xref: /linux/kernel/sched/core.c (revision 40840afa53bed05b990b201d749dfee3bd6e7e42)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 #include <linux/livepatch_sched.h>
70 
71 #ifdef CONFIG_PREEMPT_DYNAMIC
72 # ifdef CONFIG_GENERIC_ENTRY
73 #  include <linux/entry-common.h>
74 # endif
75 #endif
76 
77 #include <uapi/linux/sched/types.h>
78 
79 #include <asm/irq_regs.h>
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <linux/sched/rseq_api.h>
85 #include <trace/events/sched.h>
86 #include <trace/events/ipi.h>
87 #undef CREATE_TRACE_POINTS
88 
89 #include "sched.h"
90 #include "stats.h"
91 
92 #include "autogroup.h"
93 #include "pelt.h"
94 #include "smp.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 
103 /*
104  * Export tracepoints that act as a bare tracehook (ie: have no trace event
105  * associated with them) to allow external modules to probe them.
106  */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119 
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121 
122 /*
123  * Debugging: various feature bits
124  *
125  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
126  * sysctl_sched_features, defined in sched.h, to allow constants propagation
127  * at compile time and compiler optimization based on features default.
128  */
129 #define SCHED_FEAT(name, enabled)	\
130 	(1UL << __SCHED_FEAT_##name) * enabled |
131 __read_mostly unsigned int sysctl_sched_features =
132 #include "features.h"
133 	0;
134 #undef SCHED_FEAT
135 
136 /*
137  * Print a warning if need_resched is set for the given duration (if
138  * LATENCY_WARN is enabled).
139  *
140  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
141  * per boot.
142  */
143 __read_mostly int sysctl_resched_latency_warn_ms = 100;
144 __read_mostly int sysctl_resched_latency_warn_once = 1;
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (p->dl_server)
165 		return -1; /* deadline */
166 
167 	if (rt_or_dl_prio(p->prio))
168 		return p->prio; /* [-1, 99] */
169 
170 	if (p->sched_class == &idle_sched_class)
171 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
172 
173 	if (task_on_scx(p))
174 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
175 
176 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
177 }
178 
179 /*
180  * l(a,b)
181  * le(a,b) := !l(b,a)
182  * g(a,b)  := l(b,a)
183  * ge(a,b) := !l(a,b)
184  */
185 
186 /* real prio, less is less */
187 static inline bool prio_less(const struct task_struct *a,
188 			     const struct task_struct *b, bool in_fi)
189 {
190 
191 	int pa = __task_prio(a), pb = __task_prio(b);
192 
193 	if (-pa < -pb)
194 		return true;
195 
196 	if (-pb < -pa)
197 		return false;
198 
199 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
200 		const struct sched_dl_entity *a_dl, *b_dl;
201 
202 		a_dl = &a->dl;
203 		/*
204 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
205 		 * __task_prio() can return -1 (for DL) even for those. In that
206 		 * case, get to the dl_server's DL entity.
207 		 */
208 		if (a->dl_server)
209 			a_dl = a->dl_server;
210 
211 		b_dl = &b->dl;
212 		if (b->dl_server)
213 			b_dl = b->dl_server;
214 
215 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
216 	}
217 
218 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
219 		return cfs_prio_less(a, b, in_fi);
220 
221 #ifdef CONFIG_SCHED_CLASS_EXT
222 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
223 		return scx_prio_less(a, b, in_fi);
224 #endif
225 
226 	return false;
227 }
228 
229 static inline bool __sched_core_less(const struct task_struct *a,
230 				     const struct task_struct *b)
231 {
232 	if (a->core_cookie < b->core_cookie)
233 		return true;
234 
235 	if (a->core_cookie > b->core_cookie)
236 		return false;
237 
238 	/* flip prio, so high prio is leftmost */
239 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
240 		return true;
241 
242 	return false;
243 }
244 
245 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
246 
247 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
248 {
249 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
250 }
251 
252 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
253 {
254 	const struct task_struct *p = __node_2_sc(node);
255 	unsigned long cookie = (unsigned long)key;
256 
257 	if (cookie < p->core_cookie)
258 		return -1;
259 
260 	if (cookie > p->core_cookie)
261 		return 1;
262 
263 	return 0;
264 }
265 
266 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
267 {
268 	if (p->se.sched_delayed)
269 		return;
270 
271 	rq->core->core_task_seq++;
272 
273 	if (!p->core_cookie)
274 		return;
275 
276 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
277 }
278 
279 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
280 {
281 	if (p->se.sched_delayed)
282 		return;
283 
284 	rq->core->core_task_seq++;
285 
286 	if (sched_core_enqueued(p)) {
287 		rb_erase(&p->core_node, &rq->core_tree);
288 		RB_CLEAR_NODE(&p->core_node);
289 	}
290 
291 	/*
292 	 * Migrating the last task off the cpu, with the cpu in forced idle
293 	 * state. Reschedule to create an accounting edge for forced idle,
294 	 * and re-examine whether the core is still in forced idle state.
295 	 */
296 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
297 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
298 		resched_curr(rq);
299 }
300 
301 static int sched_task_is_throttled(struct task_struct *p, int cpu)
302 {
303 	if (p->sched_class->task_is_throttled)
304 		return p->sched_class->task_is_throttled(p, cpu);
305 
306 	return 0;
307 }
308 
309 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
310 {
311 	struct rb_node *node = &p->core_node;
312 	int cpu = task_cpu(p);
313 
314 	do {
315 		node = rb_next(node);
316 		if (!node)
317 			return NULL;
318 
319 		p = __node_2_sc(node);
320 		if (p->core_cookie != cookie)
321 			return NULL;
322 
323 	} while (sched_task_is_throttled(p, cpu));
324 
325 	return p;
326 }
327 
328 /*
329  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
330  * If no suitable task is found, NULL will be returned.
331  */
332 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
333 {
334 	struct task_struct *p;
335 	struct rb_node *node;
336 
337 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
338 	if (!node)
339 		return NULL;
340 
341 	p = __node_2_sc(node);
342 	if (!sched_task_is_throttled(p, rq->cpu))
343 		return p;
344 
345 	return sched_core_next(p, cookie);
346 }
347 
348 /*
349  * Magic required such that:
350  *
351  *	raw_spin_rq_lock(rq);
352  *	...
353  *	raw_spin_rq_unlock(rq);
354  *
355  * ends up locking and unlocking the _same_ lock, and all CPUs
356  * always agree on what rq has what lock.
357  *
358  * XXX entirely possible to selectively enable cores, don't bother for now.
359  */
360 
361 static DEFINE_MUTEX(sched_core_mutex);
362 static atomic_t sched_core_count;
363 static struct cpumask sched_core_mask;
364 
365 static void sched_core_lock(int cpu, unsigned long *flags)
366 {
367 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
368 	int t, i = 0;
369 
370 	local_irq_save(*flags);
371 	for_each_cpu(t, smt_mask)
372 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
373 }
374 
375 static void sched_core_unlock(int cpu, unsigned long *flags)
376 {
377 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
378 	int t;
379 
380 	for_each_cpu(t, smt_mask)
381 		raw_spin_unlock(&cpu_rq(t)->__lock);
382 	local_irq_restore(*flags);
383 }
384 
385 static void __sched_core_flip(bool enabled)
386 {
387 	unsigned long flags;
388 	int cpu, t;
389 
390 	cpus_read_lock();
391 
392 	/*
393 	 * Toggle the online cores, one by one.
394 	 */
395 	cpumask_copy(&sched_core_mask, cpu_online_mask);
396 	for_each_cpu(cpu, &sched_core_mask) {
397 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
398 
399 		sched_core_lock(cpu, &flags);
400 
401 		for_each_cpu(t, smt_mask)
402 			cpu_rq(t)->core_enabled = enabled;
403 
404 		cpu_rq(cpu)->core->core_forceidle_start = 0;
405 
406 		sched_core_unlock(cpu, &flags);
407 
408 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
409 	}
410 
411 	/*
412 	 * Toggle the offline CPUs.
413 	 */
414 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
415 		cpu_rq(cpu)->core_enabled = enabled;
416 
417 	cpus_read_unlock();
418 }
419 
420 static void sched_core_assert_empty(void)
421 {
422 	int cpu;
423 
424 	for_each_possible_cpu(cpu)
425 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
426 }
427 
428 static void __sched_core_enable(void)
429 {
430 	static_branch_enable(&__sched_core_enabled);
431 	/*
432 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
433 	 * and future ones will observe !sched_core_disabled().
434 	 */
435 	synchronize_rcu();
436 	__sched_core_flip(true);
437 	sched_core_assert_empty();
438 }
439 
440 static void __sched_core_disable(void)
441 {
442 	sched_core_assert_empty();
443 	__sched_core_flip(false);
444 	static_branch_disable(&__sched_core_enabled);
445 }
446 
447 void sched_core_get(void)
448 {
449 	if (atomic_inc_not_zero(&sched_core_count))
450 		return;
451 
452 	mutex_lock(&sched_core_mutex);
453 	if (!atomic_read(&sched_core_count))
454 		__sched_core_enable();
455 
456 	smp_mb__before_atomic();
457 	atomic_inc(&sched_core_count);
458 	mutex_unlock(&sched_core_mutex);
459 }
460 
461 static void __sched_core_put(struct work_struct *work)
462 {
463 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
464 		__sched_core_disable();
465 		mutex_unlock(&sched_core_mutex);
466 	}
467 }
468 
469 void sched_core_put(void)
470 {
471 	static DECLARE_WORK(_work, __sched_core_put);
472 
473 	/*
474 	 * "There can be only one"
475 	 *
476 	 * Either this is the last one, or we don't actually need to do any
477 	 * 'work'. If it is the last *again*, we rely on
478 	 * WORK_STRUCT_PENDING_BIT.
479 	 */
480 	if (!atomic_add_unless(&sched_core_count, -1, 1))
481 		schedule_work(&_work);
482 }
483 
484 #else /* !CONFIG_SCHED_CORE */
485 
486 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
487 static inline void
488 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
489 
490 #endif /* CONFIG_SCHED_CORE */
491 
492 /* need a wrapper since we may need to trace from modules */
493 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp);
494 
495 /* Call via the helper macro trace_set_current_state. */
496 void __trace_set_current_state(int state_value)
497 {
498 	trace_sched_set_state_tp(current, state_value);
499 }
500 EXPORT_SYMBOL(__trace_set_current_state);
501 
502 /*
503  * Serialization rules:
504  *
505  * Lock order:
506  *
507  *   p->pi_lock
508  *     rq->lock
509  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
510  *
511  *  rq1->lock
512  *    rq2->lock  where: rq1 < rq2
513  *
514  * Regular state:
515  *
516  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
517  * local CPU's rq->lock, it optionally removes the task from the runqueue and
518  * always looks at the local rq data structures to find the most eligible task
519  * to run next.
520  *
521  * Task enqueue is also under rq->lock, possibly taken from another CPU.
522  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
523  * the local CPU to avoid bouncing the runqueue state around [ see
524  * ttwu_queue_wakelist() ]
525  *
526  * Task wakeup, specifically wakeups that involve migration, are horribly
527  * complicated to avoid having to take two rq->locks.
528  *
529  * Special state:
530  *
531  * System-calls and anything external will use task_rq_lock() which acquires
532  * both p->pi_lock and rq->lock. As a consequence the state they change is
533  * stable while holding either lock:
534  *
535  *  - sched_setaffinity()/
536  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
537  *  - set_user_nice():		p->se.load, p->*prio
538  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
539  *				p->se.load, p->rt_priority,
540  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
541  *  - sched_setnuma():		p->numa_preferred_nid
542  *  - sched_move_task():	p->sched_task_group
543  *  - uclamp_update_active()	p->uclamp*
544  *
545  * p->state <- TASK_*:
546  *
547  *   is changed locklessly using set_current_state(), __set_current_state() or
548  *   set_special_state(), see their respective comments, or by
549  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
550  *   concurrent self.
551  *
552  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
553  *
554  *   is set by activate_task() and cleared by deactivate_task(), under
555  *   rq->lock. Non-zero indicates the task is runnable, the special
556  *   ON_RQ_MIGRATING state is used for migration without holding both
557  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
558  *
559  *   Additionally it is possible to be ->on_rq but still be considered not
560  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
561  *   but will be dequeued as soon as they get picked again. See the
562  *   task_is_runnable() helper.
563  *
564  * p->on_cpu <- { 0, 1 }:
565  *
566  *   is set by prepare_task() and cleared by finish_task() such that it will be
567  *   set before p is scheduled-in and cleared after p is scheduled-out, both
568  *   under rq->lock. Non-zero indicates the task is running on its CPU.
569  *
570  *   [ The astute reader will observe that it is possible for two tasks on one
571  *     CPU to have ->on_cpu = 1 at the same time. ]
572  *
573  * task_cpu(p): is changed by set_task_cpu(), the rules are:
574  *
575  *  - Don't call set_task_cpu() on a blocked task:
576  *
577  *    We don't care what CPU we're not running on, this simplifies hotplug,
578  *    the CPU assignment of blocked tasks isn't required to be valid.
579  *
580  *  - for try_to_wake_up(), called under p->pi_lock:
581  *
582  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
583  *
584  *  - for migration called under rq->lock:
585  *    [ see task_on_rq_migrating() in task_rq_lock() ]
586  *
587  *    o move_queued_task()
588  *    o detach_task()
589  *
590  *  - for migration called under double_rq_lock():
591  *
592  *    o __migrate_swap_task()
593  *    o push_rt_task() / pull_rt_task()
594  *    o push_dl_task() / pull_dl_task()
595  *    o dl_task_offline_migration()
596  *
597  */
598 
599 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
600 {
601 	raw_spinlock_t *lock;
602 
603 	/* Matches synchronize_rcu() in __sched_core_enable() */
604 	preempt_disable();
605 	if (sched_core_disabled()) {
606 		raw_spin_lock_nested(&rq->__lock, subclass);
607 		/* preempt_count *MUST* be > 1 */
608 		preempt_enable_no_resched();
609 		return;
610 	}
611 
612 	for (;;) {
613 		lock = __rq_lockp(rq);
614 		raw_spin_lock_nested(lock, subclass);
615 		if (likely(lock == __rq_lockp(rq))) {
616 			/* preempt_count *MUST* be > 1 */
617 			preempt_enable_no_resched();
618 			return;
619 		}
620 		raw_spin_unlock(lock);
621 	}
622 }
623 
624 bool raw_spin_rq_trylock(struct rq *rq)
625 {
626 	raw_spinlock_t *lock;
627 	bool ret;
628 
629 	/* Matches synchronize_rcu() in __sched_core_enable() */
630 	preempt_disable();
631 	if (sched_core_disabled()) {
632 		ret = raw_spin_trylock(&rq->__lock);
633 		preempt_enable();
634 		return ret;
635 	}
636 
637 	for (;;) {
638 		lock = __rq_lockp(rq);
639 		ret = raw_spin_trylock(lock);
640 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
641 			preempt_enable();
642 			return ret;
643 		}
644 		raw_spin_unlock(lock);
645 	}
646 }
647 
648 void raw_spin_rq_unlock(struct rq *rq)
649 {
650 	raw_spin_unlock(rq_lockp(rq));
651 }
652 
653 #ifdef CONFIG_SMP
654 /*
655  * double_rq_lock - safely lock two runqueues
656  */
657 void double_rq_lock(struct rq *rq1, struct rq *rq2)
658 {
659 	lockdep_assert_irqs_disabled();
660 
661 	if (rq_order_less(rq2, rq1))
662 		swap(rq1, rq2);
663 
664 	raw_spin_rq_lock(rq1);
665 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
666 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
667 
668 	double_rq_clock_clear_update(rq1, rq2);
669 }
670 #endif
671 
672 /*
673  * __task_rq_lock - lock the rq @p resides on.
674  */
675 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
676 	__acquires(rq->lock)
677 {
678 	struct rq *rq;
679 
680 	lockdep_assert_held(&p->pi_lock);
681 
682 	for (;;) {
683 		rq = task_rq(p);
684 		raw_spin_rq_lock(rq);
685 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
686 			rq_pin_lock(rq, rf);
687 			return rq;
688 		}
689 		raw_spin_rq_unlock(rq);
690 
691 		while (unlikely(task_on_rq_migrating(p)))
692 			cpu_relax();
693 	}
694 }
695 
696 /*
697  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
698  */
699 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
700 	__acquires(p->pi_lock)
701 	__acquires(rq->lock)
702 {
703 	struct rq *rq;
704 
705 	for (;;) {
706 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
707 		rq = task_rq(p);
708 		raw_spin_rq_lock(rq);
709 		/*
710 		 *	move_queued_task()		task_rq_lock()
711 		 *
712 		 *	ACQUIRE (rq->lock)
713 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
714 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
715 		 *	[S] ->cpu = new_cpu		[L] task_rq()
716 		 *					[L] ->on_rq
717 		 *	RELEASE (rq->lock)
718 		 *
719 		 * If we observe the old CPU in task_rq_lock(), the acquire of
720 		 * the old rq->lock will fully serialize against the stores.
721 		 *
722 		 * If we observe the new CPU in task_rq_lock(), the address
723 		 * dependency headed by '[L] rq = task_rq()' and the acquire
724 		 * will pair with the WMB to ensure we then also see migrating.
725 		 */
726 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
727 			rq_pin_lock(rq, rf);
728 			return rq;
729 		}
730 		raw_spin_rq_unlock(rq);
731 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
732 
733 		while (unlikely(task_on_rq_migrating(p)))
734 			cpu_relax();
735 	}
736 }
737 
738 /*
739  * RQ-clock updating methods:
740  */
741 
742 static void update_rq_clock_task(struct rq *rq, s64 delta)
743 {
744 /*
745  * In theory, the compile should just see 0 here, and optimize out the call
746  * to sched_rt_avg_update. But I don't trust it...
747  */
748 	s64 __maybe_unused steal = 0, irq_delta = 0;
749 
750 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
751 	if (irqtime_enabled()) {
752 		irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
753 
754 		/*
755 		 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 		 * this case when a previous update_rq_clock() happened inside a
757 		 * {soft,}IRQ region.
758 		 *
759 		 * When this happens, we stop ->clock_task and only update the
760 		 * prev_irq_time stamp to account for the part that fit, so that a next
761 		 * update will consume the rest. This ensures ->clock_task is
762 		 * monotonic.
763 		 *
764 		 * It does however cause some slight miss-attribution of {soft,}IRQ
765 		 * time, a more accurate solution would be to update the irq_time using
766 		 * the current rq->clock timestamp, except that would require using
767 		 * atomic ops.
768 		 */
769 		if (irq_delta > delta)
770 			irq_delta = delta;
771 
772 		rq->prev_irq_time += irq_delta;
773 		delta -= irq_delta;
774 		delayacct_irq(rq->curr, irq_delta);
775 	}
776 #endif
777 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
778 	if (static_key_false((&paravirt_steal_rq_enabled))) {
779 		u64 prev_steal;
780 
781 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
782 		steal -= rq->prev_steal_time_rq;
783 
784 		if (unlikely(steal > delta))
785 			steal = delta;
786 
787 		rq->prev_steal_time_rq = prev_steal;
788 		delta -= steal;
789 	}
790 #endif
791 
792 	rq->clock_task += delta;
793 
794 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
795 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
796 		update_irq_load_avg(rq, irq_delta + steal);
797 #endif
798 	update_rq_clock_pelt(rq, delta);
799 }
800 
801 void update_rq_clock(struct rq *rq)
802 {
803 	s64 delta;
804 	u64 clock;
805 
806 	lockdep_assert_rq_held(rq);
807 
808 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
809 		return;
810 
811 	if (sched_feat(WARN_DOUBLE_CLOCK))
812 		WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED);
813 	rq->clock_update_flags |= RQCF_UPDATED;
814 
815 	clock = sched_clock_cpu(cpu_of(rq));
816 	scx_rq_clock_update(rq, clock);
817 
818 	delta = clock - rq->clock;
819 	if (delta < 0)
820 		return;
821 	rq->clock += delta;
822 
823 	update_rq_clock_task(rq, delta);
824 }
825 
826 #ifdef CONFIG_SCHED_HRTICK
827 /*
828  * Use HR-timers to deliver accurate preemption points.
829  */
830 
831 static void hrtick_clear(struct rq *rq)
832 {
833 	if (hrtimer_active(&rq->hrtick_timer))
834 		hrtimer_cancel(&rq->hrtick_timer);
835 }
836 
837 /*
838  * High-resolution timer tick.
839  * Runs from hardirq context with interrupts disabled.
840  */
841 static enum hrtimer_restart hrtick(struct hrtimer *timer)
842 {
843 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
844 	struct rq_flags rf;
845 
846 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
847 
848 	rq_lock(rq, &rf);
849 	update_rq_clock(rq);
850 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
851 	rq_unlock(rq, &rf);
852 
853 	return HRTIMER_NORESTART;
854 }
855 
856 #ifdef CONFIG_SMP
857 
858 static void __hrtick_restart(struct rq *rq)
859 {
860 	struct hrtimer *timer = &rq->hrtick_timer;
861 	ktime_t time = rq->hrtick_time;
862 
863 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
864 }
865 
866 /*
867  * called from hardirq (IPI) context
868  */
869 static void __hrtick_start(void *arg)
870 {
871 	struct rq *rq = arg;
872 	struct rq_flags rf;
873 
874 	rq_lock(rq, &rf);
875 	__hrtick_restart(rq);
876 	rq_unlock(rq, &rf);
877 }
878 
879 /*
880  * Called to set the hrtick timer state.
881  *
882  * called with rq->lock held and IRQs disabled
883  */
884 void hrtick_start(struct rq *rq, u64 delay)
885 {
886 	struct hrtimer *timer = &rq->hrtick_timer;
887 	s64 delta;
888 
889 	/*
890 	 * Don't schedule slices shorter than 10000ns, that just
891 	 * doesn't make sense and can cause timer DoS.
892 	 */
893 	delta = max_t(s64, delay, 10000LL);
894 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
895 
896 	if (rq == this_rq())
897 		__hrtick_restart(rq);
898 	else
899 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
900 }
901 
902 #else
903 /*
904  * Called to set the hrtick timer state.
905  *
906  * called with rq->lock held and IRQs disabled
907  */
908 void hrtick_start(struct rq *rq, u64 delay)
909 {
910 	/*
911 	 * Don't schedule slices shorter than 10000ns, that just
912 	 * doesn't make sense. Rely on vruntime for fairness.
913 	 */
914 	delay = max_t(u64, delay, 10000LL);
915 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
916 		      HRTIMER_MODE_REL_PINNED_HARD);
917 }
918 
919 #endif /* CONFIG_SMP */
920 
921 static void hrtick_rq_init(struct rq *rq)
922 {
923 #ifdef CONFIG_SMP
924 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
925 #endif
926 	hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
927 }
928 #else	/* CONFIG_SCHED_HRTICK */
929 static inline void hrtick_clear(struct rq *rq)
930 {
931 }
932 
933 static inline void hrtick_rq_init(struct rq *rq)
934 {
935 }
936 #endif	/* CONFIG_SCHED_HRTICK */
937 
938 /*
939  * try_cmpxchg based fetch_or() macro so it works for different integer types:
940  */
941 #define fetch_or(ptr, mask)						\
942 	({								\
943 		typeof(ptr) _ptr = (ptr);				\
944 		typeof(mask) _mask = (mask);				\
945 		typeof(*_ptr) _val = *_ptr;				\
946 									\
947 		do {							\
948 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
949 	_val;								\
950 })
951 
952 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
953 /*
954  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
955  * this avoids any races wrt polling state changes and thereby avoids
956  * spurious IPIs.
957  */
958 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
959 {
960 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
961 }
962 
963 /*
964  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
965  *
966  * If this returns true, then the idle task promises to call
967  * sched_ttwu_pending() and reschedule soon.
968  */
969 static bool set_nr_if_polling(struct task_struct *p)
970 {
971 	struct thread_info *ti = task_thread_info(p);
972 	typeof(ti->flags) val = READ_ONCE(ti->flags);
973 
974 	do {
975 		if (!(val & _TIF_POLLING_NRFLAG))
976 			return false;
977 		if (val & _TIF_NEED_RESCHED)
978 			return true;
979 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
980 
981 	return true;
982 }
983 
984 #else
985 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
986 {
987 	set_ti_thread_flag(ti, tif);
988 	return true;
989 }
990 
991 #ifdef CONFIG_SMP
992 static inline bool set_nr_if_polling(struct task_struct *p)
993 {
994 	return false;
995 }
996 #endif
997 #endif
998 
999 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
1000 {
1001 	struct wake_q_node *node = &task->wake_q;
1002 
1003 	/*
1004 	 * Atomically grab the task, if ->wake_q is !nil already it means
1005 	 * it's already queued (either by us or someone else) and will get the
1006 	 * wakeup due to that.
1007 	 *
1008 	 * In order to ensure that a pending wakeup will observe our pending
1009 	 * state, even in the failed case, an explicit smp_mb() must be used.
1010 	 */
1011 	smp_mb__before_atomic();
1012 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1013 		return false;
1014 
1015 	/*
1016 	 * The head is context local, there can be no concurrency.
1017 	 */
1018 	*head->lastp = node;
1019 	head->lastp = &node->next;
1020 	return true;
1021 }
1022 
1023 /**
1024  * wake_q_add() - queue a wakeup for 'later' waking.
1025  * @head: the wake_q_head to add @task to
1026  * @task: the task to queue for 'later' wakeup
1027  *
1028  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1029  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1030  * instantly.
1031  *
1032  * This function must be used as-if it were wake_up_process(); IOW the task
1033  * must be ready to be woken at this location.
1034  */
1035 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1036 {
1037 	if (__wake_q_add(head, task))
1038 		get_task_struct(task);
1039 }
1040 
1041 /**
1042  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1043  * @head: the wake_q_head to add @task to
1044  * @task: the task to queue for 'later' wakeup
1045  *
1046  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1047  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1048  * instantly.
1049  *
1050  * This function must be used as-if it were wake_up_process(); IOW the task
1051  * must be ready to be woken at this location.
1052  *
1053  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1054  * that already hold reference to @task can call the 'safe' version and trust
1055  * wake_q to do the right thing depending whether or not the @task is already
1056  * queued for wakeup.
1057  */
1058 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1059 {
1060 	if (!__wake_q_add(head, task))
1061 		put_task_struct(task);
1062 }
1063 
1064 void wake_up_q(struct wake_q_head *head)
1065 {
1066 	struct wake_q_node *node = head->first;
1067 
1068 	while (node != WAKE_Q_TAIL) {
1069 		struct task_struct *task;
1070 
1071 		task = container_of(node, struct task_struct, wake_q);
1072 		node = node->next;
1073 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1074 		WRITE_ONCE(task->wake_q.next, NULL);
1075 		/* Task can safely be re-inserted now. */
1076 
1077 		/*
1078 		 * wake_up_process() executes a full barrier, which pairs with
1079 		 * the queueing in wake_q_add() so as not to miss wakeups.
1080 		 */
1081 		wake_up_process(task);
1082 		put_task_struct(task);
1083 	}
1084 }
1085 
1086 /*
1087  * resched_curr - mark rq's current task 'to be rescheduled now'.
1088  *
1089  * On UP this means the setting of the need_resched flag, on SMP it
1090  * might also involve a cross-CPU call to trigger the scheduler on
1091  * the target CPU.
1092  */
1093 static void __resched_curr(struct rq *rq, int tif)
1094 {
1095 	struct task_struct *curr = rq->curr;
1096 	struct thread_info *cti = task_thread_info(curr);
1097 	int cpu;
1098 
1099 	lockdep_assert_rq_held(rq);
1100 
1101 	/*
1102 	 * Always immediately preempt the idle task; no point in delaying doing
1103 	 * actual work.
1104 	 */
1105 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1106 		tif = TIF_NEED_RESCHED;
1107 
1108 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1109 		return;
1110 
1111 	cpu = cpu_of(rq);
1112 
1113 	if (cpu == smp_processor_id()) {
1114 		set_ti_thread_flag(cti, tif);
1115 		if (tif == TIF_NEED_RESCHED)
1116 			set_preempt_need_resched();
1117 		return;
1118 	}
1119 
1120 	if (set_nr_and_not_polling(cti, tif)) {
1121 		if (tif == TIF_NEED_RESCHED)
1122 			smp_send_reschedule(cpu);
1123 	} else {
1124 		trace_sched_wake_idle_without_ipi(cpu);
1125 	}
1126 }
1127 
1128 void resched_curr(struct rq *rq)
1129 {
1130 	__resched_curr(rq, TIF_NEED_RESCHED);
1131 }
1132 
1133 #ifdef CONFIG_PREEMPT_DYNAMIC
1134 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1135 static __always_inline bool dynamic_preempt_lazy(void)
1136 {
1137 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1138 }
1139 #else
1140 static __always_inline bool dynamic_preempt_lazy(void)
1141 {
1142 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1143 }
1144 #endif
1145 
1146 static __always_inline int get_lazy_tif_bit(void)
1147 {
1148 	if (dynamic_preempt_lazy())
1149 		return TIF_NEED_RESCHED_LAZY;
1150 
1151 	return TIF_NEED_RESCHED;
1152 }
1153 
1154 void resched_curr_lazy(struct rq *rq)
1155 {
1156 	__resched_curr(rq, get_lazy_tif_bit());
1157 }
1158 
1159 void resched_cpu(int cpu)
1160 {
1161 	struct rq *rq = cpu_rq(cpu);
1162 	unsigned long flags;
1163 
1164 	raw_spin_rq_lock_irqsave(rq, flags);
1165 	if (cpu_online(cpu) || cpu == smp_processor_id())
1166 		resched_curr(rq);
1167 	raw_spin_rq_unlock_irqrestore(rq, flags);
1168 }
1169 
1170 #ifdef CONFIG_SMP
1171 #ifdef CONFIG_NO_HZ_COMMON
1172 /*
1173  * In the semi idle case, use the nearest busy CPU for migrating timers
1174  * from an idle CPU.  This is good for power-savings.
1175  *
1176  * We don't do similar optimization for completely idle system, as
1177  * selecting an idle CPU will add more delays to the timers than intended
1178  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1179  */
1180 int get_nohz_timer_target(void)
1181 {
1182 	int i, cpu = smp_processor_id(), default_cpu = -1;
1183 	struct sched_domain *sd;
1184 	const struct cpumask *hk_mask;
1185 
1186 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1187 		if (!idle_cpu(cpu))
1188 			return cpu;
1189 		default_cpu = cpu;
1190 	}
1191 
1192 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1193 
1194 	guard(rcu)();
1195 
1196 	for_each_domain(cpu, sd) {
1197 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1198 			if (cpu == i)
1199 				continue;
1200 
1201 			if (!idle_cpu(i))
1202 				return i;
1203 		}
1204 	}
1205 
1206 	if (default_cpu == -1)
1207 		default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1208 
1209 	return default_cpu;
1210 }
1211 
1212 /*
1213  * When add_timer_on() enqueues a timer into the timer wheel of an
1214  * idle CPU then this timer might expire before the next timer event
1215  * which is scheduled to wake up that CPU. In case of a completely
1216  * idle system the next event might even be infinite time into the
1217  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1218  * leaves the inner idle loop so the newly added timer is taken into
1219  * account when the CPU goes back to idle and evaluates the timer
1220  * wheel for the next timer event.
1221  */
1222 static void wake_up_idle_cpu(int cpu)
1223 {
1224 	struct rq *rq = cpu_rq(cpu);
1225 
1226 	if (cpu == smp_processor_id())
1227 		return;
1228 
1229 	/*
1230 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1231 	 * part of the idle loop. This forces an exit from the idle loop
1232 	 * and a round trip to schedule(). Now this could be optimized
1233 	 * because a simple new idle loop iteration is enough to
1234 	 * re-evaluate the next tick. Provided some re-ordering of tick
1235 	 * nohz functions that would need to follow TIF_NR_POLLING
1236 	 * clearing:
1237 	 *
1238 	 * - On most architectures, a simple fetch_or on ti::flags with a
1239 	 *   "0" value would be enough to know if an IPI needs to be sent.
1240 	 *
1241 	 * - x86 needs to perform a last need_resched() check between
1242 	 *   monitor and mwait which doesn't take timers into account.
1243 	 *   There a dedicated TIF_TIMER flag would be required to
1244 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1245 	 *   before mwait().
1246 	 *
1247 	 * However, remote timer enqueue is not such a frequent event
1248 	 * and testing of the above solutions didn't appear to report
1249 	 * much benefits.
1250 	 */
1251 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1252 		smp_send_reschedule(cpu);
1253 	else
1254 		trace_sched_wake_idle_without_ipi(cpu);
1255 }
1256 
1257 static bool wake_up_full_nohz_cpu(int cpu)
1258 {
1259 	/*
1260 	 * We just need the target to call irq_exit() and re-evaluate
1261 	 * the next tick. The nohz full kick at least implies that.
1262 	 * If needed we can still optimize that later with an
1263 	 * empty IRQ.
1264 	 */
1265 	if (cpu_is_offline(cpu))
1266 		return true;  /* Don't try to wake offline CPUs. */
1267 	if (tick_nohz_full_cpu(cpu)) {
1268 		if (cpu != smp_processor_id() ||
1269 		    tick_nohz_tick_stopped())
1270 			tick_nohz_full_kick_cpu(cpu);
1271 		return true;
1272 	}
1273 
1274 	return false;
1275 }
1276 
1277 /*
1278  * Wake up the specified CPU.  If the CPU is going offline, it is the
1279  * caller's responsibility to deal with the lost wakeup, for example,
1280  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1281  */
1282 void wake_up_nohz_cpu(int cpu)
1283 {
1284 	if (!wake_up_full_nohz_cpu(cpu))
1285 		wake_up_idle_cpu(cpu);
1286 }
1287 
1288 static void nohz_csd_func(void *info)
1289 {
1290 	struct rq *rq = info;
1291 	int cpu = cpu_of(rq);
1292 	unsigned int flags;
1293 
1294 	/*
1295 	 * Release the rq::nohz_csd.
1296 	 */
1297 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1298 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1299 
1300 	rq->idle_balance = idle_cpu(cpu);
1301 	if (rq->idle_balance) {
1302 		rq->nohz_idle_balance = flags;
1303 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1304 	}
1305 }
1306 
1307 #endif /* CONFIG_NO_HZ_COMMON */
1308 
1309 #ifdef CONFIG_NO_HZ_FULL
1310 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1311 {
1312 	if (rq->nr_running != 1)
1313 		return false;
1314 
1315 	if (p->sched_class != &fair_sched_class)
1316 		return false;
1317 
1318 	if (!task_on_rq_queued(p))
1319 		return false;
1320 
1321 	return true;
1322 }
1323 
1324 bool sched_can_stop_tick(struct rq *rq)
1325 {
1326 	int fifo_nr_running;
1327 
1328 	/* Deadline tasks, even if single, need the tick */
1329 	if (rq->dl.dl_nr_running)
1330 		return false;
1331 
1332 	/*
1333 	 * If there are more than one RR tasks, we need the tick to affect the
1334 	 * actual RR behaviour.
1335 	 */
1336 	if (rq->rt.rr_nr_running) {
1337 		if (rq->rt.rr_nr_running == 1)
1338 			return true;
1339 		else
1340 			return false;
1341 	}
1342 
1343 	/*
1344 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1345 	 * forced preemption between FIFO tasks.
1346 	 */
1347 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1348 	if (fifo_nr_running)
1349 		return true;
1350 
1351 	/*
1352 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1353 	 * left. For CFS, if there's more than one we need the tick for
1354 	 * involuntary preemption. For SCX, ask.
1355 	 */
1356 	if (scx_enabled() && !scx_can_stop_tick(rq))
1357 		return false;
1358 
1359 	if (rq->cfs.h_nr_queued > 1)
1360 		return false;
1361 
1362 	/*
1363 	 * If there is one task and it has CFS runtime bandwidth constraints
1364 	 * and it's on the cpu now we don't want to stop the tick.
1365 	 * This check prevents clearing the bit if a newly enqueued task here is
1366 	 * dequeued by migrating while the constrained task continues to run.
1367 	 * E.g. going from 2->1 without going through pick_next_task().
1368 	 */
1369 	if (__need_bw_check(rq, rq->curr)) {
1370 		if (cfs_task_bw_constrained(rq->curr))
1371 			return false;
1372 	}
1373 
1374 	return true;
1375 }
1376 #endif /* CONFIG_NO_HZ_FULL */
1377 #endif /* CONFIG_SMP */
1378 
1379 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1380 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1381 /*
1382  * Iterate task_group tree rooted at *from, calling @down when first entering a
1383  * node and @up when leaving it for the final time.
1384  *
1385  * Caller must hold rcu_lock or sufficient equivalent.
1386  */
1387 int walk_tg_tree_from(struct task_group *from,
1388 			     tg_visitor down, tg_visitor up, void *data)
1389 {
1390 	struct task_group *parent, *child;
1391 	int ret;
1392 
1393 	parent = from;
1394 
1395 down:
1396 	ret = (*down)(parent, data);
1397 	if (ret)
1398 		goto out;
1399 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1400 		parent = child;
1401 		goto down;
1402 
1403 up:
1404 		continue;
1405 	}
1406 	ret = (*up)(parent, data);
1407 	if (ret || parent == from)
1408 		goto out;
1409 
1410 	child = parent;
1411 	parent = parent->parent;
1412 	if (parent)
1413 		goto up;
1414 out:
1415 	return ret;
1416 }
1417 
1418 int tg_nop(struct task_group *tg, void *data)
1419 {
1420 	return 0;
1421 }
1422 #endif
1423 
1424 void set_load_weight(struct task_struct *p, bool update_load)
1425 {
1426 	int prio = p->static_prio - MAX_RT_PRIO;
1427 	struct load_weight lw;
1428 
1429 	if (task_has_idle_policy(p)) {
1430 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1431 		lw.inv_weight = WMULT_IDLEPRIO;
1432 	} else {
1433 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1434 		lw.inv_weight = sched_prio_to_wmult[prio];
1435 	}
1436 
1437 	/*
1438 	 * SCHED_OTHER tasks have to update their load when changing their
1439 	 * weight
1440 	 */
1441 	if (update_load && p->sched_class->reweight_task)
1442 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1443 	else
1444 		p->se.load = lw;
1445 }
1446 
1447 #ifdef CONFIG_UCLAMP_TASK
1448 /*
1449  * Serializes updates of utilization clamp values
1450  *
1451  * The (slow-path) user-space triggers utilization clamp value updates which
1452  * can require updates on (fast-path) scheduler's data structures used to
1453  * support enqueue/dequeue operations.
1454  * While the per-CPU rq lock protects fast-path update operations, user-space
1455  * requests are serialized using a mutex to reduce the risk of conflicting
1456  * updates or API abuses.
1457  */
1458 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1459 
1460 /* Max allowed minimum utilization */
1461 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1462 
1463 /* Max allowed maximum utilization */
1464 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1465 
1466 /*
1467  * By default RT tasks run at the maximum performance point/capacity of the
1468  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1469  * SCHED_CAPACITY_SCALE.
1470  *
1471  * This knob allows admins to change the default behavior when uclamp is being
1472  * used. In battery powered devices, particularly, running at the maximum
1473  * capacity and frequency will increase energy consumption and shorten the
1474  * battery life.
1475  *
1476  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1477  *
1478  * This knob will not override the system default sched_util_clamp_min defined
1479  * above.
1480  */
1481 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1482 
1483 /* All clamps are required to be less or equal than these values */
1484 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1485 
1486 /*
1487  * This static key is used to reduce the uclamp overhead in the fast path. It
1488  * primarily disables the call to uclamp_rq_{inc, dec}() in
1489  * enqueue/dequeue_task().
1490  *
1491  * This allows users to continue to enable uclamp in their kernel config with
1492  * minimum uclamp overhead in the fast path.
1493  *
1494  * As soon as userspace modifies any of the uclamp knobs, the static key is
1495  * enabled, since we have an actual users that make use of uclamp
1496  * functionality.
1497  *
1498  * The knobs that would enable this static key are:
1499  *
1500  *   * A task modifying its uclamp value with sched_setattr().
1501  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1502  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1503  */
1504 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1505 
1506 static inline unsigned int
1507 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1508 		  unsigned int clamp_value)
1509 {
1510 	/*
1511 	 * Avoid blocked utilization pushing up the frequency when we go
1512 	 * idle (which drops the max-clamp) by retaining the last known
1513 	 * max-clamp.
1514 	 */
1515 	if (clamp_id == UCLAMP_MAX) {
1516 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1517 		return clamp_value;
1518 	}
1519 
1520 	return uclamp_none(UCLAMP_MIN);
1521 }
1522 
1523 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1524 				     unsigned int clamp_value)
1525 {
1526 	/* Reset max-clamp retention only on idle exit */
1527 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1528 		return;
1529 
1530 	uclamp_rq_set(rq, clamp_id, clamp_value);
1531 }
1532 
1533 static inline
1534 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1535 				   unsigned int clamp_value)
1536 {
1537 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1538 	int bucket_id = UCLAMP_BUCKETS - 1;
1539 
1540 	/*
1541 	 * Since both min and max clamps are max aggregated, find the
1542 	 * top most bucket with tasks in.
1543 	 */
1544 	for ( ; bucket_id >= 0; bucket_id--) {
1545 		if (!bucket[bucket_id].tasks)
1546 			continue;
1547 		return bucket[bucket_id].value;
1548 	}
1549 
1550 	/* No tasks -- default clamp values */
1551 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1552 }
1553 
1554 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1555 {
1556 	unsigned int default_util_min;
1557 	struct uclamp_se *uc_se;
1558 
1559 	lockdep_assert_held(&p->pi_lock);
1560 
1561 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1562 
1563 	/* Only sync if user didn't override the default */
1564 	if (uc_se->user_defined)
1565 		return;
1566 
1567 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1568 	uclamp_se_set(uc_se, default_util_min, false);
1569 }
1570 
1571 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1572 {
1573 	if (!rt_task(p))
1574 		return;
1575 
1576 	/* Protect updates to p->uclamp_* */
1577 	guard(task_rq_lock)(p);
1578 	__uclamp_update_util_min_rt_default(p);
1579 }
1580 
1581 static inline struct uclamp_se
1582 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1583 {
1584 	/* Copy by value as we could modify it */
1585 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1586 #ifdef CONFIG_UCLAMP_TASK_GROUP
1587 	unsigned int tg_min, tg_max, value;
1588 
1589 	/*
1590 	 * Tasks in autogroups or root task group will be
1591 	 * restricted by system defaults.
1592 	 */
1593 	if (task_group_is_autogroup(task_group(p)))
1594 		return uc_req;
1595 	if (task_group(p) == &root_task_group)
1596 		return uc_req;
1597 
1598 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1599 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1600 	value = uc_req.value;
1601 	value = clamp(value, tg_min, tg_max);
1602 	uclamp_se_set(&uc_req, value, false);
1603 #endif
1604 
1605 	return uc_req;
1606 }
1607 
1608 /*
1609  * The effective clamp bucket index of a task depends on, by increasing
1610  * priority:
1611  * - the task specific clamp value, when explicitly requested from userspace
1612  * - the task group effective clamp value, for tasks not either in the root
1613  *   group or in an autogroup
1614  * - the system default clamp value, defined by the sysadmin
1615  */
1616 static inline struct uclamp_se
1617 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1618 {
1619 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1620 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1621 
1622 	/* System default restrictions always apply */
1623 	if (unlikely(uc_req.value > uc_max.value))
1624 		return uc_max;
1625 
1626 	return uc_req;
1627 }
1628 
1629 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1630 {
1631 	struct uclamp_se uc_eff;
1632 
1633 	/* Task currently refcounted: use back-annotated (effective) value */
1634 	if (p->uclamp[clamp_id].active)
1635 		return (unsigned long)p->uclamp[clamp_id].value;
1636 
1637 	uc_eff = uclamp_eff_get(p, clamp_id);
1638 
1639 	return (unsigned long)uc_eff.value;
1640 }
1641 
1642 /*
1643  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1644  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1645  * updates the rq's clamp value if required.
1646  *
1647  * Tasks can have a task-specific value requested from user-space, track
1648  * within each bucket the maximum value for tasks refcounted in it.
1649  * This "local max aggregation" allows to track the exact "requested" value
1650  * for each bucket when all its RUNNABLE tasks require the same clamp.
1651  */
1652 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1653 				    enum uclamp_id clamp_id)
1654 {
1655 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1656 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1657 	struct uclamp_bucket *bucket;
1658 
1659 	lockdep_assert_rq_held(rq);
1660 
1661 	/* Update task effective clamp */
1662 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1663 
1664 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1665 	bucket->tasks++;
1666 	uc_se->active = true;
1667 
1668 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1669 
1670 	/*
1671 	 * Local max aggregation: rq buckets always track the max
1672 	 * "requested" clamp value of its RUNNABLE tasks.
1673 	 */
1674 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1675 		bucket->value = uc_se->value;
1676 
1677 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1678 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1679 }
1680 
1681 /*
1682  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1683  * is released. If this is the last task reference counting the rq's max
1684  * active clamp value, then the rq's clamp value is updated.
1685  *
1686  * Both refcounted tasks and rq's cached clamp values are expected to be
1687  * always valid. If it's detected they are not, as defensive programming,
1688  * enforce the expected state and warn.
1689  */
1690 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1691 				    enum uclamp_id clamp_id)
1692 {
1693 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1694 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1695 	struct uclamp_bucket *bucket;
1696 	unsigned int bkt_clamp;
1697 	unsigned int rq_clamp;
1698 
1699 	lockdep_assert_rq_held(rq);
1700 
1701 	/*
1702 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1703 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1704 	 *
1705 	 * In this case the uc_se->active flag should be false since no uclamp
1706 	 * accounting was performed at enqueue time and we can just return
1707 	 * here.
1708 	 *
1709 	 * Need to be careful of the following enqueue/dequeue ordering
1710 	 * problem too
1711 	 *
1712 	 *	enqueue(taskA)
1713 	 *	// sched_uclamp_used gets enabled
1714 	 *	enqueue(taskB)
1715 	 *	dequeue(taskA)
1716 	 *	// Must not decrement bucket->tasks here
1717 	 *	dequeue(taskB)
1718 	 *
1719 	 * where we could end up with stale data in uc_se and
1720 	 * bucket[uc_se->bucket_id].
1721 	 *
1722 	 * The following check here eliminates the possibility of such race.
1723 	 */
1724 	if (unlikely(!uc_se->active))
1725 		return;
1726 
1727 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1728 
1729 	WARN_ON_ONCE(!bucket->tasks);
1730 	if (likely(bucket->tasks))
1731 		bucket->tasks--;
1732 
1733 	uc_se->active = false;
1734 
1735 	/*
1736 	 * Keep "local max aggregation" simple and accept to (possibly)
1737 	 * overboost some RUNNABLE tasks in the same bucket.
1738 	 * The rq clamp bucket value is reset to its base value whenever
1739 	 * there are no more RUNNABLE tasks refcounting it.
1740 	 */
1741 	if (likely(bucket->tasks))
1742 		return;
1743 
1744 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1745 	/*
1746 	 * Defensive programming: this should never happen. If it happens,
1747 	 * e.g. due to future modification, warn and fix up the expected value.
1748 	 */
1749 	WARN_ON_ONCE(bucket->value > rq_clamp);
1750 	if (bucket->value >= rq_clamp) {
1751 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1752 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1753 	}
1754 }
1755 
1756 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags)
1757 {
1758 	enum uclamp_id clamp_id;
1759 
1760 	/*
1761 	 * Avoid any overhead until uclamp is actually used by the userspace.
1762 	 *
1763 	 * The condition is constructed such that a NOP is generated when
1764 	 * sched_uclamp_used is disabled.
1765 	 */
1766 	if (!uclamp_is_used())
1767 		return;
1768 
1769 	if (unlikely(!p->sched_class->uclamp_enabled))
1770 		return;
1771 
1772 	/* Only inc the delayed task which being woken up. */
1773 	if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED))
1774 		return;
1775 
1776 	for_each_clamp_id(clamp_id)
1777 		uclamp_rq_inc_id(rq, p, clamp_id);
1778 
1779 	/* Reset clamp idle holding when there is one RUNNABLE task */
1780 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1781 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1782 }
1783 
1784 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1785 {
1786 	enum uclamp_id clamp_id;
1787 
1788 	/*
1789 	 * Avoid any overhead until uclamp is actually used by the userspace.
1790 	 *
1791 	 * The condition is constructed such that a NOP is generated when
1792 	 * sched_uclamp_used is disabled.
1793 	 */
1794 	if (!uclamp_is_used())
1795 		return;
1796 
1797 	if (unlikely(!p->sched_class->uclamp_enabled))
1798 		return;
1799 
1800 	if (p->se.sched_delayed)
1801 		return;
1802 
1803 	for_each_clamp_id(clamp_id)
1804 		uclamp_rq_dec_id(rq, p, clamp_id);
1805 }
1806 
1807 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1808 				      enum uclamp_id clamp_id)
1809 {
1810 	if (!p->uclamp[clamp_id].active)
1811 		return;
1812 
1813 	uclamp_rq_dec_id(rq, p, clamp_id);
1814 	uclamp_rq_inc_id(rq, p, clamp_id);
1815 
1816 	/*
1817 	 * Make sure to clear the idle flag if we've transiently reached 0
1818 	 * active tasks on rq.
1819 	 */
1820 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1821 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1822 }
1823 
1824 static inline void
1825 uclamp_update_active(struct task_struct *p)
1826 {
1827 	enum uclamp_id clamp_id;
1828 	struct rq_flags rf;
1829 	struct rq *rq;
1830 
1831 	/*
1832 	 * Lock the task and the rq where the task is (or was) queued.
1833 	 *
1834 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1835 	 * price to pay to safely serialize util_{min,max} updates with
1836 	 * enqueues, dequeues and migration operations.
1837 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1838 	 */
1839 	rq = task_rq_lock(p, &rf);
1840 
1841 	/*
1842 	 * Setting the clamp bucket is serialized by task_rq_lock().
1843 	 * If the task is not yet RUNNABLE and its task_struct is not
1844 	 * affecting a valid clamp bucket, the next time it's enqueued,
1845 	 * it will already see the updated clamp bucket value.
1846 	 */
1847 	for_each_clamp_id(clamp_id)
1848 		uclamp_rq_reinc_id(rq, p, clamp_id);
1849 
1850 	task_rq_unlock(rq, p, &rf);
1851 }
1852 
1853 #ifdef CONFIG_UCLAMP_TASK_GROUP
1854 static inline void
1855 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1856 {
1857 	struct css_task_iter it;
1858 	struct task_struct *p;
1859 
1860 	css_task_iter_start(css, 0, &it);
1861 	while ((p = css_task_iter_next(&it)))
1862 		uclamp_update_active(p);
1863 	css_task_iter_end(&it);
1864 }
1865 
1866 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1867 #endif
1868 
1869 #ifdef CONFIG_SYSCTL
1870 #ifdef CONFIG_UCLAMP_TASK_GROUP
1871 static void uclamp_update_root_tg(void)
1872 {
1873 	struct task_group *tg = &root_task_group;
1874 
1875 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1876 		      sysctl_sched_uclamp_util_min, false);
1877 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1878 		      sysctl_sched_uclamp_util_max, false);
1879 
1880 	guard(rcu)();
1881 	cpu_util_update_eff(&root_task_group.css);
1882 }
1883 #else
1884 static void uclamp_update_root_tg(void) { }
1885 #endif
1886 
1887 static void uclamp_sync_util_min_rt_default(void)
1888 {
1889 	struct task_struct *g, *p;
1890 
1891 	/*
1892 	 * copy_process()			sysctl_uclamp
1893 	 *					  uclamp_min_rt = X;
1894 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1895 	 *   // link thread			  smp_mb__after_spinlock()
1896 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1897 	 *   sched_post_fork()			  for_each_process_thread()
1898 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1899 	 *
1900 	 * Ensures that either sched_post_fork() will observe the new
1901 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1902 	 * task.
1903 	 */
1904 	read_lock(&tasklist_lock);
1905 	smp_mb__after_spinlock();
1906 	read_unlock(&tasklist_lock);
1907 
1908 	guard(rcu)();
1909 	for_each_process_thread(g, p)
1910 		uclamp_update_util_min_rt_default(p);
1911 }
1912 
1913 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1914 				void *buffer, size_t *lenp, loff_t *ppos)
1915 {
1916 	bool update_root_tg = false;
1917 	int old_min, old_max, old_min_rt;
1918 	int result;
1919 
1920 	guard(mutex)(&uclamp_mutex);
1921 
1922 	old_min = sysctl_sched_uclamp_util_min;
1923 	old_max = sysctl_sched_uclamp_util_max;
1924 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1925 
1926 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1927 	if (result)
1928 		goto undo;
1929 	if (!write)
1930 		return 0;
1931 
1932 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1933 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1934 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1935 
1936 		result = -EINVAL;
1937 		goto undo;
1938 	}
1939 
1940 	if (old_min != sysctl_sched_uclamp_util_min) {
1941 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1942 			      sysctl_sched_uclamp_util_min, false);
1943 		update_root_tg = true;
1944 	}
1945 	if (old_max != sysctl_sched_uclamp_util_max) {
1946 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1947 			      sysctl_sched_uclamp_util_max, false);
1948 		update_root_tg = true;
1949 	}
1950 
1951 	if (update_root_tg) {
1952 		sched_uclamp_enable();
1953 		uclamp_update_root_tg();
1954 	}
1955 
1956 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1957 		sched_uclamp_enable();
1958 		uclamp_sync_util_min_rt_default();
1959 	}
1960 
1961 	/*
1962 	 * We update all RUNNABLE tasks only when task groups are in use.
1963 	 * Otherwise, keep it simple and do just a lazy update at each next
1964 	 * task enqueue time.
1965 	 */
1966 	return 0;
1967 
1968 undo:
1969 	sysctl_sched_uclamp_util_min = old_min;
1970 	sysctl_sched_uclamp_util_max = old_max;
1971 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1972 	return result;
1973 }
1974 #endif
1975 
1976 static void uclamp_fork(struct task_struct *p)
1977 {
1978 	enum uclamp_id clamp_id;
1979 
1980 	/*
1981 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1982 	 * as the task is still at its early fork stages.
1983 	 */
1984 	for_each_clamp_id(clamp_id)
1985 		p->uclamp[clamp_id].active = false;
1986 
1987 	if (likely(!p->sched_reset_on_fork))
1988 		return;
1989 
1990 	for_each_clamp_id(clamp_id) {
1991 		uclamp_se_set(&p->uclamp_req[clamp_id],
1992 			      uclamp_none(clamp_id), false);
1993 	}
1994 }
1995 
1996 static void uclamp_post_fork(struct task_struct *p)
1997 {
1998 	uclamp_update_util_min_rt_default(p);
1999 }
2000 
2001 static void __init init_uclamp_rq(struct rq *rq)
2002 {
2003 	enum uclamp_id clamp_id;
2004 	struct uclamp_rq *uc_rq = rq->uclamp;
2005 
2006 	for_each_clamp_id(clamp_id) {
2007 		uc_rq[clamp_id] = (struct uclamp_rq) {
2008 			.value = uclamp_none(clamp_id)
2009 		};
2010 	}
2011 
2012 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2013 }
2014 
2015 static void __init init_uclamp(void)
2016 {
2017 	struct uclamp_se uc_max = {};
2018 	enum uclamp_id clamp_id;
2019 	int cpu;
2020 
2021 	for_each_possible_cpu(cpu)
2022 		init_uclamp_rq(cpu_rq(cpu));
2023 
2024 	for_each_clamp_id(clamp_id) {
2025 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2026 			      uclamp_none(clamp_id), false);
2027 	}
2028 
2029 	/* System defaults allow max clamp values for both indexes */
2030 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2031 	for_each_clamp_id(clamp_id) {
2032 		uclamp_default[clamp_id] = uc_max;
2033 #ifdef CONFIG_UCLAMP_TASK_GROUP
2034 		root_task_group.uclamp_req[clamp_id] = uc_max;
2035 		root_task_group.uclamp[clamp_id] = uc_max;
2036 #endif
2037 	}
2038 }
2039 
2040 #else /* !CONFIG_UCLAMP_TASK */
2041 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { }
2042 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2043 static inline void uclamp_fork(struct task_struct *p) { }
2044 static inline void uclamp_post_fork(struct task_struct *p) { }
2045 static inline void init_uclamp(void) { }
2046 #endif /* CONFIG_UCLAMP_TASK */
2047 
2048 bool sched_task_on_rq(struct task_struct *p)
2049 {
2050 	return task_on_rq_queued(p);
2051 }
2052 
2053 unsigned long get_wchan(struct task_struct *p)
2054 {
2055 	unsigned long ip = 0;
2056 	unsigned int state;
2057 
2058 	if (!p || p == current)
2059 		return 0;
2060 
2061 	/* Only get wchan if task is blocked and we can keep it that way. */
2062 	raw_spin_lock_irq(&p->pi_lock);
2063 	state = READ_ONCE(p->__state);
2064 	smp_rmb(); /* see try_to_wake_up() */
2065 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2066 		ip = __get_wchan(p);
2067 	raw_spin_unlock_irq(&p->pi_lock);
2068 
2069 	return ip;
2070 }
2071 
2072 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2073 {
2074 	if (!(flags & ENQUEUE_NOCLOCK))
2075 		update_rq_clock(rq);
2076 
2077 	/*
2078 	 * Can be before ->enqueue_task() because uclamp considers the
2079 	 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared
2080 	 * in ->enqueue_task().
2081 	 */
2082 	uclamp_rq_inc(rq, p, flags);
2083 
2084 	p->sched_class->enqueue_task(rq, p, flags);
2085 
2086 	psi_enqueue(p, flags);
2087 
2088 	if (!(flags & ENQUEUE_RESTORE))
2089 		sched_info_enqueue(rq, p);
2090 
2091 	if (sched_core_enabled(rq))
2092 		sched_core_enqueue(rq, p);
2093 }
2094 
2095 /*
2096  * Must only return false when DEQUEUE_SLEEP.
2097  */
2098 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2099 {
2100 	if (sched_core_enabled(rq))
2101 		sched_core_dequeue(rq, p, flags);
2102 
2103 	if (!(flags & DEQUEUE_NOCLOCK))
2104 		update_rq_clock(rq);
2105 
2106 	if (!(flags & DEQUEUE_SAVE))
2107 		sched_info_dequeue(rq, p);
2108 
2109 	psi_dequeue(p, flags);
2110 
2111 	/*
2112 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2113 	 * and mark the task ->sched_delayed.
2114 	 */
2115 	uclamp_rq_dec(rq, p);
2116 	return p->sched_class->dequeue_task(rq, p, flags);
2117 }
2118 
2119 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2120 {
2121 	if (task_on_rq_migrating(p))
2122 		flags |= ENQUEUE_MIGRATED;
2123 	if (flags & ENQUEUE_MIGRATED)
2124 		sched_mm_cid_migrate_to(rq, p);
2125 
2126 	enqueue_task(rq, p, flags);
2127 
2128 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2129 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2130 }
2131 
2132 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2133 {
2134 	WARN_ON_ONCE(flags & DEQUEUE_SLEEP);
2135 
2136 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2137 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2138 
2139 	/*
2140 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2141 	 * dequeue_task() and cleared *after* enqueue_task().
2142 	 */
2143 
2144 	dequeue_task(rq, p, flags);
2145 }
2146 
2147 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2148 {
2149 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2150 		__block_task(rq, p);
2151 }
2152 
2153 /**
2154  * task_curr - is this task currently executing on a CPU?
2155  * @p: the task in question.
2156  *
2157  * Return: 1 if the task is currently executing. 0 otherwise.
2158  */
2159 inline int task_curr(const struct task_struct *p)
2160 {
2161 	return cpu_curr(task_cpu(p)) == p;
2162 }
2163 
2164 /*
2165  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2166  * mess with locking.
2167  */
2168 void check_class_changing(struct rq *rq, struct task_struct *p,
2169 			  const struct sched_class *prev_class)
2170 {
2171 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2172 		p->sched_class->switching_to(rq, p);
2173 }
2174 
2175 /*
2176  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2177  * use the balance_callback list if you want balancing.
2178  *
2179  * this means any call to check_class_changed() must be followed by a call to
2180  * balance_callback().
2181  */
2182 void check_class_changed(struct rq *rq, struct task_struct *p,
2183 			 const struct sched_class *prev_class,
2184 			 int oldprio)
2185 {
2186 	if (prev_class != p->sched_class) {
2187 		if (prev_class->switched_from)
2188 			prev_class->switched_from(rq, p);
2189 
2190 		p->sched_class->switched_to(rq, p);
2191 	} else if (oldprio != p->prio || dl_task(p))
2192 		p->sched_class->prio_changed(rq, p, oldprio);
2193 }
2194 
2195 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2196 {
2197 	struct task_struct *donor = rq->donor;
2198 
2199 	if (p->sched_class == donor->sched_class)
2200 		donor->sched_class->wakeup_preempt(rq, p, flags);
2201 	else if (sched_class_above(p->sched_class, donor->sched_class))
2202 		resched_curr(rq);
2203 
2204 	/*
2205 	 * A queue event has occurred, and we're going to schedule.  In
2206 	 * this case, we can save a useless back to back clock update.
2207 	 */
2208 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2209 		rq_clock_skip_update(rq);
2210 }
2211 
2212 static __always_inline
2213 int __task_state_match(struct task_struct *p, unsigned int state)
2214 {
2215 	if (READ_ONCE(p->__state) & state)
2216 		return 1;
2217 
2218 	if (READ_ONCE(p->saved_state) & state)
2219 		return -1;
2220 
2221 	return 0;
2222 }
2223 
2224 static __always_inline
2225 int task_state_match(struct task_struct *p, unsigned int state)
2226 {
2227 	/*
2228 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2229 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2230 	 */
2231 	guard(raw_spinlock_irq)(&p->pi_lock);
2232 	return __task_state_match(p, state);
2233 }
2234 
2235 /*
2236  * wait_task_inactive - wait for a thread to unschedule.
2237  *
2238  * Wait for the thread to block in any of the states set in @match_state.
2239  * If it changes, i.e. @p might have woken up, then return zero.  When we
2240  * succeed in waiting for @p to be off its CPU, we return a positive number
2241  * (its total switch count).  If a second call a short while later returns the
2242  * same number, the caller can be sure that @p has remained unscheduled the
2243  * whole time.
2244  *
2245  * The caller must ensure that the task *will* unschedule sometime soon,
2246  * else this function might spin for a *long* time. This function can't
2247  * be called with interrupts off, or it may introduce deadlock with
2248  * smp_call_function() if an IPI is sent by the same process we are
2249  * waiting to become inactive.
2250  */
2251 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2252 {
2253 	int running, queued, match;
2254 	struct rq_flags rf;
2255 	unsigned long ncsw;
2256 	struct rq *rq;
2257 
2258 	for (;;) {
2259 		/*
2260 		 * We do the initial early heuristics without holding
2261 		 * any task-queue locks at all. We'll only try to get
2262 		 * the runqueue lock when things look like they will
2263 		 * work out!
2264 		 */
2265 		rq = task_rq(p);
2266 
2267 		/*
2268 		 * If the task is actively running on another CPU
2269 		 * still, just relax and busy-wait without holding
2270 		 * any locks.
2271 		 *
2272 		 * NOTE! Since we don't hold any locks, it's not
2273 		 * even sure that "rq" stays as the right runqueue!
2274 		 * But we don't care, since "task_on_cpu()" will
2275 		 * return false if the runqueue has changed and p
2276 		 * is actually now running somewhere else!
2277 		 */
2278 		while (task_on_cpu(rq, p)) {
2279 			if (!task_state_match(p, match_state))
2280 				return 0;
2281 			cpu_relax();
2282 		}
2283 
2284 		/*
2285 		 * Ok, time to look more closely! We need the rq
2286 		 * lock now, to be *sure*. If we're wrong, we'll
2287 		 * just go back and repeat.
2288 		 */
2289 		rq = task_rq_lock(p, &rf);
2290 		/*
2291 		 * If task is sched_delayed, force dequeue it, to avoid always
2292 		 * hitting the tick timeout in the queued case
2293 		 */
2294 		if (p->se.sched_delayed)
2295 			dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
2296 		trace_sched_wait_task(p);
2297 		running = task_on_cpu(rq, p);
2298 		queued = task_on_rq_queued(p);
2299 		ncsw = 0;
2300 		if ((match = __task_state_match(p, match_state))) {
2301 			/*
2302 			 * When matching on p->saved_state, consider this task
2303 			 * still queued so it will wait.
2304 			 */
2305 			if (match < 0)
2306 				queued = 1;
2307 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2308 		}
2309 		task_rq_unlock(rq, p, &rf);
2310 
2311 		/*
2312 		 * If it changed from the expected state, bail out now.
2313 		 */
2314 		if (unlikely(!ncsw))
2315 			break;
2316 
2317 		/*
2318 		 * Was it really running after all now that we
2319 		 * checked with the proper locks actually held?
2320 		 *
2321 		 * Oops. Go back and try again..
2322 		 */
2323 		if (unlikely(running)) {
2324 			cpu_relax();
2325 			continue;
2326 		}
2327 
2328 		/*
2329 		 * It's not enough that it's not actively running,
2330 		 * it must be off the runqueue _entirely_, and not
2331 		 * preempted!
2332 		 *
2333 		 * So if it was still runnable (but just not actively
2334 		 * running right now), it's preempted, and we should
2335 		 * yield - it could be a while.
2336 		 */
2337 		if (unlikely(queued)) {
2338 			ktime_t to = NSEC_PER_SEC / HZ;
2339 
2340 			set_current_state(TASK_UNINTERRUPTIBLE);
2341 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2342 			continue;
2343 		}
2344 
2345 		/*
2346 		 * Ahh, all good. It wasn't running, and it wasn't
2347 		 * runnable, which means that it will never become
2348 		 * running in the future either. We're all done!
2349 		 */
2350 		break;
2351 	}
2352 
2353 	return ncsw;
2354 }
2355 
2356 #ifdef CONFIG_SMP
2357 
2358 static void
2359 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2360 
2361 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2362 {
2363 	struct affinity_context ac = {
2364 		.new_mask  = cpumask_of(rq->cpu),
2365 		.flags     = SCA_MIGRATE_DISABLE,
2366 	};
2367 
2368 	if (likely(!p->migration_disabled))
2369 		return;
2370 
2371 	if (p->cpus_ptr != &p->cpus_mask)
2372 		return;
2373 
2374 	/*
2375 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2376 	 */
2377 	__do_set_cpus_allowed(p, &ac);
2378 }
2379 
2380 void migrate_disable(void)
2381 {
2382 	struct task_struct *p = current;
2383 
2384 	if (p->migration_disabled) {
2385 #ifdef CONFIG_DEBUG_PREEMPT
2386 		/*
2387 		 *Warn about overflow half-way through the range.
2388 		 */
2389 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2390 #endif
2391 		p->migration_disabled++;
2392 		return;
2393 	}
2394 
2395 	guard(preempt)();
2396 	this_rq()->nr_pinned++;
2397 	p->migration_disabled = 1;
2398 }
2399 EXPORT_SYMBOL_GPL(migrate_disable);
2400 
2401 void migrate_enable(void)
2402 {
2403 	struct task_struct *p = current;
2404 	struct affinity_context ac = {
2405 		.new_mask  = &p->cpus_mask,
2406 		.flags     = SCA_MIGRATE_ENABLE,
2407 	};
2408 
2409 #ifdef CONFIG_DEBUG_PREEMPT
2410 	/*
2411 	 * Check both overflow from migrate_disable() and superfluous
2412 	 * migrate_enable().
2413 	 */
2414 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2415 		return;
2416 #endif
2417 
2418 	if (p->migration_disabled > 1) {
2419 		p->migration_disabled--;
2420 		return;
2421 	}
2422 
2423 	/*
2424 	 * Ensure stop_task runs either before or after this, and that
2425 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2426 	 */
2427 	guard(preempt)();
2428 	if (p->cpus_ptr != &p->cpus_mask)
2429 		__set_cpus_allowed_ptr(p, &ac);
2430 	/*
2431 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2432 	 * regular cpus_mask, otherwise things that race (eg.
2433 	 * select_fallback_rq) get confused.
2434 	 */
2435 	barrier();
2436 	p->migration_disabled = 0;
2437 	this_rq()->nr_pinned--;
2438 }
2439 EXPORT_SYMBOL_GPL(migrate_enable);
2440 
2441 static inline bool rq_has_pinned_tasks(struct rq *rq)
2442 {
2443 	return rq->nr_pinned;
2444 }
2445 
2446 /*
2447  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2448  * __set_cpus_allowed_ptr() and select_fallback_rq().
2449  */
2450 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2451 {
2452 	/* When not in the task's cpumask, no point in looking further. */
2453 	if (!task_allowed_on_cpu(p, cpu))
2454 		return false;
2455 
2456 	/* migrate_disabled() must be allowed to finish. */
2457 	if (is_migration_disabled(p))
2458 		return cpu_online(cpu);
2459 
2460 	/* Non kernel threads are not allowed during either online or offline. */
2461 	if (!(p->flags & PF_KTHREAD))
2462 		return cpu_active(cpu);
2463 
2464 	/* KTHREAD_IS_PER_CPU is always allowed. */
2465 	if (kthread_is_per_cpu(p))
2466 		return cpu_online(cpu);
2467 
2468 	/* Regular kernel threads don't get to stay during offline. */
2469 	if (cpu_dying(cpu))
2470 		return false;
2471 
2472 	/* But are allowed during online. */
2473 	return cpu_online(cpu);
2474 }
2475 
2476 /*
2477  * This is how migration works:
2478  *
2479  * 1) we invoke migration_cpu_stop() on the target CPU using
2480  *    stop_one_cpu().
2481  * 2) stopper starts to run (implicitly forcing the migrated thread
2482  *    off the CPU)
2483  * 3) it checks whether the migrated task is still in the wrong runqueue.
2484  * 4) if it's in the wrong runqueue then the migration thread removes
2485  *    it and puts it into the right queue.
2486  * 5) stopper completes and stop_one_cpu() returns and the migration
2487  *    is done.
2488  */
2489 
2490 /*
2491  * move_queued_task - move a queued task to new rq.
2492  *
2493  * Returns (locked) new rq. Old rq's lock is released.
2494  */
2495 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2496 				   struct task_struct *p, int new_cpu)
2497 {
2498 	lockdep_assert_rq_held(rq);
2499 
2500 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2501 	set_task_cpu(p, new_cpu);
2502 	rq_unlock(rq, rf);
2503 
2504 	rq = cpu_rq(new_cpu);
2505 
2506 	rq_lock(rq, rf);
2507 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2508 	activate_task(rq, p, 0);
2509 	wakeup_preempt(rq, p, 0);
2510 
2511 	return rq;
2512 }
2513 
2514 struct migration_arg {
2515 	struct task_struct		*task;
2516 	int				dest_cpu;
2517 	struct set_affinity_pending	*pending;
2518 };
2519 
2520 /*
2521  * @refs: number of wait_for_completion()
2522  * @stop_pending: is @stop_work in use
2523  */
2524 struct set_affinity_pending {
2525 	refcount_t		refs;
2526 	unsigned int		stop_pending;
2527 	struct completion	done;
2528 	struct cpu_stop_work	stop_work;
2529 	struct migration_arg	arg;
2530 };
2531 
2532 /*
2533  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2534  * this because either it can't run here any more (set_cpus_allowed()
2535  * away from this CPU, or CPU going down), or because we're
2536  * attempting to rebalance this task on exec (sched_exec).
2537  *
2538  * So we race with normal scheduler movements, but that's OK, as long
2539  * as the task is no longer on this CPU.
2540  */
2541 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2542 				 struct task_struct *p, int dest_cpu)
2543 {
2544 	/* Affinity changed (again). */
2545 	if (!is_cpu_allowed(p, dest_cpu))
2546 		return rq;
2547 
2548 	rq = move_queued_task(rq, rf, p, dest_cpu);
2549 
2550 	return rq;
2551 }
2552 
2553 /*
2554  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2555  * and performs thread migration by bumping thread off CPU then
2556  * 'pushing' onto another runqueue.
2557  */
2558 static int migration_cpu_stop(void *data)
2559 {
2560 	struct migration_arg *arg = data;
2561 	struct set_affinity_pending *pending = arg->pending;
2562 	struct task_struct *p = arg->task;
2563 	struct rq *rq = this_rq();
2564 	bool complete = false;
2565 	struct rq_flags rf;
2566 
2567 	/*
2568 	 * The original target CPU might have gone down and we might
2569 	 * be on another CPU but it doesn't matter.
2570 	 */
2571 	local_irq_save(rf.flags);
2572 	/*
2573 	 * We need to explicitly wake pending tasks before running
2574 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2575 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2576 	 */
2577 	flush_smp_call_function_queue();
2578 
2579 	raw_spin_lock(&p->pi_lock);
2580 	rq_lock(rq, &rf);
2581 
2582 	/*
2583 	 * If we were passed a pending, then ->stop_pending was set, thus
2584 	 * p->migration_pending must have remained stable.
2585 	 */
2586 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2587 
2588 	/*
2589 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2590 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2591 	 * we're holding p->pi_lock.
2592 	 */
2593 	if (task_rq(p) == rq) {
2594 		if (is_migration_disabled(p))
2595 			goto out;
2596 
2597 		if (pending) {
2598 			p->migration_pending = NULL;
2599 			complete = true;
2600 
2601 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2602 				goto out;
2603 		}
2604 
2605 		if (task_on_rq_queued(p)) {
2606 			update_rq_clock(rq);
2607 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2608 		} else {
2609 			p->wake_cpu = arg->dest_cpu;
2610 		}
2611 
2612 		/*
2613 		 * XXX __migrate_task() can fail, at which point we might end
2614 		 * up running on a dodgy CPU, AFAICT this can only happen
2615 		 * during CPU hotplug, at which point we'll get pushed out
2616 		 * anyway, so it's probably not a big deal.
2617 		 */
2618 
2619 	} else if (pending) {
2620 		/*
2621 		 * This happens when we get migrated between migrate_enable()'s
2622 		 * preempt_enable() and scheduling the stopper task. At that
2623 		 * point we're a regular task again and not current anymore.
2624 		 *
2625 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2626 		 * more likely.
2627 		 */
2628 
2629 		/*
2630 		 * The task moved before the stopper got to run. We're holding
2631 		 * ->pi_lock, so the allowed mask is stable - if it got
2632 		 * somewhere allowed, we're done.
2633 		 */
2634 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2635 			p->migration_pending = NULL;
2636 			complete = true;
2637 			goto out;
2638 		}
2639 
2640 		/*
2641 		 * When migrate_enable() hits a rq mis-match we can't reliably
2642 		 * determine is_migration_disabled() and so have to chase after
2643 		 * it.
2644 		 */
2645 		WARN_ON_ONCE(!pending->stop_pending);
2646 		preempt_disable();
2647 		task_rq_unlock(rq, p, &rf);
2648 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2649 				    &pending->arg, &pending->stop_work);
2650 		preempt_enable();
2651 		return 0;
2652 	}
2653 out:
2654 	if (pending)
2655 		pending->stop_pending = false;
2656 	task_rq_unlock(rq, p, &rf);
2657 
2658 	if (complete)
2659 		complete_all(&pending->done);
2660 
2661 	return 0;
2662 }
2663 
2664 int push_cpu_stop(void *arg)
2665 {
2666 	struct rq *lowest_rq = NULL, *rq = this_rq();
2667 	struct task_struct *p = arg;
2668 
2669 	raw_spin_lock_irq(&p->pi_lock);
2670 	raw_spin_rq_lock(rq);
2671 
2672 	if (task_rq(p) != rq)
2673 		goto out_unlock;
2674 
2675 	if (is_migration_disabled(p)) {
2676 		p->migration_flags |= MDF_PUSH;
2677 		goto out_unlock;
2678 	}
2679 
2680 	p->migration_flags &= ~MDF_PUSH;
2681 
2682 	if (p->sched_class->find_lock_rq)
2683 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2684 
2685 	if (!lowest_rq)
2686 		goto out_unlock;
2687 
2688 	// XXX validate p is still the highest prio task
2689 	if (task_rq(p) == rq) {
2690 		move_queued_task_locked(rq, lowest_rq, p);
2691 		resched_curr(lowest_rq);
2692 	}
2693 
2694 	double_unlock_balance(rq, lowest_rq);
2695 
2696 out_unlock:
2697 	rq->push_busy = false;
2698 	raw_spin_rq_unlock(rq);
2699 	raw_spin_unlock_irq(&p->pi_lock);
2700 
2701 	put_task_struct(p);
2702 	return 0;
2703 }
2704 
2705 /*
2706  * sched_class::set_cpus_allowed must do the below, but is not required to
2707  * actually call this function.
2708  */
2709 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2710 {
2711 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2712 		p->cpus_ptr = ctx->new_mask;
2713 		return;
2714 	}
2715 
2716 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2717 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2718 
2719 	/*
2720 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2721 	 */
2722 	if (ctx->flags & SCA_USER)
2723 		swap(p->user_cpus_ptr, ctx->user_mask);
2724 }
2725 
2726 static void
2727 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2728 {
2729 	struct rq *rq = task_rq(p);
2730 	bool queued, running;
2731 
2732 	/*
2733 	 * This here violates the locking rules for affinity, since we're only
2734 	 * supposed to change these variables while holding both rq->lock and
2735 	 * p->pi_lock.
2736 	 *
2737 	 * HOWEVER, it magically works, because ttwu() is the only code that
2738 	 * accesses these variables under p->pi_lock and only does so after
2739 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2740 	 * before finish_task().
2741 	 *
2742 	 * XXX do further audits, this smells like something putrid.
2743 	 */
2744 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2745 		WARN_ON_ONCE(!p->on_cpu);
2746 	else
2747 		lockdep_assert_held(&p->pi_lock);
2748 
2749 	queued = task_on_rq_queued(p);
2750 	running = task_current_donor(rq, p);
2751 
2752 	if (queued) {
2753 		/*
2754 		 * Because __kthread_bind() calls this on blocked tasks without
2755 		 * holding rq->lock.
2756 		 */
2757 		lockdep_assert_rq_held(rq);
2758 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2759 	}
2760 	if (running)
2761 		put_prev_task(rq, p);
2762 
2763 	p->sched_class->set_cpus_allowed(p, ctx);
2764 	mm_set_cpus_allowed(p->mm, ctx->new_mask);
2765 
2766 	if (queued)
2767 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2768 	if (running)
2769 		set_next_task(rq, p);
2770 }
2771 
2772 /*
2773  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2774  * affinity (if any) should be destroyed too.
2775  */
2776 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2777 {
2778 	struct affinity_context ac = {
2779 		.new_mask  = new_mask,
2780 		.user_mask = NULL,
2781 		.flags     = SCA_USER,	/* clear the user requested mask */
2782 	};
2783 	union cpumask_rcuhead {
2784 		cpumask_t cpumask;
2785 		struct rcu_head rcu;
2786 	};
2787 
2788 	__do_set_cpus_allowed(p, &ac);
2789 
2790 	/*
2791 	 * Because this is called with p->pi_lock held, it is not possible
2792 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2793 	 * kfree_rcu().
2794 	 */
2795 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2796 }
2797 
2798 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2799 		      int node)
2800 {
2801 	cpumask_t *user_mask;
2802 	unsigned long flags;
2803 
2804 	/*
2805 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2806 	 * may differ by now due to racing.
2807 	 */
2808 	dst->user_cpus_ptr = NULL;
2809 
2810 	/*
2811 	 * This check is racy and losing the race is a valid situation.
2812 	 * It is not worth the extra overhead of taking the pi_lock on
2813 	 * every fork/clone.
2814 	 */
2815 	if (data_race(!src->user_cpus_ptr))
2816 		return 0;
2817 
2818 	user_mask = alloc_user_cpus_ptr(node);
2819 	if (!user_mask)
2820 		return -ENOMEM;
2821 
2822 	/*
2823 	 * Use pi_lock to protect content of user_cpus_ptr
2824 	 *
2825 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2826 	 * do_set_cpus_allowed().
2827 	 */
2828 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2829 	if (src->user_cpus_ptr) {
2830 		swap(dst->user_cpus_ptr, user_mask);
2831 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2832 	}
2833 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2834 
2835 	if (unlikely(user_mask))
2836 		kfree(user_mask);
2837 
2838 	return 0;
2839 }
2840 
2841 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2842 {
2843 	struct cpumask *user_mask = NULL;
2844 
2845 	swap(p->user_cpus_ptr, user_mask);
2846 
2847 	return user_mask;
2848 }
2849 
2850 void release_user_cpus_ptr(struct task_struct *p)
2851 {
2852 	kfree(clear_user_cpus_ptr(p));
2853 }
2854 
2855 /*
2856  * This function is wildly self concurrent; here be dragons.
2857  *
2858  *
2859  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2860  * designated task is enqueued on an allowed CPU. If that task is currently
2861  * running, we have to kick it out using the CPU stopper.
2862  *
2863  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2864  * Consider:
2865  *
2866  *     Initial conditions: P0->cpus_mask = [0, 1]
2867  *
2868  *     P0@CPU0                  P1
2869  *
2870  *     migrate_disable();
2871  *     <preempted>
2872  *                              set_cpus_allowed_ptr(P0, [1]);
2873  *
2874  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2875  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2876  * This means we need the following scheme:
2877  *
2878  *     P0@CPU0                  P1
2879  *
2880  *     migrate_disable();
2881  *     <preempted>
2882  *                              set_cpus_allowed_ptr(P0, [1]);
2883  *                                <blocks>
2884  *     <resumes>
2885  *     migrate_enable();
2886  *       __set_cpus_allowed_ptr();
2887  *       <wakes local stopper>
2888  *                         `--> <woken on migration completion>
2889  *
2890  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2891  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2892  * task p are serialized by p->pi_lock, which we can leverage: the one that
2893  * should come into effect at the end of the Migrate-Disable region is the last
2894  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2895  * but we still need to properly signal those waiting tasks at the appropriate
2896  * moment.
2897  *
2898  * This is implemented using struct set_affinity_pending. The first
2899  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2900  * setup an instance of that struct and install it on the targeted task_struct.
2901  * Any and all further callers will reuse that instance. Those then wait for
2902  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2903  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2904  *
2905  *
2906  * (1) In the cases covered above. There is one more where the completion is
2907  * signaled within affine_move_task() itself: when a subsequent affinity request
2908  * occurs after the stopper bailed out due to the targeted task still being
2909  * Migrate-Disable. Consider:
2910  *
2911  *     Initial conditions: P0->cpus_mask = [0, 1]
2912  *
2913  *     CPU0		  P1				P2
2914  *     <P0>
2915  *       migrate_disable();
2916  *       <preempted>
2917  *                        set_cpus_allowed_ptr(P0, [1]);
2918  *                          <blocks>
2919  *     <migration/0>
2920  *       migration_cpu_stop()
2921  *         is_migration_disabled()
2922  *           <bails>
2923  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2924  *                                                         <signal completion>
2925  *                          <awakes>
2926  *
2927  * Note that the above is safe vs a concurrent migrate_enable(), as any
2928  * pending affinity completion is preceded by an uninstallation of
2929  * p->migration_pending done with p->pi_lock held.
2930  */
2931 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2932 			    int dest_cpu, unsigned int flags)
2933 	__releases(rq->lock)
2934 	__releases(p->pi_lock)
2935 {
2936 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2937 	bool stop_pending, complete = false;
2938 
2939 	/* Can the task run on the task's current CPU? If so, we're done */
2940 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2941 		struct task_struct *push_task = NULL;
2942 
2943 		if ((flags & SCA_MIGRATE_ENABLE) &&
2944 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2945 			rq->push_busy = true;
2946 			push_task = get_task_struct(p);
2947 		}
2948 
2949 		/*
2950 		 * If there are pending waiters, but no pending stop_work,
2951 		 * then complete now.
2952 		 */
2953 		pending = p->migration_pending;
2954 		if (pending && !pending->stop_pending) {
2955 			p->migration_pending = NULL;
2956 			complete = true;
2957 		}
2958 
2959 		preempt_disable();
2960 		task_rq_unlock(rq, p, rf);
2961 		if (push_task) {
2962 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2963 					    p, &rq->push_work);
2964 		}
2965 		preempt_enable();
2966 
2967 		if (complete)
2968 			complete_all(&pending->done);
2969 
2970 		return 0;
2971 	}
2972 
2973 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2974 		/* serialized by p->pi_lock */
2975 		if (!p->migration_pending) {
2976 			/* Install the request */
2977 			refcount_set(&my_pending.refs, 1);
2978 			init_completion(&my_pending.done);
2979 			my_pending.arg = (struct migration_arg) {
2980 				.task = p,
2981 				.dest_cpu = dest_cpu,
2982 				.pending = &my_pending,
2983 			};
2984 
2985 			p->migration_pending = &my_pending;
2986 		} else {
2987 			pending = p->migration_pending;
2988 			refcount_inc(&pending->refs);
2989 			/*
2990 			 * Affinity has changed, but we've already installed a
2991 			 * pending. migration_cpu_stop() *must* see this, else
2992 			 * we risk a completion of the pending despite having a
2993 			 * task on a disallowed CPU.
2994 			 *
2995 			 * Serialized by p->pi_lock, so this is safe.
2996 			 */
2997 			pending->arg.dest_cpu = dest_cpu;
2998 		}
2999 	}
3000 	pending = p->migration_pending;
3001 	/*
3002 	 * - !MIGRATE_ENABLE:
3003 	 *   we'll have installed a pending if there wasn't one already.
3004 	 *
3005 	 * - MIGRATE_ENABLE:
3006 	 *   we're here because the current CPU isn't matching anymore,
3007 	 *   the only way that can happen is because of a concurrent
3008 	 *   set_cpus_allowed_ptr() call, which should then still be
3009 	 *   pending completion.
3010 	 *
3011 	 * Either way, we really should have a @pending here.
3012 	 */
3013 	if (WARN_ON_ONCE(!pending)) {
3014 		task_rq_unlock(rq, p, rf);
3015 		return -EINVAL;
3016 	}
3017 
3018 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3019 		/*
3020 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3021 		 * anything else we cannot do is_migration_disabled(), punt
3022 		 * and have the stopper function handle it all race-free.
3023 		 */
3024 		stop_pending = pending->stop_pending;
3025 		if (!stop_pending)
3026 			pending->stop_pending = true;
3027 
3028 		if (flags & SCA_MIGRATE_ENABLE)
3029 			p->migration_flags &= ~MDF_PUSH;
3030 
3031 		preempt_disable();
3032 		task_rq_unlock(rq, p, rf);
3033 		if (!stop_pending) {
3034 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3035 					    &pending->arg, &pending->stop_work);
3036 		}
3037 		preempt_enable();
3038 
3039 		if (flags & SCA_MIGRATE_ENABLE)
3040 			return 0;
3041 	} else {
3042 
3043 		if (!is_migration_disabled(p)) {
3044 			if (task_on_rq_queued(p))
3045 				rq = move_queued_task(rq, rf, p, dest_cpu);
3046 
3047 			if (!pending->stop_pending) {
3048 				p->migration_pending = NULL;
3049 				complete = true;
3050 			}
3051 		}
3052 		task_rq_unlock(rq, p, rf);
3053 
3054 		if (complete)
3055 			complete_all(&pending->done);
3056 	}
3057 
3058 	wait_for_completion(&pending->done);
3059 
3060 	if (refcount_dec_and_test(&pending->refs))
3061 		wake_up_var(&pending->refs); /* No UaF, just an address */
3062 
3063 	/*
3064 	 * Block the original owner of &pending until all subsequent callers
3065 	 * have seen the completion and decremented the refcount
3066 	 */
3067 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3068 
3069 	/* ARGH */
3070 	WARN_ON_ONCE(my_pending.stop_pending);
3071 
3072 	return 0;
3073 }
3074 
3075 /*
3076  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3077  */
3078 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3079 					 struct affinity_context *ctx,
3080 					 struct rq *rq,
3081 					 struct rq_flags *rf)
3082 	__releases(rq->lock)
3083 	__releases(p->pi_lock)
3084 {
3085 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3086 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3087 	bool kthread = p->flags & PF_KTHREAD;
3088 	unsigned int dest_cpu;
3089 	int ret = 0;
3090 
3091 	update_rq_clock(rq);
3092 
3093 	if (kthread || is_migration_disabled(p)) {
3094 		/*
3095 		 * Kernel threads are allowed on online && !active CPUs,
3096 		 * however, during cpu-hot-unplug, even these might get pushed
3097 		 * away if not KTHREAD_IS_PER_CPU.
3098 		 *
3099 		 * Specifically, migration_disabled() tasks must not fail the
3100 		 * cpumask_any_and_distribute() pick below, esp. so on
3101 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3102 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3103 		 */
3104 		cpu_valid_mask = cpu_online_mask;
3105 	}
3106 
3107 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3108 		ret = -EINVAL;
3109 		goto out;
3110 	}
3111 
3112 	/*
3113 	 * Must re-check here, to close a race against __kthread_bind(),
3114 	 * sched_setaffinity() is not guaranteed to observe the flag.
3115 	 */
3116 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3117 		ret = -EINVAL;
3118 		goto out;
3119 	}
3120 
3121 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3122 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3123 			if (ctx->flags & SCA_USER)
3124 				swap(p->user_cpus_ptr, ctx->user_mask);
3125 			goto out;
3126 		}
3127 
3128 		if (WARN_ON_ONCE(p == current &&
3129 				 is_migration_disabled(p) &&
3130 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3131 			ret = -EBUSY;
3132 			goto out;
3133 		}
3134 	}
3135 
3136 	/*
3137 	 * Picking a ~random cpu helps in cases where we are changing affinity
3138 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3139 	 * immediately required to distribute the tasks within their new mask.
3140 	 */
3141 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3142 	if (dest_cpu >= nr_cpu_ids) {
3143 		ret = -EINVAL;
3144 		goto out;
3145 	}
3146 
3147 	__do_set_cpus_allowed(p, ctx);
3148 
3149 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3150 
3151 out:
3152 	task_rq_unlock(rq, p, rf);
3153 
3154 	return ret;
3155 }
3156 
3157 /*
3158  * Change a given task's CPU affinity. Migrate the thread to a
3159  * proper CPU and schedule it away if the CPU it's executing on
3160  * is removed from the allowed bitmask.
3161  *
3162  * NOTE: the caller must have a valid reference to the task, the
3163  * task must not exit() & deallocate itself prematurely. The
3164  * call is not atomic; no spinlocks may be held.
3165  */
3166 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3167 {
3168 	struct rq_flags rf;
3169 	struct rq *rq;
3170 
3171 	rq = task_rq_lock(p, &rf);
3172 	/*
3173 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3174 	 * flags are set.
3175 	 */
3176 	if (p->user_cpus_ptr &&
3177 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3178 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3179 		ctx->new_mask = rq->scratch_mask;
3180 
3181 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3182 }
3183 
3184 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3185 {
3186 	struct affinity_context ac = {
3187 		.new_mask  = new_mask,
3188 		.flags     = 0,
3189 	};
3190 
3191 	return __set_cpus_allowed_ptr(p, &ac);
3192 }
3193 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3194 
3195 /*
3196  * Change a given task's CPU affinity to the intersection of its current
3197  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3198  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3199  * affinity or use cpu_online_mask instead.
3200  *
3201  * If the resulting mask is empty, leave the affinity unchanged and return
3202  * -EINVAL.
3203  */
3204 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3205 				     struct cpumask *new_mask,
3206 				     const struct cpumask *subset_mask)
3207 {
3208 	struct affinity_context ac = {
3209 		.new_mask  = new_mask,
3210 		.flags     = 0,
3211 	};
3212 	struct rq_flags rf;
3213 	struct rq *rq;
3214 	int err;
3215 
3216 	rq = task_rq_lock(p, &rf);
3217 
3218 	/*
3219 	 * Forcefully restricting the affinity of a deadline task is
3220 	 * likely to cause problems, so fail and noisily override the
3221 	 * mask entirely.
3222 	 */
3223 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3224 		err = -EPERM;
3225 		goto err_unlock;
3226 	}
3227 
3228 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3229 		err = -EINVAL;
3230 		goto err_unlock;
3231 	}
3232 
3233 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3234 
3235 err_unlock:
3236 	task_rq_unlock(rq, p, &rf);
3237 	return err;
3238 }
3239 
3240 /*
3241  * Restrict the CPU affinity of task @p so that it is a subset of
3242  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3243  * old affinity mask. If the resulting mask is empty, we warn and walk
3244  * up the cpuset hierarchy until we find a suitable mask.
3245  */
3246 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3247 {
3248 	cpumask_var_t new_mask;
3249 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3250 
3251 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3252 
3253 	/*
3254 	 * __migrate_task() can fail silently in the face of concurrent
3255 	 * offlining of the chosen destination CPU, so take the hotplug
3256 	 * lock to ensure that the migration succeeds.
3257 	 */
3258 	cpus_read_lock();
3259 	if (!cpumask_available(new_mask))
3260 		goto out_set_mask;
3261 
3262 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3263 		goto out_free_mask;
3264 
3265 	/*
3266 	 * We failed to find a valid subset of the affinity mask for the
3267 	 * task, so override it based on its cpuset hierarchy.
3268 	 */
3269 	cpuset_cpus_allowed(p, new_mask);
3270 	override_mask = new_mask;
3271 
3272 out_set_mask:
3273 	if (printk_ratelimit()) {
3274 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3275 				task_pid_nr(p), p->comm,
3276 				cpumask_pr_args(override_mask));
3277 	}
3278 
3279 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3280 out_free_mask:
3281 	cpus_read_unlock();
3282 	free_cpumask_var(new_mask);
3283 }
3284 
3285 /*
3286  * Restore the affinity of a task @p which was previously restricted by a
3287  * call to force_compatible_cpus_allowed_ptr().
3288  *
3289  * It is the caller's responsibility to serialise this with any calls to
3290  * force_compatible_cpus_allowed_ptr(@p).
3291  */
3292 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3293 {
3294 	struct affinity_context ac = {
3295 		.new_mask  = task_user_cpus(p),
3296 		.flags     = 0,
3297 	};
3298 	int ret;
3299 
3300 	/*
3301 	 * Try to restore the old affinity mask with __sched_setaffinity().
3302 	 * Cpuset masking will be done there too.
3303 	 */
3304 	ret = __sched_setaffinity(p, &ac);
3305 	WARN_ON_ONCE(ret);
3306 }
3307 
3308 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3309 {
3310 	unsigned int state = READ_ONCE(p->__state);
3311 
3312 	/*
3313 	 * We should never call set_task_cpu() on a blocked task,
3314 	 * ttwu() will sort out the placement.
3315 	 */
3316 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3317 
3318 	/*
3319 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3320 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3321 	 * time relying on p->on_rq.
3322 	 */
3323 	WARN_ON_ONCE(state == TASK_RUNNING &&
3324 		     p->sched_class == &fair_sched_class &&
3325 		     (p->on_rq && !task_on_rq_migrating(p)));
3326 
3327 #ifdef CONFIG_LOCKDEP
3328 	/*
3329 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3330 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3331 	 *
3332 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3333 	 * see task_group().
3334 	 *
3335 	 * Furthermore, all task_rq users should acquire both locks, see
3336 	 * task_rq_lock().
3337 	 */
3338 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3339 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3340 #endif
3341 	/*
3342 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3343 	 */
3344 	WARN_ON_ONCE(!cpu_online(new_cpu));
3345 
3346 	WARN_ON_ONCE(is_migration_disabled(p));
3347 
3348 	trace_sched_migrate_task(p, new_cpu);
3349 
3350 	if (task_cpu(p) != new_cpu) {
3351 		if (p->sched_class->migrate_task_rq)
3352 			p->sched_class->migrate_task_rq(p, new_cpu);
3353 		p->se.nr_migrations++;
3354 		rseq_migrate(p);
3355 		sched_mm_cid_migrate_from(p);
3356 		perf_event_task_migrate(p);
3357 	}
3358 
3359 	__set_task_cpu(p, new_cpu);
3360 }
3361 
3362 #ifdef CONFIG_NUMA_BALANCING
3363 static void __migrate_swap_task(struct task_struct *p, int cpu)
3364 {
3365 	if (task_on_rq_queued(p)) {
3366 		struct rq *src_rq, *dst_rq;
3367 		struct rq_flags srf, drf;
3368 
3369 		src_rq = task_rq(p);
3370 		dst_rq = cpu_rq(cpu);
3371 
3372 		rq_pin_lock(src_rq, &srf);
3373 		rq_pin_lock(dst_rq, &drf);
3374 
3375 		move_queued_task_locked(src_rq, dst_rq, p);
3376 		wakeup_preempt(dst_rq, p, 0);
3377 
3378 		rq_unpin_lock(dst_rq, &drf);
3379 		rq_unpin_lock(src_rq, &srf);
3380 
3381 	} else {
3382 		/*
3383 		 * Task isn't running anymore; make it appear like we migrated
3384 		 * it before it went to sleep. This means on wakeup we make the
3385 		 * previous CPU our target instead of where it really is.
3386 		 */
3387 		p->wake_cpu = cpu;
3388 	}
3389 }
3390 
3391 struct migration_swap_arg {
3392 	struct task_struct *src_task, *dst_task;
3393 	int src_cpu, dst_cpu;
3394 };
3395 
3396 static int migrate_swap_stop(void *data)
3397 {
3398 	struct migration_swap_arg *arg = data;
3399 	struct rq *src_rq, *dst_rq;
3400 
3401 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3402 		return -EAGAIN;
3403 
3404 	src_rq = cpu_rq(arg->src_cpu);
3405 	dst_rq = cpu_rq(arg->dst_cpu);
3406 
3407 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3408 	guard(double_rq_lock)(src_rq, dst_rq);
3409 
3410 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3411 		return -EAGAIN;
3412 
3413 	if (task_cpu(arg->src_task) != arg->src_cpu)
3414 		return -EAGAIN;
3415 
3416 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3417 		return -EAGAIN;
3418 
3419 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3420 		return -EAGAIN;
3421 
3422 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3423 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3424 
3425 	return 0;
3426 }
3427 
3428 /*
3429  * Cross migrate two tasks
3430  */
3431 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3432 		int target_cpu, int curr_cpu)
3433 {
3434 	struct migration_swap_arg arg;
3435 	int ret = -EINVAL;
3436 
3437 	arg = (struct migration_swap_arg){
3438 		.src_task = cur,
3439 		.src_cpu = curr_cpu,
3440 		.dst_task = p,
3441 		.dst_cpu = target_cpu,
3442 	};
3443 
3444 	if (arg.src_cpu == arg.dst_cpu)
3445 		goto out;
3446 
3447 	/*
3448 	 * These three tests are all lockless; this is OK since all of them
3449 	 * will be re-checked with proper locks held further down the line.
3450 	 */
3451 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3452 		goto out;
3453 
3454 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3455 		goto out;
3456 
3457 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3458 		goto out;
3459 
3460 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3461 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3462 
3463 out:
3464 	return ret;
3465 }
3466 #endif /* CONFIG_NUMA_BALANCING */
3467 
3468 /***
3469  * kick_process - kick a running thread to enter/exit the kernel
3470  * @p: the to-be-kicked thread
3471  *
3472  * Cause a process which is running on another CPU to enter
3473  * kernel-mode, without any delay. (to get signals handled.)
3474  *
3475  * NOTE: this function doesn't have to take the runqueue lock,
3476  * because all it wants to ensure is that the remote task enters
3477  * the kernel. If the IPI races and the task has been migrated
3478  * to another CPU then no harm is done and the purpose has been
3479  * achieved as well.
3480  */
3481 void kick_process(struct task_struct *p)
3482 {
3483 	guard(preempt)();
3484 	int cpu = task_cpu(p);
3485 
3486 	if ((cpu != smp_processor_id()) && task_curr(p))
3487 		smp_send_reschedule(cpu);
3488 }
3489 EXPORT_SYMBOL_GPL(kick_process);
3490 
3491 /*
3492  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3493  *
3494  * A few notes on cpu_active vs cpu_online:
3495  *
3496  *  - cpu_active must be a subset of cpu_online
3497  *
3498  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3499  *    see __set_cpus_allowed_ptr(). At this point the newly online
3500  *    CPU isn't yet part of the sched domains, and balancing will not
3501  *    see it.
3502  *
3503  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3504  *    avoid the load balancer to place new tasks on the to be removed
3505  *    CPU. Existing tasks will remain running there and will be taken
3506  *    off.
3507  *
3508  * This means that fallback selection must not select !active CPUs.
3509  * And can assume that any active CPU must be online. Conversely
3510  * select_task_rq() below may allow selection of !active CPUs in order
3511  * to satisfy the above rules.
3512  */
3513 static int select_fallback_rq(int cpu, struct task_struct *p)
3514 {
3515 	int nid = cpu_to_node(cpu);
3516 	const struct cpumask *nodemask = NULL;
3517 	enum { cpuset, possible, fail } state = cpuset;
3518 	int dest_cpu;
3519 
3520 	/*
3521 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3522 	 * will return -1. There is no CPU on the node, and we should
3523 	 * select the CPU on the other node.
3524 	 */
3525 	if (nid != -1) {
3526 		nodemask = cpumask_of_node(nid);
3527 
3528 		/* Look for allowed, online CPU in same node. */
3529 		for_each_cpu(dest_cpu, nodemask) {
3530 			if (is_cpu_allowed(p, dest_cpu))
3531 				return dest_cpu;
3532 		}
3533 	}
3534 
3535 	for (;;) {
3536 		/* Any allowed, online CPU? */
3537 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3538 			if (!is_cpu_allowed(p, dest_cpu))
3539 				continue;
3540 
3541 			goto out;
3542 		}
3543 
3544 		/* No more Mr. Nice Guy. */
3545 		switch (state) {
3546 		case cpuset:
3547 			if (cpuset_cpus_allowed_fallback(p)) {
3548 				state = possible;
3549 				break;
3550 			}
3551 			fallthrough;
3552 		case possible:
3553 			/*
3554 			 * XXX When called from select_task_rq() we only
3555 			 * hold p->pi_lock and again violate locking order.
3556 			 *
3557 			 * More yuck to audit.
3558 			 */
3559 			do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
3560 			state = fail;
3561 			break;
3562 		case fail:
3563 			BUG();
3564 			break;
3565 		}
3566 	}
3567 
3568 out:
3569 	if (state != cpuset) {
3570 		/*
3571 		 * Don't tell them about moving exiting tasks or
3572 		 * kernel threads (both mm NULL), since they never
3573 		 * leave kernel.
3574 		 */
3575 		if (p->mm && printk_ratelimit()) {
3576 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3577 					task_pid_nr(p), p->comm, cpu);
3578 		}
3579 	}
3580 
3581 	return dest_cpu;
3582 }
3583 
3584 /*
3585  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3586  */
3587 static inline
3588 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3589 {
3590 	lockdep_assert_held(&p->pi_lock);
3591 
3592 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3593 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3594 		*wake_flags |= WF_RQ_SELECTED;
3595 	} else {
3596 		cpu = cpumask_any(p->cpus_ptr);
3597 	}
3598 
3599 	/*
3600 	 * In order not to call set_task_cpu() on a blocking task we need
3601 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3602 	 * CPU.
3603 	 *
3604 	 * Since this is common to all placement strategies, this lives here.
3605 	 *
3606 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3607 	 *   not worry about this generic constraint ]
3608 	 */
3609 	if (unlikely(!is_cpu_allowed(p, cpu)))
3610 		cpu = select_fallback_rq(task_cpu(p), p);
3611 
3612 	return cpu;
3613 }
3614 
3615 void sched_set_stop_task(int cpu, struct task_struct *stop)
3616 {
3617 	static struct lock_class_key stop_pi_lock;
3618 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3619 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3620 
3621 	if (stop) {
3622 		/*
3623 		 * Make it appear like a SCHED_FIFO task, its something
3624 		 * userspace knows about and won't get confused about.
3625 		 *
3626 		 * Also, it will make PI more or less work without too
3627 		 * much confusion -- but then, stop work should not
3628 		 * rely on PI working anyway.
3629 		 */
3630 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3631 
3632 		stop->sched_class = &stop_sched_class;
3633 
3634 		/*
3635 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3636 		 * adjust the effective priority of a task. As a result,
3637 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3638 		 * which can then trigger wakeups of the stop thread to push
3639 		 * around the current task.
3640 		 *
3641 		 * The stop task itself will never be part of the PI-chain, it
3642 		 * never blocks, therefore that ->pi_lock recursion is safe.
3643 		 * Tell lockdep about this by placing the stop->pi_lock in its
3644 		 * own class.
3645 		 */
3646 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3647 	}
3648 
3649 	cpu_rq(cpu)->stop = stop;
3650 
3651 	if (old_stop) {
3652 		/*
3653 		 * Reset it back to a normal scheduling class so that
3654 		 * it can die in pieces.
3655 		 */
3656 		old_stop->sched_class = &rt_sched_class;
3657 	}
3658 }
3659 
3660 #else /* CONFIG_SMP */
3661 
3662 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3663 
3664 static inline bool rq_has_pinned_tasks(struct rq *rq)
3665 {
3666 	return false;
3667 }
3668 
3669 #endif /* !CONFIG_SMP */
3670 
3671 static void
3672 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3673 {
3674 	struct rq *rq;
3675 
3676 	if (!schedstat_enabled())
3677 		return;
3678 
3679 	rq = this_rq();
3680 
3681 #ifdef CONFIG_SMP
3682 	if (cpu == rq->cpu) {
3683 		__schedstat_inc(rq->ttwu_local);
3684 		__schedstat_inc(p->stats.nr_wakeups_local);
3685 	} else {
3686 		struct sched_domain *sd;
3687 
3688 		__schedstat_inc(p->stats.nr_wakeups_remote);
3689 
3690 		guard(rcu)();
3691 		for_each_domain(rq->cpu, sd) {
3692 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3693 				__schedstat_inc(sd->ttwu_wake_remote);
3694 				break;
3695 			}
3696 		}
3697 	}
3698 
3699 	if (wake_flags & WF_MIGRATED)
3700 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3701 #endif /* CONFIG_SMP */
3702 
3703 	__schedstat_inc(rq->ttwu_count);
3704 	__schedstat_inc(p->stats.nr_wakeups);
3705 
3706 	if (wake_flags & WF_SYNC)
3707 		__schedstat_inc(p->stats.nr_wakeups_sync);
3708 }
3709 
3710 /*
3711  * Mark the task runnable.
3712  */
3713 static inline void ttwu_do_wakeup(struct task_struct *p)
3714 {
3715 	WRITE_ONCE(p->__state, TASK_RUNNING);
3716 	trace_sched_wakeup(p);
3717 }
3718 
3719 static void
3720 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3721 		 struct rq_flags *rf)
3722 {
3723 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3724 
3725 	lockdep_assert_rq_held(rq);
3726 
3727 	if (p->sched_contributes_to_load)
3728 		rq->nr_uninterruptible--;
3729 
3730 #ifdef CONFIG_SMP
3731 	if (wake_flags & WF_RQ_SELECTED)
3732 		en_flags |= ENQUEUE_RQ_SELECTED;
3733 	if (wake_flags & WF_MIGRATED)
3734 		en_flags |= ENQUEUE_MIGRATED;
3735 	else
3736 #endif
3737 	if (p->in_iowait) {
3738 		delayacct_blkio_end(p);
3739 		atomic_dec(&task_rq(p)->nr_iowait);
3740 	}
3741 
3742 	activate_task(rq, p, en_flags);
3743 	wakeup_preempt(rq, p, wake_flags);
3744 
3745 	ttwu_do_wakeup(p);
3746 
3747 #ifdef CONFIG_SMP
3748 	if (p->sched_class->task_woken) {
3749 		/*
3750 		 * Our task @p is fully woken up and running; so it's safe to
3751 		 * drop the rq->lock, hereafter rq is only used for statistics.
3752 		 */
3753 		rq_unpin_lock(rq, rf);
3754 		p->sched_class->task_woken(rq, p);
3755 		rq_repin_lock(rq, rf);
3756 	}
3757 
3758 	if (rq->idle_stamp) {
3759 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3760 		u64 max = 2*rq->max_idle_balance_cost;
3761 
3762 		update_avg(&rq->avg_idle, delta);
3763 
3764 		if (rq->avg_idle > max)
3765 			rq->avg_idle = max;
3766 
3767 		rq->idle_stamp = 0;
3768 	}
3769 #endif
3770 }
3771 
3772 /*
3773  * Consider @p being inside a wait loop:
3774  *
3775  *   for (;;) {
3776  *      set_current_state(TASK_UNINTERRUPTIBLE);
3777  *
3778  *      if (CONDITION)
3779  *         break;
3780  *
3781  *      schedule();
3782  *   }
3783  *   __set_current_state(TASK_RUNNING);
3784  *
3785  * between set_current_state() and schedule(). In this case @p is still
3786  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3787  * an atomic manner.
3788  *
3789  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3790  * then schedule() must still happen and p->state can be changed to
3791  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3792  * need to do a full wakeup with enqueue.
3793  *
3794  * Returns: %true when the wakeup is done,
3795  *          %false otherwise.
3796  */
3797 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3798 {
3799 	struct rq_flags rf;
3800 	struct rq *rq;
3801 	int ret = 0;
3802 
3803 	rq = __task_rq_lock(p, &rf);
3804 	if (task_on_rq_queued(p)) {
3805 		update_rq_clock(rq);
3806 		if (p->se.sched_delayed)
3807 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3808 		if (!task_on_cpu(rq, p)) {
3809 			/*
3810 			 * When on_rq && !on_cpu the task is preempted, see if
3811 			 * it should preempt the task that is current now.
3812 			 */
3813 			wakeup_preempt(rq, p, wake_flags);
3814 		}
3815 		ttwu_do_wakeup(p);
3816 		ret = 1;
3817 	}
3818 	__task_rq_unlock(rq, &rf);
3819 
3820 	return ret;
3821 }
3822 
3823 #ifdef CONFIG_SMP
3824 void sched_ttwu_pending(void *arg)
3825 {
3826 	struct llist_node *llist = arg;
3827 	struct rq *rq = this_rq();
3828 	struct task_struct *p, *t;
3829 	struct rq_flags rf;
3830 
3831 	if (!llist)
3832 		return;
3833 
3834 	rq_lock_irqsave(rq, &rf);
3835 	update_rq_clock(rq);
3836 
3837 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3838 		if (WARN_ON_ONCE(p->on_cpu))
3839 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3840 
3841 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3842 			set_task_cpu(p, cpu_of(rq));
3843 
3844 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3845 	}
3846 
3847 	/*
3848 	 * Must be after enqueueing at least once task such that
3849 	 * idle_cpu() does not observe a false-negative -- if it does,
3850 	 * it is possible for select_idle_siblings() to stack a number
3851 	 * of tasks on this CPU during that window.
3852 	 *
3853 	 * It is OK to clear ttwu_pending when another task pending.
3854 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3855 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3856 	 */
3857 	WRITE_ONCE(rq->ttwu_pending, 0);
3858 	rq_unlock_irqrestore(rq, &rf);
3859 }
3860 
3861 /*
3862  * Prepare the scene for sending an IPI for a remote smp_call
3863  *
3864  * Returns true if the caller can proceed with sending the IPI.
3865  * Returns false otherwise.
3866  */
3867 bool call_function_single_prep_ipi(int cpu)
3868 {
3869 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3870 		trace_sched_wake_idle_without_ipi(cpu);
3871 		return false;
3872 	}
3873 
3874 	return true;
3875 }
3876 
3877 /*
3878  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3879  * necessary. The wakee CPU on receipt of the IPI will queue the task
3880  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3881  * of the wakeup instead of the waker.
3882  */
3883 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3884 {
3885 	struct rq *rq = cpu_rq(cpu);
3886 
3887 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3888 
3889 	WRITE_ONCE(rq->ttwu_pending, 1);
3890 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3891 }
3892 
3893 void wake_up_if_idle(int cpu)
3894 {
3895 	struct rq *rq = cpu_rq(cpu);
3896 
3897 	guard(rcu)();
3898 	if (is_idle_task(rcu_dereference(rq->curr))) {
3899 		guard(rq_lock_irqsave)(rq);
3900 		if (is_idle_task(rq->curr))
3901 			resched_curr(rq);
3902 	}
3903 }
3904 
3905 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3906 {
3907 	if (!sched_asym_cpucap_active())
3908 		return true;
3909 
3910 	if (this_cpu == that_cpu)
3911 		return true;
3912 
3913 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3914 }
3915 
3916 bool cpus_share_cache(int this_cpu, int that_cpu)
3917 {
3918 	if (this_cpu == that_cpu)
3919 		return true;
3920 
3921 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3922 }
3923 
3924 /*
3925  * Whether CPUs are share cache resources, which means LLC on non-cluster
3926  * machines and LLC tag or L2 on machines with clusters.
3927  */
3928 bool cpus_share_resources(int this_cpu, int that_cpu)
3929 {
3930 	if (this_cpu == that_cpu)
3931 		return true;
3932 
3933 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3934 }
3935 
3936 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3937 {
3938 	/* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */
3939 	if (!scx_allow_ttwu_queue(p))
3940 		return false;
3941 
3942 	/*
3943 	 * Do not complicate things with the async wake_list while the CPU is
3944 	 * in hotplug state.
3945 	 */
3946 	if (!cpu_active(cpu))
3947 		return false;
3948 
3949 	/* Ensure the task will still be allowed to run on the CPU. */
3950 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3951 		return false;
3952 
3953 	/*
3954 	 * If the CPU does not share cache, then queue the task on the
3955 	 * remote rqs wakelist to avoid accessing remote data.
3956 	 */
3957 	if (!cpus_share_cache(smp_processor_id(), cpu))
3958 		return true;
3959 
3960 	if (cpu == smp_processor_id())
3961 		return false;
3962 
3963 	/*
3964 	 * If the wakee cpu is idle, or the task is descheduling and the
3965 	 * only running task on the CPU, then use the wakelist to offload
3966 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3967 	 * the current CPU is likely busy. nr_running is checked to
3968 	 * avoid unnecessary task stacking.
3969 	 *
3970 	 * Note that we can only get here with (wakee) p->on_rq=0,
3971 	 * p->on_cpu can be whatever, we've done the dequeue, so
3972 	 * the wakee has been accounted out of ->nr_running.
3973 	 */
3974 	if (!cpu_rq(cpu)->nr_running)
3975 		return true;
3976 
3977 	return false;
3978 }
3979 
3980 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3981 {
3982 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3983 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3984 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3985 		return true;
3986 	}
3987 
3988 	return false;
3989 }
3990 
3991 #else /* !CONFIG_SMP */
3992 
3993 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3994 {
3995 	return false;
3996 }
3997 
3998 #endif /* CONFIG_SMP */
3999 
4000 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4001 {
4002 	struct rq *rq = cpu_rq(cpu);
4003 	struct rq_flags rf;
4004 
4005 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4006 		return;
4007 
4008 	rq_lock(rq, &rf);
4009 	update_rq_clock(rq);
4010 	ttwu_do_activate(rq, p, wake_flags, &rf);
4011 	rq_unlock(rq, &rf);
4012 }
4013 
4014 /*
4015  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4016  *
4017  * The caller holds p::pi_lock if p != current or has preemption
4018  * disabled when p == current.
4019  *
4020  * The rules of saved_state:
4021  *
4022  *   The related locking code always holds p::pi_lock when updating
4023  *   p::saved_state, which means the code is fully serialized in both cases.
4024  *
4025  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4026  *   No other bits set. This allows to distinguish all wakeup scenarios.
4027  *
4028  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4029  *   allows us to prevent early wakeup of tasks before they can be run on
4030  *   asymmetric ISA architectures (eg ARMv9).
4031  */
4032 static __always_inline
4033 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4034 {
4035 	int match;
4036 
4037 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4038 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4039 			     state != TASK_RTLOCK_WAIT);
4040 	}
4041 
4042 	*success = !!(match = __task_state_match(p, state));
4043 
4044 	/*
4045 	 * Saved state preserves the task state across blocking on
4046 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4047 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4048 	 * because it waits for a lock wakeup or __thaw_task(). Also
4049 	 * indicate success because from the regular waker's point of
4050 	 * view this has succeeded.
4051 	 *
4052 	 * After acquiring the lock the task will restore p::__state
4053 	 * from p::saved_state which ensures that the regular
4054 	 * wakeup is not lost. The restore will also set
4055 	 * p::saved_state to TASK_RUNNING so any further tests will
4056 	 * not result in false positives vs. @success
4057 	 */
4058 	if (match < 0)
4059 		p->saved_state = TASK_RUNNING;
4060 
4061 	return match > 0;
4062 }
4063 
4064 /*
4065  * Notes on Program-Order guarantees on SMP systems.
4066  *
4067  *  MIGRATION
4068  *
4069  * The basic program-order guarantee on SMP systems is that when a task [t]
4070  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4071  * execution on its new CPU [c1].
4072  *
4073  * For migration (of runnable tasks) this is provided by the following means:
4074  *
4075  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4076  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4077  *     rq(c1)->lock (if not at the same time, then in that order).
4078  *  C) LOCK of the rq(c1)->lock scheduling in task
4079  *
4080  * Release/acquire chaining guarantees that B happens after A and C after B.
4081  * Note: the CPU doing B need not be c0 or c1
4082  *
4083  * Example:
4084  *
4085  *   CPU0            CPU1            CPU2
4086  *
4087  *   LOCK rq(0)->lock
4088  *   sched-out X
4089  *   sched-in Y
4090  *   UNLOCK rq(0)->lock
4091  *
4092  *                                   LOCK rq(0)->lock // orders against CPU0
4093  *                                   dequeue X
4094  *                                   UNLOCK rq(0)->lock
4095  *
4096  *                                   LOCK rq(1)->lock
4097  *                                   enqueue X
4098  *                                   UNLOCK rq(1)->lock
4099  *
4100  *                   LOCK rq(1)->lock // orders against CPU2
4101  *                   sched-out Z
4102  *                   sched-in X
4103  *                   UNLOCK rq(1)->lock
4104  *
4105  *
4106  *  BLOCKING -- aka. SLEEP + WAKEUP
4107  *
4108  * For blocking we (obviously) need to provide the same guarantee as for
4109  * migration. However the means are completely different as there is no lock
4110  * chain to provide order. Instead we do:
4111  *
4112  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4113  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4114  *
4115  * Example:
4116  *
4117  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4118  *
4119  *   LOCK rq(0)->lock LOCK X->pi_lock
4120  *   dequeue X
4121  *   sched-out X
4122  *   smp_store_release(X->on_cpu, 0);
4123  *
4124  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4125  *                    X->state = WAKING
4126  *                    set_task_cpu(X,2)
4127  *
4128  *                    LOCK rq(2)->lock
4129  *                    enqueue X
4130  *                    X->state = RUNNING
4131  *                    UNLOCK rq(2)->lock
4132  *
4133  *                                          LOCK rq(2)->lock // orders against CPU1
4134  *                                          sched-out Z
4135  *                                          sched-in X
4136  *                                          UNLOCK rq(2)->lock
4137  *
4138  *                    UNLOCK X->pi_lock
4139  *   UNLOCK rq(0)->lock
4140  *
4141  *
4142  * However, for wakeups there is a second guarantee we must provide, namely we
4143  * must ensure that CONDITION=1 done by the caller can not be reordered with
4144  * accesses to the task state; see try_to_wake_up() and set_current_state().
4145  */
4146 
4147 /**
4148  * try_to_wake_up - wake up a thread
4149  * @p: the thread to be awakened
4150  * @state: the mask of task states that can be woken
4151  * @wake_flags: wake modifier flags (WF_*)
4152  *
4153  * Conceptually does:
4154  *
4155  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4156  *
4157  * If the task was not queued/runnable, also place it back on a runqueue.
4158  *
4159  * This function is atomic against schedule() which would dequeue the task.
4160  *
4161  * It issues a full memory barrier before accessing @p->state, see the comment
4162  * with set_current_state().
4163  *
4164  * Uses p->pi_lock to serialize against concurrent wake-ups.
4165  *
4166  * Relies on p->pi_lock stabilizing:
4167  *  - p->sched_class
4168  *  - p->cpus_ptr
4169  *  - p->sched_task_group
4170  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4171  *
4172  * Tries really hard to only take one task_rq(p)->lock for performance.
4173  * Takes rq->lock in:
4174  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4175  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4176  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4177  *
4178  * As a consequence we race really badly with just about everything. See the
4179  * many memory barriers and their comments for details.
4180  *
4181  * Return: %true if @p->state changes (an actual wakeup was done),
4182  *	   %false otherwise.
4183  */
4184 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4185 {
4186 	guard(preempt)();
4187 	int cpu, success = 0;
4188 
4189 	wake_flags |= WF_TTWU;
4190 
4191 	if (p == current) {
4192 		/*
4193 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4194 		 * == smp_processor_id()'. Together this means we can special
4195 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4196 		 * without taking any locks.
4197 		 *
4198 		 * Specifically, given current runs ttwu() we must be before
4199 		 * schedule()'s block_task(), as such this must not observe
4200 		 * sched_delayed.
4201 		 *
4202 		 * In particular:
4203 		 *  - we rely on Program-Order guarantees for all the ordering,
4204 		 *  - we're serialized against set_special_state() by virtue of
4205 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4206 		 */
4207 		WARN_ON_ONCE(p->se.sched_delayed);
4208 		if (!ttwu_state_match(p, state, &success))
4209 			goto out;
4210 
4211 		trace_sched_waking(p);
4212 		ttwu_do_wakeup(p);
4213 		goto out;
4214 	}
4215 
4216 	/*
4217 	 * If we are going to wake up a thread waiting for CONDITION we
4218 	 * need to ensure that CONDITION=1 done by the caller can not be
4219 	 * reordered with p->state check below. This pairs with smp_store_mb()
4220 	 * in set_current_state() that the waiting thread does.
4221 	 */
4222 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4223 		smp_mb__after_spinlock();
4224 		if (!ttwu_state_match(p, state, &success))
4225 			break;
4226 
4227 		trace_sched_waking(p);
4228 
4229 		/*
4230 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4231 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4232 		 * in smp_cond_load_acquire() below.
4233 		 *
4234 		 * sched_ttwu_pending()			try_to_wake_up()
4235 		 *   STORE p->on_rq = 1			  LOAD p->state
4236 		 *   UNLOCK rq->lock
4237 		 *
4238 		 * __schedule() (switch to task 'p')
4239 		 *   LOCK rq->lock			  smp_rmb();
4240 		 *   smp_mb__after_spinlock();
4241 		 *   UNLOCK rq->lock
4242 		 *
4243 		 * [task p]
4244 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4245 		 *
4246 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4247 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4248 		 *
4249 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4250 		 */
4251 		smp_rmb();
4252 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4253 			break;
4254 
4255 #ifdef CONFIG_SMP
4256 		/*
4257 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4258 		 * possible to, falsely, observe p->on_cpu == 0.
4259 		 *
4260 		 * One must be running (->on_cpu == 1) in order to remove oneself
4261 		 * from the runqueue.
4262 		 *
4263 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4264 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4265 		 *   UNLOCK rq->lock
4266 		 *
4267 		 * __schedule() (put 'p' to sleep)
4268 		 *   LOCK rq->lock			  smp_rmb();
4269 		 *   smp_mb__after_spinlock();
4270 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4271 		 *
4272 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4273 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4274 		 *
4275 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4276 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4277 		 * care about it's own p->state. See the comment in __schedule().
4278 		 */
4279 		smp_acquire__after_ctrl_dep();
4280 
4281 		/*
4282 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4283 		 * == 0), which means we need to do an enqueue, change p->state to
4284 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4285 		 * enqueue, such as ttwu_queue_wakelist().
4286 		 */
4287 		WRITE_ONCE(p->__state, TASK_WAKING);
4288 
4289 		/*
4290 		 * If the owning (remote) CPU is still in the middle of schedule() with
4291 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4292 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4293 		 * let the waker make forward progress. This is safe because IRQs are
4294 		 * disabled and the IPI will deliver after on_cpu is cleared.
4295 		 *
4296 		 * Ensure we load task_cpu(p) after p->on_cpu:
4297 		 *
4298 		 * set_task_cpu(p, cpu);
4299 		 *   STORE p->cpu = @cpu
4300 		 * __schedule() (switch to task 'p')
4301 		 *   LOCK rq->lock
4302 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4303 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4304 		 *
4305 		 * to ensure we observe the correct CPU on which the task is currently
4306 		 * scheduling.
4307 		 */
4308 		if (smp_load_acquire(&p->on_cpu) &&
4309 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4310 			break;
4311 
4312 		/*
4313 		 * If the owning (remote) CPU is still in the middle of schedule() with
4314 		 * this task as prev, wait until it's done referencing the task.
4315 		 *
4316 		 * Pairs with the smp_store_release() in finish_task().
4317 		 *
4318 		 * This ensures that tasks getting woken will be fully ordered against
4319 		 * their previous state and preserve Program Order.
4320 		 */
4321 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4322 
4323 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4324 		if (task_cpu(p) != cpu) {
4325 			if (p->in_iowait) {
4326 				delayacct_blkio_end(p);
4327 				atomic_dec(&task_rq(p)->nr_iowait);
4328 			}
4329 
4330 			wake_flags |= WF_MIGRATED;
4331 			psi_ttwu_dequeue(p);
4332 			set_task_cpu(p, cpu);
4333 		}
4334 #else
4335 		cpu = task_cpu(p);
4336 #endif /* CONFIG_SMP */
4337 
4338 		ttwu_queue(p, cpu, wake_flags);
4339 	}
4340 out:
4341 	if (success)
4342 		ttwu_stat(p, task_cpu(p), wake_flags);
4343 
4344 	return success;
4345 }
4346 
4347 static bool __task_needs_rq_lock(struct task_struct *p)
4348 {
4349 	unsigned int state = READ_ONCE(p->__state);
4350 
4351 	/*
4352 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4353 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4354 	 * locks at the end, see ttwu_queue_wakelist().
4355 	 */
4356 	if (state == TASK_RUNNING || state == TASK_WAKING)
4357 		return true;
4358 
4359 	/*
4360 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4361 	 * possible to, falsely, observe p->on_rq == 0.
4362 	 *
4363 	 * See try_to_wake_up() for a longer comment.
4364 	 */
4365 	smp_rmb();
4366 	if (p->on_rq)
4367 		return true;
4368 
4369 #ifdef CONFIG_SMP
4370 	/*
4371 	 * Ensure the task has finished __schedule() and will not be referenced
4372 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4373 	 */
4374 	smp_rmb();
4375 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4376 #endif
4377 
4378 	return false;
4379 }
4380 
4381 /**
4382  * task_call_func - Invoke a function on task in fixed state
4383  * @p: Process for which the function is to be invoked, can be @current.
4384  * @func: Function to invoke.
4385  * @arg: Argument to function.
4386  *
4387  * Fix the task in it's current state by avoiding wakeups and or rq operations
4388  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4389  * task_curr() to work out what the state is, if required.  Given that @func
4390  * can be invoked with a runqueue lock held, it had better be quite
4391  * lightweight.
4392  *
4393  * Returns:
4394  *   Whatever @func returns
4395  */
4396 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4397 {
4398 	struct rq *rq = NULL;
4399 	struct rq_flags rf;
4400 	int ret;
4401 
4402 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4403 
4404 	if (__task_needs_rq_lock(p))
4405 		rq = __task_rq_lock(p, &rf);
4406 
4407 	/*
4408 	 * At this point the task is pinned; either:
4409 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4410 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4411 	 *  - queued, and we're holding off schedule	 (rq->lock)
4412 	 *  - running, and we're holding off de-schedule (rq->lock)
4413 	 *
4414 	 * The called function (@func) can use: task_curr(), p->on_rq and
4415 	 * p->__state to differentiate between these states.
4416 	 */
4417 	ret = func(p, arg);
4418 
4419 	if (rq)
4420 		rq_unlock(rq, &rf);
4421 
4422 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4423 	return ret;
4424 }
4425 
4426 /**
4427  * cpu_curr_snapshot - Return a snapshot of the currently running task
4428  * @cpu: The CPU on which to snapshot the task.
4429  *
4430  * Returns the task_struct pointer of the task "currently" running on
4431  * the specified CPU.
4432  *
4433  * If the specified CPU was offline, the return value is whatever it
4434  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4435  * task, but there is no guarantee.  Callers wishing a useful return
4436  * value must take some action to ensure that the specified CPU remains
4437  * online throughout.
4438  *
4439  * This function executes full memory barriers before and after fetching
4440  * the pointer, which permits the caller to confine this function's fetch
4441  * with respect to the caller's accesses to other shared variables.
4442  */
4443 struct task_struct *cpu_curr_snapshot(int cpu)
4444 {
4445 	struct rq *rq = cpu_rq(cpu);
4446 	struct task_struct *t;
4447 	struct rq_flags rf;
4448 
4449 	rq_lock_irqsave(rq, &rf);
4450 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4451 	t = rcu_dereference(cpu_curr(cpu));
4452 	rq_unlock_irqrestore(rq, &rf);
4453 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4454 
4455 	return t;
4456 }
4457 
4458 /**
4459  * wake_up_process - Wake up a specific process
4460  * @p: The process to be woken up.
4461  *
4462  * Attempt to wake up the nominated process and move it to the set of runnable
4463  * processes.
4464  *
4465  * Return: 1 if the process was woken up, 0 if it was already running.
4466  *
4467  * This function executes a full memory barrier before accessing the task state.
4468  */
4469 int wake_up_process(struct task_struct *p)
4470 {
4471 	return try_to_wake_up(p, TASK_NORMAL, 0);
4472 }
4473 EXPORT_SYMBOL(wake_up_process);
4474 
4475 int wake_up_state(struct task_struct *p, unsigned int state)
4476 {
4477 	return try_to_wake_up(p, state, 0);
4478 }
4479 
4480 /*
4481  * Perform scheduler related setup for a newly forked process p.
4482  * p is forked by current.
4483  *
4484  * __sched_fork() is basic setup which is also used by sched_init() to
4485  * initialize the boot CPU's idle task.
4486  */
4487 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4488 {
4489 	p->on_rq			= 0;
4490 
4491 	p->se.on_rq			= 0;
4492 	p->se.exec_start		= 0;
4493 	p->se.sum_exec_runtime		= 0;
4494 	p->se.prev_sum_exec_runtime	= 0;
4495 	p->se.nr_migrations		= 0;
4496 	p->se.vruntime			= 0;
4497 	p->se.vlag			= 0;
4498 	INIT_LIST_HEAD(&p->se.group_node);
4499 
4500 	/* A delayed task cannot be in clone(). */
4501 	WARN_ON_ONCE(p->se.sched_delayed);
4502 
4503 #ifdef CONFIG_FAIR_GROUP_SCHED
4504 	p->se.cfs_rq			= NULL;
4505 #endif
4506 
4507 #ifdef CONFIG_SCHEDSTATS
4508 	/* Even if schedstat is disabled, there should not be garbage */
4509 	memset(&p->stats, 0, sizeof(p->stats));
4510 #endif
4511 
4512 	init_dl_entity(&p->dl);
4513 
4514 	INIT_LIST_HEAD(&p->rt.run_list);
4515 	p->rt.timeout		= 0;
4516 	p->rt.time_slice	= sched_rr_timeslice;
4517 	p->rt.on_rq		= 0;
4518 	p->rt.on_list		= 0;
4519 
4520 #ifdef CONFIG_SCHED_CLASS_EXT
4521 	init_scx_entity(&p->scx);
4522 #endif
4523 
4524 #ifdef CONFIG_PREEMPT_NOTIFIERS
4525 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4526 #endif
4527 
4528 #ifdef CONFIG_COMPACTION
4529 	p->capture_control = NULL;
4530 #endif
4531 	init_numa_balancing(clone_flags, p);
4532 #ifdef CONFIG_SMP
4533 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4534 	p->migration_pending = NULL;
4535 #endif
4536 	init_sched_mm_cid(p);
4537 }
4538 
4539 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4540 
4541 #ifdef CONFIG_NUMA_BALANCING
4542 
4543 int sysctl_numa_balancing_mode;
4544 
4545 static void __set_numabalancing_state(bool enabled)
4546 {
4547 	if (enabled)
4548 		static_branch_enable(&sched_numa_balancing);
4549 	else
4550 		static_branch_disable(&sched_numa_balancing);
4551 }
4552 
4553 void set_numabalancing_state(bool enabled)
4554 {
4555 	if (enabled)
4556 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4557 	else
4558 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4559 	__set_numabalancing_state(enabled);
4560 }
4561 
4562 #ifdef CONFIG_PROC_SYSCTL
4563 static void reset_memory_tiering(void)
4564 {
4565 	struct pglist_data *pgdat;
4566 
4567 	for_each_online_pgdat(pgdat) {
4568 		pgdat->nbp_threshold = 0;
4569 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4570 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4571 	}
4572 }
4573 
4574 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4575 			  void *buffer, size_t *lenp, loff_t *ppos)
4576 {
4577 	struct ctl_table t;
4578 	int err;
4579 	int state = sysctl_numa_balancing_mode;
4580 
4581 	if (write && !capable(CAP_SYS_ADMIN))
4582 		return -EPERM;
4583 
4584 	t = *table;
4585 	t.data = &state;
4586 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4587 	if (err < 0)
4588 		return err;
4589 	if (write) {
4590 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4591 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4592 			reset_memory_tiering();
4593 		sysctl_numa_balancing_mode = state;
4594 		__set_numabalancing_state(state);
4595 	}
4596 	return err;
4597 }
4598 #endif
4599 #endif
4600 
4601 #ifdef CONFIG_SCHEDSTATS
4602 
4603 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4604 
4605 static void set_schedstats(bool enabled)
4606 {
4607 	if (enabled)
4608 		static_branch_enable(&sched_schedstats);
4609 	else
4610 		static_branch_disable(&sched_schedstats);
4611 }
4612 
4613 void force_schedstat_enabled(void)
4614 {
4615 	if (!schedstat_enabled()) {
4616 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4617 		static_branch_enable(&sched_schedstats);
4618 	}
4619 }
4620 
4621 static int __init setup_schedstats(char *str)
4622 {
4623 	int ret = 0;
4624 	if (!str)
4625 		goto out;
4626 
4627 	if (!strcmp(str, "enable")) {
4628 		set_schedstats(true);
4629 		ret = 1;
4630 	} else if (!strcmp(str, "disable")) {
4631 		set_schedstats(false);
4632 		ret = 1;
4633 	}
4634 out:
4635 	if (!ret)
4636 		pr_warn("Unable to parse schedstats=\n");
4637 
4638 	return ret;
4639 }
4640 __setup("schedstats=", setup_schedstats);
4641 
4642 #ifdef CONFIG_PROC_SYSCTL
4643 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4644 		size_t *lenp, loff_t *ppos)
4645 {
4646 	struct ctl_table t;
4647 	int err;
4648 	int state = static_branch_likely(&sched_schedstats);
4649 
4650 	if (write && !capable(CAP_SYS_ADMIN))
4651 		return -EPERM;
4652 
4653 	t = *table;
4654 	t.data = &state;
4655 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4656 	if (err < 0)
4657 		return err;
4658 	if (write)
4659 		set_schedstats(state);
4660 	return err;
4661 }
4662 #endif /* CONFIG_PROC_SYSCTL */
4663 #endif /* CONFIG_SCHEDSTATS */
4664 
4665 #ifdef CONFIG_SYSCTL
4666 static const struct ctl_table sched_core_sysctls[] = {
4667 #ifdef CONFIG_SCHEDSTATS
4668 	{
4669 		.procname       = "sched_schedstats",
4670 		.data           = NULL,
4671 		.maxlen         = sizeof(unsigned int),
4672 		.mode           = 0644,
4673 		.proc_handler   = sysctl_schedstats,
4674 		.extra1         = SYSCTL_ZERO,
4675 		.extra2         = SYSCTL_ONE,
4676 	},
4677 #endif /* CONFIG_SCHEDSTATS */
4678 #ifdef CONFIG_UCLAMP_TASK
4679 	{
4680 		.procname       = "sched_util_clamp_min",
4681 		.data           = &sysctl_sched_uclamp_util_min,
4682 		.maxlen         = sizeof(unsigned int),
4683 		.mode           = 0644,
4684 		.proc_handler   = sysctl_sched_uclamp_handler,
4685 	},
4686 	{
4687 		.procname       = "sched_util_clamp_max",
4688 		.data           = &sysctl_sched_uclamp_util_max,
4689 		.maxlen         = sizeof(unsigned int),
4690 		.mode           = 0644,
4691 		.proc_handler   = sysctl_sched_uclamp_handler,
4692 	},
4693 	{
4694 		.procname       = "sched_util_clamp_min_rt_default",
4695 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4696 		.maxlen         = sizeof(unsigned int),
4697 		.mode           = 0644,
4698 		.proc_handler   = sysctl_sched_uclamp_handler,
4699 	},
4700 #endif /* CONFIG_UCLAMP_TASK */
4701 #ifdef CONFIG_NUMA_BALANCING
4702 	{
4703 		.procname	= "numa_balancing",
4704 		.data		= NULL, /* filled in by handler */
4705 		.maxlen		= sizeof(unsigned int),
4706 		.mode		= 0644,
4707 		.proc_handler	= sysctl_numa_balancing,
4708 		.extra1		= SYSCTL_ZERO,
4709 		.extra2		= SYSCTL_FOUR,
4710 	},
4711 #endif /* CONFIG_NUMA_BALANCING */
4712 };
4713 static int __init sched_core_sysctl_init(void)
4714 {
4715 	register_sysctl_init("kernel", sched_core_sysctls);
4716 	return 0;
4717 }
4718 late_initcall(sched_core_sysctl_init);
4719 #endif /* CONFIG_SYSCTL */
4720 
4721 /*
4722  * fork()/clone()-time setup:
4723  */
4724 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4725 {
4726 	__sched_fork(clone_flags, p);
4727 	/*
4728 	 * We mark the process as NEW here. This guarantees that
4729 	 * nobody will actually run it, and a signal or other external
4730 	 * event cannot wake it up and insert it on the runqueue either.
4731 	 */
4732 	p->__state = TASK_NEW;
4733 
4734 	/*
4735 	 * Make sure we do not leak PI boosting priority to the child.
4736 	 */
4737 	p->prio = current->normal_prio;
4738 
4739 	uclamp_fork(p);
4740 
4741 	/*
4742 	 * Revert to default priority/policy on fork if requested.
4743 	 */
4744 	if (unlikely(p->sched_reset_on_fork)) {
4745 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4746 			p->policy = SCHED_NORMAL;
4747 			p->static_prio = NICE_TO_PRIO(0);
4748 			p->rt_priority = 0;
4749 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4750 			p->static_prio = NICE_TO_PRIO(0);
4751 
4752 		p->prio = p->normal_prio = p->static_prio;
4753 		set_load_weight(p, false);
4754 		p->se.custom_slice = 0;
4755 		p->se.slice = sysctl_sched_base_slice;
4756 
4757 		/*
4758 		 * We don't need the reset flag anymore after the fork. It has
4759 		 * fulfilled its duty:
4760 		 */
4761 		p->sched_reset_on_fork = 0;
4762 	}
4763 
4764 	if (dl_prio(p->prio))
4765 		return -EAGAIN;
4766 
4767 	scx_pre_fork(p);
4768 
4769 	if (rt_prio(p->prio)) {
4770 		p->sched_class = &rt_sched_class;
4771 #ifdef CONFIG_SCHED_CLASS_EXT
4772 	} else if (task_should_scx(p->policy)) {
4773 		p->sched_class = &ext_sched_class;
4774 #endif
4775 	} else {
4776 		p->sched_class = &fair_sched_class;
4777 	}
4778 
4779 	init_entity_runnable_average(&p->se);
4780 
4781 
4782 #ifdef CONFIG_SCHED_INFO
4783 	if (likely(sched_info_on()))
4784 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4785 #endif
4786 #if defined(CONFIG_SMP)
4787 	p->on_cpu = 0;
4788 #endif
4789 	init_task_preempt_count(p);
4790 #ifdef CONFIG_SMP
4791 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4792 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4793 #endif
4794 	return 0;
4795 }
4796 
4797 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4798 {
4799 	unsigned long flags;
4800 
4801 	/*
4802 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4803 	 * required yet, but lockdep gets upset if rules are violated.
4804 	 */
4805 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4806 #ifdef CONFIG_CGROUP_SCHED
4807 	if (1) {
4808 		struct task_group *tg;
4809 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4810 				  struct task_group, css);
4811 		tg = autogroup_task_group(p, tg);
4812 		p->sched_task_group = tg;
4813 	}
4814 #endif
4815 	rseq_migrate(p);
4816 	/*
4817 	 * We're setting the CPU for the first time, we don't migrate,
4818 	 * so use __set_task_cpu().
4819 	 */
4820 	__set_task_cpu(p, smp_processor_id());
4821 	if (p->sched_class->task_fork)
4822 		p->sched_class->task_fork(p);
4823 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4824 
4825 	return scx_fork(p);
4826 }
4827 
4828 void sched_cancel_fork(struct task_struct *p)
4829 {
4830 	scx_cancel_fork(p);
4831 }
4832 
4833 void sched_post_fork(struct task_struct *p)
4834 {
4835 	uclamp_post_fork(p);
4836 	scx_post_fork(p);
4837 }
4838 
4839 unsigned long to_ratio(u64 period, u64 runtime)
4840 {
4841 	if (runtime == RUNTIME_INF)
4842 		return BW_UNIT;
4843 
4844 	/*
4845 	 * Doing this here saves a lot of checks in all
4846 	 * the calling paths, and returning zero seems
4847 	 * safe for them anyway.
4848 	 */
4849 	if (period == 0)
4850 		return 0;
4851 
4852 	return div64_u64(runtime << BW_SHIFT, period);
4853 }
4854 
4855 /*
4856  * wake_up_new_task - wake up a newly created task for the first time.
4857  *
4858  * This function will do some initial scheduler statistics housekeeping
4859  * that must be done for every newly created context, then puts the task
4860  * on the runqueue and wakes it.
4861  */
4862 void wake_up_new_task(struct task_struct *p)
4863 {
4864 	struct rq_flags rf;
4865 	struct rq *rq;
4866 	int wake_flags = WF_FORK;
4867 
4868 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4869 	WRITE_ONCE(p->__state, TASK_RUNNING);
4870 #ifdef CONFIG_SMP
4871 	/*
4872 	 * Fork balancing, do it here and not earlier because:
4873 	 *  - cpus_ptr can change in the fork path
4874 	 *  - any previously selected CPU might disappear through hotplug
4875 	 *
4876 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4877 	 * as we're not fully set-up yet.
4878 	 */
4879 	p->recent_used_cpu = task_cpu(p);
4880 	rseq_migrate(p);
4881 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4882 #endif
4883 	rq = __task_rq_lock(p, &rf);
4884 	update_rq_clock(rq);
4885 	post_init_entity_util_avg(p);
4886 
4887 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4888 	trace_sched_wakeup_new(p);
4889 	wakeup_preempt(rq, p, wake_flags);
4890 #ifdef CONFIG_SMP
4891 	if (p->sched_class->task_woken) {
4892 		/*
4893 		 * Nothing relies on rq->lock after this, so it's fine to
4894 		 * drop it.
4895 		 */
4896 		rq_unpin_lock(rq, &rf);
4897 		p->sched_class->task_woken(rq, p);
4898 		rq_repin_lock(rq, &rf);
4899 	}
4900 #endif
4901 	task_rq_unlock(rq, p, &rf);
4902 }
4903 
4904 #ifdef CONFIG_PREEMPT_NOTIFIERS
4905 
4906 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4907 
4908 void preempt_notifier_inc(void)
4909 {
4910 	static_branch_inc(&preempt_notifier_key);
4911 }
4912 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4913 
4914 void preempt_notifier_dec(void)
4915 {
4916 	static_branch_dec(&preempt_notifier_key);
4917 }
4918 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4919 
4920 /**
4921  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4922  * @notifier: notifier struct to register
4923  */
4924 void preempt_notifier_register(struct preempt_notifier *notifier)
4925 {
4926 	if (!static_branch_unlikely(&preempt_notifier_key))
4927 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4928 
4929 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4930 }
4931 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4932 
4933 /**
4934  * preempt_notifier_unregister - no longer interested in preemption notifications
4935  * @notifier: notifier struct to unregister
4936  *
4937  * This is *not* safe to call from within a preemption notifier.
4938  */
4939 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4940 {
4941 	hlist_del(&notifier->link);
4942 }
4943 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4944 
4945 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4946 {
4947 	struct preempt_notifier *notifier;
4948 
4949 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4950 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4951 }
4952 
4953 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4954 {
4955 	if (static_branch_unlikely(&preempt_notifier_key))
4956 		__fire_sched_in_preempt_notifiers(curr);
4957 }
4958 
4959 static void
4960 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4961 				   struct task_struct *next)
4962 {
4963 	struct preempt_notifier *notifier;
4964 
4965 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4966 		notifier->ops->sched_out(notifier, next);
4967 }
4968 
4969 static __always_inline void
4970 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4971 				 struct task_struct *next)
4972 {
4973 	if (static_branch_unlikely(&preempt_notifier_key))
4974 		__fire_sched_out_preempt_notifiers(curr, next);
4975 }
4976 
4977 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4978 
4979 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4980 {
4981 }
4982 
4983 static inline void
4984 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4985 				 struct task_struct *next)
4986 {
4987 }
4988 
4989 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4990 
4991 static inline void prepare_task(struct task_struct *next)
4992 {
4993 #ifdef CONFIG_SMP
4994 	/*
4995 	 * Claim the task as running, we do this before switching to it
4996 	 * such that any running task will have this set.
4997 	 *
4998 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4999 	 * its ordering comment.
5000 	 */
5001 	WRITE_ONCE(next->on_cpu, 1);
5002 #endif
5003 }
5004 
5005 static inline void finish_task(struct task_struct *prev)
5006 {
5007 #ifdef CONFIG_SMP
5008 	/*
5009 	 * This must be the very last reference to @prev from this CPU. After
5010 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5011 	 * must ensure this doesn't happen until the switch is completely
5012 	 * finished.
5013 	 *
5014 	 * In particular, the load of prev->state in finish_task_switch() must
5015 	 * happen before this.
5016 	 *
5017 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5018 	 */
5019 	smp_store_release(&prev->on_cpu, 0);
5020 #endif
5021 }
5022 
5023 #ifdef CONFIG_SMP
5024 
5025 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5026 {
5027 	void (*func)(struct rq *rq);
5028 	struct balance_callback *next;
5029 
5030 	lockdep_assert_rq_held(rq);
5031 
5032 	while (head) {
5033 		func = (void (*)(struct rq *))head->func;
5034 		next = head->next;
5035 		head->next = NULL;
5036 		head = next;
5037 
5038 		func(rq);
5039 	}
5040 }
5041 
5042 static void balance_push(struct rq *rq);
5043 
5044 /*
5045  * balance_push_callback is a right abuse of the callback interface and plays
5046  * by significantly different rules.
5047  *
5048  * Where the normal balance_callback's purpose is to be ran in the same context
5049  * that queued it (only later, when it's safe to drop rq->lock again),
5050  * balance_push_callback is specifically targeted at __schedule().
5051  *
5052  * This abuse is tolerated because it places all the unlikely/odd cases behind
5053  * a single test, namely: rq->balance_callback == NULL.
5054  */
5055 struct balance_callback balance_push_callback = {
5056 	.next = NULL,
5057 	.func = balance_push,
5058 };
5059 
5060 static inline struct balance_callback *
5061 __splice_balance_callbacks(struct rq *rq, bool split)
5062 {
5063 	struct balance_callback *head = rq->balance_callback;
5064 
5065 	if (likely(!head))
5066 		return NULL;
5067 
5068 	lockdep_assert_rq_held(rq);
5069 	/*
5070 	 * Must not take balance_push_callback off the list when
5071 	 * splice_balance_callbacks() and balance_callbacks() are not
5072 	 * in the same rq->lock section.
5073 	 *
5074 	 * In that case it would be possible for __schedule() to interleave
5075 	 * and observe the list empty.
5076 	 */
5077 	if (split && head == &balance_push_callback)
5078 		head = NULL;
5079 	else
5080 		rq->balance_callback = NULL;
5081 
5082 	return head;
5083 }
5084 
5085 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5086 {
5087 	return __splice_balance_callbacks(rq, true);
5088 }
5089 
5090 static void __balance_callbacks(struct rq *rq)
5091 {
5092 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5093 }
5094 
5095 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5096 {
5097 	unsigned long flags;
5098 
5099 	if (unlikely(head)) {
5100 		raw_spin_rq_lock_irqsave(rq, flags);
5101 		do_balance_callbacks(rq, head);
5102 		raw_spin_rq_unlock_irqrestore(rq, flags);
5103 	}
5104 }
5105 
5106 #else
5107 
5108 static inline void __balance_callbacks(struct rq *rq)
5109 {
5110 }
5111 
5112 #endif
5113 
5114 static inline void
5115 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5116 {
5117 	/*
5118 	 * Since the runqueue lock will be released by the next
5119 	 * task (which is an invalid locking op but in the case
5120 	 * of the scheduler it's an obvious special-case), so we
5121 	 * do an early lockdep release here:
5122 	 */
5123 	rq_unpin_lock(rq, rf);
5124 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5125 #ifdef CONFIG_DEBUG_SPINLOCK
5126 	/* this is a valid case when another task releases the spinlock */
5127 	rq_lockp(rq)->owner = next;
5128 #endif
5129 }
5130 
5131 static inline void finish_lock_switch(struct rq *rq)
5132 {
5133 	/*
5134 	 * If we are tracking spinlock dependencies then we have to
5135 	 * fix up the runqueue lock - which gets 'carried over' from
5136 	 * prev into current:
5137 	 */
5138 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5139 	__balance_callbacks(rq);
5140 	raw_spin_rq_unlock_irq(rq);
5141 }
5142 
5143 /*
5144  * NOP if the arch has not defined these:
5145  */
5146 
5147 #ifndef prepare_arch_switch
5148 # define prepare_arch_switch(next)	do { } while (0)
5149 #endif
5150 
5151 #ifndef finish_arch_post_lock_switch
5152 # define finish_arch_post_lock_switch()	do { } while (0)
5153 #endif
5154 
5155 static inline void kmap_local_sched_out(void)
5156 {
5157 #ifdef CONFIG_KMAP_LOCAL
5158 	if (unlikely(current->kmap_ctrl.idx))
5159 		__kmap_local_sched_out();
5160 #endif
5161 }
5162 
5163 static inline void kmap_local_sched_in(void)
5164 {
5165 #ifdef CONFIG_KMAP_LOCAL
5166 	if (unlikely(current->kmap_ctrl.idx))
5167 		__kmap_local_sched_in();
5168 #endif
5169 }
5170 
5171 /**
5172  * prepare_task_switch - prepare to switch tasks
5173  * @rq: the runqueue preparing to switch
5174  * @prev: the current task that is being switched out
5175  * @next: the task we are going to switch to.
5176  *
5177  * This is called with the rq lock held and interrupts off. It must
5178  * be paired with a subsequent finish_task_switch after the context
5179  * switch.
5180  *
5181  * prepare_task_switch sets up locking and calls architecture specific
5182  * hooks.
5183  */
5184 static inline void
5185 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5186 		    struct task_struct *next)
5187 {
5188 	kcov_prepare_switch(prev);
5189 	sched_info_switch(rq, prev, next);
5190 	perf_event_task_sched_out(prev, next);
5191 	rseq_preempt(prev);
5192 	fire_sched_out_preempt_notifiers(prev, next);
5193 	kmap_local_sched_out();
5194 	prepare_task(next);
5195 	prepare_arch_switch(next);
5196 }
5197 
5198 /**
5199  * finish_task_switch - clean up after a task-switch
5200  * @prev: the thread we just switched away from.
5201  *
5202  * finish_task_switch must be called after the context switch, paired
5203  * with a prepare_task_switch call before the context switch.
5204  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5205  * and do any other architecture-specific cleanup actions.
5206  *
5207  * Note that we may have delayed dropping an mm in context_switch(). If
5208  * so, we finish that here outside of the runqueue lock. (Doing it
5209  * with the lock held can cause deadlocks; see schedule() for
5210  * details.)
5211  *
5212  * The context switch have flipped the stack from under us and restored the
5213  * local variables which were saved when this task called schedule() in the
5214  * past. 'prev == current' is still correct but we need to recalculate this_rq
5215  * because prev may have moved to another CPU.
5216  */
5217 static struct rq *finish_task_switch(struct task_struct *prev)
5218 	__releases(rq->lock)
5219 {
5220 	struct rq *rq = this_rq();
5221 	struct mm_struct *mm = rq->prev_mm;
5222 	unsigned int prev_state;
5223 
5224 	/*
5225 	 * The previous task will have left us with a preempt_count of 2
5226 	 * because it left us after:
5227 	 *
5228 	 *	schedule()
5229 	 *	  preempt_disable();			// 1
5230 	 *	  __schedule()
5231 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5232 	 *
5233 	 * Also, see FORK_PREEMPT_COUNT.
5234 	 */
5235 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5236 		      "corrupted preempt_count: %s/%d/0x%x\n",
5237 		      current->comm, current->pid, preempt_count()))
5238 		preempt_count_set(FORK_PREEMPT_COUNT);
5239 
5240 	rq->prev_mm = NULL;
5241 
5242 	/*
5243 	 * A task struct has one reference for the use as "current".
5244 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5245 	 * schedule one last time. The schedule call will never return, and
5246 	 * the scheduled task must drop that reference.
5247 	 *
5248 	 * We must observe prev->state before clearing prev->on_cpu (in
5249 	 * finish_task), otherwise a concurrent wakeup can get prev
5250 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5251 	 * transition, resulting in a double drop.
5252 	 */
5253 	prev_state = READ_ONCE(prev->__state);
5254 	vtime_task_switch(prev);
5255 	perf_event_task_sched_in(prev, current);
5256 	finish_task(prev);
5257 	tick_nohz_task_switch();
5258 	finish_lock_switch(rq);
5259 	finish_arch_post_lock_switch();
5260 	kcov_finish_switch(current);
5261 	/*
5262 	 * kmap_local_sched_out() is invoked with rq::lock held and
5263 	 * interrupts disabled. There is no requirement for that, but the
5264 	 * sched out code does not have an interrupt enabled section.
5265 	 * Restoring the maps on sched in does not require interrupts being
5266 	 * disabled either.
5267 	 */
5268 	kmap_local_sched_in();
5269 
5270 	fire_sched_in_preempt_notifiers(current);
5271 	/*
5272 	 * When switching through a kernel thread, the loop in
5273 	 * membarrier_{private,global}_expedited() may have observed that
5274 	 * kernel thread and not issued an IPI. It is therefore possible to
5275 	 * schedule between user->kernel->user threads without passing though
5276 	 * switch_mm(). Membarrier requires a barrier after storing to
5277 	 * rq->curr, before returning to userspace, so provide them here:
5278 	 *
5279 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5280 	 *   provided by mmdrop_lazy_tlb(),
5281 	 * - a sync_core for SYNC_CORE.
5282 	 */
5283 	if (mm) {
5284 		membarrier_mm_sync_core_before_usermode(mm);
5285 		mmdrop_lazy_tlb_sched(mm);
5286 	}
5287 
5288 	if (unlikely(prev_state == TASK_DEAD)) {
5289 		if (prev->sched_class->task_dead)
5290 			prev->sched_class->task_dead(prev);
5291 
5292 		/* Task is done with its stack. */
5293 		put_task_stack(prev);
5294 
5295 		put_task_struct_rcu_user(prev);
5296 	}
5297 
5298 	return rq;
5299 }
5300 
5301 /**
5302  * schedule_tail - first thing a freshly forked thread must call.
5303  * @prev: the thread we just switched away from.
5304  */
5305 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5306 	__releases(rq->lock)
5307 {
5308 	/*
5309 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5310 	 * finish_task_switch() for details.
5311 	 *
5312 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5313 	 * and the preempt_enable() will end up enabling preemption (on
5314 	 * PREEMPT_COUNT kernels).
5315 	 */
5316 
5317 	finish_task_switch(prev);
5318 	/*
5319 	 * This is a special case: the newly created task has just
5320 	 * switched the context for the first time. It is returning from
5321 	 * schedule for the first time in this path.
5322 	 */
5323 	trace_sched_exit_tp(true, CALLER_ADDR0);
5324 	preempt_enable();
5325 
5326 	if (current->set_child_tid)
5327 		put_user(task_pid_vnr(current), current->set_child_tid);
5328 
5329 	calculate_sigpending();
5330 }
5331 
5332 /*
5333  * context_switch - switch to the new MM and the new thread's register state.
5334  */
5335 static __always_inline struct rq *
5336 context_switch(struct rq *rq, struct task_struct *prev,
5337 	       struct task_struct *next, struct rq_flags *rf)
5338 {
5339 	prepare_task_switch(rq, prev, next);
5340 
5341 	/*
5342 	 * For paravirt, this is coupled with an exit in switch_to to
5343 	 * combine the page table reload and the switch backend into
5344 	 * one hypercall.
5345 	 */
5346 	arch_start_context_switch(prev);
5347 
5348 	/*
5349 	 * kernel -> kernel   lazy + transfer active
5350 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5351 	 *
5352 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5353 	 *   user ->   user   switch
5354 	 *
5355 	 * switch_mm_cid() needs to be updated if the barriers provided
5356 	 * by context_switch() are modified.
5357 	 */
5358 	if (!next->mm) {                                // to kernel
5359 		enter_lazy_tlb(prev->active_mm, next);
5360 
5361 		next->active_mm = prev->active_mm;
5362 		if (prev->mm)                           // from user
5363 			mmgrab_lazy_tlb(prev->active_mm);
5364 		else
5365 			prev->active_mm = NULL;
5366 	} else {                                        // to user
5367 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5368 		/*
5369 		 * sys_membarrier() requires an smp_mb() between setting
5370 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5371 		 *
5372 		 * The below provides this either through switch_mm(), or in
5373 		 * case 'prev->active_mm == next->mm' through
5374 		 * finish_task_switch()'s mmdrop().
5375 		 */
5376 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5377 		lru_gen_use_mm(next->mm);
5378 
5379 		if (!prev->mm) {                        // from kernel
5380 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5381 			rq->prev_mm = prev->active_mm;
5382 			prev->active_mm = NULL;
5383 		}
5384 	}
5385 
5386 	/* switch_mm_cid() requires the memory barriers above. */
5387 	switch_mm_cid(rq, prev, next);
5388 
5389 	prepare_lock_switch(rq, next, rf);
5390 
5391 	/* Here we just switch the register state and the stack. */
5392 	switch_to(prev, next, prev);
5393 	barrier();
5394 
5395 	return finish_task_switch(prev);
5396 }
5397 
5398 /*
5399  * nr_running and nr_context_switches:
5400  *
5401  * externally visible scheduler statistics: current number of runnable
5402  * threads, total number of context switches performed since bootup.
5403  */
5404 unsigned int nr_running(void)
5405 {
5406 	unsigned int i, sum = 0;
5407 
5408 	for_each_online_cpu(i)
5409 		sum += cpu_rq(i)->nr_running;
5410 
5411 	return sum;
5412 }
5413 
5414 /*
5415  * Check if only the current task is running on the CPU.
5416  *
5417  * Caution: this function does not check that the caller has disabled
5418  * preemption, thus the result might have a time-of-check-to-time-of-use
5419  * race.  The caller is responsible to use it correctly, for example:
5420  *
5421  * - from a non-preemptible section (of course)
5422  *
5423  * - from a thread that is bound to a single CPU
5424  *
5425  * - in a loop with very short iterations (e.g. a polling loop)
5426  */
5427 bool single_task_running(void)
5428 {
5429 	return raw_rq()->nr_running == 1;
5430 }
5431 EXPORT_SYMBOL(single_task_running);
5432 
5433 unsigned long long nr_context_switches_cpu(int cpu)
5434 {
5435 	return cpu_rq(cpu)->nr_switches;
5436 }
5437 
5438 unsigned long long nr_context_switches(void)
5439 {
5440 	int i;
5441 	unsigned long long sum = 0;
5442 
5443 	for_each_possible_cpu(i)
5444 		sum += cpu_rq(i)->nr_switches;
5445 
5446 	return sum;
5447 }
5448 
5449 /*
5450  * Consumers of these two interfaces, like for example the cpuidle menu
5451  * governor, are using nonsensical data. Preferring shallow idle state selection
5452  * for a CPU that has IO-wait which might not even end up running the task when
5453  * it does become runnable.
5454  */
5455 
5456 unsigned int nr_iowait_cpu(int cpu)
5457 {
5458 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5459 }
5460 
5461 /*
5462  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5463  *
5464  * The idea behind IO-wait account is to account the idle time that we could
5465  * have spend running if it were not for IO. That is, if we were to improve the
5466  * storage performance, we'd have a proportional reduction in IO-wait time.
5467  *
5468  * This all works nicely on UP, where, when a task blocks on IO, we account
5469  * idle time as IO-wait, because if the storage were faster, it could've been
5470  * running and we'd not be idle.
5471  *
5472  * This has been extended to SMP, by doing the same for each CPU. This however
5473  * is broken.
5474  *
5475  * Imagine for instance the case where two tasks block on one CPU, only the one
5476  * CPU will have IO-wait accounted, while the other has regular idle. Even
5477  * though, if the storage were faster, both could've ran at the same time,
5478  * utilising both CPUs.
5479  *
5480  * This means, that when looking globally, the current IO-wait accounting on
5481  * SMP is a lower bound, by reason of under accounting.
5482  *
5483  * Worse, since the numbers are provided per CPU, they are sometimes
5484  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5485  * associated with any one particular CPU, it can wake to another CPU than it
5486  * blocked on. This means the per CPU IO-wait number is meaningless.
5487  *
5488  * Task CPU affinities can make all that even more 'interesting'.
5489  */
5490 
5491 unsigned int nr_iowait(void)
5492 {
5493 	unsigned int i, sum = 0;
5494 
5495 	for_each_possible_cpu(i)
5496 		sum += nr_iowait_cpu(i);
5497 
5498 	return sum;
5499 }
5500 
5501 #ifdef CONFIG_SMP
5502 
5503 /*
5504  * sched_exec - execve() is a valuable balancing opportunity, because at
5505  * this point the task has the smallest effective memory and cache footprint.
5506  */
5507 void sched_exec(void)
5508 {
5509 	struct task_struct *p = current;
5510 	struct migration_arg arg;
5511 	int dest_cpu;
5512 
5513 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5514 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5515 		if (dest_cpu == smp_processor_id())
5516 			return;
5517 
5518 		if (unlikely(!cpu_active(dest_cpu)))
5519 			return;
5520 
5521 		arg = (struct migration_arg){ p, dest_cpu };
5522 	}
5523 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5524 }
5525 
5526 #endif
5527 
5528 DEFINE_PER_CPU(struct kernel_stat, kstat);
5529 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5530 
5531 EXPORT_PER_CPU_SYMBOL(kstat);
5532 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5533 
5534 /*
5535  * The function fair_sched_class.update_curr accesses the struct curr
5536  * and its field curr->exec_start; when called from task_sched_runtime(),
5537  * we observe a high rate of cache misses in practice.
5538  * Prefetching this data results in improved performance.
5539  */
5540 static inline void prefetch_curr_exec_start(struct task_struct *p)
5541 {
5542 #ifdef CONFIG_FAIR_GROUP_SCHED
5543 	struct sched_entity *curr = p->se.cfs_rq->curr;
5544 #else
5545 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5546 #endif
5547 	prefetch(curr);
5548 	prefetch(&curr->exec_start);
5549 }
5550 
5551 /*
5552  * Return accounted runtime for the task.
5553  * In case the task is currently running, return the runtime plus current's
5554  * pending runtime that have not been accounted yet.
5555  */
5556 unsigned long long task_sched_runtime(struct task_struct *p)
5557 {
5558 	struct rq_flags rf;
5559 	struct rq *rq;
5560 	u64 ns;
5561 
5562 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5563 	/*
5564 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5565 	 * So we have a optimization chance when the task's delta_exec is 0.
5566 	 * Reading ->on_cpu is racy, but this is OK.
5567 	 *
5568 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5569 	 * If we race with it entering CPU, unaccounted time is 0. This is
5570 	 * indistinguishable from the read occurring a few cycles earlier.
5571 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5572 	 * been accounted, so we're correct here as well.
5573 	 */
5574 	if (!p->on_cpu || !task_on_rq_queued(p))
5575 		return p->se.sum_exec_runtime;
5576 #endif
5577 
5578 	rq = task_rq_lock(p, &rf);
5579 	/*
5580 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5581 	 * project cycles that may never be accounted to this
5582 	 * thread, breaking clock_gettime().
5583 	 */
5584 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5585 		prefetch_curr_exec_start(p);
5586 		update_rq_clock(rq);
5587 		p->sched_class->update_curr(rq);
5588 	}
5589 	ns = p->se.sum_exec_runtime;
5590 	task_rq_unlock(rq, p, &rf);
5591 
5592 	return ns;
5593 }
5594 
5595 static u64 cpu_resched_latency(struct rq *rq)
5596 {
5597 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5598 	u64 resched_latency, now = rq_clock(rq);
5599 	static bool warned_once;
5600 
5601 	if (sysctl_resched_latency_warn_once && warned_once)
5602 		return 0;
5603 
5604 	if (!need_resched() || !latency_warn_ms)
5605 		return 0;
5606 
5607 	if (system_state == SYSTEM_BOOTING)
5608 		return 0;
5609 
5610 	if (!rq->last_seen_need_resched_ns) {
5611 		rq->last_seen_need_resched_ns = now;
5612 		rq->ticks_without_resched = 0;
5613 		return 0;
5614 	}
5615 
5616 	rq->ticks_without_resched++;
5617 	resched_latency = now - rq->last_seen_need_resched_ns;
5618 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5619 		return 0;
5620 
5621 	warned_once = true;
5622 
5623 	return resched_latency;
5624 }
5625 
5626 static int __init setup_resched_latency_warn_ms(char *str)
5627 {
5628 	long val;
5629 
5630 	if ((kstrtol(str, 0, &val))) {
5631 		pr_warn("Unable to set resched_latency_warn_ms\n");
5632 		return 1;
5633 	}
5634 
5635 	sysctl_resched_latency_warn_ms = val;
5636 	return 1;
5637 }
5638 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5639 
5640 /*
5641  * This function gets called by the timer code, with HZ frequency.
5642  * We call it with interrupts disabled.
5643  */
5644 void sched_tick(void)
5645 {
5646 	int cpu = smp_processor_id();
5647 	struct rq *rq = cpu_rq(cpu);
5648 	/* accounting goes to the donor task */
5649 	struct task_struct *donor;
5650 	struct rq_flags rf;
5651 	unsigned long hw_pressure;
5652 	u64 resched_latency;
5653 
5654 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5655 		arch_scale_freq_tick();
5656 
5657 	sched_clock_tick();
5658 
5659 	rq_lock(rq, &rf);
5660 	donor = rq->donor;
5661 
5662 	psi_account_irqtime(rq, donor, NULL);
5663 
5664 	update_rq_clock(rq);
5665 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5666 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5667 
5668 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5669 		resched_curr(rq);
5670 
5671 	donor->sched_class->task_tick(rq, donor, 0);
5672 	if (sched_feat(LATENCY_WARN))
5673 		resched_latency = cpu_resched_latency(rq);
5674 	calc_global_load_tick(rq);
5675 	sched_core_tick(rq);
5676 	task_tick_mm_cid(rq, donor);
5677 	scx_tick(rq);
5678 
5679 	rq_unlock(rq, &rf);
5680 
5681 	if (sched_feat(LATENCY_WARN) && resched_latency)
5682 		resched_latency_warn(cpu, resched_latency);
5683 
5684 	perf_event_task_tick();
5685 
5686 	if (donor->flags & PF_WQ_WORKER)
5687 		wq_worker_tick(donor);
5688 
5689 #ifdef CONFIG_SMP
5690 	if (!scx_switched_all()) {
5691 		rq->idle_balance = idle_cpu(cpu);
5692 		sched_balance_trigger(rq);
5693 	}
5694 #endif
5695 }
5696 
5697 #ifdef CONFIG_NO_HZ_FULL
5698 
5699 struct tick_work {
5700 	int			cpu;
5701 	atomic_t		state;
5702 	struct delayed_work	work;
5703 };
5704 /* Values for ->state, see diagram below. */
5705 #define TICK_SCHED_REMOTE_OFFLINE	0
5706 #define TICK_SCHED_REMOTE_OFFLINING	1
5707 #define TICK_SCHED_REMOTE_RUNNING	2
5708 
5709 /*
5710  * State diagram for ->state:
5711  *
5712  *
5713  *          TICK_SCHED_REMOTE_OFFLINE
5714  *                    |   ^
5715  *                    |   |
5716  *                    |   | sched_tick_remote()
5717  *                    |   |
5718  *                    |   |
5719  *                    +--TICK_SCHED_REMOTE_OFFLINING
5720  *                    |   ^
5721  *                    |   |
5722  * sched_tick_start() |   | sched_tick_stop()
5723  *                    |   |
5724  *                    V   |
5725  *          TICK_SCHED_REMOTE_RUNNING
5726  *
5727  *
5728  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5729  * and sched_tick_start() are happy to leave the state in RUNNING.
5730  */
5731 
5732 static struct tick_work __percpu *tick_work_cpu;
5733 
5734 static void sched_tick_remote(struct work_struct *work)
5735 {
5736 	struct delayed_work *dwork = to_delayed_work(work);
5737 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5738 	int cpu = twork->cpu;
5739 	struct rq *rq = cpu_rq(cpu);
5740 	int os;
5741 
5742 	/*
5743 	 * Handle the tick only if it appears the remote CPU is running in full
5744 	 * dynticks mode. The check is racy by nature, but missing a tick or
5745 	 * having one too much is no big deal because the scheduler tick updates
5746 	 * statistics and checks timeslices in a time-independent way, regardless
5747 	 * of when exactly it is running.
5748 	 */
5749 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5750 		guard(rq_lock_irq)(rq);
5751 		struct task_struct *curr = rq->curr;
5752 
5753 		if (cpu_online(cpu)) {
5754 			/*
5755 			 * Since this is a remote tick for full dynticks mode,
5756 			 * we are always sure that there is no proxy (only a
5757 			 * single task is running).
5758 			 */
5759 			WARN_ON_ONCE(rq->curr != rq->donor);
5760 			update_rq_clock(rq);
5761 
5762 			if (!is_idle_task(curr)) {
5763 				/*
5764 				 * Make sure the next tick runs within a
5765 				 * reasonable amount of time.
5766 				 */
5767 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5768 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5769 			}
5770 			curr->sched_class->task_tick(rq, curr, 0);
5771 
5772 			calc_load_nohz_remote(rq);
5773 		}
5774 	}
5775 
5776 	/*
5777 	 * Run the remote tick once per second (1Hz). This arbitrary
5778 	 * frequency is large enough to avoid overload but short enough
5779 	 * to keep scheduler internal stats reasonably up to date.  But
5780 	 * first update state to reflect hotplug activity if required.
5781 	 */
5782 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5783 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5784 	if (os == TICK_SCHED_REMOTE_RUNNING)
5785 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5786 }
5787 
5788 static void sched_tick_start(int cpu)
5789 {
5790 	int os;
5791 	struct tick_work *twork;
5792 
5793 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5794 		return;
5795 
5796 	WARN_ON_ONCE(!tick_work_cpu);
5797 
5798 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5799 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5800 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5801 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5802 		twork->cpu = cpu;
5803 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5804 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5805 	}
5806 }
5807 
5808 #ifdef CONFIG_HOTPLUG_CPU
5809 static void sched_tick_stop(int cpu)
5810 {
5811 	struct tick_work *twork;
5812 	int os;
5813 
5814 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5815 		return;
5816 
5817 	WARN_ON_ONCE(!tick_work_cpu);
5818 
5819 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5820 	/* There cannot be competing actions, but don't rely on stop-machine. */
5821 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5822 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5823 	/* Don't cancel, as this would mess up the state machine. */
5824 }
5825 #endif /* CONFIG_HOTPLUG_CPU */
5826 
5827 int __init sched_tick_offload_init(void)
5828 {
5829 	tick_work_cpu = alloc_percpu(struct tick_work);
5830 	BUG_ON(!tick_work_cpu);
5831 	return 0;
5832 }
5833 
5834 #else /* !CONFIG_NO_HZ_FULL */
5835 static inline void sched_tick_start(int cpu) { }
5836 static inline void sched_tick_stop(int cpu) { }
5837 #endif
5838 
5839 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5840 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5841 /*
5842  * If the value passed in is equal to the current preempt count
5843  * then we just disabled preemption. Start timing the latency.
5844  */
5845 static inline void preempt_latency_start(int val)
5846 {
5847 	if (preempt_count() == val) {
5848 		unsigned long ip = get_lock_parent_ip();
5849 #ifdef CONFIG_DEBUG_PREEMPT
5850 		current->preempt_disable_ip = ip;
5851 #endif
5852 		trace_preempt_off(CALLER_ADDR0, ip);
5853 	}
5854 }
5855 
5856 void preempt_count_add(int val)
5857 {
5858 #ifdef CONFIG_DEBUG_PREEMPT
5859 	/*
5860 	 * Underflow?
5861 	 */
5862 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5863 		return;
5864 #endif
5865 	__preempt_count_add(val);
5866 #ifdef CONFIG_DEBUG_PREEMPT
5867 	/*
5868 	 * Spinlock count overflowing soon?
5869 	 */
5870 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5871 				PREEMPT_MASK - 10);
5872 #endif
5873 	preempt_latency_start(val);
5874 }
5875 EXPORT_SYMBOL(preempt_count_add);
5876 NOKPROBE_SYMBOL(preempt_count_add);
5877 
5878 /*
5879  * If the value passed in equals to the current preempt count
5880  * then we just enabled preemption. Stop timing the latency.
5881  */
5882 static inline void preempt_latency_stop(int val)
5883 {
5884 	if (preempt_count() == val)
5885 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5886 }
5887 
5888 void preempt_count_sub(int val)
5889 {
5890 #ifdef CONFIG_DEBUG_PREEMPT
5891 	/*
5892 	 * Underflow?
5893 	 */
5894 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5895 		return;
5896 	/*
5897 	 * Is the spinlock portion underflowing?
5898 	 */
5899 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5900 			!(preempt_count() & PREEMPT_MASK)))
5901 		return;
5902 #endif
5903 
5904 	preempt_latency_stop(val);
5905 	__preempt_count_sub(val);
5906 }
5907 EXPORT_SYMBOL(preempt_count_sub);
5908 NOKPROBE_SYMBOL(preempt_count_sub);
5909 
5910 #else
5911 static inline void preempt_latency_start(int val) { }
5912 static inline void preempt_latency_stop(int val) { }
5913 #endif
5914 
5915 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5916 {
5917 #ifdef CONFIG_DEBUG_PREEMPT
5918 	return p->preempt_disable_ip;
5919 #else
5920 	return 0;
5921 #endif
5922 }
5923 
5924 /*
5925  * Print scheduling while atomic bug:
5926  */
5927 static noinline void __schedule_bug(struct task_struct *prev)
5928 {
5929 	/* Save this before calling printk(), since that will clobber it */
5930 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5931 
5932 	if (oops_in_progress)
5933 		return;
5934 
5935 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5936 		prev->comm, prev->pid, preempt_count());
5937 
5938 	debug_show_held_locks(prev);
5939 	print_modules();
5940 	if (irqs_disabled())
5941 		print_irqtrace_events(prev);
5942 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5943 		pr_err("Preemption disabled at:");
5944 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5945 	}
5946 	check_panic_on_warn("scheduling while atomic");
5947 
5948 	dump_stack();
5949 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5950 }
5951 
5952 /*
5953  * Various schedule()-time debugging checks and statistics:
5954  */
5955 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5956 {
5957 #ifdef CONFIG_SCHED_STACK_END_CHECK
5958 	if (task_stack_end_corrupted(prev))
5959 		panic("corrupted stack end detected inside scheduler\n");
5960 
5961 	if (task_scs_end_corrupted(prev))
5962 		panic("corrupted shadow stack detected inside scheduler\n");
5963 #endif
5964 
5965 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5966 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5967 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5968 			prev->comm, prev->pid, prev->non_block_count);
5969 		dump_stack();
5970 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5971 	}
5972 #endif
5973 
5974 	if (unlikely(in_atomic_preempt_off())) {
5975 		__schedule_bug(prev);
5976 		preempt_count_set(PREEMPT_DISABLED);
5977 	}
5978 	rcu_sleep_check();
5979 	WARN_ON_ONCE(ct_state() == CT_STATE_USER);
5980 
5981 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5982 
5983 	schedstat_inc(this_rq()->sched_count);
5984 }
5985 
5986 static void prev_balance(struct rq *rq, struct task_struct *prev,
5987 			 struct rq_flags *rf)
5988 {
5989 	const struct sched_class *start_class = prev->sched_class;
5990 	const struct sched_class *class;
5991 
5992 #ifdef CONFIG_SCHED_CLASS_EXT
5993 	/*
5994 	 * SCX requires a balance() call before every pick_task() including when
5995 	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
5996 	 * SCX instead. Also, set a flag to detect missing balance() call.
5997 	 */
5998 	if (scx_enabled()) {
5999 		rq->scx.flags |= SCX_RQ_BAL_PENDING;
6000 		if (sched_class_above(&ext_sched_class, start_class))
6001 			start_class = &ext_sched_class;
6002 	}
6003 #endif
6004 
6005 	/*
6006 	 * We must do the balancing pass before put_prev_task(), such
6007 	 * that when we release the rq->lock the task is in the same
6008 	 * state as before we took rq->lock.
6009 	 *
6010 	 * We can terminate the balance pass as soon as we know there is
6011 	 * a runnable task of @class priority or higher.
6012 	 */
6013 	for_active_class_range(class, start_class, &idle_sched_class) {
6014 		if (class->balance && class->balance(rq, prev, rf))
6015 			break;
6016 	}
6017 }
6018 
6019 /*
6020  * Pick up the highest-prio task:
6021  */
6022 static inline struct task_struct *
6023 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6024 {
6025 	const struct sched_class *class;
6026 	struct task_struct *p;
6027 
6028 	rq->dl_server = NULL;
6029 
6030 	if (scx_enabled())
6031 		goto restart;
6032 
6033 	/*
6034 	 * Optimization: we know that if all tasks are in the fair class we can
6035 	 * call that function directly, but only if the @prev task wasn't of a
6036 	 * higher scheduling class, because otherwise those lose the
6037 	 * opportunity to pull in more work from other CPUs.
6038 	 */
6039 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6040 		   rq->nr_running == rq->cfs.h_nr_queued)) {
6041 
6042 		p = pick_next_task_fair(rq, prev, rf);
6043 		if (unlikely(p == RETRY_TASK))
6044 			goto restart;
6045 
6046 		/* Assume the next prioritized class is idle_sched_class */
6047 		if (!p) {
6048 			p = pick_task_idle(rq);
6049 			put_prev_set_next_task(rq, prev, p);
6050 		}
6051 
6052 		return p;
6053 	}
6054 
6055 restart:
6056 	prev_balance(rq, prev, rf);
6057 
6058 	for_each_active_class(class) {
6059 		if (class->pick_next_task) {
6060 			p = class->pick_next_task(rq, prev);
6061 			if (p)
6062 				return p;
6063 		} else {
6064 			p = class->pick_task(rq);
6065 			if (p) {
6066 				put_prev_set_next_task(rq, prev, p);
6067 				return p;
6068 			}
6069 		}
6070 	}
6071 
6072 	BUG(); /* The idle class should always have a runnable task. */
6073 }
6074 
6075 #ifdef CONFIG_SCHED_CORE
6076 static inline bool is_task_rq_idle(struct task_struct *t)
6077 {
6078 	return (task_rq(t)->idle == t);
6079 }
6080 
6081 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6082 {
6083 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6084 }
6085 
6086 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6087 {
6088 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6089 		return true;
6090 
6091 	return a->core_cookie == b->core_cookie;
6092 }
6093 
6094 static inline struct task_struct *pick_task(struct rq *rq)
6095 {
6096 	const struct sched_class *class;
6097 	struct task_struct *p;
6098 
6099 	rq->dl_server = NULL;
6100 
6101 	for_each_active_class(class) {
6102 		p = class->pick_task(rq);
6103 		if (p)
6104 			return p;
6105 	}
6106 
6107 	BUG(); /* The idle class should always have a runnable task. */
6108 }
6109 
6110 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6111 
6112 static void queue_core_balance(struct rq *rq);
6113 
6114 static struct task_struct *
6115 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6116 {
6117 	struct task_struct *next, *p, *max = NULL;
6118 	const struct cpumask *smt_mask;
6119 	bool fi_before = false;
6120 	bool core_clock_updated = (rq == rq->core);
6121 	unsigned long cookie;
6122 	int i, cpu, occ = 0;
6123 	struct rq *rq_i;
6124 	bool need_sync;
6125 
6126 	if (!sched_core_enabled(rq))
6127 		return __pick_next_task(rq, prev, rf);
6128 
6129 	cpu = cpu_of(rq);
6130 
6131 	/* Stopper task is switching into idle, no need core-wide selection. */
6132 	if (cpu_is_offline(cpu)) {
6133 		/*
6134 		 * Reset core_pick so that we don't enter the fastpath when
6135 		 * coming online. core_pick would already be migrated to
6136 		 * another cpu during offline.
6137 		 */
6138 		rq->core_pick = NULL;
6139 		rq->core_dl_server = NULL;
6140 		return __pick_next_task(rq, prev, rf);
6141 	}
6142 
6143 	/*
6144 	 * If there were no {en,de}queues since we picked (IOW, the task
6145 	 * pointers are all still valid), and we haven't scheduled the last
6146 	 * pick yet, do so now.
6147 	 *
6148 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6149 	 * it was either offline or went offline during a sibling's core-wide
6150 	 * selection. In this case, do a core-wide selection.
6151 	 */
6152 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6153 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6154 	    rq->core_pick) {
6155 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6156 
6157 		next = rq->core_pick;
6158 		rq->dl_server = rq->core_dl_server;
6159 		rq->core_pick = NULL;
6160 		rq->core_dl_server = NULL;
6161 		goto out_set_next;
6162 	}
6163 
6164 	prev_balance(rq, prev, rf);
6165 
6166 	smt_mask = cpu_smt_mask(cpu);
6167 	need_sync = !!rq->core->core_cookie;
6168 
6169 	/* reset state */
6170 	rq->core->core_cookie = 0UL;
6171 	if (rq->core->core_forceidle_count) {
6172 		if (!core_clock_updated) {
6173 			update_rq_clock(rq->core);
6174 			core_clock_updated = true;
6175 		}
6176 		sched_core_account_forceidle(rq);
6177 		/* reset after accounting force idle */
6178 		rq->core->core_forceidle_start = 0;
6179 		rq->core->core_forceidle_count = 0;
6180 		rq->core->core_forceidle_occupation = 0;
6181 		need_sync = true;
6182 		fi_before = true;
6183 	}
6184 
6185 	/*
6186 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6187 	 *
6188 	 * @task_seq guards the task state ({en,de}queues)
6189 	 * @pick_seq is the @task_seq we did a selection on
6190 	 * @sched_seq is the @pick_seq we scheduled
6191 	 *
6192 	 * However, preemptions can cause multiple picks on the same task set.
6193 	 * 'Fix' this by also increasing @task_seq for every pick.
6194 	 */
6195 	rq->core->core_task_seq++;
6196 
6197 	/*
6198 	 * Optimize for common case where this CPU has no cookies
6199 	 * and there are no cookied tasks running on siblings.
6200 	 */
6201 	if (!need_sync) {
6202 		next = pick_task(rq);
6203 		if (!next->core_cookie) {
6204 			rq->core_pick = NULL;
6205 			rq->core_dl_server = NULL;
6206 			/*
6207 			 * For robustness, update the min_vruntime_fi for
6208 			 * unconstrained picks as well.
6209 			 */
6210 			WARN_ON_ONCE(fi_before);
6211 			task_vruntime_update(rq, next, false);
6212 			goto out_set_next;
6213 		}
6214 	}
6215 
6216 	/*
6217 	 * For each thread: do the regular task pick and find the max prio task
6218 	 * amongst them.
6219 	 *
6220 	 * Tie-break prio towards the current CPU
6221 	 */
6222 	for_each_cpu_wrap(i, smt_mask, cpu) {
6223 		rq_i = cpu_rq(i);
6224 
6225 		/*
6226 		 * Current cpu always has its clock updated on entrance to
6227 		 * pick_next_task(). If the current cpu is not the core,
6228 		 * the core may also have been updated above.
6229 		 */
6230 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6231 			update_rq_clock(rq_i);
6232 
6233 		rq_i->core_pick = p = pick_task(rq_i);
6234 		rq_i->core_dl_server = rq_i->dl_server;
6235 
6236 		if (!max || prio_less(max, p, fi_before))
6237 			max = p;
6238 	}
6239 
6240 	cookie = rq->core->core_cookie = max->core_cookie;
6241 
6242 	/*
6243 	 * For each thread: try and find a runnable task that matches @max or
6244 	 * force idle.
6245 	 */
6246 	for_each_cpu(i, smt_mask) {
6247 		rq_i = cpu_rq(i);
6248 		p = rq_i->core_pick;
6249 
6250 		if (!cookie_equals(p, cookie)) {
6251 			p = NULL;
6252 			if (cookie)
6253 				p = sched_core_find(rq_i, cookie);
6254 			if (!p)
6255 				p = idle_sched_class.pick_task(rq_i);
6256 		}
6257 
6258 		rq_i->core_pick = p;
6259 		rq_i->core_dl_server = NULL;
6260 
6261 		if (p == rq_i->idle) {
6262 			if (rq_i->nr_running) {
6263 				rq->core->core_forceidle_count++;
6264 				if (!fi_before)
6265 					rq->core->core_forceidle_seq++;
6266 			}
6267 		} else {
6268 			occ++;
6269 		}
6270 	}
6271 
6272 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6273 		rq->core->core_forceidle_start = rq_clock(rq->core);
6274 		rq->core->core_forceidle_occupation = occ;
6275 	}
6276 
6277 	rq->core->core_pick_seq = rq->core->core_task_seq;
6278 	next = rq->core_pick;
6279 	rq->core_sched_seq = rq->core->core_pick_seq;
6280 
6281 	/* Something should have been selected for current CPU */
6282 	WARN_ON_ONCE(!next);
6283 
6284 	/*
6285 	 * Reschedule siblings
6286 	 *
6287 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6288 	 * sending an IPI (below) ensures the sibling will no longer be running
6289 	 * their task. This ensures there is no inter-sibling overlap between
6290 	 * non-matching user state.
6291 	 */
6292 	for_each_cpu(i, smt_mask) {
6293 		rq_i = cpu_rq(i);
6294 
6295 		/*
6296 		 * An online sibling might have gone offline before a task
6297 		 * could be picked for it, or it might be offline but later
6298 		 * happen to come online, but its too late and nothing was
6299 		 * picked for it.  That's Ok - it will pick tasks for itself,
6300 		 * so ignore it.
6301 		 */
6302 		if (!rq_i->core_pick)
6303 			continue;
6304 
6305 		/*
6306 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6307 		 * fi_before     fi      update?
6308 		 *  0            0       1
6309 		 *  0            1       1
6310 		 *  1            0       1
6311 		 *  1            1       0
6312 		 */
6313 		if (!(fi_before && rq->core->core_forceidle_count))
6314 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6315 
6316 		rq_i->core_pick->core_occupation = occ;
6317 
6318 		if (i == cpu) {
6319 			rq_i->core_pick = NULL;
6320 			rq_i->core_dl_server = NULL;
6321 			continue;
6322 		}
6323 
6324 		/* Did we break L1TF mitigation requirements? */
6325 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6326 
6327 		if (rq_i->curr == rq_i->core_pick) {
6328 			rq_i->core_pick = NULL;
6329 			rq_i->core_dl_server = NULL;
6330 			continue;
6331 		}
6332 
6333 		resched_curr(rq_i);
6334 	}
6335 
6336 out_set_next:
6337 	put_prev_set_next_task(rq, prev, next);
6338 	if (rq->core->core_forceidle_count && next == rq->idle)
6339 		queue_core_balance(rq);
6340 
6341 	return next;
6342 }
6343 
6344 static bool try_steal_cookie(int this, int that)
6345 {
6346 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6347 	struct task_struct *p;
6348 	unsigned long cookie;
6349 	bool success = false;
6350 
6351 	guard(irq)();
6352 	guard(double_rq_lock)(dst, src);
6353 
6354 	cookie = dst->core->core_cookie;
6355 	if (!cookie)
6356 		return false;
6357 
6358 	if (dst->curr != dst->idle)
6359 		return false;
6360 
6361 	p = sched_core_find(src, cookie);
6362 	if (!p)
6363 		return false;
6364 
6365 	do {
6366 		if (p == src->core_pick || p == src->curr)
6367 			goto next;
6368 
6369 		if (!is_cpu_allowed(p, this))
6370 			goto next;
6371 
6372 		if (p->core_occupation > dst->idle->core_occupation)
6373 			goto next;
6374 		/*
6375 		 * sched_core_find() and sched_core_next() will ensure
6376 		 * that task @p is not throttled now, we also need to
6377 		 * check whether the runqueue of the destination CPU is
6378 		 * being throttled.
6379 		 */
6380 		if (sched_task_is_throttled(p, this))
6381 			goto next;
6382 
6383 		move_queued_task_locked(src, dst, p);
6384 		resched_curr(dst);
6385 
6386 		success = true;
6387 		break;
6388 
6389 next:
6390 		p = sched_core_next(p, cookie);
6391 	} while (p);
6392 
6393 	return success;
6394 }
6395 
6396 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6397 {
6398 	int i;
6399 
6400 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6401 		if (i == cpu)
6402 			continue;
6403 
6404 		if (need_resched())
6405 			break;
6406 
6407 		if (try_steal_cookie(cpu, i))
6408 			return true;
6409 	}
6410 
6411 	return false;
6412 }
6413 
6414 static void sched_core_balance(struct rq *rq)
6415 {
6416 	struct sched_domain *sd;
6417 	int cpu = cpu_of(rq);
6418 
6419 	guard(preempt)();
6420 	guard(rcu)();
6421 
6422 	raw_spin_rq_unlock_irq(rq);
6423 	for_each_domain(cpu, sd) {
6424 		if (need_resched())
6425 			break;
6426 
6427 		if (steal_cookie_task(cpu, sd))
6428 			break;
6429 	}
6430 	raw_spin_rq_lock_irq(rq);
6431 }
6432 
6433 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6434 
6435 static void queue_core_balance(struct rq *rq)
6436 {
6437 	if (!sched_core_enabled(rq))
6438 		return;
6439 
6440 	if (!rq->core->core_cookie)
6441 		return;
6442 
6443 	if (!rq->nr_running) /* not forced idle */
6444 		return;
6445 
6446 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6447 }
6448 
6449 DEFINE_LOCK_GUARD_1(core_lock, int,
6450 		    sched_core_lock(*_T->lock, &_T->flags),
6451 		    sched_core_unlock(*_T->lock, &_T->flags),
6452 		    unsigned long flags)
6453 
6454 static void sched_core_cpu_starting(unsigned int cpu)
6455 {
6456 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6457 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6458 	int t;
6459 
6460 	guard(core_lock)(&cpu);
6461 
6462 	WARN_ON_ONCE(rq->core != rq);
6463 
6464 	/* if we're the first, we'll be our own leader */
6465 	if (cpumask_weight(smt_mask) == 1)
6466 		return;
6467 
6468 	/* find the leader */
6469 	for_each_cpu(t, smt_mask) {
6470 		if (t == cpu)
6471 			continue;
6472 		rq = cpu_rq(t);
6473 		if (rq->core == rq) {
6474 			core_rq = rq;
6475 			break;
6476 		}
6477 	}
6478 
6479 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6480 		return;
6481 
6482 	/* install and validate core_rq */
6483 	for_each_cpu(t, smt_mask) {
6484 		rq = cpu_rq(t);
6485 
6486 		if (t == cpu)
6487 			rq->core = core_rq;
6488 
6489 		WARN_ON_ONCE(rq->core != core_rq);
6490 	}
6491 }
6492 
6493 static void sched_core_cpu_deactivate(unsigned int cpu)
6494 {
6495 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6496 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6497 	int t;
6498 
6499 	guard(core_lock)(&cpu);
6500 
6501 	/* if we're the last man standing, nothing to do */
6502 	if (cpumask_weight(smt_mask) == 1) {
6503 		WARN_ON_ONCE(rq->core != rq);
6504 		return;
6505 	}
6506 
6507 	/* if we're not the leader, nothing to do */
6508 	if (rq->core != rq)
6509 		return;
6510 
6511 	/* find a new leader */
6512 	for_each_cpu(t, smt_mask) {
6513 		if (t == cpu)
6514 			continue;
6515 		core_rq = cpu_rq(t);
6516 		break;
6517 	}
6518 
6519 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6520 		return;
6521 
6522 	/* copy the shared state to the new leader */
6523 	core_rq->core_task_seq             = rq->core_task_seq;
6524 	core_rq->core_pick_seq             = rq->core_pick_seq;
6525 	core_rq->core_cookie               = rq->core_cookie;
6526 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6527 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6528 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6529 
6530 	/*
6531 	 * Accounting edge for forced idle is handled in pick_next_task().
6532 	 * Don't need another one here, since the hotplug thread shouldn't
6533 	 * have a cookie.
6534 	 */
6535 	core_rq->core_forceidle_start = 0;
6536 
6537 	/* install new leader */
6538 	for_each_cpu(t, smt_mask) {
6539 		rq = cpu_rq(t);
6540 		rq->core = core_rq;
6541 	}
6542 }
6543 
6544 static inline void sched_core_cpu_dying(unsigned int cpu)
6545 {
6546 	struct rq *rq = cpu_rq(cpu);
6547 
6548 	if (rq->core != rq)
6549 		rq->core = rq;
6550 }
6551 
6552 #else /* !CONFIG_SCHED_CORE */
6553 
6554 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6555 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6556 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6557 
6558 static struct task_struct *
6559 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6560 {
6561 	return __pick_next_task(rq, prev, rf);
6562 }
6563 
6564 #endif /* CONFIG_SCHED_CORE */
6565 
6566 /*
6567  * Constants for the sched_mode argument of __schedule().
6568  *
6569  * The mode argument allows RT enabled kernels to differentiate a
6570  * preemption from blocking on an 'sleeping' spin/rwlock.
6571  */
6572 #define SM_IDLE			(-1)
6573 #define SM_NONE			0
6574 #define SM_PREEMPT		1
6575 #define SM_RTLOCK_WAIT		2
6576 
6577 /*
6578  * Helper function for __schedule()
6579  *
6580  * If a task does not have signals pending, deactivate it
6581  * Otherwise marks the task's __state as RUNNING
6582  */
6583 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6584 			      unsigned long *task_state_p)
6585 {
6586 	unsigned long task_state = *task_state_p;
6587 	int flags = DEQUEUE_NOCLOCK;
6588 
6589 	if (signal_pending_state(task_state, p)) {
6590 		WRITE_ONCE(p->__state, TASK_RUNNING);
6591 		*task_state_p = TASK_RUNNING;
6592 		return false;
6593 	}
6594 
6595 	p->sched_contributes_to_load =
6596 		(task_state & TASK_UNINTERRUPTIBLE) &&
6597 		!(task_state & TASK_NOLOAD) &&
6598 		!(task_state & TASK_FROZEN);
6599 
6600 	if (unlikely(is_special_task_state(task_state)))
6601 		flags |= DEQUEUE_SPECIAL;
6602 
6603 	/*
6604 	 * __schedule()			ttwu()
6605 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6606 	 *   if (prev_state)		    goto out;
6607 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6608 	 *				  p->state = TASK_WAKING
6609 	 *
6610 	 * Where __schedule() and ttwu() have matching control dependencies.
6611 	 *
6612 	 * After this, schedule() must not care about p->state any more.
6613 	 */
6614 	block_task(rq, p, flags);
6615 	return true;
6616 }
6617 
6618 /*
6619  * __schedule() is the main scheduler function.
6620  *
6621  * The main means of driving the scheduler and thus entering this function are:
6622  *
6623  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6624  *
6625  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6626  *      paths. For example, see arch/x86/entry_64.S.
6627  *
6628  *      To drive preemption between tasks, the scheduler sets the flag in timer
6629  *      interrupt handler sched_tick().
6630  *
6631  *   3. Wakeups don't really cause entry into schedule(). They add a
6632  *      task to the run-queue and that's it.
6633  *
6634  *      Now, if the new task added to the run-queue preempts the current
6635  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6636  *      called on the nearest possible occasion:
6637  *
6638  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6639  *
6640  *         - in syscall or exception context, at the next outmost
6641  *           preempt_enable(). (this might be as soon as the wake_up()'s
6642  *           spin_unlock()!)
6643  *
6644  *         - in IRQ context, return from interrupt-handler to
6645  *           preemptible context
6646  *
6647  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6648  *         then at the next:
6649  *
6650  *          - cond_resched() call
6651  *          - explicit schedule() call
6652  *          - return from syscall or exception to user-space
6653  *          - return from interrupt-handler to user-space
6654  *
6655  * WARNING: must be called with preemption disabled!
6656  */
6657 static void __sched notrace __schedule(int sched_mode)
6658 {
6659 	struct task_struct *prev, *next;
6660 	/*
6661 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6662 	 * as a preemption by schedule_debug() and RCU.
6663 	 */
6664 	bool preempt = sched_mode > SM_NONE;
6665 	bool is_switch = false;
6666 	unsigned long *switch_count;
6667 	unsigned long prev_state;
6668 	struct rq_flags rf;
6669 	struct rq *rq;
6670 	int cpu;
6671 
6672 	trace_sched_entry_tp(preempt, CALLER_ADDR0);
6673 
6674 	cpu = smp_processor_id();
6675 	rq = cpu_rq(cpu);
6676 	prev = rq->curr;
6677 
6678 	schedule_debug(prev, preempt);
6679 
6680 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6681 		hrtick_clear(rq);
6682 
6683 	klp_sched_try_switch(prev);
6684 
6685 	local_irq_disable();
6686 	rcu_note_context_switch(preempt);
6687 
6688 	/*
6689 	 * Make sure that signal_pending_state()->signal_pending() below
6690 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6691 	 * done by the caller to avoid the race with signal_wake_up():
6692 	 *
6693 	 * __set_current_state(@state)		signal_wake_up()
6694 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6695 	 *					  wake_up_state(p, state)
6696 	 *   LOCK rq->lock			    LOCK p->pi_state
6697 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6698 	 *     if (signal_pending_state())	    if (p->state & @state)
6699 	 *
6700 	 * Also, the membarrier system call requires a full memory barrier
6701 	 * after coming from user-space, before storing to rq->curr; this
6702 	 * barrier matches a full barrier in the proximity of the membarrier
6703 	 * system call exit.
6704 	 */
6705 	rq_lock(rq, &rf);
6706 	smp_mb__after_spinlock();
6707 
6708 	/* Promote REQ to ACT */
6709 	rq->clock_update_flags <<= 1;
6710 	update_rq_clock(rq);
6711 	rq->clock_update_flags = RQCF_UPDATED;
6712 
6713 	switch_count = &prev->nivcsw;
6714 
6715 	/* Task state changes only considers SM_PREEMPT as preemption */
6716 	preempt = sched_mode == SM_PREEMPT;
6717 
6718 	/*
6719 	 * We must load prev->state once (task_struct::state is volatile), such
6720 	 * that we form a control dependency vs deactivate_task() below.
6721 	 */
6722 	prev_state = READ_ONCE(prev->__state);
6723 	if (sched_mode == SM_IDLE) {
6724 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6725 		if (!rq->nr_running && !scx_enabled()) {
6726 			next = prev;
6727 			goto picked;
6728 		}
6729 	} else if (!preempt && prev_state) {
6730 		try_to_block_task(rq, prev, &prev_state);
6731 		switch_count = &prev->nvcsw;
6732 	}
6733 
6734 	next = pick_next_task(rq, prev, &rf);
6735 	rq_set_donor(rq, next);
6736 picked:
6737 	clear_tsk_need_resched(prev);
6738 	clear_preempt_need_resched();
6739 	rq->last_seen_need_resched_ns = 0;
6740 
6741 	is_switch = prev != next;
6742 	if (likely(is_switch)) {
6743 		rq->nr_switches++;
6744 		/*
6745 		 * RCU users of rcu_dereference(rq->curr) may not see
6746 		 * changes to task_struct made by pick_next_task().
6747 		 */
6748 		RCU_INIT_POINTER(rq->curr, next);
6749 		/*
6750 		 * The membarrier system call requires each architecture
6751 		 * to have a full memory barrier after updating
6752 		 * rq->curr, before returning to user-space.
6753 		 *
6754 		 * Here are the schemes providing that barrier on the
6755 		 * various architectures:
6756 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6757 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6758 		 *   on PowerPC and on RISC-V.
6759 		 * - finish_lock_switch() for weakly-ordered
6760 		 *   architectures where spin_unlock is a full barrier,
6761 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6762 		 *   is a RELEASE barrier),
6763 		 *
6764 		 * The barrier matches a full barrier in the proximity of
6765 		 * the membarrier system call entry.
6766 		 *
6767 		 * On RISC-V, this barrier pairing is also needed for the
6768 		 * SYNC_CORE command when switching between processes, cf.
6769 		 * the inline comments in membarrier_arch_switch_mm().
6770 		 */
6771 		++*switch_count;
6772 
6773 		migrate_disable_switch(rq, prev);
6774 		psi_account_irqtime(rq, prev, next);
6775 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6776 					     prev->se.sched_delayed);
6777 
6778 		trace_sched_switch(preempt, prev, next, prev_state);
6779 
6780 		/* Also unlocks the rq: */
6781 		rq = context_switch(rq, prev, next, &rf);
6782 	} else {
6783 		rq_unpin_lock(rq, &rf);
6784 		__balance_callbacks(rq);
6785 		raw_spin_rq_unlock_irq(rq);
6786 	}
6787 	trace_sched_exit_tp(is_switch, CALLER_ADDR0);
6788 }
6789 
6790 void __noreturn do_task_dead(void)
6791 {
6792 	/* Causes final put_task_struct in finish_task_switch(): */
6793 	set_special_state(TASK_DEAD);
6794 
6795 	/* Tell freezer to ignore us: */
6796 	current->flags |= PF_NOFREEZE;
6797 
6798 	__schedule(SM_NONE);
6799 	BUG();
6800 
6801 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6802 	for (;;)
6803 		cpu_relax();
6804 }
6805 
6806 static inline void sched_submit_work(struct task_struct *tsk)
6807 {
6808 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6809 	unsigned int task_flags;
6810 
6811 	/*
6812 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6813 	 * will use a blocking primitive -- which would lead to recursion.
6814 	 */
6815 	lock_map_acquire_try(&sched_map);
6816 
6817 	task_flags = tsk->flags;
6818 	/*
6819 	 * If a worker goes to sleep, notify and ask workqueue whether it
6820 	 * wants to wake up a task to maintain concurrency.
6821 	 */
6822 	if (task_flags & PF_WQ_WORKER)
6823 		wq_worker_sleeping(tsk);
6824 	else if (task_flags & PF_IO_WORKER)
6825 		io_wq_worker_sleeping(tsk);
6826 
6827 	/*
6828 	 * spinlock and rwlock must not flush block requests.  This will
6829 	 * deadlock if the callback attempts to acquire a lock which is
6830 	 * already acquired.
6831 	 */
6832 	WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT);
6833 
6834 	/*
6835 	 * If we are going to sleep and we have plugged IO queued,
6836 	 * make sure to submit it to avoid deadlocks.
6837 	 */
6838 	blk_flush_plug(tsk->plug, true);
6839 
6840 	lock_map_release(&sched_map);
6841 }
6842 
6843 static void sched_update_worker(struct task_struct *tsk)
6844 {
6845 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6846 		if (tsk->flags & PF_BLOCK_TS)
6847 			blk_plug_invalidate_ts(tsk);
6848 		if (tsk->flags & PF_WQ_WORKER)
6849 			wq_worker_running(tsk);
6850 		else if (tsk->flags & PF_IO_WORKER)
6851 			io_wq_worker_running(tsk);
6852 	}
6853 }
6854 
6855 static __always_inline void __schedule_loop(int sched_mode)
6856 {
6857 	do {
6858 		preempt_disable();
6859 		__schedule(sched_mode);
6860 		sched_preempt_enable_no_resched();
6861 	} while (need_resched());
6862 }
6863 
6864 asmlinkage __visible void __sched schedule(void)
6865 {
6866 	struct task_struct *tsk = current;
6867 
6868 #ifdef CONFIG_RT_MUTEXES
6869 	lockdep_assert(!tsk->sched_rt_mutex);
6870 #endif
6871 
6872 	if (!task_is_running(tsk))
6873 		sched_submit_work(tsk);
6874 	__schedule_loop(SM_NONE);
6875 	sched_update_worker(tsk);
6876 }
6877 EXPORT_SYMBOL(schedule);
6878 
6879 /*
6880  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6881  * state (have scheduled out non-voluntarily) by making sure that all
6882  * tasks have either left the run queue or have gone into user space.
6883  * As idle tasks do not do either, they must not ever be preempted
6884  * (schedule out non-voluntarily).
6885  *
6886  * schedule_idle() is similar to schedule_preempt_disable() except that it
6887  * never enables preemption because it does not call sched_submit_work().
6888  */
6889 void __sched schedule_idle(void)
6890 {
6891 	/*
6892 	 * As this skips calling sched_submit_work(), which the idle task does
6893 	 * regardless because that function is a NOP when the task is in a
6894 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6895 	 * current task can be in any other state. Note, idle is always in the
6896 	 * TASK_RUNNING state.
6897 	 */
6898 	WARN_ON_ONCE(current->__state);
6899 	do {
6900 		__schedule(SM_IDLE);
6901 	} while (need_resched());
6902 }
6903 
6904 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6905 asmlinkage __visible void __sched schedule_user(void)
6906 {
6907 	/*
6908 	 * If we come here after a random call to set_need_resched(),
6909 	 * or we have been woken up remotely but the IPI has not yet arrived,
6910 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6911 	 * we find a better solution.
6912 	 *
6913 	 * NB: There are buggy callers of this function.  Ideally we
6914 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6915 	 * too frequently to make sense yet.
6916 	 */
6917 	enum ctx_state prev_state = exception_enter();
6918 	schedule();
6919 	exception_exit(prev_state);
6920 }
6921 #endif
6922 
6923 /**
6924  * schedule_preempt_disabled - called with preemption disabled
6925  *
6926  * Returns with preemption disabled. Note: preempt_count must be 1
6927  */
6928 void __sched schedule_preempt_disabled(void)
6929 {
6930 	sched_preempt_enable_no_resched();
6931 	schedule();
6932 	preempt_disable();
6933 }
6934 
6935 #ifdef CONFIG_PREEMPT_RT
6936 void __sched notrace schedule_rtlock(void)
6937 {
6938 	__schedule_loop(SM_RTLOCK_WAIT);
6939 }
6940 NOKPROBE_SYMBOL(schedule_rtlock);
6941 #endif
6942 
6943 static void __sched notrace preempt_schedule_common(void)
6944 {
6945 	do {
6946 		/*
6947 		 * Because the function tracer can trace preempt_count_sub()
6948 		 * and it also uses preempt_enable/disable_notrace(), if
6949 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6950 		 * by the function tracer will call this function again and
6951 		 * cause infinite recursion.
6952 		 *
6953 		 * Preemption must be disabled here before the function
6954 		 * tracer can trace. Break up preempt_disable() into two
6955 		 * calls. One to disable preemption without fear of being
6956 		 * traced. The other to still record the preemption latency,
6957 		 * which can also be traced by the function tracer.
6958 		 */
6959 		preempt_disable_notrace();
6960 		preempt_latency_start(1);
6961 		__schedule(SM_PREEMPT);
6962 		preempt_latency_stop(1);
6963 		preempt_enable_no_resched_notrace();
6964 
6965 		/*
6966 		 * Check again in case we missed a preemption opportunity
6967 		 * between schedule and now.
6968 		 */
6969 	} while (need_resched());
6970 }
6971 
6972 #ifdef CONFIG_PREEMPTION
6973 /*
6974  * This is the entry point to schedule() from in-kernel preemption
6975  * off of preempt_enable.
6976  */
6977 asmlinkage __visible void __sched notrace preempt_schedule(void)
6978 {
6979 	/*
6980 	 * If there is a non-zero preempt_count or interrupts are disabled,
6981 	 * we do not want to preempt the current task. Just return..
6982 	 */
6983 	if (likely(!preemptible()))
6984 		return;
6985 	preempt_schedule_common();
6986 }
6987 NOKPROBE_SYMBOL(preempt_schedule);
6988 EXPORT_SYMBOL(preempt_schedule);
6989 
6990 #ifdef CONFIG_PREEMPT_DYNAMIC
6991 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6992 #ifndef preempt_schedule_dynamic_enabled
6993 #define preempt_schedule_dynamic_enabled	preempt_schedule
6994 #define preempt_schedule_dynamic_disabled	NULL
6995 #endif
6996 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6997 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6998 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6999 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
7000 void __sched notrace dynamic_preempt_schedule(void)
7001 {
7002 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
7003 		return;
7004 	preempt_schedule();
7005 }
7006 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
7007 EXPORT_SYMBOL(dynamic_preempt_schedule);
7008 #endif
7009 #endif
7010 
7011 /**
7012  * preempt_schedule_notrace - preempt_schedule called by tracing
7013  *
7014  * The tracing infrastructure uses preempt_enable_notrace to prevent
7015  * recursion and tracing preempt enabling caused by the tracing
7016  * infrastructure itself. But as tracing can happen in areas coming
7017  * from userspace or just about to enter userspace, a preempt enable
7018  * can occur before user_exit() is called. This will cause the scheduler
7019  * to be called when the system is still in usermode.
7020  *
7021  * To prevent this, the preempt_enable_notrace will use this function
7022  * instead of preempt_schedule() to exit user context if needed before
7023  * calling the scheduler.
7024  */
7025 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7026 {
7027 	enum ctx_state prev_ctx;
7028 
7029 	if (likely(!preemptible()))
7030 		return;
7031 
7032 	do {
7033 		/*
7034 		 * Because the function tracer can trace preempt_count_sub()
7035 		 * and it also uses preempt_enable/disable_notrace(), if
7036 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7037 		 * by the function tracer will call this function again and
7038 		 * cause infinite recursion.
7039 		 *
7040 		 * Preemption must be disabled here before the function
7041 		 * tracer can trace. Break up preempt_disable() into two
7042 		 * calls. One to disable preemption without fear of being
7043 		 * traced. The other to still record the preemption latency,
7044 		 * which can also be traced by the function tracer.
7045 		 */
7046 		preempt_disable_notrace();
7047 		preempt_latency_start(1);
7048 		/*
7049 		 * Needs preempt disabled in case user_exit() is traced
7050 		 * and the tracer calls preempt_enable_notrace() causing
7051 		 * an infinite recursion.
7052 		 */
7053 		prev_ctx = exception_enter();
7054 		__schedule(SM_PREEMPT);
7055 		exception_exit(prev_ctx);
7056 
7057 		preempt_latency_stop(1);
7058 		preempt_enable_no_resched_notrace();
7059 	} while (need_resched());
7060 }
7061 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7062 
7063 #ifdef CONFIG_PREEMPT_DYNAMIC
7064 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7065 #ifndef preempt_schedule_notrace_dynamic_enabled
7066 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7067 #define preempt_schedule_notrace_dynamic_disabled	NULL
7068 #endif
7069 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7070 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7071 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7072 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7073 void __sched notrace dynamic_preempt_schedule_notrace(void)
7074 {
7075 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7076 		return;
7077 	preempt_schedule_notrace();
7078 }
7079 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7080 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7081 #endif
7082 #endif
7083 
7084 #endif /* CONFIG_PREEMPTION */
7085 
7086 /*
7087  * This is the entry point to schedule() from kernel preemption
7088  * off of IRQ context.
7089  * Note, that this is called and return with IRQs disabled. This will
7090  * protect us against recursive calling from IRQ contexts.
7091  */
7092 asmlinkage __visible void __sched preempt_schedule_irq(void)
7093 {
7094 	enum ctx_state prev_state;
7095 
7096 	/* Catch callers which need to be fixed */
7097 	BUG_ON(preempt_count() || !irqs_disabled());
7098 
7099 	prev_state = exception_enter();
7100 
7101 	do {
7102 		preempt_disable();
7103 		local_irq_enable();
7104 		__schedule(SM_PREEMPT);
7105 		local_irq_disable();
7106 		sched_preempt_enable_no_resched();
7107 	} while (need_resched());
7108 
7109 	exception_exit(prev_state);
7110 }
7111 
7112 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7113 			  void *key)
7114 {
7115 	WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7116 	return try_to_wake_up(curr->private, mode, wake_flags);
7117 }
7118 EXPORT_SYMBOL(default_wake_function);
7119 
7120 const struct sched_class *__setscheduler_class(int policy, int prio)
7121 {
7122 	if (dl_prio(prio))
7123 		return &dl_sched_class;
7124 
7125 	if (rt_prio(prio))
7126 		return &rt_sched_class;
7127 
7128 #ifdef CONFIG_SCHED_CLASS_EXT
7129 	if (task_should_scx(policy))
7130 		return &ext_sched_class;
7131 #endif
7132 
7133 	return &fair_sched_class;
7134 }
7135 
7136 #ifdef CONFIG_RT_MUTEXES
7137 
7138 /*
7139  * Would be more useful with typeof()/auto_type but they don't mix with
7140  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7141  * name such that if someone were to implement this function we get to compare
7142  * notes.
7143  */
7144 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7145 
7146 void rt_mutex_pre_schedule(void)
7147 {
7148 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7149 	sched_submit_work(current);
7150 }
7151 
7152 void rt_mutex_schedule(void)
7153 {
7154 	lockdep_assert(current->sched_rt_mutex);
7155 	__schedule_loop(SM_NONE);
7156 }
7157 
7158 void rt_mutex_post_schedule(void)
7159 {
7160 	sched_update_worker(current);
7161 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7162 }
7163 
7164 /*
7165  * rt_mutex_setprio - set the current priority of a task
7166  * @p: task to boost
7167  * @pi_task: donor task
7168  *
7169  * This function changes the 'effective' priority of a task. It does
7170  * not touch ->normal_prio like __setscheduler().
7171  *
7172  * Used by the rt_mutex code to implement priority inheritance
7173  * logic. Call site only calls if the priority of the task changed.
7174  */
7175 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7176 {
7177 	int prio, oldprio, queued, running, queue_flag =
7178 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7179 	const struct sched_class *prev_class, *next_class;
7180 	struct rq_flags rf;
7181 	struct rq *rq;
7182 
7183 	/* XXX used to be waiter->prio, not waiter->task->prio */
7184 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7185 
7186 	/*
7187 	 * If nothing changed; bail early.
7188 	 */
7189 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7190 		return;
7191 
7192 	rq = __task_rq_lock(p, &rf);
7193 	update_rq_clock(rq);
7194 	/*
7195 	 * Set under pi_lock && rq->lock, such that the value can be used under
7196 	 * either lock.
7197 	 *
7198 	 * Note that there is loads of tricky to make this pointer cache work
7199 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7200 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7201 	 * task is allowed to run again (and can exit). This ensures the pointer
7202 	 * points to a blocked task -- which guarantees the task is present.
7203 	 */
7204 	p->pi_top_task = pi_task;
7205 
7206 	/*
7207 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7208 	 */
7209 	if (prio == p->prio && !dl_prio(prio))
7210 		goto out_unlock;
7211 
7212 	/*
7213 	 * Idle task boosting is a no-no in general. There is one
7214 	 * exception, when PREEMPT_RT and NOHZ is active:
7215 	 *
7216 	 * The idle task calls get_next_timer_interrupt() and holds
7217 	 * the timer wheel base->lock on the CPU and another CPU wants
7218 	 * to access the timer (probably to cancel it). We can safely
7219 	 * ignore the boosting request, as the idle CPU runs this code
7220 	 * with interrupts disabled and will complete the lock
7221 	 * protected section without being interrupted. So there is no
7222 	 * real need to boost.
7223 	 */
7224 	if (unlikely(p == rq->idle)) {
7225 		WARN_ON(p != rq->curr);
7226 		WARN_ON(p->pi_blocked_on);
7227 		goto out_unlock;
7228 	}
7229 
7230 	trace_sched_pi_setprio(p, pi_task);
7231 	oldprio = p->prio;
7232 
7233 	if (oldprio == prio)
7234 		queue_flag &= ~DEQUEUE_MOVE;
7235 
7236 	prev_class = p->sched_class;
7237 	next_class = __setscheduler_class(p->policy, prio);
7238 
7239 	if (prev_class != next_class && p->se.sched_delayed)
7240 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7241 
7242 	queued = task_on_rq_queued(p);
7243 	running = task_current_donor(rq, p);
7244 	if (queued)
7245 		dequeue_task(rq, p, queue_flag);
7246 	if (running)
7247 		put_prev_task(rq, p);
7248 
7249 	/*
7250 	 * Boosting condition are:
7251 	 * 1. -rt task is running and holds mutex A
7252 	 *      --> -dl task blocks on mutex A
7253 	 *
7254 	 * 2. -dl task is running and holds mutex A
7255 	 *      --> -dl task blocks on mutex A and could preempt the
7256 	 *          running task
7257 	 */
7258 	if (dl_prio(prio)) {
7259 		if (!dl_prio(p->normal_prio) ||
7260 		    (pi_task && dl_prio(pi_task->prio) &&
7261 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7262 			p->dl.pi_se = pi_task->dl.pi_se;
7263 			queue_flag |= ENQUEUE_REPLENISH;
7264 		} else {
7265 			p->dl.pi_se = &p->dl;
7266 		}
7267 	} else if (rt_prio(prio)) {
7268 		if (dl_prio(oldprio))
7269 			p->dl.pi_se = &p->dl;
7270 		if (oldprio < prio)
7271 			queue_flag |= ENQUEUE_HEAD;
7272 	} else {
7273 		if (dl_prio(oldprio))
7274 			p->dl.pi_se = &p->dl;
7275 		if (rt_prio(oldprio))
7276 			p->rt.timeout = 0;
7277 	}
7278 
7279 	p->sched_class = next_class;
7280 	p->prio = prio;
7281 
7282 	check_class_changing(rq, p, prev_class);
7283 
7284 	if (queued)
7285 		enqueue_task(rq, p, queue_flag);
7286 	if (running)
7287 		set_next_task(rq, p);
7288 
7289 	check_class_changed(rq, p, prev_class, oldprio);
7290 out_unlock:
7291 	/* Avoid rq from going away on us: */
7292 	preempt_disable();
7293 
7294 	rq_unpin_lock(rq, &rf);
7295 	__balance_callbacks(rq);
7296 	raw_spin_rq_unlock(rq);
7297 
7298 	preempt_enable();
7299 }
7300 #endif
7301 
7302 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7303 int __sched __cond_resched(void)
7304 {
7305 	if (should_resched(0) && !irqs_disabled()) {
7306 		preempt_schedule_common();
7307 		return 1;
7308 	}
7309 	/*
7310 	 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick
7311 	 * whether the current CPU is in an RCU read-side critical section,
7312 	 * so the tick can report quiescent states even for CPUs looping
7313 	 * in kernel context.  In contrast, in non-preemptible kernels,
7314 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7315 	 * processes executing in kernel context might never report an
7316 	 * RCU quiescent state.  Therefore, the following code causes
7317 	 * cond_resched() to report a quiescent state, but only when RCU
7318 	 * is in urgent need of one.
7319 	 * A third case, preemptible, but non-PREEMPT_RCU provides for
7320 	 * urgently needed quiescent states via rcu_flavor_sched_clock_irq().
7321 	 */
7322 #ifndef CONFIG_PREEMPT_RCU
7323 	rcu_all_qs();
7324 #endif
7325 	return 0;
7326 }
7327 EXPORT_SYMBOL(__cond_resched);
7328 #endif
7329 
7330 #ifdef CONFIG_PREEMPT_DYNAMIC
7331 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7332 #define cond_resched_dynamic_enabled	__cond_resched
7333 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7334 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7335 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7336 
7337 #define might_resched_dynamic_enabled	__cond_resched
7338 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7339 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7340 EXPORT_STATIC_CALL_TRAMP(might_resched);
7341 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7342 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7343 int __sched dynamic_cond_resched(void)
7344 {
7345 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7346 		return 0;
7347 	return __cond_resched();
7348 }
7349 EXPORT_SYMBOL(dynamic_cond_resched);
7350 
7351 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7352 int __sched dynamic_might_resched(void)
7353 {
7354 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7355 		return 0;
7356 	return __cond_resched();
7357 }
7358 EXPORT_SYMBOL(dynamic_might_resched);
7359 #endif
7360 #endif
7361 
7362 /*
7363  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7364  * call schedule, and on return reacquire the lock.
7365  *
7366  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7367  * operations here to prevent schedule() from being called twice (once via
7368  * spin_unlock(), once by hand).
7369  */
7370 int __cond_resched_lock(spinlock_t *lock)
7371 {
7372 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7373 	int ret = 0;
7374 
7375 	lockdep_assert_held(lock);
7376 
7377 	if (spin_needbreak(lock) || resched) {
7378 		spin_unlock(lock);
7379 		if (!_cond_resched())
7380 			cpu_relax();
7381 		ret = 1;
7382 		spin_lock(lock);
7383 	}
7384 	return ret;
7385 }
7386 EXPORT_SYMBOL(__cond_resched_lock);
7387 
7388 int __cond_resched_rwlock_read(rwlock_t *lock)
7389 {
7390 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7391 	int ret = 0;
7392 
7393 	lockdep_assert_held_read(lock);
7394 
7395 	if (rwlock_needbreak(lock) || resched) {
7396 		read_unlock(lock);
7397 		if (!_cond_resched())
7398 			cpu_relax();
7399 		ret = 1;
7400 		read_lock(lock);
7401 	}
7402 	return ret;
7403 }
7404 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7405 
7406 int __cond_resched_rwlock_write(rwlock_t *lock)
7407 {
7408 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7409 	int ret = 0;
7410 
7411 	lockdep_assert_held_write(lock);
7412 
7413 	if (rwlock_needbreak(lock) || resched) {
7414 		write_unlock(lock);
7415 		if (!_cond_resched())
7416 			cpu_relax();
7417 		ret = 1;
7418 		write_lock(lock);
7419 	}
7420 	return ret;
7421 }
7422 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7423 
7424 #ifdef CONFIG_PREEMPT_DYNAMIC
7425 
7426 #ifdef CONFIG_GENERIC_ENTRY
7427 #include <linux/entry-common.h>
7428 #endif
7429 
7430 /*
7431  * SC:cond_resched
7432  * SC:might_resched
7433  * SC:preempt_schedule
7434  * SC:preempt_schedule_notrace
7435  * SC:irqentry_exit_cond_resched
7436  *
7437  *
7438  * NONE:
7439  *   cond_resched               <- __cond_resched
7440  *   might_resched              <- RET0
7441  *   preempt_schedule           <- NOP
7442  *   preempt_schedule_notrace   <- NOP
7443  *   irqentry_exit_cond_resched <- NOP
7444  *   dynamic_preempt_lazy       <- false
7445  *
7446  * VOLUNTARY:
7447  *   cond_resched               <- __cond_resched
7448  *   might_resched              <- __cond_resched
7449  *   preempt_schedule           <- NOP
7450  *   preempt_schedule_notrace   <- NOP
7451  *   irqentry_exit_cond_resched <- NOP
7452  *   dynamic_preempt_lazy       <- false
7453  *
7454  * FULL:
7455  *   cond_resched               <- RET0
7456  *   might_resched              <- RET0
7457  *   preempt_schedule           <- preempt_schedule
7458  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7459  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7460  *   dynamic_preempt_lazy       <- false
7461  *
7462  * LAZY:
7463  *   cond_resched               <- RET0
7464  *   might_resched              <- RET0
7465  *   preempt_schedule           <- preempt_schedule
7466  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7467  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7468  *   dynamic_preempt_lazy       <- true
7469  */
7470 
7471 enum {
7472 	preempt_dynamic_undefined = -1,
7473 	preempt_dynamic_none,
7474 	preempt_dynamic_voluntary,
7475 	preempt_dynamic_full,
7476 	preempt_dynamic_lazy,
7477 };
7478 
7479 int preempt_dynamic_mode = preempt_dynamic_undefined;
7480 
7481 int sched_dynamic_mode(const char *str)
7482 {
7483 #ifndef CONFIG_PREEMPT_RT
7484 	if (!strcmp(str, "none"))
7485 		return preempt_dynamic_none;
7486 
7487 	if (!strcmp(str, "voluntary"))
7488 		return preempt_dynamic_voluntary;
7489 #endif
7490 
7491 	if (!strcmp(str, "full"))
7492 		return preempt_dynamic_full;
7493 
7494 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7495 	if (!strcmp(str, "lazy"))
7496 		return preempt_dynamic_lazy;
7497 #endif
7498 
7499 	return -EINVAL;
7500 }
7501 
7502 #define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7503 #define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7504 
7505 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7506 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7507 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7508 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7509 #define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7510 #define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7511 #else
7512 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7513 #endif
7514 
7515 static DEFINE_MUTEX(sched_dynamic_mutex);
7516 
7517 static void __sched_dynamic_update(int mode)
7518 {
7519 	/*
7520 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7521 	 * the ZERO state, which is invalid.
7522 	 */
7523 	preempt_dynamic_enable(cond_resched);
7524 	preempt_dynamic_enable(might_resched);
7525 	preempt_dynamic_enable(preempt_schedule);
7526 	preempt_dynamic_enable(preempt_schedule_notrace);
7527 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7528 	preempt_dynamic_key_disable(preempt_lazy);
7529 
7530 	switch (mode) {
7531 	case preempt_dynamic_none:
7532 		preempt_dynamic_enable(cond_resched);
7533 		preempt_dynamic_disable(might_resched);
7534 		preempt_dynamic_disable(preempt_schedule);
7535 		preempt_dynamic_disable(preempt_schedule_notrace);
7536 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7537 		preempt_dynamic_key_disable(preempt_lazy);
7538 		if (mode != preempt_dynamic_mode)
7539 			pr_info("Dynamic Preempt: none\n");
7540 		break;
7541 
7542 	case preempt_dynamic_voluntary:
7543 		preempt_dynamic_enable(cond_resched);
7544 		preempt_dynamic_enable(might_resched);
7545 		preempt_dynamic_disable(preempt_schedule);
7546 		preempt_dynamic_disable(preempt_schedule_notrace);
7547 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7548 		preempt_dynamic_key_disable(preempt_lazy);
7549 		if (mode != preempt_dynamic_mode)
7550 			pr_info("Dynamic Preempt: voluntary\n");
7551 		break;
7552 
7553 	case preempt_dynamic_full:
7554 		preempt_dynamic_disable(cond_resched);
7555 		preempt_dynamic_disable(might_resched);
7556 		preempt_dynamic_enable(preempt_schedule);
7557 		preempt_dynamic_enable(preempt_schedule_notrace);
7558 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7559 		preempt_dynamic_key_disable(preempt_lazy);
7560 		if (mode != preempt_dynamic_mode)
7561 			pr_info("Dynamic Preempt: full\n");
7562 		break;
7563 
7564 	case preempt_dynamic_lazy:
7565 		preempt_dynamic_disable(cond_resched);
7566 		preempt_dynamic_disable(might_resched);
7567 		preempt_dynamic_enable(preempt_schedule);
7568 		preempt_dynamic_enable(preempt_schedule_notrace);
7569 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7570 		preempt_dynamic_key_enable(preempt_lazy);
7571 		if (mode != preempt_dynamic_mode)
7572 			pr_info("Dynamic Preempt: lazy\n");
7573 		break;
7574 	}
7575 
7576 	preempt_dynamic_mode = mode;
7577 }
7578 
7579 void sched_dynamic_update(int mode)
7580 {
7581 	mutex_lock(&sched_dynamic_mutex);
7582 	__sched_dynamic_update(mode);
7583 	mutex_unlock(&sched_dynamic_mutex);
7584 }
7585 
7586 static int __init setup_preempt_mode(char *str)
7587 {
7588 	int mode = sched_dynamic_mode(str);
7589 	if (mode < 0) {
7590 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7591 		return 0;
7592 	}
7593 
7594 	sched_dynamic_update(mode);
7595 	return 1;
7596 }
7597 __setup("preempt=", setup_preempt_mode);
7598 
7599 static void __init preempt_dynamic_init(void)
7600 {
7601 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7602 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7603 			sched_dynamic_update(preempt_dynamic_none);
7604 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7605 			sched_dynamic_update(preempt_dynamic_voluntary);
7606 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7607 			sched_dynamic_update(preempt_dynamic_lazy);
7608 		} else {
7609 			/* Default static call setting, nothing to do */
7610 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7611 			preempt_dynamic_mode = preempt_dynamic_full;
7612 			pr_info("Dynamic Preempt: full\n");
7613 		}
7614 	}
7615 }
7616 
7617 #define PREEMPT_MODEL_ACCESSOR(mode) \
7618 	bool preempt_model_##mode(void)						 \
7619 	{									 \
7620 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7621 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7622 	}									 \
7623 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7624 
7625 PREEMPT_MODEL_ACCESSOR(none);
7626 PREEMPT_MODEL_ACCESSOR(voluntary);
7627 PREEMPT_MODEL_ACCESSOR(full);
7628 PREEMPT_MODEL_ACCESSOR(lazy);
7629 
7630 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7631 
7632 #define preempt_dynamic_mode -1
7633 
7634 static inline void preempt_dynamic_init(void) { }
7635 
7636 #endif /* CONFIG_PREEMPT_DYNAMIC */
7637 
7638 const char *preempt_modes[] = {
7639 	"none", "voluntary", "full", "lazy", NULL,
7640 };
7641 
7642 const char *preempt_model_str(void)
7643 {
7644 	bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) &&
7645 		(IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) ||
7646 		 IS_ENABLED(CONFIG_PREEMPT_LAZY));
7647 	static char buf[128];
7648 
7649 	if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) {
7650 		struct seq_buf s;
7651 
7652 		seq_buf_init(&s, buf, sizeof(buf));
7653 		seq_buf_puts(&s, "PREEMPT");
7654 
7655 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
7656 			seq_buf_printf(&s, "%sRT%s",
7657 				       brace ? "_{" : "_",
7658 				       brace ? "," : "");
7659 
7660 		if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) {
7661 			seq_buf_printf(&s, "(%s)%s",
7662 				       preempt_dynamic_mode > 0 ?
7663 				       preempt_modes[preempt_dynamic_mode] : "undef",
7664 				       brace ? "}" : "");
7665 			return seq_buf_str(&s);
7666 		}
7667 
7668 		if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7669 			seq_buf_printf(&s, "LAZY%s",
7670 				       brace ? "}" : "");
7671 			return seq_buf_str(&s);
7672 		}
7673 
7674 		return seq_buf_str(&s);
7675 	}
7676 
7677 	if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD))
7678 		return "VOLUNTARY";
7679 
7680 	return "NONE";
7681 }
7682 
7683 int io_schedule_prepare(void)
7684 {
7685 	int old_iowait = current->in_iowait;
7686 
7687 	current->in_iowait = 1;
7688 	blk_flush_plug(current->plug, true);
7689 	return old_iowait;
7690 }
7691 
7692 void io_schedule_finish(int token)
7693 {
7694 	current->in_iowait = token;
7695 }
7696 
7697 /*
7698  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7699  * that process accounting knows that this is a task in IO wait state.
7700  */
7701 long __sched io_schedule_timeout(long timeout)
7702 {
7703 	int token;
7704 	long ret;
7705 
7706 	token = io_schedule_prepare();
7707 	ret = schedule_timeout(timeout);
7708 	io_schedule_finish(token);
7709 
7710 	return ret;
7711 }
7712 EXPORT_SYMBOL(io_schedule_timeout);
7713 
7714 void __sched io_schedule(void)
7715 {
7716 	int token;
7717 
7718 	token = io_schedule_prepare();
7719 	schedule();
7720 	io_schedule_finish(token);
7721 }
7722 EXPORT_SYMBOL(io_schedule);
7723 
7724 void sched_show_task(struct task_struct *p)
7725 {
7726 	unsigned long free;
7727 	int ppid;
7728 
7729 	if (!try_get_task_stack(p))
7730 		return;
7731 
7732 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7733 
7734 	if (task_is_running(p))
7735 		pr_cont("  running task    ");
7736 	free = stack_not_used(p);
7737 	ppid = 0;
7738 	rcu_read_lock();
7739 	if (pid_alive(p))
7740 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7741 	rcu_read_unlock();
7742 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7743 		free, task_pid_nr(p), task_tgid_nr(p),
7744 		ppid, p->flags, read_task_thread_flags(p));
7745 
7746 	print_worker_info(KERN_INFO, p);
7747 	print_stop_info(KERN_INFO, p);
7748 	print_scx_info(KERN_INFO, p);
7749 	show_stack(p, NULL, KERN_INFO);
7750 	put_task_stack(p);
7751 }
7752 EXPORT_SYMBOL_GPL(sched_show_task);
7753 
7754 static inline bool
7755 state_filter_match(unsigned long state_filter, struct task_struct *p)
7756 {
7757 	unsigned int state = READ_ONCE(p->__state);
7758 
7759 	/* no filter, everything matches */
7760 	if (!state_filter)
7761 		return true;
7762 
7763 	/* filter, but doesn't match */
7764 	if (!(state & state_filter))
7765 		return false;
7766 
7767 	/*
7768 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7769 	 * TASK_KILLABLE).
7770 	 */
7771 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7772 		return false;
7773 
7774 	return true;
7775 }
7776 
7777 
7778 void show_state_filter(unsigned int state_filter)
7779 {
7780 	struct task_struct *g, *p;
7781 
7782 	rcu_read_lock();
7783 	for_each_process_thread(g, p) {
7784 		/*
7785 		 * reset the NMI-timeout, listing all files on a slow
7786 		 * console might take a lot of time:
7787 		 * Also, reset softlockup watchdogs on all CPUs, because
7788 		 * another CPU might be blocked waiting for us to process
7789 		 * an IPI.
7790 		 */
7791 		touch_nmi_watchdog();
7792 		touch_all_softlockup_watchdogs();
7793 		if (state_filter_match(state_filter, p))
7794 			sched_show_task(p);
7795 	}
7796 
7797 	if (!state_filter)
7798 		sysrq_sched_debug_show();
7799 
7800 	rcu_read_unlock();
7801 	/*
7802 	 * Only show locks if all tasks are dumped:
7803 	 */
7804 	if (!state_filter)
7805 		debug_show_all_locks();
7806 }
7807 
7808 /**
7809  * init_idle - set up an idle thread for a given CPU
7810  * @idle: task in question
7811  * @cpu: CPU the idle task belongs to
7812  *
7813  * NOTE: this function does not set the idle thread's NEED_RESCHED
7814  * flag, to make booting more robust.
7815  */
7816 void __init init_idle(struct task_struct *idle, int cpu)
7817 {
7818 #ifdef CONFIG_SMP
7819 	struct affinity_context ac = (struct affinity_context) {
7820 		.new_mask  = cpumask_of(cpu),
7821 		.flags     = 0,
7822 	};
7823 #endif
7824 	struct rq *rq = cpu_rq(cpu);
7825 	unsigned long flags;
7826 
7827 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7828 	raw_spin_rq_lock(rq);
7829 
7830 	idle->__state = TASK_RUNNING;
7831 	idle->se.exec_start = sched_clock();
7832 	/*
7833 	 * PF_KTHREAD should already be set at this point; regardless, make it
7834 	 * look like a proper per-CPU kthread.
7835 	 */
7836 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7837 	kthread_set_per_cpu(idle, cpu);
7838 
7839 #ifdef CONFIG_SMP
7840 	/*
7841 	 * No validation and serialization required at boot time and for
7842 	 * setting up the idle tasks of not yet online CPUs.
7843 	 */
7844 	set_cpus_allowed_common(idle, &ac);
7845 #endif
7846 	/*
7847 	 * We're having a chicken and egg problem, even though we are
7848 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7849 	 * lockdep check in task_group() will fail.
7850 	 *
7851 	 * Similar case to sched_fork(). / Alternatively we could
7852 	 * use task_rq_lock() here and obtain the other rq->lock.
7853 	 *
7854 	 * Silence PROVE_RCU
7855 	 */
7856 	rcu_read_lock();
7857 	__set_task_cpu(idle, cpu);
7858 	rcu_read_unlock();
7859 
7860 	rq->idle = idle;
7861 	rq_set_donor(rq, idle);
7862 	rcu_assign_pointer(rq->curr, idle);
7863 	idle->on_rq = TASK_ON_RQ_QUEUED;
7864 #ifdef CONFIG_SMP
7865 	idle->on_cpu = 1;
7866 #endif
7867 	raw_spin_rq_unlock(rq);
7868 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7869 
7870 	/* Set the preempt count _outside_ the spinlocks! */
7871 	init_idle_preempt_count(idle, cpu);
7872 
7873 	/*
7874 	 * The idle tasks have their own, simple scheduling class:
7875 	 */
7876 	idle->sched_class = &idle_sched_class;
7877 	ftrace_graph_init_idle_task(idle, cpu);
7878 	vtime_init_idle(idle, cpu);
7879 #ifdef CONFIG_SMP
7880 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7881 #endif
7882 }
7883 
7884 #ifdef CONFIG_SMP
7885 
7886 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7887 			      const struct cpumask *trial)
7888 {
7889 	int ret = 1;
7890 
7891 	if (cpumask_empty(cur))
7892 		return ret;
7893 
7894 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7895 
7896 	return ret;
7897 }
7898 
7899 int task_can_attach(struct task_struct *p)
7900 {
7901 	int ret = 0;
7902 
7903 	/*
7904 	 * Kthreads which disallow setaffinity shouldn't be moved
7905 	 * to a new cpuset; we don't want to change their CPU
7906 	 * affinity and isolating such threads by their set of
7907 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7908 	 * applicable for such threads.  This prevents checking for
7909 	 * success of set_cpus_allowed_ptr() on all attached tasks
7910 	 * before cpus_mask may be changed.
7911 	 */
7912 	if (p->flags & PF_NO_SETAFFINITY)
7913 		ret = -EINVAL;
7914 
7915 	return ret;
7916 }
7917 
7918 bool sched_smp_initialized __read_mostly;
7919 
7920 #ifdef CONFIG_NUMA_BALANCING
7921 /* Migrate current task p to target_cpu */
7922 int migrate_task_to(struct task_struct *p, int target_cpu)
7923 {
7924 	struct migration_arg arg = { p, target_cpu };
7925 	int curr_cpu = task_cpu(p);
7926 
7927 	if (curr_cpu == target_cpu)
7928 		return 0;
7929 
7930 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7931 		return -EINVAL;
7932 
7933 	/* TODO: This is not properly updating schedstats */
7934 
7935 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7936 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7937 }
7938 
7939 /*
7940  * Requeue a task on a given node and accurately track the number of NUMA
7941  * tasks on the runqueues
7942  */
7943 void sched_setnuma(struct task_struct *p, int nid)
7944 {
7945 	bool queued, running;
7946 	struct rq_flags rf;
7947 	struct rq *rq;
7948 
7949 	rq = task_rq_lock(p, &rf);
7950 	queued = task_on_rq_queued(p);
7951 	running = task_current_donor(rq, p);
7952 
7953 	if (queued)
7954 		dequeue_task(rq, p, DEQUEUE_SAVE);
7955 	if (running)
7956 		put_prev_task(rq, p);
7957 
7958 	p->numa_preferred_nid = nid;
7959 
7960 	if (queued)
7961 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7962 	if (running)
7963 		set_next_task(rq, p);
7964 	task_rq_unlock(rq, p, &rf);
7965 }
7966 #endif /* CONFIG_NUMA_BALANCING */
7967 
7968 #ifdef CONFIG_HOTPLUG_CPU
7969 /*
7970  * Invoked on the outgoing CPU in context of the CPU hotplug thread
7971  * after ensuring that there are no user space tasks left on the CPU.
7972  *
7973  * If there is a lazy mm in use on the hotplug thread, drop it and
7974  * switch to init_mm.
7975  *
7976  * The reference count on init_mm is dropped in finish_cpu().
7977  */
7978 static void sched_force_init_mm(void)
7979 {
7980 	struct mm_struct *mm = current->active_mm;
7981 
7982 	if (mm != &init_mm) {
7983 		mmgrab_lazy_tlb(&init_mm);
7984 		local_irq_disable();
7985 		current->active_mm = &init_mm;
7986 		switch_mm_irqs_off(mm, &init_mm, current);
7987 		local_irq_enable();
7988 		finish_arch_post_lock_switch();
7989 		mmdrop_lazy_tlb(mm);
7990 	}
7991 
7992 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7993 }
7994 
7995 static int __balance_push_cpu_stop(void *arg)
7996 {
7997 	struct task_struct *p = arg;
7998 	struct rq *rq = this_rq();
7999 	struct rq_flags rf;
8000 	int cpu;
8001 
8002 	raw_spin_lock_irq(&p->pi_lock);
8003 	rq_lock(rq, &rf);
8004 
8005 	update_rq_clock(rq);
8006 
8007 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8008 		cpu = select_fallback_rq(rq->cpu, p);
8009 		rq = __migrate_task(rq, &rf, p, cpu);
8010 	}
8011 
8012 	rq_unlock(rq, &rf);
8013 	raw_spin_unlock_irq(&p->pi_lock);
8014 
8015 	put_task_struct(p);
8016 
8017 	return 0;
8018 }
8019 
8020 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8021 
8022 /*
8023  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8024  *
8025  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8026  * effective when the hotplug motion is down.
8027  */
8028 static void balance_push(struct rq *rq)
8029 {
8030 	struct task_struct *push_task = rq->curr;
8031 
8032 	lockdep_assert_rq_held(rq);
8033 
8034 	/*
8035 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8036 	 */
8037 	rq->balance_callback = &balance_push_callback;
8038 
8039 	/*
8040 	 * Only active while going offline and when invoked on the outgoing
8041 	 * CPU.
8042 	 */
8043 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8044 		return;
8045 
8046 	/*
8047 	 * Both the cpu-hotplug and stop task are in this case and are
8048 	 * required to complete the hotplug process.
8049 	 */
8050 	if (kthread_is_per_cpu(push_task) ||
8051 	    is_migration_disabled(push_task)) {
8052 
8053 		/*
8054 		 * If this is the idle task on the outgoing CPU try to wake
8055 		 * up the hotplug control thread which might wait for the
8056 		 * last task to vanish. The rcuwait_active() check is
8057 		 * accurate here because the waiter is pinned on this CPU
8058 		 * and can't obviously be running in parallel.
8059 		 *
8060 		 * On RT kernels this also has to check whether there are
8061 		 * pinned and scheduled out tasks on the runqueue. They
8062 		 * need to leave the migrate disabled section first.
8063 		 */
8064 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8065 		    rcuwait_active(&rq->hotplug_wait)) {
8066 			raw_spin_rq_unlock(rq);
8067 			rcuwait_wake_up(&rq->hotplug_wait);
8068 			raw_spin_rq_lock(rq);
8069 		}
8070 		return;
8071 	}
8072 
8073 	get_task_struct(push_task);
8074 	/*
8075 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8076 	 * Both preemption and IRQs are still disabled.
8077 	 */
8078 	preempt_disable();
8079 	raw_spin_rq_unlock(rq);
8080 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8081 			    this_cpu_ptr(&push_work));
8082 	preempt_enable();
8083 	/*
8084 	 * At this point need_resched() is true and we'll take the loop in
8085 	 * schedule(). The next pick is obviously going to be the stop task
8086 	 * which kthread_is_per_cpu() and will push this task away.
8087 	 */
8088 	raw_spin_rq_lock(rq);
8089 }
8090 
8091 static void balance_push_set(int cpu, bool on)
8092 {
8093 	struct rq *rq = cpu_rq(cpu);
8094 	struct rq_flags rf;
8095 
8096 	rq_lock_irqsave(rq, &rf);
8097 	if (on) {
8098 		WARN_ON_ONCE(rq->balance_callback);
8099 		rq->balance_callback = &balance_push_callback;
8100 	} else if (rq->balance_callback == &balance_push_callback) {
8101 		rq->balance_callback = NULL;
8102 	}
8103 	rq_unlock_irqrestore(rq, &rf);
8104 }
8105 
8106 /*
8107  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8108  * inactive. All tasks which are not per CPU kernel threads are either
8109  * pushed off this CPU now via balance_push() or placed on a different CPU
8110  * during wakeup. Wait until the CPU is quiescent.
8111  */
8112 static void balance_hotplug_wait(void)
8113 {
8114 	struct rq *rq = this_rq();
8115 
8116 	rcuwait_wait_event(&rq->hotplug_wait,
8117 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8118 			   TASK_UNINTERRUPTIBLE);
8119 }
8120 
8121 #else
8122 
8123 static inline void balance_push(struct rq *rq)
8124 {
8125 }
8126 
8127 static inline void balance_push_set(int cpu, bool on)
8128 {
8129 }
8130 
8131 static inline void balance_hotplug_wait(void)
8132 {
8133 }
8134 
8135 #endif /* CONFIG_HOTPLUG_CPU */
8136 
8137 void set_rq_online(struct rq *rq)
8138 {
8139 	if (!rq->online) {
8140 		const struct sched_class *class;
8141 
8142 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8143 		rq->online = 1;
8144 
8145 		for_each_class(class) {
8146 			if (class->rq_online)
8147 				class->rq_online(rq);
8148 		}
8149 	}
8150 }
8151 
8152 void set_rq_offline(struct rq *rq)
8153 {
8154 	if (rq->online) {
8155 		const struct sched_class *class;
8156 
8157 		update_rq_clock(rq);
8158 		for_each_class(class) {
8159 			if (class->rq_offline)
8160 				class->rq_offline(rq);
8161 		}
8162 
8163 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8164 		rq->online = 0;
8165 	}
8166 }
8167 
8168 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8169 {
8170 	struct rq_flags rf;
8171 
8172 	rq_lock_irqsave(rq, &rf);
8173 	if (rq->rd) {
8174 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8175 		set_rq_online(rq);
8176 	}
8177 	rq_unlock_irqrestore(rq, &rf);
8178 }
8179 
8180 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8181 {
8182 	struct rq_flags rf;
8183 
8184 	rq_lock_irqsave(rq, &rf);
8185 	if (rq->rd) {
8186 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8187 		set_rq_offline(rq);
8188 	}
8189 	rq_unlock_irqrestore(rq, &rf);
8190 }
8191 
8192 /*
8193  * used to mark begin/end of suspend/resume:
8194  */
8195 static int num_cpus_frozen;
8196 
8197 /*
8198  * Update cpusets according to cpu_active mask.  If cpusets are
8199  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8200  * around partition_sched_domains().
8201  *
8202  * If we come here as part of a suspend/resume, don't touch cpusets because we
8203  * want to restore it back to its original state upon resume anyway.
8204  */
8205 static void cpuset_cpu_active(void)
8206 {
8207 	if (cpuhp_tasks_frozen) {
8208 		/*
8209 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8210 		 * resume sequence. As long as this is not the last online
8211 		 * operation in the resume sequence, just build a single sched
8212 		 * domain, ignoring cpusets.
8213 		 */
8214 		cpuset_reset_sched_domains();
8215 		if (--num_cpus_frozen)
8216 			return;
8217 		/*
8218 		 * This is the last CPU online operation. So fall through and
8219 		 * restore the original sched domains by considering the
8220 		 * cpuset configurations.
8221 		 */
8222 		cpuset_force_rebuild();
8223 	}
8224 	cpuset_update_active_cpus();
8225 }
8226 
8227 static void cpuset_cpu_inactive(unsigned int cpu)
8228 {
8229 	if (!cpuhp_tasks_frozen) {
8230 		cpuset_update_active_cpus();
8231 	} else {
8232 		num_cpus_frozen++;
8233 		cpuset_reset_sched_domains();
8234 	}
8235 }
8236 
8237 static inline void sched_smt_present_inc(int cpu)
8238 {
8239 #ifdef CONFIG_SCHED_SMT
8240 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8241 		static_branch_inc_cpuslocked(&sched_smt_present);
8242 #endif
8243 }
8244 
8245 static inline void sched_smt_present_dec(int cpu)
8246 {
8247 #ifdef CONFIG_SCHED_SMT
8248 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8249 		static_branch_dec_cpuslocked(&sched_smt_present);
8250 #endif
8251 }
8252 
8253 int sched_cpu_activate(unsigned int cpu)
8254 {
8255 	struct rq *rq = cpu_rq(cpu);
8256 
8257 	/*
8258 	 * Clear the balance_push callback and prepare to schedule
8259 	 * regular tasks.
8260 	 */
8261 	balance_push_set(cpu, false);
8262 
8263 	/*
8264 	 * When going up, increment the number of cores with SMT present.
8265 	 */
8266 	sched_smt_present_inc(cpu);
8267 	set_cpu_active(cpu, true);
8268 
8269 	if (sched_smp_initialized) {
8270 		sched_update_numa(cpu, true);
8271 		sched_domains_numa_masks_set(cpu);
8272 		cpuset_cpu_active();
8273 	}
8274 
8275 	scx_rq_activate(rq);
8276 
8277 	/*
8278 	 * Put the rq online, if not already. This happens:
8279 	 *
8280 	 * 1) In the early boot process, because we build the real domains
8281 	 *    after all CPUs have been brought up.
8282 	 *
8283 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8284 	 *    domains.
8285 	 */
8286 	sched_set_rq_online(rq, cpu);
8287 
8288 	return 0;
8289 }
8290 
8291 int sched_cpu_deactivate(unsigned int cpu)
8292 {
8293 	struct rq *rq = cpu_rq(cpu);
8294 	int ret;
8295 
8296 	ret = dl_bw_deactivate(cpu);
8297 
8298 	if (ret)
8299 		return ret;
8300 
8301 	/*
8302 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8303 	 * load balancing when not active
8304 	 */
8305 	nohz_balance_exit_idle(rq);
8306 
8307 	set_cpu_active(cpu, false);
8308 
8309 	/*
8310 	 * From this point forward, this CPU will refuse to run any task that
8311 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8312 	 * push those tasks away until this gets cleared, see
8313 	 * sched_cpu_dying().
8314 	 */
8315 	balance_push_set(cpu, true);
8316 
8317 	/*
8318 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8319 	 * preempt-disabled and RCU users of this state to go away such that
8320 	 * all new such users will observe it.
8321 	 *
8322 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8323 	 * ttwu_queue_cond() and is_cpu_allowed().
8324 	 *
8325 	 * Do sync before park smpboot threads to take care the RCU boost case.
8326 	 */
8327 	synchronize_rcu();
8328 
8329 	sched_set_rq_offline(rq, cpu);
8330 
8331 	scx_rq_deactivate(rq);
8332 
8333 	/*
8334 	 * When going down, decrement the number of cores with SMT present.
8335 	 */
8336 	sched_smt_present_dec(cpu);
8337 
8338 #ifdef CONFIG_SCHED_SMT
8339 	sched_core_cpu_deactivate(cpu);
8340 #endif
8341 
8342 	if (!sched_smp_initialized)
8343 		return 0;
8344 
8345 	sched_update_numa(cpu, false);
8346 	cpuset_cpu_inactive(cpu);
8347 	sched_domains_numa_masks_clear(cpu);
8348 	return 0;
8349 }
8350 
8351 static void sched_rq_cpu_starting(unsigned int cpu)
8352 {
8353 	struct rq *rq = cpu_rq(cpu);
8354 
8355 	rq->calc_load_update = calc_load_update;
8356 	update_max_interval();
8357 }
8358 
8359 int sched_cpu_starting(unsigned int cpu)
8360 {
8361 	sched_core_cpu_starting(cpu);
8362 	sched_rq_cpu_starting(cpu);
8363 	sched_tick_start(cpu);
8364 	return 0;
8365 }
8366 
8367 #ifdef CONFIG_HOTPLUG_CPU
8368 
8369 /*
8370  * Invoked immediately before the stopper thread is invoked to bring the
8371  * CPU down completely. At this point all per CPU kthreads except the
8372  * hotplug thread (current) and the stopper thread (inactive) have been
8373  * either parked or have been unbound from the outgoing CPU. Ensure that
8374  * any of those which might be on the way out are gone.
8375  *
8376  * If after this point a bound task is being woken on this CPU then the
8377  * responsible hotplug callback has failed to do it's job.
8378  * sched_cpu_dying() will catch it with the appropriate fireworks.
8379  */
8380 int sched_cpu_wait_empty(unsigned int cpu)
8381 {
8382 	balance_hotplug_wait();
8383 	sched_force_init_mm();
8384 	return 0;
8385 }
8386 
8387 /*
8388  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8389  * might have. Called from the CPU stopper task after ensuring that the
8390  * stopper is the last running task on the CPU, so nr_active count is
8391  * stable. We need to take the tear-down thread which is calling this into
8392  * account, so we hand in adjust = 1 to the load calculation.
8393  *
8394  * Also see the comment "Global load-average calculations".
8395  */
8396 static void calc_load_migrate(struct rq *rq)
8397 {
8398 	long delta = calc_load_fold_active(rq, 1);
8399 
8400 	if (delta)
8401 		atomic_long_add(delta, &calc_load_tasks);
8402 }
8403 
8404 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8405 {
8406 	struct task_struct *g, *p;
8407 	int cpu = cpu_of(rq);
8408 
8409 	lockdep_assert_rq_held(rq);
8410 
8411 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8412 	for_each_process_thread(g, p) {
8413 		if (task_cpu(p) != cpu)
8414 			continue;
8415 
8416 		if (!task_on_rq_queued(p))
8417 			continue;
8418 
8419 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8420 	}
8421 }
8422 
8423 int sched_cpu_dying(unsigned int cpu)
8424 {
8425 	struct rq *rq = cpu_rq(cpu);
8426 	struct rq_flags rf;
8427 
8428 	/* Handle pending wakeups and then migrate everything off */
8429 	sched_tick_stop(cpu);
8430 
8431 	rq_lock_irqsave(rq, &rf);
8432 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8433 		WARN(true, "Dying CPU not properly vacated!");
8434 		dump_rq_tasks(rq, KERN_WARNING);
8435 	}
8436 	rq_unlock_irqrestore(rq, &rf);
8437 
8438 	calc_load_migrate(rq);
8439 	update_max_interval();
8440 	hrtick_clear(rq);
8441 	sched_core_cpu_dying(cpu);
8442 	return 0;
8443 }
8444 #endif
8445 
8446 void __init sched_init_smp(void)
8447 {
8448 	sched_init_numa(NUMA_NO_NODE);
8449 
8450 	/*
8451 	 * There's no userspace yet to cause hotplug operations; hence all the
8452 	 * CPU masks are stable and all blatant races in the below code cannot
8453 	 * happen.
8454 	 */
8455 	sched_domains_mutex_lock();
8456 	sched_init_domains(cpu_active_mask);
8457 	sched_domains_mutex_unlock();
8458 
8459 	/* Move init over to a non-isolated CPU */
8460 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8461 		BUG();
8462 	current->flags &= ~PF_NO_SETAFFINITY;
8463 	sched_init_granularity();
8464 
8465 	init_sched_rt_class();
8466 	init_sched_dl_class();
8467 
8468 	sched_smp_initialized = true;
8469 }
8470 
8471 static int __init migration_init(void)
8472 {
8473 	sched_cpu_starting(smp_processor_id());
8474 	return 0;
8475 }
8476 early_initcall(migration_init);
8477 
8478 #else
8479 void __init sched_init_smp(void)
8480 {
8481 	sched_init_granularity();
8482 }
8483 #endif /* CONFIG_SMP */
8484 
8485 int in_sched_functions(unsigned long addr)
8486 {
8487 	return in_lock_functions(addr) ||
8488 		(addr >= (unsigned long)__sched_text_start
8489 		&& addr < (unsigned long)__sched_text_end);
8490 }
8491 
8492 #ifdef CONFIG_CGROUP_SCHED
8493 /*
8494  * Default task group.
8495  * Every task in system belongs to this group at bootup.
8496  */
8497 struct task_group root_task_group;
8498 LIST_HEAD(task_groups);
8499 
8500 /* Cacheline aligned slab cache for task_group */
8501 static struct kmem_cache *task_group_cache __ro_after_init;
8502 #endif
8503 
8504 void __init sched_init(void)
8505 {
8506 	unsigned long ptr = 0;
8507 	int i;
8508 
8509 	/* Make sure the linker didn't screw up */
8510 #ifdef CONFIG_SMP
8511 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8512 #endif
8513 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8514 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8515 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8516 #ifdef CONFIG_SCHED_CLASS_EXT
8517 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8518 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8519 #endif
8520 
8521 	wait_bit_init();
8522 
8523 #ifdef CONFIG_FAIR_GROUP_SCHED
8524 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8525 #endif
8526 #ifdef CONFIG_RT_GROUP_SCHED
8527 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8528 #endif
8529 	if (ptr) {
8530 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8531 
8532 #ifdef CONFIG_FAIR_GROUP_SCHED
8533 		root_task_group.se = (struct sched_entity **)ptr;
8534 		ptr += nr_cpu_ids * sizeof(void **);
8535 
8536 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8537 		ptr += nr_cpu_ids * sizeof(void **);
8538 
8539 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8540 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8541 #endif /* CONFIG_FAIR_GROUP_SCHED */
8542 #ifdef CONFIG_EXT_GROUP_SCHED
8543 		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8544 #endif /* CONFIG_EXT_GROUP_SCHED */
8545 #ifdef CONFIG_RT_GROUP_SCHED
8546 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8547 		ptr += nr_cpu_ids * sizeof(void **);
8548 
8549 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8550 		ptr += nr_cpu_ids * sizeof(void **);
8551 
8552 #endif /* CONFIG_RT_GROUP_SCHED */
8553 	}
8554 
8555 #ifdef CONFIG_SMP
8556 	init_defrootdomain();
8557 #endif
8558 
8559 #ifdef CONFIG_RT_GROUP_SCHED
8560 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8561 			global_rt_period(), global_rt_runtime());
8562 #endif /* CONFIG_RT_GROUP_SCHED */
8563 
8564 #ifdef CONFIG_CGROUP_SCHED
8565 	task_group_cache = KMEM_CACHE(task_group, 0);
8566 
8567 	list_add(&root_task_group.list, &task_groups);
8568 	INIT_LIST_HEAD(&root_task_group.children);
8569 	INIT_LIST_HEAD(&root_task_group.siblings);
8570 	autogroup_init(&init_task);
8571 #endif /* CONFIG_CGROUP_SCHED */
8572 
8573 	for_each_possible_cpu(i) {
8574 		struct rq *rq;
8575 
8576 		rq = cpu_rq(i);
8577 		raw_spin_lock_init(&rq->__lock);
8578 		rq->nr_running = 0;
8579 		rq->calc_load_active = 0;
8580 		rq->calc_load_update = jiffies + LOAD_FREQ;
8581 		init_cfs_rq(&rq->cfs);
8582 		init_rt_rq(&rq->rt);
8583 		init_dl_rq(&rq->dl);
8584 #ifdef CONFIG_FAIR_GROUP_SCHED
8585 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8586 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8587 		/*
8588 		 * How much CPU bandwidth does root_task_group get?
8589 		 *
8590 		 * In case of task-groups formed through the cgroup filesystem, it
8591 		 * gets 100% of the CPU resources in the system. This overall
8592 		 * system CPU resource is divided among the tasks of
8593 		 * root_task_group and its child task-groups in a fair manner,
8594 		 * based on each entity's (task or task-group's) weight
8595 		 * (se->load.weight).
8596 		 *
8597 		 * In other words, if root_task_group has 10 tasks of weight
8598 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8599 		 * then A0's share of the CPU resource is:
8600 		 *
8601 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8602 		 *
8603 		 * We achieve this by letting root_task_group's tasks sit
8604 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8605 		 */
8606 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8607 #endif /* CONFIG_FAIR_GROUP_SCHED */
8608 
8609 #ifdef CONFIG_RT_GROUP_SCHED
8610 		/*
8611 		 * This is required for init cpu because rt.c:__enable_runtime()
8612 		 * starts working after scheduler_running, which is not the case
8613 		 * yet.
8614 		 */
8615 		rq->rt.rt_runtime = global_rt_runtime();
8616 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8617 #endif
8618 #ifdef CONFIG_SMP
8619 		rq->sd = NULL;
8620 		rq->rd = NULL;
8621 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8622 		rq->balance_callback = &balance_push_callback;
8623 		rq->active_balance = 0;
8624 		rq->next_balance = jiffies;
8625 		rq->push_cpu = 0;
8626 		rq->cpu = i;
8627 		rq->online = 0;
8628 		rq->idle_stamp = 0;
8629 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8630 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8631 
8632 		INIT_LIST_HEAD(&rq->cfs_tasks);
8633 
8634 		rq_attach_root(rq, &def_root_domain);
8635 #ifdef CONFIG_NO_HZ_COMMON
8636 		rq->last_blocked_load_update_tick = jiffies;
8637 		atomic_set(&rq->nohz_flags, 0);
8638 
8639 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8640 #endif
8641 #ifdef CONFIG_HOTPLUG_CPU
8642 		rcuwait_init(&rq->hotplug_wait);
8643 #endif
8644 #endif /* CONFIG_SMP */
8645 		hrtick_rq_init(rq);
8646 		atomic_set(&rq->nr_iowait, 0);
8647 		fair_server_init(rq);
8648 
8649 #ifdef CONFIG_SCHED_CORE
8650 		rq->core = rq;
8651 		rq->core_pick = NULL;
8652 		rq->core_dl_server = NULL;
8653 		rq->core_enabled = 0;
8654 		rq->core_tree = RB_ROOT;
8655 		rq->core_forceidle_count = 0;
8656 		rq->core_forceidle_occupation = 0;
8657 		rq->core_forceidle_start = 0;
8658 
8659 		rq->core_cookie = 0UL;
8660 #endif
8661 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8662 	}
8663 
8664 	set_load_weight(&init_task, false);
8665 	init_task.se.slice = sysctl_sched_base_slice,
8666 
8667 	/*
8668 	 * The boot idle thread does lazy MMU switching as well:
8669 	 */
8670 	mmgrab_lazy_tlb(&init_mm);
8671 	enter_lazy_tlb(&init_mm, current);
8672 
8673 	/*
8674 	 * The idle task doesn't need the kthread struct to function, but it
8675 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8676 	 * if we want to avoid special-casing it in code that deals with per-CPU
8677 	 * kthreads.
8678 	 */
8679 	WARN_ON(!set_kthread_struct(current));
8680 
8681 	/*
8682 	 * Make us the idle thread. Technically, schedule() should not be
8683 	 * called from this thread, however somewhere below it might be,
8684 	 * but because we are the idle thread, we just pick up running again
8685 	 * when this runqueue becomes "idle".
8686 	 */
8687 	__sched_fork(0, current);
8688 	init_idle(current, smp_processor_id());
8689 
8690 	calc_load_update = jiffies + LOAD_FREQ;
8691 
8692 #ifdef CONFIG_SMP
8693 	idle_thread_set_boot_cpu();
8694 	balance_push_set(smp_processor_id(), false);
8695 #endif
8696 	init_sched_fair_class();
8697 	init_sched_ext_class();
8698 
8699 	psi_init();
8700 
8701 	init_uclamp();
8702 
8703 	preempt_dynamic_init();
8704 
8705 	scheduler_running = 1;
8706 }
8707 
8708 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8709 
8710 void __might_sleep(const char *file, int line)
8711 {
8712 	unsigned int state = get_current_state();
8713 	/*
8714 	 * Blocking primitives will set (and therefore destroy) current->state,
8715 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8716 	 * otherwise we will destroy state.
8717 	 */
8718 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8719 			"do not call blocking ops when !TASK_RUNNING; "
8720 			"state=%x set at [<%p>] %pS\n", state,
8721 			(void *)current->task_state_change,
8722 			(void *)current->task_state_change);
8723 
8724 	__might_resched(file, line, 0);
8725 }
8726 EXPORT_SYMBOL(__might_sleep);
8727 
8728 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8729 {
8730 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8731 		return;
8732 
8733 	if (preempt_count() == preempt_offset)
8734 		return;
8735 
8736 	pr_err("Preemption disabled at:");
8737 	print_ip_sym(KERN_ERR, ip);
8738 }
8739 
8740 static inline bool resched_offsets_ok(unsigned int offsets)
8741 {
8742 	unsigned int nested = preempt_count();
8743 
8744 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8745 
8746 	return nested == offsets;
8747 }
8748 
8749 void __might_resched(const char *file, int line, unsigned int offsets)
8750 {
8751 	/* Ratelimiting timestamp: */
8752 	static unsigned long prev_jiffy;
8753 
8754 	unsigned long preempt_disable_ip;
8755 
8756 	/* WARN_ON_ONCE() by default, no rate limit required: */
8757 	rcu_sleep_check();
8758 
8759 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8760 	     !is_idle_task(current) && !current->non_block_count) ||
8761 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8762 	    oops_in_progress)
8763 		return;
8764 
8765 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8766 		return;
8767 	prev_jiffy = jiffies;
8768 
8769 	/* Save this before calling printk(), since that will clobber it: */
8770 	preempt_disable_ip = get_preempt_disable_ip(current);
8771 
8772 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8773 	       file, line);
8774 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8775 	       in_atomic(), irqs_disabled(), current->non_block_count,
8776 	       current->pid, current->comm);
8777 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8778 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8779 
8780 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8781 		pr_err("RCU nest depth: %d, expected: %u\n",
8782 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8783 	}
8784 
8785 	if (task_stack_end_corrupted(current))
8786 		pr_emerg("Thread overran stack, or stack corrupted\n");
8787 
8788 	debug_show_held_locks(current);
8789 	if (irqs_disabled())
8790 		print_irqtrace_events(current);
8791 
8792 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8793 				 preempt_disable_ip);
8794 
8795 	dump_stack();
8796 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8797 }
8798 EXPORT_SYMBOL(__might_resched);
8799 
8800 void __cant_sleep(const char *file, int line, int preempt_offset)
8801 {
8802 	static unsigned long prev_jiffy;
8803 
8804 	if (irqs_disabled())
8805 		return;
8806 
8807 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8808 		return;
8809 
8810 	if (preempt_count() > preempt_offset)
8811 		return;
8812 
8813 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8814 		return;
8815 	prev_jiffy = jiffies;
8816 
8817 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8818 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8819 			in_atomic(), irqs_disabled(),
8820 			current->pid, current->comm);
8821 
8822 	debug_show_held_locks(current);
8823 	dump_stack();
8824 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8825 }
8826 EXPORT_SYMBOL_GPL(__cant_sleep);
8827 
8828 #ifdef CONFIG_SMP
8829 void __cant_migrate(const char *file, int line)
8830 {
8831 	static unsigned long prev_jiffy;
8832 
8833 	if (irqs_disabled())
8834 		return;
8835 
8836 	if (is_migration_disabled(current))
8837 		return;
8838 
8839 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8840 		return;
8841 
8842 	if (preempt_count() > 0)
8843 		return;
8844 
8845 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8846 		return;
8847 	prev_jiffy = jiffies;
8848 
8849 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8850 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8851 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8852 	       current->pid, current->comm);
8853 
8854 	debug_show_held_locks(current);
8855 	dump_stack();
8856 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8857 }
8858 EXPORT_SYMBOL_GPL(__cant_migrate);
8859 #endif
8860 #endif
8861 
8862 #ifdef CONFIG_MAGIC_SYSRQ
8863 void normalize_rt_tasks(void)
8864 {
8865 	struct task_struct *g, *p;
8866 	struct sched_attr attr = {
8867 		.sched_policy = SCHED_NORMAL,
8868 	};
8869 
8870 	read_lock(&tasklist_lock);
8871 	for_each_process_thread(g, p) {
8872 		/*
8873 		 * Only normalize user tasks:
8874 		 */
8875 		if (p->flags & PF_KTHREAD)
8876 			continue;
8877 
8878 		p->se.exec_start = 0;
8879 		schedstat_set(p->stats.wait_start,  0);
8880 		schedstat_set(p->stats.sleep_start, 0);
8881 		schedstat_set(p->stats.block_start, 0);
8882 
8883 		if (!rt_or_dl_task(p)) {
8884 			/*
8885 			 * Renice negative nice level userspace
8886 			 * tasks back to 0:
8887 			 */
8888 			if (task_nice(p) < 0)
8889 				set_user_nice(p, 0);
8890 			continue;
8891 		}
8892 
8893 		__sched_setscheduler(p, &attr, false, false);
8894 	}
8895 	read_unlock(&tasklist_lock);
8896 }
8897 
8898 #endif /* CONFIG_MAGIC_SYSRQ */
8899 
8900 #if defined(CONFIG_KGDB_KDB)
8901 /*
8902  * These functions are only useful for KDB.
8903  *
8904  * They can only be called when the whole system has been
8905  * stopped - every CPU needs to be quiescent, and no scheduling
8906  * activity can take place. Using them for anything else would
8907  * be a serious bug, and as a result, they aren't even visible
8908  * under any other configuration.
8909  */
8910 
8911 /**
8912  * curr_task - return the current task for a given CPU.
8913  * @cpu: the processor in question.
8914  *
8915  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8916  *
8917  * Return: The current task for @cpu.
8918  */
8919 struct task_struct *curr_task(int cpu)
8920 {
8921 	return cpu_curr(cpu);
8922 }
8923 
8924 #endif /* defined(CONFIG_KGDB_KDB) */
8925 
8926 #ifdef CONFIG_CGROUP_SCHED
8927 /* task_group_lock serializes the addition/removal of task groups */
8928 static DEFINE_SPINLOCK(task_group_lock);
8929 
8930 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8931 					    struct task_group *parent)
8932 {
8933 #ifdef CONFIG_UCLAMP_TASK_GROUP
8934 	enum uclamp_id clamp_id;
8935 
8936 	for_each_clamp_id(clamp_id) {
8937 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8938 			      uclamp_none(clamp_id), false);
8939 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8940 	}
8941 #endif
8942 }
8943 
8944 static void sched_free_group(struct task_group *tg)
8945 {
8946 	free_fair_sched_group(tg);
8947 	free_rt_sched_group(tg);
8948 	autogroup_free(tg);
8949 	kmem_cache_free(task_group_cache, tg);
8950 }
8951 
8952 static void sched_free_group_rcu(struct rcu_head *rcu)
8953 {
8954 	sched_free_group(container_of(rcu, struct task_group, rcu));
8955 }
8956 
8957 static void sched_unregister_group(struct task_group *tg)
8958 {
8959 	unregister_fair_sched_group(tg);
8960 	unregister_rt_sched_group(tg);
8961 	/*
8962 	 * We have to wait for yet another RCU grace period to expire, as
8963 	 * print_cfs_stats() might run concurrently.
8964 	 */
8965 	call_rcu(&tg->rcu, sched_free_group_rcu);
8966 }
8967 
8968 /* allocate runqueue etc for a new task group */
8969 struct task_group *sched_create_group(struct task_group *parent)
8970 {
8971 	struct task_group *tg;
8972 
8973 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8974 	if (!tg)
8975 		return ERR_PTR(-ENOMEM);
8976 
8977 	if (!alloc_fair_sched_group(tg, parent))
8978 		goto err;
8979 
8980 	if (!alloc_rt_sched_group(tg, parent))
8981 		goto err;
8982 
8983 	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8984 	alloc_uclamp_sched_group(tg, parent);
8985 
8986 	return tg;
8987 
8988 err:
8989 	sched_free_group(tg);
8990 	return ERR_PTR(-ENOMEM);
8991 }
8992 
8993 void sched_online_group(struct task_group *tg, struct task_group *parent)
8994 {
8995 	unsigned long flags;
8996 
8997 	spin_lock_irqsave(&task_group_lock, flags);
8998 	list_add_tail_rcu(&tg->list, &task_groups);
8999 
9000 	/* Root should already exist: */
9001 	WARN_ON(!parent);
9002 
9003 	tg->parent = parent;
9004 	INIT_LIST_HEAD(&tg->children);
9005 	list_add_rcu(&tg->siblings, &parent->children);
9006 	spin_unlock_irqrestore(&task_group_lock, flags);
9007 
9008 	online_fair_sched_group(tg);
9009 }
9010 
9011 /* RCU callback to free various structures associated with a task group */
9012 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9013 {
9014 	/* Now it should be safe to free those cfs_rqs: */
9015 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9016 }
9017 
9018 void sched_destroy_group(struct task_group *tg)
9019 {
9020 	/* Wait for possible concurrent references to cfs_rqs complete: */
9021 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9022 }
9023 
9024 void sched_release_group(struct task_group *tg)
9025 {
9026 	unsigned long flags;
9027 
9028 	/*
9029 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9030 	 * sched_cfs_period_timer()).
9031 	 *
9032 	 * For this to be effective, we have to wait for all pending users of
9033 	 * this task group to leave their RCU critical section to ensure no new
9034 	 * user will see our dying task group any more. Specifically ensure
9035 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9036 	 *
9037 	 * We therefore defer calling unregister_fair_sched_group() to
9038 	 * sched_unregister_group() which is guarantied to get called only after the
9039 	 * current RCU grace period has expired.
9040 	 */
9041 	spin_lock_irqsave(&task_group_lock, flags);
9042 	list_del_rcu(&tg->list);
9043 	list_del_rcu(&tg->siblings);
9044 	spin_unlock_irqrestore(&task_group_lock, flags);
9045 }
9046 
9047 static void sched_change_group(struct task_struct *tsk)
9048 {
9049 	struct task_group *tg;
9050 
9051 	/*
9052 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9053 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9054 	 * to prevent lockdep warnings.
9055 	 */
9056 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9057 			  struct task_group, css);
9058 	tg = autogroup_task_group(tsk, tg);
9059 	tsk->sched_task_group = tg;
9060 
9061 #ifdef CONFIG_FAIR_GROUP_SCHED
9062 	if (tsk->sched_class->task_change_group)
9063 		tsk->sched_class->task_change_group(tsk);
9064 	else
9065 #endif
9066 		set_task_rq(tsk, task_cpu(tsk));
9067 }
9068 
9069 /*
9070  * Change task's runqueue when it moves between groups.
9071  *
9072  * The caller of this function should have put the task in its new group by
9073  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9074  * its new group.
9075  */
9076 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9077 {
9078 	int queued, running, queue_flags =
9079 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9080 	struct rq *rq;
9081 
9082 	CLASS(task_rq_lock, rq_guard)(tsk);
9083 	rq = rq_guard.rq;
9084 
9085 	update_rq_clock(rq);
9086 
9087 	running = task_current_donor(rq, tsk);
9088 	queued = task_on_rq_queued(tsk);
9089 
9090 	if (queued)
9091 		dequeue_task(rq, tsk, queue_flags);
9092 	if (running)
9093 		put_prev_task(rq, tsk);
9094 
9095 	sched_change_group(tsk);
9096 	if (!for_autogroup)
9097 		scx_cgroup_move_task(tsk);
9098 
9099 	if (queued)
9100 		enqueue_task(rq, tsk, queue_flags);
9101 	if (running) {
9102 		set_next_task(rq, tsk);
9103 		/*
9104 		 * After changing group, the running task may have joined a
9105 		 * throttled one but it's still the running task. Trigger a
9106 		 * resched to make sure that task can still run.
9107 		 */
9108 		resched_curr(rq);
9109 	}
9110 }
9111 
9112 static struct cgroup_subsys_state *
9113 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9114 {
9115 	struct task_group *parent = css_tg(parent_css);
9116 	struct task_group *tg;
9117 
9118 	if (!parent) {
9119 		/* This is early initialization for the top cgroup */
9120 		return &root_task_group.css;
9121 	}
9122 
9123 	tg = sched_create_group(parent);
9124 	if (IS_ERR(tg))
9125 		return ERR_PTR(-ENOMEM);
9126 
9127 	return &tg->css;
9128 }
9129 
9130 /* Expose task group only after completing cgroup initialization */
9131 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9132 {
9133 	struct task_group *tg = css_tg(css);
9134 	struct task_group *parent = css_tg(css->parent);
9135 	int ret;
9136 
9137 	ret = scx_tg_online(tg);
9138 	if (ret)
9139 		return ret;
9140 
9141 	if (parent)
9142 		sched_online_group(tg, parent);
9143 
9144 #ifdef CONFIG_UCLAMP_TASK_GROUP
9145 	/* Propagate the effective uclamp value for the new group */
9146 	guard(mutex)(&uclamp_mutex);
9147 	guard(rcu)();
9148 	cpu_util_update_eff(css);
9149 #endif
9150 
9151 	return 0;
9152 }
9153 
9154 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9155 {
9156 	struct task_group *tg = css_tg(css);
9157 
9158 	scx_tg_offline(tg);
9159 }
9160 
9161 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9162 {
9163 	struct task_group *tg = css_tg(css);
9164 
9165 	sched_release_group(tg);
9166 }
9167 
9168 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9169 {
9170 	struct task_group *tg = css_tg(css);
9171 
9172 	/*
9173 	 * Relies on the RCU grace period between css_released() and this.
9174 	 */
9175 	sched_unregister_group(tg);
9176 }
9177 
9178 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9179 {
9180 #ifdef CONFIG_RT_GROUP_SCHED
9181 	struct task_struct *task;
9182 	struct cgroup_subsys_state *css;
9183 
9184 	if (!rt_group_sched_enabled())
9185 		goto scx_check;
9186 
9187 	cgroup_taskset_for_each(task, css, tset) {
9188 		if (!sched_rt_can_attach(css_tg(css), task))
9189 			return -EINVAL;
9190 	}
9191 scx_check:
9192 #endif /* CONFIG_RT_GROUP_SCHED */
9193 	return scx_cgroup_can_attach(tset);
9194 }
9195 
9196 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9197 {
9198 	struct task_struct *task;
9199 	struct cgroup_subsys_state *css;
9200 
9201 	cgroup_taskset_for_each(task, css, tset)
9202 		sched_move_task(task, false);
9203 
9204 	scx_cgroup_finish_attach();
9205 }
9206 
9207 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9208 {
9209 	scx_cgroup_cancel_attach(tset);
9210 }
9211 
9212 #ifdef CONFIG_UCLAMP_TASK_GROUP
9213 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9214 {
9215 	struct cgroup_subsys_state *top_css = css;
9216 	struct uclamp_se *uc_parent = NULL;
9217 	struct uclamp_se *uc_se = NULL;
9218 	unsigned int eff[UCLAMP_CNT];
9219 	enum uclamp_id clamp_id;
9220 	unsigned int clamps;
9221 
9222 	lockdep_assert_held(&uclamp_mutex);
9223 	WARN_ON_ONCE(!rcu_read_lock_held());
9224 
9225 	css_for_each_descendant_pre(css, top_css) {
9226 		uc_parent = css_tg(css)->parent
9227 			? css_tg(css)->parent->uclamp : NULL;
9228 
9229 		for_each_clamp_id(clamp_id) {
9230 			/* Assume effective clamps matches requested clamps */
9231 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9232 			/* Cap effective clamps with parent's effective clamps */
9233 			if (uc_parent &&
9234 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9235 				eff[clamp_id] = uc_parent[clamp_id].value;
9236 			}
9237 		}
9238 		/* Ensure protection is always capped by limit */
9239 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9240 
9241 		/* Propagate most restrictive effective clamps */
9242 		clamps = 0x0;
9243 		uc_se = css_tg(css)->uclamp;
9244 		for_each_clamp_id(clamp_id) {
9245 			if (eff[clamp_id] == uc_se[clamp_id].value)
9246 				continue;
9247 			uc_se[clamp_id].value = eff[clamp_id];
9248 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9249 			clamps |= (0x1 << clamp_id);
9250 		}
9251 		if (!clamps) {
9252 			css = css_rightmost_descendant(css);
9253 			continue;
9254 		}
9255 
9256 		/* Immediately update descendants RUNNABLE tasks */
9257 		uclamp_update_active_tasks(css);
9258 	}
9259 }
9260 
9261 /*
9262  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9263  * C expression. Since there is no way to convert a macro argument (N) into a
9264  * character constant, use two levels of macros.
9265  */
9266 #define _POW10(exp) ((unsigned int)1e##exp)
9267 #define POW10(exp) _POW10(exp)
9268 
9269 struct uclamp_request {
9270 #define UCLAMP_PERCENT_SHIFT	2
9271 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9272 	s64 percent;
9273 	u64 util;
9274 	int ret;
9275 };
9276 
9277 static inline struct uclamp_request
9278 capacity_from_percent(char *buf)
9279 {
9280 	struct uclamp_request req = {
9281 		.percent = UCLAMP_PERCENT_SCALE,
9282 		.util = SCHED_CAPACITY_SCALE,
9283 		.ret = 0,
9284 	};
9285 
9286 	buf = strim(buf);
9287 	if (strcmp(buf, "max")) {
9288 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9289 					     &req.percent);
9290 		if (req.ret)
9291 			return req;
9292 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9293 			req.ret = -ERANGE;
9294 			return req;
9295 		}
9296 
9297 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9298 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9299 	}
9300 
9301 	return req;
9302 }
9303 
9304 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9305 				size_t nbytes, loff_t off,
9306 				enum uclamp_id clamp_id)
9307 {
9308 	struct uclamp_request req;
9309 	struct task_group *tg;
9310 
9311 	req = capacity_from_percent(buf);
9312 	if (req.ret)
9313 		return req.ret;
9314 
9315 	sched_uclamp_enable();
9316 
9317 	guard(mutex)(&uclamp_mutex);
9318 	guard(rcu)();
9319 
9320 	tg = css_tg(of_css(of));
9321 	if (tg->uclamp_req[clamp_id].value != req.util)
9322 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9323 
9324 	/*
9325 	 * Because of not recoverable conversion rounding we keep track of the
9326 	 * exact requested value
9327 	 */
9328 	tg->uclamp_pct[clamp_id] = req.percent;
9329 
9330 	/* Update effective clamps to track the most restrictive value */
9331 	cpu_util_update_eff(of_css(of));
9332 
9333 	return nbytes;
9334 }
9335 
9336 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9337 				    char *buf, size_t nbytes,
9338 				    loff_t off)
9339 {
9340 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9341 }
9342 
9343 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9344 				    char *buf, size_t nbytes,
9345 				    loff_t off)
9346 {
9347 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9348 }
9349 
9350 static inline void cpu_uclamp_print(struct seq_file *sf,
9351 				    enum uclamp_id clamp_id)
9352 {
9353 	struct task_group *tg;
9354 	u64 util_clamp;
9355 	u64 percent;
9356 	u32 rem;
9357 
9358 	scoped_guard (rcu) {
9359 		tg = css_tg(seq_css(sf));
9360 		util_clamp = tg->uclamp_req[clamp_id].value;
9361 	}
9362 
9363 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9364 		seq_puts(sf, "max\n");
9365 		return;
9366 	}
9367 
9368 	percent = tg->uclamp_pct[clamp_id];
9369 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9370 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9371 }
9372 
9373 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9374 {
9375 	cpu_uclamp_print(sf, UCLAMP_MIN);
9376 	return 0;
9377 }
9378 
9379 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9380 {
9381 	cpu_uclamp_print(sf, UCLAMP_MAX);
9382 	return 0;
9383 }
9384 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9385 
9386 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9387 static unsigned long tg_weight(struct task_group *tg)
9388 {
9389 #ifdef CONFIG_FAIR_GROUP_SCHED
9390 	return scale_load_down(tg->shares);
9391 #else
9392 	return sched_weight_from_cgroup(tg->scx_weight);
9393 #endif
9394 }
9395 
9396 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9397 				struct cftype *cftype, u64 shareval)
9398 {
9399 	int ret;
9400 
9401 	if (shareval > scale_load_down(ULONG_MAX))
9402 		shareval = MAX_SHARES;
9403 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9404 	if (!ret)
9405 		scx_group_set_weight(css_tg(css),
9406 				     sched_weight_to_cgroup(shareval));
9407 	return ret;
9408 }
9409 
9410 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9411 			       struct cftype *cft)
9412 {
9413 	return tg_weight(css_tg(css));
9414 }
9415 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9416 
9417 #ifdef CONFIG_CFS_BANDWIDTH
9418 static DEFINE_MUTEX(cfs_constraints_mutex);
9419 
9420 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9421 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9422 /* More than 203 days if BW_SHIFT equals 20. */
9423 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9424 
9425 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9426 
9427 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9428 				u64 burst)
9429 {
9430 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9431 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9432 
9433 	if (tg == &root_task_group)
9434 		return -EINVAL;
9435 
9436 	/*
9437 	 * Ensure we have at some amount of bandwidth every period.  This is
9438 	 * to prevent reaching a state of large arrears when throttled via
9439 	 * entity_tick() resulting in prolonged exit starvation.
9440 	 */
9441 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9442 		return -EINVAL;
9443 
9444 	/*
9445 	 * Likewise, bound things on the other side by preventing insane quota
9446 	 * periods.  This also allows us to normalize in computing quota
9447 	 * feasibility.
9448 	 */
9449 	if (period > max_cfs_quota_period)
9450 		return -EINVAL;
9451 
9452 	/*
9453 	 * Bound quota to defend quota against overflow during bandwidth shift.
9454 	 */
9455 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9456 		return -EINVAL;
9457 
9458 	if (quota != RUNTIME_INF && (burst > quota ||
9459 				     burst + quota > max_cfs_runtime))
9460 		return -EINVAL;
9461 
9462 	/*
9463 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9464 	 * unthrottle_offline_cfs_rqs().
9465 	 */
9466 	guard(cpus_read_lock)();
9467 	guard(mutex)(&cfs_constraints_mutex);
9468 
9469 	ret = __cfs_schedulable(tg, period, quota);
9470 	if (ret)
9471 		return ret;
9472 
9473 	runtime_enabled = quota != RUNTIME_INF;
9474 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9475 	/*
9476 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9477 	 * before making related changes, and on->off must occur afterwards
9478 	 */
9479 	if (runtime_enabled && !runtime_was_enabled)
9480 		cfs_bandwidth_usage_inc();
9481 
9482 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9483 		cfs_b->period = ns_to_ktime(period);
9484 		cfs_b->quota = quota;
9485 		cfs_b->burst = burst;
9486 
9487 		__refill_cfs_bandwidth_runtime(cfs_b);
9488 
9489 		/*
9490 		 * Restart the period timer (if active) to handle new
9491 		 * period expiry:
9492 		 */
9493 		if (runtime_enabled)
9494 			start_cfs_bandwidth(cfs_b);
9495 	}
9496 
9497 	for_each_online_cpu(i) {
9498 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9499 		struct rq *rq = cfs_rq->rq;
9500 
9501 		guard(rq_lock_irq)(rq);
9502 		cfs_rq->runtime_enabled = runtime_enabled;
9503 		cfs_rq->runtime_remaining = 0;
9504 
9505 		if (cfs_rq->throttled)
9506 			unthrottle_cfs_rq(cfs_rq);
9507 	}
9508 
9509 	if (runtime_was_enabled && !runtime_enabled)
9510 		cfs_bandwidth_usage_dec();
9511 
9512 	return 0;
9513 }
9514 
9515 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9516 {
9517 	u64 quota, period, burst;
9518 
9519 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9520 	burst = tg->cfs_bandwidth.burst;
9521 	if (cfs_quota_us < 0)
9522 		quota = RUNTIME_INF;
9523 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9524 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9525 	else
9526 		return -EINVAL;
9527 
9528 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9529 }
9530 
9531 static long tg_get_cfs_quota(struct task_group *tg)
9532 {
9533 	u64 quota_us;
9534 
9535 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9536 		return -1;
9537 
9538 	quota_us = tg->cfs_bandwidth.quota;
9539 	do_div(quota_us, NSEC_PER_USEC);
9540 
9541 	return quota_us;
9542 }
9543 
9544 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9545 {
9546 	u64 quota, period, burst;
9547 
9548 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9549 		return -EINVAL;
9550 
9551 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9552 	quota = tg->cfs_bandwidth.quota;
9553 	burst = tg->cfs_bandwidth.burst;
9554 
9555 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9556 }
9557 
9558 static long tg_get_cfs_period(struct task_group *tg)
9559 {
9560 	u64 cfs_period_us;
9561 
9562 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9563 	do_div(cfs_period_us, NSEC_PER_USEC);
9564 
9565 	return cfs_period_us;
9566 }
9567 
9568 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9569 {
9570 	u64 quota, period, burst;
9571 
9572 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9573 		return -EINVAL;
9574 
9575 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9576 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9577 	quota = tg->cfs_bandwidth.quota;
9578 
9579 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9580 }
9581 
9582 static long tg_get_cfs_burst(struct task_group *tg)
9583 {
9584 	u64 burst_us;
9585 
9586 	burst_us = tg->cfs_bandwidth.burst;
9587 	do_div(burst_us, NSEC_PER_USEC);
9588 
9589 	return burst_us;
9590 }
9591 
9592 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9593 				  struct cftype *cft)
9594 {
9595 	return tg_get_cfs_quota(css_tg(css));
9596 }
9597 
9598 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9599 				   struct cftype *cftype, s64 cfs_quota_us)
9600 {
9601 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9602 }
9603 
9604 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9605 				   struct cftype *cft)
9606 {
9607 	return tg_get_cfs_period(css_tg(css));
9608 }
9609 
9610 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9611 				    struct cftype *cftype, u64 cfs_period_us)
9612 {
9613 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9614 }
9615 
9616 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9617 				  struct cftype *cft)
9618 {
9619 	return tg_get_cfs_burst(css_tg(css));
9620 }
9621 
9622 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9623 				   struct cftype *cftype, u64 cfs_burst_us)
9624 {
9625 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9626 }
9627 
9628 struct cfs_schedulable_data {
9629 	struct task_group *tg;
9630 	u64 period, quota;
9631 };
9632 
9633 /*
9634  * normalize group quota/period to be quota/max_period
9635  * note: units are usecs
9636  */
9637 static u64 normalize_cfs_quota(struct task_group *tg,
9638 			       struct cfs_schedulable_data *d)
9639 {
9640 	u64 quota, period;
9641 
9642 	if (tg == d->tg) {
9643 		period = d->period;
9644 		quota = d->quota;
9645 	} else {
9646 		period = tg_get_cfs_period(tg);
9647 		quota = tg_get_cfs_quota(tg);
9648 	}
9649 
9650 	/* note: these should typically be equivalent */
9651 	if (quota == RUNTIME_INF || quota == -1)
9652 		return RUNTIME_INF;
9653 
9654 	return to_ratio(period, quota);
9655 }
9656 
9657 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9658 {
9659 	struct cfs_schedulable_data *d = data;
9660 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9661 	s64 quota = 0, parent_quota = -1;
9662 
9663 	if (!tg->parent) {
9664 		quota = RUNTIME_INF;
9665 	} else {
9666 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9667 
9668 		quota = normalize_cfs_quota(tg, d);
9669 		parent_quota = parent_b->hierarchical_quota;
9670 
9671 		/*
9672 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9673 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9674 		 * inherit when no limit is set. In both cases this is used
9675 		 * by the scheduler to determine if a given CFS task has a
9676 		 * bandwidth constraint at some higher level.
9677 		 */
9678 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9679 			if (quota == RUNTIME_INF)
9680 				quota = parent_quota;
9681 			else if (parent_quota != RUNTIME_INF)
9682 				quota = min(quota, parent_quota);
9683 		} else {
9684 			if (quota == RUNTIME_INF)
9685 				quota = parent_quota;
9686 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9687 				return -EINVAL;
9688 		}
9689 	}
9690 	cfs_b->hierarchical_quota = quota;
9691 
9692 	return 0;
9693 }
9694 
9695 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9696 {
9697 	struct cfs_schedulable_data data = {
9698 		.tg = tg,
9699 		.period = period,
9700 		.quota = quota,
9701 	};
9702 
9703 	if (quota != RUNTIME_INF) {
9704 		do_div(data.period, NSEC_PER_USEC);
9705 		do_div(data.quota, NSEC_PER_USEC);
9706 	}
9707 
9708 	guard(rcu)();
9709 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9710 }
9711 
9712 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9713 {
9714 	struct task_group *tg = css_tg(seq_css(sf));
9715 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9716 
9717 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9718 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9719 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9720 
9721 	if (schedstat_enabled() && tg != &root_task_group) {
9722 		struct sched_statistics *stats;
9723 		u64 ws = 0;
9724 		int i;
9725 
9726 		for_each_possible_cpu(i) {
9727 			stats = __schedstats_from_se(tg->se[i]);
9728 			ws += schedstat_val(stats->wait_sum);
9729 		}
9730 
9731 		seq_printf(sf, "wait_sum %llu\n", ws);
9732 	}
9733 
9734 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9735 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9736 
9737 	return 0;
9738 }
9739 
9740 static u64 throttled_time_self(struct task_group *tg)
9741 {
9742 	int i;
9743 	u64 total = 0;
9744 
9745 	for_each_possible_cpu(i) {
9746 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9747 	}
9748 
9749 	return total;
9750 }
9751 
9752 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9753 {
9754 	struct task_group *tg = css_tg(seq_css(sf));
9755 
9756 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9757 
9758 	return 0;
9759 }
9760 #endif /* CONFIG_CFS_BANDWIDTH */
9761 
9762 #ifdef CONFIG_RT_GROUP_SCHED
9763 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9764 				struct cftype *cft, s64 val)
9765 {
9766 	return sched_group_set_rt_runtime(css_tg(css), val);
9767 }
9768 
9769 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9770 			       struct cftype *cft)
9771 {
9772 	return sched_group_rt_runtime(css_tg(css));
9773 }
9774 
9775 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9776 				    struct cftype *cftype, u64 rt_period_us)
9777 {
9778 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9779 }
9780 
9781 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9782 				   struct cftype *cft)
9783 {
9784 	return sched_group_rt_period(css_tg(css));
9785 }
9786 #endif /* CONFIG_RT_GROUP_SCHED */
9787 
9788 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9789 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9790 			       struct cftype *cft)
9791 {
9792 	return css_tg(css)->idle;
9793 }
9794 
9795 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9796 				struct cftype *cft, s64 idle)
9797 {
9798 	int ret;
9799 
9800 	ret = sched_group_set_idle(css_tg(css), idle);
9801 	if (!ret)
9802 		scx_group_set_idle(css_tg(css), idle);
9803 	return ret;
9804 }
9805 #endif
9806 
9807 static struct cftype cpu_legacy_files[] = {
9808 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9809 	{
9810 		.name = "shares",
9811 		.read_u64 = cpu_shares_read_u64,
9812 		.write_u64 = cpu_shares_write_u64,
9813 	},
9814 	{
9815 		.name = "idle",
9816 		.read_s64 = cpu_idle_read_s64,
9817 		.write_s64 = cpu_idle_write_s64,
9818 	},
9819 #endif
9820 #ifdef CONFIG_CFS_BANDWIDTH
9821 	{
9822 		.name = "cfs_quota_us",
9823 		.read_s64 = cpu_cfs_quota_read_s64,
9824 		.write_s64 = cpu_cfs_quota_write_s64,
9825 	},
9826 	{
9827 		.name = "cfs_period_us",
9828 		.read_u64 = cpu_cfs_period_read_u64,
9829 		.write_u64 = cpu_cfs_period_write_u64,
9830 	},
9831 	{
9832 		.name = "cfs_burst_us",
9833 		.read_u64 = cpu_cfs_burst_read_u64,
9834 		.write_u64 = cpu_cfs_burst_write_u64,
9835 	},
9836 	{
9837 		.name = "stat",
9838 		.seq_show = cpu_cfs_stat_show,
9839 	},
9840 	{
9841 		.name = "stat.local",
9842 		.seq_show = cpu_cfs_local_stat_show,
9843 	},
9844 #endif
9845 #ifdef CONFIG_UCLAMP_TASK_GROUP
9846 	{
9847 		.name = "uclamp.min",
9848 		.flags = CFTYPE_NOT_ON_ROOT,
9849 		.seq_show = cpu_uclamp_min_show,
9850 		.write = cpu_uclamp_min_write,
9851 	},
9852 	{
9853 		.name = "uclamp.max",
9854 		.flags = CFTYPE_NOT_ON_ROOT,
9855 		.seq_show = cpu_uclamp_max_show,
9856 		.write = cpu_uclamp_max_write,
9857 	},
9858 #endif
9859 	{ }	/* Terminate */
9860 };
9861 
9862 #ifdef CONFIG_RT_GROUP_SCHED
9863 static struct cftype rt_group_files[] = {
9864 	{
9865 		.name = "rt_runtime_us",
9866 		.read_s64 = cpu_rt_runtime_read,
9867 		.write_s64 = cpu_rt_runtime_write,
9868 	},
9869 	{
9870 		.name = "rt_period_us",
9871 		.read_u64 = cpu_rt_period_read_uint,
9872 		.write_u64 = cpu_rt_period_write_uint,
9873 	},
9874 	{ }	/* Terminate */
9875 };
9876 
9877 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
9878 DEFINE_STATIC_KEY_FALSE(rt_group_sched);
9879 # else
9880 DEFINE_STATIC_KEY_TRUE(rt_group_sched);
9881 # endif
9882 
9883 static int __init setup_rt_group_sched(char *str)
9884 {
9885 	long val;
9886 
9887 	if (kstrtol(str, 0, &val) || val < 0 || val > 1) {
9888 		pr_warn("Unable to set rt_group_sched\n");
9889 		return 1;
9890 	}
9891 	if (val)
9892 		static_branch_enable(&rt_group_sched);
9893 	else
9894 		static_branch_disable(&rt_group_sched);
9895 
9896 	return 1;
9897 }
9898 __setup("rt_group_sched=", setup_rt_group_sched);
9899 
9900 static int __init cpu_rt_group_init(void)
9901 {
9902 	if (!rt_group_sched_enabled())
9903 		return 0;
9904 
9905 	WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files));
9906 	return 0;
9907 }
9908 subsys_initcall(cpu_rt_group_init);
9909 #endif /* CONFIG_RT_GROUP_SCHED */
9910 
9911 static int cpu_extra_stat_show(struct seq_file *sf,
9912 			       struct cgroup_subsys_state *css)
9913 {
9914 #ifdef CONFIG_CFS_BANDWIDTH
9915 	{
9916 		struct task_group *tg = css_tg(css);
9917 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9918 		u64 throttled_usec, burst_usec;
9919 
9920 		throttled_usec = cfs_b->throttled_time;
9921 		do_div(throttled_usec, NSEC_PER_USEC);
9922 		burst_usec = cfs_b->burst_time;
9923 		do_div(burst_usec, NSEC_PER_USEC);
9924 
9925 		seq_printf(sf, "nr_periods %d\n"
9926 			   "nr_throttled %d\n"
9927 			   "throttled_usec %llu\n"
9928 			   "nr_bursts %d\n"
9929 			   "burst_usec %llu\n",
9930 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9931 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9932 	}
9933 #endif
9934 	return 0;
9935 }
9936 
9937 static int cpu_local_stat_show(struct seq_file *sf,
9938 			       struct cgroup_subsys_state *css)
9939 {
9940 #ifdef CONFIG_CFS_BANDWIDTH
9941 	{
9942 		struct task_group *tg = css_tg(css);
9943 		u64 throttled_self_usec;
9944 
9945 		throttled_self_usec = throttled_time_self(tg);
9946 		do_div(throttled_self_usec, NSEC_PER_USEC);
9947 
9948 		seq_printf(sf, "throttled_usec %llu\n",
9949 			   throttled_self_usec);
9950 	}
9951 #endif
9952 	return 0;
9953 }
9954 
9955 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9956 
9957 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9958 			       struct cftype *cft)
9959 {
9960 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9961 }
9962 
9963 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9964 				struct cftype *cft, u64 cgrp_weight)
9965 {
9966 	unsigned long weight;
9967 	int ret;
9968 
9969 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9970 		return -ERANGE;
9971 
9972 	weight = sched_weight_from_cgroup(cgrp_weight);
9973 
9974 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9975 	if (!ret)
9976 		scx_group_set_weight(css_tg(css), cgrp_weight);
9977 	return ret;
9978 }
9979 
9980 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9981 				    struct cftype *cft)
9982 {
9983 	unsigned long weight = tg_weight(css_tg(css));
9984 	int last_delta = INT_MAX;
9985 	int prio, delta;
9986 
9987 	/* find the closest nice value to the current weight */
9988 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9989 		delta = abs(sched_prio_to_weight[prio] - weight);
9990 		if (delta >= last_delta)
9991 			break;
9992 		last_delta = delta;
9993 	}
9994 
9995 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9996 }
9997 
9998 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9999 				     struct cftype *cft, s64 nice)
10000 {
10001 	unsigned long weight;
10002 	int idx, ret;
10003 
10004 	if (nice < MIN_NICE || nice > MAX_NICE)
10005 		return -ERANGE;
10006 
10007 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10008 	idx = array_index_nospec(idx, 40);
10009 	weight = sched_prio_to_weight[idx];
10010 
10011 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10012 	if (!ret)
10013 		scx_group_set_weight(css_tg(css),
10014 				     sched_weight_to_cgroup(weight));
10015 	return ret;
10016 }
10017 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
10018 
10019 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10020 						  long period, long quota)
10021 {
10022 	if (quota < 0)
10023 		seq_puts(sf, "max");
10024 	else
10025 		seq_printf(sf, "%ld", quota);
10026 
10027 	seq_printf(sf, " %ld\n", period);
10028 }
10029 
10030 /* caller should put the current value in *@periodp before calling */
10031 static int __maybe_unused cpu_period_quota_parse(char *buf,
10032 						 u64 *periodp, u64 *quotap)
10033 {
10034 	char tok[21];	/* U64_MAX */
10035 
10036 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10037 		return -EINVAL;
10038 
10039 	*periodp *= NSEC_PER_USEC;
10040 
10041 	if (sscanf(tok, "%llu", quotap))
10042 		*quotap *= NSEC_PER_USEC;
10043 	else if (!strcmp(tok, "max"))
10044 		*quotap = RUNTIME_INF;
10045 	else
10046 		return -EINVAL;
10047 
10048 	return 0;
10049 }
10050 
10051 #ifdef CONFIG_CFS_BANDWIDTH
10052 static int cpu_max_show(struct seq_file *sf, void *v)
10053 {
10054 	struct task_group *tg = css_tg(seq_css(sf));
10055 
10056 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10057 	return 0;
10058 }
10059 
10060 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10061 			     char *buf, size_t nbytes, loff_t off)
10062 {
10063 	struct task_group *tg = css_tg(of_css(of));
10064 	u64 period = tg_get_cfs_period(tg);
10065 	u64 burst = tg->cfs_bandwidth.burst;
10066 	u64 quota;
10067 	int ret;
10068 
10069 	ret = cpu_period_quota_parse(buf, &period, &quota);
10070 	if (!ret)
10071 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10072 	return ret ?: nbytes;
10073 }
10074 #endif
10075 
10076 static struct cftype cpu_files[] = {
10077 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10078 	{
10079 		.name = "weight",
10080 		.flags = CFTYPE_NOT_ON_ROOT,
10081 		.read_u64 = cpu_weight_read_u64,
10082 		.write_u64 = cpu_weight_write_u64,
10083 	},
10084 	{
10085 		.name = "weight.nice",
10086 		.flags = CFTYPE_NOT_ON_ROOT,
10087 		.read_s64 = cpu_weight_nice_read_s64,
10088 		.write_s64 = cpu_weight_nice_write_s64,
10089 	},
10090 	{
10091 		.name = "idle",
10092 		.flags = CFTYPE_NOT_ON_ROOT,
10093 		.read_s64 = cpu_idle_read_s64,
10094 		.write_s64 = cpu_idle_write_s64,
10095 	},
10096 #endif
10097 #ifdef CONFIG_CFS_BANDWIDTH
10098 	{
10099 		.name = "max",
10100 		.flags = CFTYPE_NOT_ON_ROOT,
10101 		.seq_show = cpu_max_show,
10102 		.write = cpu_max_write,
10103 	},
10104 	{
10105 		.name = "max.burst",
10106 		.flags = CFTYPE_NOT_ON_ROOT,
10107 		.read_u64 = cpu_cfs_burst_read_u64,
10108 		.write_u64 = cpu_cfs_burst_write_u64,
10109 	},
10110 #endif
10111 #ifdef CONFIG_UCLAMP_TASK_GROUP
10112 	{
10113 		.name = "uclamp.min",
10114 		.flags = CFTYPE_NOT_ON_ROOT,
10115 		.seq_show = cpu_uclamp_min_show,
10116 		.write = cpu_uclamp_min_write,
10117 	},
10118 	{
10119 		.name = "uclamp.max",
10120 		.flags = CFTYPE_NOT_ON_ROOT,
10121 		.seq_show = cpu_uclamp_max_show,
10122 		.write = cpu_uclamp_max_write,
10123 	},
10124 #endif
10125 	{ }	/* terminate */
10126 };
10127 
10128 struct cgroup_subsys cpu_cgrp_subsys = {
10129 	.css_alloc	= cpu_cgroup_css_alloc,
10130 	.css_online	= cpu_cgroup_css_online,
10131 	.css_offline	= cpu_cgroup_css_offline,
10132 	.css_released	= cpu_cgroup_css_released,
10133 	.css_free	= cpu_cgroup_css_free,
10134 	.css_extra_stat_show = cpu_extra_stat_show,
10135 	.css_local_stat_show = cpu_local_stat_show,
10136 	.can_attach	= cpu_cgroup_can_attach,
10137 	.attach		= cpu_cgroup_attach,
10138 	.cancel_attach	= cpu_cgroup_cancel_attach,
10139 	.legacy_cftypes	= cpu_legacy_files,
10140 	.dfl_cftypes	= cpu_files,
10141 	.early_init	= true,
10142 	.threaded	= true,
10143 };
10144 
10145 #endif	/* CONFIG_CGROUP_SCHED */
10146 
10147 void dump_cpu_task(int cpu)
10148 {
10149 	if (in_hardirq() && cpu == smp_processor_id()) {
10150 		struct pt_regs *regs;
10151 
10152 		regs = get_irq_regs();
10153 		if (regs) {
10154 			show_regs(regs);
10155 			return;
10156 		}
10157 	}
10158 
10159 	if (trigger_single_cpu_backtrace(cpu))
10160 		return;
10161 
10162 	pr_info("Task dump for CPU %d:\n", cpu);
10163 	sched_show_task(cpu_curr(cpu));
10164 }
10165 
10166 /*
10167  * Nice levels are multiplicative, with a gentle 10% change for every
10168  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10169  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10170  * that remained on nice 0.
10171  *
10172  * The "10% effect" is relative and cumulative: from _any_ nice level,
10173  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10174  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10175  * If a task goes up by ~10% and another task goes down by ~10% then
10176  * the relative distance between them is ~25%.)
10177  */
10178 const int sched_prio_to_weight[40] = {
10179  /* -20 */     88761,     71755,     56483,     46273,     36291,
10180  /* -15 */     29154,     23254,     18705,     14949,     11916,
10181  /* -10 */      9548,      7620,      6100,      4904,      3906,
10182  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10183  /*   0 */      1024,       820,       655,       526,       423,
10184  /*   5 */       335,       272,       215,       172,       137,
10185  /*  10 */       110,        87,        70,        56,        45,
10186  /*  15 */        36,        29,        23,        18,        15,
10187 };
10188 
10189 /*
10190  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10191  *
10192  * In cases where the weight does not change often, we can use the
10193  * pre-calculated inverse to speed up arithmetics by turning divisions
10194  * into multiplications:
10195  */
10196 const u32 sched_prio_to_wmult[40] = {
10197  /* -20 */     48388,     59856,     76040,     92818,    118348,
10198  /* -15 */    147320,    184698,    229616,    287308,    360437,
10199  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10200  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10201  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10202  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10203  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10204  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10205 };
10206 
10207 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10208 {
10209         trace_sched_update_nr_running_tp(rq, count);
10210 }
10211 
10212 #ifdef CONFIG_SCHED_MM_CID
10213 
10214 /*
10215  * @cid_lock: Guarantee forward-progress of cid allocation.
10216  *
10217  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10218  * is only used when contention is detected by the lock-free allocation so
10219  * forward progress can be guaranteed.
10220  */
10221 DEFINE_RAW_SPINLOCK(cid_lock);
10222 
10223 /*
10224  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10225  *
10226  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10227  * detected, it is set to 1 to ensure that all newly coming allocations are
10228  * serialized by @cid_lock until the allocation which detected contention
10229  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10230  * of a cid allocation.
10231  */
10232 int use_cid_lock;
10233 
10234 /*
10235  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10236  * concurrently with respect to the execution of the source runqueue context
10237  * switch.
10238  *
10239  * There is one basic properties we want to guarantee here:
10240  *
10241  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10242  * used by a task. That would lead to concurrent allocation of the cid and
10243  * userspace corruption.
10244  *
10245  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10246  * that a pair of loads observe at least one of a pair of stores, which can be
10247  * shown as:
10248  *
10249  *      X = Y = 0
10250  *
10251  *      w[X]=1          w[Y]=1
10252  *      MB              MB
10253  *      r[Y]=y          r[X]=x
10254  *
10255  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10256  * values 0 and 1, this algorithm cares about specific state transitions of the
10257  * runqueue current task (as updated by the scheduler context switch), and the
10258  * per-mm/cpu cid value.
10259  *
10260  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10261  * task->mm != mm for the rest of the discussion. There are two scheduler state
10262  * transitions on context switch we care about:
10263  *
10264  * (TSA) Store to rq->curr with transition from (N) to (Y)
10265  *
10266  * (TSB) Store to rq->curr with transition from (Y) to (N)
10267  *
10268  * On the remote-clear side, there is one transition we care about:
10269  *
10270  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10271  *
10272  * There is also a transition to UNSET state which can be performed from all
10273  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10274  * guarantees that only a single thread will succeed:
10275  *
10276  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10277  *
10278  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10279  * when a thread is actively using the cid (property (1)).
10280  *
10281  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10282  *
10283  * Scenario A) (TSA)+(TMA) (from next task perspective)
10284  *
10285  * CPU0                                      CPU1
10286  *
10287  * Context switch CS-1                       Remote-clear
10288  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10289  *                                             (implied barrier after cmpxchg)
10290  *   - switch_mm_cid()
10291  *     - memory barrier (see switch_mm_cid()
10292  *       comment explaining how this barrier
10293  *       is combined with other scheduler
10294  *       barriers)
10295  *     - mm_cid_get (next)
10296  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10297  *
10298  * This Dekker ensures that either task (Y) is observed by the
10299  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10300  * observed.
10301  *
10302  * If task (Y) store is observed by rcu_dereference(), it means that there is
10303  * still an active task on the cpu. Remote-clear will therefore not transition
10304  * to UNSET, which fulfills property (1).
10305  *
10306  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10307  * it will move its state to UNSET, which clears the percpu cid perhaps
10308  * uselessly (which is not an issue for correctness). Because task (Y) is not
10309  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10310  * state to UNSET is done with a cmpxchg expecting that the old state has the
10311  * LAZY flag set, only one thread will successfully UNSET.
10312  *
10313  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10314  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10315  * CPU1 will observe task (Y) and do nothing more, which is fine.
10316  *
10317  * What we are effectively preventing with this Dekker is a scenario where
10318  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10319  * because this would UNSET a cid which is actively used.
10320  */
10321 
10322 void sched_mm_cid_migrate_from(struct task_struct *t)
10323 {
10324 	t->migrate_from_cpu = task_cpu(t);
10325 }
10326 
10327 static
10328 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10329 					  struct task_struct *t,
10330 					  struct mm_cid *src_pcpu_cid)
10331 {
10332 	struct mm_struct *mm = t->mm;
10333 	struct task_struct *src_task;
10334 	int src_cid, last_mm_cid;
10335 
10336 	if (!mm)
10337 		return -1;
10338 
10339 	last_mm_cid = t->last_mm_cid;
10340 	/*
10341 	 * If the migrated task has no last cid, or if the current
10342 	 * task on src rq uses the cid, it means the source cid does not need
10343 	 * to be moved to the destination cpu.
10344 	 */
10345 	if (last_mm_cid == -1)
10346 		return -1;
10347 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10348 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10349 		return -1;
10350 
10351 	/*
10352 	 * If we observe an active task using the mm on this rq, it means we
10353 	 * are not the last task to be migrated from this cpu for this mm, so
10354 	 * there is no need to move src_cid to the destination cpu.
10355 	 */
10356 	guard(rcu)();
10357 	src_task = rcu_dereference(src_rq->curr);
10358 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10359 		t->last_mm_cid = -1;
10360 		return -1;
10361 	}
10362 
10363 	return src_cid;
10364 }
10365 
10366 static
10367 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10368 					      struct task_struct *t,
10369 					      struct mm_cid *src_pcpu_cid,
10370 					      int src_cid)
10371 {
10372 	struct task_struct *src_task;
10373 	struct mm_struct *mm = t->mm;
10374 	int lazy_cid;
10375 
10376 	if (src_cid == -1)
10377 		return -1;
10378 
10379 	/*
10380 	 * Attempt to clear the source cpu cid to move it to the destination
10381 	 * cpu.
10382 	 */
10383 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10384 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10385 		return -1;
10386 
10387 	/*
10388 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10389 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10390 	 * between store to rq->curr and load of prev and next task's
10391 	 * per-mm/cpu cid.
10392 	 *
10393 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10394 	 * rq->curr->mm_cid_active matches the barrier in
10395 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10396 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10397 	 * load of per-mm/cpu cid.
10398 	 */
10399 
10400 	/*
10401 	 * If we observe an active task using the mm on this rq after setting
10402 	 * the lazy-put flag, this task will be responsible for transitioning
10403 	 * from lazy-put flag set to MM_CID_UNSET.
10404 	 */
10405 	scoped_guard (rcu) {
10406 		src_task = rcu_dereference(src_rq->curr);
10407 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10408 			/*
10409 			 * We observed an active task for this mm, there is therefore
10410 			 * no point in moving this cid to the destination cpu.
10411 			 */
10412 			t->last_mm_cid = -1;
10413 			return -1;
10414 		}
10415 	}
10416 
10417 	/*
10418 	 * The src_cid is unused, so it can be unset.
10419 	 */
10420 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10421 		return -1;
10422 	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10423 	return src_cid;
10424 }
10425 
10426 /*
10427  * Migration to dst cpu. Called with dst_rq lock held.
10428  * Interrupts are disabled, which keeps the window of cid ownership without the
10429  * source rq lock held small.
10430  */
10431 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10432 {
10433 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10434 	struct mm_struct *mm = t->mm;
10435 	int src_cid, src_cpu;
10436 	bool dst_cid_is_set;
10437 	struct rq *src_rq;
10438 
10439 	lockdep_assert_rq_held(dst_rq);
10440 
10441 	if (!mm)
10442 		return;
10443 	src_cpu = t->migrate_from_cpu;
10444 	if (src_cpu == -1) {
10445 		t->last_mm_cid = -1;
10446 		return;
10447 	}
10448 	/*
10449 	 * Move the src cid if the dst cid is unset. This keeps id
10450 	 * allocation closest to 0 in cases where few threads migrate around
10451 	 * many CPUs.
10452 	 *
10453 	 * If destination cid or recent cid is already set, we may have
10454 	 * to just clear the src cid to ensure compactness in frequent
10455 	 * migrations scenarios.
10456 	 *
10457 	 * It is not useful to clear the src cid when the number of threads is
10458 	 * greater or equal to the number of allowed CPUs, because user-space
10459 	 * can expect that the number of allowed cids can reach the number of
10460 	 * allowed CPUs.
10461 	 */
10462 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10463 	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10464 			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10465 	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10466 		return;
10467 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10468 	src_rq = cpu_rq(src_cpu);
10469 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10470 	if (src_cid == -1)
10471 		return;
10472 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10473 							    src_cid);
10474 	if (src_cid == -1)
10475 		return;
10476 	if (dst_cid_is_set) {
10477 		__mm_cid_put(mm, src_cid);
10478 		return;
10479 	}
10480 	/* Move src_cid to dst cpu. */
10481 	mm_cid_snapshot_time(dst_rq, mm);
10482 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10483 	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10484 }
10485 
10486 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10487 				      int cpu)
10488 {
10489 	struct rq *rq = cpu_rq(cpu);
10490 	struct task_struct *t;
10491 	int cid, lazy_cid;
10492 
10493 	cid = READ_ONCE(pcpu_cid->cid);
10494 	if (!mm_cid_is_valid(cid))
10495 		return;
10496 
10497 	/*
10498 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10499 	 * there happens to be other tasks left on the source cpu using this
10500 	 * mm, the next task using this mm will reallocate its cid on context
10501 	 * switch.
10502 	 */
10503 	lazy_cid = mm_cid_set_lazy_put(cid);
10504 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10505 		return;
10506 
10507 	/*
10508 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10509 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10510 	 * between store to rq->curr and load of prev and next task's
10511 	 * per-mm/cpu cid.
10512 	 *
10513 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10514 	 * rq->curr->mm_cid_active matches the barrier in
10515 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10516 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10517 	 * load of per-mm/cpu cid.
10518 	 */
10519 
10520 	/*
10521 	 * If we observe an active task using the mm on this rq after setting
10522 	 * the lazy-put flag, that task will be responsible for transitioning
10523 	 * from lazy-put flag set to MM_CID_UNSET.
10524 	 */
10525 	scoped_guard (rcu) {
10526 		t = rcu_dereference(rq->curr);
10527 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10528 			return;
10529 	}
10530 
10531 	/*
10532 	 * The cid is unused, so it can be unset.
10533 	 * Disable interrupts to keep the window of cid ownership without rq
10534 	 * lock small.
10535 	 */
10536 	scoped_guard (irqsave) {
10537 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10538 			__mm_cid_put(mm, cid);
10539 	}
10540 }
10541 
10542 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10543 {
10544 	struct rq *rq = cpu_rq(cpu);
10545 	struct mm_cid *pcpu_cid;
10546 	struct task_struct *curr;
10547 	u64 rq_clock;
10548 
10549 	/*
10550 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10551 	 * while is irrelevant.
10552 	 */
10553 	rq_clock = READ_ONCE(rq->clock);
10554 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10555 
10556 	/*
10557 	 * In order to take care of infrequently scheduled tasks, bump the time
10558 	 * snapshot associated with this cid if an active task using the mm is
10559 	 * observed on this rq.
10560 	 */
10561 	scoped_guard (rcu) {
10562 		curr = rcu_dereference(rq->curr);
10563 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10564 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10565 			return;
10566 		}
10567 	}
10568 
10569 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10570 		return;
10571 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10572 }
10573 
10574 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10575 					     int weight)
10576 {
10577 	struct mm_cid *pcpu_cid;
10578 	int cid;
10579 
10580 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10581 	cid = READ_ONCE(pcpu_cid->cid);
10582 	if (!mm_cid_is_valid(cid) || cid < weight)
10583 		return;
10584 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10585 }
10586 
10587 static void task_mm_cid_work(struct callback_head *work)
10588 {
10589 	unsigned long now = jiffies, old_scan, next_scan;
10590 	struct task_struct *t = current;
10591 	struct cpumask *cidmask;
10592 	struct mm_struct *mm;
10593 	int weight, cpu;
10594 
10595 	WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work));
10596 
10597 	work->next = work;	/* Prevent double-add */
10598 	if (t->flags & PF_EXITING)
10599 		return;
10600 	mm = t->mm;
10601 	if (!mm)
10602 		return;
10603 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10604 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10605 	if (!old_scan) {
10606 		unsigned long res;
10607 
10608 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10609 		if (res != old_scan)
10610 			old_scan = res;
10611 		else
10612 			old_scan = next_scan;
10613 	}
10614 	if (time_before(now, old_scan))
10615 		return;
10616 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10617 		return;
10618 	cidmask = mm_cidmask(mm);
10619 	/* Clear cids that were not recently used. */
10620 	for_each_possible_cpu(cpu)
10621 		sched_mm_cid_remote_clear_old(mm, cpu);
10622 	weight = cpumask_weight(cidmask);
10623 	/*
10624 	 * Clear cids that are greater or equal to the cidmask weight to
10625 	 * recompact it.
10626 	 */
10627 	for_each_possible_cpu(cpu)
10628 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10629 }
10630 
10631 void init_sched_mm_cid(struct task_struct *t)
10632 {
10633 	struct mm_struct *mm = t->mm;
10634 	int mm_users = 0;
10635 
10636 	if (mm) {
10637 		mm_users = atomic_read(&mm->mm_users);
10638 		if (mm_users == 1)
10639 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10640 	}
10641 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10642 	init_task_work(&t->cid_work, task_mm_cid_work);
10643 }
10644 
10645 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10646 {
10647 	struct callback_head *work = &curr->cid_work;
10648 	unsigned long now = jiffies;
10649 
10650 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10651 	    work->next != work)
10652 		return;
10653 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10654 		return;
10655 
10656 	/* No page allocation under rq lock */
10657 	task_work_add(curr, work, TWA_RESUME);
10658 }
10659 
10660 void sched_mm_cid_exit_signals(struct task_struct *t)
10661 {
10662 	struct mm_struct *mm = t->mm;
10663 	struct rq *rq;
10664 
10665 	if (!mm)
10666 		return;
10667 
10668 	preempt_disable();
10669 	rq = this_rq();
10670 	guard(rq_lock_irqsave)(rq);
10671 	preempt_enable_no_resched();	/* holding spinlock */
10672 	WRITE_ONCE(t->mm_cid_active, 0);
10673 	/*
10674 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10675 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10676 	 */
10677 	smp_mb();
10678 	mm_cid_put(mm);
10679 	t->last_mm_cid = t->mm_cid = -1;
10680 }
10681 
10682 void sched_mm_cid_before_execve(struct task_struct *t)
10683 {
10684 	struct mm_struct *mm = t->mm;
10685 	struct rq *rq;
10686 
10687 	if (!mm)
10688 		return;
10689 
10690 	preempt_disable();
10691 	rq = this_rq();
10692 	guard(rq_lock_irqsave)(rq);
10693 	preempt_enable_no_resched();	/* holding spinlock */
10694 	WRITE_ONCE(t->mm_cid_active, 0);
10695 	/*
10696 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10697 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10698 	 */
10699 	smp_mb();
10700 	mm_cid_put(mm);
10701 	t->last_mm_cid = t->mm_cid = -1;
10702 }
10703 
10704 void sched_mm_cid_after_execve(struct task_struct *t)
10705 {
10706 	struct mm_struct *mm = t->mm;
10707 	struct rq *rq;
10708 
10709 	if (!mm)
10710 		return;
10711 
10712 	preempt_disable();
10713 	rq = this_rq();
10714 	scoped_guard (rq_lock_irqsave, rq) {
10715 		preempt_enable_no_resched();	/* holding spinlock */
10716 		WRITE_ONCE(t->mm_cid_active, 1);
10717 		/*
10718 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10719 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10720 		 */
10721 		smp_mb();
10722 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10723 	}
10724 }
10725 
10726 void sched_mm_cid_fork(struct task_struct *t)
10727 {
10728 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10729 	t->mm_cid_active = 1;
10730 }
10731 #endif
10732 
10733 #ifdef CONFIG_SCHED_CLASS_EXT
10734 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10735 			    struct sched_enq_and_set_ctx *ctx)
10736 {
10737 	struct rq *rq = task_rq(p);
10738 
10739 	lockdep_assert_rq_held(rq);
10740 
10741 	*ctx = (struct sched_enq_and_set_ctx){
10742 		.p = p,
10743 		.queue_flags = queue_flags,
10744 		.queued = task_on_rq_queued(p),
10745 		.running = task_current(rq, p),
10746 	};
10747 
10748 	update_rq_clock(rq);
10749 	if (ctx->queued)
10750 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10751 	if (ctx->running)
10752 		put_prev_task(rq, p);
10753 }
10754 
10755 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10756 {
10757 	struct rq *rq = task_rq(ctx->p);
10758 
10759 	lockdep_assert_rq_held(rq);
10760 
10761 	if (ctx->queued)
10762 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10763 	if (ctx->running)
10764 		set_next_task(rq, ctx->p);
10765 }
10766 #endif	/* CONFIG_SCHED_CLASS_EXT */
10767