xref: /linux/kernel/sched/core.c (revision 419043609689d0aba9f727a6faf1ff406e269ecf)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 	unsigned long delta;
96 	ktime_t soft, hard, now;
97 
98 	for (;;) {
99 		if (hrtimer_active(period_timer))
100 			break;
101 
102 		now = hrtimer_cb_get_time(period_timer);
103 		hrtimer_forward(period_timer, now, period);
104 
105 		soft = hrtimer_get_softexpires(period_timer);
106 		hard = hrtimer_get_expires(period_timer);
107 		delta = ktime_to_ns(ktime_sub(hard, soft));
108 		__hrtimer_start_range_ns(period_timer, soft, delta,
109 					 HRTIMER_MODE_ABS_PINNED, 0);
110 	}
111 }
112 
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 
118 void update_rq_clock(struct rq *rq)
119 {
120 	s64 delta;
121 
122 	if (rq->skip_clock_update > 0)
123 		return;
124 
125 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 	if (delta < 0)
127 		return;
128 	rq->clock += delta;
129 	update_rq_clock_task(rq, delta);
130 }
131 
132 /*
133  * Debugging: various feature bits
134  */
135 
136 #define SCHED_FEAT(name, enabled)	\
137 	(1UL << __SCHED_FEAT_##name) * enabled |
138 
139 const_debug unsigned int sysctl_sched_features =
140 #include "features.h"
141 	0;
142 
143 #undef SCHED_FEAT
144 
145 #ifdef CONFIG_SCHED_DEBUG
146 #define SCHED_FEAT(name, enabled)	\
147 	#name ,
148 
149 static const char * const sched_feat_names[] = {
150 #include "features.h"
151 };
152 
153 #undef SCHED_FEAT
154 
155 static int sched_feat_show(struct seq_file *m, void *v)
156 {
157 	int i;
158 
159 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
160 		if (!(sysctl_sched_features & (1UL << i)))
161 			seq_puts(m, "NO_");
162 		seq_printf(m, "%s ", sched_feat_names[i]);
163 	}
164 	seq_puts(m, "\n");
165 
166 	return 0;
167 }
168 
169 #ifdef HAVE_JUMP_LABEL
170 
171 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
172 #define jump_label_key__false STATIC_KEY_INIT_FALSE
173 
174 #define SCHED_FEAT(name, enabled)	\
175 	jump_label_key__##enabled ,
176 
177 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
178 #include "features.h"
179 };
180 
181 #undef SCHED_FEAT
182 
183 static void sched_feat_disable(int i)
184 {
185 	if (static_key_enabled(&sched_feat_keys[i]))
186 		static_key_slow_dec(&sched_feat_keys[i]);
187 }
188 
189 static void sched_feat_enable(int i)
190 {
191 	if (!static_key_enabled(&sched_feat_keys[i]))
192 		static_key_slow_inc(&sched_feat_keys[i]);
193 }
194 #else
195 static void sched_feat_disable(int i) { };
196 static void sched_feat_enable(int i) { };
197 #endif /* HAVE_JUMP_LABEL */
198 
199 static int sched_feat_set(char *cmp)
200 {
201 	int i;
202 	int neg = 0;
203 
204 	if (strncmp(cmp, "NO_", 3) == 0) {
205 		neg = 1;
206 		cmp += 3;
207 	}
208 
209 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
210 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
211 			if (neg) {
212 				sysctl_sched_features &= ~(1UL << i);
213 				sched_feat_disable(i);
214 			} else {
215 				sysctl_sched_features |= (1UL << i);
216 				sched_feat_enable(i);
217 			}
218 			break;
219 		}
220 	}
221 
222 	return i;
223 }
224 
225 static ssize_t
226 sched_feat_write(struct file *filp, const char __user *ubuf,
227 		size_t cnt, loff_t *ppos)
228 {
229 	char buf[64];
230 	char *cmp;
231 	int i;
232 	struct inode *inode;
233 
234 	if (cnt > 63)
235 		cnt = 63;
236 
237 	if (copy_from_user(&buf, ubuf, cnt))
238 		return -EFAULT;
239 
240 	buf[cnt] = 0;
241 	cmp = strstrip(buf);
242 
243 	/* Ensure the static_key remains in a consistent state */
244 	inode = file_inode(filp);
245 	mutex_lock(&inode->i_mutex);
246 	i = sched_feat_set(cmp);
247 	mutex_unlock(&inode->i_mutex);
248 	if (i == __SCHED_FEAT_NR)
249 		return -EINVAL;
250 
251 	*ppos += cnt;
252 
253 	return cnt;
254 }
255 
256 static int sched_feat_open(struct inode *inode, struct file *filp)
257 {
258 	return single_open(filp, sched_feat_show, NULL);
259 }
260 
261 static const struct file_operations sched_feat_fops = {
262 	.open		= sched_feat_open,
263 	.write		= sched_feat_write,
264 	.read		= seq_read,
265 	.llseek		= seq_lseek,
266 	.release	= single_release,
267 };
268 
269 static __init int sched_init_debug(void)
270 {
271 	debugfs_create_file("sched_features", 0644, NULL, NULL,
272 			&sched_feat_fops);
273 
274 	return 0;
275 }
276 late_initcall(sched_init_debug);
277 #endif /* CONFIG_SCHED_DEBUG */
278 
279 /*
280  * Number of tasks to iterate in a single balance run.
281  * Limited because this is done with IRQs disabled.
282  */
283 const_debug unsigned int sysctl_sched_nr_migrate = 32;
284 
285 /*
286  * period over which we average the RT time consumption, measured
287  * in ms.
288  *
289  * default: 1s
290  */
291 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292 
293 /*
294  * period over which we measure -rt task cpu usage in us.
295  * default: 1s
296  */
297 unsigned int sysctl_sched_rt_period = 1000000;
298 
299 __read_mostly int scheduler_running;
300 
301 /*
302  * part of the period that we allow rt tasks to run in us.
303  * default: 0.95s
304  */
305 int sysctl_sched_rt_runtime = 950000;
306 
307 /*
308  * __task_rq_lock - lock the rq @p resides on.
309  */
310 static inline struct rq *__task_rq_lock(struct task_struct *p)
311 	__acquires(rq->lock)
312 {
313 	struct rq *rq;
314 
315 	lockdep_assert_held(&p->pi_lock);
316 
317 	for (;;) {
318 		rq = task_rq(p);
319 		raw_spin_lock(&rq->lock);
320 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
321 			return rq;
322 		raw_spin_unlock(&rq->lock);
323 
324 		while (unlikely(task_on_rq_migrating(p)))
325 			cpu_relax();
326 	}
327 }
328 
329 /*
330  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
331  */
332 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333 	__acquires(p->pi_lock)
334 	__acquires(rq->lock)
335 {
336 	struct rq *rq;
337 
338 	for (;;) {
339 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
340 		rq = task_rq(p);
341 		raw_spin_lock(&rq->lock);
342 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
343 			return rq;
344 		raw_spin_unlock(&rq->lock);
345 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346 
347 		while (unlikely(task_on_rq_migrating(p)))
348 			cpu_relax();
349 	}
350 }
351 
352 static void __task_rq_unlock(struct rq *rq)
353 	__releases(rq->lock)
354 {
355 	raw_spin_unlock(&rq->lock);
356 }
357 
358 static inline void
359 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
360 	__releases(rq->lock)
361 	__releases(p->pi_lock)
362 {
363 	raw_spin_unlock(&rq->lock);
364 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
365 }
366 
367 /*
368  * this_rq_lock - lock this runqueue and disable interrupts.
369  */
370 static struct rq *this_rq_lock(void)
371 	__acquires(rq->lock)
372 {
373 	struct rq *rq;
374 
375 	local_irq_disable();
376 	rq = this_rq();
377 	raw_spin_lock(&rq->lock);
378 
379 	return rq;
380 }
381 
382 #ifdef CONFIG_SCHED_HRTICK
383 /*
384  * Use HR-timers to deliver accurate preemption points.
385  */
386 
387 static void hrtick_clear(struct rq *rq)
388 {
389 	if (hrtimer_active(&rq->hrtick_timer))
390 		hrtimer_cancel(&rq->hrtick_timer);
391 }
392 
393 /*
394  * High-resolution timer tick.
395  * Runs from hardirq context with interrupts disabled.
396  */
397 static enum hrtimer_restart hrtick(struct hrtimer *timer)
398 {
399 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400 
401 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402 
403 	raw_spin_lock(&rq->lock);
404 	update_rq_clock(rq);
405 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
406 	raw_spin_unlock(&rq->lock);
407 
408 	return HRTIMER_NORESTART;
409 }
410 
411 #ifdef CONFIG_SMP
412 
413 static int __hrtick_restart(struct rq *rq)
414 {
415 	struct hrtimer *timer = &rq->hrtick_timer;
416 	ktime_t time = hrtimer_get_softexpires(timer);
417 
418 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419 }
420 
421 /*
422  * called from hardirq (IPI) context
423  */
424 static void __hrtick_start(void *arg)
425 {
426 	struct rq *rq = arg;
427 
428 	raw_spin_lock(&rq->lock);
429 	__hrtick_restart(rq);
430 	rq->hrtick_csd_pending = 0;
431 	raw_spin_unlock(&rq->lock);
432 }
433 
434 /*
435  * Called to set the hrtick timer state.
436  *
437  * called with rq->lock held and irqs disabled
438  */
439 void hrtick_start(struct rq *rq, u64 delay)
440 {
441 	struct hrtimer *timer = &rq->hrtick_timer;
442 	ktime_t time;
443 	s64 delta;
444 
445 	/*
446 	 * Don't schedule slices shorter than 10000ns, that just
447 	 * doesn't make sense and can cause timer DoS.
448 	 */
449 	delta = max_t(s64, delay, 10000LL);
450 	time = ktime_add_ns(timer->base->get_time(), delta);
451 
452 	hrtimer_set_expires(timer, time);
453 
454 	if (rq == this_rq()) {
455 		__hrtick_restart(rq);
456 	} else if (!rq->hrtick_csd_pending) {
457 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
458 		rq->hrtick_csd_pending = 1;
459 	}
460 }
461 
462 static int
463 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464 {
465 	int cpu = (int)(long)hcpu;
466 
467 	switch (action) {
468 	case CPU_UP_CANCELED:
469 	case CPU_UP_CANCELED_FROZEN:
470 	case CPU_DOWN_PREPARE:
471 	case CPU_DOWN_PREPARE_FROZEN:
472 	case CPU_DEAD:
473 	case CPU_DEAD_FROZEN:
474 		hrtick_clear(cpu_rq(cpu));
475 		return NOTIFY_OK;
476 	}
477 
478 	return NOTIFY_DONE;
479 }
480 
481 static __init void init_hrtick(void)
482 {
483 	hotcpu_notifier(hotplug_hrtick, 0);
484 }
485 #else
486 /*
487  * Called to set the hrtick timer state.
488  *
489  * called with rq->lock held and irqs disabled
490  */
491 void hrtick_start(struct rq *rq, u64 delay)
492 {
493 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
494 			HRTIMER_MODE_REL_PINNED, 0);
495 }
496 
497 static inline void init_hrtick(void)
498 {
499 }
500 #endif /* CONFIG_SMP */
501 
502 static void init_rq_hrtick(struct rq *rq)
503 {
504 #ifdef CONFIG_SMP
505 	rq->hrtick_csd_pending = 0;
506 
507 	rq->hrtick_csd.flags = 0;
508 	rq->hrtick_csd.func = __hrtick_start;
509 	rq->hrtick_csd.info = rq;
510 #endif
511 
512 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 	rq->hrtick_timer.function = hrtick;
514 }
515 #else	/* CONFIG_SCHED_HRTICK */
516 static inline void hrtick_clear(struct rq *rq)
517 {
518 }
519 
520 static inline void init_rq_hrtick(struct rq *rq)
521 {
522 }
523 
524 static inline void init_hrtick(void)
525 {
526 }
527 #endif	/* CONFIG_SCHED_HRTICK */
528 
529 /*
530  * cmpxchg based fetch_or, macro so it works for different integer types
531  */
532 #define fetch_or(ptr, val)						\
533 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
534  	for (;;) {							\
535  		__old = cmpxchg((ptr), __val, __val | (val));		\
536  		if (__old == __val)					\
537  			break;						\
538  		__val = __old;						\
539  	}								\
540  	__old;								\
541 })
542 
543 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
544 /*
545  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546  * this avoids any races wrt polling state changes and thereby avoids
547  * spurious IPIs.
548  */
549 static bool set_nr_and_not_polling(struct task_struct *p)
550 {
551 	struct thread_info *ti = task_thread_info(p);
552 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553 }
554 
555 /*
556  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557  *
558  * If this returns true, then the idle task promises to call
559  * sched_ttwu_pending() and reschedule soon.
560  */
561 static bool set_nr_if_polling(struct task_struct *p)
562 {
563 	struct thread_info *ti = task_thread_info(p);
564 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565 
566 	for (;;) {
567 		if (!(val & _TIF_POLLING_NRFLAG))
568 			return false;
569 		if (val & _TIF_NEED_RESCHED)
570 			return true;
571 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 		if (old == val)
573 			break;
574 		val = old;
575 	}
576 	return true;
577 }
578 
579 #else
580 static bool set_nr_and_not_polling(struct task_struct *p)
581 {
582 	set_tsk_need_resched(p);
583 	return true;
584 }
585 
586 #ifdef CONFIG_SMP
587 static bool set_nr_if_polling(struct task_struct *p)
588 {
589 	return false;
590 }
591 #endif
592 #endif
593 
594 /*
595  * resched_curr - mark rq's current task 'to be rescheduled now'.
596  *
597  * On UP this means the setting of the need_resched flag, on SMP it
598  * might also involve a cross-CPU call to trigger the scheduler on
599  * the target CPU.
600  */
601 void resched_curr(struct rq *rq)
602 {
603 	struct task_struct *curr = rq->curr;
604 	int cpu;
605 
606 	lockdep_assert_held(&rq->lock);
607 
608 	if (test_tsk_need_resched(curr))
609 		return;
610 
611 	cpu = cpu_of(rq);
612 
613 	if (cpu == smp_processor_id()) {
614 		set_tsk_need_resched(curr);
615 		set_preempt_need_resched();
616 		return;
617 	}
618 
619 	if (set_nr_and_not_polling(curr))
620 		smp_send_reschedule(cpu);
621 	else
622 		trace_sched_wake_idle_without_ipi(cpu);
623 }
624 
625 void resched_cpu(int cpu)
626 {
627 	struct rq *rq = cpu_rq(cpu);
628 	unsigned long flags;
629 
630 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
631 		return;
632 	resched_curr(rq);
633 	raw_spin_unlock_irqrestore(&rq->lock, flags);
634 }
635 
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
638 /*
639  * In the semi idle case, use the nearest busy cpu for migrating timers
640  * from an idle cpu.  This is good for power-savings.
641  *
642  * We don't do similar optimization for completely idle system, as
643  * selecting an idle cpu will add more delays to the timers than intended
644  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645  */
646 int get_nohz_timer_target(int pinned)
647 {
648 	int cpu = smp_processor_id();
649 	int i;
650 	struct sched_domain *sd;
651 
652 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 		return cpu;
654 
655 	rcu_read_lock();
656 	for_each_domain(cpu, sd) {
657 		for_each_cpu(i, sched_domain_span(sd)) {
658 			if (!idle_cpu(i)) {
659 				cpu = i;
660 				goto unlock;
661 			}
662 		}
663 	}
664 unlock:
665 	rcu_read_unlock();
666 	return cpu;
667 }
668 /*
669  * When add_timer_on() enqueues a timer into the timer wheel of an
670  * idle CPU then this timer might expire before the next timer event
671  * which is scheduled to wake up that CPU. In case of a completely
672  * idle system the next event might even be infinite time into the
673  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674  * leaves the inner idle loop so the newly added timer is taken into
675  * account when the CPU goes back to idle and evaluates the timer
676  * wheel for the next timer event.
677  */
678 static void wake_up_idle_cpu(int cpu)
679 {
680 	struct rq *rq = cpu_rq(cpu);
681 
682 	if (cpu == smp_processor_id())
683 		return;
684 
685 	if (set_nr_and_not_polling(rq->idle))
686 		smp_send_reschedule(cpu);
687 	else
688 		trace_sched_wake_idle_without_ipi(cpu);
689 }
690 
691 static bool wake_up_full_nohz_cpu(int cpu)
692 {
693 	/*
694 	 * We just need the target to call irq_exit() and re-evaluate
695 	 * the next tick. The nohz full kick at least implies that.
696 	 * If needed we can still optimize that later with an
697 	 * empty IRQ.
698 	 */
699 	if (tick_nohz_full_cpu(cpu)) {
700 		if (cpu != smp_processor_id() ||
701 		    tick_nohz_tick_stopped())
702 			tick_nohz_full_kick_cpu(cpu);
703 		return true;
704 	}
705 
706 	return false;
707 }
708 
709 void wake_up_nohz_cpu(int cpu)
710 {
711 	if (!wake_up_full_nohz_cpu(cpu))
712 		wake_up_idle_cpu(cpu);
713 }
714 
715 static inline bool got_nohz_idle_kick(void)
716 {
717 	int cpu = smp_processor_id();
718 
719 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 		return false;
721 
722 	if (idle_cpu(cpu) && !need_resched())
723 		return true;
724 
725 	/*
726 	 * We can't run Idle Load Balance on this CPU for this time so we
727 	 * cancel it and clear NOHZ_BALANCE_KICK
728 	 */
729 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 	return false;
731 }
732 
733 #else /* CONFIG_NO_HZ_COMMON */
734 
735 static inline bool got_nohz_idle_kick(void)
736 {
737 	return false;
738 }
739 
740 #endif /* CONFIG_NO_HZ_COMMON */
741 
742 #ifdef CONFIG_NO_HZ_FULL
743 bool sched_can_stop_tick(void)
744 {
745 	/*
746 	 * More than one running task need preemption.
747 	 * nr_running update is assumed to be visible
748 	 * after IPI is sent from wakers.
749 	 */
750 	if (this_rq()->nr_running > 1)
751 		return false;
752 
753 	return true;
754 }
755 #endif /* CONFIG_NO_HZ_FULL */
756 
757 void sched_avg_update(struct rq *rq)
758 {
759 	s64 period = sched_avg_period();
760 
761 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
762 		/*
763 		 * Inline assembly required to prevent the compiler
764 		 * optimising this loop into a divmod call.
765 		 * See __iter_div_u64_rem() for another example of this.
766 		 */
767 		asm("" : "+rm" (rq->age_stamp));
768 		rq->age_stamp += period;
769 		rq->rt_avg /= 2;
770 	}
771 }
772 
773 #endif /* CONFIG_SMP */
774 
775 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
777 /*
778  * Iterate task_group tree rooted at *from, calling @down when first entering a
779  * node and @up when leaving it for the final time.
780  *
781  * Caller must hold rcu_lock or sufficient equivalent.
782  */
783 int walk_tg_tree_from(struct task_group *from,
784 			     tg_visitor down, tg_visitor up, void *data)
785 {
786 	struct task_group *parent, *child;
787 	int ret;
788 
789 	parent = from;
790 
791 down:
792 	ret = (*down)(parent, data);
793 	if (ret)
794 		goto out;
795 	list_for_each_entry_rcu(child, &parent->children, siblings) {
796 		parent = child;
797 		goto down;
798 
799 up:
800 		continue;
801 	}
802 	ret = (*up)(parent, data);
803 	if (ret || parent == from)
804 		goto out;
805 
806 	child = parent;
807 	parent = parent->parent;
808 	if (parent)
809 		goto up;
810 out:
811 	return ret;
812 }
813 
814 int tg_nop(struct task_group *tg, void *data)
815 {
816 	return 0;
817 }
818 #endif
819 
820 static void set_load_weight(struct task_struct *p)
821 {
822 	int prio = p->static_prio - MAX_RT_PRIO;
823 	struct load_weight *load = &p->se.load;
824 
825 	/*
826 	 * SCHED_IDLE tasks get minimal weight:
827 	 */
828 	if (p->policy == SCHED_IDLE) {
829 		load->weight = scale_load(WEIGHT_IDLEPRIO);
830 		load->inv_weight = WMULT_IDLEPRIO;
831 		return;
832 	}
833 
834 	load->weight = scale_load(prio_to_weight[prio]);
835 	load->inv_weight = prio_to_wmult[prio];
836 }
837 
838 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 	update_rq_clock(rq);
841 	sched_info_queued(rq, p);
842 	p->sched_class->enqueue_task(rq, p, flags);
843 }
844 
845 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
846 {
847 	update_rq_clock(rq);
848 	sched_info_dequeued(rq, p);
849 	p->sched_class->dequeue_task(rq, p, flags);
850 }
851 
852 void activate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 	if (task_contributes_to_load(p))
855 		rq->nr_uninterruptible--;
856 
857 	enqueue_task(rq, p, flags);
858 }
859 
860 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
861 {
862 	if (task_contributes_to_load(p))
863 		rq->nr_uninterruptible++;
864 
865 	dequeue_task(rq, p, flags);
866 }
867 
868 static void update_rq_clock_task(struct rq *rq, s64 delta)
869 {
870 /*
871  * In theory, the compile should just see 0 here, and optimize out the call
872  * to sched_rt_avg_update. But I don't trust it...
873  */
874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 	s64 steal = 0, irq_delta = 0;
876 #endif
877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
878 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879 
880 	/*
881 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 	 * this case when a previous update_rq_clock() happened inside a
883 	 * {soft,}irq region.
884 	 *
885 	 * When this happens, we stop ->clock_task and only update the
886 	 * prev_irq_time stamp to account for the part that fit, so that a next
887 	 * update will consume the rest. This ensures ->clock_task is
888 	 * monotonic.
889 	 *
890 	 * It does however cause some slight miss-attribution of {soft,}irq
891 	 * time, a more accurate solution would be to update the irq_time using
892 	 * the current rq->clock timestamp, except that would require using
893 	 * atomic ops.
894 	 */
895 	if (irq_delta > delta)
896 		irq_delta = delta;
897 
898 	rq->prev_irq_time += irq_delta;
899 	delta -= irq_delta;
900 #endif
901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 	if (static_key_false((&paravirt_steal_rq_enabled))) {
903 		steal = paravirt_steal_clock(cpu_of(rq));
904 		steal -= rq->prev_steal_time_rq;
905 
906 		if (unlikely(steal > delta))
907 			steal = delta;
908 
909 		rq->prev_steal_time_rq += steal;
910 		delta -= steal;
911 	}
912 #endif
913 
914 	rq->clock_task += delta;
915 
916 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
918 		sched_rt_avg_update(rq, irq_delta + steal);
919 #endif
920 }
921 
922 void sched_set_stop_task(int cpu, struct task_struct *stop)
923 {
924 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
926 
927 	if (stop) {
928 		/*
929 		 * Make it appear like a SCHED_FIFO task, its something
930 		 * userspace knows about and won't get confused about.
931 		 *
932 		 * Also, it will make PI more or less work without too
933 		 * much confusion -- but then, stop work should not
934 		 * rely on PI working anyway.
935 		 */
936 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937 
938 		stop->sched_class = &stop_sched_class;
939 	}
940 
941 	cpu_rq(cpu)->stop = stop;
942 
943 	if (old_stop) {
944 		/*
945 		 * Reset it back to a normal scheduling class so that
946 		 * it can die in pieces.
947 		 */
948 		old_stop->sched_class = &rt_sched_class;
949 	}
950 }
951 
952 /*
953  * __normal_prio - return the priority that is based on the static prio
954  */
955 static inline int __normal_prio(struct task_struct *p)
956 {
957 	return p->static_prio;
958 }
959 
960 /*
961  * Calculate the expected normal priority: i.e. priority
962  * without taking RT-inheritance into account. Might be
963  * boosted by interactivity modifiers. Changes upon fork,
964  * setprio syscalls, and whenever the interactivity
965  * estimator recalculates.
966  */
967 static inline int normal_prio(struct task_struct *p)
968 {
969 	int prio;
970 
971 	if (task_has_dl_policy(p))
972 		prio = MAX_DL_PRIO-1;
973 	else if (task_has_rt_policy(p))
974 		prio = MAX_RT_PRIO-1 - p->rt_priority;
975 	else
976 		prio = __normal_prio(p);
977 	return prio;
978 }
979 
980 /*
981  * Calculate the current priority, i.e. the priority
982  * taken into account by the scheduler. This value might
983  * be boosted by RT tasks, or might be boosted by
984  * interactivity modifiers. Will be RT if the task got
985  * RT-boosted. If not then it returns p->normal_prio.
986  */
987 static int effective_prio(struct task_struct *p)
988 {
989 	p->normal_prio = normal_prio(p);
990 	/*
991 	 * If we are RT tasks or we were boosted to RT priority,
992 	 * keep the priority unchanged. Otherwise, update priority
993 	 * to the normal priority:
994 	 */
995 	if (!rt_prio(p->prio))
996 		return p->normal_prio;
997 	return p->prio;
998 }
999 
1000 /**
1001  * task_curr - is this task currently executing on a CPU?
1002  * @p: the task in question.
1003  *
1004  * Return: 1 if the task is currently executing. 0 otherwise.
1005  */
1006 inline int task_curr(const struct task_struct *p)
1007 {
1008 	return cpu_curr(task_cpu(p)) == p;
1009 }
1010 
1011 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 				       const struct sched_class *prev_class,
1013 				       int oldprio)
1014 {
1015 	if (prev_class != p->sched_class) {
1016 		if (prev_class->switched_from)
1017 			prev_class->switched_from(rq, p);
1018 		p->sched_class->switched_to(rq, p);
1019 	} else if (oldprio != p->prio || dl_task(p))
1020 		p->sched_class->prio_changed(rq, p, oldprio);
1021 }
1022 
1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 {
1025 	const struct sched_class *class;
1026 
1027 	if (p->sched_class == rq->curr->sched_class) {
1028 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 	} else {
1030 		for_each_class(class) {
1031 			if (class == rq->curr->sched_class)
1032 				break;
1033 			if (class == p->sched_class) {
1034 				resched_curr(rq);
1035 				break;
1036 			}
1037 		}
1038 	}
1039 
1040 	/*
1041 	 * A queue event has occurred, and we're going to schedule.  In
1042 	 * this case, we can save a useless back to back clock update.
1043 	 */
1044 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045 		rq->skip_clock_update = 1;
1046 }
1047 
1048 #ifdef CONFIG_SMP
1049 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1050 {
1051 #ifdef CONFIG_SCHED_DEBUG
1052 	/*
1053 	 * We should never call set_task_cpu() on a blocked task,
1054 	 * ttwu() will sort out the placement.
1055 	 */
1056 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1057 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1058 
1059 #ifdef CONFIG_LOCKDEP
1060 	/*
1061 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 	 *
1064 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1065 	 * see task_group().
1066 	 *
1067 	 * Furthermore, all task_rq users should acquire both locks, see
1068 	 * task_rq_lock().
1069 	 */
1070 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 				      lockdep_is_held(&task_rq(p)->lock)));
1072 #endif
1073 #endif
1074 
1075 	trace_sched_migrate_task(p, new_cpu);
1076 
1077 	if (task_cpu(p) != new_cpu) {
1078 		if (p->sched_class->migrate_task_rq)
1079 			p->sched_class->migrate_task_rq(p, new_cpu);
1080 		p->se.nr_migrations++;
1081 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1082 	}
1083 
1084 	__set_task_cpu(p, new_cpu);
1085 }
1086 
1087 static void __migrate_swap_task(struct task_struct *p, int cpu)
1088 {
1089 	if (task_on_rq_queued(p)) {
1090 		struct rq *src_rq, *dst_rq;
1091 
1092 		src_rq = task_rq(p);
1093 		dst_rq = cpu_rq(cpu);
1094 
1095 		deactivate_task(src_rq, p, 0);
1096 		set_task_cpu(p, cpu);
1097 		activate_task(dst_rq, p, 0);
1098 		check_preempt_curr(dst_rq, p, 0);
1099 	} else {
1100 		/*
1101 		 * Task isn't running anymore; make it appear like we migrated
1102 		 * it before it went to sleep. This means on wakeup we make the
1103 		 * previous cpu our targer instead of where it really is.
1104 		 */
1105 		p->wake_cpu = cpu;
1106 	}
1107 }
1108 
1109 struct migration_swap_arg {
1110 	struct task_struct *src_task, *dst_task;
1111 	int src_cpu, dst_cpu;
1112 };
1113 
1114 static int migrate_swap_stop(void *data)
1115 {
1116 	struct migration_swap_arg *arg = data;
1117 	struct rq *src_rq, *dst_rq;
1118 	int ret = -EAGAIN;
1119 
1120 	src_rq = cpu_rq(arg->src_cpu);
1121 	dst_rq = cpu_rq(arg->dst_cpu);
1122 
1123 	double_raw_lock(&arg->src_task->pi_lock,
1124 			&arg->dst_task->pi_lock);
1125 	double_rq_lock(src_rq, dst_rq);
1126 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 		goto unlock;
1128 
1129 	if (task_cpu(arg->src_task) != arg->src_cpu)
1130 		goto unlock;
1131 
1132 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 		goto unlock;
1134 
1135 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 		goto unlock;
1137 
1138 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1140 
1141 	ret = 0;
1142 
1143 unlock:
1144 	double_rq_unlock(src_rq, dst_rq);
1145 	raw_spin_unlock(&arg->dst_task->pi_lock);
1146 	raw_spin_unlock(&arg->src_task->pi_lock);
1147 
1148 	return ret;
1149 }
1150 
1151 /*
1152  * Cross migrate two tasks
1153  */
1154 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155 {
1156 	struct migration_swap_arg arg;
1157 	int ret = -EINVAL;
1158 
1159 	arg = (struct migration_swap_arg){
1160 		.src_task = cur,
1161 		.src_cpu = task_cpu(cur),
1162 		.dst_task = p,
1163 		.dst_cpu = task_cpu(p),
1164 	};
1165 
1166 	if (arg.src_cpu == arg.dst_cpu)
1167 		goto out;
1168 
1169 	/*
1170 	 * These three tests are all lockless; this is OK since all of them
1171 	 * will be re-checked with proper locks held further down the line.
1172 	 */
1173 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 		goto out;
1175 
1176 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 		goto out;
1178 
1179 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 		goto out;
1181 
1182 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1183 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184 
1185 out:
1186 	return ret;
1187 }
1188 
1189 struct migration_arg {
1190 	struct task_struct *task;
1191 	int dest_cpu;
1192 };
1193 
1194 static int migration_cpu_stop(void *data);
1195 
1196 /*
1197  * wait_task_inactive - wait for a thread to unschedule.
1198  *
1199  * If @match_state is nonzero, it's the @p->state value just checked and
1200  * not expected to change.  If it changes, i.e. @p might have woken up,
1201  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1202  * we return a positive number (its total switch count).  If a second call
1203  * a short while later returns the same number, the caller can be sure that
1204  * @p has remained unscheduled the whole time.
1205  *
1206  * The caller must ensure that the task *will* unschedule sometime soon,
1207  * else this function might spin for a *long* time. This function can't
1208  * be called with interrupts off, or it may introduce deadlock with
1209  * smp_call_function() if an IPI is sent by the same process we are
1210  * waiting to become inactive.
1211  */
1212 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1213 {
1214 	unsigned long flags;
1215 	int running, queued;
1216 	unsigned long ncsw;
1217 	struct rq *rq;
1218 
1219 	for (;;) {
1220 		/*
1221 		 * We do the initial early heuristics without holding
1222 		 * any task-queue locks at all. We'll only try to get
1223 		 * the runqueue lock when things look like they will
1224 		 * work out!
1225 		 */
1226 		rq = task_rq(p);
1227 
1228 		/*
1229 		 * If the task is actively running on another CPU
1230 		 * still, just relax and busy-wait without holding
1231 		 * any locks.
1232 		 *
1233 		 * NOTE! Since we don't hold any locks, it's not
1234 		 * even sure that "rq" stays as the right runqueue!
1235 		 * But we don't care, since "task_running()" will
1236 		 * return false if the runqueue has changed and p
1237 		 * is actually now running somewhere else!
1238 		 */
1239 		while (task_running(rq, p)) {
1240 			if (match_state && unlikely(p->state != match_state))
1241 				return 0;
1242 			cpu_relax();
1243 		}
1244 
1245 		/*
1246 		 * Ok, time to look more closely! We need the rq
1247 		 * lock now, to be *sure*. If we're wrong, we'll
1248 		 * just go back and repeat.
1249 		 */
1250 		rq = task_rq_lock(p, &flags);
1251 		trace_sched_wait_task(p);
1252 		running = task_running(rq, p);
1253 		queued = task_on_rq_queued(p);
1254 		ncsw = 0;
1255 		if (!match_state || p->state == match_state)
1256 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1257 		task_rq_unlock(rq, p, &flags);
1258 
1259 		/*
1260 		 * If it changed from the expected state, bail out now.
1261 		 */
1262 		if (unlikely(!ncsw))
1263 			break;
1264 
1265 		/*
1266 		 * Was it really running after all now that we
1267 		 * checked with the proper locks actually held?
1268 		 *
1269 		 * Oops. Go back and try again..
1270 		 */
1271 		if (unlikely(running)) {
1272 			cpu_relax();
1273 			continue;
1274 		}
1275 
1276 		/*
1277 		 * It's not enough that it's not actively running,
1278 		 * it must be off the runqueue _entirely_, and not
1279 		 * preempted!
1280 		 *
1281 		 * So if it was still runnable (but just not actively
1282 		 * running right now), it's preempted, and we should
1283 		 * yield - it could be a while.
1284 		 */
1285 		if (unlikely(queued)) {
1286 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287 
1288 			set_current_state(TASK_UNINTERRUPTIBLE);
1289 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1290 			continue;
1291 		}
1292 
1293 		/*
1294 		 * Ahh, all good. It wasn't running, and it wasn't
1295 		 * runnable, which means that it will never become
1296 		 * running in the future either. We're all done!
1297 		 */
1298 		break;
1299 	}
1300 
1301 	return ncsw;
1302 }
1303 
1304 /***
1305  * kick_process - kick a running thread to enter/exit the kernel
1306  * @p: the to-be-kicked thread
1307  *
1308  * Cause a process which is running on another CPU to enter
1309  * kernel-mode, without any delay. (to get signals handled.)
1310  *
1311  * NOTE: this function doesn't have to take the runqueue lock,
1312  * because all it wants to ensure is that the remote task enters
1313  * the kernel. If the IPI races and the task has been migrated
1314  * to another CPU then no harm is done and the purpose has been
1315  * achieved as well.
1316  */
1317 void kick_process(struct task_struct *p)
1318 {
1319 	int cpu;
1320 
1321 	preempt_disable();
1322 	cpu = task_cpu(p);
1323 	if ((cpu != smp_processor_id()) && task_curr(p))
1324 		smp_send_reschedule(cpu);
1325 	preempt_enable();
1326 }
1327 EXPORT_SYMBOL_GPL(kick_process);
1328 #endif /* CONFIG_SMP */
1329 
1330 #ifdef CONFIG_SMP
1331 /*
1332  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1333  */
1334 static int select_fallback_rq(int cpu, struct task_struct *p)
1335 {
1336 	int nid = cpu_to_node(cpu);
1337 	const struct cpumask *nodemask = NULL;
1338 	enum { cpuset, possible, fail } state = cpuset;
1339 	int dest_cpu;
1340 
1341 	/*
1342 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 	 * will return -1. There is no cpu on the node, and we should
1344 	 * select the cpu on the other node.
1345 	 */
1346 	if (nid != -1) {
1347 		nodemask = cpumask_of_node(nid);
1348 
1349 		/* Look for allowed, online CPU in same node. */
1350 		for_each_cpu(dest_cpu, nodemask) {
1351 			if (!cpu_online(dest_cpu))
1352 				continue;
1353 			if (!cpu_active(dest_cpu))
1354 				continue;
1355 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 				return dest_cpu;
1357 		}
1358 	}
1359 
1360 	for (;;) {
1361 		/* Any allowed, online CPU? */
1362 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1363 			if (!cpu_online(dest_cpu))
1364 				continue;
1365 			if (!cpu_active(dest_cpu))
1366 				continue;
1367 			goto out;
1368 		}
1369 
1370 		switch (state) {
1371 		case cpuset:
1372 			/* No more Mr. Nice Guy. */
1373 			cpuset_cpus_allowed_fallback(p);
1374 			state = possible;
1375 			break;
1376 
1377 		case possible:
1378 			do_set_cpus_allowed(p, cpu_possible_mask);
1379 			state = fail;
1380 			break;
1381 
1382 		case fail:
1383 			BUG();
1384 			break;
1385 		}
1386 	}
1387 
1388 out:
1389 	if (state != cpuset) {
1390 		/*
1391 		 * Don't tell them about moving exiting tasks or
1392 		 * kernel threads (both mm NULL), since they never
1393 		 * leave kernel.
1394 		 */
1395 		if (p->mm && printk_ratelimit()) {
1396 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1397 					task_pid_nr(p), p->comm, cpu);
1398 		}
1399 	}
1400 
1401 	return dest_cpu;
1402 }
1403 
1404 /*
1405  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1406  */
1407 static inline
1408 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1409 {
1410 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1411 
1412 	/*
1413 	 * In order not to call set_task_cpu() on a blocking task we need
1414 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 	 * cpu.
1416 	 *
1417 	 * Since this is common to all placement strategies, this lives here.
1418 	 *
1419 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 	 *   not worry about this generic constraint ]
1421 	 */
1422 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1423 		     !cpu_online(cpu)))
1424 		cpu = select_fallback_rq(task_cpu(p), p);
1425 
1426 	return cpu;
1427 }
1428 
1429 static void update_avg(u64 *avg, u64 sample)
1430 {
1431 	s64 diff = sample - *avg;
1432 	*avg += diff >> 3;
1433 }
1434 #endif
1435 
1436 static void
1437 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1438 {
1439 #ifdef CONFIG_SCHEDSTATS
1440 	struct rq *rq = this_rq();
1441 
1442 #ifdef CONFIG_SMP
1443 	int this_cpu = smp_processor_id();
1444 
1445 	if (cpu == this_cpu) {
1446 		schedstat_inc(rq, ttwu_local);
1447 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 	} else {
1449 		struct sched_domain *sd;
1450 
1451 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1452 		rcu_read_lock();
1453 		for_each_domain(this_cpu, sd) {
1454 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 				schedstat_inc(sd, ttwu_wake_remote);
1456 				break;
1457 			}
1458 		}
1459 		rcu_read_unlock();
1460 	}
1461 
1462 	if (wake_flags & WF_MIGRATED)
1463 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464 
1465 #endif /* CONFIG_SMP */
1466 
1467 	schedstat_inc(rq, ttwu_count);
1468 	schedstat_inc(p, se.statistics.nr_wakeups);
1469 
1470 	if (wake_flags & WF_SYNC)
1471 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1472 
1473 #endif /* CONFIG_SCHEDSTATS */
1474 }
1475 
1476 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477 {
1478 	activate_task(rq, p, en_flags);
1479 	p->on_rq = TASK_ON_RQ_QUEUED;
1480 
1481 	/* if a worker is waking up, notify workqueue */
1482 	if (p->flags & PF_WQ_WORKER)
1483 		wq_worker_waking_up(p, cpu_of(rq));
1484 }
1485 
1486 /*
1487  * Mark the task runnable and perform wakeup-preemption.
1488  */
1489 static void
1490 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1491 {
1492 	check_preempt_curr(rq, p, wake_flags);
1493 	trace_sched_wakeup(p, true);
1494 
1495 	p->state = TASK_RUNNING;
1496 #ifdef CONFIG_SMP
1497 	if (p->sched_class->task_woken)
1498 		p->sched_class->task_woken(rq, p);
1499 
1500 	if (rq->idle_stamp) {
1501 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1502 		u64 max = 2*rq->max_idle_balance_cost;
1503 
1504 		update_avg(&rq->avg_idle, delta);
1505 
1506 		if (rq->avg_idle > max)
1507 			rq->avg_idle = max;
1508 
1509 		rq->idle_stamp = 0;
1510 	}
1511 #endif
1512 }
1513 
1514 static void
1515 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516 {
1517 #ifdef CONFIG_SMP
1518 	if (p->sched_contributes_to_load)
1519 		rq->nr_uninterruptible--;
1520 #endif
1521 
1522 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 	ttwu_do_wakeup(rq, p, wake_flags);
1524 }
1525 
1526 /*
1527  * Called in case the task @p isn't fully descheduled from its runqueue,
1528  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529  * since all we need to do is flip p->state to TASK_RUNNING, since
1530  * the task is still ->on_rq.
1531  */
1532 static int ttwu_remote(struct task_struct *p, int wake_flags)
1533 {
1534 	struct rq *rq;
1535 	int ret = 0;
1536 
1537 	rq = __task_rq_lock(p);
1538 	if (task_on_rq_queued(p)) {
1539 		/* check_preempt_curr() may use rq clock */
1540 		update_rq_clock(rq);
1541 		ttwu_do_wakeup(rq, p, wake_flags);
1542 		ret = 1;
1543 	}
1544 	__task_rq_unlock(rq);
1545 
1546 	return ret;
1547 }
1548 
1549 #ifdef CONFIG_SMP
1550 void sched_ttwu_pending(void)
1551 {
1552 	struct rq *rq = this_rq();
1553 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 	struct task_struct *p;
1555 	unsigned long flags;
1556 
1557 	if (!llist)
1558 		return;
1559 
1560 	raw_spin_lock_irqsave(&rq->lock, flags);
1561 
1562 	while (llist) {
1563 		p = llist_entry(llist, struct task_struct, wake_entry);
1564 		llist = llist_next(llist);
1565 		ttwu_do_activate(rq, p, 0);
1566 	}
1567 
1568 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1569 }
1570 
1571 void scheduler_ipi(void)
1572 {
1573 	/*
1574 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 	 * this IPI.
1577 	 */
1578 	preempt_fold_need_resched();
1579 
1580 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1581 		return;
1582 
1583 	/*
1584 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 	 * traditionally all their work was done from the interrupt return
1586 	 * path. Now that we actually do some work, we need to make sure
1587 	 * we do call them.
1588 	 *
1589 	 * Some archs already do call them, luckily irq_enter/exit nest
1590 	 * properly.
1591 	 *
1592 	 * Arguably we should visit all archs and update all handlers,
1593 	 * however a fair share of IPIs are still resched only so this would
1594 	 * somewhat pessimize the simple resched case.
1595 	 */
1596 	irq_enter();
1597 	sched_ttwu_pending();
1598 
1599 	/*
1600 	 * Check if someone kicked us for doing the nohz idle load balance.
1601 	 */
1602 	if (unlikely(got_nohz_idle_kick())) {
1603 		this_rq()->idle_balance = 1;
1604 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1605 	}
1606 	irq_exit();
1607 }
1608 
1609 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610 {
1611 	struct rq *rq = cpu_rq(cpu);
1612 
1613 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 		if (!set_nr_if_polling(rq->idle))
1615 			smp_send_reschedule(cpu);
1616 		else
1617 			trace_sched_wake_idle_without_ipi(cpu);
1618 	}
1619 }
1620 
1621 void wake_up_if_idle(int cpu)
1622 {
1623 	struct rq *rq = cpu_rq(cpu);
1624 	unsigned long flags;
1625 
1626 	if (!is_idle_task(rq->curr))
1627 		return;
1628 
1629 	if (set_nr_if_polling(rq->idle)) {
1630 		trace_sched_wake_idle_without_ipi(cpu);
1631 	} else {
1632 		raw_spin_lock_irqsave(&rq->lock, flags);
1633 		if (is_idle_task(rq->curr))
1634 			smp_send_reschedule(cpu);
1635 		/* Else cpu is not in idle, do nothing here */
1636 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 	}
1638 }
1639 
1640 bool cpus_share_cache(int this_cpu, int that_cpu)
1641 {
1642 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643 }
1644 #endif /* CONFIG_SMP */
1645 
1646 static void ttwu_queue(struct task_struct *p, int cpu)
1647 {
1648 	struct rq *rq = cpu_rq(cpu);
1649 
1650 #if defined(CONFIG_SMP)
1651 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1652 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1653 		ttwu_queue_remote(p, cpu);
1654 		return;
1655 	}
1656 #endif
1657 
1658 	raw_spin_lock(&rq->lock);
1659 	ttwu_do_activate(rq, p, 0);
1660 	raw_spin_unlock(&rq->lock);
1661 }
1662 
1663 /**
1664  * try_to_wake_up - wake up a thread
1665  * @p: the thread to be awakened
1666  * @state: the mask of task states that can be woken
1667  * @wake_flags: wake modifier flags (WF_*)
1668  *
1669  * Put it on the run-queue if it's not already there. The "current"
1670  * thread is always on the run-queue (except when the actual
1671  * re-schedule is in progress), and as such you're allowed to do
1672  * the simpler "current->state = TASK_RUNNING" to mark yourself
1673  * runnable without the overhead of this.
1674  *
1675  * Return: %true if @p was woken up, %false if it was already running.
1676  * or @state didn't match @p's state.
1677  */
1678 static int
1679 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1680 {
1681 	unsigned long flags;
1682 	int cpu, success = 0;
1683 
1684 	/*
1685 	 * If we are going to wake up a thread waiting for CONDITION we
1686 	 * need to ensure that CONDITION=1 done by the caller can not be
1687 	 * reordered with p->state check below. This pairs with mb() in
1688 	 * set_current_state() the waiting thread does.
1689 	 */
1690 	smp_mb__before_spinlock();
1691 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1692 	if (!(p->state & state))
1693 		goto out;
1694 
1695 	success = 1; /* we're going to change ->state */
1696 	cpu = task_cpu(p);
1697 
1698 	if (p->on_rq && ttwu_remote(p, wake_flags))
1699 		goto stat;
1700 
1701 #ifdef CONFIG_SMP
1702 	/*
1703 	 * If the owning (remote) cpu is still in the middle of schedule() with
1704 	 * this task as prev, wait until its done referencing the task.
1705 	 */
1706 	while (p->on_cpu)
1707 		cpu_relax();
1708 	/*
1709 	 * Pairs with the smp_wmb() in finish_lock_switch().
1710 	 */
1711 	smp_rmb();
1712 
1713 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1714 	p->state = TASK_WAKING;
1715 
1716 	if (p->sched_class->task_waking)
1717 		p->sched_class->task_waking(p);
1718 
1719 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1720 	if (task_cpu(p) != cpu) {
1721 		wake_flags |= WF_MIGRATED;
1722 		set_task_cpu(p, cpu);
1723 	}
1724 #endif /* CONFIG_SMP */
1725 
1726 	ttwu_queue(p, cpu);
1727 stat:
1728 	ttwu_stat(p, cpu, wake_flags);
1729 out:
1730 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1731 
1732 	return success;
1733 }
1734 
1735 /**
1736  * try_to_wake_up_local - try to wake up a local task with rq lock held
1737  * @p: the thread to be awakened
1738  *
1739  * Put @p on the run-queue if it's not already there. The caller must
1740  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1741  * the current task.
1742  */
1743 static void try_to_wake_up_local(struct task_struct *p)
1744 {
1745 	struct rq *rq = task_rq(p);
1746 
1747 	if (WARN_ON_ONCE(rq != this_rq()) ||
1748 	    WARN_ON_ONCE(p == current))
1749 		return;
1750 
1751 	lockdep_assert_held(&rq->lock);
1752 
1753 	if (!raw_spin_trylock(&p->pi_lock)) {
1754 		raw_spin_unlock(&rq->lock);
1755 		raw_spin_lock(&p->pi_lock);
1756 		raw_spin_lock(&rq->lock);
1757 	}
1758 
1759 	if (!(p->state & TASK_NORMAL))
1760 		goto out;
1761 
1762 	if (!task_on_rq_queued(p))
1763 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764 
1765 	ttwu_do_wakeup(rq, p, 0);
1766 	ttwu_stat(p, smp_processor_id(), 0);
1767 out:
1768 	raw_spin_unlock(&p->pi_lock);
1769 }
1770 
1771 /**
1772  * wake_up_process - Wake up a specific process
1773  * @p: The process to be woken up.
1774  *
1775  * Attempt to wake up the nominated process and move it to the set of runnable
1776  * processes.
1777  *
1778  * Return: 1 if the process was woken up, 0 if it was already running.
1779  *
1780  * It may be assumed that this function implies a write memory barrier before
1781  * changing the task state if and only if any tasks are woken up.
1782  */
1783 int wake_up_process(struct task_struct *p)
1784 {
1785 	WARN_ON(task_is_stopped_or_traced(p));
1786 	return try_to_wake_up(p, TASK_NORMAL, 0);
1787 }
1788 EXPORT_SYMBOL(wake_up_process);
1789 
1790 int wake_up_state(struct task_struct *p, unsigned int state)
1791 {
1792 	return try_to_wake_up(p, state, 0);
1793 }
1794 
1795 /*
1796  * This function clears the sched_dl_entity static params.
1797  */
1798 void __dl_clear_params(struct task_struct *p)
1799 {
1800 	struct sched_dl_entity *dl_se = &p->dl;
1801 
1802 	dl_se->dl_runtime = 0;
1803 	dl_se->dl_deadline = 0;
1804 	dl_se->dl_period = 0;
1805 	dl_se->flags = 0;
1806 	dl_se->dl_bw = 0;
1807 }
1808 
1809 /*
1810  * Perform scheduler related setup for a newly forked process p.
1811  * p is forked by current.
1812  *
1813  * __sched_fork() is basic setup used by init_idle() too:
1814  */
1815 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1816 {
1817 	p->on_rq			= 0;
1818 
1819 	p->se.on_rq			= 0;
1820 	p->se.exec_start		= 0;
1821 	p->se.sum_exec_runtime		= 0;
1822 	p->se.prev_sum_exec_runtime	= 0;
1823 	p->se.nr_migrations		= 0;
1824 	p->se.vruntime			= 0;
1825 	INIT_LIST_HEAD(&p->se.group_node);
1826 
1827 #ifdef CONFIG_SCHEDSTATS
1828 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1829 #endif
1830 
1831 	RB_CLEAR_NODE(&p->dl.rb_node);
1832 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1833 	__dl_clear_params(p);
1834 
1835 	INIT_LIST_HEAD(&p->rt.run_list);
1836 
1837 #ifdef CONFIG_PREEMPT_NOTIFIERS
1838 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1839 #endif
1840 
1841 #ifdef CONFIG_NUMA_BALANCING
1842 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1843 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1844 		p->mm->numa_scan_seq = 0;
1845 	}
1846 
1847 	if (clone_flags & CLONE_VM)
1848 		p->numa_preferred_nid = current->numa_preferred_nid;
1849 	else
1850 		p->numa_preferred_nid = -1;
1851 
1852 	p->node_stamp = 0ULL;
1853 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1854 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1855 	p->numa_work.next = &p->numa_work;
1856 	p->numa_faults_memory = NULL;
1857 	p->numa_faults_buffer_memory = NULL;
1858 	p->last_task_numa_placement = 0;
1859 	p->last_sum_exec_runtime = 0;
1860 
1861 	INIT_LIST_HEAD(&p->numa_entry);
1862 	p->numa_group = NULL;
1863 #endif /* CONFIG_NUMA_BALANCING */
1864 }
1865 
1866 #ifdef CONFIG_NUMA_BALANCING
1867 #ifdef CONFIG_SCHED_DEBUG
1868 void set_numabalancing_state(bool enabled)
1869 {
1870 	if (enabled)
1871 		sched_feat_set("NUMA");
1872 	else
1873 		sched_feat_set("NO_NUMA");
1874 }
1875 #else
1876 __read_mostly bool numabalancing_enabled;
1877 
1878 void set_numabalancing_state(bool enabled)
1879 {
1880 	numabalancing_enabled = enabled;
1881 }
1882 #endif /* CONFIG_SCHED_DEBUG */
1883 
1884 #ifdef CONFIG_PROC_SYSCTL
1885 int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1887 {
1888 	struct ctl_table t;
1889 	int err;
1890 	int state = numabalancing_enabled;
1891 
1892 	if (write && !capable(CAP_SYS_ADMIN))
1893 		return -EPERM;
1894 
1895 	t = *table;
1896 	t.data = &state;
1897 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 	if (err < 0)
1899 		return err;
1900 	if (write)
1901 		set_numabalancing_state(state);
1902 	return err;
1903 }
1904 #endif
1905 #endif
1906 
1907 /*
1908  * fork()/clone()-time setup:
1909  */
1910 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1911 {
1912 	unsigned long flags;
1913 	int cpu = get_cpu();
1914 
1915 	__sched_fork(clone_flags, p);
1916 	/*
1917 	 * We mark the process as running here. This guarantees that
1918 	 * nobody will actually run it, and a signal or other external
1919 	 * event cannot wake it up and insert it on the runqueue either.
1920 	 */
1921 	p->state = TASK_RUNNING;
1922 
1923 	/*
1924 	 * Make sure we do not leak PI boosting priority to the child.
1925 	 */
1926 	p->prio = current->normal_prio;
1927 
1928 	/*
1929 	 * Revert to default priority/policy on fork if requested.
1930 	 */
1931 	if (unlikely(p->sched_reset_on_fork)) {
1932 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1933 			p->policy = SCHED_NORMAL;
1934 			p->static_prio = NICE_TO_PRIO(0);
1935 			p->rt_priority = 0;
1936 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 			p->static_prio = NICE_TO_PRIO(0);
1938 
1939 		p->prio = p->normal_prio = __normal_prio(p);
1940 		set_load_weight(p);
1941 
1942 		/*
1943 		 * We don't need the reset flag anymore after the fork. It has
1944 		 * fulfilled its duty:
1945 		 */
1946 		p->sched_reset_on_fork = 0;
1947 	}
1948 
1949 	if (dl_prio(p->prio)) {
1950 		put_cpu();
1951 		return -EAGAIN;
1952 	} else if (rt_prio(p->prio)) {
1953 		p->sched_class = &rt_sched_class;
1954 	} else {
1955 		p->sched_class = &fair_sched_class;
1956 	}
1957 
1958 	if (p->sched_class->task_fork)
1959 		p->sched_class->task_fork(p);
1960 
1961 	/*
1962 	 * The child is not yet in the pid-hash so no cgroup attach races,
1963 	 * and the cgroup is pinned to this child due to cgroup_fork()
1964 	 * is ran before sched_fork().
1965 	 *
1966 	 * Silence PROVE_RCU.
1967 	 */
1968 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1969 	set_task_cpu(p, cpu);
1970 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1971 
1972 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1973 	if (likely(sched_info_on()))
1974 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1975 #endif
1976 #if defined(CONFIG_SMP)
1977 	p->on_cpu = 0;
1978 #endif
1979 	init_task_preempt_count(p);
1980 #ifdef CONFIG_SMP
1981 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1982 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1983 #endif
1984 
1985 	put_cpu();
1986 	return 0;
1987 }
1988 
1989 unsigned long to_ratio(u64 period, u64 runtime)
1990 {
1991 	if (runtime == RUNTIME_INF)
1992 		return 1ULL << 20;
1993 
1994 	/*
1995 	 * Doing this here saves a lot of checks in all
1996 	 * the calling paths, and returning zero seems
1997 	 * safe for them anyway.
1998 	 */
1999 	if (period == 0)
2000 		return 0;
2001 
2002 	return div64_u64(runtime << 20, period);
2003 }
2004 
2005 #ifdef CONFIG_SMP
2006 inline struct dl_bw *dl_bw_of(int i)
2007 {
2008 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 			   "sched RCU must be held");
2010 	return &cpu_rq(i)->rd->dl_bw;
2011 }
2012 
2013 static inline int dl_bw_cpus(int i)
2014 {
2015 	struct root_domain *rd = cpu_rq(i)->rd;
2016 	int cpus = 0;
2017 
2018 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 			   "sched RCU must be held");
2020 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 		cpus++;
2022 
2023 	return cpus;
2024 }
2025 #else
2026 inline struct dl_bw *dl_bw_of(int i)
2027 {
2028 	return &cpu_rq(i)->dl.dl_bw;
2029 }
2030 
2031 static inline int dl_bw_cpus(int i)
2032 {
2033 	return 1;
2034 }
2035 #endif
2036 
2037 static inline
2038 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039 {
2040 	dl_b->total_bw -= tsk_bw;
2041 }
2042 
2043 static inline
2044 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045 {
2046 	dl_b->total_bw += tsk_bw;
2047 }
2048 
2049 static inline
2050 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051 {
2052 	return dl_b->bw != -1 &&
2053 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054 }
2055 
2056 /*
2057  * We must be sure that accepting a new task (or allowing changing the
2058  * parameters of an existing one) is consistent with the bandwidth
2059  * constraints. If yes, this function also accordingly updates the currently
2060  * allocated bandwidth to reflect the new situation.
2061  *
2062  * This function is called while holding p's rq->lock.
2063  */
2064 static int dl_overflow(struct task_struct *p, int policy,
2065 		       const struct sched_attr *attr)
2066 {
2067 
2068 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2069 	u64 period = attr->sched_period ?: attr->sched_deadline;
2070 	u64 runtime = attr->sched_runtime;
2071 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2072 	int cpus, err = -1;
2073 
2074 	if (new_bw == p->dl.dl_bw)
2075 		return 0;
2076 
2077 	/*
2078 	 * Either if a task, enters, leave, or stays -deadline but changes
2079 	 * its parameters, we may need to update accordingly the total
2080 	 * allocated bandwidth of the container.
2081 	 */
2082 	raw_spin_lock(&dl_b->lock);
2083 	cpus = dl_bw_cpus(task_cpu(p));
2084 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086 		__dl_add(dl_b, new_bw);
2087 		err = 0;
2088 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090 		__dl_clear(dl_b, p->dl.dl_bw);
2091 		__dl_add(dl_b, new_bw);
2092 		err = 0;
2093 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094 		__dl_clear(dl_b, p->dl.dl_bw);
2095 		err = 0;
2096 	}
2097 	raw_spin_unlock(&dl_b->lock);
2098 
2099 	return err;
2100 }
2101 
2102 extern void init_dl_bw(struct dl_bw *dl_b);
2103 
2104 /*
2105  * wake_up_new_task - wake up a newly created task for the first time.
2106  *
2107  * This function will do some initial scheduler statistics housekeeping
2108  * that must be done for every newly created context, then puts the task
2109  * on the runqueue and wakes it.
2110  */
2111 void wake_up_new_task(struct task_struct *p)
2112 {
2113 	unsigned long flags;
2114 	struct rq *rq;
2115 
2116 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2117 #ifdef CONFIG_SMP
2118 	/*
2119 	 * Fork balancing, do it here and not earlier because:
2120 	 *  - cpus_allowed can change in the fork path
2121 	 *  - any previously selected cpu might disappear through hotplug
2122 	 */
2123 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2124 #endif
2125 
2126 	/* Initialize new task's runnable average */
2127 	init_task_runnable_average(p);
2128 	rq = __task_rq_lock(p);
2129 	activate_task(rq, p, 0);
2130 	p->on_rq = TASK_ON_RQ_QUEUED;
2131 	trace_sched_wakeup_new(p, true);
2132 	check_preempt_curr(rq, p, WF_FORK);
2133 #ifdef CONFIG_SMP
2134 	if (p->sched_class->task_woken)
2135 		p->sched_class->task_woken(rq, p);
2136 #endif
2137 	task_rq_unlock(rq, p, &flags);
2138 }
2139 
2140 #ifdef CONFIG_PREEMPT_NOTIFIERS
2141 
2142 /**
2143  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2144  * @notifier: notifier struct to register
2145  */
2146 void preempt_notifier_register(struct preempt_notifier *notifier)
2147 {
2148 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149 }
2150 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151 
2152 /**
2153  * preempt_notifier_unregister - no longer interested in preemption notifications
2154  * @notifier: notifier struct to unregister
2155  *
2156  * This is safe to call from within a preemption notifier.
2157  */
2158 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159 {
2160 	hlist_del(&notifier->link);
2161 }
2162 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163 
2164 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165 {
2166 	struct preempt_notifier *notifier;
2167 
2168 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2169 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170 }
2171 
2172 static void
2173 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 				 struct task_struct *next)
2175 {
2176 	struct preempt_notifier *notifier;
2177 
2178 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2179 		notifier->ops->sched_out(notifier, next);
2180 }
2181 
2182 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2183 
2184 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185 {
2186 }
2187 
2188 static void
2189 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 				 struct task_struct *next)
2191 {
2192 }
2193 
2194 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2195 
2196 /**
2197  * prepare_task_switch - prepare to switch tasks
2198  * @rq: the runqueue preparing to switch
2199  * @prev: the current task that is being switched out
2200  * @next: the task we are going to switch to.
2201  *
2202  * This is called with the rq lock held and interrupts off. It must
2203  * be paired with a subsequent finish_task_switch after the context
2204  * switch.
2205  *
2206  * prepare_task_switch sets up locking and calls architecture specific
2207  * hooks.
2208  */
2209 static inline void
2210 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211 		    struct task_struct *next)
2212 {
2213 	trace_sched_switch(prev, next);
2214 	sched_info_switch(rq, prev, next);
2215 	perf_event_task_sched_out(prev, next);
2216 	fire_sched_out_preempt_notifiers(prev, next);
2217 	prepare_lock_switch(rq, next);
2218 	prepare_arch_switch(next);
2219 }
2220 
2221 /**
2222  * finish_task_switch - clean up after a task-switch
2223  * @rq: runqueue associated with task-switch
2224  * @prev: the thread we just switched away from.
2225  *
2226  * finish_task_switch must be called after the context switch, paired
2227  * with a prepare_task_switch call before the context switch.
2228  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229  * and do any other architecture-specific cleanup actions.
2230  *
2231  * Note that we may have delayed dropping an mm in context_switch(). If
2232  * so, we finish that here outside of the runqueue lock. (Doing it
2233  * with the lock held can cause deadlocks; see schedule() for
2234  * details.)
2235  */
2236 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2237 	__releases(rq->lock)
2238 {
2239 	struct mm_struct *mm = rq->prev_mm;
2240 	long prev_state;
2241 
2242 	rq->prev_mm = NULL;
2243 
2244 	/*
2245 	 * A task struct has one reference for the use as "current".
2246 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2247 	 * schedule one last time. The schedule call will never return, and
2248 	 * the scheduled task must drop that reference.
2249 	 * The test for TASK_DEAD must occur while the runqueue locks are
2250 	 * still held, otherwise prev could be scheduled on another cpu, die
2251 	 * there before we look at prev->state, and then the reference would
2252 	 * be dropped twice.
2253 	 *		Manfred Spraul <manfred@colorfullife.com>
2254 	 */
2255 	prev_state = prev->state;
2256 	vtime_task_switch(prev);
2257 	finish_arch_switch(prev);
2258 	perf_event_task_sched_in(prev, current);
2259 	finish_lock_switch(rq, prev);
2260 	finish_arch_post_lock_switch();
2261 
2262 	fire_sched_in_preempt_notifiers(current);
2263 	if (mm)
2264 		mmdrop(mm);
2265 	if (unlikely(prev_state == TASK_DEAD)) {
2266 		if (prev->sched_class->task_dead)
2267 			prev->sched_class->task_dead(prev);
2268 
2269 		/*
2270 		 * Remove function-return probe instances associated with this
2271 		 * task and put them back on the free list.
2272 		 */
2273 		kprobe_flush_task(prev);
2274 		put_task_struct(prev);
2275 	}
2276 
2277 	tick_nohz_task_switch(current);
2278 }
2279 
2280 #ifdef CONFIG_SMP
2281 
2282 /* rq->lock is NOT held, but preemption is disabled */
2283 static inline void post_schedule(struct rq *rq)
2284 {
2285 	if (rq->post_schedule) {
2286 		unsigned long flags;
2287 
2288 		raw_spin_lock_irqsave(&rq->lock, flags);
2289 		if (rq->curr->sched_class->post_schedule)
2290 			rq->curr->sched_class->post_schedule(rq);
2291 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2292 
2293 		rq->post_schedule = 0;
2294 	}
2295 }
2296 
2297 #else
2298 
2299 static inline void post_schedule(struct rq *rq)
2300 {
2301 }
2302 
2303 #endif
2304 
2305 /**
2306  * schedule_tail - first thing a freshly forked thread must call.
2307  * @prev: the thread we just switched away from.
2308  */
2309 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2310 	__releases(rq->lock)
2311 {
2312 	struct rq *rq = this_rq();
2313 
2314 	finish_task_switch(rq, prev);
2315 
2316 	/*
2317 	 * FIXME: do we need to worry about rq being invalidated by the
2318 	 * task_switch?
2319 	 */
2320 	post_schedule(rq);
2321 
2322 	if (current->set_child_tid)
2323 		put_user(task_pid_vnr(current), current->set_child_tid);
2324 }
2325 
2326 /*
2327  * context_switch - switch to the new MM and the new
2328  * thread's register state.
2329  */
2330 static inline void
2331 context_switch(struct rq *rq, struct task_struct *prev,
2332 	       struct task_struct *next)
2333 {
2334 	struct mm_struct *mm, *oldmm;
2335 
2336 	prepare_task_switch(rq, prev, next);
2337 
2338 	mm = next->mm;
2339 	oldmm = prev->active_mm;
2340 	/*
2341 	 * For paravirt, this is coupled with an exit in switch_to to
2342 	 * combine the page table reload and the switch backend into
2343 	 * one hypercall.
2344 	 */
2345 	arch_start_context_switch(prev);
2346 
2347 	if (!mm) {
2348 		next->active_mm = oldmm;
2349 		atomic_inc(&oldmm->mm_count);
2350 		enter_lazy_tlb(oldmm, next);
2351 	} else
2352 		switch_mm(oldmm, mm, next);
2353 
2354 	if (!prev->mm) {
2355 		prev->active_mm = NULL;
2356 		rq->prev_mm = oldmm;
2357 	}
2358 	/*
2359 	 * Since the runqueue lock will be released by the next
2360 	 * task (which is an invalid locking op but in the case
2361 	 * of the scheduler it's an obvious special-case), so we
2362 	 * do an early lockdep release here:
2363 	 */
2364 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2365 
2366 	context_tracking_task_switch(prev, next);
2367 	/* Here we just switch the register state and the stack. */
2368 	switch_to(prev, next, prev);
2369 
2370 	barrier();
2371 	/*
2372 	 * this_rq must be evaluated again because prev may have moved
2373 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2374 	 * frame will be invalid.
2375 	 */
2376 	finish_task_switch(this_rq(), prev);
2377 }
2378 
2379 /*
2380  * nr_running and nr_context_switches:
2381  *
2382  * externally visible scheduler statistics: current number of runnable
2383  * threads, total number of context switches performed since bootup.
2384  */
2385 unsigned long nr_running(void)
2386 {
2387 	unsigned long i, sum = 0;
2388 
2389 	for_each_online_cpu(i)
2390 		sum += cpu_rq(i)->nr_running;
2391 
2392 	return sum;
2393 }
2394 
2395 /*
2396  * Check if only the current task is running on the cpu.
2397  */
2398 bool single_task_running(void)
2399 {
2400 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2401 		return true;
2402 	else
2403 		return false;
2404 }
2405 EXPORT_SYMBOL(single_task_running);
2406 
2407 unsigned long long nr_context_switches(void)
2408 {
2409 	int i;
2410 	unsigned long long sum = 0;
2411 
2412 	for_each_possible_cpu(i)
2413 		sum += cpu_rq(i)->nr_switches;
2414 
2415 	return sum;
2416 }
2417 
2418 unsigned long nr_iowait(void)
2419 {
2420 	unsigned long i, sum = 0;
2421 
2422 	for_each_possible_cpu(i)
2423 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2424 
2425 	return sum;
2426 }
2427 
2428 unsigned long nr_iowait_cpu(int cpu)
2429 {
2430 	struct rq *this = cpu_rq(cpu);
2431 	return atomic_read(&this->nr_iowait);
2432 }
2433 
2434 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435 {
2436 	struct rq *this = this_rq();
2437 	*nr_waiters = atomic_read(&this->nr_iowait);
2438 	*load = this->cpu_load[0];
2439 }
2440 
2441 #ifdef CONFIG_SMP
2442 
2443 /*
2444  * sched_exec - execve() is a valuable balancing opportunity, because at
2445  * this point the task has the smallest effective memory and cache footprint.
2446  */
2447 void sched_exec(void)
2448 {
2449 	struct task_struct *p = current;
2450 	unsigned long flags;
2451 	int dest_cpu;
2452 
2453 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2454 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2455 	if (dest_cpu == smp_processor_id())
2456 		goto unlock;
2457 
2458 	if (likely(cpu_active(dest_cpu))) {
2459 		struct migration_arg arg = { p, dest_cpu };
2460 
2461 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2463 		return;
2464 	}
2465 unlock:
2466 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2467 }
2468 
2469 #endif
2470 
2471 DEFINE_PER_CPU(struct kernel_stat, kstat);
2472 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2473 
2474 EXPORT_PER_CPU_SYMBOL(kstat);
2475 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2476 
2477 /*
2478  * Return any ns on the sched_clock that have not yet been accounted in
2479  * @p in case that task is currently running.
2480  *
2481  * Called with task_rq_lock() held on @rq.
2482  */
2483 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2484 {
2485 	u64 ns = 0;
2486 
2487 	/*
2488 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2489 	 * project cycles that may never be accounted to this
2490 	 * thread, breaking clock_gettime().
2491 	 */
2492 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2493 		update_rq_clock(rq);
2494 		ns = rq_clock_task(rq) - p->se.exec_start;
2495 		if ((s64)ns < 0)
2496 			ns = 0;
2497 	}
2498 
2499 	return ns;
2500 }
2501 
2502 unsigned long long task_delta_exec(struct task_struct *p)
2503 {
2504 	unsigned long flags;
2505 	struct rq *rq;
2506 	u64 ns = 0;
2507 
2508 	rq = task_rq_lock(p, &flags);
2509 	ns = do_task_delta_exec(p, rq);
2510 	task_rq_unlock(rq, p, &flags);
2511 
2512 	return ns;
2513 }
2514 
2515 /*
2516  * Return accounted runtime for the task.
2517  * In case the task is currently running, return the runtime plus current's
2518  * pending runtime that have not been accounted yet.
2519  */
2520 unsigned long long task_sched_runtime(struct task_struct *p)
2521 {
2522 	unsigned long flags;
2523 	struct rq *rq;
2524 	u64 ns = 0;
2525 
2526 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2527 	/*
2528 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2529 	 * So we have a optimization chance when the task's delta_exec is 0.
2530 	 * Reading ->on_cpu is racy, but this is ok.
2531 	 *
2532 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2533 	 * If we race with it entering cpu, unaccounted time is 0. This is
2534 	 * indistinguishable from the read occurring a few cycles earlier.
2535 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2536 	 * been accounted, so we're correct here as well.
2537 	 */
2538 	if (!p->on_cpu || !task_on_rq_queued(p))
2539 		return p->se.sum_exec_runtime;
2540 #endif
2541 
2542 	rq = task_rq_lock(p, &flags);
2543 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2544 	task_rq_unlock(rq, p, &flags);
2545 
2546 	return ns;
2547 }
2548 
2549 /*
2550  * This function gets called by the timer code, with HZ frequency.
2551  * We call it with interrupts disabled.
2552  */
2553 void scheduler_tick(void)
2554 {
2555 	int cpu = smp_processor_id();
2556 	struct rq *rq = cpu_rq(cpu);
2557 	struct task_struct *curr = rq->curr;
2558 
2559 	sched_clock_tick();
2560 
2561 	raw_spin_lock(&rq->lock);
2562 	update_rq_clock(rq);
2563 	curr->sched_class->task_tick(rq, curr, 0);
2564 	update_cpu_load_active(rq);
2565 	raw_spin_unlock(&rq->lock);
2566 
2567 	perf_event_task_tick();
2568 
2569 #ifdef CONFIG_SMP
2570 	rq->idle_balance = idle_cpu(cpu);
2571 	trigger_load_balance(rq);
2572 #endif
2573 	rq_last_tick_reset(rq);
2574 }
2575 
2576 #ifdef CONFIG_NO_HZ_FULL
2577 /**
2578  * scheduler_tick_max_deferment
2579  *
2580  * Keep at least one tick per second when a single
2581  * active task is running because the scheduler doesn't
2582  * yet completely support full dynticks environment.
2583  *
2584  * This makes sure that uptime, CFS vruntime, load
2585  * balancing, etc... continue to move forward, even
2586  * with a very low granularity.
2587  *
2588  * Return: Maximum deferment in nanoseconds.
2589  */
2590 u64 scheduler_tick_max_deferment(void)
2591 {
2592 	struct rq *rq = this_rq();
2593 	unsigned long next, now = ACCESS_ONCE(jiffies);
2594 
2595 	next = rq->last_sched_tick + HZ;
2596 
2597 	if (time_before_eq(next, now))
2598 		return 0;
2599 
2600 	return jiffies_to_nsecs(next - now);
2601 }
2602 #endif
2603 
2604 notrace unsigned long get_parent_ip(unsigned long addr)
2605 {
2606 	if (in_lock_functions(addr)) {
2607 		addr = CALLER_ADDR2;
2608 		if (in_lock_functions(addr))
2609 			addr = CALLER_ADDR3;
2610 	}
2611 	return addr;
2612 }
2613 
2614 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2615 				defined(CONFIG_PREEMPT_TRACER))
2616 
2617 void preempt_count_add(int val)
2618 {
2619 #ifdef CONFIG_DEBUG_PREEMPT
2620 	/*
2621 	 * Underflow?
2622 	 */
2623 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2624 		return;
2625 #endif
2626 	__preempt_count_add(val);
2627 #ifdef CONFIG_DEBUG_PREEMPT
2628 	/*
2629 	 * Spinlock count overflowing soon?
2630 	 */
2631 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2632 				PREEMPT_MASK - 10);
2633 #endif
2634 	if (preempt_count() == val) {
2635 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2636 #ifdef CONFIG_DEBUG_PREEMPT
2637 		current->preempt_disable_ip = ip;
2638 #endif
2639 		trace_preempt_off(CALLER_ADDR0, ip);
2640 	}
2641 }
2642 EXPORT_SYMBOL(preempt_count_add);
2643 NOKPROBE_SYMBOL(preempt_count_add);
2644 
2645 void preempt_count_sub(int val)
2646 {
2647 #ifdef CONFIG_DEBUG_PREEMPT
2648 	/*
2649 	 * Underflow?
2650 	 */
2651 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2652 		return;
2653 	/*
2654 	 * Is the spinlock portion underflowing?
2655 	 */
2656 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2657 			!(preempt_count() & PREEMPT_MASK)))
2658 		return;
2659 #endif
2660 
2661 	if (preempt_count() == val)
2662 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2663 	__preempt_count_sub(val);
2664 }
2665 EXPORT_SYMBOL(preempt_count_sub);
2666 NOKPROBE_SYMBOL(preempt_count_sub);
2667 
2668 #endif
2669 
2670 /*
2671  * Print scheduling while atomic bug:
2672  */
2673 static noinline void __schedule_bug(struct task_struct *prev)
2674 {
2675 	if (oops_in_progress)
2676 		return;
2677 
2678 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2679 		prev->comm, prev->pid, preempt_count());
2680 
2681 	debug_show_held_locks(prev);
2682 	print_modules();
2683 	if (irqs_disabled())
2684 		print_irqtrace_events(prev);
2685 #ifdef CONFIG_DEBUG_PREEMPT
2686 	if (in_atomic_preempt_off()) {
2687 		pr_err("Preemption disabled at:");
2688 		print_ip_sym(current->preempt_disable_ip);
2689 		pr_cont("\n");
2690 	}
2691 #endif
2692 	dump_stack();
2693 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2694 }
2695 
2696 /*
2697  * Various schedule()-time debugging checks and statistics:
2698  */
2699 static inline void schedule_debug(struct task_struct *prev)
2700 {
2701 #ifdef CONFIG_SCHED_STACK_END_CHECK
2702 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2703 #endif
2704 	/*
2705 	 * Test if we are atomic. Since do_exit() needs to call into
2706 	 * schedule() atomically, we ignore that path. Otherwise whine
2707 	 * if we are scheduling when we should not.
2708 	 */
2709 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2710 		__schedule_bug(prev);
2711 	rcu_sleep_check();
2712 
2713 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2714 
2715 	schedstat_inc(this_rq(), sched_count);
2716 }
2717 
2718 /*
2719  * Pick up the highest-prio task:
2720  */
2721 static inline struct task_struct *
2722 pick_next_task(struct rq *rq, struct task_struct *prev)
2723 {
2724 	const struct sched_class *class = &fair_sched_class;
2725 	struct task_struct *p;
2726 
2727 	/*
2728 	 * Optimization: we know that if all tasks are in
2729 	 * the fair class we can call that function directly:
2730 	 */
2731 	if (likely(prev->sched_class == class &&
2732 		   rq->nr_running == rq->cfs.h_nr_running)) {
2733 		p = fair_sched_class.pick_next_task(rq, prev);
2734 		if (unlikely(p == RETRY_TASK))
2735 			goto again;
2736 
2737 		/* assumes fair_sched_class->next == idle_sched_class */
2738 		if (unlikely(!p))
2739 			p = idle_sched_class.pick_next_task(rq, prev);
2740 
2741 		return p;
2742 	}
2743 
2744 again:
2745 	for_each_class(class) {
2746 		p = class->pick_next_task(rq, prev);
2747 		if (p) {
2748 			if (unlikely(p == RETRY_TASK))
2749 				goto again;
2750 			return p;
2751 		}
2752 	}
2753 
2754 	BUG(); /* the idle class will always have a runnable task */
2755 }
2756 
2757 /*
2758  * __schedule() is the main scheduler function.
2759  *
2760  * The main means of driving the scheduler and thus entering this function are:
2761  *
2762  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2763  *
2764  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2765  *      paths. For example, see arch/x86/entry_64.S.
2766  *
2767  *      To drive preemption between tasks, the scheduler sets the flag in timer
2768  *      interrupt handler scheduler_tick().
2769  *
2770  *   3. Wakeups don't really cause entry into schedule(). They add a
2771  *      task to the run-queue and that's it.
2772  *
2773  *      Now, if the new task added to the run-queue preempts the current
2774  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2775  *      called on the nearest possible occasion:
2776  *
2777  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2778  *
2779  *         - in syscall or exception context, at the next outmost
2780  *           preempt_enable(). (this might be as soon as the wake_up()'s
2781  *           spin_unlock()!)
2782  *
2783  *         - in IRQ context, return from interrupt-handler to
2784  *           preemptible context
2785  *
2786  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2787  *         then at the next:
2788  *
2789  *          - cond_resched() call
2790  *          - explicit schedule() call
2791  *          - return from syscall or exception to user-space
2792  *          - return from interrupt-handler to user-space
2793  */
2794 static void __sched __schedule(void)
2795 {
2796 	struct task_struct *prev, *next;
2797 	unsigned long *switch_count;
2798 	struct rq *rq;
2799 	int cpu;
2800 
2801 need_resched:
2802 	preempt_disable();
2803 	cpu = smp_processor_id();
2804 	rq = cpu_rq(cpu);
2805 	rcu_note_context_switch(cpu);
2806 	prev = rq->curr;
2807 
2808 	schedule_debug(prev);
2809 
2810 	if (sched_feat(HRTICK))
2811 		hrtick_clear(rq);
2812 
2813 	/*
2814 	 * Make sure that signal_pending_state()->signal_pending() below
2815 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2816 	 * done by the caller to avoid the race with signal_wake_up().
2817 	 */
2818 	smp_mb__before_spinlock();
2819 	raw_spin_lock_irq(&rq->lock);
2820 
2821 	switch_count = &prev->nivcsw;
2822 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2823 		if (unlikely(signal_pending_state(prev->state, prev))) {
2824 			prev->state = TASK_RUNNING;
2825 		} else {
2826 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2827 			prev->on_rq = 0;
2828 
2829 			/*
2830 			 * If a worker went to sleep, notify and ask workqueue
2831 			 * whether it wants to wake up a task to maintain
2832 			 * concurrency.
2833 			 */
2834 			if (prev->flags & PF_WQ_WORKER) {
2835 				struct task_struct *to_wakeup;
2836 
2837 				to_wakeup = wq_worker_sleeping(prev, cpu);
2838 				if (to_wakeup)
2839 					try_to_wake_up_local(to_wakeup);
2840 			}
2841 		}
2842 		switch_count = &prev->nvcsw;
2843 	}
2844 
2845 	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2846 		update_rq_clock(rq);
2847 
2848 	next = pick_next_task(rq, prev);
2849 	clear_tsk_need_resched(prev);
2850 	clear_preempt_need_resched();
2851 	rq->skip_clock_update = 0;
2852 
2853 	if (likely(prev != next)) {
2854 		rq->nr_switches++;
2855 		rq->curr = next;
2856 		++*switch_count;
2857 
2858 		context_switch(rq, prev, next); /* unlocks the rq */
2859 		/*
2860 		 * The context switch have flipped the stack from under us
2861 		 * and restored the local variables which were saved when
2862 		 * this task called schedule() in the past. prev == current
2863 		 * is still correct, but it can be moved to another cpu/rq.
2864 		 */
2865 		cpu = smp_processor_id();
2866 		rq = cpu_rq(cpu);
2867 	} else
2868 		raw_spin_unlock_irq(&rq->lock);
2869 
2870 	post_schedule(rq);
2871 
2872 	sched_preempt_enable_no_resched();
2873 	if (need_resched())
2874 		goto need_resched;
2875 }
2876 
2877 static inline void sched_submit_work(struct task_struct *tsk)
2878 {
2879 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2880 		return;
2881 	/*
2882 	 * If we are going to sleep and we have plugged IO queued,
2883 	 * make sure to submit it to avoid deadlocks.
2884 	 */
2885 	if (blk_needs_flush_plug(tsk))
2886 		blk_schedule_flush_plug(tsk);
2887 }
2888 
2889 asmlinkage __visible void __sched schedule(void)
2890 {
2891 	struct task_struct *tsk = current;
2892 
2893 	sched_submit_work(tsk);
2894 	__schedule();
2895 }
2896 EXPORT_SYMBOL(schedule);
2897 
2898 #ifdef CONFIG_CONTEXT_TRACKING
2899 asmlinkage __visible void __sched schedule_user(void)
2900 {
2901 	/*
2902 	 * If we come here after a random call to set_need_resched(),
2903 	 * or we have been woken up remotely but the IPI has not yet arrived,
2904 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2905 	 * we find a better solution.
2906 	 */
2907 	user_exit();
2908 	schedule();
2909 	user_enter();
2910 }
2911 #endif
2912 
2913 /**
2914  * schedule_preempt_disabled - called with preemption disabled
2915  *
2916  * Returns with preemption disabled. Note: preempt_count must be 1
2917  */
2918 void __sched schedule_preempt_disabled(void)
2919 {
2920 	sched_preempt_enable_no_resched();
2921 	schedule();
2922 	preempt_disable();
2923 }
2924 
2925 #ifdef CONFIG_PREEMPT
2926 /*
2927  * this is the entry point to schedule() from in-kernel preemption
2928  * off of preempt_enable. Kernel preemptions off return from interrupt
2929  * occur there and call schedule directly.
2930  */
2931 asmlinkage __visible void __sched notrace preempt_schedule(void)
2932 {
2933 	/*
2934 	 * If there is a non-zero preempt_count or interrupts are disabled,
2935 	 * we do not want to preempt the current task. Just return..
2936 	 */
2937 	if (likely(!preemptible()))
2938 		return;
2939 
2940 	do {
2941 		__preempt_count_add(PREEMPT_ACTIVE);
2942 		__schedule();
2943 		__preempt_count_sub(PREEMPT_ACTIVE);
2944 
2945 		/*
2946 		 * Check again in case we missed a preemption opportunity
2947 		 * between schedule and now.
2948 		 */
2949 		barrier();
2950 	} while (need_resched());
2951 }
2952 NOKPROBE_SYMBOL(preempt_schedule);
2953 EXPORT_SYMBOL(preempt_schedule);
2954 
2955 #ifdef CONFIG_CONTEXT_TRACKING
2956 /**
2957  * preempt_schedule_context - preempt_schedule called by tracing
2958  *
2959  * The tracing infrastructure uses preempt_enable_notrace to prevent
2960  * recursion and tracing preempt enabling caused by the tracing
2961  * infrastructure itself. But as tracing can happen in areas coming
2962  * from userspace or just about to enter userspace, a preempt enable
2963  * can occur before user_exit() is called. This will cause the scheduler
2964  * to be called when the system is still in usermode.
2965  *
2966  * To prevent this, the preempt_enable_notrace will use this function
2967  * instead of preempt_schedule() to exit user context if needed before
2968  * calling the scheduler.
2969  */
2970 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2971 {
2972 	enum ctx_state prev_ctx;
2973 
2974 	if (likely(!preemptible()))
2975 		return;
2976 
2977 	do {
2978 		__preempt_count_add(PREEMPT_ACTIVE);
2979 		/*
2980 		 * Needs preempt disabled in case user_exit() is traced
2981 		 * and the tracer calls preempt_enable_notrace() causing
2982 		 * an infinite recursion.
2983 		 */
2984 		prev_ctx = exception_enter();
2985 		__schedule();
2986 		exception_exit(prev_ctx);
2987 
2988 		__preempt_count_sub(PREEMPT_ACTIVE);
2989 		barrier();
2990 	} while (need_resched());
2991 }
2992 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2993 #endif /* CONFIG_CONTEXT_TRACKING */
2994 
2995 #endif /* CONFIG_PREEMPT */
2996 
2997 /*
2998  * this is the entry point to schedule() from kernel preemption
2999  * off of irq context.
3000  * Note, that this is called and return with irqs disabled. This will
3001  * protect us against recursive calling from irq.
3002  */
3003 asmlinkage __visible void __sched preempt_schedule_irq(void)
3004 {
3005 	enum ctx_state prev_state;
3006 
3007 	/* Catch callers which need to be fixed */
3008 	BUG_ON(preempt_count() || !irqs_disabled());
3009 
3010 	prev_state = exception_enter();
3011 
3012 	do {
3013 		__preempt_count_add(PREEMPT_ACTIVE);
3014 		local_irq_enable();
3015 		__schedule();
3016 		local_irq_disable();
3017 		__preempt_count_sub(PREEMPT_ACTIVE);
3018 
3019 		/*
3020 		 * Check again in case we missed a preemption opportunity
3021 		 * between schedule and now.
3022 		 */
3023 		barrier();
3024 	} while (need_resched());
3025 
3026 	exception_exit(prev_state);
3027 }
3028 
3029 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3030 			  void *key)
3031 {
3032 	return try_to_wake_up(curr->private, mode, wake_flags);
3033 }
3034 EXPORT_SYMBOL(default_wake_function);
3035 
3036 #ifdef CONFIG_RT_MUTEXES
3037 
3038 /*
3039  * rt_mutex_setprio - set the current priority of a task
3040  * @p: task
3041  * @prio: prio value (kernel-internal form)
3042  *
3043  * This function changes the 'effective' priority of a task. It does
3044  * not touch ->normal_prio like __setscheduler().
3045  *
3046  * Used by the rt_mutex code to implement priority inheritance
3047  * logic. Call site only calls if the priority of the task changed.
3048  */
3049 void rt_mutex_setprio(struct task_struct *p, int prio)
3050 {
3051 	int oldprio, queued, running, enqueue_flag = 0;
3052 	struct rq *rq;
3053 	const struct sched_class *prev_class;
3054 
3055 	BUG_ON(prio > MAX_PRIO);
3056 
3057 	rq = __task_rq_lock(p);
3058 
3059 	/*
3060 	 * Idle task boosting is a nono in general. There is one
3061 	 * exception, when PREEMPT_RT and NOHZ is active:
3062 	 *
3063 	 * The idle task calls get_next_timer_interrupt() and holds
3064 	 * the timer wheel base->lock on the CPU and another CPU wants
3065 	 * to access the timer (probably to cancel it). We can safely
3066 	 * ignore the boosting request, as the idle CPU runs this code
3067 	 * with interrupts disabled and will complete the lock
3068 	 * protected section without being interrupted. So there is no
3069 	 * real need to boost.
3070 	 */
3071 	if (unlikely(p == rq->idle)) {
3072 		WARN_ON(p != rq->curr);
3073 		WARN_ON(p->pi_blocked_on);
3074 		goto out_unlock;
3075 	}
3076 
3077 	trace_sched_pi_setprio(p, prio);
3078 	oldprio = p->prio;
3079 	prev_class = p->sched_class;
3080 	queued = task_on_rq_queued(p);
3081 	running = task_current(rq, p);
3082 	if (queued)
3083 		dequeue_task(rq, p, 0);
3084 	if (running)
3085 		put_prev_task(rq, p);
3086 
3087 	/*
3088 	 * Boosting condition are:
3089 	 * 1. -rt task is running and holds mutex A
3090 	 *      --> -dl task blocks on mutex A
3091 	 *
3092 	 * 2. -dl task is running and holds mutex A
3093 	 *      --> -dl task blocks on mutex A and could preempt the
3094 	 *          running task
3095 	 */
3096 	if (dl_prio(prio)) {
3097 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3098 		if (!dl_prio(p->normal_prio) ||
3099 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3100 			p->dl.dl_boosted = 1;
3101 			p->dl.dl_throttled = 0;
3102 			enqueue_flag = ENQUEUE_REPLENISH;
3103 		} else
3104 			p->dl.dl_boosted = 0;
3105 		p->sched_class = &dl_sched_class;
3106 	} else if (rt_prio(prio)) {
3107 		if (dl_prio(oldprio))
3108 			p->dl.dl_boosted = 0;
3109 		if (oldprio < prio)
3110 			enqueue_flag = ENQUEUE_HEAD;
3111 		p->sched_class = &rt_sched_class;
3112 	} else {
3113 		if (dl_prio(oldprio))
3114 			p->dl.dl_boosted = 0;
3115 		p->sched_class = &fair_sched_class;
3116 	}
3117 
3118 	p->prio = prio;
3119 
3120 	if (running)
3121 		p->sched_class->set_curr_task(rq);
3122 	if (queued)
3123 		enqueue_task(rq, p, enqueue_flag);
3124 
3125 	check_class_changed(rq, p, prev_class, oldprio);
3126 out_unlock:
3127 	__task_rq_unlock(rq);
3128 }
3129 #endif
3130 
3131 void set_user_nice(struct task_struct *p, long nice)
3132 {
3133 	int old_prio, delta, queued;
3134 	unsigned long flags;
3135 	struct rq *rq;
3136 
3137 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3138 		return;
3139 	/*
3140 	 * We have to be careful, if called from sys_setpriority(),
3141 	 * the task might be in the middle of scheduling on another CPU.
3142 	 */
3143 	rq = task_rq_lock(p, &flags);
3144 	/*
3145 	 * The RT priorities are set via sched_setscheduler(), but we still
3146 	 * allow the 'normal' nice value to be set - but as expected
3147 	 * it wont have any effect on scheduling until the task is
3148 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3149 	 */
3150 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3151 		p->static_prio = NICE_TO_PRIO(nice);
3152 		goto out_unlock;
3153 	}
3154 	queued = task_on_rq_queued(p);
3155 	if (queued)
3156 		dequeue_task(rq, p, 0);
3157 
3158 	p->static_prio = NICE_TO_PRIO(nice);
3159 	set_load_weight(p);
3160 	old_prio = p->prio;
3161 	p->prio = effective_prio(p);
3162 	delta = p->prio - old_prio;
3163 
3164 	if (queued) {
3165 		enqueue_task(rq, p, 0);
3166 		/*
3167 		 * If the task increased its priority or is running and
3168 		 * lowered its priority, then reschedule its CPU:
3169 		 */
3170 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3171 			resched_curr(rq);
3172 	}
3173 out_unlock:
3174 	task_rq_unlock(rq, p, &flags);
3175 }
3176 EXPORT_SYMBOL(set_user_nice);
3177 
3178 /*
3179  * can_nice - check if a task can reduce its nice value
3180  * @p: task
3181  * @nice: nice value
3182  */
3183 int can_nice(const struct task_struct *p, const int nice)
3184 {
3185 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3186 	int nice_rlim = nice_to_rlimit(nice);
3187 
3188 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3189 		capable(CAP_SYS_NICE));
3190 }
3191 
3192 #ifdef __ARCH_WANT_SYS_NICE
3193 
3194 /*
3195  * sys_nice - change the priority of the current process.
3196  * @increment: priority increment
3197  *
3198  * sys_setpriority is a more generic, but much slower function that
3199  * does similar things.
3200  */
3201 SYSCALL_DEFINE1(nice, int, increment)
3202 {
3203 	long nice, retval;
3204 
3205 	/*
3206 	 * Setpriority might change our priority at the same moment.
3207 	 * We don't have to worry. Conceptually one call occurs first
3208 	 * and we have a single winner.
3209 	 */
3210 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3211 	nice = task_nice(current) + increment;
3212 
3213 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3214 	if (increment < 0 && !can_nice(current, nice))
3215 		return -EPERM;
3216 
3217 	retval = security_task_setnice(current, nice);
3218 	if (retval)
3219 		return retval;
3220 
3221 	set_user_nice(current, nice);
3222 	return 0;
3223 }
3224 
3225 #endif
3226 
3227 /**
3228  * task_prio - return the priority value of a given task.
3229  * @p: the task in question.
3230  *
3231  * Return: The priority value as seen by users in /proc.
3232  * RT tasks are offset by -200. Normal tasks are centered
3233  * around 0, value goes from -16 to +15.
3234  */
3235 int task_prio(const struct task_struct *p)
3236 {
3237 	return p->prio - MAX_RT_PRIO;
3238 }
3239 
3240 /**
3241  * idle_cpu - is a given cpu idle currently?
3242  * @cpu: the processor in question.
3243  *
3244  * Return: 1 if the CPU is currently idle. 0 otherwise.
3245  */
3246 int idle_cpu(int cpu)
3247 {
3248 	struct rq *rq = cpu_rq(cpu);
3249 
3250 	if (rq->curr != rq->idle)
3251 		return 0;
3252 
3253 	if (rq->nr_running)
3254 		return 0;
3255 
3256 #ifdef CONFIG_SMP
3257 	if (!llist_empty(&rq->wake_list))
3258 		return 0;
3259 #endif
3260 
3261 	return 1;
3262 }
3263 
3264 /**
3265  * idle_task - return the idle task for a given cpu.
3266  * @cpu: the processor in question.
3267  *
3268  * Return: The idle task for the cpu @cpu.
3269  */
3270 struct task_struct *idle_task(int cpu)
3271 {
3272 	return cpu_rq(cpu)->idle;
3273 }
3274 
3275 /**
3276  * find_process_by_pid - find a process with a matching PID value.
3277  * @pid: the pid in question.
3278  *
3279  * The task of @pid, if found. %NULL otherwise.
3280  */
3281 static struct task_struct *find_process_by_pid(pid_t pid)
3282 {
3283 	return pid ? find_task_by_vpid(pid) : current;
3284 }
3285 
3286 /*
3287  * This function initializes the sched_dl_entity of a newly becoming
3288  * SCHED_DEADLINE task.
3289  *
3290  * Only the static values are considered here, the actual runtime and the
3291  * absolute deadline will be properly calculated when the task is enqueued
3292  * for the first time with its new policy.
3293  */
3294 static void
3295 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3296 {
3297 	struct sched_dl_entity *dl_se = &p->dl;
3298 
3299 	init_dl_task_timer(dl_se);
3300 	dl_se->dl_runtime = attr->sched_runtime;
3301 	dl_se->dl_deadline = attr->sched_deadline;
3302 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3303 	dl_se->flags = attr->sched_flags;
3304 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3305 	dl_se->dl_throttled = 0;
3306 	dl_se->dl_new = 1;
3307 	dl_se->dl_yielded = 0;
3308 }
3309 
3310 /*
3311  * sched_setparam() passes in -1 for its policy, to let the functions
3312  * it calls know not to change it.
3313  */
3314 #define SETPARAM_POLICY	-1
3315 
3316 static void __setscheduler_params(struct task_struct *p,
3317 		const struct sched_attr *attr)
3318 {
3319 	int policy = attr->sched_policy;
3320 
3321 	if (policy == SETPARAM_POLICY)
3322 		policy = p->policy;
3323 
3324 	p->policy = policy;
3325 
3326 	if (dl_policy(policy))
3327 		__setparam_dl(p, attr);
3328 	else if (fair_policy(policy))
3329 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3330 
3331 	/*
3332 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3333 	 * !rt_policy. Always setting this ensures that things like
3334 	 * getparam()/getattr() don't report silly values for !rt tasks.
3335 	 */
3336 	p->rt_priority = attr->sched_priority;
3337 	p->normal_prio = normal_prio(p);
3338 	set_load_weight(p);
3339 }
3340 
3341 /* Actually do priority change: must hold pi & rq lock. */
3342 static void __setscheduler(struct rq *rq, struct task_struct *p,
3343 			   const struct sched_attr *attr)
3344 {
3345 	__setscheduler_params(p, attr);
3346 
3347 	/*
3348 	 * If we get here, there was no pi waiters boosting the
3349 	 * task. It is safe to use the normal prio.
3350 	 */
3351 	p->prio = normal_prio(p);
3352 
3353 	if (dl_prio(p->prio))
3354 		p->sched_class = &dl_sched_class;
3355 	else if (rt_prio(p->prio))
3356 		p->sched_class = &rt_sched_class;
3357 	else
3358 		p->sched_class = &fair_sched_class;
3359 }
3360 
3361 static void
3362 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3363 {
3364 	struct sched_dl_entity *dl_se = &p->dl;
3365 
3366 	attr->sched_priority = p->rt_priority;
3367 	attr->sched_runtime = dl_se->dl_runtime;
3368 	attr->sched_deadline = dl_se->dl_deadline;
3369 	attr->sched_period = dl_se->dl_period;
3370 	attr->sched_flags = dl_se->flags;
3371 }
3372 
3373 /*
3374  * This function validates the new parameters of a -deadline task.
3375  * We ask for the deadline not being zero, and greater or equal
3376  * than the runtime, as well as the period of being zero or
3377  * greater than deadline. Furthermore, we have to be sure that
3378  * user parameters are above the internal resolution of 1us (we
3379  * check sched_runtime only since it is always the smaller one) and
3380  * below 2^63 ns (we have to check both sched_deadline and
3381  * sched_period, as the latter can be zero).
3382  */
3383 static bool
3384 __checkparam_dl(const struct sched_attr *attr)
3385 {
3386 	/* deadline != 0 */
3387 	if (attr->sched_deadline == 0)
3388 		return false;
3389 
3390 	/*
3391 	 * Since we truncate DL_SCALE bits, make sure we're at least
3392 	 * that big.
3393 	 */
3394 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3395 		return false;
3396 
3397 	/*
3398 	 * Since we use the MSB for wrap-around and sign issues, make
3399 	 * sure it's not set (mind that period can be equal to zero).
3400 	 */
3401 	if (attr->sched_deadline & (1ULL << 63) ||
3402 	    attr->sched_period & (1ULL << 63))
3403 		return false;
3404 
3405 	/* runtime <= deadline <= period (if period != 0) */
3406 	if ((attr->sched_period != 0 &&
3407 	     attr->sched_period < attr->sched_deadline) ||
3408 	    attr->sched_deadline < attr->sched_runtime)
3409 		return false;
3410 
3411 	return true;
3412 }
3413 
3414 /*
3415  * check the target process has a UID that matches the current process's
3416  */
3417 static bool check_same_owner(struct task_struct *p)
3418 {
3419 	const struct cred *cred = current_cred(), *pcred;
3420 	bool match;
3421 
3422 	rcu_read_lock();
3423 	pcred = __task_cred(p);
3424 	match = (uid_eq(cred->euid, pcred->euid) ||
3425 		 uid_eq(cred->euid, pcred->uid));
3426 	rcu_read_unlock();
3427 	return match;
3428 }
3429 
3430 static int __sched_setscheduler(struct task_struct *p,
3431 				const struct sched_attr *attr,
3432 				bool user)
3433 {
3434 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3435 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3436 	int retval, oldprio, oldpolicy = -1, queued, running;
3437 	int policy = attr->sched_policy;
3438 	unsigned long flags;
3439 	const struct sched_class *prev_class;
3440 	struct rq *rq;
3441 	int reset_on_fork;
3442 
3443 	/* may grab non-irq protected spin_locks */
3444 	BUG_ON(in_interrupt());
3445 recheck:
3446 	/* double check policy once rq lock held */
3447 	if (policy < 0) {
3448 		reset_on_fork = p->sched_reset_on_fork;
3449 		policy = oldpolicy = p->policy;
3450 	} else {
3451 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3452 
3453 		if (policy != SCHED_DEADLINE &&
3454 				policy != SCHED_FIFO && policy != SCHED_RR &&
3455 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3456 				policy != SCHED_IDLE)
3457 			return -EINVAL;
3458 	}
3459 
3460 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3461 		return -EINVAL;
3462 
3463 	/*
3464 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3465 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3466 	 * SCHED_BATCH and SCHED_IDLE is 0.
3467 	 */
3468 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3469 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3470 		return -EINVAL;
3471 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3472 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3473 		return -EINVAL;
3474 
3475 	/*
3476 	 * Allow unprivileged RT tasks to decrease priority:
3477 	 */
3478 	if (user && !capable(CAP_SYS_NICE)) {
3479 		if (fair_policy(policy)) {
3480 			if (attr->sched_nice < task_nice(p) &&
3481 			    !can_nice(p, attr->sched_nice))
3482 				return -EPERM;
3483 		}
3484 
3485 		if (rt_policy(policy)) {
3486 			unsigned long rlim_rtprio =
3487 					task_rlimit(p, RLIMIT_RTPRIO);
3488 
3489 			/* can't set/change the rt policy */
3490 			if (policy != p->policy && !rlim_rtprio)
3491 				return -EPERM;
3492 
3493 			/* can't increase priority */
3494 			if (attr->sched_priority > p->rt_priority &&
3495 			    attr->sched_priority > rlim_rtprio)
3496 				return -EPERM;
3497 		}
3498 
3499 		 /*
3500 		  * Can't set/change SCHED_DEADLINE policy at all for now
3501 		  * (safest behavior); in the future we would like to allow
3502 		  * unprivileged DL tasks to increase their relative deadline
3503 		  * or reduce their runtime (both ways reducing utilization)
3504 		  */
3505 		if (dl_policy(policy))
3506 			return -EPERM;
3507 
3508 		/*
3509 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3510 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3511 		 */
3512 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3513 			if (!can_nice(p, task_nice(p)))
3514 				return -EPERM;
3515 		}
3516 
3517 		/* can't change other user's priorities */
3518 		if (!check_same_owner(p))
3519 			return -EPERM;
3520 
3521 		/* Normal users shall not reset the sched_reset_on_fork flag */
3522 		if (p->sched_reset_on_fork && !reset_on_fork)
3523 			return -EPERM;
3524 	}
3525 
3526 	if (user) {
3527 		retval = security_task_setscheduler(p);
3528 		if (retval)
3529 			return retval;
3530 	}
3531 
3532 	/*
3533 	 * make sure no PI-waiters arrive (or leave) while we are
3534 	 * changing the priority of the task:
3535 	 *
3536 	 * To be able to change p->policy safely, the appropriate
3537 	 * runqueue lock must be held.
3538 	 */
3539 	rq = task_rq_lock(p, &flags);
3540 
3541 	/*
3542 	 * Changing the policy of the stop threads its a very bad idea
3543 	 */
3544 	if (p == rq->stop) {
3545 		task_rq_unlock(rq, p, &flags);
3546 		return -EINVAL;
3547 	}
3548 
3549 	/*
3550 	 * If not changing anything there's no need to proceed further,
3551 	 * but store a possible modification of reset_on_fork.
3552 	 */
3553 	if (unlikely(policy == p->policy)) {
3554 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3555 			goto change;
3556 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3557 			goto change;
3558 		if (dl_policy(policy))
3559 			goto change;
3560 
3561 		p->sched_reset_on_fork = reset_on_fork;
3562 		task_rq_unlock(rq, p, &flags);
3563 		return 0;
3564 	}
3565 change:
3566 
3567 	if (user) {
3568 #ifdef CONFIG_RT_GROUP_SCHED
3569 		/*
3570 		 * Do not allow realtime tasks into groups that have no runtime
3571 		 * assigned.
3572 		 */
3573 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3574 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3575 				!task_group_is_autogroup(task_group(p))) {
3576 			task_rq_unlock(rq, p, &flags);
3577 			return -EPERM;
3578 		}
3579 #endif
3580 #ifdef CONFIG_SMP
3581 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3582 			cpumask_t *span = rq->rd->span;
3583 
3584 			/*
3585 			 * Don't allow tasks with an affinity mask smaller than
3586 			 * the entire root_domain to become SCHED_DEADLINE. We
3587 			 * will also fail if there's no bandwidth available.
3588 			 */
3589 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3590 			    rq->rd->dl_bw.bw == 0) {
3591 				task_rq_unlock(rq, p, &flags);
3592 				return -EPERM;
3593 			}
3594 		}
3595 #endif
3596 	}
3597 
3598 	/* recheck policy now with rq lock held */
3599 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3600 		policy = oldpolicy = -1;
3601 		task_rq_unlock(rq, p, &flags);
3602 		goto recheck;
3603 	}
3604 
3605 	/*
3606 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3607 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3608 	 * is available.
3609 	 */
3610 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3611 		task_rq_unlock(rq, p, &flags);
3612 		return -EBUSY;
3613 	}
3614 
3615 	p->sched_reset_on_fork = reset_on_fork;
3616 	oldprio = p->prio;
3617 
3618 	/*
3619 	 * Special case for priority boosted tasks.
3620 	 *
3621 	 * If the new priority is lower or equal (user space view)
3622 	 * than the current (boosted) priority, we just store the new
3623 	 * normal parameters and do not touch the scheduler class and
3624 	 * the runqueue. This will be done when the task deboost
3625 	 * itself.
3626 	 */
3627 	if (rt_mutex_check_prio(p, newprio)) {
3628 		__setscheduler_params(p, attr);
3629 		task_rq_unlock(rq, p, &flags);
3630 		return 0;
3631 	}
3632 
3633 	queued = task_on_rq_queued(p);
3634 	running = task_current(rq, p);
3635 	if (queued)
3636 		dequeue_task(rq, p, 0);
3637 	if (running)
3638 		put_prev_task(rq, p);
3639 
3640 	prev_class = p->sched_class;
3641 	__setscheduler(rq, p, attr);
3642 
3643 	if (running)
3644 		p->sched_class->set_curr_task(rq);
3645 	if (queued) {
3646 		/*
3647 		 * We enqueue to tail when the priority of a task is
3648 		 * increased (user space view).
3649 		 */
3650 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3651 	}
3652 
3653 	check_class_changed(rq, p, prev_class, oldprio);
3654 	task_rq_unlock(rq, p, &flags);
3655 
3656 	rt_mutex_adjust_pi(p);
3657 
3658 	return 0;
3659 }
3660 
3661 static int _sched_setscheduler(struct task_struct *p, int policy,
3662 			       const struct sched_param *param, bool check)
3663 {
3664 	struct sched_attr attr = {
3665 		.sched_policy   = policy,
3666 		.sched_priority = param->sched_priority,
3667 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3668 	};
3669 
3670 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3671 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3672 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3673 		policy &= ~SCHED_RESET_ON_FORK;
3674 		attr.sched_policy = policy;
3675 	}
3676 
3677 	return __sched_setscheduler(p, &attr, check);
3678 }
3679 /**
3680  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3681  * @p: the task in question.
3682  * @policy: new policy.
3683  * @param: structure containing the new RT priority.
3684  *
3685  * Return: 0 on success. An error code otherwise.
3686  *
3687  * NOTE that the task may be already dead.
3688  */
3689 int sched_setscheduler(struct task_struct *p, int policy,
3690 		       const struct sched_param *param)
3691 {
3692 	return _sched_setscheduler(p, policy, param, true);
3693 }
3694 EXPORT_SYMBOL_GPL(sched_setscheduler);
3695 
3696 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3697 {
3698 	return __sched_setscheduler(p, attr, true);
3699 }
3700 EXPORT_SYMBOL_GPL(sched_setattr);
3701 
3702 /**
3703  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3704  * @p: the task in question.
3705  * @policy: new policy.
3706  * @param: structure containing the new RT priority.
3707  *
3708  * Just like sched_setscheduler, only don't bother checking if the
3709  * current context has permission.  For example, this is needed in
3710  * stop_machine(): we create temporary high priority worker threads,
3711  * but our caller might not have that capability.
3712  *
3713  * Return: 0 on success. An error code otherwise.
3714  */
3715 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3716 			       const struct sched_param *param)
3717 {
3718 	return _sched_setscheduler(p, policy, param, false);
3719 }
3720 
3721 static int
3722 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3723 {
3724 	struct sched_param lparam;
3725 	struct task_struct *p;
3726 	int retval;
3727 
3728 	if (!param || pid < 0)
3729 		return -EINVAL;
3730 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3731 		return -EFAULT;
3732 
3733 	rcu_read_lock();
3734 	retval = -ESRCH;
3735 	p = find_process_by_pid(pid);
3736 	if (p != NULL)
3737 		retval = sched_setscheduler(p, policy, &lparam);
3738 	rcu_read_unlock();
3739 
3740 	return retval;
3741 }
3742 
3743 /*
3744  * Mimics kernel/events/core.c perf_copy_attr().
3745  */
3746 static int sched_copy_attr(struct sched_attr __user *uattr,
3747 			   struct sched_attr *attr)
3748 {
3749 	u32 size;
3750 	int ret;
3751 
3752 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3753 		return -EFAULT;
3754 
3755 	/*
3756 	 * zero the full structure, so that a short copy will be nice.
3757 	 */
3758 	memset(attr, 0, sizeof(*attr));
3759 
3760 	ret = get_user(size, &uattr->size);
3761 	if (ret)
3762 		return ret;
3763 
3764 	if (size > PAGE_SIZE)	/* silly large */
3765 		goto err_size;
3766 
3767 	if (!size)		/* abi compat */
3768 		size = SCHED_ATTR_SIZE_VER0;
3769 
3770 	if (size < SCHED_ATTR_SIZE_VER0)
3771 		goto err_size;
3772 
3773 	/*
3774 	 * If we're handed a bigger struct than we know of,
3775 	 * ensure all the unknown bits are 0 - i.e. new
3776 	 * user-space does not rely on any kernel feature
3777 	 * extensions we dont know about yet.
3778 	 */
3779 	if (size > sizeof(*attr)) {
3780 		unsigned char __user *addr;
3781 		unsigned char __user *end;
3782 		unsigned char val;
3783 
3784 		addr = (void __user *)uattr + sizeof(*attr);
3785 		end  = (void __user *)uattr + size;
3786 
3787 		for (; addr < end; addr++) {
3788 			ret = get_user(val, addr);
3789 			if (ret)
3790 				return ret;
3791 			if (val)
3792 				goto err_size;
3793 		}
3794 		size = sizeof(*attr);
3795 	}
3796 
3797 	ret = copy_from_user(attr, uattr, size);
3798 	if (ret)
3799 		return -EFAULT;
3800 
3801 	/*
3802 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3803 	 * to be strict and return an error on out-of-bounds values?
3804 	 */
3805 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3806 
3807 	return 0;
3808 
3809 err_size:
3810 	put_user(sizeof(*attr), &uattr->size);
3811 	return -E2BIG;
3812 }
3813 
3814 /**
3815  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3816  * @pid: the pid in question.
3817  * @policy: new policy.
3818  * @param: structure containing the new RT priority.
3819  *
3820  * Return: 0 on success. An error code otherwise.
3821  */
3822 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3823 		struct sched_param __user *, param)
3824 {
3825 	/* negative values for policy are not valid */
3826 	if (policy < 0)
3827 		return -EINVAL;
3828 
3829 	return do_sched_setscheduler(pid, policy, param);
3830 }
3831 
3832 /**
3833  * sys_sched_setparam - set/change the RT priority of a thread
3834  * @pid: the pid in question.
3835  * @param: structure containing the new RT priority.
3836  *
3837  * Return: 0 on success. An error code otherwise.
3838  */
3839 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3840 {
3841 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3842 }
3843 
3844 /**
3845  * sys_sched_setattr - same as above, but with extended sched_attr
3846  * @pid: the pid in question.
3847  * @uattr: structure containing the extended parameters.
3848  * @flags: for future extension.
3849  */
3850 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3851 			       unsigned int, flags)
3852 {
3853 	struct sched_attr attr;
3854 	struct task_struct *p;
3855 	int retval;
3856 
3857 	if (!uattr || pid < 0 || flags)
3858 		return -EINVAL;
3859 
3860 	retval = sched_copy_attr(uattr, &attr);
3861 	if (retval)
3862 		return retval;
3863 
3864 	if ((int)attr.sched_policy < 0)
3865 		return -EINVAL;
3866 
3867 	rcu_read_lock();
3868 	retval = -ESRCH;
3869 	p = find_process_by_pid(pid);
3870 	if (p != NULL)
3871 		retval = sched_setattr(p, &attr);
3872 	rcu_read_unlock();
3873 
3874 	return retval;
3875 }
3876 
3877 /**
3878  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3879  * @pid: the pid in question.
3880  *
3881  * Return: On success, the policy of the thread. Otherwise, a negative error
3882  * code.
3883  */
3884 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3885 {
3886 	struct task_struct *p;
3887 	int retval;
3888 
3889 	if (pid < 0)
3890 		return -EINVAL;
3891 
3892 	retval = -ESRCH;
3893 	rcu_read_lock();
3894 	p = find_process_by_pid(pid);
3895 	if (p) {
3896 		retval = security_task_getscheduler(p);
3897 		if (!retval)
3898 			retval = p->policy
3899 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3900 	}
3901 	rcu_read_unlock();
3902 	return retval;
3903 }
3904 
3905 /**
3906  * sys_sched_getparam - get the RT priority of a thread
3907  * @pid: the pid in question.
3908  * @param: structure containing the RT priority.
3909  *
3910  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3911  * code.
3912  */
3913 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3914 {
3915 	struct sched_param lp = { .sched_priority = 0 };
3916 	struct task_struct *p;
3917 	int retval;
3918 
3919 	if (!param || pid < 0)
3920 		return -EINVAL;
3921 
3922 	rcu_read_lock();
3923 	p = find_process_by_pid(pid);
3924 	retval = -ESRCH;
3925 	if (!p)
3926 		goto out_unlock;
3927 
3928 	retval = security_task_getscheduler(p);
3929 	if (retval)
3930 		goto out_unlock;
3931 
3932 	if (task_has_rt_policy(p))
3933 		lp.sched_priority = p->rt_priority;
3934 	rcu_read_unlock();
3935 
3936 	/*
3937 	 * This one might sleep, we cannot do it with a spinlock held ...
3938 	 */
3939 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3940 
3941 	return retval;
3942 
3943 out_unlock:
3944 	rcu_read_unlock();
3945 	return retval;
3946 }
3947 
3948 static int sched_read_attr(struct sched_attr __user *uattr,
3949 			   struct sched_attr *attr,
3950 			   unsigned int usize)
3951 {
3952 	int ret;
3953 
3954 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3955 		return -EFAULT;
3956 
3957 	/*
3958 	 * If we're handed a smaller struct than we know of,
3959 	 * ensure all the unknown bits are 0 - i.e. old
3960 	 * user-space does not get uncomplete information.
3961 	 */
3962 	if (usize < sizeof(*attr)) {
3963 		unsigned char *addr;
3964 		unsigned char *end;
3965 
3966 		addr = (void *)attr + usize;
3967 		end  = (void *)attr + sizeof(*attr);
3968 
3969 		for (; addr < end; addr++) {
3970 			if (*addr)
3971 				return -EFBIG;
3972 		}
3973 
3974 		attr->size = usize;
3975 	}
3976 
3977 	ret = copy_to_user(uattr, attr, attr->size);
3978 	if (ret)
3979 		return -EFAULT;
3980 
3981 	return 0;
3982 }
3983 
3984 /**
3985  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3986  * @pid: the pid in question.
3987  * @uattr: structure containing the extended parameters.
3988  * @size: sizeof(attr) for fwd/bwd comp.
3989  * @flags: for future extension.
3990  */
3991 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3992 		unsigned int, size, unsigned int, flags)
3993 {
3994 	struct sched_attr attr = {
3995 		.size = sizeof(struct sched_attr),
3996 	};
3997 	struct task_struct *p;
3998 	int retval;
3999 
4000 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4001 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4002 		return -EINVAL;
4003 
4004 	rcu_read_lock();
4005 	p = find_process_by_pid(pid);
4006 	retval = -ESRCH;
4007 	if (!p)
4008 		goto out_unlock;
4009 
4010 	retval = security_task_getscheduler(p);
4011 	if (retval)
4012 		goto out_unlock;
4013 
4014 	attr.sched_policy = p->policy;
4015 	if (p->sched_reset_on_fork)
4016 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4017 	if (task_has_dl_policy(p))
4018 		__getparam_dl(p, &attr);
4019 	else if (task_has_rt_policy(p))
4020 		attr.sched_priority = p->rt_priority;
4021 	else
4022 		attr.sched_nice = task_nice(p);
4023 
4024 	rcu_read_unlock();
4025 
4026 	retval = sched_read_attr(uattr, &attr, size);
4027 	return retval;
4028 
4029 out_unlock:
4030 	rcu_read_unlock();
4031 	return retval;
4032 }
4033 
4034 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4035 {
4036 	cpumask_var_t cpus_allowed, new_mask;
4037 	struct task_struct *p;
4038 	int retval;
4039 
4040 	rcu_read_lock();
4041 
4042 	p = find_process_by_pid(pid);
4043 	if (!p) {
4044 		rcu_read_unlock();
4045 		return -ESRCH;
4046 	}
4047 
4048 	/* Prevent p going away */
4049 	get_task_struct(p);
4050 	rcu_read_unlock();
4051 
4052 	if (p->flags & PF_NO_SETAFFINITY) {
4053 		retval = -EINVAL;
4054 		goto out_put_task;
4055 	}
4056 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4057 		retval = -ENOMEM;
4058 		goto out_put_task;
4059 	}
4060 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4061 		retval = -ENOMEM;
4062 		goto out_free_cpus_allowed;
4063 	}
4064 	retval = -EPERM;
4065 	if (!check_same_owner(p)) {
4066 		rcu_read_lock();
4067 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4068 			rcu_read_unlock();
4069 			goto out_free_new_mask;
4070 		}
4071 		rcu_read_unlock();
4072 	}
4073 
4074 	retval = security_task_setscheduler(p);
4075 	if (retval)
4076 		goto out_free_new_mask;
4077 
4078 
4079 	cpuset_cpus_allowed(p, cpus_allowed);
4080 	cpumask_and(new_mask, in_mask, cpus_allowed);
4081 
4082 	/*
4083 	 * Since bandwidth control happens on root_domain basis,
4084 	 * if admission test is enabled, we only admit -deadline
4085 	 * tasks allowed to run on all the CPUs in the task's
4086 	 * root_domain.
4087 	 */
4088 #ifdef CONFIG_SMP
4089 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4090 		rcu_read_lock();
4091 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4092 			retval = -EBUSY;
4093 			rcu_read_unlock();
4094 			goto out_free_new_mask;
4095 		}
4096 		rcu_read_unlock();
4097 	}
4098 #endif
4099 again:
4100 	retval = set_cpus_allowed_ptr(p, new_mask);
4101 
4102 	if (!retval) {
4103 		cpuset_cpus_allowed(p, cpus_allowed);
4104 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4105 			/*
4106 			 * We must have raced with a concurrent cpuset
4107 			 * update. Just reset the cpus_allowed to the
4108 			 * cpuset's cpus_allowed
4109 			 */
4110 			cpumask_copy(new_mask, cpus_allowed);
4111 			goto again;
4112 		}
4113 	}
4114 out_free_new_mask:
4115 	free_cpumask_var(new_mask);
4116 out_free_cpus_allowed:
4117 	free_cpumask_var(cpus_allowed);
4118 out_put_task:
4119 	put_task_struct(p);
4120 	return retval;
4121 }
4122 
4123 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4124 			     struct cpumask *new_mask)
4125 {
4126 	if (len < cpumask_size())
4127 		cpumask_clear(new_mask);
4128 	else if (len > cpumask_size())
4129 		len = cpumask_size();
4130 
4131 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4132 }
4133 
4134 /**
4135  * sys_sched_setaffinity - set the cpu affinity of a process
4136  * @pid: pid of the process
4137  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4138  * @user_mask_ptr: user-space pointer to the new cpu mask
4139  *
4140  * Return: 0 on success. An error code otherwise.
4141  */
4142 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4143 		unsigned long __user *, user_mask_ptr)
4144 {
4145 	cpumask_var_t new_mask;
4146 	int retval;
4147 
4148 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4149 		return -ENOMEM;
4150 
4151 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4152 	if (retval == 0)
4153 		retval = sched_setaffinity(pid, new_mask);
4154 	free_cpumask_var(new_mask);
4155 	return retval;
4156 }
4157 
4158 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4159 {
4160 	struct task_struct *p;
4161 	unsigned long flags;
4162 	int retval;
4163 
4164 	rcu_read_lock();
4165 
4166 	retval = -ESRCH;
4167 	p = find_process_by_pid(pid);
4168 	if (!p)
4169 		goto out_unlock;
4170 
4171 	retval = security_task_getscheduler(p);
4172 	if (retval)
4173 		goto out_unlock;
4174 
4175 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4176 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4177 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4178 
4179 out_unlock:
4180 	rcu_read_unlock();
4181 
4182 	return retval;
4183 }
4184 
4185 /**
4186  * sys_sched_getaffinity - get the cpu affinity of a process
4187  * @pid: pid of the process
4188  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4189  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4190  *
4191  * Return: 0 on success. An error code otherwise.
4192  */
4193 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4194 		unsigned long __user *, user_mask_ptr)
4195 {
4196 	int ret;
4197 	cpumask_var_t mask;
4198 
4199 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4200 		return -EINVAL;
4201 	if (len & (sizeof(unsigned long)-1))
4202 		return -EINVAL;
4203 
4204 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4205 		return -ENOMEM;
4206 
4207 	ret = sched_getaffinity(pid, mask);
4208 	if (ret == 0) {
4209 		size_t retlen = min_t(size_t, len, cpumask_size());
4210 
4211 		if (copy_to_user(user_mask_ptr, mask, retlen))
4212 			ret = -EFAULT;
4213 		else
4214 			ret = retlen;
4215 	}
4216 	free_cpumask_var(mask);
4217 
4218 	return ret;
4219 }
4220 
4221 /**
4222  * sys_sched_yield - yield the current processor to other threads.
4223  *
4224  * This function yields the current CPU to other tasks. If there are no
4225  * other threads running on this CPU then this function will return.
4226  *
4227  * Return: 0.
4228  */
4229 SYSCALL_DEFINE0(sched_yield)
4230 {
4231 	struct rq *rq = this_rq_lock();
4232 
4233 	schedstat_inc(rq, yld_count);
4234 	current->sched_class->yield_task(rq);
4235 
4236 	/*
4237 	 * Since we are going to call schedule() anyway, there's
4238 	 * no need to preempt or enable interrupts:
4239 	 */
4240 	__release(rq->lock);
4241 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4242 	do_raw_spin_unlock(&rq->lock);
4243 	sched_preempt_enable_no_resched();
4244 
4245 	schedule();
4246 
4247 	return 0;
4248 }
4249 
4250 static void __cond_resched(void)
4251 {
4252 	__preempt_count_add(PREEMPT_ACTIVE);
4253 	__schedule();
4254 	__preempt_count_sub(PREEMPT_ACTIVE);
4255 }
4256 
4257 int __sched _cond_resched(void)
4258 {
4259 	if (should_resched()) {
4260 		__cond_resched();
4261 		return 1;
4262 	}
4263 	return 0;
4264 }
4265 EXPORT_SYMBOL(_cond_resched);
4266 
4267 /*
4268  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4269  * call schedule, and on return reacquire the lock.
4270  *
4271  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4272  * operations here to prevent schedule() from being called twice (once via
4273  * spin_unlock(), once by hand).
4274  */
4275 int __cond_resched_lock(spinlock_t *lock)
4276 {
4277 	int resched = should_resched();
4278 	int ret = 0;
4279 
4280 	lockdep_assert_held(lock);
4281 
4282 	if (spin_needbreak(lock) || resched) {
4283 		spin_unlock(lock);
4284 		if (resched)
4285 			__cond_resched();
4286 		else
4287 			cpu_relax();
4288 		ret = 1;
4289 		spin_lock(lock);
4290 	}
4291 	return ret;
4292 }
4293 EXPORT_SYMBOL(__cond_resched_lock);
4294 
4295 int __sched __cond_resched_softirq(void)
4296 {
4297 	BUG_ON(!in_softirq());
4298 
4299 	if (should_resched()) {
4300 		local_bh_enable();
4301 		__cond_resched();
4302 		local_bh_disable();
4303 		return 1;
4304 	}
4305 	return 0;
4306 }
4307 EXPORT_SYMBOL(__cond_resched_softirq);
4308 
4309 /**
4310  * yield - yield the current processor to other threads.
4311  *
4312  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4313  *
4314  * The scheduler is at all times free to pick the calling task as the most
4315  * eligible task to run, if removing the yield() call from your code breaks
4316  * it, its already broken.
4317  *
4318  * Typical broken usage is:
4319  *
4320  * while (!event)
4321  * 	yield();
4322  *
4323  * where one assumes that yield() will let 'the other' process run that will
4324  * make event true. If the current task is a SCHED_FIFO task that will never
4325  * happen. Never use yield() as a progress guarantee!!
4326  *
4327  * If you want to use yield() to wait for something, use wait_event().
4328  * If you want to use yield() to be 'nice' for others, use cond_resched().
4329  * If you still want to use yield(), do not!
4330  */
4331 void __sched yield(void)
4332 {
4333 	set_current_state(TASK_RUNNING);
4334 	sys_sched_yield();
4335 }
4336 EXPORT_SYMBOL(yield);
4337 
4338 /**
4339  * yield_to - yield the current processor to another thread in
4340  * your thread group, or accelerate that thread toward the
4341  * processor it's on.
4342  * @p: target task
4343  * @preempt: whether task preemption is allowed or not
4344  *
4345  * It's the caller's job to ensure that the target task struct
4346  * can't go away on us before we can do any checks.
4347  *
4348  * Return:
4349  *	true (>0) if we indeed boosted the target task.
4350  *	false (0) if we failed to boost the target.
4351  *	-ESRCH if there's no task to yield to.
4352  */
4353 int __sched yield_to(struct task_struct *p, bool preempt)
4354 {
4355 	struct task_struct *curr = current;
4356 	struct rq *rq, *p_rq;
4357 	unsigned long flags;
4358 	int yielded = 0;
4359 
4360 	local_irq_save(flags);
4361 	rq = this_rq();
4362 
4363 again:
4364 	p_rq = task_rq(p);
4365 	/*
4366 	 * If we're the only runnable task on the rq and target rq also
4367 	 * has only one task, there's absolutely no point in yielding.
4368 	 */
4369 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4370 		yielded = -ESRCH;
4371 		goto out_irq;
4372 	}
4373 
4374 	double_rq_lock(rq, p_rq);
4375 	if (task_rq(p) != p_rq) {
4376 		double_rq_unlock(rq, p_rq);
4377 		goto again;
4378 	}
4379 
4380 	if (!curr->sched_class->yield_to_task)
4381 		goto out_unlock;
4382 
4383 	if (curr->sched_class != p->sched_class)
4384 		goto out_unlock;
4385 
4386 	if (task_running(p_rq, p) || p->state)
4387 		goto out_unlock;
4388 
4389 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4390 	if (yielded) {
4391 		schedstat_inc(rq, yld_count);
4392 		/*
4393 		 * Make p's CPU reschedule; pick_next_entity takes care of
4394 		 * fairness.
4395 		 */
4396 		if (preempt && rq != p_rq)
4397 			resched_curr(p_rq);
4398 	}
4399 
4400 out_unlock:
4401 	double_rq_unlock(rq, p_rq);
4402 out_irq:
4403 	local_irq_restore(flags);
4404 
4405 	if (yielded > 0)
4406 		schedule();
4407 
4408 	return yielded;
4409 }
4410 EXPORT_SYMBOL_GPL(yield_to);
4411 
4412 /*
4413  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4414  * that process accounting knows that this is a task in IO wait state.
4415  */
4416 void __sched io_schedule(void)
4417 {
4418 	struct rq *rq = raw_rq();
4419 
4420 	delayacct_blkio_start();
4421 	atomic_inc(&rq->nr_iowait);
4422 	blk_flush_plug(current);
4423 	current->in_iowait = 1;
4424 	schedule();
4425 	current->in_iowait = 0;
4426 	atomic_dec(&rq->nr_iowait);
4427 	delayacct_blkio_end();
4428 }
4429 EXPORT_SYMBOL(io_schedule);
4430 
4431 long __sched io_schedule_timeout(long timeout)
4432 {
4433 	struct rq *rq = raw_rq();
4434 	long ret;
4435 
4436 	delayacct_blkio_start();
4437 	atomic_inc(&rq->nr_iowait);
4438 	blk_flush_plug(current);
4439 	current->in_iowait = 1;
4440 	ret = schedule_timeout(timeout);
4441 	current->in_iowait = 0;
4442 	atomic_dec(&rq->nr_iowait);
4443 	delayacct_blkio_end();
4444 	return ret;
4445 }
4446 
4447 /**
4448  * sys_sched_get_priority_max - return maximum RT priority.
4449  * @policy: scheduling class.
4450  *
4451  * Return: On success, this syscall returns the maximum
4452  * rt_priority that can be used by a given scheduling class.
4453  * On failure, a negative error code is returned.
4454  */
4455 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4456 {
4457 	int ret = -EINVAL;
4458 
4459 	switch (policy) {
4460 	case SCHED_FIFO:
4461 	case SCHED_RR:
4462 		ret = MAX_USER_RT_PRIO-1;
4463 		break;
4464 	case SCHED_DEADLINE:
4465 	case SCHED_NORMAL:
4466 	case SCHED_BATCH:
4467 	case SCHED_IDLE:
4468 		ret = 0;
4469 		break;
4470 	}
4471 	return ret;
4472 }
4473 
4474 /**
4475  * sys_sched_get_priority_min - return minimum RT priority.
4476  * @policy: scheduling class.
4477  *
4478  * Return: On success, this syscall returns the minimum
4479  * rt_priority that can be used by a given scheduling class.
4480  * On failure, a negative error code is returned.
4481  */
4482 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4483 {
4484 	int ret = -EINVAL;
4485 
4486 	switch (policy) {
4487 	case SCHED_FIFO:
4488 	case SCHED_RR:
4489 		ret = 1;
4490 		break;
4491 	case SCHED_DEADLINE:
4492 	case SCHED_NORMAL:
4493 	case SCHED_BATCH:
4494 	case SCHED_IDLE:
4495 		ret = 0;
4496 	}
4497 	return ret;
4498 }
4499 
4500 /**
4501  * sys_sched_rr_get_interval - return the default timeslice of a process.
4502  * @pid: pid of the process.
4503  * @interval: userspace pointer to the timeslice value.
4504  *
4505  * this syscall writes the default timeslice value of a given process
4506  * into the user-space timespec buffer. A value of '0' means infinity.
4507  *
4508  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4509  * an error code.
4510  */
4511 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4512 		struct timespec __user *, interval)
4513 {
4514 	struct task_struct *p;
4515 	unsigned int time_slice;
4516 	unsigned long flags;
4517 	struct rq *rq;
4518 	int retval;
4519 	struct timespec t;
4520 
4521 	if (pid < 0)
4522 		return -EINVAL;
4523 
4524 	retval = -ESRCH;
4525 	rcu_read_lock();
4526 	p = find_process_by_pid(pid);
4527 	if (!p)
4528 		goto out_unlock;
4529 
4530 	retval = security_task_getscheduler(p);
4531 	if (retval)
4532 		goto out_unlock;
4533 
4534 	rq = task_rq_lock(p, &flags);
4535 	time_slice = 0;
4536 	if (p->sched_class->get_rr_interval)
4537 		time_slice = p->sched_class->get_rr_interval(rq, p);
4538 	task_rq_unlock(rq, p, &flags);
4539 
4540 	rcu_read_unlock();
4541 	jiffies_to_timespec(time_slice, &t);
4542 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4543 	return retval;
4544 
4545 out_unlock:
4546 	rcu_read_unlock();
4547 	return retval;
4548 }
4549 
4550 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4551 
4552 void sched_show_task(struct task_struct *p)
4553 {
4554 	unsigned long free = 0;
4555 	int ppid;
4556 	unsigned state;
4557 
4558 	state = p->state ? __ffs(p->state) + 1 : 0;
4559 	printk(KERN_INFO "%-15.15s %c", p->comm,
4560 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4561 #if BITS_PER_LONG == 32
4562 	if (state == TASK_RUNNING)
4563 		printk(KERN_CONT " running  ");
4564 	else
4565 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4566 #else
4567 	if (state == TASK_RUNNING)
4568 		printk(KERN_CONT "  running task    ");
4569 	else
4570 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4571 #endif
4572 #ifdef CONFIG_DEBUG_STACK_USAGE
4573 	free = stack_not_used(p);
4574 #endif
4575 	rcu_read_lock();
4576 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4577 	rcu_read_unlock();
4578 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4579 		task_pid_nr(p), ppid,
4580 		(unsigned long)task_thread_info(p)->flags);
4581 
4582 	print_worker_info(KERN_INFO, p);
4583 	show_stack(p, NULL);
4584 }
4585 
4586 void show_state_filter(unsigned long state_filter)
4587 {
4588 	struct task_struct *g, *p;
4589 
4590 #if BITS_PER_LONG == 32
4591 	printk(KERN_INFO
4592 		"  task                PC stack   pid father\n");
4593 #else
4594 	printk(KERN_INFO
4595 		"  task                        PC stack   pid father\n");
4596 #endif
4597 	rcu_read_lock();
4598 	for_each_process_thread(g, p) {
4599 		/*
4600 		 * reset the NMI-timeout, listing all files on a slow
4601 		 * console might take a lot of time:
4602 		 */
4603 		touch_nmi_watchdog();
4604 		if (!state_filter || (p->state & state_filter))
4605 			sched_show_task(p);
4606 	}
4607 
4608 	touch_all_softlockup_watchdogs();
4609 
4610 #ifdef CONFIG_SCHED_DEBUG
4611 	sysrq_sched_debug_show();
4612 #endif
4613 	rcu_read_unlock();
4614 	/*
4615 	 * Only show locks if all tasks are dumped:
4616 	 */
4617 	if (!state_filter)
4618 		debug_show_all_locks();
4619 }
4620 
4621 void init_idle_bootup_task(struct task_struct *idle)
4622 {
4623 	idle->sched_class = &idle_sched_class;
4624 }
4625 
4626 /**
4627  * init_idle - set up an idle thread for a given CPU
4628  * @idle: task in question
4629  * @cpu: cpu the idle task belongs to
4630  *
4631  * NOTE: this function does not set the idle thread's NEED_RESCHED
4632  * flag, to make booting more robust.
4633  */
4634 void init_idle(struct task_struct *idle, int cpu)
4635 {
4636 	struct rq *rq = cpu_rq(cpu);
4637 	unsigned long flags;
4638 
4639 	raw_spin_lock_irqsave(&rq->lock, flags);
4640 
4641 	__sched_fork(0, idle);
4642 	idle->state = TASK_RUNNING;
4643 	idle->se.exec_start = sched_clock();
4644 
4645 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4646 	/*
4647 	 * We're having a chicken and egg problem, even though we are
4648 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4649 	 * lockdep check in task_group() will fail.
4650 	 *
4651 	 * Similar case to sched_fork(). / Alternatively we could
4652 	 * use task_rq_lock() here and obtain the other rq->lock.
4653 	 *
4654 	 * Silence PROVE_RCU
4655 	 */
4656 	rcu_read_lock();
4657 	__set_task_cpu(idle, cpu);
4658 	rcu_read_unlock();
4659 
4660 	rq->curr = rq->idle = idle;
4661 	idle->on_rq = TASK_ON_RQ_QUEUED;
4662 #if defined(CONFIG_SMP)
4663 	idle->on_cpu = 1;
4664 #endif
4665 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4666 
4667 	/* Set the preempt count _outside_ the spinlocks! */
4668 	init_idle_preempt_count(idle, cpu);
4669 
4670 	/*
4671 	 * The idle tasks have their own, simple scheduling class:
4672 	 */
4673 	idle->sched_class = &idle_sched_class;
4674 	ftrace_graph_init_idle_task(idle, cpu);
4675 	vtime_init_idle(idle, cpu);
4676 #if defined(CONFIG_SMP)
4677 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4678 #endif
4679 }
4680 
4681 #ifdef CONFIG_SMP
4682 /*
4683  * move_queued_task - move a queued task to new rq.
4684  *
4685  * Returns (locked) new rq. Old rq's lock is released.
4686  */
4687 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4688 {
4689 	struct rq *rq = task_rq(p);
4690 
4691 	lockdep_assert_held(&rq->lock);
4692 
4693 	dequeue_task(rq, p, 0);
4694 	p->on_rq = TASK_ON_RQ_MIGRATING;
4695 	set_task_cpu(p, new_cpu);
4696 	raw_spin_unlock(&rq->lock);
4697 
4698 	rq = cpu_rq(new_cpu);
4699 
4700 	raw_spin_lock(&rq->lock);
4701 	BUG_ON(task_cpu(p) != new_cpu);
4702 	p->on_rq = TASK_ON_RQ_QUEUED;
4703 	enqueue_task(rq, p, 0);
4704 	check_preempt_curr(rq, p, 0);
4705 
4706 	return rq;
4707 }
4708 
4709 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4710 {
4711 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4712 		p->sched_class->set_cpus_allowed(p, new_mask);
4713 
4714 	cpumask_copy(&p->cpus_allowed, new_mask);
4715 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4716 }
4717 
4718 /*
4719  * This is how migration works:
4720  *
4721  * 1) we invoke migration_cpu_stop() on the target CPU using
4722  *    stop_one_cpu().
4723  * 2) stopper starts to run (implicitly forcing the migrated thread
4724  *    off the CPU)
4725  * 3) it checks whether the migrated task is still in the wrong runqueue.
4726  * 4) if it's in the wrong runqueue then the migration thread removes
4727  *    it and puts it into the right queue.
4728  * 5) stopper completes and stop_one_cpu() returns and the migration
4729  *    is done.
4730  */
4731 
4732 /*
4733  * Change a given task's CPU affinity. Migrate the thread to a
4734  * proper CPU and schedule it away if the CPU it's executing on
4735  * is removed from the allowed bitmask.
4736  *
4737  * NOTE: the caller must have a valid reference to the task, the
4738  * task must not exit() & deallocate itself prematurely. The
4739  * call is not atomic; no spinlocks may be held.
4740  */
4741 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4742 {
4743 	unsigned long flags;
4744 	struct rq *rq;
4745 	unsigned int dest_cpu;
4746 	int ret = 0;
4747 
4748 	rq = task_rq_lock(p, &flags);
4749 
4750 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4751 		goto out;
4752 
4753 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4754 		ret = -EINVAL;
4755 		goto out;
4756 	}
4757 
4758 	do_set_cpus_allowed(p, new_mask);
4759 
4760 	/* Can the task run on the task's current CPU? If so, we're done */
4761 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4762 		goto out;
4763 
4764 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4765 	if (task_running(rq, p) || p->state == TASK_WAKING) {
4766 		struct migration_arg arg = { p, dest_cpu };
4767 		/* Need help from migration thread: drop lock and wait. */
4768 		task_rq_unlock(rq, p, &flags);
4769 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4770 		tlb_migrate_finish(p->mm);
4771 		return 0;
4772 	} else if (task_on_rq_queued(p))
4773 		rq = move_queued_task(p, dest_cpu);
4774 out:
4775 	task_rq_unlock(rq, p, &flags);
4776 
4777 	return ret;
4778 }
4779 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4780 
4781 /*
4782  * Move (not current) task off this cpu, onto dest cpu. We're doing
4783  * this because either it can't run here any more (set_cpus_allowed()
4784  * away from this CPU, or CPU going down), or because we're
4785  * attempting to rebalance this task on exec (sched_exec).
4786  *
4787  * So we race with normal scheduler movements, but that's OK, as long
4788  * as the task is no longer on this CPU.
4789  *
4790  * Returns non-zero if task was successfully migrated.
4791  */
4792 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4793 {
4794 	struct rq *rq;
4795 	int ret = 0;
4796 
4797 	if (unlikely(!cpu_active(dest_cpu)))
4798 		return ret;
4799 
4800 	rq = cpu_rq(src_cpu);
4801 
4802 	raw_spin_lock(&p->pi_lock);
4803 	raw_spin_lock(&rq->lock);
4804 	/* Already moved. */
4805 	if (task_cpu(p) != src_cpu)
4806 		goto done;
4807 
4808 	/* Affinity changed (again). */
4809 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4810 		goto fail;
4811 
4812 	/*
4813 	 * If we're not on a rq, the next wake-up will ensure we're
4814 	 * placed properly.
4815 	 */
4816 	if (task_on_rq_queued(p))
4817 		rq = move_queued_task(p, dest_cpu);
4818 done:
4819 	ret = 1;
4820 fail:
4821 	raw_spin_unlock(&rq->lock);
4822 	raw_spin_unlock(&p->pi_lock);
4823 	return ret;
4824 }
4825 
4826 #ifdef CONFIG_NUMA_BALANCING
4827 /* Migrate current task p to target_cpu */
4828 int migrate_task_to(struct task_struct *p, int target_cpu)
4829 {
4830 	struct migration_arg arg = { p, target_cpu };
4831 	int curr_cpu = task_cpu(p);
4832 
4833 	if (curr_cpu == target_cpu)
4834 		return 0;
4835 
4836 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4837 		return -EINVAL;
4838 
4839 	/* TODO: This is not properly updating schedstats */
4840 
4841 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4842 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4843 }
4844 
4845 /*
4846  * Requeue a task on a given node and accurately track the number of NUMA
4847  * tasks on the runqueues
4848  */
4849 void sched_setnuma(struct task_struct *p, int nid)
4850 {
4851 	struct rq *rq;
4852 	unsigned long flags;
4853 	bool queued, running;
4854 
4855 	rq = task_rq_lock(p, &flags);
4856 	queued = task_on_rq_queued(p);
4857 	running = task_current(rq, p);
4858 
4859 	if (queued)
4860 		dequeue_task(rq, p, 0);
4861 	if (running)
4862 		put_prev_task(rq, p);
4863 
4864 	p->numa_preferred_nid = nid;
4865 
4866 	if (running)
4867 		p->sched_class->set_curr_task(rq);
4868 	if (queued)
4869 		enqueue_task(rq, p, 0);
4870 	task_rq_unlock(rq, p, &flags);
4871 }
4872 #endif
4873 
4874 /*
4875  * migration_cpu_stop - this will be executed by a highprio stopper thread
4876  * and performs thread migration by bumping thread off CPU then
4877  * 'pushing' onto another runqueue.
4878  */
4879 static int migration_cpu_stop(void *data)
4880 {
4881 	struct migration_arg *arg = data;
4882 
4883 	/*
4884 	 * The original target cpu might have gone down and we might
4885 	 * be on another cpu but it doesn't matter.
4886 	 */
4887 	local_irq_disable();
4888 	/*
4889 	 * We need to explicitly wake pending tasks before running
4890 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4891 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4892 	 */
4893 	sched_ttwu_pending();
4894 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4895 	local_irq_enable();
4896 	return 0;
4897 }
4898 
4899 #ifdef CONFIG_HOTPLUG_CPU
4900 
4901 /*
4902  * Ensures that the idle task is using init_mm right before its cpu goes
4903  * offline.
4904  */
4905 void idle_task_exit(void)
4906 {
4907 	struct mm_struct *mm = current->active_mm;
4908 
4909 	BUG_ON(cpu_online(smp_processor_id()));
4910 
4911 	if (mm != &init_mm) {
4912 		switch_mm(mm, &init_mm, current);
4913 		finish_arch_post_lock_switch();
4914 	}
4915 	mmdrop(mm);
4916 }
4917 
4918 /*
4919  * Since this CPU is going 'away' for a while, fold any nr_active delta
4920  * we might have. Assumes we're called after migrate_tasks() so that the
4921  * nr_active count is stable.
4922  *
4923  * Also see the comment "Global load-average calculations".
4924  */
4925 static void calc_load_migrate(struct rq *rq)
4926 {
4927 	long delta = calc_load_fold_active(rq);
4928 	if (delta)
4929 		atomic_long_add(delta, &calc_load_tasks);
4930 }
4931 
4932 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4933 {
4934 }
4935 
4936 static const struct sched_class fake_sched_class = {
4937 	.put_prev_task = put_prev_task_fake,
4938 };
4939 
4940 static struct task_struct fake_task = {
4941 	/*
4942 	 * Avoid pull_{rt,dl}_task()
4943 	 */
4944 	.prio = MAX_PRIO + 1,
4945 	.sched_class = &fake_sched_class,
4946 };
4947 
4948 /*
4949  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4950  * try_to_wake_up()->select_task_rq().
4951  *
4952  * Called with rq->lock held even though we'er in stop_machine() and
4953  * there's no concurrency possible, we hold the required locks anyway
4954  * because of lock validation efforts.
4955  */
4956 static void migrate_tasks(unsigned int dead_cpu)
4957 {
4958 	struct rq *rq = cpu_rq(dead_cpu);
4959 	struct task_struct *next, *stop = rq->stop;
4960 	int dest_cpu;
4961 
4962 	/*
4963 	 * Fudge the rq selection such that the below task selection loop
4964 	 * doesn't get stuck on the currently eligible stop task.
4965 	 *
4966 	 * We're currently inside stop_machine() and the rq is either stuck
4967 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4968 	 * either way we should never end up calling schedule() until we're
4969 	 * done here.
4970 	 */
4971 	rq->stop = NULL;
4972 
4973 	/*
4974 	 * put_prev_task() and pick_next_task() sched
4975 	 * class method both need to have an up-to-date
4976 	 * value of rq->clock[_task]
4977 	 */
4978 	update_rq_clock(rq);
4979 
4980 	for ( ; ; ) {
4981 		/*
4982 		 * There's this thread running, bail when that's the only
4983 		 * remaining thread.
4984 		 */
4985 		if (rq->nr_running == 1)
4986 			break;
4987 
4988 		next = pick_next_task(rq, &fake_task);
4989 		BUG_ON(!next);
4990 		next->sched_class->put_prev_task(rq, next);
4991 
4992 		/* Find suitable destination for @next, with force if needed. */
4993 		dest_cpu = select_fallback_rq(dead_cpu, next);
4994 		raw_spin_unlock(&rq->lock);
4995 
4996 		__migrate_task(next, dead_cpu, dest_cpu);
4997 
4998 		raw_spin_lock(&rq->lock);
4999 	}
5000 
5001 	rq->stop = stop;
5002 }
5003 
5004 #endif /* CONFIG_HOTPLUG_CPU */
5005 
5006 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5007 
5008 static struct ctl_table sd_ctl_dir[] = {
5009 	{
5010 		.procname	= "sched_domain",
5011 		.mode		= 0555,
5012 	},
5013 	{}
5014 };
5015 
5016 static struct ctl_table sd_ctl_root[] = {
5017 	{
5018 		.procname	= "kernel",
5019 		.mode		= 0555,
5020 		.child		= sd_ctl_dir,
5021 	},
5022 	{}
5023 };
5024 
5025 static struct ctl_table *sd_alloc_ctl_entry(int n)
5026 {
5027 	struct ctl_table *entry =
5028 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5029 
5030 	return entry;
5031 }
5032 
5033 static void sd_free_ctl_entry(struct ctl_table **tablep)
5034 {
5035 	struct ctl_table *entry;
5036 
5037 	/*
5038 	 * In the intermediate directories, both the child directory and
5039 	 * procname are dynamically allocated and could fail but the mode
5040 	 * will always be set. In the lowest directory the names are
5041 	 * static strings and all have proc handlers.
5042 	 */
5043 	for (entry = *tablep; entry->mode; entry++) {
5044 		if (entry->child)
5045 			sd_free_ctl_entry(&entry->child);
5046 		if (entry->proc_handler == NULL)
5047 			kfree(entry->procname);
5048 	}
5049 
5050 	kfree(*tablep);
5051 	*tablep = NULL;
5052 }
5053 
5054 static int min_load_idx = 0;
5055 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5056 
5057 static void
5058 set_table_entry(struct ctl_table *entry,
5059 		const char *procname, void *data, int maxlen,
5060 		umode_t mode, proc_handler *proc_handler,
5061 		bool load_idx)
5062 {
5063 	entry->procname = procname;
5064 	entry->data = data;
5065 	entry->maxlen = maxlen;
5066 	entry->mode = mode;
5067 	entry->proc_handler = proc_handler;
5068 
5069 	if (load_idx) {
5070 		entry->extra1 = &min_load_idx;
5071 		entry->extra2 = &max_load_idx;
5072 	}
5073 }
5074 
5075 static struct ctl_table *
5076 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5077 {
5078 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5079 
5080 	if (table == NULL)
5081 		return NULL;
5082 
5083 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5084 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5085 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5086 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5087 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5088 		sizeof(int), 0644, proc_dointvec_minmax, true);
5089 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5090 		sizeof(int), 0644, proc_dointvec_minmax, true);
5091 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5092 		sizeof(int), 0644, proc_dointvec_minmax, true);
5093 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5094 		sizeof(int), 0644, proc_dointvec_minmax, true);
5095 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5096 		sizeof(int), 0644, proc_dointvec_minmax, true);
5097 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5098 		sizeof(int), 0644, proc_dointvec_minmax, false);
5099 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5100 		sizeof(int), 0644, proc_dointvec_minmax, false);
5101 	set_table_entry(&table[9], "cache_nice_tries",
5102 		&sd->cache_nice_tries,
5103 		sizeof(int), 0644, proc_dointvec_minmax, false);
5104 	set_table_entry(&table[10], "flags", &sd->flags,
5105 		sizeof(int), 0644, proc_dointvec_minmax, false);
5106 	set_table_entry(&table[11], "max_newidle_lb_cost",
5107 		&sd->max_newidle_lb_cost,
5108 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5109 	set_table_entry(&table[12], "name", sd->name,
5110 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5111 	/* &table[13] is terminator */
5112 
5113 	return table;
5114 }
5115 
5116 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5117 {
5118 	struct ctl_table *entry, *table;
5119 	struct sched_domain *sd;
5120 	int domain_num = 0, i;
5121 	char buf[32];
5122 
5123 	for_each_domain(cpu, sd)
5124 		domain_num++;
5125 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5126 	if (table == NULL)
5127 		return NULL;
5128 
5129 	i = 0;
5130 	for_each_domain(cpu, sd) {
5131 		snprintf(buf, 32, "domain%d", i);
5132 		entry->procname = kstrdup(buf, GFP_KERNEL);
5133 		entry->mode = 0555;
5134 		entry->child = sd_alloc_ctl_domain_table(sd);
5135 		entry++;
5136 		i++;
5137 	}
5138 	return table;
5139 }
5140 
5141 static struct ctl_table_header *sd_sysctl_header;
5142 static void register_sched_domain_sysctl(void)
5143 {
5144 	int i, cpu_num = num_possible_cpus();
5145 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5146 	char buf[32];
5147 
5148 	WARN_ON(sd_ctl_dir[0].child);
5149 	sd_ctl_dir[0].child = entry;
5150 
5151 	if (entry == NULL)
5152 		return;
5153 
5154 	for_each_possible_cpu(i) {
5155 		snprintf(buf, 32, "cpu%d", i);
5156 		entry->procname = kstrdup(buf, GFP_KERNEL);
5157 		entry->mode = 0555;
5158 		entry->child = sd_alloc_ctl_cpu_table(i);
5159 		entry++;
5160 	}
5161 
5162 	WARN_ON(sd_sysctl_header);
5163 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5164 }
5165 
5166 /* may be called multiple times per register */
5167 static void unregister_sched_domain_sysctl(void)
5168 {
5169 	if (sd_sysctl_header)
5170 		unregister_sysctl_table(sd_sysctl_header);
5171 	sd_sysctl_header = NULL;
5172 	if (sd_ctl_dir[0].child)
5173 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5174 }
5175 #else
5176 static void register_sched_domain_sysctl(void)
5177 {
5178 }
5179 static void unregister_sched_domain_sysctl(void)
5180 {
5181 }
5182 #endif
5183 
5184 static void set_rq_online(struct rq *rq)
5185 {
5186 	if (!rq->online) {
5187 		const struct sched_class *class;
5188 
5189 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5190 		rq->online = 1;
5191 
5192 		for_each_class(class) {
5193 			if (class->rq_online)
5194 				class->rq_online(rq);
5195 		}
5196 	}
5197 }
5198 
5199 static void set_rq_offline(struct rq *rq)
5200 {
5201 	if (rq->online) {
5202 		const struct sched_class *class;
5203 
5204 		for_each_class(class) {
5205 			if (class->rq_offline)
5206 				class->rq_offline(rq);
5207 		}
5208 
5209 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5210 		rq->online = 0;
5211 	}
5212 }
5213 
5214 /*
5215  * migration_call - callback that gets triggered when a CPU is added.
5216  * Here we can start up the necessary migration thread for the new CPU.
5217  */
5218 static int
5219 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5220 {
5221 	int cpu = (long)hcpu;
5222 	unsigned long flags;
5223 	struct rq *rq = cpu_rq(cpu);
5224 
5225 	switch (action & ~CPU_TASKS_FROZEN) {
5226 
5227 	case CPU_UP_PREPARE:
5228 		rq->calc_load_update = calc_load_update;
5229 		break;
5230 
5231 	case CPU_ONLINE:
5232 		/* Update our root-domain */
5233 		raw_spin_lock_irqsave(&rq->lock, flags);
5234 		if (rq->rd) {
5235 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5236 
5237 			set_rq_online(rq);
5238 		}
5239 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5240 		break;
5241 
5242 #ifdef CONFIG_HOTPLUG_CPU
5243 	case CPU_DYING:
5244 		sched_ttwu_pending();
5245 		/* Update our root-domain */
5246 		raw_spin_lock_irqsave(&rq->lock, flags);
5247 		if (rq->rd) {
5248 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5249 			set_rq_offline(rq);
5250 		}
5251 		migrate_tasks(cpu);
5252 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5253 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5254 		break;
5255 
5256 	case CPU_DEAD:
5257 		calc_load_migrate(rq);
5258 		break;
5259 #endif
5260 	}
5261 
5262 	update_max_interval();
5263 
5264 	return NOTIFY_OK;
5265 }
5266 
5267 /*
5268  * Register at high priority so that task migration (migrate_all_tasks)
5269  * happens before everything else.  This has to be lower priority than
5270  * the notifier in the perf_event subsystem, though.
5271  */
5272 static struct notifier_block migration_notifier = {
5273 	.notifier_call = migration_call,
5274 	.priority = CPU_PRI_MIGRATION,
5275 };
5276 
5277 static void __cpuinit set_cpu_rq_start_time(void)
5278 {
5279 	int cpu = smp_processor_id();
5280 	struct rq *rq = cpu_rq(cpu);
5281 	rq->age_stamp = sched_clock_cpu(cpu);
5282 }
5283 
5284 static int sched_cpu_active(struct notifier_block *nfb,
5285 				      unsigned long action, void *hcpu)
5286 {
5287 	switch (action & ~CPU_TASKS_FROZEN) {
5288 	case CPU_STARTING:
5289 		set_cpu_rq_start_time();
5290 		return NOTIFY_OK;
5291 	case CPU_DOWN_FAILED:
5292 		set_cpu_active((long)hcpu, true);
5293 		return NOTIFY_OK;
5294 	default:
5295 		return NOTIFY_DONE;
5296 	}
5297 }
5298 
5299 static int sched_cpu_inactive(struct notifier_block *nfb,
5300 					unsigned long action, void *hcpu)
5301 {
5302 	unsigned long flags;
5303 	long cpu = (long)hcpu;
5304 	struct dl_bw *dl_b;
5305 
5306 	switch (action & ~CPU_TASKS_FROZEN) {
5307 	case CPU_DOWN_PREPARE:
5308 		set_cpu_active(cpu, false);
5309 
5310 		/* explicitly allow suspend */
5311 		if (!(action & CPU_TASKS_FROZEN)) {
5312 			bool overflow;
5313 			int cpus;
5314 
5315 			rcu_read_lock_sched();
5316 			dl_b = dl_bw_of(cpu);
5317 
5318 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5319 			cpus = dl_bw_cpus(cpu);
5320 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5321 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5322 
5323 			rcu_read_unlock_sched();
5324 
5325 			if (overflow)
5326 				return notifier_from_errno(-EBUSY);
5327 		}
5328 		return NOTIFY_OK;
5329 	}
5330 
5331 	return NOTIFY_DONE;
5332 }
5333 
5334 static int __init migration_init(void)
5335 {
5336 	void *cpu = (void *)(long)smp_processor_id();
5337 	int err;
5338 
5339 	/* Initialize migration for the boot CPU */
5340 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5341 	BUG_ON(err == NOTIFY_BAD);
5342 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5343 	register_cpu_notifier(&migration_notifier);
5344 
5345 	/* Register cpu active notifiers */
5346 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5347 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5348 
5349 	return 0;
5350 }
5351 early_initcall(migration_init);
5352 #endif
5353 
5354 #ifdef CONFIG_SMP
5355 
5356 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5357 
5358 #ifdef CONFIG_SCHED_DEBUG
5359 
5360 static __read_mostly int sched_debug_enabled;
5361 
5362 static int __init sched_debug_setup(char *str)
5363 {
5364 	sched_debug_enabled = 1;
5365 
5366 	return 0;
5367 }
5368 early_param("sched_debug", sched_debug_setup);
5369 
5370 static inline bool sched_debug(void)
5371 {
5372 	return sched_debug_enabled;
5373 }
5374 
5375 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5376 				  struct cpumask *groupmask)
5377 {
5378 	struct sched_group *group = sd->groups;
5379 	char str[256];
5380 
5381 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5382 	cpumask_clear(groupmask);
5383 
5384 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5385 
5386 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5387 		printk("does not load-balance\n");
5388 		if (sd->parent)
5389 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5390 					" has parent");
5391 		return -1;
5392 	}
5393 
5394 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5395 
5396 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5397 		printk(KERN_ERR "ERROR: domain->span does not contain "
5398 				"CPU%d\n", cpu);
5399 	}
5400 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5401 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5402 				" CPU%d\n", cpu);
5403 	}
5404 
5405 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5406 	do {
5407 		if (!group) {
5408 			printk("\n");
5409 			printk(KERN_ERR "ERROR: group is NULL\n");
5410 			break;
5411 		}
5412 
5413 		/*
5414 		 * Even though we initialize ->capacity to something semi-sane,
5415 		 * we leave capacity_orig unset. This allows us to detect if
5416 		 * domain iteration is still funny without causing /0 traps.
5417 		 */
5418 		if (!group->sgc->capacity_orig) {
5419 			printk(KERN_CONT "\n");
5420 			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5421 			break;
5422 		}
5423 
5424 		if (!cpumask_weight(sched_group_cpus(group))) {
5425 			printk(KERN_CONT "\n");
5426 			printk(KERN_ERR "ERROR: empty group\n");
5427 			break;
5428 		}
5429 
5430 		if (!(sd->flags & SD_OVERLAP) &&
5431 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5432 			printk(KERN_CONT "\n");
5433 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5434 			break;
5435 		}
5436 
5437 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5438 
5439 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5440 
5441 		printk(KERN_CONT " %s", str);
5442 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5443 			printk(KERN_CONT " (cpu_capacity = %d)",
5444 				group->sgc->capacity);
5445 		}
5446 
5447 		group = group->next;
5448 	} while (group != sd->groups);
5449 	printk(KERN_CONT "\n");
5450 
5451 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5452 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5453 
5454 	if (sd->parent &&
5455 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5456 		printk(KERN_ERR "ERROR: parent span is not a superset "
5457 			"of domain->span\n");
5458 	return 0;
5459 }
5460 
5461 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5462 {
5463 	int level = 0;
5464 
5465 	if (!sched_debug_enabled)
5466 		return;
5467 
5468 	if (!sd) {
5469 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5470 		return;
5471 	}
5472 
5473 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5474 
5475 	for (;;) {
5476 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5477 			break;
5478 		level++;
5479 		sd = sd->parent;
5480 		if (!sd)
5481 			break;
5482 	}
5483 }
5484 #else /* !CONFIG_SCHED_DEBUG */
5485 # define sched_domain_debug(sd, cpu) do { } while (0)
5486 static inline bool sched_debug(void)
5487 {
5488 	return false;
5489 }
5490 #endif /* CONFIG_SCHED_DEBUG */
5491 
5492 static int sd_degenerate(struct sched_domain *sd)
5493 {
5494 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5495 		return 1;
5496 
5497 	/* Following flags need at least 2 groups */
5498 	if (sd->flags & (SD_LOAD_BALANCE |
5499 			 SD_BALANCE_NEWIDLE |
5500 			 SD_BALANCE_FORK |
5501 			 SD_BALANCE_EXEC |
5502 			 SD_SHARE_CPUCAPACITY |
5503 			 SD_SHARE_PKG_RESOURCES |
5504 			 SD_SHARE_POWERDOMAIN)) {
5505 		if (sd->groups != sd->groups->next)
5506 			return 0;
5507 	}
5508 
5509 	/* Following flags don't use groups */
5510 	if (sd->flags & (SD_WAKE_AFFINE))
5511 		return 0;
5512 
5513 	return 1;
5514 }
5515 
5516 static int
5517 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5518 {
5519 	unsigned long cflags = sd->flags, pflags = parent->flags;
5520 
5521 	if (sd_degenerate(parent))
5522 		return 1;
5523 
5524 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5525 		return 0;
5526 
5527 	/* Flags needing groups don't count if only 1 group in parent */
5528 	if (parent->groups == parent->groups->next) {
5529 		pflags &= ~(SD_LOAD_BALANCE |
5530 				SD_BALANCE_NEWIDLE |
5531 				SD_BALANCE_FORK |
5532 				SD_BALANCE_EXEC |
5533 				SD_SHARE_CPUCAPACITY |
5534 				SD_SHARE_PKG_RESOURCES |
5535 				SD_PREFER_SIBLING |
5536 				SD_SHARE_POWERDOMAIN);
5537 		if (nr_node_ids == 1)
5538 			pflags &= ~SD_SERIALIZE;
5539 	}
5540 	if (~cflags & pflags)
5541 		return 0;
5542 
5543 	return 1;
5544 }
5545 
5546 static void free_rootdomain(struct rcu_head *rcu)
5547 {
5548 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5549 
5550 	cpupri_cleanup(&rd->cpupri);
5551 	cpudl_cleanup(&rd->cpudl);
5552 	free_cpumask_var(rd->dlo_mask);
5553 	free_cpumask_var(rd->rto_mask);
5554 	free_cpumask_var(rd->online);
5555 	free_cpumask_var(rd->span);
5556 	kfree(rd);
5557 }
5558 
5559 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5560 {
5561 	struct root_domain *old_rd = NULL;
5562 	unsigned long flags;
5563 
5564 	raw_spin_lock_irqsave(&rq->lock, flags);
5565 
5566 	if (rq->rd) {
5567 		old_rd = rq->rd;
5568 
5569 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5570 			set_rq_offline(rq);
5571 
5572 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5573 
5574 		/*
5575 		 * If we dont want to free the old_rd yet then
5576 		 * set old_rd to NULL to skip the freeing later
5577 		 * in this function:
5578 		 */
5579 		if (!atomic_dec_and_test(&old_rd->refcount))
5580 			old_rd = NULL;
5581 	}
5582 
5583 	atomic_inc(&rd->refcount);
5584 	rq->rd = rd;
5585 
5586 	cpumask_set_cpu(rq->cpu, rd->span);
5587 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5588 		set_rq_online(rq);
5589 
5590 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5591 
5592 	if (old_rd)
5593 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5594 }
5595 
5596 static int init_rootdomain(struct root_domain *rd)
5597 {
5598 	memset(rd, 0, sizeof(*rd));
5599 
5600 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5601 		goto out;
5602 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5603 		goto free_span;
5604 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5605 		goto free_online;
5606 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5607 		goto free_dlo_mask;
5608 
5609 	init_dl_bw(&rd->dl_bw);
5610 	if (cpudl_init(&rd->cpudl) != 0)
5611 		goto free_dlo_mask;
5612 
5613 	if (cpupri_init(&rd->cpupri) != 0)
5614 		goto free_rto_mask;
5615 	return 0;
5616 
5617 free_rto_mask:
5618 	free_cpumask_var(rd->rto_mask);
5619 free_dlo_mask:
5620 	free_cpumask_var(rd->dlo_mask);
5621 free_online:
5622 	free_cpumask_var(rd->online);
5623 free_span:
5624 	free_cpumask_var(rd->span);
5625 out:
5626 	return -ENOMEM;
5627 }
5628 
5629 /*
5630  * By default the system creates a single root-domain with all cpus as
5631  * members (mimicking the global state we have today).
5632  */
5633 struct root_domain def_root_domain;
5634 
5635 static void init_defrootdomain(void)
5636 {
5637 	init_rootdomain(&def_root_domain);
5638 
5639 	atomic_set(&def_root_domain.refcount, 1);
5640 }
5641 
5642 static struct root_domain *alloc_rootdomain(void)
5643 {
5644 	struct root_domain *rd;
5645 
5646 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5647 	if (!rd)
5648 		return NULL;
5649 
5650 	if (init_rootdomain(rd) != 0) {
5651 		kfree(rd);
5652 		return NULL;
5653 	}
5654 
5655 	return rd;
5656 }
5657 
5658 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5659 {
5660 	struct sched_group *tmp, *first;
5661 
5662 	if (!sg)
5663 		return;
5664 
5665 	first = sg;
5666 	do {
5667 		tmp = sg->next;
5668 
5669 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5670 			kfree(sg->sgc);
5671 
5672 		kfree(sg);
5673 		sg = tmp;
5674 	} while (sg != first);
5675 }
5676 
5677 static void free_sched_domain(struct rcu_head *rcu)
5678 {
5679 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5680 
5681 	/*
5682 	 * If its an overlapping domain it has private groups, iterate and
5683 	 * nuke them all.
5684 	 */
5685 	if (sd->flags & SD_OVERLAP) {
5686 		free_sched_groups(sd->groups, 1);
5687 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5688 		kfree(sd->groups->sgc);
5689 		kfree(sd->groups);
5690 	}
5691 	kfree(sd);
5692 }
5693 
5694 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5695 {
5696 	call_rcu(&sd->rcu, free_sched_domain);
5697 }
5698 
5699 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5700 {
5701 	for (; sd; sd = sd->parent)
5702 		destroy_sched_domain(sd, cpu);
5703 }
5704 
5705 /*
5706  * Keep a special pointer to the highest sched_domain that has
5707  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5708  * allows us to avoid some pointer chasing select_idle_sibling().
5709  *
5710  * Also keep a unique ID per domain (we use the first cpu number in
5711  * the cpumask of the domain), this allows us to quickly tell if
5712  * two cpus are in the same cache domain, see cpus_share_cache().
5713  */
5714 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5715 DEFINE_PER_CPU(int, sd_llc_size);
5716 DEFINE_PER_CPU(int, sd_llc_id);
5717 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5718 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5719 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5720 
5721 static void update_top_cache_domain(int cpu)
5722 {
5723 	struct sched_domain *sd;
5724 	struct sched_domain *busy_sd = NULL;
5725 	int id = cpu;
5726 	int size = 1;
5727 
5728 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5729 	if (sd) {
5730 		id = cpumask_first(sched_domain_span(sd));
5731 		size = cpumask_weight(sched_domain_span(sd));
5732 		busy_sd = sd->parent; /* sd_busy */
5733 	}
5734 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5735 
5736 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5737 	per_cpu(sd_llc_size, cpu) = size;
5738 	per_cpu(sd_llc_id, cpu) = id;
5739 
5740 	sd = lowest_flag_domain(cpu, SD_NUMA);
5741 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5742 
5743 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5744 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5745 }
5746 
5747 /*
5748  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5749  * hold the hotplug lock.
5750  */
5751 static void
5752 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5753 {
5754 	struct rq *rq = cpu_rq(cpu);
5755 	struct sched_domain *tmp;
5756 
5757 	/* Remove the sched domains which do not contribute to scheduling. */
5758 	for (tmp = sd; tmp; ) {
5759 		struct sched_domain *parent = tmp->parent;
5760 		if (!parent)
5761 			break;
5762 
5763 		if (sd_parent_degenerate(tmp, parent)) {
5764 			tmp->parent = parent->parent;
5765 			if (parent->parent)
5766 				parent->parent->child = tmp;
5767 			/*
5768 			 * Transfer SD_PREFER_SIBLING down in case of a
5769 			 * degenerate parent; the spans match for this
5770 			 * so the property transfers.
5771 			 */
5772 			if (parent->flags & SD_PREFER_SIBLING)
5773 				tmp->flags |= SD_PREFER_SIBLING;
5774 			destroy_sched_domain(parent, cpu);
5775 		} else
5776 			tmp = tmp->parent;
5777 	}
5778 
5779 	if (sd && sd_degenerate(sd)) {
5780 		tmp = sd;
5781 		sd = sd->parent;
5782 		destroy_sched_domain(tmp, cpu);
5783 		if (sd)
5784 			sd->child = NULL;
5785 	}
5786 
5787 	sched_domain_debug(sd, cpu);
5788 
5789 	rq_attach_root(rq, rd);
5790 	tmp = rq->sd;
5791 	rcu_assign_pointer(rq->sd, sd);
5792 	destroy_sched_domains(tmp, cpu);
5793 
5794 	update_top_cache_domain(cpu);
5795 }
5796 
5797 /* cpus with isolated domains */
5798 static cpumask_var_t cpu_isolated_map;
5799 
5800 /* Setup the mask of cpus configured for isolated domains */
5801 static int __init isolated_cpu_setup(char *str)
5802 {
5803 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5804 	cpulist_parse(str, cpu_isolated_map);
5805 	return 1;
5806 }
5807 
5808 __setup("isolcpus=", isolated_cpu_setup);
5809 
5810 struct s_data {
5811 	struct sched_domain ** __percpu sd;
5812 	struct root_domain	*rd;
5813 };
5814 
5815 enum s_alloc {
5816 	sa_rootdomain,
5817 	sa_sd,
5818 	sa_sd_storage,
5819 	sa_none,
5820 };
5821 
5822 /*
5823  * Build an iteration mask that can exclude certain CPUs from the upwards
5824  * domain traversal.
5825  *
5826  * Asymmetric node setups can result in situations where the domain tree is of
5827  * unequal depth, make sure to skip domains that already cover the entire
5828  * range.
5829  *
5830  * In that case build_sched_domains() will have terminated the iteration early
5831  * and our sibling sd spans will be empty. Domains should always include the
5832  * cpu they're built on, so check that.
5833  *
5834  */
5835 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5836 {
5837 	const struct cpumask *span = sched_domain_span(sd);
5838 	struct sd_data *sdd = sd->private;
5839 	struct sched_domain *sibling;
5840 	int i;
5841 
5842 	for_each_cpu(i, span) {
5843 		sibling = *per_cpu_ptr(sdd->sd, i);
5844 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5845 			continue;
5846 
5847 		cpumask_set_cpu(i, sched_group_mask(sg));
5848 	}
5849 }
5850 
5851 /*
5852  * Return the canonical balance cpu for this group, this is the first cpu
5853  * of this group that's also in the iteration mask.
5854  */
5855 int group_balance_cpu(struct sched_group *sg)
5856 {
5857 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5858 }
5859 
5860 static int
5861 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5862 {
5863 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5864 	const struct cpumask *span = sched_domain_span(sd);
5865 	struct cpumask *covered = sched_domains_tmpmask;
5866 	struct sd_data *sdd = sd->private;
5867 	struct sched_domain *sibling;
5868 	int i;
5869 
5870 	cpumask_clear(covered);
5871 
5872 	for_each_cpu(i, span) {
5873 		struct cpumask *sg_span;
5874 
5875 		if (cpumask_test_cpu(i, covered))
5876 			continue;
5877 
5878 		sibling = *per_cpu_ptr(sdd->sd, i);
5879 
5880 		/* See the comment near build_group_mask(). */
5881 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5882 			continue;
5883 
5884 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5885 				GFP_KERNEL, cpu_to_node(cpu));
5886 
5887 		if (!sg)
5888 			goto fail;
5889 
5890 		sg_span = sched_group_cpus(sg);
5891 		if (sibling->child)
5892 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5893 		else
5894 			cpumask_set_cpu(i, sg_span);
5895 
5896 		cpumask_or(covered, covered, sg_span);
5897 
5898 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5899 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5900 			build_group_mask(sd, sg);
5901 
5902 		/*
5903 		 * Initialize sgc->capacity such that even if we mess up the
5904 		 * domains and no possible iteration will get us here, we won't
5905 		 * die on a /0 trap.
5906 		 */
5907 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5908 		sg->sgc->capacity_orig = sg->sgc->capacity;
5909 
5910 		/*
5911 		 * Make sure the first group of this domain contains the
5912 		 * canonical balance cpu. Otherwise the sched_domain iteration
5913 		 * breaks. See update_sg_lb_stats().
5914 		 */
5915 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5916 		    group_balance_cpu(sg) == cpu)
5917 			groups = sg;
5918 
5919 		if (!first)
5920 			first = sg;
5921 		if (last)
5922 			last->next = sg;
5923 		last = sg;
5924 		last->next = first;
5925 	}
5926 	sd->groups = groups;
5927 
5928 	return 0;
5929 
5930 fail:
5931 	free_sched_groups(first, 0);
5932 
5933 	return -ENOMEM;
5934 }
5935 
5936 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5937 {
5938 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5939 	struct sched_domain *child = sd->child;
5940 
5941 	if (child)
5942 		cpu = cpumask_first(sched_domain_span(child));
5943 
5944 	if (sg) {
5945 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5946 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5947 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5948 	}
5949 
5950 	return cpu;
5951 }
5952 
5953 /*
5954  * build_sched_groups will build a circular linked list of the groups
5955  * covered by the given span, and will set each group's ->cpumask correctly,
5956  * and ->cpu_capacity to 0.
5957  *
5958  * Assumes the sched_domain tree is fully constructed
5959  */
5960 static int
5961 build_sched_groups(struct sched_domain *sd, int cpu)
5962 {
5963 	struct sched_group *first = NULL, *last = NULL;
5964 	struct sd_data *sdd = sd->private;
5965 	const struct cpumask *span = sched_domain_span(sd);
5966 	struct cpumask *covered;
5967 	int i;
5968 
5969 	get_group(cpu, sdd, &sd->groups);
5970 	atomic_inc(&sd->groups->ref);
5971 
5972 	if (cpu != cpumask_first(span))
5973 		return 0;
5974 
5975 	lockdep_assert_held(&sched_domains_mutex);
5976 	covered = sched_domains_tmpmask;
5977 
5978 	cpumask_clear(covered);
5979 
5980 	for_each_cpu(i, span) {
5981 		struct sched_group *sg;
5982 		int group, j;
5983 
5984 		if (cpumask_test_cpu(i, covered))
5985 			continue;
5986 
5987 		group = get_group(i, sdd, &sg);
5988 		cpumask_setall(sched_group_mask(sg));
5989 
5990 		for_each_cpu(j, span) {
5991 			if (get_group(j, sdd, NULL) != group)
5992 				continue;
5993 
5994 			cpumask_set_cpu(j, covered);
5995 			cpumask_set_cpu(j, sched_group_cpus(sg));
5996 		}
5997 
5998 		if (!first)
5999 			first = sg;
6000 		if (last)
6001 			last->next = sg;
6002 		last = sg;
6003 	}
6004 	last->next = first;
6005 
6006 	return 0;
6007 }
6008 
6009 /*
6010  * Initialize sched groups cpu_capacity.
6011  *
6012  * cpu_capacity indicates the capacity of sched group, which is used while
6013  * distributing the load between different sched groups in a sched domain.
6014  * Typically cpu_capacity for all the groups in a sched domain will be same
6015  * unless there are asymmetries in the topology. If there are asymmetries,
6016  * group having more cpu_capacity will pickup more load compared to the
6017  * group having less cpu_capacity.
6018  */
6019 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6020 {
6021 	struct sched_group *sg = sd->groups;
6022 
6023 	WARN_ON(!sg);
6024 
6025 	do {
6026 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6027 		sg = sg->next;
6028 	} while (sg != sd->groups);
6029 
6030 	if (cpu != group_balance_cpu(sg))
6031 		return;
6032 
6033 	update_group_capacity(sd, cpu);
6034 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6035 }
6036 
6037 /*
6038  * Initializers for schedule domains
6039  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6040  */
6041 
6042 static int default_relax_domain_level = -1;
6043 int sched_domain_level_max;
6044 
6045 static int __init setup_relax_domain_level(char *str)
6046 {
6047 	if (kstrtoint(str, 0, &default_relax_domain_level))
6048 		pr_warn("Unable to set relax_domain_level\n");
6049 
6050 	return 1;
6051 }
6052 __setup("relax_domain_level=", setup_relax_domain_level);
6053 
6054 static void set_domain_attribute(struct sched_domain *sd,
6055 				 struct sched_domain_attr *attr)
6056 {
6057 	int request;
6058 
6059 	if (!attr || attr->relax_domain_level < 0) {
6060 		if (default_relax_domain_level < 0)
6061 			return;
6062 		else
6063 			request = default_relax_domain_level;
6064 	} else
6065 		request = attr->relax_domain_level;
6066 	if (request < sd->level) {
6067 		/* turn off idle balance on this domain */
6068 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6069 	} else {
6070 		/* turn on idle balance on this domain */
6071 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6072 	}
6073 }
6074 
6075 static void __sdt_free(const struct cpumask *cpu_map);
6076 static int __sdt_alloc(const struct cpumask *cpu_map);
6077 
6078 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6079 				 const struct cpumask *cpu_map)
6080 {
6081 	switch (what) {
6082 	case sa_rootdomain:
6083 		if (!atomic_read(&d->rd->refcount))
6084 			free_rootdomain(&d->rd->rcu); /* fall through */
6085 	case sa_sd:
6086 		free_percpu(d->sd); /* fall through */
6087 	case sa_sd_storage:
6088 		__sdt_free(cpu_map); /* fall through */
6089 	case sa_none:
6090 		break;
6091 	}
6092 }
6093 
6094 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6095 						   const struct cpumask *cpu_map)
6096 {
6097 	memset(d, 0, sizeof(*d));
6098 
6099 	if (__sdt_alloc(cpu_map))
6100 		return sa_sd_storage;
6101 	d->sd = alloc_percpu(struct sched_domain *);
6102 	if (!d->sd)
6103 		return sa_sd_storage;
6104 	d->rd = alloc_rootdomain();
6105 	if (!d->rd)
6106 		return sa_sd;
6107 	return sa_rootdomain;
6108 }
6109 
6110 /*
6111  * NULL the sd_data elements we've used to build the sched_domain and
6112  * sched_group structure so that the subsequent __free_domain_allocs()
6113  * will not free the data we're using.
6114  */
6115 static void claim_allocations(int cpu, struct sched_domain *sd)
6116 {
6117 	struct sd_data *sdd = sd->private;
6118 
6119 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6120 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6121 
6122 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6123 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6124 
6125 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6126 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6127 }
6128 
6129 #ifdef CONFIG_NUMA
6130 static int sched_domains_numa_levels;
6131 static int *sched_domains_numa_distance;
6132 static struct cpumask ***sched_domains_numa_masks;
6133 static int sched_domains_curr_level;
6134 #endif
6135 
6136 /*
6137  * SD_flags allowed in topology descriptions.
6138  *
6139  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6140  * SD_SHARE_PKG_RESOURCES - describes shared caches
6141  * SD_NUMA                - describes NUMA topologies
6142  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6143  *
6144  * Odd one out:
6145  * SD_ASYM_PACKING        - describes SMT quirks
6146  */
6147 #define TOPOLOGY_SD_FLAGS		\
6148 	(SD_SHARE_CPUCAPACITY |		\
6149 	 SD_SHARE_PKG_RESOURCES |	\
6150 	 SD_NUMA |			\
6151 	 SD_ASYM_PACKING |		\
6152 	 SD_SHARE_POWERDOMAIN)
6153 
6154 static struct sched_domain *
6155 sd_init(struct sched_domain_topology_level *tl, int cpu)
6156 {
6157 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6158 	int sd_weight, sd_flags = 0;
6159 
6160 #ifdef CONFIG_NUMA
6161 	/*
6162 	 * Ugly hack to pass state to sd_numa_mask()...
6163 	 */
6164 	sched_domains_curr_level = tl->numa_level;
6165 #endif
6166 
6167 	sd_weight = cpumask_weight(tl->mask(cpu));
6168 
6169 	if (tl->sd_flags)
6170 		sd_flags = (*tl->sd_flags)();
6171 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6172 			"wrong sd_flags in topology description\n"))
6173 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6174 
6175 	*sd = (struct sched_domain){
6176 		.min_interval		= sd_weight,
6177 		.max_interval		= 2*sd_weight,
6178 		.busy_factor		= 32,
6179 		.imbalance_pct		= 125,
6180 
6181 		.cache_nice_tries	= 0,
6182 		.busy_idx		= 0,
6183 		.idle_idx		= 0,
6184 		.newidle_idx		= 0,
6185 		.wake_idx		= 0,
6186 		.forkexec_idx		= 0,
6187 
6188 		.flags			= 1*SD_LOAD_BALANCE
6189 					| 1*SD_BALANCE_NEWIDLE
6190 					| 1*SD_BALANCE_EXEC
6191 					| 1*SD_BALANCE_FORK
6192 					| 0*SD_BALANCE_WAKE
6193 					| 1*SD_WAKE_AFFINE
6194 					| 0*SD_SHARE_CPUCAPACITY
6195 					| 0*SD_SHARE_PKG_RESOURCES
6196 					| 0*SD_SERIALIZE
6197 					| 0*SD_PREFER_SIBLING
6198 					| 0*SD_NUMA
6199 					| sd_flags
6200 					,
6201 
6202 		.last_balance		= jiffies,
6203 		.balance_interval	= sd_weight,
6204 		.smt_gain		= 0,
6205 		.max_newidle_lb_cost	= 0,
6206 		.next_decay_max_lb_cost	= jiffies,
6207 #ifdef CONFIG_SCHED_DEBUG
6208 		.name			= tl->name,
6209 #endif
6210 	};
6211 
6212 	/*
6213 	 * Convert topological properties into behaviour.
6214 	 */
6215 
6216 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6217 		sd->imbalance_pct = 110;
6218 		sd->smt_gain = 1178; /* ~15% */
6219 
6220 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6221 		sd->imbalance_pct = 117;
6222 		sd->cache_nice_tries = 1;
6223 		sd->busy_idx = 2;
6224 
6225 #ifdef CONFIG_NUMA
6226 	} else if (sd->flags & SD_NUMA) {
6227 		sd->cache_nice_tries = 2;
6228 		sd->busy_idx = 3;
6229 		sd->idle_idx = 2;
6230 
6231 		sd->flags |= SD_SERIALIZE;
6232 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6233 			sd->flags &= ~(SD_BALANCE_EXEC |
6234 				       SD_BALANCE_FORK |
6235 				       SD_WAKE_AFFINE);
6236 		}
6237 
6238 #endif
6239 	} else {
6240 		sd->flags |= SD_PREFER_SIBLING;
6241 		sd->cache_nice_tries = 1;
6242 		sd->busy_idx = 2;
6243 		sd->idle_idx = 1;
6244 	}
6245 
6246 	sd->private = &tl->data;
6247 
6248 	return sd;
6249 }
6250 
6251 /*
6252  * Topology list, bottom-up.
6253  */
6254 static struct sched_domain_topology_level default_topology[] = {
6255 #ifdef CONFIG_SCHED_SMT
6256 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6257 #endif
6258 #ifdef CONFIG_SCHED_MC
6259 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6260 #endif
6261 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6262 	{ NULL, },
6263 };
6264 
6265 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6266 
6267 #define for_each_sd_topology(tl)			\
6268 	for (tl = sched_domain_topology; tl->mask; tl++)
6269 
6270 void set_sched_topology(struct sched_domain_topology_level *tl)
6271 {
6272 	sched_domain_topology = tl;
6273 }
6274 
6275 #ifdef CONFIG_NUMA
6276 
6277 static const struct cpumask *sd_numa_mask(int cpu)
6278 {
6279 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6280 }
6281 
6282 static void sched_numa_warn(const char *str)
6283 {
6284 	static int done = false;
6285 	int i,j;
6286 
6287 	if (done)
6288 		return;
6289 
6290 	done = true;
6291 
6292 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6293 
6294 	for (i = 0; i < nr_node_ids; i++) {
6295 		printk(KERN_WARNING "  ");
6296 		for (j = 0; j < nr_node_ids; j++)
6297 			printk(KERN_CONT "%02d ", node_distance(i,j));
6298 		printk(KERN_CONT "\n");
6299 	}
6300 	printk(KERN_WARNING "\n");
6301 }
6302 
6303 static bool find_numa_distance(int distance)
6304 {
6305 	int i;
6306 
6307 	if (distance == node_distance(0, 0))
6308 		return true;
6309 
6310 	for (i = 0; i < sched_domains_numa_levels; i++) {
6311 		if (sched_domains_numa_distance[i] == distance)
6312 			return true;
6313 	}
6314 
6315 	return false;
6316 }
6317 
6318 static void sched_init_numa(void)
6319 {
6320 	int next_distance, curr_distance = node_distance(0, 0);
6321 	struct sched_domain_topology_level *tl;
6322 	int level = 0;
6323 	int i, j, k;
6324 
6325 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6326 	if (!sched_domains_numa_distance)
6327 		return;
6328 
6329 	/*
6330 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6331 	 * unique distances in the node_distance() table.
6332 	 *
6333 	 * Assumes node_distance(0,j) includes all distances in
6334 	 * node_distance(i,j) in order to avoid cubic time.
6335 	 */
6336 	next_distance = curr_distance;
6337 	for (i = 0; i < nr_node_ids; i++) {
6338 		for (j = 0; j < nr_node_ids; j++) {
6339 			for (k = 0; k < nr_node_ids; k++) {
6340 				int distance = node_distance(i, k);
6341 
6342 				if (distance > curr_distance &&
6343 				    (distance < next_distance ||
6344 				     next_distance == curr_distance))
6345 					next_distance = distance;
6346 
6347 				/*
6348 				 * While not a strong assumption it would be nice to know
6349 				 * about cases where if node A is connected to B, B is not
6350 				 * equally connected to A.
6351 				 */
6352 				if (sched_debug() && node_distance(k, i) != distance)
6353 					sched_numa_warn("Node-distance not symmetric");
6354 
6355 				if (sched_debug() && i && !find_numa_distance(distance))
6356 					sched_numa_warn("Node-0 not representative");
6357 			}
6358 			if (next_distance != curr_distance) {
6359 				sched_domains_numa_distance[level++] = next_distance;
6360 				sched_domains_numa_levels = level;
6361 				curr_distance = next_distance;
6362 			} else break;
6363 		}
6364 
6365 		/*
6366 		 * In case of sched_debug() we verify the above assumption.
6367 		 */
6368 		if (!sched_debug())
6369 			break;
6370 	}
6371 	/*
6372 	 * 'level' contains the number of unique distances, excluding the
6373 	 * identity distance node_distance(i,i).
6374 	 *
6375 	 * The sched_domains_numa_distance[] array includes the actual distance
6376 	 * numbers.
6377 	 */
6378 
6379 	/*
6380 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6381 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6382 	 * the array will contain less then 'level' members. This could be
6383 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6384 	 * in other functions.
6385 	 *
6386 	 * We reset it to 'level' at the end of this function.
6387 	 */
6388 	sched_domains_numa_levels = 0;
6389 
6390 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6391 	if (!sched_domains_numa_masks)
6392 		return;
6393 
6394 	/*
6395 	 * Now for each level, construct a mask per node which contains all
6396 	 * cpus of nodes that are that many hops away from us.
6397 	 */
6398 	for (i = 0; i < level; i++) {
6399 		sched_domains_numa_masks[i] =
6400 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6401 		if (!sched_domains_numa_masks[i])
6402 			return;
6403 
6404 		for (j = 0; j < nr_node_ids; j++) {
6405 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6406 			if (!mask)
6407 				return;
6408 
6409 			sched_domains_numa_masks[i][j] = mask;
6410 
6411 			for (k = 0; k < nr_node_ids; k++) {
6412 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6413 					continue;
6414 
6415 				cpumask_or(mask, mask, cpumask_of_node(k));
6416 			}
6417 		}
6418 	}
6419 
6420 	/* Compute default topology size */
6421 	for (i = 0; sched_domain_topology[i].mask; i++);
6422 
6423 	tl = kzalloc((i + level + 1) *
6424 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6425 	if (!tl)
6426 		return;
6427 
6428 	/*
6429 	 * Copy the default topology bits..
6430 	 */
6431 	for (i = 0; sched_domain_topology[i].mask; i++)
6432 		tl[i] = sched_domain_topology[i];
6433 
6434 	/*
6435 	 * .. and append 'j' levels of NUMA goodness.
6436 	 */
6437 	for (j = 0; j < level; i++, j++) {
6438 		tl[i] = (struct sched_domain_topology_level){
6439 			.mask = sd_numa_mask,
6440 			.sd_flags = cpu_numa_flags,
6441 			.flags = SDTL_OVERLAP,
6442 			.numa_level = j,
6443 			SD_INIT_NAME(NUMA)
6444 		};
6445 	}
6446 
6447 	sched_domain_topology = tl;
6448 
6449 	sched_domains_numa_levels = level;
6450 }
6451 
6452 static void sched_domains_numa_masks_set(int cpu)
6453 {
6454 	int i, j;
6455 	int node = cpu_to_node(cpu);
6456 
6457 	for (i = 0; i < sched_domains_numa_levels; i++) {
6458 		for (j = 0; j < nr_node_ids; j++) {
6459 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6460 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6461 		}
6462 	}
6463 }
6464 
6465 static void sched_domains_numa_masks_clear(int cpu)
6466 {
6467 	int i, j;
6468 	for (i = 0; i < sched_domains_numa_levels; i++) {
6469 		for (j = 0; j < nr_node_ids; j++)
6470 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6471 	}
6472 }
6473 
6474 /*
6475  * Update sched_domains_numa_masks[level][node] array when new cpus
6476  * are onlined.
6477  */
6478 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6479 					   unsigned long action,
6480 					   void *hcpu)
6481 {
6482 	int cpu = (long)hcpu;
6483 
6484 	switch (action & ~CPU_TASKS_FROZEN) {
6485 	case CPU_ONLINE:
6486 		sched_domains_numa_masks_set(cpu);
6487 		break;
6488 
6489 	case CPU_DEAD:
6490 		sched_domains_numa_masks_clear(cpu);
6491 		break;
6492 
6493 	default:
6494 		return NOTIFY_DONE;
6495 	}
6496 
6497 	return NOTIFY_OK;
6498 }
6499 #else
6500 static inline void sched_init_numa(void)
6501 {
6502 }
6503 
6504 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6505 					   unsigned long action,
6506 					   void *hcpu)
6507 {
6508 	return 0;
6509 }
6510 #endif /* CONFIG_NUMA */
6511 
6512 static int __sdt_alloc(const struct cpumask *cpu_map)
6513 {
6514 	struct sched_domain_topology_level *tl;
6515 	int j;
6516 
6517 	for_each_sd_topology(tl) {
6518 		struct sd_data *sdd = &tl->data;
6519 
6520 		sdd->sd = alloc_percpu(struct sched_domain *);
6521 		if (!sdd->sd)
6522 			return -ENOMEM;
6523 
6524 		sdd->sg = alloc_percpu(struct sched_group *);
6525 		if (!sdd->sg)
6526 			return -ENOMEM;
6527 
6528 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6529 		if (!sdd->sgc)
6530 			return -ENOMEM;
6531 
6532 		for_each_cpu(j, cpu_map) {
6533 			struct sched_domain *sd;
6534 			struct sched_group *sg;
6535 			struct sched_group_capacity *sgc;
6536 
6537 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6538 					GFP_KERNEL, cpu_to_node(j));
6539 			if (!sd)
6540 				return -ENOMEM;
6541 
6542 			*per_cpu_ptr(sdd->sd, j) = sd;
6543 
6544 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6545 					GFP_KERNEL, cpu_to_node(j));
6546 			if (!sg)
6547 				return -ENOMEM;
6548 
6549 			sg->next = sg;
6550 
6551 			*per_cpu_ptr(sdd->sg, j) = sg;
6552 
6553 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6554 					GFP_KERNEL, cpu_to_node(j));
6555 			if (!sgc)
6556 				return -ENOMEM;
6557 
6558 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6559 		}
6560 	}
6561 
6562 	return 0;
6563 }
6564 
6565 static void __sdt_free(const struct cpumask *cpu_map)
6566 {
6567 	struct sched_domain_topology_level *tl;
6568 	int j;
6569 
6570 	for_each_sd_topology(tl) {
6571 		struct sd_data *sdd = &tl->data;
6572 
6573 		for_each_cpu(j, cpu_map) {
6574 			struct sched_domain *sd;
6575 
6576 			if (sdd->sd) {
6577 				sd = *per_cpu_ptr(sdd->sd, j);
6578 				if (sd && (sd->flags & SD_OVERLAP))
6579 					free_sched_groups(sd->groups, 0);
6580 				kfree(*per_cpu_ptr(sdd->sd, j));
6581 			}
6582 
6583 			if (sdd->sg)
6584 				kfree(*per_cpu_ptr(sdd->sg, j));
6585 			if (sdd->sgc)
6586 				kfree(*per_cpu_ptr(sdd->sgc, j));
6587 		}
6588 		free_percpu(sdd->sd);
6589 		sdd->sd = NULL;
6590 		free_percpu(sdd->sg);
6591 		sdd->sg = NULL;
6592 		free_percpu(sdd->sgc);
6593 		sdd->sgc = NULL;
6594 	}
6595 }
6596 
6597 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6598 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6599 		struct sched_domain *child, int cpu)
6600 {
6601 	struct sched_domain *sd = sd_init(tl, cpu);
6602 	if (!sd)
6603 		return child;
6604 
6605 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6606 	if (child) {
6607 		sd->level = child->level + 1;
6608 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6609 		child->parent = sd;
6610 		sd->child = child;
6611 
6612 		if (!cpumask_subset(sched_domain_span(child),
6613 				    sched_domain_span(sd))) {
6614 			pr_err("BUG: arch topology borken\n");
6615 #ifdef CONFIG_SCHED_DEBUG
6616 			pr_err("     the %s domain not a subset of the %s domain\n",
6617 					child->name, sd->name);
6618 #endif
6619 			/* Fixup, ensure @sd has at least @child cpus. */
6620 			cpumask_or(sched_domain_span(sd),
6621 				   sched_domain_span(sd),
6622 				   sched_domain_span(child));
6623 		}
6624 
6625 	}
6626 	set_domain_attribute(sd, attr);
6627 
6628 	return sd;
6629 }
6630 
6631 /*
6632  * Build sched domains for a given set of cpus and attach the sched domains
6633  * to the individual cpus
6634  */
6635 static int build_sched_domains(const struct cpumask *cpu_map,
6636 			       struct sched_domain_attr *attr)
6637 {
6638 	enum s_alloc alloc_state;
6639 	struct sched_domain *sd;
6640 	struct s_data d;
6641 	int i, ret = -ENOMEM;
6642 
6643 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6644 	if (alloc_state != sa_rootdomain)
6645 		goto error;
6646 
6647 	/* Set up domains for cpus specified by the cpu_map. */
6648 	for_each_cpu(i, cpu_map) {
6649 		struct sched_domain_topology_level *tl;
6650 
6651 		sd = NULL;
6652 		for_each_sd_topology(tl) {
6653 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6654 			if (tl == sched_domain_topology)
6655 				*per_cpu_ptr(d.sd, i) = sd;
6656 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6657 				sd->flags |= SD_OVERLAP;
6658 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6659 				break;
6660 		}
6661 	}
6662 
6663 	/* Build the groups for the domains */
6664 	for_each_cpu(i, cpu_map) {
6665 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6666 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6667 			if (sd->flags & SD_OVERLAP) {
6668 				if (build_overlap_sched_groups(sd, i))
6669 					goto error;
6670 			} else {
6671 				if (build_sched_groups(sd, i))
6672 					goto error;
6673 			}
6674 		}
6675 	}
6676 
6677 	/* Calculate CPU capacity for physical packages and nodes */
6678 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6679 		if (!cpumask_test_cpu(i, cpu_map))
6680 			continue;
6681 
6682 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6683 			claim_allocations(i, sd);
6684 			init_sched_groups_capacity(i, sd);
6685 		}
6686 	}
6687 
6688 	/* Attach the domains */
6689 	rcu_read_lock();
6690 	for_each_cpu(i, cpu_map) {
6691 		sd = *per_cpu_ptr(d.sd, i);
6692 		cpu_attach_domain(sd, d.rd, i);
6693 	}
6694 	rcu_read_unlock();
6695 
6696 	ret = 0;
6697 error:
6698 	__free_domain_allocs(&d, alloc_state, cpu_map);
6699 	return ret;
6700 }
6701 
6702 static cpumask_var_t *doms_cur;	/* current sched domains */
6703 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6704 static struct sched_domain_attr *dattr_cur;
6705 				/* attribues of custom domains in 'doms_cur' */
6706 
6707 /*
6708  * Special case: If a kmalloc of a doms_cur partition (array of
6709  * cpumask) fails, then fallback to a single sched domain,
6710  * as determined by the single cpumask fallback_doms.
6711  */
6712 static cpumask_var_t fallback_doms;
6713 
6714 /*
6715  * arch_update_cpu_topology lets virtualized architectures update the
6716  * cpu core maps. It is supposed to return 1 if the topology changed
6717  * or 0 if it stayed the same.
6718  */
6719 int __weak arch_update_cpu_topology(void)
6720 {
6721 	return 0;
6722 }
6723 
6724 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6725 {
6726 	int i;
6727 	cpumask_var_t *doms;
6728 
6729 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6730 	if (!doms)
6731 		return NULL;
6732 	for (i = 0; i < ndoms; i++) {
6733 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6734 			free_sched_domains(doms, i);
6735 			return NULL;
6736 		}
6737 	}
6738 	return doms;
6739 }
6740 
6741 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6742 {
6743 	unsigned int i;
6744 	for (i = 0; i < ndoms; i++)
6745 		free_cpumask_var(doms[i]);
6746 	kfree(doms);
6747 }
6748 
6749 /*
6750  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6751  * For now this just excludes isolated cpus, but could be used to
6752  * exclude other special cases in the future.
6753  */
6754 static int init_sched_domains(const struct cpumask *cpu_map)
6755 {
6756 	int err;
6757 
6758 	arch_update_cpu_topology();
6759 	ndoms_cur = 1;
6760 	doms_cur = alloc_sched_domains(ndoms_cur);
6761 	if (!doms_cur)
6762 		doms_cur = &fallback_doms;
6763 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6764 	err = build_sched_domains(doms_cur[0], NULL);
6765 	register_sched_domain_sysctl();
6766 
6767 	return err;
6768 }
6769 
6770 /*
6771  * Detach sched domains from a group of cpus specified in cpu_map
6772  * These cpus will now be attached to the NULL domain
6773  */
6774 static void detach_destroy_domains(const struct cpumask *cpu_map)
6775 {
6776 	int i;
6777 
6778 	rcu_read_lock();
6779 	for_each_cpu(i, cpu_map)
6780 		cpu_attach_domain(NULL, &def_root_domain, i);
6781 	rcu_read_unlock();
6782 }
6783 
6784 /* handle null as "default" */
6785 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6786 			struct sched_domain_attr *new, int idx_new)
6787 {
6788 	struct sched_domain_attr tmp;
6789 
6790 	/* fast path */
6791 	if (!new && !cur)
6792 		return 1;
6793 
6794 	tmp = SD_ATTR_INIT;
6795 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6796 			new ? (new + idx_new) : &tmp,
6797 			sizeof(struct sched_domain_attr));
6798 }
6799 
6800 /*
6801  * Partition sched domains as specified by the 'ndoms_new'
6802  * cpumasks in the array doms_new[] of cpumasks. This compares
6803  * doms_new[] to the current sched domain partitioning, doms_cur[].
6804  * It destroys each deleted domain and builds each new domain.
6805  *
6806  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6807  * The masks don't intersect (don't overlap.) We should setup one
6808  * sched domain for each mask. CPUs not in any of the cpumasks will
6809  * not be load balanced. If the same cpumask appears both in the
6810  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6811  * it as it is.
6812  *
6813  * The passed in 'doms_new' should be allocated using
6814  * alloc_sched_domains.  This routine takes ownership of it and will
6815  * free_sched_domains it when done with it. If the caller failed the
6816  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6817  * and partition_sched_domains() will fallback to the single partition
6818  * 'fallback_doms', it also forces the domains to be rebuilt.
6819  *
6820  * If doms_new == NULL it will be replaced with cpu_online_mask.
6821  * ndoms_new == 0 is a special case for destroying existing domains,
6822  * and it will not create the default domain.
6823  *
6824  * Call with hotplug lock held
6825  */
6826 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6827 			     struct sched_domain_attr *dattr_new)
6828 {
6829 	int i, j, n;
6830 	int new_topology;
6831 
6832 	mutex_lock(&sched_domains_mutex);
6833 
6834 	/* always unregister in case we don't destroy any domains */
6835 	unregister_sched_domain_sysctl();
6836 
6837 	/* Let architecture update cpu core mappings. */
6838 	new_topology = arch_update_cpu_topology();
6839 
6840 	n = doms_new ? ndoms_new : 0;
6841 
6842 	/* Destroy deleted domains */
6843 	for (i = 0; i < ndoms_cur; i++) {
6844 		for (j = 0; j < n && !new_topology; j++) {
6845 			if (cpumask_equal(doms_cur[i], doms_new[j])
6846 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6847 				goto match1;
6848 		}
6849 		/* no match - a current sched domain not in new doms_new[] */
6850 		detach_destroy_domains(doms_cur[i]);
6851 match1:
6852 		;
6853 	}
6854 
6855 	n = ndoms_cur;
6856 	if (doms_new == NULL) {
6857 		n = 0;
6858 		doms_new = &fallback_doms;
6859 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6860 		WARN_ON_ONCE(dattr_new);
6861 	}
6862 
6863 	/* Build new domains */
6864 	for (i = 0; i < ndoms_new; i++) {
6865 		for (j = 0; j < n && !new_topology; j++) {
6866 			if (cpumask_equal(doms_new[i], doms_cur[j])
6867 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6868 				goto match2;
6869 		}
6870 		/* no match - add a new doms_new */
6871 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6872 match2:
6873 		;
6874 	}
6875 
6876 	/* Remember the new sched domains */
6877 	if (doms_cur != &fallback_doms)
6878 		free_sched_domains(doms_cur, ndoms_cur);
6879 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6880 	doms_cur = doms_new;
6881 	dattr_cur = dattr_new;
6882 	ndoms_cur = ndoms_new;
6883 
6884 	register_sched_domain_sysctl();
6885 
6886 	mutex_unlock(&sched_domains_mutex);
6887 }
6888 
6889 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6890 
6891 /*
6892  * Update cpusets according to cpu_active mask.  If cpusets are
6893  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6894  * around partition_sched_domains().
6895  *
6896  * If we come here as part of a suspend/resume, don't touch cpusets because we
6897  * want to restore it back to its original state upon resume anyway.
6898  */
6899 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6900 			     void *hcpu)
6901 {
6902 	switch (action) {
6903 	case CPU_ONLINE_FROZEN:
6904 	case CPU_DOWN_FAILED_FROZEN:
6905 
6906 		/*
6907 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6908 		 * resume sequence. As long as this is not the last online
6909 		 * operation in the resume sequence, just build a single sched
6910 		 * domain, ignoring cpusets.
6911 		 */
6912 		num_cpus_frozen--;
6913 		if (likely(num_cpus_frozen)) {
6914 			partition_sched_domains(1, NULL, NULL);
6915 			break;
6916 		}
6917 
6918 		/*
6919 		 * This is the last CPU online operation. So fall through and
6920 		 * restore the original sched domains by considering the
6921 		 * cpuset configurations.
6922 		 */
6923 
6924 	case CPU_ONLINE:
6925 	case CPU_DOWN_FAILED:
6926 		cpuset_update_active_cpus(true);
6927 		break;
6928 	default:
6929 		return NOTIFY_DONE;
6930 	}
6931 	return NOTIFY_OK;
6932 }
6933 
6934 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6935 			       void *hcpu)
6936 {
6937 	switch (action) {
6938 	case CPU_DOWN_PREPARE:
6939 		cpuset_update_active_cpus(false);
6940 		break;
6941 	case CPU_DOWN_PREPARE_FROZEN:
6942 		num_cpus_frozen++;
6943 		partition_sched_domains(1, NULL, NULL);
6944 		break;
6945 	default:
6946 		return NOTIFY_DONE;
6947 	}
6948 	return NOTIFY_OK;
6949 }
6950 
6951 void __init sched_init_smp(void)
6952 {
6953 	cpumask_var_t non_isolated_cpus;
6954 
6955 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6956 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6957 
6958 	sched_init_numa();
6959 
6960 	/*
6961 	 * There's no userspace yet to cause hotplug operations; hence all the
6962 	 * cpu masks are stable and all blatant races in the below code cannot
6963 	 * happen.
6964 	 */
6965 	mutex_lock(&sched_domains_mutex);
6966 	init_sched_domains(cpu_active_mask);
6967 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6968 	if (cpumask_empty(non_isolated_cpus))
6969 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6970 	mutex_unlock(&sched_domains_mutex);
6971 
6972 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6973 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6974 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6975 
6976 	init_hrtick();
6977 
6978 	/* Move init over to a non-isolated CPU */
6979 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6980 		BUG();
6981 	sched_init_granularity();
6982 	free_cpumask_var(non_isolated_cpus);
6983 
6984 	init_sched_rt_class();
6985 	init_sched_dl_class();
6986 }
6987 #else
6988 void __init sched_init_smp(void)
6989 {
6990 	sched_init_granularity();
6991 }
6992 #endif /* CONFIG_SMP */
6993 
6994 const_debug unsigned int sysctl_timer_migration = 1;
6995 
6996 int in_sched_functions(unsigned long addr)
6997 {
6998 	return in_lock_functions(addr) ||
6999 		(addr >= (unsigned long)__sched_text_start
7000 		&& addr < (unsigned long)__sched_text_end);
7001 }
7002 
7003 #ifdef CONFIG_CGROUP_SCHED
7004 /*
7005  * Default task group.
7006  * Every task in system belongs to this group at bootup.
7007  */
7008 struct task_group root_task_group;
7009 LIST_HEAD(task_groups);
7010 #endif
7011 
7012 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7013 
7014 void __init sched_init(void)
7015 {
7016 	int i, j;
7017 	unsigned long alloc_size = 0, ptr;
7018 
7019 #ifdef CONFIG_FAIR_GROUP_SCHED
7020 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7021 #endif
7022 #ifdef CONFIG_RT_GROUP_SCHED
7023 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7024 #endif
7025 #ifdef CONFIG_CPUMASK_OFFSTACK
7026 	alloc_size += num_possible_cpus() * cpumask_size();
7027 #endif
7028 	if (alloc_size) {
7029 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7030 
7031 #ifdef CONFIG_FAIR_GROUP_SCHED
7032 		root_task_group.se = (struct sched_entity **)ptr;
7033 		ptr += nr_cpu_ids * sizeof(void **);
7034 
7035 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7036 		ptr += nr_cpu_ids * sizeof(void **);
7037 
7038 #endif /* CONFIG_FAIR_GROUP_SCHED */
7039 #ifdef CONFIG_RT_GROUP_SCHED
7040 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7041 		ptr += nr_cpu_ids * sizeof(void **);
7042 
7043 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7044 		ptr += nr_cpu_ids * sizeof(void **);
7045 
7046 #endif /* CONFIG_RT_GROUP_SCHED */
7047 #ifdef CONFIG_CPUMASK_OFFSTACK
7048 		for_each_possible_cpu(i) {
7049 			per_cpu(load_balance_mask, i) = (void *)ptr;
7050 			ptr += cpumask_size();
7051 		}
7052 #endif /* CONFIG_CPUMASK_OFFSTACK */
7053 	}
7054 
7055 	init_rt_bandwidth(&def_rt_bandwidth,
7056 			global_rt_period(), global_rt_runtime());
7057 	init_dl_bandwidth(&def_dl_bandwidth,
7058 			global_rt_period(), global_rt_runtime());
7059 
7060 #ifdef CONFIG_SMP
7061 	init_defrootdomain();
7062 #endif
7063 
7064 #ifdef CONFIG_RT_GROUP_SCHED
7065 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7066 			global_rt_period(), global_rt_runtime());
7067 #endif /* CONFIG_RT_GROUP_SCHED */
7068 
7069 #ifdef CONFIG_CGROUP_SCHED
7070 	list_add(&root_task_group.list, &task_groups);
7071 	INIT_LIST_HEAD(&root_task_group.children);
7072 	INIT_LIST_HEAD(&root_task_group.siblings);
7073 	autogroup_init(&init_task);
7074 
7075 #endif /* CONFIG_CGROUP_SCHED */
7076 
7077 	for_each_possible_cpu(i) {
7078 		struct rq *rq;
7079 
7080 		rq = cpu_rq(i);
7081 		raw_spin_lock_init(&rq->lock);
7082 		rq->nr_running = 0;
7083 		rq->calc_load_active = 0;
7084 		rq->calc_load_update = jiffies + LOAD_FREQ;
7085 		init_cfs_rq(&rq->cfs);
7086 		init_rt_rq(&rq->rt, rq);
7087 		init_dl_rq(&rq->dl, rq);
7088 #ifdef CONFIG_FAIR_GROUP_SCHED
7089 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7090 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7091 		/*
7092 		 * How much cpu bandwidth does root_task_group get?
7093 		 *
7094 		 * In case of task-groups formed thr' the cgroup filesystem, it
7095 		 * gets 100% of the cpu resources in the system. This overall
7096 		 * system cpu resource is divided among the tasks of
7097 		 * root_task_group and its child task-groups in a fair manner,
7098 		 * based on each entity's (task or task-group's) weight
7099 		 * (se->load.weight).
7100 		 *
7101 		 * In other words, if root_task_group has 10 tasks of weight
7102 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7103 		 * then A0's share of the cpu resource is:
7104 		 *
7105 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7106 		 *
7107 		 * We achieve this by letting root_task_group's tasks sit
7108 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7109 		 */
7110 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7111 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7112 #endif /* CONFIG_FAIR_GROUP_SCHED */
7113 
7114 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7115 #ifdef CONFIG_RT_GROUP_SCHED
7116 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7117 #endif
7118 
7119 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7120 			rq->cpu_load[j] = 0;
7121 
7122 		rq->last_load_update_tick = jiffies;
7123 
7124 #ifdef CONFIG_SMP
7125 		rq->sd = NULL;
7126 		rq->rd = NULL;
7127 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7128 		rq->post_schedule = 0;
7129 		rq->active_balance = 0;
7130 		rq->next_balance = jiffies;
7131 		rq->push_cpu = 0;
7132 		rq->cpu = i;
7133 		rq->online = 0;
7134 		rq->idle_stamp = 0;
7135 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7136 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7137 
7138 		INIT_LIST_HEAD(&rq->cfs_tasks);
7139 
7140 		rq_attach_root(rq, &def_root_domain);
7141 #ifdef CONFIG_NO_HZ_COMMON
7142 		rq->nohz_flags = 0;
7143 #endif
7144 #ifdef CONFIG_NO_HZ_FULL
7145 		rq->last_sched_tick = 0;
7146 #endif
7147 #endif
7148 		init_rq_hrtick(rq);
7149 		atomic_set(&rq->nr_iowait, 0);
7150 	}
7151 
7152 	set_load_weight(&init_task);
7153 
7154 #ifdef CONFIG_PREEMPT_NOTIFIERS
7155 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7156 #endif
7157 
7158 	/*
7159 	 * The boot idle thread does lazy MMU switching as well:
7160 	 */
7161 	atomic_inc(&init_mm.mm_count);
7162 	enter_lazy_tlb(&init_mm, current);
7163 
7164 	/*
7165 	 * Make us the idle thread. Technically, schedule() should not be
7166 	 * called from this thread, however somewhere below it might be,
7167 	 * but because we are the idle thread, we just pick up running again
7168 	 * when this runqueue becomes "idle".
7169 	 */
7170 	init_idle(current, smp_processor_id());
7171 
7172 	calc_load_update = jiffies + LOAD_FREQ;
7173 
7174 	/*
7175 	 * During early bootup we pretend to be a normal task:
7176 	 */
7177 	current->sched_class = &fair_sched_class;
7178 
7179 #ifdef CONFIG_SMP
7180 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7181 	/* May be allocated at isolcpus cmdline parse time */
7182 	if (cpu_isolated_map == NULL)
7183 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7184 	idle_thread_set_boot_cpu();
7185 	set_cpu_rq_start_time();
7186 #endif
7187 	init_sched_fair_class();
7188 
7189 	scheduler_running = 1;
7190 }
7191 
7192 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7193 static inline int preempt_count_equals(int preempt_offset)
7194 {
7195 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7196 
7197 	return (nested == preempt_offset);
7198 }
7199 
7200 void __might_sleep(const char *file, int line, int preempt_offset)
7201 {
7202 	static unsigned long prev_jiffy;	/* ratelimiting */
7203 
7204 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7205 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7206 	     !is_idle_task(current)) ||
7207 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7208 		return;
7209 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7210 		return;
7211 	prev_jiffy = jiffies;
7212 
7213 	printk(KERN_ERR
7214 		"BUG: sleeping function called from invalid context at %s:%d\n",
7215 			file, line);
7216 	printk(KERN_ERR
7217 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7218 			in_atomic(), irqs_disabled(),
7219 			current->pid, current->comm);
7220 
7221 	debug_show_held_locks(current);
7222 	if (irqs_disabled())
7223 		print_irqtrace_events(current);
7224 #ifdef CONFIG_DEBUG_PREEMPT
7225 	if (!preempt_count_equals(preempt_offset)) {
7226 		pr_err("Preemption disabled at:");
7227 		print_ip_sym(current->preempt_disable_ip);
7228 		pr_cont("\n");
7229 	}
7230 #endif
7231 	dump_stack();
7232 }
7233 EXPORT_SYMBOL(__might_sleep);
7234 #endif
7235 
7236 #ifdef CONFIG_MAGIC_SYSRQ
7237 static void normalize_task(struct rq *rq, struct task_struct *p)
7238 {
7239 	const struct sched_class *prev_class = p->sched_class;
7240 	struct sched_attr attr = {
7241 		.sched_policy = SCHED_NORMAL,
7242 	};
7243 	int old_prio = p->prio;
7244 	int queued;
7245 
7246 	queued = task_on_rq_queued(p);
7247 	if (queued)
7248 		dequeue_task(rq, p, 0);
7249 	__setscheduler(rq, p, &attr);
7250 	if (queued) {
7251 		enqueue_task(rq, p, 0);
7252 		resched_curr(rq);
7253 	}
7254 
7255 	check_class_changed(rq, p, prev_class, old_prio);
7256 }
7257 
7258 void normalize_rt_tasks(void)
7259 {
7260 	struct task_struct *g, *p;
7261 	unsigned long flags;
7262 	struct rq *rq;
7263 
7264 	read_lock(&tasklist_lock);
7265 	for_each_process_thread(g, p) {
7266 		/*
7267 		 * Only normalize user tasks:
7268 		 */
7269 		if (p->flags & PF_KTHREAD)
7270 			continue;
7271 
7272 		p->se.exec_start		= 0;
7273 #ifdef CONFIG_SCHEDSTATS
7274 		p->se.statistics.wait_start	= 0;
7275 		p->se.statistics.sleep_start	= 0;
7276 		p->se.statistics.block_start	= 0;
7277 #endif
7278 
7279 		if (!dl_task(p) && !rt_task(p)) {
7280 			/*
7281 			 * Renice negative nice level userspace
7282 			 * tasks back to 0:
7283 			 */
7284 			if (task_nice(p) < 0)
7285 				set_user_nice(p, 0);
7286 			continue;
7287 		}
7288 
7289 		rq = task_rq_lock(p, &flags);
7290 		normalize_task(rq, p);
7291 		task_rq_unlock(rq, p, &flags);
7292 	}
7293 	read_unlock(&tasklist_lock);
7294 }
7295 
7296 #endif /* CONFIG_MAGIC_SYSRQ */
7297 
7298 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7299 /*
7300  * These functions are only useful for the IA64 MCA handling, or kdb.
7301  *
7302  * They can only be called when the whole system has been
7303  * stopped - every CPU needs to be quiescent, and no scheduling
7304  * activity can take place. Using them for anything else would
7305  * be a serious bug, and as a result, they aren't even visible
7306  * under any other configuration.
7307  */
7308 
7309 /**
7310  * curr_task - return the current task for a given cpu.
7311  * @cpu: the processor in question.
7312  *
7313  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7314  *
7315  * Return: The current task for @cpu.
7316  */
7317 struct task_struct *curr_task(int cpu)
7318 {
7319 	return cpu_curr(cpu);
7320 }
7321 
7322 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7323 
7324 #ifdef CONFIG_IA64
7325 /**
7326  * set_curr_task - set the current task for a given cpu.
7327  * @cpu: the processor in question.
7328  * @p: the task pointer to set.
7329  *
7330  * Description: This function must only be used when non-maskable interrupts
7331  * are serviced on a separate stack. It allows the architecture to switch the
7332  * notion of the current task on a cpu in a non-blocking manner. This function
7333  * must be called with all CPU's synchronized, and interrupts disabled, the
7334  * and caller must save the original value of the current task (see
7335  * curr_task() above) and restore that value before reenabling interrupts and
7336  * re-starting the system.
7337  *
7338  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7339  */
7340 void set_curr_task(int cpu, struct task_struct *p)
7341 {
7342 	cpu_curr(cpu) = p;
7343 }
7344 
7345 #endif
7346 
7347 #ifdef CONFIG_CGROUP_SCHED
7348 /* task_group_lock serializes the addition/removal of task groups */
7349 static DEFINE_SPINLOCK(task_group_lock);
7350 
7351 static void free_sched_group(struct task_group *tg)
7352 {
7353 	free_fair_sched_group(tg);
7354 	free_rt_sched_group(tg);
7355 	autogroup_free(tg);
7356 	kfree(tg);
7357 }
7358 
7359 /* allocate runqueue etc for a new task group */
7360 struct task_group *sched_create_group(struct task_group *parent)
7361 {
7362 	struct task_group *tg;
7363 
7364 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7365 	if (!tg)
7366 		return ERR_PTR(-ENOMEM);
7367 
7368 	if (!alloc_fair_sched_group(tg, parent))
7369 		goto err;
7370 
7371 	if (!alloc_rt_sched_group(tg, parent))
7372 		goto err;
7373 
7374 	return tg;
7375 
7376 err:
7377 	free_sched_group(tg);
7378 	return ERR_PTR(-ENOMEM);
7379 }
7380 
7381 void sched_online_group(struct task_group *tg, struct task_group *parent)
7382 {
7383 	unsigned long flags;
7384 
7385 	spin_lock_irqsave(&task_group_lock, flags);
7386 	list_add_rcu(&tg->list, &task_groups);
7387 
7388 	WARN_ON(!parent); /* root should already exist */
7389 
7390 	tg->parent = parent;
7391 	INIT_LIST_HEAD(&tg->children);
7392 	list_add_rcu(&tg->siblings, &parent->children);
7393 	spin_unlock_irqrestore(&task_group_lock, flags);
7394 }
7395 
7396 /* rcu callback to free various structures associated with a task group */
7397 static void free_sched_group_rcu(struct rcu_head *rhp)
7398 {
7399 	/* now it should be safe to free those cfs_rqs */
7400 	free_sched_group(container_of(rhp, struct task_group, rcu));
7401 }
7402 
7403 /* Destroy runqueue etc associated with a task group */
7404 void sched_destroy_group(struct task_group *tg)
7405 {
7406 	/* wait for possible concurrent references to cfs_rqs complete */
7407 	call_rcu(&tg->rcu, free_sched_group_rcu);
7408 }
7409 
7410 void sched_offline_group(struct task_group *tg)
7411 {
7412 	unsigned long flags;
7413 	int i;
7414 
7415 	/* end participation in shares distribution */
7416 	for_each_possible_cpu(i)
7417 		unregister_fair_sched_group(tg, i);
7418 
7419 	spin_lock_irqsave(&task_group_lock, flags);
7420 	list_del_rcu(&tg->list);
7421 	list_del_rcu(&tg->siblings);
7422 	spin_unlock_irqrestore(&task_group_lock, flags);
7423 }
7424 
7425 /* change task's runqueue when it moves between groups.
7426  *	The caller of this function should have put the task in its new group
7427  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7428  *	reflect its new group.
7429  */
7430 void sched_move_task(struct task_struct *tsk)
7431 {
7432 	struct task_group *tg;
7433 	int queued, running;
7434 	unsigned long flags;
7435 	struct rq *rq;
7436 
7437 	rq = task_rq_lock(tsk, &flags);
7438 
7439 	running = task_current(rq, tsk);
7440 	queued = task_on_rq_queued(tsk);
7441 
7442 	if (queued)
7443 		dequeue_task(rq, tsk, 0);
7444 	if (unlikely(running))
7445 		put_prev_task(rq, tsk);
7446 
7447 	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7448 				lockdep_is_held(&tsk->sighand->siglock)),
7449 			  struct task_group, css);
7450 	tg = autogroup_task_group(tsk, tg);
7451 	tsk->sched_task_group = tg;
7452 
7453 #ifdef CONFIG_FAIR_GROUP_SCHED
7454 	if (tsk->sched_class->task_move_group)
7455 		tsk->sched_class->task_move_group(tsk, queued);
7456 	else
7457 #endif
7458 		set_task_rq(tsk, task_cpu(tsk));
7459 
7460 	if (unlikely(running))
7461 		tsk->sched_class->set_curr_task(rq);
7462 	if (queued)
7463 		enqueue_task(rq, tsk, 0);
7464 
7465 	task_rq_unlock(rq, tsk, &flags);
7466 }
7467 #endif /* CONFIG_CGROUP_SCHED */
7468 
7469 #ifdef CONFIG_RT_GROUP_SCHED
7470 /*
7471  * Ensure that the real time constraints are schedulable.
7472  */
7473 static DEFINE_MUTEX(rt_constraints_mutex);
7474 
7475 /* Must be called with tasklist_lock held */
7476 static inline int tg_has_rt_tasks(struct task_group *tg)
7477 {
7478 	struct task_struct *g, *p;
7479 
7480 	for_each_process_thread(g, p) {
7481 		if (rt_task(p) && task_group(p) == tg)
7482 			return 1;
7483 	}
7484 
7485 	return 0;
7486 }
7487 
7488 struct rt_schedulable_data {
7489 	struct task_group *tg;
7490 	u64 rt_period;
7491 	u64 rt_runtime;
7492 };
7493 
7494 static int tg_rt_schedulable(struct task_group *tg, void *data)
7495 {
7496 	struct rt_schedulable_data *d = data;
7497 	struct task_group *child;
7498 	unsigned long total, sum = 0;
7499 	u64 period, runtime;
7500 
7501 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7502 	runtime = tg->rt_bandwidth.rt_runtime;
7503 
7504 	if (tg == d->tg) {
7505 		period = d->rt_period;
7506 		runtime = d->rt_runtime;
7507 	}
7508 
7509 	/*
7510 	 * Cannot have more runtime than the period.
7511 	 */
7512 	if (runtime > period && runtime != RUNTIME_INF)
7513 		return -EINVAL;
7514 
7515 	/*
7516 	 * Ensure we don't starve existing RT tasks.
7517 	 */
7518 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7519 		return -EBUSY;
7520 
7521 	total = to_ratio(period, runtime);
7522 
7523 	/*
7524 	 * Nobody can have more than the global setting allows.
7525 	 */
7526 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7527 		return -EINVAL;
7528 
7529 	/*
7530 	 * The sum of our children's runtime should not exceed our own.
7531 	 */
7532 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7533 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7534 		runtime = child->rt_bandwidth.rt_runtime;
7535 
7536 		if (child == d->tg) {
7537 			period = d->rt_period;
7538 			runtime = d->rt_runtime;
7539 		}
7540 
7541 		sum += to_ratio(period, runtime);
7542 	}
7543 
7544 	if (sum > total)
7545 		return -EINVAL;
7546 
7547 	return 0;
7548 }
7549 
7550 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7551 {
7552 	int ret;
7553 
7554 	struct rt_schedulable_data data = {
7555 		.tg = tg,
7556 		.rt_period = period,
7557 		.rt_runtime = runtime,
7558 	};
7559 
7560 	rcu_read_lock();
7561 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7562 	rcu_read_unlock();
7563 
7564 	return ret;
7565 }
7566 
7567 static int tg_set_rt_bandwidth(struct task_group *tg,
7568 		u64 rt_period, u64 rt_runtime)
7569 {
7570 	int i, err = 0;
7571 
7572 	mutex_lock(&rt_constraints_mutex);
7573 	read_lock(&tasklist_lock);
7574 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7575 	if (err)
7576 		goto unlock;
7577 
7578 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7579 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7580 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7581 
7582 	for_each_possible_cpu(i) {
7583 		struct rt_rq *rt_rq = tg->rt_rq[i];
7584 
7585 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7586 		rt_rq->rt_runtime = rt_runtime;
7587 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7588 	}
7589 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7590 unlock:
7591 	read_unlock(&tasklist_lock);
7592 	mutex_unlock(&rt_constraints_mutex);
7593 
7594 	return err;
7595 }
7596 
7597 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7598 {
7599 	u64 rt_runtime, rt_period;
7600 
7601 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7602 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7603 	if (rt_runtime_us < 0)
7604 		rt_runtime = RUNTIME_INF;
7605 
7606 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7607 }
7608 
7609 static long sched_group_rt_runtime(struct task_group *tg)
7610 {
7611 	u64 rt_runtime_us;
7612 
7613 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7614 		return -1;
7615 
7616 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7617 	do_div(rt_runtime_us, NSEC_PER_USEC);
7618 	return rt_runtime_us;
7619 }
7620 
7621 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7622 {
7623 	u64 rt_runtime, rt_period;
7624 
7625 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7626 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7627 
7628 	if (rt_period == 0)
7629 		return -EINVAL;
7630 
7631 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7632 }
7633 
7634 static long sched_group_rt_period(struct task_group *tg)
7635 {
7636 	u64 rt_period_us;
7637 
7638 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7639 	do_div(rt_period_us, NSEC_PER_USEC);
7640 	return rt_period_us;
7641 }
7642 #endif /* CONFIG_RT_GROUP_SCHED */
7643 
7644 #ifdef CONFIG_RT_GROUP_SCHED
7645 static int sched_rt_global_constraints(void)
7646 {
7647 	int ret = 0;
7648 
7649 	mutex_lock(&rt_constraints_mutex);
7650 	read_lock(&tasklist_lock);
7651 	ret = __rt_schedulable(NULL, 0, 0);
7652 	read_unlock(&tasklist_lock);
7653 	mutex_unlock(&rt_constraints_mutex);
7654 
7655 	return ret;
7656 }
7657 
7658 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7659 {
7660 	/* Don't accept realtime tasks when there is no way for them to run */
7661 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7662 		return 0;
7663 
7664 	return 1;
7665 }
7666 
7667 #else /* !CONFIG_RT_GROUP_SCHED */
7668 static int sched_rt_global_constraints(void)
7669 {
7670 	unsigned long flags;
7671 	int i, ret = 0;
7672 
7673 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7674 	for_each_possible_cpu(i) {
7675 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7676 
7677 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7678 		rt_rq->rt_runtime = global_rt_runtime();
7679 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7680 	}
7681 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7682 
7683 	return ret;
7684 }
7685 #endif /* CONFIG_RT_GROUP_SCHED */
7686 
7687 static int sched_dl_global_constraints(void)
7688 {
7689 	u64 runtime = global_rt_runtime();
7690 	u64 period = global_rt_period();
7691 	u64 new_bw = to_ratio(period, runtime);
7692 	struct dl_bw *dl_b;
7693 	int cpu, ret = 0;
7694 	unsigned long flags;
7695 
7696 	/*
7697 	 * Here we want to check the bandwidth not being set to some
7698 	 * value smaller than the currently allocated bandwidth in
7699 	 * any of the root_domains.
7700 	 *
7701 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7702 	 * cycling on root_domains... Discussion on different/better
7703 	 * solutions is welcome!
7704 	 */
7705 	for_each_possible_cpu(cpu) {
7706 		rcu_read_lock_sched();
7707 		dl_b = dl_bw_of(cpu);
7708 
7709 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7710 		if (new_bw < dl_b->total_bw)
7711 			ret = -EBUSY;
7712 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7713 
7714 		rcu_read_unlock_sched();
7715 
7716 		if (ret)
7717 			break;
7718 	}
7719 
7720 	return ret;
7721 }
7722 
7723 static void sched_dl_do_global(void)
7724 {
7725 	u64 new_bw = -1;
7726 	struct dl_bw *dl_b;
7727 	int cpu;
7728 	unsigned long flags;
7729 
7730 	def_dl_bandwidth.dl_period = global_rt_period();
7731 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7732 
7733 	if (global_rt_runtime() != RUNTIME_INF)
7734 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7735 
7736 	/*
7737 	 * FIXME: As above...
7738 	 */
7739 	for_each_possible_cpu(cpu) {
7740 		rcu_read_lock_sched();
7741 		dl_b = dl_bw_of(cpu);
7742 
7743 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7744 		dl_b->bw = new_bw;
7745 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7746 
7747 		rcu_read_unlock_sched();
7748 	}
7749 }
7750 
7751 static int sched_rt_global_validate(void)
7752 {
7753 	if (sysctl_sched_rt_period <= 0)
7754 		return -EINVAL;
7755 
7756 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7757 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7758 		return -EINVAL;
7759 
7760 	return 0;
7761 }
7762 
7763 static void sched_rt_do_global(void)
7764 {
7765 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7766 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7767 }
7768 
7769 int sched_rt_handler(struct ctl_table *table, int write,
7770 		void __user *buffer, size_t *lenp,
7771 		loff_t *ppos)
7772 {
7773 	int old_period, old_runtime;
7774 	static DEFINE_MUTEX(mutex);
7775 	int ret;
7776 
7777 	mutex_lock(&mutex);
7778 	old_period = sysctl_sched_rt_period;
7779 	old_runtime = sysctl_sched_rt_runtime;
7780 
7781 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7782 
7783 	if (!ret && write) {
7784 		ret = sched_rt_global_validate();
7785 		if (ret)
7786 			goto undo;
7787 
7788 		ret = sched_rt_global_constraints();
7789 		if (ret)
7790 			goto undo;
7791 
7792 		ret = sched_dl_global_constraints();
7793 		if (ret)
7794 			goto undo;
7795 
7796 		sched_rt_do_global();
7797 		sched_dl_do_global();
7798 	}
7799 	if (0) {
7800 undo:
7801 		sysctl_sched_rt_period = old_period;
7802 		sysctl_sched_rt_runtime = old_runtime;
7803 	}
7804 	mutex_unlock(&mutex);
7805 
7806 	return ret;
7807 }
7808 
7809 int sched_rr_handler(struct ctl_table *table, int write,
7810 		void __user *buffer, size_t *lenp,
7811 		loff_t *ppos)
7812 {
7813 	int ret;
7814 	static DEFINE_MUTEX(mutex);
7815 
7816 	mutex_lock(&mutex);
7817 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7818 	/* make sure that internally we keep jiffies */
7819 	/* also, writing zero resets timeslice to default */
7820 	if (!ret && write) {
7821 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7822 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7823 	}
7824 	mutex_unlock(&mutex);
7825 	return ret;
7826 }
7827 
7828 #ifdef CONFIG_CGROUP_SCHED
7829 
7830 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7831 {
7832 	return css ? container_of(css, struct task_group, css) : NULL;
7833 }
7834 
7835 static struct cgroup_subsys_state *
7836 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7837 {
7838 	struct task_group *parent = css_tg(parent_css);
7839 	struct task_group *tg;
7840 
7841 	if (!parent) {
7842 		/* This is early initialization for the top cgroup */
7843 		return &root_task_group.css;
7844 	}
7845 
7846 	tg = sched_create_group(parent);
7847 	if (IS_ERR(tg))
7848 		return ERR_PTR(-ENOMEM);
7849 
7850 	return &tg->css;
7851 }
7852 
7853 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7854 {
7855 	struct task_group *tg = css_tg(css);
7856 	struct task_group *parent = css_tg(css->parent);
7857 
7858 	if (parent)
7859 		sched_online_group(tg, parent);
7860 	return 0;
7861 }
7862 
7863 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7864 {
7865 	struct task_group *tg = css_tg(css);
7866 
7867 	sched_destroy_group(tg);
7868 }
7869 
7870 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7871 {
7872 	struct task_group *tg = css_tg(css);
7873 
7874 	sched_offline_group(tg);
7875 }
7876 
7877 static void cpu_cgroup_fork(struct task_struct *task)
7878 {
7879 	sched_move_task(task);
7880 }
7881 
7882 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7883 				 struct cgroup_taskset *tset)
7884 {
7885 	struct task_struct *task;
7886 
7887 	cgroup_taskset_for_each(task, tset) {
7888 #ifdef CONFIG_RT_GROUP_SCHED
7889 		if (!sched_rt_can_attach(css_tg(css), task))
7890 			return -EINVAL;
7891 #else
7892 		/* We don't support RT-tasks being in separate groups */
7893 		if (task->sched_class != &fair_sched_class)
7894 			return -EINVAL;
7895 #endif
7896 	}
7897 	return 0;
7898 }
7899 
7900 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7901 			      struct cgroup_taskset *tset)
7902 {
7903 	struct task_struct *task;
7904 
7905 	cgroup_taskset_for_each(task, tset)
7906 		sched_move_task(task);
7907 }
7908 
7909 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7910 			    struct cgroup_subsys_state *old_css,
7911 			    struct task_struct *task)
7912 {
7913 	/*
7914 	 * cgroup_exit() is called in the copy_process() failure path.
7915 	 * Ignore this case since the task hasn't ran yet, this avoids
7916 	 * trying to poke a half freed task state from generic code.
7917 	 */
7918 	if (!(task->flags & PF_EXITING))
7919 		return;
7920 
7921 	sched_move_task(task);
7922 }
7923 
7924 #ifdef CONFIG_FAIR_GROUP_SCHED
7925 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7926 				struct cftype *cftype, u64 shareval)
7927 {
7928 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7929 }
7930 
7931 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7932 			       struct cftype *cft)
7933 {
7934 	struct task_group *tg = css_tg(css);
7935 
7936 	return (u64) scale_load_down(tg->shares);
7937 }
7938 
7939 #ifdef CONFIG_CFS_BANDWIDTH
7940 static DEFINE_MUTEX(cfs_constraints_mutex);
7941 
7942 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7943 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7944 
7945 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7946 
7947 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7948 {
7949 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7950 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7951 
7952 	if (tg == &root_task_group)
7953 		return -EINVAL;
7954 
7955 	/*
7956 	 * Ensure we have at some amount of bandwidth every period.  This is
7957 	 * to prevent reaching a state of large arrears when throttled via
7958 	 * entity_tick() resulting in prolonged exit starvation.
7959 	 */
7960 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7961 		return -EINVAL;
7962 
7963 	/*
7964 	 * Likewise, bound things on the otherside by preventing insane quota
7965 	 * periods.  This also allows us to normalize in computing quota
7966 	 * feasibility.
7967 	 */
7968 	if (period > max_cfs_quota_period)
7969 		return -EINVAL;
7970 
7971 	/*
7972 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7973 	 * unthrottle_offline_cfs_rqs().
7974 	 */
7975 	get_online_cpus();
7976 	mutex_lock(&cfs_constraints_mutex);
7977 	ret = __cfs_schedulable(tg, period, quota);
7978 	if (ret)
7979 		goto out_unlock;
7980 
7981 	runtime_enabled = quota != RUNTIME_INF;
7982 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7983 	/*
7984 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7985 	 * before making related changes, and on->off must occur afterwards
7986 	 */
7987 	if (runtime_enabled && !runtime_was_enabled)
7988 		cfs_bandwidth_usage_inc();
7989 	raw_spin_lock_irq(&cfs_b->lock);
7990 	cfs_b->period = ns_to_ktime(period);
7991 	cfs_b->quota = quota;
7992 
7993 	__refill_cfs_bandwidth_runtime(cfs_b);
7994 	/* restart the period timer (if active) to handle new period expiry */
7995 	if (runtime_enabled && cfs_b->timer_active) {
7996 		/* force a reprogram */
7997 		__start_cfs_bandwidth(cfs_b, true);
7998 	}
7999 	raw_spin_unlock_irq(&cfs_b->lock);
8000 
8001 	for_each_online_cpu(i) {
8002 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8003 		struct rq *rq = cfs_rq->rq;
8004 
8005 		raw_spin_lock_irq(&rq->lock);
8006 		cfs_rq->runtime_enabled = runtime_enabled;
8007 		cfs_rq->runtime_remaining = 0;
8008 
8009 		if (cfs_rq->throttled)
8010 			unthrottle_cfs_rq(cfs_rq);
8011 		raw_spin_unlock_irq(&rq->lock);
8012 	}
8013 	if (runtime_was_enabled && !runtime_enabled)
8014 		cfs_bandwidth_usage_dec();
8015 out_unlock:
8016 	mutex_unlock(&cfs_constraints_mutex);
8017 	put_online_cpus();
8018 
8019 	return ret;
8020 }
8021 
8022 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8023 {
8024 	u64 quota, period;
8025 
8026 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8027 	if (cfs_quota_us < 0)
8028 		quota = RUNTIME_INF;
8029 	else
8030 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8031 
8032 	return tg_set_cfs_bandwidth(tg, period, quota);
8033 }
8034 
8035 long tg_get_cfs_quota(struct task_group *tg)
8036 {
8037 	u64 quota_us;
8038 
8039 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8040 		return -1;
8041 
8042 	quota_us = tg->cfs_bandwidth.quota;
8043 	do_div(quota_us, NSEC_PER_USEC);
8044 
8045 	return quota_us;
8046 }
8047 
8048 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8049 {
8050 	u64 quota, period;
8051 
8052 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8053 	quota = tg->cfs_bandwidth.quota;
8054 
8055 	return tg_set_cfs_bandwidth(tg, period, quota);
8056 }
8057 
8058 long tg_get_cfs_period(struct task_group *tg)
8059 {
8060 	u64 cfs_period_us;
8061 
8062 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8063 	do_div(cfs_period_us, NSEC_PER_USEC);
8064 
8065 	return cfs_period_us;
8066 }
8067 
8068 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8069 				  struct cftype *cft)
8070 {
8071 	return tg_get_cfs_quota(css_tg(css));
8072 }
8073 
8074 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8075 				   struct cftype *cftype, s64 cfs_quota_us)
8076 {
8077 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8078 }
8079 
8080 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8081 				   struct cftype *cft)
8082 {
8083 	return tg_get_cfs_period(css_tg(css));
8084 }
8085 
8086 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8087 				    struct cftype *cftype, u64 cfs_period_us)
8088 {
8089 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8090 }
8091 
8092 struct cfs_schedulable_data {
8093 	struct task_group *tg;
8094 	u64 period, quota;
8095 };
8096 
8097 /*
8098  * normalize group quota/period to be quota/max_period
8099  * note: units are usecs
8100  */
8101 static u64 normalize_cfs_quota(struct task_group *tg,
8102 			       struct cfs_schedulable_data *d)
8103 {
8104 	u64 quota, period;
8105 
8106 	if (tg == d->tg) {
8107 		period = d->period;
8108 		quota = d->quota;
8109 	} else {
8110 		period = tg_get_cfs_period(tg);
8111 		quota = tg_get_cfs_quota(tg);
8112 	}
8113 
8114 	/* note: these should typically be equivalent */
8115 	if (quota == RUNTIME_INF || quota == -1)
8116 		return RUNTIME_INF;
8117 
8118 	return to_ratio(period, quota);
8119 }
8120 
8121 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8122 {
8123 	struct cfs_schedulable_data *d = data;
8124 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8125 	s64 quota = 0, parent_quota = -1;
8126 
8127 	if (!tg->parent) {
8128 		quota = RUNTIME_INF;
8129 	} else {
8130 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8131 
8132 		quota = normalize_cfs_quota(tg, d);
8133 		parent_quota = parent_b->hierarchical_quota;
8134 
8135 		/*
8136 		 * ensure max(child_quota) <= parent_quota, inherit when no
8137 		 * limit is set
8138 		 */
8139 		if (quota == RUNTIME_INF)
8140 			quota = parent_quota;
8141 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8142 			return -EINVAL;
8143 	}
8144 	cfs_b->hierarchical_quota = quota;
8145 
8146 	return 0;
8147 }
8148 
8149 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8150 {
8151 	int ret;
8152 	struct cfs_schedulable_data data = {
8153 		.tg = tg,
8154 		.period = period,
8155 		.quota = quota,
8156 	};
8157 
8158 	if (quota != RUNTIME_INF) {
8159 		do_div(data.period, NSEC_PER_USEC);
8160 		do_div(data.quota, NSEC_PER_USEC);
8161 	}
8162 
8163 	rcu_read_lock();
8164 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8165 	rcu_read_unlock();
8166 
8167 	return ret;
8168 }
8169 
8170 static int cpu_stats_show(struct seq_file *sf, void *v)
8171 {
8172 	struct task_group *tg = css_tg(seq_css(sf));
8173 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8174 
8175 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8176 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8177 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8178 
8179 	return 0;
8180 }
8181 #endif /* CONFIG_CFS_BANDWIDTH */
8182 #endif /* CONFIG_FAIR_GROUP_SCHED */
8183 
8184 #ifdef CONFIG_RT_GROUP_SCHED
8185 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8186 				struct cftype *cft, s64 val)
8187 {
8188 	return sched_group_set_rt_runtime(css_tg(css), val);
8189 }
8190 
8191 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8192 			       struct cftype *cft)
8193 {
8194 	return sched_group_rt_runtime(css_tg(css));
8195 }
8196 
8197 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8198 				    struct cftype *cftype, u64 rt_period_us)
8199 {
8200 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8201 }
8202 
8203 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8204 				   struct cftype *cft)
8205 {
8206 	return sched_group_rt_period(css_tg(css));
8207 }
8208 #endif /* CONFIG_RT_GROUP_SCHED */
8209 
8210 static struct cftype cpu_files[] = {
8211 #ifdef CONFIG_FAIR_GROUP_SCHED
8212 	{
8213 		.name = "shares",
8214 		.read_u64 = cpu_shares_read_u64,
8215 		.write_u64 = cpu_shares_write_u64,
8216 	},
8217 #endif
8218 #ifdef CONFIG_CFS_BANDWIDTH
8219 	{
8220 		.name = "cfs_quota_us",
8221 		.read_s64 = cpu_cfs_quota_read_s64,
8222 		.write_s64 = cpu_cfs_quota_write_s64,
8223 	},
8224 	{
8225 		.name = "cfs_period_us",
8226 		.read_u64 = cpu_cfs_period_read_u64,
8227 		.write_u64 = cpu_cfs_period_write_u64,
8228 	},
8229 	{
8230 		.name = "stat",
8231 		.seq_show = cpu_stats_show,
8232 	},
8233 #endif
8234 #ifdef CONFIG_RT_GROUP_SCHED
8235 	{
8236 		.name = "rt_runtime_us",
8237 		.read_s64 = cpu_rt_runtime_read,
8238 		.write_s64 = cpu_rt_runtime_write,
8239 	},
8240 	{
8241 		.name = "rt_period_us",
8242 		.read_u64 = cpu_rt_period_read_uint,
8243 		.write_u64 = cpu_rt_period_write_uint,
8244 	},
8245 #endif
8246 	{ }	/* terminate */
8247 };
8248 
8249 struct cgroup_subsys cpu_cgrp_subsys = {
8250 	.css_alloc	= cpu_cgroup_css_alloc,
8251 	.css_free	= cpu_cgroup_css_free,
8252 	.css_online	= cpu_cgroup_css_online,
8253 	.css_offline	= cpu_cgroup_css_offline,
8254 	.fork		= cpu_cgroup_fork,
8255 	.can_attach	= cpu_cgroup_can_attach,
8256 	.attach		= cpu_cgroup_attach,
8257 	.exit		= cpu_cgroup_exit,
8258 	.legacy_cftypes	= cpu_files,
8259 	.early_init	= 1,
8260 };
8261 
8262 #endif	/* CONFIG_CGROUP_SCHED */
8263 
8264 void dump_cpu_task(int cpu)
8265 {
8266 	pr_info("Task dump for CPU %d:\n", cpu);
8267 	sched_show_task(cpu_curr(cpu));
8268 }
8269