1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <linux/nospec.h> 11 12 #include <linux/kcov.h> 13 14 #include <asm/switch_to.h> 15 #include <asm/tlb.h> 16 17 #include "../workqueue_internal.h" 18 #include "../smpboot.h" 19 20 #include "pelt.h" 21 22 #define CREATE_TRACE_POINTS 23 #include <trace/events/sched.h> 24 25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 26 27 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 28 /* 29 * Debugging: various feature bits 30 * 31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 32 * sysctl_sched_features, defined in sched.h, to allow constants propagation 33 * at compile time and compiler optimization based on features default. 34 */ 35 #define SCHED_FEAT(name, enabled) \ 36 (1UL << __SCHED_FEAT_##name) * enabled | 37 const_debug unsigned int sysctl_sched_features = 38 #include "features.h" 39 0; 40 #undef SCHED_FEAT 41 #endif 42 43 /* 44 * Number of tasks to iterate in a single balance run. 45 * Limited because this is done with IRQs disabled. 46 */ 47 const_debug unsigned int sysctl_sched_nr_migrate = 32; 48 49 /* 50 * period over which we measure -rt task CPU usage in us. 51 * default: 1s 52 */ 53 unsigned int sysctl_sched_rt_period = 1000000; 54 55 __read_mostly int scheduler_running; 56 57 /* 58 * part of the period that we allow rt tasks to run in us. 59 * default: 0.95s 60 */ 61 int sysctl_sched_rt_runtime = 950000; 62 63 /* 64 * __task_rq_lock - lock the rq @p resides on. 65 */ 66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 67 __acquires(rq->lock) 68 { 69 struct rq *rq; 70 71 lockdep_assert_held(&p->pi_lock); 72 73 for (;;) { 74 rq = task_rq(p); 75 raw_spin_lock(&rq->lock); 76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 77 rq_pin_lock(rq, rf); 78 return rq; 79 } 80 raw_spin_unlock(&rq->lock); 81 82 while (unlikely(task_on_rq_migrating(p))) 83 cpu_relax(); 84 } 85 } 86 87 /* 88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 89 */ 90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 91 __acquires(p->pi_lock) 92 __acquires(rq->lock) 93 { 94 struct rq *rq; 95 96 for (;;) { 97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 98 rq = task_rq(p); 99 raw_spin_lock(&rq->lock); 100 /* 101 * move_queued_task() task_rq_lock() 102 * 103 * ACQUIRE (rq->lock) 104 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 106 * [S] ->cpu = new_cpu [L] task_rq() 107 * [L] ->on_rq 108 * RELEASE (rq->lock) 109 * 110 * If we observe the old CPU in task_rq_lock, the acquire of 111 * the old rq->lock will fully serialize against the stores. 112 * 113 * If we observe the new CPU in task_rq_lock, the acquire will 114 * pair with the WMB to ensure we must then also see migrating. 115 */ 116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 117 rq_pin_lock(rq, rf); 118 return rq; 119 } 120 raw_spin_unlock(&rq->lock); 121 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 122 123 while (unlikely(task_on_rq_migrating(p))) 124 cpu_relax(); 125 } 126 } 127 128 /* 129 * RQ-clock updating methods: 130 */ 131 132 static void update_rq_clock_task(struct rq *rq, s64 delta) 133 { 134 /* 135 * In theory, the compile should just see 0 here, and optimize out the call 136 * to sched_rt_avg_update. But I don't trust it... 137 */ 138 s64 __maybe_unused steal = 0, irq_delta = 0; 139 140 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 141 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 142 143 /* 144 * Since irq_time is only updated on {soft,}irq_exit, we might run into 145 * this case when a previous update_rq_clock() happened inside a 146 * {soft,}irq region. 147 * 148 * When this happens, we stop ->clock_task and only update the 149 * prev_irq_time stamp to account for the part that fit, so that a next 150 * update will consume the rest. This ensures ->clock_task is 151 * monotonic. 152 * 153 * It does however cause some slight miss-attribution of {soft,}irq 154 * time, a more accurate solution would be to update the irq_time using 155 * the current rq->clock timestamp, except that would require using 156 * atomic ops. 157 */ 158 if (irq_delta > delta) 159 irq_delta = delta; 160 161 rq->prev_irq_time += irq_delta; 162 delta -= irq_delta; 163 #endif 164 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 165 if (static_key_false((¶virt_steal_rq_enabled))) { 166 steal = paravirt_steal_clock(cpu_of(rq)); 167 steal -= rq->prev_steal_time_rq; 168 169 if (unlikely(steal > delta)) 170 steal = delta; 171 172 rq->prev_steal_time_rq += steal; 173 delta -= steal; 174 } 175 #endif 176 177 rq->clock_task += delta; 178 179 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 180 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 181 update_irq_load_avg(rq, irq_delta + steal); 182 #endif 183 } 184 185 void update_rq_clock(struct rq *rq) 186 { 187 s64 delta; 188 189 lockdep_assert_held(&rq->lock); 190 191 if (rq->clock_update_flags & RQCF_ACT_SKIP) 192 return; 193 194 #ifdef CONFIG_SCHED_DEBUG 195 if (sched_feat(WARN_DOUBLE_CLOCK)) 196 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 197 rq->clock_update_flags |= RQCF_UPDATED; 198 #endif 199 200 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 201 if (delta < 0) 202 return; 203 rq->clock += delta; 204 update_rq_clock_task(rq, delta); 205 } 206 207 208 #ifdef CONFIG_SCHED_HRTICK 209 /* 210 * Use HR-timers to deliver accurate preemption points. 211 */ 212 213 static void hrtick_clear(struct rq *rq) 214 { 215 if (hrtimer_active(&rq->hrtick_timer)) 216 hrtimer_cancel(&rq->hrtick_timer); 217 } 218 219 /* 220 * High-resolution timer tick. 221 * Runs from hardirq context with interrupts disabled. 222 */ 223 static enum hrtimer_restart hrtick(struct hrtimer *timer) 224 { 225 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 226 struct rq_flags rf; 227 228 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 229 230 rq_lock(rq, &rf); 231 update_rq_clock(rq); 232 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 233 rq_unlock(rq, &rf); 234 235 return HRTIMER_NORESTART; 236 } 237 238 #ifdef CONFIG_SMP 239 240 static void __hrtick_restart(struct rq *rq) 241 { 242 struct hrtimer *timer = &rq->hrtick_timer; 243 244 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 245 } 246 247 /* 248 * called from hardirq (IPI) context 249 */ 250 static void __hrtick_start(void *arg) 251 { 252 struct rq *rq = arg; 253 struct rq_flags rf; 254 255 rq_lock(rq, &rf); 256 __hrtick_restart(rq); 257 rq->hrtick_csd_pending = 0; 258 rq_unlock(rq, &rf); 259 } 260 261 /* 262 * Called to set the hrtick timer state. 263 * 264 * called with rq->lock held and irqs disabled 265 */ 266 void hrtick_start(struct rq *rq, u64 delay) 267 { 268 struct hrtimer *timer = &rq->hrtick_timer; 269 ktime_t time; 270 s64 delta; 271 272 /* 273 * Don't schedule slices shorter than 10000ns, that just 274 * doesn't make sense and can cause timer DoS. 275 */ 276 delta = max_t(s64, delay, 10000LL); 277 time = ktime_add_ns(timer->base->get_time(), delta); 278 279 hrtimer_set_expires(timer, time); 280 281 if (rq == this_rq()) { 282 __hrtick_restart(rq); 283 } else if (!rq->hrtick_csd_pending) { 284 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 285 rq->hrtick_csd_pending = 1; 286 } 287 } 288 289 #else 290 /* 291 * Called to set the hrtick timer state. 292 * 293 * called with rq->lock held and irqs disabled 294 */ 295 void hrtick_start(struct rq *rq, u64 delay) 296 { 297 /* 298 * Don't schedule slices shorter than 10000ns, that just 299 * doesn't make sense. Rely on vruntime for fairness. 300 */ 301 delay = max_t(u64, delay, 10000LL); 302 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 303 HRTIMER_MODE_REL_PINNED); 304 } 305 #endif /* CONFIG_SMP */ 306 307 static void hrtick_rq_init(struct rq *rq) 308 { 309 #ifdef CONFIG_SMP 310 rq->hrtick_csd_pending = 0; 311 312 rq->hrtick_csd.flags = 0; 313 rq->hrtick_csd.func = __hrtick_start; 314 rq->hrtick_csd.info = rq; 315 #endif 316 317 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 318 rq->hrtick_timer.function = hrtick; 319 } 320 #else /* CONFIG_SCHED_HRTICK */ 321 static inline void hrtick_clear(struct rq *rq) 322 { 323 } 324 325 static inline void hrtick_rq_init(struct rq *rq) 326 { 327 } 328 #endif /* CONFIG_SCHED_HRTICK */ 329 330 /* 331 * cmpxchg based fetch_or, macro so it works for different integer types 332 */ 333 #define fetch_or(ptr, mask) \ 334 ({ \ 335 typeof(ptr) _ptr = (ptr); \ 336 typeof(mask) _mask = (mask); \ 337 typeof(*_ptr) _old, _val = *_ptr; \ 338 \ 339 for (;;) { \ 340 _old = cmpxchg(_ptr, _val, _val | _mask); \ 341 if (_old == _val) \ 342 break; \ 343 _val = _old; \ 344 } \ 345 _old; \ 346 }) 347 348 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 349 /* 350 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 351 * this avoids any races wrt polling state changes and thereby avoids 352 * spurious IPIs. 353 */ 354 static bool set_nr_and_not_polling(struct task_struct *p) 355 { 356 struct thread_info *ti = task_thread_info(p); 357 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 358 } 359 360 /* 361 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 362 * 363 * If this returns true, then the idle task promises to call 364 * sched_ttwu_pending() and reschedule soon. 365 */ 366 static bool set_nr_if_polling(struct task_struct *p) 367 { 368 struct thread_info *ti = task_thread_info(p); 369 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 370 371 for (;;) { 372 if (!(val & _TIF_POLLING_NRFLAG)) 373 return false; 374 if (val & _TIF_NEED_RESCHED) 375 return true; 376 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 377 if (old == val) 378 break; 379 val = old; 380 } 381 return true; 382 } 383 384 #else 385 static bool set_nr_and_not_polling(struct task_struct *p) 386 { 387 set_tsk_need_resched(p); 388 return true; 389 } 390 391 #ifdef CONFIG_SMP 392 static bool set_nr_if_polling(struct task_struct *p) 393 { 394 return false; 395 } 396 #endif 397 #endif 398 399 /** 400 * wake_q_add() - queue a wakeup for 'later' waking. 401 * @head: the wake_q_head to add @task to 402 * @task: the task to queue for 'later' wakeup 403 * 404 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 405 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 406 * instantly. 407 * 408 * This function must be used as-if it were wake_up_process(); IOW the task 409 * must be ready to be woken at this location. 410 */ 411 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 412 { 413 struct wake_q_node *node = &task->wake_q; 414 415 /* 416 * Atomically grab the task, if ->wake_q is !nil already it means 417 * its already queued (either by us or someone else) and will get the 418 * wakeup due to that. 419 * 420 * In order to ensure that a pending wakeup will observe our pending 421 * state, even in the failed case, an explicit smp_mb() must be used. 422 */ 423 smp_mb__before_atomic(); 424 if (cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)) 425 return; 426 427 get_task_struct(task); 428 429 /* 430 * The head is context local, there can be no concurrency. 431 */ 432 *head->lastp = node; 433 head->lastp = &node->next; 434 } 435 436 void wake_up_q(struct wake_q_head *head) 437 { 438 struct wake_q_node *node = head->first; 439 440 while (node != WAKE_Q_TAIL) { 441 struct task_struct *task; 442 443 task = container_of(node, struct task_struct, wake_q); 444 BUG_ON(!task); 445 /* Task can safely be re-inserted now: */ 446 node = node->next; 447 task->wake_q.next = NULL; 448 449 /* 450 * wake_up_process() executes a full barrier, which pairs with 451 * the queueing in wake_q_add() so as not to miss wakeups. 452 */ 453 wake_up_process(task); 454 put_task_struct(task); 455 } 456 } 457 458 /* 459 * resched_curr - mark rq's current task 'to be rescheduled now'. 460 * 461 * On UP this means the setting of the need_resched flag, on SMP it 462 * might also involve a cross-CPU call to trigger the scheduler on 463 * the target CPU. 464 */ 465 void resched_curr(struct rq *rq) 466 { 467 struct task_struct *curr = rq->curr; 468 int cpu; 469 470 lockdep_assert_held(&rq->lock); 471 472 if (test_tsk_need_resched(curr)) 473 return; 474 475 cpu = cpu_of(rq); 476 477 if (cpu == smp_processor_id()) { 478 set_tsk_need_resched(curr); 479 set_preempt_need_resched(); 480 return; 481 } 482 483 if (set_nr_and_not_polling(curr)) 484 smp_send_reschedule(cpu); 485 else 486 trace_sched_wake_idle_without_ipi(cpu); 487 } 488 489 void resched_cpu(int cpu) 490 { 491 struct rq *rq = cpu_rq(cpu); 492 unsigned long flags; 493 494 raw_spin_lock_irqsave(&rq->lock, flags); 495 if (cpu_online(cpu) || cpu == smp_processor_id()) 496 resched_curr(rq); 497 raw_spin_unlock_irqrestore(&rq->lock, flags); 498 } 499 500 #ifdef CONFIG_SMP 501 #ifdef CONFIG_NO_HZ_COMMON 502 /* 503 * In the semi idle case, use the nearest busy CPU for migrating timers 504 * from an idle CPU. This is good for power-savings. 505 * 506 * We don't do similar optimization for completely idle system, as 507 * selecting an idle CPU will add more delays to the timers than intended 508 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 509 */ 510 int get_nohz_timer_target(void) 511 { 512 int i, cpu = smp_processor_id(); 513 struct sched_domain *sd; 514 515 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 516 return cpu; 517 518 rcu_read_lock(); 519 for_each_domain(cpu, sd) { 520 for_each_cpu(i, sched_domain_span(sd)) { 521 if (cpu == i) 522 continue; 523 524 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 525 cpu = i; 526 goto unlock; 527 } 528 } 529 } 530 531 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 532 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 533 unlock: 534 rcu_read_unlock(); 535 return cpu; 536 } 537 538 /* 539 * When add_timer_on() enqueues a timer into the timer wheel of an 540 * idle CPU then this timer might expire before the next timer event 541 * which is scheduled to wake up that CPU. In case of a completely 542 * idle system the next event might even be infinite time into the 543 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 544 * leaves the inner idle loop so the newly added timer is taken into 545 * account when the CPU goes back to idle and evaluates the timer 546 * wheel for the next timer event. 547 */ 548 static void wake_up_idle_cpu(int cpu) 549 { 550 struct rq *rq = cpu_rq(cpu); 551 552 if (cpu == smp_processor_id()) 553 return; 554 555 if (set_nr_and_not_polling(rq->idle)) 556 smp_send_reschedule(cpu); 557 else 558 trace_sched_wake_idle_without_ipi(cpu); 559 } 560 561 static bool wake_up_full_nohz_cpu(int cpu) 562 { 563 /* 564 * We just need the target to call irq_exit() and re-evaluate 565 * the next tick. The nohz full kick at least implies that. 566 * If needed we can still optimize that later with an 567 * empty IRQ. 568 */ 569 if (cpu_is_offline(cpu)) 570 return true; /* Don't try to wake offline CPUs. */ 571 if (tick_nohz_full_cpu(cpu)) { 572 if (cpu != smp_processor_id() || 573 tick_nohz_tick_stopped()) 574 tick_nohz_full_kick_cpu(cpu); 575 return true; 576 } 577 578 return false; 579 } 580 581 /* 582 * Wake up the specified CPU. If the CPU is going offline, it is the 583 * caller's responsibility to deal with the lost wakeup, for example, 584 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 585 */ 586 void wake_up_nohz_cpu(int cpu) 587 { 588 if (!wake_up_full_nohz_cpu(cpu)) 589 wake_up_idle_cpu(cpu); 590 } 591 592 static inline bool got_nohz_idle_kick(void) 593 { 594 int cpu = smp_processor_id(); 595 596 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 597 return false; 598 599 if (idle_cpu(cpu) && !need_resched()) 600 return true; 601 602 /* 603 * We can't run Idle Load Balance on this CPU for this time so we 604 * cancel it and clear NOHZ_BALANCE_KICK 605 */ 606 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 607 return false; 608 } 609 610 #else /* CONFIG_NO_HZ_COMMON */ 611 612 static inline bool got_nohz_idle_kick(void) 613 { 614 return false; 615 } 616 617 #endif /* CONFIG_NO_HZ_COMMON */ 618 619 #ifdef CONFIG_NO_HZ_FULL 620 bool sched_can_stop_tick(struct rq *rq) 621 { 622 int fifo_nr_running; 623 624 /* Deadline tasks, even if single, need the tick */ 625 if (rq->dl.dl_nr_running) 626 return false; 627 628 /* 629 * If there are more than one RR tasks, we need the tick to effect the 630 * actual RR behaviour. 631 */ 632 if (rq->rt.rr_nr_running) { 633 if (rq->rt.rr_nr_running == 1) 634 return true; 635 else 636 return false; 637 } 638 639 /* 640 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 641 * forced preemption between FIFO tasks. 642 */ 643 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 644 if (fifo_nr_running) 645 return true; 646 647 /* 648 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 649 * if there's more than one we need the tick for involuntary 650 * preemption. 651 */ 652 if (rq->nr_running > 1) 653 return false; 654 655 return true; 656 } 657 #endif /* CONFIG_NO_HZ_FULL */ 658 #endif /* CONFIG_SMP */ 659 660 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 661 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 662 /* 663 * Iterate task_group tree rooted at *from, calling @down when first entering a 664 * node and @up when leaving it for the final time. 665 * 666 * Caller must hold rcu_lock or sufficient equivalent. 667 */ 668 int walk_tg_tree_from(struct task_group *from, 669 tg_visitor down, tg_visitor up, void *data) 670 { 671 struct task_group *parent, *child; 672 int ret; 673 674 parent = from; 675 676 down: 677 ret = (*down)(parent, data); 678 if (ret) 679 goto out; 680 list_for_each_entry_rcu(child, &parent->children, siblings) { 681 parent = child; 682 goto down; 683 684 up: 685 continue; 686 } 687 ret = (*up)(parent, data); 688 if (ret || parent == from) 689 goto out; 690 691 child = parent; 692 parent = parent->parent; 693 if (parent) 694 goto up; 695 out: 696 return ret; 697 } 698 699 int tg_nop(struct task_group *tg, void *data) 700 { 701 return 0; 702 } 703 #endif 704 705 static void set_load_weight(struct task_struct *p, bool update_load) 706 { 707 int prio = p->static_prio - MAX_RT_PRIO; 708 struct load_weight *load = &p->se.load; 709 710 /* 711 * SCHED_IDLE tasks get minimal weight: 712 */ 713 if (task_has_idle_policy(p)) { 714 load->weight = scale_load(WEIGHT_IDLEPRIO); 715 load->inv_weight = WMULT_IDLEPRIO; 716 p->se.runnable_weight = load->weight; 717 return; 718 } 719 720 /* 721 * SCHED_OTHER tasks have to update their load when changing their 722 * weight 723 */ 724 if (update_load && p->sched_class == &fair_sched_class) { 725 reweight_task(p, prio); 726 } else { 727 load->weight = scale_load(sched_prio_to_weight[prio]); 728 load->inv_weight = sched_prio_to_wmult[prio]; 729 p->se.runnable_weight = load->weight; 730 } 731 } 732 733 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 734 { 735 if (!(flags & ENQUEUE_NOCLOCK)) 736 update_rq_clock(rq); 737 738 if (!(flags & ENQUEUE_RESTORE)) { 739 sched_info_queued(rq, p); 740 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 741 } 742 743 p->sched_class->enqueue_task(rq, p, flags); 744 } 745 746 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 747 { 748 if (!(flags & DEQUEUE_NOCLOCK)) 749 update_rq_clock(rq); 750 751 if (!(flags & DEQUEUE_SAVE)) { 752 sched_info_dequeued(rq, p); 753 psi_dequeue(p, flags & DEQUEUE_SLEEP); 754 } 755 756 p->sched_class->dequeue_task(rq, p, flags); 757 } 758 759 void activate_task(struct rq *rq, struct task_struct *p, int flags) 760 { 761 if (task_contributes_to_load(p)) 762 rq->nr_uninterruptible--; 763 764 enqueue_task(rq, p, flags); 765 } 766 767 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 768 { 769 if (task_contributes_to_load(p)) 770 rq->nr_uninterruptible++; 771 772 dequeue_task(rq, p, flags); 773 } 774 775 /* 776 * __normal_prio - return the priority that is based on the static prio 777 */ 778 static inline int __normal_prio(struct task_struct *p) 779 { 780 return p->static_prio; 781 } 782 783 /* 784 * Calculate the expected normal priority: i.e. priority 785 * without taking RT-inheritance into account. Might be 786 * boosted by interactivity modifiers. Changes upon fork, 787 * setprio syscalls, and whenever the interactivity 788 * estimator recalculates. 789 */ 790 static inline int normal_prio(struct task_struct *p) 791 { 792 int prio; 793 794 if (task_has_dl_policy(p)) 795 prio = MAX_DL_PRIO-1; 796 else if (task_has_rt_policy(p)) 797 prio = MAX_RT_PRIO-1 - p->rt_priority; 798 else 799 prio = __normal_prio(p); 800 return prio; 801 } 802 803 /* 804 * Calculate the current priority, i.e. the priority 805 * taken into account by the scheduler. This value might 806 * be boosted by RT tasks, or might be boosted by 807 * interactivity modifiers. Will be RT if the task got 808 * RT-boosted. If not then it returns p->normal_prio. 809 */ 810 static int effective_prio(struct task_struct *p) 811 { 812 p->normal_prio = normal_prio(p); 813 /* 814 * If we are RT tasks or we were boosted to RT priority, 815 * keep the priority unchanged. Otherwise, update priority 816 * to the normal priority: 817 */ 818 if (!rt_prio(p->prio)) 819 return p->normal_prio; 820 return p->prio; 821 } 822 823 /** 824 * task_curr - is this task currently executing on a CPU? 825 * @p: the task in question. 826 * 827 * Return: 1 if the task is currently executing. 0 otherwise. 828 */ 829 inline int task_curr(const struct task_struct *p) 830 { 831 return cpu_curr(task_cpu(p)) == p; 832 } 833 834 /* 835 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 836 * use the balance_callback list if you want balancing. 837 * 838 * this means any call to check_class_changed() must be followed by a call to 839 * balance_callback(). 840 */ 841 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 842 const struct sched_class *prev_class, 843 int oldprio) 844 { 845 if (prev_class != p->sched_class) { 846 if (prev_class->switched_from) 847 prev_class->switched_from(rq, p); 848 849 p->sched_class->switched_to(rq, p); 850 } else if (oldprio != p->prio || dl_task(p)) 851 p->sched_class->prio_changed(rq, p, oldprio); 852 } 853 854 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 855 { 856 const struct sched_class *class; 857 858 if (p->sched_class == rq->curr->sched_class) { 859 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 860 } else { 861 for_each_class(class) { 862 if (class == rq->curr->sched_class) 863 break; 864 if (class == p->sched_class) { 865 resched_curr(rq); 866 break; 867 } 868 } 869 } 870 871 /* 872 * A queue event has occurred, and we're going to schedule. In 873 * this case, we can save a useless back to back clock update. 874 */ 875 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 876 rq_clock_skip_update(rq); 877 } 878 879 #ifdef CONFIG_SMP 880 881 static inline bool is_per_cpu_kthread(struct task_struct *p) 882 { 883 if (!(p->flags & PF_KTHREAD)) 884 return false; 885 886 if (p->nr_cpus_allowed != 1) 887 return false; 888 889 return true; 890 } 891 892 /* 893 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see 894 * __set_cpus_allowed_ptr() and select_fallback_rq(). 895 */ 896 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 897 { 898 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 899 return false; 900 901 if (is_per_cpu_kthread(p)) 902 return cpu_online(cpu); 903 904 return cpu_active(cpu); 905 } 906 907 /* 908 * This is how migration works: 909 * 910 * 1) we invoke migration_cpu_stop() on the target CPU using 911 * stop_one_cpu(). 912 * 2) stopper starts to run (implicitly forcing the migrated thread 913 * off the CPU) 914 * 3) it checks whether the migrated task is still in the wrong runqueue. 915 * 4) if it's in the wrong runqueue then the migration thread removes 916 * it and puts it into the right queue. 917 * 5) stopper completes and stop_one_cpu() returns and the migration 918 * is done. 919 */ 920 921 /* 922 * move_queued_task - move a queued task to new rq. 923 * 924 * Returns (locked) new rq. Old rq's lock is released. 925 */ 926 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 927 struct task_struct *p, int new_cpu) 928 { 929 lockdep_assert_held(&rq->lock); 930 931 p->on_rq = TASK_ON_RQ_MIGRATING; 932 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 933 set_task_cpu(p, new_cpu); 934 rq_unlock(rq, rf); 935 936 rq = cpu_rq(new_cpu); 937 938 rq_lock(rq, rf); 939 BUG_ON(task_cpu(p) != new_cpu); 940 enqueue_task(rq, p, 0); 941 p->on_rq = TASK_ON_RQ_QUEUED; 942 check_preempt_curr(rq, p, 0); 943 944 return rq; 945 } 946 947 struct migration_arg { 948 struct task_struct *task; 949 int dest_cpu; 950 }; 951 952 /* 953 * Move (not current) task off this CPU, onto the destination CPU. We're doing 954 * this because either it can't run here any more (set_cpus_allowed() 955 * away from this CPU, or CPU going down), or because we're 956 * attempting to rebalance this task on exec (sched_exec). 957 * 958 * So we race with normal scheduler movements, but that's OK, as long 959 * as the task is no longer on this CPU. 960 */ 961 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 962 struct task_struct *p, int dest_cpu) 963 { 964 /* Affinity changed (again). */ 965 if (!is_cpu_allowed(p, dest_cpu)) 966 return rq; 967 968 update_rq_clock(rq); 969 rq = move_queued_task(rq, rf, p, dest_cpu); 970 971 return rq; 972 } 973 974 /* 975 * migration_cpu_stop - this will be executed by a highprio stopper thread 976 * and performs thread migration by bumping thread off CPU then 977 * 'pushing' onto another runqueue. 978 */ 979 static int migration_cpu_stop(void *data) 980 { 981 struct migration_arg *arg = data; 982 struct task_struct *p = arg->task; 983 struct rq *rq = this_rq(); 984 struct rq_flags rf; 985 986 /* 987 * The original target CPU might have gone down and we might 988 * be on another CPU but it doesn't matter. 989 */ 990 local_irq_disable(); 991 /* 992 * We need to explicitly wake pending tasks before running 993 * __migrate_task() such that we will not miss enforcing cpus_allowed 994 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 995 */ 996 sched_ttwu_pending(); 997 998 raw_spin_lock(&p->pi_lock); 999 rq_lock(rq, &rf); 1000 /* 1001 * If task_rq(p) != rq, it cannot be migrated here, because we're 1002 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1003 * we're holding p->pi_lock. 1004 */ 1005 if (task_rq(p) == rq) { 1006 if (task_on_rq_queued(p)) 1007 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1008 else 1009 p->wake_cpu = arg->dest_cpu; 1010 } 1011 rq_unlock(rq, &rf); 1012 raw_spin_unlock(&p->pi_lock); 1013 1014 local_irq_enable(); 1015 return 0; 1016 } 1017 1018 /* 1019 * sched_class::set_cpus_allowed must do the below, but is not required to 1020 * actually call this function. 1021 */ 1022 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1023 { 1024 cpumask_copy(&p->cpus_allowed, new_mask); 1025 p->nr_cpus_allowed = cpumask_weight(new_mask); 1026 } 1027 1028 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1029 { 1030 struct rq *rq = task_rq(p); 1031 bool queued, running; 1032 1033 lockdep_assert_held(&p->pi_lock); 1034 1035 queued = task_on_rq_queued(p); 1036 running = task_current(rq, p); 1037 1038 if (queued) { 1039 /* 1040 * Because __kthread_bind() calls this on blocked tasks without 1041 * holding rq->lock. 1042 */ 1043 lockdep_assert_held(&rq->lock); 1044 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1045 } 1046 if (running) 1047 put_prev_task(rq, p); 1048 1049 p->sched_class->set_cpus_allowed(p, new_mask); 1050 1051 if (queued) 1052 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1053 if (running) 1054 set_curr_task(rq, p); 1055 } 1056 1057 /* 1058 * Change a given task's CPU affinity. Migrate the thread to a 1059 * proper CPU and schedule it away if the CPU it's executing on 1060 * is removed from the allowed bitmask. 1061 * 1062 * NOTE: the caller must have a valid reference to the task, the 1063 * task must not exit() & deallocate itself prematurely. The 1064 * call is not atomic; no spinlocks may be held. 1065 */ 1066 static int __set_cpus_allowed_ptr(struct task_struct *p, 1067 const struct cpumask *new_mask, bool check) 1068 { 1069 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1070 unsigned int dest_cpu; 1071 struct rq_flags rf; 1072 struct rq *rq; 1073 int ret = 0; 1074 1075 rq = task_rq_lock(p, &rf); 1076 update_rq_clock(rq); 1077 1078 if (p->flags & PF_KTHREAD) { 1079 /* 1080 * Kernel threads are allowed on online && !active CPUs 1081 */ 1082 cpu_valid_mask = cpu_online_mask; 1083 } 1084 1085 /* 1086 * Must re-check here, to close a race against __kthread_bind(), 1087 * sched_setaffinity() is not guaranteed to observe the flag. 1088 */ 1089 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1090 ret = -EINVAL; 1091 goto out; 1092 } 1093 1094 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1095 goto out; 1096 1097 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1098 ret = -EINVAL; 1099 goto out; 1100 } 1101 1102 do_set_cpus_allowed(p, new_mask); 1103 1104 if (p->flags & PF_KTHREAD) { 1105 /* 1106 * For kernel threads that do indeed end up on online && 1107 * !active we want to ensure they are strict per-CPU threads. 1108 */ 1109 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1110 !cpumask_intersects(new_mask, cpu_active_mask) && 1111 p->nr_cpus_allowed != 1); 1112 } 1113 1114 /* Can the task run on the task's current CPU? If so, we're done */ 1115 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1116 goto out; 1117 1118 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1119 if (task_running(rq, p) || p->state == TASK_WAKING) { 1120 struct migration_arg arg = { p, dest_cpu }; 1121 /* Need help from migration thread: drop lock and wait. */ 1122 task_rq_unlock(rq, p, &rf); 1123 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1124 tlb_migrate_finish(p->mm); 1125 return 0; 1126 } else if (task_on_rq_queued(p)) { 1127 /* 1128 * OK, since we're going to drop the lock immediately 1129 * afterwards anyway. 1130 */ 1131 rq = move_queued_task(rq, &rf, p, dest_cpu); 1132 } 1133 out: 1134 task_rq_unlock(rq, p, &rf); 1135 1136 return ret; 1137 } 1138 1139 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1140 { 1141 return __set_cpus_allowed_ptr(p, new_mask, false); 1142 } 1143 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1144 1145 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1146 { 1147 #ifdef CONFIG_SCHED_DEBUG 1148 /* 1149 * We should never call set_task_cpu() on a blocked task, 1150 * ttwu() will sort out the placement. 1151 */ 1152 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1153 !p->on_rq); 1154 1155 /* 1156 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1157 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1158 * time relying on p->on_rq. 1159 */ 1160 WARN_ON_ONCE(p->state == TASK_RUNNING && 1161 p->sched_class == &fair_sched_class && 1162 (p->on_rq && !task_on_rq_migrating(p))); 1163 1164 #ifdef CONFIG_LOCKDEP 1165 /* 1166 * The caller should hold either p->pi_lock or rq->lock, when changing 1167 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1168 * 1169 * sched_move_task() holds both and thus holding either pins the cgroup, 1170 * see task_group(). 1171 * 1172 * Furthermore, all task_rq users should acquire both locks, see 1173 * task_rq_lock(). 1174 */ 1175 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1176 lockdep_is_held(&task_rq(p)->lock))); 1177 #endif 1178 /* 1179 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1180 */ 1181 WARN_ON_ONCE(!cpu_online(new_cpu)); 1182 #endif 1183 1184 trace_sched_migrate_task(p, new_cpu); 1185 1186 if (task_cpu(p) != new_cpu) { 1187 if (p->sched_class->migrate_task_rq) 1188 p->sched_class->migrate_task_rq(p, new_cpu); 1189 p->se.nr_migrations++; 1190 rseq_migrate(p); 1191 perf_event_task_migrate(p); 1192 } 1193 1194 __set_task_cpu(p, new_cpu); 1195 } 1196 1197 #ifdef CONFIG_NUMA_BALANCING 1198 static void __migrate_swap_task(struct task_struct *p, int cpu) 1199 { 1200 if (task_on_rq_queued(p)) { 1201 struct rq *src_rq, *dst_rq; 1202 struct rq_flags srf, drf; 1203 1204 src_rq = task_rq(p); 1205 dst_rq = cpu_rq(cpu); 1206 1207 rq_pin_lock(src_rq, &srf); 1208 rq_pin_lock(dst_rq, &drf); 1209 1210 p->on_rq = TASK_ON_RQ_MIGRATING; 1211 deactivate_task(src_rq, p, 0); 1212 set_task_cpu(p, cpu); 1213 activate_task(dst_rq, p, 0); 1214 p->on_rq = TASK_ON_RQ_QUEUED; 1215 check_preempt_curr(dst_rq, p, 0); 1216 1217 rq_unpin_lock(dst_rq, &drf); 1218 rq_unpin_lock(src_rq, &srf); 1219 1220 } else { 1221 /* 1222 * Task isn't running anymore; make it appear like we migrated 1223 * it before it went to sleep. This means on wakeup we make the 1224 * previous CPU our target instead of where it really is. 1225 */ 1226 p->wake_cpu = cpu; 1227 } 1228 } 1229 1230 struct migration_swap_arg { 1231 struct task_struct *src_task, *dst_task; 1232 int src_cpu, dst_cpu; 1233 }; 1234 1235 static int migrate_swap_stop(void *data) 1236 { 1237 struct migration_swap_arg *arg = data; 1238 struct rq *src_rq, *dst_rq; 1239 int ret = -EAGAIN; 1240 1241 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1242 return -EAGAIN; 1243 1244 src_rq = cpu_rq(arg->src_cpu); 1245 dst_rq = cpu_rq(arg->dst_cpu); 1246 1247 double_raw_lock(&arg->src_task->pi_lock, 1248 &arg->dst_task->pi_lock); 1249 double_rq_lock(src_rq, dst_rq); 1250 1251 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1252 goto unlock; 1253 1254 if (task_cpu(arg->src_task) != arg->src_cpu) 1255 goto unlock; 1256 1257 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1258 goto unlock; 1259 1260 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1261 goto unlock; 1262 1263 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1264 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1265 1266 ret = 0; 1267 1268 unlock: 1269 double_rq_unlock(src_rq, dst_rq); 1270 raw_spin_unlock(&arg->dst_task->pi_lock); 1271 raw_spin_unlock(&arg->src_task->pi_lock); 1272 1273 return ret; 1274 } 1275 1276 /* 1277 * Cross migrate two tasks 1278 */ 1279 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1280 int target_cpu, int curr_cpu) 1281 { 1282 struct migration_swap_arg arg; 1283 int ret = -EINVAL; 1284 1285 arg = (struct migration_swap_arg){ 1286 .src_task = cur, 1287 .src_cpu = curr_cpu, 1288 .dst_task = p, 1289 .dst_cpu = target_cpu, 1290 }; 1291 1292 if (arg.src_cpu == arg.dst_cpu) 1293 goto out; 1294 1295 /* 1296 * These three tests are all lockless; this is OK since all of them 1297 * will be re-checked with proper locks held further down the line. 1298 */ 1299 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1300 goto out; 1301 1302 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1303 goto out; 1304 1305 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1306 goto out; 1307 1308 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1309 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1310 1311 out: 1312 return ret; 1313 } 1314 #endif /* CONFIG_NUMA_BALANCING */ 1315 1316 /* 1317 * wait_task_inactive - wait for a thread to unschedule. 1318 * 1319 * If @match_state is nonzero, it's the @p->state value just checked and 1320 * not expected to change. If it changes, i.e. @p might have woken up, 1321 * then return zero. When we succeed in waiting for @p to be off its CPU, 1322 * we return a positive number (its total switch count). If a second call 1323 * a short while later returns the same number, the caller can be sure that 1324 * @p has remained unscheduled the whole time. 1325 * 1326 * The caller must ensure that the task *will* unschedule sometime soon, 1327 * else this function might spin for a *long* time. This function can't 1328 * be called with interrupts off, or it may introduce deadlock with 1329 * smp_call_function() if an IPI is sent by the same process we are 1330 * waiting to become inactive. 1331 */ 1332 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1333 { 1334 int running, queued; 1335 struct rq_flags rf; 1336 unsigned long ncsw; 1337 struct rq *rq; 1338 1339 for (;;) { 1340 /* 1341 * We do the initial early heuristics without holding 1342 * any task-queue locks at all. We'll only try to get 1343 * the runqueue lock when things look like they will 1344 * work out! 1345 */ 1346 rq = task_rq(p); 1347 1348 /* 1349 * If the task is actively running on another CPU 1350 * still, just relax and busy-wait without holding 1351 * any locks. 1352 * 1353 * NOTE! Since we don't hold any locks, it's not 1354 * even sure that "rq" stays as the right runqueue! 1355 * But we don't care, since "task_running()" will 1356 * return false if the runqueue has changed and p 1357 * is actually now running somewhere else! 1358 */ 1359 while (task_running(rq, p)) { 1360 if (match_state && unlikely(p->state != match_state)) 1361 return 0; 1362 cpu_relax(); 1363 } 1364 1365 /* 1366 * Ok, time to look more closely! We need the rq 1367 * lock now, to be *sure*. If we're wrong, we'll 1368 * just go back and repeat. 1369 */ 1370 rq = task_rq_lock(p, &rf); 1371 trace_sched_wait_task(p); 1372 running = task_running(rq, p); 1373 queued = task_on_rq_queued(p); 1374 ncsw = 0; 1375 if (!match_state || p->state == match_state) 1376 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1377 task_rq_unlock(rq, p, &rf); 1378 1379 /* 1380 * If it changed from the expected state, bail out now. 1381 */ 1382 if (unlikely(!ncsw)) 1383 break; 1384 1385 /* 1386 * Was it really running after all now that we 1387 * checked with the proper locks actually held? 1388 * 1389 * Oops. Go back and try again.. 1390 */ 1391 if (unlikely(running)) { 1392 cpu_relax(); 1393 continue; 1394 } 1395 1396 /* 1397 * It's not enough that it's not actively running, 1398 * it must be off the runqueue _entirely_, and not 1399 * preempted! 1400 * 1401 * So if it was still runnable (but just not actively 1402 * running right now), it's preempted, and we should 1403 * yield - it could be a while. 1404 */ 1405 if (unlikely(queued)) { 1406 ktime_t to = NSEC_PER_SEC / HZ; 1407 1408 set_current_state(TASK_UNINTERRUPTIBLE); 1409 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1410 continue; 1411 } 1412 1413 /* 1414 * Ahh, all good. It wasn't running, and it wasn't 1415 * runnable, which means that it will never become 1416 * running in the future either. We're all done! 1417 */ 1418 break; 1419 } 1420 1421 return ncsw; 1422 } 1423 1424 /*** 1425 * kick_process - kick a running thread to enter/exit the kernel 1426 * @p: the to-be-kicked thread 1427 * 1428 * Cause a process which is running on another CPU to enter 1429 * kernel-mode, without any delay. (to get signals handled.) 1430 * 1431 * NOTE: this function doesn't have to take the runqueue lock, 1432 * because all it wants to ensure is that the remote task enters 1433 * the kernel. If the IPI races and the task has been migrated 1434 * to another CPU then no harm is done and the purpose has been 1435 * achieved as well. 1436 */ 1437 void kick_process(struct task_struct *p) 1438 { 1439 int cpu; 1440 1441 preempt_disable(); 1442 cpu = task_cpu(p); 1443 if ((cpu != smp_processor_id()) && task_curr(p)) 1444 smp_send_reschedule(cpu); 1445 preempt_enable(); 1446 } 1447 EXPORT_SYMBOL_GPL(kick_process); 1448 1449 /* 1450 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1451 * 1452 * A few notes on cpu_active vs cpu_online: 1453 * 1454 * - cpu_active must be a subset of cpu_online 1455 * 1456 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1457 * see __set_cpus_allowed_ptr(). At this point the newly online 1458 * CPU isn't yet part of the sched domains, and balancing will not 1459 * see it. 1460 * 1461 * - on CPU-down we clear cpu_active() to mask the sched domains and 1462 * avoid the load balancer to place new tasks on the to be removed 1463 * CPU. Existing tasks will remain running there and will be taken 1464 * off. 1465 * 1466 * This means that fallback selection must not select !active CPUs. 1467 * And can assume that any active CPU must be online. Conversely 1468 * select_task_rq() below may allow selection of !active CPUs in order 1469 * to satisfy the above rules. 1470 */ 1471 static int select_fallback_rq(int cpu, struct task_struct *p) 1472 { 1473 int nid = cpu_to_node(cpu); 1474 const struct cpumask *nodemask = NULL; 1475 enum { cpuset, possible, fail } state = cpuset; 1476 int dest_cpu; 1477 1478 /* 1479 * If the node that the CPU is on has been offlined, cpu_to_node() 1480 * will return -1. There is no CPU on the node, and we should 1481 * select the CPU on the other node. 1482 */ 1483 if (nid != -1) { 1484 nodemask = cpumask_of_node(nid); 1485 1486 /* Look for allowed, online CPU in same node. */ 1487 for_each_cpu(dest_cpu, nodemask) { 1488 if (!cpu_active(dest_cpu)) 1489 continue; 1490 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1491 return dest_cpu; 1492 } 1493 } 1494 1495 for (;;) { 1496 /* Any allowed, online CPU? */ 1497 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1498 if (!is_cpu_allowed(p, dest_cpu)) 1499 continue; 1500 1501 goto out; 1502 } 1503 1504 /* No more Mr. Nice Guy. */ 1505 switch (state) { 1506 case cpuset: 1507 if (IS_ENABLED(CONFIG_CPUSETS)) { 1508 cpuset_cpus_allowed_fallback(p); 1509 state = possible; 1510 break; 1511 } 1512 /* Fall-through */ 1513 case possible: 1514 do_set_cpus_allowed(p, cpu_possible_mask); 1515 state = fail; 1516 break; 1517 1518 case fail: 1519 BUG(); 1520 break; 1521 } 1522 } 1523 1524 out: 1525 if (state != cpuset) { 1526 /* 1527 * Don't tell them about moving exiting tasks or 1528 * kernel threads (both mm NULL), since they never 1529 * leave kernel. 1530 */ 1531 if (p->mm && printk_ratelimit()) { 1532 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1533 task_pid_nr(p), p->comm, cpu); 1534 } 1535 } 1536 1537 return dest_cpu; 1538 } 1539 1540 /* 1541 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1542 */ 1543 static inline 1544 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1545 { 1546 lockdep_assert_held(&p->pi_lock); 1547 1548 if (p->nr_cpus_allowed > 1) 1549 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1550 else 1551 cpu = cpumask_any(&p->cpus_allowed); 1552 1553 /* 1554 * In order not to call set_task_cpu() on a blocking task we need 1555 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1556 * CPU. 1557 * 1558 * Since this is common to all placement strategies, this lives here. 1559 * 1560 * [ this allows ->select_task() to simply return task_cpu(p) and 1561 * not worry about this generic constraint ] 1562 */ 1563 if (unlikely(!is_cpu_allowed(p, cpu))) 1564 cpu = select_fallback_rq(task_cpu(p), p); 1565 1566 return cpu; 1567 } 1568 1569 static void update_avg(u64 *avg, u64 sample) 1570 { 1571 s64 diff = sample - *avg; 1572 *avg += diff >> 3; 1573 } 1574 1575 void sched_set_stop_task(int cpu, struct task_struct *stop) 1576 { 1577 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1578 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1579 1580 if (stop) { 1581 /* 1582 * Make it appear like a SCHED_FIFO task, its something 1583 * userspace knows about and won't get confused about. 1584 * 1585 * Also, it will make PI more or less work without too 1586 * much confusion -- but then, stop work should not 1587 * rely on PI working anyway. 1588 */ 1589 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1590 1591 stop->sched_class = &stop_sched_class; 1592 } 1593 1594 cpu_rq(cpu)->stop = stop; 1595 1596 if (old_stop) { 1597 /* 1598 * Reset it back to a normal scheduling class so that 1599 * it can die in pieces. 1600 */ 1601 old_stop->sched_class = &rt_sched_class; 1602 } 1603 } 1604 1605 #else 1606 1607 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1608 const struct cpumask *new_mask, bool check) 1609 { 1610 return set_cpus_allowed_ptr(p, new_mask); 1611 } 1612 1613 #endif /* CONFIG_SMP */ 1614 1615 static void 1616 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1617 { 1618 struct rq *rq; 1619 1620 if (!schedstat_enabled()) 1621 return; 1622 1623 rq = this_rq(); 1624 1625 #ifdef CONFIG_SMP 1626 if (cpu == rq->cpu) { 1627 __schedstat_inc(rq->ttwu_local); 1628 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1629 } else { 1630 struct sched_domain *sd; 1631 1632 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1633 rcu_read_lock(); 1634 for_each_domain(rq->cpu, sd) { 1635 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1636 __schedstat_inc(sd->ttwu_wake_remote); 1637 break; 1638 } 1639 } 1640 rcu_read_unlock(); 1641 } 1642 1643 if (wake_flags & WF_MIGRATED) 1644 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1645 #endif /* CONFIG_SMP */ 1646 1647 __schedstat_inc(rq->ttwu_count); 1648 __schedstat_inc(p->se.statistics.nr_wakeups); 1649 1650 if (wake_flags & WF_SYNC) 1651 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1652 } 1653 1654 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1655 { 1656 activate_task(rq, p, en_flags); 1657 p->on_rq = TASK_ON_RQ_QUEUED; 1658 1659 /* If a worker is waking up, notify the workqueue: */ 1660 if (p->flags & PF_WQ_WORKER) 1661 wq_worker_waking_up(p, cpu_of(rq)); 1662 } 1663 1664 /* 1665 * Mark the task runnable and perform wakeup-preemption. 1666 */ 1667 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1668 struct rq_flags *rf) 1669 { 1670 check_preempt_curr(rq, p, wake_flags); 1671 p->state = TASK_RUNNING; 1672 trace_sched_wakeup(p); 1673 1674 #ifdef CONFIG_SMP 1675 if (p->sched_class->task_woken) { 1676 /* 1677 * Our task @p is fully woken up and running; so its safe to 1678 * drop the rq->lock, hereafter rq is only used for statistics. 1679 */ 1680 rq_unpin_lock(rq, rf); 1681 p->sched_class->task_woken(rq, p); 1682 rq_repin_lock(rq, rf); 1683 } 1684 1685 if (rq->idle_stamp) { 1686 u64 delta = rq_clock(rq) - rq->idle_stamp; 1687 u64 max = 2*rq->max_idle_balance_cost; 1688 1689 update_avg(&rq->avg_idle, delta); 1690 1691 if (rq->avg_idle > max) 1692 rq->avg_idle = max; 1693 1694 rq->idle_stamp = 0; 1695 } 1696 #endif 1697 } 1698 1699 static void 1700 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1701 struct rq_flags *rf) 1702 { 1703 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1704 1705 lockdep_assert_held(&rq->lock); 1706 1707 #ifdef CONFIG_SMP 1708 if (p->sched_contributes_to_load) 1709 rq->nr_uninterruptible--; 1710 1711 if (wake_flags & WF_MIGRATED) 1712 en_flags |= ENQUEUE_MIGRATED; 1713 #endif 1714 1715 ttwu_activate(rq, p, en_flags); 1716 ttwu_do_wakeup(rq, p, wake_flags, rf); 1717 } 1718 1719 /* 1720 * Called in case the task @p isn't fully descheduled from its runqueue, 1721 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1722 * since all we need to do is flip p->state to TASK_RUNNING, since 1723 * the task is still ->on_rq. 1724 */ 1725 static int ttwu_remote(struct task_struct *p, int wake_flags) 1726 { 1727 struct rq_flags rf; 1728 struct rq *rq; 1729 int ret = 0; 1730 1731 rq = __task_rq_lock(p, &rf); 1732 if (task_on_rq_queued(p)) { 1733 /* check_preempt_curr() may use rq clock */ 1734 update_rq_clock(rq); 1735 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1736 ret = 1; 1737 } 1738 __task_rq_unlock(rq, &rf); 1739 1740 return ret; 1741 } 1742 1743 #ifdef CONFIG_SMP 1744 void sched_ttwu_pending(void) 1745 { 1746 struct rq *rq = this_rq(); 1747 struct llist_node *llist = llist_del_all(&rq->wake_list); 1748 struct task_struct *p, *t; 1749 struct rq_flags rf; 1750 1751 if (!llist) 1752 return; 1753 1754 rq_lock_irqsave(rq, &rf); 1755 update_rq_clock(rq); 1756 1757 llist_for_each_entry_safe(p, t, llist, wake_entry) 1758 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1759 1760 rq_unlock_irqrestore(rq, &rf); 1761 } 1762 1763 void scheduler_ipi(void) 1764 { 1765 /* 1766 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1767 * TIF_NEED_RESCHED remotely (for the first time) will also send 1768 * this IPI. 1769 */ 1770 preempt_fold_need_resched(); 1771 1772 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1773 return; 1774 1775 /* 1776 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1777 * traditionally all their work was done from the interrupt return 1778 * path. Now that we actually do some work, we need to make sure 1779 * we do call them. 1780 * 1781 * Some archs already do call them, luckily irq_enter/exit nest 1782 * properly. 1783 * 1784 * Arguably we should visit all archs and update all handlers, 1785 * however a fair share of IPIs are still resched only so this would 1786 * somewhat pessimize the simple resched case. 1787 */ 1788 irq_enter(); 1789 sched_ttwu_pending(); 1790 1791 /* 1792 * Check if someone kicked us for doing the nohz idle load balance. 1793 */ 1794 if (unlikely(got_nohz_idle_kick())) { 1795 this_rq()->idle_balance = 1; 1796 raise_softirq_irqoff(SCHED_SOFTIRQ); 1797 } 1798 irq_exit(); 1799 } 1800 1801 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1802 { 1803 struct rq *rq = cpu_rq(cpu); 1804 1805 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1806 1807 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1808 if (!set_nr_if_polling(rq->idle)) 1809 smp_send_reschedule(cpu); 1810 else 1811 trace_sched_wake_idle_without_ipi(cpu); 1812 } 1813 } 1814 1815 void wake_up_if_idle(int cpu) 1816 { 1817 struct rq *rq = cpu_rq(cpu); 1818 struct rq_flags rf; 1819 1820 rcu_read_lock(); 1821 1822 if (!is_idle_task(rcu_dereference(rq->curr))) 1823 goto out; 1824 1825 if (set_nr_if_polling(rq->idle)) { 1826 trace_sched_wake_idle_without_ipi(cpu); 1827 } else { 1828 rq_lock_irqsave(rq, &rf); 1829 if (is_idle_task(rq->curr)) 1830 smp_send_reschedule(cpu); 1831 /* Else CPU is not idle, do nothing here: */ 1832 rq_unlock_irqrestore(rq, &rf); 1833 } 1834 1835 out: 1836 rcu_read_unlock(); 1837 } 1838 1839 bool cpus_share_cache(int this_cpu, int that_cpu) 1840 { 1841 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1842 } 1843 #endif /* CONFIG_SMP */ 1844 1845 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1846 { 1847 struct rq *rq = cpu_rq(cpu); 1848 struct rq_flags rf; 1849 1850 #if defined(CONFIG_SMP) 1851 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1852 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1853 ttwu_queue_remote(p, cpu, wake_flags); 1854 return; 1855 } 1856 #endif 1857 1858 rq_lock(rq, &rf); 1859 update_rq_clock(rq); 1860 ttwu_do_activate(rq, p, wake_flags, &rf); 1861 rq_unlock(rq, &rf); 1862 } 1863 1864 /* 1865 * Notes on Program-Order guarantees on SMP systems. 1866 * 1867 * MIGRATION 1868 * 1869 * The basic program-order guarantee on SMP systems is that when a task [t] 1870 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1871 * execution on its new CPU [c1]. 1872 * 1873 * For migration (of runnable tasks) this is provided by the following means: 1874 * 1875 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1876 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1877 * rq(c1)->lock (if not at the same time, then in that order). 1878 * C) LOCK of the rq(c1)->lock scheduling in task 1879 * 1880 * Release/acquire chaining guarantees that B happens after A and C after B. 1881 * Note: the CPU doing B need not be c0 or c1 1882 * 1883 * Example: 1884 * 1885 * CPU0 CPU1 CPU2 1886 * 1887 * LOCK rq(0)->lock 1888 * sched-out X 1889 * sched-in Y 1890 * UNLOCK rq(0)->lock 1891 * 1892 * LOCK rq(0)->lock // orders against CPU0 1893 * dequeue X 1894 * UNLOCK rq(0)->lock 1895 * 1896 * LOCK rq(1)->lock 1897 * enqueue X 1898 * UNLOCK rq(1)->lock 1899 * 1900 * LOCK rq(1)->lock // orders against CPU2 1901 * sched-out Z 1902 * sched-in X 1903 * UNLOCK rq(1)->lock 1904 * 1905 * 1906 * BLOCKING -- aka. SLEEP + WAKEUP 1907 * 1908 * For blocking we (obviously) need to provide the same guarantee as for 1909 * migration. However the means are completely different as there is no lock 1910 * chain to provide order. Instead we do: 1911 * 1912 * 1) smp_store_release(X->on_cpu, 0) 1913 * 2) smp_cond_load_acquire(!X->on_cpu) 1914 * 1915 * Example: 1916 * 1917 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1918 * 1919 * LOCK rq(0)->lock LOCK X->pi_lock 1920 * dequeue X 1921 * sched-out X 1922 * smp_store_release(X->on_cpu, 0); 1923 * 1924 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1925 * X->state = WAKING 1926 * set_task_cpu(X,2) 1927 * 1928 * LOCK rq(2)->lock 1929 * enqueue X 1930 * X->state = RUNNING 1931 * UNLOCK rq(2)->lock 1932 * 1933 * LOCK rq(2)->lock // orders against CPU1 1934 * sched-out Z 1935 * sched-in X 1936 * UNLOCK rq(2)->lock 1937 * 1938 * UNLOCK X->pi_lock 1939 * UNLOCK rq(0)->lock 1940 * 1941 * 1942 * However, for wakeups there is a second guarantee we must provide, namely we 1943 * must ensure that CONDITION=1 done by the caller can not be reordered with 1944 * accesses to the task state; see try_to_wake_up() and set_current_state(). 1945 */ 1946 1947 /** 1948 * try_to_wake_up - wake up a thread 1949 * @p: the thread to be awakened 1950 * @state: the mask of task states that can be woken 1951 * @wake_flags: wake modifier flags (WF_*) 1952 * 1953 * If (@state & @p->state) @p->state = TASK_RUNNING. 1954 * 1955 * If the task was not queued/runnable, also place it back on a runqueue. 1956 * 1957 * Atomic against schedule() which would dequeue a task, also see 1958 * set_current_state(). 1959 * 1960 * This function executes a full memory barrier before accessing the task 1961 * state; see set_current_state(). 1962 * 1963 * Return: %true if @p->state changes (an actual wakeup was done), 1964 * %false otherwise. 1965 */ 1966 static int 1967 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1968 { 1969 unsigned long flags; 1970 int cpu, success = 0; 1971 1972 /* 1973 * If we are going to wake up a thread waiting for CONDITION we 1974 * need to ensure that CONDITION=1 done by the caller can not be 1975 * reordered with p->state check below. This pairs with mb() in 1976 * set_current_state() the waiting thread does. 1977 */ 1978 raw_spin_lock_irqsave(&p->pi_lock, flags); 1979 smp_mb__after_spinlock(); 1980 if (!(p->state & state)) 1981 goto out; 1982 1983 trace_sched_waking(p); 1984 1985 /* We're going to change ->state: */ 1986 success = 1; 1987 cpu = task_cpu(p); 1988 1989 /* 1990 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1991 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1992 * in smp_cond_load_acquire() below. 1993 * 1994 * sched_ttwu_pending() try_to_wake_up() 1995 * STORE p->on_rq = 1 LOAD p->state 1996 * UNLOCK rq->lock 1997 * 1998 * __schedule() (switch to task 'p') 1999 * LOCK rq->lock smp_rmb(); 2000 * smp_mb__after_spinlock(); 2001 * UNLOCK rq->lock 2002 * 2003 * [task p] 2004 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2005 * 2006 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2007 * __schedule(). See the comment for smp_mb__after_spinlock(). 2008 */ 2009 smp_rmb(); 2010 if (p->on_rq && ttwu_remote(p, wake_flags)) 2011 goto stat; 2012 2013 #ifdef CONFIG_SMP 2014 /* 2015 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2016 * possible to, falsely, observe p->on_cpu == 0. 2017 * 2018 * One must be running (->on_cpu == 1) in order to remove oneself 2019 * from the runqueue. 2020 * 2021 * __schedule() (switch to task 'p') try_to_wake_up() 2022 * STORE p->on_cpu = 1 LOAD p->on_rq 2023 * UNLOCK rq->lock 2024 * 2025 * __schedule() (put 'p' to sleep) 2026 * LOCK rq->lock smp_rmb(); 2027 * smp_mb__after_spinlock(); 2028 * STORE p->on_rq = 0 LOAD p->on_cpu 2029 * 2030 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2031 * __schedule(). See the comment for smp_mb__after_spinlock(). 2032 */ 2033 smp_rmb(); 2034 2035 /* 2036 * If the owning (remote) CPU is still in the middle of schedule() with 2037 * this task as prev, wait until its done referencing the task. 2038 * 2039 * Pairs with the smp_store_release() in finish_task(). 2040 * 2041 * This ensures that tasks getting woken will be fully ordered against 2042 * their previous state and preserve Program Order. 2043 */ 2044 smp_cond_load_acquire(&p->on_cpu, !VAL); 2045 2046 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2047 p->state = TASK_WAKING; 2048 2049 if (p->in_iowait) { 2050 delayacct_blkio_end(p); 2051 atomic_dec(&task_rq(p)->nr_iowait); 2052 } 2053 2054 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2055 if (task_cpu(p) != cpu) { 2056 wake_flags |= WF_MIGRATED; 2057 psi_ttwu_dequeue(p); 2058 set_task_cpu(p, cpu); 2059 } 2060 2061 #else /* CONFIG_SMP */ 2062 2063 if (p->in_iowait) { 2064 delayacct_blkio_end(p); 2065 atomic_dec(&task_rq(p)->nr_iowait); 2066 } 2067 2068 #endif /* CONFIG_SMP */ 2069 2070 ttwu_queue(p, cpu, wake_flags); 2071 stat: 2072 ttwu_stat(p, cpu, wake_flags); 2073 out: 2074 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2075 2076 return success; 2077 } 2078 2079 /** 2080 * try_to_wake_up_local - try to wake up a local task with rq lock held 2081 * @p: the thread to be awakened 2082 * @rf: request-queue flags for pinning 2083 * 2084 * Put @p on the run-queue if it's not already there. The caller must 2085 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2086 * the current task. 2087 */ 2088 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2089 { 2090 struct rq *rq = task_rq(p); 2091 2092 if (WARN_ON_ONCE(rq != this_rq()) || 2093 WARN_ON_ONCE(p == current)) 2094 return; 2095 2096 lockdep_assert_held(&rq->lock); 2097 2098 if (!raw_spin_trylock(&p->pi_lock)) { 2099 /* 2100 * This is OK, because current is on_cpu, which avoids it being 2101 * picked for load-balance and preemption/IRQs are still 2102 * disabled avoiding further scheduler activity on it and we've 2103 * not yet picked a replacement task. 2104 */ 2105 rq_unlock(rq, rf); 2106 raw_spin_lock(&p->pi_lock); 2107 rq_relock(rq, rf); 2108 } 2109 2110 if (!(p->state & TASK_NORMAL)) 2111 goto out; 2112 2113 trace_sched_waking(p); 2114 2115 if (!task_on_rq_queued(p)) { 2116 if (p->in_iowait) { 2117 delayacct_blkio_end(p); 2118 atomic_dec(&rq->nr_iowait); 2119 } 2120 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2121 } 2122 2123 ttwu_do_wakeup(rq, p, 0, rf); 2124 ttwu_stat(p, smp_processor_id(), 0); 2125 out: 2126 raw_spin_unlock(&p->pi_lock); 2127 } 2128 2129 /** 2130 * wake_up_process - Wake up a specific process 2131 * @p: The process to be woken up. 2132 * 2133 * Attempt to wake up the nominated process and move it to the set of runnable 2134 * processes. 2135 * 2136 * Return: 1 if the process was woken up, 0 if it was already running. 2137 * 2138 * This function executes a full memory barrier before accessing the task state. 2139 */ 2140 int wake_up_process(struct task_struct *p) 2141 { 2142 return try_to_wake_up(p, TASK_NORMAL, 0); 2143 } 2144 EXPORT_SYMBOL(wake_up_process); 2145 2146 int wake_up_state(struct task_struct *p, unsigned int state) 2147 { 2148 return try_to_wake_up(p, state, 0); 2149 } 2150 2151 /* 2152 * Perform scheduler related setup for a newly forked process p. 2153 * p is forked by current. 2154 * 2155 * __sched_fork() is basic setup used by init_idle() too: 2156 */ 2157 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2158 { 2159 p->on_rq = 0; 2160 2161 p->se.on_rq = 0; 2162 p->se.exec_start = 0; 2163 p->se.sum_exec_runtime = 0; 2164 p->se.prev_sum_exec_runtime = 0; 2165 p->se.nr_migrations = 0; 2166 p->se.vruntime = 0; 2167 INIT_LIST_HEAD(&p->se.group_node); 2168 2169 #ifdef CONFIG_FAIR_GROUP_SCHED 2170 p->se.cfs_rq = NULL; 2171 #endif 2172 2173 #ifdef CONFIG_SCHEDSTATS 2174 /* Even if schedstat is disabled, there should not be garbage */ 2175 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2176 #endif 2177 2178 RB_CLEAR_NODE(&p->dl.rb_node); 2179 init_dl_task_timer(&p->dl); 2180 init_dl_inactive_task_timer(&p->dl); 2181 __dl_clear_params(p); 2182 2183 INIT_LIST_HEAD(&p->rt.run_list); 2184 p->rt.timeout = 0; 2185 p->rt.time_slice = sched_rr_timeslice; 2186 p->rt.on_rq = 0; 2187 p->rt.on_list = 0; 2188 2189 #ifdef CONFIG_PREEMPT_NOTIFIERS 2190 INIT_HLIST_HEAD(&p->preempt_notifiers); 2191 #endif 2192 2193 #ifdef CONFIG_COMPACTION 2194 p->capture_control = NULL; 2195 #endif 2196 init_numa_balancing(clone_flags, p); 2197 } 2198 2199 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2200 2201 #ifdef CONFIG_NUMA_BALANCING 2202 2203 void set_numabalancing_state(bool enabled) 2204 { 2205 if (enabled) 2206 static_branch_enable(&sched_numa_balancing); 2207 else 2208 static_branch_disable(&sched_numa_balancing); 2209 } 2210 2211 #ifdef CONFIG_PROC_SYSCTL 2212 int sysctl_numa_balancing(struct ctl_table *table, int write, 2213 void __user *buffer, size_t *lenp, loff_t *ppos) 2214 { 2215 struct ctl_table t; 2216 int err; 2217 int state = static_branch_likely(&sched_numa_balancing); 2218 2219 if (write && !capable(CAP_SYS_ADMIN)) 2220 return -EPERM; 2221 2222 t = *table; 2223 t.data = &state; 2224 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2225 if (err < 0) 2226 return err; 2227 if (write) 2228 set_numabalancing_state(state); 2229 return err; 2230 } 2231 #endif 2232 #endif 2233 2234 #ifdef CONFIG_SCHEDSTATS 2235 2236 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2237 static bool __initdata __sched_schedstats = false; 2238 2239 static void set_schedstats(bool enabled) 2240 { 2241 if (enabled) 2242 static_branch_enable(&sched_schedstats); 2243 else 2244 static_branch_disable(&sched_schedstats); 2245 } 2246 2247 void force_schedstat_enabled(void) 2248 { 2249 if (!schedstat_enabled()) { 2250 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2251 static_branch_enable(&sched_schedstats); 2252 } 2253 } 2254 2255 static int __init setup_schedstats(char *str) 2256 { 2257 int ret = 0; 2258 if (!str) 2259 goto out; 2260 2261 /* 2262 * This code is called before jump labels have been set up, so we can't 2263 * change the static branch directly just yet. Instead set a temporary 2264 * variable so init_schedstats() can do it later. 2265 */ 2266 if (!strcmp(str, "enable")) { 2267 __sched_schedstats = true; 2268 ret = 1; 2269 } else if (!strcmp(str, "disable")) { 2270 __sched_schedstats = false; 2271 ret = 1; 2272 } 2273 out: 2274 if (!ret) 2275 pr_warn("Unable to parse schedstats=\n"); 2276 2277 return ret; 2278 } 2279 __setup("schedstats=", setup_schedstats); 2280 2281 static void __init init_schedstats(void) 2282 { 2283 set_schedstats(__sched_schedstats); 2284 } 2285 2286 #ifdef CONFIG_PROC_SYSCTL 2287 int sysctl_schedstats(struct ctl_table *table, int write, 2288 void __user *buffer, size_t *lenp, loff_t *ppos) 2289 { 2290 struct ctl_table t; 2291 int err; 2292 int state = static_branch_likely(&sched_schedstats); 2293 2294 if (write && !capable(CAP_SYS_ADMIN)) 2295 return -EPERM; 2296 2297 t = *table; 2298 t.data = &state; 2299 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2300 if (err < 0) 2301 return err; 2302 if (write) 2303 set_schedstats(state); 2304 return err; 2305 } 2306 #endif /* CONFIG_PROC_SYSCTL */ 2307 #else /* !CONFIG_SCHEDSTATS */ 2308 static inline void init_schedstats(void) {} 2309 #endif /* CONFIG_SCHEDSTATS */ 2310 2311 /* 2312 * fork()/clone()-time setup: 2313 */ 2314 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2315 { 2316 unsigned long flags; 2317 2318 __sched_fork(clone_flags, p); 2319 /* 2320 * We mark the process as NEW here. This guarantees that 2321 * nobody will actually run it, and a signal or other external 2322 * event cannot wake it up and insert it on the runqueue either. 2323 */ 2324 p->state = TASK_NEW; 2325 2326 /* 2327 * Make sure we do not leak PI boosting priority to the child. 2328 */ 2329 p->prio = current->normal_prio; 2330 2331 /* 2332 * Revert to default priority/policy on fork if requested. 2333 */ 2334 if (unlikely(p->sched_reset_on_fork)) { 2335 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2336 p->policy = SCHED_NORMAL; 2337 p->static_prio = NICE_TO_PRIO(0); 2338 p->rt_priority = 0; 2339 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2340 p->static_prio = NICE_TO_PRIO(0); 2341 2342 p->prio = p->normal_prio = __normal_prio(p); 2343 set_load_weight(p, false); 2344 2345 /* 2346 * We don't need the reset flag anymore after the fork. It has 2347 * fulfilled its duty: 2348 */ 2349 p->sched_reset_on_fork = 0; 2350 } 2351 2352 if (dl_prio(p->prio)) 2353 return -EAGAIN; 2354 else if (rt_prio(p->prio)) 2355 p->sched_class = &rt_sched_class; 2356 else 2357 p->sched_class = &fair_sched_class; 2358 2359 init_entity_runnable_average(&p->se); 2360 2361 /* 2362 * The child is not yet in the pid-hash so no cgroup attach races, 2363 * and the cgroup is pinned to this child due to cgroup_fork() 2364 * is ran before sched_fork(). 2365 * 2366 * Silence PROVE_RCU. 2367 */ 2368 raw_spin_lock_irqsave(&p->pi_lock, flags); 2369 /* 2370 * We're setting the CPU for the first time, we don't migrate, 2371 * so use __set_task_cpu(). 2372 */ 2373 __set_task_cpu(p, smp_processor_id()); 2374 if (p->sched_class->task_fork) 2375 p->sched_class->task_fork(p); 2376 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2377 2378 #ifdef CONFIG_SCHED_INFO 2379 if (likely(sched_info_on())) 2380 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2381 #endif 2382 #if defined(CONFIG_SMP) 2383 p->on_cpu = 0; 2384 #endif 2385 init_task_preempt_count(p); 2386 #ifdef CONFIG_SMP 2387 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2388 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2389 #endif 2390 return 0; 2391 } 2392 2393 unsigned long to_ratio(u64 period, u64 runtime) 2394 { 2395 if (runtime == RUNTIME_INF) 2396 return BW_UNIT; 2397 2398 /* 2399 * Doing this here saves a lot of checks in all 2400 * the calling paths, and returning zero seems 2401 * safe for them anyway. 2402 */ 2403 if (period == 0) 2404 return 0; 2405 2406 return div64_u64(runtime << BW_SHIFT, period); 2407 } 2408 2409 /* 2410 * wake_up_new_task - wake up a newly created task for the first time. 2411 * 2412 * This function will do some initial scheduler statistics housekeeping 2413 * that must be done for every newly created context, then puts the task 2414 * on the runqueue and wakes it. 2415 */ 2416 void wake_up_new_task(struct task_struct *p) 2417 { 2418 struct rq_flags rf; 2419 struct rq *rq; 2420 2421 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2422 p->state = TASK_RUNNING; 2423 #ifdef CONFIG_SMP 2424 /* 2425 * Fork balancing, do it here and not earlier because: 2426 * - cpus_allowed can change in the fork path 2427 * - any previously selected CPU might disappear through hotplug 2428 * 2429 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2430 * as we're not fully set-up yet. 2431 */ 2432 p->recent_used_cpu = task_cpu(p); 2433 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2434 #endif 2435 rq = __task_rq_lock(p, &rf); 2436 update_rq_clock(rq); 2437 post_init_entity_util_avg(&p->se); 2438 2439 activate_task(rq, p, ENQUEUE_NOCLOCK); 2440 p->on_rq = TASK_ON_RQ_QUEUED; 2441 trace_sched_wakeup_new(p); 2442 check_preempt_curr(rq, p, WF_FORK); 2443 #ifdef CONFIG_SMP 2444 if (p->sched_class->task_woken) { 2445 /* 2446 * Nothing relies on rq->lock after this, so its fine to 2447 * drop it. 2448 */ 2449 rq_unpin_lock(rq, &rf); 2450 p->sched_class->task_woken(rq, p); 2451 rq_repin_lock(rq, &rf); 2452 } 2453 #endif 2454 task_rq_unlock(rq, p, &rf); 2455 } 2456 2457 #ifdef CONFIG_PREEMPT_NOTIFIERS 2458 2459 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2460 2461 void preempt_notifier_inc(void) 2462 { 2463 static_branch_inc(&preempt_notifier_key); 2464 } 2465 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2466 2467 void preempt_notifier_dec(void) 2468 { 2469 static_branch_dec(&preempt_notifier_key); 2470 } 2471 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2472 2473 /** 2474 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2475 * @notifier: notifier struct to register 2476 */ 2477 void preempt_notifier_register(struct preempt_notifier *notifier) 2478 { 2479 if (!static_branch_unlikely(&preempt_notifier_key)) 2480 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2481 2482 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2483 } 2484 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2485 2486 /** 2487 * preempt_notifier_unregister - no longer interested in preemption notifications 2488 * @notifier: notifier struct to unregister 2489 * 2490 * This is *not* safe to call from within a preemption notifier. 2491 */ 2492 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2493 { 2494 hlist_del(¬ifier->link); 2495 } 2496 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2497 2498 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2499 { 2500 struct preempt_notifier *notifier; 2501 2502 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2503 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2504 } 2505 2506 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2507 { 2508 if (static_branch_unlikely(&preempt_notifier_key)) 2509 __fire_sched_in_preempt_notifiers(curr); 2510 } 2511 2512 static void 2513 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2514 struct task_struct *next) 2515 { 2516 struct preempt_notifier *notifier; 2517 2518 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2519 notifier->ops->sched_out(notifier, next); 2520 } 2521 2522 static __always_inline void 2523 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2524 struct task_struct *next) 2525 { 2526 if (static_branch_unlikely(&preempt_notifier_key)) 2527 __fire_sched_out_preempt_notifiers(curr, next); 2528 } 2529 2530 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2531 2532 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2533 { 2534 } 2535 2536 static inline void 2537 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2538 struct task_struct *next) 2539 { 2540 } 2541 2542 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2543 2544 static inline void prepare_task(struct task_struct *next) 2545 { 2546 #ifdef CONFIG_SMP 2547 /* 2548 * Claim the task as running, we do this before switching to it 2549 * such that any running task will have this set. 2550 */ 2551 next->on_cpu = 1; 2552 #endif 2553 } 2554 2555 static inline void finish_task(struct task_struct *prev) 2556 { 2557 #ifdef CONFIG_SMP 2558 /* 2559 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2560 * We must ensure this doesn't happen until the switch is completely 2561 * finished. 2562 * 2563 * In particular, the load of prev->state in finish_task_switch() must 2564 * happen before this. 2565 * 2566 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2567 */ 2568 smp_store_release(&prev->on_cpu, 0); 2569 #endif 2570 } 2571 2572 static inline void 2573 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2574 { 2575 /* 2576 * Since the runqueue lock will be released by the next 2577 * task (which is an invalid locking op but in the case 2578 * of the scheduler it's an obvious special-case), so we 2579 * do an early lockdep release here: 2580 */ 2581 rq_unpin_lock(rq, rf); 2582 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2583 #ifdef CONFIG_DEBUG_SPINLOCK 2584 /* this is a valid case when another task releases the spinlock */ 2585 rq->lock.owner = next; 2586 #endif 2587 } 2588 2589 static inline void finish_lock_switch(struct rq *rq) 2590 { 2591 /* 2592 * If we are tracking spinlock dependencies then we have to 2593 * fix up the runqueue lock - which gets 'carried over' from 2594 * prev into current: 2595 */ 2596 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2597 raw_spin_unlock_irq(&rq->lock); 2598 } 2599 2600 /* 2601 * NOP if the arch has not defined these: 2602 */ 2603 2604 #ifndef prepare_arch_switch 2605 # define prepare_arch_switch(next) do { } while (0) 2606 #endif 2607 2608 #ifndef finish_arch_post_lock_switch 2609 # define finish_arch_post_lock_switch() do { } while (0) 2610 #endif 2611 2612 /** 2613 * prepare_task_switch - prepare to switch tasks 2614 * @rq: the runqueue preparing to switch 2615 * @prev: the current task that is being switched out 2616 * @next: the task we are going to switch to. 2617 * 2618 * This is called with the rq lock held and interrupts off. It must 2619 * be paired with a subsequent finish_task_switch after the context 2620 * switch. 2621 * 2622 * prepare_task_switch sets up locking and calls architecture specific 2623 * hooks. 2624 */ 2625 static inline void 2626 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2627 struct task_struct *next) 2628 { 2629 kcov_prepare_switch(prev); 2630 sched_info_switch(rq, prev, next); 2631 perf_event_task_sched_out(prev, next); 2632 rseq_preempt(prev); 2633 fire_sched_out_preempt_notifiers(prev, next); 2634 prepare_task(next); 2635 prepare_arch_switch(next); 2636 } 2637 2638 /** 2639 * finish_task_switch - clean up after a task-switch 2640 * @prev: the thread we just switched away from. 2641 * 2642 * finish_task_switch must be called after the context switch, paired 2643 * with a prepare_task_switch call before the context switch. 2644 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2645 * and do any other architecture-specific cleanup actions. 2646 * 2647 * Note that we may have delayed dropping an mm in context_switch(). If 2648 * so, we finish that here outside of the runqueue lock. (Doing it 2649 * with the lock held can cause deadlocks; see schedule() for 2650 * details.) 2651 * 2652 * The context switch have flipped the stack from under us and restored the 2653 * local variables which were saved when this task called schedule() in the 2654 * past. prev == current is still correct but we need to recalculate this_rq 2655 * because prev may have moved to another CPU. 2656 */ 2657 static struct rq *finish_task_switch(struct task_struct *prev) 2658 __releases(rq->lock) 2659 { 2660 struct rq *rq = this_rq(); 2661 struct mm_struct *mm = rq->prev_mm; 2662 long prev_state; 2663 2664 /* 2665 * The previous task will have left us with a preempt_count of 2 2666 * because it left us after: 2667 * 2668 * schedule() 2669 * preempt_disable(); // 1 2670 * __schedule() 2671 * raw_spin_lock_irq(&rq->lock) // 2 2672 * 2673 * Also, see FORK_PREEMPT_COUNT. 2674 */ 2675 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2676 "corrupted preempt_count: %s/%d/0x%x\n", 2677 current->comm, current->pid, preempt_count())) 2678 preempt_count_set(FORK_PREEMPT_COUNT); 2679 2680 rq->prev_mm = NULL; 2681 2682 /* 2683 * A task struct has one reference for the use as "current". 2684 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2685 * schedule one last time. The schedule call will never return, and 2686 * the scheduled task must drop that reference. 2687 * 2688 * We must observe prev->state before clearing prev->on_cpu (in 2689 * finish_task), otherwise a concurrent wakeup can get prev 2690 * running on another CPU and we could rave with its RUNNING -> DEAD 2691 * transition, resulting in a double drop. 2692 */ 2693 prev_state = prev->state; 2694 vtime_task_switch(prev); 2695 perf_event_task_sched_in(prev, current); 2696 finish_task(prev); 2697 finish_lock_switch(rq); 2698 finish_arch_post_lock_switch(); 2699 kcov_finish_switch(current); 2700 2701 fire_sched_in_preempt_notifiers(current); 2702 /* 2703 * When switching through a kernel thread, the loop in 2704 * membarrier_{private,global}_expedited() may have observed that 2705 * kernel thread and not issued an IPI. It is therefore possible to 2706 * schedule between user->kernel->user threads without passing though 2707 * switch_mm(). Membarrier requires a barrier after storing to 2708 * rq->curr, before returning to userspace, so provide them here: 2709 * 2710 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2711 * provided by mmdrop(), 2712 * - a sync_core for SYNC_CORE. 2713 */ 2714 if (mm) { 2715 membarrier_mm_sync_core_before_usermode(mm); 2716 mmdrop(mm); 2717 } 2718 if (unlikely(prev_state == TASK_DEAD)) { 2719 if (prev->sched_class->task_dead) 2720 prev->sched_class->task_dead(prev); 2721 2722 /* 2723 * Remove function-return probe instances associated with this 2724 * task and put them back on the free list. 2725 */ 2726 kprobe_flush_task(prev); 2727 2728 /* Task is done with its stack. */ 2729 put_task_stack(prev); 2730 2731 put_task_struct(prev); 2732 } 2733 2734 tick_nohz_task_switch(); 2735 return rq; 2736 } 2737 2738 #ifdef CONFIG_SMP 2739 2740 /* rq->lock is NOT held, but preemption is disabled */ 2741 static void __balance_callback(struct rq *rq) 2742 { 2743 struct callback_head *head, *next; 2744 void (*func)(struct rq *rq); 2745 unsigned long flags; 2746 2747 raw_spin_lock_irqsave(&rq->lock, flags); 2748 head = rq->balance_callback; 2749 rq->balance_callback = NULL; 2750 while (head) { 2751 func = (void (*)(struct rq *))head->func; 2752 next = head->next; 2753 head->next = NULL; 2754 head = next; 2755 2756 func(rq); 2757 } 2758 raw_spin_unlock_irqrestore(&rq->lock, flags); 2759 } 2760 2761 static inline void balance_callback(struct rq *rq) 2762 { 2763 if (unlikely(rq->balance_callback)) 2764 __balance_callback(rq); 2765 } 2766 2767 #else 2768 2769 static inline void balance_callback(struct rq *rq) 2770 { 2771 } 2772 2773 #endif 2774 2775 /** 2776 * schedule_tail - first thing a freshly forked thread must call. 2777 * @prev: the thread we just switched away from. 2778 */ 2779 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2780 __releases(rq->lock) 2781 { 2782 struct rq *rq; 2783 2784 /* 2785 * New tasks start with FORK_PREEMPT_COUNT, see there and 2786 * finish_task_switch() for details. 2787 * 2788 * finish_task_switch() will drop rq->lock() and lower preempt_count 2789 * and the preempt_enable() will end up enabling preemption (on 2790 * PREEMPT_COUNT kernels). 2791 */ 2792 2793 rq = finish_task_switch(prev); 2794 balance_callback(rq); 2795 preempt_enable(); 2796 2797 if (current->set_child_tid) 2798 put_user(task_pid_vnr(current), current->set_child_tid); 2799 2800 calculate_sigpending(); 2801 } 2802 2803 /* 2804 * context_switch - switch to the new MM and the new thread's register state. 2805 */ 2806 static __always_inline struct rq * 2807 context_switch(struct rq *rq, struct task_struct *prev, 2808 struct task_struct *next, struct rq_flags *rf) 2809 { 2810 struct mm_struct *mm, *oldmm; 2811 2812 prepare_task_switch(rq, prev, next); 2813 2814 mm = next->mm; 2815 oldmm = prev->active_mm; 2816 /* 2817 * For paravirt, this is coupled with an exit in switch_to to 2818 * combine the page table reload and the switch backend into 2819 * one hypercall. 2820 */ 2821 arch_start_context_switch(prev); 2822 2823 /* 2824 * If mm is non-NULL, we pass through switch_mm(). If mm is 2825 * NULL, we will pass through mmdrop() in finish_task_switch(). 2826 * Both of these contain the full memory barrier required by 2827 * membarrier after storing to rq->curr, before returning to 2828 * user-space. 2829 */ 2830 if (!mm) { 2831 next->active_mm = oldmm; 2832 mmgrab(oldmm); 2833 enter_lazy_tlb(oldmm, next); 2834 } else 2835 switch_mm_irqs_off(oldmm, mm, next); 2836 2837 if (!prev->mm) { 2838 prev->active_mm = NULL; 2839 rq->prev_mm = oldmm; 2840 } 2841 2842 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2843 2844 prepare_lock_switch(rq, next, rf); 2845 2846 /* Here we just switch the register state and the stack. */ 2847 switch_to(prev, next, prev); 2848 barrier(); 2849 2850 return finish_task_switch(prev); 2851 } 2852 2853 /* 2854 * nr_running and nr_context_switches: 2855 * 2856 * externally visible scheduler statistics: current number of runnable 2857 * threads, total number of context switches performed since bootup. 2858 */ 2859 unsigned long nr_running(void) 2860 { 2861 unsigned long i, sum = 0; 2862 2863 for_each_online_cpu(i) 2864 sum += cpu_rq(i)->nr_running; 2865 2866 return sum; 2867 } 2868 2869 /* 2870 * Check if only the current task is running on the CPU. 2871 * 2872 * Caution: this function does not check that the caller has disabled 2873 * preemption, thus the result might have a time-of-check-to-time-of-use 2874 * race. The caller is responsible to use it correctly, for example: 2875 * 2876 * - from a non-preemptible section (of course) 2877 * 2878 * - from a thread that is bound to a single CPU 2879 * 2880 * - in a loop with very short iterations (e.g. a polling loop) 2881 */ 2882 bool single_task_running(void) 2883 { 2884 return raw_rq()->nr_running == 1; 2885 } 2886 EXPORT_SYMBOL(single_task_running); 2887 2888 unsigned long long nr_context_switches(void) 2889 { 2890 int i; 2891 unsigned long long sum = 0; 2892 2893 for_each_possible_cpu(i) 2894 sum += cpu_rq(i)->nr_switches; 2895 2896 return sum; 2897 } 2898 2899 /* 2900 * Consumers of these two interfaces, like for example the cpuidle menu 2901 * governor, are using nonsensical data. Preferring shallow idle state selection 2902 * for a CPU that has IO-wait which might not even end up running the task when 2903 * it does become runnable. 2904 */ 2905 2906 unsigned long nr_iowait_cpu(int cpu) 2907 { 2908 return atomic_read(&cpu_rq(cpu)->nr_iowait); 2909 } 2910 2911 /* 2912 * IO-wait accounting, and how its mostly bollocks (on SMP). 2913 * 2914 * The idea behind IO-wait account is to account the idle time that we could 2915 * have spend running if it were not for IO. That is, if we were to improve the 2916 * storage performance, we'd have a proportional reduction in IO-wait time. 2917 * 2918 * This all works nicely on UP, where, when a task blocks on IO, we account 2919 * idle time as IO-wait, because if the storage were faster, it could've been 2920 * running and we'd not be idle. 2921 * 2922 * This has been extended to SMP, by doing the same for each CPU. This however 2923 * is broken. 2924 * 2925 * Imagine for instance the case where two tasks block on one CPU, only the one 2926 * CPU will have IO-wait accounted, while the other has regular idle. Even 2927 * though, if the storage were faster, both could've ran at the same time, 2928 * utilising both CPUs. 2929 * 2930 * This means, that when looking globally, the current IO-wait accounting on 2931 * SMP is a lower bound, by reason of under accounting. 2932 * 2933 * Worse, since the numbers are provided per CPU, they are sometimes 2934 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2935 * associated with any one particular CPU, it can wake to another CPU than it 2936 * blocked on. This means the per CPU IO-wait number is meaningless. 2937 * 2938 * Task CPU affinities can make all that even more 'interesting'. 2939 */ 2940 2941 unsigned long nr_iowait(void) 2942 { 2943 unsigned long i, sum = 0; 2944 2945 for_each_possible_cpu(i) 2946 sum += nr_iowait_cpu(i); 2947 2948 return sum; 2949 } 2950 2951 #ifdef CONFIG_SMP 2952 2953 /* 2954 * sched_exec - execve() is a valuable balancing opportunity, because at 2955 * this point the task has the smallest effective memory and cache footprint. 2956 */ 2957 void sched_exec(void) 2958 { 2959 struct task_struct *p = current; 2960 unsigned long flags; 2961 int dest_cpu; 2962 2963 raw_spin_lock_irqsave(&p->pi_lock, flags); 2964 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2965 if (dest_cpu == smp_processor_id()) 2966 goto unlock; 2967 2968 if (likely(cpu_active(dest_cpu))) { 2969 struct migration_arg arg = { p, dest_cpu }; 2970 2971 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2972 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2973 return; 2974 } 2975 unlock: 2976 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2977 } 2978 2979 #endif 2980 2981 DEFINE_PER_CPU(struct kernel_stat, kstat); 2982 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2983 2984 EXPORT_PER_CPU_SYMBOL(kstat); 2985 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2986 2987 /* 2988 * The function fair_sched_class.update_curr accesses the struct curr 2989 * and its field curr->exec_start; when called from task_sched_runtime(), 2990 * we observe a high rate of cache misses in practice. 2991 * Prefetching this data results in improved performance. 2992 */ 2993 static inline void prefetch_curr_exec_start(struct task_struct *p) 2994 { 2995 #ifdef CONFIG_FAIR_GROUP_SCHED 2996 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 2997 #else 2998 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 2999 #endif 3000 prefetch(curr); 3001 prefetch(&curr->exec_start); 3002 } 3003 3004 /* 3005 * Return accounted runtime for the task. 3006 * In case the task is currently running, return the runtime plus current's 3007 * pending runtime that have not been accounted yet. 3008 */ 3009 unsigned long long task_sched_runtime(struct task_struct *p) 3010 { 3011 struct rq_flags rf; 3012 struct rq *rq; 3013 u64 ns; 3014 3015 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3016 /* 3017 * 64-bit doesn't need locks to atomically read a 64-bit value. 3018 * So we have a optimization chance when the task's delta_exec is 0. 3019 * Reading ->on_cpu is racy, but this is ok. 3020 * 3021 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3022 * If we race with it entering CPU, unaccounted time is 0. This is 3023 * indistinguishable from the read occurring a few cycles earlier. 3024 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3025 * been accounted, so we're correct here as well. 3026 */ 3027 if (!p->on_cpu || !task_on_rq_queued(p)) 3028 return p->se.sum_exec_runtime; 3029 #endif 3030 3031 rq = task_rq_lock(p, &rf); 3032 /* 3033 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3034 * project cycles that may never be accounted to this 3035 * thread, breaking clock_gettime(). 3036 */ 3037 if (task_current(rq, p) && task_on_rq_queued(p)) { 3038 prefetch_curr_exec_start(p); 3039 update_rq_clock(rq); 3040 p->sched_class->update_curr(rq); 3041 } 3042 ns = p->se.sum_exec_runtime; 3043 task_rq_unlock(rq, p, &rf); 3044 3045 return ns; 3046 } 3047 3048 /* 3049 * This function gets called by the timer code, with HZ frequency. 3050 * We call it with interrupts disabled. 3051 */ 3052 void scheduler_tick(void) 3053 { 3054 int cpu = smp_processor_id(); 3055 struct rq *rq = cpu_rq(cpu); 3056 struct task_struct *curr = rq->curr; 3057 struct rq_flags rf; 3058 3059 sched_clock_tick(); 3060 3061 rq_lock(rq, &rf); 3062 3063 update_rq_clock(rq); 3064 curr->sched_class->task_tick(rq, curr, 0); 3065 cpu_load_update_active(rq); 3066 calc_global_load_tick(rq); 3067 psi_task_tick(rq); 3068 3069 rq_unlock(rq, &rf); 3070 3071 perf_event_task_tick(); 3072 3073 #ifdef CONFIG_SMP 3074 rq->idle_balance = idle_cpu(cpu); 3075 trigger_load_balance(rq); 3076 #endif 3077 } 3078 3079 #ifdef CONFIG_NO_HZ_FULL 3080 3081 struct tick_work { 3082 int cpu; 3083 struct delayed_work work; 3084 }; 3085 3086 static struct tick_work __percpu *tick_work_cpu; 3087 3088 static void sched_tick_remote(struct work_struct *work) 3089 { 3090 struct delayed_work *dwork = to_delayed_work(work); 3091 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3092 int cpu = twork->cpu; 3093 struct rq *rq = cpu_rq(cpu); 3094 struct task_struct *curr; 3095 struct rq_flags rf; 3096 u64 delta; 3097 3098 /* 3099 * Handle the tick only if it appears the remote CPU is running in full 3100 * dynticks mode. The check is racy by nature, but missing a tick or 3101 * having one too much is no big deal because the scheduler tick updates 3102 * statistics and checks timeslices in a time-independent way, regardless 3103 * of when exactly it is running. 3104 */ 3105 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu)) 3106 goto out_requeue; 3107 3108 rq_lock_irq(rq, &rf); 3109 curr = rq->curr; 3110 if (is_idle_task(curr)) 3111 goto out_unlock; 3112 3113 update_rq_clock(rq); 3114 delta = rq_clock_task(rq) - curr->se.exec_start; 3115 3116 /* 3117 * Make sure the next tick runs within a reasonable 3118 * amount of time. 3119 */ 3120 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3121 curr->sched_class->task_tick(rq, curr, 0); 3122 3123 out_unlock: 3124 rq_unlock_irq(rq, &rf); 3125 3126 out_requeue: 3127 /* 3128 * Run the remote tick once per second (1Hz). This arbitrary 3129 * frequency is large enough to avoid overload but short enough 3130 * to keep scheduler internal stats reasonably up to date. 3131 */ 3132 queue_delayed_work(system_unbound_wq, dwork, HZ); 3133 } 3134 3135 static void sched_tick_start(int cpu) 3136 { 3137 struct tick_work *twork; 3138 3139 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3140 return; 3141 3142 WARN_ON_ONCE(!tick_work_cpu); 3143 3144 twork = per_cpu_ptr(tick_work_cpu, cpu); 3145 twork->cpu = cpu; 3146 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3147 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3148 } 3149 3150 #ifdef CONFIG_HOTPLUG_CPU 3151 static void sched_tick_stop(int cpu) 3152 { 3153 struct tick_work *twork; 3154 3155 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3156 return; 3157 3158 WARN_ON_ONCE(!tick_work_cpu); 3159 3160 twork = per_cpu_ptr(tick_work_cpu, cpu); 3161 cancel_delayed_work_sync(&twork->work); 3162 } 3163 #endif /* CONFIG_HOTPLUG_CPU */ 3164 3165 int __init sched_tick_offload_init(void) 3166 { 3167 tick_work_cpu = alloc_percpu(struct tick_work); 3168 BUG_ON(!tick_work_cpu); 3169 3170 return 0; 3171 } 3172 3173 #else /* !CONFIG_NO_HZ_FULL */ 3174 static inline void sched_tick_start(int cpu) { } 3175 static inline void sched_tick_stop(int cpu) { } 3176 #endif 3177 3178 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3179 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3180 /* 3181 * If the value passed in is equal to the current preempt count 3182 * then we just disabled preemption. Start timing the latency. 3183 */ 3184 static inline void preempt_latency_start(int val) 3185 { 3186 if (preempt_count() == val) { 3187 unsigned long ip = get_lock_parent_ip(); 3188 #ifdef CONFIG_DEBUG_PREEMPT 3189 current->preempt_disable_ip = ip; 3190 #endif 3191 trace_preempt_off(CALLER_ADDR0, ip); 3192 } 3193 } 3194 3195 void preempt_count_add(int val) 3196 { 3197 #ifdef CONFIG_DEBUG_PREEMPT 3198 /* 3199 * Underflow? 3200 */ 3201 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3202 return; 3203 #endif 3204 __preempt_count_add(val); 3205 #ifdef CONFIG_DEBUG_PREEMPT 3206 /* 3207 * Spinlock count overflowing soon? 3208 */ 3209 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3210 PREEMPT_MASK - 10); 3211 #endif 3212 preempt_latency_start(val); 3213 } 3214 EXPORT_SYMBOL(preempt_count_add); 3215 NOKPROBE_SYMBOL(preempt_count_add); 3216 3217 /* 3218 * If the value passed in equals to the current preempt count 3219 * then we just enabled preemption. Stop timing the latency. 3220 */ 3221 static inline void preempt_latency_stop(int val) 3222 { 3223 if (preempt_count() == val) 3224 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3225 } 3226 3227 void preempt_count_sub(int val) 3228 { 3229 #ifdef CONFIG_DEBUG_PREEMPT 3230 /* 3231 * Underflow? 3232 */ 3233 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3234 return; 3235 /* 3236 * Is the spinlock portion underflowing? 3237 */ 3238 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3239 !(preempt_count() & PREEMPT_MASK))) 3240 return; 3241 #endif 3242 3243 preempt_latency_stop(val); 3244 __preempt_count_sub(val); 3245 } 3246 EXPORT_SYMBOL(preempt_count_sub); 3247 NOKPROBE_SYMBOL(preempt_count_sub); 3248 3249 #else 3250 static inline void preempt_latency_start(int val) { } 3251 static inline void preempt_latency_stop(int val) { } 3252 #endif 3253 3254 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3255 { 3256 #ifdef CONFIG_DEBUG_PREEMPT 3257 return p->preempt_disable_ip; 3258 #else 3259 return 0; 3260 #endif 3261 } 3262 3263 /* 3264 * Print scheduling while atomic bug: 3265 */ 3266 static noinline void __schedule_bug(struct task_struct *prev) 3267 { 3268 /* Save this before calling printk(), since that will clobber it */ 3269 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3270 3271 if (oops_in_progress) 3272 return; 3273 3274 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3275 prev->comm, prev->pid, preempt_count()); 3276 3277 debug_show_held_locks(prev); 3278 print_modules(); 3279 if (irqs_disabled()) 3280 print_irqtrace_events(prev); 3281 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3282 && in_atomic_preempt_off()) { 3283 pr_err("Preemption disabled at:"); 3284 print_ip_sym(preempt_disable_ip); 3285 pr_cont("\n"); 3286 } 3287 if (panic_on_warn) 3288 panic("scheduling while atomic\n"); 3289 3290 dump_stack(); 3291 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3292 } 3293 3294 /* 3295 * Various schedule()-time debugging checks and statistics: 3296 */ 3297 static inline void schedule_debug(struct task_struct *prev) 3298 { 3299 #ifdef CONFIG_SCHED_STACK_END_CHECK 3300 if (task_stack_end_corrupted(prev)) 3301 panic("corrupted stack end detected inside scheduler\n"); 3302 #endif 3303 3304 if (unlikely(in_atomic_preempt_off())) { 3305 __schedule_bug(prev); 3306 preempt_count_set(PREEMPT_DISABLED); 3307 } 3308 rcu_sleep_check(); 3309 3310 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3311 3312 schedstat_inc(this_rq()->sched_count); 3313 } 3314 3315 /* 3316 * Pick up the highest-prio task: 3317 */ 3318 static inline struct task_struct * 3319 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3320 { 3321 const struct sched_class *class; 3322 struct task_struct *p; 3323 3324 /* 3325 * Optimization: we know that if all tasks are in the fair class we can 3326 * call that function directly, but only if the @prev task wasn't of a 3327 * higher scheduling class, because otherwise those loose the 3328 * opportunity to pull in more work from other CPUs. 3329 */ 3330 if (likely((prev->sched_class == &idle_sched_class || 3331 prev->sched_class == &fair_sched_class) && 3332 rq->nr_running == rq->cfs.h_nr_running)) { 3333 3334 p = fair_sched_class.pick_next_task(rq, prev, rf); 3335 if (unlikely(p == RETRY_TASK)) 3336 goto again; 3337 3338 /* Assumes fair_sched_class->next == idle_sched_class */ 3339 if (unlikely(!p)) 3340 p = idle_sched_class.pick_next_task(rq, prev, rf); 3341 3342 return p; 3343 } 3344 3345 again: 3346 for_each_class(class) { 3347 p = class->pick_next_task(rq, prev, rf); 3348 if (p) { 3349 if (unlikely(p == RETRY_TASK)) 3350 goto again; 3351 return p; 3352 } 3353 } 3354 3355 /* The idle class should always have a runnable task: */ 3356 BUG(); 3357 } 3358 3359 /* 3360 * __schedule() is the main scheduler function. 3361 * 3362 * The main means of driving the scheduler and thus entering this function are: 3363 * 3364 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3365 * 3366 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3367 * paths. For example, see arch/x86/entry_64.S. 3368 * 3369 * To drive preemption between tasks, the scheduler sets the flag in timer 3370 * interrupt handler scheduler_tick(). 3371 * 3372 * 3. Wakeups don't really cause entry into schedule(). They add a 3373 * task to the run-queue and that's it. 3374 * 3375 * Now, if the new task added to the run-queue preempts the current 3376 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3377 * called on the nearest possible occasion: 3378 * 3379 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3380 * 3381 * - in syscall or exception context, at the next outmost 3382 * preempt_enable(). (this might be as soon as the wake_up()'s 3383 * spin_unlock()!) 3384 * 3385 * - in IRQ context, return from interrupt-handler to 3386 * preemptible context 3387 * 3388 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3389 * then at the next: 3390 * 3391 * - cond_resched() call 3392 * - explicit schedule() call 3393 * - return from syscall or exception to user-space 3394 * - return from interrupt-handler to user-space 3395 * 3396 * WARNING: must be called with preemption disabled! 3397 */ 3398 static void __sched notrace __schedule(bool preempt) 3399 { 3400 struct task_struct *prev, *next; 3401 unsigned long *switch_count; 3402 struct rq_flags rf; 3403 struct rq *rq; 3404 int cpu; 3405 3406 cpu = smp_processor_id(); 3407 rq = cpu_rq(cpu); 3408 prev = rq->curr; 3409 3410 schedule_debug(prev); 3411 3412 if (sched_feat(HRTICK)) 3413 hrtick_clear(rq); 3414 3415 local_irq_disable(); 3416 rcu_note_context_switch(preempt); 3417 3418 /* 3419 * Make sure that signal_pending_state()->signal_pending() below 3420 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3421 * done by the caller to avoid the race with signal_wake_up(). 3422 * 3423 * The membarrier system call requires a full memory barrier 3424 * after coming from user-space, before storing to rq->curr. 3425 */ 3426 rq_lock(rq, &rf); 3427 smp_mb__after_spinlock(); 3428 3429 /* Promote REQ to ACT */ 3430 rq->clock_update_flags <<= 1; 3431 update_rq_clock(rq); 3432 3433 switch_count = &prev->nivcsw; 3434 if (!preempt && prev->state) { 3435 if (signal_pending_state(prev->state, prev)) { 3436 prev->state = TASK_RUNNING; 3437 } else { 3438 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3439 prev->on_rq = 0; 3440 3441 if (prev->in_iowait) { 3442 atomic_inc(&rq->nr_iowait); 3443 delayacct_blkio_start(); 3444 } 3445 3446 /* 3447 * If a worker went to sleep, notify and ask workqueue 3448 * whether it wants to wake up a task to maintain 3449 * concurrency. 3450 */ 3451 if (prev->flags & PF_WQ_WORKER) { 3452 struct task_struct *to_wakeup; 3453 3454 to_wakeup = wq_worker_sleeping(prev); 3455 if (to_wakeup) 3456 try_to_wake_up_local(to_wakeup, &rf); 3457 } 3458 } 3459 switch_count = &prev->nvcsw; 3460 } 3461 3462 next = pick_next_task(rq, prev, &rf); 3463 clear_tsk_need_resched(prev); 3464 clear_preempt_need_resched(); 3465 3466 if (likely(prev != next)) { 3467 rq->nr_switches++; 3468 rq->curr = next; 3469 /* 3470 * The membarrier system call requires each architecture 3471 * to have a full memory barrier after updating 3472 * rq->curr, before returning to user-space. 3473 * 3474 * Here are the schemes providing that barrier on the 3475 * various architectures: 3476 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3477 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3478 * - finish_lock_switch() for weakly-ordered 3479 * architectures where spin_unlock is a full barrier, 3480 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3481 * is a RELEASE barrier), 3482 */ 3483 ++*switch_count; 3484 3485 trace_sched_switch(preempt, prev, next); 3486 3487 /* Also unlocks the rq: */ 3488 rq = context_switch(rq, prev, next, &rf); 3489 } else { 3490 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3491 rq_unlock_irq(rq, &rf); 3492 } 3493 3494 balance_callback(rq); 3495 } 3496 3497 void __noreturn do_task_dead(void) 3498 { 3499 /* Causes final put_task_struct in finish_task_switch(): */ 3500 set_special_state(TASK_DEAD); 3501 3502 /* Tell freezer to ignore us: */ 3503 current->flags |= PF_NOFREEZE; 3504 3505 __schedule(false); 3506 BUG(); 3507 3508 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3509 for (;;) 3510 cpu_relax(); 3511 } 3512 3513 static inline void sched_submit_work(struct task_struct *tsk) 3514 { 3515 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3516 return; 3517 /* 3518 * If we are going to sleep and we have plugged IO queued, 3519 * make sure to submit it to avoid deadlocks. 3520 */ 3521 if (blk_needs_flush_plug(tsk)) 3522 blk_schedule_flush_plug(tsk); 3523 } 3524 3525 asmlinkage __visible void __sched schedule(void) 3526 { 3527 struct task_struct *tsk = current; 3528 3529 sched_submit_work(tsk); 3530 do { 3531 preempt_disable(); 3532 __schedule(false); 3533 sched_preempt_enable_no_resched(); 3534 } while (need_resched()); 3535 } 3536 EXPORT_SYMBOL(schedule); 3537 3538 /* 3539 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3540 * state (have scheduled out non-voluntarily) by making sure that all 3541 * tasks have either left the run queue or have gone into user space. 3542 * As idle tasks do not do either, they must not ever be preempted 3543 * (schedule out non-voluntarily). 3544 * 3545 * schedule_idle() is similar to schedule_preempt_disable() except that it 3546 * never enables preemption because it does not call sched_submit_work(). 3547 */ 3548 void __sched schedule_idle(void) 3549 { 3550 /* 3551 * As this skips calling sched_submit_work(), which the idle task does 3552 * regardless because that function is a nop when the task is in a 3553 * TASK_RUNNING state, make sure this isn't used someplace that the 3554 * current task can be in any other state. Note, idle is always in the 3555 * TASK_RUNNING state. 3556 */ 3557 WARN_ON_ONCE(current->state); 3558 do { 3559 __schedule(false); 3560 } while (need_resched()); 3561 } 3562 3563 #ifdef CONFIG_CONTEXT_TRACKING 3564 asmlinkage __visible void __sched schedule_user(void) 3565 { 3566 /* 3567 * If we come here after a random call to set_need_resched(), 3568 * or we have been woken up remotely but the IPI has not yet arrived, 3569 * we haven't yet exited the RCU idle mode. Do it here manually until 3570 * we find a better solution. 3571 * 3572 * NB: There are buggy callers of this function. Ideally we 3573 * should warn if prev_state != CONTEXT_USER, but that will trigger 3574 * too frequently to make sense yet. 3575 */ 3576 enum ctx_state prev_state = exception_enter(); 3577 schedule(); 3578 exception_exit(prev_state); 3579 } 3580 #endif 3581 3582 /** 3583 * schedule_preempt_disabled - called with preemption disabled 3584 * 3585 * Returns with preemption disabled. Note: preempt_count must be 1 3586 */ 3587 void __sched schedule_preempt_disabled(void) 3588 { 3589 sched_preempt_enable_no_resched(); 3590 schedule(); 3591 preempt_disable(); 3592 } 3593 3594 static void __sched notrace preempt_schedule_common(void) 3595 { 3596 do { 3597 /* 3598 * Because the function tracer can trace preempt_count_sub() 3599 * and it also uses preempt_enable/disable_notrace(), if 3600 * NEED_RESCHED is set, the preempt_enable_notrace() called 3601 * by the function tracer will call this function again and 3602 * cause infinite recursion. 3603 * 3604 * Preemption must be disabled here before the function 3605 * tracer can trace. Break up preempt_disable() into two 3606 * calls. One to disable preemption without fear of being 3607 * traced. The other to still record the preemption latency, 3608 * which can also be traced by the function tracer. 3609 */ 3610 preempt_disable_notrace(); 3611 preempt_latency_start(1); 3612 __schedule(true); 3613 preempt_latency_stop(1); 3614 preempt_enable_no_resched_notrace(); 3615 3616 /* 3617 * Check again in case we missed a preemption opportunity 3618 * between schedule and now. 3619 */ 3620 } while (need_resched()); 3621 } 3622 3623 #ifdef CONFIG_PREEMPT 3624 /* 3625 * this is the entry point to schedule() from in-kernel preemption 3626 * off of preempt_enable. Kernel preemptions off return from interrupt 3627 * occur there and call schedule directly. 3628 */ 3629 asmlinkage __visible void __sched notrace preempt_schedule(void) 3630 { 3631 /* 3632 * If there is a non-zero preempt_count or interrupts are disabled, 3633 * we do not want to preempt the current task. Just return.. 3634 */ 3635 if (likely(!preemptible())) 3636 return; 3637 3638 preempt_schedule_common(); 3639 } 3640 NOKPROBE_SYMBOL(preempt_schedule); 3641 EXPORT_SYMBOL(preempt_schedule); 3642 3643 /** 3644 * preempt_schedule_notrace - preempt_schedule called by tracing 3645 * 3646 * The tracing infrastructure uses preempt_enable_notrace to prevent 3647 * recursion and tracing preempt enabling caused by the tracing 3648 * infrastructure itself. But as tracing can happen in areas coming 3649 * from userspace or just about to enter userspace, a preempt enable 3650 * can occur before user_exit() is called. This will cause the scheduler 3651 * to be called when the system is still in usermode. 3652 * 3653 * To prevent this, the preempt_enable_notrace will use this function 3654 * instead of preempt_schedule() to exit user context if needed before 3655 * calling the scheduler. 3656 */ 3657 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3658 { 3659 enum ctx_state prev_ctx; 3660 3661 if (likely(!preemptible())) 3662 return; 3663 3664 do { 3665 /* 3666 * Because the function tracer can trace preempt_count_sub() 3667 * and it also uses preempt_enable/disable_notrace(), if 3668 * NEED_RESCHED is set, the preempt_enable_notrace() called 3669 * by the function tracer will call this function again and 3670 * cause infinite recursion. 3671 * 3672 * Preemption must be disabled here before the function 3673 * tracer can trace. Break up preempt_disable() into two 3674 * calls. One to disable preemption without fear of being 3675 * traced. The other to still record the preemption latency, 3676 * which can also be traced by the function tracer. 3677 */ 3678 preempt_disable_notrace(); 3679 preempt_latency_start(1); 3680 /* 3681 * Needs preempt disabled in case user_exit() is traced 3682 * and the tracer calls preempt_enable_notrace() causing 3683 * an infinite recursion. 3684 */ 3685 prev_ctx = exception_enter(); 3686 __schedule(true); 3687 exception_exit(prev_ctx); 3688 3689 preempt_latency_stop(1); 3690 preempt_enable_no_resched_notrace(); 3691 } while (need_resched()); 3692 } 3693 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3694 3695 #endif /* CONFIG_PREEMPT */ 3696 3697 /* 3698 * this is the entry point to schedule() from kernel preemption 3699 * off of irq context. 3700 * Note, that this is called and return with irqs disabled. This will 3701 * protect us against recursive calling from irq. 3702 */ 3703 asmlinkage __visible void __sched preempt_schedule_irq(void) 3704 { 3705 enum ctx_state prev_state; 3706 3707 /* Catch callers which need to be fixed */ 3708 BUG_ON(preempt_count() || !irqs_disabled()); 3709 3710 prev_state = exception_enter(); 3711 3712 do { 3713 preempt_disable(); 3714 local_irq_enable(); 3715 __schedule(true); 3716 local_irq_disable(); 3717 sched_preempt_enable_no_resched(); 3718 } while (need_resched()); 3719 3720 exception_exit(prev_state); 3721 } 3722 3723 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3724 void *key) 3725 { 3726 return try_to_wake_up(curr->private, mode, wake_flags); 3727 } 3728 EXPORT_SYMBOL(default_wake_function); 3729 3730 #ifdef CONFIG_RT_MUTEXES 3731 3732 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3733 { 3734 if (pi_task) 3735 prio = min(prio, pi_task->prio); 3736 3737 return prio; 3738 } 3739 3740 static inline int rt_effective_prio(struct task_struct *p, int prio) 3741 { 3742 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3743 3744 return __rt_effective_prio(pi_task, prio); 3745 } 3746 3747 /* 3748 * rt_mutex_setprio - set the current priority of a task 3749 * @p: task to boost 3750 * @pi_task: donor task 3751 * 3752 * This function changes the 'effective' priority of a task. It does 3753 * not touch ->normal_prio like __setscheduler(). 3754 * 3755 * Used by the rt_mutex code to implement priority inheritance 3756 * logic. Call site only calls if the priority of the task changed. 3757 */ 3758 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3759 { 3760 int prio, oldprio, queued, running, queue_flag = 3761 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3762 const struct sched_class *prev_class; 3763 struct rq_flags rf; 3764 struct rq *rq; 3765 3766 /* XXX used to be waiter->prio, not waiter->task->prio */ 3767 prio = __rt_effective_prio(pi_task, p->normal_prio); 3768 3769 /* 3770 * If nothing changed; bail early. 3771 */ 3772 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3773 return; 3774 3775 rq = __task_rq_lock(p, &rf); 3776 update_rq_clock(rq); 3777 /* 3778 * Set under pi_lock && rq->lock, such that the value can be used under 3779 * either lock. 3780 * 3781 * Note that there is loads of tricky to make this pointer cache work 3782 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3783 * ensure a task is de-boosted (pi_task is set to NULL) before the 3784 * task is allowed to run again (and can exit). This ensures the pointer 3785 * points to a blocked task -- which guaratees the task is present. 3786 */ 3787 p->pi_top_task = pi_task; 3788 3789 /* 3790 * For FIFO/RR we only need to set prio, if that matches we're done. 3791 */ 3792 if (prio == p->prio && !dl_prio(prio)) 3793 goto out_unlock; 3794 3795 /* 3796 * Idle task boosting is a nono in general. There is one 3797 * exception, when PREEMPT_RT and NOHZ is active: 3798 * 3799 * The idle task calls get_next_timer_interrupt() and holds 3800 * the timer wheel base->lock on the CPU and another CPU wants 3801 * to access the timer (probably to cancel it). We can safely 3802 * ignore the boosting request, as the idle CPU runs this code 3803 * with interrupts disabled and will complete the lock 3804 * protected section without being interrupted. So there is no 3805 * real need to boost. 3806 */ 3807 if (unlikely(p == rq->idle)) { 3808 WARN_ON(p != rq->curr); 3809 WARN_ON(p->pi_blocked_on); 3810 goto out_unlock; 3811 } 3812 3813 trace_sched_pi_setprio(p, pi_task); 3814 oldprio = p->prio; 3815 3816 if (oldprio == prio) 3817 queue_flag &= ~DEQUEUE_MOVE; 3818 3819 prev_class = p->sched_class; 3820 queued = task_on_rq_queued(p); 3821 running = task_current(rq, p); 3822 if (queued) 3823 dequeue_task(rq, p, queue_flag); 3824 if (running) 3825 put_prev_task(rq, p); 3826 3827 /* 3828 * Boosting condition are: 3829 * 1. -rt task is running and holds mutex A 3830 * --> -dl task blocks on mutex A 3831 * 3832 * 2. -dl task is running and holds mutex A 3833 * --> -dl task blocks on mutex A and could preempt the 3834 * running task 3835 */ 3836 if (dl_prio(prio)) { 3837 if (!dl_prio(p->normal_prio) || 3838 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3839 p->dl.dl_boosted = 1; 3840 queue_flag |= ENQUEUE_REPLENISH; 3841 } else 3842 p->dl.dl_boosted = 0; 3843 p->sched_class = &dl_sched_class; 3844 } else if (rt_prio(prio)) { 3845 if (dl_prio(oldprio)) 3846 p->dl.dl_boosted = 0; 3847 if (oldprio < prio) 3848 queue_flag |= ENQUEUE_HEAD; 3849 p->sched_class = &rt_sched_class; 3850 } else { 3851 if (dl_prio(oldprio)) 3852 p->dl.dl_boosted = 0; 3853 if (rt_prio(oldprio)) 3854 p->rt.timeout = 0; 3855 p->sched_class = &fair_sched_class; 3856 } 3857 3858 p->prio = prio; 3859 3860 if (queued) 3861 enqueue_task(rq, p, queue_flag); 3862 if (running) 3863 set_curr_task(rq, p); 3864 3865 check_class_changed(rq, p, prev_class, oldprio); 3866 out_unlock: 3867 /* Avoid rq from going away on us: */ 3868 preempt_disable(); 3869 __task_rq_unlock(rq, &rf); 3870 3871 balance_callback(rq); 3872 preempt_enable(); 3873 } 3874 #else 3875 static inline int rt_effective_prio(struct task_struct *p, int prio) 3876 { 3877 return prio; 3878 } 3879 #endif 3880 3881 void set_user_nice(struct task_struct *p, long nice) 3882 { 3883 bool queued, running; 3884 int old_prio, delta; 3885 struct rq_flags rf; 3886 struct rq *rq; 3887 3888 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3889 return; 3890 /* 3891 * We have to be careful, if called from sys_setpriority(), 3892 * the task might be in the middle of scheduling on another CPU. 3893 */ 3894 rq = task_rq_lock(p, &rf); 3895 update_rq_clock(rq); 3896 3897 /* 3898 * The RT priorities are set via sched_setscheduler(), but we still 3899 * allow the 'normal' nice value to be set - but as expected 3900 * it wont have any effect on scheduling until the task is 3901 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3902 */ 3903 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3904 p->static_prio = NICE_TO_PRIO(nice); 3905 goto out_unlock; 3906 } 3907 queued = task_on_rq_queued(p); 3908 running = task_current(rq, p); 3909 if (queued) 3910 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3911 if (running) 3912 put_prev_task(rq, p); 3913 3914 p->static_prio = NICE_TO_PRIO(nice); 3915 set_load_weight(p, true); 3916 old_prio = p->prio; 3917 p->prio = effective_prio(p); 3918 delta = p->prio - old_prio; 3919 3920 if (queued) { 3921 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3922 /* 3923 * If the task increased its priority or is running and 3924 * lowered its priority, then reschedule its CPU: 3925 */ 3926 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3927 resched_curr(rq); 3928 } 3929 if (running) 3930 set_curr_task(rq, p); 3931 out_unlock: 3932 task_rq_unlock(rq, p, &rf); 3933 } 3934 EXPORT_SYMBOL(set_user_nice); 3935 3936 /* 3937 * can_nice - check if a task can reduce its nice value 3938 * @p: task 3939 * @nice: nice value 3940 */ 3941 int can_nice(const struct task_struct *p, const int nice) 3942 { 3943 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3944 int nice_rlim = nice_to_rlimit(nice); 3945 3946 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3947 capable(CAP_SYS_NICE)); 3948 } 3949 3950 #ifdef __ARCH_WANT_SYS_NICE 3951 3952 /* 3953 * sys_nice - change the priority of the current process. 3954 * @increment: priority increment 3955 * 3956 * sys_setpriority is a more generic, but much slower function that 3957 * does similar things. 3958 */ 3959 SYSCALL_DEFINE1(nice, int, increment) 3960 { 3961 long nice, retval; 3962 3963 /* 3964 * Setpriority might change our priority at the same moment. 3965 * We don't have to worry. Conceptually one call occurs first 3966 * and we have a single winner. 3967 */ 3968 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3969 nice = task_nice(current) + increment; 3970 3971 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3972 if (increment < 0 && !can_nice(current, nice)) 3973 return -EPERM; 3974 3975 retval = security_task_setnice(current, nice); 3976 if (retval) 3977 return retval; 3978 3979 set_user_nice(current, nice); 3980 return 0; 3981 } 3982 3983 #endif 3984 3985 /** 3986 * task_prio - return the priority value of a given task. 3987 * @p: the task in question. 3988 * 3989 * Return: The priority value as seen by users in /proc. 3990 * RT tasks are offset by -200. Normal tasks are centered 3991 * around 0, value goes from -16 to +15. 3992 */ 3993 int task_prio(const struct task_struct *p) 3994 { 3995 return p->prio - MAX_RT_PRIO; 3996 } 3997 3998 /** 3999 * idle_cpu - is a given CPU idle currently? 4000 * @cpu: the processor in question. 4001 * 4002 * Return: 1 if the CPU is currently idle. 0 otherwise. 4003 */ 4004 int idle_cpu(int cpu) 4005 { 4006 struct rq *rq = cpu_rq(cpu); 4007 4008 if (rq->curr != rq->idle) 4009 return 0; 4010 4011 if (rq->nr_running) 4012 return 0; 4013 4014 #ifdef CONFIG_SMP 4015 if (!llist_empty(&rq->wake_list)) 4016 return 0; 4017 #endif 4018 4019 return 1; 4020 } 4021 4022 /** 4023 * available_idle_cpu - is a given CPU idle for enqueuing work. 4024 * @cpu: the CPU in question. 4025 * 4026 * Return: 1 if the CPU is currently idle. 0 otherwise. 4027 */ 4028 int available_idle_cpu(int cpu) 4029 { 4030 if (!idle_cpu(cpu)) 4031 return 0; 4032 4033 if (vcpu_is_preempted(cpu)) 4034 return 0; 4035 4036 return 1; 4037 } 4038 4039 /** 4040 * idle_task - return the idle task for a given CPU. 4041 * @cpu: the processor in question. 4042 * 4043 * Return: The idle task for the CPU @cpu. 4044 */ 4045 struct task_struct *idle_task(int cpu) 4046 { 4047 return cpu_rq(cpu)->idle; 4048 } 4049 4050 /** 4051 * find_process_by_pid - find a process with a matching PID value. 4052 * @pid: the pid in question. 4053 * 4054 * The task of @pid, if found. %NULL otherwise. 4055 */ 4056 static struct task_struct *find_process_by_pid(pid_t pid) 4057 { 4058 return pid ? find_task_by_vpid(pid) : current; 4059 } 4060 4061 /* 4062 * sched_setparam() passes in -1 for its policy, to let the functions 4063 * it calls know not to change it. 4064 */ 4065 #define SETPARAM_POLICY -1 4066 4067 static void __setscheduler_params(struct task_struct *p, 4068 const struct sched_attr *attr) 4069 { 4070 int policy = attr->sched_policy; 4071 4072 if (policy == SETPARAM_POLICY) 4073 policy = p->policy; 4074 4075 p->policy = policy; 4076 4077 if (dl_policy(policy)) 4078 __setparam_dl(p, attr); 4079 else if (fair_policy(policy)) 4080 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4081 4082 /* 4083 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4084 * !rt_policy. Always setting this ensures that things like 4085 * getparam()/getattr() don't report silly values for !rt tasks. 4086 */ 4087 p->rt_priority = attr->sched_priority; 4088 p->normal_prio = normal_prio(p); 4089 set_load_weight(p, true); 4090 } 4091 4092 /* Actually do priority change: must hold pi & rq lock. */ 4093 static void __setscheduler(struct rq *rq, struct task_struct *p, 4094 const struct sched_attr *attr, bool keep_boost) 4095 { 4096 __setscheduler_params(p, attr); 4097 4098 /* 4099 * Keep a potential priority boosting if called from 4100 * sched_setscheduler(). 4101 */ 4102 p->prio = normal_prio(p); 4103 if (keep_boost) 4104 p->prio = rt_effective_prio(p, p->prio); 4105 4106 if (dl_prio(p->prio)) 4107 p->sched_class = &dl_sched_class; 4108 else if (rt_prio(p->prio)) 4109 p->sched_class = &rt_sched_class; 4110 else 4111 p->sched_class = &fair_sched_class; 4112 } 4113 4114 /* 4115 * Check the target process has a UID that matches the current process's: 4116 */ 4117 static bool check_same_owner(struct task_struct *p) 4118 { 4119 const struct cred *cred = current_cred(), *pcred; 4120 bool match; 4121 4122 rcu_read_lock(); 4123 pcred = __task_cred(p); 4124 match = (uid_eq(cred->euid, pcred->euid) || 4125 uid_eq(cred->euid, pcred->uid)); 4126 rcu_read_unlock(); 4127 return match; 4128 } 4129 4130 static int __sched_setscheduler(struct task_struct *p, 4131 const struct sched_attr *attr, 4132 bool user, bool pi) 4133 { 4134 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4135 MAX_RT_PRIO - 1 - attr->sched_priority; 4136 int retval, oldprio, oldpolicy = -1, queued, running; 4137 int new_effective_prio, policy = attr->sched_policy; 4138 const struct sched_class *prev_class; 4139 struct rq_flags rf; 4140 int reset_on_fork; 4141 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4142 struct rq *rq; 4143 4144 /* The pi code expects interrupts enabled */ 4145 BUG_ON(pi && in_interrupt()); 4146 recheck: 4147 /* Double check policy once rq lock held: */ 4148 if (policy < 0) { 4149 reset_on_fork = p->sched_reset_on_fork; 4150 policy = oldpolicy = p->policy; 4151 } else { 4152 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4153 4154 if (!valid_policy(policy)) 4155 return -EINVAL; 4156 } 4157 4158 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4159 return -EINVAL; 4160 4161 /* 4162 * Valid priorities for SCHED_FIFO and SCHED_RR are 4163 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4164 * SCHED_BATCH and SCHED_IDLE is 0. 4165 */ 4166 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4167 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4168 return -EINVAL; 4169 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4170 (rt_policy(policy) != (attr->sched_priority != 0))) 4171 return -EINVAL; 4172 4173 /* 4174 * Allow unprivileged RT tasks to decrease priority: 4175 */ 4176 if (user && !capable(CAP_SYS_NICE)) { 4177 if (fair_policy(policy)) { 4178 if (attr->sched_nice < task_nice(p) && 4179 !can_nice(p, attr->sched_nice)) 4180 return -EPERM; 4181 } 4182 4183 if (rt_policy(policy)) { 4184 unsigned long rlim_rtprio = 4185 task_rlimit(p, RLIMIT_RTPRIO); 4186 4187 /* Can't set/change the rt policy: */ 4188 if (policy != p->policy && !rlim_rtprio) 4189 return -EPERM; 4190 4191 /* Can't increase priority: */ 4192 if (attr->sched_priority > p->rt_priority && 4193 attr->sched_priority > rlim_rtprio) 4194 return -EPERM; 4195 } 4196 4197 /* 4198 * Can't set/change SCHED_DEADLINE policy at all for now 4199 * (safest behavior); in the future we would like to allow 4200 * unprivileged DL tasks to increase their relative deadline 4201 * or reduce their runtime (both ways reducing utilization) 4202 */ 4203 if (dl_policy(policy)) 4204 return -EPERM; 4205 4206 /* 4207 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4208 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4209 */ 4210 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4211 if (!can_nice(p, task_nice(p))) 4212 return -EPERM; 4213 } 4214 4215 /* Can't change other user's priorities: */ 4216 if (!check_same_owner(p)) 4217 return -EPERM; 4218 4219 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4220 if (p->sched_reset_on_fork && !reset_on_fork) 4221 return -EPERM; 4222 } 4223 4224 if (user) { 4225 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4226 return -EINVAL; 4227 4228 retval = security_task_setscheduler(p); 4229 if (retval) 4230 return retval; 4231 } 4232 4233 /* 4234 * Make sure no PI-waiters arrive (or leave) while we are 4235 * changing the priority of the task: 4236 * 4237 * To be able to change p->policy safely, the appropriate 4238 * runqueue lock must be held. 4239 */ 4240 rq = task_rq_lock(p, &rf); 4241 update_rq_clock(rq); 4242 4243 /* 4244 * Changing the policy of the stop threads its a very bad idea: 4245 */ 4246 if (p == rq->stop) { 4247 task_rq_unlock(rq, p, &rf); 4248 return -EINVAL; 4249 } 4250 4251 /* 4252 * If not changing anything there's no need to proceed further, 4253 * but store a possible modification of reset_on_fork. 4254 */ 4255 if (unlikely(policy == p->policy)) { 4256 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4257 goto change; 4258 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4259 goto change; 4260 if (dl_policy(policy) && dl_param_changed(p, attr)) 4261 goto change; 4262 4263 p->sched_reset_on_fork = reset_on_fork; 4264 task_rq_unlock(rq, p, &rf); 4265 return 0; 4266 } 4267 change: 4268 4269 if (user) { 4270 #ifdef CONFIG_RT_GROUP_SCHED 4271 /* 4272 * Do not allow realtime tasks into groups that have no runtime 4273 * assigned. 4274 */ 4275 if (rt_bandwidth_enabled() && rt_policy(policy) && 4276 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4277 !task_group_is_autogroup(task_group(p))) { 4278 task_rq_unlock(rq, p, &rf); 4279 return -EPERM; 4280 } 4281 #endif 4282 #ifdef CONFIG_SMP 4283 if (dl_bandwidth_enabled() && dl_policy(policy) && 4284 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4285 cpumask_t *span = rq->rd->span; 4286 4287 /* 4288 * Don't allow tasks with an affinity mask smaller than 4289 * the entire root_domain to become SCHED_DEADLINE. We 4290 * will also fail if there's no bandwidth available. 4291 */ 4292 if (!cpumask_subset(span, &p->cpus_allowed) || 4293 rq->rd->dl_bw.bw == 0) { 4294 task_rq_unlock(rq, p, &rf); 4295 return -EPERM; 4296 } 4297 } 4298 #endif 4299 } 4300 4301 /* Re-check policy now with rq lock held: */ 4302 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4303 policy = oldpolicy = -1; 4304 task_rq_unlock(rq, p, &rf); 4305 goto recheck; 4306 } 4307 4308 /* 4309 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4310 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4311 * is available. 4312 */ 4313 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4314 task_rq_unlock(rq, p, &rf); 4315 return -EBUSY; 4316 } 4317 4318 p->sched_reset_on_fork = reset_on_fork; 4319 oldprio = p->prio; 4320 4321 if (pi) { 4322 /* 4323 * Take priority boosted tasks into account. If the new 4324 * effective priority is unchanged, we just store the new 4325 * normal parameters and do not touch the scheduler class and 4326 * the runqueue. This will be done when the task deboost 4327 * itself. 4328 */ 4329 new_effective_prio = rt_effective_prio(p, newprio); 4330 if (new_effective_prio == oldprio) 4331 queue_flags &= ~DEQUEUE_MOVE; 4332 } 4333 4334 queued = task_on_rq_queued(p); 4335 running = task_current(rq, p); 4336 if (queued) 4337 dequeue_task(rq, p, queue_flags); 4338 if (running) 4339 put_prev_task(rq, p); 4340 4341 prev_class = p->sched_class; 4342 __setscheduler(rq, p, attr, pi); 4343 4344 if (queued) { 4345 /* 4346 * We enqueue to tail when the priority of a task is 4347 * increased (user space view). 4348 */ 4349 if (oldprio < p->prio) 4350 queue_flags |= ENQUEUE_HEAD; 4351 4352 enqueue_task(rq, p, queue_flags); 4353 } 4354 if (running) 4355 set_curr_task(rq, p); 4356 4357 check_class_changed(rq, p, prev_class, oldprio); 4358 4359 /* Avoid rq from going away on us: */ 4360 preempt_disable(); 4361 task_rq_unlock(rq, p, &rf); 4362 4363 if (pi) 4364 rt_mutex_adjust_pi(p); 4365 4366 /* Run balance callbacks after we've adjusted the PI chain: */ 4367 balance_callback(rq); 4368 preempt_enable(); 4369 4370 return 0; 4371 } 4372 4373 static int _sched_setscheduler(struct task_struct *p, int policy, 4374 const struct sched_param *param, bool check) 4375 { 4376 struct sched_attr attr = { 4377 .sched_policy = policy, 4378 .sched_priority = param->sched_priority, 4379 .sched_nice = PRIO_TO_NICE(p->static_prio), 4380 }; 4381 4382 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4383 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4384 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4385 policy &= ~SCHED_RESET_ON_FORK; 4386 attr.sched_policy = policy; 4387 } 4388 4389 return __sched_setscheduler(p, &attr, check, true); 4390 } 4391 /** 4392 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4393 * @p: the task in question. 4394 * @policy: new policy. 4395 * @param: structure containing the new RT priority. 4396 * 4397 * Return: 0 on success. An error code otherwise. 4398 * 4399 * NOTE that the task may be already dead. 4400 */ 4401 int sched_setscheduler(struct task_struct *p, int policy, 4402 const struct sched_param *param) 4403 { 4404 return _sched_setscheduler(p, policy, param, true); 4405 } 4406 EXPORT_SYMBOL_GPL(sched_setscheduler); 4407 4408 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4409 { 4410 return __sched_setscheduler(p, attr, true, true); 4411 } 4412 EXPORT_SYMBOL_GPL(sched_setattr); 4413 4414 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4415 { 4416 return __sched_setscheduler(p, attr, false, true); 4417 } 4418 4419 /** 4420 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4421 * @p: the task in question. 4422 * @policy: new policy. 4423 * @param: structure containing the new RT priority. 4424 * 4425 * Just like sched_setscheduler, only don't bother checking if the 4426 * current context has permission. For example, this is needed in 4427 * stop_machine(): we create temporary high priority worker threads, 4428 * but our caller might not have that capability. 4429 * 4430 * Return: 0 on success. An error code otherwise. 4431 */ 4432 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4433 const struct sched_param *param) 4434 { 4435 return _sched_setscheduler(p, policy, param, false); 4436 } 4437 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4438 4439 static int 4440 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4441 { 4442 struct sched_param lparam; 4443 struct task_struct *p; 4444 int retval; 4445 4446 if (!param || pid < 0) 4447 return -EINVAL; 4448 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4449 return -EFAULT; 4450 4451 rcu_read_lock(); 4452 retval = -ESRCH; 4453 p = find_process_by_pid(pid); 4454 if (p != NULL) 4455 retval = sched_setscheduler(p, policy, &lparam); 4456 rcu_read_unlock(); 4457 4458 return retval; 4459 } 4460 4461 /* 4462 * Mimics kernel/events/core.c perf_copy_attr(). 4463 */ 4464 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4465 { 4466 u32 size; 4467 int ret; 4468 4469 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0)) 4470 return -EFAULT; 4471 4472 /* Zero the full structure, so that a short copy will be nice: */ 4473 memset(attr, 0, sizeof(*attr)); 4474 4475 ret = get_user(size, &uattr->size); 4476 if (ret) 4477 return ret; 4478 4479 /* Bail out on silly large: */ 4480 if (size > PAGE_SIZE) 4481 goto err_size; 4482 4483 /* ABI compatibility quirk: */ 4484 if (!size) 4485 size = SCHED_ATTR_SIZE_VER0; 4486 4487 if (size < SCHED_ATTR_SIZE_VER0) 4488 goto err_size; 4489 4490 /* 4491 * If we're handed a bigger struct than we know of, 4492 * ensure all the unknown bits are 0 - i.e. new 4493 * user-space does not rely on any kernel feature 4494 * extensions we dont know about yet. 4495 */ 4496 if (size > sizeof(*attr)) { 4497 unsigned char __user *addr; 4498 unsigned char __user *end; 4499 unsigned char val; 4500 4501 addr = (void __user *)uattr + sizeof(*attr); 4502 end = (void __user *)uattr + size; 4503 4504 for (; addr < end; addr++) { 4505 ret = get_user(val, addr); 4506 if (ret) 4507 return ret; 4508 if (val) 4509 goto err_size; 4510 } 4511 size = sizeof(*attr); 4512 } 4513 4514 ret = copy_from_user(attr, uattr, size); 4515 if (ret) 4516 return -EFAULT; 4517 4518 /* 4519 * XXX: Do we want to be lenient like existing syscalls; or do we want 4520 * to be strict and return an error on out-of-bounds values? 4521 */ 4522 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4523 4524 return 0; 4525 4526 err_size: 4527 put_user(sizeof(*attr), &uattr->size); 4528 return -E2BIG; 4529 } 4530 4531 /** 4532 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4533 * @pid: the pid in question. 4534 * @policy: new policy. 4535 * @param: structure containing the new RT priority. 4536 * 4537 * Return: 0 on success. An error code otherwise. 4538 */ 4539 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4540 { 4541 if (policy < 0) 4542 return -EINVAL; 4543 4544 return do_sched_setscheduler(pid, policy, param); 4545 } 4546 4547 /** 4548 * sys_sched_setparam - set/change the RT priority of a thread 4549 * @pid: the pid in question. 4550 * @param: structure containing the new RT priority. 4551 * 4552 * Return: 0 on success. An error code otherwise. 4553 */ 4554 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4555 { 4556 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4557 } 4558 4559 /** 4560 * sys_sched_setattr - same as above, but with extended sched_attr 4561 * @pid: the pid in question. 4562 * @uattr: structure containing the extended parameters. 4563 * @flags: for future extension. 4564 */ 4565 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4566 unsigned int, flags) 4567 { 4568 struct sched_attr attr; 4569 struct task_struct *p; 4570 int retval; 4571 4572 if (!uattr || pid < 0 || flags) 4573 return -EINVAL; 4574 4575 retval = sched_copy_attr(uattr, &attr); 4576 if (retval) 4577 return retval; 4578 4579 if ((int)attr.sched_policy < 0) 4580 return -EINVAL; 4581 4582 rcu_read_lock(); 4583 retval = -ESRCH; 4584 p = find_process_by_pid(pid); 4585 if (p != NULL) 4586 retval = sched_setattr(p, &attr); 4587 rcu_read_unlock(); 4588 4589 return retval; 4590 } 4591 4592 /** 4593 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4594 * @pid: the pid in question. 4595 * 4596 * Return: On success, the policy of the thread. Otherwise, a negative error 4597 * code. 4598 */ 4599 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4600 { 4601 struct task_struct *p; 4602 int retval; 4603 4604 if (pid < 0) 4605 return -EINVAL; 4606 4607 retval = -ESRCH; 4608 rcu_read_lock(); 4609 p = find_process_by_pid(pid); 4610 if (p) { 4611 retval = security_task_getscheduler(p); 4612 if (!retval) 4613 retval = p->policy 4614 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4615 } 4616 rcu_read_unlock(); 4617 return retval; 4618 } 4619 4620 /** 4621 * sys_sched_getparam - get the RT priority of a thread 4622 * @pid: the pid in question. 4623 * @param: structure containing the RT priority. 4624 * 4625 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4626 * code. 4627 */ 4628 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4629 { 4630 struct sched_param lp = { .sched_priority = 0 }; 4631 struct task_struct *p; 4632 int retval; 4633 4634 if (!param || pid < 0) 4635 return -EINVAL; 4636 4637 rcu_read_lock(); 4638 p = find_process_by_pid(pid); 4639 retval = -ESRCH; 4640 if (!p) 4641 goto out_unlock; 4642 4643 retval = security_task_getscheduler(p); 4644 if (retval) 4645 goto out_unlock; 4646 4647 if (task_has_rt_policy(p)) 4648 lp.sched_priority = p->rt_priority; 4649 rcu_read_unlock(); 4650 4651 /* 4652 * This one might sleep, we cannot do it with a spinlock held ... 4653 */ 4654 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4655 4656 return retval; 4657 4658 out_unlock: 4659 rcu_read_unlock(); 4660 return retval; 4661 } 4662 4663 static int sched_read_attr(struct sched_attr __user *uattr, 4664 struct sched_attr *attr, 4665 unsigned int usize) 4666 { 4667 int ret; 4668 4669 if (!access_ok(uattr, usize)) 4670 return -EFAULT; 4671 4672 /* 4673 * If we're handed a smaller struct than we know of, 4674 * ensure all the unknown bits are 0 - i.e. old 4675 * user-space does not get uncomplete information. 4676 */ 4677 if (usize < sizeof(*attr)) { 4678 unsigned char *addr; 4679 unsigned char *end; 4680 4681 addr = (void *)attr + usize; 4682 end = (void *)attr + sizeof(*attr); 4683 4684 for (; addr < end; addr++) { 4685 if (*addr) 4686 return -EFBIG; 4687 } 4688 4689 attr->size = usize; 4690 } 4691 4692 ret = copy_to_user(uattr, attr, attr->size); 4693 if (ret) 4694 return -EFAULT; 4695 4696 return 0; 4697 } 4698 4699 /** 4700 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4701 * @pid: the pid in question. 4702 * @uattr: structure containing the extended parameters. 4703 * @size: sizeof(attr) for fwd/bwd comp. 4704 * @flags: for future extension. 4705 */ 4706 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4707 unsigned int, size, unsigned int, flags) 4708 { 4709 struct sched_attr attr = { 4710 .size = sizeof(struct sched_attr), 4711 }; 4712 struct task_struct *p; 4713 int retval; 4714 4715 if (!uattr || pid < 0 || size > PAGE_SIZE || 4716 size < SCHED_ATTR_SIZE_VER0 || flags) 4717 return -EINVAL; 4718 4719 rcu_read_lock(); 4720 p = find_process_by_pid(pid); 4721 retval = -ESRCH; 4722 if (!p) 4723 goto out_unlock; 4724 4725 retval = security_task_getscheduler(p); 4726 if (retval) 4727 goto out_unlock; 4728 4729 attr.sched_policy = p->policy; 4730 if (p->sched_reset_on_fork) 4731 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4732 if (task_has_dl_policy(p)) 4733 __getparam_dl(p, &attr); 4734 else if (task_has_rt_policy(p)) 4735 attr.sched_priority = p->rt_priority; 4736 else 4737 attr.sched_nice = task_nice(p); 4738 4739 rcu_read_unlock(); 4740 4741 retval = sched_read_attr(uattr, &attr, size); 4742 return retval; 4743 4744 out_unlock: 4745 rcu_read_unlock(); 4746 return retval; 4747 } 4748 4749 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4750 { 4751 cpumask_var_t cpus_allowed, new_mask; 4752 struct task_struct *p; 4753 int retval; 4754 4755 rcu_read_lock(); 4756 4757 p = find_process_by_pid(pid); 4758 if (!p) { 4759 rcu_read_unlock(); 4760 return -ESRCH; 4761 } 4762 4763 /* Prevent p going away */ 4764 get_task_struct(p); 4765 rcu_read_unlock(); 4766 4767 if (p->flags & PF_NO_SETAFFINITY) { 4768 retval = -EINVAL; 4769 goto out_put_task; 4770 } 4771 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4772 retval = -ENOMEM; 4773 goto out_put_task; 4774 } 4775 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4776 retval = -ENOMEM; 4777 goto out_free_cpus_allowed; 4778 } 4779 retval = -EPERM; 4780 if (!check_same_owner(p)) { 4781 rcu_read_lock(); 4782 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4783 rcu_read_unlock(); 4784 goto out_free_new_mask; 4785 } 4786 rcu_read_unlock(); 4787 } 4788 4789 retval = security_task_setscheduler(p); 4790 if (retval) 4791 goto out_free_new_mask; 4792 4793 4794 cpuset_cpus_allowed(p, cpus_allowed); 4795 cpumask_and(new_mask, in_mask, cpus_allowed); 4796 4797 /* 4798 * Since bandwidth control happens on root_domain basis, 4799 * if admission test is enabled, we only admit -deadline 4800 * tasks allowed to run on all the CPUs in the task's 4801 * root_domain. 4802 */ 4803 #ifdef CONFIG_SMP 4804 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4805 rcu_read_lock(); 4806 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4807 retval = -EBUSY; 4808 rcu_read_unlock(); 4809 goto out_free_new_mask; 4810 } 4811 rcu_read_unlock(); 4812 } 4813 #endif 4814 again: 4815 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4816 4817 if (!retval) { 4818 cpuset_cpus_allowed(p, cpus_allowed); 4819 if (!cpumask_subset(new_mask, cpus_allowed)) { 4820 /* 4821 * We must have raced with a concurrent cpuset 4822 * update. Just reset the cpus_allowed to the 4823 * cpuset's cpus_allowed 4824 */ 4825 cpumask_copy(new_mask, cpus_allowed); 4826 goto again; 4827 } 4828 } 4829 out_free_new_mask: 4830 free_cpumask_var(new_mask); 4831 out_free_cpus_allowed: 4832 free_cpumask_var(cpus_allowed); 4833 out_put_task: 4834 put_task_struct(p); 4835 return retval; 4836 } 4837 4838 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4839 struct cpumask *new_mask) 4840 { 4841 if (len < cpumask_size()) 4842 cpumask_clear(new_mask); 4843 else if (len > cpumask_size()) 4844 len = cpumask_size(); 4845 4846 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4847 } 4848 4849 /** 4850 * sys_sched_setaffinity - set the CPU affinity of a process 4851 * @pid: pid of the process 4852 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4853 * @user_mask_ptr: user-space pointer to the new CPU mask 4854 * 4855 * Return: 0 on success. An error code otherwise. 4856 */ 4857 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4858 unsigned long __user *, user_mask_ptr) 4859 { 4860 cpumask_var_t new_mask; 4861 int retval; 4862 4863 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4864 return -ENOMEM; 4865 4866 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4867 if (retval == 0) 4868 retval = sched_setaffinity(pid, new_mask); 4869 free_cpumask_var(new_mask); 4870 return retval; 4871 } 4872 4873 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4874 { 4875 struct task_struct *p; 4876 unsigned long flags; 4877 int retval; 4878 4879 rcu_read_lock(); 4880 4881 retval = -ESRCH; 4882 p = find_process_by_pid(pid); 4883 if (!p) 4884 goto out_unlock; 4885 4886 retval = security_task_getscheduler(p); 4887 if (retval) 4888 goto out_unlock; 4889 4890 raw_spin_lock_irqsave(&p->pi_lock, flags); 4891 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4892 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4893 4894 out_unlock: 4895 rcu_read_unlock(); 4896 4897 return retval; 4898 } 4899 4900 /** 4901 * sys_sched_getaffinity - get the CPU affinity of a process 4902 * @pid: pid of the process 4903 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4904 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4905 * 4906 * Return: size of CPU mask copied to user_mask_ptr on success. An 4907 * error code otherwise. 4908 */ 4909 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4910 unsigned long __user *, user_mask_ptr) 4911 { 4912 int ret; 4913 cpumask_var_t mask; 4914 4915 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4916 return -EINVAL; 4917 if (len & (sizeof(unsigned long)-1)) 4918 return -EINVAL; 4919 4920 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4921 return -ENOMEM; 4922 4923 ret = sched_getaffinity(pid, mask); 4924 if (ret == 0) { 4925 unsigned int retlen = min(len, cpumask_size()); 4926 4927 if (copy_to_user(user_mask_ptr, mask, retlen)) 4928 ret = -EFAULT; 4929 else 4930 ret = retlen; 4931 } 4932 free_cpumask_var(mask); 4933 4934 return ret; 4935 } 4936 4937 /** 4938 * sys_sched_yield - yield the current processor to other threads. 4939 * 4940 * This function yields the current CPU to other tasks. If there are no 4941 * other threads running on this CPU then this function will return. 4942 * 4943 * Return: 0. 4944 */ 4945 static void do_sched_yield(void) 4946 { 4947 struct rq_flags rf; 4948 struct rq *rq; 4949 4950 rq = this_rq_lock_irq(&rf); 4951 4952 schedstat_inc(rq->yld_count); 4953 current->sched_class->yield_task(rq); 4954 4955 /* 4956 * Since we are going to call schedule() anyway, there's 4957 * no need to preempt or enable interrupts: 4958 */ 4959 preempt_disable(); 4960 rq_unlock(rq, &rf); 4961 sched_preempt_enable_no_resched(); 4962 4963 schedule(); 4964 } 4965 4966 SYSCALL_DEFINE0(sched_yield) 4967 { 4968 do_sched_yield(); 4969 return 0; 4970 } 4971 4972 #ifndef CONFIG_PREEMPT 4973 int __sched _cond_resched(void) 4974 { 4975 if (should_resched(0)) { 4976 preempt_schedule_common(); 4977 return 1; 4978 } 4979 rcu_all_qs(); 4980 return 0; 4981 } 4982 EXPORT_SYMBOL(_cond_resched); 4983 #endif 4984 4985 /* 4986 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4987 * call schedule, and on return reacquire the lock. 4988 * 4989 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4990 * operations here to prevent schedule() from being called twice (once via 4991 * spin_unlock(), once by hand). 4992 */ 4993 int __cond_resched_lock(spinlock_t *lock) 4994 { 4995 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4996 int ret = 0; 4997 4998 lockdep_assert_held(lock); 4999 5000 if (spin_needbreak(lock) || resched) { 5001 spin_unlock(lock); 5002 if (resched) 5003 preempt_schedule_common(); 5004 else 5005 cpu_relax(); 5006 ret = 1; 5007 spin_lock(lock); 5008 } 5009 return ret; 5010 } 5011 EXPORT_SYMBOL(__cond_resched_lock); 5012 5013 /** 5014 * yield - yield the current processor to other threads. 5015 * 5016 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5017 * 5018 * The scheduler is at all times free to pick the calling task as the most 5019 * eligible task to run, if removing the yield() call from your code breaks 5020 * it, its already broken. 5021 * 5022 * Typical broken usage is: 5023 * 5024 * while (!event) 5025 * yield(); 5026 * 5027 * where one assumes that yield() will let 'the other' process run that will 5028 * make event true. If the current task is a SCHED_FIFO task that will never 5029 * happen. Never use yield() as a progress guarantee!! 5030 * 5031 * If you want to use yield() to wait for something, use wait_event(). 5032 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5033 * If you still want to use yield(), do not! 5034 */ 5035 void __sched yield(void) 5036 { 5037 set_current_state(TASK_RUNNING); 5038 do_sched_yield(); 5039 } 5040 EXPORT_SYMBOL(yield); 5041 5042 /** 5043 * yield_to - yield the current processor to another thread in 5044 * your thread group, or accelerate that thread toward the 5045 * processor it's on. 5046 * @p: target task 5047 * @preempt: whether task preemption is allowed or not 5048 * 5049 * It's the caller's job to ensure that the target task struct 5050 * can't go away on us before we can do any checks. 5051 * 5052 * Return: 5053 * true (>0) if we indeed boosted the target task. 5054 * false (0) if we failed to boost the target. 5055 * -ESRCH if there's no task to yield to. 5056 */ 5057 int __sched yield_to(struct task_struct *p, bool preempt) 5058 { 5059 struct task_struct *curr = current; 5060 struct rq *rq, *p_rq; 5061 unsigned long flags; 5062 int yielded = 0; 5063 5064 local_irq_save(flags); 5065 rq = this_rq(); 5066 5067 again: 5068 p_rq = task_rq(p); 5069 /* 5070 * If we're the only runnable task on the rq and target rq also 5071 * has only one task, there's absolutely no point in yielding. 5072 */ 5073 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5074 yielded = -ESRCH; 5075 goto out_irq; 5076 } 5077 5078 double_rq_lock(rq, p_rq); 5079 if (task_rq(p) != p_rq) { 5080 double_rq_unlock(rq, p_rq); 5081 goto again; 5082 } 5083 5084 if (!curr->sched_class->yield_to_task) 5085 goto out_unlock; 5086 5087 if (curr->sched_class != p->sched_class) 5088 goto out_unlock; 5089 5090 if (task_running(p_rq, p) || p->state) 5091 goto out_unlock; 5092 5093 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5094 if (yielded) { 5095 schedstat_inc(rq->yld_count); 5096 /* 5097 * Make p's CPU reschedule; pick_next_entity takes care of 5098 * fairness. 5099 */ 5100 if (preempt && rq != p_rq) 5101 resched_curr(p_rq); 5102 } 5103 5104 out_unlock: 5105 double_rq_unlock(rq, p_rq); 5106 out_irq: 5107 local_irq_restore(flags); 5108 5109 if (yielded > 0) 5110 schedule(); 5111 5112 return yielded; 5113 } 5114 EXPORT_SYMBOL_GPL(yield_to); 5115 5116 int io_schedule_prepare(void) 5117 { 5118 int old_iowait = current->in_iowait; 5119 5120 current->in_iowait = 1; 5121 blk_schedule_flush_plug(current); 5122 5123 return old_iowait; 5124 } 5125 5126 void io_schedule_finish(int token) 5127 { 5128 current->in_iowait = token; 5129 } 5130 5131 /* 5132 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5133 * that process accounting knows that this is a task in IO wait state. 5134 */ 5135 long __sched io_schedule_timeout(long timeout) 5136 { 5137 int token; 5138 long ret; 5139 5140 token = io_schedule_prepare(); 5141 ret = schedule_timeout(timeout); 5142 io_schedule_finish(token); 5143 5144 return ret; 5145 } 5146 EXPORT_SYMBOL(io_schedule_timeout); 5147 5148 void io_schedule(void) 5149 { 5150 int token; 5151 5152 token = io_schedule_prepare(); 5153 schedule(); 5154 io_schedule_finish(token); 5155 } 5156 EXPORT_SYMBOL(io_schedule); 5157 5158 /** 5159 * sys_sched_get_priority_max - return maximum RT priority. 5160 * @policy: scheduling class. 5161 * 5162 * Return: On success, this syscall returns the maximum 5163 * rt_priority that can be used by a given scheduling class. 5164 * On failure, a negative error code is returned. 5165 */ 5166 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5167 { 5168 int ret = -EINVAL; 5169 5170 switch (policy) { 5171 case SCHED_FIFO: 5172 case SCHED_RR: 5173 ret = MAX_USER_RT_PRIO-1; 5174 break; 5175 case SCHED_DEADLINE: 5176 case SCHED_NORMAL: 5177 case SCHED_BATCH: 5178 case SCHED_IDLE: 5179 ret = 0; 5180 break; 5181 } 5182 return ret; 5183 } 5184 5185 /** 5186 * sys_sched_get_priority_min - return minimum RT priority. 5187 * @policy: scheduling class. 5188 * 5189 * Return: On success, this syscall returns the minimum 5190 * rt_priority that can be used by a given scheduling class. 5191 * On failure, a negative error code is returned. 5192 */ 5193 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5194 { 5195 int ret = -EINVAL; 5196 5197 switch (policy) { 5198 case SCHED_FIFO: 5199 case SCHED_RR: 5200 ret = 1; 5201 break; 5202 case SCHED_DEADLINE: 5203 case SCHED_NORMAL: 5204 case SCHED_BATCH: 5205 case SCHED_IDLE: 5206 ret = 0; 5207 } 5208 return ret; 5209 } 5210 5211 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5212 { 5213 struct task_struct *p; 5214 unsigned int time_slice; 5215 struct rq_flags rf; 5216 struct rq *rq; 5217 int retval; 5218 5219 if (pid < 0) 5220 return -EINVAL; 5221 5222 retval = -ESRCH; 5223 rcu_read_lock(); 5224 p = find_process_by_pid(pid); 5225 if (!p) 5226 goto out_unlock; 5227 5228 retval = security_task_getscheduler(p); 5229 if (retval) 5230 goto out_unlock; 5231 5232 rq = task_rq_lock(p, &rf); 5233 time_slice = 0; 5234 if (p->sched_class->get_rr_interval) 5235 time_slice = p->sched_class->get_rr_interval(rq, p); 5236 task_rq_unlock(rq, p, &rf); 5237 5238 rcu_read_unlock(); 5239 jiffies_to_timespec64(time_slice, t); 5240 return 0; 5241 5242 out_unlock: 5243 rcu_read_unlock(); 5244 return retval; 5245 } 5246 5247 /** 5248 * sys_sched_rr_get_interval - return the default timeslice of a process. 5249 * @pid: pid of the process. 5250 * @interval: userspace pointer to the timeslice value. 5251 * 5252 * this syscall writes the default timeslice value of a given process 5253 * into the user-space timespec buffer. A value of '0' means infinity. 5254 * 5255 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5256 * an error code. 5257 */ 5258 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5259 struct __kernel_timespec __user *, interval) 5260 { 5261 struct timespec64 t; 5262 int retval = sched_rr_get_interval(pid, &t); 5263 5264 if (retval == 0) 5265 retval = put_timespec64(&t, interval); 5266 5267 return retval; 5268 } 5269 5270 #ifdef CONFIG_COMPAT_32BIT_TIME 5271 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5272 compat_pid_t, pid, 5273 struct old_timespec32 __user *, interval) 5274 { 5275 struct timespec64 t; 5276 int retval = sched_rr_get_interval(pid, &t); 5277 5278 if (retval == 0) 5279 retval = put_old_timespec32(&t, interval); 5280 return retval; 5281 } 5282 #endif 5283 5284 void sched_show_task(struct task_struct *p) 5285 { 5286 unsigned long free = 0; 5287 int ppid; 5288 5289 if (!try_get_task_stack(p)) 5290 return; 5291 5292 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5293 5294 if (p->state == TASK_RUNNING) 5295 printk(KERN_CONT " running task "); 5296 #ifdef CONFIG_DEBUG_STACK_USAGE 5297 free = stack_not_used(p); 5298 #endif 5299 ppid = 0; 5300 rcu_read_lock(); 5301 if (pid_alive(p)) 5302 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5303 rcu_read_unlock(); 5304 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5305 task_pid_nr(p), ppid, 5306 (unsigned long)task_thread_info(p)->flags); 5307 5308 print_worker_info(KERN_INFO, p); 5309 show_stack(p, NULL); 5310 put_task_stack(p); 5311 } 5312 EXPORT_SYMBOL_GPL(sched_show_task); 5313 5314 static inline bool 5315 state_filter_match(unsigned long state_filter, struct task_struct *p) 5316 { 5317 /* no filter, everything matches */ 5318 if (!state_filter) 5319 return true; 5320 5321 /* filter, but doesn't match */ 5322 if (!(p->state & state_filter)) 5323 return false; 5324 5325 /* 5326 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5327 * TASK_KILLABLE). 5328 */ 5329 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5330 return false; 5331 5332 return true; 5333 } 5334 5335 5336 void show_state_filter(unsigned long state_filter) 5337 { 5338 struct task_struct *g, *p; 5339 5340 #if BITS_PER_LONG == 32 5341 printk(KERN_INFO 5342 " task PC stack pid father\n"); 5343 #else 5344 printk(KERN_INFO 5345 " task PC stack pid father\n"); 5346 #endif 5347 rcu_read_lock(); 5348 for_each_process_thread(g, p) { 5349 /* 5350 * reset the NMI-timeout, listing all files on a slow 5351 * console might take a lot of time: 5352 * Also, reset softlockup watchdogs on all CPUs, because 5353 * another CPU might be blocked waiting for us to process 5354 * an IPI. 5355 */ 5356 touch_nmi_watchdog(); 5357 touch_all_softlockup_watchdogs(); 5358 if (state_filter_match(state_filter, p)) 5359 sched_show_task(p); 5360 } 5361 5362 #ifdef CONFIG_SCHED_DEBUG 5363 if (!state_filter) 5364 sysrq_sched_debug_show(); 5365 #endif 5366 rcu_read_unlock(); 5367 /* 5368 * Only show locks if all tasks are dumped: 5369 */ 5370 if (!state_filter) 5371 debug_show_all_locks(); 5372 } 5373 5374 /** 5375 * init_idle - set up an idle thread for a given CPU 5376 * @idle: task in question 5377 * @cpu: CPU the idle task belongs to 5378 * 5379 * NOTE: this function does not set the idle thread's NEED_RESCHED 5380 * flag, to make booting more robust. 5381 */ 5382 void init_idle(struct task_struct *idle, int cpu) 5383 { 5384 struct rq *rq = cpu_rq(cpu); 5385 unsigned long flags; 5386 5387 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5388 raw_spin_lock(&rq->lock); 5389 5390 __sched_fork(0, idle); 5391 idle->state = TASK_RUNNING; 5392 idle->se.exec_start = sched_clock(); 5393 idle->flags |= PF_IDLE; 5394 5395 kasan_unpoison_task_stack(idle); 5396 5397 #ifdef CONFIG_SMP 5398 /* 5399 * Its possible that init_idle() gets called multiple times on a task, 5400 * in that case do_set_cpus_allowed() will not do the right thing. 5401 * 5402 * And since this is boot we can forgo the serialization. 5403 */ 5404 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5405 #endif 5406 /* 5407 * We're having a chicken and egg problem, even though we are 5408 * holding rq->lock, the CPU isn't yet set to this CPU so the 5409 * lockdep check in task_group() will fail. 5410 * 5411 * Similar case to sched_fork(). / Alternatively we could 5412 * use task_rq_lock() here and obtain the other rq->lock. 5413 * 5414 * Silence PROVE_RCU 5415 */ 5416 rcu_read_lock(); 5417 __set_task_cpu(idle, cpu); 5418 rcu_read_unlock(); 5419 5420 rq->curr = rq->idle = idle; 5421 idle->on_rq = TASK_ON_RQ_QUEUED; 5422 #ifdef CONFIG_SMP 5423 idle->on_cpu = 1; 5424 #endif 5425 raw_spin_unlock(&rq->lock); 5426 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5427 5428 /* Set the preempt count _outside_ the spinlocks! */ 5429 init_idle_preempt_count(idle, cpu); 5430 5431 /* 5432 * The idle tasks have their own, simple scheduling class: 5433 */ 5434 idle->sched_class = &idle_sched_class; 5435 ftrace_graph_init_idle_task(idle, cpu); 5436 vtime_init_idle(idle, cpu); 5437 #ifdef CONFIG_SMP 5438 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5439 #endif 5440 } 5441 5442 #ifdef CONFIG_SMP 5443 5444 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5445 const struct cpumask *trial) 5446 { 5447 int ret = 1; 5448 5449 if (!cpumask_weight(cur)) 5450 return ret; 5451 5452 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5453 5454 return ret; 5455 } 5456 5457 int task_can_attach(struct task_struct *p, 5458 const struct cpumask *cs_cpus_allowed) 5459 { 5460 int ret = 0; 5461 5462 /* 5463 * Kthreads which disallow setaffinity shouldn't be moved 5464 * to a new cpuset; we don't want to change their CPU 5465 * affinity and isolating such threads by their set of 5466 * allowed nodes is unnecessary. Thus, cpusets are not 5467 * applicable for such threads. This prevents checking for 5468 * success of set_cpus_allowed_ptr() on all attached tasks 5469 * before cpus_allowed may be changed. 5470 */ 5471 if (p->flags & PF_NO_SETAFFINITY) { 5472 ret = -EINVAL; 5473 goto out; 5474 } 5475 5476 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5477 cs_cpus_allowed)) 5478 ret = dl_task_can_attach(p, cs_cpus_allowed); 5479 5480 out: 5481 return ret; 5482 } 5483 5484 bool sched_smp_initialized __read_mostly; 5485 5486 #ifdef CONFIG_NUMA_BALANCING 5487 /* Migrate current task p to target_cpu */ 5488 int migrate_task_to(struct task_struct *p, int target_cpu) 5489 { 5490 struct migration_arg arg = { p, target_cpu }; 5491 int curr_cpu = task_cpu(p); 5492 5493 if (curr_cpu == target_cpu) 5494 return 0; 5495 5496 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5497 return -EINVAL; 5498 5499 /* TODO: This is not properly updating schedstats */ 5500 5501 trace_sched_move_numa(p, curr_cpu, target_cpu); 5502 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5503 } 5504 5505 /* 5506 * Requeue a task on a given node and accurately track the number of NUMA 5507 * tasks on the runqueues 5508 */ 5509 void sched_setnuma(struct task_struct *p, int nid) 5510 { 5511 bool queued, running; 5512 struct rq_flags rf; 5513 struct rq *rq; 5514 5515 rq = task_rq_lock(p, &rf); 5516 queued = task_on_rq_queued(p); 5517 running = task_current(rq, p); 5518 5519 if (queued) 5520 dequeue_task(rq, p, DEQUEUE_SAVE); 5521 if (running) 5522 put_prev_task(rq, p); 5523 5524 p->numa_preferred_nid = nid; 5525 5526 if (queued) 5527 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5528 if (running) 5529 set_curr_task(rq, p); 5530 task_rq_unlock(rq, p, &rf); 5531 } 5532 #endif /* CONFIG_NUMA_BALANCING */ 5533 5534 #ifdef CONFIG_HOTPLUG_CPU 5535 /* 5536 * Ensure that the idle task is using init_mm right before its CPU goes 5537 * offline. 5538 */ 5539 void idle_task_exit(void) 5540 { 5541 struct mm_struct *mm = current->active_mm; 5542 5543 BUG_ON(cpu_online(smp_processor_id())); 5544 5545 if (mm != &init_mm) { 5546 switch_mm(mm, &init_mm, current); 5547 current->active_mm = &init_mm; 5548 finish_arch_post_lock_switch(); 5549 } 5550 mmdrop(mm); 5551 } 5552 5553 /* 5554 * Since this CPU is going 'away' for a while, fold any nr_active delta 5555 * we might have. Assumes we're called after migrate_tasks() so that the 5556 * nr_active count is stable. We need to take the teardown thread which 5557 * is calling this into account, so we hand in adjust = 1 to the load 5558 * calculation. 5559 * 5560 * Also see the comment "Global load-average calculations". 5561 */ 5562 static void calc_load_migrate(struct rq *rq) 5563 { 5564 long delta = calc_load_fold_active(rq, 1); 5565 if (delta) 5566 atomic_long_add(delta, &calc_load_tasks); 5567 } 5568 5569 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5570 { 5571 } 5572 5573 static const struct sched_class fake_sched_class = { 5574 .put_prev_task = put_prev_task_fake, 5575 }; 5576 5577 static struct task_struct fake_task = { 5578 /* 5579 * Avoid pull_{rt,dl}_task() 5580 */ 5581 .prio = MAX_PRIO + 1, 5582 .sched_class = &fake_sched_class, 5583 }; 5584 5585 /* 5586 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5587 * try_to_wake_up()->select_task_rq(). 5588 * 5589 * Called with rq->lock held even though we'er in stop_machine() and 5590 * there's no concurrency possible, we hold the required locks anyway 5591 * because of lock validation efforts. 5592 */ 5593 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5594 { 5595 struct rq *rq = dead_rq; 5596 struct task_struct *next, *stop = rq->stop; 5597 struct rq_flags orf = *rf; 5598 int dest_cpu; 5599 5600 /* 5601 * Fudge the rq selection such that the below task selection loop 5602 * doesn't get stuck on the currently eligible stop task. 5603 * 5604 * We're currently inside stop_machine() and the rq is either stuck 5605 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5606 * either way we should never end up calling schedule() until we're 5607 * done here. 5608 */ 5609 rq->stop = NULL; 5610 5611 /* 5612 * put_prev_task() and pick_next_task() sched 5613 * class method both need to have an up-to-date 5614 * value of rq->clock[_task] 5615 */ 5616 update_rq_clock(rq); 5617 5618 for (;;) { 5619 /* 5620 * There's this thread running, bail when that's the only 5621 * remaining thread: 5622 */ 5623 if (rq->nr_running == 1) 5624 break; 5625 5626 /* 5627 * pick_next_task() assumes pinned rq->lock: 5628 */ 5629 next = pick_next_task(rq, &fake_task, rf); 5630 BUG_ON(!next); 5631 put_prev_task(rq, next); 5632 5633 /* 5634 * Rules for changing task_struct::cpus_allowed are holding 5635 * both pi_lock and rq->lock, such that holding either 5636 * stabilizes the mask. 5637 * 5638 * Drop rq->lock is not quite as disastrous as it usually is 5639 * because !cpu_active at this point, which means load-balance 5640 * will not interfere. Also, stop-machine. 5641 */ 5642 rq_unlock(rq, rf); 5643 raw_spin_lock(&next->pi_lock); 5644 rq_relock(rq, rf); 5645 5646 /* 5647 * Since we're inside stop-machine, _nothing_ should have 5648 * changed the task, WARN if weird stuff happened, because in 5649 * that case the above rq->lock drop is a fail too. 5650 */ 5651 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5652 raw_spin_unlock(&next->pi_lock); 5653 continue; 5654 } 5655 5656 /* Find suitable destination for @next, with force if needed. */ 5657 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5658 rq = __migrate_task(rq, rf, next, dest_cpu); 5659 if (rq != dead_rq) { 5660 rq_unlock(rq, rf); 5661 rq = dead_rq; 5662 *rf = orf; 5663 rq_relock(rq, rf); 5664 } 5665 raw_spin_unlock(&next->pi_lock); 5666 } 5667 5668 rq->stop = stop; 5669 } 5670 #endif /* CONFIG_HOTPLUG_CPU */ 5671 5672 void set_rq_online(struct rq *rq) 5673 { 5674 if (!rq->online) { 5675 const struct sched_class *class; 5676 5677 cpumask_set_cpu(rq->cpu, rq->rd->online); 5678 rq->online = 1; 5679 5680 for_each_class(class) { 5681 if (class->rq_online) 5682 class->rq_online(rq); 5683 } 5684 } 5685 } 5686 5687 void set_rq_offline(struct rq *rq) 5688 { 5689 if (rq->online) { 5690 const struct sched_class *class; 5691 5692 for_each_class(class) { 5693 if (class->rq_offline) 5694 class->rq_offline(rq); 5695 } 5696 5697 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5698 rq->online = 0; 5699 } 5700 } 5701 5702 /* 5703 * used to mark begin/end of suspend/resume: 5704 */ 5705 static int num_cpus_frozen; 5706 5707 /* 5708 * Update cpusets according to cpu_active mask. If cpusets are 5709 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5710 * around partition_sched_domains(). 5711 * 5712 * If we come here as part of a suspend/resume, don't touch cpusets because we 5713 * want to restore it back to its original state upon resume anyway. 5714 */ 5715 static void cpuset_cpu_active(void) 5716 { 5717 if (cpuhp_tasks_frozen) { 5718 /* 5719 * num_cpus_frozen tracks how many CPUs are involved in suspend 5720 * resume sequence. As long as this is not the last online 5721 * operation in the resume sequence, just build a single sched 5722 * domain, ignoring cpusets. 5723 */ 5724 partition_sched_domains(1, NULL, NULL); 5725 if (--num_cpus_frozen) 5726 return; 5727 /* 5728 * This is the last CPU online operation. So fall through and 5729 * restore the original sched domains by considering the 5730 * cpuset configurations. 5731 */ 5732 cpuset_force_rebuild(); 5733 } 5734 cpuset_update_active_cpus(); 5735 } 5736 5737 static int cpuset_cpu_inactive(unsigned int cpu) 5738 { 5739 if (!cpuhp_tasks_frozen) { 5740 if (dl_cpu_busy(cpu)) 5741 return -EBUSY; 5742 cpuset_update_active_cpus(); 5743 } else { 5744 num_cpus_frozen++; 5745 partition_sched_domains(1, NULL, NULL); 5746 } 5747 return 0; 5748 } 5749 5750 int sched_cpu_activate(unsigned int cpu) 5751 { 5752 struct rq *rq = cpu_rq(cpu); 5753 struct rq_flags rf; 5754 5755 #ifdef CONFIG_SCHED_SMT 5756 /* 5757 * When going up, increment the number of cores with SMT present. 5758 */ 5759 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 5760 static_branch_inc_cpuslocked(&sched_smt_present); 5761 #endif 5762 set_cpu_active(cpu, true); 5763 5764 if (sched_smp_initialized) { 5765 sched_domains_numa_masks_set(cpu); 5766 cpuset_cpu_active(); 5767 } 5768 5769 /* 5770 * Put the rq online, if not already. This happens: 5771 * 5772 * 1) In the early boot process, because we build the real domains 5773 * after all CPUs have been brought up. 5774 * 5775 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5776 * domains. 5777 */ 5778 rq_lock_irqsave(rq, &rf); 5779 if (rq->rd) { 5780 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5781 set_rq_online(rq); 5782 } 5783 rq_unlock_irqrestore(rq, &rf); 5784 5785 update_max_interval(); 5786 5787 return 0; 5788 } 5789 5790 int sched_cpu_deactivate(unsigned int cpu) 5791 { 5792 int ret; 5793 5794 set_cpu_active(cpu, false); 5795 /* 5796 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5797 * users of this state to go away such that all new such users will 5798 * observe it. 5799 * 5800 * Do sync before park smpboot threads to take care the rcu boost case. 5801 */ 5802 synchronize_rcu(); 5803 5804 #ifdef CONFIG_SCHED_SMT 5805 /* 5806 * When going down, decrement the number of cores with SMT present. 5807 */ 5808 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 5809 static_branch_dec_cpuslocked(&sched_smt_present); 5810 #endif 5811 5812 if (!sched_smp_initialized) 5813 return 0; 5814 5815 ret = cpuset_cpu_inactive(cpu); 5816 if (ret) { 5817 set_cpu_active(cpu, true); 5818 return ret; 5819 } 5820 sched_domains_numa_masks_clear(cpu); 5821 return 0; 5822 } 5823 5824 static void sched_rq_cpu_starting(unsigned int cpu) 5825 { 5826 struct rq *rq = cpu_rq(cpu); 5827 5828 rq->calc_load_update = calc_load_update; 5829 update_max_interval(); 5830 } 5831 5832 int sched_cpu_starting(unsigned int cpu) 5833 { 5834 sched_rq_cpu_starting(cpu); 5835 sched_tick_start(cpu); 5836 return 0; 5837 } 5838 5839 #ifdef CONFIG_HOTPLUG_CPU 5840 int sched_cpu_dying(unsigned int cpu) 5841 { 5842 struct rq *rq = cpu_rq(cpu); 5843 struct rq_flags rf; 5844 5845 /* Handle pending wakeups and then migrate everything off */ 5846 sched_ttwu_pending(); 5847 sched_tick_stop(cpu); 5848 5849 rq_lock_irqsave(rq, &rf); 5850 if (rq->rd) { 5851 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5852 set_rq_offline(rq); 5853 } 5854 migrate_tasks(rq, &rf); 5855 BUG_ON(rq->nr_running != 1); 5856 rq_unlock_irqrestore(rq, &rf); 5857 5858 calc_load_migrate(rq); 5859 update_max_interval(); 5860 nohz_balance_exit_idle(rq); 5861 hrtick_clear(rq); 5862 return 0; 5863 } 5864 #endif 5865 5866 void __init sched_init_smp(void) 5867 { 5868 sched_init_numa(); 5869 5870 /* 5871 * There's no userspace yet to cause hotplug operations; hence all the 5872 * CPU masks are stable and all blatant races in the below code cannot 5873 * happen. The hotplug lock is nevertheless taken to satisfy lockdep, 5874 * but there won't be any contention on it. 5875 */ 5876 cpus_read_lock(); 5877 mutex_lock(&sched_domains_mutex); 5878 sched_init_domains(cpu_active_mask); 5879 mutex_unlock(&sched_domains_mutex); 5880 cpus_read_unlock(); 5881 5882 /* Move init over to a non-isolated CPU */ 5883 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5884 BUG(); 5885 sched_init_granularity(); 5886 5887 init_sched_rt_class(); 5888 init_sched_dl_class(); 5889 5890 sched_smp_initialized = true; 5891 } 5892 5893 static int __init migration_init(void) 5894 { 5895 sched_rq_cpu_starting(smp_processor_id()); 5896 return 0; 5897 } 5898 early_initcall(migration_init); 5899 5900 #else 5901 void __init sched_init_smp(void) 5902 { 5903 sched_init_granularity(); 5904 } 5905 #endif /* CONFIG_SMP */ 5906 5907 int in_sched_functions(unsigned long addr) 5908 { 5909 return in_lock_functions(addr) || 5910 (addr >= (unsigned long)__sched_text_start 5911 && addr < (unsigned long)__sched_text_end); 5912 } 5913 5914 #ifdef CONFIG_CGROUP_SCHED 5915 /* 5916 * Default task group. 5917 * Every task in system belongs to this group at bootup. 5918 */ 5919 struct task_group root_task_group; 5920 LIST_HEAD(task_groups); 5921 5922 /* Cacheline aligned slab cache for task_group */ 5923 static struct kmem_cache *task_group_cache __read_mostly; 5924 #endif 5925 5926 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5927 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5928 5929 void __init sched_init(void) 5930 { 5931 int i, j; 5932 unsigned long alloc_size = 0, ptr; 5933 5934 wait_bit_init(); 5935 5936 #ifdef CONFIG_FAIR_GROUP_SCHED 5937 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5938 #endif 5939 #ifdef CONFIG_RT_GROUP_SCHED 5940 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5941 #endif 5942 if (alloc_size) { 5943 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5944 5945 #ifdef CONFIG_FAIR_GROUP_SCHED 5946 root_task_group.se = (struct sched_entity **)ptr; 5947 ptr += nr_cpu_ids * sizeof(void **); 5948 5949 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5950 ptr += nr_cpu_ids * sizeof(void **); 5951 5952 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5953 #ifdef CONFIG_RT_GROUP_SCHED 5954 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5955 ptr += nr_cpu_ids * sizeof(void **); 5956 5957 root_task_group.rt_rq = (struct rt_rq **)ptr; 5958 ptr += nr_cpu_ids * sizeof(void **); 5959 5960 #endif /* CONFIG_RT_GROUP_SCHED */ 5961 } 5962 #ifdef CONFIG_CPUMASK_OFFSTACK 5963 for_each_possible_cpu(i) { 5964 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5965 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5966 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5967 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5968 } 5969 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5970 5971 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5972 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5973 5974 #ifdef CONFIG_SMP 5975 init_defrootdomain(); 5976 #endif 5977 5978 #ifdef CONFIG_RT_GROUP_SCHED 5979 init_rt_bandwidth(&root_task_group.rt_bandwidth, 5980 global_rt_period(), global_rt_runtime()); 5981 #endif /* CONFIG_RT_GROUP_SCHED */ 5982 5983 #ifdef CONFIG_CGROUP_SCHED 5984 task_group_cache = KMEM_CACHE(task_group, 0); 5985 5986 list_add(&root_task_group.list, &task_groups); 5987 INIT_LIST_HEAD(&root_task_group.children); 5988 INIT_LIST_HEAD(&root_task_group.siblings); 5989 autogroup_init(&init_task); 5990 #endif /* CONFIG_CGROUP_SCHED */ 5991 5992 for_each_possible_cpu(i) { 5993 struct rq *rq; 5994 5995 rq = cpu_rq(i); 5996 raw_spin_lock_init(&rq->lock); 5997 rq->nr_running = 0; 5998 rq->calc_load_active = 0; 5999 rq->calc_load_update = jiffies + LOAD_FREQ; 6000 init_cfs_rq(&rq->cfs); 6001 init_rt_rq(&rq->rt); 6002 init_dl_rq(&rq->dl); 6003 #ifdef CONFIG_FAIR_GROUP_SCHED 6004 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6005 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6006 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6007 /* 6008 * How much CPU bandwidth does root_task_group get? 6009 * 6010 * In case of task-groups formed thr' the cgroup filesystem, it 6011 * gets 100% of the CPU resources in the system. This overall 6012 * system CPU resource is divided among the tasks of 6013 * root_task_group and its child task-groups in a fair manner, 6014 * based on each entity's (task or task-group's) weight 6015 * (se->load.weight). 6016 * 6017 * In other words, if root_task_group has 10 tasks of weight 6018 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6019 * then A0's share of the CPU resource is: 6020 * 6021 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6022 * 6023 * We achieve this by letting root_task_group's tasks sit 6024 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6025 */ 6026 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6027 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6028 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6029 6030 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6031 #ifdef CONFIG_RT_GROUP_SCHED 6032 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6033 #endif 6034 6035 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6036 rq->cpu_load[j] = 0; 6037 6038 #ifdef CONFIG_SMP 6039 rq->sd = NULL; 6040 rq->rd = NULL; 6041 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6042 rq->balance_callback = NULL; 6043 rq->active_balance = 0; 6044 rq->next_balance = jiffies; 6045 rq->push_cpu = 0; 6046 rq->cpu = i; 6047 rq->online = 0; 6048 rq->idle_stamp = 0; 6049 rq->avg_idle = 2*sysctl_sched_migration_cost; 6050 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6051 6052 INIT_LIST_HEAD(&rq->cfs_tasks); 6053 6054 rq_attach_root(rq, &def_root_domain); 6055 #ifdef CONFIG_NO_HZ_COMMON 6056 rq->last_load_update_tick = jiffies; 6057 rq->last_blocked_load_update_tick = jiffies; 6058 atomic_set(&rq->nohz_flags, 0); 6059 #endif 6060 #endif /* CONFIG_SMP */ 6061 hrtick_rq_init(rq); 6062 atomic_set(&rq->nr_iowait, 0); 6063 } 6064 6065 set_load_weight(&init_task, false); 6066 6067 /* 6068 * The boot idle thread does lazy MMU switching as well: 6069 */ 6070 mmgrab(&init_mm); 6071 enter_lazy_tlb(&init_mm, current); 6072 6073 /* 6074 * Make us the idle thread. Technically, schedule() should not be 6075 * called from this thread, however somewhere below it might be, 6076 * but because we are the idle thread, we just pick up running again 6077 * when this runqueue becomes "idle". 6078 */ 6079 init_idle(current, smp_processor_id()); 6080 6081 calc_load_update = jiffies + LOAD_FREQ; 6082 6083 #ifdef CONFIG_SMP 6084 idle_thread_set_boot_cpu(); 6085 #endif 6086 init_sched_fair_class(); 6087 6088 init_schedstats(); 6089 6090 psi_init(); 6091 6092 scheduler_running = 1; 6093 } 6094 6095 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6096 static inline int preempt_count_equals(int preempt_offset) 6097 { 6098 int nested = preempt_count() + rcu_preempt_depth(); 6099 6100 return (nested == preempt_offset); 6101 } 6102 6103 void __might_sleep(const char *file, int line, int preempt_offset) 6104 { 6105 /* 6106 * Blocking primitives will set (and therefore destroy) current->state, 6107 * since we will exit with TASK_RUNNING make sure we enter with it, 6108 * otherwise we will destroy state. 6109 */ 6110 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6111 "do not call blocking ops when !TASK_RUNNING; " 6112 "state=%lx set at [<%p>] %pS\n", 6113 current->state, 6114 (void *)current->task_state_change, 6115 (void *)current->task_state_change); 6116 6117 ___might_sleep(file, line, preempt_offset); 6118 } 6119 EXPORT_SYMBOL(__might_sleep); 6120 6121 void ___might_sleep(const char *file, int line, int preempt_offset) 6122 { 6123 /* Ratelimiting timestamp: */ 6124 static unsigned long prev_jiffy; 6125 6126 unsigned long preempt_disable_ip; 6127 6128 /* WARN_ON_ONCE() by default, no rate limit required: */ 6129 rcu_sleep_check(); 6130 6131 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6132 !is_idle_task(current)) || 6133 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6134 oops_in_progress) 6135 return; 6136 6137 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6138 return; 6139 prev_jiffy = jiffies; 6140 6141 /* Save this before calling printk(), since that will clobber it: */ 6142 preempt_disable_ip = get_preempt_disable_ip(current); 6143 6144 printk(KERN_ERR 6145 "BUG: sleeping function called from invalid context at %s:%d\n", 6146 file, line); 6147 printk(KERN_ERR 6148 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6149 in_atomic(), irqs_disabled(), 6150 current->pid, current->comm); 6151 6152 if (task_stack_end_corrupted(current)) 6153 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6154 6155 debug_show_held_locks(current); 6156 if (irqs_disabled()) 6157 print_irqtrace_events(current); 6158 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6159 && !preempt_count_equals(preempt_offset)) { 6160 pr_err("Preemption disabled at:"); 6161 print_ip_sym(preempt_disable_ip); 6162 pr_cont("\n"); 6163 } 6164 dump_stack(); 6165 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6166 } 6167 EXPORT_SYMBOL(___might_sleep); 6168 6169 void __cant_sleep(const char *file, int line, int preempt_offset) 6170 { 6171 static unsigned long prev_jiffy; 6172 6173 if (irqs_disabled()) 6174 return; 6175 6176 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6177 return; 6178 6179 if (preempt_count() > preempt_offset) 6180 return; 6181 6182 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6183 return; 6184 prev_jiffy = jiffies; 6185 6186 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6187 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6188 in_atomic(), irqs_disabled(), 6189 current->pid, current->comm); 6190 6191 debug_show_held_locks(current); 6192 dump_stack(); 6193 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6194 } 6195 EXPORT_SYMBOL_GPL(__cant_sleep); 6196 #endif 6197 6198 #ifdef CONFIG_MAGIC_SYSRQ 6199 void normalize_rt_tasks(void) 6200 { 6201 struct task_struct *g, *p; 6202 struct sched_attr attr = { 6203 .sched_policy = SCHED_NORMAL, 6204 }; 6205 6206 read_lock(&tasklist_lock); 6207 for_each_process_thread(g, p) { 6208 /* 6209 * Only normalize user tasks: 6210 */ 6211 if (p->flags & PF_KTHREAD) 6212 continue; 6213 6214 p->se.exec_start = 0; 6215 schedstat_set(p->se.statistics.wait_start, 0); 6216 schedstat_set(p->se.statistics.sleep_start, 0); 6217 schedstat_set(p->se.statistics.block_start, 0); 6218 6219 if (!dl_task(p) && !rt_task(p)) { 6220 /* 6221 * Renice negative nice level userspace 6222 * tasks back to 0: 6223 */ 6224 if (task_nice(p) < 0) 6225 set_user_nice(p, 0); 6226 continue; 6227 } 6228 6229 __sched_setscheduler(p, &attr, false, false); 6230 } 6231 read_unlock(&tasklist_lock); 6232 } 6233 6234 #endif /* CONFIG_MAGIC_SYSRQ */ 6235 6236 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6237 /* 6238 * These functions are only useful for the IA64 MCA handling, or kdb. 6239 * 6240 * They can only be called when the whole system has been 6241 * stopped - every CPU needs to be quiescent, and no scheduling 6242 * activity can take place. Using them for anything else would 6243 * be a serious bug, and as a result, they aren't even visible 6244 * under any other configuration. 6245 */ 6246 6247 /** 6248 * curr_task - return the current task for a given CPU. 6249 * @cpu: the processor in question. 6250 * 6251 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6252 * 6253 * Return: The current task for @cpu. 6254 */ 6255 struct task_struct *curr_task(int cpu) 6256 { 6257 return cpu_curr(cpu); 6258 } 6259 6260 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6261 6262 #ifdef CONFIG_IA64 6263 /** 6264 * set_curr_task - set the current task for a given CPU. 6265 * @cpu: the processor in question. 6266 * @p: the task pointer to set. 6267 * 6268 * Description: This function must only be used when non-maskable interrupts 6269 * are serviced on a separate stack. It allows the architecture to switch the 6270 * notion of the current task on a CPU in a non-blocking manner. This function 6271 * must be called with all CPU's synchronized, and interrupts disabled, the 6272 * and caller must save the original value of the current task (see 6273 * curr_task() above) and restore that value before reenabling interrupts and 6274 * re-starting the system. 6275 * 6276 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6277 */ 6278 void ia64_set_curr_task(int cpu, struct task_struct *p) 6279 { 6280 cpu_curr(cpu) = p; 6281 } 6282 6283 #endif 6284 6285 #ifdef CONFIG_CGROUP_SCHED 6286 /* task_group_lock serializes the addition/removal of task groups */ 6287 static DEFINE_SPINLOCK(task_group_lock); 6288 6289 static void sched_free_group(struct task_group *tg) 6290 { 6291 free_fair_sched_group(tg); 6292 free_rt_sched_group(tg); 6293 autogroup_free(tg); 6294 kmem_cache_free(task_group_cache, tg); 6295 } 6296 6297 /* allocate runqueue etc for a new task group */ 6298 struct task_group *sched_create_group(struct task_group *parent) 6299 { 6300 struct task_group *tg; 6301 6302 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6303 if (!tg) 6304 return ERR_PTR(-ENOMEM); 6305 6306 if (!alloc_fair_sched_group(tg, parent)) 6307 goto err; 6308 6309 if (!alloc_rt_sched_group(tg, parent)) 6310 goto err; 6311 6312 return tg; 6313 6314 err: 6315 sched_free_group(tg); 6316 return ERR_PTR(-ENOMEM); 6317 } 6318 6319 void sched_online_group(struct task_group *tg, struct task_group *parent) 6320 { 6321 unsigned long flags; 6322 6323 spin_lock_irqsave(&task_group_lock, flags); 6324 list_add_rcu(&tg->list, &task_groups); 6325 6326 /* Root should already exist: */ 6327 WARN_ON(!parent); 6328 6329 tg->parent = parent; 6330 INIT_LIST_HEAD(&tg->children); 6331 list_add_rcu(&tg->siblings, &parent->children); 6332 spin_unlock_irqrestore(&task_group_lock, flags); 6333 6334 online_fair_sched_group(tg); 6335 } 6336 6337 /* rcu callback to free various structures associated with a task group */ 6338 static void sched_free_group_rcu(struct rcu_head *rhp) 6339 { 6340 /* Now it should be safe to free those cfs_rqs: */ 6341 sched_free_group(container_of(rhp, struct task_group, rcu)); 6342 } 6343 6344 void sched_destroy_group(struct task_group *tg) 6345 { 6346 /* Wait for possible concurrent references to cfs_rqs complete: */ 6347 call_rcu(&tg->rcu, sched_free_group_rcu); 6348 } 6349 6350 void sched_offline_group(struct task_group *tg) 6351 { 6352 unsigned long flags; 6353 6354 /* End participation in shares distribution: */ 6355 unregister_fair_sched_group(tg); 6356 6357 spin_lock_irqsave(&task_group_lock, flags); 6358 list_del_rcu(&tg->list); 6359 list_del_rcu(&tg->siblings); 6360 spin_unlock_irqrestore(&task_group_lock, flags); 6361 } 6362 6363 static void sched_change_group(struct task_struct *tsk, int type) 6364 { 6365 struct task_group *tg; 6366 6367 /* 6368 * All callers are synchronized by task_rq_lock(); we do not use RCU 6369 * which is pointless here. Thus, we pass "true" to task_css_check() 6370 * to prevent lockdep warnings. 6371 */ 6372 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6373 struct task_group, css); 6374 tg = autogroup_task_group(tsk, tg); 6375 tsk->sched_task_group = tg; 6376 6377 #ifdef CONFIG_FAIR_GROUP_SCHED 6378 if (tsk->sched_class->task_change_group) 6379 tsk->sched_class->task_change_group(tsk, type); 6380 else 6381 #endif 6382 set_task_rq(tsk, task_cpu(tsk)); 6383 } 6384 6385 /* 6386 * Change task's runqueue when it moves between groups. 6387 * 6388 * The caller of this function should have put the task in its new group by 6389 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6390 * its new group. 6391 */ 6392 void sched_move_task(struct task_struct *tsk) 6393 { 6394 int queued, running, queue_flags = 6395 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6396 struct rq_flags rf; 6397 struct rq *rq; 6398 6399 rq = task_rq_lock(tsk, &rf); 6400 update_rq_clock(rq); 6401 6402 running = task_current(rq, tsk); 6403 queued = task_on_rq_queued(tsk); 6404 6405 if (queued) 6406 dequeue_task(rq, tsk, queue_flags); 6407 if (running) 6408 put_prev_task(rq, tsk); 6409 6410 sched_change_group(tsk, TASK_MOVE_GROUP); 6411 6412 if (queued) 6413 enqueue_task(rq, tsk, queue_flags); 6414 if (running) 6415 set_curr_task(rq, tsk); 6416 6417 task_rq_unlock(rq, tsk, &rf); 6418 } 6419 6420 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6421 { 6422 return css ? container_of(css, struct task_group, css) : NULL; 6423 } 6424 6425 static struct cgroup_subsys_state * 6426 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6427 { 6428 struct task_group *parent = css_tg(parent_css); 6429 struct task_group *tg; 6430 6431 if (!parent) { 6432 /* This is early initialization for the top cgroup */ 6433 return &root_task_group.css; 6434 } 6435 6436 tg = sched_create_group(parent); 6437 if (IS_ERR(tg)) 6438 return ERR_PTR(-ENOMEM); 6439 6440 return &tg->css; 6441 } 6442 6443 /* Expose task group only after completing cgroup initialization */ 6444 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6445 { 6446 struct task_group *tg = css_tg(css); 6447 struct task_group *parent = css_tg(css->parent); 6448 6449 if (parent) 6450 sched_online_group(tg, parent); 6451 return 0; 6452 } 6453 6454 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6455 { 6456 struct task_group *tg = css_tg(css); 6457 6458 sched_offline_group(tg); 6459 } 6460 6461 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6462 { 6463 struct task_group *tg = css_tg(css); 6464 6465 /* 6466 * Relies on the RCU grace period between css_released() and this. 6467 */ 6468 sched_free_group(tg); 6469 } 6470 6471 /* 6472 * This is called before wake_up_new_task(), therefore we really only 6473 * have to set its group bits, all the other stuff does not apply. 6474 */ 6475 static void cpu_cgroup_fork(struct task_struct *task) 6476 { 6477 struct rq_flags rf; 6478 struct rq *rq; 6479 6480 rq = task_rq_lock(task, &rf); 6481 6482 update_rq_clock(rq); 6483 sched_change_group(task, TASK_SET_GROUP); 6484 6485 task_rq_unlock(rq, task, &rf); 6486 } 6487 6488 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6489 { 6490 struct task_struct *task; 6491 struct cgroup_subsys_state *css; 6492 int ret = 0; 6493 6494 cgroup_taskset_for_each(task, css, tset) { 6495 #ifdef CONFIG_RT_GROUP_SCHED 6496 if (!sched_rt_can_attach(css_tg(css), task)) 6497 return -EINVAL; 6498 #else 6499 /* We don't support RT-tasks being in separate groups */ 6500 if (task->sched_class != &fair_sched_class) 6501 return -EINVAL; 6502 #endif 6503 /* 6504 * Serialize against wake_up_new_task() such that if its 6505 * running, we're sure to observe its full state. 6506 */ 6507 raw_spin_lock_irq(&task->pi_lock); 6508 /* 6509 * Avoid calling sched_move_task() before wake_up_new_task() 6510 * has happened. This would lead to problems with PELT, due to 6511 * move wanting to detach+attach while we're not attached yet. 6512 */ 6513 if (task->state == TASK_NEW) 6514 ret = -EINVAL; 6515 raw_spin_unlock_irq(&task->pi_lock); 6516 6517 if (ret) 6518 break; 6519 } 6520 return ret; 6521 } 6522 6523 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6524 { 6525 struct task_struct *task; 6526 struct cgroup_subsys_state *css; 6527 6528 cgroup_taskset_for_each(task, css, tset) 6529 sched_move_task(task); 6530 } 6531 6532 #ifdef CONFIG_FAIR_GROUP_SCHED 6533 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6534 struct cftype *cftype, u64 shareval) 6535 { 6536 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6537 } 6538 6539 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6540 struct cftype *cft) 6541 { 6542 struct task_group *tg = css_tg(css); 6543 6544 return (u64) scale_load_down(tg->shares); 6545 } 6546 6547 #ifdef CONFIG_CFS_BANDWIDTH 6548 static DEFINE_MUTEX(cfs_constraints_mutex); 6549 6550 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6551 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6552 6553 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6554 6555 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6556 { 6557 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6558 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6559 6560 if (tg == &root_task_group) 6561 return -EINVAL; 6562 6563 /* 6564 * Ensure we have at some amount of bandwidth every period. This is 6565 * to prevent reaching a state of large arrears when throttled via 6566 * entity_tick() resulting in prolonged exit starvation. 6567 */ 6568 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6569 return -EINVAL; 6570 6571 /* 6572 * Likewise, bound things on the otherside by preventing insane quota 6573 * periods. This also allows us to normalize in computing quota 6574 * feasibility. 6575 */ 6576 if (period > max_cfs_quota_period) 6577 return -EINVAL; 6578 6579 /* 6580 * Prevent race between setting of cfs_rq->runtime_enabled and 6581 * unthrottle_offline_cfs_rqs(). 6582 */ 6583 get_online_cpus(); 6584 mutex_lock(&cfs_constraints_mutex); 6585 ret = __cfs_schedulable(tg, period, quota); 6586 if (ret) 6587 goto out_unlock; 6588 6589 runtime_enabled = quota != RUNTIME_INF; 6590 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6591 /* 6592 * If we need to toggle cfs_bandwidth_used, off->on must occur 6593 * before making related changes, and on->off must occur afterwards 6594 */ 6595 if (runtime_enabled && !runtime_was_enabled) 6596 cfs_bandwidth_usage_inc(); 6597 raw_spin_lock_irq(&cfs_b->lock); 6598 cfs_b->period = ns_to_ktime(period); 6599 cfs_b->quota = quota; 6600 6601 __refill_cfs_bandwidth_runtime(cfs_b); 6602 6603 /* Restart the period timer (if active) to handle new period expiry: */ 6604 if (runtime_enabled) 6605 start_cfs_bandwidth(cfs_b); 6606 6607 raw_spin_unlock_irq(&cfs_b->lock); 6608 6609 for_each_online_cpu(i) { 6610 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6611 struct rq *rq = cfs_rq->rq; 6612 struct rq_flags rf; 6613 6614 rq_lock_irq(rq, &rf); 6615 cfs_rq->runtime_enabled = runtime_enabled; 6616 cfs_rq->runtime_remaining = 0; 6617 6618 if (cfs_rq->throttled) 6619 unthrottle_cfs_rq(cfs_rq); 6620 rq_unlock_irq(rq, &rf); 6621 } 6622 if (runtime_was_enabled && !runtime_enabled) 6623 cfs_bandwidth_usage_dec(); 6624 out_unlock: 6625 mutex_unlock(&cfs_constraints_mutex); 6626 put_online_cpus(); 6627 6628 return ret; 6629 } 6630 6631 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6632 { 6633 u64 quota, period; 6634 6635 period = ktime_to_ns(tg->cfs_bandwidth.period); 6636 if (cfs_quota_us < 0) 6637 quota = RUNTIME_INF; 6638 else 6639 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6640 6641 return tg_set_cfs_bandwidth(tg, period, quota); 6642 } 6643 6644 long tg_get_cfs_quota(struct task_group *tg) 6645 { 6646 u64 quota_us; 6647 6648 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6649 return -1; 6650 6651 quota_us = tg->cfs_bandwidth.quota; 6652 do_div(quota_us, NSEC_PER_USEC); 6653 6654 return quota_us; 6655 } 6656 6657 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6658 { 6659 u64 quota, period; 6660 6661 period = (u64)cfs_period_us * NSEC_PER_USEC; 6662 quota = tg->cfs_bandwidth.quota; 6663 6664 return tg_set_cfs_bandwidth(tg, period, quota); 6665 } 6666 6667 long tg_get_cfs_period(struct task_group *tg) 6668 { 6669 u64 cfs_period_us; 6670 6671 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6672 do_div(cfs_period_us, NSEC_PER_USEC); 6673 6674 return cfs_period_us; 6675 } 6676 6677 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6678 struct cftype *cft) 6679 { 6680 return tg_get_cfs_quota(css_tg(css)); 6681 } 6682 6683 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6684 struct cftype *cftype, s64 cfs_quota_us) 6685 { 6686 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6687 } 6688 6689 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6690 struct cftype *cft) 6691 { 6692 return tg_get_cfs_period(css_tg(css)); 6693 } 6694 6695 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6696 struct cftype *cftype, u64 cfs_period_us) 6697 { 6698 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6699 } 6700 6701 struct cfs_schedulable_data { 6702 struct task_group *tg; 6703 u64 period, quota; 6704 }; 6705 6706 /* 6707 * normalize group quota/period to be quota/max_period 6708 * note: units are usecs 6709 */ 6710 static u64 normalize_cfs_quota(struct task_group *tg, 6711 struct cfs_schedulable_data *d) 6712 { 6713 u64 quota, period; 6714 6715 if (tg == d->tg) { 6716 period = d->period; 6717 quota = d->quota; 6718 } else { 6719 period = tg_get_cfs_period(tg); 6720 quota = tg_get_cfs_quota(tg); 6721 } 6722 6723 /* note: these should typically be equivalent */ 6724 if (quota == RUNTIME_INF || quota == -1) 6725 return RUNTIME_INF; 6726 6727 return to_ratio(period, quota); 6728 } 6729 6730 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6731 { 6732 struct cfs_schedulable_data *d = data; 6733 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6734 s64 quota = 0, parent_quota = -1; 6735 6736 if (!tg->parent) { 6737 quota = RUNTIME_INF; 6738 } else { 6739 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6740 6741 quota = normalize_cfs_quota(tg, d); 6742 parent_quota = parent_b->hierarchical_quota; 6743 6744 /* 6745 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6746 * always take the min. On cgroup1, only inherit when no 6747 * limit is set: 6748 */ 6749 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6750 quota = min(quota, parent_quota); 6751 } else { 6752 if (quota == RUNTIME_INF) 6753 quota = parent_quota; 6754 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6755 return -EINVAL; 6756 } 6757 } 6758 cfs_b->hierarchical_quota = quota; 6759 6760 return 0; 6761 } 6762 6763 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6764 { 6765 int ret; 6766 struct cfs_schedulable_data data = { 6767 .tg = tg, 6768 .period = period, 6769 .quota = quota, 6770 }; 6771 6772 if (quota != RUNTIME_INF) { 6773 do_div(data.period, NSEC_PER_USEC); 6774 do_div(data.quota, NSEC_PER_USEC); 6775 } 6776 6777 rcu_read_lock(); 6778 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6779 rcu_read_unlock(); 6780 6781 return ret; 6782 } 6783 6784 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6785 { 6786 struct task_group *tg = css_tg(seq_css(sf)); 6787 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6788 6789 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6790 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6791 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6792 6793 if (schedstat_enabled() && tg != &root_task_group) { 6794 u64 ws = 0; 6795 int i; 6796 6797 for_each_possible_cpu(i) 6798 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 6799 6800 seq_printf(sf, "wait_sum %llu\n", ws); 6801 } 6802 6803 return 0; 6804 } 6805 #endif /* CONFIG_CFS_BANDWIDTH */ 6806 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6807 6808 #ifdef CONFIG_RT_GROUP_SCHED 6809 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6810 struct cftype *cft, s64 val) 6811 { 6812 return sched_group_set_rt_runtime(css_tg(css), val); 6813 } 6814 6815 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6816 struct cftype *cft) 6817 { 6818 return sched_group_rt_runtime(css_tg(css)); 6819 } 6820 6821 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6822 struct cftype *cftype, u64 rt_period_us) 6823 { 6824 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6825 } 6826 6827 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6828 struct cftype *cft) 6829 { 6830 return sched_group_rt_period(css_tg(css)); 6831 } 6832 #endif /* CONFIG_RT_GROUP_SCHED */ 6833 6834 static struct cftype cpu_legacy_files[] = { 6835 #ifdef CONFIG_FAIR_GROUP_SCHED 6836 { 6837 .name = "shares", 6838 .read_u64 = cpu_shares_read_u64, 6839 .write_u64 = cpu_shares_write_u64, 6840 }, 6841 #endif 6842 #ifdef CONFIG_CFS_BANDWIDTH 6843 { 6844 .name = "cfs_quota_us", 6845 .read_s64 = cpu_cfs_quota_read_s64, 6846 .write_s64 = cpu_cfs_quota_write_s64, 6847 }, 6848 { 6849 .name = "cfs_period_us", 6850 .read_u64 = cpu_cfs_period_read_u64, 6851 .write_u64 = cpu_cfs_period_write_u64, 6852 }, 6853 { 6854 .name = "stat", 6855 .seq_show = cpu_cfs_stat_show, 6856 }, 6857 #endif 6858 #ifdef CONFIG_RT_GROUP_SCHED 6859 { 6860 .name = "rt_runtime_us", 6861 .read_s64 = cpu_rt_runtime_read, 6862 .write_s64 = cpu_rt_runtime_write, 6863 }, 6864 { 6865 .name = "rt_period_us", 6866 .read_u64 = cpu_rt_period_read_uint, 6867 .write_u64 = cpu_rt_period_write_uint, 6868 }, 6869 #endif 6870 { } /* Terminate */ 6871 }; 6872 6873 static int cpu_extra_stat_show(struct seq_file *sf, 6874 struct cgroup_subsys_state *css) 6875 { 6876 #ifdef CONFIG_CFS_BANDWIDTH 6877 { 6878 struct task_group *tg = css_tg(css); 6879 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6880 u64 throttled_usec; 6881 6882 throttled_usec = cfs_b->throttled_time; 6883 do_div(throttled_usec, NSEC_PER_USEC); 6884 6885 seq_printf(sf, "nr_periods %d\n" 6886 "nr_throttled %d\n" 6887 "throttled_usec %llu\n", 6888 cfs_b->nr_periods, cfs_b->nr_throttled, 6889 throttled_usec); 6890 } 6891 #endif 6892 return 0; 6893 } 6894 6895 #ifdef CONFIG_FAIR_GROUP_SCHED 6896 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6897 struct cftype *cft) 6898 { 6899 struct task_group *tg = css_tg(css); 6900 u64 weight = scale_load_down(tg->shares); 6901 6902 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6903 } 6904 6905 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6906 struct cftype *cft, u64 weight) 6907 { 6908 /* 6909 * cgroup weight knobs should use the common MIN, DFL and MAX 6910 * values which are 1, 100 and 10000 respectively. While it loses 6911 * a bit of range on both ends, it maps pretty well onto the shares 6912 * value used by scheduler and the round-trip conversions preserve 6913 * the original value over the entire range. 6914 */ 6915 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6916 return -ERANGE; 6917 6918 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6919 6920 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6921 } 6922 6923 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6924 struct cftype *cft) 6925 { 6926 unsigned long weight = scale_load_down(css_tg(css)->shares); 6927 int last_delta = INT_MAX; 6928 int prio, delta; 6929 6930 /* find the closest nice value to the current weight */ 6931 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6932 delta = abs(sched_prio_to_weight[prio] - weight); 6933 if (delta >= last_delta) 6934 break; 6935 last_delta = delta; 6936 } 6937 6938 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6939 } 6940 6941 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6942 struct cftype *cft, s64 nice) 6943 { 6944 unsigned long weight; 6945 int idx; 6946 6947 if (nice < MIN_NICE || nice > MAX_NICE) 6948 return -ERANGE; 6949 6950 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6951 idx = array_index_nospec(idx, 40); 6952 weight = sched_prio_to_weight[idx]; 6953 6954 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6955 } 6956 #endif 6957 6958 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6959 long period, long quota) 6960 { 6961 if (quota < 0) 6962 seq_puts(sf, "max"); 6963 else 6964 seq_printf(sf, "%ld", quota); 6965 6966 seq_printf(sf, " %ld\n", period); 6967 } 6968 6969 /* caller should put the current value in *@periodp before calling */ 6970 static int __maybe_unused cpu_period_quota_parse(char *buf, 6971 u64 *periodp, u64 *quotap) 6972 { 6973 char tok[21]; /* U64_MAX */ 6974 6975 if (!sscanf(buf, "%s %llu", tok, periodp)) 6976 return -EINVAL; 6977 6978 *periodp *= NSEC_PER_USEC; 6979 6980 if (sscanf(tok, "%llu", quotap)) 6981 *quotap *= NSEC_PER_USEC; 6982 else if (!strcmp(tok, "max")) 6983 *quotap = RUNTIME_INF; 6984 else 6985 return -EINVAL; 6986 6987 return 0; 6988 } 6989 6990 #ifdef CONFIG_CFS_BANDWIDTH 6991 static int cpu_max_show(struct seq_file *sf, void *v) 6992 { 6993 struct task_group *tg = css_tg(seq_css(sf)); 6994 6995 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6996 return 0; 6997 } 6998 6999 static ssize_t cpu_max_write(struct kernfs_open_file *of, 7000 char *buf, size_t nbytes, loff_t off) 7001 { 7002 struct task_group *tg = css_tg(of_css(of)); 7003 u64 period = tg_get_cfs_period(tg); 7004 u64 quota; 7005 int ret; 7006 7007 ret = cpu_period_quota_parse(buf, &period, "a); 7008 if (!ret) 7009 ret = tg_set_cfs_bandwidth(tg, period, quota); 7010 return ret ?: nbytes; 7011 } 7012 #endif 7013 7014 static struct cftype cpu_files[] = { 7015 #ifdef CONFIG_FAIR_GROUP_SCHED 7016 { 7017 .name = "weight", 7018 .flags = CFTYPE_NOT_ON_ROOT, 7019 .read_u64 = cpu_weight_read_u64, 7020 .write_u64 = cpu_weight_write_u64, 7021 }, 7022 { 7023 .name = "weight.nice", 7024 .flags = CFTYPE_NOT_ON_ROOT, 7025 .read_s64 = cpu_weight_nice_read_s64, 7026 .write_s64 = cpu_weight_nice_write_s64, 7027 }, 7028 #endif 7029 #ifdef CONFIG_CFS_BANDWIDTH 7030 { 7031 .name = "max", 7032 .flags = CFTYPE_NOT_ON_ROOT, 7033 .seq_show = cpu_max_show, 7034 .write = cpu_max_write, 7035 }, 7036 #endif 7037 { } /* terminate */ 7038 }; 7039 7040 struct cgroup_subsys cpu_cgrp_subsys = { 7041 .css_alloc = cpu_cgroup_css_alloc, 7042 .css_online = cpu_cgroup_css_online, 7043 .css_released = cpu_cgroup_css_released, 7044 .css_free = cpu_cgroup_css_free, 7045 .css_extra_stat_show = cpu_extra_stat_show, 7046 .fork = cpu_cgroup_fork, 7047 .can_attach = cpu_cgroup_can_attach, 7048 .attach = cpu_cgroup_attach, 7049 .legacy_cftypes = cpu_legacy_files, 7050 .dfl_cftypes = cpu_files, 7051 .early_init = true, 7052 .threaded = true, 7053 }; 7054 7055 #endif /* CONFIG_CGROUP_SCHED */ 7056 7057 void dump_cpu_task(int cpu) 7058 { 7059 pr_info("Task dump for CPU %d:\n", cpu); 7060 sched_show_task(cpu_curr(cpu)); 7061 } 7062 7063 /* 7064 * Nice levels are multiplicative, with a gentle 10% change for every 7065 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7066 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7067 * that remained on nice 0. 7068 * 7069 * The "10% effect" is relative and cumulative: from _any_ nice level, 7070 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7071 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7072 * If a task goes up by ~10% and another task goes down by ~10% then 7073 * the relative distance between them is ~25%.) 7074 */ 7075 const int sched_prio_to_weight[40] = { 7076 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7077 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7078 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7079 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7080 /* 0 */ 1024, 820, 655, 526, 423, 7081 /* 5 */ 335, 272, 215, 172, 137, 7082 /* 10 */ 110, 87, 70, 56, 45, 7083 /* 15 */ 36, 29, 23, 18, 15, 7084 }; 7085 7086 /* 7087 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7088 * 7089 * In cases where the weight does not change often, we can use the 7090 * precalculated inverse to speed up arithmetics by turning divisions 7091 * into multiplications: 7092 */ 7093 const u32 sched_prio_to_wmult[40] = { 7094 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7095 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7096 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7097 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7098 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7099 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7100 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7101 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7102 }; 7103 7104 #undef CREATE_TRACE_POINTS 7105