtime_was_enabled && !runtime_enabled)
7451 		cfs_bandwidth_usage_dec();
7452 out_unlock:
7453 	mutex_unlock(&cfs_constraints_mutex);
7454 	put_online_cpus();
7455 
7456 	return ret;
7457 }
7458 
7459 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7460 {
7461 	u64 quota, period;
7462 
7463 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7464 	if (cfs_quota_us < 0)
7465 		quota = RUNTIME_INF;
7466 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7467 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7468 	else
7469 		return -EINVAL;
7470 
7471 	return tg_set_cfs_bandwidth(tg, period, quota);
7472 }
7473 
7474 static long tg_get_cfs_quota(struct task_group *tg)
7475 {
7476 	u64 quota_us;
7477 
7478 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7479 		return -1;
7480 
7481 	quota_us = tg->cfs_bandwidth.quota;
7482 	do_div(quota_us, NSEC_PER_USEC);
7483 
7484 	return quota_us;
7485 }
7486 
7487 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7488 {
7489 	u64 quota, period;
7490 
7491 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7492 		return -EINVAL;
7493 
7494 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7495 	quota = tg->cfs_bandwidth.quota;
7496 
7497 	return tg_set_cfs_bandwidth(tg, period, quota);
7498 }
7499 
7500 static long tg_get_cfs_period(struct task_group *tg)
7501 {
7502 	u64 cfs_period_us;
7503 
7504 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7505 	do_div(cfs_period_us, NSEC_PER_USEC);
7506 
7507 	return cfs_period_us;
7508 }
7509 
7510 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7511 				  struct cftype *cft)
7512 {
7513 	return tg_get_cfs_quota(css_tg(css));
7514 }
7515 
7516 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7517 				   struct cftype *cftype, s64 cfs_quota_us)
7518 {
7519 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7520 }
7521 
7522 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7523 				   struct cftype *cft)
7524 {
7525 	return tg_get_cfs_period(css_tg(css));
7526 }
7527 
7528 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7529 				    struct cftype *cftype, u64 cfs_period_us)
7530 {
7531 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7532 }
7533 
7534 struct cfs_schedulable_data {
7535 	struct task_group *tg;
7536 	u64 period, quota;
7537 };
7538 
7539 /*
7540  * normalize group quota/period to be quota/max_period
7541  * note: units are usecs
7542  */
7543 static u64 normalize_cfs_quota(struct task_group *tg,
7544 			       struct cfs_schedulable_data *d)
7545 {
7546 	u64 quota, period;
7547 
7548 	if (tg == d->tg) {
7549 		period = d->period;
7550 		quota = d->quota;
7551 	} else {
7552 		period = tg_get_cfs_period(tg);
7553 		quota = tg_get_cfs_quota(tg);
7554 	}
7555 
7556 	/* note: these should typically be equivalent */
7557 	if (quota == RUNTIME_INF || quota == -1)
7558 		return RUNTIME_INF;
7559 
7560 	return to_ratio(period, quota);
7561 }
7562 
7563 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7564 {
7565 	struct cfs_schedulable_data *d = data;
7566 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7567 	s64 quota = 0, parent_quota = -1;
7568 
7569 	if (!tg->parent) {
7570 		quota = RUNTIME_INF;
7571 	} else {
7572 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7573 
7574 		quota = normalize_cfs_quota(tg, d);
7575 		parent_quota = parent_b->hierarchical_quota;
7576 
7577 		/*
7578 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7579 		 * always take the min.  On cgroup1, only inherit when no
7580 		 * limit is set:
7581 		 */
7582 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7583 			quota = min(quota, parent_quota);
7584 		} else {
7585 			if (quota == RUNTIME_INF)
7586 				quota = parent_quota;
7587 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7588 				return -EINVAL;
7589 		}
7590 	}
7591 	cfs_b->hierarchical_quota = quota;
7592 
7593 	return 0;
7594 }
7595 
7596 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7597 {
7598 	int ret;
7599 	struct cfs_schedulable_data data = {
7600 		.tg = tg,
7601 		.period = period,
7602 		.quota = quota,
7603 	};
7604 
7605 	if (quota != RUNTIME_INF) {
7606 		do_div(data.period, NSEC_PER_USEC);
7607 		do_div(data.quota, NSEC_PER_USEC);
7608 	}
7609 
7610 	rcu_read_lock();
7611 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7612 	rcu_read_unlock();
7613 
7614 	return ret;
7615 }
7616 
7617 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7618 {
7619 	struct task_group *tg = css_tg(seq_css(sf));
7620 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7621 
7622 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7623 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7624 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7625 
7626 	if (schedstat_enabled() && tg != &root_task_group) {
7627 		u64 ws = 0;
7628 		int i;
7629 
7630 		for_each_possible_cpu(i)
7631 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7632 
7633 		seq_printf(sf, "wait_sum %llu\n", ws);
7634 	}
7635 
7636 	return 0;
7637 }
7638 #endif /* CONFIG_CFS_BANDWIDTH */
7639 #endif /* CONFIG_FAIR_GROUP_SCHED */
7640 
7641 #ifdef CONFIG_RT_GROUP_SCHED
7642 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7643 				struct cftype *cft, s64 val)
7644 {
7645 	return sched_group_set_rt_runtime(css_tg(css), val);
7646 }
7647 
7648 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7649 			       struct cftype *cft)
7650 {
7651 	return sched_group_rt_runtime(css_tg(css));
7652 }
7653 
7654 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7655 				    struct cftype *cftype, u64 rt_period_us)
7656 {
7657 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7658 }
7659 
7660 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7661 				   struct cftype *cft)
7662 {
7663 	return sched_group_rt_period(css_tg(css));
7664 }
7665 #endif /* CONFIG_RT_GROUP_SCHED */
7666 
7667 static struct cftype cpu_legacy_files[] = {
7668 #ifdef CONFIG_FAIR_GROUP_SCHED
7669 	{
7670 		.name = "shares",
7671 		.read_u64 = cpu_shares_read_u64,
7672 		.write_u64 = cpu_shares_write_u64,
7673 	},
7674 #endif
7675 #ifdef CONFIG_CFS_BANDWIDTH
7676 	{
7677 		.name = "cfs_quota_us",
7678 		.read_s64 = cpu_cfs_quota_read_s64,
7679 		.write_s64 = cpu_cfs_quota_write_s64,
7680 	},
7681 	{
7682 		.name = "cfs_period_us",
7683 		.read_u64 = cpu_cfs_period_read_u64,
7684 		.write_u64 = cpu_cfs_period_write_u64,
7685 	},
7686 	{
7687 		.name = "stat",
7688 		.seq_show = cpu_cfs_stat_show,
7689 	},
7690 #endif
7691 #ifdef CONFIG_RT_GROUP_SCHED
7692 	{
7693 		.name = "rt_runtime_us",
7694 		.read_s64 = cpu_rt_runtime_read,
7695 		.write_s64 = cpu_rt_runtime_write,
7696 	},
7697 	{
7698 		.name = "rt_period_us",
7699 		.read_u64 = cpu_rt_period_read_uint,
7700 		.write_u64 = cpu_rt_period_write_uint,
7701 	},
7702 #endif
7703 #ifdef CONFIG_UCLAMP_TASK_GROUP
7704 	{
7705 		.name = "uclamp.min",
7706 		.flags = CFTYPE_NOT_ON_ROOT,
7707 		.seq_show = cpu_uclamp_min_show,
7708 		.write = cpu_uclamp_min_write,
7709 	},
7710 	{
7711 		.name = "uclamp.max",
7712 		.flags = CFTYPE_NOT_ON_ROOT,
7713 		.seq_show = cpu_uclamp_max_show,
7714 		.write = cpu_uclamp_max_write,
7715 	},
7716 #endif
7717 	{ }	/* Terminate */
7718 };
7719 
7720 static int cpu_extra_stat_show(struct seq_file *sf,
7721 			       struct cgroup_subsys_state *css)
7722 {
7723 #ifdef CONFIG_CFS_BANDWIDTH
7724 	{
7725 		struct task_group *tg = css_tg(css);
7726 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7727 		u64 throttled_usec;
7728 
7729 		throttled_usec = cfs_b->throttled_time;
7730 		do_div(throttled_usec, NSEC_PER_USEC);
7731 
7732 		seq_printf(sf, "nr_periods %d\n"
7733 			   "nr_throttled %d\n"
7734 			   "throttled_usec %llu\n",
7735 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7736 			   throttled_usec);
7737 	}
7738 #endif
7739 	return 0;
7740 }
7741 
7742 #ifdef CONFIG_FAIR_GROUP_SCHED
7743 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7744 			       struct cftype *cft)
7745 {
7746 	struct task_group *tg = css_tg(css);
7747 	u64 weight = scale_load_down(tg->shares);
7748 
7749 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7750 }
7751 
7752 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7753 				struct cftype *cft, u64 weight)
7754 {
7755 	/*
7756 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7757 	 * values which are 1, 100 and 10000 respectively.  While it loses
7758 	 * a bit of range on both ends, it maps pretty well onto the shares
7759 	 * value used by scheduler and the round-trip conversions preserve
7760 	 * the original value over the entire range.
7761 	 */
7762 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7763 		return -ERANGE;
7764 
7765 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7766 
7767 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7768 }
7769 
7770 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7771 				    struct cftype *cft)
7772 {
7773 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7774 	int last_delta = INT_MAX;
7775 	int prio, delta;
7776 
7777 	/* find the closest nice value to the current weight */
7778 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7779 		delta = abs(sched_prio_to_weight[prio] - weight);
7780 		if (delta >= last_delta)
7781 			break;
7782 		last_delta = delta;
7783 	}
7784 
7785 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7786 }
7787 
7788 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7789 				     struct cftype *cft, s64 nice)
7790 {
7791 	unsigned long weight;
7792 	int idx;
7793 
7794 	if (nice < MIN_NICE || nice > MAX_NICE)
7795 		return -ERANGE;
7796 
7797 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7798 	idx = array_index_nospec(idx, 40);
7799 	weight = sched_prio_to_weight[idx];
7800 
7801 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7802 }
7803 #endif
7804 
7805 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7806 						  long period, long quota)
7807 {
7808 	if (quota < 0)
7809 		seq_puts(sf, "max");
7810 	else
7811 		seq_printf(sf, "%ld", quota);
7812 
7813 	seq_printf(sf, " %ld\n", period);
7814 }
7815 
7816 /* caller should put the current value in *@periodp before calling */
7817 static int __maybe_unused cpu_period_quota_parse(char *buf,
7818 						 u64 *periodp, u64 *quotap)
7819 {
7820 	char tok[21];	/* U64_MAX */
7821 
7822 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7823 		return -EINVAL;
7824 
7825 	*periodp *= NSEC_PER_USEC;
7826 
7827 	if (sscanf(tok, "%llu", quotap))
7828 		*quotap *= NSEC_PER_USEC;
7829 	else if (!strcmp(tok, "max"))
7830 		*quotap = RUNTIME_INF;
7831 	else
7832 		return -EINVAL;
7833 
7834 	return 0;
7835 }
7836 
7837 #ifdef CONFIG_CFS_BANDWIDTH
7838 static int cpu_max_show(struct seq_file *sf, void *v)
7839 {
7840 	struct task_group *tg = css_tg(seq_css(sf));
7841 
7842 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7843 	return 0;
7844 }
7845 
7846 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7847 			     char *buf, size_t nbytes, loff_t off)
7848 {
7849 	struct task_group *tg = css_tg(of_css(of));
7850 	u64 period = tg_get_cfs_period(tg);
7851 	u64 quota;
7852 	int ret;
7853 
7854 	ret = cpu_period_quota_parse(buf, &period, &quota);
7855 	if (!ret)
7856 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7857 	return ret ?: nbytes;
7858 }
7859 #endif
7860 
7861 static struct cftype cpu_files[] = {
7862 #ifdef CONFIG_FAIR_GROUP_SCHED
7863 	{
7864 		.name = "weight",
7865 		.flags = CFTYPE_NOT_ON_ROOT,
7866 		.read_u64 = cpu_weight_read_u64,
7867 		.write_u64 = cpu_weight_write_u64,
7868 	},
7869 	{
7870 		.name = "weight.nice",
7871 		.flags = CFTYPE_NOT_ON_ROOT,
7872 		.read_s64 = cpu_weight_nice_read_s64,
7873 		.write_s64 = cpu_weight_nice_write_s64,
7874 	},
7875 #endif
7876 #ifdef CONFIG_CFS_BANDWIDTH
7877 	{
7878 		.name = "max",
7879 		.flags = CFTYPE_NOT_ON_ROOT,
7880 		.seq_show = cpu_max_show,
7881 		.write = cpu_max_write,
7882 	},
7883 #endif
7884 #ifdef CONFIG_UCLAMP_TASK_GROUP
7885 	{
7886 		.name = "uclamp.min",
7887 		.flags = CFTYPE_NOT_ON_ROOT,
7888 		.seq_show = cpu_uclamp_min_show,
7889 		.write = cpu_uclamp_min_write,
7890 	},
7891 	{
7892 		.name = "uclamp.max",
7893 		.flags = CFTYPE_NOT_ON_ROOT,
7894 		.seq_show = cpu_uclamp_max_show,
7895 		.write = cpu_uclamp_max_write,
7896 	},
7897 #endif
7898 	{ }	/* terminate */
7899 };
7900 
7901 struct cgroup_subsys cpu_cgrp_subsys = {
7902 	.css_alloc	= cpu_cgroup_css_alloc,
7903 	.css_online	= cpu_cgroup_css_online,
7904 	.css_released	= cpu_cgroup_css_released,
7905 	.css_free	= cpu_cgroup_css_free,
7906 	.css_extra_stat_show = cpu_extra_stat_show,
7907 	.fork		= cpu_cgroup_fork,
7908 	.can_attach	= cpu_cgroup_can_attach,
7909 	.attach		= cpu_cgroup_attach,
7910 	.legacy_cftypes	= cpu_legacy_files,
7911 	.dfl_cftypes	= cpu_files,
7912 	.early_init	= true,
7913 	.threaded	= true,
7914 };
7915 
7916 #endif	/* CONFIG_CGROUP_SCHED */
7917 
7918 void dump_cpu_task(int cpu)
7919 {
7920 	pr_info("Task dump for CPU %d:\n", cpu);
7921 	sched_show_task(cpu_curr(cpu));
7922 }
7923 
7924 /*
7925  * Nice levels are multiplicative, with a gentle 10% change for every
7926  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7927  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7928  * that remained on nice 0.
7929  *
7930  * The "10% effect" is relative and cumulative: from _any_ nice level,
7931  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7932  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7933  * If a task goes up by ~10% and another task goes down by ~10% then
7934  * the relative distance between them is ~25%.)
7935  */
7936 const int sched_prio_to_weight[40] = {
7937  /* -20 */     88761,     71755,     56483,     46273,     36291,
7938  /* -15 */     29154,     23254,     18705,     14949,     11916,
7939  /* -10 */      9548,      7620,      6100,      4904,      3906,
7940  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7941  /*   0 */      1024,       820,       655,       526,       423,
7942  /*   5 */       335,       272,       215,       172,       137,
7943  /*  10 */       110,        87,        70,        56,        45,
7944  /*  15 */        36,        29,        23,        18,        15,
7945 };
7946 
7947 /*
7948  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7949  *
7950  * In cases where the weight does not change often, we can use the
7951  * precalculated inverse to speed up arithmetics by turning divisions
7952  * into multiplications:
7953  */
7954 const u32 sched_prio_to_wmult[40] = {
7955  /* -20 */     48388,     59856,     76040,     92818,    118348,
7956  /* -15 */    147320,    184698,    229616,    287308,    360437,
7957  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7958  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7959  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7960  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7961  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7962  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7963 };
7964 
7965 #undef CREATE_TRACE_POINTS
7966