1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <uapi/linux/sched/types.h> 11 #include <linux/sched/loadavg.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/wait_bit.h> 14 #include <linux/cpuset.h> 15 #include <linux/delayacct.h> 16 #include <linux/init_task.h> 17 #include <linux/context_tracking.h> 18 #include <linux/rcupdate_wait.h> 19 #include <linux/compat.h> 20 21 #include <linux/blkdev.h> 22 #include <linux/kprobes.h> 23 #include <linux/mmu_context.h> 24 #include <linux/module.h> 25 #include <linux/nmi.h> 26 #include <linux/prefetch.h> 27 #include <linux/profile.h> 28 #include <linux/security.h> 29 #include <linux/syscalls.h> 30 #include <linux/sched/isolation.h> 31 32 #include <asm/switch_to.h> 33 #include <asm/tlb.h> 34 #ifdef CONFIG_PARAVIRT 35 #include <asm/paravirt.h> 36 #endif 37 38 #include "sched.h" 39 #include "../workqueue_internal.h" 40 #include "../smpboot.h" 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/sched.h> 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 #endif 62 63 /* 64 * Number of tasks to iterate in a single balance run. 65 * Limited because this is done with IRQs disabled. 66 */ 67 const_debug unsigned int sysctl_sched_nr_migrate = 32; 68 69 /* 70 * period over which we average the RT time consumption, measured 71 * in ms. 72 * 73 * default: 1s 74 */ 75 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 76 77 /* 78 * period over which we measure -rt task CPU usage in us. 79 * default: 1s 80 */ 81 unsigned int sysctl_sched_rt_period = 1000000; 82 83 __read_mostly int scheduler_running; 84 85 /* 86 * part of the period that we allow rt tasks to run in us. 87 * default: 0.95s 88 */ 89 int sysctl_sched_rt_runtime = 950000; 90 91 /* 92 * __task_rq_lock - lock the rq @p resides on. 93 */ 94 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 95 __acquires(rq->lock) 96 { 97 struct rq *rq; 98 99 lockdep_assert_held(&p->pi_lock); 100 101 for (;;) { 102 rq = task_rq(p); 103 raw_spin_lock(&rq->lock); 104 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 105 rq_pin_lock(rq, rf); 106 return rq; 107 } 108 raw_spin_unlock(&rq->lock); 109 110 while (unlikely(task_on_rq_migrating(p))) 111 cpu_relax(); 112 } 113 } 114 115 /* 116 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 117 */ 118 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 119 __acquires(p->pi_lock) 120 __acquires(rq->lock) 121 { 122 struct rq *rq; 123 124 for (;;) { 125 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 126 rq = task_rq(p); 127 raw_spin_lock(&rq->lock); 128 /* 129 * move_queued_task() task_rq_lock() 130 * 131 * ACQUIRE (rq->lock) 132 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 133 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 134 * [S] ->cpu = new_cpu [L] task_rq() 135 * [L] ->on_rq 136 * RELEASE (rq->lock) 137 * 138 * If we observe the old cpu in task_rq_lock, the acquire of 139 * the old rq->lock will fully serialize against the stores. 140 * 141 * If we observe the new CPU in task_rq_lock, the acquire will 142 * pair with the WMB to ensure we must then also see migrating. 143 */ 144 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 145 rq_pin_lock(rq, rf); 146 return rq; 147 } 148 raw_spin_unlock(&rq->lock); 149 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 150 151 while (unlikely(task_on_rq_migrating(p))) 152 cpu_relax(); 153 } 154 } 155 156 /* 157 * RQ-clock updating methods: 158 */ 159 160 static void update_rq_clock_task(struct rq *rq, s64 delta) 161 { 162 /* 163 * In theory, the compile should just see 0 here, and optimize out the call 164 * to sched_rt_avg_update. But I don't trust it... 165 */ 166 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 167 s64 steal = 0, irq_delta = 0; 168 #endif 169 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 170 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 171 172 /* 173 * Since irq_time is only updated on {soft,}irq_exit, we might run into 174 * this case when a previous update_rq_clock() happened inside a 175 * {soft,}irq region. 176 * 177 * When this happens, we stop ->clock_task and only update the 178 * prev_irq_time stamp to account for the part that fit, so that a next 179 * update will consume the rest. This ensures ->clock_task is 180 * monotonic. 181 * 182 * It does however cause some slight miss-attribution of {soft,}irq 183 * time, a more accurate solution would be to update the irq_time using 184 * the current rq->clock timestamp, except that would require using 185 * atomic ops. 186 */ 187 if (irq_delta > delta) 188 irq_delta = delta; 189 190 rq->prev_irq_time += irq_delta; 191 delta -= irq_delta; 192 #endif 193 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 194 if (static_key_false((¶virt_steal_rq_enabled))) { 195 steal = paravirt_steal_clock(cpu_of(rq)); 196 steal -= rq->prev_steal_time_rq; 197 198 if (unlikely(steal > delta)) 199 steal = delta; 200 201 rq->prev_steal_time_rq += steal; 202 delta -= steal; 203 } 204 #endif 205 206 rq->clock_task += delta; 207 208 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 209 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 210 sched_rt_avg_update(rq, irq_delta + steal); 211 #endif 212 } 213 214 void update_rq_clock(struct rq *rq) 215 { 216 s64 delta; 217 218 lockdep_assert_held(&rq->lock); 219 220 if (rq->clock_update_flags & RQCF_ACT_SKIP) 221 return; 222 223 #ifdef CONFIG_SCHED_DEBUG 224 if (sched_feat(WARN_DOUBLE_CLOCK)) 225 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 226 rq->clock_update_flags |= RQCF_UPDATED; 227 #endif 228 229 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 230 if (delta < 0) 231 return; 232 rq->clock += delta; 233 update_rq_clock_task(rq, delta); 234 } 235 236 237 #ifdef CONFIG_SCHED_HRTICK 238 /* 239 * Use HR-timers to deliver accurate preemption points. 240 */ 241 242 static void hrtick_clear(struct rq *rq) 243 { 244 if (hrtimer_active(&rq->hrtick_timer)) 245 hrtimer_cancel(&rq->hrtick_timer); 246 } 247 248 /* 249 * High-resolution timer tick. 250 * Runs from hardirq context with interrupts disabled. 251 */ 252 static enum hrtimer_restart hrtick(struct hrtimer *timer) 253 { 254 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 255 struct rq_flags rf; 256 257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 258 259 rq_lock(rq, &rf); 260 update_rq_clock(rq); 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 262 rq_unlock(rq, &rf); 263 264 return HRTIMER_NORESTART; 265 } 266 267 #ifdef CONFIG_SMP 268 269 static void __hrtick_restart(struct rq *rq) 270 { 271 struct hrtimer *timer = &rq->hrtick_timer; 272 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 274 } 275 276 /* 277 * called from hardirq (IPI) context 278 */ 279 static void __hrtick_start(void *arg) 280 { 281 struct rq *rq = arg; 282 struct rq_flags rf; 283 284 rq_lock(rq, &rf); 285 __hrtick_restart(rq); 286 rq->hrtick_csd_pending = 0; 287 rq_unlock(rq, &rf); 288 } 289 290 /* 291 * Called to set the hrtick timer state. 292 * 293 * called with rq->lock held and irqs disabled 294 */ 295 void hrtick_start(struct rq *rq, u64 delay) 296 { 297 struct hrtimer *timer = &rq->hrtick_timer; 298 ktime_t time; 299 s64 delta; 300 301 /* 302 * Don't schedule slices shorter than 10000ns, that just 303 * doesn't make sense and can cause timer DoS. 304 */ 305 delta = max_t(s64, delay, 10000LL); 306 time = ktime_add_ns(timer->base->get_time(), delta); 307 308 hrtimer_set_expires(timer, time); 309 310 if (rq == this_rq()) { 311 __hrtick_restart(rq); 312 } else if (!rq->hrtick_csd_pending) { 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 314 rq->hrtick_csd_pending = 1; 315 } 316 } 317 318 #else 319 /* 320 * Called to set the hrtick timer state. 321 * 322 * called with rq->lock held and irqs disabled 323 */ 324 void hrtick_start(struct rq *rq, u64 delay) 325 { 326 /* 327 * Don't schedule slices shorter than 10000ns, that just 328 * doesn't make sense. Rely on vruntime for fairness. 329 */ 330 delay = max_t(u64, delay, 10000LL); 331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 332 HRTIMER_MODE_REL_PINNED); 333 } 334 #endif /* CONFIG_SMP */ 335 336 static void init_rq_hrtick(struct rq *rq) 337 { 338 #ifdef CONFIG_SMP 339 rq->hrtick_csd_pending = 0; 340 341 rq->hrtick_csd.flags = 0; 342 rq->hrtick_csd.func = __hrtick_start; 343 rq->hrtick_csd.info = rq; 344 #endif 345 346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 347 rq->hrtick_timer.function = hrtick; 348 } 349 #else /* CONFIG_SCHED_HRTICK */ 350 static inline void hrtick_clear(struct rq *rq) 351 { 352 } 353 354 static inline void init_rq_hrtick(struct rq *rq) 355 { 356 } 357 #endif /* CONFIG_SCHED_HRTICK */ 358 359 /* 360 * cmpxchg based fetch_or, macro so it works for different integer types 361 */ 362 #define fetch_or(ptr, mask) \ 363 ({ \ 364 typeof(ptr) _ptr = (ptr); \ 365 typeof(mask) _mask = (mask); \ 366 typeof(*_ptr) _old, _val = *_ptr; \ 367 \ 368 for (;;) { \ 369 _old = cmpxchg(_ptr, _val, _val | _mask); \ 370 if (_old == _val) \ 371 break; \ 372 _val = _old; \ 373 } \ 374 _old; \ 375 }) 376 377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 378 /* 379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 380 * this avoids any races wrt polling state changes and thereby avoids 381 * spurious IPIs. 382 */ 383 static bool set_nr_and_not_polling(struct task_struct *p) 384 { 385 struct thread_info *ti = task_thread_info(p); 386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 387 } 388 389 /* 390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 391 * 392 * If this returns true, then the idle task promises to call 393 * sched_ttwu_pending() and reschedule soon. 394 */ 395 static bool set_nr_if_polling(struct task_struct *p) 396 { 397 struct thread_info *ti = task_thread_info(p); 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 399 400 for (;;) { 401 if (!(val & _TIF_POLLING_NRFLAG)) 402 return false; 403 if (val & _TIF_NEED_RESCHED) 404 return true; 405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 406 if (old == val) 407 break; 408 val = old; 409 } 410 return true; 411 } 412 413 #else 414 static bool set_nr_and_not_polling(struct task_struct *p) 415 { 416 set_tsk_need_resched(p); 417 return true; 418 } 419 420 #ifdef CONFIG_SMP 421 static bool set_nr_if_polling(struct task_struct *p) 422 { 423 return false; 424 } 425 #endif 426 #endif 427 428 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 429 { 430 struct wake_q_node *node = &task->wake_q; 431 432 /* 433 * Atomically grab the task, if ->wake_q is !nil already it means 434 * its already queued (either by us or someone else) and will get the 435 * wakeup due to that. 436 * 437 * This cmpxchg() implies a full barrier, which pairs with the write 438 * barrier implied by the wakeup in wake_up_q(). 439 */ 440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 441 return; 442 443 get_task_struct(task); 444 445 /* 446 * The head is context local, there can be no concurrency. 447 */ 448 *head->lastp = node; 449 head->lastp = &node->next; 450 } 451 452 void wake_up_q(struct wake_q_head *head) 453 { 454 struct wake_q_node *node = head->first; 455 456 while (node != WAKE_Q_TAIL) { 457 struct task_struct *task; 458 459 task = container_of(node, struct task_struct, wake_q); 460 BUG_ON(!task); 461 /* Task can safely be re-inserted now: */ 462 node = node->next; 463 task->wake_q.next = NULL; 464 465 /* 466 * wake_up_process() implies a wmb() to pair with the queueing 467 * in wake_q_add() so as not to miss wakeups. 468 */ 469 wake_up_process(task); 470 put_task_struct(task); 471 } 472 } 473 474 /* 475 * resched_curr - mark rq's current task 'to be rescheduled now'. 476 * 477 * On UP this means the setting of the need_resched flag, on SMP it 478 * might also involve a cross-CPU call to trigger the scheduler on 479 * the target CPU. 480 */ 481 void resched_curr(struct rq *rq) 482 { 483 struct task_struct *curr = rq->curr; 484 int cpu; 485 486 lockdep_assert_held(&rq->lock); 487 488 if (test_tsk_need_resched(curr)) 489 return; 490 491 cpu = cpu_of(rq); 492 493 if (cpu == smp_processor_id()) { 494 set_tsk_need_resched(curr); 495 set_preempt_need_resched(); 496 return; 497 } 498 499 if (set_nr_and_not_polling(curr)) 500 smp_send_reschedule(cpu); 501 else 502 trace_sched_wake_idle_without_ipi(cpu); 503 } 504 505 void resched_cpu(int cpu) 506 { 507 struct rq *rq = cpu_rq(cpu); 508 unsigned long flags; 509 510 raw_spin_lock_irqsave(&rq->lock, flags); 511 if (cpu_online(cpu) || cpu == smp_processor_id()) 512 resched_curr(rq); 513 raw_spin_unlock_irqrestore(&rq->lock, flags); 514 } 515 516 #ifdef CONFIG_SMP 517 #ifdef CONFIG_NO_HZ_COMMON 518 /* 519 * In the semi idle case, use the nearest busy CPU for migrating timers 520 * from an idle CPU. This is good for power-savings. 521 * 522 * We don't do similar optimization for completely idle system, as 523 * selecting an idle CPU will add more delays to the timers than intended 524 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 525 */ 526 int get_nohz_timer_target(void) 527 { 528 int i, cpu = smp_processor_id(); 529 struct sched_domain *sd; 530 531 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 532 return cpu; 533 534 rcu_read_lock(); 535 for_each_domain(cpu, sd) { 536 for_each_cpu(i, sched_domain_span(sd)) { 537 if (cpu == i) 538 continue; 539 540 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 541 cpu = i; 542 goto unlock; 543 } 544 } 545 } 546 547 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 548 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 549 unlock: 550 rcu_read_unlock(); 551 return cpu; 552 } 553 554 /* 555 * When add_timer_on() enqueues a timer into the timer wheel of an 556 * idle CPU then this timer might expire before the next timer event 557 * which is scheduled to wake up that CPU. In case of a completely 558 * idle system the next event might even be infinite time into the 559 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 560 * leaves the inner idle loop so the newly added timer is taken into 561 * account when the CPU goes back to idle and evaluates the timer 562 * wheel for the next timer event. 563 */ 564 static void wake_up_idle_cpu(int cpu) 565 { 566 struct rq *rq = cpu_rq(cpu); 567 568 if (cpu == smp_processor_id()) 569 return; 570 571 if (set_nr_and_not_polling(rq->idle)) 572 smp_send_reschedule(cpu); 573 else 574 trace_sched_wake_idle_without_ipi(cpu); 575 } 576 577 static bool wake_up_full_nohz_cpu(int cpu) 578 { 579 /* 580 * We just need the target to call irq_exit() and re-evaluate 581 * the next tick. The nohz full kick at least implies that. 582 * If needed we can still optimize that later with an 583 * empty IRQ. 584 */ 585 if (cpu_is_offline(cpu)) 586 return true; /* Don't try to wake offline CPUs. */ 587 if (tick_nohz_full_cpu(cpu)) { 588 if (cpu != smp_processor_id() || 589 tick_nohz_tick_stopped()) 590 tick_nohz_full_kick_cpu(cpu); 591 return true; 592 } 593 594 return false; 595 } 596 597 /* 598 * Wake up the specified CPU. If the CPU is going offline, it is the 599 * caller's responsibility to deal with the lost wakeup, for example, 600 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 601 */ 602 void wake_up_nohz_cpu(int cpu) 603 { 604 if (!wake_up_full_nohz_cpu(cpu)) 605 wake_up_idle_cpu(cpu); 606 } 607 608 static inline bool got_nohz_idle_kick(void) 609 { 610 int cpu = smp_processor_id(); 611 612 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 613 return false; 614 615 if (idle_cpu(cpu) && !need_resched()) 616 return true; 617 618 /* 619 * We can't run Idle Load Balance on this CPU for this time so we 620 * cancel it and clear NOHZ_BALANCE_KICK 621 */ 622 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 623 return false; 624 } 625 626 #else /* CONFIG_NO_HZ_COMMON */ 627 628 static inline bool got_nohz_idle_kick(void) 629 { 630 return false; 631 } 632 633 #endif /* CONFIG_NO_HZ_COMMON */ 634 635 #ifdef CONFIG_NO_HZ_FULL 636 bool sched_can_stop_tick(struct rq *rq) 637 { 638 int fifo_nr_running; 639 640 /* Deadline tasks, even if single, need the tick */ 641 if (rq->dl.dl_nr_running) 642 return false; 643 644 /* 645 * If there are more than one RR tasks, we need the tick to effect the 646 * actual RR behaviour. 647 */ 648 if (rq->rt.rr_nr_running) { 649 if (rq->rt.rr_nr_running == 1) 650 return true; 651 else 652 return false; 653 } 654 655 /* 656 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 657 * forced preemption between FIFO tasks. 658 */ 659 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 660 if (fifo_nr_running) 661 return true; 662 663 /* 664 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 665 * if there's more than one we need the tick for involuntary 666 * preemption. 667 */ 668 if (rq->nr_running > 1) 669 return false; 670 671 return true; 672 } 673 #endif /* CONFIG_NO_HZ_FULL */ 674 675 void sched_avg_update(struct rq *rq) 676 { 677 s64 period = sched_avg_period(); 678 679 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 680 /* 681 * Inline assembly required to prevent the compiler 682 * optimising this loop into a divmod call. 683 * See __iter_div_u64_rem() for another example of this. 684 */ 685 asm("" : "+rm" (rq->age_stamp)); 686 rq->age_stamp += period; 687 rq->rt_avg /= 2; 688 } 689 } 690 691 #endif /* CONFIG_SMP */ 692 693 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 694 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 695 /* 696 * Iterate task_group tree rooted at *from, calling @down when first entering a 697 * node and @up when leaving it for the final time. 698 * 699 * Caller must hold rcu_lock or sufficient equivalent. 700 */ 701 int walk_tg_tree_from(struct task_group *from, 702 tg_visitor down, tg_visitor up, void *data) 703 { 704 struct task_group *parent, *child; 705 int ret; 706 707 parent = from; 708 709 down: 710 ret = (*down)(parent, data); 711 if (ret) 712 goto out; 713 list_for_each_entry_rcu(child, &parent->children, siblings) { 714 parent = child; 715 goto down; 716 717 up: 718 continue; 719 } 720 ret = (*up)(parent, data); 721 if (ret || parent == from) 722 goto out; 723 724 child = parent; 725 parent = parent->parent; 726 if (parent) 727 goto up; 728 out: 729 return ret; 730 } 731 732 int tg_nop(struct task_group *tg, void *data) 733 { 734 return 0; 735 } 736 #endif 737 738 static void set_load_weight(struct task_struct *p, bool update_load) 739 { 740 int prio = p->static_prio - MAX_RT_PRIO; 741 struct load_weight *load = &p->se.load; 742 743 /* 744 * SCHED_IDLE tasks get minimal weight: 745 */ 746 if (idle_policy(p->policy)) { 747 load->weight = scale_load(WEIGHT_IDLEPRIO); 748 load->inv_weight = WMULT_IDLEPRIO; 749 return; 750 } 751 752 /* 753 * SCHED_OTHER tasks have to update their load when changing their 754 * weight 755 */ 756 if (update_load && p->sched_class == &fair_sched_class) { 757 reweight_task(p, prio); 758 } else { 759 load->weight = scale_load(sched_prio_to_weight[prio]); 760 load->inv_weight = sched_prio_to_wmult[prio]; 761 } 762 } 763 764 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 765 { 766 if (!(flags & ENQUEUE_NOCLOCK)) 767 update_rq_clock(rq); 768 769 if (!(flags & ENQUEUE_RESTORE)) 770 sched_info_queued(rq, p); 771 772 p->sched_class->enqueue_task(rq, p, flags); 773 } 774 775 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 776 { 777 if (!(flags & DEQUEUE_NOCLOCK)) 778 update_rq_clock(rq); 779 780 if (!(flags & DEQUEUE_SAVE)) 781 sched_info_dequeued(rq, p); 782 783 p->sched_class->dequeue_task(rq, p, flags); 784 } 785 786 void activate_task(struct rq *rq, struct task_struct *p, int flags) 787 { 788 if (task_contributes_to_load(p)) 789 rq->nr_uninterruptible--; 790 791 enqueue_task(rq, p, flags); 792 } 793 794 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 795 { 796 if (task_contributes_to_load(p)) 797 rq->nr_uninterruptible++; 798 799 dequeue_task(rq, p, flags); 800 } 801 802 /* 803 * __normal_prio - return the priority that is based on the static prio 804 */ 805 static inline int __normal_prio(struct task_struct *p) 806 { 807 return p->static_prio; 808 } 809 810 /* 811 * Calculate the expected normal priority: i.e. priority 812 * without taking RT-inheritance into account. Might be 813 * boosted by interactivity modifiers. Changes upon fork, 814 * setprio syscalls, and whenever the interactivity 815 * estimator recalculates. 816 */ 817 static inline int normal_prio(struct task_struct *p) 818 { 819 int prio; 820 821 if (task_has_dl_policy(p)) 822 prio = MAX_DL_PRIO-1; 823 else if (task_has_rt_policy(p)) 824 prio = MAX_RT_PRIO-1 - p->rt_priority; 825 else 826 prio = __normal_prio(p); 827 return prio; 828 } 829 830 /* 831 * Calculate the current priority, i.e. the priority 832 * taken into account by the scheduler. This value might 833 * be boosted by RT tasks, or might be boosted by 834 * interactivity modifiers. Will be RT if the task got 835 * RT-boosted. If not then it returns p->normal_prio. 836 */ 837 static int effective_prio(struct task_struct *p) 838 { 839 p->normal_prio = normal_prio(p); 840 /* 841 * If we are RT tasks or we were boosted to RT priority, 842 * keep the priority unchanged. Otherwise, update priority 843 * to the normal priority: 844 */ 845 if (!rt_prio(p->prio)) 846 return p->normal_prio; 847 return p->prio; 848 } 849 850 /** 851 * task_curr - is this task currently executing on a CPU? 852 * @p: the task in question. 853 * 854 * Return: 1 if the task is currently executing. 0 otherwise. 855 */ 856 inline int task_curr(const struct task_struct *p) 857 { 858 return cpu_curr(task_cpu(p)) == p; 859 } 860 861 /* 862 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 863 * use the balance_callback list if you want balancing. 864 * 865 * this means any call to check_class_changed() must be followed by a call to 866 * balance_callback(). 867 */ 868 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 869 const struct sched_class *prev_class, 870 int oldprio) 871 { 872 if (prev_class != p->sched_class) { 873 if (prev_class->switched_from) 874 prev_class->switched_from(rq, p); 875 876 p->sched_class->switched_to(rq, p); 877 } else if (oldprio != p->prio || dl_task(p)) 878 p->sched_class->prio_changed(rq, p, oldprio); 879 } 880 881 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 882 { 883 const struct sched_class *class; 884 885 if (p->sched_class == rq->curr->sched_class) { 886 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 887 } else { 888 for_each_class(class) { 889 if (class == rq->curr->sched_class) 890 break; 891 if (class == p->sched_class) { 892 resched_curr(rq); 893 break; 894 } 895 } 896 } 897 898 /* 899 * A queue event has occurred, and we're going to schedule. In 900 * this case, we can save a useless back to back clock update. 901 */ 902 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 903 rq_clock_skip_update(rq, true); 904 } 905 906 #ifdef CONFIG_SMP 907 /* 908 * This is how migration works: 909 * 910 * 1) we invoke migration_cpu_stop() on the target CPU using 911 * stop_one_cpu(). 912 * 2) stopper starts to run (implicitly forcing the migrated thread 913 * off the CPU) 914 * 3) it checks whether the migrated task is still in the wrong runqueue. 915 * 4) if it's in the wrong runqueue then the migration thread removes 916 * it and puts it into the right queue. 917 * 5) stopper completes and stop_one_cpu() returns and the migration 918 * is done. 919 */ 920 921 /* 922 * move_queued_task - move a queued task to new rq. 923 * 924 * Returns (locked) new rq. Old rq's lock is released. 925 */ 926 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 927 struct task_struct *p, int new_cpu) 928 { 929 lockdep_assert_held(&rq->lock); 930 931 p->on_rq = TASK_ON_RQ_MIGRATING; 932 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 933 set_task_cpu(p, new_cpu); 934 rq_unlock(rq, rf); 935 936 rq = cpu_rq(new_cpu); 937 938 rq_lock(rq, rf); 939 BUG_ON(task_cpu(p) != new_cpu); 940 enqueue_task(rq, p, 0); 941 p->on_rq = TASK_ON_RQ_QUEUED; 942 check_preempt_curr(rq, p, 0); 943 944 return rq; 945 } 946 947 struct migration_arg { 948 struct task_struct *task; 949 int dest_cpu; 950 }; 951 952 /* 953 * Move (not current) task off this CPU, onto the destination CPU. We're doing 954 * this because either it can't run here any more (set_cpus_allowed() 955 * away from this CPU, or CPU going down), or because we're 956 * attempting to rebalance this task on exec (sched_exec). 957 * 958 * So we race with normal scheduler movements, but that's OK, as long 959 * as the task is no longer on this CPU. 960 */ 961 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 962 struct task_struct *p, int dest_cpu) 963 { 964 if (p->flags & PF_KTHREAD) { 965 if (unlikely(!cpu_online(dest_cpu))) 966 return rq; 967 } else { 968 if (unlikely(!cpu_active(dest_cpu))) 969 return rq; 970 } 971 972 /* Affinity changed (again). */ 973 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 974 return rq; 975 976 update_rq_clock(rq); 977 rq = move_queued_task(rq, rf, p, dest_cpu); 978 979 return rq; 980 } 981 982 /* 983 * migration_cpu_stop - this will be executed by a highprio stopper thread 984 * and performs thread migration by bumping thread off CPU then 985 * 'pushing' onto another runqueue. 986 */ 987 static int migration_cpu_stop(void *data) 988 { 989 struct migration_arg *arg = data; 990 struct task_struct *p = arg->task; 991 struct rq *rq = this_rq(); 992 struct rq_flags rf; 993 994 /* 995 * The original target CPU might have gone down and we might 996 * be on another CPU but it doesn't matter. 997 */ 998 local_irq_disable(); 999 /* 1000 * We need to explicitly wake pending tasks before running 1001 * __migrate_task() such that we will not miss enforcing cpus_allowed 1002 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1003 */ 1004 sched_ttwu_pending(); 1005 1006 raw_spin_lock(&p->pi_lock); 1007 rq_lock(rq, &rf); 1008 /* 1009 * If task_rq(p) != rq, it cannot be migrated here, because we're 1010 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1011 * we're holding p->pi_lock. 1012 */ 1013 if (task_rq(p) == rq) { 1014 if (task_on_rq_queued(p)) 1015 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1016 else 1017 p->wake_cpu = arg->dest_cpu; 1018 } 1019 rq_unlock(rq, &rf); 1020 raw_spin_unlock(&p->pi_lock); 1021 1022 local_irq_enable(); 1023 return 0; 1024 } 1025 1026 /* 1027 * sched_class::set_cpus_allowed must do the below, but is not required to 1028 * actually call this function. 1029 */ 1030 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1031 { 1032 cpumask_copy(&p->cpus_allowed, new_mask); 1033 p->nr_cpus_allowed = cpumask_weight(new_mask); 1034 } 1035 1036 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1037 { 1038 struct rq *rq = task_rq(p); 1039 bool queued, running; 1040 1041 lockdep_assert_held(&p->pi_lock); 1042 1043 queued = task_on_rq_queued(p); 1044 running = task_current(rq, p); 1045 1046 if (queued) { 1047 /* 1048 * Because __kthread_bind() calls this on blocked tasks without 1049 * holding rq->lock. 1050 */ 1051 lockdep_assert_held(&rq->lock); 1052 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1053 } 1054 if (running) 1055 put_prev_task(rq, p); 1056 1057 p->sched_class->set_cpus_allowed(p, new_mask); 1058 1059 if (queued) 1060 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1061 if (running) 1062 set_curr_task(rq, p); 1063 } 1064 1065 /* 1066 * Change a given task's CPU affinity. Migrate the thread to a 1067 * proper CPU and schedule it away if the CPU it's executing on 1068 * is removed from the allowed bitmask. 1069 * 1070 * NOTE: the caller must have a valid reference to the task, the 1071 * task must not exit() & deallocate itself prematurely. The 1072 * call is not atomic; no spinlocks may be held. 1073 */ 1074 static int __set_cpus_allowed_ptr(struct task_struct *p, 1075 const struct cpumask *new_mask, bool check) 1076 { 1077 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1078 unsigned int dest_cpu; 1079 struct rq_flags rf; 1080 struct rq *rq; 1081 int ret = 0; 1082 1083 rq = task_rq_lock(p, &rf); 1084 update_rq_clock(rq); 1085 1086 if (p->flags & PF_KTHREAD) { 1087 /* 1088 * Kernel threads are allowed on online && !active CPUs 1089 */ 1090 cpu_valid_mask = cpu_online_mask; 1091 } 1092 1093 /* 1094 * Must re-check here, to close a race against __kthread_bind(), 1095 * sched_setaffinity() is not guaranteed to observe the flag. 1096 */ 1097 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1098 ret = -EINVAL; 1099 goto out; 1100 } 1101 1102 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1103 goto out; 1104 1105 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1106 ret = -EINVAL; 1107 goto out; 1108 } 1109 1110 do_set_cpus_allowed(p, new_mask); 1111 1112 if (p->flags & PF_KTHREAD) { 1113 /* 1114 * For kernel threads that do indeed end up on online && 1115 * !active we want to ensure they are strict per-CPU threads. 1116 */ 1117 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1118 !cpumask_intersects(new_mask, cpu_active_mask) && 1119 p->nr_cpus_allowed != 1); 1120 } 1121 1122 /* Can the task run on the task's current CPU? If so, we're done */ 1123 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1124 goto out; 1125 1126 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1127 if (task_running(rq, p) || p->state == TASK_WAKING) { 1128 struct migration_arg arg = { p, dest_cpu }; 1129 /* Need help from migration thread: drop lock and wait. */ 1130 task_rq_unlock(rq, p, &rf); 1131 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1132 tlb_migrate_finish(p->mm); 1133 return 0; 1134 } else if (task_on_rq_queued(p)) { 1135 /* 1136 * OK, since we're going to drop the lock immediately 1137 * afterwards anyway. 1138 */ 1139 rq = move_queued_task(rq, &rf, p, dest_cpu); 1140 } 1141 out: 1142 task_rq_unlock(rq, p, &rf); 1143 1144 return ret; 1145 } 1146 1147 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1148 { 1149 return __set_cpus_allowed_ptr(p, new_mask, false); 1150 } 1151 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1152 1153 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1154 { 1155 #ifdef CONFIG_SCHED_DEBUG 1156 /* 1157 * We should never call set_task_cpu() on a blocked task, 1158 * ttwu() will sort out the placement. 1159 */ 1160 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1161 !p->on_rq); 1162 1163 /* 1164 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1165 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1166 * time relying on p->on_rq. 1167 */ 1168 WARN_ON_ONCE(p->state == TASK_RUNNING && 1169 p->sched_class == &fair_sched_class && 1170 (p->on_rq && !task_on_rq_migrating(p))); 1171 1172 #ifdef CONFIG_LOCKDEP 1173 /* 1174 * The caller should hold either p->pi_lock or rq->lock, when changing 1175 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1176 * 1177 * sched_move_task() holds both and thus holding either pins the cgroup, 1178 * see task_group(). 1179 * 1180 * Furthermore, all task_rq users should acquire both locks, see 1181 * task_rq_lock(). 1182 */ 1183 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1184 lockdep_is_held(&task_rq(p)->lock))); 1185 #endif 1186 /* 1187 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1188 */ 1189 WARN_ON_ONCE(!cpu_online(new_cpu)); 1190 #endif 1191 1192 trace_sched_migrate_task(p, new_cpu); 1193 1194 if (task_cpu(p) != new_cpu) { 1195 if (p->sched_class->migrate_task_rq) 1196 p->sched_class->migrate_task_rq(p); 1197 p->se.nr_migrations++; 1198 perf_event_task_migrate(p); 1199 } 1200 1201 __set_task_cpu(p, new_cpu); 1202 } 1203 1204 static void __migrate_swap_task(struct task_struct *p, int cpu) 1205 { 1206 if (task_on_rq_queued(p)) { 1207 struct rq *src_rq, *dst_rq; 1208 struct rq_flags srf, drf; 1209 1210 src_rq = task_rq(p); 1211 dst_rq = cpu_rq(cpu); 1212 1213 rq_pin_lock(src_rq, &srf); 1214 rq_pin_lock(dst_rq, &drf); 1215 1216 p->on_rq = TASK_ON_RQ_MIGRATING; 1217 deactivate_task(src_rq, p, 0); 1218 set_task_cpu(p, cpu); 1219 activate_task(dst_rq, p, 0); 1220 p->on_rq = TASK_ON_RQ_QUEUED; 1221 check_preempt_curr(dst_rq, p, 0); 1222 1223 rq_unpin_lock(dst_rq, &drf); 1224 rq_unpin_lock(src_rq, &srf); 1225 1226 } else { 1227 /* 1228 * Task isn't running anymore; make it appear like we migrated 1229 * it before it went to sleep. This means on wakeup we make the 1230 * previous CPU our target instead of where it really is. 1231 */ 1232 p->wake_cpu = cpu; 1233 } 1234 } 1235 1236 struct migration_swap_arg { 1237 struct task_struct *src_task, *dst_task; 1238 int src_cpu, dst_cpu; 1239 }; 1240 1241 static int migrate_swap_stop(void *data) 1242 { 1243 struct migration_swap_arg *arg = data; 1244 struct rq *src_rq, *dst_rq; 1245 int ret = -EAGAIN; 1246 1247 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1248 return -EAGAIN; 1249 1250 src_rq = cpu_rq(arg->src_cpu); 1251 dst_rq = cpu_rq(arg->dst_cpu); 1252 1253 double_raw_lock(&arg->src_task->pi_lock, 1254 &arg->dst_task->pi_lock); 1255 double_rq_lock(src_rq, dst_rq); 1256 1257 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1258 goto unlock; 1259 1260 if (task_cpu(arg->src_task) != arg->src_cpu) 1261 goto unlock; 1262 1263 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1264 goto unlock; 1265 1266 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1267 goto unlock; 1268 1269 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1270 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1271 1272 ret = 0; 1273 1274 unlock: 1275 double_rq_unlock(src_rq, dst_rq); 1276 raw_spin_unlock(&arg->dst_task->pi_lock); 1277 raw_spin_unlock(&arg->src_task->pi_lock); 1278 1279 return ret; 1280 } 1281 1282 /* 1283 * Cross migrate two tasks 1284 */ 1285 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1286 { 1287 struct migration_swap_arg arg; 1288 int ret = -EINVAL; 1289 1290 arg = (struct migration_swap_arg){ 1291 .src_task = cur, 1292 .src_cpu = task_cpu(cur), 1293 .dst_task = p, 1294 .dst_cpu = task_cpu(p), 1295 }; 1296 1297 if (arg.src_cpu == arg.dst_cpu) 1298 goto out; 1299 1300 /* 1301 * These three tests are all lockless; this is OK since all of them 1302 * will be re-checked with proper locks held further down the line. 1303 */ 1304 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1305 goto out; 1306 1307 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1308 goto out; 1309 1310 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1311 goto out; 1312 1313 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1314 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1315 1316 out: 1317 return ret; 1318 } 1319 1320 /* 1321 * wait_task_inactive - wait for a thread to unschedule. 1322 * 1323 * If @match_state is nonzero, it's the @p->state value just checked and 1324 * not expected to change. If it changes, i.e. @p might have woken up, 1325 * then return zero. When we succeed in waiting for @p to be off its CPU, 1326 * we return a positive number (its total switch count). If a second call 1327 * a short while later returns the same number, the caller can be sure that 1328 * @p has remained unscheduled the whole time. 1329 * 1330 * The caller must ensure that the task *will* unschedule sometime soon, 1331 * else this function might spin for a *long* time. This function can't 1332 * be called with interrupts off, or it may introduce deadlock with 1333 * smp_call_function() if an IPI is sent by the same process we are 1334 * waiting to become inactive. 1335 */ 1336 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1337 { 1338 int running, queued; 1339 struct rq_flags rf; 1340 unsigned long ncsw; 1341 struct rq *rq; 1342 1343 for (;;) { 1344 /* 1345 * We do the initial early heuristics without holding 1346 * any task-queue locks at all. We'll only try to get 1347 * the runqueue lock when things look like they will 1348 * work out! 1349 */ 1350 rq = task_rq(p); 1351 1352 /* 1353 * If the task is actively running on another CPU 1354 * still, just relax and busy-wait without holding 1355 * any locks. 1356 * 1357 * NOTE! Since we don't hold any locks, it's not 1358 * even sure that "rq" stays as the right runqueue! 1359 * But we don't care, since "task_running()" will 1360 * return false if the runqueue has changed and p 1361 * is actually now running somewhere else! 1362 */ 1363 while (task_running(rq, p)) { 1364 if (match_state && unlikely(p->state != match_state)) 1365 return 0; 1366 cpu_relax(); 1367 } 1368 1369 /* 1370 * Ok, time to look more closely! We need the rq 1371 * lock now, to be *sure*. If we're wrong, we'll 1372 * just go back and repeat. 1373 */ 1374 rq = task_rq_lock(p, &rf); 1375 trace_sched_wait_task(p); 1376 running = task_running(rq, p); 1377 queued = task_on_rq_queued(p); 1378 ncsw = 0; 1379 if (!match_state || p->state == match_state) 1380 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1381 task_rq_unlock(rq, p, &rf); 1382 1383 /* 1384 * If it changed from the expected state, bail out now. 1385 */ 1386 if (unlikely(!ncsw)) 1387 break; 1388 1389 /* 1390 * Was it really running after all now that we 1391 * checked with the proper locks actually held? 1392 * 1393 * Oops. Go back and try again.. 1394 */ 1395 if (unlikely(running)) { 1396 cpu_relax(); 1397 continue; 1398 } 1399 1400 /* 1401 * It's not enough that it's not actively running, 1402 * it must be off the runqueue _entirely_, and not 1403 * preempted! 1404 * 1405 * So if it was still runnable (but just not actively 1406 * running right now), it's preempted, and we should 1407 * yield - it could be a while. 1408 */ 1409 if (unlikely(queued)) { 1410 ktime_t to = NSEC_PER_SEC / HZ; 1411 1412 set_current_state(TASK_UNINTERRUPTIBLE); 1413 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1414 continue; 1415 } 1416 1417 /* 1418 * Ahh, all good. It wasn't running, and it wasn't 1419 * runnable, which means that it will never become 1420 * running in the future either. We're all done! 1421 */ 1422 break; 1423 } 1424 1425 return ncsw; 1426 } 1427 1428 /*** 1429 * kick_process - kick a running thread to enter/exit the kernel 1430 * @p: the to-be-kicked thread 1431 * 1432 * Cause a process which is running on another CPU to enter 1433 * kernel-mode, without any delay. (to get signals handled.) 1434 * 1435 * NOTE: this function doesn't have to take the runqueue lock, 1436 * because all it wants to ensure is that the remote task enters 1437 * the kernel. If the IPI races and the task has been migrated 1438 * to another CPU then no harm is done and the purpose has been 1439 * achieved as well. 1440 */ 1441 void kick_process(struct task_struct *p) 1442 { 1443 int cpu; 1444 1445 preempt_disable(); 1446 cpu = task_cpu(p); 1447 if ((cpu != smp_processor_id()) && task_curr(p)) 1448 smp_send_reschedule(cpu); 1449 preempt_enable(); 1450 } 1451 EXPORT_SYMBOL_GPL(kick_process); 1452 1453 /* 1454 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1455 * 1456 * A few notes on cpu_active vs cpu_online: 1457 * 1458 * - cpu_active must be a subset of cpu_online 1459 * 1460 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1461 * see __set_cpus_allowed_ptr(). At this point the newly online 1462 * CPU isn't yet part of the sched domains, and balancing will not 1463 * see it. 1464 * 1465 * - on CPU-down we clear cpu_active() to mask the sched domains and 1466 * avoid the load balancer to place new tasks on the to be removed 1467 * CPU. Existing tasks will remain running there and will be taken 1468 * off. 1469 * 1470 * This means that fallback selection must not select !active CPUs. 1471 * And can assume that any active CPU must be online. Conversely 1472 * select_task_rq() below may allow selection of !active CPUs in order 1473 * to satisfy the above rules. 1474 */ 1475 static int select_fallback_rq(int cpu, struct task_struct *p) 1476 { 1477 int nid = cpu_to_node(cpu); 1478 const struct cpumask *nodemask = NULL; 1479 enum { cpuset, possible, fail } state = cpuset; 1480 int dest_cpu; 1481 1482 /* 1483 * If the node that the CPU is on has been offlined, cpu_to_node() 1484 * will return -1. There is no CPU on the node, and we should 1485 * select the CPU on the other node. 1486 */ 1487 if (nid != -1) { 1488 nodemask = cpumask_of_node(nid); 1489 1490 /* Look for allowed, online CPU in same node. */ 1491 for_each_cpu(dest_cpu, nodemask) { 1492 if (!cpu_active(dest_cpu)) 1493 continue; 1494 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1495 return dest_cpu; 1496 } 1497 } 1498 1499 for (;;) { 1500 /* Any allowed, online CPU? */ 1501 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1502 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1503 continue; 1504 if (!cpu_online(dest_cpu)) 1505 continue; 1506 goto out; 1507 } 1508 1509 /* No more Mr. Nice Guy. */ 1510 switch (state) { 1511 case cpuset: 1512 if (IS_ENABLED(CONFIG_CPUSETS)) { 1513 cpuset_cpus_allowed_fallback(p); 1514 state = possible; 1515 break; 1516 } 1517 /* Fall-through */ 1518 case possible: 1519 do_set_cpus_allowed(p, cpu_possible_mask); 1520 state = fail; 1521 break; 1522 1523 case fail: 1524 BUG(); 1525 break; 1526 } 1527 } 1528 1529 out: 1530 if (state != cpuset) { 1531 /* 1532 * Don't tell them about moving exiting tasks or 1533 * kernel threads (both mm NULL), since they never 1534 * leave kernel. 1535 */ 1536 if (p->mm && printk_ratelimit()) { 1537 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1538 task_pid_nr(p), p->comm, cpu); 1539 } 1540 } 1541 1542 return dest_cpu; 1543 } 1544 1545 /* 1546 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1547 */ 1548 static inline 1549 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1550 { 1551 lockdep_assert_held(&p->pi_lock); 1552 1553 if (p->nr_cpus_allowed > 1) 1554 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1555 else 1556 cpu = cpumask_any(&p->cpus_allowed); 1557 1558 /* 1559 * In order not to call set_task_cpu() on a blocking task we need 1560 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1561 * CPU. 1562 * 1563 * Since this is common to all placement strategies, this lives here. 1564 * 1565 * [ this allows ->select_task() to simply return task_cpu(p) and 1566 * not worry about this generic constraint ] 1567 */ 1568 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || 1569 !cpu_online(cpu))) 1570 cpu = select_fallback_rq(task_cpu(p), p); 1571 1572 return cpu; 1573 } 1574 1575 static void update_avg(u64 *avg, u64 sample) 1576 { 1577 s64 diff = sample - *avg; 1578 *avg += diff >> 3; 1579 } 1580 1581 void sched_set_stop_task(int cpu, struct task_struct *stop) 1582 { 1583 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1584 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1585 1586 if (stop) { 1587 /* 1588 * Make it appear like a SCHED_FIFO task, its something 1589 * userspace knows about and won't get confused about. 1590 * 1591 * Also, it will make PI more or less work without too 1592 * much confusion -- but then, stop work should not 1593 * rely on PI working anyway. 1594 */ 1595 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1596 1597 stop->sched_class = &stop_sched_class; 1598 } 1599 1600 cpu_rq(cpu)->stop = stop; 1601 1602 if (old_stop) { 1603 /* 1604 * Reset it back to a normal scheduling class so that 1605 * it can die in pieces. 1606 */ 1607 old_stop->sched_class = &rt_sched_class; 1608 } 1609 } 1610 1611 #else 1612 1613 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1614 const struct cpumask *new_mask, bool check) 1615 { 1616 return set_cpus_allowed_ptr(p, new_mask); 1617 } 1618 1619 #endif /* CONFIG_SMP */ 1620 1621 static void 1622 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1623 { 1624 struct rq *rq; 1625 1626 if (!schedstat_enabled()) 1627 return; 1628 1629 rq = this_rq(); 1630 1631 #ifdef CONFIG_SMP 1632 if (cpu == rq->cpu) { 1633 schedstat_inc(rq->ttwu_local); 1634 schedstat_inc(p->se.statistics.nr_wakeups_local); 1635 } else { 1636 struct sched_domain *sd; 1637 1638 schedstat_inc(p->se.statistics.nr_wakeups_remote); 1639 rcu_read_lock(); 1640 for_each_domain(rq->cpu, sd) { 1641 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1642 schedstat_inc(sd->ttwu_wake_remote); 1643 break; 1644 } 1645 } 1646 rcu_read_unlock(); 1647 } 1648 1649 if (wake_flags & WF_MIGRATED) 1650 schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1651 #endif /* CONFIG_SMP */ 1652 1653 schedstat_inc(rq->ttwu_count); 1654 schedstat_inc(p->se.statistics.nr_wakeups); 1655 1656 if (wake_flags & WF_SYNC) 1657 schedstat_inc(p->se.statistics.nr_wakeups_sync); 1658 } 1659 1660 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1661 { 1662 activate_task(rq, p, en_flags); 1663 p->on_rq = TASK_ON_RQ_QUEUED; 1664 1665 /* If a worker is waking up, notify the workqueue: */ 1666 if (p->flags & PF_WQ_WORKER) 1667 wq_worker_waking_up(p, cpu_of(rq)); 1668 } 1669 1670 /* 1671 * Mark the task runnable and perform wakeup-preemption. 1672 */ 1673 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1674 struct rq_flags *rf) 1675 { 1676 check_preempt_curr(rq, p, wake_flags); 1677 p->state = TASK_RUNNING; 1678 trace_sched_wakeup(p); 1679 1680 #ifdef CONFIG_SMP 1681 if (p->sched_class->task_woken) { 1682 /* 1683 * Our task @p is fully woken up and running; so its safe to 1684 * drop the rq->lock, hereafter rq is only used for statistics. 1685 */ 1686 rq_unpin_lock(rq, rf); 1687 p->sched_class->task_woken(rq, p); 1688 rq_repin_lock(rq, rf); 1689 } 1690 1691 if (rq->idle_stamp) { 1692 u64 delta = rq_clock(rq) - rq->idle_stamp; 1693 u64 max = 2*rq->max_idle_balance_cost; 1694 1695 update_avg(&rq->avg_idle, delta); 1696 1697 if (rq->avg_idle > max) 1698 rq->avg_idle = max; 1699 1700 rq->idle_stamp = 0; 1701 } 1702 #endif 1703 } 1704 1705 static void 1706 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1707 struct rq_flags *rf) 1708 { 1709 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1710 1711 lockdep_assert_held(&rq->lock); 1712 1713 #ifdef CONFIG_SMP 1714 if (p->sched_contributes_to_load) 1715 rq->nr_uninterruptible--; 1716 1717 if (wake_flags & WF_MIGRATED) 1718 en_flags |= ENQUEUE_MIGRATED; 1719 #endif 1720 1721 ttwu_activate(rq, p, en_flags); 1722 ttwu_do_wakeup(rq, p, wake_flags, rf); 1723 } 1724 1725 /* 1726 * Called in case the task @p isn't fully descheduled from its runqueue, 1727 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1728 * since all we need to do is flip p->state to TASK_RUNNING, since 1729 * the task is still ->on_rq. 1730 */ 1731 static int ttwu_remote(struct task_struct *p, int wake_flags) 1732 { 1733 struct rq_flags rf; 1734 struct rq *rq; 1735 int ret = 0; 1736 1737 rq = __task_rq_lock(p, &rf); 1738 if (task_on_rq_queued(p)) { 1739 /* check_preempt_curr() may use rq clock */ 1740 update_rq_clock(rq); 1741 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1742 ret = 1; 1743 } 1744 __task_rq_unlock(rq, &rf); 1745 1746 return ret; 1747 } 1748 1749 #ifdef CONFIG_SMP 1750 void sched_ttwu_pending(void) 1751 { 1752 struct rq *rq = this_rq(); 1753 struct llist_node *llist = llist_del_all(&rq->wake_list); 1754 struct task_struct *p, *t; 1755 struct rq_flags rf; 1756 1757 if (!llist) 1758 return; 1759 1760 rq_lock_irqsave(rq, &rf); 1761 update_rq_clock(rq); 1762 1763 llist_for_each_entry_safe(p, t, llist, wake_entry) 1764 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1765 1766 rq_unlock_irqrestore(rq, &rf); 1767 } 1768 1769 void scheduler_ipi(void) 1770 { 1771 /* 1772 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1773 * TIF_NEED_RESCHED remotely (for the first time) will also send 1774 * this IPI. 1775 */ 1776 preempt_fold_need_resched(); 1777 1778 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1779 return; 1780 1781 /* 1782 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1783 * traditionally all their work was done from the interrupt return 1784 * path. Now that we actually do some work, we need to make sure 1785 * we do call them. 1786 * 1787 * Some archs already do call them, luckily irq_enter/exit nest 1788 * properly. 1789 * 1790 * Arguably we should visit all archs and update all handlers, 1791 * however a fair share of IPIs are still resched only so this would 1792 * somewhat pessimize the simple resched case. 1793 */ 1794 irq_enter(); 1795 sched_ttwu_pending(); 1796 1797 /* 1798 * Check if someone kicked us for doing the nohz idle load balance. 1799 */ 1800 if (unlikely(got_nohz_idle_kick())) { 1801 this_rq()->idle_balance = 1; 1802 raise_softirq_irqoff(SCHED_SOFTIRQ); 1803 } 1804 irq_exit(); 1805 } 1806 1807 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1808 { 1809 struct rq *rq = cpu_rq(cpu); 1810 1811 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1812 1813 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1814 if (!set_nr_if_polling(rq->idle)) 1815 smp_send_reschedule(cpu); 1816 else 1817 trace_sched_wake_idle_without_ipi(cpu); 1818 } 1819 } 1820 1821 void wake_up_if_idle(int cpu) 1822 { 1823 struct rq *rq = cpu_rq(cpu); 1824 struct rq_flags rf; 1825 1826 rcu_read_lock(); 1827 1828 if (!is_idle_task(rcu_dereference(rq->curr))) 1829 goto out; 1830 1831 if (set_nr_if_polling(rq->idle)) { 1832 trace_sched_wake_idle_without_ipi(cpu); 1833 } else { 1834 rq_lock_irqsave(rq, &rf); 1835 if (is_idle_task(rq->curr)) 1836 smp_send_reschedule(cpu); 1837 /* Else CPU is not idle, do nothing here: */ 1838 rq_unlock_irqrestore(rq, &rf); 1839 } 1840 1841 out: 1842 rcu_read_unlock(); 1843 } 1844 1845 bool cpus_share_cache(int this_cpu, int that_cpu) 1846 { 1847 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1848 } 1849 #endif /* CONFIG_SMP */ 1850 1851 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1852 { 1853 struct rq *rq = cpu_rq(cpu); 1854 struct rq_flags rf; 1855 1856 #if defined(CONFIG_SMP) 1857 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1858 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1859 ttwu_queue_remote(p, cpu, wake_flags); 1860 return; 1861 } 1862 #endif 1863 1864 rq_lock(rq, &rf); 1865 update_rq_clock(rq); 1866 ttwu_do_activate(rq, p, wake_flags, &rf); 1867 rq_unlock(rq, &rf); 1868 } 1869 1870 /* 1871 * Notes on Program-Order guarantees on SMP systems. 1872 * 1873 * MIGRATION 1874 * 1875 * The basic program-order guarantee on SMP systems is that when a task [t] 1876 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1877 * execution on its new CPU [c1]. 1878 * 1879 * For migration (of runnable tasks) this is provided by the following means: 1880 * 1881 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1882 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1883 * rq(c1)->lock (if not at the same time, then in that order). 1884 * C) LOCK of the rq(c1)->lock scheduling in task 1885 * 1886 * Transitivity guarantees that B happens after A and C after B. 1887 * Note: we only require RCpc transitivity. 1888 * Note: the CPU doing B need not be c0 or c1 1889 * 1890 * Example: 1891 * 1892 * CPU0 CPU1 CPU2 1893 * 1894 * LOCK rq(0)->lock 1895 * sched-out X 1896 * sched-in Y 1897 * UNLOCK rq(0)->lock 1898 * 1899 * LOCK rq(0)->lock // orders against CPU0 1900 * dequeue X 1901 * UNLOCK rq(0)->lock 1902 * 1903 * LOCK rq(1)->lock 1904 * enqueue X 1905 * UNLOCK rq(1)->lock 1906 * 1907 * LOCK rq(1)->lock // orders against CPU2 1908 * sched-out Z 1909 * sched-in X 1910 * UNLOCK rq(1)->lock 1911 * 1912 * 1913 * BLOCKING -- aka. SLEEP + WAKEUP 1914 * 1915 * For blocking we (obviously) need to provide the same guarantee as for 1916 * migration. However the means are completely different as there is no lock 1917 * chain to provide order. Instead we do: 1918 * 1919 * 1) smp_store_release(X->on_cpu, 0) 1920 * 2) smp_cond_load_acquire(!X->on_cpu) 1921 * 1922 * Example: 1923 * 1924 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1925 * 1926 * LOCK rq(0)->lock LOCK X->pi_lock 1927 * dequeue X 1928 * sched-out X 1929 * smp_store_release(X->on_cpu, 0); 1930 * 1931 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1932 * X->state = WAKING 1933 * set_task_cpu(X,2) 1934 * 1935 * LOCK rq(2)->lock 1936 * enqueue X 1937 * X->state = RUNNING 1938 * UNLOCK rq(2)->lock 1939 * 1940 * LOCK rq(2)->lock // orders against CPU1 1941 * sched-out Z 1942 * sched-in X 1943 * UNLOCK rq(2)->lock 1944 * 1945 * UNLOCK X->pi_lock 1946 * UNLOCK rq(0)->lock 1947 * 1948 * 1949 * However; for wakeups there is a second guarantee we must provide, namely we 1950 * must observe the state that lead to our wakeup. That is, not only must our 1951 * task observe its own prior state, it must also observe the stores prior to 1952 * its wakeup. 1953 * 1954 * This means that any means of doing remote wakeups must order the CPU doing 1955 * the wakeup against the CPU the task is going to end up running on. This, 1956 * however, is already required for the regular Program-Order guarantee above, 1957 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1958 * 1959 */ 1960 1961 /** 1962 * try_to_wake_up - wake up a thread 1963 * @p: the thread to be awakened 1964 * @state: the mask of task states that can be woken 1965 * @wake_flags: wake modifier flags (WF_*) 1966 * 1967 * If (@state & @p->state) @p->state = TASK_RUNNING. 1968 * 1969 * If the task was not queued/runnable, also place it back on a runqueue. 1970 * 1971 * Atomic against schedule() which would dequeue a task, also see 1972 * set_current_state(). 1973 * 1974 * Return: %true if @p->state changes (an actual wakeup was done), 1975 * %false otherwise. 1976 */ 1977 static int 1978 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1979 { 1980 unsigned long flags; 1981 int cpu, success = 0; 1982 1983 /* 1984 * If we are going to wake up a thread waiting for CONDITION we 1985 * need to ensure that CONDITION=1 done by the caller can not be 1986 * reordered with p->state check below. This pairs with mb() in 1987 * set_current_state() the waiting thread does. 1988 */ 1989 raw_spin_lock_irqsave(&p->pi_lock, flags); 1990 smp_mb__after_spinlock(); 1991 if (!(p->state & state)) 1992 goto out; 1993 1994 trace_sched_waking(p); 1995 1996 /* We're going to change ->state: */ 1997 success = 1; 1998 cpu = task_cpu(p); 1999 2000 /* 2001 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2002 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2003 * in smp_cond_load_acquire() below. 2004 * 2005 * sched_ttwu_pending() try_to_wake_up() 2006 * [S] p->on_rq = 1; [L] P->state 2007 * UNLOCK rq->lock -----. 2008 * \ 2009 * +--- RMB 2010 * schedule() / 2011 * LOCK rq->lock -----' 2012 * UNLOCK rq->lock 2013 * 2014 * [task p] 2015 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2016 * 2017 * Pairs with the UNLOCK+LOCK on rq->lock from the 2018 * last wakeup of our task and the schedule that got our task 2019 * current. 2020 */ 2021 smp_rmb(); 2022 if (p->on_rq && ttwu_remote(p, wake_flags)) 2023 goto stat; 2024 2025 #ifdef CONFIG_SMP 2026 /* 2027 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2028 * possible to, falsely, observe p->on_cpu == 0. 2029 * 2030 * One must be running (->on_cpu == 1) in order to remove oneself 2031 * from the runqueue. 2032 * 2033 * [S] ->on_cpu = 1; [L] ->on_rq 2034 * UNLOCK rq->lock 2035 * RMB 2036 * LOCK rq->lock 2037 * [S] ->on_rq = 0; [L] ->on_cpu 2038 * 2039 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2040 * from the consecutive calls to schedule(); the first switching to our 2041 * task, the second putting it to sleep. 2042 */ 2043 smp_rmb(); 2044 2045 /* 2046 * If the owning (remote) CPU is still in the middle of schedule() with 2047 * this task as prev, wait until its done referencing the task. 2048 * 2049 * Pairs with the smp_store_release() in finish_task(). 2050 * 2051 * This ensures that tasks getting woken will be fully ordered against 2052 * their previous state and preserve Program Order. 2053 */ 2054 smp_cond_load_acquire(&p->on_cpu, !VAL); 2055 2056 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2057 p->state = TASK_WAKING; 2058 2059 if (p->in_iowait) { 2060 delayacct_blkio_end(p); 2061 atomic_dec(&task_rq(p)->nr_iowait); 2062 } 2063 2064 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2065 if (task_cpu(p) != cpu) { 2066 wake_flags |= WF_MIGRATED; 2067 set_task_cpu(p, cpu); 2068 } 2069 2070 #else /* CONFIG_SMP */ 2071 2072 if (p->in_iowait) { 2073 delayacct_blkio_end(p); 2074 atomic_dec(&task_rq(p)->nr_iowait); 2075 } 2076 2077 #endif /* CONFIG_SMP */ 2078 2079 ttwu_queue(p, cpu, wake_flags); 2080 stat: 2081 ttwu_stat(p, cpu, wake_flags); 2082 out: 2083 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2084 2085 return success; 2086 } 2087 2088 /** 2089 * try_to_wake_up_local - try to wake up a local task with rq lock held 2090 * @p: the thread to be awakened 2091 * @rf: request-queue flags for pinning 2092 * 2093 * Put @p on the run-queue if it's not already there. The caller must 2094 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2095 * the current task. 2096 */ 2097 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2098 { 2099 struct rq *rq = task_rq(p); 2100 2101 if (WARN_ON_ONCE(rq != this_rq()) || 2102 WARN_ON_ONCE(p == current)) 2103 return; 2104 2105 lockdep_assert_held(&rq->lock); 2106 2107 if (!raw_spin_trylock(&p->pi_lock)) { 2108 /* 2109 * This is OK, because current is on_cpu, which avoids it being 2110 * picked for load-balance and preemption/IRQs are still 2111 * disabled avoiding further scheduler activity on it and we've 2112 * not yet picked a replacement task. 2113 */ 2114 rq_unlock(rq, rf); 2115 raw_spin_lock(&p->pi_lock); 2116 rq_relock(rq, rf); 2117 } 2118 2119 if (!(p->state & TASK_NORMAL)) 2120 goto out; 2121 2122 trace_sched_waking(p); 2123 2124 if (!task_on_rq_queued(p)) { 2125 if (p->in_iowait) { 2126 delayacct_blkio_end(p); 2127 atomic_dec(&rq->nr_iowait); 2128 } 2129 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2130 } 2131 2132 ttwu_do_wakeup(rq, p, 0, rf); 2133 ttwu_stat(p, smp_processor_id(), 0); 2134 out: 2135 raw_spin_unlock(&p->pi_lock); 2136 } 2137 2138 /** 2139 * wake_up_process - Wake up a specific process 2140 * @p: The process to be woken up. 2141 * 2142 * Attempt to wake up the nominated process and move it to the set of runnable 2143 * processes. 2144 * 2145 * Return: 1 if the process was woken up, 0 if it was already running. 2146 * 2147 * It may be assumed that this function implies a write memory barrier before 2148 * changing the task state if and only if any tasks are woken up. 2149 */ 2150 int wake_up_process(struct task_struct *p) 2151 { 2152 return try_to_wake_up(p, TASK_NORMAL, 0); 2153 } 2154 EXPORT_SYMBOL(wake_up_process); 2155 2156 int wake_up_state(struct task_struct *p, unsigned int state) 2157 { 2158 return try_to_wake_up(p, state, 0); 2159 } 2160 2161 /* 2162 * Perform scheduler related setup for a newly forked process p. 2163 * p is forked by current. 2164 * 2165 * __sched_fork() is basic setup used by init_idle() too: 2166 */ 2167 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2168 { 2169 p->on_rq = 0; 2170 2171 p->se.on_rq = 0; 2172 p->se.exec_start = 0; 2173 p->se.sum_exec_runtime = 0; 2174 p->se.prev_sum_exec_runtime = 0; 2175 p->se.nr_migrations = 0; 2176 p->se.vruntime = 0; 2177 INIT_LIST_HEAD(&p->se.group_node); 2178 2179 #ifdef CONFIG_FAIR_GROUP_SCHED 2180 p->se.cfs_rq = NULL; 2181 #endif 2182 2183 #ifdef CONFIG_SCHEDSTATS 2184 /* Even if schedstat is disabled, there should not be garbage */ 2185 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2186 #endif 2187 2188 RB_CLEAR_NODE(&p->dl.rb_node); 2189 init_dl_task_timer(&p->dl); 2190 init_dl_inactive_task_timer(&p->dl); 2191 __dl_clear_params(p); 2192 2193 INIT_LIST_HEAD(&p->rt.run_list); 2194 p->rt.timeout = 0; 2195 p->rt.time_slice = sched_rr_timeslice; 2196 p->rt.on_rq = 0; 2197 p->rt.on_list = 0; 2198 2199 #ifdef CONFIG_PREEMPT_NOTIFIERS 2200 INIT_HLIST_HEAD(&p->preempt_notifiers); 2201 #endif 2202 2203 #ifdef CONFIG_NUMA_BALANCING 2204 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2205 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2206 p->mm->numa_scan_seq = 0; 2207 } 2208 2209 if (clone_flags & CLONE_VM) 2210 p->numa_preferred_nid = current->numa_preferred_nid; 2211 else 2212 p->numa_preferred_nid = -1; 2213 2214 p->node_stamp = 0ULL; 2215 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2216 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2217 p->numa_work.next = &p->numa_work; 2218 p->numa_faults = NULL; 2219 p->last_task_numa_placement = 0; 2220 p->last_sum_exec_runtime = 0; 2221 2222 p->numa_group = NULL; 2223 #endif /* CONFIG_NUMA_BALANCING */ 2224 } 2225 2226 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2227 2228 #ifdef CONFIG_NUMA_BALANCING 2229 2230 void set_numabalancing_state(bool enabled) 2231 { 2232 if (enabled) 2233 static_branch_enable(&sched_numa_balancing); 2234 else 2235 static_branch_disable(&sched_numa_balancing); 2236 } 2237 2238 #ifdef CONFIG_PROC_SYSCTL 2239 int sysctl_numa_balancing(struct ctl_table *table, int write, 2240 void __user *buffer, size_t *lenp, loff_t *ppos) 2241 { 2242 struct ctl_table t; 2243 int err; 2244 int state = static_branch_likely(&sched_numa_balancing); 2245 2246 if (write && !capable(CAP_SYS_ADMIN)) 2247 return -EPERM; 2248 2249 t = *table; 2250 t.data = &state; 2251 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2252 if (err < 0) 2253 return err; 2254 if (write) 2255 set_numabalancing_state(state); 2256 return err; 2257 } 2258 #endif 2259 #endif 2260 2261 #ifdef CONFIG_SCHEDSTATS 2262 2263 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2264 static bool __initdata __sched_schedstats = false; 2265 2266 static void set_schedstats(bool enabled) 2267 { 2268 if (enabled) 2269 static_branch_enable(&sched_schedstats); 2270 else 2271 static_branch_disable(&sched_schedstats); 2272 } 2273 2274 void force_schedstat_enabled(void) 2275 { 2276 if (!schedstat_enabled()) { 2277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2278 static_branch_enable(&sched_schedstats); 2279 } 2280 } 2281 2282 static int __init setup_schedstats(char *str) 2283 { 2284 int ret = 0; 2285 if (!str) 2286 goto out; 2287 2288 /* 2289 * This code is called before jump labels have been set up, so we can't 2290 * change the static branch directly just yet. Instead set a temporary 2291 * variable so init_schedstats() can do it later. 2292 */ 2293 if (!strcmp(str, "enable")) { 2294 __sched_schedstats = true; 2295 ret = 1; 2296 } else if (!strcmp(str, "disable")) { 2297 __sched_schedstats = false; 2298 ret = 1; 2299 } 2300 out: 2301 if (!ret) 2302 pr_warn("Unable to parse schedstats=\n"); 2303 2304 return ret; 2305 } 2306 __setup("schedstats=", setup_schedstats); 2307 2308 static void __init init_schedstats(void) 2309 { 2310 set_schedstats(__sched_schedstats); 2311 } 2312 2313 #ifdef CONFIG_PROC_SYSCTL 2314 int sysctl_schedstats(struct ctl_table *table, int write, 2315 void __user *buffer, size_t *lenp, loff_t *ppos) 2316 { 2317 struct ctl_table t; 2318 int err; 2319 int state = static_branch_likely(&sched_schedstats); 2320 2321 if (write && !capable(CAP_SYS_ADMIN)) 2322 return -EPERM; 2323 2324 t = *table; 2325 t.data = &state; 2326 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2327 if (err < 0) 2328 return err; 2329 if (write) 2330 set_schedstats(state); 2331 return err; 2332 } 2333 #endif /* CONFIG_PROC_SYSCTL */ 2334 #else /* !CONFIG_SCHEDSTATS */ 2335 static inline void init_schedstats(void) {} 2336 #endif /* CONFIG_SCHEDSTATS */ 2337 2338 /* 2339 * fork()/clone()-time setup: 2340 */ 2341 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2342 { 2343 unsigned long flags; 2344 int cpu = get_cpu(); 2345 2346 __sched_fork(clone_flags, p); 2347 /* 2348 * We mark the process as NEW here. This guarantees that 2349 * nobody will actually run it, and a signal or other external 2350 * event cannot wake it up and insert it on the runqueue either. 2351 */ 2352 p->state = TASK_NEW; 2353 2354 /* 2355 * Make sure we do not leak PI boosting priority to the child. 2356 */ 2357 p->prio = current->normal_prio; 2358 2359 /* 2360 * Revert to default priority/policy on fork if requested. 2361 */ 2362 if (unlikely(p->sched_reset_on_fork)) { 2363 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2364 p->policy = SCHED_NORMAL; 2365 p->static_prio = NICE_TO_PRIO(0); 2366 p->rt_priority = 0; 2367 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2368 p->static_prio = NICE_TO_PRIO(0); 2369 2370 p->prio = p->normal_prio = __normal_prio(p); 2371 set_load_weight(p, false); 2372 2373 /* 2374 * We don't need the reset flag anymore after the fork. It has 2375 * fulfilled its duty: 2376 */ 2377 p->sched_reset_on_fork = 0; 2378 } 2379 2380 if (dl_prio(p->prio)) { 2381 put_cpu(); 2382 return -EAGAIN; 2383 } else if (rt_prio(p->prio)) { 2384 p->sched_class = &rt_sched_class; 2385 } else { 2386 p->sched_class = &fair_sched_class; 2387 } 2388 2389 init_entity_runnable_average(&p->se); 2390 2391 /* 2392 * The child is not yet in the pid-hash so no cgroup attach races, 2393 * and the cgroup is pinned to this child due to cgroup_fork() 2394 * is ran before sched_fork(). 2395 * 2396 * Silence PROVE_RCU. 2397 */ 2398 raw_spin_lock_irqsave(&p->pi_lock, flags); 2399 /* 2400 * We're setting the CPU for the first time, we don't migrate, 2401 * so use __set_task_cpu(). 2402 */ 2403 __set_task_cpu(p, cpu); 2404 if (p->sched_class->task_fork) 2405 p->sched_class->task_fork(p); 2406 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2407 2408 #ifdef CONFIG_SCHED_INFO 2409 if (likely(sched_info_on())) 2410 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2411 #endif 2412 #if defined(CONFIG_SMP) 2413 p->on_cpu = 0; 2414 #endif 2415 init_task_preempt_count(p); 2416 #ifdef CONFIG_SMP 2417 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2418 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2419 #endif 2420 2421 put_cpu(); 2422 return 0; 2423 } 2424 2425 unsigned long to_ratio(u64 period, u64 runtime) 2426 { 2427 if (runtime == RUNTIME_INF) 2428 return BW_UNIT; 2429 2430 /* 2431 * Doing this here saves a lot of checks in all 2432 * the calling paths, and returning zero seems 2433 * safe for them anyway. 2434 */ 2435 if (period == 0) 2436 return 0; 2437 2438 return div64_u64(runtime << BW_SHIFT, period); 2439 } 2440 2441 /* 2442 * wake_up_new_task - wake up a newly created task for the first time. 2443 * 2444 * This function will do some initial scheduler statistics housekeeping 2445 * that must be done for every newly created context, then puts the task 2446 * on the runqueue and wakes it. 2447 */ 2448 void wake_up_new_task(struct task_struct *p) 2449 { 2450 struct rq_flags rf; 2451 struct rq *rq; 2452 2453 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2454 p->state = TASK_RUNNING; 2455 #ifdef CONFIG_SMP 2456 /* 2457 * Fork balancing, do it here and not earlier because: 2458 * - cpus_allowed can change in the fork path 2459 * - any previously selected CPU might disappear through hotplug 2460 * 2461 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2462 * as we're not fully set-up yet. 2463 */ 2464 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2465 #endif 2466 rq = __task_rq_lock(p, &rf); 2467 update_rq_clock(rq); 2468 post_init_entity_util_avg(&p->se); 2469 2470 activate_task(rq, p, ENQUEUE_NOCLOCK); 2471 p->on_rq = TASK_ON_RQ_QUEUED; 2472 trace_sched_wakeup_new(p); 2473 check_preempt_curr(rq, p, WF_FORK); 2474 #ifdef CONFIG_SMP 2475 if (p->sched_class->task_woken) { 2476 /* 2477 * Nothing relies on rq->lock after this, so its fine to 2478 * drop it. 2479 */ 2480 rq_unpin_lock(rq, &rf); 2481 p->sched_class->task_woken(rq, p); 2482 rq_repin_lock(rq, &rf); 2483 } 2484 #endif 2485 task_rq_unlock(rq, p, &rf); 2486 } 2487 2488 #ifdef CONFIG_PREEMPT_NOTIFIERS 2489 2490 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2491 2492 void preempt_notifier_inc(void) 2493 { 2494 static_key_slow_inc(&preempt_notifier_key); 2495 } 2496 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2497 2498 void preempt_notifier_dec(void) 2499 { 2500 static_key_slow_dec(&preempt_notifier_key); 2501 } 2502 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2503 2504 /** 2505 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2506 * @notifier: notifier struct to register 2507 */ 2508 void preempt_notifier_register(struct preempt_notifier *notifier) 2509 { 2510 if (!static_key_false(&preempt_notifier_key)) 2511 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2512 2513 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2514 } 2515 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2516 2517 /** 2518 * preempt_notifier_unregister - no longer interested in preemption notifications 2519 * @notifier: notifier struct to unregister 2520 * 2521 * This is *not* safe to call from within a preemption notifier. 2522 */ 2523 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2524 { 2525 hlist_del(¬ifier->link); 2526 } 2527 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2528 2529 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2530 { 2531 struct preempt_notifier *notifier; 2532 2533 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2534 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2535 } 2536 2537 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2538 { 2539 if (static_key_false(&preempt_notifier_key)) 2540 __fire_sched_in_preempt_notifiers(curr); 2541 } 2542 2543 static void 2544 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2545 struct task_struct *next) 2546 { 2547 struct preempt_notifier *notifier; 2548 2549 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2550 notifier->ops->sched_out(notifier, next); 2551 } 2552 2553 static __always_inline void 2554 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2555 struct task_struct *next) 2556 { 2557 if (static_key_false(&preempt_notifier_key)) 2558 __fire_sched_out_preempt_notifiers(curr, next); 2559 } 2560 2561 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2562 2563 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2564 { 2565 } 2566 2567 static inline void 2568 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2569 struct task_struct *next) 2570 { 2571 } 2572 2573 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2574 2575 static inline void prepare_task(struct task_struct *next) 2576 { 2577 #ifdef CONFIG_SMP 2578 /* 2579 * Claim the task as running, we do this before switching to it 2580 * such that any running task will have this set. 2581 */ 2582 next->on_cpu = 1; 2583 #endif 2584 } 2585 2586 static inline void finish_task(struct task_struct *prev) 2587 { 2588 #ifdef CONFIG_SMP 2589 /* 2590 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2591 * We must ensure this doesn't happen until the switch is completely 2592 * finished. 2593 * 2594 * In particular, the load of prev->state in finish_task_switch() must 2595 * happen before this. 2596 * 2597 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2598 */ 2599 smp_store_release(&prev->on_cpu, 0); 2600 #endif 2601 } 2602 2603 static inline void finish_lock_switch(struct rq *rq) 2604 { 2605 #ifdef CONFIG_DEBUG_SPINLOCK 2606 /* this is a valid case when another task releases the spinlock */ 2607 rq->lock.owner = current; 2608 #endif 2609 /* 2610 * If we are tracking spinlock dependencies then we have to 2611 * fix up the runqueue lock - which gets 'carried over' from 2612 * prev into current: 2613 */ 2614 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2615 2616 raw_spin_unlock_irq(&rq->lock); 2617 } 2618 2619 /** 2620 * prepare_task_switch - prepare to switch tasks 2621 * @rq: the runqueue preparing to switch 2622 * @prev: the current task that is being switched out 2623 * @next: the task we are going to switch to. 2624 * 2625 * This is called with the rq lock held and interrupts off. It must 2626 * be paired with a subsequent finish_task_switch after the context 2627 * switch. 2628 * 2629 * prepare_task_switch sets up locking and calls architecture specific 2630 * hooks. 2631 */ 2632 static inline void 2633 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2634 struct task_struct *next) 2635 { 2636 sched_info_switch(rq, prev, next); 2637 perf_event_task_sched_out(prev, next); 2638 fire_sched_out_preempt_notifiers(prev, next); 2639 prepare_task(next); 2640 prepare_arch_switch(next); 2641 } 2642 2643 /** 2644 * finish_task_switch - clean up after a task-switch 2645 * @prev: the thread we just switched away from. 2646 * 2647 * finish_task_switch must be called after the context switch, paired 2648 * with a prepare_task_switch call before the context switch. 2649 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2650 * and do any other architecture-specific cleanup actions. 2651 * 2652 * Note that we may have delayed dropping an mm in context_switch(). If 2653 * so, we finish that here outside of the runqueue lock. (Doing it 2654 * with the lock held can cause deadlocks; see schedule() for 2655 * details.) 2656 * 2657 * The context switch have flipped the stack from under us and restored the 2658 * local variables which were saved when this task called schedule() in the 2659 * past. prev == current is still correct but we need to recalculate this_rq 2660 * because prev may have moved to another CPU. 2661 */ 2662 static struct rq *finish_task_switch(struct task_struct *prev) 2663 __releases(rq->lock) 2664 { 2665 struct rq *rq = this_rq(); 2666 struct mm_struct *mm = rq->prev_mm; 2667 long prev_state; 2668 2669 /* 2670 * The previous task will have left us with a preempt_count of 2 2671 * because it left us after: 2672 * 2673 * schedule() 2674 * preempt_disable(); // 1 2675 * __schedule() 2676 * raw_spin_lock_irq(&rq->lock) // 2 2677 * 2678 * Also, see FORK_PREEMPT_COUNT. 2679 */ 2680 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2681 "corrupted preempt_count: %s/%d/0x%x\n", 2682 current->comm, current->pid, preempt_count())) 2683 preempt_count_set(FORK_PREEMPT_COUNT); 2684 2685 rq->prev_mm = NULL; 2686 2687 /* 2688 * A task struct has one reference for the use as "current". 2689 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2690 * schedule one last time. The schedule call will never return, and 2691 * the scheduled task must drop that reference. 2692 * 2693 * We must observe prev->state before clearing prev->on_cpu (in 2694 * finish_task), otherwise a concurrent wakeup can get prev 2695 * running on another CPU and we could rave with its RUNNING -> DEAD 2696 * transition, resulting in a double drop. 2697 */ 2698 prev_state = prev->state; 2699 vtime_task_switch(prev); 2700 perf_event_task_sched_in(prev, current); 2701 finish_task(prev); 2702 finish_lock_switch(rq); 2703 finish_arch_post_lock_switch(); 2704 2705 fire_sched_in_preempt_notifiers(current); 2706 /* 2707 * When switching through a kernel thread, the loop in 2708 * membarrier_{private,global}_expedited() may have observed that 2709 * kernel thread and not issued an IPI. It is therefore possible to 2710 * schedule between user->kernel->user threads without passing though 2711 * switch_mm(). Membarrier requires a barrier after storing to 2712 * rq->curr, before returning to userspace, so provide them here: 2713 * 2714 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2715 * provided by mmdrop(), 2716 * - a sync_core for SYNC_CORE. 2717 */ 2718 if (mm) { 2719 membarrier_mm_sync_core_before_usermode(mm); 2720 mmdrop(mm); 2721 } 2722 if (unlikely(prev_state == TASK_DEAD)) { 2723 if (prev->sched_class->task_dead) 2724 prev->sched_class->task_dead(prev); 2725 2726 /* 2727 * Remove function-return probe instances associated with this 2728 * task and put them back on the free list. 2729 */ 2730 kprobe_flush_task(prev); 2731 2732 /* Task is done with its stack. */ 2733 put_task_stack(prev); 2734 2735 put_task_struct(prev); 2736 } 2737 2738 tick_nohz_task_switch(); 2739 return rq; 2740 } 2741 2742 #ifdef CONFIG_SMP 2743 2744 /* rq->lock is NOT held, but preemption is disabled */ 2745 static void __balance_callback(struct rq *rq) 2746 { 2747 struct callback_head *head, *next; 2748 void (*func)(struct rq *rq); 2749 unsigned long flags; 2750 2751 raw_spin_lock_irqsave(&rq->lock, flags); 2752 head = rq->balance_callback; 2753 rq->balance_callback = NULL; 2754 while (head) { 2755 func = (void (*)(struct rq *))head->func; 2756 next = head->next; 2757 head->next = NULL; 2758 head = next; 2759 2760 func(rq); 2761 } 2762 raw_spin_unlock_irqrestore(&rq->lock, flags); 2763 } 2764 2765 static inline void balance_callback(struct rq *rq) 2766 { 2767 if (unlikely(rq->balance_callback)) 2768 __balance_callback(rq); 2769 } 2770 2771 #else 2772 2773 static inline void balance_callback(struct rq *rq) 2774 { 2775 } 2776 2777 #endif 2778 2779 /** 2780 * schedule_tail - first thing a freshly forked thread must call. 2781 * @prev: the thread we just switched away from. 2782 */ 2783 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2784 __releases(rq->lock) 2785 { 2786 struct rq *rq; 2787 2788 /* 2789 * New tasks start with FORK_PREEMPT_COUNT, see there and 2790 * finish_task_switch() for details. 2791 * 2792 * finish_task_switch() will drop rq->lock() and lower preempt_count 2793 * and the preempt_enable() will end up enabling preemption (on 2794 * PREEMPT_COUNT kernels). 2795 */ 2796 2797 rq = finish_task_switch(prev); 2798 balance_callback(rq); 2799 preempt_enable(); 2800 2801 if (current->set_child_tid) 2802 put_user(task_pid_vnr(current), current->set_child_tid); 2803 } 2804 2805 /* 2806 * context_switch - switch to the new MM and the new thread's register state. 2807 */ 2808 static __always_inline struct rq * 2809 context_switch(struct rq *rq, struct task_struct *prev, 2810 struct task_struct *next, struct rq_flags *rf) 2811 { 2812 struct mm_struct *mm, *oldmm; 2813 2814 prepare_task_switch(rq, prev, next); 2815 2816 mm = next->mm; 2817 oldmm = prev->active_mm; 2818 /* 2819 * For paravirt, this is coupled with an exit in switch_to to 2820 * combine the page table reload and the switch backend into 2821 * one hypercall. 2822 */ 2823 arch_start_context_switch(prev); 2824 2825 /* 2826 * If mm is non-NULL, we pass through switch_mm(). If mm is 2827 * NULL, we will pass through mmdrop() in finish_task_switch(). 2828 * Both of these contain the full memory barrier required by 2829 * membarrier after storing to rq->curr, before returning to 2830 * user-space. 2831 */ 2832 if (!mm) { 2833 next->active_mm = oldmm; 2834 mmgrab(oldmm); 2835 enter_lazy_tlb(oldmm, next); 2836 } else 2837 switch_mm_irqs_off(oldmm, mm, next); 2838 2839 if (!prev->mm) { 2840 prev->active_mm = NULL; 2841 rq->prev_mm = oldmm; 2842 } 2843 2844 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2845 2846 /* 2847 * Since the runqueue lock will be released by the next 2848 * task (which is an invalid locking op but in the case 2849 * of the scheduler it's an obvious special-case), so we 2850 * do an early lockdep release here: 2851 */ 2852 rq_unpin_lock(rq, rf); 2853 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2854 2855 /* Here we just switch the register state and the stack. */ 2856 switch_to(prev, next, prev); 2857 barrier(); 2858 2859 return finish_task_switch(prev); 2860 } 2861 2862 /* 2863 * nr_running and nr_context_switches: 2864 * 2865 * externally visible scheduler statistics: current number of runnable 2866 * threads, total number of context switches performed since bootup. 2867 */ 2868 unsigned long nr_running(void) 2869 { 2870 unsigned long i, sum = 0; 2871 2872 for_each_online_cpu(i) 2873 sum += cpu_rq(i)->nr_running; 2874 2875 return sum; 2876 } 2877 2878 /* 2879 * Check if only the current task is running on the CPU. 2880 * 2881 * Caution: this function does not check that the caller has disabled 2882 * preemption, thus the result might have a time-of-check-to-time-of-use 2883 * race. The caller is responsible to use it correctly, for example: 2884 * 2885 * - from a non-preemptable section (of course) 2886 * 2887 * - from a thread that is bound to a single CPU 2888 * 2889 * - in a loop with very short iterations (e.g. a polling loop) 2890 */ 2891 bool single_task_running(void) 2892 { 2893 return raw_rq()->nr_running == 1; 2894 } 2895 EXPORT_SYMBOL(single_task_running); 2896 2897 unsigned long long nr_context_switches(void) 2898 { 2899 int i; 2900 unsigned long long sum = 0; 2901 2902 for_each_possible_cpu(i) 2903 sum += cpu_rq(i)->nr_switches; 2904 2905 return sum; 2906 } 2907 2908 /* 2909 * IO-wait accounting, and how its mostly bollocks (on SMP). 2910 * 2911 * The idea behind IO-wait account is to account the idle time that we could 2912 * have spend running if it were not for IO. That is, if we were to improve the 2913 * storage performance, we'd have a proportional reduction in IO-wait time. 2914 * 2915 * This all works nicely on UP, where, when a task blocks on IO, we account 2916 * idle time as IO-wait, because if the storage were faster, it could've been 2917 * running and we'd not be idle. 2918 * 2919 * This has been extended to SMP, by doing the same for each CPU. This however 2920 * is broken. 2921 * 2922 * Imagine for instance the case where two tasks block on one CPU, only the one 2923 * CPU will have IO-wait accounted, while the other has regular idle. Even 2924 * though, if the storage were faster, both could've ran at the same time, 2925 * utilising both CPUs. 2926 * 2927 * This means, that when looking globally, the current IO-wait accounting on 2928 * SMP is a lower bound, by reason of under accounting. 2929 * 2930 * Worse, since the numbers are provided per CPU, they are sometimes 2931 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2932 * associated with any one particular CPU, it can wake to another CPU than it 2933 * blocked on. This means the per CPU IO-wait number is meaningless. 2934 * 2935 * Task CPU affinities can make all that even more 'interesting'. 2936 */ 2937 2938 unsigned long nr_iowait(void) 2939 { 2940 unsigned long i, sum = 0; 2941 2942 for_each_possible_cpu(i) 2943 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2944 2945 return sum; 2946 } 2947 2948 /* 2949 * Consumers of these two interfaces, like for example the cpufreq menu 2950 * governor are using nonsensical data. Boosting frequency for a CPU that has 2951 * IO-wait which might not even end up running the task when it does become 2952 * runnable. 2953 */ 2954 2955 unsigned long nr_iowait_cpu(int cpu) 2956 { 2957 struct rq *this = cpu_rq(cpu); 2958 return atomic_read(&this->nr_iowait); 2959 } 2960 2961 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2962 { 2963 struct rq *rq = this_rq(); 2964 *nr_waiters = atomic_read(&rq->nr_iowait); 2965 *load = rq->load.weight; 2966 } 2967 2968 #ifdef CONFIG_SMP 2969 2970 /* 2971 * sched_exec - execve() is a valuable balancing opportunity, because at 2972 * this point the task has the smallest effective memory and cache footprint. 2973 */ 2974 void sched_exec(void) 2975 { 2976 struct task_struct *p = current; 2977 unsigned long flags; 2978 int dest_cpu; 2979 2980 raw_spin_lock_irqsave(&p->pi_lock, flags); 2981 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2982 if (dest_cpu == smp_processor_id()) 2983 goto unlock; 2984 2985 if (likely(cpu_active(dest_cpu))) { 2986 struct migration_arg arg = { p, dest_cpu }; 2987 2988 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2989 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2990 return; 2991 } 2992 unlock: 2993 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2994 } 2995 2996 #endif 2997 2998 DEFINE_PER_CPU(struct kernel_stat, kstat); 2999 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3000 3001 EXPORT_PER_CPU_SYMBOL(kstat); 3002 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3003 3004 /* 3005 * The function fair_sched_class.update_curr accesses the struct curr 3006 * and its field curr->exec_start; when called from task_sched_runtime(), 3007 * we observe a high rate of cache misses in practice. 3008 * Prefetching this data results in improved performance. 3009 */ 3010 static inline void prefetch_curr_exec_start(struct task_struct *p) 3011 { 3012 #ifdef CONFIG_FAIR_GROUP_SCHED 3013 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3014 #else 3015 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3016 #endif 3017 prefetch(curr); 3018 prefetch(&curr->exec_start); 3019 } 3020 3021 /* 3022 * Return accounted runtime for the task. 3023 * In case the task is currently running, return the runtime plus current's 3024 * pending runtime that have not been accounted yet. 3025 */ 3026 unsigned long long task_sched_runtime(struct task_struct *p) 3027 { 3028 struct rq_flags rf; 3029 struct rq *rq; 3030 u64 ns; 3031 3032 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3033 /* 3034 * 64-bit doesn't need locks to atomically read a 64bit value. 3035 * So we have a optimization chance when the task's delta_exec is 0. 3036 * Reading ->on_cpu is racy, but this is ok. 3037 * 3038 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3039 * If we race with it entering CPU, unaccounted time is 0. This is 3040 * indistinguishable from the read occurring a few cycles earlier. 3041 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3042 * been accounted, so we're correct here as well. 3043 */ 3044 if (!p->on_cpu || !task_on_rq_queued(p)) 3045 return p->se.sum_exec_runtime; 3046 #endif 3047 3048 rq = task_rq_lock(p, &rf); 3049 /* 3050 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3051 * project cycles that may never be accounted to this 3052 * thread, breaking clock_gettime(). 3053 */ 3054 if (task_current(rq, p) && task_on_rq_queued(p)) { 3055 prefetch_curr_exec_start(p); 3056 update_rq_clock(rq); 3057 p->sched_class->update_curr(rq); 3058 } 3059 ns = p->se.sum_exec_runtime; 3060 task_rq_unlock(rq, p, &rf); 3061 3062 return ns; 3063 } 3064 3065 /* 3066 * This function gets called by the timer code, with HZ frequency. 3067 * We call it with interrupts disabled. 3068 */ 3069 void scheduler_tick(void) 3070 { 3071 int cpu = smp_processor_id(); 3072 struct rq *rq = cpu_rq(cpu); 3073 struct task_struct *curr = rq->curr; 3074 struct rq_flags rf; 3075 3076 sched_clock_tick(); 3077 3078 rq_lock(rq, &rf); 3079 3080 update_rq_clock(rq); 3081 curr->sched_class->task_tick(rq, curr, 0); 3082 cpu_load_update_active(rq); 3083 calc_global_load_tick(rq); 3084 3085 rq_unlock(rq, &rf); 3086 3087 perf_event_task_tick(); 3088 3089 #ifdef CONFIG_SMP 3090 rq->idle_balance = idle_cpu(cpu); 3091 trigger_load_balance(rq); 3092 #endif 3093 rq_last_tick_reset(rq); 3094 } 3095 3096 #ifdef CONFIG_NO_HZ_FULL 3097 /** 3098 * scheduler_tick_max_deferment 3099 * 3100 * Keep at least one tick per second when a single 3101 * active task is running because the scheduler doesn't 3102 * yet completely support full dynticks environment. 3103 * 3104 * This makes sure that uptime, CFS vruntime, load 3105 * balancing, etc... continue to move forward, even 3106 * with a very low granularity. 3107 * 3108 * Return: Maximum deferment in nanoseconds. 3109 */ 3110 u64 scheduler_tick_max_deferment(void) 3111 { 3112 struct rq *rq = this_rq(); 3113 unsigned long next, now = READ_ONCE(jiffies); 3114 3115 next = rq->last_sched_tick + HZ; 3116 3117 if (time_before_eq(next, now)) 3118 return 0; 3119 3120 return jiffies_to_nsecs(next - now); 3121 } 3122 #endif 3123 3124 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3125 defined(CONFIG_PREEMPT_TRACER)) 3126 /* 3127 * If the value passed in is equal to the current preempt count 3128 * then we just disabled preemption. Start timing the latency. 3129 */ 3130 static inline void preempt_latency_start(int val) 3131 { 3132 if (preempt_count() == val) { 3133 unsigned long ip = get_lock_parent_ip(); 3134 #ifdef CONFIG_DEBUG_PREEMPT 3135 current->preempt_disable_ip = ip; 3136 #endif 3137 trace_preempt_off(CALLER_ADDR0, ip); 3138 } 3139 } 3140 3141 void preempt_count_add(int val) 3142 { 3143 #ifdef CONFIG_DEBUG_PREEMPT 3144 /* 3145 * Underflow? 3146 */ 3147 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3148 return; 3149 #endif 3150 __preempt_count_add(val); 3151 #ifdef CONFIG_DEBUG_PREEMPT 3152 /* 3153 * Spinlock count overflowing soon? 3154 */ 3155 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3156 PREEMPT_MASK - 10); 3157 #endif 3158 preempt_latency_start(val); 3159 } 3160 EXPORT_SYMBOL(preempt_count_add); 3161 NOKPROBE_SYMBOL(preempt_count_add); 3162 3163 /* 3164 * If the value passed in equals to the current preempt count 3165 * then we just enabled preemption. Stop timing the latency. 3166 */ 3167 static inline void preempt_latency_stop(int val) 3168 { 3169 if (preempt_count() == val) 3170 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3171 } 3172 3173 void preempt_count_sub(int val) 3174 { 3175 #ifdef CONFIG_DEBUG_PREEMPT 3176 /* 3177 * Underflow? 3178 */ 3179 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3180 return; 3181 /* 3182 * Is the spinlock portion underflowing? 3183 */ 3184 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3185 !(preempt_count() & PREEMPT_MASK))) 3186 return; 3187 #endif 3188 3189 preempt_latency_stop(val); 3190 __preempt_count_sub(val); 3191 } 3192 EXPORT_SYMBOL(preempt_count_sub); 3193 NOKPROBE_SYMBOL(preempt_count_sub); 3194 3195 #else 3196 static inline void preempt_latency_start(int val) { } 3197 static inline void preempt_latency_stop(int val) { } 3198 #endif 3199 3200 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3201 { 3202 #ifdef CONFIG_DEBUG_PREEMPT 3203 return p->preempt_disable_ip; 3204 #else 3205 return 0; 3206 #endif 3207 } 3208 3209 /* 3210 * Print scheduling while atomic bug: 3211 */ 3212 static noinline void __schedule_bug(struct task_struct *prev) 3213 { 3214 /* Save this before calling printk(), since that will clobber it */ 3215 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3216 3217 if (oops_in_progress) 3218 return; 3219 3220 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3221 prev->comm, prev->pid, preempt_count()); 3222 3223 debug_show_held_locks(prev); 3224 print_modules(); 3225 if (irqs_disabled()) 3226 print_irqtrace_events(prev); 3227 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3228 && in_atomic_preempt_off()) { 3229 pr_err("Preemption disabled at:"); 3230 print_ip_sym(preempt_disable_ip); 3231 pr_cont("\n"); 3232 } 3233 if (panic_on_warn) 3234 panic("scheduling while atomic\n"); 3235 3236 dump_stack(); 3237 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3238 } 3239 3240 /* 3241 * Various schedule()-time debugging checks and statistics: 3242 */ 3243 static inline void schedule_debug(struct task_struct *prev) 3244 { 3245 #ifdef CONFIG_SCHED_STACK_END_CHECK 3246 if (task_stack_end_corrupted(prev)) 3247 panic("corrupted stack end detected inside scheduler\n"); 3248 #endif 3249 3250 if (unlikely(in_atomic_preempt_off())) { 3251 __schedule_bug(prev); 3252 preempt_count_set(PREEMPT_DISABLED); 3253 } 3254 rcu_sleep_check(); 3255 3256 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3257 3258 schedstat_inc(this_rq()->sched_count); 3259 } 3260 3261 /* 3262 * Pick up the highest-prio task: 3263 */ 3264 static inline struct task_struct * 3265 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3266 { 3267 const struct sched_class *class; 3268 struct task_struct *p; 3269 3270 /* 3271 * Optimization: we know that if all tasks are in the fair class we can 3272 * call that function directly, but only if the @prev task wasn't of a 3273 * higher scheduling class, because otherwise those loose the 3274 * opportunity to pull in more work from other CPUs. 3275 */ 3276 if (likely((prev->sched_class == &idle_sched_class || 3277 prev->sched_class == &fair_sched_class) && 3278 rq->nr_running == rq->cfs.h_nr_running)) { 3279 3280 p = fair_sched_class.pick_next_task(rq, prev, rf); 3281 if (unlikely(p == RETRY_TASK)) 3282 goto again; 3283 3284 /* Assumes fair_sched_class->next == idle_sched_class */ 3285 if (unlikely(!p)) 3286 p = idle_sched_class.pick_next_task(rq, prev, rf); 3287 3288 return p; 3289 } 3290 3291 again: 3292 for_each_class(class) { 3293 p = class->pick_next_task(rq, prev, rf); 3294 if (p) { 3295 if (unlikely(p == RETRY_TASK)) 3296 goto again; 3297 return p; 3298 } 3299 } 3300 3301 /* The idle class should always have a runnable task: */ 3302 BUG(); 3303 } 3304 3305 /* 3306 * __schedule() is the main scheduler function. 3307 * 3308 * The main means of driving the scheduler and thus entering this function are: 3309 * 3310 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3311 * 3312 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3313 * paths. For example, see arch/x86/entry_64.S. 3314 * 3315 * To drive preemption between tasks, the scheduler sets the flag in timer 3316 * interrupt handler scheduler_tick(). 3317 * 3318 * 3. Wakeups don't really cause entry into schedule(). They add a 3319 * task to the run-queue and that's it. 3320 * 3321 * Now, if the new task added to the run-queue preempts the current 3322 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3323 * called on the nearest possible occasion: 3324 * 3325 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3326 * 3327 * - in syscall or exception context, at the next outmost 3328 * preempt_enable(). (this might be as soon as the wake_up()'s 3329 * spin_unlock()!) 3330 * 3331 * - in IRQ context, return from interrupt-handler to 3332 * preemptible context 3333 * 3334 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3335 * then at the next: 3336 * 3337 * - cond_resched() call 3338 * - explicit schedule() call 3339 * - return from syscall or exception to user-space 3340 * - return from interrupt-handler to user-space 3341 * 3342 * WARNING: must be called with preemption disabled! 3343 */ 3344 static void __sched notrace __schedule(bool preempt) 3345 { 3346 struct task_struct *prev, *next; 3347 unsigned long *switch_count; 3348 struct rq_flags rf; 3349 struct rq *rq; 3350 int cpu; 3351 3352 cpu = smp_processor_id(); 3353 rq = cpu_rq(cpu); 3354 prev = rq->curr; 3355 3356 schedule_debug(prev); 3357 3358 if (sched_feat(HRTICK)) 3359 hrtick_clear(rq); 3360 3361 local_irq_disable(); 3362 rcu_note_context_switch(preempt); 3363 3364 /* 3365 * Make sure that signal_pending_state()->signal_pending() below 3366 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3367 * done by the caller to avoid the race with signal_wake_up(). 3368 * 3369 * The membarrier system call requires a full memory barrier 3370 * after coming from user-space, before storing to rq->curr. 3371 */ 3372 rq_lock(rq, &rf); 3373 smp_mb__after_spinlock(); 3374 3375 /* Promote REQ to ACT */ 3376 rq->clock_update_flags <<= 1; 3377 update_rq_clock(rq); 3378 3379 switch_count = &prev->nivcsw; 3380 if (!preempt && prev->state) { 3381 if (unlikely(signal_pending_state(prev->state, prev))) { 3382 prev->state = TASK_RUNNING; 3383 } else { 3384 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3385 prev->on_rq = 0; 3386 3387 if (prev->in_iowait) { 3388 atomic_inc(&rq->nr_iowait); 3389 delayacct_blkio_start(); 3390 } 3391 3392 /* 3393 * If a worker went to sleep, notify and ask workqueue 3394 * whether it wants to wake up a task to maintain 3395 * concurrency. 3396 */ 3397 if (prev->flags & PF_WQ_WORKER) { 3398 struct task_struct *to_wakeup; 3399 3400 to_wakeup = wq_worker_sleeping(prev); 3401 if (to_wakeup) 3402 try_to_wake_up_local(to_wakeup, &rf); 3403 } 3404 } 3405 switch_count = &prev->nvcsw; 3406 } 3407 3408 next = pick_next_task(rq, prev, &rf); 3409 clear_tsk_need_resched(prev); 3410 clear_preempt_need_resched(); 3411 3412 if (likely(prev != next)) { 3413 rq->nr_switches++; 3414 rq->curr = next; 3415 /* 3416 * The membarrier system call requires each architecture 3417 * to have a full memory barrier after updating 3418 * rq->curr, before returning to user-space. 3419 * 3420 * Here are the schemes providing that barrier on the 3421 * various architectures: 3422 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3423 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3424 * - finish_lock_switch() for weakly-ordered 3425 * architectures where spin_unlock is a full barrier, 3426 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3427 * is a RELEASE barrier), 3428 */ 3429 ++*switch_count; 3430 3431 trace_sched_switch(preempt, prev, next); 3432 3433 /* Also unlocks the rq: */ 3434 rq = context_switch(rq, prev, next, &rf); 3435 } else { 3436 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3437 rq_unlock_irq(rq, &rf); 3438 } 3439 3440 balance_callback(rq); 3441 } 3442 3443 void __noreturn do_task_dead(void) 3444 { 3445 /* 3446 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 3447 * when the following two conditions become true. 3448 * - There is race condition of mmap_sem (It is acquired by 3449 * exit_mm()), and 3450 * - SMI occurs before setting TASK_RUNINNG. 3451 * (or hypervisor of virtual machine switches to other guest) 3452 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 3453 * 3454 * To avoid it, we have to wait for releasing tsk->pi_lock which 3455 * is held by try_to_wake_up() 3456 */ 3457 raw_spin_lock_irq(¤t->pi_lock); 3458 raw_spin_unlock_irq(¤t->pi_lock); 3459 3460 /* Causes final put_task_struct in finish_task_switch(): */ 3461 __set_current_state(TASK_DEAD); 3462 3463 /* Tell freezer to ignore us: */ 3464 current->flags |= PF_NOFREEZE; 3465 3466 __schedule(false); 3467 BUG(); 3468 3469 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3470 for (;;) 3471 cpu_relax(); 3472 } 3473 3474 static inline void sched_submit_work(struct task_struct *tsk) 3475 { 3476 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3477 return; 3478 /* 3479 * If we are going to sleep and we have plugged IO queued, 3480 * make sure to submit it to avoid deadlocks. 3481 */ 3482 if (blk_needs_flush_plug(tsk)) 3483 blk_schedule_flush_plug(tsk); 3484 } 3485 3486 asmlinkage __visible void __sched schedule(void) 3487 { 3488 struct task_struct *tsk = current; 3489 3490 sched_submit_work(tsk); 3491 do { 3492 preempt_disable(); 3493 __schedule(false); 3494 sched_preempt_enable_no_resched(); 3495 } while (need_resched()); 3496 } 3497 EXPORT_SYMBOL(schedule); 3498 3499 /* 3500 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3501 * state (have scheduled out non-voluntarily) by making sure that all 3502 * tasks have either left the run queue or have gone into user space. 3503 * As idle tasks do not do either, they must not ever be preempted 3504 * (schedule out non-voluntarily). 3505 * 3506 * schedule_idle() is similar to schedule_preempt_disable() except that it 3507 * never enables preemption because it does not call sched_submit_work(). 3508 */ 3509 void __sched schedule_idle(void) 3510 { 3511 /* 3512 * As this skips calling sched_submit_work(), which the idle task does 3513 * regardless because that function is a nop when the task is in a 3514 * TASK_RUNNING state, make sure this isn't used someplace that the 3515 * current task can be in any other state. Note, idle is always in the 3516 * TASK_RUNNING state. 3517 */ 3518 WARN_ON_ONCE(current->state); 3519 do { 3520 __schedule(false); 3521 } while (need_resched()); 3522 } 3523 3524 #ifdef CONFIG_CONTEXT_TRACKING 3525 asmlinkage __visible void __sched schedule_user(void) 3526 { 3527 /* 3528 * If we come here after a random call to set_need_resched(), 3529 * or we have been woken up remotely but the IPI has not yet arrived, 3530 * we haven't yet exited the RCU idle mode. Do it here manually until 3531 * we find a better solution. 3532 * 3533 * NB: There are buggy callers of this function. Ideally we 3534 * should warn if prev_state != CONTEXT_USER, but that will trigger 3535 * too frequently to make sense yet. 3536 */ 3537 enum ctx_state prev_state = exception_enter(); 3538 schedule(); 3539 exception_exit(prev_state); 3540 } 3541 #endif 3542 3543 /** 3544 * schedule_preempt_disabled - called with preemption disabled 3545 * 3546 * Returns with preemption disabled. Note: preempt_count must be 1 3547 */ 3548 void __sched schedule_preempt_disabled(void) 3549 { 3550 sched_preempt_enable_no_resched(); 3551 schedule(); 3552 preempt_disable(); 3553 } 3554 3555 static void __sched notrace preempt_schedule_common(void) 3556 { 3557 do { 3558 /* 3559 * Because the function tracer can trace preempt_count_sub() 3560 * and it also uses preempt_enable/disable_notrace(), if 3561 * NEED_RESCHED is set, the preempt_enable_notrace() called 3562 * by the function tracer will call this function again and 3563 * cause infinite recursion. 3564 * 3565 * Preemption must be disabled here before the function 3566 * tracer can trace. Break up preempt_disable() into two 3567 * calls. One to disable preemption without fear of being 3568 * traced. The other to still record the preemption latency, 3569 * which can also be traced by the function tracer. 3570 */ 3571 preempt_disable_notrace(); 3572 preempt_latency_start(1); 3573 __schedule(true); 3574 preempt_latency_stop(1); 3575 preempt_enable_no_resched_notrace(); 3576 3577 /* 3578 * Check again in case we missed a preemption opportunity 3579 * between schedule and now. 3580 */ 3581 } while (need_resched()); 3582 } 3583 3584 #ifdef CONFIG_PREEMPT 3585 /* 3586 * this is the entry point to schedule() from in-kernel preemption 3587 * off of preempt_enable. Kernel preemptions off return from interrupt 3588 * occur there and call schedule directly. 3589 */ 3590 asmlinkage __visible void __sched notrace preempt_schedule(void) 3591 { 3592 /* 3593 * If there is a non-zero preempt_count or interrupts are disabled, 3594 * we do not want to preempt the current task. Just return.. 3595 */ 3596 if (likely(!preemptible())) 3597 return; 3598 3599 preempt_schedule_common(); 3600 } 3601 NOKPROBE_SYMBOL(preempt_schedule); 3602 EXPORT_SYMBOL(preempt_schedule); 3603 3604 /** 3605 * preempt_schedule_notrace - preempt_schedule called by tracing 3606 * 3607 * The tracing infrastructure uses preempt_enable_notrace to prevent 3608 * recursion and tracing preempt enabling caused by the tracing 3609 * infrastructure itself. But as tracing can happen in areas coming 3610 * from userspace or just about to enter userspace, a preempt enable 3611 * can occur before user_exit() is called. This will cause the scheduler 3612 * to be called when the system is still in usermode. 3613 * 3614 * To prevent this, the preempt_enable_notrace will use this function 3615 * instead of preempt_schedule() to exit user context if needed before 3616 * calling the scheduler. 3617 */ 3618 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3619 { 3620 enum ctx_state prev_ctx; 3621 3622 if (likely(!preemptible())) 3623 return; 3624 3625 do { 3626 /* 3627 * Because the function tracer can trace preempt_count_sub() 3628 * and it also uses preempt_enable/disable_notrace(), if 3629 * NEED_RESCHED is set, the preempt_enable_notrace() called 3630 * by the function tracer will call this function again and 3631 * cause infinite recursion. 3632 * 3633 * Preemption must be disabled here before the function 3634 * tracer can trace. Break up preempt_disable() into two 3635 * calls. One to disable preemption without fear of being 3636 * traced. The other to still record the preemption latency, 3637 * which can also be traced by the function tracer. 3638 */ 3639 preempt_disable_notrace(); 3640 preempt_latency_start(1); 3641 /* 3642 * Needs preempt disabled in case user_exit() is traced 3643 * and the tracer calls preempt_enable_notrace() causing 3644 * an infinite recursion. 3645 */ 3646 prev_ctx = exception_enter(); 3647 __schedule(true); 3648 exception_exit(prev_ctx); 3649 3650 preempt_latency_stop(1); 3651 preempt_enable_no_resched_notrace(); 3652 } while (need_resched()); 3653 } 3654 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3655 3656 #endif /* CONFIG_PREEMPT */ 3657 3658 /* 3659 * this is the entry point to schedule() from kernel preemption 3660 * off of irq context. 3661 * Note, that this is called and return with irqs disabled. This will 3662 * protect us against recursive calling from irq. 3663 */ 3664 asmlinkage __visible void __sched preempt_schedule_irq(void) 3665 { 3666 enum ctx_state prev_state; 3667 3668 /* Catch callers which need to be fixed */ 3669 BUG_ON(preempt_count() || !irqs_disabled()); 3670 3671 prev_state = exception_enter(); 3672 3673 do { 3674 preempt_disable(); 3675 local_irq_enable(); 3676 __schedule(true); 3677 local_irq_disable(); 3678 sched_preempt_enable_no_resched(); 3679 } while (need_resched()); 3680 3681 exception_exit(prev_state); 3682 } 3683 3684 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3685 void *key) 3686 { 3687 return try_to_wake_up(curr->private, mode, wake_flags); 3688 } 3689 EXPORT_SYMBOL(default_wake_function); 3690 3691 #ifdef CONFIG_RT_MUTEXES 3692 3693 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3694 { 3695 if (pi_task) 3696 prio = min(prio, pi_task->prio); 3697 3698 return prio; 3699 } 3700 3701 static inline int rt_effective_prio(struct task_struct *p, int prio) 3702 { 3703 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3704 3705 return __rt_effective_prio(pi_task, prio); 3706 } 3707 3708 /* 3709 * rt_mutex_setprio - set the current priority of a task 3710 * @p: task to boost 3711 * @pi_task: donor task 3712 * 3713 * This function changes the 'effective' priority of a task. It does 3714 * not touch ->normal_prio like __setscheduler(). 3715 * 3716 * Used by the rt_mutex code to implement priority inheritance 3717 * logic. Call site only calls if the priority of the task changed. 3718 */ 3719 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3720 { 3721 int prio, oldprio, queued, running, queue_flag = 3722 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3723 const struct sched_class *prev_class; 3724 struct rq_flags rf; 3725 struct rq *rq; 3726 3727 /* XXX used to be waiter->prio, not waiter->task->prio */ 3728 prio = __rt_effective_prio(pi_task, p->normal_prio); 3729 3730 /* 3731 * If nothing changed; bail early. 3732 */ 3733 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3734 return; 3735 3736 rq = __task_rq_lock(p, &rf); 3737 update_rq_clock(rq); 3738 /* 3739 * Set under pi_lock && rq->lock, such that the value can be used under 3740 * either lock. 3741 * 3742 * Note that there is loads of tricky to make this pointer cache work 3743 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3744 * ensure a task is de-boosted (pi_task is set to NULL) before the 3745 * task is allowed to run again (and can exit). This ensures the pointer 3746 * points to a blocked task -- which guaratees the task is present. 3747 */ 3748 p->pi_top_task = pi_task; 3749 3750 /* 3751 * For FIFO/RR we only need to set prio, if that matches we're done. 3752 */ 3753 if (prio == p->prio && !dl_prio(prio)) 3754 goto out_unlock; 3755 3756 /* 3757 * Idle task boosting is a nono in general. There is one 3758 * exception, when PREEMPT_RT and NOHZ is active: 3759 * 3760 * The idle task calls get_next_timer_interrupt() and holds 3761 * the timer wheel base->lock on the CPU and another CPU wants 3762 * to access the timer (probably to cancel it). We can safely 3763 * ignore the boosting request, as the idle CPU runs this code 3764 * with interrupts disabled and will complete the lock 3765 * protected section without being interrupted. So there is no 3766 * real need to boost. 3767 */ 3768 if (unlikely(p == rq->idle)) { 3769 WARN_ON(p != rq->curr); 3770 WARN_ON(p->pi_blocked_on); 3771 goto out_unlock; 3772 } 3773 3774 trace_sched_pi_setprio(p, pi_task); 3775 oldprio = p->prio; 3776 3777 if (oldprio == prio) 3778 queue_flag &= ~DEQUEUE_MOVE; 3779 3780 prev_class = p->sched_class; 3781 queued = task_on_rq_queued(p); 3782 running = task_current(rq, p); 3783 if (queued) 3784 dequeue_task(rq, p, queue_flag); 3785 if (running) 3786 put_prev_task(rq, p); 3787 3788 /* 3789 * Boosting condition are: 3790 * 1. -rt task is running and holds mutex A 3791 * --> -dl task blocks on mutex A 3792 * 3793 * 2. -dl task is running and holds mutex A 3794 * --> -dl task blocks on mutex A and could preempt the 3795 * running task 3796 */ 3797 if (dl_prio(prio)) { 3798 if (!dl_prio(p->normal_prio) || 3799 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3800 p->dl.dl_boosted = 1; 3801 queue_flag |= ENQUEUE_REPLENISH; 3802 } else 3803 p->dl.dl_boosted = 0; 3804 p->sched_class = &dl_sched_class; 3805 } else if (rt_prio(prio)) { 3806 if (dl_prio(oldprio)) 3807 p->dl.dl_boosted = 0; 3808 if (oldprio < prio) 3809 queue_flag |= ENQUEUE_HEAD; 3810 p->sched_class = &rt_sched_class; 3811 } else { 3812 if (dl_prio(oldprio)) 3813 p->dl.dl_boosted = 0; 3814 if (rt_prio(oldprio)) 3815 p->rt.timeout = 0; 3816 p->sched_class = &fair_sched_class; 3817 } 3818 3819 p->prio = prio; 3820 3821 if (queued) 3822 enqueue_task(rq, p, queue_flag); 3823 if (running) 3824 set_curr_task(rq, p); 3825 3826 check_class_changed(rq, p, prev_class, oldprio); 3827 out_unlock: 3828 /* Avoid rq from going away on us: */ 3829 preempt_disable(); 3830 __task_rq_unlock(rq, &rf); 3831 3832 balance_callback(rq); 3833 preempt_enable(); 3834 } 3835 #else 3836 static inline int rt_effective_prio(struct task_struct *p, int prio) 3837 { 3838 return prio; 3839 } 3840 #endif 3841 3842 void set_user_nice(struct task_struct *p, long nice) 3843 { 3844 bool queued, running; 3845 int old_prio, delta; 3846 struct rq_flags rf; 3847 struct rq *rq; 3848 3849 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3850 return; 3851 /* 3852 * We have to be careful, if called from sys_setpriority(), 3853 * the task might be in the middle of scheduling on another CPU. 3854 */ 3855 rq = task_rq_lock(p, &rf); 3856 update_rq_clock(rq); 3857 3858 /* 3859 * The RT priorities are set via sched_setscheduler(), but we still 3860 * allow the 'normal' nice value to be set - but as expected 3861 * it wont have any effect on scheduling until the task is 3862 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3863 */ 3864 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3865 p->static_prio = NICE_TO_PRIO(nice); 3866 goto out_unlock; 3867 } 3868 queued = task_on_rq_queued(p); 3869 running = task_current(rq, p); 3870 if (queued) 3871 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3872 if (running) 3873 put_prev_task(rq, p); 3874 3875 p->static_prio = NICE_TO_PRIO(nice); 3876 set_load_weight(p, true); 3877 old_prio = p->prio; 3878 p->prio = effective_prio(p); 3879 delta = p->prio - old_prio; 3880 3881 if (queued) { 3882 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3883 /* 3884 * If the task increased its priority or is running and 3885 * lowered its priority, then reschedule its CPU: 3886 */ 3887 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3888 resched_curr(rq); 3889 } 3890 if (running) 3891 set_curr_task(rq, p); 3892 out_unlock: 3893 task_rq_unlock(rq, p, &rf); 3894 } 3895 EXPORT_SYMBOL(set_user_nice); 3896 3897 /* 3898 * can_nice - check if a task can reduce its nice value 3899 * @p: task 3900 * @nice: nice value 3901 */ 3902 int can_nice(const struct task_struct *p, const int nice) 3903 { 3904 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3905 int nice_rlim = nice_to_rlimit(nice); 3906 3907 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3908 capable(CAP_SYS_NICE)); 3909 } 3910 3911 #ifdef __ARCH_WANT_SYS_NICE 3912 3913 /* 3914 * sys_nice - change the priority of the current process. 3915 * @increment: priority increment 3916 * 3917 * sys_setpriority is a more generic, but much slower function that 3918 * does similar things. 3919 */ 3920 SYSCALL_DEFINE1(nice, int, increment) 3921 { 3922 long nice, retval; 3923 3924 /* 3925 * Setpriority might change our priority at the same moment. 3926 * We don't have to worry. Conceptually one call occurs first 3927 * and we have a single winner. 3928 */ 3929 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3930 nice = task_nice(current) + increment; 3931 3932 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3933 if (increment < 0 && !can_nice(current, nice)) 3934 return -EPERM; 3935 3936 retval = security_task_setnice(current, nice); 3937 if (retval) 3938 return retval; 3939 3940 set_user_nice(current, nice); 3941 return 0; 3942 } 3943 3944 #endif 3945 3946 /** 3947 * task_prio - return the priority value of a given task. 3948 * @p: the task in question. 3949 * 3950 * Return: The priority value as seen by users in /proc. 3951 * RT tasks are offset by -200. Normal tasks are centered 3952 * around 0, value goes from -16 to +15. 3953 */ 3954 int task_prio(const struct task_struct *p) 3955 { 3956 return p->prio - MAX_RT_PRIO; 3957 } 3958 3959 /** 3960 * idle_cpu - is a given CPU idle currently? 3961 * @cpu: the processor in question. 3962 * 3963 * Return: 1 if the CPU is currently idle. 0 otherwise. 3964 */ 3965 int idle_cpu(int cpu) 3966 { 3967 struct rq *rq = cpu_rq(cpu); 3968 3969 if (rq->curr != rq->idle) 3970 return 0; 3971 3972 if (rq->nr_running) 3973 return 0; 3974 3975 #ifdef CONFIG_SMP 3976 if (!llist_empty(&rq->wake_list)) 3977 return 0; 3978 #endif 3979 3980 return 1; 3981 } 3982 3983 /** 3984 * idle_task - return the idle task for a given CPU. 3985 * @cpu: the processor in question. 3986 * 3987 * Return: The idle task for the CPU @cpu. 3988 */ 3989 struct task_struct *idle_task(int cpu) 3990 { 3991 return cpu_rq(cpu)->idle; 3992 } 3993 3994 /** 3995 * find_process_by_pid - find a process with a matching PID value. 3996 * @pid: the pid in question. 3997 * 3998 * The task of @pid, if found. %NULL otherwise. 3999 */ 4000 static struct task_struct *find_process_by_pid(pid_t pid) 4001 { 4002 return pid ? find_task_by_vpid(pid) : current; 4003 } 4004 4005 /* 4006 * sched_setparam() passes in -1 for its policy, to let the functions 4007 * it calls know not to change it. 4008 */ 4009 #define SETPARAM_POLICY -1 4010 4011 static void __setscheduler_params(struct task_struct *p, 4012 const struct sched_attr *attr) 4013 { 4014 int policy = attr->sched_policy; 4015 4016 if (policy == SETPARAM_POLICY) 4017 policy = p->policy; 4018 4019 p->policy = policy; 4020 4021 if (dl_policy(policy)) 4022 __setparam_dl(p, attr); 4023 else if (fair_policy(policy)) 4024 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4025 4026 /* 4027 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4028 * !rt_policy. Always setting this ensures that things like 4029 * getparam()/getattr() don't report silly values for !rt tasks. 4030 */ 4031 p->rt_priority = attr->sched_priority; 4032 p->normal_prio = normal_prio(p); 4033 set_load_weight(p, true); 4034 } 4035 4036 /* Actually do priority change: must hold pi & rq lock. */ 4037 static void __setscheduler(struct rq *rq, struct task_struct *p, 4038 const struct sched_attr *attr, bool keep_boost) 4039 { 4040 __setscheduler_params(p, attr); 4041 4042 /* 4043 * Keep a potential priority boosting if called from 4044 * sched_setscheduler(). 4045 */ 4046 p->prio = normal_prio(p); 4047 if (keep_boost) 4048 p->prio = rt_effective_prio(p, p->prio); 4049 4050 if (dl_prio(p->prio)) 4051 p->sched_class = &dl_sched_class; 4052 else if (rt_prio(p->prio)) 4053 p->sched_class = &rt_sched_class; 4054 else 4055 p->sched_class = &fair_sched_class; 4056 } 4057 4058 /* 4059 * Check the target process has a UID that matches the current process's: 4060 */ 4061 static bool check_same_owner(struct task_struct *p) 4062 { 4063 const struct cred *cred = current_cred(), *pcred; 4064 bool match; 4065 4066 rcu_read_lock(); 4067 pcred = __task_cred(p); 4068 match = (uid_eq(cred->euid, pcred->euid) || 4069 uid_eq(cred->euid, pcred->uid)); 4070 rcu_read_unlock(); 4071 return match; 4072 } 4073 4074 static int __sched_setscheduler(struct task_struct *p, 4075 const struct sched_attr *attr, 4076 bool user, bool pi) 4077 { 4078 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4079 MAX_RT_PRIO - 1 - attr->sched_priority; 4080 int retval, oldprio, oldpolicy = -1, queued, running; 4081 int new_effective_prio, policy = attr->sched_policy; 4082 const struct sched_class *prev_class; 4083 struct rq_flags rf; 4084 int reset_on_fork; 4085 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4086 struct rq *rq; 4087 4088 /* The pi code expects interrupts enabled */ 4089 BUG_ON(pi && in_interrupt()); 4090 recheck: 4091 /* Double check policy once rq lock held: */ 4092 if (policy < 0) { 4093 reset_on_fork = p->sched_reset_on_fork; 4094 policy = oldpolicy = p->policy; 4095 } else { 4096 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4097 4098 if (!valid_policy(policy)) 4099 return -EINVAL; 4100 } 4101 4102 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4103 return -EINVAL; 4104 4105 /* 4106 * Valid priorities for SCHED_FIFO and SCHED_RR are 4107 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4108 * SCHED_BATCH and SCHED_IDLE is 0. 4109 */ 4110 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4111 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4112 return -EINVAL; 4113 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4114 (rt_policy(policy) != (attr->sched_priority != 0))) 4115 return -EINVAL; 4116 4117 /* 4118 * Allow unprivileged RT tasks to decrease priority: 4119 */ 4120 if (user && !capable(CAP_SYS_NICE)) { 4121 if (fair_policy(policy)) { 4122 if (attr->sched_nice < task_nice(p) && 4123 !can_nice(p, attr->sched_nice)) 4124 return -EPERM; 4125 } 4126 4127 if (rt_policy(policy)) { 4128 unsigned long rlim_rtprio = 4129 task_rlimit(p, RLIMIT_RTPRIO); 4130 4131 /* Can't set/change the rt policy: */ 4132 if (policy != p->policy && !rlim_rtprio) 4133 return -EPERM; 4134 4135 /* Can't increase priority: */ 4136 if (attr->sched_priority > p->rt_priority && 4137 attr->sched_priority > rlim_rtprio) 4138 return -EPERM; 4139 } 4140 4141 /* 4142 * Can't set/change SCHED_DEADLINE policy at all for now 4143 * (safest behavior); in the future we would like to allow 4144 * unprivileged DL tasks to increase their relative deadline 4145 * or reduce their runtime (both ways reducing utilization) 4146 */ 4147 if (dl_policy(policy)) 4148 return -EPERM; 4149 4150 /* 4151 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4152 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4153 */ 4154 if (idle_policy(p->policy) && !idle_policy(policy)) { 4155 if (!can_nice(p, task_nice(p))) 4156 return -EPERM; 4157 } 4158 4159 /* Can't change other user's priorities: */ 4160 if (!check_same_owner(p)) 4161 return -EPERM; 4162 4163 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4164 if (p->sched_reset_on_fork && !reset_on_fork) 4165 return -EPERM; 4166 } 4167 4168 if (user) { 4169 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4170 return -EINVAL; 4171 4172 retval = security_task_setscheduler(p); 4173 if (retval) 4174 return retval; 4175 } 4176 4177 /* 4178 * Make sure no PI-waiters arrive (or leave) while we are 4179 * changing the priority of the task: 4180 * 4181 * To be able to change p->policy safely, the appropriate 4182 * runqueue lock must be held. 4183 */ 4184 rq = task_rq_lock(p, &rf); 4185 update_rq_clock(rq); 4186 4187 /* 4188 * Changing the policy of the stop threads its a very bad idea: 4189 */ 4190 if (p == rq->stop) { 4191 task_rq_unlock(rq, p, &rf); 4192 return -EINVAL; 4193 } 4194 4195 /* 4196 * If not changing anything there's no need to proceed further, 4197 * but store a possible modification of reset_on_fork. 4198 */ 4199 if (unlikely(policy == p->policy)) { 4200 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4201 goto change; 4202 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4203 goto change; 4204 if (dl_policy(policy) && dl_param_changed(p, attr)) 4205 goto change; 4206 4207 p->sched_reset_on_fork = reset_on_fork; 4208 task_rq_unlock(rq, p, &rf); 4209 return 0; 4210 } 4211 change: 4212 4213 if (user) { 4214 #ifdef CONFIG_RT_GROUP_SCHED 4215 /* 4216 * Do not allow realtime tasks into groups that have no runtime 4217 * assigned. 4218 */ 4219 if (rt_bandwidth_enabled() && rt_policy(policy) && 4220 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4221 !task_group_is_autogroup(task_group(p))) { 4222 task_rq_unlock(rq, p, &rf); 4223 return -EPERM; 4224 } 4225 #endif 4226 #ifdef CONFIG_SMP 4227 if (dl_bandwidth_enabled() && dl_policy(policy) && 4228 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4229 cpumask_t *span = rq->rd->span; 4230 4231 /* 4232 * Don't allow tasks with an affinity mask smaller than 4233 * the entire root_domain to become SCHED_DEADLINE. We 4234 * will also fail if there's no bandwidth available. 4235 */ 4236 if (!cpumask_subset(span, &p->cpus_allowed) || 4237 rq->rd->dl_bw.bw == 0) { 4238 task_rq_unlock(rq, p, &rf); 4239 return -EPERM; 4240 } 4241 } 4242 #endif 4243 } 4244 4245 /* Re-check policy now with rq lock held: */ 4246 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4247 policy = oldpolicy = -1; 4248 task_rq_unlock(rq, p, &rf); 4249 goto recheck; 4250 } 4251 4252 /* 4253 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4254 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4255 * is available. 4256 */ 4257 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4258 task_rq_unlock(rq, p, &rf); 4259 return -EBUSY; 4260 } 4261 4262 p->sched_reset_on_fork = reset_on_fork; 4263 oldprio = p->prio; 4264 4265 if (pi) { 4266 /* 4267 * Take priority boosted tasks into account. If the new 4268 * effective priority is unchanged, we just store the new 4269 * normal parameters and do not touch the scheduler class and 4270 * the runqueue. This will be done when the task deboost 4271 * itself. 4272 */ 4273 new_effective_prio = rt_effective_prio(p, newprio); 4274 if (new_effective_prio == oldprio) 4275 queue_flags &= ~DEQUEUE_MOVE; 4276 } 4277 4278 queued = task_on_rq_queued(p); 4279 running = task_current(rq, p); 4280 if (queued) 4281 dequeue_task(rq, p, queue_flags); 4282 if (running) 4283 put_prev_task(rq, p); 4284 4285 prev_class = p->sched_class; 4286 __setscheduler(rq, p, attr, pi); 4287 4288 if (queued) { 4289 /* 4290 * We enqueue to tail when the priority of a task is 4291 * increased (user space view). 4292 */ 4293 if (oldprio < p->prio) 4294 queue_flags |= ENQUEUE_HEAD; 4295 4296 enqueue_task(rq, p, queue_flags); 4297 } 4298 if (running) 4299 set_curr_task(rq, p); 4300 4301 check_class_changed(rq, p, prev_class, oldprio); 4302 4303 /* Avoid rq from going away on us: */ 4304 preempt_disable(); 4305 task_rq_unlock(rq, p, &rf); 4306 4307 if (pi) 4308 rt_mutex_adjust_pi(p); 4309 4310 /* Run balance callbacks after we've adjusted the PI chain: */ 4311 balance_callback(rq); 4312 preempt_enable(); 4313 4314 return 0; 4315 } 4316 4317 static int _sched_setscheduler(struct task_struct *p, int policy, 4318 const struct sched_param *param, bool check) 4319 { 4320 struct sched_attr attr = { 4321 .sched_policy = policy, 4322 .sched_priority = param->sched_priority, 4323 .sched_nice = PRIO_TO_NICE(p->static_prio), 4324 }; 4325 4326 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4327 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4328 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4329 policy &= ~SCHED_RESET_ON_FORK; 4330 attr.sched_policy = policy; 4331 } 4332 4333 return __sched_setscheduler(p, &attr, check, true); 4334 } 4335 /** 4336 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4337 * @p: the task in question. 4338 * @policy: new policy. 4339 * @param: structure containing the new RT priority. 4340 * 4341 * Return: 0 on success. An error code otherwise. 4342 * 4343 * NOTE that the task may be already dead. 4344 */ 4345 int sched_setscheduler(struct task_struct *p, int policy, 4346 const struct sched_param *param) 4347 { 4348 return _sched_setscheduler(p, policy, param, true); 4349 } 4350 EXPORT_SYMBOL_GPL(sched_setscheduler); 4351 4352 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4353 { 4354 return __sched_setscheduler(p, attr, true, true); 4355 } 4356 EXPORT_SYMBOL_GPL(sched_setattr); 4357 4358 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4359 { 4360 return __sched_setscheduler(p, attr, false, true); 4361 } 4362 4363 /** 4364 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4365 * @p: the task in question. 4366 * @policy: new policy. 4367 * @param: structure containing the new RT priority. 4368 * 4369 * Just like sched_setscheduler, only don't bother checking if the 4370 * current context has permission. For example, this is needed in 4371 * stop_machine(): we create temporary high priority worker threads, 4372 * but our caller might not have that capability. 4373 * 4374 * Return: 0 on success. An error code otherwise. 4375 */ 4376 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4377 const struct sched_param *param) 4378 { 4379 return _sched_setscheduler(p, policy, param, false); 4380 } 4381 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4382 4383 static int 4384 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4385 { 4386 struct sched_param lparam; 4387 struct task_struct *p; 4388 int retval; 4389 4390 if (!param || pid < 0) 4391 return -EINVAL; 4392 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4393 return -EFAULT; 4394 4395 rcu_read_lock(); 4396 retval = -ESRCH; 4397 p = find_process_by_pid(pid); 4398 if (p != NULL) 4399 retval = sched_setscheduler(p, policy, &lparam); 4400 rcu_read_unlock(); 4401 4402 return retval; 4403 } 4404 4405 /* 4406 * Mimics kernel/events/core.c perf_copy_attr(). 4407 */ 4408 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4409 { 4410 u32 size; 4411 int ret; 4412 4413 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4414 return -EFAULT; 4415 4416 /* Zero the full structure, so that a short copy will be nice: */ 4417 memset(attr, 0, sizeof(*attr)); 4418 4419 ret = get_user(size, &uattr->size); 4420 if (ret) 4421 return ret; 4422 4423 /* Bail out on silly large: */ 4424 if (size > PAGE_SIZE) 4425 goto err_size; 4426 4427 /* ABI compatibility quirk: */ 4428 if (!size) 4429 size = SCHED_ATTR_SIZE_VER0; 4430 4431 if (size < SCHED_ATTR_SIZE_VER0) 4432 goto err_size; 4433 4434 /* 4435 * If we're handed a bigger struct than we know of, 4436 * ensure all the unknown bits are 0 - i.e. new 4437 * user-space does not rely on any kernel feature 4438 * extensions we dont know about yet. 4439 */ 4440 if (size > sizeof(*attr)) { 4441 unsigned char __user *addr; 4442 unsigned char __user *end; 4443 unsigned char val; 4444 4445 addr = (void __user *)uattr + sizeof(*attr); 4446 end = (void __user *)uattr + size; 4447 4448 for (; addr < end; addr++) { 4449 ret = get_user(val, addr); 4450 if (ret) 4451 return ret; 4452 if (val) 4453 goto err_size; 4454 } 4455 size = sizeof(*attr); 4456 } 4457 4458 ret = copy_from_user(attr, uattr, size); 4459 if (ret) 4460 return -EFAULT; 4461 4462 /* 4463 * XXX: Do we want to be lenient like existing syscalls; or do we want 4464 * to be strict and return an error on out-of-bounds values? 4465 */ 4466 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4467 4468 return 0; 4469 4470 err_size: 4471 put_user(sizeof(*attr), &uattr->size); 4472 return -E2BIG; 4473 } 4474 4475 /** 4476 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4477 * @pid: the pid in question. 4478 * @policy: new policy. 4479 * @param: structure containing the new RT priority. 4480 * 4481 * Return: 0 on success. An error code otherwise. 4482 */ 4483 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4484 { 4485 if (policy < 0) 4486 return -EINVAL; 4487 4488 return do_sched_setscheduler(pid, policy, param); 4489 } 4490 4491 /** 4492 * sys_sched_setparam - set/change the RT priority of a thread 4493 * @pid: the pid in question. 4494 * @param: structure containing the new RT priority. 4495 * 4496 * Return: 0 on success. An error code otherwise. 4497 */ 4498 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4499 { 4500 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4501 } 4502 4503 /** 4504 * sys_sched_setattr - same as above, but with extended sched_attr 4505 * @pid: the pid in question. 4506 * @uattr: structure containing the extended parameters. 4507 * @flags: for future extension. 4508 */ 4509 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4510 unsigned int, flags) 4511 { 4512 struct sched_attr attr; 4513 struct task_struct *p; 4514 int retval; 4515 4516 if (!uattr || pid < 0 || flags) 4517 return -EINVAL; 4518 4519 retval = sched_copy_attr(uattr, &attr); 4520 if (retval) 4521 return retval; 4522 4523 if ((int)attr.sched_policy < 0) 4524 return -EINVAL; 4525 4526 rcu_read_lock(); 4527 retval = -ESRCH; 4528 p = find_process_by_pid(pid); 4529 if (p != NULL) 4530 retval = sched_setattr(p, &attr); 4531 rcu_read_unlock(); 4532 4533 return retval; 4534 } 4535 4536 /** 4537 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4538 * @pid: the pid in question. 4539 * 4540 * Return: On success, the policy of the thread. Otherwise, a negative error 4541 * code. 4542 */ 4543 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4544 { 4545 struct task_struct *p; 4546 int retval; 4547 4548 if (pid < 0) 4549 return -EINVAL; 4550 4551 retval = -ESRCH; 4552 rcu_read_lock(); 4553 p = find_process_by_pid(pid); 4554 if (p) { 4555 retval = security_task_getscheduler(p); 4556 if (!retval) 4557 retval = p->policy 4558 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4559 } 4560 rcu_read_unlock(); 4561 return retval; 4562 } 4563 4564 /** 4565 * sys_sched_getparam - get the RT priority of a thread 4566 * @pid: the pid in question. 4567 * @param: structure containing the RT priority. 4568 * 4569 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4570 * code. 4571 */ 4572 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4573 { 4574 struct sched_param lp = { .sched_priority = 0 }; 4575 struct task_struct *p; 4576 int retval; 4577 4578 if (!param || pid < 0) 4579 return -EINVAL; 4580 4581 rcu_read_lock(); 4582 p = find_process_by_pid(pid); 4583 retval = -ESRCH; 4584 if (!p) 4585 goto out_unlock; 4586 4587 retval = security_task_getscheduler(p); 4588 if (retval) 4589 goto out_unlock; 4590 4591 if (task_has_rt_policy(p)) 4592 lp.sched_priority = p->rt_priority; 4593 rcu_read_unlock(); 4594 4595 /* 4596 * This one might sleep, we cannot do it with a spinlock held ... 4597 */ 4598 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4599 4600 return retval; 4601 4602 out_unlock: 4603 rcu_read_unlock(); 4604 return retval; 4605 } 4606 4607 static int sched_read_attr(struct sched_attr __user *uattr, 4608 struct sched_attr *attr, 4609 unsigned int usize) 4610 { 4611 int ret; 4612 4613 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4614 return -EFAULT; 4615 4616 /* 4617 * If we're handed a smaller struct than we know of, 4618 * ensure all the unknown bits are 0 - i.e. old 4619 * user-space does not get uncomplete information. 4620 */ 4621 if (usize < sizeof(*attr)) { 4622 unsigned char *addr; 4623 unsigned char *end; 4624 4625 addr = (void *)attr + usize; 4626 end = (void *)attr + sizeof(*attr); 4627 4628 for (; addr < end; addr++) { 4629 if (*addr) 4630 return -EFBIG; 4631 } 4632 4633 attr->size = usize; 4634 } 4635 4636 ret = copy_to_user(uattr, attr, attr->size); 4637 if (ret) 4638 return -EFAULT; 4639 4640 return 0; 4641 } 4642 4643 /** 4644 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4645 * @pid: the pid in question. 4646 * @uattr: structure containing the extended parameters. 4647 * @size: sizeof(attr) for fwd/bwd comp. 4648 * @flags: for future extension. 4649 */ 4650 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4651 unsigned int, size, unsigned int, flags) 4652 { 4653 struct sched_attr attr = { 4654 .size = sizeof(struct sched_attr), 4655 }; 4656 struct task_struct *p; 4657 int retval; 4658 4659 if (!uattr || pid < 0 || size > PAGE_SIZE || 4660 size < SCHED_ATTR_SIZE_VER0 || flags) 4661 return -EINVAL; 4662 4663 rcu_read_lock(); 4664 p = find_process_by_pid(pid); 4665 retval = -ESRCH; 4666 if (!p) 4667 goto out_unlock; 4668 4669 retval = security_task_getscheduler(p); 4670 if (retval) 4671 goto out_unlock; 4672 4673 attr.sched_policy = p->policy; 4674 if (p->sched_reset_on_fork) 4675 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4676 if (task_has_dl_policy(p)) 4677 __getparam_dl(p, &attr); 4678 else if (task_has_rt_policy(p)) 4679 attr.sched_priority = p->rt_priority; 4680 else 4681 attr.sched_nice = task_nice(p); 4682 4683 rcu_read_unlock(); 4684 4685 retval = sched_read_attr(uattr, &attr, size); 4686 return retval; 4687 4688 out_unlock: 4689 rcu_read_unlock(); 4690 return retval; 4691 } 4692 4693 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4694 { 4695 cpumask_var_t cpus_allowed, new_mask; 4696 struct task_struct *p; 4697 int retval; 4698 4699 rcu_read_lock(); 4700 4701 p = find_process_by_pid(pid); 4702 if (!p) { 4703 rcu_read_unlock(); 4704 return -ESRCH; 4705 } 4706 4707 /* Prevent p going away */ 4708 get_task_struct(p); 4709 rcu_read_unlock(); 4710 4711 if (p->flags & PF_NO_SETAFFINITY) { 4712 retval = -EINVAL; 4713 goto out_put_task; 4714 } 4715 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4716 retval = -ENOMEM; 4717 goto out_put_task; 4718 } 4719 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4720 retval = -ENOMEM; 4721 goto out_free_cpus_allowed; 4722 } 4723 retval = -EPERM; 4724 if (!check_same_owner(p)) { 4725 rcu_read_lock(); 4726 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4727 rcu_read_unlock(); 4728 goto out_free_new_mask; 4729 } 4730 rcu_read_unlock(); 4731 } 4732 4733 retval = security_task_setscheduler(p); 4734 if (retval) 4735 goto out_free_new_mask; 4736 4737 4738 cpuset_cpus_allowed(p, cpus_allowed); 4739 cpumask_and(new_mask, in_mask, cpus_allowed); 4740 4741 /* 4742 * Since bandwidth control happens on root_domain basis, 4743 * if admission test is enabled, we only admit -deadline 4744 * tasks allowed to run on all the CPUs in the task's 4745 * root_domain. 4746 */ 4747 #ifdef CONFIG_SMP 4748 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4749 rcu_read_lock(); 4750 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4751 retval = -EBUSY; 4752 rcu_read_unlock(); 4753 goto out_free_new_mask; 4754 } 4755 rcu_read_unlock(); 4756 } 4757 #endif 4758 again: 4759 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4760 4761 if (!retval) { 4762 cpuset_cpus_allowed(p, cpus_allowed); 4763 if (!cpumask_subset(new_mask, cpus_allowed)) { 4764 /* 4765 * We must have raced with a concurrent cpuset 4766 * update. Just reset the cpus_allowed to the 4767 * cpuset's cpus_allowed 4768 */ 4769 cpumask_copy(new_mask, cpus_allowed); 4770 goto again; 4771 } 4772 } 4773 out_free_new_mask: 4774 free_cpumask_var(new_mask); 4775 out_free_cpus_allowed: 4776 free_cpumask_var(cpus_allowed); 4777 out_put_task: 4778 put_task_struct(p); 4779 return retval; 4780 } 4781 4782 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4783 struct cpumask *new_mask) 4784 { 4785 if (len < cpumask_size()) 4786 cpumask_clear(new_mask); 4787 else if (len > cpumask_size()) 4788 len = cpumask_size(); 4789 4790 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4791 } 4792 4793 /** 4794 * sys_sched_setaffinity - set the CPU affinity of a process 4795 * @pid: pid of the process 4796 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4797 * @user_mask_ptr: user-space pointer to the new CPU mask 4798 * 4799 * Return: 0 on success. An error code otherwise. 4800 */ 4801 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4802 unsigned long __user *, user_mask_ptr) 4803 { 4804 cpumask_var_t new_mask; 4805 int retval; 4806 4807 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4808 return -ENOMEM; 4809 4810 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4811 if (retval == 0) 4812 retval = sched_setaffinity(pid, new_mask); 4813 free_cpumask_var(new_mask); 4814 return retval; 4815 } 4816 4817 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4818 { 4819 struct task_struct *p; 4820 unsigned long flags; 4821 int retval; 4822 4823 rcu_read_lock(); 4824 4825 retval = -ESRCH; 4826 p = find_process_by_pid(pid); 4827 if (!p) 4828 goto out_unlock; 4829 4830 retval = security_task_getscheduler(p); 4831 if (retval) 4832 goto out_unlock; 4833 4834 raw_spin_lock_irqsave(&p->pi_lock, flags); 4835 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4836 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4837 4838 out_unlock: 4839 rcu_read_unlock(); 4840 4841 return retval; 4842 } 4843 4844 /** 4845 * sys_sched_getaffinity - get the CPU affinity of a process 4846 * @pid: pid of the process 4847 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4848 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4849 * 4850 * Return: size of CPU mask copied to user_mask_ptr on success. An 4851 * error code otherwise. 4852 */ 4853 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4854 unsigned long __user *, user_mask_ptr) 4855 { 4856 int ret; 4857 cpumask_var_t mask; 4858 4859 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4860 return -EINVAL; 4861 if (len & (sizeof(unsigned long)-1)) 4862 return -EINVAL; 4863 4864 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4865 return -ENOMEM; 4866 4867 ret = sched_getaffinity(pid, mask); 4868 if (ret == 0) { 4869 size_t retlen = min_t(size_t, len, cpumask_size()); 4870 4871 if (copy_to_user(user_mask_ptr, mask, retlen)) 4872 ret = -EFAULT; 4873 else 4874 ret = retlen; 4875 } 4876 free_cpumask_var(mask); 4877 4878 return ret; 4879 } 4880 4881 /** 4882 * sys_sched_yield - yield the current processor to other threads. 4883 * 4884 * This function yields the current CPU to other tasks. If there are no 4885 * other threads running on this CPU then this function will return. 4886 * 4887 * Return: 0. 4888 */ 4889 SYSCALL_DEFINE0(sched_yield) 4890 { 4891 struct rq_flags rf; 4892 struct rq *rq; 4893 4894 local_irq_disable(); 4895 rq = this_rq(); 4896 rq_lock(rq, &rf); 4897 4898 schedstat_inc(rq->yld_count); 4899 current->sched_class->yield_task(rq); 4900 4901 /* 4902 * Since we are going to call schedule() anyway, there's 4903 * no need to preempt or enable interrupts: 4904 */ 4905 preempt_disable(); 4906 rq_unlock(rq, &rf); 4907 sched_preempt_enable_no_resched(); 4908 4909 schedule(); 4910 4911 return 0; 4912 } 4913 4914 #ifndef CONFIG_PREEMPT 4915 int __sched _cond_resched(void) 4916 { 4917 if (should_resched(0)) { 4918 preempt_schedule_common(); 4919 return 1; 4920 } 4921 rcu_all_qs(); 4922 return 0; 4923 } 4924 EXPORT_SYMBOL(_cond_resched); 4925 #endif 4926 4927 /* 4928 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4929 * call schedule, and on return reacquire the lock. 4930 * 4931 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4932 * operations here to prevent schedule() from being called twice (once via 4933 * spin_unlock(), once by hand). 4934 */ 4935 int __cond_resched_lock(spinlock_t *lock) 4936 { 4937 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4938 int ret = 0; 4939 4940 lockdep_assert_held(lock); 4941 4942 if (spin_needbreak(lock) || resched) { 4943 spin_unlock(lock); 4944 if (resched) 4945 preempt_schedule_common(); 4946 else 4947 cpu_relax(); 4948 ret = 1; 4949 spin_lock(lock); 4950 } 4951 return ret; 4952 } 4953 EXPORT_SYMBOL(__cond_resched_lock); 4954 4955 int __sched __cond_resched_softirq(void) 4956 { 4957 BUG_ON(!in_softirq()); 4958 4959 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4960 local_bh_enable(); 4961 preempt_schedule_common(); 4962 local_bh_disable(); 4963 return 1; 4964 } 4965 return 0; 4966 } 4967 EXPORT_SYMBOL(__cond_resched_softirq); 4968 4969 /** 4970 * yield - yield the current processor to other threads. 4971 * 4972 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4973 * 4974 * The scheduler is at all times free to pick the calling task as the most 4975 * eligible task to run, if removing the yield() call from your code breaks 4976 * it, its already broken. 4977 * 4978 * Typical broken usage is: 4979 * 4980 * while (!event) 4981 * yield(); 4982 * 4983 * where one assumes that yield() will let 'the other' process run that will 4984 * make event true. If the current task is a SCHED_FIFO task that will never 4985 * happen. Never use yield() as a progress guarantee!! 4986 * 4987 * If you want to use yield() to wait for something, use wait_event(). 4988 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4989 * If you still want to use yield(), do not! 4990 */ 4991 void __sched yield(void) 4992 { 4993 set_current_state(TASK_RUNNING); 4994 sys_sched_yield(); 4995 } 4996 EXPORT_SYMBOL(yield); 4997 4998 /** 4999 * yield_to - yield the current processor to another thread in 5000 * your thread group, or accelerate that thread toward the 5001 * processor it's on. 5002 * @p: target task 5003 * @preempt: whether task preemption is allowed or not 5004 * 5005 * It's the caller's job to ensure that the target task struct 5006 * can't go away on us before we can do any checks. 5007 * 5008 * Return: 5009 * true (>0) if we indeed boosted the target task. 5010 * false (0) if we failed to boost the target. 5011 * -ESRCH if there's no task to yield to. 5012 */ 5013 int __sched yield_to(struct task_struct *p, bool preempt) 5014 { 5015 struct task_struct *curr = current; 5016 struct rq *rq, *p_rq; 5017 unsigned long flags; 5018 int yielded = 0; 5019 5020 local_irq_save(flags); 5021 rq = this_rq(); 5022 5023 again: 5024 p_rq = task_rq(p); 5025 /* 5026 * If we're the only runnable task on the rq and target rq also 5027 * has only one task, there's absolutely no point in yielding. 5028 */ 5029 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5030 yielded = -ESRCH; 5031 goto out_irq; 5032 } 5033 5034 double_rq_lock(rq, p_rq); 5035 if (task_rq(p) != p_rq) { 5036 double_rq_unlock(rq, p_rq); 5037 goto again; 5038 } 5039 5040 if (!curr->sched_class->yield_to_task) 5041 goto out_unlock; 5042 5043 if (curr->sched_class != p->sched_class) 5044 goto out_unlock; 5045 5046 if (task_running(p_rq, p) || p->state) 5047 goto out_unlock; 5048 5049 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5050 if (yielded) { 5051 schedstat_inc(rq->yld_count); 5052 /* 5053 * Make p's CPU reschedule; pick_next_entity takes care of 5054 * fairness. 5055 */ 5056 if (preempt && rq != p_rq) 5057 resched_curr(p_rq); 5058 } 5059 5060 out_unlock: 5061 double_rq_unlock(rq, p_rq); 5062 out_irq: 5063 local_irq_restore(flags); 5064 5065 if (yielded > 0) 5066 schedule(); 5067 5068 return yielded; 5069 } 5070 EXPORT_SYMBOL_GPL(yield_to); 5071 5072 int io_schedule_prepare(void) 5073 { 5074 int old_iowait = current->in_iowait; 5075 5076 current->in_iowait = 1; 5077 blk_schedule_flush_plug(current); 5078 5079 return old_iowait; 5080 } 5081 5082 void io_schedule_finish(int token) 5083 { 5084 current->in_iowait = token; 5085 } 5086 5087 /* 5088 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5089 * that process accounting knows that this is a task in IO wait state. 5090 */ 5091 long __sched io_schedule_timeout(long timeout) 5092 { 5093 int token; 5094 long ret; 5095 5096 token = io_schedule_prepare(); 5097 ret = schedule_timeout(timeout); 5098 io_schedule_finish(token); 5099 5100 return ret; 5101 } 5102 EXPORT_SYMBOL(io_schedule_timeout); 5103 5104 void io_schedule(void) 5105 { 5106 int token; 5107 5108 token = io_schedule_prepare(); 5109 schedule(); 5110 io_schedule_finish(token); 5111 } 5112 EXPORT_SYMBOL(io_schedule); 5113 5114 /** 5115 * sys_sched_get_priority_max - return maximum RT priority. 5116 * @policy: scheduling class. 5117 * 5118 * Return: On success, this syscall returns the maximum 5119 * rt_priority that can be used by a given scheduling class. 5120 * On failure, a negative error code is returned. 5121 */ 5122 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5123 { 5124 int ret = -EINVAL; 5125 5126 switch (policy) { 5127 case SCHED_FIFO: 5128 case SCHED_RR: 5129 ret = MAX_USER_RT_PRIO-1; 5130 break; 5131 case SCHED_DEADLINE: 5132 case SCHED_NORMAL: 5133 case SCHED_BATCH: 5134 case SCHED_IDLE: 5135 ret = 0; 5136 break; 5137 } 5138 return ret; 5139 } 5140 5141 /** 5142 * sys_sched_get_priority_min - return minimum RT priority. 5143 * @policy: scheduling class. 5144 * 5145 * Return: On success, this syscall returns the minimum 5146 * rt_priority that can be used by a given scheduling class. 5147 * On failure, a negative error code is returned. 5148 */ 5149 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5150 { 5151 int ret = -EINVAL; 5152 5153 switch (policy) { 5154 case SCHED_FIFO: 5155 case SCHED_RR: 5156 ret = 1; 5157 break; 5158 case SCHED_DEADLINE: 5159 case SCHED_NORMAL: 5160 case SCHED_BATCH: 5161 case SCHED_IDLE: 5162 ret = 0; 5163 } 5164 return ret; 5165 } 5166 5167 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5168 { 5169 struct task_struct *p; 5170 unsigned int time_slice; 5171 struct rq_flags rf; 5172 struct rq *rq; 5173 int retval; 5174 5175 if (pid < 0) 5176 return -EINVAL; 5177 5178 retval = -ESRCH; 5179 rcu_read_lock(); 5180 p = find_process_by_pid(pid); 5181 if (!p) 5182 goto out_unlock; 5183 5184 retval = security_task_getscheduler(p); 5185 if (retval) 5186 goto out_unlock; 5187 5188 rq = task_rq_lock(p, &rf); 5189 time_slice = 0; 5190 if (p->sched_class->get_rr_interval) 5191 time_slice = p->sched_class->get_rr_interval(rq, p); 5192 task_rq_unlock(rq, p, &rf); 5193 5194 rcu_read_unlock(); 5195 jiffies_to_timespec64(time_slice, t); 5196 return 0; 5197 5198 out_unlock: 5199 rcu_read_unlock(); 5200 return retval; 5201 } 5202 5203 /** 5204 * sys_sched_rr_get_interval - return the default timeslice of a process. 5205 * @pid: pid of the process. 5206 * @interval: userspace pointer to the timeslice value. 5207 * 5208 * this syscall writes the default timeslice value of a given process 5209 * into the user-space timespec buffer. A value of '0' means infinity. 5210 * 5211 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5212 * an error code. 5213 */ 5214 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5215 struct timespec __user *, interval) 5216 { 5217 struct timespec64 t; 5218 int retval = sched_rr_get_interval(pid, &t); 5219 5220 if (retval == 0) 5221 retval = put_timespec64(&t, interval); 5222 5223 return retval; 5224 } 5225 5226 #ifdef CONFIG_COMPAT 5227 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5228 compat_pid_t, pid, 5229 struct compat_timespec __user *, interval) 5230 { 5231 struct timespec64 t; 5232 int retval = sched_rr_get_interval(pid, &t); 5233 5234 if (retval == 0) 5235 retval = compat_put_timespec64(&t, interval); 5236 return retval; 5237 } 5238 #endif 5239 5240 void sched_show_task(struct task_struct *p) 5241 { 5242 unsigned long free = 0; 5243 int ppid; 5244 5245 if (!try_get_task_stack(p)) 5246 return; 5247 5248 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5249 5250 if (p->state == TASK_RUNNING) 5251 printk(KERN_CONT " running task "); 5252 #ifdef CONFIG_DEBUG_STACK_USAGE 5253 free = stack_not_used(p); 5254 #endif 5255 ppid = 0; 5256 rcu_read_lock(); 5257 if (pid_alive(p)) 5258 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5259 rcu_read_unlock(); 5260 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5261 task_pid_nr(p), ppid, 5262 (unsigned long)task_thread_info(p)->flags); 5263 5264 print_worker_info(KERN_INFO, p); 5265 show_stack(p, NULL); 5266 put_task_stack(p); 5267 } 5268 EXPORT_SYMBOL_GPL(sched_show_task); 5269 5270 static inline bool 5271 state_filter_match(unsigned long state_filter, struct task_struct *p) 5272 { 5273 /* no filter, everything matches */ 5274 if (!state_filter) 5275 return true; 5276 5277 /* filter, but doesn't match */ 5278 if (!(p->state & state_filter)) 5279 return false; 5280 5281 /* 5282 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5283 * TASK_KILLABLE). 5284 */ 5285 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5286 return false; 5287 5288 return true; 5289 } 5290 5291 5292 void show_state_filter(unsigned long state_filter) 5293 { 5294 struct task_struct *g, *p; 5295 5296 #if BITS_PER_LONG == 32 5297 printk(KERN_INFO 5298 " task PC stack pid father\n"); 5299 #else 5300 printk(KERN_INFO 5301 " task PC stack pid father\n"); 5302 #endif 5303 rcu_read_lock(); 5304 for_each_process_thread(g, p) { 5305 /* 5306 * reset the NMI-timeout, listing all files on a slow 5307 * console might take a lot of time: 5308 * Also, reset softlockup watchdogs on all CPUs, because 5309 * another CPU might be blocked waiting for us to process 5310 * an IPI. 5311 */ 5312 touch_nmi_watchdog(); 5313 touch_all_softlockup_watchdogs(); 5314 if (state_filter_match(state_filter, p)) 5315 sched_show_task(p); 5316 } 5317 5318 #ifdef CONFIG_SCHED_DEBUG 5319 if (!state_filter) 5320 sysrq_sched_debug_show(); 5321 #endif 5322 rcu_read_unlock(); 5323 /* 5324 * Only show locks if all tasks are dumped: 5325 */ 5326 if (!state_filter) 5327 debug_show_all_locks(); 5328 } 5329 5330 /** 5331 * init_idle - set up an idle thread for a given CPU 5332 * @idle: task in question 5333 * @cpu: CPU the idle task belongs to 5334 * 5335 * NOTE: this function does not set the idle thread's NEED_RESCHED 5336 * flag, to make booting more robust. 5337 */ 5338 void init_idle(struct task_struct *idle, int cpu) 5339 { 5340 struct rq *rq = cpu_rq(cpu); 5341 unsigned long flags; 5342 5343 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5344 raw_spin_lock(&rq->lock); 5345 5346 __sched_fork(0, idle); 5347 idle->state = TASK_RUNNING; 5348 idle->se.exec_start = sched_clock(); 5349 idle->flags |= PF_IDLE; 5350 5351 kasan_unpoison_task_stack(idle); 5352 5353 #ifdef CONFIG_SMP 5354 /* 5355 * Its possible that init_idle() gets called multiple times on a task, 5356 * in that case do_set_cpus_allowed() will not do the right thing. 5357 * 5358 * And since this is boot we can forgo the serialization. 5359 */ 5360 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5361 #endif 5362 /* 5363 * We're having a chicken and egg problem, even though we are 5364 * holding rq->lock, the CPU isn't yet set to this CPU so the 5365 * lockdep check in task_group() will fail. 5366 * 5367 * Similar case to sched_fork(). / Alternatively we could 5368 * use task_rq_lock() here and obtain the other rq->lock. 5369 * 5370 * Silence PROVE_RCU 5371 */ 5372 rcu_read_lock(); 5373 __set_task_cpu(idle, cpu); 5374 rcu_read_unlock(); 5375 5376 rq->curr = rq->idle = idle; 5377 idle->on_rq = TASK_ON_RQ_QUEUED; 5378 #ifdef CONFIG_SMP 5379 idle->on_cpu = 1; 5380 #endif 5381 raw_spin_unlock(&rq->lock); 5382 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5383 5384 /* Set the preempt count _outside_ the spinlocks! */ 5385 init_idle_preempt_count(idle, cpu); 5386 5387 /* 5388 * The idle tasks have their own, simple scheduling class: 5389 */ 5390 idle->sched_class = &idle_sched_class; 5391 ftrace_graph_init_idle_task(idle, cpu); 5392 vtime_init_idle(idle, cpu); 5393 #ifdef CONFIG_SMP 5394 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5395 #endif 5396 } 5397 5398 #ifdef CONFIG_SMP 5399 5400 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5401 const struct cpumask *trial) 5402 { 5403 int ret = 1; 5404 5405 if (!cpumask_weight(cur)) 5406 return ret; 5407 5408 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5409 5410 return ret; 5411 } 5412 5413 int task_can_attach(struct task_struct *p, 5414 const struct cpumask *cs_cpus_allowed) 5415 { 5416 int ret = 0; 5417 5418 /* 5419 * Kthreads which disallow setaffinity shouldn't be moved 5420 * to a new cpuset; we don't want to change their CPU 5421 * affinity and isolating such threads by their set of 5422 * allowed nodes is unnecessary. Thus, cpusets are not 5423 * applicable for such threads. This prevents checking for 5424 * success of set_cpus_allowed_ptr() on all attached tasks 5425 * before cpus_allowed may be changed. 5426 */ 5427 if (p->flags & PF_NO_SETAFFINITY) { 5428 ret = -EINVAL; 5429 goto out; 5430 } 5431 5432 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5433 cs_cpus_allowed)) 5434 ret = dl_task_can_attach(p, cs_cpus_allowed); 5435 5436 out: 5437 return ret; 5438 } 5439 5440 bool sched_smp_initialized __read_mostly; 5441 5442 #ifdef CONFIG_NUMA_BALANCING 5443 /* Migrate current task p to target_cpu */ 5444 int migrate_task_to(struct task_struct *p, int target_cpu) 5445 { 5446 struct migration_arg arg = { p, target_cpu }; 5447 int curr_cpu = task_cpu(p); 5448 5449 if (curr_cpu == target_cpu) 5450 return 0; 5451 5452 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5453 return -EINVAL; 5454 5455 /* TODO: This is not properly updating schedstats */ 5456 5457 trace_sched_move_numa(p, curr_cpu, target_cpu); 5458 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5459 } 5460 5461 /* 5462 * Requeue a task on a given node and accurately track the number of NUMA 5463 * tasks on the runqueues 5464 */ 5465 void sched_setnuma(struct task_struct *p, int nid) 5466 { 5467 bool queued, running; 5468 struct rq_flags rf; 5469 struct rq *rq; 5470 5471 rq = task_rq_lock(p, &rf); 5472 queued = task_on_rq_queued(p); 5473 running = task_current(rq, p); 5474 5475 if (queued) 5476 dequeue_task(rq, p, DEQUEUE_SAVE); 5477 if (running) 5478 put_prev_task(rq, p); 5479 5480 p->numa_preferred_nid = nid; 5481 5482 if (queued) 5483 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5484 if (running) 5485 set_curr_task(rq, p); 5486 task_rq_unlock(rq, p, &rf); 5487 } 5488 #endif /* CONFIG_NUMA_BALANCING */ 5489 5490 #ifdef CONFIG_HOTPLUG_CPU 5491 /* 5492 * Ensure that the idle task is using init_mm right before its CPU goes 5493 * offline. 5494 */ 5495 void idle_task_exit(void) 5496 { 5497 struct mm_struct *mm = current->active_mm; 5498 5499 BUG_ON(cpu_online(smp_processor_id())); 5500 5501 if (mm != &init_mm) { 5502 switch_mm(mm, &init_mm, current); 5503 finish_arch_post_lock_switch(); 5504 } 5505 mmdrop(mm); 5506 } 5507 5508 /* 5509 * Since this CPU is going 'away' for a while, fold any nr_active delta 5510 * we might have. Assumes we're called after migrate_tasks() so that the 5511 * nr_active count is stable. We need to take the teardown thread which 5512 * is calling this into account, so we hand in adjust = 1 to the load 5513 * calculation. 5514 * 5515 * Also see the comment "Global load-average calculations". 5516 */ 5517 static void calc_load_migrate(struct rq *rq) 5518 { 5519 long delta = calc_load_fold_active(rq, 1); 5520 if (delta) 5521 atomic_long_add(delta, &calc_load_tasks); 5522 } 5523 5524 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5525 { 5526 } 5527 5528 static const struct sched_class fake_sched_class = { 5529 .put_prev_task = put_prev_task_fake, 5530 }; 5531 5532 static struct task_struct fake_task = { 5533 /* 5534 * Avoid pull_{rt,dl}_task() 5535 */ 5536 .prio = MAX_PRIO + 1, 5537 .sched_class = &fake_sched_class, 5538 }; 5539 5540 /* 5541 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5542 * try_to_wake_up()->select_task_rq(). 5543 * 5544 * Called with rq->lock held even though we'er in stop_machine() and 5545 * there's no concurrency possible, we hold the required locks anyway 5546 * because of lock validation efforts. 5547 */ 5548 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5549 { 5550 struct rq *rq = dead_rq; 5551 struct task_struct *next, *stop = rq->stop; 5552 struct rq_flags orf = *rf; 5553 int dest_cpu; 5554 5555 /* 5556 * Fudge the rq selection such that the below task selection loop 5557 * doesn't get stuck on the currently eligible stop task. 5558 * 5559 * We're currently inside stop_machine() and the rq is either stuck 5560 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5561 * either way we should never end up calling schedule() until we're 5562 * done here. 5563 */ 5564 rq->stop = NULL; 5565 5566 /* 5567 * put_prev_task() and pick_next_task() sched 5568 * class method both need to have an up-to-date 5569 * value of rq->clock[_task] 5570 */ 5571 update_rq_clock(rq); 5572 5573 for (;;) { 5574 /* 5575 * There's this thread running, bail when that's the only 5576 * remaining thread: 5577 */ 5578 if (rq->nr_running == 1) 5579 break; 5580 5581 /* 5582 * pick_next_task() assumes pinned rq->lock: 5583 */ 5584 next = pick_next_task(rq, &fake_task, rf); 5585 BUG_ON(!next); 5586 put_prev_task(rq, next); 5587 5588 /* 5589 * Rules for changing task_struct::cpus_allowed are holding 5590 * both pi_lock and rq->lock, such that holding either 5591 * stabilizes the mask. 5592 * 5593 * Drop rq->lock is not quite as disastrous as it usually is 5594 * because !cpu_active at this point, which means load-balance 5595 * will not interfere. Also, stop-machine. 5596 */ 5597 rq_unlock(rq, rf); 5598 raw_spin_lock(&next->pi_lock); 5599 rq_relock(rq, rf); 5600 5601 /* 5602 * Since we're inside stop-machine, _nothing_ should have 5603 * changed the task, WARN if weird stuff happened, because in 5604 * that case the above rq->lock drop is a fail too. 5605 */ 5606 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5607 raw_spin_unlock(&next->pi_lock); 5608 continue; 5609 } 5610 5611 /* Find suitable destination for @next, with force if needed. */ 5612 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5613 rq = __migrate_task(rq, rf, next, dest_cpu); 5614 if (rq != dead_rq) { 5615 rq_unlock(rq, rf); 5616 rq = dead_rq; 5617 *rf = orf; 5618 rq_relock(rq, rf); 5619 } 5620 raw_spin_unlock(&next->pi_lock); 5621 } 5622 5623 rq->stop = stop; 5624 } 5625 #endif /* CONFIG_HOTPLUG_CPU */ 5626 5627 void set_rq_online(struct rq *rq) 5628 { 5629 if (!rq->online) { 5630 const struct sched_class *class; 5631 5632 cpumask_set_cpu(rq->cpu, rq->rd->online); 5633 rq->online = 1; 5634 5635 for_each_class(class) { 5636 if (class->rq_online) 5637 class->rq_online(rq); 5638 } 5639 } 5640 } 5641 5642 void set_rq_offline(struct rq *rq) 5643 { 5644 if (rq->online) { 5645 const struct sched_class *class; 5646 5647 for_each_class(class) { 5648 if (class->rq_offline) 5649 class->rq_offline(rq); 5650 } 5651 5652 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5653 rq->online = 0; 5654 } 5655 } 5656 5657 static void set_cpu_rq_start_time(unsigned int cpu) 5658 { 5659 struct rq *rq = cpu_rq(cpu); 5660 5661 rq->age_stamp = sched_clock_cpu(cpu); 5662 } 5663 5664 /* 5665 * used to mark begin/end of suspend/resume: 5666 */ 5667 static int num_cpus_frozen; 5668 5669 /* 5670 * Update cpusets according to cpu_active mask. If cpusets are 5671 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5672 * around partition_sched_domains(). 5673 * 5674 * If we come here as part of a suspend/resume, don't touch cpusets because we 5675 * want to restore it back to its original state upon resume anyway. 5676 */ 5677 static void cpuset_cpu_active(void) 5678 { 5679 if (cpuhp_tasks_frozen) { 5680 /* 5681 * num_cpus_frozen tracks how many CPUs are involved in suspend 5682 * resume sequence. As long as this is not the last online 5683 * operation in the resume sequence, just build a single sched 5684 * domain, ignoring cpusets. 5685 */ 5686 partition_sched_domains(1, NULL, NULL); 5687 if (--num_cpus_frozen) 5688 return; 5689 /* 5690 * This is the last CPU online operation. So fall through and 5691 * restore the original sched domains by considering the 5692 * cpuset configurations. 5693 */ 5694 cpuset_force_rebuild(); 5695 } 5696 cpuset_update_active_cpus(); 5697 } 5698 5699 static int cpuset_cpu_inactive(unsigned int cpu) 5700 { 5701 if (!cpuhp_tasks_frozen) { 5702 if (dl_cpu_busy(cpu)) 5703 return -EBUSY; 5704 cpuset_update_active_cpus(); 5705 } else { 5706 num_cpus_frozen++; 5707 partition_sched_domains(1, NULL, NULL); 5708 } 5709 return 0; 5710 } 5711 5712 int sched_cpu_activate(unsigned int cpu) 5713 { 5714 struct rq *rq = cpu_rq(cpu); 5715 struct rq_flags rf; 5716 5717 set_cpu_active(cpu, true); 5718 5719 if (sched_smp_initialized) { 5720 sched_domains_numa_masks_set(cpu); 5721 cpuset_cpu_active(); 5722 } 5723 5724 /* 5725 * Put the rq online, if not already. This happens: 5726 * 5727 * 1) In the early boot process, because we build the real domains 5728 * after all CPUs have been brought up. 5729 * 5730 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5731 * domains. 5732 */ 5733 rq_lock_irqsave(rq, &rf); 5734 if (rq->rd) { 5735 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5736 set_rq_online(rq); 5737 } 5738 rq_unlock_irqrestore(rq, &rf); 5739 5740 update_max_interval(); 5741 5742 return 0; 5743 } 5744 5745 int sched_cpu_deactivate(unsigned int cpu) 5746 { 5747 int ret; 5748 5749 set_cpu_active(cpu, false); 5750 /* 5751 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5752 * users of this state to go away such that all new such users will 5753 * observe it. 5754 * 5755 * Do sync before park smpboot threads to take care the rcu boost case. 5756 */ 5757 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5758 5759 if (!sched_smp_initialized) 5760 return 0; 5761 5762 ret = cpuset_cpu_inactive(cpu); 5763 if (ret) { 5764 set_cpu_active(cpu, true); 5765 return ret; 5766 } 5767 sched_domains_numa_masks_clear(cpu); 5768 return 0; 5769 } 5770 5771 static void sched_rq_cpu_starting(unsigned int cpu) 5772 { 5773 struct rq *rq = cpu_rq(cpu); 5774 5775 rq->calc_load_update = calc_load_update; 5776 update_max_interval(); 5777 } 5778 5779 int sched_cpu_starting(unsigned int cpu) 5780 { 5781 set_cpu_rq_start_time(cpu); 5782 sched_rq_cpu_starting(cpu); 5783 return 0; 5784 } 5785 5786 #ifdef CONFIG_HOTPLUG_CPU 5787 int sched_cpu_dying(unsigned int cpu) 5788 { 5789 struct rq *rq = cpu_rq(cpu); 5790 struct rq_flags rf; 5791 5792 /* Handle pending wakeups and then migrate everything off */ 5793 sched_ttwu_pending(); 5794 5795 rq_lock_irqsave(rq, &rf); 5796 if (rq->rd) { 5797 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5798 set_rq_offline(rq); 5799 } 5800 migrate_tasks(rq, &rf); 5801 BUG_ON(rq->nr_running != 1); 5802 rq_unlock_irqrestore(rq, &rf); 5803 5804 calc_load_migrate(rq); 5805 update_max_interval(); 5806 nohz_balance_exit_idle(cpu); 5807 hrtick_clear(rq); 5808 return 0; 5809 } 5810 #endif 5811 5812 #ifdef CONFIG_SCHED_SMT 5813 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5814 5815 static void sched_init_smt(void) 5816 { 5817 /* 5818 * We've enumerated all CPUs and will assume that if any CPU 5819 * has SMT siblings, CPU0 will too. 5820 */ 5821 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5822 static_branch_enable(&sched_smt_present); 5823 } 5824 #else 5825 static inline void sched_init_smt(void) { } 5826 #endif 5827 5828 void __init sched_init_smp(void) 5829 { 5830 sched_init_numa(); 5831 5832 /* 5833 * There's no userspace yet to cause hotplug operations; hence all the 5834 * CPU masks are stable and all blatant races in the below code cannot 5835 * happen. 5836 */ 5837 mutex_lock(&sched_domains_mutex); 5838 sched_init_domains(cpu_active_mask); 5839 mutex_unlock(&sched_domains_mutex); 5840 5841 /* Move init over to a non-isolated CPU */ 5842 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5843 BUG(); 5844 sched_init_granularity(); 5845 5846 init_sched_rt_class(); 5847 init_sched_dl_class(); 5848 5849 sched_init_smt(); 5850 5851 sched_smp_initialized = true; 5852 } 5853 5854 static int __init migration_init(void) 5855 { 5856 sched_rq_cpu_starting(smp_processor_id()); 5857 return 0; 5858 } 5859 early_initcall(migration_init); 5860 5861 #else 5862 void __init sched_init_smp(void) 5863 { 5864 sched_init_granularity(); 5865 } 5866 #endif /* CONFIG_SMP */ 5867 5868 int in_sched_functions(unsigned long addr) 5869 { 5870 return in_lock_functions(addr) || 5871 (addr >= (unsigned long)__sched_text_start 5872 && addr < (unsigned long)__sched_text_end); 5873 } 5874 5875 #ifdef CONFIG_CGROUP_SCHED 5876 /* 5877 * Default task group. 5878 * Every task in system belongs to this group at bootup. 5879 */ 5880 struct task_group root_task_group; 5881 LIST_HEAD(task_groups); 5882 5883 /* Cacheline aligned slab cache for task_group */ 5884 static struct kmem_cache *task_group_cache __read_mostly; 5885 #endif 5886 5887 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5888 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5889 5890 void __init sched_init(void) 5891 { 5892 int i, j; 5893 unsigned long alloc_size = 0, ptr; 5894 5895 sched_clock_init(); 5896 wait_bit_init(); 5897 5898 #ifdef CONFIG_FAIR_GROUP_SCHED 5899 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5900 #endif 5901 #ifdef CONFIG_RT_GROUP_SCHED 5902 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5903 #endif 5904 if (alloc_size) { 5905 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5906 5907 #ifdef CONFIG_FAIR_GROUP_SCHED 5908 root_task_group.se = (struct sched_entity **)ptr; 5909 ptr += nr_cpu_ids * sizeof(void **); 5910 5911 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5912 ptr += nr_cpu_ids * sizeof(void **); 5913 5914 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5915 #ifdef CONFIG_RT_GROUP_SCHED 5916 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5917 ptr += nr_cpu_ids * sizeof(void **); 5918 5919 root_task_group.rt_rq = (struct rt_rq **)ptr; 5920 ptr += nr_cpu_ids * sizeof(void **); 5921 5922 #endif /* CONFIG_RT_GROUP_SCHED */ 5923 } 5924 #ifdef CONFIG_CPUMASK_OFFSTACK 5925 for_each_possible_cpu(i) { 5926 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5927 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5928 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5929 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5930 } 5931 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5932 5933 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5934 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5935 5936 #ifdef CONFIG_SMP 5937 init_defrootdomain(); 5938 #endif 5939 5940 #ifdef CONFIG_RT_GROUP_SCHED 5941 init_rt_bandwidth(&root_task_group.rt_bandwidth, 5942 global_rt_period(), global_rt_runtime()); 5943 #endif /* CONFIG_RT_GROUP_SCHED */ 5944 5945 #ifdef CONFIG_CGROUP_SCHED 5946 task_group_cache = KMEM_CACHE(task_group, 0); 5947 5948 list_add(&root_task_group.list, &task_groups); 5949 INIT_LIST_HEAD(&root_task_group.children); 5950 INIT_LIST_HEAD(&root_task_group.siblings); 5951 autogroup_init(&init_task); 5952 #endif /* CONFIG_CGROUP_SCHED */ 5953 5954 for_each_possible_cpu(i) { 5955 struct rq *rq; 5956 5957 rq = cpu_rq(i); 5958 raw_spin_lock_init(&rq->lock); 5959 rq->nr_running = 0; 5960 rq->calc_load_active = 0; 5961 rq->calc_load_update = jiffies + LOAD_FREQ; 5962 init_cfs_rq(&rq->cfs); 5963 init_rt_rq(&rq->rt); 5964 init_dl_rq(&rq->dl); 5965 #ifdef CONFIG_FAIR_GROUP_SCHED 5966 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 5967 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 5968 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 5969 /* 5970 * How much CPU bandwidth does root_task_group get? 5971 * 5972 * In case of task-groups formed thr' the cgroup filesystem, it 5973 * gets 100% of the CPU resources in the system. This overall 5974 * system CPU resource is divided among the tasks of 5975 * root_task_group and its child task-groups in a fair manner, 5976 * based on each entity's (task or task-group's) weight 5977 * (se->load.weight). 5978 * 5979 * In other words, if root_task_group has 10 tasks of weight 5980 * 1024) and two child groups A0 and A1 (of weight 1024 each), 5981 * then A0's share of the CPU resource is: 5982 * 5983 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 5984 * 5985 * We achieve this by letting root_task_group's tasks sit 5986 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 5987 */ 5988 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 5989 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 5990 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5991 5992 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 5993 #ifdef CONFIG_RT_GROUP_SCHED 5994 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 5995 #endif 5996 5997 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 5998 rq->cpu_load[j] = 0; 5999 6000 #ifdef CONFIG_SMP 6001 rq->sd = NULL; 6002 rq->rd = NULL; 6003 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6004 rq->balance_callback = NULL; 6005 rq->active_balance = 0; 6006 rq->next_balance = jiffies; 6007 rq->push_cpu = 0; 6008 rq->cpu = i; 6009 rq->online = 0; 6010 rq->idle_stamp = 0; 6011 rq->avg_idle = 2*sysctl_sched_migration_cost; 6012 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6013 6014 INIT_LIST_HEAD(&rq->cfs_tasks); 6015 6016 rq_attach_root(rq, &def_root_domain); 6017 #ifdef CONFIG_NO_HZ_COMMON 6018 rq->last_load_update_tick = jiffies; 6019 rq->nohz_flags = 0; 6020 #endif 6021 #ifdef CONFIG_NO_HZ_FULL 6022 rq->last_sched_tick = 0; 6023 #endif 6024 #endif /* CONFIG_SMP */ 6025 init_rq_hrtick(rq); 6026 atomic_set(&rq->nr_iowait, 0); 6027 } 6028 6029 set_load_weight(&init_task, false); 6030 6031 /* 6032 * The boot idle thread does lazy MMU switching as well: 6033 */ 6034 mmgrab(&init_mm); 6035 enter_lazy_tlb(&init_mm, current); 6036 6037 /* 6038 * Make us the idle thread. Technically, schedule() should not be 6039 * called from this thread, however somewhere below it might be, 6040 * but because we are the idle thread, we just pick up running again 6041 * when this runqueue becomes "idle". 6042 */ 6043 init_idle(current, smp_processor_id()); 6044 6045 calc_load_update = jiffies + LOAD_FREQ; 6046 6047 #ifdef CONFIG_SMP 6048 idle_thread_set_boot_cpu(); 6049 set_cpu_rq_start_time(smp_processor_id()); 6050 #endif 6051 init_sched_fair_class(); 6052 6053 init_schedstats(); 6054 6055 scheduler_running = 1; 6056 } 6057 6058 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6059 static inline int preempt_count_equals(int preempt_offset) 6060 { 6061 int nested = preempt_count() + rcu_preempt_depth(); 6062 6063 return (nested == preempt_offset); 6064 } 6065 6066 void __might_sleep(const char *file, int line, int preempt_offset) 6067 { 6068 /* 6069 * Blocking primitives will set (and therefore destroy) current->state, 6070 * since we will exit with TASK_RUNNING make sure we enter with it, 6071 * otherwise we will destroy state. 6072 */ 6073 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6074 "do not call blocking ops when !TASK_RUNNING; " 6075 "state=%lx set at [<%p>] %pS\n", 6076 current->state, 6077 (void *)current->task_state_change, 6078 (void *)current->task_state_change); 6079 6080 ___might_sleep(file, line, preempt_offset); 6081 } 6082 EXPORT_SYMBOL(__might_sleep); 6083 6084 void ___might_sleep(const char *file, int line, int preempt_offset) 6085 { 6086 /* Ratelimiting timestamp: */ 6087 static unsigned long prev_jiffy; 6088 6089 unsigned long preempt_disable_ip; 6090 6091 /* WARN_ON_ONCE() by default, no rate limit required: */ 6092 rcu_sleep_check(); 6093 6094 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6095 !is_idle_task(current)) || 6096 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6097 oops_in_progress) 6098 return; 6099 6100 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6101 return; 6102 prev_jiffy = jiffies; 6103 6104 /* Save this before calling printk(), since that will clobber it: */ 6105 preempt_disable_ip = get_preempt_disable_ip(current); 6106 6107 printk(KERN_ERR 6108 "BUG: sleeping function called from invalid context at %s:%d\n", 6109 file, line); 6110 printk(KERN_ERR 6111 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6112 in_atomic(), irqs_disabled(), 6113 current->pid, current->comm); 6114 6115 if (task_stack_end_corrupted(current)) 6116 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6117 6118 debug_show_held_locks(current); 6119 if (irqs_disabled()) 6120 print_irqtrace_events(current); 6121 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6122 && !preempt_count_equals(preempt_offset)) { 6123 pr_err("Preemption disabled at:"); 6124 print_ip_sym(preempt_disable_ip); 6125 pr_cont("\n"); 6126 } 6127 dump_stack(); 6128 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6129 } 6130 EXPORT_SYMBOL(___might_sleep); 6131 #endif 6132 6133 #ifdef CONFIG_MAGIC_SYSRQ 6134 void normalize_rt_tasks(void) 6135 { 6136 struct task_struct *g, *p; 6137 struct sched_attr attr = { 6138 .sched_policy = SCHED_NORMAL, 6139 }; 6140 6141 read_lock(&tasklist_lock); 6142 for_each_process_thread(g, p) { 6143 /* 6144 * Only normalize user tasks: 6145 */ 6146 if (p->flags & PF_KTHREAD) 6147 continue; 6148 6149 p->se.exec_start = 0; 6150 schedstat_set(p->se.statistics.wait_start, 0); 6151 schedstat_set(p->se.statistics.sleep_start, 0); 6152 schedstat_set(p->se.statistics.block_start, 0); 6153 6154 if (!dl_task(p) && !rt_task(p)) { 6155 /* 6156 * Renice negative nice level userspace 6157 * tasks back to 0: 6158 */ 6159 if (task_nice(p) < 0) 6160 set_user_nice(p, 0); 6161 continue; 6162 } 6163 6164 __sched_setscheduler(p, &attr, false, false); 6165 } 6166 read_unlock(&tasklist_lock); 6167 } 6168 6169 #endif /* CONFIG_MAGIC_SYSRQ */ 6170 6171 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6172 /* 6173 * These functions are only useful for the IA64 MCA handling, or kdb. 6174 * 6175 * They can only be called when the whole system has been 6176 * stopped - every CPU needs to be quiescent, and no scheduling 6177 * activity can take place. Using them for anything else would 6178 * be a serious bug, and as a result, they aren't even visible 6179 * under any other configuration. 6180 */ 6181 6182 /** 6183 * curr_task - return the current task for a given CPU. 6184 * @cpu: the processor in question. 6185 * 6186 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6187 * 6188 * Return: The current task for @cpu. 6189 */ 6190 struct task_struct *curr_task(int cpu) 6191 { 6192 return cpu_curr(cpu); 6193 } 6194 6195 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6196 6197 #ifdef CONFIG_IA64 6198 /** 6199 * set_curr_task - set the current task for a given CPU. 6200 * @cpu: the processor in question. 6201 * @p: the task pointer to set. 6202 * 6203 * Description: This function must only be used when non-maskable interrupts 6204 * are serviced on a separate stack. It allows the architecture to switch the 6205 * notion of the current task on a CPU in a non-blocking manner. This function 6206 * must be called with all CPU's synchronized, and interrupts disabled, the 6207 * and caller must save the original value of the current task (see 6208 * curr_task() above) and restore that value before reenabling interrupts and 6209 * re-starting the system. 6210 * 6211 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6212 */ 6213 void ia64_set_curr_task(int cpu, struct task_struct *p) 6214 { 6215 cpu_curr(cpu) = p; 6216 } 6217 6218 #endif 6219 6220 #ifdef CONFIG_CGROUP_SCHED 6221 /* task_group_lock serializes the addition/removal of task groups */ 6222 static DEFINE_SPINLOCK(task_group_lock); 6223 6224 static void sched_free_group(struct task_group *tg) 6225 { 6226 free_fair_sched_group(tg); 6227 free_rt_sched_group(tg); 6228 autogroup_free(tg); 6229 kmem_cache_free(task_group_cache, tg); 6230 } 6231 6232 /* allocate runqueue etc for a new task group */ 6233 struct task_group *sched_create_group(struct task_group *parent) 6234 { 6235 struct task_group *tg; 6236 6237 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6238 if (!tg) 6239 return ERR_PTR(-ENOMEM); 6240 6241 if (!alloc_fair_sched_group(tg, parent)) 6242 goto err; 6243 6244 if (!alloc_rt_sched_group(tg, parent)) 6245 goto err; 6246 6247 return tg; 6248 6249 err: 6250 sched_free_group(tg); 6251 return ERR_PTR(-ENOMEM); 6252 } 6253 6254 void sched_online_group(struct task_group *tg, struct task_group *parent) 6255 { 6256 unsigned long flags; 6257 6258 spin_lock_irqsave(&task_group_lock, flags); 6259 list_add_rcu(&tg->list, &task_groups); 6260 6261 /* Root should already exist: */ 6262 WARN_ON(!parent); 6263 6264 tg->parent = parent; 6265 INIT_LIST_HEAD(&tg->children); 6266 list_add_rcu(&tg->siblings, &parent->children); 6267 spin_unlock_irqrestore(&task_group_lock, flags); 6268 6269 online_fair_sched_group(tg); 6270 } 6271 6272 /* rcu callback to free various structures associated with a task group */ 6273 static void sched_free_group_rcu(struct rcu_head *rhp) 6274 { 6275 /* Now it should be safe to free those cfs_rqs: */ 6276 sched_free_group(container_of(rhp, struct task_group, rcu)); 6277 } 6278 6279 void sched_destroy_group(struct task_group *tg) 6280 { 6281 /* Wait for possible concurrent references to cfs_rqs complete: */ 6282 call_rcu(&tg->rcu, sched_free_group_rcu); 6283 } 6284 6285 void sched_offline_group(struct task_group *tg) 6286 { 6287 unsigned long flags; 6288 6289 /* End participation in shares distribution: */ 6290 unregister_fair_sched_group(tg); 6291 6292 spin_lock_irqsave(&task_group_lock, flags); 6293 list_del_rcu(&tg->list); 6294 list_del_rcu(&tg->siblings); 6295 spin_unlock_irqrestore(&task_group_lock, flags); 6296 } 6297 6298 static void sched_change_group(struct task_struct *tsk, int type) 6299 { 6300 struct task_group *tg; 6301 6302 /* 6303 * All callers are synchronized by task_rq_lock(); we do not use RCU 6304 * which is pointless here. Thus, we pass "true" to task_css_check() 6305 * to prevent lockdep warnings. 6306 */ 6307 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6308 struct task_group, css); 6309 tg = autogroup_task_group(tsk, tg); 6310 tsk->sched_task_group = tg; 6311 6312 #ifdef CONFIG_FAIR_GROUP_SCHED 6313 if (tsk->sched_class->task_change_group) 6314 tsk->sched_class->task_change_group(tsk, type); 6315 else 6316 #endif 6317 set_task_rq(tsk, task_cpu(tsk)); 6318 } 6319 6320 /* 6321 * Change task's runqueue when it moves between groups. 6322 * 6323 * The caller of this function should have put the task in its new group by 6324 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6325 * its new group. 6326 */ 6327 void sched_move_task(struct task_struct *tsk) 6328 { 6329 int queued, running, queue_flags = 6330 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6331 struct rq_flags rf; 6332 struct rq *rq; 6333 6334 rq = task_rq_lock(tsk, &rf); 6335 update_rq_clock(rq); 6336 6337 running = task_current(rq, tsk); 6338 queued = task_on_rq_queued(tsk); 6339 6340 if (queued) 6341 dequeue_task(rq, tsk, queue_flags); 6342 if (running) 6343 put_prev_task(rq, tsk); 6344 6345 sched_change_group(tsk, TASK_MOVE_GROUP); 6346 6347 if (queued) 6348 enqueue_task(rq, tsk, queue_flags); 6349 if (running) 6350 set_curr_task(rq, tsk); 6351 6352 task_rq_unlock(rq, tsk, &rf); 6353 } 6354 6355 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6356 { 6357 return css ? container_of(css, struct task_group, css) : NULL; 6358 } 6359 6360 static struct cgroup_subsys_state * 6361 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6362 { 6363 struct task_group *parent = css_tg(parent_css); 6364 struct task_group *tg; 6365 6366 if (!parent) { 6367 /* This is early initialization for the top cgroup */ 6368 return &root_task_group.css; 6369 } 6370 6371 tg = sched_create_group(parent); 6372 if (IS_ERR(tg)) 6373 return ERR_PTR(-ENOMEM); 6374 6375 return &tg->css; 6376 } 6377 6378 /* Expose task group only after completing cgroup initialization */ 6379 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6380 { 6381 struct task_group *tg = css_tg(css); 6382 struct task_group *parent = css_tg(css->parent); 6383 6384 if (parent) 6385 sched_online_group(tg, parent); 6386 return 0; 6387 } 6388 6389 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6390 { 6391 struct task_group *tg = css_tg(css); 6392 6393 sched_offline_group(tg); 6394 } 6395 6396 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6397 { 6398 struct task_group *tg = css_tg(css); 6399 6400 /* 6401 * Relies on the RCU grace period between css_released() and this. 6402 */ 6403 sched_free_group(tg); 6404 } 6405 6406 /* 6407 * This is called before wake_up_new_task(), therefore we really only 6408 * have to set its group bits, all the other stuff does not apply. 6409 */ 6410 static void cpu_cgroup_fork(struct task_struct *task) 6411 { 6412 struct rq_flags rf; 6413 struct rq *rq; 6414 6415 rq = task_rq_lock(task, &rf); 6416 6417 update_rq_clock(rq); 6418 sched_change_group(task, TASK_SET_GROUP); 6419 6420 task_rq_unlock(rq, task, &rf); 6421 } 6422 6423 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6424 { 6425 struct task_struct *task; 6426 struct cgroup_subsys_state *css; 6427 int ret = 0; 6428 6429 cgroup_taskset_for_each(task, css, tset) { 6430 #ifdef CONFIG_RT_GROUP_SCHED 6431 if (!sched_rt_can_attach(css_tg(css), task)) 6432 return -EINVAL; 6433 #else 6434 /* We don't support RT-tasks being in separate groups */ 6435 if (task->sched_class != &fair_sched_class) 6436 return -EINVAL; 6437 #endif 6438 /* 6439 * Serialize against wake_up_new_task() such that if its 6440 * running, we're sure to observe its full state. 6441 */ 6442 raw_spin_lock_irq(&task->pi_lock); 6443 /* 6444 * Avoid calling sched_move_task() before wake_up_new_task() 6445 * has happened. This would lead to problems with PELT, due to 6446 * move wanting to detach+attach while we're not attached yet. 6447 */ 6448 if (task->state == TASK_NEW) 6449 ret = -EINVAL; 6450 raw_spin_unlock_irq(&task->pi_lock); 6451 6452 if (ret) 6453 break; 6454 } 6455 return ret; 6456 } 6457 6458 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6459 { 6460 struct task_struct *task; 6461 struct cgroup_subsys_state *css; 6462 6463 cgroup_taskset_for_each(task, css, tset) 6464 sched_move_task(task); 6465 } 6466 6467 #ifdef CONFIG_FAIR_GROUP_SCHED 6468 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6469 struct cftype *cftype, u64 shareval) 6470 { 6471 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6472 } 6473 6474 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6475 struct cftype *cft) 6476 { 6477 struct task_group *tg = css_tg(css); 6478 6479 return (u64) scale_load_down(tg->shares); 6480 } 6481 6482 #ifdef CONFIG_CFS_BANDWIDTH 6483 static DEFINE_MUTEX(cfs_constraints_mutex); 6484 6485 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6486 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6487 6488 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6489 6490 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6491 { 6492 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6493 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6494 6495 if (tg == &root_task_group) 6496 return -EINVAL; 6497 6498 /* 6499 * Ensure we have at some amount of bandwidth every period. This is 6500 * to prevent reaching a state of large arrears when throttled via 6501 * entity_tick() resulting in prolonged exit starvation. 6502 */ 6503 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6504 return -EINVAL; 6505 6506 /* 6507 * Likewise, bound things on the otherside by preventing insane quota 6508 * periods. This also allows us to normalize in computing quota 6509 * feasibility. 6510 */ 6511 if (period > max_cfs_quota_period) 6512 return -EINVAL; 6513 6514 /* 6515 * Prevent race between setting of cfs_rq->runtime_enabled and 6516 * unthrottle_offline_cfs_rqs(). 6517 */ 6518 get_online_cpus(); 6519 mutex_lock(&cfs_constraints_mutex); 6520 ret = __cfs_schedulable(tg, period, quota); 6521 if (ret) 6522 goto out_unlock; 6523 6524 runtime_enabled = quota != RUNTIME_INF; 6525 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6526 /* 6527 * If we need to toggle cfs_bandwidth_used, off->on must occur 6528 * before making related changes, and on->off must occur afterwards 6529 */ 6530 if (runtime_enabled && !runtime_was_enabled) 6531 cfs_bandwidth_usage_inc(); 6532 raw_spin_lock_irq(&cfs_b->lock); 6533 cfs_b->period = ns_to_ktime(period); 6534 cfs_b->quota = quota; 6535 6536 __refill_cfs_bandwidth_runtime(cfs_b); 6537 6538 /* Restart the period timer (if active) to handle new period expiry: */ 6539 if (runtime_enabled) 6540 start_cfs_bandwidth(cfs_b); 6541 6542 raw_spin_unlock_irq(&cfs_b->lock); 6543 6544 for_each_online_cpu(i) { 6545 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6546 struct rq *rq = cfs_rq->rq; 6547 struct rq_flags rf; 6548 6549 rq_lock_irq(rq, &rf); 6550 cfs_rq->runtime_enabled = runtime_enabled; 6551 cfs_rq->runtime_remaining = 0; 6552 6553 if (cfs_rq->throttled) 6554 unthrottle_cfs_rq(cfs_rq); 6555 rq_unlock_irq(rq, &rf); 6556 } 6557 if (runtime_was_enabled && !runtime_enabled) 6558 cfs_bandwidth_usage_dec(); 6559 out_unlock: 6560 mutex_unlock(&cfs_constraints_mutex); 6561 put_online_cpus(); 6562 6563 return ret; 6564 } 6565 6566 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6567 { 6568 u64 quota, period; 6569 6570 period = ktime_to_ns(tg->cfs_bandwidth.period); 6571 if (cfs_quota_us < 0) 6572 quota = RUNTIME_INF; 6573 else 6574 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6575 6576 return tg_set_cfs_bandwidth(tg, period, quota); 6577 } 6578 6579 long tg_get_cfs_quota(struct task_group *tg) 6580 { 6581 u64 quota_us; 6582 6583 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6584 return -1; 6585 6586 quota_us = tg->cfs_bandwidth.quota; 6587 do_div(quota_us, NSEC_PER_USEC); 6588 6589 return quota_us; 6590 } 6591 6592 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6593 { 6594 u64 quota, period; 6595 6596 period = (u64)cfs_period_us * NSEC_PER_USEC; 6597 quota = tg->cfs_bandwidth.quota; 6598 6599 return tg_set_cfs_bandwidth(tg, period, quota); 6600 } 6601 6602 long tg_get_cfs_period(struct task_group *tg) 6603 { 6604 u64 cfs_period_us; 6605 6606 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6607 do_div(cfs_period_us, NSEC_PER_USEC); 6608 6609 return cfs_period_us; 6610 } 6611 6612 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6613 struct cftype *cft) 6614 { 6615 return tg_get_cfs_quota(css_tg(css)); 6616 } 6617 6618 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6619 struct cftype *cftype, s64 cfs_quota_us) 6620 { 6621 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6622 } 6623 6624 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6625 struct cftype *cft) 6626 { 6627 return tg_get_cfs_period(css_tg(css)); 6628 } 6629 6630 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6631 struct cftype *cftype, u64 cfs_period_us) 6632 { 6633 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6634 } 6635 6636 struct cfs_schedulable_data { 6637 struct task_group *tg; 6638 u64 period, quota; 6639 }; 6640 6641 /* 6642 * normalize group quota/period to be quota/max_period 6643 * note: units are usecs 6644 */ 6645 static u64 normalize_cfs_quota(struct task_group *tg, 6646 struct cfs_schedulable_data *d) 6647 { 6648 u64 quota, period; 6649 6650 if (tg == d->tg) { 6651 period = d->period; 6652 quota = d->quota; 6653 } else { 6654 period = tg_get_cfs_period(tg); 6655 quota = tg_get_cfs_quota(tg); 6656 } 6657 6658 /* note: these should typically be equivalent */ 6659 if (quota == RUNTIME_INF || quota == -1) 6660 return RUNTIME_INF; 6661 6662 return to_ratio(period, quota); 6663 } 6664 6665 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6666 { 6667 struct cfs_schedulable_data *d = data; 6668 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6669 s64 quota = 0, parent_quota = -1; 6670 6671 if (!tg->parent) { 6672 quota = RUNTIME_INF; 6673 } else { 6674 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6675 6676 quota = normalize_cfs_quota(tg, d); 6677 parent_quota = parent_b->hierarchical_quota; 6678 6679 /* 6680 * Ensure max(child_quota) <= parent_quota, inherit when no 6681 * limit is set: 6682 */ 6683 if (quota == RUNTIME_INF) 6684 quota = parent_quota; 6685 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6686 return -EINVAL; 6687 } 6688 cfs_b->hierarchical_quota = quota; 6689 6690 return 0; 6691 } 6692 6693 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6694 { 6695 int ret; 6696 struct cfs_schedulable_data data = { 6697 .tg = tg, 6698 .period = period, 6699 .quota = quota, 6700 }; 6701 6702 if (quota != RUNTIME_INF) { 6703 do_div(data.period, NSEC_PER_USEC); 6704 do_div(data.quota, NSEC_PER_USEC); 6705 } 6706 6707 rcu_read_lock(); 6708 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6709 rcu_read_unlock(); 6710 6711 return ret; 6712 } 6713 6714 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6715 { 6716 struct task_group *tg = css_tg(seq_css(sf)); 6717 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6718 6719 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6720 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6721 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6722 6723 return 0; 6724 } 6725 #endif /* CONFIG_CFS_BANDWIDTH */ 6726 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6727 6728 #ifdef CONFIG_RT_GROUP_SCHED 6729 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6730 struct cftype *cft, s64 val) 6731 { 6732 return sched_group_set_rt_runtime(css_tg(css), val); 6733 } 6734 6735 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6736 struct cftype *cft) 6737 { 6738 return sched_group_rt_runtime(css_tg(css)); 6739 } 6740 6741 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6742 struct cftype *cftype, u64 rt_period_us) 6743 { 6744 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6745 } 6746 6747 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6748 struct cftype *cft) 6749 { 6750 return sched_group_rt_period(css_tg(css)); 6751 } 6752 #endif /* CONFIG_RT_GROUP_SCHED */ 6753 6754 static struct cftype cpu_legacy_files[] = { 6755 #ifdef CONFIG_FAIR_GROUP_SCHED 6756 { 6757 .name = "shares", 6758 .read_u64 = cpu_shares_read_u64, 6759 .write_u64 = cpu_shares_write_u64, 6760 }, 6761 #endif 6762 #ifdef CONFIG_CFS_BANDWIDTH 6763 { 6764 .name = "cfs_quota_us", 6765 .read_s64 = cpu_cfs_quota_read_s64, 6766 .write_s64 = cpu_cfs_quota_write_s64, 6767 }, 6768 { 6769 .name = "cfs_period_us", 6770 .read_u64 = cpu_cfs_period_read_u64, 6771 .write_u64 = cpu_cfs_period_write_u64, 6772 }, 6773 { 6774 .name = "stat", 6775 .seq_show = cpu_cfs_stat_show, 6776 }, 6777 #endif 6778 #ifdef CONFIG_RT_GROUP_SCHED 6779 { 6780 .name = "rt_runtime_us", 6781 .read_s64 = cpu_rt_runtime_read, 6782 .write_s64 = cpu_rt_runtime_write, 6783 }, 6784 { 6785 .name = "rt_period_us", 6786 .read_u64 = cpu_rt_period_read_uint, 6787 .write_u64 = cpu_rt_period_write_uint, 6788 }, 6789 #endif 6790 { } /* Terminate */ 6791 }; 6792 6793 static int cpu_extra_stat_show(struct seq_file *sf, 6794 struct cgroup_subsys_state *css) 6795 { 6796 #ifdef CONFIG_CFS_BANDWIDTH 6797 { 6798 struct task_group *tg = css_tg(css); 6799 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6800 u64 throttled_usec; 6801 6802 throttled_usec = cfs_b->throttled_time; 6803 do_div(throttled_usec, NSEC_PER_USEC); 6804 6805 seq_printf(sf, "nr_periods %d\n" 6806 "nr_throttled %d\n" 6807 "throttled_usec %llu\n", 6808 cfs_b->nr_periods, cfs_b->nr_throttled, 6809 throttled_usec); 6810 } 6811 #endif 6812 return 0; 6813 } 6814 6815 #ifdef CONFIG_FAIR_GROUP_SCHED 6816 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6817 struct cftype *cft) 6818 { 6819 struct task_group *tg = css_tg(css); 6820 u64 weight = scale_load_down(tg->shares); 6821 6822 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6823 } 6824 6825 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6826 struct cftype *cft, u64 weight) 6827 { 6828 /* 6829 * cgroup weight knobs should use the common MIN, DFL and MAX 6830 * values which are 1, 100 and 10000 respectively. While it loses 6831 * a bit of range on both ends, it maps pretty well onto the shares 6832 * value used by scheduler and the round-trip conversions preserve 6833 * the original value over the entire range. 6834 */ 6835 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6836 return -ERANGE; 6837 6838 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6839 6840 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6841 } 6842 6843 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6844 struct cftype *cft) 6845 { 6846 unsigned long weight = scale_load_down(css_tg(css)->shares); 6847 int last_delta = INT_MAX; 6848 int prio, delta; 6849 6850 /* find the closest nice value to the current weight */ 6851 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6852 delta = abs(sched_prio_to_weight[prio] - weight); 6853 if (delta >= last_delta) 6854 break; 6855 last_delta = delta; 6856 } 6857 6858 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6859 } 6860 6861 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6862 struct cftype *cft, s64 nice) 6863 { 6864 unsigned long weight; 6865 6866 if (nice < MIN_NICE || nice > MAX_NICE) 6867 return -ERANGE; 6868 6869 weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO]; 6870 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6871 } 6872 #endif 6873 6874 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6875 long period, long quota) 6876 { 6877 if (quota < 0) 6878 seq_puts(sf, "max"); 6879 else 6880 seq_printf(sf, "%ld", quota); 6881 6882 seq_printf(sf, " %ld\n", period); 6883 } 6884 6885 /* caller should put the current value in *@periodp before calling */ 6886 static int __maybe_unused cpu_period_quota_parse(char *buf, 6887 u64 *periodp, u64 *quotap) 6888 { 6889 char tok[21]; /* U64_MAX */ 6890 6891 if (!sscanf(buf, "%s %llu", tok, periodp)) 6892 return -EINVAL; 6893 6894 *periodp *= NSEC_PER_USEC; 6895 6896 if (sscanf(tok, "%llu", quotap)) 6897 *quotap *= NSEC_PER_USEC; 6898 else if (!strcmp(tok, "max")) 6899 *quotap = RUNTIME_INF; 6900 else 6901 return -EINVAL; 6902 6903 return 0; 6904 } 6905 6906 #ifdef CONFIG_CFS_BANDWIDTH 6907 static int cpu_max_show(struct seq_file *sf, void *v) 6908 { 6909 struct task_group *tg = css_tg(seq_css(sf)); 6910 6911 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6912 return 0; 6913 } 6914 6915 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6916 char *buf, size_t nbytes, loff_t off) 6917 { 6918 struct task_group *tg = css_tg(of_css(of)); 6919 u64 period = tg_get_cfs_period(tg); 6920 u64 quota; 6921 int ret; 6922 6923 ret = cpu_period_quota_parse(buf, &period, "a); 6924 if (!ret) 6925 ret = tg_set_cfs_bandwidth(tg, period, quota); 6926 return ret ?: nbytes; 6927 } 6928 #endif 6929 6930 static struct cftype cpu_files[] = { 6931 #ifdef CONFIG_FAIR_GROUP_SCHED 6932 { 6933 .name = "weight", 6934 .flags = CFTYPE_NOT_ON_ROOT, 6935 .read_u64 = cpu_weight_read_u64, 6936 .write_u64 = cpu_weight_write_u64, 6937 }, 6938 { 6939 .name = "weight.nice", 6940 .flags = CFTYPE_NOT_ON_ROOT, 6941 .read_s64 = cpu_weight_nice_read_s64, 6942 .write_s64 = cpu_weight_nice_write_s64, 6943 }, 6944 #endif 6945 #ifdef CONFIG_CFS_BANDWIDTH 6946 { 6947 .name = "max", 6948 .flags = CFTYPE_NOT_ON_ROOT, 6949 .seq_show = cpu_max_show, 6950 .write = cpu_max_write, 6951 }, 6952 #endif 6953 { } /* terminate */ 6954 }; 6955 6956 struct cgroup_subsys cpu_cgrp_subsys = { 6957 .css_alloc = cpu_cgroup_css_alloc, 6958 .css_online = cpu_cgroup_css_online, 6959 .css_released = cpu_cgroup_css_released, 6960 .css_free = cpu_cgroup_css_free, 6961 .css_extra_stat_show = cpu_extra_stat_show, 6962 .fork = cpu_cgroup_fork, 6963 .can_attach = cpu_cgroup_can_attach, 6964 .attach = cpu_cgroup_attach, 6965 .legacy_cftypes = cpu_legacy_files, 6966 .dfl_cftypes = cpu_files, 6967 .early_init = true, 6968 .threaded = true, 6969 }; 6970 6971 #endif /* CONFIG_CGROUP_SCHED */ 6972 6973 void dump_cpu_task(int cpu) 6974 { 6975 pr_info("Task dump for CPU %d:\n", cpu); 6976 sched_show_task(cpu_curr(cpu)); 6977 } 6978 6979 /* 6980 * Nice levels are multiplicative, with a gentle 10% change for every 6981 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 6982 * nice 1, it will get ~10% less CPU time than another CPU-bound task 6983 * that remained on nice 0. 6984 * 6985 * The "10% effect" is relative and cumulative: from _any_ nice level, 6986 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 6987 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 6988 * If a task goes up by ~10% and another task goes down by ~10% then 6989 * the relative distance between them is ~25%.) 6990 */ 6991 const int sched_prio_to_weight[40] = { 6992 /* -20 */ 88761, 71755, 56483, 46273, 36291, 6993 /* -15 */ 29154, 23254, 18705, 14949, 11916, 6994 /* -10 */ 9548, 7620, 6100, 4904, 3906, 6995 /* -5 */ 3121, 2501, 1991, 1586, 1277, 6996 /* 0 */ 1024, 820, 655, 526, 423, 6997 /* 5 */ 335, 272, 215, 172, 137, 6998 /* 10 */ 110, 87, 70, 56, 45, 6999 /* 15 */ 36, 29, 23, 18, 15, 7000 }; 7001 7002 /* 7003 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7004 * 7005 * In cases where the weight does not change often, we can use the 7006 * precalculated inverse to speed up arithmetics by turning divisions 7007 * into multiplications: 7008 */ 7009 const u32 sched_prio_to_wmult[40] = { 7010 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7011 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7012 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7013 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7014 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7015 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7016 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7017 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7018 }; 7019