xref: /linux/kernel/sched/core.c (revision 54f5a57e266318d72f84fda95805099986a7e201)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 /*
300  * __task_rq_lock - lock the rq @p resides on.
301  */
302 static inline struct rq *__task_rq_lock(struct task_struct *p)
303 	__acquires(rq->lock)
304 {
305 	struct rq *rq;
306 
307 	lockdep_assert_held(&p->pi_lock);
308 
309 	for (;;) {
310 		rq = task_rq(p);
311 		raw_spin_lock(&rq->lock);
312 		if (likely(rq == task_rq(p)))
313 			return rq;
314 		raw_spin_unlock(&rq->lock);
315 	}
316 }
317 
318 /*
319  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320  */
321 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322 	__acquires(p->pi_lock)
323 	__acquires(rq->lock)
324 {
325 	struct rq *rq;
326 
327 	for (;;) {
328 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
329 		rq = task_rq(p);
330 		raw_spin_lock(&rq->lock);
331 		if (likely(rq == task_rq(p)))
332 			return rq;
333 		raw_spin_unlock(&rq->lock);
334 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335 	}
336 }
337 
338 static void __task_rq_unlock(struct rq *rq)
339 	__releases(rq->lock)
340 {
341 	raw_spin_unlock(&rq->lock);
342 }
343 
344 static inline void
345 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346 	__releases(rq->lock)
347 	__releases(p->pi_lock)
348 {
349 	raw_spin_unlock(&rq->lock);
350 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351 }
352 
353 /*
354  * this_rq_lock - lock this runqueue and disable interrupts.
355  */
356 static struct rq *this_rq_lock(void)
357 	__acquires(rq->lock)
358 {
359 	struct rq *rq;
360 
361 	local_irq_disable();
362 	rq = this_rq();
363 	raw_spin_lock(&rq->lock);
364 
365 	return rq;
366 }
367 
368 #ifdef CONFIG_SCHED_HRTICK
369 /*
370  * Use HR-timers to deliver accurate preemption points.
371  */
372 
373 static void hrtick_clear(struct rq *rq)
374 {
375 	if (hrtimer_active(&rq->hrtick_timer))
376 		hrtimer_cancel(&rq->hrtick_timer);
377 }
378 
379 /*
380  * High-resolution timer tick.
381  * Runs from hardirq context with interrupts disabled.
382  */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386 
387 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388 
389 	raw_spin_lock(&rq->lock);
390 	update_rq_clock(rq);
391 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 	raw_spin_unlock(&rq->lock);
393 
394 	return HRTIMER_NORESTART;
395 }
396 
397 #ifdef CONFIG_SMP
398 
399 static int __hrtick_restart(struct rq *rq)
400 {
401 	struct hrtimer *timer = &rq->hrtick_timer;
402 	ktime_t time = hrtimer_get_softexpires(timer);
403 
404 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405 }
406 
407 /*
408  * called from hardirq (IPI) context
409  */
410 static void __hrtick_start(void *arg)
411 {
412 	struct rq *rq = arg;
413 
414 	raw_spin_lock(&rq->lock);
415 	__hrtick_restart(rq);
416 	rq->hrtick_csd_pending = 0;
417 	raw_spin_unlock(&rq->lock);
418 }
419 
420 /*
421  * Called to set the hrtick timer state.
422  *
423  * called with rq->lock held and irqs disabled
424  */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 	struct hrtimer *timer = &rq->hrtick_timer;
428 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429 
430 	hrtimer_set_expires(timer, time);
431 
432 	if (rq == this_rq()) {
433 		__hrtick_restart(rq);
434 	} else if (!rq->hrtick_csd_pending) {
435 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 		rq->hrtick_csd_pending = 1;
437 	}
438 }
439 
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 	int cpu = (int)(long)hcpu;
444 
445 	switch (action) {
446 	case CPU_UP_CANCELED:
447 	case CPU_UP_CANCELED_FROZEN:
448 	case CPU_DOWN_PREPARE:
449 	case CPU_DOWN_PREPARE_FROZEN:
450 	case CPU_DEAD:
451 	case CPU_DEAD_FROZEN:
452 		hrtick_clear(cpu_rq(cpu));
453 		return NOTIFY_OK;
454 	}
455 
456 	return NOTIFY_DONE;
457 }
458 
459 static __init void init_hrtick(void)
460 {
461 	hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465  * Called to set the hrtick timer state.
466  *
467  * called with rq->lock held and irqs disabled
468  */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 			HRTIMER_MODE_REL_PINNED, 0);
473 }
474 
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479 
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 	rq->hrtick_csd_pending = 0;
484 
485 	rq->hrtick_csd.flags = 0;
486 	rq->hrtick_csd.func = __hrtick_start;
487 	rq->hrtick_csd.info = rq;
488 #endif
489 
490 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 	rq->hrtick_timer.function = hrtick;
492 }
493 #else	/* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497 
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501 
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif	/* CONFIG_SCHED_HRTICK */
506 
507 /*
508  * resched_task - mark a task 'to be rescheduled now'.
509  *
510  * On UP this means the setting of the need_resched flag, on SMP it
511  * might also involve a cross-CPU call to trigger the scheduler on
512  * the target CPU.
513  */
514 void resched_task(struct task_struct *p)
515 {
516 	int cpu;
517 
518 	lockdep_assert_held(&task_rq(p)->lock);
519 
520 	if (test_tsk_need_resched(p))
521 		return;
522 
523 	set_tsk_need_resched(p);
524 
525 	cpu = task_cpu(p);
526 	if (cpu == smp_processor_id()) {
527 		set_preempt_need_resched();
528 		return;
529 	}
530 
531 	/* NEED_RESCHED must be visible before we test polling */
532 	smp_mb();
533 	if (!tsk_is_polling(p))
534 		smp_send_reschedule(cpu);
535 }
536 
537 void resched_cpu(int cpu)
538 {
539 	struct rq *rq = cpu_rq(cpu);
540 	unsigned long flags;
541 
542 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543 		return;
544 	resched_task(cpu_curr(cpu));
545 	raw_spin_unlock_irqrestore(&rq->lock, flags);
546 }
547 
548 #ifdef CONFIG_SMP
549 #ifdef CONFIG_NO_HZ_COMMON
550 /*
551  * In the semi idle case, use the nearest busy cpu for migrating timers
552  * from an idle cpu.  This is good for power-savings.
553  *
554  * We don't do similar optimization for completely idle system, as
555  * selecting an idle cpu will add more delays to the timers than intended
556  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557  */
558 int get_nohz_timer_target(void)
559 {
560 	int cpu = smp_processor_id();
561 	int i;
562 	struct sched_domain *sd;
563 
564 	rcu_read_lock();
565 	for_each_domain(cpu, sd) {
566 		for_each_cpu(i, sched_domain_span(sd)) {
567 			if (!idle_cpu(i)) {
568 				cpu = i;
569 				goto unlock;
570 			}
571 		}
572 	}
573 unlock:
574 	rcu_read_unlock();
575 	return cpu;
576 }
577 /*
578  * When add_timer_on() enqueues a timer into the timer wheel of an
579  * idle CPU then this timer might expire before the next timer event
580  * which is scheduled to wake up that CPU. In case of a completely
581  * idle system the next event might even be infinite time into the
582  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583  * leaves the inner idle loop so the newly added timer is taken into
584  * account when the CPU goes back to idle and evaluates the timer
585  * wheel for the next timer event.
586  */
587 static void wake_up_idle_cpu(int cpu)
588 {
589 	struct rq *rq = cpu_rq(cpu);
590 
591 	if (cpu == smp_processor_id())
592 		return;
593 
594 	/*
595 	 * This is safe, as this function is called with the timer
596 	 * wheel base lock of (cpu) held. When the CPU is on the way
597 	 * to idle and has not yet set rq->curr to idle then it will
598 	 * be serialized on the timer wheel base lock and take the new
599 	 * timer into account automatically.
600 	 */
601 	if (rq->curr != rq->idle)
602 		return;
603 
604 	/*
605 	 * We can set TIF_RESCHED on the idle task of the other CPU
606 	 * lockless. The worst case is that the other CPU runs the
607 	 * idle task through an additional NOOP schedule()
608 	 */
609 	set_tsk_need_resched(rq->idle);
610 
611 	/* NEED_RESCHED must be visible before we test polling */
612 	smp_mb();
613 	if (!tsk_is_polling(rq->idle))
614 		smp_send_reschedule(cpu);
615 }
616 
617 static bool wake_up_full_nohz_cpu(int cpu)
618 {
619 	if (tick_nohz_full_cpu(cpu)) {
620 		if (cpu != smp_processor_id() ||
621 		    tick_nohz_tick_stopped())
622 			smp_send_reschedule(cpu);
623 		return true;
624 	}
625 
626 	return false;
627 }
628 
629 void wake_up_nohz_cpu(int cpu)
630 {
631 	if (!wake_up_full_nohz_cpu(cpu))
632 		wake_up_idle_cpu(cpu);
633 }
634 
635 static inline bool got_nohz_idle_kick(void)
636 {
637 	int cpu = smp_processor_id();
638 
639 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 		return false;
641 
642 	if (idle_cpu(cpu) && !need_resched())
643 		return true;
644 
645 	/*
646 	 * We can't run Idle Load Balance on this CPU for this time so we
647 	 * cancel it and clear NOHZ_BALANCE_KICK
648 	 */
649 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 	return false;
651 }
652 
653 #else /* CONFIG_NO_HZ_COMMON */
654 
655 static inline bool got_nohz_idle_kick(void)
656 {
657 	return false;
658 }
659 
660 #endif /* CONFIG_NO_HZ_COMMON */
661 
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(void)
664 {
665        struct rq *rq;
666 
667        rq = this_rq();
668 
669        /* Make sure rq->nr_running update is visible after the IPI */
670        smp_rmb();
671 
672        /* More than one running task need preemption */
673        if (rq->nr_running > 1)
674                return false;
675 
676        return true;
677 }
678 #endif /* CONFIG_NO_HZ_FULL */
679 
680 void sched_avg_update(struct rq *rq)
681 {
682 	s64 period = sched_avg_period();
683 
684 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 		/*
686 		 * Inline assembly required to prevent the compiler
687 		 * optimising this loop into a divmod call.
688 		 * See __iter_div_u64_rem() for another example of this.
689 		 */
690 		asm("" : "+rm" (rq->age_stamp));
691 		rq->age_stamp += period;
692 		rq->rt_avg /= 2;
693 	}
694 }
695 
696 #endif /* CONFIG_SMP */
697 
698 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700 /*
701  * Iterate task_group tree rooted at *from, calling @down when first entering a
702  * node and @up when leaving it for the final time.
703  *
704  * Caller must hold rcu_lock or sufficient equivalent.
705  */
706 int walk_tg_tree_from(struct task_group *from,
707 			     tg_visitor down, tg_visitor up, void *data)
708 {
709 	struct task_group *parent, *child;
710 	int ret;
711 
712 	parent = from;
713 
714 down:
715 	ret = (*down)(parent, data);
716 	if (ret)
717 		goto out;
718 	list_for_each_entry_rcu(child, &parent->children, siblings) {
719 		parent = child;
720 		goto down;
721 
722 up:
723 		continue;
724 	}
725 	ret = (*up)(parent, data);
726 	if (ret || parent == from)
727 		goto out;
728 
729 	child = parent;
730 	parent = parent->parent;
731 	if (parent)
732 		goto up;
733 out:
734 	return ret;
735 }
736 
737 int tg_nop(struct task_group *tg, void *data)
738 {
739 	return 0;
740 }
741 #endif
742 
743 static void set_load_weight(struct task_struct *p)
744 {
745 	int prio = p->static_prio - MAX_RT_PRIO;
746 	struct load_weight *load = &p->se.load;
747 
748 	/*
749 	 * SCHED_IDLE tasks get minimal weight:
750 	 */
751 	if (p->policy == SCHED_IDLE) {
752 		load->weight = scale_load(WEIGHT_IDLEPRIO);
753 		load->inv_weight = WMULT_IDLEPRIO;
754 		return;
755 	}
756 
757 	load->weight = scale_load(prio_to_weight[prio]);
758 	load->inv_weight = prio_to_wmult[prio];
759 }
760 
761 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762 {
763 	update_rq_clock(rq);
764 	sched_info_queued(rq, p);
765 	p->sched_class->enqueue_task(rq, p, flags);
766 }
767 
768 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769 {
770 	update_rq_clock(rq);
771 	sched_info_dequeued(rq, p);
772 	p->sched_class->dequeue_task(rq, p, flags);
773 }
774 
775 void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 	if (task_contributes_to_load(p))
778 		rq->nr_uninterruptible--;
779 
780 	enqueue_task(rq, p, flags);
781 }
782 
783 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 {
785 	if (task_contributes_to_load(p))
786 		rq->nr_uninterruptible++;
787 
788 	dequeue_task(rq, p, flags);
789 }
790 
791 static void update_rq_clock_task(struct rq *rq, s64 delta)
792 {
793 /*
794  * In theory, the compile should just see 0 here, and optimize out the call
795  * to sched_rt_avg_update. But I don't trust it...
796  */
797 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 	s64 steal = 0, irq_delta = 0;
799 #endif
800 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
801 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802 
803 	/*
804 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 	 * this case when a previous update_rq_clock() happened inside a
806 	 * {soft,}irq region.
807 	 *
808 	 * When this happens, we stop ->clock_task and only update the
809 	 * prev_irq_time stamp to account for the part that fit, so that a next
810 	 * update will consume the rest. This ensures ->clock_task is
811 	 * monotonic.
812 	 *
813 	 * It does however cause some slight miss-attribution of {soft,}irq
814 	 * time, a more accurate solution would be to update the irq_time using
815 	 * the current rq->clock timestamp, except that would require using
816 	 * atomic ops.
817 	 */
818 	if (irq_delta > delta)
819 		irq_delta = delta;
820 
821 	rq->prev_irq_time += irq_delta;
822 	delta -= irq_delta;
823 #endif
824 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825 	if (static_key_false((&paravirt_steal_rq_enabled))) {
826 		u64 st;
827 
828 		steal = paravirt_steal_clock(cpu_of(rq));
829 		steal -= rq->prev_steal_time_rq;
830 
831 		if (unlikely(steal > delta))
832 			steal = delta;
833 
834 		st = steal_ticks(steal);
835 		steal = st * TICK_NSEC;
836 
837 		rq->prev_steal_time_rq += steal;
838 
839 		delta -= steal;
840 	}
841 #endif
842 
843 	rq->clock_task += delta;
844 
845 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 		sched_rt_avg_update(rq, irq_delta + steal);
848 #endif
849 }
850 
851 void sched_set_stop_task(int cpu, struct task_struct *stop)
852 {
853 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
855 
856 	if (stop) {
857 		/*
858 		 * Make it appear like a SCHED_FIFO task, its something
859 		 * userspace knows about and won't get confused about.
860 		 *
861 		 * Also, it will make PI more or less work without too
862 		 * much confusion -- but then, stop work should not
863 		 * rely on PI working anyway.
864 		 */
865 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866 
867 		stop->sched_class = &stop_sched_class;
868 	}
869 
870 	cpu_rq(cpu)->stop = stop;
871 
872 	if (old_stop) {
873 		/*
874 		 * Reset it back to a normal scheduling class so that
875 		 * it can die in pieces.
876 		 */
877 		old_stop->sched_class = &rt_sched_class;
878 	}
879 }
880 
881 /*
882  * __normal_prio - return the priority that is based on the static prio
883  */
884 static inline int __normal_prio(struct task_struct *p)
885 {
886 	return p->static_prio;
887 }
888 
889 /*
890  * Calculate the expected normal priority: i.e. priority
891  * without taking RT-inheritance into account. Might be
892  * boosted by interactivity modifiers. Changes upon fork,
893  * setprio syscalls, and whenever the interactivity
894  * estimator recalculates.
895  */
896 static inline int normal_prio(struct task_struct *p)
897 {
898 	int prio;
899 
900 	if (task_has_dl_policy(p))
901 		prio = MAX_DL_PRIO-1;
902 	else if (task_has_rt_policy(p))
903 		prio = MAX_RT_PRIO-1 - p->rt_priority;
904 	else
905 		prio = __normal_prio(p);
906 	return prio;
907 }
908 
909 /*
910  * Calculate the current priority, i.e. the priority
911  * taken into account by the scheduler. This value might
912  * be boosted by RT tasks, or might be boosted by
913  * interactivity modifiers. Will be RT if the task got
914  * RT-boosted. If not then it returns p->normal_prio.
915  */
916 static int effective_prio(struct task_struct *p)
917 {
918 	p->normal_prio = normal_prio(p);
919 	/*
920 	 * If we are RT tasks or we were boosted to RT priority,
921 	 * keep the priority unchanged. Otherwise, update priority
922 	 * to the normal priority:
923 	 */
924 	if (!rt_prio(p->prio))
925 		return p->normal_prio;
926 	return p->prio;
927 }
928 
929 /**
930  * task_curr - is this task currently executing on a CPU?
931  * @p: the task in question.
932  *
933  * Return: 1 if the task is currently executing. 0 otherwise.
934  */
935 inline int task_curr(const struct task_struct *p)
936 {
937 	return cpu_curr(task_cpu(p)) == p;
938 }
939 
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 				       const struct sched_class *prev_class,
942 				       int oldprio)
943 {
944 	if (prev_class != p->sched_class) {
945 		if (prev_class->switched_from)
946 			prev_class->switched_from(rq, p);
947 		p->sched_class->switched_to(rq, p);
948 	} else if (oldprio != p->prio || dl_task(p))
949 		p->sched_class->prio_changed(rq, p, oldprio);
950 }
951 
952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 {
954 	const struct sched_class *class;
955 
956 	if (p->sched_class == rq->curr->sched_class) {
957 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 	} else {
959 		for_each_class(class) {
960 			if (class == rq->curr->sched_class)
961 				break;
962 			if (class == p->sched_class) {
963 				resched_task(rq->curr);
964 				break;
965 			}
966 		}
967 	}
968 
969 	/*
970 	 * A queue event has occurred, and we're going to schedule.  In
971 	 * this case, we can save a useless back to back clock update.
972 	 */
973 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 		rq->skip_clock_update = 1;
975 }
976 
977 #ifdef CONFIG_SMP
978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979 {
980 #ifdef CONFIG_SCHED_DEBUG
981 	/*
982 	 * We should never call set_task_cpu() on a blocked task,
983 	 * ttwu() will sort out the placement.
984 	 */
985 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987 
988 #ifdef CONFIG_LOCKDEP
989 	/*
990 	 * The caller should hold either p->pi_lock or rq->lock, when changing
991 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 	 *
993 	 * sched_move_task() holds both and thus holding either pins the cgroup,
994 	 * see task_group().
995 	 *
996 	 * Furthermore, all task_rq users should acquire both locks, see
997 	 * task_rq_lock().
998 	 */
999 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 				      lockdep_is_held(&task_rq(p)->lock)));
1001 #endif
1002 #endif
1003 
1004 	trace_sched_migrate_task(p, new_cpu);
1005 
1006 	if (task_cpu(p) != new_cpu) {
1007 		if (p->sched_class->migrate_task_rq)
1008 			p->sched_class->migrate_task_rq(p, new_cpu);
1009 		p->se.nr_migrations++;
1010 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011 	}
1012 
1013 	__set_task_cpu(p, new_cpu);
1014 }
1015 
1016 static void __migrate_swap_task(struct task_struct *p, int cpu)
1017 {
1018 	if (p->on_rq) {
1019 		struct rq *src_rq, *dst_rq;
1020 
1021 		src_rq = task_rq(p);
1022 		dst_rq = cpu_rq(cpu);
1023 
1024 		deactivate_task(src_rq, p, 0);
1025 		set_task_cpu(p, cpu);
1026 		activate_task(dst_rq, p, 0);
1027 		check_preempt_curr(dst_rq, p, 0);
1028 	} else {
1029 		/*
1030 		 * Task isn't running anymore; make it appear like we migrated
1031 		 * it before it went to sleep. This means on wakeup we make the
1032 		 * previous cpu our targer instead of where it really is.
1033 		 */
1034 		p->wake_cpu = cpu;
1035 	}
1036 }
1037 
1038 struct migration_swap_arg {
1039 	struct task_struct *src_task, *dst_task;
1040 	int src_cpu, dst_cpu;
1041 };
1042 
1043 static int migrate_swap_stop(void *data)
1044 {
1045 	struct migration_swap_arg *arg = data;
1046 	struct rq *src_rq, *dst_rq;
1047 	int ret = -EAGAIN;
1048 
1049 	src_rq = cpu_rq(arg->src_cpu);
1050 	dst_rq = cpu_rq(arg->dst_cpu);
1051 
1052 	double_raw_lock(&arg->src_task->pi_lock,
1053 			&arg->dst_task->pi_lock);
1054 	double_rq_lock(src_rq, dst_rq);
1055 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 		goto unlock;
1057 
1058 	if (task_cpu(arg->src_task) != arg->src_cpu)
1059 		goto unlock;
1060 
1061 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 		goto unlock;
1063 
1064 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 		goto unlock;
1066 
1067 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1069 
1070 	ret = 0;
1071 
1072 unlock:
1073 	double_rq_unlock(src_rq, dst_rq);
1074 	raw_spin_unlock(&arg->dst_task->pi_lock);
1075 	raw_spin_unlock(&arg->src_task->pi_lock);
1076 
1077 	return ret;
1078 }
1079 
1080 /*
1081  * Cross migrate two tasks
1082  */
1083 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084 {
1085 	struct migration_swap_arg arg;
1086 	int ret = -EINVAL;
1087 
1088 	arg = (struct migration_swap_arg){
1089 		.src_task = cur,
1090 		.src_cpu = task_cpu(cur),
1091 		.dst_task = p,
1092 		.dst_cpu = task_cpu(p),
1093 	};
1094 
1095 	if (arg.src_cpu == arg.dst_cpu)
1096 		goto out;
1097 
1098 	/*
1099 	 * These three tests are all lockless; this is OK since all of them
1100 	 * will be re-checked with proper locks held further down the line.
1101 	 */
1102 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 		goto out;
1104 
1105 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 		goto out;
1107 
1108 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 		goto out;
1110 
1111 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113 
1114 out:
1115 	return ret;
1116 }
1117 
1118 struct migration_arg {
1119 	struct task_struct *task;
1120 	int dest_cpu;
1121 };
1122 
1123 static int migration_cpu_stop(void *data);
1124 
1125 /*
1126  * wait_task_inactive - wait for a thread to unschedule.
1127  *
1128  * If @match_state is nonzero, it's the @p->state value just checked and
1129  * not expected to change.  If it changes, i.e. @p might have woken up,
1130  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1131  * we return a positive number (its total switch count).  If a second call
1132  * a short while later returns the same number, the caller can be sure that
1133  * @p has remained unscheduled the whole time.
1134  *
1135  * The caller must ensure that the task *will* unschedule sometime soon,
1136  * else this function might spin for a *long* time. This function can't
1137  * be called with interrupts off, or it may introduce deadlock with
1138  * smp_call_function() if an IPI is sent by the same process we are
1139  * waiting to become inactive.
1140  */
1141 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142 {
1143 	unsigned long flags;
1144 	int running, on_rq;
1145 	unsigned long ncsw;
1146 	struct rq *rq;
1147 
1148 	for (;;) {
1149 		/*
1150 		 * We do the initial early heuristics without holding
1151 		 * any task-queue locks at all. We'll only try to get
1152 		 * the runqueue lock when things look like they will
1153 		 * work out!
1154 		 */
1155 		rq = task_rq(p);
1156 
1157 		/*
1158 		 * If the task is actively running on another CPU
1159 		 * still, just relax and busy-wait without holding
1160 		 * any locks.
1161 		 *
1162 		 * NOTE! Since we don't hold any locks, it's not
1163 		 * even sure that "rq" stays as the right runqueue!
1164 		 * But we don't care, since "task_running()" will
1165 		 * return false if the runqueue has changed and p
1166 		 * is actually now running somewhere else!
1167 		 */
1168 		while (task_running(rq, p)) {
1169 			if (match_state && unlikely(p->state != match_state))
1170 				return 0;
1171 			cpu_relax();
1172 		}
1173 
1174 		/*
1175 		 * Ok, time to look more closely! We need the rq
1176 		 * lock now, to be *sure*. If we're wrong, we'll
1177 		 * just go back and repeat.
1178 		 */
1179 		rq = task_rq_lock(p, &flags);
1180 		trace_sched_wait_task(p);
1181 		running = task_running(rq, p);
1182 		on_rq = p->on_rq;
1183 		ncsw = 0;
1184 		if (!match_state || p->state == match_state)
1185 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186 		task_rq_unlock(rq, p, &flags);
1187 
1188 		/*
1189 		 * If it changed from the expected state, bail out now.
1190 		 */
1191 		if (unlikely(!ncsw))
1192 			break;
1193 
1194 		/*
1195 		 * Was it really running after all now that we
1196 		 * checked with the proper locks actually held?
1197 		 *
1198 		 * Oops. Go back and try again..
1199 		 */
1200 		if (unlikely(running)) {
1201 			cpu_relax();
1202 			continue;
1203 		}
1204 
1205 		/*
1206 		 * It's not enough that it's not actively running,
1207 		 * it must be off the runqueue _entirely_, and not
1208 		 * preempted!
1209 		 *
1210 		 * So if it was still runnable (but just not actively
1211 		 * running right now), it's preempted, and we should
1212 		 * yield - it could be a while.
1213 		 */
1214 		if (unlikely(on_rq)) {
1215 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216 
1217 			set_current_state(TASK_UNINTERRUPTIBLE);
1218 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219 			continue;
1220 		}
1221 
1222 		/*
1223 		 * Ahh, all good. It wasn't running, and it wasn't
1224 		 * runnable, which means that it will never become
1225 		 * running in the future either. We're all done!
1226 		 */
1227 		break;
1228 	}
1229 
1230 	return ncsw;
1231 }
1232 
1233 /***
1234  * kick_process - kick a running thread to enter/exit the kernel
1235  * @p: the to-be-kicked thread
1236  *
1237  * Cause a process which is running on another CPU to enter
1238  * kernel-mode, without any delay. (to get signals handled.)
1239  *
1240  * NOTE: this function doesn't have to take the runqueue lock,
1241  * because all it wants to ensure is that the remote task enters
1242  * the kernel. If the IPI races and the task has been migrated
1243  * to another CPU then no harm is done and the purpose has been
1244  * achieved as well.
1245  */
1246 void kick_process(struct task_struct *p)
1247 {
1248 	int cpu;
1249 
1250 	preempt_disable();
1251 	cpu = task_cpu(p);
1252 	if ((cpu != smp_processor_id()) && task_curr(p))
1253 		smp_send_reschedule(cpu);
1254 	preempt_enable();
1255 }
1256 EXPORT_SYMBOL_GPL(kick_process);
1257 #endif /* CONFIG_SMP */
1258 
1259 #ifdef CONFIG_SMP
1260 /*
1261  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262  */
1263 static int select_fallback_rq(int cpu, struct task_struct *p)
1264 {
1265 	int nid = cpu_to_node(cpu);
1266 	const struct cpumask *nodemask = NULL;
1267 	enum { cpuset, possible, fail } state = cpuset;
1268 	int dest_cpu;
1269 
1270 	/*
1271 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 	 * will return -1. There is no cpu on the node, and we should
1273 	 * select the cpu on the other node.
1274 	 */
1275 	if (nid != -1) {
1276 		nodemask = cpumask_of_node(nid);
1277 
1278 		/* Look for allowed, online CPU in same node. */
1279 		for_each_cpu(dest_cpu, nodemask) {
1280 			if (!cpu_online(dest_cpu))
1281 				continue;
1282 			if (!cpu_active(dest_cpu))
1283 				continue;
1284 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285 				return dest_cpu;
1286 		}
1287 	}
1288 
1289 	for (;;) {
1290 		/* Any allowed, online CPU? */
1291 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292 			if (!cpu_online(dest_cpu))
1293 				continue;
1294 			if (!cpu_active(dest_cpu))
1295 				continue;
1296 			goto out;
1297 		}
1298 
1299 		switch (state) {
1300 		case cpuset:
1301 			/* No more Mr. Nice Guy. */
1302 			cpuset_cpus_allowed_fallback(p);
1303 			state = possible;
1304 			break;
1305 
1306 		case possible:
1307 			do_set_cpus_allowed(p, cpu_possible_mask);
1308 			state = fail;
1309 			break;
1310 
1311 		case fail:
1312 			BUG();
1313 			break;
1314 		}
1315 	}
1316 
1317 out:
1318 	if (state != cpuset) {
1319 		/*
1320 		 * Don't tell them about moving exiting tasks or
1321 		 * kernel threads (both mm NULL), since they never
1322 		 * leave kernel.
1323 		 */
1324 		if (p->mm && printk_ratelimit()) {
1325 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 					task_pid_nr(p), p->comm, cpu);
1327 		}
1328 	}
1329 
1330 	return dest_cpu;
1331 }
1332 
1333 /*
1334  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335  */
1336 static inline
1337 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338 {
1339 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340 
1341 	/*
1342 	 * In order not to call set_task_cpu() on a blocking task we need
1343 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344 	 * cpu.
1345 	 *
1346 	 * Since this is common to all placement strategies, this lives here.
1347 	 *
1348 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 	 *   not worry about this generic constraint ]
1350 	 */
1351 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1352 		     !cpu_online(cpu)))
1353 		cpu = select_fallback_rq(task_cpu(p), p);
1354 
1355 	return cpu;
1356 }
1357 
1358 static void update_avg(u64 *avg, u64 sample)
1359 {
1360 	s64 diff = sample - *avg;
1361 	*avg += diff >> 3;
1362 }
1363 #endif
1364 
1365 static void
1366 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1367 {
1368 #ifdef CONFIG_SCHEDSTATS
1369 	struct rq *rq = this_rq();
1370 
1371 #ifdef CONFIG_SMP
1372 	int this_cpu = smp_processor_id();
1373 
1374 	if (cpu == this_cpu) {
1375 		schedstat_inc(rq, ttwu_local);
1376 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1377 	} else {
1378 		struct sched_domain *sd;
1379 
1380 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381 		rcu_read_lock();
1382 		for_each_domain(this_cpu, sd) {
1383 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384 				schedstat_inc(sd, ttwu_wake_remote);
1385 				break;
1386 			}
1387 		}
1388 		rcu_read_unlock();
1389 	}
1390 
1391 	if (wake_flags & WF_MIGRATED)
1392 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393 
1394 #endif /* CONFIG_SMP */
1395 
1396 	schedstat_inc(rq, ttwu_count);
1397 	schedstat_inc(p, se.statistics.nr_wakeups);
1398 
1399 	if (wake_flags & WF_SYNC)
1400 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1401 
1402 #endif /* CONFIG_SCHEDSTATS */
1403 }
1404 
1405 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406 {
1407 	activate_task(rq, p, en_flags);
1408 	p->on_rq = 1;
1409 
1410 	/* if a worker is waking up, notify workqueue */
1411 	if (p->flags & PF_WQ_WORKER)
1412 		wq_worker_waking_up(p, cpu_of(rq));
1413 }
1414 
1415 /*
1416  * Mark the task runnable and perform wakeup-preemption.
1417  */
1418 static void
1419 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1420 {
1421 	check_preempt_curr(rq, p, wake_flags);
1422 	trace_sched_wakeup(p, true);
1423 
1424 	p->state = TASK_RUNNING;
1425 #ifdef CONFIG_SMP
1426 	if (p->sched_class->task_woken)
1427 		p->sched_class->task_woken(rq, p);
1428 
1429 	if (rq->idle_stamp) {
1430 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1431 		u64 max = 2*rq->max_idle_balance_cost;
1432 
1433 		update_avg(&rq->avg_idle, delta);
1434 
1435 		if (rq->avg_idle > max)
1436 			rq->avg_idle = max;
1437 
1438 		rq->idle_stamp = 0;
1439 	}
1440 #endif
1441 }
1442 
1443 static void
1444 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445 {
1446 #ifdef CONFIG_SMP
1447 	if (p->sched_contributes_to_load)
1448 		rq->nr_uninterruptible--;
1449 #endif
1450 
1451 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452 	ttwu_do_wakeup(rq, p, wake_flags);
1453 }
1454 
1455 /*
1456  * Called in case the task @p isn't fully descheduled from its runqueue,
1457  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458  * since all we need to do is flip p->state to TASK_RUNNING, since
1459  * the task is still ->on_rq.
1460  */
1461 static int ttwu_remote(struct task_struct *p, int wake_flags)
1462 {
1463 	struct rq *rq;
1464 	int ret = 0;
1465 
1466 	rq = __task_rq_lock(p);
1467 	if (p->on_rq) {
1468 		/* check_preempt_curr() may use rq clock */
1469 		update_rq_clock(rq);
1470 		ttwu_do_wakeup(rq, p, wake_flags);
1471 		ret = 1;
1472 	}
1473 	__task_rq_unlock(rq);
1474 
1475 	return ret;
1476 }
1477 
1478 #ifdef CONFIG_SMP
1479 static void sched_ttwu_pending(void)
1480 {
1481 	struct rq *rq = this_rq();
1482 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1483 	struct task_struct *p;
1484 
1485 	raw_spin_lock(&rq->lock);
1486 
1487 	while (llist) {
1488 		p = llist_entry(llist, struct task_struct, wake_entry);
1489 		llist = llist_next(llist);
1490 		ttwu_do_activate(rq, p, 0);
1491 	}
1492 
1493 	raw_spin_unlock(&rq->lock);
1494 }
1495 
1496 void scheduler_ipi(void)
1497 {
1498 	/*
1499 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501 	 * this IPI.
1502 	 */
1503 	preempt_fold_need_resched();
1504 
1505 	if (llist_empty(&this_rq()->wake_list)
1506 			&& !tick_nohz_full_cpu(smp_processor_id())
1507 			&& !got_nohz_idle_kick())
1508 		return;
1509 
1510 	/*
1511 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 	 * traditionally all their work was done from the interrupt return
1513 	 * path. Now that we actually do some work, we need to make sure
1514 	 * we do call them.
1515 	 *
1516 	 * Some archs already do call them, luckily irq_enter/exit nest
1517 	 * properly.
1518 	 *
1519 	 * Arguably we should visit all archs and update all handlers,
1520 	 * however a fair share of IPIs are still resched only so this would
1521 	 * somewhat pessimize the simple resched case.
1522 	 */
1523 	irq_enter();
1524 	tick_nohz_full_check();
1525 	sched_ttwu_pending();
1526 
1527 	/*
1528 	 * Check if someone kicked us for doing the nohz idle load balance.
1529 	 */
1530 	if (unlikely(got_nohz_idle_kick())) {
1531 		this_rq()->idle_balance = 1;
1532 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1533 	}
1534 	irq_exit();
1535 }
1536 
1537 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538 {
1539 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540 		smp_send_reschedule(cpu);
1541 }
1542 
1543 bool cpus_share_cache(int this_cpu, int that_cpu)
1544 {
1545 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546 }
1547 #endif /* CONFIG_SMP */
1548 
1549 static void ttwu_queue(struct task_struct *p, int cpu)
1550 {
1551 	struct rq *rq = cpu_rq(cpu);
1552 
1553 #if defined(CONFIG_SMP)
1554 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556 		ttwu_queue_remote(p, cpu);
1557 		return;
1558 	}
1559 #endif
1560 
1561 	raw_spin_lock(&rq->lock);
1562 	ttwu_do_activate(rq, p, 0);
1563 	raw_spin_unlock(&rq->lock);
1564 }
1565 
1566 /**
1567  * try_to_wake_up - wake up a thread
1568  * @p: the thread to be awakened
1569  * @state: the mask of task states that can be woken
1570  * @wake_flags: wake modifier flags (WF_*)
1571  *
1572  * Put it on the run-queue if it's not already there. The "current"
1573  * thread is always on the run-queue (except when the actual
1574  * re-schedule is in progress), and as such you're allowed to do
1575  * the simpler "current->state = TASK_RUNNING" to mark yourself
1576  * runnable without the overhead of this.
1577  *
1578  * Return: %true if @p was woken up, %false if it was already running.
1579  * or @state didn't match @p's state.
1580  */
1581 static int
1582 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583 {
1584 	unsigned long flags;
1585 	int cpu, success = 0;
1586 
1587 	/*
1588 	 * If we are going to wake up a thread waiting for CONDITION we
1589 	 * need to ensure that CONDITION=1 done by the caller can not be
1590 	 * reordered with p->state check below. This pairs with mb() in
1591 	 * set_current_state() the waiting thread does.
1592 	 */
1593 	smp_mb__before_spinlock();
1594 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1595 	if (!(p->state & state))
1596 		goto out;
1597 
1598 	success = 1; /* we're going to change ->state */
1599 	cpu = task_cpu(p);
1600 
1601 	if (p->on_rq && ttwu_remote(p, wake_flags))
1602 		goto stat;
1603 
1604 #ifdef CONFIG_SMP
1605 	/*
1606 	 * If the owning (remote) cpu is still in the middle of schedule() with
1607 	 * this task as prev, wait until its done referencing the task.
1608 	 */
1609 	while (p->on_cpu)
1610 		cpu_relax();
1611 	/*
1612 	 * Pairs with the smp_wmb() in finish_lock_switch().
1613 	 */
1614 	smp_rmb();
1615 
1616 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617 	p->state = TASK_WAKING;
1618 
1619 	if (p->sched_class->task_waking)
1620 		p->sched_class->task_waking(p);
1621 
1622 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623 	if (task_cpu(p) != cpu) {
1624 		wake_flags |= WF_MIGRATED;
1625 		set_task_cpu(p, cpu);
1626 	}
1627 #endif /* CONFIG_SMP */
1628 
1629 	ttwu_queue(p, cpu);
1630 stat:
1631 	ttwu_stat(p, cpu, wake_flags);
1632 out:
1633 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634 
1635 	return success;
1636 }
1637 
1638 /**
1639  * try_to_wake_up_local - try to wake up a local task with rq lock held
1640  * @p: the thread to be awakened
1641  *
1642  * Put @p on the run-queue if it's not already there. The caller must
1643  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644  * the current task.
1645  */
1646 static void try_to_wake_up_local(struct task_struct *p)
1647 {
1648 	struct rq *rq = task_rq(p);
1649 
1650 	if (WARN_ON_ONCE(rq != this_rq()) ||
1651 	    WARN_ON_ONCE(p == current))
1652 		return;
1653 
1654 	lockdep_assert_held(&rq->lock);
1655 
1656 	if (!raw_spin_trylock(&p->pi_lock)) {
1657 		raw_spin_unlock(&rq->lock);
1658 		raw_spin_lock(&p->pi_lock);
1659 		raw_spin_lock(&rq->lock);
1660 	}
1661 
1662 	if (!(p->state & TASK_NORMAL))
1663 		goto out;
1664 
1665 	if (!p->on_rq)
1666 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667 
1668 	ttwu_do_wakeup(rq, p, 0);
1669 	ttwu_stat(p, smp_processor_id(), 0);
1670 out:
1671 	raw_spin_unlock(&p->pi_lock);
1672 }
1673 
1674 /**
1675  * wake_up_process - Wake up a specific process
1676  * @p: The process to be woken up.
1677  *
1678  * Attempt to wake up the nominated process and move it to the set of runnable
1679  * processes.
1680  *
1681  * Return: 1 if the process was woken up, 0 if it was already running.
1682  *
1683  * It may be assumed that this function implies a write memory barrier before
1684  * changing the task state if and only if any tasks are woken up.
1685  */
1686 int wake_up_process(struct task_struct *p)
1687 {
1688 	WARN_ON(task_is_stopped_or_traced(p));
1689 	return try_to_wake_up(p, TASK_NORMAL, 0);
1690 }
1691 EXPORT_SYMBOL(wake_up_process);
1692 
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1694 {
1695 	return try_to_wake_up(p, state, 0);
1696 }
1697 
1698 /*
1699  * Perform scheduler related setup for a newly forked process p.
1700  * p is forked by current.
1701  *
1702  * __sched_fork() is basic setup used by init_idle() too:
1703  */
1704 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705 {
1706 	p->on_rq			= 0;
1707 
1708 	p->se.on_rq			= 0;
1709 	p->se.exec_start		= 0;
1710 	p->se.sum_exec_runtime		= 0;
1711 	p->se.prev_sum_exec_runtime	= 0;
1712 	p->se.nr_migrations		= 0;
1713 	p->se.vruntime			= 0;
1714 	INIT_LIST_HEAD(&p->se.group_node);
1715 
1716 #ifdef CONFIG_SCHEDSTATS
1717 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1719 
1720 	RB_CLEAR_NODE(&p->dl.rb_node);
1721 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722 	p->dl.dl_runtime = p->dl.runtime = 0;
1723 	p->dl.dl_deadline = p->dl.deadline = 0;
1724 	p->dl.dl_period = 0;
1725 	p->dl.flags = 0;
1726 
1727 	INIT_LIST_HEAD(&p->rt.run_list);
1728 
1729 #ifdef CONFIG_PREEMPT_NOTIFIERS
1730 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1731 #endif
1732 
1733 #ifdef CONFIG_NUMA_BALANCING
1734 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736 		p->mm->numa_scan_seq = 0;
1737 	}
1738 
1739 	if (clone_flags & CLONE_VM)
1740 		p->numa_preferred_nid = current->numa_preferred_nid;
1741 	else
1742 		p->numa_preferred_nid = -1;
1743 
1744 	p->node_stamp = 0ULL;
1745 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747 	p->numa_work.next = &p->numa_work;
1748 	p->numa_faults = NULL;
1749 	p->numa_faults_buffer = NULL;
1750 
1751 	INIT_LIST_HEAD(&p->numa_entry);
1752 	p->numa_group = NULL;
1753 #endif /* CONFIG_NUMA_BALANCING */
1754 }
1755 
1756 #ifdef CONFIG_NUMA_BALANCING
1757 #ifdef CONFIG_SCHED_DEBUG
1758 void set_numabalancing_state(bool enabled)
1759 {
1760 	if (enabled)
1761 		sched_feat_set("NUMA");
1762 	else
1763 		sched_feat_set("NO_NUMA");
1764 }
1765 #else
1766 __read_mostly bool numabalancing_enabled;
1767 
1768 void set_numabalancing_state(bool enabled)
1769 {
1770 	numabalancing_enabled = enabled;
1771 }
1772 #endif /* CONFIG_SCHED_DEBUG */
1773 
1774 #ifdef CONFIG_PROC_SYSCTL
1775 int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1777 {
1778 	struct ctl_table t;
1779 	int err;
1780 	int state = numabalancing_enabled;
1781 
1782 	if (write && !capable(CAP_SYS_ADMIN))
1783 		return -EPERM;
1784 
1785 	t = *table;
1786 	t.data = &state;
1787 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 	if (err < 0)
1789 		return err;
1790 	if (write)
1791 		set_numabalancing_state(state);
1792 	return err;
1793 }
1794 #endif
1795 #endif
1796 
1797 /*
1798  * fork()/clone()-time setup:
1799  */
1800 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801 {
1802 	unsigned long flags;
1803 	int cpu = get_cpu();
1804 
1805 	__sched_fork(clone_flags, p);
1806 	/*
1807 	 * We mark the process as running here. This guarantees that
1808 	 * nobody will actually run it, and a signal or other external
1809 	 * event cannot wake it up and insert it on the runqueue either.
1810 	 */
1811 	p->state = TASK_RUNNING;
1812 
1813 	/*
1814 	 * Make sure we do not leak PI boosting priority to the child.
1815 	 */
1816 	p->prio = current->normal_prio;
1817 
1818 	/*
1819 	 * Revert to default priority/policy on fork if requested.
1820 	 */
1821 	if (unlikely(p->sched_reset_on_fork)) {
1822 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823 			p->policy = SCHED_NORMAL;
1824 			p->static_prio = NICE_TO_PRIO(0);
1825 			p->rt_priority = 0;
1826 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 			p->static_prio = NICE_TO_PRIO(0);
1828 
1829 		p->prio = p->normal_prio = __normal_prio(p);
1830 		set_load_weight(p);
1831 
1832 		/*
1833 		 * We don't need the reset flag anymore after the fork. It has
1834 		 * fulfilled its duty:
1835 		 */
1836 		p->sched_reset_on_fork = 0;
1837 	}
1838 
1839 	if (dl_prio(p->prio)) {
1840 		put_cpu();
1841 		return -EAGAIN;
1842 	} else if (rt_prio(p->prio)) {
1843 		p->sched_class = &rt_sched_class;
1844 	} else {
1845 		p->sched_class = &fair_sched_class;
1846 	}
1847 
1848 	if (p->sched_class->task_fork)
1849 		p->sched_class->task_fork(p);
1850 
1851 	/*
1852 	 * The child is not yet in the pid-hash so no cgroup attach races,
1853 	 * and the cgroup is pinned to this child due to cgroup_fork()
1854 	 * is ran before sched_fork().
1855 	 *
1856 	 * Silence PROVE_RCU.
1857 	 */
1858 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1859 	set_task_cpu(p, cpu);
1860 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861 
1862 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863 	if (likely(sched_info_on()))
1864 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1865 #endif
1866 #if defined(CONFIG_SMP)
1867 	p->on_cpu = 0;
1868 #endif
1869 	init_task_preempt_count(p);
1870 #ifdef CONFIG_SMP
1871 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873 #endif
1874 
1875 	put_cpu();
1876 	return 0;
1877 }
1878 
1879 unsigned long to_ratio(u64 period, u64 runtime)
1880 {
1881 	if (runtime == RUNTIME_INF)
1882 		return 1ULL << 20;
1883 
1884 	/*
1885 	 * Doing this here saves a lot of checks in all
1886 	 * the calling paths, and returning zero seems
1887 	 * safe for them anyway.
1888 	 */
1889 	if (period == 0)
1890 		return 0;
1891 
1892 	return div64_u64(runtime << 20, period);
1893 }
1894 
1895 #ifdef CONFIG_SMP
1896 inline struct dl_bw *dl_bw_of(int i)
1897 {
1898 	return &cpu_rq(i)->rd->dl_bw;
1899 }
1900 
1901 static inline int dl_bw_cpus(int i)
1902 {
1903 	struct root_domain *rd = cpu_rq(i)->rd;
1904 	int cpus = 0;
1905 
1906 	for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 		cpus++;
1908 
1909 	return cpus;
1910 }
1911 #else
1912 inline struct dl_bw *dl_bw_of(int i)
1913 {
1914 	return &cpu_rq(i)->dl.dl_bw;
1915 }
1916 
1917 static inline int dl_bw_cpus(int i)
1918 {
1919 	return 1;
1920 }
1921 #endif
1922 
1923 static inline
1924 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925 {
1926 	dl_b->total_bw -= tsk_bw;
1927 }
1928 
1929 static inline
1930 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931 {
1932 	dl_b->total_bw += tsk_bw;
1933 }
1934 
1935 static inline
1936 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937 {
1938 	return dl_b->bw != -1 &&
1939 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940 }
1941 
1942 /*
1943  * We must be sure that accepting a new task (or allowing changing the
1944  * parameters of an existing one) is consistent with the bandwidth
1945  * constraints. If yes, this function also accordingly updates the currently
1946  * allocated bandwidth to reflect the new situation.
1947  *
1948  * This function is called while holding p's rq->lock.
1949  */
1950 static int dl_overflow(struct task_struct *p, int policy,
1951 		       const struct sched_attr *attr)
1952 {
1953 
1954 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955 	u64 period = attr->sched_period ?: attr->sched_deadline;
1956 	u64 runtime = attr->sched_runtime;
1957 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958 	int cpus, err = -1;
1959 
1960 	if (new_bw == p->dl.dl_bw)
1961 		return 0;
1962 
1963 	/*
1964 	 * Either if a task, enters, leave, or stays -deadline but changes
1965 	 * its parameters, we may need to update accordingly the total
1966 	 * allocated bandwidth of the container.
1967 	 */
1968 	raw_spin_lock(&dl_b->lock);
1969 	cpus = dl_bw_cpus(task_cpu(p));
1970 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 		__dl_add(dl_b, new_bw);
1973 		err = 0;
1974 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 		__dl_clear(dl_b, p->dl.dl_bw);
1977 		__dl_add(dl_b, new_bw);
1978 		err = 0;
1979 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 		__dl_clear(dl_b, p->dl.dl_bw);
1981 		err = 0;
1982 	}
1983 	raw_spin_unlock(&dl_b->lock);
1984 
1985 	return err;
1986 }
1987 
1988 extern void init_dl_bw(struct dl_bw *dl_b);
1989 
1990 /*
1991  * wake_up_new_task - wake up a newly created task for the first time.
1992  *
1993  * This function will do some initial scheduler statistics housekeeping
1994  * that must be done for every newly created context, then puts the task
1995  * on the runqueue and wakes it.
1996  */
1997 void wake_up_new_task(struct task_struct *p)
1998 {
1999 	unsigned long flags;
2000 	struct rq *rq;
2001 
2002 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2003 #ifdef CONFIG_SMP
2004 	/*
2005 	 * Fork balancing, do it here and not earlier because:
2006 	 *  - cpus_allowed can change in the fork path
2007 	 *  - any previously selected cpu might disappear through hotplug
2008 	 */
2009 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010 #endif
2011 
2012 	/* Initialize new task's runnable average */
2013 	init_task_runnable_average(p);
2014 	rq = __task_rq_lock(p);
2015 	activate_task(rq, p, 0);
2016 	p->on_rq = 1;
2017 	trace_sched_wakeup_new(p, true);
2018 	check_preempt_curr(rq, p, WF_FORK);
2019 #ifdef CONFIG_SMP
2020 	if (p->sched_class->task_woken)
2021 		p->sched_class->task_woken(rq, p);
2022 #endif
2023 	task_rq_unlock(rq, p, &flags);
2024 }
2025 
2026 #ifdef CONFIG_PREEMPT_NOTIFIERS
2027 
2028 /**
2029  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030  * @notifier: notifier struct to register
2031  */
2032 void preempt_notifier_register(struct preempt_notifier *notifier)
2033 {
2034 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035 }
2036 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037 
2038 /**
2039  * preempt_notifier_unregister - no longer interested in preemption notifications
2040  * @notifier: notifier struct to unregister
2041  *
2042  * This is safe to call from within a preemption notifier.
2043  */
2044 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045 {
2046 	hlist_del(&notifier->link);
2047 }
2048 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049 
2050 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051 {
2052 	struct preempt_notifier *notifier;
2053 
2054 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056 }
2057 
2058 static void
2059 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 				 struct task_struct *next)
2061 {
2062 	struct preempt_notifier *notifier;
2063 
2064 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065 		notifier->ops->sched_out(notifier, next);
2066 }
2067 
2068 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2069 
2070 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071 {
2072 }
2073 
2074 static void
2075 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 				 struct task_struct *next)
2077 {
2078 }
2079 
2080 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2081 
2082 /**
2083  * prepare_task_switch - prepare to switch tasks
2084  * @rq: the runqueue preparing to switch
2085  * @prev: the current task that is being switched out
2086  * @next: the task we are going to switch to.
2087  *
2088  * This is called with the rq lock held and interrupts off. It must
2089  * be paired with a subsequent finish_task_switch after the context
2090  * switch.
2091  *
2092  * prepare_task_switch sets up locking and calls architecture specific
2093  * hooks.
2094  */
2095 static inline void
2096 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 		    struct task_struct *next)
2098 {
2099 	trace_sched_switch(prev, next);
2100 	sched_info_switch(rq, prev, next);
2101 	perf_event_task_sched_out(prev, next);
2102 	fire_sched_out_preempt_notifiers(prev, next);
2103 	prepare_lock_switch(rq, next);
2104 	prepare_arch_switch(next);
2105 }
2106 
2107 /**
2108  * finish_task_switch - clean up after a task-switch
2109  * @rq: runqueue associated with task-switch
2110  * @prev: the thread we just switched away from.
2111  *
2112  * finish_task_switch must be called after the context switch, paired
2113  * with a prepare_task_switch call before the context switch.
2114  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115  * and do any other architecture-specific cleanup actions.
2116  *
2117  * Note that we may have delayed dropping an mm in context_switch(). If
2118  * so, we finish that here outside of the runqueue lock. (Doing it
2119  * with the lock held can cause deadlocks; see schedule() for
2120  * details.)
2121  */
2122 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123 	__releases(rq->lock)
2124 {
2125 	struct mm_struct *mm = rq->prev_mm;
2126 	long prev_state;
2127 
2128 	rq->prev_mm = NULL;
2129 
2130 	/*
2131 	 * A task struct has one reference for the use as "current".
2132 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133 	 * schedule one last time. The schedule call will never return, and
2134 	 * the scheduled task must drop that reference.
2135 	 * The test for TASK_DEAD must occur while the runqueue locks are
2136 	 * still held, otherwise prev could be scheduled on another cpu, die
2137 	 * there before we look at prev->state, and then the reference would
2138 	 * be dropped twice.
2139 	 *		Manfred Spraul <manfred@colorfullife.com>
2140 	 */
2141 	prev_state = prev->state;
2142 	vtime_task_switch(prev);
2143 	finish_arch_switch(prev);
2144 	perf_event_task_sched_in(prev, current);
2145 	finish_lock_switch(rq, prev);
2146 	finish_arch_post_lock_switch();
2147 
2148 	fire_sched_in_preempt_notifiers(current);
2149 	if (mm)
2150 		mmdrop(mm);
2151 	if (unlikely(prev_state == TASK_DEAD)) {
2152 		task_numa_free(prev);
2153 
2154 		if (prev->sched_class->task_dead)
2155 			prev->sched_class->task_dead(prev);
2156 
2157 		/*
2158 		 * Remove function-return probe instances associated with this
2159 		 * task and put them back on the free list.
2160 		 */
2161 		kprobe_flush_task(prev);
2162 		put_task_struct(prev);
2163 	}
2164 
2165 	tick_nohz_task_switch(current);
2166 }
2167 
2168 #ifdef CONFIG_SMP
2169 
2170 /* assumes rq->lock is held */
2171 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2172 {
2173 	if (prev->sched_class->pre_schedule)
2174 		prev->sched_class->pre_schedule(rq, prev);
2175 }
2176 
2177 /* rq->lock is NOT held, but preemption is disabled */
2178 static inline void post_schedule(struct rq *rq)
2179 {
2180 	if (rq->post_schedule) {
2181 		unsigned long flags;
2182 
2183 		raw_spin_lock_irqsave(&rq->lock, flags);
2184 		if (rq->curr->sched_class->post_schedule)
2185 			rq->curr->sched_class->post_schedule(rq);
2186 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2187 
2188 		rq->post_schedule = 0;
2189 	}
2190 }
2191 
2192 #else
2193 
2194 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2195 {
2196 }
2197 
2198 static inline void post_schedule(struct rq *rq)
2199 {
2200 }
2201 
2202 #endif
2203 
2204 /**
2205  * schedule_tail - first thing a freshly forked thread must call.
2206  * @prev: the thread we just switched away from.
2207  */
2208 asmlinkage void schedule_tail(struct task_struct *prev)
2209 	__releases(rq->lock)
2210 {
2211 	struct rq *rq = this_rq();
2212 
2213 	finish_task_switch(rq, prev);
2214 
2215 	/*
2216 	 * FIXME: do we need to worry about rq being invalidated by the
2217 	 * task_switch?
2218 	 */
2219 	post_schedule(rq);
2220 
2221 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2222 	/* In this case, finish_task_switch does not reenable preemption */
2223 	preempt_enable();
2224 #endif
2225 	if (current->set_child_tid)
2226 		put_user(task_pid_vnr(current), current->set_child_tid);
2227 }
2228 
2229 /*
2230  * context_switch - switch to the new MM and the new
2231  * thread's register state.
2232  */
2233 static inline void
2234 context_switch(struct rq *rq, struct task_struct *prev,
2235 	       struct task_struct *next)
2236 {
2237 	struct mm_struct *mm, *oldmm;
2238 
2239 	prepare_task_switch(rq, prev, next);
2240 
2241 	mm = next->mm;
2242 	oldmm = prev->active_mm;
2243 	/*
2244 	 * For paravirt, this is coupled with an exit in switch_to to
2245 	 * combine the page table reload and the switch backend into
2246 	 * one hypercall.
2247 	 */
2248 	arch_start_context_switch(prev);
2249 
2250 	if (!mm) {
2251 		next->active_mm = oldmm;
2252 		atomic_inc(&oldmm->mm_count);
2253 		enter_lazy_tlb(oldmm, next);
2254 	} else
2255 		switch_mm(oldmm, mm, next);
2256 
2257 	if (!prev->mm) {
2258 		prev->active_mm = NULL;
2259 		rq->prev_mm = oldmm;
2260 	}
2261 	/*
2262 	 * Since the runqueue lock will be released by the next
2263 	 * task (which is an invalid locking op but in the case
2264 	 * of the scheduler it's an obvious special-case), so we
2265 	 * do an early lockdep release here:
2266 	 */
2267 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2268 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2269 #endif
2270 
2271 	context_tracking_task_switch(prev, next);
2272 	/* Here we just switch the register state and the stack. */
2273 	switch_to(prev, next, prev);
2274 
2275 	barrier();
2276 	/*
2277 	 * this_rq must be evaluated again because prev may have moved
2278 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2279 	 * frame will be invalid.
2280 	 */
2281 	finish_task_switch(this_rq(), prev);
2282 }
2283 
2284 /*
2285  * nr_running and nr_context_switches:
2286  *
2287  * externally visible scheduler statistics: current number of runnable
2288  * threads, total number of context switches performed since bootup.
2289  */
2290 unsigned long nr_running(void)
2291 {
2292 	unsigned long i, sum = 0;
2293 
2294 	for_each_online_cpu(i)
2295 		sum += cpu_rq(i)->nr_running;
2296 
2297 	return sum;
2298 }
2299 
2300 unsigned long long nr_context_switches(void)
2301 {
2302 	int i;
2303 	unsigned long long sum = 0;
2304 
2305 	for_each_possible_cpu(i)
2306 		sum += cpu_rq(i)->nr_switches;
2307 
2308 	return sum;
2309 }
2310 
2311 unsigned long nr_iowait(void)
2312 {
2313 	unsigned long i, sum = 0;
2314 
2315 	for_each_possible_cpu(i)
2316 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2317 
2318 	return sum;
2319 }
2320 
2321 unsigned long nr_iowait_cpu(int cpu)
2322 {
2323 	struct rq *this = cpu_rq(cpu);
2324 	return atomic_read(&this->nr_iowait);
2325 }
2326 
2327 #ifdef CONFIG_SMP
2328 
2329 /*
2330  * sched_exec - execve() is a valuable balancing opportunity, because at
2331  * this point the task has the smallest effective memory and cache footprint.
2332  */
2333 void sched_exec(void)
2334 {
2335 	struct task_struct *p = current;
2336 	unsigned long flags;
2337 	int dest_cpu;
2338 
2339 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2340 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2341 	if (dest_cpu == smp_processor_id())
2342 		goto unlock;
2343 
2344 	if (likely(cpu_active(dest_cpu))) {
2345 		struct migration_arg arg = { p, dest_cpu };
2346 
2347 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2348 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2349 		return;
2350 	}
2351 unlock:
2352 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2353 }
2354 
2355 #endif
2356 
2357 DEFINE_PER_CPU(struct kernel_stat, kstat);
2358 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2359 
2360 EXPORT_PER_CPU_SYMBOL(kstat);
2361 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2362 
2363 /*
2364  * Return any ns on the sched_clock that have not yet been accounted in
2365  * @p in case that task is currently running.
2366  *
2367  * Called with task_rq_lock() held on @rq.
2368  */
2369 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2370 {
2371 	u64 ns = 0;
2372 
2373 	if (task_current(rq, p)) {
2374 		update_rq_clock(rq);
2375 		ns = rq_clock_task(rq) - p->se.exec_start;
2376 		if ((s64)ns < 0)
2377 			ns = 0;
2378 	}
2379 
2380 	return ns;
2381 }
2382 
2383 unsigned long long task_delta_exec(struct task_struct *p)
2384 {
2385 	unsigned long flags;
2386 	struct rq *rq;
2387 	u64 ns = 0;
2388 
2389 	rq = task_rq_lock(p, &flags);
2390 	ns = do_task_delta_exec(p, rq);
2391 	task_rq_unlock(rq, p, &flags);
2392 
2393 	return ns;
2394 }
2395 
2396 /*
2397  * Return accounted runtime for the task.
2398  * In case the task is currently running, return the runtime plus current's
2399  * pending runtime that have not been accounted yet.
2400  */
2401 unsigned long long task_sched_runtime(struct task_struct *p)
2402 {
2403 	unsigned long flags;
2404 	struct rq *rq;
2405 	u64 ns = 0;
2406 
2407 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2408 	/*
2409 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2410 	 * So we have a optimization chance when the task's delta_exec is 0.
2411 	 * Reading ->on_cpu is racy, but this is ok.
2412 	 *
2413 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2414 	 * If we race with it entering cpu, unaccounted time is 0. This is
2415 	 * indistinguishable from the read occurring a few cycles earlier.
2416 	 */
2417 	if (!p->on_cpu)
2418 		return p->se.sum_exec_runtime;
2419 #endif
2420 
2421 	rq = task_rq_lock(p, &flags);
2422 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2423 	task_rq_unlock(rq, p, &flags);
2424 
2425 	return ns;
2426 }
2427 
2428 /*
2429  * This function gets called by the timer code, with HZ frequency.
2430  * We call it with interrupts disabled.
2431  */
2432 void scheduler_tick(void)
2433 {
2434 	int cpu = smp_processor_id();
2435 	struct rq *rq = cpu_rq(cpu);
2436 	struct task_struct *curr = rq->curr;
2437 
2438 	sched_clock_tick();
2439 
2440 	raw_spin_lock(&rq->lock);
2441 	update_rq_clock(rq);
2442 	curr->sched_class->task_tick(rq, curr, 0);
2443 	update_cpu_load_active(rq);
2444 	raw_spin_unlock(&rq->lock);
2445 
2446 	perf_event_task_tick();
2447 
2448 #ifdef CONFIG_SMP
2449 	rq->idle_balance = idle_cpu(cpu);
2450 	trigger_load_balance(rq);
2451 #endif
2452 	rq_last_tick_reset(rq);
2453 }
2454 
2455 #ifdef CONFIG_NO_HZ_FULL
2456 /**
2457  * scheduler_tick_max_deferment
2458  *
2459  * Keep at least one tick per second when a single
2460  * active task is running because the scheduler doesn't
2461  * yet completely support full dynticks environment.
2462  *
2463  * This makes sure that uptime, CFS vruntime, load
2464  * balancing, etc... continue to move forward, even
2465  * with a very low granularity.
2466  *
2467  * Return: Maximum deferment in nanoseconds.
2468  */
2469 u64 scheduler_tick_max_deferment(void)
2470 {
2471 	struct rq *rq = this_rq();
2472 	unsigned long next, now = ACCESS_ONCE(jiffies);
2473 
2474 	next = rq->last_sched_tick + HZ;
2475 
2476 	if (time_before_eq(next, now))
2477 		return 0;
2478 
2479 	return jiffies_to_nsecs(next - now);
2480 }
2481 #endif
2482 
2483 notrace unsigned long get_parent_ip(unsigned long addr)
2484 {
2485 	if (in_lock_functions(addr)) {
2486 		addr = CALLER_ADDR2;
2487 		if (in_lock_functions(addr))
2488 			addr = CALLER_ADDR3;
2489 	}
2490 	return addr;
2491 }
2492 
2493 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2494 				defined(CONFIG_PREEMPT_TRACER))
2495 
2496 void __kprobes preempt_count_add(int val)
2497 {
2498 #ifdef CONFIG_DEBUG_PREEMPT
2499 	/*
2500 	 * Underflow?
2501 	 */
2502 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2503 		return;
2504 #endif
2505 	__preempt_count_add(val);
2506 #ifdef CONFIG_DEBUG_PREEMPT
2507 	/*
2508 	 * Spinlock count overflowing soon?
2509 	 */
2510 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2511 				PREEMPT_MASK - 10);
2512 #endif
2513 	if (preempt_count() == val)
2514 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2515 }
2516 EXPORT_SYMBOL(preempt_count_add);
2517 
2518 void __kprobes preempt_count_sub(int val)
2519 {
2520 #ifdef CONFIG_DEBUG_PREEMPT
2521 	/*
2522 	 * Underflow?
2523 	 */
2524 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2525 		return;
2526 	/*
2527 	 * Is the spinlock portion underflowing?
2528 	 */
2529 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2530 			!(preempt_count() & PREEMPT_MASK)))
2531 		return;
2532 #endif
2533 
2534 	if (preempt_count() == val)
2535 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2536 	__preempt_count_sub(val);
2537 }
2538 EXPORT_SYMBOL(preempt_count_sub);
2539 
2540 #endif
2541 
2542 /*
2543  * Print scheduling while atomic bug:
2544  */
2545 static noinline void __schedule_bug(struct task_struct *prev)
2546 {
2547 	if (oops_in_progress)
2548 		return;
2549 
2550 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2551 		prev->comm, prev->pid, preempt_count());
2552 
2553 	debug_show_held_locks(prev);
2554 	print_modules();
2555 	if (irqs_disabled())
2556 		print_irqtrace_events(prev);
2557 	dump_stack();
2558 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2559 }
2560 
2561 /*
2562  * Various schedule()-time debugging checks and statistics:
2563  */
2564 static inline void schedule_debug(struct task_struct *prev)
2565 {
2566 	/*
2567 	 * Test if we are atomic. Since do_exit() needs to call into
2568 	 * schedule() atomically, we ignore that path. Otherwise whine
2569 	 * if we are scheduling when we should not.
2570 	 */
2571 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2572 		__schedule_bug(prev);
2573 	rcu_sleep_check();
2574 
2575 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2576 
2577 	schedstat_inc(this_rq(), sched_count);
2578 }
2579 
2580 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2581 {
2582 	if (prev->on_rq || rq->skip_clock_update < 0)
2583 		update_rq_clock(rq);
2584 	prev->sched_class->put_prev_task(rq, prev);
2585 }
2586 
2587 /*
2588  * Pick up the highest-prio task:
2589  */
2590 static inline struct task_struct *
2591 pick_next_task(struct rq *rq)
2592 {
2593 	const struct sched_class *class;
2594 	struct task_struct *p;
2595 
2596 	/*
2597 	 * Optimization: we know that if all tasks are in
2598 	 * the fair class we can call that function directly:
2599 	 */
2600 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2601 		p = fair_sched_class.pick_next_task(rq);
2602 		if (likely(p))
2603 			return p;
2604 	}
2605 
2606 	for_each_class(class) {
2607 		p = class->pick_next_task(rq);
2608 		if (p)
2609 			return p;
2610 	}
2611 
2612 	BUG(); /* the idle class will always have a runnable task */
2613 }
2614 
2615 /*
2616  * __schedule() is the main scheduler function.
2617  *
2618  * The main means of driving the scheduler and thus entering this function are:
2619  *
2620  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2621  *
2622  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2623  *      paths. For example, see arch/x86/entry_64.S.
2624  *
2625  *      To drive preemption between tasks, the scheduler sets the flag in timer
2626  *      interrupt handler scheduler_tick().
2627  *
2628  *   3. Wakeups don't really cause entry into schedule(). They add a
2629  *      task to the run-queue and that's it.
2630  *
2631  *      Now, if the new task added to the run-queue preempts the current
2632  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2633  *      called on the nearest possible occasion:
2634  *
2635  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2636  *
2637  *         - in syscall or exception context, at the next outmost
2638  *           preempt_enable(). (this might be as soon as the wake_up()'s
2639  *           spin_unlock()!)
2640  *
2641  *         - in IRQ context, return from interrupt-handler to
2642  *           preemptible context
2643  *
2644  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2645  *         then at the next:
2646  *
2647  *          - cond_resched() call
2648  *          - explicit schedule() call
2649  *          - return from syscall or exception to user-space
2650  *          - return from interrupt-handler to user-space
2651  */
2652 static void __sched __schedule(void)
2653 {
2654 	struct task_struct *prev, *next;
2655 	unsigned long *switch_count;
2656 	struct rq *rq;
2657 	int cpu;
2658 
2659 need_resched:
2660 	preempt_disable();
2661 	cpu = smp_processor_id();
2662 	rq = cpu_rq(cpu);
2663 	rcu_note_context_switch(cpu);
2664 	prev = rq->curr;
2665 
2666 	schedule_debug(prev);
2667 
2668 	if (sched_feat(HRTICK))
2669 		hrtick_clear(rq);
2670 
2671 	/*
2672 	 * Make sure that signal_pending_state()->signal_pending() below
2673 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2674 	 * done by the caller to avoid the race with signal_wake_up().
2675 	 */
2676 	smp_mb__before_spinlock();
2677 	raw_spin_lock_irq(&rq->lock);
2678 
2679 	switch_count = &prev->nivcsw;
2680 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2681 		if (unlikely(signal_pending_state(prev->state, prev))) {
2682 			prev->state = TASK_RUNNING;
2683 		} else {
2684 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2685 			prev->on_rq = 0;
2686 
2687 			/*
2688 			 * If a worker went to sleep, notify and ask workqueue
2689 			 * whether it wants to wake up a task to maintain
2690 			 * concurrency.
2691 			 */
2692 			if (prev->flags & PF_WQ_WORKER) {
2693 				struct task_struct *to_wakeup;
2694 
2695 				to_wakeup = wq_worker_sleeping(prev, cpu);
2696 				if (to_wakeup)
2697 					try_to_wake_up_local(to_wakeup);
2698 			}
2699 		}
2700 		switch_count = &prev->nvcsw;
2701 	}
2702 
2703 	pre_schedule(rq, prev);
2704 
2705 	if (unlikely(!rq->nr_running))
2706 		idle_balance(cpu, rq);
2707 
2708 	put_prev_task(rq, prev);
2709 	next = pick_next_task(rq);
2710 	clear_tsk_need_resched(prev);
2711 	clear_preempt_need_resched();
2712 	rq->skip_clock_update = 0;
2713 
2714 	if (likely(prev != next)) {
2715 		rq->nr_switches++;
2716 		rq->curr = next;
2717 		++*switch_count;
2718 
2719 		context_switch(rq, prev, next); /* unlocks the rq */
2720 		/*
2721 		 * The context switch have flipped the stack from under us
2722 		 * and restored the local variables which were saved when
2723 		 * this task called schedule() in the past. prev == current
2724 		 * is still correct, but it can be moved to another cpu/rq.
2725 		 */
2726 		cpu = smp_processor_id();
2727 		rq = cpu_rq(cpu);
2728 	} else
2729 		raw_spin_unlock_irq(&rq->lock);
2730 
2731 	post_schedule(rq);
2732 
2733 	sched_preempt_enable_no_resched();
2734 	if (need_resched())
2735 		goto need_resched;
2736 }
2737 
2738 static inline void sched_submit_work(struct task_struct *tsk)
2739 {
2740 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2741 		return;
2742 	/*
2743 	 * If we are going to sleep and we have plugged IO queued,
2744 	 * make sure to submit it to avoid deadlocks.
2745 	 */
2746 	if (blk_needs_flush_plug(tsk))
2747 		blk_schedule_flush_plug(tsk);
2748 }
2749 
2750 asmlinkage void __sched schedule(void)
2751 {
2752 	struct task_struct *tsk = current;
2753 
2754 	sched_submit_work(tsk);
2755 	__schedule();
2756 }
2757 EXPORT_SYMBOL(schedule);
2758 
2759 #ifdef CONFIG_CONTEXT_TRACKING
2760 asmlinkage void __sched schedule_user(void)
2761 {
2762 	/*
2763 	 * If we come here after a random call to set_need_resched(),
2764 	 * or we have been woken up remotely but the IPI has not yet arrived,
2765 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2766 	 * we find a better solution.
2767 	 */
2768 	user_exit();
2769 	schedule();
2770 	user_enter();
2771 }
2772 #endif
2773 
2774 /**
2775  * schedule_preempt_disabled - called with preemption disabled
2776  *
2777  * Returns with preemption disabled. Note: preempt_count must be 1
2778  */
2779 void __sched schedule_preempt_disabled(void)
2780 {
2781 	sched_preempt_enable_no_resched();
2782 	schedule();
2783 	preempt_disable();
2784 }
2785 
2786 #ifdef CONFIG_PREEMPT
2787 /*
2788  * this is the entry point to schedule() from in-kernel preemption
2789  * off of preempt_enable. Kernel preemptions off return from interrupt
2790  * occur there and call schedule directly.
2791  */
2792 asmlinkage void __sched notrace preempt_schedule(void)
2793 {
2794 	/*
2795 	 * If there is a non-zero preempt_count or interrupts are disabled,
2796 	 * we do not want to preempt the current task. Just return..
2797 	 */
2798 	if (likely(!preemptible()))
2799 		return;
2800 
2801 	do {
2802 		__preempt_count_add(PREEMPT_ACTIVE);
2803 		__schedule();
2804 		__preempt_count_sub(PREEMPT_ACTIVE);
2805 
2806 		/*
2807 		 * Check again in case we missed a preemption opportunity
2808 		 * between schedule and now.
2809 		 */
2810 		barrier();
2811 	} while (need_resched());
2812 }
2813 EXPORT_SYMBOL(preempt_schedule);
2814 #endif /* CONFIG_PREEMPT */
2815 
2816 /*
2817  * this is the entry point to schedule() from kernel preemption
2818  * off of irq context.
2819  * Note, that this is called and return with irqs disabled. This will
2820  * protect us against recursive calling from irq.
2821  */
2822 asmlinkage void __sched preempt_schedule_irq(void)
2823 {
2824 	enum ctx_state prev_state;
2825 
2826 	/* Catch callers which need to be fixed */
2827 	BUG_ON(preempt_count() || !irqs_disabled());
2828 
2829 	prev_state = exception_enter();
2830 
2831 	do {
2832 		__preempt_count_add(PREEMPT_ACTIVE);
2833 		local_irq_enable();
2834 		__schedule();
2835 		local_irq_disable();
2836 		__preempt_count_sub(PREEMPT_ACTIVE);
2837 
2838 		/*
2839 		 * Check again in case we missed a preemption opportunity
2840 		 * between schedule and now.
2841 		 */
2842 		barrier();
2843 	} while (need_resched());
2844 
2845 	exception_exit(prev_state);
2846 }
2847 
2848 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2849 			  void *key)
2850 {
2851 	return try_to_wake_up(curr->private, mode, wake_flags);
2852 }
2853 EXPORT_SYMBOL(default_wake_function);
2854 
2855 static long __sched
2856 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2857 {
2858 	unsigned long flags;
2859 	wait_queue_t wait;
2860 
2861 	init_waitqueue_entry(&wait, current);
2862 
2863 	__set_current_state(state);
2864 
2865 	spin_lock_irqsave(&q->lock, flags);
2866 	__add_wait_queue(q, &wait);
2867 	spin_unlock(&q->lock);
2868 	timeout = schedule_timeout(timeout);
2869 	spin_lock_irq(&q->lock);
2870 	__remove_wait_queue(q, &wait);
2871 	spin_unlock_irqrestore(&q->lock, flags);
2872 
2873 	return timeout;
2874 }
2875 
2876 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2877 {
2878 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2879 }
2880 EXPORT_SYMBOL(interruptible_sleep_on);
2881 
2882 long __sched
2883 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2884 {
2885 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2886 }
2887 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2888 
2889 void __sched sleep_on(wait_queue_head_t *q)
2890 {
2891 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2892 }
2893 EXPORT_SYMBOL(sleep_on);
2894 
2895 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2896 {
2897 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2898 }
2899 EXPORT_SYMBOL(sleep_on_timeout);
2900 
2901 #ifdef CONFIG_RT_MUTEXES
2902 
2903 /*
2904  * rt_mutex_setprio - set the current priority of a task
2905  * @p: task
2906  * @prio: prio value (kernel-internal form)
2907  *
2908  * This function changes the 'effective' priority of a task. It does
2909  * not touch ->normal_prio like __setscheduler().
2910  *
2911  * Used by the rt_mutex code to implement priority inheritance logic.
2912  */
2913 void rt_mutex_setprio(struct task_struct *p, int prio)
2914 {
2915 	int oldprio, on_rq, running, enqueue_flag = 0;
2916 	struct rq *rq;
2917 	const struct sched_class *prev_class;
2918 
2919 	BUG_ON(prio > MAX_PRIO);
2920 
2921 	rq = __task_rq_lock(p);
2922 
2923 	/*
2924 	 * Idle task boosting is a nono in general. There is one
2925 	 * exception, when PREEMPT_RT and NOHZ is active:
2926 	 *
2927 	 * The idle task calls get_next_timer_interrupt() and holds
2928 	 * the timer wheel base->lock on the CPU and another CPU wants
2929 	 * to access the timer (probably to cancel it). We can safely
2930 	 * ignore the boosting request, as the idle CPU runs this code
2931 	 * with interrupts disabled and will complete the lock
2932 	 * protected section without being interrupted. So there is no
2933 	 * real need to boost.
2934 	 */
2935 	if (unlikely(p == rq->idle)) {
2936 		WARN_ON(p != rq->curr);
2937 		WARN_ON(p->pi_blocked_on);
2938 		goto out_unlock;
2939 	}
2940 
2941 	trace_sched_pi_setprio(p, prio);
2942 	p->pi_top_task = rt_mutex_get_top_task(p);
2943 	oldprio = p->prio;
2944 	prev_class = p->sched_class;
2945 	on_rq = p->on_rq;
2946 	running = task_current(rq, p);
2947 	if (on_rq)
2948 		dequeue_task(rq, p, 0);
2949 	if (running)
2950 		p->sched_class->put_prev_task(rq, p);
2951 
2952 	/*
2953 	 * Boosting condition are:
2954 	 * 1. -rt task is running and holds mutex A
2955 	 *      --> -dl task blocks on mutex A
2956 	 *
2957 	 * 2. -dl task is running and holds mutex A
2958 	 *      --> -dl task blocks on mutex A and could preempt the
2959 	 *          running task
2960 	 */
2961 	if (dl_prio(prio)) {
2962 		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2963 			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2964 			p->dl.dl_boosted = 1;
2965 			p->dl.dl_throttled = 0;
2966 			enqueue_flag = ENQUEUE_REPLENISH;
2967 		} else
2968 			p->dl.dl_boosted = 0;
2969 		p->sched_class = &dl_sched_class;
2970 	} else if (rt_prio(prio)) {
2971 		if (dl_prio(oldprio))
2972 			p->dl.dl_boosted = 0;
2973 		if (oldprio < prio)
2974 			enqueue_flag = ENQUEUE_HEAD;
2975 		p->sched_class = &rt_sched_class;
2976 	} else {
2977 		if (dl_prio(oldprio))
2978 			p->dl.dl_boosted = 0;
2979 		p->sched_class = &fair_sched_class;
2980 	}
2981 
2982 	p->prio = prio;
2983 
2984 	if (running)
2985 		p->sched_class->set_curr_task(rq);
2986 	if (on_rq)
2987 		enqueue_task(rq, p, enqueue_flag);
2988 
2989 	check_class_changed(rq, p, prev_class, oldprio);
2990 out_unlock:
2991 	__task_rq_unlock(rq);
2992 }
2993 #endif
2994 
2995 void set_user_nice(struct task_struct *p, long nice)
2996 {
2997 	int old_prio, delta, on_rq;
2998 	unsigned long flags;
2999 	struct rq *rq;
3000 
3001 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3002 		return;
3003 	/*
3004 	 * We have to be careful, if called from sys_setpriority(),
3005 	 * the task might be in the middle of scheduling on another CPU.
3006 	 */
3007 	rq = task_rq_lock(p, &flags);
3008 	/*
3009 	 * The RT priorities are set via sched_setscheduler(), but we still
3010 	 * allow the 'normal' nice value to be set - but as expected
3011 	 * it wont have any effect on scheduling until the task is
3012 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3013 	 */
3014 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3015 		p->static_prio = NICE_TO_PRIO(nice);
3016 		goto out_unlock;
3017 	}
3018 	on_rq = p->on_rq;
3019 	if (on_rq)
3020 		dequeue_task(rq, p, 0);
3021 
3022 	p->static_prio = NICE_TO_PRIO(nice);
3023 	set_load_weight(p);
3024 	old_prio = p->prio;
3025 	p->prio = effective_prio(p);
3026 	delta = p->prio - old_prio;
3027 
3028 	if (on_rq) {
3029 		enqueue_task(rq, p, 0);
3030 		/*
3031 		 * If the task increased its priority or is running and
3032 		 * lowered its priority, then reschedule its CPU:
3033 		 */
3034 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3035 			resched_task(rq->curr);
3036 	}
3037 out_unlock:
3038 	task_rq_unlock(rq, p, &flags);
3039 }
3040 EXPORT_SYMBOL(set_user_nice);
3041 
3042 /*
3043  * can_nice - check if a task can reduce its nice value
3044  * @p: task
3045  * @nice: nice value
3046  */
3047 int can_nice(const struct task_struct *p, const int nice)
3048 {
3049 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3050 	int nice_rlim = 20 - nice;
3051 
3052 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3053 		capable(CAP_SYS_NICE));
3054 }
3055 
3056 #ifdef __ARCH_WANT_SYS_NICE
3057 
3058 /*
3059  * sys_nice - change the priority of the current process.
3060  * @increment: priority increment
3061  *
3062  * sys_setpriority is a more generic, but much slower function that
3063  * does similar things.
3064  */
3065 SYSCALL_DEFINE1(nice, int, increment)
3066 {
3067 	long nice, retval;
3068 
3069 	/*
3070 	 * Setpriority might change our priority at the same moment.
3071 	 * We don't have to worry. Conceptually one call occurs first
3072 	 * and we have a single winner.
3073 	 */
3074 	if (increment < -40)
3075 		increment = -40;
3076 	if (increment > 40)
3077 		increment = 40;
3078 
3079 	nice = TASK_NICE(current) + increment;
3080 	if (nice < -20)
3081 		nice = -20;
3082 	if (nice > 19)
3083 		nice = 19;
3084 
3085 	if (increment < 0 && !can_nice(current, nice))
3086 		return -EPERM;
3087 
3088 	retval = security_task_setnice(current, nice);
3089 	if (retval)
3090 		return retval;
3091 
3092 	set_user_nice(current, nice);
3093 	return 0;
3094 }
3095 
3096 #endif
3097 
3098 /**
3099  * task_prio - return the priority value of a given task.
3100  * @p: the task in question.
3101  *
3102  * Return: The priority value as seen by users in /proc.
3103  * RT tasks are offset by -200. Normal tasks are centered
3104  * around 0, value goes from -16 to +15.
3105  */
3106 int task_prio(const struct task_struct *p)
3107 {
3108 	return p->prio - MAX_RT_PRIO;
3109 }
3110 
3111 /**
3112  * task_nice - return the nice value of a given task.
3113  * @p: the task in question.
3114  *
3115  * Return: The nice value [ -20 ... 0 ... 19 ].
3116  */
3117 int task_nice(const struct task_struct *p)
3118 {
3119 	return TASK_NICE(p);
3120 }
3121 EXPORT_SYMBOL(task_nice);
3122 
3123 /**
3124  * idle_cpu - is a given cpu idle currently?
3125  * @cpu: the processor in question.
3126  *
3127  * Return: 1 if the CPU is currently idle. 0 otherwise.
3128  */
3129 int idle_cpu(int cpu)
3130 {
3131 	struct rq *rq = cpu_rq(cpu);
3132 
3133 	if (rq->curr != rq->idle)
3134 		return 0;
3135 
3136 	if (rq->nr_running)
3137 		return 0;
3138 
3139 #ifdef CONFIG_SMP
3140 	if (!llist_empty(&rq->wake_list))
3141 		return 0;
3142 #endif
3143 
3144 	return 1;
3145 }
3146 
3147 /**
3148  * idle_task - return the idle task for a given cpu.
3149  * @cpu: the processor in question.
3150  *
3151  * Return: The idle task for the cpu @cpu.
3152  */
3153 struct task_struct *idle_task(int cpu)
3154 {
3155 	return cpu_rq(cpu)->idle;
3156 }
3157 
3158 /**
3159  * find_process_by_pid - find a process with a matching PID value.
3160  * @pid: the pid in question.
3161  *
3162  * The task of @pid, if found. %NULL otherwise.
3163  */
3164 static struct task_struct *find_process_by_pid(pid_t pid)
3165 {
3166 	return pid ? find_task_by_vpid(pid) : current;
3167 }
3168 
3169 /*
3170  * This function initializes the sched_dl_entity of a newly becoming
3171  * SCHED_DEADLINE task.
3172  *
3173  * Only the static values are considered here, the actual runtime and the
3174  * absolute deadline will be properly calculated when the task is enqueued
3175  * for the first time with its new policy.
3176  */
3177 static void
3178 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3179 {
3180 	struct sched_dl_entity *dl_se = &p->dl;
3181 
3182 	init_dl_task_timer(dl_se);
3183 	dl_se->dl_runtime = attr->sched_runtime;
3184 	dl_se->dl_deadline = attr->sched_deadline;
3185 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3186 	dl_se->flags = attr->sched_flags;
3187 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3188 	dl_se->dl_throttled = 0;
3189 	dl_se->dl_new = 1;
3190 }
3191 
3192 /* Actually do priority change: must hold pi & rq lock. */
3193 static void __setscheduler(struct rq *rq, struct task_struct *p,
3194 			   const struct sched_attr *attr)
3195 {
3196 	int policy = attr->sched_policy;
3197 
3198 	if (policy == -1) /* setparam */
3199 		policy = p->policy;
3200 
3201 	p->policy = policy;
3202 
3203 	if (dl_policy(policy))
3204 		__setparam_dl(p, attr);
3205 	else if (fair_policy(policy))
3206 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3207 
3208 	/*
3209 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3210 	 * !rt_policy. Always setting this ensures that things like
3211 	 * getparam()/getattr() don't report silly values for !rt tasks.
3212 	 */
3213 	p->rt_priority = attr->sched_priority;
3214 
3215 	p->normal_prio = normal_prio(p);
3216 	p->prio = rt_mutex_getprio(p);
3217 
3218 	if (dl_prio(p->prio))
3219 		p->sched_class = &dl_sched_class;
3220 	else if (rt_prio(p->prio))
3221 		p->sched_class = &rt_sched_class;
3222 	else
3223 		p->sched_class = &fair_sched_class;
3224 
3225 	set_load_weight(p);
3226 }
3227 
3228 static void
3229 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3230 {
3231 	struct sched_dl_entity *dl_se = &p->dl;
3232 
3233 	attr->sched_priority = p->rt_priority;
3234 	attr->sched_runtime = dl_se->dl_runtime;
3235 	attr->sched_deadline = dl_se->dl_deadline;
3236 	attr->sched_period = dl_se->dl_period;
3237 	attr->sched_flags = dl_se->flags;
3238 }
3239 
3240 /*
3241  * This function validates the new parameters of a -deadline task.
3242  * We ask for the deadline not being zero, and greater or equal
3243  * than the runtime, as well as the period of being zero or
3244  * greater than deadline. Furthermore, we have to be sure that
3245  * user parameters are above the internal resolution (1us); we
3246  * check sched_runtime only since it is always the smaller one.
3247  */
3248 static bool
3249 __checkparam_dl(const struct sched_attr *attr)
3250 {
3251 	return attr && attr->sched_deadline != 0 &&
3252 		(attr->sched_period == 0 ||
3253 		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3254 		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3255 		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3256 }
3257 
3258 /*
3259  * check the target process has a UID that matches the current process's
3260  */
3261 static bool check_same_owner(struct task_struct *p)
3262 {
3263 	const struct cred *cred = current_cred(), *pcred;
3264 	bool match;
3265 
3266 	rcu_read_lock();
3267 	pcred = __task_cred(p);
3268 	match = (uid_eq(cred->euid, pcred->euid) ||
3269 		 uid_eq(cred->euid, pcred->uid));
3270 	rcu_read_unlock();
3271 	return match;
3272 }
3273 
3274 static int __sched_setscheduler(struct task_struct *p,
3275 				const struct sched_attr *attr,
3276 				bool user)
3277 {
3278 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3279 	int policy = attr->sched_policy;
3280 	unsigned long flags;
3281 	const struct sched_class *prev_class;
3282 	struct rq *rq;
3283 	int reset_on_fork;
3284 
3285 	/* may grab non-irq protected spin_locks */
3286 	BUG_ON(in_interrupt());
3287 recheck:
3288 	/* double check policy once rq lock held */
3289 	if (policy < 0) {
3290 		reset_on_fork = p->sched_reset_on_fork;
3291 		policy = oldpolicy = p->policy;
3292 	} else {
3293 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3294 
3295 		if (policy != SCHED_DEADLINE &&
3296 				policy != SCHED_FIFO && policy != SCHED_RR &&
3297 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3298 				policy != SCHED_IDLE)
3299 			return -EINVAL;
3300 	}
3301 
3302 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3303 		return -EINVAL;
3304 
3305 	/*
3306 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3307 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3308 	 * SCHED_BATCH and SCHED_IDLE is 0.
3309 	 */
3310 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3311 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3312 		return -EINVAL;
3313 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3314 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3315 		return -EINVAL;
3316 
3317 	/*
3318 	 * Allow unprivileged RT tasks to decrease priority:
3319 	 */
3320 	if (user && !capable(CAP_SYS_NICE)) {
3321 		if (fair_policy(policy)) {
3322 			if (attr->sched_nice < TASK_NICE(p) &&
3323 			    !can_nice(p, attr->sched_nice))
3324 				return -EPERM;
3325 		}
3326 
3327 		if (rt_policy(policy)) {
3328 			unsigned long rlim_rtprio =
3329 					task_rlimit(p, RLIMIT_RTPRIO);
3330 
3331 			/* can't set/change the rt policy */
3332 			if (policy != p->policy && !rlim_rtprio)
3333 				return -EPERM;
3334 
3335 			/* can't increase priority */
3336 			if (attr->sched_priority > p->rt_priority &&
3337 			    attr->sched_priority > rlim_rtprio)
3338 				return -EPERM;
3339 		}
3340 
3341 		/*
3342 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3343 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3344 		 */
3345 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3346 			if (!can_nice(p, TASK_NICE(p)))
3347 				return -EPERM;
3348 		}
3349 
3350 		/* can't change other user's priorities */
3351 		if (!check_same_owner(p))
3352 			return -EPERM;
3353 
3354 		/* Normal users shall not reset the sched_reset_on_fork flag */
3355 		if (p->sched_reset_on_fork && !reset_on_fork)
3356 			return -EPERM;
3357 	}
3358 
3359 	if (user) {
3360 		retval = security_task_setscheduler(p);
3361 		if (retval)
3362 			return retval;
3363 	}
3364 
3365 	/*
3366 	 * make sure no PI-waiters arrive (or leave) while we are
3367 	 * changing the priority of the task:
3368 	 *
3369 	 * To be able to change p->policy safely, the appropriate
3370 	 * runqueue lock must be held.
3371 	 */
3372 	rq = task_rq_lock(p, &flags);
3373 
3374 	/*
3375 	 * Changing the policy of the stop threads its a very bad idea
3376 	 */
3377 	if (p == rq->stop) {
3378 		task_rq_unlock(rq, p, &flags);
3379 		return -EINVAL;
3380 	}
3381 
3382 	/*
3383 	 * If not changing anything there's no need to proceed further:
3384 	 */
3385 	if (unlikely(policy == p->policy)) {
3386 		if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3387 			goto change;
3388 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3389 			goto change;
3390 		if (dl_policy(policy))
3391 			goto change;
3392 
3393 		task_rq_unlock(rq, p, &flags);
3394 		return 0;
3395 	}
3396 change:
3397 
3398 	if (user) {
3399 #ifdef CONFIG_RT_GROUP_SCHED
3400 		/*
3401 		 * Do not allow realtime tasks into groups that have no runtime
3402 		 * assigned.
3403 		 */
3404 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3405 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3406 				!task_group_is_autogroup(task_group(p))) {
3407 			task_rq_unlock(rq, p, &flags);
3408 			return -EPERM;
3409 		}
3410 #endif
3411 #ifdef CONFIG_SMP
3412 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3413 			cpumask_t *span = rq->rd->span;
3414 
3415 			/*
3416 			 * Don't allow tasks with an affinity mask smaller than
3417 			 * the entire root_domain to become SCHED_DEADLINE. We
3418 			 * will also fail if there's no bandwidth available.
3419 			 */
3420 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3421 			    rq->rd->dl_bw.bw == 0) {
3422 				task_rq_unlock(rq, p, &flags);
3423 				return -EPERM;
3424 			}
3425 		}
3426 #endif
3427 	}
3428 
3429 	/* recheck policy now with rq lock held */
3430 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3431 		policy = oldpolicy = -1;
3432 		task_rq_unlock(rq, p, &flags);
3433 		goto recheck;
3434 	}
3435 
3436 	/*
3437 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3438 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3439 	 * is available.
3440 	 */
3441 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3442 		task_rq_unlock(rq, p, &flags);
3443 		return -EBUSY;
3444 	}
3445 
3446 	on_rq = p->on_rq;
3447 	running = task_current(rq, p);
3448 	if (on_rq)
3449 		dequeue_task(rq, p, 0);
3450 	if (running)
3451 		p->sched_class->put_prev_task(rq, p);
3452 
3453 	p->sched_reset_on_fork = reset_on_fork;
3454 
3455 	oldprio = p->prio;
3456 	prev_class = p->sched_class;
3457 	__setscheduler(rq, p, attr);
3458 
3459 	if (running)
3460 		p->sched_class->set_curr_task(rq);
3461 	if (on_rq)
3462 		enqueue_task(rq, p, 0);
3463 
3464 	check_class_changed(rq, p, prev_class, oldprio);
3465 	task_rq_unlock(rq, p, &flags);
3466 
3467 	rt_mutex_adjust_pi(p);
3468 
3469 	return 0;
3470 }
3471 
3472 static int _sched_setscheduler(struct task_struct *p, int policy,
3473 			       const struct sched_param *param, bool check)
3474 {
3475 	struct sched_attr attr = {
3476 		.sched_policy   = policy,
3477 		.sched_priority = param->sched_priority,
3478 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3479 	};
3480 
3481 	/*
3482 	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3483 	 */
3484 	if (policy & SCHED_RESET_ON_FORK) {
3485 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3486 		policy &= ~SCHED_RESET_ON_FORK;
3487 		attr.sched_policy = policy;
3488 	}
3489 
3490 	return __sched_setscheduler(p, &attr, check);
3491 }
3492 /**
3493  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3494  * @p: the task in question.
3495  * @policy: new policy.
3496  * @param: structure containing the new RT priority.
3497  *
3498  * Return: 0 on success. An error code otherwise.
3499  *
3500  * NOTE that the task may be already dead.
3501  */
3502 int sched_setscheduler(struct task_struct *p, int policy,
3503 		       const struct sched_param *param)
3504 {
3505 	return _sched_setscheduler(p, policy, param, true);
3506 }
3507 EXPORT_SYMBOL_GPL(sched_setscheduler);
3508 
3509 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3510 {
3511 	return __sched_setscheduler(p, attr, true);
3512 }
3513 EXPORT_SYMBOL_GPL(sched_setattr);
3514 
3515 /**
3516  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3517  * @p: the task in question.
3518  * @policy: new policy.
3519  * @param: structure containing the new RT priority.
3520  *
3521  * Just like sched_setscheduler, only don't bother checking if the
3522  * current context has permission.  For example, this is needed in
3523  * stop_machine(): we create temporary high priority worker threads,
3524  * but our caller might not have that capability.
3525  *
3526  * Return: 0 on success. An error code otherwise.
3527  */
3528 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3529 			       const struct sched_param *param)
3530 {
3531 	return _sched_setscheduler(p, policy, param, false);
3532 }
3533 
3534 static int
3535 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3536 {
3537 	struct sched_param lparam;
3538 	struct task_struct *p;
3539 	int retval;
3540 
3541 	if (!param || pid < 0)
3542 		return -EINVAL;
3543 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3544 		return -EFAULT;
3545 
3546 	rcu_read_lock();
3547 	retval = -ESRCH;
3548 	p = find_process_by_pid(pid);
3549 	if (p != NULL)
3550 		retval = sched_setscheduler(p, policy, &lparam);
3551 	rcu_read_unlock();
3552 
3553 	return retval;
3554 }
3555 
3556 /*
3557  * Mimics kernel/events/core.c perf_copy_attr().
3558  */
3559 static int sched_copy_attr(struct sched_attr __user *uattr,
3560 			   struct sched_attr *attr)
3561 {
3562 	u32 size;
3563 	int ret;
3564 
3565 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3566 		return -EFAULT;
3567 
3568 	/*
3569 	 * zero the full structure, so that a short copy will be nice.
3570 	 */
3571 	memset(attr, 0, sizeof(*attr));
3572 
3573 	ret = get_user(size, &uattr->size);
3574 	if (ret)
3575 		return ret;
3576 
3577 	if (size > PAGE_SIZE)	/* silly large */
3578 		goto err_size;
3579 
3580 	if (!size)		/* abi compat */
3581 		size = SCHED_ATTR_SIZE_VER0;
3582 
3583 	if (size < SCHED_ATTR_SIZE_VER0)
3584 		goto err_size;
3585 
3586 	/*
3587 	 * If we're handed a bigger struct than we know of,
3588 	 * ensure all the unknown bits are 0 - i.e. new
3589 	 * user-space does not rely on any kernel feature
3590 	 * extensions we dont know about yet.
3591 	 */
3592 	if (size > sizeof(*attr)) {
3593 		unsigned char __user *addr;
3594 		unsigned char __user *end;
3595 		unsigned char val;
3596 
3597 		addr = (void __user *)uattr + sizeof(*attr);
3598 		end  = (void __user *)uattr + size;
3599 
3600 		for (; addr < end; addr++) {
3601 			ret = get_user(val, addr);
3602 			if (ret)
3603 				return ret;
3604 			if (val)
3605 				goto err_size;
3606 		}
3607 		size = sizeof(*attr);
3608 	}
3609 
3610 	ret = copy_from_user(attr, uattr, size);
3611 	if (ret)
3612 		return -EFAULT;
3613 
3614 	/*
3615 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3616 	 * to be strict and return an error on out-of-bounds values?
3617 	 */
3618 	attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3619 
3620 out:
3621 	return ret;
3622 
3623 err_size:
3624 	put_user(sizeof(*attr), &uattr->size);
3625 	ret = -E2BIG;
3626 	goto out;
3627 }
3628 
3629 /**
3630  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3631  * @pid: the pid in question.
3632  * @policy: new policy.
3633  * @param: structure containing the new RT priority.
3634  *
3635  * Return: 0 on success. An error code otherwise.
3636  */
3637 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3638 		struct sched_param __user *, param)
3639 {
3640 	/* negative values for policy are not valid */
3641 	if (policy < 0)
3642 		return -EINVAL;
3643 
3644 	return do_sched_setscheduler(pid, policy, param);
3645 }
3646 
3647 /**
3648  * sys_sched_setparam - set/change the RT priority of a thread
3649  * @pid: the pid in question.
3650  * @param: structure containing the new RT priority.
3651  *
3652  * Return: 0 on success. An error code otherwise.
3653  */
3654 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3655 {
3656 	return do_sched_setscheduler(pid, -1, param);
3657 }
3658 
3659 /**
3660  * sys_sched_setattr - same as above, but with extended sched_attr
3661  * @pid: the pid in question.
3662  * @uattr: structure containing the extended parameters.
3663  */
3664 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3665 			       unsigned int, flags)
3666 {
3667 	struct sched_attr attr;
3668 	struct task_struct *p;
3669 	int retval;
3670 
3671 	if (!uattr || pid < 0 || flags)
3672 		return -EINVAL;
3673 
3674 	if (sched_copy_attr(uattr, &attr))
3675 		return -EFAULT;
3676 
3677 	rcu_read_lock();
3678 	retval = -ESRCH;
3679 	p = find_process_by_pid(pid);
3680 	if (p != NULL)
3681 		retval = sched_setattr(p, &attr);
3682 	rcu_read_unlock();
3683 
3684 	return retval;
3685 }
3686 
3687 /**
3688  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3689  * @pid: the pid in question.
3690  *
3691  * Return: On success, the policy of the thread. Otherwise, a negative error
3692  * code.
3693  */
3694 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3695 {
3696 	struct task_struct *p;
3697 	int retval;
3698 
3699 	if (pid < 0)
3700 		return -EINVAL;
3701 
3702 	retval = -ESRCH;
3703 	rcu_read_lock();
3704 	p = find_process_by_pid(pid);
3705 	if (p) {
3706 		retval = security_task_getscheduler(p);
3707 		if (!retval)
3708 			retval = p->policy
3709 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3710 	}
3711 	rcu_read_unlock();
3712 	return retval;
3713 }
3714 
3715 /**
3716  * sys_sched_getparam - get the RT priority of a thread
3717  * @pid: the pid in question.
3718  * @param: structure containing the RT priority.
3719  *
3720  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3721  * code.
3722  */
3723 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3724 {
3725 	struct sched_param lp;
3726 	struct task_struct *p;
3727 	int retval;
3728 
3729 	if (!param || pid < 0)
3730 		return -EINVAL;
3731 
3732 	rcu_read_lock();
3733 	p = find_process_by_pid(pid);
3734 	retval = -ESRCH;
3735 	if (!p)
3736 		goto out_unlock;
3737 
3738 	retval = security_task_getscheduler(p);
3739 	if (retval)
3740 		goto out_unlock;
3741 
3742 	if (task_has_dl_policy(p)) {
3743 		retval = -EINVAL;
3744 		goto out_unlock;
3745 	}
3746 	lp.sched_priority = p->rt_priority;
3747 	rcu_read_unlock();
3748 
3749 	/*
3750 	 * This one might sleep, we cannot do it with a spinlock held ...
3751 	 */
3752 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3753 
3754 	return retval;
3755 
3756 out_unlock:
3757 	rcu_read_unlock();
3758 	return retval;
3759 }
3760 
3761 static int sched_read_attr(struct sched_attr __user *uattr,
3762 			   struct sched_attr *attr,
3763 			   unsigned int usize)
3764 {
3765 	int ret;
3766 
3767 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3768 		return -EFAULT;
3769 
3770 	/*
3771 	 * If we're handed a smaller struct than we know of,
3772 	 * ensure all the unknown bits are 0 - i.e. old
3773 	 * user-space does not get uncomplete information.
3774 	 */
3775 	if (usize < sizeof(*attr)) {
3776 		unsigned char *addr;
3777 		unsigned char *end;
3778 
3779 		addr = (void *)attr + usize;
3780 		end  = (void *)attr + sizeof(*attr);
3781 
3782 		for (; addr < end; addr++) {
3783 			if (*addr)
3784 				goto err_size;
3785 		}
3786 
3787 		attr->size = usize;
3788 	}
3789 
3790 	ret = copy_to_user(uattr, attr, attr->size);
3791 	if (ret)
3792 		return -EFAULT;
3793 
3794 out:
3795 	return ret;
3796 
3797 err_size:
3798 	ret = -E2BIG;
3799 	goto out;
3800 }
3801 
3802 /**
3803  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3804  * @pid: the pid in question.
3805  * @uattr: structure containing the extended parameters.
3806  * @size: sizeof(attr) for fwd/bwd comp.
3807  */
3808 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3809 		unsigned int, size, unsigned int, flags)
3810 {
3811 	struct sched_attr attr = {
3812 		.size = sizeof(struct sched_attr),
3813 	};
3814 	struct task_struct *p;
3815 	int retval;
3816 
3817 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3818 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3819 		return -EINVAL;
3820 
3821 	rcu_read_lock();
3822 	p = find_process_by_pid(pid);
3823 	retval = -ESRCH;
3824 	if (!p)
3825 		goto out_unlock;
3826 
3827 	retval = security_task_getscheduler(p);
3828 	if (retval)
3829 		goto out_unlock;
3830 
3831 	attr.sched_policy = p->policy;
3832 	if (p->sched_reset_on_fork)
3833 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3834 	if (task_has_dl_policy(p))
3835 		__getparam_dl(p, &attr);
3836 	else if (task_has_rt_policy(p))
3837 		attr.sched_priority = p->rt_priority;
3838 	else
3839 		attr.sched_nice = TASK_NICE(p);
3840 
3841 	rcu_read_unlock();
3842 
3843 	retval = sched_read_attr(uattr, &attr, size);
3844 	return retval;
3845 
3846 out_unlock:
3847 	rcu_read_unlock();
3848 	return retval;
3849 }
3850 
3851 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3852 {
3853 	cpumask_var_t cpus_allowed, new_mask;
3854 	struct task_struct *p;
3855 	int retval;
3856 
3857 	rcu_read_lock();
3858 
3859 	p = find_process_by_pid(pid);
3860 	if (!p) {
3861 		rcu_read_unlock();
3862 		return -ESRCH;
3863 	}
3864 
3865 	/* Prevent p going away */
3866 	get_task_struct(p);
3867 	rcu_read_unlock();
3868 
3869 	if (p->flags & PF_NO_SETAFFINITY) {
3870 		retval = -EINVAL;
3871 		goto out_put_task;
3872 	}
3873 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3874 		retval = -ENOMEM;
3875 		goto out_put_task;
3876 	}
3877 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3878 		retval = -ENOMEM;
3879 		goto out_free_cpus_allowed;
3880 	}
3881 	retval = -EPERM;
3882 	if (!check_same_owner(p)) {
3883 		rcu_read_lock();
3884 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3885 			rcu_read_unlock();
3886 			goto out_unlock;
3887 		}
3888 		rcu_read_unlock();
3889 	}
3890 
3891 	retval = security_task_setscheduler(p);
3892 	if (retval)
3893 		goto out_unlock;
3894 
3895 
3896 	cpuset_cpus_allowed(p, cpus_allowed);
3897 	cpumask_and(new_mask, in_mask, cpus_allowed);
3898 
3899 	/*
3900 	 * Since bandwidth control happens on root_domain basis,
3901 	 * if admission test is enabled, we only admit -deadline
3902 	 * tasks allowed to run on all the CPUs in the task's
3903 	 * root_domain.
3904 	 */
3905 #ifdef CONFIG_SMP
3906 	if (task_has_dl_policy(p)) {
3907 		const struct cpumask *span = task_rq(p)->rd->span;
3908 
3909 		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3910 			retval = -EBUSY;
3911 			goto out_unlock;
3912 		}
3913 	}
3914 #endif
3915 again:
3916 	retval = set_cpus_allowed_ptr(p, new_mask);
3917 
3918 	if (!retval) {
3919 		cpuset_cpus_allowed(p, cpus_allowed);
3920 		if (!cpumask_subset(new_mask, cpus_allowed)) {
3921 			/*
3922 			 * We must have raced with a concurrent cpuset
3923 			 * update. Just reset the cpus_allowed to the
3924 			 * cpuset's cpus_allowed
3925 			 */
3926 			cpumask_copy(new_mask, cpus_allowed);
3927 			goto again;
3928 		}
3929 	}
3930 out_unlock:
3931 	free_cpumask_var(new_mask);
3932 out_free_cpus_allowed:
3933 	free_cpumask_var(cpus_allowed);
3934 out_put_task:
3935 	put_task_struct(p);
3936 	return retval;
3937 }
3938 
3939 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3940 			     struct cpumask *new_mask)
3941 {
3942 	if (len < cpumask_size())
3943 		cpumask_clear(new_mask);
3944 	else if (len > cpumask_size())
3945 		len = cpumask_size();
3946 
3947 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3948 }
3949 
3950 /**
3951  * sys_sched_setaffinity - set the cpu affinity of a process
3952  * @pid: pid of the process
3953  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3954  * @user_mask_ptr: user-space pointer to the new cpu mask
3955  *
3956  * Return: 0 on success. An error code otherwise.
3957  */
3958 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3959 		unsigned long __user *, user_mask_ptr)
3960 {
3961 	cpumask_var_t new_mask;
3962 	int retval;
3963 
3964 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3965 		return -ENOMEM;
3966 
3967 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3968 	if (retval == 0)
3969 		retval = sched_setaffinity(pid, new_mask);
3970 	free_cpumask_var(new_mask);
3971 	return retval;
3972 }
3973 
3974 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3975 {
3976 	struct task_struct *p;
3977 	unsigned long flags;
3978 	int retval;
3979 
3980 	rcu_read_lock();
3981 
3982 	retval = -ESRCH;
3983 	p = find_process_by_pid(pid);
3984 	if (!p)
3985 		goto out_unlock;
3986 
3987 	retval = security_task_getscheduler(p);
3988 	if (retval)
3989 		goto out_unlock;
3990 
3991 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3992 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3993 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3994 
3995 out_unlock:
3996 	rcu_read_unlock();
3997 
3998 	return retval;
3999 }
4000 
4001 /**
4002  * sys_sched_getaffinity - get the cpu affinity of a process
4003  * @pid: pid of the process
4004  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4005  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4006  *
4007  * Return: 0 on success. An error code otherwise.
4008  */
4009 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4010 		unsigned long __user *, user_mask_ptr)
4011 {
4012 	int ret;
4013 	cpumask_var_t mask;
4014 
4015 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4016 		return -EINVAL;
4017 	if (len & (sizeof(unsigned long)-1))
4018 		return -EINVAL;
4019 
4020 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4021 		return -ENOMEM;
4022 
4023 	ret = sched_getaffinity(pid, mask);
4024 	if (ret == 0) {
4025 		size_t retlen = min_t(size_t, len, cpumask_size());
4026 
4027 		if (copy_to_user(user_mask_ptr, mask, retlen))
4028 			ret = -EFAULT;
4029 		else
4030 			ret = retlen;
4031 	}
4032 	free_cpumask_var(mask);
4033 
4034 	return ret;
4035 }
4036 
4037 /**
4038  * sys_sched_yield - yield the current processor to other threads.
4039  *
4040  * This function yields the current CPU to other tasks. If there are no
4041  * other threads running on this CPU then this function will return.
4042  *
4043  * Return: 0.
4044  */
4045 SYSCALL_DEFINE0(sched_yield)
4046 {
4047 	struct rq *rq = this_rq_lock();
4048 
4049 	schedstat_inc(rq, yld_count);
4050 	current->sched_class->yield_task(rq);
4051 
4052 	/*
4053 	 * Since we are going to call schedule() anyway, there's
4054 	 * no need to preempt or enable interrupts:
4055 	 */
4056 	__release(rq->lock);
4057 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4058 	do_raw_spin_unlock(&rq->lock);
4059 	sched_preempt_enable_no_resched();
4060 
4061 	schedule();
4062 
4063 	return 0;
4064 }
4065 
4066 static void __cond_resched(void)
4067 {
4068 	__preempt_count_add(PREEMPT_ACTIVE);
4069 	__schedule();
4070 	__preempt_count_sub(PREEMPT_ACTIVE);
4071 }
4072 
4073 int __sched _cond_resched(void)
4074 {
4075 	if (should_resched()) {
4076 		__cond_resched();
4077 		return 1;
4078 	}
4079 	return 0;
4080 }
4081 EXPORT_SYMBOL(_cond_resched);
4082 
4083 /*
4084  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4085  * call schedule, and on return reacquire the lock.
4086  *
4087  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4088  * operations here to prevent schedule() from being called twice (once via
4089  * spin_unlock(), once by hand).
4090  */
4091 int __cond_resched_lock(spinlock_t *lock)
4092 {
4093 	int resched = should_resched();
4094 	int ret = 0;
4095 
4096 	lockdep_assert_held(lock);
4097 
4098 	if (spin_needbreak(lock) || resched) {
4099 		spin_unlock(lock);
4100 		if (resched)
4101 			__cond_resched();
4102 		else
4103 			cpu_relax();
4104 		ret = 1;
4105 		spin_lock(lock);
4106 	}
4107 	return ret;
4108 }
4109 EXPORT_SYMBOL(__cond_resched_lock);
4110 
4111 int __sched __cond_resched_softirq(void)
4112 {
4113 	BUG_ON(!in_softirq());
4114 
4115 	if (should_resched()) {
4116 		local_bh_enable();
4117 		__cond_resched();
4118 		local_bh_disable();
4119 		return 1;
4120 	}
4121 	return 0;
4122 }
4123 EXPORT_SYMBOL(__cond_resched_softirq);
4124 
4125 /**
4126  * yield - yield the current processor to other threads.
4127  *
4128  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4129  *
4130  * The scheduler is at all times free to pick the calling task as the most
4131  * eligible task to run, if removing the yield() call from your code breaks
4132  * it, its already broken.
4133  *
4134  * Typical broken usage is:
4135  *
4136  * while (!event)
4137  * 	yield();
4138  *
4139  * where one assumes that yield() will let 'the other' process run that will
4140  * make event true. If the current task is a SCHED_FIFO task that will never
4141  * happen. Never use yield() as a progress guarantee!!
4142  *
4143  * If you want to use yield() to wait for something, use wait_event().
4144  * If you want to use yield() to be 'nice' for others, use cond_resched().
4145  * If you still want to use yield(), do not!
4146  */
4147 void __sched yield(void)
4148 {
4149 	set_current_state(TASK_RUNNING);
4150 	sys_sched_yield();
4151 }
4152 EXPORT_SYMBOL(yield);
4153 
4154 /**
4155  * yield_to - yield the current processor to another thread in
4156  * your thread group, or accelerate that thread toward the
4157  * processor it's on.
4158  * @p: target task
4159  * @preempt: whether task preemption is allowed or not
4160  *
4161  * It's the caller's job to ensure that the target task struct
4162  * can't go away on us before we can do any checks.
4163  *
4164  * Return:
4165  *	true (>0) if we indeed boosted the target task.
4166  *	false (0) if we failed to boost the target.
4167  *	-ESRCH if there's no task to yield to.
4168  */
4169 bool __sched yield_to(struct task_struct *p, bool preempt)
4170 {
4171 	struct task_struct *curr = current;
4172 	struct rq *rq, *p_rq;
4173 	unsigned long flags;
4174 	int yielded = 0;
4175 
4176 	local_irq_save(flags);
4177 	rq = this_rq();
4178 
4179 again:
4180 	p_rq = task_rq(p);
4181 	/*
4182 	 * If we're the only runnable task on the rq and target rq also
4183 	 * has only one task, there's absolutely no point in yielding.
4184 	 */
4185 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4186 		yielded = -ESRCH;
4187 		goto out_irq;
4188 	}
4189 
4190 	double_rq_lock(rq, p_rq);
4191 	if (task_rq(p) != p_rq) {
4192 		double_rq_unlock(rq, p_rq);
4193 		goto again;
4194 	}
4195 
4196 	if (!curr->sched_class->yield_to_task)
4197 		goto out_unlock;
4198 
4199 	if (curr->sched_class != p->sched_class)
4200 		goto out_unlock;
4201 
4202 	if (task_running(p_rq, p) || p->state)
4203 		goto out_unlock;
4204 
4205 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4206 	if (yielded) {
4207 		schedstat_inc(rq, yld_count);
4208 		/*
4209 		 * Make p's CPU reschedule; pick_next_entity takes care of
4210 		 * fairness.
4211 		 */
4212 		if (preempt && rq != p_rq)
4213 			resched_task(p_rq->curr);
4214 	}
4215 
4216 out_unlock:
4217 	double_rq_unlock(rq, p_rq);
4218 out_irq:
4219 	local_irq_restore(flags);
4220 
4221 	if (yielded > 0)
4222 		schedule();
4223 
4224 	return yielded;
4225 }
4226 EXPORT_SYMBOL_GPL(yield_to);
4227 
4228 /*
4229  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4230  * that process accounting knows that this is a task in IO wait state.
4231  */
4232 void __sched io_schedule(void)
4233 {
4234 	struct rq *rq = raw_rq();
4235 
4236 	delayacct_blkio_start();
4237 	atomic_inc(&rq->nr_iowait);
4238 	blk_flush_plug(current);
4239 	current->in_iowait = 1;
4240 	schedule();
4241 	current->in_iowait = 0;
4242 	atomic_dec(&rq->nr_iowait);
4243 	delayacct_blkio_end();
4244 }
4245 EXPORT_SYMBOL(io_schedule);
4246 
4247 long __sched io_schedule_timeout(long timeout)
4248 {
4249 	struct rq *rq = raw_rq();
4250 	long ret;
4251 
4252 	delayacct_blkio_start();
4253 	atomic_inc(&rq->nr_iowait);
4254 	blk_flush_plug(current);
4255 	current->in_iowait = 1;
4256 	ret = schedule_timeout(timeout);
4257 	current->in_iowait = 0;
4258 	atomic_dec(&rq->nr_iowait);
4259 	delayacct_blkio_end();
4260 	return ret;
4261 }
4262 
4263 /**
4264  * sys_sched_get_priority_max - return maximum RT priority.
4265  * @policy: scheduling class.
4266  *
4267  * Return: On success, this syscall returns the maximum
4268  * rt_priority that can be used by a given scheduling class.
4269  * On failure, a negative error code is returned.
4270  */
4271 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4272 {
4273 	int ret = -EINVAL;
4274 
4275 	switch (policy) {
4276 	case SCHED_FIFO:
4277 	case SCHED_RR:
4278 		ret = MAX_USER_RT_PRIO-1;
4279 		break;
4280 	case SCHED_DEADLINE:
4281 	case SCHED_NORMAL:
4282 	case SCHED_BATCH:
4283 	case SCHED_IDLE:
4284 		ret = 0;
4285 		break;
4286 	}
4287 	return ret;
4288 }
4289 
4290 /**
4291  * sys_sched_get_priority_min - return minimum RT priority.
4292  * @policy: scheduling class.
4293  *
4294  * Return: On success, this syscall returns the minimum
4295  * rt_priority that can be used by a given scheduling class.
4296  * On failure, a negative error code is returned.
4297  */
4298 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4299 {
4300 	int ret = -EINVAL;
4301 
4302 	switch (policy) {
4303 	case SCHED_FIFO:
4304 	case SCHED_RR:
4305 		ret = 1;
4306 		break;
4307 	case SCHED_DEADLINE:
4308 	case SCHED_NORMAL:
4309 	case SCHED_BATCH:
4310 	case SCHED_IDLE:
4311 		ret = 0;
4312 	}
4313 	return ret;
4314 }
4315 
4316 /**
4317  * sys_sched_rr_get_interval - return the default timeslice of a process.
4318  * @pid: pid of the process.
4319  * @interval: userspace pointer to the timeslice value.
4320  *
4321  * this syscall writes the default timeslice value of a given process
4322  * into the user-space timespec buffer. A value of '0' means infinity.
4323  *
4324  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4325  * an error code.
4326  */
4327 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4328 		struct timespec __user *, interval)
4329 {
4330 	struct task_struct *p;
4331 	unsigned int time_slice;
4332 	unsigned long flags;
4333 	struct rq *rq;
4334 	int retval;
4335 	struct timespec t;
4336 
4337 	if (pid < 0)
4338 		return -EINVAL;
4339 
4340 	retval = -ESRCH;
4341 	rcu_read_lock();
4342 	p = find_process_by_pid(pid);
4343 	if (!p)
4344 		goto out_unlock;
4345 
4346 	retval = security_task_getscheduler(p);
4347 	if (retval)
4348 		goto out_unlock;
4349 
4350 	rq = task_rq_lock(p, &flags);
4351 	time_slice = 0;
4352 	if (p->sched_class->get_rr_interval)
4353 		time_slice = p->sched_class->get_rr_interval(rq, p);
4354 	task_rq_unlock(rq, p, &flags);
4355 
4356 	rcu_read_unlock();
4357 	jiffies_to_timespec(time_slice, &t);
4358 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4359 	return retval;
4360 
4361 out_unlock:
4362 	rcu_read_unlock();
4363 	return retval;
4364 }
4365 
4366 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4367 
4368 void sched_show_task(struct task_struct *p)
4369 {
4370 	unsigned long free = 0;
4371 	int ppid;
4372 	unsigned state;
4373 
4374 	state = p->state ? __ffs(p->state) + 1 : 0;
4375 	printk(KERN_INFO "%-15.15s %c", p->comm,
4376 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4377 #if BITS_PER_LONG == 32
4378 	if (state == TASK_RUNNING)
4379 		printk(KERN_CONT " running  ");
4380 	else
4381 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4382 #else
4383 	if (state == TASK_RUNNING)
4384 		printk(KERN_CONT "  running task    ");
4385 	else
4386 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4387 #endif
4388 #ifdef CONFIG_DEBUG_STACK_USAGE
4389 	free = stack_not_used(p);
4390 #endif
4391 	rcu_read_lock();
4392 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4393 	rcu_read_unlock();
4394 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4395 		task_pid_nr(p), ppid,
4396 		(unsigned long)task_thread_info(p)->flags);
4397 
4398 	print_worker_info(KERN_INFO, p);
4399 	show_stack(p, NULL);
4400 }
4401 
4402 void show_state_filter(unsigned long state_filter)
4403 {
4404 	struct task_struct *g, *p;
4405 
4406 #if BITS_PER_LONG == 32
4407 	printk(KERN_INFO
4408 		"  task                PC stack   pid father\n");
4409 #else
4410 	printk(KERN_INFO
4411 		"  task                        PC stack   pid father\n");
4412 #endif
4413 	rcu_read_lock();
4414 	do_each_thread(g, p) {
4415 		/*
4416 		 * reset the NMI-timeout, listing all files on a slow
4417 		 * console might take a lot of time:
4418 		 */
4419 		touch_nmi_watchdog();
4420 		if (!state_filter || (p->state & state_filter))
4421 			sched_show_task(p);
4422 	} while_each_thread(g, p);
4423 
4424 	touch_all_softlockup_watchdogs();
4425 
4426 #ifdef CONFIG_SCHED_DEBUG
4427 	sysrq_sched_debug_show();
4428 #endif
4429 	rcu_read_unlock();
4430 	/*
4431 	 * Only show locks if all tasks are dumped:
4432 	 */
4433 	if (!state_filter)
4434 		debug_show_all_locks();
4435 }
4436 
4437 void init_idle_bootup_task(struct task_struct *idle)
4438 {
4439 	idle->sched_class = &idle_sched_class;
4440 }
4441 
4442 /**
4443  * init_idle - set up an idle thread for a given CPU
4444  * @idle: task in question
4445  * @cpu: cpu the idle task belongs to
4446  *
4447  * NOTE: this function does not set the idle thread's NEED_RESCHED
4448  * flag, to make booting more robust.
4449  */
4450 void init_idle(struct task_struct *idle, int cpu)
4451 {
4452 	struct rq *rq = cpu_rq(cpu);
4453 	unsigned long flags;
4454 
4455 	raw_spin_lock_irqsave(&rq->lock, flags);
4456 
4457 	__sched_fork(0, idle);
4458 	idle->state = TASK_RUNNING;
4459 	idle->se.exec_start = sched_clock();
4460 
4461 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4462 	/*
4463 	 * We're having a chicken and egg problem, even though we are
4464 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4465 	 * lockdep check in task_group() will fail.
4466 	 *
4467 	 * Similar case to sched_fork(). / Alternatively we could
4468 	 * use task_rq_lock() here and obtain the other rq->lock.
4469 	 *
4470 	 * Silence PROVE_RCU
4471 	 */
4472 	rcu_read_lock();
4473 	__set_task_cpu(idle, cpu);
4474 	rcu_read_unlock();
4475 
4476 	rq->curr = rq->idle = idle;
4477 #if defined(CONFIG_SMP)
4478 	idle->on_cpu = 1;
4479 #endif
4480 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4481 
4482 	/* Set the preempt count _outside_ the spinlocks! */
4483 	init_idle_preempt_count(idle, cpu);
4484 
4485 	/*
4486 	 * The idle tasks have their own, simple scheduling class:
4487 	 */
4488 	idle->sched_class = &idle_sched_class;
4489 	ftrace_graph_init_idle_task(idle, cpu);
4490 	vtime_init_idle(idle, cpu);
4491 #if defined(CONFIG_SMP)
4492 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4493 #endif
4494 }
4495 
4496 #ifdef CONFIG_SMP
4497 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4498 {
4499 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4500 		p->sched_class->set_cpus_allowed(p, new_mask);
4501 
4502 	cpumask_copy(&p->cpus_allowed, new_mask);
4503 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4504 }
4505 
4506 /*
4507  * This is how migration works:
4508  *
4509  * 1) we invoke migration_cpu_stop() on the target CPU using
4510  *    stop_one_cpu().
4511  * 2) stopper starts to run (implicitly forcing the migrated thread
4512  *    off the CPU)
4513  * 3) it checks whether the migrated task is still in the wrong runqueue.
4514  * 4) if it's in the wrong runqueue then the migration thread removes
4515  *    it and puts it into the right queue.
4516  * 5) stopper completes and stop_one_cpu() returns and the migration
4517  *    is done.
4518  */
4519 
4520 /*
4521  * Change a given task's CPU affinity. Migrate the thread to a
4522  * proper CPU and schedule it away if the CPU it's executing on
4523  * is removed from the allowed bitmask.
4524  *
4525  * NOTE: the caller must have a valid reference to the task, the
4526  * task must not exit() & deallocate itself prematurely. The
4527  * call is not atomic; no spinlocks may be held.
4528  */
4529 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4530 {
4531 	unsigned long flags;
4532 	struct rq *rq;
4533 	unsigned int dest_cpu;
4534 	int ret = 0;
4535 
4536 	rq = task_rq_lock(p, &flags);
4537 
4538 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4539 		goto out;
4540 
4541 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4542 		ret = -EINVAL;
4543 		goto out;
4544 	}
4545 
4546 	do_set_cpus_allowed(p, new_mask);
4547 
4548 	/* Can the task run on the task's current CPU? If so, we're done */
4549 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4550 		goto out;
4551 
4552 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4553 	if (p->on_rq) {
4554 		struct migration_arg arg = { p, dest_cpu };
4555 		/* Need help from migration thread: drop lock and wait. */
4556 		task_rq_unlock(rq, p, &flags);
4557 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4558 		tlb_migrate_finish(p->mm);
4559 		return 0;
4560 	}
4561 out:
4562 	task_rq_unlock(rq, p, &flags);
4563 
4564 	return ret;
4565 }
4566 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4567 
4568 /*
4569  * Move (not current) task off this cpu, onto dest cpu. We're doing
4570  * this because either it can't run here any more (set_cpus_allowed()
4571  * away from this CPU, or CPU going down), or because we're
4572  * attempting to rebalance this task on exec (sched_exec).
4573  *
4574  * So we race with normal scheduler movements, but that's OK, as long
4575  * as the task is no longer on this CPU.
4576  *
4577  * Returns non-zero if task was successfully migrated.
4578  */
4579 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4580 {
4581 	struct rq *rq_dest, *rq_src;
4582 	int ret = 0;
4583 
4584 	if (unlikely(!cpu_active(dest_cpu)))
4585 		return ret;
4586 
4587 	rq_src = cpu_rq(src_cpu);
4588 	rq_dest = cpu_rq(dest_cpu);
4589 
4590 	raw_spin_lock(&p->pi_lock);
4591 	double_rq_lock(rq_src, rq_dest);
4592 	/* Already moved. */
4593 	if (task_cpu(p) != src_cpu)
4594 		goto done;
4595 	/* Affinity changed (again). */
4596 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4597 		goto fail;
4598 
4599 	/*
4600 	 * If we're not on a rq, the next wake-up will ensure we're
4601 	 * placed properly.
4602 	 */
4603 	if (p->on_rq) {
4604 		dequeue_task(rq_src, p, 0);
4605 		set_task_cpu(p, dest_cpu);
4606 		enqueue_task(rq_dest, p, 0);
4607 		check_preempt_curr(rq_dest, p, 0);
4608 	}
4609 done:
4610 	ret = 1;
4611 fail:
4612 	double_rq_unlock(rq_src, rq_dest);
4613 	raw_spin_unlock(&p->pi_lock);
4614 	return ret;
4615 }
4616 
4617 #ifdef CONFIG_NUMA_BALANCING
4618 /* Migrate current task p to target_cpu */
4619 int migrate_task_to(struct task_struct *p, int target_cpu)
4620 {
4621 	struct migration_arg arg = { p, target_cpu };
4622 	int curr_cpu = task_cpu(p);
4623 
4624 	if (curr_cpu == target_cpu)
4625 		return 0;
4626 
4627 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4628 		return -EINVAL;
4629 
4630 	/* TODO: This is not properly updating schedstats */
4631 
4632 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4633 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4634 }
4635 
4636 /*
4637  * Requeue a task on a given node and accurately track the number of NUMA
4638  * tasks on the runqueues
4639  */
4640 void sched_setnuma(struct task_struct *p, int nid)
4641 {
4642 	struct rq *rq;
4643 	unsigned long flags;
4644 	bool on_rq, running;
4645 
4646 	rq = task_rq_lock(p, &flags);
4647 	on_rq = p->on_rq;
4648 	running = task_current(rq, p);
4649 
4650 	if (on_rq)
4651 		dequeue_task(rq, p, 0);
4652 	if (running)
4653 		p->sched_class->put_prev_task(rq, p);
4654 
4655 	p->numa_preferred_nid = nid;
4656 
4657 	if (running)
4658 		p->sched_class->set_curr_task(rq);
4659 	if (on_rq)
4660 		enqueue_task(rq, p, 0);
4661 	task_rq_unlock(rq, p, &flags);
4662 }
4663 #endif
4664 
4665 /*
4666  * migration_cpu_stop - this will be executed by a highprio stopper thread
4667  * and performs thread migration by bumping thread off CPU then
4668  * 'pushing' onto another runqueue.
4669  */
4670 static int migration_cpu_stop(void *data)
4671 {
4672 	struct migration_arg *arg = data;
4673 
4674 	/*
4675 	 * The original target cpu might have gone down and we might
4676 	 * be on another cpu but it doesn't matter.
4677 	 */
4678 	local_irq_disable();
4679 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4680 	local_irq_enable();
4681 	return 0;
4682 }
4683 
4684 #ifdef CONFIG_HOTPLUG_CPU
4685 
4686 /*
4687  * Ensures that the idle task is using init_mm right before its cpu goes
4688  * offline.
4689  */
4690 void idle_task_exit(void)
4691 {
4692 	struct mm_struct *mm = current->active_mm;
4693 
4694 	BUG_ON(cpu_online(smp_processor_id()));
4695 
4696 	if (mm != &init_mm)
4697 		switch_mm(mm, &init_mm, current);
4698 	mmdrop(mm);
4699 }
4700 
4701 /*
4702  * Since this CPU is going 'away' for a while, fold any nr_active delta
4703  * we might have. Assumes we're called after migrate_tasks() so that the
4704  * nr_active count is stable.
4705  *
4706  * Also see the comment "Global load-average calculations".
4707  */
4708 static void calc_load_migrate(struct rq *rq)
4709 {
4710 	long delta = calc_load_fold_active(rq);
4711 	if (delta)
4712 		atomic_long_add(delta, &calc_load_tasks);
4713 }
4714 
4715 /*
4716  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4717  * try_to_wake_up()->select_task_rq().
4718  *
4719  * Called with rq->lock held even though we'er in stop_machine() and
4720  * there's no concurrency possible, we hold the required locks anyway
4721  * because of lock validation efforts.
4722  */
4723 static void migrate_tasks(unsigned int dead_cpu)
4724 {
4725 	struct rq *rq = cpu_rq(dead_cpu);
4726 	struct task_struct *next, *stop = rq->stop;
4727 	int dest_cpu;
4728 
4729 	/*
4730 	 * Fudge the rq selection such that the below task selection loop
4731 	 * doesn't get stuck on the currently eligible stop task.
4732 	 *
4733 	 * We're currently inside stop_machine() and the rq is either stuck
4734 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4735 	 * either way we should never end up calling schedule() until we're
4736 	 * done here.
4737 	 */
4738 	rq->stop = NULL;
4739 
4740 	/*
4741 	 * put_prev_task() and pick_next_task() sched
4742 	 * class method both need to have an up-to-date
4743 	 * value of rq->clock[_task]
4744 	 */
4745 	update_rq_clock(rq);
4746 
4747 	for ( ; ; ) {
4748 		/*
4749 		 * There's this thread running, bail when that's the only
4750 		 * remaining thread.
4751 		 */
4752 		if (rq->nr_running == 1)
4753 			break;
4754 
4755 		next = pick_next_task(rq);
4756 		BUG_ON(!next);
4757 		next->sched_class->put_prev_task(rq, next);
4758 
4759 		/* Find suitable destination for @next, with force if needed. */
4760 		dest_cpu = select_fallback_rq(dead_cpu, next);
4761 		raw_spin_unlock(&rq->lock);
4762 
4763 		__migrate_task(next, dead_cpu, dest_cpu);
4764 
4765 		raw_spin_lock(&rq->lock);
4766 	}
4767 
4768 	rq->stop = stop;
4769 }
4770 
4771 #endif /* CONFIG_HOTPLUG_CPU */
4772 
4773 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4774 
4775 static struct ctl_table sd_ctl_dir[] = {
4776 	{
4777 		.procname	= "sched_domain",
4778 		.mode		= 0555,
4779 	},
4780 	{}
4781 };
4782 
4783 static struct ctl_table sd_ctl_root[] = {
4784 	{
4785 		.procname	= "kernel",
4786 		.mode		= 0555,
4787 		.child		= sd_ctl_dir,
4788 	},
4789 	{}
4790 };
4791 
4792 static struct ctl_table *sd_alloc_ctl_entry(int n)
4793 {
4794 	struct ctl_table *entry =
4795 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4796 
4797 	return entry;
4798 }
4799 
4800 static void sd_free_ctl_entry(struct ctl_table **tablep)
4801 {
4802 	struct ctl_table *entry;
4803 
4804 	/*
4805 	 * In the intermediate directories, both the child directory and
4806 	 * procname are dynamically allocated and could fail but the mode
4807 	 * will always be set. In the lowest directory the names are
4808 	 * static strings and all have proc handlers.
4809 	 */
4810 	for (entry = *tablep; entry->mode; entry++) {
4811 		if (entry->child)
4812 			sd_free_ctl_entry(&entry->child);
4813 		if (entry->proc_handler == NULL)
4814 			kfree(entry->procname);
4815 	}
4816 
4817 	kfree(*tablep);
4818 	*tablep = NULL;
4819 }
4820 
4821 static int min_load_idx = 0;
4822 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4823 
4824 static void
4825 set_table_entry(struct ctl_table *entry,
4826 		const char *procname, void *data, int maxlen,
4827 		umode_t mode, proc_handler *proc_handler,
4828 		bool load_idx)
4829 {
4830 	entry->procname = procname;
4831 	entry->data = data;
4832 	entry->maxlen = maxlen;
4833 	entry->mode = mode;
4834 	entry->proc_handler = proc_handler;
4835 
4836 	if (load_idx) {
4837 		entry->extra1 = &min_load_idx;
4838 		entry->extra2 = &max_load_idx;
4839 	}
4840 }
4841 
4842 static struct ctl_table *
4843 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4844 {
4845 	struct ctl_table *table = sd_alloc_ctl_entry(13);
4846 
4847 	if (table == NULL)
4848 		return NULL;
4849 
4850 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4851 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4852 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4853 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4854 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4855 		sizeof(int), 0644, proc_dointvec_minmax, true);
4856 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4857 		sizeof(int), 0644, proc_dointvec_minmax, true);
4858 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4859 		sizeof(int), 0644, proc_dointvec_minmax, true);
4860 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4861 		sizeof(int), 0644, proc_dointvec_minmax, true);
4862 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4863 		sizeof(int), 0644, proc_dointvec_minmax, true);
4864 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4865 		sizeof(int), 0644, proc_dointvec_minmax, false);
4866 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4867 		sizeof(int), 0644, proc_dointvec_minmax, false);
4868 	set_table_entry(&table[9], "cache_nice_tries",
4869 		&sd->cache_nice_tries,
4870 		sizeof(int), 0644, proc_dointvec_minmax, false);
4871 	set_table_entry(&table[10], "flags", &sd->flags,
4872 		sizeof(int), 0644, proc_dointvec_minmax, false);
4873 	set_table_entry(&table[11], "name", sd->name,
4874 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4875 	/* &table[12] is terminator */
4876 
4877 	return table;
4878 }
4879 
4880 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4881 {
4882 	struct ctl_table *entry, *table;
4883 	struct sched_domain *sd;
4884 	int domain_num = 0, i;
4885 	char buf[32];
4886 
4887 	for_each_domain(cpu, sd)
4888 		domain_num++;
4889 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4890 	if (table == NULL)
4891 		return NULL;
4892 
4893 	i = 0;
4894 	for_each_domain(cpu, sd) {
4895 		snprintf(buf, 32, "domain%d", i);
4896 		entry->procname = kstrdup(buf, GFP_KERNEL);
4897 		entry->mode = 0555;
4898 		entry->child = sd_alloc_ctl_domain_table(sd);
4899 		entry++;
4900 		i++;
4901 	}
4902 	return table;
4903 }
4904 
4905 static struct ctl_table_header *sd_sysctl_header;
4906 static void register_sched_domain_sysctl(void)
4907 {
4908 	int i, cpu_num = num_possible_cpus();
4909 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4910 	char buf[32];
4911 
4912 	WARN_ON(sd_ctl_dir[0].child);
4913 	sd_ctl_dir[0].child = entry;
4914 
4915 	if (entry == NULL)
4916 		return;
4917 
4918 	for_each_possible_cpu(i) {
4919 		snprintf(buf, 32, "cpu%d", i);
4920 		entry->procname = kstrdup(buf, GFP_KERNEL);
4921 		entry->mode = 0555;
4922 		entry->child = sd_alloc_ctl_cpu_table(i);
4923 		entry++;
4924 	}
4925 
4926 	WARN_ON(sd_sysctl_header);
4927 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4928 }
4929 
4930 /* may be called multiple times per register */
4931 static void unregister_sched_domain_sysctl(void)
4932 {
4933 	if (sd_sysctl_header)
4934 		unregister_sysctl_table(sd_sysctl_header);
4935 	sd_sysctl_header = NULL;
4936 	if (sd_ctl_dir[0].child)
4937 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4938 }
4939 #else
4940 static void register_sched_domain_sysctl(void)
4941 {
4942 }
4943 static void unregister_sched_domain_sysctl(void)
4944 {
4945 }
4946 #endif
4947 
4948 static void set_rq_online(struct rq *rq)
4949 {
4950 	if (!rq->online) {
4951 		const struct sched_class *class;
4952 
4953 		cpumask_set_cpu(rq->cpu, rq->rd->online);
4954 		rq->online = 1;
4955 
4956 		for_each_class(class) {
4957 			if (class->rq_online)
4958 				class->rq_online(rq);
4959 		}
4960 	}
4961 }
4962 
4963 static void set_rq_offline(struct rq *rq)
4964 {
4965 	if (rq->online) {
4966 		const struct sched_class *class;
4967 
4968 		for_each_class(class) {
4969 			if (class->rq_offline)
4970 				class->rq_offline(rq);
4971 		}
4972 
4973 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4974 		rq->online = 0;
4975 	}
4976 }
4977 
4978 /*
4979  * migration_call - callback that gets triggered when a CPU is added.
4980  * Here we can start up the necessary migration thread for the new CPU.
4981  */
4982 static int
4983 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4984 {
4985 	int cpu = (long)hcpu;
4986 	unsigned long flags;
4987 	struct rq *rq = cpu_rq(cpu);
4988 
4989 	switch (action & ~CPU_TASKS_FROZEN) {
4990 
4991 	case CPU_UP_PREPARE:
4992 		rq->calc_load_update = calc_load_update;
4993 		break;
4994 
4995 	case CPU_ONLINE:
4996 		/* Update our root-domain */
4997 		raw_spin_lock_irqsave(&rq->lock, flags);
4998 		if (rq->rd) {
4999 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5000 
5001 			set_rq_online(rq);
5002 		}
5003 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5004 		break;
5005 
5006 #ifdef CONFIG_HOTPLUG_CPU
5007 	case CPU_DYING:
5008 		sched_ttwu_pending();
5009 		/* Update our root-domain */
5010 		raw_spin_lock_irqsave(&rq->lock, flags);
5011 		if (rq->rd) {
5012 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5013 			set_rq_offline(rq);
5014 		}
5015 		migrate_tasks(cpu);
5016 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5017 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5018 		break;
5019 
5020 	case CPU_DEAD:
5021 		calc_load_migrate(rq);
5022 		break;
5023 #endif
5024 	}
5025 
5026 	update_max_interval();
5027 
5028 	return NOTIFY_OK;
5029 }
5030 
5031 /*
5032  * Register at high priority so that task migration (migrate_all_tasks)
5033  * happens before everything else.  This has to be lower priority than
5034  * the notifier in the perf_event subsystem, though.
5035  */
5036 static struct notifier_block migration_notifier = {
5037 	.notifier_call = migration_call,
5038 	.priority = CPU_PRI_MIGRATION,
5039 };
5040 
5041 static int sched_cpu_active(struct notifier_block *nfb,
5042 				      unsigned long action, void *hcpu)
5043 {
5044 	switch (action & ~CPU_TASKS_FROZEN) {
5045 	case CPU_STARTING:
5046 	case CPU_DOWN_FAILED:
5047 		set_cpu_active((long)hcpu, true);
5048 		return NOTIFY_OK;
5049 	default:
5050 		return NOTIFY_DONE;
5051 	}
5052 }
5053 
5054 static int sched_cpu_inactive(struct notifier_block *nfb,
5055 					unsigned long action, void *hcpu)
5056 {
5057 	unsigned long flags;
5058 	long cpu = (long)hcpu;
5059 
5060 	switch (action & ~CPU_TASKS_FROZEN) {
5061 	case CPU_DOWN_PREPARE:
5062 		set_cpu_active(cpu, false);
5063 
5064 		/* explicitly allow suspend */
5065 		if (!(action & CPU_TASKS_FROZEN)) {
5066 			struct dl_bw *dl_b = dl_bw_of(cpu);
5067 			bool overflow;
5068 			int cpus;
5069 
5070 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5071 			cpus = dl_bw_cpus(cpu);
5072 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5073 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5074 
5075 			if (overflow)
5076 				return notifier_from_errno(-EBUSY);
5077 		}
5078 		return NOTIFY_OK;
5079 	}
5080 
5081 	return NOTIFY_DONE;
5082 }
5083 
5084 static int __init migration_init(void)
5085 {
5086 	void *cpu = (void *)(long)smp_processor_id();
5087 	int err;
5088 
5089 	/* Initialize migration for the boot CPU */
5090 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5091 	BUG_ON(err == NOTIFY_BAD);
5092 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5093 	register_cpu_notifier(&migration_notifier);
5094 
5095 	/* Register cpu active notifiers */
5096 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5097 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5098 
5099 	return 0;
5100 }
5101 early_initcall(migration_init);
5102 #endif
5103 
5104 #ifdef CONFIG_SMP
5105 
5106 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5107 
5108 #ifdef CONFIG_SCHED_DEBUG
5109 
5110 static __read_mostly int sched_debug_enabled;
5111 
5112 static int __init sched_debug_setup(char *str)
5113 {
5114 	sched_debug_enabled = 1;
5115 
5116 	return 0;
5117 }
5118 early_param("sched_debug", sched_debug_setup);
5119 
5120 static inline bool sched_debug(void)
5121 {
5122 	return sched_debug_enabled;
5123 }
5124 
5125 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5126 				  struct cpumask *groupmask)
5127 {
5128 	struct sched_group *group = sd->groups;
5129 	char str[256];
5130 
5131 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5132 	cpumask_clear(groupmask);
5133 
5134 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5135 
5136 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5137 		printk("does not load-balance\n");
5138 		if (sd->parent)
5139 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5140 					" has parent");
5141 		return -1;
5142 	}
5143 
5144 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5145 
5146 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5147 		printk(KERN_ERR "ERROR: domain->span does not contain "
5148 				"CPU%d\n", cpu);
5149 	}
5150 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5151 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5152 				" CPU%d\n", cpu);
5153 	}
5154 
5155 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5156 	do {
5157 		if (!group) {
5158 			printk("\n");
5159 			printk(KERN_ERR "ERROR: group is NULL\n");
5160 			break;
5161 		}
5162 
5163 		/*
5164 		 * Even though we initialize ->power to something semi-sane,
5165 		 * we leave power_orig unset. This allows us to detect if
5166 		 * domain iteration is still funny without causing /0 traps.
5167 		 */
5168 		if (!group->sgp->power_orig) {
5169 			printk(KERN_CONT "\n");
5170 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5171 					"set\n");
5172 			break;
5173 		}
5174 
5175 		if (!cpumask_weight(sched_group_cpus(group))) {
5176 			printk(KERN_CONT "\n");
5177 			printk(KERN_ERR "ERROR: empty group\n");
5178 			break;
5179 		}
5180 
5181 		if (!(sd->flags & SD_OVERLAP) &&
5182 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5183 			printk(KERN_CONT "\n");
5184 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5185 			break;
5186 		}
5187 
5188 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5189 
5190 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5191 
5192 		printk(KERN_CONT " %s", str);
5193 		if (group->sgp->power != SCHED_POWER_SCALE) {
5194 			printk(KERN_CONT " (cpu_power = %d)",
5195 				group->sgp->power);
5196 		}
5197 
5198 		group = group->next;
5199 	} while (group != sd->groups);
5200 	printk(KERN_CONT "\n");
5201 
5202 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5203 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5204 
5205 	if (sd->parent &&
5206 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5207 		printk(KERN_ERR "ERROR: parent span is not a superset "
5208 			"of domain->span\n");
5209 	return 0;
5210 }
5211 
5212 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5213 {
5214 	int level = 0;
5215 
5216 	if (!sched_debug_enabled)
5217 		return;
5218 
5219 	if (!sd) {
5220 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5221 		return;
5222 	}
5223 
5224 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5225 
5226 	for (;;) {
5227 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5228 			break;
5229 		level++;
5230 		sd = sd->parent;
5231 		if (!sd)
5232 			break;
5233 	}
5234 }
5235 #else /* !CONFIG_SCHED_DEBUG */
5236 # define sched_domain_debug(sd, cpu) do { } while (0)
5237 static inline bool sched_debug(void)
5238 {
5239 	return false;
5240 }
5241 #endif /* CONFIG_SCHED_DEBUG */
5242 
5243 static int sd_degenerate(struct sched_domain *sd)
5244 {
5245 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5246 		return 1;
5247 
5248 	/* Following flags need at least 2 groups */
5249 	if (sd->flags & (SD_LOAD_BALANCE |
5250 			 SD_BALANCE_NEWIDLE |
5251 			 SD_BALANCE_FORK |
5252 			 SD_BALANCE_EXEC |
5253 			 SD_SHARE_CPUPOWER |
5254 			 SD_SHARE_PKG_RESOURCES)) {
5255 		if (sd->groups != sd->groups->next)
5256 			return 0;
5257 	}
5258 
5259 	/* Following flags don't use groups */
5260 	if (sd->flags & (SD_WAKE_AFFINE))
5261 		return 0;
5262 
5263 	return 1;
5264 }
5265 
5266 static int
5267 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5268 {
5269 	unsigned long cflags = sd->flags, pflags = parent->flags;
5270 
5271 	if (sd_degenerate(parent))
5272 		return 1;
5273 
5274 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5275 		return 0;
5276 
5277 	/* Flags needing groups don't count if only 1 group in parent */
5278 	if (parent->groups == parent->groups->next) {
5279 		pflags &= ~(SD_LOAD_BALANCE |
5280 				SD_BALANCE_NEWIDLE |
5281 				SD_BALANCE_FORK |
5282 				SD_BALANCE_EXEC |
5283 				SD_SHARE_CPUPOWER |
5284 				SD_SHARE_PKG_RESOURCES |
5285 				SD_PREFER_SIBLING);
5286 		if (nr_node_ids == 1)
5287 			pflags &= ~SD_SERIALIZE;
5288 	}
5289 	if (~cflags & pflags)
5290 		return 0;
5291 
5292 	return 1;
5293 }
5294 
5295 static void free_rootdomain(struct rcu_head *rcu)
5296 {
5297 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5298 
5299 	cpupri_cleanup(&rd->cpupri);
5300 	cpudl_cleanup(&rd->cpudl);
5301 	free_cpumask_var(rd->dlo_mask);
5302 	free_cpumask_var(rd->rto_mask);
5303 	free_cpumask_var(rd->online);
5304 	free_cpumask_var(rd->span);
5305 	kfree(rd);
5306 }
5307 
5308 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5309 {
5310 	struct root_domain *old_rd = NULL;
5311 	unsigned long flags;
5312 
5313 	raw_spin_lock_irqsave(&rq->lock, flags);
5314 
5315 	if (rq->rd) {
5316 		old_rd = rq->rd;
5317 
5318 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5319 			set_rq_offline(rq);
5320 
5321 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5322 
5323 		/*
5324 		 * If we dont want to free the old_rd yet then
5325 		 * set old_rd to NULL to skip the freeing later
5326 		 * in this function:
5327 		 */
5328 		if (!atomic_dec_and_test(&old_rd->refcount))
5329 			old_rd = NULL;
5330 	}
5331 
5332 	atomic_inc(&rd->refcount);
5333 	rq->rd = rd;
5334 
5335 	cpumask_set_cpu(rq->cpu, rd->span);
5336 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5337 		set_rq_online(rq);
5338 
5339 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5340 
5341 	if (old_rd)
5342 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5343 }
5344 
5345 static int init_rootdomain(struct root_domain *rd)
5346 {
5347 	memset(rd, 0, sizeof(*rd));
5348 
5349 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5350 		goto out;
5351 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5352 		goto free_span;
5353 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5354 		goto free_online;
5355 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5356 		goto free_dlo_mask;
5357 
5358 	init_dl_bw(&rd->dl_bw);
5359 	if (cpudl_init(&rd->cpudl) != 0)
5360 		goto free_dlo_mask;
5361 
5362 	if (cpupri_init(&rd->cpupri) != 0)
5363 		goto free_rto_mask;
5364 	return 0;
5365 
5366 free_rto_mask:
5367 	free_cpumask_var(rd->rto_mask);
5368 free_dlo_mask:
5369 	free_cpumask_var(rd->dlo_mask);
5370 free_online:
5371 	free_cpumask_var(rd->online);
5372 free_span:
5373 	free_cpumask_var(rd->span);
5374 out:
5375 	return -ENOMEM;
5376 }
5377 
5378 /*
5379  * By default the system creates a single root-domain with all cpus as
5380  * members (mimicking the global state we have today).
5381  */
5382 struct root_domain def_root_domain;
5383 
5384 static void init_defrootdomain(void)
5385 {
5386 	init_rootdomain(&def_root_domain);
5387 
5388 	atomic_set(&def_root_domain.refcount, 1);
5389 }
5390 
5391 static struct root_domain *alloc_rootdomain(void)
5392 {
5393 	struct root_domain *rd;
5394 
5395 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5396 	if (!rd)
5397 		return NULL;
5398 
5399 	if (init_rootdomain(rd) != 0) {
5400 		kfree(rd);
5401 		return NULL;
5402 	}
5403 
5404 	return rd;
5405 }
5406 
5407 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5408 {
5409 	struct sched_group *tmp, *first;
5410 
5411 	if (!sg)
5412 		return;
5413 
5414 	first = sg;
5415 	do {
5416 		tmp = sg->next;
5417 
5418 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5419 			kfree(sg->sgp);
5420 
5421 		kfree(sg);
5422 		sg = tmp;
5423 	} while (sg != first);
5424 }
5425 
5426 static void free_sched_domain(struct rcu_head *rcu)
5427 {
5428 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5429 
5430 	/*
5431 	 * If its an overlapping domain it has private groups, iterate and
5432 	 * nuke them all.
5433 	 */
5434 	if (sd->flags & SD_OVERLAP) {
5435 		free_sched_groups(sd->groups, 1);
5436 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5437 		kfree(sd->groups->sgp);
5438 		kfree(sd->groups);
5439 	}
5440 	kfree(sd);
5441 }
5442 
5443 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5444 {
5445 	call_rcu(&sd->rcu, free_sched_domain);
5446 }
5447 
5448 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5449 {
5450 	for (; sd; sd = sd->parent)
5451 		destroy_sched_domain(sd, cpu);
5452 }
5453 
5454 /*
5455  * Keep a special pointer to the highest sched_domain that has
5456  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5457  * allows us to avoid some pointer chasing select_idle_sibling().
5458  *
5459  * Also keep a unique ID per domain (we use the first cpu number in
5460  * the cpumask of the domain), this allows us to quickly tell if
5461  * two cpus are in the same cache domain, see cpus_share_cache().
5462  */
5463 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5464 DEFINE_PER_CPU(int, sd_llc_size);
5465 DEFINE_PER_CPU(int, sd_llc_id);
5466 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5467 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5468 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5469 
5470 static void update_top_cache_domain(int cpu)
5471 {
5472 	struct sched_domain *sd;
5473 	struct sched_domain *busy_sd = NULL;
5474 	int id = cpu;
5475 	int size = 1;
5476 
5477 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5478 	if (sd) {
5479 		id = cpumask_first(sched_domain_span(sd));
5480 		size = cpumask_weight(sched_domain_span(sd));
5481 		busy_sd = sd->parent; /* sd_busy */
5482 	}
5483 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5484 
5485 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5486 	per_cpu(sd_llc_size, cpu) = size;
5487 	per_cpu(sd_llc_id, cpu) = id;
5488 
5489 	sd = lowest_flag_domain(cpu, SD_NUMA);
5490 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5491 
5492 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5493 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5494 }
5495 
5496 /*
5497  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5498  * hold the hotplug lock.
5499  */
5500 static void
5501 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5502 {
5503 	struct rq *rq = cpu_rq(cpu);
5504 	struct sched_domain *tmp;
5505 
5506 	/* Remove the sched domains which do not contribute to scheduling. */
5507 	for (tmp = sd; tmp; ) {
5508 		struct sched_domain *parent = tmp->parent;
5509 		if (!parent)
5510 			break;
5511 
5512 		if (sd_parent_degenerate(tmp, parent)) {
5513 			tmp->parent = parent->parent;
5514 			if (parent->parent)
5515 				parent->parent->child = tmp;
5516 			/*
5517 			 * Transfer SD_PREFER_SIBLING down in case of a
5518 			 * degenerate parent; the spans match for this
5519 			 * so the property transfers.
5520 			 */
5521 			if (parent->flags & SD_PREFER_SIBLING)
5522 				tmp->flags |= SD_PREFER_SIBLING;
5523 			destroy_sched_domain(parent, cpu);
5524 		} else
5525 			tmp = tmp->parent;
5526 	}
5527 
5528 	if (sd && sd_degenerate(sd)) {
5529 		tmp = sd;
5530 		sd = sd->parent;
5531 		destroy_sched_domain(tmp, cpu);
5532 		if (sd)
5533 			sd->child = NULL;
5534 	}
5535 
5536 	sched_domain_debug(sd, cpu);
5537 
5538 	rq_attach_root(rq, rd);
5539 	tmp = rq->sd;
5540 	rcu_assign_pointer(rq->sd, sd);
5541 	destroy_sched_domains(tmp, cpu);
5542 
5543 	update_top_cache_domain(cpu);
5544 }
5545 
5546 /* cpus with isolated domains */
5547 static cpumask_var_t cpu_isolated_map;
5548 
5549 /* Setup the mask of cpus configured for isolated domains */
5550 static int __init isolated_cpu_setup(char *str)
5551 {
5552 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5553 	cpulist_parse(str, cpu_isolated_map);
5554 	return 1;
5555 }
5556 
5557 __setup("isolcpus=", isolated_cpu_setup);
5558 
5559 static const struct cpumask *cpu_cpu_mask(int cpu)
5560 {
5561 	return cpumask_of_node(cpu_to_node(cpu));
5562 }
5563 
5564 struct sd_data {
5565 	struct sched_domain **__percpu sd;
5566 	struct sched_group **__percpu sg;
5567 	struct sched_group_power **__percpu sgp;
5568 };
5569 
5570 struct s_data {
5571 	struct sched_domain ** __percpu sd;
5572 	struct root_domain	*rd;
5573 };
5574 
5575 enum s_alloc {
5576 	sa_rootdomain,
5577 	sa_sd,
5578 	sa_sd_storage,
5579 	sa_none,
5580 };
5581 
5582 struct sched_domain_topology_level;
5583 
5584 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5585 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5586 
5587 #define SDTL_OVERLAP	0x01
5588 
5589 struct sched_domain_topology_level {
5590 	sched_domain_init_f init;
5591 	sched_domain_mask_f mask;
5592 	int		    flags;
5593 	int		    numa_level;
5594 	struct sd_data      data;
5595 };
5596 
5597 /*
5598  * Build an iteration mask that can exclude certain CPUs from the upwards
5599  * domain traversal.
5600  *
5601  * Asymmetric node setups can result in situations where the domain tree is of
5602  * unequal depth, make sure to skip domains that already cover the entire
5603  * range.
5604  *
5605  * In that case build_sched_domains() will have terminated the iteration early
5606  * and our sibling sd spans will be empty. Domains should always include the
5607  * cpu they're built on, so check that.
5608  *
5609  */
5610 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5611 {
5612 	const struct cpumask *span = sched_domain_span(sd);
5613 	struct sd_data *sdd = sd->private;
5614 	struct sched_domain *sibling;
5615 	int i;
5616 
5617 	for_each_cpu(i, span) {
5618 		sibling = *per_cpu_ptr(sdd->sd, i);
5619 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5620 			continue;
5621 
5622 		cpumask_set_cpu(i, sched_group_mask(sg));
5623 	}
5624 }
5625 
5626 /*
5627  * Return the canonical balance cpu for this group, this is the first cpu
5628  * of this group that's also in the iteration mask.
5629  */
5630 int group_balance_cpu(struct sched_group *sg)
5631 {
5632 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5633 }
5634 
5635 static int
5636 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5637 {
5638 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5639 	const struct cpumask *span = sched_domain_span(sd);
5640 	struct cpumask *covered = sched_domains_tmpmask;
5641 	struct sd_data *sdd = sd->private;
5642 	struct sched_domain *child;
5643 	int i;
5644 
5645 	cpumask_clear(covered);
5646 
5647 	for_each_cpu(i, span) {
5648 		struct cpumask *sg_span;
5649 
5650 		if (cpumask_test_cpu(i, covered))
5651 			continue;
5652 
5653 		child = *per_cpu_ptr(sdd->sd, i);
5654 
5655 		/* See the comment near build_group_mask(). */
5656 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5657 			continue;
5658 
5659 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5660 				GFP_KERNEL, cpu_to_node(cpu));
5661 
5662 		if (!sg)
5663 			goto fail;
5664 
5665 		sg_span = sched_group_cpus(sg);
5666 		if (child->child) {
5667 			child = child->child;
5668 			cpumask_copy(sg_span, sched_domain_span(child));
5669 		} else
5670 			cpumask_set_cpu(i, sg_span);
5671 
5672 		cpumask_or(covered, covered, sg_span);
5673 
5674 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5675 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5676 			build_group_mask(sd, sg);
5677 
5678 		/*
5679 		 * Initialize sgp->power such that even if we mess up the
5680 		 * domains and no possible iteration will get us here, we won't
5681 		 * die on a /0 trap.
5682 		 */
5683 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5684 		sg->sgp->power_orig = sg->sgp->power;
5685 
5686 		/*
5687 		 * Make sure the first group of this domain contains the
5688 		 * canonical balance cpu. Otherwise the sched_domain iteration
5689 		 * breaks. See update_sg_lb_stats().
5690 		 */
5691 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5692 		    group_balance_cpu(sg) == cpu)
5693 			groups = sg;
5694 
5695 		if (!first)
5696 			first = sg;
5697 		if (last)
5698 			last->next = sg;
5699 		last = sg;
5700 		last->next = first;
5701 	}
5702 	sd->groups = groups;
5703 
5704 	return 0;
5705 
5706 fail:
5707 	free_sched_groups(first, 0);
5708 
5709 	return -ENOMEM;
5710 }
5711 
5712 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5713 {
5714 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5715 	struct sched_domain *child = sd->child;
5716 
5717 	if (child)
5718 		cpu = cpumask_first(sched_domain_span(child));
5719 
5720 	if (sg) {
5721 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5722 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5723 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5724 	}
5725 
5726 	return cpu;
5727 }
5728 
5729 /*
5730  * build_sched_groups will build a circular linked list of the groups
5731  * covered by the given span, and will set each group's ->cpumask correctly,
5732  * and ->cpu_power to 0.
5733  *
5734  * Assumes the sched_domain tree is fully constructed
5735  */
5736 static int
5737 build_sched_groups(struct sched_domain *sd, int cpu)
5738 {
5739 	struct sched_group *first = NULL, *last = NULL;
5740 	struct sd_data *sdd = sd->private;
5741 	const struct cpumask *span = sched_domain_span(sd);
5742 	struct cpumask *covered;
5743 	int i;
5744 
5745 	get_group(cpu, sdd, &sd->groups);
5746 	atomic_inc(&sd->groups->ref);
5747 
5748 	if (cpu != cpumask_first(span))
5749 		return 0;
5750 
5751 	lockdep_assert_held(&sched_domains_mutex);
5752 	covered = sched_domains_tmpmask;
5753 
5754 	cpumask_clear(covered);
5755 
5756 	for_each_cpu(i, span) {
5757 		struct sched_group *sg;
5758 		int group, j;
5759 
5760 		if (cpumask_test_cpu(i, covered))
5761 			continue;
5762 
5763 		group = get_group(i, sdd, &sg);
5764 		cpumask_clear(sched_group_cpus(sg));
5765 		sg->sgp->power = 0;
5766 		cpumask_setall(sched_group_mask(sg));
5767 
5768 		for_each_cpu(j, span) {
5769 			if (get_group(j, sdd, NULL) != group)
5770 				continue;
5771 
5772 			cpumask_set_cpu(j, covered);
5773 			cpumask_set_cpu(j, sched_group_cpus(sg));
5774 		}
5775 
5776 		if (!first)
5777 			first = sg;
5778 		if (last)
5779 			last->next = sg;
5780 		last = sg;
5781 	}
5782 	last->next = first;
5783 
5784 	return 0;
5785 }
5786 
5787 /*
5788  * Initialize sched groups cpu_power.
5789  *
5790  * cpu_power indicates the capacity of sched group, which is used while
5791  * distributing the load between different sched groups in a sched domain.
5792  * Typically cpu_power for all the groups in a sched domain will be same unless
5793  * there are asymmetries in the topology. If there are asymmetries, group
5794  * having more cpu_power will pickup more load compared to the group having
5795  * less cpu_power.
5796  */
5797 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5798 {
5799 	struct sched_group *sg = sd->groups;
5800 
5801 	WARN_ON(!sg);
5802 
5803 	do {
5804 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5805 		sg = sg->next;
5806 	} while (sg != sd->groups);
5807 
5808 	if (cpu != group_balance_cpu(sg))
5809 		return;
5810 
5811 	update_group_power(sd, cpu);
5812 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5813 }
5814 
5815 int __weak arch_sd_sibling_asym_packing(void)
5816 {
5817        return 0*SD_ASYM_PACKING;
5818 }
5819 
5820 /*
5821  * Initializers for schedule domains
5822  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5823  */
5824 
5825 #ifdef CONFIG_SCHED_DEBUG
5826 # define SD_INIT_NAME(sd, type)		sd->name = #type
5827 #else
5828 # define SD_INIT_NAME(sd, type)		do { } while (0)
5829 #endif
5830 
5831 #define SD_INIT_FUNC(type)						\
5832 static noinline struct sched_domain *					\
5833 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5834 {									\
5835 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5836 	*sd = SD_##type##_INIT;						\
5837 	SD_INIT_NAME(sd, type);						\
5838 	sd->private = &tl->data;					\
5839 	return sd;							\
5840 }
5841 
5842 SD_INIT_FUNC(CPU)
5843 #ifdef CONFIG_SCHED_SMT
5844  SD_INIT_FUNC(SIBLING)
5845 #endif
5846 #ifdef CONFIG_SCHED_MC
5847  SD_INIT_FUNC(MC)
5848 #endif
5849 #ifdef CONFIG_SCHED_BOOK
5850  SD_INIT_FUNC(BOOK)
5851 #endif
5852 
5853 static int default_relax_domain_level = -1;
5854 int sched_domain_level_max;
5855 
5856 static int __init setup_relax_domain_level(char *str)
5857 {
5858 	if (kstrtoint(str, 0, &default_relax_domain_level))
5859 		pr_warn("Unable to set relax_domain_level\n");
5860 
5861 	return 1;
5862 }
5863 __setup("relax_domain_level=", setup_relax_domain_level);
5864 
5865 static void set_domain_attribute(struct sched_domain *sd,
5866 				 struct sched_domain_attr *attr)
5867 {
5868 	int request;
5869 
5870 	if (!attr || attr->relax_domain_level < 0) {
5871 		if (default_relax_domain_level < 0)
5872 			return;
5873 		else
5874 			request = default_relax_domain_level;
5875 	} else
5876 		request = attr->relax_domain_level;
5877 	if (request < sd->level) {
5878 		/* turn off idle balance on this domain */
5879 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5880 	} else {
5881 		/* turn on idle balance on this domain */
5882 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5883 	}
5884 }
5885 
5886 static void __sdt_free(const struct cpumask *cpu_map);
5887 static int __sdt_alloc(const struct cpumask *cpu_map);
5888 
5889 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5890 				 const struct cpumask *cpu_map)
5891 {
5892 	switch (what) {
5893 	case sa_rootdomain:
5894 		if (!atomic_read(&d->rd->refcount))
5895 			free_rootdomain(&d->rd->rcu); /* fall through */
5896 	case sa_sd:
5897 		free_percpu(d->sd); /* fall through */
5898 	case sa_sd_storage:
5899 		__sdt_free(cpu_map); /* fall through */
5900 	case sa_none:
5901 		break;
5902 	}
5903 }
5904 
5905 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5906 						   const struct cpumask *cpu_map)
5907 {
5908 	memset(d, 0, sizeof(*d));
5909 
5910 	if (__sdt_alloc(cpu_map))
5911 		return sa_sd_storage;
5912 	d->sd = alloc_percpu(struct sched_domain *);
5913 	if (!d->sd)
5914 		return sa_sd_storage;
5915 	d->rd = alloc_rootdomain();
5916 	if (!d->rd)
5917 		return sa_sd;
5918 	return sa_rootdomain;
5919 }
5920 
5921 /*
5922  * NULL the sd_data elements we've used to build the sched_domain and
5923  * sched_group structure so that the subsequent __free_domain_allocs()
5924  * will not free the data we're using.
5925  */
5926 static void claim_allocations(int cpu, struct sched_domain *sd)
5927 {
5928 	struct sd_data *sdd = sd->private;
5929 
5930 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5931 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5932 
5933 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5934 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5935 
5936 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5937 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5938 }
5939 
5940 #ifdef CONFIG_SCHED_SMT
5941 static const struct cpumask *cpu_smt_mask(int cpu)
5942 {
5943 	return topology_thread_cpumask(cpu);
5944 }
5945 #endif
5946 
5947 /*
5948  * Topology list, bottom-up.
5949  */
5950 static struct sched_domain_topology_level default_topology[] = {
5951 #ifdef CONFIG_SCHED_SMT
5952 	{ sd_init_SIBLING, cpu_smt_mask, },
5953 #endif
5954 #ifdef CONFIG_SCHED_MC
5955 	{ sd_init_MC, cpu_coregroup_mask, },
5956 #endif
5957 #ifdef CONFIG_SCHED_BOOK
5958 	{ sd_init_BOOK, cpu_book_mask, },
5959 #endif
5960 	{ sd_init_CPU, cpu_cpu_mask, },
5961 	{ NULL, },
5962 };
5963 
5964 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5965 
5966 #define for_each_sd_topology(tl)			\
5967 	for (tl = sched_domain_topology; tl->init; tl++)
5968 
5969 #ifdef CONFIG_NUMA
5970 
5971 static int sched_domains_numa_levels;
5972 static int *sched_domains_numa_distance;
5973 static struct cpumask ***sched_domains_numa_masks;
5974 static int sched_domains_curr_level;
5975 
5976 static inline int sd_local_flags(int level)
5977 {
5978 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5979 		return 0;
5980 
5981 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5982 }
5983 
5984 static struct sched_domain *
5985 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5986 {
5987 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5988 	int level = tl->numa_level;
5989 	int sd_weight = cpumask_weight(
5990 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5991 
5992 	*sd = (struct sched_domain){
5993 		.min_interval		= sd_weight,
5994 		.max_interval		= 2*sd_weight,
5995 		.busy_factor		= 32,
5996 		.imbalance_pct		= 125,
5997 		.cache_nice_tries	= 2,
5998 		.busy_idx		= 3,
5999 		.idle_idx		= 2,
6000 		.newidle_idx		= 0,
6001 		.wake_idx		= 0,
6002 		.forkexec_idx		= 0,
6003 
6004 		.flags			= 1*SD_LOAD_BALANCE
6005 					| 1*SD_BALANCE_NEWIDLE
6006 					| 0*SD_BALANCE_EXEC
6007 					| 0*SD_BALANCE_FORK
6008 					| 0*SD_BALANCE_WAKE
6009 					| 0*SD_WAKE_AFFINE
6010 					| 0*SD_SHARE_CPUPOWER
6011 					| 0*SD_SHARE_PKG_RESOURCES
6012 					| 1*SD_SERIALIZE
6013 					| 0*SD_PREFER_SIBLING
6014 					| 1*SD_NUMA
6015 					| sd_local_flags(level)
6016 					,
6017 		.last_balance		= jiffies,
6018 		.balance_interval	= sd_weight,
6019 	};
6020 	SD_INIT_NAME(sd, NUMA);
6021 	sd->private = &tl->data;
6022 
6023 	/*
6024 	 * Ugly hack to pass state to sd_numa_mask()...
6025 	 */
6026 	sched_domains_curr_level = tl->numa_level;
6027 
6028 	return sd;
6029 }
6030 
6031 static const struct cpumask *sd_numa_mask(int cpu)
6032 {
6033 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6034 }
6035 
6036 static void sched_numa_warn(const char *str)
6037 {
6038 	static int done = false;
6039 	int i,j;
6040 
6041 	if (done)
6042 		return;
6043 
6044 	done = true;
6045 
6046 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6047 
6048 	for (i = 0; i < nr_node_ids; i++) {
6049 		printk(KERN_WARNING "  ");
6050 		for (j = 0; j < nr_node_ids; j++)
6051 			printk(KERN_CONT "%02d ", node_distance(i,j));
6052 		printk(KERN_CONT "\n");
6053 	}
6054 	printk(KERN_WARNING "\n");
6055 }
6056 
6057 static bool find_numa_distance(int distance)
6058 {
6059 	int i;
6060 
6061 	if (distance == node_distance(0, 0))
6062 		return true;
6063 
6064 	for (i = 0; i < sched_domains_numa_levels; i++) {
6065 		if (sched_domains_numa_distance[i] == distance)
6066 			return true;
6067 	}
6068 
6069 	return false;
6070 }
6071 
6072 static void sched_init_numa(void)
6073 {
6074 	int next_distance, curr_distance = node_distance(0, 0);
6075 	struct sched_domain_topology_level *tl;
6076 	int level = 0;
6077 	int i, j, k;
6078 
6079 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6080 	if (!sched_domains_numa_distance)
6081 		return;
6082 
6083 	/*
6084 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6085 	 * unique distances in the node_distance() table.
6086 	 *
6087 	 * Assumes node_distance(0,j) includes all distances in
6088 	 * node_distance(i,j) in order to avoid cubic time.
6089 	 */
6090 	next_distance = curr_distance;
6091 	for (i = 0; i < nr_node_ids; i++) {
6092 		for (j = 0; j < nr_node_ids; j++) {
6093 			for (k = 0; k < nr_node_ids; k++) {
6094 				int distance = node_distance(i, k);
6095 
6096 				if (distance > curr_distance &&
6097 				    (distance < next_distance ||
6098 				     next_distance == curr_distance))
6099 					next_distance = distance;
6100 
6101 				/*
6102 				 * While not a strong assumption it would be nice to know
6103 				 * about cases where if node A is connected to B, B is not
6104 				 * equally connected to A.
6105 				 */
6106 				if (sched_debug() && node_distance(k, i) != distance)
6107 					sched_numa_warn("Node-distance not symmetric");
6108 
6109 				if (sched_debug() && i && !find_numa_distance(distance))
6110 					sched_numa_warn("Node-0 not representative");
6111 			}
6112 			if (next_distance != curr_distance) {
6113 				sched_domains_numa_distance[level++] = next_distance;
6114 				sched_domains_numa_levels = level;
6115 				curr_distance = next_distance;
6116 			} else break;
6117 		}
6118 
6119 		/*
6120 		 * In case of sched_debug() we verify the above assumption.
6121 		 */
6122 		if (!sched_debug())
6123 			break;
6124 	}
6125 	/*
6126 	 * 'level' contains the number of unique distances, excluding the
6127 	 * identity distance node_distance(i,i).
6128 	 *
6129 	 * The sched_domains_numa_distance[] array includes the actual distance
6130 	 * numbers.
6131 	 */
6132 
6133 	/*
6134 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6135 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6136 	 * the array will contain less then 'level' members. This could be
6137 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6138 	 * in other functions.
6139 	 *
6140 	 * We reset it to 'level' at the end of this function.
6141 	 */
6142 	sched_domains_numa_levels = 0;
6143 
6144 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6145 	if (!sched_domains_numa_masks)
6146 		return;
6147 
6148 	/*
6149 	 * Now for each level, construct a mask per node which contains all
6150 	 * cpus of nodes that are that many hops away from us.
6151 	 */
6152 	for (i = 0; i < level; i++) {
6153 		sched_domains_numa_masks[i] =
6154 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6155 		if (!sched_domains_numa_masks[i])
6156 			return;
6157 
6158 		for (j = 0; j < nr_node_ids; j++) {
6159 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6160 			if (!mask)
6161 				return;
6162 
6163 			sched_domains_numa_masks[i][j] = mask;
6164 
6165 			for (k = 0; k < nr_node_ids; k++) {
6166 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6167 					continue;
6168 
6169 				cpumask_or(mask, mask, cpumask_of_node(k));
6170 			}
6171 		}
6172 	}
6173 
6174 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6175 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6176 	if (!tl)
6177 		return;
6178 
6179 	/*
6180 	 * Copy the default topology bits..
6181 	 */
6182 	for (i = 0; default_topology[i].init; i++)
6183 		tl[i] = default_topology[i];
6184 
6185 	/*
6186 	 * .. and append 'j' levels of NUMA goodness.
6187 	 */
6188 	for (j = 0; j < level; i++, j++) {
6189 		tl[i] = (struct sched_domain_topology_level){
6190 			.init = sd_numa_init,
6191 			.mask = sd_numa_mask,
6192 			.flags = SDTL_OVERLAP,
6193 			.numa_level = j,
6194 		};
6195 	}
6196 
6197 	sched_domain_topology = tl;
6198 
6199 	sched_domains_numa_levels = level;
6200 }
6201 
6202 static void sched_domains_numa_masks_set(int cpu)
6203 {
6204 	int i, j;
6205 	int node = cpu_to_node(cpu);
6206 
6207 	for (i = 0; i < sched_domains_numa_levels; i++) {
6208 		for (j = 0; j < nr_node_ids; j++) {
6209 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6210 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6211 		}
6212 	}
6213 }
6214 
6215 static void sched_domains_numa_masks_clear(int cpu)
6216 {
6217 	int i, j;
6218 	for (i = 0; i < sched_domains_numa_levels; i++) {
6219 		for (j = 0; j < nr_node_ids; j++)
6220 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6221 	}
6222 }
6223 
6224 /*
6225  * Update sched_domains_numa_masks[level][node] array when new cpus
6226  * are onlined.
6227  */
6228 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6229 					   unsigned long action,
6230 					   void *hcpu)
6231 {
6232 	int cpu = (long)hcpu;
6233 
6234 	switch (action & ~CPU_TASKS_FROZEN) {
6235 	case CPU_ONLINE:
6236 		sched_domains_numa_masks_set(cpu);
6237 		break;
6238 
6239 	case CPU_DEAD:
6240 		sched_domains_numa_masks_clear(cpu);
6241 		break;
6242 
6243 	default:
6244 		return NOTIFY_DONE;
6245 	}
6246 
6247 	return NOTIFY_OK;
6248 }
6249 #else
6250 static inline void sched_init_numa(void)
6251 {
6252 }
6253 
6254 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6255 					   unsigned long action,
6256 					   void *hcpu)
6257 {
6258 	return 0;
6259 }
6260 #endif /* CONFIG_NUMA */
6261 
6262 static int __sdt_alloc(const struct cpumask *cpu_map)
6263 {
6264 	struct sched_domain_topology_level *tl;
6265 	int j;
6266 
6267 	for_each_sd_topology(tl) {
6268 		struct sd_data *sdd = &tl->data;
6269 
6270 		sdd->sd = alloc_percpu(struct sched_domain *);
6271 		if (!sdd->sd)
6272 			return -ENOMEM;
6273 
6274 		sdd->sg = alloc_percpu(struct sched_group *);
6275 		if (!sdd->sg)
6276 			return -ENOMEM;
6277 
6278 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6279 		if (!sdd->sgp)
6280 			return -ENOMEM;
6281 
6282 		for_each_cpu(j, cpu_map) {
6283 			struct sched_domain *sd;
6284 			struct sched_group *sg;
6285 			struct sched_group_power *sgp;
6286 
6287 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6288 					GFP_KERNEL, cpu_to_node(j));
6289 			if (!sd)
6290 				return -ENOMEM;
6291 
6292 			*per_cpu_ptr(sdd->sd, j) = sd;
6293 
6294 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6295 					GFP_KERNEL, cpu_to_node(j));
6296 			if (!sg)
6297 				return -ENOMEM;
6298 
6299 			sg->next = sg;
6300 
6301 			*per_cpu_ptr(sdd->sg, j) = sg;
6302 
6303 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6304 					GFP_KERNEL, cpu_to_node(j));
6305 			if (!sgp)
6306 				return -ENOMEM;
6307 
6308 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6309 		}
6310 	}
6311 
6312 	return 0;
6313 }
6314 
6315 static void __sdt_free(const struct cpumask *cpu_map)
6316 {
6317 	struct sched_domain_topology_level *tl;
6318 	int j;
6319 
6320 	for_each_sd_topology(tl) {
6321 		struct sd_data *sdd = &tl->data;
6322 
6323 		for_each_cpu(j, cpu_map) {
6324 			struct sched_domain *sd;
6325 
6326 			if (sdd->sd) {
6327 				sd = *per_cpu_ptr(sdd->sd, j);
6328 				if (sd && (sd->flags & SD_OVERLAP))
6329 					free_sched_groups(sd->groups, 0);
6330 				kfree(*per_cpu_ptr(sdd->sd, j));
6331 			}
6332 
6333 			if (sdd->sg)
6334 				kfree(*per_cpu_ptr(sdd->sg, j));
6335 			if (sdd->sgp)
6336 				kfree(*per_cpu_ptr(sdd->sgp, j));
6337 		}
6338 		free_percpu(sdd->sd);
6339 		sdd->sd = NULL;
6340 		free_percpu(sdd->sg);
6341 		sdd->sg = NULL;
6342 		free_percpu(sdd->sgp);
6343 		sdd->sgp = NULL;
6344 	}
6345 }
6346 
6347 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6348 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6349 		struct sched_domain *child, int cpu)
6350 {
6351 	struct sched_domain *sd = tl->init(tl, cpu);
6352 	if (!sd)
6353 		return child;
6354 
6355 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6356 	if (child) {
6357 		sd->level = child->level + 1;
6358 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6359 		child->parent = sd;
6360 		sd->child = child;
6361 	}
6362 	set_domain_attribute(sd, attr);
6363 
6364 	return sd;
6365 }
6366 
6367 /*
6368  * Build sched domains for a given set of cpus and attach the sched domains
6369  * to the individual cpus
6370  */
6371 static int build_sched_domains(const struct cpumask *cpu_map,
6372 			       struct sched_domain_attr *attr)
6373 {
6374 	enum s_alloc alloc_state;
6375 	struct sched_domain *sd;
6376 	struct s_data d;
6377 	int i, ret = -ENOMEM;
6378 
6379 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6380 	if (alloc_state != sa_rootdomain)
6381 		goto error;
6382 
6383 	/* Set up domains for cpus specified by the cpu_map. */
6384 	for_each_cpu(i, cpu_map) {
6385 		struct sched_domain_topology_level *tl;
6386 
6387 		sd = NULL;
6388 		for_each_sd_topology(tl) {
6389 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6390 			if (tl == sched_domain_topology)
6391 				*per_cpu_ptr(d.sd, i) = sd;
6392 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6393 				sd->flags |= SD_OVERLAP;
6394 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6395 				break;
6396 		}
6397 	}
6398 
6399 	/* Build the groups for the domains */
6400 	for_each_cpu(i, cpu_map) {
6401 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6402 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6403 			if (sd->flags & SD_OVERLAP) {
6404 				if (build_overlap_sched_groups(sd, i))
6405 					goto error;
6406 			} else {
6407 				if (build_sched_groups(sd, i))
6408 					goto error;
6409 			}
6410 		}
6411 	}
6412 
6413 	/* Calculate CPU power for physical packages and nodes */
6414 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6415 		if (!cpumask_test_cpu(i, cpu_map))
6416 			continue;
6417 
6418 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6419 			claim_allocations(i, sd);
6420 			init_sched_groups_power(i, sd);
6421 		}
6422 	}
6423 
6424 	/* Attach the domains */
6425 	rcu_read_lock();
6426 	for_each_cpu(i, cpu_map) {
6427 		sd = *per_cpu_ptr(d.sd, i);
6428 		cpu_attach_domain(sd, d.rd, i);
6429 	}
6430 	rcu_read_unlock();
6431 
6432 	ret = 0;
6433 error:
6434 	__free_domain_allocs(&d, alloc_state, cpu_map);
6435 	return ret;
6436 }
6437 
6438 static cpumask_var_t *doms_cur;	/* current sched domains */
6439 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6440 static struct sched_domain_attr *dattr_cur;
6441 				/* attribues of custom domains in 'doms_cur' */
6442 
6443 /*
6444  * Special case: If a kmalloc of a doms_cur partition (array of
6445  * cpumask) fails, then fallback to a single sched domain,
6446  * as determined by the single cpumask fallback_doms.
6447  */
6448 static cpumask_var_t fallback_doms;
6449 
6450 /*
6451  * arch_update_cpu_topology lets virtualized architectures update the
6452  * cpu core maps. It is supposed to return 1 if the topology changed
6453  * or 0 if it stayed the same.
6454  */
6455 int __attribute__((weak)) arch_update_cpu_topology(void)
6456 {
6457 	return 0;
6458 }
6459 
6460 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6461 {
6462 	int i;
6463 	cpumask_var_t *doms;
6464 
6465 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6466 	if (!doms)
6467 		return NULL;
6468 	for (i = 0; i < ndoms; i++) {
6469 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6470 			free_sched_domains(doms, i);
6471 			return NULL;
6472 		}
6473 	}
6474 	return doms;
6475 }
6476 
6477 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6478 {
6479 	unsigned int i;
6480 	for (i = 0; i < ndoms; i++)
6481 		free_cpumask_var(doms[i]);
6482 	kfree(doms);
6483 }
6484 
6485 /*
6486  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6487  * For now this just excludes isolated cpus, but could be used to
6488  * exclude other special cases in the future.
6489  */
6490 static int init_sched_domains(const struct cpumask *cpu_map)
6491 {
6492 	int err;
6493 
6494 	arch_update_cpu_topology();
6495 	ndoms_cur = 1;
6496 	doms_cur = alloc_sched_domains(ndoms_cur);
6497 	if (!doms_cur)
6498 		doms_cur = &fallback_doms;
6499 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6500 	err = build_sched_domains(doms_cur[0], NULL);
6501 	register_sched_domain_sysctl();
6502 
6503 	return err;
6504 }
6505 
6506 /*
6507  * Detach sched domains from a group of cpus specified in cpu_map
6508  * These cpus will now be attached to the NULL domain
6509  */
6510 static void detach_destroy_domains(const struct cpumask *cpu_map)
6511 {
6512 	int i;
6513 
6514 	rcu_read_lock();
6515 	for_each_cpu(i, cpu_map)
6516 		cpu_attach_domain(NULL, &def_root_domain, i);
6517 	rcu_read_unlock();
6518 }
6519 
6520 /* handle null as "default" */
6521 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6522 			struct sched_domain_attr *new, int idx_new)
6523 {
6524 	struct sched_domain_attr tmp;
6525 
6526 	/* fast path */
6527 	if (!new && !cur)
6528 		return 1;
6529 
6530 	tmp = SD_ATTR_INIT;
6531 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6532 			new ? (new + idx_new) : &tmp,
6533 			sizeof(struct sched_domain_attr));
6534 }
6535 
6536 /*
6537  * Partition sched domains as specified by the 'ndoms_new'
6538  * cpumasks in the array doms_new[] of cpumasks. This compares
6539  * doms_new[] to the current sched domain partitioning, doms_cur[].
6540  * It destroys each deleted domain and builds each new domain.
6541  *
6542  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6543  * The masks don't intersect (don't overlap.) We should setup one
6544  * sched domain for each mask. CPUs not in any of the cpumasks will
6545  * not be load balanced. If the same cpumask appears both in the
6546  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6547  * it as it is.
6548  *
6549  * The passed in 'doms_new' should be allocated using
6550  * alloc_sched_domains.  This routine takes ownership of it and will
6551  * free_sched_domains it when done with it. If the caller failed the
6552  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6553  * and partition_sched_domains() will fallback to the single partition
6554  * 'fallback_doms', it also forces the domains to be rebuilt.
6555  *
6556  * If doms_new == NULL it will be replaced with cpu_online_mask.
6557  * ndoms_new == 0 is a special case for destroying existing domains,
6558  * and it will not create the default domain.
6559  *
6560  * Call with hotplug lock held
6561  */
6562 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6563 			     struct sched_domain_attr *dattr_new)
6564 {
6565 	int i, j, n;
6566 	int new_topology;
6567 
6568 	mutex_lock(&sched_domains_mutex);
6569 
6570 	/* always unregister in case we don't destroy any domains */
6571 	unregister_sched_domain_sysctl();
6572 
6573 	/* Let architecture update cpu core mappings. */
6574 	new_topology = arch_update_cpu_topology();
6575 
6576 	n = doms_new ? ndoms_new : 0;
6577 
6578 	/* Destroy deleted domains */
6579 	for (i = 0; i < ndoms_cur; i++) {
6580 		for (j = 0; j < n && !new_topology; j++) {
6581 			if (cpumask_equal(doms_cur[i], doms_new[j])
6582 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6583 				goto match1;
6584 		}
6585 		/* no match - a current sched domain not in new doms_new[] */
6586 		detach_destroy_domains(doms_cur[i]);
6587 match1:
6588 		;
6589 	}
6590 
6591 	n = ndoms_cur;
6592 	if (doms_new == NULL) {
6593 		n = 0;
6594 		doms_new = &fallback_doms;
6595 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6596 		WARN_ON_ONCE(dattr_new);
6597 	}
6598 
6599 	/* Build new domains */
6600 	for (i = 0; i < ndoms_new; i++) {
6601 		for (j = 0; j < n && !new_topology; j++) {
6602 			if (cpumask_equal(doms_new[i], doms_cur[j])
6603 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6604 				goto match2;
6605 		}
6606 		/* no match - add a new doms_new */
6607 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6608 match2:
6609 		;
6610 	}
6611 
6612 	/* Remember the new sched domains */
6613 	if (doms_cur != &fallback_doms)
6614 		free_sched_domains(doms_cur, ndoms_cur);
6615 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6616 	doms_cur = doms_new;
6617 	dattr_cur = dattr_new;
6618 	ndoms_cur = ndoms_new;
6619 
6620 	register_sched_domain_sysctl();
6621 
6622 	mutex_unlock(&sched_domains_mutex);
6623 }
6624 
6625 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6626 
6627 /*
6628  * Update cpusets according to cpu_active mask.  If cpusets are
6629  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6630  * around partition_sched_domains().
6631  *
6632  * If we come here as part of a suspend/resume, don't touch cpusets because we
6633  * want to restore it back to its original state upon resume anyway.
6634  */
6635 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6636 			     void *hcpu)
6637 {
6638 	switch (action) {
6639 	case CPU_ONLINE_FROZEN:
6640 	case CPU_DOWN_FAILED_FROZEN:
6641 
6642 		/*
6643 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6644 		 * resume sequence. As long as this is not the last online
6645 		 * operation in the resume sequence, just build a single sched
6646 		 * domain, ignoring cpusets.
6647 		 */
6648 		num_cpus_frozen--;
6649 		if (likely(num_cpus_frozen)) {
6650 			partition_sched_domains(1, NULL, NULL);
6651 			break;
6652 		}
6653 
6654 		/*
6655 		 * This is the last CPU online operation. So fall through and
6656 		 * restore the original sched domains by considering the
6657 		 * cpuset configurations.
6658 		 */
6659 
6660 	case CPU_ONLINE:
6661 	case CPU_DOWN_FAILED:
6662 		cpuset_update_active_cpus(true);
6663 		break;
6664 	default:
6665 		return NOTIFY_DONE;
6666 	}
6667 	return NOTIFY_OK;
6668 }
6669 
6670 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6671 			       void *hcpu)
6672 {
6673 	switch (action) {
6674 	case CPU_DOWN_PREPARE:
6675 		cpuset_update_active_cpus(false);
6676 		break;
6677 	case CPU_DOWN_PREPARE_FROZEN:
6678 		num_cpus_frozen++;
6679 		partition_sched_domains(1, NULL, NULL);
6680 		break;
6681 	default:
6682 		return NOTIFY_DONE;
6683 	}
6684 	return NOTIFY_OK;
6685 }
6686 
6687 void __init sched_init_smp(void)
6688 {
6689 	cpumask_var_t non_isolated_cpus;
6690 
6691 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6692 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6693 
6694 	sched_init_numa();
6695 
6696 	/*
6697 	 * There's no userspace yet to cause hotplug operations; hence all the
6698 	 * cpu masks are stable and all blatant races in the below code cannot
6699 	 * happen.
6700 	 */
6701 	mutex_lock(&sched_domains_mutex);
6702 	init_sched_domains(cpu_active_mask);
6703 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6704 	if (cpumask_empty(non_isolated_cpus))
6705 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6706 	mutex_unlock(&sched_domains_mutex);
6707 
6708 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6709 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6710 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6711 
6712 	init_hrtick();
6713 
6714 	/* Move init over to a non-isolated CPU */
6715 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6716 		BUG();
6717 	sched_init_granularity();
6718 	free_cpumask_var(non_isolated_cpus);
6719 
6720 	init_sched_rt_class();
6721 	init_sched_dl_class();
6722 }
6723 #else
6724 void __init sched_init_smp(void)
6725 {
6726 	sched_init_granularity();
6727 }
6728 #endif /* CONFIG_SMP */
6729 
6730 const_debug unsigned int sysctl_timer_migration = 1;
6731 
6732 int in_sched_functions(unsigned long addr)
6733 {
6734 	return in_lock_functions(addr) ||
6735 		(addr >= (unsigned long)__sched_text_start
6736 		&& addr < (unsigned long)__sched_text_end);
6737 }
6738 
6739 #ifdef CONFIG_CGROUP_SCHED
6740 /*
6741  * Default task group.
6742  * Every task in system belongs to this group at bootup.
6743  */
6744 struct task_group root_task_group;
6745 LIST_HEAD(task_groups);
6746 #endif
6747 
6748 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6749 
6750 void __init sched_init(void)
6751 {
6752 	int i, j;
6753 	unsigned long alloc_size = 0, ptr;
6754 
6755 #ifdef CONFIG_FAIR_GROUP_SCHED
6756 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6757 #endif
6758 #ifdef CONFIG_RT_GROUP_SCHED
6759 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6760 #endif
6761 #ifdef CONFIG_CPUMASK_OFFSTACK
6762 	alloc_size += num_possible_cpus() * cpumask_size();
6763 #endif
6764 	if (alloc_size) {
6765 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6766 
6767 #ifdef CONFIG_FAIR_GROUP_SCHED
6768 		root_task_group.se = (struct sched_entity **)ptr;
6769 		ptr += nr_cpu_ids * sizeof(void **);
6770 
6771 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6772 		ptr += nr_cpu_ids * sizeof(void **);
6773 
6774 #endif /* CONFIG_FAIR_GROUP_SCHED */
6775 #ifdef CONFIG_RT_GROUP_SCHED
6776 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6777 		ptr += nr_cpu_ids * sizeof(void **);
6778 
6779 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6780 		ptr += nr_cpu_ids * sizeof(void **);
6781 
6782 #endif /* CONFIG_RT_GROUP_SCHED */
6783 #ifdef CONFIG_CPUMASK_OFFSTACK
6784 		for_each_possible_cpu(i) {
6785 			per_cpu(load_balance_mask, i) = (void *)ptr;
6786 			ptr += cpumask_size();
6787 		}
6788 #endif /* CONFIG_CPUMASK_OFFSTACK */
6789 	}
6790 
6791 	init_rt_bandwidth(&def_rt_bandwidth,
6792 			global_rt_period(), global_rt_runtime());
6793 	init_dl_bandwidth(&def_dl_bandwidth,
6794 			global_rt_period(), global_rt_runtime());
6795 
6796 #ifdef CONFIG_SMP
6797 	init_defrootdomain();
6798 #endif
6799 
6800 #ifdef CONFIG_RT_GROUP_SCHED
6801 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6802 			global_rt_period(), global_rt_runtime());
6803 #endif /* CONFIG_RT_GROUP_SCHED */
6804 
6805 #ifdef CONFIG_CGROUP_SCHED
6806 	list_add(&root_task_group.list, &task_groups);
6807 	INIT_LIST_HEAD(&root_task_group.children);
6808 	INIT_LIST_HEAD(&root_task_group.siblings);
6809 	autogroup_init(&init_task);
6810 
6811 #endif /* CONFIG_CGROUP_SCHED */
6812 
6813 	for_each_possible_cpu(i) {
6814 		struct rq *rq;
6815 
6816 		rq = cpu_rq(i);
6817 		raw_spin_lock_init(&rq->lock);
6818 		rq->nr_running = 0;
6819 		rq->calc_load_active = 0;
6820 		rq->calc_load_update = jiffies + LOAD_FREQ;
6821 		init_cfs_rq(&rq->cfs);
6822 		init_rt_rq(&rq->rt, rq);
6823 		init_dl_rq(&rq->dl, rq);
6824 #ifdef CONFIG_FAIR_GROUP_SCHED
6825 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6826 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6827 		/*
6828 		 * How much cpu bandwidth does root_task_group get?
6829 		 *
6830 		 * In case of task-groups formed thr' the cgroup filesystem, it
6831 		 * gets 100% of the cpu resources in the system. This overall
6832 		 * system cpu resource is divided among the tasks of
6833 		 * root_task_group and its child task-groups in a fair manner,
6834 		 * based on each entity's (task or task-group's) weight
6835 		 * (se->load.weight).
6836 		 *
6837 		 * In other words, if root_task_group has 10 tasks of weight
6838 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6839 		 * then A0's share of the cpu resource is:
6840 		 *
6841 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6842 		 *
6843 		 * We achieve this by letting root_task_group's tasks sit
6844 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6845 		 */
6846 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6847 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6848 #endif /* CONFIG_FAIR_GROUP_SCHED */
6849 
6850 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6851 #ifdef CONFIG_RT_GROUP_SCHED
6852 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6853 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6854 #endif
6855 
6856 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6857 			rq->cpu_load[j] = 0;
6858 
6859 		rq->last_load_update_tick = jiffies;
6860 
6861 #ifdef CONFIG_SMP
6862 		rq->sd = NULL;
6863 		rq->rd = NULL;
6864 		rq->cpu_power = SCHED_POWER_SCALE;
6865 		rq->post_schedule = 0;
6866 		rq->active_balance = 0;
6867 		rq->next_balance = jiffies;
6868 		rq->push_cpu = 0;
6869 		rq->cpu = i;
6870 		rq->online = 0;
6871 		rq->idle_stamp = 0;
6872 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6873 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6874 
6875 		INIT_LIST_HEAD(&rq->cfs_tasks);
6876 
6877 		rq_attach_root(rq, &def_root_domain);
6878 #ifdef CONFIG_NO_HZ_COMMON
6879 		rq->nohz_flags = 0;
6880 #endif
6881 #ifdef CONFIG_NO_HZ_FULL
6882 		rq->last_sched_tick = 0;
6883 #endif
6884 #endif
6885 		init_rq_hrtick(rq);
6886 		atomic_set(&rq->nr_iowait, 0);
6887 	}
6888 
6889 	set_load_weight(&init_task);
6890 
6891 #ifdef CONFIG_PREEMPT_NOTIFIERS
6892 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6893 #endif
6894 
6895 	/*
6896 	 * The boot idle thread does lazy MMU switching as well:
6897 	 */
6898 	atomic_inc(&init_mm.mm_count);
6899 	enter_lazy_tlb(&init_mm, current);
6900 
6901 	/*
6902 	 * Make us the idle thread. Technically, schedule() should not be
6903 	 * called from this thread, however somewhere below it might be,
6904 	 * but because we are the idle thread, we just pick up running again
6905 	 * when this runqueue becomes "idle".
6906 	 */
6907 	init_idle(current, smp_processor_id());
6908 
6909 	calc_load_update = jiffies + LOAD_FREQ;
6910 
6911 	/*
6912 	 * During early bootup we pretend to be a normal task:
6913 	 */
6914 	current->sched_class = &fair_sched_class;
6915 
6916 #ifdef CONFIG_SMP
6917 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6918 	/* May be allocated at isolcpus cmdline parse time */
6919 	if (cpu_isolated_map == NULL)
6920 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6921 	idle_thread_set_boot_cpu();
6922 #endif
6923 	init_sched_fair_class();
6924 
6925 	scheduler_running = 1;
6926 }
6927 
6928 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6929 static inline int preempt_count_equals(int preempt_offset)
6930 {
6931 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6932 
6933 	return (nested == preempt_offset);
6934 }
6935 
6936 void __might_sleep(const char *file, int line, int preempt_offset)
6937 {
6938 	static unsigned long prev_jiffy;	/* ratelimiting */
6939 
6940 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6941 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6942 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6943 		return;
6944 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6945 		return;
6946 	prev_jiffy = jiffies;
6947 
6948 	printk(KERN_ERR
6949 		"BUG: sleeping function called from invalid context at %s:%d\n",
6950 			file, line);
6951 	printk(KERN_ERR
6952 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6953 			in_atomic(), irqs_disabled(),
6954 			current->pid, current->comm);
6955 
6956 	debug_show_held_locks(current);
6957 	if (irqs_disabled())
6958 		print_irqtrace_events(current);
6959 	dump_stack();
6960 }
6961 EXPORT_SYMBOL(__might_sleep);
6962 #endif
6963 
6964 #ifdef CONFIG_MAGIC_SYSRQ
6965 static void normalize_task(struct rq *rq, struct task_struct *p)
6966 {
6967 	const struct sched_class *prev_class = p->sched_class;
6968 	struct sched_attr attr = {
6969 		.sched_policy = SCHED_NORMAL,
6970 	};
6971 	int old_prio = p->prio;
6972 	int on_rq;
6973 
6974 	on_rq = p->on_rq;
6975 	if (on_rq)
6976 		dequeue_task(rq, p, 0);
6977 	__setscheduler(rq, p, &attr);
6978 	if (on_rq) {
6979 		enqueue_task(rq, p, 0);
6980 		resched_task(rq->curr);
6981 	}
6982 
6983 	check_class_changed(rq, p, prev_class, old_prio);
6984 }
6985 
6986 void normalize_rt_tasks(void)
6987 {
6988 	struct task_struct *g, *p;
6989 	unsigned long flags;
6990 	struct rq *rq;
6991 
6992 	read_lock_irqsave(&tasklist_lock, flags);
6993 	do_each_thread(g, p) {
6994 		/*
6995 		 * Only normalize user tasks:
6996 		 */
6997 		if (!p->mm)
6998 			continue;
6999 
7000 		p->se.exec_start		= 0;
7001 #ifdef CONFIG_SCHEDSTATS
7002 		p->se.statistics.wait_start	= 0;
7003 		p->se.statistics.sleep_start	= 0;
7004 		p->se.statistics.block_start	= 0;
7005 #endif
7006 
7007 		if (!dl_task(p) && !rt_task(p)) {
7008 			/*
7009 			 * Renice negative nice level userspace
7010 			 * tasks back to 0:
7011 			 */
7012 			if (TASK_NICE(p) < 0 && p->mm)
7013 				set_user_nice(p, 0);
7014 			continue;
7015 		}
7016 
7017 		raw_spin_lock(&p->pi_lock);
7018 		rq = __task_rq_lock(p);
7019 
7020 		normalize_task(rq, p);
7021 
7022 		__task_rq_unlock(rq);
7023 		raw_spin_unlock(&p->pi_lock);
7024 	} while_each_thread(g, p);
7025 
7026 	read_unlock_irqrestore(&tasklist_lock, flags);
7027 }
7028 
7029 #endif /* CONFIG_MAGIC_SYSRQ */
7030 
7031 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7032 /*
7033  * These functions are only useful for the IA64 MCA handling, or kdb.
7034  *
7035  * They can only be called when the whole system has been
7036  * stopped - every CPU needs to be quiescent, and no scheduling
7037  * activity can take place. Using them for anything else would
7038  * be a serious bug, and as a result, they aren't even visible
7039  * under any other configuration.
7040  */
7041 
7042 /**
7043  * curr_task - return the current task for a given cpu.
7044  * @cpu: the processor in question.
7045  *
7046  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7047  *
7048  * Return: The current task for @cpu.
7049  */
7050 struct task_struct *curr_task(int cpu)
7051 {
7052 	return cpu_curr(cpu);
7053 }
7054 
7055 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7056 
7057 #ifdef CONFIG_IA64
7058 /**
7059  * set_curr_task - set the current task for a given cpu.
7060  * @cpu: the processor in question.
7061  * @p: the task pointer to set.
7062  *
7063  * Description: This function must only be used when non-maskable interrupts
7064  * are serviced on a separate stack. It allows the architecture to switch the
7065  * notion of the current task on a cpu in a non-blocking manner. This function
7066  * must be called with all CPU's synchronized, and interrupts disabled, the
7067  * and caller must save the original value of the current task (see
7068  * curr_task() above) and restore that value before reenabling interrupts and
7069  * re-starting the system.
7070  *
7071  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7072  */
7073 void set_curr_task(int cpu, struct task_struct *p)
7074 {
7075 	cpu_curr(cpu) = p;
7076 }
7077 
7078 #endif
7079 
7080 #ifdef CONFIG_CGROUP_SCHED
7081 /* task_group_lock serializes the addition/removal of task groups */
7082 static DEFINE_SPINLOCK(task_group_lock);
7083 
7084 static void free_sched_group(struct task_group *tg)
7085 {
7086 	free_fair_sched_group(tg);
7087 	free_rt_sched_group(tg);
7088 	autogroup_free(tg);
7089 	kfree(tg);
7090 }
7091 
7092 /* allocate runqueue etc for a new task group */
7093 struct task_group *sched_create_group(struct task_group *parent)
7094 {
7095 	struct task_group *tg;
7096 
7097 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7098 	if (!tg)
7099 		return ERR_PTR(-ENOMEM);
7100 
7101 	if (!alloc_fair_sched_group(tg, parent))
7102 		goto err;
7103 
7104 	if (!alloc_rt_sched_group(tg, parent))
7105 		goto err;
7106 
7107 	return tg;
7108 
7109 err:
7110 	free_sched_group(tg);
7111 	return ERR_PTR(-ENOMEM);
7112 }
7113 
7114 void sched_online_group(struct task_group *tg, struct task_group *parent)
7115 {
7116 	unsigned long flags;
7117 
7118 	spin_lock_irqsave(&task_group_lock, flags);
7119 	list_add_rcu(&tg->list, &task_groups);
7120 
7121 	WARN_ON(!parent); /* root should already exist */
7122 
7123 	tg->parent = parent;
7124 	INIT_LIST_HEAD(&tg->children);
7125 	list_add_rcu(&tg->siblings, &parent->children);
7126 	spin_unlock_irqrestore(&task_group_lock, flags);
7127 }
7128 
7129 /* rcu callback to free various structures associated with a task group */
7130 static void free_sched_group_rcu(struct rcu_head *rhp)
7131 {
7132 	/* now it should be safe to free those cfs_rqs */
7133 	free_sched_group(container_of(rhp, struct task_group, rcu));
7134 }
7135 
7136 /* Destroy runqueue etc associated with a task group */
7137 void sched_destroy_group(struct task_group *tg)
7138 {
7139 	/* wait for possible concurrent references to cfs_rqs complete */
7140 	call_rcu(&tg->rcu, free_sched_group_rcu);
7141 }
7142 
7143 void sched_offline_group(struct task_group *tg)
7144 {
7145 	unsigned long flags;
7146 	int i;
7147 
7148 	/* end participation in shares distribution */
7149 	for_each_possible_cpu(i)
7150 		unregister_fair_sched_group(tg, i);
7151 
7152 	spin_lock_irqsave(&task_group_lock, flags);
7153 	list_del_rcu(&tg->list);
7154 	list_del_rcu(&tg->siblings);
7155 	spin_unlock_irqrestore(&task_group_lock, flags);
7156 }
7157 
7158 /* change task's runqueue when it moves between groups.
7159  *	The caller of this function should have put the task in its new group
7160  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7161  *	reflect its new group.
7162  */
7163 void sched_move_task(struct task_struct *tsk)
7164 {
7165 	struct task_group *tg;
7166 	int on_rq, running;
7167 	unsigned long flags;
7168 	struct rq *rq;
7169 
7170 	rq = task_rq_lock(tsk, &flags);
7171 
7172 	running = task_current(rq, tsk);
7173 	on_rq = tsk->on_rq;
7174 
7175 	if (on_rq)
7176 		dequeue_task(rq, tsk, 0);
7177 	if (unlikely(running))
7178 		tsk->sched_class->put_prev_task(rq, tsk);
7179 
7180 	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7181 				lockdep_is_held(&tsk->sighand->siglock)),
7182 			  struct task_group, css);
7183 	tg = autogroup_task_group(tsk, tg);
7184 	tsk->sched_task_group = tg;
7185 
7186 #ifdef CONFIG_FAIR_GROUP_SCHED
7187 	if (tsk->sched_class->task_move_group)
7188 		tsk->sched_class->task_move_group(tsk, on_rq);
7189 	else
7190 #endif
7191 		set_task_rq(tsk, task_cpu(tsk));
7192 
7193 	if (unlikely(running))
7194 		tsk->sched_class->set_curr_task(rq);
7195 	if (on_rq)
7196 		enqueue_task(rq, tsk, 0);
7197 
7198 	task_rq_unlock(rq, tsk, &flags);
7199 }
7200 #endif /* CONFIG_CGROUP_SCHED */
7201 
7202 #ifdef CONFIG_RT_GROUP_SCHED
7203 /*
7204  * Ensure that the real time constraints are schedulable.
7205  */
7206 static DEFINE_MUTEX(rt_constraints_mutex);
7207 
7208 /* Must be called with tasklist_lock held */
7209 static inline int tg_has_rt_tasks(struct task_group *tg)
7210 {
7211 	struct task_struct *g, *p;
7212 
7213 	do_each_thread(g, p) {
7214 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7215 			return 1;
7216 	} while_each_thread(g, p);
7217 
7218 	return 0;
7219 }
7220 
7221 struct rt_schedulable_data {
7222 	struct task_group *tg;
7223 	u64 rt_period;
7224 	u64 rt_runtime;
7225 };
7226 
7227 static int tg_rt_schedulable(struct task_group *tg, void *data)
7228 {
7229 	struct rt_schedulable_data *d = data;
7230 	struct task_group *child;
7231 	unsigned long total, sum = 0;
7232 	u64 period, runtime;
7233 
7234 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7235 	runtime = tg->rt_bandwidth.rt_runtime;
7236 
7237 	if (tg == d->tg) {
7238 		period = d->rt_period;
7239 		runtime = d->rt_runtime;
7240 	}
7241 
7242 	/*
7243 	 * Cannot have more runtime than the period.
7244 	 */
7245 	if (runtime > period && runtime != RUNTIME_INF)
7246 		return -EINVAL;
7247 
7248 	/*
7249 	 * Ensure we don't starve existing RT tasks.
7250 	 */
7251 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7252 		return -EBUSY;
7253 
7254 	total = to_ratio(period, runtime);
7255 
7256 	/*
7257 	 * Nobody can have more than the global setting allows.
7258 	 */
7259 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7260 		return -EINVAL;
7261 
7262 	/*
7263 	 * The sum of our children's runtime should not exceed our own.
7264 	 */
7265 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7266 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7267 		runtime = child->rt_bandwidth.rt_runtime;
7268 
7269 		if (child == d->tg) {
7270 			period = d->rt_period;
7271 			runtime = d->rt_runtime;
7272 		}
7273 
7274 		sum += to_ratio(period, runtime);
7275 	}
7276 
7277 	if (sum > total)
7278 		return -EINVAL;
7279 
7280 	return 0;
7281 }
7282 
7283 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7284 {
7285 	int ret;
7286 
7287 	struct rt_schedulable_data data = {
7288 		.tg = tg,
7289 		.rt_period = period,
7290 		.rt_runtime = runtime,
7291 	};
7292 
7293 	rcu_read_lock();
7294 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7295 	rcu_read_unlock();
7296 
7297 	return ret;
7298 }
7299 
7300 static int tg_set_rt_bandwidth(struct task_group *tg,
7301 		u64 rt_period, u64 rt_runtime)
7302 {
7303 	int i, err = 0;
7304 
7305 	mutex_lock(&rt_constraints_mutex);
7306 	read_lock(&tasklist_lock);
7307 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7308 	if (err)
7309 		goto unlock;
7310 
7311 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7312 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7313 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7314 
7315 	for_each_possible_cpu(i) {
7316 		struct rt_rq *rt_rq = tg->rt_rq[i];
7317 
7318 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7319 		rt_rq->rt_runtime = rt_runtime;
7320 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7321 	}
7322 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7323 unlock:
7324 	read_unlock(&tasklist_lock);
7325 	mutex_unlock(&rt_constraints_mutex);
7326 
7327 	return err;
7328 }
7329 
7330 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7331 {
7332 	u64 rt_runtime, rt_period;
7333 
7334 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7335 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7336 	if (rt_runtime_us < 0)
7337 		rt_runtime = RUNTIME_INF;
7338 
7339 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7340 }
7341 
7342 static long sched_group_rt_runtime(struct task_group *tg)
7343 {
7344 	u64 rt_runtime_us;
7345 
7346 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7347 		return -1;
7348 
7349 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7350 	do_div(rt_runtime_us, NSEC_PER_USEC);
7351 	return rt_runtime_us;
7352 }
7353 
7354 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7355 {
7356 	u64 rt_runtime, rt_period;
7357 
7358 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7359 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7360 
7361 	if (rt_period == 0)
7362 		return -EINVAL;
7363 
7364 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7365 }
7366 
7367 static long sched_group_rt_period(struct task_group *tg)
7368 {
7369 	u64 rt_period_us;
7370 
7371 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7372 	do_div(rt_period_us, NSEC_PER_USEC);
7373 	return rt_period_us;
7374 }
7375 #endif /* CONFIG_RT_GROUP_SCHED */
7376 
7377 #ifdef CONFIG_RT_GROUP_SCHED
7378 static int sched_rt_global_constraints(void)
7379 {
7380 	int ret = 0;
7381 
7382 	mutex_lock(&rt_constraints_mutex);
7383 	read_lock(&tasklist_lock);
7384 	ret = __rt_schedulable(NULL, 0, 0);
7385 	read_unlock(&tasklist_lock);
7386 	mutex_unlock(&rt_constraints_mutex);
7387 
7388 	return ret;
7389 }
7390 
7391 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7392 {
7393 	/* Don't accept realtime tasks when there is no way for them to run */
7394 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7395 		return 0;
7396 
7397 	return 1;
7398 }
7399 
7400 #else /* !CONFIG_RT_GROUP_SCHED */
7401 static int sched_rt_global_constraints(void)
7402 {
7403 	unsigned long flags;
7404 	int i, ret = 0;
7405 
7406 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7407 	for_each_possible_cpu(i) {
7408 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7409 
7410 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7411 		rt_rq->rt_runtime = global_rt_runtime();
7412 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7413 	}
7414 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7415 
7416 	return ret;
7417 }
7418 #endif /* CONFIG_RT_GROUP_SCHED */
7419 
7420 static int sched_dl_global_constraints(void)
7421 {
7422 	u64 runtime = global_rt_runtime();
7423 	u64 period = global_rt_period();
7424 	u64 new_bw = to_ratio(period, runtime);
7425 	int cpu, ret = 0;
7426 	unsigned long flags;
7427 
7428 	/*
7429 	 * Here we want to check the bandwidth not being set to some
7430 	 * value smaller than the currently allocated bandwidth in
7431 	 * any of the root_domains.
7432 	 *
7433 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7434 	 * cycling on root_domains... Discussion on different/better
7435 	 * solutions is welcome!
7436 	 */
7437 	for_each_possible_cpu(cpu) {
7438 		struct dl_bw *dl_b = dl_bw_of(cpu);
7439 
7440 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7441 		if (new_bw < dl_b->total_bw)
7442 			ret = -EBUSY;
7443 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7444 
7445 		if (ret)
7446 			break;
7447 	}
7448 
7449 	return ret;
7450 }
7451 
7452 static void sched_dl_do_global(void)
7453 {
7454 	u64 new_bw = -1;
7455 	int cpu;
7456 	unsigned long flags;
7457 
7458 	def_dl_bandwidth.dl_period = global_rt_period();
7459 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7460 
7461 	if (global_rt_runtime() != RUNTIME_INF)
7462 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7463 
7464 	/*
7465 	 * FIXME: As above...
7466 	 */
7467 	for_each_possible_cpu(cpu) {
7468 		struct dl_bw *dl_b = dl_bw_of(cpu);
7469 
7470 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7471 		dl_b->bw = new_bw;
7472 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7473 	}
7474 }
7475 
7476 static int sched_rt_global_validate(void)
7477 {
7478 	if (sysctl_sched_rt_period <= 0)
7479 		return -EINVAL;
7480 
7481 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7482 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7483 		return -EINVAL;
7484 
7485 	return 0;
7486 }
7487 
7488 static void sched_rt_do_global(void)
7489 {
7490 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7491 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7492 }
7493 
7494 int sched_rt_handler(struct ctl_table *table, int write,
7495 		void __user *buffer, size_t *lenp,
7496 		loff_t *ppos)
7497 {
7498 	int old_period, old_runtime;
7499 	static DEFINE_MUTEX(mutex);
7500 	int ret;
7501 
7502 	mutex_lock(&mutex);
7503 	old_period = sysctl_sched_rt_period;
7504 	old_runtime = sysctl_sched_rt_runtime;
7505 
7506 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7507 
7508 	if (!ret && write) {
7509 		ret = sched_rt_global_validate();
7510 		if (ret)
7511 			goto undo;
7512 
7513 		ret = sched_rt_global_constraints();
7514 		if (ret)
7515 			goto undo;
7516 
7517 		ret = sched_dl_global_constraints();
7518 		if (ret)
7519 			goto undo;
7520 
7521 		sched_rt_do_global();
7522 		sched_dl_do_global();
7523 	}
7524 	if (0) {
7525 undo:
7526 		sysctl_sched_rt_period = old_period;
7527 		sysctl_sched_rt_runtime = old_runtime;
7528 	}
7529 	mutex_unlock(&mutex);
7530 
7531 	return ret;
7532 }
7533 
7534 int sched_rr_handler(struct ctl_table *table, int write,
7535 		void __user *buffer, size_t *lenp,
7536 		loff_t *ppos)
7537 {
7538 	int ret;
7539 	static DEFINE_MUTEX(mutex);
7540 
7541 	mutex_lock(&mutex);
7542 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7543 	/* make sure that internally we keep jiffies */
7544 	/* also, writing zero resets timeslice to default */
7545 	if (!ret && write) {
7546 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7547 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7548 	}
7549 	mutex_unlock(&mutex);
7550 	return ret;
7551 }
7552 
7553 #ifdef CONFIG_CGROUP_SCHED
7554 
7555 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7556 {
7557 	return css ? container_of(css, struct task_group, css) : NULL;
7558 }
7559 
7560 static struct cgroup_subsys_state *
7561 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7562 {
7563 	struct task_group *parent = css_tg(parent_css);
7564 	struct task_group *tg;
7565 
7566 	if (!parent) {
7567 		/* This is early initialization for the top cgroup */
7568 		return &root_task_group.css;
7569 	}
7570 
7571 	tg = sched_create_group(parent);
7572 	if (IS_ERR(tg))
7573 		return ERR_PTR(-ENOMEM);
7574 
7575 	return &tg->css;
7576 }
7577 
7578 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7579 {
7580 	struct task_group *tg = css_tg(css);
7581 	struct task_group *parent = css_tg(css_parent(css));
7582 
7583 	if (parent)
7584 		sched_online_group(tg, parent);
7585 	return 0;
7586 }
7587 
7588 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7589 {
7590 	struct task_group *tg = css_tg(css);
7591 
7592 	sched_destroy_group(tg);
7593 }
7594 
7595 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7596 {
7597 	struct task_group *tg = css_tg(css);
7598 
7599 	sched_offline_group(tg);
7600 }
7601 
7602 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7603 				 struct cgroup_taskset *tset)
7604 {
7605 	struct task_struct *task;
7606 
7607 	cgroup_taskset_for_each(task, css, tset) {
7608 #ifdef CONFIG_RT_GROUP_SCHED
7609 		if (!sched_rt_can_attach(css_tg(css), task))
7610 			return -EINVAL;
7611 #else
7612 		/* We don't support RT-tasks being in separate groups */
7613 		if (task->sched_class != &fair_sched_class)
7614 			return -EINVAL;
7615 #endif
7616 	}
7617 	return 0;
7618 }
7619 
7620 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7621 			      struct cgroup_taskset *tset)
7622 {
7623 	struct task_struct *task;
7624 
7625 	cgroup_taskset_for_each(task, css, tset)
7626 		sched_move_task(task);
7627 }
7628 
7629 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7630 			    struct cgroup_subsys_state *old_css,
7631 			    struct task_struct *task)
7632 {
7633 	/*
7634 	 * cgroup_exit() is called in the copy_process() failure path.
7635 	 * Ignore this case since the task hasn't ran yet, this avoids
7636 	 * trying to poke a half freed task state from generic code.
7637 	 */
7638 	if (!(task->flags & PF_EXITING))
7639 		return;
7640 
7641 	sched_move_task(task);
7642 }
7643 
7644 #ifdef CONFIG_FAIR_GROUP_SCHED
7645 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7646 				struct cftype *cftype, u64 shareval)
7647 {
7648 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7649 }
7650 
7651 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7652 			       struct cftype *cft)
7653 {
7654 	struct task_group *tg = css_tg(css);
7655 
7656 	return (u64) scale_load_down(tg->shares);
7657 }
7658 
7659 #ifdef CONFIG_CFS_BANDWIDTH
7660 static DEFINE_MUTEX(cfs_constraints_mutex);
7661 
7662 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7663 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7664 
7665 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7666 
7667 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7668 {
7669 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7670 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7671 
7672 	if (tg == &root_task_group)
7673 		return -EINVAL;
7674 
7675 	/*
7676 	 * Ensure we have at some amount of bandwidth every period.  This is
7677 	 * to prevent reaching a state of large arrears when throttled via
7678 	 * entity_tick() resulting in prolonged exit starvation.
7679 	 */
7680 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7681 		return -EINVAL;
7682 
7683 	/*
7684 	 * Likewise, bound things on the otherside by preventing insane quota
7685 	 * periods.  This also allows us to normalize in computing quota
7686 	 * feasibility.
7687 	 */
7688 	if (period > max_cfs_quota_period)
7689 		return -EINVAL;
7690 
7691 	mutex_lock(&cfs_constraints_mutex);
7692 	ret = __cfs_schedulable(tg, period, quota);
7693 	if (ret)
7694 		goto out_unlock;
7695 
7696 	runtime_enabled = quota != RUNTIME_INF;
7697 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7698 	/*
7699 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7700 	 * before making related changes, and on->off must occur afterwards
7701 	 */
7702 	if (runtime_enabled && !runtime_was_enabled)
7703 		cfs_bandwidth_usage_inc();
7704 	raw_spin_lock_irq(&cfs_b->lock);
7705 	cfs_b->period = ns_to_ktime(period);
7706 	cfs_b->quota = quota;
7707 
7708 	__refill_cfs_bandwidth_runtime(cfs_b);
7709 	/* restart the period timer (if active) to handle new period expiry */
7710 	if (runtime_enabled && cfs_b->timer_active) {
7711 		/* force a reprogram */
7712 		cfs_b->timer_active = 0;
7713 		__start_cfs_bandwidth(cfs_b);
7714 	}
7715 	raw_spin_unlock_irq(&cfs_b->lock);
7716 
7717 	for_each_possible_cpu(i) {
7718 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7719 		struct rq *rq = cfs_rq->rq;
7720 
7721 		raw_spin_lock_irq(&rq->lock);
7722 		cfs_rq->runtime_enabled = runtime_enabled;
7723 		cfs_rq->runtime_remaining = 0;
7724 
7725 		if (cfs_rq->throttled)
7726 			unthrottle_cfs_rq(cfs_rq);
7727 		raw_spin_unlock_irq(&rq->lock);
7728 	}
7729 	if (runtime_was_enabled && !runtime_enabled)
7730 		cfs_bandwidth_usage_dec();
7731 out_unlock:
7732 	mutex_unlock(&cfs_constraints_mutex);
7733 
7734 	return ret;
7735 }
7736 
7737 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7738 {
7739 	u64 quota, period;
7740 
7741 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7742 	if (cfs_quota_us < 0)
7743 		quota = RUNTIME_INF;
7744 	else
7745 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7746 
7747 	return tg_set_cfs_bandwidth(tg, period, quota);
7748 }
7749 
7750 long tg_get_cfs_quota(struct task_group *tg)
7751 {
7752 	u64 quota_us;
7753 
7754 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7755 		return -1;
7756 
7757 	quota_us = tg->cfs_bandwidth.quota;
7758 	do_div(quota_us, NSEC_PER_USEC);
7759 
7760 	return quota_us;
7761 }
7762 
7763 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7764 {
7765 	u64 quota, period;
7766 
7767 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7768 	quota = tg->cfs_bandwidth.quota;
7769 
7770 	return tg_set_cfs_bandwidth(tg, period, quota);
7771 }
7772 
7773 long tg_get_cfs_period(struct task_group *tg)
7774 {
7775 	u64 cfs_period_us;
7776 
7777 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7778 	do_div(cfs_period_us, NSEC_PER_USEC);
7779 
7780 	return cfs_period_us;
7781 }
7782 
7783 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7784 				  struct cftype *cft)
7785 {
7786 	return tg_get_cfs_quota(css_tg(css));
7787 }
7788 
7789 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7790 				   struct cftype *cftype, s64 cfs_quota_us)
7791 {
7792 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7793 }
7794 
7795 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7796 				   struct cftype *cft)
7797 {
7798 	return tg_get_cfs_period(css_tg(css));
7799 }
7800 
7801 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7802 				    struct cftype *cftype, u64 cfs_period_us)
7803 {
7804 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7805 }
7806 
7807 struct cfs_schedulable_data {
7808 	struct task_group *tg;
7809 	u64 period, quota;
7810 };
7811 
7812 /*
7813  * normalize group quota/period to be quota/max_period
7814  * note: units are usecs
7815  */
7816 static u64 normalize_cfs_quota(struct task_group *tg,
7817 			       struct cfs_schedulable_data *d)
7818 {
7819 	u64 quota, period;
7820 
7821 	if (tg == d->tg) {
7822 		period = d->period;
7823 		quota = d->quota;
7824 	} else {
7825 		period = tg_get_cfs_period(tg);
7826 		quota = tg_get_cfs_quota(tg);
7827 	}
7828 
7829 	/* note: these should typically be equivalent */
7830 	if (quota == RUNTIME_INF || quota == -1)
7831 		return RUNTIME_INF;
7832 
7833 	return to_ratio(period, quota);
7834 }
7835 
7836 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7837 {
7838 	struct cfs_schedulable_data *d = data;
7839 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7840 	s64 quota = 0, parent_quota = -1;
7841 
7842 	if (!tg->parent) {
7843 		quota = RUNTIME_INF;
7844 	} else {
7845 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7846 
7847 		quota = normalize_cfs_quota(tg, d);
7848 		parent_quota = parent_b->hierarchal_quota;
7849 
7850 		/*
7851 		 * ensure max(child_quota) <= parent_quota, inherit when no
7852 		 * limit is set
7853 		 */
7854 		if (quota == RUNTIME_INF)
7855 			quota = parent_quota;
7856 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7857 			return -EINVAL;
7858 	}
7859 	cfs_b->hierarchal_quota = quota;
7860 
7861 	return 0;
7862 }
7863 
7864 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7865 {
7866 	int ret;
7867 	struct cfs_schedulable_data data = {
7868 		.tg = tg,
7869 		.period = period,
7870 		.quota = quota,
7871 	};
7872 
7873 	if (quota != RUNTIME_INF) {
7874 		do_div(data.period, NSEC_PER_USEC);
7875 		do_div(data.quota, NSEC_PER_USEC);
7876 	}
7877 
7878 	rcu_read_lock();
7879 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7880 	rcu_read_unlock();
7881 
7882 	return ret;
7883 }
7884 
7885 static int cpu_stats_show(struct seq_file *sf, void *v)
7886 {
7887 	struct task_group *tg = css_tg(seq_css(sf));
7888 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7889 
7890 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7891 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7892 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7893 
7894 	return 0;
7895 }
7896 #endif /* CONFIG_CFS_BANDWIDTH */
7897 #endif /* CONFIG_FAIR_GROUP_SCHED */
7898 
7899 #ifdef CONFIG_RT_GROUP_SCHED
7900 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7901 				struct cftype *cft, s64 val)
7902 {
7903 	return sched_group_set_rt_runtime(css_tg(css), val);
7904 }
7905 
7906 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7907 			       struct cftype *cft)
7908 {
7909 	return sched_group_rt_runtime(css_tg(css));
7910 }
7911 
7912 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7913 				    struct cftype *cftype, u64 rt_period_us)
7914 {
7915 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7916 }
7917 
7918 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7919 				   struct cftype *cft)
7920 {
7921 	return sched_group_rt_period(css_tg(css));
7922 }
7923 #endif /* CONFIG_RT_GROUP_SCHED */
7924 
7925 static struct cftype cpu_files[] = {
7926 #ifdef CONFIG_FAIR_GROUP_SCHED
7927 	{
7928 		.name = "shares",
7929 		.read_u64 = cpu_shares_read_u64,
7930 		.write_u64 = cpu_shares_write_u64,
7931 	},
7932 #endif
7933 #ifdef CONFIG_CFS_BANDWIDTH
7934 	{
7935 		.name = "cfs_quota_us",
7936 		.read_s64 = cpu_cfs_quota_read_s64,
7937 		.write_s64 = cpu_cfs_quota_write_s64,
7938 	},
7939 	{
7940 		.name = "cfs_period_us",
7941 		.read_u64 = cpu_cfs_period_read_u64,
7942 		.write_u64 = cpu_cfs_period_write_u64,
7943 	},
7944 	{
7945 		.name = "stat",
7946 		.seq_show = cpu_stats_show,
7947 	},
7948 #endif
7949 #ifdef CONFIG_RT_GROUP_SCHED
7950 	{
7951 		.name = "rt_runtime_us",
7952 		.read_s64 = cpu_rt_runtime_read,
7953 		.write_s64 = cpu_rt_runtime_write,
7954 	},
7955 	{
7956 		.name = "rt_period_us",
7957 		.read_u64 = cpu_rt_period_read_uint,
7958 		.write_u64 = cpu_rt_period_write_uint,
7959 	},
7960 #endif
7961 	{ }	/* terminate */
7962 };
7963 
7964 struct cgroup_subsys cpu_cgroup_subsys = {
7965 	.name		= "cpu",
7966 	.css_alloc	= cpu_cgroup_css_alloc,
7967 	.css_free	= cpu_cgroup_css_free,
7968 	.css_online	= cpu_cgroup_css_online,
7969 	.css_offline	= cpu_cgroup_css_offline,
7970 	.can_attach	= cpu_cgroup_can_attach,
7971 	.attach		= cpu_cgroup_attach,
7972 	.exit		= cpu_cgroup_exit,
7973 	.subsys_id	= cpu_cgroup_subsys_id,
7974 	.base_cftypes	= cpu_files,
7975 	.early_init	= 1,
7976 };
7977 
7978 #endif	/* CONFIG_CGROUP_SCHED */
7979 
7980 void dump_cpu_task(int cpu)
7981 {
7982 	pr_info("Task dump for CPU %d:\n", cpu);
7983 	sched_show_task(cpu_curr(cpu));
7984 }
7985