1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <uapi/linux/sched/types.h> 11 #include <linux/sched/loadavg.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/wait_bit.h> 14 #include <linux/cpuset.h> 15 #include <linux/delayacct.h> 16 #include <linux/init_task.h> 17 #include <linux/context_tracking.h> 18 #include <linux/rcupdate_wait.h> 19 #include <linux/compat.h> 20 21 #include <linux/blkdev.h> 22 #include <linux/kprobes.h> 23 #include <linux/mmu_context.h> 24 #include <linux/module.h> 25 #include <linux/nmi.h> 26 #include <linux/prefetch.h> 27 #include <linux/profile.h> 28 #include <linux/security.h> 29 #include <linux/syscalls.h> 30 #include <linux/sched/isolation.h> 31 32 #include <asm/switch_to.h> 33 #include <asm/tlb.h> 34 #ifdef CONFIG_PARAVIRT 35 #include <asm/paravirt.h> 36 #endif 37 38 #include "sched.h" 39 #include "../workqueue_internal.h" 40 #include "../smpboot.h" 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/sched.h> 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 #endif 62 63 /* 64 * Number of tasks to iterate in a single balance run. 65 * Limited because this is done with IRQs disabled. 66 */ 67 const_debug unsigned int sysctl_sched_nr_migrate = 32; 68 69 /* 70 * period over which we average the RT time consumption, measured 71 * in ms. 72 * 73 * default: 1s 74 */ 75 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 76 77 /* 78 * period over which we measure -rt task CPU usage in us. 79 * default: 1s 80 */ 81 unsigned int sysctl_sched_rt_period = 1000000; 82 83 __read_mostly int scheduler_running; 84 85 /* 86 * part of the period that we allow rt tasks to run in us. 87 * default: 0.95s 88 */ 89 int sysctl_sched_rt_runtime = 950000; 90 91 /* 92 * __task_rq_lock - lock the rq @p resides on. 93 */ 94 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 95 __acquires(rq->lock) 96 { 97 struct rq *rq; 98 99 lockdep_assert_held(&p->pi_lock); 100 101 for (;;) { 102 rq = task_rq(p); 103 raw_spin_lock(&rq->lock); 104 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 105 rq_pin_lock(rq, rf); 106 return rq; 107 } 108 raw_spin_unlock(&rq->lock); 109 110 while (unlikely(task_on_rq_migrating(p))) 111 cpu_relax(); 112 } 113 } 114 115 /* 116 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 117 */ 118 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 119 __acquires(p->pi_lock) 120 __acquires(rq->lock) 121 { 122 struct rq *rq; 123 124 for (;;) { 125 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 126 rq = task_rq(p); 127 raw_spin_lock(&rq->lock); 128 /* 129 * move_queued_task() task_rq_lock() 130 * 131 * ACQUIRE (rq->lock) 132 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 133 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 134 * [S] ->cpu = new_cpu [L] task_rq() 135 * [L] ->on_rq 136 * RELEASE (rq->lock) 137 * 138 * If we observe the old cpu in task_rq_lock, the acquire of 139 * the old rq->lock will fully serialize against the stores. 140 * 141 * If we observe the new CPU in task_rq_lock, the acquire will 142 * pair with the WMB to ensure we must then also see migrating. 143 */ 144 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 145 rq_pin_lock(rq, rf); 146 return rq; 147 } 148 raw_spin_unlock(&rq->lock); 149 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 150 151 while (unlikely(task_on_rq_migrating(p))) 152 cpu_relax(); 153 } 154 } 155 156 /* 157 * RQ-clock updating methods: 158 */ 159 160 static void update_rq_clock_task(struct rq *rq, s64 delta) 161 { 162 /* 163 * In theory, the compile should just see 0 here, and optimize out the call 164 * to sched_rt_avg_update. But I don't trust it... 165 */ 166 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 167 s64 steal = 0, irq_delta = 0; 168 #endif 169 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 170 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 171 172 /* 173 * Since irq_time is only updated on {soft,}irq_exit, we might run into 174 * this case when a previous update_rq_clock() happened inside a 175 * {soft,}irq region. 176 * 177 * When this happens, we stop ->clock_task and only update the 178 * prev_irq_time stamp to account for the part that fit, so that a next 179 * update will consume the rest. This ensures ->clock_task is 180 * monotonic. 181 * 182 * It does however cause some slight miss-attribution of {soft,}irq 183 * time, a more accurate solution would be to update the irq_time using 184 * the current rq->clock timestamp, except that would require using 185 * atomic ops. 186 */ 187 if (irq_delta > delta) 188 irq_delta = delta; 189 190 rq->prev_irq_time += irq_delta; 191 delta -= irq_delta; 192 #endif 193 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 194 if (static_key_false((¶virt_steal_rq_enabled))) { 195 steal = paravirt_steal_clock(cpu_of(rq)); 196 steal -= rq->prev_steal_time_rq; 197 198 if (unlikely(steal > delta)) 199 steal = delta; 200 201 rq->prev_steal_time_rq += steal; 202 delta -= steal; 203 } 204 #endif 205 206 rq->clock_task += delta; 207 208 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 209 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 210 sched_rt_avg_update(rq, irq_delta + steal); 211 #endif 212 } 213 214 void update_rq_clock(struct rq *rq) 215 { 216 s64 delta; 217 218 lockdep_assert_held(&rq->lock); 219 220 if (rq->clock_update_flags & RQCF_ACT_SKIP) 221 return; 222 223 #ifdef CONFIG_SCHED_DEBUG 224 if (sched_feat(WARN_DOUBLE_CLOCK)) 225 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 226 rq->clock_update_flags |= RQCF_UPDATED; 227 #endif 228 229 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 230 if (delta < 0) 231 return; 232 rq->clock += delta; 233 update_rq_clock_task(rq, delta); 234 } 235 236 237 #ifdef CONFIG_SCHED_HRTICK 238 /* 239 * Use HR-timers to deliver accurate preemption points. 240 */ 241 242 static void hrtick_clear(struct rq *rq) 243 { 244 if (hrtimer_active(&rq->hrtick_timer)) 245 hrtimer_cancel(&rq->hrtick_timer); 246 } 247 248 /* 249 * High-resolution timer tick. 250 * Runs from hardirq context with interrupts disabled. 251 */ 252 static enum hrtimer_restart hrtick(struct hrtimer *timer) 253 { 254 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 255 struct rq_flags rf; 256 257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 258 259 rq_lock(rq, &rf); 260 update_rq_clock(rq); 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 262 rq_unlock(rq, &rf); 263 264 return HRTIMER_NORESTART; 265 } 266 267 #ifdef CONFIG_SMP 268 269 static void __hrtick_restart(struct rq *rq) 270 { 271 struct hrtimer *timer = &rq->hrtick_timer; 272 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 274 } 275 276 /* 277 * called from hardirq (IPI) context 278 */ 279 static void __hrtick_start(void *arg) 280 { 281 struct rq *rq = arg; 282 struct rq_flags rf; 283 284 rq_lock(rq, &rf); 285 __hrtick_restart(rq); 286 rq->hrtick_csd_pending = 0; 287 rq_unlock(rq, &rf); 288 } 289 290 /* 291 * Called to set the hrtick timer state. 292 * 293 * called with rq->lock held and irqs disabled 294 */ 295 void hrtick_start(struct rq *rq, u64 delay) 296 { 297 struct hrtimer *timer = &rq->hrtick_timer; 298 ktime_t time; 299 s64 delta; 300 301 /* 302 * Don't schedule slices shorter than 10000ns, that just 303 * doesn't make sense and can cause timer DoS. 304 */ 305 delta = max_t(s64, delay, 10000LL); 306 time = ktime_add_ns(timer->base->get_time(), delta); 307 308 hrtimer_set_expires(timer, time); 309 310 if (rq == this_rq()) { 311 __hrtick_restart(rq); 312 } else if (!rq->hrtick_csd_pending) { 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 314 rq->hrtick_csd_pending = 1; 315 } 316 } 317 318 #else 319 /* 320 * Called to set the hrtick timer state. 321 * 322 * called with rq->lock held and irqs disabled 323 */ 324 void hrtick_start(struct rq *rq, u64 delay) 325 { 326 /* 327 * Don't schedule slices shorter than 10000ns, that just 328 * doesn't make sense. Rely on vruntime for fairness. 329 */ 330 delay = max_t(u64, delay, 10000LL); 331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 332 HRTIMER_MODE_REL_PINNED); 333 } 334 #endif /* CONFIG_SMP */ 335 336 static void init_rq_hrtick(struct rq *rq) 337 { 338 #ifdef CONFIG_SMP 339 rq->hrtick_csd_pending = 0; 340 341 rq->hrtick_csd.flags = 0; 342 rq->hrtick_csd.func = __hrtick_start; 343 rq->hrtick_csd.info = rq; 344 #endif 345 346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 347 rq->hrtick_timer.function = hrtick; 348 } 349 #else /* CONFIG_SCHED_HRTICK */ 350 static inline void hrtick_clear(struct rq *rq) 351 { 352 } 353 354 static inline void init_rq_hrtick(struct rq *rq) 355 { 356 } 357 #endif /* CONFIG_SCHED_HRTICK */ 358 359 /* 360 * cmpxchg based fetch_or, macro so it works for different integer types 361 */ 362 #define fetch_or(ptr, mask) \ 363 ({ \ 364 typeof(ptr) _ptr = (ptr); \ 365 typeof(mask) _mask = (mask); \ 366 typeof(*_ptr) _old, _val = *_ptr; \ 367 \ 368 for (;;) { \ 369 _old = cmpxchg(_ptr, _val, _val | _mask); \ 370 if (_old == _val) \ 371 break; \ 372 _val = _old; \ 373 } \ 374 _old; \ 375 }) 376 377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 378 /* 379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 380 * this avoids any races wrt polling state changes and thereby avoids 381 * spurious IPIs. 382 */ 383 static bool set_nr_and_not_polling(struct task_struct *p) 384 { 385 struct thread_info *ti = task_thread_info(p); 386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 387 } 388 389 /* 390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 391 * 392 * If this returns true, then the idle task promises to call 393 * sched_ttwu_pending() and reschedule soon. 394 */ 395 static bool set_nr_if_polling(struct task_struct *p) 396 { 397 struct thread_info *ti = task_thread_info(p); 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 399 400 for (;;) { 401 if (!(val & _TIF_POLLING_NRFLAG)) 402 return false; 403 if (val & _TIF_NEED_RESCHED) 404 return true; 405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 406 if (old == val) 407 break; 408 val = old; 409 } 410 return true; 411 } 412 413 #else 414 static bool set_nr_and_not_polling(struct task_struct *p) 415 { 416 set_tsk_need_resched(p); 417 return true; 418 } 419 420 #ifdef CONFIG_SMP 421 static bool set_nr_if_polling(struct task_struct *p) 422 { 423 return false; 424 } 425 #endif 426 #endif 427 428 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 429 { 430 struct wake_q_node *node = &task->wake_q; 431 432 /* 433 * Atomically grab the task, if ->wake_q is !nil already it means 434 * its already queued (either by us or someone else) and will get the 435 * wakeup due to that. 436 * 437 * This cmpxchg() implies a full barrier, which pairs with the write 438 * barrier implied by the wakeup in wake_up_q(). 439 */ 440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 441 return; 442 443 get_task_struct(task); 444 445 /* 446 * The head is context local, there can be no concurrency. 447 */ 448 *head->lastp = node; 449 head->lastp = &node->next; 450 } 451 452 void wake_up_q(struct wake_q_head *head) 453 { 454 struct wake_q_node *node = head->first; 455 456 while (node != WAKE_Q_TAIL) { 457 struct task_struct *task; 458 459 task = container_of(node, struct task_struct, wake_q); 460 BUG_ON(!task); 461 /* Task can safely be re-inserted now: */ 462 node = node->next; 463 task->wake_q.next = NULL; 464 465 /* 466 * wake_up_process() implies a wmb() to pair with the queueing 467 * in wake_q_add() so as not to miss wakeups. 468 */ 469 wake_up_process(task); 470 put_task_struct(task); 471 } 472 } 473 474 /* 475 * resched_curr - mark rq's current task 'to be rescheduled now'. 476 * 477 * On UP this means the setting of the need_resched flag, on SMP it 478 * might also involve a cross-CPU call to trigger the scheduler on 479 * the target CPU. 480 */ 481 void resched_curr(struct rq *rq) 482 { 483 struct task_struct *curr = rq->curr; 484 int cpu; 485 486 lockdep_assert_held(&rq->lock); 487 488 if (test_tsk_need_resched(curr)) 489 return; 490 491 cpu = cpu_of(rq); 492 493 if (cpu == smp_processor_id()) { 494 set_tsk_need_resched(curr); 495 set_preempt_need_resched(); 496 return; 497 } 498 499 if (set_nr_and_not_polling(curr)) 500 smp_send_reschedule(cpu); 501 else 502 trace_sched_wake_idle_without_ipi(cpu); 503 } 504 505 void resched_cpu(int cpu) 506 { 507 struct rq *rq = cpu_rq(cpu); 508 unsigned long flags; 509 510 raw_spin_lock_irqsave(&rq->lock, flags); 511 if (cpu_online(cpu) || cpu == smp_processor_id()) 512 resched_curr(rq); 513 raw_spin_unlock_irqrestore(&rq->lock, flags); 514 } 515 516 #ifdef CONFIG_SMP 517 #ifdef CONFIG_NO_HZ_COMMON 518 /* 519 * In the semi idle case, use the nearest busy CPU for migrating timers 520 * from an idle CPU. This is good for power-savings. 521 * 522 * We don't do similar optimization for completely idle system, as 523 * selecting an idle CPU will add more delays to the timers than intended 524 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 525 */ 526 int get_nohz_timer_target(void) 527 { 528 int i, cpu = smp_processor_id(); 529 struct sched_domain *sd; 530 531 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 532 return cpu; 533 534 rcu_read_lock(); 535 for_each_domain(cpu, sd) { 536 for_each_cpu(i, sched_domain_span(sd)) { 537 if (cpu == i) 538 continue; 539 540 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 541 cpu = i; 542 goto unlock; 543 } 544 } 545 } 546 547 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 548 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 549 unlock: 550 rcu_read_unlock(); 551 return cpu; 552 } 553 554 /* 555 * When add_timer_on() enqueues a timer into the timer wheel of an 556 * idle CPU then this timer might expire before the next timer event 557 * which is scheduled to wake up that CPU. In case of a completely 558 * idle system the next event might even be infinite time into the 559 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 560 * leaves the inner idle loop so the newly added timer is taken into 561 * account when the CPU goes back to idle and evaluates the timer 562 * wheel for the next timer event. 563 */ 564 static void wake_up_idle_cpu(int cpu) 565 { 566 struct rq *rq = cpu_rq(cpu); 567 568 if (cpu == smp_processor_id()) 569 return; 570 571 if (set_nr_and_not_polling(rq->idle)) 572 smp_send_reschedule(cpu); 573 else 574 trace_sched_wake_idle_without_ipi(cpu); 575 } 576 577 static bool wake_up_full_nohz_cpu(int cpu) 578 { 579 /* 580 * We just need the target to call irq_exit() and re-evaluate 581 * the next tick. The nohz full kick at least implies that. 582 * If needed we can still optimize that later with an 583 * empty IRQ. 584 */ 585 if (cpu_is_offline(cpu)) 586 return true; /* Don't try to wake offline CPUs. */ 587 if (tick_nohz_full_cpu(cpu)) { 588 if (cpu != smp_processor_id() || 589 tick_nohz_tick_stopped()) 590 tick_nohz_full_kick_cpu(cpu); 591 return true; 592 } 593 594 return false; 595 } 596 597 /* 598 * Wake up the specified CPU. If the CPU is going offline, it is the 599 * caller's responsibility to deal with the lost wakeup, for example, 600 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 601 */ 602 void wake_up_nohz_cpu(int cpu) 603 { 604 if (!wake_up_full_nohz_cpu(cpu)) 605 wake_up_idle_cpu(cpu); 606 } 607 608 static inline bool got_nohz_idle_kick(void) 609 { 610 int cpu = smp_processor_id(); 611 612 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 613 return false; 614 615 if (idle_cpu(cpu) && !need_resched()) 616 return true; 617 618 /* 619 * We can't run Idle Load Balance on this CPU for this time so we 620 * cancel it and clear NOHZ_BALANCE_KICK 621 */ 622 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 623 return false; 624 } 625 626 #else /* CONFIG_NO_HZ_COMMON */ 627 628 static inline bool got_nohz_idle_kick(void) 629 { 630 return false; 631 } 632 633 #endif /* CONFIG_NO_HZ_COMMON */ 634 635 #ifdef CONFIG_NO_HZ_FULL 636 bool sched_can_stop_tick(struct rq *rq) 637 { 638 int fifo_nr_running; 639 640 /* Deadline tasks, even if single, need the tick */ 641 if (rq->dl.dl_nr_running) 642 return false; 643 644 /* 645 * If there are more than one RR tasks, we need the tick to effect the 646 * actual RR behaviour. 647 */ 648 if (rq->rt.rr_nr_running) { 649 if (rq->rt.rr_nr_running == 1) 650 return true; 651 else 652 return false; 653 } 654 655 /* 656 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 657 * forced preemption between FIFO tasks. 658 */ 659 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 660 if (fifo_nr_running) 661 return true; 662 663 /* 664 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 665 * if there's more than one we need the tick for involuntary 666 * preemption. 667 */ 668 if (rq->nr_running > 1) 669 return false; 670 671 return true; 672 } 673 #endif /* CONFIG_NO_HZ_FULL */ 674 675 void sched_avg_update(struct rq *rq) 676 { 677 s64 period = sched_avg_period(); 678 679 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 680 /* 681 * Inline assembly required to prevent the compiler 682 * optimising this loop into a divmod call. 683 * See __iter_div_u64_rem() for another example of this. 684 */ 685 asm("" : "+rm" (rq->age_stamp)); 686 rq->age_stamp += period; 687 rq->rt_avg /= 2; 688 } 689 } 690 691 #endif /* CONFIG_SMP */ 692 693 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 694 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 695 /* 696 * Iterate task_group tree rooted at *from, calling @down when first entering a 697 * node and @up when leaving it for the final time. 698 * 699 * Caller must hold rcu_lock or sufficient equivalent. 700 */ 701 int walk_tg_tree_from(struct task_group *from, 702 tg_visitor down, tg_visitor up, void *data) 703 { 704 struct task_group *parent, *child; 705 int ret; 706 707 parent = from; 708 709 down: 710 ret = (*down)(parent, data); 711 if (ret) 712 goto out; 713 list_for_each_entry_rcu(child, &parent->children, siblings) { 714 parent = child; 715 goto down; 716 717 up: 718 continue; 719 } 720 ret = (*up)(parent, data); 721 if (ret || parent == from) 722 goto out; 723 724 child = parent; 725 parent = parent->parent; 726 if (parent) 727 goto up; 728 out: 729 return ret; 730 } 731 732 int tg_nop(struct task_group *tg, void *data) 733 { 734 return 0; 735 } 736 #endif 737 738 static void set_load_weight(struct task_struct *p, bool update_load) 739 { 740 int prio = p->static_prio - MAX_RT_PRIO; 741 struct load_weight *load = &p->se.load; 742 743 /* 744 * SCHED_IDLE tasks get minimal weight: 745 */ 746 if (idle_policy(p->policy)) { 747 load->weight = scale_load(WEIGHT_IDLEPRIO); 748 load->inv_weight = WMULT_IDLEPRIO; 749 return; 750 } 751 752 /* 753 * SCHED_OTHER tasks have to update their load when changing their 754 * weight 755 */ 756 if (update_load && p->sched_class == &fair_sched_class) { 757 reweight_task(p, prio); 758 } else { 759 load->weight = scale_load(sched_prio_to_weight[prio]); 760 load->inv_weight = sched_prio_to_wmult[prio]; 761 } 762 } 763 764 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 765 { 766 if (!(flags & ENQUEUE_NOCLOCK)) 767 update_rq_clock(rq); 768 769 if (!(flags & ENQUEUE_RESTORE)) 770 sched_info_queued(rq, p); 771 772 p->sched_class->enqueue_task(rq, p, flags); 773 } 774 775 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 776 { 777 if (!(flags & DEQUEUE_NOCLOCK)) 778 update_rq_clock(rq); 779 780 if (!(flags & DEQUEUE_SAVE)) 781 sched_info_dequeued(rq, p); 782 783 p->sched_class->dequeue_task(rq, p, flags); 784 } 785 786 void activate_task(struct rq *rq, struct task_struct *p, int flags) 787 { 788 if (task_contributes_to_load(p)) 789 rq->nr_uninterruptible--; 790 791 enqueue_task(rq, p, flags); 792 } 793 794 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 795 { 796 if (task_contributes_to_load(p)) 797 rq->nr_uninterruptible++; 798 799 dequeue_task(rq, p, flags); 800 } 801 802 /* 803 * __normal_prio - return the priority that is based on the static prio 804 */ 805 static inline int __normal_prio(struct task_struct *p) 806 { 807 return p->static_prio; 808 } 809 810 /* 811 * Calculate the expected normal priority: i.e. priority 812 * without taking RT-inheritance into account. Might be 813 * boosted by interactivity modifiers. Changes upon fork, 814 * setprio syscalls, and whenever the interactivity 815 * estimator recalculates. 816 */ 817 static inline int normal_prio(struct task_struct *p) 818 { 819 int prio; 820 821 if (task_has_dl_policy(p)) 822 prio = MAX_DL_PRIO-1; 823 else if (task_has_rt_policy(p)) 824 prio = MAX_RT_PRIO-1 - p->rt_priority; 825 else 826 prio = __normal_prio(p); 827 return prio; 828 } 829 830 /* 831 * Calculate the current priority, i.e. the priority 832 * taken into account by the scheduler. This value might 833 * be boosted by RT tasks, or might be boosted by 834 * interactivity modifiers. Will be RT if the task got 835 * RT-boosted. If not then it returns p->normal_prio. 836 */ 837 static int effective_prio(struct task_struct *p) 838 { 839 p->normal_prio = normal_prio(p); 840 /* 841 * If we are RT tasks or we were boosted to RT priority, 842 * keep the priority unchanged. Otherwise, update priority 843 * to the normal priority: 844 */ 845 if (!rt_prio(p->prio)) 846 return p->normal_prio; 847 return p->prio; 848 } 849 850 /** 851 * task_curr - is this task currently executing on a CPU? 852 * @p: the task in question. 853 * 854 * Return: 1 if the task is currently executing. 0 otherwise. 855 */ 856 inline int task_curr(const struct task_struct *p) 857 { 858 return cpu_curr(task_cpu(p)) == p; 859 } 860 861 /* 862 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 863 * use the balance_callback list if you want balancing. 864 * 865 * this means any call to check_class_changed() must be followed by a call to 866 * balance_callback(). 867 */ 868 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 869 const struct sched_class *prev_class, 870 int oldprio) 871 { 872 if (prev_class != p->sched_class) { 873 if (prev_class->switched_from) 874 prev_class->switched_from(rq, p); 875 876 p->sched_class->switched_to(rq, p); 877 } else if (oldprio != p->prio || dl_task(p)) 878 p->sched_class->prio_changed(rq, p, oldprio); 879 } 880 881 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 882 { 883 const struct sched_class *class; 884 885 if (p->sched_class == rq->curr->sched_class) { 886 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 887 } else { 888 for_each_class(class) { 889 if (class == rq->curr->sched_class) 890 break; 891 if (class == p->sched_class) { 892 resched_curr(rq); 893 break; 894 } 895 } 896 } 897 898 /* 899 * A queue event has occurred, and we're going to schedule. In 900 * this case, we can save a useless back to back clock update. 901 */ 902 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 903 rq_clock_skip_update(rq, true); 904 } 905 906 #ifdef CONFIG_SMP 907 /* 908 * This is how migration works: 909 * 910 * 1) we invoke migration_cpu_stop() on the target CPU using 911 * stop_one_cpu(). 912 * 2) stopper starts to run (implicitly forcing the migrated thread 913 * off the CPU) 914 * 3) it checks whether the migrated task is still in the wrong runqueue. 915 * 4) if it's in the wrong runqueue then the migration thread removes 916 * it and puts it into the right queue. 917 * 5) stopper completes and stop_one_cpu() returns and the migration 918 * is done. 919 */ 920 921 /* 922 * move_queued_task - move a queued task to new rq. 923 * 924 * Returns (locked) new rq. Old rq's lock is released. 925 */ 926 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 927 struct task_struct *p, int new_cpu) 928 { 929 lockdep_assert_held(&rq->lock); 930 931 p->on_rq = TASK_ON_RQ_MIGRATING; 932 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 933 set_task_cpu(p, new_cpu); 934 rq_unlock(rq, rf); 935 936 rq = cpu_rq(new_cpu); 937 938 rq_lock(rq, rf); 939 BUG_ON(task_cpu(p) != new_cpu); 940 enqueue_task(rq, p, 0); 941 p->on_rq = TASK_ON_RQ_QUEUED; 942 check_preempt_curr(rq, p, 0); 943 944 return rq; 945 } 946 947 struct migration_arg { 948 struct task_struct *task; 949 int dest_cpu; 950 }; 951 952 /* 953 * Move (not current) task off this CPU, onto the destination CPU. We're doing 954 * this because either it can't run here any more (set_cpus_allowed() 955 * away from this CPU, or CPU going down), or because we're 956 * attempting to rebalance this task on exec (sched_exec). 957 * 958 * So we race with normal scheduler movements, but that's OK, as long 959 * as the task is no longer on this CPU. 960 */ 961 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 962 struct task_struct *p, int dest_cpu) 963 { 964 if (p->flags & PF_KTHREAD) { 965 if (unlikely(!cpu_online(dest_cpu))) 966 return rq; 967 } else { 968 if (unlikely(!cpu_active(dest_cpu))) 969 return rq; 970 } 971 972 /* Affinity changed (again). */ 973 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 974 return rq; 975 976 update_rq_clock(rq); 977 rq = move_queued_task(rq, rf, p, dest_cpu); 978 979 return rq; 980 } 981 982 /* 983 * migration_cpu_stop - this will be executed by a highprio stopper thread 984 * and performs thread migration by bumping thread off CPU then 985 * 'pushing' onto another runqueue. 986 */ 987 static int migration_cpu_stop(void *data) 988 { 989 struct migration_arg *arg = data; 990 struct task_struct *p = arg->task; 991 struct rq *rq = this_rq(); 992 struct rq_flags rf; 993 994 /* 995 * The original target CPU might have gone down and we might 996 * be on another CPU but it doesn't matter. 997 */ 998 local_irq_disable(); 999 /* 1000 * We need to explicitly wake pending tasks before running 1001 * __migrate_task() such that we will not miss enforcing cpus_allowed 1002 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1003 */ 1004 sched_ttwu_pending(); 1005 1006 raw_spin_lock(&p->pi_lock); 1007 rq_lock(rq, &rf); 1008 /* 1009 * If task_rq(p) != rq, it cannot be migrated here, because we're 1010 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1011 * we're holding p->pi_lock. 1012 */ 1013 if (task_rq(p) == rq) { 1014 if (task_on_rq_queued(p)) 1015 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1016 else 1017 p->wake_cpu = arg->dest_cpu; 1018 } 1019 rq_unlock(rq, &rf); 1020 raw_spin_unlock(&p->pi_lock); 1021 1022 local_irq_enable(); 1023 return 0; 1024 } 1025 1026 /* 1027 * sched_class::set_cpus_allowed must do the below, but is not required to 1028 * actually call this function. 1029 */ 1030 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1031 { 1032 cpumask_copy(&p->cpus_allowed, new_mask); 1033 p->nr_cpus_allowed = cpumask_weight(new_mask); 1034 } 1035 1036 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1037 { 1038 struct rq *rq = task_rq(p); 1039 bool queued, running; 1040 1041 lockdep_assert_held(&p->pi_lock); 1042 1043 queued = task_on_rq_queued(p); 1044 running = task_current(rq, p); 1045 1046 if (queued) { 1047 /* 1048 * Because __kthread_bind() calls this on blocked tasks without 1049 * holding rq->lock. 1050 */ 1051 lockdep_assert_held(&rq->lock); 1052 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1053 } 1054 if (running) 1055 put_prev_task(rq, p); 1056 1057 p->sched_class->set_cpus_allowed(p, new_mask); 1058 1059 if (queued) 1060 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1061 if (running) 1062 set_curr_task(rq, p); 1063 } 1064 1065 /* 1066 * Change a given task's CPU affinity. Migrate the thread to a 1067 * proper CPU and schedule it away if the CPU it's executing on 1068 * is removed from the allowed bitmask. 1069 * 1070 * NOTE: the caller must have a valid reference to the task, the 1071 * task must not exit() & deallocate itself prematurely. The 1072 * call is not atomic; no spinlocks may be held. 1073 */ 1074 static int __set_cpus_allowed_ptr(struct task_struct *p, 1075 const struct cpumask *new_mask, bool check) 1076 { 1077 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1078 unsigned int dest_cpu; 1079 struct rq_flags rf; 1080 struct rq *rq; 1081 int ret = 0; 1082 1083 rq = task_rq_lock(p, &rf); 1084 update_rq_clock(rq); 1085 1086 if (p->flags & PF_KTHREAD) { 1087 /* 1088 * Kernel threads are allowed on online && !active CPUs 1089 */ 1090 cpu_valid_mask = cpu_online_mask; 1091 } 1092 1093 /* 1094 * Must re-check here, to close a race against __kthread_bind(), 1095 * sched_setaffinity() is not guaranteed to observe the flag. 1096 */ 1097 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1098 ret = -EINVAL; 1099 goto out; 1100 } 1101 1102 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1103 goto out; 1104 1105 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1106 ret = -EINVAL; 1107 goto out; 1108 } 1109 1110 do_set_cpus_allowed(p, new_mask); 1111 1112 if (p->flags & PF_KTHREAD) { 1113 /* 1114 * For kernel threads that do indeed end up on online && 1115 * !active we want to ensure they are strict per-CPU threads. 1116 */ 1117 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1118 !cpumask_intersects(new_mask, cpu_active_mask) && 1119 p->nr_cpus_allowed != 1); 1120 } 1121 1122 /* Can the task run on the task's current CPU? If so, we're done */ 1123 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1124 goto out; 1125 1126 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1127 if (task_running(rq, p) || p->state == TASK_WAKING) { 1128 struct migration_arg arg = { p, dest_cpu }; 1129 /* Need help from migration thread: drop lock and wait. */ 1130 task_rq_unlock(rq, p, &rf); 1131 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1132 tlb_migrate_finish(p->mm); 1133 return 0; 1134 } else if (task_on_rq_queued(p)) { 1135 /* 1136 * OK, since we're going to drop the lock immediately 1137 * afterwards anyway. 1138 */ 1139 rq = move_queued_task(rq, &rf, p, dest_cpu); 1140 } 1141 out: 1142 task_rq_unlock(rq, p, &rf); 1143 1144 return ret; 1145 } 1146 1147 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1148 { 1149 return __set_cpus_allowed_ptr(p, new_mask, false); 1150 } 1151 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1152 1153 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1154 { 1155 #ifdef CONFIG_SCHED_DEBUG 1156 /* 1157 * We should never call set_task_cpu() on a blocked task, 1158 * ttwu() will sort out the placement. 1159 */ 1160 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1161 !p->on_rq); 1162 1163 /* 1164 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1165 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1166 * time relying on p->on_rq. 1167 */ 1168 WARN_ON_ONCE(p->state == TASK_RUNNING && 1169 p->sched_class == &fair_sched_class && 1170 (p->on_rq && !task_on_rq_migrating(p))); 1171 1172 #ifdef CONFIG_LOCKDEP 1173 /* 1174 * The caller should hold either p->pi_lock or rq->lock, when changing 1175 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1176 * 1177 * sched_move_task() holds both and thus holding either pins the cgroup, 1178 * see task_group(). 1179 * 1180 * Furthermore, all task_rq users should acquire both locks, see 1181 * task_rq_lock(). 1182 */ 1183 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1184 lockdep_is_held(&task_rq(p)->lock))); 1185 #endif 1186 /* 1187 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1188 */ 1189 WARN_ON_ONCE(!cpu_online(new_cpu)); 1190 #endif 1191 1192 trace_sched_migrate_task(p, new_cpu); 1193 1194 if (task_cpu(p) != new_cpu) { 1195 if (p->sched_class->migrate_task_rq) 1196 p->sched_class->migrate_task_rq(p); 1197 p->se.nr_migrations++; 1198 perf_event_task_migrate(p); 1199 } 1200 1201 __set_task_cpu(p, new_cpu); 1202 } 1203 1204 static void __migrate_swap_task(struct task_struct *p, int cpu) 1205 { 1206 if (task_on_rq_queued(p)) { 1207 struct rq *src_rq, *dst_rq; 1208 struct rq_flags srf, drf; 1209 1210 src_rq = task_rq(p); 1211 dst_rq = cpu_rq(cpu); 1212 1213 rq_pin_lock(src_rq, &srf); 1214 rq_pin_lock(dst_rq, &drf); 1215 1216 p->on_rq = TASK_ON_RQ_MIGRATING; 1217 deactivate_task(src_rq, p, 0); 1218 set_task_cpu(p, cpu); 1219 activate_task(dst_rq, p, 0); 1220 p->on_rq = TASK_ON_RQ_QUEUED; 1221 check_preempt_curr(dst_rq, p, 0); 1222 1223 rq_unpin_lock(dst_rq, &drf); 1224 rq_unpin_lock(src_rq, &srf); 1225 1226 } else { 1227 /* 1228 * Task isn't running anymore; make it appear like we migrated 1229 * it before it went to sleep. This means on wakeup we make the 1230 * previous CPU our target instead of where it really is. 1231 */ 1232 p->wake_cpu = cpu; 1233 } 1234 } 1235 1236 struct migration_swap_arg { 1237 struct task_struct *src_task, *dst_task; 1238 int src_cpu, dst_cpu; 1239 }; 1240 1241 static int migrate_swap_stop(void *data) 1242 { 1243 struct migration_swap_arg *arg = data; 1244 struct rq *src_rq, *dst_rq; 1245 int ret = -EAGAIN; 1246 1247 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1248 return -EAGAIN; 1249 1250 src_rq = cpu_rq(arg->src_cpu); 1251 dst_rq = cpu_rq(arg->dst_cpu); 1252 1253 double_raw_lock(&arg->src_task->pi_lock, 1254 &arg->dst_task->pi_lock); 1255 double_rq_lock(src_rq, dst_rq); 1256 1257 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1258 goto unlock; 1259 1260 if (task_cpu(arg->src_task) != arg->src_cpu) 1261 goto unlock; 1262 1263 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1264 goto unlock; 1265 1266 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1267 goto unlock; 1268 1269 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1270 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1271 1272 ret = 0; 1273 1274 unlock: 1275 double_rq_unlock(src_rq, dst_rq); 1276 raw_spin_unlock(&arg->dst_task->pi_lock); 1277 raw_spin_unlock(&arg->src_task->pi_lock); 1278 1279 return ret; 1280 } 1281 1282 /* 1283 * Cross migrate two tasks 1284 */ 1285 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1286 { 1287 struct migration_swap_arg arg; 1288 int ret = -EINVAL; 1289 1290 arg = (struct migration_swap_arg){ 1291 .src_task = cur, 1292 .src_cpu = task_cpu(cur), 1293 .dst_task = p, 1294 .dst_cpu = task_cpu(p), 1295 }; 1296 1297 if (arg.src_cpu == arg.dst_cpu) 1298 goto out; 1299 1300 /* 1301 * These three tests are all lockless; this is OK since all of them 1302 * will be re-checked with proper locks held further down the line. 1303 */ 1304 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1305 goto out; 1306 1307 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1308 goto out; 1309 1310 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1311 goto out; 1312 1313 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1314 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1315 1316 out: 1317 return ret; 1318 } 1319 1320 /* 1321 * wait_task_inactive - wait for a thread to unschedule. 1322 * 1323 * If @match_state is nonzero, it's the @p->state value just checked and 1324 * not expected to change. If it changes, i.e. @p might have woken up, 1325 * then return zero. When we succeed in waiting for @p to be off its CPU, 1326 * we return a positive number (its total switch count). If a second call 1327 * a short while later returns the same number, the caller can be sure that 1328 * @p has remained unscheduled the whole time. 1329 * 1330 * The caller must ensure that the task *will* unschedule sometime soon, 1331 * else this function might spin for a *long* time. This function can't 1332 * be called with interrupts off, or it may introduce deadlock with 1333 * smp_call_function() if an IPI is sent by the same process we are 1334 * waiting to become inactive. 1335 */ 1336 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1337 { 1338 int running, queued; 1339 struct rq_flags rf; 1340 unsigned long ncsw; 1341 struct rq *rq; 1342 1343 for (;;) { 1344 /* 1345 * We do the initial early heuristics without holding 1346 * any task-queue locks at all. We'll only try to get 1347 * the runqueue lock when things look like they will 1348 * work out! 1349 */ 1350 rq = task_rq(p); 1351 1352 /* 1353 * If the task is actively running on another CPU 1354 * still, just relax and busy-wait without holding 1355 * any locks. 1356 * 1357 * NOTE! Since we don't hold any locks, it's not 1358 * even sure that "rq" stays as the right runqueue! 1359 * But we don't care, since "task_running()" will 1360 * return false if the runqueue has changed and p 1361 * is actually now running somewhere else! 1362 */ 1363 while (task_running(rq, p)) { 1364 if (match_state && unlikely(p->state != match_state)) 1365 return 0; 1366 cpu_relax(); 1367 } 1368 1369 /* 1370 * Ok, time to look more closely! We need the rq 1371 * lock now, to be *sure*. If we're wrong, we'll 1372 * just go back and repeat. 1373 */ 1374 rq = task_rq_lock(p, &rf); 1375 trace_sched_wait_task(p); 1376 running = task_running(rq, p); 1377 queued = task_on_rq_queued(p); 1378 ncsw = 0; 1379 if (!match_state || p->state == match_state) 1380 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1381 task_rq_unlock(rq, p, &rf); 1382 1383 /* 1384 * If it changed from the expected state, bail out now. 1385 */ 1386 if (unlikely(!ncsw)) 1387 break; 1388 1389 /* 1390 * Was it really running after all now that we 1391 * checked with the proper locks actually held? 1392 * 1393 * Oops. Go back and try again.. 1394 */ 1395 if (unlikely(running)) { 1396 cpu_relax(); 1397 continue; 1398 } 1399 1400 /* 1401 * It's not enough that it's not actively running, 1402 * it must be off the runqueue _entirely_, and not 1403 * preempted! 1404 * 1405 * So if it was still runnable (but just not actively 1406 * running right now), it's preempted, and we should 1407 * yield - it could be a while. 1408 */ 1409 if (unlikely(queued)) { 1410 ktime_t to = NSEC_PER_SEC / HZ; 1411 1412 set_current_state(TASK_UNINTERRUPTIBLE); 1413 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1414 continue; 1415 } 1416 1417 /* 1418 * Ahh, all good. It wasn't running, and it wasn't 1419 * runnable, which means that it will never become 1420 * running in the future either. We're all done! 1421 */ 1422 break; 1423 } 1424 1425 return ncsw; 1426 } 1427 1428 /*** 1429 * kick_process - kick a running thread to enter/exit the kernel 1430 * @p: the to-be-kicked thread 1431 * 1432 * Cause a process which is running on another CPU to enter 1433 * kernel-mode, without any delay. (to get signals handled.) 1434 * 1435 * NOTE: this function doesn't have to take the runqueue lock, 1436 * because all it wants to ensure is that the remote task enters 1437 * the kernel. If the IPI races and the task has been migrated 1438 * to another CPU then no harm is done and the purpose has been 1439 * achieved as well. 1440 */ 1441 void kick_process(struct task_struct *p) 1442 { 1443 int cpu; 1444 1445 preempt_disable(); 1446 cpu = task_cpu(p); 1447 if ((cpu != smp_processor_id()) && task_curr(p)) 1448 smp_send_reschedule(cpu); 1449 preempt_enable(); 1450 } 1451 EXPORT_SYMBOL_GPL(kick_process); 1452 1453 /* 1454 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1455 * 1456 * A few notes on cpu_active vs cpu_online: 1457 * 1458 * - cpu_active must be a subset of cpu_online 1459 * 1460 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1461 * see __set_cpus_allowed_ptr(). At this point the newly online 1462 * CPU isn't yet part of the sched domains, and balancing will not 1463 * see it. 1464 * 1465 * - on CPU-down we clear cpu_active() to mask the sched domains and 1466 * avoid the load balancer to place new tasks on the to be removed 1467 * CPU. Existing tasks will remain running there and will be taken 1468 * off. 1469 * 1470 * This means that fallback selection must not select !active CPUs. 1471 * And can assume that any active CPU must be online. Conversely 1472 * select_task_rq() below may allow selection of !active CPUs in order 1473 * to satisfy the above rules. 1474 */ 1475 static int select_fallback_rq(int cpu, struct task_struct *p) 1476 { 1477 int nid = cpu_to_node(cpu); 1478 const struct cpumask *nodemask = NULL; 1479 enum { cpuset, possible, fail } state = cpuset; 1480 int dest_cpu; 1481 1482 /* 1483 * If the node that the CPU is on has been offlined, cpu_to_node() 1484 * will return -1. There is no CPU on the node, and we should 1485 * select the CPU on the other node. 1486 */ 1487 if (nid != -1) { 1488 nodemask = cpumask_of_node(nid); 1489 1490 /* Look for allowed, online CPU in same node. */ 1491 for_each_cpu(dest_cpu, nodemask) { 1492 if (!cpu_active(dest_cpu)) 1493 continue; 1494 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1495 return dest_cpu; 1496 } 1497 } 1498 1499 for (;;) { 1500 /* Any allowed, online CPU? */ 1501 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1502 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1503 continue; 1504 if (!cpu_online(dest_cpu)) 1505 continue; 1506 goto out; 1507 } 1508 1509 /* No more Mr. Nice Guy. */ 1510 switch (state) { 1511 case cpuset: 1512 if (IS_ENABLED(CONFIG_CPUSETS)) { 1513 cpuset_cpus_allowed_fallback(p); 1514 state = possible; 1515 break; 1516 } 1517 /* Fall-through */ 1518 case possible: 1519 do_set_cpus_allowed(p, cpu_possible_mask); 1520 state = fail; 1521 break; 1522 1523 case fail: 1524 BUG(); 1525 break; 1526 } 1527 } 1528 1529 out: 1530 if (state != cpuset) { 1531 /* 1532 * Don't tell them about moving exiting tasks or 1533 * kernel threads (both mm NULL), since they never 1534 * leave kernel. 1535 */ 1536 if (p->mm && printk_ratelimit()) { 1537 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1538 task_pid_nr(p), p->comm, cpu); 1539 } 1540 } 1541 1542 return dest_cpu; 1543 } 1544 1545 /* 1546 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1547 */ 1548 static inline 1549 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1550 { 1551 lockdep_assert_held(&p->pi_lock); 1552 1553 if (p->nr_cpus_allowed > 1) 1554 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1555 else 1556 cpu = cpumask_any(&p->cpus_allowed); 1557 1558 /* 1559 * In order not to call set_task_cpu() on a blocking task we need 1560 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1561 * CPU. 1562 * 1563 * Since this is common to all placement strategies, this lives here. 1564 * 1565 * [ this allows ->select_task() to simply return task_cpu(p) and 1566 * not worry about this generic constraint ] 1567 */ 1568 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || 1569 !cpu_online(cpu))) 1570 cpu = select_fallback_rq(task_cpu(p), p); 1571 1572 return cpu; 1573 } 1574 1575 static void update_avg(u64 *avg, u64 sample) 1576 { 1577 s64 diff = sample - *avg; 1578 *avg += diff >> 3; 1579 } 1580 1581 void sched_set_stop_task(int cpu, struct task_struct *stop) 1582 { 1583 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1584 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1585 1586 if (stop) { 1587 /* 1588 * Make it appear like a SCHED_FIFO task, its something 1589 * userspace knows about and won't get confused about. 1590 * 1591 * Also, it will make PI more or less work without too 1592 * much confusion -- but then, stop work should not 1593 * rely on PI working anyway. 1594 */ 1595 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1596 1597 stop->sched_class = &stop_sched_class; 1598 } 1599 1600 cpu_rq(cpu)->stop = stop; 1601 1602 if (old_stop) { 1603 /* 1604 * Reset it back to a normal scheduling class so that 1605 * it can die in pieces. 1606 */ 1607 old_stop->sched_class = &rt_sched_class; 1608 } 1609 } 1610 1611 #else 1612 1613 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1614 const struct cpumask *new_mask, bool check) 1615 { 1616 return set_cpus_allowed_ptr(p, new_mask); 1617 } 1618 1619 #endif /* CONFIG_SMP */ 1620 1621 static void 1622 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1623 { 1624 struct rq *rq; 1625 1626 if (!schedstat_enabled()) 1627 return; 1628 1629 rq = this_rq(); 1630 1631 #ifdef CONFIG_SMP 1632 if (cpu == rq->cpu) { 1633 schedstat_inc(rq->ttwu_local); 1634 schedstat_inc(p->se.statistics.nr_wakeups_local); 1635 } else { 1636 struct sched_domain *sd; 1637 1638 schedstat_inc(p->se.statistics.nr_wakeups_remote); 1639 rcu_read_lock(); 1640 for_each_domain(rq->cpu, sd) { 1641 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1642 schedstat_inc(sd->ttwu_wake_remote); 1643 break; 1644 } 1645 } 1646 rcu_read_unlock(); 1647 } 1648 1649 if (wake_flags & WF_MIGRATED) 1650 schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1651 #endif /* CONFIG_SMP */ 1652 1653 schedstat_inc(rq->ttwu_count); 1654 schedstat_inc(p->se.statistics.nr_wakeups); 1655 1656 if (wake_flags & WF_SYNC) 1657 schedstat_inc(p->se.statistics.nr_wakeups_sync); 1658 } 1659 1660 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1661 { 1662 activate_task(rq, p, en_flags); 1663 p->on_rq = TASK_ON_RQ_QUEUED; 1664 1665 /* If a worker is waking up, notify the workqueue: */ 1666 if (p->flags & PF_WQ_WORKER) 1667 wq_worker_waking_up(p, cpu_of(rq)); 1668 } 1669 1670 /* 1671 * Mark the task runnable and perform wakeup-preemption. 1672 */ 1673 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1674 struct rq_flags *rf) 1675 { 1676 check_preempt_curr(rq, p, wake_flags); 1677 p->state = TASK_RUNNING; 1678 trace_sched_wakeup(p); 1679 1680 #ifdef CONFIG_SMP 1681 if (p->sched_class->task_woken) { 1682 /* 1683 * Our task @p is fully woken up and running; so its safe to 1684 * drop the rq->lock, hereafter rq is only used for statistics. 1685 */ 1686 rq_unpin_lock(rq, rf); 1687 p->sched_class->task_woken(rq, p); 1688 rq_repin_lock(rq, rf); 1689 } 1690 1691 if (rq->idle_stamp) { 1692 u64 delta = rq_clock(rq) - rq->idle_stamp; 1693 u64 max = 2*rq->max_idle_balance_cost; 1694 1695 update_avg(&rq->avg_idle, delta); 1696 1697 if (rq->avg_idle > max) 1698 rq->avg_idle = max; 1699 1700 rq->idle_stamp = 0; 1701 } 1702 #endif 1703 } 1704 1705 static void 1706 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1707 struct rq_flags *rf) 1708 { 1709 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1710 1711 lockdep_assert_held(&rq->lock); 1712 1713 #ifdef CONFIG_SMP 1714 if (p->sched_contributes_to_load) 1715 rq->nr_uninterruptible--; 1716 1717 if (wake_flags & WF_MIGRATED) 1718 en_flags |= ENQUEUE_MIGRATED; 1719 #endif 1720 1721 ttwu_activate(rq, p, en_flags); 1722 ttwu_do_wakeup(rq, p, wake_flags, rf); 1723 } 1724 1725 /* 1726 * Called in case the task @p isn't fully descheduled from its runqueue, 1727 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1728 * since all we need to do is flip p->state to TASK_RUNNING, since 1729 * the task is still ->on_rq. 1730 */ 1731 static int ttwu_remote(struct task_struct *p, int wake_flags) 1732 { 1733 struct rq_flags rf; 1734 struct rq *rq; 1735 int ret = 0; 1736 1737 rq = __task_rq_lock(p, &rf); 1738 if (task_on_rq_queued(p)) { 1739 /* check_preempt_curr() may use rq clock */ 1740 update_rq_clock(rq); 1741 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1742 ret = 1; 1743 } 1744 __task_rq_unlock(rq, &rf); 1745 1746 return ret; 1747 } 1748 1749 #ifdef CONFIG_SMP 1750 void sched_ttwu_pending(void) 1751 { 1752 struct rq *rq = this_rq(); 1753 struct llist_node *llist = llist_del_all(&rq->wake_list); 1754 struct task_struct *p, *t; 1755 struct rq_flags rf; 1756 1757 if (!llist) 1758 return; 1759 1760 rq_lock_irqsave(rq, &rf); 1761 update_rq_clock(rq); 1762 1763 llist_for_each_entry_safe(p, t, llist, wake_entry) 1764 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1765 1766 rq_unlock_irqrestore(rq, &rf); 1767 } 1768 1769 void scheduler_ipi(void) 1770 { 1771 /* 1772 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1773 * TIF_NEED_RESCHED remotely (for the first time) will also send 1774 * this IPI. 1775 */ 1776 preempt_fold_need_resched(); 1777 1778 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1779 return; 1780 1781 /* 1782 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1783 * traditionally all their work was done from the interrupt return 1784 * path. Now that we actually do some work, we need to make sure 1785 * we do call them. 1786 * 1787 * Some archs already do call them, luckily irq_enter/exit nest 1788 * properly. 1789 * 1790 * Arguably we should visit all archs and update all handlers, 1791 * however a fair share of IPIs are still resched only so this would 1792 * somewhat pessimize the simple resched case. 1793 */ 1794 irq_enter(); 1795 sched_ttwu_pending(); 1796 1797 /* 1798 * Check if someone kicked us for doing the nohz idle load balance. 1799 */ 1800 if (unlikely(got_nohz_idle_kick())) { 1801 this_rq()->idle_balance = 1; 1802 raise_softirq_irqoff(SCHED_SOFTIRQ); 1803 } 1804 irq_exit(); 1805 } 1806 1807 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1808 { 1809 struct rq *rq = cpu_rq(cpu); 1810 1811 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1812 1813 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1814 if (!set_nr_if_polling(rq->idle)) 1815 smp_send_reschedule(cpu); 1816 else 1817 trace_sched_wake_idle_without_ipi(cpu); 1818 } 1819 } 1820 1821 void wake_up_if_idle(int cpu) 1822 { 1823 struct rq *rq = cpu_rq(cpu); 1824 struct rq_flags rf; 1825 1826 rcu_read_lock(); 1827 1828 if (!is_idle_task(rcu_dereference(rq->curr))) 1829 goto out; 1830 1831 if (set_nr_if_polling(rq->idle)) { 1832 trace_sched_wake_idle_without_ipi(cpu); 1833 } else { 1834 rq_lock_irqsave(rq, &rf); 1835 if (is_idle_task(rq->curr)) 1836 smp_send_reschedule(cpu); 1837 /* Else CPU is not idle, do nothing here: */ 1838 rq_unlock_irqrestore(rq, &rf); 1839 } 1840 1841 out: 1842 rcu_read_unlock(); 1843 } 1844 1845 bool cpus_share_cache(int this_cpu, int that_cpu) 1846 { 1847 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1848 } 1849 #endif /* CONFIG_SMP */ 1850 1851 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1852 { 1853 struct rq *rq = cpu_rq(cpu); 1854 struct rq_flags rf; 1855 1856 #if defined(CONFIG_SMP) 1857 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1858 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1859 ttwu_queue_remote(p, cpu, wake_flags); 1860 return; 1861 } 1862 #endif 1863 1864 rq_lock(rq, &rf); 1865 update_rq_clock(rq); 1866 ttwu_do_activate(rq, p, wake_flags, &rf); 1867 rq_unlock(rq, &rf); 1868 } 1869 1870 /* 1871 * Notes on Program-Order guarantees on SMP systems. 1872 * 1873 * MIGRATION 1874 * 1875 * The basic program-order guarantee on SMP systems is that when a task [t] 1876 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1877 * execution on its new CPU [c1]. 1878 * 1879 * For migration (of runnable tasks) this is provided by the following means: 1880 * 1881 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1882 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1883 * rq(c1)->lock (if not at the same time, then in that order). 1884 * C) LOCK of the rq(c1)->lock scheduling in task 1885 * 1886 * Transitivity guarantees that B happens after A and C after B. 1887 * Note: we only require RCpc transitivity. 1888 * Note: the CPU doing B need not be c0 or c1 1889 * 1890 * Example: 1891 * 1892 * CPU0 CPU1 CPU2 1893 * 1894 * LOCK rq(0)->lock 1895 * sched-out X 1896 * sched-in Y 1897 * UNLOCK rq(0)->lock 1898 * 1899 * LOCK rq(0)->lock // orders against CPU0 1900 * dequeue X 1901 * UNLOCK rq(0)->lock 1902 * 1903 * LOCK rq(1)->lock 1904 * enqueue X 1905 * UNLOCK rq(1)->lock 1906 * 1907 * LOCK rq(1)->lock // orders against CPU2 1908 * sched-out Z 1909 * sched-in X 1910 * UNLOCK rq(1)->lock 1911 * 1912 * 1913 * BLOCKING -- aka. SLEEP + WAKEUP 1914 * 1915 * For blocking we (obviously) need to provide the same guarantee as for 1916 * migration. However the means are completely different as there is no lock 1917 * chain to provide order. Instead we do: 1918 * 1919 * 1) smp_store_release(X->on_cpu, 0) 1920 * 2) smp_cond_load_acquire(!X->on_cpu) 1921 * 1922 * Example: 1923 * 1924 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1925 * 1926 * LOCK rq(0)->lock LOCK X->pi_lock 1927 * dequeue X 1928 * sched-out X 1929 * smp_store_release(X->on_cpu, 0); 1930 * 1931 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1932 * X->state = WAKING 1933 * set_task_cpu(X,2) 1934 * 1935 * LOCK rq(2)->lock 1936 * enqueue X 1937 * X->state = RUNNING 1938 * UNLOCK rq(2)->lock 1939 * 1940 * LOCK rq(2)->lock // orders against CPU1 1941 * sched-out Z 1942 * sched-in X 1943 * UNLOCK rq(2)->lock 1944 * 1945 * UNLOCK X->pi_lock 1946 * UNLOCK rq(0)->lock 1947 * 1948 * 1949 * However; for wakeups there is a second guarantee we must provide, namely we 1950 * must observe the state that lead to our wakeup. That is, not only must our 1951 * task observe its own prior state, it must also observe the stores prior to 1952 * its wakeup. 1953 * 1954 * This means that any means of doing remote wakeups must order the CPU doing 1955 * the wakeup against the CPU the task is going to end up running on. This, 1956 * however, is already required for the regular Program-Order guarantee above, 1957 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1958 * 1959 */ 1960 1961 /** 1962 * try_to_wake_up - wake up a thread 1963 * @p: the thread to be awakened 1964 * @state: the mask of task states that can be woken 1965 * @wake_flags: wake modifier flags (WF_*) 1966 * 1967 * If (@state & @p->state) @p->state = TASK_RUNNING. 1968 * 1969 * If the task was not queued/runnable, also place it back on a runqueue. 1970 * 1971 * Atomic against schedule() which would dequeue a task, also see 1972 * set_current_state(). 1973 * 1974 * Return: %true if @p->state changes (an actual wakeup was done), 1975 * %false otherwise. 1976 */ 1977 static int 1978 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1979 { 1980 unsigned long flags; 1981 int cpu, success = 0; 1982 1983 /* 1984 * If we are going to wake up a thread waiting for CONDITION we 1985 * need to ensure that CONDITION=1 done by the caller can not be 1986 * reordered with p->state check below. This pairs with mb() in 1987 * set_current_state() the waiting thread does. 1988 */ 1989 raw_spin_lock_irqsave(&p->pi_lock, flags); 1990 smp_mb__after_spinlock(); 1991 if (!(p->state & state)) 1992 goto out; 1993 1994 trace_sched_waking(p); 1995 1996 /* We're going to change ->state: */ 1997 success = 1; 1998 cpu = task_cpu(p); 1999 2000 /* 2001 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2002 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2003 * in smp_cond_load_acquire() below. 2004 * 2005 * sched_ttwu_pending() try_to_wake_up() 2006 * [S] p->on_rq = 1; [L] P->state 2007 * UNLOCK rq->lock -----. 2008 * \ 2009 * +--- RMB 2010 * schedule() / 2011 * LOCK rq->lock -----' 2012 * UNLOCK rq->lock 2013 * 2014 * [task p] 2015 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2016 * 2017 * Pairs with the UNLOCK+LOCK on rq->lock from the 2018 * last wakeup of our task and the schedule that got our task 2019 * current. 2020 */ 2021 smp_rmb(); 2022 if (p->on_rq && ttwu_remote(p, wake_flags)) 2023 goto stat; 2024 2025 #ifdef CONFIG_SMP 2026 /* 2027 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2028 * possible to, falsely, observe p->on_cpu == 0. 2029 * 2030 * One must be running (->on_cpu == 1) in order to remove oneself 2031 * from the runqueue. 2032 * 2033 * [S] ->on_cpu = 1; [L] ->on_rq 2034 * UNLOCK rq->lock 2035 * RMB 2036 * LOCK rq->lock 2037 * [S] ->on_rq = 0; [L] ->on_cpu 2038 * 2039 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2040 * from the consecutive calls to schedule(); the first switching to our 2041 * task, the second putting it to sleep. 2042 */ 2043 smp_rmb(); 2044 2045 /* 2046 * If the owning (remote) CPU is still in the middle of schedule() with 2047 * this task as prev, wait until its done referencing the task. 2048 * 2049 * Pairs with the smp_store_release() in finish_task(). 2050 * 2051 * This ensures that tasks getting woken will be fully ordered against 2052 * their previous state and preserve Program Order. 2053 */ 2054 smp_cond_load_acquire(&p->on_cpu, !VAL); 2055 2056 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2057 p->state = TASK_WAKING; 2058 2059 if (p->in_iowait) { 2060 delayacct_blkio_end(p); 2061 atomic_dec(&task_rq(p)->nr_iowait); 2062 } 2063 2064 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2065 if (task_cpu(p) != cpu) { 2066 wake_flags |= WF_MIGRATED; 2067 set_task_cpu(p, cpu); 2068 } 2069 2070 #else /* CONFIG_SMP */ 2071 2072 if (p->in_iowait) { 2073 delayacct_blkio_end(p); 2074 atomic_dec(&task_rq(p)->nr_iowait); 2075 } 2076 2077 #endif /* CONFIG_SMP */ 2078 2079 ttwu_queue(p, cpu, wake_flags); 2080 stat: 2081 ttwu_stat(p, cpu, wake_flags); 2082 out: 2083 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2084 2085 return success; 2086 } 2087 2088 /** 2089 * try_to_wake_up_local - try to wake up a local task with rq lock held 2090 * @p: the thread to be awakened 2091 * @rf: request-queue flags for pinning 2092 * 2093 * Put @p on the run-queue if it's not already there. The caller must 2094 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2095 * the current task. 2096 */ 2097 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2098 { 2099 struct rq *rq = task_rq(p); 2100 2101 if (WARN_ON_ONCE(rq != this_rq()) || 2102 WARN_ON_ONCE(p == current)) 2103 return; 2104 2105 lockdep_assert_held(&rq->lock); 2106 2107 if (!raw_spin_trylock(&p->pi_lock)) { 2108 /* 2109 * This is OK, because current is on_cpu, which avoids it being 2110 * picked for load-balance and preemption/IRQs are still 2111 * disabled avoiding further scheduler activity on it and we've 2112 * not yet picked a replacement task. 2113 */ 2114 rq_unlock(rq, rf); 2115 raw_spin_lock(&p->pi_lock); 2116 rq_relock(rq, rf); 2117 } 2118 2119 if (!(p->state & TASK_NORMAL)) 2120 goto out; 2121 2122 trace_sched_waking(p); 2123 2124 if (!task_on_rq_queued(p)) { 2125 if (p->in_iowait) { 2126 delayacct_blkio_end(p); 2127 atomic_dec(&rq->nr_iowait); 2128 } 2129 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2130 } 2131 2132 ttwu_do_wakeup(rq, p, 0, rf); 2133 ttwu_stat(p, smp_processor_id(), 0); 2134 out: 2135 raw_spin_unlock(&p->pi_lock); 2136 } 2137 2138 /** 2139 * wake_up_process - Wake up a specific process 2140 * @p: The process to be woken up. 2141 * 2142 * Attempt to wake up the nominated process and move it to the set of runnable 2143 * processes. 2144 * 2145 * Return: 1 if the process was woken up, 0 if it was already running. 2146 * 2147 * It may be assumed that this function implies a write memory barrier before 2148 * changing the task state if and only if any tasks are woken up. 2149 */ 2150 int wake_up_process(struct task_struct *p) 2151 { 2152 return try_to_wake_up(p, TASK_NORMAL, 0); 2153 } 2154 EXPORT_SYMBOL(wake_up_process); 2155 2156 int wake_up_state(struct task_struct *p, unsigned int state) 2157 { 2158 return try_to_wake_up(p, state, 0); 2159 } 2160 2161 /* 2162 * Perform scheduler related setup for a newly forked process p. 2163 * p is forked by current. 2164 * 2165 * __sched_fork() is basic setup used by init_idle() too: 2166 */ 2167 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2168 { 2169 p->on_rq = 0; 2170 2171 p->se.on_rq = 0; 2172 p->se.exec_start = 0; 2173 p->se.sum_exec_runtime = 0; 2174 p->se.prev_sum_exec_runtime = 0; 2175 p->se.nr_migrations = 0; 2176 p->se.vruntime = 0; 2177 INIT_LIST_HEAD(&p->se.group_node); 2178 2179 #ifdef CONFIG_FAIR_GROUP_SCHED 2180 p->se.cfs_rq = NULL; 2181 #endif 2182 2183 #ifdef CONFIG_SCHEDSTATS 2184 /* Even if schedstat is disabled, there should not be garbage */ 2185 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2186 #endif 2187 2188 RB_CLEAR_NODE(&p->dl.rb_node); 2189 init_dl_task_timer(&p->dl); 2190 init_dl_inactive_task_timer(&p->dl); 2191 __dl_clear_params(p); 2192 2193 INIT_LIST_HEAD(&p->rt.run_list); 2194 p->rt.timeout = 0; 2195 p->rt.time_slice = sched_rr_timeslice; 2196 p->rt.on_rq = 0; 2197 p->rt.on_list = 0; 2198 2199 #ifdef CONFIG_PREEMPT_NOTIFIERS 2200 INIT_HLIST_HEAD(&p->preempt_notifiers); 2201 #endif 2202 2203 #ifdef CONFIG_NUMA_BALANCING 2204 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2205 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2206 p->mm->numa_scan_seq = 0; 2207 } 2208 2209 if (clone_flags & CLONE_VM) 2210 p->numa_preferred_nid = current->numa_preferred_nid; 2211 else 2212 p->numa_preferred_nid = -1; 2213 2214 p->node_stamp = 0ULL; 2215 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2216 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2217 p->numa_work.next = &p->numa_work; 2218 p->numa_faults = NULL; 2219 p->last_task_numa_placement = 0; 2220 p->last_sum_exec_runtime = 0; 2221 2222 p->numa_group = NULL; 2223 #endif /* CONFIG_NUMA_BALANCING */ 2224 } 2225 2226 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2227 2228 #ifdef CONFIG_NUMA_BALANCING 2229 2230 void set_numabalancing_state(bool enabled) 2231 { 2232 if (enabled) 2233 static_branch_enable(&sched_numa_balancing); 2234 else 2235 static_branch_disable(&sched_numa_balancing); 2236 } 2237 2238 #ifdef CONFIG_PROC_SYSCTL 2239 int sysctl_numa_balancing(struct ctl_table *table, int write, 2240 void __user *buffer, size_t *lenp, loff_t *ppos) 2241 { 2242 struct ctl_table t; 2243 int err; 2244 int state = static_branch_likely(&sched_numa_balancing); 2245 2246 if (write && !capable(CAP_SYS_ADMIN)) 2247 return -EPERM; 2248 2249 t = *table; 2250 t.data = &state; 2251 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2252 if (err < 0) 2253 return err; 2254 if (write) 2255 set_numabalancing_state(state); 2256 return err; 2257 } 2258 #endif 2259 #endif 2260 2261 #ifdef CONFIG_SCHEDSTATS 2262 2263 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2264 static bool __initdata __sched_schedstats = false; 2265 2266 static void set_schedstats(bool enabled) 2267 { 2268 if (enabled) 2269 static_branch_enable(&sched_schedstats); 2270 else 2271 static_branch_disable(&sched_schedstats); 2272 } 2273 2274 void force_schedstat_enabled(void) 2275 { 2276 if (!schedstat_enabled()) { 2277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2278 static_branch_enable(&sched_schedstats); 2279 } 2280 } 2281 2282 static int __init setup_schedstats(char *str) 2283 { 2284 int ret = 0; 2285 if (!str) 2286 goto out; 2287 2288 /* 2289 * This code is called before jump labels have been set up, so we can't 2290 * change the static branch directly just yet. Instead set a temporary 2291 * variable so init_schedstats() can do it later. 2292 */ 2293 if (!strcmp(str, "enable")) { 2294 __sched_schedstats = true; 2295 ret = 1; 2296 } else if (!strcmp(str, "disable")) { 2297 __sched_schedstats = false; 2298 ret = 1; 2299 } 2300 out: 2301 if (!ret) 2302 pr_warn("Unable to parse schedstats=\n"); 2303 2304 return ret; 2305 } 2306 __setup("schedstats=", setup_schedstats); 2307 2308 static void __init init_schedstats(void) 2309 { 2310 set_schedstats(__sched_schedstats); 2311 } 2312 2313 #ifdef CONFIG_PROC_SYSCTL 2314 int sysctl_schedstats(struct ctl_table *table, int write, 2315 void __user *buffer, size_t *lenp, loff_t *ppos) 2316 { 2317 struct ctl_table t; 2318 int err; 2319 int state = static_branch_likely(&sched_schedstats); 2320 2321 if (write && !capable(CAP_SYS_ADMIN)) 2322 return -EPERM; 2323 2324 t = *table; 2325 t.data = &state; 2326 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2327 if (err < 0) 2328 return err; 2329 if (write) 2330 set_schedstats(state); 2331 return err; 2332 } 2333 #endif /* CONFIG_PROC_SYSCTL */ 2334 #else /* !CONFIG_SCHEDSTATS */ 2335 static inline void init_schedstats(void) {} 2336 #endif /* CONFIG_SCHEDSTATS */ 2337 2338 /* 2339 * fork()/clone()-time setup: 2340 */ 2341 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2342 { 2343 unsigned long flags; 2344 int cpu = get_cpu(); 2345 2346 __sched_fork(clone_flags, p); 2347 /* 2348 * We mark the process as NEW here. This guarantees that 2349 * nobody will actually run it, and a signal or other external 2350 * event cannot wake it up and insert it on the runqueue either. 2351 */ 2352 p->state = TASK_NEW; 2353 2354 /* 2355 * Make sure we do not leak PI boosting priority to the child. 2356 */ 2357 p->prio = current->normal_prio; 2358 2359 /* 2360 * Revert to default priority/policy on fork if requested. 2361 */ 2362 if (unlikely(p->sched_reset_on_fork)) { 2363 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2364 p->policy = SCHED_NORMAL; 2365 p->static_prio = NICE_TO_PRIO(0); 2366 p->rt_priority = 0; 2367 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2368 p->static_prio = NICE_TO_PRIO(0); 2369 2370 p->prio = p->normal_prio = __normal_prio(p); 2371 set_load_weight(p, false); 2372 2373 /* 2374 * We don't need the reset flag anymore after the fork. It has 2375 * fulfilled its duty: 2376 */ 2377 p->sched_reset_on_fork = 0; 2378 } 2379 2380 if (dl_prio(p->prio)) { 2381 put_cpu(); 2382 return -EAGAIN; 2383 } else if (rt_prio(p->prio)) { 2384 p->sched_class = &rt_sched_class; 2385 } else { 2386 p->sched_class = &fair_sched_class; 2387 } 2388 2389 init_entity_runnable_average(&p->se); 2390 2391 /* 2392 * The child is not yet in the pid-hash so no cgroup attach races, 2393 * and the cgroup is pinned to this child due to cgroup_fork() 2394 * is ran before sched_fork(). 2395 * 2396 * Silence PROVE_RCU. 2397 */ 2398 raw_spin_lock_irqsave(&p->pi_lock, flags); 2399 /* 2400 * We're setting the CPU for the first time, we don't migrate, 2401 * so use __set_task_cpu(). 2402 */ 2403 __set_task_cpu(p, cpu); 2404 if (p->sched_class->task_fork) 2405 p->sched_class->task_fork(p); 2406 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2407 2408 #ifdef CONFIG_SCHED_INFO 2409 if (likely(sched_info_on())) 2410 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2411 #endif 2412 #if defined(CONFIG_SMP) 2413 p->on_cpu = 0; 2414 #endif 2415 init_task_preempt_count(p); 2416 #ifdef CONFIG_SMP 2417 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2418 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2419 #endif 2420 2421 put_cpu(); 2422 return 0; 2423 } 2424 2425 unsigned long to_ratio(u64 period, u64 runtime) 2426 { 2427 if (runtime == RUNTIME_INF) 2428 return BW_UNIT; 2429 2430 /* 2431 * Doing this here saves a lot of checks in all 2432 * the calling paths, and returning zero seems 2433 * safe for them anyway. 2434 */ 2435 if (period == 0) 2436 return 0; 2437 2438 return div64_u64(runtime << BW_SHIFT, period); 2439 } 2440 2441 /* 2442 * wake_up_new_task - wake up a newly created task for the first time. 2443 * 2444 * This function will do some initial scheduler statistics housekeeping 2445 * that must be done for every newly created context, then puts the task 2446 * on the runqueue and wakes it. 2447 */ 2448 void wake_up_new_task(struct task_struct *p) 2449 { 2450 struct rq_flags rf; 2451 struct rq *rq; 2452 2453 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2454 p->state = TASK_RUNNING; 2455 #ifdef CONFIG_SMP 2456 /* 2457 * Fork balancing, do it here and not earlier because: 2458 * - cpus_allowed can change in the fork path 2459 * - any previously selected CPU might disappear through hotplug 2460 * 2461 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2462 * as we're not fully set-up yet. 2463 */ 2464 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2465 #endif 2466 rq = __task_rq_lock(p, &rf); 2467 update_rq_clock(rq); 2468 post_init_entity_util_avg(&p->se); 2469 2470 activate_task(rq, p, ENQUEUE_NOCLOCK); 2471 p->on_rq = TASK_ON_RQ_QUEUED; 2472 trace_sched_wakeup_new(p); 2473 check_preempt_curr(rq, p, WF_FORK); 2474 #ifdef CONFIG_SMP 2475 if (p->sched_class->task_woken) { 2476 /* 2477 * Nothing relies on rq->lock after this, so its fine to 2478 * drop it. 2479 */ 2480 rq_unpin_lock(rq, &rf); 2481 p->sched_class->task_woken(rq, p); 2482 rq_repin_lock(rq, &rf); 2483 } 2484 #endif 2485 task_rq_unlock(rq, p, &rf); 2486 } 2487 2488 #ifdef CONFIG_PREEMPT_NOTIFIERS 2489 2490 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2491 2492 void preempt_notifier_inc(void) 2493 { 2494 static_key_slow_inc(&preempt_notifier_key); 2495 } 2496 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2497 2498 void preempt_notifier_dec(void) 2499 { 2500 static_key_slow_dec(&preempt_notifier_key); 2501 } 2502 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2503 2504 /** 2505 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2506 * @notifier: notifier struct to register 2507 */ 2508 void preempt_notifier_register(struct preempt_notifier *notifier) 2509 { 2510 if (!static_key_false(&preempt_notifier_key)) 2511 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2512 2513 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2514 } 2515 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2516 2517 /** 2518 * preempt_notifier_unregister - no longer interested in preemption notifications 2519 * @notifier: notifier struct to unregister 2520 * 2521 * This is *not* safe to call from within a preemption notifier. 2522 */ 2523 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2524 { 2525 hlist_del(¬ifier->link); 2526 } 2527 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2528 2529 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2530 { 2531 struct preempt_notifier *notifier; 2532 2533 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2534 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2535 } 2536 2537 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2538 { 2539 if (static_key_false(&preempt_notifier_key)) 2540 __fire_sched_in_preempt_notifiers(curr); 2541 } 2542 2543 static void 2544 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2545 struct task_struct *next) 2546 { 2547 struct preempt_notifier *notifier; 2548 2549 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2550 notifier->ops->sched_out(notifier, next); 2551 } 2552 2553 static __always_inline void 2554 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2555 struct task_struct *next) 2556 { 2557 if (static_key_false(&preempt_notifier_key)) 2558 __fire_sched_out_preempt_notifiers(curr, next); 2559 } 2560 2561 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2562 2563 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2564 { 2565 } 2566 2567 static inline void 2568 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2569 struct task_struct *next) 2570 { 2571 } 2572 2573 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2574 2575 static inline void prepare_task(struct task_struct *next) 2576 { 2577 #ifdef CONFIG_SMP 2578 /* 2579 * Claim the task as running, we do this before switching to it 2580 * such that any running task will have this set. 2581 */ 2582 next->on_cpu = 1; 2583 #endif 2584 } 2585 2586 static inline void finish_task(struct task_struct *prev) 2587 { 2588 #ifdef CONFIG_SMP 2589 /* 2590 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2591 * We must ensure this doesn't happen until the switch is completely 2592 * finished. 2593 * 2594 * In particular, the load of prev->state in finish_task_switch() must 2595 * happen before this. 2596 * 2597 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2598 */ 2599 smp_store_release(&prev->on_cpu, 0); 2600 #endif 2601 } 2602 2603 static inline void finish_lock_switch(struct rq *rq) 2604 { 2605 #ifdef CONFIG_DEBUG_SPINLOCK 2606 /* this is a valid case when another task releases the spinlock */ 2607 rq->lock.owner = current; 2608 #endif 2609 /* 2610 * If we are tracking spinlock dependencies then we have to 2611 * fix up the runqueue lock - which gets 'carried over' from 2612 * prev into current: 2613 */ 2614 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2615 2616 raw_spin_unlock_irq(&rq->lock); 2617 } 2618 2619 /** 2620 * prepare_task_switch - prepare to switch tasks 2621 * @rq: the runqueue preparing to switch 2622 * @prev: the current task that is being switched out 2623 * @next: the task we are going to switch to. 2624 * 2625 * This is called with the rq lock held and interrupts off. It must 2626 * be paired with a subsequent finish_task_switch after the context 2627 * switch. 2628 * 2629 * prepare_task_switch sets up locking and calls architecture specific 2630 * hooks. 2631 */ 2632 static inline void 2633 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2634 struct task_struct *next) 2635 { 2636 sched_info_switch(rq, prev, next); 2637 perf_event_task_sched_out(prev, next); 2638 fire_sched_out_preempt_notifiers(prev, next); 2639 prepare_task(next); 2640 prepare_arch_switch(next); 2641 } 2642 2643 /** 2644 * finish_task_switch - clean up after a task-switch 2645 * @prev: the thread we just switched away from. 2646 * 2647 * finish_task_switch must be called after the context switch, paired 2648 * with a prepare_task_switch call before the context switch. 2649 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2650 * and do any other architecture-specific cleanup actions. 2651 * 2652 * Note that we may have delayed dropping an mm in context_switch(). If 2653 * so, we finish that here outside of the runqueue lock. (Doing it 2654 * with the lock held can cause deadlocks; see schedule() for 2655 * details.) 2656 * 2657 * The context switch have flipped the stack from under us and restored the 2658 * local variables which were saved when this task called schedule() in the 2659 * past. prev == current is still correct but we need to recalculate this_rq 2660 * because prev may have moved to another CPU. 2661 */ 2662 static struct rq *finish_task_switch(struct task_struct *prev) 2663 __releases(rq->lock) 2664 { 2665 struct rq *rq = this_rq(); 2666 struct mm_struct *mm = rq->prev_mm; 2667 long prev_state; 2668 2669 /* 2670 * The previous task will have left us with a preempt_count of 2 2671 * because it left us after: 2672 * 2673 * schedule() 2674 * preempt_disable(); // 1 2675 * __schedule() 2676 * raw_spin_lock_irq(&rq->lock) // 2 2677 * 2678 * Also, see FORK_PREEMPT_COUNT. 2679 */ 2680 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2681 "corrupted preempt_count: %s/%d/0x%x\n", 2682 current->comm, current->pid, preempt_count())) 2683 preempt_count_set(FORK_PREEMPT_COUNT); 2684 2685 rq->prev_mm = NULL; 2686 2687 /* 2688 * A task struct has one reference for the use as "current". 2689 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2690 * schedule one last time. The schedule call will never return, and 2691 * the scheduled task must drop that reference. 2692 * 2693 * We must observe prev->state before clearing prev->on_cpu (in 2694 * finish_task), otherwise a concurrent wakeup can get prev 2695 * running on another CPU and we could rave with its RUNNING -> DEAD 2696 * transition, resulting in a double drop. 2697 */ 2698 prev_state = prev->state; 2699 vtime_task_switch(prev); 2700 perf_event_task_sched_in(prev, current); 2701 /* 2702 * The membarrier system call requires a full memory barrier 2703 * after storing to rq->curr, before going back to user-space. 2704 * 2705 * TODO: This smp_mb__after_unlock_lock can go away if PPC end 2706 * up adding a full barrier to switch_mm(), or we should figure 2707 * out if a smp_mb__after_unlock_lock is really the proper API 2708 * to use. 2709 */ 2710 smp_mb__after_unlock_lock(); 2711 finish_task(prev); 2712 finish_lock_switch(rq); 2713 finish_arch_post_lock_switch(); 2714 2715 fire_sched_in_preempt_notifiers(current); 2716 if (mm) 2717 mmdrop(mm); 2718 if (unlikely(prev_state == TASK_DEAD)) { 2719 if (prev->sched_class->task_dead) 2720 prev->sched_class->task_dead(prev); 2721 2722 /* 2723 * Remove function-return probe instances associated with this 2724 * task and put them back on the free list. 2725 */ 2726 kprobe_flush_task(prev); 2727 2728 /* Task is done with its stack. */ 2729 put_task_stack(prev); 2730 2731 put_task_struct(prev); 2732 } 2733 2734 tick_nohz_task_switch(); 2735 return rq; 2736 } 2737 2738 #ifdef CONFIG_SMP 2739 2740 /* rq->lock is NOT held, but preemption is disabled */ 2741 static void __balance_callback(struct rq *rq) 2742 { 2743 struct callback_head *head, *next; 2744 void (*func)(struct rq *rq); 2745 unsigned long flags; 2746 2747 raw_spin_lock_irqsave(&rq->lock, flags); 2748 head = rq->balance_callback; 2749 rq->balance_callback = NULL; 2750 while (head) { 2751 func = (void (*)(struct rq *))head->func; 2752 next = head->next; 2753 head->next = NULL; 2754 head = next; 2755 2756 func(rq); 2757 } 2758 raw_spin_unlock_irqrestore(&rq->lock, flags); 2759 } 2760 2761 static inline void balance_callback(struct rq *rq) 2762 { 2763 if (unlikely(rq->balance_callback)) 2764 __balance_callback(rq); 2765 } 2766 2767 #else 2768 2769 static inline void balance_callback(struct rq *rq) 2770 { 2771 } 2772 2773 #endif 2774 2775 /** 2776 * schedule_tail - first thing a freshly forked thread must call. 2777 * @prev: the thread we just switched away from. 2778 */ 2779 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2780 __releases(rq->lock) 2781 { 2782 struct rq *rq; 2783 2784 /* 2785 * New tasks start with FORK_PREEMPT_COUNT, see there and 2786 * finish_task_switch() for details. 2787 * 2788 * finish_task_switch() will drop rq->lock() and lower preempt_count 2789 * and the preempt_enable() will end up enabling preemption (on 2790 * PREEMPT_COUNT kernels). 2791 */ 2792 2793 rq = finish_task_switch(prev); 2794 balance_callback(rq); 2795 preempt_enable(); 2796 2797 if (current->set_child_tid) 2798 put_user(task_pid_vnr(current), current->set_child_tid); 2799 } 2800 2801 /* 2802 * context_switch - switch to the new MM and the new thread's register state. 2803 */ 2804 static __always_inline struct rq * 2805 context_switch(struct rq *rq, struct task_struct *prev, 2806 struct task_struct *next, struct rq_flags *rf) 2807 { 2808 struct mm_struct *mm, *oldmm; 2809 2810 prepare_task_switch(rq, prev, next); 2811 2812 mm = next->mm; 2813 oldmm = prev->active_mm; 2814 /* 2815 * For paravirt, this is coupled with an exit in switch_to to 2816 * combine the page table reload and the switch backend into 2817 * one hypercall. 2818 */ 2819 arch_start_context_switch(prev); 2820 2821 if (!mm) { 2822 next->active_mm = oldmm; 2823 mmgrab(oldmm); 2824 enter_lazy_tlb(oldmm, next); 2825 } else 2826 switch_mm_irqs_off(oldmm, mm, next); 2827 2828 if (!prev->mm) { 2829 prev->active_mm = NULL; 2830 rq->prev_mm = oldmm; 2831 } 2832 2833 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2834 2835 /* 2836 * Since the runqueue lock will be released by the next 2837 * task (which is an invalid locking op but in the case 2838 * of the scheduler it's an obvious special-case), so we 2839 * do an early lockdep release here: 2840 */ 2841 rq_unpin_lock(rq, rf); 2842 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2843 2844 /* Here we just switch the register state and the stack. */ 2845 switch_to(prev, next, prev); 2846 barrier(); 2847 2848 return finish_task_switch(prev); 2849 } 2850 2851 /* 2852 * nr_running and nr_context_switches: 2853 * 2854 * externally visible scheduler statistics: current number of runnable 2855 * threads, total number of context switches performed since bootup. 2856 */ 2857 unsigned long nr_running(void) 2858 { 2859 unsigned long i, sum = 0; 2860 2861 for_each_online_cpu(i) 2862 sum += cpu_rq(i)->nr_running; 2863 2864 return sum; 2865 } 2866 2867 /* 2868 * Check if only the current task is running on the CPU. 2869 * 2870 * Caution: this function does not check that the caller has disabled 2871 * preemption, thus the result might have a time-of-check-to-time-of-use 2872 * race. The caller is responsible to use it correctly, for example: 2873 * 2874 * - from a non-preemptable section (of course) 2875 * 2876 * - from a thread that is bound to a single CPU 2877 * 2878 * - in a loop with very short iterations (e.g. a polling loop) 2879 */ 2880 bool single_task_running(void) 2881 { 2882 return raw_rq()->nr_running == 1; 2883 } 2884 EXPORT_SYMBOL(single_task_running); 2885 2886 unsigned long long nr_context_switches(void) 2887 { 2888 int i; 2889 unsigned long long sum = 0; 2890 2891 for_each_possible_cpu(i) 2892 sum += cpu_rq(i)->nr_switches; 2893 2894 return sum; 2895 } 2896 2897 /* 2898 * IO-wait accounting, and how its mostly bollocks (on SMP). 2899 * 2900 * The idea behind IO-wait account is to account the idle time that we could 2901 * have spend running if it were not for IO. That is, if we were to improve the 2902 * storage performance, we'd have a proportional reduction in IO-wait time. 2903 * 2904 * This all works nicely on UP, where, when a task blocks on IO, we account 2905 * idle time as IO-wait, because if the storage were faster, it could've been 2906 * running and we'd not be idle. 2907 * 2908 * This has been extended to SMP, by doing the same for each CPU. This however 2909 * is broken. 2910 * 2911 * Imagine for instance the case where two tasks block on one CPU, only the one 2912 * CPU will have IO-wait accounted, while the other has regular idle. Even 2913 * though, if the storage were faster, both could've ran at the same time, 2914 * utilising both CPUs. 2915 * 2916 * This means, that when looking globally, the current IO-wait accounting on 2917 * SMP is a lower bound, by reason of under accounting. 2918 * 2919 * Worse, since the numbers are provided per CPU, they are sometimes 2920 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2921 * associated with any one particular CPU, it can wake to another CPU than it 2922 * blocked on. This means the per CPU IO-wait number is meaningless. 2923 * 2924 * Task CPU affinities can make all that even more 'interesting'. 2925 */ 2926 2927 unsigned long nr_iowait(void) 2928 { 2929 unsigned long i, sum = 0; 2930 2931 for_each_possible_cpu(i) 2932 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2933 2934 return sum; 2935 } 2936 2937 /* 2938 * Consumers of these two interfaces, like for example the cpufreq menu 2939 * governor are using nonsensical data. Boosting frequency for a CPU that has 2940 * IO-wait which might not even end up running the task when it does become 2941 * runnable. 2942 */ 2943 2944 unsigned long nr_iowait_cpu(int cpu) 2945 { 2946 struct rq *this = cpu_rq(cpu); 2947 return atomic_read(&this->nr_iowait); 2948 } 2949 2950 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2951 { 2952 struct rq *rq = this_rq(); 2953 *nr_waiters = atomic_read(&rq->nr_iowait); 2954 *load = rq->load.weight; 2955 } 2956 2957 #ifdef CONFIG_SMP 2958 2959 /* 2960 * sched_exec - execve() is a valuable balancing opportunity, because at 2961 * this point the task has the smallest effective memory and cache footprint. 2962 */ 2963 void sched_exec(void) 2964 { 2965 struct task_struct *p = current; 2966 unsigned long flags; 2967 int dest_cpu; 2968 2969 raw_spin_lock_irqsave(&p->pi_lock, flags); 2970 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2971 if (dest_cpu == smp_processor_id()) 2972 goto unlock; 2973 2974 if (likely(cpu_active(dest_cpu))) { 2975 struct migration_arg arg = { p, dest_cpu }; 2976 2977 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2978 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2979 return; 2980 } 2981 unlock: 2982 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2983 } 2984 2985 #endif 2986 2987 DEFINE_PER_CPU(struct kernel_stat, kstat); 2988 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2989 2990 EXPORT_PER_CPU_SYMBOL(kstat); 2991 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2992 2993 /* 2994 * The function fair_sched_class.update_curr accesses the struct curr 2995 * and its field curr->exec_start; when called from task_sched_runtime(), 2996 * we observe a high rate of cache misses in practice. 2997 * Prefetching this data results in improved performance. 2998 */ 2999 static inline void prefetch_curr_exec_start(struct task_struct *p) 3000 { 3001 #ifdef CONFIG_FAIR_GROUP_SCHED 3002 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3003 #else 3004 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3005 #endif 3006 prefetch(curr); 3007 prefetch(&curr->exec_start); 3008 } 3009 3010 /* 3011 * Return accounted runtime for the task. 3012 * In case the task is currently running, return the runtime plus current's 3013 * pending runtime that have not been accounted yet. 3014 */ 3015 unsigned long long task_sched_runtime(struct task_struct *p) 3016 { 3017 struct rq_flags rf; 3018 struct rq *rq; 3019 u64 ns; 3020 3021 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3022 /* 3023 * 64-bit doesn't need locks to atomically read a 64bit value. 3024 * So we have a optimization chance when the task's delta_exec is 0. 3025 * Reading ->on_cpu is racy, but this is ok. 3026 * 3027 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3028 * If we race with it entering CPU, unaccounted time is 0. This is 3029 * indistinguishable from the read occurring a few cycles earlier. 3030 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3031 * been accounted, so we're correct here as well. 3032 */ 3033 if (!p->on_cpu || !task_on_rq_queued(p)) 3034 return p->se.sum_exec_runtime; 3035 #endif 3036 3037 rq = task_rq_lock(p, &rf); 3038 /* 3039 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3040 * project cycles that may never be accounted to this 3041 * thread, breaking clock_gettime(). 3042 */ 3043 if (task_current(rq, p) && task_on_rq_queued(p)) { 3044 prefetch_curr_exec_start(p); 3045 update_rq_clock(rq); 3046 p->sched_class->update_curr(rq); 3047 } 3048 ns = p->se.sum_exec_runtime; 3049 task_rq_unlock(rq, p, &rf); 3050 3051 return ns; 3052 } 3053 3054 /* 3055 * This function gets called by the timer code, with HZ frequency. 3056 * We call it with interrupts disabled. 3057 */ 3058 void scheduler_tick(void) 3059 { 3060 int cpu = smp_processor_id(); 3061 struct rq *rq = cpu_rq(cpu); 3062 struct task_struct *curr = rq->curr; 3063 struct rq_flags rf; 3064 3065 sched_clock_tick(); 3066 3067 rq_lock(rq, &rf); 3068 3069 update_rq_clock(rq); 3070 curr->sched_class->task_tick(rq, curr, 0); 3071 cpu_load_update_active(rq); 3072 calc_global_load_tick(rq); 3073 3074 rq_unlock(rq, &rf); 3075 3076 perf_event_task_tick(); 3077 3078 #ifdef CONFIG_SMP 3079 rq->idle_balance = idle_cpu(cpu); 3080 trigger_load_balance(rq); 3081 #endif 3082 rq_last_tick_reset(rq); 3083 } 3084 3085 #ifdef CONFIG_NO_HZ_FULL 3086 /** 3087 * scheduler_tick_max_deferment 3088 * 3089 * Keep at least one tick per second when a single 3090 * active task is running because the scheduler doesn't 3091 * yet completely support full dynticks environment. 3092 * 3093 * This makes sure that uptime, CFS vruntime, load 3094 * balancing, etc... continue to move forward, even 3095 * with a very low granularity. 3096 * 3097 * Return: Maximum deferment in nanoseconds. 3098 */ 3099 u64 scheduler_tick_max_deferment(void) 3100 { 3101 struct rq *rq = this_rq(); 3102 unsigned long next, now = READ_ONCE(jiffies); 3103 3104 next = rq->last_sched_tick + HZ; 3105 3106 if (time_before_eq(next, now)) 3107 return 0; 3108 3109 return jiffies_to_nsecs(next - now); 3110 } 3111 #endif 3112 3113 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3114 defined(CONFIG_PREEMPT_TRACER)) 3115 /* 3116 * If the value passed in is equal to the current preempt count 3117 * then we just disabled preemption. Start timing the latency. 3118 */ 3119 static inline void preempt_latency_start(int val) 3120 { 3121 if (preempt_count() == val) { 3122 unsigned long ip = get_lock_parent_ip(); 3123 #ifdef CONFIG_DEBUG_PREEMPT 3124 current->preempt_disable_ip = ip; 3125 #endif 3126 trace_preempt_off(CALLER_ADDR0, ip); 3127 } 3128 } 3129 3130 void preempt_count_add(int val) 3131 { 3132 #ifdef CONFIG_DEBUG_PREEMPT 3133 /* 3134 * Underflow? 3135 */ 3136 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3137 return; 3138 #endif 3139 __preempt_count_add(val); 3140 #ifdef CONFIG_DEBUG_PREEMPT 3141 /* 3142 * Spinlock count overflowing soon? 3143 */ 3144 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3145 PREEMPT_MASK - 10); 3146 #endif 3147 preempt_latency_start(val); 3148 } 3149 EXPORT_SYMBOL(preempt_count_add); 3150 NOKPROBE_SYMBOL(preempt_count_add); 3151 3152 /* 3153 * If the value passed in equals to the current preempt count 3154 * then we just enabled preemption. Stop timing the latency. 3155 */ 3156 static inline void preempt_latency_stop(int val) 3157 { 3158 if (preempt_count() == val) 3159 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3160 } 3161 3162 void preempt_count_sub(int val) 3163 { 3164 #ifdef CONFIG_DEBUG_PREEMPT 3165 /* 3166 * Underflow? 3167 */ 3168 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3169 return; 3170 /* 3171 * Is the spinlock portion underflowing? 3172 */ 3173 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3174 !(preempt_count() & PREEMPT_MASK))) 3175 return; 3176 #endif 3177 3178 preempt_latency_stop(val); 3179 __preempt_count_sub(val); 3180 } 3181 EXPORT_SYMBOL(preempt_count_sub); 3182 NOKPROBE_SYMBOL(preempt_count_sub); 3183 3184 #else 3185 static inline void preempt_latency_start(int val) { } 3186 static inline void preempt_latency_stop(int val) { } 3187 #endif 3188 3189 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3190 { 3191 #ifdef CONFIG_DEBUG_PREEMPT 3192 return p->preempt_disable_ip; 3193 #else 3194 return 0; 3195 #endif 3196 } 3197 3198 /* 3199 * Print scheduling while atomic bug: 3200 */ 3201 static noinline void __schedule_bug(struct task_struct *prev) 3202 { 3203 /* Save this before calling printk(), since that will clobber it */ 3204 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3205 3206 if (oops_in_progress) 3207 return; 3208 3209 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3210 prev->comm, prev->pid, preempt_count()); 3211 3212 debug_show_held_locks(prev); 3213 print_modules(); 3214 if (irqs_disabled()) 3215 print_irqtrace_events(prev); 3216 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3217 && in_atomic_preempt_off()) { 3218 pr_err("Preemption disabled at:"); 3219 print_ip_sym(preempt_disable_ip); 3220 pr_cont("\n"); 3221 } 3222 if (panic_on_warn) 3223 panic("scheduling while atomic\n"); 3224 3225 dump_stack(); 3226 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3227 } 3228 3229 /* 3230 * Various schedule()-time debugging checks and statistics: 3231 */ 3232 static inline void schedule_debug(struct task_struct *prev) 3233 { 3234 #ifdef CONFIG_SCHED_STACK_END_CHECK 3235 if (task_stack_end_corrupted(prev)) 3236 panic("corrupted stack end detected inside scheduler\n"); 3237 #endif 3238 3239 if (unlikely(in_atomic_preempt_off())) { 3240 __schedule_bug(prev); 3241 preempt_count_set(PREEMPT_DISABLED); 3242 } 3243 rcu_sleep_check(); 3244 3245 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3246 3247 schedstat_inc(this_rq()->sched_count); 3248 } 3249 3250 /* 3251 * Pick up the highest-prio task: 3252 */ 3253 static inline struct task_struct * 3254 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3255 { 3256 const struct sched_class *class; 3257 struct task_struct *p; 3258 3259 /* 3260 * Optimization: we know that if all tasks are in the fair class we can 3261 * call that function directly, but only if the @prev task wasn't of a 3262 * higher scheduling class, because otherwise those loose the 3263 * opportunity to pull in more work from other CPUs. 3264 */ 3265 if (likely((prev->sched_class == &idle_sched_class || 3266 prev->sched_class == &fair_sched_class) && 3267 rq->nr_running == rq->cfs.h_nr_running)) { 3268 3269 p = fair_sched_class.pick_next_task(rq, prev, rf); 3270 if (unlikely(p == RETRY_TASK)) 3271 goto again; 3272 3273 /* Assumes fair_sched_class->next == idle_sched_class */ 3274 if (unlikely(!p)) 3275 p = idle_sched_class.pick_next_task(rq, prev, rf); 3276 3277 return p; 3278 } 3279 3280 again: 3281 for_each_class(class) { 3282 p = class->pick_next_task(rq, prev, rf); 3283 if (p) { 3284 if (unlikely(p == RETRY_TASK)) 3285 goto again; 3286 return p; 3287 } 3288 } 3289 3290 /* The idle class should always have a runnable task: */ 3291 BUG(); 3292 } 3293 3294 /* 3295 * __schedule() is the main scheduler function. 3296 * 3297 * The main means of driving the scheduler and thus entering this function are: 3298 * 3299 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3300 * 3301 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3302 * paths. For example, see arch/x86/entry_64.S. 3303 * 3304 * To drive preemption between tasks, the scheduler sets the flag in timer 3305 * interrupt handler scheduler_tick(). 3306 * 3307 * 3. Wakeups don't really cause entry into schedule(). They add a 3308 * task to the run-queue and that's it. 3309 * 3310 * Now, if the new task added to the run-queue preempts the current 3311 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3312 * called on the nearest possible occasion: 3313 * 3314 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3315 * 3316 * - in syscall or exception context, at the next outmost 3317 * preempt_enable(). (this might be as soon as the wake_up()'s 3318 * spin_unlock()!) 3319 * 3320 * - in IRQ context, return from interrupt-handler to 3321 * preemptible context 3322 * 3323 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3324 * then at the next: 3325 * 3326 * - cond_resched() call 3327 * - explicit schedule() call 3328 * - return from syscall or exception to user-space 3329 * - return from interrupt-handler to user-space 3330 * 3331 * WARNING: must be called with preemption disabled! 3332 */ 3333 static void __sched notrace __schedule(bool preempt) 3334 { 3335 struct task_struct *prev, *next; 3336 unsigned long *switch_count; 3337 struct rq_flags rf; 3338 struct rq *rq; 3339 int cpu; 3340 3341 cpu = smp_processor_id(); 3342 rq = cpu_rq(cpu); 3343 prev = rq->curr; 3344 3345 schedule_debug(prev); 3346 3347 if (sched_feat(HRTICK)) 3348 hrtick_clear(rq); 3349 3350 local_irq_disable(); 3351 rcu_note_context_switch(preempt); 3352 3353 /* 3354 * Make sure that signal_pending_state()->signal_pending() below 3355 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3356 * done by the caller to avoid the race with signal_wake_up(). 3357 */ 3358 rq_lock(rq, &rf); 3359 smp_mb__after_spinlock(); 3360 3361 /* Promote REQ to ACT */ 3362 rq->clock_update_flags <<= 1; 3363 update_rq_clock(rq); 3364 3365 switch_count = &prev->nivcsw; 3366 if (!preempt && prev->state) { 3367 if (unlikely(signal_pending_state(prev->state, prev))) { 3368 prev->state = TASK_RUNNING; 3369 } else { 3370 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3371 prev->on_rq = 0; 3372 3373 if (prev->in_iowait) { 3374 atomic_inc(&rq->nr_iowait); 3375 delayacct_blkio_start(); 3376 } 3377 3378 /* 3379 * If a worker went to sleep, notify and ask workqueue 3380 * whether it wants to wake up a task to maintain 3381 * concurrency. 3382 */ 3383 if (prev->flags & PF_WQ_WORKER) { 3384 struct task_struct *to_wakeup; 3385 3386 to_wakeup = wq_worker_sleeping(prev); 3387 if (to_wakeup) 3388 try_to_wake_up_local(to_wakeup, &rf); 3389 } 3390 } 3391 switch_count = &prev->nvcsw; 3392 } 3393 3394 next = pick_next_task(rq, prev, &rf); 3395 clear_tsk_need_resched(prev); 3396 clear_preempt_need_resched(); 3397 3398 if (likely(prev != next)) { 3399 rq->nr_switches++; 3400 rq->curr = next; 3401 /* 3402 * The membarrier system call requires each architecture 3403 * to have a full memory barrier after updating 3404 * rq->curr, before returning to user-space. For TSO 3405 * (e.g. x86), the architecture must provide its own 3406 * barrier in switch_mm(). For weakly ordered machines 3407 * for which spin_unlock() acts as a full memory 3408 * barrier, finish_lock_switch() in common code takes 3409 * care of this barrier. For weakly ordered machines for 3410 * which spin_unlock() acts as a RELEASE barrier (only 3411 * arm64 and PowerPC), arm64 has a full barrier in 3412 * switch_to(), and PowerPC has 3413 * smp_mb__after_unlock_lock() before 3414 * finish_lock_switch(). 3415 */ 3416 ++*switch_count; 3417 3418 trace_sched_switch(preempt, prev, next); 3419 3420 /* Also unlocks the rq: */ 3421 rq = context_switch(rq, prev, next, &rf); 3422 } else { 3423 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3424 rq_unlock_irq(rq, &rf); 3425 } 3426 3427 balance_callback(rq); 3428 } 3429 3430 void __noreturn do_task_dead(void) 3431 { 3432 /* 3433 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 3434 * when the following two conditions become true. 3435 * - There is race condition of mmap_sem (It is acquired by 3436 * exit_mm()), and 3437 * - SMI occurs before setting TASK_RUNINNG. 3438 * (or hypervisor of virtual machine switches to other guest) 3439 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 3440 * 3441 * To avoid it, we have to wait for releasing tsk->pi_lock which 3442 * is held by try_to_wake_up() 3443 */ 3444 raw_spin_lock_irq(¤t->pi_lock); 3445 raw_spin_unlock_irq(¤t->pi_lock); 3446 3447 /* Causes final put_task_struct in finish_task_switch(): */ 3448 __set_current_state(TASK_DEAD); 3449 3450 /* Tell freezer to ignore us: */ 3451 current->flags |= PF_NOFREEZE; 3452 3453 __schedule(false); 3454 BUG(); 3455 3456 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3457 for (;;) 3458 cpu_relax(); 3459 } 3460 3461 static inline void sched_submit_work(struct task_struct *tsk) 3462 { 3463 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3464 return; 3465 /* 3466 * If we are going to sleep and we have plugged IO queued, 3467 * make sure to submit it to avoid deadlocks. 3468 */ 3469 if (blk_needs_flush_plug(tsk)) 3470 blk_schedule_flush_plug(tsk); 3471 } 3472 3473 asmlinkage __visible void __sched schedule(void) 3474 { 3475 struct task_struct *tsk = current; 3476 3477 sched_submit_work(tsk); 3478 do { 3479 preempt_disable(); 3480 __schedule(false); 3481 sched_preempt_enable_no_resched(); 3482 } while (need_resched()); 3483 } 3484 EXPORT_SYMBOL(schedule); 3485 3486 /* 3487 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3488 * state (have scheduled out non-voluntarily) by making sure that all 3489 * tasks have either left the run queue or have gone into user space. 3490 * As idle tasks do not do either, they must not ever be preempted 3491 * (schedule out non-voluntarily). 3492 * 3493 * schedule_idle() is similar to schedule_preempt_disable() except that it 3494 * never enables preemption because it does not call sched_submit_work(). 3495 */ 3496 void __sched schedule_idle(void) 3497 { 3498 /* 3499 * As this skips calling sched_submit_work(), which the idle task does 3500 * regardless because that function is a nop when the task is in a 3501 * TASK_RUNNING state, make sure this isn't used someplace that the 3502 * current task can be in any other state. Note, idle is always in the 3503 * TASK_RUNNING state. 3504 */ 3505 WARN_ON_ONCE(current->state); 3506 do { 3507 __schedule(false); 3508 } while (need_resched()); 3509 } 3510 3511 #ifdef CONFIG_CONTEXT_TRACKING 3512 asmlinkage __visible void __sched schedule_user(void) 3513 { 3514 /* 3515 * If we come here after a random call to set_need_resched(), 3516 * or we have been woken up remotely but the IPI has not yet arrived, 3517 * we haven't yet exited the RCU idle mode. Do it here manually until 3518 * we find a better solution. 3519 * 3520 * NB: There are buggy callers of this function. Ideally we 3521 * should warn if prev_state != CONTEXT_USER, but that will trigger 3522 * too frequently to make sense yet. 3523 */ 3524 enum ctx_state prev_state = exception_enter(); 3525 schedule(); 3526 exception_exit(prev_state); 3527 } 3528 #endif 3529 3530 /** 3531 * schedule_preempt_disabled - called with preemption disabled 3532 * 3533 * Returns with preemption disabled. Note: preempt_count must be 1 3534 */ 3535 void __sched schedule_preempt_disabled(void) 3536 { 3537 sched_preempt_enable_no_resched(); 3538 schedule(); 3539 preempt_disable(); 3540 } 3541 3542 static void __sched notrace preempt_schedule_common(void) 3543 { 3544 do { 3545 /* 3546 * Because the function tracer can trace preempt_count_sub() 3547 * and it also uses preempt_enable/disable_notrace(), if 3548 * NEED_RESCHED is set, the preempt_enable_notrace() called 3549 * by the function tracer will call this function again and 3550 * cause infinite recursion. 3551 * 3552 * Preemption must be disabled here before the function 3553 * tracer can trace. Break up preempt_disable() into two 3554 * calls. One to disable preemption without fear of being 3555 * traced. The other to still record the preemption latency, 3556 * which can also be traced by the function tracer. 3557 */ 3558 preempt_disable_notrace(); 3559 preempt_latency_start(1); 3560 __schedule(true); 3561 preempt_latency_stop(1); 3562 preempt_enable_no_resched_notrace(); 3563 3564 /* 3565 * Check again in case we missed a preemption opportunity 3566 * between schedule and now. 3567 */ 3568 } while (need_resched()); 3569 } 3570 3571 #ifdef CONFIG_PREEMPT 3572 /* 3573 * this is the entry point to schedule() from in-kernel preemption 3574 * off of preempt_enable. Kernel preemptions off return from interrupt 3575 * occur there and call schedule directly. 3576 */ 3577 asmlinkage __visible void __sched notrace preempt_schedule(void) 3578 { 3579 /* 3580 * If there is a non-zero preempt_count or interrupts are disabled, 3581 * we do not want to preempt the current task. Just return.. 3582 */ 3583 if (likely(!preemptible())) 3584 return; 3585 3586 preempt_schedule_common(); 3587 } 3588 NOKPROBE_SYMBOL(preempt_schedule); 3589 EXPORT_SYMBOL(preempt_schedule); 3590 3591 /** 3592 * preempt_schedule_notrace - preempt_schedule called by tracing 3593 * 3594 * The tracing infrastructure uses preempt_enable_notrace to prevent 3595 * recursion and tracing preempt enabling caused by the tracing 3596 * infrastructure itself. But as tracing can happen in areas coming 3597 * from userspace or just about to enter userspace, a preempt enable 3598 * can occur before user_exit() is called. This will cause the scheduler 3599 * to be called when the system is still in usermode. 3600 * 3601 * To prevent this, the preempt_enable_notrace will use this function 3602 * instead of preempt_schedule() to exit user context if needed before 3603 * calling the scheduler. 3604 */ 3605 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3606 { 3607 enum ctx_state prev_ctx; 3608 3609 if (likely(!preemptible())) 3610 return; 3611 3612 do { 3613 /* 3614 * Because the function tracer can trace preempt_count_sub() 3615 * and it also uses preempt_enable/disable_notrace(), if 3616 * NEED_RESCHED is set, the preempt_enable_notrace() called 3617 * by the function tracer will call this function again and 3618 * cause infinite recursion. 3619 * 3620 * Preemption must be disabled here before the function 3621 * tracer can trace. Break up preempt_disable() into two 3622 * calls. One to disable preemption without fear of being 3623 * traced. The other to still record the preemption latency, 3624 * which can also be traced by the function tracer. 3625 */ 3626 preempt_disable_notrace(); 3627 preempt_latency_start(1); 3628 /* 3629 * Needs preempt disabled in case user_exit() is traced 3630 * and the tracer calls preempt_enable_notrace() causing 3631 * an infinite recursion. 3632 */ 3633 prev_ctx = exception_enter(); 3634 __schedule(true); 3635 exception_exit(prev_ctx); 3636 3637 preempt_latency_stop(1); 3638 preempt_enable_no_resched_notrace(); 3639 } while (need_resched()); 3640 } 3641 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3642 3643 #endif /* CONFIG_PREEMPT */ 3644 3645 /* 3646 * this is the entry point to schedule() from kernel preemption 3647 * off of irq context. 3648 * Note, that this is called and return with irqs disabled. This will 3649 * protect us against recursive calling from irq. 3650 */ 3651 asmlinkage __visible void __sched preempt_schedule_irq(void) 3652 { 3653 enum ctx_state prev_state; 3654 3655 /* Catch callers which need to be fixed */ 3656 BUG_ON(preempt_count() || !irqs_disabled()); 3657 3658 prev_state = exception_enter(); 3659 3660 do { 3661 preempt_disable(); 3662 local_irq_enable(); 3663 __schedule(true); 3664 local_irq_disable(); 3665 sched_preempt_enable_no_resched(); 3666 } while (need_resched()); 3667 3668 exception_exit(prev_state); 3669 } 3670 3671 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3672 void *key) 3673 { 3674 return try_to_wake_up(curr->private, mode, wake_flags); 3675 } 3676 EXPORT_SYMBOL(default_wake_function); 3677 3678 #ifdef CONFIG_RT_MUTEXES 3679 3680 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3681 { 3682 if (pi_task) 3683 prio = min(prio, pi_task->prio); 3684 3685 return prio; 3686 } 3687 3688 static inline int rt_effective_prio(struct task_struct *p, int prio) 3689 { 3690 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3691 3692 return __rt_effective_prio(pi_task, prio); 3693 } 3694 3695 /* 3696 * rt_mutex_setprio - set the current priority of a task 3697 * @p: task to boost 3698 * @pi_task: donor task 3699 * 3700 * This function changes the 'effective' priority of a task. It does 3701 * not touch ->normal_prio like __setscheduler(). 3702 * 3703 * Used by the rt_mutex code to implement priority inheritance 3704 * logic. Call site only calls if the priority of the task changed. 3705 */ 3706 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3707 { 3708 int prio, oldprio, queued, running, queue_flag = 3709 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3710 const struct sched_class *prev_class; 3711 struct rq_flags rf; 3712 struct rq *rq; 3713 3714 /* XXX used to be waiter->prio, not waiter->task->prio */ 3715 prio = __rt_effective_prio(pi_task, p->normal_prio); 3716 3717 /* 3718 * If nothing changed; bail early. 3719 */ 3720 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3721 return; 3722 3723 rq = __task_rq_lock(p, &rf); 3724 update_rq_clock(rq); 3725 /* 3726 * Set under pi_lock && rq->lock, such that the value can be used under 3727 * either lock. 3728 * 3729 * Note that there is loads of tricky to make this pointer cache work 3730 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3731 * ensure a task is de-boosted (pi_task is set to NULL) before the 3732 * task is allowed to run again (and can exit). This ensures the pointer 3733 * points to a blocked task -- which guaratees the task is present. 3734 */ 3735 p->pi_top_task = pi_task; 3736 3737 /* 3738 * For FIFO/RR we only need to set prio, if that matches we're done. 3739 */ 3740 if (prio == p->prio && !dl_prio(prio)) 3741 goto out_unlock; 3742 3743 /* 3744 * Idle task boosting is a nono in general. There is one 3745 * exception, when PREEMPT_RT and NOHZ is active: 3746 * 3747 * The idle task calls get_next_timer_interrupt() and holds 3748 * the timer wheel base->lock on the CPU and another CPU wants 3749 * to access the timer (probably to cancel it). We can safely 3750 * ignore the boosting request, as the idle CPU runs this code 3751 * with interrupts disabled and will complete the lock 3752 * protected section without being interrupted. So there is no 3753 * real need to boost. 3754 */ 3755 if (unlikely(p == rq->idle)) { 3756 WARN_ON(p != rq->curr); 3757 WARN_ON(p->pi_blocked_on); 3758 goto out_unlock; 3759 } 3760 3761 trace_sched_pi_setprio(p, pi_task); 3762 oldprio = p->prio; 3763 3764 if (oldprio == prio) 3765 queue_flag &= ~DEQUEUE_MOVE; 3766 3767 prev_class = p->sched_class; 3768 queued = task_on_rq_queued(p); 3769 running = task_current(rq, p); 3770 if (queued) 3771 dequeue_task(rq, p, queue_flag); 3772 if (running) 3773 put_prev_task(rq, p); 3774 3775 /* 3776 * Boosting condition are: 3777 * 1. -rt task is running and holds mutex A 3778 * --> -dl task blocks on mutex A 3779 * 3780 * 2. -dl task is running and holds mutex A 3781 * --> -dl task blocks on mutex A and could preempt the 3782 * running task 3783 */ 3784 if (dl_prio(prio)) { 3785 if (!dl_prio(p->normal_prio) || 3786 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3787 p->dl.dl_boosted = 1; 3788 queue_flag |= ENQUEUE_REPLENISH; 3789 } else 3790 p->dl.dl_boosted = 0; 3791 p->sched_class = &dl_sched_class; 3792 } else if (rt_prio(prio)) { 3793 if (dl_prio(oldprio)) 3794 p->dl.dl_boosted = 0; 3795 if (oldprio < prio) 3796 queue_flag |= ENQUEUE_HEAD; 3797 p->sched_class = &rt_sched_class; 3798 } else { 3799 if (dl_prio(oldprio)) 3800 p->dl.dl_boosted = 0; 3801 if (rt_prio(oldprio)) 3802 p->rt.timeout = 0; 3803 p->sched_class = &fair_sched_class; 3804 } 3805 3806 p->prio = prio; 3807 3808 if (queued) 3809 enqueue_task(rq, p, queue_flag); 3810 if (running) 3811 set_curr_task(rq, p); 3812 3813 check_class_changed(rq, p, prev_class, oldprio); 3814 out_unlock: 3815 /* Avoid rq from going away on us: */ 3816 preempt_disable(); 3817 __task_rq_unlock(rq, &rf); 3818 3819 balance_callback(rq); 3820 preempt_enable(); 3821 } 3822 #else 3823 static inline int rt_effective_prio(struct task_struct *p, int prio) 3824 { 3825 return prio; 3826 } 3827 #endif 3828 3829 void set_user_nice(struct task_struct *p, long nice) 3830 { 3831 bool queued, running; 3832 int old_prio, delta; 3833 struct rq_flags rf; 3834 struct rq *rq; 3835 3836 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3837 return; 3838 /* 3839 * We have to be careful, if called from sys_setpriority(), 3840 * the task might be in the middle of scheduling on another CPU. 3841 */ 3842 rq = task_rq_lock(p, &rf); 3843 update_rq_clock(rq); 3844 3845 /* 3846 * The RT priorities are set via sched_setscheduler(), but we still 3847 * allow the 'normal' nice value to be set - but as expected 3848 * it wont have any effect on scheduling until the task is 3849 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3850 */ 3851 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3852 p->static_prio = NICE_TO_PRIO(nice); 3853 goto out_unlock; 3854 } 3855 queued = task_on_rq_queued(p); 3856 running = task_current(rq, p); 3857 if (queued) 3858 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3859 if (running) 3860 put_prev_task(rq, p); 3861 3862 p->static_prio = NICE_TO_PRIO(nice); 3863 set_load_weight(p, true); 3864 old_prio = p->prio; 3865 p->prio = effective_prio(p); 3866 delta = p->prio - old_prio; 3867 3868 if (queued) { 3869 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3870 /* 3871 * If the task increased its priority or is running and 3872 * lowered its priority, then reschedule its CPU: 3873 */ 3874 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3875 resched_curr(rq); 3876 } 3877 if (running) 3878 set_curr_task(rq, p); 3879 out_unlock: 3880 task_rq_unlock(rq, p, &rf); 3881 } 3882 EXPORT_SYMBOL(set_user_nice); 3883 3884 /* 3885 * can_nice - check if a task can reduce its nice value 3886 * @p: task 3887 * @nice: nice value 3888 */ 3889 int can_nice(const struct task_struct *p, const int nice) 3890 { 3891 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3892 int nice_rlim = nice_to_rlimit(nice); 3893 3894 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3895 capable(CAP_SYS_NICE)); 3896 } 3897 3898 #ifdef __ARCH_WANT_SYS_NICE 3899 3900 /* 3901 * sys_nice - change the priority of the current process. 3902 * @increment: priority increment 3903 * 3904 * sys_setpriority is a more generic, but much slower function that 3905 * does similar things. 3906 */ 3907 SYSCALL_DEFINE1(nice, int, increment) 3908 { 3909 long nice, retval; 3910 3911 /* 3912 * Setpriority might change our priority at the same moment. 3913 * We don't have to worry. Conceptually one call occurs first 3914 * and we have a single winner. 3915 */ 3916 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3917 nice = task_nice(current) + increment; 3918 3919 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3920 if (increment < 0 && !can_nice(current, nice)) 3921 return -EPERM; 3922 3923 retval = security_task_setnice(current, nice); 3924 if (retval) 3925 return retval; 3926 3927 set_user_nice(current, nice); 3928 return 0; 3929 } 3930 3931 #endif 3932 3933 /** 3934 * task_prio - return the priority value of a given task. 3935 * @p: the task in question. 3936 * 3937 * Return: The priority value as seen by users in /proc. 3938 * RT tasks are offset by -200. Normal tasks are centered 3939 * around 0, value goes from -16 to +15. 3940 */ 3941 int task_prio(const struct task_struct *p) 3942 { 3943 return p->prio - MAX_RT_PRIO; 3944 } 3945 3946 /** 3947 * idle_cpu - is a given CPU idle currently? 3948 * @cpu: the processor in question. 3949 * 3950 * Return: 1 if the CPU is currently idle. 0 otherwise. 3951 */ 3952 int idle_cpu(int cpu) 3953 { 3954 struct rq *rq = cpu_rq(cpu); 3955 3956 if (rq->curr != rq->idle) 3957 return 0; 3958 3959 if (rq->nr_running) 3960 return 0; 3961 3962 #ifdef CONFIG_SMP 3963 if (!llist_empty(&rq->wake_list)) 3964 return 0; 3965 #endif 3966 3967 return 1; 3968 } 3969 3970 /** 3971 * idle_task - return the idle task for a given CPU. 3972 * @cpu: the processor in question. 3973 * 3974 * Return: The idle task for the CPU @cpu. 3975 */ 3976 struct task_struct *idle_task(int cpu) 3977 { 3978 return cpu_rq(cpu)->idle; 3979 } 3980 3981 /** 3982 * find_process_by_pid - find a process with a matching PID value. 3983 * @pid: the pid in question. 3984 * 3985 * The task of @pid, if found. %NULL otherwise. 3986 */ 3987 static struct task_struct *find_process_by_pid(pid_t pid) 3988 { 3989 return pid ? find_task_by_vpid(pid) : current; 3990 } 3991 3992 /* 3993 * sched_setparam() passes in -1 for its policy, to let the functions 3994 * it calls know not to change it. 3995 */ 3996 #define SETPARAM_POLICY -1 3997 3998 static void __setscheduler_params(struct task_struct *p, 3999 const struct sched_attr *attr) 4000 { 4001 int policy = attr->sched_policy; 4002 4003 if (policy == SETPARAM_POLICY) 4004 policy = p->policy; 4005 4006 p->policy = policy; 4007 4008 if (dl_policy(policy)) 4009 __setparam_dl(p, attr); 4010 else if (fair_policy(policy)) 4011 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4012 4013 /* 4014 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4015 * !rt_policy. Always setting this ensures that things like 4016 * getparam()/getattr() don't report silly values for !rt tasks. 4017 */ 4018 p->rt_priority = attr->sched_priority; 4019 p->normal_prio = normal_prio(p); 4020 set_load_weight(p, true); 4021 } 4022 4023 /* Actually do priority change: must hold pi & rq lock. */ 4024 static void __setscheduler(struct rq *rq, struct task_struct *p, 4025 const struct sched_attr *attr, bool keep_boost) 4026 { 4027 __setscheduler_params(p, attr); 4028 4029 /* 4030 * Keep a potential priority boosting if called from 4031 * sched_setscheduler(). 4032 */ 4033 p->prio = normal_prio(p); 4034 if (keep_boost) 4035 p->prio = rt_effective_prio(p, p->prio); 4036 4037 if (dl_prio(p->prio)) 4038 p->sched_class = &dl_sched_class; 4039 else if (rt_prio(p->prio)) 4040 p->sched_class = &rt_sched_class; 4041 else 4042 p->sched_class = &fair_sched_class; 4043 } 4044 4045 /* 4046 * Check the target process has a UID that matches the current process's: 4047 */ 4048 static bool check_same_owner(struct task_struct *p) 4049 { 4050 const struct cred *cred = current_cred(), *pcred; 4051 bool match; 4052 4053 rcu_read_lock(); 4054 pcred = __task_cred(p); 4055 match = (uid_eq(cred->euid, pcred->euid) || 4056 uid_eq(cred->euid, pcred->uid)); 4057 rcu_read_unlock(); 4058 return match; 4059 } 4060 4061 static int __sched_setscheduler(struct task_struct *p, 4062 const struct sched_attr *attr, 4063 bool user, bool pi) 4064 { 4065 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4066 MAX_RT_PRIO - 1 - attr->sched_priority; 4067 int retval, oldprio, oldpolicy = -1, queued, running; 4068 int new_effective_prio, policy = attr->sched_policy; 4069 const struct sched_class *prev_class; 4070 struct rq_flags rf; 4071 int reset_on_fork; 4072 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4073 struct rq *rq; 4074 4075 /* The pi code expects interrupts enabled */ 4076 BUG_ON(pi && in_interrupt()); 4077 recheck: 4078 /* Double check policy once rq lock held: */ 4079 if (policy < 0) { 4080 reset_on_fork = p->sched_reset_on_fork; 4081 policy = oldpolicy = p->policy; 4082 } else { 4083 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4084 4085 if (!valid_policy(policy)) 4086 return -EINVAL; 4087 } 4088 4089 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4090 return -EINVAL; 4091 4092 /* 4093 * Valid priorities for SCHED_FIFO and SCHED_RR are 4094 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4095 * SCHED_BATCH and SCHED_IDLE is 0. 4096 */ 4097 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4098 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4099 return -EINVAL; 4100 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4101 (rt_policy(policy) != (attr->sched_priority != 0))) 4102 return -EINVAL; 4103 4104 /* 4105 * Allow unprivileged RT tasks to decrease priority: 4106 */ 4107 if (user && !capable(CAP_SYS_NICE)) { 4108 if (fair_policy(policy)) { 4109 if (attr->sched_nice < task_nice(p) && 4110 !can_nice(p, attr->sched_nice)) 4111 return -EPERM; 4112 } 4113 4114 if (rt_policy(policy)) { 4115 unsigned long rlim_rtprio = 4116 task_rlimit(p, RLIMIT_RTPRIO); 4117 4118 /* Can't set/change the rt policy: */ 4119 if (policy != p->policy && !rlim_rtprio) 4120 return -EPERM; 4121 4122 /* Can't increase priority: */ 4123 if (attr->sched_priority > p->rt_priority && 4124 attr->sched_priority > rlim_rtprio) 4125 return -EPERM; 4126 } 4127 4128 /* 4129 * Can't set/change SCHED_DEADLINE policy at all for now 4130 * (safest behavior); in the future we would like to allow 4131 * unprivileged DL tasks to increase their relative deadline 4132 * or reduce their runtime (both ways reducing utilization) 4133 */ 4134 if (dl_policy(policy)) 4135 return -EPERM; 4136 4137 /* 4138 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4139 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4140 */ 4141 if (idle_policy(p->policy) && !idle_policy(policy)) { 4142 if (!can_nice(p, task_nice(p))) 4143 return -EPERM; 4144 } 4145 4146 /* Can't change other user's priorities: */ 4147 if (!check_same_owner(p)) 4148 return -EPERM; 4149 4150 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4151 if (p->sched_reset_on_fork && !reset_on_fork) 4152 return -EPERM; 4153 } 4154 4155 if (user) { 4156 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4157 return -EINVAL; 4158 4159 retval = security_task_setscheduler(p); 4160 if (retval) 4161 return retval; 4162 } 4163 4164 /* 4165 * Make sure no PI-waiters arrive (or leave) while we are 4166 * changing the priority of the task: 4167 * 4168 * To be able to change p->policy safely, the appropriate 4169 * runqueue lock must be held. 4170 */ 4171 rq = task_rq_lock(p, &rf); 4172 update_rq_clock(rq); 4173 4174 /* 4175 * Changing the policy of the stop threads its a very bad idea: 4176 */ 4177 if (p == rq->stop) { 4178 task_rq_unlock(rq, p, &rf); 4179 return -EINVAL; 4180 } 4181 4182 /* 4183 * If not changing anything there's no need to proceed further, 4184 * but store a possible modification of reset_on_fork. 4185 */ 4186 if (unlikely(policy == p->policy)) { 4187 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4188 goto change; 4189 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4190 goto change; 4191 if (dl_policy(policy) && dl_param_changed(p, attr)) 4192 goto change; 4193 4194 p->sched_reset_on_fork = reset_on_fork; 4195 task_rq_unlock(rq, p, &rf); 4196 return 0; 4197 } 4198 change: 4199 4200 if (user) { 4201 #ifdef CONFIG_RT_GROUP_SCHED 4202 /* 4203 * Do not allow realtime tasks into groups that have no runtime 4204 * assigned. 4205 */ 4206 if (rt_bandwidth_enabled() && rt_policy(policy) && 4207 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4208 !task_group_is_autogroup(task_group(p))) { 4209 task_rq_unlock(rq, p, &rf); 4210 return -EPERM; 4211 } 4212 #endif 4213 #ifdef CONFIG_SMP 4214 if (dl_bandwidth_enabled() && dl_policy(policy) && 4215 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4216 cpumask_t *span = rq->rd->span; 4217 4218 /* 4219 * Don't allow tasks with an affinity mask smaller than 4220 * the entire root_domain to become SCHED_DEADLINE. We 4221 * will also fail if there's no bandwidth available. 4222 */ 4223 if (!cpumask_subset(span, &p->cpus_allowed) || 4224 rq->rd->dl_bw.bw == 0) { 4225 task_rq_unlock(rq, p, &rf); 4226 return -EPERM; 4227 } 4228 } 4229 #endif 4230 } 4231 4232 /* Re-check policy now with rq lock held: */ 4233 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4234 policy = oldpolicy = -1; 4235 task_rq_unlock(rq, p, &rf); 4236 goto recheck; 4237 } 4238 4239 /* 4240 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4241 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4242 * is available. 4243 */ 4244 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4245 task_rq_unlock(rq, p, &rf); 4246 return -EBUSY; 4247 } 4248 4249 p->sched_reset_on_fork = reset_on_fork; 4250 oldprio = p->prio; 4251 4252 if (pi) { 4253 /* 4254 * Take priority boosted tasks into account. If the new 4255 * effective priority is unchanged, we just store the new 4256 * normal parameters and do not touch the scheduler class and 4257 * the runqueue. This will be done when the task deboost 4258 * itself. 4259 */ 4260 new_effective_prio = rt_effective_prio(p, newprio); 4261 if (new_effective_prio == oldprio) 4262 queue_flags &= ~DEQUEUE_MOVE; 4263 } 4264 4265 queued = task_on_rq_queued(p); 4266 running = task_current(rq, p); 4267 if (queued) 4268 dequeue_task(rq, p, queue_flags); 4269 if (running) 4270 put_prev_task(rq, p); 4271 4272 prev_class = p->sched_class; 4273 __setscheduler(rq, p, attr, pi); 4274 4275 if (queued) { 4276 /* 4277 * We enqueue to tail when the priority of a task is 4278 * increased (user space view). 4279 */ 4280 if (oldprio < p->prio) 4281 queue_flags |= ENQUEUE_HEAD; 4282 4283 enqueue_task(rq, p, queue_flags); 4284 } 4285 if (running) 4286 set_curr_task(rq, p); 4287 4288 check_class_changed(rq, p, prev_class, oldprio); 4289 4290 /* Avoid rq from going away on us: */ 4291 preempt_disable(); 4292 task_rq_unlock(rq, p, &rf); 4293 4294 if (pi) 4295 rt_mutex_adjust_pi(p); 4296 4297 /* Run balance callbacks after we've adjusted the PI chain: */ 4298 balance_callback(rq); 4299 preempt_enable(); 4300 4301 return 0; 4302 } 4303 4304 static int _sched_setscheduler(struct task_struct *p, int policy, 4305 const struct sched_param *param, bool check) 4306 { 4307 struct sched_attr attr = { 4308 .sched_policy = policy, 4309 .sched_priority = param->sched_priority, 4310 .sched_nice = PRIO_TO_NICE(p->static_prio), 4311 }; 4312 4313 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4314 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4315 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4316 policy &= ~SCHED_RESET_ON_FORK; 4317 attr.sched_policy = policy; 4318 } 4319 4320 return __sched_setscheduler(p, &attr, check, true); 4321 } 4322 /** 4323 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4324 * @p: the task in question. 4325 * @policy: new policy. 4326 * @param: structure containing the new RT priority. 4327 * 4328 * Return: 0 on success. An error code otherwise. 4329 * 4330 * NOTE that the task may be already dead. 4331 */ 4332 int sched_setscheduler(struct task_struct *p, int policy, 4333 const struct sched_param *param) 4334 { 4335 return _sched_setscheduler(p, policy, param, true); 4336 } 4337 EXPORT_SYMBOL_GPL(sched_setscheduler); 4338 4339 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4340 { 4341 return __sched_setscheduler(p, attr, true, true); 4342 } 4343 EXPORT_SYMBOL_GPL(sched_setattr); 4344 4345 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4346 { 4347 return __sched_setscheduler(p, attr, false, true); 4348 } 4349 4350 /** 4351 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4352 * @p: the task in question. 4353 * @policy: new policy. 4354 * @param: structure containing the new RT priority. 4355 * 4356 * Just like sched_setscheduler, only don't bother checking if the 4357 * current context has permission. For example, this is needed in 4358 * stop_machine(): we create temporary high priority worker threads, 4359 * but our caller might not have that capability. 4360 * 4361 * Return: 0 on success. An error code otherwise. 4362 */ 4363 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4364 const struct sched_param *param) 4365 { 4366 return _sched_setscheduler(p, policy, param, false); 4367 } 4368 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4369 4370 static int 4371 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4372 { 4373 struct sched_param lparam; 4374 struct task_struct *p; 4375 int retval; 4376 4377 if (!param || pid < 0) 4378 return -EINVAL; 4379 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4380 return -EFAULT; 4381 4382 rcu_read_lock(); 4383 retval = -ESRCH; 4384 p = find_process_by_pid(pid); 4385 if (p != NULL) 4386 retval = sched_setscheduler(p, policy, &lparam); 4387 rcu_read_unlock(); 4388 4389 return retval; 4390 } 4391 4392 /* 4393 * Mimics kernel/events/core.c perf_copy_attr(). 4394 */ 4395 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4396 { 4397 u32 size; 4398 int ret; 4399 4400 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4401 return -EFAULT; 4402 4403 /* Zero the full structure, so that a short copy will be nice: */ 4404 memset(attr, 0, sizeof(*attr)); 4405 4406 ret = get_user(size, &uattr->size); 4407 if (ret) 4408 return ret; 4409 4410 /* Bail out on silly large: */ 4411 if (size > PAGE_SIZE) 4412 goto err_size; 4413 4414 /* ABI compatibility quirk: */ 4415 if (!size) 4416 size = SCHED_ATTR_SIZE_VER0; 4417 4418 if (size < SCHED_ATTR_SIZE_VER0) 4419 goto err_size; 4420 4421 /* 4422 * If we're handed a bigger struct than we know of, 4423 * ensure all the unknown bits are 0 - i.e. new 4424 * user-space does not rely on any kernel feature 4425 * extensions we dont know about yet. 4426 */ 4427 if (size > sizeof(*attr)) { 4428 unsigned char __user *addr; 4429 unsigned char __user *end; 4430 unsigned char val; 4431 4432 addr = (void __user *)uattr + sizeof(*attr); 4433 end = (void __user *)uattr + size; 4434 4435 for (; addr < end; addr++) { 4436 ret = get_user(val, addr); 4437 if (ret) 4438 return ret; 4439 if (val) 4440 goto err_size; 4441 } 4442 size = sizeof(*attr); 4443 } 4444 4445 ret = copy_from_user(attr, uattr, size); 4446 if (ret) 4447 return -EFAULT; 4448 4449 /* 4450 * XXX: Do we want to be lenient like existing syscalls; or do we want 4451 * to be strict and return an error on out-of-bounds values? 4452 */ 4453 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4454 4455 return 0; 4456 4457 err_size: 4458 put_user(sizeof(*attr), &uattr->size); 4459 return -E2BIG; 4460 } 4461 4462 /** 4463 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4464 * @pid: the pid in question. 4465 * @policy: new policy. 4466 * @param: structure containing the new RT priority. 4467 * 4468 * Return: 0 on success. An error code otherwise. 4469 */ 4470 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4471 { 4472 if (policy < 0) 4473 return -EINVAL; 4474 4475 return do_sched_setscheduler(pid, policy, param); 4476 } 4477 4478 /** 4479 * sys_sched_setparam - set/change the RT priority of a thread 4480 * @pid: the pid in question. 4481 * @param: structure containing the new RT priority. 4482 * 4483 * Return: 0 on success. An error code otherwise. 4484 */ 4485 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4486 { 4487 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4488 } 4489 4490 /** 4491 * sys_sched_setattr - same as above, but with extended sched_attr 4492 * @pid: the pid in question. 4493 * @uattr: structure containing the extended parameters. 4494 * @flags: for future extension. 4495 */ 4496 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4497 unsigned int, flags) 4498 { 4499 struct sched_attr attr; 4500 struct task_struct *p; 4501 int retval; 4502 4503 if (!uattr || pid < 0 || flags) 4504 return -EINVAL; 4505 4506 retval = sched_copy_attr(uattr, &attr); 4507 if (retval) 4508 return retval; 4509 4510 if ((int)attr.sched_policy < 0) 4511 return -EINVAL; 4512 4513 rcu_read_lock(); 4514 retval = -ESRCH; 4515 p = find_process_by_pid(pid); 4516 if (p != NULL) 4517 retval = sched_setattr(p, &attr); 4518 rcu_read_unlock(); 4519 4520 return retval; 4521 } 4522 4523 /** 4524 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4525 * @pid: the pid in question. 4526 * 4527 * Return: On success, the policy of the thread. Otherwise, a negative error 4528 * code. 4529 */ 4530 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4531 { 4532 struct task_struct *p; 4533 int retval; 4534 4535 if (pid < 0) 4536 return -EINVAL; 4537 4538 retval = -ESRCH; 4539 rcu_read_lock(); 4540 p = find_process_by_pid(pid); 4541 if (p) { 4542 retval = security_task_getscheduler(p); 4543 if (!retval) 4544 retval = p->policy 4545 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4546 } 4547 rcu_read_unlock(); 4548 return retval; 4549 } 4550 4551 /** 4552 * sys_sched_getparam - get the RT priority of a thread 4553 * @pid: the pid in question. 4554 * @param: structure containing the RT priority. 4555 * 4556 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4557 * code. 4558 */ 4559 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4560 { 4561 struct sched_param lp = { .sched_priority = 0 }; 4562 struct task_struct *p; 4563 int retval; 4564 4565 if (!param || pid < 0) 4566 return -EINVAL; 4567 4568 rcu_read_lock(); 4569 p = find_process_by_pid(pid); 4570 retval = -ESRCH; 4571 if (!p) 4572 goto out_unlock; 4573 4574 retval = security_task_getscheduler(p); 4575 if (retval) 4576 goto out_unlock; 4577 4578 if (task_has_rt_policy(p)) 4579 lp.sched_priority = p->rt_priority; 4580 rcu_read_unlock(); 4581 4582 /* 4583 * This one might sleep, we cannot do it with a spinlock held ... 4584 */ 4585 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4586 4587 return retval; 4588 4589 out_unlock: 4590 rcu_read_unlock(); 4591 return retval; 4592 } 4593 4594 static int sched_read_attr(struct sched_attr __user *uattr, 4595 struct sched_attr *attr, 4596 unsigned int usize) 4597 { 4598 int ret; 4599 4600 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4601 return -EFAULT; 4602 4603 /* 4604 * If we're handed a smaller struct than we know of, 4605 * ensure all the unknown bits are 0 - i.e. old 4606 * user-space does not get uncomplete information. 4607 */ 4608 if (usize < sizeof(*attr)) { 4609 unsigned char *addr; 4610 unsigned char *end; 4611 4612 addr = (void *)attr + usize; 4613 end = (void *)attr + sizeof(*attr); 4614 4615 for (; addr < end; addr++) { 4616 if (*addr) 4617 return -EFBIG; 4618 } 4619 4620 attr->size = usize; 4621 } 4622 4623 ret = copy_to_user(uattr, attr, attr->size); 4624 if (ret) 4625 return -EFAULT; 4626 4627 return 0; 4628 } 4629 4630 /** 4631 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4632 * @pid: the pid in question. 4633 * @uattr: structure containing the extended parameters. 4634 * @size: sizeof(attr) for fwd/bwd comp. 4635 * @flags: for future extension. 4636 */ 4637 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4638 unsigned int, size, unsigned int, flags) 4639 { 4640 struct sched_attr attr = { 4641 .size = sizeof(struct sched_attr), 4642 }; 4643 struct task_struct *p; 4644 int retval; 4645 4646 if (!uattr || pid < 0 || size > PAGE_SIZE || 4647 size < SCHED_ATTR_SIZE_VER0 || flags) 4648 return -EINVAL; 4649 4650 rcu_read_lock(); 4651 p = find_process_by_pid(pid); 4652 retval = -ESRCH; 4653 if (!p) 4654 goto out_unlock; 4655 4656 retval = security_task_getscheduler(p); 4657 if (retval) 4658 goto out_unlock; 4659 4660 attr.sched_policy = p->policy; 4661 if (p->sched_reset_on_fork) 4662 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4663 if (task_has_dl_policy(p)) 4664 __getparam_dl(p, &attr); 4665 else if (task_has_rt_policy(p)) 4666 attr.sched_priority = p->rt_priority; 4667 else 4668 attr.sched_nice = task_nice(p); 4669 4670 rcu_read_unlock(); 4671 4672 retval = sched_read_attr(uattr, &attr, size); 4673 return retval; 4674 4675 out_unlock: 4676 rcu_read_unlock(); 4677 return retval; 4678 } 4679 4680 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4681 { 4682 cpumask_var_t cpus_allowed, new_mask; 4683 struct task_struct *p; 4684 int retval; 4685 4686 rcu_read_lock(); 4687 4688 p = find_process_by_pid(pid); 4689 if (!p) { 4690 rcu_read_unlock(); 4691 return -ESRCH; 4692 } 4693 4694 /* Prevent p going away */ 4695 get_task_struct(p); 4696 rcu_read_unlock(); 4697 4698 if (p->flags & PF_NO_SETAFFINITY) { 4699 retval = -EINVAL; 4700 goto out_put_task; 4701 } 4702 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4703 retval = -ENOMEM; 4704 goto out_put_task; 4705 } 4706 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4707 retval = -ENOMEM; 4708 goto out_free_cpus_allowed; 4709 } 4710 retval = -EPERM; 4711 if (!check_same_owner(p)) { 4712 rcu_read_lock(); 4713 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4714 rcu_read_unlock(); 4715 goto out_free_new_mask; 4716 } 4717 rcu_read_unlock(); 4718 } 4719 4720 retval = security_task_setscheduler(p); 4721 if (retval) 4722 goto out_free_new_mask; 4723 4724 4725 cpuset_cpus_allowed(p, cpus_allowed); 4726 cpumask_and(new_mask, in_mask, cpus_allowed); 4727 4728 /* 4729 * Since bandwidth control happens on root_domain basis, 4730 * if admission test is enabled, we only admit -deadline 4731 * tasks allowed to run on all the CPUs in the task's 4732 * root_domain. 4733 */ 4734 #ifdef CONFIG_SMP 4735 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4736 rcu_read_lock(); 4737 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4738 retval = -EBUSY; 4739 rcu_read_unlock(); 4740 goto out_free_new_mask; 4741 } 4742 rcu_read_unlock(); 4743 } 4744 #endif 4745 again: 4746 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4747 4748 if (!retval) { 4749 cpuset_cpus_allowed(p, cpus_allowed); 4750 if (!cpumask_subset(new_mask, cpus_allowed)) { 4751 /* 4752 * We must have raced with a concurrent cpuset 4753 * update. Just reset the cpus_allowed to the 4754 * cpuset's cpus_allowed 4755 */ 4756 cpumask_copy(new_mask, cpus_allowed); 4757 goto again; 4758 } 4759 } 4760 out_free_new_mask: 4761 free_cpumask_var(new_mask); 4762 out_free_cpus_allowed: 4763 free_cpumask_var(cpus_allowed); 4764 out_put_task: 4765 put_task_struct(p); 4766 return retval; 4767 } 4768 4769 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4770 struct cpumask *new_mask) 4771 { 4772 if (len < cpumask_size()) 4773 cpumask_clear(new_mask); 4774 else if (len > cpumask_size()) 4775 len = cpumask_size(); 4776 4777 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4778 } 4779 4780 /** 4781 * sys_sched_setaffinity - set the CPU affinity of a process 4782 * @pid: pid of the process 4783 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4784 * @user_mask_ptr: user-space pointer to the new CPU mask 4785 * 4786 * Return: 0 on success. An error code otherwise. 4787 */ 4788 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4789 unsigned long __user *, user_mask_ptr) 4790 { 4791 cpumask_var_t new_mask; 4792 int retval; 4793 4794 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4795 return -ENOMEM; 4796 4797 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4798 if (retval == 0) 4799 retval = sched_setaffinity(pid, new_mask); 4800 free_cpumask_var(new_mask); 4801 return retval; 4802 } 4803 4804 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4805 { 4806 struct task_struct *p; 4807 unsigned long flags; 4808 int retval; 4809 4810 rcu_read_lock(); 4811 4812 retval = -ESRCH; 4813 p = find_process_by_pid(pid); 4814 if (!p) 4815 goto out_unlock; 4816 4817 retval = security_task_getscheduler(p); 4818 if (retval) 4819 goto out_unlock; 4820 4821 raw_spin_lock_irqsave(&p->pi_lock, flags); 4822 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4823 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4824 4825 out_unlock: 4826 rcu_read_unlock(); 4827 4828 return retval; 4829 } 4830 4831 /** 4832 * sys_sched_getaffinity - get the CPU affinity of a process 4833 * @pid: pid of the process 4834 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4835 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4836 * 4837 * Return: size of CPU mask copied to user_mask_ptr on success. An 4838 * error code otherwise. 4839 */ 4840 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4841 unsigned long __user *, user_mask_ptr) 4842 { 4843 int ret; 4844 cpumask_var_t mask; 4845 4846 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4847 return -EINVAL; 4848 if (len & (sizeof(unsigned long)-1)) 4849 return -EINVAL; 4850 4851 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4852 return -ENOMEM; 4853 4854 ret = sched_getaffinity(pid, mask); 4855 if (ret == 0) { 4856 size_t retlen = min_t(size_t, len, cpumask_size()); 4857 4858 if (copy_to_user(user_mask_ptr, mask, retlen)) 4859 ret = -EFAULT; 4860 else 4861 ret = retlen; 4862 } 4863 free_cpumask_var(mask); 4864 4865 return ret; 4866 } 4867 4868 /** 4869 * sys_sched_yield - yield the current processor to other threads. 4870 * 4871 * This function yields the current CPU to other tasks. If there are no 4872 * other threads running on this CPU then this function will return. 4873 * 4874 * Return: 0. 4875 */ 4876 SYSCALL_DEFINE0(sched_yield) 4877 { 4878 struct rq_flags rf; 4879 struct rq *rq; 4880 4881 local_irq_disable(); 4882 rq = this_rq(); 4883 rq_lock(rq, &rf); 4884 4885 schedstat_inc(rq->yld_count); 4886 current->sched_class->yield_task(rq); 4887 4888 /* 4889 * Since we are going to call schedule() anyway, there's 4890 * no need to preempt or enable interrupts: 4891 */ 4892 preempt_disable(); 4893 rq_unlock(rq, &rf); 4894 sched_preempt_enable_no_resched(); 4895 4896 schedule(); 4897 4898 return 0; 4899 } 4900 4901 #ifndef CONFIG_PREEMPT 4902 int __sched _cond_resched(void) 4903 { 4904 if (should_resched(0)) { 4905 preempt_schedule_common(); 4906 return 1; 4907 } 4908 rcu_all_qs(); 4909 return 0; 4910 } 4911 EXPORT_SYMBOL(_cond_resched); 4912 #endif 4913 4914 /* 4915 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4916 * call schedule, and on return reacquire the lock. 4917 * 4918 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4919 * operations here to prevent schedule() from being called twice (once via 4920 * spin_unlock(), once by hand). 4921 */ 4922 int __cond_resched_lock(spinlock_t *lock) 4923 { 4924 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4925 int ret = 0; 4926 4927 lockdep_assert_held(lock); 4928 4929 if (spin_needbreak(lock) || resched) { 4930 spin_unlock(lock); 4931 if (resched) 4932 preempt_schedule_common(); 4933 else 4934 cpu_relax(); 4935 ret = 1; 4936 spin_lock(lock); 4937 } 4938 return ret; 4939 } 4940 EXPORT_SYMBOL(__cond_resched_lock); 4941 4942 int __sched __cond_resched_softirq(void) 4943 { 4944 BUG_ON(!in_softirq()); 4945 4946 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4947 local_bh_enable(); 4948 preempt_schedule_common(); 4949 local_bh_disable(); 4950 return 1; 4951 } 4952 return 0; 4953 } 4954 EXPORT_SYMBOL(__cond_resched_softirq); 4955 4956 /** 4957 * yield - yield the current processor to other threads. 4958 * 4959 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4960 * 4961 * The scheduler is at all times free to pick the calling task as the most 4962 * eligible task to run, if removing the yield() call from your code breaks 4963 * it, its already broken. 4964 * 4965 * Typical broken usage is: 4966 * 4967 * while (!event) 4968 * yield(); 4969 * 4970 * where one assumes that yield() will let 'the other' process run that will 4971 * make event true. If the current task is a SCHED_FIFO task that will never 4972 * happen. Never use yield() as a progress guarantee!! 4973 * 4974 * If you want to use yield() to wait for something, use wait_event(). 4975 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4976 * If you still want to use yield(), do not! 4977 */ 4978 void __sched yield(void) 4979 { 4980 set_current_state(TASK_RUNNING); 4981 sys_sched_yield(); 4982 } 4983 EXPORT_SYMBOL(yield); 4984 4985 /** 4986 * yield_to - yield the current processor to another thread in 4987 * your thread group, or accelerate that thread toward the 4988 * processor it's on. 4989 * @p: target task 4990 * @preempt: whether task preemption is allowed or not 4991 * 4992 * It's the caller's job to ensure that the target task struct 4993 * can't go away on us before we can do any checks. 4994 * 4995 * Return: 4996 * true (>0) if we indeed boosted the target task. 4997 * false (0) if we failed to boost the target. 4998 * -ESRCH if there's no task to yield to. 4999 */ 5000 int __sched yield_to(struct task_struct *p, bool preempt) 5001 { 5002 struct task_struct *curr = current; 5003 struct rq *rq, *p_rq; 5004 unsigned long flags; 5005 int yielded = 0; 5006 5007 local_irq_save(flags); 5008 rq = this_rq(); 5009 5010 again: 5011 p_rq = task_rq(p); 5012 /* 5013 * If we're the only runnable task on the rq and target rq also 5014 * has only one task, there's absolutely no point in yielding. 5015 */ 5016 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5017 yielded = -ESRCH; 5018 goto out_irq; 5019 } 5020 5021 double_rq_lock(rq, p_rq); 5022 if (task_rq(p) != p_rq) { 5023 double_rq_unlock(rq, p_rq); 5024 goto again; 5025 } 5026 5027 if (!curr->sched_class->yield_to_task) 5028 goto out_unlock; 5029 5030 if (curr->sched_class != p->sched_class) 5031 goto out_unlock; 5032 5033 if (task_running(p_rq, p) || p->state) 5034 goto out_unlock; 5035 5036 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5037 if (yielded) { 5038 schedstat_inc(rq->yld_count); 5039 /* 5040 * Make p's CPU reschedule; pick_next_entity takes care of 5041 * fairness. 5042 */ 5043 if (preempt && rq != p_rq) 5044 resched_curr(p_rq); 5045 } 5046 5047 out_unlock: 5048 double_rq_unlock(rq, p_rq); 5049 out_irq: 5050 local_irq_restore(flags); 5051 5052 if (yielded > 0) 5053 schedule(); 5054 5055 return yielded; 5056 } 5057 EXPORT_SYMBOL_GPL(yield_to); 5058 5059 int io_schedule_prepare(void) 5060 { 5061 int old_iowait = current->in_iowait; 5062 5063 current->in_iowait = 1; 5064 blk_schedule_flush_plug(current); 5065 5066 return old_iowait; 5067 } 5068 5069 void io_schedule_finish(int token) 5070 { 5071 current->in_iowait = token; 5072 } 5073 5074 /* 5075 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5076 * that process accounting knows that this is a task in IO wait state. 5077 */ 5078 long __sched io_schedule_timeout(long timeout) 5079 { 5080 int token; 5081 long ret; 5082 5083 token = io_schedule_prepare(); 5084 ret = schedule_timeout(timeout); 5085 io_schedule_finish(token); 5086 5087 return ret; 5088 } 5089 EXPORT_SYMBOL(io_schedule_timeout); 5090 5091 void io_schedule(void) 5092 { 5093 int token; 5094 5095 token = io_schedule_prepare(); 5096 schedule(); 5097 io_schedule_finish(token); 5098 } 5099 EXPORT_SYMBOL(io_schedule); 5100 5101 /** 5102 * sys_sched_get_priority_max - return maximum RT priority. 5103 * @policy: scheduling class. 5104 * 5105 * Return: On success, this syscall returns the maximum 5106 * rt_priority that can be used by a given scheduling class. 5107 * On failure, a negative error code is returned. 5108 */ 5109 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5110 { 5111 int ret = -EINVAL; 5112 5113 switch (policy) { 5114 case SCHED_FIFO: 5115 case SCHED_RR: 5116 ret = MAX_USER_RT_PRIO-1; 5117 break; 5118 case SCHED_DEADLINE: 5119 case SCHED_NORMAL: 5120 case SCHED_BATCH: 5121 case SCHED_IDLE: 5122 ret = 0; 5123 break; 5124 } 5125 return ret; 5126 } 5127 5128 /** 5129 * sys_sched_get_priority_min - return minimum RT priority. 5130 * @policy: scheduling class. 5131 * 5132 * Return: On success, this syscall returns the minimum 5133 * rt_priority that can be used by a given scheduling class. 5134 * On failure, a negative error code is returned. 5135 */ 5136 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5137 { 5138 int ret = -EINVAL; 5139 5140 switch (policy) { 5141 case SCHED_FIFO: 5142 case SCHED_RR: 5143 ret = 1; 5144 break; 5145 case SCHED_DEADLINE: 5146 case SCHED_NORMAL: 5147 case SCHED_BATCH: 5148 case SCHED_IDLE: 5149 ret = 0; 5150 } 5151 return ret; 5152 } 5153 5154 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5155 { 5156 struct task_struct *p; 5157 unsigned int time_slice; 5158 struct rq_flags rf; 5159 struct rq *rq; 5160 int retval; 5161 5162 if (pid < 0) 5163 return -EINVAL; 5164 5165 retval = -ESRCH; 5166 rcu_read_lock(); 5167 p = find_process_by_pid(pid); 5168 if (!p) 5169 goto out_unlock; 5170 5171 retval = security_task_getscheduler(p); 5172 if (retval) 5173 goto out_unlock; 5174 5175 rq = task_rq_lock(p, &rf); 5176 time_slice = 0; 5177 if (p->sched_class->get_rr_interval) 5178 time_slice = p->sched_class->get_rr_interval(rq, p); 5179 task_rq_unlock(rq, p, &rf); 5180 5181 rcu_read_unlock(); 5182 jiffies_to_timespec64(time_slice, t); 5183 return 0; 5184 5185 out_unlock: 5186 rcu_read_unlock(); 5187 return retval; 5188 } 5189 5190 /** 5191 * sys_sched_rr_get_interval - return the default timeslice of a process. 5192 * @pid: pid of the process. 5193 * @interval: userspace pointer to the timeslice value. 5194 * 5195 * this syscall writes the default timeslice value of a given process 5196 * into the user-space timespec buffer. A value of '0' means infinity. 5197 * 5198 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5199 * an error code. 5200 */ 5201 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5202 struct timespec __user *, interval) 5203 { 5204 struct timespec64 t; 5205 int retval = sched_rr_get_interval(pid, &t); 5206 5207 if (retval == 0) 5208 retval = put_timespec64(&t, interval); 5209 5210 return retval; 5211 } 5212 5213 #ifdef CONFIG_COMPAT 5214 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5215 compat_pid_t, pid, 5216 struct compat_timespec __user *, interval) 5217 { 5218 struct timespec64 t; 5219 int retval = sched_rr_get_interval(pid, &t); 5220 5221 if (retval == 0) 5222 retval = compat_put_timespec64(&t, interval); 5223 return retval; 5224 } 5225 #endif 5226 5227 void sched_show_task(struct task_struct *p) 5228 { 5229 unsigned long free = 0; 5230 int ppid; 5231 5232 if (!try_get_task_stack(p)) 5233 return; 5234 5235 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5236 5237 if (p->state == TASK_RUNNING) 5238 printk(KERN_CONT " running task "); 5239 #ifdef CONFIG_DEBUG_STACK_USAGE 5240 free = stack_not_used(p); 5241 #endif 5242 ppid = 0; 5243 rcu_read_lock(); 5244 if (pid_alive(p)) 5245 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5246 rcu_read_unlock(); 5247 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5248 task_pid_nr(p), ppid, 5249 (unsigned long)task_thread_info(p)->flags); 5250 5251 print_worker_info(KERN_INFO, p); 5252 show_stack(p, NULL); 5253 put_task_stack(p); 5254 } 5255 EXPORT_SYMBOL_GPL(sched_show_task); 5256 5257 static inline bool 5258 state_filter_match(unsigned long state_filter, struct task_struct *p) 5259 { 5260 /* no filter, everything matches */ 5261 if (!state_filter) 5262 return true; 5263 5264 /* filter, but doesn't match */ 5265 if (!(p->state & state_filter)) 5266 return false; 5267 5268 /* 5269 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5270 * TASK_KILLABLE). 5271 */ 5272 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5273 return false; 5274 5275 return true; 5276 } 5277 5278 5279 void show_state_filter(unsigned long state_filter) 5280 { 5281 struct task_struct *g, *p; 5282 5283 #if BITS_PER_LONG == 32 5284 printk(KERN_INFO 5285 " task PC stack pid father\n"); 5286 #else 5287 printk(KERN_INFO 5288 " task PC stack pid father\n"); 5289 #endif 5290 rcu_read_lock(); 5291 for_each_process_thread(g, p) { 5292 /* 5293 * reset the NMI-timeout, listing all files on a slow 5294 * console might take a lot of time: 5295 * Also, reset softlockup watchdogs on all CPUs, because 5296 * another CPU might be blocked waiting for us to process 5297 * an IPI. 5298 */ 5299 touch_nmi_watchdog(); 5300 touch_all_softlockup_watchdogs(); 5301 if (state_filter_match(state_filter, p)) 5302 sched_show_task(p); 5303 } 5304 5305 #ifdef CONFIG_SCHED_DEBUG 5306 if (!state_filter) 5307 sysrq_sched_debug_show(); 5308 #endif 5309 rcu_read_unlock(); 5310 /* 5311 * Only show locks if all tasks are dumped: 5312 */ 5313 if (!state_filter) 5314 debug_show_all_locks(); 5315 } 5316 5317 /** 5318 * init_idle - set up an idle thread for a given CPU 5319 * @idle: task in question 5320 * @cpu: CPU the idle task belongs to 5321 * 5322 * NOTE: this function does not set the idle thread's NEED_RESCHED 5323 * flag, to make booting more robust. 5324 */ 5325 void init_idle(struct task_struct *idle, int cpu) 5326 { 5327 struct rq *rq = cpu_rq(cpu); 5328 unsigned long flags; 5329 5330 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5331 raw_spin_lock(&rq->lock); 5332 5333 __sched_fork(0, idle); 5334 idle->state = TASK_RUNNING; 5335 idle->se.exec_start = sched_clock(); 5336 idle->flags |= PF_IDLE; 5337 5338 kasan_unpoison_task_stack(idle); 5339 5340 #ifdef CONFIG_SMP 5341 /* 5342 * Its possible that init_idle() gets called multiple times on a task, 5343 * in that case do_set_cpus_allowed() will not do the right thing. 5344 * 5345 * And since this is boot we can forgo the serialization. 5346 */ 5347 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5348 #endif 5349 /* 5350 * We're having a chicken and egg problem, even though we are 5351 * holding rq->lock, the CPU isn't yet set to this CPU so the 5352 * lockdep check in task_group() will fail. 5353 * 5354 * Similar case to sched_fork(). / Alternatively we could 5355 * use task_rq_lock() here and obtain the other rq->lock. 5356 * 5357 * Silence PROVE_RCU 5358 */ 5359 rcu_read_lock(); 5360 __set_task_cpu(idle, cpu); 5361 rcu_read_unlock(); 5362 5363 rq->curr = rq->idle = idle; 5364 idle->on_rq = TASK_ON_RQ_QUEUED; 5365 #ifdef CONFIG_SMP 5366 idle->on_cpu = 1; 5367 #endif 5368 raw_spin_unlock(&rq->lock); 5369 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5370 5371 /* Set the preempt count _outside_ the spinlocks! */ 5372 init_idle_preempt_count(idle, cpu); 5373 5374 /* 5375 * The idle tasks have their own, simple scheduling class: 5376 */ 5377 idle->sched_class = &idle_sched_class; 5378 ftrace_graph_init_idle_task(idle, cpu); 5379 vtime_init_idle(idle, cpu); 5380 #ifdef CONFIG_SMP 5381 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5382 #endif 5383 } 5384 5385 #ifdef CONFIG_SMP 5386 5387 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5388 const struct cpumask *trial) 5389 { 5390 int ret = 1; 5391 5392 if (!cpumask_weight(cur)) 5393 return ret; 5394 5395 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5396 5397 return ret; 5398 } 5399 5400 int task_can_attach(struct task_struct *p, 5401 const struct cpumask *cs_cpus_allowed) 5402 { 5403 int ret = 0; 5404 5405 /* 5406 * Kthreads which disallow setaffinity shouldn't be moved 5407 * to a new cpuset; we don't want to change their CPU 5408 * affinity and isolating such threads by their set of 5409 * allowed nodes is unnecessary. Thus, cpusets are not 5410 * applicable for such threads. This prevents checking for 5411 * success of set_cpus_allowed_ptr() on all attached tasks 5412 * before cpus_allowed may be changed. 5413 */ 5414 if (p->flags & PF_NO_SETAFFINITY) { 5415 ret = -EINVAL; 5416 goto out; 5417 } 5418 5419 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5420 cs_cpus_allowed)) 5421 ret = dl_task_can_attach(p, cs_cpus_allowed); 5422 5423 out: 5424 return ret; 5425 } 5426 5427 bool sched_smp_initialized __read_mostly; 5428 5429 #ifdef CONFIG_NUMA_BALANCING 5430 /* Migrate current task p to target_cpu */ 5431 int migrate_task_to(struct task_struct *p, int target_cpu) 5432 { 5433 struct migration_arg arg = { p, target_cpu }; 5434 int curr_cpu = task_cpu(p); 5435 5436 if (curr_cpu == target_cpu) 5437 return 0; 5438 5439 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5440 return -EINVAL; 5441 5442 /* TODO: This is not properly updating schedstats */ 5443 5444 trace_sched_move_numa(p, curr_cpu, target_cpu); 5445 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5446 } 5447 5448 /* 5449 * Requeue a task on a given node and accurately track the number of NUMA 5450 * tasks on the runqueues 5451 */ 5452 void sched_setnuma(struct task_struct *p, int nid) 5453 { 5454 bool queued, running; 5455 struct rq_flags rf; 5456 struct rq *rq; 5457 5458 rq = task_rq_lock(p, &rf); 5459 queued = task_on_rq_queued(p); 5460 running = task_current(rq, p); 5461 5462 if (queued) 5463 dequeue_task(rq, p, DEQUEUE_SAVE); 5464 if (running) 5465 put_prev_task(rq, p); 5466 5467 p->numa_preferred_nid = nid; 5468 5469 if (queued) 5470 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5471 if (running) 5472 set_curr_task(rq, p); 5473 task_rq_unlock(rq, p, &rf); 5474 } 5475 #endif /* CONFIG_NUMA_BALANCING */ 5476 5477 #ifdef CONFIG_HOTPLUG_CPU 5478 /* 5479 * Ensure that the idle task is using init_mm right before its CPU goes 5480 * offline. 5481 */ 5482 void idle_task_exit(void) 5483 { 5484 struct mm_struct *mm = current->active_mm; 5485 5486 BUG_ON(cpu_online(smp_processor_id())); 5487 5488 if (mm != &init_mm) { 5489 switch_mm(mm, &init_mm, current); 5490 finish_arch_post_lock_switch(); 5491 } 5492 mmdrop(mm); 5493 } 5494 5495 /* 5496 * Since this CPU is going 'away' for a while, fold any nr_active delta 5497 * we might have. Assumes we're called after migrate_tasks() so that the 5498 * nr_active count is stable. We need to take the teardown thread which 5499 * is calling this into account, so we hand in adjust = 1 to the load 5500 * calculation. 5501 * 5502 * Also see the comment "Global load-average calculations". 5503 */ 5504 static void calc_load_migrate(struct rq *rq) 5505 { 5506 long delta = calc_load_fold_active(rq, 1); 5507 if (delta) 5508 atomic_long_add(delta, &calc_load_tasks); 5509 } 5510 5511 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5512 { 5513 } 5514 5515 static const struct sched_class fake_sched_class = { 5516 .put_prev_task = put_prev_task_fake, 5517 }; 5518 5519 static struct task_struct fake_task = { 5520 /* 5521 * Avoid pull_{rt,dl}_task() 5522 */ 5523 .prio = MAX_PRIO + 1, 5524 .sched_class = &fake_sched_class, 5525 }; 5526 5527 /* 5528 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5529 * try_to_wake_up()->select_task_rq(). 5530 * 5531 * Called with rq->lock held even though we'er in stop_machine() and 5532 * there's no concurrency possible, we hold the required locks anyway 5533 * because of lock validation efforts. 5534 */ 5535 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5536 { 5537 struct rq *rq = dead_rq; 5538 struct task_struct *next, *stop = rq->stop; 5539 struct rq_flags orf = *rf; 5540 int dest_cpu; 5541 5542 /* 5543 * Fudge the rq selection such that the below task selection loop 5544 * doesn't get stuck on the currently eligible stop task. 5545 * 5546 * We're currently inside stop_machine() and the rq is either stuck 5547 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5548 * either way we should never end up calling schedule() until we're 5549 * done here. 5550 */ 5551 rq->stop = NULL; 5552 5553 /* 5554 * put_prev_task() and pick_next_task() sched 5555 * class method both need to have an up-to-date 5556 * value of rq->clock[_task] 5557 */ 5558 update_rq_clock(rq); 5559 5560 for (;;) { 5561 /* 5562 * There's this thread running, bail when that's the only 5563 * remaining thread: 5564 */ 5565 if (rq->nr_running == 1) 5566 break; 5567 5568 /* 5569 * pick_next_task() assumes pinned rq->lock: 5570 */ 5571 next = pick_next_task(rq, &fake_task, rf); 5572 BUG_ON(!next); 5573 put_prev_task(rq, next); 5574 5575 /* 5576 * Rules for changing task_struct::cpus_allowed are holding 5577 * both pi_lock and rq->lock, such that holding either 5578 * stabilizes the mask. 5579 * 5580 * Drop rq->lock is not quite as disastrous as it usually is 5581 * because !cpu_active at this point, which means load-balance 5582 * will not interfere. Also, stop-machine. 5583 */ 5584 rq_unlock(rq, rf); 5585 raw_spin_lock(&next->pi_lock); 5586 rq_relock(rq, rf); 5587 5588 /* 5589 * Since we're inside stop-machine, _nothing_ should have 5590 * changed the task, WARN if weird stuff happened, because in 5591 * that case the above rq->lock drop is a fail too. 5592 */ 5593 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5594 raw_spin_unlock(&next->pi_lock); 5595 continue; 5596 } 5597 5598 /* Find suitable destination for @next, with force if needed. */ 5599 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5600 rq = __migrate_task(rq, rf, next, dest_cpu); 5601 if (rq != dead_rq) { 5602 rq_unlock(rq, rf); 5603 rq = dead_rq; 5604 *rf = orf; 5605 rq_relock(rq, rf); 5606 } 5607 raw_spin_unlock(&next->pi_lock); 5608 } 5609 5610 rq->stop = stop; 5611 } 5612 #endif /* CONFIG_HOTPLUG_CPU */ 5613 5614 void set_rq_online(struct rq *rq) 5615 { 5616 if (!rq->online) { 5617 const struct sched_class *class; 5618 5619 cpumask_set_cpu(rq->cpu, rq->rd->online); 5620 rq->online = 1; 5621 5622 for_each_class(class) { 5623 if (class->rq_online) 5624 class->rq_online(rq); 5625 } 5626 } 5627 } 5628 5629 void set_rq_offline(struct rq *rq) 5630 { 5631 if (rq->online) { 5632 const struct sched_class *class; 5633 5634 for_each_class(class) { 5635 if (class->rq_offline) 5636 class->rq_offline(rq); 5637 } 5638 5639 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5640 rq->online = 0; 5641 } 5642 } 5643 5644 static void set_cpu_rq_start_time(unsigned int cpu) 5645 { 5646 struct rq *rq = cpu_rq(cpu); 5647 5648 rq->age_stamp = sched_clock_cpu(cpu); 5649 } 5650 5651 /* 5652 * used to mark begin/end of suspend/resume: 5653 */ 5654 static int num_cpus_frozen; 5655 5656 /* 5657 * Update cpusets according to cpu_active mask. If cpusets are 5658 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5659 * around partition_sched_domains(). 5660 * 5661 * If we come here as part of a suspend/resume, don't touch cpusets because we 5662 * want to restore it back to its original state upon resume anyway. 5663 */ 5664 static void cpuset_cpu_active(void) 5665 { 5666 if (cpuhp_tasks_frozen) { 5667 /* 5668 * num_cpus_frozen tracks how many CPUs are involved in suspend 5669 * resume sequence. As long as this is not the last online 5670 * operation in the resume sequence, just build a single sched 5671 * domain, ignoring cpusets. 5672 */ 5673 partition_sched_domains(1, NULL, NULL); 5674 if (--num_cpus_frozen) 5675 return; 5676 /* 5677 * This is the last CPU online operation. So fall through and 5678 * restore the original sched domains by considering the 5679 * cpuset configurations. 5680 */ 5681 cpuset_force_rebuild(); 5682 } 5683 cpuset_update_active_cpus(); 5684 } 5685 5686 static int cpuset_cpu_inactive(unsigned int cpu) 5687 { 5688 if (!cpuhp_tasks_frozen) { 5689 if (dl_cpu_busy(cpu)) 5690 return -EBUSY; 5691 cpuset_update_active_cpus(); 5692 } else { 5693 num_cpus_frozen++; 5694 partition_sched_domains(1, NULL, NULL); 5695 } 5696 return 0; 5697 } 5698 5699 int sched_cpu_activate(unsigned int cpu) 5700 { 5701 struct rq *rq = cpu_rq(cpu); 5702 struct rq_flags rf; 5703 5704 set_cpu_active(cpu, true); 5705 5706 if (sched_smp_initialized) { 5707 sched_domains_numa_masks_set(cpu); 5708 cpuset_cpu_active(); 5709 } 5710 5711 /* 5712 * Put the rq online, if not already. This happens: 5713 * 5714 * 1) In the early boot process, because we build the real domains 5715 * after all CPUs have been brought up. 5716 * 5717 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5718 * domains. 5719 */ 5720 rq_lock_irqsave(rq, &rf); 5721 if (rq->rd) { 5722 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5723 set_rq_online(rq); 5724 } 5725 rq_unlock_irqrestore(rq, &rf); 5726 5727 update_max_interval(); 5728 5729 return 0; 5730 } 5731 5732 int sched_cpu_deactivate(unsigned int cpu) 5733 { 5734 int ret; 5735 5736 set_cpu_active(cpu, false); 5737 /* 5738 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5739 * users of this state to go away such that all new such users will 5740 * observe it. 5741 * 5742 * Do sync before park smpboot threads to take care the rcu boost case. 5743 */ 5744 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5745 5746 if (!sched_smp_initialized) 5747 return 0; 5748 5749 ret = cpuset_cpu_inactive(cpu); 5750 if (ret) { 5751 set_cpu_active(cpu, true); 5752 return ret; 5753 } 5754 sched_domains_numa_masks_clear(cpu); 5755 return 0; 5756 } 5757 5758 static void sched_rq_cpu_starting(unsigned int cpu) 5759 { 5760 struct rq *rq = cpu_rq(cpu); 5761 5762 rq->calc_load_update = calc_load_update; 5763 update_max_interval(); 5764 } 5765 5766 int sched_cpu_starting(unsigned int cpu) 5767 { 5768 set_cpu_rq_start_time(cpu); 5769 sched_rq_cpu_starting(cpu); 5770 return 0; 5771 } 5772 5773 #ifdef CONFIG_HOTPLUG_CPU 5774 int sched_cpu_dying(unsigned int cpu) 5775 { 5776 struct rq *rq = cpu_rq(cpu); 5777 struct rq_flags rf; 5778 5779 /* Handle pending wakeups and then migrate everything off */ 5780 sched_ttwu_pending(); 5781 5782 rq_lock_irqsave(rq, &rf); 5783 if (rq->rd) { 5784 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5785 set_rq_offline(rq); 5786 } 5787 migrate_tasks(rq, &rf); 5788 BUG_ON(rq->nr_running != 1); 5789 rq_unlock_irqrestore(rq, &rf); 5790 5791 calc_load_migrate(rq); 5792 update_max_interval(); 5793 nohz_balance_exit_idle(cpu); 5794 hrtick_clear(rq); 5795 return 0; 5796 } 5797 #endif 5798 5799 #ifdef CONFIG_SCHED_SMT 5800 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5801 5802 static void sched_init_smt(void) 5803 { 5804 /* 5805 * We've enumerated all CPUs and will assume that if any CPU 5806 * has SMT siblings, CPU0 will too. 5807 */ 5808 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5809 static_branch_enable(&sched_smt_present); 5810 } 5811 #else 5812 static inline void sched_init_smt(void) { } 5813 #endif 5814 5815 void __init sched_init_smp(void) 5816 { 5817 sched_init_numa(); 5818 5819 /* 5820 * There's no userspace yet to cause hotplug operations; hence all the 5821 * CPU masks are stable and all blatant races in the below code cannot 5822 * happen. 5823 */ 5824 mutex_lock(&sched_domains_mutex); 5825 sched_init_domains(cpu_active_mask); 5826 mutex_unlock(&sched_domains_mutex); 5827 5828 /* Move init over to a non-isolated CPU */ 5829 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5830 BUG(); 5831 sched_init_granularity(); 5832 5833 init_sched_rt_class(); 5834 init_sched_dl_class(); 5835 5836 sched_init_smt(); 5837 5838 sched_smp_initialized = true; 5839 } 5840 5841 static int __init migration_init(void) 5842 { 5843 sched_rq_cpu_starting(smp_processor_id()); 5844 return 0; 5845 } 5846 early_initcall(migration_init); 5847 5848 #else 5849 void __init sched_init_smp(void) 5850 { 5851 sched_init_granularity(); 5852 } 5853 #endif /* CONFIG_SMP */ 5854 5855 int in_sched_functions(unsigned long addr) 5856 { 5857 return in_lock_functions(addr) || 5858 (addr >= (unsigned long)__sched_text_start 5859 && addr < (unsigned long)__sched_text_end); 5860 } 5861 5862 #ifdef CONFIG_CGROUP_SCHED 5863 /* 5864 * Default task group. 5865 * Every task in system belongs to this group at bootup. 5866 */ 5867 struct task_group root_task_group; 5868 LIST_HEAD(task_groups); 5869 5870 /* Cacheline aligned slab cache for task_group */ 5871 static struct kmem_cache *task_group_cache __read_mostly; 5872 #endif 5873 5874 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5875 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5876 5877 void __init sched_init(void) 5878 { 5879 int i, j; 5880 unsigned long alloc_size = 0, ptr; 5881 5882 sched_clock_init(); 5883 wait_bit_init(); 5884 5885 #ifdef CONFIG_FAIR_GROUP_SCHED 5886 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5887 #endif 5888 #ifdef CONFIG_RT_GROUP_SCHED 5889 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5890 #endif 5891 if (alloc_size) { 5892 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5893 5894 #ifdef CONFIG_FAIR_GROUP_SCHED 5895 root_task_group.se = (struct sched_entity **)ptr; 5896 ptr += nr_cpu_ids * sizeof(void **); 5897 5898 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5899 ptr += nr_cpu_ids * sizeof(void **); 5900 5901 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5902 #ifdef CONFIG_RT_GROUP_SCHED 5903 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5904 ptr += nr_cpu_ids * sizeof(void **); 5905 5906 root_task_group.rt_rq = (struct rt_rq **)ptr; 5907 ptr += nr_cpu_ids * sizeof(void **); 5908 5909 #endif /* CONFIG_RT_GROUP_SCHED */ 5910 } 5911 #ifdef CONFIG_CPUMASK_OFFSTACK 5912 for_each_possible_cpu(i) { 5913 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5914 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5915 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5916 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5917 } 5918 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5919 5920 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5921 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5922 5923 #ifdef CONFIG_SMP 5924 init_defrootdomain(); 5925 #endif 5926 5927 #ifdef CONFIG_RT_GROUP_SCHED 5928 init_rt_bandwidth(&root_task_group.rt_bandwidth, 5929 global_rt_period(), global_rt_runtime()); 5930 #endif /* CONFIG_RT_GROUP_SCHED */ 5931 5932 #ifdef CONFIG_CGROUP_SCHED 5933 task_group_cache = KMEM_CACHE(task_group, 0); 5934 5935 list_add(&root_task_group.list, &task_groups); 5936 INIT_LIST_HEAD(&root_task_group.children); 5937 INIT_LIST_HEAD(&root_task_group.siblings); 5938 autogroup_init(&init_task); 5939 #endif /* CONFIG_CGROUP_SCHED */ 5940 5941 for_each_possible_cpu(i) { 5942 struct rq *rq; 5943 5944 rq = cpu_rq(i); 5945 raw_spin_lock_init(&rq->lock); 5946 rq->nr_running = 0; 5947 rq->calc_load_active = 0; 5948 rq->calc_load_update = jiffies + LOAD_FREQ; 5949 init_cfs_rq(&rq->cfs); 5950 init_rt_rq(&rq->rt); 5951 init_dl_rq(&rq->dl); 5952 #ifdef CONFIG_FAIR_GROUP_SCHED 5953 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 5954 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 5955 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 5956 /* 5957 * How much CPU bandwidth does root_task_group get? 5958 * 5959 * In case of task-groups formed thr' the cgroup filesystem, it 5960 * gets 100% of the CPU resources in the system. This overall 5961 * system CPU resource is divided among the tasks of 5962 * root_task_group and its child task-groups in a fair manner, 5963 * based on each entity's (task or task-group's) weight 5964 * (se->load.weight). 5965 * 5966 * In other words, if root_task_group has 10 tasks of weight 5967 * 1024) and two child groups A0 and A1 (of weight 1024 each), 5968 * then A0's share of the CPU resource is: 5969 * 5970 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 5971 * 5972 * We achieve this by letting root_task_group's tasks sit 5973 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 5974 */ 5975 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 5976 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 5977 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5978 5979 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 5980 #ifdef CONFIG_RT_GROUP_SCHED 5981 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 5982 #endif 5983 5984 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 5985 rq->cpu_load[j] = 0; 5986 5987 #ifdef CONFIG_SMP 5988 rq->sd = NULL; 5989 rq->rd = NULL; 5990 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 5991 rq->balance_callback = NULL; 5992 rq->active_balance = 0; 5993 rq->next_balance = jiffies; 5994 rq->push_cpu = 0; 5995 rq->cpu = i; 5996 rq->online = 0; 5997 rq->idle_stamp = 0; 5998 rq->avg_idle = 2*sysctl_sched_migration_cost; 5999 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6000 6001 INIT_LIST_HEAD(&rq->cfs_tasks); 6002 6003 rq_attach_root(rq, &def_root_domain); 6004 #ifdef CONFIG_NO_HZ_COMMON 6005 rq->last_load_update_tick = jiffies; 6006 rq->nohz_flags = 0; 6007 #endif 6008 #ifdef CONFIG_NO_HZ_FULL 6009 rq->last_sched_tick = 0; 6010 #endif 6011 #endif /* CONFIG_SMP */ 6012 init_rq_hrtick(rq); 6013 atomic_set(&rq->nr_iowait, 0); 6014 } 6015 6016 set_load_weight(&init_task, false); 6017 6018 /* 6019 * The boot idle thread does lazy MMU switching as well: 6020 */ 6021 mmgrab(&init_mm); 6022 enter_lazy_tlb(&init_mm, current); 6023 6024 /* 6025 * Make us the idle thread. Technically, schedule() should not be 6026 * called from this thread, however somewhere below it might be, 6027 * but because we are the idle thread, we just pick up running again 6028 * when this runqueue becomes "idle". 6029 */ 6030 init_idle(current, smp_processor_id()); 6031 6032 calc_load_update = jiffies + LOAD_FREQ; 6033 6034 #ifdef CONFIG_SMP 6035 idle_thread_set_boot_cpu(); 6036 set_cpu_rq_start_time(smp_processor_id()); 6037 #endif 6038 init_sched_fair_class(); 6039 6040 init_schedstats(); 6041 6042 scheduler_running = 1; 6043 } 6044 6045 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6046 static inline int preempt_count_equals(int preempt_offset) 6047 { 6048 int nested = preempt_count() + rcu_preempt_depth(); 6049 6050 return (nested == preempt_offset); 6051 } 6052 6053 void __might_sleep(const char *file, int line, int preempt_offset) 6054 { 6055 /* 6056 * Blocking primitives will set (and therefore destroy) current->state, 6057 * since we will exit with TASK_RUNNING make sure we enter with it, 6058 * otherwise we will destroy state. 6059 */ 6060 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6061 "do not call blocking ops when !TASK_RUNNING; " 6062 "state=%lx set at [<%p>] %pS\n", 6063 current->state, 6064 (void *)current->task_state_change, 6065 (void *)current->task_state_change); 6066 6067 ___might_sleep(file, line, preempt_offset); 6068 } 6069 EXPORT_SYMBOL(__might_sleep); 6070 6071 void ___might_sleep(const char *file, int line, int preempt_offset) 6072 { 6073 /* Ratelimiting timestamp: */ 6074 static unsigned long prev_jiffy; 6075 6076 unsigned long preempt_disable_ip; 6077 6078 /* WARN_ON_ONCE() by default, no rate limit required: */ 6079 rcu_sleep_check(); 6080 6081 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6082 !is_idle_task(current)) || 6083 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6084 oops_in_progress) 6085 return; 6086 6087 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6088 return; 6089 prev_jiffy = jiffies; 6090 6091 /* Save this before calling printk(), since that will clobber it: */ 6092 preempt_disable_ip = get_preempt_disable_ip(current); 6093 6094 printk(KERN_ERR 6095 "BUG: sleeping function called from invalid context at %s:%d\n", 6096 file, line); 6097 printk(KERN_ERR 6098 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6099 in_atomic(), irqs_disabled(), 6100 current->pid, current->comm); 6101 6102 if (task_stack_end_corrupted(current)) 6103 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6104 6105 debug_show_held_locks(current); 6106 if (irqs_disabled()) 6107 print_irqtrace_events(current); 6108 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6109 && !preempt_count_equals(preempt_offset)) { 6110 pr_err("Preemption disabled at:"); 6111 print_ip_sym(preempt_disable_ip); 6112 pr_cont("\n"); 6113 } 6114 dump_stack(); 6115 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6116 } 6117 EXPORT_SYMBOL(___might_sleep); 6118 #endif 6119 6120 #ifdef CONFIG_MAGIC_SYSRQ 6121 void normalize_rt_tasks(void) 6122 { 6123 struct task_struct *g, *p; 6124 struct sched_attr attr = { 6125 .sched_policy = SCHED_NORMAL, 6126 }; 6127 6128 read_lock(&tasklist_lock); 6129 for_each_process_thread(g, p) { 6130 /* 6131 * Only normalize user tasks: 6132 */ 6133 if (p->flags & PF_KTHREAD) 6134 continue; 6135 6136 p->se.exec_start = 0; 6137 schedstat_set(p->se.statistics.wait_start, 0); 6138 schedstat_set(p->se.statistics.sleep_start, 0); 6139 schedstat_set(p->se.statistics.block_start, 0); 6140 6141 if (!dl_task(p) && !rt_task(p)) { 6142 /* 6143 * Renice negative nice level userspace 6144 * tasks back to 0: 6145 */ 6146 if (task_nice(p) < 0) 6147 set_user_nice(p, 0); 6148 continue; 6149 } 6150 6151 __sched_setscheduler(p, &attr, false, false); 6152 } 6153 read_unlock(&tasklist_lock); 6154 } 6155 6156 #endif /* CONFIG_MAGIC_SYSRQ */ 6157 6158 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6159 /* 6160 * These functions are only useful for the IA64 MCA handling, or kdb. 6161 * 6162 * They can only be called when the whole system has been 6163 * stopped - every CPU needs to be quiescent, and no scheduling 6164 * activity can take place. Using them for anything else would 6165 * be a serious bug, and as a result, they aren't even visible 6166 * under any other configuration. 6167 */ 6168 6169 /** 6170 * curr_task - return the current task for a given CPU. 6171 * @cpu: the processor in question. 6172 * 6173 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6174 * 6175 * Return: The current task for @cpu. 6176 */ 6177 struct task_struct *curr_task(int cpu) 6178 { 6179 return cpu_curr(cpu); 6180 } 6181 6182 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6183 6184 #ifdef CONFIG_IA64 6185 /** 6186 * set_curr_task - set the current task for a given CPU. 6187 * @cpu: the processor in question. 6188 * @p: the task pointer to set. 6189 * 6190 * Description: This function must only be used when non-maskable interrupts 6191 * are serviced on a separate stack. It allows the architecture to switch the 6192 * notion of the current task on a CPU in a non-blocking manner. This function 6193 * must be called with all CPU's synchronized, and interrupts disabled, the 6194 * and caller must save the original value of the current task (see 6195 * curr_task() above) and restore that value before reenabling interrupts and 6196 * re-starting the system. 6197 * 6198 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6199 */ 6200 void ia64_set_curr_task(int cpu, struct task_struct *p) 6201 { 6202 cpu_curr(cpu) = p; 6203 } 6204 6205 #endif 6206 6207 #ifdef CONFIG_CGROUP_SCHED 6208 /* task_group_lock serializes the addition/removal of task groups */ 6209 static DEFINE_SPINLOCK(task_group_lock); 6210 6211 static void sched_free_group(struct task_group *tg) 6212 { 6213 free_fair_sched_group(tg); 6214 free_rt_sched_group(tg); 6215 autogroup_free(tg); 6216 kmem_cache_free(task_group_cache, tg); 6217 } 6218 6219 /* allocate runqueue etc for a new task group */ 6220 struct task_group *sched_create_group(struct task_group *parent) 6221 { 6222 struct task_group *tg; 6223 6224 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6225 if (!tg) 6226 return ERR_PTR(-ENOMEM); 6227 6228 if (!alloc_fair_sched_group(tg, parent)) 6229 goto err; 6230 6231 if (!alloc_rt_sched_group(tg, parent)) 6232 goto err; 6233 6234 return tg; 6235 6236 err: 6237 sched_free_group(tg); 6238 return ERR_PTR(-ENOMEM); 6239 } 6240 6241 void sched_online_group(struct task_group *tg, struct task_group *parent) 6242 { 6243 unsigned long flags; 6244 6245 spin_lock_irqsave(&task_group_lock, flags); 6246 list_add_rcu(&tg->list, &task_groups); 6247 6248 /* Root should already exist: */ 6249 WARN_ON(!parent); 6250 6251 tg->parent = parent; 6252 INIT_LIST_HEAD(&tg->children); 6253 list_add_rcu(&tg->siblings, &parent->children); 6254 spin_unlock_irqrestore(&task_group_lock, flags); 6255 6256 online_fair_sched_group(tg); 6257 } 6258 6259 /* rcu callback to free various structures associated with a task group */ 6260 static void sched_free_group_rcu(struct rcu_head *rhp) 6261 { 6262 /* Now it should be safe to free those cfs_rqs: */ 6263 sched_free_group(container_of(rhp, struct task_group, rcu)); 6264 } 6265 6266 void sched_destroy_group(struct task_group *tg) 6267 { 6268 /* Wait for possible concurrent references to cfs_rqs complete: */ 6269 call_rcu(&tg->rcu, sched_free_group_rcu); 6270 } 6271 6272 void sched_offline_group(struct task_group *tg) 6273 { 6274 unsigned long flags; 6275 6276 /* End participation in shares distribution: */ 6277 unregister_fair_sched_group(tg); 6278 6279 spin_lock_irqsave(&task_group_lock, flags); 6280 list_del_rcu(&tg->list); 6281 list_del_rcu(&tg->siblings); 6282 spin_unlock_irqrestore(&task_group_lock, flags); 6283 } 6284 6285 static void sched_change_group(struct task_struct *tsk, int type) 6286 { 6287 struct task_group *tg; 6288 6289 /* 6290 * All callers are synchronized by task_rq_lock(); we do not use RCU 6291 * which is pointless here. Thus, we pass "true" to task_css_check() 6292 * to prevent lockdep warnings. 6293 */ 6294 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6295 struct task_group, css); 6296 tg = autogroup_task_group(tsk, tg); 6297 tsk->sched_task_group = tg; 6298 6299 #ifdef CONFIG_FAIR_GROUP_SCHED 6300 if (tsk->sched_class->task_change_group) 6301 tsk->sched_class->task_change_group(tsk, type); 6302 else 6303 #endif 6304 set_task_rq(tsk, task_cpu(tsk)); 6305 } 6306 6307 /* 6308 * Change task's runqueue when it moves between groups. 6309 * 6310 * The caller of this function should have put the task in its new group by 6311 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6312 * its new group. 6313 */ 6314 void sched_move_task(struct task_struct *tsk) 6315 { 6316 int queued, running, queue_flags = 6317 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6318 struct rq_flags rf; 6319 struct rq *rq; 6320 6321 rq = task_rq_lock(tsk, &rf); 6322 update_rq_clock(rq); 6323 6324 running = task_current(rq, tsk); 6325 queued = task_on_rq_queued(tsk); 6326 6327 if (queued) 6328 dequeue_task(rq, tsk, queue_flags); 6329 if (running) 6330 put_prev_task(rq, tsk); 6331 6332 sched_change_group(tsk, TASK_MOVE_GROUP); 6333 6334 if (queued) 6335 enqueue_task(rq, tsk, queue_flags); 6336 if (running) 6337 set_curr_task(rq, tsk); 6338 6339 task_rq_unlock(rq, tsk, &rf); 6340 } 6341 6342 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6343 { 6344 return css ? container_of(css, struct task_group, css) : NULL; 6345 } 6346 6347 static struct cgroup_subsys_state * 6348 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6349 { 6350 struct task_group *parent = css_tg(parent_css); 6351 struct task_group *tg; 6352 6353 if (!parent) { 6354 /* This is early initialization for the top cgroup */ 6355 return &root_task_group.css; 6356 } 6357 6358 tg = sched_create_group(parent); 6359 if (IS_ERR(tg)) 6360 return ERR_PTR(-ENOMEM); 6361 6362 return &tg->css; 6363 } 6364 6365 /* Expose task group only after completing cgroup initialization */ 6366 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6367 { 6368 struct task_group *tg = css_tg(css); 6369 struct task_group *parent = css_tg(css->parent); 6370 6371 if (parent) 6372 sched_online_group(tg, parent); 6373 return 0; 6374 } 6375 6376 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6377 { 6378 struct task_group *tg = css_tg(css); 6379 6380 sched_offline_group(tg); 6381 } 6382 6383 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6384 { 6385 struct task_group *tg = css_tg(css); 6386 6387 /* 6388 * Relies on the RCU grace period between css_released() and this. 6389 */ 6390 sched_free_group(tg); 6391 } 6392 6393 /* 6394 * This is called before wake_up_new_task(), therefore we really only 6395 * have to set its group bits, all the other stuff does not apply. 6396 */ 6397 static void cpu_cgroup_fork(struct task_struct *task) 6398 { 6399 struct rq_flags rf; 6400 struct rq *rq; 6401 6402 rq = task_rq_lock(task, &rf); 6403 6404 update_rq_clock(rq); 6405 sched_change_group(task, TASK_SET_GROUP); 6406 6407 task_rq_unlock(rq, task, &rf); 6408 } 6409 6410 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6411 { 6412 struct task_struct *task; 6413 struct cgroup_subsys_state *css; 6414 int ret = 0; 6415 6416 cgroup_taskset_for_each(task, css, tset) { 6417 #ifdef CONFIG_RT_GROUP_SCHED 6418 if (!sched_rt_can_attach(css_tg(css), task)) 6419 return -EINVAL; 6420 #else 6421 /* We don't support RT-tasks being in separate groups */ 6422 if (task->sched_class != &fair_sched_class) 6423 return -EINVAL; 6424 #endif 6425 /* 6426 * Serialize against wake_up_new_task() such that if its 6427 * running, we're sure to observe its full state. 6428 */ 6429 raw_spin_lock_irq(&task->pi_lock); 6430 /* 6431 * Avoid calling sched_move_task() before wake_up_new_task() 6432 * has happened. This would lead to problems with PELT, due to 6433 * move wanting to detach+attach while we're not attached yet. 6434 */ 6435 if (task->state == TASK_NEW) 6436 ret = -EINVAL; 6437 raw_spin_unlock_irq(&task->pi_lock); 6438 6439 if (ret) 6440 break; 6441 } 6442 return ret; 6443 } 6444 6445 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6446 { 6447 struct task_struct *task; 6448 struct cgroup_subsys_state *css; 6449 6450 cgroup_taskset_for_each(task, css, tset) 6451 sched_move_task(task); 6452 } 6453 6454 #ifdef CONFIG_FAIR_GROUP_SCHED 6455 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6456 struct cftype *cftype, u64 shareval) 6457 { 6458 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6459 } 6460 6461 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6462 struct cftype *cft) 6463 { 6464 struct task_group *tg = css_tg(css); 6465 6466 return (u64) scale_load_down(tg->shares); 6467 } 6468 6469 #ifdef CONFIG_CFS_BANDWIDTH 6470 static DEFINE_MUTEX(cfs_constraints_mutex); 6471 6472 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6473 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6474 6475 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6476 6477 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6478 { 6479 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6480 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6481 6482 if (tg == &root_task_group) 6483 return -EINVAL; 6484 6485 /* 6486 * Ensure we have at some amount of bandwidth every period. This is 6487 * to prevent reaching a state of large arrears when throttled via 6488 * entity_tick() resulting in prolonged exit starvation. 6489 */ 6490 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6491 return -EINVAL; 6492 6493 /* 6494 * Likewise, bound things on the otherside by preventing insane quota 6495 * periods. This also allows us to normalize in computing quota 6496 * feasibility. 6497 */ 6498 if (period > max_cfs_quota_period) 6499 return -EINVAL; 6500 6501 /* 6502 * Prevent race between setting of cfs_rq->runtime_enabled and 6503 * unthrottle_offline_cfs_rqs(). 6504 */ 6505 get_online_cpus(); 6506 mutex_lock(&cfs_constraints_mutex); 6507 ret = __cfs_schedulable(tg, period, quota); 6508 if (ret) 6509 goto out_unlock; 6510 6511 runtime_enabled = quota != RUNTIME_INF; 6512 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6513 /* 6514 * If we need to toggle cfs_bandwidth_used, off->on must occur 6515 * before making related changes, and on->off must occur afterwards 6516 */ 6517 if (runtime_enabled && !runtime_was_enabled) 6518 cfs_bandwidth_usage_inc(); 6519 raw_spin_lock_irq(&cfs_b->lock); 6520 cfs_b->period = ns_to_ktime(period); 6521 cfs_b->quota = quota; 6522 6523 __refill_cfs_bandwidth_runtime(cfs_b); 6524 6525 /* Restart the period timer (if active) to handle new period expiry: */ 6526 if (runtime_enabled) 6527 start_cfs_bandwidth(cfs_b); 6528 6529 raw_spin_unlock_irq(&cfs_b->lock); 6530 6531 for_each_online_cpu(i) { 6532 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6533 struct rq *rq = cfs_rq->rq; 6534 struct rq_flags rf; 6535 6536 rq_lock_irq(rq, &rf); 6537 cfs_rq->runtime_enabled = runtime_enabled; 6538 cfs_rq->runtime_remaining = 0; 6539 6540 if (cfs_rq->throttled) 6541 unthrottle_cfs_rq(cfs_rq); 6542 rq_unlock_irq(rq, &rf); 6543 } 6544 if (runtime_was_enabled && !runtime_enabled) 6545 cfs_bandwidth_usage_dec(); 6546 out_unlock: 6547 mutex_unlock(&cfs_constraints_mutex); 6548 put_online_cpus(); 6549 6550 return ret; 6551 } 6552 6553 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6554 { 6555 u64 quota, period; 6556 6557 period = ktime_to_ns(tg->cfs_bandwidth.period); 6558 if (cfs_quota_us < 0) 6559 quota = RUNTIME_INF; 6560 else 6561 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6562 6563 return tg_set_cfs_bandwidth(tg, period, quota); 6564 } 6565 6566 long tg_get_cfs_quota(struct task_group *tg) 6567 { 6568 u64 quota_us; 6569 6570 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6571 return -1; 6572 6573 quota_us = tg->cfs_bandwidth.quota; 6574 do_div(quota_us, NSEC_PER_USEC); 6575 6576 return quota_us; 6577 } 6578 6579 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6580 { 6581 u64 quota, period; 6582 6583 period = (u64)cfs_period_us * NSEC_PER_USEC; 6584 quota = tg->cfs_bandwidth.quota; 6585 6586 return tg_set_cfs_bandwidth(tg, period, quota); 6587 } 6588 6589 long tg_get_cfs_period(struct task_group *tg) 6590 { 6591 u64 cfs_period_us; 6592 6593 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6594 do_div(cfs_period_us, NSEC_PER_USEC); 6595 6596 return cfs_period_us; 6597 } 6598 6599 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6600 struct cftype *cft) 6601 { 6602 return tg_get_cfs_quota(css_tg(css)); 6603 } 6604 6605 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6606 struct cftype *cftype, s64 cfs_quota_us) 6607 { 6608 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6609 } 6610 6611 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6612 struct cftype *cft) 6613 { 6614 return tg_get_cfs_period(css_tg(css)); 6615 } 6616 6617 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6618 struct cftype *cftype, u64 cfs_period_us) 6619 { 6620 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6621 } 6622 6623 struct cfs_schedulable_data { 6624 struct task_group *tg; 6625 u64 period, quota; 6626 }; 6627 6628 /* 6629 * normalize group quota/period to be quota/max_period 6630 * note: units are usecs 6631 */ 6632 static u64 normalize_cfs_quota(struct task_group *tg, 6633 struct cfs_schedulable_data *d) 6634 { 6635 u64 quota, period; 6636 6637 if (tg == d->tg) { 6638 period = d->period; 6639 quota = d->quota; 6640 } else { 6641 period = tg_get_cfs_period(tg); 6642 quota = tg_get_cfs_quota(tg); 6643 } 6644 6645 /* note: these should typically be equivalent */ 6646 if (quota == RUNTIME_INF || quota == -1) 6647 return RUNTIME_INF; 6648 6649 return to_ratio(period, quota); 6650 } 6651 6652 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6653 { 6654 struct cfs_schedulable_data *d = data; 6655 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6656 s64 quota = 0, parent_quota = -1; 6657 6658 if (!tg->parent) { 6659 quota = RUNTIME_INF; 6660 } else { 6661 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6662 6663 quota = normalize_cfs_quota(tg, d); 6664 parent_quota = parent_b->hierarchical_quota; 6665 6666 /* 6667 * Ensure max(child_quota) <= parent_quota, inherit when no 6668 * limit is set: 6669 */ 6670 if (quota == RUNTIME_INF) 6671 quota = parent_quota; 6672 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6673 return -EINVAL; 6674 } 6675 cfs_b->hierarchical_quota = quota; 6676 6677 return 0; 6678 } 6679 6680 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6681 { 6682 int ret; 6683 struct cfs_schedulable_data data = { 6684 .tg = tg, 6685 .period = period, 6686 .quota = quota, 6687 }; 6688 6689 if (quota != RUNTIME_INF) { 6690 do_div(data.period, NSEC_PER_USEC); 6691 do_div(data.quota, NSEC_PER_USEC); 6692 } 6693 6694 rcu_read_lock(); 6695 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6696 rcu_read_unlock(); 6697 6698 return ret; 6699 } 6700 6701 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6702 { 6703 struct task_group *tg = css_tg(seq_css(sf)); 6704 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6705 6706 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6707 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6708 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6709 6710 return 0; 6711 } 6712 #endif /* CONFIG_CFS_BANDWIDTH */ 6713 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6714 6715 #ifdef CONFIG_RT_GROUP_SCHED 6716 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6717 struct cftype *cft, s64 val) 6718 { 6719 return sched_group_set_rt_runtime(css_tg(css), val); 6720 } 6721 6722 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6723 struct cftype *cft) 6724 { 6725 return sched_group_rt_runtime(css_tg(css)); 6726 } 6727 6728 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6729 struct cftype *cftype, u64 rt_period_us) 6730 { 6731 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6732 } 6733 6734 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6735 struct cftype *cft) 6736 { 6737 return sched_group_rt_period(css_tg(css)); 6738 } 6739 #endif /* CONFIG_RT_GROUP_SCHED */ 6740 6741 static struct cftype cpu_legacy_files[] = { 6742 #ifdef CONFIG_FAIR_GROUP_SCHED 6743 { 6744 .name = "shares", 6745 .read_u64 = cpu_shares_read_u64, 6746 .write_u64 = cpu_shares_write_u64, 6747 }, 6748 #endif 6749 #ifdef CONFIG_CFS_BANDWIDTH 6750 { 6751 .name = "cfs_quota_us", 6752 .read_s64 = cpu_cfs_quota_read_s64, 6753 .write_s64 = cpu_cfs_quota_write_s64, 6754 }, 6755 { 6756 .name = "cfs_period_us", 6757 .read_u64 = cpu_cfs_period_read_u64, 6758 .write_u64 = cpu_cfs_period_write_u64, 6759 }, 6760 { 6761 .name = "stat", 6762 .seq_show = cpu_cfs_stat_show, 6763 }, 6764 #endif 6765 #ifdef CONFIG_RT_GROUP_SCHED 6766 { 6767 .name = "rt_runtime_us", 6768 .read_s64 = cpu_rt_runtime_read, 6769 .write_s64 = cpu_rt_runtime_write, 6770 }, 6771 { 6772 .name = "rt_period_us", 6773 .read_u64 = cpu_rt_period_read_uint, 6774 .write_u64 = cpu_rt_period_write_uint, 6775 }, 6776 #endif 6777 { } /* Terminate */ 6778 }; 6779 6780 static int cpu_extra_stat_show(struct seq_file *sf, 6781 struct cgroup_subsys_state *css) 6782 { 6783 #ifdef CONFIG_CFS_BANDWIDTH 6784 { 6785 struct task_group *tg = css_tg(css); 6786 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6787 u64 throttled_usec; 6788 6789 throttled_usec = cfs_b->throttled_time; 6790 do_div(throttled_usec, NSEC_PER_USEC); 6791 6792 seq_printf(sf, "nr_periods %d\n" 6793 "nr_throttled %d\n" 6794 "throttled_usec %llu\n", 6795 cfs_b->nr_periods, cfs_b->nr_throttled, 6796 throttled_usec); 6797 } 6798 #endif 6799 return 0; 6800 } 6801 6802 #ifdef CONFIG_FAIR_GROUP_SCHED 6803 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6804 struct cftype *cft) 6805 { 6806 struct task_group *tg = css_tg(css); 6807 u64 weight = scale_load_down(tg->shares); 6808 6809 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6810 } 6811 6812 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6813 struct cftype *cft, u64 weight) 6814 { 6815 /* 6816 * cgroup weight knobs should use the common MIN, DFL and MAX 6817 * values which are 1, 100 and 10000 respectively. While it loses 6818 * a bit of range on both ends, it maps pretty well onto the shares 6819 * value used by scheduler and the round-trip conversions preserve 6820 * the original value over the entire range. 6821 */ 6822 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6823 return -ERANGE; 6824 6825 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6826 6827 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6828 } 6829 6830 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6831 struct cftype *cft) 6832 { 6833 unsigned long weight = scale_load_down(css_tg(css)->shares); 6834 int last_delta = INT_MAX; 6835 int prio, delta; 6836 6837 /* find the closest nice value to the current weight */ 6838 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6839 delta = abs(sched_prio_to_weight[prio] - weight); 6840 if (delta >= last_delta) 6841 break; 6842 last_delta = delta; 6843 } 6844 6845 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6846 } 6847 6848 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6849 struct cftype *cft, s64 nice) 6850 { 6851 unsigned long weight; 6852 6853 if (nice < MIN_NICE || nice > MAX_NICE) 6854 return -ERANGE; 6855 6856 weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO]; 6857 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6858 } 6859 #endif 6860 6861 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6862 long period, long quota) 6863 { 6864 if (quota < 0) 6865 seq_puts(sf, "max"); 6866 else 6867 seq_printf(sf, "%ld", quota); 6868 6869 seq_printf(sf, " %ld\n", period); 6870 } 6871 6872 /* caller should put the current value in *@periodp before calling */ 6873 static int __maybe_unused cpu_period_quota_parse(char *buf, 6874 u64 *periodp, u64 *quotap) 6875 { 6876 char tok[21]; /* U64_MAX */ 6877 6878 if (!sscanf(buf, "%s %llu", tok, periodp)) 6879 return -EINVAL; 6880 6881 *periodp *= NSEC_PER_USEC; 6882 6883 if (sscanf(tok, "%llu", quotap)) 6884 *quotap *= NSEC_PER_USEC; 6885 else if (!strcmp(tok, "max")) 6886 *quotap = RUNTIME_INF; 6887 else 6888 return -EINVAL; 6889 6890 return 0; 6891 } 6892 6893 #ifdef CONFIG_CFS_BANDWIDTH 6894 static int cpu_max_show(struct seq_file *sf, void *v) 6895 { 6896 struct task_group *tg = css_tg(seq_css(sf)); 6897 6898 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6899 return 0; 6900 } 6901 6902 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6903 char *buf, size_t nbytes, loff_t off) 6904 { 6905 struct task_group *tg = css_tg(of_css(of)); 6906 u64 period = tg_get_cfs_period(tg); 6907 u64 quota; 6908 int ret; 6909 6910 ret = cpu_period_quota_parse(buf, &period, "a); 6911 if (!ret) 6912 ret = tg_set_cfs_bandwidth(tg, period, quota); 6913 return ret ?: nbytes; 6914 } 6915 #endif 6916 6917 static struct cftype cpu_files[] = { 6918 #ifdef CONFIG_FAIR_GROUP_SCHED 6919 { 6920 .name = "weight", 6921 .flags = CFTYPE_NOT_ON_ROOT, 6922 .read_u64 = cpu_weight_read_u64, 6923 .write_u64 = cpu_weight_write_u64, 6924 }, 6925 { 6926 .name = "weight.nice", 6927 .flags = CFTYPE_NOT_ON_ROOT, 6928 .read_s64 = cpu_weight_nice_read_s64, 6929 .write_s64 = cpu_weight_nice_write_s64, 6930 }, 6931 #endif 6932 #ifdef CONFIG_CFS_BANDWIDTH 6933 { 6934 .name = "max", 6935 .flags = CFTYPE_NOT_ON_ROOT, 6936 .seq_show = cpu_max_show, 6937 .write = cpu_max_write, 6938 }, 6939 #endif 6940 { } /* terminate */ 6941 }; 6942 6943 struct cgroup_subsys cpu_cgrp_subsys = { 6944 .css_alloc = cpu_cgroup_css_alloc, 6945 .css_online = cpu_cgroup_css_online, 6946 .css_released = cpu_cgroup_css_released, 6947 .css_free = cpu_cgroup_css_free, 6948 .css_extra_stat_show = cpu_extra_stat_show, 6949 .fork = cpu_cgroup_fork, 6950 .can_attach = cpu_cgroup_can_attach, 6951 .attach = cpu_cgroup_attach, 6952 .legacy_cftypes = cpu_legacy_files, 6953 .dfl_cftypes = cpu_files, 6954 .early_init = true, 6955 .threaded = true, 6956 }; 6957 6958 #endif /* CONFIG_CGROUP_SCHED */ 6959 6960 void dump_cpu_task(int cpu) 6961 { 6962 pr_info("Task dump for CPU %d:\n", cpu); 6963 sched_show_task(cpu_curr(cpu)); 6964 } 6965 6966 /* 6967 * Nice levels are multiplicative, with a gentle 10% change for every 6968 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 6969 * nice 1, it will get ~10% less CPU time than another CPU-bound task 6970 * that remained on nice 0. 6971 * 6972 * The "10% effect" is relative and cumulative: from _any_ nice level, 6973 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 6974 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 6975 * If a task goes up by ~10% and another task goes down by ~10% then 6976 * the relative distance between them is ~25%.) 6977 */ 6978 const int sched_prio_to_weight[40] = { 6979 /* -20 */ 88761, 71755, 56483, 46273, 36291, 6980 /* -15 */ 29154, 23254, 18705, 14949, 11916, 6981 /* -10 */ 9548, 7620, 6100, 4904, 3906, 6982 /* -5 */ 3121, 2501, 1991, 1586, 1277, 6983 /* 0 */ 1024, 820, 655, 526, 423, 6984 /* 5 */ 335, 272, 215, 172, 137, 6985 /* 10 */ 110, 87, 70, 56, 45, 6986 /* 15 */ 36, 29, 23, 18, 15, 6987 }; 6988 6989 /* 6990 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 6991 * 6992 * In cases where the weight does not change often, we can use the 6993 * precalculated inverse to speed up arithmetics by turning divisions 6994 * into multiplications: 6995 */ 6996 const u32 sched_prio_to_wmult[40] = { 6997 /* -20 */ 48388, 59856, 76040, 92818, 118348, 6998 /* -15 */ 147320, 184698, 229616, 287308, 360437, 6999 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7000 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7001 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7002 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7003 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7004 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7005 }; 7006