xref: /linux/kernel/sched/core.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 
70 #ifdef CONFIG_PREEMPT_DYNAMIC
71 # ifdef CONFIG_GENERIC_ENTRY
72 #  include <linux/entry-common.h>
73 # endif
74 #endif
75 
76 #include <uapi/linux/sched/types.h>
77 
78 #include <asm/irq_regs.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <linux/sched/rseq_api.h>
84 #include <trace/events/sched.h>
85 #include <trace/events/ipi.h>
86 #undef CREATE_TRACE_POINTS
87 
88 #include "sched.h"
89 #include "stats.h"
90 
91 #include "autogroup.h"
92 #include "pelt.h"
93 #include "smp.h"
94 #include "stats.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 
103 /*
104  * Export tracepoints that act as a bare tracehook (ie: have no trace event
105  * associated with them) to allow external modules to probe them.
106  */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119 
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121 
122 #ifdef CONFIG_SCHED_DEBUG
123 /*
124  * Debugging: various feature bits
125  *
126  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
127  * sysctl_sched_features, defined in sched.h, to allow constants propagation
128  * at compile time and compiler optimization based on features default.
129  */
130 #define SCHED_FEAT(name, enabled)	\
131 	(1UL << __SCHED_FEAT_##name) * enabled |
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
134 	0;
135 #undef SCHED_FEAT
136 
137 /*
138  * Print a warning if need_resched is set for the given duration (if
139  * LATENCY_WARN is enabled).
140  *
141  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
142  * per boot.
143  */
144 __read_mostly int sysctl_resched_latency_warn_ms = 100;
145 __read_mostly int sysctl_resched_latency_warn_once = 1;
146 #endif /* CONFIG_SCHED_DEBUG */
147 
148 /*
149  * Number of tasks to iterate in a single balance run.
150  * Limited because this is done with IRQs disabled.
151  */
152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
153 
154 __read_mostly int scheduler_running;
155 
156 #ifdef CONFIG_SCHED_CORE
157 
158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
159 
160 /* kernel prio, less is more */
161 static inline int __task_prio(const struct task_struct *p)
162 {
163 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
164 		return -2;
165 
166 	if (p->dl_server)
167 		return -1; /* deadline */
168 
169 	if (rt_or_dl_prio(p->prio))
170 		return p->prio; /* [-1, 99] */
171 
172 	if (p->sched_class == &idle_sched_class)
173 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
174 
175 	if (task_on_scx(p))
176 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
177 
178 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
179 }
180 
181 /*
182  * l(a,b)
183  * le(a,b) := !l(b,a)
184  * g(a,b)  := l(b,a)
185  * ge(a,b) := !l(a,b)
186  */
187 
188 /* real prio, less is less */
189 static inline bool prio_less(const struct task_struct *a,
190 			     const struct task_struct *b, bool in_fi)
191 {
192 
193 	int pa = __task_prio(a), pb = __task_prio(b);
194 
195 	if (-pa < -pb)
196 		return true;
197 
198 	if (-pb < -pa)
199 		return false;
200 
201 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
202 		const struct sched_dl_entity *a_dl, *b_dl;
203 
204 		a_dl = &a->dl;
205 		/*
206 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
207 		 * __task_prio() can return -1 (for DL) even for those. In that
208 		 * case, get to the dl_server's DL entity.
209 		 */
210 		if (a->dl_server)
211 			a_dl = a->dl_server;
212 
213 		b_dl = &b->dl;
214 		if (b->dl_server)
215 			b_dl = b->dl_server;
216 
217 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
218 	}
219 
220 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
221 		return cfs_prio_less(a, b, in_fi);
222 
223 #ifdef CONFIG_SCHED_CLASS_EXT
224 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
225 		return scx_prio_less(a, b, in_fi);
226 #endif
227 
228 	return false;
229 }
230 
231 static inline bool __sched_core_less(const struct task_struct *a,
232 				     const struct task_struct *b)
233 {
234 	if (a->core_cookie < b->core_cookie)
235 		return true;
236 
237 	if (a->core_cookie > b->core_cookie)
238 		return false;
239 
240 	/* flip prio, so high prio is leftmost */
241 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
242 		return true;
243 
244 	return false;
245 }
246 
247 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
248 
249 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
250 {
251 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
252 }
253 
254 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
255 {
256 	const struct task_struct *p = __node_2_sc(node);
257 	unsigned long cookie = (unsigned long)key;
258 
259 	if (cookie < p->core_cookie)
260 		return -1;
261 
262 	if (cookie > p->core_cookie)
263 		return 1;
264 
265 	return 0;
266 }
267 
268 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
269 {
270 	if (p->se.sched_delayed)
271 		return;
272 
273 	rq->core->core_task_seq++;
274 
275 	if (!p->core_cookie)
276 		return;
277 
278 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
279 }
280 
281 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
282 {
283 	if (p->se.sched_delayed)
284 		return;
285 
286 	rq->core->core_task_seq++;
287 
288 	if (sched_core_enqueued(p)) {
289 		rb_erase(&p->core_node, &rq->core_tree);
290 		RB_CLEAR_NODE(&p->core_node);
291 	}
292 
293 	/*
294 	 * Migrating the last task off the cpu, with the cpu in forced idle
295 	 * state. Reschedule to create an accounting edge for forced idle,
296 	 * and re-examine whether the core is still in forced idle state.
297 	 */
298 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
299 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
300 		resched_curr(rq);
301 }
302 
303 static int sched_task_is_throttled(struct task_struct *p, int cpu)
304 {
305 	if (p->sched_class->task_is_throttled)
306 		return p->sched_class->task_is_throttled(p, cpu);
307 
308 	return 0;
309 }
310 
311 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
312 {
313 	struct rb_node *node = &p->core_node;
314 	int cpu = task_cpu(p);
315 
316 	do {
317 		node = rb_next(node);
318 		if (!node)
319 			return NULL;
320 
321 		p = __node_2_sc(node);
322 		if (p->core_cookie != cookie)
323 			return NULL;
324 
325 	} while (sched_task_is_throttled(p, cpu));
326 
327 	return p;
328 }
329 
330 /*
331  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
332  * If no suitable task is found, NULL will be returned.
333  */
334 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
335 {
336 	struct task_struct *p;
337 	struct rb_node *node;
338 
339 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
340 	if (!node)
341 		return NULL;
342 
343 	p = __node_2_sc(node);
344 	if (!sched_task_is_throttled(p, rq->cpu))
345 		return p;
346 
347 	return sched_core_next(p, cookie);
348 }
349 
350 /*
351  * Magic required such that:
352  *
353  *	raw_spin_rq_lock(rq);
354  *	...
355  *	raw_spin_rq_unlock(rq);
356  *
357  * ends up locking and unlocking the _same_ lock, and all CPUs
358  * always agree on what rq has what lock.
359  *
360  * XXX entirely possible to selectively enable cores, don't bother for now.
361  */
362 
363 static DEFINE_MUTEX(sched_core_mutex);
364 static atomic_t sched_core_count;
365 static struct cpumask sched_core_mask;
366 
367 static void sched_core_lock(int cpu, unsigned long *flags)
368 {
369 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
370 	int t, i = 0;
371 
372 	local_irq_save(*flags);
373 	for_each_cpu(t, smt_mask)
374 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
375 }
376 
377 static void sched_core_unlock(int cpu, unsigned long *flags)
378 {
379 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
380 	int t;
381 
382 	for_each_cpu(t, smt_mask)
383 		raw_spin_unlock(&cpu_rq(t)->__lock);
384 	local_irq_restore(*flags);
385 }
386 
387 static void __sched_core_flip(bool enabled)
388 {
389 	unsigned long flags;
390 	int cpu, t;
391 
392 	cpus_read_lock();
393 
394 	/*
395 	 * Toggle the online cores, one by one.
396 	 */
397 	cpumask_copy(&sched_core_mask, cpu_online_mask);
398 	for_each_cpu(cpu, &sched_core_mask) {
399 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
400 
401 		sched_core_lock(cpu, &flags);
402 
403 		for_each_cpu(t, smt_mask)
404 			cpu_rq(t)->core_enabled = enabled;
405 
406 		cpu_rq(cpu)->core->core_forceidle_start = 0;
407 
408 		sched_core_unlock(cpu, &flags);
409 
410 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
411 	}
412 
413 	/*
414 	 * Toggle the offline CPUs.
415 	 */
416 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
417 		cpu_rq(cpu)->core_enabled = enabled;
418 
419 	cpus_read_unlock();
420 }
421 
422 static void sched_core_assert_empty(void)
423 {
424 	int cpu;
425 
426 	for_each_possible_cpu(cpu)
427 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
428 }
429 
430 static void __sched_core_enable(void)
431 {
432 	static_branch_enable(&__sched_core_enabled);
433 	/*
434 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
435 	 * and future ones will observe !sched_core_disabled().
436 	 */
437 	synchronize_rcu();
438 	__sched_core_flip(true);
439 	sched_core_assert_empty();
440 }
441 
442 static void __sched_core_disable(void)
443 {
444 	sched_core_assert_empty();
445 	__sched_core_flip(false);
446 	static_branch_disable(&__sched_core_enabled);
447 }
448 
449 void sched_core_get(void)
450 {
451 	if (atomic_inc_not_zero(&sched_core_count))
452 		return;
453 
454 	mutex_lock(&sched_core_mutex);
455 	if (!atomic_read(&sched_core_count))
456 		__sched_core_enable();
457 
458 	smp_mb__before_atomic();
459 	atomic_inc(&sched_core_count);
460 	mutex_unlock(&sched_core_mutex);
461 }
462 
463 static void __sched_core_put(struct work_struct *work)
464 {
465 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
466 		__sched_core_disable();
467 		mutex_unlock(&sched_core_mutex);
468 	}
469 }
470 
471 void sched_core_put(void)
472 {
473 	static DECLARE_WORK(_work, __sched_core_put);
474 
475 	/*
476 	 * "There can be only one"
477 	 *
478 	 * Either this is the last one, or we don't actually need to do any
479 	 * 'work'. If it is the last *again*, we rely on
480 	 * WORK_STRUCT_PENDING_BIT.
481 	 */
482 	if (!atomic_add_unless(&sched_core_count, -1, 1))
483 		schedule_work(&_work);
484 }
485 
486 #else /* !CONFIG_SCHED_CORE */
487 
488 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
489 static inline void
490 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
491 
492 #endif /* CONFIG_SCHED_CORE */
493 
494 /*
495  * Serialization rules:
496  *
497  * Lock order:
498  *
499  *   p->pi_lock
500  *     rq->lock
501  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
502  *
503  *  rq1->lock
504  *    rq2->lock  where: rq1 < rq2
505  *
506  * Regular state:
507  *
508  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
509  * local CPU's rq->lock, it optionally removes the task from the runqueue and
510  * always looks at the local rq data structures to find the most eligible task
511  * to run next.
512  *
513  * Task enqueue is also under rq->lock, possibly taken from another CPU.
514  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
515  * the local CPU to avoid bouncing the runqueue state around [ see
516  * ttwu_queue_wakelist() ]
517  *
518  * Task wakeup, specifically wakeups that involve migration, are horribly
519  * complicated to avoid having to take two rq->locks.
520  *
521  * Special state:
522  *
523  * System-calls and anything external will use task_rq_lock() which acquires
524  * both p->pi_lock and rq->lock. As a consequence the state they change is
525  * stable while holding either lock:
526  *
527  *  - sched_setaffinity()/
528  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
529  *  - set_user_nice():		p->se.load, p->*prio
530  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
531  *				p->se.load, p->rt_priority,
532  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
533  *  - sched_setnuma():		p->numa_preferred_nid
534  *  - sched_move_task():	p->sched_task_group
535  *  - uclamp_update_active()	p->uclamp*
536  *
537  * p->state <- TASK_*:
538  *
539  *   is changed locklessly using set_current_state(), __set_current_state() or
540  *   set_special_state(), see their respective comments, or by
541  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
542  *   concurrent self.
543  *
544  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
545  *
546  *   is set by activate_task() and cleared by deactivate_task(), under
547  *   rq->lock. Non-zero indicates the task is runnable, the special
548  *   ON_RQ_MIGRATING state is used for migration without holding both
549  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
550  *
551  * p->on_cpu <- { 0, 1 }:
552  *
553  *   is set by prepare_task() and cleared by finish_task() such that it will be
554  *   set before p is scheduled-in and cleared after p is scheduled-out, both
555  *   under rq->lock. Non-zero indicates the task is running on its CPU.
556  *
557  *   [ The astute reader will observe that it is possible for two tasks on one
558  *     CPU to have ->on_cpu = 1 at the same time. ]
559  *
560  * task_cpu(p): is changed by set_task_cpu(), the rules are:
561  *
562  *  - Don't call set_task_cpu() on a blocked task:
563  *
564  *    We don't care what CPU we're not running on, this simplifies hotplug,
565  *    the CPU assignment of blocked tasks isn't required to be valid.
566  *
567  *  - for try_to_wake_up(), called under p->pi_lock:
568  *
569  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
570  *
571  *  - for migration called under rq->lock:
572  *    [ see task_on_rq_migrating() in task_rq_lock() ]
573  *
574  *    o move_queued_task()
575  *    o detach_task()
576  *
577  *  - for migration called under double_rq_lock():
578  *
579  *    o __migrate_swap_task()
580  *    o push_rt_task() / pull_rt_task()
581  *    o push_dl_task() / pull_dl_task()
582  *    o dl_task_offline_migration()
583  *
584  */
585 
586 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
587 {
588 	raw_spinlock_t *lock;
589 
590 	/* Matches synchronize_rcu() in __sched_core_enable() */
591 	preempt_disable();
592 	if (sched_core_disabled()) {
593 		raw_spin_lock_nested(&rq->__lock, subclass);
594 		/* preempt_count *MUST* be > 1 */
595 		preempt_enable_no_resched();
596 		return;
597 	}
598 
599 	for (;;) {
600 		lock = __rq_lockp(rq);
601 		raw_spin_lock_nested(lock, subclass);
602 		if (likely(lock == __rq_lockp(rq))) {
603 			/* preempt_count *MUST* be > 1 */
604 			preempt_enable_no_resched();
605 			return;
606 		}
607 		raw_spin_unlock(lock);
608 	}
609 }
610 
611 bool raw_spin_rq_trylock(struct rq *rq)
612 {
613 	raw_spinlock_t *lock;
614 	bool ret;
615 
616 	/* Matches synchronize_rcu() in __sched_core_enable() */
617 	preempt_disable();
618 	if (sched_core_disabled()) {
619 		ret = raw_spin_trylock(&rq->__lock);
620 		preempt_enable();
621 		return ret;
622 	}
623 
624 	for (;;) {
625 		lock = __rq_lockp(rq);
626 		ret = raw_spin_trylock(lock);
627 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
628 			preempt_enable();
629 			return ret;
630 		}
631 		raw_spin_unlock(lock);
632 	}
633 }
634 
635 void raw_spin_rq_unlock(struct rq *rq)
636 {
637 	raw_spin_unlock(rq_lockp(rq));
638 }
639 
640 #ifdef CONFIG_SMP
641 /*
642  * double_rq_lock - safely lock two runqueues
643  */
644 void double_rq_lock(struct rq *rq1, struct rq *rq2)
645 {
646 	lockdep_assert_irqs_disabled();
647 
648 	if (rq_order_less(rq2, rq1))
649 		swap(rq1, rq2);
650 
651 	raw_spin_rq_lock(rq1);
652 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
653 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
654 
655 	double_rq_clock_clear_update(rq1, rq2);
656 }
657 #endif
658 
659 /*
660  * __task_rq_lock - lock the rq @p resides on.
661  */
662 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
663 	__acquires(rq->lock)
664 {
665 	struct rq *rq;
666 
667 	lockdep_assert_held(&p->pi_lock);
668 
669 	for (;;) {
670 		rq = task_rq(p);
671 		raw_spin_rq_lock(rq);
672 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
673 			rq_pin_lock(rq, rf);
674 			return rq;
675 		}
676 		raw_spin_rq_unlock(rq);
677 
678 		while (unlikely(task_on_rq_migrating(p)))
679 			cpu_relax();
680 	}
681 }
682 
683 /*
684  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
685  */
686 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
687 	__acquires(p->pi_lock)
688 	__acquires(rq->lock)
689 {
690 	struct rq *rq;
691 
692 	for (;;) {
693 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
694 		rq = task_rq(p);
695 		raw_spin_rq_lock(rq);
696 		/*
697 		 *	move_queued_task()		task_rq_lock()
698 		 *
699 		 *	ACQUIRE (rq->lock)
700 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
701 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
702 		 *	[S] ->cpu = new_cpu		[L] task_rq()
703 		 *					[L] ->on_rq
704 		 *	RELEASE (rq->lock)
705 		 *
706 		 * If we observe the old CPU in task_rq_lock(), the acquire of
707 		 * the old rq->lock will fully serialize against the stores.
708 		 *
709 		 * If we observe the new CPU in task_rq_lock(), the address
710 		 * dependency headed by '[L] rq = task_rq()' and the acquire
711 		 * will pair with the WMB to ensure we then also see migrating.
712 		 */
713 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
714 			rq_pin_lock(rq, rf);
715 			return rq;
716 		}
717 		raw_spin_rq_unlock(rq);
718 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
719 
720 		while (unlikely(task_on_rq_migrating(p)))
721 			cpu_relax();
722 	}
723 }
724 
725 /*
726  * RQ-clock updating methods:
727  */
728 
729 static void update_rq_clock_task(struct rq *rq, s64 delta)
730 {
731 /*
732  * In theory, the compile should just see 0 here, and optimize out the call
733  * to sched_rt_avg_update. But I don't trust it...
734  */
735 	s64 __maybe_unused steal = 0, irq_delta = 0;
736 
737 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
738 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
739 
740 	/*
741 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
742 	 * this case when a previous update_rq_clock() happened inside a
743 	 * {soft,}IRQ region.
744 	 *
745 	 * When this happens, we stop ->clock_task and only update the
746 	 * prev_irq_time stamp to account for the part that fit, so that a next
747 	 * update will consume the rest. This ensures ->clock_task is
748 	 * monotonic.
749 	 *
750 	 * It does however cause some slight miss-attribution of {soft,}IRQ
751 	 * time, a more accurate solution would be to update the irq_time using
752 	 * the current rq->clock timestamp, except that would require using
753 	 * atomic ops.
754 	 */
755 	if (irq_delta > delta)
756 		irq_delta = delta;
757 
758 	rq->prev_irq_time += irq_delta;
759 	delta -= irq_delta;
760 	delayacct_irq(rq->curr, irq_delta);
761 #endif
762 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
763 	if (static_key_false((&paravirt_steal_rq_enabled))) {
764 		steal = paravirt_steal_clock(cpu_of(rq));
765 		steal -= rq->prev_steal_time_rq;
766 
767 		if (unlikely(steal > delta))
768 			steal = delta;
769 
770 		rq->prev_steal_time_rq += steal;
771 		delta -= steal;
772 	}
773 #endif
774 
775 	rq->clock_task += delta;
776 
777 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
778 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
779 		update_irq_load_avg(rq, irq_delta + steal);
780 #endif
781 	update_rq_clock_pelt(rq, delta);
782 }
783 
784 void update_rq_clock(struct rq *rq)
785 {
786 	s64 delta;
787 
788 	lockdep_assert_rq_held(rq);
789 
790 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
791 		return;
792 
793 #ifdef CONFIG_SCHED_DEBUG
794 	if (sched_feat(WARN_DOUBLE_CLOCK))
795 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
796 	rq->clock_update_flags |= RQCF_UPDATED;
797 #endif
798 
799 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
800 	if (delta < 0)
801 		return;
802 	rq->clock += delta;
803 	update_rq_clock_task(rq, delta);
804 }
805 
806 #ifdef CONFIG_SCHED_HRTICK
807 /*
808  * Use HR-timers to deliver accurate preemption points.
809  */
810 
811 static void hrtick_clear(struct rq *rq)
812 {
813 	if (hrtimer_active(&rq->hrtick_timer))
814 		hrtimer_cancel(&rq->hrtick_timer);
815 }
816 
817 /*
818  * High-resolution timer tick.
819  * Runs from hardirq context with interrupts disabled.
820  */
821 static enum hrtimer_restart hrtick(struct hrtimer *timer)
822 {
823 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
824 	struct rq_flags rf;
825 
826 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
827 
828 	rq_lock(rq, &rf);
829 	update_rq_clock(rq);
830 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
831 	rq_unlock(rq, &rf);
832 
833 	return HRTIMER_NORESTART;
834 }
835 
836 #ifdef CONFIG_SMP
837 
838 static void __hrtick_restart(struct rq *rq)
839 {
840 	struct hrtimer *timer = &rq->hrtick_timer;
841 	ktime_t time = rq->hrtick_time;
842 
843 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
844 }
845 
846 /*
847  * called from hardirq (IPI) context
848  */
849 static void __hrtick_start(void *arg)
850 {
851 	struct rq *rq = arg;
852 	struct rq_flags rf;
853 
854 	rq_lock(rq, &rf);
855 	__hrtick_restart(rq);
856 	rq_unlock(rq, &rf);
857 }
858 
859 /*
860  * Called to set the hrtick timer state.
861  *
862  * called with rq->lock held and IRQs disabled
863  */
864 void hrtick_start(struct rq *rq, u64 delay)
865 {
866 	struct hrtimer *timer = &rq->hrtick_timer;
867 	s64 delta;
868 
869 	/*
870 	 * Don't schedule slices shorter than 10000ns, that just
871 	 * doesn't make sense and can cause timer DoS.
872 	 */
873 	delta = max_t(s64, delay, 10000LL);
874 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
875 
876 	if (rq == this_rq())
877 		__hrtick_restart(rq);
878 	else
879 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
880 }
881 
882 #else
883 /*
884  * Called to set the hrtick timer state.
885  *
886  * called with rq->lock held and IRQs disabled
887  */
888 void hrtick_start(struct rq *rq, u64 delay)
889 {
890 	/*
891 	 * Don't schedule slices shorter than 10000ns, that just
892 	 * doesn't make sense. Rely on vruntime for fairness.
893 	 */
894 	delay = max_t(u64, delay, 10000LL);
895 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
896 		      HRTIMER_MODE_REL_PINNED_HARD);
897 }
898 
899 #endif /* CONFIG_SMP */
900 
901 static void hrtick_rq_init(struct rq *rq)
902 {
903 #ifdef CONFIG_SMP
904 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
905 #endif
906 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
907 	rq->hrtick_timer.function = hrtick;
908 }
909 #else	/* CONFIG_SCHED_HRTICK */
910 static inline void hrtick_clear(struct rq *rq)
911 {
912 }
913 
914 static inline void hrtick_rq_init(struct rq *rq)
915 {
916 }
917 #endif	/* CONFIG_SCHED_HRTICK */
918 
919 /*
920  * try_cmpxchg based fetch_or() macro so it works for different integer types:
921  */
922 #define fetch_or(ptr, mask)						\
923 	({								\
924 		typeof(ptr) _ptr = (ptr);				\
925 		typeof(mask) _mask = (mask);				\
926 		typeof(*_ptr) _val = *_ptr;				\
927 									\
928 		do {							\
929 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
930 	_val;								\
931 })
932 
933 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
934 /*
935  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
936  * this avoids any races wrt polling state changes and thereby avoids
937  * spurious IPIs.
938  */
939 static inline bool set_nr_and_not_polling(struct task_struct *p)
940 {
941 	struct thread_info *ti = task_thread_info(p);
942 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
943 }
944 
945 /*
946  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
947  *
948  * If this returns true, then the idle task promises to call
949  * sched_ttwu_pending() and reschedule soon.
950  */
951 static bool set_nr_if_polling(struct task_struct *p)
952 {
953 	struct thread_info *ti = task_thread_info(p);
954 	typeof(ti->flags) val = READ_ONCE(ti->flags);
955 
956 	do {
957 		if (!(val & _TIF_POLLING_NRFLAG))
958 			return false;
959 		if (val & _TIF_NEED_RESCHED)
960 			return true;
961 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
962 
963 	return true;
964 }
965 
966 #else
967 static inline bool set_nr_and_not_polling(struct task_struct *p)
968 {
969 	set_tsk_need_resched(p);
970 	return true;
971 }
972 
973 #ifdef CONFIG_SMP
974 static inline bool set_nr_if_polling(struct task_struct *p)
975 {
976 	return false;
977 }
978 #endif
979 #endif
980 
981 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
982 {
983 	struct wake_q_node *node = &task->wake_q;
984 
985 	/*
986 	 * Atomically grab the task, if ->wake_q is !nil already it means
987 	 * it's already queued (either by us or someone else) and will get the
988 	 * wakeup due to that.
989 	 *
990 	 * In order to ensure that a pending wakeup will observe our pending
991 	 * state, even in the failed case, an explicit smp_mb() must be used.
992 	 */
993 	smp_mb__before_atomic();
994 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
995 		return false;
996 
997 	/*
998 	 * The head is context local, there can be no concurrency.
999 	 */
1000 	*head->lastp = node;
1001 	head->lastp = &node->next;
1002 	return true;
1003 }
1004 
1005 /**
1006  * wake_q_add() - queue a wakeup for 'later' waking.
1007  * @head: the wake_q_head to add @task to
1008  * @task: the task to queue for 'later' wakeup
1009  *
1010  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1011  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1012  * instantly.
1013  *
1014  * This function must be used as-if it were wake_up_process(); IOW the task
1015  * must be ready to be woken at this location.
1016  */
1017 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1018 {
1019 	if (__wake_q_add(head, task))
1020 		get_task_struct(task);
1021 }
1022 
1023 /**
1024  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1025  * @head: the wake_q_head to add @task to
1026  * @task: the task to queue for 'later' wakeup
1027  *
1028  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1029  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1030  * instantly.
1031  *
1032  * This function must be used as-if it were wake_up_process(); IOW the task
1033  * must be ready to be woken at this location.
1034  *
1035  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1036  * that already hold reference to @task can call the 'safe' version and trust
1037  * wake_q to do the right thing depending whether or not the @task is already
1038  * queued for wakeup.
1039  */
1040 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1041 {
1042 	if (!__wake_q_add(head, task))
1043 		put_task_struct(task);
1044 }
1045 
1046 void wake_up_q(struct wake_q_head *head)
1047 {
1048 	struct wake_q_node *node = head->first;
1049 
1050 	while (node != WAKE_Q_TAIL) {
1051 		struct task_struct *task;
1052 
1053 		task = container_of(node, struct task_struct, wake_q);
1054 		/* Task can safely be re-inserted now: */
1055 		node = node->next;
1056 		task->wake_q.next = NULL;
1057 
1058 		/*
1059 		 * wake_up_process() executes a full barrier, which pairs with
1060 		 * the queueing in wake_q_add() so as not to miss wakeups.
1061 		 */
1062 		wake_up_process(task);
1063 		put_task_struct(task);
1064 	}
1065 }
1066 
1067 /*
1068  * resched_curr - mark rq's current task 'to be rescheduled now'.
1069  *
1070  * On UP this means the setting of the need_resched flag, on SMP it
1071  * might also involve a cross-CPU call to trigger the scheduler on
1072  * the target CPU.
1073  */
1074 void resched_curr(struct rq *rq)
1075 {
1076 	struct task_struct *curr = rq->curr;
1077 	int cpu;
1078 
1079 	lockdep_assert_rq_held(rq);
1080 
1081 	if (test_tsk_need_resched(curr))
1082 		return;
1083 
1084 	cpu = cpu_of(rq);
1085 
1086 	if (cpu == smp_processor_id()) {
1087 		set_tsk_need_resched(curr);
1088 		set_preempt_need_resched();
1089 		return;
1090 	}
1091 
1092 	if (set_nr_and_not_polling(curr))
1093 		smp_send_reschedule(cpu);
1094 	else
1095 		trace_sched_wake_idle_without_ipi(cpu);
1096 }
1097 
1098 void resched_cpu(int cpu)
1099 {
1100 	struct rq *rq = cpu_rq(cpu);
1101 	unsigned long flags;
1102 
1103 	raw_spin_rq_lock_irqsave(rq, flags);
1104 	if (cpu_online(cpu) || cpu == smp_processor_id())
1105 		resched_curr(rq);
1106 	raw_spin_rq_unlock_irqrestore(rq, flags);
1107 }
1108 
1109 #ifdef CONFIG_SMP
1110 #ifdef CONFIG_NO_HZ_COMMON
1111 /*
1112  * In the semi idle case, use the nearest busy CPU for migrating timers
1113  * from an idle CPU.  This is good for power-savings.
1114  *
1115  * We don't do similar optimization for completely idle system, as
1116  * selecting an idle CPU will add more delays to the timers than intended
1117  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1118  */
1119 int get_nohz_timer_target(void)
1120 {
1121 	int i, cpu = smp_processor_id(), default_cpu = -1;
1122 	struct sched_domain *sd;
1123 	const struct cpumask *hk_mask;
1124 
1125 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1126 		if (!idle_cpu(cpu))
1127 			return cpu;
1128 		default_cpu = cpu;
1129 	}
1130 
1131 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1132 
1133 	guard(rcu)();
1134 
1135 	for_each_domain(cpu, sd) {
1136 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1137 			if (cpu == i)
1138 				continue;
1139 
1140 			if (!idle_cpu(i))
1141 				return i;
1142 		}
1143 	}
1144 
1145 	if (default_cpu == -1)
1146 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1147 
1148 	return default_cpu;
1149 }
1150 
1151 /*
1152  * When add_timer_on() enqueues a timer into the timer wheel of an
1153  * idle CPU then this timer might expire before the next timer event
1154  * which is scheduled to wake up that CPU. In case of a completely
1155  * idle system the next event might even be infinite time into the
1156  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1157  * leaves the inner idle loop so the newly added timer is taken into
1158  * account when the CPU goes back to idle and evaluates the timer
1159  * wheel for the next timer event.
1160  */
1161 static void wake_up_idle_cpu(int cpu)
1162 {
1163 	struct rq *rq = cpu_rq(cpu);
1164 
1165 	if (cpu == smp_processor_id())
1166 		return;
1167 
1168 	/*
1169 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1170 	 * part of the idle loop. This forces an exit from the idle loop
1171 	 * and a round trip to schedule(). Now this could be optimized
1172 	 * because a simple new idle loop iteration is enough to
1173 	 * re-evaluate the next tick. Provided some re-ordering of tick
1174 	 * nohz functions that would need to follow TIF_NR_POLLING
1175 	 * clearing:
1176 	 *
1177 	 * - On most architectures, a simple fetch_or on ti::flags with a
1178 	 *   "0" value would be enough to know if an IPI needs to be sent.
1179 	 *
1180 	 * - x86 needs to perform a last need_resched() check between
1181 	 *   monitor and mwait which doesn't take timers into account.
1182 	 *   There a dedicated TIF_TIMER flag would be required to
1183 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1184 	 *   before mwait().
1185 	 *
1186 	 * However, remote timer enqueue is not such a frequent event
1187 	 * and testing of the above solutions didn't appear to report
1188 	 * much benefits.
1189 	 */
1190 	if (set_nr_and_not_polling(rq->idle))
1191 		smp_send_reschedule(cpu);
1192 	else
1193 		trace_sched_wake_idle_without_ipi(cpu);
1194 }
1195 
1196 static bool wake_up_full_nohz_cpu(int cpu)
1197 {
1198 	/*
1199 	 * We just need the target to call irq_exit() and re-evaluate
1200 	 * the next tick. The nohz full kick at least implies that.
1201 	 * If needed we can still optimize that later with an
1202 	 * empty IRQ.
1203 	 */
1204 	if (cpu_is_offline(cpu))
1205 		return true;  /* Don't try to wake offline CPUs. */
1206 	if (tick_nohz_full_cpu(cpu)) {
1207 		if (cpu != smp_processor_id() ||
1208 		    tick_nohz_tick_stopped())
1209 			tick_nohz_full_kick_cpu(cpu);
1210 		return true;
1211 	}
1212 
1213 	return false;
1214 }
1215 
1216 /*
1217  * Wake up the specified CPU.  If the CPU is going offline, it is the
1218  * caller's responsibility to deal with the lost wakeup, for example,
1219  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1220  */
1221 void wake_up_nohz_cpu(int cpu)
1222 {
1223 	if (!wake_up_full_nohz_cpu(cpu))
1224 		wake_up_idle_cpu(cpu);
1225 }
1226 
1227 static void nohz_csd_func(void *info)
1228 {
1229 	struct rq *rq = info;
1230 	int cpu = cpu_of(rq);
1231 	unsigned int flags;
1232 
1233 	/*
1234 	 * Release the rq::nohz_csd.
1235 	 */
1236 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1237 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1238 
1239 	rq->idle_balance = idle_cpu(cpu);
1240 	if (rq->idle_balance && !need_resched()) {
1241 		rq->nohz_idle_balance = flags;
1242 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1243 	}
1244 }
1245 
1246 #endif /* CONFIG_NO_HZ_COMMON */
1247 
1248 #ifdef CONFIG_NO_HZ_FULL
1249 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1250 {
1251 	if (rq->nr_running != 1)
1252 		return false;
1253 
1254 	if (p->sched_class != &fair_sched_class)
1255 		return false;
1256 
1257 	if (!task_on_rq_queued(p))
1258 		return false;
1259 
1260 	return true;
1261 }
1262 
1263 bool sched_can_stop_tick(struct rq *rq)
1264 {
1265 	int fifo_nr_running;
1266 
1267 	/* Deadline tasks, even if single, need the tick */
1268 	if (rq->dl.dl_nr_running)
1269 		return false;
1270 
1271 	/*
1272 	 * If there are more than one RR tasks, we need the tick to affect the
1273 	 * actual RR behaviour.
1274 	 */
1275 	if (rq->rt.rr_nr_running) {
1276 		if (rq->rt.rr_nr_running == 1)
1277 			return true;
1278 		else
1279 			return false;
1280 	}
1281 
1282 	/*
1283 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1284 	 * forced preemption between FIFO tasks.
1285 	 */
1286 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1287 	if (fifo_nr_running)
1288 		return true;
1289 
1290 	/*
1291 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1292 	 * left. For CFS, if there's more than one we need the tick for
1293 	 * involuntary preemption. For SCX, ask.
1294 	 */
1295 	if (scx_enabled() && !scx_can_stop_tick(rq))
1296 		return false;
1297 
1298 	if (rq->cfs.nr_running > 1)
1299 		return false;
1300 
1301 	/*
1302 	 * If there is one task and it has CFS runtime bandwidth constraints
1303 	 * and it's on the cpu now we don't want to stop the tick.
1304 	 * This check prevents clearing the bit if a newly enqueued task here is
1305 	 * dequeued by migrating while the constrained task continues to run.
1306 	 * E.g. going from 2->1 without going through pick_next_task().
1307 	 */
1308 	if (__need_bw_check(rq, rq->curr)) {
1309 		if (cfs_task_bw_constrained(rq->curr))
1310 			return false;
1311 	}
1312 
1313 	return true;
1314 }
1315 #endif /* CONFIG_NO_HZ_FULL */
1316 #endif /* CONFIG_SMP */
1317 
1318 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1319 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1320 /*
1321  * Iterate task_group tree rooted at *from, calling @down when first entering a
1322  * node and @up when leaving it for the final time.
1323  *
1324  * Caller must hold rcu_lock or sufficient equivalent.
1325  */
1326 int walk_tg_tree_from(struct task_group *from,
1327 			     tg_visitor down, tg_visitor up, void *data)
1328 {
1329 	struct task_group *parent, *child;
1330 	int ret;
1331 
1332 	parent = from;
1333 
1334 down:
1335 	ret = (*down)(parent, data);
1336 	if (ret)
1337 		goto out;
1338 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1339 		parent = child;
1340 		goto down;
1341 
1342 up:
1343 		continue;
1344 	}
1345 	ret = (*up)(parent, data);
1346 	if (ret || parent == from)
1347 		goto out;
1348 
1349 	child = parent;
1350 	parent = parent->parent;
1351 	if (parent)
1352 		goto up;
1353 out:
1354 	return ret;
1355 }
1356 
1357 int tg_nop(struct task_group *tg, void *data)
1358 {
1359 	return 0;
1360 }
1361 #endif
1362 
1363 void set_load_weight(struct task_struct *p, bool update_load)
1364 {
1365 	int prio = p->static_prio - MAX_RT_PRIO;
1366 	struct load_weight lw;
1367 
1368 	if (task_has_idle_policy(p)) {
1369 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1370 		lw.inv_weight = WMULT_IDLEPRIO;
1371 	} else {
1372 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1373 		lw.inv_weight = sched_prio_to_wmult[prio];
1374 	}
1375 
1376 	/*
1377 	 * SCHED_OTHER tasks have to update their load when changing their
1378 	 * weight
1379 	 */
1380 	if (update_load && p->sched_class->reweight_task)
1381 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1382 	else
1383 		p->se.load = lw;
1384 }
1385 
1386 #ifdef CONFIG_UCLAMP_TASK
1387 /*
1388  * Serializes updates of utilization clamp values
1389  *
1390  * The (slow-path) user-space triggers utilization clamp value updates which
1391  * can require updates on (fast-path) scheduler's data structures used to
1392  * support enqueue/dequeue operations.
1393  * While the per-CPU rq lock protects fast-path update operations, user-space
1394  * requests are serialized using a mutex to reduce the risk of conflicting
1395  * updates or API abuses.
1396  */
1397 static DEFINE_MUTEX(uclamp_mutex);
1398 
1399 /* Max allowed minimum utilization */
1400 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1401 
1402 /* Max allowed maximum utilization */
1403 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1404 
1405 /*
1406  * By default RT tasks run at the maximum performance point/capacity of the
1407  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1408  * SCHED_CAPACITY_SCALE.
1409  *
1410  * This knob allows admins to change the default behavior when uclamp is being
1411  * used. In battery powered devices, particularly, running at the maximum
1412  * capacity and frequency will increase energy consumption and shorten the
1413  * battery life.
1414  *
1415  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1416  *
1417  * This knob will not override the system default sched_util_clamp_min defined
1418  * above.
1419  */
1420 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1421 
1422 /* All clamps are required to be less or equal than these values */
1423 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1424 
1425 /*
1426  * This static key is used to reduce the uclamp overhead in the fast path. It
1427  * primarily disables the call to uclamp_rq_{inc, dec}() in
1428  * enqueue/dequeue_task().
1429  *
1430  * This allows users to continue to enable uclamp in their kernel config with
1431  * minimum uclamp overhead in the fast path.
1432  *
1433  * As soon as userspace modifies any of the uclamp knobs, the static key is
1434  * enabled, since we have an actual users that make use of uclamp
1435  * functionality.
1436  *
1437  * The knobs that would enable this static key are:
1438  *
1439  *   * A task modifying its uclamp value with sched_setattr().
1440  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1441  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1442  */
1443 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1444 
1445 static inline unsigned int
1446 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1447 		  unsigned int clamp_value)
1448 {
1449 	/*
1450 	 * Avoid blocked utilization pushing up the frequency when we go
1451 	 * idle (which drops the max-clamp) by retaining the last known
1452 	 * max-clamp.
1453 	 */
1454 	if (clamp_id == UCLAMP_MAX) {
1455 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1456 		return clamp_value;
1457 	}
1458 
1459 	return uclamp_none(UCLAMP_MIN);
1460 }
1461 
1462 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1463 				     unsigned int clamp_value)
1464 {
1465 	/* Reset max-clamp retention only on idle exit */
1466 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1467 		return;
1468 
1469 	uclamp_rq_set(rq, clamp_id, clamp_value);
1470 }
1471 
1472 static inline
1473 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1474 				   unsigned int clamp_value)
1475 {
1476 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1477 	int bucket_id = UCLAMP_BUCKETS - 1;
1478 
1479 	/*
1480 	 * Since both min and max clamps are max aggregated, find the
1481 	 * top most bucket with tasks in.
1482 	 */
1483 	for ( ; bucket_id >= 0; bucket_id--) {
1484 		if (!bucket[bucket_id].tasks)
1485 			continue;
1486 		return bucket[bucket_id].value;
1487 	}
1488 
1489 	/* No tasks -- default clamp values */
1490 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1491 }
1492 
1493 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1494 {
1495 	unsigned int default_util_min;
1496 	struct uclamp_se *uc_se;
1497 
1498 	lockdep_assert_held(&p->pi_lock);
1499 
1500 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1501 
1502 	/* Only sync if user didn't override the default */
1503 	if (uc_se->user_defined)
1504 		return;
1505 
1506 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1507 	uclamp_se_set(uc_se, default_util_min, false);
1508 }
1509 
1510 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1511 {
1512 	if (!rt_task(p))
1513 		return;
1514 
1515 	/* Protect updates to p->uclamp_* */
1516 	guard(task_rq_lock)(p);
1517 	__uclamp_update_util_min_rt_default(p);
1518 }
1519 
1520 static inline struct uclamp_se
1521 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1522 {
1523 	/* Copy by value as we could modify it */
1524 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1525 #ifdef CONFIG_UCLAMP_TASK_GROUP
1526 	unsigned int tg_min, tg_max, value;
1527 
1528 	/*
1529 	 * Tasks in autogroups or root task group will be
1530 	 * restricted by system defaults.
1531 	 */
1532 	if (task_group_is_autogroup(task_group(p)))
1533 		return uc_req;
1534 	if (task_group(p) == &root_task_group)
1535 		return uc_req;
1536 
1537 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1538 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1539 	value = uc_req.value;
1540 	value = clamp(value, tg_min, tg_max);
1541 	uclamp_se_set(&uc_req, value, false);
1542 #endif
1543 
1544 	return uc_req;
1545 }
1546 
1547 /*
1548  * The effective clamp bucket index of a task depends on, by increasing
1549  * priority:
1550  * - the task specific clamp value, when explicitly requested from userspace
1551  * - the task group effective clamp value, for tasks not either in the root
1552  *   group or in an autogroup
1553  * - the system default clamp value, defined by the sysadmin
1554  */
1555 static inline struct uclamp_se
1556 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1557 {
1558 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1559 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1560 
1561 	/* System default restrictions always apply */
1562 	if (unlikely(uc_req.value > uc_max.value))
1563 		return uc_max;
1564 
1565 	return uc_req;
1566 }
1567 
1568 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1569 {
1570 	struct uclamp_se uc_eff;
1571 
1572 	/* Task currently refcounted: use back-annotated (effective) value */
1573 	if (p->uclamp[clamp_id].active)
1574 		return (unsigned long)p->uclamp[clamp_id].value;
1575 
1576 	uc_eff = uclamp_eff_get(p, clamp_id);
1577 
1578 	return (unsigned long)uc_eff.value;
1579 }
1580 
1581 /*
1582  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1583  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1584  * updates the rq's clamp value if required.
1585  *
1586  * Tasks can have a task-specific value requested from user-space, track
1587  * within each bucket the maximum value for tasks refcounted in it.
1588  * This "local max aggregation" allows to track the exact "requested" value
1589  * for each bucket when all its RUNNABLE tasks require the same clamp.
1590  */
1591 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1592 				    enum uclamp_id clamp_id)
1593 {
1594 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1595 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1596 	struct uclamp_bucket *bucket;
1597 
1598 	lockdep_assert_rq_held(rq);
1599 
1600 	/* Update task effective clamp */
1601 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1602 
1603 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1604 	bucket->tasks++;
1605 	uc_se->active = true;
1606 
1607 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1608 
1609 	/*
1610 	 * Local max aggregation: rq buckets always track the max
1611 	 * "requested" clamp value of its RUNNABLE tasks.
1612 	 */
1613 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1614 		bucket->value = uc_se->value;
1615 
1616 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1617 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1618 }
1619 
1620 /*
1621  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1622  * is released. If this is the last task reference counting the rq's max
1623  * active clamp value, then the rq's clamp value is updated.
1624  *
1625  * Both refcounted tasks and rq's cached clamp values are expected to be
1626  * always valid. If it's detected they are not, as defensive programming,
1627  * enforce the expected state and warn.
1628  */
1629 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1630 				    enum uclamp_id clamp_id)
1631 {
1632 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1633 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1634 	struct uclamp_bucket *bucket;
1635 	unsigned int bkt_clamp;
1636 	unsigned int rq_clamp;
1637 
1638 	lockdep_assert_rq_held(rq);
1639 
1640 	/*
1641 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1642 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1643 	 *
1644 	 * In this case the uc_se->active flag should be false since no uclamp
1645 	 * accounting was performed at enqueue time and we can just return
1646 	 * here.
1647 	 *
1648 	 * Need to be careful of the following enqueue/dequeue ordering
1649 	 * problem too
1650 	 *
1651 	 *	enqueue(taskA)
1652 	 *	// sched_uclamp_used gets enabled
1653 	 *	enqueue(taskB)
1654 	 *	dequeue(taskA)
1655 	 *	// Must not decrement bucket->tasks here
1656 	 *	dequeue(taskB)
1657 	 *
1658 	 * where we could end up with stale data in uc_se and
1659 	 * bucket[uc_se->bucket_id].
1660 	 *
1661 	 * The following check here eliminates the possibility of such race.
1662 	 */
1663 	if (unlikely(!uc_se->active))
1664 		return;
1665 
1666 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1667 
1668 	SCHED_WARN_ON(!bucket->tasks);
1669 	if (likely(bucket->tasks))
1670 		bucket->tasks--;
1671 
1672 	uc_se->active = false;
1673 
1674 	/*
1675 	 * Keep "local max aggregation" simple and accept to (possibly)
1676 	 * overboost some RUNNABLE tasks in the same bucket.
1677 	 * The rq clamp bucket value is reset to its base value whenever
1678 	 * there are no more RUNNABLE tasks refcounting it.
1679 	 */
1680 	if (likely(bucket->tasks))
1681 		return;
1682 
1683 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1684 	/*
1685 	 * Defensive programming: this should never happen. If it happens,
1686 	 * e.g. due to future modification, warn and fix up the expected value.
1687 	 */
1688 	SCHED_WARN_ON(bucket->value > rq_clamp);
1689 	if (bucket->value >= rq_clamp) {
1690 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1691 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1692 	}
1693 }
1694 
1695 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1696 {
1697 	enum uclamp_id clamp_id;
1698 
1699 	/*
1700 	 * Avoid any overhead until uclamp is actually used by the userspace.
1701 	 *
1702 	 * The condition is constructed such that a NOP is generated when
1703 	 * sched_uclamp_used is disabled.
1704 	 */
1705 	if (!static_branch_unlikely(&sched_uclamp_used))
1706 		return;
1707 
1708 	if (unlikely(!p->sched_class->uclamp_enabled))
1709 		return;
1710 
1711 	if (p->se.sched_delayed)
1712 		return;
1713 
1714 	for_each_clamp_id(clamp_id)
1715 		uclamp_rq_inc_id(rq, p, clamp_id);
1716 
1717 	/* Reset clamp idle holding when there is one RUNNABLE task */
1718 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1719 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1720 }
1721 
1722 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1723 {
1724 	enum uclamp_id clamp_id;
1725 
1726 	/*
1727 	 * Avoid any overhead until uclamp is actually used by the userspace.
1728 	 *
1729 	 * The condition is constructed such that a NOP is generated when
1730 	 * sched_uclamp_used is disabled.
1731 	 */
1732 	if (!static_branch_unlikely(&sched_uclamp_used))
1733 		return;
1734 
1735 	if (unlikely(!p->sched_class->uclamp_enabled))
1736 		return;
1737 
1738 	if (p->se.sched_delayed)
1739 		return;
1740 
1741 	for_each_clamp_id(clamp_id)
1742 		uclamp_rq_dec_id(rq, p, clamp_id);
1743 }
1744 
1745 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1746 				      enum uclamp_id clamp_id)
1747 {
1748 	if (!p->uclamp[clamp_id].active)
1749 		return;
1750 
1751 	uclamp_rq_dec_id(rq, p, clamp_id);
1752 	uclamp_rq_inc_id(rq, p, clamp_id);
1753 
1754 	/*
1755 	 * Make sure to clear the idle flag if we've transiently reached 0
1756 	 * active tasks on rq.
1757 	 */
1758 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1759 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1760 }
1761 
1762 static inline void
1763 uclamp_update_active(struct task_struct *p)
1764 {
1765 	enum uclamp_id clamp_id;
1766 	struct rq_flags rf;
1767 	struct rq *rq;
1768 
1769 	/*
1770 	 * Lock the task and the rq where the task is (or was) queued.
1771 	 *
1772 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1773 	 * price to pay to safely serialize util_{min,max} updates with
1774 	 * enqueues, dequeues and migration operations.
1775 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1776 	 */
1777 	rq = task_rq_lock(p, &rf);
1778 
1779 	/*
1780 	 * Setting the clamp bucket is serialized by task_rq_lock().
1781 	 * If the task is not yet RUNNABLE and its task_struct is not
1782 	 * affecting a valid clamp bucket, the next time it's enqueued,
1783 	 * it will already see the updated clamp bucket value.
1784 	 */
1785 	for_each_clamp_id(clamp_id)
1786 		uclamp_rq_reinc_id(rq, p, clamp_id);
1787 
1788 	task_rq_unlock(rq, p, &rf);
1789 }
1790 
1791 #ifdef CONFIG_UCLAMP_TASK_GROUP
1792 static inline void
1793 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1794 {
1795 	struct css_task_iter it;
1796 	struct task_struct *p;
1797 
1798 	css_task_iter_start(css, 0, &it);
1799 	while ((p = css_task_iter_next(&it)))
1800 		uclamp_update_active(p);
1801 	css_task_iter_end(&it);
1802 }
1803 
1804 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1805 #endif
1806 
1807 #ifdef CONFIG_SYSCTL
1808 #ifdef CONFIG_UCLAMP_TASK_GROUP
1809 static void uclamp_update_root_tg(void)
1810 {
1811 	struct task_group *tg = &root_task_group;
1812 
1813 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1814 		      sysctl_sched_uclamp_util_min, false);
1815 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1816 		      sysctl_sched_uclamp_util_max, false);
1817 
1818 	guard(rcu)();
1819 	cpu_util_update_eff(&root_task_group.css);
1820 }
1821 #else
1822 static void uclamp_update_root_tg(void) { }
1823 #endif
1824 
1825 static void uclamp_sync_util_min_rt_default(void)
1826 {
1827 	struct task_struct *g, *p;
1828 
1829 	/*
1830 	 * copy_process()			sysctl_uclamp
1831 	 *					  uclamp_min_rt = X;
1832 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1833 	 *   // link thread			  smp_mb__after_spinlock()
1834 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1835 	 *   sched_post_fork()			  for_each_process_thread()
1836 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1837 	 *
1838 	 * Ensures that either sched_post_fork() will observe the new
1839 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1840 	 * task.
1841 	 */
1842 	read_lock(&tasklist_lock);
1843 	smp_mb__after_spinlock();
1844 	read_unlock(&tasklist_lock);
1845 
1846 	guard(rcu)();
1847 	for_each_process_thread(g, p)
1848 		uclamp_update_util_min_rt_default(p);
1849 }
1850 
1851 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1852 				void *buffer, size_t *lenp, loff_t *ppos)
1853 {
1854 	bool update_root_tg = false;
1855 	int old_min, old_max, old_min_rt;
1856 	int result;
1857 
1858 	guard(mutex)(&uclamp_mutex);
1859 
1860 	old_min = sysctl_sched_uclamp_util_min;
1861 	old_max = sysctl_sched_uclamp_util_max;
1862 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1863 
1864 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1865 	if (result)
1866 		goto undo;
1867 	if (!write)
1868 		return 0;
1869 
1870 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1871 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1872 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1873 
1874 		result = -EINVAL;
1875 		goto undo;
1876 	}
1877 
1878 	if (old_min != sysctl_sched_uclamp_util_min) {
1879 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1880 			      sysctl_sched_uclamp_util_min, false);
1881 		update_root_tg = true;
1882 	}
1883 	if (old_max != sysctl_sched_uclamp_util_max) {
1884 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1885 			      sysctl_sched_uclamp_util_max, false);
1886 		update_root_tg = true;
1887 	}
1888 
1889 	if (update_root_tg) {
1890 		static_branch_enable(&sched_uclamp_used);
1891 		uclamp_update_root_tg();
1892 	}
1893 
1894 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1895 		static_branch_enable(&sched_uclamp_used);
1896 		uclamp_sync_util_min_rt_default();
1897 	}
1898 
1899 	/*
1900 	 * We update all RUNNABLE tasks only when task groups are in use.
1901 	 * Otherwise, keep it simple and do just a lazy update at each next
1902 	 * task enqueue time.
1903 	 */
1904 	return 0;
1905 
1906 undo:
1907 	sysctl_sched_uclamp_util_min = old_min;
1908 	sysctl_sched_uclamp_util_max = old_max;
1909 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1910 	return result;
1911 }
1912 #endif
1913 
1914 static void uclamp_fork(struct task_struct *p)
1915 {
1916 	enum uclamp_id clamp_id;
1917 
1918 	/*
1919 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1920 	 * as the task is still at its early fork stages.
1921 	 */
1922 	for_each_clamp_id(clamp_id)
1923 		p->uclamp[clamp_id].active = false;
1924 
1925 	if (likely(!p->sched_reset_on_fork))
1926 		return;
1927 
1928 	for_each_clamp_id(clamp_id) {
1929 		uclamp_se_set(&p->uclamp_req[clamp_id],
1930 			      uclamp_none(clamp_id), false);
1931 	}
1932 }
1933 
1934 static void uclamp_post_fork(struct task_struct *p)
1935 {
1936 	uclamp_update_util_min_rt_default(p);
1937 }
1938 
1939 static void __init init_uclamp_rq(struct rq *rq)
1940 {
1941 	enum uclamp_id clamp_id;
1942 	struct uclamp_rq *uc_rq = rq->uclamp;
1943 
1944 	for_each_clamp_id(clamp_id) {
1945 		uc_rq[clamp_id] = (struct uclamp_rq) {
1946 			.value = uclamp_none(clamp_id)
1947 		};
1948 	}
1949 
1950 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1951 }
1952 
1953 static void __init init_uclamp(void)
1954 {
1955 	struct uclamp_se uc_max = {};
1956 	enum uclamp_id clamp_id;
1957 	int cpu;
1958 
1959 	for_each_possible_cpu(cpu)
1960 		init_uclamp_rq(cpu_rq(cpu));
1961 
1962 	for_each_clamp_id(clamp_id) {
1963 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1964 			      uclamp_none(clamp_id), false);
1965 	}
1966 
1967 	/* System defaults allow max clamp values for both indexes */
1968 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1969 	for_each_clamp_id(clamp_id) {
1970 		uclamp_default[clamp_id] = uc_max;
1971 #ifdef CONFIG_UCLAMP_TASK_GROUP
1972 		root_task_group.uclamp_req[clamp_id] = uc_max;
1973 		root_task_group.uclamp[clamp_id] = uc_max;
1974 #endif
1975 	}
1976 }
1977 
1978 #else /* !CONFIG_UCLAMP_TASK */
1979 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1980 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1981 static inline void uclamp_fork(struct task_struct *p) { }
1982 static inline void uclamp_post_fork(struct task_struct *p) { }
1983 static inline void init_uclamp(void) { }
1984 #endif /* CONFIG_UCLAMP_TASK */
1985 
1986 bool sched_task_on_rq(struct task_struct *p)
1987 {
1988 	return task_on_rq_queued(p);
1989 }
1990 
1991 unsigned long get_wchan(struct task_struct *p)
1992 {
1993 	unsigned long ip = 0;
1994 	unsigned int state;
1995 
1996 	if (!p || p == current)
1997 		return 0;
1998 
1999 	/* Only get wchan if task is blocked and we can keep it that way. */
2000 	raw_spin_lock_irq(&p->pi_lock);
2001 	state = READ_ONCE(p->__state);
2002 	smp_rmb(); /* see try_to_wake_up() */
2003 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2004 		ip = __get_wchan(p);
2005 	raw_spin_unlock_irq(&p->pi_lock);
2006 
2007 	return ip;
2008 }
2009 
2010 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2011 {
2012 	if (!(flags & ENQUEUE_NOCLOCK))
2013 		update_rq_clock(rq);
2014 
2015 	if (!(flags & ENQUEUE_RESTORE)) {
2016 		sched_info_enqueue(rq, p);
2017 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2018 	}
2019 
2020 	p->sched_class->enqueue_task(rq, p, flags);
2021 	/*
2022 	 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
2023 	 * ->sched_delayed.
2024 	 */
2025 	uclamp_rq_inc(rq, p);
2026 
2027 	if (sched_core_enabled(rq))
2028 		sched_core_enqueue(rq, p);
2029 }
2030 
2031 /*
2032  * Must only return false when DEQUEUE_SLEEP.
2033  */
2034 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2035 {
2036 	if (sched_core_enabled(rq))
2037 		sched_core_dequeue(rq, p, flags);
2038 
2039 	if (!(flags & DEQUEUE_NOCLOCK))
2040 		update_rq_clock(rq);
2041 
2042 	if (!(flags & DEQUEUE_SAVE)) {
2043 		sched_info_dequeue(rq, p);
2044 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2045 	}
2046 
2047 	/*
2048 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2049 	 * and mark the task ->sched_delayed.
2050 	 */
2051 	uclamp_rq_dec(rq, p);
2052 	return p->sched_class->dequeue_task(rq, p, flags);
2053 }
2054 
2055 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2056 {
2057 	if (task_on_rq_migrating(p))
2058 		flags |= ENQUEUE_MIGRATED;
2059 	if (flags & ENQUEUE_MIGRATED)
2060 		sched_mm_cid_migrate_to(rq, p);
2061 
2062 	enqueue_task(rq, p, flags);
2063 
2064 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2065 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2066 }
2067 
2068 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2069 {
2070 	SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
2071 
2072 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2073 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2074 
2075 	/*
2076 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2077 	 * dequeue_task() and cleared *after* enqueue_task().
2078 	 */
2079 
2080 	dequeue_task(rq, p, flags);
2081 }
2082 
2083 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2084 {
2085 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2086 		__block_task(rq, p);
2087 }
2088 
2089 /**
2090  * task_curr - is this task currently executing on a CPU?
2091  * @p: the task in question.
2092  *
2093  * Return: 1 if the task is currently executing. 0 otherwise.
2094  */
2095 inline int task_curr(const struct task_struct *p)
2096 {
2097 	return cpu_curr(task_cpu(p)) == p;
2098 }
2099 
2100 /*
2101  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2102  * mess with locking.
2103  */
2104 void check_class_changing(struct rq *rq, struct task_struct *p,
2105 			  const struct sched_class *prev_class)
2106 {
2107 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2108 		p->sched_class->switching_to(rq, p);
2109 }
2110 
2111 /*
2112  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2113  * use the balance_callback list if you want balancing.
2114  *
2115  * this means any call to check_class_changed() must be followed by a call to
2116  * balance_callback().
2117  */
2118 void check_class_changed(struct rq *rq, struct task_struct *p,
2119 			 const struct sched_class *prev_class,
2120 			 int oldprio)
2121 {
2122 	if (prev_class != p->sched_class) {
2123 		if (prev_class->switched_from)
2124 			prev_class->switched_from(rq, p);
2125 
2126 		p->sched_class->switched_to(rq, p);
2127 	} else if (oldprio != p->prio || dl_task(p))
2128 		p->sched_class->prio_changed(rq, p, oldprio);
2129 }
2130 
2131 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2132 {
2133 	if (p->sched_class == rq->curr->sched_class)
2134 		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2135 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2136 		resched_curr(rq);
2137 
2138 	/*
2139 	 * A queue event has occurred, and we're going to schedule.  In
2140 	 * this case, we can save a useless back to back clock update.
2141 	 */
2142 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2143 		rq_clock_skip_update(rq);
2144 }
2145 
2146 static __always_inline
2147 int __task_state_match(struct task_struct *p, unsigned int state)
2148 {
2149 	if (READ_ONCE(p->__state) & state)
2150 		return 1;
2151 
2152 	if (READ_ONCE(p->saved_state) & state)
2153 		return -1;
2154 
2155 	return 0;
2156 }
2157 
2158 static __always_inline
2159 int task_state_match(struct task_struct *p, unsigned int state)
2160 {
2161 	/*
2162 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2163 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2164 	 */
2165 	guard(raw_spinlock_irq)(&p->pi_lock);
2166 	return __task_state_match(p, state);
2167 }
2168 
2169 /*
2170  * wait_task_inactive - wait for a thread to unschedule.
2171  *
2172  * Wait for the thread to block in any of the states set in @match_state.
2173  * If it changes, i.e. @p might have woken up, then return zero.  When we
2174  * succeed in waiting for @p to be off its CPU, we return a positive number
2175  * (its total switch count).  If a second call a short while later returns the
2176  * same number, the caller can be sure that @p has remained unscheduled the
2177  * whole time.
2178  *
2179  * The caller must ensure that the task *will* unschedule sometime soon,
2180  * else this function might spin for a *long* time. This function can't
2181  * be called with interrupts off, or it may introduce deadlock with
2182  * smp_call_function() if an IPI is sent by the same process we are
2183  * waiting to become inactive.
2184  */
2185 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2186 {
2187 	int running, queued, match;
2188 	struct rq_flags rf;
2189 	unsigned long ncsw;
2190 	struct rq *rq;
2191 
2192 	for (;;) {
2193 		/*
2194 		 * We do the initial early heuristics without holding
2195 		 * any task-queue locks at all. We'll only try to get
2196 		 * the runqueue lock when things look like they will
2197 		 * work out!
2198 		 */
2199 		rq = task_rq(p);
2200 
2201 		/*
2202 		 * If the task is actively running on another CPU
2203 		 * still, just relax and busy-wait without holding
2204 		 * any locks.
2205 		 *
2206 		 * NOTE! Since we don't hold any locks, it's not
2207 		 * even sure that "rq" stays as the right runqueue!
2208 		 * But we don't care, since "task_on_cpu()" will
2209 		 * return false if the runqueue has changed and p
2210 		 * is actually now running somewhere else!
2211 		 */
2212 		while (task_on_cpu(rq, p)) {
2213 			if (!task_state_match(p, match_state))
2214 				return 0;
2215 			cpu_relax();
2216 		}
2217 
2218 		/*
2219 		 * Ok, time to look more closely! We need the rq
2220 		 * lock now, to be *sure*. If we're wrong, we'll
2221 		 * just go back and repeat.
2222 		 */
2223 		rq = task_rq_lock(p, &rf);
2224 		trace_sched_wait_task(p);
2225 		running = task_on_cpu(rq, p);
2226 		queued = task_on_rq_queued(p);
2227 		ncsw = 0;
2228 		if ((match = __task_state_match(p, match_state))) {
2229 			/*
2230 			 * When matching on p->saved_state, consider this task
2231 			 * still queued so it will wait.
2232 			 */
2233 			if (match < 0)
2234 				queued = 1;
2235 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2236 		}
2237 		task_rq_unlock(rq, p, &rf);
2238 
2239 		/*
2240 		 * If it changed from the expected state, bail out now.
2241 		 */
2242 		if (unlikely(!ncsw))
2243 			break;
2244 
2245 		/*
2246 		 * Was it really running after all now that we
2247 		 * checked with the proper locks actually held?
2248 		 *
2249 		 * Oops. Go back and try again..
2250 		 */
2251 		if (unlikely(running)) {
2252 			cpu_relax();
2253 			continue;
2254 		}
2255 
2256 		/*
2257 		 * It's not enough that it's not actively running,
2258 		 * it must be off the runqueue _entirely_, and not
2259 		 * preempted!
2260 		 *
2261 		 * So if it was still runnable (but just not actively
2262 		 * running right now), it's preempted, and we should
2263 		 * yield - it could be a while.
2264 		 */
2265 		if (unlikely(queued)) {
2266 			ktime_t to = NSEC_PER_SEC / HZ;
2267 
2268 			set_current_state(TASK_UNINTERRUPTIBLE);
2269 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2270 			continue;
2271 		}
2272 
2273 		/*
2274 		 * Ahh, all good. It wasn't running, and it wasn't
2275 		 * runnable, which means that it will never become
2276 		 * running in the future either. We're all done!
2277 		 */
2278 		break;
2279 	}
2280 
2281 	return ncsw;
2282 }
2283 
2284 #ifdef CONFIG_SMP
2285 
2286 static void
2287 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2288 
2289 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2290 {
2291 	struct affinity_context ac = {
2292 		.new_mask  = cpumask_of(rq->cpu),
2293 		.flags     = SCA_MIGRATE_DISABLE,
2294 	};
2295 
2296 	if (likely(!p->migration_disabled))
2297 		return;
2298 
2299 	if (p->cpus_ptr != &p->cpus_mask)
2300 		return;
2301 
2302 	/*
2303 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2304 	 */
2305 	__do_set_cpus_allowed(p, &ac);
2306 }
2307 
2308 void migrate_disable(void)
2309 {
2310 	struct task_struct *p = current;
2311 
2312 	if (p->migration_disabled) {
2313 #ifdef CONFIG_DEBUG_PREEMPT
2314 		/*
2315 		 *Warn about overflow half-way through the range.
2316 		 */
2317 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2318 #endif
2319 		p->migration_disabled++;
2320 		return;
2321 	}
2322 
2323 	guard(preempt)();
2324 	this_rq()->nr_pinned++;
2325 	p->migration_disabled = 1;
2326 }
2327 EXPORT_SYMBOL_GPL(migrate_disable);
2328 
2329 void migrate_enable(void)
2330 {
2331 	struct task_struct *p = current;
2332 	struct affinity_context ac = {
2333 		.new_mask  = &p->cpus_mask,
2334 		.flags     = SCA_MIGRATE_ENABLE,
2335 	};
2336 
2337 #ifdef CONFIG_DEBUG_PREEMPT
2338 	/*
2339 	 * Check both overflow from migrate_disable() and superfluous
2340 	 * migrate_enable().
2341 	 */
2342 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2343 		return;
2344 #endif
2345 
2346 	if (p->migration_disabled > 1) {
2347 		p->migration_disabled--;
2348 		return;
2349 	}
2350 
2351 	/*
2352 	 * Ensure stop_task runs either before or after this, and that
2353 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2354 	 */
2355 	guard(preempt)();
2356 	if (p->cpus_ptr != &p->cpus_mask)
2357 		__set_cpus_allowed_ptr(p, &ac);
2358 	/*
2359 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2360 	 * regular cpus_mask, otherwise things that race (eg.
2361 	 * select_fallback_rq) get confused.
2362 	 */
2363 	barrier();
2364 	p->migration_disabled = 0;
2365 	this_rq()->nr_pinned--;
2366 }
2367 EXPORT_SYMBOL_GPL(migrate_enable);
2368 
2369 static inline bool rq_has_pinned_tasks(struct rq *rq)
2370 {
2371 	return rq->nr_pinned;
2372 }
2373 
2374 /*
2375  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2376  * __set_cpus_allowed_ptr() and select_fallback_rq().
2377  */
2378 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2379 {
2380 	/* When not in the task's cpumask, no point in looking further. */
2381 	if (!task_allowed_on_cpu(p, cpu))
2382 		return false;
2383 
2384 	/* migrate_disabled() must be allowed to finish. */
2385 	if (is_migration_disabled(p))
2386 		return cpu_online(cpu);
2387 
2388 	/* Non kernel threads are not allowed during either online or offline. */
2389 	if (!(p->flags & PF_KTHREAD))
2390 		return cpu_active(cpu);
2391 
2392 	/* KTHREAD_IS_PER_CPU is always allowed. */
2393 	if (kthread_is_per_cpu(p))
2394 		return cpu_online(cpu);
2395 
2396 	/* Regular kernel threads don't get to stay during offline. */
2397 	if (cpu_dying(cpu))
2398 		return false;
2399 
2400 	/* But are allowed during online. */
2401 	return cpu_online(cpu);
2402 }
2403 
2404 /*
2405  * This is how migration works:
2406  *
2407  * 1) we invoke migration_cpu_stop() on the target CPU using
2408  *    stop_one_cpu().
2409  * 2) stopper starts to run (implicitly forcing the migrated thread
2410  *    off the CPU)
2411  * 3) it checks whether the migrated task is still in the wrong runqueue.
2412  * 4) if it's in the wrong runqueue then the migration thread removes
2413  *    it and puts it into the right queue.
2414  * 5) stopper completes and stop_one_cpu() returns and the migration
2415  *    is done.
2416  */
2417 
2418 /*
2419  * move_queued_task - move a queued task to new rq.
2420  *
2421  * Returns (locked) new rq. Old rq's lock is released.
2422  */
2423 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2424 				   struct task_struct *p, int new_cpu)
2425 {
2426 	lockdep_assert_rq_held(rq);
2427 
2428 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2429 	set_task_cpu(p, new_cpu);
2430 	rq_unlock(rq, rf);
2431 
2432 	rq = cpu_rq(new_cpu);
2433 
2434 	rq_lock(rq, rf);
2435 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2436 	activate_task(rq, p, 0);
2437 	wakeup_preempt(rq, p, 0);
2438 
2439 	return rq;
2440 }
2441 
2442 struct migration_arg {
2443 	struct task_struct		*task;
2444 	int				dest_cpu;
2445 	struct set_affinity_pending	*pending;
2446 };
2447 
2448 /*
2449  * @refs: number of wait_for_completion()
2450  * @stop_pending: is @stop_work in use
2451  */
2452 struct set_affinity_pending {
2453 	refcount_t		refs;
2454 	unsigned int		stop_pending;
2455 	struct completion	done;
2456 	struct cpu_stop_work	stop_work;
2457 	struct migration_arg	arg;
2458 };
2459 
2460 /*
2461  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2462  * this because either it can't run here any more (set_cpus_allowed()
2463  * away from this CPU, or CPU going down), or because we're
2464  * attempting to rebalance this task on exec (sched_exec).
2465  *
2466  * So we race with normal scheduler movements, but that's OK, as long
2467  * as the task is no longer on this CPU.
2468  */
2469 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2470 				 struct task_struct *p, int dest_cpu)
2471 {
2472 	/* Affinity changed (again). */
2473 	if (!is_cpu_allowed(p, dest_cpu))
2474 		return rq;
2475 
2476 	rq = move_queued_task(rq, rf, p, dest_cpu);
2477 
2478 	return rq;
2479 }
2480 
2481 /*
2482  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2483  * and performs thread migration by bumping thread off CPU then
2484  * 'pushing' onto another runqueue.
2485  */
2486 static int migration_cpu_stop(void *data)
2487 {
2488 	struct migration_arg *arg = data;
2489 	struct set_affinity_pending *pending = arg->pending;
2490 	struct task_struct *p = arg->task;
2491 	struct rq *rq = this_rq();
2492 	bool complete = false;
2493 	struct rq_flags rf;
2494 
2495 	/*
2496 	 * The original target CPU might have gone down and we might
2497 	 * be on another CPU but it doesn't matter.
2498 	 */
2499 	local_irq_save(rf.flags);
2500 	/*
2501 	 * We need to explicitly wake pending tasks before running
2502 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2503 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2504 	 */
2505 	flush_smp_call_function_queue();
2506 
2507 	raw_spin_lock(&p->pi_lock);
2508 	rq_lock(rq, &rf);
2509 
2510 	/*
2511 	 * If we were passed a pending, then ->stop_pending was set, thus
2512 	 * p->migration_pending must have remained stable.
2513 	 */
2514 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2515 
2516 	/*
2517 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2518 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2519 	 * we're holding p->pi_lock.
2520 	 */
2521 	if (task_rq(p) == rq) {
2522 		if (is_migration_disabled(p))
2523 			goto out;
2524 
2525 		if (pending) {
2526 			p->migration_pending = NULL;
2527 			complete = true;
2528 
2529 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2530 				goto out;
2531 		}
2532 
2533 		if (task_on_rq_queued(p)) {
2534 			update_rq_clock(rq);
2535 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2536 		} else {
2537 			p->wake_cpu = arg->dest_cpu;
2538 		}
2539 
2540 		/*
2541 		 * XXX __migrate_task() can fail, at which point we might end
2542 		 * up running on a dodgy CPU, AFAICT this can only happen
2543 		 * during CPU hotplug, at which point we'll get pushed out
2544 		 * anyway, so it's probably not a big deal.
2545 		 */
2546 
2547 	} else if (pending) {
2548 		/*
2549 		 * This happens when we get migrated between migrate_enable()'s
2550 		 * preempt_enable() and scheduling the stopper task. At that
2551 		 * point we're a regular task again and not current anymore.
2552 		 *
2553 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2554 		 * more likely.
2555 		 */
2556 
2557 		/*
2558 		 * The task moved before the stopper got to run. We're holding
2559 		 * ->pi_lock, so the allowed mask is stable - if it got
2560 		 * somewhere allowed, we're done.
2561 		 */
2562 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2563 			p->migration_pending = NULL;
2564 			complete = true;
2565 			goto out;
2566 		}
2567 
2568 		/*
2569 		 * When migrate_enable() hits a rq mis-match we can't reliably
2570 		 * determine is_migration_disabled() and so have to chase after
2571 		 * it.
2572 		 */
2573 		WARN_ON_ONCE(!pending->stop_pending);
2574 		preempt_disable();
2575 		task_rq_unlock(rq, p, &rf);
2576 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2577 				    &pending->arg, &pending->stop_work);
2578 		preempt_enable();
2579 		return 0;
2580 	}
2581 out:
2582 	if (pending)
2583 		pending->stop_pending = false;
2584 	task_rq_unlock(rq, p, &rf);
2585 
2586 	if (complete)
2587 		complete_all(&pending->done);
2588 
2589 	return 0;
2590 }
2591 
2592 int push_cpu_stop(void *arg)
2593 {
2594 	struct rq *lowest_rq = NULL, *rq = this_rq();
2595 	struct task_struct *p = arg;
2596 
2597 	raw_spin_lock_irq(&p->pi_lock);
2598 	raw_spin_rq_lock(rq);
2599 
2600 	if (task_rq(p) != rq)
2601 		goto out_unlock;
2602 
2603 	if (is_migration_disabled(p)) {
2604 		p->migration_flags |= MDF_PUSH;
2605 		goto out_unlock;
2606 	}
2607 
2608 	p->migration_flags &= ~MDF_PUSH;
2609 
2610 	if (p->sched_class->find_lock_rq)
2611 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2612 
2613 	if (!lowest_rq)
2614 		goto out_unlock;
2615 
2616 	// XXX validate p is still the highest prio task
2617 	if (task_rq(p) == rq) {
2618 		deactivate_task(rq, p, 0);
2619 		set_task_cpu(p, lowest_rq->cpu);
2620 		activate_task(lowest_rq, p, 0);
2621 		resched_curr(lowest_rq);
2622 	}
2623 
2624 	double_unlock_balance(rq, lowest_rq);
2625 
2626 out_unlock:
2627 	rq->push_busy = false;
2628 	raw_spin_rq_unlock(rq);
2629 	raw_spin_unlock_irq(&p->pi_lock);
2630 
2631 	put_task_struct(p);
2632 	return 0;
2633 }
2634 
2635 /*
2636  * sched_class::set_cpus_allowed must do the below, but is not required to
2637  * actually call this function.
2638  */
2639 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2640 {
2641 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2642 		p->cpus_ptr = ctx->new_mask;
2643 		return;
2644 	}
2645 
2646 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2647 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2648 
2649 	/*
2650 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2651 	 */
2652 	if (ctx->flags & SCA_USER)
2653 		swap(p->user_cpus_ptr, ctx->user_mask);
2654 }
2655 
2656 static void
2657 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2658 {
2659 	struct rq *rq = task_rq(p);
2660 	bool queued, running;
2661 
2662 	/*
2663 	 * This here violates the locking rules for affinity, since we're only
2664 	 * supposed to change these variables while holding both rq->lock and
2665 	 * p->pi_lock.
2666 	 *
2667 	 * HOWEVER, it magically works, because ttwu() is the only code that
2668 	 * accesses these variables under p->pi_lock and only does so after
2669 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2670 	 * before finish_task().
2671 	 *
2672 	 * XXX do further audits, this smells like something putrid.
2673 	 */
2674 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2675 		SCHED_WARN_ON(!p->on_cpu);
2676 	else
2677 		lockdep_assert_held(&p->pi_lock);
2678 
2679 	queued = task_on_rq_queued(p);
2680 	running = task_current(rq, p);
2681 
2682 	if (queued) {
2683 		/*
2684 		 * Because __kthread_bind() calls this on blocked tasks without
2685 		 * holding rq->lock.
2686 		 */
2687 		lockdep_assert_rq_held(rq);
2688 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2689 	}
2690 	if (running)
2691 		put_prev_task(rq, p);
2692 
2693 	p->sched_class->set_cpus_allowed(p, ctx);
2694 
2695 	if (queued)
2696 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2697 	if (running)
2698 		set_next_task(rq, p);
2699 }
2700 
2701 /*
2702  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2703  * affinity (if any) should be destroyed too.
2704  */
2705 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2706 {
2707 	struct affinity_context ac = {
2708 		.new_mask  = new_mask,
2709 		.user_mask = NULL,
2710 		.flags     = SCA_USER,	/* clear the user requested mask */
2711 	};
2712 	union cpumask_rcuhead {
2713 		cpumask_t cpumask;
2714 		struct rcu_head rcu;
2715 	};
2716 
2717 	__do_set_cpus_allowed(p, &ac);
2718 
2719 	/*
2720 	 * Because this is called with p->pi_lock held, it is not possible
2721 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2722 	 * kfree_rcu().
2723 	 */
2724 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2725 }
2726 
2727 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2728 		      int node)
2729 {
2730 	cpumask_t *user_mask;
2731 	unsigned long flags;
2732 
2733 	/*
2734 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2735 	 * may differ by now due to racing.
2736 	 */
2737 	dst->user_cpus_ptr = NULL;
2738 
2739 	/*
2740 	 * This check is racy and losing the race is a valid situation.
2741 	 * It is not worth the extra overhead of taking the pi_lock on
2742 	 * every fork/clone.
2743 	 */
2744 	if (data_race(!src->user_cpus_ptr))
2745 		return 0;
2746 
2747 	user_mask = alloc_user_cpus_ptr(node);
2748 	if (!user_mask)
2749 		return -ENOMEM;
2750 
2751 	/*
2752 	 * Use pi_lock to protect content of user_cpus_ptr
2753 	 *
2754 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2755 	 * do_set_cpus_allowed().
2756 	 */
2757 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2758 	if (src->user_cpus_ptr) {
2759 		swap(dst->user_cpus_ptr, user_mask);
2760 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2761 	}
2762 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2763 
2764 	if (unlikely(user_mask))
2765 		kfree(user_mask);
2766 
2767 	return 0;
2768 }
2769 
2770 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2771 {
2772 	struct cpumask *user_mask = NULL;
2773 
2774 	swap(p->user_cpus_ptr, user_mask);
2775 
2776 	return user_mask;
2777 }
2778 
2779 void release_user_cpus_ptr(struct task_struct *p)
2780 {
2781 	kfree(clear_user_cpus_ptr(p));
2782 }
2783 
2784 /*
2785  * This function is wildly self concurrent; here be dragons.
2786  *
2787  *
2788  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2789  * designated task is enqueued on an allowed CPU. If that task is currently
2790  * running, we have to kick it out using the CPU stopper.
2791  *
2792  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2793  * Consider:
2794  *
2795  *     Initial conditions: P0->cpus_mask = [0, 1]
2796  *
2797  *     P0@CPU0                  P1
2798  *
2799  *     migrate_disable();
2800  *     <preempted>
2801  *                              set_cpus_allowed_ptr(P0, [1]);
2802  *
2803  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2804  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2805  * This means we need the following scheme:
2806  *
2807  *     P0@CPU0                  P1
2808  *
2809  *     migrate_disable();
2810  *     <preempted>
2811  *                              set_cpus_allowed_ptr(P0, [1]);
2812  *                                <blocks>
2813  *     <resumes>
2814  *     migrate_enable();
2815  *       __set_cpus_allowed_ptr();
2816  *       <wakes local stopper>
2817  *                         `--> <woken on migration completion>
2818  *
2819  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2820  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2821  * task p are serialized by p->pi_lock, which we can leverage: the one that
2822  * should come into effect at the end of the Migrate-Disable region is the last
2823  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2824  * but we still need to properly signal those waiting tasks at the appropriate
2825  * moment.
2826  *
2827  * This is implemented using struct set_affinity_pending. The first
2828  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2829  * setup an instance of that struct and install it on the targeted task_struct.
2830  * Any and all further callers will reuse that instance. Those then wait for
2831  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2832  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2833  *
2834  *
2835  * (1) In the cases covered above. There is one more where the completion is
2836  * signaled within affine_move_task() itself: when a subsequent affinity request
2837  * occurs after the stopper bailed out due to the targeted task still being
2838  * Migrate-Disable. Consider:
2839  *
2840  *     Initial conditions: P0->cpus_mask = [0, 1]
2841  *
2842  *     CPU0		  P1				P2
2843  *     <P0>
2844  *       migrate_disable();
2845  *       <preempted>
2846  *                        set_cpus_allowed_ptr(P0, [1]);
2847  *                          <blocks>
2848  *     <migration/0>
2849  *       migration_cpu_stop()
2850  *         is_migration_disabled()
2851  *           <bails>
2852  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2853  *                                                         <signal completion>
2854  *                          <awakes>
2855  *
2856  * Note that the above is safe vs a concurrent migrate_enable(), as any
2857  * pending affinity completion is preceded by an uninstallation of
2858  * p->migration_pending done with p->pi_lock held.
2859  */
2860 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2861 			    int dest_cpu, unsigned int flags)
2862 	__releases(rq->lock)
2863 	__releases(p->pi_lock)
2864 {
2865 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2866 	bool stop_pending, complete = false;
2867 
2868 	/* Can the task run on the task's current CPU? If so, we're done */
2869 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2870 		struct task_struct *push_task = NULL;
2871 
2872 		if ((flags & SCA_MIGRATE_ENABLE) &&
2873 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2874 			rq->push_busy = true;
2875 			push_task = get_task_struct(p);
2876 		}
2877 
2878 		/*
2879 		 * If there are pending waiters, but no pending stop_work,
2880 		 * then complete now.
2881 		 */
2882 		pending = p->migration_pending;
2883 		if (pending && !pending->stop_pending) {
2884 			p->migration_pending = NULL;
2885 			complete = true;
2886 		}
2887 
2888 		preempt_disable();
2889 		task_rq_unlock(rq, p, rf);
2890 		if (push_task) {
2891 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2892 					    p, &rq->push_work);
2893 		}
2894 		preempt_enable();
2895 
2896 		if (complete)
2897 			complete_all(&pending->done);
2898 
2899 		return 0;
2900 	}
2901 
2902 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2903 		/* serialized by p->pi_lock */
2904 		if (!p->migration_pending) {
2905 			/* Install the request */
2906 			refcount_set(&my_pending.refs, 1);
2907 			init_completion(&my_pending.done);
2908 			my_pending.arg = (struct migration_arg) {
2909 				.task = p,
2910 				.dest_cpu = dest_cpu,
2911 				.pending = &my_pending,
2912 			};
2913 
2914 			p->migration_pending = &my_pending;
2915 		} else {
2916 			pending = p->migration_pending;
2917 			refcount_inc(&pending->refs);
2918 			/*
2919 			 * Affinity has changed, but we've already installed a
2920 			 * pending. migration_cpu_stop() *must* see this, else
2921 			 * we risk a completion of the pending despite having a
2922 			 * task on a disallowed CPU.
2923 			 *
2924 			 * Serialized by p->pi_lock, so this is safe.
2925 			 */
2926 			pending->arg.dest_cpu = dest_cpu;
2927 		}
2928 	}
2929 	pending = p->migration_pending;
2930 	/*
2931 	 * - !MIGRATE_ENABLE:
2932 	 *   we'll have installed a pending if there wasn't one already.
2933 	 *
2934 	 * - MIGRATE_ENABLE:
2935 	 *   we're here because the current CPU isn't matching anymore,
2936 	 *   the only way that can happen is because of a concurrent
2937 	 *   set_cpus_allowed_ptr() call, which should then still be
2938 	 *   pending completion.
2939 	 *
2940 	 * Either way, we really should have a @pending here.
2941 	 */
2942 	if (WARN_ON_ONCE(!pending)) {
2943 		task_rq_unlock(rq, p, rf);
2944 		return -EINVAL;
2945 	}
2946 
2947 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2948 		/*
2949 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2950 		 * anything else we cannot do is_migration_disabled(), punt
2951 		 * and have the stopper function handle it all race-free.
2952 		 */
2953 		stop_pending = pending->stop_pending;
2954 		if (!stop_pending)
2955 			pending->stop_pending = true;
2956 
2957 		if (flags & SCA_MIGRATE_ENABLE)
2958 			p->migration_flags &= ~MDF_PUSH;
2959 
2960 		preempt_disable();
2961 		task_rq_unlock(rq, p, rf);
2962 		if (!stop_pending) {
2963 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2964 					    &pending->arg, &pending->stop_work);
2965 		}
2966 		preempt_enable();
2967 
2968 		if (flags & SCA_MIGRATE_ENABLE)
2969 			return 0;
2970 	} else {
2971 
2972 		if (!is_migration_disabled(p)) {
2973 			if (task_on_rq_queued(p))
2974 				rq = move_queued_task(rq, rf, p, dest_cpu);
2975 
2976 			if (!pending->stop_pending) {
2977 				p->migration_pending = NULL;
2978 				complete = true;
2979 			}
2980 		}
2981 		task_rq_unlock(rq, p, rf);
2982 
2983 		if (complete)
2984 			complete_all(&pending->done);
2985 	}
2986 
2987 	wait_for_completion(&pending->done);
2988 
2989 	if (refcount_dec_and_test(&pending->refs))
2990 		wake_up_var(&pending->refs); /* No UaF, just an address */
2991 
2992 	/*
2993 	 * Block the original owner of &pending until all subsequent callers
2994 	 * have seen the completion and decremented the refcount
2995 	 */
2996 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2997 
2998 	/* ARGH */
2999 	WARN_ON_ONCE(my_pending.stop_pending);
3000 
3001 	return 0;
3002 }
3003 
3004 /*
3005  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3006  */
3007 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3008 					 struct affinity_context *ctx,
3009 					 struct rq *rq,
3010 					 struct rq_flags *rf)
3011 	__releases(rq->lock)
3012 	__releases(p->pi_lock)
3013 {
3014 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3015 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3016 	bool kthread = p->flags & PF_KTHREAD;
3017 	unsigned int dest_cpu;
3018 	int ret = 0;
3019 
3020 	update_rq_clock(rq);
3021 
3022 	if (kthread || is_migration_disabled(p)) {
3023 		/*
3024 		 * Kernel threads are allowed on online && !active CPUs,
3025 		 * however, during cpu-hot-unplug, even these might get pushed
3026 		 * away if not KTHREAD_IS_PER_CPU.
3027 		 *
3028 		 * Specifically, migration_disabled() tasks must not fail the
3029 		 * cpumask_any_and_distribute() pick below, esp. so on
3030 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3031 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3032 		 */
3033 		cpu_valid_mask = cpu_online_mask;
3034 	}
3035 
3036 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3037 		ret = -EINVAL;
3038 		goto out;
3039 	}
3040 
3041 	/*
3042 	 * Must re-check here, to close a race against __kthread_bind(),
3043 	 * sched_setaffinity() is not guaranteed to observe the flag.
3044 	 */
3045 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3046 		ret = -EINVAL;
3047 		goto out;
3048 	}
3049 
3050 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3051 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3052 			if (ctx->flags & SCA_USER)
3053 				swap(p->user_cpus_ptr, ctx->user_mask);
3054 			goto out;
3055 		}
3056 
3057 		if (WARN_ON_ONCE(p == current &&
3058 				 is_migration_disabled(p) &&
3059 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3060 			ret = -EBUSY;
3061 			goto out;
3062 		}
3063 	}
3064 
3065 	/*
3066 	 * Picking a ~random cpu helps in cases where we are changing affinity
3067 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3068 	 * immediately required to distribute the tasks within their new mask.
3069 	 */
3070 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3071 	if (dest_cpu >= nr_cpu_ids) {
3072 		ret = -EINVAL;
3073 		goto out;
3074 	}
3075 
3076 	__do_set_cpus_allowed(p, ctx);
3077 
3078 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3079 
3080 out:
3081 	task_rq_unlock(rq, p, rf);
3082 
3083 	return ret;
3084 }
3085 
3086 /*
3087  * Change a given task's CPU affinity. Migrate the thread to a
3088  * proper CPU and schedule it away if the CPU it's executing on
3089  * is removed from the allowed bitmask.
3090  *
3091  * NOTE: the caller must have a valid reference to the task, the
3092  * task must not exit() & deallocate itself prematurely. The
3093  * call is not atomic; no spinlocks may be held.
3094  */
3095 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3096 {
3097 	struct rq_flags rf;
3098 	struct rq *rq;
3099 
3100 	rq = task_rq_lock(p, &rf);
3101 	/*
3102 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3103 	 * flags are set.
3104 	 */
3105 	if (p->user_cpus_ptr &&
3106 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3107 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3108 		ctx->new_mask = rq->scratch_mask;
3109 
3110 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3111 }
3112 
3113 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3114 {
3115 	struct affinity_context ac = {
3116 		.new_mask  = new_mask,
3117 		.flags     = 0,
3118 	};
3119 
3120 	return __set_cpus_allowed_ptr(p, &ac);
3121 }
3122 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3123 
3124 /*
3125  * Change a given task's CPU affinity to the intersection of its current
3126  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3127  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3128  * affinity or use cpu_online_mask instead.
3129  *
3130  * If the resulting mask is empty, leave the affinity unchanged and return
3131  * -EINVAL.
3132  */
3133 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3134 				     struct cpumask *new_mask,
3135 				     const struct cpumask *subset_mask)
3136 {
3137 	struct affinity_context ac = {
3138 		.new_mask  = new_mask,
3139 		.flags     = 0,
3140 	};
3141 	struct rq_flags rf;
3142 	struct rq *rq;
3143 	int err;
3144 
3145 	rq = task_rq_lock(p, &rf);
3146 
3147 	/*
3148 	 * Forcefully restricting the affinity of a deadline task is
3149 	 * likely to cause problems, so fail and noisily override the
3150 	 * mask entirely.
3151 	 */
3152 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3153 		err = -EPERM;
3154 		goto err_unlock;
3155 	}
3156 
3157 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3158 		err = -EINVAL;
3159 		goto err_unlock;
3160 	}
3161 
3162 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3163 
3164 err_unlock:
3165 	task_rq_unlock(rq, p, &rf);
3166 	return err;
3167 }
3168 
3169 /*
3170  * Restrict the CPU affinity of task @p so that it is a subset of
3171  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3172  * old affinity mask. If the resulting mask is empty, we warn and walk
3173  * up the cpuset hierarchy until we find a suitable mask.
3174  */
3175 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3176 {
3177 	cpumask_var_t new_mask;
3178 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3179 
3180 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3181 
3182 	/*
3183 	 * __migrate_task() can fail silently in the face of concurrent
3184 	 * offlining of the chosen destination CPU, so take the hotplug
3185 	 * lock to ensure that the migration succeeds.
3186 	 */
3187 	cpus_read_lock();
3188 	if (!cpumask_available(new_mask))
3189 		goto out_set_mask;
3190 
3191 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3192 		goto out_free_mask;
3193 
3194 	/*
3195 	 * We failed to find a valid subset of the affinity mask for the
3196 	 * task, so override it based on its cpuset hierarchy.
3197 	 */
3198 	cpuset_cpus_allowed(p, new_mask);
3199 	override_mask = new_mask;
3200 
3201 out_set_mask:
3202 	if (printk_ratelimit()) {
3203 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3204 				task_pid_nr(p), p->comm,
3205 				cpumask_pr_args(override_mask));
3206 	}
3207 
3208 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3209 out_free_mask:
3210 	cpus_read_unlock();
3211 	free_cpumask_var(new_mask);
3212 }
3213 
3214 /*
3215  * Restore the affinity of a task @p which was previously restricted by a
3216  * call to force_compatible_cpus_allowed_ptr().
3217  *
3218  * It is the caller's responsibility to serialise this with any calls to
3219  * force_compatible_cpus_allowed_ptr(@p).
3220  */
3221 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3222 {
3223 	struct affinity_context ac = {
3224 		.new_mask  = task_user_cpus(p),
3225 		.flags     = 0,
3226 	};
3227 	int ret;
3228 
3229 	/*
3230 	 * Try to restore the old affinity mask with __sched_setaffinity().
3231 	 * Cpuset masking will be done there too.
3232 	 */
3233 	ret = __sched_setaffinity(p, &ac);
3234 	WARN_ON_ONCE(ret);
3235 }
3236 
3237 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3238 {
3239 #ifdef CONFIG_SCHED_DEBUG
3240 	unsigned int state = READ_ONCE(p->__state);
3241 
3242 	/*
3243 	 * We should never call set_task_cpu() on a blocked task,
3244 	 * ttwu() will sort out the placement.
3245 	 */
3246 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3247 
3248 	/*
3249 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3250 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3251 	 * time relying on p->on_rq.
3252 	 */
3253 	WARN_ON_ONCE(state == TASK_RUNNING &&
3254 		     p->sched_class == &fair_sched_class &&
3255 		     (p->on_rq && !task_on_rq_migrating(p)));
3256 
3257 #ifdef CONFIG_LOCKDEP
3258 	/*
3259 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3260 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3261 	 *
3262 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3263 	 * see task_group().
3264 	 *
3265 	 * Furthermore, all task_rq users should acquire both locks, see
3266 	 * task_rq_lock().
3267 	 */
3268 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3269 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3270 #endif
3271 	/*
3272 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3273 	 */
3274 	WARN_ON_ONCE(!cpu_online(new_cpu));
3275 
3276 	WARN_ON_ONCE(is_migration_disabled(p));
3277 #endif
3278 
3279 	trace_sched_migrate_task(p, new_cpu);
3280 
3281 	if (task_cpu(p) != new_cpu) {
3282 		if (p->sched_class->migrate_task_rq)
3283 			p->sched_class->migrate_task_rq(p, new_cpu);
3284 		p->se.nr_migrations++;
3285 		rseq_migrate(p);
3286 		sched_mm_cid_migrate_from(p);
3287 		perf_event_task_migrate(p);
3288 	}
3289 
3290 	__set_task_cpu(p, new_cpu);
3291 }
3292 
3293 #ifdef CONFIG_NUMA_BALANCING
3294 static void __migrate_swap_task(struct task_struct *p, int cpu)
3295 {
3296 	if (task_on_rq_queued(p)) {
3297 		struct rq *src_rq, *dst_rq;
3298 		struct rq_flags srf, drf;
3299 
3300 		src_rq = task_rq(p);
3301 		dst_rq = cpu_rq(cpu);
3302 
3303 		rq_pin_lock(src_rq, &srf);
3304 		rq_pin_lock(dst_rq, &drf);
3305 
3306 		deactivate_task(src_rq, p, 0);
3307 		set_task_cpu(p, cpu);
3308 		activate_task(dst_rq, p, 0);
3309 		wakeup_preempt(dst_rq, p, 0);
3310 
3311 		rq_unpin_lock(dst_rq, &drf);
3312 		rq_unpin_lock(src_rq, &srf);
3313 
3314 	} else {
3315 		/*
3316 		 * Task isn't running anymore; make it appear like we migrated
3317 		 * it before it went to sleep. This means on wakeup we make the
3318 		 * previous CPU our target instead of where it really is.
3319 		 */
3320 		p->wake_cpu = cpu;
3321 	}
3322 }
3323 
3324 struct migration_swap_arg {
3325 	struct task_struct *src_task, *dst_task;
3326 	int src_cpu, dst_cpu;
3327 };
3328 
3329 static int migrate_swap_stop(void *data)
3330 {
3331 	struct migration_swap_arg *arg = data;
3332 	struct rq *src_rq, *dst_rq;
3333 
3334 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3335 		return -EAGAIN;
3336 
3337 	src_rq = cpu_rq(arg->src_cpu);
3338 	dst_rq = cpu_rq(arg->dst_cpu);
3339 
3340 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3341 	guard(double_rq_lock)(src_rq, dst_rq);
3342 
3343 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3344 		return -EAGAIN;
3345 
3346 	if (task_cpu(arg->src_task) != arg->src_cpu)
3347 		return -EAGAIN;
3348 
3349 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3350 		return -EAGAIN;
3351 
3352 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3353 		return -EAGAIN;
3354 
3355 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3356 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3357 
3358 	return 0;
3359 }
3360 
3361 /*
3362  * Cross migrate two tasks
3363  */
3364 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3365 		int target_cpu, int curr_cpu)
3366 {
3367 	struct migration_swap_arg arg;
3368 	int ret = -EINVAL;
3369 
3370 	arg = (struct migration_swap_arg){
3371 		.src_task = cur,
3372 		.src_cpu = curr_cpu,
3373 		.dst_task = p,
3374 		.dst_cpu = target_cpu,
3375 	};
3376 
3377 	if (arg.src_cpu == arg.dst_cpu)
3378 		goto out;
3379 
3380 	/*
3381 	 * These three tests are all lockless; this is OK since all of them
3382 	 * will be re-checked with proper locks held further down the line.
3383 	 */
3384 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3385 		goto out;
3386 
3387 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3388 		goto out;
3389 
3390 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3391 		goto out;
3392 
3393 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3394 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3395 
3396 out:
3397 	return ret;
3398 }
3399 #endif /* CONFIG_NUMA_BALANCING */
3400 
3401 /***
3402  * kick_process - kick a running thread to enter/exit the kernel
3403  * @p: the to-be-kicked thread
3404  *
3405  * Cause a process which is running on another CPU to enter
3406  * kernel-mode, without any delay. (to get signals handled.)
3407  *
3408  * NOTE: this function doesn't have to take the runqueue lock,
3409  * because all it wants to ensure is that the remote task enters
3410  * the kernel. If the IPI races and the task has been migrated
3411  * to another CPU then no harm is done and the purpose has been
3412  * achieved as well.
3413  */
3414 void kick_process(struct task_struct *p)
3415 {
3416 	guard(preempt)();
3417 	int cpu = task_cpu(p);
3418 
3419 	if ((cpu != smp_processor_id()) && task_curr(p))
3420 		smp_send_reschedule(cpu);
3421 }
3422 EXPORT_SYMBOL_GPL(kick_process);
3423 
3424 /*
3425  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3426  *
3427  * A few notes on cpu_active vs cpu_online:
3428  *
3429  *  - cpu_active must be a subset of cpu_online
3430  *
3431  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3432  *    see __set_cpus_allowed_ptr(). At this point the newly online
3433  *    CPU isn't yet part of the sched domains, and balancing will not
3434  *    see it.
3435  *
3436  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3437  *    avoid the load balancer to place new tasks on the to be removed
3438  *    CPU. Existing tasks will remain running there and will be taken
3439  *    off.
3440  *
3441  * This means that fallback selection must not select !active CPUs.
3442  * And can assume that any active CPU must be online. Conversely
3443  * select_task_rq() below may allow selection of !active CPUs in order
3444  * to satisfy the above rules.
3445  */
3446 static int select_fallback_rq(int cpu, struct task_struct *p)
3447 {
3448 	int nid = cpu_to_node(cpu);
3449 	const struct cpumask *nodemask = NULL;
3450 	enum { cpuset, possible, fail } state = cpuset;
3451 	int dest_cpu;
3452 
3453 	/*
3454 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3455 	 * will return -1. There is no CPU on the node, and we should
3456 	 * select the CPU on the other node.
3457 	 */
3458 	if (nid != -1) {
3459 		nodemask = cpumask_of_node(nid);
3460 
3461 		/* Look for allowed, online CPU in same node. */
3462 		for_each_cpu(dest_cpu, nodemask) {
3463 			if (is_cpu_allowed(p, dest_cpu))
3464 				return dest_cpu;
3465 		}
3466 	}
3467 
3468 	for (;;) {
3469 		/* Any allowed, online CPU? */
3470 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3471 			if (!is_cpu_allowed(p, dest_cpu))
3472 				continue;
3473 
3474 			goto out;
3475 		}
3476 
3477 		/* No more Mr. Nice Guy. */
3478 		switch (state) {
3479 		case cpuset:
3480 			if (cpuset_cpus_allowed_fallback(p)) {
3481 				state = possible;
3482 				break;
3483 			}
3484 			fallthrough;
3485 		case possible:
3486 			/*
3487 			 * XXX When called from select_task_rq() we only
3488 			 * hold p->pi_lock and again violate locking order.
3489 			 *
3490 			 * More yuck to audit.
3491 			 */
3492 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3493 			state = fail;
3494 			break;
3495 		case fail:
3496 			BUG();
3497 			break;
3498 		}
3499 	}
3500 
3501 out:
3502 	if (state != cpuset) {
3503 		/*
3504 		 * Don't tell them about moving exiting tasks or
3505 		 * kernel threads (both mm NULL), since they never
3506 		 * leave kernel.
3507 		 */
3508 		if (p->mm && printk_ratelimit()) {
3509 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3510 					task_pid_nr(p), p->comm, cpu);
3511 		}
3512 	}
3513 
3514 	return dest_cpu;
3515 }
3516 
3517 /*
3518  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3519  */
3520 static inline
3521 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3522 {
3523 	lockdep_assert_held(&p->pi_lock);
3524 
3525 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3526 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3527 		*wake_flags |= WF_RQ_SELECTED;
3528 	} else {
3529 		cpu = cpumask_any(p->cpus_ptr);
3530 	}
3531 
3532 	/*
3533 	 * In order not to call set_task_cpu() on a blocking task we need
3534 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3535 	 * CPU.
3536 	 *
3537 	 * Since this is common to all placement strategies, this lives here.
3538 	 *
3539 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3540 	 *   not worry about this generic constraint ]
3541 	 */
3542 	if (unlikely(!is_cpu_allowed(p, cpu)))
3543 		cpu = select_fallback_rq(task_cpu(p), p);
3544 
3545 	return cpu;
3546 }
3547 
3548 void sched_set_stop_task(int cpu, struct task_struct *stop)
3549 {
3550 	static struct lock_class_key stop_pi_lock;
3551 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3552 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3553 
3554 	if (stop) {
3555 		/*
3556 		 * Make it appear like a SCHED_FIFO task, its something
3557 		 * userspace knows about and won't get confused about.
3558 		 *
3559 		 * Also, it will make PI more or less work without too
3560 		 * much confusion -- but then, stop work should not
3561 		 * rely on PI working anyway.
3562 		 */
3563 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3564 
3565 		stop->sched_class = &stop_sched_class;
3566 
3567 		/*
3568 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3569 		 * adjust the effective priority of a task. As a result,
3570 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3571 		 * which can then trigger wakeups of the stop thread to push
3572 		 * around the current task.
3573 		 *
3574 		 * The stop task itself will never be part of the PI-chain, it
3575 		 * never blocks, therefore that ->pi_lock recursion is safe.
3576 		 * Tell lockdep about this by placing the stop->pi_lock in its
3577 		 * own class.
3578 		 */
3579 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3580 	}
3581 
3582 	cpu_rq(cpu)->stop = stop;
3583 
3584 	if (old_stop) {
3585 		/*
3586 		 * Reset it back to a normal scheduling class so that
3587 		 * it can die in pieces.
3588 		 */
3589 		old_stop->sched_class = &rt_sched_class;
3590 	}
3591 }
3592 
3593 #else /* CONFIG_SMP */
3594 
3595 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3596 
3597 static inline bool rq_has_pinned_tasks(struct rq *rq)
3598 {
3599 	return false;
3600 }
3601 
3602 #endif /* !CONFIG_SMP */
3603 
3604 static void
3605 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3606 {
3607 	struct rq *rq;
3608 
3609 	if (!schedstat_enabled())
3610 		return;
3611 
3612 	rq = this_rq();
3613 
3614 #ifdef CONFIG_SMP
3615 	if (cpu == rq->cpu) {
3616 		__schedstat_inc(rq->ttwu_local);
3617 		__schedstat_inc(p->stats.nr_wakeups_local);
3618 	} else {
3619 		struct sched_domain *sd;
3620 
3621 		__schedstat_inc(p->stats.nr_wakeups_remote);
3622 
3623 		guard(rcu)();
3624 		for_each_domain(rq->cpu, sd) {
3625 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3626 				__schedstat_inc(sd->ttwu_wake_remote);
3627 				break;
3628 			}
3629 		}
3630 	}
3631 
3632 	if (wake_flags & WF_MIGRATED)
3633 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3634 #endif /* CONFIG_SMP */
3635 
3636 	__schedstat_inc(rq->ttwu_count);
3637 	__schedstat_inc(p->stats.nr_wakeups);
3638 
3639 	if (wake_flags & WF_SYNC)
3640 		__schedstat_inc(p->stats.nr_wakeups_sync);
3641 }
3642 
3643 /*
3644  * Mark the task runnable.
3645  */
3646 static inline void ttwu_do_wakeup(struct task_struct *p)
3647 {
3648 	WRITE_ONCE(p->__state, TASK_RUNNING);
3649 	trace_sched_wakeup(p);
3650 }
3651 
3652 static void
3653 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3654 		 struct rq_flags *rf)
3655 {
3656 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3657 
3658 	lockdep_assert_rq_held(rq);
3659 
3660 	if (p->sched_contributes_to_load)
3661 		rq->nr_uninterruptible--;
3662 
3663 #ifdef CONFIG_SMP
3664 	if (wake_flags & WF_RQ_SELECTED)
3665 		en_flags |= ENQUEUE_RQ_SELECTED;
3666 	if (wake_flags & WF_MIGRATED)
3667 		en_flags |= ENQUEUE_MIGRATED;
3668 	else
3669 #endif
3670 	if (p->in_iowait) {
3671 		delayacct_blkio_end(p);
3672 		atomic_dec(&task_rq(p)->nr_iowait);
3673 	}
3674 
3675 	activate_task(rq, p, en_flags);
3676 	wakeup_preempt(rq, p, wake_flags);
3677 
3678 	ttwu_do_wakeup(p);
3679 
3680 #ifdef CONFIG_SMP
3681 	if (p->sched_class->task_woken) {
3682 		/*
3683 		 * Our task @p is fully woken up and running; so it's safe to
3684 		 * drop the rq->lock, hereafter rq is only used for statistics.
3685 		 */
3686 		rq_unpin_lock(rq, rf);
3687 		p->sched_class->task_woken(rq, p);
3688 		rq_repin_lock(rq, rf);
3689 	}
3690 
3691 	if (rq->idle_stamp) {
3692 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3693 		u64 max = 2*rq->max_idle_balance_cost;
3694 
3695 		update_avg(&rq->avg_idle, delta);
3696 
3697 		if (rq->avg_idle > max)
3698 			rq->avg_idle = max;
3699 
3700 		rq->idle_stamp = 0;
3701 	}
3702 #endif
3703 }
3704 
3705 /*
3706  * Consider @p being inside a wait loop:
3707  *
3708  *   for (;;) {
3709  *      set_current_state(TASK_UNINTERRUPTIBLE);
3710  *
3711  *      if (CONDITION)
3712  *         break;
3713  *
3714  *      schedule();
3715  *   }
3716  *   __set_current_state(TASK_RUNNING);
3717  *
3718  * between set_current_state() and schedule(). In this case @p is still
3719  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3720  * an atomic manner.
3721  *
3722  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3723  * then schedule() must still happen and p->state can be changed to
3724  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3725  * need to do a full wakeup with enqueue.
3726  *
3727  * Returns: %true when the wakeup is done,
3728  *          %false otherwise.
3729  */
3730 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3731 {
3732 	struct rq_flags rf;
3733 	struct rq *rq;
3734 	int ret = 0;
3735 
3736 	rq = __task_rq_lock(p, &rf);
3737 	if (task_on_rq_queued(p)) {
3738 		update_rq_clock(rq);
3739 		if (p->se.sched_delayed)
3740 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3741 		if (!task_on_cpu(rq, p)) {
3742 			/*
3743 			 * When on_rq && !on_cpu the task is preempted, see if
3744 			 * it should preempt the task that is current now.
3745 			 */
3746 			wakeup_preempt(rq, p, wake_flags);
3747 		}
3748 		ttwu_do_wakeup(p);
3749 		ret = 1;
3750 	}
3751 	__task_rq_unlock(rq, &rf);
3752 
3753 	return ret;
3754 }
3755 
3756 #ifdef CONFIG_SMP
3757 void sched_ttwu_pending(void *arg)
3758 {
3759 	struct llist_node *llist = arg;
3760 	struct rq *rq = this_rq();
3761 	struct task_struct *p, *t;
3762 	struct rq_flags rf;
3763 
3764 	if (!llist)
3765 		return;
3766 
3767 	rq_lock_irqsave(rq, &rf);
3768 	update_rq_clock(rq);
3769 
3770 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3771 		if (WARN_ON_ONCE(p->on_cpu))
3772 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3773 
3774 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3775 			set_task_cpu(p, cpu_of(rq));
3776 
3777 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3778 	}
3779 
3780 	/*
3781 	 * Must be after enqueueing at least once task such that
3782 	 * idle_cpu() does not observe a false-negative -- if it does,
3783 	 * it is possible for select_idle_siblings() to stack a number
3784 	 * of tasks on this CPU during that window.
3785 	 *
3786 	 * It is OK to clear ttwu_pending when another task pending.
3787 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3788 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3789 	 */
3790 	WRITE_ONCE(rq->ttwu_pending, 0);
3791 	rq_unlock_irqrestore(rq, &rf);
3792 }
3793 
3794 /*
3795  * Prepare the scene for sending an IPI for a remote smp_call
3796  *
3797  * Returns true if the caller can proceed with sending the IPI.
3798  * Returns false otherwise.
3799  */
3800 bool call_function_single_prep_ipi(int cpu)
3801 {
3802 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3803 		trace_sched_wake_idle_without_ipi(cpu);
3804 		return false;
3805 	}
3806 
3807 	return true;
3808 }
3809 
3810 /*
3811  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3812  * necessary. The wakee CPU on receipt of the IPI will queue the task
3813  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3814  * of the wakeup instead of the waker.
3815  */
3816 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3817 {
3818 	struct rq *rq = cpu_rq(cpu);
3819 
3820 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3821 
3822 	WRITE_ONCE(rq->ttwu_pending, 1);
3823 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3824 }
3825 
3826 void wake_up_if_idle(int cpu)
3827 {
3828 	struct rq *rq = cpu_rq(cpu);
3829 
3830 	guard(rcu)();
3831 	if (is_idle_task(rcu_dereference(rq->curr))) {
3832 		guard(rq_lock_irqsave)(rq);
3833 		if (is_idle_task(rq->curr))
3834 			resched_curr(rq);
3835 	}
3836 }
3837 
3838 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3839 {
3840 	if (!sched_asym_cpucap_active())
3841 		return true;
3842 
3843 	if (this_cpu == that_cpu)
3844 		return true;
3845 
3846 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3847 }
3848 
3849 bool cpus_share_cache(int this_cpu, int that_cpu)
3850 {
3851 	if (this_cpu == that_cpu)
3852 		return true;
3853 
3854 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3855 }
3856 
3857 /*
3858  * Whether CPUs are share cache resources, which means LLC on non-cluster
3859  * machines and LLC tag or L2 on machines with clusters.
3860  */
3861 bool cpus_share_resources(int this_cpu, int that_cpu)
3862 {
3863 	if (this_cpu == that_cpu)
3864 		return true;
3865 
3866 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3867 }
3868 
3869 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3870 {
3871 	/*
3872 	 * The BPF scheduler may depend on select_task_rq() being invoked during
3873 	 * wakeups. In addition, @p may end up executing on a different CPU
3874 	 * regardless of what happens in the wakeup path making the ttwu_queue
3875 	 * optimization less meaningful. Skip if on SCX.
3876 	 */
3877 	if (task_on_scx(p))
3878 		return false;
3879 
3880 	/*
3881 	 * Do not complicate things with the async wake_list while the CPU is
3882 	 * in hotplug state.
3883 	 */
3884 	if (!cpu_active(cpu))
3885 		return false;
3886 
3887 	/* Ensure the task will still be allowed to run on the CPU. */
3888 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3889 		return false;
3890 
3891 	/*
3892 	 * If the CPU does not share cache, then queue the task on the
3893 	 * remote rqs wakelist to avoid accessing remote data.
3894 	 */
3895 	if (!cpus_share_cache(smp_processor_id(), cpu))
3896 		return true;
3897 
3898 	if (cpu == smp_processor_id())
3899 		return false;
3900 
3901 	/*
3902 	 * If the wakee cpu is idle, or the task is descheduling and the
3903 	 * only running task on the CPU, then use the wakelist to offload
3904 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3905 	 * the current CPU is likely busy. nr_running is checked to
3906 	 * avoid unnecessary task stacking.
3907 	 *
3908 	 * Note that we can only get here with (wakee) p->on_rq=0,
3909 	 * p->on_cpu can be whatever, we've done the dequeue, so
3910 	 * the wakee has been accounted out of ->nr_running.
3911 	 */
3912 	if (!cpu_rq(cpu)->nr_running)
3913 		return true;
3914 
3915 	return false;
3916 }
3917 
3918 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3919 {
3920 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3921 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3922 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3923 		return true;
3924 	}
3925 
3926 	return false;
3927 }
3928 
3929 #else /* !CONFIG_SMP */
3930 
3931 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3932 {
3933 	return false;
3934 }
3935 
3936 #endif /* CONFIG_SMP */
3937 
3938 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3939 {
3940 	struct rq *rq = cpu_rq(cpu);
3941 	struct rq_flags rf;
3942 
3943 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3944 		return;
3945 
3946 	rq_lock(rq, &rf);
3947 	update_rq_clock(rq);
3948 	ttwu_do_activate(rq, p, wake_flags, &rf);
3949 	rq_unlock(rq, &rf);
3950 }
3951 
3952 /*
3953  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3954  *
3955  * The caller holds p::pi_lock if p != current or has preemption
3956  * disabled when p == current.
3957  *
3958  * The rules of saved_state:
3959  *
3960  *   The related locking code always holds p::pi_lock when updating
3961  *   p::saved_state, which means the code is fully serialized in both cases.
3962  *
3963  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
3964  *   No other bits set. This allows to distinguish all wakeup scenarios.
3965  *
3966  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
3967  *   allows us to prevent early wakeup of tasks before they can be run on
3968  *   asymmetric ISA architectures (eg ARMv9).
3969  */
3970 static __always_inline
3971 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3972 {
3973 	int match;
3974 
3975 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3976 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3977 			     state != TASK_RTLOCK_WAIT);
3978 	}
3979 
3980 	*success = !!(match = __task_state_match(p, state));
3981 
3982 	/*
3983 	 * Saved state preserves the task state across blocking on
3984 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
3985 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
3986 	 * because it waits for a lock wakeup or __thaw_task(). Also
3987 	 * indicate success because from the regular waker's point of
3988 	 * view this has succeeded.
3989 	 *
3990 	 * After acquiring the lock the task will restore p::__state
3991 	 * from p::saved_state which ensures that the regular
3992 	 * wakeup is not lost. The restore will also set
3993 	 * p::saved_state to TASK_RUNNING so any further tests will
3994 	 * not result in false positives vs. @success
3995 	 */
3996 	if (match < 0)
3997 		p->saved_state = TASK_RUNNING;
3998 
3999 	return match > 0;
4000 }
4001 
4002 /*
4003  * Notes on Program-Order guarantees on SMP systems.
4004  *
4005  *  MIGRATION
4006  *
4007  * The basic program-order guarantee on SMP systems is that when a task [t]
4008  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4009  * execution on its new CPU [c1].
4010  *
4011  * For migration (of runnable tasks) this is provided by the following means:
4012  *
4013  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4014  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4015  *     rq(c1)->lock (if not at the same time, then in that order).
4016  *  C) LOCK of the rq(c1)->lock scheduling in task
4017  *
4018  * Release/acquire chaining guarantees that B happens after A and C after B.
4019  * Note: the CPU doing B need not be c0 or c1
4020  *
4021  * Example:
4022  *
4023  *   CPU0            CPU1            CPU2
4024  *
4025  *   LOCK rq(0)->lock
4026  *   sched-out X
4027  *   sched-in Y
4028  *   UNLOCK rq(0)->lock
4029  *
4030  *                                   LOCK rq(0)->lock // orders against CPU0
4031  *                                   dequeue X
4032  *                                   UNLOCK rq(0)->lock
4033  *
4034  *                                   LOCK rq(1)->lock
4035  *                                   enqueue X
4036  *                                   UNLOCK rq(1)->lock
4037  *
4038  *                   LOCK rq(1)->lock // orders against CPU2
4039  *                   sched-out Z
4040  *                   sched-in X
4041  *                   UNLOCK rq(1)->lock
4042  *
4043  *
4044  *  BLOCKING -- aka. SLEEP + WAKEUP
4045  *
4046  * For blocking we (obviously) need to provide the same guarantee as for
4047  * migration. However the means are completely different as there is no lock
4048  * chain to provide order. Instead we do:
4049  *
4050  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4051  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4052  *
4053  * Example:
4054  *
4055  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4056  *
4057  *   LOCK rq(0)->lock LOCK X->pi_lock
4058  *   dequeue X
4059  *   sched-out X
4060  *   smp_store_release(X->on_cpu, 0);
4061  *
4062  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4063  *                    X->state = WAKING
4064  *                    set_task_cpu(X,2)
4065  *
4066  *                    LOCK rq(2)->lock
4067  *                    enqueue X
4068  *                    X->state = RUNNING
4069  *                    UNLOCK rq(2)->lock
4070  *
4071  *                                          LOCK rq(2)->lock // orders against CPU1
4072  *                                          sched-out Z
4073  *                                          sched-in X
4074  *                                          UNLOCK rq(2)->lock
4075  *
4076  *                    UNLOCK X->pi_lock
4077  *   UNLOCK rq(0)->lock
4078  *
4079  *
4080  * However, for wakeups there is a second guarantee we must provide, namely we
4081  * must ensure that CONDITION=1 done by the caller can not be reordered with
4082  * accesses to the task state; see try_to_wake_up() and set_current_state().
4083  */
4084 
4085 /**
4086  * try_to_wake_up - wake up a thread
4087  * @p: the thread to be awakened
4088  * @state: the mask of task states that can be woken
4089  * @wake_flags: wake modifier flags (WF_*)
4090  *
4091  * Conceptually does:
4092  *
4093  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4094  *
4095  * If the task was not queued/runnable, also place it back on a runqueue.
4096  *
4097  * This function is atomic against schedule() which would dequeue the task.
4098  *
4099  * It issues a full memory barrier before accessing @p->state, see the comment
4100  * with set_current_state().
4101  *
4102  * Uses p->pi_lock to serialize against concurrent wake-ups.
4103  *
4104  * Relies on p->pi_lock stabilizing:
4105  *  - p->sched_class
4106  *  - p->cpus_ptr
4107  *  - p->sched_task_group
4108  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4109  *
4110  * Tries really hard to only take one task_rq(p)->lock for performance.
4111  * Takes rq->lock in:
4112  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4113  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4114  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4115  *
4116  * As a consequence we race really badly with just about everything. See the
4117  * many memory barriers and their comments for details.
4118  *
4119  * Return: %true if @p->state changes (an actual wakeup was done),
4120  *	   %false otherwise.
4121  */
4122 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4123 {
4124 	guard(preempt)();
4125 	int cpu, success = 0;
4126 
4127 	wake_flags |= WF_TTWU;
4128 
4129 	if (p == current) {
4130 		/*
4131 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4132 		 * == smp_processor_id()'. Together this means we can special
4133 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4134 		 * without taking any locks.
4135 		 *
4136 		 * Specifically, given current runs ttwu() we must be before
4137 		 * schedule()'s block_task(), as such this must not observe
4138 		 * sched_delayed.
4139 		 *
4140 		 * In particular:
4141 		 *  - we rely on Program-Order guarantees for all the ordering,
4142 		 *  - we're serialized against set_special_state() by virtue of
4143 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4144 		 */
4145 		SCHED_WARN_ON(p->se.sched_delayed);
4146 		if (!ttwu_state_match(p, state, &success))
4147 			goto out;
4148 
4149 		trace_sched_waking(p);
4150 		ttwu_do_wakeup(p);
4151 		goto out;
4152 	}
4153 
4154 	/*
4155 	 * If we are going to wake up a thread waiting for CONDITION we
4156 	 * need to ensure that CONDITION=1 done by the caller can not be
4157 	 * reordered with p->state check below. This pairs with smp_store_mb()
4158 	 * in set_current_state() that the waiting thread does.
4159 	 */
4160 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4161 		smp_mb__after_spinlock();
4162 		if (!ttwu_state_match(p, state, &success))
4163 			break;
4164 
4165 		trace_sched_waking(p);
4166 
4167 		/*
4168 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4169 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4170 		 * in smp_cond_load_acquire() below.
4171 		 *
4172 		 * sched_ttwu_pending()			try_to_wake_up()
4173 		 *   STORE p->on_rq = 1			  LOAD p->state
4174 		 *   UNLOCK rq->lock
4175 		 *
4176 		 * __schedule() (switch to task 'p')
4177 		 *   LOCK rq->lock			  smp_rmb();
4178 		 *   smp_mb__after_spinlock();
4179 		 *   UNLOCK rq->lock
4180 		 *
4181 		 * [task p]
4182 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4183 		 *
4184 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4185 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4186 		 *
4187 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4188 		 */
4189 		smp_rmb();
4190 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4191 			break;
4192 
4193 #ifdef CONFIG_SMP
4194 		/*
4195 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4196 		 * possible to, falsely, observe p->on_cpu == 0.
4197 		 *
4198 		 * One must be running (->on_cpu == 1) in order to remove oneself
4199 		 * from the runqueue.
4200 		 *
4201 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4202 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4203 		 *   UNLOCK rq->lock
4204 		 *
4205 		 * __schedule() (put 'p' to sleep)
4206 		 *   LOCK rq->lock			  smp_rmb();
4207 		 *   smp_mb__after_spinlock();
4208 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4209 		 *
4210 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4211 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4212 		 *
4213 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4214 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4215 		 * care about it's own p->state. See the comment in __schedule().
4216 		 */
4217 		smp_acquire__after_ctrl_dep();
4218 
4219 		/*
4220 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4221 		 * == 0), which means we need to do an enqueue, change p->state to
4222 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4223 		 * enqueue, such as ttwu_queue_wakelist().
4224 		 */
4225 		WRITE_ONCE(p->__state, TASK_WAKING);
4226 
4227 		/*
4228 		 * If the owning (remote) CPU is still in the middle of schedule() with
4229 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4230 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4231 		 * let the waker make forward progress. This is safe because IRQs are
4232 		 * disabled and the IPI will deliver after on_cpu is cleared.
4233 		 *
4234 		 * Ensure we load task_cpu(p) after p->on_cpu:
4235 		 *
4236 		 * set_task_cpu(p, cpu);
4237 		 *   STORE p->cpu = @cpu
4238 		 * __schedule() (switch to task 'p')
4239 		 *   LOCK rq->lock
4240 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4241 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4242 		 *
4243 		 * to ensure we observe the correct CPU on which the task is currently
4244 		 * scheduling.
4245 		 */
4246 		if (smp_load_acquire(&p->on_cpu) &&
4247 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4248 			break;
4249 
4250 		/*
4251 		 * If the owning (remote) CPU is still in the middle of schedule() with
4252 		 * this task as prev, wait until it's done referencing the task.
4253 		 *
4254 		 * Pairs with the smp_store_release() in finish_task().
4255 		 *
4256 		 * This ensures that tasks getting woken will be fully ordered against
4257 		 * their previous state and preserve Program Order.
4258 		 */
4259 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4260 
4261 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4262 		if (task_cpu(p) != cpu) {
4263 			if (p->in_iowait) {
4264 				delayacct_blkio_end(p);
4265 				atomic_dec(&task_rq(p)->nr_iowait);
4266 			}
4267 
4268 			wake_flags |= WF_MIGRATED;
4269 			psi_ttwu_dequeue(p);
4270 			set_task_cpu(p, cpu);
4271 		}
4272 #else
4273 		cpu = task_cpu(p);
4274 #endif /* CONFIG_SMP */
4275 
4276 		ttwu_queue(p, cpu, wake_flags);
4277 	}
4278 out:
4279 	if (success)
4280 		ttwu_stat(p, task_cpu(p), wake_flags);
4281 
4282 	return success;
4283 }
4284 
4285 static bool __task_needs_rq_lock(struct task_struct *p)
4286 {
4287 	unsigned int state = READ_ONCE(p->__state);
4288 
4289 	/*
4290 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4291 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4292 	 * locks at the end, see ttwu_queue_wakelist().
4293 	 */
4294 	if (state == TASK_RUNNING || state == TASK_WAKING)
4295 		return true;
4296 
4297 	/*
4298 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4299 	 * possible to, falsely, observe p->on_rq == 0.
4300 	 *
4301 	 * See try_to_wake_up() for a longer comment.
4302 	 */
4303 	smp_rmb();
4304 	if (p->on_rq)
4305 		return true;
4306 
4307 #ifdef CONFIG_SMP
4308 	/*
4309 	 * Ensure the task has finished __schedule() and will not be referenced
4310 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4311 	 */
4312 	smp_rmb();
4313 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4314 #endif
4315 
4316 	return false;
4317 }
4318 
4319 /**
4320  * task_call_func - Invoke a function on task in fixed state
4321  * @p: Process for which the function is to be invoked, can be @current.
4322  * @func: Function to invoke.
4323  * @arg: Argument to function.
4324  *
4325  * Fix the task in it's current state by avoiding wakeups and or rq operations
4326  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4327  * to work out what the state is, if required.  Given that @func can be invoked
4328  * with a runqueue lock held, it had better be quite lightweight.
4329  *
4330  * Returns:
4331  *   Whatever @func returns
4332  */
4333 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4334 {
4335 	struct rq *rq = NULL;
4336 	struct rq_flags rf;
4337 	int ret;
4338 
4339 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4340 
4341 	if (__task_needs_rq_lock(p))
4342 		rq = __task_rq_lock(p, &rf);
4343 
4344 	/*
4345 	 * At this point the task is pinned; either:
4346 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4347 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4348 	 *  - queued, and we're holding off schedule	 (rq->lock)
4349 	 *  - running, and we're holding off de-schedule (rq->lock)
4350 	 *
4351 	 * The called function (@func) can use: task_curr(), p->on_rq and
4352 	 * p->__state to differentiate between these states.
4353 	 */
4354 	ret = func(p, arg);
4355 
4356 	if (rq)
4357 		rq_unlock(rq, &rf);
4358 
4359 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4360 	return ret;
4361 }
4362 
4363 /**
4364  * cpu_curr_snapshot - Return a snapshot of the currently running task
4365  * @cpu: The CPU on which to snapshot the task.
4366  *
4367  * Returns the task_struct pointer of the task "currently" running on
4368  * the specified CPU.
4369  *
4370  * If the specified CPU was offline, the return value is whatever it
4371  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4372  * task, but there is no guarantee.  Callers wishing a useful return
4373  * value must take some action to ensure that the specified CPU remains
4374  * online throughout.
4375  *
4376  * This function executes full memory barriers before and after fetching
4377  * the pointer, which permits the caller to confine this function's fetch
4378  * with respect to the caller's accesses to other shared variables.
4379  */
4380 struct task_struct *cpu_curr_snapshot(int cpu)
4381 {
4382 	struct rq *rq = cpu_rq(cpu);
4383 	struct task_struct *t;
4384 	struct rq_flags rf;
4385 
4386 	rq_lock_irqsave(rq, &rf);
4387 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4388 	t = rcu_dereference(cpu_curr(cpu));
4389 	rq_unlock_irqrestore(rq, &rf);
4390 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4391 
4392 	return t;
4393 }
4394 
4395 /**
4396  * wake_up_process - Wake up a specific process
4397  * @p: The process to be woken up.
4398  *
4399  * Attempt to wake up the nominated process and move it to the set of runnable
4400  * processes.
4401  *
4402  * Return: 1 if the process was woken up, 0 if it was already running.
4403  *
4404  * This function executes a full memory barrier before accessing the task state.
4405  */
4406 int wake_up_process(struct task_struct *p)
4407 {
4408 	return try_to_wake_up(p, TASK_NORMAL, 0);
4409 }
4410 EXPORT_SYMBOL(wake_up_process);
4411 
4412 int wake_up_state(struct task_struct *p, unsigned int state)
4413 {
4414 	return try_to_wake_up(p, state, 0);
4415 }
4416 
4417 /*
4418  * Perform scheduler related setup for a newly forked process p.
4419  * p is forked by current.
4420  *
4421  * __sched_fork() is basic setup used by init_idle() too:
4422  */
4423 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4424 {
4425 	p->on_rq			= 0;
4426 
4427 	p->se.on_rq			= 0;
4428 	p->se.exec_start		= 0;
4429 	p->se.sum_exec_runtime		= 0;
4430 	p->se.prev_sum_exec_runtime	= 0;
4431 	p->se.nr_migrations		= 0;
4432 	p->se.vruntime			= 0;
4433 	p->se.vlag			= 0;
4434 	INIT_LIST_HEAD(&p->se.group_node);
4435 
4436 	/* A delayed task cannot be in clone(). */
4437 	SCHED_WARN_ON(p->se.sched_delayed);
4438 
4439 #ifdef CONFIG_FAIR_GROUP_SCHED
4440 	p->se.cfs_rq			= NULL;
4441 #endif
4442 
4443 #ifdef CONFIG_SCHEDSTATS
4444 	/* Even if schedstat is disabled, there should not be garbage */
4445 	memset(&p->stats, 0, sizeof(p->stats));
4446 #endif
4447 
4448 	init_dl_entity(&p->dl);
4449 
4450 	INIT_LIST_HEAD(&p->rt.run_list);
4451 	p->rt.timeout		= 0;
4452 	p->rt.time_slice	= sched_rr_timeslice;
4453 	p->rt.on_rq		= 0;
4454 	p->rt.on_list		= 0;
4455 
4456 #ifdef CONFIG_SCHED_CLASS_EXT
4457 	init_scx_entity(&p->scx);
4458 #endif
4459 
4460 #ifdef CONFIG_PREEMPT_NOTIFIERS
4461 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4462 #endif
4463 
4464 #ifdef CONFIG_COMPACTION
4465 	p->capture_control = NULL;
4466 #endif
4467 	init_numa_balancing(clone_flags, p);
4468 #ifdef CONFIG_SMP
4469 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4470 	p->migration_pending = NULL;
4471 #endif
4472 	init_sched_mm_cid(p);
4473 }
4474 
4475 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4476 
4477 #ifdef CONFIG_NUMA_BALANCING
4478 
4479 int sysctl_numa_balancing_mode;
4480 
4481 static void __set_numabalancing_state(bool enabled)
4482 {
4483 	if (enabled)
4484 		static_branch_enable(&sched_numa_balancing);
4485 	else
4486 		static_branch_disable(&sched_numa_balancing);
4487 }
4488 
4489 void set_numabalancing_state(bool enabled)
4490 {
4491 	if (enabled)
4492 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4493 	else
4494 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4495 	__set_numabalancing_state(enabled);
4496 }
4497 
4498 #ifdef CONFIG_PROC_SYSCTL
4499 static void reset_memory_tiering(void)
4500 {
4501 	struct pglist_data *pgdat;
4502 
4503 	for_each_online_pgdat(pgdat) {
4504 		pgdat->nbp_threshold = 0;
4505 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4506 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4507 	}
4508 }
4509 
4510 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4511 			  void *buffer, size_t *lenp, loff_t *ppos)
4512 {
4513 	struct ctl_table t;
4514 	int err;
4515 	int state = sysctl_numa_balancing_mode;
4516 
4517 	if (write && !capable(CAP_SYS_ADMIN))
4518 		return -EPERM;
4519 
4520 	t = *table;
4521 	t.data = &state;
4522 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4523 	if (err < 0)
4524 		return err;
4525 	if (write) {
4526 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4527 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4528 			reset_memory_tiering();
4529 		sysctl_numa_balancing_mode = state;
4530 		__set_numabalancing_state(state);
4531 	}
4532 	return err;
4533 }
4534 #endif
4535 #endif
4536 
4537 #ifdef CONFIG_SCHEDSTATS
4538 
4539 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4540 
4541 static void set_schedstats(bool enabled)
4542 {
4543 	if (enabled)
4544 		static_branch_enable(&sched_schedstats);
4545 	else
4546 		static_branch_disable(&sched_schedstats);
4547 }
4548 
4549 void force_schedstat_enabled(void)
4550 {
4551 	if (!schedstat_enabled()) {
4552 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4553 		static_branch_enable(&sched_schedstats);
4554 	}
4555 }
4556 
4557 static int __init setup_schedstats(char *str)
4558 {
4559 	int ret = 0;
4560 	if (!str)
4561 		goto out;
4562 
4563 	if (!strcmp(str, "enable")) {
4564 		set_schedstats(true);
4565 		ret = 1;
4566 	} else if (!strcmp(str, "disable")) {
4567 		set_schedstats(false);
4568 		ret = 1;
4569 	}
4570 out:
4571 	if (!ret)
4572 		pr_warn("Unable to parse schedstats=\n");
4573 
4574 	return ret;
4575 }
4576 __setup("schedstats=", setup_schedstats);
4577 
4578 #ifdef CONFIG_PROC_SYSCTL
4579 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4580 		size_t *lenp, loff_t *ppos)
4581 {
4582 	struct ctl_table t;
4583 	int err;
4584 	int state = static_branch_likely(&sched_schedstats);
4585 
4586 	if (write && !capable(CAP_SYS_ADMIN))
4587 		return -EPERM;
4588 
4589 	t = *table;
4590 	t.data = &state;
4591 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4592 	if (err < 0)
4593 		return err;
4594 	if (write)
4595 		set_schedstats(state);
4596 	return err;
4597 }
4598 #endif /* CONFIG_PROC_SYSCTL */
4599 #endif /* CONFIG_SCHEDSTATS */
4600 
4601 #ifdef CONFIG_SYSCTL
4602 static struct ctl_table sched_core_sysctls[] = {
4603 #ifdef CONFIG_SCHEDSTATS
4604 	{
4605 		.procname       = "sched_schedstats",
4606 		.data           = NULL,
4607 		.maxlen         = sizeof(unsigned int),
4608 		.mode           = 0644,
4609 		.proc_handler   = sysctl_schedstats,
4610 		.extra1         = SYSCTL_ZERO,
4611 		.extra2         = SYSCTL_ONE,
4612 	},
4613 #endif /* CONFIG_SCHEDSTATS */
4614 #ifdef CONFIG_UCLAMP_TASK
4615 	{
4616 		.procname       = "sched_util_clamp_min",
4617 		.data           = &sysctl_sched_uclamp_util_min,
4618 		.maxlen         = sizeof(unsigned int),
4619 		.mode           = 0644,
4620 		.proc_handler   = sysctl_sched_uclamp_handler,
4621 	},
4622 	{
4623 		.procname       = "sched_util_clamp_max",
4624 		.data           = &sysctl_sched_uclamp_util_max,
4625 		.maxlen         = sizeof(unsigned int),
4626 		.mode           = 0644,
4627 		.proc_handler   = sysctl_sched_uclamp_handler,
4628 	},
4629 	{
4630 		.procname       = "sched_util_clamp_min_rt_default",
4631 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4632 		.maxlen         = sizeof(unsigned int),
4633 		.mode           = 0644,
4634 		.proc_handler   = sysctl_sched_uclamp_handler,
4635 	},
4636 #endif /* CONFIG_UCLAMP_TASK */
4637 #ifdef CONFIG_NUMA_BALANCING
4638 	{
4639 		.procname	= "numa_balancing",
4640 		.data		= NULL, /* filled in by handler */
4641 		.maxlen		= sizeof(unsigned int),
4642 		.mode		= 0644,
4643 		.proc_handler	= sysctl_numa_balancing,
4644 		.extra1		= SYSCTL_ZERO,
4645 		.extra2		= SYSCTL_FOUR,
4646 	},
4647 #endif /* CONFIG_NUMA_BALANCING */
4648 };
4649 static int __init sched_core_sysctl_init(void)
4650 {
4651 	register_sysctl_init("kernel", sched_core_sysctls);
4652 	return 0;
4653 }
4654 late_initcall(sched_core_sysctl_init);
4655 #endif /* CONFIG_SYSCTL */
4656 
4657 /*
4658  * fork()/clone()-time setup:
4659  */
4660 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4661 {
4662 	__sched_fork(clone_flags, p);
4663 	/*
4664 	 * We mark the process as NEW here. This guarantees that
4665 	 * nobody will actually run it, and a signal or other external
4666 	 * event cannot wake it up and insert it on the runqueue either.
4667 	 */
4668 	p->__state = TASK_NEW;
4669 
4670 	/*
4671 	 * Make sure we do not leak PI boosting priority to the child.
4672 	 */
4673 	p->prio = current->normal_prio;
4674 
4675 	uclamp_fork(p);
4676 
4677 	/*
4678 	 * Revert to default priority/policy on fork if requested.
4679 	 */
4680 	if (unlikely(p->sched_reset_on_fork)) {
4681 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4682 			p->policy = SCHED_NORMAL;
4683 			p->static_prio = NICE_TO_PRIO(0);
4684 			p->rt_priority = 0;
4685 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4686 			p->static_prio = NICE_TO_PRIO(0);
4687 
4688 		p->prio = p->normal_prio = p->static_prio;
4689 		set_load_weight(p, false);
4690 		p->se.custom_slice = 0;
4691 		p->se.slice = sysctl_sched_base_slice;
4692 
4693 		/*
4694 		 * We don't need the reset flag anymore after the fork. It has
4695 		 * fulfilled its duty:
4696 		 */
4697 		p->sched_reset_on_fork = 0;
4698 	}
4699 
4700 	if (dl_prio(p->prio))
4701 		return -EAGAIN;
4702 
4703 	scx_pre_fork(p);
4704 
4705 	if (rt_prio(p->prio)) {
4706 		p->sched_class = &rt_sched_class;
4707 #ifdef CONFIG_SCHED_CLASS_EXT
4708 	} else if (task_should_scx(p)) {
4709 		p->sched_class = &ext_sched_class;
4710 #endif
4711 	} else {
4712 		p->sched_class = &fair_sched_class;
4713 	}
4714 
4715 	init_entity_runnable_average(&p->se);
4716 
4717 
4718 #ifdef CONFIG_SCHED_INFO
4719 	if (likely(sched_info_on()))
4720 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4721 #endif
4722 #if defined(CONFIG_SMP)
4723 	p->on_cpu = 0;
4724 #endif
4725 	init_task_preempt_count(p);
4726 #ifdef CONFIG_SMP
4727 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4728 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4729 #endif
4730 	return 0;
4731 }
4732 
4733 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4734 {
4735 	unsigned long flags;
4736 
4737 	/*
4738 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4739 	 * required yet, but lockdep gets upset if rules are violated.
4740 	 */
4741 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4742 #ifdef CONFIG_CGROUP_SCHED
4743 	if (1) {
4744 		struct task_group *tg;
4745 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4746 				  struct task_group, css);
4747 		tg = autogroup_task_group(p, tg);
4748 		p->sched_task_group = tg;
4749 	}
4750 #endif
4751 	rseq_migrate(p);
4752 	/*
4753 	 * We're setting the CPU for the first time, we don't migrate,
4754 	 * so use __set_task_cpu().
4755 	 */
4756 	__set_task_cpu(p, smp_processor_id());
4757 	if (p->sched_class->task_fork)
4758 		p->sched_class->task_fork(p);
4759 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4760 
4761 	return scx_fork(p);
4762 }
4763 
4764 void sched_cancel_fork(struct task_struct *p)
4765 {
4766 	scx_cancel_fork(p);
4767 }
4768 
4769 void sched_post_fork(struct task_struct *p)
4770 {
4771 	uclamp_post_fork(p);
4772 	scx_post_fork(p);
4773 }
4774 
4775 unsigned long to_ratio(u64 period, u64 runtime)
4776 {
4777 	if (runtime == RUNTIME_INF)
4778 		return BW_UNIT;
4779 
4780 	/*
4781 	 * Doing this here saves a lot of checks in all
4782 	 * the calling paths, and returning zero seems
4783 	 * safe for them anyway.
4784 	 */
4785 	if (period == 0)
4786 		return 0;
4787 
4788 	return div64_u64(runtime << BW_SHIFT, period);
4789 }
4790 
4791 /*
4792  * wake_up_new_task - wake up a newly created task for the first time.
4793  *
4794  * This function will do some initial scheduler statistics housekeeping
4795  * that must be done for every newly created context, then puts the task
4796  * on the runqueue and wakes it.
4797  */
4798 void wake_up_new_task(struct task_struct *p)
4799 {
4800 	struct rq_flags rf;
4801 	struct rq *rq;
4802 	int wake_flags = WF_FORK;
4803 
4804 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4805 	WRITE_ONCE(p->__state, TASK_RUNNING);
4806 #ifdef CONFIG_SMP
4807 	/*
4808 	 * Fork balancing, do it here and not earlier because:
4809 	 *  - cpus_ptr can change in the fork path
4810 	 *  - any previously selected CPU might disappear through hotplug
4811 	 *
4812 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4813 	 * as we're not fully set-up yet.
4814 	 */
4815 	p->recent_used_cpu = task_cpu(p);
4816 	rseq_migrate(p);
4817 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4818 #endif
4819 	rq = __task_rq_lock(p, &rf);
4820 	update_rq_clock(rq);
4821 	post_init_entity_util_avg(p);
4822 
4823 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4824 	trace_sched_wakeup_new(p);
4825 	wakeup_preempt(rq, p, wake_flags);
4826 #ifdef CONFIG_SMP
4827 	if (p->sched_class->task_woken) {
4828 		/*
4829 		 * Nothing relies on rq->lock after this, so it's fine to
4830 		 * drop it.
4831 		 */
4832 		rq_unpin_lock(rq, &rf);
4833 		p->sched_class->task_woken(rq, p);
4834 		rq_repin_lock(rq, &rf);
4835 	}
4836 #endif
4837 	task_rq_unlock(rq, p, &rf);
4838 }
4839 
4840 #ifdef CONFIG_PREEMPT_NOTIFIERS
4841 
4842 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4843 
4844 void preempt_notifier_inc(void)
4845 {
4846 	static_branch_inc(&preempt_notifier_key);
4847 }
4848 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4849 
4850 void preempt_notifier_dec(void)
4851 {
4852 	static_branch_dec(&preempt_notifier_key);
4853 }
4854 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4855 
4856 /**
4857  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4858  * @notifier: notifier struct to register
4859  */
4860 void preempt_notifier_register(struct preempt_notifier *notifier)
4861 {
4862 	if (!static_branch_unlikely(&preempt_notifier_key))
4863 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4864 
4865 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4866 }
4867 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4868 
4869 /**
4870  * preempt_notifier_unregister - no longer interested in preemption notifications
4871  * @notifier: notifier struct to unregister
4872  *
4873  * This is *not* safe to call from within a preemption notifier.
4874  */
4875 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4876 {
4877 	hlist_del(&notifier->link);
4878 }
4879 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4880 
4881 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4882 {
4883 	struct preempt_notifier *notifier;
4884 
4885 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4886 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4887 }
4888 
4889 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4890 {
4891 	if (static_branch_unlikely(&preempt_notifier_key))
4892 		__fire_sched_in_preempt_notifiers(curr);
4893 }
4894 
4895 static void
4896 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4897 				   struct task_struct *next)
4898 {
4899 	struct preempt_notifier *notifier;
4900 
4901 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4902 		notifier->ops->sched_out(notifier, next);
4903 }
4904 
4905 static __always_inline void
4906 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4907 				 struct task_struct *next)
4908 {
4909 	if (static_branch_unlikely(&preempt_notifier_key))
4910 		__fire_sched_out_preempt_notifiers(curr, next);
4911 }
4912 
4913 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4914 
4915 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4916 {
4917 }
4918 
4919 static inline void
4920 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4921 				 struct task_struct *next)
4922 {
4923 }
4924 
4925 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4926 
4927 static inline void prepare_task(struct task_struct *next)
4928 {
4929 #ifdef CONFIG_SMP
4930 	/*
4931 	 * Claim the task as running, we do this before switching to it
4932 	 * such that any running task will have this set.
4933 	 *
4934 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4935 	 * its ordering comment.
4936 	 */
4937 	WRITE_ONCE(next->on_cpu, 1);
4938 #endif
4939 }
4940 
4941 static inline void finish_task(struct task_struct *prev)
4942 {
4943 #ifdef CONFIG_SMP
4944 	/*
4945 	 * This must be the very last reference to @prev from this CPU. After
4946 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4947 	 * must ensure this doesn't happen until the switch is completely
4948 	 * finished.
4949 	 *
4950 	 * In particular, the load of prev->state in finish_task_switch() must
4951 	 * happen before this.
4952 	 *
4953 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4954 	 */
4955 	smp_store_release(&prev->on_cpu, 0);
4956 #endif
4957 }
4958 
4959 #ifdef CONFIG_SMP
4960 
4961 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4962 {
4963 	void (*func)(struct rq *rq);
4964 	struct balance_callback *next;
4965 
4966 	lockdep_assert_rq_held(rq);
4967 
4968 	while (head) {
4969 		func = (void (*)(struct rq *))head->func;
4970 		next = head->next;
4971 		head->next = NULL;
4972 		head = next;
4973 
4974 		func(rq);
4975 	}
4976 }
4977 
4978 static void balance_push(struct rq *rq);
4979 
4980 /*
4981  * balance_push_callback is a right abuse of the callback interface and plays
4982  * by significantly different rules.
4983  *
4984  * Where the normal balance_callback's purpose is to be ran in the same context
4985  * that queued it (only later, when it's safe to drop rq->lock again),
4986  * balance_push_callback is specifically targeted at __schedule().
4987  *
4988  * This abuse is tolerated because it places all the unlikely/odd cases behind
4989  * a single test, namely: rq->balance_callback == NULL.
4990  */
4991 struct balance_callback balance_push_callback = {
4992 	.next = NULL,
4993 	.func = balance_push,
4994 };
4995 
4996 static inline struct balance_callback *
4997 __splice_balance_callbacks(struct rq *rq, bool split)
4998 {
4999 	struct balance_callback *head = rq->balance_callback;
5000 
5001 	if (likely(!head))
5002 		return NULL;
5003 
5004 	lockdep_assert_rq_held(rq);
5005 	/*
5006 	 * Must not take balance_push_callback off the list when
5007 	 * splice_balance_callbacks() and balance_callbacks() are not
5008 	 * in the same rq->lock section.
5009 	 *
5010 	 * In that case it would be possible for __schedule() to interleave
5011 	 * and observe the list empty.
5012 	 */
5013 	if (split && head == &balance_push_callback)
5014 		head = NULL;
5015 	else
5016 		rq->balance_callback = NULL;
5017 
5018 	return head;
5019 }
5020 
5021 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5022 {
5023 	return __splice_balance_callbacks(rq, true);
5024 }
5025 
5026 static void __balance_callbacks(struct rq *rq)
5027 {
5028 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5029 }
5030 
5031 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5032 {
5033 	unsigned long flags;
5034 
5035 	if (unlikely(head)) {
5036 		raw_spin_rq_lock_irqsave(rq, flags);
5037 		do_balance_callbacks(rq, head);
5038 		raw_spin_rq_unlock_irqrestore(rq, flags);
5039 	}
5040 }
5041 
5042 #else
5043 
5044 static inline void __balance_callbacks(struct rq *rq)
5045 {
5046 }
5047 
5048 #endif
5049 
5050 static inline void
5051 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5052 {
5053 	/*
5054 	 * Since the runqueue lock will be released by the next
5055 	 * task (which is an invalid locking op but in the case
5056 	 * of the scheduler it's an obvious special-case), so we
5057 	 * do an early lockdep release here:
5058 	 */
5059 	rq_unpin_lock(rq, rf);
5060 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5061 #ifdef CONFIG_DEBUG_SPINLOCK
5062 	/* this is a valid case when another task releases the spinlock */
5063 	rq_lockp(rq)->owner = next;
5064 #endif
5065 }
5066 
5067 static inline void finish_lock_switch(struct rq *rq)
5068 {
5069 	/*
5070 	 * If we are tracking spinlock dependencies then we have to
5071 	 * fix up the runqueue lock - which gets 'carried over' from
5072 	 * prev into current:
5073 	 */
5074 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5075 	__balance_callbacks(rq);
5076 	raw_spin_rq_unlock_irq(rq);
5077 }
5078 
5079 /*
5080  * NOP if the arch has not defined these:
5081  */
5082 
5083 #ifndef prepare_arch_switch
5084 # define prepare_arch_switch(next)	do { } while (0)
5085 #endif
5086 
5087 #ifndef finish_arch_post_lock_switch
5088 # define finish_arch_post_lock_switch()	do { } while (0)
5089 #endif
5090 
5091 static inline void kmap_local_sched_out(void)
5092 {
5093 #ifdef CONFIG_KMAP_LOCAL
5094 	if (unlikely(current->kmap_ctrl.idx))
5095 		__kmap_local_sched_out();
5096 #endif
5097 }
5098 
5099 static inline void kmap_local_sched_in(void)
5100 {
5101 #ifdef CONFIG_KMAP_LOCAL
5102 	if (unlikely(current->kmap_ctrl.idx))
5103 		__kmap_local_sched_in();
5104 #endif
5105 }
5106 
5107 /**
5108  * prepare_task_switch - prepare to switch tasks
5109  * @rq: the runqueue preparing to switch
5110  * @prev: the current task that is being switched out
5111  * @next: the task we are going to switch to.
5112  *
5113  * This is called with the rq lock held and interrupts off. It must
5114  * be paired with a subsequent finish_task_switch after the context
5115  * switch.
5116  *
5117  * prepare_task_switch sets up locking and calls architecture specific
5118  * hooks.
5119  */
5120 static inline void
5121 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5122 		    struct task_struct *next)
5123 {
5124 	kcov_prepare_switch(prev);
5125 	sched_info_switch(rq, prev, next);
5126 	perf_event_task_sched_out(prev, next);
5127 	rseq_preempt(prev);
5128 	fire_sched_out_preempt_notifiers(prev, next);
5129 	kmap_local_sched_out();
5130 	prepare_task(next);
5131 	prepare_arch_switch(next);
5132 }
5133 
5134 /**
5135  * finish_task_switch - clean up after a task-switch
5136  * @prev: the thread we just switched away from.
5137  *
5138  * finish_task_switch must be called after the context switch, paired
5139  * with a prepare_task_switch call before the context switch.
5140  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5141  * and do any other architecture-specific cleanup actions.
5142  *
5143  * Note that we may have delayed dropping an mm in context_switch(). If
5144  * so, we finish that here outside of the runqueue lock. (Doing it
5145  * with the lock held can cause deadlocks; see schedule() for
5146  * details.)
5147  *
5148  * The context switch have flipped the stack from under us and restored the
5149  * local variables which were saved when this task called schedule() in the
5150  * past. 'prev == current' is still correct but we need to recalculate this_rq
5151  * because prev may have moved to another CPU.
5152  */
5153 static struct rq *finish_task_switch(struct task_struct *prev)
5154 	__releases(rq->lock)
5155 {
5156 	struct rq *rq = this_rq();
5157 	struct mm_struct *mm = rq->prev_mm;
5158 	unsigned int prev_state;
5159 
5160 	/*
5161 	 * The previous task will have left us with a preempt_count of 2
5162 	 * because it left us after:
5163 	 *
5164 	 *	schedule()
5165 	 *	  preempt_disable();			// 1
5166 	 *	  __schedule()
5167 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5168 	 *
5169 	 * Also, see FORK_PREEMPT_COUNT.
5170 	 */
5171 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5172 		      "corrupted preempt_count: %s/%d/0x%x\n",
5173 		      current->comm, current->pid, preempt_count()))
5174 		preempt_count_set(FORK_PREEMPT_COUNT);
5175 
5176 	rq->prev_mm = NULL;
5177 
5178 	/*
5179 	 * A task struct has one reference for the use as "current".
5180 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5181 	 * schedule one last time. The schedule call will never return, and
5182 	 * the scheduled task must drop that reference.
5183 	 *
5184 	 * We must observe prev->state before clearing prev->on_cpu (in
5185 	 * finish_task), otherwise a concurrent wakeup can get prev
5186 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5187 	 * transition, resulting in a double drop.
5188 	 */
5189 	prev_state = READ_ONCE(prev->__state);
5190 	vtime_task_switch(prev);
5191 	perf_event_task_sched_in(prev, current);
5192 	finish_task(prev);
5193 	tick_nohz_task_switch();
5194 	finish_lock_switch(rq);
5195 	finish_arch_post_lock_switch();
5196 	kcov_finish_switch(current);
5197 	/*
5198 	 * kmap_local_sched_out() is invoked with rq::lock held and
5199 	 * interrupts disabled. There is no requirement for that, but the
5200 	 * sched out code does not have an interrupt enabled section.
5201 	 * Restoring the maps on sched in does not require interrupts being
5202 	 * disabled either.
5203 	 */
5204 	kmap_local_sched_in();
5205 
5206 	fire_sched_in_preempt_notifiers(current);
5207 	/*
5208 	 * When switching through a kernel thread, the loop in
5209 	 * membarrier_{private,global}_expedited() may have observed that
5210 	 * kernel thread and not issued an IPI. It is therefore possible to
5211 	 * schedule between user->kernel->user threads without passing though
5212 	 * switch_mm(). Membarrier requires a barrier after storing to
5213 	 * rq->curr, before returning to userspace, so provide them here:
5214 	 *
5215 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5216 	 *   provided by mmdrop_lazy_tlb(),
5217 	 * - a sync_core for SYNC_CORE.
5218 	 */
5219 	if (mm) {
5220 		membarrier_mm_sync_core_before_usermode(mm);
5221 		mmdrop_lazy_tlb_sched(mm);
5222 	}
5223 
5224 	if (unlikely(prev_state == TASK_DEAD)) {
5225 		if (prev->sched_class->task_dead)
5226 			prev->sched_class->task_dead(prev);
5227 
5228 		/* Task is done with its stack. */
5229 		put_task_stack(prev);
5230 
5231 		put_task_struct_rcu_user(prev);
5232 	}
5233 
5234 	return rq;
5235 }
5236 
5237 /**
5238  * schedule_tail - first thing a freshly forked thread must call.
5239  * @prev: the thread we just switched away from.
5240  */
5241 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5242 	__releases(rq->lock)
5243 {
5244 	/*
5245 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5246 	 * finish_task_switch() for details.
5247 	 *
5248 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5249 	 * and the preempt_enable() will end up enabling preemption (on
5250 	 * PREEMPT_COUNT kernels).
5251 	 */
5252 
5253 	finish_task_switch(prev);
5254 	preempt_enable();
5255 
5256 	if (current->set_child_tid)
5257 		put_user(task_pid_vnr(current), current->set_child_tid);
5258 
5259 	calculate_sigpending();
5260 }
5261 
5262 /*
5263  * context_switch - switch to the new MM and the new thread's register state.
5264  */
5265 static __always_inline struct rq *
5266 context_switch(struct rq *rq, struct task_struct *prev,
5267 	       struct task_struct *next, struct rq_flags *rf)
5268 {
5269 	prepare_task_switch(rq, prev, next);
5270 
5271 	/*
5272 	 * For paravirt, this is coupled with an exit in switch_to to
5273 	 * combine the page table reload and the switch backend into
5274 	 * one hypercall.
5275 	 */
5276 	arch_start_context_switch(prev);
5277 
5278 	/*
5279 	 * kernel -> kernel   lazy + transfer active
5280 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5281 	 *
5282 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5283 	 *   user ->   user   switch
5284 	 *
5285 	 * switch_mm_cid() needs to be updated if the barriers provided
5286 	 * by context_switch() are modified.
5287 	 */
5288 	if (!next->mm) {                                // to kernel
5289 		enter_lazy_tlb(prev->active_mm, next);
5290 
5291 		next->active_mm = prev->active_mm;
5292 		if (prev->mm)                           // from user
5293 			mmgrab_lazy_tlb(prev->active_mm);
5294 		else
5295 			prev->active_mm = NULL;
5296 	} else {                                        // to user
5297 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5298 		/*
5299 		 * sys_membarrier() requires an smp_mb() between setting
5300 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5301 		 *
5302 		 * The below provides this either through switch_mm(), or in
5303 		 * case 'prev->active_mm == next->mm' through
5304 		 * finish_task_switch()'s mmdrop().
5305 		 */
5306 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5307 		lru_gen_use_mm(next->mm);
5308 
5309 		if (!prev->mm) {                        // from kernel
5310 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5311 			rq->prev_mm = prev->active_mm;
5312 			prev->active_mm = NULL;
5313 		}
5314 	}
5315 
5316 	/* switch_mm_cid() requires the memory barriers above. */
5317 	switch_mm_cid(rq, prev, next);
5318 
5319 	prepare_lock_switch(rq, next, rf);
5320 
5321 	/* Here we just switch the register state and the stack. */
5322 	switch_to(prev, next, prev);
5323 	barrier();
5324 
5325 	return finish_task_switch(prev);
5326 }
5327 
5328 /*
5329  * nr_running and nr_context_switches:
5330  *
5331  * externally visible scheduler statistics: current number of runnable
5332  * threads, total number of context switches performed since bootup.
5333  */
5334 unsigned int nr_running(void)
5335 {
5336 	unsigned int i, sum = 0;
5337 
5338 	for_each_online_cpu(i)
5339 		sum += cpu_rq(i)->nr_running;
5340 
5341 	return sum;
5342 }
5343 
5344 /*
5345  * Check if only the current task is running on the CPU.
5346  *
5347  * Caution: this function does not check that the caller has disabled
5348  * preemption, thus the result might have a time-of-check-to-time-of-use
5349  * race.  The caller is responsible to use it correctly, for example:
5350  *
5351  * - from a non-preemptible section (of course)
5352  *
5353  * - from a thread that is bound to a single CPU
5354  *
5355  * - in a loop with very short iterations (e.g. a polling loop)
5356  */
5357 bool single_task_running(void)
5358 {
5359 	return raw_rq()->nr_running == 1;
5360 }
5361 EXPORT_SYMBOL(single_task_running);
5362 
5363 unsigned long long nr_context_switches_cpu(int cpu)
5364 {
5365 	return cpu_rq(cpu)->nr_switches;
5366 }
5367 
5368 unsigned long long nr_context_switches(void)
5369 {
5370 	int i;
5371 	unsigned long long sum = 0;
5372 
5373 	for_each_possible_cpu(i)
5374 		sum += cpu_rq(i)->nr_switches;
5375 
5376 	return sum;
5377 }
5378 
5379 /*
5380  * Consumers of these two interfaces, like for example the cpuidle menu
5381  * governor, are using nonsensical data. Preferring shallow idle state selection
5382  * for a CPU that has IO-wait which might not even end up running the task when
5383  * it does become runnable.
5384  */
5385 
5386 unsigned int nr_iowait_cpu(int cpu)
5387 {
5388 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5389 }
5390 
5391 /*
5392  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5393  *
5394  * The idea behind IO-wait account is to account the idle time that we could
5395  * have spend running if it were not for IO. That is, if we were to improve the
5396  * storage performance, we'd have a proportional reduction in IO-wait time.
5397  *
5398  * This all works nicely on UP, where, when a task blocks on IO, we account
5399  * idle time as IO-wait, because if the storage were faster, it could've been
5400  * running and we'd not be idle.
5401  *
5402  * This has been extended to SMP, by doing the same for each CPU. This however
5403  * is broken.
5404  *
5405  * Imagine for instance the case where two tasks block on one CPU, only the one
5406  * CPU will have IO-wait accounted, while the other has regular idle. Even
5407  * though, if the storage were faster, both could've ran at the same time,
5408  * utilising both CPUs.
5409  *
5410  * This means, that when looking globally, the current IO-wait accounting on
5411  * SMP is a lower bound, by reason of under accounting.
5412  *
5413  * Worse, since the numbers are provided per CPU, they are sometimes
5414  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5415  * associated with any one particular CPU, it can wake to another CPU than it
5416  * blocked on. This means the per CPU IO-wait number is meaningless.
5417  *
5418  * Task CPU affinities can make all that even more 'interesting'.
5419  */
5420 
5421 unsigned int nr_iowait(void)
5422 {
5423 	unsigned int i, sum = 0;
5424 
5425 	for_each_possible_cpu(i)
5426 		sum += nr_iowait_cpu(i);
5427 
5428 	return sum;
5429 }
5430 
5431 #ifdef CONFIG_SMP
5432 
5433 /*
5434  * sched_exec - execve() is a valuable balancing opportunity, because at
5435  * this point the task has the smallest effective memory and cache footprint.
5436  */
5437 void sched_exec(void)
5438 {
5439 	struct task_struct *p = current;
5440 	struct migration_arg arg;
5441 	int dest_cpu;
5442 
5443 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5444 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5445 		if (dest_cpu == smp_processor_id())
5446 			return;
5447 
5448 		if (unlikely(!cpu_active(dest_cpu)))
5449 			return;
5450 
5451 		arg = (struct migration_arg){ p, dest_cpu };
5452 	}
5453 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5454 }
5455 
5456 #endif
5457 
5458 DEFINE_PER_CPU(struct kernel_stat, kstat);
5459 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5460 
5461 EXPORT_PER_CPU_SYMBOL(kstat);
5462 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5463 
5464 /*
5465  * The function fair_sched_class.update_curr accesses the struct curr
5466  * and its field curr->exec_start; when called from task_sched_runtime(),
5467  * we observe a high rate of cache misses in practice.
5468  * Prefetching this data results in improved performance.
5469  */
5470 static inline void prefetch_curr_exec_start(struct task_struct *p)
5471 {
5472 #ifdef CONFIG_FAIR_GROUP_SCHED
5473 	struct sched_entity *curr = p->se.cfs_rq->curr;
5474 #else
5475 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5476 #endif
5477 	prefetch(curr);
5478 	prefetch(&curr->exec_start);
5479 }
5480 
5481 /*
5482  * Return accounted runtime for the task.
5483  * In case the task is currently running, return the runtime plus current's
5484  * pending runtime that have not been accounted yet.
5485  */
5486 unsigned long long task_sched_runtime(struct task_struct *p)
5487 {
5488 	struct rq_flags rf;
5489 	struct rq *rq;
5490 	u64 ns;
5491 
5492 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5493 	/*
5494 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5495 	 * So we have a optimization chance when the task's delta_exec is 0.
5496 	 * Reading ->on_cpu is racy, but this is OK.
5497 	 *
5498 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5499 	 * If we race with it entering CPU, unaccounted time is 0. This is
5500 	 * indistinguishable from the read occurring a few cycles earlier.
5501 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5502 	 * been accounted, so we're correct here as well.
5503 	 */
5504 	if (!p->on_cpu || !task_on_rq_queued(p))
5505 		return p->se.sum_exec_runtime;
5506 #endif
5507 
5508 	rq = task_rq_lock(p, &rf);
5509 	/*
5510 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5511 	 * project cycles that may never be accounted to this
5512 	 * thread, breaking clock_gettime().
5513 	 */
5514 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5515 		prefetch_curr_exec_start(p);
5516 		update_rq_clock(rq);
5517 		p->sched_class->update_curr(rq);
5518 	}
5519 	ns = p->se.sum_exec_runtime;
5520 	task_rq_unlock(rq, p, &rf);
5521 
5522 	return ns;
5523 }
5524 
5525 #ifdef CONFIG_SCHED_DEBUG
5526 static u64 cpu_resched_latency(struct rq *rq)
5527 {
5528 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5529 	u64 resched_latency, now = rq_clock(rq);
5530 	static bool warned_once;
5531 
5532 	if (sysctl_resched_latency_warn_once && warned_once)
5533 		return 0;
5534 
5535 	if (!need_resched() || !latency_warn_ms)
5536 		return 0;
5537 
5538 	if (system_state == SYSTEM_BOOTING)
5539 		return 0;
5540 
5541 	if (!rq->last_seen_need_resched_ns) {
5542 		rq->last_seen_need_resched_ns = now;
5543 		rq->ticks_without_resched = 0;
5544 		return 0;
5545 	}
5546 
5547 	rq->ticks_without_resched++;
5548 	resched_latency = now - rq->last_seen_need_resched_ns;
5549 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5550 		return 0;
5551 
5552 	warned_once = true;
5553 
5554 	return resched_latency;
5555 }
5556 
5557 static int __init setup_resched_latency_warn_ms(char *str)
5558 {
5559 	long val;
5560 
5561 	if ((kstrtol(str, 0, &val))) {
5562 		pr_warn("Unable to set resched_latency_warn_ms\n");
5563 		return 1;
5564 	}
5565 
5566 	sysctl_resched_latency_warn_ms = val;
5567 	return 1;
5568 }
5569 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5570 #else
5571 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5572 #endif /* CONFIG_SCHED_DEBUG */
5573 
5574 /*
5575  * This function gets called by the timer code, with HZ frequency.
5576  * We call it with interrupts disabled.
5577  */
5578 void sched_tick(void)
5579 {
5580 	int cpu = smp_processor_id();
5581 	struct rq *rq = cpu_rq(cpu);
5582 	struct task_struct *curr;
5583 	struct rq_flags rf;
5584 	unsigned long hw_pressure;
5585 	u64 resched_latency;
5586 
5587 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5588 		arch_scale_freq_tick();
5589 
5590 	sched_clock_tick();
5591 
5592 	rq_lock(rq, &rf);
5593 
5594 	curr = rq->curr;
5595 	psi_account_irqtime(rq, curr, NULL);
5596 
5597 	update_rq_clock(rq);
5598 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5599 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5600 	curr->sched_class->task_tick(rq, curr, 0);
5601 	if (sched_feat(LATENCY_WARN))
5602 		resched_latency = cpu_resched_latency(rq);
5603 	calc_global_load_tick(rq);
5604 	sched_core_tick(rq);
5605 	task_tick_mm_cid(rq, curr);
5606 	scx_tick(rq);
5607 
5608 	rq_unlock(rq, &rf);
5609 
5610 	if (sched_feat(LATENCY_WARN) && resched_latency)
5611 		resched_latency_warn(cpu, resched_latency);
5612 
5613 	perf_event_task_tick();
5614 
5615 	if (curr->flags & PF_WQ_WORKER)
5616 		wq_worker_tick(curr);
5617 
5618 #ifdef CONFIG_SMP
5619 	if (!scx_switched_all()) {
5620 		rq->idle_balance = idle_cpu(cpu);
5621 		sched_balance_trigger(rq);
5622 	}
5623 #endif
5624 }
5625 
5626 #ifdef CONFIG_NO_HZ_FULL
5627 
5628 struct tick_work {
5629 	int			cpu;
5630 	atomic_t		state;
5631 	struct delayed_work	work;
5632 };
5633 /* Values for ->state, see diagram below. */
5634 #define TICK_SCHED_REMOTE_OFFLINE	0
5635 #define TICK_SCHED_REMOTE_OFFLINING	1
5636 #define TICK_SCHED_REMOTE_RUNNING	2
5637 
5638 /*
5639  * State diagram for ->state:
5640  *
5641  *
5642  *          TICK_SCHED_REMOTE_OFFLINE
5643  *                    |   ^
5644  *                    |   |
5645  *                    |   | sched_tick_remote()
5646  *                    |   |
5647  *                    |   |
5648  *                    +--TICK_SCHED_REMOTE_OFFLINING
5649  *                    |   ^
5650  *                    |   |
5651  * sched_tick_start() |   | sched_tick_stop()
5652  *                    |   |
5653  *                    V   |
5654  *          TICK_SCHED_REMOTE_RUNNING
5655  *
5656  *
5657  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5658  * and sched_tick_start() are happy to leave the state in RUNNING.
5659  */
5660 
5661 static struct tick_work __percpu *tick_work_cpu;
5662 
5663 static void sched_tick_remote(struct work_struct *work)
5664 {
5665 	struct delayed_work *dwork = to_delayed_work(work);
5666 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5667 	int cpu = twork->cpu;
5668 	struct rq *rq = cpu_rq(cpu);
5669 	int os;
5670 
5671 	/*
5672 	 * Handle the tick only if it appears the remote CPU is running in full
5673 	 * dynticks mode. The check is racy by nature, but missing a tick or
5674 	 * having one too much is no big deal because the scheduler tick updates
5675 	 * statistics and checks timeslices in a time-independent way, regardless
5676 	 * of when exactly it is running.
5677 	 */
5678 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5679 		guard(rq_lock_irq)(rq);
5680 		struct task_struct *curr = rq->curr;
5681 
5682 		if (cpu_online(cpu)) {
5683 			update_rq_clock(rq);
5684 
5685 			if (!is_idle_task(curr)) {
5686 				/*
5687 				 * Make sure the next tick runs within a
5688 				 * reasonable amount of time.
5689 				 */
5690 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5691 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5692 			}
5693 			curr->sched_class->task_tick(rq, curr, 0);
5694 
5695 			calc_load_nohz_remote(rq);
5696 		}
5697 	}
5698 
5699 	/*
5700 	 * Run the remote tick once per second (1Hz). This arbitrary
5701 	 * frequency is large enough to avoid overload but short enough
5702 	 * to keep scheduler internal stats reasonably up to date.  But
5703 	 * first update state to reflect hotplug activity if required.
5704 	 */
5705 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5706 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5707 	if (os == TICK_SCHED_REMOTE_RUNNING)
5708 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5709 }
5710 
5711 static void sched_tick_start(int cpu)
5712 {
5713 	int os;
5714 	struct tick_work *twork;
5715 
5716 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5717 		return;
5718 
5719 	WARN_ON_ONCE(!tick_work_cpu);
5720 
5721 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5722 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5723 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5724 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5725 		twork->cpu = cpu;
5726 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5727 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5728 	}
5729 }
5730 
5731 #ifdef CONFIG_HOTPLUG_CPU
5732 static void sched_tick_stop(int cpu)
5733 {
5734 	struct tick_work *twork;
5735 	int os;
5736 
5737 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5738 		return;
5739 
5740 	WARN_ON_ONCE(!tick_work_cpu);
5741 
5742 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5743 	/* There cannot be competing actions, but don't rely on stop-machine. */
5744 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5745 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5746 	/* Don't cancel, as this would mess up the state machine. */
5747 }
5748 #endif /* CONFIG_HOTPLUG_CPU */
5749 
5750 int __init sched_tick_offload_init(void)
5751 {
5752 	tick_work_cpu = alloc_percpu(struct tick_work);
5753 	BUG_ON(!tick_work_cpu);
5754 	return 0;
5755 }
5756 
5757 #else /* !CONFIG_NO_HZ_FULL */
5758 static inline void sched_tick_start(int cpu) { }
5759 static inline void sched_tick_stop(int cpu) { }
5760 #endif
5761 
5762 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5763 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5764 /*
5765  * If the value passed in is equal to the current preempt count
5766  * then we just disabled preemption. Start timing the latency.
5767  */
5768 static inline void preempt_latency_start(int val)
5769 {
5770 	if (preempt_count() == val) {
5771 		unsigned long ip = get_lock_parent_ip();
5772 #ifdef CONFIG_DEBUG_PREEMPT
5773 		current->preempt_disable_ip = ip;
5774 #endif
5775 		trace_preempt_off(CALLER_ADDR0, ip);
5776 	}
5777 }
5778 
5779 void preempt_count_add(int val)
5780 {
5781 #ifdef CONFIG_DEBUG_PREEMPT
5782 	/*
5783 	 * Underflow?
5784 	 */
5785 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5786 		return;
5787 #endif
5788 	__preempt_count_add(val);
5789 #ifdef CONFIG_DEBUG_PREEMPT
5790 	/*
5791 	 * Spinlock count overflowing soon?
5792 	 */
5793 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5794 				PREEMPT_MASK - 10);
5795 #endif
5796 	preempt_latency_start(val);
5797 }
5798 EXPORT_SYMBOL(preempt_count_add);
5799 NOKPROBE_SYMBOL(preempt_count_add);
5800 
5801 /*
5802  * If the value passed in equals to the current preempt count
5803  * then we just enabled preemption. Stop timing the latency.
5804  */
5805 static inline void preempt_latency_stop(int val)
5806 {
5807 	if (preempt_count() == val)
5808 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5809 }
5810 
5811 void preempt_count_sub(int val)
5812 {
5813 #ifdef CONFIG_DEBUG_PREEMPT
5814 	/*
5815 	 * Underflow?
5816 	 */
5817 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5818 		return;
5819 	/*
5820 	 * Is the spinlock portion underflowing?
5821 	 */
5822 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5823 			!(preempt_count() & PREEMPT_MASK)))
5824 		return;
5825 #endif
5826 
5827 	preempt_latency_stop(val);
5828 	__preempt_count_sub(val);
5829 }
5830 EXPORT_SYMBOL(preempt_count_sub);
5831 NOKPROBE_SYMBOL(preempt_count_sub);
5832 
5833 #else
5834 static inline void preempt_latency_start(int val) { }
5835 static inline void preempt_latency_stop(int val) { }
5836 #endif
5837 
5838 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5839 {
5840 #ifdef CONFIG_DEBUG_PREEMPT
5841 	return p->preempt_disable_ip;
5842 #else
5843 	return 0;
5844 #endif
5845 }
5846 
5847 /*
5848  * Print scheduling while atomic bug:
5849  */
5850 static noinline void __schedule_bug(struct task_struct *prev)
5851 {
5852 	/* Save this before calling printk(), since that will clobber it */
5853 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5854 
5855 	if (oops_in_progress)
5856 		return;
5857 
5858 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5859 		prev->comm, prev->pid, preempt_count());
5860 
5861 	debug_show_held_locks(prev);
5862 	print_modules();
5863 	if (irqs_disabled())
5864 		print_irqtrace_events(prev);
5865 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5866 		pr_err("Preemption disabled at:");
5867 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5868 	}
5869 	check_panic_on_warn("scheduling while atomic");
5870 
5871 	dump_stack();
5872 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5873 }
5874 
5875 /*
5876  * Various schedule()-time debugging checks and statistics:
5877  */
5878 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5879 {
5880 #ifdef CONFIG_SCHED_STACK_END_CHECK
5881 	if (task_stack_end_corrupted(prev))
5882 		panic("corrupted stack end detected inside scheduler\n");
5883 
5884 	if (task_scs_end_corrupted(prev))
5885 		panic("corrupted shadow stack detected inside scheduler\n");
5886 #endif
5887 
5888 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5889 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5890 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5891 			prev->comm, prev->pid, prev->non_block_count);
5892 		dump_stack();
5893 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5894 	}
5895 #endif
5896 
5897 	if (unlikely(in_atomic_preempt_off())) {
5898 		__schedule_bug(prev);
5899 		preempt_count_set(PREEMPT_DISABLED);
5900 	}
5901 	rcu_sleep_check();
5902 	SCHED_WARN_ON(ct_state() == CT_STATE_USER);
5903 
5904 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5905 
5906 	schedstat_inc(this_rq()->sched_count);
5907 }
5908 
5909 static void prev_balance(struct rq *rq, struct task_struct *prev,
5910 			 struct rq_flags *rf)
5911 {
5912 	const struct sched_class *start_class = prev->sched_class;
5913 	const struct sched_class *class;
5914 
5915 #ifdef CONFIG_SCHED_CLASS_EXT
5916 	/*
5917 	 * SCX requires a balance() call before every pick_next_task() including
5918 	 * when waking up from SCHED_IDLE. If @start_class is below SCX, start
5919 	 * from SCX instead.
5920 	 */
5921 	if (scx_enabled() && sched_class_above(&ext_sched_class, start_class))
5922 		start_class = &ext_sched_class;
5923 #endif
5924 
5925 	/*
5926 	 * We must do the balancing pass before put_prev_task(), such
5927 	 * that when we release the rq->lock the task is in the same
5928 	 * state as before we took rq->lock.
5929 	 *
5930 	 * We can terminate the balance pass as soon as we know there is
5931 	 * a runnable task of @class priority or higher.
5932 	 */
5933 	for_active_class_range(class, start_class, &idle_sched_class) {
5934 		if (class->balance && class->balance(rq, prev, rf))
5935 			break;
5936 	}
5937 }
5938 
5939 /*
5940  * Pick up the highest-prio task:
5941  */
5942 static inline struct task_struct *
5943 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5944 {
5945 	const struct sched_class *class;
5946 	struct task_struct *p;
5947 
5948 	rq->dl_server = NULL;
5949 
5950 	if (scx_enabled())
5951 		goto restart;
5952 
5953 	/*
5954 	 * Optimization: we know that if all tasks are in the fair class we can
5955 	 * call that function directly, but only if the @prev task wasn't of a
5956 	 * higher scheduling class, because otherwise those lose the
5957 	 * opportunity to pull in more work from other CPUs.
5958 	 */
5959 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5960 		   rq->nr_running == rq->cfs.h_nr_running)) {
5961 
5962 		p = pick_next_task_fair(rq, prev, rf);
5963 		if (unlikely(p == RETRY_TASK))
5964 			goto restart;
5965 
5966 		/* Assume the next prioritized class is idle_sched_class */
5967 		if (!p) {
5968 			p = pick_task_idle(rq);
5969 			put_prev_set_next_task(rq, prev, p);
5970 		}
5971 
5972 		return p;
5973 	}
5974 
5975 restart:
5976 	prev_balance(rq, prev, rf);
5977 
5978 	for_each_active_class(class) {
5979 		if (class->pick_next_task) {
5980 			p = class->pick_next_task(rq, prev);
5981 			if (p)
5982 				return p;
5983 		} else {
5984 			p = class->pick_task(rq);
5985 			if (p) {
5986 				put_prev_set_next_task(rq, prev, p);
5987 				return p;
5988 			}
5989 		}
5990 	}
5991 
5992 	BUG(); /* The idle class should always have a runnable task. */
5993 }
5994 
5995 #ifdef CONFIG_SCHED_CORE
5996 static inline bool is_task_rq_idle(struct task_struct *t)
5997 {
5998 	return (task_rq(t)->idle == t);
5999 }
6000 
6001 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6002 {
6003 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6004 }
6005 
6006 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6007 {
6008 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6009 		return true;
6010 
6011 	return a->core_cookie == b->core_cookie;
6012 }
6013 
6014 static inline struct task_struct *pick_task(struct rq *rq)
6015 {
6016 	const struct sched_class *class;
6017 	struct task_struct *p;
6018 
6019 	rq->dl_server = NULL;
6020 
6021 	for_each_active_class(class) {
6022 		p = class->pick_task(rq);
6023 		if (p)
6024 			return p;
6025 	}
6026 
6027 	BUG(); /* The idle class should always have a runnable task. */
6028 }
6029 
6030 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6031 
6032 static void queue_core_balance(struct rq *rq);
6033 
6034 static struct task_struct *
6035 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6036 {
6037 	struct task_struct *next, *p, *max = NULL;
6038 	const struct cpumask *smt_mask;
6039 	bool fi_before = false;
6040 	bool core_clock_updated = (rq == rq->core);
6041 	unsigned long cookie;
6042 	int i, cpu, occ = 0;
6043 	struct rq *rq_i;
6044 	bool need_sync;
6045 
6046 	if (!sched_core_enabled(rq))
6047 		return __pick_next_task(rq, prev, rf);
6048 
6049 	cpu = cpu_of(rq);
6050 
6051 	/* Stopper task is switching into idle, no need core-wide selection. */
6052 	if (cpu_is_offline(cpu)) {
6053 		/*
6054 		 * Reset core_pick so that we don't enter the fastpath when
6055 		 * coming online. core_pick would already be migrated to
6056 		 * another cpu during offline.
6057 		 */
6058 		rq->core_pick = NULL;
6059 		rq->core_dl_server = NULL;
6060 		return __pick_next_task(rq, prev, rf);
6061 	}
6062 
6063 	/*
6064 	 * If there were no {en,de}queues since we picked (IOW, the task
6065 	 * pointers are all still valid), and we haven't scheduled the last
6066 	 * pick yet, do so now.
6067 	 *
6068 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6069 	 * it was either offline or went offline during a sibling's core-wide
6070 	 * selection. In this case, do a core-wide selection.
6071 	 */
6072 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6073 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6074 	    rq->core_pick) {
6075 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6076 
6077 		next = rq->core_pick;
6078 		rq->dl_server = rq->core_dl_server;
6079 		rq->core_pick = NULL;
6080 		rq->core_dl_server = NULL;
6081 		goto out_set_next;
6082 	}
6083 
6084 	prev_balance(rq, prev, rf);
6085 
6086 	smt_mask = cpu_smt_mask(cpu);
6087 	need_sync = !!rq->core->core_cookie;
6088 
6089 	/* reset state */
6090 	rq->core->core_cookie = 0UL;
6091 	if (rq->core->core_forceidle_count) {
6092 		if (!core_clock_updated) {
6093 			update_rq_clock(rq->core);
6094 			core_clock_updated = true;
6095 		}
6096 		sched_core_account_forceidle(rq);
6097 		/* reset after accounting force idle */
6098 		rq->core->core_forceidle_start = 0;
6099 		rq->core->core_forceidle_count = 0;
6100 		rq->core->core_forceidle_occupation = 0;
6101 		need_sync = true;
6102 		fi_before = true;
6103 	}
6104 
6105 	/*
6106 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6107 	 *
6108 	 * @task_seq guards the task state ({en,de}queues)
6109 	 * @pick_seq is the @task_seq we did a selection on
6110 	 * @sched_seq is the @pick_seq we scheduled
6111 	 *
6112 	 * However, preemptions can cause multiple picks on the same task set.
6113 	 * 'Fix' this by also increasing @task_seq for every pick.
6114 	 */
6115 	rq->core->core_task_seq++;
6116 
6117 	/*
6118 	 * Optimize for common case where this CPU has no cookies
6119 	 * and there are no cookied tasks running on siblings.
6120 	 */
6121 	if (!need_sync) {
6122 		next = pick_task(rq);
6123 		if (!next->core_cookie) {
6124 			rq->core_pick = NULL;
6125 			rq->core_dl_server = NULL;
6126 			/*
6127 			 * For robustness, update the min_vruntime_fi for
6128 			 * unconstrained picks as well.
6129 			 */
6130 			WARN_ON_ONCE(fi_before);
6131 			task_vruntime_update(rq, next, false);
6132 			goto out_set_next;
6133 		}
6134 	}
6135 
6136 	/*
6137 	 * For each thread: do the regular task pick and find the max prio task
6138 	 * amongst them.
6139 	 *
6140 	 * Tie-break prio towards the current CPU
6141 	 */
6142 	for_each_cpu_wrap(i, smt_mask, cpu) {
6143 		rq_i = cpu_rq(i);
6144 
6145 		/*
6146 		 * Current cpu always has its clock updated on entrance to
6147 		 * pick_next_task(). If the current cpu is not the core,
6148 		 * the core may also have been updated above.
6149 		 */
6150 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6151 			update_rq_clock(rq_i);
6152 
6153 		rq_i->core_pick = p = pick_task(rq_i);
6154 		rq_i->core_dl_server = rq_i->dl_server;
6155 
6156 		if (!max || prio_less(max, p, fi_before))
6157 			max = p;
6158 	}
6159 
6160 	cookie = rq->core->core_cookie = max->core_cookie;
6161 
6162 	/*
6163 	 * For each thread: try and find a runnable task that matches @max or
6164 	 * force idle.
6165 	 */
6166 	for_each_cpu(i, smt_mask) {
6167 		rq_i = cpu_rq(i);
6168 		p = rq_i->core_pick;
6169 
6170 		if (!cookie_equals(p, cookie)) {
6171 			p = NULL;
6172 			if (cookie)
6173 				p = sched_core_find(rq_i, cookie);
6174 			if (!p)
6175 				p = idle_sched_class.pick_task(rq_i);
6176 		}
6177 
6178 		rq_i->core_pick = p;
6179 		rq_i->core_dl_server = NULL;
6180 
6181 		if (p == rq_i->idle) {
6182 			if (rq_i->nr_running) {
6183 				rq->core->core_forceidle_count++;
6184 				if (!fi_before)
6185 					rq->core->core_forceidle_seq++;
6186 			}
6187 		} else {
6188 			occ++;
6189 		}
6190 	}
6191 
6192 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6193 		rq->core->core_forceidle_start = rq_clock(rq->core);
6194 		rq->core->core_forceidle_occupation = occ;
6195 	}
6196 
6197 	rq->core->core_pick_seq = rq->core->core_task_seq;
6198 	next = rq->core_pick;
6199 	rq->core_sched_seq = rq->core->core_pick_seq;
6200 
6201 	/* Something should have been selected for current CPU */
6202 	WARN_ON_ONCE(!next);
6203 
6204 	/*
6205 	 * Reschedule siblings
6206 	 *
6207 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6208 	 * sending an IPI (below) ensures the sibling will no longer be running
6209 	 * their task. This ensures there is no inter-sibling overlap between
6210 	 * non-matching user state.
6211 	 */
6212 	for_each_cpu(i, smt_mask) {
6213 		rq_i = cpu_rq(i);
6214 
6215 		/*
6216 		 * An online sibling might have gone offline before a task
6217 		 * could be picked for it, or it might be offline but later
6218 		 * happen to come online, but its too late and nothing was
6219 		 * picked for it.  That's Ok - it will pick tasks for itself,
6220 		 * so ignore it.
6221 		 */
6222 		if (!rq_i->core_pick)
6223 			continue;
6224 
6225 		/*
6226 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6227 		 * fi_before     fi      update?
6228 		 *  0            0       1
6229 		 *  0            1       1
6230 		 *  1            0       1
6231 		 *  1            1       0
6232 		 */
6233 		if (!(fi_before && rq->core->core_forceidle_count))
6234 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6235 
6236 		rq_i->core_pick->core_occupation = occ;
6237 
6238 		if (i == cpu) {
6239 			rq_i->core_pick = NULL;
6240 			rq_i->core_dl_server = NULL;
6241 			continue;
6242 		}
6243 
6244 		/* Did we break L1TF mitigation requirements? */
6245 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6246 
6247 		if (rq_i->curr == rq_i->core_pick) {
6248 			rq_i->core_pick = NULL;
6249 			rq_i->core_dl_server = NULL;
6250 			continue;
6251 		}
6252 
6253 		resched_curr(rq_i);
6254 	}
6255 
6256 out_set_next:
6257 	put_prev_set_next_task(rq, prev, next);
6258 	if (rq->core->core_forceidle_count && next == rq->idle)
6259 		queue_core_balance(rq);
6260 
6261 	return next;
6262 }
6263 
6264 static bool try_steal_cookie(int this, int that)
6265 {
6266 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6267 	struct task_struct *p;
6268 	unsigned long cookie;
6269 	bool success = false;
6270 
6271 	guard(irq)();
6272 	guard(double_rq_lock)(dst, src);
6273 
6274 	cookie = dst->core->core_cookie;
6275 	if (!cookie)
6276 		return false;
6277 
6278 	if (dst->curr != dst->idle)
6279 		return false;
6280 
6281 	p = sched_core_find(src, cookie);
6282 	if (!p)
6283 		return false;
6284 
6285 	do {
6286 		if (p == src->core_pick || p == src->curr)
6287 			goto next;
6288 
6289 		if (!is_cpu_allowed(p, this))
6290 			goto next;
6291 
6292 		if (p->core_occupation > dst->idle->core_occupation)
6293 			goto next;
6294 		/*
6295 		 * sched_core_find() and sched_core_next() will ensure
6296 		 * that task @p is not throttled now, we also need to
6297 		 * check whether the runqueue of the destination CPU is
6298 		 * being throttled.
6299 		 */
6300 		if (sched_task_is_throttled(p, this))
6301 			goto next;
6302 
6303 		deactivate_task(src, p, 0);
6304 		set_task_cpu(p, this);
6305 		activate_task(dst, p, 0);
6306 
6307 		resched_curr(dst);
6308 
6309 		success = true;
6310 		break;
6311 
6312 next:
6313 		p = sched_core_next(p, cookie);
6314 	} while (p);
6315 
6316 	return success;
6317 }
6318 
6319 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6320 {
6321 	int i;
6322 
6323 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6324 		if (i == cpu)
6325 			continue;
6326 
6327 		if (need_resched())
6328 			break;
6329 
6330 		if (try_steal_cookie(cpu, i))
6331 			return true;
6332 	}
6333 
6334 	return false;
6335 }
6336 
6337 static void sched_core_balance(struct rq *rq)
6338 {
6339 	struct sched_domain *sd;
6340 	int cpu = cpu_of(rq);
6341 
6342 	guard(preempt)();
6343 	guard(rcu)();
6344 
6345 	raw_spin_rq_unlock_irq(rq);
6346 	for_each_domain(cpu, sd) {
6347 		if (need_resched())
6348 			break;
6349 
6350 		if (steal_cookie_task(cpu, sd))
6351 			break;
6352 	}
6353 	raw_spin_rq_lock_irq(rq);
6354 }
6355 
6356 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6357 
6358 static void queue_core_balance(struct rq *rq)
6359 {
6360 	if (!sched_core_enabled(rq))
6361 		return;
6362 
6363 	if (!rq->core->core_cookie)
6364 		return;
6365 
6366 	if (!rq->nr_running) /* not forced idle */
6367 		return;
6368 
6369 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6370 }
6371 
6372 DEFINE_LOCK_GUARD_1(core_lock, int,
6373 		    sched_core_lock(*_T->lock, &_T->flags),
6374 		    sched_core_unlock(*_T->lock, &_T->flags),
6375 		    unsigned long flags)
6376 
6377 static void sched_core_cpu_starting(unsigned int cpu)
6378 {
6379 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6380 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6381 	int t;
6382 
6383 	guard(core_lock)(&cpu);
6384 
6385 	WARN_ON_ONCE(rq->core != rq);
6386 
6387 	/* if we're the first, we'll be our own leader */
6388 	if (cpumask_weight(smt_mask) == 1)
6389 		return;
6390 
6391 	/* find the leader */
6392 	for_each_cpu(t, smt_mask) {
6393 		if (t == cpu)
6394 			continue;
6395 		rq = cpu_rq(t);
6396 		if (rq->core == rq) {
6397 			core_rq = rq;
6398 			break;
6399 		}
6400 	}
6401 
6402 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6403 		return;
6404 
6405 	/* install and validate core_rq */
6406 	for_each_cpu(t, smt_mask) {
6407 		rq = cpu_rq(t);
6408 
6409 		if (t == cpu)
6410 			rq->core = core_rq;
6411 
6412 		WARN_ON_ONCE(rq->core != core_rq);
6413 	}
6414 }
6415 
6416 static void sched_core_cpu_deactivate(unsigned int cpu)
6417 {
6418 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6419 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6420 	int t;
6421 
6422 	guard(core_lock)(&cpu);
6423 
6424 	/* if we're the last man standing, nothing to do */
6425 	if (cpumask_weight(smt_mask) == 1) {
6426 		WARN_ON_ONCE(rq->core != rq);
6427 		return;
6428 	}
6429 
6430 	/* if we're not the leader, nothing to do */
6431 	if (rq->core != rq)
6432 		return;
6433 
6434 	/* find a new leader */
6435 	for_each_cpu(t, smt_mask) {
6436 		if (t == cpu)
6437 			continue;
6438 		core_rq = cpu_rq(t);
6439 		break;
6440 	}
6441 
6442 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6443 		return;
6444 
6445 	/* copy the shared state to the new leader */
6446 	core_rq->core_task_seq             = rq->core_task_seq;
6447 	core_rq->core_pick_seq             = rq->core_pick_seq;
6448 	core_rq->core_cookie               = rq->core_cookie;
6449 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6450 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6451 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6452 
6453 	/*
6454 	 * Accounting edge for forced idle is handled in pick_next_task().
6455 	 * Don't need another one here, since the hotplug thread shouldn't
6456 	 * have a cookie.
6457 	 */
6458 	core_rq->core_forceidle_start = 0;
6459 
6460 	/* install new leader */
6461 	for_each_cpu(t, smt_mask) {
6462 		rq = cpu_rq(t);
6463 		rq->core = core_rq;
6464 	}
6465 }
6466 
6467 static inline void sched_core_cpu_dying(unsigned int cpu)
6468 {
6469 	struct rq *rq = cpu_rq(cpu);
6470 
6471 	if (rq->core != rq)
6472 		rq->core = rq;
6473 }
6474 
6475 #else /* !CONFIG_SCHED_CORE */
6476 
6477 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6478 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6479 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6480 
6481 static struct task_struct *
6482 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6483 {
6484 	return __pick_next_task(rq, prev, rf);
6485 }
6486 
6487 #endif /* CONFIG_SCHED_CORE */
6488 
6489 /*
6490  * Constants for the sched_mode argument of __schedule().
6491  *
6492  * The mode argument allows RT enabled kernels to differentiate a
6493  * preemption from blocking on an 'sleeping' spin/rwlock.
6494  */
6495 #define SM_IDLE			(-1)
6496 #define SM_NONE			0
6497 #define SM_PREEMPT		1
6498 #define SM_RTLOCK_WAIT		2
6499 
6500 /*
6501  * __schedule() is the main scheduler function.
6502  *
6503  * The main means of driving the scheduler and thus entering this function are:
6504  *
6505  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6506  *
6507  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6508  *      paths. For example, see arch/x86/entry_64.S.
6509  *
6510  *      To drive preemption between tasks, the scheduler sets the flag in timer
6511  *      interrupt handler sched_tick().
6512  *
6513  *   3. Wakeups don't really cause entry into schedule(). They add a
6514  *      task to the run-queue and that's it.
6515  *
6516  *      Now, if the new task added to the run-queue preempts the current
6517  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6518  *      called on the nearest possible occasion:
6519  *
6520  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6521  *
6522  *         - in syscall or exception context, at the next outmost
6523  *           preempt_enable(). (this might be as soon as the wake_up()'s
6524  *           spin_unlock()!)
6525  *
6526  *         - in IRQ context, return from interrupt-handler to
6527  *           preemptible context
6528  *
6529  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6530  *         then at the next:
6531  *
6532  *          - cond_resched() call
6533  *          - explicit schedule() call
6534  *          - return from syscall or exception to user-space
6535  *          - return from interrupt-handler to user-space
6536  *
6537  * WARNING: must be called with preemption disabled!
6538  */
6539 static void __sched notrace __schedule(int sched_mode)
6540 {
6541 	struct task_struct *prev, *next;
6542 	/*
6543 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6544 	 * as a preemption by schedule_debug() and RCU.
6545 	 */
6546 	bool preempt = sched_mode > SM_NONE;
6547 	unsigned long *switch_count;
6548 	unsigned long prev_state;
6549 	struct rq_flags rf;
6550 	struct rq *rq;
6551 	int cpu;
6552 
6553 	cpu = smp_processor_id();
6554 	rq = cpu_rq(cpu);
6555 	prev = rq->curr;
6556 
6557 	schedule_debug(prev, preempt);
6558 
6559 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6560 		hrtick_clear(rq);
6561 
6562 	local_irq_disable();
6563 	rcu_note_context_switch(preempt);
6564 
6565 	/*
6566 	 * Make sure that signal_pending_state()->signal_pending() below
6567 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6568 	 * done by the caller to avoid the race with signal_wake_up():
6569 	 *
6570 	 * __set_current_state(@state)		signal_wake_up()
6571 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6572 	 *					  wake_up_state(p, state)
6573 	 *   LOCK rq->lock			    LOCK p->pi_state
6574 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6575 	 *     if (signal_pending_state())	    if (p->state & @state)
6576 	 *
6577 	 * Also, the membarrier system call requires a full memory barrier
6578 	 * after coming from user-space, before storing to rq->curr; this
6579 	 * barrier matches a full barrier in the proximity of the membarrier
6580 	 * system call exit.
6581 	 */
6582 	rq_lock(rq, &rf);
6583 	smp_mb__after_spinlock();
6584 
6585 	/* Promote REQ to ACT */
6586 	rq->clock_update_flags <<= 1;
6587 	update_rq_clock(rq);
6588 	rq->clock_update_flags = RQCF_UPDATED;
6589 
6590 	switch_count = &prev->nivcsw;
6591 
6592 	/* Task state changes only considers SM_PREEMPT as preemption */
6593 	preempt = sched_mode == SM_PREEMPT;
6594 
6595 	/*
6596 	 * We must load prev->state once (task_struct::state is volatile), such
6597 	 * that we form a control dependency vs deactivate_task() below.
6598 	 */
6599 	prev_state = READ_ONCE(prev->__state);
6600 	if (sched_mode == SM_IDLE) {
6601 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6602 		if (!rq->nr_running && !scx_enabled()) {
6603 			next = prev;
6604 			goto picked;
6605 		}
6606 	} else if (!preempt && prev_state) {
6607 		if (signal_pending_state(prev_state, prev)) {
6608 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6609 		} else {
6610 			int flags = DEQUEUE_NOCLOCK;
6611 
6612 			prev->sched_contributes_to_load =
6613 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6614 				!(prev_state & TASK_NOLOAD) &&
6615 				!(prev_state & TASK_FROZEN);
6616 
6617 			if (unlikely(is_special_task_state(prev_state)))
6618 				flags |= DEQUEUE_SPECIAL;
6619 
6620 			/*
6621 			 * __schedule()			ttwu()
6622 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6623 			 *   if (prev_state)		    goto out;
6624 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6625 			 *				  p->state = TASK_WAKING
6626 			 *
6627 			 * Where __schedule() and ttwu() have matching control dependencies.
6628 			 *
6629 			 * After this, schedule() must not care about p->state any more.
6630 			 */
6631 			block_task(rq, prev, flags);
6632 		}
6633 		switch_count = &prev->nvcsw;
6634 	}
6635 
6636 	next = pick_next_task(rq, prev, &rf);
6637 picked:
6638 	clear_tsk_need_resched(prev);
6639 	clear_preempt_need_resched();
6640 #ifdef CONFIG_SCHED_DEBUG
6641 	rq->last_seen_need_resched_ns = 0;
6642 #endif
6643 
6644 	if (likely(prev != next)) {
6645 		rq->nr_switches++;
6646 		/*
6647 		 * RCU users of rcu_dereference(rq->curr) may not see
6648 		 * changes to task_struct made by pick_next_task().
6649 		 */
6650 		RCU_INIT_POINTER(rq->curr, next);
6651 		/*
6652 		 * The membarrier system call requires each architecture
6653 		 * to have a full memory barrier after updating
6654 		 * rq->curr, before returning to user-space.
6655 		 *
6656 		 * Here are the schemes providing that barrier on the
6657 		 * various architectures:
6658 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6659 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6660 		 *   on PowerPC and on RISC-V.
6661 		 * - finish_lock_switch() for weakly-ordered
6662 		 *   architectures where spin_unlock is a full barrier,
6663 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6664 		 *   is a RELEASE barrier),
6665 		 *
6666 		 * The barrier matches a full barrier in the proximity of
6667 		 * the membarrier system call entry.
6668 		 *
6669 		 * On RISC-V, this barrier pairing is also needed for the
6670 		 * SYNC_CORE command when switching between processes, cf.
6671 		 * the inline comments in membarrier_arch_switch_mm().
6672 		 */
6673 		++*switch_count;
6674 
6675 		migrate_disable_switch(rq, prev);
6676 		psi_account_irqtime(rq, prev, next);
6677 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6678 
6679 		trace_sched_switch(preempt, prev, next, prev_state);
6680 
6681 		/* Also unlocks the rq: */
6682 		rq = context_switch(rq, prev, next, &rf);
6683 	} else {
6684 		rq_unpin_lock(rq, &rf);
6685 		__balance_callbacks(rq);
6686 		raw_spin_rq_unlock_irq(rq);
6687 	}
6688 }
6689 
6690 void __noreturn do_task_dead(void)
6691 {
6692 	/* Causes final put_task_struct in finish_task_switch(): */
6693 	set_special_state(TASK_DEAD);
6694 
6695 	/* Tell freezer to ignore us: */
6696 	current->flags |= PF_NOFREEZE;
6697 
6698 	__schedule(SM_NONE);
6699 	BUG();
6700 
6701 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6702 	for (;;)
6703 		cpu_relax();
6704 }
6705 
6706 static inline void sched_submit_work(struct task_struct *tsk)
6707 {
6708 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6709 	unsigned int task_flags;
6710 
6711 	/*
6712 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6713 	 * will use a blocking primitive -- which would lead to recursion.
6714 	 */
6715 	lock_map_acquire_try(&sched_map);
6716 
6717 	task_flags = tsk->flags;
6718 	/*
6719 	 * If a worker goes to sleep, notify and ask workqueue whether it
6720 	 * wants to wake up a task to maintain concurrency.
6721 	 */
6722 	if (task_flags & PF_WQ_WORKER)
6723 		wq_worker_sleeping(tsk);
6724 	else if (task_flags & PF_IO_WORKER)
6725 		io_wq_worker_sleeping(tsk);
6726 
6727 	/*
6728 	 * spinlock and rwlock must not flush block requests.  This will
6729 	 * deadlock if the callback attempts to acquire a lock which is
6730 	 * already acquired.
6731 	 */
6732 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6733 
6734 	/*
6735 	 * If we are going to sleep and we have plugged IO queued,
6736 	 * make sure to submit it to avoid deadlocks.
6737 	 */
6738 	blk_flush_plug(tsk->plug, true);
6739 
6740 	lock_map_release(&sched_map);
6741 }
6742 
6743 static void sched_update_worker(struct task_struct *tsk)
6744 {
6745 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6746 		if (tsk->flags & PF_BLOCK_TS)
6747 			blk_plug_invalidate_ts(tsk);
6748 		if (tsk->flags & PF_WQ_WORKER)
6749 			wq_worker_running(tsk);
6750 		else if (tsk->flags & PF_IO_WORKER)
6751 			io_wq_worker_running(tsk);
6752 	}
6753 }
6754 
6755 static __always_inline void __schedule_loop(int sched_mode)
6756 {
6757 	do {
6758 		preempt_disable();
6759 		__schedule(sched_mode);
6760 		sched_preempt_enable_no_resched();
6761 	} while (need_resched());
6762 }
6763 
6764 asmlinkage __visible void __sched schedule(void)
6765 {
6766 	struct task_struct *tsk = current;
6767 
6768 #ifdef CONFIG_RT_MUTEXES
6769 	lockdep_assert(!tsk->sched_rt_mutex);
6770 #endif
6771 
6772 	if (!task_is_running(tsk))
6773 		sched_submit_work(tsk);
6774 	__schedule_loop(SM_NONE);
6775 	sched_update_worker(tsk);
6776 }
6777 EXPORT_SYMBOL(schedule);
6778 
6779 /*
6780  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6781  * state (have scheduled out non-voluntarily) by making sure that all
6782  * tasks have either left the run queue or have gone into user space.
6783  * As idle tasks do not do either, they must not ever be preempted
6784  * (schedule out non-voluntarily).
6785  *
6786  * schedule_idle() is similar to schedule_preempt_disable() except that it
6787  * never enables preemption because it does not call sched_submit_work().
6788  */
6789 void __sched schedule_idle(void)
6790 {
6791 	/*
6792 	 * As this skips calling sched_submit_work(), which the idle task does
6793 	 * regardless because that function is a NOP when the task is in a
6794 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6795 	 * current task can be in any other state. Note, idle is always in the
6796 	 * TASK_RUNNING state.
6797 	 */
6798 	WARN_ON_ONCE(current->__state);
6799 	do {
6800 		__schedule(SM_IDLE);
6801 	} while (need_resched());
6802 }
6803 
6804 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6805 asmlinkage __visible void __sched schedule_user(void)
6806 {
6807 	/*
6808 	 * If we come here after a random call to set_need_resched(),
6809 	 * or we have been woken up remotely but the IPI has not yet arrived,
6810 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6811 	 * we find a better solution.
6812 	 *
6813 	 * NB: There are buggy callers of this function.  Ideally we
6814 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6815 	 * too frequently to make sense yet.
6816 	 */
6817 	enum ctx_state prev_state = exception_enter();
6818 	schedule();
6819 	exception_exit(prev_state);
6820 }
6821 #endif
6822 
6823 /**
6824  * schedule_preempt_disabled - called with preemption disabled
6825  *
6826  * Returns with preemption disabled. Note: preempt_count must be 1
6827  */
6828 void __sched schedule_preempt_disabled(void)
6829 {
6830 	sched_preempt_enable_no_resched();
6831 	schedule();
6832 	preempt_disable();
6833 }
6834 
6835 #ifdef CONFIG_PREEMPT_RT
6836 void __sched notrace schedule_rtlock(void)
6837 {
6838 	__schedule_loop(SM_RTLOCK_WAIT);
6839 }
6840 NOKPROBE_SYMBOL(schedule_rtlock);
6841 #endif
6842 
6843 static void __sched notrace preempt_schedule_common(void)
6844 {
6845 	do {
6846 		/*
6847 		 * Because the function tracer can trace preempt_count_sub()
6848 		 * and it also uses preempt_enable/disable_notrace(), if
6849 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6850 		 * by the function tracer will call this function again and
6851 		 * cause infinite recursion.
6852 		 *
6853 		 * Preemption must be disabled here before the function
6854 		 * tracer can trace. Break up preempt_disable() into two
6855 		 * calls. One to disable preemption without fear of being
6856 		 * traced. The other to still record the preemption latency,
6857 		 * which can also be traced by the function tracer.
6858 		 */
6859 		preempt_disable_notrace();
6860 		preempt_latency_start(1);
6861 		__schedule(SM_PREEMPT);
6862 		preempt_latency_stop(1);
6863 		preempt_enable_no_resched_notrace();
6864 
6865 		/*
6866 		 * Check again in case we missed a preemption opportunity
6867 		 * between schedule and now.
6868 		 */
6869 	} while (need_resched());
6870 }
6871 
6872 #ifdef CONFIG_PREEMPTION
6873 /*
6874  * This is the entry point to schedule() from in-kernel preemption
6875  * off of preempt_enable.
6876  */
6877 asmlinkage __visible void __sched notrace preempt_schedule(void)
6878 {
6879 	/*
6880 	 * If there is a non-zero preempt_count or interrupts are disabled,
6881 	 * we do not want to preempt the current task. Just return..
6882 	 */
6883 	if (likely(!preemptible()))
6884 		return;
6885 	preempt_schedule_common();
6886 }
6887 NOKPROBE_SYMBOL(preempt_schedule);
6888 EXPORT_SYMBOL(preempt_schedule);
6889 
6890 #ifdef CONFIG_PREEMPT_DYNAMIC
6891 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6892 #ifndef preempt_schedule_dynamic_enabled
6893 #define preempt_schedule_dynamic_enabled	preempt_schedule
6894 #define preempt_schedule_dynamic_disabled	NULL
6895 #endif
6896 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6897 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6898 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6899 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6900 void __sched notrace dynamic_preempt_schedule(void)
6901 {
6902 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6903 		return;
6904 	preempt_schedule();
6905 }
6906 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6907 EXPORT_SYMBOL(dynamic_preempt_schedule);
6908 #endif
6909 #endif
6910 
6911 /**
6912  * preempt_schedule_notrace - preempt_schedule called by tracing
6913  *
6914  * The tracing infrastructure uses preempt_enable_notrace to prevent
6915  * recursion and tracing preempt enabling caused by the tracing
6916  * infrastructure itself. But as tracing can happen in areas coming
6917  * from userspace or just about to enter userspace, a preempt enable
6918  * can occur before user_exit() is called. This will cause the scheduler
6919  * to be called when the system is still in usermode.
6920  *
6921  * To prevent this, the preempt_enable_notrace will use this function
6922  * instead of preempt_schedule() to exit user context if needed before
6923  * calling the scheduler.
6924  */
6925 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6926 {
6927 	enum ctx_state prev_ctx;
6928 
6929 	if (likely(!preemptible()))
6930 		return;
6931 
6932 	do {
6933 		/*
6934 		 * Because the function tracer can trace preempt_count_sub()
6935 		 * and it also uses preempt_enable/disable_notrace(), if
6936 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6937 		 * by the function tracer will call this function again and
6938 		 * cause infinite recursion.
6939 		 *
6940 		 * Preemption must be disabled here before the function
6941 		 * tracer can trace. Break up preempt_disable() into two
6942 		 * calls. One to disable preemption without fear of being
6943 		 * traced. The other to still record the preemption latency,
6944 		 * which can also be traced by the function tracer.
6945 		 */
6946 		preempt_disable_notrace();
6947 		preempt_latency_start(1);
6948 		/*
6949 		 * Needs preempt disabled in case user_exit() is traced
6950 		 * and the tracer calls preempt_enable_notrace() causing
6951 		 * an infinite recursion.
6952 		 */
6953 		prev_ctx = exception_enter();
6954 		__schedule(SM_PREEMPT);
6955 		exception_exit(prev_ctx);
6956 
6957 		preempt_latency_stop(1);
6958 		preempt_enable_no_resched_notrace();
6959 	} while (need_resched());
6960 }
6961 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6962 
6963 #ifdef CONFIG_PREEMPT_DYNAMIC
6964 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6965 #ifndef preempt_schedule_notrace_dynamic_enabled
6966 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6967 #define preempt_schedule_notrace_dynamic_disabled	NULL
6968 #endif
6969 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6970 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6971 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6972 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6973 void __sched notrace dynamic_preempt_schedule_notrace(void)
6974 {
6975 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6976 		return;
6977 	preempt_schedule_notrace();
6978 }
6979 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6980 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6981 #endif
6982 #endif
6983 
6984 #endif /* CONFIG_PREEMPTION */
6985 
6986 /*
6987  * This is the entry point to schedule() from kernel preemption
6988  * off of IRQ context.
6989  * Note, that this is called and return with IRQs disabled. This will
6990  * protect us against recursive calling from IRQ contexts.
6991  */
6992 asmlinkage __visible void __sched preempt_schedule_irq(void)
6993 {
6994 	enum ctx_state prev_state;
6995 
6996 	/* Catch callers which need to be fixed */
6997 	BUG_ON(preempt_count() || !irqs_disabled());
6998 
6999 	prev_state = exception_enter();
7000 
7001 	do {
7002 		preempt_disable();
7003 		local_irq_enable();
7004 		__schedule(SM_PREEMPT);
7005 		local_irq_disable();
7006 		sched_preempt_enable_no_resched();
7007 	} while (need_resched());
7008 
7009 	exception_exit(prev_state);
7010 }
7011 
7012 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7013 			  void *key)
7014 {
7015 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7016 	return try_to_wake_up(curr->private, mode, wake_flags);
7017 }
7018 EXPORT_SYMBOL(default_wake_function);
7019 
7020 void __setscheduler_prio(struct task_struct *p, int prio)
7021 {
7022 	if (dl_prio(prio))
7023 		p->sched_class = &dl_sched_class;
7024 	else if (rt_prio(prio))
7025 		p->sched_class = &rt_sched_class;
7026 #ifdef CONFIG_SCHED_CLASS_EXT
7027 	else if (task_should_scx(p))
7028 		p->sched_class = &ext_sched_class;
7029 #endif
7030 	else
7031 		p->sched_class = &fair_sched_class;
7032 
7033 	p->prio = prio;
7034 }
7035 
7036 #ifdef CONFIG_RT_MUTEXES
7037 
7038 /*
7039  * Would be more useful with typeof()/auto_type but they don't mix with
7040  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7041  * name such that if someone were to implement this function we get to compare
7042  * notes.
7043  */
7044 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7045 
7046 void rt_mutex_pre_schedule(void)
7047 {
7048 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7049 	sched_submit_work(current);
7050 }
7051 
7052 void rt_mutex_schedule(void)
7053 {
7054 	lockdep_assert(current->sched_rt_mutex);
7055 	__schedule_loop(SM_NONE);
7056 }
7057 
7058 void rt_mutex_post_schedule(void)
7059 {
7060 	sched_update_worker(current);
7061 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7062 }
7063 
7064 /*
7065  * rt_mutex_setprio - set the current priority of a task
7066  * @p: task to boost
7067  * @pi_task: donor task
7068  *
7069  * This function changes the 'effective' priority of a task. It does
7070  * not touch ->normal_prio like __setscheduler().
7071  *
7072  * Used by the rt_mutex code to implement priority inheritance
7073  * logic. Call site only calls if the priority of the task changed.
7074  */
7075 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7076 {
7077 	int prio, oldprio, queued, running, queue_flag =
7078 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7079 	const struct sched_class *prev_class;
7080 	struct rq_flags rf;
7081 	struct rq *rq;
7082 
7083 	/* XXX used to be waiter->prio, not waiter->task->prio */
7084 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7085 
7086 	/*
7087 	 * If nothing changed; bail early.
7088 	 */
7089 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7090 		return;
7091 
7092 	rq = __task_rq_lock(p, &rf);
7093 	update_rq_clock(rq);
7094 	/*
7095 	 * Set under pi_lock && rq->lock, such that the value can be used under
7096 	 * either lock.
7097 	 *
7098 	 * Note that there is loads of tricky to make this pointer cache work
7099 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7100 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7101 	 * task is allowed to run again (and can exit). This ensures the pointer
7102 	 * points to a blocked task -- which guarantees the task is present.
7103 	 */
7104 	p->pi_top_task = pi_task;
7105 
7106 	/*
7107 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7108 	 */
7109 	if (prio == p->prio && !dl_prio(prio))
7110 		goto out_unlock;
7111 
7112 	/*
7113 	 * Idle task boosting is a no-no in general. There is one
7114 	 * exception, when PREEMPT_RT and NOHZ is active:
7115 	 *
7116 	 * The idle task calls get_next_timer_interrupt() and holds
7117 	 * the timer wheel base->lock on the CPU and another CPU wants
7118 	 * to access the timer (probably to cancel it). We can safely
7119 	 * ignore the boosting request, as the idle CPU runs this code
7120 	 * with interrupts disabled and will complete the lock
7121 	 * protected section without being interrupted. So there is no
7122 	 * real need to boost.
7123 	 */
7124 	if (unlikely(p == rq->idle)) {
7125 		WARN_ON(p != rq->curr);
7126 		WARN_ON(p->pi_blocked_on);
7127 		goto out_unlock;
7128 	}
7129 
7130 	trace_sched_pi_setprio(p, pi_task);
7131 	oldprio = p->prio;
7132 
7133 	if (oldprio == prio)
7134 		queue_flag &= ~DEQUEUE_MOVE;
7135 
7136 	prev_class = p->sched_class;
7137 	queued = task_on_rq_queued(p);
7138 	running = task_current(rq, p);
7139 	if (queued)
7140 		dequeue_task(rq, p, queue_flag);
7141 	if (running)
7142 		put_prev_task(rq, p);
7143 
7144 	/*
7145 	 * Boosting condition are:
7146 	 * 1. -rt task is running and holds mutex A
7147 	 *      --> -dl task blocks on mutex A
7148 	 *
7149 	 * 2. -dl task is running and holds mutex A
7150 	 *      --> -dl task blocks on mutex A and could preempt the
7151 	 *          running task
7152 	 */
7153 	if (dl_prio(prio)) {
7154 		if (!dl_prio(p->normal_prio) ||
7155 		    (pi_task && dl_prio(pi_task->prio) &&
7156 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7157 			p->dl.pi_se = pi_task->dl.pi_se;
7158 			queue_flag |= ENQUEUE_REPLENISH;
7159 		} else {
7160 			p->dl.pi_se = &p->dl;
7161 		}
7162 	} else if (rt_prio(prio)) {
7163 		if (dl_prio(oldprio))
7164 			p->dl.pi_se = &p->dl;
7165 		if (oldprio < prio)
7166 			queue_flag |= ENQUEUE_HEAD;
7167 	} else {
7168 		if (dl_prio(oldprio))
7169 			p->dl.pi_se = &p->dl;
7170 		if (rt_prio(oldprio))
7171 			p->rt.timeout = 0;
7172 	}
7173 
7174 	__setscheduler_prio(p, prio);
7175 	check_class_changing(rq, p, prev_class);
7176 
7177 	if (queued)
7178 		enqueue_task(rq, p, queue_flag);
7179 	if (running)
7180 		set_next_task(rq, p);
7181 
7182 	check_class_changed(rq, p, prev_class, oldprio);
7183 out_unlock:
7184 	/* Avoid rq from going away on us: */
7185 	preempt_disable();
7186 
7187 	rq_unpin_lock(rq, &rf);
7188 	__balance_callbacks(rq);
7189 	raw_spin_rq_unlock(rq);
7190 
7191 	preempt_enable();
7192 }
7193 #endif
7194 
7195 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7196 int __sched __cond_resched(void)
7197 {
7198 	if (should_resched(0)) {
7199 		preempt_schedule_common();
7200 		return 1;
7201 	}
7202 	/*
7203 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
7204 	 * whether the current CPU is in an RCU read-side critical section,
7205 	 * so the tick can report quiescent states even for CPUs looping
7206 	 * in kernel context.  In contrast, in non-preemptible kernels,
7207 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7208 	 * processes executing in kernel context might never report an
7209 	 * RCU quiescent state.  Therefore, the following code causes
7210 	 * cond_resched() to report a quiescent state, but only when RCU
7211 	 * is in urgent need of one.
7212 	 */
7213 #ifndef CONFIG_PREEMPT_RCU
7214 	rcu_all_qs();
7215 #endif
7216 	return 0;
7217 }
7218 EXPORT_SYMBOL(__cond_resched);
7219 #endif
7220 
7221 #ifdef CONFIG_PREEMPT_DYNAMIC
7222 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7223 #define cond_resched_dynamic_enabled	__cond_resched
7224 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7225 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7226 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7227 
7228 #define might_resched_dynamic_enabled	__cond_resched
7229 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7230 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7231 EXPORT_STATIC_CALL_TRAMP(might_resched);
7232 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7233 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7234 int __sched dynamic_cond_resched(void)
7235 {
7236 	klp_sched_try_switch();
7237 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7238 		return 0;
7239 	return __cond_resched();
7240 }
7241 EXPORT_SYMBOL(dynamic_cond_resched);
7242 
7243 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7244 int __sched dynamic_might_resched(void)
7245 {
7246 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7247 		return 0;
7248 	return __cond_resched();
7249 }
7250 EXPORT_SYMBOL(dynamic_might_resched);
7251 #endif
7252 #endif
7253 
7254 /*
7255  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7256  * call schedule, and on return reacquire the lock.
7257  *
7258  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7259  * operations here to prevent schedule() from being called twice (once via
7260  * spin_unlock(), once by hand).
7261  */
7262 int __cond_resched_lock(spinlock_t *lock)
7263 {
7264 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7265 	int ret = 0;
7266 
7267 	lockdep_assert_held(lock);
7268 
7269 	if (spin_needbreak(lock) || resched) {
7270 		spin_unlock(lock);
7271 		if (!_cond_resched())
7272 			cpu_relax();
7273 		ret = 1;
7274 		spin_lock(lock);
7275 	}
7276 	return ret;
7277 }
7278 EXPORT_SYMBOL(__cond_resched_lock);
7279 
7280 int __cond_resched_rwlock_read(rwlock_t *lock)
7281 {
7282 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7283 	int ret = 0;
7284 
7285 	lockdep_assert_held_read(lock);
7286 
7287 	if (rwlock_needbreak(lock) || resched) {
7288 		read_unlock(lock);
7289 		if (!_cond_resched())
7290 			cpu_relax();
7291 		ret = 1;
7292 		read_lock(lock);
7293 	}
7294 	return ret;
7295 }
7296 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7297 
7298 int __cond_resched_rwlock_write(rwlock_t *lock)
7299 {
7300 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7301 	int ret = 0;
7302 
7303 	lockdep_assert_held_write(lock);
7304 
7305 	if (rwlock_needbreak(lock) || resched) {
7306 		write_unlock(lock);
7307 		if (!_cond_resched())
7308 			cpu_relax();
7309 		ret = 1;
7310 		write_lock(lock);
7311 	}
7312 	return ret;
7313 }
7314 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7315 
7316 #ifdef CONFIG_PREEMPT_DYNAMIC
7317 
7318 #ifdef CONFIG_GENERIC_ENTRY
7319 #include <linux/entry-common.h>
7320 #endif
7321 
7322 /*
7323  * SC:cond_resched
7324  * SC:might_resched
7325  * SC:preempt_schedule
7326  * SC:preempt_schedule_notrace
7327  * SC:irqentry_exit_cond_resched
7328  *
7329  *
7330  * NONE:
7331  *   cond_resched               <- __cond_resched
7332  *   might_resched              <- RET0
7333  *   preempt_schedule           <- NOP
7334  *   preempt_schedule_notrace   <- NOP
7335  *   irqentry_exit_cond_resched <- NOP
7336  *
7337  * VOLUNTARY:
7338  *   cond_resched               <- __cond_resched
7339  *   might_resched              <- __cond_resched
7340  *   preempt_schedule           <- NOP
7341  *   preempt_schedule_notrace   <- NOP
7342  *   irqentry_exit_cond_resched <- NOP
7343  *
7344  * FULL:
7345  *   cond_resched               <- RET0
7346  *   might_resched              <- RET0
7347  *   preempt_schedule           <- preempt_schedule
7348  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7349  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7350  */
7351 
7352 enum {
7353 	preempt_dynamic_undefined = -1,
7354 	preempt_dynamic_none,
7355 	preempt_dynamic_voluntary,
7356 	preempt_dynamic_full,
7357 };
7358 
7359 int preempt_dynamic_mode = preempt_dynamic_undefined;
7360 
7361 int sched_dynamic_mode(const char *str)
7362 {
7363 	if (!strcmp(str, "none"))
7364 		return preempt_dynamic_none;
7365 
7366 	if (!strcmp(str, "voluntary"))
7367 		return preempt_dynamic_voluntary;
7368 
7369 	if (!strcmp(str, "full"))
7370 		return preempt_dynamic_full;
7371 
7372 	return -EINVAL;
7373 }
7374 
7375 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7376 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7377 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7378 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7379 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7380 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7381 #else
7382 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7383 #endif
7384 
7385 static DEFINE_MUTEX(sched_dynamic_mutex);
7386 static bool klp_override;
7387 
7388 static void __sched_dynamic_update(int mode)
7389 {
7390 	/*
7391 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7392 	 * the ZERO state, which is invalid.
7393 	 */
7394 	if (!klp_override)
7395 		preempt_dynamic_enable(cond_resched);
7396 	preempt_dynamic_enable(might_resched);
7397 	preempt_dynamic_enable(preempt_schedule);
7398 	preempt_dynamic_enable(preempt_schedule_notrace);
7399 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7400 
7401 	switch (mode) {
7402 	case preempt_dynamic_none:
7403 		if (!klp_override)
7404 			preempt_dynamic_enable(cond_resched);
7405 		preempt_dynamic_disable(might_resched);
7406 		preempt_dynamic_disable(preempt_schedule);
7407 		preempt_dynamic_disable(preempt_schedule_notrace);
7408 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7409 		if (mode != preempt_dynamic_mode)
7410 			pr_info("Dynamic Preempt: none\n");
7411 		break;
7412 
7413 	case preempt_dynamic_voluntary:
7414 		if (!klp_override)
7415 			preempt_dynamic_enable(cond_resched);
7416 		preempt_dynamic_enable(might_resched);
7417 		preempt_dynamic_disable(preempt_schedule);
7418 		preempt_dynamic_disable(preempt_schedule_notrace);
7419 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7420 		if (mode != preempt_dynamic_mode)
7421 			pr_info("Dynamic Preempt: voluntary\n");
7422 		break;
7423 
7424 	case preempt_dynamic_full:
7425 		if (!klp_override)
7426 			preempt_dynamic_disable(cond_resched);
7427 		preempt_dynamic_disable(might_resched);
7428 		preempt_dynamic_enable(preempt_schedule);
7429 		preempt_dynamic_enable(preempt_schedule_notrace);
7430 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7431 		if (mode != preempt_dynamic_mode)
7432 			pr_info("Dynamic Preempt: full\n");
7433 		break;
7434 	}
7435 
7436 	preempt_dynamic_mode = mode;
7437 }
7438 
7439 void sched_dynamic_update(int mode)
7440 {
7441 	mutex_lock(&sched_dynamic_mutex);
7442 	__sched_dynamic_update(mode);
7443 	mutex_unlock(&sched_dynamic_mutex);
7444 }
7445 
7446 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7447 
7448 static int klp_cond_resched(void)
7449 {
7450 	__klp_sched_try_switch();
7451 	return __cond_resched();
7452 }
7453 
7454 void sched_dynamic_klp_enable(void)
7455 {
7456 	mutex_lock(&sched_dynamic_mutex);
7457 
7458 	klp_override = true;
7459 	static_call_update(cond_resched, klp_cond_resched);
7460 
7461 	mutex_unlock(&sched_dynamic_mutex);
7462 }
7463 
7464 void sched_dynamic_klp_disable(void)
7465 {
7466 	mutex_lock(&sched_dynamic_mutex);
7467 
7468 	klp_override = false;
7469 	__sched_dynamic_update(preempt_dynamic_mode);
7470 
7471 	mutex_unlock(&sched_dynamic_mutex);
7472 }
7473 
7474 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7475 
7476 static int __init setup_preempt_mode(char *str)
7477 {
7478 	int mode = sched_dynamic_mode(str);
7479 	if (mode < 0) {
7480 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7481 		return 0;
7482 	}
7483 
7484 	sched_dynamic_update(mode);
7485 	return 1;
7486 }
7487 __setup("preempt=", setup_preempt_mode);
7488 
7489 static void __init preempt_dynamic_init(void)
7490 {
7491 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7492 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7493 			sched_dynamic_update(preempt_dynamic_none);
7494 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7495 			sched_dynamic_update(preempt_dynamic_voluntary);
7496 		} else {
7497 			/* Default static call setting, nothing to do */
7498 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7499 			preempt_dynamic_mode = preempt_dynamic_full;
7500 			pr_info("Dynamic Preempt: full\n");
7501 		}
7502 	}
7503 }
7504 
7505 #define PREEMPT_MODEL_ACCESSOR(mode) \
7506 	bool preempt_model_##mode(void)						 \
7507 	{									 \
7508 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7509 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7510 	}									 \
7511 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7512 
7513 PREEMPT_MODEL_ACCESSOR(none);
7514 PREEMPT_MODEL_ACCESSOR(voluntary);
7515 PREEMPT_MODEL_ACCESSOR(full);
7516 
7517 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7518 
7519 static inline void preempt_dynamic_init(void) { }
7520 
7521 #endif /* CONFIG_PREEMPT_DYNAMIC */
7522 
7523 int io_schedule_prepare(void)
7524 {
7525 	int old_iowait = current->in_iowait;
7526 
7527 	current->in_iowait = 1;
7528 	blk_flush_plug(current->plug, true);
7529 	return old_iowait;
7530 }
7531 
7532 void io_schedule_finish(int token)
7533 {
7534 	current->in_iowait = token;
7535 }
7536 
7537 /*
7538  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7539  * that process accounting knows that this is a task in IO wait state.
7540  */
7541 long __sched io_schedule_timeout(long timeout)
7542 {
7543 	int token;
7544 	long ret;
7545 
7546 	token = io_schedule_prepare();
7547 	ret = schedule_timeout(timeout);
7548 	io_schedule_finish(token);
7549 
7550 	return ret;
7551 }
7552 EXPORT_SYMBOL(io_schedule_timeout);
7553 
7554 void __sched io_schedule(void)
7555 {
7556 	int token;
7557 
7558 	token = io_schedule_prepare();
7559 	schedule();
7560 	io_schedule_finish(token);
7561 }
7562 EXPORT_SYMBOL(io_schedule);
7563 
7564 void sched_show_task(struct task_struct *p)
7565 {
7566 	unsigned long free;
7567 	int ppid;
7568 
7569 	if (!try_get_task_stack(p))
7570 		return;
7571 
7572 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7573 
7574 	if (task_is_running(p))
7575 		pr_cont("  running task    ");
7576 	free = stack_not_used(p);
7577 	ppid = 0;
7578 	rcu_read_lock();
7579 	if (pid_alive(p))
7580 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7581 	rcu_read_unlock();
7582 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
7583 		free, task_pid_nr(p), task_tgid_nr(p),
7584 		ppid, read_task_thread_flags(p));
7585 
7586 	print_worker_info(KERN_INFO, p);
7587 	print_stop_info(KERN_INFO, p);
7588 	print_scx_info(KERN_INFO, p);
7589 	show_stack(p, NULL, KERN_INFO);
7590 	put_task_stack(p);
7591 }
7592 EXPORT_SYMBOL_GPL(sched_show_task);
7593 
7594 static inline bool
7595 state_filter_match(unsigned long state_filter, struct task_struct *p)
7596 {
7597 	unsigned int state = READ_ONCE(p->__state);
7598 
7599 	/* no filter, everything matches */
7600 	if (!state_filter)
7601 		return true;
7602 
7603 	/* filter, but doesn't match */
7604 	if (!(state & state_filter))
7605 		return false;
7606 
7607 	/*
7608 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7609 	 * TASK_KILLABLE).
7610 	 */
7611 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7612 		return false;
7613 
7614 	return true;
7615 }
7616 
7617 
7618 void show_state_filter(unsigned int state_filter)
7619 {
7620 	struct task_struct *g, *p;
7621 
7622 	rcu_read_lock();
7623 	for_each_process_thread(g, p) {
7624 		/*
7625 		 * reset the NMI-timeout, listing all files on a slow
7626 		 * console might take a lot of time:
7627 		 * Also, reset softlockup watchdogs on all CPUs, because
7628 		 * another CPU might be blocked waiting for us to process
7629 		 * an IPI.
7630 		 */
7631 		touch_nmi_watchdog();
7632 		touch_all_softlockup_watchdogs();
7633 		if (state_filter_match(state_filter, p))
7634 			sched_show_task(p);
7635 	}
7636 
7637 #ifdef CONFIG_SCHED_DEBUG
7638 	if (!state_filter)
7639 		sysrq_sched_debug_show();
7640 #endif
7641 	rcu_read_unlock();
7642 	/*
7643 	 * Only show locks if all tasks are dumped:
7644 	 */
7645 	if (!state_filter)
7646 		debug_show_all_locks();
7647 }
7648 
7649 /**
7650  * init_idle - set up an idle thread for a given CPU
7651  * @idle: task in question
7652  * @cpu: CPU the idle task belongs to
7653  *
7654  * NOTE: this function does not set the idle thread's NEED_RESCHED
7655  * flag, to make booting more robust.
7656  */
7657 void __init init_idle(struct task_struct *idle, int cpu)
7658 {
7659 #ifdef CONFIG_SMP
7660 	struct affinity_context ac = (struct affinity_context) {
7661 		.new_mask  = cpumask_of(cpu),
7662 		.flags     = 0,
7663 	};
7664 #endif
7665 	struct rq *rq = cpu_rq(cpu);
7666 	unsigned long flags;
7667 
7668 	__sched_fork(0, idle);
7669 
7670 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7671 	raw_spin_rq_lock(rq);
7672 
7673 	idle->__state = TASK_RUNNING;
7674 	idle->se.exec_start = sched_clock();
7675 	/*
7676 	 * PF_KTHREAD should already be set at this point; regardless, make it
7677 	 * look like a proper per-CPU kthread.
7678 	 */
7679 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7680 	kthread_set_per_cpu(idle, cpu);
7681 
7682 #ifdef CONFIG_SMP
7683 	/*
7684 	 * It's possible that init_idle() gets called multiple times on a task,
7685 	 * in that case do_set_cpus_allowed() will not do the right thing.
7686 	 *
7687 	 * And since this is boot we can forgo the serialization.
7688 	 */
7689 	set_cpus_allowed_common(idle, &ac);
7690 #endif
7691 	/*
7692 	 * We're having a chicken and egg problem, even though we are
7693 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7694 	 * lockdep check in task_group() will fail.
7695 	 *
7696 	 * Similar case to sched_fork(). / Alternatively we could
7697 	 * use task_rq_lock() here and obtain the other rq->lock.
7698 	 *
7699 	 * Silence PROVE_RCU
7700 	 */
7701 	rcu_read_lock();
7702 	__set_task_cpu(idle, cpu);
7703 	rcu_read_unlock();
7704 
7705 	rq->idle = idle;
7706 	rcu_assign_pointer(rq->curr, idle);
7707 	idle->on_rq = TASK_ON_RQ_QUEUED;
7708 #ifdef CONFIG_SMP
7709 	idle->on_cpu = 1;
7710 #endif
7711 	raw_spin_rq_unlock(rq);
7712 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7713 
7714 	/* Set the preempt count _outside_ the spinlocks! */
7715 	init_idle_preempt_count(idle, cpu);
7716 
7717 	/*
7718 	 * The idle tasks have their own, simple scheduling class:
7719 	 */
7720 	idle->sched_class = &idle_sched_class;
7721 	ftrace_graph_init_idle_task(idle, cpu);
7722 	vtime_init_idle(idle, cpu);
7723 #ifdef CONFIG_SMP
7724 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7725 #endif
7726 }
7727 
7728 #ifdef CONFIG_SMP
7729 
7730 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7731 			      const struct cpumask *trial)
7732 {
7733 	int ret = 1;
7734 
7735 	if (cpumask_empty(cur))
7736 		return ret;
7737 
7738 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7739 
7740 	return ret;
7741 }
7742 
7743 int task_can_attach(struct task_struct *p)
7744 {
7745 	int ret = 0;
7746 
7747 	/*
7748 	 * Kthreads which disallow setaffinity shouldn't be moved
7749 	 * to a new cpuset; we don't want to change their CPU
7750 	 * affinity and isolating such threads by their set of
7751 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7752 	 * applicable for such threads.  This prevents checking for
7753 	 * success of set_cpus_allowed_ptr() on all attached tasks
7754 	 * before cpus_mask may be changed.
7755 	 */
7756 	if (p->flags & PF_NO_SETAFFINITY)
7757 		ret = -EINVAL;
7758 
7759 	return ret;
7760 }
7761 
7762 bool sched_smp_initialized __read_mostly;
7763 
7764 #ifdef CONFIG_NUMA_BALANCING
7765 /* Migrate current task p to target_cpu */
7766 int migrate_task_to(struct task_struct *p, int target_cpu)
7767 {
7768 	struct migration_arg arg = { p, target_cpu };
7769 	int curr_cpu = task_cpu(p);
7770 
7771 	if (curr_cpu == target_cpu)
7772 		return 0;
7773 
7774 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7775 		return -EINVAL;
7776 
7777 	/* TODO: This is not properly updating schedstats */
7778 
7779 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7780 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7781 }
7782 
7783 /*
7784  * Requeue a task on a given node and accurately track the number of NUMA
7785  * tasks on the runqueues
7786  */
7787 void sched_setnuma(struct task_struct *p, int nid)
7788 {
7789 	bool queued, running;
7790 	struct rq_flags rf;
7791 	struct rq *rq;
7792 
7793 	rq = task_rq_lock(p, &rf);
7794 	queued = task_on_rq_queued(p);
7795 	running = task_current(rq, p);
7796 
7797 	if (queued)
7798 		dequeue_task(rq, p, DEQUEUE_SAVE);
7799 	if (running)
7800 		put_prev_task(rq, p);
7801 
7802 	p->numa_preferred_nid = nid;
7803 
7804 	if (queued)
7805 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7806 	if (running)
7807 		set_next_task(rq, p);
7808 	task_rq_unlock(rq, p, &rf);
7809 }
7810 #endif /* CONFIG_NUMA_BALANCING */
7811 
7812 #ifdef CONFIG_HOTPLUG_CPU
7813 /*
7814  * Ensure that the idle task is using init_mm right before its CPU goes
7815  * offline.
7816  */
7817 void idle_task_exit(void)
7818 {
7819 	struct mm_struct *mm = current->active_mm;
7820 
7821 	BUG_ON(cpu_online(smp_processor_id()));
7822 	BUG_ON(current != this_rq()->idle);
7823 
7824 	if (mm != &init_mm) {
7825 		switch_mm(mm, &init_mm, current);
7826 		finish_arch_post_lock_switch();
7827 	}
7828 
7829 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7830 }
7831 
7832 static int __balance_push_cpu_stop(void *arg)
7833 {
7834 	struct task_struct *p = arg;
7835 	struct rq *rq = this_rq();
7836 	struct rq_flags rf;
7837 	int cpu;
7838 
7839 	raw_spin_lock_irq(&p->pi_lock);
7840 	rq_lock(rq, &rf);
7841 
7842 	update_rq_clock(rq);
7843 
7844 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7845 		cpu = select_fallback_rq(rq->cpu, p);
7846 		rq = __migrate_task(rq, &rf, p, cpu);
7847 	}
7848 
7849 	rq_unlock(rq, &rf);
7850 	raw_spin_unlock_irq(&p->pi_lock);
7851 
7852 	put_task_struct(p);
7853 
7854 	return 0;
7855 }
7856 
7857 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7858 
7859 /*
7860  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7861  *
7862  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7863  * effective when the hotplug motion is down.
7864  */
7865 static void balance_push(struct rq *rq)
7866 {
7867 	struct task_struct *push_task = rq->curr;
7868 
7869 	lockdep_assert_rq_held(rq);
7870 
7871 	/*
7872 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7873 	 */
7874 	rq->balance_callback = &balance_push_callback;
7875 
7876 	/*
7877 	 * Only active while going offline and when invoked on the outgoing
7878 	 * CPU.
7879 	 */
7880 	if (!cpu_dying(rq->cpu) || rq != this_rq())
7881 		return;
7882 
7883 	/*
7884 	 * Both the cpu-hotplug and stop task are in this case and are
7885 	 * required to complete the hotplug process.
7886 	 */
7887 	if (kthread_is_per_cpu(push_task) ||
7888 	    is_migration_disabled(push_task)) {
7889 
7890 		/*
7891 		 * If this is the idle task on the outgoing CPU try to wake
7892 		 * up the hotplug control thread which might wait for the
7893 		 * last task to vanish. The rcuwait_active() check is
7894 		 * accurate here because the waiter is pinned on this CPU
7895 		 * and can't obviously be running in parallel.
7896 		 *
7897 		 * On RT kernels this also has to check whether there are
7898 		 * pinned and scheduled out tasks on the runqueue. They
7899 		 * need to leave the migrate disabled section first.
7900 		 */
7901 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7902 		    rcuwait_active(&rq->hotplug_wait)) {
7903 			raw_spin_rq_unlock(rq);
7904 			rcuwait_wake_up(&rq->hotplug_wait);
7905 			raw_spin_rq_lock(rq);
7906 		}
7907 		return;
7908 	}
7909 
7910 	get_task_struct(push_task);
7911 	/*
7912 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7913 	 * Both preemption and IRQs are still disabled.
7914 	 */
7915 	preempt_disable();
7916 	raw_spin_rq_unlock(rq);
7917 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7918 			    this_cpu_ptr(&push_work));
7919 	preempt_enable();
7920 	/*
7921 	 * At this point need_resched() is true and we'll take the loop in
7922 	 * schedule(). The next pick is obviously going to be the stop task
7923 	 * which kthread_is_per_cpu() and will push this task away.
7924 	 */
7925 	raw_spin_rq_lock(rq);
7926 }
7927 
7928 static void balance_push_set(int cpu, bool on)
7929 {
7930 	struct rq *rq = cpu_rq(cpu);
7931 	struct rq_flags rf;
7932 
7933 	rq_lock_irqsave(rq, &rf);
7934 	if (on) {
7935 		WARN_ON_ONCE(rq->balance_callback);
7936 		rq->balance_callback = &balance_push_callback;
7937 	} else if (rq->balance_callback == &balance_push_callback) {
7938 		rq->balance_callback = NULL;
7939 	}
7940 	rq_unlock_irqrestore(rq, &rf);
7941 }
7942 
7943 /*
7944  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7945  * inactive. All tasks which are not per CPU kernel threads are either
7946  * pushed off this CPU now via balance_push() or placed on a different CPU
7947  * during wakeup. Wait until the CPU is quiescent.
7948  */
7949 static void balance_hotplug_wait(void)
7950 {
7951 	struct rq *rq = this_rq();
7952 
7953 	rcuwait_wait_event(&rq->hotplug_wait,
7954 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7955 			   TASK_UNINTERRUPTIBLE);
7956 }
7957 
7958 #else
7959 
7960 static inline void balance_push(struct rq *rq)
7961 {
7962 }
7963 
7964 static inline void balance_push_set(int cpu, bool on)
7965 {
7966 }
7967 
7968 static inline void balance_hotplug_wait(void)
7969 {
7970 }
7971 
7972 #endif /* CONFIG_HOTPLUG_CPU */
7973 
7974 void set_rq_online(struct rq *rq)
7975 {
7976 	if (!rq->online) {
7977 		const struct sched_class *class;
7978 
7979 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7980 		rq->online = 1;
7981 
7982 		for_each_class(class) {
7983 			if (class->rq_online)
7984 				class->rq_online(rq);
7985 		}
7986 	}
7987 }
7988 
7989 void set_rq_offline(struct rq *rq)
7990 {
7991 	if (rq->online) {
7992 		const struct sched_class *class;
7993 
7994 		update_rq_clock(rq);
7995 		for_each_class(class) {
7996 			if (class->rq_offline)
7997 				class->rq_offline(rq);
7998 		}
7999 
8000 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8001 		rq->online = 0;
8002 	}
8003 }
8004 
8005 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8006 {
8007 	struct rq_flags rf;
8008 
8009 	rq_lock_irqsave(rq, &rf);
8010 	if (rq->rd) {
8011 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8012 		set_rq_online(rq);
8013 	}
8014 	rq_unlock_irqrestore(rq, &rf);
8015 }
8016 
8017 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8018 {
8019 	struct rq_flags rf;
8020 
8021 	rq_lock_irqsave(rq, &rf);
8022 	if (rq->rd) {
8023 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8024 		set_rq_offline(rq);
8025 	}
8026 	rq_unlock_irqrestore(rq, &rf);
8027 }
8028 
8029 /*
8030  * used to mark begin/end of suspend/resume:
8031  */
8032 static int num_cpus_frozen;
8033 
8034 /*
8035  * Update cpusets according to cpu_active mask.  If cpusets are
8036  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8037  * around partition_sched_domains().
8038  *
8039  * If we come here as part of a suspend/resume, don't touch cpusets because we
8040  * want to restore it back to its original state upon resume anyway.
8041  */
8042 static void cpuset_cpu_active(void)
8043 {
8044 	if (cpuhp_tasks_frozen) {
8045 		/*
8046 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8047 		 * resume sequence. As long as this is not the last online
8048 		 * operation in the resume sequence, just build a single sched
8049 		 * domain, ignoring cpusets.
8050 		 */
8051 		partition_sched_domains(1, NULL, NULL);
8052 		if (--num_cpus_frozen)
8053 			return;
8054 		/*
8055 		 * This is the last CPU online operation. So fall through and
8056 		 * restore the original sched domains by considering the
8057 		 * cpuset configurations.
8058 		 */
8059 		cpuset_force_rebuild();
8060 	}
8061 	cpuset_update_active_cpus();
8062 }
8063 
8064 static int cpuset_cpu_inactive(unsigned int cpu)
8065 {
8066 	if (!cpuhp_tasks_frozen) {
8067 		int ret = dl_bw_check_overflow(cpu);
8068 
8069 		if (ret)
8070 			return ret;
8071 		cpuset_update_active_cpus();
8072 	} else {
8073 		num_cpus_frozen++;
8074 		partition_sched_domains(1, NULL, NULL);
8075 	}
8076 	return 0;
8077 }
8078 
8079 static inline void sched_smt_present_inc(int cpu)
8080 {
8081 #ifdef CONFIG_SCHED_SMT
8082 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8083 		static_branch_inc_cpuslocked(&sched_smt_present);
8084 #endif
8085 }
8086 
8087 static inline void sched_smt_present_dec(int cpu)
8088 {
8089 #ifdef CONFIG_SCHED_SMT
8090 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8091 		static_branch_dec_cpuslocked(&sched_smt_present);
8092 #endif
8093 }
8094 
8095 int sched_cpu_activate(unsigned int cpu)
8096 {
8097 	struct rq *rq = cpu_rq(cpu);
8098 
8099 	/*
8100 	 * Clear the balance_push callback and prepare to schedule
8101 	 * regular tasks.
8102 	 */
8103 	balance_push_set(cpu, false);
8104 
8105 	/*
8106 	 * When going up, increment the number of cores with SMT present.
8107 	 */
8108 	sched_smt_present_inc(cpu);
8109 	set_cpu_active(cpu, true);
8110 
8111 	if (sched_smp_initialized) {
8112 		sched_update_numa(cpu, true);
8113 		sched_domains_numa_masks_set(cpu);
8114 		cpuset_cpu_active();
8115 	}
8116 
8117 	scx_rq_activate(rq);
8118 
8119 	/*
8120 	 * Put the rq online, if not already. This happens:
8121 	 *
8122 	 * 1) In the early boot process, because we build the real domains
8123 	 *    after all CPUs have been brought up.
8124 	 *
8125 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8126 	 *    domains.
8127 	 */
8128 	sched_set_rq_online(rq, cpu);
8129 
8130 	return 0;
8131 }
8132 
8133 int sched_cpu_deactivate(unsigned int cpu)
8134 {
8135 	struct rq *rq = cpu_rq(cpu);
8136 	int ret;
8137 
8138 	/*
8139 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8140 	 * load balancing when not active
8141 	 */
8142 	nohz_balance_exit_idle(rq);
8143 
8144 	set_cpu_active(cpu, false);
8145 
8146 	/*
8147 	 * From this point forward, this CPU will refuse to run any task that
8148 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8149 	 * push those tasks away until this gets cleared, see
8150 	 * sched_cpu_dying().
8151 	 */
8152 	balance_push_set(cpu, true);
8153 
8154 	/*
8155 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8156 	 * preempt-disabled and RCU users of this state to go away such that
8157 	 * all new such users will observe it.
8158 	 *
8159 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8160 	 * ttwu_queue_cond() and is_cpu_allowed().
8161 	 *
8162 	 * Do sync before park smpboot threads to take care the RCU boost case.
8163 	 */
8164 	synchronize_rcu();
8165 
8166 	sched_set_rq_offline(rq, cpu);
8167 
8168 	scx_rq_deactivate(rq);
8169 
8170 	/*
8171 	 * When going down, decrement the number of cores with SMT present.
8172 	 */
8173 	sched_smt_present_dec(cpu);
8174 
8175 #ifdef CONFIG_SCHED_SMT
8176 	sched_core_cpu_deactivate(cpu);
8177 #endif
8178 
8179 	if (!sched_smp_initialized)
8180 		return 0;
8181 
8182 	sched_update_numa(cpu, false);
8183 	ret = cpuset_cpu_inactive(cpu);
8184 	if (ret) {
8185 		sched_smt_present_inc(cpu);
8186 		sched_set_rq_online(rq, cpu);
8187 		balance_push_set(cpu, false);
8188 		set_cpu_active(cpu, true);
8189 		sched_update_numa(cpu, true);
8190 		return ret;
8191 	}
8192 	sched_domains_numa_masks_clear(cpu);
8193 	return 0;
8194 }
8195 
8196 static void sched_rq_cpu_starting(unsigned int cpu)
8197 {
8198 	struct rq *rq = cpu_rq(cpu);
8199 
8200 	rq->calc_load_update = calc_load_update;
8201 	update_max_interval();
8202 }
8203 
8204 int sched_cpu_starting(unsigned int cpu)
8205 {
8206 	sched_core_cpu_starting(cpu);
8207 	sched_rq_cpu_starting(cpu);
8208 	sched_tick_start(cpu);
8209 	return 0;
8210 }
8211 
8212 #ifdef CONFIG_HOTPLUG_CPU
8213 
8214 /*
8215  * Invoked immediately before the stopper thread is invoked to bring the
8216  * CPU down completely. At this point all per CPU kthreads except the
8217  * hotplug thread (current) and the stopper thread (inactive) have been
8218  * either parked or have been unbound from the outgoing CPU. Ensure that
8219  * any of those which might be on the way out are gone.
8220  *
8221  * If after this point a bound task is being woken on this CPU then the
8222  * responsible hotplug callback has failed to do it's job.
8223  * sched_cpu_dying() will catch it with the appropriate fireworks.
8224  */
8225 int sched_cpu_wait_empty(unsigned int cpu)
8226 {
8227 	balance_hotplug_wait();
8228 	return 0;
8229 }
8230 
8231 /*
8232  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8233  * might have. Called from the CPU stopper task after ensuring that the
8234  * stopper is the last running task on the CPU, so nr_active count is
8235  * stable. We need to take the tear-down thread which is calling this into
8236  * account, so we hand in adjust = 1 to the load calculation.
8237  *
8238  * Also see the comment "Global load-average calculations".
8239  */
8240 static void calc_load_migrate(struct rq *rq)
8241 {
8242 	long delta = calc_load_fold_active(rq, 1);
8243 
8244 	if (delta)
8245 		atomic_long_add(delta, &calc_load_tasks);
8246 }
8247 
8248 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8249 {
8250 	struct task_struct *g, *p;
8251 	int cpu = cpu_of(rq);
8252 
8253 	lockdep_assert_rq_held(rq);
8254 
8255 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8256 	for_each_process_thread(g, p) {
8257 		if (task_cpu(p) != cpu)
8258 			continue;
8259 
8260 		if (!task_on_rq_queued(p))
8261 			continue;
8262 
8263 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8264 	}
8265 }
8266 
8267 int sched_cpu_dying(unsigned int cpu)
8268 {
8269 	struct rq *rq = cpu_rq(cpu);
8270 	struct rq_flags rf;
8271 
8272 	/* Handle pending wakeups and then migrate everything off */
8273 	sched_tick_stop(cpu);
8274 
8275 	rq_lock_irqsave(rq, &rf);
8276 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8277 		WARN(true, "Dying CPU not properly vacated!");
8278 		dump_rq_tasks(rq, KERN_WARNING);
8279 	}
8280 	rq_unlock_irqrestore(rq, &rf);
8281 
8282 	calc_load_migrate(rq);
8283 	update_max_interval();
8284 	hrtick_clear(rq);
8285 	sched_core_cpu_dying(cpu);
8286 	return 0;
8287 }
8288 #endif
8289 
8290 void __init sched_init_smp(void)
8291 {
8292 	sched_init_numa(NUMA_NO_NODE);
8293 
8294 	/*
8295 	 * There's no userspace yet to cause hotplug operations; hence all the
8296 	 * CPU masks are stable and all blatant races in the below code cannot
8297 	 * happen.
8298 	 */
8299 	mutex_lock(&sched_domains_mutex);
8300 	sched_init_domains(cpu_active_mask);
8301 	mutex_unlock(&sched_domains_mutex);
8302 
8303 	/* Move init over to a non-isolated CPU */
8304 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8305 		BUG();
8306 	current->flags &= ~PF_NO_SETAFFINITY;
8307 	sched_init_granularity();
8308 
8309 	init_sched_rt_class();
8310 	init_sched_dl_class();
8311 
8312 	sched_smp_initialized = true;
8313 }
8314 
8315 static int __init migration_init(void)
8316 {
8317 	sched_cpu_starting(smp_processor_id());
8318 	return 0;
8319 }
8320 early_initcall(migration_init);
8321 
8322 #else
8323 void __init sched_init_smp(void)
8324 {
8325 	sched_init_granularity();
8326 }
8327 #endif /* CONFIG_SMP */
8328 
8329 int in_sched_functions(unsigned long addr)
8330 {
8331 	return in_lock_functions(addr) ||
8332 		(addr >= (unsigned long)__sched_text_start
8333 		&& addr < (unsigned long)__sched_text_end);
8334 }
8335 
8336 #ifdef CONFIG_CGROUP_SCHED
8337 /*
8338  * Default task group.
8339  * Every task in system belongs to this group at bootup.
8340  */
8341 struct task_group root_task_group;
8342 LIST_HEAD(task_groups);
8343 
8344 /* Cacheline aligned slab cache for task_group */
8345 static struct kmem_cache *task_group_cache __ro_after_init;
8346 #endif
8347 
8348 void __init sched_init(void)
8349 {
8350 	unsigned long ptr = 0;
8351 	int i;
8352 
8353 	/* Make sure the linker didn't screw up */
8354 #ifdef CONFIG_SMP
8355 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8356 #endif
8357 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8358 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8359 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8360 #ifdef CONFIG_SCHED_CLASS_EXT
8361 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8362 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8363 #endif
8364 
8365 	wait_bit_init();
8366 
8367 #ifdef CONFIG_FAIR_GROUP_SCHED
8368 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8369 #endif
8370 #ifdef CONFIG_RT_GROUP_SCHED
8371 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8372 #endif
8373 	if (ptr) {
8374 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8375 
8376 #ifdef CONFIG_FAIR_GROUP_SCHED
8377 		root_task_group.se = (struct sched_entity **)ptr;
8378 		ptr += nr_cpu_ids * sizeof(void **);
8379 
8380 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8381 		ptr += nr_cpu_ids * sizeof(void **);
8382 
8383 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8384 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8385 #endif /* CONFIG_FAIR_GROUP_SCHED */
8386 #ifdef CONFIG_EXT_GROUP_SCHED
8387 		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8388 #endif /* CONFIG_EXT_GROUP_SCHED */
8389 #ifdef CONFIG_RT_GROUP_SCHED
8390 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8391 		ptr += nr_cpu_ids * sizeof(void **);
8392 
8393 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8394 		ptr += nr_cpu_ids * sizeof(void **);
8395 
8396 #endif /* CONFIG_RT_GROUP_SCHED */
8397 	}
8398 
8399 #ifdef CONFIG_SMP
8400 	init_defrootdomain();
8401 #endif
8402 
8403 #ifdef CONFIG_RT_GROUP_SCHED
8404 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8405 			global_rt_period(), global_rt_runtime());
8406 #endif /* CONFIG_RT_GROUP_SCHED */
8407 
8408 #ifdef CONFIG_CGROUP_SCHED
8409 	task_group_cache = KMEM_CACHE(task_group, 0);
8410 
8411 	list_add(&root_task_group.list, &task_groups);
8412 	INIT_LIST_HEAD(&root_task_group.children);
8413 	INIT_LIST_HEAD(&root_task_group.siblings);
8414 	autogroup_init(&init_task);
8415 #endif /* CONFIG_CGROUP_SCHED */
8416 
8417 	for_each_possible_cpu(i) {
8418 		struct rq *rq;
8419 
8420 		rq = cpu_rq(i);
8421 		raw_spin_lock_init(&rq->__lock);
8422 		rq->nr_running = 0;
8423 		rq->calc_load_active = 0;
8424 		rq->calc_load_update = jiffies + LOAD_FREQ;
8425 		init_cfs_rq(&rq->cfs);
8426 		init_rt_rq(&rq->rt);
8427 		init_dl_rq(&rq->dl);
8428 #ifdef CONFIG_FAIR_GROUP_SCHED
8429 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8430 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8431 		/*
8432 		 * How much CPU bandwidth does root_task_group get?
8433 		 *
8434 		 * In case of task-groups formed through the cgroup filesystem, it
8435 		 * gets 100% of the CPU resources in the system. This overall
8436 		 * system CPU resource is divided among the tasks of
8437 		 * root_task_group and its child task-groups in a fair manner,
8438 		 * based on each entity's (task or task-group's) weight
8439 		 * (se->load.weight).
8440 		 *
8441 		 * In other words, if root_task_group has 10 tasks of weight
8442 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8443 		 * then A0's share of the CPU resource is:
8444 		 *
8445 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8446 		 *
8447 		 * We achieve this by letting root_task_group's tasks sit
8448 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8449 		 */
8450 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8451 #endif /* CONFIG_FAIR_GROUP_SCHED */
8452 
8453 #ifdef CONFIG_RT_GROUP_SCHED
8454 		/*
8455 		 * This is required for init cpu because rt.c:__enable_runtime()
8456 		 * starts working after scheduler_running, which is not the case
8457 		 * yet.
8458 		 */
8459 		rq->rt.rt_runtime = global_rt_runtime();
8460 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8461 #endif
8462 #ifdef CONFIG_SMP
8463 		rq->sd = NULL;
8464 		rq->rd = NULL;
8465 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8466 		rq->balance_callback = &balance_push_callback;
8467 		rq->active_balance = 0;
8468 		rq->next_balance = jiffies;
8469 		rq->push_cpu = 0;
8470 		rq->cpu = i;
8471 		rq->online = 0;
8472 		rq->idle_stamp = 0;
8473 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8474 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8475 
8476 		INIT_LIST_HEAD(&rq->cfs_tasks);
8477 
8478 		rq_attach_root(rq, &def_root_domain);
8479 #ifdef CONFIG_NO_HZ_COMMON
8480 		rq->last_blocked_load_update_tick = jiffies;
8481 		atomic_set(&rq->nohz_flags, 0);
8482 
8483 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8484 #endif
8485 #ifdef CONFIG_HOTPLUG_CPU
8486 		rcuwait_init(&rq->hotplug_wait);
8487 #endif
8488 #endif /* CONFIG_SMP */
8489 		hrtick_rq_init(rq);
8490 		atomic_set(&rq->nr_iowait, 0);
8491 		fair_server_init(rq);
8492 
8493 #ifdef CONFIG_SCHED_CORE
8494 		rq->core = rq;
8495 		rq->core_pick = NULL;
8496 		rq->core_dl_server = NULL;
8497 		rq->core_enabled = 0;
8498 		rq->core_tree = RB_ROOT;
8499 		rq->core_forceidle_count = 0;
8500 		rq->core_forceidle_occupation = 0;
8501 		rq->core_forceidle_start = 0;
8502 
8503 		rq->core_cookie = 0UL;
8504 #endif
8505 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8506 	}
8507 
8508 	set_load_weight(&init_task, false);
8509 	init_task.se.slice = sysctl_sched_base_slice,
8510 
8511 	/*
8512 	 * The boot idle thread does lazy MMU switching as well:
8513 	 */
8514 	mmgrab_lazy_tlb(&init_mm);
8515 	enter_lazy_tlb(&init_mm, current);
8516 
8517 	/*
8518 	 * The idle task doesn't need the kthread struct to function, but it
8519 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8520 	 * if we want to avoid special-casing it in code that deals with per-CPU
8521 	 * kthreads.
8522 	 */
8523 	WARN_ON(!set_kthread_struct(current));
8524 
8525 	/*
8526 	 * Make us the idle thread. Technically, schedule() should not be
8527 	 * called from this thread, however somewhere below it might be,
8528 	 * but because we are the idle thread, we just pick up running again
8529 	 * when this runqueue becomes "idle".
8530 	 */
8531 	init_idle(current, smp_processor_id());
8532 
8533 	calc_load_update = jiffies + LOAD_FREQ;
8534 
8535 #ifdef CONFIG_SMP
8536 	idle_thread_set_boot_cpu();
8537 	balance_push_set(smp_processor_id(), false);
8538 #endif
8539 	init_sched_fair_class();
8540 	init_sched_ext_class();
8541 
8542 	psi_init();
8543 
8544 	init_uclamp();
8545 
8546 	preempt_dynamic_init();
8547 
8548 	scheduler_running = 1;
8549 }
8550 
8551 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8552 
8553 void __might_sleep(const char *file, int line)
8554 {
8555 	unsigned int state = get_current_state();
8556 	/*
8557 	 * Blocking primitives will set (and therefore destroy) current->state,
8558 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8559 	 * otherwise we will destroy state.
8560 	 */
8561 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8562 			"do not call blocking ops when !TASK_RUNNING; "
8563 			"state=%x set at [<%p>] %pS\n", state,
8564 			(void *)current->task_state_change,
8565 			(void *)current->task_state_change);
8566 
8567 	__might_resched(file, line, 0);
8568 }
8569 EXPORT_SYMBOL(__might_sleep);
8570 
8571 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8572 {
8573 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8574 		return;
8575 
8576 	if (preempt_count() == preempt_offset)
8577 		return;
8578 
8579 	pr_err("Preemption disabled at:");
8580 	print_ip_sym(KERN_ERR, ip);
8581 }
8582 
8583 static inline bool resched_offsets_ok(unsigned int offsets)
8584 {
8585 	unsigned int nested = preempt_count();
8586 
8587 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8588 
8589 	return nested == offsets;
8590 }
8591 
8592 void __might_resched(const char *file, int line, unsigned int offsets)
8593 {
8594 	/* Ratelimiting timestamp: */
8595 	static unsigned long prev_jiffy;
8596 
8597 	unsigned long preempt_disable_ip;
8598 
8599 	/* WARN_ON_ONCE() by default, no rate limit required: */
8600 	rcu_sleep_check();
8601 
8602 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8603 	     !is_idle_task(current) && !current->non_block_count) ||
8604 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8605 	    oops_in_progress)
8606 		return;
8607 
8608 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8609 		return;
8610 	prev_jiffy = jiffies;
8611 
8612 	/* Save this before calling printk(), since that will clobber it: */
8613 	preempt_disable_ip = get_preempt_disable_ip(current);
8614 
8615 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8616 	       file, line);
8617 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8618 	       in_atomic(), irqs_disabled(), current->non_block_count,
8619 	       current->pid, current->comm);
8620 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8621 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8622 
8623 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8624 		pr_err("RCU nest depth: %d, expected: %u\n",
8625 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8626 	}
8627 
8628 	if (task_stack_end_corrupted(current))
8629 		pr_emerg("Thread overran stack, or stack corrupted\n");
8630 
8631 	debug_show_held_locks(current);
8632 	if (irqs_disabled())
8633 		print_irqtrace_events(current);
8634 
8635 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8636 				 preempt_disable_ip);
8637 
8638 	dump_stack();
8639 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8640 }
8641 EXPORT_SYMBOL(__might_resched);
8642 
8643 void __cant_sleep(const char *file, int line, int preempt_offset)
8644 {
8645 	static unsigned long prev_jiffy;
8646 
8647 	if (irqs_disabled())
8648 		return;
8649 
8650 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8651 		return;
8652 
8653 	if (preempt_count() > preempt_offset)
8654 		return;
8655 
8656 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8657 		return;
8658 	prev_jiffy = jiffies;
8659 
8660 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8661 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8662 			in_atomic(), irqs_disabled(),
8663 			current->pid, current->comm);
8664 
8665 	debug_show_held_locks(current);
8666 	dump_stack();
8667 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8668 }
8669 EXPORT_SYMBOL_GPL(__cant_sleep);
8670 
8671 #ifdef CONFIG_SMP
8672 void __cant_migrate(const char *file, int line)
8673 {
8674 	static unsigned long prev_jiffy;
8675 
8676 	if (irqs_disabled())
8677 		return;
8678 
8679 	if (is_migration_disabled(current))
8680 		return;
8681 
8682 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8683 		return;
8684 
8685 	if (preempt_count() > 0)
8686 		return;
8687 
8688 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8689 		return;
8690 	prev_jiffy = jiffies;
8691 
8692 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8693 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8694 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8695 	       current->pid, current->comm);
8696 
8697 	debug_show_held_locks(current);
8698 	dump_stack();
8699 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8700 }
8701 EXPORT_SYMBOL_GPL(__cant_migrate);
8702 #endif
8703 #endif
8704 
8705 #ifdef CONFIG_MAGIC_SYSRQ
8706 void normalize_rt_tasks(void)
8707 {
8708 	struct task_struct *g, *p;
8709 	struct sched_attr attr = {
8710 		.sched_policy = SCHED_NORMAL,
8711 	};
8712 
8713 	read_lock(&tasklist_lock);
8714 	for_each_process_thread(g, p) {
8715 		/*
8716 		 * Only normalize user tasks:
8717 		 */
8718 		if (p->flags & PF_KTHREAD)
8719 			continue;
8720 
8721 		p->se.exec_start = 0;
8722 		schedstat_set(p->stats.wait_start,  0);
8723 		schedstat_set(p->stats.sleep_start, 0);
8724 		schedstat_set(p->stats.block_start, 0);
8725 
8726 		if (!rt_or_dl_task(p)) {
8727 			/*
8728 			 * Renice negative nice level userspace
8729 			 * tasks back to 0:
8730 			 */
8731 			if (task_nice(p) < 0)
8732 				set_user_nice(p, 0);
8733 			continue;
8734 		}
8735 
8736 		__sched_setscheduler(p, &attr, false, false);
8737 	}
8738 	read_unlock(&tasklist_lock);
8739 }
8740 
8741 #endif /* CONFIG_MAGIC_SYSRQ */
8742 
8743 #if defined(CONFIG_KGDB_KDB)
8744 /*
8745  * These functions are only useful for KDB.
8746  *
8747  * They can only be called when the whole system has been
8748  * stopped - every CPU needs to be quiescent, and no scheduling
8749  * activity can take place. Using them for anything else would
8750  * be a serious bug, and as a result, they aren't even visible
8751  * under any other configuration.
8752  */
8753 
8754 /**
8755  * curr_task - return the current task for a given CPU.
8756  * @cpu: the processor in question.
8757  *
8758  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8759  *
8760  * Return: The current task for @cpu.
8761  */
8762 struct task_struct *curr_task(int cpu)
8763 {
8764 	return cpu_curr(cpu);
8765 }
8766 
8767 #endif /* defined(CONFIG_KGDB_KDB) */
8768 
8769 #ifdef CONFIG_CGROUP_SCHED
8770 /* task_group_lock serializes the addition/removal of task groups */
8771 static DEFINE_SPINLOCK(task_group_lock);
8772 
8773 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8774 					    struct task_group *parent)
8775 {
8776 #ifdef CONFIG_UCLAMP_TASK_GROUP
8777 	enum uclamp_id clamp_id;
8778 
8779 	for_each_clamp_id(clamp_id) {
8780 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8781 			      uclamp_none(clamp_id), false);
8782 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8783 	}
8784 #endif
8785 }
8786 
8787 static void sched_free_group(struct task_group *tg)
8788 {
8789 	free_fair_sched_group(tg);
8790 	free_rt_sched_group(tg);
8791 	autogroup_free(tg);
8792 	kmem_cache_free(task_group_cache, tg);
8793 }
8794 
8795 static void sched_free_group_rcu(struct rcu_head *rcu)
8796 {
8797 	sched_free_group(container_of(rcu, struct task_group, rcu));
8798 }
8799 
8800 static void sched_unregister_group(struct task_group *tg)
8801 {
8802 	unregister_fair_sched_group(tg);
8803 	unregister_rt_sched_group(tg);
8804 	/*
8805 	 * We have to wait for yet another RCU grace period to expire, as
8806 	 * print_cfs_stats() might run concurrently.
8807 	 */
8808 	call_rcu(&tg->rcu, sched_free_group_rcu);
8809 }
8810 
8811 /* allocate runqueue etc for a new task group */
8812 struct task_group *sched_create_group(struct task_group *parent)
8813 {
8814 	struct task_group *tg;
8815 
8816 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8817 	if (!tg)
8818 		return ERR_PTR(-ENOMEM);
8819 
8820 	if (!alloc_fair_sched_group(tg, parent))
8821 		goto err;
8822 
8823 	if (!alloc_rt_sched_group(tg, parent))
8824 		goto err;
8825 
8826 	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8827 	alloc_uclamp_sched_group(tg, parent);
8828 
8829 	return tg;
8830 
8831 err:
8832 	sched_free_group(tg);
8833 	return ERR_PTR(-ENOMEM);
8834 }
8835 
8836 void sched_online_group(struct task_group *tg, struct task_group *parent)
8837 {
8838 	unsigned long flags;
8839 
8840 	spin_lock_irqsave(&task_group_lock, flags);
8841 	list_add_rcu(&tg->list, &task_groups);
8842 
8843 	/* Root should already exist: */
8844 	WARN_ON(!parent);
8845 
8846 	tg->parent = parent;
8847 	INIT_LIST_HEAD(&tg->children);
8848 	list_add_rcu(&tg->siblings, &parent->children);
8849 	spin_unlock_irqrestore(&task_group_lock, flags);
8850 
8851 	online_fair_sched_group(tg);
8852 }
8853 
8854 /* RCU callback to free various structures associated with a task group */
8855 static void sched_unregister_group_rcu(struct rcu_head *rhp)
8856 {
8857 	/* Now it should be safe to free those cfs_rqs: */
8858 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
8859 }
8860 
8861 void sched_destroy_group(struct task_group *tg)
8862 {
8863 	/* Wait for possible concurrent references to cfs_rqs complete: */
8864 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
8865 }
8866 
8867 void sched_release_group(struct task_group *tg)
8868 {
8869 	unsigned long flags;
8870 
8871 	/*
8872 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
8873 	 * sched_cfs_period_timer()).
8874 	 *
8875 	 * For this to be effective, we have to wait for all pending users of
8876 	 * this task group to leave their RCU critical section to ensure no new
8877 	 * user will see our dying task group any more. Specifically ensure
8878 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
8879 	 *
8880 	 * We therefore defer calling unregister_fair_sched_group() to
8881 	 * sched_unregister_group() which is guarantied to get called only after the
8882 	 * current RCU grace period has expired.
8883 	 */
8884 	spin_lock_irqsave(&task_group_lock, flags);
8885 	list_del_rcu(&tg->list);
8886 	list_del_rcu(&tg->siblings);
8887 	spin_unlock_irqrestore(&task_group_lock, flags);
8888 }
8889 
8890 static struct task_group *sched_get_task_group(struct task_struct *tsk)
8891 {
8892 	struct task_group *tg;
8893 
8894 	/*
8895 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8896 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8897 	 * to prevent lockdep warnings.
8898 	 */
8899 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8900 			  struct task_group, css);
8901 	tg = autogroup_task_group(tsk, tg);
8902 
8903 	return tg;
8904 }
8905 
8906 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
8907 {
8908 	tsk->sched_task_group = group;
8909 
8910 #ifdef CONFIG_FAIR_GROUP_SCHED
8911 	if (tsk->sched_class->task_change_group)
8912 		tsk->sched_class->task_change_group(tsk);
8913 	else
8914 #endif
8915 		set_task_rq(tsk, task_cpu(tsk));
8916 }
8917 
8918 /*
8919  * Change task's runqueue when it moves between groups.
8920  *
8921  * The caller of this function should have put the task in its new group by
8922  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8923  * its new group.
8924  */
8925 void sched_move_task(struct task_struct *tsk)
8926 {
8927 	int queued, running, queue_flags =
8928 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8929 	struct task_group *group;
8930 	struct rq *rq;
8931 
8932 	CLASS(task_rq_lock, rq_guard)(tsk);
8933 	rq = rq_guard.rq;
8934 
8935 	/*
8936 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
8937 	 * group changes.
8938 	 */
8939 	group = sched_get_task_group(tsk);
8940 	if (group == tsk->sched_task_group)
8941 		return;
8942 
8943 	update_rq_clock(rq);
8944 
8945 	running = task_current(rq, tsk);
8946 	queued = task_on_rq_queued(tsk);
8947 
8948 	if (queued)
8949 		dequeue_task(rq, tsk, queue_flags);
8950 	if (running)
8951 		put_prev_task(rq, tsk);
8952 
8953 	sched_change_group(tsk, group);
8954 	scx_move_task(tsk);
8955 
8956 	if (queued)
8957 		enqueue_task(rq, tsk, queue_flags);
8958 	if (running) {
8959 		set_next_task(rq, tsk);
8960 		/*
8961 		 * After changing group, the running task may have joined a
8962 		 * throttled one but it's still the running task. Trigger a
8963 		 * resched to make sure that task can still run.
8964 		 */
8965 		resched_curr(rq);
8966 	}
8967 }
8968 
8969 static struct cgroup_subsys_state *
8970 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8971 {
8972 	struct task_group *parent = css_tg(parent_css);
8973 	struct task_group *tg;
8974 
8975 	if (!parent) {
8976 		/* This is early initialization for the top cgroup */
8977 		return &root_task_group.css;
8978 	}
8979 
8980 	tg = sched_create_group(parent);
8981 	if (IS_ERR(tg))
8982 		return ERR_PTR(-ENOMEM);
8983 
8984 	return &tg->css;
8985 }
8986 
8987 /* Expose task group only after completing cgroup initialization */
8988 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8989 {
8990 	struct task_group *tg = css_tg(css);
8991 	struct task_group *parent = css_tg(css->parent);
8992 	int ret;
8993 
8994 	ret = scx_tg_online(tg);
8995 	if (ret)
8996 		return ret;
8997 
8998 	if (parent)
8999 		sched_online_group(tg, parent);
9000 
9001 #ifdef CONFIG_UCLAMP_TASK_GROUP
9002 	/* Propagate the effective uclamp value for the new group */
9003 	guard(mutex)(&uclamp_mutex);
9004 	guard(rcu)();
9005 	cpu_util_update_eff(css);
9006 #endif
9007 
9008 	return 0;
9009 }
9010 
9011 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9012 {
9013 	struct task_group *tg = css_tg(css);
9014 
9015 	scx_tg_offline(tg);
9016 }
9017 
9018 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9019 {
9020 	struct task_group *tg = css_tg(css);
9021 
9022 	sched_release_group(tg);
9023 }
9024 
9025 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9026 {
9027 	struct task_group *tg = css_tg(css);
9028 
9029 	/*
9030 	 * Relies on the RCU grace period between css_released() and this.
9031 	 */
9032 	sched_unregister_group(tg);
9033 }
9034 
9035 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9036 {
9037 #ifdef CONFIG_RT_GROUP_SCHED
9038 	struct task_struct *task;
9039 	struct cgroup_subsys_state *css;
9040 
9041 	cgroup_taskset_for_each(task, css, tset) {
9042 		if (!sched_rt_can_attach(css_tg(css), task))
9043 			return -EINVAL;
9044 	}
9045 #endif
9046 	return scx_cgroup_can_attach(tset);
9047 }
9048 
9049 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9050 {
9051 	struct task_struct *task;
9052 	struct cgroup_subsys_state *css;
9053 
9054 	cgroup_taskset_for_each(task, css, tset)
9055 		sched_move_task(task);
9056 
9057 	scx_cgroup_finish_attach();
9058 }
9059 
9060 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9061 {
9062 	scx_cgroup_cancel_attach(tset);
9063 }
9064 
9065 #ifdef CONFIG_UCLAMP_TASK_GROUP
9066 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9067 {
9068 	struct cgroup_subsys_state *top_css = css;
9069 	struct uclamp_se *uc_parent = NULL;
9070 	struct uclamp_se *uc_se = NULL;
9071 	unsigned int eff[UCLAMP_CNT];
9072 	enum uclamp_id clamp_id;
9073 	unsigned int clamps;
9074 
9075 	lockdep_assert_held(&uclamp_mutex);
9076 	SCHED_WARN_ON(!rcu_read_lock_held());
9077 
9078 	css_for_each_descendant_pre(css, top_css) {
9079 		uc_parent = css_tg(css)->parent
9080 			? css_tg(css)->parent->uclamp : NULL;
9081 
9082 		for_each_clamp_id(clamp_id) {
9083 			/* Assume effective clamps matches requested clamps */
9084 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9085 			/* Cap effective clamps with parent's effective clamps */
9086 			if (uc_parent &&
9087 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9088 				eff[clamp_id] = uc_parent[clamp_id].value;
9089 			}
9090 		}
9091 		/* Ensure protection is always capped by limit */
9092 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9093 
9094 		/* Propagate most restrictive effective clamps */
9095 		clamps = 0x0;
9096 		uc_se = css_tg(css)->uclamp;
9097 		for_each_clamp_id(clamp_id) {
9098 			if (eff[clamp_id] == uc_se[clamp_id].value)
9099 				continue;
9100 			uc_se[clamp_id].value = eff[clamp_id];
9101 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9102 			clamps |= (0x1 << clamp_id);
9103 		}
9104 		if (!clamps) {
9105 			css = css_rightmost_descendant(css);
9106 			continue;
9107 		}
9108 
9109 		/* Immediately update descendants RUNNABLE tasks */
9110 		uclamp_update_active_tasks(css);
9111 	}
9112 }
9113 
9114 /*
9115  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9116  * C expression. Since there is no way to convert a macro argument (N) into a
9117  * character constant, use two levels of macros.
9118  */
9119 #define _POW10(exp) ((unsigned int)1e##exp)
9120 #define POW10(exp) _POW10(exp)
9121 
9122 struct uclamp_request {
9123 #define UCLAMP_PERCENT_SHIFT	2
9124 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9125 	s64 percent;
9126 	u64 util;
9127 	int ret;
9128 };
9129 
9130 static inline struct uclamp_request
9131 capacity_from_percent(char *buf)
9132 {
9133 	struct uclamp_request req = {
9134 		.percent = UCLAMP_PERCENT_SCALE,
9135 		.util = SCHED_CAPACITY_SCALE,
9136 		.ret = 0,
9137 	};
9138 
9139 	buf = strim(buf);
9140 	if (strcmp(buf, "max")) {
9141 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9142 					     &req.percent);
9143 		if (req.ret)
9144 			return req;
9145 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9146 			req.ret = -ERANGE;
9147 			return req;
9148 		}
9149 
9150 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9151 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9152 	}
9153 
9154 	return req;
9155 }
9156 
9157 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9158 				size_t nbytes, loff_t off,
9159 				enum uclamp_id clamp_id)
9160 {
9161 	struct uclamp_request req;
9162 	struct task_group *tg;
9163 
9164 	req = capacity_from_percent(buf);
9165 	if (req.ret)
9166 		return req.ret;
9167 
9168 	static_branch_enable(&sched_uclamp_used);
9169 
9170 	guard(mutex)(&uclamp_mutex);
9171 	guard(rcu)();
9172 
9173 	tg = css_tg(of_css(of));
9174 	if (tg->uclamp_req[clamp_id].value != req.util)
9175 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9176 
9177 	/*
9178 	 * Because of not recoverable conversion rounding we keep track of the
9179 	 * exact requested value
9180 	 */
9181 	tg->uclamp_pct[clamp_id] = req.percent;
9182 
9183 	/* Update effective clamps to track the most restrictive value */
9184 	cpu_util_update_eff(of_css(of));
9185 
9186 	return nbytes;
9187 }
9188 
9189 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9190 				    char *buf, size_t nbytes,
9191 				    loff_t off)
9192 {
9193 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9194 }
9195 
9196 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9197 				    char *buf, size_t nbytes,
9198 				    loff_t off)
9199 {
9200 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9201 }
9202 
9203 static inline void cpu_uclamp_print(struct seq_file *sf,
9204 				    enum uclamp_id clamp_id)
9205 {
9206 	struct task_group *tg;
9207 	u64 util_clamp;
9208 	u64 percent;
9209 	u32 rem;
9210 
9211 	scoped_guard (rcu) {
9212 		tg = css_tg(seq_css(sf));
9213 		util_clamp = tg->uclamp_req[clamp_id].value;
9214 	}
9215 
9216 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9217 		seq_puts(sf, "max\n");
9218 		return;
9219 	}
9220 
9221 	percent = tg->uclamp_pct[clamp_id];
9222 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9223 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9224 }
9225 
9226 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9227 {
9228 	cpu_uclamp_print(sf, UCLAMP_MIN);
9229 	return 0;
9230 }
9231 
9232 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9233 {
9234 	cpu_uclamp_print(sf, UCLAMP_MAX);
9235 	return 0;
9236 }
9237 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9238 
9239 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9240 static unsigned long tg_weight(struct task_group *tg)
9241 {
9242 #ifdef CONFIG_FAIR_GROUP_SCHED
9243 	return scale_load_down(tg->shares);
9244 #else
9245 	return sched_weight_from_cgroup(tg->scx_weight);
9246 #endif
9247 }
9248 
9249 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9250 				struct cftype *cftype, u64 shareval)
9251 {
9252 	int ret;
9253 
9254 	if (shareval > scale_load_down(ULONG_MAX))
9255 		shareval = MAX_SHARES;
9256 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9257 	if (!ret)
9258 		scx_group_set_weight(css_tg(css),
9259 				     sched_weight_to_cgroup(shareval));
9260 	return ret;
9261 }
9262 
9263 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9264 			       struct cftype *cft)
9265 {
9266 	return tg_weight(css_tg(css));
9267 }
9268 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9269 
9270 #ifdef CONFIG_CFS_BANDWIDTH
9271 static DEFINE_MUTEX(cfs_constraints_mutex);
9272 
9273 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9274 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9275 /* More than 203 days if BW_SHIFT equals 20. */
9276 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9277 
9278 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9279 
9280 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9281 				u64 burst)
9282 {
9283 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9284 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9285 
9286 	if (tg == &root_task_group)
9287 		return -EINVAL;
9288 
9289 	/*
9290 	 * Ensure we have at some amount of bandwidth every period.  This is
9291 	 * to prevent reaching a state of large arrears when throttled via
9292 	 * entity_tick() resulting in prolonged exit starvation.
9293 	 */
9294 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9295 		return -EINVAL;
9296 
9297 	/*
9298 	 * Likewise, bound things on the other side by preventing insane quota
9299 	 * periods.  This also allows us to normalize in computing quota
9300 	 * feasibility.
9301 	 */
9302 	if (period > max_cfs_quota_period)
9303 		return -EINVAL;
9304 
9305 	/*
9306 	 * Bound quota to defend quota against overflow during bandwidth shift.
9307 	 */
9308 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9309 		return -EINVAL;
9310 
9311 	if (quota != RUNTIME_INF && (burst > quota ||
9312 				     burst + quota > max_cfs_runtime))
9313 		return -EINVAL;
9314 
9315 	/*
9316 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9317 	 * unthrottle_offline_cfs_rqs().
9318 	 */
9319 	guard(cpus_read_lock)();
9320 	guard(mutex)(&cfs_constraints_mutex);
9321 
9322 	ret = __cfs_schedulable(tg, period, quota);
9323 	if (ret)
9324 		return ret;
9325 
9326 	runtime_enabled = quota != RUNTIME_INF;
9327 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9328 	/*
9329 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9330 	 * before making related changes, and on->off must occur afterwards
9331 	 */
9332 	if (runtime_enabled && !runtime_was_enabled)
9333 		cfs_bandwidth_usage_inc();
9334 
9335 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9336 		cfs_b->period = ns_to_ktime(period);
9337 		cfs_b->quota = quota;
9338 		cfs_b->burst = burst;
9339 
9340 		__refill_cfs_bandwidth_runtime(cfs_b);
9341 
9342 		/*
9343 		 * Restart the period timer (if active) to handle new
9344 		 * period expiry:
9345 		 */
9346 		if (runtime_enabled)
9347 			start_cfs_bandwidth(cfs_b);
9348 	}
9349 
9350 	for_each_online_cpu(i) {
9351 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9352 		struct rq *rq = cfs_rq->rq;
9353 
9354 		guard(rq_lock_irq)(rq);
9355 		cfs_rq->runtime_enabled = runtime_enabled;
9356 		cfs_rq->runtime_remaining = 0;
9357 
9358 		if (cfs_rq->throttled)
9359 			unthrottle_cfs_rq(cfs_rq);
9360 	}
9361 
9362 	if (runtime_was_enabled && !runtime_enabled)
9363 		cfs_bandwidth_usage_dec();
9364 
9365 	return 0;
9366 }
9367 
9368 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9369 {
9370 	u64 quota, period, burst;
9371 
9372 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9373 	burst = tg->cfs_bandwidth.burst;
9374 	if (cfs_quota_us < 0)
9375 		quota = RUNTIME_INF;
9376 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9377 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9378 	else
9379 		return -EINVAL;
9380 
9381 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9382 }
9383 
9384 static long tg_get_cfs_quota(struct task_group *tg)
9385 {
9386 	u64 quota_us;
9387 
9388 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9389 		return -1;
9390 
9391 	quota_us = tg->cfs_bandwidth.quota;
9392 	do_div(quota_us, NSEC_PER_USEC);
9393 
9394 	return quota_us;
9395 }
9396 
9397 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9398 {
9399 	u64 quota, period, burst;
9400 
9401 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9402 		return -EINVAL;
9403 
9404 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9405 	quota = tg->cfs_bandwidth.quota;
9406 	burst = tg->cfs_bandwidth.burst;
9407 
9408 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9409 }
9410 
9411 static long tg_get_cfs_period(struct task_group *tg)
9412 {
9413 	u64 cfs_period_us;
9414 
9415 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9416 	do_div(cfs_period_us, NSEC_PER_USEC);
9417 
9418 	return cfs_period_us;
9419 }
9420 
9421 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9422 {
9423 	u64 quota, period, burst;
9424 
9425 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9426 		return -EINVAL;
9427 
9428 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9429 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9430 	quota = tg->cfs_bandwidth.quota;
9431 
9432 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9433 }
9434 
9435 static long tg_get_cfs_burst(struct task_group *tg)
9436 {
9437 	u64 burst_us;
9438 
9439 	burst_us = tg->cfs_bandwidth.burst;
9440 	do_div(burst_us, NSEC_PER_USEC);
9441 
9442 	return burst_us;
9443 }
9444 
9445 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9446 				  struct cftype *cft)
9447 {
9448 	return tg_get_cfs_quota(css_tg(css));
9449 }
9450 
9451 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9452 				   struct cftype *cftype, s64 cfs_quota_us)
9453 {
9454 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9455 }
9456 
9457 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9458 				   struct cftype *cft)
9459 {
9460 	return tg_get_cfs_period(css_tg(css));
9461 }
9462 
9463 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9464 				    struct cftype *cftype, u64 cfs_period_us)
9465 {
9466 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9467 }
9468 
9469 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9470 				  struct cftype *cft)
9471 {
9472 	return tg_get_cfs_burst(css_tg(css));
9473 }
9474 
9475 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9476 				   struct cftype *cftype, u64 cfs_burst_us)
9477 {
9478 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9479 }
9480 
9481 struct cfs_schedulable_data {
9482 	struct task_group *tg;
9483 	u64 period, quota;
9484 };
9485 
9486 /*
9487  * normalize group quota/period to be quota/max_period
9488  * note: units are usecs
9489  */
9490 static u64 normalize_cfs_quota(struct task_group *tg,
9491 			       struct cfs_schedulable_data *d)
9492 {
9493 	u64 quota, period;
9494 
9495 	if (tg == d->tg) {
9496 		period = d->period;
9497 		quota = d->quota;
9498 	} else {
9499 		period = tg_get_cfs_period(tg);
9500 		quota = tg_get_cfs_quota(tg);
9501 	}
9502 
9503 	/* note: these should typically be equivalent */
9504 	if (quota == RUNTIME_INF || quota == -1)
9505 		return RUNTIME_INF;
9506 
9507 	return to_ratio(period, quota);
9508 }
9509 
9510 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9511 {
9512 	struct cfs_schedulable_data *d = data;
9513 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9514 	s64 quota = 0, parent_quota = -1;
9515 
9516 	if (!tg->parent) {
9517 		quota = RUNTIME_INF;
9518 	} else {
9519 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9520 
9521 		quota = normalize_cfs_quota(tg, d);
9522 		parent_quota = parent_b->hierarchical_quota;
9523 
9524 		/*
9525 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9526 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9527 		 * inherit when no limit is set. In both cases this is used
9528 		 * by the scheduler to determine if a given CFS task has a
9529 		 * bandwidth constraint at some higher level.
9530 		 */
9531 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9532 			if (quota == RUNTIME_INF)
9533 				quota = parent_quota;
9534 			else if (parent_quota != RUNTIME_INF)
9535 				quota = min(quota, parent_quota);
9536 		} else {
9537 			if (quota == RUNTIME_INF)
9538 				quota = parent_quota;
9539 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9540 				return -EINVAL;
9541 		}
9542 	}
9543 	cfs_b->hierarchical_quota = quota;
9544 
9545 	return 0;
9546 }
9547 
9548 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9549 {
9550 	struct cfs_schedulable_data data = {
9551 		.tg = tg,
9552 		.period = period,
9553 		.quota = quota,
9554 	};
9555 
9556 	if (quota != RUNTIME_INF) {
9557 		do_div(data.period, NSEC_PER_USEC);
9558 		do_div(data.quota, NSEC_PER_USEC);
9559 	}
9560 
9561 	guard(rcu)();
9562 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9563 }
9564 
9565 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9566 {
9567 	struct task_group *tg = css_tg(seq_css(sf));
9568 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9569 
9570 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9571 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9572 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9573 
9574 	if (schedstat_enabled() && tg != &root_task_group) {
9575 		struct sched_statistics *stats;
9576 		u64 ws = 0;
9577 		int i;
9578 
9579 		for_each_possible_cpu(i) {
9580 			stats = __schedstats_from_se(tg->se[i]);
9581 			ws += schedstat_val(stats->wait_sum);
9582 		}
9583 
9584 		seq_printf(sf, "wait_sum %llu\n", ws);
9585 	}
9586 
9587 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9588 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9589 
9590 	return 0;
9591 }
9592 
9593 static u64 throttled_time_self(struct task_group *tg)
9594 {
9595 	int i;
9596 	u64 total = 0;
9597 
9598 	for_each_possible_cpu(i) {
9599 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9600 	}
9601 
9602 	return total;
9603 }
9604 
9605 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9606 {
9607 	struct task_group *tg = css_tg(seq_css(sf));
9608 
9609 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9610 
9611 	return 0;
9612 }
9613 #endif /* CONFIG_CFS_BANDWIDTH */
9614 
9615 #ifdef CONFIG_RT_GROUP_SCHED
9616 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9617 				struct cftype *cft, s64 val)
9618 {
9619 	return sched_group_set_rt_runtime(css_tg(css), val);
9620 }
9621 
9622 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9623 			       struct cftype *cft)
9624 {
9625 	return sched_group_rt_runtime(css_tg(css));
9626 }
9627 
9628 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9629 				    struct cftype *cftype, u64 rt_period_us)
9630 {
9631 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9632 }
9633 
9634 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9635 				   struct cftype *cft)
9636 {
9637 	return sched_group_rt_period(css_tg(css));
9638 }
9639 #endif /* CONFIG_RT_GROUP_SCHED */
9640 
9641 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9642 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9643 			       struct cftype *cft)
9644 {
9645 	return css_tg(css)->idle;
9646 }
9647 
9648 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9649 				struct cftype *cft, s64 idle)
9650 {
9651 	int ret;
9652 
9653 	ret = sched_group_set_idle(css_tg(css), idle);
9654 	if (!ret)
9655 		scx_group_set_idle(css_tg(css), idle);
9656 	return ret;
9657 }
9658 #endif
9659 
9660 static struct cftype cpu_legacy_files[] = {
9661 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9662 	{
9663 		.name = "shares",
9664 		.read_u64 = cpu_shares_read_u64,
9665 		.write_u64 = cpu_shares_write_u64,
9666 	},
9667 	{
9668 		.name = "idle",
9669 		.read_s64 = cpu_idle_read_s64,
9670 		.write_s64 = cpu_idle_write_s64,
9671 	},
9672 #endif
9673 #ifdef CONFIG_CFS_BANDWIDTH
9674 	{
9675 		.name = "cfs_quota_us",
9676 		.read_s64 = cpu_cfs_quota_read_s64,
9677 		.write_s64 = cpu_cfs_quota_write_s64,
9678 	},
9679 	{
9680 		.name = "cfs_period_us",
9681 		.read_u64 = cpu_cfs_period_read_u64,
9682 		.write_u64 = cpu_cfs_period_write_u64,
9683 	},
9684 	{
9685 		.name = "cfs_burst_us",
9686 		.read_u64 = cpu_cfs_burst_read_u64,
9687 		.write_u64 = cpu_cfs_burst_write_u64,
9688 	},
9689 	{
9690 		.name = "stat",
9691 		.seq_show = cpu_cfs_stat_show,
9692 	},
9693 	{
9694 		.name = "stat.local",
9695 		.seq_show = cpu_cfs_local_stat_show,
9696 	},
9697 #endif
9698 #ifdef CONFIG_RT_GROUP_SCHED
9699 	{
9700 		.name = "rt_runtime_us",
9701 		.read_s64 = cpu_rt_runtime_read,
9702 		.write_s64 = cpu_rt_runtime_write,
9703 	},
9704 	{
9705 		.name = "rt_period_us",
9706 		.read_u64 = cpu_rt_period_read_uint,
9707 		.write_u64 = cpu_rt_period_write_uint,
9708 	},
9709 #endif
9710 #ifdef CONFIG_UCLAMP_TASK_GROUP
9711 	{
9712 		.name = "uclamp.min",
9713 		.flags = CFTYPE_NOT_ON_ROOT,
9714 		.seq_show = cpu_uclamp_min_show,
9715 		.write = cpu_uclamp_min_write,
9716 	},
9717 	{
9718 		.name = "uclamp.max",
9719 		.flags = CFTYPE_NOT_ON_ROOT,
9720 		.seq_show = cpu_uclamp_max_show,
9721 		.write = cpu_uclamp_max_write,
9722 	},
9723 #endif
9724 	{ }	/* Terminate */
9725 };
9726 
9727 static int cpu_extra_stat_show(struct seq_file *sf,
9728 			       struct cgroup_subsys_state *css)
9729 {
9730 #ifdef CONFIG_CFS_BANDWIDTH
9731 	{
9732 		struct task_group *tg = css_tg(css);
9733 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9734 		u64 throttled_usec, burst_usec;
9735 
9736 		throttled_usec = cfs_b->throttled_time;
9737 		do_div(throttled_usec, NSEC_PER_USEC);
9738 		burst_usec = cfs_b->burst_time;
9739 		do_div(burst_usec, NSEC_PER_USEC);
9740 
9741 		seq_printf(sf, "nr_periods %d\n"
9742 			   "nr_throttled %d\n"
9743 			   "throttled_usec %llu\n"
9744 			   "nr_bursts %d\n"
9745 			   "burst_usec %llu\n",
9746 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9747 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9748 	}
9749 #endif
9750 	return 0;
9751 }
9752 
9753 static int cpu_local_stat_show(struct seq_file *sf,
9754 			       struct cgroup_subsys_state *css)
9755 {
9756 #ifdef CONFIG_CFS_BANDWIDTH
9757 	{
9758 		struct task_group *tg = css_tg(css);
9759 		u64 throttled_self_usec;
9760 
9761 		throttled_self_usec = throttled_time_self(tg);
9762 		do_div(throttled_self_usec, NSEC_PER_USEC);
9763 
9764 		seq_printf(sf, "throttled_usec %llu\n",
9765 			   throttled_self_usec);
9766 	}
9767 #endif
9768 	return 0;
9769 }
9770 
9771 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9772 
9773 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9774 			       struct cftype *cft)
9775 {
9776 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9777 }
9778 
9779 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9780 				struct cftype *cft, u64 cgrp_weight)
9781 {
9782 	unsigned long weight;
9783 	int ret;
9784 
9785 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9786 		return -ERANGE;
9787 
9788 	weight = sched_weight_from_cgroup(cgrp_weight);
9789 
9790 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9791 	if (!ret)
9792 		scx_group_set_weight(css_tg(css), cgrp_weight);
9793 	return ret;
9794 }
9795 
9796 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9797 				    struct cftype *cft)
9798 {
9799 	unsigned long weight = tg_weight(css_tg(css));
9800 	int last_delta = INT_MAX;
9801 	int prio, delta;
9802 
9803 	/* find the closest nice value to the current weight */
9804 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9805 		delta = abs(sched_prio_to_weight[prio] - weight);
9806 		if (delta >= last_delta)
9807 			break;
9808 		last_delta = delta;
9809 	}
9810 
9811 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9812 }
9813 
9814 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9815 				     struct cftype *cft, s64 nice)
9816 {
9817 	unsigned long weight;
9818 	int idx, ret;
9819 
9820 	if (nice < MIN_NICE || nice > MAX_NICE)
9821 		return -ERANGE;
9822 
9823 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9824 	idx = array_index_nospec(idx, 40);
9825 	weight = sched_prio_to_weight[idx];
9826 
9827 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9828 	if (!ret)
9829 		scx_group_set_weight(css_tg(css),
9830 				     sched_weight_to_cgroup(weight));
9831 	return ret;
9832 }
9833 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9834 
9835 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9836 						  long period, long quota)
9837 {
9838 	if (quota < 0)
9839 		seq_puts(sf, "max");
9840 	else
9841 		seq_printf(sf, "%ld", quota);
9842 
9843 	seq_printf(sf, " %ld\n", period);
9844 }
9845 
9846 /* caller should put the current value in *@periodp before calling */
9847 static int __maybe_unused cpu_period_quota_parse(char *buf,
9848 						 u64 *periodp, u64 *quotap)
9849 {
9850 	char tok[21];	/* U64_MAX */
9851 
9852 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9853 		return -EINVAL;
9854 
9855 	*periodp *= NSEC_PER_USEC;
9856 
9857 	if (sscanf(tok, "%llu", quotap))
9858 		*quotap *= NSEC_PER_USEC;
9859 	else if (!strcmp(tok, "max"))
9860 		*quotap = RUNTIME_INF;
9861 	else
9862 		return -EINVAL;
9863 
9864 	return 0;
9865 }
9866 
9867 #ifdef CONFIG_CFS_BANDWIDTH
9868 static int cpu_max_show(struct seq_file *sf, void *v)
9869 {
9870 	struct task_group *tg = css_tg(seq_css(sf));
9871 
9872 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9873 	return 0;
9874 }
9875 
9876 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9877 			     char *buf, size_t nbytes, loff_t off)
9878 {
9879 	struct task_group *tg = css_tg(of_css(of));
9880 	u64 period = tg_get_cfs_period(tg);
9881 	u64 burst = tg->cfs_bandwidth.burst;
9882 	u64 quota;
9883 	int ret;
9884 
9885 	ret = cpu_period_quota_parse(buf, &period, &quota);
9886 	if (!ret)
9887 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
9888 	return ret ?: nbytes;
9889 }
9890 #endif
9891 
9892 static struct cftype cpu_files[] = {
9893 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9894 	{
9895 		.name = "weight",
9896 		.flags = CFTYPE_NOT_ON_ROOT,
9897 		.read_u64 = cpu_weight_read_u64,
9898 		.write_u64 = cpu_weight_write_u64,
9899 	},
9900 	{
9901 		.name = "weight.nice",
9902 		.flags = CFTYPE_NOT_ON_ROOT,
9903 		.read_s64 = cpu_weight_nice_read_s64,
9904 		.write_s64 = cpu_weight_nice_write_s64,
9905 	},
9906 	{
9907 		.name = "idle",
9908 		.flags = CFTYPE_NOT_ON_ROOT,
9909 		.read_s64 = cpu_idle_read_s64,
9910 		.write_s64 = cpu_idle_write_s64,
9911 	},
9912 #endif
9913 #ifdef CONFIG_CFS_BANDWIDTH
9914 	{
9915 		.name = "max",
9916 		.flags = CFTYPE_NOT_ON_ROOT,
9917 		.seq_show = cpu_max_show,
9918 		.write = cpu_max_write,
9919 	},
9920 	{
9921 		.name = "max.burst",
9922 		.flags = CFTYPE_NOT_ON_ROOT,
9923 		.read_u64 = cpu_cfs_burst_read_u64,
9924 		.write_u64 = cpu_cfs_burst_write_u64,
9925 	},
9926 #endif
9927 #ifdef CONFIG_UCLAMP_TASK_GROUP
9928 	{
9929 		.name = "uclamp.min",
9930 		.flags = CFTYPE_NOT_ON_ROOT,
9931 		.seq_show = cpu_uclamp_min_show,
9932 		.write = cpu_uclamp_min_write,
9933 	},
9934 	{
9935 		.name = "uclamp.max",
9936 		.flags = CFTYPE_NOT_ON_ROOT,
9937 		.seq_show = cpu_uclamp_max_show,
9938 		.write = cpu_uclamp_max_write,
9939 	},
9940 #endif
9941 	{ }	/* terminate */
9942 };
9943 
9944 struct cgroup_subsys cpu_cgrp_subsys = {
9945 	.css_alloc	= cpu_cgroup_css_alloc,
9946 	.css_online	= cpu_cgroup_css_online,
9947 	.css_offline	= cpu_cgroup_css_offline,
9948 	.css_released	= cpu_cgroup_css_released,
9949 	.css_free	= cpu_cgroup_css_free,
9950 	.css_extra_stat_show = cpu_extra_stat_show,
9951 	.css_local_stat_show = cpu_local_stat_show,
9952 	.can_attach	= cpu_cgroup_can_attach,
9953 	.attach		= cpu_cgroup_attach,
9954 	.cancel_attach	= cpu_cgroup_cancel_attach,
9955 	.legacy_cftypes	= cpu_legacy_files,
9956 	.dfl_cftypes	= cpu_files,
9957 	.early_init	= true,
9958 	.threaded	= true,
9959 };
9960 
9961 #endif	/* CONFIG_CGROUP_SCHED */
9962 
9963 void dump_cpu_task(int cpu)
9964 {
9965 	if (in_hardirq() && cpu == smp_processor_id()) {
9966 		struct pt_regs *regs;
9967 
9968 		regs = get_irq_regs();
9969 		if (regs) {
9970 			show_regs(regs);
9971 			return;
9972 		}
9973 	}
9974 
9975 	if (trigger_single_cpu_backtrace(cpu))
9976 		return;
9977 
9978 	pr_info("Task dump for CPU %d:\n", cpu);
9979 	sched_show_task(cpu_curr(cpu));
9980 }
9981 
9982 /*
9983  * Nice levels are multiplicative, with a gentle 10% change for every
9984  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9985  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9986  * that remained on nice 0.
9987  *
9988  * The "10% effect" is relative and cumulative: from _any_ nice level,
9989  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9990  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9991  * If a task goes up by ~10% and another task goes down by ~10% then
9992  * the relative distance between them is ~25%.)
9993  */
9994 const int sched_prio_to_weight[40] = {
9995  /* -20 */     88761,     71755,     56483,     46273,     36291,
9996  /* -15 */     29154,     23254,     18705,     14949,     11916,
9997  /* -10 */      9548,      7620,      6100,      4904,      3906,
9998  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9999  /*   0 */      1024,       820,       655,       526,       423,
10000  /*   5 */       335,       272,       215,       172,       137,
10001  /*  10 */       110,        87,        70,        56,        45,
10002  /*  15 */        36,        29,        23,        18,        15,
10003 };
10004 
10005 /*
10006  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10007  *
10008  * In cases where the weight does not change often, we can use the
10009  * pre-calculated inverse to speed up arithmetics by turning divisions
10010  * into multiplications:
10011  */
10012 const u32 sched_prio_to_wmult[40] = {
10013  /* -20 */     48388,     59856,     76040,     92818,    118348,
10014  /* -15 */    147320,    184698,    229616,    287308,    360437,
10015  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10016  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10017  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10018  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10019  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10020  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10021 };
10022 
10023 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10024 {
10025         trace_sched_update_nr_running_tp(rq, count);
10026 }
10027 
10028 #ifdef CONFIG_SCHED_MM_CID
10029 
10030 /*
10031  * @cid_lock: Guarantee forward-progress of cid allocation.
10032  *
10033  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10034  * is only used when contention is detected by the lock-free allocation so
10035  * forward progress can be guaranteed.
10036  */
10037 DEFINE_RAW_SPINLOCK(cid_lock);
10038 
10039 /*
10040  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10041  *
10042  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10043  * detected, it is set to 1 to ensure that all newly coming allocations are
10044  * serialized by @cid_lock until the allocation which detected contention
10045  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10046  * of a cid allocation.
10047  */
10048 int use_cid_lock;
10049 
10050 /*
10051  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10052  * concurrently with respect to the execution of the source runqueue context
10053  * switch.
10054  *
10055  * There is one basic properties we want to guarantee here:
10056  *
10057  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10058  * used by a task. That would lead to concurrent allocation of the cid and
10059  * userspace corruption.
10060  *
10061  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10062  * that a pair of loads observe at least one of a pair of stores, which can be
10063  * shown as:
10064  *
10065  *      X = Y = 0
10066  *
10067  *      w[X]=1          w[Y]=1
10068  *      MB              MB
10069  *      r[Y]=y          r[X]=x
10070  *
10071  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10072  * values 0 and 1, this algorithm cares about specific state transitions of the
10073  * runqueue current task (as updated by the scheduler context switch), and the
10074  * per-mm/cpu cid value.
10075  *
10076  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10077  * task->mm != mm for the rest of the discussion. There are two scheduler state
10078  * transitions on context switch we care about:
10079  *
10080  * (TSA) Store to rq->curr with transition from (N) to (Y)
10081  *
10082  * (TSB) Store to rq->curr with transition from (Y) to (N)
10083  *
10084  * On the remote-clear side, there is one transition we care about:
10085  *
10086  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10087  *
10088  * There is also a transition to UNSET state which can be performed from all
10089  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10090  * guarantees that only a single thread will succeed:
10091  *
10092  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10093  *
10094  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10095  * when a thread is actively using the cid (property (1)).
10096  *
10097  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10098  *
10099  * Scenario A) (TSA)+(TMA) (from next task perspective)
10100  *
10101  * CPU0                                      CPU1
10102  *
10103  * Context switch CS-1                       Remote-clear
10104  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10105  *                                             (implied barrier after cmpxchg)
10106  *   - switch_mm_cid()
10107  *     - memory barrier (see switch_mm_cid()
10108  *       comment explaining how this barrier
10109  *       is combined with other scheduler
10110  *       barriers)
10111  *     - mm_cid_get (next)
10112  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10113  *
10114  * This Dekker ensures that either task (Y) is observed by the
10115  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10116  * observed.
10117  *
10118  * If task (Y) store is observed by rcu_dereference(), it means that there is
10119  * still an active task on the cpu. Remote-clear will therefore not transition
10120  * to UNSET, which fulfills property (1).
10121  *
10122  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10123  * it will move its state to UNSET, which clears the percpu cid perhaps
10124  * uselessly (which is not an issue for correctness). Because task (Y) is not
10125  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10126  * state to UNSET is done with a cmpxchg expecting that the old state has the
10127  * LAZY flag set, only one thread will successfully UNSET.
10128  *
10129  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10130  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10131  * CPU1 will observe task (Y) and do nothing more, which is fine.
10132  *
10133  * What we are effectively preventing with this Dekker is a scenario where
10134  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10135  * because this would UNSET a cid which is actively used.
10136  */
10137 
10138 void sched_mm_cid_migrate_from(struct task_struct *t)
10139 {
10140 	t->migrate_from_cpu = task_cpu(t);
10141 }
10142 
10143 static
10144 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10145 					  struct task_struct *t,
10146 					  struct mm_cid *src_pcpu_cid)
10147 {
10148 	struct mm_struct *mm = t->mm;
10149 	struct task_struct *src_task;
10150 	int src_cid, last_mm_cid;
10151 
10152 	if (!mm)
10153 		return -1;
10154 
10155 	last_mm_cid = t->last_mm_cid;
10156 	/*
10157 	 * If the migrated task has no last cid, or if the current
10158 	 * task on src rq uses the cid, it means the source cid does not need
10159 	 * to be moved to the destination cpu.
10160 	 */
10161 	if (last_mm_cid == -1)
10162 		return -1;
10163 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10164 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10165 		return -1;
10166 
10167 	/*
10168 	 * If we observe an active task using the mm on this rq, it means we
10169 	 * are not the last task to be migrated from this cpu for this mm, so
10170 	 * there is no need to move src_cid to the destination cpu.
10171 	 */
10172 	guard(rcu)();
10173 	src_task = rcu_dereference(src_rq->curr);
10174 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10175 		t->last_mm_cid = -1;
10176 		return -1;
10177 	}
10178 
10179 	return src_cid;
10180 }
10181 
10182 static
10183 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10184 					      struct task_struct *t,
10185 					      struct mm_cid *src_pcpu_cid,
10186 					      int src_cid)
10187 {
10188 	struct task_struct *src_task;
10189 	struct mm_struct *mm = t->mm;
10190 	int lazy_cid;
10191 
10192 	if (src_cid == -1)
10193 		return -1;
10194 
10195 	/*
10196 	 * Attempt to clear the source cpu cid to move it to the destination
10197 	 * cpu.
10198 	 */
10199 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10200 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10201 		return -1;
10202 
10203 	/*
10204 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10205 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10206 	 * between store to rq->curr and load of prev and next task's
10207 	 * per-mm/cpu cid.
10208 	 *
10209 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10210 	 * rq->curr->mm_cid_active matches the barrier in
10211 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10212 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10213 	 * load of per-mm/cpu cid.
10214 	 */
10215 
10216 	/*
10217 	 * If we observe an active task using the mm on this rq after setting
10218 	 * the lazy-put flag, this task will be responsible for transitioning
10219 	 * from lazy-put flag set to MM_CID_UNSET.
10220 	 */
10221 	scoped_guard (rcu) {
10222 		src_task = rcu_dereference(src_rq->curr);
10223 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10224 			/*
10225 			 * We observed an active task for this mm, there is therefore
10226 			 * no point in moving this cid to the destination cpu.
10227 			 */
10228 			t->last_mm_cid = -1;
10229 			return -1;
10230 		}
10231 	}
10232 
10233 	/*
10234 	 * The src_cid is unused, so it can be unset.
10235 	 */
10236 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10237 		return -1;
10238 	return src_cid;
10239 }
10240 
10241 /*
10242  * Migration to dst cpu. Called with dst_rq lock held.
10243  * Interrupts are disabled, which keeps the window of cid ownership without the
10244  * source rq lock held small.
10245  */
10246 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10247 {
10248 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10249 	struct mm_struct *mm = t->mm;
10250 	int src_cid, dst_cid, src_cpu;
10251 	struct rq *src_rq;
10252 
10253 	lockdep_assert_rq_held(dst_rq);
10254 
10255 	if (!mm)
10256 		return;
10257 	src_cpu = t->migrate_from_cpu;
10258 	if (src_cpu == -1) {
10259 		t->last_mm_cid = -1;
10260 		return;
10261 	}
10262 	/*
10263 	 * Move the src cid if the dst cid is unset. This keeps id
10264 	 * allocation closest to 0 in cases where few threads migrate around
10265 	 * many CPUs.
10266 	 *
10267 	 * If destination cid is already set, we may have to just clear
10268 	 * the src cid to ensure compactness in frequent migrations
10269 	 * scenarios.
10270 	 *
10271 	 * It is not useful to clear the src cid when the number of threads is
10272 	 * greater or equal to the number of allowed CPUs, because user-space
10273 	 * can expect that the number of allowed cids can reach the number of
10274 	 * allowed CPUs.
10275 	 */
10276 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10277 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
10278 	if (!mm_cid_is_unset(dst_cid) &&
10279 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
10280 		return;
10281 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10282 	src_rq = cpu_rq(src_cpu);
10283 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10284 	if (src_cid == -1)
10285 		return;
10286 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10287 							    src_cid);
10288 	if (src_cid == -1)
10289 		return;
10290 	if (!mm_cid_is_unset(dst_cid)) {
10291 		__mm_cid_put(mm, src_cid);
10292 		return;
10293 	}
10294 	/* Move src_cid to dst cpu. */
10295 	mm_cid_snapshot_time(dst_rq, mm);
10296 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10297 }
10298 
10299 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10300 				      int cpu)
10301 {
10302 	struct rq *rq = cpu_rq(cpu);
10303 	struct task_struct *t;
10304 	int cid, lazy_cid;
10305 
10306 	cid = READ_ONCE(pcpu_cid->cid);
10307 	if (!mm_cid_is_valid(cid))
10308 		return;
10309 
10310 	/*
10311 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10312 	 * there happens to be other tasks left on the source cpu using this
10313 	 * mm, the next task using this mm will reallocate its cid on context
10314 	 * switch.
10315 	 */
10316 	lazy_cid = mm_cid_set_lazy_put(cid);
10317 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10318 		return;
10319 
10320 	/*
10321 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10322 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10323 	 * between store to rq->curr and load of prev and next task's
10324 	 * per-mm/cpu cid.
10325 	 *
10326 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10327 	 * rq->curr->mm_cid_active matches the barrier in
10328 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10329 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10330 	 * load of per-mm/cpu cid.
10331 	 */
10332 
10333 	/*
10334 	 * If we observe an active task using the mm on this rq after setting
10335 	 * the lazy-put flag, that task will be responsible for transitioning
10336 	 * from lazy-put flag set to MM_CID_UNSET.
10337 	 */
10338 	scoped_guard (rcu) {
10339 		t = rcu_dereference(rq->curr);
10340 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10341 			return;
10342 	}
10343 
10344 	/*
10345 	 * The cid is unused, so it can be unset.
10346 	 * Disable interrupts to keep the window of cid ownership without rq
10347 	 * lock small.
10348 	 */
10349 	scoped_guard (irqsave) {
10350 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10351 			__mm_cid_put(mm, cid);
10352 	}
10353 }
10354 
10355 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10356 {
10357 	struct rq *rq = cpu_rq(cpu);
10358 	struct mm_cid *pcpu_cid;
10359 	struct task_struct *curr;
10360 	u64 rq_clock;
10361 
10362 	/*
10363 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10364 	 * while is irrelevant.
10365 	 */
10366 	rq_clock = READ_ONCE(rq->clock);
10367 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10368 
10369 	/*
10370 	 * In order to take care of infrequently scheduled tasks, bump the time
10371 	 * snapshot associated with this cid if an active task using the mm is
10372 	 * observed on this rq.
10373 	 */
10374 	scoped_guard (rcu) {
10375 		curr = rcu_dereference(rq->curr);
10376 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10377 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10378 			return;
10379 		}
10380 	}
10381 
10382 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10383 		return;
10384 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10385 }
10386 
10387 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10388 					     int weight)
10389 {
10390 	struct mm_cid *pcpu_cid;
10391 	int cid;
10392 
10393 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10394 	cid = READ_ONCE(pcpu_cid->cid);
10395 	if (!mm_cid_is_valid(cid) || cid < weight)
10396 		return;
10397 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10398 }
10399 
10400 static void task_mm_cid_work(struct callback_head *work)
10401 {
10402 	unsigned long now = jiffies, old_scan, next_scan;
10403 	struct task_struct *t = current;
10404 	struct cpumask *cidmask;
10405 	struct mm_struct *mm;
10406 	int weight, cpu;
10407 
10408 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10409 
10410 	work->next = work;	/* Prevent double-add */
10411 	if (t->flags & PF_EXITING)
10412 		return;
10413 	mm = t->mm;
10414 	if (!mm)
10415 		return;
10416 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10417 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10418 	if (!old_scan) {
10419 		unsigned long res;
10420 
10421 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10422 		if (res != old_scan)
10423 			old_scan = res;
10424 		else
10425 			old_scan = next_scan;
10426 	}
10427 	if (time_before(now, old_scan))
10428 		return;
10429 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10430 		return;
10431 	cidmask = mm_cidmask(mm);
10432 	/* Clear cids that were not recently used. */
10433 	for_each_possible_cpu(cpu)
10434 		sched_mm_cid_remote_clear_old(mm, cpu);
10435 	weight = cpumask_weight(cidmask);
10436 	/*
10437 	 * Clear cids that are greater or equal to the cidmask weight to
10438 	 * recompact it.
10439 	 */
10440 	for_each_possible_cpu(cpu)
10441 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10442 }
10443 
10444 void init_sched_mm_cid(struct task_struct *t)
10445 {
10446 	struct mm_struct *mm = t->mm;
10447 	int mm_users = 0;
10448 
10449 	if (mm) {
10450 		mm_users = atomic_read(&mm->mm_users);
10451 		if (mm_users == 1)
10452 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10453 	}
10454 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10455 	init_task_work(&t->cid_work, task_mm_cid_work);
10456 }
10457 
10458 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10459 {
10460 	struct callback_head *work = &curr->cid_work;
10461 	unsigned long now = jiffies;
10462 
10463 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10464 	    work->next != work)
10465 		return;
10466 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10467 		return;
10468 	task_work_add(curr, work, TWA_RESUME);
10469 }
10470 
10471 void sched_mm_cid_exit_signals(struct task_struct *t)
10472 {
10473 	struct mm_struct *mm = t->mm;
10474 	struct rq *rq;
10475 
10476 	if (!mm)
10477 		return;
10478 
10479 	preempt_disable();
10480 	rq = this_rq();
10481 	guard(rq_lock_irqsave)(rq);
10482 	preempt_enable_no_resched();	/* holding spinlock */
10483 	WRITE_ONCE(t->mm_cid_active, 0);
10484 	/*
10485 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10486 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10487 	 */
10488 	smp_mb();
10489 	mm_cid_put(mm);
10490 	t->last_mm_cid = t->mm_cid = -1;
10491 }
10492 
10493 void sched_mm_cid_before_execve(struct task_struct *t)
10494 {
10495 	struct mm_struct *mm = t->mm;
10496 	struct rq *rq;
10497 
10498 	if (!mm)
10499 		return;
10500 
10501 	preempt_disable();
10502 	rq = this_rq();
10503 	guard(rq_lock_irqsave)(rq);
10504 	preempt_enable_no_resched();	/* holding spinlock */
10505 	WRITE_ONCE(t->mm_cid_active, 0);
10506 	/*
10507 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10508 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10509 	 */
10510 	smp_mb();
10511 	mm_cid_put(mm);
10512 	t->last_mm_cid = t->mm_cid = -1;
10513 }
10514 
10515 void sched_mm_cid_after_execve(struct task_struct *t)
10516 {
10517 	struct mm_struct *mm = t->mm;
10518 	struct rq *rq;
10519 
10520 	if (!mm)
10521 		return;
10522 
10523 	preempt_disable();
10524 	rq = this_rq();
10525 	scoped_guard (rq_lock_irqsave, rq) {
10526 		preempt_enable_no_resched();	/* holding spinlock */
10527 		WRITE_ONCE(t->mm_cid_active, 1);
10528 		/*
10529 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10530 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10531 		 */
10532 		smp_mb();
10533 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
10534 	}
10535 	rseq_set_notify_resume(t);
10536 }
10537 
10538 void sched_mm_cid_fork(struct task_struct *t)
10539 {
10540 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10541 	t->mm_cid_active = 1;
10542 }
10543 #endif
10544 
10545 #ifdef CONFIG_SCHED_CLASS_EXT
10546 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10547 			    struct sched_enq_and_set_ctx *ctx)
10548 {
10549 	struct rq *rq = task_rq(p);
10550 
10551 	lockdep_assert_rq_held(rq);
10552 
10553 	*ctx = (struct sched_enq_and_set_ctx){
10554 		.p = p,
10555 		.queue_flags = queue_flags,
10556 		.queued = task_on_rq_queued(p),
10557 		.running = task_current(rq, p),
10558 	};
10559 
10560 	update_rq_clock(rq);
10561 	if (ctx->queued)
10562 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10563 	if (ctx->running)
10564 		put_prev_task(rq, p);
10565 }
10566 
10567 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10568 {
10569 	struct rq *rq = task_rq(ctx->p);
10570 
10571 	lockdep_assert_rq_held(rq);
10572 
10573 	if (ctx->queued)
10574 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10575 	if (ctx->running)
10576 		set_next_task(rq, ctx->p);
10577 }
10578 #endif	/* CONFIG_SCHED_CLASS_EXT */
10579