1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 #include "stats.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 #ifdef CONFIG_SCHED_DEBUG 123 /* 124 * Debugging: various feature bits 125 * 126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 127 * sysctl_sched_features, defined in sched.h, to allow constants propagation 128 * at compile time and compiler optimization based on features default. 129 */ 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 #undef SCHED_FEAT 136 137 /* 138 * Print a warning if need_resched is set for the given duration (if 139 * LATENCY_WARN is enabled). 140 * 141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 142 * per boot. 143 */ 144 __read_mostly int sysctl_resched_latency_warn_ms = 100; 145 __read_mostly int sysctl_resched_latency_warn_once = 1; 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 /* 149 * Number of tasks to iterate in a single balance run. 150 * Limited because this is done with IRQs disabled. 151 */ 152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 153 154 __read_mostly int scheduler_running; 155 156 #ifdef CONFIG_SCHED_CORE 157 158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 159 160 /* kernel prio, less is more */ 161 static inline int __task_prio(const struct task_struct *p) 162 { 163 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 164 return -2; 165 166 if (rt_prio(p->prio)) /* includes deadline */ 167 return p->prio; /* [-1, 99] */ 168 169 if (p->sched_class == &idle_sched_class) 170 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 171 172 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 173 } 174 175 /* 176 * l(a,b) 177 * le(a,b) := !l(b,a) 178 * g(a,b) := l(b,a) 179 * ge(a,b) := !l(a,b) 180 */ 181 182 /* real prio, less is less */ 183 static inline bool prio_less(const struct task_struct *a, 184 const struct task_struct *b, bool in_fi) 185 { 186 187 int pa = __task_prio(a), pb = __task_prio(b); 188 189 if (-pa < -pb) 190 return true; 191 192 if (-pb < -pa) 193 return false; 194 195 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 196 return !dl_time_before(a->dl.deadline, b->dl.deadline); 197 198 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 199 return cfs_prio_less(a, b, in_fi); 200 201 return false; 202 } 203 204 static inline bool __sched_core_less(const struct task_struct *a, 205 const struct task_struct *b) 206 { 207 if (a->core_cookie < b->core_cookie) 208 return true; 209 210 if (a->core_cookie > b->core_cookie) 211 return false; 212 213 /* flip prio, so high prio is leftmost */ 214 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 215 return true; 216 217 return false; 218 } 219 220 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 221 222 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 223 { 224 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 225 } 226 227 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 228 { 229 const struct task_struct *p = __node_2_sc(node); 230 unsigned long cookie = (unsigned long)key; 231 232 if (cookie < p->core_cookie) 233 return -1; 234 235 if (cookie > p->core_cookie) 236 return 1; 237 238 return 0; 239 } 240 241 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 242 { 243 rq->core->core_task_seq++; 244 245 if (!p->core_cookie) 246 return; 247 248 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 249 } 250 251 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 252 { 253 rq->core->core_task_seq++; 254 255 if (sched_core_enqueued(p)) { 256 rb_erase(&p->core_node, &rq->core_tree); 257 RB_CLEAR_NODE(&p->core_node); 258 } 259 260 /* 261 * Migrating the last task off the cpu, with the cpu in forced idle 262 * state. Reschedule to create an accounting edge for forced idle, 263 * and re-examine whether the core is still in forced idle state. 264 */ 265 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 266 rq->core->core_forceidle_count && rq->curr == rq->idle) 267 resched_curr(rq); 268 } 269 270 static int sched_task_is_throttled(struct task_struct *p, int cpu) 271 { 272 if (p->sched_class->task_is_throttled) 273 return p->sched_class->task_is_throttled(p, cpu); 274 275 return 0; 276 } 277 278 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 279 { 280 struct rb_node *node = &p->core_node; 281 int cpu = task_cpu(p); 282 283 do { 284 node = rb_next(node); 285 if (!node) 286 return NULL; 287 288 p = __node_2_sc(node); 289 if (p->core_cookie != cookie) 290 return NULL; 291 292 } while (sched_task_is_throttled(p, cpu)); 293 294 return p; 295 } 296 297 /* 298 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 299 * If no suitable task is found, NULL will be returned. 300 */ 301 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 302 { 303 struct task_struct *p; 304 struct rb_node *node; 305 306 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 307 if (!node) 308 return NULL; 309 310 p = __node_2_sc(node); 311 if (!sched_task_is_throttled(p, rq->cpu)) 312 return p; 313 314 return sched_core_next(p, cookie); 315 } 316 317 /* 318 * Magic required such that: 319 * 320 * raw_spin_rq_lock(rq); 321 * ... 322 * raw_spin_rq_unlock(rq); 323 * 324 * ends up locking and unlocking the _same_ lock, and all CPUs 325 * always agree on what rq has what lock. 326 * 327 * XXX entirely possible to selectively enable cores, don't bother for now. 328 */ 329 330 static DEFINE_MUTEX(sched_core_mutex); 331 static atomic_t sched_core_count; 332 static struct cpumask sched_core_mask; 333 334 static void sched_core_lock(int cpu, unsigned long *flags) 335 { 336 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 337 int t, i = 0; 338 339 local_irq_save(*flags); 340 for_each_cpu(t, smt_mask) 341 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 342 } 343 344 static void sched_core_unlock(int cpu, unsigned long *flags) 345 { 346 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 347 int t; 348 349 for_each_cpu(t, smt_mask) 350 raw_spin_unlock(&cpu_rq(t)->__lock); 351 local_irq_restore(*flags); 352 } 353 354 static void __sched_core_flip(bool enabled) 355 { 356 unsigned long flags; 357 int cpu, t; 358 359 cpus_read_lock(); 360 361 /* 362 * Toggle the online cores, one by one. 363 */ 364 cpumask_copy(&sched_core_mask, cpu_online_mask); 365 for_each_cpu(cpu, &sched_core_mask) { 366 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 367 368 sched_core_lock(cpu, &flags); 369 370 for_each_cpu(t, smt_mask) 371 cpu_rq(t)->core_enabled = enabled; 372 373 cpu_rq(cpu)->core->core_forceidle_start = 0; 374 375 sched_core_unlock(cpu, &flags); 376 377 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 378 } 379 380 /* 381 * Toggle the offline CPUs. 382 */ 383 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 384 cpu_rq(cpu)->core_enabled = enabled; 385 386 cpus_read_unlock(); 387 } 388 389 static void sched_core_assert_empty(void) 390 { 391 int cpu; 392 393 for_each_possible_cpu(cpu) 394 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 395 } 396 397 static void __sched_core_enable(void) 398 { 399 static_branch_enable(&__sched_core_enabled); 400 /* 401 * Ensure all previous instances of raw_spin_rq_*lock() have finished 402 * and future ones will observe !sched_core_disabled(). 403 */ 404 synchronize_rcu(); 405 __sched_core_flip(true); 406 sched_core_assert_empty(); 407 } 408 409 static void __sched_core_disable(void) 410 { 411 sched_core_assert_empty(); 412 __sched_core_flip(false); 413 static_branch_disable(&__sched_core_enabled); 414 } 415 416 void sched_core_get(void) 417 { 418 if (atomic_inc_not_zero(&sched_core_count)) 419 return; 420 421 mutex_lock(&sched_core_mutex); 422 if (!atomic_read(&sched_core_count)) 423 __sched_core_enable(); 424 425 smp_mb__before_atomic(); 426 atomic_inc(&sched_core_count); 427 mutex_unlock(&sched_core_mutex); 428 } 429 430 static void __sched_core_put(struct work_struct *work) 431 { 432 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 433 __sched_core_disable(); 434 mutex_unlock(&sched_core_mutex); 435 } 436 } 437 438 void sched_core_put(void) 439 { 440 static DECLARE_WORK(_work, __sched_core_put); 441 442 /* 443 * "There can be only one" 444 * 445 * Either this is the last one, or we don't actually need to do any 446 * 'work'. If it is the last *again*, we rely on 447 * WORK_STRUCT_PENDING_BIT. 448 */ 449 if (!atomic_add_unless(&sched_core_count, -1, 1)) 450 schedule_work(&_work); 451 } 452 453 #else /* !CONFIG_SCHED_CORE */ 454 455 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 456 static inline void 457 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 458 459 #endif /* CONFIG_SCHED_CORE */ 460 461 /* 462 * Serialization rules: 463 * 464 * Lock order: 465 * 466 * p->pi_lock 467 * rq->lock 468 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 469 * 470 * rq1->lock 471 * rq2->lock where: rq1 < rq2 472 * 473 * Regular state: 474 * 475 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 476 * local CPU's rq->lock, it optionally removes the task from the runqueue and 477 * always looks at the local rq data structures to find the most eligible task 478 * to run next. 479 * 480 * Task enqueue is also under rq->lock, possibly taken from another CPU. 481 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 482 * the local CPU to avoid bouncing the runqueue state around [ see 483 * ttwu_queue_wakelist() ] 484 * 485 * Task wakeup, specifically wakeups that involve migration, are horribly 486 * complicated to avoid having to take two rq->locks. 487 * 488 * Special state: 489 * 490 * System-calls and anything external will use task_rq_lock() which acquires 491 * both p->pi_lock and rq->lock. As a consequence the state they change is 492 * stable while holding either lock: 493 * 494 * - sched_setaffinity()/ 495 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 496 * - set_user_nice(): p->se.load, p->*prio 497 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 498 * p->se.load, p->rt_priority, 499 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 500 * - sched_setnuma(): p->numa_preferred_nid 501 * - sched_move_task(): p->sched_task_group 502 * - uclamp_update_active() p->uclamp* 503 * 504 * p->state <- TASK_*: 505 * 506 * is changed locklessly using set_current_state(), __set_current_state() or 507 * set_special_state(), see their respective comments, or by 508 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 509 * concurrent self. 510 * 511 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 512 * 513 * is set by activate_task() and cleared by deactivate_task(), under 514 * rq->lock. Non-zero indicates the task is runnable, the special 515 * ON_RQ_MIGRATING state is used for migration without holding both 516 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 517 * 518 * p->on_cpu <- { 0, 1 }: 519 * 520 * is set by prepare_task() and cleared by finish_task() such that it will be 521 * set before p is scheduled-in and cleared after p is scheduled-out, both 522 * under rq->lock. Non-zero indicates the task is running on its CPU. 523 * 524 * [ The astute reader will observe that it is possible for two tasks on one 525 * CPU to have ->on_cpu = 1 at the same time. ] 526 * 527 * task_cpu(p): is changed by set_task_cpu(), the rules are: 528 * 529 * - Don't call set_task_cpu() on a blocked task: 530 * 531 * We don't care what CPU we're not running on, this simplifies hotplug, 532 * the CPU assignment of blocked tasks isn't required to be valid. 533 * 534 * - for try_to_wake_up(), called under p->pi_lock: 535 * 536 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 537 * 538 * - for migration called under rq->lock: 539 * [ see task_on_rq_migrating() in task_rq_lock() ] 540 * 541 * o move_queued_task() 542 * o detach_task() 543 * 544 * - for migration called under double_rq_lock(): 545 * 546 * o __migrate_swap_task() 547 * o push_rt_task() / pull_rt_task() 548 * o push_dl_task() / pull_dl_task() 549 * o dl_task_offline_migration() 550 * 551 */ 552 553 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 554 { 555 raw_spinlock_t *lock; 556 557 /* Matches synchronize_rcu() in __sched_core_enable() */ 558 preempt_disable(); 559 if (sched_core_disabled()) { 560 raw_spin_lock_nested(&rq->__lock, subclass); 561 /* preempt_count *MUST* be > 1 */ 562 preempt_enable_no_resched(); 563 return; 564 } 565 566 for (;;) { 567 lock = __rq_lockp(rq); 568 raw_spin_lock_nested(lock, subclass); 569 if (likely(lock == __rq_lockp(rq))) { 570 /* preempt_count *MUST* be > 1 */ 571 preempt_enable_no_resched(); 572 return; 573 } 574 raw_spin_unlock(lock); 575 } 576 } 577 578 bool raw_spin_rq_trylock(struct rq *rq) 579 { 580 raw_spinlock_t *lock; 581 bool ret; 582 583 /* Matches synchronize_rcu() in __sched_core_enable() */ 584 preempt_disable(); 585 if (sched_core_disabled()) { 586 ret = raw_spin_trylock(&rq->__lock); 587 preempt_enable(); 588 return ret; 589 } 590 591 for (;;) { 592 lock = __rq_lockp(rq); 593 ret = raw_spin_trylock(lock); 594 if (!ret || (likely(lock == __rq_lockp(rq)))) { 595 preempt_enable(); 596 return ret; 597 } 598 raw_spin_unlock(lock); 599 } 600 } 601 602 void raw_spin_rq_unlock(struct rq *rq) 603 { 604 raw_spin_unlock(rq_lockp(rq)); 605 } 606 607 #ifdef CONFIG_SMP 608 /* 609 * double_rq_lock - safely lock two runqueues 610 */ 611 void double_rq_lock(struct rq *rq1, struct rq *rq2) 612 { 613 lockdep_assert_irqs_disabled(); 614 615 if (rq_order_less(rq2, rq1)) 616 swap(rq1, rq2); 617 618 raw_spin_rq_lock(rq1); 619 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 620 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 621 622 double_rq_clock_clear_update(rq1, rq2); 623 } 624 #endif 625 626 /* 627 * __task_rq_lock - lock the rq @p resides on. 628 */ 629 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 630 __acquires(rq->lock) 631 { 632 struct rq *rq; 633 634 lockdep_assert_held(&p->pi_lock); 635 636 for (;;) { 637 rq = task_rq(p); 638 raw_spin_rq_lock(rq); 639 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 640 rq_pin_lock(rq, rf); 641 return rq; 642 } 643 raw_spin_rq_unlock(rq); 644 645 while (unlikely(task_on_rq_migrating(p))) 646 cpu_relax(); 647 } 648 } 649 650 /* 651 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 652 */ 653 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 654 __acquires(p->pi_lock) 655 __acquires(rq->lock) 656 { 657 struct rq *rq; 658 659 for (;;) { 660 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 661 rq = task_rq(p); 662 raw_spin_rq_lock(rq); 663 /* 664 * move_queued_task() task_rq_lock() 665 * 666 * ACQUIRE (rq->lock) 667 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 668 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 669 * [S] ->cpu = new_cpu [L] task_rq() 670 * [L] ->on_rq 671 * RELEASE (rq->lock) 672 * 673 * If we observe the old CPU in task_rq_lock(), the acquire of 674 * the old rq->lock will fully serialize against the stores. 675 * 676 * If we observe the new CPU in task_rq_lock(), the address 677 * dependency headed by '[L] rq = task_rq()' and the acquire 678 * will pair with the WMB to ensure we then also see migrating. 679 */ 680 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 681 rq_pin_lock(rq, rf); 682 return rq; 683 } 684 raw_spin_rq_unlock(rq); 685 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 686 687 while (unlikely(task_on_rq_migrating(p))) 688 cpu_relax(); 689 } 690 } 691 692 /* 693 * RQ-clock updating methods: 694 */ 695 696 static void update_rq_clock_task(struct rq *rq, s64 delta) 697 { 698 /* 699 * In theory, the compile should just see 0 here, and optimize out the call 700 * to sched_rt_avg_update. But I don't trust it... 701 */ 702 s64 __maybe_unused steal = 0, irq_delta = 0; 703 704 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 705 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 706 707 /* 708 * Since irq_time is only updated on {soft,}irq_exit, we might run into 709 * this case when a previous update_rq_clock() happened inside a 710 * {soft,}IRQ region. 711 * 712 * When this happens, we stop ->clock_task and only update the 713 * prev_irq_time stamp to account for the part that fit, so that a next 714 * update will consume the rest. This ensures ->clock_task is 715 * monotonic. 716 * 717 * It does however cause some slight miss-attribution of {soft,}IRQ 718 * time, a more accurate solution would be to update the irq_time using 719 * the current rq->clock timestamp, except that would require using 720 * atomic ops. 721 */ 722 if (irq_delta > delta) 723 irq_delta = delta; 724 725 rq->prev_irq_time += irq_delta; 726 delta -= irq_delta; 727 psi_account_irqtime(rq->curr, irq_delta); 728 delayacct_irq(rq->curr, irq_delta); 729 #endif 730 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 731 if (static_key_false((¶virt_steal_rq_enabled))) { 732 steal = paravirt_steal_clock(cpu_of(rq)); 733 steal -= rq->prev_steal_time_rq; 734 735 if (unlikely(steal > delta)) 736 steal = delta; 737 738 rq->prev_steal_time_rq += steal; 739 delta -= steal; 740 } 741 #endif 742 743 rq->clock_task += delta; 744 745 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 746 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 747 update_irq_load_avg(rq, irq_delta + steal); 748 #endif 749 update_rq_clock_pelt(rq, delta); 750 } 751 752 void update_rq_clock(struct rq *rq) 753 { 754 s64 delta; 755 756 lockdep_assert_rq_held(rq); 757 758 if (rq->clock_update_flags & RQCF_ACT_SKIP) 759 return; 760 761 #ifdef CONFIG_SCHED_DEBUG 762 if (sched_feat(WARN_DOUBLE_CLOCK)) 763 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 764 rq->clock_update_flags |= RQCF_UPDATED; 765 #endif 766 767 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 768 if (delta < 0) 769 return; 770 rq->clock += delta; 771 update_rq_clock_task(rq, delta); 772 } 773 774 #ifdef CONFIG_SCHED_HRTICK 775 /* 776 * Use HR-timers to deliver accurate preemption points. 777 */ 778 779 static void hrtick_clear(struct rq *rq) 780 { 781 if (hrtimer_active(&rq->hrtick_timer)) 782 hrtimer_cancel(&rq->hrtick_timer); 783 } 784 785 /* 786 * High-resolution timer tick. 787 * Runs from hardirq context with interrupts disabled. 788 */ 789 static enum hrtimer_restart hrtick(struct hrtimer *timer) 790 { 791 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 792 struct rq_flags rf; 793 794 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 795 796 rq_lock(rq, &rf); 797 update_rq_clock(rq); 798 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 799 rq_unlock(rq, &rf); 800 801 return HRTIMER_NORESTART; 802 } 803 804 #ifdef CONFIG_SMP 805 806 static void __hrtick_restart(struct rq *rq) 807 { 808 struct hrtimer *timer = &rq->hrtick_timer; 809 ktime_t time = rq->hrtick_time; 810 811 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 812 } 813 814 /* 815 * called from hardirq (IPI) context 816 */ 817 static void __hrtick_start(void *arg) 818 { 819 struct rq *rq = arg; 820 struct rq_flags rf; 821 822 rq_lock(rq, &rf); 823 __hrtick_restart(rq); 824 rq_unlock(rq, &rf); 825 } 826 827 /* 828 * Called to set the hrtick timer state. 829 * 830 * called with rq->lock held and IRQs disabled 831 */ 832 void hrtick_start(struct rq *rq, u64 delay) 833 { 834 struct hrtimer *timer = &rq->hrtick_timer; 835 s64 delta; 836 837 /* 838 * Don't schedule slices shorter than 10000ns, that just 839 * doesn't make sense and can cause timer DoS. 840 */ 841 delta = max_t(s64, delay, 10000LL); 842 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 843 844 if (rq == this_rq()) 845 __hrtick_restart(rq); 846 else 847 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 848 } 849 850 #else 851 /* 852 * Called to set the hrtick timer state. 853 * 854 * called with rq->lock held and IRQs disabled 855 */ 856 void hrtick_start(struct rq *rq, u64 delay) 857 { 858 /* 859 * Don't schedule slices shorter than 10000ns, that just 860 * doesn't make sense. Rely on vruntime for fairness. 861 */ 862 delay = max_t(u64, delay, 10000LL); 863 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 864 HRTIMER_MODE_REL_PINNED_HARD); 865 } 866 867 #endif /* CONFIG_SMP */ 868 869 static void hrtick_rq_init(struct rq *rq) 870 { 871 #ifdef CONFIG_SMP 872 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 873 #endif 874 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 875 rq->hrtick_timer.function = hrtick; 876 } 877 #else /* CONFIG_SCHED_HRTICK */ 878 static inline void hrtick_clear(struct rq *rq) 879 { 880 } 881 882 static inline void hrtick_rq_init(struct rq *rq) 883 { 884 } 885 #endif /* CONFIG_SCHED_HRTICK */ 886 887 /* 888 * try_cmpxchg based fetch_or() macro so it works for different integer types: 889 */ 890 #define fetch_or(ptr, mask) \ 891 ({ \ 892 typeof(ptr) _ptr = (ptr); \ 893 typeof(mask) _mask = (mask); \ 894 typeof(*_ptr) _val = *_ptr; \ 895 \ 896 do { \ 897 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 898 _val; \ 899 }) 900 901 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 902 /* 903 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 904 * this avoids any races wrt polling state changes and thereby avoids 905 * spurious IPIs. 906 */ 907 static inline bool set_nr_and_not_polling(struct task_struct *p) 908 { 909 struct thread_info *ti = task_thread_info(p); 910 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 911 } 912 913 /* 914 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 915 * 916 * If this returns true, then the idle task promises to call 917 * sched_ttwu_pending() and reschedule soon. 918 */ 919 static bool set_nr_if_polling(struct task_struct *p) 920 { 921 struct thread_info *ti = task_thread_info(p); 922 typeof(ti->flags) val = READ_ONCE(ti->flags); 923 924 do { 925 if (!(val & _TIF_POLLING_NRFLAG)) 926 return false; 927 if (val & _TIF_NEED_RESCHED) 928 return true; 929 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 930 931 return true; 932 } 933 934 #else 935 static inline bool set_nr_and_not_polling(struct task_struct *p) 936 { 937 set_tsk_need_resched(p); 938 return true; 939 } 940 941 #ifdef CONFIG_SMP 942 static inline bool set_nr_if_polling(struct task_struct *p) 943 { 944 return false; 945 } 946 #endif 947 #endif 948 949 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 950 { 951 struct wake_q_node *node = &task->wake_q; 952 953 /* 954 * Atomically grab the task, if ->wake_q is !nil already it means 955 * it's already queued (either by us or someone else) and will get the 956 * wakeup due to that. 957 * 958 * In order to ensure that a pending wakeup will observe our pending 959 * state, even in the failed case, an explicit smp_mb() must be used. 960 */ 961 smp_mb__before_atomic(); 962 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 963 return false; 964 965 /* 966 * The head is context local, there can be no concurrency. 967 */ 968 *head->lastp = node; 969 head->lastp = &node->next; 970 return true; 971 } 972 973 /** 974 * wake_q_add() - queue a wakeup for 'later' waking. 975 * @head: the wake_q_head to add @task to 976 * @task: the task to queue for 'later' wakeup 977 * 978 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 979 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 980 * instantly. 981 * 982 * This function must be used as-if it were wake_up_process(); IOW the task 983 * must be ready to be woken at this location. 984 */ 985 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 986 { 987 if (__wake_q_add(head, task)) 988 get_task_struct(task); 989 } 990 991 /** 992 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 993 * @head: the wake_q_head to add @task to 994 * @task: the task to queue for 'later' wakeup 995 * 996 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 997 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 998 * instantly. 999 * 1000 * This function must be used as-if it were wake_up_process(); IOW the task 1001 * must be ready to be woken at this location. 1002 * 1003 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1004 * that already hold reference to @task can call the 'safe' version and trust 1005 * wake_q to do the right thing depending whether or not the @task is already 1006 * queued for wakeup. 1007 */ 1008 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1009 { 1010 if (!__wake_q_add(head, task)) 1011 put_task_struct(task); 1012 } 1013 1014 void wake_up_q(struct wake_q_head *head) 1015 { 1016 struct wake_q_node *node = head->first; 1017 1018 while (node != WAKE_Q_TAIL) { 1019 struct task_struct *task; 1020 1021 task = container_of(node, struct task_struct, wake_q); 1022 /* Task can safely be re-inserted now: */ 1023 node = node->next; 1024 task->wake_q.next = NULL; 1025 1026 /* 1027 * wake_up_process() executes a full barrier, which pairs with 1028 * the queueing in wake_q_add() so as not to miss wakeups. 1029 */ 1030 wake_up_process(task); 1031 put_task_struct(task); 1032 } 1033 } 1034 1035 /* 1036 * resched_curr - mark rq's current task 'to be rescheduled now'. 1037 * 1038 * On UP this means the setting of the need_resched flag, on SMP it 1039 * might also involve a cross-CPU call to trigger the scheduler on 1040 * the target CPU. 1041 */ 1042 void resched_curr(struct rq *rq) 1043 { 1044 struct task_struct *curr = rq->curr; 1045 int cpu; 1046 1047 lockdep_assert_rq_held(rq); 1048 1049 if (test_tsk_need_resched(curr)) 1050 return; 1051 1052 cpu = cpu_of(rq); 1053 1054 if (cpu == smp_processor_id()) { 1055 set_tsk_need_resched(curr); 1056 set_preempt_need_resched(); 1057 return; 1058 } 1059 1060 if (set_nr_and_not_polling(curr)) 1061 smp_send_reschedule(cpu); 1062 else 1063 trace_sched_wake_idle_without_ipi(cpu); 1064 } 1065 1066 void resched_cpu(int cpu) 1067 { 1068 struct rq *rq = cpu_rq(cpu); 1069 unsigned long flags; 1070 1071 raw_spin_rq_lock_irqsave(rq, flags); 1072 if (cpu_online(cpu) || cpu == smp_processor_id()) 1073 resched_curr(rq); 1074 raw_spin_rq_unlock_irqrestore(rq, flags); 1075 } 1076 1077 #ifdef CONFIG_SMP 1078 #ifdef CONFIG_NO_HZ_COMMON 1079 /* 1080 * In the semi idle case, use the nearest busy CPU for migrating timers 1081 * from an idle CPU. This is good for power-savings. 1082 * 1083 * We don't do similar optimization for completely idle system, as 1084 * selecting an idle CPU will add more delays to the timers than intended 1085 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1086 */ 1087 int get_nohz_timer_target(void) 1088 { 1089 int i, cpu = smp_processor_id(), default_cpu = -1; 1090 struct sched_domain *sd; 1091 const struct cpumask *hk_mask; 1092 1093 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1094 if (!idle_cpu(cpu)) 1095 return cpu; 1096 default_cpu = cpu; 1097 } 1098 1099 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1100 1101 guard(rcu)(); 1102 1103 for_each_domain(cpu, sd) { 1104 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1105 if (cpu == i) 1106 continue; 1107 1108 if (!idle_cpu(i)) 1109 return i; 1110 } 1111 } 1112 1113 if (default_cpu == -1) 1114 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1115 1116 return default_cpu; 1117 } 1118 1119 /* 1120 * When add_timer_on() enqueues a timer into the timer wheel of an 1121 * idle CPU then this timer might expire before the next timer event 1122 * which is scheduled to wake up that CPU. In case of a completely 1123 * idle system the next event might even be infinite time into the 1124 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1125 * leaves the inner idle loop so the newly added timer is taken into 1126 * account when the CPU goes back to idle and evaluates the timer 1127 * wheel for the next timer event. 1128 */ 1129 static void wake_up_idle_cpu(int cpu) 1130 { 1131 struct rq *rq = cpu_rq(cpu); 1132 1133 if (cpu == smp_processor_id()) 1134 return; 1135 1136 /* 1137 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1138 * part of the idle loop. This forces an exit from the idle loop 1139 * and a round trip to schedule(). Now this could be optimized 1140 * because a simple new idle loop iteration is enough to 1141 * re-evaluate the next tick. Provided some re-ordering of tick 1142 * nohz functions that would need to follow TIF_NR_POLLING 1143 * clearing: 1144 * 1145 * - On most architectures, a simple fetch_or on ti::flags with a 1146 * "0" value would be enough to know if an IPI needs to be sent. 1147 * 1148 * - x86 needs to perform a last need_resched() check between 1149 * monitor and mwait which doesn't take timers into account. 1150 * There a dedicated TIF_TIMER flag would be required to 1151 * fetch_or here and be checked along with TIF_NEED_RESCHED 1152 * before mwait(). 1153 * 1154 * However, remote timer enqueue is not such a frequent event 1155 * and testing of the above solutions didn't appear to report 1156 * much benefits. 1157 */ 1158 if (set_nr_and_not_polling(rq->idle)) 1159 smp_send_reschedule(cpu); 1160 else 1161 trace_sched_wake_idle_without_ipi(cpu); 1162 } 1163 1164 static bool wake_up_full_nohz_cpu(int cpu) 1165 { 1166 /* 1167 * We just need the target to call irq_exit() and re-evaluate 1168 * the next tick. The nohz full kick at least implies that. 1169 * If needed we can still optimize that later with an 1170 * empty IRQ. 1171 */ 1172 if (cpu_is_offline(cpu)) 1173 return true; /* Don't try to wake offline CPUs. */ 1174 if (tick_nohz_full_cpu(cpu)) { 1175 if (cpu != smp_processor_id() || 1176 tick_nohz_tick_stopped()) 1177 tick_nohz_full_kick_cpu(cpu); 1178 return true; 1179 } 1180 1181 return false; 1182 } 1183 1184 /* 1185 * Wake up the specified CPU. If the CPU is going offline, it is the 1186 * caller's responsibility to deal with the lost wakeup, for example, 1187 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1188 */ 1189 void wake_up_nohz_cpu(int cpu) 1190 { 1191 if (!wake_up_full_nohz_cpu(cpu)) 1192 wake_up_idle_cpu(cpu); 1193 } 1194 1195 static void nohz_csd_func(void *info) 1196 { 1197 struct rq *rq = info; 1198 int cpu = cpu_of(rq); 1199 unsigned int flags; 1200 1201 /* 1202 * Release the rq::nohz_csd. 1203 */ 1204 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1205 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1206 1207 rq->idle_balance = idle_cpu(cpu); 1208 if (rq->idle_balance && !need_resched()) { 1209 rq->nohz_idle_balance = flags; 1210 raise_softirq_irqoff(SCHED_SOFTIRQ); 1211 } 1212 } 1213 1214 #endif /* CONFIG_NO_HZ_COMMON */ 1215 1216 #ifdef CONFIG_NO_HZ_FULL 1217 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1218 { 1219 if (rq->nr_running != 1) 1220 return false; 1221 1222 if (p->sched_class != &fair_sched_class) 1223 return false; 1224 1225 if (!task_on_rq_queued(p)) 1226 return false; 1227 1228 return true; 1229 } 1230 1231 bool sched_can_stop_tick(struct rq *rq) 1232 { 1233 int fifo_nr_running; 1234 1235 /* Deadline tasks, even if single, need the tick */ 1236 if (rq->dl.dl_nr_running) 1237 return false; 1238 1239 /* 1240 * If there are more than one RR tasks, we need the tick to affect the 1241 * actual RR behaviour. 1242 */ 1243 if (rq->rt.rr_nr_running) { 1244 if (rq->rt.rr_nr_running == 1) 1245 return true; 1246 else 1247 return false; 1248 } 1249 1250 /* 1251 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1252 * forced preemption between FIFO tasks. 1253 */ 1254 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1255 if (fifo_nr_running) 1256 return true; 1257 1258 /* 1259 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1260 * left. For CFS, if there's more than one we need the tick for 1261 * involuntary preemption. For SCX, ask. 1262 */ 1263 if (!scx_switched_all() && rq->nr_running > 1) 1264 return false; 1265 1266 if (scx_enabled() && !scx_can_stop_tick(rq)) 1267 return false; 1268 1269 /* 1270 * If there is one task and it has CFS runtime bandwidth constraints 1271 * and it's on the cpu now we don't want to stop the tick. 1272 * This check prevents clearing the bit if a newly enqueued task here is 1273 * dequeued by migrating while the constrained task continues to run. 1274 * E.g. going from 2->1 without going through pick_next_task(). 1275 */ 1276 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) { 1277 if (cfs_task_bw_constrained(rq->curr)) 1278 return false; 1279 } 1280 1281 return true; 1282 } 1283 #endif /* CONFIG_NO_HZ_FULL */ 1284 #endif /* CONFIG_SMP */ 1285 1286 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1287 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1288 /* 1289 * Iterate task_group tree rooted at *from, calling @down when first entering a 1290 * node and @up when leaving it for the final time. 1291 * 1292 * Caller must hold rcu_lock or sufficient equivalent. 1293 */ 1294 int walk_tg_tree_from(struct task_group *from, 1295 tg_visitor down, tg_visitor up, void *data) 1296 { 1297 struct task_group *parent, *child; 1298 int ret; 1299 1300 parent = from; 1301 1302 down: 1303 ret = (*down)(parent, data); 1304 if (ret) 1305 goto out; 1306 list_for_each_entry_rcu(child, &parent->children, siblings) { 1307 parent = child; 1308 goto down; 1309 1310 up: 1311 continue; 1312 } 1313 ret = (*up)(parent, data); 1314 if (ret || parent == from) 1315 goto out; 1316 1317 child = parent; 1318 parent = parent->parent; 1319 if (parent) 1320 goto up; 1321 out: 1322 return ret; 1323 } 1324 1325 int tg_nop(struct task_group *tg, void *data) 1326 { 1327 return 0; 1328 } 1329 #endif 1330 1331 void set_load_weight(struct task_struct *p, bool update_load) 1332 { 1333 int prio = p->static_prio - MAX_RT_PRIO; 1334 struct load_weight *load = &p->se.load; 1335 1336 /* 1337 * SCHED_IDLE tasks get minimal weight: 1338 */ 1339 if (task_has_idle_policy(p)) { 1340 load->weight = scale_load(WEIGHT_IDLEPRIO); 1341 load->inv_weight = WMULT_IDLEPRIO; 1342 return; 1343 } 1344 1345 /* 1346 * SCHED_OTHER tasks have to update their load when changing their 1347 * weight 1348 */ 1349 if (update_load && p->sched_class->reweight_task) { 1350 p->sched_class->reweight_task(task_rq(p), p, prio); 1351 } else { 1352 load->weight = scale_load(sched_prio_to_weight[prio]); 1353 load->inv_weight = sched_prio_to_wmult[prio]; 1354 } 1355 } 1356 1357 #ifdef CONFIG_UCLAMP_TASK 1358 /* 1359 * Serializes updates of utilization clamp values 1360 * 1361 * The (slow-path) user-space triggers utilization clamp value updates which 1362 * can require updates on (fast-path) scheduler's data structures used to 1363 * support enqueue/dequeue operations. 1364 * While the per-CPU rq lock protects fast-path update operations, user-space 1365 * requests are serialized using a mutex to reduce the risk of conflicting 1366 * updates or API abuses. 1367 */ 1368 static DEFINE_MUTEX(uclamp_mutex); 1369 1370 /* Max allowed minimum utilization */ 1371 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1372 1373 /* Max allowed maximum utilization */ 1374 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1375 1376 /* 1377 * By default RT tasks run at the maximum performance point/capacity of the 1378 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1379 * SCHED_CAPACITY_SCALE. 1380 * 1381 * This knob allows admins to change the default behavior when uclamp is being 1382 * used. In battery powered devices, particularly, running at the maximum 1383 * capacity and frequency will increase energy consumption and shorten the 1384 * battery life. 1385 * 1386 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1387 * 1388 * This knob will not override the system default sched_util_clamp_min defined 1389 * above. 1390 */ 1391 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1392 1393 /* All clamps are required to be less or equal than these values */ 1394 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1395 1396 /* 1397 * This static key is used to reduce the uclamp overhead in the fast path. It 1398 * primarily disables the call to uclamp_rq_{inc, dec}() in 1399 * enqueue/dequeue_task(). 1400 * 1401 * This allows users to continue to enable uclamp in their kernel config with 1402 * minimum uclamp overhead in the fast path. 1403 * 1404 * As soon as userspace modifies any of the uclamp knobs, the static key is 1405 * enabled, since we have an actual users that make use of uclamp 1406 * functionality. 1407 * 1408 * The knobs that would enable this static key are: 1409 * 1410 * * A task modifying its uclamp value with sched_setattr(). 1411 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1412 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1413 */ 1414 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1415 1416 static inline unsigned int 1417 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1418 unsigned int clamp_value) 1419 { 1420 /* 1421 * Avoid blocked utilization pushing up the frequency when we go 1422 * idle (which drops the max-clamp) by retaining the last known 1423 * max-clamp. 1424 */ 1425 if (clamp_id == UCLAMP_MAX) { 1426 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1427 return clamp_value; 1428 } 1429 1430 return uclamp_none(UCLAMP_MIN); 1431 } 1432 1433 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1434 unsigned int clamp_value) 1435 { 1436 /* Reset max-clamp retention only on idle exit */ 1437 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1438 return; 1439 1440 uclamp_rq_set(rq, clamp_id, clamp_value); 1441 } 1442 1443 static inline 1444 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1445 unsigned int clamp_value) 1446 { 1447 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1448 int bucket_id = UCLAMP_BUCKETS - 1; 1449 1450 /* 1451 * Since both min and max clamps are max aggregated, find the 1452 * top most bucket with tasks in. 1453 */ 1454 for ( ; bucket_id >= 0; bucket_id--) { 1455 if (!bucket[bucket_id].tasks) 1456 continue; 1457 return bucket[bucket_id].value; 1458 } 1459 1460 /* No tasks -- default clamp values */ 1461 return uclamp_idle_value(rq, clamp_id, clamp_value); 1462 } 1463 1464 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1465 { 1466 unsigned int default_util_min; 1467 struct uclamp_se *uc_se; 1468 1469 lockdep_assert_held(&p->pi_lock); 1470 1471 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1472 1473 /* Only sync if user didn't override the default */ 1474 if (uc_se->user_defined) 1475 return; 1476 1477 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1478 uclamp_se_set(uc_se, default_util_min, false); 1479 } 1480 1481 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1482 { 1483 if (!rt_task(p)) 1484 return; 1485 1486 /* Protect updates to p->uclamp_* */ 1487 guard(task_rq_lock)(p); 1488 __uclamp_update_util_min_rt_default(p); 1489 } 1490 1491 static inline struct uclamp_se 1492 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1493 { 1494 /* Copy by value as we could modify it */ 1495 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1496 #ifdef CONFIG_UCLAMP_TASK_GROUP 1497 unsigned int tg_min, tg_max, value; 1498 1499 /* 1500 * Tasks in autogroups or root task group will be 1501 * restricted by system defaults. 1502 */ 1503 if (task_group_is_autogroup(task_group(p))) 1504 return uc_req; 1505 if (task_group(p) == &root_task_group) 1506 return uc_req; 1507 1508 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1509 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1510 value = uc_req.value; 1511 value = clamp(value, tg_min, tg_max); 1512 uclamp_se_set(&uc_req, value, false); 1513 #endif 1514 1515 return uc_req; 1516 } 1517 1518 /* 1519 * The effective clamp bucket index of a task depends on, by increasing 1520 * priority: 1521 * - the task specific clamp value, when explicitly requested from userspace 1522 * - the task group effective clamp value, for tasks not either in the root 1523 * group or in an autogroup 1524 * - the system default clamp value, defined by the sysadmin 1525 */ 1526 static inline struct uclamp_se 1527 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1528 { 1529 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1530 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1531 1532 /* System default restrictions always apply */ 1533 if (unlikely(uc_req.value > uc_max.value)) 1534 return uc_max; 1535 1536 return uc_req; 1537 } 1538 1539 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1540 { 1541 struct uclamp_se uc_eff; 1542 1543 /* Task currently refcounted: use back-annotated (effective) value */ 1544 if (p->uclamp[clamp_id].active) 1545 return (unsigned long)p->uclamp[clamp_id].value; 1546 1547 uc_eff = uclamp_eff_get(p, clamp_id); 1548 1549 return (unsigned long)uc_eff.value; 1550 } 1551 1552 /* 1553 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1554 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1555 * updates the rq's clamp value if required. 1556 * 1557 * Tasks can have a task-specific value requested from user-space, track 1558 * within each bucket the maximum value for tasks refcounted in it. 1559 * This "local max aggregation" allows to track the exact "requested" value 1560 * for each bucket when all its RUNNABLE tasks require the same clamp. 1561 */ 1562 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1563 enum uclamp_id clamp_id) 1564 { 1565 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1566 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1567 struct uclamp_bucket *bucket; 1568 1569 lockdep_assert_rq_held(rq); 1570 1571 /* Update task effective clamp */ 1572 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1573 1574 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1575 bucket->tasks++; 1576 uc_se->active = true; 1577 1578 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1579 1580 /* 1581 * Local max aggregation: rq buckets always track the max 1582 * "requested" clamp value of its RUNNABLE tasks. 1583 */ 1584 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1585 bucket->value = uc_se->value; 1586 1587 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1588 uclamp_rq_set(rq, clamp_id, uc_se->value); 1589 } 1590 1591 /* 1592 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1593 * is released. If this is the last task reference counting the rq's max 1594 * active clamp value, then the rq's clamp value is updated. 1595 * 1596 * Both refcounted tasks and rq's cached clamp values are expected to be 1597 * always valid. If it's detected they are not, as defensive programming, 1598 * enforce the expected state and warn. 1599 */ 1600 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1601 enum uclamp_id clamp_id) 1602 { 1603 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1604 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1605 struct uclamp_bucket *bucket; 1606 unsigned int bkt_clamp; 1607 unsigned int rq_clamp; 1608 1609 lockdep_assert_rq_held(rq); 1610 1611 /* 1612 * If sched_uclamp_used was enabled after task @p was enqueued, 1613 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1614 * 1615 * In this case the uc_se->active flag should be false since no uclamp 1616 * accounting was performed at enqueue time and we can just return 1617 * here. 1618 * 1619 * Need to be careful of the following enqueue/dequeue ordering 1620 * problem too 1621 * 1622 * enqueue(taskA) 1623 * // sched_uclamp_used gets enabled 1624 * enqueue(taskB) 1625 * dequeue(taskA) 1626 * // Must not decrement bucket->tasks here 1627 * dequeue(taskB) 1628 * 1629 * where we could end up with stale data in uc_se and 1630 * bucket[uc_se->bucket_id]. 1631 * 1632 * The following check here eliminates the possibility of such race. 1633 */ 1634 if (unlikely(!uc_se->active)) 1635 return; 1636 1637 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1638 1639 SCHED_WARN_ON(!bucket->tasks); 1640 if (likely(bucket->tasks)) 1641 bucket->tasks--; 1642 1643 uc_se->active = false; 1644 1645 /* 1646 * Keep "local max aggregation" simple and accept to (possibly) 1647 * overboost some RUNNABLE tasks in the same bucket. 1648 * The rq clamp bucket value is reset to its base value whenever 1649 * there are no more RUNNABLE tasks refcounting it. 1650 */ 1651 if (likely(bucket->tasks)) 1652 return; 1653 1654 rq_clamp = uclamp_rq_get(rq, clamp_id); 1655 /* 1656 * Defensive programming: this should never happen. If it happens, 1657 * e.g. due to future modification, warn and fix up the expected value. 1658 */ 1659 SCHED_WARN_ON(bucket->value > rq_clamp); 1660 if (bucket->value >= rq_clamp) { 1661 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1662 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1663 } 1664 } 1665 1666 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1667 { 1668 enum uclamp_id clamp_id; 1669 1670 /* 1671 * Avoid any overhead until uclamp is actually used by the userspace. 1672 * 1673 * The condition is constructed such that a NOP is generated when 1674 * sched_uclamp_used is disabled. 1675 */ 1676 if (!static_branch_unlikely(&sched_uclamp_used)) 1677 return; 1678 1679 if (unlikely(!p->sched_class->uclamp_enabled)) 1680 return; 1681 1682 for_each_clamp_id(clamp_id) 1683 uclamp_rq_inc_id(rq, p, clamp_id); 1684 1685 /* Reset clamp idle holding when there is one RUNNABLE task */ 1686 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1687 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1688 } 1689 1690 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1691 { 1692 enum uclamp_id clamp_id; 1693 1694 /* 1695 * Avoid any overhead until uclamp is actually used by the userspace. 1696 * 1697 * The condition is constructed such that a NOP is generated when 1698 * sched_uclamp_used is disabled. 1699 */ 1700 if (!static_branch_unlikely(&sched_uclamp_used)) 1701 return; 1702 1703 if (unlikely(!p->sched_class->uclamp_enabled)) 1704 return; 1705 1706 for_each_clamp_id(clamp_id) 1707 uclamp_rq_dec_id(rq, p, clamp_id); 1708 } 1709 1710 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1711 enum uclamp_id clamp_id) 1712 { 1713 if (!p->uclamp[clamp_id].active) 1714 return; 1715 1716 uclamp_rq_dec_id(rq, p, clamp_id); 1717 uclamp_rq_inc_id(rq, p, clamp_id); 1718 1719 /* 1720 * Make sure to clear the idle flag if we've transiently reached 0 1721 * active tasks on rq. 1722 */ 1723 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1724 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1725 } 1726 1727 static inline void 1728 uclamp_update_active(struct task_struct *p) 1729 { 1730 enum uclamp_id clamp_id; 1731 struct rq_flags rf; 1732 struct rq *rq; 1733 1734 /* 1735 * Lock the task and the rq where the task is (or was) queued. 1736 * 1737 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1738 * price to pay to safely serialize util_{min,max} updates with 1739 * enqueues, dequeues and migration operations. 1740 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1741 */ 1742 rq = task_rq_lock(p, &rf); 1743 1744 /* 1745 * Setting the clamp bucket is serialized by task_rq_lock(). 1746 * If the task is not yet RUNNABLE and its task_struct is not 1747 * affecting a valid clamp bucket, the next time it's enqueued, 1748 * it will already see the updated clamp bucket value. 1749 */ 1750 for_each_clamp_id(clamp_id) 1751 uclamp_rq_reinc_id(rq, p, clamp_id); 1752 1753 task_rq_unlock(rq, p, &rf); 1754 } 1755 1756 #ifdef CONFIG_UCLAMP_TASK_GROUP 1757 static inline void 1758 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1759 { 1760 struct css_task_iter it; 1761 struct task_struct *p; 1762 1763 css_task_iter_start(css, 0, &it); 1764 while ((p = css_task_iter_next(&it))) 1765 uclamp_update_active(p); 1766 css_task_iter_end(&it); 1767 } 1768 1769 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1770 #endif 1771 1772 #ifdef CONFIG_SYSCTL 1773 #ifdef CONFIG_UCLAMP_TASK_GROUP 1774 static void uclamp_update_root_tg(void) 1775 { 1776 struct task_group *tg = &root_task_group; 1777 1778 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1779 sysctl_sched_uclamp_util_min, false); 1780 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1781 sysctl_sched_uclamp_util_max, false); 1782 1783 guard(rcu)(); 1784 cpu_util_update_eff(&root_task_group.css); 1785 } 1786 #else 1787 static void uclamp_update_root_tg(void) { } 1788 #endif 1789 1790 static void uclamp_sync_util_min_rt_default(void) 1791 { 1792 struct task_struct *g, *p; 1793 1794 /* 1795 * copy_process() sysctl_uclamp 1796 * uclamp_min_rt = X; 1797 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1798 * // link thread smp_mb__after_spinlock() 1799 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1800 * sched_post_fork() for_each_process_thread() 1801 * __uclamp_sync_rt() __uclamp_sync_rt() 1802 * 1803 * Ensures that either sched_post_fork() will observe the new 1804 * uclamp_min_rt or for_each_process_thread() will observe the new 1805 * task. 1806 */ 1807 read_lock(&tasklist_lock); 1808 smp_mb__after_spinlock(); 1809 read_unlock(&tasklist_lock); 1810 1811 guard(rcu)(); 1812 for_each_process_thread(g, p) 1813 uclamp_update_util_min_rt_default(p); 1814 } 1815 1816 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1817 void *buffer, size_t *lenp, loff_t *ppos) 1818 { 1819 bool update_root_tg = false; 1820 int old_min, old_max, old_min_rt; 1821 int result; 1822 1823 guard(mutex)(&uclamp_mutex); 1824 1825 old_min = sysctl_sched_uclamp_util_min; 1826 old_max = sysctl_sched_uclamp_util_max; 1827 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1828 1829 result = proc_dointvec(table, write, buffer, lenp, ppos); 1830 if (result) 1831 goto undo; 1832 if (!write) 1833 return 0; 1834 1835 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1836 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1837 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1838 1839 result = -EINVAL; 1840 goto undo; 1841 } 1842 1843 if (old_min != sysctl_sched_uclamp_util_min) { 1844 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1845 sysctl_sched_uclamp_util_min, false); 1846 update_root_tg = true; 1847 } 1848 if (old_max != sysctl_sched_uclamp_util_max) { 1849 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1850 sysctl_sched_uclamp_util_max, false); 1851 update_root_tg = true; 1852 } 1853 1854 if (update_root_tg) { 1855 static_branch_enable(&sched_uclamp_used); 1856 uclamp_update_root_tg(); 1857 } 1858 1859 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1860 static_branch_enable(&sched_uclamp_used); 1861 uclamp_sync_util_min_rt_default(); 1862 } 1863 1864 /* 1865 * We update all RUNNABLE tasks only when task groups are in use. 1866 * Otherwise, keep it simple and do just a lazy update at each next 1867 * task enqueue time. 1868 */ 1869 return 0; 1870 1871 undo: 1872 sysctl_sched_uclamp_util_min = old_min; 1873 sysctl_sched_uclamp_util_max = old_max; 1874 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1875 return result; 1876 } 1877 #endif 1878 1879 static void uclamp_fork(struct task_struct *p) 1880 { 1881 enum uclamp_id clamp_id; 1882 1883 /* 1884 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1885 * as the task is still at its early fork stages. 1886 */ 1887 for_each_clamp_id(clamp_id) 1888 p->uclamp[clamp_id].active = false; 1889 1890 if (likely(!p->sched_reset_on_fork)) 1891 return; 1892 1893 for_each_clamp_id(clamp_id) { 1894 uclamp_se_set(&p->uclamp_req[clamp_id], 1895 uclamp_none(clamp_id), false); 1896 } 1897 } 1898 1899 static void uclamp_post_fork(struct task_struct *p) 1900 { 1901 uclamp_update_util_min_rt_default(p); 1902 } 1903 1904 static void __init init_uclamp_rq(struct rq *rq) 1905 { 1906 enum uclamp_id clamp_id; 1907 struct uclamp_rq *uc_rq = rq->uclamp; 1908 1909 for_each_clamp_id(clamp_id) { 1910 uc_rq[clamp_id] = (struct uclamp_rq) { 1911 .value = uclamp_none(clamp_id) 1912 }; 1913 } 1914 1915 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1916 } 1917 1918 static void __init init_uclamp(void) 1919 { 1920 struct uclamp_se uc_max = {}; 1921 enum uclamp_id clamp_id; 1922 int cpu; 1923 1924 for_each_possible_cpu(cpu) 1925 init_uclamp_rq(cpu_rq(cpu)); 1926 1927 for_each_clamp_id(clamp_id) { 1928 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1929 uclamp_none(clamp_id), false); 1930 } 1931 1932 /* System defaults allow max clamp values for both indexes */ 1933 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1934 for_each_clamp_id(clamp_id) { 1935 uclamp_default[clamp_id] = uc_max; 1936 #ifdef CONFIG_UCLAMP_TASK_GROUP 1937 root_task_group.uclamp_req[clamp_id] = uc_max; 1938 root_task_group.uclamp[clamp_id] = uc_max; 1939 #endif 1940 } 1941 } 1942 1943 #else /* !CONFIG_UCLAMP_TASK */ 1944 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1945 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1946 static inline void uclamp_fork(struct task_struct *p) { } 1947 static inline void uclamp_post_fork(struct task_struct *p) { } 1948 static inline void init_uclamp(void) { } 1949 #endif /* CONFIG_UCLAMP_TASK */ 1950 1951 bool sched_task_on_rq(struct task_struct *p) 1952 { 1953 return task_on_rq_queued(p); 1954 } 1955 1956 unsigned long get_wchan(struct task_struct *p) 1957 { 1958 unsigned long ip = 0; 1959 unsigned int state; 1960 1961 if (!p || p == current) 1962 return 0; 1963 1964 /* Only get wchan if task is blocked and we can keep it that way. */ 1965 raw_spin_lock_irq(&p->pi_lock); 1966 state = READ_ONCE(p->__state); 1967 smp_rmb(); /* see try_to_wake_up() */ 1968 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 1969 ip = __get_wchan(p); 1970 raw_spin_unlock_irq(&p->pi_lock); 1971 1972 return ip; 1973 } 1974 1975 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1976 { 1977 if (!(flags & ENQUEUE_NOCLOCK)) 1978 update_rq_clock(rq); 1979 1980 if (!(flags & ENQUEUE_RESTORE)) { 1981 sched_info_enqueue(rq, p); 1982 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 1983 } 1984 1985 uclamp_rq_inc(rq, p); 1986 p->sched_class->enqueue_task(rq, p, flags); 1987 1988 if (sched_core_enabled(rq)) 1989 sched_core_enqueue(rq, p); 1990 } 1991 1992 void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1993 { 1994 if (sched_core_enabled(rq)) 1995 sched_core_dequeue(rq, p, flags); 1996 1997 if (!(flags & DEQUEUE_NOCLOCK)) 1998 update_rq_clock(rq); 1999 2000 if (!(flags & DEQUEUE_SAVE)) { 2001 sched_info_dequeue(rq, p); 2002 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2003 } 2004 2005 uclamp_rq_dec(rq, p); 2006 p->sched_class->dequeue_task(rq, p, flags); 2007 } 2008 2009 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2010 { 2011 if (task_on_rq_migrating(p)) 2012 flags |= ENQUEUE_MIGRATED; 2013 if (flags & ENQUEUE_MIGRATED) 2014 sched_mm_cid_migrate_to(rq, p); 2015 2016 enqueue_task(rq, p, flags); 2017 2018 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2019 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2020 } 2021 2022 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2023 { 2024 WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING); 2025 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2026 2027 dequeue_task(rq, p, flags); 2028 } 2029 2030 /** 2031 * task_curr - is this task currently executing on a CPU? 2032 * @p: the task in question. 2033 * 2034 * Return: 1 if the task is currently executing. 0 otherwise. 2035 */ 2036 inline int task_curr(const struct task_struct *p) 2037 { 2038 return cpu_curr(task_cpu(p)) == p; 2039 } 2040 2041 /* 2042 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2043 * mess with locking. 2044 */ 2045 void check_class_changing(struct rq *rq, struct task_struct *p, 2046 const struct sched_class *prev_class) 2047 { 2048 if (prev_class != p->sched_class && p->sched_class->switching_to) 2049 p->sched_class->switching_to(rq, p); 2050 } 2051 2052 /* 2053 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2054 * use the balance_callback list if you want balancing. 2055 * 2056 * this means any call to check_class_changed() must be followed by a call to 2057 * balance_callback(). 2058 */ 2059 void check_class_changed(struct rq *rq, struct task_struct *p, 2060 const struct sched_class *prev_class, 2061 int oldprio) 2062 { 2063 if (prev_class != p->sched_class) { 2064 if (prev_class->switched_from) 2065 prev_class->switched_from(rq, p); 2066 2067 p->sched_class->switched_to(rq, p); 2068 } else if (oldprio != p->prio || dl_task(p)) 2069 p->sched_class->prio_changed(rq, p, oldprio); 2070 } 2071 2072 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2073 { 2074 if (p->sched_class == rq->curr->sched_class) 2075 rq->curr->sched_class->wakeup_preempt(rq, p, flags); 2076 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2077 resched_curr(rq); 2078 2079 /* 2080 * A queue event has occurred, and we're going to schedule. In 2081 * this case, we can save a useless back to back clock update. 2082 */ 2083 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2084 rq_clock_skip_update(rq); 2085 } 2086 2087 static __always_inline 2088 int __task_state_match(struct task_struct *p, unsigned int state) 2089 { 2090 if (READ_ONCE(p->__state) & state) 2091 return 1; 2092 2093 if (READ_ONCE(p->saved_state) & state) 2094 return -1; 2095 2096 return 0; 2097 } 2098 2099 static __always_inline 2100 int task_state_match(struct task_struct *p, unsigned int state) 2101 { 2102 /* 2103 * Serialize against current_save_and_set_rtlock_wait_state(), 2104 * current_restore_rtlock_saved_state(), and __refrigerator(). 2105 */ 2106 guard(raw_spinlock_irq)(&p->pi_lock); 2107 return __task_state_match(p, state); 2108 } 2109 2110 /* 2111 * wait_task_inactive - wait for a thread to unschedule. 2112 * 2113 * Wait for the thread to block in any of the states set in @match_state. 2114 * If it changes, i.e. @p might have woken up, then return zero. When we 2115 * succeed in waiting for @p to be off its CPU, we return a positive number 2116 * (its total switch count). If a second call a short while later returns the 2117 * same number, the caller can be sure that @p has remained unscheduled the 2118 * whole time. 2119 * 2120 * The caller must ensure that the task *will* unschedule sometime soon, 2121 * else this function might spin for a *long* time. This function can't 2122 * be called with interrupts off, or it may introduce deadlock with 2123 * smp_call_function() if an IPI is sent by the same process we are 2124 * waiting to become inactive. 2125 */ 2126 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2127 { 2128 int running, queued, match; 2129 struct rq_flags rf; 2130 unsigned long ncsw; 2131 struct rq *rq; 2132 2133 for (;;) { 2134 /* 2135 * We do the initial early heuristics without holding 2136 * any task-queue locks at all. We'll only try to get 2137 * the runqueue lock when things look like they will 2138 * work out! 2139 */ 2140 rq = task_rq(p); 2141 2142 /* 2143 * If the task is actively running on another CPU 2144 * still, just relax and busy-wait without holding 2145 * any locks. 2146 * 2147 * NOTE! Since we don't hold any locks, it's not 2148 * even sure that "rq" stays as the right runqueue! 2149 * But we don't care, since "task_on_cpu()" will 2150 * return false if the runqueue has changed and p 2151 * is actually now running somewhere else! 2152 */ 2153 while (task_on_cpu(rq, p)) { 2154 if (!task_state_match(p, match_state)) 2155 return 0; 2156 cpu_relax(); 2157 } 2158 2159 /* 2160 * Ok, time to look more closely! We need the rq 2161 * lock now, to be *sure*. If we're wrong, we'll 2162 * just go back and repeat. 2163 */ 2164 rq = task_rq_lock(p, &rf); 2165 trace_sched_wait_task(p); 2166 running = task_on_cpu(rq, p); 2167 queued = task_on_rq_queued(p); 2168 ncsw = 0; 2169 if ((match = __task_state_match(p, match_state))) { 2170 /* 2171 * When matching on p->saved_state, consider this task 2172 * still queued so it will wait. 2173 */ 2174 if (match < 0) 2175 queued = 1; 2176 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2177 } 2178 task_rq_unlock(rq, p, &rf); 2179 2180 /* 2181 * If it changed from the expected state, bail out now. 2182 */ 2183 if (unlikely(!ncsw)) 2184 break; 2185 2186 /* 2187 * Was it really running after all now that we 2188 * checked with the proper locks actually held? 2189 * 2190 * Oops. Go back and try again.. 2191 */ 2192 if (unlikely(running)) { 2193 cpu_relax(); 2194 continue; 2195 } 2196 2197 /* 2198 * It's not enough that it's not actively running, 2199 * it must be off the runqueue _entirely_, and not 2200 * preempted! 2201 * 2202 * So if it was still runnable (but just not actively 2203 * running right now), it's preempted, and we should 2204 * yield - it could be a while. 2205 */ 2206 if (unlikely(queued)) { 2207 ktime_t to = NSEC_PER_SEC / HZ; 2208 2209 set_current_state(TASK_UNINTERRUPTIBLE); 2210 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2211 continue; 2212 } 2213 2214 /* 2215 * Ahh, all good. It wasn't running, and it wasn't 2216 * runnable, which means that it will never become 2217 * running in the future either. We're all done! 2218 */ 2219 break; 2220 } 2221 2222 return ncsw; 2223 } 2224 2225 #ifdef CONFIG_SMP 2226 2227 static void 2228 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2229 2230 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2231 { 2232 struct affinity_context ac = { 2233 .new_mask = cpumask_of(rq->cpu), 2234 .flags = SCA_MIGRATE_DISABLE, 2235 }; 2236 2237 if (likely(!p->migration_disabled)) 2238 return; 2239 2240 if (p->cpus_ptr != &p->cpus_mask) 2241 return; 2242 2243 /* 2244 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2245 */ 2246 __do_set_cpus_allowed(p, &ac); 2247 } 2248 2249 void migrate_disable(void) 2250 { 2251 struct task_struct *p = current; 2252 2253 if (p->migration_disabled) { 2254 p->migration_disabled++; 2255 return; 2256 } 2257 2258 guard(preempt)(); 2259 this_rq()->nr_pinned++; 2260 p->migration_disabled = 1; 2261 } 2262 EXPORT_SYMBOL_GPL(migrate_disable); 2263 2264 void migrate_enable(void) 2265 { 2266 struct task_struct *p = current; 2267 struct affinity_context ac = { 2268 .new_mask = &p->cpus_mask, 2269 .flags = SCA_MIGRATE_ENABLE, 2270 }; 2271 2272 if (p->migration_disabled > 1) { 2273 p->migration_disabled--; 2274 return; 2275 } 2276 2277 if (WARN_ON_ONCE(!p->migration_disabled)) 2278 return; 2279 2280 /* 2281 * Ensure stop_task runs either before or after this, and that 2282 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2283 */ 2284 guard(preempt)(); 2285 if (p->cpus_ptr != &p->cpus_mask) 2286 __set_cpus_allowed_ptr(p, &ac); 2287 /* 2288 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2289 * regular cpus_mask, otherwise things that race (eg. 2290 * select_fallback_rq) get confused. 2291 */ 2292 barrier(); 2293 p->migration_disabled = 0; 2294 this_rq()->nr_pinned--; 2295 } 2296 EXPORT_SYMBOL_GPL(migrate_enable); 2297 2298 static inline bool rq_has_pinned_tasks(struct rq *rq) 2299 { 2300 return rq->nr_pinned; 2301 } 2302 2303 /* 2304 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2305 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2306 */ 2307 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2308 { 2309 /* When not in the task's cpumask, no point in looking further. */ 2310 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2311 return false; 2312 2313 /* migrate_disabled() must be allowed to finish. */ 2314 if (is_migration_disabled(p)) 2315 return cpu_online(cpu); 2316 2317 /* Non kernel threads are not allowed during either online or offline. */ 2318 if (!(p->flags & PF_KTHREAD)) 2319 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2320 2321 /* KTHREAD_IS_PER_CPU is always allowed. */ 2322 if (kthread_is_per_cpu(p)) 2323 return cpu_online(cpu); 2324 2325 /* Regular kernel threads don't get to stay during offline. */ 2326 if (cpu_dying(cpu)) 2327 return false; 2328 2329 /* But are allowed during online. */ 2330 return cpu_online(cpu); 2331 } 2332 2333 /* 2334 * This is how migration works: 2335 * 2336 * 1) we invoke migration_cpu_stop() on the target CPU using 2337 * stop_one_cpu(). 2338 * 2) stopper starts to run (implicitly forcing the migrated thread 2339 * off the CPU) 2340 * 3) it checks whether the migrated task is still in the wrong runqueue. 2341 * 4) if it's in the wrong runqueue then the migration thread removes 2342 * it and puts it into the right queue. 2343 * 5) stopper completes and stop_one_cpu() returns and the migration 2344 * is done. 2345 */ 2346 2347 /* 2348 * move_queued_task - move a queued task to new rq. 2349 * 2350 * Returns (locked) new rq. Old rq's lock is released. 2351 */ 2352 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2353 struct task_struct *p, int new_cpu) 2354 { 2355 lockdep_assert_rq_held(rq); 2356 2357 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2358 set_task_cpu(p, new_cpu); 2359 rq_unlock(rq, rf); 2360 2361 rq = cpu_rq(new_cpu); 2362 2363 rq_lock(rq, rf); 2364 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2365 activate_task(rq, p, 0); 2366 wakeup_preempt(rq, p, 0); 2367 2368 return rq; 2369 } 2370 2371 struct migration_arg { 2372 struct task_struct *task; 2373 int dest_cpu; 2374 struct set_affinity_pending *pending; 2375 }; 2376 2377 /* 2378 * @refs: number of wait_for_completion() 2379 * @stop_pending: is @stop_work in use 2380 */ 2381 struct set_affinity_pending { 2382 refcount_t refs; 2383 unsigned int stop_pending; 2384 struct completion done; 2385 struct cpu_stop_work stop_work; 2386 struct migration_arg arg; 2387 }; 2388 2389 /* 2390 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2391 * this because either it can't run here any more (set_cpus_allowed() 2392 * away from this CPU, or CPU going down), or because we're 2393 * attempting to rebalance this task on exec (sched_exec). 2394 * 2395 * So we race with normal scheduler movements, but that's OK, as long 2396 * as the task is no longer on this CPU. 2397 */ 2398 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2399 struct task_struct *p, int dest_cpu) 2400 { 2401 /* Affinity changed (again). */ 2402 if (!is_cpu_allowed(p, dest_cpu)) 2403 return rq; 2404 2405 rq = move_queued_task(rq, rf, p, dest_cpu); 2406 2407 return rq; 2408 } 2409 2410 /* 2411 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2412 * and performs thread migration by bumping thread off CPU then 2413 * 'pushing' onto another runqueue. 2414 */ 2415 static int migration_cpu_stop(void *data) 2416 { 2417 struct migration_arg *arg = data; 2418 struct set_affinity_pending *pending = arg->pending; 2419 struct task_struct *p = arg->task; 2420 struct rq *rq = this_rq(); 2421 bool complete = false; 2422 struct rq_flags rf; 2423 2424 /* 2425 * The original target CPU might have gone down and we might 2426 * be on another CPU but it doesn't matter. 2427 */ 2428 local_irq_save(rf.flags); 2429 /* 2430 * We need to explicitly wake pending tasks before running 2431 * __migrate_task() such that we will not miss enforcing cpus_ptr 2432 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2433 */ 2434 flush_smp_call_function_queue(); 2435 2436 raw_spin_lock(&p->pi_lock); 2437 rq_lock(rq, &rf); 2438 2439 /* 2440 * If we were passed a pending, then ->stop_pending was set, thus 2441 * p->migration_pending must have remained stable. 2442 */ 2443 WARN_ON_ONCE(pending && pending != p->migration_pending); 2444 2445 /* 2446 * If task_rq(p) != rq, it cannot be migrated here, because we're 2447 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2448 * we're holding p->pi_lock. 2449 */ 2450 if (task_rq(p) == rq) { 2451 if (is_migration_disabled(p)) 2452 goto out; 2453 2454 if (pending) { 2455 p->migration_pending = NULL; 2456 complete = true; 2457 2458 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2459 goto out; 2460 } 2461 2462 if (task_on_rq_queued(p)) { 2463 update_rq_clock(rq); 2464 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2465 } else { 2466 p->wake_cpu = arg->dest_cpu; 2467 } 2468 2469 /* 2470 * XXX __migrate_task() can fail, at which point we might end 2471 * up running on a dodgy CPU, AFAICT this can only happen 2472 * during CPU hotplug, at which point we'll get pushed out 2473 * anyway, so it's probably not a big deal. 2474 */ 2475 2476 } else if (pending) { 2477 /* 2478 * This happens when we get migrated between migrate_enable()'s 2479 * preempt_enable() and scheduling the stopper task. At that 2480 * point we're a regular task again and not current anymore. 2481 * 2482 * A !PREEMPT kernel has a giant hole here, which makes it far 2483 * more likely. 2484 */ 2485 2486 /* 2487 * The task moved before the stopper got to run. We're holding 2488 * ->pi_lock, so the allowed mask is stable - if it got 2489 * somewhere allowed, we're done. 2490 */ 2491 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2492 p->migration_pending = NULL; 2493 complete = true; 2494 goto out; 2495 } 2496 2497 /* 2498 * When migrate_enable() hits a rq mis-match we can't reliably 2499 * determine is_migration_disabled() and so have to chase after 2500 * it. 2501 */ 2502 WARN_ON_ONCE(!pending->stop_pending); 2503 preempt_disable(); 2504 task_rq_unlock(rq, p, &rf); 2505 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2506 &pending->arg, &pending->stop_work); 2507 preempt_enable(); 2508 return 0; 2509 } 2510 out: 2511 if (pending) 2512 pending->stop_pending = false; 2513 task_rq_unlock(rq, p, &rf); 2514 2515 if (complete) 2516 complete_all(&pending->done); 2517 2518 return 0; 2519 } 2520 2521 int push_cpu_stop(void *arg) 2522 { 2523 struct rq *lowest_rq = NULL, *rq = this_rq(); 2524 struct task_struct *p = arg; 2525 2526 raw_spin_lock_irq(&p->pi_lock); 2527 raw_spin_rq_lock(rq); 2528 2529 if (task_rq(p) != rq) 2530 goto out_unlock; 2531 2532 if (is_migration_disabled(p)) { 2533 p->migration_flags |= MDF_PUSH; 2534 goto out_unlock; 2535 } 2536 2537 p->migration_flags &= ~MDF_PUSH; 2538 2539 if (p->sched_class->find_lock_rq) 2540 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2541 2542 if (!lowest_rq) 2543 goto out_unlock; 2544 2545 // XXX validate p is still the highest prio task 2546 if (task_rq(p) == rq) { 2547 deactivate_task(rq, p, 0); 2548 set_task_cpu(p, lowest_rq->cpu); 2549 activate_task(lowest_rq, p, 0); 2550 resched_curr(lowest_rq); 2551 } 2552 2553 double_unlock_balance(rq, lowest_rq); 2554 2555 out_unlock: 2556 rq->push_busy = false; 2557 raw_spin_rq_unlock(rq); 2558 raw_spin_unlock_irq(&p->pi_lock); 2559 2560 put_task_struct(p); 2561 return 0; 2562 } 2563 2564 /* 2565 * sched_class::set_cpus_allowed must do the below, but is not required to 2566 * actually call this function. 2567 */ 2568 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2569 { 2570 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2571 p->cpus_ptr = ctx->new_mask; 2572 return; 2573 } 2574 2575 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2576 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2577 2578 /* 2579 * Swap in a new user_cpus_ptr if SCA_USER flag set 2580 */ 2581 if (ctx->flags & SCA_USER) 2582 swap(p->user_cpus_ptr, ctx->user_mask); 2583 } 2584 2585 static void 2586 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2587 { 2588 struct rq *rq = task_rq(p); 2589 bool queued, running; 2590 2591 /* 2592 * This here violates the locking rules for affinity, since we're only 2593 * supposed to change these variables while holding both rq->lock and 2594 * p->pi_lock. 2595 * 2596 * HOWEVER, it magically works, because ttwu() is the only code that 2597 * accesses these variables under p->pi_lock and only does so after 2598 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2599 * before finish_task(). 2600 * 2601 * XXX do further audits, this smells like something putrid. 2602 */ 2603 if (ctx->flags & SCA_MIGRATE_DISABLE) 2604 SCHED_WARN_ON(!p->on_cpu); 2605 else 2606 lockdep_assert_held(&p->pi_lock); 2607 2608 queued = task_on_rq_queued(p); 2609 running = task_current(rq, p); 2610 2611 if (queued) { 2612 /* 2613 * Because __kthread_bind() calls this on blocked tasks without 2614 * holding rq->lock. 2615 */ 2616 lockdep_assert_rq_held(rq); 2617 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2618 } 2619 if (running) 2620 put_prev_task(rq, p); 2621 2622 p->sched_class->set_cpus_allowed(p, ctx); 2623 2624 if (queued) 2625 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2626 if (running) 2627 set_next_task(rq, p); 2628 } 2629 2630 /* 2631 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2632 * affinity (if any) should be destroyed too. 2633 */ 2634 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2635 { 2636 struct affinity_context ac = { 2637 .new_mask = new_mask, 2638 .user_mask = NULL, 2639 .flags = SCA_USER, /* clear the user requested mask */ 2640 }; 2641 union cpumask_rcuhead { 2642 cpumask_t cpumask; 2643 struct rcu_head rcu; 2644 }; 2645 2646 __do_set_cpus_allowed(p, &ac); 2647 2648 /* 2649 * Because this is called with p->pi_lock held, it is not possible 2650 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2651 * kfree_rcu(). 2652 */ 2653 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2654 } 2655 2656 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2657 int node) 2658 { 2659 cpumask_t *user_mask; 2660 unsigned long flags; 2661 2662 /* 2663 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2664 * may differ by now due to racing. 2665 */ 2666 dst->user_cpus_ptr = NULL; 2667 2668 /* 2669 * This check is racy and losing the race is a valid situation. 2670 * It is not worth the extra overhead of taking the pi_lock on 2671 * every fork/clone. 2672 */ 2673 if (data_race(!src->user_cpus_ptr)) 2674 return 0; 2675 2676 user_mask = alloc_user_cpus_ptr(node); 2677 if (!user_mask) 2678 return -ENOMEM; 2679 2680 /* 2681 * Use pi_lock to protect content of user_cpus_ptr 2682 * 2683 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2684 * do_set_cpus_allowed(). 2685 */ 2686 raw_spin_lock_irqsave(&src->pi_lock, flags); 2687 if (src->user_cpus_ptr) { 2688 swap(dst->user_cpus_ptr, user_mask); 2689 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2690 } 2691 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2692 2693 if (unlikely(user_mask)) 2694 kfree(user_mask); 2695 2696 return 0; 2697 } 2698 2699 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2700 { 2701 struct cpumask *user_mask = NULL; 2702 2703 swap(p->user_cpus_ptr, user_mask); 2704 2705 return user_mask; 2706 } 2707 2708 void release_user_cpus_ptr(struct task_struct *p) 2709 { 2710 kfree(clear_user_cpus_ptr(p)); 2711 } 2712 2713 /* 2714 * This function is wildly self concurrent; here be dragons. 2715 * 2716 * 2717 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2718 * designated task is enqueued on an allowed CPU. If that task is currently 2719 * running, we have to kick it out using the CPU stopper. 2720 * 2721 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2722 * Consider: 2723 * 2724 * Initial conditions: P0->cpus_mask = [0, 1] 2725 * 2726 * P0@CPU0 P1 2727 * 2728 * migrate_disable(); 2729 * <preempted> 2730 * set_cpus_allowed_ptr(P0, [1]); 2731 * 2732 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2733 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2734 * This means we need the following scheme: 2735 * 2736 * P0@CPU0 P1 2737 * 2738 * migrate_disable(); 2739 * <preempted> 2740 * set_cpus_allowed_ptr(P0, [1]); 2741 * <blocks> 2742 * <resumes> 2743 * migrate_enable(); 2744 * __set_cpus_allowed_ptr(); 2745 * <wakes local stopper> 2746 * `--> <woken on migration completion> 2747 * 2748 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2749 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2750 * task p are serialized by p->pi_lock, which we can leverage: the one that 2751 * should come into effect at the end of the Migrate-Disable region is the last 2752 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2753 * but we still need to properly signal those waiting tasks at the appropriate 2754 * moment. 2755 * 2756 * This is implemented using struct set_affinity_pending. The first 2757 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2758 * setup an instance of that struct and install it on the targeted task_struct. 2759 * Any and all further callers will reuse that instance. Those then wait for 2760 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2761 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2762 * 2763 * 2764 * (1) In the cases covered above. There is one more where the completion is 2765 * signaled within affine_move_task() itself: when a subsequent affinity request 2766 * occurs after the stopper bailed out due to the targeted task still being 2767 * Migrate-Disable. Consider: 2768 * 2769 * Initial conditions: P0->cpus_mask = [0, 1] 2770 * 2771 * CPU0 P1 P2 2772 * <P0> 2773 * migrate_disable(); 2774 * <preempted> 2775 * set_cpus_allowed_ptr(P0, [1]); 2776 * <blocks> 2777 * <migration/0> 2778 * migration_cpu_stop() 2779 * is_migration_disabled() 2780 * <bails> 2781 * set_cpus_allowed_ptr(P0, [0, 1]); 2782 * <signal completion> 2783 * <awakes> 2784 * 2785 * Note that the above is safe vs a concurrent migrate_enable(), as any 2786 * pending affinity completion is preceded by an uninstallation of 2787 * p->migration_pending done with p->pi_lock held. 2788 */ 2789 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2790 int dest_cpu, unsigned int flags) 2791 __releases(rq->lock) 2792 __releases(p->pi_lock) 2793 { 2794 struct set_affinity_pending my_pending = { }, *pending = NULL; 2795 bool stop_pending, complete = false; 2796 2797 /* Can the task run on the task's current CPU? If so, we're done */ 2798 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2799 struct task_struct *push_task = NULL; 2800 2801 if ((flags & SCA_MIGRATE_ENABLE) && 2802 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2803 rq->push_busy = true; 2804 push_task = get_task_struct(p); 2805 } 2806 2807 /* 2808 * If there are pending waiters, but no pending stop_work, 2809 * then complete now. 2810 */ 2811 pending = p->migration_pending; 2812 if (pending && !pending->stop_pending) { 2813 p->migration_pending = NULL; 2814 complete = true; 2815 } 2816 2817 preempt_disable(); 2818 task_rq_unlock(rq, p, rf); 2819 if (push_task) { 2820 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2821 p, &rq->push_work); 2822 } 2823 preempt_enable(); 2824 2825 if (complete) 2826 complete_all(&pending->done); 2827 2828 return 0; 2829 } 2830 2831 if (!(flags & SCA_MIGRATE_ENABLE)) { 2832 /* serialized by p->pi_lock */ 2833 if (!p->migration_pending) { 2834 /* Install the request */ 2835 refcount_set(&my_pending.refs, 1); 2836 init_completion(&my_pending.done); 2837 my_pending.arg = (struct migration_arg) { 2838 .task = p, 2839 .dest_cpu = dest_cpu, 2840 .pending = &my_pending, 2841 }; 2842 2843 p->migration_pending = &my_pending; 2844 } else { 2845 pending = p->migration_pending; 2846 refcount_inc(&pending->refs); 2847 /* 2848 * Affinity has changed, but we've already installed a 2849 * pending. migration_cpu_stop() *must* see this, else 2850 * we risk a completion of the pending despite having a 2851 * task on a disallowed CPU. 2852 * 2853 * Serialized by p->pi_lock, so this is safe. 2854 */ 2855 pending->arg.dest_cpu = dest_cpu; 2856 } 2857 } 2858 pending = p->migration_pending; 2859 /* 2860 * - !MIGRATE_ENABLE: 2861 * we'll have installed a pending if there wasn't one already. 2862 * 2863 * - MIGRATE_ENABLE: 2864 * we're here because the current CPU isn't matching anymore, 2865 * the only way that can happen is because of a concurrent 2866 * set_cpus_allowed_ptr() call, which should then still be 2867 * pending completion. 2868 * 2869 * Either way, we really should have a @pending here. 2870 */ 2871 if (WARN_ON_ONCE(!pending)) { 2872 task_rq_unlock(rq, p, rf); 2873 return -EINVAL; 2874 } 2875 2876 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2877 /* 2878 * MIGRATE_ENABLE gets here because 'p == current', but for 2879 * anything else we cannot do is_migration_disabled(), punt 2880 * and have the stopper function handle it all race-free. 2881 */ 2882 stop_pending = pending->stop_pending; 2883 if (!stop_pending) 2884 pending->stop_pending = true; 2885 2886 if (flags & SCA_MIGRATE_ENABLE) 2887 p->migration_flags &= ~MDF_PUSH; 2888 2889 preempt_disable(); 2890 task_rq_unlock(rq, p, rf); 2891 if (!stop_pending) { 2892 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2893 &pending->arg, &pending->stop_work); 2894 } 2895 preempt_enable(); 2896 2897 if (flags & SCA_MIGRATE_ENABLE) 2898 return 0; 2899 } else { 2900 2901 if (!is_migration_disabled(p)) { 2902 if (task_on_rq_queued(p)) 2903 rq = move_queued_task(rq, rf, p, dest_cpu); 2904 2905 if (!pending->stop_pending) { 2906 p->migration_pending = NULL; 2907 complete = true; 2908 } 2909 } 2910 task_rq_unlock(rq, p, rf); 2911 2912 if (complete) 2913 complete_all(&pending->done); 2914 } 2915 2916 wait_for_completion(&pending->done); 2917 2918 if (refcount_dec_and_test(&pending->refs)) 2919 wake_up_var(&pending->refs); /* No UaF, just an address */ 2920 2921 /* 2922 * Block the original owner of &pending until all subsequent callers 2923 * have seen the completion and decremented the refcount 2924 */ 2925 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2926 2927 /* ARGH */ 2928 WARN_ON_ONCE(my_pending.stop_pending); 2929 2930 return 0; 2931 } 2932 2933 /* 2934 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2935 */ 2936 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2937 struct affinity_context *ctx, 2938 struct rq *rq, 2939 struct rq_flags *rf) 2940 __releases(rq->lock) 2941 __releases(p->pi_lock) 2942 { 2943 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2944 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2945 bool kthread = p->flags & PF_KTHREAD; 2946 unsigned int dest_cpu; 2947 int ret = 0; 2948 2949 update_rq_clock(rq); 2950 2951 if (kthread || is_migration_disabled(p)) { 2952 /* 2953 * Kernel threads are allowed on online && !active CPUs, 2954 * however, during cpu-hot-unplug, even these might get pushed 2955 * away if not KTHREAD_IS_PER_CPU. 2956 * 2957 * Specifically, migration_disabled() tasks must not fail the 2958 * cpumask_any_and_distribute() pick below, esp. so on 2959 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2960 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2961 */ 2962 cpu_valid_mask = cpu_online_mask; 2963 } 2964 2965 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2966 ret = -EINVAL; 2967 goto out; 2968 } 2969 2970 /* 2971 * Must re-check here, to close a race against __kthread_bind(), 2972 * sched_setaffinity() is not guaranteed to observe the flag. 2973 */ 2974 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2975 ret = -EINVAL; 2976 goto out; 2977 } 2978 2979 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2980 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 2981 if (ctx->flags & SCA_USER) 2982 swap(p->user_cpus_ptr, ctx->user_mask); 2983 goto out; 2984 } 2985 2986 if (WARN_ON_ONCE(p == current && 2987 is_migration_disabled(p) && 2988 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2989 ret = -EBUSY; 2990 goto out; 2991 } 2992 } 2993 2994 /* 2995 * Picking a ~random cpu helps in cases where we are changing affinity 2996 * for groups of tasks (ie. cpuset), so that load balancing is not 2997 * immediately required to distribute the tasks within their new mask. 2998 */ 2999 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3000 if (dest_cpu >= nr_cpu_ids) { 3001 ret = -EINVAL; 3002 goto out; 3003 } 3004 3005 __do_set_cpus_allowed(p, ctx); 3006 3007 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3008 3009 out: 3010 task_rq_unlock(rq, p, rf); 3011 3012 return ret; 3013 } 3014 3015 /* 3016 * Change a given task's CPU affinity. Migrate the thread to a 3017 * proper CPU and schedule it away if the CPU it's executing on 3018 * is removed from the allowed bitmask. 3019 * 3020 * NOTE: the caller must have a valid reference to the task, the 3021 * task must not exit() & deallocate itself prematurely. The 3022 * call is not atomic; no spinlocks may be held. 3023 */ 3024 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3025 { 3026 struct rq_flags rf; 3027 struct rq *rq; 3028 3029 rq = task_rq_lock(p, &rf); 3030 /* 3031 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3032 * flags are set. 3033 */ 3034 if (p->user_cpus_ptr && 3035 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3036 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3037 ctx->new_mask = rq->scratch_mask; 3038 3039 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3040 } 3041 3042 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3043 { 3044 struct affinity_context ac = { 3045 .new_mask = new_mask, 3046 .flags = 0, 3047 }; 3048 3049 return __set_cpus_allowed_ptr(p, &ac); 3050 } 3051 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3052 3053 /* 3054 * Change a given task's CPU affinity to the intersection of its current 3055 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3056 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3057 * affinity or use cpu_online_mask instead. 3058 * 3059 * If the resulting mask is empty, leave the affinity unchanged and return 3060 * -EINVAL. 3061 */ 3062 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3063 struct cpumask *new_mask, 3064 const struct cpumask *subset_mask) 3065 { 3066 struct affinity_context ac = { 3067 .new_mask = new_mask, 3068 .flags = 0, 3069 }; 3070 struct rq_flags rf; 3071 struct rq *rq; 3072 int err; 3073 3074 rq = task_rq_lock(p, &rf); 3075 3076 /* 3077 * Forcefully restricting the affinity of a deadline task is 3078 * likely to cause problems, so fail and noisily override the 3079 * mask entirely. 3080 */ 3081 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3082 err = -EPERM; 3083 goto err_unlock; 3084 } 3085 3086 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3087 err = -EINVAL; 3088 goto err_unlock; 3089 } 3090 3091 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3092 3093 err_unlock: 3094 task_rq_unlock(rq, p, &rf); 3095 return err; 3096 } 3097 3098 /* 3099 * Restrict the CPU affinity of task @p so that it is a subset of 3100 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3101 * old affinity mask. If the resulting mask is empty, we warn and walk 3102 * up the cpuset hierarchy until we find a suitable mask. 3103 */ 3104 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3105 { 3106 cpumask_var_t new_mask; 3107 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3108 3109 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3110 3111 /* 3112 * __migrate_task() can fail silently in the face of concurrent 3113 * offlining of the chosen destination CPU, so take the hotplug 3114 * lock to ensure that the migration succeeds. 3115 */ 3116 cpus_read_lock(); 3117 if (!cpumask_available(new_mask)) 3118 goto out_set_mask; 3119 3120 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3121 goto out_free_mask; 3122 3123 /* 3124 * We failed to find a valid subset of the affinity mask for the 3125 * task, so override it based on its cpuset hierarchy. 3126 */ 3127 cpuset_cpus_allowed(p, new_mask); 3128 override_mask = new_mask; 3129 3130 out_set_mask: 3131 if (printk_ratelimit()) { 3132 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3133 task_pid_nr(p), p->comm, 3134 cpumask_pr_args(override_mask)); 3135 } 3136 3137 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3138 out_free_mask: 3139 cpus_read_unlock(); 3140 free_cpumask_var(new_mask); 3141 } 3142 3143 /* 3144 * Restore the affinity of a task @p which was previously restricted by a 3145 * call to force_compatible_cpus_allowed_ptr(). 3146 * 3147 * It is the caller's responsibility to serialise this with any calls to 3148 * force_compatible_cpus_allowed_ptr(@p). 3149 */ 3150 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3151 { 3152 struct affinity_context ac = { 3153 .new_mask = task_user_cpus(p), 3154 .flags = 0, 3155 }; 3156 int ret; 3157 3158 /* 3159 * Try to restore the old affinity mask with __sched_setaffinity(). 3160 * Cpuset masking will be done there too. 3161 */ 3162 ret = __sched_setaffinity(p, &ac); 3163 WARN_ON_ONCE(ret); 3164 } 3165 3166 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3167 { 3168 #ifdef CONFIG_SCHED_DEBUG 3169 unsigned int state = READ_ONCE(p->__state); 3170 3171 /* 3172 * We should never call set_task_cpu() on a blocked task, 3173 * ttwu() will sort out the placement. 3174 */ 3175 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3176 3177 /* 3178 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3179 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3180 * time relying on p->on_rq. 3181 */ 3182 WARN_ON_ONCE(state == TASK_RUNNING && 3183 p->sched_class == &fair_sched_class && 3184 (p->on_rq && !task_on_rq_migrating(p))); 3185 3186 #ifdef CONFIG_LOCKDEP 3187 /* 3188 * The caller should hold either p->pi_lock or rq->lock, when changing 3189 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3190 * 3191 * sched_move_task() holds both and thus holding either pins the cgroup, 3192 * see task_group(). 3193 * 3194 * Furthermore, all task_rq users should acquire both locks, see 3195 * task_rq_lock(). 3196 */ 3197 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3198 lockdep_is_held(__rq_lockp(task_rq(p))))); 3199 #endif 3200 /* 3201 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3202 */ 3203 WARN_ON_ONCE(!cpu_online(new_cpu)); 3204 3205 WARN_ON_ONCE(is_migration_disabled(p)); 3206 #endif 3207 3208 trace_sched_migrate_task(p, new_cpu); 3209 3210 if (task_cpu(p) != new_cpu) { 3211 if (p->sched_class->migrate_task_rq) 3212 p->sched_class->migrate_task_rq(p, new_cpu); 3213 p->se.nr_migrations++; 3214 rseq_migrate(p); 3215 sched_mm_cid_migrate_from(p); 3216 perf_event_task_migrate(p); 3217 } 3218 3219 __set_task_cpu(p, new_cpu); 3220 } 3221 3222 #ifdef CONFIG_NUMA_BALANCING 3223 static void __migrate_swap_task(struct task_struct *p, int cpu) 3224 { 3225 if (task_on_rq_queued(p)) { 3226 struct rq *src_rq, *dst_rq; 3227 struct rq_flags srf, drf; 3228 3229 src_rq = task_rq(p); 3230 dst_rq = cpu_rq(cpu); 3231 3232 rq_pin_lock(src_rq, &srf); 3233 rq_pin_lock(dst_rq, &drf); 3234 3235 deactivate_task(src_rq, p, 0); 3236 set_task_cpu(p, cpu); 3237 activate_task(dst_rq, p, 0); 3238 wakeup_preempt(dst_rq, p, 0); 3239 3240 rq_unpin_lock(dst_rq, &drf); 3241 rq_unpin_lock(src_rq, &srf); 3242 3243 } else { 3244 /* 3245 * Task isn't running anymore; make it appear like we migrated 3246 * it before it went to sleep. This means on wakeup we make the 3247 * previous CPU our target instead of where it really is. 3248 */ 3249 p->wake_cpu = cpu; 3250 } 3251 } 3252 3253 struct migration_swap_arg { 3254 struct task_struct *src_task, *dst_task; 3255 int src_cpu, dst_cpu; 3256 }; 3257 3258 static int migrate_swap_stop(void *data) 3259 { 3260 struct migration_swap_arg *arg = data; 3261 struct rq *src_rq, *dst_rq; 3262 3263 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3264 return -EAGAIN; 3265 3266 src_rq = cpu_rq(arg->src_cpu); 3267 dst_rq = cpu_rq(arg->dst_cpu); 3268 3269 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3270 guard(double_rq_lock)(src_rq, dst_rq); 3271 3272 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3273 return -EAGAIN; 3274 3275 if (task_cpu(arg->src_task) != arg->src_cpu) 3276 return -EAGAIN; 3277 3278 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3279 return -EAGAIN; 3280 3281 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3282 return -EAGAIN; 3283 3284 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3285 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3286 3287 return 0; 3288 } 3289 3290 /* 3291 * Cross migrate two tasks 3292 */ 3293 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3294 int target_cpu, int curr_cpu) 3295 { 3296 struct migration_swap_arg arg; 3297 int ret = -EINVAL; 3298 3299 arg = (struct migration_swap_arg){ 3300 .src_task = cur, 3301 .src_cpu = curr_cpu, 3302 .dst_task = p, 3303 .dst_cpu = target_cpu, 3304 }; 3305 3306 if (arg.src_cpu == arg.dst_cpu) 3307 goto out; 3308 3309 /* 3310 * These three tests are all lockless; this is OK since all of them 3311 * will be re-checked with proper locks held further down the line. 3312 */ 3313 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3314 goto out; 3315 3316 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3317 goto out; 3318 3319 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3320 goto out; 3321 3322 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3323 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3324 3325 out: 3326 return ret; 3327 } 3328 #endif /* CONFIG_NUMA_BALANCING */ 3329 3330 /*** 3331 * kick_process - kick a running thread to enter/exit the kernel 3332 * @p: the to-be-kicked thread 3333 * 3334 * Cause a process which is running on another CPU to enter 3335 * kernel-mode, without any delay. (to get signals handled.) 3336 * 3337 * NOTE: this function doesn't have to take the runqueue lock, 3338 * because all it wants to ensure is that the remote task enters 3339 * the kernel. If the IPI races and the task has been migrated 3340 * to another CPU then no harm is done and the purpose has been 3341 * achieved as well. 3342 */ 3343 void kick_process(struct task_struct *p) 3344 { 3345 guard(preempt)(); 3346 int cpu = task_cpu(p); 3347 3348 if ((cpu != smp_processor_id()) && task_curr(p)) 3349 smp_send_reschedule(cpu); 3350 } 3351 EXPORT_SYMBOL_GPL(kick_process); 3352 3353 /* 3354 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3355 * 3356 * A few notes on cpu_active vs cpu_online: 3357 * 3358 * - cpu_active must be a subset of cpu_online 3359 * 3360 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3361 * see __set_cpus_allowed_ptr(). At this point the newly online 3362 * CPU isn't yet part of the sched domains, and balancing will not 3363 * see it. 3364 * 3365 * - on CPU-down we clear cpu_active() to mask the sched domains and 3366 * avoid the load balancer to place new tasks on the to be removed 3367 * CPU. Existing tasks will remain running there and will be taken 3368 * off. 3369 * 3370 * This means that fallback selection must not select !active CPUs. 3371 * And can assume that any active CPU must be online. Conversely 3372 * select_task_rq() below may allow selection of !active CPUs in order 3373 * to satisfy the above rules. 3374 */ 3375 static int select_fallback_rq(int cpu, struct task_struct *p) 3376 { 3377 int nid = cpu_to_node(cpu); 3378 const struct cpumask *nodemask = NULL; 3379 enum { cpuset, possible, fail } state = cpuset; 3380 int dest_cpu; 3381 3382 /* 3383 * If the node that the CPU is on has been offlined, cpu_to_node() 3384 * will return -1. There is no CPU on the node, and we should 3385 * select the CPU on the other node. 3386 */ 3387 if (nid != -1) { 3388 nodemask = cpumask_of_node(nid); 3389 3390 /* Look for allowed, online CPU in same node. */ 3391 for_each_cpu(dest_cpu, nodemask) { 3392 if (is_cpu_allowed(p, dest_cpu)) 3393 return dest_cpu; 3394 } 3395 } 3396 3397 for (;;) { 3398 /* Any allowed, online CPU? */ 3399 for_each_cpu(dest_cpu, p->cpus_ptr) { 3400 if (!is_cpu_allowed(p, dest_cpu)) 3401 continue; 3402 3403 goto out; 3404 } 3405 3406 /* No more Mr. Nice Guy. */ 3407 switch (state) { 3408 case cpuset: 3409 if (cpuset_cpus_allowed_fallback(p)) { 3410 state = possible; 3411 break; 3412 } 3413 fallthrough; 3414 case possible: 3415 /* 3416 * XXX When called from select_task_rq() we only 3417 * hold p->pi_lock and again violate locking order. 3418 * 3419 * More yuck to audit. 3420 */ 3421 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3422 state = fail; 3423 break; 3424 case fail: 3425 BUG(); 3426 break; 3427 } 3428 } 3429 3430 out: 3431 if (state != cpuset) { 3432 /* 3433 * Don't tell them about moving exiting tasks or 3434 * kernel threads (both mm NULL), since they never 3435 * leave kernel. 3436 */ 3437 if (p->mm && printk_ratelimit()) { 3438 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3439 task_pid_nr(p), p->comm, cpu); 3440 } 3441 } 3442 3443 return dest_cpu; 3444 } 3445 3446 /* 3447 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3448 */ 3449 static inline 3450 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3451 { 3452 lockdep_assert_held(&p->pi_lock); 3453 3454 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3455 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3456 else 3457 cpu = cpumask_any(p->cpus_ptr); 3458 3459 /* 3460 * In order not to call set_task_cpu() on a blocking task we need 3461 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3462 * CPU. 3463 * 3464 * Since this is common to all placement strategies, this lives here. 3465 * 3466 * [ this allows ->select_task() to simply return task_cpu(p) and 3467 * not worry about this generic constraint ] 3468 */ 3469 if (unlikely(!is_cpu_allowed(p, cpu))) 3470 cpu = select_fallback_rq(task_cpu(p), p); 3471 3472 return cpu; 3473 } 3474 3475 void sched_set_stop_task(int cpu, struct task_struct *stop) 3476 { 3477 static struct lock_class_key stop_pi_lock; 3478 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3479 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3480 3481 if (stop) { 3482 /* 3483 * Make it appear like a SCHED_FIFO task, its something 3484 * userspace knows about and won't get confused about. 3485 * 3486 * Also, it will make PI more or less work without too 3487 * much confusion -- but then, stop work should not 3488 * rely on PI working anyway. 3489 */ 3490 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3491 3492 stop->sched_class = &stop_sched_class; 3493 3494 /* 3495 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3496 * adjust the effective priority of a task. As a result, 3497 * rt_mutex_setprio() can trigger (RT) balancing operations, 3498 * which can then trigger wakeups of the stop thread to push 3499 * around the current task. 3500 * 3501 * The stop task itself will never be part of the PI-chain, it 3502 * never blocks, therefore that ->pi_lock recursion is safe. 3503 * Tell lockdep about this by placing the stop->pi_lock in its 3504 * own class. 3505 */ 3506 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3507 } 3508 3509 cpu_rq(cpu)->stop = stop; 3510 3511 if (old_stop) { 3512 /* 3513 * Reset it back to a normal scheduling class so that 3514 * it can die in pieces. 3515 */ 3516 old_stop->sched_class = &rt_sched_class; 3517 } 3518 } 3519 3520 #else /* CONFIG_SMP */ 3521 3522 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3523 3524 static inline bool rq_has_pinned_tasks(struct rq *rq) 3525 { 3526 return false; 3527 } 3528 3529 #endif /* !CONFIG_SMP */ 3530 3531 static void 3532 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3533 { 3534 struct rq *rq; 3535 3536 if (!schedstat_enabled()) 3537 return; 3538 3539 rq = this_rq(); 3540 3541 #ifdef CONFIG_SMP 3542 if (cpu == rq->cpu) { 3543 __schedstat_inc(rq->ttwu_local); 3544 __schedstat_inc(p->stats.nr_wakeups_local); 3545 } else { 3546 struct sched_domain *sd; 3547 3548 __schedstat_inc(p->stats.nr_wakeups_remote); 3549 3550 guard(rcu)(); 3551 for_each_domain(rq->cpu, sd) { 3552 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3553 __schedstat_inc(sd->ttwu_wake_remote); 3554 break; 3555 } 3556 } 3557 } 3558 3559 if (wake_flags & WF_MIGRATED) 3560 __schedstat_inc(p->stats.nr_wakeups_migrate); 3561 #endif /* CONFIG_SMP */ 3562 3563 __schedstat_inc(rq->ttwu_count); 3564 __schedstat_inc(p->stats.nr_wakeups); 3565 3566 if (wake_flags & WF_SYNC) 3567 __schedstat_inc(p->stats.nr_wakeups_sync); 3568 } 3569 3570 /* 3571 * Mark the task runnable. 3572 */ 3573 static inline void ttwu_do_wakeup(struct task_struct *p) 3574 { 3575 WRITE_ONCE(p->__state, TASK_RUNNING); 3576 trace_sched_wakeup(p); 3577 } 3578 3579 static void 3580 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3581 struct rq_flags *rf) 3582 { 3583 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3584 3585 lockdep_assert_rq_held(rq); 3586 3587 if (p->sched_contributes_to_load) 3588 rq->nr_uninterruptible--; 3589 3590 #ifdef CONFIG_SMP 3591 if (wake_flags & WF_MIGRATED) 3592 en_flags |= ENQUEUE_MIGRATED; 3593 else 3594 #endif 3595 if (p->in_iowait) { 3596 delayacct_blkio_end(p); 3597 atomic_dec(&task_rq(p)->nr_iowait); 3598 } 3599 3600 activate_task(rq, p, en_flags); 3601 wakeup_preempt(rq, p, wake_flags); 3602 3603 ttwu_do_wakeup(p); 3604 3605 #ifdef CONFIG_SMP 3606 if (p->sched_class->task_woken) { 3607 /* 3608 * Our task @p is fully woken up and running; so it's safe to 3609 * drop the rq->lock, hereafter rq is only used for statistics. 3610 */ 3611 rq_unpin_lock(rq, rf); 3612 p->sched_class->task_woken(rq, p); 3613 rq_repin_lock(rq, rf); 3614 } 3615 3616 if (rq->idle_stamp) { 3617 u64 delta = rq_clock(rq) - rq->idle_stamp; 3618 u64 max = 2*rq->max_idle_balance_cost; 3619 3620 update_avg(&rq->avg_idle, delta); 3621 3622 if (rq->avg_idle > max) 3623 rq->avg_idle = max; 3624 3625 rq->idle_stamp = 0; 3626 } 3627 #endif 3628 3629 p->dl_server = NULL; 3630 } 3631 3632 /* 3633 * Consider @p being inside a wait loop: 3634 * 3635 * for (;;) { 3636 * set_current_state(TASK_UNINTERRUPTIBLE); 3637 * 3638 * if (CONDITION) 3639 * break; 3640 * 3641 * schedule(); 3642 * } 3643 * __set_current_state(TASK_RUNNING); 3644 * 3645 * between set_current_state() and schedule(). In this case @p is still 3646 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3647 * an atomic manner. 3648 * 3649 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3650 * then schedule() must still happen and p->state can be changed to 3651 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3652 * need to do a full wakeup with enqueue. 3653 * 3654 * Returns: %true when the wakeup is done, 3655 * %false otherwise. 3656 */ 3657 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3658 { 3659 struct rq_flags rf; 3660 struct rq *rq; 3661 int ret = 0; 3662 3663 rq = __task_rq_lock(p, &rf); 3664 if (task_on_rq_queued(p)) { 3665 if (!task_on_cpu(rq, p)) { 3666 /* 3667 * When on_rq && !on_cpu the task is preempted, see if 3668 * it should preempt the task that is current now. 3669 */ 3670 update_rq_clock(rq); 3671 wakeup_preempt(rq, p, wake_flags); 3672 } 3673 ttwu_do_wakeup(p); 3674 ret = 1; 3675 } 3676 __task_rq_unlock(rq, &rf); 3677 3678 return ret; 3679 } 3680 3681 #ifdef CONFIG_SMP 3682 void sched_ttwu_pending(void *arg) 3683 { 3684 struct llist_node *llist = arg; 3685 struct rq *rq = this_rq(); 3686 struct task_struct *p, *t; 3687 struct rq_flags rf; 3688 3689 if (!llist) 3690 return; 3691 3692 rq_lock_irqsave(rq, &rf); 3693 update_rq_clock(rq); 3694 3695 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3696 if (WARN_ON_ONCE(p->on_cpu)) 3697 smp_cond_load_acquire(&p->on_cpu, !VAL); 3698 3699 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3700 set_task_cpu(p, cpu_of(rq)); 3701 3702 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3703 } 3704 3705 /* 3706 * Must be after enqueueing at least once task such that 3707 * idle_cpu() does not observe a false-negative -- if it does, 3708 * it is possible for select_idle_siblings() to stack a number 3709 * of tasks on this CPU during that window. 3710 * 3711 * It is OK to clear ttwu_pending when another task pending. 3712 * We will receive IPI after local IRQ enabled and then enqueue it. 3713 * Since now nr_running > 0, idle_cpu() will always get correct result. 3714 */ 3715 WRITE_ONCE(rq->ttwu_pending, 0); 3716 rq_unlock_irqrestore(rq, &rf); 3717 } 3718 3719 /* 3720 * Prepare the scene for sending an IPI for a remote smp_call 3721 * 3722 * Returns true if the caller can proceed with sending the IPI. 3723 * Returns false otherwise. 3724 */ 3725 bool call_function_single_prep_ipi(int cpu) 3726 { 3727 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3728 trace_sched_wake_idle_without_ipi(cpu); 3729 return false; 3730 } 3731 3732 return true; 3733 } 3734 3735 /* 3736 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3737 * necessary. The wakee CPU on receipt of the IPI will queue the task 3738 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3739 * of the wakeup instead of the waker. 3740 */ 3741 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3742 { 3743 struct rq *rq = cpu_rq(cpu); 3744 3745 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3746 3747 WRITE_ONCE(rq->ttwu_pending, 1); 3748 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3749 } 3750 3751 void wake_up_if_idle(int cpu) 3752 { 3753 struct rq *rq = cpu_rq(cpu); 3754 3755 guard(rcu)(); 3756 if (is_idle_task(rcu_dereference(rq->curr))) { 3757 guard(rq_lock_irqsave)(rq); 3758 if (is_idle_task(rq->curr)) 3759 resched_curr(rq); 3760 } 3761 } 3762 3763 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3764 { 3765 if (!sched_asym_cpucap_active()) 3766 return true; 3767 3768 if (this_cpu == that_cpu) 3769 return true; 3770 3771 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3772 } 3773 3774 bool cpus_share_cache(int this_cpu, int that_cpu) 3775 { 3776 if (this_cpu == that_cpu) 3777 return true; 3778 3779 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3780 } 3781 3782 /* 3783 * Whether CPUs are share cache resources, which means LLC on non-cluster 3784 * machines and LLC tag or L2 on machines with clusters. 3785 */ 3786 bool cpus_share_resources(int this_cpu, int that_cpu) 3787 { 3788 if (this_cpu == that_cpu) 3789 return true; 3790 3791 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3792 } 3793 3794 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3795 { 3796 /* 3797 * The BPF scheduler may depend on select_task_rq() being invoked during 3798 * wakeups. In addition, @p may end up executing on a different CPU 3799 * regardless of what happens in the wakeup path making the ttwu_queue 3800 * optimization less meaningful. Skip if on SCX. 3801 */ 3802 if (task_on_scx(p)) 3803 return false; 3804 3805 /* 3806 * Do not complicate things with the async wake_list while the CPU is 3807 * in hotplug state. 3808 */ 3809 if (!cpu_active(cpu)) 3810 return false; 3811 3812 /* Ensure the task will still be allowed to run on the CPU. */ 3813 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3814 return false; 3815 3816 /* 3817 * If the CPU does not share cache, then queue the task on the 3818 * remote rqs wakelist to avoid accessing remote data. 3819 */ 3820 if (!cpus_share_cache(smp_processor_id(), cpu)) 3821 return true; 3822 3823 if (cpu == smp_processor_id()) 3824 return false; 3825 3826 /* 3827 * If the wakee cpu is idle, or the task is descheduling and the 3828 * only running task on the CPU, then use the wakelist to offload 3829 * the task activation to the idle (or soon-to-be-idle) CPU as 3830 * the current CPU is likely busy. nr_running is checked to 3831 * avoid unnecessary task stacking. 3832 * 3833 * Note that we can only get here with (wakee) p->on_rq=0, 3834 * p->on_cpu can be whatever, we've done the dequeue, so 3835 * the wakee has been accounted out of ->nr_running. 3836 */ 3837 if (!cpu_rq(cpu)->nr_running) 3838 return true; 3839 3840 return false; 3841 } 3842 3843 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3844 { 3845 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3846 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3847 __ttwu_queue_wakelist(p, cpu, wake_flags); 3848 return true; 3849 } 3850 3851 return false; 3852 } 3853 3854 #else /* !CONFIG_SMP */ 3855 3856 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3857 { 3858 return false; 3859 } 3860 3861 #endif /* CONFIG_SMP */ 3862 3863 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3864 { 3865 struct rq *rq = cpu_rq(cpu); 3866 struct rq_flags rf; 3867 3868 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3869 return; 3870 3871 rq_lock(rq, &rf); 3872 update_rq_clock(rq); 3873 ttwu_do_activate(rq, p, wake_flags, &rf); 3874 rq_unlock(rq, &rf); 3875 } 3876 3877 /* 3878 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3879 * 3880 * The caller holds p::pi_lock if p != current or has preemption 3881 * disabled when p == current. 3882 * 3883 * The rules of saved_state: 3884 * 3885 * The related locking code always holds p::pi_lock when updating 3886 * p::saved_state, which means the code is fully serialized in both cases. 3887 * 3888 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3889 * No other bits set. This allows to distinguish all wakeup scenarios. 3890 * 3891 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3892 * allows us to prevent early wakeup of tasks before they can be run on 3893 * asymmetric ISA architectures (eg ARMv9). 3894 */ 3895 static __always_inline 3896 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3897 { 3898 int match; 3899 3900 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3901 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3902 state != TASK_RTLOCK_WAIT); 3903 } 3904 3905 *success = !!(match = __task_state_match(p, state)); 3906 3907 /* 3908 * Saved state preserves the task state across blocking on 3909 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3910 * set p::saved_state to TASK_RUNNING, but do not wake the task 3911 * because it waits for a lock wakeup or __thaw_task(). Also 3912 * indicate success because from the regular waker's point of 3913 * view this has succeeded. 3914 * 3915 * After acquiring the lock the task will restore p::__state 3916 * from p::saved_state which ensures that the regular 3917 * wakeup is not lost. The restore will also set 3918 * p::saved_state to TASK_RUNNING so any further tests will 3919 * not result in false positives vs. @success 3920 */ 3921 if (match < 0) 3922 p->saved_state = TASK_RUNNING; 3923 3924 return match > 0; 3925 } 3926 3927 /* 3928 * Notes on Program-Order guarantees on SMP systems. 3929 * 3930 * MIGRATION 3931 * 3932 * The basic program-order guarantee on SMP systems is that when a task [t] 3933 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3934 * execution on its new CPU [c1]. 3935 * 3936 * For migration (of runnable tasks) this is provided by the following means: 3937 * 3938 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3939 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3940 * rq(c1)->lock (if not at the same time, then in that order). 3941 * C) LOCK of the rq(c1)->lock scheduling in task 3942 * 3943 * Release/acquire chaining guarantees that B happens after A and C after B. 3944 * Note: the CPU doing B need not be c0 or c1 3945 * 3946 * Example: 3947 * 3948 * CPU0 CPU1 CPU2 3949 * 3950 * LOCK rq(0)->lock 3951 * sched-out X 3952 * sched-in Y 3953 * UNLOCK rq(0)->lock 3954 * 3955 * LOCK rq(0)->lock // orders against CPU0 3956 * dequeue X 3957 * UNLOCK rq(0)->lock 3958 * 3959 * LOCK rq(1)->lock 3960 * enqueue X 3961 * UNLOCK rq(1)->lock 3962 * 3963 * LOCK rq(1)->lock // orders against CPU2 3964 * sched-out Z 3965 * sched-in X 3966 * UNLOCK rq(1)->lock 3967 * 3968 * 3969 * BLOCKING -- aka. SLEEP + WAKEUP 3970 * 3971 * For blocking we (obviously) need to provide the same guarantee as for 3972 * migration. However the means are completely different as there is no lock 3973 * chain to provide order. Instead we do: 3974 * 3975 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3976 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3977 * 3978 * Example: 3979 * 3980 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3981 * 3982 * LOCK rq(0)->lock LOCK X->pi_lock 3983 * dequeue X 3984 * sched-out X 3985 * smp_store_release(X->on_cpu, 0); 3986 * 3987 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3988 * X->state = WAKING 3989 * set_task_cpu(X,2) 3990 * 3991 * LOCK rq(2)->lock 3992 * enqueue X 3993 * X->state = RUNNING 3994 * UNLOCK rq(2)->lock 3995 * 3996 * LOCK rq(2)->lock // orders against CPU1 3997 * sched-out Z 3998 * sched-in X 3999 * UNLOCK rq(2)->lock 4000 * 4001 * UNLOCK X->pi_lock 4002 * UNLOCK rq(0)->lock 4003 * 4004 * 4005 * However, for wakeups there is a second guarantee we must provide, namely we 4006 * must ensure that CONDITION=1 done by the caller can not be reordered with 4007 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4008 */ 4009 4010 /** 4011 * try_to_wake_up - wake up a thread 4012 * @p: the thread to be awakened 4013 * @state: the mask of task states that can be woken 4014 * @wake_flags: wake modifier flags (WF_*) 4015 * 4016 * Conceptually does: 4017 * 4018 * If (@state & @p->state) @p->state = TASK_RUNNING. 4019 * 4020 * If the task was not queued/runnable, also place it back on a runqueue. 4021 * 4022 * This function is atomic against schedule() which would dequeue the task. 4023 * 4024 * It issues a full memory barrier before accessing @p->state, see the comment 4025 * with set_current_state(). 4026 * 4027 * Uses p->pi_lock to serialize against concurrent wake-ups. 4028 * 4029 * Relies on p->pi_lock stabilizing: 4030 * - p->sched_class 4031 * - p->cpus_ptr 4032 * - p->sched_task_group 4033 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4034 * 4035 * Tries really hard to only take one task_rq(p)->lock for performance. 4036 * Takes rq->lock in: 4037 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4038 * - ttwu_queue() -- new rq, for enqueue of the task; 4039 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4040 * 4041 * As a consequence we race really badly with just about everything. See the 4042 * many memory barriers and their comments for details. 4043 * 4044 * Return: %true if @p->state changes (an actual wakeup was done), 4045 * %false otherwise. 4046 */ 4047 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4048 { 4049 guard(preempt)(); 4050 int cpu, success = 0; 4051 4052 if (p == current) { 4053 /* 4054 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4055 * == smp_processor_id()'. Together this means we can special 4056 * case the whole 'p->on_rq && ttwu_runnable()' case below 4057 * without taking any locks. 4058 * 4059 * In particular: 4060 * - we rely on Program-Order guarantees for all the ordering, 4061 * - we're serialized against set_special_state() by virtue of 4062 * it disabling IRQs (this allows not taking ->pi_lock). 4063 */ 4064 if (!ttwu_state_match(p, state, &success)) 4065 goto out; 4066 4067 trace_sched_waking(p); 4068 ttwu_do_wakeup(p); 4069 goto out; 4070 } 4071 4072 /* 4073 * If we are going to wake up a thread waiting for CONDITION we 4074 * need to ensure that CONDITION=1 done by the caller can not be 4075 * reordered with p->state check below. This pairs with smp_store_mb() 4076 * in set_current_state() that the waiting thread does. 4077 */ 4078 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4079 smp_mb__after_spinlock(); 4080 if (!ttwu_state_match(p, state, &success)) 4081 break; 4082 4083 trace_sched_waking(p); 4084 4085 /* 4086 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4087 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4088 * in smp_cond_load_acquire() below. 4089 * 4090 * sched_ttwu_pending() try_to_wake_up() 4091 * STORE p->on_rq = 1 LOAD p->state 4092 * UNLOCK rq->lock 4093 * 4094 * __schedule() (switch to task 'p') 4095 * LOCK rq->lock smp_rmb(); 4096 * smp_mb__after_spinlock(); 4097 * UNLOCK rq->lock 4098 * 4099 * [task p] 4100 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4101 * 4102 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4103 * __schedule(). See the comment for smp_mb__after_spinlock(). 4104 * 4105 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4106 */ 4107 smp_rmb(); 4108 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4109 break; 4110 4111 #ifdef CONFIG_SMP 4112 /* 4113 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4114 * possible to, falsely, observe p->on_cpu == 0. 4115 * 4116 * One must be running (->on_cpu == 1) in order to remove oneself 4117 * from the runqueue. 4118 * 4119 * __schedule() (switch to task 'p') try_to_wake_up() 4120 * STORE p->on_cpu = 1 LOAD p->on_rq 4121 * UNLOCK rq->lock 4122 * 4123 * __schedule() (put 'p' to sleep) 4124 * LOCK rq->lock smp_rmb(); 4125 * smp_mb__after_spinlock(); 4126 * STORE p->on_rq = 0 LOAD p->on_cpu 4127 * 4128 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4129 * __schedule(). See the comment for smp_mb__after_spinlock(). 4130 * 4131 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4132 * schedule()'s deactivate_task() has 'happened' and p will no longer 4133 * care about it's own p->state. See the comment in __schedule(). 4134 */ 4135 smp_acquire__after_ctrl_dep(); 4136 4137 /* 4138 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4139 * == 0), which means we need to do an enqueue, change p->state to 4140 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4141 * enqueue, such as ttwu_queue_wakelist(). 4142 */ 4143 WRITE_ONCE(p->__state, TASK_WAKING); 4144 4145 /* 4146 * If the owning (remote) CPU is still in the middle of schedule() with 4147 * this task as prev, considering queueing p on the remote CPUs wake_list 4148 * which potentially sends an IPI instead of spinning on p->on_cpu to 4149 * let the waker make forward progress. This is safe because IRQs are 4150 * disabled and the IPI will deliver after on_cpu is cleared. 4151 * 4152 * Ensure we load task_cpu(p) after p->on_cpu: 4153 * 4154 * set_task_cpu(p, cpu); 4155 * STORE p->cpu = @cpu 4156 * __schedule() (switch to task 'p') 4157 * LOCK rq->lock 4158 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4159 * STORE p->on_cpu = 1 LOAD p->cpu 4160 * 4161 * to ensure we observe the correct CPU on which the task is currently 4162 * scheduling. 4163 */ 4164 if (smp_load_acquire(&p->on_cpu) && 4165 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4166 break; 4167 4168 /* 4169 * If the owning (remote) CPU is still in the middle of schedule() with 4170 * this task as prev, wait until it's done referencing the task. 4171 * 4172 * Pairs with the smp_store_release() in finish_task(). 4173 * 4174 * This ensures that tasks getting woken will be fully ordered against 4175 * their previous state and preserve Program Order. 4176 */ 4177 smp_cond_load_acquire(&p->on_cpu, !VAL); 4178 4179 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4180 if (task_cpu(p) != cpu) { 4181 if (p->in_iowait) { 4182 delayacct_blkio_end(p); 4183 atomic_dec(&task_rq(p)->nr_iowait); 4184 } 4185 4186 wake_flags |= WF_MIGRATED; 4187 psi_ttwu_dequeue(p); 4188 set_task_cpu(p, cpu); 4189 } 4190 #else 4191 cpu = task_cpu(p); 4192 #endif /* CONFIG_SMP */ 4193 4194 ttwu_queue(p, cpu, wake_flags); 4195 } 4196 out: 4197 if (success) 4198 ttwu_stat(p, task_cpu(p), wake_flags); 4199 4200 return success; 4201 } 4202 4203 static bool __task_needs_rq_lock(struct task_struct *p) 4204 { 4205 unsigned int state = READ_ONCE(p->__state); 4206 4207 /* 4208 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4209 * the task is blocked. Make sure to check @state since ttwu() can drop 4210 * locks at the end, see ttwu_queue_wakelist(). 4211 */ 4212 if (state == TASK_RUNNING || state == TASK_WAKING) 4213 return true; 4214 4215 /* 4216 * Ensure we load p->on_rq after p->__state, otherwise it would be 4217 * possible to, falsely, observe p->on_rq == 0. 4218 * 4219 * See try_to_wake_up() for a longer comment. 4220 */ 4221 smp_rmb(); 4222 if (p->on_rq) 4223 return true; 4224 4225 #ifdef CONFIG_SMP 4226 /* 4227 * Ensure the task has finished __schedule() and will not be referenced 4228 * anymore. Again, see try_to_wake_up() for a longer comment. 4229 */ 4230 smp_rmb(); 4231 smp_cond_load_acquire(&p->on_cpu, !VAL); 4232 #endif 4233 4234 return false; 4235 } 4236 4237 /** 4238 * task_call_func - Invoke a function on task in fixed state 4239 * @p: Process for which the function is to be invoked, can be @current. 4240 * @func: Function to invoke. 4241 * @arg: Argument to function. 4242 * 4243 * Fix the task in it's current state by avoiding wakeups and or rq operations 4244 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4245 * to work out what the state is, if required. Given that @func can be invoked 4246 * with a runqueue lock held, it had better be quite lightweight. 4247 * 4248 * Returns: 4249 * Whatever @func returns 4250 */ 4251 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4252 { 4253 struct rq *rq = NULL; 4254 struct rq_flags rf; 4255 int ret; 4256 4257 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4258 4259 if (__task_needs_rq_lock(p)) 4260 rq = __task_rq_lock(p, &rf); 4261 4262 /* 4263 * At this point the task is pinned; either: 4264 * - blocked and we're holding off wakeups (pi->lock) 4265 * - woken, and we're holding off enqueue (rq->lock) 4266 * - queued, and we're holding off schedule (rq->lock) 4267 * - running, and we're holding off de-schedule (rq->lock) 4268 * 4269 * The called function (@func) can use: task_curr(), p->on_rq and 4270 * p->__state to differentiate between these states. 4271 */ 4272 ret = func(p, arg); 4273 4274 if (rq) 4275 rq_unlock(rq, &rf); 4276 4277 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4278 return ret; 4279 } 4280 4281 /** 4282 * cpu_curr_snapshot - Return a snapshot of the currently running task 4283 * @cpu: The CPU on which to snapshot the task. 4284 * 4285 * Returns the task_struct pointer of the task "currently" running on 4286 * the specified CPU. If the same task is running on that CPU throughout, 4287 * the return value will be a pointer to that task's task_struct structure. 4288 * If the CPU did any context switches even vaguely concurrently with the 4289 * execution of this function, the return value will be a pointer to the 4290 * task_struct structure of a randomly chosen task that was running on 4291 * that CPU somewhere around the time that this function was executing. 4292 * 4293 * If the specified CPU was offline, the return value is whatever it 4294 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4295 * task, but there is no guarantee. Callers wishing a useful return 4296 * value must take some action to ensure that the specified CPU remains 4297 * online throughout. 4298 * 4299 * This function executes full memory barriers before and after fetching 4300 * the pointer, which permits the caller to confine this function's fetch 4301 * with respect to the caller's accesses to other shared variables. 4302 */ 4303 struct task_struct *cpu_curr_snapshot(int cpu) 4304 { 4305 struct task_struct *t; 4306 4307 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4308 t = rcu_dereference(cpu_curr(cpu)); 4309 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4310 return t; 4311 } 4312 4313 /** 4314 * wake_up_process - Wake up a specific process 4315 * @p: The process to be woken up. 4316 * 4317 * Attempt to wake up the nominated process and move it to the set of runnable 4318 * processes. 4319 * 4320 * Return: 1 if the process was woken up, 0 if it was already running. 4321 * 4322 * This function executes a full memory barrier before accessing the task state. 4323 */ 4324 int wake_up_process(struct task_struct *p) 4325 { 4326 return try_to_wake_up(p, TASK_NORMAL, 0); 4327 } 4328 EXPORT_SYMBOL(wake_up_process); 4329 4330 int wake_up_state(struct task_struct *p, unsigned int state) 4331 { 4332 return try_to_wake_up(p, state, 0); 4333 } 4334 4335 /* 4336 * Perform scheduler related setup for a newly forked process p. 4337 * p is forked by current. 4338 * 4339 * __sched_fork() is basic setup used by init_idle() too: 4340 */ 4341 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4342 { 4343 p->on_rq = 0; 4344 4345 p->se.on_rq = 0; 4346 p->se.exec_start = 0; 4347 p->se.sum_exec_runtime = 0; 4348 p->se.prev_sum_exec_runtime = 0; 4349 p->se.nr_migrations = 0; 4350 p->se.vruntime = 0; 4351 p->se.vlag = 0; 4352 p->se.slice = sysctl_sched_base_slice; 4353 INIT_LIST_HEAD(&p->se.group_node); 4354 4355 #ifdef CONFIG_FAIR_GROUP_SCHED 4356 p->se.cfs_rq = NULL; 4357 #endif 4358 4359 #ifdef CONFIG_SCHEDSTATS 4360 /* Even if schedstat is disabled, there should not be garbage */ 4361 memset(&p->stats, 0, sizeof(p->stats)); 4362 #endif 4363 4364 init_dl_entity(&p->dl); 4365 4366 INIT_LIST_HEAD(&p->rt.run_list); 4367 p->rt.timeout = 0; 4368 p->rt.time_slice = sched_rr_timeslice; 4369 p->rt.on_rq = 0; 4370 p->rt.on_list = 0; 4371 4372 #ifdef CONFIG_SCHED_CLASS_EXT 4373 init_scx_entity(&p->scx); 4374 #endif 4375 4376 #ifdef CONFIG_PREEMPT_NOTIFIERS 4377 INIT_HLIST_HEAD(&p->preempt_notifiers); 4378 #endif 4379 4380 #ifdef CONFIG_COMPACTION 4381 p->capture_control = NULL; 4382 #endif 4383 init_numa_balancing(clone_flags, p); 4384 #ifdef CONFIG_SMP 4385 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4386 p->migration_pending = NULL; 4387 #endif 4388 init_sched_mm_cid(p); 4389 } 4390 4391 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4392 4393 #ifdef CONFIG_NUMA_BALANCING 4394 4395 int sysctl_numa_balancing_mode; 4396 4397 static void __set_numabalancing_state(bool enabled) 4398 { 4399 if (enabled) 4400 static_branch_enable(&sched_numa_balancing); 4401 else 4402 static_branch_disable(&sched_numa_balancing); 4403 } 4404 4405 void set_numabalancing_state(bool enabled) 4406 { 4407 if (enabled) 4408 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4409 else 4410 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4411 __set_numabalancing_state(enabled); 4412 } 4413 4414 #ifdef CONFIG_PROC_SYSCTL 4415 static void reset_memory_tiering(void) 4416 { 4417 struct pglist_data *pgdat; 4418 4419 for_each_online_pgdat(pgdat) { 4420 pgdat->nbp_threshold = 0; 4421 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4422 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4423 } 4424 } 4425 4426 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4427 void *buffer, size_t *lenp, loff_t *ppos) 4428 { 4429 struct ctl_table t; 4430 int err; 4431 int state = sysctl_numa_balancing_mode; 4432 4433 if (write && !capable(CAP_SYS_ADMIN)) 4434 return -EPERM; 4435 4436 t = *table; 4437 t.data = &state; 4438 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4439 if (err < 0) 4440 return err; 4441 if (write) { 4442 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4443 (state & NUMA_BALANCING_MEMORY_TIERING)) 4444 reset_memory_tiering(); 4445 sysctl_numa_balancing_mode = state; 4446 __set_numabalancing_state(state); 4447 } 4448 return err; 4449 } 4450 #endif 4451 #endif 4452 4453 #ifdef CONFIG_SCHEDSTATS 4454 4455 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4456 4457 static void set_schedstats(bool enabled) 4458 { 4459 if (enabled) 4460 static_branch_enable(&sched_schedstats); 4461 else 4462 static_branch_disable(&sched_schedstats); 4463 } 4464 4465 void force_schedstat_enabled(void) 4466 { 4467 if (!schedstat_enabled()) { 4468 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4469 static_branch_enable(&sched_schedstats); 4470 } 4471 } 4472 4473 static int __init setup_schedstats(char *str) 4474 { 4475 int ret = 0; 4476 if (!str) 4477 goto out; 4478 4479 if (!strcmp(str, "enable")) { 4480 set_schedstats(true); 4481 ret = 1; 4482 } else if (!strcmp(str, "disable")) { 4483 set_schedstats(false); 4484 ret = 1; 4485 } 4486 out: 4487 if (!ret) 4488 pr_warn("Unable to parse schedstats=\n"); 4489 4490 return ret; 4491 } 4492 __setup("schedstats=", setup_schedstats); 4493 4494 #ifdef CONFIG_PROC_SYSCTL 4495 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4496 size_t *lenp, loff_t *ppos) 4497 { 4498 struct ctl_table t; 4499 int err; 4500 int state = static_branch_likely(&sched_schedstats); 4501 4502 if (write && !capable(CAP_SYS_ADMIN)) 4503 return -EPERM; 4504 4505 t = *table; 4506 t.data = &state; 4507 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4508 if (err < 0) 4509 return err; 4510 if (write) 4511 set_schedstats(state); 4512 return err; 4513 } 4514 #endif /* CONFIG_PROC_SYSCTL */ 4515 #endif /* CONFIG_SCHEDSTATS */ 4516 4517 #ifdef CONFIG_SYSCTL 4518 static struct ctl_table sched_core_sysctls[] = { 4519 #ifdef CONFIG_SCHEDSTATS 4520 { 4521 .procname = "sched_schedstats", 4522 .data = NULL, 4523 .maxlen = sizeof(unsigned int), 4524 .mode = 0644, 4525 .proc_handler = sysctl_schedstats, 4526 .extra1 = SYSCTL_ZERO, 4527 .extra2 = SYSCTL_ONE, 4528 }, 4529 #endif /* CONFIG_SCHEDSTATS */ 4530 #ifdef CONFIG_UCLAMP_TASK 4531 { 4532 .procname = "sched_util_clamp_min", 4533 .data = &sysctl_sched_uclamp_util_min, 4534 .maxlen = sizeof(unsigned int), 4535 .mode = 0644, 4536 .proc_handler = sysctl_sched_uclamp_handler, 4537 }, 4538 { 4539 .procname = "sched_util_clamp_max", 4540 .data = &sysctl_sched_uclamp_util_max, 4541 .maxlen = sizeof(unsigned int), 4542 .mode = 0644, 4543 .proc_handler = sysctl_sched_uclamp_handler, 4544 }, 4545 { 4546 .procname = "sched_util_clamp_min_rt_default", 4547 .data = &sysctl_sched_uclamp_util_min_rt_default, 4548 .maxlen = sizeof(unsigned int), 4549 .mode = 0644, 4550 .proc_handler = sysctl_sched_uclamp_handler, 4551 }, 4552 #endif /* CONFIG_UCLAMP_TASK */ 4553 #ifdef CONFIG_NUMA_BALANCING 4554 { 4555 .procname = "numa_balancing", 4556 .data = NULL, /* filled in by handler */ 4557 .maxlen = sizeof(unsigned int), 4558 .mode = 0644, 4559 .proc_handler = sysctl_numa_balancing, 4560 .extra1 = SYSCTL_ZERO, 4561 .extra2 = SYSCTL_FOUR, 4562 }, 4563 #endif /* CONFIG_NUMA_BALANCING */ 4564 }; 4565 static int __init sched_core_sysctl_init(void) 4566 { 4567 register_sysctl_init("kernel", sched_core_sysctls); 4568 return 0; 4569 } 4570 late_initcall(sched_core_sysctl_init); 4571 #endif /* CONFIG_SYSCTL */ 4572 4573 /* 4574 * fork()/clone()-time setup: 4575 */ 4576 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4577 { 4578 int ret; 4579 4580 __sched_fork(clone_flags, p); 4581 /* 4582 * We mark the process as NEW here. This guarantees that 4583 * nobody will actually run it, and a signal or other external 4584 * event cannot wake it up and insert it on the runqueue either. 4585 */ 4586 p->__state = TASK_NEW; 4587 4588 /* 4589 * Make sure we do not leak PI boosting priority to the child. 4590 */ 4591 p->prio = current->normal_prio; 4592 4593 uclamp_fork(p); 4594 4595 /* 4596 * Revert to default priority/policy on fork if requested. 4597 */ 4598 if (unlikely(p->sched_reset_on_fork)) { 4599 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4600 p->policy = SCHED_NORMAL; 4601 p->static_prio = NICE_TO_PRIO(0); 4602 p->rt_priority = 0; 4603 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4604 p->static_prio = NICE_TO_PRIO(0); 4605 4606 p->prio = p->normal_prio = p->static_prio; 4607 set_load_weight(p, false); 4608 4609 /* 4610 * We don't need the reset flag anymore after the fork. It has 4611 * fulfilled its duty: 4612 */ 4613 p->sched_reset_on_fork = 0; 4614 } 4615 4616 scx_pre_fork(p); 4617 4618 if (dl_prio(p->prio)) { 4619 ret = -EAGAIN; 4620 goto out_cancel; 4621 } else if (rt_prio(p->prio)) { 4622 p->sched_class = &rt_sched_class; 4623 #ifdef CONFIG_SCHED_CLASS_EXT 4624 } else if (task_should_scx(p)) { 4625 p->sched_class = &ext_sched_class; 4626 #endif 4627 } else { 4628 p->sched_class = &fair_sched_class; 4629 } 4630 4631 init_entity_runnable_average(&p->se); 4632 4633 4634 #ifdef CONFIG_SCHED_INFO 4635 if (likely(sched_info_on())) 4636 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4637 #endif 4638 #if defined(CONFIG_SMP) 4639 p->on_cpu = 0; 4640 #endif 4641 init_task_preempt_count(p); 4642 #ifdef CONFIG_SMP 4643 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4644 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4645 #endif 4646 return 0; 4647 4648 out_cancel: 4649 scx_cancel_fork(p); 4650 return ret; 4651 } 4652 4653 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4654 { 4655 unsigned long flags; 4656 4657 /* 4658 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4659 * required yet, but lockdep gets upset if rules are violated. 4660 */ 4661 raw_spin_lock_irqsave(&p->pi_lock, flags); 4662 #ifdef CONFIG_CGROUP_SCHED 4663 if (1) { 4664 struct task_group *tg; 4665 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4666 struct task_group, css); 4667 tg = autogroup_task_group(p, tg); 4668 p->sched_task_group = tg; 4669 } 4670 #endif 4671 rseq_migrate(p); 4672 /* 4673 * We're setting the CPU for the first time, we don't migrate, 4674 * so use __set_task_cpu(). 4675 */ 4676 __set_task_cpu(p, smp_processor_id()); 4677 if (p->sched_class->task_fork) 4678 p->sched_class->task_fork(p); 4679 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4680 4681 return scx_fork(p); 4682 } 4683 4684 void sched_cancel_fork(struct task_struct *p) 4685 { 4686 scx_cancel_fork(p); 4687 } 4688 4689 void sched_post_fork(struct task_struct *p) 4690 { 4691 uclamp_post_fork(p); 4692 scx_post_fork(p); 4693 } 4694 4695 unsigned long to_ratio(u64 period, u64 runtime) 4696 { 4697 if (runtime == RUNTIME_INF) 4698 return BW_UNIT; 4699 4700 /* 4701 * Doing this here saves a lot of checks in all 4702 * the calling paths, and returning zero seems 4703 * safe for them anyway. 4704 */ 4705 if (period == 0) 4706 return 0; 4707 4708 return div64_u64(runtime << BW_SHIFT, period); 4709 } 4710 4711 /* 4712 * wake_up_new_task - wake up a newly created task for the first time. 4713 * 4714 * This function will do some initial scheduler statistics housekeeping 4715 * that must be done for every newly created context, then puts the task 4716 * on the runqueue and wakes it. 4717 */ 4718 void wake_up_new_task(struct task_struct *p) 4719 { 4720 struct rq_flags rf; 4721 struct rq *rq; 4722 4723 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4724 WRITE_ONCE(p->__state, TASK_RUNNING); 4725 #ifdef CONFIG_SMP 4726 /* 4727 * Fork balancing, do it here and not earlier because: 4728 * - cpus_ptr can change in the fork path 4729 * - any previously selected CPU might disappear through hotplug 4730 * 4731 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4732 * as we're not fully set-up yet. 4733 */ 4734 p->recent_used_cpu = task_cpu(p); 4735 rseq_migrate(p); 4736 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4737 #endif 4738 rq = __task_rq_lock(p, &rf); 4739 update_rq_clock(rq); 4740 post_init_entity_util_avg(p); 4741 4742 activate_task(rq, p, ENQUEUE_NOCLOCK); 4743 trace_sched_wakeup_new(p); 4744 wakeup_preempt(rq, p, WF_FORK); 4745 #ifdef CONFIG_SMP 4746 if (p->sched_class->task_woken) { 4747 /* 4748 * Nothing relies on rq->lock after this, so it's fine to 4749 * drop it. 4750 */ 4751 rq_unpin_lock(rq, &rf); 4752 p->sched_class->task_woken(rq, p); 4753 rq_repin_lock(rq, &rf); 4754 } 4755 #endif 4756 task_rq_unlock(rq, p, &rf); 4757 } 4758 4759 #ifdef CONFIG_PREEMPT_NOTIFIERS 4760 4761 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4762 4763 void preempt_notifier_inc(void) 4764 { 4765 static_branch_inc(&preempt_notifier_key); 4766 } 4767 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4768 4769 void preempt_notifier_dec(void) 4770 { 4771 static_branch_dec(&preempt_notifier_key); 4772 } 4773 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4774 4775 /** 4776 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4777 * @notifier: notifier struct to register 4778 */ 4779 void preempt_notifier_register(struct preempt_notifier *notifier) 4780 { 4781 if (!static_branch_unlikely(&preempt_notifier_key)) 4782 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4783 4784 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4785 } 4786 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4787 4788 /** 4789 * preempt_notifier_unregister - no longer interested in preemption notifications 4790 * @notifier: notifier struct to unregister 4791 * 4792 * This is *not* safe to call from within a preemption notifier. 4793 */ 4794 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4795 { 4796 hlist_del(¬ifier->link); 4797 } 4798 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4799 4800 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4801 { 4802 struct preempt_notifier *notifier; 4803 4804 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4805 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4806 } 4807 4808 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4809 { 4810 if (static_branch_unlikely(&preempt_notifier_key)) 4811 __fire_sched_in_preempt_notifiers(curr); 4812 } 4813 4814 static void 4815 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4816 struct task_struct *next) 4817 { 4818 struct preempt_notifier *notifier; 4819 4820 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4821 notifier->ops->sched_out(notifier, next); 4822 } 4823 4824 static __always_inline void 4825 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4826 struct task_struct *next) 4827 { 4828 if (static_branch_unlikely(&preempt_notifier_key)) 4829 __fire_sched_out_preempt_notifiers(curr, next); 4830 } 4831 4832 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4833 4834 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4835 { 4836 } 4837 4838 static inline void 4839 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4840 struct task_struct *next) 4841 { 4842 } 4843 4844 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4845 4846 static inline void prepare_task(struct task_struct *next) 4847 { 4848 #ifdef CONFIG_SMP 4849 /* 4850 * Claim the task as running, we do this before switching to it 4851 * such that any running task will have this set. 4852 * 4853 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4854 * its ordering comment. 4855 */ 4856 WRITE_ONCE(next->on_cpu, 1); 4857 #endif 4858 } 4859 4860 static inline void finish_task(struct task_struct *prev) 4861 { 4862 #ifdef CONFIG_SMP 4863 /* 4864 * This must be the very last reference to @prev from this CPU. After 4865 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4866 * must ensure this doesn't happen until the switch is completely 4867 * finished. 4868 * 4869 * In particular, the load of prev->state in finish_task_switch() must 4870 * happen before this. 4871 * 4872 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4873 */ 4874 smp_store_release(&prev->on_cpu, 0); 4875 #endif 4876 } 4877 4878 #ifdef CONFIG_SMP 4879 4880 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4881 { 4882 void (*func)(struct rq *rq); 4883 struct balance_callback *next; 4884 4885 lockdep_assert_rq_held(rq); 4886 4887 while (head) { 4888 func = (void (*)(struct rq *))head->func; 4889 next = head->next; 4890 head->next = NULL; 4891 head = next; 4892 4893 func(rq); 4894 } 4895 } 4896 4897 static void balance_push(struct rq *rq); 4898 4899 /* 4900 * balance_push_callback is a right abuse of the callback interface and plays 4901 * by significantly different rules. 4902 * 4903 * Where the normal balance_callback's purpose is to be ran in the same context 4904 * that queued it (only later, when it's safe to drop rq->lock again), 4905 * balance_push_callback is specifically targeted at __schedule(). 4906 * 4907 * This abuse is tolerated because it places all the unlikely/odd cases behind 4908 * a single test, namely: rq->balance_callback == NULL. 4909 */ 4910 struct balance_callback balance_push_callback = { 4911 .next = NULL, 4912 .func = balance_push, 4913 }; 4914 4915 static inline struct balance_callback * 4916 __splice_balance_callbacks(struct rq *rq, bool split) 4917 { 4918 struct balance_callback *head = rq->balance_callback; 4919 4920 if (likely(!head)) 4921 return NULL; 4922 4923 lockdep_assert_rq_held(rq); 4924 /* 4925 * Must not take balance_push_callback off the list when 4926 * splice_balance_callbacks() and balance_callbacks() are not 4927 * in the same rq->lock section. 4928 * 4929 * In that case it would be possible for __schedule() to interleave 4930 * and observe the list empty. 4931 */ 4932 if (split && head == &balance_push_callback) 4933 head = NULL; 4934 else 4935 rq->balance_callback = NULL; 4936 4937 return head; 4938 } 4939 4940 struct balance_callback *splice_balance_callbacks(struct rq *rq) 4941 { 4942 return __splice_balance_callbacks(rq, true); 4943 } 4944 4945 static void __balance_callbacks(struct rq *rq) 4946 { 4947 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4948 } 4949 4950 void balance_callbacks(struct rq *rq, struct balance_callback *head) 4951 { 4952 unsigned long flags; 4953 4954 if (unlikely(head)) { 4955 raw_spin_rq_lock_irqsave(rq, flags); 4956 do_balance_callbacks(rq, head); 4957 raw_spin_rq_unlock_irqrestore(rq, flags); 4958 } 4959 } 4960 4961 #else 4962 4963 static inline void __balance_callbacks(struct rq *rq) 4964 { 4965 } 4966 4967 #endif 4968 4969 static inline void 4970 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4971 { 4972 /* 4973 * Since the runqueue lock will be released by the next 4974 * task (which is an invalid locking op but in the case 4975 * of the scheduler it's an obvious special-case), so we 4976 * do an early lockdep release here: 4977 */ 4978 rq_unpin_lock(rq, rf); 4979 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4980 #ifdef CONFIG_DEBUG_SPINLOCK 4981 /* this is a valid case when another task releases the spinlock */ 4982 rq_lockp(rq)->owner = next; 4983 #endif 4984 } 4985 4986 static inline void finish_lock_switch(struct rq *rq) 4987 { 4988 /* 4989 * If we are tracking spinlock dependencies then we have to 4990 * fix up the runqueue lock - which gets 'carried over' from 4991 * prev into current: 4992 */ 4993 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4994 __balance_callbacks(rq); 4995 raw_spin_rq_unlock_irq(rq); 4996 } 4997 4998 /* 4999 * NOP if the arch has not defined these: 5000 */ 5001 5002 #ifndef prepare_arch_switch 5003 # define prepare_arch_switch(next) do { } while (0) 5004 #endif 5005 5006 #ifndef finish_arch_post_lock_switch 5007 # define finish_arch_post_lock_switch() do { } while (0) 5008 #endif 5009 5010 static inline void kmap_local_sched_out(void) 5011 { 5012 #ifdef CONFIG_KMAP_LOCAL 5013 if (unlikely(current->kmap_ctrl.idx)) 5014 __kmap_local_sched_out(); 5015 #endif 5016 } 5017 5018 static inline void kmap_local_sched_in(void) 5019 { 5020 #ifdef CONFIG_KMAP_LOCAL 5021 if (unlikely(current->kmap_ctrl.idx)) 5022 __kmap_local_sched_in(); 5023 #endif 5024 } 5025 5026 /** 5027 * prepare_task_switch - prepare to switch tasks 5028 * @rq: the runqueue preparing to switch 5029 * @prev: the current task that is being switched out 5030 * @next: the task we are going to switch to. 5031 * 5032 * This is called with the rq lock held and interrupts off. It must 5033 * be paired with a subsequent finish_task_switch after the context 5034 * switch. 5035 * 5036 * prepare_task_switch sets up locking and calls architecture specific 5037 * hooks. 5038 */ 5039 static inline void 5040 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5041 struct task_struct *next) 5042 { 5043 kcov_prepare_switch(prev); 5044 sched_info_switch(rq, prev, next); 5045 perf_event_task_sched_out(prev, next); 5046 rseq_preempt(prev); 5047 fire_sched_out_preempt_notifiers(prev, next); 5048 kmap_local_sched_out(); 5049 prepare_task(next); 5050 prepare_arch_switch(next); 5051 } 5052 5053 /** 5054 * finish_task_switch - clean up after a task-switch 5055 * @prev: the thread we just switched away from. 5056 * 5057 * finish_task_switch must be called after the context switch, paired 5058 * with a prepare_task_switch call before the context switch. 5059 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5060 * and do any other architecture-specific cleanup actions. 5061 * 5062 * Note that we may have delayed dropping an mm in context_switch(). If 5063 * so, we finish that here outside of the runqueue lock. (Doing it 5064 * with the lock held can cause deadlocks; see schedule() for 5065 * details.) 5066 * 5067 * The context switch have flipped the stack from under us and restored the 5068 * local variables which were saved when this task called schedule() in the 5069 * past. 'prev == current' is still correct but we need to recalculate this_rq 5070 * because prev may have moved to another CPU. 5071 */ 5072 static struct rq *finish_task_switch(struct task_struct *prev) 5073 __releases(rq->lock) 5074 { 5075 struct rq *rq = this_rq(); 5076 struct mm_struct *mm = rq->prev_mm; 5077 unsigned int prev_state; 5078 5079 /* 5080 * The previous task will have left us with a preempt_count of 2 5081 * because it left us after: 5082 * 5083 * schedule() 5084 * preempt_disable(); // 1 5085 * __schedule() 5086 * raw_spin_lock_irq(&rq->lock) // 2 5087 * 5088 * Also, see FORK_PREEMPT_COUNT. 5089 */ 5090 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5091 "corrupted preempt_count: %s/%d/0x%x\n", 5092 current->comm, current->pid, preempt_count())) 5093 preempt_count_set(FORK_PREEMPT_COUNT); 5094 5095 rq->prev_mm = NULL; 5096 5097 /* 5098 * A task struct has one reference for the use as "current". 5099 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5100 * schedule one last time. The schedule call will never return, and 5101 * the scheduled task must drop that reference. 5102 * 5103 * We must observe prev->state before clearing prev->on_cpu (in 5104 * finish_task), otherwise a concurrent wakeup can get prev 5105 * running on another CPU and we could rave with its RUNNING -> DEAD 5106 * transition, resulting in a double drop. 5107 */ 5108 prev_state = READ_ONCE(prev->__state); 5109 vtime_task_switch(prev); 5110 perf_event_task_sched_in(prev, current); 5111 finish_task(prev); 5112 tick_nohz_task_switch(); 5113 finish_lock_switch(rq); 5114 finish_arch_post_lock_switch(); 5115 kcov_finish_switch(current); 5116 /* 5117 * kmap_local_sched_out() is invoked with rq::lock held and 5118 * interrupts disabled. There is no requirement for that, but the 5119 * sched out code does not have an interrupt enabled section. 5120 * Restoring the maps on sched in does not require interrupts being 5121 * disabled either. 5122 */ 5123 kmap_local_sched_in(); 5124 5125 fire_sched_in_preempt_notifiers(current); 5126 /* 5127 * When switching through a kernel thread, the loop in 5128 * membarrier_{private,global}_expedited() may have observed that 5129 * kernel thread and not issued an IPI. It is therefore possible to 5130 * schedule between user->kernel->user threads without passing though 5131 * switch_mm(). Membarrier requires a barrier after storing to 5132 * rq->curr, before returning to userspace, so provide them here: 5133 * 5134 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5135 * provided by mmdrop_lazy_tlb(), 5136 * - a sync_core for SYNC_CORE. 5137 */ 5138 if (mm) { 5139 membarrier_mm_sync_core_before_usermode(mm); 5140 mmdrop_lazy_tlb_sched(mm); 5141 } 5142 5143 if (unlikely(prev_state == TASK_DEAD)) { 5144 if (prev->sched_class->task_dead) 5145 prev->sched_class->task_dead(prev); 5146 5147 /* Task is done with its stack. */ 5148 put_task_stack(prev); 5149 5150 put_task_struct_rcu_user(prev); 5151 } 5152 5153 return rq; 5154 } 5155 5156 /** 5157 * schedule_tail - first thing a freshly forked thread must call. 5158 * @prev: the thread we just switched away from. 5159 */ 5160 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5161 __releases(rq->lock) 5162 { 5163 /* 5164 * New tasks start with FORK_PREEMPT_COUNT, see there and 5165 * finish_task_switch() for details. 5166 * 5167 * finish_task_switch() will drop rq->lock() and lower preempt_count 5168 * and the preempt_enable() will end up enabling preemption (on 5169 * PREEMPT_COUNT kernels). 5170 */ 5171 5172 finish_task_switch(prev); 5173 preempt_enable(); 5174 5175 if (current->set_child_tid) 5176 put_user(task_pid_vnr(current), current->set_child_tid); 5177 5178 calculate_sigpending(); 5179 } 5180 5181 /* 5182 * context_switch - switch to the new MM and the new thread's register state. 5183 */ 5184 static __always_inline struct rq * 5185 context_switch(struct rq *rq, struct task_struct *prev, 5186 struct task_struct *next, struct rq_flags *rf) 5187 { 5188 prepare_task_switch(rq, prev, next); 5189 5190 /* 5191 * For paravirt, this is coupled with an exit in switch_to to 5192 * combine the page table reload and the switch backend into 5193 * one hypercall. 5194 */ 5195 arch_start_context_switch(prev); 5196 5197 /* 5198 * kernel -> kernel lazy + transfer active 5199 * user -> kernel lazy + mmgrab_lazy_tlb() active 5200 * 5201 * kernel -> user switch + mmdrop_lazy_tlb() active 5202 * user -> user switch 5203 * 5204 * switch_mm_cid() needs to be updated if the barriers provided 5205 * by context_switch() are modified. 5206 */ 5207 if (!next->mm) { // to kernel 5208 enter_lazy_tlb(prev->active_mm, next); 5209 5210 next->active_mm = prev->active_mm; 5211 if (prev->mm) // from user 5212 mmgrab_lazy_tlb(prev->active_mm); 5213 else 5214 prev->active_mm = NULL; 5215 } else { // to user 5216 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5217 /* 5218 * sys_membarrier() requires an smp_mb() between setting 5219 * rq->curr / membarrier_switch_mm() and returning to userspace. 5220 * 5221 * The below provides this either through switch_mm(), or in 5222 * case 'prev->active_mm == next->mm' through 5223 * finish_task_switch()'s mmdrop(). 5224 */ 5225 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5226 lru_gen_use_mm(next->mm); 5227 5228 if (!prev->mm) { // from kernel 5229 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5230 rq->prev_mm = prev->active_mm; 5231 prev->active_mm = NULL; 5232 } 5233 } 5234 5235 /* switch_mm_cid() requires the memory barriers above. */ 5236 switch_mm_cid(rq, prev, next); 5237 5238 prepare_lock_switch(rq, next, rf); 5239 5240 /* Here we just switch the register state and the stack. */ 5241 switch_to(prev, next, prev); 5242 barrier(); 5243 5244 return finish_task_switch(prev); 5245 } 5246 5247 /* 5248 * nr_running and nr_context_switches: 5249 * 5250 * externally visible scheduler statistics: current number of runnable 5251 * threads, total number of context switches performed since bootup. 5252 */ 5253 unsigned int nr_running(void) 5254 { 5255 unsigned int i, sum = 0; 5256 5257 for_each_online_cpu(i) 5258 sum += cpu_rq(i)->nr_running; 5259 5260 return sum; 5261 } 5262 5263 /* 5264 * Check if only the current task is running on the CPU. 5265 * 5266 * Caution: this function does not check that the caller has disabled 5267 * preemption, thus the result might have a time-of-check-to-time-of-use 5268 * race. The caller is responsible to use it correctly, for example: 5269 * 5270 * - from a non-preemptible section (of course) 5271 * 5272 * - from a thread that is bound to a single CPU 5273 * 5274 * - in a loop with very short iterations (e.g. a polling loop) 5275 */ 5276 bool single_task_running(void) 5277 { 5278 return raw_rq()->nr_running == 1; 5279 } 5280 EXPORT_SYMBOL(single_task_running); 5281 5282 unsigned long long nr_context_switches_cpu(int cpu) 5283 { 5284 return cpu_rq(cpu)->nr_switches; 5285 } 5286 5287 unsigned long long nr_context_switches(void) 5288 { 5289 int i; 5290 unsigned long long sum = 0; 5291 5292 for_each_possible_cpu(i) 5293 sum += cpu_rq(i)->nr_switches; 5294 5295 return sum; 5296 } 5297 5298 /* 5299 * Consumers of these two interfaces, like for example the cpuidle menu 5300 * governor, are using nonsensical data. Preferring shallow idle state selection 5301 * for a CPU that has IO-wait which might not even end up running the task when 5302 * it does become runnable. 5303 */ 5304 5305 unsigned int nr_iowait_cpu(int cpu) 5306 { 5307 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5308 } 5309 5310 /* 5311 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5312 * 5313 * The idea behind IO-wait account is to account the idle time that we could 5314 * have spend running if it were not for IO. That is, if we were to improve the 5315 * storage performance, we'd have a proportional reduction in IO-wait time. 5316 * 5317 * This all works nicely on UP, where, when a task blocks on IO, we account 5318 * idle time as IO-wait, because if the storage were faster, it could've been 5319 * running and we'd not be idle. 5320 * 5321 * This has been extended to SMP, by doing the same for each CPU. This however 5322 * is broken. 5323 * 5324 * Imagine for instance the case where two tasks block on one CPU, only the one 5325 * CPU will have IO-wait accounted, while the other has regular idle. Even 5326 * though, if the storage were faster, both could've ran at the same time, 5327 * utilising both CPUs. 5328 * 5329 * This means, that when looking globally, the current IO-wait accounting on 5330 * SMP is a lower bound, by reason of under accounting. 5331 * 5332 * Worse, since the numbers are provided per CPU, they are sometimes 5333 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5334 * associated with any one particular CPU, it can wake to another CPU than it 5335 * blocked on. This means the per CPU IO-wait number is meaningless. 5336 * 5337 * Task CPU affinities can make all that even more 'interesting'. 5338 */ 5339 5340 unsigned int nr_iowait(void) 5341 { 5342 unsigned int i, sum = 0; 5343 5344 for_each_possible_cpu(i) 5345 sum += nr_iowait_cpu(i); 5346 5347 return sum; 5348 } 5349 5350 #ifdef CONFIG_SMP 5351 5352 /* 5353 * sched_exec - execve() is a valuable balancing opportunity, because at 5354 * this point the task has the smallest effective memory and cache footprint. 5355 */ 5356 void sched_exec(void) 5357 { 5358 struct task_struct *p = current; 5359 struct migration_arg arg; 5360 int dest_cpu; 5361 5362 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5363 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5364 if (dest_cpu == smp_processor_id()) 5365 return; 5366 5367 if (unlikely(!cpu_active(dest_cpu))) 5368 return; 5369 5370 arg = (struct migration_arg){ p, dest_cpu }; 5371 } 5372 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5373 } 5374 5375 #endif 5376 5377 DEFINE_PER_CPU(struct kernel_stat, kstat); 5378 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5379 5380 EXPORT_PER_CPU_SYMBOL(kstat); 5381 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5382 5383 /* 5384 * The function fair_sched_class.update_curr accesses the struct curr 5385 * and its field curr->exec_start; when called from task_sched_runtime(), 5386 * we observe a high rate of cache misses in practice. 5387 * Prefetching this data results in improved performance. 5388 */ 5389 static inline void prefetch_curr_exec_start(struct task_struct *p) 5390 { 5391 #ifdef CONFIG_FAIR_GROUP_SCHED 5392 struct sched_entity *curr = p->se.cfs_rq->curr; 5393 #else 5394 struct sched_entity *curr = task_rq(p)->cfs.curr; 5395 #endif 5396 prefetch(curr); 5397 prefetch(&curr->exec_start); 5398 } 5399 5400 /* 5401 * Return accounted runtime for the task. 5402 * In case the task is currently running, return the runtime plus current's 5403 * pending runtime that have not been accounted yet. 5404 */ 5405 unsigned long long task_sched_runtime(struct task_struct *p) 5406 { 5407 struct rq_flags rf; 5408 struct rq *rq; 5409 u64 ns; 5410 5411 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5412 /* 5413 * 64-bit doesn't need locks to atomically read a 64-bit value. 5414 * So we have a optimization chance when the task's delta_exec is 0. 5415 * Reading ->on_cpu is racy, but this is OK. 5416 * 5417 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5418 * If we race with it entering CPU, unaccounted time is 0. This is 5419 * indistinguishable from the read occurring a few cycles earlier. 5420 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5421 * been accounted, so we're correct here as well. 5422 */ 5423 if (!p->on_cpu || !task_on_rq_queued(p)) 5424 return p->se.sum_exec_runtime; 5425 #endif 5426 5427 rq = task_rq_lock(p, &rf); 5428 /* 5429 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5430 * project cycles that may never be accounted to this 5431 * thread, breaking clock_gettime(). 5432 */ 5433 if (task_current(rq, p) && task_on_rq_queued(p)) { 5434 prefetch_curr_exec_start(p); 5435 update_rq_clock(rq); 5436 p->sched_class->update_curr(rq); 5437 } 5438 ns = p->se.sum_exec_runtime; 5439 task_rq_unlock(rq, p, &rf); 5440 5441 return ns; 5442 } 5443 5444 #ifdef CONFIG_SCHED_DEBUG 5445 static u64 cpu_resched_latency(struct rq *rq) 5446 { 5447 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5448 u64 resched_latency, now = rq_clock(rq); 5449 static bool warned_once; 5450 5451 if (sysctl_resched_latency_warn_once && warned_once) 5452 return 0; 5453 5454 if (!need_resched() || !latency_warn_ms) 5455 return 0; 5456 5457 if (system_state == SYSTEM_BOOTING) 5458 return 0; 5459 5460 if (!rq->last_seen_need_resched_ns) { 5461 rq->last_seen_need_resched_ns = now; 5462 rq->ticks_without_resched = 0; 5463 return 0; 5464 } 5465 5466 rq->ticks_without_resched++; 5467 resched_latency = now - rq->last_seen_need_resched_ns; 5468 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5469 return 0; 5470 5471 warned_once = true; 5472 5473 return resched_latency; 5474 } 5475 5476 static int __init setup_resched_latency_warn_ms(char *str) 5477 { 5478 long val; 5479 5480 if ((kstrtol(str, 0, &val))) { 5481 pr_warn("Unable to set resched_latency_warn_ms\n"); 5482 return 1; 5483 } 5484 5485 sysctl_resched_latency_warn_ms = val; 5486 return 1; 5487 } 5488 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5489 #else 5490 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5491 #endif /* CONFIG_SCHED_DEBUG */ 5492 5493 /* 5494 * This function gets called by the timer code, with HZ frequency. 5495 * We call it with interrupts disabled. 5496 */ 5497 void sched_tick(void) 5498 { 5499 int cpu = smp_processor_id(); 5500 struct rq *rq = cpu_rq(cpu); 5501 struct task_struct *curr = rq->curr; 5502 struct rq_flags rf; 5503 unsigned long hw_pressure; 5504 u64 resched_latency; 5505 5506 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5507 arch_scale_freq_tick(); 5508 5509 sched_clock_tick(); 5510 5511 rq_lock(rq, &rf); 5512 5513 update_rq_clock(rq); 5514 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5515 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5516 curr->sched_class->task_tick(rq, curr, 0); 5517 if (sched_feat(LATENCY_WARN)) 5518 resched_latency = cpu_resched_latency(rq); 5519 calc_global_load_tick(rq); 5520 sched_core_tick(rq); 5521 task_tick_mm_cid(rq, curr); 5522 scx_tick(rq); 5523 5524 rq_unlock(rq, &rf); 5525 5526 if (sched_feat(LATENCY_WARN) && resched_latency) 5527 resched_latency_warn(cpu, resched_latency); 5528 5529 perf_event_task_tick(); 5530 5531 if (curr->flags & PF_WQ_WORKER) 5532 wq_worker_tick(curr); 5533 5534 #ifdef CONFIG_SMP 5535 if (!scx_switched_all()) { 5536 rq->idle_balance = idle_cpu(cpu); 5537 sched_balance_trigger(rq); 5538 } 5539 #endif 5540 } 5541 5542 #ifdef CONFIG_NO_HZ_FULL 5543 5544 struct tick_work { 5545 int cpu; 5546 atomic_t state; 5547 struct delayed_work work; 5548 }; 5549 /* Values for ->state, see diagram below. */ 5550 #define TICK_SCHED_REMOTE_OFFLINE 0 5551 #define TICK_SCHED_REMOTE_OFFLINING 1 5552 #define TICK_SCHED_REMOTE_RUNNING 2 5553 5554 /* 5555 * State diagram for ->state: 5556 * 5557 * 5558 * TICK_SCHED_REMOTE_OFFLINE 5559 * | ^ 5560 * | | 5561 * | | sched_tick_remote() 5562 * | | 5563 * | | 5564 * +--TICK_SCHED_REMOTE_OFFLINING 5565 * | ^ 5566 * | | 5567 * sched_tick_start() | | sched_tick_stop() 5568 * | | 5569 * V | 5570 * TICK_SCHED_REMOTE_RUNNING 5571 * 5572 * 5573 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5574 * and sched_tick_start() are happy to leave the state in RUNNING. 5575 */ 5576 5577 static struct tick_work __percpu *tick_work_cpu; 5578 5579 static void sched_tick_remote(struct work_struct *work) 5580 { 5581 struct delayed_work *dwork = to_delayed_work(work); 5582 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5583 int cpu = twork->cpu; 5584 struct rq *rq = cpu_rq(cpu); 5585 int os; 5586 5587 /* 5588 * Handle the tick only if it appears the remote CPU is running in full 5589 * dynticks mode. The check is racy by nature, but missing a tick or 5590 * having one too much is no big deal because the scheduler tick updates 5591 * statistics and checks timeslices in a time-independent way, regardless 5592 * of when exactly it is running. 5593 */ 5594 if (tick_nohz_tick_stopped_cpu(cpu)) { 5595 guard(rq_lock_irq)(rq); 5596 struct task_struct *curr = rq->curr; 5597 5598 if (cpu_online(cpu)) { 5599 update_rq_clock(rq); 5600 5601 if (!is_idle_task(curr)) { 5602 /* 5603 * Make sure the next tick runs within a 5604 * reasonable amount of time. 5605 */ 5606 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5607 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5608 } 5609 curr->sched_class->task_tick(rq, curr, 0); 5610 5611 calc_load_nohz_remote(rq); 5612 } 5613 } 5614 5615 /* 5616 * Run the remote tick once per second (1Hz). This arbitrary 5617 * frequency is large enough to avoid overload but short enough 5618 * to keep scheduler internal stats reasonably up to date. But 5619 * first update state to reflect hotplug activity if required. 5620 */ 5621 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5622 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5623 if (os == TICK_SCHED_REMOTE_RUNNING) 5624 queue_delayed_work(system_unbound_wq, dwork, HZ); 5625 } 5626 5627 static void sched_tick_start(int cpu) 5628 { 5629 int os; 5630 struct tick_work *twork; 5631 5632 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5633 return; 5634 5635 WARN_ON_ONCE(!tick_work_cpu); 5636 5637 twork = per_cpu_ptr(tick_work_cpu, cpu); 5638 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5639 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5640 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5641 twork->cpu = cpu; 5642 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5643 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5644 } 5645 } 5646 5647 #ifdef CONFIG_HOTPLUG_CPU 5648 static void sched_tick_stop(int cpu) 5649 { 5650 struct tick_work *twork; 5651 int os; 5652 5653 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5654 return; 5655 5656 WARN_ON_ONCE(!tick_work_cpu); 5657 5658 twork = per_cpu_ptr(tick_work_cpu, cpu); 5659 /* There cannot be competing actions, but don't rely on stop-machine. */ 5660 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5661 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5662 /* Don't cancel, as this would mess up the state machine. */ 5663 } 5664 #endif /* CONFIG_HOTPLUG_CPU */ 5665 5666 int __init sched_tick_offload_init(void) 5667 { 5668 tick_work_cpu = alloc_percpu(struct tick_work); 5669 BUG_ON(!tick_work_cpu); 5670 return 0; 5671 } 5672 5673 #else /* !CONFIG_NO_HZ_FULL */ 5674 static inline void sched_tick_start(int cpu) { } 5675 static inline void sched_tick_stop(int cpu) { } 5676 #endif 5677 5678 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5679 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5680 /* 5681 * If the value passed in is equal to the current preempt count 5682 * then we just disabled preemption. Start timing the latency. 5683 */ 5684 static inline void preempt_latency_start(int val) 5685 { 5686 if (preempt_count() == val) { 5687 unsigned long ip = get_lock_parent_ip(); 5688 #ifdef CONFIG_DEBUG_PREEMPT 5689 current->preempt_disable_ip = ip; 5690 #endif 5691 trace_preempt_off(CALLER_ADDR0, ip); 5692 } 5693 } 5694 5695 void preempt_count_add(int val) 5696 { 5697 #ifdef CONFIG_DEBUG_PREEMPT 5698 /* 5699 * Underflow? 5700 */ 5701 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5702 return; 5703 #endif 5704 __preempt_count_add(val); 5705 #ifdef CONFIG_DEBUG_PREEMPT 5706 /* 5707 * Spinlock count overflowing soon? 5708 */ 5709 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5710 PREEMPT_MASK - 10); 5711 #endif 5712 preempt_latency_start(val); 5713 } 5714 EXPORT_SYMBOL(preempt_count_add); 5715 NOKPROBE_SYMBOL(preempt_count_add); 5716 5717 /* 5718 * If the value passed in equals to the current preempt count 5719 * then we just enabled preemption. Stop timing the latency. 5720 */ 5721 static inline void preempt_latency_stop(int val) 5722 { 5723 if (preempt_count() == val) 5724 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5725 } 5726 5727 void preempt_count_sub(int val) 5728 { 5729 #ifdef CONFIG_DEBUG_PREEMPT 5730 /* 5731 * Underflow? 5732 */ 5733 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5734 return; 5735 /* 5736 * Is the spinlock portion underflowing? 5737 */ 5738 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5739 !(preempt_count() & PREEMPT_MASK))) 5740 return; 5741 #endif 5742 5743 preempt_latency_stop(val); 5744 __preempt_count_sub(val); 5745 } 5746 EXPORT_SYMBOL(preempt_count_sub); 5747 NOKPROBE_SYMBOL(preempt_count_sub); 5748 5749 #else 5750 static inline void preempt_latency_start(int val) { } 5751 static inline void preempt_latency_stop(int val) { } 5752 #endif 5753 5754 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5755 { 5756 #ifdef CONFIG_DEBUG_PREEMPT 5757 return p->preempt_disable_ip; 5758 #else 5759 return 0; 5760 #endif 5761 } 5762 5763 /* 5764 * Print scheduling while atomic bug: 5765 */ 5766 static noinline void __schedule_bug(struct task_struct *prev) 5767 { 5768 /* Save this before calling printk(), since that will clobber it */ 5769 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5770 5771 if (oops_in_progress) 5772 return; 5773 5774 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5775 prev->comm, prev->pid, preempt_count()); 5776 5777 debug_show_held_locks(prev); 5778 print_modules(); 5779 if (irqs_disabled()) 5780 print_irqtrace_events(prev); 5781 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5782 pr_err("Preemption disabled at:"); 5783 print_ip_sym(KERN_ERR, preempt_disable_ip); 5784 } 5785 check_panic_on_warn("scheduling while atomic"); 5786 5787 dump_stack(); 5788 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5789 } 5790 5791 /* 5792 * Various schedule()-time debugging checks and statistics: 5793 */ 5794 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5795 { 5796 #ifdef CONFIG_SCHED_STACK_END_CHECK 5797 if (task_stack_end_corrupted(prev)) 5798 panic("corrupted stack end detected inside scheduler\n"); 5799 5800 if (task_scs_end_corrupted(prev)) 5801 panic("corrupted shadow stack detected inside scheduler\n"); 5802 #endif 5803 5804 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5805 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5806 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5807 prev->comm, prev->pid, prev->non_block_count); 5808 dump_stack(); 5809 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5810 } 5811 #endif 5812 5813 if (unlikely(in_atomic_preempt_off())) { 5814 __schedule_bug(prev); 5815 preempt_count_set(PREEMPT_DISABLED); 5816 } 5817 rcu_sleep_check(); 5818 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5819 5820 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5821 5822 schedstat_inc(this_rq()->sched_count); 5823 } 5824 5825 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5826 struct rq_flags *rf) 5827 { 5828 #ifdef CONFIG_SMP 5829 const struct sched_class *class; 5830 /* 5831 * We must do the balancing pass before put_prev_task(), such 5832 * that when we release the rq->lock the task is in the same 5833 * state as before we took rq->lock. 5834 * 5835 * We can terminate the balance pass as soon as we know there is 5836 * a runnable task of @class priority or higher. 5837 */ 5838 for_balance_class_range(class, prev->sched_class, &idle_sched_class) { 5839 if (class->balance(rq, prev, rf)) 5840 break; 5841 } 5842 #endif 5843 5844 put_prev_task(rq, prev); 5845 } 5846 5847 /* 5848 * Pick up the highest-prio task: 5849 */ 5850 static inline struct task_struct * 5851 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5852 { 5853 const struct sched_class *class; 5854 struct task_struct *p; 5855 5856 if (scx_enabled()) 5857 goto restart; 5858 5859 /* 5860 * Optimization: we know that if all tasks are in the fair class we can 5861 * call that function directly, but only if the @prev task wasn't of a 5862 * higher scheduling class, because otherwise those lose the 5863 * opportunity to pull in more work from other CPUs. 5864 */ 5865 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5866 rq->nr_running == rq->cfs.h_nr_running)) { 5867 5868 p = pick_next_task_fair(rq, prev, rf); 5869 if (unlikely(p == RETRY_TASK)) 5870 goto restart; 5871 5872 /* Assume the next prioritized class is idle_sched_class */ 5873 if (!p) { 5874 put_prev_task(rq, prev); 5875 p = pick_next_task_idle(rq); 5876 } 5877 5878 /* 5879 * This is the fast path; it cannot be a DL server pick; 5880 * therefore even if @p == @prev, ->dl_server must be NULL. 5881 */ 5882 if (p->dl_server) 5883 p->dl_server = NULL; 5884 5885 return p; 5886 } 5887 5888 restart: 5889 put_prev_task_balance(rq, prev, rf); 5890 5891 /* 5892 * We've updated @prev and no longer need the server link, clear it. 5893 * Must be done before ->pick_next_task() because that can (re)set 5894 * ->dl_server. 5895 */ 5896 if (prev->dl_server) 5897 prev->dl_server = NULL; 5898 5899 for_each_active_class(class) { 5900 p = class->pick_next_task(rq); 5901 if (p) { 5902 scx_next_task_picked(rq, p, class); 5903 return p; 5904 } 5905 } 5906 5907 BUG(); /* The idle class should always have a runnable task. */ 5908 } 5909 5910 #ifdef CONFIG_SCHED_CORE 5911 static inline bool is_task_rq_idle(struct task_struct *t) 5912 { 5913 return (task_rq(t)->idle == t); 5914 } 5915 5916 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5917 { 5918 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5919 } 5920 5921 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5922 { 5923 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5924 return true; 5925 5926 return a->core_cookie == b->core_cookie; 5927 } 5928 5929 static inline struct task_struct *pick_task(struct rq *rq) 5930 { 5931 const struct sched_class *class; 5932 struct task_struct *p; 5933 5934 for_each_active_class(class) { 5935 p = class->pick_task(rq); 5936 if (p) 5937 return p; 5938 } 5939 5940 BUG(); /* The idle class should always have a runnable task. */ 5941 } 5942 5943 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5944 5945 static void queue_core_balance(struct rq *rq); 5946 5947 static struct task_struct * 5948 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5949 { 5950 struct task_struct *next, *p, *max = NULL; 5951 const struct cpumask *smt_mask; 5952 bool fi_before = false; 5953 bool core_clock_updated = (rq == rq->core); 5954 unsigned long cookie; 5955 int i, cpu, occ = 0; 5956 struct rq *rq_i; 5957 bool need_sync; 5958 5959 if (!sched_core_enabled(rq)) 5960 return __pick_next_task(rq, prev, rf); 5961 5962 cpu = cpu_of(rq); 5963 5964 /* Stopper task is switching into idle, no need core-wide selection. */ 5965 if (cpu_is_offline(cpu)) { 5966 /* 5967 * Reset core_pick so that we don't enter the fastpath when 5968 * coming online. core_pick would already be migrated to 5969 * another cpu during offline. 5970 */ 5971 rq->core_pick = NULL; 5972 return __pick_next_task(rq, prev, rf); 5973 } 5974 5975 /* 5976 * If there were no {en,de}queues since we picked (IOW, the task 5977 * pointers are all still valid), and we haven't scheduled the last 5978 * pick yet, do so now. 5979 * 5980 * rq->core_pick can be NULL if no selection was made for a CPU because 5981 * it was either offline or went offline during a sibling's core-wide 5982 * selection. In this case, do a core-wide selection. 5983 */ 5984 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5985 rq->core->core_pick_seq != rq->core_sched_seq && 5986 rq->core_pick) { 5987 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5988 5989 next = rq->core_pick; 5990 if (next != prev) { 5991 put_prev_task(rq, prev); 5992 set_next_task(rq, next); 5993 } 5994 5995 rq->core_pick = NULL; 5996 goto out; 5997 } 5998 5999 put_prev_task_balance(rq, prev, rf); 6000 6001 smt_mask = cpu_smt_mask(cpu); 6002 need_sync = !!rq->core->core_cookie; 6003 6004 /* reset state */ 6005 rq->core->core_cookie = 0UL; 6006 if (rq->core->core_forceidle_count) { 6007 if (!core_clock_updated) { 6008 update_rq_clock(rq->core); 6009 core_clock_updated = true; 6010 } 6011 sched_core_account_forceidle(rq); 6012 /* reset after accounting force idle */ 6013 rq->core->core_forceidle_start = 0; 6014 rq->core->core_forceidle_count = 0; 6015 rq->core->core_forceidle_occupation = 0; 6016 need_sync = true; 6017 fi_before = true; 6018 } 6019 6020 /* 6021 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6022 * 6023 * @task_seq guards the task state ({en,de}queues) 6024 * @pick_seq is the @task_seq we did a selection on 6025 * @sched_seq is the @pick_seq we scheduled 6026 * 6027 * However, preemptions can cause multiple picks on the same task set. 6028 * 'Fix' this by also increasing @task_seq for every pick. 6029 */ 6030 rq->core->core_task_seq++; 6031 6032 /* 6033 * Optimize for common case where this CPU has no cookies 6034 * and there are no cookied tasks running on siblings. 6035 */ 6036 if (!need_sync) { 6037 next = pick_task(rq); 6038 if (!next->core_cookie) { 6039 rq->core_pick = NULL; 6040 /* 6041 * For robustness, update the min_vruntime_fi for 6042 * unconstrained picks as well. 6043 */ 6044 WARN_ON_ONCE(fi_before); 6045 task_vruntime_update(rq, next, false); 6046 goto out_set_next; 6047 } 6048 } 6049 6050 /* 6051 * For each thread: do the regular task pick and find the max prio task 6052 * amongst them. 6053 * 6054 * Tie-break prio towards the current CPU 6055 */ 6056 for_each_cpu_wrap(i, smt_mask, cpu) { 6057 rq_i = cpu_rq(i); 6058 6059 /* 6060 * Current cpu always has its clock updated on entrance to 6061 * pick_next_task(). If the current cpu is not the core, 6062 * the core may also have been updated above. 6063 */ 6064 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6065 update_rq_clock(rq_i); 6066 6067 p = rq_i->core_pick = pick_task(rq_i); 6068 if (!max || prio_less(max, p, fi_before)) 6069 max = p; 6070 } 6071 6072 cookie = rq->core->core_cookie = max->core_cookie; 6073 6074 /* 6075 * For each thread: try and find a runnable task that matches @max or 6076 * force idle. 6077 */ 6078 for_each_cpu(i, smt_mask) { 6079 rq_i = cpu_rq(i); 6080 p = rq_i->core_pick; 6081 6082 if (!cookie_equals(p, cookie)) { 6083 p = NULL; 6084 if (cookie) 6085 p = sched_core_find(rq_i, cookie); 6086 if (!p) 6087 p = idle_sched_class.pick_task(rq_i); 6088 } 6089 6090 rq_i->core_pick = p; 6091 6092 if (p == rq_i->idle) { 6093 if (rq_i->nr_running) { 6094 rq->core->core_forceidle_count++; 6095 if (!fi_before) 6096 rq->core->core_forceidle_seq++; 6097 } 6098 } else { 6099 occ++; 6100 } 6101 } 6102 6103 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6104 rq->core->core_forceidle_start = rq_clock(rq->core); 6105 rq->core->core_forceidle_occupation = occ; 6106 } 6107 6108 rq->core->core_pick_seq = rq->core->core_task_seq; 6109 next = rq->core_pick; 6110 rq->core_sched_seq = rq->core->core_pick_seq; 6111 6112 /* Something should have been selected for current CPU */ 6113 WARN_ON_ONCE(!next); 6114 6115 /* 6116 * Reschedule siblings 6117 * 6118 * NOTE: L1TF -- at this point we're no longer running the old task and 6119 * sending an IPI (below) ensures the sibling will no longer be running 6120 * their task. This ensures there is no inter-sibling overlap between 6121 * non-matching user state. 6122 */ 6123 for_each_cpu(i, smt_mask) { 6124 rq_i = cpu_rq(i); 6125 6126 /* 6127 * An online sibling might have gone offline before a task 6128 * could be picked for it, or it might be offline but later 6129 * happen to come online, but its too late and nothing was 6130 * picked for it. That's Ok - it will pick tasks for itself, 6131 * so ignore it. 6132 */ 6133 if (!rq_i->core_pick) 6134 continue; 6135 6136 /* 6137 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6138 * fi_before fi update? 6139 * 0 0 1 6140 * 0 1 1 6141 * 1 0 1 6142 * 1 1 0 6143 */ 6144 if (!(fi_before && rq->core->core_forceidle_count)) 6145 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6146 6147 rq_i->core_pick->core_occupation = occ; 6148 6149 if (i == cpu) { 6150 rq_i->core_pick = NULL; 6151 continue; 6152 } 6153 6154 /* Did we break L1TF mitigation requirements? */ 6155 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6156 6157 if (rq_i->curr == rq_i->core_pick) { 6158 rq_i->core_pick = NULL; 6159 continue; 6160 } 6161 6162 resched_curr(rq_i); 6163 } 6164 6165 out_set_next: 6166 set_next_task(rq, next); 6167 out: 6168 if (rq->core->core_forceidle_count && next == rq->idle) 6169 queue_core_balance(rq); 6170 6171 return next; 6172 } 6173 6174 static bool try_steal_cookie(int this, int that) 6175 { 6176 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6177 struct task_struct *p; 6178 unsigned long cookie; 6179 bool success = false; 6180 6181 guard(irq)(); 6182 guard(double_rq_lock)(dst, src); 6183 6184 cookie = dst->core->core_cookie; 6185 if (!cookie) 6186 return false; 6187 6188 if (dst->curr != dst->idle) 6189 return false; 6190 6191 p = sched_core_find(src, cookie); 6192 if (!p) 6193 return false; 6194 6195 do { 6196 if (p == src->core_pick || p == src->curr) 6197 goto next; 6198 6199 if (!is_cpu_allowed(p, this)) 6200 goto next; 6201 6202 if (p->core_occupation > dst->idle->core_occupation) 6203 goto next; 6204 /* 6205 * sched_core_find() and sched_core_next() will ensure 6206 * that task @p is not throttled now, we also need to 6207 * check whether the runqueue of the destination CPU is 6208 * being throttled. 6209 */ 6210 if (sched_task_is_throttled(p, this)) 6211 goto next; 6212 6213 deactivate_task(src, p, 0); 6214 set_task_cpu(p, this); 6215 activate_task(dst, p, 0); 6216 6217 resched_curr(dst); 6218 6219 success = true; 6220 break; 6221 6222 next: 6223 p = sched_core_next(p, cookie); 6224 } while (p); 6225 6226 return success; 6227 } 6228 6229 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6230 { 6231 int i; 6232 6233 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6234 if (i == cpu) 6235 continue; 6236 6237 if (need_resched()) 6238 break; 6239 6240 if (try_steal_cookie(cpu, i)) 6241 return true; 6242 } 6243 6244 return false; 6245 } 6246 6247 static void sched_core_balance(struct rq *rq) 6248 { 6249 struct sched_domain *sd; 6250 int cpu = cpu_of(rq); 6251 6252 guard(preempt)(); 6253 guard(rcu)(); 6254 6255 raw_spin_rq_unlock_irq(rq); 6256 for_each_domain(cpu, sd) { 6257 if (need_resched()) 6258 break; 6259 6260 if (steal_cookie_task(cpu, sd)) 6261 break; 6262 } 6263 raw_spin_rq_lock_irq(rq); 6264 } 6265 6266 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6267 6268 static void queue_core_balance(struct rq *rq) 6269 { 6270 if (!sched_core_enabled(rq)) 6271 return; 6272 6273 if (!rq->core->core_cookie) 6274 return; 6275 6276 if (!rq->nr_running) /* not forced idle */ 6277 return; 6278 6279 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6280 } 6281 6282 DEFINE_LOCK_GUARD_1(core_lock, int, 6283 sched_core_lock(*_T->lock, &_T->flags), 6284 sched_core_unlock(*_T->lock, &_T->flags), 6285 unsigned long flags) 6286 6287 static void sched_core_cpu_starting(unsigned int cpu) 6288 { 6289 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6290 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6291 int t; 6292 6293 guard(core_lock)(&cpu); 6294 6295 WARN_ON_ONCE(rq->core != rq); 6296 6297 /* if we're the first, we'll be our own leader */ 6298 if (cpumask_weight(smt_mask) == 1) 6299 return; 6300 6301 /* find the leader */ 6302 for_each_cpu(t, smt_mask) { 6303 if (t == cpu) 6304 continue; 6305 rq = cpu_rq(t); 6306 if (rq->core == rq) { 6307 core_rq = rq; 6308 break; 6309 } 6310 } 6311 6312 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6313 return; 6314 6315 /* install and validate core_rq */ 6316 for_each_cpu(t, smt_mask) { 6317 rq = cpu_rq(t); 6318 6319 if (t == cpu) 6320 rq->core = core_rq; 6321 6322 WARN_ON_ONCE(rq->core != core_rq); 6323 } 6324 } 6325 6326 static void sched_core_cpu_deactivate(unsigned int cpu) 6327 { 6328 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6329 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6330 int t; 6331 6332 guard(core_lock)(&cpu); 6333 6334 /* if we're the last man standing, nothing to do */ 6335 if (cpumask_weight(smt_mask) == 1) { 6336 WARN_ON_ONCE(rq->core != rq); 6337 return; 6338 } 6339 6340 /* if we're not the leader, nothing to do */ 6341 if (rq->core != rq) 6342 return; 6343 6344 /* find a new leader */ 6345 for_each_cpu(t, smt_mask) { 6346 if (t == cpu) 6347 continue; 6348 core_rq = cpu_rq(t); 6349 break; 6350 } 6351 6352 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6353 return; 6354 6355 /* copy the shared state to the new leader */ 6356 core_rq->core_task_seq = rq->core_task_seq; 6357 core_rq->core_pick_seq = rq->core_pick_seq; 6358 core_rq->core_cookie = rq->core_cookie; 6359 core_rq->core_forceidle_count = rq->core_forceidle_count; 6360 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6361 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6362 6363 /* 6364 * Accounting edge for forced idle is handled in pick_next_task(). 6365 * Don't need another one here, since the hotplug thread shouldn't 6366 * have a cookie. 6367 */ 6368 core_rq->core_forceidle_start = 0; 6369 6370 /* install new leader */ 6371 for_each_cpu(t, smt_mask) { 6372 rq = cpu_rq(t); 6373 rq->core = core_rq; 6374 } 6375 } 6376 6377 static inline void sched_core_cpu_dying(unsigned int cpu) 6378 { 6379 struct rq *rq = cpu_rq(cpu); 6380 6381 if (rq->core != rq) 6382 rq->core = rq; 6383 } 6384 6385 #else /* !CONFIG_SCHED_CORE */ 6386 6387 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6388 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6389 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6390 6391 static struct task_struct * 6392 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6393 { 6394 return __pick_next_task(rq, prev, rf); 6395 } 6396 6397 #endif /* CONFIG_SCHED_CORE */ 6398 6399 /* 6400 * Constants for the sched_mode argument of __schedule(). 6401 * 6402 * The mode argument allows RT enabled kernels to differentiate a 6403 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6404 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6405 * optimize the AND operation out and just check for zero. 6406 */ 6407 #define SM_NONE 0x0 6408 #define SM_PREEMPT 0x1 6409 #define SM_RTLOCK_WAIT 0x2 6410 6411 #ifndef CONFIG_PREEMPT_RT 6412 # define SM_MASK_PREEMPT (~0U) 6413 #else 6414 # define SM_MASK_PREEMPT SM_PREEMPT 6415 #endif 6416 6417 /* 6418 * __schedule() is the main scheduler function. 6419 * 6420 * The main means of driving the scheduler and thus entering this function are: 6421 * 6422 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6423 * 6424 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6425 * paths. For example, see arch/x86/entry_64.S. 6426 * 6427 * To drive preemption between tasks, the scheduler sets the flag in timer 6428 * interrupt handler sched_tick(). 6429 * 6430 * 3. Wakeups don't really cause entry into schedule(). They add a 6431 * task to the run-queue and that's it. 6432 * 6433 * Now, if the new task added to the run-queue preempts the current 6434 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6435 * called on the nearest possible occasion: 6436 * 6437 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6438 * 6439 * - in syscall or exception context, at the next outmost 6440 * preempt_enable(). (this might be as soon as the wake_up()'s 6441 * spin_unlock()!) 6442 * 6443 * - in IRQ context, return from interrupt-handler to 6444 * preemptible context 6445 * 6446 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6447 * then at the next: 6448 * 6449 * - cond_resched() call 6450 * - explicit schedule() call 6451 * - return from syscall or exception to user-space 6452 * - return from interrupt-handler to user-space 6453 * 6454 * WARNING: must be called with preemption disabled! 6455 */ 6456 static void __sched notrace __schedule(unsigned int sched_mode) 6457 { 6458 struct task_struct *prev, *next; 6459 unsigned long *switch_count; 6460 unsigned long prev_state; 6461 struct rq_flags rf; 6462 struct rq *rq; 6463 int cpu; 6464 6465 cpu = smp_processor_id(); 6466 rq = cpu_rq(cpu); 6467 prev = rq->curr; 6468 6469 schedule_debug(prev, !!sched_mode); 6470 6471 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6472 hrtick_clear(rq); 6473 6474 local_irq_disable(); 6475 rcu_note_context_switch(!!sched_mode); 6476 6477 /* 6478 * Make sure that signal_pending_state()->signal_pending() below 6479 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6480 * done by the caller to avoid the race with signal_wake_up(): 6481 * 6482 * __set_current_state(@state) signal_wake_up() 6483 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6484 * wake_up_state(p, state) 6485 * LOCK rq->lock LOCK p->pi_state 6486 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6487 * if (signal_pending_state()) if (p->state & @state) 6488 * 6489 * Also, the membarrier system call requires a full memory barrier 6490 * after coming from user-space, before storing to rq->curr; this 6491 * barrier matches a full barrier in the proximity of the membarrier 6492 * system call exit. 6493 */ 6494 rq_lock(rq, &rf); 6495 smp_mb__after_spinlock(); 6496 6497 /* Promote REQ to ACT */ 6498 rq->clock_update_flags <<= 1; 6499 update_rq_clock(rq); 6500 rq->clock_update_flags = RQCF_UPDATED; 6501 6502 switch_count = &prev->nivcsw; 6503 6504 /* 6505 * We must load prev->state once (task_struct::state is volatile), such 6506 * that we form a control dependency vs deactivate_task() below. 6507 */ 6508 prev_state = READ_ONCE(prev->__state); 6509 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6510 if (signal_pending_state(prev_state, prev)) { 6511 WRITE_ONCE(prev->__state, TASK_RUNNING); 6512 } else { 6513 prev->sched_contributes_to_load = 6514 (prev_state & TASK_UNINTERRUPTIBLE) && 6515 !(prev_state & TASK_NOLOAD) && 6516 !(prev_state & TASK_FROZEN); 6517 6518 if (prev->sched_contributes_to_load) 6519 rq->nr_uninterruptible++; 6520 6521 /* 6522 * __schedule() ttwu() 6523 * prev_state = prev->state; if (p->on_rq && ...) 6524 * if (prev_state) goto out; 6525 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6526 * p->state = TASK_WAKING 6527 * 6528 * Where __schedule() and ttwu() have matching control dependencies. 6529 * 6530 * After this, schedule() must not care about p->state any more. 6531 */ 6532 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6533 6534 if (prev->in_iowait) { 6535 atomic_inc(&rq->nr_iowait); 6536 delayacct_blkio_start(); 6537 } 6538 } 6539 switch_count = &prev->nvcsw; 6540 } 6541 6542 next = pick_next_task(rq, prev, &rf); 6543 clear_tsk_need_resched(prev); 6544 clear_preempt_need_resched(); 6545 #ifdef CONFIG_SCHED_DEBUG 6546 rq->last_seen_need_resched_ns = 0; 6547 #endif 6548 6549 if (likely(prev != next)) { 6550 rq->nr_switches++; 6551 /* 6552 * RCU users of rcu_dereference(rq->curr) may not see 6553 * changes to task_struct made by pick_next_task(). 6554 */ 6555 RCU_INIT_POINTER(rq->curr, next); 6556 /* 6557 * The membarrier system call requires each architecture 6558 * to have a full memory barrier after updating 6559 * rq->curr, before returning to user-space. 6560 * 6561 * Here are the schemes providing that barrier on the 6562 * various architectures: 6563 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6564 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6565 * on PowerPC and on RISC-V. 6566 * - finish_lock_switch() for weakly-ordered 6567 * architectures where spin_unlock is a full barrier, 6568 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6569 * is a RELEASE barrier), 6570 * 6571 * The barrier matches a full barrier in the proximity of 6572 * the membarrier system call entry. 6573 * 6574 * On RISC-V, this barrier pairing is also needed for the 6575 * SYNC_CORE command when switching between processes, cf. 6576 * the inline comments in membarrier_arch_switch_mm(). 6577 */ 6578 ++*switch_count; 6579 6580 migrate_disable_switch(rq, prev); 6581 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6582 6583 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6584 6585 /* Also unlocks the rq: */ 6586 rq = context_switch(rq, prev, next, &rf); 6587 } else { 6588 rq_unpin_lock(rq, &rf); 6589 __balance_callbacks(rq); 6590 raw_spin_rq_unlock_irq(rq); 6591 } 6592 } 6593 6594 void __noreturn do_task_dead(void) 6595 { 6596 /* Causes final put_task_struct in finish_task_switch(): */ 6597 set_special_state(TASK_DEAD); 6598 6599 /* Tell freezer to ignore us: */ 6600 current->flags |= PF_NOFREEZE; 6601 6602 __schedule(SM_NONE); 6603 BUG(); 6604 6605 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6606 for (;;) 6607 cpu_relax(); 6608 } 6609 6610 static inline void sched_submit_work(struct task_struct *tsk) 6611 { 6612 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6613 unsigned int task_flags; 6614 6615 /* 6616 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6617 * will use a blocking primitive -- which would lead to recursion. 6618 */ 6619 lock_map_acquire_try(&sched_map); 6620 6621 task_flags = tsk->flags; 6622 /* 6623 * If a worker goes to sleep, notify and ask workqueue whether it 6624 * wants to wake up a task to maintain concurrency. 6625 */ 6626 if (task_flags & PF_WQ_WORKER) 6627 wq_worker_sleeping(tsk); 6628 else if (task_flags & PF_IO_WORKER) 6629 io_wq_worker_sleeping(tsk); 6630 6631 /* 6632 * spinlock and rwlock must not flush block requests. This will 6633 * deadlock if the callback attempts to acquire a lock which is 6634 * already acquired. 6635 */ 6636 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6637 6638 /* 6639 * If we are going to sleep and we have plugged IO queued, 6640 * make sure to submit it to avoid deadlocks. 6641 */ 6642 blk_flush_plug(tsk->plug, true); 6643 6644 lock_map_release(&sched_map); 6645 } 6646 6647 static void sched_update_worker(struct task_struct *tsk) 6648 { 6649 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6650 if (tsk->flags & PF_BLOCK_TS) 6651 blk_plug_invalidate_ts(tsk); 6652 if (tsk->flags & PF_WQ_WORKER) 6653 wq_worker_running(tsk); 6654 else if (tsk->flags & PF_IO_WORKER) 6655 io_wq_worker_running(tsk); 6656 } 6657 } 6658 6659 static __always_inline void __schedule_loop(unsigned int sched_mode) 6660 { 6661 do { 6662 preempt_disable(); 6663 __schedule(sched_mode); 6664 sched_preempt_enable_no_resched(); 6665 } while (need_resched()); 6666 } 6667 6668 asmlinkage __visible void __sched schedule(void) 6669 { 6670 struct task_struct *tsk = current; 6671 6672 #ifdef CONFIG_RT_MUTEXES 6673 lockdep_assert(!tsk->sched_rt_mutex); 6674 #endif 6675 6676 if (!task_is_running(tsk)) 6677 sched_submit_work(tsk); 6678 __schedule_loop(SM_NONE); 6679 sched_update_worker(tsk); 6680 } 6681 EXPORT_SYMBOL(schedule); 6682 6683 /* 6684 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6685 * state (have scheduled out non-voluntarily) by making sure that all 6686 * tasks have either left the run queue or have gone into user space. 6687 * As idle tasks do not do either, they must not ever be preempted 6688 * (schedule out non-voluntarily). 6689 * 6690 * schedule_idle() is similar to schedule_preempt_disable() except that it 6691 * never enables preemption because it does not call sched_submit_work(). 6692 */ 6693 void __sched schedule_idle(void) 6694 { 6695 /* 6696 * As this skips calling sched_submit_work(), which the idle task does 6697 * regardless because that function is a NOP when the task is in a 6698 * TASK_RUNNING state, make sure this isn't used someplace that the 6699 * current task can be in any other state. Note, idle is always in the 6700 * TASK_RUNNING state. 6701 */ 6702 WARN_ON_ONCE(current->__state); 6703 do { 6704 __schedule(SM_NONE); 6705 } while (need_resched()); 6706 } 6707 6708 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6709 asmlinkage __visible void __sched schedule_user(void) 6710 { 6711 /* 6712 * If we come here after a random call to set_need_resched(), 6713 * or we have been woken up remotely but the IPI has not yet arrived, 6714 * we haven't yet exited the RCU idle mode. Do it here manually until 6715 * we find a better solution. 6716 * 6717 * NB: There are buggy callers of this function. Ideally we 6718 * should warn if prev_state != CONTEXT_USER, but that will trigger 6719 * too frequently to make sense yet. 6720 */ 6721 enum ctx_state prev_state = exception_enter(); 6722 schedule(); 6723 exception_exit(prev_state); 6724 } 6725 #endif 6726 6727 /** 6728 * schedule_preempt_disabled - called with preemption disabled 6729 * 6730 * Returns with preemption disabled. Note: preempt_count must be 1 6731 */ 6732 void __sched schedule_preempt_disabled(void) 6733 { 6734 sched_preempt_enable_no_resched(); 6735 schedule(); 6736 preempt_disable(); 6737 } 6738 6739 #ifdef CONFIG_PREEMPT_RT 6740 void __sched notrace schedule_rtlock(void) 6741 { 6742 __schedule_loop(SM_RTLOCK_WAIT); 6743 } 6744 NOKPROBE_SYMBOL(schedule_rtlock); 6745 #endif 6746 6747 static void __sched notrace preempt_schedule_common(void) 6748 { 6749 do { 6750 /* 6751 * Because the function tracer can trace preempt_count_sub() 6752 * and it also uses preempt_enable/disable_notrace(), if 6753 * NEED_RESCHED is set, the preempt_enable_notrace() called 6754 * by the function tracer will call this function again and 6755 * cause infinite recursion. 6756 * 6757 * Preemption must be disabled here before the function 6758 * tracer can trace. Break up preempt_disable() into two 6759 * calls. One to disable preemption without fear of being 6760 * traced. The other to still record the preemption latency, 6761 * which can also be traced by the function tracer. 6762 */ 6763 preempt_disable_notrace(); 6764 preempt_latency_start(1); 6765 __schedule(SM_PREEMPT); 6766 preempt_latency_stop(1); 6767 preempt_enable_no_resched_notrace(); 6768 6769 /* 6770 * Check again in case we missed a preemption opportunity 6771 * between schedule and now. 6772 */ 6773 } while (need_resched()); 6774 } 6775 6776 #ifdef CONFIG_PREEMPTION 6777 /* 6778 * This is the entry point to schedule() from in-kernel preemption 6779 * off of preempt_enable. 6780 */ 6781 asmlinkage __visible void __sched notrace preempt_schedule(void) 6782 { 6783 /* 6784 * If there is a non-zero preempt_count or interrupts are disabled, 6785 * we do not want to preempt the current task. Just return.. 6786 */ 6787 if (likely(!preemptible())) 6788 return; 6789 preempt_schedule_common(); 6790 } 6791 NOKPROBE_SYMBOL(preempt_schedule); 6792 EXPORT_SYMBOL(preempt_schedule); 6793 6794 #ifdef CONFIG_PREEMPT_DYNAMIC 6795 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6796 #ifndef preempt_schedule_dynamic_enabled 6797 #define preempt_schedule_dynamic_enabled preempt_schedule 6798 #define preempt_schedule_dynamic_disabled NULL 6799 #endif 6800 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6801 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6802 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6803 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6804 void __sched notrace dynamic_preempt_schedule(void) 6805 { 6806 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6807 return; 6808 preempt_schedule(); 6809 } 6810 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6811 EXPORT_SYMBOL(dynamic_preempt_schedule); 6812 #endif 6813 #endif 6814 6815 /** 6816 * preempt_schedule_notrace - preempt_schedule called by tracing 6817 * 6818 * The tracing infrastructure uses preempt_enable_notrace to prevent 6819 * recursion and tracing preempt enabling caused by the tracing 6820 * infrastructure itself. But as tracing can happen in areas coming 6821 * from userspace or just about to enter userspace, a preempt enable 6822 * can occur before user_exit() is called. This will cause the scheduler 6823 * to be called when the system is still in usermode. 6824 * 6825 * To prevent this, the preempt_enable_notrace will use this function 6826 * instead of preempt_schedule() to exit user context if needed before 6827 * calling the scheduler. 6828 */ 6829 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6830 { 6831 enum ctx_state prev_ctx; 6832 6833 if (likely(!preemptible())) 6834 return; 6835 6836 do { 6837 /* 6838 * Because the function tracer can trace preempt_count_sub() 6839 * and it also uses preempt_enable/disable_notrace(), if 6840 * NEED_RESCHED is set, the preempt_enable_notrace() called 6841 * by the function tracer will call this function again and 6842 * cause infinite recursion. 6843 * 6844 * Preemption must be disabled here before the function 6845 * tracer can trace. Break up preempt_disable() into two 6846 * calls. One to disable preemption without fear of being 6847 * traced. The other to still record the preemption latency, 6848 * which can also be traced by the function tracer. 6849 */ 6850 preempt_disable_notrace(); 6851 preempt_latency_start(1); 6852 /* 6853 * Needs preempt disabled in case user_exit() is traced 6854 * and the tracer calls preempt_enable_notrace() causing 6855 * an infinite recursion. 6856 */ 6857 prev_ctx = exception_enter(); 6858 __schedule(SM_PREEMPT); 6859 exception_exit(prev_ctx); 6860 6861 preempt_latency_stop(1); 6862 preempt_enable_no_resched_notrace(); 6863 } while (need_resched()); 6864 } 6865 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6866 6867 #ifdef CONFIG_PREEMPT_DYNAMIC 6868 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6869 #ifndef preempt_schedule_notrace_dynamic_enabled 6870 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6871 #define preempt_schedule_notrace_dynamic_disabled NULL 6872 #endif 6873 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6874 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6875 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6876 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6877 void __sched notrace dynamic_preempt_schedule_notrace(void) 6878 { 6879 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6880 return; 6881 preempt_schedule_notrace(); 6882 } 6883 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6884 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6885 #endif 6886 #endif 6887 6888 #endif /* CONFIG_PREEMPTION */ 6889 6890 /* 6891 * This is the entry point to schedule() from kernel preemption 6892 * off of IRQ context. 6893 * Note, that this is called and return with IRQs disabled. This will 6894 * protect us against recursive calling from IRQ contexts. 6895 */ 6896 asmlinkage __visible void __sched preempt_schedule_irq(void) 6897 { 6898 enum ctx_state prev_state; 6899 6900 /* Catch callers which need to be fixed */ 6901 BUG_ON(preempt_count() || !irqs_disabled()); 6902 6903 prev_state = exception_enter(); 6904 6905 do { 6906 preempt_disable(); 6907 local_irq_enable(); 6908 __schedule(SM_PREEMPT); 6909 local_irq_disable(); 6910 sched_preempt_enable_no_resched(); 6911 } while (need_resched()); 6912 6913 exception_exit(prev_state); 6914 } 6915 6916 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6917 void *key) 6918 { 6919 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 6920 return try_to_wake_up(curr->private, mode, wake_flags); 6921 } 6922 EXPORT_SYMBOL(default_wake_function); 6923 6924 void __setscheduler_prio(struct task_struct *p, int prio) 6925 { 6926 if (dl_prio(prio)) 6927 p->sched_class = &dl_sched_class; 6928 else if (rt_prio(prio)) 6929 p->sched_class = &rt_sched_class; 6930 #ifdef CONFIG_SCHED_CLASS_EXT 6931 else if (task_should_scx(p)) 6932 p->sched_class = &ext_sched_class; 6933 #endif 6934 else 6935 p->sched_class = &fair_sched_class; 6936 6937 p->prio = prio; 6938 } 6939 6940 #ifdef CONFIG_RT_MUTEXES 6941 6942 /* 6943 * Would be more useful with typeof()/auto_type but they don't mix with 6944 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 6945 * name such that if someone were to implement this function we get to compare 6946 * notes. 6947 */ 6948 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 6949 6950 void rt_mutex_pre_schedule(void) 6951 { 6952 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 6953 sched_submit_work(current); 6954 } 6955 6956 void rt_mutex_schedule(void) 6957 { 6958 lockdep_assert(current->sched_rt_mutex); 6959 __schedule_loop(SM_NONE); 6960 } 6961 6962 void rt_mutex_post_schedule(void) 6963 { 6964 sched_update_worker(current); 6965 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 6966 } 6967 6968 /* 6969 * rt_mutex_setprio - set the current priority of a task 6970 * @p: task to boost 6971 * @pi_task: donor task 6972 * 6973 * This function changes the 'effective' priority of a task. It does 6974 * not touch ->normal_prio like __setscheduler(). 6975 * 6976 * Used by the rt_mutex code to implement priority inheritance 6977 * logic. Call site only calls if the priority of the task changed. 6978 */ 6979 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6980 { 6981 int prio, oldprio, queued, running, queue_flag = 6982 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6983 const struct sched_class *prev_class; 6984 struct rq_flags rf; 6985 struct rq *rq; 6986 6987 /* XXX used to be waiter->prio, not waiter->task->prio */ 6988 prio = __rt_effective_prio(pi_task, p->normal_prio); 6989 6990 /* 6991 * If nothing changed; bail early. 6992 */ 6993 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6994 return; 6995 6996 rq = __task_rq_lock(p, &rf); 6997 update_rq_clock(rq); 6998 /* 6999 * Set under pi_lock && rq->lock, such that the value can be used under 7000 * either lock. 7001 * 7002 * Note that there is loads of tricky to make this pointer cache work 7003 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7004 * ensure a task is de-boosted (pi_task is set to NULL) before the 7005 * task is allowed to run again (and can exit). This ensures the pointer 7006 * points to a blocked task -- which guarantees the task is present. 7007 */ 7008 p->pi_top_task = pi_task; 7009 7010 /* 7011 * For FIFO/RR we only need to set prio, if that matches we're done. 7012 */ 7013 if (prio == p->prio && !dl_prio(prio)) 7014 goto out_unlock; 7015 7016 /* 7017 * Idle task boosting is a no-no in general. There is one 7018 * exception, when PREEMPT_RT and NOHZ is active: 7019 * 7020 * The idle task calls get_next_timer_interrupt() and holds 7021 * the timer wheel base->lock on the CPU and another CPU wants 7022 * to access the timer (probably to cancel it). We can safely 7023 * ignore the boosting request, as the idle CPU runs this code 7024 * with interrupts disabled and will complete the lock 7025 * protected section without being interrupted. So there is no 7026 * real need to boost. 7027 */ 7028 if (unlikely(p == rq->idle)) { 7029 WARN_ON(p != rq->curr); 7030 WARN_ON(p->pi_blocked_on); 7031 goto out_unlock; 7032 } 7033 7034 trace_sched_pi_setprio(p, pi_task); 7035 oldprio = p->prio; 7036 7037 if (oldprio == prio) 7038 queue_flag &= ~DEQUEUE_MOVE; 7039 7040 prev_class = p->sched_class; 7041 queued = task_on_rq_queued(p); 7042 running = task_current(rq, p); 7043 if (queued) 7044 dequeue_task(rq, p, queue_flag); 7045 if (running) 7046 put_prev_task(rq, p); 7047 7048 /* 7049 * Boosting condition are: 7050 * 1. -rt task is running and holds mutex A 7051 * --> -dl task blocks on mutex A 7052 * 7053 * 2. -dl task is running and holds mutex A 7054 * --> -dl task blocks on mutex A and could preempt the 7055 * running task 7056 */ 7057 if (dl_prio(prio)) { 7058 if (!dl_prio(p->normal_prio) || 7059 (pi_task && dl_prio(pi_task->prio) && 7060 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7061 p->dl.pi_se = pi_task->dl.pi_se; 7062 queue_flag |= ENQUEUE_REPLENISH; 7063 } else { 7064 p->dl.pi_se = &p->dl; 7065 } 7066 } else if (rt_prio(prio)) { 7067 if (dl_prio(oldprio)) 7068 p->dl.pi_se = &p->dl; 7069 if (oldprio < prio) 7070 queue_flag |= ENQUEUE_HEAD; 7071 } else { 7072 if (dl_prio(oldprio)) 7073 p->dl.pi_se = &p->dl; 7074 if (rt_prio(oldprio)) 7075 p->rt.timeout = 0; 7076 } 7077 7078 __setscheduler_prio(p, prio); 7079 check_class_changing(rq, p, prev_class); 7080 7081 if (queued) 7082 enqueue_task(rq, p, queue_flag); 7083 if (running) 7084 set_next_task(rq, p); 7085 7086 check_class_changed(rq, p, prev_class, oldprio); 7087 out_unlock: 7088 /* Avoid rq from going away on us: */ 7089 preempt_disable(); 7090 7091 rq_unpin_lock(rq, &rf); 7092 __balance_callbacks(rq); 7093 raw_spin_rq_unlock(rq); 7094 7095 preempt_enable(); 7096 } 7097 #endif 7098 7099 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7100 int __sched __cond_resched(void) 7101 { 7102 if (should_resched(0)) { 7103 preempt_schedule_common(); 7104 return 1; 7105 } 7106 /* 7107 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 7108 * whether the current CPU is in an RCU read-side critical section, 7109 * so the tick can report quiescent states even for CPUs looping 7110 * in kernel context. In contrast, in non-preemptible kernels, 7111 * RCU readers leave no in-memory hints, which means that CPU-bound 7112 * processes executing in kernel context might never report an 7113 * RCU quiescent state. Therefore, the following code causes 7114 * cond_resched() to report a quiescent state, but only when RCU 7115 * is in urgent need of one. 7116 */ 7117 #ifndef CONFIG_PREEMPT_RCU 7118 rcu_all_qs(); 7119 #endif 7120 return 0; 7121 } 7122 EXPORT_SYMBOL(__cond_resched); 7123 #endif 7124 7125 #ifdef CONFIG_PREEMPT_DYNAMIC 7126 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7127 #define cond_resched_dynamic_enabled __cond_resched 7128 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7129 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7130 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7131 7132 #define might_resched_dynamic_enabled __cond_resched 7133 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7134 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7135 EXPORT_STATIC_CALL_TRAMP(might_resched); 7136 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7137 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7138 int __sched dynamic_cond_resched(void) 7139 { 7140 klp_sched_try_switch(); 7141 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7142 return 0; 7143 return __cond_resched(); 7144 } 7145 EXPORT_SYMBOL(dynamic_cond_resched); 7146 7147 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7148 int __sched dynamic_might_resched(void) 7149 { 7150 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7151 return 0; 7152 return __cond_resched(); 7153 } 7154 EXPORT_SYMBOL(dynamic_might_resched); 7155 #endif 7156 #endif 7157 7158 /* 7159 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7160 * call schedule, and on return reacquire the lock. 7161 * 7162 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7163 * operations here to prevent schedule() from being called twice (once via 7164 * spin_unlock(), once by hand). 7165 */ 7166 int __cond_resched_lock(spinlock_t *lock) 7167 { 7168 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7169 int ret = 0; 7170 7171 lockdep_assert_held(lock); 7172 7173 if (spin_needbreak(lock) || resched) { 7174 spin_unlock(lock); 7175 if (!_cond_resched()) 7176 cpu_relax(); 7177 ret = 1; 7178 spin_lock(lock); 7179 } 7180 return ret; 7181 } 7182 EXPORT_SYMBOL(__cond_resched_lock); 7183 7184 int __cond_resched_rwlock_read(rwlock_t *lock) 7185 { 7186 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7187 int ret = 0; 7188 7189 lockdep_assert_held_read(lock); 7190 7191 if (rwlock_needbreak(lock) || resched) { 7192 read_unlock(lock); 7193 if (!_cond_resched()) 7194 cpu_relax(); 7195 ret = 1; 7196 read_lock(lock); 7197 } 7198 return ret; 7199 } 7200 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7201 7202 int __cond_resched_rwlock_write(rwlock_t *lock) 7203 { 7204 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7205 int ret = 0; 7206 7207 lockdep_assert_held_write(lock); 7208 7209 if (rwlock_needbreak(lock) || resched) { 7210 write_unlock(lock); 7211 if (!_cond_resched()) 7212 cpu_relax(); 7213 ret = 1; 7214 write_lock(lock); 7215 } 7216 return ret; 7217 } 7218 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7219 7220 #ifdef CONFIG_PREEMPT_DYNAMIC 7221 7222 #ifdef CONFIG_GENERIC_ENTRY 7223 #include <linux/entry-common.h> 7224 #endif 7225 7226 /* 7227 * SC:cond_resched 7228 * SC:might_resched 7229 * SC:preempt_schedule 7230 * SC:preempt_schedule_notrace 7231 * SC:irqentry_exit_cond_resched 7232 * 7233 * 7234 * NONE: 7235 * cond_resched <- __cond_resched 7236 * might_resched <- RET0 7237 * preempt_schedule <- NOP 7238 * preempt_schedule_notrace <- NOP 7239 * irqentry_exit_cond_resched <- NOP 7240 * 7241 * VOLUNTARY: 7242 * cond_resched <- __cond_resched 7243 * might_resched <- __cond_resched 7244 * preempt_schedule <- NOP 7245 * preempt_schedule_notrace <- NOP 7246 * irqentry_exit_cond_resched <- NOP 7247 * 7248 * FULL: 7249 * cond_resched <- RET0 7250 * might_resched <- RET0 7251 * preempt_schedule <- preempt_schedule 7252 * preempt_schedule_notrace <- preempt_schedule_notrace 7253 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7254 */ 7255 7256 enum { 7257 preempt_dynamic_undefined = -1, 7258 preempt_dynamic_none, 7259 preempt_dynamic_voluntary, 7260 preempt_dynamic_full, 7261 }; 7262 7263 int preempt_dynamic_mode = preempt_dynamic_undefined; 7264 7265 int sched_dynamic_mode(const char *str) 7266 { 7267 if (!strcmp(str, "none")) 7268 return preempt_dynamic_none; 7269 7270 if (!strcmp(str, "voluntary")) 7271 return preempt_dynamic_voluntary; 7272 7273 if (!strcmp(str, "full")) 7274 return preempt_dynamic_full; 7275 7276 return -EINVAL; 7277 } 7278 7279 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7280 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7281 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7282 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7283 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 7284 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 7285 #else 7286 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7287 #endif 7288 7289 static DEFINE_MUTEX(sched_dynamic_mutex); 7290 static bool klp_override; 7291 7292 static void __sched_dynamic_update(int mode) 7293 { 7294 /* 7295 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7296 * the ZERO state, which is invalid. 7297 */ 7298 if (!klp_override) 7299 preempt_dynamic_enable(cond_resched); 7300 preempt_dynamic_enable(might_resched); 7301 preempt_dynamic_enable(preempt_schedule); 7302 preempt_dynamic_enable(preempt_schedule_notrace); 7303 preempt_dynamic_enable(irqentry_exit_cond_resched); 7304 7305 switch (mode) { 7306 case preempt_dynamic_none: 7307 if (!klp_override) 7308 preempt_dynamic_enable(cond_resched); 7309 preempt_dynamic_disable(might_resched); 7310 preempt_dynamic_disable(preempt_schedule); 7311 preempt_dynamic_disable(preempt_schedule_notrace); 7312 preempt_dynamic_disable(irqentry_exit_cond_resched); 7313 if (mode != preempt_dynamic_mode) 7314 pr_info("Dynamic Preempt: none\n"); 7315 break; 7316 7317 case preempt_dynamic_voluntary: 7318 if (!klp_override) 7319 preempt_dynamic_enable(cond_resched); 7320 preempt_dynamic_enable(might_resched); 7321 preempt_dynamic_disable(preempt_schedule); 7322 preempt_dynamic_disable(preempt_schedule_notrace); 7323 preempt_dynamic_disable(irqentry_exit_cond_resched); 7324 if (mode != preempt_dynamic_mode) 7325 pr_info("Dynamic Preempt: voluntary\n"); 7326 break; 7327 7328 case preempt_dynamic_full: 7329 if (!klp_override) 7330 preempt_dynamic_disable(cond_resched); 7331 preempt_dynamic_disable(might_resched); 7332 preempt_dynamic_enable(preempt_schedule); 7333 preempt_dynamic_enable(preempt_schedule_notrace); 7334 preempt_dynamic_enable(irqentry_exit_cond_resched); 7335 if (mode != preempt_dynamic_mode) 7336 pr_info("Dynamic Preempt: full\n"); 7337 break; 7338 } 7339 7340 preempt_dynamic_mode = mode; 7341 } 7342 7343 void sched_dynamic_update(int mode) 7344 { 7345 mutex_lock(&sched_dynamic_mutex); 7346 __sched_dynamic_update(mode); 7347 mutex_unlock(&sched_dynamic_mutex); 7348 } 7349 7350 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7351 7352 static int klp_cond_resched(void) 7353 { 7354 __klp_sched_try_switch(); 7355 return __cond_resched(); 7356 } 7357 7358 void sched_dynamic_klp_enable(void) 7359 { 7360 mutex_lock(&sched_dynamic_mutex); 7361 7362 klp_override = true; 7363 static_call_update(cond_resched, klp_cond_resched); 7364 7365 mutex_unlock(&sched_dynamic_mutex); 7366 } 7367 7368 void sched_dynamic_klp_disable(void) 7369 { 7370 mutex_lock(&sched_dynamic_mutex); 7371 7372 klp_override = false; 7373 __sched_dynamic_update(preempt_dynamic_mode); 7374 7375 mutex_unlock(&sched_dynamic_mutex); 7376 } 7377 7378 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7379 7380 static int __init setup_preempt_mode(char *str) 7381 { 7382 int mode = sched_dynamic_mode(str); 7383 if (mode < 0) { 7384 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7385 return 0; 7386 } 7387 7388 sched_dynamic_update(mode); 7389 return 1; 7390 } 7391 __setup("preempt=", setup_preempt_mode); 7392 7393 static void __init preempt_dynamic_init(void) 7394 { 7395 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7396 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7397 sched_dynamic_update(preempt_dynamic_none); 7398 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7399 sched_dynamic_update(preempt_dynamic_voluntary); 7400 } else { 7401 /* Default static call setting, nothing to do */ 7402 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7403 preempt_dynamic_mode = preempt_dynamic_full; 7404 pr_info("Dynamic Preempt: full\n"); 7405 } 7406 } 7407 } 7408 7409 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7410 bool preempt_model_##mode(void) \ 7411 { \ 7412 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7413 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7414 } \ 7415 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7416 7417 PREEMPT_MODEL_ACCESSOR(none); 7418 PREEMPT_MODEL_ACCESSOR(voluntary); 7419 PREEMPT_MODEL_ACCESSOR(full); 7420 7421 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7422 7423 static inline void preempt_dynamic_init(void) { } 7424 7425 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7426 7427 int io_schedule_prepare(void) 7428 { 7429 int old_iowait = current->in_iowait; 7430 7431 current->in_iowait = 1; 7432 blk_flush_plug(current->plug, true); 7433 return old_iowait; 7434 } 7435 7436 void io_schedule_finish(int token) 7437 { 7438 current->in_iowait = token; 7439 } 7440 7441 /* 7442 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7443 * that process accounting knows that this is a task in IO wait state. 7444 */ 7445 long __sched io_schedule_timeout(long timeout) 7446 { 7447 int token; 7448 long ret; 7449 7450 token = io_schedule_prepare(); 7451 ret = schedule_timeout(timeout); 7452 io_schedule_finish(token); 7453 7454 return ret; 7455 } 7456 EXPORT_SYMBOL(io_schedule_timeout); 7457 7458 void __sched io_schedule(void) 7459 { 7460 int token; 7461 7462 token = io_schedule_prepare(); 7463 schedule(); 7464 io_schedule_finish(token); 7465 } 7466 EXPORT_SYMBOL(io_schedule); 7467 7468 void sched_show_task(struct task_struct *p) 7469 { 7470 unsigned long free = 0; 7471 int ppid; 7472 7473 if (!try_get_task_stack(p)) 7474 return; 7475 7476 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7477 7478 if (task_is_running(p)) 7479 pr_cont(" running task "); 7480 #ifdef CONFIG_DEBUG_STACK_USAGE 7481 free = stack_not_used(p); 7482 #endif 7483 ppid = 0; 7484 rcu_read_lock(); 7485 if (pid_alive(p)) 7486 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7487 rcu_read_unlock(); 7488 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", 7489 free, task_pid_nr(p), task_tgid_nr(p), 7490 ppid, read_task_thread_flags(p)); 7491 7492 print_worker_info(KERN_INFO, p); 7493 print_stop_info(KERN_INFO, p); 7494 print_scx_info(KERN_INFO, p); 7495 show_stack(p, NULL, KERN_INFO); 7496 put_task_stack(p); 7497 } 7498 EXPORT_SYMBOL_GPL(sched_show_task); 7499 7500 static inline bool 7501 state_filter_match(unsigned long state_filter, struct task_struct *p) 7502 { 7503 unsigned int state = READ_ONCE(p->__state); 7504 7505 /* no filter, everything matches */ 7506 if (!state_filter) 7507 return true; 7508 7509 /* filter, but doesn't match */ 7510 if (!(state & state_filter)) 7511 return false; 7512 7513 /* 7514 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7515 * TASK_KILLABLE). 7516 */ 7517 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7518 return false; 7519 7520 return true; 7521 } 7522 7523 7524 void show_state_filter(unsigned int state_filter) 7525 { 7526 struct task_struct *g, *p; 7527 7528 rcu_read_lock(); 7529 for_each_process_thread(g, p) { 7530 /* 7531 * reset the NMI-timeout, listing all files on a slow 7532 * console might take a lot of time: 7533 * Also, reset softlockup watchdogs on all CPUs, because 7534 * another CPU might be blocked waiting for us to process 7535 * an IPI. 7536 */ 7537 touch_nmi_watchdog(); 7538 touch_all_softlockup_watchdogs(); 7539 if (state_filter_match(state_filter, p)) 7540 sched_show_task(p); 7541 } 7542 7543 #ifdef CONFIG_SCHED_DEBUG 7544 if (!state_filter) 7545 sysrq_sched_debug_show(); 7546 #endif 7547 rcu_read_unlock(); 7548 /* 7549 * Only show locks if all tasks are dumped: 7550 */ 7551 if (!state_filter) 7552 debug_show_all_locks(); 7553 } 7554 7555 /** 7556 * init_idle - set up an idle thread for a given CPU 7557 * @idle: task in question 7558 * @cpu: CPU the idle task belongs to 7559 * 7560 * NOTE: this function does not set the idle thread's NEED_RESCHED 7561 * flag, to make booting more robust. 7562 */ 7563 void __init init_idle(struct task_struct *idle, int cpu) 7564 { 7565 #ifdef CONFIG_SMP 7566 struct affinity_context ac = (struct affinity_context) { 7567 .new_mask = cpumask_of(cpu), 7568 .flags = 0, 7569 }; 7570 #endif 7571 struct rq *rq = cpu_rq(cpu); 7572 unsigned long flags; 7573 7574 __sched_fork(0, idle); 7575 7576 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7577 raw_spin_rq_lock(rq); 7578 7579 idle->__state = TASK_RUNNING; 7580 idle->se.exec_start = sched_clock(); 7581 /* 7582 * PF_KTHREAD should already be set at this point; regardless, make it 7583 * look like a proper per-CPU kthread. 7584 */ 7585 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7586 kthread_set_per_cpu(idle, cpu); 7587 7588 #ifdef CONFIG_SMP 7589 /* 7590 * It's possible that init_idle() gets called multiple times on a task, 7591 * in that case do_set_cpus_allowed() will not do the right thing. 7592 * 7593 * And since this is boot we can forgo the serialization. 7594 */ 7595 set_cpus_allowed_common(idle, &ac); 7596 #endif 7597 /* 7598 * We're having a chicken and egg problem, even though we are 7599 * holding rq->lock, the CPU isn't yet set to this CPU so the 7600 * lockdep check in task_group() will fail. 7601 * 7602 * Similar case to sched_fork(). / Alternatively we could 7603 * use task_rq_lock() here and obtain the other rq->lock. 7604 * 7605 * Silence PROVE_RCU 7606 */ 7607 rcu_read_lock(); 7608 __set_task_cpu(idle, cpu); 7609 rcu_read_unlock(); 7610 7611 rq->idle = idle; 7612 rcu_assign_pointer(rq->curr, idle); 7613 idle->on_rq = TASK_ON_RQ_QUEUED; 7614 #ifdef CONFIG_SMP 7615 idle->on_cpu = 1; 7616 #endif 7617 raw_spin_rq_unlock(rq); 7618 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7619 7620 /* Set the preempt count _outside_ the spinlocks! */ 7621 init_idle_preempt_count(idle, cpu); 7622 7623 /* 7624 * The idle tasks have their own, simple scheduling class: 7625 */ 7626 idle->sched_class = &idle_sched_class; 7627 ftrace_graph_init_idle_task(idle, cpu); 7628 vtime_init_idle(idle, cpu); 7629 #ifdef CONFIG_SMP 7630 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7631 #endif 7632 } 7633 7634 #ifdef CONFIG_SMP 7635 7636 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7637 const struct cpumask *trial) 7638 { 7639 int ret = 1; 7640 7641 if (cpumask_empty(cur)) 7642 return ret; 7643 7644 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7645 7646 return ret; 7647 } 7648 7649 int task_can_attach(struct task_struct *p) 7650 { 7651 int ret = 0; 7652 7653 /* 7654 * Kthreads which disallow setaffinity shouldn't be moved 7655 * to a new cpuset; we don't want to change their CPU 7656 * affinity and isolating such threads by their set of 7657 * allowed nodes is unnecessary. Thus, cpusets are not 7658 * applicable for such threads. This prevents checking for 7659 * success of set_cpus_allowed_ptr() on all attached tasks 7660 * before cpus_mask may be changed. 7661 */ 7662 if (p->flags & PF_NO_SETAFFINITY) 7663 ret = -EINVAL; 7664 7665 return ret; 7666 } 7667 7668 bool sched_smp_initialized __read_mostly; 7669 7670 #ifdef CONFIG_NUMA_BALANCING 7671 /* Migrate current task p to target_cpu */ 7672 int migrate_task_to(struct task_struct *p, int target_cpu) 7673 { 7674 struct migration_arg arg = { p, target_cpu }; 7675 int curr_cpu = task_cpu(p); 7676 7677 if (curr_cpu == target_cpu) 7678 return 0; 7679 7680 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7681 return -EINVAL; 7682 7683 /* TODO: This is not properly updating schedstats */ 7684 7685 trace_sched_move_numa(p, curr_cpu, target_cpu); 7686 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7687 } 7688 7689 /* 7690 * Requeue a task on a given node and accurately track the number of NUMA 7691 * tasks on the runqueues 7692 */ 7693 void sched_setnuma(struct task_struct *p, int nid) 7694 { 7695 bool queued, running; 7696 struct rq_flags rf; 7697 struct rq *rq; 7698 7699 rq = task_rq_lock(p, &rf); 7700 queued = task_on_rq_queued(p); 7701 running = task_current(rq, p); 7702 7703 if (queued) 7704 dequeue_task(rq, p, DEQUEUE_SAVE); 7705 if (running) 7706 put_prev_task(rq, p); 7707 7708 p->numa_preferred_nid = nid; 7709 7710 if (queued) 7711 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7712 if (running) 7713 set_next_task(rq, p); 7714 task_rq_unlock(rq, p, &rf); 7715 } 7716 #endif /* CONFIG_NUMA_BALANCING */ 7717 7718 #ifdef CONFIG_HOTPLUG_CPU 7719 /* 7720 * Ensure that the idle task is using init_mm right before its CPU goes 7721 * offline. 7722 */ 7723 void idle_task_exit(void) 7724 { 7725 struct mm_struct *mm = current->active_mm; 7726 7727 BUG_ON(cpu_online(smp_processor_id())); 7728 BUG_ON(current != this_rq()->idle); 7729 7730 if (mm != &init_mm) { 7731 switch_mm(mm, &init_mm, current); 7732 finish_arch_post_lock_switch(); 7733 } 7734 7735 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7736 } 7737 7738 static int __balance_push_cpu_stop(void *arg) 7739 { 7740 struct task_struct *p = arg; 7741 struct rq *rq = this_rq(); 7742 struct rq_flags rf; 7743 int cpu; 7744 7745 raw_spin_lock_irq(&p->pi_lock); 7746 rq_lock(rq, &rf); 7747 7748 update_rq_clock(rq); 7749 7750 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7751 cpu = select_fallback_rq(rq->cpu, p); 7752 rq = __migrate_task(rq, &rf, p, cpu); 7753 } 7754 7755 rq_unlock(rq, &rf); 7756 raw_spin_unlock_irq(&p->pi_lock); 7757 7758 put_task_struct(p); 7759 7760 return 0; 7761 } 7762 7763 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7764 7765 /* 7766 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7767 * 7768 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7769 * effective when the hotplug motion is down. 7770 */ 7771 static void balance_push(struct rq *rq) 7772 { 7773 struct task_struct *push_task = rq->curr; 7774 7775 lockdep_assert_rq_held(rq); 7776 7777 /* 7778 * Ensure the thing is persistent until balance_push_set(.on = false); 7779 */ 7780 rq->balance_callback = &balance_push_callback; 7781 7782 /* 7783 * Only active while going offline and when invoked on the outgoing 7784 * CPU. 7785 */ 7786 if (!cpu_dying(rq->cpu) || rq != this_rq()) 7787 return; 7788 7789 /* 7790 * Both the cpu-hotplug and stop task are in this case and are 7791 * required to complete the hotplug process. 7792 */ 7793 if (kthread_is_per_cpu(push_task) || 7794 is_migration_disabled(push_task)) { 7795 7796 /* 7797 * If this is the idle task on the outgoing CPU try to wake 7798 * up the hotplug control thread which might wait for the 7799 * last task to vanish. The rcuwait_active() check is 7800 * accurate here because the waiter is pinned on this CPU 7801 * and can't obviously be running in parallel. 7802 * 7803 * On RT kernels this also has to check whether there are 7804 * pinned and scheduled out tasks on the runqueue. They 7805 * need to leave the migrate disabled section first. 7806 */ 7807 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7808 rcuwait_active(&rq->hotplug_wait)) { 7809 raw_spin_rq_unlock(rq); 7810 rcuwait_wake_up(&rq->hotplug_wait); 7811 raw_spin_rq_lock(rq); 7812 } 7813 return; 7814 } 7815 7816 get_task_struct(push_task); 7817 /* 7818 * Temporarily drop rq->lock such that we can wake-up the stop task. 7819 * Both preemption and IRQs are still disabled. 7820 */ 7821 preempt_disable(); 7822 raw_spin_rq_unlock(rq); 7823 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7824 this_cpu_ptr(&push_work)); 7825 preempt_enable(); 7826 /* 7827 * At this point need_resched() is true and we'll take the loop in 7828 * schedule(). The next pick is obviously going to be the stop task 7829 * which kthread_is_per_cpu() and will push this task away. 7830 */ 7831 raw_spin_rq_lock(rq); 7832 } 7833 7834 static void balance_push_set(int cpu, bool on) 7835 { 7836 struct rq *rq = cpu_rq(cpu); 7837 struct rq_flags rf; 7838 7839 rq_lock_irqsave(rq, &rf); 7840 if (on) { 7841 WARN_ON_ONCE(rq->balance_callback); 7842 rq->balance_callback = &balance_push_callback; 7843 } else if (rq->balance_callback == &balance_push_callback) { 7844 rq->balance_callback = NULL; 7845 } 7846 rq_unlock_irqrestore(rq, &rf); 7847 } 7848 7849 /* 7850 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7851 * inactive. All tasks which are not per CPU kernel threads are either 7852 * pushed off this CPU now via balance_push() or placed on a different CPU 7853 * during wakeup. Wait until the CPU is quiescent. 7854 */ 7855 static void balance_hotplug_wait(void) 7856 { 7857 struct rq *rq = this_rq(); 7858 7859 rcuwait_wait_event(&rq->hotplug_wait, 7860 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7861 TASK_UNINTERRUPTIBLE); 7862 } 7863 7864 #else 7865 7866 static inline void balance_push(struct rq *rq) 7867 { 7868 } 7869 7870 static inline void balance_push_set(int cpu, bool on) 7871 { 7872 } 7873 7874 static inline void balance_hotplug_wait(void) 7875 { 7876 } 7877 7878 #endif /* CONFIG_HOTPLUG_CPU */ 7879 7880 void set_rq_online(struct rq *rq) 7881 { 7882 if (!rq->online) { 7883 const struct sched_class *class; 7884 7885 cpumask_set_cpu(rq->cpu, rq->rd->online); 7886 rq->online = 1; 7887 7888 for_each_class(class) { 7889 if (class->rq_online) 7890 class->rq_online(rq); 7891 } 7892 } 7893 } 7894 7895 void set_rq_offline(struct rq *rq) 7896 { 7897 if (rq->online) { 7898 const struct sched_class *class; 7899 7900 update_rq_clock(rq); 7901 for_each_class(class) { 7902 if (class->rq_offline) 7903 class->rq_offline(rq); 7904 } 7905 7906 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7907 rq->online = 0; 7908 } 7909 } 7910 7911 /* 7912 * used to mark begin/end of suspend/resume: 7913 */ 7914 static int num_cpus_frozen; 7915 7916 /* 7917 * Update cpusets according to cpu_active mask. If cpusets are 7918 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7919 * around partition_sched_domains(). 7920 * 7921 * If we come here as part of a suspend/resume, don't touch cpusets because we 7922 * want to restore it back to its original state upon resume anyway. 7923 */ 7924 static void cpuset_cpu_active(void) 7925 { 7926 if (cpuhp_tasks_frozen) { 7927 /* 7928 * num_cpus_frozen tracks how many CPUs are involved in suspend 7929 * resume sequence. As long as this is not the last online 7930 * operation in the resume sequence, just build a single sched 7931 * domain, ignoring cpusets. 7932 */ 7933 partition_sched_domains(1, NULL, NULL); 7934 if (--num_cpus_frozen) 7935 return; 7936 /* 7937 * This is the last CPU online operation. So fall through and 7938 * restore the original sched domains by considering the 7939 * cpuset configurations. 7940 */ 7941 cpuset_force_rebuild(); 7942 } 7943 cpuset_update_active_cpus(); 7944 } 7945 7946 static int cpuset_cpu_inactive(unsigned int cpu) 7947 { 7948 if (!cpuhp_tasks_frozen) { 7949 int ret = dl_bw_check_overflow(cpu); 7950 7951 if (ret) 7952 return ret; 7953 cpuset_update_active_cpus(); 7954 } else { 7955 num_cpus_frozen++; 7956 partition_sched_domains(1, NULL, NULL); 7957 } 7958 return 0; 7959 } 7960 7961 int sched_cpu_activate(unsigned int cpu) 7962 { 7963 struct rq *rq = cpu_rq(cpu); 7964 struct rq_flags rf; 7965 7966 /* 7967 * Clear the balance_push callback and prepare to schedule 7968 * regular tasks. 7969 */ 7970 balance_push_set(cpu, false); 7971 7972 #ifdef CONFIG_SCHED_SMT 7973 /* 7974 * When going up, increment the number of cores with SMT present. 7975 */ 7976 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7977 static_branch_inc_cpuslocked(&sched_smt_present); 7978 #endif 7979 set_cpu_active(cpu, true); 7980 7981 if (sched_smp_initialized) { 7982 sched_update_numa(cpu, true); 7983 sched_domains_numa_masks_set(cpu); 7984 cpuset_cpu_active(); 7985 } 7986 7987 scx_rq_activate(rq); 7988 7989 /* 7990 * Put the rq online, if not already. This happens: 7991 * 7992 * 1) In the early boot process, because we build the real domains 7993 * after all CPUs have been brought up. 7994 * 7995 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7996 * domains. 7997 */ 7998 rq_lock_irqsave(rq, &rf); 7999 if (rq->rd) { 8000 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8001 set_rq_online(rq); 8002 } 8003 rq_unlock_irqrestore(rq, &rf); 8004 8005 return 0; 8006 } 8007 8008 int sched_cpu_deactivate(unsigned int cpu) 8009 { 8010 struct rq *rq = cpu_rq(cpu); 8011 struct rq_flags rf; 8012 int ret; 8013 8014 /* 8015 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8016 * load balancing when not active 8017 */ 8018 nohz_balance_exit_idle(rq); 8019 8020 set_cpu_active(cpu, false); 8021 8022 /* 8023 * From this point forward, this CPU will refuse to run any task that 8024 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8025 * push those tasks away until this gets cleared, see 8026 * sched_cpu_dying(). 8027 */ 8028 balance_push_set(cpu, true); 8029 8030 /* 8031 * We've cleared cpu_active_mask / set balance_push, wait for all 8032 * preempt-disabled and RCU users of this state to go away such that 8033 * all new such users will observe it. 8034 * 8035 * Specifically, we rely on ttwu to no longer target this CPU, see 8036 * ttwu_queue_cond() and is_cpu_allowed(). 8037 * 8038 * Do sync before park smpboot threads to take care the RCU boost case. 8039 */ 8040 synchronize_rcu(); 8041 8042 rq_lock_irqsave(rq, &rf); 8043 if (rq->rd) { 8044 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8045 set_rq_offline(rq); 8046 } 8047 rq_unlock_irqrestore(rq, &rf); 8048 8049 scx_rq_deactivate(rq); 8050 8051 #ifdef CONFIG_SCHED_SMT 8052 /* 8053 * When going down, decrement the number of cores with SMT present. 8054 */ 8055 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8056 static_branch_dec_cpuslocked(&sched_smt_present); 8057 8058 sched_core_cpu_deactivate(cpu); 8059 #endif 8060 8061 if (!sched_smp_initialized) 8062 return 0; 8063 8064 sched_update_numa(cpu, false); 8065 ret = cpuset_cpu_inactive(cpu); 8066 if (ret) { 8067 balance_push_set(cpu, false); 8068 set_cpu_active(cpu, true); 8069 sched_update_numa(cpu, true); 8070 return ret; 8071 } 8072 sched_domains_numa_masks_clear(cpu); 8073 return 0; 8074 } 8075 8076 static void sched_rq_cpu_starting(unsigned int cpu) 8077 { 8078 struct rq *rq = cpu_rq(cpu); 8079 8080 rq->calc_load_update = calc_load_update; 8081 update_max_interval(); 8082 } 8083 8084 int sched_cpu_starting(unsigned int cpu) 8085 { 8086 sched_core_cpu_starting(cpu); 8087 sched_rq_cpu_starting(cpu); 8088 sched_tick_start(cpu); 8089 return 0; 8090 } 8091 8092 #ifdef CONFIG_HOTPLUG_CPU 8093 8094 /* 8095 * Invoked immediately before the stopper thread is invoked to bring the 8096 * CPU down completely. At this point all per CPU kthreads except the 8097 * hotplug thread (current) and the stopper thread (inactive) have been 8098 * either parked or have been unbound from the outgoing CPU. Ensure that 8099 * any of those which might be on the way out are gone. 8100 * 8101 * If after this point a bound task is being woken on this CPU then the 8102 * responsible hotplug callback has failed to do it's job. 8103 * sched_cpu_dying() will catch it with the appropriate fireworks. 8104 */ 8105 int sched_cpu_wait_empty(unsigned int cpu) 8106 { 8107 balance_hotplug_wait(); 8108 return 0; 8109 } 8110 8111 /* 8112 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8113 * might have. Called from the CPU stopper task after ensuring that the 8114 * stopper is the last running task on the CPU, so nr_active count is 8115 * stable. We need to take the tear-down thread which is calling this into 8116 * account, so we hand in adjust = 1 to the load calculation. 8117 * 8118 * Also see the comment "Global load-average calculations". 8119 */ 8120 static void calc_load_migrate(struct rq *rq) 8121 { 8122 long delta = calc_load_fold_active(rq, 1); 8123 8124 if (delta) 8125 atomic_long_add(delta, &calc_load_tasks); 8126 } 8127 8128 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8129 { 8130 struct task_struct *g, *p; 8131 int cpu = cpu_of(rq); 8132 8133 lockdep_assert_rq_held(rq); 8134 8135 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8136 for_each_process_thread(g, p) { 8137 if (task_cpu(p) != cpu) 8138 continue; 8139 8140 if (!task_on_rq_queued(p)) 8141 continue; 8142 8143 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8144 } 8145 } 8146 8147 int sched_cpu_dying(unsigned int cpu) 8148 { 8149 struct rq *rq = cpu_rq(cpu); 8150 struct rq_flags rf; 8151 8152 /* Handle pending wakeups and then migrate everything off */ 8153 sched_tick_stop(cpu); 8154 8155 rq_lock_irqsave(rq, &rf); 8156 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8157 WARN(true, "Dying CPU not properly vacated!"); 8158 dump_rq_tasks(rq, KERN_WARNING); 8159 } 8160 rq_unlock_irqrestore(rq, &rf); 8161 8162 calc_load_migrate(rq); 8163 update_max_interval(); 8164 hrtick_clear(rq); 8165 sched_core_cpu_dying(cpu); 8166 return 0; 8167 } 8168 #endif 8169 8170 void __init sched_init_smp(void) 8171 { 8172 sched_init_numa(NUMA_NO_NODE); 8173 8174 /* 8175 * There's no userspace yet to cause hotplug operations; hence all the 8176 * CPU masks are stable and all blatant races in the below code cannot 8177 * happen. 8178 */ 8179 mutex_lock(&sched_domains_mutex); 8180 sched_init_domains(cpu_active_mask); 8181 mutex_unlock(&sched_domains_mutex); 8182 8183 /* Move init over to a non-isolated CPU */ 8184 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8185 BUG(); 8186 current->flags &= ~PF_NO_SETAFFINITY; 8187 sched_init_granularity(); 8188 8189 init_sched_rt_class(); 8190 init_sched_dl_class(); 8191 8192 sched_smp_initialized = true; 8193 } 8194 8195 static int __init migration_init(void) 8196 { 8197 sched_cpu_starting(smp_processor_id()); 8198 return 0; 8199 } 8200 early_initcall(migration_init); 8201 8202 #else 8203 void __init sched_init_smp(void) 8204 { 8205 sched_init_granularity(); 8206 } 8207 #endif /* CONFIG_SMP */ 8208 8209 int in_sched_functions(unsigned long addr) 8210 { 8211 return in_lock_functions(addr) || 8212 (addr >= (unsigned long)__sched_text_start 8213 && addr < (unsigned long)__sched_text_end); 8214 } 8215 8216 #ifdef CONFIG_CGROUP_SCHED 8217 /* 8218 * Default task group. 8219 * Every task in system belongs to this group at bootup. 8220 */ 8221 struct task_group root_task_group; 8222 LIST_HEAD(task_groups); 8223 8224 /* Cacheline aligned slab cache for task_group */ 8225 static struct kmem_cache *task_group_cache __ro_after_init; 8226 #endif 8227 8228 void __init sched_init(void) 8229 { 8230 unsigned long ptr = 0; 8231 int i; 8232 8233 /* Make sure the linker didn't screw up */ 8234 #ifdef CONFIG_SMP 8235 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8236 #endif 8237 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8238 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8239 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8240 #ifdef CONFIG_SCHED_CLASS_EXT 8241 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8242 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8243 #endif 8244 8245 wait_bit_init(); 8246 8247 #ifdef CONFIG_FAIR_GROUP_SCHED 8248 ptr += 2 * nr_cpu_ids * sizeof(void **); 8249 #endif 8250 #ifdef CONFIG_RT_GROUP_SCHED 8251 ptr += 2 * nr_cpu_ids * sizeof(void **); 8252 #endif 8253 if (ptr) { 8254 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8255 8256 #ifdef CONFIG_FAIR_GROUP_SCHED 8257 root_task_group.se = (struct sched_entity **)ptr; 8258 ptr += nr_cpu_ids * sizeof(void **); 8259 8260 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8261 ptr += nr_cpu_ids * sizeof(void **); 8262 8263 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8264 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8265 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8266 #ifdef CONFIG_RT_GROUP_SCHED 8267 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8268 ptr += nr_cpu_ids * sizeof(void **); 8269 8270 root_task_group.rt_rq = (struct rt_rq **)ptr; 8271 ptr += nr_cpu_ids * sizeof(void **); 8272 8273 #endif /* CONFIG_RT_GROUP_SCHED */ 8274 } 8275 8276 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 8277 8278 #ifdef CONFIG_SMP 8279 init_defrootdomain(); 8280 #endif 8281 8282 #ifdef CONFIG_RT_GROUP_SCHED 8283 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8284 global_rt_period(), global_rt_runtime()); 8285 #endif /* CONFIG_RT_GROUP_SCHED */ 8286 8287 #ifdef CONFIG_CGROUP_SCHED 8288 task_group_cache = KMEM_CACHE(task_group, 0); 8289 8290 list_add(&root_task_group.list, &task_groups); 8291 INIT_LIST_HEAD(&root_task_group.children); 8292 INIT_LIST_HEAD(&root_task_group.siblings); 8293 autogroup_init(&init_task); 8294 #endif /* CONFIG_CGROUP_SCHED */ 8295 8296 for_each_possible_cpu(i) { 8297 struct rq *rq; 8298 8299 rq = cpu_rq(i); 8300 raw_spin_lock_init(&rq->__lock); 8301 rq->nr_running = 0; 8302 rq->calc_load_active = 0; 8303 rq->calc_load_update = jiffies + LOAD_FREQ; 8304 init_cfs_rq(&rq->cfs); 8305 init_rt_rq(&rq->rt); 8306 init_dl_rq(&rq->dl); 8307 #ifdef CONFIG_FAIR_GROUP_SCHED 8308 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8309 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8310 /* 8311 * How much CPU bandwidth does root_task_group get? 8312 * 8313 * In case of task-groups formed through the cgroup filesystem, it 8314 * gets 100% of the CPU resources in the system. This overall 8315 * system CPU resource is divided among the tasks of 8316 * root_task_group and its child task-groups in a fair manner, 8317 * based on each entity's (task or task-group's) weight 8318 * (se->load.weight). 8319 * 8320 * In other words, if root_task_group has 10 tasks of weight 8321 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8322 * then A0's share of the CPU resource is: 8323 * 8324 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8325 * 8326 * We achieve this by letting root_task_group's tasks sit 8327 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8328 */ 8329 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8330 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8331 8332 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 8333 #ifdef CONFIG_RT_GROUP_SCHED 8334 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8335 #endif 8336 #ifdef CONFIG_SMP 8337 rq->sd = NULL; 8338 rq->rd = NULL; 8339 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8340 rq->balance_callback = &balance_push_callback; 8341 rq->active_balance = 0; 8342 rq->next_balance = jiffies; 8343 rq->push_cpu = 0; 8344 rq->cpu = i; 8345 rq->online = 0; 8346 rq->idle_stamp = 0; 8347 rq->avg_idle = 2*sysctl_sched_migration_cost; 8348 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8349 8350 INIT_LIST_HEAD(&rq->cfs_tasks); 8351 8352 rq_attach_root(rq, &def_root_domain); 8353 #ifdef CONFIG_NO_HZ_COMMON 8354 rq->last_blocked_load_update_tick = jiffies; 8355 atomic_set(&rq->nohz_flags, 0); 8356 8357 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8358 #endif 8359 #ifdef CONFIG_HOTPLUG_CPU 8360 rcuwait_init(&rq->hotplug_wait); 8361 #endif 8362 #endif /* CONFIG_SMP */ 8363 hrtick_rq_init(rq); 8364 atomic_set(&rq->nr_iowait, 0); 8365 8366 #ifdef CONFIG_SCHED_CORE 8367 rq->core = rq; 8368 rq->core_pick = NULL; 8369 rq->core_enabled = 0; 8370 rq->core_tree = RB_ROOT; 8371 rq->core_forceidle_count = 0; 8372 rq->core_forceidle_occupation = 0; 8373 rq->core_forceidle_start = 0; 8374 8375 rq->core_cookie = 0UL; 8376 #endif 8377 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8378 } 8379 8380 set_load_weight(&init_task, false); 8381 8382 /* 8383 * The boot idle thread does lazy MMU switching as well: 8384 */ 8385 mmgrab_lazy_tlb(&init_mm); 8386 enter_lazy_tlb(&init_mm, current); 8387 8388 /* 8389 * The idle task doesn't need the kthread struct to function, but it 8390 * is dressed up as a per-CPU kthread and thus needs to play the part 8391 * if we want to avoid special-casing it in code that deals with per-CPU 8392 * kthreads. 8393 */ 8394 WARN_ON(!set_kthread_struct(current)); 8395 8396 /* 8397 * Make us the idle thread. Technically, schedule() should not be 8398 * called from this thread, however somewhere below it might be, 8399 * but because we are the idle thread, we just pick up running again 8400 * when this runqueue becomes "idle". 8401 */ 8402 init_idle(current, smp_processor_id()); 8403 8404 calc_load_update = jiffies + LOAD_FREQ; 8405 8406 #ifdef CONFIG_SMP 8407 idle_thread_set_boot_cpu(); 8408 balance_push_set(smp_processor_id(), false); 8409 #endif 8410 init_sched_fair_class(); 8411 init_sched_ext_class(); 8412 8413 psi_init(); 8414 8415 init_uclamp(); 8416 8417 preempt_dynamic_init(); 8418 8419 scheduler_running = 1; 8420 } 8421 8422 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8423 8424 void __might_sleep(const char *file, int line) 8425 { 8426 unsigned int state = get_current_state(); 8427 /* 8428 * Blocking primitives will set (and therefore destroy) current->state, 8429 * since we will exit with TASK_RUNNING make sure we enter with it, 8430 * otherwise we will destroy state. 8431 */ 8432 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8433 "do not call blocking ops when !TASK_RUNNING; " 8434 "state=%x set at [<%p>] %pS\n", state, 8435 (void *)current->task_state_change, 8436 (void *)current->task_state_change); 8437 8438 __might_resched(file, line, 0); 8439 } 8440 EXPORT_SYMBOL(__might_sleep); 8441 8442 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8443 { 8444 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8445 return; 8446 8447 if (preempt_count() == preempt_offset) 8448 return; 8449 8450 pr_err("Preemption disabled at:"); 8451 print_ip_sym(KERN_ERR, ip); 8452 } 8453 8454 static inline bool resched_offsets_ok(unsigned int offsets) 8455 { 8456 unsigned int nested = preempt_count(); 8457 8458 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8459 8460 return nested == offsets; 8461 } 8462 8463 void __might_resched(const char *file, int line, unsigned int offsets) 8464 { 8465 /* Ratelimiting timestamp: */ 8466 static unsigned long prev_jiffy; 8467 8468 unsigned long preempt_disable_ip; 8469 8470 /* WARN_ON_ONCE() by default, no rate limit required: */ 8471 rcu_sleep_check(); 8472 8473 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8474 !is_idle_task(current) && !current->non_block_count) || 8475 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8476 oops_in_progress) 8477 return; 8478 8479 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8480 return; 8481 prev_jiffy = jiffies; 8482 8483 /* Save this before calling printk(), since that will clobber it: */ 8484 preempt_disable_ip = get_preempt_disable_ip(current); 8485 8486 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8487 file, line); 8488 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8489 in_atomic(), irqs_disabled(), current->non_block_count, 8490 current->pid, current->comm); 8491 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8492 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8493 8494 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8495 pr_err("RCU nest depth: %d, expected: %u\n", 8496 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8497 } 8498 8499 if (task_stack_end_corrupted(current)) 8500 pr_emerg("Thread overran stack, or stack corrupted\n"); 8501 8502 debug_show_held_locks(current); 8503 if (irqs_disabled()) 8504 print_irqtrace_events(current); 8505 8506 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8507 preempt_disable_ip); 8508 8509 dump_stack(); 8510 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8511 } 8512 EXPORT_SYMBOL(__might_resched); 8513 8514 void __cant_sleep(const char *file, int line, int preempt_offset) 8515 { 8516 static unsigned long prev_jiffy; 8517 8518 if (irqs_disabled()) 8519 return; 8520 8521 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8522 return; 8523 8524 if (preempt_count() > preempt_offset) 8525 return; 8526 8527 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8528 return; 8529 prev_jiffy = jiffies; 8530 8531 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8532 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8533 in_atomic(), irqs_disabled(), 8534 current->pid, current->comm); 8535 8536 debug_show_held_locks(current); 8537 dump_stack(); 8538 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8539 } 8540 EXPORT_SYMBOL_GPL(__cant_sleep); 8541 8542 #ifdef CONFIG_SMP 8543 void __cant_migrate(const char *file, int line) 8544 { 8545 static unsigned long prev_jiffy; 8546 8547 if (irqs_disabled()) 8548 return; 8549 8550 if (is_migration_disabled(current)) 8551 return; 8552 8553 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8554 return; 8555 8556 if (preempt_count() > 0) 8557 return; 8558 8559 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8560 return; 8561 prev_jiffy = jiffies; 8562 8563 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8564 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8565 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8566 current->pid, current->comm); 8567 8568 debug_show_held_locks(current); 8569 dump_stack(); 8570 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8571 } 8572 EXPORT_SYMBOL_GPL(__cant_migrate); 8573 #endif 8574 #endif 8575 8576 #ifdef CONFIG_MAGIC_SYSRQ 8577 void normalize_rt_tasks(void) 8578 { 8579 struct task_struct *g, *p; 8580 struct sched_attr attr = { 8581 .sched_policy = SCHED_NORMAL, 8582 }; 8583 8584 read_lock(&tasklist_lock); 8585 for_each_process_thread(g, p) { 8586 /* 8587 * Only normalize user tasks: 8588 */ 8589 if (p->flags & PF_KTHREAD) 8590 continue; 8591 8592 p->se.exec_start = 0; 8593 schedstat_set(p->stats.wait_start, 0); 8594 schedstat_set(p->stats.sleep_start, 0); 8595 schedstat_set(p->stats.block_start, 0); 8596 8597 if (!dl_task(p) && !rt_task(p)) { 8598 /* 8599 * Renice negative nice level userspace 8600 * tasks back to 0: 8601 */ 8602 if (task_nice(p) < 0) 8603 set_user_nice(p, 0); 8604 continue; 8605 } 8606 8607 __sched_setscheduler(p, &attr, false, false); 8608 } 8609 read_unlock(&tasklist_lock); 8610 } 8611 8612 #endif /* CONFIG_MAGIC_SYSRQ */ 8613 8614 #if defined(CONFIG_KGDB_KDB) 8615 /* 8616 * These functions are only useful for KDB. 8617 * 8618 * They can only be called when the whole system has been 8619 * stopped - every CPU needs to be quiescent, and no scheduling 8620 * activity can take place. Using them for anything else would 8621 * be a serious bug, and as a result, they aren't even visible 8622 * under any other configuration. 8623 */ 8624 8625 /** 8626 * curr_task - return the current task for a given CPU. 8627 * @cpu: the processor in question. 8628 * 8629 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8630 * 8631 * Return: The current task for @cpu. 8632 */ 8633 struct task_struct *curr_task(int cpu) 8634 { 8635 return cpu_curr(cpu); 8636 } 8637 8638 #endif /* defined(CONFIG_KGDB_KDB) */ 8639 8640 #ifdef CONFIG_CGROUP_SCHED 8641 /* task_group_lock serializes the addition/removal of task groups */ 8642 static DEFINE_SPINLOCK(task_group_lock); 8643 8644 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8645 struct task_group *parent) 8646 { 8647 #ifdef CONFIG_UCLAMP_TASK_GROUP 8648 enum uclamp_id clamp_id; 8649 8650 for_each_clamp_id(clamp_id) { 8651 uclamp_se_set(&tg->uclamp_req[clamp_id], 8652 uclamp_none(clamp_id), false); 8653 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8654 } 8655 #endif 8656 } 8657 8658 static void sched_free_group(struct task_group *tg) 8659 { 8660 free_fair_sched_group(tg); 8661 free_rt_sched_group(tg); 8662 autogroup_free(tg); 8663 kmem_cache_free(task_group_cache, tg); 8664 } 8665 8666 static void sched_free_group_rcu(struct rcu_head *rcu) 8667 { 8668 sched_free_group(container_of(rcu, struct task_group, rcu)); 8669 } 8670 8671 static void sched_unregister_group(struct task_group *tg) 8672 { 8673 unregister_fair_sched_group(tg); 8674 unregister_rt_sched_group(tg); 8675 /* 8676 * We have to wait for yet another RCU grace period to expire, as 8677 * print_cfs_stats() might run concurrently. 8678 */ 8679 call_rcu(&tg->rcu, sched_free_group_rcu); 8680 } 8681 8682 /* allocate runqueue etc for a new task group */ 8683 struct task_group *sched_create_group(struct task_group *parent) 8684 { 8685 struct task_group *tg; 8686 8687 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8688 if (!tg) 8689 return ERR_PTR(-ENOMEM); 8690 8691 if (!alloc_fair_sched_group(tg, parent)) 8692 goto err; 8693 8694 if (!alloc_rt_sched_group(tg, parent)) 8695 goto err; 8696 8697 alloc_uclamp_sched_group(tg, parent); 8698 8699 return tg; 8700 8701 err: 8702 sched_free_group(tg); 8703 return ERR_PTR(-ENOMEM); 8704 } 8705 8706 void sched_online_group(struct task_group *tg, struct task_group *parent) 8707 { 8708 unsigned long flags; 8709 8710 spin_lock_irqsave(&task_group_lock, flags); 8711 list_add_rcu(&tg->list, &task_groups); 8712 8713 /* Root should already exist: */ 8714 WARN_ON(!parent); 8715 8716 tg->parent = parent; 8717 INIT_LIST_HEAD(&tg->children); 8718 list_add_rcu(&tg->siblings, &parent->children); 8719 spin_unlock_irqrestore(&task_group_lock, flags); 8720 8721 online_fair_sched_group(tg); 8722 } 8723 8724 /* RCU callback to free various structures associated with a task group */ 8725 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8726 { 8727 /* Now it should be safe to free those cfs_rqs: */ 8728 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8729 } 8730 8731 void sched_destroy_group(struct task_group *tg) 8732 { 8733 /* Wait for possible concurrent references to cfs_rqs complete: */ 8734 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8735 } 8736 8737 void sched_release_group(struct task_group *tg) 8738 { 8739 unsigned long flags; 8740 8741 /* 8742 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 8743 * sched_cfs_period_timer()). 8744 * 8745 * For this to be effective, we have to wait for all pending users of 8746 * this task group to leave their RCU critical section to ensure no new 8747 * user will see our dying task group any more. Specifically ensure 8748 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 8749 * 8750 * We therefore defer calling unregister_fair_sched_group() to 8751 * sched_unregister_group() which is guarantied to get called only after the 8752 * current RCU grace period has expired. 8753 */ 8754 spin_lock_irqsave(&task_group_lock, flags); 8755 list_del_rcu(&tg->list); 8756 list_del_rcu(&tg->siblings); 8757 spin_unlock_irqrestore(&task_group_lock, flags); 8758 } 8759 8760 static struct task_group *sched_get_task_group(struct task_struct *tsk) 8761 { 8762 struct task_group *tg; 8763 8764 /* 8765 * All callers are synchronized by task_rq_lock(); we do not use RCU 8766 * which is pointless here. Thus, we pass "true" to task_css_check() 8767 * to prevent lockdep warnings. 8768 */ 8769 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8770 struct task_group, css); 8771 tg = autogroup_task_group(tsk, tg); 8772 8773 return tg; 8774 } 8775 8776 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 8777 { 8778 tsk->sched_task_group = group; 8779 8780 #ifdef CONFIG_FAIR_GROUP_SCHED 8781 if (tsk->sched_class->task_change_group) 8782 tsk->sched_class->task_change_group(tsk); 8783 else 8784 #endif 8785 set_task_rq(tsk, task_cpu(tsk)); 8786 } 8787 8788 /* 8789 * Change task's runqueue when it moves between groups. 8790 * 8791 * The caller of this function should have put the task in its new group by 8792 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8793 * its new group. 8794 */ 8795 void sched_move_task(struct task_struct *tsk) 8796 { 8797 int queued, running, queue_flags = 8798 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8799 struct task_group *group; 8800 struct rq *rq; 8801 8802 CLASS(task_rq_lock, rq_guard)(tsk); 8803 rq = rq_guard.rq; 8804 8805 /* 8806 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 8807 * group changes. 8808 */ 8809 group = sched_get_task_group(tsk); 8810 if (group == tsk->sched_task_group) 8811 return; 8812 8813 update_rq_clock(rq); 8814 8815 running = task_current(rq, tsk); 8816 queued = task_on_rq_queued(tsk); 8817 8818 if (queued) 8819 dequeue_task(rq, tsk, queue_flags); 8820 if (running) 8821 put_prev_task(rq, tsk); 8822 8823 sched_change_group(tsk, group); 8824 8825 if (queued) 8826 enqueue_task(rq, tsk, queue_flags); 8827 if (running) { 8828 set_next_task(rq, tsk); 8829 /* 8830 * After changing group, the running task may have joined a 8831 * throttled one but it's still the running task. Trigger a 8832 * resched to make sure that task can still run. 8833 */ 8834 resched_curr(rq); 8835 } 8836 } 8837 8838 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8839 { 8840 return css ? container_of(css, struct task_group, css) : NULL; 8841 } 8842 8843 static struct cgroup_subsys_state * 8844 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8845 { 8846 struct task_group *parent = css_tg(parent_css); 8847 struct task_group *tg; 8848 8849 if (!parent) { 8850 /* This is early initialization for the top cgroup */ 8851 return &root_task_group.css; 8852 } 8853 8854 tg = sched_create_group(parent); 8855 if (IS_ERR(tg)) 8856 return ERR_PTR(-ENOMEM); 8857 8858 return &tg->css; 8859 } 8860 8861 /* Expose task group only after completing cgroup initialization */ 8862 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8863 { 8864 struct task_group *tg = css_tg(css); 8865 struct task_group *parent = css_tg(css->parent); 8866 8867 if (parent) 8868 sched_online_group(tg, parent); 8869 8870 #ifdef CONFIG_UCLAMP_TASK_GROUP 8871 /* Propagate the effective uclamp value for the new group */ 8872 guard(mutex)(&uclamp_mutex); 8873 guard(rcu)(); 8874 cpu_util_update_eff(css); 8875 #endif 8876 8877 return 0; 8878 } 8879 8880 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8881 { 8882 struct task_group *tg = css_tg(css); 8883 8884 sched_release_group(tg); 8885 } 8886 8887 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8888 { 8889 struct task_group *tg = css_tg(css); 8890 8891 /* 8892 * Relies on the RCU grace period between css_released() and this. 8893 */ 8894 sched_unregister_group(tg); 8895 } 8896 8897 #ifdef CONFIG_RT_GROUP_SCHED 8898 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8899 { 8900 struct task_struct *task; 8901 struct cgroup_subsys_state *css; 8902 8903 cgroup_taskset_for_each(task, css, tset) { 8904 if (!sched_rt_can_attach(css_tg(css), task)) 8905 return -EINVAL; 8906 } 8907 return 0; 8908 } 8909 #endif 8910 8911 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8912 { 8913 struct task_struct *task; 8914 struct cgroup_subsys_state *css; 8915 8916 cgroup_taskset_for_each(task, css, tset) 8917 sched_move_task(task); 8918 } 8919 8920 #ifdef CONFIG_UCLAMP_TASK_GROUP 8921 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 8922 { 8923 struct cgroup_subsys_state *top_css = css; 8924 struct uclamp_se *uc_parent = NULL; 8925 struct uclamp_se *uc_se = NULL; 8926 unsigned int eff[UCLAMP_CNT]; 8927 enum uclamp_id clamp_id; 8928 unsigned int clamps; 8929 8930 lockdep_assert_held(&uclamp_mutex); 8931 SCHED_WARN_ON(!rcu_read_lock_held()); 8932 8933 css_for_each_descendant_pre(css, top_css) { 8934 uc_parent = css_tg(css)->parent 8935 ? css_tg(css)->parent->uclamp : NULL; 8936 8937 for_each_clamp_id(clamp_id) { 8938 /* Assume effective clamps matches requested clamps */ 8939 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 8940 /* Cap effective clamps with parent's effective clamps */ 8941 if (uc_parent && 8942 eff[clamp_id] > uc_parent[clamp_id].value) { 8943 eff[clamp_id] = uc_parent[clamp_id].value; 8944 } 8945 } 8946 /* Ensure protection is always capped by limit */ 8947 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 8948 8949 /* Propagate most restrictive effective clamps */ 8950 clamps = 0x0; 8951 uc_se = css_tg(css)->uclamp; 8952 for_each_clamp_id(clamp_id) { 8953 if (eff[clamp_id] == uc_se[clamp_id].value) 8954 continue; 8955 uc_se[clamp_id].value = eff[clamp_id]; 8956 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 8957 clamps |= (0x1 << clamp_id); 8958 } 8959 if (!clamps) { 8960 css = css_rightmost_descendant(css); 8961 continue; 8962 } 8963 8964 /* Immediately update descendants RUNNABLE tasks */ 8965 uclamp_update_active_tasks(css); 8966 } 8967 } 8968 8969 /* 8970 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 8971 * C expression. Since there is no way to convert a macro argument (N) into a 8972 * character constant, use two levels of macros. 8973 */ 8974 #define _POW10(exp) ((unsigned int)1e##exp) 8975 #define POW10(exp) _POW10(exp) 8976 8977 struct uclamp_request { 8978 #define UCLAMP_PERCENT_SHIFT 2 8979 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 8980 s64 percent; 8981 u64 util; 8982 int ret; 8983 }; 8984 8985 static inline struct uclamp_request 8986 capacity_from_percent(char *buf) 8987 { 8988 struct uclamp_request req = { 8989 .percent = UCLAMP_PERCENT_SCALE, 8990 .util = SCHED_CAPACITY_SCALE, 8991 .ret = 0, 8992 }; 8993 8994 buf = strim(buf); 8995 if (strcmp(buf, "max")) { 8996 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 8997 &req.percent); 8998 if (req.ret) 8999 return req; 9000 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9001 req.ret = -ERANGE; 9002 return req; 9003 } 9004 9005 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9006 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9007 } 9008 9009 return req; 9010 } 9011 9012 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9013 size_t nbytes, loff_t off, 9014 enum uclamp_id clamp_id) 9015 { 9016 struct uclamp_request req; 9017 struct task_group *tg; 9018 9019 req = capacity_from_percent(buf); 9020 if (req.ret) 9021 return req.ret; 9022 9023 static_branch_enable(&sched_uclamp_used); 9024 9025 guard(mutex)(&uclamp_mutex); 9026 guard(rcu)(); 9027 9028 tg = css_tg(of_css(of)); 9029 if (tg->uclamp_req[clamp_id].value != req.util) 9030 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9031 9032 /* 9033 * Because of not recoverable conversion rounding we keep track of the 9034 * exact requested value 9035 */ 9036 tg->uclamp_pct[clamp_id] = req.percent; 9037 9038 /* Update effective clamps to track the most restrictive value */ 9039 cpu_util_update_eff(of_css(of)); 9040 9041 return nbytes; 9042 } 9043 9044 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9045 char *buf, size_t nbytes, 9046 loff_t off) 9047 { 9048 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9049 } 9050 9051 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9052 char *buf, size_t nbytes, 9053 loff_t off) 9054 { 9055 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9056 } 9057 9058 static inline void cpu_uclamp_print(struct seq_file *sf, 9059 enum uclamp_id clamp_id) 9060 { 9061 struct task_group *tg; 9062 u64 util_clamp; 9063 u64 percent; 9064 u32 rem; 9065 9066 scoped_guard (rcu) { 9067 tg = css_tg(seq_css(sf)); 9068 util_clamp = tg->uclamp_req[clamp_id].value; 9069 } 9070 9071 if (util_clamp == SCHED_CAPACITY_SCALE) { 9072 seq_puts(sf, "max\n"); 9073 return; 9074 } 9075 9076 percent = tg->uclamp_pct[clamp_id]; 9077 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9078 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9079 } 9080 9081 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9082 { 9083 cpu_uclamp_print(sf, UCLAMP_MIN); 9084 return 0; 9085 } 9086 9087 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9088 { 9089 cpu_uclamp_print(sf, UCLAMP_MAX); 9090 return 0; 9091 } 9092 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9093 9094 #ifdef CONFIG_FAIR_GROUP_SCHED 9095 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9096 struct cftype *cftype, u64 shareval) 9097 { 9098 if (shareval > scale_load_down(ULONG_MAX)) 9099 shareval = MAX_SHARES; 9100 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 9101 } 9102 9103 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9104 struct cftype *cft) 9105 { 9106 struct task_group *tg = css_tg(css); 9107 9108 return (u64) scale_load_down(tg->shares); 9109 } 9110 9111 #ifdef CONFIG_CFS_BANDWIDTH 9112 static DEFINE_MUTEX(cfs_constraints_mutex); 9113 9114 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9115 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9116 /* More than 203 days if BW_SHIFT equals 20. */ 9117 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9118 9119 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9120 9121 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9122 u64 burst) 9123 { 9124 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9125 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9126 9127 if (tg == &root_task_group) 9128 return -EINVAL; 9129 9130 /* 9131 * Ensure we have at some amount of bandwidth every period. This is 9132 * to prevent reaching a state of large arrears when throttled via 9133 * entity_tick() resulting in prolonged exit starvation. 9134 */ 9135 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9136 return -EINVAL; 9137 9138 /* 9139 * Likewise, bound things on the other side by preventing insane quota 9140 * periods. This also allows us to normalize in computing quota 9141 * feasibility. 9142 */ 9143 if (period > max_cfs_quota_period) 9144 return -EINVAL; 9145 9146 /* 9147 * Bound quota to defend quota against overflow during bandwidth shift. 9148 */ 9149 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9150 return -EINVAL; 9151 9152 if (quota != RUNTIME_INF && (burst > quota || 9153 burst + quota > max_cfs_runtime)) 9154 return -EINVAL; 9155 9156 /* 9157 * Prevent race between setting of cfs_rq->runtime_enabled and 9158 * unthrottle_offline_cfs_rqs(). 9159 */ 9160 guard(cpus_read_lock)(); 9161 guard(mutex)(&cfs_constraints_mutex); 9162 9163 ret = __cfs_schedulable(tg, period, quota); 9164 if (ret) 9165 return ret; 9166 9167 runtime_enabled = quota != RUNTIME_INF; 9168 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9169 /* 9170 * If we need to toggle cfs_bandwidth_used, off->on must occur 9171 * before making related changes, and on->off must occur afterwards 9172 */ 9173 if (runtime_enabled && !runtime_was_enabled) 9174 cfs_bandwidth_usage_inc(); 9175 9176 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9177 cfs_b->period = ns_to_ktime(period); 9178 cfs_b->quota = quota; 9179 cfs_b->burst = burst; 9180 9181 __refill_cfs_bandwidth_runtime(cfs_b); 9182 9183 /* 9184 * Restart the period timer (if active) to handle new 9185 * period expiry: 9186 */ 9187 if (runtime_enabled) 9188 start_cfs_bandwidth(cfs_b); 9189 } 9190 9191 for_each_online_cpu(i) { 9192 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9193 struct rq *rq = cfs_rq->rq; 9194 9195 guard(rq_lock_irq)(rq); 9196 cfs_rq->runtime_enabled = runtime_enabled; 9197 cfs_rq->runtime_remaining = 0; 9198 9199 if (cfs_rq->throttled) 9200 unthrottle_cfs_rq(cfs_rq); 9201 } 9202 9203 if (runtime_was_enabled && !runtime_enabled) 9204 cfs_bandwidth_usage_dec(); 9205 9206 return 0; 9207 } 9208 9209 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9210 { 9211 u64 quota, period, burst; 9212 9213 period = ktime_to_ns(tg->cfs_bandwidth.period); 9214 burst = tg->cfs_bandwidth.burst; 9215 if (cfs_quota_us < 0) 9216 quota = RUNTIME_INF; 9217 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9218 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9219 else 9220 return -EINVAL; 9221 9222 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9223 } 9224 9225 static long tg_get_cfs_quota(struct task_group *tg) 9226 { 9227 u64 quota_us; 9228 9229 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9230 return -1; 9231 9232 quota_us = tg->cfs_bandwidth.quota; 9233 do_div(quota_us, NSEC_PER_USEC); 9234 9235 return quota_us; 9236 } 9237 9238 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9239 { 9240 u64 quota, period, burst; 9241 9242 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9243 return -EINVAL; 9244 9245 period = (u64)cfs_period_us * NSEC_PER_USEC; 9246 quota = tg->cfs_bandwidth.quota; 9247 burst = tg->cfs_bandwidth.burst; 9248 9249 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9250 } 9251 9252 static long tg_get_cfs_period(struct task_group *tg) 9253 { 9254 u64 cfs_period_us; 9255 9256 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9257 do_div(cfs_period_us, NSEC_PER_USEC); 9258 9259 return cfs_period_us; 9260 } 9261 9262 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9263 { 9264 u64 quota, period, burst; 9265 9266 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9267 return -EINVAL; 9268 9269 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9270 period = ktime_to_ns(tg->cfs_bandwidth.period); 9271 quota = tg->cfs_bandwidth.quota; 9272 9273 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9274 } 9275 9276 static long tg_get_cfs_burst(struct task_group *tg) 9277 { 9278 u64 burst_us; 9279 9280 burst_us = tg->cfs_bandwidth.burst; 9281 do_div(burst_us, NSEC_PER_USEC); 9282 9283 return burst_us; 9284 } 9285 9286 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9287 struct cftype *cft) 9288 { 9289 return tg_get_cfs_quota(css_tg(css)); 9290 } 9291 9292 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9293 struct cftype *cftype, s64 cfs_quota_us) 9294 { 9295 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9296 } 9297 9298 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9299 struct cftype *cft) 9300 { 9301 return tg_get_cfs_period(css_tg(css)); 9302 } 9303 9304 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9305 struct cftype *cftype, u64 cfs_period_us) 9306 { 9307 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9308 } 9309 9310 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9311 struct cftype *cft) 9312 { 9313 return tg_get_cfs_burst(css_tg(css)); 9314 } 9315 9316 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9317 struct cftype *cftype, u64 cfs_burst_us) 9318 { 9319 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9320 } 9321 9322 struct cfs_schedulable_data { 9323 struct task_group *tg; 9324 u64 period, quota; 9325 }; 9326 9327 /* 9328 * normalize group quota/period to be quota/max_period 9329 * note: units are usecs 9330 */ 9331 static u64 normalize_cfs_quota(struct task_group *tg, 9332 struct cfs_schedulable_data *d) 9333 { 9334 u64 quota, period; 9335 9336 if (tg == d->tg) { 9337 period = d->period; 9338 quota = d->quota; 9339 } else { 9340 period = tg_get_cfs_period(tg); 9341 quota = tg_get_cfs_quota(tg); 9342 } 9343 9344 /* note: these should typically be equivalent */ 9345 if (quota == RUNTIME_INF || quota == -1) 9346 return RUNTIME_INF; 9347 9348 return to_ratio(period, quota); 9349 } 9350 9351 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9352 { 9353 struct cfs_schedulable_data *d = data; 9354 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9355 s64 quota = 0, parent_quota = -1; 9356 9357 if (!tg->parent) { 9358 quota = RUNTIME_INF; 9359 } else { 9360 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9361 9362 quota = normalize_cfs_quota(tg, d); 9363 parent_quota = parent_b->hierarchical_quota; 9364 9365 /* 9366 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9367 * always take the non-RUNTIME_INF min. On cgroup1, only 9368 * inherit when no limit is set. In both cases this is used 9369 * by the scheduler to determine if a given CFS task has a 9370 * bandwidth constraint at some higher level. 9371 */ 9372 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9373 if (quota == RUNTIME_INF) 9374 quota = parent_quota; 9375 else if (parent_quota != RUNTIME_INF) 9376 quota = min(quota, parent_quota); 9377 } else { 9378 if (quota == RUNTIME_INF) 9379 quota = parent_quota; 9380 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9381 return -EINVAL; 9382 } 9383 } 9384 cfs_b->hierarchical_quota = quota; 9385 9386 return 0; 9387 } 9388 9389 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9390 { 9391 struct cfs_schedulable_data data = { 9392 .tg = tg, 9393 .period = period, 9394 .quota = quota, 9395 }; 9396 9397 if (quota != RUNTIME_INF) { 9398 do_div(data.period, NSEC_PER_USEC); 9399 do_div(data.quota, NSEC_PER_USEC); 9400 } 9401 9402 guard(rcu)(); 9403 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9404 } 9405 9406 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9407 { 9408 struct task_group *tg = css_tg(seq_css(sf)); 9409 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9410 9411 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9412 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9413 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9414 9415 if (schedstat_enabled() && tg != &root_task_group) { 9416 struct sched_statistics *stats; 9417 u64 ws = 0; 9418 int i; 9419 9420 for_each_possible_cpu(i) { 9421 stats = __schedstats_from_se(tg->se[i]); 9422 ws += schedstat_val(stats->wait_sum); 9423 } 9424 9425 seq_printf(sf, "wait_sum %llu\n", ws); 9426 } 9427 9428 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9429 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9430 9431 return 0; 9432 } 9433 9434 static u64 throttled_time_self(struct task_group *tg) 9435 { 9436 int i; 9437 u64 total = 0; 9438 9439 for_each_possible_cpu(i) { 9440 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9441 } 9442 9443 return total; 9444 } 9445 9446 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9447 { 9448 struct task_group *tg = css_tg(seq_css(sf)); 9449 9450 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9451 9452 return 0; 9453 } 9454 #endif /* CONFIG_CFS_BANDWIDTH */ 9455 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9456 9457 #ifdef CONFIG_RT_GROUP_SCHED 9458 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9459 struct cftype *cft, s64 val) 9460 { 9461 return sched_group_set_rt_runtime(css_tg(css), val); 9462 } 9463 9464 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9465 struct cftype *cft) 9466 { 9467 return sched_group_rt_runtime(css_tg(css)); 9468 } 9469 9470 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9471 struct cftype *cftype, u64 rt_period_us) 9472 { 9473 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9474 } 9475 9476 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9477 struct cftype *cft) 9478 { 9479 return sched_group_rt_period(css_tg(css)); 9480 } 9481 #endif /* CONFIG_RT_GROUP_SCHED */ 9482 9483 #ifdef CONFIG_FAIR_GROUP_SCHED 9484 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9485 struct cftype *cft) 9486 { 9487 return css_tg(css)->idle; 9488 } 9489 9490 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9491 struct cftype *cft, s64 idle) 9492 { 9493 return sched_group_set_idle(css_tg(css), idle); 9494 } 9495 #endif 9496 9497 static struct cftype cpu_legacy_files[] = { 9498 #ifdef CONFIG_FAIR_GROUP_SCHED 9499 { 9500 .name = "shares", 9501 .read_u64 = cpu_shares_read_u64, 9502 .write_u64 = cpu_shares_write_u64, 9503 }, 9504 { 9505 .name = "idle", 9506 .read_s64 = cpu_idle_read_s64, 9507 .write_s64 = cpu_idle_write_s64, 9508 }, 9509 #endif 9510 #ifdef CONFIG_CFS_BANDWIDTH 9511 { 9512 .name = "cfs_quota_us", 9513 .read_s64 = cpu_cfs_quota_read_s64, 9514 .write_s64 = cpu_cfs_quota_write_s64, 9515 }, 9516 { 9517 .name = "cfs_period_us", 9518 .read_u64 = cpu_cfs_period_read_u64, 9519 .write_u64 = cpu_cfs_period_write_u64, 9520 }, 9521 { 9522 .name = "cfs_burst_us", 9523 .read_u64 = cpu_cfs_burst_read_u64, 9524 .write_u64 = cpu_cfs_burst_write_u64, 9525 }, 9526 { 9527 .name = "stat", 9528 .seq_show = cpu_cfs_stat_show, 9529 }, 9530 { 9531 .name = "stat.local", 9532 .seq_show = cpu_cfs_local_stat_show, 9533 }, 9534 #endif 9535 #ifdef CONFIG_RT_GROUP_SCHED 9536 { 9537 .name = "rt_runtime_us", 9538 .read_s64 = cpu_rt_runtime_read, 9539 .write_s64 = cpu_rt_runtime_write, 9540 }, 9541 { 9542 .name = "rt_period_us", 9543 .read_u64 = cpu_rt_period_read_uint, 9544 .write_u64 = cpu_rt_period_write_uint, 9545 }, 9546 #endif 9547 #ifdef CONFIG_UCLAMP_TASK_GROUP 9548 { 9549 .name = "uclamp.min", 9550 .flags = CFTYPE_NOT_ON_ROOT, 9551 .seq_show = cpu_uclamp_min_show, 9552 .write = cpu_uclamp_min_write, 9553 }, 9554 { 9555 .name = "uclamp.max", 9556 .flags = CFTYPE_NOT_ON_ROOT, 9557 .seq_show = cpu_uclamp_max_show, 9558 .write = cpu_uclamp_max_write, 9559 }, 9560 #endif 9561 { } /* Terminate */ 9562 }; 9563 9564 static int cpu_extra_stat_show(struct seq_file *sf, 9565 struct cgroup_subsys_state *css) 9566 { 9567 #ifdef CONFIG_CFS_BANDWIDTH 9568 { 9569 struct task_group *tg = css_tg(css); 9570 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9571 u64 throttled_usec, burst_usec; 9572 9573 throttled_usec = cfs_b->throttled_time; 9574 do_div(throttled_usec, NSEC_PER_USEC); 9575 burst_usec = cfs_b->burst_time; 9576 do_div(burst_usec, NSEC_PER_USEC); 9577 9578 seq_printf(sf, "nr_periods %d\n" 9579 "nr_throttled %d\n" 9580 "throttled_usec %llu\n" 9581 "nr_bursts %d\n" 9582 "burst_usec %llu\n", 9583 cfs_b->nr_periods, cfs_b->nr_throttled, 9584 throttled_usec, cfs_b->nr_burst, burst_usec); 9585 } 9586 #endif 9587 return 0; 9588 } 9589 9590 static int cpu_local_stat_show(struct seq_file *sf, 9591 struct cgroup_subsys_state *css) 9592 { 9593 #ifdef CONFIG_CFS_BANDWIDTH 9594 { 9595 struct task_group *tg = css_tg(css); 9596 u64 throttled_self_usec; 9597 9598 throttled_self_usec = throttled_time_self(tg); 9599 do_div(throttled_self_usec, NSEC_PER_USEC); 9600 9601 seq_printf(sf, "throttled_usec %llu\n", 9602 throttled_self_usec); 9603 } 9604 #endif 9605 return 0; 9606 } 9607 9608 #ifdef CONFIG_FAIR_GROUP_SCHED 9609 9610 static unsigned long tg_weight(struct task_group *tg) 9611 { 9612 return scale_load_down(tg->shares); 9613 } 9614 9615 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9616 struct cftype *cft) 9617 { 9618 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9619 } 9620 9621 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9622 struct cftype *cft, u64 cgrp_weight) 9623 { 9624 unsigned long weight; 9625 9626 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9627 return -ERANGE; 9628 9629 weight = sched_weight_from_cgroup(cgrp_weight); 9630 9631 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9632 } 9633 9634 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9635 struct cftype *cft) 9636 { 9637 unsigned long weight = tg_weight(css_tg(css)); 9638 int last_delta = INT_MAX; 9639 int prio, delta; 9640 9641 /* find the closest nice value to the current weight */ 9642 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9643 delta = abs(sched_prio_to_weight[prio] - weight); 9644 if (delta >= last_delta) 9645 break; 9646 last_delta = delta; 9647 } 9648 9649 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9650 } 9651 9652 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9653 struct cftype *cft, s64 nice) 9654 { 9655 unsigned long weight; 9656 int idx; 9657 9658 if (nice < MIN_NICE || nice > MAX_NICE) 9659 return -ERANGE; 9660 9661 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9662 idx = array_index_nospec(idx, 40); 9663 weight = sched_prio_to_weight[idx]; 9664 9665 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9666 } 9667 #endif 9668 9669 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9670 long period, long quota) 9671 { 9672 if (quota < 0) 9673 seq_puts(sf, "max"); 9674 else 9675 seq_printf(sf, "%ld", quota); 9676 9677 seq_printf(sf, " %ld\n", period); 9678 } 9679 9680 /* caller should put the current value in *@periodp before calling */ 9681 static int __maybe_unused cpu_period_quota_parse(char *buf, 9682 u64 *periodp, u64 *quotap) 9683 { 9684 char tok[21]; /* U64_MAX */ 9685 9686 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9687 return -EINVAL; 9688 9689 *periodp *= NSEC_PER_USEC; 9690 9691 if (sscanf(tok, "%llu", quotap)) 9692 *quotap *= NSEC_PER_USEC; 9693 else if (!strcmp(tok, "max")) 9694 *quotap = RUNTIME_INF; 9695 else 9696 return -EINVAL; 9697 9698 return 0; 9699 } 9700 9701 #ifdef CONFIG_CFS_BANDWIDTH 9702 static int cpu_max_show(struct seq_file *sf, void *v) 9703 { 9704 struct task_group *tg = css_tg(seq_css(sf)); 9705 9706 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9707 return 0; 9708 } 9709 9710 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9711 char *buf, size_t nbytes, loff_t off) 9712 { 9713 struct task_group *tg = css_tg(of_css(of)); 9714 u64 period = tg_get_cfs_period(tg); 9715 u64 burst = tg->cfs_bandwidth.burst; 9716 u64 quota; 9717 int ret; 9718 9719 ret = cpu_period_quota_parse(buf, &period, "a); 9720 if (!ret) 9721 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 9722 return ret ?: nbytes; 9723 } 9724 #endif 9725 9726 static struct cftype cpu_files[] = { 9727 #ifdef CONFIG_FAIR_GROUP_SCHED 9728 { 9729 .name = "weight", 9730 .flags = CFTYPE_NOT_ON_ROOT, 9731 .read_u64 = cpu_weight_read_u64, 9732 .write_u64 = cpu_weight_write_u64, 9733 }, 9734 { 9735 .name = "weight.nice", 9736 .flags = CFTYPE_NOT_ON_ROOT, 9737 .read_s64 = cpu_weight_nice_read_s64, 9738 .write_s64 = cpu_weight_nice_write_s64, 9739 }, 9740 { 9741 .name = "idle", 9742 .flags = CFTYPE_NOT_ON_ROOT, 9743 .read_s64 = cpu_idle_read_s64, 9744 .write_s64 = cpu_idle_write_s64, 9745 }, 9746 #endif 9747 #ifdef CONFIG_CFS_BANDWIDTH 9748 { 9749 .name = "max", 9750 .flags = CFTYPE_NOT_ON_ROOT, 9751 .seq_show = cpu_max_show, 9752 .write = cpu_max_write, 9753 }, 9754 { 9755 .name = "max.burst", 9756 .flags = CFTYPE_NOT_ON_ROOT, 9757 .read_u64 = cpu_cfs_burst_read_u64, 9758 .write_u64 = cpu_cfs_burst_write_u64, 9759 }, 9760 #endif 9761 #ifdef CONFIG_UCLAMP_TASK_GROUP 9762 { 9763 .name = "uclamp.min", 9764 .flags = CFTYPE_NOT_ON_ROOT, 9765 .seq_show = cpu_uclamp_min_show, 9766 .write = cpu_uclamp_min_write, 9767 }, 9768 { 9769 .name = "uclamp.max", 9770 .flags = CFTYPE_NOT_ON_ROOT, 9771 .seq_show = cpu_uclamp_max_show, 9772 .write = cpu_uclamp_max_write, 9773 }, 9774 #endif 9775 { } /* terminate */ 9776 }; 9777 9778 struct cgroup_subsys cpu_cgrp_subsys = { 9779 .css_alloc = cpu_cgroup_css_alloc, 9780 .css_online = cpu_cgroup_css_online, 9781 .css_released = cpu_cgroup_css_released, 9782 .css_free = cpu_cgroup_css_free, 9783 .css_extra_stat_show = cpu_extra_stat_show, 9784 .css_local_stat_show = cpu_local_stat_show, 9785 #ifdef CONFIG_RT_GROUP_SCHED 9786 .can_attach = cpu_cgroup_can_attach, 9787 #endif 9788 .attach = cpu_cgroup_attach, 9789 .legacy_cftypes = cpu_legacy_files, 9790 .dfl_cftypes = cpu_files, 9791 .early_init = true, 9792 .threaded = true, 9793 }; 9794 9795 #endif /* CONFIG_CGROUP_SCHED */ 9796 9797 void dump_cpu_task(int cpu) 9798 { 9799 if (cpu == smp_processor_id() && in_hardirq()) { 9800 struct pt_regs *regs; 9801 9802 regs = get_irq_regs(); 9803 if (regs) { 9804 show_regs(regs); 9805 return; 9806 } 9807 } 9808 9809 if (trigger_single_cpu_backtrace(cpu)) 9810 return; 9811 9812 pr_info("Task dump for CPU %d:\n", cpu); 9813 sched_show_task(cpu_curr(cpu)); 9814 } 9815 9816 /* 9817 * Nice levels are multiplicative, with a gentle 10% change for every 9818 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9819 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9820 * that remained on nice 0. 9821 * 9822 * The "10% effect" is relative and cumulative: from _any_ nice level, 9823 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9824 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9825 * If a task goes up by ~10% and another task goes down by ~10% then 9826 * the relative distance between them is ~25%.) 9827 */ 9828 const int sched_prio_to_weight[40] = { 9829 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9830 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9831 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9832 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9833 /* 0 */ 1024, 820, 655, 526, 423, 9834 /* 5 */ 335, 272, 215, 172, 137, 9835 /* 10 */ 110, 87, 70, 56, 45, 9836 /* 15 */ 36, 29, 23, 18, 15, 9837 }; 9838 9839 /* 9840 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 9841 * 9842 * In cases where the weight does not change often, we can use the 9843 * pre-calculated inverse to speed up arithmetics by turning divisions 9844 * into multiplications: 9845 */ 9846 const u32 sched_prio_to_wmult[40] = { 9847 /* -20 */ 48388, 59856, 76040, 92818, 118348, 9848 /* -15 */ 147320, 184698, 229616, 287308, 360437, 9849 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 9850 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 9851 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 9852 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 9853 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 9854 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 9855 }; 9856 9857 void call_trace_sched_update_nr_running(struct rq *rq, int count) 9858 { 9859 trace_sched_update_nr_running_tp(rq, count); 9860 } 9861 9862 #ifdef CONFIG_SCHED_MM_CID 9863 9864 /* 9865 * @cid_lock: Guarantee forward-progress of cid allocation. 9866 * 9867 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 9868 * is only used when contention is detected by the lock-free allocation so 9869 * forward progress can be guaranteed. 9870 */ 9871 DEFINE_RAW_SPINLOCK(cid_lock); 9872 9873 /* 9874 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 9875 * 9876 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 9877 * detected, it is set to 1 to ensure that all newly coming allocations are 9878 * serialized by @cid_lock until the allocation which detected contention 9879 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 9880 * of a cid allocation. 9881 */ 9882 int use_cid_lock; 9883 9884 /* 9885 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 9886 * concurrently with respect to the execution of the source runqueue context 9887 * switch. 9888 * 9889 * There is one basic properties we want to guarantee here: 9890 * 9891 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 9892 * used by a task. That would lead to concurrent allocation of the cid and 9893 * userspace corruption. 9894 * 9895 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 9896 * that a pair of loads observe at least one of a pair of stores, which can be 9897 * shown as: 9898 * 9899 * X = Y = 0 9900 * 9901 * w[X]=1 w[Y]=1 9902 * MB MB 9903 * r[Y]=y r[X]=x 9904 * 9905 * Which guarantees that x==0 && y==0 is impossible. But rather than using 9906 * values 0 and 1, this algorithm cares about specific state transitions of the 9907 * runqueue current task (as updated by the scheduler context switch), and the 9908 * per-mm/cpu cid value. 9909 * 9910 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 9911 * task->mm != mm for the rest of the discussion. There are two scheduler state 9912 * transitions on context switch we care about: 9913 * 9914 * (TSA) Store to rq->curr with transition from (N) to (Y) 9915 * 9916 * (TSB) Store to rq->curr with transition from (Y) to (N) 9917 * 9918 * On the remote-clear side, there is one transition we care about: 9919 * 9920 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 9921 * 9922 * There is also a transition to UNSET state which can be performed from all 9923 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 9924 * guarantees that only a single thread will succeed: 9925 * 9926 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 9927 * 9928 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 9929 * when a thread is actively using the cid (property (1)). 9930 * 9931 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 9932 * 9933 * Scenario A) (TSA)+(TMA) (from next task perspective) 9934 * 9935 * CPU0 CPU1 9936 * 9937 * Context switch CS-1 Remote-clear 9938 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 9939 * (implied barrier after cmpxchg) 9940 * - switch_mm_cid() 9941 * - memory barrier (see switch_mm_cid() 9942 * comment explaining how this barrier 9943 * is combined with other scheduler 9944 * barriers) 9945 * - mm_cid_get (next) 9946 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 9947 * 9948 * This Dekker ensures that either task (Y) is observed by the 9949 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 9950 * observed. 9951 * 9952 * If task (Y) store is observed by rcu_dereference(), it means that there is 9953 * still an active task on the cpu. Remote-clear will therefore not transition 9954 * to UNSET, which fulfills property (1). 9955 * 9956 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 9957 * it will move its state to UNSET, which clears the percpu cid perhaps 9958 * uselessly (which is not an issue for correctness). Because task (Y) is not 9959 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 9960 * state to UNSET is done with a cmpxchg expecting that the old state has the 9961 * LAZY flag set, only one thread will successfully UNSET. 9962 * 9963 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 9964 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 9965 * CPU1 will observe task (Y) and do nothing more, which is fine. 9966 * 9967 * What we are effectively preventing with this Dekker is a scenario where 9968 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 9969 * because this would UNSET a cid which is actively used. 9970 */ 9971 9972 void sched_mm_cid_migrate_from(struct task_struct *t) 9973 { 9974 t->migrate_from_cpu = task_cpu(t); 9975 } 9976 9977 static 9978 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 9979 struct task_struct *t, 9980 struct mm_cid *src_pcpu_cid) 9981 { 9982 struct mm_struct *mm = t->mm; 9983 struct task_struct *src_task; 9984 int src_cid, last_mm_cid; 9985 9986 if (!mm) 9987 return -1; 9988 9989 last_mm_cid = t->last_mm_cid; 9990 /* 9991 * If the migrated task has no last cid, or if the current 9992 * task on src rq uses the cid, it means the source cid does not need 9993 * to be moved to the destination cpu. 9994 */ 9995 if (last_mm_cid == -1) 9996 return -1; 9997 src_cid = READ_ONCE(src_pcpu_cid->cid); 9998 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 9999 return -1; 10000 10001 /* 10002 * If we observe an active task using the mm on this rq, it means we 10003 * are not the last task to be migrated from this cpu for this mm, so 10004 * there is no need to move src_cid to the destination cpu. 10005 */ 10006 guard(rcu)(); 10007 src_task = rcu_dereference(src_rq->curr); 10008 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10009 t->last_mm_cid = -1; 10010 return -1; 10011 } 10012 10013 return src_cid; 10014 } 10015 10016 static 10017 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10018 struct task_struct *t, 10019 struct mm_cid *src_pcpu_cid, 10020 int src_cid) 10021 { 10022 struct task_struct *src_task; 10023 struct mm_struct *mm = t->mm; 10024 int lazy_cid; 10025 10026 if (src_cid == -1) 10027 return -1; 10028 10029 /* 10030 * Attempt to clear the source cpu cid to move it to the destination 10031 * cpu. 10032 */ 10033 lazy_cid = mm_cid_set_lazy_put(src_cid); 10034 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10035 return -1; 10036 10037 /* 10038 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10039 * rq->curr->mm matches the scheduler barrier in context_switch() 10040 * between store to rq->curr and load of prev and next task's 10041 * per-mm/cpu cid. 10042 * 10043 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10044 * rq->curr->mm_cid_active matches the barrier in 10045 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10046 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10047 * load of per-mm/cpu cid. 10048 */ 10049 10050 /* 10051 * If we observe an active task using the mm on this rq after setting 10052 * the lazy-put flag, this task will be responsible for transitioning 10053 * from lazy-put flag set to MM_CID_UNSET. 10054 */ 10055 scoped_guard (rcu) { 10056 src_task = rcu_dereference(src_rq->curr); 10057 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10058 /* 10059 * We observed an active task for this mm, there is therefore 10060 * no point in moving this cid to the destination cpu. 10061 */ 10062 t->last_mm_cid = -1; 10063 return -1; 10064 } 10065 } 10066 10067 /* 10068 * The src_cid is unused, so it can be unset. 10069 */ 10070 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10071 return -1; 10072 return src_cid; 10073 } 10074 10075 /* 10076 * Migration to dst cpu. Called with dst_rq lock held. 10077 * Interrupts are disabled, which keeps the window of cid ownership without the 10078 * source rq lock held small. 10079 */ 10080 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10081 { 10082 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10083 struct mm_struct *mm = t->mm; 10084 int src_cid, dst_cid, src_cpu; 10085 struct rq *src_rq; 10086 10087 lockdep_assert_rq_held(dst_rq); 10088 10089 if (!mm) 10090 return; 10091 src_cpu = t->migrate_from_cpu; 10092 if (src_cpu == -1) { 10093 t->last_mm_cid = -1; 10094 return; 10095 } 10096 /* 10097 * Move the src cid if the dst cid is unset. This keeps id 10098 * allocation closest to 0 in cases where few threads migrate around 10099 * many CPUs. 10100 * 10101 * If destination cid is already set, we may have to just clear 10102 * the src cid to ensure compactness in frequent migrations 10103 * scenarios. 10104 * 10105 * It is not useful to clear the src cid when the number of threads is 10106 * greater or equal to the number of allowed CPUs, because user-space 10107 * can expect that the number of allowed cids can reach the number of 10108 * allowed CPUs. 10109 */ 10110 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10111 dst_cid = READ_ONCE(dst_pcpu_cid->cid); 10112 if (!mm_cid_is_unset(dst_cid) && 10113 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) 10114 return; 10115 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10116 src_rq = cpu_rq(src_cpu); 10117 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10118 if (src_cid == -1) 10119 return; 10120 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10121 src_cid); 10122 if (src_cid == -1) 10123 return; 10124 if (!mm_cid_is_unset(dst_cid)) { 10125 __mm_cid_put(mm, src_cid); 10126 return; 10127 } 10128 /* Move src_cid to dst cpu. */ 10129 mm_cid_snapshot_time(dst_rq, mm); 10130 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10131 } 10132 10133 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10134 int cpu) 10135 { 10136 struct rq *rq = cpu_rq(cpu); 10137 struct task_struct *t; 10138 int cid, lazy_cid; 10139 10140 cid = READ_ONCE(pcpu_cid->cid); 10141 if (!mm_cid_is_valid(cid)) 10142 return; 10143 10144 /* 10145 * Clear the cpu cid if it is set to keep cid allocation compact. If 10146 * there happens to be other tasks left on the source cpu using this 10147 * mm, the next task using this mm will reallocate its cid on context 10148 * switch. 10149 */ 10150 lazy_cid = mm_cid_set_lazy_put(cid); 10151 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10152 return; 10153 10154 /* 10155 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10156 * rq->curr->mm matches the scheduler barrier in context_switch() 10157 * between store to rq->curr and load of prev and next task's 10158 * per-mm/cpu cid. 10159 * 10160 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10161 * rq->curr->mm_cid_active matches the barrier in 10162 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10163 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10164 * load of per-mm/cpu cid. 10165 */ 10166 10167 /* 10168 * If we observe an active task using the mm on this rq after setting 10169 * the lazy-put flag, that task will be responsible for transitioning 10170 * from lazy-put flag set to MM_CID_UNSET. 10171 */ 10172 scoped_guard (rcu) { 10173 t = rcu_dereference(rq->curr); 10174 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10175 return; 10176 } 10177 10178 /* 10179 * The cid is unused, so it can be unset. 10180 * Disable interrupts to keep the window of cid ownership without rq 10181 * lock small. 10182 */ 10183 scoped_guard (irqsave) { 10184 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10185 __mm_cid_put(mm, cid); 10186 } 10187 } 10188 10189 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10190 { 10191 struct rq *rq = cpu_rq(cpu); 10192 struct mm_cid *pcpu_cid; 10193 struct task_struct *curr; 10194 u64 rq_clock; 10195 10196 /* 10197 * rq->clock load is racy on 32-bit but one spurious clear once in a 10198 * while is irrelevant. 10199 */ 10200 rq_clock = READ_ONCE(rq->clock); 10201 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10202 10203 /* 10204 * In order to take care of infrequently scheduled tasks, bump the time 10205 * snapshot associated with this cid if an active task using the mm is 10206 * observed on this rq. 10207 */ 10208 scoped_guard (rcu) { 10209 curr = rcu_dereference(rq->curr); 10210 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10211 WRITE_ONCE(pcpu_cid->time, rq_clock); 10212 return; 10213 } 10214 } 10215 10216 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10217 return; 10218 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10219 } 10220 10221 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10222 int weight) 10223 { 10224 struct mm_cid *pcpu_cid; 10225 int cid; 10226 10227 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10228 cid = READ_ONCE(pcpu_cid->cid); 10229 if (!mm_cid_is_valid(cid) || cid < weight) 10230 return; 10231 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10232 } 10233 10234 static void task_mm_cid_work(struct callback_head *work) 10235 { 10236 unsigned long now = jiffies, old_scan, next_scan; 10237 struct task_struct *t = current; 10238 struct cpumask *cidmask; 10239 struct mm_struct *mm; 10240 int weight, cpu; 10241 10242 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 10243 10244 work->next = work; /* Prevent double-add */ 10245 if (t->flags & PF_EXITING) 10246 return; 10247 mm = t->mm; 10248 if (!mm) 10249 return; 10250 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10251 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10252 if (!old_scan) { 10253 unsigned long res; 10254 10255 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10256 if (res != old_scan) 10257 old_scan = res; 10258 else 10259 old_scan = next_scan; 10260 } 10261 if (time_before(now, old_scan)) 10262 return; 10263 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10264 return; 10265 cidmask = mm_cidmask(mm); 10266 /* Clear cids that were not recently used. */ 10267 for_each_possible_cpu(cpu) 10268 sched_mm_cid_remote_clear_old(mm, cpu); 10269 weight = cpumask_weight(cidmask); 10270 /* 10271 * Clear cids that are greater or equal to the cidmask weight to 10272 * recompact it. 10273 */ 10274 for_each_possible_cpu(cpu) 10275 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10276 } 10277 10278 void init_sched_mm_cid(struct task_struct *t) 10279 { 10280 struct mm_struct *mm = t->mm; 10281 int mm_users = 0; 10282 10283 if (mm) { 10284 mm_users = atomic_read(&mm->mm_users); 10285 if (mm_users == 1) 10286 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10287 } 10288 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10289 init_task_work(&t->cid_work, task_mm_cid_work); 10290 } 10291 10292 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10293 { 10294 struct callback_head *work = &curr->cid_work; 10295 unsigned long now = jiffies; 10296 10297 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10298 work->next != work) 10299 return; 10300 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10301 return; 10302 task_work_add(curr, work, TWA_RESUME); 10303 } 10304 10305 void sched_mm_cid_exit_signals(struct task_struct *t) 10306 { 10307 struct mm_struct *mm = t->mm; 10308 struct rq *rq; 10309 10310 if (!mm) 10311 return; 10312 10313 preempt_disable(); 10314 rq = this_rq(); 10315 guard(rq_lock_irqsave)(rq); 10316 preempt_enable_no_resched(); /* holding spinlock */ 10317 WRITE_ONCE(t->mm_cid_active, 0); 10318 /* 10319 * Store t->mm_cid_active before loading per-mm/cpu cid. 10320 * Matches barrier in sched_mm_cid_remote_clear_old(). 10321 */ 10322 smp_mb(); 10323 mm_cid_put(mm); 10324 t->last_mm_cid = t->mm_cid = -1; 10325 } 10326 10327 void sched_mm_cid_before_execve(struct task_struct *t) 10328 { 10329 struct mm_struct *mm = t->mm; 10330 struct rq *rq; 10331 10332 if (!mm) 10333 return; 10334 10335 preempt_disable(); 10336 rq = this_rq(); 10337 guard(rq_lock_irqsave)(rq); 10338 preempt_enable_no_resched(); /* holding spinlock */ 10339 WRITE_ONCE(t->mm_cid_active, 0); 10340 /* 10341 * Store t->mm_cid_active before loading per-mm/cpu cid. 10342 * Matches barrier in sched_mm_cid_remote_clear_old(). 10343 */ 10344 smp_mb(); 10345 mm_cid_put(mm); 10346 t->last_mm_cid = t->mm_cid = -1; 10347 } 10348 10349 void sched_mm_cid_after_execve(struct task_struct *t) 10350 { 10351 struct mm_struct *mm = t->mm; 10352 struct rq *rq; 10353 10354 if (!mm) 10355 return; 10356 10357 preempt_disable(); 10358 rq = this_rq(); 10359 scoped_guard (rq_lock_irqsave, rq) { 10360 preempt_enable_no_resched(); /* holding spinlock */ 10361 WRITE_ONCE(t->mm_cid_active, 1); 10362 /* 10363 * Store t->mm_cid_active before loading per-mm/cpu cid. 10364 * Matches barrier in sched_mm_cid_remote_clear_old(). 10365 */ 10366 smp_mb(); 10367 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); 10368 } 10369 rseq_set_notify_resume(t); 10370 } 10371 10372 void sched_mm_cid_fork(struct task_struct *t) 10373 { 10374 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10375 t->mm_cid_active = 1; 10376 } 10377 #endif 10378 10379 #ifdef CONFIG_SCHED_CLASS_EXT 10380 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10381 struct sched_enq_and_set_ctx *ctx) 10382 { 10383 struct rq *rq = task_rq(p); 10384 10385 lockdep_assert_rq_held(rq); 10386 10387 *ctx = (struct sched_enq_and_set_ctx){ 10388 .p = p, 10389 .queue_flags = queue_flags, 10390 .queued = task_on_rq_queued(p), 10391 .running = task_current(rq, p), 10392 }; 10393 10394 update_rq_clock(rq); 10395 if (ctx->queued) 10396 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10397 if (ctx->running) 10398 put_prev_task(rq, p); 10399 } 10400 10401 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10402 { 10403 struct rq *rq = task_rq(ctx->p); 10404 10405 lockdep_assert_rq_held(rq); 10406 10407 if (ctx->queued) 10408 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10409 if (ctx->running) 10410 set_next_task(rq, ctx->p); 10411 } 10412 #endif /* CONFIG_SCHED_CLASS_EXT */ 10413