xref: /linux/kernel/sched/core.c (revision 5d085ad2e68cceec8332b23ea8f630a28b506366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17 
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
21 
22 #include "pelt.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26 
27 /*
28  * Export tracepoints that act as a bare tracehook (ie: have no trace event
29  * associated with them) to allow external modules to probe them.
30  */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37 
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39 
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42  * Debugging: various feature bits
43  *
44  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45  * sysctl_sched_features, defined in sched.h, to allow constants propagation
46  * at compile time and compiler optimization based on features default.
47  */
48 #define SCHED_FEAT(name, enabled)	\
49 	(1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 	0;
53 #undef SCHED_FEAT
54 #endif
55 
56 /*
57  * Number of tasks to iterate in a single balance run.
58  * Limited because this is done with IRQs disabled.
59  */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61 
62 /*
63  * period over which we measure -rt task CPU usage in us.
64  * default: 1s
65  */
66 unsigned int sysctl_sched_rt_period = 1000000;
67 
68 __read_mostly int scheduler_running;
69 
70 /*
71  * part of the period that we allow rt tasks to run in us.
72  * default: 0.95s
73  */
74 int sysctl_sched_rt_runtime = 950000;
75 
76 /*
77  * __task_rq_lock - lock the rq @p resides on.
78  */
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 	__acquires(rq->lock)
81 {
82 	struct rq *rq;
83 
84 	lockdep_assert_held(&p->pi_lock);
85 
86 	for (;;) {
87 		rq = task_rq(p);
88 		raw_spin_lock(&rq->lock);
89 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 			rq_pin_lock(rq, rf);
91 			return rq;
92 		}
93 		raw_spin_unlock(&rq->lock);
94 
95 		while (unlikely(task_on_rq_migrating(p)))
96 			cpu_relax();
97 	}
98 }
99 
100 /*
101  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102  */
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 	__acquires(p->pi_lock)
105 	__acquires(rq->lock)
106 {
107 	struct rq *rq;
108 
109 	for (;;) {
110 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 		rq = task_rq(p);
112 		raw_spin_lock(&rq->lock);
113 		/*
114 		 *	move_queued_task()		task_rq_lock()
115 		 *
116 		 *	ACQUIRE (rq->lock)
117 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
118 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
119 		 *	[S] ->cpu = new_cpu		[L] task_rq()
120 		 *					[L] ->on_rq
121 		 *	RELEASE (rq->lock)
122 		 *
123 		 * If we observe the old CPU in task_rq_lock(), the acquire of
124 		 * the old rq->lock will fully serialize against the stores.
125 		 *
126 		 * If we observe the new CPU in task_rq_lock(), the address
127 		 * dependency headed by '[L] rq = task_rq()' and the acquire
128 		 * will pair with the WMB to ensure we then also see migrating.
129 		 */
130 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 			rq_pin_lock(rq, rf);
132 			return rq;
133 		}
134 		raw_spin_unlock(&rq->lock);
135 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136 
137 		while (unlikely(task_on_rq_migrating(p)))
138 			cpu_relax();
139 	}
140 }
141 
142 /*
143  * RQ-clock updating methods:
144  */
145 
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149  * In theory, the compile should just see 0 here, and optimize out the call
150  * to sched_rt_avg_update. But I don't trust it...
151  */
152 	s64 __maybe_unused steal = 0, irq_delta = 0;
153 
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156 
157 	/*
158 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 	 * this case when a previous update_rq_clock() happened inside a
160 	 * {soft,}irq region.
161 	 *
162 	 * When this happens, we stop ->clock_task and only update the
163 	 * prev_irq_time stamp to account for the part that fit, so that a next
164 	 * update will consume the rest. This ensures ->clock_task is
165 	 * monotonic.
166 	 *
167 	 * It does however cause some slight miss-attribution of {soft,}irq
168 	 * time, a more accurate solution would be to update the irq_time using
169 	 * the current rq->clock timestamp, except that would require using
170 	 * atomic ops.
171 	 */
172 	if (irq_delta > delta)
173 		irq_delta = delta;
174 
175 	rq->prev_irq_time += irq_delta;
176 	delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 	if (static_key_false((&paravirt_steal_rq_enabled))) {
180 		steal = paravirt_steal_clock(cpu_of(rq));
181 		steal -= rq->prev_steal_time_rq;
182 
183 		if (unlikely(steal > delta))
184 			steal = delta;
185 
186 		rq->prev_steal_time_rq += steal;
187 		delta -= steal;
188 	}
189 #endif
190 
191 	rq->clock_task += delta;
192 
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 		update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 	update_rq_clock_pelt(rq, delta);
198 }
199 
200 void update_rq_clock(struct rq *rq)
201 {
202 	s64 delta;
203 
204 	lockdep_assert_held(&rq->lock);
205 
206 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 		return;
208 
209 #ifdef CONFIG_SCHED_DEBUG
210 	if (sched_feat(WARN_DOUBLE_CLOCK))
211 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 	rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214 
215 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 	if (delta < 0)
217 		return;
218 	rq->clock += delta;
219 	update_rq_clock_task(rq, delta);
220 }
221 
222 
223 #ifdef CONFIG_SCHED_HRTICK
224 /*
225  * Use HR-timers to deliver accurate preemption points.
226  */
227 
228 static void hrtick_clear(struct rq *rq)
229 {
230 	if (hrtimer_active(&rq->hrtick_timer))
231 		hrtimer_cancel(&rq->hrtick_timer);
232 }
233 
234 /*
235  * High-resolution timer tick.
236  * Runs from hardirq context with interrupts disabled.
237  */
238 static enum hrtimer_restart hrtick(struct hrtimer *timer)
239 {
240 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
241 	struct rq_flags rf;
242 
243 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244 
245 	rq_lock(rq, &rf);
246 	update_rq_clock(rq);
247 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
248 	rq_unlock(rq, &rf);
249 
250 	return HRTIMER_NORESTART;
251 }
252 
253 #ifdef CONFIG_SMP
254 
255 static void __hrtick_restart(struct rq *rq)
256 {
257 	struct hrtimer *timer = &rq->hrtick_timer;
258 
259 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
260 }
261 
262 /*
263  * called from hardirq (IPI) context
264  */
265 static void __hrtick_start(void *arg)
266 {
267 	struct rq *rq = arg;
268 	struct rq_flags rf;
269 
270 	rq_lock(rq, &rf);
271 	__hrtick_restart(rq);
272 	rq_unlock(rq, &rf);
273 }
274 
275 /*
276  * Called to set the hrtick timer state.
277  *
278  * called with rq->lock held and irqs disabled
279  */
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 	struct hrtimer *timer = &rq->hrtick_timer;
283 	ktime_t time;
284 	s64 delta;
285 
286 	/*
287 	 * Don't schedule slices shorter than 10000ns, that just
288 	 * doesn't make sense and can cause timer DoS.
289 	 */
290 	delta = max_t(s64, delay, 10000LL);
291 	time = ktime_add_ns(timer->base->get_time(), delta);
292 
293 	hrtimer_set_expires(timer, time);
294 
295 	if (rq == this_rq())
296 		__hrtick_restart(rq);
297 	else
298 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 }
300 
301 #else
302 /*
303  * Called to set the hrtick timer state.
304  *
305  * called with rq->lock held and irqs disabled
306  */
307 void hrtick_start(struct rq *rq, u64 delay)
308 {
309 	/*
310 	 * Don't schedule slices shorter than 10000ns, that just
311 	 * doesn't make sense. Rely on vruntime for fairness.
312 	 */
313 	delay = max_t(u64, delay, 10000LL);
314 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
315 		      HRTIMER_MODE_REL_PINNED_HARD);
316 }
317 #endif /* CONFIG_SMP */
318 
319 static void hrtick_rq_init(struct rq *rq)
320 {
321 #ifdef CONFIG_SMP
322 	rq->hrtick_csd.flags = 0;
323 	rq->hrtick_csd.func = __hrtick_start;
324 	rq->hrtick_csd.info = rq;
325 #endif
326 
327 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
328 	rq->hrtick_timer.function = hrtick;
329 }
330 #else	/* CONFIG_SCHED_HRTICK */
331 static inline void hrtick_clear(struct rq *rq)
332 {
333 }
334 
335 static inline void hrtick_rq_init(struct rq *rq)
336 {
337 }
338 #endif	/* CONFIG_SCHED_HRTICK */
339 
340 /*
341  * cmpxchg based fetch_or, macro so it works for different integer types
342  */
343 #define fetch_or(ptr, mask)						\
344 	({								\
345 		typeof(ptr) _ptr = (ptr);				\
346 		typeof(mask) _mask = (mask);				\
347 		typeof(*_ptr) _old, _val = *_ptr;			\
348 									\
349 		for (;;) {						\
350 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
351 			if (_old == _val)				\
352 				break;					\
353 			_val = _old;					\
354 		}							\
355 	_old;								\
356 })
357 
358 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
359 /*
360  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
361  * this avoids any races wrt polling state changes and thereby avoids
362  * spurious IPIs.
363  */
364 static bool set_nr_and_not_polling(struct task_struct *p)
365 {
366 	struct thread_info *ti = task_thread_info(p);
367 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
368 }
369 
370 /*
371  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
372  *
373  * If this returns true, then the idle task promises to call
374  * sched_ttwu_pending() and reschedule soon.
375  */
376 static bool set_nr_if_polling(struct task_struct *p)
377 {
378 	struct thread_info *ti = task_thread_info(p);
379 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
380 
381 	for (;;) {
382 		if (!(val & _TIF_POLLING_NRFLAG))
383 			return false;
384 		if (val & _TIF_NEED_RESCHED)
385 			return true;
386 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
387 		if (old == val)
388 			break;
389 		val = old;
390 	}
391 	return true;
392 }
393 
394 #else
395 static bool set_nr_and_not_polling(struct task_struct *p)
396 {
397 	set_tsk_need_resched(p);
398 	return true;
399 }
400 
401 #ifdef CONFIG_SMP
402 static bool set_nr_if_polling(struct task_struct *p)
403 {
404 	return false;
405 }
406 #endif
407 #endif
408 
409 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
410 {
411 	struct wake_q_node *node = &task->wake_q;
412 
413 	/*
414 	 * Atomically grab the task, if ->wake_q is !nil already it means
415 	 * its already queued (either by us or someone else) and will get the
416 	 * wakeup due to that.
417 	 *
418 	 * In order to ensure that a pending wakeup will observe our pending
419 	 * state, even in the failed case, an explicit smp_mb() must be used.
420 	 */
421 	smp_mb__before_atomic();
422 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
423 		return false;
424 
425 	/*
426 	 * The head is context local, there can be no concurrency.
427 	 */
428 	*head->lastp = node;
429 	head->lastp = &node->next;
430 	return true;
431 }
432 
433 /**
434  * wake_q_add() - queue a wakeup for 'later' waking.
435  * @head: the wake_q_head to add @task to
436  * @task: the task to queue for 'later' wakeup
437  *
438  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
439  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
440  * instantly.
441  *
442  * This function must be used as-if it were wake_up_process(); IOW the task
443  * must be ready to be woken at this location.
444  */
445 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
446 {
447 	if (__wake_q_add(head, task))
448 		get_task_struct(task);
449 }
450 
451 /**
452  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
453  * @head: the wake_q_head to add @task to
454  * @task: the task to queue for 'later' wakeup
455  *
456  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
457  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
458  * instantly.
459  *
460  * This function must be used as-if it were wake_up_process(); IOW the task
461  * must be ready to be woken at this location.
462  *
463  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
464  * that already hold reference to @task can call the 'safe' version and trust
465  * wake_q to do the right thing depending whether or not the @task is already
466  * queued for wakeup.
467  */
468 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
469 {
470 	if (!__wake_q_add(head, task))
471 		put_task_struct(task);
472 }
473 
474 void wake_up_q(struct wake_q_head *head)
475 {
476 	struct wake_q_node *node = head->first;
477 
478 	while (node != WAKE_Q_TAIL) {
479 		struct task_struct *task;
480 
481 		task = container_of(node, struct task_struct, wake_q);
482 		BUG_ON(!task);
483 		/* Task can safely be re-inserted now: */
484 		node = node->next;
485 		task->wake_q.next = NULL;
486 
487 		/*
488 		 * wake_up_process() executes a full barrier, which pairs with
489 		 * the queueing in wake_q_add() so as not to miss wakeups.
490 		 */
491 		wake_up_process(task);
492 		put_task_struct(task);
493 	}
494 }
495 
496 /*
497  * resched_curr - mark rq's current task 'to be rescheduled now'.
498  *
499  * On UP this means the setting of the need_resched flag, on SMP it
500  * might also involve a cross-CPU call to trigger the scheduler on
501  * the target CPU.
502  */
503 void resched_curr(struct rq *rq)
504 {
505 	struct task_struct *curr = rq->curr;
506 	int cpu;
507 
508 	lockdep_assert_held(&rq->lock);
509 
510 	if (test_tsk_need_resched(curr))
511 		return;
512 
513 	cpu = cpu_of(rq);
514 
515 	if (cpu == smp_processor_id()) {
516 		set_tsk_need_resched(curr);
517 		set_preempt_need_resched();
518 		return;
519 	}
520 
521 	if (set_nr_and_not_polling(curr))
522 		smp_send_reschedule(cpu);
523 	else
524 		trace_sched_wake_idle_without_ipi(cpu);
525 }
526 
527 void resched_cpu(int cpu)
528 {
529 	struct rq *rq = cpu_rq(cpu);
530 	unsigned long flags;
531 
532 	raw_spin_lock_irqsave(&rq->lock, flags);
533 	if (cpu_online(cpu) || cpu == smp_processor_id())
534 		resched_curr(rq);
535 	raw_spin_unlock_irqrestore(&rq->lock, flags);
536 }
537 
538 #ifdef CONFIG_SMP
539 #ifdef CONFIG_NO_HZ_COMMON
540 /*
541  * In the semi idle case, use the nearest busy CPU for migrating timers
542  * from an idle CPU.  This is good for power-savings.
543  *
544  * We don't do similar optimization for completely idle system, as
545  * selecting an idle CPU will add more delays to the timers than intended
546  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
547  */
548 int get_nohz_timer_target(void)
549 {
550 	int i, cpu = smp_processor_id(), default_cpu = -1;
551 	struct sched_domain *sd;
552 
553 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
554 		if (!idle_cpu(cpu))
555 			return cpu;
556 		default_cpu = cpu;
557 	}
558 
559 	rcu_read_lock();
560 	for_each_domain(cpu, sd) {
561 		for_each_cpu_and(i, sched_domain_span(sd),
562 			housekeeping_cpumask(HK_FLAG_TIMER)) {
563 			if (cpu == i)
564 				continue;
565 
566 			if (!idle_cpu(i)) {
567 				cpu = i;
568 				goto unlock;
569 			}
570 		}
571 	}
572 
573 	if (default_cpu == -1)
574 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 	cpu = default_cpu;
576 unlock:
577 	rcu_read_unlock();
578 	return cpu;
579 }
580 
581 /*
582  * When add_timer_on() enqueues a timer into the timer wheel of an
583  * idle CPU then this timer might expire before the next timer event
584  * which is scheduled to wake up that CPU. In case of a completely
585  * idle system the next event might even be infinite time into the
586  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587  * leaves the inner idle loop so the newly added timer is taken into
588  * account when the CPU goes back to idle and evaluates the timer
589  * wheel for the next timer event.
590  */
591 static void wake_up_idle_cpu(int cpu)
592 {
593 	struct rq *rq = cpu_rq(cpu);
594 
595 	if (cpu == smp_processor_id())
596 		return;
597 
598 	if (set_nr_and_not_polling(rq->idle))
599 		smp_send_reschedule(cpu);
600 	else
601 		trace_sched_wake_idle_without_ipi(cpu);
602 }
603 
604 static bool wake_up_full_nohz_cpu(int cpu)
605 {
606 	/*
607 	 * We just need the target to call irq_exit() and re-evaluate
608 	 * the next tick. The nohz full kick at least implies that.
609 	 * If needed we can still optimize that later with an
610 	 * empty IRQ.
611 	 */
612 	if (cpu_is_offline(cpu))
613 		return true;  /* Don't try to wake offline CPUs. */
614 	if (tick_nohz_full_cpu(cpu)) {
615 		if (cpu != smp_processor_id() ||
616 		    tick_nohz_tick_stopped())
617 			tick_nohz_full_kick_cpu(cpu);
618 		return true;
619 	}
620 
621 	return false;
622 }
623 
624 /*
625  * Wake up the specified CPU.  If the CPU is going offline, it is the
626  * caller's responsibility to deal with the lost wakeup, for example,
627  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
628  */
629 void wake_up_nohz_cpu(int cpu)
630 {
631 	if (!wake_up_full_nohz_cpu(cpu))
632 		wake_up_idle_cpu(cpu);
633 }
634 
635 static inline bool got_nohz_idle_kick(void)
636 {
637 	int cpu = smp_processor_id();
638 
639 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
640 		return false;
641 
642 	if (idle_cpu(cpu) && !need_resched())
643 		return true;
644 
645 	/*
646 	 * We can't run Idle Load Balance on this CPU for this time so we
647 	 * cancel it and clear NOHZ_BALANCE_KICK
648 	 */
649 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
650 	return false;
651 }
652 
653 #else /* CONFIG_NO_HZ_COMMON */
654 
655 static inline bool got_nohz_idle_kick(void)
656 {
657 	return false;
658 }
659 
660 #endif /* CONFIG_NO_HZ_COMMON */
661 
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(struct rq *rq)
664 {
665 	int fifo_nr_running;
666 
667 	/* Deadline tasks, even if single, need the tick */
668 	if (rq->dl.dl_nr_running)
669 		return false;
670 
671 	/*
672 	 * If there are more than one RR tasks, we need the tick to effect the
673 	 * actual RR behaviour.
674 	 */
675 	if (rq->rt.rr_nr_running) {
676 		if (rq->rt.rr_nr_running == 1)
677 			return true;
678 		else
679 			return false;
680 	}
681 
682 	/*
683 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
684 	 * forced preemption between FIFO tasks.
685 	 */
686 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
687 	if (fifo_nr_running)
688 		return true;
689 
690 	/*
691 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
692 	 * if there's more than one we need the tick for involuntary
693 	 * preemption.
694 	 */
695 	if (rq->nr_running > 1)
696 		return false;
697 
698 	return true;
699 }
700 #endif /* CONFIG_NO_HZ_FULL */
701 #endif /* CONFIG_SMP */
702 
703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
704 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
705 /*
706  * Iterate task_group tree rooted at *from, calling @down when first entering a
707  * node and @up when leaving it for the final time.
708  *
709  * Caller must hold rcu_lock or sufficient equivalent.
710  */
711 int walk_tg_tree_from(struct task_group *from,
712 			     tg_visitor down, tg_visitor up, void *data)
713 {
714 	struct task_group *parent, *child;
715 	int ret;
716 
717 	parent = from;
718 
719 down:
720 	ret = (*down)(parent, data);
721 	if (ret)
722 		goto out;
723 	list_for_each_entry_rcu(child, &parent->children, siblings) {
724 		parent = child;
725 		goto down;
726 
727 up:
728 		continue;
729 	}
730 	ret = (*up)(parent, data);
731 	if (ret || parent == from)
732 		goto out;
733 
734 	child = parent;
735 	parent = parent->parent;
736 	if (parent)
737 		goto up;
738 out:
739 	return ret;
740 }
741 
742 int tg_nop(struct task_group *tg, void *data)
743 {
744 	return 0;
745 }
746 #endif
747 
748 static void set_load_weight(struct task_struct *p, bool update_load)
749 {
750 	int prio = p->static_prio - MAX_RT_PRIO;
751 	struct load_weight *load = &p->se.load;
752 
753 	/*
754 	 * SCHED_IDLE tasks get minimal weight:
755 	 */
756 	if (task_has_idle_policy(p)) {
757 		load->weight = scale_load(WEIGHT_IDLEPRIO);
758 		load->inv_weight = WMULT_IDLEPRIO;
759 		return;
760 	}
761 
762 	/*
763 	 * SCHED_OTHER tasks have to update their load when changing their
764 	 * weight
765 	 */
766 	if (update_load && p->sched_class == &fair_sched_class) {
767 		reweight_task(p, prio);
768 	} else {
769 		load->weight = scale_load(sched_prio_to_weight[prio]);
770 		load->inv_weight = sched_prio_to_wmult[prio];
771 	}
772 }
773 
774 #ifdef CONFIG_UCLAMP_TASK
775 /*
776  * Serializes updates of utilization clamp values
777  *
778  * The (slow-path) user-space triggers utilization clamp value updates which
779  * can require updates on (fast-path) scheduler's data structures used to
780  * support enqueue/dequeue operations.
781  * While the per-CPU rq lock protects fast-path update operations, user-space
782  * requests are serialized using a mutex to reduce the risk of conflicting
783  * updates or API abuses.
784  */
785 static DEFINE_MUTEX(uclamp_mutex);
786 
787 /* Max allowed minimum utilization */
788 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
789 
790 /* Max allowed maximum utilization */
791 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
792 
793 /* All clamps are required to be less or equal than these values */
794 static struct uclamp_se uclamp_default[UCLAMP_CNT];
795 
796 /* Integer rounded range for each bucket */
797 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
798 
799 #define for_each_clamp_id(clamp_id) \
800 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
801 
802 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
803 {
804 	return clamp_value / UCLAMP_BUCKET_DELTA;
805 }
806 
807 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
808 {
809 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
810 }
811 
812 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
813 {
814 	if (clamp_id == UCLAMP_MIN)
815 		return 0;
816 	return SCHED_CAPACITY_SCALE;
817 }
818 
819 static inline void uclamp_se_set(struct uclamp_se *uc_se,
820 				 unsigned int value, bool user_defined)
821 {
822 	uc_se->value = value;
823 	uc_se->bucket_id = uclamp_bucket_id(value);
824 	uc_se->user_defined = user_defined;
825 }
826 
827 static inline unsigned int
828 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
829 		  unsigned int clamp_value)
830 {
831 	/*
832 	 * Avoid blocked utilization pushing up the frequency when we go
833 	 * idle (which drops the max-clamp) by retaining the last known
834 	 * max-clamp.
835 	 */
836 	if (clamp_id == UCLAMP_MAX) {
837 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
838 		return clamp_value;
839 	}
840 
841 	return uclamp_none(UCLAMP_MIN);
842 }
843 
844 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
845 				     unsigned int clamp_value)
846 {
847 	/* Reset max-clamp retention only on idle exit */
848 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
849 		return;
850 
851 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
852 }
853 
854 static inline
855 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
856 				   unsigned int clamp_value)
857 {
858 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
859 	int bucket_id = UCLAMP_BUCKETS - 1;
860 
861 	/*
862 	 * Since both min and max clamps are max aggregated, find the
863 	 * top most bucket with tasks in.
864 	 */
865 	for ( ; bucket_id >= 0; bucket_id--) {
866 		if (!bucket[bucket_id].tasks)
867 			continue;
868 		return bucket[bucket_id].value;
869 	}
870 
871 	/* No tasks -- default clamp values */
872 	return uclamp_idle_value(rq, clamp_id, clamp_value);
873 }
874 
875 static inline struct uclamp_se
876 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
877 {
878 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
879 #ifdef CONFIG_UCLAMP_TASK_GROUP
880 	struct uclamp_se uc_max;
881 
882 	/*
883 	 * Tasks in autogroups or root task group will be
884 	 * restricted by system defaults.
885 	 */
886 	if (task_group_is_autogroup(task_group(p)))
887 		return uc_req;
888 	if (task_group(p) == &root_task_group)
889 		return uc_req;
890 
891 	uc_max = task_group(p)->uclamp[clamp_id];
892 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
893 		return uc_max;
894 #endif
895 
896 	return uc_req;
897 }
898 
899 /*
900  * The effective clamp bucket index of a task depends on, by increasing
901  * priority:
902  * - the task specific clamp value, when explicitly requested from userspace
903  * - the task group effective clamp value, for tasks not either in the root
904  *   group or in an autogroup
905  * - the system default clamp value, defined by the sysadmin
906  */
907 static inline struct uclamp_se
908 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
909 {
910 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
911 	struct uclamp_se uc_max = uclamp_default[clamp_id];
912 
913 	/* System default restrictions always apply */
914 	if (unlikely(uc_req.value > uc_max.value))
915 		return uc_max;
916 
917 	return uc_req;
918 }
919 
920 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
921 {
922 	struct uclamp_se uc_eff;
923 
924 	/* Task currently refcounted: use back-annotated (effective) value */
925 	if (p->uclamp[clamp_id].active)
926 		return (unsigned long)p->uclamp[clamp_id].value;
927 
928 	uc_eff = uclamp_eff_get(p, clamp_id);
929 
930 	return (unsigned long)uc_eff.value;
931 }
932 
933 /*
934  * When a task is enqueued on a rq, the clamp bucket currently defined by the
935  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
936  * updates the rq's clamp value if required.
937  *
938  * Tasks can have a task-specific value requested from user-space, track
939  * within each bucket the maximum value for tasks refcounted in it.
940  * This "local max aggregation" allows to track the exact "requested" value
941  * for each bucket when all its RUNNABLE tasks require the same clamp.
942  */
943 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
944 				    enum uclamp_id clamp_id)
945 {
946 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
947 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
948 	struct uclamp_bucket *bucket;
949 
950 	lockdep_assert_held(&rq->lock);
951 
952 	/* Update task effective clamp */
953 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
954 
955 	bucket = &uc_rq->bucket[uc_se->bucket_id];
956 	bucket->tasks++;
957 	uc_se->active = true;
958 
959 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
960 
961 	/*
962 	 * Local max aggregation: rq buckets always track the max
963 	 * "requested" clamp value of its RUNNABLE tasks.
964 	 */
965 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
966 		bucket->value = uc_se->value;
967 
968 	if (uc_se->value > READ_ONCE(uc_rq->value))
969 		WRITE_ONCE(uc_rq->value, uc_se->value);
970 }
971 
972 /*
973  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
974  * is released. If this is the last task reference counting the rq's max
975  * active clamp value, then the rq's clamp value is updated.
976  *
977  * Both refcounted tasks and rq's cached clamp values are expected to be
978  * always valid. If it's detected they are not, as defensive programming,
979  * enforce the expected state and warn.
980  */
981 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
982 				    enum uclamp_id clamp_id)
983 {
984 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
985 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
986 	struct uclamp_bucket *bucket;
987 	unsigned int bkt_clamp;
988 	unsigned int rq_clamp;
989 
990 	lockdep_assert_held(&rq->lock);
991 
992 	bucket = &uc_rq->bucket[uc_se->bucket_id];
993 	SCHED_WARN_ON(!bucket->tasks);
994 	if (likely(bucket->tasks))
995 		bucket->tasks--;
996 	uc_se->active = false;
997 
998 	/*
999 	 * Keep "local max aggregation" simple and accept to (possibly)
1000 	 * overboost some RUNNABLE tasks in the same bucket.
1001 	 * The rq clamp bucket value is reset to its base value whenever
1002 	 * there are no more RUNNABLE tasks refcounting it.
1003 	 */
1004 	if (likely(bucket->tasks))
1005 		return;
1006 
1007 	rq_clamp = READ_ONCE(uc_rq->value);
1008 	/*
1009 	 * Defensive programming: this should never happen. If it happens,
1010 	 * e.g. due to future modification, warn and fixup the expected value.
1011 	 */
1012 	SCHED_WARN_ON(bucket->value > rq_clamp);
1013 	if (bucket->value >= rq_clamp) {
1014 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1015 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1016 	}
1017 }
1018 
1019 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1020 {
1021 	enum uclamp_id clamp_id;
1022 
1023 	if (unlikely(!p->sched_class->uclamp_enabled))
1024 		return;
1025 
1026 	for_each_clamp_id(clamp_id)
1027 		uclamp_rq_inc_id(rq, p, clamp_id);
1028 
1029 	/* Reset clamp idle holding when there is one RUNNABLE task */
1030 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1031 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1032 }
1033 
1034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1035 {
1036 	enum uclamp_id clamp_id;
1037 
1038 	if (unlikely(!p->sched_class->uclamp_enabled))
1039 		return;
1040 
1041 	for_each_clamp_id(clamp_id)
1042 		uclamp_rq_dec_id(rq, p, clamp_id);
1043 }
1044 
1045 static inline void
1046 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1047 {
1048 	struct rq_flags rf;
1049 	struct rq *rq;
1050 
1051 	/*
1052 	 * Lock the task and the rq where the task is (or was) queued.
1053 	 *
1054 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1055 	 * price to pay to safely serialize util_{min,max} updates with
1056 	 * enqueues, dequeues and migration operations.
1057 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1058 	 */
1059 	rq = task_rq_lock(p, &rf);
1060 
1061 	/*
1062 	 * Setting the clamp bucket is serialized by task_rq_lock().
1063 	 * If the task is not yet RUNNABLE and its task_struct is not
1064 	 * affecting a valid clamp bucket, the next time it's enqueued,
1065 	 * it will already see the updated clamp bucket value.
1066 	 */
1067 	if (p->uclamp[clamp_id].active) {
1068 		uclamp_rq_dec_id(rq, p, clamp_id);
1069 		uclamp_rq_inc_id(rq, p, clamp_id);
1070 	}
1071 
1072 	task_rq_unlock(rq, p, &rf);
1073 }
1074 
1075 #ifdef CONFIG_UCLAMP_TASK_GROUP
1076 static inline void
1077 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1078 			   unsigned int clamps)
1079 {
1080 	enum uclamp_id clamp_id;
1081 	struct css_task_iter it;
1082 	struct task_struct *p;
1083 
1084 	css_task_iter_start(css, 0, &it);
1085 	while ((p = css_task_iter_next(&it))) {
1086 		for_each_clamp_id(clamp_id) {
1087 			if ((0x1 << clamp_id) & clamps)
1088 				uclamp_update_active(p, clamp_id);
1089 		}
1090 	}
1091 	css_task_iter_end(&it);
1092 }
1093 
1094 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1095 static void uclamp_update_root_tg(void)
1096 {
1097 	struct task_group *tg = &root_task_group;
1098 
1099 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1100 		      sysctl_sched_uclamp_util_min, false);
1101 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1102 		      sysctl_sched_uclamp_util_max, false);
1103 
1104 	rcu_read_lock();
1105 	cpu_util_update_eff(&root_task_group.css);
1106 	rcu_read_unlock();
1107 }
1108 #else
1109 static void uclamp_update_root_tg(void) { }
1110 #endif
1111 
1112 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1113 				void *buffer, size_t *lenp, loff_t *ppos)
1114 {
1115 	bool update_root_tg = false;
1116 	int old_min, old_max;
1117 	int result;
1118 
1119 	mutex_lock(&uclamp_mutex);
1120 	old_min = sysctl_sched_uclamp_util_min;
1121 	old_max = sysctl_sched_uclamp_util_max;
1122 
1123 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1124 	if (result)
1125 		goto undo;
1126 	if (!write)
1127 		goto done;
1128 
1129 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1130 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1131 		result = -EINVAL;
1132 		goto undo;
1133 	}
1134 
1135 	if (old_min != sysctl_sched_uclamp_util_min) {
1136 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1137 			      sysctl_sched_uclamp_util_min, false);
1138 		update_root_tg = true;
1139 	}
1140 	if (old_max != sysctl_sched_uclamp_util_max) {
1141 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1142 			      sysctl_sched_uclamp_util_max, false);
1143 		update_root_tg = true;
1144 	}
1145 
1146 	if (update_root_tg)
1147 		uclamp_update_root_tg();
1148 
1149 	/*
1150 	 * We update all RUNNABLE tasks only when task groups are in use.
1151 	 * Otherwise, keep it simple and do just a lazy update at each next
1152 	 * task enqueue time.
1153 	 */
1154 
1155 	goto done;
1156 
1157 undo:
1158 	sysctl_sched_uclamp_util_min = old_min;
1159 	sysctl_sched_uclamp_util_max = old_max;
1160 done:
1161 	mutex_unlock(&uclamp_mutex);
1162 
1163 	return result;
1164 }
1165 
1166 static int uclamp_validate(struct task_struct *p,
1167 			   const struct sched_attr *attr)
1168 {
1169 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1170 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1171 
1172 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1173 		lower_bound = attr->sched_util_min;
1174 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1175 		upper_bound = attr->sched_util_max;
1176 
1177 	if (lower_bound > upper_bound)
1178 		return -EINVAL;
1179 	if (upper_bound > SCHED_CAPACITY_SCALE)
1180 		return -EINVAL;
1181 
1182 	return 0;
1183 }
1184 
1185 static void __setscheduler_uclamp(struct task_struct *p,
1186 				  const struct sched_attr *attr)
1187 {
1188 	enum uclamp_id clamp_id;
1189 
1190 	/*
1191 	 * On scheduling class change, reset to default clamps for tasks
1192 	 * without a task-specific value.
1193 	 */
1194 	for_each_clamp_id(clamp_id) {
1195 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1196 		unsigned int clamp_value = uclamp_none(clamp_id);
1197 
1198 		/* Keep using defined clamps across class changes */
1199 		if (uc_se->user_defined)
1200 			continue;
1201 
1202 		/* By default, RT tasks always get 100% boost */
1203 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1204 			clamp_value = uclamp_none(UCLAMP_MAX);
1205 
1206 		uclamp_se_set(uc_se, clamp_value, false);
1207 	}
1208 
1209 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1210 		return;
1211 
1212 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1213 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1214 			      attr->sched_util_min, true);
1215 	}
1216 
1217 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1218 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1219 			      attr->sched_util_max, true);
1220 	}
1221 }
1222 
1223 static void uclamp_fork(struct task_struct *p)
1224 {
1225 	enum uclamp_id clamp_id;
1226 
1227 	for_each_clamp_id(clamp_id)
1228 		p->uclamp[clamp_id].active = false;
1229 
1230 	if (likely(!p->sched_reset_on_fork))
1231 		return;
1232 
1233 	for_each_clamp_id(clamp_id) {
1234 		uclamp_se_set(&p->uclamp_req[clamp_id],
1235 			      uclamp_none(clamp_id), false);
1236 	}
1237 }
1238 
1239 static void __init init_uclamp(void)
1240 {
1241 	struct uclamp_se uc_max = {};
1242 	enum uclamp_id clamp_id;
1243 	int cpu;
1244 
1245 	mutex_init(&uclamp_mutex);
1246 
1247 	for_each_possible_cpu(cpu) {
1248 		memset(&cpu_rq(cpu)->uclamp, 0,
1249 				sizeof(struct uclamp_rq)*UCLAMP_CNT);
1250 		cpu_rq(cpu)->uclamp_flags = 0;
1251 	}
1252 
1253 	for_each_clamp_id(clamp_id) {
1254 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1255 			      uclamp_none(clamp_id), false);
1256 	}
1257 
1258 	/* System defaults allow max clamp values for both indexes */
1259 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1260 	for_each_clamp_id(clamp_id) {
1261 		uclamp_default[clamp_id] = uc_max;
1262 #ifdef CONFIG_UCLAMP_TASK_GROUP
1263 		root_task_group.uclamp_req[clamp_id] = uc_max;
1264 		root_task_group.uclamp[clamp_id] = uc_max;
1265 #endif
1266 	}
1267 }
1268 
1269 #else /* CONFIG_UCLAMP_TASK */
1270 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1271 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1272 static inline int uclamp_validate(struct task_struct *p,
1273 				  const struct sched_attr *attr)
1274 {
1275 	return -EOPNOTSUPP;
1276 }
1277 static void __setscheduler_uclamp(struct task_struct *p,
1278 				  const struct sched_attr *attr) { }
1279 static inline void uclamp_fork(struct task_struct *p) { }
1280 static inline void init_uclamp(void) { }
1281 #endif /* CONFIG_UCLAMP_TASK */
1282 
1283 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1284 {
1285 	if (!(flags & ENQUEUE_NOCLOCK))
1286 		update_rq_clock(rq);
1287 
1288 	if (!(flags & ENQUEUE_RESTORE)) {
1289 		sched_info_queued(rq, p);
1290 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1291 	}
1292 
1293 	uclamp_rq_inc(rq, p);
1294 	p->sched_class->enqueue_task(rq, p, flags);
1295 }
1296 
1297 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1298 {
1299 	if (!(flags & DEQUEUE_NOCLOCK))
1300 		update_rq_clock(rq);
1301 
1302 	if (!(flags & DEQUEUE_SAVE)) {
1303 		sched_info_dequeued(rq, p);
1304 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1305 	}
1306 
1307 	uclamp_rq_dec(rq, p);
1308 	p->sched_class->dequeue_task(rq, p, flags);
1309 }
1310 
1311 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1312 {
1313 	if (task_contributes_to_load(p))
1314 		rq->nr_uninterruptible--;
1315 
1316 	enqueue_task(rq, p, flags);
1317 
1318 	p->on_rq = TASK_ON_RQ_QUEUED;
1319 }
1320 
1321 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1322 {
1323 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1324 
1325 	if (task_contributes_to_load(p))
1326 		rq->nr_uninterruptible++;
1327 
1328 	dequeue_task(rq, p, flags);
1329 }
1330 
1331 /*
1332  * __normal_prio - return the priority that is based on the static prio
1333  */
1334 static inline int __normal_prio(struct task_struct *p)
1335 {
1336 	return p->static_prio;
1337 }
1338 
1339 /*
1340  * Calculate the expected normal priority: i.e. priority
1341  * without taking RT-inheritance into account. Might be
1342  * boosted by interactivity modifiers. Changes upon fork,
1343  * setprio syscalls, and whenever the interactivity
1344  * estimator recalculates.
1345  */
1346 static inline int normal_prio(struct task_struct *p)
1347 {
1348 	int prio;
1349 
1350 	if (task_has_dl_policy(p))
1351 		prio = MAX_DL_PRIO-1;
1352 	else if (task_has_rt_policy(p))
1353 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1354 	else
1355 		prio = __normal_prio(p);
1356 	return prio;
1357 }
1358 
1359 /*
1360  * Calculate the current priority, i.e. the priority
1361  * taken into account by the scheduler. This value might
1362  * be boosted by RT tasks, or might be boosted by
1363  * interactivity modifiers. Will be RT if the task got
1364  * RT-boosted. If not then it returns p->normal_prio.
1365  */
1366 static int effective_prio(struct task_struct *p)
1367 {
1368 	p->normal_prio = normal_prio(p);
1369 	/*
1370 	 * If we are RT tasks or we were boosted to RT priority,
1371 	 * keep the priority unchanged. Otherwise, update priority
1372 	 * to the normal priority:
1373 	 */
1374 	if (!rt_prio(p->prio))
1375 		return p->normal_prio;
1376 	return p->prio;
1377 }
1378 
1379 /**
1380  * task_curr - is this task currently executing on a CPU?
1381  * @p: the task in question.
1382  *
1383  * Return: 1 if the task is currently executing. 0 otherwise.
1384  */
1385 inline int task_curr(const struct task_struct *p)
1386 {
1387 	return cpu_curr(task_cpu(p)) == p;
1388 }
1389 
1390 /*
1391  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1392  * use the balance_callback list if you want balancing.
1393  *
1394  * this means any call to check_class_changed() must be followed by a call to
1395  * balance_callback().
1396  */
1397 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1398 				       const struct sched_class *prev_class,
1399 				       int oldprio)
1400 {
1401 	if (prev_class != p->sched_class) {
1402 		if (prev_class->switched_from)
1403 			prev_class->switched_from(rq, p);
1404 
1405 		p->sched_class->switched_to(rq, p);
1406 	} else if (oldprio != p->prio || dl_task(p))
1407 		p->sched_class->prio_changed(rq, p, oldprio);
1408 }
1409 
1410 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1411 {
1412 	const struct sched_class *class;
1413 
1414 	if (p->sched_class == rq->curr->sched_class) {
1415 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1416 	} else {
1417 		for_each_class(class) {
1418 			if (class == rq->curr->sched_class)
1419 				break;
1420 			if (class == p->sched_class) {
1421 				resched_curr(rq);
1422 				break;
1423 			}
1424 		}
1425 	}
1426 
1427 	/*
1428 	 * A queue event has occurred, and we're going to schedule.  In
1429 	 * this case, we can save a useless back to back clock update.
1430 	 */
1431 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1432 		rq_clock_skip_update(rq);
1433 }
1434 
1435 #ifdef CONFIG_SMP
1436 
1437 /*
1438  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1439  * __set_cpus_allowed_ptr() and select_fallback_rq().
1440  */
1441 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1442 {
1443 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1444 		return false;
1445 
1446 	if (is_per_cpu_kthread(p))
1447 		return cpu_online(cpu);
1448 
1449 	return cpu_active(cpu);
1450 }
1451 
1452 /*
1453  * This is how migration works:
1454  *
1455  * 1) we invoke migration_cpu_stop() on the target CPU using
1456  *    stop_one_cpu().
1457  * 2) stopper starts to run (implicitly forcing the migrated thread
1458  *    off the CPU)
1459  * 3) it checks whether the migrated task is still in the wrong runqueue.
1460  * 4) if it's in the wrong runqueue then the migration thread removes
1461  *    it and puts it into the right queue.
1462  * 5) stopper completes and stop_one_cpu() returns and the migration
1463  *    is done.
1464  */
1465 
1466 /*
1467  * move_queued_task - move a queued task to new rq.
1468  *
1469  * Returns (locked) new rq. Old rq's lock is released.
1470  */
1471 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1472 				   struct task_struct *p, int new_cpu)
1473 {
1474 	lockdep_assert_held(&rq->lock);
1475 
1476 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1477 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1478 	set_task_cpu(p, new_cpu);
1479 	rq_unlock(rq, rf);
1480 
1481 	rq = cpu_rq(new_cpu);
1482 
1483 	rq_lock(rq, rf);
1484 	BUG_ON(task_cpu(p) != new_cpu);
1485 	enqueue_task(rq, p, 0);
1486 	p->on_rq = TASK_ON_RQ_QUEUED;
1487 	check_preempt_curr(rq, p, 0);
1488 
1489 	return rq;
1490 }
1491 
1492 struct migration_arg {
1493 	struct task_struct *task;
1494 	int dest_cpu;
1495 };
1496 
1497 /*
1498  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1499  * this because either it can't run here any more (set_cpus_allowed()
1500  * away from this CPU, or CPU going down), or because we're
1501  * attempting to rebalance this task on exec (sched_exec).
1502  *
1503  * So we race with normal scheduler movements, but that's OK, as long
1504  * as the task is no longer on this CPU.
1505  */
1506 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1507 				 struct task_struct *p, int dest_cpu)
1508 {
1509 	/* Affinity changed (again). */
1510 	if (!is_cpu_allowed(p, dest_cpu))
1511 		return rq;
1512 
1513 	update_rq_clock(rq);
1514 	rq = move_queued_task(rq, rf, p, dest_cpu);
1515 
1516 	return rq;
1517 }
1518 
1519 /*
1520  * migration_cpu_stop - this will be executed by a highprio stopper thread
1521  * and performs thread migration by bumping thread off CPU then
1522  * 'pushing' onto another runqueue.
1523  */
1524 static int migration_cpu_stop(void *data)
1525 {
1526 	struct migration_arg *arg = data;
1527 	struct task_struct *p = arg->task;
1528 	struct rq *rq = this_rq();
1529 	struct rq_flags rf;
1530 
1531 	/*
1532 	 * The original target CPU might have gone down and we might
1533 	 * be on another CPU but it doesn't matter.
1534 	 */
1535 	local_irq_disable();
1536 	/*
1537 	 * We need to explicitly wake pending tasks before running
1538 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1539 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1540 	 */
1541 	sched_ttwu_pending();
1542 
1543 	raw_spin_lock(&p->pi_lock);
1544 	rq_lock(rq, &rf);
1545 	/*
1546 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1547 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1548 	 * we're holding p->pi_lock.
1549 	 */
1550 	if (task_rq(p) == rq) {
1551 		if (task_on_rq_queued(p))
1552 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1553 		else
1554 			p->wake_cpu = arg->dest_cpu;
1555 	}
1556 	rq_unlock(rq, &rf);
1557 	raw_spin_unlock(&p->pi_lock);
1558 
1559 	local_irq_enable();
1560 	return 0;
1561 }
1562 
1563 /*
1564  * sched_class::set_cpus_allowed must do the below, but is not required to
1565  * actually call this function.
1566  */
1567 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1568 {
1569 	cpumask_copy(&p->cpus_mask, new_mask);
1570 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1571 }
1572 
1573 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1574 {
1575 	struct rq *rq = task_rq(p);
1576 	bool queued, running;
1577 
1578 	lockdep_assert_held(&p->pi_lock);
1579 
1580 	queued = task_on_rq_queued(p);
1581 	running = task_current(rq, p);
1582 
1583 	if (queued) {
1584 		/*
1585 		 * Because __kthread_bind() calls this on blocked tasks without
1586 		 * holding rq->lock.
1587 		 */
1588 		lockdep_assert_held(&rq->lock);
1589 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1590 	}
1591 	if (running)
1592 		put_prev_task(rq, p);
1593 
1594 	p->sched_class->set_cpus_allowed(p, new_mask);
1595 
1596 	if (queued)
1597 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1598 	if (running)
1599 		set_next_task(rq, p);
1600 }
1601 
1602 /*
1603  * Change a given task's CPU affinity. Migrate the thread to a
1604  * proper CPU and schedule it away if the CPU it's executing on
1605  * is removed from the allowed bitmask.
1606  *
1607  * NOTE: the caller must have a valid reference to the task, the
1608  * task must not exit() & deallocate itself prematurely. The
1609  * call is not atomic; no spinlocks may be held.
1610  */
1611 static int __set_cpus_allowed_ptr(struct task_struct *p,
1612 				  const struct cpumask *new_mask, bool check)
1613 {
1614 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1615 	unsigned int dest_cpu;
1616 	struct rq_flags rf;
1617 	struct rq *rq;
1618 	int ret = 0;
1619 
1620 	rq = task_rq_lock(p, &rf);
1621 	update_rq_clock(rq);
1622 
1623 	if (p->flags & PF_KTHREAD) {
1624 		/*
1625 		 * Kernel threads are allowed on online && !active CPUs
1626 		 */
1627 		cpu_valid_mask = cpu_online_mask;
1628 	}
1629 
1630 	/*
1631 	 * Must re-check here, to close a race against __kthread_bind(),
1632 	 * sched_setaffinity() is not guaranteed to observe the flag.
1633 	 */
1634 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1635 		ret = -EINVAL;
1636 		goto out;
1637 	}
1638 
1639 	if (cpumask_equal(p->cpus_ptr, new_mask))
1640 		goto out;
1641 
1642 	/*
1643 	 * Picking a ~random cpu helps in cases where we are changing affinity
1644 	 * for groups of tasks (ie. cpuset), so that load balancing is not
1645 	 * immediately required to distribute the tasks within their new mask.
1646 	 */
1647 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1648 	if (dest_cpu >= nr_cpu_ids) {
1649 		ret = -EINVAL;
1650 		goto out;
1651 	}
1652 
1653 	do_set_cpus_allowed(p, new_mask);
1654 
1655 	if (p->flags & PF_KTHREAD) {
1656 		/*
1657 		 * For kernel threads that do indeed end up on online &&
1658 		 * !active we want to ensure they are strict per-CPU threads.
1659 		 */
1660 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1661 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1662 			p->nr_cpus_allowed != 1);
1663 	}
1664 
1665 	/* Can the task run on the task's current CPU? If so, we're done */
1666 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1667 		goto out;
1668 
1669 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1670 		struct migration_arg arg = { p, dest_cpu };
1671 		/* Need help from migration thread: drop lock and wait. */
1672 		task_rq_unlock(rq, p, &rf);
1673 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1674 		return 0;
1675 	} else if (task_on_rq_queued(p)) {
1676 		/*
1677 		 * OK, since we're going to drop the lock immediately
1678 		 * afterwards anyway.
1679 		 */
1680 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1681 	}
1682 out:
1683 	task_rq_unlock(rq, p, &rf);
1684 
1685 	return ret;
1686 }
1687 
1688 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1689 {
1690 	return __set_cpus_allowed_ptr(p, new_mask, false);
1691 }
1692 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1693 
1694 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1695 {
1696 #ifdef CONFIG_SCHED_DEBUG
1697 	/*
1698 	 * We should never call set_task_cpu() on a blocked task,
1699 	 * ttwu() will sort out the placement.
1700 	 */
1701 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1702 			!p->on_rq);
1703 
1704 	/*
1705 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1706 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1707 	 * time relying on p->on_rq.
1708 	 */
1709 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1710 		     p->sched_class == &fair_sched_class &&
1711 		     (p->on_rq && !task_on_rq_migrating(p)));
1712 
1713 #ifdef CONFIG_LOCKDEP
1714 	/*
1715 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1716 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1717 	 *
1718 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1719 	 * see task_group().
1720 	 *
1721 	 * Furthermore, all task_rq users should acquire both locks, see
1722 	 * task_rq_lock().
1723 	 */
1724 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1725 				      lockdep_is_held(&task_rq(p)->lock)));
1726 #endif
1727 	/*
1728 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1729 	 */
1730 	WARN_ON_ONCE(!cpu_online(new_cpu));
1731 #endif
1732 
1733 	trace_sched_migrate_task(p, new_cpu);
1734 
1735 	if (task_cpu(p) != new_cpu) {
1736 		if (p->sched_class->migrate_task_rq)
1737 			p->sched_class->migrate_task_rq(p, new_cpu);
1738 		p->se.nr_migrations++;
1739 		rseq_migrate(p);
1740 		perf_event_task_migrate(p);
1741 	}
1742 
1743 	__set_task_cpu(p, new_cpu);
1744 }
1745 
1746 #ifdef CONFIG_NUMA_BALANCING
1747 static void __migrate_swap_task(struct task_struct *p, int cpu)
1748 {
1749 	if (task_on_rq_queued(p)) {
1750 		struct rq *src_rq, *dst_rq;
1751 		struct rq_flags srf, drf;
1752 
1753 		src_rq = task_rq(p);
1754 		dst_rq = cpu_rq(cpu);
1755 
1756 		rq_pin_lock(src_rq, &srf);
1757 		rq_pin_lock(dst_rq, &drf);
1758 
1759 		deactivate_task(src_rq, p, 0);
1760 		set_task_cpu(p, cpu);
1761 		activate_task(dst_rq, p, 0);
1762 		check_preempt_curr(dst_rq, p, 0);
1763 
1764 		rq_unpin_lock(dst_rq, &drf);
1765 		rq_unpin_lock(src_rq, &srf);
1766 
1767 	} else {
1768 		/*
1769 		 * Task isn't running anymore; make it appear like we migrated
1770 		 * it before it went to sleep. This means on wakeup we make the
1771 		 * previous CPU our target instead of where it really is.
1772 		 */
1773 		p->wake_cpu = cpu;
1774 	}
1775 }
1776 
1777 struct migration_swap_arg {
1778 	struct task_struct *src_task, *dst_task;
1779 	int src_cpu, dst_cpu;
1780 };
1781 
1782 static int migrate_swap_stop(void *data)
1783 {
1784 	struct migration_swap_arg *arg = data;
1785 	struct rq *src_rq, *dst_rq;
1786 	int ret = -EAGAIN;
1787 
1788 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1789 		return -EAGAIN;
1790 
1791 	src_rq = cpu_rq(arg->src_cpu);
1792 	dst_rq = cpu_rq(arg->dst_cpu);
1793 
1794 	double_raw_lock(&arg->src_task->pi_lock,
1795 			&arg->dst_task->pi_lock);
1796 	double_rq_lock(src_rq, dst_rq);
1797 
1798 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1799 		goto unlock;
1800 
1801 	if (task_cpu(arg->src_task) != arg->src_cpu)
1802 		goto unlock;
1803 
1804 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1805 		goto unlock;
1806 
1807 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1808 		goto unlock;
1809 
1810 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1811 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1812 
1813 	ret = 0;
1814 
1815 unlock:
1816 	double_rq_unlock(src_rq, dst_rq);
1817 	raw_spin_unlock(&arg->dst_task->pi_lock);
1818 	raw_spin_unlock(&arg->src_task->pi_lock);
1819 
1820 	return ret;
1821 }
1822 
1823 /*
1824  * Cross migrate two tasks
1825  */
1826 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1827 		int target_cpu, int curr_cpu)
1828 {
1829 	struct migration_swap_arg arg;
1830 	int ret = -EINVAL;
1831 
1832 	arg = (struct migration_swap_arg){
1833 		.src_task = cur,
1834 		.src_cpu = curr_cpu,
1835 		.dst_task = p,
1836 		.dst_cpu = target_cpu,
1837 	};
1838 
1839 	if (arg.src_cpu == arg.dst_cpu)
1840 		goto out;
1841 
1842 	/*
1843 	 * These three tests are all lockless; this is OK since all of them
1844 	 * will be re-checked with proper locks held further down the line.
1845 	 */
1846 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1847 		goto out;
1848 
1849 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1850 		goto out;
1851 
1852 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1853 		goto out;
1854 
1855 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1856 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1857 
1858 out:
1859 	return ret;
1860 }
1861 #endif /* CONFIG_NUMA_BALANCING */
1862 
1863 /*
1864  * wait_task_inactive - wait for a thread to unschedule.
1865  *
1866  * If @match_state is nonzero, it's the @p->state value just checked and
1867  * not expected to change.  If it changes, i.e. @p might have woken up,
1868  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1869  * we return a positive number (its total switch count).  If a second call
1870  * a short while later returns the same number, the caller can be sure that
1871  * @p has remained unscheduled the whole time.
1872  *
1873  * The caller must ensure that the task *will* unschedule sometime soon,
1874  * else this function might spin for a *long* time. This function can't
1875  * be called with interrupts off, or it may introduce deadlock with
1876  * smp_call_function() if an IPI is sent by the same process we are
1877  * waiting to become inactive.
1878  */
1879 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1880 {
1881 	int running, queued;
1882 	struct rq_flags rf;
1883 	unsigned long ncsw;
1884 	struct rq *rq;
1885 
1886 	for (;;) {
1887 		/*
1888 		 * We do the initial early heuristics without holding
1889 		 * any task-queue locks at all. We'll only try to get
1890 		 * the runqueue lock when things look like they will
1891 		 * work out!
1892 		 */
1893 		rq = task_rq(p);
1894 
1895 		/*
1896 		 * If the task is actively running on another CPU
1897 		 * still, just relax and busy-wait without holding
1898 		 * any locks.
1899 		 *
1900 		 * NOTE! Since we don't hold any locks, it's not
1901 		 * even sure that "rq" stays as the right runqueue!
1902 		 * But we don't care, since "task_running()" will
1903 		 * return false if the runqueue has changed and p
1904 		 * is actually now running somewhere else!
1905 		 */
1906 		while (task_running(rq, p)) {
1907 			if (match_state && unlikely(p->state != match_state))
1908 				return 0;
1909 			cpu_relax();
1910 		}
1911 
1912 		/*
1913 		 * Ok, time to look more closely! We need the rq
1914 		 * lock now, to be *sure*. If we're wrong, we'll
1915 		 * just go back and repeat.
1916 		 */
1917 		rq = task_rq_lock(p, &rf);
1918 		trace_sched_wait_task(p);
1919 		running = task_running(rq, p);
1920 		queued = task_on_rq_queued(p);
1921 		ncsw = 0;
1922 		if (!match_state || p->state == match_state)
1923 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1924 		task_rq_unlock(rq, p, &rf);
1925 
1926 		/*
1927 		 * If it changed from the expected state, bail out now.
1928 		 */
1929 		if (unlikely(!ncsw))
1930 			break;
1931 
1932 		/*
1933 		 * Was it really running after all now that we
1934 		 * checked with the proper locks actually held?
1935 		 *
1936 		 * Oops. Go back and try again..
1937 		 */
1938 		if (unlikely(running)) {
1939 			cpu_relax();
1940 			continue;
1941 		}
1942 
1943 		/*
1944 		 * It's not enough that it's not actively running,
1945 		 * it must be off the runqueue _entirely_, and not
1946 		 * preempted!
1947 		 *
1948 		 * So if it was still runnable (but just not actively
1949 		 * running right now), it's preempted, and we should
1950 		 * yield - it could be a while.
1951 		 */
1952 		if (unlikely(queued)) {
1953 			ktime_t to = NSEC_PER_SEC / HZ;
1954 
1955 			set_current_state(TASK_UNINTERRUPTIBLE);
1956 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1957 			continue;
1958 		}
1959 
1960 		/*
1961 		 * Ahh, all good. It wasn't running, and it wasn't
1962 		 * runnable, which means that it will never become
1963 		 * running in the future either. We're all done!
1964 		 */
1965 		break;
1966 	}
1967 
1968 	return ncsw;
1969 }
1970 
1971 /***
1972  * kick_process - kick a running thread to enter/exit the kernel
1973  * @p: the to-be-kicked thread
1974  *
1975  * Cause a process which is running on another CPU to enter
1976  * kernel-mode, without any delay. (to get signals handled.)
1977  *
1978  * NOTE: this function doesn't have to take the runqueue lock,
1979  * because all it wants to ensure is that the remote task enters
1980  * the kernel. If the IPI races and the task has been migrated
1981  * to another CPU then no harm is done and the purpose has been
1982  * achieved as well.
1983  */
1984 void kick_process(struct task_struct *p)
1985 {
1986 	int cpu;
1987 
1988 	preempt_disable();
1989 	cpu = task_cpu(p);
1990 	if ((cpu != smp_processor_id()) && task_curr(p))
1991 		smp_send_reschedule(cpu);
1992 	preempt_enable();
1993 }
1994 EXPORT_SYMBOL_GPL(kick_process);
1995 
1996 /*
1997  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1998  *
1999  * A few notes on cpu_active vs cpu_online:
2000  *
2001  *  - cpu_active must be a subset of cpu_online
2002  *
2003  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2004  *    see __set_cpus_allowed_ptr(). At this point the newly online
2005  *    CPU isn't yet part of the sched domains, and balancing will not
2006  *    see it.
2007  *
2008  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2009  *    avoid the load balancer to place new tasks on the to be removed
2010  *    CPU. Existing tasks will remain running there and will be taken
2011  *    off.
2012  *
2013  * This means that fallback selection must not select !active CPUs.
2014  * And can assume that any active CPU must be online. Conversely
2015  * select_task_rq() below may allow selection of !active CPUs in order
2016  * to satisfy the above rules.
2017  */
2018 static int select_fallback_rq(int cpu, struct task_struct *p)
2019 {
2020 	int nid = cpu_to_node(cpu);
2021 	const struct cpumask *nodemask = NULL;
2022 	enum { cpuset, possible, fail } state = cpuset;
2023 	int dest_cpu;
2024 
2025 	/*
2026 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2027 	 * will return -1. There is no CPU on the node, and we should
2028 	 * select the CPU on the other node.
2029 	 */
2030 	if (nid != -1) {
2031 		nodemask = cpumask_of_node(nid);
2032 
2033 		/* Look for allowed, online CPU in same node. */
2034 		for_each_cpu(dest_cpu, nodemask) {
2035 			if (!cpu_active(dest_cpu))
2036 				continue;
2037 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2038 				return dest_cpu;
2039 		}
2040 	}
2041 
2042 	for (;;) {
2043 		/* Any allowed, online CPU? */
2044 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2045 			if (!is_cpu_allowed(p, dest_cpu))
2046 				continue;
2047 
2048 			goto out;
2049 		}
2050 
2051 		/* No more Mr. Nice Guy. */
2052 		switch (state) {
2053 		case cpuset:
2054 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2055 				cpuset_cpus_allowed_fallback(p);
2056 				state = possible;
2057 				break;
2058 			}
2059 			/* Fall-through */
2060 		case possible:
2061 			do_set_cpus_allowed(p, cpu_possible_mask);
2062 			state = fail;
2063 			break;
2064 
2065 		case fail:
2066 			BUG();
2067 			break;
2068 		}
2069 	}
2070 
2071 out:
2072 	if (state != cpuset) {
2073 		/*
2074 		 * Don't tell them about moving exiting tasks or
2075 		 * kernel threads (both mm NULL), since they never
2076 		 * leave kernel.
2077 		 */
2078 		if (p->mm && printk_ratelimit()) {
2079 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2080 					task_pid_nr(p), p->comm, cpu);
2081 		}
2082 	}
2083 
2084 	return dest_cpu;
2085 }
2086 
2087 /*
2088  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2089  */
2090 static inline
2091 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2092 {
2093 	lockdep_assert_held(&p->pi_lock);
2094 
2095 	if (p->nr_cpus_allowed > 1)
2096 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2097 	else
2098 		cpu = cpumask_any(p->cpus_ptr);
2099 
2100 	/*
2101 	 * In order not to call set_task_cpu() on a blocking task we need
2102 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2103 	 * CPU.
2104 	 *
2105 	 * Since this is common to all placement strategies, this lives here.
2106 	 *
2107 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2108 	 *   not worry about this generic constraint ]
2109 	 */
2110 	if (unlikely(!is_cpu_allowed(p, cpu)))
2111 		cpu = select_fallback_rq(task_cpu(p), p);
2112 
2113 	return cpu;
2114 }
2115 
2116 void sched_set_stop_task(int cpu, struct task_struct *stop)
2117 {
2118 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2119 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2120 
2121 	if (stop) {
2122 		/*
2123 		 * Make it appear like a SCHED_FIFO task, its something
2124 		 * userspace knows about and won't get confused about.
2125 		 *
2126 		 * Also, it will make PI more or less work without too
2127 		 * much confusion -- but then, stop work should not
2128 		 * rely on PI working anyway.
2129 		 */
2130 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2131 
2132 		stop->sched_class = &stop_sched_class;
2133 	}
2134 
2135 	cpu_rq(cpu)->stop = stop;
2136 
2137 	if (old_stop) {
2138 		/*
2139 		 * Reset it back to a normal scheduling class so that
2140 		 * it can die in pieces.
2141 		 */
2142 		old_stop->sched_class = &rt_sched_class;
2143 	}
2144 }
2145 
2146 #else
2147 
2148 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2149 					 const struct cpumask *new_mask, bool check)
2150 {
2151 	return set_cpus_allowed_ptr(p, new_mask);
2152 }
2153 
2154 #endif /* CONFIG_SMP */
2155 
2156 static void
2157 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2158 {
2159 	struct rq *rq;
2160 
2161 	if (!schedstat_enabled())
2162 		return;
2163 
2164 	rq = this_rq();
2165 
2166 #ifdef CONFIG_SMP
2167 	if (cpu == rq->cpu) {
2168 		__schedstat_inc(rq->ttwu_local);
2169 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2170 	} else {
2171 		struct sched_domain *sd;
2172 
2173 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2174 		rcu_read_lock();
2175 		for_each_domain(rq->cpu, sd) {
2176 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2177 				__schedstat_inc(sd->ttwu_wake_remote);
2178 				break;
2179 			}
2180 		}
2181 		rcu_read_unlock();
2182 	}
2183 
2184 	if (wake_flags & WF_MIGRATED)
2185 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2186 #endif /* CONFIG_SMP */
2187 
2188 	__schedstat_inc(rq->ttwu_count);
2189 	__schedstat_inc(p->se.statistics.nr_wakeups);
2190 
2191 	if (wake_flags & WF_SYNC)
2192 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2193 }
2194 
2195 /*
2196  * Mark the task runnable and perform wakeup-preemption.
2197  */
2198 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2199 			   struct rq_flags *rf)
2200 {
2201 	check_preempt_curr(rq, p, wake_flags);
2202 	p->state = TASK_RUNNING;
2203 	trace_sched_wakeup(p);
2204 
2205 #ifdef CONFIG_SMP
2206 	if (p->sched_class->task_woken) {
2207 		/*
2208 		 * Our task @p is fully woken up and running; so its safe to
2209 		 * drop the rq->lock, hereafter rq is only used for statistics.
2210 		 */
2211 		rq_unpin_lock(rq, rf);
2212 		p->sched_class->task_woken(rq, p);
2213 		rq_repin_lock(rq, rf);
2214 	}
2215 
2216 	if (rq->idle_stamp) {
2217 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2218 		u64 max = 2*rq->max_idle_balance_cost;
2219 
2220 		update_avg(&rq->avg_idle, delta);
2221 
2222 		if (rq->avg_idle > max)
2223 			rq->avg_idle = max;
2224 
2225 		rq->idle_stamp = 0;
2226 	}
2227 #endif
2228 }
2229 
2230 static void
2231 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2232 		 struct rq_flags *rf)
2233 {
2234 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2235 
2236 	lockdep_assert_held(&rq->lock);
2237 
2238 #ifdef CONFIG_SMP
2239 	if (p->sched_contributes_to_load)
2240 		rq->nr_uninterruptible--;
2241 
2242 	if (wake_flags & WF_MIGRATED)
2243 		en_flags |= ENQUEUE_MIGRATED;
2244 #endif
2245 
2246 	activate_task(rq, p, en_flags);
2247 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2248 }
2249 
2250 /*
2251  * Called in case the task @p isn't fully descheduled from its runqueue,
2252  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2253  * since all we need to do is flip p->state to TASK_RUNNING, since
2254  * the task is still ->on_rq.
2255  */
2256 static int ttwu_remote(struct task_struct *p, int wake_flags)
2257 {
2258 	struct rq_flags rf;
2259 	struct rq *rq;
2260 	int ret = 0;
2261 
2262 	rq = __task_rq_lock(p, &rf);
2263 	if (task_on_rq_queued(p)) {
2264 		/* check_preempt_curr() may use rq clock */
2265 		update_rq_clock(rq);
2266 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2267 		ret = 1;
2268 	}
2269 	__task_rq_unlock(rq, &rf);
2270 
2271 	return ret;
2272 }
2273 
2274 #ifdef CONFIG_SMP
2275 void sched_ttwu_pending(void)
2276 {
2277 	struct rq *rq = this_rq();
2278 	struct llist_node *llist = llist_del_all(&rq->wake_list);
2279 	struct task_struct *p, *t;
2280 	struct rq_flags rf;
2281 
2282 	if (!llist)
2283 		return;
2284 
2285 	rq_lock_irqsave(rq, &rf);
2286 	update_rq_clock(rq);
2287 
2288 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2289 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2290 
2291 	rq_unlock_irqrestore(rq, &rf);
2292 }
2293 
2294 void scheduler_ipi(void)
2295 {
2296 	/*
2297 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2298 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2299 	 * this IPI.
2300 	 */
2301 	preempt_fold_need_resched();
2302 
2303 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2304 		return;
2305 
2306 	/*
2307 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2308 	 * traditionally all their work was done from the interrupt return
2309 	 * path. Now that we actually do some work, we need to make sure
2310 	 * we do call them.
2311 	 *
2312 	 * Some archs already do call them, luckily irq_enter/exit nest
2313 	 * properly.
2314 	 *
2315 	 * Arguably we should visit all archs and update all handlers,
2316 	 * however a fair share of IPIs are still resched only so this would
2317 	 * somewhat pessimize the simple resched case.
2318 	 */
2319 	irq_enter();
2320 	sched_ttwu_pending();
2321 
2322 	/*
2323 	 * Check if someone kicked us for doing the nohz idle load balance.
2324 	 */
2325 	if (unlikely(got_nohz_idle_kick())) {
2326 		this_rq()->idle_balance = 1;
2327 		raise_softirq_irqoff(SCHED_SOFTIRQ);
2328 	}
2329 	irq_exit();
2330 }
2331 
2332 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2333 {
2334 	struct rq *rq = cpu_rq(cpu);
2335 
2336 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2337 
2338 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2339 		if (!set_nr_if_polling(rq->idle))
2340 			smp_send_reschedule(cpu);
2341 		else
2342 			trace_sched_wake_idle_without_ipi(cpu);
2343 	}
2344 }
2345 
2346 void wake_up_if_idle(int cpu)
2347 {
2348 	struct rq *rq = cpu_rq(cpu);
2349 	struct rq_flags rf;
2350 
2351 	rcu_read_lock();
2352 
2353 	if (!is_idle_task(rcu_dereference(rq->curr)))
2354 		goto out;
2355 
2356 	if (set_nr_if_polling(rq->idle)) {
2357 		trace_sched_wake_idle_without_ipi(cpu);
2358 	} else {
2359 		rq_lock_irqsave(rq, &rf);
2360 		if (is_idle_task(rq->curr))
2361 			smp_send_reschedule(cpu);
2362 		/* Else CPU is not idle, do nothing here: */
2363 		rq_unlock_irqrestore(rq, &rf);
2364 	}
2365 
2366 out:
2367 	rcu_read_unlock();
2368 }
2369 
2370 bool cpus_share_cache(int this_cpu, int that_cpu)
2371 {
2372 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2373 }
2374 #endif /* CONFIG_SMP */
2375 
2376 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2377 {
2378 	struct rq *rq = cpu_rq(cpu);
2379 	struct rq_flags rf;
2380 
2381 #if defined(CONFIG_SMP)
2382 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2383 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2384 		ttwu_queue_remote(p, cpu, wake_flags);
2385 		return;
2386 	}
2387 #endif
2388 
2389 	rq_lock(rq, &rf);
2390 	update_rq_clock(rq);
2391 	ttwu_do_activate(rq, p, wake_flags, &rf);
2392 	rq_unlock(rq, &rf);
2393 }
2394 
2395 /*
2396  * Notes on Program-Order guarantees on SMP systems.
2397  *
2398  *  MIGRATION
2399  *
2400  * The basic program-order guarantee on SMP systems is that when a task [t]
2401  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2402  * execution on its new CPU [c1].
2403  *
2404  * For migration (of runnable tasks) this is provided by the following means:
2405  *
2406  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2407  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2408  *     rq(c1)->lock (if not at the same time, then in that order).
2409  *  C) LOCK of the rq(c1)->lock scheduling in task
2410  *
2411  * Release/acquire chaining guarantees that B happens after A and C after B.
2412  * Note: the CPU doing B need not be c0 or c1
2413  *
2414  * Example:
2415  *
2416  *   CPU0            CPU1            CPU2
2417  *
2418  *   LOCK rq(0)->lock
2419  *   sched-out X
2420  *   sched-in Y
2421  *   UNLOCK rq(0)->lock
2422  *
2423  *                                   LOCK rq(0)->lock // orders against CPU0
2424  *                                   dequeue X
2425  *                                   UNLOCK rq(0)->lock
2426  *
2427  *                                   LOCK rq(1)->lock
2428  *                                   enqueue X
2429  *                                   UNLOCK rq(1)->lock
2430  *
2431  *                   LOCK rq(1)->lock // orders against CPU2
2432  *                   sched-out Z
2433  *                   sched-in X
2434  *                   UNLOCK rq(1)->lock
2435  *
2436  *
2437  *  BLOCKING -- aka. SLEEP + WAKEUP
2438  *
2439  * For blocking we (obviously) need to provide the same guarantee as for
2440  * migration. However the means are completely different as there is no lock
2441  * chain to provide order. Instead we do:
2442  *
2443  *   1) smp_store_release(X->on_cpu, 0)
2444  *   2) smp_cond_load_acquire(!X->on_cpu)
2445  *
2446  * Example:
2447  *
2448  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2449  *
2450  *   LOCK rq(0)->lock LOCK X->pi_lock
2451  *   dequeue X
2452  *   sched-out X
2453  *   smp_store_release(X->on_cpu, 0);
2454  *
2455  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2456  *                    X->state = WAKING
2457  *                    set_task_cpu(X,2)
2458  *
2459  *                    LOCK rq(2)->lock
2460  *                    enqueue X
2461  *                    X->state = RUNNING
2462  *                    UNLOCK rq(2)->lock
2463  *
2464  *                                          LOCK rq(2)->lock // orders against CPU1
2465  *                                          sched-out Z
2466  *                                          sched-in X
2467  *                                          UNLOCK rq(2)->lock
2468  *
2469  *                    UNLOCK X->pi_lock
2470  *   UNLOCK rq(0)->lock
2471  *
2472  *
2473  * However, for wakeups there is a second guarantee we must provide, namely we
2474  * must ensure that CONDITION=1 done by the caller can not be reordered with
2475  * accesses to the task state; see try_to_wake_up() and set_current_state().
2476  */
2477 
2478 /**
2479  * try_to_wake_up - wake up a thread
2480  * @p: the thread to be awakened
2481  * @state: the mask of task states that can be woken
2482  * @wake_flags: wake modifier flags (WF_*)
2483  *
2484  * If (@state & @p->state) @p->state = TASK_RUNNING.
2485  *
2486  * If the task was not queued/runnable, also place it back on a runqueue.
2487  *
2488  * Atomic against schedule() which would dequeue a task, also see
2489  * set_current_state().
2490  *
2491  * This function executes a full memory barrier before accessing the task
2492  * state; see set_current_state().
2493  *
2494  * Return: %true if @p->state changes (an actual wakeup was done),
2495  *	   %false otherwise.
2496  */
2497 static int
2498 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2499 {
2500 	unsigned long flags;
2501 	int cpu, success = 0;
2502 
2503 	preempt_disable();
2504 	if (p == current) {
2505 		/*
2506 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2507 		 * == smp_processor_id()'. Together this means we can special
2508 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2509 		 * without taking any locks.
2510 		 *
2511 		 * In particular:
2512 		 *  - we rely on Program-Order guarantees for all the ordering,
2513 		 *  - we're serialized against set_special_state() by virtue of
2514 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2515 		 */
2516 		if (!(p->state & state))
2517 			goto out;
2518 
2519 		success = 1;
2520 		cpu = task_cpu(p);
2521 		trace_sched_waking(p);
2522 		p->state = TASK_RUNNING;
2523 		trace_sched_wakeup(p);
2524 		goto out;
2525 	}
2526 
2527 	/*
2528 	 * If we are going to wake up a thread waiting for CONDITION we
2529 	 * need to ensure that CONDITION=1 done by the caller can not be
2530 	 * reordered with p->state check below. This pairs with mb() in
2531 	 * set_current_state() the waiting thread does.
2532 	 */
2533 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2534 	smp_mb__after_spinlock();
2535 	if (!(p->state & state))
2536 		goto unlock;
2537 
2538 	trace_sched_waking(p);
2539 
2540 	/* We're going to change ->state: */
2541 	success = 1;
2542 	cpu = task_cpu(p);
2543 
2544 	/*
2545 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2546 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2547 	 * in smp_cond_load_acquire() below.
2548 	 *
2549 	 * sched_ttwu_pending()			try_to_wake_up()
2550 	 *   STORE p->on_rq = 1			  LOAD p->state
2551 	 *   UNLOCK rq->lock
2552 	 *
2553 	 * __schedule() (switch to task 'p')
2554 	 *   LOCK rq->lock			  smp_rmb();
2555 	 *   smp_mb__after_spinlock();
2556 	 *   UNLOCK rq->lock
2557 	 *
2558 	 * [task p]
2559 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2560 	 *
2561 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2562 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2563 	 */
2564 	smp_rmb();
2565 	if (p->on_rq && ttwu_remote(p, wake_flags))
2566 		goto unlock;
2567 
2568 #ifdef CONFIG_SMP
2569 	/*
2570 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2571 	 * possible to, falsely, observe p->on_cpu == 0.
2572 	 *
2573 	 * One must be running (->on_cpu == 1) in order to remove oneself
2574 	 * from the runqueue.
2575 	 *
2576 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2577 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2578 	 *   UNLOCK rq->lock
2579 	 *
2580 	 * __schedule() (put 'p' to sleep)
2581 	 *   LOCK rq->lock			  smp_rmb();
2582 	 *   smp_mb__after_spinlock();
2583 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2584 	 *
2585 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2586 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2587 	 */
2588 	smp_rmb();
2589 
2590 	/*
2591 	 * If the owning (remote) CPU is still in the middle of schedule() with
2592 	 * this task as prev, wait until its done referencing the task.
2593 	 *
2594 	 * Pairs with the smp_store_release() in finish_task().
2595 	 *
2596 	 * This ensures that tasks getting woken will be fully ordered against
2597 	 * their previous state and preserve Program Order.
2598 	 */
2599 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2600 
2601 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2602 	p->state = TASK_WAKING;
2603 
2604 	if (p->in_iowait) {
2605 		delayacct_blkio_end(p);
2606 		atomic_dec(&task_rq(p)->nr_iowait);
2607 	}
2608 
2609 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2610 	if (task_cpu(p) != cpu) {
2611 		wake_flags |= WF_MIGRATED;
2612 		psi_ttwu_dequeue(p);
2613 		set_task_cpu(p, cpu);
2614 	}
2615 
2616 #else /* CONFIG_SMP */
2617 
2618 	if (p->in_iowait) {
2619 		delayacct_blkio_end(p);
2620 		atomic_dec(&task_rq(p)->nr_iowait);
2621 	}
2622 
2623 #endif /* CONFIG_SMP */
2624 
2625 	ttwu_queue(p, cpu, wake_flags);
2626 unlock:
2627 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2628 out:
2629 	if (success)
2630 		ttwu_stat(p, cpu, wake_flags);
2631 	preempt_enable();
2632 
2633 	return success;
2634 }
2635 
2636 /**
2637  * wake_up_process - Wake up a specific process
2638  * @p: The process to be woken up.
2639  *
2640  * Attempt to wake up the nominated process and move it to the set of runnable
2641  * processes.
2642  *
2643  * Return: 1 if the process was woken up, 0 if it was already running.
2644  *
2645  * This function executes a full memory barrier before accessing the task state.
2646  */
2647 int wake_up_process(struct task_struct *p)
2648 {
2649 	return try_to_wake_up(p, TASK_NORMAL, 0);
2650 }
2651 EXPORT_SYMBOL(wake_up_process);
2652 
2653 int wake_up_state(struct task_struct *p, unsigned int state)
2654 {
2655 	return try_to_wake_up(p, state, 0);
2656 }
2657 
2658 /*
2659  * Perform scheduler related setup for a newly forked process p.
2660  * p is forked by current.
2661  *
2662  * __sched_fork() is basic setup used by init_idle() too:
2663  */
2664 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2665 {
2666 	p->on_rq			= 0;
2667 
2668 	p->se.on_rq			= 0;
2669 	p->se.exec_start		= 0;
2670 	p->se.sum_exec_runtime		= 0;
2671 	p->se.prev_sum_exec_runtime	= 0;
2672 	p->se.nr_migrations		= 0;
2673 	p->se.vruntime			= 0;
2674 	INIT_LIST_HEAD(&p->se.group_node);
2675 
2676 #ifdef CONFIG_FAIR_GROUP_SCHED
2677 	p->se.cfs_rq			= NULL;
2678 #endif
2679 
2680 #ifdef CONFIG_SCHEDSTATS
2681 	/* Even if schedstat is disabled, there should not be garbage */
2682 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2683 #endif
2684 
2685 	RB_CLEAR_NODE(&p->dl.rb_node);
2686 	init_dl_task_timer(&p->dl);
2687 	init_dl_inactive_task_timer(&p->dl);
2688 	__dl_clear_params(p);
2689 
2690 	INIT_LIST_HEAD(&p->rt.run_list);
2691 	p->rt.timeout		= 0;
2692 	p->rt.time_slice	= sched_rr_timeslice;
2693 	p->rt.on_rq		= 0;
2694 	p->rt.on_list		= 0;
2695 
2696 #ifdef CONFIG_PREEMPT_NOTIFIERS
2697 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2698 #endif
2699 
2700 #ifdef CONFIG_COMPACTION
2701 	p->capture_control = NULL;
2702 #endif
2703 	init_numa_balancing(clone_flags, p);
2704 }
2705 
2706 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2707 
2708 #ifdef CONFIG_NUMA_BALANCING
2709 
2710 void set_numabalancing_state(bool enabled)
2711 {
2712 	if (enabled)
2713 		static_branch_enable(&sched_numa_balancing);
2714 	else
2715 		static_branch_disable(&sched_numa_balancing);
2716 }
2717 
2718 #ifdef CONFIG_PROC_SYSCTL
2719 int sysctl_numa_balancing(struct ctl_table *table, int write,
2720 			  void *buffer, size_t *lenp, loff_t *ppos)
2721 {
2722 	struct ctl_table t;
2723 	int err;
2724 	int state = static_branch_likely(&sched_numa_balancing);
2725 
2726 	if (write && !capable(CAP_SYS_ADMIN))
2727 		return -EPERM;
2728 
2729 	t = *table;
2730 	t.data = &state;
2731 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2732 	if (err < 0)
2733 		return err;
2734 	if (write)
2735 		set_numabalancing_state(state);
2736 	return err;
2737 }
2738 #endif
2739 #endif
2740 
2741 #ifdef CONFIG_SCHEDSTATS
2742 
2743 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2744 static bool __initdata __sched_schedstats = false;
2745 
2746 static void set_schedstats(bool enabled)
2747 {
2748 	if (enabled)
2749 		static_branch_enable(&sched_schedstats);
2750 	else
2751 		static_branch_disable(&sched_schedstats);
2752 }
2753 
2754 void force_schedstat_enabled(void)
2755 {
2756 	if (!schedstat_enabled()) {
2757 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2758 		static_branch_enable(&sched_schedstats);
2759 	}
2760 }
2761 
2762 static int __init setup_schedstats(char *str)
2763 {
2764 	int ret = 0;
2765 	if (!str)
2766 		goto out;
2767 
2768 	/*
2769 	 * This code is called before jump labels have been set up, so we can't
2770 	 * change the static branch directly just yet.  Instead set a temporary
2771 	 * variable so init_schedstats() can do it later.
2772 	 */
2773 	if (!strcmp(str, "enable")) {
2774 		__sched_schedstats = true;
2775 		ret = 1;
2776 	} else if (!strcmp(str, "disable")) {
2777 		__sched_schedstats = false;
2778 		ret = 1;
2779 	}
2780 out:
2781 	if (!ret)
2782 		pr_warn("Unable to parse schedstats=\n");
2783 
2784 	return ret;
2785 }
2786 __setup("schedstats=", setup_schedstats);
2787 
2788 static void __init init_schedstats(void)
2789 {
2790 	set_schedstats(__sched_schedstats);
2791 }
2792 
2793 #ifdef CONFIG_PROC_SYSCTL
2794 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
2795 		size_t *lenp, loff_t *ppos)
2796 {
2797 	struct ctl_table t;
2798 	int err;
2799 	int state = static_branch_likely(&sched_schedstats);
2800 
2801 	if (write && !capable(CAP_SYS_ADMIN))
2802 		return -EPERM;
2803 
2804 	t = *table;
2805 	t.data = &state;
2806 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2807 	if (err < 0)
2808 		return err;
2809 	if (write)
2810 		set_schedstats(state);
2811 	return err;
2812 }
2813 #endif /* CONFIG_PROC_SYSCTL */
2814 #else  /* !CONFIG_SCHEDSTATS */
2815 static inline void init_schedstats(void) {}
2816 #endif /* CONFIG_SCHEDSTATS */
2817 
2818 /*
2819  * fork()/clone()-time setup:
2820  */
2821 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2822 {
2823 	unsigned long flags;
2824 
2825 	__sched_fork(clone_flags, p);
2826 	/*
2827 	 * We mark the process as NEW here. This guarantees that
2828 	 * nobody will actually run it, and a signal or other external
2829 	 * event cannot wake it up and insert it on the runqueue either.
2830 	 */
2831 	p->state = TASK_NEW;
2832 
2833 	/*
2834 	 * Make sure we do not leak PI boosting priority to the child.
2835 	 */
2836 	p->prio = current->normal_prio;
2837 
2838 	uclamp_fork(p);
2839 
2840 	/*
2841 	 * Revert to default priority/policy on fork if requested.
2842 	 */
2843 	if (unlikely(p->sched_reset_on_fork)) {
2844 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2845 			p->policy = SCHED_NORMAL;
2846 			p->static_prio = NICE_TO_PRIO(0);
2847 			p->rt_priority = 0;
2848 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2849 			p->static_prio = NICE_TO_PRIO(0);
2850 
2851 		p->prio = p->normal_prio = __normal_prio(p);
2852 		set_load_weight(p, false);
2853 
2854 		/*
2855 		 * We don't need the reset flag anymore after the fork. It has
2856 		 * fulfilled its duty:
2857 		 */
2858 		p->sched_reset_on_fork = 0;
2859 	}
2860 
2861 	if (dl_prio(p->prio))
2862 		return -EAGAIN;
2863 	else if (rt_prio(p->prio))
2864 		p->sched_class = &rt_sched_class;
2865 	else
2866 		p->sched_class = &fair_sched_class;
2867 
2868 	init_entity_runnable_average(&p->se);
2869 
2870 	/*
2871 	 * The child is not yet in the pid-hash so no cgroup attach races,
2872 	 * and the cgroup is pinned to this child due to cgroup_fork()
2873 	 * is ran before sched_fork().
2874 	 *
2875 	 * Silence PROVE_RCU.
2876 	 */
2877 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2878 	/*
2879 	 * We're setting the CPU for the first time, we don't migrate,
2880 	 * so use __set_task_cpu().
2881 	 */
2882 	__set_task_cpu(p, smp_processor_id());
2883 	if (p->sched_class->task_fork)
2884 		p->sched_class->task_fork(p);
2885 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2886 
2887 #ifdef CONFIG_SCHED_INFO
2888 	if (likely(sched_info_on()))
2889 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2890 #endif
2891 #if defined(CONFIG_SMP)
2892 	p->on_cpu = 0;
2893 #endif
2894 	init_task_preempt_count(p);
2895 #ifdef CONFIG_SMP
2896 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2897 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2898 #endif
2899 	return 0;
2900 }
2901 
2902 unsigned long to_ratio(u64 period, u64 runtime)
2903 {
2904 	if (runtime == RUNTIME_INF)
2905 		return BW_UNIT;
2906 
2907 	/*
2908 	 * Doing this here saves a lot of checks in all
2909 	 * the calling paths, and returning zero seems
2910 	 * safe for them anyway.
2911 	 */
2912 	if (period == 0)
2913 		return 0;
2914 
2915 	return div64_u64(runtime << BW_SHIFT, period);
2916 }
2917 
2918 /*
2919  * wake_up_new_task - wake up a newly created task for the first time.
2920  *
2921  * This function will do some initial scheduler statistics housekeeping
2922  * that must be done for every newly created context, then puts the task
2923  * on the runqueue and wakes it.
2924  */
2925 void wake_up_new_task(struct task_struct *p)
2926 {
2927 	struct rq_flags rf;
2928 	struct rq *rq;
2929 
2930 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2931 	p->state = TASK_RUNNING;
2932 #ifdef CONFIG_SMP
2933 	/*
2934 	 * Fork balancing, do it here and not earlier because:
2935 	 *  - cpus_ptr can change in the fork path
2936 	 *  - any previously selected CPU might disappear through hotplug
2937 	 *
2938 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2939 	 * as we're not fully set-up yet.
2940 	 */
2941 	p->recent_used_cpu = task_cpu(p);
2942 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2943 #endif
2944 	rq = __task_rq_lock(p, &rf);
2945 	update_rq_clock(rq);
2946 	post_init_entity_util_avg(p);
2947 
2948 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2949 	trace_sched_wakeup_new(p);
2950 	check_preempt_curr(rq, p, WF_FORK);
2951 #ifdef CONFIG_SMP
2952 	if (p->sched_class->task_woken) {
2953 		/*
2954 		 * Nothing relies on rq->lock after this, so its fine to
2955 		 * drop it.
2956 		 */
2957 		rq_unpin_lock(rq, &rf);
2958 		p->sched_class->task_woken(rq, p);
2959 		rq_repin_lock(rq, &rf);
2960 	}
2961 #endif
2962 	task_rq_unlock(rq, p, &rf);
2963 }
2964 
2965 #ifdef CONFIG_PREEMPT_NOTIFIERS
2966 
2967 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2968 
2969 void preempt_notifier_inc(void)
2970 {
2971 	static_branch_inc(&preempt_notifier_key);
2972 }
2973 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2974 
2975 void preempt_notifier_dec(void)
2976 {
2977 	static_branch_dec(&preempt_notifier_key);
2978 }
2979 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2980 
2981 /**
2982  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2983  * @notifier: notifier struct to register
2984  */
2985 void preempt_notifier_register(struct preempt_notifier *notifier)
2986 {
2987 	if (!static_branch_unlikely(&preempt_notifier_key))
2988 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2989 
2990 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2991 }
2992 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2993 
2994 /**
2995  * preempt_notifier_unregister - no longer interested in preemption notifications
2996  * @notifier: notifier struct to unregister
2997  *
2998  * This is *not* safe to call from within a preemption notifier.
2999  */
3000 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3001 {
3002 	hlist_del(&notifier->link);
3003 }
3004 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3005 
3006 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3007 {
3008 	struct preempt_notifier *notifier;
3009 
3010 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3011 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3012 }
3013 
3014 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3015 {
3016 	if (static_branch_unlikely(&preempt_notifier_key))
3017 		__fire_sched_in_preempt_notifiers(curr);
3018 }
3019 
3020 static void
3021 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3022 				   struct task_struct *next)
3023 {
3024 	struct preempt_notifier *notifier;
3025 
3026 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3027 		notifier->ops->sched_out(notifier, next);
3028 }
3029 
3030 static __always_inline void
3031 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3032 				 struct task_struct *next)
3033 {
3034 	if (static_branch_unlikely(&preempt_notifier_key))
3035 		__fire_sched_out_preempt_notifiers(curr, next);
3036 }
3037 
3038 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3039 
3040 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3041 {
3042 }
3043 
3044 static inline void
3045 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3046 				 struct task_struct *next)
3047 {
3048 }
3049 
3050 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3051 
3052 static inline void prepare_task(struct task_struct *next)
3053 {
3054 #ifdef CONFIG_SMP
3055 	/*
3056 	 * Claim the task as running, we do this before switching to it
3057 	 * such that any running task will have this set.
3058 	 */
3059 	next->on_cpu = 1;
3060 #endif
3061 }
3062 
3063 static inline void finish_task(struct task_struct *prev)
3064 {
3065 #ifdef CONFIG_SMP
3066 	/*
3067 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3068 	 * We must ensure this doesn't happen until the switch is completely
3069 	 * finished.
3070 	 *
3071 	 * In particular, the load of prev->state in finish_task_switch() must
3072 	 * happen before this.
3073 	 *
3074 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3075 	 */
3076 	smp_store_release(&prev->on_cpu, 0);
3077 #endif
3078 }
3079 
3080 static inline void
3081 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3082 {
3083 	/*
3084 	 * Since the runqueue lock will be released by the next
3085 	 * task (which is an invalid locking op but in the case
3086 	 * of the scheduler it's an obvious special-case), so we
3087 	 * do an early lockdep release here:
3088 	 */
3089 	rq_unpin_lock(rq, rf);
3090 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3091 #ifdef CONFIG_DEBUG_SPINLOCK
3092 	/* this is a valid case when another task releases the spinlock */
3093 	rq->lock.owner = next;
3094 #endif
3095 }
3096 
3097 static inline void finish_lock_switch(struct rq *rq)
3098 {
3099 	/*
3100 	 * If we are tracking spinlock dependencies then we have to
3101 	 * fix up the runqueue lock - which gets 'carried over' from
3102 	 * prev into current:
3103 	 */
3104 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3105 	raw_spin_unlock_irq(&rq->lock);
3106 }
3107 
3108 /*
3109  * NOP if the arch has not defined these:
3110  */
3111 
3112 #ifndef prepare_arch_switch
3113 # define prepare_arch_switch(next)	do { } while (0)
3114 #endif
3115 
3116 #ifndef finish_arch_post_lock_switch
3117 # define finish_arch_post_lock_switch()	do { } while (0)
3118 #endif
3119 
3120 /**
3121  * prepare_task_switch - prepare to switch tasks
3122  * @rq: the runqueue preparing to switch
3123  * @prev: the current task that is being switched out
3124  * @next: the task we are going to switch to.
3125  *
3126  * This is called with the rq lock held and interrupts off. It must
3127  * be paired with a subsequent finish_task_switch after the context
3128  * switch.
3129  *
3130  * prepare_task_switch sets up locking and calls architecture specific
3131  * hooks.
3132  */
3133 static inline void
3134 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3135 		    struct task_struct *next)
3136 {
3137 	kcov_prepare_switch(prev);
3138 	sched_info_switch(rq, prev, next);
3139 	perf_event_task_sched_out(prev, next);
3140 	rseq_preempt(prev);
3141 	fire_sched_out_preempt_notifiers(prev, next);
3142 	prepare_task(next);
3143 	prepare_arch_switch(next);
3144 }
3145 
3146 /**
3147  * finish_task_switch - clean up after a task-switch
3148  * @prev: the thread we just switched away from.
3149  *
3150  * finish_task_switch must be called after the context switch, paired
3151  * with a prepare_task_switch call before the context switch.
3152  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3153  * and do any other architecture-specific cleanup actions.
3154  *
3155  * Note that we may have delayed dropping an mm in context_switch(). If
3156  * so, we finish that here outside of the runqueue lock. (Doing it
3157  * with the lock held can cause deadlocks; see schedule() for
3158  * details.)
3159  *
3160  * The context switch have flipped the stack from under us and restored the
3161  * local variables which were saved when this task called schedule() in the
3162  * past. prev == current is still correct but we need to recalculate this_rq
3163  * because prev may have moved to another CPU.
3164  */
3165 static struct rq *finish_task_switch(struct task_struct *prev)
3166 	__releases(rq->lock)
3167 {
3168 	struct rq *rq = this_rq();
3169 	struct mm_struct *mm = rq->prev_mm;
3170 	long prev_state;
3171 
3172 	/*
3173 	 * The previous task will have left us with a preempt_count of 2
3174 	 * because it left us after:
3175 	 *
3176 	 *	schedule()
3177 	 *	  preempt_disable();			// 1
3178 	 *	  __schedule()
3179 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3180 	 *
3181 	 * Also, see FORK_PREEMPT_COUNT.
3182 	 */
3183 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3184 		      "corrupted preempt_count: %s/%d/0x%x\n",
3185 		      current->comm, current->pid, preempt_count()))
3186 		preempt_count_set(FORK_PREEMPT_COUNT);
3187 
3188 	rq->prev_mm = NULL;
3189 
3190 	/*
3191 	 * A task struct has one reference for the use as "current".
3192 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3193 	 * schedule one last time. The schedule call will never return, and
3194 	 * the scheduled task must drop that reference.
3195 	 *
3196 	 * We must observe prev->state before clearing prev->on_cpu (in
3197 	 * finish_task), otherwise a concurrent wakeup can get prev
3198 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3199 	 * transition, resulting in a double drop.
3200 	 */
3201 	prev_state = prev->state;
3202 	vtime_task_switch(prev);
3203 	perf_event_task_sched_in(prev, current);
3204 	finish_task(prev);
3205 	finish_lock_switch(rq);
3206 	finish_arch_post_lock_switch();
3207 	kcov_finish_switch(current);
3208 
3209 	fire_sched_in_preempt_notifiers(current);
3210 	/*
3211 	 * When switching through a kernel thread, the loop in
3212 	 * membarrier_{private,global}_expedited() may have observed that
3213 	 * kernel thread and not issued an IPI. It is therefore possible to
3214 	 * schedule between user->kernel->user threads without passing though
3215 	 * switch_mm(). Membarrier requires a barrier after storing to
3216 	 * rq->curr, before returning to userspace, so provide them here:
3217 	 *
3218 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3219 	 *   provided by mmdrop(),
3220 	 * - a sync_core for SYNC_CORE.
3221 	 */
3222 	if (mm) {
3223 		membarrier_mm_sync_core_before_usermode(mm);
3224 		mmdrop(mm);
3225 	}
3226 	if (unlikely(prev_state == TASK_DEAD)) {
3227 		if (prev->sched_class->task_dead)
3228 			prev->sched_class->task_dead(prev);
3229 
3230 		/*
3231 		 * Remove function-return probe instances associated with this
3232 		 * task and put them back on the free list.
3233 		 */
3234 		kprobe_flush_task(prev);
3235 
3236 		/* Task is done with its stack. */
3237 		put_task_stack(prev);
3238 
3239 		put_task_struct_rcu_user(prev);
3240 	}
3241 
3242 	tick_nohz_task_switch();
3243 	return rq;
3244 }
3245 
3246 #ifdef CONFIG_SMP
3247 
3248 /* rq->lock is NOT held, but preemption is disabled */
3249 static void __balance_callback(struct rq *rq)
3250 {
3251 	struct callback_head *head, *next;
3252 	void (*func)(struct rq *rq);
3253 	unsigned long flags;
3254 
3255 	raw_spin_lock_irqsave(&rq->lock, flags);
3256 	head = rq->balance_callback;
3257 	rq->balance_callback = NULL;
3258 	while (head) {
3259 		func = (void (*)(struct rq *))head->func;
3260 		next = head->next;
3261 		head->next = NULL;
3262 		head = next;
3263 
3264 		func(rq);
3265 	}
3266 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3267 }
3268 
3269 static inline void balance_callback(struct rq *rq)
3270 {
3271 	if (unlikely(rq->balance_callback))
3272 		__balance_callback(rq);
3273 }
3274 
3275 #else
3276 
3277 static inline void balance_callback(struct rq *rq)
3278 {
3279 }
3280 
3281 #endif
3282 
3283 /**
3284  * schedule_tail - first thing a freshly forked thread must call.
3285  * @prev: the thread we just switched away from.
3286  */
3287 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3288 	__releases(rq->lock)
3289 {
3290 	struct rq *rq;
3291 
3292 	/*
3293 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3294 	 * finish_task_switch() for details.
3295 	 *
3296 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3297 	 * and the preempt_enable() will end up enabling preemption (on
3298 	 * PREEMPT_COUNT kernels).
3299 	 */
3300 
3301 	rq = finish_task_switch(prev);
3302 	balance_callback(rq);
3303 	preempt_enable();
3304 
3305 	if (current->set_child_tid)
3306 		put_user(task_pid_vnr(current), current->set_child_tid);
3307 
3308 	calculate_sigpending();
3309 }
3310 
3311 /*
3312  * context_switch - switch to the new MM and the new thread's register state.
3313  */
3314 static __always_inline struct rq *
3315 context_switch(struct rq *rq, struct task_struct *prev,
3316 	       struct task_struct *next, struct rq_flags *rf)
3317 {
3318 	prepare_task_switch(rq, prev, next);
3319 
3320 	/*
3321 	 * For paravirt, this is coupled with an exit in switch_to to
3322 	 * combine the page table reload and the switch backend into
3323 	 * one hypercall.
3324 	 */
3325 	arch_start_context_switch(prev);
3326 
3327 	/*
3328 	 * kernel -> kernel   lazy + transfer active
3329 	 *   user -> kernel   lazy + mmgrab() active
3330 	 *
3331 	 * kernel ->   user   switch + mmdrop() active
3332 	 *   user ->   user   switch
3333 	 */
3334 	if (!next->mm) {                                // to kernel
3335 		enter_lazy_tlb(prev->active_mm, next);
3336 
3337 		next->active_mm = prev->active_mm;
3338 		if (prev->mm)                           // from user
3339 			mmgrab(prev->active_mm);
3340 		else
3341 			prev->active_mm = NULL;
3342 	} else {                                        // to user
3343 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3344 		/*
3345 		 * sys_membarrier() requires an smp_mb() between setting
3346 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3347 		 *
3348 		 * The below provides this either through switch_mm(), or in
3349 		 * case 'prev->active_mm == next->mm' through
3350 		 * finish_task_switch()'s mmdrop().
3351 		 */
3352 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3353 
3354 		if (!prev->mm) {                        // from kernel
3355 			/* will mmdrop() in finish_task_switch(). */
3356 			rq->prev_mm = prev->active_mm;
3357 			prev->active_mm = NULL;
3358 		}
3359 	}
3360 
3361 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3362 
3363 	prepare_lock_switch(rq, next, rf);
3364 
3365 	/* Here we just switch the register state and the stack. */
3366 	switch_to(prev, next, prev);
3367 	barrier();
3368 
3369 	return finish_task_switch(prev);
3370 }
3371 
3372 /*
3373  * nr_running and nr_context_switches:
3374  *
3375  * externally visible scheduler statistics: current number of runnable
3376  * threads, total number of context switches performed since bootup.
3377  */
3378 unsigned long nr_running(void)
3379 {
3380 	unsigned long i, sum = 0;
3381 
3382 	for_each_online_cpu(i)
3383 		sum += cpu_rq(i)->nr_running;
3384 
3385 	return sum;
3386 }
3387 
3388 /*
3389  * Check if only the current task is running on the CPU.
3390  *
3391  * Caution: this function does not check that the caller has disabled
3392  * preemption, thus the result might have a time-of-check-to-time-of-use
3393  * race.  The caller is responsible to use it correctly, for example:
3394  *
3395  * - from a non-preemptible section (of course)
3396  *
3397  * - from a thread that is bound to a single CPU
3398  *
3399  * - in a loop with very short iterations (e.g. a polling loop)
3400  */
3401 bool single_task_running(void)
3402 {
3403 	return raw_rq()->nr_running == 1;
3404 }
3405 EXPORT_SYMBOL(single_task_running);
3406 
3407 unsigned long long nr_context_switches(void)
3408 {
3409 	int i;
3410 	unsigned long long sum = 0;
3411 
3412 	for_each_possible_cpu(i)
3413 		sum += cpu_rq(i)->nr_switches;
3414 
3415 	return sum;
3416 }
3417 
3418 /*
3419  * Consumers of these two interfaces, like for example the cpuidle menu
3420  * governor, are using nonsensical data. Preferring shallow idle state selection
3421  * for a CPU that has IO-wait which might not even end up running the task when
3422  * it does become runnable.
3423  */
3424 
3425 unsigned long nr_iowait_cpu(int cpu)
3426 {
3427 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3428 }
3429 
3430 /*
3431  * IO-wait accounting, and how its mostly bollocks (on SMP).
3432  *
3433  * The idea behind IO-wait account is to account the idle time that we could
3434  * have spend running if it were not for IO. That is, if we were to improve the
3435  * storage performance, we'd have a proportional reduction in IO-wait time.
3436  *
3437  * This all works nicely on UP, where, when a task blocks on IO, we account
3438  * idle time as IO-wait, because if the storage were faster, it could've been
3439  * running and we'd not be idle.
3440  *
3441  * This has been extended to SMP, by doing the same for each CPU. This however
3442  * is broken.
3443  *
3444  * Imagine for instance the case where two tasks block on one CPU, only the one
3445  * CPU will have IO-wait accounted, while the other has regular idle. Even
3446  * though, if the storage were faster, both could've ran at the same time,
3447  * utilising both CPUs.
3448  *
3449  * This means, that when looking globally, the current IO-wait accounting on
3450  * SMP is a lower bound, by reason of under accounting.
3451  *
3452  * Worse, since the numbers are provided per CPU, they are sometimes
3453  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3454  * associated with any one particular CPU, it can wake to another CPU than it
3455  * blocked on. This means the per CPU IO-wait number is meaningless.
3456  *
3457  * Task CPU affinities can make all that even more 'interesting'.
3458  */
3459 
3460 unsigned long nr_iowait(void)
3461 {
3462 	unsigned long i, sum = 0;
3463 
3464 	for_each_possible_cpu(i)
3465 		sum += nr_iowait_cpu(i);
3466 
3467 	return sum;
3468 }
3469 
3470 #ifdef CONFIG_SMP
3471 
3472 /*
3473  * sched_exec - execve() is a valuable balancing opportunity, because at
3474  * this point the task has the smallest effective memory and cache footprint.
3475  */
3476 void sched_exec(void)
3477 {
3478 	struct task_struct *p = current;
3479 	unsigned long flags;
3480 	int dest_cpu;
3481 
3482 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3483 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3484 	if (dest_cpu == smp_processor_id())
3485 		goto unlock;
3486 
3487 	if (likely(cpu_active(dest_cpu))) {
3488 		struct migration_arg arg = { p, dest_cpu };
3489 
3490 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3491 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3492 		return;
3493 	}
3494 unlock:
3495 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3496 }
3497 
3498 #endif
3499 
3500 DEFINE_PER_CPU(struct kernel_stat, kstat);
3501 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3502 
3503 EXPORT_PER_CPU_SYMBOL(kstat);
3504 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3505 
3506 /*
3507  * The function fair_sched_class.update_curr accesses the struct curr
3508  * and its field curr->exec_start; when called from task_sched_runtime(),
3509  * we observe a high rate of cache misses in practice.
3510  * Prefetching this data results in improved performance.
3511  */
3512 static inline void prefetch_curr_exec_start(struct task_struct *p)
3513 {
3514 #ifdef CONFIG_FAIR_GROUP_SCHED
3515 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3516 #else
3517 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3518 #endif
3519 	prefetch(curr);
3520 	prefetch(&curr->exec_start);
3521 }
3522 
3523 /*
3524  * Return accounted runtime for the task.
3525  * In case the task is currently running, return the runtime plus current's
3526  * pending runtime that have not been accounted yet.
3527  */
3528 unsigned long long task_sched_runtime(struct task_struct *p)
3529 {
3530 	struct rq_flags rf;
3531 	struct rq *rq;
3532 	u64 ns;
3533 
3534 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3535 	/*
3536 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3537 	 * So we have a optimization chance when the task's delta_exec is 0.
3538 	 * Reading ->on_cpu is racy, but this is ok.
3539 	 *
3540 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3541 	 * If we race with it entering CPU, unaccounted time is 0. This is
3542 	 * indistinguishable from the read occurring a few cycles earlier.
3543 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3544 	 * been accounted, so we're correct here as well.
3545 	 */
3546 	if (!p->on_cpu || !task_on_rq_queued(p))
3547 		return p->se.sum_exec_runtime;
3548 #endif
3549 
3550 	rq = task_rq_lock(p, &rf);
3551 	/*
3552 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3553 	 * project cycles that may never be accounted to this
3554 	 * thread, breaking clock_gettime().
3555 	 */
3556 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3557 		prefetch_curr_exec_start(p);
3558 		update_rq_clock(rq);
3559 		p->sched_class->update_curr(rq);
3560 	}
3561 	ns = p->se.sum_exec_runtime;
3562 	task_rq_unlock(rq, p, &rf);
3563 
3564 	return ns;
3565 }
3566 
3567 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3568 
3569 void arch_set_thermal_pressure(struct cpumask *cpus,
3570 			       unsigned long th_pressure)
3571 {
3572 	int cpu;
3573 
3574 	for_each_cpu(cpu, cpus)
3575 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3576 }
3577 
3578 /*
3579  * This function gets called by the timer code, with HZ frequency.
3580  * We call it with interrupts disabled.
3581  */
3582 void scheduler_tick(void)
3583 {
3584 	int cpu = smp_processor_id();
3585 	struct rq *rq = cpu_rq(cpu);
3586 	struct task_struct *curr = rq->curr;
3587 	struct rq_flags rf;
3588 	unsigned long thermal_pressure;
3589 
3590 	arch_scale_freq_tick();
3591 	sched_clock_tick();
3592 
3593 	rq_lock(rq, &rf);
3594 
3595 	update_rq_clock(rq);
3596 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3597 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3598 	curr->sched_class->task_tick(rq, curr, 0);
3599 	calc_global_load_tick(rq);
3600 	psi_task_tick(rq);
3601 
3602 	rq_unlock(rq, &rf);
3603 
3604 	perf_event_task_tick();
3605 
3606 #ifdef CONFIG_SMP
3607 	rq->idle_balance = idle_cpu(cpu);
3608 	trigger_load_balance(rq);
3609 #endif
3610 }
3611 
3612 #ifdef CONFIG_NO_HZ_FULL
3613 
3614 struct tick_work {
3615 	int			cpu;
3616 	atomic_t		state;
3617 	struct delayed_work	work;
3618 };
3619 /* Values for ->state, see diagram below. */
3620 #define TICK_SCHED_REMOTE_OFFLINE	0
3621 #define TICK_SCHED_REMOTE_OFFLINING	1
3622 #define TICK_SCHED_REMOTE_RUNNING	2
3623 
3624 /*
3625  * State diagram for ->state:
3626  *
3627  *
3628  *          TICK_SCHED_REMOTE_OFFLINE
3629  *                    |   ^
3630  *                    |   |
3631  *                    |   | sched_tick_remote()
3632  *                    |   |
3633  *                    |   |
3634  *                    +--TICK_SCHED_REMOTE_OFFLINING
3635  *                    |   ^
3636  *                    |   |
3637  * sched_tick_start() |   | sched_tick_stop()
3638  *                    |   |
3639  *                    V   |
3640  *          TICK_SCHED_REMOTE_RUNNING
3641  *
3642  *
3643  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3644  * and sched_tick_start() are happy to leave the state in RUNNING.
3645  */
3646 
3647 static struct tick_work __percpu *tick_work_cpu;
3648 
3649 static void sched_tick_remote(struct work_struct *work)
3650 {
3651 	struct delayed_work *dwork = to_delayed_work(work);
3652 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3653 	int cpu = twork->cpu;
3654 	struct rq *rq = cpu_rq(cpu);
3655 	struct task_struct *curr;
3656 	struct rq_flags rf;
3657 	u64 delta;
3658 	int os;
3659 
3660 	/*
3661 	 * Handle the tick only if it appears the remote CPU is running in full
3662 	 * dynticks mode. The check is racy by nature, but missing a tick or
3663 	 * having one too much is no big deal because the scheduler tick updates
3664 	 * statistics and checks timeslices in a time-independent way, regardless
3665 	 * of when exactly it is running.
3666 	 */
3667 	if (!tick_nohz_tick_stopped_cpu(cpu))
3668 		goto out_requeue;
3669 
3670 	rq_lock_irq(rq, &rf);
3671 	curr = rq->curr;
3672 	if (cpu_is_offline(cpu))
3673 		goto out_unlock;
3674 
3675 	update_rq_clock(rq);
3676 
3677 	if (!is_idle_task(curr)) {
3678 		/*
3679 		 * Make sure the next tick runs within a reasonable
3680 		 * amount of time.
3681 		 */
3682 		delta = rq_clock_task(rq) - curr->se.exec_start;
3683 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3684 	}
3685 	curr->sched_class->task_tick(rq, curr, 0);
3686 
3687 	calc_load_nohz_remote(rq);
3688 out_unlock:
3689 	rq_unlock_irq(rq, &rf);
3690 out_requeue:
3691 
3692 	/*
3693 	 * Run the remote tick once per second (1Hz). This arbitrary
3694 	 * frequency is large enough to avoid overload but short enough
3695 	 * to keep scheduler internal stats reasonably up to date.  But
3696 	 * first update state to reflect hotplug activity if required.
3697 	 */
3698 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3699 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3700 	if (os == TICK_SCHED_REMOTE_RUNNING)
3701 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3702 }
3703 
3704 static void sched_tick_start(int cpu)
3705 {
3706 	int os;
3707 	struct tick_work *twork;
3708 
3709 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3710 		return;
3711 
3712 	WARN_ON_ONCE(!tick_work_cpu);
3713 
3714 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3715 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3716 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3717 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3718 		twork->cpu = cpu;
3719 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3720 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3721 	}
3722 }
3723 
3724 #ifdef CONFIG_HOTPLUG_CPU
3725 static void sched_tick_stop(int cpu)
3726 {
3727 	struct tick_work *twork;
3728 	int os;
3729 
3730 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3731 		return;
3732 
3733 	WARN_ON_ONCE(!tick_work_cpu);
3734 
3735 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3736 	/* There cannot be competing actions, but don't rely on stop-machine. */
3737 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3738 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3739 	/* Don't cancel, as this would mess up the state machine. */
3740 }
3741 #endif /* CONFIG_HOTPLUG_CPU */
3742 
3743 int __init sched_tick_offload_init(void)
3744 {
3745 	tick_work_cpu = alloc_percpu(struct tick_work);
3746 	BUG_ON(!tick_work_cpu);
3747 	return 0;
3748 }
3749 
3750 #else /* !CONFIG_NO_HZ_FULL */
3751 static inline void sched_tick_start(int cpu) { }
3752 static inline void sched_tick_stop(int cpu) { }
3753 #endif
3754 
3755 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3756 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3757 /*
3758  * If the value passed in is equal to the current preempt count
3759  * then we just disabled preemption. Start timing the latency.
3760  */
3761 static inline void preempt_latency_start(int val)
3762 {
3763 	if (preempt_count() == val) {
3764 		unsigned long ip = get_lock_parent_ip();
3765 #ifdef CONFIG_DEBUG_PREEMPT
3766 		current->preempt_disable_ip = ip;
3767 #endif
3768 		trace_preempt_off(CALLER_ADDR0, ip);
3769 	}
3770 }
3771 
3772 void preempt_count_add(int val)
3773 {
3774 #ifdef CONFIG_DEBUG_PREEMPT
3775 	/*
3776 	 * Underflow?
3777 	 */
3778 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3779 		return;
3780 #endif
3781 	__preempt_count_add(val);
3782 #ifdef CONFIG_DEBUG_PREEMPT
3783 	/*
3784 	 * Spinlock count overflowing soon?
3785 	 */
3786 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3787 				PREEMPT_MASK - 10);
3788 #endif
3789 	preempt_latency_start(val);
3790 }
3791 EXPORT_SYMBOL(preempt_count_add);
3792 NOKPROBE_SYMBOL(preempt_count_add);
3793 
3794 /*
3795  * If the value passed in equals to the current preempt count
3796  * then we just enabled preemption. Stop timing the latency.
3797  */
3798 static inline void preempt_latency_stop(int val)
3799 {
3800 	if (preempt_count() == val)
3801 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3802 }
3803 
3804 void preempt_count_sub(int val)
3805 {
3806 #ifdef CONFIG_DEBUG_PREEMPT
3807 	/*
3808 	 * Underflow?
3809 	 */
3810 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3811 		return;
3812 	/*
3813 	 * Is the spinlock portion underflowing?
3814 	 */
3815 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3816 			!(preempt_count() & PREEMPT_MASK)))
3817 		return;
3818 #endif
3819 
3820 	preempt_latency_stop(val);
3821 	__preempt_count_sub(val);
3822 }
3823 EXPORT_SYMBOL(preempt_count_sub);
3824 NOKPROBE_SYMBOL(preempt_count_sub);
3825 
3826 #else
3827 static inline void preempt_latency_start(int val) { }
3828 static inline void preempt_latency_stop(int val) { }
3829 #endif
3830 
3831 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3832 {
3833 #ifdef CONFIG_DEBUG_PREEMPT
3834 	return p->preempt_disable_ip;
3835 #else
3836 	return 0;
3837 #endif
3838 }
3839 
3840 /*
3841  * Print scheduling while atomic bug:
3842  */
3843 static noinline void __schedule_bug(struct task_struct *prev)
3844 {
3845 	/* Save this before calling printk(), since that will clobber it */
3846 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3847 
3848 	if (oops_in_progress)
3849 		return;
3850 
3851 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3852 		prev->comm, prev->pid, preempt_count());
3853 
3854 	debug_show_held_locks(prev);
3855 	print_modules();
3856 	if (irqs_disabled())
3857 		print_irqtrace_events(prev);
3858 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3859 	    && in_atomic_preempt_off()) {
3860 		pr_err("Preemption disabled at:");
3861 		print_ip_sym(preempt_disable_ip);
3862 		pr_cont("\n");
3863 	}
3864 	if (panic_on_warn)
3865 		panic("scheduling while atomic\n");
3866 
3867 	dump_stack();
3868 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3869 }
3870 
3871 /*
3872  * Various schedule()-time debugging checks and statistics:
3873  */
3874 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3875 {
3876 #ifdef CONFIG_SCHED_STACK_END_CHECK
3877 	if (task_stack_end_corrupted(prev))
3878 		panic("corrupted stack end detected inside scheduler\n");
3879 #endif
3880 
3881 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3882 	if (!preempt && prev->state && prev->non_block_count) {
3883 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3884 			prev->comm, prev->pid, prev->non_block_count);
3885 		dump_stack();
3886 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3887 	}
3888 #endif
3889 
3890 	if (unlikely(in_atomic_preempt_off())) {
3891 		__schedule_bug(prev);
3892 		preempt_count_set(PREEMPT_DISABLED);
3893 	}
3894 	rcu_sleep_check();
3895 
3896 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3897 
3898 	schedstat_inc(this_rq()->sched_count);
3899 }
3900 
3901 /*
3902  * Pick up the highest-prio task:
3903  */
3904 static inline struct task_struct *
3905 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3906 {
3907 	const struct sched_class *class;
3908 	struct task_struct *p;
3909 
3910 	/*
3911 	 * Optimization: we know that if all tasks are in the fair class we can
3912 	 * call that function directly, but only if the @prev task wasn't of a
3913 	 * higher scheduling class, because otherwise those loose the
3914 	 * opportunity to pull in more work from other CPUs.
3915 	 */
3916 	if (likely((prev->sched_class == &idle_sched_class ||
3917 		    prev->sched_class == &fair_sched_class) &&
3918 		   rq->nr_running == rq->cfs.h_nr_running)) {
3919 
3920 		p = pick_next_task_fair(rq, prev, rf);
3921 		if (unlikely(p == RETRY_TASK))
3922 			goto restart;
3923 
3924 		/* Assumes fair_sched_class->next == idle_sched_class */
3925 		if (!p) {
3926 			put_prev_task(rq, prev);
3927 			p = pick_next_task_idle(rq);
3928 		}
3929 
3930 		return p;
3931 	}
3932 
3933 restart:
3934 #ifdef CONFIG_SMP
3935 	/*
3936 	 * We must do the balancing pass before put_next_task(), such
3937 	 * that when we release the rq->lock the task is in the same
3938 	 * state as before we took rq->lock.
3939 	 *
3940 	 * We can terminate the balance pass as soon as we know there is
3941 	 * a runnable task of @class priority or higher.
3942 	 */
3943 	for_class_range(class, prev->sched_class, &idle_sched_class) {
3944 		if (class->balance(rq, prev, rf))
3945 			break;
3946 	}
3947 #endif
3948 
3949 	put_prev_task(rq, prev);
3950 
3951 	for_each_class(class) {
3952 		p = class->pick_next_task(rq);
3953 		if (p)
3954 			return p;
3955 	}
3956 
3957 	/* The idle class should always have a runnable task: */
3958 	BUG();
3959 }
3960 
3961 /*
3962  * __schedule() is the main scheduler function.
3963  *
3964  * The main means of driving the scheduler and thus entering this function are:
3965  *
3966  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3967  *
3968  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3969  *      paths. For example, see arch/x86/entry_64.S.
3970  *
3971  *      To drive preemption between tasks, the scheduler sets the flag in timer
3972  *      interrupt handler scheduler_tick().
3973  *
3974  *   3. Wakeups don't really cause entry into schedule(). They add a
3975  *      task to the run-queue and that's it.
3976  *
3977  *      Now, if the new task added to the run-queue preempts the current
3978  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3979  *      called on the nearest possible occasion:
3980  *
3981  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3982  *
3983  *         - in syscall or exception context, at the next outmost
3984  *           preempt_enable(). (this might be as soon as the wake_up()'s
3985  *           spin_unlock()!)
3986  *
3987  *         - in IRQ context, return from interrupt-handler to
3988  *           preemptible context
3989  *
3990  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3991  *         then at the next:
3992  *
3993  *          - cond_resched() call
3994  *          - explicit schedule() call
3995  *          - return from syscall or exception to user-space
3996  *          - return from interrupt-handler to user-space
3997  *
3998  * WARNING: must be called with preemption disabled!
3999  */
4000 static void __sched notrace __schedule(bool preempt)
4001 {
4002 	struct task_struct *prev, *next;
4003 	unsigned long *switch_count;
4004 	struct rq_flags rf;
4005 	struct rq *rq;
4006 	int cpu;
4007 
4008 	cpu = smp_processor_id();
4009 	rq = cpu_rq(cpu);
4010 	prev = rq->curr;
4011 
4012 	schedule_debug(prev, preempt);
4013 
4014 	if (sched_feat(HRTICK))
4015 		hrtick_clear(rq);
4016 
4017 	local_irq_disable();
4018 	rcu_note_context_switch(preempt);
4019 
4020 	/*
4021 	 * Make sure that signal_pending_state()->signal_pending() below
4022 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4023 	 * done by the caller to avoid the race with signal_wake_up().
4024 	 *
4025 	 * The membarrier system call requires a full memory barrier
4026 	 * after coming from user-space, before storing to rq->curr.
4027 	 */
4028 	rq_lock(rq, &rf);
4029 	smp_mb__after_spinlock();
4030 
4031 	/* Promote REQ to ACT */
4032 	rq->clock_update_flags <<= 1;
4033 	update_rq_clock(rq);
4034 
4035 	switch_count = &prev->nivcsw;
4036 	if (!preempt && prev->state) {
4037 		if (signal_pending_state(prev->state, prev)) {
4038 			prev->state = TASK_RUNNING;
4039 		} else {
4040 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4041 
4042 			if (prev->in_iowait) {
4043 				atomic_inc(&rq->nr_iowait);
4044 				delayacct_blkio_start();
4045 			}
4046 		}
4047 		switch_count = &prev->nvcsw;
4048 	}
4049 
4050 	next = pick_next_task(rq, prev, &rf);
4051 	clear_tsk_need_resched(prev);
4052 	clear_preempt_need_resched();
4053 
4054 	if (likely(prev != next)) {
4055 		rq->nr_switches++;
4056 		/*
4057 		 * RCU users of rcu_dereference(rq->curr) may not see
4058 		 * changes to task_struct made by pick_next_task().
4059 		 */
4060 		RCU_INIT_POINTER(rq->curr, next);
4061 		/*
4062 		 * The membarrier system call requires each architecture
4063 		 * to have a full memory barrier after updating
4064 		 * rq->curr, before returning to user-space.
4065 		 *
4066 		 * Here are the schemes providing that barrier on the
4067 		 * various architectures:
4068 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4069 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4070 		 * - finish_lock_switch() for weakly-ordered
4071 		 *   architectures where spin_unlock is a full barrier,
4072 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4073 		 *   is a RELEASE barrier),
4074 		 */
4075 		++*switch_count;
4076 
4077 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4078 
4079 		trace_sched_switch(preempt, prev, next);
4080 
4081 		/* Also unlocks the rq: */
4082 		rq = context_switch(rq, prev, next, &rf);
4083 	} else {
4084 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4085 		rq_unlock_irq(rq, &rf);
4086 	}
4087 
4088 	balance_callback(rq);
4089 }
4090 
4091 void __noreturn do_task_dead(void)
4092 {
4093 	/* Causes final put_task_struct in finish_task_switch(): */
4094 	set_special_state(TASK_DEAD);
4095 
4096 	/* Tell freezer to ignore us: */
4097 	current->flags |= PF_NOFREEZE;
4098 
4099 	__schedule(false);
4100 	BUG();
4101 
4102 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4103 	for (;;)
4104 		cpu_relax();
4105 }
4106 
4107 static inline void sched_submit_work(struct task_struct *tsk)
4108 {
4109 	if (!tsk->state)
4110 		return;
4111 
4112 	/*
4113 	 * If a worker went to sleep, notify and ask workqueue whether
4114 	 * it wants to wake up a task to maintain concurrency.
4115 	 * As this function is called inside the schedule() context,
4116 	 * we disable preemption to avoid it calling schedule() again
4117 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4118 	 * requires it.
4119 	 */
4120 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4121 		preempt_disable();
4122 		if (tsk->flags & PF_WQ_WORKER)
4123 			wq_worker_sleeping(tsk);
4124 		else
4125 			io_wq_worker_sleeping(tsk);
4126 		preempt_enable_no_resched();
4127 	}
4128 
4129 	if (tsk_is_pi_blocked(tsk))
4130 		return;
4131 
4132 	/*
4133 	 * If we are going to sleep and we have plugged IO queued,
4134 	 * make sure to submit it to avoid deadlocks.
4135 	 */
4136 	if (blk_needs_flush_plug(tsk))
4137 		blk_schedule_flush_plug(tsk);
4138 }
4139 
4140 static void sched_update_worker(struct task_struct *tsk)
4141 {
4142 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4143 		if (tsk->flags & PF_WQ_WORKER)
4144 			wq_worker_running(tsk);
4145 		else
4146 			io_wq_worker_running(tsk);
4147 	}
4148 }
4149 
4150 asmlinkage __visible void __sched schedule(void)
4151 {
4152 	struct task_struct *tsk = current;
4153 
4154 	sched_submit_work(tsk);
4155 	do {
4156 		preempt_disable();
4157 		__schedule(false);
4158 		sched_preempt_enable_no_resched();
4159 	} while (need_resched());
4160 	sched_update_worker(tsk);
4161 }
4162 EXPORT_SYMBOL(schedule);
4163 
4164 /*
4165  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4166  * state (have scheduled out non-voluntarily) by making sure that all
4167  * tasks have either left the run queue or have gone into user space.
4168  * As idle tasks do not do either, they must not ever be preempted
4169  * (schedule out non-voluntarily).
4170  *
4171  * schedule_idle() is similar to schedule_preempt_disable() except that it
4172  * never enables preemption because it does not call sched_submit_work().
4173  */
4174 void __sched schedule_idle(void)
4175 {
4176 	/*
4177 	 * As this skips calling sched_submit_work(), which the idle task does
4178 	 * regardless because that function is a nop when the task is in a
4179 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4180 	 * current task can be in any other state. Note, idle is always in the
4181 	 * TASK_RUNNING state.
4182 	 */
4183 	WARN_ON_ONCE(current->state);
4184 	do {
4185 		__schedule(false);
4186 	} while (need_resched());
4187 }
4188 
4189 #ifdef CONFIG_CONTEXT_TRACKING
4190 asmlinkage __visible void __sched schedule_user(void)
4191 {
4192 	/*
4193 	 * If we come here after a random call to set_need_resched(),
4194 	 * or we have been woken up remotely but the IPI has not yet arrived,
4195 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4196 	 * we find a better solution.
4197 	 *
4198 	 * NB: There are buggy callers of this function.  Ideally we
4199 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4200 	 * too frequently to make sense yet.
4201 	 */
4202 	enum ctx_state prev_state = exception_enter();
4203 	schedule();
4204 	exception_exit(prev_state);
4205 }
4206 #endif
4207 
4208 /**
4209  * schedule_preempt_disabled - called with preemption disabled
4210  *
4211  * Returns with preemption disabled. Note: preempt_count must be 1
4212  */
4213 void __sched schedule_preempt_disabled(void)
4214 {
4215 	sched_preempt_enable_no_resched();
4216 	schedule();
4217 	preempt_disable();
4218 }
4219 
4220 static void __sched notrace preempt_schedule_common(void)
4221 {
4222 	do {
4223 		/*
4224 		 * Because the function tracer can trace preempt_count_sub()
4225 		 * and it also uses preempt_enable/disable_notrace(), if
4226 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4227 		 * by the function tracer will call this function again and
4228 		 * cause infinite recursion.
4229 		 *
4230 		 * Preemption must be disabled here before the function
4231 		 * tracer can trace. Break up preempt_disable() into two
4232 		 * calls. One to disable preemption without fear of being
4233 		 * traced. The other to still record the preemption latency,
4234 		 * which can also be traced by the function tracer.
4235 		 */
4236 		preempt_disable_notrace();
4237 		preempt_latency_start(1);
4238 		__schedule(true);
4239 		preempt_latency_stop(1);
4240 		preempt_enable_no_resched_notrace();
4241 
4242 		/*
4243 		 * Check again in case we missed a preemption opportunity
4244 		 * between schedule and now.
4245 		 */
4246 	} while (need_resched());
4247 }
4248 
4249 #ifdef CONFIG_PREEMPTION
4250 /*
4251  * This is the entry point to schedule() from in-kernel preemption
4252  * off of preempt_enable.
4253  */
4254 asmlinkage __visible void __sched notrace preempt_schedule(void)
4255 {
4256 	/*
4257 	 * If there is a non-zero preempt_count or interrupts are disabled,
4258 	 * we do not want to preempt the current task. Just return..
4259 	 */
4260 	if (likely(!preemptible()))
4261 		return;
4262 
4263 	preempt_schedule_common();
4264 }
4265 NOKPROBE_SYMBOL(preempt_schedule);
4266 EXPORT_SYMBOL(preempt_schedule);
4267 
4268 /**
4269  * preempt_schedule_notrace - preempt_schedule called by tracing
4270  *
4271  * The tracing infrastructure uses preempt_enable_notrace to prevent
4272  * recursion and tracing preempt enabling caused by the tracing
4273  * infrastructure itself. But as tracing can happen in areas coming
4274  * from userspace or just about to enter userspace, a preempt enable
4275  * can occur before user_exit() is called. This will cause the scheduler
4276  * to be called when the system is still in usermode.
4277  *
4278  * To prevent this, the preempt_enable_notrace will use this function
4279  * instead of preempt_schedule() to exit user context if needed before
4280  * calling the scheduler.
4281  */
4282 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4283 {
4284 	enum ctx_state prev_ctx;
4285 
4286 	if (likely(!preemptible()))
4287 		return;
4288 
4289 	do {
4290 		/*
4291 		 * Because the function tracer can trace preempt_count_sub()
4292 		 * and it also uses preempt_enable/disable_notrace(), if
4293 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4294 		 * by the function tracer will call this function again and
4295 		 * cause infinite recursion.
4296 		 *
4297 		 * Preemption must be disabled here before the function
4298 		 * tracer can trace. Break up preempt_disable() into two
4299 		 * calls. One to disable preemption without fear of being
4300 		 * traced. The other to still record the preemption latency,
4301 		 * which can also be traced by the function tracer.
4302 		 */
4303 		preempt_disable_notrace();
4304 		preempt_latency_start(1);
4305 		/*
4306 		 * Needs preempt disabled in case user_exit() is traced
4307 		 * and the tracer calls preempt_enable_notrace() causing
4308 		 * an infinite recursion.
4309 		 */
4310 		prev_ctx = exception_enter();
4311 		__schedule(true);
4312 		exception_exit(prev_ctx);
4313 
4314 		preempt_latency_stop(1);
4315 		preempt_enable_no_resched_notrace();
4316 	} while (need_resched());
4317 }
4318 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4319 
4320 #endif /* CONFIG_PREEMPTION */
4321 
4322 /*
4323  * This is the entry point to schedule() from kernel preemption
4324  * off of irq context.
4325  * Note, that this is called and return with irqs disabled. This will
4326  * protect us against recursive calling from irq.
4327  */
4328 asmlinkage __visible void __sched preempt_schedule_irq(void)
4329 {
4330 	enum ctx_state prev_state;
4331 
4332 	/* Catch callers which need to be fixed */
4333 	BUG_ON(preempt_count() || !irqs_disabled());
4334 
4335 	prev_state = exception_enter();
4336 
4337 	do {
4338 		preempt_disable();
4339 		local_irq_enable();
4340 		__schedule(true);
4341 		local_irq_disable();
4342 		sched_preempt_enable_no_resched();
4343 	} while (need_resched());
4344 
4345 	exception_exit(prev_state);
4346 }
4347 
4348 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4349 			  void *key)
4350 {
4351 	return try_to_wake_up(curr->private, mode, wake_flags);
4352 }
4353 EXPORT_SYMBOL(default_wake_function);
4354 
4355 #ifdef CONFIG_RT_MUTEXES
4356 
4357 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4358 {
4359 	if (pi_task)
4360 		prio = min(prio, pi_task->prio);
4361 
4362 	return prio;
4363 }
4364 
4365 static inline int rt_effective_prio(struct task_struct *p, int prio)
4366 {
4367 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4368 
4369 	return __rt_effective_prio(pi_task, prio);
4370 }
4371 
4372 /*
4373  * rt_mutex_setprio - set the current priority of a task
4374  * @p: task to boost
4375  * @pi_task: donor task
4376  *
4377  * This function changes the 'effective' priority of a task. It does
4378  * not touch ->normal_prio like __setscheduler().
4379  *
4380  * Used by the rt_mutex code to implement priority inheritance
4381  * logic. Call site only calls if the priority of the task changed.
4382  */
4383 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4384 {
4385 	int prio, oldprio, queued, running, queue_flag =
4386 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4387 	const struct sched_class *prev_class;
4388 	struct rq_flags rf;
4389 	struct rq *rq;
4390 
4391 	/* XXX used to be waiter->prio, not waiter->task->prio */
4392 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4393 
4394 	/*
4395 	 * If nothing changed; bail early.
4396 	 */
4397 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4398 		return;
4399 
4400 	rq = __task_rq_lock(p, &rf);
4401 	update_rq_clock(rq);
4402 	/*
4403 	 * Set under pi_lock && rq->lock, such that the value can be used under
4404 	 * either lock.
4405 	 *
4406 	 * Note that there is loads of tricky to make this pointer cache work
4407 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4408 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4409 	 * task is allowed to run again (and can exit). This ensures the pointer
4410 	 * points to a blocked task -- which guaratees the task is present.
4411 	 */
4412 	p->pi_top_task = pi_task;
4413 
4414 	/*
4415 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4416 	 */
4417 	if (prio == p->prio && !dl_prio(prio))
4418 		goto out_unlock;
4419 
4420 	/*
4421 	 * Idle task boosting is a nono in general. There is one
4422 	 * exception, when PREEMPT_RT and NOHZ is active:
4423 	 *
4424 	 * The idle task calls get_next_timer_interrupt() and holds
4425 	 * the timer wheel base->lock on the CPU and another CPU wants
4426 	 * to access the timer (probably to cancel it). We can safely
4427 	 * ignore the boosting request, as the idle CPU runs this code
4428 	 * with interrupts disabled and will complete the lock
4429 	 * protected section without being interrupted. So there is no
4430 	 * real need to boost.
4431 	 */
4432 	if (unlikely(p == rq->idle)) {
4433 		WARN_ON(p != rq->curr);
4434 		WARN_ON(p->pi_blocked_on);
4435 		goto out_unlock;
4436 	}
4437 
4438 	trace_sched_pi_setprio(p, pi_task);
4439 	oldprio = p->prio;
4440 
4441 	if (oldprio == prio)
4442 		queue_flag &= ~DEQUEUE_MOVE;
4443 
4444 	prev_class = p->sched_class;
4445 	queued = task_on_rq_queued(p);
4446 	running = task_current(rq, p);
4447 	if (queued)
4448 		dequeue_task(rq, p, queue_flag);
4449 	if (running)
4450 		put_prev_task(rq, p);
4451 
4452 	/*
4453 	 * Boosting condition are:
4454 	 * 1. -rt task is running and holds mutex A
4455 	 *      --> -dl task blocks on mutex A
4456 	 *
4457 	 * 2. -dl task is running and holds mutex A
4458 	 *      --> -dl task blocks on mutex A and could preempt the
4459 	 *          running task
4460 	 */
4461 	if (dl_prio(prio)) {
4462 		if (!dl_prio(p->normal_prio) ||
4463 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4464 			p->dl.dl_boosted = 1;
4465 			queue_flag |= ENQUEUE_REPLENISH;
4466 		} else
4467 			p->dl.dl_boosted = 0;
4468 		p->sched_class = &dl_sched_class;
4469 	} else if (rt_prio(prio)) {
4470 		if (dl_prio(oldprio))
4471 			p->dl.dl_boosted = 0;
4472 		if (oldprio < prio)
4473 			queue_flag |= ENQUEUE_HEAD;
4474 		p->sched_class = &rt_sched_class;
4475 	} else {
4476 		if (dl_prio(oldprio))
4477 			p->dl.dl_boosted = 0;
4478 		if (rt_prio(oldprio))
4479 			p->rt.timeout = 0;
4480 		p->sched_class = &fair_sched_class;
4481 	}
4482 
4483 	p->prio = prio;
4484 
4485 	if (queued)
4486 		enqueue_task(rq, p, queue_flag);
4487 	if (running)
4488 		set_next_task(rq, p);
4489 
4490 	check_class_changed(rq, p, prev_class, oldprio);
4491 out_unlock:
4492 	/* Avoid rq from going away on us: */
4493 	preempt_disable();
4494 	__task_rq_unlock(rq, &rf);
4495 
4496 	balance_callback(rq);
4497 	preempt_enable();
4498 }
4499 #else
4500 static inline int rt_effective_prio(struct task_struct *p, int prio)
4501 {
4502 	return prio;
4503 }
4504 #endif
4505 
4506 void set_user_nice(struct task_struct *p, long nice)
4507 {
4508 	bool queued, running;
4509 	int old_prio;
4510 	struct rq_flags rf;
4511 	struct rq *rq;
4512 
4513 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4514 		return;
4515 	/*
4516 	 * We have to be careful, if called from sys_setpriority(),
4517 	 * the task might be in the middle of scheduling on another CPU.
4518 	 */
4519 	rq = task_rq_lock(p, &rf);
4520 	update_rq_clock(rq);
4521 
4522 	/*
4523 	 * The RT priorities are set via sched_setscheduler(), but we still
4524 	 * allow the 'normal' nice value to be set - but as expected
4525 	 * it wont have any effect on scheduling until the task is
4526 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4527 	 */
4528 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4529 		p->static_prio = NICE_TO_PRIO(nice);
4530 		goto out_unlock;
4531 	}
4532 	queued = task_on_rq_queued(p);
4533 	running = task_current(rq, p);
4534 	if (queued)
4535 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4536 	if (running)
4537 		put_prev_task(rq, p);
4538 
4539 	p->static_prio = NICE_TO_PRIO(nice);
4540 	set_load_weight(p, true);
4541 	old_prio = p->prio;
4542 	p->prio = effective_prio(p);
4543 
4544 	if (queued)
4545 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4546 	if (running)
4547 		set_next_task(rq, p);
4548 
4549 	/*
4550 	 * If the task increased its priority or is running and
4551 	 * lowered its priority, then reschedule its CPU:
4552 	 */
4553 	p->sched_class->prio_changed(rq, p, old_prio);
4554 
4555 out_unlock:
4556 	task_rq_unlock(rq, p, &rf);
4557 }
4558 EXPORT_SYMBOL(set_user_nice);
4559 
4560 /*
4561  * can_nice - check if a task can reduce its nice value
4562  * @p: task
4563  * @nice: nice value
4564  */
4565 int can_nice(const struct task_struct *p, const int nice)
4566 {
4567 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4568 	int nice_rlim = nice_to_rlimit(nice);
4569 
4570 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4571 		capable(CAP_SYS_NICE));
4572 }
4573 
4574 #ifdef __ARCH_WANT_SYS_NICE
4575 
4576 /*
4577  * sys_nice - change the priority of the current process.
4578  * @increment: priority increment
4579  *
4580  * sys_setpriority is a more generic, but much slower function that
4581  * does similar things.
4582  */
4583 SYSCALL_DEFINE1(nice, int, increment)
4584 {
4585 	long nice, retval;
4586 
4587 	/*
4588 	 * Setpriority might change our priority at the same moment.
4589 	 * We don't have to worry. Conceptually one call occurs first
4590 	 * and we have a single winner.
4591 	 */
4592 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4593 	nice = task_nice(current) + increment;
4594 
4595 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4596 	if (increment < 0 && !can_nice(current, nice))
4597 		return -EPERM;
4598 
4599 	retval = security_task_setnice(current, nice);
4600 	if (retval)
4601 		return retval;
4602 
4603 	set_user_nice(current, nice);
4604 	return 0;
4605 }
4606 
4607 #endif
4608 
4609 /**
4610  * task_prio - return the priority value of a given task.
4611  * @p: the task in question.
4612  *
4613  * Return: The priority value as seen by users in /proc.
4614  * RT tasks are offset by -200. Normal tasks are centered
4615  * around 0, value goes from -16 to +15.
4616  */
4617 int task_prio(const struct task_struct *p)
4618 {
4619 	return p->prio - MAX_RT_PRIO;
4620 }
4621 
4622 /**
4623  * idle_cpu - is a given CPU idle currently?
4624  * @cpu: the processor in question.
4625  *
4626  * Return: 1 if the CPU is currently idle. 0 otherwise.
4627  */
4628 int idle_cpu(int cpu)
4629 {
4630 	struct rq *rq = cpu_rq(cpu);
4631 
4632 	if (rq->curr != rq->idle)
4633 		return 0;
4634 
4635 	if (rq->nr_running)
4636 		return 0;
4637 
4638 #ifdef CONFIG_SMP
4639 	if (!llist_empty(&rq->wake_list))
4640 		return 0;
4641 #endif
4642 
4643 	return 1;
4644 }
4645 
4646 /**
4647  * available_idle_cpu - is a given CPU idle for enqueuing work.
4648  * @cpu: the CPU in question.
4649  *
4650  * Return: 1 if the CPU is currently idle. 0 otherwise.
4651  */
4652 int available_idle_cpu(int cpu)
4653 {
4654 	if (!idle_cpu(cpu))
4655 		return 0;
4656 
4657 	if (vcpu_is_preempted(cpu))
4658 		return 0;
4659 
4660 	return 1;
4661 }
4662 
4663 /**
4664  * idle_task - return the idle task for a given CPU.
4665  * @cpu: the processor in question.
4666  *
4667  * Return: The idle task for the CPU @cpu.
4668  */
4669 struct task_struct *idle_task(int cpu)
4670 {
4671 	return cpu_rq(cpu)->idle;
4672 }
4673 
4674 /**
4675  * find_process_by_pid - find a process with a matching PID value.
4676  * @pid: the pid in question.
4677  *
4678  * The task of @pid, if found. %NULL otherwise.
4679  */
4680 static struct task_struct *find_process_by_pid(pid_t pid)
4681 {
4682 	return pid ? find_task_by_vpid(pid) : current;
4683 }
4684 
4685 /*
4686  * sched_setparam() passes in -1 for its policy, to let the functions
4687  * it calls know not to change it.
4688  */
4689 #define SETPARAM_POLICY	-1
4690 
4691 static void __setscheduler_params(struct task_struct *p,
4692 		const struct sched_attr *attr)
4693 {
4694 	int policy = attr->sched_policy;
4695 
4696 	if (policy == SETPARAM_POLICY)
4697 		policy = p->policy;
4698 
4699 	p->policy = policy;
4700 
4701 	if (dl_policy(policy))
4702 		__setparam_dl(p, attr);
4703 	else if (fair_policy(policy))
4704 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4705 
4706 	/*
4707 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4708 	 * !rt_policy. Always setting this ensures that things like
4709 	 * getparam()/getattr() don't report silly values for !rt tasks.
4710 	 */
4711 	p->rt_priority = attr->sched_priority;
4712 	p->normal_prio = normal_prio(p);
4713 	set_load_weight(p, true);
4714 }
4715 
4716 /* Actually do priority change: must hold pi & rq lock. */
4717 static void __setscheduler(struct rq *rq, struct task_struct *p,
4718 			   const struct sched_attr *attr, bool keep_boost)
4719 {
4720 	/*
4721 	 * If params can't change scheduling class changes aren't allowed
4722 	 * either.
4723 	 */
4724 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4725 		return;
4726 
4727 	__setscheduler_params(p, attr);
4728 
4729 	/*
4730 	 * Keep a potential priority boosting if called from
4731 	 * sched_setscheduler().
4732 	 */
4733 	p->prio = normal_prio(p);
4734 	if (keep_boost)
4735 		p->prio = rt_effective_prio(p, p->prio);
4736 
4737 	if (dl_prio(p->prio))
4738 		p->sched_class = &dl_sched_class;
4739 	else if (rt_prio(p->prio))
4740 		p->sched_class = &rt_sched_class;
4741 	else
4742 		p->sched_class = &fair_sched_class;
4743 }
4744 
4745 /*
4746  * Check the target process has a UID that matches the current process's:
4747  */
4748 static bool check_same_owner(struct task_struct *p)
4749 {
4750 	const struct cred *cred = current_cred(), *pcred;
4751 	bool match;
4752 
4753 	rcu_read_lock();
4754 	pcred = __task_cred(p);
4755 	match = (uid_eq(cred->euid, pcred->euid) ||
4756 		 uid_eq(cred->euid, pcred->uid));
4757 	rcu_read_unlock();
4758 	return match;
4759 }
4760 
4761 static int __sched_setscheduler(struct task_struct *p,
4762 				const struct sched_attr *attr,
4763 				bool user, bool pi)
4764 {
4765 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4766 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4767 	int retval, oldprio, oldpolicy = -1, queued, running;
4768 	int new_effective_prio, policy = attr->sched_policy;
4769 	const struct sched_class *prev_class;
4770 	struct rq_flags rf;
4771 	int reset_on_fork;
4772 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4773 	struct rq *rq;
4774 
4775 	/* The pi code expects interrupts enabled */
4776 	BUG_ON(pi && in_interrupt());
4777 recheck:
4778 	/* Double check policy once rq lock held: */
4779 	if (policy < 0) {
4780 		reset_on_fork = p->sched_reset_on_fork;
4781 		policy = oldpolicy = p->policy;
4782 	} else {
4783 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4784 
4785 		if (!valid_policy(policy))
4786 			return -EINVAL;
4787 	}
4788 
4789 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4790 		return -EINVAL;
4791 
4792 	/*
4793 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4794 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4795 	 * SCHED_BATCH and SCHED_IDLE is 0.
4796 	 */
4797 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4798 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4799 		return -EINVAL;
4800 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4801 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4802 		return -EINVAL;
4803 
4804 	/*
4805 	 * Allow unprivileged RT tasks to decrease priority:
4806 	 */
4807 	if (user && !capable(CAP_SYS_NICE)) {
4808 		if (fair_policy(policy)) {
4809 			if (attr->sched_nice < task_nice(p) &&
4810 			    !can_nice(p, attr->sched_nice))
4811 				return -EPERM;
4812 		}
4813 
4814 		if (rt_policy(policy)) {
4815 			unsigned long rlim_rtprio =
4816 					task_rlimit(p, RLIMIT_RTPRIO);
4817 
4818 			/* Can't set/change the rt policy: */
4819 			if (policy != p->policy && !rlim_rtprio)
4820 				return -EPERM;
4821 
4822 			/* Can't increase priority: */
4823 			if (attr->sched_priority > p->rt_priority &&
4824 			    attr->sched_priority > rlim_rtprio)
4825 				return -EPERM;
4826 		}
4827 
4828 		 /*
4829 		  * Can't set/change SCHED_DEADLINE policy at all for now
4830 		  * (safest behavior); in the future we would like to allow
4831 		  * unprivileged DL tasks to increase their relative deadline
4832 		  * or reduce their runtime (both ways reducing utilization)
4833 		  */
4834 		if (dl_policy(policy))
4835 			return -EPERM;
4836 
4837 		/*
4838 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4839 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4840 		 */
4841 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4842 			if (!can_nice(p, task_nice(p)))
4843 				return -EPERM;
4844 		}
4845 
4846 		/* Can't change other user's priorities: */
4847 		if (!check_same_owner(p))
4848 			return -EPERM;
4849 
4850 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4851 		if (p->sched_reset_on_fork && !reset_on_fork)
4852 			return -EPERM;
4853 	}
4854 
4855 	if (user) {
4856 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4857 			return -EINVAL;
4858 
4859 		retval = security_task_setscheduler(p);
4860 		if (retval)
4861 			return retval;
4862 	}
4863 
4864 	/* Update task specific "requested" clamps */
4865 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4866 		retval = uclamp_validate(p, attr);
4867 		if (retval)
4868 			return retval;
4869 	}
4870 
4871 	if (pi)
4872 		cpuset_read_lock();
4873 
4874 	/*
4875 	 * Make sure no PI-waiters arrive (or leave) while we are
4876 	 * changing the priority of the task:
4877 	 *
4878 	 * To be able to change p->policy safely, the appropriate
4879 	 * runqueue lock must be held.
4880 	 */
4881 	rq = task_rq_lock(p, &rf);
4882 	update_rq_clock(rq);
4883 
4884 	/*
4885 	 * Changing the policy of the stop threads its a very bad idea:
4886 	 */
4887 	if (p == rq->stop) {
4888 		retval = -EINVAL;
4889 		goto unlock;
4890 	}
4891 
4892 	/*
4893 	 * If not changing anything there's no need to proceed further,
4894 	 * but store a possible modification of reset_on_fork.
4895 	 */
4896 	if (unlikely(policy == p->policy)) {
4897 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4898 			goto change;
4899 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4900 			goto change;
4901 		if (dl_policy(policy) && dl_param_changed(p, attr))
4902 			goto change;
4903 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4904 			goto change;
4905 
4906 		p->sched_reset_on_fork = reset_on_fork;
4907 		retval = 0;
4908 		goto unlock;
4909 	}
4910 change:
4911 
4912 	if (user) {
4913 #ifdef CONFIG_RT_GROUP_SCHED
4914 		/*
4915 		 * Do not allow realtime tasks into groups that have no runtime
4916 		 * assigned.
4917 		 */
4918 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4919 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4920 				!task_group_is_autogroup(task_group(p))) {
4921 			retval = -EPERM;
4922 			goto unlock;
4923 		}
4924 #endif
4925 #ifdef CONFIG_SMP
4926 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4927 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4928 			cpumask_t *span = rq->rd->span;
4929 
4930 			/*
4931 			 * Don't allow tasks with an affinity mask smaller than
4932 			 * the entire root_domain to become SCHED_DEADLINE. We
4933 			 * will also fail if there's no bandwidth available.
4934 			 */
4935 			if (!cpumask_subset(span, p->cpus_ptr) ||
4936 			    rq->rd->dl_bw.bw == 0) {
4937 				retval = -EPERM;
4938 				goto unlock;
4939 			}
4940 		}
4941 #endif
4942 	}
4943 
4944 	/* Re-check policy now with rq lock held: */
4945 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4946 		policy = oldpolicy = -1;
4947 		task_rq_unlock(rq, p, &rf);
4948 		if (pi)
4949 			cpuset_read_unlock();
4950 		goto recheck;
4951 	}
4952 
4953 	/*
4954 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4955 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4956 	 * is available.
4957 	 */
4958 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4959 		retval = -EBUSY;
4960 		goto unlock;
4961 	}
4962 
4963 	p->sched_reset_on_fork = reset_on_fork;
4964 	oldprio = p->prio;
4965 
4966 	if (pi) {
4967 		/*
4968 		 * Take priority boosted tasks into account. If the new
4969 		 * effective priority is unchanged, we just store the new
4970 		 * normal parameters and do not touch the scheduler class and
4971 		 * the runqueue. This will be done when the task deboost
4972 		 * itself.
4973 		 */
4974 		new_effective_prio = rt_effective_prio(p, newprio);
4975 		if (new_effective_prio == oldprio)
4976 			queue_flags &= ~DEQUEUE_MOVE;
4977 	}
4978 
4979 	queued = task_on_rq_queued(p);
4980 	running = task_current(rq, p);
4981 	if (queued)
4982 		dequeue_task(rq, p, queue_flags);
4983 	if (running)
4984 		put_prev_task(rq, p);
4985 
4986 	prev_class = p->sched_class;
4987 
4988 	__setscheduler(rq, p, attr, pi);
4989 	__setscheduler_uclamp(p, attr);
4990 
4991 	if (queued) {
4992 		/*
4993 		 * We enqueue to tail when the priority of a task is
4994 		 * increased (user space view).
4995 		 */
4996 		if (oldprio < p->prio)
4997 			queue_flags |= ENQUEUE_HEAD;
4998 
4999 		enqueue_task(rq, p, queue_flags);
5000 	}
5001 	if (running)
5002 		set_next_task(rq, p);
5003 
5004 	check_class_changed(rq, p, prev_class, oldprio);
5005 
5006 	/* Avoid rq from going away on us: */
5007 	preempt_disable();
5008 	task_rq_unlock(rq, p, &rf);
5009 
5010 	if (pi) {
5011 		cpuset_read_unlock();
5012 		rt_mutex_adjust_pi(p);
5013 	}
5014 
5015 	/* Run balance callbacks after we've adjusted the PI chain: */
5016 	balance_callback(rq);
5017 	preempt_enable();
5018 
5019 	return 0;
5020 
5021 unlock:
5022 	task_rq_unlock(rq, p, &rf);
5023 	if (pi)
5024 		cpuset_read_unlock();
5025 	return retval;
5026 }
5027 
5028 static int _sched_setscheduler(struct task_struct *p, int policy,
5029 			       const struct sched_param *param, bool check)
5030 {
5031 	struct sched_attr attr = {
5032 		.sched_policy   = policy,
5033 		.sched_priority = param->sched_priority,
5034 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5035 	};
5036 
5037 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5038 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5039 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5040 		policy &= ~SCHED_RESET_ON_FORK;
5041 		attr.sched_policy = policy;
5042 	}
5043 
5044 	return __sched_setscheduler(p, &attr, check, true);
5045 }
5046 /**
5047  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5048  * @p: the task in question.
5049  * @policy: new policy.
5050  * @param: structure containing the new RT priority.
5051  *
5052  * Return: 0 on success. An error code otherwise.
5053  *
5054  * NOTE that the task may be already dead.
5055  */
5056 int sched_setscheduler(struct task_struct *p, int policy,
5057 		       const struct sched_param *param)
5058 {
5059 	return _sched_setscheduler(p, policy, param, true);
5060 }
5061 EXPORT_SYMBOL_GPL(sched_setscheduler);
5062 
5063 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5064 {
5065 	return __sched_setscheduler(p, attr, true, true);
5066 }
5067 EXPORT_SYMBOL_GPL(sched_setattr);
5068 
5069 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5070 {
5071 	return __sched_setscheduler(p, attr, false, true);
5072 }
5073 
5074 /**
5075  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5076  * @p: the task in question.
5077  * @policy: new policy.
5078  * @param: structure containing the new RT priority.
5079  *
5080  * Just like sched_setscheduler, only don't bother checking if the
5081  * current context has permission.  For example, this is needed in
5082  * stop_machine(): we create temporary high priority worker threads,
5083  * but our caller might not have that capability.
5084  *
5085  * Return: 0 on success. An error code otherwise.
5086  */
5087 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5088 			       const struct sched_param *param)
5089 {
5090 	return _sched_setscheduler(p, policy, param, false);
5091 }
5092 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5093 
5094 static int
5095 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5096 {
5097 	struct sched_param lparam;
5098 	struct task_struct *p;
5099 	int retval;
5100 
5101 	if (!param || pid < 0)
5102 		return -EINVAL;
5103 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5104 		return -EFAULT;
5105 
5106 	rcu_read_lock();
5107 	retval = -ESRCH;
5108 	p = find_process_by_pid(pid);
5109 	if (likely(p))
5110 		get_task_struct(p);
5111 	rcu_read_unlock();
5112 
5113 	if (likely(p)) {
5114 		retval = sched_setscheduler(p, policy, &lparam);
5115 		put_task_struct(p);
5116 	}
5117 
5118 	return retval;
5119 }
5120 
5121 /*
5122  * Mimics kernel/events/core.c perf_copy_attr().
5123  */
5124 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5125 {
5126 	u32 size;
5127 	int ret;
5128 
5129 	/* Zero the full structure, so that a short copy will be nice: */
5130 	memset(attr, 0, sizeof(*attr));
5131 
5132 	ret = get_user(size, &uattr->size);
5133 	if (ret)
5134 		return ret;
5135 
5136 	/* ABI compatibility quirk: */
5137 	if (!size)
5138 		size = SCHED_ATTR_SIZE_VER0;
5139 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5140 		goto err_size;
5141 
5142 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5143 	if (ret) {
5144 		if (ret == -E2BIG)
5145 			goto err_size;
5146 		return ret;
5147 	}
5148 
5149 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5150 	    size < SCHED_ATTR_SIZE_VER1)
5151 		return -EINVAL;
5152 
5153 	/*
5154 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5155 	 * to be strict and return an error on out-of-bounds values?
5156 	 */
5157 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5158 
5159 	return 0;
5160 
5161 err_size:
5162 	put_user(sizeof(*attr), &uattr->size);
5163 	return -E2BIG;
5164 }
5165 
5166 /**
5167  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5168  * @pid: the pid in question.
5169  * @policy: new policy.
5170  * @param: structure containing the new RT priority.
5171  *
5172  * Return: 0 on success. An error code otherwise.
5173  */
5174 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5175 {
5176 	if (policy < 0)
5177 		return -EINVAL;
5178 
5179 	return do_sched_setscheduler(pid, policy, param);
5180 }
5181 
5182 /**
5183  * sys_sched_setparam - set/change the RT priority of a thread
5184  * @pid: the pid in question.
5185  * @param: structure containing the new RT priority.
5186  *
5187  * Return: 0 on success. An error code otherwise.
5188  */
5189 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5190 {
5191 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5192 }
5193 
5194 /**
5195  * sys_sched_setattr - same as above, but with extended sched_attr
5196  * @pid: the pid in question.
5197  * @uattr: structure containing the extended parameters.
5198  * @flags: for future extension.
5199  */
5200 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5201 			       unsigned int, flags)
5202 {
5203 	struct sched_attr attr;
5204 	struct task_struct *p;
5205 	int retval;
5206 
5207 	if (!uattr || pid < 0 || flags)
5208 		return -EINVAL;
5209 
5210 	retval = sched_copy_attr(uattr, &attr);
5211 	if (retval)
5212 		return retval;
5213 
5214 	if ((int)attr.sched_policy < 0)
5215 		return -EINVAL;
5216 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5217 		attr.sched_policy = SETPARAM_POLICY;
5218 
5219 	rcu_read_lock();
5220 	retval = -ESRCH;
5221 	p = find_process_by_pid(pid);
5222 	if (likely(p))
5223 		get_task_struct(p);
5224 	rcu_read_unlock();
5225 
5226 	if (likely(p)) {
5227 		retval = sched_setattr(p, &attr);
5228 		put_task_struct(p);
5229 	}
5230 
5231 	return retval;
5232 }
5233 
5234 /**
5235  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5236  * @pid: the pid in question.
5237  *
5238  * Return: On success, the policy of the thread. Otherwise, a negative error
5239  * code.
5240  */
5241 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5242 {
5243 	struct task_struct *p;
5244 	int retval;
5245 
5246 	if (pid < 0)
5247 		return -EINVAL;
5248 
5249 	retval = -ESRCH;
5250 	rcu_read_lock();
5251 	p = find_process_by_pid(pid);
5252 	if (p) {
5253 		retval = security_task_getscheduler(p);
5254 		if (!retval)
5255 			retval = p->policy
5256 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5257 	}
5258 	rcu_read_unlock();
5259 	return retval;
5260 }
5261 
5262 /**
5263  * sys_sched_getparam - get the RT priority of a thread
5264  * @pid: the pid in question.
5265  * @param: structure containing the RT priority.
5266  *
5267  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5268  * code.
5269  */
5270 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5271 {
5272 	struct sched_param lp = { .sched_priority = 0 };
5273 	struct task_struct *p;
5274 	int retval;
5275 
5276 	if (!param || pid < 0)
5277 		return -EINVAL;
5278 
5279 	rcu_read_lock();
5280 	p = find_process_by_pid(pid);
5281 	retval = -ESRCH;
5282 	if (!p)
5283 		goto out_unlock;
5284 
5285 	retval = security_task_getscheduler(p);
5286 	if (retval)
5287 		goto out_unlock;
5288 
5289 	if (task_has_rt_policy(p))
5290 		lp.sched_priority = p->rt_priority;
5291 	rcu_read_unlock();
5292 
5293 	/*
5294 	 * This one might sleep, we cannot do it with a spinlock held ...
5295 	 */
5296 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5297 
5298 	return retval;
5299 
5300 out_unlock:
5301 	rcu_read_unlock();
5302 	return retval;
5303 }
5304 
5305 /*
5306  * Copy the kernel size attribute structure (which might be larger
5307  * than what user-space knows about) to user-space.
5308  *
5309  * Note that all cases are valid: user-space buffer can be larger or
5310  * smaller than the kernel-space buffer. The usual case is that both
5311  * have the same size.
5312  */
5313 static int
5314 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5315 			struct sched_attr *kattr,
5316 			unsigned int usize)
5317 {
5318 	unsigned int ksize = sizeof(*kattr);
5319 
5320 	if (!access_ok(uattr, usize))
5321 		return -EFAULT;
5322 
5323 	/*
5324 	 * sched_getattr() ABI forwards and backwards compatibility:
5325 	 *
5326 	 * If usize == ksize then we just copy everything to user-space and all is good.
5327 	 *
5328 	 * If usize < ksize then we only copy as much as user-space has space for,
5329 	 * this keeps ABI compatibility as well. We skip the rest.
5330 	 *
5331 	 * If usize > ksize then user-space is using a newer version of the ABI,
5332 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5333 	 * detect the kernel's knowledge of attributes from the attr->size value
5334 	 * which is set to ksize in this case.
5335 	 */
5336 	kattr->size = min(usize, ksize);
5337 
5338 	if (copy_to_user(uattr, kattr, kattr->size))
5339 		return -EFAULT;
5340 
5341 	return 0;
5342 }
5343 
5344 /**
5345  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5346  * @pid: the pid in question.
5347  * @uattr: structure containing the extended parameters.
5348  * @usize: sizeof(attr) for fwd/bwd comp.
5349  * @flags: for future extension.
5350  */
5351 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5352 		unsigned int, usize, unsigned int, flags)
5353 {
5354 	struct sched_attr kattr = { };
5355 	struct task_struct *p;
5356 	int retval;
5357 
5358 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5359 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5360 		return -EINVAL;
5361 
5362 	rcu_read_lock();
5363 	p = find_process_by_pid(pid);
5364 	retval = -ESRCH;
5365 	if (!p)
5366 		goto out_unlock;
5367 
5368 	retval = security_task_getscheduler(p);
5369 	if (retval)
5370 		goto out_unlock;
5371 
5372 	kattr.sched_policy = p->policy;
5373 	if (p->sched_reset_on_fork)
5374 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5375 	if (task_has_dl_policy(p))
5376 		__getparam_dl(p, &kattr);
5377 	else if (task_has_rt_policy(p))
5378 		kattr.sched_priority = p->rt_priority;
5379 	else
5380 		kattr.sched_nice = task_nice(p);
5381 
5382 #ifdef CONFIG_UCLAMP_TASK
5383 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5384 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5385 #endif
5386 
5387 	rcu_read_unlock();
5388 
5389 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5390 
5391 out_unlock:
5392 	rcu_read_unlock();
5393 	return retval;
5394 }
5395 
5396 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5397 {
5398 	cpumask_var_t cpus_allowed, new_mask;
5399 	struct task_struct *p;
5400 	int retval;
5401 
5402 	rcu_read_lock();
5403 
5404 	p = find_process_by_pid(pid);
5405 	if (!p) {
5406 		rcu_read_unlock();
5407 		return -ESRCH;
5408 	}
5409 
5410 	/* Prevent p going away */
5411 	get_task_struct(p);
5412 	rcu_read_unlock();
5413 
5414 	if (p->flags & PF_NO_SETAFFINITY) {
5415 		retval = -EINVAL;
5416 		goto out_put_task;
5417 	}
5418 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5419 		retval = -ENOMEM;
5420 		goto out_put_task;
5421 	}
5422 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5423 		retval = -ENOMEM;
5424 		goto out_free_cpus_allowed;
5425 	}
5426 	retval = -EPERM;
5427 	if (!check_same_owner(p)) {
5428 		rcu_read_lock();
5429 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5430 			rcu_read_unlock();
5431 			goto out_free_new_mask;
5432 		}
5433 		rcu_read_unlock();
5434 	}
5435 
5436 	retval = security_task_setscheduler(p);
5437 	if (retval)
5438 		goto out_free_new_mask;
5439 
5440 
5441 	cpuset_cpus_allowed(p, cpus_allowed);
5442 	cpumask_and(new_mask, in_mask, cpus_allowed);
5443 
5444 	/*
5445 	 * Since bandwidth control happens on root_domain basis,
5446 	 * if admission test is enabled, we only admit -deadline
5447 	 * tasks allowed to run on all the CPUs in the task's
5448 	 * root_domain.
5449 	 */
5450 #ifdef CONFIG_SMP
5451 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5452 		rcu_read_lock();
5453 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5454 			retval = -EBUSY;
5455 			rcu_read_unlock();
5456 			goto out_free_new_mask;
5457 		}
5458 		rcu_read_unlock();
5459 	}
5460 #endif
5461 again:
5462 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5463 
5464 	if (!retval) {
5465 		cpuset_cpus_allowed(p, cpus_allowed);
5466 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5467 			/*
5468 			 * We must have raced with a concurrent cpuset
5469 			 * update. Just reset the cpus_allowed to the
5470 			 * cpuset's cpus_allowed
5471 			 */
5472 			cpumask_copy(new_mask, cpus_allowed);
5473 			goto again;
5474 		}
5475 	}
5476 out_free_new_mask:
5477 	free_cpumask_var(new_mask);
5478 out_free_cpus_allowed:
5479 	free_cpumask_var(cpus_allowed);
5480 out_put_task:
5481 	put_task_struct(p);
5482 	return retval;
5483 }
5484 
5485 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5486 			     struct cpumask *new_mask)
5487 {
5488 	if (len < cpumask_size())
5489 		cpumask_clear(new_mask);
5490 	else if (len > cpumask_size())
5491 		len = cpumask_size();
5492 
5493 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5494 }
5495 
5496 /**
5497  * sys_sched_setaffinity - set the CPU affinity of a process
5498  * @pid: pid of the process
5499  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5500  * @user_mask_ptr: user-space pointer to the new CPU mask
5501  *
5502  * Return: 0 on success. An error code otherwise.
5503  */
5504 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5505 		unsigned long __user *, user_mask_ptr)
5506 {
5507 	cpumask_var_t new_mask;
5508 	int retval;
5509 
5510 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5511 		return -ENOMEM;
5512 
5513 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5514 	if (retval == 0)
5515 		retval = sched_setaffinity(pid, new_mask);
5516 	free_cpumask_var(new_mask);
5517 	return retval;
5518 }
5519 
5520 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5521 {
5522 	struct task_struct *p;
5523 	unsigned long flags;
5524 	int retval;
5525 
5526 	rcu_read_lock();
5527 
5528 	retval = -ESRCH;
5529 	p = find_process_by_pid(pid);
5530 	if (!p)
5531 		goto out_unlock;
5532 
5533 	retval = security_task_getscheduler(p);
5534 	if (retval)
5535 		goto out_unlock;
5536 
5537 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5538 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5539 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5540 
5541 out_unlock:
5542 	rcu_read_unlock();
5543 
5544 	return retval;
5545 }
5546 
5547 /**
5548  * sys_sched_getaffinity - get the CPU affinity of a process
5549  * @pid: pid of the process
5550  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5551  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5552  *
5553  * Return: size of CPU mask copied to user_mask_ptr on success. An
5554  * error code otherwise.
5555  */
5556 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5557 		unsigned long __user *, user_mask_ptr)
5558 {
5559 	int ret;
5560 	cpumask_var_t mask;
5561 
5562 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5563 		return -EINVAL;
5564 	if (len & (sizeof(unsigned long)-1))
5565 		return -EINVAL;
5566 
5567 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5568 		return -ENOMEM;
5569 
5570 	ret = sched_getaffinity(pid, mask);
5571 	if (ret == 0) {
5572 		unsigned int retlen = min(len, cpumask_size());
5573 
5574 		if (copy_to_user(user_mask_ptr, mask, retlen))
5575 			ret = -EFAULT;
5576 		else
5577 			ret = retlen;
5578 	}
5579 	free_cpumask_var(mask);
5580 
5581 	return ret;
5582 }
5583 
5584 /**
5585  * sys_sched_yield - yield the current processor to other threads.
5586  *
5587  * This function yields the current CPU to other tasks. If there are no
5588  * other threads running on this CPU then this function will return.
5589  *
5590  * Return: 0.
5591  */
5592 static void do_sched_yield(void)
5593 {
5594 	struct rq_flags rf;
5595 	struct rq *rq;
5596 
5597 	rq = this_rq_lock_irq(&rf);
5598 
5599 	schedstat_inc(rq->yld_count);
5600 	current->sched_class->yield_task(rq);
5601 
5602 	/*
5603 	 * Since we are going to call schedule() anyway, there's
5604 	 * no need to preempt or enable interrupts:
5605 	 */
5606 	preempt_disable();
5607 	rq_unlock(rq, &rf);
5608 	sched_preempt_enable_no_resched();
5609 
5610 	schedule();
5611 }
5612 
5613 SYSCALL_DEFINE0(sched_yield)
5614 {
5615 	do_sched_yield();
5616 	return 0;
5617 }
5618 
5619 #ifndef CONFIG_PREEMPTION
5620 int __sched _cond_resched(void)
5621 {
5622 	if (should_resched(0)) {
5623 		preempt_schedule_common();
5624 		return 1;
5625 	}
5626 	rcu_all_qs();
5627 	return 0;
5628 }
5629 EXPORT_SYMBOL(_cond_resched);
5630 #endif
5631 
5632 /*
5633  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5634  * call schedule, and on return reacquire the lock.
5635  *
5636  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5637  * operations here to prevent schedule() from being called twice (once via
5638  * spin_unlock(), once by hand).
5639  */
5640 int __cond_resched_lock(spinlock_t *lock)
5641 {
5642 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5643 	int ret = 0;
5644 
5645 	lockdep_assert_held(lock);
5646 
5647 	if (spin_needbreak(lock) || resched) {
5648 		spin_unlock(lock);
5649 		if (resched)
5650 			preempt_schedule_common();
5651 		else
5652 			cpu_relax();
5653 		ret = 1;
5654 		spin_lock(lock);
5655 	}
5656 	return ret;
5657 }
5658 EXPORT_SYMBOL(__cond_resched_lock);
5659 
5660 /**
5661  * yield - yield the current processor to other threads.
5662  *
5663  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5664  *
5665  * The scheduler is at all times free to pick the calling task as the most
5666  * eligible task to run, if removing the yield() call from your code breaks
5667  * it, its already broken.
5668  *
5669  * Typical broken usage is:
5670  *
5671  * while (!event)
5672  *	yield();
5673  *
5674  * where one assumes that yield() will let 'the other' process run that will
5675  * make event true. If the current task is a SCHED_FIFO task that will never
5676  * happen. Never use yield() as a progress guarantee!!
5677  *
5678  * If you want to use yield() to wait for something, use wait_event().
5679  * If you want to use yield() to be 'nice' for others, use cond_resched().
5680  * If you still want to use yield(), do not!
5681  */
5682 void __sched yield(void)
5683 {
5684 	set_current_state(TASK_RUNNING);
5685 	do_sched_yield();
5686 }
5687 EXPORT_SYMBOL(yield);
5688 
5689 /**
5690  * yield_to - yield the current processor to another thread in
5691  * your thread group, or accelerate that thread toward the
5692  * processor it's on.
5693  * @p: target task
5694  * @preempt: whether task preemption is allowed or not
5695  *
5696  * It's the caller's job to ensure that the target task struct
5697  * can't go away on us before we can do any checks.
5698  *
5699  * Return:
5700  *	true (>0) if we indeed boosted the target task.
5701  *	false (0) if we failed to boost the target.
5702  *	-ESRCH if there's no task to yield to.
5703  */
5704 int __sched yield_to(struct task_struct *p, bool preempt)
5705 {
5706 	struct task_struct *curr = current;
5707 	struct rq *rq, *p_rq;
5708 	unsigned long flags;
5709 	int yielded = 0;
5710 
5711 	local_irq_save(flags);
5712 	rq = this_rq();
5713 
5714 again:
5715 	p_rq = task_rq(p);
5716 	/*
5717 	 * If we're the only runnable task on the rq and target rq also
5718 	 * has only one task, there's absolutely no point in yielding.
5719 	 */
5720 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5721 		yielded = -ESRCH;
5722 		goto out_irq;
5723 	}
5724 
5725 	double_rq_lock(rq, p_rq);
5726 	if (task_rq(p) != p_rq) {
5727 		double_rq_unlock(rq, p_rq);
5728 		goto again;
5729 	}
5730 
5731 	if (!curr->sched_class->yield_to_task)
5732 		goto out_unlock;
5733 
5734 	if (curr->sched_class != p->sched_class)
5735 		goto out_unlock;
5736 
5737 	if (task_running(p_rq, p) || p->state)
5738 		goto out_unlock;
5739 
5740 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5741 	if (yielded) {
5742 		schedstat_inc(rq->yld_count);
5743 		/*
5744 		 * Make p's CPU reschedule; pick_next_entity takes care of
5745 		 * fairness.
5746 		 */
5747 		if (preempt && rq != p_rq)
5748 			resched_curr(p_rq);
5749 	}
5750 
5751 out_unlock:
5752 	double_rq_unlock(rq, p_rq);
5753 out_irq:
5754 	local_irq_restore(flags);
5755 
5756 	if (yielded > 0)
5757 		schedule();
5758 
5759 	return yielded;
5760 }
5761 EXPORT_SYMBOL_GPL(yield_to);
5762 
5763 int io_schedule_prepare(void)
5764 {
5765 	int old_iowait = current->in_iowait;
5766 
5767 	current->in_iowait = 1;
5768 	blk_schedule_flush_plug(current);
5769 
5770 	return old_iowait;
5771 }
5772 
5773 void io_schedule_finish(int token)
5774 {
5775 	current->in_iowait = token;
5776 }
5777 
5778 /*
5779  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5780  * that process accounting knows that this is a task in IO wait state.
5781  */
5782 long __sched io_schedule_timeout(long timeout)
5783 {
5784 	int token;
5785 	long ret;
5786 
5787 	token = io_schedule_prepare();
5788 	ret = schedule_timeout(timeout);
5789 	io_schedule_finish(token);
5790 
5791 	return ret;
5792 }
5793 EXPORT_SYMBOL(io_schedule_timeout);
5794 
5795 void __sched io_schedule(void)
5796 {
5797 	int token;
5798 
5799 	token = io_schedule_prepare();
5800 	schedule();
5801 	io_schedule_finish(token);
5802 }
5803 EXPORT_SYMBOL(io_schedule);
5804 
5805 /**
5806  * sys_sched_get_priority_max - return maximum RT priority.
5807  * @policy: scheduling class.
5808  *
5809  * Return: On success, this syscall returns the maximum
5810  * rt_priority that can be used by a given scheduling class.
5811  * On failure, a negative error code is returned.
5812  */
5813 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5814 {
5815 	int ret = -EINVAL;
5816 
5817 	switch (policy) {
5818 	case SCHED_FIFO:
5819 	case SCHED_RR:
5820 		ret = MAX_USER_RT_PRIO-1;
5821 		break;
5822 	case SCHED_DEADLINE:
5823 	case SCHED_NORMAL:
5824 	case SCHED_BATCH:
5825 	case SCHED_IDLE:
5826 		ret = 0;
5827 		break;
5828 	}
5829 	return ret;
5830 }
5831 
5832 /**
5833  * sys_sched_get_priority_min - return minimum RT priority.
5834  * @policy: scheduling class.
5835  *
5836  * Return: On success, this syscall returns the minimum
5837  * rt_priority that can be used by a given scheduling class.
5838  * On failure, a negative error code is returned.
5839  */
5840 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5841 {
5842 	int ret = -EINVAL;
5843 
5844 	switch (policy) {
5845 	case SCHED_FIFO:
5846 	case SCHED_RR:
5847 		ret = 1;
5848 		break;
5849 	case SCHED_DEADLINE:
5850 	case SCHED_NORMAL:
5851 	case SCHED_BATCH:
5852 	case SCHED_IDLE:
5853 		ret = 0;
5854 	}
5855 	return ret;
5856 }
5857 
5858 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5859 {
5860 	struct task_struct *p;
5861 	unsigned int time_slice;
5862 	struct rq_flags rf;
5863 	struct rq *rq;
5864 	int retval;
5865 
5866 	if (pid < 0)
5867 		return -EINVAL;
5868 
5869 	retval = -ESRCH;
5870 	rcu_read_lock();
5871 	p = find_process_by_pid(pid);
5872 	if (!p)
5873 		goto out_unlock;
5874 
5875 	retval = security_task_getscheduler(p);
5876 	if (retval)
5877 		goto out_unlock;
5878 
5879 	rq = task_rq_lock(p, &rf);
5880 	time_slice = 0;
5881 	if (p->sched_class->get_rr_interval)
5882 		time_slice = p->sched_class->get_rr_interval(rq, p);
5883 	task_rq_unlock(rq, p, &rf);
5884 
5885 	rcu_read_unlock();
5886 	jiffies_to_timespec64(time_slice, t);
5887 	return 0;
5888 
5889 out_unlock:
5890 	rcu_read_unlock();
5891 	return retval;
5892 }
5893 
5894 /**
5895  * sys_sched_rr_get_interval - return the default timeslice of a process.
5896  * @pid: pid of the process.
5897  * @interval: userspace pointer to the timeslice value.
5898  *
5899  * this syscall writes the default timeslice value of a given process
5900  * into the user-space timespec buffer. A value of '0' means infinity.
5901  *
5902  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5903  * an error code.
5904  */
5905 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5906 		struct __kernel_timespec __user *, interval)
5907 {
5908 	struct timespec64 t;
5909 	int retval = sched_rr_get_interval(pid, &t);
5910 
5911 	if (retval == 0)
5912 		retval = put_timespec64(&t, interval);
5913 
5914 	return retval;
5915 }
5916 
5917 #ifdef CONFIG_COMPAT_32BIT_TIME
5918 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5919 		struct old_timespec32 __user *, interval)
5920 {
5921 	struct timespec64 t;
5922 	int retval = sched_rr_get_interval(pid, &t);
5923 
5924 	if (retval == 0)
5925 		retval = put_old_timespec32(&t, interval);
5926 	return retval;
5927 }
5928 #endif
5929 
5930 void sched_show_task(struct task_struct *p)
5931 {
5932 	unsigned long free = 0;
5933 	int ppid;
5934 
5935 	if (!try_get_task_stack(p))
5936 		return;
5937 
5938 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5939 
5940 	if (p->state == TASK_RUNNING)
5941 		printk(KERN_CONT "  running task    ");
5942 #ifdef CONFIG_DEBUG_STACK_USAGE
5943 	free = stack_not_used(p);
5944 #endif
5945 	ppid = 0;
5946 	rcu_read_lock();
5947 	if (pid_alive(p))
5948 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5949 	rcu_read_unlock();
5950 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5951 		task_pid_nr(p), ppid,
5952 		(unsigned long)task_thread_info(p)->flags);
5953 
5954 	print_worker_info(KERN_INFO, p);
5955 	show_stack(p, NULL);
5956 	put_task_stack(p);
5957 }
5958 EXPORT_SYMBOL_GPL(sched_show_task);
5959 
5960 static inline bool
5961 state_filter_match(unsigned long state_filter, struct task_struct *p)
5962 {
5963 	/* no filter, everything matches */
5964 	if (!state_filter)
5965 		return true;
5966 
5967 	/* filter, but doesn't match */
5968 	if (!(p->state & state_filter))
5969 		return false;
5970 
5971 	/*
5972 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5973 	 * TASK_KILLABLE).
5974 	 */
5975 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5976 		return false;
5977 
5978 	return true;
5979 }
5980 
5981 
5982 void show_state_filter(unsigned long state_filter)
5983 {
5984 	struct task_struct *g, *p;
5985 
5986 #if BITS_PER_LONG == 32
5987 	printk(KERN_INFO
5988 		"  task                PC stack   pid father\n");
5989 #else
5990 	printk(KERN_INFO
5991 		"  task                        PC stack   pid father\n");
5992 #endif
5993 	rcu_read_lock();
5994 	for_each_process_thread(g, p) {
5995 		/*
5996 		 * reset the NMI-timeout, listing all files on a slow
5997 		 * console might take a lot of time:
5998 		 * Also, reset softlockup watchdogs on all CPUs, because
5999 		 * another CPU might be blocked waiting for us to process
6000 		 * an IPI.
6001 		 */
6002 		touch_nmi_watchdog();
6003 		touch_all_softlockup_watchdogs();
6004 		if (state_filter_match(state_filter, p))
6005 			sched_show_task(p);
6006 	}
6007 
6008 #ifdef CONFIG_SCHED_DEBUG
6009 	if (!state_filter)
6010 		sysrq_sched_debug_show();
6011 #endif
6012 	rcu_read_unlock();
6013 	/*
6014 	 * Only show locks if all tasks are dumped:
6015 	 */
6016 	if (!state_filter)
6017 		debug_show_all_locks();
6018 }
6019 
6020 /**
6021  * init_idle - set up an idle thread for a given CPU
6022  * @idle: task in question
6023  * @cpu: CPU the idle task belongs to
6024  *
6025  * NOTE: this function does not set the idle thread's NEED_RESCHED
6026  * flag, to make booting more robust.
6027  */
6028 void init_idle(struct task_struct *idle, int cpu)
6029 {
6030 	struct rq *rq = cpu_rq(cpu);
6031 	unsigned long flags;
6032 
6033 	__sched_fork(0, idle);
6034 
6035 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6036 	raw_spin_lock(&rq->lock);
6037 
6038 	idle->state = TASK_RUNNING;
6039 	idle->se.exec_start = sched_clock();
6040 	idle->flags |= PF_IDLE;
6041 
6042 	kasan_unpoison_task_stack(idle);
6043 
6044 #ifdef CONFIG_SMP
6045 	/*
6046 	 * Its possible that init_idle() gets called multiple times on a task,
6047 	 * in that case do_set_cpus_allowed() will not do the right thing.
6048 	 *
6049 	 * And since this is boot we can forgo the serialization.
6050 	 */
6051 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6052 #endif
6053 	/*
6054 	 * We're having a chicken and egg problem, even though we are
6055 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6056 	 * lockdep check in task_group() will fail.
6057 	 *
6058 	 * Similar case to sched_fork(). / Alternatively we could
6059 	 * use task_rq_lock() here and obtain the other rq->lock.
6060 	 *
6061 	 * Silence PROVE_RCU
6062 	 */
6063 	rcu_read_lock();
6064 	__set_task_cpu(idle, cpu);
6065 	rcu_read_unlock();
6066 
6067 	rq->idle = idle;
6068 	rcu_assign_pointer(rq->curr, idle);
6069 	idle->on_rq = TASK_ON_RQ_QUEUED;
6070 #ifdef CONFIG_SMP
6071 	idle->on_cpu = 1;
6072 #endif
6073 	raw_spin_unlock(&rq->lock);
6074 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6075 
6076 	/* Set the preempt count _outside_ the spinlocks! */
6077 	init_idle_preempt_count(idle, cpu);
6078 
6079 	/*
6080 	 * The idle tasks have their own, simple scheduling class:
6081 	 */
6082 	idle->sched_class = &idle_sched_class;
6083 	ftrace_graph_init_idle_task(idle, cpu);
6084 	vtime_init_idle(idle, cpu);
6085 #ifdef CONFIG_SMP
6086 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6087 #endif
6088 }
6089 
6090 #ifdef CONFIG_SMP
6091 
6092 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6093 			      const struct cpumask *trial)
6094 {
6095 	int ret = 1;
6096 
6097 	if (!cpumask_weight(cur))
6098 		return ret;
6099 
6100 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6101 
6102 	return ret;
6103 }
6104 
6105 int task_can_attach(struct task_struct *p,
6106 		    const struct cpumask *cs_cpus_allowed)
6107 {
6108 	int ret = 0;
6109 
6110 	/*
6111 	 * Kthreads which disallow setaffinity shouldn't be moved
6112 	 * to a new cpuset; we don't want to change their CPU
6113 	 * affinity and isolating such threads by their set of
6114 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6115 	 * applicable for such threads.  This prevents checking for
6116 	 * success of set_cpus_allowed_ptr() on all attached tasks
6117 	 * before cpus_mask may be changed.
6118 	 */
6119 	if (p->flags & PF_NO_SETAFFINITY) {
6120 		ret = -EINVAL;
6121 		goto out;
6122 	}
6123 
6124 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6125 					      cs_cpus_allowed))
6126 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6127 
6128 out:
6129 	return ret;
6130 }
6131 
6132 bool sched_smp_initialized __read_mostly;
6133 
6134 #ifdef CONFIG_NUMA_BALANCING
6135 /* Migrate current task p to target_cpu */
6136 int migrate_task_to(struct task_struct *p, int target_cpu)
6137 {
6138 	struct migration_arg arg = { p, target_cpu };
6139 	int curr_cpu = task_cpu(p);
6140 
6141 	if (curr_cpu == target_cpu)
6142 		return 0;
6143 
6144 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6145 		return -EINVAL;
6146 
6147 	/* TODO: This is not properly updating schedstats */
6148 
6149 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6150 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6151 }
6152 
6153 /*
6154  * Requeue a task on a given node and accurately track the number of NUMA
6155  * tasks on the runqueues
6156  */
6157 void sched_setnuma(struct task_struct *p, int nid)
6158 {
6159 	bool queued, running;
6160 	struct rq_flags rf;
6161 	struct rq *rq;
6162 
6163 	rq = task_rq_lock(p, &rf);
6164 	queued = task_on_rq_queued(p);
6165 	running = task_current(rq, p);
6166 
6167 	if (queued)
6168 		dequeue_task(rq, p, DEQUEUE_SAVE);
6169 	if (running)
6170 		put_prev_task(rq, p);
6171 
6172 	p->numa_preferred_nid = nid;
6173 
6174 	if (queued)
6175 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6176 	if (running)
6177 		set_next_task(rq, p);
6178 	task_rq_unlock(rq, p, &rf);
6179 }
6180 #endif /* CONFIG_NUMA_BALANCING */
6181 
6182 #ifdef CONFIG_HOTPLUG_CPU
6183 /*
6184  * Ensure that the idle task is using init_mm right before its CPU goes
6185  * offline.
6186  */
6187 void idle_task_exit(void)
6188 {
6189 	struct mm_struct *mm = current->active_mm;
6190 
6191 	BUG_ON(cpu_online(smp_processor_id()));
6192 
6193 	if (mm != &init_mm) {
6194 		switch_mm(mm, &init_mm, current);
6195 		current->active_mm = &init_mm;
6196 		finish_arch_post_lock_switch();
6197 	}
6198 	mmdrop(mm);
6199 }
6200 
6201 /*
6202  * Since this CPU is going 'away' for a while, fold any nr_active delta
6203  * we might have. Assumes we're called after migrate_tasks() so that the
6204  * nr_active count is stable. We need to take the teardown thread which
6205  * is calling this into account, so we hand in adjust = 1 to the load
6206  * calculation.
6207  *
6208  * Also see the comment "Global load-average calculations".
6209  */
6210 static void calc_load_migrate(struct rq *rq)
6211 {
6212 	long delta = calc_load_fold_active(rq, 1);
6213 	if (delta)
6214 		atomic_long_add(delta, &calc_load_tasks);
6215 }
6216 
6217 static struct task_struct *__pick_migrate_task(struct rq *rq)
6218 {
6219 	const struct sched_class *class;
6220 	struct task_struct *next;
6221 
6222 	for_each_class(class) {
6223 		next = class->pick_next_task(rq);
6224 		if (next) {
6225 			next->sched_class->put_prev_task(rq, next);
6226 			return next;
6227 		}
6228 	}
6229 
6230 	/* The idle class should always have a runnable task */
6231 	BUG();
6232 }
6233 
6234 /*
6235  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6236  * try_to_wake_up()->select_task_rq().
6237  *
6238  * Called with rq->lock held even though we'er in stop_machine() and
6239  * there's no concurrency possible, we hold the required locks anyway
6240  * because of lock validation efforts.
6241  */
6242 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6243 {
6244 	struct rq *rq = dead_rq;
6245 	struct task_struct *next, *stop = rq->stop;
6246 	struct rq_flags orf = *rf;
6247 	int dest_cpu;
6248 
6249 	/*
6250 	 * Fudge the rq selection such that the below task selection loop
6251 	 * doesn't get stuck on the currently eligible stop task.
6252 	 *
6253 	 * We're currently inside stop_machine() and the rq is either stuck
6254 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6255 	 * either way we should never end up calling schedule() until we're
6256 	 * done here.
6257 	 */
6258 	rq->stop = NULL;
6259 
6260 	/*
6261 	 * put_prev_task() and pick_next_task() sched
6262 	 * class method both need to have an up-to-date
6263 	 * value of rq->clock[_task]
6264 	 */
6265 	update_rq_clock(rq);
6266 
6267 	for (;;) {
6268 		/*
6269 		 * There's this thread running, bail when that's the only
6270 		 * remaining thread:
6271 		 */
6272 		if (rq->nr_running == 1)
6273 			break;
6274 
6275 		next = __pick_migrate_task(rq);
6276 
6277 		/*
6278 		 * Rules for changing task_struct::cpus_mask are holding
6279 		 * both pi_lock and rq->lock, such that holding either
6280 		 * stabilizes the mask.
6281 		 *
6282 		 * Drop rq->lock is not quite as disastrous as it usually is
6283 		 * because !cpu_active at this point, which means load-balance
6284 		 * will not interfere. Also, stop-machine.
6285 		 */
6286 		rq_unlock(rq, rf);
6287 		raw_spin_lock(&next->pi_lock);
6288 		rq_relock(rq, rf);
6289 
6290 		/*
6291 		 * Since we're inside stop-machine, _nothing_ should have
6292 		 * changed the task, WARN if weird stuff happened, because in
6293 		 * that case the above rq->lock drop is a fail too.
6294 		 */
6295 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6296 			raw_spin_unlock(&next->pi_lock);
6297 			continue;
6298 		}
6299 
6300 		/* Find suitable destination for @next, with force if needed. */
6301 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6302 		rq = __migrate_task(rq, rf, next, dest_cpu);
6303 		if (rq != dead_rq) {
6304 			rq_unlock(rq, rf);
6305 			rq = dead_rq;
6306 			*rf = orf;
6307 			rq_relock(rq, rf);
6308 		}
6309 		raw_spin_unlock(&next->pi_lock);
6310 	}
6311 
6312 	rq->stop = stop;
6313 }
6314 #endif /* CONFIG_HOTPLUG_CPU */
6315 
6316 void set_rq_online(struct rq *rq)
6317 {
6318 	if (!rq->online) {
6319 		const struct sched_class *class;
6320 
6321 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6322 		rq->online = 1;
6323 
6324 		for_each_class(class) {
6325 			if (class->rq_online)
6326 				class->rq_online(rq);
6327 		}
6328 	}
6329 }
6330 
6331 void set_rq_offline(struct rq *rq)
6332 {
6333 	if (rq->online) {
6334 		const struct sched_class *class;
6335 
6336 		for_each_class(class) {
6337 			if (class->rq_offline)
6338 				class->rq_offline(rq);
6339 		}
6340 
6341 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6342 		rq->online = 0;
6343 	}
6344 }
6345 
6346 /*
6347  * used to mark begin/end of suspend/resume:
6348  */
6349 static int num_cpus_frozen;
6350 
6351 /*
6352  * Update cpusets according to cpu_active mask.  If cpusets are
6353  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6354  * around partition_sched_domains().
6355  *
6356  * If we come here as part of a suspend/resume, don't touch cpusets because we
6357  * want to restore it back to its original state upon resume anyway.
6358  */
6359 static void cpuset_cpu_active(void)
6360 {
6361 	if (cpuhp_tasks_frozen) {
6362 		/*
6363 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6364 		 * resume sequence. As long as this is not the last online
6365 		 * operation in the resume sequence, just build a single sched
6366 		 * domain, ignoring cpusets.
6367 		 */
6368 		partition_sched_domains(1, NULL, NULL);
6369 		if (--num_cpus_frozen)
6370 			return;
6371 		/*
6372 		 * This is the last CPU online operation. So fall through and
6373 		 * restore the original sched domains by considering the
6374 		 * cpuset configurations.
6375 		 */
6376 		cpuset_force_rebuild();
6377 	}
6378 	cpuset_update_active_cpus();
6379 }
6380 
6381 static int cpuset_cpu_inactive(unsigned int cpu)
6382 {
6383 	if (!cpuhp_tasks_frozen) {
6384 		if (dl_cpu_busy(cpu))
6385 			return -EBUSY;
6386 		cpuset_update_active_cpus();
6387 	} else {
6388 		num_cpus_frozen++;
6389 		partition_sched_domains(1, NULL, NULL);
6390 	}
6391 	return 0;
6392 }
6393 
6394 int sched_cpu_activate(unsigned int cpu)
6395 {
6396 	struct rq *rq = cpu_rq(cpu);
6397 	struct rq_flags rf;
6398 
6399 #ifdef CONFIG_SCHED_SMT
6400 	/*
6401 	 * When going up, increment the number of cores with SMT present.
6402 	 */
6403 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6404 		static_branch_inc_cpuslocked(&sched_smt_present);
6405 #endif
6406 	set_cpu_active(cpu, true);
6407 
6408 	if (sched_smp_initialized) {
6409 		sched_domains_numa_masks_set(cpu);
6410 		cpuset_cpu_active();
6411 	}
6412 
6413 	/*
6414 	 * Put the rq online, if not already. This happens:
6415 	 *
6416 	 * 1) In the early boot process, because we build the real domains
6417 	 *    after all CPUs have been brought up.
6418 	 *
6419 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6420 	 *    domains.
6421 	 */
6422 	rq_lock_irqsave(rq, &rf);
6423 	if (rq->rd) {
6424 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6425 		set_rq_online(rq);
6426 	}
6427 	rq_unlock_irqrestore(rq, &rf);
6428 
6429 	return 0;
6430 }
6431 
6432 int sched_cpu_deactivate(unsigned int cpu)
6433 {
6434 	int ret;
6435 
6436 	set_cpu_active(cpu, false);
6437 	/*
6438 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6439 	 * users of this state to go away such that all new such users will
6440 	 * observe it.
6441 	 *
6442 	 * Do sync before park smpboot threads to take care the rcu boost case.
6443 	 */
6444 	synchronize_rcu();
6445 
6446 #ifdef CONFIG_SCHED_SMT
6447 	/*
6448 	 * When going down, decrement the number of cores with SMT present.
6449 	 */
6450 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6451 		static_branch_dec_cpuslocked(&sched_smt_present);
6452 #endif
6453 
6454 	if (!sched_smp_initialized)
6455 		return 0;
6456 
6457 	ret = cpuset_cpu_inactive(cpu);
6458 	if (ret) {
6459 		set_cpu_active(cpu, true);
6460 		return ret;
6461 	}
6462 	sched_domains_numa_masks_clear(cpu);
6463 	return 0;
6464 }
6465 
6466 static void sched_rq_cpu_starting(unsigned int cpu)
6467 {
6468 	struct rq *rq = cpu_rq(cpu);
6469 
6470 	rq->calc_load_update = calc_load_update;
6471 	update_max_interval();
6472 }
6473 
6474 int sched_cpu_starting(unsigned int cpu)
6475 {
6476 	sched_rq_cpu_starting(cpu);
6477 	sched_tick_start(cpu);
6478 	return 0;
6479 }
6480 
6481 #ifdef CONFIG_HOTPLUG_CPU
6482 int sched_cpu_dying(unsigned int cpu)
6483 {
6484 	struct rq *rq = cpu_rq(cpu);
6485 	struct rq_flags rf;
6486 
6487 	/* Handle pending wakeups and then migrate everything off */
6488 	sched_ttwu_pending();
6489 	sched_tick_stop(cpu);
6490 
6491 	rq_lock_irqsave(rq, &rf);
6492 	if (rq->rd) {
6493 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6494 		set_rq_offline(rq);
6495 	}
6496 	migrate_tasks(rq, &rf);
6497 	BUG_ON(rq->nr_running != 1);
6498 	rq_unlock_irqrestore(rq, &rf);
6499 
6500 	calc_load_migrate(rq);
6501 	update_max_interval();
6502 	nohz_balance_exit_idle(rq);
6503 	hrtick_clear(rq);
6504 	return 0;
6505 }
6506 #endif
6507 
6508 void __init sched_init_smp(void)
6509 {
6510 	sched_init_numa();
6511 
6512 	/*
6513 	 * There's no userspace yet to cause hotplug operations; hence all the
6514 	 * CPU masks are stable and all blatant races in the below code cannot
6515 	 * happen.
6516 	 */
6517 	mutex_lock(&sched_domains_mutex);
6518 	sched_init_domains(cpu_active_mask);
6519 	mutex_unlock(&sched_domains_mutex);
6520 
6521 	/* Move init over to a non-isolated CPU */
6522 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6523 		BUG();
6524 	sched_init_granularity();
6525 
6526 	init_sched_rt_class();
6527 	init_sched_dl_class();
6528 
6529 	sched_smp_initialized = true;
6530 }
6531 
6532 static int __init migration_init(void)
6533 {
6534 	sched_cpu_starting(smp_processor_id());
6535 	return 0;
6536 }
6537 early_initcall(migration_init);
6538 
6539 #else
6540 void __init sched_init_smp(void)
6541 {
6542 	sched_init_granularity();
6543 }
6544 #endif /* CONFIG_SMP */
6545 
6546 int in_sched_functions(unsigned long addr)
6547 {
6548 	return in_lock_functions(addr) ||
6549 		(addr >= (unsigned long)__sched_text_start
6550 		&& addr < (unsigned long)__sched_text_end);
6551 }
6552 
6553 #ifdef CONFIG_CGROUP_SCHED
6554 /*
6555  * Default task group.
6556  * Every task in system belongs to this group at bootup.
6557  */
6558 struct task_group root_task_group;
6559 LIST_HEAD(task_groups);
6560 
6561 /* Cacheline aligned slab cache for task_group */
6562 static struct kmem_cache *task_group_cache __read_mostly;
6563 #endif
6564 
6565 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6566 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6567 
6568 void __init sched_init(void)
6569 {
6570 	unsigned long ptr = 0;
6571 	int i;
6572 
6573 	wait_bit_init();
6574 
6575 #ifdef CONFIG_FAIR_GROUP_SCHED
6576 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6577 #endif
6578 #ifdef CONFIG_RT_GROUP_SCHED
6579 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6580 #endif
6581 	if (ptr) {
6582 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6583 
6584 #ifdef CONFIG_FAIR_GROUP_SCHED
6585 		root_task_group.se = (struct sched_entity **)ptr;
6586 		ptr += nr_cpu_ids * sizeof(void **);
6587 
6588 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6589 		ptr += nr_cpu_ids * sizeof(void **);
6590 
6591 #endif /* CONFIG_FAIR_GROUP_SCHED */
6592 #ifdef CONFIG_RT_GROUP_SCHED
6593 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6594 		ptr += nr_cpu_ids * sizeof(void **);
6595 
6596 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6597 		ptr += nr_cpu_ids * sizeof(void **);
6598 
6599 #endif /* CONFIG_RT_GROUP_SCHED */
6600 	}
6601 #ifdef CONFIG_CPUMASK_OFFSTACK
6602 	for_each_possible_cpu(i) {
6603 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6604 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6605 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6606 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6607 	}
6608 #endif /* CONFIG_CPUMASK_OFFSTACK */
6609 
6610 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6611 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6612 
6613 #ifdef CONFIG_SMP
6614 	init_defrootdomain();
6615 #endif
6616 
6617 #ifdef CONFIG_RT_GROUP_SCHED
6618 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6619 			global_rt_period(), global_rt_runtime());
6620 #endif /* CONFIG_RT_GROUP_SCHED */
6621 
6622 #ifdef CONFIG_CGROUP_SCHED
6623 	task_group_cache = KMEM_CACHE(task_group, 0);
6624 
6625 	list_add(&root_task_group.list, &task_groups);
6626 	INIT_LIST_HEAD(&root_task_group.children);
6627 	INIT_LIST_HEAD(&root_task_group.siblings);
6628 	autogroup_init(&init_task);
6629 #endif /* CONFIG_CGROUP_SCHED */
6630 
6631 	for_each_possible_cpu(i) {
6632 		struct rq *rq;
6633 
6634 		rq = cpu_rq(i);
6635 		raw_spin_lock_init(&rq->lock);
6636 		rq->nr_running = 0;
6637 		rq->calc_load_active = 0;
6638 		rq->calc_load_update = jiffies + LOAD_FREQ;
6639 		init_cfs_rq(&rq->cfs);
6640 		init_rt_rq(&rq->rt);
6641 		init_dl_rq(&rq->dl);
6642 #ifdef CONFIG_FAIR_GROUP_SCHED
6643 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6644 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6645 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6646 		/*
6647 		 * How much CPU bandwidth does root_task_group get?
6648 		 *
6649 		 * In case of task-groups formed thr' the cgroup filesystem, it
6650 		 * gets 100% of the CPU resources in the system. This overall
6651 		 * system CPU resource is divided among the tasks of
6652 		 * root_task_group and its child task-groups in a fair manner,
6653 		 * based on each entity's (task or task-group's) weight
6654 		 * (se->load.weight).
6655 		 *
6656 		 * In other words, if root_task_group has 10 tasks of weight
6657 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6658 		 * then A0's share of the CPU resource is:
6659 		 *
6660 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6661 		 *
6662 		 * We achieve this by letting root_task_group's tasks sit
6663 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6664 		 */
6665 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6666 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6667 #endif /* CONFIG_FAIR_GROUP_SCHED */
6668 
6669 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6670 #ifdef CONFIG_RT_GROUP_SCHED
6671 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6672 #endif
6673 #ifdef CONFIG_SMP
6674 		rq->sd = NULL;
6675 		rq->rd = NULL;
6676 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6677 		rq->balance_callback = NULL;
6678 		rq->active_balance = 0;
6679 		rq->next_balance = jiffies;
6680 		rq->push_cpu = 0;
6681 		rq->cpu = i;
6682 		rq->online = 0;
6683 		rq->idle_stamp = 0;
6684 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6685 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6686 
6687 		INIT_LIST_HEAD(&rq->cfs_tasks);
6688 
6689 		rq_attach_root(rq, &def_root_domain);
6690 #ifdef CONFIG_NO_HZ_COMMON
6691 		rq->last_blocked_load_update_tick = jiffies;
6692 		atomic_set(&rq->nohz_flags, 0);
6693 #endif
6694 #endif /* CONFIG_SMP */
6695 		hrtick_rq_init(rq);
6696 		atomic_set(&rq->nr_iowait, 0);
6697 	}
6698 
6699 	set_load_weight(&init_task, false);
6700 
6701 	/*
6702 	 * The boot idle thread does lazy MMU switching as well:
6703 	 */
6704 	mmgrab(&init_mm);
6705 	enter_lazy_tlb(&init_mm, current);
6706 
6707 	/*
6708 	 * Make us the idle thread. Technically, schedule() should not be
6709 	 * called from this thread, however somewhere below it might be,
6710 	 * but because we are the idle thread, we just pick up running again
6711 	 * when this runqueue becomes "idle".
6712 	 */
6713 	init_idle(current, smp_processor_id());
6714 
6715 	calc_load_update = jiffies + LOAD_FREQ;
6716 
6717 #ifdef CONFIG_SMP
6718 	idle_thread_set_boot_cpu();
6719 #endif
6720 	init_sched_fair_class();
6721 
6722 	init_schedstats();
6723 
6724 	psi_init();
6725 
6726 	init_uclamp();
6727 
6728 	scheduler_running = 1;
6729 }
6730 
6731 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6732 static inline int preempt_count_equals(int preempt_offset)
6733 {
6734 	int nested = preempt_count() + rcu_preempt_depth();
6735 
6736 	return (nested == preempt_offset);
6737 }
6738 
6739 void __might_sleep(const char *file, int line, int preempt_offset)
6740 {
6741 	/*
6742 	 * Blocking primitives will set (and therefore destroy) current->state,
6743 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6744 	 * otherwise we will destroy state.
6745 	 */
6746 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6747 			"do not call blocking ops when !TASK_RUNNING; "
6748 			"state=%lx set at [<%p>] %pS\n",
6749 			current->state,
6750 			(void *)current->task_state_change,
6751 			(void *)current->task_state_change);
6752 
6753 	___might_sleep(file, line, preempt_offset);
6754 }
6755 EXPORT_SYMBOL(__might_sleep);
6756 
6757 void ___might_sleep(const char *file, int line, int preempt_offset)
6758 {
6759 	/* Ratelimiting timestamp: */
6760 	static unsigned long prev_jiffy;
6761 
6762 	unsigned long preempt_disable_ip;
6763 
6764 	/* WARN_ON_ONCE() by default, no rate limit required: */
6765 	rcu_sleep_check();
6766 
6767 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6768 	     !is_idle_task(current) && !current->non_block_count) ||
6769 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6770 	    oops_in_progress)
6771 		return;
6772 
6773 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6774 		return;
6775 	prev_jiffy = jiffies;
6776 
6777 	/* Save this before calling printk(), since that will clobber it: */
6778 	preempt_disable_ip = get_preempt_disable_ip(current);
6779 
6780 	printk(KERN_ERR
6781 		"BUG: sleeping function called from invalid context at %s:%d\n",
6782 			file, line);
6783 	printk(KERN_ERR
6784 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6785 			in_atomic(), irqs_disabled(), current->non_block_count,
6786 			current->pid, current->comm);
6787 
6788 	if (task_stack_end_corrupted(current))
6789 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6790 
6791 	debug_show_held_locks(current);
6792 	if (irqs_disabled())
6793 		print_irqtrace_events(current);
6794 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6795 	    && !preempt_count_equals(preempt_offset)) {
6796 		pr_err("Preemption disabled at:");
6797 		print_ip_sym(preempt_disable_ip);
6798 		pr_cont("\n");
6799 	}
6800 	dump_stack();
6801 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6802 }
6803 EXPORT_SYMBOL(___might_sleep);
6804 
6805 void __cant_sleep(const char *file, int line, int preempt_offset)
6806 {
6807 	static unsigned long prev_jiffy;
6808 
6809 	if (irqs_disabled())
6810 		return;
6811 
6812 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6813 		return;
6814 
6815 	if (preempt_count() > preempt_offset)
6816 		return;
6817 
6818 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6819 		return;
6820 	prev_jiffy = jiffies;
6821 
6822 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6823 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6824 			in_atomic(), irqs_disabled(),
6825 			current->pid, current->comm);
6826 
6827 	debug_show_held_locks(current);
6828 	dump_stack();
6829 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6830 }
6831 EXPORT_SYMBOL_GPL(__cant_sleep);
6832 #endif
6833 
6834 #ifdef CONFIG_MAGIC_SYSRQ
6835 void normalize_rt_tasks(void)
6836 {
6837 	struct task_struct *g, *p;
6838 	struct sched_attr attr = {
6839 		.sched_policy = SCHED_NORMAL,
6840 	};
6841 
6842 	read_lock(&tasklist_lock);
6843 	for_each_process_thread(g, p) {
6844 		/*
6845 		 * Only normalize user tasks:
6846 		 */
6847 		if (p->flags & PF_KTHREAD)
6848 			continue;
6849 
6850 		p->se.exec_start = 0;
6851 		schedstat_set(p->se.statistics.wait_start,  0);
6852 		schedstat_set(p->se.statistics.sleep_start, 0);
6853 		schedstat_set(p->se.statistics.block_start, 0);
6854 
6855 		if (!dl_task(p) && !rt_task(p)) {
6856 			/*
6857 			 * Renice negative nice level userspace
6858 			 * tasks back to 0:
6859 			 */
6860 			if (task_nice(p) < 0)
6861 				set_user_nice(p, 0);
6862 			continue;
6863 		}
6864 
6865 		__sched_setscheduler(p, &attr, false, false);
6866 	}
6867 	read_unlock(&tasklist_lock);
6868 }
6869 
6870 #endif /* CONFIG_MAGIC_SYSRQ */
6871 
6872 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6873 /*
6874  * These functions are only useful for the IA64 MCA handling, or kdb.
6875  *
6876  * They can only be called when the whole system has been
6877  * stopped - every CPU needs to be quiescent, and no scheduling
6878  * activity can take place. Using them for anything else would
6879  * be a serious bug, and as a result, they aren't even visible
6880  * under any other configuration.
6881  */
6882 
6883 /**
6884  * curr_task - return the current task for a given CPU.
6885  * @cpu: the processor in question.
6886  *
6887  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6888  *
6889  * Return: The current task for @cpu.
6890  */
6891 struct task_struct *curr_task(int cpu)
6892 {
6893 	return cpu_curr(cpu);
6894 }
6895 
6896 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6897 
6898 #ifdef CONFIG_IA64
6899 /**
6900  * ia64_set_curr_task - set the current task for a given CPU.
6901  * @cpu: the processor in question.
6902  * @p: the task pointer to set.
6903  *
6904  * Description: This function must only be used when non-maskable interrupts
6905  * are serviced on a separate stack. It allows the architecture to switch the
6906  * notion of the current task on a CPU in a non-blocking manner. This function
6907  * must be called with all CPU's synchronized, and interrupts disabled, the
6908  * and caller must save the original value of the current task (see
6909  * curr_task() above) and restore that value before reenabling interrupts and
6910  * re-starting the system.
6911  *
6912  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6913  */
6914 void ia64_set_curr_task(int cpu, struct task_struct *p)
6915 {
6916 	cpu_curr(cpu) = p;
6917 }
6918 
6919 #endif
6920 
6921 #ifdef CONFIG_CGROUP_SCHED
6922 /* task_group_lock serializes the addition/removal of task groups */
6923 static DEFINE_SPINLOCK(task_group_lock);
6924 
6925 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6926 					    struct task_group *parent)
6927 {
6928 #ifdef CONFIG_UCLAMP_TASK_GROUP
6929 	enum uclamp_id clamp_id;
6930 
6931 	for_each_clamp_id(clamp_id) {
6932 		uclamp_se_set(&tg->uclamp_req[clamp_id],
6933 			      uclamp_none(clamp_id), false);
6934 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6935 	}
6936 #endif
6937 }
6938 
6939 static void sched_free_group(struct task_group *tg)
6940 {
6941 	free_fair_sched_group(tg);
6942 	free_rt_sched_group(tg);
6943 	autogroup_free(tg);
6944 	kmem_cache_free(task_group_cache, tg);
6945 }
6946 
6947 /* allocate runqueue etc for a new task group */
6948 struct task_group *sched_create_group(struct task_group *parent)
6949 {
6950 	struct task_group *tg;
6951 
6952 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6953 	if (!tg)
6954 		return ERR_PTR(-ENOMEM);
6955 
6956 	if (!alloc_fair_sched_group(tg, parent))
6957 		goto err;
6958 
6959 	if (!alloc_rt_sched_group(tg, parent))
6960 		goto err;
6961 
6962 	alloc_uclamp_sched_group(tg, parent);
6963 
6964 	return tg;
6965 
6966 err:
6967 	sched_free_group(tg);
6968 	return ERR_PTR(-ENOMEM);
6969 }
6970 
6971 void sched_online_group(struct task_group *tg, struct task_group *parent)
6972 {
6973 	unsigned long flags;
6974 
6975 	spin_lock_irqsave(&task_group_lock, flags);
6976 	list_add_rcu(&tg->list, &task_groups);
6977 
6978 	/* Root should already exist: */
6979 	WARN_ON(!parent);
6980 
6981 	tg->parent = parent;
6982 	INIT_LIST_HEAD(&tg->children);
6983 	list_add_rcu(&tg->siblings, &parent->children);
6984 	spin_unlock_irqrestore(&task_group_lock, flags);
6985 
6986 	online_fair_sched_group(tg);
6987 }
6988 
6989 /* rcu callback to free various structures associated with a task group */
6990 static void sched_free_group_rcu(struct rcu_head *rhp)
6991 {
6992 	/* Now it should be safe to free those cfs_rqs: */
6993 	sched_free_group(container_of(rhp, struct task_group, rcu));
6994 }
6995 
6996 void sched_destroy_group(struct task_group *tg)
6997 {
6998 	/* Wait for possible concurrent references to cfs_rqs complete: */
6999 	call_rcu(&tg->rcu, sched_free_group_rcu);
7000 }
7001 
7002 void sched_offline_group(struct task_group *tg)
7003 {
7004 	unsigned long flags;
7005 
7006 	/* End participation in shares distribution: */
7007 	unregister_fair_sched_group(tg);
7008 
7009 	spin_lock_irqsave(&task_group_lock, flags);
7010 	list_del_rcu(&tg->list);
7011 	list_del_rcu(&tg->siblings);
7012 	spin_unlock_irqrestore(&task_group_lock, flags);
7013 }
7014 
7015 static void sched_change_group(struct task_struct *tsk, int type)
7016 {
7017 	struct task_group *tg;
7018 
7019 	/*
7020 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7021 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7022 	 * to prevent lockdep warnings.
7023 	 */
7024 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7025 			  struct task_group, css);
7026 	tg = autogroup_task_group(tsk, tg);
7027 	tsk->sched_task_group = tg;
7028 
7029 #ifdef CONFIG_FAIR_GROUP_SCHED
7030 	if (tsk->sched_class->task_change_group)
7031 		tsk->sched_class->task_change_group(tsk, type);
7032 	else
7033 #endif
7034 		set_task_rq(tsk, task_cpu(tsk));
7035 }
7036 
7037 /*
7038  * Change task's runqueue when it moves between groups.
7039  *
7040  * The caller of this function should have put the task in its new group by
7041  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7042  * its new group.
7043  */
7044 void sched_move_task(struct task_struct *tsk)
7045 {
7046 	int queued, running, queue_flags =
7047 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7048 	struct rq_flags rf;
7049 	struct rq *rq;
7050 
7051 	rq = task_rq_lock(tsk, &rf);
7052 	update_rq_clock(rq);
7053 
7054 	running = task_current(rq, tsk);
7055 	queued = task_on_rq_queued(tsk);
7056 
7057 	if (queued)
7058 		dequeue_task(rq, tsk, queue_flags);
7059 	if (running)
7060 		put_prev_task(rq, tsk);
7061 
7062 	sched_change_group(tsk, TASK_MOVE_GROUP);
7063 
7064 	if (queued)
7065 		enqueue_task(rq, tsk, queue_flags);
7066 	if (running) {
7067 		set_next_task(rq, tsk);
7068 		/*
7069 		 * After changing group, the running task may have joined a
7070 		 * throttled one but it's still the running task. Trigger a
7071 		 * resched to make sure that task can still run.
7072 		 */
7073 		resched_curr(rq);
7074 	}
7075 
7076 	task_rq_unlock(rq, tsk, &rf);
7077 }
7078 
7079 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7080 {
7081 	return css ? container_of(css, struct task_group, css) : NULL;
7082 }
7083 
7084 static struct cgroup_subsys_state *
7085 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7086 {
7087 	struct task_group *parent = css_tg(parent_css);
7088 	struct task_group *tg;
7089 
7090 	if (!parent) {
7091 		/* This is early initialization for the top cgroup */
7092 		return &root_task_group.css;
7093 	}
7094 
7095 	tg = sched_create_group(parent);
7096 	if (IS_ERR(tg))
7097 		return ERR_PTR(-ENOMEM);
7098 
7099 	return &tg->css;
7100 }
7101 
7102 /* Expose task group only after completing cgroup initialization */
7103 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7104 {
7105 	struct task_group *tg = css_tg(css);
7106 	struct task_group *parent = css_tg(css->parent);
7107 
7108 	if (parent)
7109 		sched_online_group(tg, parent);
7110 
7111 #ifdef CONFIG_UCLAMP_TASK_GROUP
7112 	/* Propagate the effective uclamp value for the new group */
7113 	cpu_util_update_eff(css);
7114 #endif
7115 
7116 	return 0;
7117 }
7118 
7119 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7120 {
7121 	struct task_group *tg = css_tg(css);
7122 
7123 	sched_offline_group(tg);
7124 }
7125 
7126 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7127 {
7128 	struct task_group *tg = css_tg(css);
7129 
7130 	/*
7131 	 * Relies on the RCU grace period between css_released() and this.
7132 	 */
7133 	sched_free_group(tg);
7134 }
7135 
7136 /*
7137  * This is called before wake_up_new_task(), therefore we really only
7138  * have to set its group bits, all the other stuff does not apply.
7139  */
7140 static void cpu_cgroup_fork(struct task_struct *task)
7141 {
7142 	struct rq_flags rf;
7143 	struct rq *rq;
7144 
7145 	rq = task_rq_lock(task, &rf);
7146 
7147 	update_rq_clock(rq);
7148 	sched_change_group(task, TASK_SET_GROUP);
7149 
7150 	task_rq_unlock(rq, task, &rf);
7151 }
7152 
7153 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7154 {
7155 	struct task_struct *task;
7156 	struct cgroup_subsys_state *css;
7157 	int ret = 0;
7158 
7159 	cgroup_taskset_for_each(task, css, tset) {
7160 #ifdef CONFIG_RT_GROUP_SCHED
7161 		if (!sched_rt_can_attach(css_tg(css), task))
7162 			return -EINVAL;
7163 #endif
7164 		/*
7165 		 * Serialize against wake_up_new_task() such that if its
7166 		 * running, we're sure to observe its full state.
7167 		 */
7168 		raw_spin_lock_irq(&task->pi_lock);
7169 		/*
7170 		 * Avoid calling sched_move_task() before wake_up_new_task()
7171 		 * has happened. This would lead to problems with PELT, due to
7172 		 * move wanting to detach+attach while we're not attached yet.
7173 		 */
7174 		if (task->state == TASK_NEW)
7175 			ret = -EINVAL;
7176 		raw_spin_unlock_irq(&task->pi_lock);
7177 
7178 		if (ret)
7179 			break;
7180 	}
7181 	return ret;
7182 }
7183 
7184 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7185 {
7186 	struct task_struct *task;
7187 	struct cgroup_subsys_state *css;
7188 
7189 	cgroup_taskset_for_each(task, css, tset)
7190 		sched_move_task(task);
7191 }
7192 
7193 #ifdef CONFIG_UCLAMP_TASK_GROUP
7194 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7195 {
7196 	struct cgroup_subsys_state *top_css = css;
7197 	struct uclamp_se *uc_parent = NULL;
7198 	struct uclamp_se *uc_se = NULL;
7199 	unsigned int eff[UCLAMP_CNT];
7200 	enum uclamp_id clamp_id;
7201 	unsigned int clamps;
7202 
7203 	css_for_each_descendant_pre(css, top_css) {
7204 		uc_parent = css_tg(css)->parent
7205 			? css_tg(css)->parent->uclamp : NULL;
7206 
7207 		for_each_clamp_id(clamp_id) {
7208 			/* Assume effective clamps matches requested clamps */
7209 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7210 			/* Cap effective clamps with parent's effective clamps */
7211 			if (uc_parent &&
7212 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7213 				eff[clamp_id] = uc_parent[clamp_id].value;
7214 			}
7215 		}
7216 		/* Ensure protection is always capped by limit */
7217 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7218 
7219 		/* Propagate most restrictive effective clamps */
7220 		clamps = 0x0;
7221 		uc_se = css_tg(css)->uclamp;
7222 		for_each_clamp_id(clamp_id) {
7223 			if (eff[clamp_id] == uc_se[clamp_id].value)
7224 				continue;
7225 			uc_se[clamp_id].value = eff[clamp_id];
7226 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7227 			clamps |= (0x1 << clamp_id);
7228 		}
7229 		if (!clamps) {
7230 			css = css_rightmost_descendant(css);
7231 			continue;
7232 		}
7233 
7234 		/* Immediately update descendants RUNNABLE tasks */
7235 		uclamp_update_active_tasks(css, clamps);
7236 	}
7237 }
7238 
7239 /*
7240  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7241  * C expression. Since there is no way to convert a macro argument (N) into a
7242  * character constant, use two levels of macros.
7243  */
7244 #define _POW10(exp) ((unsigned int)1e##exp)
7245 #define POW10(exp) _POW10(exp)
7246 
7247 struct uclamp_request {
7248 #define UCLAMP_PERCENT_SHIFT	2
7249 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7250 	s64 percent;
7251 	u64 util;
7252 	int ret;
7253 };
7254 
7255 static inline struct uclamp_request
7256 capacity_from_percent(char *buf)
7257 {
7258 	struct uclamp_request req = {
7259 		.percent = UCLAMP_PERCENT_SCALE,
7260 		.util = SCHED_CAPACITY_SCALE,
7261 		.ret = 0,
7262 	};
7263 
7264 	buf = strim(buf);
7265 	if (strcmp(buf, "max")) {
7266 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7267 					     &req.percent);
7268 		if (req.ret)
7269 			return req;
7270 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7271 			req.ret = -ERANGE;
7272 			return req;
7273 		}
7274 
7275 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7276 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7277 	}
7278 
7279 	return req;
7280 }
7281 
7282 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7283 				size_t nbytes, loff_t off,
7284 				enum uclamp_id clamp_id)
7285 {
7286 	struct uclamp_request req;
7287 	struct task_group *tg;
7288 
7289 	req = capacity_from_percent(buf);
7290 	if (req.ret)
7291 		return req.ret;
7292 
7293 	mutex_lock(&uclamp_mutex);
7294 	rcu_read_lock();
7295 
7296 	tg = css_tg(of_css(of));
7297 	if (tg->uclamp_req[clamp_id].value != req.util)
7298 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7299 
7300 	/*
7301 	 * Because of not recoverable conversion rounding we keep track of the
7302 	 * exact requested value
7303 	 */
7304 	tg->uclamp_pct[clamp_id] = req.percent;
7305 
7306 	/* Update effective clamps to track the most restrictive value */
7307 	cpu_util_update_eff(of_css(of));
7308 
7309 	rcu_read_unlock();
7310 	mutex_unlock(&uclamp_mutex);
7311 
7312 	return nbytes;
7313 }
7314 
7315 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7316 				    char *buf, size_t nbytes,
7317 				    loff_t off)
7318 {
7319 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7320 }
7321 
7322 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7323 				    char *buf, size_t nbytes,
7324 				    loff_t off)
7325 {
7326 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7327 }
7328 
7329 static inline void cpu_uclamp_print(struct seq_file *sf,
7330 				    enum uclamp_id clamp_id)
7331 {
7332 	struct task_group *tg;
7333 	u64 util_clamp;
7334 	u64 percent;
7335 	u32 rem;
7336 
7337 	rcu_read_lock();
7338 	tg = css_tg(seq_css(sf));
7339 	util_clamp = tg->uclamp_req[clamp_id].value;
7340 	rcu_read_unlock();
7341 
7342 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7343 		seq_puts(sf, "max\n");
7344 		return;
7345 	}
7346 
7347 	percent = tg->uclamp_pct[clamp_id];
7348 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7349 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7350 }
7351 
7352 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7353 {
7354 	cpu_uclamp_print(sf, UCLAMP_MIN);
7355 	return 0;
7356 }
7357 
7358 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7359 {
7360 	cpu_uclamp_print(sf, UCLAMP_MAX);
7361 	return 0;
7362 }
7363 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7364 
7365 #ifdef CONFIG_FAIR_GROUP_SCHED
7366 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7367 				struct cftype *cftype, u64 shareval)
7368 {
7369 	if (shareval > scale_load_down(ULONG_MAX))
7370 		shareval = MAX_SHARES;
7371 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7372 }
7373 
7374 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7375 			       struct cftype *cft)
7376 {
7377 	struct task_group *tg = css_tg(css);
7378 
7379 	return (u64) scale_load_down(tg->shares);
7380 }
7381 
7382 #ifdef CONFIG_CFS_BANDWIDTH
7383 static DEFINE_MUTEX(cfs_constraints_mutex);
7384 
7385 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7386 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7387 
7388 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7389 
7390 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7391 {
7392 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7393 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7394 
7395 	if (tg == &root_task_group)
7396 		return -EINVAL;
7397 
7398 	/*
7399 	 * Ensure we have at some amount of bandwidth every period.  This is
7400 	 * to prevent reaching a state of large arrears when throttled via
7401 	 * entity_tick() resulting in prolonged exit starvation.
7402 	 */
7403 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7404 		return -EINVAL;
7405 
7406 	/*
7407 	 * Likewise, bound things on the otherside by preventing insane quota
7408 	 * periods.  This also allows us to normalize in computing quota
7409 	 * feasibility.
7410 	 */
7411 	if (period > max_cfs_quota_period)
7412 		return -EINVAL;
7413 
7414 	/*
7415 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7416 	 * unthrottle_offline_cfs_rqs().
7417 	 */
7418 	get_online_cpus();
7419 	mutex_lock(&cfs_constraints_mutex);
7420 	ret = __cfs_schedulable(tg, period, quota);
7421 	if (ret)
7422 		goto out_unlock;
7423 
7424 	runtime_enabled = quota != RUNTIME_INF;
7425 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7426 	/*
7427 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7428 	 * before making related changes, and on->off must occur afterwards
7429 	 */
7430 	if (runtime_enabled && !runtime_was_enabled)
7431 		cfs_bandwidth_usage_inc();
7432 	raw_spin_lock_irq(&cfs_b->lock);
7433 	cfs_b->period = ns_to_ktime(period);
7434 	cfs_b->quota = quota;
7435 
7436 	__refill_cfs_bandwidth_runtime(cfs_b);
7437 
7438 	/* Restart the period timer (if active) to handle new period expiry: */
7439 	if (runtime_enabled)
7440 		start_cfs_bandwidth(cfs_b);
7441 
7442 	raw_spin_unlock_irq(&cfs_b->lock);
7443 
7444 	for_each_online_cpu(i) {
7445 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7446 		struct rq *rq = cfs_rq->rq;
7447 		struct rq_flags rf;
7448 
7449 		rq_lock_irq(rq, &rf);
7450 		cfs_rq->runtime_enabled = runtime_enabled;
7451 		cfs_rq->runtime_remaining = 0;
7452 
7453 		if (cfs_rq->throttled)
7454 			unthrottle_cfs_rq(cfs_rq);
7455 		rq_unlock_irq(rq, &rf);
7456 	}
7457 	if (runtime_was_enabled && !runtime_enabled)
7458 		cfs_bandwidth_usage_dec();
7459 out_unlock:
7460 	mutex_unlock(&cfs_constraints_mutex);
7461 	put_online_cpus();
7462 
7463 	return ret;
7464 }
7465 
7466 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7467 {
7468 	u64 quota, period;
7469 
7470 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7471 	if (cfs_quota_us < 0)
7472 		quota = RUNTIME_INF;
7473 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7474 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7475 	else
7476 		return -EINVAL;
7477 
7478 	return tg_set_cfs_bandwidth(tg, period, quota);
7479 }
7480 
7481 static long tg_get_cfs_quota(struct task_group *tg)
7482 {
7483 	u64 quota_us;
7484 
7485 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7486 		return -1;
7487 
7488 	quota_us = tg->cfs_bandwidth.quota;
7489 	do_div(quota_us, NSEC_PER_USEC);
7490 
7491 	return quota_us;
7492 }
7493 
7494 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7495 {
7496 	u64 quota, period;
7497 
7498 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7499 		return -EINVAL;
7500 
7501 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7502 	quota = tg->cfs_bandwidth.quota;
7503 
7504 	return tg_set_cfs_bandwidth(tg, period, quota);
7505 }
7506 
7507 static long tg_get_cfs_period(struct task_group *tg)
7508 {
7509 	u64 cfs_period_us;
7510 
7511 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7512 	do_div(cfs_period_us, NSEC_PER_USEC);
7513 
7514 	return cfs_period_us;
7515 }
7516 
7517 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7518 				  struct cftype *cft)
7519 {
7520 	return tg_get_cfs_quota(css_tg(css));
7521 }
7522 
7523 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7524 				   struct cftype *cftype, s64 cfs_quota_us)
7525 {
7526 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7527 }
7528 
7529 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7530 				   struct cftype *cft)
7531 {
7532 	return tg_get_cfs_period(css_tg(css));
7533 }
7534 
7535 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7536 				    struct cftype *cftype, u64 cfs_period_us)
7537 {
7538 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7539 }
7540 
7541 struct cfs_schedulable_data {
7542 	struct task_group *tg;
7543 	u64 period, quota;
7544 };
7545 
7546 /*
7547  * normalize group quota/period to be quota/max_period
7548  * note: units are usecs
7549  */
7550 static u64 normalize_cfs_quota(struct task_group *tg,
7551 			       struct cfs_schedulable_data *d)
7552 {
7553 	u64 quota, period;
7554 
7555 	if (tg == d->tg) {
7556 		period = d->period;
7557 		quota = d->quota;
7558 	} else {
7559 		period = tg_get_cfs_period(tg);
7560 		quota = tg_get_cfs_quota(tg);
7561 	}
7562 
7563 	/* note: these should typically be equivalent */
7564 	if (quota == RUNTIME_INF || quota == -1)
7565 		return RUNTIME_INF;
7566 
7567 	return to_ratio(period, quota);
7568 }
7569 
7570 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7571 {
7572 	struct cfs_schedulable_data *d = data;
7573 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7574 	s64 quota = 0, parent_quota = -1;
7575 
7576 	if (!tg->parent) {
7577 		quota = RUNTIME_INF;
7578 	} else {
7579 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7580 
7581 		quota = normalize_cfs_quota(tg, d);
7582 		parent_quota = parent_b->hierarchical_quota;
7583 
7584 		/*
7585 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7586 		 * always take the min.  On cgroup1, only inherit when no
7587 		 * limit is set:
7588 		 */
7589 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7590 			quota = min(quota, parent_quota);
7591 		} else {
7592 			if (quota == RUNTIME_INF)
7593 				quota = parent_quota;
7594 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7595 				return -EINVAL;
7596 		}
7597 	}
7598 	cfs_b->hierarchical_quota = quota;
7599 
7600 	return 0;
7601 }
7602 
7603 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7604 {
7605 	int ret;
7606 	struct cfs_schedulable_data data = {
7607 		.tg = tg,
7608 		.period = period,
7609 		.quota = quota,
7610 	};
7611 
7612 	if (quota != RUNTIME_INF) {
7613 		do_div(data.period, NSEC_PER_USEC);
7614 		do_div(data.quota, NSEC_PER_USEC);
7615 	}
7616 
7617 	rcu_read_lock();
7618 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7619 	rcu_read_unlock();
7620 
7621 	return ret;
7622 }
7623 
7624 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7625 {
7626 	struct task_group *tg = css_tg(seq_css(sf));
7627 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7628 
7629 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7630 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7631 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7632 
7633 	if (schedstat_enabled() && tg != &root_task_group) {
7634 		u64 ws = 0;
7635 		int i;
7636 
7637 		for_each_possible_cpu(i)
7638 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7639 
7640 		seq_printf(sf, "wait_sum %llu\n", ws);
7641 	}
7642 
7643 	return 0;
7644 }
7645 #endif /* CONFIG_CFS_BANDWIDTH */
7646 #endif /* CONFIG_FAIR_GROUP_SCHED */
7647 
7648 #ifdef CONFIG_RT_GROUP_SCHED
7649 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7650 				struct cftype *cft, s64 val)
7651 {
7652 	return sched_group_set_rt_runtime(css_tg(css), val);
7653 }
7654 
7655 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7656 			       struct cftype *cft)
7657 {
7658 	return sched_group_rt_runtime(css_tg(css));
7659 }
7660 
7661 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7662 				    struct cftype *cftype, u64 rt_period_us)
7663 {
7664 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7665 }
7666 
7667 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7668 				   struct cftype *cft)
7669 {
7670 	return sched_group_rt_period(css_tg(css));
7671 }
7672 #endif /* CONFIG_RT_GROUP_SCHED */
7673 
7674 static struct cftype cpu_legacy_files[] = {
7675 #ifdef CONFIG_FAIR_GROUP_SCHED
7676 	{
7677 		.name = "shares",
7678 		.read_u64 = cpu_shares_read_u64,
7679 		.write_u64 = cpu_shares_write_u64,
7680 	},
7681 #endif
7682 #ifdef CONFIG_CFS_BANDWIDTH
7683 	{
7684 		.name = "cfs_quota_us",
7685 		.read_s64 = cpu_cfs_quota_read_s64,
7686 		.write_s64 = cpu_cfs_quota_write_s64,
7687 	},
7688 	{
7689 		.name = "cfs_period_us",
7690 		.read_u64 = cpu_cfs_period_read_u64,
7691 		.write_u64 = cpu_cfs_period_write_u64,
7692 	},
7693 	{
7694 		.name = "stat",
7695 		.seq_show = cpu_cfs_stat_show,
7696 	},
7697 #endif
7698 #ifdef CONFIG_RT_GROUP_SCHED
7699 	{
7700 		.name = "rt_runtime_us",
7701 		.read_s64 = cpu_rt_runtime_read,
7702 		.write_s64 = cpu_rt_runtime_write,
7703 	},
7704 	{
7705 		.name = "rt_period_us",
7706 		.read_u64 = cpu_rt_period_read_uint,
7707 		.write_u64 = cpu_rt_period_write_uint,
7708 	},
7709 #endif
7710 #ifdef CONFIG_UCLAMP_TASK_GROUP
7711 	{
7712 		.name = "uclamp.min",
7713 		.flags = CFTYPE_NOT_ON_ROOT,
7714 		.seq_show = cpu_uclamp_min_show,
7715 		.write = cpu_uclamp_min_write,
7716 	},
7717 	{
7718 		.name = "uclamp.max",
7719 		.flags = CFTYPE_NOT_ON_ROOT,
7720 		.seq_show = cpu_uclamp_max_show,
7721 		.write = cpu_uclamp_max_write,
7722 	},
7723 #endif
7724 	{ }	/* Terminate */
7725 };
7726 
7727 static int cpu_extra_stat_show(struct seq_file *sf,
7728 			       struct cgroup_subsys_state *css)
7729 {
7730 #ifdef CONFIG_CFS_BANDWIDTH
7731 	{
7732 		struct task_group *tg = css_tg(css);
7733 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7734 		u64 throttled_usec;
7735 
7736 		throttled_usec = cfs_b->throttled_time;
7737 		do_div(throttled_usec, NSEC_PER_USEC);
7738 
7739 		seq_printf(sf, "nr_periods %d\n"
7740 			   "nr_throttled %d\n"
7741 			   "throttled_usec %llu\n",
7742 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7743 			   throttled_usec);
7744 	}
7745 #endif
7746 	return 0;
7747 }
7748 
7749 #ifdef CONFIG_FAIR_GROUP_SCHED
7750 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7751 			       struct cftype *cft)
7752 {
7753 	struct task_group *tg = css_tg(css);
7754 	u64 weight = scale_load_down(tg->shares);
7755 
7756 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7757 }
7758 
7759 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7760 				struct cftype *cft, u64 weight)
7761 {
7762 	/*
7763 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7764 	 * values which are 1, 100 and 10000 respectively.  While it loses
7765 	 * a bit of range on both ends, it maps pretty well onto the shares
7766 	 * value used by scheduler and the round-trip conversions preserve
7767 	 * the original value over the entire range.
7768 	 */
7769 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7770 		return -ERANGE;
7771 
7772 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7773 
7774 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7775 }
7776 
7777 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7778 				    struct cftype *cft)
7779 {
7780 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7781 	int last_delta = INT_MAX;
7782 	int prio, delta;
7783 
7784 	/* find the closest nice value to the current weight */
7785 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7786 		delta = abs(sched_prio_to_weight[prio] - weight);
7787 		if (delta >= last_delta)
7788 			break;
7789 		last_delta = delta;
7790 	}
7791 
7792 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7793 }
7794 
7795 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7796 				     struct cftype *cft, s64 nice)
7797 {
7798 	unsigned long weight;
7799 	int idx;
7800 
7801 	if (nice < MIN_NICE || nice > MAX_NICE)
7802 		return -ERANGE;
7803 
7804 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7805 	idx = array_index_nospec(idx, 40);
7806 	weight = sched_prio_to_weight[idx];
7807 
7808 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7809 }
7810 #endif
7811 
7812 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7813 						  long period, long quota)
7814 {
7815 	if (quota < 0)
7816 		seq_puts(sf, "max");
7817 	else
7818 		seq_printf(sf, "%ld", quota);
7819 
7820 	seq_printf(sf, " %ld\n", period);
7821 }
7822 
7823 /* caller should put the current value in *@periodp before calling */
7824 static int __maybe_unused cpu_period_quota_parse(char *buf,
7825 						 u64 *periodp, u64 *quotap)
7826 {
7827 	char tok[21];	/* U64_MAX */
7828 
7829 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7830 		return -EINVAL;
7831 
7832 	*periodp *= NSEC_PER_USEC;
7833 
7834 	if (sscanf(tok, "%llu", quotap))
7835 		*quotap *= NSEC_PER_USEC;
7836 	else if (!strcmp(tok, "max"))
7837 		*quotap = RUNTIME_INF;
7838 	else
7839 		return -EINVAL;
7840 
7841 	return 0;
7842 }
7843 
7844 #ifdef CONFIG_CFS_BANDWIDTH
7845 static int cpu_max_show(struct seq_file *sf, void *v)
7846 {
7847 	struct task_group *tg = css_tg(seq_css(sf));
7848 
7849 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7850 	return 0;
7851 }
7852 
7853 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7854 			     char *buf, size_t nbytes, loff_t off)
7855 {
7856 	struct task_group *tg = css_tg(of_css(of));
7857 	u64 period = tg_get_cfs_period(tg);
7858 	u64 quota;
7859 	int ret;
7860 
7861 	ret = cpu_period_quota_parse(buf, &period, &quota);
7862 	if (!ret)
7863 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7864 	return ret ?: nbytes;
7865 }
7866 #endif
7867 
7868 static struct cftype cpu_files[] = {
7869 #ifdef CONFIG_FAIR_GROUP_SCHED
7870 	{
7871 		.name = "weight",
7872 		.flags = CFTYPE_NOT_ON_ROOT,
7873 		.read_u64 = cpu_weight_read_u64,
7874 		.write_u64 = cpu_weight_write_u64,
7875 	},
7876 	{
7877 		.name = "weight.nice",
7878 		.flags = CFTYPE_NOT_ON_ROOT,
7879 		.read_s64 = cpu_weight_nice_read_s64,
7880 		.write_s64 = cpu_weight_nice_write_s64,
7881 	},
7882 #endif
7883 #ifdef CONFIG_CFS_BANDWIDTH
7884 	{
7885 		.name = "max",
7886 		.flags = CFTYPE_NOT_ON_ROOT,
7887 		.seq_show = cpu_max_show,
7888 		.write = cpu_max_write,
7889 	},
7890 #endif
7891 #ifdef CONFIG_UCLAMP_TASK_GROUP
7892 	{
7893 		.name = "uclamp.min",
7894 		.flags = CFTYPE_NOT_ON_ROOT,
7895 		.seq_show = cpu_uclamp_min_show,
7896 		.write = cpu_uclamp_min_write,
7897 	},
7898 	{
7899 		.name = "uclamp.max",
7900 		.flags = CFTYPE_NOT_ON_ROOT,
7901 		.seq_show = cpu_uclamp_max_show,
7902 		.write = cpu_uclamp_max_write,
7903 	},
7904 #endif
7905 	{ }	/* terminate */
7906 };
7907 
7908 struct cgroup_subsys cpu_cgrp_subsys = {
7909 	.css_alloc	= cpu_cgroup_css_alloc,
7910 	.css_online	= cpu_cgroup_css_online,
7911 	.css_released	= cpu_cgroup_css_released,
7912 	.css_free	= cpu_cgroup_css_free,
7913 	.css_extra_stat_show = cpu_extra_stat_show,
7914 	.fork		= cpu_cgroup_fork,
7915 	.can_attach	= cpu_cgroup_can_attach,
7916 	.attach		= cpu_cgroup_attach,
7917 	.legacy_cftypes	= cpu_legacy_files,
7918 	.dfl_cftypes	= cpu_files,
7919 	.early_init	= true,
7920 	.threaded	= true,
7921 };
7922 
7923 #endif	/* CONFIG_CGROUP_SCHED */
7924 
7925 void dump_cpu_task(int cpu)
7926 {
7927 	pr_info("Task dump for CPU %d:\n", cpu);
7928 	sched_show_task(cpu_curr(cpu));
7929 }
7930 
7931 /*
7932  * Nice levels are multiplicative, with a gentle 10% change for every
7933  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7934  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7935  * that remained on nice 0.
7936  *
7937  * The "10% effect" is relative and cumulative: from _any_ nice level,
7938  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7939  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7940  * If a task goes up by ~10% and another task goes down by ~10% then
7941  * the relative distance between them is ~25%.)
7942  */
7943 const int sched_prio_to_weight[40] = {
7944  /* -20 */     88761,     71755,     56483,     46273,     36291,
7945  /* -15 */     29154,     23254,     18705,     14949,     11916,
7946  /* -10 */      9548,      7620,      6100,      4904,      3906,
7947  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7948  /*   0 */      1024,       820,       655,       526,       423,
7949  /*   5 */       335,       272,       215,       172,       137,
7950  /*  10 */       110,        87,        70,        56,        45,
7951  /*  15 */        36,        29,        23,        18,        15,
7952 };
7953 
7954 /*
7955  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7956  *
7957  * In cases where the weight does not change often, we can use the
7958  * precalculated inverse to speed up arithmetics by turning divisions
7959  * into multiplications:
7960  */
7961 const u32 sched_prio_to_wmult[40] = {
7962  /* -20 */     48388,     59856,     76040,     92818,    118348,
7963  /* -15 */    147320,    184698,    229616,    287308,    360437,
7964  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7965  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7966  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7967  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7968  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7969  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7970 };
7971 
7972 #undef CREATE_TRACE_POINTS
7973