1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 #include "stats.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 #ifdef CONFIG_SCHED_DEBUG 123 /* 124 * Debugging: various feature bits 125 * 126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 127 * sysctl_sched_features, defined in sched.h, to allow constants propagation 128 * at compile time and compiler optimization based on features default. 129 */ 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 #undef SCHED_FEAT 136 137 /* 138 * Print a warning if need_resched is set for the given duration (if 139 * LATENCY_WARN is enabled). 140 * 141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 142 * per boot. 143 */ 144 __read_mostly int sysctl_resched_latency_warn_ms = 100; 145 __read_mostly int sysctl_resched_latency_warn_once = 1; 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 /* 149 * Number of tasks to iterate in a single balance run. 150 * Limited because this is done with IRQs disabled. 151 */ 152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 153 154 __read_mostly int scheduler_running; 155 156 #ifdef CONFIG_SCHED_CORE 157 158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 159 160 /* kernel prio, less is more */ 161 static inline int __task_prio(const struct task_struct *p) 162 { 163 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 164 return -2; 165 166 if (rt_prio(p->prio)) /* includes deadline */ 167 return p->prio; /* [-1, 99] */ 168 169 if (p->sched_class == &idle_sched_class) 170 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 171 172 if (task_on_scx(p)) 173 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 174 175 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 176 } 177 178 /* 179 * l(a,b) 180 * le(a,b) := !l(b,a) 181 * g(a,b) := l(b,a) 182 * ge(a,b) := !l(a,b) 183 */ 184 185 /* real prio, less is less */ 186 static inline bool prio_less(const struct task_struct *a, 187 const struct task_struct *b, bool in_fi) 188 { 189 190 int pa = __task_prio(a), pb = __task_prio(b); 191 192 if (-pa < -pb) 193 return true; 194 195 if (-pb < -pa) 196 return false; 197 198 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 199 return !dl_time_before(a->dl.deadline, b->dl.deadline); 200 201 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 202 return cfs_prio_less(a, b, in_fi); 203 204 #ifdef CONFIG_SCHED_CLASS_EXT 205 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 206 return scx_prio_less(a, b, in_fi); 207 #endif 208 209 return false; 210 } 211 212 static inline bool __sched_core_less(const struct task_struct *a, 213 const struct task_struct *b) 214 { 215 if (a->core_cookie < b->core_cookie) 216 return true; 217 218 if (a->core_cookie > b->core_cookie) 219 return false; 220 221 /* flip prio, so high prio is leftmost */ 222 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 223 return true; 224 225 return false; 226 } 227 228 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 229 230 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 231 { 232 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 233 } 234 235 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 236 { 237 const struct task_struct *p = __node_2_sc(node); 238 unsigned long cookie = (unsigned long)key; 239 240 if (cookie < p->core_cookie) 241 return -1; 242 243 if (cookie > p->core_cookie) 244 return 1; 245 246 return 0; 247 } 248 249 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 250 { 251 rq->core->core_task_seq++; 252 253 if (!p->core_cookie) 254 return; 255 256 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 257 } 258 259 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 260 { 261 rq->core->core_task_seq++; 262 263 if (sched_core_enqueued(p)) { 264 rb_erase(&p->core_node, &rq->core_tree); 265 RB_CLEAR_NODE(&p->core_node); 266 } 267 268 /* 269 * Migrating the last task off the cpu, with the cpu in forced idle 270 * state. Reschedule to create an accounting edge for forced idle, 271 * and re-examine whether the core is still in forced idle state. 272 */ 273 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 274 rq->core->core_forceidle_count && rq->curr == rq->idle) 275 resched_curr(rq); 276 } 277 278 static int sched_task_is_throttled(struct task_struct *p, int cpu) 279 { 280 if (p->sched_class->task_is_throttled) 281 return p->sched_class->task_is_throttled(p, cpu); 282 283 return 0; 284 } 285 286 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 287 { 288 struct rb_node *node = &p->core_node; 289 int cpu = task_cpu(p); 290 291 do { 292 node = rb_next(node); 293 if (!node) 294 return NULL; 295 296 p = __node_2_sc(node); 297 if (p->core_cookie != cookie) 298 return NULL; 299 300 } while (sched_task_is_throttled(p, cpu)); 301 302 return p; 303 } 304 305 /* 306 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 307 * If no suitable task is found, NULL will be returned. 308 */ 309 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 310 { 311 struct task_struct *p; 312 struct rb_node *node; 313 314 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 315 if (!node) 316 return NULL; 317 318 p = __node_2_sc(node); 319 if (!sched_task_is_throttled(p, rq->cpu)) 320 return p; 321 322 return sched_core_next(p, cookie); 323 } 324 325 /* 326 * Magic required such that: 327 * 328 * raw_spin_rq_lock(rq); 329 * ... 330 * raw_spin_rq_unlock(rq); 331 * 332 * ends up locking and unlocking the _same_ lock, and all CPUs 333 * always agree on what rq has what lock. 334 * 335 * XXX entirely possible to selectively enable cores, don't bother for now. 336 */ 337 338 static DEFINE_MUTEX(sched_core_mutex); 339 static atomic_t sched_core_count; 340 static struct cpumask sched_core_mask; 341 342 static void sched_core_lock(int cpu, unsigned long *flags) 343 { 344 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 345 int t, i = 0; 346 347 local_irq_save(*flags); 348 for_each_cpu(t, smt_mask) 349 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 350 } 351 352 static void sched_core_unlock(int cpu, unsigned long *flags) 353 { 354 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 355 int t; 356 357 for_each_cpu(t, smt_mask) 358 raw_spin_unlock(&cpu_rq(t)->__lock); 359 local_irq_restore(*flags); 360 } 361 362 static void __sched_core_flip(bool enabled) 363 { 364 unsigned long flags; 365 int cpu, t; 366 367 cpus_read_lock(); 368 369 /* 370 * Toggle the online cores, one by one. 371 */ 372 cpumask_copy(&sched_core_mask, cpu_online_mask); 373 for_each_cpu(cpu, &sched_core_mask) { 374 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 375 376 sched_core_lock(cpu, &flags); 377 378 for_each_cpu(t, smt_mask) 379 cpu_rq(t)->core_enabled = enabled; 380 381 cpu_rq(cpu)->core->core_forceidle_start = 0; 382 383 sched_core_unlock(cpu, &flags); 384 385 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 386 } 387 388 /* 389 * Toggle the offline CPUs. 390 */ 391 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 392 cpu_rq(cpu)->core_enabled = enabled; 393 394 cpus_read_unlock(); 395 } 396 397 static void sched_core_assert_empty(void) 398 { 399 int cpu; 400 401 for_each_possible_cpu(cpu) 402 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 403 } 404 405 static void __sched_core_enable(void) 406 { 407 static_branch_enable(&__sched_core_enabled); 408 /* 409 * Ensure all previous instances of raw_spin_rq_*lock() have finished 410 * and future ones will observe !sched_core_disabled(). 411 */ 412 synchronize_rcu(); 413 __sched_core_flip(true); 414 sched_core_assert_empty(); 415 } 416 417 static void __sched_core_disable(void) 418 { 419 sched_core_assert_empty(); 420 __sched_core_flip(false); 421 static_branch_disable(&__sched_core_enabled); 422 } 423 424 void sched_core_get(void) 425 { 426 if (atomic_inc_not_zero(&sched_core_count)) 427 return; 428 429 mutex_lock(&sched_core_mutex); 430 if (!atomic_read(&sched_core_count)) 431 __sched_core_enable(); 432 433 smp_mb__before_atomic(); 434 atomic_inc(&sched_core_count); 435 mutex_unlock(&sched_core_mutex); 436 } 437 438 static void __sched_core_put(struct work_struct *work) 439 { 440 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 441 __sched_core_disable(); 442 mutex_unlock(&sched_core_mutex); 443 } 444 } 445 446 void sched_core_put(void) 447 { 448 static DECLARE_WORK(_work, __sched_core_put); 449 450 /* 451 * "There can be only one" 452 * 453 * Either this is the last one, or we don't actually need to do any 454 * 'work'. If it is the last *again*, we rely on 455 * WORK_STRUCT_PENDING_BIT. 456 */ 457 if (!atomic_add_unless(&sched_core_count, -1, 1)) 458 schedule_work(&_work); 459 } 460 461 #else /* !CONFIG_SCHED_CORE */ 462 463 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 464 static inline void 465 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 466 467 #endif /* CONFIG_SCHED_CORE */ 468 469 /* 470 * Serialization rules: 471 * 472 * Lock order: 473 * 474 * p->pi_lock 475 * rq->lock 476 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 477 * 478 * rq1->lock 479 * rq2->lock where: rq1 < rq2 480 * 481 * Regular state: 482 * 483 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 484 * local CPU's rq->lock, it optionally removes the task from the runqueue and 485 * always looks at the local rq data structures to find the most eligible task 486 * to run next. 487 * 488 * Task enqueue is also under rq->lock, possibly taken from another CPU. 489 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 490 * the local CPU to avoid bouncing the runqueue state around [ see 491 * ttwu_queue_wakelist() ] 492 * 493 * Task wakeup, specifically wakeups that involve migration, are horribly 494 * complicated to avoid having to take two rq->locks. 495 * 496 * Special state: 497 * 498 * System-calls and anything external will use task_rq_lock() which acquires 499 * both p->pi_lock and rq->lock. As a consequence the state they change is 500 * stable while holding either lock: 501 * 502 * - sched_setaffinity()/ 503 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 504 * - set_user_nice(): p->se.load, p->*prio 505 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 506 * p->se.load, p->rt_priority, 507 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 508 * - sched_setnuma(): p->numa_preferred_nid 509 * - sched_move_task(): p->sched_task_group 510 * - uclamp_update_active() p->uclamp* 511 * 512 * p->state <- TASK_*: 513 * 514 * is changed locklessly using set_current_state(), __set_current_state() or 515 * set_special_state(), see their respective comments, or by 516 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 517 * concurrent self. 518 * 519 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 520 * 521 * is set by activate_task() and cleared by deactivate_task(), under 522 * rq->lock. Non-zero indicates the task is runnable, the special 523 * ON_RQ_MIGRATING state is used for migration without holding both 524 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 525 * 526 * p->on_cpu <- { 0, 1 }: 527 * 528 * is set by prepare_task() and cleared by finish_task() such that it will be 529 * set before p is scheduled-in and cleared after p is scheduled-out, both 530 * under rq->lock. Non-zero indicates the task is running on its CPU. 531 * 532 * [ The astute reader will observe that it is possible for two tasks on one 533 * CPU to have ->on_cpu = 1 at the same time. ] 534 * 535 * task_cpu(p): is changed by set_task_cpu(), the rules are: 536 * 537 * - Don't call set_task_cpu() on a blocked task: 538 * 539 * We don't care what CPU we're not running on, this simplifies hotplug, 540 * the CPU assignment of blocked tasks isn't required to be valid. 541 * 542 * - for try_to_wake_up(), called under p->pi_lock: 543 * 544 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 545 * 546 * - for migration called under rq->lock: 547 * [ see task_on_rq_migrating() in task_rq_lock() ] 548 * 549 * o move_queued_task() 550 * o detach_task() 551 * 552 * - for migration called under double_rq_lock(): 553 * 554 * o __migrate_swap_task() 555 * o push_rt_task() / pull_rt_task() 556 * o push_dl_task() / pull_dl_task() 557 * o dl_task_offline_migration() 558 * 559 */ 560 561 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 562 { 563 raw_spinlock_t *lock; 564 565 /* Matches synchronize_rcu() in __sched_core_enable() */ 566 preempt_disable(); 567 if (sched_core_disabled()) { 568 raw_spin_lock_nested(&rq->__lock, subclass); 569 /* preempt_count *MUST* be > 1 */ 570 preempt_enable_no_resched(); 571 return; 572 } 573 574 for (;;) { 575 lock = __rq_lockp(rq); 576 raw_spin_lock_nested(lock, subclass); 577 if (likely(lock == __rq_lockp(rq))) { 578 /* preempt_count *MUST* be > 1 */ 579 preempt_enable_no_resched(); 580 return; 581 } 582 raw_spin_unlock(lock); 583 } 584 } 585 586 bool raw_spin_rq_trylock(struct rq *rq) 587 { 588 raw_spinlock_t *lock; 589 bool ret; 590 591 /* Matches synchronize_rcu() in __sched_core_enable() */ 592 preempt_disable(); 593 if (sched_core_disabled()) { 594 ret = raw_spin_trylock(&rq->__lock); 595 preempt_enable(); 596 return ret; 597 } 598 599 for (;;) { 600 lock = __rq_lockp(rq); 601 ret = raw_spin_trylock(lock); 602 if (!ret || (likely(lock == __rq_lockp(rq)))) { 603 preempt_enable(); 604 return ret; 605 } 606 raw_spin_unlock(lock); 607 } 608 } 609 610 void raw_spin_rq_unlock(struct rq *rq) 611 { 612 raw_spin_unlock(rq_lockp(rq)); 613 } 614 615 #ifdef CONFIG_SMP 616 /* 617 * double_rq_lock - safely lock two runqueues 618 */ 619 void double_rq_lock(struct rq *rq1, struct rq *rq2) 620 { 621 lockdep_assert_irqs_disabled(); 622 623 if (rq_order_less(rq2, rq1)) 624 swap(rq1, rq2); 625 626 raw_spin_rq_lock(rq1); 627 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 628 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 629 630 double_rq_clock_clear_update(rq1, rq2); 631 } 632 #endif 633 634 /* 635 * __task_rq_lock - lock the rq @p resides on. 636 */ 637 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 638 __acquires(rq->lock) 639 { 640 struct rq *rq; 641 642 lockdep_assert_held(&p->pi_lock); 643 644 for (;;) { 645 rq = task_rq(p); 646 raw_spin_rq_lock(rq); 647 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 648 rq_pin_lock(rq, rf); 649 return rq; 650 } 651 raw_spin_rq_unlock(rq); 652 653 while (unlikely(task_on_rq_migrating(p))) 654 cpu_relax(); 655 } 656 } 657 658 /* 659 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 660 */ 661 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 662 __acquires(p->pi_lock) 663 __acquires(rq->lock) 664 { 665 struct rq *rq; 666 667 for (;;) { 668 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 669 rq = task_rq(p); 670 raw_spin_rq_lock(rq); 671 /* 672 * move_queued_task() task_rq_lock() 673 * 674 * ACQUIRE (rq->lock) 675 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 676 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 677 * [S] ->cpu = new_cpu [L] task_rq() 678 * [L] ->on_rq 679 * RELEASE (rq->lock) 680 * 681 * If we observe the old CPU in task_rq_lock(), the acquire of 682 * the old rq->lock will fully serialize against the stores. 683 * 684 * If we observe the new CPU in task_rq_lock(), the address 685 * dependency headed by '[L] rq = task_rq()' and the acquire 686 * will pair with the WMB to ensure we then also see migrating. 687 */ 688 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 689 rq_pin_lock(rq, rf); 690 return rq; 691 } 692 raw_spin_rq_unlock(rq); 693 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 694 695 while (unlikely(task_on_rq_migrating(p))) 696 cpu_relax(); 697 } 698 } 699 700 /* 701 * RQ-clock updating methods: 702 */ 703 704 static void update_rq_clock_task(struct rq *rq, s64 delta) 705 { 706 /* 707 * In theory, the compile should just see 0 here, and optimize out the call 708 * to sched_rt_avg_update. But I don't trust it... 709 */ 710 s64 __maybe_unused steal = 0, irq_delta = 0; 711 712 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 713 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 714 715 /* 716 * Since irq_time is only updated on {soft,}irq_exit, we might run into 717 * this case when a previous update_rq_clock() happened inside a 718 * {soft,}IRQ region. 719 * 720 * When this happens, we stop ->clock_task and only update the 721 * prev_irq_time stamp to account for the part that fit, so that a next 722 * update will consume the rest. This ensures ->clock_task is 723 * monotonic. 724 * 725 * It does however cause some slight miss-attribution of {soft,}IRQ 726 * time, a more accurate solution would be to update the irq_time using 727 * the current rq->clock timestamp, except that would require using 728 * atomic ops. 729 */ 730 if (irq_delta > delta) 731 irq_delta = delta; 732 733 rq->prev_irq_time += irq_delta; 734 delta -= irq_delta; 735 psi_account_irqtime(rq->curr, irq_delta); 736 delayacct_irq(rq->curr, irq_delta); 737 #endif 738 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 739 if (static_key_false((¶virt_steal_rq_enabled))) { 740 steal = paravirt_steal_clock(cpu_of(rq)); 741 steal -= rq->prev_steal_time_rq; 742 743 if (unlikely(steal > delta)) 744 steal = delta; 745 746 rq->prev_steal_time_rq += steal; 747 delta -= steal; 748 } 749 #endif 750 751 rq->clock_task += delta; 752 753 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 754 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 755 update_irq_load_avg(rq, irq_delta + steal); 756 #endif 757 update_rq_clock_pelt(rq, delta); 758 } 759 760 void update_rq_clock(struct rq *rq) 761 { 762 s64 delta; 763 764 lockdep_assert_rq_held(rq); 765 766 if (rq->clock_update_flags & RQCF_ACT_SKIP) 767 return; 768 769 #ifdef CONFIG_SCHED_DEBUG 770 if (sched_feat(WARN_DOUBLE_CLOCK)) 771 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 772 rq->clock_update_flags |= RQCF_UPDATED; 773 #endif 774 775 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 776 if (delta < 0) 777 return; 778 rq->clock += delta; 779 update_rq_clock_task(rq, delta); 780 } 781 782 #ifdef CONFIG_SCHED_HRTICK 783 /* 784 * Use HR-timers to deliver accurate preemption points. 785 */ 786 787 static void hrtick_clear(struct rq *rq) 788 { 789 if (hrtimer_active(&rq->hrtick_timer)) 790 hrtimer_cancel(&rq->hrtick_timer); 791 } 792 793 /* 794 * High-resolution timer tick. 795 * Runs from hardirq context with interrupts disabled. 796 */ 797 static enum hrtimer_restart hrtick(struct hrtimer *timer) 798 { 799 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 800 struct rq_flags rf; 801 802 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 803 804 rq_lock(rq, &rf); 805 update_rq_clock(rq); 806 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 807 rq_unlock(rq, &rf); 808 809 return HRTIMER_NORESTART; 810 } 811 812 #ifdef CONFIG_SMP 813 814 static void __hrtick_restart(struct rq *rq) 815 { 816 struct hrtimer *timer = &rq->hrtick_timer; 817 ktime_t time = rq->hrtick_time; 818 819 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 820 } 821 822 /* 823 * called from hardirq (IPI) context 824 */ 825 static void __hrtick_start(void *arg) 826 { 827 struct rq *rq = arg; 828 struct rq_flags rf; 829 830 rq_lock(rq, &rf); 831 __hrtick_restart(rq); 832 rq_unlock(rq, &rf); 833 } 834 835 /* 836 * Called to set the hrtick timer state. 837 * 838 * called with rq->lock held and IRQs disabled 839 */ 840 void hrtick_start(struct rq *rq, u64 delay) 841 { 842 struct hrtimer *timer = &rq->hrtick_timer; 843 s64 delta; 844 845 /* 846 * Don't schedule slices shorter than 10000ns, that just 847 * doesn't make sense and can cause timer DoS. 848 */ 849 delta = max_t(s64, delay, 10000LL); 850 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 851 852 if (rq == this_rq()) 853 __hrtick_restart(rq); 854 else 855 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 856 } 857 858 #else 859 /* 860 * Called to set the hrtick timer state. 861 * 862 * called with rq->lock held and IRQs disabled 863 */ 864 void hrtick_start(struct rq *rq, u64 delay) 865 { 866 /* 867 * Don't schedule slices shorter than 10000ns, that just 868 * doesn't make sense. Rely on vruntime for fairness. 869 */ 870 delay = max_t(u64, delay, 10000LL); 871 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 872 HRTIMER_MODE_REL_PINNED_HARD); 873 } 874 875 #endif /* CONFIG_SMP */ 876 877 static void hrtick_rq_init(struct rq *rq) 878 { 879 #ifdef CONFIG_SMP 880 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 881 #endif 882 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 883 rq->hrtick_timer.function = hrtick; 884 } 885 #else /* CONFIG_SCHED_HRTICK */ 886 static inline void hrtick_clear(struct rq *rq) 887 { 888 } 889 890 static inline void hrtick_rq_init(struct rq *rq) 891 { 892 } 893 #endif /* CONFIG_SCHED_HRTICK */ 894 895 /* 896 * try_cmpxchg based fetch_or() macro so it works for different integer types: 897 */ 898 #define fetch_or(ptr, mask) \ 899 ({ \ 900 typeof(ptr) _ptr = (ptr); \ 901 typeof(mask) _mask = (mask); \ 902 typeof(*_ptr) _val = *_ptr; \ 903 \ 904 do { \ 905 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 906 _val; \ 907 }) 908 909 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 910 /* 911 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 912 * this avoids any races wrt polling state changes and thereby avoids 913 * spurious IPIs. 914 */ 915 static inline bool set_nr_and_not_polling(struct task_struct *p) 916 { 917 struct thread_info *ti = task_thread_info(p); 918 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 919 } 920 921 /* 922 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 923 * 924 * If this returns true, then the idle task promises to call 925 * sched_ttwu_pending() and reschedule soon. 926 */ 927 static bool set_nr_if_polling(struct task_struct *p) 928 { 929 struct thread_info *ti = task_thread_info(p); 930 typeof(ti->flags) val = READ_ONCE(ti->flags); 931 932 do { 933 if (!(val & _TIF_POLLING_NRFLAG)) 934 return false; 935 if (val & _TIF_NEED_RESCHED) 936 return true; 937 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 938 939 return true; 940 } 941 942 #else 943 static inline bool set_nr_and_not_polling(struct task_struct *p) 944 { 945 set_tsk_need_resched(p); 946 return true; 947 } 948 949 #ifdef CONFIG_SMP 950 static inline bool set_nr_if_polling(struct task_struct *p) 951 { 952 return false; 953 } 954 #endif 955 #endif 956 957 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 958 { 959 struct wake_q_node *node = &task->wake_q; 960 961 /* 962 * Atomically grab the task, if ->wake_q is !nil already it means 963 * it's already queued (either by us or someone else) and will get the 964 * wakeup due to that. 965 * 966 * In order to ensure that a pending wakeup will observe our pending 967 * state, even in the failed case, an explicit smp_mb() must be used. 968 */ 969 smp_mb__before_atomic(); 970 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 971 return false; 972 973 /* 974 * The head is context local, there can be no concurrency. 975 */ 976 *head->lastp = node; 977 head->lastp = &node->next; 978 return true; 979 } 980 981 /** 982 * wake_q_add() - queue a wakeup for 'later' waking. 983 * @head: the wake_q_head to add @task to 984 * @task: the task to queue for 'later' wakeup 985 * 986 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 987 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 988 * instantly. 989 * 990 * This function must be used as-if it were wake_up_process(); IOW the task 991 * must be ready to be woken at this location. 992 */ 993 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 994 { 995 if (__wake_q_add(head, task)) 996 get_task_struct(task); 997 } 998 999 /** 1000 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1001 * @head: the wake_q_head to add @task to 1002 * @task: the task to queue for 'later' wakeup 1003 * 1004 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1005 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1006 * instantly. 1007 * 1008 * This function must be used as-if it were wake_up_process(); IOW the task 1009 * must be ready to be woken at this location. 1010 * 1011 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1012 * that already hold reference to @task can call the 'safe' version and trust 1013 * wake_q to do the right thing depending whether or not the @task is already 1014 * queued for wakeup. 1015 */ 1016 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1017 { 1018 if (!__wake_q_add(head, task)) 1019 put_task_struct(task); 1020 } 1021 1022 void wake_up_q(struct wake_q_head *head) 1023 { 1024 struct wake_q_node *node = head->first; 1025 1026 while (node != WAKE_Q_TAIL) { 1027 struct task_struct *task; 1028 1029 task = container_of(node, struct task_struct, wake_q); 1030 /* Task can safely be re-inserted now: */ 1031 node = node->next; 1032 task->wake_q.next = NULL; 1033 1034 /* 1035 * wake_up_process() executes a full barrier, which pairs with 1036 * the queueing in wake_q_add() so as not to miss wakeups. 1037 */ 1038 wake_up_process(task); 1039 put_task_struct(task); 1040 } 1041 } 1042 1043 /* 1044 * resched_curr - mark rq's current task 'to be rescheduled now'. 1045 * 1046 * On UP this means the setting of the need_resched flag, on SMP it 1047 * might also involve a cross-CPU call to trigger the scheduler on 1048 * the target CPU. 1049 */ 1050 void resched_curr(struct rq *rq) 1051 { 1052 struct task_struct *curr = rq->curr; 1053 int cpu; 1054 1055 lockdep_assert_rq_held(rq); 1056 1057 if (test_tsk_need_resched(curr)) 1058 return; 1059 1060 cpu = cpu_of(rq); 1061 1062 if (cpu == smp_processor_id()) { 1063 set_tsk_need_resched(curr); 1064 set_preempt_need_resched(); 1065 return; 1066 } 1067 1068 if (set_nr_and_not_polling(curr)) 1069 smp_send_reschedule(cpu); 1070 else 1071 trace_sched_wake_idle_without_ipi(cpu); 1072 } 1073 1074 void resched_cpu(int cpu) 1075 { 1076 struct rq *rq = cpu_rq(cpu); 1077 unsigned long flags; 1078 1079 raw_spin_rq_lock_irqsave(rq, flags); 1080 if (cpu_online(cpu) || cpu == smp_processor_id()) 1081 resched_curr(rq); 1082 raw_spin_rq_unlock_irqrestore(rq, flags); 1083 } 1084 1085 #ifdef CONFIG_SMP 1086 #ifdef CONFIG_NO_HZ_COMMON 1087 /* 1088 * In the semi idle case, use the nearest busy CPU for migrating timers 1089 * from an idle CPU. This is good for power-savings. 1090 * 1091 * We don't do similar optimization for completely idle system, as 1092 * selecting an idle CPU will add more delays to the timers than intended 1093 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1094 */ 1095 int get_nohz_timer_target(void) 1096 { 1097 int i, cpu = smp_processor_id(), default_cpu = -1; 1098 struct sched_domain *sd; 1099 const struct cpumask *hk_mask; 1100 1101 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1102 if (!idle_cpu(cpu)) 1103 return cpu; 1104 default_cpu = cpu; 1105 } 1106 1107 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1108 1109 guard(rcu)(); 1110 1111 for_each_domain(cpu, sd) { 1112 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1113 if (cpu == i) 1114 continue; 1115 1116 if (!idle_cpu(i)) 1117 return i; 1118 } 1119 } 1120 1121 if (default_cpu == -1) 1122 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1123 1124 return default_cpu; 1125 } 1126 1127 /* 1128 * When add_timer_on() enqueues a timer into the timer wheel of an 1129 * idle CPU then this timer might expire before the next timer event 1130 * which is scheduled to wake up that CPU. In case of a completely 1131 * idle system the next event might even be infinite time into the 1132 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1133 * leaves the inner idle loop so the newly added timer is taken into 1134 * account when the CPU goes back to idle and evaluates the timer 1135 * wheel for the next timer event. 1136 */ 1137 static void wake_up_idle_cpu(int cpu) 1138 { 1139 struct rq *rq = cpu_rq(cpu); 1140 1141 if (cpu == smp_processor_id()) 1142 return; 1143 1144 /* 1145 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1146 * part of the idle loop. This forces an exit from the idle loop 1147 * and a round trip to schedule(). Now this could be optimized 1148 * because a simple new idle loop iteration is enough to 1149 * re-evaluate the next tick. Provided some re-ordering of tick 1150 * nohz functions that would need to follow TIF_NR_POLLING 1151 * clearing: 1152 * 1153 * - On most architectures, a simple fetch_or on ti::flags with a 1154 * "0" value would be enough to know if an IPI needs to be sent. 1155 * 1156 * - x86 needs to perform a last need_resched() check between 1157 * monitor and mwait which doesn't take timers into account. 1158 * There a dedicated TIF_TIMER flag would be required to 1159 * fetch_or here and be checked along with TIF_NEED_RESCHED 1160 * before mwait(). 1161 * 1162 * However, remote timer enqueue is not such a frequent event 1163 * and testing of the above solutions didn't appear to report 1164 * much benefits. 1165 */ 1166 if (set_nr_and_not_polling(rq->idle)) 1167 smp_send_reschedule(cpu); 1168 else 1169 trace_sched_wake_idle_without_ipi(cpu); 1170 } 1171 1172 static bool wake_up_full_nohz_cpu(int cpu) 1173 { 1174 /* 1175 * We just need the target to call irq_exit() and re-evaluate 1176 * the next tick. The nohz full kick at least implies that. 1177 * If needed we can still optimize that later with an 1178 * empty IRQ. 1179 */ 1180 if (cpu_is_offline(cpu)) 1181 return true; /* Don't try to wake offline CPUs. */ 1182 if (tick_nohz_full_cpu(cpu)) { 1183 if (cpu != smp_processor_id() || 1184 tick_nohz_tick_stopped()) 1185 tick_nohz_full_kick_cpu(cpu); 1186 return true; 1187 } 1188 1189 return false; 1190 } 1191 1192 /* 1193 * Wake up the specified CPU. If the CPU is going offline, it is the 1194 * caller's responsibility to deal with the lost wakeup, for example, 1195 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1196 */ 1197 void wake_up_nohz_cpu(int cpu) 1198 { 1199 if (!wake_up_full_nohz_cpu(cpu)) 1200 wake_up_idle_cpu(cpu); 1201 } 1202 1203 static void nohz_csd_func(void *info) 1204 { 1205 struct rq *rq = info; 1206 int cpu = cpu_of(rq); 1207 unsigned int flags; 1208 1209 /* 1210 * Release the rq::nohz_csd. 1211 */ 1212 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1213 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1214 1215 rq->idle_balance = idle_cpu(cpu); 1216 if (rq->idle_balance && !need_resched()) { 1217 rq->nohz_idle_balance = flags; 1218 raise_softirq_irqoff(SCHED_SOFTIRQ); 1219 } 1220 } 1221 1222 #endif /* CONFIG_NO_HZ_COMMON */ 1223 1224 #ifdef CONFIG_NO_HZ_FULL 1225 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1226 { 1227 if (rq->nr_running != 1) 1228 return false; 1229 1230 if (p->sched_class != &fair_sched_class) 1231 return false; 1232 1233 if (!task_on_rq_queued(p)) 1234 return false; 1235 1236 return true; 1237 } 1238 1239 bool sched_can_stop_tick(struct rq *rq) 1240 { 1241 int fifo_nr_running; 1242 1243 /* Deadline tasks, even if single, need the tick */ 1244 if (rq->dl.dl_nr_running) 1245 return false; 1246 1247 /* 1248 * If there are more than one RR tasks, we need the tick to affect the 1249 * actual RR behaviour. 1250 */ 1251 if (rq->rt.rr_nr_running) { 1252 if (rq->rt.rr_nr_running == 1) 1253 return true; 1254 else 1255 return false; 1256 } 1257 1258 /* 1259 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1260 * forced preemption between FIFO tasks. 1261 */ 1262 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1263 if (fifo_nr_running) 1264 return true; 1265 1266 /* 1267 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1268 * left. For CFS, if there's more than one we need the tick for 1269 * involuntary preemption. For SCX, ask. 1270 */ 1271 if (!scx_switched_all() && rq->nr_running > 1) 1272 return false; 1273 1274 if (scx_enabled() && !scx_can_stop_tick(rq)) 1275 return false; 1276 1277 /* 1278 * If there is one task and it has CFS runtime bandwidth constraints 1279 * and it's on the cpu now we don't want to stop the tick. 1280 * This check prevents clearing the bit if a newly enqueued task here is 1281 * dequeued by migrating while the constrained task continues to run. 1282 * E.g. going from 2->1 without going through pick_next_task(). 1283 */ 1284 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) { 1285 if (cfs_task_bw_constrained(rq->curr)) 1286 return false; 1287 } 1288 1289 return true; 1290 } 1291 #endif /* CONFIG_NO_HZ_FULL */ 1292 #endif /* CONFIG_SMP */ 1293 1294 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1295 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1296 /* 1297 * Iterate task_group tree rooted at *from, calling @down when first entering a 1298 * node and @up when leaving it for the final time. 1299 * 1300 * Caller must hold rcu_lock or sufficient equivalent. 1301 */ 1302 int walk_tg_tree_from(struct task_group *from, 1303 tg_visitor down, tg_visitor up, void *data) 1304 { 1305 struct task_group *parent, *child; 1306 int ret; 1307 1308 parent = from; 1309 1310 down: 1311 ret = (*down)(parent, data); 1312 if (ret) 1313 goto out; 1314 list_for_each_entry_rcu(child, &parent->children, siblings) { 1315 parent = child; 1316 goto down; 1317 1318 up: 1319 continue; 1320 } 1321 ret = (*up)(parent, data); 1322 if (ret || parent == from) 1323 goto out; 1324 1325 child = parent; 1326 parent = parent->parent; 1327 if (parent) 1328 goto up; 1329 out: 1330 return ret; 1331 } 1332 1333 int tg_nop(struct task_group *tg, void *data) 1334 { 1335 return 0; 1336 } 1337 #endif 1338 1339 void set_load_weight(struct task_struct *p, bool update_load) 1340 { 1341 int prio = p->static_prio - MAX_RT_PRIO; 1342 struct load_weight lw; 1343 1344 if (task_has_idle_policy(p)) { 1345 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1346 lw.inv_weight = WMULT_IDLEPRIO; 1347 } else { 1348 lw.weight = scale_load(sched_prio_to_weight[prio]); 1349 lw.inv_weight = sched_prio_to_wmult[prio]; 1350 } 1351 1352 /* 1353 * SCHED_OTHER tasks have to update their load when changing their 1354 * weight 1355 */ 1356 if (update_load && p->sched_class->reweight_task) 1357 p->sched_class->reweight_task(task_rq(p), p, &lw); 1358 else 1359 p->se.load = lw; 1360 } 1361 1362 #ifdef CONFIG_UCLAMP_TASK 1363 /* 1364 * Serializes updates of utilization clamp values 1365 * 1366 * The (slow-path) user-space triggers utilization clamp value updates which 1367 * can require updates on (fast-path) scheduler's data structures used to 1368 * support enqueue/dequeue operations. 1369 * While the per-CPU rq lock protects fast-path update operations, user-space 1370 * requests are serialized using a mutex to reduce the risk of conflicting 1371 * updates or API abuses. 1372 */ 1373 static DEFINE_MUTEX(uclamp_mutex); 1374 1375 /* Max allowed minimum utilization */ 1376 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1377 1378 /* Max allowed maximum utilization */ 1379 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1380 1381 /* 1382 * By default RT tasks run at the maximum performance point/capacity of the 1383 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1384 * SCHED_CAPACITY_SCALE. 1385 * 1386 * This knob allows admins to change the default behavior when uclamp is being 1387 * used. In battery powered devices, particularly, running at the maximum 1388 * capacity and frequency will increase energy consumption and shorten the 1389 * battery life. 1390 * 1391 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1392 * 1393 * This knob will not override the system default sched_util_clamp_min defined 1394 * above. 1395 */ 1396 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1397 1398 /* All clamps are required to be less or equal than these values */ 1399 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1400 1401 /* 1402 * This static key is used to reduce the uclamp overhead in the fast path. It 1403 * primarily disables the call to uclamp_rq_{inc, dec}() in 1404 * enqueue/dequeue_task(). 1405 * 1406 * This allows users to continue to enable uclamp in their kernel config with 1407 * minimum uclamp overhead in the fast path. 1408 * 1409 * As soon as userspace modifies any of the uclamp knobs, the static key is 1410 * enabled, since we have an actual users that make use of uclamp 1411 * functionality. 1412 * 1413 * The knobs that would enable this static key are: 1414 * 1415 * * A task modifying its uclamp value with sched_setattr(). 1416 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1417 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1418 */ 1419 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1420 1421 static inline unsigned int 1422 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1423 unsigned int clamp_value) 1424 { 1425 /* 1426 * Avoid blocked utilization pushing up the frequency when we go 1427 * idle (which drops the max-clamp) by retaining the last known 1428 * max-clamp. 1429 */ 1430 if (clamp_id == UCLAMP_MAX) { 1431 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1432 return clamp_value; 1433 } 1434 1435 return uclamp_none(UCLAMP_MIN); 1436 } 1437 1438 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1439 unsigned int clamp_value) 1440 { 1441 /* Reset max-clamp retention only on idle exit */ 1442 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1443 return; 1444 1445 uclamp_rq_set(rq, clamp_id, clamp_value); 1446 } 1447 1448 static inline 1449 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1450 unsigned int clamp_value) 1451 { 1452 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1453 int bucket_id = UCLAMP_BUCKETS - 1; 1454 1455 /* 1456 * Since both min and max clamps are max aggregated, find the 1457 * top most bucket with tasks in. 1458 */ 1459 for ( ; bucket_id >= 0; bucket_id--) { 1460 if (!bucket[bucket_id].tasks) 1461 continue; 1462 return bucket[bucket_id].value; 1463 } 1464 1465 /* No tasks -- default clamp values */ 1466 return uclamp_idle_value(rq, clamp_id, clamp_value); 1467 } 1468 1469 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1470 { 1471 unsigned int default_util_min; 1472 struct uclamp_se *uc_se; 1473 1474 lockdep_assert_held(&p->pi_lock); 1475 1476 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1477 1478 /* Only sync if user didn't override the default */ 1479 if (uc_se->user_defined) 1480 return; 1481 1482 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1483 uclamp_se_set(uc_se, default_util_min, false); 1484 } 1485 1486 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1487 { 1488 if (!rt_task(p)) 1489 return; 1490 1491 /* Protect updates to p->uclamp_* */ 1492 guard(task_rq_lock)(p); 1493 __uclamp_update_util_min_rt_default(p); 1494 } 1495 1496 static inline struct uclamp_se 1497 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1498 { 1499 /* Copy by value as we could modify it */ 1500 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1501 #ifdef CONFIG_UCLAMP_TASK_GROUP 1502 unsigned int tg_min, tg_max, value; 1503 1504 /* 1505 * Tasks in autogroups or root task group will be 1506 * restricted by system defaults. 1507 */ 1508 if (task_group_is_autogroup(task_group(p))) 1509 return uc_req; 1510 if (task_group(p) == &root_task_group) 1511 return uc_req; 1512 1513 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1514 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1515 value = uc_req.value; 1516 value = clamp(value, tg_min, tg_max); 1517 uclamp_se_set(&uc_req, value, false); 1518 #endif 1519 1520 return uc_req; 1521 } 1522 1523 /* 1524 * The effective clamp bucket index of a task depends on, by increasing 1525 * priority: 1526 * - the task specific clamp value, when explicitly requested from userspace 1527 * - the task group effective clamp value, for tasks not either in the root 1528 * group or in an autogroup 1529 * - the system default clamp value, defined by the sysadmin 1530 */ 1531 static inline struct uclamp_se 1532 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1533 { 1534 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1535 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1536 1537 /* System default restrictions always apply */ 1538 if (unlikely(uc_req.value > uc_max.value)) 1539 return uc_max; 1540 1541 return uc_req; 1542 } 1543 1544 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1545 { 1546 struct uclamp_se uc_eff; 1547 1548 /* Task currently refcounted: use back-annotated (effective) value */ 1549 if (p->uclamp[clamp_id].active) 1550 return (unsigned long)p->uclamp[clamp_id].value; 1551 1552 uc_eff = uclamp_eff_get(p, clamp_id); 1553 1554 return (unsigned long)uc_eff.value; 1555 } 1556 1557 /* 1558 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1559 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1560 * updates the rq's clamp value if required. 1561 * 1562 * Tasks can have a task-specific value requested from user-space, track 1563 * within each bucket the maximum value for tasks refcounted in it. 1564 * This "local max aggregation" allows to track the exact "requested" value 1565 * for each bucket when all its RUNNABLE tasks require the same clamp. 1566 */ 1567 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1568 enum uclamp_id clamp_id) 1569 { 1570 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1571 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1572 struct uclamp_bucket *bucket; 1573 1574 lockdep_assert_rq_held(rq); 1575 1576 /* Update task effective clamp */ 1577 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1578 1579 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1580 bucket->tasks++; 1581 uc_se->active = true; 1582 1583 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1584 1585 /* 1586 * Local max aggregation: rq buckets always track the max 1587 * "requested" clamp value of its RUNNABLE tasks. 1588 */ 1589 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1590 bucket->value = uc_se->value; 1591 1592 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1593 uclamp_rq_set(rq, clamp_id, uc_se->value); 1594 } 1595 1596 /* 1597 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1598 * is released. If this is the last task reference counting the rq's max 1599 * active clamp value, then the rq's clamp value is updated. 1600 * 1601 * Both refcounted tasks and rq's cached clamp values are expected to be 1602 * always valid. If it's detected they are not, as defensive programming, 1603 * enforce the expected state and warn. 1604 */ 1605 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1606 enum uclamp_id clamp_id) 1607 { 1608 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1609 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1610 struct uclamp_bucket *bucket; 1611 unsigned int bkt_clamp; 1612 unsigned int rq_clamp; 1613 1614 lockdep_assert_rq_held(rq); 1615 1616 /* 1617 * If sched_uclamp_used was enabled after task @p was enqueued, 1618 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1619 * 1620 * In this case the uc_se->active flag should be false since no uclamp 1621 * accounting was performed at enqueue time and we can just return 1622 * here. 1623 * 1624 * Need to be careful of the following enqueue/dequeue ordering 1625 * problem too 1626 * 1627 * enqueue(taskA) 1628 * // sched_uclamp_used gets enabled 1629 * enqueue(taskB) 1630 * dequeue(taskA) 1631 * // Must not decrement bucket->tasks here 1632 * dequeue(taskB) 1633 * 1634 * where we could end up with stale data in uc_se and 1635 * bucket[uc_se->bucket_id]. 1636 * 1637 * The following check here eliminates the possibility of such race. 1638 */ 1639 if (unlikely(!uc_se->active)) 1640 return; 1641 1642 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1643 1644 SCHED_WARN_ON(!bucket->tasks); 1645 if (likely(bucket->tasks)) 1646 bucket->tasks--; 1647 1648 uc_se->active = false; 1649 1650 /* 1651 * Keep "local max aggregation" simple and accept to (possibly) 1652 * overboost some RUNNABLE tasks in the same bucket. 1653 * The rq clamp bucket value is reset to its base value whenever 1654 * there are no more RUNNABLE tasks refcounting it. 1655 */ 1656 if (likely(bucket->tasks)) 1657 return; 1658 1659 rq_clamp = uclamp_rq_get(rq, clamp_id); 1660 /* 1661 * Defensive programming: this should never happen. If it happens, 1662 * e.g. due to future modification, warn and fix up the expected value. 1663 */ 1664 SCHED_WARN_ON(bucket->value > rq_clamp); 1665 if (bucket->value >= rq_clamp) { 1666 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1667 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1668 } 1669 } 1670 1671 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1672 { 1673 enum uclamp_id clamp_id; 1674 1675 /* 1676 * Avoid any overhead until uclamp is actually used by the userspace. 1677 * 1678 * The condition is constructed such that a NOP is generated when 1679 * sched_uclamp_used is disabled. 1680 */ 1681 if (!static_branch_unlikely(&sched_uclamp_used)) 1682 return; 1683 1684 if (unlikely(!p->sched_class->uclamp_enabled)) 1685 return; 1686 1687 for_each_clamp_id(clamp_id) 1688 uclamp_rq_inc_id(rq, p, clamp_id); 1689 1690 /* Reset clamp idle holding when there is one RUNNABLE task */ 1691 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1692 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1693 } 1694 1695 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1696 { 1697 enum uclamp_id clamp_id; 1698 1699 /* 1700 * Avoid any overhead until uclamp is actually used by the userspace. 1701 * 1702 * The condition is constructed such that a NOP is generated when 1703 * sched_uclamp_used is disabled. 1704 */ 1705 if (!static_branch_unlikely(&sched_uclamp_used)) 1706 return; 1707 1708 if (unlikely(!p->sched_class->uclamp_enabled)) 1709 return; 1710 1711 for_each_clamp_id(clamp_id) 1712 uclamp_rq_dec_id(rq, p, clamp_id); 1713 } 1714 1715 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1716 enum uclamp_id clamp_id) 1717 { 1718 if (!p->uclamp[clamp_id].active) 1719 return; 1720 1721 uclamp_rq_dec_id(rq, p, clamp_id); 1722 uclamp_rq_inc_id(rq, p, clamp_id); 1723 1724 /* 1725 * Make sure to clear the idle flag if we've transiently reached 0 1726 * active tasks on rq. 1727 */ 1728 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1729 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1730 } 1731 1732 static inline void 1733 uclamp_update_active(struct task_struct *p) 1734 { 1735 enum uclamp_id clamp_id; 1736 struct rq_flags rf; 1737 struct rq *rq; 1738 1739 /* 1740 * Lock the task and the rq where the task is (or was) queued. 1741 * 1742 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1743 * price to pay to safely serialize util_{min,max} updates with 1744 * enqueues, dequeues and migration operations. 1745 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1746 */ 1747 rq = task_rq_lock(p, &rf); 1748 1749 /* 1750 * Setting the clamp bucket is serialized by task_rq_lock(). 1751 * If the task is not yet RUNNABLE and its task_struct is not 1752 * affecting a valid clamp bucket, the next time it's enqueued, 1753 * it will already see the updated clamp bucket value. 1754 */ 1755 for_each_clamp_id(clamp_id) 1756 uclamp_rq_reinc_id(rq, p, clamp_id); 1757 1758 task_rq_unlock(rq, p, &rf); 1759 } 1760 1761 #ifdef CONFIG_UCLAMP_TASK_GROUP 1762 static inline void 1763 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1764 { 1765 struct css_task_iter it; 1766 struct task_struct *p; 1767 1768 css_task_iter_start(css, 0, &it); 1769 while ((p = css_task_iter_next(&it))) 1770 uclamp_update_active(p); 1771 css_task_iter_end(&it); 1772 } 1773 1774 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1775 #endif 1776 1777 #ifdef CONFIG_SYSCTL 1778 #ifdef CONFIG_UCLAMP_TASK_GROUP 1779 static void uclamp_update_root_tg(void) 1780 { 1781 struct task_group *tg = &root_task_group; 1782 1783 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1784 sysctl_sched_uclamp_util_min, false); 1785 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1786 sysctl_sched_uclamp_util_max, false); 1787 1788 guard(rcu)(); 1789 cpu_util_update_eff(&root_task_group.css); 1790 } 1791 #else 1792 static void uclamp_update_root_tg(void) { } 1793 #endif 1794 1795 static void uclamp_sync_util_min_rt_default(void) 1796 { 1797 struct task_struct *g, *p; 1798 1799 /* 1800 * copy_process() sysctl_uclamp 1801 * uclamp_min_rt = X; 1802 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1803 * // link thread smp_mb__after_spinlock() 1804 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1805 * sched_post_fork() for_each_process_thread() 1806 * __uclamp_sync_rt() __uclamp_sync_rt() 1807 * 1808 * Ensures that either sched_post_fork() will observe the new 1809 * uclamp_min_rt or for_each_process_thread() will observe the new 1810 * task. 1811 */ 1812 read_lock(&tasklist_lock); 1813 smp_mb__after_spinlock(); 1814 read_unlock(&tasklist_lock); 1815 1816 guard(rcu)(); 1817 for_each_process_thread(g, p) 1818 uclamp_update_util_min_rt_default(p); 1819 } 1820 1821 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1822 void *buffer, size_t *lenp, loff_t *ppos) 1823 { 1824 bool update_root_tg = false; 1825 int old_min, old_max, old_min_rt; 1826 int result; 1827 1828 guard(mutex)(&uclamp_mutex); 1829 1830 old_min = sysctl_sched_uclamp_util_min; 1831 old_max = sysctl_sched_uclamp_util_max; 1832 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1833 1834 result = proc_dointvec(table, write, buffer, lenp, ppos); 1835 if (result) 1836 goto undo; 1837 if (!write) 1838 return 0; 1839 1840 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1841 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1842 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1843 1844 result = -EINVAL; 1845 goto undo; 1846 } 1847 1848 if (old_min != sysctl_sched_uclamp_util_min) { 1849 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1850 sysctl_sched_uclamp_util_min, false); 1851 update_root_tg = true; 1852 } 1853 if (old_max != sysctl_sched_uclamp_util_max) { 1854 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1855 sysctl_sched_uclamp_util_max, false); 1856 update_root_tg = true; 1857 } 1858 1859 if (update_root_tg) { 1860 static_branch_enable(&sched_uclamp_used); 1861 uclamp_update_root_tg(); 1862 } 1863 1864 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1865 static_branch_enable(&sched_uclamp_used); 1866 uclamp_sync_util_min_rt_default(); 1867 } 1868 1869 /* 1870 * We update all RUNNABLE tasks only when task groups are in use. 1871 * Otherwise, keep it simple and do just a lazy update at each next 1872 * task enqueue time. 1873 */ 1874 return 0; 1875 1876 undo: 1877 sysctl_sched_uclamp_util_min = old_min; 1878 sysctl_sched_uclamp_util_max = old_max; 1879 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1880 return result; 1881 } 1882 #endif 1883 1884 static void uclamp_fork(struct task_struct *p) 1885 { 1886 enum uclamp_id clamp_id; 1887 1888 /* 1889 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1890 * as the task is still at its early fork stages. 1891 */ 1892 for_each_clamp_id(clamp_id) 1893 p->uclamp[clamp_id].active = false; 1894 1895 if (likely(!p->sched_reset_on_fork)) 1896 return; 1897 1898 for_each_clamp_id(clamp_id) { 1899 uclamp_se_set(&p->uclamp_req[clamp_id], 1900 uclamp_none(clamp_id), false); 1901 } 1902 } 1903 1904 static void uclamp_post_fork(struct task_struct *p) 1905 { 1906 uclamp_update_util_min_rt_default(p); 1907 } 1908 1909 static void __init init_uclamp_rq(struct rq *rq) 1910 { 1911 enum uclamp_id clamp_id; 1912 struct uclamp_rq *uc_rq = rq->uclamp; 1913 1914 for_each_clamp_id(clamp_id) { 1915 uc_rq[clamp_id] = (struct uclamp_rq) { 1916 .value = uclamp_none(clamp_id) 1917 }; 1918 } 1919 1920 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1921 } 1922 1923 static void __init init_uclamp(void) 1924 { 1925 struct uclamp_se uc_max = {}; 1926 enum uclamp_id clamp_id; 1927 int cpu; 1928 1929 for_each_possible_cpu(cpu) 1930 init_uclamp_rq(cpu_rq(cpu)); 1931 1932 for_each_clamp_id(clamp_id) { 1933 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1934 uclamp_none(clamp_id), false); 1935 } 1936 1937 /* System defaults allow max clamp values for both indexes */ 1938 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1939 for_each_clamp_id(clamp_id) { 1940 uclamp_default[clamp_id] = uc_max; 1941 #ifdef CONFIG_UCLAMP_TASK_GROUP 1942 root_task_group.uclamp_req[clamp_id] = uc_max; 1943 root_task_group.uclamp[clamp_id] = uc_max; 1944 #endif 1945 } 1946 } 1947 1948 #else /* !CONFIG_UCLAMP_TASK */ 1949 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1950 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1951 static inline void uclamp_fork(struct task_struct *p) { } 1952 static inline void uclamp_post_fork(struct task_struct *p) { } 1953 static inline void init_uclamp(void) { } 1954 #endif /* CONFIG_UCLAMP_TASK */ 1955 1956 bool sched_task_on_rq(struct task_struct *p) 1957 { 1958 return task_on_rq_queued(p); 1959 } 1960 1961 unsigned long get_wchan(struct task_struct *p) 1962 { 1963 unsigned long ip = 0; 1964 unsigned int state; 1965 1966 if (!p || p == current) 1967 return 0; 1968 1969 /* Only get wchan if task is blocked and we can keep it that way. */ 1970 raw_spin_lock_irq(&p->pi_lock); 1971 state = READ_ONCE(p->__state); 1972 smp_rmb(); /* see try_to_wake_up() */ 1973 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 1974 ip = __get_wchan(p); 1975 raw_spin_unlock_irq(&p->pi_lock); 1976 1977 return ip; 1978 } 1979 1980 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1981 { 1982 if (!(flags & ENQUEUE_NOCLOCK)) 1983 update_rq_clock(rq); 1984 1985 if (!(flags & ENQUEUE_RESTORE)) { 1986 sched_info_enqueue(rq, p); 1987 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 1988 } 1989 1990 uclamp_rq_inc(rq, p); 1991 p->sched_class->enqueue_task(rq, p, flags); 1992 1993 if (sched_core_enabled(rq)) 1994 sched_core_enqueue(rq, p); 1995 } 1996 1997 void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1998 { 1999 if (sched_core_enabled(rq)) 2000 sched_core_dequeue(rq, p, flags); 2001 2002 if (!(flags & DEQUEUE_NOCLOCK)) 2003 update_rq_clock(rq); 2004 2005 if (!(flags & DEQUEUE_SAVE)) { 2006 sched_info_dequeue(rq, p); 2007 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2008 } 2009 2010 uclamp_rq_dec(rq, p); 2011 p->sched_class->dequeue_task(rq, p, flags); 2012 } 2013 2014 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2015 { 2016 if (task_on_rq_migrating(p)) 2017 flags |= ENQUEUE_MIGRATED; 2018 if (flags & ENQUEUE_MIGRATED) 2019 sched_mm_cid_migrate_to(rq, p); 2020 2021 enqueue_task(rq, p, flags); 2022 2023 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2024 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2025 } 2026 2027 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2028 { 2029 WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING); 2030 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2031 2032 dequeue_task(rq, p, flags); 2033 } 2034 2035 /** 2036 * task_curr - is this task currently executing on a CPU? 2037 * @p: the task in question. 2038 * 2039 * Return: 1 if the task is currently executing. 0 otherwise. 2040 */ 2041 inline int task_curr(const struct task_struct *p) 2042 { 2043 return cpu_curr(task_cpu(p)) == p; 2044 } 2045 2046 /* 2047 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2048 * mess with locking. 2049 */ 2050 void check_class_changing(struct rq *rq, struct task_struct *p, 2051 const struct sched_class *prev_class) 2052 { 2053 if (prev_class != p->sched_class && p->sched_class->switching_to) 2054 p->sched_class->switching_to(rq, p); 2055 } 2056 2057 /* 2058 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2059 * use the balance_callback list if you want balancing. 2060 * 2061 * this means any call to check_class_changed() must be followed by a call to 2062 * balance_callback(). 2063 */ 2064 void check_class_changed(struct rq *rq, struct task_struct *p, 2065 const struct sched_class *prev_class, 2066 int oldprio) 2067 { 2068 if (prev_class != p->sched_class) { 2069 if (prev_class->switched_from) 2070 prev_class->switched_from(rq, p); 2071 2072 p->sched_class->switched_to(rq, p); 2073 } else if (oldprio != p->prio || dl_task(p)) 2074 p->sched_class->prio_changed(rq, p, oldprio); 2075 } 2076 2077 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2078 { 2079 if (p->sched_class == rq->curr->sched_class) 2080 rq->curr->sched_class->wakeup_preempt(rq, p, flags); 2081 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2082 resched_curr(rq); 2083 2084 /* 2085 * A queue event has occurred, and we're going to schedule. In 2086 * this case, we can save a useless back to back clock update. 2087 */ 2088 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2089 rq_clock_skip_update(rq); 2090 } 2091 2092 static __always_inline 2093 int __task_state_match(struct task_struct *p, unsigned int state) 2094 { 2095 if (READ_ONCE(p->__state) & state) 2096 return 1; 2097 2098 if (READ_ONCE(p->saved_state) & state) 2099 return -1; 2100 2101 return 0; 2102 } 2103 2104 static __always_inline 2105 int task_state_match(struct task_struct *p, unsigned int state) 2106 { 2107 /* 2108 * Serialize against current_save_and_set_rtlock_wait_state(), 2109 * current_restore_rtlock_saved_state(), and __refrigerator(). 2110 */ 2111 guard(raw_spinlock_irq)(&p->pi_lock); 2112 return __task_state_match(p, state); 2113 } 2114 2115 /* 2116 * wait_task_inactive - wait for a thread to unschedule. 2117 * 2118 * Wait for the thread to block in any of the states set in @match_state. 2119 * If it changes, i.e. @p might have woken up, then return zero. When we 2120 * succeed in waiting for @p to be off its CPU, we return a positive number 2121 * (its total switch count). If a second call a short while later returns the 2122 * same number, the caller can be sure that @p has remained unscheduled the 2123 * whole time. 2124 * 2125 * The caller must ensure that the task *will* unschedule sometime soon, 2126 * else this function might spin for a *long* time. This function can't 2127 * be called with interrupts off, or it may introduce deadlock with 2128 * smp_call_function() if an IPI is sent by the same process we are 2129 * waiting to become inactive. 2130 */ 2131 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2132 { 2133 int running, queued, match; 2134 struct rq_flags rf; 2135 unsigned long ncsw; 2136 struct rq *rq; 2137 2138 for (;;) { 2139 /* 2140 * We do the initial early heuristics without holding 2141 * any task-queue locks at all. We'll only try to get 2142 * the runqueue lock when things look like they will 2143 * work out! 2144 */ 2145 rq = task_rq(p); 2146 2147 /* 2148 * If the task is actively running on another CPU 2149 * still, just relax and busy-wait without holding 2150 * any locks. 2151 * 2152 * NOTE! Since we don't hold any locks, it's not 2153 * even sure that "rq" stays as the right runqueue! 2154 * But we don't care, since "task_on_cpu()" will 2155 * return false if the runqueue has changed and p 2156 * is actually now running somewhere else! 2157 */ 2158 while (task_on_cpu(rq, p)) { 2159 if (!task_state_match(p, match_state)) 2160 return 0; 2161 cpu_relax(); 2162 } 2163 2164 /* 2165 * Ok, time to look more closely! We need the rq 2166 * lock now, to be *sure*. If we're wrong, we'll 2167 * just go back and repeat. 2168 */ 2169 rq = task_rq_lock(p, &rf); 2170 trace_sched_wait_task(p); 2171 running = task_on_cpu(rq, p); 2172 queued = task_on_rq_queued(p); 2173 ncsw = 0; 2174 if ((match = __task_state_match(p, match_state))) { 2175 /* 2176 * When matching on p->saved_state, consider this task 2177 * still queued so it will wait. 2178 */ 2179 if (match < 0) 2180 queued = 1; 2181 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2182 } 2183 task_rq_unlock(rq, p, &rf); 2184 2185 /* 2186 * If it changed from the expected state, bail out now. 2187 */ 2188 if (unlikely(!ncsw)) 2189 break; 2190 2191 /* 2192 * Was it really running after all now that we 2193 * checked with the proper locks actually held? 2194 * 2195 * Oops. Go back and try again.. 2196 */ 2197 if (unlikely(running)) { 2198 cpu_relax(); 2199 continue; 2200 } 2201 2202 /* 2203 * It's not enough that it's not actively running, 2204 * it must be off the runqueue _entirely_, and not 2205 * preempted! 2206 * 2207 * So if it was still runnable (but just not actively 2208 * running right now), it's preempted, and we should 2209 * yield - it could be a while. 2210 */ 2211 if (unlikely(queued)) { 2212 ktime_t to = NSEC_PER_SEC / HZ; 2213 2214 set_current_state(TASK_UNINTERRUPTIBLE); 2215 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2216 continue; 2217 } 2218 2219 /* 2220 * Ahh, all good. It wasn't running, and it wasn't 2221 * runnable, which means that it will never become 2222 * running in the future either. We're all done! 2223 */ 2224 break; 2225 } 2226 2227 return ncsw; 2228 } 2229 2230 #ifdef CONFIG_SMP 2231 2232 static void 2233 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2234 2235 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2236 { 2237 struct affinity_context ac = { 2238 .new_mask = cpumask_of(rq->cpu), 2239 .flags = SCA_MIGRATE_DISABLE, 2240 }; 2241 2242 if (likely(!p->migration_disabled)) 2243 return; 2244 2245 if (p->cpus_ptr != &p->cpus_mask) 2246 return; 2247 2248 /* 2249 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2250 */ 2251 __do_set_cpus_allowed(p, &ac); 2252 } 2253 2254 void migrate_disable(void) 2255 { 2256 struct task_struct *p = current; 2257 2258 if (p->migration_disabled) { 2259 p->migration_disabled++; 2260 return; 2261 } 2262 2263 guard(preempt)(); 2264 this_rq()->nr_pinned++; 2265 p->migration_disabled = 1; 2266 } 2267 EXPORT_SYMBOL_GPL(migrate_disable); 2268 2269 void migrate_enable(void) 2270 { 2271 struct task_struct *p = current; 2272 struct affinity_context ac = { 2273 .new_mask = &p->cpus_mask, 2274 .flags = SCA_MIGRATE_ENABLE, 2275 }; 2276 2277 if (p->migration_disabled > 1) { 2278 p->migration_disabled--; 2279 return; 2280 } 2281 2282 if (WARN_ON_ONCE(!p->migration_disabled)) 2283 return; 2284 2285 /* 2286 * Ensure stop_task runs either before or after this, and that 2287 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2288 */ 2289 guard(preempt)(); 2290 if (p->cpus_ptr != &p->cpus_mask) 2291 __set_cpus_allowed_ptr(p, &ac); 2292 /* 2293 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2294 * regular cpus_mask, otherwise things that race (eg. 2295 * select_fallback_rq) get confused. 2296 */ 2297 barrier(); 2298 p->migration_disabled = 0; 2299 this_rq()->nr_pinned--; 2300 } 2301 EXPORT_SYMBOL_GPL(migrate_enable); 2302 2303 static inline bool rq_has_pinned_tasks(struct rq *rq) 2304 { 2305 return rq->nr_pinned; 2306 } 2307 2308 /* 2309 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2310 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2311 */ 2312 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2313 { 2314 /* When not in the task's cpumask, no point in looking further. */ 2315 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2316 return false; 2317 2318 /* migrate_disabled() must be allowed to finish. */ 2319 if (is_migration_disabled(p)) 2320 return cpu_online(cpu); 2321 2322 /* Non kernel threads are not allowed during either online or offline. */ 2323 if (!(p->flags & PF_KTHREAD)) 2324 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2325 2326 /* KTHREAD_IS_PER_CPU is always allowed. */ 2327 if (kthread_is_per_cpu(p)) 2328 return cpu_online(cpu); 2329 2330 /* Regular kernel threads don't get to stay during offline. */ 2331 if (cpu_dying(cpu)) 2332 return false; 2333 2334 /* But are allowed during online. */ 2335 return cpu_online(cpu); 2336 } 2337 2338 /* 2339 * This is how migration works: 2340 * 2341 * 1) we invoke migration_cpu_stop() on the target CPU using 2342 * stop_one_cpu(). 2343 * 2) stopper starts to run (implicitly forcing the migrated thread 2344 * off the CPU) 2345 * 3) it checks whether the migrated task is still in the wrong runqueue. 2346 * 4) if it's in the wrong runqueue then the migration thread removes 2347 * it and puts it into the right queue. 2348 * 5) stopper completes and stop_one_cpu() returns and the migration 2349 * is done. 2350 */ 2351 2352 /* 2353 * move_queued_task - move a queued task to new rq. 2354 * 2355 * Returns (locked) new rq. Old rq's lock is released. 2356 */ 2357 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2358 struct task_struct *p, int new_cpu) 2359 { 2360 lockdep_assert_rq_held(rq); 2361 2362 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2363 set_task_cpu(p, new_cpu); 2364 rq_unlock(rq, rf); 2365 2366 rq = cpu_rq(new_cpu); 2367 2368 rq_lock(rq, rf); 2369 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2370 activate_task(rq, p, 0); 2371 wakeup_preempt(rq, p, 0); 2372 2373 return rq; 2374 } 2375 2376 struct migration_arg { 2377 struct task_struct *task; 2378 int dest_cpu; 2379 struct set_affinity_pending *pending; 2380 }; 2381 2382 /* 2383 * @refs: number of wait_for_completion() 2384 * @stop_pending: is @stop_work in use 2385 */ 2386 struct set_affinity_pending { 2387 refcount_t refs; 2388 unsigned int stop_pending; 2389 struct completion done; 2390 struct cpu_stop_work stop_work; 2391 struct migration_arg arg; 2392 }; 2393 2394 /* 2395 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2396 * this because either it can't run here any more (set_cpus_allowed() 2397 * away from this CPU, or CPU going down), or because we're 2398 * attempting to rebalance this task on exec (sched_exec). 2399 * 2400 * So we race with normal scheduler movements, but that's OK, as long 2401 * as the task is no longer on this CPU. 2402 */ 2403 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2404 struct task_struct *p, int dest_cpu) 2405 { 2406 /* Affinity changed (again). */ 2407 if (!is_cpu_allowed(p, dest_cpu)) 2408 return rq; 2409 2410 rq = move_queued_task(rq, rf, p, dest_cpu); 2411 2412 return rq; 2413 } 2414 2415 /* 2416 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2417 * and performs thread migration by bumping thread off CPU then 2418 * 'pushing' onto another runqueue. 2419 */ 2420 static int migration_cpu_stop(void *data) 2421 { 2422 struct migration_arg *arg = data; 2423 struct set_affinity_pending *pending = arg->pending; 2424 struct task_struct *p = arg->task; 2425 struct rq *rq = this_rq(); 2426 bool complete = false; 2427 struct rq_flags rf; 2428 2429 /* 2430 * The original target CPU might have gone down and we might 2431 * be on another CPU but it doesn't matter. 2432 */ 2433 local_irq_save(rf.flags); 2434 /* 2435 * We need to explicitly wake pending tasks before running 2436 * __migrate_task() such that we will not miss enforcing cpus_ptr 2437 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2438 */ 2439 flush_smp_call_function_queue(); 2440 2441 raw_spin_lock(&p->pi_lock); 2442 rq_lock(rq, &rf); 2443 2444 /* 2445 * If we were passed a pending, then ->stop_pending was set, thus 2446 * p->migration_pending must have remained stable. 2447 */ 2448 WARN_ON_ONCE(pending && pending != p->migration_pending); 2449 2450 /* 2451 * If task_rq(p) != rq, it cannot be migrated here, because we're 2452 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2453 * we're holding p->pi_lock. 2454 */ 2455 if (task_rq(p) == rq) { 2456 if (is_migration_disabled(p)) 2457 goto out; 2458 2459 if (pending) { 2460 p->migration_pending = NULL; 2461 complete = true; 2462 2463 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2464 goto out; 2465 } 2466 2467 if (task_on_rq_queued(p)) { 2468 update_rq_clock(rq); 2469 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2470 } else { 2471 p->wake_cpu = arg->dest_cpu; 2472 } 2473 2474 /* 2475 * XXX __migrate_task() can fail, at which point we might end 2476 * up running on a dodgy CPU, AFAICT this can only happen 2477 * during CPU hotplug, at which point we'll get pushed out 2478 * anyway, so it's probably not a big deal. 2479 */ 2480 2481 } else if (pending) { 2482 /* 2483 * This happens when we get migrated between migrate_enable()'s 2484 * preempt_enable() and scheduling the stopper task. At that 2485 * point we're a regular task again and not current anymore. 2486 * 2487 * A !PREEMPT kernel has a giant hole here, which makes it far 2488 * more likely. 2489 */ 2490 2491 /* 2492 * The task moved before the stopper got to run. We're holding 2493 * ->pi_lock, so the allowed mask is stable - if it got 2494 * somewhere allowed, we're done. 2495 */ 2496 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2497 p->migration_pending = NULL; 2498 complete = true; 2499 goto out; 2500 } 2501 2502 /* 2503 * When migrate_enable() hits a rq mis-match we can't reliably 2504 * determine is_migration_disabled() and so have to chase after 2505 * it. 2506 */ 2507 WARN_ON_ONCE(!pending->stop_pending); 2508 preempt_disable(); 2509 task_rq_unlock(rq, p, &rf); 2510 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2511 &pending->arg, &pending->stop_work); 2512 preempt_enable(); 2513 return 0; 2514 } 2515 out: 2516 if (pending) 2517 pending->stop_pending = false; 2518 task_rq_unlock(rq, p, &rf); 2519 2520 if (complete) 2521 complete_all(&pending->done); 2522 2523 return 0; 2524 } 2525 2526 int push_cpu_stop(void *arg) 2527 { 2528 struct rq *lowest_rq = NULL, *rq = this_rq(); 2529 struct task_struct *p = arg; 2530 2531 raw_spin_lock_irq(&p->pi_lock); 2532 raw_spin_rq_lock(rq); 2533 2534 if (task_rq(p) != rq) 2535 goto out_unlock; 2536 2537 if (is_migration_disabled(p)) { 2538 p->migration_flags |= MDF_PUSH; 2539 goto out_unlock; 2540 } 2541 2542 p->migration_flags &= ~MDF_PUSH; 2543 2544 if (p->sched_class->find_lock_rq) 2545 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2546 2547 if (!lowest_rq) 2548 goto out_unlock; 2549 2550 // XXX validate p is still the highest prio task 2551 if (task_rq(p) == rq) { 2552 deactivate_task(rq, p, 0); 2553 set_task_cpu(p, lowest_rq->cpu); 2554 activate_task(lowest_rq, p, 0); 2555 resched_curr(lowest_rq); 2556 } 2557 2558 double_unlock_balance(rq, lowest_rq); 2559 2560 out_unlock: 2561 rq->push_busy = false; 2562 raw_spin_rq_unlock(rq); 2563 raw_spin_unlock_irq(&p->pi_lock); 2564 2565 put_task_struct(p); 2566 return 0; 2567 } 2568 2569 /* 2570 * sched_class::set_cpus_allowed must do the below, but is not required to 2571 * actually call this function. 2572 */ 2573 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2574 { 2575 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2576 p->cpus_ptr = ctx->new_mask; 2577 return; 2578 } 2579 2580 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2581 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2582 2583 /* 2584 * Swap in a new user_cpus_ptr if SCA_USER flag set 2585 */ 2586 if (ctx->flags & SCA_USER) 2587 swap(p->user_cpus_ptr, ctx->user_mask); 2588 } 2589 2590 static void 2591 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2592 { 2593 struct rq *rq = task_rq(p); 2594 bool queued, running; 2595 2596 /* 2597 * This here violates the locking rules for affinity, since we're only 2598 * supposed to change these variables while holding both rq->lock and 2599 * p->pi_lock. 2600 * 2601 * HOWEVER, it magically works, because ttwu() is the only code that 2602 * accesses these variables under p->pi_lock and only does so after 2603 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2604 * before finish_task(). 2605 * 2606 * XXX do further audits, this smells like something putrid. 2607 */ 2608 if (ctx->flags & SCA_MIGRATE_DISABLE) 2609 SCHED_WARN_ON(!p->on_cpu); 2610 else 2611 lockdep_assert_held(&p->pi_lock); 2612 2613 queued = task_on_rq_queued(p); 2614 running = task_current(rq, p); 2615 2616 if (queued) { 2617 /* 2618 * Because __kthread_bind() calls this on blocked tasks without 2619 * holding rq->lock. 2620 */ 2621 lockdep_assert_rq_held(rq); 2622 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2623 } 2624 if (running) 2625 put_prev_task(rq, p); 2626 2627 p->sched_class->set_cpus_allowed(p, ctx); 2628 2629 if (queued) 2630 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2631 if (running) 2632 set_next_task(rq, p); 2633 } 2634 2635 /* 2636 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2637 * affinity (if any) should be destroyed too. 2638 */ 2639 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2640 { 2641 struct affinity_context ac = { 2642 .new_mask = new_mask, 2643 .user_mask = NULL, 2644 .flags = SCA_USER, /* clear the user requested mask */ 2645 }; 2646 union cpumask_rcuhead { 2647 cpumask_t cpumask; 2648 struct rcu_head rcu; 2649 }; 2650 2651 __do_set_cpus_allowed(p, &ac); 2652 2653 /* 2654 * Because this is called with p->pi_lock held, it is not possible 2655 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2656 * kfree_rcu(). 2657 */ 2658 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2659 } 2660 2661 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2662 int node) 2663 { 2664 cpumask_t *user_mask; 2665 unsigned long flags; 2666 2667 /* 2668 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2669 * may differ by now due to racing. 2670 */ 2671 dst->user_cpus_ptr = NULL; 2672 2673 /* 2674 * This check is racy and losing the race is a valid situation. 2675 * It is not worth the extra overhead of taking the pi_lock on 2676 * every fork/clone. 2677 */ 2678 if (data_race(!src->user_cpus_ptr)) 2679 return 0; 2680 2681 user_mask = alloc_user_cpus_ptr(node); 2682 if (!user_mask) 2683 return -ENOMEM; 2684 2685 /* 2686 * Use pi_lock to protect content of user_cpus_ptr 2687 * 2688 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2689 * do_set_cpus_allowed(). 2690 */ 2691 raw_spin_lock_irqsave(&src->pi_lock, flags); 2692 if (src->user_cpus_ptr) { 2693 swap(dst->user_cpus_ptr, user_mask); 2694 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2695 } 2696 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2697 2698 if (unlikely(user_mask)) 2699 kfree(user_mask); 2700 2701 return 0; 2702 } 2703 2704 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2705 { 2706 struct cpumask *user_mask = NULL; 2707 2708 swap(p->user_cpus_ptr, user_mask); 2709 2710 return user_mask; 2711 } 2712 2713 void release_user_cpus_ptr(struct task_struct *p) 2714 { 2715 kfree(clear_user_cpus_ptr(p)); 2716 } 2717 2718 /* 2719 * This function is wildly self concurrent; here be dragons. 2720 * 2721 * 2722 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2723 * designated task is enqueued on an allowed CPU. If that task is currently 2724 * running, we have to kick it out using the CPU stopper. 2725 * 2726 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2727 * Consider: 2728 * 2729 * Initial conditions: P0->cpus_mask = [0, 1] 2730 * 2731 * P0@CPU0 P1 2732 * 2733 * migrate_disable(); 2734 * <preempted> 2735 * set_cpus_allowed_ptr(P0, [1]); 2736 * 2737 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2738 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2739 * This means we need the following scheme: 2740 * 2741 * P0@CPU0 P1 2742 * 2743 * migrate_disable(); 2744 * <preempted> 2745 * set_cpus_allowed_ptr(P0, [1]); 2746 * <blocks> 2747 * <resumes> 2748 * migrate_enable(); 2749 * __set_cpus_allowed_ptr(); 2750 * <wakes local stopper> 2751 * `--> <woken on migration completion> 2752 * 2753 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2754 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2755 * task p are serialized by p->pi_lock, which we can leverage: the one that 2756 * should come into effect at the end of the Migrate-Disable region is the last 2757 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2758 * but we still need to properly signal those waiting tasks at the appropriate 2759 * moment. 2760 * 2761 * This is implemented using struct set_affinity_pending. The first 2762 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2763 * setup an instance of that struct and install it on the targeted task_struct. 2764 * Any and all further callers will reuse that instance. Those then wait for 2765 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2766 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2767 * 2768 * 2769 * (1) In the cases covered above. There is one more where the completion is 2770 * signaled within affine_move_task() itself: when a subsequent affinity request 2771 * occurs after the stopper bailed out due to the targeted task still being 2772 * Migrate-Disable. Consider: 2773 * 2774 * Initial conditions: P0->cpus_mask = [0, 1] 2775 * 2776 * CPU0 P1 P2 2777 * <P0> 2778 * migrate_disable(); 2779 * <preempted> 2780 * set_cpus_allowed_ptr(P0, [1]); 2781 * <blocks> 2782 * <migration/0> 2783 * migration_cpu_stop() 2784 * is_migration_disabled() 2785 * <bails> 2786 * set_cpus_allowed_ptr(P0, [0, 1]); 2787 * <signal completion> 2788 * <awakes> 2789 * 2790 * Note that the above is safe vs a concurrent migrate_enable(), as any 2791 * pending affinity completion is preceded by an uninstallation of 2792 * p->migration_pending done with p->pi_lock held. 2793 */ 2794 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2795 int dest_cpu, unsigned int flags) 2796 __releases(rq->lock) 2797 __releases(p->pi_lock) 2798 { 2799 struct set_affinity_pending my_pending = { }, *pending = NULL; 2800 bool stop_pending, complete = false; 2801 2802 /* Can the task run on the task's current CPU? If so, we're done */ 2803 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2804 struct task_struct *push_task = NULL; 2805 2806 if ((flags & SCA_MIGRATE_ENABLE) && 2807 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2808 rq->push_busy = true; 2809 push_task = get_task_struct(p); 2810 } 2811 2812 /* 2813 * If there are pending waiters, but no pending stop_work, 2814 * then complete now. 2815 */ 2816 pending = p->migration_pending; 2817 if (pending && !pending->stop_pending) { 2818 p->migration_pending = NULL; 2819 complete = true; 2820 } 2821 2822 preempt_disable(); 2823 task_rq_unlock(rq, p, rf); 2824 if (push_task) { 2825 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2826 p, &rq->push_work); 2827 } 2828 preempt_enable(); 2829 2830 if (complete) 2831 complete_all(&pending->done); 2832 2833 return 0; 2834 } 2835 2836 if (!(flags & SCA_MIGRATE_ENABLE)) { 2837 /* serialized by p->pi_lock */ 2838 if (!p->migration_pending) { 2839 /* Install the request */ 2840 refcount_set(&my_pending.refs, 1); 2841 init_completion(&my_pending.done); 2842 my_pending.arg = (struct migration_arg) { 2843 .task = p, 2844 .dest_cpu = dest_cpu, 2845 .pending = &my_pending, 2846 }; 2847 2848 p->migration_pending = &my_pending; 2849 } else { 2850 pending = p->migration_pending; 2851 refcount_inc(&pending->refs); 2852 /* 2853 * Affinity has changed, but we've already installed a 2854 * pending. migration_cpu_stop() *must* see this, else 2855 * we risk a completion of the pending despite having a 2856 * task on a disallowed CPU. 2857 * 2858 * Serialized by p->pi_lock, so this is safe. 2859 */ 2860 pending->arg.dest_cpu = dest_cpu; 2861 } 2862 } 2863 pending = p->migration_pending; 2864 /* 2865 * - !MIGRATE_ENABLE: 2866 * we'll have installed a pending if there wasn't one already. 2867 * 2868 * - MIGRATE_ENABLE: 2869 * we're here because the current CPU isn't matching anymore, 2870 * the only way that can happen is because of a concurrent 2871 * set_cpus_allowed_ptr() call, which should then still be 2872 * pending completion. 2873 * 2874 * Either way, we really should have a @pending here. 2875 */ 2876 if (WARN_ON_ONCE(!pending)) { 2877 task_rq_unlock(rq, p, rf); 2878 return -EINVAL; 2879 } 2880 2881 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2882 /* 2883 * MIGRATE_ENABLE gets here because 'p == current', but for 2884 * anything else we cannot do is_migration_disabled(), punt 2885 * and have the stopper function handle it all race-free. 2886 */ 2887 stop_pending = pending->stop_pending; 2888 if (!stop_pending) 2889 pending->stop_pending = true; 2890 2891 if (flags & SCA_MIGRATE_ENABLE) 2892 p->migration_flags &= ~MDF_PUSH; 2893 2894 preempt_disable(); 2895 task_rq_unlock(rq, p, rf); 2896 if (!stop_pending) { 2897 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2898 &pending->arg, &pending->stop_work); 2899 } 2900 preempt_enable(); 2901 2902 if (flags & SCA_MIGRATE_ENABLE) 2903 return 0; 2904 } else { 2905 2906 if (!is_migration_disabled(p)) { 2907 if (task_on_rq_queued(p)) 2908 rq = move_queued_task(rq, rf, p, dest_cpu); 2909 2910 if (!pending->stop_pending) { 2911 p->migration_pending = NULL; 2912 complete = true; 2913 } 2914 } 2915 task_rq_unlock(rq, p, rf); 2916 2917 if (complete) 2918 complete_all(&pending->done); 2919 } 2920 2921 wait_for_completion(&pending->done); 2922 2923 if (refcount_dec_and_test(&pending->refs)) 2924 wake_up_var(&pending->refs); /* No UaF, just an address */ 2925 2926 /* 2927 * Block the original owner of &pending until all subsequent callers 2928 * have seen the completion and decremented the refcount 2929 */ 2930 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2931 2932 /* ARGH */ 2933 WARN_ON_ONCE(my_pending.stop_pending); 2934 2935 return 0; 2936 } 2937 2938 /* 2939 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2940 */ 2941 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2942 struct affinity_context *ctx, 2943 struct rq *rq, 2944 struct rq_flags *rf) 2945 __releases(rq->lock) 2946 __releases(p->pi_lock) 2947 { 2948 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2949 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2950 bool kthread = p->flags & PF_KTHREAD; 2951 unsigned int dest_cpu; 2952 int ret = 0; 2953 2954 update_rq_clock(rq); 2955 2956 if (kthread || is_migration_disabled(p)) { 2957 /* 2958 * Kernel threads are allowed on online && !active CPUs, 2959 * however, during cpu-hot-unplug, even these might get pushed 2960 * away if not KTHREAD_IS_PER_CPU. 2961 * 2962 * Specifically, migration_disabled() tasks must not fail the 2963 * cpumask_any_and_distribute() pick below, esp. so on 2964 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2965 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2966 */ 2967 cpu_valid_mask = cpu_online_mask; 2968 } 2969 2970 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2971 ret = -EINVAL; 2972 goto out; 2973 } 2974 2975 /* 2976 * Must re-check here, to close a race against __kthread_bind(), 2977 * sched_setaffinity() is not guaranteed to observe the flag. 2978 */ 2979 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2980 ret = -EINVAL; 2981 goto out; 2982 } 2983 2984 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2985 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 2986 if (ctx->flags & SCA_USER) 2987 swap(p->user_cpus_ptr, ctx->user_mask); 2988 goto out; 2989 } 2990 2991 if (WARN_ON_ONCE(p == current && 2992 is_migration_disabled(p) && 2993 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2994 ret = -EBUSY; 2995 goto out; 2996 } 2997 } 2998 2999 /* 3000 * Picking a ~random cpu helps in cases where we are changing affinity 3001 * for groups of tasks (ie. cpuset), so that load balancing is not 3002 * immediately required to distribute the tasks within their new mask. 3003 */ 3004 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3005 if (dest_cpu >= nr_cpu_ids) { 3006 ret = -EINVAL; 3007 goto out; 3008 } 3009 3010 __do_set_cpus_allowed(p, ctx); 3011 3012 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3013 3014 out: 3015 task_rq_unlock(rq, p, rf); 3016 3017 return ret; 3018 } 3019 3020 /* 3021 * Change a given task's CPU affinity. Migrate the thread to a 3022 * proper CPU and schedule it away if the CPU it's executing on 3023 * is removed from the allowed bitmask. 3024 * 3025 * NOTE: the caller must have a valid reference to the task, the 3026 * task must not exit() & deallocate itself prematurely. The 3027 * call is not atomic; no spinlocks may be held. 3028 */ 3029 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3030 { 3031 struct rq_flags rf; 3032 struct rq *rq; 3033 3034 rq = task_rq_lock(p, &rf); 3035 /* 3036 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3037 * flags are set. 3038 */ 3039 if (p->user_cpus_ptr && 3040 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3041 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3042 ctx->new_mask = rq->scratch_mask; 3043 3044 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3045 } 3046 3047 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3048 { 3049 struct affinity_context ac = { 3050 .new_mask = new_mask, 3051 .flags = 0, 3052 }; 3053 3054 return __set_cpus_allowed_ptr(p, &ac); 3055 } 3056 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3057 3058 /* 3059 * Change a given task's CPU affinity to the intersection of its current 3060 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3061 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3062 * affinity or use cpu_online_mask instead. 3063 * 3064 * If the resulting mask is empty, leave the affinity unchanged and return 3065 * -EINVAL. 3066 */ 3067 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3068 struct cpumask *new_mask, 3069 const struct cpumask *subset_mask) 3070 { 3071 struct affinity_context ac = { 3072 .new_mask = new_mask, 3073 .flags = 0, 3074 }; 3075 struct rq_flags rf; 3076 struct rq *rq; 3077 int err; 3078 3079 rq = task_rq_lock(p, &rf); 3080 3081 /* 3082 * Forcefully restricting the affinity of a deadline task is 3083 * likely to cause problems, so fail and noisily override the 3084 * mask entirely. 3085 */ 3086 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3087 err = -EPERM; 3088 goto err_unlock; 3089 } 3090 3091 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3092 err = -EINVAL; 3093 goto err_unlock; 3094 } 3095 3096 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3097 3098 err_unlock: 3099 task_rq_unlock(rq, p, &rf); 3100 return err; 3101 } 3102 3103 /* 3104 * Restrict the CPU affinity of task @p so that it is a subset of 3105 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3106 * old affinity mask. If the resulting mask is empty, we warn and walk 3107 * up the cpuset hierarchy until we find a suitable mask. 3108 */ 3109 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3110 { 3111 cpumask_var_t new_mask; 3112 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3113 3114 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3115 3116 /* 3117 * __migrate_task() can fail silently in the face of concurrent 3118 * offlining of the chosen destination CPU, so take the hotplug 3119 * lock to ensure that the migration succeeds. 3120 */ 3121 cpus_read_lock(); 3122 if (!cpumask_available(new_mask)) 3123 goto out_set_mask; 3124 3125 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3126 goto out_free_mask; 3127 3128 /* 3129 * We failed to find a valid subset of the affinity mask for the 3130 * task, so override it based on its cpuset hierarchy. 3131 */ 3132 cpuset_cpus_allowed(p, new_mask); 3133 override_mask = new_mask; 3134 3135 out_set_mask: 3136 if (printk_ratelimit()) { 3137 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3138 task_pid_nr(p), p->comm, 3139 cpumask_pr_args(override_mask)); 3140 } 3141 3142 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3143 out_free_mask: 3144 cpus_read_unlock(); 3145 free_cpumask_var(new_mask); 3146 } 3147 3148 /* 3149 * Restore the affinity of a task @p which was previously restricted by a 3150 * call to force_compatible_cpus_allowed_ptr(). 3151 * 3152 * It is the caller's responsibility to serialise this with any calls to 3153 * force_compatible_cpus_allowed_ptr(@p). 3154 */ 3155 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3156 { 3157 struct affinity_context ac = { 3158 .new_mask = task_user_cpus(p), 3159 .flags = 0, 3160 }; 3161 int ret; 3162 3163 /* 3164 * Try to restore the old affinity mask with __sched_setaffinity(). 3165 * Cpuset masking will be done there too. 3166 */ 3167 ret = __sched_setaffinity(p, &ac); 3168 WARN_ON_ONCE(ret); 3169 } 3170 3171 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3172 { 3173 #ifdef CONFIG_SCHED_DEBUG 3174 unsigned int state = READ_ONCE(p->__state); 3175 3176 /* 3177 * We should never call set_task_cpu() on a blocked task, 3178 * ttwu() will sort out the placement. 3179 */ 3180 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3181 3182 /* 3183 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3184 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3185 * time relying on p->on_rq. 3186 */ 3187 WARN_ON_ONCE(state == TASK_RUNNING && 3188 p->sched_class == &fair_sched_class && 3189 (p->on_rq && !task_on_rq_migrating(p))); 3190 3191 #ifdef CONFIG_LOCKDEP 3192 /* 3193 * The caller should hold either p->pi_lock or rq->lock, when changing 3194 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3195 * 3196 * sched_move_task() holds both and thus holding either pins the cgroup, 3197 * see task_group(). 3198 * 3199 * Furthermore, all task_rq users should acquire both locks, see 3200 * task_rq_lock(). 3201 */ 3202 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3203 lockdep_is_held(__rq_lockp(task_rq(p))))); 3204 #endif 3205 /* 3206 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3207 */ 3208 WARN_ON_ONCE(!cpu_online(new_cpu)); 3209 3210 WARN_ON_ONCE(is_migration_disabled(p)); 3211 #endif 3212 3213 trace_sched_migrate_task(p, new_cpu); 3214 3215 if (task_cpu(p) != new_cpu) { 3216 if (p->sched_class->migrate_task_rq) 3217 p->sched_class->migrate_task_rq(p, new_cpu); 3218 p->se.nr_migrations++; 3219 rseq_migrate(p); 3220 sched_mm_cid_migrate_from(p); 3221 perf_event_task_migrate(p); 3222 } 3223 3224 __set_task_cpu(p, new_cpu); 3225 } 3226 3227 #ifdef CONFIG_NUMA_BALANCING 3228 static void __migrate_swap_task(struct task_struct *p, int cpu) 3229 { 3230 if (task_on_rq_queued(p)) { 3231 struct rq *src_rq, *dst_rq; 3232 struct rq_flags srf, drf; 3233 3234 src_rq = task_rq(p); 3235 dst_rq = cpu_rq(cpu); 3236 3237 rq_pin_lock(src_rq, &srf); 3238 rq_pin_lock(dst_rq, &drf); 3239 3240 deactivate_task(src_rq, p, 0); 3241 set_task_cpu(p, cpu); 3242 activate_task(dst_rq, p, 0); 3243 wakeup_preempt(dst_rq, p, 0); 3244 3245 rq_unpin_lock(dst_rq, &drf); 3246 rq_unpin_lock(src_rq, &srf); 3247 3248 } else { 3249 /* 3250 * Task isn't running anymore; make it appear like we migrated 3251 * it before it went to sleep. This means on wakeup we make the 3252 * previous CPU our target instead of where it really is. 3253 */ 3254 p->wake_cpu = cpu; 3255 } 3256 } 3257 3258 struct migration_swap_arg { 3259 struct task_struct *src_task, *dst_task; 3260 int src_cpu, dst_cpu; 3261 }; 3262 3263 static int migrate_swap_stop(void *data) 3264 { 3265 struct migration_swap_arg *arg = data; 3266 struct rq *src_rq, *dst_rq; 3267 3268 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3269 return -EAGAIN; 3270 3271 src_rq = cpu_rq(arg->src_cpu); 3272 dst_rq = cpu_rq(arg->dst_cpu); 3273 3274 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3275 guard(double_rq_lock)(src_rq, dst_rq); 3276 3277 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3278 return -EAGAIN; 3279 3280 if (task_cpu(arg->src_task) != arg->src_cpu) 3281 return -EAGAIN; 3282 3283 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3284 return -EAGAIN; 3285 3286 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3287 return -EAGAIN; 3288 3289 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3290 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3291 3292 return 0; 3293 } 3294 3295 /* 3296 * Cross migrate two tasks 3297 */ 3298 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3299 int target_cpu, int curr_cpu) 3300 { 3301 struct migration_swap_arg arg; 3302 int ret = -EINVAL; 3303 3304 arg = (struct migration_swap_arg){ 3305 .src_task = cur, 3306 .src_cpu = curr_cpu, 3307 .dst_task = p, 3308 .dst_cpu = target_cpu, 3309 }; 3310 3311 if (arg.src_cpu == arg.dst_cpu) 3312 goto out; 3313 3314 /* 3315 * These three tests are all lockless; this is OK since all of them 3316 * will be re-checked with proper locks held further down the line. 3317 */ 3318 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3319 goto out; 3320 3321 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3322 goto out; 3323 3324 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3325 goto out; 3326 3327 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3328 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3329 3330 out: 3331 return ret; 3332 } 3333 #endif /* CONFIG_NUMA_BALANCING */ 3334 3335 /*** 3336 * kick_process - kick a running thread to enter/exit the kernel 3337 * @p: the to-be-kicked thread 3338 * 3339 * Cause a process which is running on another CPU to enter 3340 * kernel-mode, without any delay. (to get signals handled.) 3341 * 3342 * NOTE: this function doesn't have to take the runqueue lock, 3343 * because all it wants to ensure is that the remote task enters 3344 * the kernel. If the IPI races and the task has been migrated 3345 * to another CPU then no harm is done and the purpose has been 3346 * achieved as well. 3347 */ 3348 void kick_process(struct task_struct *p) 3349 { 3350 guard(preempt)(); 3351 int cpu = task_cpu(p); 3352 3353 if ((cpu != smp_processor_id()) && task_curr(p)) 3354 smp_send_reschedule(cpu); 3355 } 3356 EXPORT_SYMBOL_GPL(kick_process); 3357 3358 /* 3359 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3360 * 3361 * A few notes on cpu_active vs cpu_online: 3362 * 3363 * - cpu_active must be a subset of cpu_online 3364 * 3365 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3366 * see __set_cpus_allowed_ptr(). At this point the newly online 3367 * CPU isn't yet part of the sched domains, and balancing will not 3368 * see it. 3369 * 3370 * - on CPU-down we clear cpu_active() to mask the sched domains and 3371 * avoid the load balancer to place new tasks on the to be removed 3372 * CPU. Existing tasks will remain running there and will be taken 3373 * off. 3374 * 3375 * This means that fallback selection must not select !active CPUs. 3376 * And can assume that any active CPU must be online. Conversely 3377 * select_task_rq() below may allow selection of !active CPUs in order 3378 * to satisfy the above rules. 3379 */ 3380 static int select_fallback_rq(int cpu, struct task_struct *p) 3381 { 3382 int nid = cpu_to_node(cpu); 3383 const struct cpumask *nodemask = NULL; 3384 enum { cpuset, possible, fail } state = cpuset; 3385 int dest_cpu; 3386 3387 /* 3388 * If the node that the CPU is on has been offlined, cpu_to_node() 3389 * will return -1. There is no CPU on the node, and we should 3390 * select the CPU on the other node. 3391 */ 3392 if (nid != -1) { 3393 nodemask = cpumask_of_node(nid); 3394 3395 /* Look for allowed, online CPU in same node. */ 3396 for_each_cpu(dest_cpu, nodemask) { 3397 if (is_cpu_allowed(p, dest_cpu)) 3398 return dest_cpu; 3399 } 3400 } 3401 3402 for (;;) { 3403 /* Any allowed, online CPU? */ 3404 for_each_cpu(dest_cpu, p->cpus_ptr) { 3405 if (!is_cpu_allowed(p, dest_cpu)) 3406 continue; 3407 3408 goto out; 3409 } 3410 3411 /* No more Mr. Nice Guy. */ 3412 switch (state) { 3413 case cpuset: 3414 if (cpuset_cpus_allowed_fallback(p)) { 3415 state = possible; 3416 break; 3417 } 3418 fallthrough; 3419 case possible: 3420 /* 3421 * XXX When called from select_task_rq() we only 3422 * hold p->pi_lock and again violate locking order. 3423 * 3424 * More yuck to audit. 3425 */ 3426 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3427 state = fail; 3428 break; 3429 case fail: 3430 BUG(); 3431 break; 3432 } 3433 } 3434 3435 out: 3436 if (state != cpuset) { 3437 /* 3438 * Don't tell them about moving exiting tasks or 3439 * kernel threads (both mm NULL), since they never 3440 * leave kernel. 3441 */ 3442 if (p->mm && printk_ratelimit()) { 3443 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3444 task_pid_nr(p), p->comm, cpu); 3445 } 3446 } 3447 3448 return dest_cpu; 3449 } 3450 3451 /* 3452 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3453 */ 3454 static inline 3455 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3456 { 3457 lockdep_assert_held(&p->pi_lock); 3458 3459 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3460 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3461 else 3462 cpu = cpumask_any(p->cpus_ptr); 3463 3464 /* 3465 * In order not to call set_task_cpu() on a blocking task we need 3466 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3467 * CPU. 3468 * 3469 * Since this is common to all placement strategies, this lives here. 3470 * 3471 * [ this allows ->select_task() to simply return task_cpu(p) and 3472 * not worry about this generic constraint ] 3473 */ 3474 if (unlikely(!is_cpu_allowed(p, cpu))) 3475 cpu = select_fallback_rq(task_cpu(p), p); 3476 3477 return cpu; 3478 } 3479 3480 void sched_set_stop_task(int cpu, struct task_struct *stop) 3481 { 3482 static struct lock_class_key stop_pi_lock; 3483 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3484 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3485 3486 if (stop) { 3487 /* 3488 * Make it appear like a SCHED_FIFO task, its something 3489 * userspace knows about and won't get confused about. 3490 * 3491 * Also, it will make PI more or less work without too 3492 * much confusion -- but then, stop work should not 3493 * rely on PI working anyway. 3494 */ 3495 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3496 3497 stop->sched_class = &stop_sched_class; 3498 3499 /* 3500 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3501 * adjust the effective priority of a task. As a result, 3502 * rt_mutex_setprio() can trigger (RT) balancing operations, 3503 * which can then trigger wakeups of the stop thread to push 3504 * around the current task. 3505 * 3506 * The stop task itself will never be part of the PI-chain, it 3507 * never blocks, therefore that ->pi_lock recursion is safe. 3508 * Tell lockdep about this by placing the stop->pi_lock in its 3509 * own class. 3510 */ 3511 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3512 } 3513 3514 cpu_rq(cpu)->stop = stop; 3515 3516 if (old_stop) { 3517 /* 3518 * Reset it back to a normal scheduling class so that 3519 * it can die in pieces. 3520 */ 3521 old_stop->sched_class = &rt_sched_class; 3522 } 3523 } 3524 3525 #else /* CONFIG_SMP */ 3526 3527 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3528 3529 static inline bool rq_has_pinned_tasks(struct rq *rq) 3530 { 3531 return false; 3532 } 3533 3534 #endif /* !CONFIG_SMP */ 3535 3536 static void 3537 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3538 { 3539 struct rq *rq; 3540 3541 if (!schedstat_enabled()) 3542 return; 3543 3544 rq = this_rq(); 3545 3546 #ifdef CONFIG_SMP 3547 if (cpu == rq->cpu) { 3548 __schedstat_inc(rq->ttwu_local); 3549 __schedstat_inc(p->stats.nr_wakeups_local); 3550 } else { 3551 struct sched_domain *sd; 3552 3553 __schedstat_inc(p->stats.nr_wakeups_remote); 3554 3555 guard(rcu)(); 3556 for_each_domain(rq->cpu, sd) { 3557 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3558 __schedstat_inc(sd->ttwu_wake_remote); 3559 break; 3560 } 3561 } 3562 } 3563 3564 if (wake_flags & WF_MIGRATED) 3565 __schedstat_inc(p->stats.nr_wakeups_migrate); 3566 #endif /* CONFIG_SMP */ 3567 3568 __schedstat_inc(rq->ttwu_count); 3569 __schedstat_inc(p->stats.nr_wakeups); 3570 3571 if (wake_flags & WF_SYNC) 3572 __schedstat_inc(p->stats.nr_wakeups_sync); 3573 } 3574 3575 /* 3576 * Mark the task runnable. 3577 */ 3578 static inline void ttwu_do_wakeup(struct task_struct *p) 3579 { 3580 WRITE_ONCE(p->__state, TASK_RUNNING); 3581 trace_sched_wakeup(p); 3582 } 3583 3584 static void 3585 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3586 struct rq_flags *rf) 3587 { 3588 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3589 3590 lockdep_assert_rq_held(rq); 3591 3592 if (p->sched_contributes_to_load) 3593 rq->nr_uninterruptible--; 3594 3595 #ifdef CONFIG_SMP 3596 if (wake_flags & WF_MIGRATED) 3597 en_flags |= ENQUEUE_MIGRATED; 3598 else 3599 #endif 3600 if (p->in_iowait) { 3601 delayacct_blkio_end(p); 3602 atomic_dec(&task_rq(p)->nr_iowait); 3603 } 3604 3605 activate_task(rq, p, en_flags); 3606 wakeup_preempt(rq, p, wake_flags); 3607 3608 ttwu_do_wakeup(p); 3609 3610 #ifdef CONFIG_SMP 3611 if (p->sched_class->task_woken) { 3612 /* 3613 * Our task @p is fully woken up and running; so it's safe to 3614 * drop the rq->lock, hereafter rq is only used for statistics. 3615 */ 3616 rq_unpin_lock(rq, rf); 3617 p->sched_class->task_woken(rq, p); 3618 rq_repin_lock(rq, rf); 3619 } 3620 3621 if (rq->idle_stamp) { 3622 u64 delta = rq_clock(rq) - rq->idle_stamp; 3623 u64 max = 2*rq->max_idle_balance_cost; 3624 3625 update_avg(&rq->avg_idle, delta); 3626 3627 if (rq->avg_idle > max) 3628 rq->avg_idle = max; 3629 3630 rq->idle_stamp = 0; 3631 } 3632 #endif 3633 3634 p->dl_server = NULL; 3635 } 3636 3637 /* 3638 * Consider @p being inside a wait loop: 3639 * 3640 * for (;;) { 3641 * set_current_state(TASK_UNINTERRUPTIBLE); 3642 * 3643 * if (CONDITION) 3644 * break; 3645 * 3646 * schedule(); 3647 * } 3648 * __set_current_state(TASK_RUNNING); 3649 * 3650 * between set_current_state() and schedule(). In this case @p is still 3651 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3652 * an atomic manner. 3653 * 3654 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3655 * then schedule() must still happen and p->state can be changed to 3656 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3657 * need to do a full wakeup with enqueue. 3658 * 3659 * Returns: %true when the wakeup is done, 3660 * %false otherwise. 3661 */ 3662 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3663 { 3664 struct rq_flags rf; 3665 struct rq *rq; 3666 int ret = 0; 3667 3668 rq = __task_rq_lock(p, &rf); 3669 if (task_on_rq_queued(p)) { 3670 if (!task_on_cpu(rq, p)) { 3671 /* 3672 * When on_rq && !on_cpu the task is preempted, see if 3673 * it should preempt the task that is current now. 3674 */ 3675 update_rq_clock(rq); 3676 wakeup_preempt(rq, p, wake_flags); 3677 } 3678 ttwu_do_wakeup(p); 3679 ret = 1; 3680 } 3681 __task_rq_unlock(rq, &rf); 3682 3683 return ret; 3684 } 3685 3686 #ifdef CONFIG_SMP 3687 void sched_ttwu_pending(void *arg) 3688 { 3689 struct llist_node *llist = arg; 3690 struct rq *rq = this_rq(); 3691 struct task_struct *p, *t; 3692 struct rq_flags rf; 3693 3694 if (!llist) 3695 return; 3696 3697 rq_lock_irqsave(rq, &rf); 3698 update_rq_clock(rq); 3699 3700 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3701 if (WARN_ON_ONCE(p->on_cpu)) 3702 smp_cond_load_acquire(&p->on_cpu, !VAL); 3703 3704 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3705 set_task_cpu(p, cpu_of(rq)); 3706 3707 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3708 } 3709 3710 /* 3711 * Must be after enqueueing at least once task such that 3712 * idle_cpu() does not observe a false-negative -- if it does, 3713 * it is possible for select_idle_siblings() to stack a number 3714 * of tasks on this CPU during that window. 3715 * 3716 * It is OK to clear ttwu_pending when another task pending. 3717 * We will receive IPI after local IRQ enabled and then enqueue it. 3718 * Since now nr_running > 0, idle_cpu() will always get correct result. 3719 */ 3720 WRITE_ONCE(rq->ttwu_pending, 0); 3721 rq_unlock_irqrestore(rq, &rf); 3722 } 3723 3724 /* 3725 * Prepare the scene for sending an IPI for a remote smp_call 3726 * 3727 * Returns true if the caller can proceed with sending the IPI. 3728 * Returns false otherwise. 3729 */ 3730 bool call_function_single_prep_ipi(int cpu) 3731 { 3732 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3733 trace_sched_wake_idle_without_ipi(cpu); 3734 return false; 3735 } 3736 3737 return true; 3738 } 3739 3740 /* 3741 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3742 * necessary. The wakee CPU on receipt of the IPI will queue the task 3743 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3744 * of the wakeup instead of the waker. 3745 */ 3746 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3747 { 3748 struct rq *rq = cpu_rq(cpu); 3749 3750 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3751 3752 WRITE_ONCE(rq->ttwu_pending, 1); 3753 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3754 } 3755 3756 void wake_up_if_idle(int cpu) 3757 { 3758 struct rq *rq = cpu_rq(cpu); 3759 3760 guard(rcu)(); 3761 if (is_idle_task(rcu_dereference(rq->curr))) { 3762 guard(rq_lock_irqsave)(rq); 3763 if (is_idle_task(rq->curr)) 3764 resched_curr(rq); 3765 } 3766 } 3767 3768 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3769 { 3770 if (!sched_asym_cpucap_active()) 3771 return true; 3772 3773 if (this_cpu == that_cpu) 3774 return true; 3775 3776 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3777 } 3778 3779 bool cpus_share_cache(int this_cpu, int that_cpu) 3780 { 3781 if (this_cpu == that_cpu) 3782 return true; 3783 3784 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3785 } 3786 3787 /* 3788 * Whether CPUs are share cache resources, which means LLC on non-cluster 3789 * machines and LLC tag or L2 on machines with clusters. 3790 */ 3791 bool cpus_share_resources(int this_cpu, int that_cpu) 3792 { 3793 if (this_cpu == that_cpu) 3794 return true; 3795 3796 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3797 } 3798 3799 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3800 { 3801 /* 3802 * The BPF scheduler may depend on select_task_rq() being invoked during 3803 * wakeups. In addition, @p may end up executing on a different CPU 3804 * regardless of what happens in the wakeup path making the ttwu_queue 3805 * optimization less meaningful. Skip if on SCX. 3806 */ 3807 if (task_on_scx(p)) 3808 return false; 3809 3810 /* 3811 * Do not complicate things with the async wake_list while the CPU is 3812 * in hotplug state. 3813 */ 3814 if (!cpu_active(cpu)) 3815 return false; 3816 3817 /* Ensure the task will still be allowed to run on the CPU. */ 3818 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3819 return false; 3820 3821 /* 3822 * If the CPU does not share cache, then queue the task on the 3823 * remote rqs wakelist to avoid accessing remote data. 3824 */ 3825 if (!cpus_share_cache(smp_processor_id(), cpu)) 3826 return true; 3827 3828 if (cpu == smp_processor_id()) 3829 return false; 3830 3831 /* 3832 * If the wakee cpu is idle, or the task is descheduling and the 3833 * only running task on the CPU, then use the wakelist to offload 3834 * the task activation to the idle (or soon-to-be-idle) CPU as 3835 * the current CPU is likely busy. nr_running is checked to 3836 * avoid unnecessary task stacking. 3837 * 3838 * Note that we can only get here with (wakee) p->on_rq=0, 3839 * p->on_cpu can be whatever, we've done the dequeue, so 3840 * the wakee has been accounted out of ->nr_running. 3841 */ 3842 if (!cpu_rq(cpu)->nr_running) 3843 return true; 3844 3845 return false; 3846 } 3847 3848 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3849 { 3850 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3851 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3852 __ttwu_queue_wakelist(p, cpu, wake_flags); 3853 return true; 3854 } 3855 3856 return false; 3857 } 3858 3859 #else /* !CONFIG_SMP */ 3860 3861 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3862 { 3863 return false; 3864 } 3865 3866 #endif /* CONFIG_SMP */ 3867 3868 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3869 { 3870 struct rq *rq = cpu_rq(cpu); 3871 struct rq_flags rf; 3872 3873 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3874 return; 3875 3876 rq_lock(rq, &rf); 3877 update_rq_clock(rq); 3878 ttwu_do_activate(rq, p, wake_flags, &rf); 3879 rq_unlock(rq, &rf); 3880 } 3881 3882 /* 3883 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3884 * 3885 * The caller holds p::pi_lock if p != current or has preemption 3886 * disabled when p == current. 3887 * 3888 * The rules of saved_state: 3889 * 3890 * The related locking code always holds p::pi_lock when updating 3891 * p::saved_state, which means the code is fully serialized in both cases. 3892 * 3893 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3894 * No other bits set. This allows to distinguish all wakeup scenarios. 3895 * 3896 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3897 * allows us to prevent early wakeup of tasks before they can be run on 3898 * asymmetric ISA architectures (eg ARMv9). 3899 */ 3900 static __always_inline 3901 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3902 { 3903 int match; 3904 3905 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3906 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3907 state != TASK_RTLOCK_WAIT); 3908 } 3909 3910 *success = !!(match = __task_state_match(p, state)); 3911 3912 /* 3913 * Saved state preserves the task state across blocking on 3914 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3915 * set p::saved_state to TASK_RUNNING, but do not wake the task 3916 * because it waits for a lock wakeup or __thaw_task(). Also 3917 * indicate success because from the regular waker's point of 3918 * view this has succeeded. 3919 * 3920 * After acquiring the lock the task will restore p::__state 3921 * from p::saved_state which ensures that the regular 3922 * wakeup is not lost. The restore will also set 3923 * p::saved_state to TASK_RUNNING so any further tests will 3924 * not result in false positives vs. @success 3925 */ 3926 if (match < 0) 3927 p->saved_state = TASK_RUNNING; 3928 3929 return match > 0; 3930 } 3931 3932 /* 3933 * Notes on Program-Order guarantees on SMP systems. 3934 * 3935 * MIGRATION 3936 * 3937 * The basic program-order guarantee on SMP systems is that when a task [t] 3938 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3939 * execution on its new CPU [c1]. 3940 * 3941 * For migration (of runnable tasks) this is provided by the following means: 3942 * 3943 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3944 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3945 * rq(c1)->lock (if not at the same time, then in that order). 3946 * C) LOCK of the rq(c1)->lock scheduling in task 3947 * 3948 * Release/acquire chaining guarantees that B happens after A and C after B. 3949 * Note: the CPU doing B need not be c0 or c1 3950 * 3951 * Example: 3952 * 3953 * CPU0 CPU1 CPU2 3954 * 3955 * LOCK rq(0)->lock 3956 * sched-out X 3957 * sched-in Y 3958 * UNLOCK rq(0)->lock 3959 * 3960 * LOCK rq(0)->lock // orders against CPU0 3961 * dequeue X 3962 * UNLOCK rq(0)->lock 3963 * 3964 * LOCK rq(1)->lock 3965 * enqueue X 3966 * UNLOCK rq(1)->lock 3967 * 3968 * LOCK rq(1)->lock // orders against CPU2 3969 * sched-out Z 3970 * sched-in X 3971 * UNLOCK rq(1)->lock 3972 * 3973 * 3974 * BLOCKING -- aka. SLEEP + WAKEUP 3975 * 3976 * For blocking we (obviously) need to provide the same guarantee as for 3977 * migration. However the means are completely different as there is no lock 3978 * chain to provide order. Instead we do: 3979 * 3980 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3981 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3982 * 3983 * Example: 3984 * 3985 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3986 * 3987 * LOCK rq(0)->lock LOCK X->pi_lock 3988 * dequeue X 3989 * sched-out X 3990 * smp_store_release(X->on_cpu, 0); 3991 * 3992 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3993 * X->state = WAKING 3994 * set_task_cpu(X,2) 3995 * 3996 * LOCK rq(2)->lock 3997 * enqueue X 3998 * X->state = RUNNING 3999 * UNLOCK rq(2)->lock 4000 * 4001 * LOCK rq(2)->lock // orders against CPU1 4002 * sched-out Z 4003 * sched-in X 4004 * UNLOCK rq(2)->lock 4005 * 4006 * UNLOCK X->pi_lock 4007 * UNLOCK rq(0)->lock 4008 * 4009 * 4010 * However, for wakeups there is a second guarantee we must provide, namely we 4011 * must ensure that CONDITION=1 done by the caller can not be reordered with 4012 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4013 */ 4014 4015 /** 4016 * try_to_wake_up - wake up a thread 4017 * @p: the thread to be awakened 4018 * @state: the mask of task states that can be woken 4019 * @wake_flags: wake modifier flags (WF_*) 4020 * 4021 * Conceptually does: 4022 * 4023 * If (@state & @p->state) @p->state = TASK_RUNNING. 4024 * 4025 * If the task was not queued/runnable, also place it back on a runqueue. 4026 * 4027 * This function is atomic against schedule() which would dequeue the task. 4028 * 4029 * It issues a full memory barrier before accessing @p->state, see the comment 4030 * with set_current_state(). 4031 * 4032 * Uses p->pi_lock to serialize against concurrent wake-ups. 4033 * 4034 * Relies on p->pi_lock stabilizing: 4035 * - p->sched_class 4036 * - p->cpus_ptr 4037 * - p->sched_task_group 4038 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4039 * 4040 * Tries really hard to only take one task_rq(p)->lock for performance. 4041 * Takes rq->lock in: 4042 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4043 * - ttwu_queue() -- new rq, for enqueue of the task; 4044 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4045 * 4046 * As a consequence we race really badly with just about everything. See the 4047 * many memory barriers and their comments for details. 4048 * 4049 * Return: %true if @p->state changes (an actual wakeup was done), 4050 * %false otherwise. 4051 */ 4052 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4053 { 4054 guard(preempt)(); 4055 int cpu, success = 0; 4056 4057 if (p == current) { 4058 /* 4059 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4060 * == smp_processor_id()'. Together this means we can special 4061 * case the whole 'p->on_rq && ttwu_runnable()' case below 4062 * without taking any locks. 4063 * 4064 * In particular: 4065 * - we rely on Program-Order guarantees for all the ordering, 4066 * - we're serialized against set_special_state() by virtue of 4067 * it disabling IRQs (this allows not taking ->pi_lock). 4068 */ 4069 if (!ttwu_state_match(p, state, &success)) 4070 goto out; 4071 4072 trace_sched_waking(p); 4073 ttwu_do_wakeup(p); 4074 goto out; 4075 } 4076 4077 /* 4078 * If we are going to wake up a thread waiting for CONDITION we 4079 * need to ensure that CONDITION=1 done by the caller can not be 4080 * reordered with p->state check below. This pairs with smp_store_mb() 4081 * in set_current_state() that the waiting thread does. 4082 */ 4083 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4084 smp_mb__after_spinlock(); 4085 if (!ttwu_state_match(p, state, &success)) 4086 break; 4087 4088 trace_sched_waking(p); 4089 4090 /* 4091 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4092 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4093 * in smp_cond_load_acquire() below. 4094 * 4095 * sched_ttwu_pending() try_to_wake_up() 4096 * STORE p->on_rq = 1 LOAD p->state 4097 * UNLOCK rq->lock 4098 * 4099 * __schedule() (switch to task 'p') 4100 * LOCK rq->lock smp_rmb(); 4101 * smp_mb__after_spinlock(); 4102 * UNLOCK rq->lock 4103 * 4104 * [task p] 4105 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4106 * 4107 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4108 * __schedule(). See the comment for smp_mb__after_spinlock(). 4109 * 4110 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4111 */ 4112 smp_rmb(); 4113 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4114 break; 4115 4116 #ifdef CONFIG_SMP 4117 /* 4118 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4119 * possible to, falsely, observe p->on_cpu == 0. 4120 * 4121 * One must be running (->on_cpu == 1) in order to remove oneself 4122 * from the runqueue. 4123 * 4124 * __schedule() (switch to task 'p') try_to_wake_up() 4125 * STORE p->on_cpu = 1 LOAD p->on_rq 4126 * UNLOCK rq->lock 4127 * 4128 * __schedule() (put 'p' to sleep) 4129 * LOCK rq->lock smp_rmb(); 4130 * smp_mb__after_spinlock(); 4131 * STORE p->on_rq = 0 LOAD p->on_cpu 4132 * 4133 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4134 * __schedule(). See the comment for smp_mb__after_spinlock(). 4135 * 4136 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4137 * schedule()'s deactivate_task() has 'happened' and p will no longer 4138 * care about it's own p->state. See the comment in __schedule(). 4139 */ 4140 smp_acquire__after_ctrl_dep(); 4141 4142 /* 4143 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4144 * == 0), which means we need to do an enqueue, change p->state to 4145 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4146 * enqueue, such as ttwu_queue_wakelist(). 4147 */ 4148 WRITE_ONCE(p->__state, TASK_WAKING); 4149 4150 /* 4151 * If the owning (remote) CPU is still in the middle of schedule() with 4152 * this task as prev, considering queueing p on the remote CPUs wake_list 4153 * which potentially sends an IPI instead of spinning on p->on_cpu to 4154 * let the waker make forward progress. This is safe because IRQs are 4155 * disabled and the IPI will deliver after on_cpu is cleared. 4156 * 4157 * Ensure we load task_cpu(p) after p->on_cpu: 4158 * 4159 * set_task_cpu(p, cpu); 4160 * STORE p->cpu = @cpu 4161 * __schedule() (switch to task 'p') 4162 * LOCK rq->lock 4163 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4164 * STORE p->on_cpu = 1 LOAD p->cpu 4165 * 4166 * to ensure we observe the correct CPU on which the task is currently 4167 * scheduling. 4168 */ 4169 if (smp_load_acquire(&p->on_cpu) && 4170 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4171 break; 4172 4173 /* 4174 * If the owning (remote) CPU is still in the middle of schedule() with 4175 * this task as prev, wait until it's done referencing the task. 4176 * 4177 * Pairs with the smp_store_release() in finish_task(). 4178 * 4179 * This ensures that tasks getting woken will be fully ordered against 4180 * their previous state and preserve Program Order. 4181 */ 4182 smp_cond_load_acquire(&p->on_cpu, !VAL); 4183 4184 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4185 if (task_cpu(p) != cpu) { 4186 if (p->in_iowait) { 4187 delayacct_blkio_end(p); 4188 atomic_dec(&task_rq(p)->nr_iowait); 4189 } 4190 4191 wake_flags |= WF_MIGRATED; 4192 psi_ttwu_dequeue(p); 4193 set_task_cpu(p, cpu); 4194 } 4195 #else 4196 cpu = task_cpu(p); 4197 #endif /* CONFIG_SMP */ 4198 4199 ttwu_queue(p, cpu, wake_flags); 4200 } 4201 out: 4202 if (success) 4203 ttwu_stat(p, task_cpu(p), wake_flags); 4204 4205 return success; 4206 } 4207 4208 static bool __task_needs_rq_lock(struct task_struct *p) 4209 { 4210 unsigned int state = READ_ONCE(p->__state); 4211 4212 /* 4213 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4214 * the task is blocked. Make sure to check @state since ttwu() can drop 4215 * locks at the end, see ttwu_queue_wakelist(). 4216 */ 4217 if (state == TASK_RUNNING || state == TASK_WAKING) 4218 return true; 4219 4220 /* 4221 * Ensure we load p->on_rq after p->__state, otherwise it would be 4222 * possible to, falsely, observe p->on_rq == 0. 4223 * 4224 * See try_to_wake_up() for a longer comment. 4225 */ 4226 smp_rmb(); 4227 if (p->on_rq) 4228 return true; 4229 4230 #ifdef CONFIG_SMP 4231 /* 4232 * Ensure the task has finished __schedule() and will not be referenced 4233 * anymore. Again, see try_to_wake_up() for a longer comment. 4234 */ 4235 smp_rmb(); 4236 smp_cond_load_acquire(&p->on_cpu, !VAL); 4237 #endif 4238 4239 return false; 4240 } 4241 4242 /** 4243 * task_call_func - Invoke a function on task in fixed state 4244 * @p: Process for which the function is to be invoked, can be @current. 4245 * @func: Function to invoke. 4246 * @arg: Argument to function. 4247 * 4248 * Fix the task in it's current state by avoiding wakeups and or rq operations 4249 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4250 * to work out what the state is, if required. Given that @func can be invoked 4251 * with a runqueue lock held, it had better be quite lightweight. 4252 * 4253 * Returns: 4254 * Whatever @func returns 4255 */ 4256 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4257 { 4258 struct rq *rq = NULL; 4259 struct rq_flags rf; 4260 int ret; 4261 4262 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4263 4264 if (__task_needs_rq_lock(p)) 4265 rq = __task_rq_lock(p, &rf); 4266 4267 /* 4268 * At this point the task is pinned; either: 4269 * - blocked and we're holding off wakeups (pi->lock) 4270 * - woken, and we're holding off enqueue (rq->lock) 4271 * - queued, and we're holding off schedule (rq->lock) 4272 * - running, and we're holding off de-schedule (rq->lock) 4273 * 4274 * The called function (@func) can use: task_curr(), p->on_rq and 4275 * p->__state to differentiate between these states. 4276 */ 4277 ret = func(p, arg); 4278 4279 if (rq) 4280 rq_unlock(rq, &rf); 4281 4282 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4283 return ret; 4284 } 4285 4286 /** 4287 * cpu_curr_snapshot - Return a snapshot of the currently running task 4288 * @cpu: The CPU on which to snapshot the task. 4289 * 4290 * Returns the task_struct pointer of the task "currently" running on 4291 * the specified CPU. If the same task is running on that CPU throughout, 4292 * the return value will be a pointer to that task's task_struct structure. 4293 * If the CPU did any context switches even vaguely concurrently with the 4294 * execution of this function, the return value will be a pointer to the 4295 * task_struct structure of a randomly chosen task that was running on 4296 * that CPU somewhere around the time that this function was executing. 4297 * 4298 * If the specified CPU was offline, the return value is whatever it 4299 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4300 * task, but there is no guarantee. Callers wishing a useful return 4301 * value must take some action to ensure that the specified CPU remains 4302 * online throughout. 4303 * 4304 * This function executes full memory barriers before and after fetching 4305 * the pointer, which permits the caller to confine this function's fetch 4306 * with respect to the caller's accesses to other shared variables. 4307 */ 4308 struct task_struct *cpu_curr_snapshot(int cpu) 4309 { 4310 struct task_struct *t; 4311 4312 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4313 t = rcu_dereference(cpu_curr(cpu)); 4314 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4315 return t; 4316 } 4317 4318 /** 4319 * wake_up_process - Wake up a specific process 4320 * @p: The process to be woken up. 4321 * 4322 * Attempt to wake up the nominated process and move it to the set of runnable 4323 * processes. 4324 * 4325 * Return: 1 if the process was woken up, 0 if it was already running. 4326 * 4327 * This function executes a full memory barrier before accessing the task state. 4328 */ 4329 int wake_up_process(struct task_struct *p) 4330 { 4331 return try_to_wake_up(p, TASK_NORMAL, 0); 4332 } 4333 EXPORT_SYMBOL(wake_up_process); 4334 4335 int wake_up_state(struct task_struct *p, unsigned int state) 4336 { 4337 return try_to_wake_up(p, state, 0); 4338 } 4339 4340 /* 4341 * Perform scheduler related setup for a newly forked process p. 4342 * p is forked by current. 4343 * 4344 * __sched_fork() is basic setup used by init_idle() too: 4345 */ 4346 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4347 { 4348 p->on_rq = 0; 4349 4350 p->se.on_rq = 0; 4351 p->se.exec_start = 0; 4352 p->se.sum_exec_runtime = 0; 4353 p->se.prev_sum_exec_runtime = 0; 4354 p->se.nr_migrations = 0; 4355 p->se.vruntime = 0; 4356 p->se.vlag = 0; 4357 p->se.slice = sysctl_sched_base_slice; 4358 INIT_LIST_HEAD(&p->se.group_node); 4359 4360 #ifdef CONFIG_FAIR_GROUP_SCHED 4361 p->se.cfs_rq = NULL; 4362 #endif 4363 4364 #ifdef CONFIG_SCHEDSTATS 4365 /* Even if schedstat is disabled, there should not be garbage */ 4366 memset(&p->stats, 0, sizeof(p->stats)); 4367 #endif 4368 4369 init_dl_entity(&p->dl); 4370 4371 INIT_LIST_HEAD(&p->rt.run_list); 4372 p->rt.timeout = 0; 4373 p->rt.time_slice = sched_rr_timeslice; 4374 p->rt.on_rq = 0; 4375 p->rt.on_list = 0; 4376 4377 #ifdef CONFIG_SCHED_CLASS_EXT 4378 init_scx_entity(&p->scx); 4379 #endif 4380 4381 #ifdef CONFIG_PREEMPT_NOTIFIERS 4382 INIT_HLIST_HEAD(&p->preempt_notifiers); 4383 #endif 4384 4385 #ifdef CONFIG_COMPACTION 4386 p->capture_control = NULL; 4387 #endif 4388 init_numa_balancing(clone_flags, p); 4389 #ifdef CONFIG_SMP 4390 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4391 p->migration_pending = NULL; 4392 #endif 4393 init_sched_mm_cid(p); 4394 } 4395 4396 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4397 4398 #ifdef CONFIG_NUMA_BALANCING 4399 4400 int sysctl_numa_balancing_mode; 4401 4402 static void __set_numabalancing_state(bool enabled) 4403 { 4404 if (enabled) 4405 static_branch_enable(&sched_numa_balancing); 4406 else 4407 static_branch_disable(&sched_numa_balancing); 4408 } 4409 4410 void set_numabalancing_state(bool enabled) 4411 { 4412 if (enabled) 4413 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4414 else 4415 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4416 __set_numabalancing_state(enabled); 4417 } 4418 4419 #ifdef CONFIG_PROC_SYSCTL 4420 static void reset_memory_tiering(void) 4421 { 4422 struct pglist_data *pgdat; 4423 4424 for_each_online_pgdat(pgdat) { 4425 pgdat->nbp_threshold = 0; 4426 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4427 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4428 } 4429 } 4430 4431 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4432 void *buffer, size_t *lenp, loff_t *ppos) 4433 { 4434 struct ctl_table t; 4435 int err; 4436 int state = sysctl_numa_balancing_mode; 4437 4438 if (write && !capable(CAP_SYS_ADMIN)) 4439 return -EPERM; 4440 4441 t = *table; 4442 t.data = &state; 4443 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4444 if (err < 0) 4445 return err; 4446 if (write) { 4447 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4448 (state & NUMA_BALANCING_MEMORY_TIERING)) 4449 reset_memory_tiering(); 4450 sysctl_numa_balancing_mode = state; 4451 __set_numabalancing_state(state); 4452 } 4453 return err; 4454 } 4455 #endif 4456 #endif 4457 4458 #ifdef CONFIG_SCHEDSTATS 4459 4460 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4461 4462 static void set_schedstats(bool enabled) 4463 { 4464 if (enabled) 4465 static_branch_enable(&sched_schedstats); 4466 else 4467 static_branch_disable(&sched_schedstats); 4468 } 4469 4470 void force_schedstat_enabled(void) 4471 { 4472 if (!schedstat_enabled()) { 4473 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4474 static_branch_enable(&sched_schedstats); 4475 } 4476 } 4477 4478 static int __init setup_schedstats(char *str) 4479 { 4480 int ret = 0; 4481 if (!str) 4482 goto out; 4483 4484 if (!strcmp(str, "enable")) { 4485 set_schedstats(true); 4486 ret = 1; 4487 } else if (!strcmp(str, "disable")) { 4488 set_schedstats(false); 4489 ret = 1; 4490 } 4491 out: 4492 if (!ret) 4493 pr_warn("Unable to parse schedstats=\n"); 4494 4495 return ret; 4496 } 4497 __setup("schedstats=", setup_schedstats); 4498 4499 #ifdef CONFIG_PROC_SYSCTL 4500 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4501 size_t *lenp, loff_t *ppos) 4502 { 4503 struct ctl_table t; 4504 int err; 4505 int state = static_branch_likely(&sched_schedstats); 4506 4507 if (write && !capable(CAP_SYS_ADMIN)) 4508 return -EPERM; 4509 4510 t = *table; 4511 t.data = &state; 4512 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4513 if (err < 0) 4514 return err; 4515 if (write) 4516 set_schedstats(state); 4517 return err; 4518 } 4519 #endif /* CONFIG_PROC_SYSCTL */ 4520 #endif /* CONFIG_SCHEDSTATS */ 4521 4522 #ifdef CONFIG_SYSCTL 4523 static struct ctl_table sched_core_sysctls[] = { 4524 #ifdef CONFIG_SCHEDSTATS 4525 { 4526 .procname = "sched_schedstats", 4527 .data = NULL, 4528 .maxlen = sizeof(unsigned int), 4529 .mode = 0644, 4530 .proc_handler = sysctl_schedstats, 4531 .extra1 = SYSCTL_ZERO, 4532 .extra2 = SYSCTL_ONE, 4533 }, 4534 #endif /* CONFIG_SCHEDSTATS */ 4535 #ifdef CONFIG_UCLAMP_TASK 4536 { 4537 .procname = "sched_util_clamp_min", 4538 .data = &sysctl_sched_uclamp_util_min, 4539 .maxlen = sizeof(unsigned int), 4540 .mode = 0644, 4541 .proc_handler = sysctl_sched_uclamp_handler, 4542 }, 4543 { 4544 .procname = "sched_util_clamp_max", 4545 .data = &sysctl_sched_uclamp_util_max, 4546 .maxlen = sizeof(unsigned int), 4547 .mode = 0644, 4548 .proc_handler = sysctl_sched_uclamp_handler, 4549 }, 4550 { 4551 .procname = "sched_util_clamp_min_rt_default", 4552 .data = &sysctl_sched_uclamp_util_min_rt_default, 4553 .maxlen = sizeof(unsigned int), 4554 .mode = 0644, 4555 .proc_handler = sysctl_sched_uclamp_handler, 4556 }, 4557 #endif /* CONFIG_UCLAMP_TASK */ 4558 #ifdef CONFIG_NUMA_BALANCING 4559 { 4560 .procname = "numa_balancing", 4561 .data = NULL, /* filled in by handler */ 4562 .maxlen = sizeof(unsigned int), 4563 .mode = 0644, 4564 .proc_handler = sysctl_numa_balancing, 4565 .extra1 = SYSCTL_ZERO, 4566 .extra2 = SYSCTL_FOUR, 4567 }, 4568 #endif /* CONFIG_NUMA_BALANCING */ 4569 }; 4570 static int __init sched_core_sysctl_init(void) 4571 { 4572 register_sysctl_init("kernel", sched_core_sysctls); 4573 return 0; 4574 } 4575 late_initcall(sched_core_sysctl_init); 4576 #endif /* CONFIG_SYSCTL */ 4577 4578 /* 4579 * fork()/clone()-time setup: 4580 */ 4581 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4582 { 4583 int ret; 4584 4585 __sched_fork(clone_flags, p); 4586 /* 4587 * We mark the process as NEW here. This guarantees that 4588 * nobody will actually run it, and a signal or other external 4589 * event cannot wake it up and insert it on the runqueue either. 4590 */ 4591 p->__state = TASK_NEW; 4592 4593 /* 4594 * Make sure we do not leak PI boosting priority to the child. 4595 */ 4596 p->prio = current->normal_prio; 4597 4598 uclamp_fork(p); 4599 4600 /* 4601 * Revert to default priority/policy on fork if requested. 4602 */ 4603 if (unlikely(p->sched_reset_on_fork)) { 4604 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4605 p->policy = SCHED_NORMAL; 4606 p->static_prio = NICE_TO_PRIO(0); 4607 p->rt_priority = 0; 4608 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4609 p->static_prio = NICE_TO_PRIO(0); 4610 4611 p->prio = p->normal_prio = p->static_prio; 4612 set_load_weight(p, false); 4613 4614 /* 4615 * We don't need the reset flag anymore after the fork. It has 4616 * fulfilled its duty: 4617 */ 4618 p->sched_reset_on_fork = 0; 4619 } 4620 4621 scx_pre_fork(p); 4622 4623 if (dl_prio(p->prio)) { 4624 ret = -EAGAIN; 4625 goto out_cancel; 4626 } else if (rt_prio(p->prio)) { 4627 p->sched_class = &rt_sched_class; 4628 #ifdef CONFIG_SCHED_CLASS_EXT 4629 } else if (task_should_scx(p)) { 4630 p->sched_class = &ext_sched_class; 4631 #endif 4632 } else { 4633 p->sched_class = &fair_sched_class; 4634 } 4635 4636 init_entity_runnable_average(&p->se); 4637 4638 4639 #ifdef CONFIG_SCHED_INFO 4640 if (likely(sched_info_on())) 4641 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4642 #endif 4643 #if defined(CONFIG_SMP) 4644 p->on_cpu = 0; 4645 #endif 4646 init_task_preempt_count(p); 4647 #ifdef CONFIG_SMP 4648 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4649 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4650 #endif 4651 return 0; 4652 4653 out_cancel: 4654 scx_cancel_fork(p); 4655 return ret; 4656 } 4657 4658 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4659 { 4660 unsigned long flags; 4661 4662 /* 4663 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4664 * required yet, but lockdep gets upset if rules are violated. 4665 */ 4666 raw_spin_lock_irqsave(&p->pi_lock, flags); 4667 #ifdef CONFIG_CGROUP_SCHED 4668 if (1) { 4669 struct task_group *tg; 4670 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4671 struct task_group, css); 4672 tg = autogroup_task_group(p, tg); 4673 p->sched_task_group = tg; 4674 } 4675 #endif 4676 rseq_migrate(p); 4677 /* 4678 * We're setting the CPU for the first time, we don't migrate, 4679 * so use __set_task_cpu(). 4680 */ 4681 __set_task_cpu(p, smp_processor_id()); 4682 if (p->sched_class->task_fork) 4683 p->sched_class->task_fork(p); 4684 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4685 4686 return scx_fork(p); 4687 } 4688 4689 void sched_cancel_fork(struct task_struct *p) 4690 { 4691 scx_cancel_fork(p); 4692 } 4693 4694 void sched_post_fork(struct task_struct *p) 4695 { 4696 uclamp_post_fork(p); 4697 scx_post_fork(p); 4698 } 4699 4700 unsigned long to_ratio(u64 period, u64 runtime) 4701 { 4702 if (runtime == RUNTIME_INF) 4703 return BW_UNIT; 4704 4705 /* 4706 * Doing this here saves a lot of checks in all 4707 * the calling paths, and returning zero seems 4708 * safe for them anyway. 4709 */ 4710 if (period == 0) 4711 return 0; 4712 4713 return div64_u64(runtime << BW_SHIFT, period); 4714 } 4715 4716 /* 4717 * wake_up_new_task - wake up a newly created task for the first time. 4718 * 4719 * This function will do some initial scheduler statistics housekeeping 4720 * that must be done for every newly created context, then puts the task 4721 * on the runqueue and wakes it. 4722 */ 4723 void wake_up_new_task(struct task_struct *p) 4724 { 4725 struct rq_flags rf; 4726 struct rq *rq; 4727 4728 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4729 WRITE_ONCE(p->__state, TASK_RUNNING); 4730 #ifdef CONFIG_SMP 4731 /* 4732 * Fork balancing, do it here and not earlier because: 4733 * - cpus_ptr can change in the fork path 4734 * - any previously selected CPU might disappear through hotplug 4735 * 4736 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4737 * as we're not fully set-up yet. 4738 */ 4739 p->recent_used_cpu = task_cpu(p); 4740 rseq_migrate(p); 4741 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4742 #endif 4743 rq = __task_rq_lock(p, &rf); 4744 update_rq_clock(rq); 4745 post_init_entity_util_avg(p); 4746 4747 activate_task(rq, p, ENQUEUE_NOCLOCK); 4748 trace_sched_wakeup_new(p); 4749 wakeup_preempt(rq, p, WF_FORK); 4750 #ifdef CONFIG_SMP 4751 if (p->sched_class->task_woken) { 4752 /* 4753 * Nothing relies on rq->lock after this, so it's fine to 4754 * drop it. 4755 */ 4756 rq_unpin_lock(rq, &rf); 4757 p->sched_class->task_woken(rq, p); 4758 rq_repin_lock(rq, &rf); 4759 } 4760 #endif 4761 task_rq_unlock(rq, p, &rf); 4762 } 4763 4764 #ifdef CONFIG_PREEMPT_NOTIFIERS 4765 4766 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4767 4768 void preempt_notifier_inc(void) 4769 { 4770 static_branch_inc(&preempt_notifier_key); 4771 } 4772 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4773 4774 void preempt_notifier_dec(void) 4775 { 4776 static_branch_dec(&preempt_notifier_key); 4777 } 4778 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4779 4780 /** 4781 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4782 * @notifier: notifier struct to register 4783 */ 4784 void preempt_notifier_register(struct preempt_notifier *notifier) 4785 { 4786 if (!static_branch_unlikely(&preempt_notifier_key)) 4787 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4788 4789 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4790 } 4791 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4792 4793 /** 4794 * preempt_notifier_unregister - no longer interested in preemption notifications 4795 * @notifier: notifier struct to unregister 4796 * 4797 * This is *not* safe to call from within a preemption notifier. 4798 */ 4799 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4800 { 4801 hlist_del(¬ifier->link); 4802 } 4803 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4804 4805 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4806 { 4807 struct preempt_notifier *notifier; 4808 4809 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4810 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4811 } 4812 4813 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4814 { 4815 if (static_branch_unlikely(&preempt_notifier_key)) 4816 __fire_sched_in_preempt_notifiers(curr); 4817 } 4818 4819 static void 4820 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4821 struct task_struct *next) 4822 { 4823 struct preempt_notifier *notifier; 4824 4825 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4826 notifier->ops->sched_out(notifier, next); 4827 } 4828 4829 static __always_inline void 4830 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4831 struct task_struct *next) 4832 { 4833 if (static_branch_unlikely(&preempt_notifier_key)) 4834 __fire_sched_out_preempt_notifiers(curr, next); 4835 } 4836 4837 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4838 4839 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4840 { 4841 } 4842 4843 static inline void 4844 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4845 struct task_struct *next) 4846 { 4847 } 4848 4849 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4850 4851 static inline void prepare_task(struct task_struct *next) 4852 { 4853 #ifdef CONFIG_SMP 4854 /* 4855 * Claim the task as running, we do this before switching to it 4856 * such that any running task will have this set. 4857 * 4858 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4859 * its ordering comment. 4860 */ 4861 WRITE_ONCE(next->on_cpu, 1); 4862 #endif 4863 } 4864 4865 static inline void finish_task(struct task_struct *prev) 4866 { 4867 #ifdef CONFIG_SMP 4868 /* 4869 * This must be the very last reference to @prev from this CPU. After 4870 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4871 * must ensure this doesn't happen until the switch is completely 4872 * finished. 4873 * 4874 * In particular, the load of prev->state in finish_task_switch() must 4875 * happen before this. 4876 * 4877 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4878 */ 4879 smp_store_release(&prev->on_cpu, 0); 4880 #endif 4881 } 4882 4883 #ifdef CONFIG_SMP 4884 4885 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4886 { 4887 void (*func)(struct rq *rq); 4888 struct balance_callback *next; 4889 4890 lockdep_assert_rq_held(rq); 4891 4892 while (head) { 4893 func = (void (*)(struct rq *))head->func; 4894 next = head->next; 4895 head->next = NULL; 4896 head = next; 4897 4898 func(rq); 4899 } 4900 } 4901 4902 static void balance_push(struct rq *rq); 4903 4904 /* 4905 * balance_push_callback is a right abuse of the callback interface and plays 4906 * by significantly different rules. 4907 * 4908 * Where the normal balance_callback's purpose is to be ran in the same context 4909 * that queued it (only later, when it's safe to drop rq->lock again), 4910 * balance_push_callback is specifically targeted at __schedule(). 4911 * 4912 * This abuse is tolerated because it places all the unlikely/odd cases behind 4913 * a single test, namely: rq->balance_callback == NULL. 4914 */ 4915 struct balance_callback balance_push_callback = { 4916 .next = NULL, 4917 .func = balance_push, 4918 }; 4919 4920 static inline struct balance_callback * 4921 __splice_balance_callbacks(struct rq *rq, bool split) 4922 { 4923 struct balance_callback *head = rq->balance_callback; 4924 4925 if (likely(!head)) 4926 return NULL; 4927 4928 lockdep_assert_rq_held(rq); 4929 /* 4930 * Must not take balance_push_callback off the list when 4931 * splice_balance_callbacks() and balance_callbacks() are not 4932 * in the same rq->lock section. 4933 * 4934 * In that case it would be possible for __schedule() to interleave 4935 * and observe the list empty. 4936 */ 4937 if (split && head == &balance_push_callback) 4938 head = NULL; 4939 else 4940 rq->balance_callback = NULL; 4941 4942 return head; 4943 } 4944 4945 struct balance_callback *splice_balance_callbacks(struct rq *rq) 4946 { 4947 return __splice_balance_callbacks(rq, true); 4948 } 4949 4950 static void __balance_callbacks(struct rq *rq) 4951 { 4952 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4953 } 4954 4955 void balance_callbacks(struct rq *rq, struct balance_callback *head) 4956 { 4957 unsigned long flags; 4958 4959 if (unlikely(head)) { 4960 raw_spin_rq_lock_irqsave(rq, flags); 4961 do_balance_callbacks(rq, head); 4962 raw_spin_rq_unlock_irqrestore(rq, flags); 4963 } 4964 } 4965 4966 #else 4967 4968 static inline void __balance_callbacks(struct rq *rq) 4969 { 4970 } 4971 4972 #endif 4973 4974 static inline void 4975 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4976 { 4977 /* 4978 * Since the runqueue lock will be released by the next 4979 * task (which is an invalid locking op but in the case 4980 * of the scheduler it's an obvious special-case), so we 4981 * do an early lockdep release here: 4982 */ 4983 rq_unpin_lock(rq, rf); 4984 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4985 #ifdef CONFIG_DEBUG_SPINLOCK 4986 /* this is a valid case when another task releases the spinlock */ 4987 rq_lockp(rq)->owner = next; 4988 #endif 4989 } 4990 4991 static inline void finish_lock_switch(struct rq *rq) 4992 { 4993 /* 4994 * If we are tracking spinlock dependencies then we have to 4995 * fix up the runqueue lock - which gets 'carried over' from 4996 * prev into current: 4997 */ 4998 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4999 __balance_callbacks(rq); 5000 raw_spin_rq_unlock_irq(rq); 5001 } 5002 5003 /* 5004 * NOP if the arch has not defined these: 5005 */ 5006 5007 #ifndef prepare_arch_switch 5008 # define prepare_arch_switch(next) do { } while (0) 5009 #endif 5010 5011 #ifndef finish_arch_post_lock_switch 5012 # define finish_arch_post_lock_switch() do { } while (0) 5013 #endif 5014 5015 static inline void kmap_local_sched_out(void) 5016 { 5017 #ifdef CONFIG_KMAP_LOCAL 5018 if (unlikely(current->kmap_ctrl.idx)) 5019 __kmap_local_sched_out(); 5020 #endif 5021 } 5022 5023 static inline void kmap_local_sched_in(void) 5024 { 5025 #ifdef CONFIG_KMAP_LOCAL 5026 if (unlikely(current->kmap_ctrl.idx)) 5027 __kmap_local_sched_in(); 5028 #endif 5029 } 5030 5031 /** 5032 * prepare_task_switch - prepare to switch tasks 5033 * @rq: the runqueue preparing to switch 5034 * @prev: the current task that is being switched out 5035 * @next: the task we are going to switch to. 5036 * 5037 * This is called with the rq lock held and interrupts off. It must 5038 * be paired with a subsequent finish_task_switch after the context 5039 * switch. 5040 * 5041 * prepare_task_switch sets up locking and calls architecture specific 5042 * hooks. 5043 */ 5044 static inline void 5045 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5046 struct task_struct *next) 5047 { 5048 kcov_prepare_switch(prev); 5049 sched_info_switch(rq, prev, next); 5050 perf_event_task_sched_out(prev, next); 5051 rseq_preempt(prev); 5052 fire_sched_out_preempt_notifiers(prev, next); 5053 kmap_local_sched_out(); 5054 prepare_task(next); 5055 prepare_arch_switch(next); 5056 } 5057 5058 /** 5059 * finish_task_switch - clean up after a task-switch 5060 * @prev: the thread we just switched away from. 5061 * 5062 * finish_task_switch must be called after the context switch, paired 5063 * with a prepare_task_switch call before the context switch. 5064 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5065 * and do any other architecture-specific cleanup actions. 5066 * 5067 * Note that we may have delayed dropping an mm in context_switch(). If 5068 * so, we finish that here outside of the runqueue lock. (Doing it 5069 * with the lock held can cause deadlocks; see schedule() for 5070 * details.) 5071 * 5072 * The context switch have flipped the stack from under us and restored the 5073 * local variables which were saved when this task called schedule() in the 5074 * past. 'prev == current' is still correct but we need to recalculate this_rq 5075 * because prev may have moved to another CPU. 5076 */ 5077 static struct rq *finish_task_switch(struct task_struct *prev) 5078 __releases(rq->lock) 5079 { 5080 struct rq *rq = this_rq(); 5081 struct mm_struct *mm = rq->prev_mm; 5082 unsigned int prev_state; 5083 5084 /* 5085 * The previous task will have left us with a preempt_count of 2 5086 * because it left us after: 5087 * 5088 * schedule() 5089 * preempt_disable(); // 1 5090 * __schedule() 5091 * raw_spin_lock_irq(&rq->lock) // 2 5092 * 5093 * Also, see FORK_PREEMPT_COUNT. 5094 */ 5095 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5096 "corrupted preempt_count: %s/%d/0x%x\n", 5097 current->comm, current->pid, preempt_count())) 5098 preempt_count_set(FORK_PREEMPT_COUNT); 5099 5100 rq->prev_mm = NULL; 5101 5102 /* 5103 * A task struct has one reference for the use as "current". 5104 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5105 * schedule one last time. The schedule call will never return, and 5106 * the scheduled task must drop that reference. 5107 * 5108 * We must observe prev->state before clearing prev->on_cpu (in 5109 * finish_task), otherwise a concurrent wakeup can get prev 5110 * running on another CPU and we could rave with its RUNNING -> DEAD 5111 * transition, resulting in a double drop. 5112 */ 5113 prev_state = READ_ONCE(prev->__state); 5114 vtime_task_switch(prev); 5115 perf_event_task_sched_in(prev, current); 5116 finish_task(prev); 5117 tick_nohz_task_switch(); 5118 finish_lock_switch(rq); 5119 finish_arch_post_lock_switch(); 5120 kcov_finish_switch(current); 5121 /* 5122 * kmap_local_sched_out() is invoked with rq::lock held and 5123 * interrupts disabled. There is no requirement for that, but the 5124 * sched out code does not have an interrupt enabled section. 5125 * Restoring the maps on sched in does not require interrupts being 5126 * disabled either. 5127 */ 5128 kmap_local_sched_in(); 5129 5130 fire_sched_in_preempt_notifiers(current); 5131 /* 5132 * When switching through a kernel thread, the loop in 5133 * membarrier_{private,global}_expedited() may have observed that 5134 * kernel thread and not issued an IPI. It is therefore possible to 5135 * schedule between user->kernel->user threads without passing though 5136 * switch_mm(). Membarrier requires a barrier after storing to 5137 * rq->curr, before returning to userspace, so provide them here: 5138 * 5139 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5140 * provided by mmdrop_lazy_tlb(), 5141 * - a sync_core for SYNC_CORE. 5142 */ 5143 if (mm) { 5144 membarrier_mm_sync_core_before_usermode(mm); 5145 mmdrop_lazy_tlb_sched(mm); 5146 } 5147 5148 if (unlikely(prev_state == TASK_DEAD)) { 5149 if (prev->sched_class->task_dead) 5150 prev->sched_class->task_dead(prev); 5151 5152 /* Task is done with its stack. */ 5153 put_task_stack(prev); 5154 5155 put_task_struct_rcu_user(prev); 5156 } 5157 5158 return rq; 5159 } 5160 5161 /** 5162 * schedule_tail - first thing a freshly forked thread must call. 5163 * @prev: the thread we just switched away from. 5164 */ 5165 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5166 __releases(rq->lock) 5167 { 5168 /* 5169 * New tasks start with FORK_PREEMPT_COUNT, see there and 5170 * finish_task_switch() for details. 5171 * 5172 * finish_task_switch() will drop rq->lock() and lower preempt_count 5173 * and the preempt_enable() will end up enabling preemption (on 5174 * PREEMPT_COUNT kernels). 5175 */ 5176 5177 finish_task_switch(prev); 5178 preempt_enable(); 5179 5180 if (current->set_child_tid) 5181 put_user(task_pid_vnr(current), current->set_child_tid); 5182 5183 calculate_sigpending(); 5184 } 5185 5186 /* 5187 * context_switch - switch to the new MM and the new thread's register state. 5188 */ 5189 static __always_inline struct rq * 5190 context_switch(struct rq *rq, struct task_struct *prev, 5191 struct task_struct *next, struct rq_flags *rf) 5192 { 5193 prepare_task_switch(rq, prev, next); 5194 5195 /* 5196 * For paravirt, this is coupled with an exit in switch_to to 5197 * combine the page table reload and the switch backend into 5198 * one hypercall. 5199 */ 5200 arch_start_context_switch(prev); 5201 5202 /* 5203 * kernel -> kernel lazy + transfer active 5204 * user -> kernel lazy + mmgrab_lazy_tlb() active 5205 * 5206 * kernel -> user switch + mmdrop_lazy_tlb() active 5207 * user -> user switch 5208 * 5209 * switch_mm_cid() needs to be updated if the barriers provided 5210 * by context_switch() are modified. 5211 */ 5212 if (!next->mm) { // to kernel 5213 enter_lazy_tlb(prev->active_mm, next); 5214 5215 next->active_mm = prev->active_mm; 5216 if (prev->mm) // from user 5217 mmgrab_lazy_tlb(prev->active_mm); 5218 else 5219 prev->active_mm = NULL; 5220 } else { // to user 5221 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5222 /* 5223 * sys_membarrier() requires an smp_mb() between setting 5224 * rq->curr / membarrier_switch_mm() and returning to userspace. 5225 * 5226 * The below provides this either through switch_mm(), or in 5227 * case 'prev->active_mm == next->mm' through 5228 * finish_task_switch()'s mmdrop(). 5229 */ 5230 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5231 lru_gen_use_mm(next->mm); 5232 5233 if (!prev->mm) { // from kernel 5234 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5235 rq->prev_mm = prev->active_mm; 5236 prev->active_mm = NULL; 5237 } 5238 } 5239 5240 /* switch_mm_cid() requires the memory barriers above. */ 5241 switch_mm_cid(rq, prev, next); 5242 5243 prepare_lock_switch(rq, next, rf); 5244 5245 /* Here we just switch the register state and the stack. */ 5246 switch_to(prev, next, prev); 5247 barrier(); 5248 5249 return finish_task_switch(prev); 5250 } 5251 5252 /* 5253 * nr_running and nr_context_switches: 5254 * 5255 * externally visible scheduler statistics: current number of runnable 5256 * threads, total number of context switches performed since bootup. 5257 */ 5258 unsigned int nr_running(void) 5259 { 5260 unsigned int i, sum = 0; 5261 5262 for_each_online_cpu(i) 5263 sum += cpu_rq(i)->nr_running; 5264 5265 return sum; 5266 } 5267 5268 /* 5269 * Check if only the current task is running on the CPU. 5270 * 5271 * Caution: this function does not check that the caller has disabled 5272 * preemption, thus the result might have a time-of-check-to-time-of-use 5273 * race. The caller is responsible to use it correctly, for example: 5274 * 5275 * - from a non-preemptible section (of course) 5276 * 5277 * - from a thread that is bound to a single CPU 5278 * 5279 * - in a loop with very short iterations (e.g. a polling loop) 5280 */ 5281 bool single_task_running(void) 5282 { 5283 return raw_rq()->nr_running == 1; 5284 } 5285 EXPORT_SYMBOL(single_task_running); 5286 5287 unsigned long long nr_context_switches_cpu(int cpu) 5288 { 5289 return cpu_rq(cpu)->nr_switches; 5290 } 5291 5292 unsigned long long nr_context_switches(void) 5293 { 5294 int i; 5295 unsigned long long sum = 0; 5296 5297 for_each_possible_cpu(i) 5298 sum += cpu_rq(i)->nr_switches; 5299 5300 return sum; 5301 } 5302 5303 /* 5304 * Consumers of these two interfaces, like for example the cpuidle menu 5305 * governor, are using nonsensical data. Preferring shallow idle state selection 5306 * for a CPU that has IO-wait which might not even end up running the task when 5307 * it does become runnable. 5308 */ 5309 5310 unsigned int nr_iowait_cpu(int cpu) 5311 { 5312 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5313 } 5314 5315 /* 5316 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5317 * 5318 * The idea behind IO-wait account is to account the idle time that we could 5319 * have spend running if it were not for IO. That is, if we were to improve the 5320 * storage performance, we'd have a proportional reduction in IO-wait time. 5321 * 5322 * This all works nicely on UP, where, when a task blocks on IO, we account 5323 * idle time as IO-wait, because if the storage were faster, it could've been 5324 * running and we'd not be idle. 5325 * 5326 * This has been extended to SMP, by doing the same for each CPU. This however 5327 * is broken. 5328 * 5329 * Imagine for instance the case where two tasks block on one CPU, only the one 5330 * CPU will have IO-wait accounted, while the other has regular idle. Even 5331 * though, if the storage were faster, both could've ran at the same time, 5332 * utilising both CPUs. 5333 * 5334 * This means, that when looking globally, the current IO-wait accounting on 5335 * SMP is a lower bound, by reason of under accounting. 5336 * 5337 * Worse, since the numbers are provided per CPU, they are sometimes 5338 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5339 * associated with any one particular CPU, it can wake to another CPU than it 5340 * blocked on. This means the per CPU IO-wait number is meaningless. 5341 * 5342 * Task CPU affinities can make all that even more 'interesting'. 5343 */ 5344 5345 unsigned int nr_iowait(void) 5346 { 5347 unsigned int i, sum = 0; 5348 5349 for_each_possible_cpu(i) 5350 sum += nr_iowait_cpu(i); 5351 5352 return sum; 5353 } 5354 5355 #ifdef CONFIG_SMP 5356 5357 /* 5358 * sched_exec - execve() is a valuable balancing opportunity, because at 5359 * this point the task has the smallest effective memory and cache footprint. 5360 */ 5361 void sched_exec(void) 5362 { 5363 struct task_struct *p = current; 5364 struct migration_arg arg; 5365 int dest_cpu; 5366 5367 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5368 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5369 if (dest_cpu == smp_processor_id()) 5370 return; 5371 5372 if (unlikely(!cpu_active(dest_cpu))) 5373 return; 5374 5375 arg = (struct migration_arg){ p, dest_cpu }; 5376 } 5377 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5378 } 5379 5380 #endif 5381 5382 DEFINE_PER_CPU(struct kernel_stat, kstat); 5383 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5384 5385 EXPORT_PER_CPU_SYMBOL(kstat); 5386 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5387 5388 /* 5389 * The function fair_sched_class.update_curr accesses the struct curr 5390 * and its field curr->exec_start; when called from task_sched_runtime(), 5391 * we observe a high rate of cache misses in practice. 5392 * Prefetching this data results in improved performance. 5393 */ 5394 static inline void prefetch_curr_exec_start(struct task_struct *p) 5395 { 5396 #ifdef CONFIG_FAIR_GROUP_SCHED 5397 struct sched_entity *curr = p->se.cfs_rq->curr; 5398 #else 5399 struct sched_entity *curr = task_rq(p)->cfs.curr; 5400 #endif 5401 prefetch(curr); 5402 prefetch(&curr->exec_start); 5403 } 5404 5405 /* 5406 * Return accounted runtime for the task. 5407 * In case the task is currently running, return the runtime plus current's 5408 * pending runtime that have not been accounted yet. 5409 */ 5410 unsigned long long task_sched_runtime(struct task_struct *p) 5411 { 5412 struct rq_flags rf; 5413 struct rq *rq; 5414 u64 ns; 5415 5416 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5417 /* 5418 * 64-bit doesn't need locks to atomically read a 64-bit value. 5419 * So we have a optimization chance when the task's delta_exec is 0. 5420 * Reading ->on_cpu is racy, but this is OK. 5421 * 5422 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5423 * If we race with it entering CPU, unaccounted time is 0. This is 5424 * indistinguishable from the read occurring a few cycles earlier. 5425 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5426 * been accounted, so we're correct here as well. 5427 */ 5428 if (!p->on_cpu || !task_on_rq_queued(p)) 5429 return p->se.sum_exec_runtime; 5430 #endif 5431 5432 rq = task_rq_lock(p, &rf); 5433 /* 5434 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5435 * project cycles that may never be accounted to this 5436 * thread, breaking clock_gettime(). 5437 */ 5438 if (task_current(rq, p) && task_on_rq_queued(p)) { 5439 prefetch_curr_exec_start(p); 5440 update_rq_clock(rq); 5441 p->sched_class->update_curr(rq); 5442 } 5443 ns = p->se.sum_exec_runtime; 5444 task_rq_unlock(rq, p, &rf); 5445 5446 return ns; 5447 } 5448 5449 #ifdef CONFIG_SCHED_DEBUG 5450 static u64 cpu_resched_latency(struct rq *rq) 5451 { 5452 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5453 u64 resched_latency, now = rq_clock(rq); 5454 static bool warned_once; 5455 5456 if (sysctl_resched_latency_warn_once && warned_once) 5457 return 0; 5458 5459 if (!need_resched() || !latency_warn_ms) 5460 return 0; 5461 5462 if (system_state == SYSTEM_BOOTING) 5463 return 0; 5464 5465 if (!rq->last_seen_need_resched_ns) { 5466 rq->last_seen_need_resched_ns = now; 5467 rq->ticks_without_resched = 0; 5468 return 0; 5469 } 5470 5471 rq->ticks_without_resched++; 5472 resched_latency = now - rq->last_seen_need_resched_ns; 5473 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5474 return 0; 5475 5476 warned_once = true; 5477 5478 return resched_latency; 5479 } 5480 5481 static int __init setup_resched_latency_warn_ms(char *str) 5482 { 5483 long val; 5484 5485 if ((kstrtol(str, 0, &val))) { 5486 pr_warn("Unable to set resched_latency_warn_ms\n"); 5487 return 1; 5488 } 5489 5490 sysctl_resched_latency_warn_ms = val; 5491 return 1; 5492 } 5493 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5494 #else 5495 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5496 #endif /* CONFIG_SCHED_DEBUG */ 5497 5498 /* 5499 * This function gets called by the timer code, with HZ frequency. 5500 * We call it with interrupts disabled. 5501 */ 5502 void sched_tick(void) 5503 { 5504 int cpu = smp_processor_id(); 5505 struct rq *rq = cpu_rq(cpu); 5506 struct task_struct *curr = rq->curr; 5507 struct rq_flags rf; 5508 unsigned long hw_pressure; 5509 u64 resched_latency; 5510 5511 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5512 arch_scale_freq_tick(); 5513 5514 sched_clock_tick(); 5515 5516 rq_lock(rq, &rf); 5517 5518 update_rq_clock(rq); 5519 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5520 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5521 curr->sched_class->task_tick(rq, curr, 0); 5522 if (sched_feat(LATENCY_WARN)) 5523 resched_latency = cpu_resched_latency(rq); 5524 calc_global_load_tick(rq); 5525 sched_core_tick(rq); 5526 task_tick_mm_cid(rq, curr); 5527 scx_tick(rq); 5528 5529 rq_unlock(rq, &rf); 5530 5531 if (sched_feat(LATENCY_WARN) && resched_latency) 5532 resched_latency_warn(cpu, resched_latency); 5533 5534 perf_event_task_tick(); 5535 5536 if (curr->flags & PF_WQ_WORKER) 5537 wq_worker_tick(curr); 5538 5539 #ifdef CONFIG_SMP 5540 if (!scx_switched_all()) { 5541 rq->idle_balance = idle_cpu(cpu); 5542 sched_balance_trigger(rq); 5543 } 5544 #endif 5545 } 5546 5547 #ifdef CONFIG_NO_HZ_FULL 5548 5549 struct tick_work { 5550 int cpu; 5551 atomic_t state; 5552 struct delayed_work work; 5553 }; 5554 /* Values for ->state, see diagram below. */ 5555 #define TICK_SCHED_REMOTE_OFFLINE 0 5556 #define TICK_SCHED_REMOTE_OFFLINING 1 5557 #define TICK_SCHED_REMOTE_RUNNING 2 5558 5559 /* 5560 * State diagram for ->state: 5561 * 5562 * 5563 * TICK_SCHED_REMOTE_OFFLINE 5564 * | ^ 5565 * | | 5566 * | | sched_tick_remote() 5567 * | | 5568 * | | 5569 * +--TICK_SCHED_REMOTE_OFFLINING 5570 * | ^ 5571 * | | 5572 * sched_tick_start() | | sched_tick_stop() 5573 * | | 5574 * V | 5575 * TICK_SCHED_REMOTE_RUNNING 5576 * 5577 * 5578 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5579 * and sched_tick_start() are happy to leave the state in RUNNING. 5580 */ 5581 5582 static struct tick_work __percpu *tick_work_cpu; 5583 5584 static void sched_tick_remote(struct work_struct *work) 5585 { 5586 struct delayed_work *dwork = to_delayed_work(work); 5587 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5588 int cpu = twork->cpu; 5589 struct rq *rq = cpu_rq(cpu); 5590 int os; 5591 5592 /* 5593 * Handle the tick only if it appears the remote CPU is running in full 5594 * dynticks mode. The check is racy by nature, but missing a tick or 5595 * having one too much is no big deal because the scheduler tick updates 5596 * statistics and checks timeslices in a time-independent way, regardless 5597 * of when exactly it is running. 5598 */ 5599 if (tick_nohz_tick_stopped_cpu(cpu)) { 5600 guard(rq_lock_irq)(rq); 5601 struct task_struct *curr = rq->curr; 5602 5603 if (cpu_online(cpu)) { 5604 update_rq_clock(rq); 5605 5606 if (!is_idle_task(curr)) { 5607 /* 5608 * Make sure the next tick runs within a 5609 * reasonable amount of time. 5610 */ 5611 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5612 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5613 } 5614 curr->sched_class->task_tick(rq, curr, 0); 5615 5616 calc_load_nohz_remote(rq); 5617 } 5618 } 5619 5620 /* 5621 * Run the remote tick once per second (1Hz). This arbitrary 5622 * frequency is large enough to avoid overload but short enough 5623 * to keep scheduler internal stats reasonably up to date. But 5624 * first update state to reflect hotplug activity if required. 5625 */ 5626 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5627 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5628 if (os == TICK_SCHED_REMOTE_RUNNING) 5629 queue_delayed_work(system_unbound_wq, dwork, HZ); 5630 } 5631 5632 static void sched_tick_start(int cpu) 5633 { 5634 int os; 5635 struct tick_work *twork; 5636 5637 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5638 return; 5639 5640 WARN_ON_ONCE(!tick_work_cpu); 5641 5642 twork = per_cpu_ptr(tick_work_cpu, cpu); 5643 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5644 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5645 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5646 twork->cpu = cpu; 5647 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5648 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5649 } 5650 } 5651 5652 #ifdef CONFIG_HOTPLUG_CPU 5653 static void sched_tick_stop(int cpu) 5654 { 5655 struct tick_work *twork; 5656 int os; 5657 5658 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5659 return; 5660 5661 WARN_ON_ONCE(!tick_work_cpu); 5662 5663 twork = per_cpu_ptr(tick_work_cpu, cpu); 5664 /* There cannot be competing actions, but don't rely on stop-machine. */ 5665 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5666 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5667 /* Don't cancel, as this would mess up the state machine. */ 5668 } 5669 #endif /* CONFIG_HOTPLUG_CPU */ 5670 5671 int __init sched_tick_offload_init(void) 5672 { 5673 tick_work_cpu = alloc_percpu(struct tick_work); 5674 BUG_ON(!tick_work_cpu); 5675 return 0; 5676 } 5677 5678 #else /* !CONFIG_NO_HZ_FULL */ 5679 static inline void sched_tick_start(int cpu) { } 5680 static inline void sched_tick_stop(int cpu) { } 5681 #endif 5682 5683 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5684 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5685 /* 5686 * If the value passed in is equal to the current preempt count 5687 * then we just disabled preemption. Start timing the latency. 5688 */ 5689 static inline void preempt_latency_start(int val) 5690 { 5691 if (preempt_count() == val) { 5692 unsigned long ip = get_lock_parent_ip(); 5693 #ifdef CONFIG_DEBUG_PREEMPT 5694 current->preempt_disable_ip = ip; 5695 #endif 5696 trace_preempt_off(CALLER_ADDR0, ip); 5697 } 5698 } 5699 5700 void preempt_count_add(int val) 5701 { 5702 #ifdef CONFIG_DEBUG_PREEMPT 5703 /* 5704 * Underflow? 5705 */ 5706 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5707 return; 5708 #endif 5709 __preempt_count_add(val); 5710 #ifdef CONFIG_DEBUG_PREEMPT 5711 /* 5712 * Spinlock count overflowing soon? 5713 */ 5714 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5715 PREEMPT_MASK - 10); 5716 #endif 5717 preempt_latency_start(val); 5718 } 5719 EXPORT_SYMBOL(preempt_count_add); 5720 NOKPROBE_SYMBOL(preempt_count_add); 5721 5722 /* 5723 * If the value passed in equals to the current preempt count 5724 * then we just enabled preemption. Stop timing the latency. 5725 */ 5726 static inline void preempt_latency_stop(int val) 5727 { 5728 if (preempt_count() == val) 5729 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5730 } 5731 5732 void preempt_count_sub(int val) 5733 { 5734 #ifdef CONFIG_DEBUG_PREEMPT 5735 /* 5736 * Underflow? 5737 */ 5738 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5739 return; 5740 /* 5741 * Is the spinlock portion underflowing? 5742 */ 5743 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5744 !(preempt_count() & PREEMPT_MASK))) 5745 return; 5746 #endif 5747 5748 preempt_latency_stop(val); 5749 __preempt_count_sub(val); 5750 } 5751 EXPORT_SYMBOL(preempt_count_sub); 5752 NOKPROBE_SYMBOL(preempt_count_sub); 5753 5754 #else 5755 static inline void preempt_latency_start(int val) { } 5756 static inline void preempt_latency_stop(int val) { } 5757 #endif 5758 5759 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5760 { 5761 #ifdef CONFIG_DEBUG_PREEMPT 5762 return p->preempt_disable_ip; 5763 #else 5764 return 0; 5765 #endif 5766 } 5767 5768 /* 5769 * Print scheduling while atomic bug: 5770 */ 5771 static noinline void __schedule_bug(struct task_struct *prev) 5772 { 5773 /* Save this before calling printk(), since that will clobber it */ 5774 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5775 5776 if (oops_in_progress) 5777 return; 5778 5779 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5780 prev->comm, prev->pid, preempt_count()); 5781 5782 debug_show_held_locks(prev); 5783 print_modules(); 5784 if (irqs_disabled()) 5785 print_irqtrace_events(prev); 5786 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5787 pr_err("Preemption disabled at:"); 5788 print_ip_sym(KERN_ERR, preempt_disable_ip); 5789 } 5790 check_panic_on_warn("scheduling while atomic"); 5791 5792 dump_stack(); 5793 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5794 } 5795 5796 /* 5797 * Various schedule()-time debugging checks and statistics: 5798 */ 5799 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5800 { 5801 #ifdef CONFIG_SCHED_STACK_END_CHECK 5802 if (task_stack_end_corrupted(prev)) 5803 panic("corrupted stack end detected inside scheduler\n"); 5804 5805 if (task_scs_end_corrupted(prev)) 5806 panic("corrupted shadow stack detected inside scheduler\n"); 5807 #endif 5808 5809 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5810 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5811 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5812 prev->comm, prev->pid, prev->non_block_count); 5813 dump_stack(); 5814 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5815 } 5816 #endif 5817 5818 if (unlikely(in_atomic_preempt_off())) { 5819 __schedule_bug(prev); 5820 preempt_count_set(PREEMPT_DISABLED); 5821 } 5822 rcu_sleep_check(); 5823 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5824 5825 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5826 5827 schedstat_inc(this_rq()->sched_count); 5828 } 5829 5830 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5831 struct rq_flags *rf) 5832 { 5833 #ifdef CONFIG_SMP 5834 const struct sched_class *class; 5835 /* 5836 * We must do the balancing pass before put_prev_task(), such 5837 * that when we release the rq->lock the task is in the same 5838 * state as before we took rq->lock. 5839 * 5840 * We can terminate the balance pass as soon as we know there is 5841 * a runnable task of @class priority or higher. 5842 */ 5843 for_balance_class_range(class, prev->sched_class, &idle_sched_class) { 5844 if (class->balance(rq, prev, rf)) 5845 break; 5846 } 5847 #endif 5848 5849 put_prev_task(rq, prev); 5850 } 5851 5852 /* 5853 * Pick up the highest-prio task: 5854 */ 5855 static inline struct task_struct * 5856 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5857 { 5858 const struct sched_class *class; 5859 struct task_struct *p; 5860 5861 if (scx_enabled()) 5862 goto restart; 5863 5864 /* 5865 * Optimization: we know that if all tasks are in the fair class we can 5866 * call that function directly, but only if the @prev task wasn't of a 5867 * higher scheduling class, because otherwise those lose the 5868 * opportunity to pull in more work from other CPUs. 5869 */ 5870 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5871 rq->nr_running == rq->cfs.h_nr_running)) { 5872 5873 p = pick_next_task_fair(rq, prev, rf); 5874 if (unlikely(p == RETRY_TASK)) 5875 goto restart; 5876 5877 /* Assume the next prioritized class is idle_sched_class */ 5878 if (!p) { 5879 put_prev_task(rq, prev); 5880 p = pick_next_task_idle(rq); 5881 } 5882 5883 /* 5884 * This is the fast path; it cannot be a DL server pick; 5885 * therefore even if @p == @prev, ->dl_server must be NULL. 5886 */ 5887 if (p->dl_server) 5888 p->dl_server = NULL; 5889 5890 return p; 5891 } 5892 5893 restart: 5894 put_prev_task_balance(rq, prev, rf); 5895 5896 /* 5897 * We've updated @prev and no longer need the server link, clear it. 5898 * Must be done before ->pick_next_task() because that can (re)set 5899 * ->dl_server. 5900 */ 5901 if (prev->dl_server) 5902 prev->dl_server = NULL; 5903 5904 for_each_active_class(class) { 5905 p = class->pick_next_task(rq); 5906 if (p) { 5907 const struct sched_class *prev_class = prev->sched_class; 5908 5909 if (class != prev_class && prev_class->switch_class) 5910 prev_class->switch_class(rq, p); 5911 return p; 5912 } 5913 } 5914 5915 BUG(); /* The idle class should always have a runnable task. */ 5916 } 5917 5918 #ifdef CONFIG_SCHED_CORE 5919 static inline bool is_task_rq_idle(struct task_struct *t) 5920 { 5921 return (task_rq(t)->idle == t); 5922 } 5923 5924 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5925 { 5926 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5927 } 5928 5929 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5930 { 5931 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5932 return true; 5933 5934 return a->core_cookie == b->core_cookie; 5935 } 5936 5937 static inline struct task_struct *pick_task(struct rq *rq) 5938 { 5939 const struct sched_class *class; 5940 struct task_struct *p; 5941 5942 for_each_active_class(class) { 5943 p = class->pick_task(rq); 5944 if (p) 5945 return p; 5946 } 5947 5948 BUG(); /* The idle class should always have a runnable task. */ 5949 } 5950 5951 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5952 5953 static void queue_core_balance(struct rq *rq); 5954 5955 static struct task_struct * 5956 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5957 { 5958 struct task_struct *next, *p, *max = NULL; 5959 const struct cpumask *smt_mask; 5960 bool fi_before = false; 5961 bool core_clock_updated = (rq == rq->core); 5962 unsigned long cookie; 5963 int i, cpu, occ = 0; 5964 struct rq *rq_i; 5965 bool need_sync; 5966 5967 if (!sched_core_enabled(rq)) 5968 return __pick_next_task(rq, prev, rf); 5969 5970 cpu = cpu_of(rq); 5971 5972 /* Stopper task is switching into idle, no need core-wide selection. */ 5973 if (cpu_is_offline(cpu)) { 5974 /* 5975 * Reset core_pick so that we don't enter the fastpath when 5976 * coming online. core_pick would already be migrated to 5977 * another cpu during offline. 5978 */ 5979 rq->core_pick = NULL; 5980 return __pick_next_task(rq, prev, rf); 5981 } 5982 5983 /* 5984 * If there were no {en,de}queues since we picked (IOW, the task 5985 * pointers are all still valid), and we haven't scheduled the last 5986 * pick yet, do so now. 5987 * 5988 * rq->core_pick can be NULL if no selection was made for a CPU because 5989 * it was either offline or went offline during a sibling's core-wide 5990 * selection. In this case, do a core-wide selection. 5991 */ 5992 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5993 rq->core->core_pick_seq != rq->core_sched_seq && 5994 rq->core_pick) { 5995 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5996 5997 next = rq->core_pick; 5998 if (next != prev) { 5999 put_prev_task(rq, prev); 6000 set_next_task(rq, next); 6001 } 6002 6003 rq->core_pick = NULL; 6004 goto out; 6005 } 6006 6007 put_prev_task_balance(rq, prev, rf); 6008 6009 smt_mask = cpu_smt_mask(cpu); 6010 need_sync = !!rq->core->core_cookie; 6011 6012 /* reset state */ 6013 rq->core->core_cookie = 0UL; 6014 if (rq->core->core_forceidle_count) { 6015 if (!core_clock_updated) { 6016 update_rq_clock(rq->core); 6017 core_clock_updated = true; 6018 } 6019 sched_core_account_forceidle(rq); 6020 /* reset after accounting force idle */ 6021 rq->core->core_forceidle_start = 0; 6022 rq->core->core_forceidle_count = 0; 6023 rq->core->core_forceidle_occupation = 0; 6024 need_sync = true; 6025 fi_before = true; 6026 } 6027 6028 /* 6029 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6030 * 6031 * @task_seq guards the task state ({en,de}queues) 6032 * @pick_seq is the @task_seq we did a selection on 6033 * @sched_seq is the @pick_seq we scheduled 6034 * 6035 * However, preemptions can cause multiple picks on the same task set. 6036 * 'Fix' this by also increasing @task_seq for every pick. 6037 */ 6038 rq->core->core_task_seq++; 6039 6040 /* 6041 * Optimize for common case where this CPU has no cookies 6042 * and there are no cookied tasks running on siblings. 6043 */ 6044 if (!need_sync) { 6045 next = pick_task(rq); 6046 if (!next->core_cookie) { 6047 rq->core_pick = NULL; 6048 /* 6049 * For robustness, update the min_vruntime_fi for 6050 * unconstrained picks as well. 6051 */ 6052 WARN_ON_ONCE(fi_before); 6053 task_vruntime_update(rq, next, false); 6054 goto out_set_next; 6055 } 6056 } 6057 6058 /* 6059 * For each thread: do the regular task pick and find the max prio task 6060 * amongst them. 6061 * 6062 * Tie-break prio towards the current CPU 6063 */ 6064 for_each_cpu_wrap(i, smt_mask, cpu) { 6065 rq_i = cpu_rq(i); 6066 6067 /* 6068 * Current cpu always has its clock updated on entrance to 6069 * pick_next_task(). If the current cpu is not the core, 6070 * the core may also have been updated above. 6071 */ 6072 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6073 update_rq_clock(rq_i); 6074 6075 p = rq_i->core_pick = pick_task(rq_i); 6076 if (!max || prio_less(max, p, fi_before)) 6077 max = p; 6078 } 6079 6080 cookie = rq->core->core_cookie = max->core_cookie; 6081 6082 /* 6083 * For each thread: try and find a runnable task that matches @max or 6084 * force idle. 6085 */ 6086 for_each_cpu(i, smt_mask) { 6087 rq_i = cpu_rq(i); 6088 p = rq_i->core_pick; 6089 6090 if (!cookie_equals(p, cookie)) { 6091 p = NULL; 6092 if (cookie) 6093 p = sched_core_find(rq_i, cookie); 6094 if (!p) 6095 p = idle_sched_class.pick_task(rq_i); 6096 } 6097 6098 rq_i->core_pick = p; 6099 6100 if (p == rq_i->idle) { 6101 if (rq_i->nr_running) { 6102 rq->core->core_forceidle_count++; 6103 if (!fi_before) 6104 rq->core->core_forceidle_seq++; 6105 } 6106 } else { 6107 occ++; 6108 } 6109 } 6110 6111 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6112 rq->core->core_forceidle_start = rq_clock(rq->core); 6113 rq->core->core_forceidle_occupation = occ; 6114 } 6115 6116 rq->core->core_pick_seq = rq->core->core_task_seq; 6117 next = rq->core_pick; 6118 rq->core_sched_seq = rq->core->core_pick_seq; 6119 6120 /* Something should have been selected for current CPU */ 6121 WARN_ON_ONCE(!next); 6122 6123 /* 6124 * Reschedule siblings 6125 * 6126 * NOTE: L1TF -- at this point we're no longer running the old task and 6127 * sending an IPI (below) ensures the sibling will no longer be running 6128 * their task. This ensures there is no inter-sibling overlap between 6129 * non-matching user state. 6130 */ 6131 for_each_cpu(i, smt_mask) { 6132 rq_i = cpu_rq(i); 6133 6134 /* 6135 * An online sibling might have gone offline before a task 6136 * could be picked for it, or it might be offline but later 6137 * happen to come online, but its too late and nothing was 6138 * picked for it. That's Ok - it will pick tasks for itself, 6139 * so ignore it. 6140 */ 6141 if (!rq_i->core_pick) 6142 continue; 6143 6144 /* 6145 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6146 * fi_before fi update? 6147 * 0 0 1 6148 * 0 1 1 6149 * 1 0 1 6150 * 1 1 0 6151 */ 6152 if (!(fi_before && rq->core->core_forceidle_count)) 6153 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6154 6155 rq_i->core_pick->core_occupation = occ; 6156 6157 if (i == cpu) { 6158 rq_i->core_pick = NULL; 6159 continue; 6160 } 6161 6162 /* Did we break L1TF mitigation requirements? */ 6163 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6164 6165 if (rq_i->curr == rq_i->core_pick) { 6166 rq_i->core_pick = NULL; 6167 continue; 6168 } 6169 6170 resched_curr(rq_i); 6171 } 6172 6173 out_set_next: 6174 set_next_task(rq, next); 6175 out: 6176 if (rq->core->core_forceidle_count && next == rq->idle) 6177 queue_core_balance(rq); 6178 6179 return next; 6180 } 6181 6182 static bool try_steal_cookie(int this, int that) 6183 { 6184 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6185 struct task_struct *p; 6186 unsigned long cookie; 6187 bool success = false; 6188 6189 guard(irq)(); 6190 guard(double_rq_lock)(dst, src); 6191 6192 cookie = dst->core->core_cookie; 6193 if (!cookie) 6194 return false; 6195 6196 if (dst->curr != dst->idle) 6197 return false; 6198 6199 p = sched_core_find(src, cookie); 6200 if (!p) 6201 return false; 6202 6203 do { 6204 if (p == src->core_pick || p == src->curr) 6205 goto next; 6206 6207 if (!is_cpu_allowed(p, this)) 6208 goto next; 6209 6210 if (p->core_occupation > dst->idle->core_occupation) 6211 goto next; 6212 /* 6213 * sched_core_find() and sched_core_next() will ensure 6214 * that task @p is not throttled now, we also need to 6215 * check whether the runqueue of the destination CPU is 6216 * being throttled. 6217 */ 6218 if (sched_task_is_throttled(p, this)) 6219 goto next; 6220 6221 deactivate_task(src, p, 0); 6222 set_task_cpu(p, this); 6223 activate_task(dst, p, 0); 6224 6225 resched_curr(dst); 6226 6227 success = true; 6228 break; 6229 6230 next: 6231 p = sched_core_next(p, cookie); 6232 } while (p); 6233 6234 return success; 6235 } 6236 6237 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6238 { 6239 int i; 6240 6241 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6242 if (i == cpu) 6243 continue; 6244 6245 if (need_resched()) 6246 break; 6247 6248 if (try_steal_cookie(cpu, i)) 6249 return true; 6250 } 6251 6252 return false; 6253 } 6254 6255 static void sched_core_balance(struct rq *rq) 6256 { 6257 struct sched_domain *sd; 6258 int cpu = cpu_of(rq); 6259 6260 guard(preempt)(); 6261 guard(rcu)(); 6262 6263 raw_spin_rq_unlock_irq(rq); 6264 for_each_domain(cpu, sd) { 6265 if (need_resched()) 6266 break; 6267 6268 if (steal_cookie_task(cpu, sd)) 6269 break; 6270 } 6271 raw_spin_rq_lock_irq(rq); 6272 } 6273 6274 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6275 6276 static void queue_core_balance(struct rq *rq) 6277 { 6278 if (!sched_core_enabled(rq)) 6279 return; 6280 6281 if (!rq->core->core_cookie) 6282 return; 6283 6284 if (!rq->nr_running) /* not forced idle */ 6285 return; 6286 6287 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6288 } 6289 6290 DEFINE_LOCK_GUARD_1(core_lock, int, 6291 sched_core_lock(*_T->lock, &_T->flags), 6292 sched_core_unlock(*_T->lock, &_T->flags), 6293 unsigned long flags) 6294 6295 static void sched_core_cpu_starting(unsigned int cpu) 6296 { 6297 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6298 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6299 int t; 6300 6301 guard(core_lock)(&cpu); 6302 6303 WARN_ON_ONCE(rq->core != rq); 6304 6305 /* if we're the first, we'll be our own leader */ 6306 if (cpumask_weight(smt_mask) == 1) 6307 return; 6308 6309 /* find the leader */ 6310 for_each_cpu(t, smt_mask) { 6311 if (t == cpu) 6312 continue; 6313 rq = cpu_rq(t); 6314 if (rq->core == rq) { 6315 core_rq = rq; 6316 break; 6317 } 6318 } 6319 6320 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6321 return; 6322 6323 /* install and validate core_rq */ 6324 for_each_cpu(t, smt_mask) { 6325 rq = cpu_rq(t); 6326 6327 if (t == cpu) 6328 rq->core = core_rq; 6329 6330 WARN_ON_ONCE(rq->core != core_rq); 6331 } 6332 } 6333 6334 static void sched_core_cpu_deactivate(unsigned int cpu) 6335 { 6336 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6337 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6338 int t; 6339 6340 guard(core_lock)(&cpu); 6341 6342 /* if we're the last man standing, nothing to do */ 6343 if (cpumask_weight(smt_mask) == 1) { 6344 WARN_ON_ONCE(rq->core != rq); 6345 return; 6346 } 6347 6348 /* if we're not the leader, nothing to do */ 6349 if (rq->core != rq) 6350 return; 6351 6352 /* find a new leader */ 6353 for_each_cpu(t, smt_mask) { 6354 if (t == cpu) 6355 continue; 6356 core_rq = cpu_rq(t); 6357 break; 6358 } 6359 6360 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6361 return; 6362 6363 /* copy the shared state to the new leader */ 6364 core_rq->core_task_seq = rq->core_task_seq; 6365 core_rq->core_pick_seq = rq->core_pick_seq; 6366 core_rq->core_cookie = rq->core_cookie; 6367 core_rq->core_forceidle_count = rq->core_forceidle_count; 6368 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6369 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6370 6371 /* 6372 * Accounting edge for forced idle is handled in pick_next_task(). 6373 * Don't need another one here, since the hotplug thread shouldn't 6374 * have a cookie. 6375 */ 6376 core_rq->core_forceidle_start = 0; 6377 6378 /* install new leader */ 6379 for_each_cpu(t, smt_mask) { 6380 rq = cpu_rq(t); 6381 rq->core = core_rq; 6382 } 6383 } 6384 6385 static inline void sched_core_cpu_dying(unsigned int cpu) 6386 { 6387 struct rq *rq = cpu_rq(cpu); 6388 6389 if (rq->core != rq) 6390 rq->core = rq; 6391 } 6392 6393 #else /* !CONFIG_SCHED_CORE */ 6394 6395 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6396 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6397 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6398 6399 static struct task_struct * 6400 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6401 { 6402 return __pick_next_task(rq, prev, rf); 6403 } 6404 6405 #endif /* CONFIG_SCHED_CORE */ 6406 6407 /* 6408 * Constants for the sched_mode argument of __schedule(). 6409 * 6410 * The mode argument allows RT enabled kernels to differentiate a 6411 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6412 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6413 * optimize the AND operation out and just check for zero. 6414 */ 6415 #define SM_NONE 0x0 6416 #define SM_PREEMPT 0x1 6417 #define SM_RTLOCK_WAIT 0x2 6418 6419 #ifndef CONFIG_PREEMPT_RT 6420 # define SM_MASK_PREEMPT (~0U) 6421 #else 6422 # define SM_MASK_PREEMPT SM_PREEMPT 6423 #endif 6424 6425 /* 6426 * __schedule() is the main scheduler function. 6427 * 6428 * The main means of driving the scheduler and thus entering this function are: 6429 * 6430 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6431 * 6432 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6433 * paths. For example, see arch/x86/entry_64.S. 6434 * 6435 * To drive preemption between tasks, the scheduler sets the flag in timer 6436 * interrupt handler sched_tick(). 6437 * 6438 * 3. Wakeups don't really cause entry into schedule(). They add a 6439 * task to the run-queue and that's it. 6440 * 6441 * Now, if the new task added to the run-queue preempts the current 6442 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6443 * called on the nearest possible occasion: 6444 * 6445 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6446 * 6447 * - in syscall or exception context, at the next outmost 6448 * preempt_enable(). (this might be as soon as the wake_up()'s 6449 * spin_unlock()!) 6450 * 6451 * - in IRQ context, return from interrupt-handler to 6452 * preemptible context 6453 * 6454 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6455 * then at the next: 6456 * 6457 * - cond_resched() call 6458 * - explicit schedule() call 6459 * - return from syscall or exception to user-space 6460 * - return from interrupt-handler to user-space 6461 * 6462 * WARNING: must be called with preemption disabled! 6463 */ 6464 static void __sched notrace __schedule(unsigned int sched_mode) 6465 { 6466 struct task_struct *prev, *next; 6467 unsigned long *switch_count; 6468 unsigned long prev_state; 6469 struct rq_flags rf; 6470 struct rq *rq; 6471 int cpu; 6472 6473 cpu = smp_processor_id(); 6474 rq = cpu_rq(cpu); 6475 prev = rq->curr; 6476 6477 schedule_debug(prev, !!sched_mode); 6478 6479 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6480 hrtick_clear(rq); 6481 6482 local_irq_disable(); 6483 rcu_note_context_switch(!!sched_mode); 6484 6485 /* 6486 * Make sure that signal_pending_state()->signal_pending() below 6487 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6488 * done by the caller to avoid the race with signal_wake_up(): 6489 * 6490 * __set_current_state(@state) signal_wake_up() 6491 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6492 * wake_up_state(p, state) 6493 * LOCK rq->lock LOCK p->pi_state 6494 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6495 * if (signal_pending_state()) if (p->state & @state) 6496 * 6497 * Also, the membarrier system call requires a full memory barrier 6498 * after coming from user-space, before storing to rq->curr; this 6499 * barrier matches a full barrier in the proximity of the membarrier 6500 * system call exit. 6501 */ 6502 rq_lock(rq, &rf); 6503 smp_mb__after_spinlock(); 6504 6505 /* Promote REQ to ACT */ 6506 rq->clock_update_flags <<= 1; 6507 update_rq_clock(rq); 6508 rq->clock_update_flags = RQCF_UPDATED; 6509 6510 switch_count = &prev->nivcsw; 6511 6512 /* 6513 * We must load prev->state once (task_struct::state is volatile), such 6514 * that we form a control dependency vs deactivate_task() below. 6515 */ 6516 prev_state = READ_ONCE(prev->__state); 6517 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6518 if (signal_pending_state(prev_state, prev)) { 6519 WRITE_ONCE(prev->__state, TASK_RUNNING); 6520 } else { 6521 prev->sched_contributes_to_load = 6522 (prev_state & TASK_UNINTERRUPTIBLE) && 6523 !(prev_state & TASK_NOLOAD) && 6524 !(prev_state & TASK_FROZEN); 6525 6526 if (prev->sched_contributes_to_load) 6527 rq->nr_uninterruptible++; 6528 6529 /* 6530 * __schedule() ttwu() 6531 * prev_state = prev->state; if (p->on_rq && ...) 6532 * if (prev_state) goto out; 6533 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6534 * p->state = TASK_WAKING 6535 * 6536 * Where __schedule() and ttwu() have matching control dependencies. 6537 * 6538 * After this, schedule() must not care about p->state any more. 6539 */ 6540 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6541 6542 if (prev->in_iowait) { 6543 atomic_inc(&rq->nr_iowait); 6544 delayacct_blkio_start(); 6545 } 6546 } 6547 switch_count = &prev->nvcsw; 6548 } 6549 6550 next = pick_next_task(rq, prev, &rf); 6551 clear_tsk_need_resched(prev); 6552 clear_preempt_need_resched(); 6553 #ifdef CONFIG_SCHED_DEBUG 6554 rq->last_seen_need_resched_ns = 0; 6555 #endif 6556 6557 if (likely(prev != next)) { 6558 rq->nr_switches++; 6559 /* 6560 * RCU users of rcu_dereference(rq->curr) may not see 6561 * changes to task_struct made by pick_next_task(). 6562 */ 6563 RCU_INIT_POINTER(rq->curr, next); 6564 /* 6565 * The membarrier system call requires each architecture 6566 * to have a full memory barrier after updating 6567 * rq->curr, before returning to user-space. 6568 * 6569 * Here are the schemes providing that barrier on the 6570 * various architectures: 6571 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6572 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6573 * on PowerPC and on RISC-V. 6574 * - finish_lock_switch() for weakly-ordered 6575 * architectures where spin_unlock is a full barrier, 6576 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6577 * is a RELEASE barrier), 6578 * 6579 * The barrier matches a full barrier in the proximity of 6580 * the membarrier system call entry. 6581 * 6582 * On RISC-V, this barrier pairing is also needed for the 6583 * SYNC_CORE command when switching between processes, cf. 6584 * the inline comments in membarrier_arch_switch_mm(). 6585 */ 6586 ++*switch_count; 6587 6588 migrate_disable_switch(rq, prev); 6589 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6590 6591 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6592 6593 /* Also unlocks the rq: */ 6594 rq = context_switch(rq, prev, next, &rf); 6595 } else { 6596 rq_unpin_lock(rq, &rf); 6597 __balance_callbacks(rq); 6598 raw_spin_rq_unlock_irq(rq); 6599 } 6600 } 6601 6602 void __noreturn do_task_dead(void) 6603 { 6604 /* Causes final put_task_struct in finish_task_switch(): */ 6605 set_special_state(TASK_DEAD); 6606 6607 /* Tell freezer to ignore us: */ 6608 current->flags |= PF_NOFREEZE; 6609 6610 __schedule(SM_NONE); 6611 BUG(); 6612 6613 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6614 for (;;) 6615 cpu_relax(); 6616 } 6617 6618 static inline void sched_submit_work(struct task_struct *tsk) 6619 { 6620 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6621 unsigned int task_flags; 6622 6623 /* 6624 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6625 * will use a blocking primitive -- which would lead to recursion. 6626 */ 6627 lock_map_acquire_try(&sched_map); 6628 6629 task_flags = tsk->flags; 6630 /* 6631 * If a worker goes to sleep, notify and ask workqueue whether it 6632 * wants to wake up a task to maintain concurrency. 6633 */ 6634 if (task_flags & PF_WQ_WORKER) 6635 wq_worker_sleeping(tsk); 6636 else if (task_flags & PF_IO_WORKER) 6637 io_wq_worker_sleeping(tsk); 6638 6639 /* 6640 * spinlock and rwlock must not flush block requests. This will 6641 * deadlock if the callback attempts to acquire a lock which is 6642 * already acquired. 6643 */ 6644 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6645 6646 /* 6647 * If we are going to sleep and we have plugged IO queued, 6648 * make sure to submit it to avoid deadlocks. 6649 */ 6650 blk_flush_plug(tsk->plug, true); 6651 6652 lock_map_release(&sched_map); 6653 } 6654 6655 static void sched_update_worker(struct task_struct *tsk) 6656 { 6657 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6658 if (tsk->flags & PF_BLOCK_TS) 6659 blk_plug_invalidate_ts(tsk); 6660 if (tsk->flags & PF_WQ_WORKER) 6661 wq_worker_running(tsk); 6662 else if (tsk->flags & PF_IO_WORKER) 6663 io_wq_worker_running(tsk); 6664 } 6665 } 6666 6667 static __always_inline void __schedule_loop(unsigned int sched_mode) 6668 { 6669 do { 6670 preempt_disable(); 6671 __schedule(sched_mode); 6672 sched_preempt_enable_no_resched(); 6673 } while (need_resched()); 6674 } 6675 6676 asmlinkage __visible void __sched schedule(void) 6677 { 6678 struct task_struct *tsk = current; 6679 6680 #ifdef CONFIG_RT_MUTEXES 6681 lockdep_assert(!tsk->sched_rt_mutex); 6682 #endif 6683 6684 if (!task_is_running(tsk)) 6685 sched_submit_work(tsk); 6686 __schedule_loop(SM_NONE); 6687 sched_update_worker(tsk); 6688 } 6689 EXPORT_SYMBOL(schedule); 6690 6691 /* 6692 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6693 * state (have scheduled out non-voluntarily) by making sure that all 6694 * tasks have either left the run queue or have gone into user space. 6695 * As idle tasks do not do either, they must not ever be preempted 6696 * (schedule out non-voluntarily). 6697 * 6698 * schedule_idle() is similar to schedule_preempt_disable() except that it 6699 * never enables preemption because it does not call sched_submit_work(). 6700 */ 6701 void __sched schedule_idle(void) 6702 { 6703 /* 6704 * As this skips calling sched_submit_work(), which the idle task does 6705 * regardless because that function is a NOP when the task is in a 6706 * TASK_RUNNING state, make sure this isn't used someplace that the 6707 * current task can be in any other state. Note, idle is always in the 6708 * TASK_RUNNING state. 6709 */ 6710 WARN_ON_ONCE(current->__state); 6711 do { 6712 __schedule(SM_NONE); 6713 } while (need_resched()); 6714 } 6715 6716 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6717 asmlinkage __visible void __sched schedule_user(void) 6718 { 6719 /* 6720 * If we come here after a random call to set_need_resched(), 6721 * or we have been woken up remotely but the IPI has not yet arrived, 6722 * we haven't yet exited the RCU idle mode. Do it here manually until 6723 * we find a better solution. 6724 * 6725 * NB: There are buggy callers of this function. Ideally we 6726 * should warn if prev_state != CONTEXT_USER, but that will trigger 6727 * too frequently to make sense yet. 6728 */ 6729 enum ctx_state prev_state = exception_enter(); 6730 schedule(); 6731 exception_exit(prev_state); 6732 } 6733 #endif 6734 6735 /** 6736 * schedule_preempt_disabled - called with preemption disabled 6737 * 6738 * Returns with preemption disabled. Note: preempt_count must be 1 6739 */ 6740 void __sched schedule_preempt_disabled(void) 6741 { 6742 sched_preempt_enable_no_resched(); 6743 schedule(); 6744 preempt_disable(); 6745 } 6746 6747 #ifdef CONFIG_PREEMPT_RT 6748 void __sched notrace schedule_rtlock(void) 6749 { 6750 __schedule_loop(SM_RTLOCK_WAIT); 6751 } 6752 NOKPROBE_SYMBOL(schedule_rtlock); 6753 #endif 6754 6755 static void __sched notrace preempt_schedule_common(void) 6756 { 6757 do { 6758 /* 6759 * Because the function tracer can trace preempt_count_sub() 6760 * and it also uses preempt_enable/disable_notrace(), if 6761 * NEED_RESCHED is set, the preempt_enable_notrace() called 6762 * by the function tracer will call this function again and 6763 * cause infinite recursion. 6764 * 6765 * Preemption must be disabled here before the function 6766 * tracer can trace. Break up preempt_disable() into two 6767 * calls. One to disable preemption without fear of being 6768 * traced. The other to still record the preemption latency, 6769 * which can also be traced by the function tracer. 6770 */ 6771 preempt_disable_notrace(); 6772 preempt_latency_start(1); 6773 __schedule(SM_PREEMPT); 6774 preempt_latency_stop(1); 6775 preempt_enable_no_resched_notrace(); 6776 6777 /* 6778 * Check again in case we missed a preemption opportunity 6779 * between schedule and now. 6780 */ 6781 } while (need_resched()); 6782 } 6783 6784 #ifdef CONFIG_PREEMPTION 6785 /* 6786 * This is the entry point to schedule() from in-kernel preemption 6787 * off of preempt_enable. 6788 */ 6789 asmlinkage __visible void __sched notrace preempt_schedule(void) 6790 { 6791 /* 6792 * If there is a non-zero preempt_count or interrupts are disabled, 6793 * we do not want to preempt the current task. Just return.. 6794 */ 6795 if (likely(!preemptible())) 6796 return; 6797 preempt_schedule_common(); 6798 } 6799 NOKPROBE_SYMBOL(preempt_schedule); 6800 EXPORT_SYMBOL(preempt_schedule); 6801 6802 #ifdef CONFIG_PREEMPT_DYNAMIC 6803 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6804 #ifndef preempt_schedule_dynamic_enabled 6805 #define preempt_schedule_dynamic_enabled preempt_schedule 6806 #define preempt_schedule_dynamic_disabled NULL 6807 #endif 6808 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6809 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6810 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6811 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6812 void __sched notrace dynamic_preempt_schedule(void) 6813 { 6814 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6815 return; 6816 preempt_schedule(); 6817 } 6818 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6819 EXPORT_SYMBOL(dynamic_preempt_schedule); 6820 #endif 6821 #endif 6822 6823 /** 6824 * preempt_schedule_notrace - preempt_schedule called by tracing 6825 * 6826 * The tracing infrastructure uses preempt_enable_notrace to prevent 6827 * recursion and tracing preempt enabling caused by the tracing 6828 * infrastructure itself. But as tracing can happen in areas coming 6829 * from userspace or just about to enter userspace, a preempt enable 6830 * can occur before user_exit() is called. This will cause the scheduler 6831 * to be called when the system is still in usermode. 6832 * 6833 * To prevent this, the preempt_enable_notrace will use this function 6834 * instead of preempt_schedule() to exit user context if needed before 6835 * calling the scheduler. 6836 */ 6837 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6838 { 6839 enum ctx_state prev_ctx; 6840 6841 if (likely(!preemptible())) 6842 return; 6843 6844 do { 6845 /* 6846 * Because the function tracer can trace preempt_count_sub() 6847 * and it also uses preempt_enable/disable_notrace(), if 6848 * NEED_RESCHED is set, the preempt_enable_notrace() called 6849 * by the function tracer will call this function again and 6850 * cause infinite recursion. 6851 * 6852 * Preemption must be disabled here before the function 6853 * tracer can trace. Break up preempt_disable() into two 6854 * calls. One to disable preemption without fear of being 6855 * traced. The other to still record the preemption latency, 6856 * which can also be traced by the function tracer. 6857 */ 6858 preempt_disable_notrace(); 6859 preempt_latency_start(1); 6860 /* 6861 * Needs preempt disabled in case user_exit() is traced 6862 * and the tracer calls preempt_enable_notrace() causing 6863 * an infinite recursion. 6864 */ 6865 prev_ctx = exception_enter(); 6866 __schedule(SM_PREEMPT); 6867 exception_exit(prev_ctx); 6868 6869 preempt_latency_stop(1); 6870 preempt_enable_no_resched_notrace(); 6871 } while (need_resched()); 6872 } 6873 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6874 6875 #ifdef CONFIG_PREEMPT_DYNAMIC 6876 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6877 #ifndef preempt_schedule_notrace_dynamic_enabled 6878 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6879 #define preempt_schedule_notrace_dynamic_disabled NULL 6880 #endif 6881 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6882 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6883 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6884 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6885 void __sched notrace dynamic_preempt_schedule_notrace(void) 6886 { 6887 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6888 return; 6889 preempt_schedule_notrace(); 6890 } 6891 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6892 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6893 #endif 6894 #endif 6895 6896 #endif /* CONFIG_PREEMPTION */ 6897 6898 /* 6899 * This is the entry point to schedule() from kernel preemption 6900 * off of IRQ context. 6901 * Note, that this is called and return with IRQs disabled. This will 6902 * protect us against recursive calling from IRQ contexts. 6903 */ 6904 asmlinkage __visible void __sched preempt_schedule_irq(void) 6905 { 6906 enum ctx_state prev_state; 6907 6908 /* Catch callers which need to be fixed */ 6909 BUG_ON(preempt_count() || !irqs_disabled()); 6910 6911 prev_state = exception_enter(); 6912 6913 do { 6914 preempt_disable(); 6915 local_irq_enable(); 6916 __schedule(SM_PREEMPT); 6917 local_irq_disable(); 6918 sched_preempt_enable_no_resched(); 6919 } while (need_resched()); 6920 6921 exception_exit(prev_state); 6922 } 6923 6924 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6925 void *key) 6926 { 6927 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 6928 return try_to_wake_up(curr->private, mode, wake_flags); 6929 } 6930 EXPORT_SYMBOL(default_wake_function); 6931 6932 void __setscheduler_prio(struct task_struct *p, int prio) 6933 { 6934 if (dl_prio(prio)) 6935 p->sched_class = &dl_sched_class; 6936 else if (rt_prio(prio)) 6937 p->sched_class = &rt_sched_class; 6938 #ifdef CONFIG_SCHED_CLASS_EXT 6939 else if (task_should_scx(p)) 6940 p->sched_class = &ext_sched_class; 6941 #endif 6942 else 6943 p->sched_class = &fair_sched_class; 6944 6945 p->prio = prio; 6946 } 6947 6948 #ifdef CONFIG_RT_MUTEXES 6949 6950 /* 6951 * Would be more useful with typeof()/auto_type but they don't mix with 6952 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 6953 * name such that if someone were to implement this function we get to compare 6954 * notes. 6955 */ 6956 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 6957 6958 void rt_mutex_pre_schedule(void) 6959 { 6960 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 6961 sched_submit_work(current); 6962 } 6963 6964 void rt_mutex_schedule(void) 6965 { 6966 lockdep_assert(current->sched_rt_mutex); 6967 __schedule_loop(SM_NONE); 6968 } 6969 6970 void rt_mutex_post_schedule(void) 6971 { 6972 sched_update_worker(current); 6973 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 6974 } 6975 6976 /* 6977 * rt_mutex_setprio - set the current priority of a task 6978 * @p: task to boost 6979 * @pi_task: donor task 6980 * 6981 * This function changes the 'effective' priority of a task. It does 6982 * not touch ->normal_prio like __setscheduler(). 6983 * 6984 * Used by the rt_mutex code to implement priority inheritance 6985 * logic. Call site only calls if the priority of the task changed. 6986 */ 6987 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6988 { 6989 int prio, oldprio, queued, running, queue_flag = 6990 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6991 const struct sched_class *prev_class; 6992 struct rq_flags rf; 6993 struct rq *rq; 6994 6995 /* XXX used to be waiter->prio, not waiter->task->prio */ 6996 prio = __rt_effective_prio(pi_task, p->normal_prio); 6997 6998 /* 6999 * If nothing changed; bail early. 7000 */ 7001 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7002 return; 7003 7004 rq = __task_rq_lock(p, &rf); 7005 update_rq_clock(rq); 7006 /* 7007 * Set under pi_lock && rq->lock, such that the value can be used under 7008 * either lock. 7009 * 7010 * Note that there is loads of tricky to make this pointer cache work 7011 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7012 * ensure a task is de-boosted (pi_task is set to NULL) before the 7013 * task is allowed to run again (and can exit). This ensures the pointer 7014 * points to a blocked task -- which guarantees the task is present. 7015 */ 7016 p->pi_top_task = pi_task; 7017 7018 /* 7019 * For FIFO/RR we only need to set prio, if that matches we're done. 7020 */ 7021 if (prio == p->prio && !dl_prio(prio)) 7022 goto out_unlock; 7023 7024 /* 7025 * Idle task boosting is a no-no in general. There is one 7026 * exception, when PREEMPT_RT and NOHZ is active: 7027 * 7028 * The idle task calls get_next_timer_interrupt() and holds 7029 * the timer wheel base->lock on the CPU and another CPU wants 7030 * to access the timer (probably to cancel it). We can safely 7031 * ignore the boosting request, as the idle CPU runs this code 7032 * with interrupts disabled and will complete the lock 7033 * protected section without being interrupted. So there is no 7034 * real need to boost. 7035 */ 7036 if (unlikely(p == rq->idle)) { 7037 WARN_ON(p != rq->curr); 7038 WARN_ON(p->pi_blocked_on); 7039 goto out_unlock; 7040 } 7041 7042 trace_sched_pi_setprio(p, pi_task); 7043 oldprio = p->prio; 7044 7045 if (oldprio == prio) 7046 queue_flag &= ~DEQUEUE_MOVE; 7047 7048 prev_class = p->sched_class; 7049 queued = task_on_rq_queued(p); 7050 running = task_current(rq, p); 7051 if (queued) 7052 dequeue_task(rq, p, queue_flag); 7053 if (running) 7054 put_prev_task(rq, p); 7055 7056 /* 7057 * Boosting condition are: 7058 * 1. -rt task is running and holds mutex A 7059 * --> -dl task blocks on mutex A 7060 * 7061 * 2. -dl task is running and holds mutex A 7062 * --> -dl task blocks on mutex A and could preempt the 7063 * running task 7064 */ 7065 if (dl_prio(prio)) { 7066 if (!dl_prio(p->normal_prio) || 7067 (pi_task && dl_prio(pi_task->prio) && 7068 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7069 p->dl.pi_se = pi_task->dl.pi_se; 7070 queue_flag |= ENQUEUE_REPLENISH; 7071 } else { 7072 p->dl.pi_se = &p->dl; 7073 } 7074 } else if (rt_prio(prio)) { 7075 if (dl_prio(oldprio)) 7076 p->dl.pi_se = &p->dl; 7077 if (oldprio < prio) 7078 queue_flag |= ENQUEUE_HEAD; 7079 } else { 7080 if (dl_prio(oldprio)) 7081 p->dl.pi_se = &p->dl; 7082 if (rt_prio(oldprio)) 7083 p->rt.timeout = 0; 7084 } 7085 7086 __setscheduler_prio(p, prio); 7087 check_class_changing(rq, p, prev_class); 7088 7089 if (queued) 7090 enqueue_task(rq, p, queue_flag); 7091 if (running) 7092 set_next_task(rq, p); 7093 7094 check_class_changed(rq, p, prev_class, oldprio); 7095 out_unlock: 7096 /* Avoid rq from going away on us: */ 7097 preempt_disable(); 7098 7099 rq_unpin_lock(rq, &rf); 7100 __balance_callbacks(rq); 7101 raw_spin_rq_unlock(rq); 7102 7103 preempt_enable(); 7104 } 7105 #endif 7106 7107 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7108 int __sched __cond_resched(void) 7109 { 7110 if (should_resched(0)) { 7111 preempt_schedule_common(); 7112 return 1; 7113 } 7114 /* 7115 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 7116 * whether the current CPU is in an RCU read-side critical section, 7117 * so the tick can report quiescent states even for CPUs looping 7118 * in kernel context. In contrast, in non-preemptible kernels, 7119 * RCU readers leave no in-memory hints, which means that CPU-bound 7120 * processes executing in kernel context might never report an 7121 * RCU quiescent state. Therefore, the following code causes 7122 * cond_resched() to report a quiescent state, but only when RCU 7123 * is in urgent need of one. 7124 */ 7125 #ifndef CONFIG_PREEMPT_RCU 7126 rcu_all_qs(); 7127 #endif 7128 return 0; 7129 } 7130 EXPORT_SYMBOL(__cond_resched); 7131 #endif 7132 7133 #ifdef CONFIG_PREEMPT_DYNAMIC 7134 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7135 #define cond_resched_dynamic_enabled __cond_resched 7136 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7137 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7138 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7139 7140 #define might_resched_dynamic_enabled __cond_resched 7141 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7142 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7143 EXPORT_STATIC_CALL_TRAMP(might_resched); 7144 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7145 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7146 int __sched dynamic_cond_resched(void) 7147 { 7148 klp_sched_try_switch(); 7149 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7150 return 0; 7151 return __cond_resched(); 7152 } 7153 EXPORT_SYMBOL(dynamic_cond_resched); 7154 7155 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7156 int __sched dynamic_might_resched(void) 7157 { 7158 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7159 return 0; 7160 return __cond_resched(); 7161 } 7162 EXPORT_SYMBOL(dynamic_might_resched); 7163 #endif 7164 #endif 7165 7166 /* 7167 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7168 * call schedule, and on return reacquire the lock. 7169 * 7170 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7171 * operations here to prevent schedule() from being called twice (once via 7172 * spin_unlock(), once by hand). 7173 */ 7174 int __cond_resched_lock(spinlock_t *lock) 7175 { 7176 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7177 int ret = 0; 7178 7179 lockdep_assert_held(lock); 7180 7181 if (spin_needbreak(lock) || resched) { 7182 spin_unlock(lock); 7183 if (!_cond_resched()) 7184 cpu_relax(); 7185 ret = 1; 7186 spin_lock(lock); 7187 } 7188 return ret; 7189 } 7190 EXPORT_SYMBOL(__cond_resched_lock); 7191 7192 int __cond_resched_rwlock_read(rwlock_t *lock) 7193 { 7194 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7195 int ret = 0; 7196 7197 lockdep_assert_held_read(lock); 7198 7199 if (rwlock_needbreak(lock) || resched) { 7200 read_unlock(lock); 7201 if (!_cond_resched()) 7202 cpu_relax(); 7203 ret = 1; 7204 read_lock(lock); 7205 } 7206 return ret; 7207 } 7208 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7209 7210 int __cond_resched_rwlock_write(rwlock_t *lock) 7211 { 7212 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7213 int ret = 0; 7214 7215 lockdep_assert_held_write(lock); 7216 7217 if (rwlock_needbreak(lock) || resched) { 7218 write_unlock(lock); 7219 if (!_cond_resched()) 7220 cpu_relax(); 7221 ret = 1; 7222 write_lock(lock); 7223 } 7224 return ret; 7225 } 7226 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7227 7228 #ifdef CONFIG_PREEMPT_DYNAMIC 7229 7230 #ifdef CONFIG_GENERIC_ENTRY 7231 #include <linux/entry-common.h> 7232 #endif 7233 7234 /* 7235 * SC:cond_resched 7236 * SC:might_resched 7237 * SC:preempt_schedule 7238 * SC:preempt_schedule_notrace 7239 * SC:irqentry_exit_cond_resched 7240 * 7241 * 7242 * NONE: 7243 * cond_resched <- __cond_resched 7244 * might_resched <- RET0 7245 * preempt_schedule <- NOP 7246 * preempt_schedule_notrace <- NOP 7247 * irqentry_exit_cond_resched <- NOP 7248 * 7249 * VOLUNTARY: 7250 * cond_resched <- __cond_resched 7251 * might_resched <- __cond_resched 7252 * preempt_schedule <- NOP 7253 * preempt_schedule_notrace <- NOP 7254 * irqentry_exit_cond_resched <- NOP 7255 * 7256 * FULL: 7257 * cond_resched <- RET0 7258 * might_resched <- RET0 7259 * preempt_schedule <- preempt_schedule 7260 * preempt_schedule_notrace <- preempt_schedule_notrace 7261 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7262 */ 7263 7264 enum { 7265 preempt_dynamic_undefined = -1, 7266 preempt_dynamic_none, 7267 preempt_dynamic_voluntary, 7268 preempt_dynamic_full, 7269 }; 7270 7271 int preempt_dynamic_mode = preempt_dynamic_undefined; 7272 7273 int sched_dynamic_mode(const char *str) 7274 { 7275 if (!strcmp(str, "none")) 7276 return preempt_dynamic_none; 7277 7278 if (!strcmp(str, "voluntary")) 7279 return preempt_dynamic_voluntary; 7280 7281 if (!strcmp(str, "full")) 7282 return preempt_dynamic_full; 7283 7284 return -EINVAL; 7285 } 7286 7287 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7288 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7289 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7290 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7291 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 7292 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 7293 #else 7294 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7295 #endif 7296 7297 static DEFINE_MUTEX(sched_dynamic_mutex); 7298 static bool klp_override; 7299 7300 static void __sched_dynamic_update(int mode) 7301 { 7302 /* 7303 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7304 * the ZERO state, which is invalid. 7305 */ 7306 if (!klp_override) 7307 preempt_dynamic_enable(cond_resched); 7308 preempt_dynamic_enable(might_resched); 7309 preempt_dynamic_enable(preempt_schedule); 7310 preempt_dynamic_enable(preempt_schedule_notrace); 7311 preempt_dynamic_enable(irqentry_exit_cond_resched); 7312 7313 switch (mode) { 7314 case preempt_dynamic_none: 7315 if (!klp_override) 7316 preempt_dynamic_enable(cond_resched); 7317 preempt_dynamic_disable(might_resched); 7318 preempt_dynamic_disable(preempt_schedule); 7319 preempt_dynamic_disable(preempt_schedule_notrace); 7320 preempt_dynamic_disable(irqentry_exit_cond_resched); 7321 if (mode != preempt_dynamic_mode) 7322 pr_info("Dynamic Preempt: none\n"); 7323 break; 7324 7325 case preempt_dynamic_voluntary: 7326 if (!klp_override) 7327 preempt_dynamic_enable(cond_resched); 7328 preempt_dynamic_enable(might_resched); 7329 preempt_dynamic_disable(preempt_schedule); 7330 preempt_dynamic_disable(preempt_schedule_notrace); 7331 preempt_dynamic_disable(irqentry_exit_cond_resched); 7332 if (mode != preempt_dynamic_mode) 7333 pr_info("Dynamic Preempt: voluntary\n"); 7334 break; 7335 7336 case preempt_dynamic_full: 7337 if (!klp_override) 7338 preempt_dynamic_disable(cond_resched); 7339 preempt_dynamic_disable(might_resched); 7340 preempt_dynamic_enable(preempt_schedule); 7341 preempt_dynamic_enable(preempt_schedule_notrace); 7342 preempt_dynamic_enable(irqentry_exit_cond_resched); 7343 if (mode != preempt_dynamic_mode) 7344 pr_info("Dynamic Preempt: full\n"); 7345 break; 7346 } 7347 7348 preempt_dynamic_mode = mode; 7349 } 7350 7351 void sched_dynamic_update(int mode) 7352 { 7353 mutex_lock(&sched_dynamic_mutex); 7354 __sched_dynamic_update(mode); 7355 mutex_unlock(&sched_dynamic_mutex); 7356 } 7357 7358 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7359 7360 static int klp_cond_resched(void) 7361 { 7362 __klp_sched_try_switch(); 7363 return __cond_resched(); 7364 } 7365 7366 void sched_dynamic_klp_enable(void) 7367 { 7368 mutex_lock(&sched_dynamic_mutex); 7369 7370 klp_override = true; 7371 static_call_update(cond_resched, klp_cond_resched); 7372 7373 mutex_unlock(&sched_dynamic_mutex); 7374 } 7375 7376 void sched_dynamic_klp_disable(void) 7377 { 7378 mutex_lock(&sched_dynamic_mutex); 7379 7380 klp_override = false; 7381 __sched_dynamic_update(preempt_dynamic_mode); 7382 7383 mutex_unlock(&sched_dynamic_mutex); 7384 } 7385 7386 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7387 7388 static int __init setup_preempt_mode(char *str) 7389 { 7390 int mode = sched_dynamic_mode(str); 7391 if (mode < 0) { 7392 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7393 return 0; 7394 } 7395 7396 sched_dynamic_update(mode); 7397 return 1; 7398 } 7399 __setup("preempt=", setup_preempt_mode); 7400 7401 static void __init preempt_dynamic_init(void) 7402 { 7403 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7404 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7405 sched_dynamic_update(preempt_dynamic_none); 7406 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7407 sched_dynamic_update(preempt_dynamic_voluntary); 7408 } else { 7409 /* Default static call setting, nothing to do */ 7410 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7411 preempt_dynamic_mode = preempt_dynamic_full; 7412 pr_info("Dynamic Preempt: full\n"); 7413 } 7414 } 7415 } 7416 7417 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7418 bool preempt_model_##mode(void) \ 7419 { \ 7420 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7421 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7422 } \ 7423 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7424 7425 PREEMPT_MODEL_ACCESSOR(none); 7426 PREEMPT_MODEL_ACCESSOR(voluntary); 7427 PREEMPT_MODEL_ACCESSOR(full); 7428 7429 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7430 7431 static inline void preempt_dynamic_init(void) { } 7432 7433 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7434 7435 int io_schedule_prepare(void) 7436 { 7437 int old_iowait = current->in_iowait; 7438 7439 current->in_iowait = 1; 7440 blk_flush_plug(current->plug, true); 7441 return old_iowait; 7442 } 7443 7444 void io_schedule_finish(int token) 7445 { 7446 current->in_iowait = token; 7447 } 7448 7449 /* 7450 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7451 * that process accounting knows that this is a task in IO wait state. 7452 */ 7453 long __sched io_schedule_timeout(long timeout) 7454 { 7455 int token; 7456 long ret; 7457 7458 token = io_schedule_prepare(); 7459 ret = schedule_timeout(timeout); 7460 io_schedule_finish(token); 7461 7462 return ret; 7463 } 7464 EXPORT_SYMBOL(io_schedule_timeout); 7465 7466 void __sched io_schedule(void) 7467 { 7468 int token; 7469 7470 token = io_schedule_prepare(); 7471 schedule(); 7472 io_schedule_finish(token); 7473 } 7474 EXPORT_SYMBOL(io_schedule); 7475 7476 void sched_show_task(struct task_struct *p) 7477 { 7478 unsigned long free = 0; 7479 int ppid; 7480 7481 if (!try_get_task_stack(p)) 7482 return; 7483 7484 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7485 7486 if (task_is_running(p)) 7487 pr_cont(" running task "); 7488 #ifdef CONFIG_DEBUG_STACK_USAGE 7489 free = stack_not_used(p); 7490 #endif 7491 ppid = 0; 7492 rcu_read_lock(); 7493 if (pid_alive(p)) 7494 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7495 rcu_read_unlock(); 7496 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", 7497 free, task_pid_nr(p), task_tgid_nr(p), 7498 ppid, read_task_thread_flags(p)); 7499 7500 print_worker_info(KERN_INFO, p); 7501 print_stop_info(KERN_INFO, p); 7502 print_scx_info(KERN_INFO, p); 7503 show_stack(p, NULL, KERN_INFO); 7504 put_task_stack(p); 7505 } 7506 EXPORT_SYMBOL_GPL(sched_show_task); 7507 7508 static inline bool 7509 state_filter_match(unsigned long state_filter, struct task_struct *p) 7510 { 7511 unsigned int state = READ_ONCE(p->__state); 7512 7513 /* no filter, everything matches */ 7514 if (!state_filter) 7515 return true; 7516 7517 /* filter, but doesn't match */ 7518 if (!(state & state_filter)) 7519 return false; 7520 7521 /* 7522 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7523 * TASK_KILLABLE). 7524 */ 7525 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7526 return false; 7527 7528 return true; 7529 } 7530 7531 7532 void show_state_filter(unsigned int state_filter) 7533 { 7534 struct task_struct *g, *p; 7535 7536 rcu_read_lock(); 7537 for_each_process_thread(g, p) { 7538 /* 7539 * reset the NMI-timeout, listing all files on a slow 7540 * console might take a lot of time: 7541 * Also, reset softlockup watchdogs on all CPUs, because 7542 * another CPU might be blocked waiting for us to process 7543 * an IPI. 7544 */ 7545 touch_nmi_watchdog(); 7546 touch_all_softlockup_watchdogs(); 7547 if (state_filter_match(state_filter, p)) 7548 sched_show_task(p); 7549 } 7550 7551 #ifdef CONFIG_SCHED_DEBUG 7552 if (!state_filter) 7553 sysrq_sched_debug_show(); 7554 #endif 7555 rcu_read_unlock(); 7556 /* 7557 * Only show locks if all tasks are dumped: 7558 */ 7559 if (!state_filter) 7560 debug_show_all_locks(); 7561 } 7562 7563 /** 7564 * init_idle - set up an idle thread for a given CPU 7565 * @idle: task in question 7566 * @cpu: CPU the idle task belongs to 7567 * 7568 * NOTE: this function does not set the idle thread's NEED_RESCHED 7569 * flag, to make booting more robust. 7570 */ 7571 void __init init_idle(struct task_struct *idle, int cpu) 7572 { 7573 #ifdef CONFIG_SMP 7574 struct affinity_context ac = (struct affinity_context) { 7575 .new_mask = cpumask_of(cpu), 7576 .flags = 0, 7577 }; 7578 #endif 7579 struct rq *rq = cpu_rq(cpu); 7580 unsigned long flags; 7581 7582 __sched_fork(0, idle); 7583 7584 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7585 raw_spin_rq_lock(rq); 7586 7587 idle->__state = TASK_RUNNING; 7588 idle->se.exec_start = sched_clock(); 7589 /* 7590 * PF_KTHREAD should already be set at this point; regardless, make it 7591 * look like a proper per-CPU kthread. 7592 */ 7593 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7594 kthread_set_per_cpu(idle, cpu); 7595 7596 #ifdef CONFIG_SMP 7597 /* 7598 * It's possible that init_idle() gets called multiple times on a task, 7599 * in that case do_set_cpus_allowed() will not do the right thing. 7600 * 7601 * And since this is boot we can forgo the serialization. 7602 */ 7603 set_cpus_allowed_common(idle, &ac); 7604 #endif 7605 /* 7606 * We're having a chicken and egg problem, even though we are 7607 * holding rq->lock, the CPU isn't yet set to this CPU so the 7608 * lockdep check in task_group() will fail. 7609 * 7610 * Similar case to sched_fork(). / Alternatively we could 7611 * use task_rq_lock() here and obtain the other rq->lock. 7612 * 7613 * Silence PROVE_RCU 7614 */ 7615 rcu_read_lock(); 7616 __set_task_cpu(idle, cpu); 7617 rcu_read_unlock(); 7618 7619 rq->idle = idle; 7620 rcu_assign_pointer(rq->curr, idle); 7621 idle->on_rq = TASK_ON_RQ_QUEUED; 7622 #ifdef CONFIG_SMP 7623 idle->on_cpu = 1; 7624 #endif 7625 raw_spin_rq_unlock(rq); 7626 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7627 7628 /* Set the preempt count _outside_ the spinlocks! */ 7629 init_idle_preempt_count(idle, cpu); 7630 7631 /* 7632 * The idle tasks have their own, simple scheduling class: 7633 */ 7634 idle->sched_class = &idle_sched_class; 7635 ftrace_graph_init_idle_task(idle, cpu); 7636 vtime_init_idle(idle, cpu); 7637 #ifdef CONFIG_SMP 7638 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7639 #endif 7640 } 7641 7642 #ifdef CONFIG_SMP 7643 7644 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7645 const struct cpumask *trial) 7646 { 7647 int ret = 1; 7648 7649 if (cpumask_empty(cur)) 7650 return ret; 7651 7652 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7653 7654 return ret; 7655 } 7656 7657 int task_can_attach(struct task_struct *p) 7658 { 7659 int ret = 0; 7660 7661 /* 7662 * Kthreads which disallow setaffinity shouldn't be moved 7663 * to a new cpuset; we don't want to change their CPU 7664 * affinity and isolating such threads by their set of 7665 * allowed nodes is unnecessary. Thus, cpusets are not 7666 * applicable for such threads. This prevents checking for 7667 * success of set_cpus_allowed_ptr() on all attached tasks 7668 * before cpus_mask may be changed. 7669 */ 7670 if (p->flags & PF_NO_SETAFFINITY) 7671 ret = -EINVAL; 7672 7673 return ret; 7674 } 7675 7676 bool sched_smp_initialized __read_mostly; 7677 7678 #ifdef CONFIG_NUMA_BALANCING 7679 /* Migrate current task p to target_cpu */ 7680 int migrate_task_to(struct task_struct *p, int target_cpu) 7681 { 7682 struct migration_arg arg = { p, target_cpu }; 7683 int curr_cpu = task_cpu(p); 7684 7685 if (curr_cpu == target_cpu) 7686 return 0; 7687 7688 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7689 return -EINVAL; 7690 7691 /* TODO: This is not properly updating schedstats */ 7692 7693 trace_sched_move_numa(p, curr_cpu, target_cpu); 7694 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7695 } 7696 7697 /* 7698 * Requeue a task on a given node and accurately track the number of NUMA 7699 * tasks on the runqueues 7700 */ 7701 void sched_setnuma(struct task_struct *p, int nid) 7702 { 7703 bool queued, running; 7704 struct rq_flags rf; 7705 struct rq *rq; 7706 7707 rq = task_rq_lock(p, &rf); 7708 queued = task_on_rq_queued(p); 7709 running = task_current(rq, p); 7710 7711 if (queued) 7712 dequeue_task(rq, p, DEQUEUE_SAVE); 7713 if (running) 7714 put_prev_task(rq, p); 7715 7716 p->numa_preferred_nid = nid; 7717 7718 if (queued) 7719 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7720 if (running) 7721 set_next_task(rq, p); 7722 task_rq_unlock(rq, p, &rf); 7723 } 7724 #endif /* CONFIG_NUMA_BALANCING */ 7725 7726 #ifdef CONFIG_HOTPLUG_CPU 7727 /* 7728 * Ensure that the idle task is using init_mm right before its CPU goes 7729 * offline. 7730 */ 7731 void idle_task_exit(void) 7732 { 7733 struct mm_struct *mm = current->active_mm; 7734 7735 BUG_ON(cpu_online(smp_processor_id())); 7736 BUG_ON(current != this_rq()->idle); 7737 7738 if (mm != &init_mm) { 7739 switch_mm(mm, &init_mm, current); 7740 finish_arch_post_lock_switch(); 7741 } 7742 7743 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7744 } 7745 7746 static int __balance_push_cpu_stop(void *arg) 7747 { 7748 struct task_struct *p = arg; 7749 struct rq *rq = this_rq(); 7750 struct rq_flags rf; 7751 int cpu; 7752 7753 raw_spin_lock_irq(&p->pi_lock); 7754 rq_lock(rq, &rf); 7755 7756 update_rq_clock(rq); 7757 7758 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7759 cpu = select_fallback_rq(rq->cpu, p); 7760 rq = __migrate_task(rq, &rf, p, cpu); 7761 } 7762 7763 rq_unlock(rq, &rf); 7764 raw_spin_unlock_irq(&p->pi_lock); 7765 7766 put_task_struct(p); 7767 7768 return 0; 7769 } 7770 7771 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7772 7773 /* 7774 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7775 * 7776 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7777 * effective when the hotplug motion is down. 7778 */ 7779 static void balance_push(struct rq *rq) 7780 { 7781 struct task_struct *push_task = rq->curr; 7782 7783 lockdep_assert_rq_held(rq); 7784 7785 /* 7786 * Ensure the thing is persistent until balance_push_set(.on = false); 7787 */ 7788 rq->balance_callback = &balance_push_callback; 7789 7790 /* 7791 * Only active while going offline and when invoked on the outgoing 7792 * CPU. 7793 */ 7794 if (!cpu_dying(rq->cpu) || rq != this_rq()) 7795 return; 7796 7797 /* 7798 * Both the cpu-hotplug and stop task are in this case and are 7799 * required to complete the hotplug process. 7800 */ 7801 if (kthread_is_per_cpu(push_task) || 7802 is_migration_disabled(push_task)) { 7803 7804 /* 7805 * If this is the idle task on the outgoing CPU try to wake 7806 * up the hotplug control thread which might wait for the 7807 * last task to vanish. The rcuwait_active() check is 7808 * accurate here because the waiter is pinned on this CPU 7809 * and can't obviously be running in parallel. 7810 * 7811 * On RT kernels this also has to check whether there are 7812 * pinned and scheduled out tasks on the runqueue. They 7813 * need to leave the migrate disabled section first. 7814 */ 7815 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7816 rcuwait_active(&rq->hotplug_wait)) { 7817 raw_spin_rq_unlock(rq); 7818 rcuwait_wake_up(&rq->hotplug_wait); 7819 raw_spin_rq_lock(rq); 7820 } 7821 return; 7822 } 7823 7824 get_task_struct(push_task); 7825 /* 7826 * Temporarily drop rq->lock such that we can wake-up the stop task. 7827 * Both preemption and IRQs are still disabled. 7828 */ 7829 preempt_disable(); 7830 raw_spin_rq_unlock(rq); 7831 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7832 this_cpu_ptr(&push_work)); 7833 preempt_enable(); 7834 /* 7835 * At this point need_resched() is true and we'll take the loop in 7836 * schedule(). The next pick is obviously going to be the stop task 7837 * which kthread_is_per_cpu() and will push this task away. 7838 */ 7839 raw_spin_rq_lock(rq); 7840 } 7841 7842 static void balance_push_set(int cpu, bool on) 7843 { 7844 struct rq *rq = cpu_rq(cpu); 7845 struct rq_flags rf; 7846 7847 rq_lock_irqsave(rq, &rf); 7848 if (on) { 7849 WARN_ON_ONCE(rq->balance_callback); 7850 rq->balance_callback = &balance_push_callback; 7851 } else if (rq->balance_callback == &balance_push_callback) { 7852 rq->balance_callback = NULL; 7853 } 7854 rq_unlock_irqrestore(rq, &rf); 7855 } 7856 7857 /* 7858 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7859 * inactive. All tasks which are not per CPU kernel threads are either 7860 * pushed off this CPU now via balance_push() or placed on a different CPU 7861 * during wakeup. Wait until the CPU is quiescent. 7862 */ 7863 static void balance_hotplug_wait(void) 7864 { 7865 struct rq *rq = this_rq(); 7866 7867 rcuwait_wait_event(&rq->hotplug_wait, 7868 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7869 TASK_UNINTERRUPTIBLE); 7870 } 7871 7872 #else 7873 7874 static inline void balance_push(struct rq *rq) 7875 { 7876 } 7877 7878 static inline void balance_push_set(int cpu, bool on) 7879 { 7880 } 7881 7882 static inline void balance_hotplug_wait(void) 7883 { 7884 } 7885 7886 #endif /* CONFIG_HOTPLUG_CPU */ 7887 7888 void set_rq_online(struct rq *rq) 7889 { 7890 if (!rq->online) { 7891 const struct sched_class *class; 7892 7893 cpumask_set_cpu(rq->cpu, rq->rd->online); 7894 rq->online = 1; 7895 7896 for_each_class(class) { 7897 if (class->rq_online) 7898 class->rq_online(rq); 7899 } 7900 } 7901 } 7902 7903 void set_rq_offline(struct rq *rq) 7904 { 7905 if (rq->online) { 7906 const struct sched_class *class; 7907 7908 update_rq_clock(rq); 7909 for_each_class(class) { 7910 if (class->rq_offline) 7911 class->rq_offline(rq); 7912 } 7913 7914 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7915 rq->online = 0; 7916 } 7917 } 7918 7919 /* 7920 * used to mark begin/end of suspend/resume: 7921 */ 7922 static int num_cpus_frozen; 7923 7924 /* 7925 * Update cpusets according to cpu_active mask. If cpusets are 7926 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7927 * around partition_sched_domains(). 7928 * 7929 * If we come here as part of a suspend/resume, don't touch cpusets because we 7930 * want to restore it back to its original state upon resume anyway. 7931 */ 7932 static void cpuset_cpu_active(void) 7933 { 7934 if (cpuhp_tasks_frozen) { 7935 /* 7936 * num_cpus_frozen tracks how many CPUs are involved in suspend 7937 * resume sequence. As long as this is not the last online 7938 * operation in the resume sequence, just build a single sched 7939 * domain, ignoring cpusets. 7940 */ 7941 partition_sched_domains(1, NULL, NULL); 7942 if (--num_cpus_frozen) 7943 return; 7944 /* 7945 * This is the last CPU online operation. So fall through and 7946 * restore the original sched domains by considering the 7947 * cpuset configurations. 7948 */ 7949 cpuset_force_rebuild(); 7950 } 7951 cpuset_update_active_cpus(); 7952 } 7953 7954 static int cpuset_cpu_inactive(unsigned int cpu) 7955 { 7956 if (!cpuhp_tasks_frozen) { 7957 int ret = dl_bw_check_overflow(cpu); 7958 7959 if (ret) 7960 return ret; 7961 cpuset_update_active_cpus(); 7962 } else { 7963 num_cpus_frozen++; 7964 partition_sched_domains(1, NULL, NULL); 7965 } 7966 return 0; 7967 } 7968 7969 int sched_cpu_activate(unsigned int cpu) 7970 { 7971 struct rq *rq = cpu_rq(cpu); 7972 struct rq_flags rf; 7973 7974 /* 7975 * Clear the balance_push callback and prepare to schedule 7976 * regular tasks. 7977 */ 7978 balance_push_set(cpu, false); 7979 7980 #ifdef CONFIG_SCHED_SMT 7981 /* 7982 * When going up, increment the number of cores with SMT present. 7983 */ 7984 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7985 static_branch_inc_cpuslocked(&sched_smt_present); 7986 #endif 7987 set_cpu_active(cpu, true); 7988 7989 if (sched_smp_initialized) { 7990 sched_update_numa(cpu, true); 7991 sched_domains_numa_masks_set(cpu); 7992 cpuset_cpu_active(); 7993 } 7994 7995 scx_rq_activate(rq); 7996 7997 /* 7998 * Put the rq online, if not already. This happens: 7999 * 8000 * 1) In the early boot process, because we build the real domains 8001 * after all CPUs have been brought up. 8002 * 8003 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8004 * domains. 8005 */ 8006 rq_lock_irqsave(rq, &rf); 8007 if (rq->rd) { 8008 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8009 set_rq_online(rq); 8010 } 8011 rq_unlock_irqrestore(rq, &rf); 8012 8013 return 0; 8014 } 8015 8016 int sched_cpu_deactivate(unsigned int cpu) 8017 { 8018 struct rq *rq = cpu_rq(cpu); 8019 struct rq_flags rf; 8020 int ret; 8021 8022 /* 8023 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8024 * load balancing when not active 8025 */ 8026 nohz_balance_exit_idle(rq); 8027 8028 set_cpu_active(cpu, false); 8029 8030 /* 8031 * From this point forward, this CPU will refuse to run any task that 8032 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8033 * push those tasks away until this gets cleared, see 8034 * sched_cpu_dying(). 8035 */ 8036 balance_push_set(cpu, true); 8037 8038 /* 8039 * We've cleared cpu_active_mask / set balance_push, wait for all 8040 * preempt-disabled and RCU users of this state to go away such that 8041 * all new such users will observe it. 8042 * 8043 * Specifically, we rely on ttwu to no longer target this CPU, see 8044 * ttwu_queue_cond() and is_cpu_allowed(). 8045 * 8046 * Do sync before park smpboot threads to take care the RCU boost case. 8047 */ 8048 synchronize_rcu(); 8049 8050 rq_lock_irqsave(rq, &rf); 8051 if (rq->rd) { 8052 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8053 set_rq_offline(rq); 8054 } 8055 rq_unlock_irqrestore(rq, &rf); 8056 8057 scx_rq_deactivate(rq); 8058 8059 #ifdef CONFIG_SCHED_SMT 8060 /* 8061 * When going down, decrement the number of cores with SMT present. 8062 */ 8063 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8064 static_branch_dec_cpuslocked(&sched_smt_present); 8065 8066 sched_core_cpu_deactivate(cpu); 8067 #endif 8068 8069 if (!sched_smp_initialized) 8070 return 0; 8071 8072 sched_update_numa(cpu, false); 8073 ret = cpuset_cpu_inactive(cpu); 8074 if (ret) { 8075 balance_push_set(cpu, false); 8076 set_cpu_active(cpu, true); 8077 sched_update_numa(cpu, true); 8078 return ret; 8079 } 8080 sched_domains_numa_masks_clear(cpu); 8081 return 0; 8082 } 8083 8084 static void sched_rq_cpu_starting(unsigned int cpu) 8085 { 8086 struct rq *rq = cpu_rq(cpu); 8087 8088 rq->calc_load_update = calc_load_update; 8089 update_max_interval(); 8090 } 8091 8092 int sched_cpu_starting(unsigned int cpu) 8093 { 8094 sched_core_cpu_starting(cpu); 8095 sched_rq_cpu_starting(cpu); 8096 sched_tick_start(cpu); 8097 return 0; 8098 } 8099 8100 #ifdef CONFIG_HOTPLUG_CPU 8101 8102 /* 8103 * Invoked immediately before the stopper thread is invoked to bring the 8104 * CPU down completely. At this point all per CPU kthreads except the 8105 * hotplug thread (current) and the stopper thread (inactive) have been 8106 * either parked or have been unbound from the outgoing CPU. Ensure that 8107 * any of those which might be on the way out are gone. 8108 * 8109 * If after this point a bound task is being woken on this CPU then the 8110 * responsible hotplug callback has failed to do it's job. 8111 * sched_cpu_dying() will catch it with the appropriate fireworks. 8112 */ 8113 int sched_cpu_wait_empty(unsigned int cpu) 8114 { 8115 balance_hotplug_wait(); 8116 return 0; 8117 } 8118 8119 /* 8120 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8121 * might have. Called from the CPU stopper task after ensuring that the 8122 * stopper is the last running task on the CPU, so nr_active count is 8123 * stable. We need to take the tear-down thread which is calling this into 8124 * account, so we hand in adjust = 1 to the load calculation. 8125 * 8126 * Also see the comment "Global load-average calculations". 8127 */ 8128 static void calc_load_migrate(struct rq *rq) 8129 { 8130 long delta = calc_load_fold_active(rq, 1); 8131 8132 if (delta) 8133 atomic_long_add(delta, &calc_load_tasks); 8134 } 8135 8136 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8137 { 8138 struct task_struct *g, *p; 8139 int cpu = cpu_of(rq); 8140 8141 lockdep_assert_rq_held(rq); 8142 8143 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8144 for_each_process_thread(g, p) { 8145 if (task_cpu(p) != cpu) 8146 continue; 8147 8148 if (!task_on_rq_queued(p)) 8149 continue; 8150 8151 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8152 } 8153 } 8154 8155 int sched_cpu_dying(unsigned int cpu) 8156 { 8157 struct rq *rq = cpu_rq(cpu); 8158 struct rq_flags rf; 8159 8160 /* Handle pending wakeups and then migrate everything off */ 8161 sched_tick_stop(cpu); 8162 8163 rq_lock_irqsave(rq, &rf); 8164 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8165 WARN(true, "Dying CPU not properly vacated!"); 8166 dump_rq_tasks(rq, KERN_WARNING); 8167 } 8168 rq_unlock_irqrestore(rq, &rf); 8169 8170 calc_load_migrate(rq); 8171 update_max_interval(); 8172 hrtick_clear(rq); 8173 sched_core_cpu_dying(cpu); 8174 return 0; 8175 } 8176 #endif 8177 8178 void __init sched_init_smp(void) 8179 { 8180 sched_init_numa(NUMA_NO_NODE); 8181 8182 /* 8183 * There's no userspace yet to cause hotplug operations; hence all the 8184 * CPU masks are stable and all blatant races in the below code cannot 8185 * happen. 8186 */ 8187 mutex_lock(&sched_domains_mutex); 8188 sched_init_domains(cpu_active_mask); 8189 mutex_unlock(&sched_domains_mutex); 8190 8191 /* Move init over to a non-isolated CPU */ 8192 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8193 BUG(); 8194 current->flags &= ~PF_NO_SETAFFINITY; 8195 sched_init_granularity(); 8196 8197 init_sched_rt_class(); 8198 init_sched_dl_class(); 8199 8200 sched_smp_initialized = true; 8201 } 8202 8203 static int __init migration_init(void) 8204 { 8205 sched_cpu_starting(smp_processor_id()); 8206 return 0; 8207 } 8208 early_initcall(migration_init); 8209 8210 #else 8211 void __init sched_init_smp(void) 8212 { 8213 sched_init_granularity(); 8214 } 8215 #endif /* CONFIG_SMP */ 8216 8217 int in_sched_functions(unsigned long addr) 8218 { 8219 return in_lock_functions(addr) || 8220 (addr >= (unsigned long)__sched_text_start 8221 && addr < (unsigned long)__sched_text_end); 8222 } 8223 8224 #ifdef CONFIG_CGROUP_SCHED 8225 /* 8226 * Default task group. 8227 * Every task in system belongs to this group at bootup. 8228 */ 8229 struct task_group root_task_group; 8230 LIST_HEAD(task_groups); 8231 8232 /* Cacheline aligned slab cache for task_group */ 8233 static struct kmem_cache *task_group_cache __ro_after_init; 8234 #endif 8235 8236 void __init sched_init(void) 8237 { 8238 unsigned long ptr = 0; 8239 int i; 8240 8241 /* Make sure the linker didn't screw up */ 8242 #ifdef CONFIG_SMP 8243 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8244 #endif 8245 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8246 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8247 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8248 #ifdef CONFIG_SCHED_CLASS_EXT 8249 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8250 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8251 #endif 8252 8253 wait_bit_init(); 8254 8255 #ifdef CONFIG_FAIR_GROUP_SCHED 8256 ptr += 2 * nr_cpu_ids * sizeof(void **); 8257 #endif 8258 #ifdef CONFIG_RT_GROUP_SCHED 8259 ptr += 2 * nr_cpu_ids * sizeof(void **); 8260 #endif 8261 if (ptr) { 8262 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8263 8264 #ifdef CONFIG_FAIR_GROUP_SCHED 8265 root_task_group.se = (struct sched_entity **)ptr; 8266 ptr += nr_cpu_ids * sizeof(void **); 8267 8268 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8269 ptr += nr_cpu_ids * sizeof(void **); 8270 8271 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8272 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8273 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8274 #ifdef CONFIG_RT_GROUP_SCHED 8275 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8276 ptr += nr_cpu_ids * sizeof(void **); 8277 8278 root_task_group.rt_rq = (struct rt_rq **)ptr; 8279 ptr += nr_cpu_ids * sizeof(void **); 8280 8281 #endif /* CONFIG_RT_GROUP_SCHED */ 8282 } 8283 8284 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 8285 8286 #ifdef CONFIG_SMP 8287 init_defrootdomain(); 8288 #endif 8289 8290 #ifdef CONFIG_RT_GROUP_SCHED 8291 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8292 global_rt_period(), global_rt_runtime()); 8293 #endif /* CONFIG_RT_GROUP_SCHED */ 8294 8295 #ifdef CONFIG_CGROUP_SCHED 8296 task_group_cache = KMEM_CACHE(task_group, 0); 8297 8298 list_add(&root_task_group.list, &task_groups); 8299 INIT_LIST_HEAD(&root_task_group.children); 8300 INIT_LIST_HEAD(&root_task_group.siblings); 8301 autogroup_init(&init_task); 8302 #endif /* CONFIG_CGROUP_SCHED */ 8303 8304 for_each_possible_cpu(i) { 8305 struct rq *rq; 8306 8307 rq = cpu_rq(i); 8308 raw_spin_lock_init(&rq->__lock); 8309 rq->nr_running = 0; 8310 rq->calc_load_active = 0; 8311 rq->calc_load_update = jiffies + LOAD_FREQ; 8312 init_cfs_rq(&rq->cfs); 8313 init_rt_rq(&rq->rt); 8314 init_dl_rq(&rq->dl); 8315 #ifdef CONFIG_FAIR_GROUP_SCHED 8316 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8317 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8318 /* 8319 * How much CPU bandwidth does root_task_group get? 8320 * 8321 * In case of task-groups formed through the cgroup filesystem, it 8322 * gets 100% of the CPU resources in the system. This overall 8323 * system CPU resource is divided among the tasks of 8324 * root_task_group and its child task-groups in a fair manner, 8325 * based on each entity's (task or task-group's) weight 8326 * (se->load.weight). 8327 * 8328 * In other words, if root_task_group has 10 tasks of weight 8329 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8330 * then A0's share of the CPU resource is: 8331 * 8332 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8333 * 8334 * We achieve this by letting root_task_group's tasks sit 8335 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8336 */ 8337 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8338 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8339 8340 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 8341 #ifdef CONFIG_RT_GROUP_SCHED 8342 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8343 #endif 8344 #ifdef CONFIG_SMP 8345 rq->sd = NULL; 8346 rq->rd = NULL; 8347 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8348 rq->balance_callback = &balance_push_callback; 8349 rq->active_balance = 0; 8350 rq->next_balance = jiffies; 8351 rq->push_cpu = 0; 8352 rq->cpu = i; 8353 rq->online = 0; 8354 rq->idle_stamp = 0; 8355 rq->avg_idle = 2*sysctl_sched_migration_cost; 8356 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8357 8358 INIT_LIST_HEAD(&rq->cfs_tasks); 8359 8360 rq_attach_root(rq, &def_root_domain); 8361 #ifdef CONFIG_NO_HZ_COMMON 8362 rq->last_blocked_load_update_tick = jiffies; 8363 atomic_set(&rq->nohz_flags, 0); 8364 8365 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8366 #endif 8367 #ifdef CONFIG_HOTPLUG_CPU 8368 rcuwait_init(&rq->hotplug_wait); 8369 #endif 8370 #endif /* CONFIG_SMP */ 8371 hrtick_rq_init(rq); 8372 atomic_set(&rq->nr_iowait, 0); 8373 8374 #ifdef CONFIG_SCHED_CORE 8375 rq->core = rq; 8376 rq->core_pick = NULL; 8377 rq->core_enabled = 0; 8378 rq->core_tree = RB_ROOT; 8379 rq->core_forceidle_count = 0; 8380 rq->core_forceidle_occupation = 0; 8381 rq->core_forceidle_start = 0; 8382 8383 rq->core_cookie = 0UL; 8384 #endif 8385 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8386 } 8387 8388 set_load_weight(&init_task, false); 8389 8390 /* 8391 * The boot idle thread does lazy MMU switching as well: 8392 */ 8393 mmgrab_lazy_tlb(&init_mm); 8394 enter_lazy_tlb(&init_mm, current); 8395 8396 /* 8397 * The idle task doesn't need the kthread struct to function, but it 8398 * is dressed up as a per-CPU kthread and thus needs to play the part 8399 * if we want to avoid special-casing it in code that deals with per-CPU 8400 * kthreads. 8401 */ 8402 WARN_ON(!set_kthread_struct(current)); 8403 8404 /* 8405 * Make us the idle thread. Technically, schedule() should not be 8406 * called from this thread, however somewhere below it might be, 8407 * but because we are the idle thread, we just pick up running again 8408 * when this runqueue becomes "idle". 8409 */ 8410 init_idle(current, smp_processor_id()); 8411 8412 calc_load_update = jiffies + LOAD_FREQ; 8413 8414 #ifdef CONFIG_SMP 8415 idle_thread_set_boot_cpu(); 8416 balance_push_set(smp_processor_id(), false); 8417 #endif 8418 init_sched_fair_class(); 8419 init_sched_ext_class(); 8420 8421 psi_init(); 8422 8423 init_uclamp(); 8424 8425 preempt_dynamic_init(); 8426 8427 scheduler_running = 1; 8428 } 8429 8430 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8431 8432 void __might_sleep(const char *file, int line) 8433 { 8434 unsigned int state = get_current_state(); 8435 /* 8436 * Blocking primitives will set (and therefore destroy) current->state, 8437 * since we will exit with TASK_RUNNING make sure we enter with it, 8438 * otherwise we will destroy state. 8439 */ 8440 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8441 "do not call blocking ops when !TASK_RUNNING; " 8442 "state=%x set at [<%p>] %pS\n", state, 8443 (void *)current->task_state_change, 8444 (void *)current->task_state_change); 8445 8446 __might_resched(file, line, 0); 8447 } 8448 EXPORT_SYMBOL(__might_sleep); 8449 8450 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8451 { 8452 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8453 return; 8454 8455 if (preempt_count() == preempt_offset) 8456 return; 8457 8458 pr_err("Preemption disabled at:"); 8459 print_ip_sym(KERN_ERR, ip); 8460 } 8461 8462 static inline bool resched_offsets_ok(unsigned int offsets) 8463 { 8464 unsigned int nested = preempt_count(); 8465 8466 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8467 8468 return nested == offsets; 8469 } 8470 8471 void __might_resched(const char *file, int line, unsigned int offsets) 8472 { 8473 /* Ratelimiting timestamp: */ 8474 static unsigned long prev_jiffy; 8475 8476 unsigned long preempt_disable_ip; 8477 8478 /* WARN_ON_ONCE() by default, no rate limit required: */ 8479 rcu_sleep_check(); 8480 8481 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8482 !is_idle_task(current) && !current->non_block_count) || 8483 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8484 oops_in_progress) 8485 return; 8486 8487 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8488 return; 8489 prev_jiffy = jiffies; 8490 8491 /* Save this before calling printk(), since that will clobber it: */ 8492 preempt_disable_ip = get_preempt_disable_ip(current); 8493 8494 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8495 file, line); 8496 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8497 in_atomic(), irqs_disabled(), current->non_block_count, 8498 current->pid, current->comm); 8499 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8500 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8501 8502 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8503 pr_err("RCU nest depth: %d, expected: %u\n", 8504 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8505 } 8506 8507 if (task_stack_end_corrupted(current)) 8508 pr_emerg("Thread overran stack, or stack corrupted\n"); 8509 8510 debug_show_held_locks(current); 8511 if (irqs_disabled()) 8512 print_irqtrace_events(current); 8513 8514 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8515 preempt_disable_ip); 8516 8517 dump_stack(); 8518 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8519 } 8520 EXPORT_SYMBOL(__might_resched); 8521 8522 void __cant_sleep(const char *file, int line, int preempt_offset) 8523 { 8524 static unsigned long prev_jiffy; 8525 8526 if (irqs_disabled()) 8527 return; 8528 8529 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8530 return; 8531 8532 if (preempt_count() > preempt_offset) 8533 return; 8534 8535 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8536 return; 8537 prev_jiffy = jiffies; 8538 8539 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8540 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8541 in_atomic(), irqs_disabled(), 8542 current->pid, current->comm); 8543 8544 debug_show_held_locks(current); 8545 dump_stack(); 8546 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8547 } 8548 EXPORT_SYMBOL_GPL(__cant_sleep); 8549 8550 #ifdef CONFIG_SMP 8551 void __cant_migrate(const char *file, int line) 8552 { 8553 static unsigned long prev_jiffy; 8554 8555 if (irqs_disabled()) 8556 return; 8557 8558 if (is_migration_disabled(current)) 8559 return; 8560 8561 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8562 return; 8563 8564 if (preempt_count() > 0) 8565 return; 8566 8567 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8568 return; 8569 prev_jiffy = jiffies; 8570 8571 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8572 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8573 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8574 current->pid, current->comm); 8575 8576 debug_show_held_locks(current); 8577 dump_stack(); 8578 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8579 } 8580 EXPORT_SYMBOL_GPL(__cant_migrate); 8581 #endif 8582 #endif 8583 8584 #ifdef CONFIG_MAGIC_SYSRQ 8585 void normalize_rt_tasks(void) 8586 { 8587 struct task_struct *g, *p; 8588 struct sched_attr attr = { 8589 .sched_policy = SCHED_NORMAL, 8590 }; 8591 8592 read_lock(&tasklist_lock); 8593 for_each_process_thread(g, p) { 8594 /* 8595 * Only normalize user tasks: 8596 */ 8597 if (p->flags & PF_KTHREAD) 8598 continue; 8599 8600 p->se.exec_start = 0; 8601 schedstat_set(p->stats.wait_start, 0); 8602 schedstat_set(p->stats.sleep_start, 0); 8603 schedstat_set(p->stats.block_start, 0); 8604 8605 if (!dl_task(p) && !rt_task(p)) { 8606 /* 8607 * Renice negative nice level userspace 8608 * tasks back to 0: 8609 */ 8610 if (task_nice(p) < 0) 8611 set_user_nice(p, 0); 8612 continue; 8613 } 8614 8615 __sched_setscheduler(p, &attr, false, false); 8616 } 8617 read_unlock(&tasklist_lock); 8618 } 8619 8620 #endif /* CONFIG_MAGIC_SYSRQ */ 8621 8622 #if defined(CONFIG_KGDB_KDB) 8623 /* 8624 * These functions are only useful for KDB. 8625 * 8626 * They can only be called when the whole system has been 8627 * stopped - every CPU needs to be quiescent, and no scheduling 8628 * activity can take place. Using them for anything else would 8629 * be a serious bug, and as a result, they aren't even visible 8630 * under any other configuration. 8631 */ 8632 8633 /** 8634 * curr_task - return the current task for a given CPU. 8635 * @cpu: the processor in question. 8636 * 8637 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8638 * 8639 * Return: The current task for @cpu. 8640 */ 8641 struct task_struct *curr_task(int cpu) 8642 { 8643 return cpu_curr(cpu); 8644 } 8645 8646 #endif /* defined(CONFIG_KGDB_KDB) */ 8647 8648 #ifdef CONFIG_CGROUP_SCHED 8649 /* task_group_lock serializes the addition/removal of task groups */ 8650 static DEFINE_SPINLOCK(task_group_lock); 8651 8652 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8653 struct task_group *parent) 8654 { 8655 #ifdef CONFIG_UCLAMP_TASK_GROUP 8656 enum uclamp_id clamp_id; 8657 8658 for_each_clamp_id(clamp_id) { 8659 uclamp_se_set(&tg->uclamp_req[clamp_id], 8660 uclamp_none(clamp_id), false); 8661 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8662 } 8663 #endif 8664 } 8665 8666 static void sched_free_group(struct task_group *tg) 8667 { 8668 free_fair_sched_group(tg); 8669 free_rt_sched_group(tg); 8670 autogroup_free(tg); 8671 kmem_cache_free(task_group_cache, tg); 8672 } 8673 8674 static void sched_free_group_rcu(struct rcu_head *rcu) 8675 { 8676 sched_free_group(container_of(rcu, struct task_group, rcu)); 8677 } 8678 8679 static void sched_unregister_group(struct task_group *tg) 8680 { 8681 unregister_fair_sched_group(tg); 8682 unregister_rt_sched_group(tg); 8683 /* 8684 * We have to wait for yet another RCU grace period to expire, as 8685 * print_cfs_stats() might run concurrently. 8686 */ 8687 call_rcu(&tg->rcu, sched_free_group_rcu); 8688 } 8689 8690 /* allocate runqueue etc for a new task group */ 8691 struct task_group *sched_create_group(struct task_group *parent) 8692 { 8693 struct task_group *tg; 8694 8695 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8696 if (!tg) 8697 return ERR_PTR(-ENOMEM); 8698 8699 if (!alloc_fair_sched_group(tg, parent)) 8700 goto err; 8701 8702 if (!alloc_rt_sched_group(tg, parent)) 8703 goto err; 8704 8705 alloc_uclamp_sched_group(tg, parent); 8706 8707 return tg; 8708 8709 err: 8710 sched_free_group(tg); 8711 return ERR_PTR(-ENOMEM); 8712 } 8713 8714 void sched_online_group(struct task_group *tg, struct task_group *parent) 8715 { 8716 unsigned long flags; 8717 8718 spin_lock_irqsave(&task_group_lock, flags); 8719 list_add_rcu(&tg->list, &task_groups); 8720 8721 /* Root should already exist: */ 8722 WARN_ON(!parent); 8723 8724 tg->parent = parent; 8725 INIT_LIST_HEAD(&tg->children); 8726 list_add_rcu(&tg->siblings, &parent->children); 8727 spin_unlock_irqrestore(&task_group_lock, flags); 8728 8729 online_fair_sched_group(tg); 8730 } 8731 8732 /* RCU callback to free various structures associated with a task group */ 8733 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8734 { 8735 /* Now it should be safe to free those cfs_rqs: */ 8736 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8737 } 8738 8739 void sched_destroy_group(struct task_group *tg) 8740 { 8741 /* Wait for possible concurrent references to cfs_rqs complete: */ 8742 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8743 } 8744 8745 void sched_release_group(struct task_group *tg) 8746 { 8747 unsigned long flags; 8748 8749 /* 8750 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 8751 * sched_cfs_period_timer()). 8752 * 8753 * For this to be effective, we have to wait for all pending users of 8754 * this task group to leave their RCU critical section to ensure no new 8755 * user will see our dying task group any more. Specifically ensure 8756 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 8757 * 8758 * We therefore defer calling unregister_fair_sched_group() to 8759 * sched_unregister_group() which is guarantied to get called only after the 8760 * current RCU grace period has expired. 8761 */ 8762 spin_lock_irqsave(&task_group_lock, flags); 8763 list_del_rcu(&tg->list); 8764 list_del_rcu(&tg->siblings); 8765 spin_unlock_irqrestore(&task_group_lock, flags); 8766 } 8767 8768 static struct task_group *sched_get_task_group(struct task_struct *tsk) 8769 { 8770 struct task_group *tg; 8771 8772 /* 8773 * All callers are synchronized by task_rq_lock(); we do not use RCU 8774 * which is pointless here. Thus, we pass "true" to task_css_check() 8775 * to prevent lockdep warnings. 8776 */ 8777 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8778 struct task_group, css); 8779 tg = autogroup_task_group(tsk, tg); 8780 8781 return tg; 8782 } 8783 8784 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 8785 { 8786 tsk->sched_task_group = group; 8787 8788 #ifdef CONFIG_FAIR_GROUP_SCHED 8789 if (tsk->sched_class->task_change_group) 8790 tsk->sched_class->task_change_group(tsk); 8791 else 8792 #endif 8793 set_task_rq(tsk, task_cpu(tsk)); 8794 } 8795 8796 /* 8797 * Change task's runqueue when it moves between groups. 8798 * 8799 * The caller of this function should have put the task in its new group by 8800 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8801 * its new group. 8802 */ 8803 void sched_move_task(struct task_struct *tsk) 8804 { 8805 int queued, running, queue_flags = 8806 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8807 struct task_group *group; 8808 struct rq *rq; 8809 8810 CLASS(task_rq_lock, rq_guard)(tsk); 8811 rq = rq_guard.rq; 8812 8813 /* 8814 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 8815 * group changes. 8816 */ 8817 group = sched_get_task_group(tsk); 8818 if (group == tsk->sched_task_group) 8819 return; 8820 8821 update_rq_clock(rq); 8822 8823 running = task_current(rq, tsk); 8824 queued = task_on_rq_queued(tsk); 8825 8826 if (queued) 8827 dequeue_task(rq, tsk, queue_flags); 8828 if (running) 8829 put_prev_task(rq, tsk); 8830 8831 sched_change_group(tsk, group); 8832 8833 if (queued) 8834 enqueue_task(rq, tsk, queue_flags); 8835 if (running) { 8836 set_next_task(rq, tsk); 8837 /* 8838 * After changing group, the running task may have joined a 8839 * throttled one but it's still the running task. Trigger a 8840 * resched to make sure that task can still run. 8841 */ 8842 resched_curr(rq); 8843 } 8844 } 8845 8846 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8847 { 8848 return css ? container_of(css, struct task_group, css) : NULL; 8849 } 8850 8851 static struct cgroup_subsys_state * 8852 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8853 { 8854 struct task_group *parent = css_tg(parent_css); 8855 struct task_group *tg; 8856 8857 if (!parent) { 8858 /* This is early initialization for the top cgroup */ 8859 return &root_task_group.css; 8860 } 8861 8862 tg = sched_create_group(parent); 8863 if (IS_ERR(tg)) 8864 return ERR_PTR(-ENOMEM); 8865 8866 return &tg->css; 8867 } 8868 8869 /* Expose task group only after completing cgroup initialization */ 8870 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8871 { 8872 struct task_group *tg = css_tg(css); 8873 struct task_group *parent = css_tg(css->parent); 8874 8875 if (parent) 8876 sched_online_group(tg, parent); 8877 8878 #ifdef CONFIG_UCLAMP_TASK_GROUP 8879 /* Propagate the effective uclamp value for the new group */ 8880 guard(mutex)(&uclamp_mutex); 8881 guard(rcu)(); 8882 cpu_util_update_eff(css); 8883 #endif 8884 8885 return 0; 8886 } 8887 8888 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8889 { 8890 struct task_group *tg = css_tg(css); 8891 8892 sched_release_group(tg); 8893 } 8894 8895 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8896 { 8897 struct task_group *tg = css_tg(css); 8898 8899 /* 8900 * Relies on the RCU grace period between css_released() and this. 8901 */ 8902 sched_unregister_group(tg); 8903 } 8904 8905 #ifdef CONFIG_RT_GROUP_SCHED 8906 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8907 { 8908 struct task_struct *task; 8909 struct cgroup_subsys_state *css; 8910 8911 cgroup_taskset_for_each(task, css, tset) { 8912 if (!sched_rt_can_attach(css_tg(css), task)) 8913 return -EINVAL; 8914 } 8915 return 0; 8916 } 8917 #endif 8918 8919 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8920 { 8921 struct task_struct *task; 8922 struct cgroup_subsys_state *css; 8923 8924 cgroup_taskset_for_each(task, css, tset) 8925 sched_move_task(task); 8926 } 8927 8928 #ifdef CONFIG_UCLAMP_TASK_GROUP 8929 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 8930 { 8931 struct cgroup_subsys_state *top_css = css; 8932 struct uclamp_se *uc_parent = NULL; 8933 struct uclamp_se *uc_se = NULL; 8934 unsigned int eff[UCLAMP_CNT]; 8935 enum uclamp_id clamp_id; 8936 unsigned int clamps; 8937 8938 lockdep_assert_held(&uclamp_mutex); 8939 SCHED_WARN_ON(!rcu_read_lock_held()); 8940 8941 css_for_each_descendant_pre(css, top_css) { 8942 uc_parent = css_tg(css)->parent 8943 ? css_tg(css)->parent->uclamp : NULL; 8944 8945 for_each_clamp_id(clamp_id) { 8946 /* Assume effective clamps matches requested clamps */ 8947 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 8948 /* Cap effective clamps with parent's effective clamps */ 8949 if (uc_parent && 8950 eff[clamp_id] > uc_parent[clamp_id].value) { 8951 eff[clamp_id] = uc_parent[clamp_id].value; 8952 } 8953 } 8954 /* Ensure protection is always capped by limit */ 8955 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 8956 8957 /* Propagate most restrictive effective clamps */ 8958 clamps = 0x0; 8959 uc_se = css_tg(css)->uclamp; 8960 for_each_clamp_id(clamp_id) { 8961 if (eff[clamp_id] == uc_se[clamp_id].value) 8962 continue; 8963 uc_se[clamp_id].value = eff[clamp_id]; 8964 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 8965 clamps |= (0x1 << clamp_id); 8966 } 8967 if (!clamps) { 8968 css = css_rightmost_descendant(css); 8969 continue; 8970 } 8971 8972 /* Immediately update descendants RUNNABLE tasks */ 8973 uclamp_update_active_tasks(css); 8974 } 8975 } 8976 8977 /* 8978 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 8979 * C expression. Since there is no way to convert a macro argument (N) into a 8980 * character constant, use two levels of macros. 8981 */ 8982 #define _POW10(exp) ((unsigned int)1e##exp) 8983 #define POW10(exp) _POW10(exp) 8984 8985 struct uclamp_request { 8986 #define UCLAMP_PERCENT_SHIFT 2 8987 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 8988 s64 percent; 8989 u64 util; 8990 int ret; 8991 }; 8992 8993 static inline struct uclamp_request 8994 capacity_from_percent(char *buf) 8995 { 8996 struct uclamp_request req = { 8997 .percent = UCLAMP_PERCENT_SCALE, 8998 .util = SCHED_CAPACITY_SCALE, 8999 .ret = 0, 9000 }; 9001 9002 buf = strim(buf); 9003 if (strcmp(buf, "max")) { 9004 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9005 &req.percent); 9006 if (req.ret) 9007 return req; 9008 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9009 req.ret = -ERANGE; 9010 return req; 9011 } 9012 9013 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9014 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9015 } 9016 9017 return req; 9018 } 9019 9020 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9021 size_t nbytes, loff_t off, 9022 enum uclamp_id clamp_id) 9023 { 9024 struct uclamp_request req; 9025 struct task_group *tg; 9026 9027 req = capacity_from_percent(buf); 9028 if (req.ret) 9029 return req.ret; 9030 9031 static_branch_enable(&sched_uclamp_used); 9032 9033 guard(mutex)(&uclamp_mutex); 9034 guard(rcu)(); 9035 9036 tg = css_tg(of_css(of)); 9037 if (tg->uclamp_req[clamp_id].value != req.util) 9038 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9039 9040 /* 9041 * Because of not recoverable conversion rounding we keep track of the 9042 * exact requested value 9043 */ 9044 tg->uclamp_pct[clamp_id] = req.percent; 9045 9046 /* Update effective clamps to track the most restrictive value */ 9047 cpu_util_update_eff(of_css(of)); 9048 9049 return nbytes; 9050 } 9051 9052 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9053 char *buf, size_t nbytes, 9054 loff_t off) 9055 { 9056 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9057 } 9058 9059 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9060 char *buf, size_t nbytes, 9061 loff_t off) 9062 { 9063 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9064 } 9065 9066 static inline void cpu_uclamp_print(struct seq_file *sf, 9067 enum uclamp_id clamp_id) 9068 { 9069 struct task_group *tg; 9070 u64 util_clamp; 9071 u64 percent; 9072 u32 rem; 9073 9074 scoped_guard (rcu) { 9075 tg = css_tg(seq_css(sf)); 9076 util_clamp = tg->uclamp_req[clamp_id].value; 9077 } 9078 9079 if (util_clamp == SCHED_CAPACITY_SCALE) { 9080 seq_puts(sf, "max\n"); 9081 return; 9082 } 9083 9084 percent = tg->uclamp_pct[clamp_id]; 9085 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9086 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9087 } 9088 9089 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9090 { 9091 cpu_uclamp_print(sf, UCLAMP_MIN); 9092 return 0; 9093 } 9094 9095 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9096 { 9097 cpu_uclamp_print(sf, UCLAMP_MAX); 9098 return 0; 9099 } 9100 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9101 9102 #ifdef CONFIG_FAIR_GROUP_SCHED 9103 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9104 struct cftype *cftype, u64 shareval) 9105 { 9106 if (shareval > scale_load_down(ULONG_MAX)) 9107 shareval = MAX_SHARES; 9108 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 9109 } 9110 9111 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9112 struct cftype *cft) 9113 { 9114 struct task_group *tg = css_tg(css); 9115 9116 return (u64) scale_load_down(tg->shares); 9117 } 9118 9119 #ifdef CONFIG_CFS_BANDWIDTH 9120 static DEFINE_MUTEX(cfs_constraints_mutex); 9121 9122 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9123 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9124 /* More than 203 days if BW_SHIFT equals 20. */ 9125 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9126 9127 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9128 9129 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9130 u64 burst) 9131 { 9132 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9133 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9134 9135 if (tg == &root_task_group) 9136 return -EINVAL; 9137 9138 /* 9139 * Ensure we have at some amount of bandwidth every period. This is 9140 * to prevent reaching a state of large arrears when throttled via 9141 * entity_tick() resulting in prolonged exit starvation. 9142 */ 9143 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9144 return -EINVAL; 9145 9146 /* 9147 * Likewise, bound things on the other side by preventing insane quota 9148 * periods. This also allows us to normalize in computing quota 9149 * feasibility. 9150 */ 9151 if (period > max_cfs_quota_period) 9152 return -EINVAL; 9153 9154 /* 9155 * Bound quota to defend quota against overflow during bandwidth shift. 9156 */ 9157 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9158 return -EINVAL; 9159 9160 if (quota != RUNTIME_INF && (burst > quota || 9161 burst + quota > max_cfs_runtime)) 9162 return -EINVAL; 9163 9164 /* 9165 * Prevent race between setting of cfs_rq->runtime_enabled and 9166 * unthrottle_offline_cfs_rqs(). 9167 */ 9168 guard(cpus_read_lock)(); 9169 guard(mutex)(&cfs_constraints_mutex); 9170 9171 ret = __cfs_schedulable(tg, period, quota); 9172 if (ret) 9173 return ret; 9174 9175 runtime_enabled = quota != RUNTIME_INF; 9176 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9177 /* 9178 * If we need to toggle cfs_bandwidth_used, off->on must occur 9179 * before making related changes, and on->off must occur afterwards 9180 */ 9181 if (runtime_enabled && !runtime_was_enabled) 9182 cfs_bandwidth_usage_inc(); 9183 9184 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9185 cfs_b->period = ns_to_ktime(period); 9186 cfs_b->quota = quota; 9187 cfs_b->burst = burst; 9188 9189 __refill_cfs_bandwidth_runtime(cfs_b); 9190 9191 /* 9192 * Restart the period timer (if active) to handle new 9193 * period expiry: 9194 */ 9195 if (runtime_enabled) 9196 start_cfs_bandwidth(cfs_b); 9197 } 9198 9199 for_each_online_cpu(i) { 9200 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9201 struct rq *rq = cfs_rq->rq; 9202 9203 guard(rq_lock_irq)(rq); 9204 cfs_rq->runtime_enabled = runtime_enabled; 9205 cfs_rq->runtime_remaining = 0; 9206 9207 if (cfs_rq->throttled) 9208 unthrottle_cfs_rq(cfs_rq); 9209 } 9210 9211 if (runtime_was_enabled && !runtime_enabled) 9212 cfs_bandwidth_usage_dec(); 9213 9214 return 0; 9215 } 9216 9217 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9218 { 9219 u64 quota, period, burst; 9220 9221 period = ktime_to_ns(tg->cfs_bandwidth.period); 9222 burst = tg->cfs_bandwidth.burst; 9223 if (cfs_quota_us < 0) 9224 quota = RUNTIME_INF; 9225 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9226 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9227 else 9228 return -EINVAL; 9229 9230 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9231 } 9232 9233 static long tg_get_cfs_quota(struct task_group *tg) 9234 { 9235 u64 quota_us; 9236 9237 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9238 return -1; 9239 9240 quota_us = tg->cfs_bandwidth.quota; 9241 do_div(quota_us, NSEC_PER_USEC); 9242 9243 return quota_us; 9244 } 9245 9246 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9247 { 9248 u64 quota, period, burst; 9249 9250 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9251 return -EINVAL; 9252 9253 period = (u64)cfs_period_us * NSEC_PER_USEC; 9254 quota = tg->cfs_bandwidth.quota; 9255 burst = tg->cfs_bandwidth.burst; 9256 9257 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9258 } 9259 9260 static long tg_get_cfs_period(struct task_group *tg) 9261 { 9262 u64 cfs_period_us; 9263 9264 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9265 do_div(cfs_period_us, NSEC_PER_USEC); 9266 9267 return cfs_period_us; 9268 } 9269 9270 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9271 { 9272 u64 quota, period, burst; 9273 9274 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9275 return -EINVAL; 9276 9277 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9278 period = ktime_to_ns(tg->cfs_bandwidth.period); 9279 quota = tg->cfs_bandwidth.quota; 9280 9281 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9282 } 9283 9284 static long tg_get_cfs_burst(struct task_group *tg) 9285 { 9286 u64 burst_us; 9287 9288 burst_us = tg->cfs_bandwidth.burst; 9289 do_div(burst_us, NSEC_PER_USEC); 9290 9291 return burst_us; 9292 } 9293 9294 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9295 struct cftype *cft) 9296 { 9297 return tg_get_cfs_quota(css_tg(css)); 9298 } 9299 9300 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9301 struct cftype *cftype, s64 cfs_quota_us) 9302 { 9303 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9304 } 9305 9306 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9307 struct cftype *cft) 9308 { 9309 return tg_get_cfs_period(css_tg(css)); 9310 } 9311 9312 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9313 struct cftype *cftype, u64 cfs_period_us) 9314 { 9315 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9316 } 9317 9318 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9319 struct cftype *cft) 9320 { 9321 return tg_get_cfs_burst(css_tg(css)); 9322 } 9323 9324 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9325 struct cftype *cftype, u64 cfs_burst_us) 9326 { 9327 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9328 } 9329 9330 struct cfs_schedulable_data { 9331 struct task_group *tg; 9332 u64 period, quota; 9333 }; 9334 9335 /* 9336 * normalize group quota/period to be quota/max_period 9337 * note: units are usecs 9338 */ 9339 static u64 normalize_cfs_quota(struct task_group *tg, 9340 struct cfs_schedulable_data *d) 9341 { 9342 u64 quota, period; 9343 9344 if (tg == d->tg) { 9345 period = d->period; 9346 quota = d->quota; 9347 } else { 9348 period = tg_get_cfs_period(tg); 9349 quota = tg_get_cfs_quota(tg); 9350 } 9351 9352 /* note: these should typically be equivalent */ 9353 if (quota == RUNTIME_INF || quota == -1) 9354 return RUNTIME_INF; 9355 9356 return to_ratio(period, quota); 9357 } 9358 9359 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9360 { 9361 struct cfs_schedulable_data *d = data; 9362 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9363 s64 quota = 0, parent_quota = -1; 9364 9365 if (!tg->parent) { 9366 quota = RUNTIME_INF; 9367 } else { 9368 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9369 9370 quota = normalize_cfs_quota(tg, d); 9371 parent_quota = parent_b->hierarchical_quota; 9372 9373 /* 9374 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9375 * always take the non-RUNTIME_INF min. On cgroup1, only 9376 * inherit when no limit is set. In both cases this is used 9377 * by the scheduler to determine if a given CFS task has a 9378 * bandwidth constraint at some higher level. 9379 */ 9380 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9381 if (quota == RUNTIME_INF) 9382 quota = parent_quota; 9383 else if (parent_quota != RUNTIME_INF) 9384 quota = min(quota, parent_quota); 9385 } else { 9386 if (quota == RUNTIME_INF) 9387 quota = parent_quota; 9388 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9389 return -EINVAL; 9390 } 9391 } 9392 cfs_b->hierarchical_quota = quota; 9393 9394 return 0; 9395 } 9396 9397 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9398 { 9399 struct cfs_schedulable_data data = { 9400 .tg = tg, 9401 .period = period, 9402 .quota = quota, 9403 }; 9404 9405 if (quota != RUNTIME_INF) { 9406 do_div(data.period, NSEC_PER_USEC); 9407 do_div(data.quota, NSEC_PER_USEC); 9408 } 9409 9410 guard(rcu)(); 9411 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9412 } 9413 9414 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9415 { 9416 struct task_group *tg = css_tg(seq_css(sf)); 9417 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9418 9419 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9420 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9421 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9422 9423 if (schedstat_enabled() && tg != &root_task_group) { 9424 struct sched_statistics *stats; 9425 u64 ws = 0; 9426 int i; 9427 9428 for_each_possible_cpu(i) { 9429 stats = __schedstats_from_se(tg->se[i]); 9430 ws += schedstat_val(stats->wait_sum); 9431 } 9432 9433 seq_printf(sf, "wait_sum %llu\n", ws); 9434 } 9435 9436 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9437 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9438 9439 return 0; 9440 } 9441 9442 static u64 throttled_time_self(struct task_group *tg) 9443 { 9444 int i; 9445 u64 total = 0; 9446 9447 for_each_possible_cpu(i) { 9448 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9449 } 9450 9451 return total; 9452 } 9453 9454 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9455 { 9456 struct task_group *tg = css_tg(seq_css(sf)); 9457 9458 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9459 9460 return 0; 9461 } 9462 #endif /* CONFIG_CFS_BANDWIDTH */ 9463 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9464 9465 #ifdef CONFIG_RT_GROUP_SCHED 9466 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9467 struct cftype *cft, s64 val) 9468 { 9469 return sched_group_set_rt_runtime(css_tg(css), val); 9470 } 9471 9472 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9473 struct cftype *cft) 9474 { 9475 return sched_group_rt_runtime(css_tg(css)); 9476 } 9477 9478 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9479 struct cftype *cftype, u64 rt_period_us) 9480 { 9481 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9482 } 9483 9484 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9485 struct cftype *cft) 9486 { 9487 return sched_group_rt_period(css_tg(css)); 9488 } 9489 #endif /* CONFIG_RT_GROUP_SCHED */ 9490 9491 #ifdef CONFIG_FAIR_GROUP_SCHED 9492 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9493 struct cftype *cft) 9494 { 9495 return css_tg(css)->idle; 9496 } 9497 9498 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9499 struct cftype *cft, s64 idle) 9500 { 9501 return sched_group_set_idle(css_tg(css), idle); 9502 } 9503 #endif 9504 9505 static struct cftype cpu_legacy_files[] = { 9506 #ifdef CONFIG_FAIR_GROUP_SCHED 9507 { 9508 .name = "shares", 9509 .read_u64 = cpu_shares_read_u64, 9510 .write_u64 = cpu_shares_write_u64, 9511 }, 9512 { 9513 .name = "idle", 9514 .read_s64 = cpu_idle_read_s64, 9515 .write_s64 = cpu_idle_write_s64, 9516 }, 9517 #endif 9518 #ifdef CONFIG_CFS_BANDWIDTH 9519 { 9520 .name = "cfs_quota_us", 9521 .read_s64 = cpu_cfs_quota_read_s64, 9522 .write_s64 = cpu_cfs_quota_write_s64, 9523 }, 9524 { 9525 .name = "cfs_period_us", 9526 .read_u64 = cpu_cfs_period_read_u64, 9527 .write_u64 = cpu_cfs_period_write_u64, 9528 }, 9529 { 9530 .name = "cfs_burst_us", 9531 .read_u64 = cpu_cfs_burst_read_u64, 9532 .write_u64 = cpu_cfs_burst_write_u64, 9533 }, 9534 { 9535 .name = "stat", 9536 .seq_show = cpu_cfs_stat_show, 9537 }, 9538 { 9539 .name = "stat.local", 9540 .seq_show = cpu_cfs_local_stat_show, 9541 }, 9542 #endif 9543 #ifdef CONFIG_RT_GROUP_SCHED 9544 { 9545 .name = "rt_runtime_us", 9546 .read_s64 = cpu_rt_runtime_read, 9547 .write_s64 = cpu_rt_runtime_write, 9548 }, 9549 { 9550 .name = "rt_period_us", 9551 .read_u64 = cpu_rt_period_read_uint, 9552 .write_u64 = cpu_rt_period_write_uint, 9553 }, 9554 #endif 9555 #ifdef CONFIG_UCLAMP_TASK_GROUP 9556 { 9557 .name = "uclamp.min", 9558 .flags = CFTYPE_NOT_ON_ROOT, 9559 .seq_show = cpu_uclamp_min_show, 9560 .write = cpu_uclamp_min_write, 9561 }, 9562 { 9563 .name = "uclamp.max", 9564 .flags = CFTYPE_NOT_ON_ROOT, 9565 .seq_show = cpu_uclamp_max_show, 9566 .write = cpu_uclamp_max_write, 9567 }, 9568 #endif 9569 { } /* Terminate */ 9570 }; 9571 9572 static int cpu_extra_stat_show(struct seq_file *sf, 9573 struct cgroup_subsys_state *css) 9574 { 9575 #ifdef CONFIG_CFS_BANDWIDTH 9576 { 9577 struct task_group *tg = css_tg(css); 9578 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9579 u64 throttled_usec, burst_usec; 9580 9581 throttled_usec = cfs_b->throttled_time; 9582 do_div(throttled_usec, NSEC_PER_USEC); 9583 burst_usec = cfs_b->burst_time; 9584 do_div(burst_usec, NSEC_PER_USEC); 9585 9586 seq_printf(sf, "nr_periods %d\n" 9587 "nr_throttled %d\n" 9588 "throttled_usec %llu\n" 9589 "nr_bursts %d\n" 9590 "burst_usec %llu\n", 9591 cfs_b->nr_periods, cfs_b->nr_throttled, 9592 throttled_usec, cfs_b->nr_burst, burst_usec); 9593 } 9594 #endif 9595 return 0; 9596 } 9597 9598 static int cpu_local_stat_show(struct seq_file *sf, 9599 struct cgroup_subsys_state *css) 9600 { 9601 #ifdef CONFIG_CFS_BANDWIDTH 9602 { 9603 struct task_group *tg = css_tg(css); 9604 u64 throttled_self_usec; 9605 9606 throttled_self_usec = throttled_time_self(tg); 9607 do_div(throttled_self_usec, NSEC_PER_USEC); 9608 9609 seq_printf(sf, "throttled_usec %llu\n", 9610 throttled_self_usec); 9611 } 9612 #endif 9613 return 0; 9614 } 9615 9616 #ifdef CONFIG_FAIR_GROUP_SCHED 9617 9618 static unsigned long tg_weight(struct task_group *tg) 9619 { 9620 return scale_load_down(tg->shares); 9621 } 9622 9623 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9624 struct cftype *cft) 9625 { 9626 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9627 } 9628 9629 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9630 struct cftype *cft, u64 cgrp_weight) 9631 { 9632 unsigned long weight; 9633 9634 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9635 return -ERANGE; 9636 9637 weight = sched_weight_from_cgroup(cgrp_weight); 9638 9639 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9640 } 9641 9642 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9643 struct cftype *cft) 9644 { 9645 unsigned long weight = tg_weight(css_tg(css)); 9646 int last_delta = INT_MAX; 9647 int prio, delta; 9648 9649 /* find the closest nice value to the current weight */ 9650 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9651 delta = abs(sched_prio_to_weight[prio] - weight); 9652 if (delta >= last_delta) 9653 break; 9654 last_delta = delta; 9655 } 9656 9657 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9658 } 9659 9660 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9661 struct cftype *cft, s64 nice) 9662 { 9663 unsigned long weight; 9664 int idx; 9665 9666 if (nice < MIN_NICE || nice > MAX_NICE) 9667 return -ERANGE; 9668 9669 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9670 idx = array_index_nospec(idx, 40); 9671 weight = sched_prio_to_weight[idx]; 9672 9673 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9674 } 9675 #endif 9676 9677 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9678 long period, long quota) 9679 { 9680 if (quota < 0) 9681 seq_puts(sf, "max"); 9682 else 9683 seq_printf(sf, "%ld", quota); 9684 9685 seq_printf(sf, " %ld\n", period); 9686 } 9687 9688 /* caller should put the current value in *@periodp before calling */ 9689 static int __maybe_unused cpu_period_quota_parse(char *buf, 9690 u64 *periodp, u64 *quotap) 9691 { 9692 char tok[21]; /* U64_MAX */ 9693 9694 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9695 return -EINVAL; 9696 9697 *periodp *= NSEC_PER_USEC; 9698 9699 if (sscanf(tok, "%llu", quotap)) 9700 *quotap *= NSEC_PER_USEC; 9701 else if (!strcmp(tok, "max")) 9702 *quotap = RUNTIME_INF; 9703 else 9704 return -EINVAL; 9705 9706 return 0; 9707 } 9708 9709 #ifdef CONFIG_CFS_BANDWIDTH 9710 static int cpu_max_show(struct seq_file *sf, void *v) 9711 { 9712 struct task_group *tg = css_tg(seq_css(sf)); 9713 9714 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9715 return 0; 9716 } 9717 9718 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9719 char *buf, size_t nbytes, loff_t off) 9720 { 9721 struct task_group *tg = css_tg(of_css(of)); 9722 u64 period = tg_get_cfs_period(tg); 9723 u64 burst = tg->cfs_bandwidth.burst; 9724 u64 quota; 9725 int ret; 9726 9727 ret = cpu_period_quota_parse(buf, &period, "a); 9728 if (!ret) 9729 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 9730 return ret ?: nbytes; 9731 } 9732 #endif 9733 9734 static struct cftype cpu_files[] = { 9735 #ifdef CONFIG_FAIR_GROUP_SCHED 9736 { 9737 .name = "weight", 9738 .flags = CFTYPE_NOT_ON_ROOT, 9739 .read_u64 = cpu_weight_read_u64, 9740 .write_u64 = cpu_weight_write_u64, 9741 }, 9742 { 9743 .name = "weight.nice", 9744 .flags = CFTYPE_NOT_ON_ROOT, 9745 .read_s64 = cpu_weight_nice_read_s64, 9746 .write_s64 = cpu_weight_nice_write_s64, 9747 }, 9748 { 9749 .name = "idle", 9750 .flags = CFTYPE_NOT_ON_ROOT, 9751 .read_s64 = cpu_idle_read_s64, 9752 .write_s64 = cpu_idle_write_s64, 9753 }, 9754 #endif 9755 #ifdef CONFIG_CFS_BANDWIDTH 9756 { 9757 .name = "max", 9758 .flags = CFTYPE_NOT_ON_ROOT, 9759 .seq_show = cpu_max_show, 9760 .write = cpu_max_write, 9761 }, 9762 { 9763 .name = "max.burst", 9764 .flags = CFTYPE_NOT_ON_ROOT, 9765 .read_u64 = cpu_cfs_burst_read_u64, 9766 .write_u64 = cpu_cfs_burst_write_u64, 9767 }, 9768 #endif 9769 #ifdef CONFIG_UCLAMP_TASK_GROUP 9770 { 9771 .name = "uclamp.min", 9772 .flags = CFTYPE_NOT_ON_ROOT, 9773 .seq_show = cpu_uclamp_min_show, 9774 .write = cpu_uclamp_min_write, 9775 }, 9776 { 9777 .name = "uclamp.max", 9778 .flags = CFTYPE_NOT_ON_ROOT, 9779 .seq_show = cpu_uclamp_max_show, 9780 .write = cpu_uclamp_max_write, 9781 }, 9782 #endif 9783 { } /* terminate */ 9784 }; 9785 9786 struct cgroup_subsys cpu_cgrp_subsys = { 9787 .css_alloc = cpu_cgroup_css_alloc, 9788 .css_online = cpu_cgroup_css_online, 9789 .css_released = cpu_cgroup_css_released, 9790 .css_free = cpu_cgroup_css_free, 9791 .css_extra_stat_show = cpu_extra_stat_show, 9792 .css_local_stat_show = cpu_local_stat_show, 9793 #ifdef CONFIG_RT_GROUP_SCHED 9794 .can_attach = cpu_cgroup_can_attach, 9795 #endif 9796 .attach = cpu_cgroup_attach, 9797 .legacy_cftypes = cpu_legacy_files, 9798 .dfl_cftypes = cpu_files, 9799 .early_init = true, 9800 .threaded = true, 9801 }; 9802 9803 #endif /* CONFIG_CGROUP_SCHED */ 9804 9805 void dump_cpu_task(int cpu) 9806 { 9807 if (cpu == smp_processor_id() && in_hardirq()) { 9808 struct pt_regs *regs; 9809 9810 regs = get_irq_regs(); 9811 if (regs) { 9812 show_regs(regs); 9813 return; 9814 } 9815 } 9816 9817 if (trigger_single_cpu_backtrace(cpu)) 9818 return; 9819 9820 pr_info("Task dump for CPU %d:\n", cpu); 9821 sched_show_task(cpu_curr(cpu)); 9822 } 9823 9824 /* 9825 * Nice levels are multiplicative, with a gentle 10% change for every 9826 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9827 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9828 * that remained on nice 0. 9829 * 9830 * The "10% effect" is relative and cumulative: from _any_ nice level, 9831 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9832 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9833 * If a task goes up by ~10% and another task goes down by ~10% then 9834 * the relative distance between them is ~25%.) 9835 */ 9836 const int sched_prio_to_weight[40] = { 9837 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9838 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9839 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9840 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9841 /* 0 */ 1024, 820, 655, 526, 423, 9842 /* 5 */ 335, 272, 215, 172, 137, 9843 /* 10 */ 110, 87, 70, 56, 45, 9844 /* 15 */ 36, 29, 23, 18, 15, 9845 }; 9846 9847 /* 9848 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 9849 * 9850 * In cases where the weight does not change often, we can use the 9851 * pre-calculated inverse to speed up arithmetics by turning divisions 9852 * into multiplications: 9853 */ 9854 const u32 sched_prio_to_wmult[40] = { 9855 /* -20 */ 48388, 59856, 76040, 92818, 118348, 9856 /* -15 */ 147320, 184698, 229616, 287308, 360437, 9857 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 9858 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 9859 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 9860 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 9861 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 9862 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 9863 }; 9864 9865 void call_trace_sched_update_nr_running(struct rq *rq, int count) 9866 { 9867 trace_sched_update_nr_running_tp(rq, count); 9868 } 9869 9870 #ifdef CONFIG_SCHED_MM_CID 9871 9872 /* 9873 * @cid_lock: Guarantee forward-progress of cid allocation. 9874 * 9875 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 9876 * is only used when contention is detected by the lock-free allocation so 9877 * forward progress can be guaranteed. 9878 */ 9879 DEFINE_RAW_SPINLOCK(cid_lock); 9880 9881 /* 9882 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 9883 * 9884 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 9885 * detected, it is set to 1 to ensure that all newly coming allocations are 9886 * serialized by @cid_lock until the allocation which detected contention 9887 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 9888 * of a cid allocation. 9889 */ 9890 int use_cid_lock; 9891 9892 /* 9893 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 9894 * concurrently with respect to the execution of the source runqueue context 9895 * switch. 9896 * 9897 * There is one basic properties we want to guarantee here: 9898 * 9899 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 9900 * used by a task. That would lead to concurrent allocation of the cid and 9901 * userspace corruption. 9902 * 9903 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 9904 * that a pair of loads observe at least one of a pair of stores, which can be 9905 * shown as: 9906 * 9907 * X = Y = 0 9908 * 9909 * w[X]=1 w[Y]=1 9910 * MB MB 9911 * r[Y]=y r[X]=x 9912 * 9913 * Which guarantees that x==0 && y==0 is impossible. But rather than using 9914 * values 0 and 1, this algorithm cares about specific state transitions of the 9915 * runqueue current task (as updated by the scheduler context switch), and the 9916 * per-mm/cpu cid value. 9917 * 9918 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 9919 * task->mm != mm for the rest of the discussion. There are two scheduler state 9920 * transitions on context switch we care about: 9921 * 9922 * (TSA) Store to rq->curr with transition from (N) to (Y) 9923 * 9924 * (TSB) Store to rq->curr with transition from (Y) to (N) 9925 * 9926 * On the remote-clear side, there is one transition we care about: 9927 * 9928 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 9929 * 9930 * There is also a transition to UNSET state which can be performed from all 9931 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 9932 * guarantees that only a single thread will succeed: 9933 * 9934 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 9935 * 9936 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 9937 * when a thread is actively using the cid (property (1)). 9938 * 9939 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 9940 * 9941 * Scenario A) (TSA)+(TMA) (from next task perspective) 9942 * 9943 * CPU0 CPU1 9944 * 9945 * Context switch CS-1 Remote-clear 9946 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 9947 * (implied barrier after cmpxchg) 9948 * - switch_mm_cid() 9949 * - memory barrier (see switch_mm_cid() 9950 * comment explaining how this barrier 9951 * is combined with other scheduler 9952 * barriers) 9953 * - mm_cid_get (next) 9954 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 9955 * 9956 * This Dekker ensures that either task (Y) is observed by the 9957 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 9958 * observed. 9959 * 9960 * If task (Y) store is observed by rcu_dereference(), it means that there is 9961 * still an active task on the cpu. Remote-clear will therefore not transition 9962 * to UNSET, which fulfills property (1). 9963 * 9964 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 9965 * it will move its state to UNSET, which clears the percpu cid perhaps 9966 * uselessly (which is not an issue for correctness). Because task (Y) is not 9967 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 9968 * state to UNSET is done with a cmpxchg expecting that the old state has the 9969 * LAZY flag set, only one thread will successfully UNSET. 9970 * 9971 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 9972 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 9973 * CPU1 will observe task (Y) and do nothing more, which is fine. 9974 * 9975 * What we are effectively preventing with this Dekker is a scenario where 9976 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 9977 * because this would UNSET a cid which is actively used. 9978 */ 9979 9980 void sched_mm_cid_migrate_from(struct task_struct *t) 9981 { 9982 t->migrate_from_cpu = task_cpu(t); 9983 } 9984 9985 static 9986 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 9987 struct task_struct *t, 9988 struct mm_cid *src_pcpu_cid) 9989 { 9990 struct mm_struct *mm = t->mm; 9991 struct task_struct *src_task; 9992 int src_cid, last_mm_cid; 9993 9994 if (!mm) 9995 return -1; 9996 9997 last_mm_cid = t->last_mm_cid; 9998 /* 9999 * If the migrated task has no last cid, or if the current 10000 * task on src rq uses the cid, it means the source cid does not need 10001 * to be moved to the destination cpu. 10002 */ 10003 if (last_mm_cid == -1) 10004 return -1; 10005 src_cid = READ_ONCE(src_pcpu_cid->cid); 10006 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10007 return -1; 10008 10009 /* 10010 * If we observe an active task using the mm on this rq, it means we 10011 * are not the last task to be migrated from this cpu for this mm, so 10012 * there is no need to move src_cid to the destination cpu. 10013 */ 10014 guard(rcu)(); 10015 src_task = rcu_dereference(src_rq->curr); 10016 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10017 t->last_mm_cid = -1; 10018 return -1; 10019 } 10020 10021 return src_cid; 10022 } 10023 10024 static 10025 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10026 struct task_struct *t, 10027 struct mm_cid *src_pcpu_cid, 10028 int src_cid) 10029 { 10030 struct task_struct *src_task; 10031 struct mm_struct *mm = t->mm; 10032 int lazy_cid; 10033 10034 if (src_cid == -1) 10035 return -1; 10036 10037 /* 10038 * Attempt to clear the source cpu cid to move it to the destination 10039 * cpu. 10040 */ 10041 lazy_cid = mm_cid_set_lazy_put(src_cid); 10042 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10043 return -1; 10044 10045 /* 10046 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10047 * rq->curr->mm matches the scheduler barrier in context_switch() 10048 * between store to rq->curr and load of prev and next task's 10049 * per-mm/cpu cid. 10050 * 10051 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10052 * rq->curr->mm_cid_active matches the barrier in 10053 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10054 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10055 * load of per-mm/cpu cid. 10056 */ 10057 10058 /* 10059 * If we observe an active task using the mm on this rq after setting 10060 * the lazy-put flag, this task will be responsible for transitioning 10061 * from lazy-put flag set to MM_CID_UNSET. 10062 */ 10063 scoped_guard (rcu) { 10064 src_task = rcu_dereference(src_rq->curr); 10065 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10066 /* 10067 * We observed an active task for this mm, there is therefore 10068 * no point in moving this cid to the destination cpu. 10069 */ 10070 t->last_mm_cid = -1; 10071 return -1; 10072 } 10073 } 10074 10075 /* 10076 * The src_cid is unused, so it can be unset. 10077 */ 10078 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10079 return -1; 10080 return src_cid; 10081 } 10082 10083 /* 10084 * Migration to dst cpu. Called with dst_rq lock held. 10085 * Interrupts are disabled, which keeps the window of cid ownership without the 10086 * source rq lock held small. 10087 */ 10088 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10089 { 10090 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10091 struct mm_struct *mm = t->mm; 10092 int src_cid, dst_cid, src_cpu; 10093 struct rq *src_rq; 10094 10095 lockdep_assert_rq_held(dst_rq); 10096 10097 if (!mm) 10098 return; 10099 src_cpu = t->migrate_from_cpu; 10100 if (src_cpu == -1) { 10101 t->last_mm_cid = -1; 10102 return; 10103 } 10104 /* 10105 * Move the src cid if the dst cid is unset. This keeps id 10106 * allocation closest to 0 in cases where few threads migrate around 10107 * many CPUs. 10108 * 10109 * If destination cid is already set, we may have to just clear 10110 * the src cid to ensure compactness in frequent migrations 10111 * scenarios. 10112 * 10113 * It is not useful to clear the src cid when the number of threads is 10114 * greater or equal to the number of allowed CPUs, because user-space 10115 * can expect that the number of allowed cids can reach the number of 10116 * allowed CPUs. 10117 */ 10118 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10119 dst_cid = READ_ONCE(dst_pcpu_cid->cid); 10120 if (!mm_cid_is_unset(dst_cid) && 10121 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) 10122 return; 10123 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10124 src_rq = cpu_rq(src_cpu); 10125 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10126 if (src_cid == -1) 10127 return; 10128 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10129 src_cid); 10130 if (src_cid == -1) 10131 return; 10132 if (!mm_cid_is_unset(dst_cid)) { 10133 __mm_cid_put(mm, src_cid); 10134 return; 10135 } 10136 /* Move src_cid to dst cpu. */ 10137 mm_cid_snapshot_time(dst_rq, mm); 10138 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10139 } 10140 10141 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10142 int cpu) 10143 { 10144 struct rq *rq = cpu_rq(cpu); 10145 struct task_struct *t; 10146 int cid, lazy_cid; 10147 10148 cid = READ_ONCE(pcpu_cid->cid); 10149 if (!mm_cid_is_valid(cid)) 10150 return; 10151 10152 /* 10153 * Clear the cpu cid if it is set to keep cid allocation compact. If 10154 * there happens to be other tasks left on the source cpu using this 10155 * mm, the next task using this mm will reallocate its cid on context 10156 * switch. 10157 */ 10158 lazy_cid = mm_cid_set_lazy_put(cid); 10159 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10160 return; 10161 10162 /* 10163 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10164 * rq->curr->mm matches the scheduler barrier in context_switch() 10165 * between store to rq->curr and load of prev and next task's 10166 * per-mm/cpu cid. 10167 * 10168 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10169 * rq->curr->mm_cid_active matches the barrier in 10170 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10171 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10172 * load of per-mm/cpu cid. 10173 */ 10174 10175 /* 10176 * If we observe an active task using the mm on this rq after setting 10177 * the lazy-put flag, that task will be responsible for transitioning 10178 * from lazy-put flag set to MM_CID_UNSET. 10179 */ 10180 scoped_guard (rcu) { 10181 t = rcu_dereference(rq->curr); 10182 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10183 return; 10184 } 10185 10186 /* 10187 * The cid is unused, so it can be unset. 10188 * Disable interrupts to keep the window of cid ownership without rq 10189 * lock small. 10190 */ 10191 scoped_guard (irqsave) { 10192 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10193 __mm_cid_put(mm, cid); 10194 } 10195 } 10196 10197 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10198 { 10199 struct rq *rq = cpu_rq(cpu); 10200 struct mm_cid *pcpu_cid; 10201 struct task_struct *curr; 10202 u64 rq_clock; 10203 10204 /* 10205 * rq->clock load is racy on 32-bit but one spurious clear once in a 10206 * while is irrelevant. 10207 */ 10208 rq_clock = READ_ONCE(rq->clock); 10209 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10210 10211 /* 10212 * In order to take care of infrequently scheduled tasks, bump the time 10213 * snapshot associated with this cid if an active task using the mm is 10214 * observed on this rq. 10215 */ 10216 scoped_guard (rcu) { 10217 curr = rcu_dereference(rq->curr); 10218 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10219 WRITE_ONCE(pcpu_cid->time, rq_clock); 10220 return; 10221 } 10222 } 10223 10224 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10225 return; 10226 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10227 } 10228 10229 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10230 int weight) 10231 { 10232 struct mm_cid *pcpu_cid; 10233 int cid; 10234 10235 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10236 cid = READ_ONCE(pcpu_cid->cid); 10237 if (!mm_cid_is_valid(cid) || cid < weight) 10238 return; 10239 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10240 } 10241 10242 static void task_mm_cid_work(struct callback_head *work) 10243 { 10244 unsigned long now = jiffies, old_scan, next_scan; 10245 struct task_struct *t = current; 10246 struct cpumask *cidmask; 10247 struct mm_struct *mm; 10248 int weight, cpu; 10249 10250 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 10251 10252 work->next = work; /* Prevent double-add */ 10253 if (t->flags & PF_EXITING) 10254 return; 10255 mm = t->mm; 10256 if (!mm) 10257 return; 10258 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10259 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10260 if (!old_scan) { 10261 unsigned long res; 10262 10263 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10264 if (res != old_scan) 10265 old_scan = res; 10266 else 10267 old_scan = next_scan; 10268 } 10269 if (time_before(now, old_scan)) 10270 return; 10271 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10272 return; 10273 cidmask = mm_cidmask(mm); 10274 /* Clear cids that were not recently used. */ 10275 for_each_possible_cpu(cpu) 10276 sched_mm_cid_remote_clear_old(mm, cpu); 10277 weight = cpumask_weight(cidmask); 10278 /* 10279 * Clear cids that are greater or equal to the cidmask weight to 10280 * recompact it. 10281 */ 10282 for_each_possible_cpu(cpu) 10283 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10284 } 10285 10286 void init_sched_mm_cid(struct task_struct *t) 10287 { 10288 struct mm_struct *mm = t->mm; 10289 int mm_users = 0; 10290 10291 if (mm) { 10292 mm_users = atomic_read(&mm->mm_users); 10293 if (mm_users == 1) 10294 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10295 } 10296 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10297 init_task_work(&t->cid_work, task_mm_cid_work); 10298 } 10299 10300 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10301 { 10302 struct callback_head *work = &curr->cid_work; 10303 unsigned long now = jiffies; 10304 10305 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10306 work->next != work) 10307 return; 10308 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10309 return; 10310 task_work_add(curr, work, TWA_RESUME); 10311 } 10312 10313 void sched_mm_cid_exit_signals(struct task_struct *t) 10314 { 10315 struct mm_struct *mm = t->mm; 10316 struct rq *rq; 10317 10318 if (!mm) 10319 return; 10320 10321 preempt_disable(); 10322 rq = this_rq(); 10323 guard(rq_lock_irqsave)(rq); 10324 preempt_enable_no_resched(); /* holding spinlock */ 10325 WRITE_ONCE(t->mm_cid_active, 0); 10326 /* 10327 * Store t->mm_cid_active before loading per-mm/cpu cid. 10328 * Matches barrier in sched_mm_cid_remote_clear_old(). 10329 */ 10330 smp_mb(); 10331 mm_cid_put(mm); 10332 t->last_mm_cid = t->mm_cid = -1; 10333 } 10334 10335 void sched_mm_cid_before_execve(struct task_struct *t) 10336 { 10337 struct mm_struct *mm = t->mm; 10338 struct rq *rq; 10339 10340 if (!mm) 10341 return; 10342 10343 preempt_disable(); 10344 rq = this_rq(); 10345 guard(rq_lock_irqsave)(rq); 10346 preempt_enable_no_resched(); /* holding spinlock */ 10347 WRITE_ONCE(t->mm_cid_active, 0); 10348 /* 10349 * Store t->mm_cid_active before loading per-mm/cpu cid. 10350 * Matches barrier in sched_mm_cid_remote_clear_old(). 10351 */ 10352 smp_mb(); 10353 mm_cid_put(mm); 10354 t->last_mm_cid = t->mm_cid = -1; 10355 } 10356 10357 void sched_mm_cid_after_execve(struct task_struct *t) 10358 { 10359 struct mm_struct *mm = t->mm; 10360 struct rq *rq; 10361 10362 if (!mm) 10363 return; 10364 10365 preempt_disable(); 10366 rq = this_rq(); 10367 scoped_guard (rq_lock_irqsave, rq) { 10368 preempt_enable_no_resched(); /* holding spinlock */ 10369 WRITE_ONCE(t->mm_cid_active, 1); 10370 /* 10371 * Store t->mm_cid_active before loading per-mm/cpu cid. 10372 * Matches barrier in sched_mm_cid_remote_clear_old(). 10373 */ 10374 smp_mb(); 10375 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); 10376 } 10377 rseq_set_notify_resume(t); 10378 } 10379 10380 void sched_mm_cid_fork(struct task_struct *t) 10381 { 10382 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10383 t->mm_cid_active = 1; 10384 } 10385 #endif 10386 10387 #ifdef CONFIG_SCHED_CLASS_EXT 10388 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10389 struct sched_enq_and_set_ctx *ctx) 10390 { 10391 struct rq *rq = task_rq(p); 10392 10393 lockdep_assert_rq_held(rq); 10394 10395 *ctx = (struct sched_enq_and_set_ctx){ 10396 .p = p, 10397 .queue_flags = queue_flags, 10398 .queued = task_on_rq_queued(p), 10399 .running = task_current(rq, p), 10400 }; 10401 10402 update_rq_clock(rq); 10403 if (ctx->queued) 10404 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10405 if (ctx->running) 10406 put_prev_task(rq, p); 10407 } 10408 10409 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10410 { 10411 struct rq *rq = task_rq(ctx->p); 10412 10413 lockdep_assert_rq_held(rq); 10414 10415 if (ctx->queued) 10416 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10417 if (ctx->running) 10418 set_next_task(rq, ctx->p); 10419 } 10420 #endif /* CONFIG_SCHED_CLASS_EXT */ 10421