1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 #include "stats.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 #ifdef CONFIG_SCHED_DEBUG 123 /* 124 * Debugging: various feature bits 125 * 126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 127 * sysctl_sched_features, defined in sched.h, to allow constants propagation 128 * at compile time and compiler optimization based on features default. 129 */ 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 #undef SCHED_FEAT 136 137 /* 138 * Print a warning if need_resched is set for the given duration (if 139 * LATENCY_WARN is enabled). 140 * 141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 142 * per boot. 143 */ 144 __read_mostly int sysctl_resched_latency_warn_ms = 100; 145 __read_mostly int sysctl_resched_latency_warn_once = 1; 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 /* 149 * Number of tasks to iterate in a single balance run. 150 * Limited because this is done with IRQs disabled. 151 */ 152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 153 154 __read_mostly int scheduler_running; 155 156 #ifdef CONFIG_SCHED_CORE 157 158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 159 160 /* kernel prio, less is more */ 161 static inline int __task_prio(const struct task_struct *p) 162 { 163 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 164 return -2; 165 166 if (p->dl_server) 167 return -1; /* deadline */ 168 169 if (rt_or_dl_prio(p->prio)) 170 return p->prio; /* [-1, 99] */ 171 172 if (p->sched_class == &idle_sched_class) 173 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 174 175 if (task_on_scx(p)) 176 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 177 178 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 179 } 180 181 /* 182 * l(a,b) 183 * le(a,b) := !l(b,a) 184 * g(a,b) := l(b,a) 185 * ge(a,b) := !l(a,b) 186 */ 187 188 /* real prio, less is less */ 189 static inline bool prio_less(const struct task_struct *a, 190 const struct task_struct *b, bool in_fi) 191 { 192 193 int pa = __task_prio(a), pb = __task_prio(b); 194 195 if (-pa < -pb) 196 return true; 197 198 if (-pb < -pa) 199 return false; 200 201 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 202 const struct sched_dl_entity *a_dl, *b_dl; 203 204 a_dl = &a->dl; 205 /* 206 * Since,'a' and 'b' can be CFS tasks served by DL server, 207 * __task_prio() can return -1 (for DL) even for those. In that 208 * case, get to the dl_server's DL entity. 209 */ 210 if (a->dl_server) 211 a_dl = a->dl_server; 212 213 b_dl = &b->dl; 214 if (b->dl_server) 215 b_dl = b->dl_server; 216 217 return !dl_time_before(a_dl->deadline, b_dl->deadline); 218 } 219 220 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 221 return cfs_prio_less(a, b, in_fi); 222 223 #ifdef CONFIG_SCHED_CLASS_EXT 224 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 225 return scx_prio_less(a, b, in_fi); 226 #endif 227 228 return false; 229 } 230 231 static inline bool __sched_core_less(const struct task_struct *a, 232 const struct task_struct *b) 233 { 234 if (a->core_cookie < b->core_cookie) 235 return true; 236 237 if (a->core_cookie > b->core_cookie) 238 return false; 239 240 /* flip prio, so high prio is leftmost */ 241 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 242 return true; 243 244 return false; 245 } 246 247 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 248 249 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 250 { 251 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 252 } 253 254 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 255 { 256 const struct task_struct *p = __node_2_sc(node); 257 unsigned long cookie = (unsigned long)key; 258 259 if (cookie < p->core_cookie) 260 return -1; 261 262 if (cookie > p->core_cookie) 263 return 1; 264 265 return 0; 266 } 267 268 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 269 { 270 if (p->se.sched_delayed) 271 return; 272 273 rq->core->core_task_seq++; 274 275 if (!p->core_cookie) 276 return; 277 278 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 279 } 280 281 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 282 { 283 if (p->se.sched_delayed) 284 return; 285 286 rq->core->core_task_seq++; 287 288 if (sched_core_enqueued(p)) { 289 rb_erase(&p->core_node, &rq->core_tree); 290 RB_CLEAR_NODE(&p->core_node); 291 } 292 293 /* 294 * Migrating the last task off the cpu, with the cpu in forced idle 295 * state. Reschedule to create an accounting edge for forced idle, 296 * and re-examine whether the core is still in forced idle state. 297 */ 298 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 299 rq->core->core_forceidle_count && rq->curr == rq->idle) 300 resched_curr(rq); 301 } 302 303 static int sched_task_is_throttled(struct task_struct *p, int cpu) 304 { 305 if (p->sched_class->task_is_throttled) 306 return p->sched_class->task_is_throttled(p, cpu); 307 308 return 0; 309 } 310 311 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 312 { 313 struct rb_node *node = &p->core_node; 314 int cpu = task_cpu(p); 315 316 do { 317 node = rb_next(node); 318 if (!node) 319 return NULL; 320 321 p = __node_2_sc(node); 322 if (p->core_cookie != cookie) 323 return NULL; 324 325 } while (sched_task_is_throttled(p, cpu)); 326 327 return p; 328 } 329 330 /* 331 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 332 * If no suitable task is found, NULL will be returned. 333 */ 334 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 335 { 336 struct task_struct *p; 337 struct rb_node *node; 338 339 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 340 if (!node) 341 return NULL; 342 343 p = __node_2_sc(node); 344 if (!sched_task_is_throttled(p, rq->cpu)) 345 return p; 346 347 return sched_core_next(p, cookie); 348 } 349 350 /* 351 * Magic required such that: 352 * 353 * raw_spin_rq_lock(rq); 354 * ... 355 * raw_spin_rq_unlock(rq); 356 * 357 * ends up locking and unlocking the _same_ lock, and all CPUs 358 * always agree on what rq has what lock. 359 * 360 * XXX entirely possible to selectively enable cores, don't bother for now. 361 */ 362 363 static DEFINE_MUTEX(sched_core_mutex); 364 static atomic_t sched_core_count; 365 static struct cpumask sched_core_mask; 366 367 static void sched_core_lock(int cpu, unsigned long *flags) 368 { 369 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 370 int t, i = 0; 371 372 local_irq_save(*flags); 373 for_each_cpu(t, smt_mask) 374 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 375 } 376 377 static void sched_core_unlock(int cpu, unsigned long *flags) 378 { 379 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 380 int t; 381 382 for_each_cpu(t, smt_mask) 383 raw_spin_unlock(&cpu_rq(t)->__lock); 384 local_irq_restore(*flags); 385 } 386 387 static void __sched_core_flip(bool enabled) 388 { 389 unsigned long flags; 390 int cpu, t; 391 392 cpus_read_lock(); 393 394 /* 395 * Toggle the online cores, one by one. 396 */ 397 cpumask_copy(&sched_core_mask, cpu_online_mask); 398 for_each_cpu(cpu, &sched_core_mask) { 399 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 400 401 sched_core_lock(cpu, &flags); 402 403 for_each_cpu(t, smt_mask) 404 cpu_rq(t)->core_enabled = enabled; 405 406 cpu_rq(cpu)->core->core_forceidle_start = 0; 407 408 sched_core_unlock(cpu, &flags); 409 410 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 411 } 412 413 /* 414 * Toggle the offline CPUs. 415 */ 416 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 417 cpu_rq(cpu)->core_enabled = enabled; 418 419 cpus_read_unlock(); 420 } 421 422 static void sched_core_assert_empty(void) 423 { 424 int cpu; 425 426 for_each_possible_cpu(cpu) 427 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 428 } 429 430 static void __sched_core_enable(void) 431 { 432 static_branch_enable(&__sched_core_enabled); 433 /* 434 * Ensure all previous instances of raw_spin_rq_*lock() have finished 435 * and future ones will observe !sched_core_disabled(). 436 */ 437 synchronize_rcu(); 438 __sched_core_flip(true); 439 sched_core_assert_empty(); 440 } 441 442 static void __sched_core_disable(void) 443 { 444 sched_core_assert_empty(); 445 __sched_core_flip(false); 446 static_branch_disable(&__sched_core_enabled); 447 } 448 449 void sched_core_get(void) 450 { 451 if (atomic_inc_not_zero(&sched_core_count)) 452 return; 453 454 mutex_lock(&sched_core_mutex); 455 if (!atomic_read(&sched_core_count)) 456 __sched_core_enable(); 457 458 smp_mb__before_atomic(); 459 atomic_inc(&sched_core_count); 460 mutex_unlock(&sched_core_mutex); 461 } 462 463 static void __sched_core_put(struct work_struct *work) 464 { 465 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 466 __sched_core_disable(); 467 mutex_unlock(&sched_core_mutex); 468 } 469 } 470 471 void sched_core_put(void) 472 { 473 static DECLARE_WORK(_work, __sched_core_put); 474 475 /* 476 * "There can be only one" 477 * 478 * Either this is the last one, or we don't actually need to do any 479 * 'work'. If it is the last *again*, we rely on 480 * WORK_STRUCT_PENDING_BIT. 481 */ 482 if (!atomic_add_unless(&sched_core_count, -1, 1)) 483 schedule_work(&_work); 484 } 485 486 #else /* !CONFIG_SCHED_CORE */ 487 488 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 489 static inline void 490 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 491 492 #endif /* CONFIG_SCHED_CORE */ 493 494 /* 495 * Serialization rules: 496 * 497 * Lock order: 498 * 499 * p->pi_lock 500 * rq->lock 501 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 502 * 503 * rq1->lock 504 * rq2->lock where: rq1 < rq2 505 * 506 * Regular state: 507 * 508 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 509 * local CPU's rq->lock, it optionally removes the task from the runqueue and 510 * always looks at the local rq data structures to find the most eligible task 511 * to run next. 512 * 513 * Task enqueue is also under rq->lock, possibly taken from another CPU. 514 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 515 * the local CPU to avoid bouncing the runqueue state around [ see 516 * ttwu_queue_wakelist() ] 517 * 518 * Task wakeup, specifically wakeups that involve migration, are horribly 519 * complicated to avoid having to take two rq->locks. 520 * 521 * Special state: 522 * 523 * System-calls and anything external will use task_rq_lock() which acquires 524 * both p->pi_lock and rq->lock. As a consequence the state they change is 525 * stable while holding either lock: 526 * 527 * - sched_setaffinity()/ 528 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 529 * - set_user_nice(): p->se.load, p->*prio 530 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 531 * p->se.load, p->rt_priority, 532 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 533 * - sched_setnuma(): p->numa_preferred_nid 534 * - sched_move_task(): p->sched_task_group 535 * - uclamp_update_active() p->uclamp* 536 * 537 * p->state <- TASK_*: 538 * 539 * is changed locklessly using set_current_state(), __set_current_state() or 540 * set_special_state(), see their respective comments, or by 541 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 542 * concurrent self. 543 * 544 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 545 * 546 * is set by activate_task() and cleared by deactivate_task(), under 547 * rq->lock. Non-zero indicates the task is runnable, the special 548 * ON_RQ_MIGRATING state is used for migration without holding both 549 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 550 * 551 * Additionally it is possible to be ->on_rq but still be considered not 552 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 553 * but will be dequeued as soon as they get picked again. See the 554 * task_is_runnable() helper. 555 * 556 * p->on_cpu <- { 0, 1 }: 557 * 558 * is set by prepare_task() and cleared by finish_task() such that it will be 559 * set before p is scheduled-in and cleared after p is scheduled-out, both 560 * under rq->lock. Non-zero indicates the task is running on its CPU. 561 * 562 * [ The astute reader will observe that it is possible for two tasks on one 563 * CPU to have ->on_cpu = 1 at the same time. ] 564 * 565 * task_cpu(p): is changed by set_task_cpu(), the rules are: 566 * 567 * - Don't call set_task_cpu() on a blocked task: 568 * 569 * We don't care what CPU we're not running on, this simplifies hotplug, 570 * the CPU assignment of blocked tasks isn't required to be valid. 571 * 572 * - for try_to_wake_up(), called under p->pi_lock: 573 * 574 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 575 * 576 * - for migration called under rq->lock: 577 * [ see task_on_rq_migrating() in task_rq_lock() ] 578 * 579 * o move_queued_task() 580 * o detach_task() 581 * 582 * - for migration called under double_rq_lock(): 583 * 584 * o __migrate_swap_task() 585 * o push_rt_task() / pull_rt_task() 586 * o push_dl_task() / pull_dl_task() 587 * o dl_task_offline_migration() 588 * 589 */ 590 591 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 592 { 593 raw_spinlock_t *lock; 594 595 /* Matches synchronize_rcu() in __sched_core_enable() */ 596 preempt_disable(); 597 if (sched_core_disabled()) { 598 raw_spin_lock_nested(&rq->__lock, subclass); 599 /* preempt_count *MUST* be > 1 */ 600 preempt_enable_no_resched(); 601 return; 602 } 603 604 for (;;) { 605 lock = __rq_lockp(rq); 606 raw_spin_lock_nested(lock, subclass); 607 if (likely(lock == __rq_lockp(rq))) { 608 /* preempt_count *MUST* be > 1 */ 609 preempt_enable_no_resched(); 610 return; 611 } 612 raw_spin_unlock(lock); 613 } 614 } 615 616 bool raw_spin_rq_trylock(struct rq *rq) 617 { 618 raw_spinlock_t *lock; 619 bool ret; 620 621 /* Matches synchronize_rcu() in __sched_core_enable() */ 622 preempt_disable(); 623 if (sched_core_disabled()) { 624 ret = raw_spin_trylock(&rq->__lock); 625 preempt_enable(); 626 return ret; 627 } 628 629 for (;;) { 630 lock = __rq_lockp(rq); 631 ret = raw_spin_trylock(lock); 632 if (!ret || (likely(lock == __rq_lockp(rq)))) { 633 preempt_enable(); 634 return ret; 635 } 636 raw_spin_unlock(lock); 637 } 638 } 639 640 void raw_spin_rq_unlock(struct rq *rq) 641 { 642 raw_spin_unlock(rq_lockp(rq)); 643 } 644 645 #ifdef CONFIG_SMP 646 /* 647 * double_rq_lock - safely lock two runqueues 648 */ 649 void double_rq_lock(struct rq *rq1, struct rq *rq2) 650 { 651 lockdep_assert_irqs_disabled(); 652 653 if (rq_order_less(rq2, rq1)) 654 swap(rq1, rq2); 655 656 raw_spin_rq_lock(rq1); 657 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 658 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 659 660 double_rq_clock_clear_update(rq1, rq2); 661 } 662 #endif 663 664 /* 665 * __task_rq_lock - lock the rq @p resides on. 666 */ 667 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 668 __acquires(rq->lock) 669 { 670 struct rq *rq; 671 672 lockdep_assert_held(&p->pi_lock); 673 674 for (;;) { 675 rq = task_rq(p); 676 raw_spin_rq_lock(rq); 677 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 678 rq_pin_lock(rq, rf); 679 return rq; 680 } 681 raw_spin_rq_unlock(rq); 682 683 while (unlikely(task_on_rq_migrating(p))) 684 cpu_relax(); 685 } 686 } 687 688 /* 689 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 690 */ 691 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 692 __acquires(p->pi_lock) 693 __acquires(rq->lock) 694 { 695 struct rq *rq; 696 697 for (;;) { 698 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 699 rq = task_rq(p); 700 raw_spin_rq_lock(rq); 701 /* 702 * move_queued_task() task_rq_lock() 703 * 704 * ACQUIRE (rq->lock) 705 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 706 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 707 * [S] ->cpu = new_cpu [L] task_rq() 708 * [L] ->on_rq 709 * RELEASE (rq->lock) 710 * 711 * If we observe the old CPU in task_rq_lock(), the acquire of 712 * the old rq->lock will fully serialize against the stores. 713 * 714 * If we observe the new CPU in task_rq_lock(), the address 715 * dependency headed by '[L] rq = task_rq()' and the acquire 716 * will pair with the WMB to ensure we then also see migrating. 717 */ 718 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 719 rq_pin_lock(rq, rf); 720 return rq; 721 } 722 raw_spin_rq_unlock(rq); 723 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 724 725 while (unlikely(task_on_rq_migrating(p))) 726 cpu_relax(); 727 } 728 } 729 730 /* 731 * RQ-clock updating methods: 732 */ 733 734 static void update_rq_clock_task(struct rq *rq, s64 delta) 735 { 736 /* 737 * In theory, the compile should just see 0 here, and optimize out the call 738 * to sched_rt_avg_update. But I don't trust it... 739 */ 740 s64 __maybe_unused steal = 0, irq_delta = 0; 741 742 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 743 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 744 745 /* 746 * Since irq_time is only updated on {soft,}irq_exit, we might run into 747 * this case when a previous update_rq_clock() happened inside a 748 * {soft,}IRQ region. 749 * 750 * When this happens, we stop ->clock_task and only update the 751 * prev_irq_time stamp to account for the part that fit, so that a next 752 * update will consume the rest. This ensures ->clock_task is 753 * monotonic. 754 * 755 * It does however cause some slight miss-attribution of {soft,}IRQ 756 * time, a more accurate solution would be to update the irq_time using 757 * the current rq->clock timestamp, except that would require using 758 * atomic ops. 759 */ 760 if (irq_delta > delta) 761 irq_delta = delta; 762 763 rq->prev_irq_time += irq_delta; 764 delta -= irq_delta; 765 delayacct_irq(rq->curr, irq_delta); 766 #endif 767 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 768 if (static_key_false((¶virt_steal_rq_enabled))) { 769 steal = paravirt_steal_clock(cpu_of(rq)); 770 steal -= rq->prev_steal_time_rq; 771 772 if (unlikely(steal > delta)) 773 steal = delta; 774 775 rq->prev_steal_time_rq += steal; 776 delta -= steal; 777 } 778 #endif 779 780 rq->clock_task += delta; 781 782 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 783 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 784 update_irq_load_avg(rq, irq_delta + steal); 785 #endif 786 update_rq_clock_pelt(rq, delta); 787 } 788 789 void update_rq_clock(struct rq *rq) 790 { 791 s64 delta; 792 793 lockdep_assert_rq_held(rq); 794 795 if (rq->clock_update_flags & RQCF_ACT_SKIP) 796 return; 797 798 #ifdef CONFIG_SCHED_DEBUG 799 if (sched_feat(WARN_DOUBLE_CLOCK)) 800 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 801 rq->clock_update_flags |= RQCF_UPDATED; 802 #endif 803 804 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 805 if (delta < 0) 806 return; 807 rq->clock += delta; 808 update_rq_clock_task(rq, delta); 809 } 810 811 #ifdef CONFIG_SCHED_HRTICK 812 /* 813 * Use HR-timers to deliver accurate preemption points. 814 */ 815 816 static void hrtick_clear(struct rq *rq) 817 { 818 if (hrtimer_active(&rq->hrtick_timer)) 819 hrtimer_cancel(&rq->hrtick_timer); 820 } 821 822 /* 823 * High-resolution timer tick. 824 * Runs from hardirq context with interrupts disabled. 825 */ 826 static enum hrtimer_restart hrtick(struct hrtimer *timer) 827 { 828 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 829 struct rq_flags rf; 830 831 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 832 833 rq_lock(rq, &rf); 834 update_rq_clock(rq); 835 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 836 rq_unlock(rq, &rf); 837 838 return HRTIMER_NORESTART; 839 } 840 841 #ifdef CONFIG_SMP 842 843 static void __hrtick_restart(struct rq *rq) 844 { 845 struct hrtimer *timer = &rq->hrtick_timer; 846 ktime_t time = rq->hrtick_time; 847 848 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 849 } 850 851 /* 852 * called from hardirq (IPI) context 853 */ 854 static void __hrtick_start(void *arg) 855 { 856 struct rq *rq = arg; 857 struct rq_flags rf; 858 859 rq_lock(rq, &rf); 860 __hrtick_restart(rq); 861 rq_unlock(rq, &rf); 862 } 863 864 /* 865 * Called to set the hrtick timer state. 866 * 867 * called with rq->lock held and IRQs disabled 868 */ 869 void hrtick_start(struct rq *rq, u64 delay) 870 { 871 struct hrtimer *timer = &rq->hrtick_timer; 872 s64 delta; 873 874 /* 875 * Don't schedule slices shorter than 10000ns, that just 876 * doesn't make sense and can cause timer DoS. 877 */ 878 delta = max_t(s64, delay, 10000LL); 879 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 880 881 if (rq == this_rq()) 882 __hrtick_restart(rq); 883 else 884 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 885 } 886 887 #else 888 /* 889 * Called to set the hrtick timer state. 890 * 891 * called with rq->lock held and IRQs disabled 892 */ 893 void hrtick_start(struct rq *rq, u64 delay) 894 { 895 /* 896 * Don't schedule slices shorter than 10000ns, that just 897 * doesn't make sense. Rely on vruntime for fairness. 898 */ 899 delay = max_t(u64, delay, 10000LL); 900 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 901 HRTIMER_MODE_REL_PINNED_HARD); 902 } 903 904 #endif /* CONFIG_SMP */ 905 906 static void hrtick_rq_init(struct rq *rq) 907 { 908 #ifdef CONFIG_SMP 909 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 910 #endif 911 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 912 rq->hrtick_timer.function = hrtick; 913 } 914 #else /* CONFIG_SCHED_HRTICK */ 915 static inline void hrtick_clear(struct rq *rq) 916 { 917 } 918 919 static inline void hrtick_rq_init(struct rq *rq) 920 { 921 } 922 #endif /* CONFIG_SCHED_HRTICK */ 923 924 /* 925 * try_cmpxchg based fetch_or() macro so it works for different integer types: 926 */ 927 #define fetch_or(ptr, mask) \ 928 ({ \ 929 typeof(ptr) _ptr = (ptr); \ 930 typeof(mask) _mask = (mask); \ 931 typeof(*_ptr) _val = *_ptr; \ 932 \ 933 do { \ 934 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 935 _val; \ 936 }) 937 938 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 939 /* 940 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 941 * this avoids any races wrt polling state changes and thereby avoids 942 * spurious IPIs. 943 */ 944 static inline bool set_nr_and_not_polling(struct task_struct *p) 945 { 946 struct thread_info *ti = task_thread_info(p); 947 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 948 } 949 950 /* 951 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 952 * 953 * If this returns true, then the idle task promises to call 954 * sched_ttwu_pending() and reschedule soon. 955 */ 956 static bool set_nr_if_polling(struct task_struct *p) 957 { 958 struct thread_info *ti = task_thread_info(p); 959 typeof(ti->flags) val = READ_ONCE(ti->flags); 960 961 do { 962 if (!(val & _TIF_POLLING_NRFLAG)) 963 return false; 964 if (val & _TIF_NEED_RESCHED) 965 return true; 966 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 967 968 return true; 969 } 970 971 #else 972 static inline bool set_nr_and_not_polling(struct task_struct *p) 973 { 974 set_tsk_need_resched(p); 975 return true; 976 } 977 978 #ifdef CONFIG_SMP 979 static inline bool set_nr_if_polling(struct task_struct *p) 980 { 981 return false; 982 } 983 #endif 984 #endif 985 986 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 987 { 988 struct wake_q_node *node = &task->wake_q; 989 990 /* 991 * Atomically grab the task, if ->wake_q is !nil already it means 992 * it's already queued (either by us or someone else) and will get the 993 * wakeup due to that. 994 * 995 * In order to ensure that a pending wakeup will observe our pending 996 * state, even in the failed case, an explicit smp_mb() must be used. 997 */ 998 smp_mb__before_atomic(); 999 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1000 return false; 1001 1002 /* 1003 * The head is context local, there can be no concurrency. 1004 */ 1005 *head->lastp = node; 1006 head->lastp = &node->next; 1007 return true; 1008 } 1009 1010 /** 1011 * wake_q_add() - queue a wakeup for 'later' waking. 1012 * @head: the wake_q_head to add @task to 1013 * @task: the task to queue for 'later' wakeup 1014 * 1015 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1016 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1017 * instantly. 1018 * 1019 * This function must be used as-if it were wake_up_process(); IOW the task 1020 * must be ready to be woken at this location. 1021 */ 1022 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1023 { 1024 if (__wake_q_add(head, task)) 1025 get_task_struct(task); 1026 } 1027 1028 /** 1029 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1030 * @head: the wake_q_head to add @task to 1031 * @task: the task to queue for 'later' wakeup 1032 * 1033 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1034 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1035 * instantly. 1036 * 1037 * This function must be used as-if it were wake_up_process(); IOW the task 1038 * must be ready to be woken at this location. 1039 * 1040 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1041 * that already hold reference to @task can call the 'safe' version and trust 1042 * wake_q to do the right thing depending whether or not the @task is already 1043 * queued for wakeup. 1044 */ 1045 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1046 { 1047 if (!__wake_q_add(head, task)) 1048 put_task_struct(task); 1049 } 1050 1051 void wake_up_q(struct wake_q_head *head) 1052 { 1053 struct wake_q_node *node = head->first; 1054 1055 while (node != WAKE_Q_TAIL) { 1056 struct task_struct *task; 1057 1058 task = container_of(node, struct task_struct, wake_q); 1059 /* Task can safely be re-inserted now: */ 1060 node = node->next; 1061 task->wake_q.next = NULL; 1062 1063 /* 1064 * wake_up_process() executes a full barrier, which pairs with 1065 * the queueing in wake_q_add() so as not to miss wakeups. 1066 */ 1067 wake_up_process(task); 1068 put_task_struct(task); 1069 } 1070 } 1071 1072 /* 1073 * resched_curr - mark rq's current task 'to be rescheduled now'. 1074 * 1075 * On UP this means the setting of the need_resched flag, on SMP it 1076 * might also involve a cross-CPU call to trigger the scheduler on 1077 * the target CPU. 1078 */ 1079 void resched_curr(struct rq *rq) 1080 { 1081 struct task_struct *curr = rq->curr; 1082 int cpu; 1083 1084 lockdep_assert_rq_held(rq); 1085 1086 if (test_tsk_need_resched(curr)) 1087 return; 1088 1089 cpu = cpu_of(rq); 1090 1091 if (cpu == smp_processor_id()) { 1092 set_tsk_need_resched(curr); 1093 set_preempt_need_resched(); 1094 return; 1095 } 1096 1097 if (set_nr_and_not_polling(curr)) 1098 smp_send_reschedule(cpu); 1099 else 1100 trace_sched_wake_idle_without_ipi(cpu); 1101 } 1102 1103 void resched_cpu(int cpu) 1104 { 1105 struct rq *rq = cpu_rq(cpu); 1106 unsigned long flags; 1107 1108 raw_spin_rq_lock_irqsave(rq, flags); 1109 if (cpu_online(cpu) || cpu == smp_processor_id()) 1110 resched_curr(rq); 1111 raw_spin_rq_unlock_irqrestore(rq, flags); 1112 } 1113 1114 #ifdef CONFIG_SMP 1115 #ifdef CONFIG_NO_HZ_COMMON 1116 /* 1117 * In the semi idle case, use the nearest busy CPU for migrating timers 1118 * from an idle CPU. This is good for power-savings. 1119 * 1120 * We don't do similar optimization for completely idle system, as 1121 * selecting an idle CPU will add more delays to the timers than intended 1122 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1123 */ 1124 int get_nohz_timer_target(void) 1125 { 1126 int i, cpu = smp_processor_id(), default_cpu = -1; 1127 struct sched_domain *sd; 1128 const struct cpumask *hk_mask; 1129 1130 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1131 if (!idle_cpu(cpu)) 1132 return cpu; 1133 default_cpu = cpu; 1134 } 1135 1136 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1137 1138 guard(rcu)(); 1139 1140 for_each_domain(cpu, sd) { 1141 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1142 if (cpu == i) 1143 continue; 1144 1145 if (!idle_cpu(i)) 1146 return i; 1147 } 1148 } 1149 1150 if (default_cpu == -1) 1151 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1152 1153 return default_cpu; 1154 } 1155 1156 /* 1157 * When add_timer_on() enqueues a timer into the timer wheel of an 1158 * idle CPU then this timer might expire before the next timer event 1159 * which is scheduled to wake up that CPU. In case of a completely 1160 * idle system the next event might even be infinite time into the 1161 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1162 * leaves the inner idle loop so the newly added timer is taken into 1163 * account when the CPU goes back to idle and evaluates the timer 1164 * wheel for the next timer event. 1165 */ 1166 static void wake_up_idle_cpu(int cpu) 1167 { 1168 struct rq *rq = cpu_rq(cpu); 1169 1170 if (cpu == smp_processor_id()) 1171 return; 1172 1173 /* 1174 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1175 * part of the idle loop. This forces an exit from the idle loop 1176 * and a round trip to schedule(). Now this could be optimized 1177 * because a simple new idle loop iteration is enough to 1178 * re-evaluate the next tick. Provided some re-ordering of tick 1179 * nohz functions that would need to follow TIF_NR_POLLING 1180 * clearing: 1181 * 1182 * - On most architectures, a simple fetch_or on ti::flags with a 1183 * "0" value would be enough to know if an IPI needs to be sent. 1184 * 1185 * - x86 needs to perform a last need_resched() check between 1186 * monitor and mwait which doesn't take timers into account. 1187 * There a dedicated TIF_TIMER flag would be required to 1188 * fetch_or here and be checked along with TIF_NEED_RESCHED 1189 * before mwait(). 1190 * 1191 * However, remote timer enqueue is not such a frequent event 1192 * and testing of the above solutions didn't appear to report 1193 * much benefits. 1194 */ 1195 if (set_nr_and_not_polling(rq->idle)) 1196 smp_send_reschedule(cpu); 1197 else 1198 trace_sched_wake_idle_without_ipi(cpu); 1199 } 1200 1201 static bool wake_up_full_nohz_cpu(int cpu) 1202 { 1203 /* 1204 * We just need the target to call irq_exit() and re-evaluate 1205 * the next tick. The nohz full kick at least implies that. 1206 * If needed we can still optimize that later with an 1207 * empty IRQ. 1208 */ 1209 if (cpu_is_offline(cpu)) 1210 return true; /* Don't try to wake offline CPUs. */ 1211 if (tick_nohz_full_cpu(cpu)) { 1212 if (cpu != smp_processor_id() || 1213 tick_nohz_tick_stopped()) 1214 tick_nohz_full_kick_cpu(cpu); 1215 return true; 1216 } 1217 1218 return false; 1219 } 1220 1221 /* 1222 * Wake up the specified CPU. If the CPU is going offline, it is the 1223 * caller's responsibility to deal with the lost wakeup, for example, 1224 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1225 */ 1226 void wake_up_nohz_cpu(int cpu) 1227 { 1228 if (!wake_up_full_nohz_cpu(cpu)) 1229 wake_up_idle_cpu(cpu); 1230 } 1231 1232 static void nohz_csd_func(void *info) 1233 { 1234 struct rq *rq = info; 1235 int cpu = cpu_of(rq); 1236 unsigned int flags; 1237 1238 /* 1239 * Release the rq::nohz_csd. 1240 */ 1241 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1242 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1243 1244 rq->idle_balance = idle_cpu(cpu); 1245 if (rq->idle_balance && !need_resched()) { 1246 rq->nohz_idle_balance = flags; 1247 raise_softirq_irqoff(SCHED_SOFTIRQ); 1248 } 1249 } 1250 1251 #endif /* CONFIG_NO_HZ_COMMON */ 1252 1253 #ifdef CONFIG_NO_HZ_FULL 1254 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1255 { 1256 if (rq->nr_running != 1) 1257 return false; 1258 1259 if (p->sched_class != &fair_sched_class) 1260 return false; 1261 1262 if (!task_on_rq_queued(p)) 1263 return false; 1264 1265 return true; 1266 } 1267 1268 bool sched_can_stop_tick(struct rq *rq) 1269 { 1270 int fifo_nr_running; 1271 1272 /* Deadline tasks, even if single, need the tick */ 1273 if (rq->dl.dl_nr_running) 1274 return false; 1275 1276 /* 1277 * If there are more than one RR tasks, we need the tick to affect the 1278 * actual RR behaviour. 1279 */ 1280 if (rq->rt.rr_nr_running) { 1281 if (rq->rt.rr_nr_running == 1) 1282 return true; 1283 else 1284 return false; 1285 } 1286 1287 /* 1288 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1289 * forced preemption between FIFO tasks. 1290 */ 1291 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1292 if (fifo_nr_running) 1293 return true; 1294 1295 /* 1296 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1297 * left. For CFS, if there's more than one we need the tick for 1298 * involuntary preemption. For SCX, ask. 1299 */ 1300 if (scx_enabled() && !scx_can_stop_tick(rq)) 1301 return false; 1302 1303 if (rq->cfs.nr_running > 1) 1304 return false; 1305 1306 /* 1307 * If there is one task and it has CFS runtime bandwidth constraints 1308 * and it's on the cpu now we don't want to stop the tick. 1309 * This check prevents clearing the bit if a newly enqueued task here is 1310 * dequeued by migrating while the constrained task continues to run. 1311 * E.g. going from 2->1 without going through pick_next_task(). 1312 */ 1313 if (__need_bw_check(rq, rq->curr)) { 1314 if (cfs_task_bw_constrained(rq->curr)) 1315 return false; 1316 } 1317 1318 return true; 1319 } 1320 #endif /* CONFIG_NO_HZ_FULL */ 1321 #endif /* CONFIG_SMP */ 1322 1323 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1324 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1325 /* 1326 * Iterate task_group tree rooted at *from, calling @down when first entering a 1327 * node and @up when leaving it for the final time. 1328 * 1329 * Caller must hold rcu_lock or sufficient equivalent. 1330 */ 1331 int walk_tg_tree_from(struct task_group *from, 1332 tg_visitor down, tg_visitor up, void *data) 1333 { 1334 struct task_group *parent, *child; 1335 int ret; 1336 1337 parent = from; 1338 1339 down: 1340 ret = (*down)(parent, data); 1341 if (ret) 1342 goto out; 1343 list_for_each_entry_rcu(child, &parent->children, siblings) { 1344 parent = child; 1345 goto down; 1346 1347 up: 1348 continue; 1349 } 1350 ret = (*up)(parent, data); 1351 if (ret || parent == from) 1352 goto out; 1353 1354 child = parent; 1355 parent = parent->parent; 1356 if (parent) 1357 goto up; 1358 out: 1359 return ret; 1360 } 1361 1362 int tg_nop(struct task_group *tg, void *data) 1363 { 1364 return 0; 1365 } 1366 #endif 1367 1368 void set_load_weight(struct task_struct *p, bool update_load) 1369 { 1370 int prio = p->static_prio - MAX_RT_PRIO; 1371 struct load_weight lw; 1372 1373 if (task_has_idle_policy(p)) { 1374 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1375 lw.inv_weight = WMULT_IDLEPRIO; 1376 } else { 1377 lw.weight = scale_load(sched_prio_to_weight[prio]); 1378 lw.inv_weight = sched_prio_to_wmult[prio]; 1379 } 1380 1381 /* 1382 * SCHED_OTHER tasks have to update their load when changing their 1383 * weight 1384 */ 1385 if (update_load && p->sched_class->reweight_task) 1386 p->sched_class->reweight_task(task_rq(p), p, &lw); 1387 else 1388 p->se.load = lw; 1389 } 1390 1391 #ifdef CONFIG_UCLAMP_TASK 1392 /* 1393 * Serializes updates of utilization clamp values 1394 * 1395 * The (slow-path) user-space triggers utilization clamp value updates which 1396 * can require updates on (fast-path) scheduler's data structures used to 1397 * support enqueue/dequeue operations. 1398 * While the per-CPU rq lock protects fast-path update operations, user-space 1399 * requests are serialized using a mutex to reduce the risk of conflicting 1400 * updates or API abuses. 1401 */ 1402 static DEFINE_MUTEX(uclamp_mutex); 1403 1404 /* Max allowed minimum utilization */ 1405 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1406 1407 /* Max allowed maximum utilization */ 1408 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1409 1410 /* 1411 * By default RT tasks run at the maximum performance point/capacity of the 1412 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1413 * SCHED_CAPACITY_SCALE. 1414 * 1415 * This knob allows admins to change the default behavior when uclamp is being 1416 * used. In battery powered devices, particularly, running at the maximum 1417 * capacity and frequency will increase energy consumption and shorten the 1418 * battery life. 1419 * 1420 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1421 * 1422 * This knob will not override the system default sched_util_clamp_min defined 1423 * above. 1424 */ 1425 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1426 1427 /* All clamps are required to be less or equal than these values */ 1428 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1429 1430 /* 1431 * This static key is used to reduce the uclamp overhead in the fast path. It 1432 * primarily disables the call to uclamp_rq_{inc, dec}() in 1433 * enqueue/dequeue_task(). 1434 * 1435 * This allows users to continue to enable uclamp in their kernel config with 1436 * minimum uclamp overhead in the fast path. 1437 * 1438 * As soon as userspace modifies any of the uclamp knobs, the static key is 1439 * enabled, since we have an actual users that make use of uclamp 1440 * functionality. 1441 * 1442 * The knobs that would enable this static key are: 1443 * 1444 * * A task modifying its uclamp value with sched_setattr(). 1445 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1446 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1447 */ 1448 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1449 1450 static inline unsigned int 1451 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1452 unsigned int clamp_value) 1453 { 1454 /* 1455 * Avoid blocked utilization pushing up the frequency when we go 1456 * idle (which drops the max-clamp) by retaining the last known 1457 * max-clamp. 1458 */ 1459 if (clamp_id == UCLAMP_MAX) { 1460 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1461 return clamp_value; 1462 } 1463 1464 return uclamp_none(UCLAMP_MIN); 1465 } 1466 1467 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1468 unsigned int clamp_value) 1469 { 1470 /* Reset max-clamp retention only on idle exit */ 1471 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1472 return; 1473 1474 uclamp_rq_set(rq, clamp_id, clamp_value); 1475 } 1476 1477 static inline 1478 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1479 unsigned int clamp_value) 1480 { 1481 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1482 int bucket_id = UCLAMP_BUCKETS - 1; 1483 1484 /* 1485 * Since both min and max clamps are max aggregated, find the 1486 * top most bucket with tasks in. 1487 */ 1488 for ( ; bucket_id >= 0; bucket_id--) { 1489 if (!bucket[bucket_id].tasks) 1490 continue; 1491 return bucket[bucket_id].value; 1492 } 1493 1494 /* No tasks -- default clamp values */ 1495 return uclamp_idle_value(rq, clamp_id, clamp_value); 1496 } 1497 1498 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1499 { 1500 unsigned int default_util_min; 1501 struct uclamp_se *uc_se; 1502 1503 lockdep_assert_held(&p->pi_lock); 1504 1505 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1506 1507 /* Only sync if user didn't override the default */ 1508 if (uc_se->user_defined) 1509 return; 1510 1511 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1512 uclamp_se_set(uc_se, default_util_min, false); 1513 } 1514 1515 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1516 { 1517 if (!rt_task(p)) 1518 return; 1519 1520 /* Protect updates to p->uclamp_* */ 1521 guard(task_rq_lock)(p); 1522 __uclamp_update_util_min_rt_default(p); 1523 } 1524 1525 static inline struct uclamp_se 1526 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1527 { 1528 /* Copy by value as we could modify it */ 1529 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1530 #ifdef CONFIG_UCLAMP_TASK_GROUP 1531 unsigned int tg_min, tg_max, value; 1532 1533 /* 1534 * Tasks in autogroups or root task group will be 1535 * restricted by system defaults. 1536 */ 1537 if (task_group_is_autogroup(task_group(p))) 1538 return uc_req; 1539 if (task_group(p) == &root_task_group) 1540 return uc_req; 1541 1542 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1543 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1544 value = uc_req.value; 1545 value = clamp(value, tg_min, tg_max); 1546 uclamp_se_set(&uc_req, value, false); 1547 #endif 1548 1549 return uc_req; 1550 } 1551 1552 /* 1553 * The effective clamp bucket index of a task depends on, by increasing 1554 * priority: 1555 * - the task specific clamp value, when explicitly requested from userspace 1556 * - the task group effective clamp value, for tasks not either in the root 1557 * group or in an autogroup 1558 * - the system default clamp value, defined by the sysadmin 1559 */ 1560 static inline struct uclamp_se 1561 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1562 { 1563 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1564 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1565 1566 /* System default restrictions always apply */ 1567 if (unlikely(uc_req.value > uc_max.value)) 1568 return uc_max; 1569 1570 return uc_req; 1571 } 1572 1573 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1574 { 1575 struct uclamp_se uc_eff; 1576 1577 /* Task currently refcounted: use back-annotated (effective) value */ 1578 if (p->uclamp[clamp_id].active) 1579 return (unsigned long)p->uclamp[clamp_id].value; 1580 1581 uc_eff = uclamp_eff_get(p, clamp_id); 1582 1583 return (unsigned long)uc_eff.value; 1584 } 1585 1586 /* 1587 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1588 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1589 * updates the rq's clamp value if required. 1590 * 1591 * Tasks can have a task-specific value requested from user-space, track 1592 * within each bucket the maximum value for tasks refcounted in it. 1593 * This "local max aggregation" allows to track the exact "requested" value 1594 * for each bucket when all its RUNNABLE tasks require the same clamp. 1595 */ 1596 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1597 enum uclamp_id clamp_id) 1598 { 1599 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1600 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1601 struct uclamp_bucket *bucket; 1602 1603 lockdep_assert_rq_held(rq); 1604 1605 /* Update task effective clamp */ 1606 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1607 1608 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1609 bucket->tasks++; 1610 uc_se->active = true; 1611 1612 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1613 1614 /* 1615 * Local max aggregation: rq buckets always track the max 1616 * "requested" clamp value of its RUNNABLE tasks. 1617 */ 1618 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1619 bucket->value = uc_se->value; 1620 1621 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1622 uclamp_rq_set(rq, clamp_id, uc_se->value); 1623 } 1624 1625 /* 1626 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1627 * is released. If this is the last task reference counting the rq's max 1628 * active clamp value, then the rq's clamp value is updated. 1629 * 1630 * Both refcounted tasks and rq's cached clamp values are expected to be 1631 * always valid. If it's detected they are not, as defensive programming, 1632 * enforce the expected state and warn. 1633 */ 1634 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1635 enum uclamp_id clamp_id) 1636 { 1637 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1638 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1639 struct uclamp_bucket *bucket; 1640 unsigned int bkt_clamp; 1641 unsigned int rq_clamp; 1642 1643 lockdep_assert_rq_held(rq); 1644 1645 /* 1646 * If sched_uclamp_used was enabled after task @p was enqueued, 1647 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1648 * 1649 * In this case the uc_se->active flag should be false since no uclamp 1650 * accounting was performed at enqueue time and we can just return 1651 * here. 1652 * 1653 * Need to be careful of the following enqueue/dequeue ordering 1654 * problem too 1655 * 1656 * enqueue(taskA) 1657 * // sched_uclamp_used gets enabled 1658 * enqueue(taskB) 1659 * dequeue(taskA) 1660 * // Must not decrement bucket->tasks here 1661 * dequeue(taskB) 1662 * 1663 * where we could end up with stale data in uc_se and 1664 * bucket[uc_se->bucket_id]. 1665 * 1666 * The following check here eliminates the possibility of such race. 1667 */ 1668 if (unlikely(!uc_se->active)) 1669 return; 1670 1671 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1672 1673 SCHED_WARN_ON(!bucket->tasks); 1674 if (likely(bucket->tasks)) 1675 bucket->tasks--; 1676 1677 uc_se->active = false; 1678 1679 /* 1680 * Keep "local max aggregation" simple and accept to (possibly) 1681 * overboost some RUNNABLE tasks in the same bucket. 1682 * The rq clamp bucket value is reset to its base value whenever 1683 * there are no more RUNNABLE tasks refcounting it. 1684 */ 1685 if (likely(bucket->tasks)) 1686 return; 1687 1688 rq_clamp = uclamp_rq_get(rq, clamp_id); 1689 /* 1690 * Defensive programming: this should never happen. If it happens, 1691 * e.g. due to future modification, warn and fix up the expected value. 1692 */ 1693 SCHED_WARN_ON(bucket->value > rq_clamp); 1694 if (bucket->value >= rq_clamp) { 1695 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1696 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1697 } 1698 } 1699 1700 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1701 { 1702 enum uclamp_id clamp_id; 1703 1704 /* 1705 * Avoid any overhead until uclamp is actually used by the userspace. 1706 * 1707 * The condition is constructed such that a NOP is generated when 1708 * sched_uclamp_used is disabled. 1709 */ 1710 if (!static_branch_unlikely(&sched_uclamp_used)) 1711 return; 1712 1713 if (unlikely(!p->sched_class->uclamp_enabled)) 1714 return; 1715 1716 if (p->se.sched_delayed) 1717 return; 1718 1719 for_each_clamp_id(clamp_id) 1720 uclamp_rq_inc_id(rq, p, clamp_id); 1721 1722 /* Reset clamp idle holding when there is one RUNNABLE task */ 1723 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1724 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1725 } 1726 1727 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1728 { 1729 enum uclamp_id clamp_id; 1730 1731 /* 1732 * Avoid any overhead until uclamp is actually used by the userspace. 1733 * 1734 * The condition is constructed such that a NOP is generated when 1735 * sched_uclamp_used is disabled. 1736 */ 1737 if (!static_branch_unlikely(&sched_uclamp_used)) 1738 return; 1739 1740 if (unlikely(!p->sched_class->uclamp_enabled)) 1741 return; 1742 1743 if (p->se.sched_delayed) 1744 return; 1745 1746 for_each_clamp_id(clamp_id) 1747 uclamp_rq_dec_id(rq, p, clamp_id); 1748 } 1749 1750 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1751 enum uclamp_id clamp_id) 1752 { 1753 if (!p->uclamp[clamp_id].active) 1754 return; 1755 1756 uclamp_rq_dec_id(rq, p, clamp_id); 1757 uclamp_rq_inc_id(rq, p, clamp_id); 1758 1759 /* 1760 * Make sure to clear the idle flag if we've transiently reached 0 1761 * active tasks on rq. 1762 */ 1763 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1764 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1765 } 1766 1767 static inline void 1768 uclamp_update_active(struct task_struct *p) 1769 { 1770 enum uclamp_id clamp_id; 1771 struct rq_flags rf; 1772 struct rq *rq; 1773 1774 /* 1775 * Lock the task and the rq where the task is (or was) queued. 1776 * 1777 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1778 * price to pay to safely serialize util_{min,max} updates with 1779 * enqueues, dequeues and migration operations. 1780 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1781 */ 1782 rq = task_rq_lock(p, &rf); 1783 1784 /* 1785 * Setting the clamp bucket is serialized by task_rq_lock(). 1786 * If the task is not yet RUNNABLE and its task_struct is not 1787 * affecting a valid clamp bucket, the next time it's enqueued, 1788 * it will already see the updated clamp bucket value. 1789 */ 1790 for_each_clamp_id(clamp_id) 1791 uclamp_rq_reinc_id(rq, p, clamp_id); 1792 1793 task_rq_unlock(rq, p, &rf); 1794 } 1795 1796 #ifdef CONFIG_UCLAMP_TASK_GROUP 1797 static inline void 1798 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1799 { 1800 struct css_task_iter it; 1801 struct task_struct *p; 1802 1803 css_task_iter_start(css, 0, &it); 1804 while ((p = css_task_iter_next(&it))) 1805 uclamp_update_active(p); 1806 css_task_iter_end(&it); 1807 } 1808 1809 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1810 #endif 1811 1812 #ifdef CONFIG_SYSCTL 1813 #ifdef CONFIG_UCLAMP_TASK_GROUP 1814 static void uclamp_update_root_tg(void) 1815 { 1816 struct task_group *tg = &root_task_group; 1817 1818 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1819 sysctl_sched_uclamp_util_min, false); 1820 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1821 sysctl_sched_uclamp_util_max, false); 1822 1823 guard(rcu)(); 1824 cpu_util_update_eff(&root_task_group.css); 1825 } 1826 #else 1827 static void uclamp_update_root_tg(void) { } 1828 #endif 1829 1830 static void uclamp_sync_util_min_rt_default(void) 1831 { 1832 struct task_struct *g, *p; 1833 1834 /* 1835 * copy_process() sysctl_uclamp 1836 * uclamp_min_rt = X; 1837 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1838 * // link thread smp_mb__after_spinlock() 1839 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1840 * sched_post_fork() for_each_process_thread() 1841 * __uclamp_sync_rt() __uclamp_sync_rt() 1842 * 1843 * Ensures that either sched_post_fork() will observe the new 1844 * uclamp_min_rt or for_each_process_thread() will observe the new 1845 * task. 1846 */ 1847 read_lock(&tasklist_lock); 1848 smp_mb__after_spinlock(); 1849 read_unlock(&tasklist_lock); 1850 1851 guard(rcu)(); 1852 for_each_process_thread(g, p) 1853 uclamp_update_util_min_rt_default(p); 1854 } 1855 1856 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1857 void *buffer, size_t *lenp, loff_t *ppos) 1858 { 1859 bool update_root_tg = false; 1860 int old_min, old_max, old_min_rt; 1861 int result; 1862 1863 guard(mutex)(&uclamp_mutex); 1864 1865 old_min = sysctl_sched_uclamp_util_min; 1866 old_max = sysctl_sched_uclamp_util_max; 1867 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1868 1869 result = proc_dointvec(table, write, buffer, lenp, ppos); 1870 if (result) 1871 goto undo; 1872 if (!write) 1873 return 0; 1874 1875 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1876 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1877 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1878 1879 result = -EINVAL; 1880 goto undo; 1881 } 1882 1883 if (old_min != sysctl_sched_uclamp_util_min) { 1884 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1885 sysctl_sched_uclamp_util_min, false); 1886 update_root_tg = true; 1887 } 1888 if (old_max != sysctl_sched_uclamp_util_max) { 1889 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1890 sysctl_sched_uclamp_util_max, false); 1891 update_root_tg = true; 1892 } 1893 1894 if (update_root_tg) { 1895 static_branch_enable(&sched_uclamp_used); 1896 uclamp_update_root_tg(); 1897 } 1898 1899 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1900 static_branch_enable(&sched_uclamp_used); 1901 uclamp_sync_util_min_rt_default(); 1902 } 1903 1904 /* 1905 * We update all RUNNABLE tasks only when task groups are in use. 1906 * Otherwise, keep it simple and do just a lazy update at each next 1907 * task enqueue time. 1908 */ 1909 return 0; 1910 1911 undo: 1912 sysctl_sched_uclamp_util_min = old_min; 1913 sysctl_sched_uclamp_util_max = old_max; 1914 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1915 return result; 1916 } 1917 #endif 1918 1919 static void uclamp_fork(struct task_struct *p) 1920 { 1921 enum uclamp_id clamp_id; 1922 1923 /* 1924 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1925 * as the task is still at its early fork stages. 1926 */ 1927 for_each_clamp_id(clamp_id) 1928 p->uclamp[clamp_id].active = false; 1929 1930 if (likely(!p->sched_reset_on_fork)) 1931 return; 1932 1933 for_each_clamp_id(clamp_id) { 1934 uclamp_se_set(&p->uclamp_req[clamp_id], 1935 uclamp_none(clamp_id), false); 1936 } 1937 } 1938 1939 static void uclamp_post_fork(struct task_struct *p) 1940 { 1941 uclamp_update_util_min_rt_default(p); 1942 } 1943 1944 static void __init init_uclamp_rq(struct rq *rq) 1945 { 1946 enum uclamp_id clamp_id; 1947 struct uclamp_rq *uc_rq = rq->uclamp; 1948 1949 for_each_clamp_id(clamp_id) { 1950 uc_rq[clamp_id] = (struct uclamp_rq) { 1951 .value = uclamp_none(clamp_id) 1952 }; 1953 } 1954 1955 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1956 } 1957 1958 static void __init init_uclamp(void) 1959 { 1960 struct uclamp_se uc_max = {}; 1961 enum uclamp_id clamp_id; 1962 int cpu; 1963 1964 for_each_possible_cpu(cpu) 1965 init_uclamp_rq(cpu_rq(cpu)); 1966 1967 for_each_clamp_id(clamp_id) { 1968 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1969 uclamp_none(clamp_id), false); 1970 } 1971 1972 /* System defaults allow max clamp values for both indexes */ 1973 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1974 for_each_clamp_id(clamp_id) { 1975 uclamp_default[clamp_id] = uc_max; 1976 #ifdef CONFIG_UCLAMP_TASK_GROUP 1977 root_task_group.uclamp_req[clamp_id] = uc_max; 1978 root_task_group.uclamp[clamp_id] = uc_max; 1979 #endif 1980 } 1981 } 1982 1983 #else /* !CONFIG_UCLAMP_TASK */ 1984 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1985 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1986 static inline void uclamp_fork(struct task_struct *p) { } 1987 static inline void uclamp_post_fork(struct task_struct *p) { } 1988 static inline void init_uclamp(void) { } 1989 #endif /* CONFIG_UCLAMP_TASK */ 1990 1991 bool sched_task_on_rq(struct task_struct *p) 1992 { 1993 return task_on_rq_queued(p); 1994 } 1995 1996 unsigned long get_wchan(struct task_struct *p) 1997 { 1998 unsigned long ip = 0; 1999 unsigned int state; 2000 2001 if (!p || p == current) 2002 return 0; 2003 2004 /* Only get wchan if task is blocked and we can keep it that way. */ 2005 raw_spin_lock_irq(&p->pi_lock); 2006 state = READ_ONCE(p->__state); 2007 smp_rmb(); /* see try_to_wake_up() */ 2008 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2009 ip = __get_wchan(p); 2010 raw_spin_unlock_irq(&p->pi_lock); 2011 2012 return ip; 2013 } 2014 2015 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2016 { 2017 if (!(flags & ENQUEUE_NOCLOCK)) 2018 update_rq_clock(rq); 2019 2020 p->sched_class->enqueue_task(rq, p, flags); 2021 /* 2022 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear 2023 * ->sched_delayed. 2024 */ 2025 uclamp_rq_inc(rq, p); 2026 2027 if (!(flags & ENQUEUE_RESTORE)) { 2028 sched_info_enqueue(rq, p); 2029 psi_enqueue(p, flags & ENQUEUE_MIGRATED); 2030 } 2031 2032 if (sched_core_enabled(rq)) 2033 sched_core_enqueue(rq, p); 2034 } 2035 2036 /* 2037 * Must only return false when DEQUEUE_SLEEP. 2038 */ 2039 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2040 { 2041 if (sched_core_enabled(rq)) 2042 sched_core_dequeue(rq, p, flags); 2043 2044 if (!(flags & DEQUEUE_NOCLOCK)) 2045 update_rq_clock(rq); 2046 2047 if (!(flags & DEQUEUE_SAVE)) { 2048 sched_info_dequeue(rq, p); 2049 psi_dequeue(p, !(flags & DEQUEUE_SLEEP)); 2050 } 2051 2052 /* 2053 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2054 * and mark the task ->sched_delayed. 2055 */ 2056 uclamp_rq_dec(rq, p); 2057 return p->sched_class->dequeue_task(rq, p, flags); 2058 } 2059 2060 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2061 { 2062 if (task_on_rq_migrating(p)) 2063 flags |= ENQUEUE_MIGRATED; 2064 if (flags & ENQUEUE_MIGRATED) 2065 sched_mm_cid_migrate_to(rq, p); 2066 2067 enqueue_task(rq, p, flags); 2068 2069 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2070 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2071 } 2072 2073 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2074 { 2075 SCHED_WARN_ON(flags & DEQUEUE_SLEEP); 2076 2077 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2078 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2079 2080 /* 2081 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2082 * dequeue_task() and cleared *after* enqueue_task(). 2083 */ 2084 2085 dequeue_task(rq, p, flags); 2086 } 2087 2088 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2089 { 2090 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2091 __block_task(rq, p); 2092 } 2093 2094 /** 2095 * task_curr - is this task currently executing on a CPU? 2096 * @p: the task in question. 2097 * 2098 * Return: 1 if the task is currently executing. 0 otherwise. 2099 */ 2100 inline int task_curr(const struct task_struct *p) 2101 { 2102 return cpu_curr(task_cpu(p)) == p; 2103 } 2104 2105 /* 2106 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2107 * mess with locking. 2108 */ 2109 void check_class_changing(struct rq *rq, struct task_struct *p, 2110 const struct sched_class *prev_class) 2111 { 2112 if (prev_class != p->sched_class && p->sched_class->switching_to) 2113 p->sched_class->switching_to(rq, p); 2114 } 2115 2116 /* 2117 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2118 * use the balance_callback list if you want balancing. 2119 * 2120 * this means any call to check_class_changed() must be followed by a call to 2121 * balance_callback(). 2122 */ 2123 void check_class_changed(struct rq *rq, struct task_struct *p, 2124 const struct sched_class *prev_class, 2125 int oldprio) 2126 { 2127 if (prev_class != p->sched_class) { 2128 if (prev_class->switched_from) 2129 prev_class->switched_from(rq, p); 2130 2131 p->sched_class->switched_to(rq, p); 2132 } else if (oldprio != p->prio || dl_task(p)) 2133 p->sched_class->prio_changed(rq, p, oldprio); 2134 } 2135 2136 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2137 { 2138 if (p->sched_class == rq->curr->sched_class) 2139 rq->curr->sched_class->wakeup_preempt(rq, p, flags); 2140 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2141 resched_curr(rq); 2142 2143 /* 2144 * A queue event has occurred, and we're going to schedule. In 2145 * this case, we can save a useless back to back clock update. 2146 */ 2147 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2148 rq_clock_skip_update(rq); 2149 } 2150 2151 static __always_inline 2152 int __task_state_match(struct task_struct *p, unsigned int state) 2153 { 2154 if (READ_ONCE(p->__state) & state) 2155 return 1; 2156 2157 if (READ_ONCE(p->saved_state) & state) 2158 return -1; 2159 2160 return 0; 2161 } 2162 2163 static __always_inline 2164 int task_state_match(struct task_struct *p, unsigned int state) 2165 { 2166 /* 2167 * Serialize against current_save_and_set_rtlock_wait_state(), 2168 * current_restore_rtlock_saved_state(), and __refrigerator(). 2169 */ 2170 guard(raw_spinlock_irq)(&p->pi_lock); 2171 return __task_state_match(p, state); 2172 } 2173 2174 /* 2175 * wait_task_inactive - wait for a thread to unschedule. 2176 * 2177 * Wait for the thread to block in any of the states set in @match_state. 2178 * If it changes, i.e. @p might have woken up, then return zero. When we 2179 * succeed in waiting for @p to be off its CPU, we return a positive number 2180 * (its total switch count). If a second call a short while later returns the 2181 * same number, the caller can be sure that @p has remained unscheduled the 2182 * whole time. 2183 * 2184 * The caller must ensure that the task *will* unschedule sometime soon, 2185 * else this function might spin for a *long* time. This function can't 2186 * be called with interrupts off, or it may introduce deadlock with 2187 * smp_call_function() if an IPI is sent by the same process we are 2188 * waiting to become inactive. 2189 */ 2190 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2191 { 2192 int running, queued, match; 2193 struct rq_flags rf; 2194 unsigned long ncsw; 2195 struct rq *rq; 2196 2197 for (;;) { 2198 /* 2199 * We do the initial early heuristics without holding 2200 * any task-queue locks at all. We'll only try to get 2201 * the runqueue lock when things look like they will 2202 * work out! 2203 */ 2204 rq = task_rq(p); 2205 2206 /* 2207 * If the task is actively running on another CPU 2208 * still, just relax and busy-wait without holding 2209 * any locks. 2210 * 2211 * NOTE! Since we don't hold any locks, it's not 2212 * even sure that "rq" stays as the right runqueue! 2213 * But we don't care, since "task_on_cpu()" will 2214 * return false if the runqueue has changed and p 2215 * is actually now running somewhere else! 2216 */ 2217 while (task_on_cpu(rq, p)) { 2218 if (!task_state_match(p, match_state)) 2219 return 0; 2220 cpu_relax(); 2221 } 2222 2223 /* 2224 * Ok, time to look more closely! We need the rq 2225 * lock now, to be *sure*. If we're wrong, we'll 2226 * just go back and repeat. 2227 */ 2228 rq = task_rq_lock(p, &rf); 2229 trace_sched_wait_task(p); 2230 running = task_on_cpu(rq, p); 2231 queued = task_on_rq_queued(p); 2232 ncsw = 0; 2233 if ((match = __task_state_match(p, match_state))) { 2234 /* 2235 * When matching on p->saved_state, consider this task 2236 * still queued so it will wait. 2237 */ 2238 if (match < 0) 2239 queued = 1; 2240 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2241 } 2242 task_rq_unlock(rq, p, &rf); 2243 2244 /* 2245 * If it changed from the expected state, bail out now. 2246 */ 2247 if (unlikely(!ncsw)) 2248 break; 2249 2250 /* 2251 * Was it really running after all now that we 2252 * checked with the proper locks actually held? 2253 * 2254 * Oops. Go back and try again.. 2255 */ 2256 if (unlikely(running)) { 2257 cpu_relax(); 2258 continue; 2259 } 2260 2261 /* 2262 * It's not enough that it's not actively running, 2263 * it must be off the runqueue _entirely_, and not 2264 * preempted! 2265 * 2266 * So if it was still runnable (but just not actively 2267 * running right now), it's preempted, and we should 2268 * yield - it could be a while. 2269 */ 2270 if (unlikely(queued)) { 2271 ktime_t to = NSEC_PER_SEC / HZ; 2272 2273 set_current_state(TASK_UNINTERRUPTIBLE); 2274 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2275 continue; 2276 } 2277 2278 /* 2279 * Ahh, all good. It wasn't running, and it wasn't 2280 * runnable, which means that it will never become 2281 * running in the future either. We're all done! 2282 */ 2283 break; 2284 } 2285 2286 return ncsw; 2287 } 2288 2289 #ifdef CONFIG_SMP 2290 2291 static void 2292 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2293 2294 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2295 { 2296 struct affinity_context ac = { 2297 .new_mask = cpumask_of(rq->cpu), 2298 .flags = SCA_MIGRATE_DISABLE, 2299 }; 2300 2301 if (likely(!p->migration_disabled)) 2302 return; 2303 2304 if (p->cpus_ptr != &p->cpus_mask) 2305 return; 2306 2307 /* 2308 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2309 */ 2310 __do_set_cpus_allowed(p, &ac); 2311 } 2312 2313 void migrate_disable(void) 2314 { 2315 struct task_struct *p = current; 2316 2317 if (p->migration_disabled) { 2318 #ifdef CONFIG_DEBUG_PREEMPT 2319 /* 2320 *Warn about overflow half-way through the range. 2321 */ 2322 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2323 #endif 2324 p->migration_disabled++; 2325 return; 2326 } 2327 2328 guard(preempt)(); 2329 this_rq()->nr_pinned++; 2330 p->migration_disabled = 1; 2331 } 2332 EXPORT_SYMBOL_GPL(migrate_disable); 2333 2334 void migrate_enable(void) 2335 { 2336 struct task_struct *p = current; 2337 struct affinity_context ac = { 2338 .new_mask = &p->cpus_mask, 2339 .flags = SCA_MIGRATE_ENABLE, 2340 }; 2341 2342 #ifdef CONFIG_DEBUG_PREEMPT 2343 /* 2344 * Check both overflow from migrate_disable() and superfluous 2345 * migrate_enable(). 2346 */ 2347 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2348 return; 2349 #endif 2350 2351 if (p->migration_disabled > 1) { 2352 p->migration_disabled--; 2353 return; 2354 } 2355 2356 /* 2357 * Ensure stop_task runs either before or after this, and that 2358 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2359 */ 2360 guard(preempt)(); 2361 if (p->cpus_ptr != &p->cpus_mask) 2362 __set_cpus_allowed_ptr(p, &ac); 2363 /* 2364 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2365 * regular cpus_mask, otherwise things that race (eg. 2366 * select_fallback_rq) get confused. 2367 */ 2368 barrier(); 2369 p->migration_disabled = 0; 2370 this_rq()->nr_pinned--; 2371 } 2372 EXPORT_SYMBOL_GPL(migrate_enable); 2373 2374 static inline bool rq_has_pinned_tasks(struct rq *rq) 2375 { 2376 return rq->nr_pinned; 2377 } 2378 2379 /* 2380 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2381 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2382 */ 2383 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2384 { 2385 /* When not in the task's cpumask, no point in looking further. */ 2386 if (!task_allowed_on_cpu(p, cpu)) 2387 return false; 2388 2389 /* migrate_disabled() must be allowed to finish. */ 2390 if (is_migration_disabled(p)) 2391 return cpu_online(cpu); 2392 2393 /* Non kernel threads are not allowed during either online or offline. */ 2394 if (!(p->flags & PF_KTHREAD)) 2395 return cpu_active(cpu); 2396 2397 /* KTHREAD_IS_PER_CPU is always allowed. */ 2398 if (kthread_is_per_cpu(p)) 2399 return cpu_online(cpu); 2400 2401 /* Regular kernel threads don't get to stay during offline. */ 2402 if (cpu_dying(cpu)) 2403 return false; 2404 2405 /* But are allowed during online. */ 2406 return cpu_online(cpu); 2407 } 2408 2409 /* 2410 * This is how migration works: 2411 * 2412 * 1) we invoke migration_cpu_stop() on the target CPU using 2413 * stop_one_cpu(). 2414 * 2) stopper starts to run (implicitly forcing the migrated thread 2415 * off the CPU) 2416 * 3) it checks whether the migrated task is still in the wrong runqueue. 2417 * 4) if it's in the wrong runqueue then the migration thread removes 2418 * it and puts it into the right queue. 2419 * 5) stopper completes and stop_one_cpu() returns and the migration 2420 * is done. 2421 */ 2422 2423 /* 2424 * move_queued_task - move a queued task to new rq. 2425 * 2426 * Returns (locked) new rq. Old rq's lock is released. 2427 */ 2428 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2429 struct task_struct *p, int new_cpu) 2430 { 2431 lockdep_assert_rq_held(rq); 2432 2433 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2434 set_task_cpu(p, new_cpu); 2435 rq_unlock(rq, rf); 2436 2437 rq = cpu_rq(new_cpu); 2438 2439 rq_lock(rq, rf); 2440 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2441 activate_task(rq, p, 0); 2442 wakeup_preempt(rq, p, 0); 2443 2444 return rq; 2445 } 2446 2447 struct migration_arg { 2448 struct task_struct *task; 2449 int dest_cpu; 2450 struct set_affinity_pending *pending; 2451 }; 2452 2453 /* 2454 * @refs: number of wait_for_completion() 2455 * @stop_pending: is @stop_work in use 2456 */ 2457 struct set_affinity_pending { 2458 refcount_t refs; 2459 unsigned int stop_pending; 2460 struct completion done; 2461 struct cpu_stop_work stop_work; 2462 struct migration_arg arg; 2463 }; 2464 2465 /* 2466 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2467 * this because either it can't run here any more (set_cpus_allowed() 2468 * away from this CPU, or CPU going down), or because we're 2469 * attempting to rebalance this task on exec (sched_exec). 2470 * 2471 * So we race with normal scheduler movements, but that's OK, as long 2472 * as the task is no longer on this CPU. 2473 */ 2474 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2475 struct task_struct *p, int dest_cpu) 2476 { 2477 /* Affinity changed (again). */ 2478 if (!is_cpu_allowed(p, dest_cpu)) 2479 return rq; 2480 2481 rq = move_queued_task(rq, rf, p, dest_cpu); 2482 2483 return rq; 2484 } 2485 2486 /* 2487 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2488 * and performs thread migration by bumping thread off CPU then 2489 * 'pushing' onto another runqueue. 2490 */ 2491 static int migration_cpu_stop(void *data) 2492 { 2493 struct migration_arg *arg = data; 2494 struct set_affinity_pending *pending = arg->pending; 2495 struct task_struct *p = arg->task; 2496 struct rq *rq = this_rq(); 2497 bool complete = false; 2498 struct rq_flags rf; 2499 2500 /* 2501 * The original target CPU might have gone down and we might 2502 * be on another CPU but it doesn't matter. 2503 */ 2504 local_irq_save(rf.flags); 2505 /* 2506 * We need to explicitly wake pending tasks before running 2507 * __migrate_task() such that we will not miss enforcing cpus_ptr 2508 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2509 */ 2510 flush_smp_call_function_queue(); 2511 2512 raw_spin_lock(&p->pi_lock); 2513 rq_lock(rq, &rf); 2514 2515 /* 2516 * If we were passed a pending, then ->stop_pending was set, thus 2517 * p->migration_pending must have remained stable. 2518 */ 2519 WARN_ON_ONCE(pending && pending != p->migration_pending); 2520 2521 /* 2522 * If task_rq(p) != rq, it cannot be migrated here, because we're 2523 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2524 * we're holding p->pi_lock. 2525 */ 2526 if (task_rq(p) == rq) { 2527 if (is_migration_disabled(p)) 2528 goto out; 2529 2530 if (pending) { 2531 p->migration_pending = NULL; 2532 complete = true; 2533 2534 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2535 goto out; 2536 } 2537 2538 if (task_on_rq_queued(p)) { 2539 update_rq_clock(rq); 2540 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2541 } else { 2542 p->wake_cpu = arg->dest_cpu; 2543 } 2544 2545 /* 2546 * XXX __migrate_task() can fail, at which point we might end 2547 * up running on a dodgy CPU, AFAICT this can only happen 2548 * during CPU hotplug, at which point we'll get pushed out 2549 * anyway, so it's probably not a big deal. 2550 */ 2551 2552 } else if (pending) { 2553 /* 2554 * This happens when we get migrated between migrate_enable()'s 2555 * preempt_enable() and scheduling the stopper task. At that 2556 * point we're a regular task again and not current anymore. 2557 * 2558 * A !PREEMPT kernel has a giant hole here, which makes it far 2559 * more likely. 2560 */ 2561 2562 /* 2563 * The task moved before the stopper got to run. We're holding 2564 * ->pi_lock, so the allowed mask is stable - if it got 2565 * somewhere allowed, we're done. 2566 */ 2567 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2568 p->migration_pending = NULL; 2569 complete = true; 2570 goto out; 2571 } 2572 2573 /* 2574 * When migrate_enable() hits a rq mis-match we can't reliably 2575 * determine is_migration_disabled() and so have to chase after 2576 * it. 2577 */ 2578 WARN_ON_ONCE(!pending->stop_pending); 2579 preempt_disable(); 2580 task_rq_unlock(rq, p, &rf); 2581 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2582 &pending->arg, &pending->stop_work); 2583 preempt_enable(); 2584 return 0; 2585 } 2586 out: 2587 if (pending) 2588 pending->stop_pending = false; 2589 task_rq_unlock(rq, p, &rf); 2590 2591 if (complete) 2592 complete_all(&pending->done); 2593 2594 return 0; 2595 } 2596 2597 int push_cpu_stop(void *arg) 2598 { 2599 struct rq *lowest_rq = NULL, *rq = this_rq(); 2600 struct task_struct *p = arg; 2601 2602 raw_spin_lock_irq(&p->pi_lock); 2603 raw_spin_rq_lock(rq); 2604 2605 if (task_rq(p) != rq) 2606 goto out_unlock; 2607 2608 if (is_migration_disabled(p)) { 2609 p->migration_flags |= MDF_PUSH; 2610 goto out_unlock; 2611 } 2612 2613 p->migration_flags &= ~MDF_PUSH; 2614 2615 if (p->sched_class->find_lock_rq) 2616 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2617 2618 if (!lowest_rq) 2619 goto out_unlock; 2620 2621 // XXX validate p is still the highest prio task 2622 if (task_rq(p) == rq) { 2623 deactivate_task(rq, p, 0); 2624 set_task_cpu(p, lowest_rq->cpu); 2625 activate_task(lowest_rq, p, 0); 2626 resched_curr(lowest_rq); 2627 } 2628 2629 double_unlock_balance(rq, lowest_rq); 2630 2631 out_unlock: 2632 rq->push_busy = false; 2633 raw_spin_rq_unlock(rq); 2634 raw_spin_unlock_irq(&p->pi_lock); 2635 2636 put_task_struct(p); 2637 return 0; 2638 } 2639 2640 /* 2641 * sched_class::set_cpus_allowed must do the below, but is not required to 2642 * actually call this function. 2643 */ 2644 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2645 { 2646 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2647 p->cpus_ptr = ctx->new_mask; 2648 return; 2649 } 2650 2651 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2652 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2653 2654 /* 2655 * Swap in a new user_cpus_ptr if SCA_USER flag set 2656 */ 2657 if (ctx->flags & SCA_USER) 2658 swap(p->user_cpus_ptr, ctx->user_mask); 2659 } 2660 2661 static void 2662 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2663 { 2664 struct rq *rq = task_rq(p); 2665 bool queued, running; 2666 2667 /* 2668 * This here violates the locking rules for affinity, since we're only 2669 * supposed to change these variables while holding both rq->lock and 2670 * p->pi_lock. 2671 * 2672 * HOWEVER, it magically works, because ttwu() is the only code that 2673 * accesses these variables under p->pi_lock and only does so after 2674 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2675 * before finish_task(). 2676 * 2677 * XXX do further audits, this smells like something putrid. 2678 */ 2679 if (ctx->flags & SCA_MIGRATE_DISABLE) 2680 SCHED_WARN_ON(!p->on_cpu); 2681 else 2682 lockdep_assert_held(&p->pi_lock); 2683 2684 queued = task_on_rq_queued(p); 2685 running = task_current(rq, p); 2686 2687 if (queued) { 2688 /* 2689 * Because __kthread_bind() calls this on blocked tasks without 2690 * holding rq->lock. 2691 */ 2692 lockdep_assert_rq_held(rq); 2693 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2694 } 2695 if (running) 2696 put_prev_task(rq, p); 2697 2698 p->sched_class->set_cpus_allowed(p, ctx); 2699 2700 if (queued) 2701 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2702 if (running) 2703 set_next_task(rq, p); 2704 } 2705 2706 /* 2707 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2708 * affinity (if any) should be destroyed too. 2709 */ 2710 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2711 { 2712 struct affinity_context ac = { 2713 .new_mask = new_mask, 2714 .user_mask = NULL, 2715 .flags = SCA_USER, /* clear the user requested mask */ 2716 }; 2717 union cpumask_rcuhead { 2718 cpumask_t cpumask; 2719 struct rcu_head rcu; 2720 }; 2721 2722 __do_set_cpus_allowed(p, &ac); 2723 2724 /* 2725 * Because this is called with p->pi_lock held, it is not possible 2726 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2727 * kfree_rcu(). 2728 */ 2729 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2730 } 2731 2732 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2733 int node) 2734 { 2735 cpumask_t *user_mask; 2736 unsigned long flags; 2737 2738 /* 2739 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2740 * may differ by now due to racing. 2741 */ 2742 dst->user_cpus_ptr = NULL; 2743 2744 /* 2745 * This check is racy and losing the race is a valid situation. 2746 * It is not worth the extra overhead of taking the pi_lock on 2747 * every fork/clone. 2748 */ 2749 if (data_race(!src->user_cpus_ptr)) 2750 return 0; 2751 2752 user_mask = alloc_user_cpus_ptr(node); 2753 if (!user_mask) 2754 return -ENOMEM; 2755 2756 /* 2757 * Use pi_lock to protect content of user_cpus_ptr 2758 * 2759 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2760 * do_set_cpus_allowed(). 2761 */ 2762 raw_spin_lock_irqsave(&src->pi_lock, flags); 2763 if (src->user_cpus_ptr) { 2764 swap(dst->user_cpus_ptr, user_mask); 2765 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2766 } 2767 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2768 2769 if (unlikely(user_mask)) 2770 kfree(user_mask); 2771 2772 return 0; 2773 } 2774 2775 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2776 { 2777 struct cpumask *user_mask = NULL; 2778 2779 swap(p->user_cpus_ptr, user_mask); 2780 2781 return user_mask; 2782 } 2783 2784 void release_user_cpus_ptr(struct task_struct *p) 2785 { 2786 kfree(clear_user_cpus_ptr(p)); 2787 } 2788 2789 /* 2790 * This function is wildly self concurrent; here be dragons. 2791 * 2792 * 2793 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2794 * designated task is enqueued on an allowed CPU. If that task is currently 2795 * running, we have to kick it out using the CPU stopper. 2796 * 2797 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2798 * Consider: 2799 * 2800 * Initial conditions: P0->cpus_mask = [0, 1] 2801 * 2802 * P0@CPU0 P1 2803 * 2804 * migrate_disable(); 2805 * <preempted> 2806 * set_cpus_allowed_ptr(P0, [1]); 2807 * 2808 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2809 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2810 * This means we need the following scheme: 2811 * 2812 * P0@CPU0 P1 2813 * 2814 * migrate_disable(); 2815 * <preempted> 2816 * set_cpus_allowed_ptr(P0, [1]); 2817 * <blocks> 2818 * <resumes> 2819 * migrate_enable(); 2820 * __set_cpus_allowed_ptr(); 2821 * <wakes local stopper> 2822 * `--> <woken on migration completion> 2823 * 2824 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2825 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2826 * task p are serialized by p->pi_lock, which we can leverage: the one that 2827 * should come into effect at the end of the Migrate-Disable region is the last 2828 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2829 * but we still need to properly signal those waiting tasks at the appropriate 2830 * moment. 2831 * 2832 * This is implemented using struct set_affinity_pending. The first 2833 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2834 * setup an instance of that struct and install it on the targeted task_struct. 2835 * Any and all further callers will reuse that instance. Those then wait for 2836 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2837 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2838 * 2839 * 2840 * (1) In the cases covered above. There is one more where the completion is 2841 * signaled within affine_move_task() itself: when a subsequent affinity request 2842 * occurs after the stopper bailed out due to the targeted task still being 2843 * Migrate-Disable. Consider: 2844 * 2845 * Initial conditions: P0->cpus_mask = [0, 1] 2846 * 2847 * CPU0 P1 P2 2848 * <P0> 2849 * migrate_disable(); 2850 * <preempted> 2851 * set_cpus_allowed_ptr(P0, [1]); 2852 * <blocks> 2853 * <migration/0> 2854 * migration_cpu_stop() 2855 * is_migration_disabled() 2856 * <bails> 2857 * set_cpus_allowed_ptr(P0, [0, 1]); 2858 * <signal completion> 2859 * <awakes> 2860 * 2861 * Note that the above is safe vs a concurrent migrate_enable(), as any 2862 * pending affinity completion is preceded by an uninstallation of 2863 * p->migration_pending done with p->pi_lock held. 2864 */ 2865 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2866 int dest_cpu, unsigned int flags) 2867 __releases(rq->lock) 2868 __releases(p->pi_lock) 2869 { 2870 struct set_affinity_pending my_pending = { }, *pending = NULL; 2871 bool stop_pending, complete = false; 2872 2873 /* Can the task run on the task's current CPU? If so, we're done */ 2874 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2875 struct task_struct *push_task = NULL; 2876 2877 if ((flags & SCA_MIGRATE_ENABLE) && 2878 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2879 rq->push_busy = true; 2880 push_task = get_task_struct(p); 2881 } 2882 2883 /* 2884 * If there are pending waiters, but no pending stop_work, 2885 * then complete now. 2886 */ 2887 pending = p->migration_pending; 2888 if (pending && !pending->stop_pending) { 2889 p->migration_pending = NULL; 2890 complete = true; 2891 } 2892 2893 preempt_disable(); 2894 task_rq_unlock(rq, p, rf); 2895 if (push_task) { 2896 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2897 p, &rq->push_work); 2898 } 2899 preempt_enable(); 2900 2901 if (complete) 2902 complete_all(&pending->done); 2903 2904 return 0; 2905 } 2906 2907 if (!(flags & SCA_MIGRATE_ENABLE)) { 2908 /* serialized by p->pi_lock */ 2909 if (!p->migration_pending) { 2910 /* Install the request */ 2911 refcount_set(&my_pending.refs, 1); 2912 init_completion(&my_pending.done); 2913 my_pending.arg = (struct migration_arg) { 2914 .task = p, 2915 .dest_cpu = dest_cpu, 2916 .pending = &my_pending, 2917 }; 2918 2919 p->migration_pending = &my_pending; 2920 } else { 2921 pending = p->migration_pending; 2922 refcount_inc(&pending->refs); 2923 /* 2924 * Affinity has changed, but we've already installed a 2925 * pending. migration_cpu_stop() *must* see this, else 2926 * we risk a completion of the pending despite having a 2927 * task on a disallowed CPU. 2928 * 2929 * Serialized by p->pi_lock, so this is safe. 2930 */ 2931 pending->arg.dest_cpu = dest_cpu; 2932 } 2933 } 2934 pending = p->migration_pending; 2935 /* 2936 * - !MIGRATE_ENABLE: 2937 * we'll have installed a pending if there wasn't one already. 2938 * 2939 * - MIGRATE_ENABLE: 2940 * we're here because the current CPU isn't matching anymore, 2941 * the only way that can happen is because of a concurrent 2942 * set_cpus_allowed_ptr() call, which should then still be 2943 * pending completion. 2944 * 2945 * Either way, we really should have a @pending here. 2946 */ 2947 if (WARN_ON_ONCE(!pending)) { 2948 task_rq_unlock(rq, p, rf); 2949 return -EINVAL; 2950 } 2951 2952 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2953 /* 2954 * MIGRATE_ENABLE gets here because 'p == current', but for 2955 * anything else we cannot do is_migration_disabled(), punt 2956 * and have the stopper function handle it all race-free. 2957 */ 2958 stop_pending = pending->stop_pending; 2959 if (!stop_pending) 2960 pending->stop_pending = true; 2961 2962 if (flags & SCA_MIGRATE_ENABLE) 2963 p->migration_flags &= ~MDF_PUSH; 2964 2965 preempt_disable(); 2966 task_rq_unlock(rq, p, rf); 2967 if (!stop_pending) { 2968 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2969 &pending->arg, &pending->stop_work); 2970 } 2971 preempt_enable(); 2972 2973 if (flags & SCA_MIGRATE_ENABLE) 2974 return 0; 2975 } else { 2976 2977 if (!is_migration_disabled(p)) { 2978 if (task_on_rq_queued(p)) 2979 rq = move_queued_task(rq, rf, p, dest_cpu); 2980 2981 if (!pending->stop_pending) { 2982 p->migration_pending = NULL; 2983 complete = true; 2984 } 2985 } 2986 task_rq_unlock(rq, p, rf); 2987 2988 if (complete) 2989 complete_all(&pending->done); 2990 } 2991 2992 wait_for_completion(&pending->done); 2993 2994 if (refcount_dec_and_test(&pending->refs)) 2995 wake_up_var(&pending->refs); /* No UaF, just an address */ 2996 2997 /* 2998 * Block the original owner of &pending until all subsequent callers 2999 * have seen the completion and decremented the refcount 3000 */ 3001 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3002 3003 /* ARGH */ 3004 WARN_ON_ONCE(my_pending.stop_pending); 3005 3006 return 0; 3007 } 3008 3009 /* 3010 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3011 */ 3012 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3013 struct affinity_context *ctx, 3014 struct rq *rq, 3015 struct rq_flags *rf) 3016 __releases(rq->lock) 3017 __releases(p->pi_lock) 3018 { 3019 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3020 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3021 bool kthread = p->flags & PF_KTHREAD; 3022 unsigned int dest_cpu; 3023 int ret = 0; 3024 3025 update_rq_clock(rq); 3026 3027 if (kthread || is_migration_disabled(p)) { 3028 /* 3029 * Kernel threads are allowed on online && !active CPUs, 3030 * however, during cpu-hot-unplug, even these might get pushed 3031 * away if not KTHREAD_IS_PER_CPU. 3032 * 3033 * Specifically, migration_disabled() tasks must not fail the 3034 * cpumask_any_and_distribute() pick below, esp. so on 3035 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3036 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3037 */ 3038 cpu_valid_mask = cpu_online_mask; 3039 } 3040 3041 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3042 ret = -EINVAL; 3043 goto out; 3044 } 3045 3046 /* 3047 * Must re-check here, to close a race against __kthread_bind(), 3048 * sched_setaffinity() is not guaranteed to observe the flag. 3049 */ 3050 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3051 ret = -EINVAL; 3052 goto out; 3053 } 3054 3055 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3056 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3057 if (ctx->flags & SCA_USER) 3058 swap(p->user_cpus_ptr, ctx->user_mask); 3059 goto out; 3060 } 3061 3062 if (WARN_ON_ONCE(p == current && 3063 is_migration_disabled(p) && 3064 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3065 ret = -EBUSY; 3066 goto out; 3067 } 3068 } 3069 3070 /* 3071 * Picking a ~random cpu helps in cases where we are changing affinity 3072 * for groups of tasks (ie. cpuset), so that load balancing is not 3073 * immediately required to distribute the tasks within their new mask. 3074 */ 3075 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3076 if (dest_cpu >= nr_cpu_ids) { 3077 ret = -EINVAL; 3078 goto out; 3079 } 3080 3081 __do_set_cpus_allowed(p, ctx); 3082 3083 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3084 3085 out: 3086 task_rq_unlock(rq, p, rf); 3087 3088 return ret; 3089 } 3090 3091 /* 3092 * Change a given task's CPU affinity. Migrate the thread to a 3093 * proper CPU and schedule it away if the CPU it's executing on 3094 * is removed from the allowed bitmask. 3095 * 3096 * NOTE: the caller must have a valid reference to the task, the 3097 * task must not exit() & deallocate itself prematurely. The 3098 * call is not atomic; no spinlocks may be held. 3099 */ 3100 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3101 { 3102 struct rq_flags rf; 3103 struct rq *rq; 3104 3105 rq = task_rq_lock(p, &rf); 3106 /* 3107 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3108 * flags are set. 3109 */ 3110 if (p->user_cpus_ptr && 3111 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3112 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3113 ctx->new_mask = rq->scratch_mask; 3114 3115 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3116 } 3117 3118 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3119 { 3120 struct affinity_context ac = { 3121 .new_mask = new_mask, 3122 .flags = 0, 3123 }; 3124 3125 return __set_cpus_allowed_ptr(p, &ac); 3126 } 3127 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3128 3129 /* 3130 * Change a given task's CPU affinity to the intersection of its current 3131 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3132 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3133 * affinity or use cpu_online_mask instead. 3134 * 3135 * If the resulting mask is empty, leave the affinity unchanged and return 3136 * -EINVAL. 3137 */ 3138 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3139 struct cpumask *new_mask, 3140 const struct cpumask *subset_mask) 3141 { 3142 struct affinity_context ac = { 3143 .new_mask = new_mask, 3144 .flags = 0, 3145 }; 3146 struct rq_flags rf; 3147 struct rq *rq; 3148 int err; 3149 3150 rq = task_rq_lock(p, &rf); 3151 3152 /* 3153 * Forcefully restricting the affinity of a deadline task is 3154 * likely to cause problems, so fail and noisily override the 3155 * mask entirely. 3156 */ 3157 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3158 err = -EPERM; 3159 goto err_unlock; 3160 } 3161 3162 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3163 err = -EINVAL; 3164 goto err_unlock; 3165 } 3166 3167 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3168 3169 err_unlock: 3170 task_rq_unlock(rq, p, &rf); 3171 return err; 3172 } 3173 3174 /* 3175 * Restrict the CPU affinity of task @p so that it is a subset of 3176 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3177 * old affinity mask. If the resulting mask is empty, we warn and walk 3178 * up the cpuset hierarchy until we find a suitable mask. 3179 */ 3180 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3181 { 3182 cpumask_var_t new_mask; 3183 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3184 3185 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3186 3187 /* 3188 * __migrate_task() can fail silently in the face of concurrent 3189 * offlining of the chosen destination CPU, so take the hotplug 3190 * lock to ensure that the migration succeeds. 3191 */ 3192 cpus_read_lock(); 3193 if (!cpumask_available(new_mask)) 3194 goto out_set_mask; 3195 3196 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3197 goto out_free_mask; 3198 3199 /* 3200 * We failed to find a valid subset of the affinity mask for the 3201 * task, so override it based on its cpuset hierarchy. 3202 */ 3203 cpuset_cpus_allowed(p, new_mask); 3204 override_mask = new_mask; 3205 3206 out_set_mask: 3207 if (printk_ratelimit()) { 3208 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3209 task_pid_nr(p), p->comm, 3210 cpumask_pr_args(override_mask)); 3211 } 3212 3213 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3214 out_free_mask: 3215 cpus_read_unlock(); 3216 free_cpumask_var(new_mask); 3217 } 3218 3219 /* 3220 * Restore the affinity of a task @p which was previously restricted by a 3221 * call to force_compatible_cpus_allowed_ptr(). 3222 * 3223 * It is the caller's responsibility to serialise this with any calls to 3224 * force_compatible_cpus_allowed_ptr(@p). 3225 */ 3226 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3227 { 3228 struct affinity_context ac = { 3229 .new_mask = task_user_cpus(p), 3230 .flags = 0, 3231 }; 3232 int ret; 3233 3234 /* 3235 * Try to restore the old affinity mask with __sched_setaffinity(). 3236 * Cpuset masking will be done there too. 3237 */ 3238 ret = __sched_setaffinity(p, &ac); 3239 WARN_ON_ONCE(ret); 3240 } 3241 3242 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3243 { 3244 #ifdef CONFIG_SCHED_DEBUG 3245 unsigned int state = READ_ONCE(p->__state); 3246 3247 /* 3248 * We should never call set_task_cpu() on a blocked task, 3249 * ttwu() will sort out the placement. 3250 */ 3251 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3252 3253 /* 3254 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3255 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3256 * time relying on p->on_rq. 3257 */ 3258 WARN_ON_ONCE(state == TASK_RUNNING && 3259 p->sched_class == &fair_sched_class && 3260 (p->on_rq && !task_on_rq_migrating(p))); 3261 3262 #ifdef CONFIG_LOCKDEP 3263 /* 3264 * The caller should hold either p->pi_lock or rq->lock, when changing 3265 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3266 * 3267 * sched_move_task() holds both and thus holding either pins the cgroup, 3268 * see task_group(). 3269 * 3270 * Furthermore, all task_rq users should acquire both locks, see 3271 * task_rq_lock(). 3272 */ 3273 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3274 lockdep_is_held(__rq_lockp(task_rq(p))))); 3275 #endif 3276 /* 3277 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3278 */ 3279 WARN_ON_ONCE(!cpu_online(new_cpu)); 3280 3281 WARN_ON_ONCE(is_migration_disabled(p)); 3282 #endif 3283 3284 trace_sched_migrate_task(p, new_cpu); 3285 3286 if (task_cpu(p) != new_cpu) { 3287 if (p->sched_class->migrate_task_rq) 3288 p->sched_class->migrate_task_rq(p, new_cpu); 3289 p->se.nr_migrations++; 3290 rseq_migrate(p); 3291 sched_mm_cid_migrate_from(p); 3292 perf_event_task_migrate(p); 3293 } 3294 3295 __set_task_cpu(p, new_cpu); 3296 } 3297 3298 #ifdef CONFIG_NUMA_BALANCING 3299 static void __migrate_swap_task(struct task_struct *p, int cpu) 3300 { 3301 if (task_on_rq_queued(p)) { 3302 struct rq *src_rq, *dst_rq; 3303 struct rq_flags srf, drf; 3304 3305 src_rq = task_rq(p); 3306 dst_rq = cpu_rq(cpu); 3307 3308 rq_pin_lock(src_rq, &srf); 3309 rq_pin_lock(dst_rq, &drf); 3310 3311 deactivate_task(src_rq, p, 0); 3312 set_task_cpu(p, cpu); 3313 activate_task(dst_rq, p, 0); 3314 wakeup_preempt(dst_rq, p, 0); 3315 3316 rq_unpin_lock(dst_rq, &drf); 3317 rq_unpin_lock(src_rq, &srf); 3318 3319 } else { 3320 /* 3321 * Task isn't running anymore; make it appear like we migrated 3322 * it before it went to sleep. This means on wakeup we make the 3323 * previous CPU our target instead of where it really is. 3324 */ 3325 p->wake_cpu = cpu; 3326 } 3327 } 3328 3329 struct migration_swap_arg { 3330 struct task_struct *src_task, *dst_task; 3331 int src_cpu, dst_cpu; 3332 }; 3333 3334 static int migrate_swap_stop(void *data) 3335 { 3336 struct migration_swap_arg *arg = data; 3337 struct rq *src_rq, *dst_rq; 3338 3339 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3340 return -EAGAIN; 3341 3342 src_rq = cpu_rq(arg->src_cpu); 3343 dst_rq = cpu_rq(arg->dst_cpu); 3344 3345 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3346 guard(double_rq_lock)(src_rq, dst_rq); 3347 3348 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3349 return -EAGAIN; 3350 3351 if (task_cpu(arg->src_task) != arg->src_cpu) 3352 return -EAGAIN; 3353 3354 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3355 return -EAGAIN; 3356 3357 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3358 return -EAGAIN; 3359 3360 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3361 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3362 3363 return 0; 3364 } 3365 3366 /* 3367 * Cross migrate two tasks 3368 */ 3369 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3370 int target_cpu, int curr_cpu) 3371 { 3372 struct migration_swap_arg arg; 3373 int ret = -EINVAL; 3374 3375 arg = (struct migration_swap_arg){ 3376 .src_task = cur, 3377 .src_cpu = curr_cpu, 3378 .dst_task = p, 3379 .dst_cpu = target_cpu, 3380 }; 3381 3382 if (arg.src_cpu == arg.dst_cpu) 3383 goto out; 3384 3385 /* 3386 * These three tests are all lockless; this is OK since all of them 3387 * will be re-checked with proper locks held further down the line. 3388 */ 3389 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3390 goto out; 3391 3392 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3393 goto out; 3394 3395 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3396 goto out; 3397 3398 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3399 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3400 3401 out: 3402 return ret; 3403 } 3404 #endif /* CONFIG_NUMA_BALANCING */ 3405 3406 /*** 3407 * kick_process - kick a running thread to enter/exit the kernel 3408 * @p: the to-be-kicked thread 3409 * 3410 * Cause a process which is running on another CPU to enter 3411 * kernel-mode, without any delay. (to get signals handled.) 3412 * 3413 * NOTE: this function doesn't have to take the runqueue lock, 3414 * because all it wants to ensure is that the remote task enters 3415 * the kernel. If the IPI races and the task has been migrated 3416 * to another CPU then no harm is done and the purpose has been 3417 * achieved as well. 3418 */ 3419 void kick_process(struct task_struct *p) 3420 { 3421 guard(preempt)(); 3422 int cpu = task_cpu(p); 3423 3424 if ((cpu != smp_processor_id()) && task_curr(p)) 3425 smp_send_reschedule(cpu); 3426 } 3427 EXPORT_SYMBOL_GPL(kick_process); 3428 3429 /* 3430 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3431 * 3432 * A few notes on cpu_active vs cpu_online: 3433 * 3434 * - cpu_active must be a subset of cpu_online 3435 * 3436 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3437 * see __set_cpus_allowed_ptr(). At this point the newly online 3438 * CPU isn't yet part of the sched domains, and balancing will not 3439 * see it. 3440 * 3441 * - on CPU-down we clear cpu_active() to mask the sched domains and 3442 * avoid the load balancer to place new tasks on the to be removed 3443 * CPU. Existing tasks will remain running there and will be taken 3444 * off. 3445 * 3446 * This means that fallback selection must not select !active CPUs. 3447 * And can assume that any active CPU must be online. Conversely 3448 * select_task_rq() below may allow selection of !active CPUs in order 3449 * to satisfy the above rules. 3450 */ 3451 static int select_fallback_rq(int cpu, struct task_struct *p) 3452 { 3453 int nid = cpu_to_node(cpu); 3454 const struct cpumask *nodemask = NULL; 3455 enum { cpuset, possible, fail } state = cpuset; 3456 int dest_cpu; 3457 3458 /* 3459 * If the node that the CPU is on has been offlined, cpu_to_node() 3460 * will return -1. There is no CPU on the node, and we should 3461 * select the CPU on the other node. 3462 */ 3463 if (nid != -1) { 3464 nodemask = cpumask_of_node(nid); 3465 3466 /* Look for allowed, online CPU in same node. */ 3467 for_each_cpu(dest_cpu, nodemask) { 3468 if (is_cpu_allowed(p, dest_cpu)) 3469 return dest_cpu; 3470 } 3471 } 3472 3473 for (;;) { 3474 /* Any allowed, online CPU? */ 3475 for_each_cpu(dest_cpu, p->cpus_ptr) { 3476 if (!is_cpu_allowed(p, dest_cpu)) 3477 continue; 3478 3479 goto out; 3480 } 3481 3482 /* No more Mr. Nice Guy. */ 3483 switch (state) { 3484 case cpuset: 3485 if (cpuset_cpus_allowed_fallback(p)) { 3486 state = possible; 3487 break; 3488 } 3489 fallthrough; 3490 case possible: 3491 /* 3492 * XXX When called from select_task_rq() we only 3493 * hold p->pi_lock and again violate locking order. 3494 * 3495 * More yuck to audit. 3496 */ 3497 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3498 state = fail; 3499 break; 3500 case fail: 3501 BUG(); 3502 break; 3503 } 3504 } 3505 3506 out: 3507 if (state != cpuset) { 3508 /* 3509 * Don't tell them about moving exiting tasks or 3510 * kernel threads (both mm NULL), since they never 3511 * leave kernel. 3512 */ 3513 if (p->mm && printk_ratelimit()) { 3514 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3515 task_pid_nr(p), p->comm, cpu); 3516 } 3517 } 3518 3519 return dest_cpu; 3520 } 3521 3522 /* 3523 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3524 */ 3525 static inline 3526 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3527 { 3528 lockdep_assert_held(&p->pi_lock); 3529 3530 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3531 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3532 *wake_flags |= WF_RQ_SELECTED; 3533 } else { 3534 cpu = cpumask_any(p->cpus_ptr); 3535 } 3536 3537 /* 3538 * In order not to call set_task_cpu() on a blocking task we need 3539 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3540 * CPU. 3541 * 3542 * Since this is common to all placement strategies, this lives here. 3543 * 3544 * [ this allows ->select_task() to simply return task_cpu(p) and 3545 * not worry about this generic constraint ] 3546 */ 3547 if (unlikely(!is_cpu_allowed(p, cpu))) 3548 cpu = select_fallback_rq(task_cpu(p), p); 3549 3550 return cpu; 3551 } 3552 3553 void sched_set_stop_task(int cpu, struct task_struct *stop) 3554 { 3555 static struct lock_class_key stop_pi_lock; 3556 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3557 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3558 3559 if (stop) { 3560 /* 3561 * Make it appear like a SCHED_FIFO task, its something 3562 * userspace knows about and won't get confused about. 3563 * 3564 * Also, it will make PI more or less work without too 3565 * much confusion -- but then, stop work should not 3566 * rely on PI working anyway. 3567 */ 3568 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3569 3570 stop->sched_class = &stop_sched_class; 3571 3572 /* 3573 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3574 * adjust the effective priority of a task. As a result, 3575 * rt_mutex_setprio() can trigger (RT) balancing operations, 3576 * which can then trigger wakeups of the stop thread to push 3577 * around the current task. 3578 * 3579 * The stop task itself will never be part of the PI-chain, it 3580 * never blocks, therefore that ->pi_lock recursion is safe. 3581 * Tell lockdep about this by placing the stop->pi_lock in its 3582 * own class. 3583 */ 3584 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3585 } 3586 3587 cpu_rq(cpu)->stop = stop; 3588 3589 if (old_stop) { 3590 /* 3591 * Reset it back to a normal scheduling class so that 3592 * it can die in pieces. 3593 */ 3594 old_stop->sched_class = &rt_sched_class; 3595 } 3596 } 3597 3598 #else /* CONFIG_SMP */ 3599 3600 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3601 3602 static inline bool rq_has_pinned_tasks(struct rq *rq) 3603 { 3604 return false; 3605 } 3606 3607 #endif /* !CONFIG_SMP */ 3608 3609 static void 3610 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3611 { 3612 struct rq *rq; 3613 3614 if (!schedstat_enabled()) 3615 return; 3616 3617 rq = this_rq(); 3618 3619 #ifdef CONFIG_SMP 3620 if (cpu == rq->cpu) { 3621 __schedstat_inc(rq->ttwu_local); 3622 __schedstat_inc(p->stats.nr_wakeups_local); 3623 } else { 3624 struct sched_domain *sd; 3625 3626 __schedstat_inc(p->stats.nr_wakeups_remote); 3627 3628 guard(rcu)(); 3629 for_each_domain(rq->cpu, sd) { 3630 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3631 __schedstat_inc(sd->ttwu_wake_remote); 3632 break; 3633 } 3634 } 3635 } 3636 3637 if (wake_flags & WF_MIGRATED) 3638 __schedstat_inc(p->stats.nr_wakeups_migrate); 3639 #endif /* CONFIG_SMP */ 3640 3641 __schedstat_inc(rq->ttwu_count); 3642 __schedstat_inc(p->stats.nr_wakeups); 3643 3644 if (wake_flags & WF_SYNC) 3645 __schedstat_inc(p->stats.nr_wakeups_sync); 3646 } 3647 3648 /* 3649 * Mark the task runnable. 3650 */ 3651 static inline void ttwu_do_wakeup(struct task_struct *p) 3652 { 3653 WRITE_ONCE(p->__state, TASK_RUNNING); 3654 trace_sched_wakeup(p); 3655 } 3656 3657 static void 3658 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3659 struct rq_flags *rf) 3660 { 3661 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3662 3663 lockdep_assert_rq_held(rq); 3664 3665 if (p->sched_contributes_to_load) 3666 rq->nr_uninterruptible--; 3667 3668 #ifdef CONFIG_SMP 3669 if (wake_flags & WF_RQ_SELECTED) 3670 en_flags |= ENQUEUE_RQ_SELECTED; 3671 if (wake_flags & WF_MIGRATED) 3672 en_flags |= ENQUEUE_MIGRATED; 3673 else 3674 #endif 3675 if (p->in_iowait) { 3676 delayacct_blkio_end(p); 3677 atomic_dec(&task_rq(p)->nr_iowait); 3678 } 3679 3680 activate_task(rq, p, en_flags); 3681 wakeup_preempt(rq, p, wake_flags); 3682 3683 ttwu_do_wakeup(p); 3684 3685 #ifdef CONFIG_SMP 3686 if (p->sched_class->task_woken) { 3687 /* 3688 * Our task @p is fully woken up and running; so it's safe to 3689 * drop the rq->lock, hereafter rq is only used for statistics. 3690 */ 3691 rq_unpin_lock(rq, rf); 3692 p->sched_class->task_woken(rq, p); 3693 rq_repin_lock(rq, rf); 3694 } 3695 3696 if (rq->idle_stamp) { 3697 u64 delta = rq_clock(rq) - rq->idle_stamp; 3698 u64 max = 2*rq->max_idle_balance_cost; 3699 3700 update_avg(&rq->avg_idle, delta); 3701 3702 if (rq->avg_idle > max) 3703 rq->avg_idle = max; 3704 3705 rq->idle_stamp = 0; 3706 } 3707 #endif 3708 } 3709 3710 /* 3711 * Consider @p being inside a wait loop: 3712 * 3713 * for (;;) { 3714 * set_current_state(TASK_UNINTERRUPTIBLE); 3715 * 3716 * if (CONDITION) 3717 * break; 3718 * 3719 * schedule(); 3720 * } 3721 * __set_current_state(TASK_RUNNING); 3722 * 3723 * between set_current_state() and schedule(). In this case @p is still 3724 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3725 * an atomic manner. 3726 * 3727 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3728 * then schedule() must still happen and p->state can be changed to 3729 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3730 * need to do a full wakeup with enqueue. 3731 * 3732 * Returns: %true when the wakeup is done, 3733 * %false otherwise. 3734 */ 3735 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3736 { 3737 struct rq_flags rf; 3738 struct rq *rq; 3739 int ret = 0; 3740 3741 rq = __task_rq_lock(p, &rf); 3742 if (task_on_rq_queued(p)) { 3743 update_rq_clock(rq); 3744 if (p->se.sched_delayed) 3745 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3746 if (!task_on_cpu(rq, p)) { 3747 /* 3748 * When on_rq && !on_cpu the task is preempted, see if 3749 * it should preempt the task that is current now. 3750 */ 3751 wakeup_preempt(rq, p, wake_flags); 3752 } 3753 ttwu_do_wakeup(p); 3754 ret = 1; 3755 } 3756 __task_rq_unlock(rq, &rf); 3757 3758 return ret; 3759 } 3760 3761 #ifdef CONFIG_SMP 3762 void sched_ttwu_pending(void *arg) 3763 { 3764 struct llist_node *llist = arg; 3765 struct rq *rq = this_rq(); 3766 struct task_struct *p, *t; 3767 struct rq_flags rf; 3768 3769 if (!llist) 3770 return; 3771 3772 rq_lock_irqsave(rq, &rf); 3773 update_rq_clock(rq); 3774 3775 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3776 if (WARN_ON_ONCE(p->on_cpu)) 3777 smp_cond_load_acquire(&p->on_cpu, !VAL); 3778 3779 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3780 set_task_cpu(p, cpu_of(rq)); 3781 3782 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3783 } 3784 3785 /* 3786 * Must be after enqueueing at least once task such that 3787 * idle_cpu() does not observe a false-negative -- if it does, 3788 * it is possible for select_idle_siblings() to stack a number 3789 * of tasks on this CPU during that window. 3790 * 3791 * It is OK to clear ttwu_pending when another task pending. 3792 * We will receive IPI after local IRQ enabled and then enqueue it. 3793 * Since now nr_running > 0, idle_cpu() will always get correct result. 3794 */ 3795 WRITE_ONCE(rq->ttwu_pending, 0); 3796 rq_unlock_irqrestore(rq, &rf); 3797 } 3798 3799 /* 3800 * Prepare the scene for sending an IPI for a remote smp_call 3801 * 3802 * Returns true if the caller can proceed with sending the IPI. 3803 * Returns false otherwise. 3804 */ 3805 bool call_function_single_prep_ipi(int cpu) 3806 { 3807 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3808 trace_sched_wake_idle_without_ipi(cpu); 3809 return false; 3810 } 3811 3812 return true; 3813 } 3814 3815 /* 3816 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3817 * necessary. The wakee CPU on receipt of the IPI will queue the task 3818 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3819 * of the wakeup instead of the waker. 3820 */ 3821 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3822 { 3823 struct rq *rq = cpu_rq(cpu); 3824 3825 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3826 3827 WRITE_ONCE(rq->ttwu_pending, 1); 3828 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3829 } 3830 3831 void wake_up_if_idle(int cpu) 3832 { 3833 struct rq *rq = cpu_rq(cpu); 3834 3835 guard(rcu)(); 3836 if (is_idle_task(rcu_dereference(rq->curr))) { 3837 guard(rq_lock_irqsave)(rq); 3838 if (is_idle_task(rq->curr)) 3839 resched_curr(rq); 3840 } 3841 } 3842 3843 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3844 { 3845 if (!sched_asym_cpucap_active()) 3846 return true; 3847 3848 if (this_cpu == that_cpu) 3849 return true; 3850 3851 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3852 } 3853 3854 bool cpus_share_cache(int this_cpu, int that_cpu) 3855 { 3856 if (this_cpu == that_cpu) 3857 return true; 3858 3859 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3860 } 3861 3862 /* 3863 * Whether CPUs are share cache resources, which means LLC on non-cluster 3864 * machines and LLC tag or L2 on machines with clusters. 3865 */ 3866 bool cpus_share_resources(int this_cpu, int that_cpu) 3867 { 3868 if (this_cpu == that_cpu) 3869 return true; 3870 3871 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3872 } 3873 3874 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3875 { 3876 /* 3877 * The BPF scheduler may depend on select_task_rq() being invoked during 3878 * wakeups. In addition, @p may end up executing on a different CPU 3879 * regardless of what happens in the wakeup path making the ttwu_queue 3880 * optimization less meaningful. Skip if on SCX. 3881 */ 3882 if (task_on_scx(p)) 3883 return false; 3884 3885 /* 3886 * Do not complicate things with the async wake_list while the CPU is 3887 * in hotplug state. 3888 */ 3889 if (!cpu_active(cpu)) 3890 return false; 3891 3892 /* Ensure the task will still be allowed to run on the CPU. */ 3893 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3894 return false; 3895 3896 /* 3897 * If the CPU does not share cache, then queue the task on the 3898 * remote rqs wakelist to avoid accessing remote data. 3899 */ 3900 if (!cpus_share_cache(smp_processor_id(), cpu)) 3901 return true; 3902 3903 if (cpu == smp_processor_id()) 3904 return false; 3905 3906 /* 3907 * If the wakee cpu is idle, or the task is descheduling and the 3908 * only running task on the CPU, then use the wakelist to offload 3909 * the task activation to the idle (or soon-to-be-idle) CPU as 3910 * the current CPU is likely busy. nr_running is checked to 3911 * avoid unnecessary task stacking. 3912 * 3913 * Note that we can only get here with (wakee) p->on_rq=0, 3914 * p->on_cpu can be whatever, we've done the dequeue, so 3915 * the wakee has been accounted out of ->nr_running. 3916 */ 3917 if (!cpu_rq(cpu)->nr_running) 3918 return true; 3919 3920 return false; 3921 } 3922 3923 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3924 { 3925 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3926 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3927 __ttwu_queue_wakelist(p, cpu, wake_flags); 3928 return true; 3929 } 3930 3931 return false; 3932 } 3933 3934 #else /* !CONFIG_SMP */ 3935 3936 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3937 { 3938 return false; 3939 } 3940 3941 #endif /* CONFIG_SMP */ 3942 3943 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3944 { 3945 struct rq *rq = cpu_rq(cpu); 3946 struct rq_flags rf; 3947 3948 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3949 return; 3950 3951 rq_lock(rq, &rf); 3952 update_rq_clock(rq); 3953 ttwu_do_activate(rq, p, wake_flags, &rf); 3954 rq_unlock(rq, &rf); 3955 } 3956 3957 /* 3958 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3959 * 3960 * The caller holds p::pi_lock if p != current or has preemption 3961 * disabled when p == current. 3962 * 3963 * The rules of saved_state: 3964 * 3965 * The related locking code always holds p::pi_lock when updating 3966 * p::saved_state, which means the code is fully serialized in both cases. 3967 * 3968 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3969 * No other bits set. This allows to distinguish all wakeup scenarios. 3970 * 3971 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3972 * allows us to prevent early wakeup of tasks before they can be run on 3973 * asymmetric ISA architectures (eg ARMv9). 3974 */ 3975 static __always_inline 3976 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3977 { 3978 int match; 3979 3980 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3981 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3982 state != TASK_RTLOCK_WAIT); 3983 } 3984 3985 *success = !!(match = __task_state_match(p, state)); 3986 3987 /* 3988 * Saved state preserves the task state across blocking on 3989 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3990 * set p::saved_state to TASK_RUNNING, but do not wake the task 3991 * because it waits for a lock wakeup or __thaw_task(). Also 3992 * indicate success because from the regular waker's point of 3993 * view this has succeeded. 3994 * 3995 * After acquiring the lock the task will restore p::__state 3996 * from p::saved_state which ensures that the regular 3997 * wakeup is not lost. The restore will also set 3998 * p::saved_state to TASK_RUNNING so any further tests will 3999 * not result in false positives vs. @success 4000 */ 4001 if (match < 0) 4002 p->saved_state = TASK_RUNNING; 4003 4004 return match > 0; 4005 } 4006 4007 /* 4008 * Notes on Program-Order guarantees on SMP systems. 4009 * 4010 * MIGRATION 4011 * 4012 * The basic program-order guarantee on SMP systems is that when a task [t] 4013 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4014 * execution on its new CPU [c1]. 4015 * 4016 * For migration (of runnable tasks) this is provided by the following means: 4017 * 4018 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4019 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4020 * rq(c1)->lock (if not at the same time, then in that order). 4021 * C) LOCK of the rq(c1)->lock scheduling in task 4022 * 4023 * Release/acquire chaining guarantees that B happens after A and C after B. 4024 * Note: the CPU doing B need not be c0 or c1 4025 * 4026 * Example: 4027 * 4028 * CPU0 CPU1 CPU2 4029 * 4030 * LOCK rq(0)->lock 4031 * sched-out X 4032 * sched-in Y 4033 * UNLOCK rq(0)->lock 4034 * 4035 * LOCK rq(0)->lock // orders against CPU0 4036 * dequeue X 4037 * UNLOCK rq(0)->lock 4038 * 4039 * LOCK rq(1)->lock 4040 * enqueue X 4041 * UNLOCK rq(1)->lock 4042 * 4043 * LOCK rq(1)->lock // orders against CPU2 4044 * sched-out Z 4045 * sched-in X 4046 * UNLOCK rq(1)->lock 4047 * 4048 * 4049 * BLOCKING -- aka. SLEEP + WAKEUP 4050 * 4051 * For blocking we (obviously) need to provide the same guarantee as for 4052 * migration. However the means are completely different as there is no lock 4053 * chain to provide order. Instead we do: 4054 * 4055 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4056 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4057 * 4058 * Example: 4059 * 4060 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4061 * 4062 * LOCK rq(0)->lock LOCK X->pi_lock 4063 * dequeue X 4064 * sched-out X 4065 * smp_store_release(X->on_cpu, 0); 4066 * 4067 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4068 * X->state = WAKING 4069 * set_task_cpu(X,2) 4070 * 4071 * LOCK rq(2)->lock 4072 * enqueue X 4073 * X->state = RUNNING 4074 * UNLOCK rq(2)->lock 4075 * 4076 * LOCK rq(2)->lock // orders against CPU1 4077 * sched-out Z 4078 * sched-in X 4079 * UNLOCK rq(2)->lock 4080 * 4081 * UNLOCK X->pi_lock 4082 * UNLOCK rq(0)->lock 4083 * 4084 * 4085 * However, for wakeups there is a second guarantee we must provide, namely we 4086 * must ensure that CONDITION=1 done by the caller can not be reordered with 4087 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4088 */ 4089 4090 /** 4091 * try_to_wake_up - wake up a thread 4092 * @p: the thread to be awakened 4093 * @state: the mask of task states that can be woken 4094 * @wake_flags: wake modifier flags (WF_*) 4095 * 4096 * Conceptually does: 4097 * 4098 * If (@state & @p->state) @p->state = TASK_RUNNING. 4099 * 4100 * If the task was not queued/runnable, also place it back on a runqueue. 4101 * 4102 * This function is atomic against schedule() which would dequeue the task. 4103 * 4104 * It issues a full memory barrier before accessing @p->state, see the comment 4105 * with set_current_state(). 4106 * 4107 * Uses p->pi_lock to serialize against concurrent wake-ups. 4108 * 4109 * Relies on p->pi_lock stabilizing: 4110 * - p->sched_class 4111 * - p->cpus_ptr 4112 * - p->sched_task_group 4113 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4114 * 4115 * Tries really hard to only take one task_rq(p)->lock for performance. 4116 * Takes rq->lock in: 4117 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4118 * - ttwu_queue() -- new rq, for enqueue of the task; 4119 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4120 * 4121 * As a consequence we race really badly with just about everything. See the 4122 * many memory barriers and their comments for details. 4123 * 4124 * Return: %true if @p->state changes (an actual wakeup was done), 4125 * %false otherwise. 4126 */ 4127 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4128 { 4129 guard(preempt)(); 4130 int cpu, success = 0; 4131 4132 wake_flags |= WF_TTWU; 4133 4134 if (p == current) { 4135 /* 4136 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4137 * == smp_processor_id()'. Together this means we can special 4138 * case the whole 'p->on_rq && ttwu_runnable()' case below 4139 * without taking any locks. 4140 * 4141 * Specifically, given current runs ttwu() we must be before 4142 * schedule()'s block_task(), as such this must not observe 4143 * sched_delayed. 4144 * 4145 * In particular: 4146 * - we rely on Program-Order guarantees for all the ordering, 4147 * - we're serialized against set_special_state() by virtue of 4148 * it disabling IRQs (this allows not taking ->pi_lock). 4149 */ 4150 SCHED_WARN_ON(p->se.sched_delayed); 4151 if (!ttwu_state_match(p, state, &success)) 4152 goto out; 4153 4154 trace_sched_waking(p); 4155 ttwu_do_wakeup(p); 4156 goto out; 4157 } 4158 4159 /* 4160 * If we are going to wake up a thread waiting for CONDITION we 4161 * need to ensure that CONDITION=1 done by the caller can not be 4162 * reordered with p->state check below. This pairs with smp_store_mb() 4163 * in set_current_state() that the waiting thread does. 4164 */ 4165 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4166 smp_mb__after_spinlock(); 4167 if (!ttwu_state_match(p, state, &success)) 4168 break; 4169 4170 trace_sched_waking(p); 4171 4172 /* 4173 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4174 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4175 * in smp_cond_load_acquire() below. 4176 * 4177 * sched_ttwu_pending() try_to_wake_up() 4178 * STORE p->on_rq = 1 LOAD p->state 4179 * UNLOCK rq->lock 4180 * 4181 * __schedule() (switch to task 'p') 4182 * LOCK rq->lock smp_rmb(); 4183 * smp_mb__after_spinlock(); 4184 * UNLOCK rq->lock 4185 * 4186 * [task p] 4187 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4188 * 4189 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4190 * __schedule(). See the comment for smp_mb__after_spinlock(). 4191 * 4192 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4193 */ 4194 smp_rmb(); 4195 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4196 break; 4197 4198 #ifdef CONFIG_SMP 4199 /* 4200 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4201 * possible to, falsely, observe p->on_cpu == 0. 4202 * 4203 * One must be running (->on_cpu == 1) in order to remove oneself 4204 * from the runqueue. 4205 * 4206 * __schedule() (switch to task 'p') try_to_wake_up() 4207 * STORE p->on_cpu = 1 LOAD p->on_rq 4208 * UNLOCK rq->lock 4209 * 4210 * __schedule() (put 'p' to sleep) 4211 * LOCK rq->lock smp_rmb(); 4212 * smp_mb__after_spinlock(); 4213 * STORE p->on_rq = 0 LOAD p->on_cpu 4214 * 4215 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4216 * __schedule(). See the comment for smp_mb__after_spinlock(). 4217 * 4218 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4219 * schedule()'s deactivate_task() has 'happened' and p will no longer 4220 * care about it's own p->state. See the comment in __schedule(). 4221 */ 4222 smp_acquire__after_ctrl_dep(); 4223 4224 /* 4225 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4226 * == 0), which means we need to do an enqueue, change p->state to 4227 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4228 * enqueue, such as ttwu_queue_wakelist(). 4229 */ 4230 WRITE_ONCE(p->__state, TASK_WAKING); 4231 4232 /* 4233 * If the owning (remote) CPU is still in the middle of schedule() with 4234 * this task as prev, considering queueing p on the remote CPUs wake_list 4235 * which potentially sends an IPI instead of spinning on p->on_cpu to 4236 * let the waker make forward progress. This is safe because IRQs are 4237 * disabled and the IPI will deliver after on_cpu is cleared. 4238 * 4239 * Ensure we load task_cpu(p) after p->on_cpu: 4240 * 4241 * set_task_cpu(p, cpu); 4242 * STORE p->cpu = @cpu 4243 * __schedule() (switch to task 'p') 4244 * LOCK rq->lock 4245 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4246 * STORE p->on_cpu = 1 LOAD p->cpu 4247 * 4248 * to ensure we observe the correct CPU on which the task is currently 4249 * scheduling. 4250 */ 4251 if (smp_load_acquire(&p->on_cpu) && 4252 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4253 break; 4254 4255 /* 4256 * If the owning (remote) CPU is still in the middle of schedule() with 4257 * this task as prev, wait until it's done referencing the task. 4258 * 4259 * Pairs with the smp_store_release() in finish_task(). 4260 * 4261 * This ensures that tasks getting woken will be fully ordered against 4262 * their previous state and preserve Program Order. 4263 */ 4264 smp_cond_load_acquire(&p->on_cpu, !VAL); 4265 4266 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4267 if (task_cpu(p) != cpu) { 4268 if (p->in_iowait) { 4269 delayacct_blkio_end(p); 4270 atomic_dec(&task_rq(p)->nr_iowait); 4271 } 4272 4273 wake_flags |= WF_MIGRATED; 4274 psi_ttwu_dequeue(p); 4275 set_task_cpu(p, cpu); 4276 } 4277 #else 4278 cpu = task_cpu(p); 4279 #endif /* CONFIG_SMP */ 4280 4281 ttwu_queue(p, cpu, wake_flags); 4282 } 4283 out: 4284 if (success) 4285 ttwu_stat(p, task_cpu(p), wake_flags); 4286 4287 return success; 4288 } 4289 4290 static bool __task_needs_rq_lock(struct task_struct *p) 4291 { 4292 unsigned int state = READ_ONCE(p->__state); 4293 4294 /* 4295 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4296 * the task is blocked. Make sure to check @state since ttwu() can drop 4297 * locks at the end, see ttwu_queue_wakelist(). 4298 */ 4299 if (state == TASK_RUNNING || state == TASK_WAKING) 4300 return true; 4301 4302 /* 4303 * Ensure we load p->on_rq after p->__state, otherwise it would be 4304 * possible to, falsely, observe p->on_rq == 0. 4305 * 4306 * See try_to_wake_up() for a longer comment. 4307 */ 4308 smp_rmb(); 4309 if (p->on_rq) 4310 return true; 4311 4312 #ifdef CONFIG_SMP 4313 /* 4314 * Ensure the task has finished __schedule() and will not be referenced 4315 * anymore. Again, see try_to_wake_up() for a longer comment. 4316 */ 4317 smp_rmb(); 4318 smp_cond_load_acquire(&p->on_cpu, !VAL); 4319 #endif 4320 4321 return false; 4322 } 4323 4324 /** 4325 * task_call_func - Invoke a function on task in fixed state 4326 * @p: Process for which the function is to be invoked, can be @current. 4327 * @func: Function to invoke. 4328 * @arg: Argument to function. 4329 * 4330 * Fix the task in it's current state by avoiding wakeups and or rq operations 4331 * and call @func(@arg) on it. This function can use task_is_runnable() and 4332 * task_curr() to work out what the state is, if required. Given that @func 4333 * can be invoked with a runqueue lock held, it had better be quite 4334 * lightweight. 4335 * 4336 * Returns: 4337 * Whatever @func returns 4338 */ 4339 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4340 { 4341 struct rq *rq = NULL; 4342 struct rq_flags rf; 4343 int ret; 4344 4345 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4346 4347 if (__task_needs_rq_lock(p)) 4348 rq = __task_rq_lock(p, &rf); 4349 4350 /* 4351 * At this point the task is pinned; either: 4352 * - blocked and we're holding off wakeups (pi->lock) 4353 * - woken, and we're holding off enqueue (rq->lock) 4354 * - queued, and we're holding off schedule (rq->lock) 4355 * - running, and we're holding off de-schedule (rq->lock) 4356 * 4357 * The called function (@func) can use: task_curr(), p->on_rq and 4358 * p->__state to differentiate between these states. 4359 */ 4360 ret = func(p, arg); 4361 4362 if (rq) 4363 rq_unlock(rq, &rf); 4364 4365 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4366 return ret; 4367 } 4368 4369 /** 4370 * cpu_curr_snapshot - Return a snapshot of the currently running task 4371 * @cpu: The CPU on which to snapshot the task. 4372 * 4373 * Returns the task_struct pointer of the task "currently" running on 4374 * the specified CPU. 4375 * 4376 * If the specified CPU was offline, the return value is whatever it 4377 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4378 * task, but there is no guarantee. Callers wishing a useful return 4379 * value must take some action to ensure that the specified CPU remains 4380 * online throughout. 4381 * 4382 * This function executes full memory barriers before and after fetching 4383 * the pointer, which permits the caller to confine this function's fetch 4384 * with respect to the caller's accesses to other shared variables. 4385 */ 4386 struct task_struct *cpu_curr_snapshot(int cpu) 4387 { 4388 struct rq *rq = cpu_rq(cpu); 4389 struct task_struct *t; 4390 struct rq_flags rf; 4391 4392 rq_lock_irqsave(rq, &rf); 4393 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4394 t = rcu_dereference(cpu_curr(cpu)); 4395 rq_unlock_irqrestore(rq, &rf); 4396 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4397 4398 return t; 4399 } 4400 4401 /** 4402 * wake_up_process - Wake up a specific process 4403 * @p: The process to be woken up. 4404 * 4405 * Attempt to wake up the nominated process and move it to the set of runnable 4406 * processes. 4407 * 4408 * Return: 1 if the process was woken up, 0 if it was already running. 4409 * 4410 * This function executes a full memory barrier before accessing the task state. 4411 */ 4412 int wake_up_process(struct task_struct *p) 4413 { 4414 return try_to_wake_up(p, TASK_NORMAL, 0); 4415 } 4416 EXPORT_SYMBOL(wake_up_process); 4417 4418 int wake_up_state(struct task_struct *p, unsigned int state) 4419 { 4420 return try_to_wake_up(p, state, 0); 4421 } 4422 4423 /* 4424 * Perform scheduler related setup for a newly forked process p. 4425 * p is forked by current. 4426 * 4427 * __sched_fork() is basic setup used by init_idle() too: 4428 */ 4429 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4430 { 4431 p->on_rq = 0; 4432 4433 p->se.on_rq = 0; 4434 p->se.exec_start = 0; 4435 p->se.sum_exec_runtime = 0; 4436 p->se.prev_sum_exec_runtime = 0; 4437 p->se.nr_migrations = 0; 4438 p->se.vruntime = 0; 4439 p->se.vlag = 0; 4440 INIT_LIST_HEAD(&p->se.group_node); 4441 4442 /* A delayed task cannot be in clone(). */ 4443 SCHED_WARN_ON(p->se.sched_delayed); 4444 4445 #ifdef CONFIG_FAIR_GROUP_SCHED 4446 p->se.cfs_rq = NULL; 4447 #endif 4448 4449 #ifdef CONFIG_SCHEDSTATS 4450 /* Even if schedstat is disabled, there should not be garbage */ 4451 memset(&p->stats, 0, sizeof(p->stats)); 4452 #endif 4453 4454 init_dl_entity(&p->dl); 4455 4456 INIT_LIST_HEAD(&p->rt.run_list); 4457 p->rt.timeout = 0; 4458 p->rt.time_slice = sched_rr_timeslice; 4459 p->rt.on_rq = 0; 4460 p->rt.on_list = 0; 4461 4462 #ifdef CONFIG_SCHED_CLASS_EXT 4463 init_scx_entity(&p->scx); 4464 #endif 4465 4466 #ifdef CONFIG_PREEMPT_NOTIFIERS 4467 INIT_HLIST_HEAD(&p->preempt_notifiers); 4468 #endif 4469 4470 #ifdef CONFIG_COMPACTION 4471 p->capture_control = NULL; 4472 #endif 4473 init_numa_balancing(clone_flags, p); 4474 #ifdef CONFIG_SMP 4475 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4476 p->migration_pending = NULL; 4477 #endif 4478 init_sched_mm_cid(p); 4479 } 4480 4481 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4482 4483 #ifdef CONFIG_NUMA_BALANCING 4484 4485 int sysctl_numa_balancing_mode; 4486 4487 static void __set_numabalancing_state(bool enabled) 4488 { 4489 if (enabled) 4490 static_branch_enable(&sched_numa_balancing); 4491 else 4492 static_branch_disable(&sched_numa_balancing); 4493 } 4494 4495 void set_numabalancing_state(bool enabled) 4496 { 4497 if (enabled) 4498 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4499 else 4500 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4501 __set_numabalancing_state(enabled); 4502 } 4503 4504 #ifdef CONFIG_PROC_SYSCTL 4505 static void reset_memory_tiering(void) 4506 { 4507 struct pglist_data *pgdat; 4508 4509 for_each_online_pgdat(pgdat) { 4510 pgdat->nbp_threshold = 0; 4511 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4512 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4513 } 4514 } 4515 4516 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4517 void *buffer, size_t *lenp, loff_t *ppos) 4518 { 4519 struct ctl_table t; 4520 int err; 4521 int state = sysctl_numa_balancing_mode; 4522 4523 if (write && !capable(CAP_SYS_ADMIN)) 4524 return -EPERM; 4525 4526 t = *table; 4527 t.data = &state; 4528 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4529 if (err < 0) 4530 return err; 4531 if (write) { 4532 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4533 (state & NUMA_BALANCING_MEMORY_TIERING)) 4534 reset_memory_tiering(); 4535 sysctl_numa_balancing_mode = state; 4536 __set_numabalancing_state(state); 4537 } 4538 return err; 4539 } 4540 #endif 4541 #endif 4542 4543 #ifdef CONFIG_SCHEDSTATS 4544 4545 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4546 4547 static void set_schedstats(bool enabled) 4548 { 4549 if (enabled) 4550 static_branch_enable(&sched_schedstats); 4551 else 4552 static_branch_disable(&sched_schedstats); 4553 } 4554 4555 void force_schedstat_enabled(void) 4556 { 4557 if (!schedstat_enabled()) { 4558 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4559 static_branch_enable(&sched_schedstats); 4560 } 4561 } 4562 4563 static int __init setup_schedstats(char *str) 4564 { 4565 int ret = 0; 4566 if (!str) 4567 goto out; 4568 4569 if (!strcmp(str, "enable")) { 4570 set_schedstats(true); 4571 ret = 1; 4572 } else if (!strcmp(str, "disable")) { 4573 set_schedstats(false); 4574 ret = 1; 4575 } 4576 out: 4577 if (!ret) 4578 pr_warn("Unable to parse schedstats=\n"); 4579 4580 return ret; 4581 } 4582 __setup("schedstats=", setup_schedstats); 4583 4584 #ifdef CONFIG_PROC_SYSCTL 4585 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4586 size_t *lenp, loff_t *ppos) 4587 { 4588 struct ctl_table t; 4589 int err; 4590 int state = static_branch_likely(&sched_schedstats); 4591 4592 if (write && !capable(CAP_SYS_ADMIN)) 4593 return -EPERM; 4594 4595 t = *table; 4596 t.data = &state; 4597 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4598 if (err < 0) 4599 return err; 4600 if (write) 4601 set_schedstats(state); 4602 return err; 4603 } 4604 #endif /* CONFIG_PROC_SYSCTL */ 4605 #endif /* CONFIG_SCHEDSTATS */ 4606 4607 #ifdef CONFIG_SYSCTL 4608 static struct ctl_table sched_core_sysctls[] = { 4609 #ifdef CONFIG_SCHEDSTATS 4610 { 4611 .procname = "sched_schedstats", 4612 .data = NULL, 4613 .maxlen = sizeof(unsigned int), 4614 .mode = 0644, 4615 .proc_handler = sysctl_schedstats, 4616 .extra1 = SYSCTL_ZERO, 4617 .extra2 = SYSCTL_ONE, 4618 }, 4619 #endif /* CONFIG_SCHEDSTATS */ 4620 #ifdef CONFIG_UCLAMP_TASK 4621 { 4622 .procname = "sched_util_clamp_min", 4623 .data = &sysctl_sched_uclamp_util_min, 4624 .maxlen = sizeof(unsigned int), 4625 .mode = 0644, 4626 .proc_handler = sysctl_sched_uclamp_handler, 4627 }, 4628 { 4629 .procname = "sched_util_clamp_max", 4630 .data = &sysctl_sched_uclamp_util_max, 4631 .maxlen = sizeof(unsigned int), 4632 .mode = 0644, 4633 .proc_handler = sysctl_sched_uclamp_handler, 4634 }, 4635 { 4636 .procname = "sched_util_clamp_min_rt_default", 4637 .data = &sysctl_sched_uclamp_util_min_rt_default, 4638 .maxlen = sizeof(unsigned int), 4639 .mode = 0644, 4640 .proc_handler = sysctl_sched_uclamp_handler, 4641 }, 4642 #endif /* CONFIG_UCLAMP_TASK */ 4643 #ifdef CONFIG_NUMA_BALANCING 4644 { 4645 .procname = "numa_balancing", 4646 .data = NULL, /* filled in by handler */ 4647 .maxlen = sizeof(unsigned int), 4648 .mode = 0644, 4649 .proc_handler = sysctl_numa_balancing, 4650 .extra1 = SYSCTL_ZERO, 4651 .extra2 = SYSCTL_FOUR, 4652 }, 4653 #endif /* CONFIG_NUMA_BALANCING */ 4654 }; 4655 static int __init sched_core_sysctl_init(void) 4656 { 4657 register_sysctl_init("kernel", sched_core_sysctls); 4658 return 0; 4659 } 4660 late_initcall(sched_core_sysctl_init); 4661 #endif /* CONFIG_SYSCTL */ 4662 4663 /* 4664 * fork()/clone()-time setup: 4665 */ 4666 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4667 { 4668 __sched_fork(clone_flags, p); 4669 /* 4670 * We mark the process as NEW here. This guarantees that 4671 * nobody will actually run it, and a signal or other external 4672 * event cannot wake it up and insert it on the runqueue either. 4673 */ 4674 p->__state = TASK_NEW; 4675 4676 /* 4677 * Make sure we do not leak PI boosting priority to the child. 4678 */ 4679 p->prio = current->normal_prio; 4680 4681 uclamp_fork(p); 4682 4683 /* 4684 * Revert to default priority/policy on fork if requested. 4685 */ 4686 if (unlikely(p->sched_reset_on_fork)) { 4687 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4688 p->policy = SCHED_NORMAL; 4689 p->static_prio = NICE_TO_PRIO(0); 4690 p->rt_priority = 0; 4691 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4692 p->static_prio = NICE_TO_PRIO(0); 4693 4694 p->prio = p->normal_prio = p->static_prio; 4695 set_load_weight(p, false); 4696 p->se.custom_slice = 0; 4697 p->se.slice = sysctl_sched_base_slice; 4698 4699 /* 4700 * We don't need the reset flag anymore after the fork. It has 4701 * fulfilled its duty: 4702 */ 4703 p->sched_reset_on_fork = 0; 4704 } 4705 4706 if (dl_prio(p->prio)) 4707 return -EAGAIN; 4708 4709 scx_pre_fork(p); 4710 4711 if (rt_prio(p->prio)) { 4712 p->sched_class = &rt_sched_class; 4713 #ifdef CONFIG_SCHED_CLASS_EXT 4714 } else if (task_should_scx(p->policy)) { 4715 p->sched_class = &ext_sched_class; 4716 #endif 4717 } else { 4718 p->sched_class = &fair_sched_class; 4719 } 4720 4721 init_entity_runnable_average(&p->se); 4722 4723 4724 #ifdef CONFIG_SCHED_INFO 4725 if (likely(sched_info_on())) 4726 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4727 #endif 4728 #if defined(CONFIG_SMP) 4729 p->on_cpu = 0; 4730 #endif 4731 init_task_preempt_count(p); 4732 #ifdef CONFIG_SMP 4733 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4734 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4735 #endif 4736 return 0; 4737 } 4738 4739 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4740 { 4741 unsigned long flags; 4742 4743 /* 4744 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4745 * required yet, but lockdep gets upset if rules are violated. 4746 */ 4747 raw_spin_lock_irqsave(&p->pi_lock, flags); 4748 #ifdef CONFIG_CGROUP_SCHED 4749 if (1) { 4750 struct task_group *tg; 4751 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4752 struct task_group, css); 4753 tg = autogroup_task_group(p, tg); 4754 p->sched_task_group = tg; 4755 } 4756 #endif 4757 rseq_migrate(p); 4758 /* 4759 * We're setting the CPU for the first time, we don't migrate, 4760 * so use __set_task_cpu(). 4761 */ 4762 __set_task_cpu(p, smp_processor_id()); 4763 if (p->sched_class->task_fork) 4764 p->sched_class->task_fork(p); 4765 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4766 4767 return scx_fork(p); 4768 } 4769 4770 void sched_cancel_fork(struct task_struct *p) 4771 { 4772 scx_cancel_fork(p); 4773 } 4774 4775 void sched_post_fork(struct task_struct *p) 4776 { 4777 uclamp_post_fork(p); 4778 scx_post_fork(p); 4779 } 4780 4781 unsigned long to_ratio(u64 period, u64 runtime) 4782 { 4783 if (runtime == RUNTIME_INF) 4784 return BW_UNIT; 4785 4786 /* 4787 * Doing this here saves a lot of checks in all 4788 * the calling paths, and returning zero seems 4789 * safe for them anyway. 4790 */ 4791 if (period == 0) 4792 return 0; 4793 4794 return div64_u64(runtime << BW_SHIFT, period); 4795 } 4796 4797 /* 4798 * wake_up_new_task - wake up a newly created task for the first time. 4799 * 4800 * This function will do some initial scheduler statistics housekeeping 4801 * that must be done for every newly created context, then puts the task 4802 * on the runqueue and wakes it. 4803 */ 4804 void wake_up_new_task(struct task_struct *p) 4805 { 4806 struct rq_flags rf; 4807 struct rq *rq; 4808 int wake_flags = WF_FORK; 4809 4810 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4811 WRITE_ONCE(p->__state, TASK_RUNNING); 4812 #ifdef CONFIG_SMP 4813 /* 4814 * Fork balancing, do it here and not earlier because: 4815 * - cpus_ptr can change in the fork path 4816 * - any previously selected CPU might disappear through hotplug 4817 * 4818 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4819 * as we're not fully set-up yet. 4820 */ 4821 p->recent_used_cpu = task_cpu(p); 4822 rseq_migrate(p); 4823 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4824 #endif 4825 rq = __task_rq_lock(p, &rf); 4826 update_rq_clock(rq); 4827 post_init_entity_util_avg(p); 4828 4829 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4830 trace_sched_wakeup_new(p); 4831 wakeup_preempt(rq, p, wake_flags); 4832 #ifdef CONFIG_SMP 4833 if (p->sched_class->task_woken) { 4834 /* 4835 * Nothing relies on rq->lock after this, so it's fine to 4836 * drop it. 4837 */ 4838 rq_unpin_lock(rq, &rf); 4839 p->sched_class->task_woken(rq, p); 4840 rq_repin_lock(rq, &rf); 4841 } 4842 #endif 4843 task_rq_unlock(rq, p, &rf); 4844 } 4845 4846 #ifdef CONFIG_PREEMPT_NOTIFIERS 4847 4848 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4849 4850 void preempt_notifier_inc(void) 4851 { 4852 static_branch_inc(&preempt_notifier_key); 4853 } 4854 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4855 4856 void preempt_notifier_dec(void) 4857 { 4858 static_branch_dec(&preempt_notifier_key); 4859 } 4860 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4861 4862 /** 4863 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4864 * @notifier: notifier struct to register 4865 */ 4866 void preempt_notifier_register(struct preempt_notifier *notifier) 4867 { 4868 if (!static_branch_unlikely(&preempt_notifier_key)) 4869 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4870 4871 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4872 } 4873 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4874 4875 /** 4876 * preempt_notifier_unregister - no longer interested in preemption notifications 4877 * @notifier: notifier struct to unregister 4878 * 4879 * This is *not* safe to call from within a preemption notifier. 4880 */ 4881 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4882 { 4883 hlist_del(¬ifier->link); 4884 } 4885 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4886 4887 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4888 { 4889 struct preempt_notifier *notifier; 4890 4891 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4892 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4893 } 4894 4895 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4896 { 4897 if (static_branch_unlikely(&preempt_notifier_key)) 4898 __fire_sched_in_preempt_notifiers(curr); 4899 } 4900 4901 static void 4902 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4903 struct task_struct *next) 4904 { 4905 struct preempt_notifier *notifier; 4906 4907 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4908 notifier->ops->sched_out(notifier, next); 4909 } 4910 4911 static __always_inline void 4912 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4913 struct task_struct *next) 4914 { 4915 if (static_branch_unlikely(&preempt_notifier_key)) 4916 __fire_sched_out_preempt_notifiers(curr, next); 4917 } 4918 4919 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4920 4921 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4922 { 4923 } 4924 4925 static inline void 4926 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4927 struct task_struct *next) 4928 { 4929 } 4930 4931 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4932 4933 static inline void prepare_task(struct task_struct *next) 4934 { 4935 #ifdef CONFIG_SMP 4936 /* 4937 * Claim the task as running, we do this before switching to it 4938 * such that any running task will have this set. 4939 * 4940 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4941 * its ordering comment. 4942 */ 4943 WRITE_ONCE(next->on_cpu, 1); 4944 #endif 4945 } 4946 4947 static inline void finish_task(struct task_struct *prev) 4948 { 4949 #ifdef CONFIG_SMP 4950 /* 4951 * This must be the very last reference to @prev from this CPU. After 4952 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4953 * must ensure this doesn't happen until the switch is completely 4954 * finished. 4955 * 4956 * In particular, the load of prev->state in finish_task_switch() must 4957 * happen before this. 4958 * 4959 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4960 */ 4961 smp_store_release(&prev->on_cpu, 0); 4962 #endif 4963 } 4964 4965 #ifdef CONFIG_SMP 4966 4967 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4968 { 4969 void (*func)(struct rq *rq); 4970 struct balance_callback *next; 4971 4972 lockdep_assert_rq_held(rq); 4973 4974 while (head) { 4975 func = (void (*)(struct rq *))head->func; 4976 next = head->next; 4977 head->next = NULL; 4978 head = next; 4979 4980 func(rq); 4981 } 4982 } 4983 4984 static void balance_push(struct rq *rq); 4985 4986 /* 4987 * balance_push_callback is a right abuse of the callback interface and plays 4988 * by significantly different rules. 4989 * 4990 * Where the normal balance_callback's purpose is to be ran in the same context 4991 * that queued it (only later, when it's safe to drop rq->lock again), 4992 * balance_push_callback is specifically targeted at __schedule(). 4993 * 4994 * This abuse is tolerated because it places all the unlikely/odd cases behind 4995 * a single test, namely: rq->balance_callback == NULL. 4996 */ 4997 struct balance_callback balance_push_callback = { 4998 .next = NULL, 4999 .func = balance_push, 5000 }; 5001 5002 static inline struct balance_callback * 5003 __splice_balance_callbacks(struct rq *rq, bool split) 5004 { 5005 struct balance_callback *head = rq->balance_callback; 5006 5007 if (likely(!head)) 5008 return NULL; 5009 5010 lockdep_assert_rq_held(rq); 5011 /* 5012 * Must not take balance_push_callback off the list when 5013 * splice_balance_callbacks() and balance_callbacks() are not 5014 * in the same rq->lock section. 5015 * 5016 * In that case it would be possible for __schedule() to interleave 5017 * and observe the list empty. 5018 */ 5019 if (split && head == &balance_push_callback) 5020 head = NULL; 5021 else 5022 rq->balance_callback = NULL; 5023 5024 return head; 5025 } 5026 5027 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5028 { 5029 return __splice_balance_callbacks(rq, true); 5030 } 5031 5032 static void __balance_callbacks(struct rq *rq) 5033 { 5034 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5035 } 5036 5037 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5038 { 5039 unsigned long flags; 5040 5041 if (unlikely(head)) { 5042 raw_spin_rq_lock_irqsave(rq, flags); 5043 do_balance_callbacks(rq, head); 5044 raw_spin_rq_unlock_irqrestore(rq, flags); 5045 } 5046 } 5047 5048 #else 5049 5050 static inline void __balance_callbacks(struct rq *rq) 5051 { 5052 } 5053 5054 #endif 5055 5056 static inline void 5057 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5058 { 5059 /* 5060 * Since the runqueue lock will be released by the next 5061 * task (which is an invalid locking op but in the case 5062 * of the scheduler it's an obvious special-case), so we 5063 * do an early lockdep release here: 5064 */ 5065 rq_unpin_lock(rq, rf); 5066 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5067 #ifdef CONFIG_DEBUG_SPINLOCK 5068 /* this is a valid case when another task releases the spinlock */ 5069 rq_lockp(rq)->owner = next; 5070 #endif 5071 } 5072 5073 static inline void finish_lock_switch(struct rq *rq) 5074 { 5075 /* 5076 * If we are tracking spinlock dependencies then we have to 5077 * fix up the runqueue lock - which gets 'carried over' from 5078 * prev into current: 5079 */ 5080 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5081 __balance_callbacks(rq); 5082 raw_spin_rq_unlock_irq(rq); 5083 } 5084 5085 /* 5086 * NOP if the arch has not defined these: 5087 */ 5088 5089 #ifndef prepare_arch_switch 5090 # define prepare_arch_switch(next) do { } while (0) 5091 #endif 5092 5093 #ifndef finish_arch_post_lock_switch 5094 # define finish_arch_post_lock_switch() do { } while (0) 5095 #endif 5096 5097 static inline void kmap_local_sched_out(void) 5098 { 5099 #ifdef CONFIG_KMAP_LOCAL 5100 if (unlikely(current->kmap_ctrl.idx)) 5101 __kmap_local_sched_out(); 5102 #endif 5103 } 5104 5105 static inline void kmap_local_sched_in(void) 5106 { 5107 #ifdef CONFIG_KMAP_LOCAL 5108 if (unlikely(current->kmap_ctrl.idx)) 5109 __kmap_local_sched_in(); 5110 #endif 5111 } 5112 5113 /** 5114 * prepare_task_switch - prepare to switch tasks 5115 * @rq: the runqueue preparing to switch 5116 * @prev: the current task that is being switched out 5117 * @next: the task we are going to switch to. 5118 * 5119 * This is called with the rq lock held and interrupts off. It must 5120 * be paired with a subsequent finish_task_switch after the context 5121 * switch. 5122 * 5123 * prepare_task_switch sets up locking and calls architecture specific 5124 * hooks. 5125 */ 5126 static inline void 5127 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5128 struct task_struct *next) 5129 { 5130 kcov_prepare_switch(prev); 5131 sched_info_switch(rq, prev, next); 5132 perf_event_task_sched_out(prev, next); 5133 rseq_preempt(prev); 5134 fire_sched_out_preempt_notifiers(prev, next); 5135 kmap_local_sched_out(); 5136 prepare_task(next); 5137 prepare_arch_switch(next); 5138 } 5139 5140 /** 5141 * finish_task_switch - clean up after a task-switch 5142 * @prev: the thread we just switched away from. 5143 * 5144 * finish_task_switch must be called after the context switch, paired 5145 * with a prepare_task_switch call before the context switch. 5146 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5147 * and do any other architecture-specific cleanup actions. 5148 * 5149 * Note that we may have delayed dropping an mm in context_switch(). If 5150 * so, we finish that here outside of the runqueue lock. (Doing it 5151 * with the lock held can cause deadlocks; see schedule() for 5152 * details.) 5153 * 5154 * The context switch have flipped the stack from under us and restored the 5155 * local variables which were saved when this task called schedule() in the 5156 * past. 'prev == current' is still correct but we need to recalculate this_rq 5157 * because prev may have moved to another CPU. 5158 */ 5159 static struct rq *finish_task_switch(struct task_struct *prev) 5160 __releases(rq->lock) 5161 { 5162 struct rq *rq = this_rq(); 5163 struct mm_struct *mm = rq->prev_mm; 5164 unsigned int prev_state; 5165 5166 /* 5167 * The previous task will have left us with a preempt_count of 2 5168 * because it left us after: 5169 * 5170 * schedule() 5171 * preempt_disable(); // 1 5172 * __schedule() 5173 * raw_spin_lock_irq(&rq->lock) // 2 5174 * 5175 * Also, see FORK_PREEMPT_COUNT. 5176 */ 5177 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5178 "corrupted preempt_count: %s/%d/0x%x\n", 5179 current->comm, current->pid, preempt_count())) 5180 preempt_count_set(FORK_PREEMPT_COUNT); 5181 5182 rq->prev_mm = NULL; 5183 5184 /* 5185 * A task struct has one reference for the use as "current". 5186 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5187 * schedule one last time. The schedule call will never return, and 5188 * the scheduled task must drop that reference. 5189 * 5190 * We must observe prev->state before clearing prev->on_cpu (in 5191 * finish_task), otherwise a concurrent wakeup can get prev 5192 * running on another CPU and we could rave with its RUNNING -> DEAD 5193 * transition, resulting in a double drop. 5194 */ 5195 prev_state = READ_ONCE(prev->__state); 5196 vtime_task_switch(prev); 5197 perf_event_task_sched_in(prev, current); 5198 finish_task(prev); 5199 tick_nohz_task_switch(); 5200 finish_lock_switch(rq); 5201 finish_arch_post_lock_switch(); 5202 kcov_finish_switch(current); 5203 /* 5204 * kmap_local_sched_out() is invoked with rq::lock held and 5205 * interrupts disabled. There is no requirement for that, but the 5206 * sched out code does not have an interrupt enabled section. 5207 * Restoring the maps on sched in does not require interrupts being 5208 * disabled either. 5209 */ 5210 kmap_local_sched_in(); 5211 5212 fire_sched_in_preempt_notifiers(current); 5213 /* 5214 * When switching through a kernel thread, the loop in 5215 * membarrier_{private,global}_expedited() may have observed that 5216 * kernel thread and not issued an IPI. It is therefore possible to 5217 * schedule between user->kernel->user threads without passing though 5218 * switch_mm(). Membarrier requires a barrier after storing to 5219 * rq->curr, before returning to userspace, so provide them here: 5220 * 5221 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5222 * provided by mmdrop_lazy_tlb(), 5223 * - a sync_core for SYNC_CORE. 5224 */ 5225 if (mm) { 5226 membarrier_mm_sync_core_before_usermode(mm); 5227 mmdrop_lazy_tlb_sched(mm); 5228 } 5229 5230 if (unlikely(prev_state == TASK_DEAD)) { 5231 if (prev->sched_class->task_dead) 5232 prev->sched_class->task_dead(prev); 5233 5234 /* Task is done with its stack. */ 5235 put_task_stack(prev); 5236 5237 put_task_struct_rcu_user(prev); 5238 } 5239 5240 return rq; 5241 } 5242 5243 /** 5244 * schedule_tail - first thing a freshly forked thread must call. 5245 * @prev: the thread we just switched away from. 5246 */ 5247 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5248 __releases(rq->lock) 5249 { 5250 /* 5251 * New tasks start with FORK_PREEMPT_COUNT, see there and 5252 * finish_task_switch() for details. 5253 * 5254 * finish_task_switch() will drop rq->lock() and lower preempt_count 5255 * and the preempt_enable() will end up enabling preemption (on 5256 * PREEMPT_COUNT kernels). 5257 */ 5258 5259 finish_task_switch(prev); 5260 preempt_enable(); 5261 5262 if (current->set_child_tid) 5263 put_user(task_pid_vnr(current), current->set_child_tid); 5264 5265 calculate_sigpending(); 5266 } 5267 5268 /* 5269 * context_switch - switch to the new MM and the new thread's register state. 5270 */ 5271 static __always_inline struct rq * 5272 context_switch(struct rq *rq, struct task_struct *prev, 5273 struct task_struct *next, struct rq_flags *rf) 5274 { 5275 prepare_task_switch(rq, prev, next); 5276 5277 /* 5278 * For paravirt, this is coupled with an exit in switch_to to 5279 * combine the page table reload and the switch backend into 5280 * one hypercall. 5281 */ 5282 arch_start_context_switch(prev); 5283 5284 /* 5285 * kernel -> kernel lazy + transfer active 5286 * user -> kernel lazy + mmgrab_lazy_tlb() active 5287 * 5288 * kernel -> user switch + mmdrop_lazy_tlb() active 5289 * user -> user switch 5290 * 5291 * switch_mm_cid() needs to be updated if the barriers provided 5292 * by context_switch() are modified. 5293 */ 5294 if (!next->mm) { // to kernel 5295 enter_lazy_tlb(prev->active_mm, next); 5296 5297 next->active_mm = prev->active_mm; 5298 if (prev->mm) // from user 5299 mmgrab_lazy_tlb(prev->active_mm); 5300 else 5301 prev->active_mm = NULL; 5302 } else { // to user 5303 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5304 /* 5305 * sys_membarrier() requires an smp_mb() between setting 5306 * rq->curr / membarrier_switch_mm() and returning to userspace. 5307 * 5308 * The below provides this either through switch_mm(), or in 5309 * case 'prev->active_mm == next->mm' through 5310 * finish_task_switch()'s mmdrop(). 5311 */ 5312 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5313 lru_gen_use_mm(next->mm); 5314 5315 if (!prev->mm) { // from kernel 5316 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5317 rq->prev_mm = prev->active_mm; 5318 prev->active_mm = NULL; 5319 } 5320 } 5321 5322 /* switch_mm_cid() requires the memory barriers above. */ 5323 switch_mm_cid(rq, prev, next); 5324 5325 prepare_lock_switch(rq, next, rf); 5326 5327 /* Here we just switch the register state and the stack. */ 5328 switch_to(prev, next, prev); 5329 barrier(); 5330 5331 return finish_task_switch(prev); 5332 } 5333 5334 /* 5335 * nr_running and nr_context_switches: 5336 * 5337 * externally visible scheduler statistics: current number of runnable 5338 * threads, total number of context switches performed since bootup. 5339 */ 5340 unsigned int nr_running(void) 5341 { 5342 unsigned int i, sum = 0; 5343 5344 for_each_online_cpu(i) 5345 sum += cpu_rq(i)->nr_running; 5346 5347 return sum; 5348 } 5349 5350 /* 5351 * Check if only the current task is running on the CPU. 5352 * 5353 * Caution: this function does not check that the caller has disabled 5354 * preemption, thus the result might have a time-of-check-to-time-of-use 5355 * race. The caller is responsible to use it correctly, for example: 5356 * 5357 * - from a non-preemptible section (of course) 5358 * 5359 * - from a thread that is bound to a single CPU 5360 * 5361 * - in a loop with very short iterations (e.g. a polling loop) 5362 */ 5363 bool single_task_running(void) 5364 { 5365 return raw_rq()->nr_running == 1; 5366 } 5367 EXPORT_SYMBOL(single_task_running); 5368 5369 unsigned long long nr_context_switches_cpu(int cpu) 5370 { 5371 return cpu_rq(cpu)->nr_switches; 5372 } 5373 5374 unsigned long long nr_context_switches(void) 5375 { 5376 int i; 5377 unsigned long long sum = 0; 5378 5379 for_each_possible_cpu(i) 5380 sum += cpu_rq(i)->nr_switches; 5381 5382 return sum; 5383 } 5384 5385 /* 5386 * Consumers of these two interfaces, like for example the cpuidle menu 5387 * governor, are using nonsensical data. Preferring shallow idle state selection 5388 * for a CPU that has IO-wait which might not even end up running the task when 5389 * it does become runnable. 5390 */ 5391 5392 unsigned int nr_iowait_cpu(int cpu) 5393 { 5394 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5395 } 5396 5397 /* 5398 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5399 * 5400 * The idea behind IO-wait account is to account the idle time that we could 5401 * have spend running if it were not for IO. That is, if we were to improve the 5402 * storage performance, we'd have a proportional reduction in IO-wait time. 5403 * 5404 * This all works nicely on UP, where, when a task blocks on IO, we account 5405 * idle time as IO-wait, because if the storage were faster, it could've been 5406 * running and we'd not be idle. 5407 * 5408 * This has been extended to SMP, by doing the same for each CPU. This however 5409 * is broken. 5410 * 5411 * Imagine for instance the case where two tasks block on one CPU, only the one 5412 * CPU will have IO-wait accounted, while the other has regular idle. Even 5413 * though, if the storage were faster, both could've ran at the same time, 5414 * utilising both CPUs. 5415 * 5416 * This means, that when looking globally, the current IO-wait accounting on 5417 * SMP is a lower bound, by reason of under accounting. 5418 * 5419 * Worse, since the numbers are provided per CPU, they are sometimes 5420 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5421 * associated with any one particular CPU, it can wake to another CPU than it 5422 * blocked on. This means the per CPU IO-wait number is meaningless. 5423 * 5424 * Task CPU affinities can make all that even more 'interesting'. 5425 */ 5426 5427 unsigned int nr_iowait(void) 5428 { 5429 unsigned int i, sum = 0; 5430 5431 for_each_possible_cpu(i) 5432 sum += nr_iowait_cpu(i); 5433 5434 return sum; 5435 } 5436 5437 #ifdef CONFIG_SMP 5438 5439 /* 5440 * sched_exec - execve() is a valuable balancing opportunity, because at 5441 * this point the task has the smallest effective memory and cache footprint. 5442 */ 5443 void sched_exec(void) 5444 { 5445 struct task_struct *p = current; 5446 struct migration_arg arg; 5447 int dest_cpu; 5448 5449 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5450 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5451 if (dest_cpu == smp_processor_id()) 5452 return; 5453 5454 if (unlikely(!cpu_active(dest_cpu))) 5455 return; 5456 5457 arg = (struct migration_arg){ p, dest_cpu }; 5458 } 5459 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5460 } 5461 5462 #endif 5463 5464 DEFINE_PER_CPU(struct kernel_stat, kstat); 5465 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5466 5467 EXPORT_PER_CPU_SYMBOL(kstat); 5468 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5469 5470 /* 5471 * The function fair_sched_class.update_curr accesses the struct curr 5472 * and its field curr->exec_start; when called from task_sched_runtime(), 5473 * we observe a high rate of cache misses in practice. 5474 * Prefetching this data results in improved performance. 5475 */ 5476 static inline void prefetch_curr_exec_start(struct task_struct *p) 5477 { 5478 #ifdef CONFIG_FAIR_GROUP_SCHED 5479 struct sched_entity *curr = p->se.cfs_rq->curr; 5480 #else 5481 struct sched_entity *curr = task_rq(p)->cfs.curr; 5482 #endif 5483 prefetch(curr); 5484 prefetch(&curr->exec_start); 5485 } 5486 5487 /* 5488 * Return accounted runtime for the task. 5489 * In case the task is currently running, return the runtime plus current's 5490 * pending runtime that have not been accounted yet. 5491 */ 5492 unsigned long long task_sched_runtime(struct task_struct *p) 5493 { 5494 struct rq_flags rf; 5495 struct rq *rq; 5496 u64 ns; 5497 5498 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5499 /* 5500 * 64-bit doesn't need locks to atomically read a 64-bit value. 5501 * So we have a optimization chance when the task's delta_exec is 0. 5502 * Reading ->on_cpu is racy, but this is OK. 5503 * 5504 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5505 * If we race with it entering CPU, unaccounted time is 0. This is 5506 * indistinguishable from the read occurring a few cycles earlier. 5507 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5508 * been accounted, so we're correct here as well. 5509 */ 5510 if (!p->on_cpu || !task_on_rq_queued(p)) 5511 return p->se.sum_exec_runtime; 5512 #endif 5513 5514 rq = task_rq_lock(p, &rf); 5515 /* 5516 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5517 * project cycles that may never be accounted to this 5518 * thread, breaking clock_gettime(). 5519 */ 5520 if (task_current(rq, p) && task_on_rq_queued(p)) { 5521 prefetch_curr_exec_start(p); 5522 update_rq_clock(rq); 5523 p->sched_class->update_curr(rq); 5524 } 5525 ns = p->se.sum_exec_runtime; 5526 task_rq_unlock(rq, p, &rf); 5527 5528 return ns; 5529 } 5530 5531 #ifdef CONFIG_SCHED_DEBUG 5532 static u64 cpu_resched_latency(struct rq *rq) 5533 { 5534 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5535 u64 resched_latency, now = rq_clock(rq); 5536 static bool warned_once; 5537 5538 if (sysctl_resched_latency_warn_once && warned_once) 5539 return 0; 5540 5541 if (!need_resched() || !latency_warn_ms) 5542 return 0; 5543 5544 if (system_state == SYSTEM_BOOTING) 5545 return 0; 5546 5547 if (!rq->last_seen_need_resched_ns) { 5548 rq->last_seen_need_resched_ns = now; 5549 rq->ticks_without_resched = 0; 5550 return 0; 5551 } 5552 5553 rq->ticks_without_resched++; 5554 resched_latency = now - rq->last_seen_need_resched_ns; 5555 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5556 return 0; 5557 5558 warned_once = true; 5559 5560 return resched_latency; 5561 } 5562 5563 static int __init setup_resched_latency_warn_ms(char *str) 5564 { 5565 long val; 5566 5567 if ((kstrtol(str, 0, &val))) { 5568 pr_warn("Unable to set resched_latency_warn_ms\n"); 5569 return 1; 5570 } 5571 5572 sysctl_resched_latency_warn_ms = val; 5573 return 1; 5574 } 5575 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5576 #else 5577 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5578 #endif /* CONFIG_SCHED_DEBUG */ 5579 5580 /* 5581 * This function gets called by the timer code, with HZ frequency. 5582 * We call it with interrupts disabled. 5583 */ 5584 void sched_tick(void) 5585 { 5586 int cpu = smp_processor_id(); 5587 struct rq *rq = cpu_rq(cpu); 5588 struct task_struct *curr; 5589 struct rq_flags rf; 5590 unsigned long hw_pressure; 5591 u64 resched_latency; 5592 5593 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5594 arch_scale_freq_tick(); 5595 5596 sched_clock_tick(); 5597 5598 rq_lock(rq, &rf); 5599 5600 curr = rq->curr; 5601 psi_account_irqtime(rq, curr, NULL); 5602 5603 update_rq_clock(rq); 5604 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5605 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5606 curr->sched_class->task_tick(rq, curr, 0); 5607 if (sched_feat(LATENCY_WARN)) 5608 resched_latency = cpu_resched_latency(rq); 5609 calc_global_load_tick(rq); 5610 sched_core_tick(rq); 5611 task_tick_mm_cid(rq, curr); 5612 scx_tick(rq); 5613 5614 rq_unlock(rq, &rf); 5615 5616 if (sched_feat(LATENCY_WARN) && resched_latency) 5617 resched_latency_warn(cpu, resched_latency); 5618 5619 perf_event_task_tick(); 5620 5621 if (curr->flags & PF_WQ_WORKER) 5622 wq_worker_tick(curr); 5623 5624 #ifdef CONFIG_SMP 5625 if (!scx_switched_all()) { 5626 rq->idle_balance = idle_cpu(cpu); 5627 sched_balance_trigger(rq); 5628 } 5629 #endif 5630 } 5631 5632 #ifdef CONFIG_NO_HZ_FULL 5633 5634 struct tick_work { 5635 int cpu; 5636 atomic_t state; 5637 struct delayed_work work; 5638 }; 5639 /* Values for ->state, see diagram below. */ 5640 #define TICK_SCHED_REMOTE_OFFLINE 0 5641 #define TICK_SCHED_REMOTE_OFFLINING 1 5642 #define TICK_SCHED_REMOTE_RUNNING 2 5643 5644 /* 5645 * State diagram for ->state: 5646 * 5647 * 5648 * TICK_SCHED_REMOTE_OFFLINE 5649 * | ^ 5650 * | | 5651 * | | sched_tick_remote() 5652 * | | 5653 * | | 5654 * +--TICK_SCHED_REMOTE_OFFLINING 5655 * | ^ 5656 * | | 5657 * sched_tick_start() | | sched_tick_stop() 5658 * | | 5659 * V | 5660 * TICK_SCHED_REMOTE_RUNNING 5661 * 5662 * 5663 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5664 * and sched_tick_start() are happy to leave the state in RUNNING. 5665 */ 5666 5667 static struct tick_work __percpu *tick_work_cpu; 5668 5669 static void sched_tick_remote(struct work_struct *work) 5670 { 5671 struct delayed_work *dwork = to_delayed_work(work); 5672 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5673 int cpu = twork->cpu; 5674 struct rq *rq = cpu_rq(cpu); 5675 int os; 5676 5677 /* 5678 * Handle the tick only if it appears the remote CPU is running in full 5679 * dynticks mode. The check is racy by nature, but missing a tick or 5680 * having one too much is no big deal because the scheduler tick updates 5681 * statistics and checks timeslices in a time-independent way, regardless 5682 * of when exactly it is running. 5683 */ 5684 if (tick_nohz_tick_stopped_cpu(cpu)) { 5685 guard(rq_lock_irq)(rq); 5686 struct task_struct *curr = rq->curr; 5687 5688 if (cpu_online(cpu)) { 5689 update_rq_clock(rq); 5690 5691 if (!is_idle_task(curr)) { 5692 /* 5693 * Make sure the next tick runs within a 5694 * reasonable amount of time. 5695 */ 5696 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5697 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5698 } 5699 curr->sched_class->task_tick(rq, curr, 0); 5700 5701 calc_load_nohz_remote(rq); 5702 } 5703 } 5704 5705 /* 5706 * Run the remote tick once per second (1Hz). This arbitrary 5707 * frequency is large enough to avoid overload but short enough 5708 * to keep scheduler internal stats reasonably up to date. But 5709 * first update state to reflect hotplug activity if required. 5710 */ 5711 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5712 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5713 if (os == TICK_SCHED_REMOTE_RUNNING) 5714 queue_delayed_work(system_unbound_wq, dwork, HZ); 5715 } 5716 5717 static void sched_tick_start(int cpu) 5718 { 5719 int os; 5720 struct tick_work *twork; 5721 5722 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5723 return; 5724 5725 WARN_ON_ONCE(!tick_work_cpu); 5726 5727 twork = per_cpu_ptr(tick_work_cpu, cpu); 5728 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5729 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5730 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5731 twork->cpu = cpu; 5732 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5733 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5734 } 5735 } 5736 5737 #ifdef CONFIG_HOTPLUG_CPU 5738 static void sched_tick_stop(int cpu) 5739 { 5740 struct tick_work *twork; 5741 int os; 5742 5743 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5744 return; 5745 5746 WARN_ON_ONCE(!tick_work_cpu); 5747 5748 twork = per_cpu_ptr(tick_work_cpu, cpu); 5749 /* There cannot be competing actions, but don't rely on stop-machine. */ 5750 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5751 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5752 /* Don't cancel, as this would mess up the state machine. */ 5753 } 5754 #endif /* CONFIG_HOTPLUG_CPU */ 5755 5756 int __init sched_tick_offload_init(void) 5757 { 5758 tick_work_cpu = alloc_percpu(struct tick_work); 5759 BUG_ON(!tick_work_cpu); 5760 return 0; 5761 } 5762 5763 #else /* !CONFIG_NO_HZ_FULL */ 5764 static inline void sched_tick_start(int cpu) { } 5765 static inline void sched_tick_stop(int cpu) { } 5766 #endif 5767 5768 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5769 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5770 /* 5771 * If the value passed in is equal to the current preempt count 5772 * then we just disabled preemption. Start timing the latency. 5773 */ 5774 static inline void preempt_latency_start(int val) 5775 { 5776 if (preempt_count() == val) { 5777 unsigned long ip = get_lock_parent_ip(); 5778 #ifdef CONFIG_DEBUG_PREEMPT 5779 current->preempt_disable_ip = ip; 5780 #endif 5781 trace_preempt_off(CALLER_ADDR0, ip); 5782 } 5783 } 5784 5785 void preempt_count_add(int val) 5786 { 5787 #ifdef CONFIG_DEBUG_PREEMPT 5788 /* 5789 * Underflow? 5790 */ 5791 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5792 return; 5793 #endif 5794 __preempt_count_add(val); 5795 #ifdef CONFIG_DEBUG_PREEMPT 5796 /* 5797 * Spinlock count overflowing soon? 5798 */ 5799 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5800 PREEMPT_MASK - 10); 5801 #endif 5802 preempt_latency_start(val); 5803 } 5804 EXPORT_SYMBOL(preempt_count_add); 5805 NOKPROBE_SYMBOL(preempt_count_add); 5806 5807 /* 5808 * If the value passed in equals to the current preempt count 5809 * then we just enabled preemption. Stop timing the latency. 5810 */ 5811 static inline void preempt_latency_stop(int val) 5812 { 5813 if (preempt_count() == val) 5814 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5815 } 5816 5817 void preempt_count_sub(int val) 5818 { 5819 #ifdef CONFIG_DEBUG_PREEMPT 5820 /* 5821 * Underflow? 5822 */ 5823 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5824 return; 5825 /* 5826 * Is the spinlock portion underflowing? 5827 */ 5828 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5829 !(preempt_count() & PREEMPT_MASK))) 5830 return; 5831 #endif 5832 5833 preempt_latency_stop(val); 5834 __preempt_count_sub(val); 5835 } 5836 EXPORT_SYMBOL(preempt_count_sub); 5837 NOKPROBE_SYMBOL(preempt_count_sub); 5838 5839 #else 5840 static inline void preempt_latency_start(int val) { } 5841 static inline void preempt_latency_stop(int val) { } 5842 #endif 5843 5844 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5845 { 5846 #ifdef CONFIG_DEBUG_PREEMPT 5847 return p->preempt_disable_ip; 5848 #else 5849 return 0; 5850 #endif 5851 } 5852 5853 /* 5854 * Print scheduling while atomic bug: 5855 */ 5856 static noinline void __schedule_bug(struct task_struct *prev) 5857 { 5858 /* Save this before calling printk(), since that will clobber it */ 5859 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5860 5861 if (oops_in_progress) 5862 return; 5863 5864 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5865 prev->comm, prev->pid, preempt_count()); 5866 5867 debug_show_held_locks(prev); 5868 print_modules(); 5869 if (irqs_disabled()) 5870 print_irqtrace_events(prev); 5871 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5872 pr_err("Preemption disabled at:"); 5873 print_ip_sym(KERN_ERR, preempt_disable_ip); 5874 } 5875 check_panic_on_warn("scheduling while atomic"); 5876 5877 dump_stack(); 5878 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5879 } 5880 5881 /* 5882 * Various schedule()-time debugging checks and statistics: 5883 */ 5884 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5885 { 5886 #ifdef CONFIG_SCHED_STACK_END_CHECK 5887 if (task_stack_end_corrupted(prev)) 5888 panic("corrupted stack end detected inside scheduler\n"); 5889 5890 if (task_scs_end_corrupted(prev)) 5891 panic("corrupted shadow stack detected inside scheduler\n"); 5892 #endif 5893 5894 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5895 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5896 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5897 prev->comm, prev->pid, prev->non_block_count); 5898 dump_stack(); 5899 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5900 } 5901 #endif 5902 5903 if (unlikely(in_atomic_preempt_off())) { 5904 __schedule_bug(prev); 5905 preempt_count_set(PREEMPT_DISABLED); 5906 } 5907 rcu_sleep_check(); 5908 SCHED_WARN_ON(ct_state() == CT_STATE_USER); 5909 5910 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5911 5912 schedstat_inc(this_rq()->sched_count); 5913 } 5914 5915 static void prev_balance(struct rq *rq, struct task_struct *prev, 5916 struct rq_flags *rf) 5917 { 5918 const struct sched_class *start_class = prev->sched_class; 5919 const struct sched_class *class; 5920 5921 #ifdef CONFIG_SCHED_CLASS_EXT 5922 /* 5923 * SCX requires a balance() call before every pick_task() including when 5924 * waking up from SCHED_IDLE. If @start_class is below SCX, start from 5925 * SCX instead. Also, set a flag to detect missing balance() call. 5926 */ 5927 if (scx_enabled()) { 5928 rq->scx.flags |= SCX_RQ_BAL_PENDING; 5929 if (sched_class_above(&ext_sched_class, start_class)) 5930 start_class = &ext_sched_class; 5931 } 5932 #endif 5933 5934 /* 5935 * We must do the balancing pass before put_prev_task(), such 5936 * that when we release the rq->lock the task is in the same 5937 * state as before we took rq->lock. 5938 * 5939 * We can terminate the balance pass as soon as we know there is 5940 * a runnable task of @class priority or higher. 5941 */ 5942 for_active_class_range(class, start_class, &idle_sched_class) { 5943 if (class->balance && class->balance(rq, prev, rf)) 5944 break; 5945 } 5946 } 5947 5948 /* 5949 * Pick up the highest-prio task: 5950 */ 5951 static inline struct task_struct * 5952 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5953 { 5954 const struct sched_class *class; 5955 struct task_struct *p; 5956 5957 rq->dl_server = NULL; 5958 5959 if (scx_enabled()) 5960 goto restart; 5961 5962 /* 5963 * Optimization: we know that if all tasks are in the fair class we can 5964 * call that function directly, but only if the @prev task wasn't of a 5965 * higher scheduling class, because otherwise those lose the 5966 * opportunity to pull in more work from other CPUs. 5967 */ 5968 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5969 rq->nr_running == rq->cfs.h_nr_running)) { 5970 5971 p = pick_next_task_fair(rq, prev, rf); 5972 if (unlikely(p == RETRY_TASK)) 5973 goto restart; 5974 5975 /* Assume the next prioritized class is idle_sched_class */ 5976 if (!p) { 5977 p = pick_task_idle(rq); 5978 put_prev_set_next_task(rq, prev, p); 5979 } 5980 5981 return p; 5982 } 5983 5984 restart: 5985 prev_balance(rq, prev, rf); 5986 5987 for_each_active_class(class) { 5988 if (class->pick_next_task) { 5989 p = class->pick_next_task(rq, prev); 5990 if (p) 5991 return p; 5992 } else { 5993 p = class->pick_task(rq); 5994 if (p) { 5995 put_prev_set_next_task(rq, prev, p); 5996 return p; 5997 } 5998 } 5999 } 6000 6001 BUG(); /* The idle class should always have a runnable task. */ 6002 } 6003 6004 #ifdef CONFIG_SCHED_CORE 6005 static inline bool is_task_rq_idle(struct task_struct *t) 6006 { 6007 return (task_rq(t)->idle == t); 6008 } 6009 6010 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6011 { 6012 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6013 } 6014 6015 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6016 { 6017 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6018 return true; 6019 6020 return a->core_cookie == b->core_cookie; 6021 } 6022 6023 static inline struct task_struct *pick_task(struct rq *rq) 6024 { 6025 const struct sched_class *class; 6026 struct task_struct *p; 6027 6028 rq->dl_server = NULL; 6029 6030 for_each_active_class(class) { 6031 p = class->pick_task(rq); 6032 if (p) 6033 return p; 6034 } 6035 6036 BUG(); /* The idle class should always have a runnable task. */ 6037 } 6038 6039 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6040 6041 static void queue_core_balance(struct rq *rq); 6042 6043 static struct task_struct * 6044 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6045 { 6046 struct task_struct *next, *p, *max = NULL; 6047 const struct cpumask *smt_mask; 6048 bool fi_before = false; 6049 bool core_clock_updated = (rq == rq->core); 6050 unsigned long cookie; 6051 int i, cpu, occ = 0; 6052 struct rq *rq_i; 6053 bool need_sync; 6054 6055 if (!sched_core_enabled(rq)) 6056 return __pick_next_task(rq, prev, rf); 6057 6058 cpu = cpu_of(rq); 6059 6060 /* Stopper task is switching into idle, no need core-wide selection. */ 6061 if (cpu_is_offline(cpu)) { 6062 /* 6063 * Reset core_pick so that we don't enter the fastpath when 6064 * coming online. core_pick would already be migrated to 6065 * another cpu during offline. 6066 */ 6067 rq->core_pick = NULL; 6068 rq->core_dl_server = NULL; 6069 return __pick_next_task(rq, prev, rf); 6070 } 6071 6072 /* 6073 * If there were no {en,de}queues since we picked (IOW, the task 6074 * pointers are all still valid), and we haven't scheduled the last 6075 * pick yet, do so now. 6076 * 6077 * rq->core_pick can be NULL if no selection was made for a CPU because 6078 * it was either offline or went offline during a sibling's core-wide 6079 * selection. In this case, do a core-wide selection. 6080 */ 6081 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6082 rq->core->core_pick_seq != rq->core_sched_seq && 6083 rq->core_pick) { 6084 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6085 6086 next = rq->core_pick; 6087 rq->dl_server = rq->core_dl_server; 6088 rq->core_pick = NULL; 6089 rq->core_dl_server = NULL; 6090 goto out_set_next; 6091 } 6092 6093 prev_balance(rq, prev, rf); 6094 6095 smt_mask = cpu_smt_mask(cpu); 6096 need_sync = !!rq->core->core_cookie; 6097 6098 /* reset state */ 6099 rq->core->core_cookie = 0UL; 6100 if (rq->core->core_forceidle_count) { 6101 if (!core_clock_updated) { 6102 update_rq_clock(rq->core); 6103 core_clock_updated = true; 6104 } 6105 sched_core_account_forceidle(rq); 6106 /* reset after accounting force idle */ 6107 rq->core->core_forceidle_start = 0; 6108 rq->core->core_forceidle_count = 0; 6109 rq->core->core_forceidle_occupation = 0; 6110 need_sync = true; 6111 fi_before = true; 6112 } 6113 6114 /* 6115 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6116 * 6117 * @task_seq guards the task state ({en,de}queues) 6118 * @pick_seq is the @task_seq we did a selection on 6119 * @sched_seq is the @pick_seq we scheduled 6120 * 6121 * However, preemptions can cause multiple picks on the same task set. 6122 * 'Fix' this by also increasing @task_seq for every pick. 6123 */ 6124 rq->core->core_task_seq++; 6125 6126 /* 6127 * Optimize for common case where this CPU has no cookies 6128 * and there are no cookied tasks running on siblings. 6129 */ 6130 if (!need_sync) { 6131 next = pick_task(rq); 6132 if (!next->core_cookie) { 6133 rq->core_pick = NULL; 6134 rq->core_dl_server = NULL; 6135 /* 6136 * For robustness, update the min_vruntime_fi for 6137 * unconstrained picks as well. 6138 */ 6139 WARN_ON_ONCE(fi_before); 6140 task_vruntime_update(rq, next, false); 6141 goto out_set_next; 6142 } 6143 } 6144 6145 /* 6146 * For each thread: do the regular task pick and find the max prio task 6147 * amongst them. 6148 * 6149 * Tie-break prio towards the current CPU 6150 */ 6151 for_each_cpu_wrap(i, smt_mask, cpu) { 6152 rq_i = cpu_rq(i); 6153 6154 /* 6155 * Current cpu always has its clock updated on entrance to 6156 * pick_next_task(). If the current cpu is not the core, 6157 * the core may also have been updated above. 6158 */ 6159 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6160 update_rq_clock(rq_i); 6161 6162 rq_i->core_pick = p = pick_task(rq_i); 6163 rq_i->core_dl_server = rq_i->dl_server; 6164 6165 if (!max || prio_less(max, p, fi_before)) 6166 max = p; 6167 } 6168 6169 cookie = rq->core->core_cookie = max->core_cookie; 6170 6171 /* 6172 * For each thread: try and find a runnable task that matches @max or 6173 * force idle. 6174 */ 6175 for_each_cpu(i, smt_mask) { 6176 rq_i = cpu_rq(i); 6177 p = rq_i->core_pick; 6178 6179 if (!cookie_equals(p, cookie)) { 6180 p = NULL; 6181 if (cookie) 6182 p = sched_core_find(rq_i, cookie); 6183 if (!p) 6184 p = idle_sched_class.pick_task(rq_i); 6185 } 6186 6187 rq_i->core_pick = p; 6188 rq_i->core_dl_server = NULL; 6189 6190 if (p == rq_i->idle) { 6191 if (rq_i->nr_running) { 6192 rq->core->core_forceidle_count++; 6193 if (!fi_before) 6194 rq->core->core_forceidle_seq++; 6195 } 6196 } else { 6197 occ++; 6198 } 6199 } 6200 6201 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6202 rq->core->core_forceidle_start = rq_clock(rq->core); 6203 rq->core->core_forceidle_occupation = occ; 6204 } 6205 6206 rq->core->core_pick_seq = rq->core->core_task_seq; 6207 next = rq->core_pick; 6208 rq->core_sched_seq = rq->core->core_pick_seq; 6209 6210 /* Something should have been selected for current CPU */ 6211 WARN_ON_ONCE(!next); 6212 6213 /* 6214 * Reschedule siblings 6215 * 6216 * NOTE: L1TF -- at this point we're no longer running the old task and 6217 * sending an IPI (below) ensures the sibling will no longer be running 6218 * their task. This ensures there is no inter-sibling overlap between 6219 * non-matching user state. 6220 */ 6221 for_each_cpu(i, smt_mask) { 6222 rq_i = cpu_rq(i); 6223 6224 /* 6225 * An online sibling might have gone offline before a task 6226 * could be picked for it, or it might be offline but later 6227 * happen to come online, but its too late and nothing was 6228 * picked for it. That's Ok - it will pick tasks for itself, 6229 * so ignore it. 6230 */ 6231 if (!rq_i->core_pick) 6232 continue; 6233 6234 /* 6235 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6236 * fi_before fi update? 6237 * 0 0 1 6238 * 0 1 1 6239 * 1 0 1 6240 * 1 1 0 6241 */ 6242 if (!(fi_before && rq->core->core_forceidle_count)) 6243 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6244 6245 rq_i->core_pick->core_occupation = occ; 6246 6247 if (i == cpu) { 6248 rq_i->core_pick = NULL; 6249 rq_i->core_dl_server = NULL; 6250 continue; 6251 } 6252 6253 /* Did we break L1TF mitigation requirements? */ 6254 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6255 6256 if (rq_i->curr == rq_i->core_pick) { 6257 rq_i->core_pick = NULL; 6258 rq_i->core_dl_server = NULL; 6259 continue; 6260 } 6261 6262 resched_curr(rq_i); 6263 } 6264 6265 out_set_next: 6266 put_prev_set_next_task(rq, prev, next); 6267 if (rq->core->core_forceidle_count && next == rq->idle) 6268 queue_core_balance(rq); 6269 6270 return next; 6271 } 6272 6273 static bool try_steal_cookie(int this, int that) 6274 { 6275 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6276 struct task_struct *p; 6277 unsigned long cookie; 6278 bool success = false; 6279 6280 guard(irq)(); 6281 guard(double_rq_lock)(dst, src); 6282 6283 cookie = dst->core->core_cookie; 6284 if (!cookie) 6285 return false; 6286 6287 if (dst->curr != dst->idle) 6288 return false; 6289 6290 p = sched_core_find(src, cookie); 6291 if (!p) 6292 return false; 6293 6294 do { 6295 if (p == src->core_pick || p == src->curr) 6296 goto next; 6297 6298 if (!is_cpu_allowed(p, this)) 6299 goto next; 6300 6301 if (p->core_occupation > dst->idle->core_occupation) 6302 goto next; 6303 /* 6304 * sched_core_find() and sched_core_next() will ensure 6305 * that task @p is not throttled now, we also need to 6306 * check whether the runqueue of the destination CPU is 6307 * being throttled. 6308 */ 6309 if (sched_task_is_throttled(p, this)) 6310 goto next; 6311 6312 deactivate_task(src, p, 0); 6313 set_task_cpu(p, this); 6314 activate_task(dst, p, 0); 6315 6316 resched_curr(dst); 6317 6318 success = true; 6319 break; 6320 6321 next: 6322 p = sched_core_next(p, cookie); 6323 } while (p); 6324 6325 return success; 6326 } 6327 6328 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6329 { 6330 int i; 6331 6332 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6333 if (i == cpu) 6334 continue; 6335 6336 if (need_resched()) 6337 break; 6338 6339 if (try_steal_cookie(cpu, i)) 6340 return true; 6341 } 6342 6343 return false; 6344 } 6345 6346 static void sched_core_balance(struct rq *rq) 6347 { 6348 struct sched_domain *sd; 6349 int cpu = cpu_of(rq); 6350 6351 guard(preempt)(); 6352 guard(rcu)(); 6353 6354 raw_spin_rq_unlock_irq(rq); 6355 for_each_domain(cpu, sd) { 6356 if (need_resched()) 6357 break; 6358 6359 if (steal_cookie_task(cpu, sd)) 6360 break; 6361 } 6362 raw_spin_rq_lock_irq(rq); 6363 } 6364 6365 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6366 6367 static void queue_core_balance(struct rq *rq) 6368 { 6369 if (!sched_core_enabled(rq)) 6370 return; 6371 6372 if (!rq->core->core_cookie) 6373 return; 6374 6375 if (!rq->nr_running) /* not forced idle */ 6376 return; 6377 6378 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6379 } 6380 6381 DEFINE_LOCK_GUARD_1(core_lock, int, 6382 sched_core_lock(*_T->lock, &_T->flags), 6383 sched_core_unlock(*_T->lock, &_T->flags), 6384 unsigned long flags) 6385 6386 static void sched_core_cpu_starting(unsigned int cpu) 6387 { 6388 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6389 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6390 int t; 6391 6392 guard(core_lock)(&cpu); 6393 6394 WARN_ON_ONCE(rq->core != rq); 6395 6396 /* if we're the first, we'll be our own leader */ 6397 if (cpumask_weight(smt_mask) == 1) 6398 return; 6399 6400 /* find the leader */ 6401 for_each_cpu(t, smt_mask) { 6402 if (t == cpu) 6403 continue; 6404 rq = cpu_rq(t); 6405 if (rq->core == rq) { 6406 core_rq = rq; 6407 break; 6408 } 6409 } 6410 6411 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6412 return; 6413 6414 /* install and validate core_rq */ 6415 for_each_cpu(t, smt_mask) { 6416 rq = cpu_rq(t); 6417 6418 if (t == cpu) 6419 rq->core = core_rq; 6420 6421 WARN_ON_ONCE(rq->core != core_rq); 6422 } 6423 } 6424 6425 static void sched_core_cpu_deactivate(unsigned int cpu) 6426 { 6427 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6428 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6429 int t; 6430 6431 guard(core_lock)(&cpu); 6432 6433 /* if we're the last man standing, nothing to do */ 6434 if (cpumask_weight(smt_mask) == 1) { 6435 WARN_ON_ONCE(rq->core != rq); 6436 return; 6437 } 6438 6439 /* if we're not the leader, nothing to do */ 6440 if (rq->core != rq) 6441 return; 6442 6443 /* find a new leader */ 6444 for_each_cpu(t, smt_mask) { 6445 if (t == cpu) 6446 continue; 6447 core_rq = cpu_rq(t); 6448 break; 6449 } 6450 6451 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6452 return; 6453 6454 /* copy the shared state to the new leader */ 6455 core_rq->core_task_seq = rq->core_task_seq; 6456 core_rq->core_pick_seq = rq->core_pick_seq; 6457 core_rq->core_cookie = rq->core_cookie; 6458 core_rq->core_forceidle_count = rq->core_forceidle_count; 6459 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6460 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6461 6462 /* 6463 * Accounting edge for forced idle is handled in pick_next_task(). 6464 * Don't need another one here, since the hotplug thread shouldn't 6465 * have a cookie. 6466 */ 6467 core_rq->core_forceidle_start = 0; 6468 6469 /* install new leader */ 6470 for_each_cpu(t, smt_mask) { 6471 rq = cpu_rq(t); 6472 rq->core = core_rq; 6473 } 6474 } 6475 6476 static inline void sched_core_cpu_dying(unsigned int cpu) 6477 { 6478 struct rq *rq = cpu_rq(cpu); 6479 6480 if (rq->core != rq) 6481 rq->core = rq; 6482 } 6483 6484 #else /* !CONFIG_SCHED_CORE */ 6485 6486 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6487 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6488 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6489 6490 static struct task_struct * 6491 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6492 { 6493 return __pick_next_task(rq, prev, rf); 6494 } 6495 6496 #endif /* CONFIG_SCHED_CORE */ 6497 6498 /* 6499 * Constants for the sched_mode argument of __schedule(). 6500 * 6501 * The mode argument allows RT enabled kernels to differentiate a 6502 * preemption from blocking on an 'sleeping' spin/rwlock. 6503 */ 6504 #define SM_IDLE (-1) 6505 #define SM_NONE 0 6506 #define SM_PREEMPT 1 6507 #define SM_RTLOCK_WAIT 2 6508 6509 /* 6510 * __schedule() is the main scheduler function. 6511 * 6512 * The main means of driving the scheduler and thus entering this function are: 6513 * 6514 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6515 * 6516 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6517 * paths. For example, see arch/x86/entry_64.S. 6518 * 6519 * To drive preemption between tasks, the scheduler sets the flag in timer 6520 * interrupt handler sched_tick(). 6521 * 6522 * 3. Wakeups don't really cause entry into schedule(). They add a 6523 * task to the run-queue and that's it. 6524 * 6525 * Now, if the new task added to the run-queue preempts the current 6526 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6527 * called on the nearest possible occasion: 6528 * 6529 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6530 * 6531 * - in syscall or exception context, at the next outmost 6532 * preempt_enable(). (this might be as soon as the wake_up()'s 6533 * spin_unlock()!) 6534 * 6535 * - in IRQ context, return from interrupt-handler to 6536 * preemptible context 6537 * 6538 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6539 * then at the next: 6540 * 6541 * - cond_resched() call 6542 * - explicit schedule() call 6543 * - return from syscall or exception to user-space 6544 * - return from interrupt-handler to user-space 6545 * 6546 * WARNING: must be called with preemption disabled! 6547 */ 6548 static void __sched notrace __schedule(int sched_mode) 6549 { 6550 struct task_struct *prev, *next; 6551 /* 6552 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6553 * as a preemption by schedule_debug() and RCU. 6554 */ 6555 bool preempt = sched_mode > SM_NONE; 6556 bool block = false; 6557 unsigned long *switch_count; 6558 unsigned long prev_state; 6559 struct rq_flags rf; 6560 struct rq *rq; 6561 int cpu; 6562 6563 cpu = smp_processor_id(); 6564 rq = cpu_rq(cpu); 6565 prev = rq->curr; 6566 6567 schedule_debug(prev, preempt); 6568 6569 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6570 hrtick_clear(rq); 6571 6572 local_irq_disable(); 6573 rcu_note_context_switch(preempt); 6574 6575 /* 6576 * Make sure that signal_pending_state()->signal_pending() below 6577 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6578 * done by the caller to avoid the race with signal_wake_up(): 6579 * 6580 * __set_current_state(@state) signal_wake_up() 6581 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6582 * wake_up_state(p, state) 6583 * LOCK rq->lock LOCK p->pi_state 6584 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6585 * if (signal_pending_state()) if (p->state & @state) 6586 * 6587 * Also, the membarrier system call requires a full memory barrier 6588 * after coming from user-space, before storing to rq->curr; this 6589 * barrier matches a full barrier in the proximity of the membarrier 6590 * system call exit. 6591 */ 6592 rq_lock(rq, &rf); 6593 smp_mb__after_spinlock(); 6594 6595 /* Promote REQ to ACT */ 6596 rq->clock_update_flags <<= 1; 6597 update_rq_clock(rq); 6598 rq->clock_update_flags = RQCF_UPDATED; 6599 6600 switch_count = &prev->nivcsw; 6601 6602 /* Task state changes only considers SM_PREEMPT as preemption */ 6603 preempt = sched_mode == SM_PREEMPT; 6604 6605 /* 6606 * We must load prev->state once (task_struct::state is volatile), such 6607 * that we form a control dependency vs deactivate_task() below. 6608 */ 6609 prev_state = READ_ONCE(prev->__state); 6610 if (sched_mode == SM_IDLE) { 6611 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6612 if (!rq->nr_running && !scx_enabled()) { 6613 next = prev; 6614 goto picked; 6615 } 6616 } else if (!preempt && prev_state) { 6617 if (signal_pending_state(prev_state, prev)) { 6618 WRITE_ONCE(prev->__state, TASK_RUNNING); 6619 } else { 6620 int flags = DEQUEUE_NOCLOCK; 6621 6622 prev->sched_contributes_to_load = 6623 (prev_state & TASK_UNINTERRUPTIBLE) && 6624 !(prev_state & TASK_NOLOAD) && 6625 !(prev_state & TASK_FROZEN); 6626 6627 if (unlikely(is_special_task_state(prev_state))) 6628 flags |= DEQUEUE_SPECIAL; 6629 6630 /* 6631 * __schedule() ttwu() 6632 * prev_state = prev->state; if (p->on_rq && ...) 6633 * if (prev_state) goto out; 6634 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6635 * p->state = TASK_WAKING 6636 * 6637 * Where __schedule() and ttwu() have matching control dependencies. 6638 * 6639 * After this, schedule() must not care about p->state any more. 6640 */ 6641 block_task(rq, prev, flags); 6642 block = true; 6643 } 6644 switch_count = &prev->nvcsw; 6645 } 6646 6647 next = pick_next_task(rq, prev, &rf); 6648 picked: 6649 clear_tsk_need_resched(prev); 6650 clear_preempt_need_resched(); 6651 #ifdef CONFIG_SCHED_DEBUG 6652 rq->last_seen_need_resched_ns = 0; 6653 #endif 6654 6655 if (likely(prev != next)) { 6656 rq->nr_switches++; 6657 /* 6658 * RCU users of rcu_dereference(rq->curr) may not see 6659 * changes to task_struct made by pick_next_task(). 6660 */ 6661 RCU_INIT_POINTER(rq->curr, next); 6662 /* 6663 * The membarrier system call requires each architecture 6664 * to have a full memory barrier after updating 6665 * rq->curr, before returning to user-space. 6666 * 6667 * Here are the schemes providing that barrier on the 6668 * various architectures: 6669 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6670 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6671 * on PowerPC and on RISC-V. 6672 * - finish_lock_switch() for weakly-ordered 6673 * architectures where spin_unlock is a full barrier, 6674 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6675 * is a RELEASE barrier), 6676 * 6677 * The barrier matches a full barrier in the proximity of 6678 * the membarrier system call entry. 6679 * 6680 * On RISC-V, this barrier pairing is also needed for the 6681 * SYNC_CORE command when switching between processes, cf. 6682 * the inline comments in membarrier_arch_switch_mm(). 6683 */ 6684 ++*switch_count; 6685 6686 migrate_disable_switch(rq, prev); 6687 psi_account_irqtime(rq, prev, next); 6688 psi_sched_switch(prev, next, block); 6689 6690 trace_sched_switch(preempt, prev, next, prev_state); 6691 6692 /* Also unlocks the rq: */ 6693 rq = context_switch(rq, prev, next, &rf); 6694 } else { 6695 rq_unpin_lock(rq, &rf); 6696 __balance_callbacks(rq); 6697 raw_spin_rq_unlock_irq(rq); 6698 } 6699 } 6700 6701 void __noreturn do_task_dead(void) 6702 { 6703 /* Causes final put_task_struct in finish_task_switch(): */ 6704 set_special_state(TASK_DEAD); 6705 6706 /* Tell freezer to ignore us: */ 6707 current->flags |= PF_NOFREEZE; 6708 6709 __schedule(SM_NONE); 6710 BUG(); 6711 6712 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6713 for (;;) 6714 cpu_relax(); 6715 } 6716 6717 static inline void sched_submit_work(struct task_struct *tsk) 6718 { 6719 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6720 unsigned int task_flags; 6721 6722 /* 6723 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6724 * will use a blocking primitive -- which would lead to recursion. 6725 */ 6726 lock_map_acquire_try(&sched_map); 6727 6728 task_flags = tsk->flags; 6729 /* 6730 * If a worker goes to sleep, notify and ask workqueue whether it 6731 * wants to wake up a task to maintain concurrency. 6732 */ 6733 if (task_flags & PF_WQ_WORKER) 6734 wq_worker_sleeping(tsk); 6735 else if (task_flags & PF_IO_WORKER) 6736 io_wq_worker_sleeping(tsk); 6737 6738 /* 6739 * spinlock and rwlock must not flush block requests. This will 6740 * deadlock if the callback attempts to acquire a lock which is 6741 * already acquired. 6742 */ 6743 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6744 6745 /* 6746 * If we are going to sleep and we have plugged IO queued, 6747 * make sure to submit it to avoid deadlocks. 6748 */ 6749 blk_flush_plug(tsk->plug, true); 6750 6751 lock_map_release(&sched_map); 6752 } 6753 6754 static void sched_update_worker(struct task_struct *tsk) 6755 { 6756 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6757 if (tsk->flags & PF_BLOCK_TS) 6758 blk_plug_invalidate_ts(tsk); 6759 if (tsk->flags & PF_WQ_WORKER) 6760 wq_worker_running(tsk); 6761 else if (tsk->flags & PF_IO_WORKER) 6762 io_wq_worker_running(tsk); 6763 } 6764 } 6765 6766 static __always_inline void __schedule_loop(int sched_mode) 6767 { 6768 do { 6769 preempt_disable(); 6770 __schedule(sched_mode); 6771 sched_preempt_enable_no_resched(); 6772 } while (need_resched()); 6773 } 6774 6775 asmlinkage __visible void __sched schedule(void) 6776 { 6777 struct task_struct *tsk = current; 6778 6779 #ifdef CONFIG_RT_MUTEXES 6780 lockdep_assert(!tsk->sched_rt_mutex); 6781 #endif 6782 6783 if (!task_is_running(tsk)) 6784 sched_submit_work(tsk); 6785 __schedule_loop(SM_NONE); 6786 sched_update_worker(tsk); 6787 } 6788 EXPORT_SYMBOL(schedule); 6789 6790 /* 6791 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6792 * state (have scheduled out non-voluntarily) by making sure that all 6793 * tasks have either left the run queue or have gone into user space. 6794 * As idle tasks do not do either, they must not ever be preempted 6795 * (schedule out non-voluntarily). 6796 * 6797 * schedule_idle() is similar to schedule_preempt_disable() except that it 6798 * never enables preemption because it does not call sched_submit_work(). 6799 */ 6800 void __sched schedule_idle(void) 6801 { 6802 /* 6803 * As this skips calling sched_submit_work(), which the idle task does 6804 * regardless because that function is a NOP when the task is in a 6805 * TASK_RUNNING state, make sure this isn't used someplace that the 6806 * current task can be in any other state. Note, idle is always in the 6807 * TASK_RUNNING state. 6808 */ 6809 WARN_ON_ONCE(current->__state); 6810 do { 6811 __schedule(SM_IDLE); 6812 } while (need_resched()); 6813 } 6814 6815 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6816 asmlinkage __visible void __sched schedule_user(void) 6817 { 6818 /* 6819 * If we come here after a random call to set_need_resched(), 6820 * or we have been woken up remotely but the IPI has not yet arrived, 6821 * we haven't yet exited the RCU idle mode. Do it here manually until 6822 * we find a better solution. 6823 * 6824 * NB: There are buggy callers of this function. Ideally we 6825 * should warn if prev_state != CT_STATE_USER, but that will trigger 6826 * too frequently to make sense yet. 6827 */ 6828 enum ctx_state prev_state = exception_enter(); 6829 schedule(); 6830 exception_exit(prev_state); 6831 } 6832 #endif 6833 6834 /** 6835 * schedule_preempt_disabled - called with preemption disabled 6836 * 6837 * Returns with preemption disabled. Note: preempt_count must be 1 6838 */ 6839 void __sched schedule_preempt_disabled(void) 6840 { 6841 sched_preempt_enable_no_resched(); 6842 schedule(); 6843 preempt_disable(); 6844 } 6845 6846 #ifdef CONFIG_PREEMPT_RT 6847 void __sched notrace schedule_rtlock(void) 6848 { 6849 __schedule_loop(SM_RTLOCK_WAIT); 6850 } 6851 NOKPROBE_SYMBOL(schedule_rtlock); 6852 #endif 6853 6854 static void __sched notrace preempt_schedule_common(void) 6855 { 6856 do { 6857 /* 6858 * Because the function tracer can trace preempt_count_sub() 6859 * and it also uses preempt_enable/disable_notrace(), if 6860 * NEED_RESCHED is set, the preempt_enable_notrace() called 6861 * by the function tracer will call this function again and 6862 * cause infinite recursion. 6863 * 6864 * Preemption must be disabled here before the function 6865 * tracer can trace. Break up preempt_disable() into two 6866 * calls. One to disable preemption without fear of being 6867 * traced. The other to still record the preemption latency, 6868 * which can also be traced by the function tracer. 6869 */ 6870 preempt_disable_notrace(); 6871 preempt_latency_start(1); 6872 __schedule(SM_PREEMPT); 6873 preempt_latency_stop(1); 6874 preempt_enable_no_resched_notrace(); 6875 6876 /* 6877 * Check again in case we missed a preemption opportunity 6878 * between schedule and now. 6879 */ 6880 } while (need_resched()); 6881 } 6882 6883 #ifdef CONFIG_PREEMPTION 6884 /* 6885 * This is the entry point to schedule() from in-kernel preemption 6886 * off of preempt_enable. 6887 */ 6888 asmlinkage __visible void __sched notrace preempt_schedule(void) 6889 { 6890 /* 6891 * If there is a non-zero preempt_count or interrupts are disabled, 6892 * we do not want to preempt the current task. Just return.. 6893 */ 6894 if (likely(!preemptible())) 6895 return; 6896 preempt_schedule_common(); 6897 } 6898 NOKPROBE_SYMBOL(preempt_schedule); 6899 EXPORT_SYMBOL(preempt_schedule); 6900 6901 #ifdef CONFIG_PREEMPT_DYNAMIC 6902 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6903 #ifndef preempt_schedule_dynamic_enabled 6904 #define preempt_schedule_dynamic_enabled preempt_schedule 6905 #define preempt_schedule_dynamic_disabled NULL 6906 #endif 6907 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6908 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6909 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6910 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6911 void __sched notrace dynamic_preempt_schedule(void) 6912 { 6913 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6914 return; 6915 preempt_schedule(); 6916 } 6917 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6918 EXPORT_SYMBOL(dynamic_preempt_schedule); 6919 #endif 6920 #endif 6921 6922 /** 6923 * preempt_schedule_notrace - preempt_schedule called by tracing 6924 * 6925 * The tracing infrastructure uses preempt_enable_notrace to prevent 6926 * recursion and tracing preempt enabling caused by the tracing 6927 * infrastructure itself. But as tracing can happen in areas coming 6928 * from userspace or just about to enter userspace, a preempt enable 6929 * can occur before user_exit() is called. This will cause the scheduler 6930 * to be called when the system is still in usermode. 6931 * 6932 * To prevent this, the preempt_enable_notrace will use this function 6933 * instead of preempt_schedule() to exit user context if needed before 6934 * calling the scheduler. 6935 */ 6936 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6937 { 6938 enum ctx_state prev_ctx; 6939 6940 if (likely(!preemptible())) 6941 return; 6942 6943 do { 6944 /* 6945 * Because the function tracer can trace preempt_count_sub() 6946 * and it also uses preempt_enable/disable_notrace(), if 6947 * NEED_RESCHED is set, the preempt_enable_notrace() called 6948 * by the function tracer will call this function again and 6949 * cause infinite recursion. 6950 * 6951 * Preemption must be disabled here before the function 6952 * tracer can trace. Break up preempt_disable() into two 6953 * calls. One to disable preemption without fear of being 6954 * traced. The other to still record the preemption latency, 6955 * which can also be traced by the function tracer. 6956 */ 6957 preempt_disable_notrace(); 6958 preempt_latency_start(1); 6959 /* 6960 * Needs preempt disabled in case user_exit() is traced 6961 * and the tracer calls preempt_enable_notrace() causing 6962 * an infinite recursion. 6963 */ 6964 prev_ctx = exception_enter(); 6965 __schedule(SM_PREEMPT); 6966 exception_exit(prev_ctx); 6967 6968 preempt_latency_stop(1); 6969 preempt_enable_no_resched_notrace(); 6970 } while (need_resched()); 6971 } 6972 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6973 6974 #ifdef CONFIG_PREEMPT_DYNAMIC 6975 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6976 #ifndef preempt_schedule_notrace_dynamic_enabled 6977 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6978 #define preempt_schedule_notrace_dynamic_disabled NULL 6979 #endif 6980 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6981 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6982 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6983 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6984 void __sched notrace dynamic_preempt_schedule_notrace(void) 6985 { 6986 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6987 return; 6988 preempt_schedule_notrace(); 6989 } 6990 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6991 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6992 #endif 6993 #endif 6994 6995 #endif /* CONFIG_PREEMPTION */ 6996 6997 /* 6998 * This is the entry point to schedule() from kernel preemption 6999 * off of IRQ context. 7000 * Note, that this is called and return with IRQs disabled. This will 7001 * protect us against recursive calling from IRQ contexts. 7002 */ 7003 asmlinkage __visible void __sched preempt_schedule_irq(void) 7004 { 7005 enum ctx_state prev_state; 7006 7007 /* Catch callers which need to be fixed */ 7008 BUG_ON(preempt_count() || !irqs_disabled()); 7009 7010 prev_state = exception_enter(); 7011 7012 do { 7013 preempt_disable(); 7014 local_irq_enable(); 7015 __schedule(SM_PREEMPT); 7016 local_irq_disable(); 7017 sched_preempt_enable_no_resched(); 7018 } while (need_resched()); 7019 7020 exception_exit(prev_state); 7021 } 7022 7023 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7024 void *key) 7025 { 7026 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7027 return try_to_wake_up(curr->private, mode, wake_flags); 7028 } 7029 EXPORT_SYMBOL(default_wake_function); 7030 7031 const struct sched_class *__setscheduler_class(int policy, int prio) 7032 { 7033 if (dl_prio(prio)) 7034 return &dl_sched_class; 7035 7036 if (rt_prio(prio)) 7037 return &rt_sched_class; 7038 7039 #ifdef CONFIG_SCHED_CLASS_EXT 7040 if (task_should_scx(policy)) 7041 return &ext_sched_class; 7042 #endif 7043 7044 return &fair_sched_class; 7045 } 7046 7047 #ifdef CONFIG_RT_MUTEXES 7048 7049 /* 7050 * Would be more useful with typeof()/auto_type but they don't mix with 7051 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7052 * name such that if someone were to implement this function we get to compare 7053 * notes. 7054 */ 7055 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7056 7057 void rt_mutex_pre_schedule(void) 7058 { 7059 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7060 sched_submit_work(current); 7061 } 7062 7063 void rt_mutex_schedule(void) 7064 { 7065 lockdep_assert(current->sched_rt_mutex); 7066 __schedule_loop(SM_NONE); 7067 } 7068 7069 void rt_mutex_post_schedule(void) 7070 { 7071 sched_update_worker(current); 7072 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7073 } 7074 7075 /* 7076 * rt_mutex_setprio - set the current priority of a task 7077 * @p: task to boost 7078 * @pi_task: donor task 7079 * 7080 * This function changes the 'effective' priority of a task. It does 7081 * not touch ->normal_prio like __setscheduler(). 7082 * 7083 * Used by the rt_mutex code to implement priority inheritance 7084 * logic. Call site only calls if the priority of the task changed. 7085 */ 7086 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7087 { 7088 int prio, oldprio, queued, running, queue_flag = 7089 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7090 const struct sched_class *prev_class, *next_class; 7091 struct rq_flags rf; 7092 struct rq *rq; 7093 7094 /* XXX used to be waiter->prio, not waiter->task->prio */ 7095 prio = __rt_effective_prio(pi_task, p->normal_prio); 7096 7097 /* 7098 * If nothing changed; bail early. 7099 */ 7100 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7101 return; 7102 7103 rq = __task_rq_lock(p, &rf); 7104 update_rq_clock(rq); 7105 /* 7106 * Set under pi_lock && rq->lock, such that the value can be used under 7107 * either lock. 7108 * 7109 * Note that there is loads of tricky to make this pointer cache work 7110 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7111 * ensure a task is de-boosted (pi_task is set to NULL) before the 7112 * task is allowed to run again (and can exit). This ensures the pointer 7113 * points to a blocked task -- which guarantees the task is present. 7114 */ 7115 p->pi_top_task = pi_task; 7116 7117 /* 7118 * For FIFO/RR we only need to set prio, if that matches we're done. 7119 */ 7120 if (prio == p->prio && !dl_prio(prio)) 7121 goto out_unlock; 7122 7123 /* 7124 * Idle task boosting is a no-no in general. There is one 7125 * exception, when PREEMPT_RT and NOHZ is active: 7126 * 7127 * The idle task calls get_next_timer_interrupt() and holds 7128 * the timer wheel base->lock on the CPU and another CPU wants 7129 * to access the timer (probably to cancel it). We can safely 7130 * ignore the boosting request, as the idle CPU runs this code 7131 * with interrupts disabled and will complete the lock 7132 * protected section without being interrupted. So there is no 7133 * real need to boost. 7134 */ 7135 if (unlikely(p == rq->idle)) { 7136 WARN_ON(p != rq->curr); 7137 WARN_ON(p->pi_blocked_on); 7138 goto out_unlock; 7139 } 7140 7141 trace_sched_pi_setprio(p, pi_task); 7142 oldprio = p->prio; 7143 7144 if (oldprio == prio) 7145 queue_flag &= ~DEQUEUE_MOVE; 7146 7147 prev_class = p->sched_class; 7148 next_class = __setscheduler_class(p->policy, prio); 7149 7150 if (prev_class != next_class && p->se.sched_delayed) 7151 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 7152 7153 queued = task_on_rq_queued(p); 7154 running = task_current(rq, p); 7155 if (queued) 7156 dequeue_task(rq, p, queue_flag); 7157 if (running) 7158 put_prev_task(rq, p); 7159 7160 /* 7161 * Boosting condition are: 7162 * 1. -rt task is running and holds mutex A 7163 * --> -dl task blocks on mutex A 7164 * 7165 * 2. -dl task is running and holds mutex A 7166 * --> -dl task blocks on mutex A and could preempt the 7167 * running task 7168 */ 7169 if (dl_prio(prio)) { 7170 if (!dl_prio(p->normal_prio) || 7171 (pi_task && dl_prio(pi_task->prio) && 7172 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7173 p->dl.pi_se = pi_task->dl.pi_se; 7174 queue_flag |= ENQUEUE_REPLENISH; 7175 } else { 7176 p->dl.pi_se = &p->dl; 7177 } 7178 } else if (rt_prio(prio)) { 7179 if (dl_prio(oldprio)) 7180 p->dl.pi_se = &p->dl; 7181 if (oldprio < prio) 7182 queue_flag |= ENQUEUE_HEAD; 7183 } else { 7184 if (dl_prio(oldprio)) 7185 p->dl.pi_se = &p->dl; 7186 if (rt_prio(oldprio)) 7187 p->rt.timeout = 0; 7188 } 7189 7190 p->sched_class = next_class; 7191 p->prio = prio; 7192 7193 check_class_changing(rq, p, prev_class); 7194 7195 if (queued) 7196 enqueue_task(rq, p, queue_flag); 7197 if (running) 7198 set_next_task(rq, p); 7199 7200 check_class_changed(rq, p, prev_class, oldprio); 7201 out_unlock: 7202 /* Avoid rq from going away on us: */ 7203 preempt_disable(); 7204 7205 rq_unpin_lock(rq, &rf); 7206 __balance_callbacks(rq); 7207 raw_spin_rq_unlock(rq); 7208 7209 preempt_enable(); 7210 } 7211 #endif 7212 7213 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7214 int __sched __cond_resched(void) 7215 { 7216 if (should_resched(0)) { 7217 preempt_schedule_common(); 7218 return 1; 7219 } 7220 /* 7221 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 7222 * whether the current CPU is in an RCU read-side critical section, 7223 * so the tick can report quiescent states even for CPUs looping 7224 * in kernel context. In contrast, in non-preemptible kernels, 7225 * RCU readers leave no in-memory hints, which means that CPU-bound 7226 * processes executing in kernel context might never report an 7227 * RCU quiescent state. Therefore, the following code causes 7228 * cond_resched() to report a quiescent state, but only when RCU 7229 * is in urgent need of one. 7230 */ 7231 #ifndef CONFIG_PREEMPT_RCU 7232 rcu_all_qs(); 7233 #endif 7234 return 0; 7235 } 7236 EXPORT_SYMBOL(__cond_resched); 7237 #endif 7238 7239 #ifdef CONFIG_PREEMPT_DYNAMIC 7240 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7241 #define cond_resched_dynamic_enabled __cond_resched 7242 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7243 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7244 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7245 7246 #define might_resched_dynamic_enabled __cond_resched 7247 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7248 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7249 EXPORT_STATIC_CALL_TRAMP(might_resched); 7250 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7251 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7252 int __sched dynamic_cond_resched(void) 7253 { 7254 klp_sched_try_switch(); 7255 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7256 return 0; 7257 return __cond_resched(); 7258 } 7259 EXPORT_SYMBOL(dynamic_cond_resched); 7260 7261 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7262 int __sched dynamic_might_resched(void) 7263 { 7264 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7265 return 0; 7266 return __cond_resched(); 7267 } 7268 EXPORT_SYMBOL(dynamic_might_resched); 7269 #endif 7270 #endif 7271 7272 /* 7273 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7274 * call schedule, and on return reacquire the lock. 7275 * 7276 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7277 * operations here to prevent schedule() from being called twice (once via 7278 * spin_unlock(), once by hand). 7279 */ 7280 int __cond_resched_lock(spinlock_t *lock) 7281 { 7282 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7283 int ret = 0; 7284 7285 lockdep_assert_held(lock); 7286 7287 if (spin_needbreak(lock) || resched) { 7288 spin_unlock(lock); 7289 if (!_cond_resched()) 7290 cpu_relax(); 7291 ret = 1; 7292 spin_lock(lock); 7293 } 7294 return ret; 7295 } 7296 EXPORT_SYMBOL(__cond_resched_lock); 7297 7298 int __cond_resched_rwlock_read(rwlock_t *lock) 7299 { 7300 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7301 int ret = 0; 7302 7303 lockdep_assert_held_read(lock); 7304 7305 if (rwlock_needbreak(lock) || resched) { 7306 read_unlock(lock); 7307 if (!_cond_resched()) 7308 cpu_relax(); 7309 ret = 1; 7310 read_lock(lock); 7311 } 7312 return ret; 7313 } 7314 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7315 7316 int __cond_resched_rwlock_write(rwlock_t *lock) 7317 { 7318 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7319 int ret = 0; 7320 7321 lockdep_assert_held_write(lock); 7322 7323 if (rwlock_needbreak(lock) || resched) { 7324 write_unlock(lock); 7325 if (!_cond_resched()) 7326 cpu_relax(); 7327 ret = 1; 7328 write_lock(lock); 7329 } 7330 return ret; 7331 } 7332 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7333 7334 #ifdef CONFIG_PREEMPT_DYNAMIC 7335 7336 #ifdef CONFIG_GENERIC_ENTRY 7337 #include <linux/entry-common.h> 7338 #endif 7339 7340 /* 7341 * SC:cond_resched 7342 * SC:might_resched 7343 * SC:preempt_schedule 7344 * SC:preempt_schedule_notrace 7345 * SC:irqentry_exit_cond_resched 7346 * 7347 * 7348 * NONE: 7349 * cond_resched <- __cond_resched 7350 * might_resched <- RET0 7351 * preempt_schedule <- NOP 7352 * preempt_schedule_notrace <- NOP 7353 * irqentry_exit_cond_resched <- NOP 7354 * 7355 * VOLUNTARY: 7356 * cond_resched <- __cond_resched 7357 * might_resched <- __cond_resched 7358 * preempt_schedule <- NOP 7359 * preempt_schedule_notrace <- NOP 7360 * irqentry_exit_cond_resched <- NOP 7361 * 7362 * FULL: 7363 * cond_resched <- RET0 7364 * might_resched <- RET0 7365 * preempt_schedule <- preempt_schedule 7366 * preempt_schedule_notrace <- preempt_schedule_notrace 7367 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7368 */ 7369 7370 enum { 7371 preempt_dynamic_undefined = -1, 7372 preempt_dynamic_none, 7373 preempt_dynamic_voluntary, 7374 preempt_dynamic_full, 7375 }; 7376 7377 int preempt_dynamic_mode = preempt_dynamic_undefined; 7378 7379 int sched_dynamic_mode(const char *str) 7380 { 7381 if (!strcmp(str, "none")) 7382 return preempt_dynamic_none; 7383 7384 if (!strcmp(str, "voluntary")) 7385 return preempt_dynamic_voluntary; 7386 7387 if (!strcmp(str, "full")) 7388 return preempt_dynamic_full; 7389 7390 return -EINVAL; 7391 } 7392 7393 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7394 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7395 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7396 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7397 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 7398 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 7399 #else 7400 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7401 #endif 7402 7403 static DEFINE_MUTEX(sched_dynamic_mutex); 7404 static bool klp_override; 7405 7406 static void __sched_dynamic_update(int mode) 7407 { 7408 /* 7409 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7410 * the ZERO state, which is invalid. 7411 */ 7412 if (!klp_override) 7413 preempt_dynamic_enable(cond_resched); 7414 preempt_dynamic_enable(might_resched); 7415 preempt_dynamic_enable(preempt_schedule); 7416 preempt_dynamic_enable(preempt_schedule_notrace); 7417 preempt_dynamic_enable(irqentry_exit_cond_resched); 7418 7419 switch (mode) { 7420 case preempt_dynamic_none: 7421 if (!klp_override) 7422 preempt_dynamic_enable(cond_resched); 7423 preempt_dynamic_disable(might_resched); 7424 preempt_dynamic_disable(preempt_schedule); 7425 preempt_dynamic_disable(preempt_schedule_notrace); 7426 preempt_dynamic_disable(irqentry_exit_cond_resched); 7427 if (mode != preempt_dynamic_mode) 7428 pr_info("Dynamic Preempt: none\n"); 7429 break; 7430 7431 case preempt_dynamic_voluntary: 7432 if (!klp_override) 7433 preempt_dynamic_enable(cond_resched); 7434 preempt_dynamic_enable(might_resched); 7435 preempt_dynamic_disable(preempt_schedule); 7436 preempt_dynamic_disable(preempt_schedule_notrace); 7437 preempt_dynamic_disable(irqentry_exit_cond_resched); 7438 if (mode != preempt_dynamic_mode) 7439 pr_info("Dynamic Preempt: voluntary\n"); 7440 break; 7441 7442 case preempt_dynamic_full: 7443 if (!klp_override) 7444 preempt_dynamic_disable(cond_resched); 7445 preempt_dynamic_disable(might_resched); 7446 preempt_dynamic_enable(preempt_schedule); 7447 preempt_dynamic_enable(preempt_schedule_notrace); 7448 preempt_dynamic_enable(irqentry_exit_cond_resched); 7449 if (mode != preempt_dynamic_mode) 7450 pr_info("Dynamic Preempt: full\n"); 7451 break; 7452 } 7453 7454 preempt_dynamic_mode = mode; 7455 } 7456 7457 void sched_dynamic_update(int mode) 7458 { 7459 mutex_lock(&sched_dynamic_mutex); 7460 __sched_dynamic_update(mode); 7461 mutex_unlock(&sched_dynamic_mutex); 7462 } 7463 7464 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7465 7466 static int klp_cond_resched(void) 7467 { 7468 __klp_sched_try_switch(); 7469 return __cond_resched(); 7470 } 7471 7472 void sched_dynamic_klp_enable(void) 7473 { 7474 mutex_lock(&sched_dynamic_mutex); 7475 7476 klp_override = true; 7477 static_call_update(cond_resched, klp_cond_resched); 7478 7479 mutex_unlock(&sched_dynamic_mutex); 7480 } 7481 7482 void sched_dynamic_klp_disable(void) 7483 { 7484 mutex_lock(&sched_dynamic_mutex); 7485 7486 klp_override = false; 7487 __sched_dynamic_update(preempt_dynamic_mode); 7488 7489 mutex_unlock(&sched_dynamic_mutex); 7490 } 7491 7492 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7493 7494 static int __init setup_preempt_mode(char *str) 7495 { 7496 int mode = sched_dynamic_mode(str); 7497 if (mode < 0) { 7498 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7499 return 0; 7500 } 7501 7502 sched_dynamic_update(mode); 7503 return 1; 7504 } 7505 __setup("preempt=", setup_preempt_mode); 7506 7507 static void __init preempt_dynamic_init(void) 7508 { 7509 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7510 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7511 sched_dynamic_update(preempt_dynamic_none); 7512 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7513 sched_dynamic_update(preempt_dynamic_voluntary); 7514 } else { 7515 /* Default static call setting, nothing to do */ 7516 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7517 preempt_dynamic_mode = preempt_dynamic_full; 7518 pr_info("Dynamic Preempt: full\n"); 7519 } 7520 } 7521 } 7522 7523 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7524 bool preempt_model_##mode(void) \ 7525 { \ 7526 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7527 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7528 } \ 7529 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7530 7531 PREEMPT_MODEL_ACCESSOR(none); 7532 PREEMPT_MODEL_ACCESSOR(voluntary); 7533 PREEMPT_MODEL_ACCESSOR(full); 7534 7535 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7536 7537 static inline void preempt_dynamic_init(void) { } 7538 7539 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7540 7541 int io_schedule_prepare(void) 7542 { 7543 int old_iowait = current->in_iowait; 7544 7545 current->in_iowait = 1; 7546 blk_flush_plug(current->plug, true); 7547 return old_iowait; 7548 } 7549 7550 void io_schedule_finish(int token) 7551 { 7552 current->in_iowait = token; 7553 } 7554 7555 /* 7556 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7557 * that process accounting knows that this is a task in IO wait state. 7558 */ 7559 long __sched io_schedule_timeout(long timeout) 7560 { 7561 int token; 7562 long ret; 7563 7564 token = io_schedule_prepare(); 7565 ret = schedule_timeout(timeout); 7566 io_schedule_finish(token); 7567 7568 return ret; 7569 } 7570 EXPORT_SYMBOL(io_schedule_timeout); 7571 7572 void __sched io_schedule(void) 7573 { 7574 int token; 7575 7576 token = io_schedule_prepare(); 7577 schedule(); 7578 io_schedule_finish(token); 7579 } 7580 EXPORT_SYMBOL(io_schedule); 7581 7582 void sched_show_task(struct task_struct *p) 7583 { 7584 unsigned long free; 7585 int ppid; 7586 7587 if (!try_get_task_stack(p)) 7588 return; 7589 7590 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7591 7592 if (task_is_running(p)) 7593 pr_cont(" running task "); 7594 free = stack_not_used(p); 7595 ppid = 0; 7596 rcu_read_lock(); 7597 if (pid_alive(p)) 7598 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7599 rcu_read_unlock(); 7600 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", 7601 free, task_pid_nr(p), task_tgid_nr(p), 7602 ppid, read_task_thread_flags(p)); 7603 7604 print_worker_info(KERN_INFO, p); 7605 print_stop_info(KERN_INFO, p); 7606 print_scx_info(KERN_INFO, p); 7607 show_stack(p, NULL, KERN_INFO); 7608 put_task_stack(p); 7609 } 7610 EXPORT_SYMBOL_GPL(sched_show_task); 7611 7612 static inline bool 7613 state_filter_match(unsigned long state_filter, struct task_struct *p) 7614 { 7615 unsigned int state = READ_ONCE(p->__state); 7616 7617 /* no filter, everything matches */ 7618 if (!state_filter) 7619 return true; 7620 7621 /* filter, but doesn't match */ 7622 if (!(state & state_filter)) 7623 return false; 7624 7625 /* 7626 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7627 * TASK_KILLABLE). 7628 */ 7629 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7630 return false; 7631 7632 return true; 7633 } 7634 7635 7636 void show_state_filter(unsigned int state_filter) 7637 { 7638 struct task_struct *g, *p; 7639 7640 rcu_read_lock(); 7641 for_each_process_thread(g, p) { 7642 /* 7643 * reset the NMI-timeout, listing all files on a slow 7644 * console might take a lot of time: 7645 * Also, reset softlockup watchdogs on all CPUs, because 7646 * another CPU might be blocked waiting for us to process 7647 * an IPI. 7648 */ 7649 touch_nmi_watchdog(); 7650 touch_all_softlockup_watchdogs(); 7651 if (state_filter_match(state_filter, p)) 7652 sched_show_task(p); 7653 } 7654 7655 #ifdef CONFIG_SCHED_DEBUG 7656 if (!state_filter) 7657 sysrq_sched_debug_show(); 7658 #endif 7659 rcu_read_unlock(); 7660 /* 7661 * Only show locks if all tasks are dumped: 7662 */ 7663 if (!state_filter) 7664 debug_show_all_locks(); 7665 } 7666 7667 /** 7668 * init_idle - set up an idle thread for a given CPU 7669 * @idle: task in question 7670 * @cpu: CPU the idle task belongs to 7671 * 7672 * NOTE: this function does not set the idle thread's NEED_RESCHED 7673 * flag, to make booting more robust. 7674 */ 7675 void __init init_idle(struct task_struct *idle, int cpu) 7676 { 7677 #ifdef CONFIG_SMP 7678 struct affinity_context ac = (struct affinity_context) { 7679 .new_mask = cpumask_of(cpu), 7680 .flags = 0, 7681 }; 7682 #endif 7683 struct rq *rq = cpu_rq(cpu); 7684 unsigned long flags; 7685 7686 __sched_fork(0, idle); 7687 7688 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7689 raw_spin_rq_lock(rq); 7690 7691 idle->__state = TASK_RUNNING; 7692 idle->se.exec_start = sched_clock(); 7693 /* 7694 * PF_KTHREAD should already be set at this point; regardless, make it 7695 * look like a proper per-CPU kthread. 7696 */ 7697 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7698 kthread_set_per_cpu(idle, cpu); 7699 7700 #ifdef CONFIG_SMP 7701 /* 7702 * It's possible that init_idle() gets called multiple times on a task, 7703 * in that case do_set_cpus_allowed() will not do the right thing. 7704 * 7705 * And since this is boot we can forgo the serialization. 7706 */ 7707 set_cpus_allowed_common(idle, &ac); 7708 #endif 7709 /* 7710 * We're having a chicken and egg problem, even though we are 7711 * holding rq->lock, the CPU isn't yet set to this CPU so the 7712 * lockdep check in task_group() will fail. 7713 * 7714 * Similar case to sched_fork(). / Alternatively we could 7715 * use task_rq_lock() here and obtain the other rq->lock. 7716 * 7717 * Silence PROVE_RCU 7718 */ 7719 rcu_read_lock(); 7720 __set_task_cpu(idle, cpu); 7721 rcu_read_unlock(); 7722 7723 rq->idle = idle; 7724 rcu_assign_pointer(rq->curr, idle); 7725 idle->on_rq = TASK_ON_RQ_QUEUED; 7726 #ifdef CONFIG_SMP 7727 idle->on_cpu = 1; 7728 #endif 7729 raw_spin_rq_unlock(rq); 7730 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7731 7732 /* Set the preempt count _outside_ the spinlocks! */ 7733 init_idle_preempt_count(idle, cpu); 7734 7735 /* 7736 * The idle tasks have their own, simple scheduling class: 7737 */ 7738 idle->sched_class = &idle_sched_class; 7739 ftrace_graph_init_idle_task(idle, cpu); 7740 vtime_init_idle(idle, cpu); 7741 #ifdef CONFIG_SMP 7742 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7743 #endif 7744 } 7745 7746 #ifdef CONFIG_SMP 7747 7748 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7749 const struct cpumask *trial) 7750 { 7751 int ret = 1; 7752 7753 if (cpumask_empty(cur)) 7754 return ret; 7755 7756 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7757 7758 return ret; 7759 } 7760 7761 int task_can_attach(struct task_struct *p) 7762 { 7763 int ret = 0; 7764 7765 /* 7766 * Kthreads which disallow setaffinity shouldn't be moved 7767 * to a new cpuset; we don't want to change their CPU 7768 * affinity and isolating such threads by their set of 7769 * allowed nodes is unnecessary. Thus, cpusets are not 7770 * applicable for such threads. This prevents checking for 7771 * success of set_cpus_allowed_ptr() on all attached tasks 7772 * before cpus_mask may be changed. 7773 */ 7774 if (p->flags & PF_NO_SETAFFINITY) 7775 ret = -EINVAL; 7776 7777 return ret; 7778 } 7779 7780 bool sched_smp_initialized __read_mostly; 7781 7782 #ifdef CONFIG_NUMA_BALANCING 7783 /* Migrate current task p to target_cpu */ 7784 int migrate_task_to(struct task_struct *p, int target_cpu) 7785 { 7786 struct migration_arg arg = { p, target_cpu }; 7787 int curr_cpu = task_cpu(p); 7788 7789 if (curr_cpu == target_cpu) 7790 return 0; 7791 7792 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7793 return -EINVAL; 7794 7795 /* TODO: This is not properly updating schedstats */ 7796 7797 trace_sched_move_numa(p, curr_cpu, target_cpu); 7798 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7799 } 7800 7801 /* 7802 * Requeue a task on a given node and accurately track the number of NUMA 7803 * tasks on the runqueues 7804 */ 7805 void sched_setnuma(struct task_struct *p, int nid) 7806 { 7807 bool queued, running; 7808 struct rq_flags rf; 7809 struct rq *rq; 7810 7811 rq = task_rq_lock(p, &rf); 7812 queued = task_on_rq_queued(p); 7813 running = task_current(rq, p); 7814 7815 if (queued) 7816 dequeue_task(rq, p, DEQUEUE_SAVE); 7817 if (running) 7818 put_prev_task(rq, p); 7819 7820 p->numa_preferred_nid = nid; 7821 7822 if (queued) 7823 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7824 if (running) 7825 set_next_task(rq, p); 7826 task_rq_unlock(rq, p, &rf); 7827 } 7828 #endif /* CONFIG_NUMA_BALANCING */ 7829 7830 #ifdef CONFIG_HOTPLUG_CPU 7831 /* 7832 * Ensure that the idle task is using init_mm right before its CPU goes 7833 * offline. 7834 */ 7835 void idle_task_exit(void) 7836 { 7837 struct mm_struct *mm = current->active_mm; 7838 7839 BUG_ON(cpu_online(smp_processor_id())); 7840 BUG_ON(current != this_rq()->idle); 7841 7842 if (mm != &init_mm) { 7843 switch_mm(mm, &init_mm, current); 7844 finish_arch_post_lock_switch(); 7845 } 7846 7847 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7848 } 7849 7850 static int __balance_push_cpu_stop(void *arg) 7851 { 7852 struct task_struct *p = arg; 7853 struct rq *rq = this_rq(); 7854 struct rq_flags rf; 7855 int cpu; 7856 7857 raw_spin_lock_irq(&p->pi_lock); 7858 rq_lock(rq, &rf); 7859 7860 update_rq_clock(rq); 7861 7862 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7863 cpu = select_fallback_rq(rq->cpu, p); 7864 rq = __migrate_task(rq, &rf, p, cpu); 7865 } 7866 7867 rq_unlock(rq, &rf); 7868 raw_spin_unlock_irq(&p->pi_lock); 7869 7870 put_task_struct(p); 7871 7872 return 0; 7873 } 7874 7875 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7876 7877 /* 7878 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7879 * 7880 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7881 * effective when the hotplug motion is down. 7882 */ 7883 static void balance_push(struct rq *rq) 7884 { 7885 struct task_struct *push_task = rq->curr; 7886 7887 lockdep_assert_rq_held(rq); 7888 7889 /* 7890 * Ensure the thing is persistent until balance_push_set(.on = false); 7891 */ 7892 rq->balance_callback = &balance_push_callback; 7893 7894 /* 7895 * Only active while going offline and when invoked on the outgoing 7896 * CPU. 7897 */ 7898 if (!cpu_dying(rq->cpu) || rq != this_rq()) 7899 return; 7900 7901 /* 7902 * Both the cpu-hotplug and stop task are in this case and are 7903 * required to complete the hotplug process. 7904 */ 7905 if (kthread_is_per_cpu(push_task) || 7906 is_migration_disabled(push_task)) { 7907 7908 /* 7909 * If this is the idle task on the outgoing CPU try to wake 7910 * up the hotplug control thread which might wait for the 7911 * last task to vanish. The rcuwait_active() check is 7912 * accurate here because the waiter is pinned on this CPU 7913 * and can't obviously be running in parallel. 7914 * 7915 * On RT kernels this also has to check whether there are 7916 * pinned and scheduled out tasks on the runqueue. They 7917 * need to leave the migrate disabled section first. 7918 */ 7919 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7920 rcuwait_active(&rq->hotplug_wait)) { 7921 raw_spin_rq_unlock(rq); 7922 rcuwait_wake_up(&rq->hotplug_wait); 7923 raw_spin_rq_lock(rq); 7924 } 7925 return; 7926 } 7927 7928 get_task_struct(push_task); 7929 /* 7930 * Temporarily drop rq->lock such that we can wake-up the stop task. 7931 * Both preemption and IRQs are still disabled. 7932 */ 7933 preempt_disable(); 7934 raw_spin_rq_unlock(rq); 7935 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7936 this_cpu_ptr(&push_work)); 7937 preempt_enable(); 7938 /* 7939 * At this point need_resched() is true and we'll take the loop in 7940 * schedule(). The next pick is obviously going to be the stop task 7941 * which kthread_is_per_cpu() and will push this task away. 7942 */ 7943 raw_spin_rq_lock(rq); 7944 } 7945 7946 static void balance_push_set(int cpu, bool on) 7947 { 7948 struct rq *rq = cpu_rq(cpu); 7949 struct rq_flags rf; 7950 7951 rq_lock_irqsave(rq, &rf); 7952 if (on) { 7953 WARN_ON_ONCE(rq->balance_callback); 7954 rq->balance_callback = &balance_push_callback; 7955 } else if (rq->balance_callback == &balance_push_callback) { 7956 rq->balance_callback = NULL; 7957 } 7958 rq_unlock_irqrestore(rq, &rf); 7959 } 7960 7961 /* 7962 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7963 * inactive. All tasks which are not per CPU kernel threads are either 7964 * pushed off this CPU now via balance_push() or placed on a different CPU 7965 * during wakeup. Wait until the CPU is quiescent. 7966 */ 7967 static void balance_hotplug_wait(void) 7968 { 7969 struct rq *rq = this_rq(); 7970 7971 rcuwait_wait_event(&rq->hotplug_wait, 7972 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7973 TASK_UNINTERRUPTIBLE); 7974 } 7975 7976 #else 7977 7978 static inline void balance_push(struct rq *rq) 7979 { 7980 } 7981 7982 static inline void balance_push_set(int cpu, bool on) 7983 { 7984 } 7985 7986 static inline void balance_hotplug_wait(void) 7987 { 7988 } 7989 7990 #endif /* CONFIG_HOTPLUG_CPU */ 7991 7992 void set_rq_online(struct rq *rq) 7993 { 7994 if (!rq->online) { 7995 const struct sched_class *class; 7996 7997 cpumask_set_cpu(rq->cpu, rq->rd->online); 7998 rq->online = 1; 7999 8000 for_each_class(class) { 8001 if (class->rq_online) 8002 class->rq_online(rq); 8003 } 8004 } 8005 } 8006 8007 void set_rq_offline(struct rq *rq) 8008 { 8009 if (rq->online) { 8010 const struct sched_class *class; 8011 8012 update_rq_clock(rq); 8013 for_each_class(class) { 8014 if (class->rq_offline) 8015 class->rq_offline(rq); 8016 } 8017 8018 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8019 rq->online = 0; 8020 } 8021 } 8022 8023 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8024 { 8025 struct rq_flags rf; 8026 8027 rq_lock_irqsave(rq, &rf); 8028 if (rq->rd) { 8029 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8030 set_rq_online(rq); 8031 } 8032 rq_unlock_irqrestore(rq, &rf); 8033 } 8034 8035 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8036 { 8037 struct rq_flags rf; 8038 8039 rq_lock_irqsave(rq, &rf); 8040 if (rq->rd) { 8041 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8042 set_rq_offline(rq); 8043 } 8044 rq_unlock_irqrestore(rq, &rf); 8045 } 8046 8047 /* 8048 * used to mark begin/end of suspend/resume: 8049 */ 8050 static int num_cpus_frozen; 8051 8052 /* 8053 * Update cpusets according to cpu_active mask. If cpusets are 8054 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8055 * around partition_sched_domains(). 8056 * 8057 * If we come here as part of a suspend/resume, don't touch cpusets because we 8058 * want to restore it back to its original state upon resume anyway. 8059 */ 8060 static void cpuset_cpu_active(void) 8061 { 8062 if (cpuhp_tasks_frozen) { 8063 /* 8064 * num_cpus_frozen tracks how many CPUs are involved in suspend 8065 * resume sequence. As long as this is not the last online 8066 * operation in the resume sequence, just build a single sched 8067 * domain, ignoring cpusets. 8068 */ 8069 partition_sched_domains(1, NULL, NULL); 8070 if (--num_cpus_frozen) 8071 return; 8072 /* 8073 * This is the last CPU online operation. So fall through and 8074 * restore the original sched domains by considering the 8075 * cpuset configurations. 8076 */ 8077 cpuset_force_rebuild(); 8078 } 8079 cpuset_update_active_cpus(); 8080 } 8081 8082 static int cpuset_cpu_inactive(unsigned int cpu) 8083 { 8084 if (!cpuhp_tasks_frozen) { 8085 int ret = dl_bw_check_overflow(cpu); 8086 8087 if (ret) 8088 return ret; 8089 cpuset_update_active_cpus(); 8090 } else { 8091 num_cpus_frozen++; 8092 partition_sched_domains(1, NULL, NULL); 8093 } 8094 return 0; 8095 } 8096 8097 static inline void sched_smt_present_inc(int cpu) 8098 { 8099 #ifdef CONFIG_SCHED_SMT 8100 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8101 static_branch_inc_cpuslocked(&sched_smt_present); 8102 #endif 8103 } 8104 8105 static inline void sched_smt_present_dec(int cpu) 8106 { 8107 #ifdef CONFIG_SCHED_SMT 8108 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8109 static_branch_dec_cpuslocked(&sched_smt_present); 8110 #endif 8111 } 8112 8113 int sched_cpu_activate(unsigned int cpu) 8114 { 8115 struct rq *rq = cpu_rq(cpu); 8116 8117 /* 8118 * Clear the balance_push callback and prepare to schedule 8119 * regular tasks. 8120 */ 8121 balance_push_set(cpu, false); 8122 8123 /* 8124 * When going up, increment the number of cores with SMT present. 8125 */ 8126 sched_smt_present_inc(cpu); 8127 set_cpu_active(cpu, true); 8128 8129 if (sched_smp_initialized) { 8130 sched_update_numa(cpu, true); 8131 sched_domains_numa_masks_set(cpu); 8132 cpuset_cpu_active(); 8133 } 8134 8135 scx_rq_activate(rq); 8136 8137 /* 8138 * Put the rq online, if not already. This happens: 8139 * 8140 * 1) In the early boot process, because we build the real domains 8141 * after all CPUs have been brought up. 8142 * 8143 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8144 * domains. 8145 */ 8146 sched_set_rq_online(rq, cpu); 8147 8148 return 0; 8149 } 8150 8151 int sched_cpu_deactivate(unsigned int cpu) 8152 { 8153 struct rq *rq = cpu_rq(cpu); 8154 int ret; 8155 8156 /* 8157 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8158 * load balancing when not active 8159 */ 8160 nohz_balance_exit_idle(rq); 8161 8162 set_cpu_active(cpu, false); 8163 8164 /* 8165 * From this point forward, this CPU will refuse to run any task that 8166 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8167 * push those tasks away until this gets cleared, see 8168 * sched_cpu_dying(). 8169 */ 8170 balance_push_set(cpu, true); 8171 8172 /* 8173 * We've cleared cpu_active_mask / set balance_push, wait for all 8174 * preempt-disabled and RCU users of this state to go away such that 8175 * all new such users will observe it. 8176 * 8177 * Specifically, we rely on ttwu to no longer target this CPU, see 8178 * ttwu_queue_cond() and is_cpu_allowed(). 8179 * 8180 * Do sync before park smpboot threads to take care the RCU boost case. 8181 */ 8182 synchronize_rcu(); 8183 8184 sched_set_rq_offline(rq, cpu); 8185 8186 scx_rq_deactivate(rq); 8187 8188 /* 8189 * When going down, decrement the number of cores with SMT present. 8190 */ 8191 sched_smt_present_dec(cpu); 8192 8193 #ifdef CONFIG_SCHED_SMT 8194 sched_core_cpu_deactivate(cpu); 8195 #endif 8196 8197 if (!sched_smp_initialized) 8198 return 0; 8199 8200 sched_update_numa(cpu, false); 8201 ret = cpuset_cpu_inactive(cpu); 8202 if (ret) { 8203 sched_smt_present_inc(cpu); 8204 sched_set_rq_online(rq, cpu); 8205 balance_push_set(cpu, false); 8206 set_cpu_active(cpu, true); 8207 sched_update_numa(cpu, true); 8208 return ret; 8209 } 8210 sched_domains_numa_masks_clear(cpu); 8211 return 0; 8212 } 8213 8214 static void sched_rq_cpu_starting(unsigned int cpu) 8215 { 8216 struct rq *rq = cpu_rq(cpu); 8217 8218 rq->calc_load_update = calc_load_update; 8219 update_max_interval(); 8220 } 8221 8222 int sched_cpu_starting(unsigned int cpu) 8223 { 8224 sched_core_cpu_starting(cpu); 8225 sched_rq_cpu_starting(cpu); 8226 sched_tick_start(cpu); 8227 return 0; 8228 } 8229 8230 #ifdef CONFIG_HOTPLUG_CPU 8231 8232 /* 8233 * Invoked immediately before the stopper thread is invoked to bring the 8234 * CPU down completely. At this point all per CPU kthreads except the 8235 * hotplug thread (current) and the stopper thread (inactive) have been 8236 * either parked or have been unbound from the outgoing CPU. Ensure that 8237 * any of those which might be on the way out are gone. 8238 * 8239 * If after this point a bound task is being woken on this CPU then the 8240 * responsible hotplug callback has failed to do it's job. 8241 * sched_cpu_dying() will catch it with the appropriate fireworks. 8242 */ 8243 int sched_cpu_wait_empty(unsigned int cpu) 8244 { 8245 balance_hotplug_wait(); 8246 return 0; 8247 } 8248 8249 /* 8250 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8251 * might have. Called from the CPU stopper task after ensuring that the 8252 * stopper is the last running task on the CPU, so nr_active count is 8253 * stable. We need to take the tear-down thread which is calling this into 8254 * account, so we hand in adjust = 1 to the load calculation. 8255 * 8256 * Also see the comment "Global load-average calculations". 8257 */ 8258 static void calc_load_migrate(struct rq *rq) 8259 { 8260 long delta = calc_load_fold_active(rq, 1); 8261 8262 if (delta) 8263 atomic_long_add(delta, &calc_load_tasks); 8264 } 8265 8266 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8267 { 8268 struct task_struct *g, *p; 8269 int cpu = cpu_of(rq); 8270 8271 lockdep_assert_rq_held(rq); 8272 8273 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8274 for_each_process_thread(g, p) { 8275 if (task_cpu(p) != cpu) 8276 continue; 8277 8278 if (!task_on_rq_queued(p)) 8279 continue; 8280 8281 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8282 } 8283 } 8284 8285 int sched_cpu_dying(unsigned int cpu) 8286 { 8287 struct rq *rq = cpu_rq(cpu); 8288 struct rq_flags rf; 8289 8290 /* Handle pending wakeups and then migrate everything off */ 8291 sched_tick_stop(cpu); 8292 8293 rq_lock_irqsave(rq, &rf); 8294 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8295 WARN(true, "Dying CPU not properly vacated!"); 8296 dump_rq_tasks(rq, KERN_WARNING); 8297 } 8298 rq_unlock_irqrestore(rq, &rf); 8299 8300 calc_load_migrate(rq); 8301 update_max_interval(); 8302 hrtick_clear(rq); 8303 sched_core_cpu_dying(cpu); 8304 return 0; 8305 } 8306 #endif 8307 8308 void __init sched_init_smp(void) 8309 { 8310 sched_init_numa(NUMA_NO_NODE); 8311 8312 /* 8313 * There's no userspace yet to cause hotplug operations; hence all the 8314 * CPU masks are stable and all blatant races in the below code cannot 8315 * happen. 8316 */ 8317 mutex_lock(&sched_domains_mutex); 8318 sched_init_domains(cpu_active_mask); 8319 mutex_unlock(&sched_domains_mutex); 8320 8321 /* Move init over to a non-isolated CPU */ 8322 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8323 BUG(); 8324 current->flags &= ~PF_NO_SETAFFINITY; 8325 sched_init_granularity(); 8326 8327 init_sched_rt_class(); 8328 init_sched_dl_class(); 8329 8330 sched_smp_initialized = true; 8331 } 8332 8333 static int __init migration_init(void) 8334 { 8335 sched_cpu_starting(smp_processor_id()); 8336 return 0; 8337 } 8338 early_initcall(migration_init); 8339 8340 #else 8341 void __init sched_init_smp(void) 8342 { 8343 sched_init_granularity(); 8344 } 8345 #endif /* CONFIG_SMP */ 8346 8347 int in_sched_functions(unsigned long addr) 8348 { 8349 return in_lock_functions(addr) || 8350 (addr >= (unsigned long)__sched_text_start 8351 && addr < (unsigned long)__sched_text_end); 8352 } 8353 8354 #ifdef CONFIG_CGROUP_SCHED 8355 /* 8356 * Default task group. 8357 * Every task in system belongs to this group at bootup. 8358 */ 8359 struct task_group root_task_group; 8360 LIST_HEAD(task_groups); 8361 8362 /* Cacheline aligned slab cache for task_group */ 8363 static struct kmem_cache *task_group_cache __ro_after_init; 8364 #endif 8365 8366 void __init sched_init(void) 8367 { 8368 unsigned long ptr = 0; 8369 int i; 8370 8371 /* Make sure the linker didn't screw up */ 8372 #ifdef CONFIG_SMP 8373 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8374 #endif 8375 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8376 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8377 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8378 #ifdef CONFIG_SCHED_CLASS_EXT 8379 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8380 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8381 #endif 8382 8383 wait_bit_init(); 8384 8385 #ifdef CONFIG_FAIR_GROUP_SCHED 8386 ptr += 2 * nr_cpu_ids * sizeof(void **); 8387 #endif 8388 #ifdef CONFIG_RT_GROUP_SCHED 8389 ptr += 2 * nr_cpu_ids * sizeof(void **); 8390 #endif 8391 if (ptr) { 8392 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8393 8394 #ifdef CONFIG_FAIR_GROUP_SCHED 8395 root_task_group.se = (struct sched_entity **)ptr; 8396 ptr += nr_cpu_ids * sizeof(void **); 8397 8398 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8399 ptr += nr_cpu_ids * sizeof(void **); 8400 8401 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8402 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8403 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8404 #ifdef CONFIG_EXT_GROUP_SCHED 8405 root_task_group.scx_weight = CGROUP_WEIGHT_DFL; 8406 #endif /* CONFIG_EXT_GROUP_SCHED */ 8407 #ifdef CONFIG_RT_GROUP_SCHED 8408 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8409 ptr += nr_cpu_ids * sizeof(void **); 8410 8411 root_task_group.rt_rq = (struct rt_rq **)ptr; 8412 ptr += nr_cpu_ids * sizeof(void **); 8413 8414 #endif /* CONFIG_RT_GROUP_SCHED */ 8415 } 8416 8417 #ifdef CONFIG_SMP 8418 init_defrootdomain(); 8419 #endif 8420 8421 #ifdef CONFIG_RT_GROUP_SCHED 8422 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8423 global_rt_period(), global_rt_runtime()); 8424 #endif /* CONFIG_RT_GROUP_SCHED */ 8425 8426 #ifdef CONFIG_CGROUP_SCHED 8427 task_group_cache = KMEM_CACHE(task_group, 0); 8428 8429 list_add(&root_task_group.list, &task_groups); 8430 INIT_LIST_HEAD(&root_task_group.children); 8431 INIT_LIST_HEAD(&root_task_group.siblings); 8432 autogroup_init(&init_task); 8433 #endif /* CONFIG_CGROUP_SCHED */ 8434 8435 for_each_possible_cpu(i) { 8436 struct rq *rq; 8437 8438 rq = cpu_rq(i); 8439 raw_spin_lock_init(&rq->__lock); 8440 rq->nr_running = 0; 8441 rq->calc_load_active = 0; 8442 rq->calc_load_update = jiffies + LOAD_FREQ; 8443 init_cfs_rq(&rq->cfs); 8444 init_rt_rq(&rq->rt); 8445 init_dl_rq(&rq->dl); 8446 #ifdef CONFIG_FAIR_GROUP_SCHED 8447 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8448 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8449 /* 8450 * How much CPU bandwidth does root_task_group get? 8451 * 8452 * In case of task-groups formed through the cgroup filesystem, it 8453 * gets 100% of the CPU resources in the system. This overall 8454 * system CPU resource is divided among the tasks of 8455 * root_task_group and its child task-groups in a fair manner, 8456 * based on each entity's (task or task-group's) weight 8457 * (se->load.weight). 8458 * 8459 * In other words, if root_task_group has 10 tasks of weight 8460 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8461 * then A0's share of the CPU resource is: 8462 * 8463 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8464 * 8465 * We achieve this by letting root_task_group's tasks sit 8466 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8467 */ 8468 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8469 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8470 8471 #ifdef CONFIG_RT_GROUP_SCHED 8472 /* 8473 * This is required for init cpu because rt.c:__enable_runtime() 8474 * starts working after scheduler_running, which is not the case 8475 * yet. 8476 */ 8477 rq->rt.rt_runtime = global_rt_runtime(); 8478 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8479 #endif 8480 #ifdef CONFIG_SMP 8481 rq->sd = NULL; 8482 rq->rd = NULL; 8483 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8484 rq->balance_callback = &balance_push_callback; 8485 rq->active_balance = 0; 8486 rq->next_balance = jiffies; 8487 rq->push_cpu = 0; 8488 rq->cpu = i; 8489 rq->online = 0; 8490 rq->idle_stamp = 0; 8491 rq->avg_idle = 2*sysctl_sched_migration_cost; 8492 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8493 8494 INIT_LIST_HEAD(&rq->cfs_tasks); 8495 8496 rq_attach_root(rq, &def_root_domain); 8497 #ifdef CONFIG_NO_HZ_COMMON 8498 rq->last_blocked_load_update_tick = jiffies; 8499 atomic_set(&rq->nohz_flags, 0); 8500 8501 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8502 #endif 8503 #ifdef CONFIG_HOTPLUG_CPU 8504 rcuwait_init(&rq->hotplug_wait); 8505 #endif 8506 #endif /* CONFIG_SMP */ 8507 hrtick_rq_init(rq); 8508 atomic_set(&rq->nr_iowait, 0); 8509 fair_server_init(rq); 8510 8511 #ifdef CONFIG_SCHED_CORE 8512 rq->core = rq; 8513 rq->core_pick = NULL; 8514 rq->core_dl_server = NULL; 8515 rq->core_enabled = 0; 8516 rq->core_tree = RB_ROOT; 8517 rq->core_forceidle_count = 0; 8518 rq->core_forceidle_occupation = 0; 8519 rq->core_forceidle_start = 0; 8520 8521 rq->core_cookie = 0UL; 8522 #endif 8523 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8524 } 8525 8526 set_load_weight(&init_task, false); 8527 init_task.se.slice = sysctl_sched_base_slice, 8528 8529 /* 8530 * The boot idle thread does lazy MMU switching as well: 8531 */ 8532 mmgrab_lazy_tlb(&init_mm); 8533 enter_lazy_tlb(&init_mm, current); 8534 8535 /* 8536 * The idle task doesn't need the kthread struct to function, but it 8537 * is dressed up as a per-CPU kthread and thus needs to play the part 8538 * if we want to avoid special-casing it in code that deals with per-CPU 8539 * kthreads. 8540 */ 8541 WARN_ON(!set_kthread_struct(current)); 8542 8543 /* 8544 * Make us the idle thread. Technically, schedule() should not be 8545 * called from this thread, however somewhere below it might be, 8546 * but because we are the idle thread, we just pick up running again 8547 * when this runqueue becomes "idle". 8548 */ 8549 init_idle(current, smp_processor_id()); 8550 8551 calc_load_update = jiffies + LOAD_FREQ; 8552 8553 #ifdef CONFIG_SMP 8554 idle_thread_set_boot_cpu(); 8555 balance_push_set(smp_processor_id(), false); 8556 #endif 8557 init_sched_fair_class(); 8558 init_sched_ext_class(); 8559 8560 psi_init(); 8561 8562 init_uclamp(); 8563 8564 preempt_dynamic_init(); 8565 8566 scheduler_running = 1; 8567 } 8568 8569 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8570 8571 void __might_sleep(const char *file, int line) 8572 { 8573 unsigned int state = get_current_state(); 8574 /* 8575 * Blocking primitives will set (and therefore destroy) current->state, 8576 * since we will exit with TASK_RUNNING make sure we enter with it, 8577 * otherwise we will destroy state. 8578 */ 8579 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8580 "do not call blocking ops when !TASK_RUNNING; " 8581 "state=%x set at [<%p>] %pS\n", state, 8582 (void *)current->task_state_change, 8583 (void *)current->task_state_change); 8584 8585 __might_resched(file, line, 0); 8586 } 8587 EXPORT_SYMBOL(__might_sleep); 8588 8589 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8590 { 8591 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8592 return; 8593 8594 if (preempt_count() == preempt_offset) 8595 return; 8596 8597 pr_err("Preemption disabled at:"); 8598 print_ip_sym(KERN_ERR, ip); 8599 } 8600 8601 static inline bool resched_offsets_ok(unsigned int offsets) 8602 { 8603 unsigned int nested = preempt_count(); 8604 8605 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8606 8607 return nested == offsets; 8608 } 8609 8610 void __might_resched(const char *file, int line, unsigned int offsets) 8611 { 8612 /* Ratelimiting timestamp: */ 8613 static unsigned long prev_jiffy; 8614 8615 unsigned long preempt_disable_ip; 8616 8617 /* WARN_ON_ONCE() by default, no rate limit required: */ 8618 rcu_sleep_check(); 8619 8620 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8621 !is_idle_task(current) && !current->non_block_count) || 8622 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8623 oops_in_progress) 8624 return; 8625 8626 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8627 return; 8628 prev_jiffy = jiffies; 8629 8630 /* Save this before calling printk(), since that will clobber it: */ 8631 preempt_disable_ip = get_preempt_disable_ip(current); 8632 8633 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8634 file, line); 8635 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8636 in_atomic(), irqs_disabled(), current->non_block_count, 8637 current->pid, current->comm); 8638 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8639 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8640 8641 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8642 pr_err("RCU nest depth: %d, expected: %u\n", 8643 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8644 } 8645 8646 if (task_stack_end_corrupted(current)) 8647 pr_emerg("Thread overran stack, or stack corrupted\n"); 8648 8649 debug_show_held_locks(current); 8650 if (irqs_disabled()) 8651 print_irqtrace_events(current); 8652 8653 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8654 preempt_disable_ip); 8655 8656 dump_stack(); 8657 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8658 } 8659 EXPORT_SYMBOL(__might_resched); 8660 8661 void __cant_sleep(const char *file, int line, int preempt_offset) 8662 { 8663 static unsigned long prev_jiffy; 8664 8665 if (irqs_disabled()) 8666 return; 8667 8668 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8669 return; 8670 8671 if (preempt_count() > preempt_offset) 8672 return; 8673 8674 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8675 return; 8676 prev_jiffy = jiffies; 8677 8678 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8679 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8680 in_atomic(), irqs_disabled(), 8681 current->pid, current->comm); 8682 8683 debug_show_held_locks(current); 8684 dump_stack(); 8685 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8686 } 8687 EXPORT_SYMBOL_GPL(__cant_sleep); 8688 8689 #ifdef CONFIG_SMP 8690 void __cant_migrate(const char *file, int line) 8691 { 8692 static unsigned long prev_jiffy; 8693 8694 if (irqs_disabled()) 8695 return; 8696 8697 if (is_migration_disabled(current)) 8698 return; 8699 8700 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8701 return; 8702 8703 if (preempt_count() > 0) 8704 return; 8705 8706 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8707 return; 8708 prev_jiffy = jiffies; 8709 8710 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8711 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8712 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8713 current->pid, current->comm); 8714 8715 debug_show_held_locks(current); 8716 dump_stack(); 8717 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8718 } 8719 EXPORT_SYMBOL_GPL(__cant_migrate); 8720 #endif 8721 #endif 8722 8723 #ifdef CONFIG_MAGIC_SYSRQ 8724 void normalize_rt_tasks(void) 8725 { 8726 struct task_struct *g, *p; 8727 struct sched_attr attr = { 8728 .sched_policy = SCHED_NORMAL, 8729 }; 8730 8731 read_lock(&tasklist_lock); 8732 for_each_process_thread(g, p) { 8733 /* 8734 * Only normalize user tasks: 8735 */ 8736 if (p->flags & PF_KTHREAD) 8737 continue; 8738 8739 p->se.exec_start = 0; 8740 schedstat_set(p->stats.wait_start, 0); 8741 schedstat_set(p->stats.sleep_start, 0); 8742 schedstat_set(p->stats.block_start, 0); 8743 8744 if (!rt_or_dl_task(p)) { 8745 /* 8746 * Renice negative nice level userspace 8747 * tasks back to 0: 8748 */ 8749 if (task_nice(p) < 0) 8750 set_user_nice(p, 0); 8751 continue; 8752 } 8753 8754 __sched_setscheduler(p, &attr, false, false); 8755 } 8756 read_unlock(&tasklist_lock); 8757 } 8758 8759 #endif /* CONFIG_MAGIC_SYSRQ */ 8760 8761 #if defined(CONFIG_KGDB_KDB) 8762 /* 8763 * These functions are only useful for KDB. 8764 * 8765 * They can only be called when the whole system has been 8766 * stopped - every CPU needs to be quiescent, and no scheduling 8767 * activity can take place. Using them for anything else would 8768 * be a serious bug, and as a result, they aren't even visible 8769 * under any other configuration. 8770 */ 8771 8772 /** 8773 * curr_task - return the current task for a given CPU. 8774 * @cpu: the processor in question. 8775 * 8776 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8777 * 8778 * Return: The current task for @cpu. 8779 */ 8780 struct task_struct *curr_task(int cpu) 8781 { 8782 return cpu_curr(cpu); 8783 } 8784 8785 #endif /* defined(CONFIG_KGDB_KDB) */ 8786 8787 #ifdef CONFIG_CGROUP_SCHED 8788 /* task_group_lock serializes the addition/removal of task groups */ 8789 static DEFINE_SPINLOCK(task_group_lock); 8790 8791 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8792 struct task_group *parent) 8793 { 8794 #ifdef CONFIG_UCLAMP_TASK_GROUP 8795 enum uclamp_id clamp_id; 8796 8797 for_each_clamp_id(clamp_id) { 8798 uclamp_se_set(&tg->uclamp_req[clamp_id], 8799 uclamp_none(clamp_id), false); 8800 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8801 } 8802 #endif 8803 } 8804 8805 static void sched_free_group(struct task_group *tg) 8806 { 8807 free_fair_sched_group(tg); 8808 free_rt_sched_group(tg); 8809 autogroup_free(tg); 8810 kmem_cache_free(task_group_cache, tg); 8811 } 8812 8813 static void sched_free_group_rcu(struct rcu_head *rcu) 8814 { 8815 sched_free_group(container_of(rcu, struct task_group, rcu)); 8816 } 8817 8818 static void sched_unregister_group(struct task_group *tg) 8819 { 8820 unregister_fair_sched_group(tg); 8821 unregister_rt_sched_group(tg); 8822 /* 8823 * We have to wait for yet another RCU grace period to expire, as 8824 * print_cfs_stats() might run concurrently. 8825 */ 8826 call_rcu(&tg->rcu, sched_free_group_rcu); 8827 } 8828 8829 /* allocate runqueue etc for a new task group */ 8830 struct task_group *sched_create_group(struct task_group *parent) 8831 { 8832 struct task_group *tg; 8833 8834 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8835 if (!tg) 8836 return ERR_PTR(-ENOMEM); 8837 8838 if (!alloc_fair_sched_group(tg, parent)) 8839 goto err; 8840 8841 if (!alloc_rt_sched_group(tg, parent)) 8842 goto err; 8843 8844 scx_group_set_weight(tg, CGROUP_WEIGHT_DFL); 8845 alloc_uclamp_sched_group(tg, parent); 8846 8847 return tg; 8848 8849 err: 8850 sched_free_group(tg); 8851 return ERR_PTR(-ENOMEM); 8852 } 8853 8854 void sched_online_group(struct task_group *tg, struct task_group *parent) 8855 { 8856 unsigned long flags; 8857 8858 spin_lock_irqsave(&task_group_lock, flags); 8859 list_add_rcu(&tg->list, &task_groups); 8860 8861 /* Root should already exist: */ 8862 WARN_ON(!parent); 8863 8864 tg->parent = parent; 8865 INIT_LIST_HEAD(&tg->children); 8866 list_add_rcu(&tg->siblings, &parent->children); 8867 spin_unlock_irqrestore(&task_group_lock, flags); 8868 8869 online_fair_sched_group(tg); 8870 } 8871 8872 /* RCU callback to free various structures associated with a task group */ 8873 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8874 { 8875 /* Now it should be safe to free those cfs_rqs: */ 8876 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8877 } 8878 8879 void sched_destroy_group(struct task_group *tg) 8880 { 8881 /* Wait for possible concurrent references to cfs_rqs complete: */ 8882 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8883 } 8884 8885 void sched_release_group(struct task_group *tg) 8886 { 8887 unsigned long flags; 8888 8889 /* 8890 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 8891 * sched_cfs_period_timer()). 8892 * 8893 * For this to be effective, we have to wait for all pending users of 8894 * this task group to leave their RCU critical section to ensure no new 8895 * user will see our dying task group any more. Specifically ensure 8896 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 8897 * 8898 * We therefore defer calling unregister_fair_sched_group() to 8899 * sched_unregister_group() which is guarantied to get called only after the 8900 * current RCU grace period has expired. 8901 */ 8902 spin_lock_irqsave(&task_group_lock, flags); 8903 list_del_rcu(&tg->list); 8904 list_del_rcu(&tg->siblings); 8905 spin_unlock_irqrestore(&task_group_lock, flags); 8906 } 8907 8908 static struct task_group *sched_get_task_group(struct task_struct *tsk) 8909 { 8910 struct task_group *tg; 8911 8912 /* 8913 * All callers are synchronized by task_rq_lock(); we do not use RCU 8914 * which is pointless here. Thus, we pass "true" to task_css_check() 8915 * to prevent lockdep warnings. 8916 */ 8917 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8918 struct task_group, css); 8919 tg = autogroup_task_group(tsk, tg); 8920 8921 return tg; 8922 } 8923 8924 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 8925 { 8926 tsk->sched_task_group = group; 8927 8928 #ifdef CONFIG_FAIR_GROUP_SCHED 8929 if (tsk->sched_class->task_change_group) 8930 tsk->sched_class->task_change_group(tsk); 8931 else 8932 #endif 8933 set_task_rq(tsk, task_cpu(tsk)); 8934 } 8935 8936 /* 8937 * Change task's runqueue when it moves between groups. 8938 * 8939 * The caller of this function should have put the task in its new group by 8940 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8941 * its new group. 8942 */ 8943 void sched_move_task(struct task_struct *tsk) 8944 { 8945 int queued, running, queue_flags = 8946 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8947 struct task_group *group; 8948 struct rq *rq; 8949 8950 CLASS(task_rq_lock, rq_guard)(tsk); 8951 rq = rq_guard.rq; 8952 8953 /* 8954 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 8955 * group changes. 8956 */ 8957 group = sched_get_task_group(tsk); 8958 if (group == tsk->sched_task_group) 8959 return; 8960 8961 update_rq_clock(rq); 8962 8963 running = task_current(rq, tsk); 8964 queued = task_on_rq_queued(tsk); 8965 8966 if (queued) 8967 dequeue_task(rq, tsk, queue_flags); 8968 if (running) 8969 put_prev_task(rq, tsk); 8970 8971 sched_change_group(tsk, group); 8972 scx_move_task(tsk); 8973 8974 if (queued) 8975 enqueue_task(rq, tsk, queue_flags); 8976 if (running) { 8977 set_next_task(rq, tsk); 8978 /* 8979 * After changing group, the running task may have joined a 8980 * throttled one but it's still the running task. Trigger a 8981 * resched to make sure that task can still run. 8982 */ 8983 resched_curr(rq); 8984 } 8985 } 8986 8987 static struct cgroup_subsys_state * 8988 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8989 { 8990 struct task_group *parent = css_tg(parent_css); 8991 struct task_group *tg; 8992 8993 if (!parent) { 8994 /* This is early initialization for the top cgroup */ 8995 return &root_task_group.css; 8996 } 8997 8998 tg = sched_create_group(parent); 8999 if (IS_ERR(tg)) 9000 return ERR_PTR(-ENOMEM); 9001 9002 return &tg->css; 9003 } 9004 9005 /* Expose task group only after completing cgroup initialization */ 9006 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9007 { 9008 struct task_group *tg = css_tg(css); 9009 struct task_group *parent = css_tg(css->parent); 9010 int ret; 9011 9012 ret = scx_tg_online(tg); 9013 if (ret) 9014 return ret; 9015 9016 if (parent) 9017 sched_online_group(tg, parent); 9018 9019 #ifdef CONFIG_UCLAMP_TASK_GROUP 9020 /* Propagate the effective uclamp value for the new group */ 9021 guard(mutex)(&uclamp_mutex); 9022 guard(rcu)(); 9023 cpu_util_update_eff(css); 9024 #endif 9025 9026 return 0; 9027 } 9028 9029 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9030 { 9031 struct task_group *tg = css_tg(css); 9032 9033 scx_tg_offline(tg); 9034 } 9035 9036 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9037 { 9038 struct task_group *tg = css_tg(css); 9039 9040 sched_release_group(tg); 9041 } 9042 9043 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9044 { 9045 struct task_group *tg = css_tg(css); 9046 9047 /* 9048 * Relies on the RCU grace period between css_released() and this. 9049 */ 9050 sched_unregister_group(tg); 9051 } 9052 9053 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9054 { 9055 #ifdef CONFIG_RT_GROUP_SCHED 9056 struct task_struct *task; 9057 struct cgroup_subsys_state *css; 9058 9059 cgroup_taskset_for_each(task, css, tset) { 9060 if (!sched_rt_can_attach(css_tg(css), task)) 9061 return -EINVAL; 9062 } 9063 #endif 9064 return scx_cgroup_can_attach(tset); 9065 } 9066 9067 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9068 { 9069 struct task_struct *task; 9070 struct cgroup_subsys_state *css; 9071 9072 cgroup_taskset_for_each(task, css, tset) 9073 sched_move_task(task); 9074 9075 scx_cgroup_finish_attach(); 9076 } 9077 9078 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9079 { 9080 scx_cgroup_cancel_attach(tset); 9081 } 9082 9083 #ifdef CONFIG_UCLAMP_TASK_GROUP 9084 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9085 { 9086 struct cgroup_subsys_state *top_css = css; 9087 struct uclamp_se *uc_parent = NULL; 9088 struct uclamp_se *uc_se = NULL; 9089 unsigned int eff[UCLAMP_CNT]; 9090 enum uclamp_id clamp_id; 9091 unsigned int clamps; 9092 9093 lockdep_assert_held(&uclamp_mutex); 9094 SCHED_WARN_ON(!rcu_read_lock_held()); 9095 9096 css_for_each_descendant_pre(css, top_css) { 9097 uc_parent = css_tg(css)->parent 9098 ? css_tg(css)->parent->uclamp : NULL; 9099 9100 for_each_clamp_id(clamp_id) { 9101 /* Assume effective clamps matches requested clamps */ 9102 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9103 /* Cap effective clamps with parent's effective clamps */ 9104 if (uc_parent && 9105 eff[clamp_id] > uc_parent[clamp_id].value) { 9106 eff[clamp_id] = uc_parent[clamp_id].value; 9107 } 9108 } 9109 /* Ensure protection is always capped by limit */ 9110 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9111 9112 /* Propagate most restrictive effective clamps */ 9113 clamps = 0x0; 9114 uc_se = css_tg(css)->uclamp; 9115 for_each_clamp_id(clamp_id) { 9116 if (eff[clamp_id] == uc_se[clamp_id].value) 9117 continue; 9118 uc_se[clamp_id].value = eff[clamp_id]; 9119 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9120 clamps |= (0x1 << clamp_id); 9121 } 9122 if (!clamps) { 9123 css = css_rightmost_descendant(css); 9124 continue; 9125 } 9126 9127 /* Immediately update descendants RUNNABLE tasks */ 9128 uclamp_update_active_tasks(css); 9129 } 9130 } 9131 9132 /* 9133 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9134 * C expression. Since there is no way to convert a macro argument (N) into a 9135 * character constant, use two levels of macros. 9136 */ 9137 #define _POW10(exp) ((unsigned int)1e##exp) 9138 #define POW10(exp) _POW10(exp) 9139 9140 struct uclamp_request { 9141 #define UCLAMP_PERCENT_SHIFT 2 9142 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9143 s64 percent; 9144 u64 util; 9145 int ret; 9146 }; 9147 9148 static inline struct uclamp_request 9149 capacity_from_percent(char *buf) 9150 { 9151 struct uclamp_request req = { 9152 .percent = UCLAMP_PERCENT_SCALE, 9153 .util = SCHED_CAPACITY_SCALE, 9154 .ret = 0, 9155 }; 9156 9157 buf = strim(buf); 9158 if (strcmp(buf, "max")) { 9159 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9160 &req.percent); 9161 if (req.ret) 9162 return req; 9163 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9164 req.ret = -ERANGE; 9165 return req; 9166 } 9167 9168 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9169 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9170 } 9171 9172 return req; 9173 } 9174 9175 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9176 size_t nbytes, loff_t off, 9177 enum uclamp_id clamp_id) 9178 { 9179 struct uclamp_request req; 9180 struct task_group *tg; 9181 9182 req = capacity_from_percent(buf); 9183 if (req.ret) 9184 return req.ret; 9185 9186 static_branch_enable(&sched_uclamp_used); 9187 9188 guard(mutex)(&uclamp_mutex); 9189 guard(rcu)(); 9190 9191 tg = css_tg(of_css(of)); 9192 if (tg->uclamp_req[clamp_id].value != req.util) 9193 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9194 9195 /* 9196 * Because of not recoverable conversion rounding we keep track of the 9197 * exact requested value 9198 */ 9199 tg->uclamp_pct[clamp_id] = req.percent; 9200 9201 /* Update effective clamps to track the most restrictive value */ 9202 cpu_util_update_eff(of_css(of)); 9203 9204 return nbytes; 9205 } 9206 9207 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9208 char *buf, size_t nbytes, 9209 loff_t off) 9210 { 9211 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9212 } 9213 9214 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9215 char *buf, size_t nbytes, 9216 loff_t off) 9217 { 9218 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9219 } 9220 9221 static inline void cpu_uclamp_print(struct seq_file *sf, 9222 enum uclamp_id clamp_id) 9223 { 9224 struct task_group *tg; 9225 u64 util_clamp; 9226 u64 percent; 9227 u32 rem; 9228 9229 scoped_guard (rcu) { 9230 tg = css_tg(seq_css(sf)); 9231 util_clamp = tg->uclamp_req[clamp_id].value; 9232 } 9233 9234 if (util_clamp == SCHED_CAPACITY_SCALE) { 9235 seq_puts(sf, "max\n"); 9236 return; 9237 } 9238 9239 percent = tg->uclamp_pct[clamp_id]; 9240 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9241 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9242 } 9243 9244 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9245 { 9246 cpu_uclamp_print(sf, UCLAMP_MIN); 9247 return 0; 9248 } 9249 9250 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9251 { 9252 cpu_uclamp_print(sf, UCLAMP_MAX); 9253 return 0; 9254 } 9255 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9256 9257 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9258 static unsigned long tg_weight(struct task_group *tg) 9259 { 9260 #ifdef CONFIG_FAIR_GROUP_SCHED 9261 return scale_load_down(tg->shares); 9262 #else 9263 return sched_weight_from_cgroup(tg->scx_weight); 9264 #endif 9265 } 9266 9267 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9268 struct cftype *cftype, u64 shareval) 9269 { 9270 int ret; 9271 9272 if (shareval > scale_load_down(ULONG_MAX)) 9273 shareval = MAX_SHARES; 9274 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9275 if (!ret) 9276 scx_group_set_weight(css_tg(css), 9277 sched_weight_to_cgroup(shareval)); 9278 return ret; 9279 } 9280 9281 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9282 struct cftype *cft) 9283 { 9284 return tg_weight(css_tg(css)); 9285 } 9286 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9287 9288 #ifdef CONFIG_CFS_BANDWIDTH 9289 static DEFINE_MUTEX(cfs_constraints_mutex); 9290 9291 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9292 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9293 /* More than 203 days if BW_SHIFT equals 20. */ 9294 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9295 9296 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9297 9298 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9299 u64 burst) 9300 { 9301 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9302 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9303 9304 if (tg == &root_task_group) 9305 return -EINVAL; 9306 9307 /* 9308 * Ensure we have at some amount of bandwidth every period. This is 9309 * to prevent reaching a state of large arrears when throttled via 9310 * entity_tick() resulting in prolonged exit starvation. 9311 */ 9312 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9313 return -EINVAL; 9314 9315 /* 9316 * Likewise, bound things on the other side by preventing insane quota 9317 * periods. This also allows us to normalize in computing quota 9318 * feasibility. 9319 */ 9320 if (period > max_cfs_quota_period) 9321 return -EINVAL; 9322 9323 /* 9324 * Bound quota to defend quota against overflow during bandwidth shift. 9325 */ 9326 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9327 return -EINVAL; 9328 9329 if (quota != RUNTIME_INF && (burst > quota || 9330 burst + quota > max_cfs_runtime)) 9331 return -EINVAL; 9332 9333 /* 9334 * Prevent race between setting of cfs_rq->runtime_enabled and 9335 * unthrottle_offline_cfs_rqs(). 9336 */ 9337 guard(cpus_read_lock)(); 9338 guard(mutex)(&cfs_constraints_mutex); 9339 9340 ret = __cfs_schedulable(tg, period, quota); 9341 if (ret) 9342 return ret; 9343 9344 runtime_enabled = quota != RUNTIME_INF; 9345 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9346 /* 9347 * If we need to toggle cfs_bandwidth_used, off->on must occur 9348 * before making related changes, and on->off must occur afterwards 9349 */ 9350 if (runtime_enabled && !runtime_was_enabled) 9351 cfs_bandwidth_usage_inc(); 9352 9353 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9354 cfs_b->period = ns_to_ktime(period); 9355 cfs_b->quota = quota; 9356 cfs_b->burst = burst; 9357 9358 __refill_cfs_bandwidth_runtime(cfs_b); 9359 9360 /* 9361 * Restart the period timer (if active) to handle new 9362 * period expiry: 9363 */ 9364 if (runtime_enabled) 9365 start_cfs_bandwidth(cfs_b); 9366 } 9367 9368 for_each_online_cpu(i) { 9369 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9370 struct rq *rq = cfs_rq->rq; 9371 9372 guard(rq_lock_irq)(rq); 9373 cfs_rq->runtime_enabled = runtime_enabled; 9374 cfs_rq->runtime_remaining = 0; 9375 9376 if (cfs_rq->throttled) 9377 unthrottle_cfs_rq(cfs_rq); 9378 } 9379 9380 if (runtime_was_enabled && !runtime_enabled) 9381 cfs_bandwidth_usage_dec(); 9382 9383 return 0; 9384 } 9385 9386 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9387 { 9388 u64 quota, period, burst; 9389 9390 period = ktime_to_ns(tg->cfs_bandwidth.period); 9391 burst = tg->cfs_bandwidth.burst; 9392 if (cfs_quota_us < 0) 9393 quota = RUNTIME_INF; 9394 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9395 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9396 else 9397 return -EINVAL; 9398 9399 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9400 } 9401 9402 static long tg_get_cfs_quota(struct task_group *tg) 9403 { 9404 u64 quota_us; 9405 9406 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9407 return -1; 9408 9409 quota_us = tg->cfs_bandwidth.quota; 9410 do_div(quota_us, NSEC_PER_USEC); 9411 9412 return quota_us; 9413 } 9414 9415 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9416 { 9417 u64 quota, period, burst; 9418 9419 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9420 return -EINVAL; 9421 9422 period = (u64)cfs_period_us * NSEC_PER_USEC; 9423 quota = tg->cfs_bandwidth.quota; 9424 burst = tg->cfs_bandwidth.burst; 9425 9426 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9427 } 9428 9429 static long tg_get_cfs_period(struct task_group *tg) 9430 { 9431 u64 cfs_period_us; 9432 9433 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9434 do_div(cfs_period_us, NSEC_PER_USEC); 9435 9436 return cfs_period_us; 9437 } 9438 9439 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9440 { 9441 u64 quota, period, burst; 9442 9443 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9444 return -EINVAL; 9445 9446 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9447 period = ktime_to_ns(tg->cfs_bandwidth.period); 9448 quota = tg->cfs_bandwidth.quota; 9449 9450 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9451 } 9452 9453 static long tg_get_cfs_burst(struct task_group *tg) 9454 { 9455 u64 burst_us; 9456 9457 burst_us = tg->cfs_bandwidth.burst; 9458 do_div(burst_us, NSEC_PER_USEC); 9459 9460 return burst_us; 9461 } 9462 9463 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9464 struct cftype *cft) 9465 { 9466 return tg_get_cfs_quota(css_tg(css)); 9467 } 9468 9469 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9470 struct cftype *cftype, s64 cfs_quota_us) 9471 { 9472 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9473 } 9474 9475 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9476 struct cftype *cft) 9477 { 9478 return tg_get_cfs_period(css_tg(css)); 9479 } 9480 9481 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9482 struct cftype *cftype, u64 cfs_period_us) 9483 { 9484 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9485 } 9486 9487 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9488 struct cftype *cft) 9489 { 9490 return tg_get_cfs_burst(css_tg(css)); 9491 } 9492 9493 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9494 struct cftype *cftype, u64 cfs_burst_us) 9495 { 9496 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9497 } 9498 9499 struct cfs_schedulable_data { 9500 struct task_group *tg; 9501 u64 period, quota; 9502 }; 9503 9504 /* 9505 * normalize group quota/period to be quota/max_period 9506 * note: units are usecs 9507 */ 9508 static u64 normalize_cfs_quota(struct task_group *tg, 9509 struct cfs_schedulable_data *d) 9510 { 9511 u64 quota, period; 9512 9513 if (tg == d->tg) { 9514 period = d->period; 9515 quota = d->quota; 9516 } else { 9517 period = tg_get_cfs_period(tg); 9518 quota = tg_get_cfs_quota(tg); 9519 } 9520 9521 /* note: these should typically be equivalent */ 9522 if (quota == RUNTIME_INF || quota == -1) 9523 return RUNTIME_INF; 9524 9525 return to_ratio(period, quota); 9526 } 9527 9528 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9529 { 9530 struct cfs_schedulable_data *d = data; 9531 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9532 s64 quota = 0, parent_quota = -1; 9533 9534 if (!tg->parent) { 9535 quota = RUNTIME_INF; 9536 } else { 9537 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9538 9539 quota = normalize_cfs_quota(tg, d); 9540 parent_quota = parent_b->hierarchical_quota; 9541 9542 /* 9543 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9544 * always take the non-RUNTIME_INF min. On cgroup1, only 9545 * inherit when no limit is set. In both cases this is used 9546 * by the scheduler to determine if a given CFS task has a 9547 * bandwidth constraint at some higher level. 9548 */ 9549 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9550 if (quota == RUNTIME_INF) 9551 quota = parent_quota; 9552 else if (parent_quota != RUNTIME_INF) 9553 quota = min(quota, parent_quota); 9554 } else { 9555 if (quota == RUNTIME_INF) 9556 quota = parent_quota; 9557 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9558 return -EINVAL; 9559 } 9560 } 9561 cfs_b->hierarchical_quota = quota; 9562 9563 return 0; 9564 } 9565 9566 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9567 { 9568 struct cfs_schedulable_data data = { 9569 .tg = tg, 9570 .period = period, 9571 .quota = quota, 9572 }; 9573 9574 if (quota != RUNTIME_INF) { 9575 do_div(data.period, NSEC_PER_USEC); 9576 do_div(data.quota, NSEC_PER_USEC); 9577 } 9578 9579 guard(rcu)(); 9580 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9581 } 9582 9583 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9584 { 9585 struct task_group *tg = css_tg(seq_css(sf)); 9586 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9587 9588 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9589 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9590 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9591 9592 if (schedstat_enabled() && tg != &root_task_group) { 9593 struct sched_statistics *stats; 9594 u64 ws = 0; 9595 int i; 9596 9597 for_each_possible_cpu(i) { 9598 stats = __schedstats_from_se(tg->se[i]); 9599 ws += schedstat_val(stats->wait_sum); 9600 } 9601 9602 seq_printf(sf, "wait_sum %llu\n", ws); 9603 } 9604 9605 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9606 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9607 9608 return 0; 9609 } 9610 9611 static u64 throttled_time_self(struct task_group *tg) 9612 { 9613 int i; 9614 u64 total = 0; 9615 9616 for_each_possible_cpu(i) { 9617 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9618 } 9619 9620 return total; 9621 } 9622 9623 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9624 { 9625 struct task_group *tg = css_tg(seq_css(sf)); 9626 9627 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9628 9629 return 0; 9630 } 9631 #endif /* CONFIG_CFS_BANDWIDTH */ 9632 9633 #ifdef CONFIG_RT_GROUP_SCHED 9634 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9635 struct cftype *cft, s64 val) 9636 { 9637 return sched_group_set_rt_runtime(css_tg(css), val); 9638 } 9639 9640 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9641 struct cftype *cft) 9642 { 9643 return sched_group_rt_runtime(css_tg(css)); 9644 } 9645 9646 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9647 struct cftype *cftype, u64 rt_period_us) 9648 { 9649 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9650 } 9651 9652 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9653 struct cftype *cft) 9654 { 9655 return sched_group_rt_period(css_tg(css)); 9656 } 9657 #endif /* CONFIG_RT_GROUP_SCHED */ 9658 9659 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9660 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9661 struct cftype *cft) 9662 { 9663 return css_tg(css)->idle; 9664 } 9665 9666 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9667 struct cftype *cft, s64 idle) 9668 { 9669 int ret; 9670 9671 ret = sched_group_set_idle(css_tg(css), idle); 9672 if (!ret) 9673 scx_group_set_idle(css_tg(css), idle); 9674 return ret; 9675 } 9676 #endif 9677 9678 static struct cftype cpu_legacy_files[] = { 9679 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9680 { 9681 .name = "shares", 9682 .read_u64 = cpu_shares_read_u64, 9683 .write_u64 = cpu_shares_write_u64, 9684 }, 9685 { 9686 .name = "idle", 9687 .read_s64 = cpu_idle_read_s64, 9688 .write_s64 = cpu_idle_write_s64, 9689 }, 9690 #endif 9691 #ifdef CONFIG_CFS_BANDWIDTH 9692 { 9693 .name = "cfs_quota_us", 9694 .read_s64 = cpu_cfs_quota_read_s64, 9695 .write_s64 = cpu_cfs_quota_write_s64, 9696 }, 9697 { 9698 .name = "cfs_period_us", 9699 .read_u64 = cpu_cfs_period_read_u64, 9700 .write_u64 = cpu_cfs_period_write_u64, 9701 }, 9702 { 9703 .name = "cfs_burst_us", 9704 .read_u64 = cpu_cfs_burst_read_u64, 9705 .write_u64 = cpu_cfs_burst_write_u64, 9706 }, 9707 { 9708 .name = "stat", 9709 .seq_show = cpu_cfs_stat_show, 9710 }, 9711 { 9712 .name = "stat.local", 9713 .seq_show = cpu_cfs_local_stat_show, 9714 }, 9715 #endif 9716 #ifdef CONFIG_RT_GROUP_SCHED 9717 { 9718 .name = "rt_runtime_us", 9719 .read_s64 = cpu_rt_runtime_read, 9720 .write_s64 = cpu_rt_runtime_write, 9721 }, 9722 { 9723 .name = "rt_period_us", 9724 .read_u64 = cpu_rt_period_read_uint, 9725 .write_u64 = cpu_rt_period_write_uint, 9726 }, 9727 #endif 9728 #ifdef CONFIG_UCLAMP_TASK_GROUP 9729 { 9730 .name = "uclamp.min", 9731 .flags = CFTYPE_NOT_ON_ROOT, 9732 .seq_show = cpu_uclamp_min_show, 9733 .write = cpu_uclamp_min_write, 9734 }, 9735 { 9736 .name = "uclamp.max", 9737 .flags = CFTYPE_NOT_ON_ROOT, 9738 .seq_show = cpu_uclamp_max_show, 9739 .write = cpu_uclamp_max_write, 9740 }, 9741 #endif 9742 { } /* Terminate */ 9743 }; 9744 9745 static int cpu_extra_stat_show(struct seq_file *sf, 9746 struct cgroup_subsys_state *css) 9747 { 9748 #ifdef CONFIG_CFS_BANDWIDTH 9749 { 9750 struct task_group *tg = css_tg(css); 9751 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9752 u64 throttled_usec, burst_usec; 9753 9754 throttled_usec = cfs_b->throttled_time; 9755 do_div(throttled_usec, NSEC_PER_USEC); 9756 burst_usec = cfs_b->burst_time; 9757 do_div(burst_usec, NSEC_PER_USEC); 9758 9759 seq_printf(sf, "nr_periods %d\n" 9760 "nr_throttled %d\n" 9761 "throttled_usec %llu\n" 9762 "nr_bursts %d\n" 9763 "burst_usec %llu\n", 9764 cfs_b->nr_periods, cfs_b->nr_throttled, 9765 throttled_usec, cfs_b->nr_burst, burst_usec); 9766 } 9767 #endif 9768 return 0; 9769 } 9770 9771 static int cpu_local_stat_show(struct seq_file *sf, 9772 struct cgroup_subsys_state *css) 9773 { 9774 #ifdef CONFIG_CFS_BANDWIDTH 9775 { 9776 struct task_group *tg = css_tg(css); 9777 u64 throttled_self_usec; 9778 9779 throttled_self_usec = throttled_time_self(tg); 9780 do_div(throttled_self_usec, NSEC_PER_USEC); 9781 9782 seq_printf(sf, "throttled_usec %llu\n", 9783 throttled_self_usec); 9784 } 9785 #endif 9786 return 0; 9787 } 9788 9789 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9790 9791 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9792 struct cftype *cft) 9793 { 9794 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9795 } 9796 9797 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9798 struct cftype *cft, u64 cgrp_weight) 9799 { 9800 unsigned long weight; 9801 int ret; 9802 9803 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9804 return -ERANGE; 9805 9806 weight = sched_weight_from_cgroup(cgrp_weight); 9807 9808 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9809 if (!ret) 9810 scx_group_set_weight(css_tg(css), cgrp_weight); 9811 return ret; 9812 } 9813 9814 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9815 struct cftype *cft) 9816 { 9817 unsigned long weight = tg_weight(css_tg(css)); 9818 int last_delta = INT_MAX; 9819 int prio, delta; 9820 9821 /* find the closest nice value to the current weight */ 9822 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9823 delta = abs(sched_prio_to_weight[prio] - weight); 9824 if (delta >= last_delta) 9825 break; 9826 last_delta = delta; 9827 } 9828 9829 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9830 } 9831 9832 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9833 struct cftype *cft, s64 nice) 9834 { 9835 unsigned long weight; 9836 int idx, ret; 9837 9838 if (nice < MIN_NICE || nice > MAX_NICE) 9839 return -ERANGE; 9840 9841 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9842 idx = array_index_nospec(idx, 40); 9843 weight = sched_prio_to_weight[idx]; 9844 9845 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9846 if (!ret) 9847 scx_group_set_weight(css_tg(css), 9848 sched_weight_to_cgroup(weight)); 9849 return ret; 9850 } 9851 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9852 9853 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9854 long period, long quota) 9855 { 9856 if (quota < 0) 9857 seq_puts(sf, "max"); 9858 else 9859 seq_printf(sf, "%ld", quota); 9860 9861 seq_printf(sf, " %ld\n", period); 9862 } 9863 9864 /* caller should put the current value in *@periodp before calling */ 9865 static int __maybe_unused cpu_period_quota_parse(char *buf, 9866 u64 *periodp, u64 *quotap) 9867 { 9868 char tok[21]; /* U64_MAX */ 9869 9870 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9871 return -EINVAL; 9872 9873 *periodp *= NSEC_PER_USEC; 9874 9875 if (sscanf(tok, "%llu", quotap)) 9876 *quotap *= NSEC_PER_USEC; 9877 else if (!strcmp(tok, "max")) 9878 *quotap = RUNTIME_INF; 9879 else 9880 return -EINVAL; 9881 9882 return 0; 9883 } 9884 9885 #ifdef CONFIG_CFS_BANDWIDTH 9886 static int cpu_max_show(struct seq_file *sf, void *v) 9887 { 9888 struct task_group *tg = css_tg(seq_css(sf)); 9889 9890 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9891 return 0; 9892 } 9893 9894 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9895 char *buf, size_t nbytes, loff_t off) 9896 { 9897 struct task_group *tg = css_tg(of_css(of)); 9898 u64 period = tg_get_cfs_period(tg); 9899 u64 burst = tg->cfs_bandwidth.burst; 9900 u64 quota; 9901 int ret; 9902 9903 ret = cpu_period_quota_parse(buf, &period, "a); 9904 if (!ret) 9905 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 9906 return ret ?: nbytes; 9907 } 9908 #endif 9909 9910 static struct cftype cpu_files[] = { 9911 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9912 { 9913 .name = "weight", 9914 .flags = CFTYPE_NOT_ON_ROOT, 9915 .read_u64 = cpu_weight_read_u64, 9916 .write_u64 = cpu_weight_write_u64, 9917 }, 9918 { 9919 .name = "weight.nice", 9920 .flags = CFTYPE_NOT_ON_ROOT, 9921 .read_s64 = cpu_weight_nice_read_s64, 9922 .write_s64 = cpu_weight_nice_write_s64, 9923 }, 9924 { 9925 .name = "idle", 9926 .flags = CFTYPE_NOT_ON_ROOT, 9927 .read_s64 = cpu_idle_read_s64, 9928 .write_s64 = cpu_idle_write_s64, 9929 }, 9930 #endif 9931 #ifdef CONFIG_CFS_BANDWIDTH 9932 { 9933 .name = "max", 9934 .flags = CFTYPE_NOT_ON_ROOT, 9935 .seq_show = cpu_max_show, 9936 .write = cpu_max_write, 9937 }, 9938 { 9939 .name = "max.burst", 9940 .flags = CFTYPE_NOT_ON_ROOT, 9941 .read_u64 = cpu_cfs_burst_read_u64, 9942 .write_u64 = cpu_cfs_burst_write_u64, 9943 }, 9944 #endif 9945 #ifdef CONFIG_UCLAMP_TASK_GROUP 9946 { 9947 .name = "uclamp.min", 9948 .flags = CFTYPE_NOT_ON_ROOT, 9949 .seq_show = cpu_uclamp_min_show, 9950 .write = cpu_uclamp_min_write, 9951 }, 9952 { 9953 .name = "uclamp.max", 9954 .flags = CFTYPE_NOT_ON_ROOT, 9955 .seq_show = cpu_uclamp_max_show, 9956 .write = cpu_uclamp_max_write, 9957 }, 9958 #endif 9959 { } /* terminate */ 9960 }; 9961 9962 struct cgroup_subsys cpu_cgrp_subsys = { 9963 .css_alloc = cpu_cgroup_css_alloc, 9964 .css_online = cpu_cgroup_css_online, 9965 .css_offline = cpu_cgroup_css_offline, 9966 .css_released = cpu_cgroup_css_released, 9967 .css_free = cpu_cgroup_css_free, 9968 .css_extra_stat_show = cpu_extra_stat_show, 9969 .css_local_stat_show = cpu_local_stat_show, 9970 .can_attach = cpu_cgroup_can_attach, 9971 .attach = cpu_cgroup_attach, 9972 .cancel_attach = cpu_cgroup_cancel_attach, 9973 .legacy_cftypes = cpu_legacy_files, 9974 .dfl_cftypes = cpu_files, 9975 .early_init = true, 9976 .threaded = true, 9977 }; 9978 9979 #endif /* CONFIG_CGROUP_SCHED */ 9980 9981 void dump_cpu_task(int cpu) 9982 { 9983 if (in_hardirq() && cpu == smp_processor_id()) { 9984 struct pt_regs *regs; 9985 9986 regs = get_irq_regs(); 9987 if (regs) { 9988 show_regs(regs); 9989 return; 9990 } 9991 } 9992 9993 if (trigger_single_cpu_backtrace(cpu)) 9994 return; 9995 9996 pr_info("Task dump for CPU %d:\n", cpu); 9997 sched_show_task(cpu_curr(cpu)); 9998 } 9999 10000 /* 10001 * Nice levels are multiplicative, with a gentle 10% change for every 10002 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10003 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10004 * that remained on nice 0. 10005 * 10006 * The "10% effect" is relative and cumulative: from _any_ nice level, 10007 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10008 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10009 * If a task goes up by ~10% and another task goes down by ~10% then 10010 * the relative distance between them is ~25%.) 10011 */ 10012 const int sched_prio_to_weight[40] = { 10013 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10014 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10015 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10016 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10017 /* 0 */ 1024, 820, 655, 526, 423, 10018 /* 5 */ 335, 272, 215, 172, 137, 10019 /* 10 */ 110, 87, 70, 56, 45, 10020 /* 15 */ 36, 29, 23, 18, 15, 10021 }; 10022 10023 /* 10024 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10025 * 10026 * In cases where the weight does not change often, we can use the 10027 * pre-calculated inverse to speed up arithmetics by turning divisions 10028 * into multiplications: 10029 */ 10030 const u32 sched_prio_to_wmult[40] = { 10031 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10032 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10033 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10034 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10035 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10036 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10037 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10038 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10039 }; 10040 10041 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10042 { 10043 trace_sched_update_nr_running_tp(rq, count); 10044 } 10045 10046 #ifdef CONFIG_SCHED_MM_CID 10047 10048 /* 10049 * @cid_lock: Guarantee forward-progress of cid allocation. 10050 * 10051 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10052 * is only used when contention is detected by the lock-free allocation so 10053 * forward progress can be guaranteed. 10054 */ 10055 DEFINE_RAW_SPINLOCK(cid_lock); 10056 10057 /* 10058 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10059 * 10060 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10061 * detected, it is set to 1 to ensure that all newly coming allocations are 10062 * serialized by @cid_lock until the allocation which detected contention 10063 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10064 * of a cid allocation. 10065 */ 10066 int use_cid_lock; 10067 10068 /* 10069 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10070 * concurrently with respect to the execution of the source runqueue context 10071 * switch. 10072 * 10073 * There is one basic properties we want to guarantee here: 10074 * 10075 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10076 * used by a task. That would lead to concurrent allocation of the cid and 10077 * userspace corruption. 10078 * 10079 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10080 * that a pair of loads observe at least one of a pair of stores, which can be 10081 * shown as: 10082 * 10083 * X = Y = 0 10084 * 10085 * w[X]=1 w[Y]=1 10086 * MB MB 10087 * r[Y]=y r[X]=x 10088 * 10089 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10090 * values 0 and 1, this algorithm cares about specific state transitions of the 10091 * runqueue current task (as updated by the scheduler context switch), and the 10092 * per-mm/cpu cid value. 10093 * 10094 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10095 * task->mm != mm for the rest of the discussion. There are two scheduler state 10096 * transitions on context switch we care about: 10097 * 10098 * (TSA) Store to rq->curr with transition from (N) to (Y) 10099 * 10100 * (TSB) Store to rq->curr with transition from (Y) to (N) 10101 * 10102 * On the remote-clear side, there is one transition we care about: 10103 * 10104 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10105 * 10106 * There is also a transition to UNSET state which can be performed from all 10107 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10108 * guarantees that only a single thread will succeed: 10109 * 10110 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10111 * 10112 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10113 * when a thread is actively using the cid (property (1)). 10114 * 10115 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10116 * 10117 * Scenario A) (TSA)+(TMA) (from next task perspective) 10118 * 10119 * CPU0 CPU1 10120 * 10121 * Context switch CS-1 Remote-clear 10122 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10123 * (implied barrier after cmpxchg) 10124 * - switch_mm_cid() 10125 * - memory barrier (see switch_mm_cid() 10126 * comment explaining how this barrier 10127 * is combined with other scheduler 10128 * barriers) 10129 * - mm_cid_get (next) 10130 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10131 * 10132 * This Dekker ensures that either task (Y) is observed by the 10133 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10134 * observed. 10135 * 10136 * If task (Y) store is observed by rcu_dereference(), it means that there is 10137 * still an active task on the cpu. Remote-clear will therefore not transition 10138 * to UNSET, which fulfills property (1). 10139 * 10140 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10141 * it will move its state to UNSET, which clears the percpu cid perhaps 10142 * uselessly (which is not an issue for correctness). Because task (Y) is not 10143 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10144 * state to UNSET is done with a cmpxchg expecting that the old state has the 10145 * LAZY flag set, only one thread will successfully UNSET. 10146 * 10147 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10148 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10149 * CPU1 will observe task (Y) and do nothing more, which is fine. 10150 * 10151 * What we are effectively preventing with this Dekker is a scenario where 10152 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10153 * because this would UNSET a cid which is actively used. 10154 */ 10155 10156 void sched_mm_cid_migrate_from(struct task_struct *t) 10157 { 10158 t->migrate_from_cpu = task_cpu(t); 10159 } 10160 10161 static 10162 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10163 struct task_struct *t, 10164 struct mm_cid *src_pcpu_cid) 10165 { 10166 struct mm_struct *mm = t->mm; 10167 struct task_struct *src_task; 10168 int src_cid, last_mm_cid; 10169 10170 if (!mm) 10171 return -1; 10172 10173 last_mm_cid = t->last_mm_cid; 10174 /* 10175 * If the migrated task has no last cid, or if the current 10176 * task on src rq uses the cid, it means the source cid does not need 10177 * to be moved to the destination cpu. 10178 */ 10179 if (last_mm_cid == -1) 10180 return -1; 10181 src_cid = READ_ONCE(src_pcpu_cid->cid); 10182 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10183 return -1; 10184 10185 /* 10186 * If we observe an active task using the mm on this rq, it means we 10187 * are not the last task to be migrated from this cpu for this mm, so 10188 * there is no need to move src_cid to the destination cpu. 10189 */ 10190 guard(rcu)(); 10191 src_task = rcu_dereference(src_rq->curr); 10192 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10193 t->last_mm_cid = -1; 10194 return -1; 10195 } 10196 10197 return src_cid; 10198 } 10199 10200 static 10201 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10202 struct task_struct *t, 10203 struct mm_cid *src_pcpu_cid, 10204 int src_cid) 10205 { 10206 struct task_struct *src_task; 10207 struct mm_struct *mm = t->mm; 10208 int lazy_cid; 10209 10210 if (src_cid == -1) 10211 return -1; 10212 10213 /* 10214 * Attempt to clear the source cpu cid to move it to the destination 10215 * cpu. 10216 */ 10217 lazy_cid = mm_cid_set_lazy_put(src_cid); 10218 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10219 return -1; 10220 10221 /* 10222 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10223 * rq->curr->mm matches the scheduler barrier in context_switch() 10224 * between store to rq->curr and load of prev and next task's 10225 * per-mm/cpu cid. 10226 * 10227 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10228 * rq->curr->mm_cid_active matches the barrier in 10229 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10230 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10231 * load of per-mm/cpu cid. 10232 */ 10233 10234 /* 10235 * If we observe an active task using the mm on this rq after setting 10236 * the lazy-put flag, this task will be responsible for transitioning 10237 * from lazy-put flag set to MM_CID_UNSET. 10238 */ 10239 scoped_guard (rcu) { 10240 src_task = rcu_dereference(src_rq->curr); 10241 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10242 /* 10243 * We observed an active task for this mm, there is therefore 10244 * no point in moving this cid to the destination cpu. 10245 */ 10246 t->last_mm_cid = -1; 10247 return -1; 10248 } 10249 } 10250 10251 /* 10252 * The src_cid is unused, so it can be unset. 10253 */ 10254 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10255 return -1; 10256 return src_cid; 10257 } 10258 10259 /* 10260 * Migration to dst cpu. Called with dst_rq lock held. 10261 * Interrupts are disabled, which keeps the window of cid ownership without the 10262 * source rq lock held small. 10263 */ 10264 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10265 { 10266 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10267 struct mm_struct *mm = t->mm; 10268 int src_cid, dst_cid, src_cpu; 10269 struct rq *src_rq; 10270 10271 lockdep_assert_rq_held(dst_rq); 10272 10273 if (!mm) 10274 return; 10275 src_cpu = t->migrate_from_cpu; 10276 if (src_cpu == -1) { 10277 t->last_mm_cid = -1; 10278 return; 10279 } 10280 /* 10281 * Move the src cid if the dst cid is unset. This keeps id 10282 * allocation closest to 0 in cases where few threads migrate around 10283 * many CPUs. 10284 * 10285 * If destination cid is already set, we may have to just clear 10286 * the src cid to ensure compactness in frequent migrations 10287 * scenarios. 10288 * 10289 * It is not useful to clear the src cid when the number of threads is 10290 * greater or equal to the number of allowed CPUs, because user-space 10291 * can expect that the number of allowed cids can reach the number of 10292 * allowed CPUs. 10293 */ 10294 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10295 dst_cid = READ_ONCE(dst_pcpu_cid->cid); 10296 if (!mm_cid_is_unset(dst_cid) && 10297 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) 10298 return; 10299 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10300 src_rq = cpu_rq(src_cpu); 10301 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10302 if (src_cid == -1) 10303 return; 10304 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10305 src_cid); 10306 if (src_cid == -1) 10307 return; 10308 if (!mm_cid_is_unset(dst_cid)) { 10309 __mm_cid_put(mm, src_cid); 10310 return; 10311 } 10312 /* Move src_cid to dst cpu. */ 10313 mm_cid_snapshot_time(dst_rq, mm); 10314 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10315 } 10316 10317 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10318 int cpu) 10319 { 10320 struct rq *rq = cpu_rq(cpu); 10321 struct task_struct *t; 10322 int cid, lazy_cid; 10323 10324 cid = READ_ONCE(pcpu_cid->cid); 10325 if (!mm_cid_is_valid(cid)) 10326 return; 10327 10328 /* 10329 * Clear the cpu cid if it is set to keep cid allocation compact. If 10330 * there happens to be other tasks left on the source cpu using this 10331 * mm, the next task using this mm will reallocate its cid on context 10332 * switch. 10333 */ 10334 lazy_cid = mm_cid_set_lazy_put(cid); 10335 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10336 return; 10337 10338 /* 10339 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10340 * rq->curr->mm matches the scheduler barrier in context_switch() 10341 * between store to rq->curr and load of prev and next task's 10342 * per-mm/cpu cid. 10343 * 10344 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10345 * rq->curr->mm_cid_active matches the barrier in 10346 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10347 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10348 * load of per-mm/cpu cid. 10349 */ 10350 10351 /* 10352 * If we observe an active task using the mm on this rq after setting 10353 * the lazy-put flag, that task will be responsible for transitioning 10354 * from lazy-put flag set to MM_CID_UNSET. 10355 */ 10356 scoped_guard (rcu) { 10357 t = rcu_dereference(rq->curr); 10358 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10359 return; 10360 } 10361 10362 /* 10363 * The cid is unused, so it can be unset. 10364 * Disable interrupts to keep the window of cid ownership without rq 10365 * lock small. 10366 */ 10367 scoped_guard (irqsave) { 10368 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10369 __mm_cid_put(mm, cid); 10370 } 10371 } 10372 10373 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10374 { 10375 struct rq *rq = cpu_rq(cpu); 10376 struct mm_cid *pcpu_cid; 10377 struct task_struct *curr; 10378 u64 rq_clock; 10379 10380 /* 10381 * rq->clock load is racy on 32-bit but one spurious clear once in a 10382 * while is irrelevant. 10383 */ 10384 rq_clock = READ_ONCE(rq->clock); 10385 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10386 10387 /* 10388 * In order to take care of infrequently scheduled tasks, bump the time 10389 * snapshot associated with this cid if an active task using the mm is 10390 * observed on this rq. 10391 */ 10392 scoped_guard (rcu) { 10393 curr = rcu_dereference(rq->curr); 10394 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10395 WRITE_ONCE(pcpu_cid->time, rq_clock); 10396 return; 10397 } 10398 } 10399 10400 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10401 return; 10402 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10403 } 10404 10405 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10406 int weight) 10407 { 10408 struct mm_cid *pcpu_cid; 10409 int cid; 10410 10411 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10412 cid = READ_ONCE(pcpu_cid->cid); 10413 if (!mm_cid_is_valid(cid) || cid < weight) 10414 return; 10415 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10416 } 10417 10418 static void task_mm_cid_work(struct callback_head *work) 10419 { 10420 unsigned long now = jiffies, old_scan, next_scan; 10421 struct task_struct *t = current; 10422 struct cpumask *cidmask; 10423 struct mm_struct *mm; 10424 int weight, cpu; 10425 10426 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 10427 10428 work->next = work; /* Prevent double-add */ 10429 if (t->flags & PF_EXITING) 10430 return; 10431 mm = t->mm; 10432 if (!mm) 10433 return; 10434 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10435 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10436 if (!old_scan) { 10437 unsigned long res; 10438 10439 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10440 if (res != old_scan) 10441 old_scan = res; 10442 else 10443 old_scan = next_scan; 10444 } 10445 if (time_before(now, old_scan)) 10446 return; 10447 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10448 return; 10449 cidmask = mm_cidmask(mm); 10450 /* Clear cids that were not recently used. */ 10451 for_each_possible_cpu(cpu) 10452 sched_mm_cid_remote_clear_old(mm, cpu); 10453 weight = cpumask_weight(cidmask); 10454 /* 10455 * Clear cids that are greater or equal to the cidmask weight to 10456 * recompact it. 10457 */ 10458 for_each_possible_cpu(cpu) 10459 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10460 } 10461 10462 void init_sched_mm_cid(struct task_struct *t) 10463 { 10464 struct mm_struct *mm = t->mm; 10465 int mm_users = 0; 10466 10467 if (mm) { 10468 mm_users = atomic_read(&mm->mm_users); 10469 if (mm_users == 1) 10470 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10471 } 10472 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10473 init_task_work(&t->cid_work, task_mm_cid_work); 10474 } 10475 10476 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10477 { 10478 struct callback_head *work = &curr->cid_work; 10479 unsigned long now = jiffies; 10480 10481 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10482 work->next != work) 10483 return; 10484 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10485 return; 10486 10487 /* No page allocation under rq lock */ 10488 task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC); 10489 } 10490 10491 void sched_mm_cid_exit_signals(struct task_struct *t) 10492 { 10493 struct mm_struct *mm = t->mm; 10494 struct rq *rq; 10495 10496 if (!mm) 10497 return; 10498 10499 preempt_disable(); 10500 rq = this_rq(); 10501 guard(rq_lock_irqsave)(rq); 10502 preempt_enable_no_resched(); /* holding spinlock */ 10503 WRITE_ONCE(t->mm_cid_active, 0); 10504 /* 10505 * Store t->mm_cid_active before loading per-mm/cpu cid. 10506 * Matches barrier in sched_mm_cid_remote_clear_old(). 10507 */ 10508 smp_mb(); 10509 mm_cid_put(mm); 10510 t->last_mm_cid = t->mm_cid = -1; 10511 } 10512 10513 void sched_mm_cid_before_execve(struct task_struct *t) 10514 { 10515 struct mm_struct *mm = t->mm; 10516 struct rq *rq; 10517 10518 if (!mm) 10519 return; 10520 10521 preempt_disable(); 10522 rq = this_rq(); 10523 guard(rq_lock_irqsave)(rq); 10524 preempt_enable_no_resched(); /* holding spinlock */ 10525 WRITE_ONCE(t->mm_cid_active, 0); 10526 /* 10527 * Store t->mm_cid_active before loading per-mm/cpu cid. 10528 * Matches barrier in sched_mm_cid_remote_clear_old(). 10529 */ 10530 smp_mb(); 10531 mm_cid_put(mm); 10532 t->last_mm_cid = t->mm_cid = -1; 10533 } 10534 10535 void sched_mm_cid_after_execve(struct task_struct *t) 10536 { 10537 struct mm_struct *mm = t->mm; 10538 struct rq *rq; 10539 10540 if (!mm) 10541 return; 10542 10543 preempt_disable(); 10544 rq = this_rq(); 10545 scoped_guard (rq_lock_irqsave, rq) { 10546 preempt_enable_no_resched(); /* holding spinlock */ 10547 WRITE_ONCE(t->mm_cid_active, 1); 10548 /* 10549 * Store t->mm_cid_active before loading per-mm/cpu cid. 10550 * Matches barrier in sched_mm_cid_remote_clear_old(). 10551 */ 10552 smp_mb(); 10553 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); 10554 } 10555 rseq_set_notify_resume(t); 10556 } 10557 10558 void sched_mm_cid_fork(struct task_struct *t) 10559 { 10560 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10561 t->mm_cid_active = 1; 10562 } 10563 #endif 10564 10565 #ifdef CONFIG_SCHED_CLASS_EXT 10566 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10567 struct sched_enq_and_set_ctx *ctx) 10568 { 10569 struct rq *rq = task_rq(p); 10570 10571 lockdep_assert_rq_held(rq); 10572 10573 *ctx = (struct sched_enq_and_set_ctx){ 10574 .p = p, 10575 .queue_flags = queue_flags, 10576 .queued = task_on_rq_queued(p), 10577 .running = task_current(rq, p), 10578 }; 10579 10580 update_rq_clock(rq); 10581 if (ctx->queued) 10582 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10583 if (ctx->running) 10584 put_prev_task(rq, p); 10585 } 10586 10587 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10588 { 10589 struct rq *rq = task_rq(ctx->p); 10590 10591 lockdep_assert_rq_held(rq); 10592 10593 if (ctx->queued) 10594 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10595 if (ctx->running) 10596 set_next_task(rq, ctx->p); 10597 } 10598 #endif /* CONFIG_SCHED_CLASS_EXT */ 10599