xref: /linux/kernel/sched/core.c (revision 3e44c471a2dab210f7e9b1e5f7d4d54d52df59eb)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled)	\
129 	#name ,
130 
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134 
135 #undef SCHED_FEAT
136 
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 	int i;
140 
141 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 		if (!(sysctl_sched_features & (1UL << i)))
143 			seq_puts(m, "NO_");
144 		seq_printf(m, "%s ", sched_feat_names[i]);
145 	}
146 	seq_puts(m, "\n");
147 
148 	return 0;
149 }
150 
151 #ifdef HAVE_JUMP_LABEL
152 
153 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155 
156 #define SCHED_FEAT(name, enabled)	\
157 	jump_label_key__##enabled ,
158 
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162 
163 #undef SCHED_FEAT
164 
165 static void sched_feat_disable(int i)
166 {
167 	if (static_key_enabled(&sched_feat_keys[i]))
168 		static_key_slow_dec(&sched_feat_keys[i]);
169 }
170 
171 static void sched_feat_enable(int i)
172 {
173 	if (!static_key_enabled(&sched_feat_keys[i]))
174 		static_key_slow_inc(&sched_feat_keys[i]);
175 }
176 #else
177 static void sched_feat_disable(int i) { };
178 static void sched_feat_enable(int i) { };
179 #endif /* HAVE_JUMP_LABEL */
180 
181 static int sched_feat_set(char *cmp)
182 {
183 	int i;
184 	int neg = 0;
185 
186 	if (strncmp(cmp, "NO_", 3) == 0) {
187 		neg = 1;
188 		cmp += 3;
189 	}
190 
191 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
192 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
193 			if (neg) {
194 				sysctl_sched_features &= ~(1UL << i);
195 				sched_feat_disable(i);
196 			} else {
197 				sysctl_sched_features |= (1UL << i);
198 				sched_feat_enable(i);
199 			}
200 			break;
201 		}
202 	}
203 
204 	return i;
205 }
206 
207 static ssize_t
208 sched_feat_write(struct file *filp, const char __user *ubuf,
209 		size_t cnt, loff_t *ppos)
210 {
211 	char buf[64];
212 	char *cmp;
213 	int i;
214 	struct inode *inode;
215 
216 	if (cnt > 63)
217 		cnt = 63;
218 
219 	if (copy_from_user(&buf, ubuf, cnt))
220 		return -EFAULT;
221 
222 	buf[cnt] = 0;
223 	cmp = strstrip(buf);
224 
225 	/* Ensure the static_key remains in a consistent state */
226 	inode = file_inode(filp);
227 	mutex_lock(&inode->i_mutex);
228 	i = sched_feat_set(cmp);
229 	mutex_unlock(&inode->i_mutex);
230 	if (i == __SCHED_FEAT_NR)
231 		return -EINVAL;
232 
233 	*ppos += cnt;
234 
235 	return cnt;
236 }
237 
238 static int sched_feat_open(struct inode *inode, struct file *filp)
239 {
240 	return single_open(filp, sched_feat_show, NULL);
241 }
242 
243 static const struct file_operations sched_feat_fops = {
244 	.open		= sched_feat_open,
245 	.write		= sched_feat_write,
246 	.read		= seq_read,
247 	.llseek		= seq_lseek,
248 	.release	= single_release,
249 };
250 
251 static __init int sched_init_debug(void)
252 {
253 	debugfs_create_file("sched_features", 0644, NULL, NULL,
254 			&sched_feat_fops);
255 
256 	return 0;
257 }
258 late_initcall(sched_init_debug);
259 #endif /* CONFIG_SCHED_DEBUG */
260 
261 /*
262  * Number of tasks to iterate in a single balance run.
263  * Limited because this is done with IRQs disabled.
264  */
265 const_debug unsigned int sysctl_sched_nr_migrate = 32;
266 
267 /*
268  * period over which we average the RT time consumption, measured
269  * in ms.
270  *
271  * default: 1s
272  */
273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274 
275 /*
276  * period over which we measure -rt task cpu usage in us.
277  * default: 1s
278  */
279 unsigned int sysctl_sched_rt_period = 1000000;
280 
281 __read_mostly int scheduler_running;
282 
283 /*
284  * part of the period that we allow rt tasks to run in us.
285  * default: 0.95s
286  */
287 int sysctl_sched_rt_runtime = 950000;
288 
289 /* cpus with isolated domains */
290 cpumask_var_t cpu_isolated_map;
291 
292 /*
293  * this_rq_lock - lock this runqueue and disable interrupts.
294  */
295 static struct rq *this_rq_lock(void)
296 	__acquires(rq->lock)
297 {
298 	struct rq *rq;
299 
300 	local_irq_disable();
301 	rq = this_rq();
302 	raw_spin_lock(&rq->lock);
303 
304 	return rq;
305 }
306 
307 #ifdef CONFIG_SCHED_HRTICK
308 /*
309  * Use HR-timers to deliver accurate preemption points.
310  */
311 
312 static void hrtick_clear(struct rq *rq)
313 {
314 	if (hrtimer_active(&rq->hrtick_timer))
315 		hrtimer_cancel(&rq->hrtick_timer);
316 }
317 
318 /*
319  * High-resolution timer tick.
320  * Runs from hardirq context with interrupts disabled.
321  */
322 static enum hrtimer_restart hrtick(struct hrtimer *timer)
323 {
324 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325 
326 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327 
328 	raw_spin_lock(&rq->lock);
329 	update_rq_clock(rq);
330 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331 	raw_spin_unlock(&rq->lock);
332 
333 	return HRTIMER_NORESTART;
334 }
335 
336 #ifdef CONFIG_SMP
337 
338 static void __hrtick_restart(struct rq *rq)
339 {
340 	struct hrtimer *timer = &rq->hrtick_timer;
341 
342 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
343 }
344 
345 /*
346  * called from hardirq (IPI) context
347  */
348 static void __hrtick_start(void *arg)
349 {
350 	struct rq *rq = arg;
351 
352 	raw_spin_lock(&rq->lock);
353 	__hrtick_restart(rq);
354 	rq->hrtick_csd_pending = 0;
355 	raw_spin_unlock(&rq->lock);
356 }
357 
358 /*
359  * Called to set the hrtick timer state.
360  *
361  * called with rq->lock held and irqs disabled
362  */
363 void hrtick_start(struct rq *rq, u64 delay)
364 {
365 	struct hrtimer *timer = &rq->hrtick_timer;
366 	ktime_t time;
367 	s64 delta;
368 
369 	/*
370 	 * Don't schedule slices shorter than 10000ns, that just
371 	 * doesn't make sense and can cause timer DoS.
372 	 */
373 	delta = max_t(s64, delay, 10000LL);
374 	time = ktime_add_ns(timer->base->get_time(), delta);
375 
376 	hrtimer_set_expires(timer, time);
377 
378 	if (rq == this_rq()) {
379 		__hrtick_restart(rq);
380 	} else if (!rq->hrtick_csd_pending) {
381 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 		rq->hrtick_csd_pending = 1;
383 	}
384 }
385 
386 static int
387 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388 {
389 	int cpu = (int)(long)hcpu;
390 
391 	switch (action) {
392 	case CPU_UP_CANCELED:
393 	case CPU_UP_CANCELED_FROZEN:
394 	case CPU_DOWN_PREPARE:
395 	case CPU_DOWN_PREPARE_FROZEN:
396 	case CPU_DEAD:
397 	case CPU_DEAD_FROZEN:
398 		hrtick_clear(cpu_rq(cpu));
399 		return NOTIFY_OK;
400 	}
401 
402 	return NOTIFY_DONE;
403 }
404 
405 static __init void init_hrtick(void)
406 {
407 	hotcpu_notifier(hotplug_hrtick, 0);
408 }
409 #else
410 /*
411  * Called to set the hrtick timer state.
412  *
413  * called with rq->lock held and irqs disabled
414  */
415 void hrtick_start(struct rq *rq, u64 delay)
416 {
417 	/*
418 	 * Don't schedule slices shorter than 10000ns, that just
419 	 * doesn't make sense. Rely on vruntime for fairness.
420 	 */
421 	delay = max_t(u64, delay, 10000LL);
422 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 		      HRTIMER_MODE_REL_PINNED);
424 }
425 
426 static inline void init_hrtick(void)
427 {
428 }
429 #endif /* CONFIG_SMP */
430 
431 static void init_rq_hrtick(struct rq *rq)
432 {
433 #ifdef CONFIG_SMP
434 	rq->hrtick_csd_pending = 0;
435 
436 	rq->hrtick_csd.flags = 0;
437 	rq->hrtick_csd.func = __hrtick_start;
438 	rq->hrtick_csd.info = rq;
439 #endif
440 
441 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 	rq->hrtick_timer.function = hrtick;
443 }
444 #else	/* CONFIG_SCHED_HRTICK */
445 static inline void hrtick_clear(struct rq *rq)
446 {
447 }
448 
449 static inline void init_rq_hrtick(struct rq *rq)
450 {
451 }
452 
453 static inline void init_hrtick(void)
454 {
455 }
456 #endif	/* CONFIG_SCHED_HRTICK */
457 
458 /*
459  * cmpxchg based fetch_or, macro so it works for different integer types
460  */
461 #define fetch_or(ptr, val)						\
462 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
463  	for (;;) {							\
464  		__old = cmpxchg((ptr), __val, __val | (val));		\
465  		if (__old == __val)					\
466  			break;						\
467  		__val = __old;						\
468  	}								\
469  	__old;								\
470 })
471 
472 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
473 /*
474  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475  * this avoids any races wrt polling state changes and thereby avoids
476  * spurious IPIs.
477  */
478 static bool set_nr_and_not_polling(struct task_struct *p)
479 {
480 	struct thread_info *ti = task_thread_info(p);
481 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482 }
483 
484 /*
485  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486  *
487  * If this returns true, then the idle task promises to call
488  * sched_ttwu_pending() and reschedule soon.
489  */
490 static bool set_nr_if_polling(struct task_struct *p)
491 {
492 	struct thread_info *ti = task_thread_info(p);
493 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
494 
495 	for (;;) {
496 		if (!(val & _TIF_POLLING_NRFLAG))
497 			return false;
498 		if (val & _TIF_NEED_RESCHED)
499 			return true;
500 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 		if (old == val)
502 			break;
503 		val = old;
504 	}
505 	return true;
506 }
507 
508 #else
509 static bool set_nr_and_not_polling(struct task_struct *p)
510 {
511 	set_tsk_need_resched(p);
512 	return true;
513 }
514 
515 #ifdef CONFIG_SMP
516 static bool set_nr_if_polling(struct task_struct *p)
517 {
518 	return false;
519 }
520 #endif
521 #endif
522 
523 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524 {
525 	struct wake_q_node *node = &task->wake_q;
526 
527 	/*
528 	 * Atomically grab the task, if ->wake_q is !nil already it means
529 	 * its already queued (either by us or someone else) and will get the
530 	 * wakeup due to that.
531 	 *
532 	 * This cmpxchg() implies a full barrier, which pairs with the write
533 	 * barrier implied by the wakeup in wake_up_list().
534 	 */
535 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 		return;
537 
538 	get_task_struct(task);
539 
540 	/*
541 	 * The head is context local, there can be no concurrency.
542 	 */
543 	*head->lastp = node;
544 	head->lastp = &node->next;
545 }
546 
547 void wake_up_q(struct wake_q_head *head)
548 {
549 	struct wake_q_node *node = head->first;
550 
551 	while (node != WAKE_Q_TAIL) {
552 		struct task_struct *task;
553 
554 		task = container_of(node, struct task_struct, wake_q);
555 		BUG_ON(!task);
556 		/* task can safely be re-inserted now */
557 		node = node->next;
558 		task->wake_q.next = NULL;
559 
560 		/*
561 		 * wake_up_process() implies a wmb() to pair with the queueing
562 		 * in wake_q_add() so as not to miss wakeups.
563 		 */
564 		wake_up_process(task);
565 		put_task_struct(task);
566 	}
567 }
568 
569 /*
570  * resched_curr - mark rq's current task 'to be rescheduled now'.
571  *
572  * On UP this means the setting of the need_resched flag, on SMP it
573  * might also involve a cross-CPU call to trigger the scheduler on
574  * the target CPU.
575  */
576 void resched_curr(struct rq *rq)
577 {
578 	struct task_struct *curr = rq->curr;
579 	int cpu;
580 
581 	lockdep_assert_held(&rq->lock);
582 
583 	if (test_tsk_need_resched(curr))
584 		return;
585 
586 	cpu = cpu_of(rq);
587 
588 	if (cpu == smp_processor_id()) {
589 		set_tsk_need_resched(curr);
590 		set_preempt_need_resched();
591 		return;
592 	}
593 
594 	if (set_nr_and_not_polling(curr))
595 		smp_send_reschedule(cpu);
596 	else
597 		trace_sched_wake_idle_without_ipi(cpu);
598 }
599 
600 void resched_cpu(int cpu)
601 {
602 	struct rq *rq = cpu_rq(cpu);
603 	unsigned long flags;
604 
605 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
606 		return;
607 	resched_curr(rq);
608 	raw_spin_unlock_irqrestore(&rq->lock, flags);
609 }
610 
611 #ifdef CONFIG_SMP
612 #ifdef CONFIG_NO_HZ_COMMON
613 /*
614  * In the semi idle case, use the nearest busy cpu for migrating timers
615  * from an idle cpu.  This is good for power-savings.
616  *
617  * We don't do similar optimization for completely idle system, as
618  * selecting an idle cpu will add more delays to the timers than intended
619  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620  */
621 int get_nohz_timer_target(void)
622 {
623 	int i, cpu = smp_processor_id();
624 	struct sched_domain *sd;
625 
626 	if (!idle_cpu(cpu))
627 		return cpu;
628 
629 	rcu_read_lock();
630 	for_each_domain(cpu, sd) {
631 		for_each_cpu(i, sched_domain_span(sd)) {
632 			if (!idle_cpu(i)) {
633 				cpu = i;
634 				goto unlock;
635 			}
636 		}
637 	}
638 unlock:
639 	rcu_read_unlock();
640 	return cpu;
641 }
642 /*
643  * When add_timer_on() enqueues a timer into the timer wheel of an
644  * idle CPU then this timer might expire before the next timer event
645  * which is scheduled to wake up that CPU. In case of a completely
646  * idle system the next event might even be infinite time into the
647  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
648  * leaves the inner idle loop so the newly added timer is taken into
649  * account when the CPU goes back to idle and evaluates the timer
650  * wheel for the next timer event.
651  */
652 static void wake_up_idle_cpu(int cpu)
653 {
654 	struct rq *rq = cpu_rq(cpu);
655 
656 	if (cpu == smp_processor_id())
657 		return;
658 
659 	if (set_nr_and_not_polling(rq->idle))
660 		smp_send_reschedule(cpu);
661 	else
662 		trace_sched_wake_idle_without_ipi(cpu);
663 }
664 
665 static bool wake_up_full_nohz_cpu(int cpu)
666 {
667 	/*
668 	 * We just need the target to call irq_exit() and re-evaluate
669 	 * the next tick. The nohz full kick at least implies that.
670 	 * If needed we can still optimize that later with an
671 	 * empty IRQ.
672 	 */
673 	if (tick_nohz_full_cpu(cpu)) {
674 		if (cpu != smp_processor_id() ||
675 		    tick_nohz_tick_stopped())
676 			tick_nohz_full_kick_cpu(cpu);
677 		return true;
678 	}
679 
680 	return false;
681 }
682 
683 void wake_up_nohz_cpu(int cpu)
684 {
685 	if (!wake_up_full_nohz_cpu(cpu))
686 		wake_up_idle_cpu(cpu);
687 }
688 
689 static inline bool got_nohz_idle_kick(void)
690 {
691 	int cpu = smp_processor_id();
692 
693 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
694 		return false;
695 
696 	if (idle_cpu(cpu) && !need_resched())
697 		return true;
698 
699 	/*
700 	 * We can't run Idle Load Balance on this CPU for this time so we
701 	 * cancel it and clear NOHZ_BALANCE_KICK
702 	 */
703 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
704 	return false;
705 }
706 
707 #else /* CONFIG_NO_HZ_COMMON */
708 
709 static inline bool got_nohz_idle_kick(void)
710 {
711 	return false;
712 }
713 
714 #endif /* CONFIG_NO_HZ_COMMON */
715 
716 #ifdef CONFIG_NO_HZ_FULL
717 bool sched_can_stop_tick(void)
718 {
719 	/*
720 	 * FIFO realtime policy runs the highest priority task. Other runnable
721 	 * tasks are of a lower priority. The scheduler tick does nothing.
722 	 */
723 	if (current->policy == SCHED_FIFO)
724 		return true;
725 
726 	/*
727 	 * Round-robin realtime tasks time slice with other tasks at the same
728 	 * realtime priority. Is this task the only one at this priority?
729 	 */
730 	if (current->policy == SCHED_RR) {
731 		struct sched_rt_entity *rt_se = &current->rt;
732 
733 		return rt_se->run_list.prev == rt_se->run_list.next;
734 	}
735 
736 	/*
737 	 * More than one running task need preemption.
738 	 * nr_running update is assumed to be visible
739 	 * after IPI is sent from wakers.
740 	 */
741 	if (this_rq()->nr_running > 1)
742 		return false;
743 
744 	return true;
745 }
746 #endif /* CONFIG_NO_HZ_FULL */
747 
748 void sched_avg_update(struct rq *rq)
749 {
750 	s64 period = sched_avg_period();
751 
752 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
753 		/*
754 		 * Inline assembly required to prevent the compiler
755 		 * optimising this loop into a divmod call.
756 		 * See __iter_div_u64_rem() for another example of this.
757 		 */
758 		asm("" : "+rm" (rq->age_stamp));
759 		rq->age_stamp += period;
760 		rq->rt_avg /= 2;
761 	}
762 }
763 
764 #endif /* CONFIG_SMP */
765 
766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
768 /*
769  * Iterate task_group tree rooted at *from, calling @down when first entering a
770  * node and @up when leaving it for the final time.
771  *
772  * Caller must hold rcu_lock or sufficient equivalent.
773  */
774 int walk_tg_tree_from(struct task_group *from,
775 			     tg_visitor down, tg_visitor up, void *data)
776 {
777 	struct task_group *parent, *child;
778 	int ret;
779 
780 	parent = from;
781 
782 down:
783 	ret = (*down)(parent, data);
784 	if (ret)
785 		goto out;
786 	list_for_each_entry_rcu(child, &parent->children, siblings) {
787 		parent = child;
788 		goto down;
789 
790 up:
791 		continue;
792 	}
793 	ret = (*up)(parent, data);
794 	if (ret || parent == from)
795 		goto out;
796 
797 	child = parent;
798 	parent = parent->parent;
799 	if (parent)
800 		goto up;
801 out:
802 	return ret;
803 }
804 
805 int tg_nop(struct task_group *tg, void *data)
806 {
807 	return 0;
808 }
809 #endif
810 
811 static void set_load_weight(struct task_struct *p)
812 {
813 	int prio = p->static_prio - MAX_RT_PRIO;
814 	struct load_weight *load = &p->se.load;
815 
816 	/*
817 	 * SCHED_IDLE tasks get minimal weight:
818 	 */
819 	if (p->policy == SCHED_IDLE) {
820 		load->weight = scale_load(WEIGHT_IDLEPRIO);
821 		load->inv_weight = WMULT_IDLEPRIO;
822 		return;
823 	}
824 
825 	load->weight = scale_load(prio_to_weight[prio]);
826 	load->inv_weight = prio_to_wmult[prio];
827 }
828 
829 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
830 {
831 	update_rq_clock(rq);
832 	sched_info_queued(rq, p);
833 	p->sched_class->enqueue_task(rq, p, flags);
834 }
835 
836 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
837 {
838 	update_rq_clock(rq);
839 	sched_info_dequeued(rq, p);
840 	p->sched_class->dequeue_task(rq, p, flags);
841 }
842 
843 void activate_task(struct rq *rq, struct task_struct *p, int flags)
844 {
845 	if (task_contributes_to_load(p))
846 		rq->nr_uninterruptible--;
847 
848 	enqueue_task(rq, p, flags);
849 }
850 
851 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
852 {
853 	if (task_contributes_to_load(p))
854 		rq->nr_uninterruptible++;
855 
856 	dequeue_task(rq, p, flags);
857 }
858 
859 static void update_rq_clock_task(struct rq *rq, s64 delta)
860 {
861 /*
862  * In theory, the compile should just see 0 here, and optimize out the call
863  * to sched_rt_avg_update. But I don't trust it...
864  */
865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 	s64 steal = 0, irq_delta = 0;
867 #endif
868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
869 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870 
871 	/*
872 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 	 * this case when a previous update_rq_clock() happened inside a
874 	 * {soft,}irq region.
875 	 *
876 	 * When this happens, we stop ->clock_task and only update the
877 	 * prev_irq_time stamp to account for the part that fit, so that a next
878 	 * update will consume the rest. This ensures ->clock_task is
879 	 * monotonic.
880 	 *
881 	 * It does however cause some slight miss-attribution of {soft,}irq
882 	 * time, a more accurate solution would be to update the irq_time using
883 	 * the current rq->clock timestamp, except that would require using
884 	 * atomic ops.
885 	 */
886 	if (irq_delta > delta)
887 		irq_delta = delta;
888 
889 	rq->prev_irq_time += irq_delta;
890 	delta -= irq_delta;
891 #endif
892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893 	if (static_key_false((&paravirt_steal_rq_enabled))) {
894 		steal = paravirt_steal_clock(cpu_of(rq));
895 		steal -= rq->prev_steal_time_rq;
896 
897 		if (unlikely(steal > delta))
898 			steal = delta;
899 
900 		rq->prev_steal_time_rq += steal;
901 		delta -= steal;
902 	}
903 #endif
904 
905 	rq->clock_task += delta;
906 
907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909 		sched_rt_avg_update(rq, irq_delta + steal);
910 #endif
911 }
912 
913 void sched_set_stop_task(int cpu, struct task_struct *stop)
914 {
915 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
917 
918 	if (stop) {
919 		/*
920 		 * Make it appear like a SCHED_FIFO task, its something
921 		 * userspace knows about and won't get confused about.
922 		 *
923 		 * Also, it will make PI more or less work without too
924 		 * much confusion -- but then, stop work should not
925 		 * rely on PI working anyway.
926 		 */
927 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928 
929 		stop->sched_class = &stop_sched_class;
930 	}
931 
932 	cpu_rq(cpu)->stop = stop;
933 
934 	if (old_stop) {
935 		/*
936 		 * Reset it back to a normal scheduling class so that
937 		 * it can die in pieces.
938 		 */
939 		old_stop->sched_class = &rt_sched_class;
940 	}
941 }
942 
943 /*
944  * __normal_prio - return the priority that is based on the static prio
945  */
946 static inline int __normal_prio(struct task_struct *p)
947 {
948 	return p->static_prio;
949 }
950 
951 /*
952  * Calculate the expected normal priority: i.e. priority
953  * without taking RT-inheritance into account. Might be
954  * boosted by interactivity modifiers. Changes upon fork,
955  * setprio syscalls, and whenever the interactivity
956  * estimator recalculates.
957  */
958 static inline int normal_prio(struct task_struct *p)
959 {
960 	int prio;
961 
962 	if (task_has_dl_policy(p))
963 		prio = MAX_DL_PRIO-1;
964 	else if (task_has_rt_policy(p))
965 		prio = MAX_RT_PRIO-1 - p->rt_priority;
966 	else
967 		prio = __normal_prio(p);
968 	return prio;
969 }
970 
971 /*
972  * Calculate the current priority, i.e. the priority
973  * taken into account by the scheduler. This value might
974  * be boosted by RT tasks, or might be boosted by
975  * interactivity modifiers. Will be RT if the task got
976  * RT-boosted. If not then it returns p->normal_prio.
977  */
978 static int effective_prio(struct task_struct *p)
979 {
980 	p->normal_prio = normal_prio(p);
981 	/*
982 	 * If we are RT tasks or we were boosted to RT priority,
983 	 * keep the priority unchanged. Otherwise, update priority
984 	 * to the normal priority:
985 	 */
986 	if (!rt_prio(p->prio))
987 		return p->normal_prio;
988 	return p->prio;
989 }
990 
991 /**
992  * task_curr - is this task currently executing on a CPU?
993  * @p: the task in question.
994  *
995  * Return: 1 if the task is currently executing. 0 otherwise.
996  */
997 inline int task_curr(const struct task_struct *p)
998 {
999 	return cpu_curr(task_cpu(p)) == p;
1000 }
1001 
1002 /*
1003  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1004  * use the balance_callback list if you want balancing.
1005  *
1006  * this means any call to check_class_changed() must be followed by a call to
1007  * balance_callback().
1008  */
1009 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1010 				       const struct sched_class *prev_class,
1011 				       int oldprio)
1012 {
1013 	if (prev_class != p->sched_class) {
1014 		if (prev_class->switched_from)
1015 			prev_class->switched_from(rq, p);
1016 
1017 		p->sched_class->switched_to(rq, p);
1018 	} else if (oldprio != p->prio || dl_task(p))
1019 		p->sched_class->prio_changed(rq, p, oldprio);
1020 }
1021 
1022 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1023 {
1024 	const struct sched_class *class;
1025 
1026 	if (p->sched_class == rq->curr->sched_class) {
1027 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1028 	} else {
1029 		for_each_class(class) {
1030 			if (class == rq->curr->sched_class)
1031 				break;
1032 			if (class == p->sched_class) {
1033 				resched_curr(rq);
1034 				break;
1035 			}
1036 		}
1037 	}
1038 
1039 	/*
1040 	 * A queue event has occurred, and we're going to schedule.  In
1041 	 * this case, we can save a useless back to back clock update.
1042 	 */
1043 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1044 		rq_clock_skip_update(rq, true);
1045 }
1046 
1047 #ifdef CONFIG_SMP
1048 /*
1049  * This is how migration works:
1050  *
1051  * 1) we invoke migration_cpu_stop() on the target CPU using
1052  *    stop_one_cpu().
1053  * 2) stopper starts to run (implicitly forcing the migrated thread
1054  *    off the CPU)
1055  * 3) it checks whether the migrated task is still in the wrong runqueue.
1056  * 4) if it's in the wrong runqueue then the migration thread removes
1057  *    it and puts it into the right queue.
1058  * 5) stopper completes and stop_one_cpu() returns and the migration
1059  *    is done.
1060  */
1061 
1062 /*
1063  * move_queued_task - move a queued task to new rq.
1064  *
1065  * Returns (locked) new rq. Old rq's lock is released.
1066  */
1067 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1068 {
1069 	lockdep_assert_held(&rq->lock);
1070 
1071 	dequeue_task(rq, p, 0);
1072 	p->on_rq = TASK_ON_RQ_MIGRATING;
1073 	set_task_cpu(p, new_cpu);
1074 	raw_spin_unlock(&rq->lock);
1075 
1076 	rq = cpu_rq(new_cpu);
1077 
1078 	raw_spin_lock(&rq->lock);
1079 	BUG_ON(task_cpu(p) != new_cpu);
1080 	p->on_rq = TASK_ON_RQ_QUEUED;
1081 	enqueue_task(rq, p, 0);
1082 	check_preempt_curr(rq, p, 0);
1083 
1084 	return rq;
1085 }
1086 
1087 struct migration_arg {
1088 	struct task_struct *task;
1089 	int dest_cpu;
1090 };
1091 
1092 /*
1093  * Move (not current) task off this cpu, onto dest cpu. We're doing
1094  * this because either it can't run here any more (set_cpus_allowed()
1095  * away from this CPU, or CPU going down), or because we're
1096  * attempting to rebalance this task on exec (sched_exec).
1097  *
1098  * So we race with normal scheduler movements, but that's OK, as long
1099  * as the task is no longer on this CPU.
1100  */
1101 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1102 {
1103 	if (unlikely(!cpu_active(dest_cpu)))
1104 		return rq;
1105 
1106 	/* Affinity changed (again). */
1107 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1108 		return rq;
1109 
1110 	rq = move_queued_task(rq, p, dest_cpu);
1111 
1112 	return rq;
1113 }
1114 
1115 /*
1116  * migration_cpu_stop - this will be executed by a highprio stopper thread
1117  * and performs thread migration by bumping thread off CPU then
1118  * 'pushing' onto another runqueue.
1119  */
1120 static int migration_cpu_stop(void *data)
1121 {
1122 	struct migration_arg *arg = data;
1123 	struct task_struct *p = arg->task;
1124 	struct rq *rq = this_rq();
1125 
1126 	/*
1127 	 * The original target cpu might have gone down and we might
1128 	 * be on another cpu but it doesn't matter.
1129 	 */
1130 	local_irq_disable();
1131 	/*
1132 	 * We need to explicitly wake pending tasks before running
1133 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1134 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1135 	 */
1136 	sched_ttwu_pending();
1137 
1138 	raw_spin_lock(&p->pi_lock);
1139 	raw_spin_lock(&rq->lock);
1140 	/*
1141 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1142 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1143 	 * we're holding p->pi_lock.
1144 	 */
1145 	if (task_rq(p) == rq && task_on_rq_queued(p))
1146 		rq = __migrate_task(rq, p, arg->dest_cpu);
1147 	raw_spin_unlock(&rq->lock);
1148 	raw_spin_unlock(&p->pi_lock);
1149 
1150 	local_irq_enable();
1151 	return 0;
1152 }
1153 
1154 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1155 {
1156 	if (p->sched_class->set_cpus_allowed)
1157 		p->sched_class->set_cpus_allowed(p, new_mask);
1158 
1159 	cpumask_copy(&p->cpus_allowed, new_mask);
1160 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1161 }
1162 
1163 /*
1164  * Change a given task's CPU affinity. Migrate the thread to a
1165  * proper CPU and schedule it away if the CPU it's executing on
1166  * is removed from the allowed bitmask.
1167  *
1168  * NOTE: the caller must have a valid reference to the task, the
1169  * task must not exit() & deallocate itself prematurely. The
1170  * call is not atomic; no spinlocks may be held.
1171  */
1172 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1173 {
1174 	unsigned long flags;
1175 	struct rq *rq;
1176 	unsigned int dest_cpu;
1177 	int ret = 0;
1178 
1179 	rq = task_rq_lock(p, &flags);
1180 
1181 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1182 		goto out;
1183 
1184 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1185 		ret = -EINVAL;
1186 		goto out;
1187 	}
1188 
1189 	do_set_cpus_allowed(p, new_mask);
1190 
1191 	/* Can the task run on the task's current CPU? If so, we're done */
1192 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1193 		goto out;
1194 
1195 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1196 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1197 		struct migration_arg arg = { p, dest_cpu };
1198 		/* Need help from migration thread: drop lock and wait. */
1199 		task_rq_unlock(rq, p, &flags);
1200 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1201 		tlb_migrate_finish(p->mm);
1202 		return 0;
1203 	} else if (task_on_rq_queued(p)) {
1204 		/*
1205 		 * OK, since we're going to drop the lock immediately
1206 		 * afterwards anyway.
1207 		 */
1208 		lockdep_unpin_lock(&rq->lock);
1209 		rq = move_queued_task(rq, p, dest_cpu);
1210 		lockdep_pin_lock(&rq->lock);
1211 	}
1212 out:
1213 	task_rq_unlock(rq, p, &flags);
1214 
1215 	return ret;
1216 }
1217 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1218 
1219 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1220 {
1221 #ifdef CONFIG_SCHED_DEBUG
1222 	/*
1223 	 * We should never call set_task_cpu() on a blocked task,
1224 	 * ttwu() will sort out the placement.
1225 	 */
1226 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1227 			!p->on_rq);
1228 
1229 #ifdef CONFIG_LOCKDEP
1230 	/*
1231 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1232 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1233 	 *
1234 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1235 	 * see task_group().
1236 	 *
1237 	 * Furthermore, all task_rq users should acquire both locks, see
1238 	 * task_rq_lock().
1239 	 */
1240 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1241 				      lockdep_is_held(&task_rq(p)->lock)));
1242 #endif
1243 #endif
1244 
1245 	trace_sched_migrate_task(p, new_cpu);
1246 
1247 	if (task_cpu(p) != new_cpu) {
1248 		if (p->sched_class->migrate_task_rq)
1249 			p->sched_class->migrate_task_rq(p, new_cpu);
1250 		p->se.nr_migrations++;
1251 		perf_event_task_migrate(p);
1252 	}
1253 
1254 	__set_task_cpu(p, new_cpu);
1255 }
1256 
1257 static void __migrate_swap_task(struct task_struct *p, int cpu)
1258 {
1259 	if (task_on_rq_queued(p)) {
1260 		struct rq *src_rq, *dst_rq;
1261 
1262 		src_rq = task_rq(p);
1263 		dst_rq = cpu_rq(cpu);
1264 
1265 		deactivate_task(src_rq, p, 0);
1266 		set_task_cpu(p, cpu);
1267 		activate_task(dst_rq, p, 0);
1268 		check_preempt_curr(dst_rq, p, 0);
1269 	} else {
1270 		/*
1271 		 * Task isn't running anymore; make it appear like we migrated
1272 		 * it before it went to sleep. This means on wakeup we make the
1273 		 * previous cpu our targer instead of where it really is.
1274 		 */
1275 		p->wake_cpu = cpu;
1276 	}
1277 }
1278 
1279 struct migration_swap_arg {
1280 	struct task_struct *src_task, *dst_task;
1281 	int src_cpu, dst_cpu;
1282 };
1283 
1284 static int migrate_swap_stop(void *data)
1285 {
1286 	struct migration_swap_arg *arg = data;
1287 	struct rq *src_rq, *dst_rq;
1288 	int ret = -EAGAIN;
1289 
1290 	src_rq = cpu_rq(arg->src_cpu);
1291 	dst_rq = cpu_rq(arg->dst_cpu);
1292 
1293 	double_raw_lock(&arg->src_task->pi_lock,
1294 			&arg->dst_task->pi_lock);
1295 	double_rq_lock(src_rq, dst_rq);
1296 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1297 		goto unlock;
1298 
1299 	if (task_cpu(arg->src_task) != arg->src_cpu)
1300 		goto unlock;
1301 
1302 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1303 		goto unlock;
1304 
1305 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1306 		goto unlock;
1307 
1308 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1309 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1310 
1311 	ret = 0;
1312 
1313 unlock:
1314 	double_rq_unlock(src_rq, dst_rq);
1315 	raw_spin_unlock(&arg->dst_task->pi_lock);
1316 	raw_spin_unlock(&arg->src_task->pi_lock);
1317 
1318 	return ret;
1319 }
1320 
1321 /*
1322  * Cross migrate two tasks
1323  */
1324 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1325 {
1326 	struct migration_swap_arg arg;
1327 	int ret = -EINVAL;
1328 
1329 	arg = (struct migration_swap_arg){
1330 		.src_task = cur,
1331 		.src_cpu = task_cpu(cur),
1332 		.dst_task = p,
1333 		.dst_cpu = task_cpu(p),
1334 	};
1335 
1336 	if (arg.src_cpu == arg.dst_cpu)
1337 		goto out;
1338 
1339 	/*
1340 	 * These three tests are all lockless; this is OK since all of them
1341 	 * will be re-checked with proper locks held further down the line.
1342 	 */
1343 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1344 		goto out;
1345 
1346 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1347 		goto out;
1348 
1349 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1350 		goto out;
1351 
1352 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1353 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1354 
1355 out:
1356 	return ret;
1357 }
1358 
1359 /*
1360  * wait_task_inactive - wait for a thread to unschedule.
1361  *
1362  * If @match_state is nonzero, it's the @p->state value just checked and
1363  * not expected to change.  If it changes, i.e. @p might have woken up,
1364  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1365  * we return a positive number (its total switch count).  If a second call
1366  * a short while later returns the same number, the caller can be sure that
1367  * @p has remained unscheduled the whole time.
1368  *
1369  * The caller must ensure that the task *will* unschedule sometime soon,
1370  * else this function might spin for a *long* time. This function can't
1371  * be called with interrupts off, or it may introduce deadlock with
1372  * smp_call_function() if an IPI is sent by the same process we are
1373  * waiting to become inactive.
1374  */
1375 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1376 {
1377 	unsigned long flags;
1378 	int running, queued;
1379 	unsigned long ncsw;
1380 	struct rq *rq;
1381 
1382 	for (;;) {
1383 		/*
1384 		 * We do the initial early heuristics without holding
1385 		 * any task-queue locks at all. We'll only try to get
1386 		 * the runqueue lock when things look like they will
1387 		 * work out!
1388 		 */
1389 		rq = task_rq(p);
1390 
1391 		/*
1392 		 * If the task is actively running on another CPU
1393 		 * still, just relax and busy-wait without holding
1394 		 * any locks.
1395 		 *
1396 		 * NOTE! Since we don't hold any locks, it's not
1397 		 * even sure that "rq" stays as the right runqueue!
1398 		 * But we don't care, since "task_running()" will
1399 		 * return false if the runqueue has changed and p
1400 		 * is actually now running somewhere else!
1401 		 */
1402 		while (task_running(rq, p)) {
1403 			if (match_state && unlikely(p->state != match_state))
1404 				return 0;
1405 			cpu_relax();
1406 		}
1407 
1408 		/*
1409 		 * Ok, time to look more closely! We need the rq
1410 		 * lock now, to be *sure*. If we're wrong, we'll
1411 		 * just go back and repeat.
1412 		 */
1413 		rq = task_rq_lock(p, &flags);
1414 		trace_sched_wait_task(p);
1415 		running = task_running(rq, p);
1416 		queued = task_on_rq_queued(p);
1417 		ncsw = 0;
1418 		if (!match_state || p->state == match_state)
1419 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1420 		task_rq_unlock(rq, p, &flags);
1421 
1422 		/*
1423 		 * If it changed from the expected state, bail out now.
1424 		 */
1425 		if (unlikely(!ncsw))
1426 			break;
1427 
1428 		/*
1429 		 * Was it really running after all now that we
1430 		 * checked with the proper locks actually held?
1431 		 *
1432 		 * Oops. Go back and try again..
1433 		 */
1434 		if (unlikely(running)) {
1435 			cpu_relax();
1436 			continue;
1437 		}
1438 
1439 		/*
1440 		 * It's not enough that it's not actively running,
1441 		 * it must be off the runqueue _entirely_, and not
1442 		 * preempted!
1443 		 *
1444 		 * So if it was still runnable (but just not actively
1445 		 * running right now), it's preempted, and we should
1446 		 * yield - it could be a while.
1447 		 */
1448 		if (unlikely(queued)) {
1449 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1450 
1451 			set_current_state(TASK_UNINTERRUPTIBLE);
1452 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1453 			continue;
1454 		}
1455 
1456 		/*
1457 		 * Ahh, all good. It wasn't running, and it wasn't
1458 		 * runnable, which means that it will never become
1459 		 * running in the future either. We're all done!
1460 		 */
1461 		break;
1462 	}
1463 
1464 	return ncsw;
1465 }
1466 
1467 /***
1468  * kick_process - kick a running thread to enter/exit the kernel
1469  * @p: the to-be-kicked thread
1470  *
1471  * Cause a process which is running on another CPU to enter
1472  * kernel-mode, without any delay. (to get signals handled.)
1473  *
1474  * NOTE: this function doesn't have to take the runqueue lock,
1475  * because all it wants to ensure is that the remote task enters
1476  * the kernel. If the IPI races and the task has been migrated
1477  * to another CPU then no harm is done and the purpose has been
1478  * achieved as well.
1479  */
1480 void kick_process(struct task_struct *p)
1481 {
1482 	int cpu;
1483 
1484 	preempt_disable();
1485 	cpu = task_cpu(p);
1486 	if ((cpu != smp_processor_id()) && task_curr(p))
1487 		smp_send_reschedule(cpu);
1488 	preempt_enable();
1489 }
1490 EXPORT_SYMBOL_GPL(kick_process);
1491 
1492 /*
1493  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1494  */
1495 static int select_fallback_rq(int cpu, struct task_struct *p)
1496 {
1497 	int nid = cpu_to_node(cpu);
1498 	const struct cpumask *nodemask = NULL;
1499 	enum { cpuset, possible, fail } state = cpuset;
1500 	int dest_cpu;
1501 
1502 	/*
1503 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1504 	 * will return -1. There is no cpu on the node, and we should
1505 	 * select the cpu on the other node.
1506 	 */
1507 	if (nid != -1) {
1508 		nodemask = cpumask_of_node(nid);
1509 
1510 		/* Look for allowed, online CPU in same node. */
1511 		for_each_cpu(dest_cpu, nodemask) {
1512 			if (!cpu_online(dest_cpu))
1513 				continue;
1514 			if (!cpu_active(dest_cpu))
1515 				continue;
1516 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1517 				return dest_cpu;
1518 		}
1519 	}
1520 
1521 	for (;;) {
1522 		/* Any allowed, online CPU? */
1523 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1524 			if (!cpu_online(dest_cpu))
1525 				continue;
1526 			if (!cpu_active(dest_cpu))
1527 				continue;
1528 			goto out;
1529 		}
1530 
1531 		switch (state) {
1532 		case cpuset:
1533 			/* No more Mr. Nice Guy. */
1534 			cpuset_cpus_allowed_fallback(p);
1535 			state = possible;
1536 			break;
1537 
1538 		case possible:
1539 			do_set_cpus_allowed(p, cpu_possible_mask);
1540 			state = fail;
1541 			break;
1542 
1543 		case fail:
1544 			BUG();
1545 			break;
1546 		}
1547 	}
1548 
1549 out:
1550 	if (state != cpuset) {
1551 		/*
1552 		 * Don't tell them about moving exiting tasks or
1553 		 * kernel threads (both mm NULL), since they never
1554 		 * leave kernel.
1555 		 */
1556 		if (p->mm && printk_ratelimit()) {
1557 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1558 					task_pid_nr(p), p->comm, cpu);
1559 		}
1560 	}
1561 
1562 	return dest_cpu;
1563 }
1564 
1565 /*
1566  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1567  */
1568 static inline
1569 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1570 {
1571 	lockdep_assert_held(&p->pi_lock);
1572 
1573 	if (p->nr_cpus_allowed > 1)
1574 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1575 
1576 	/*
1577 	 * In order not to call set_task_cpu() on a blocking task we need
1578 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1579 	 * cpu.
1580 	 *
1581 	 * Since this is common to all placement strategies, this lives here.
1582 	 *
1583 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1584 	 *   not worry about this generic constraint ]
1585 	 */
1586 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1587 		     !cpu_online(cpu)))
1588 		cpu = select_fallback_rq(task_cpu(p), p);
1589 
1590 	return cpu;
1591 }
1592 
1593 static void update_avg(u64 *avg, u64 sample)
1594 {
1595 	s64 diff = sample - *avg;
1596 	*avg += diff >> 3;
1597 }
1598 #endif /* CONFIG_SMP */
1599 
1600 static void
1601 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1602 {
1603 #ifdef CONFIG_SCHEDSTATS
1604 	struct rq *rq = this_rq();
1605 
1606 #ifdef CONFIG_SMP
1607 	int this_cpu = smp_processor_id();
1608 
1609 	if (cpu == this_cpu) {
1610 		schedstat_inc(rq, ttwu_local);
1611 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1612 	} else {
1613 		struct sched_domain *sd;
1614 
1615 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1616 		rcu_read_lock();
1617 		for_each_domain(this_cpu, sd) {
1618 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1619 				schedstat_inc(sd, ttwu_wake_remote);
1620 				break;
1621 			}
1622 		}
1623 		rcu_read_unlock();
1624 	}
1625 
1626 	if (wake_flags & WF_MIGRATED)
1627 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1628 
1629 #endif /* CONFIG_SMP */
1630 
1631 	schedstat_inc(rq, ttwu_count);
1632 	schedstat_inc(p, se.statistics.nr_wakeups);
1633 
1634 	if (wake_flags & WF_SYNC)
1635 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1636 
1637 #endif /* CONFIG_SCHEDSTATS */
1638 }
1639 
1640 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1641 {
1642 	activate_task(rq, p, en_flags);
1643 	p->on_rq = TASK_ON_RQ_QUEUED;
1644 
1645 	/* if a worker is waking up, notify workqueue */
1646 	if (p->flags & PF_WQ_WORKER)
1647 		wq_worker_waking_up(p, cpu_of(rq));
1648 }
1649 
1650 /*
1651  * Mark the task runnable and perform wakeup-preemption.
1652  */
1653 static void
1654 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1655 {
1656 	check_preempt_curr(rq, p, wake_flags);
1657 	trace_sched_wakeup(p, true);
1658 
1659 	p->state = TASK_RUNNING;
1660 #ifdef CONFIG_SMP
1661 	if (p->sched_class->task_woken) {
1662 		/*
1663 		 * Our task @p is fully woken up and running; so its safe to
1664 		 * drop the rq->lock, hereafter rq is only used for statistics.
1665 		 */
1666 		lockdep_unpin_lock(&rq->lock);
1667 		p->sched_class->task_woken(rq, p);
1668 		lockdep_pin_lock(&rq->lock);
1669 	}
1670 
1671 	if (rq->idle_stamp) {
1672 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1673 		u64 max = 2*rq->max_idle_balance_cost;
1674 
1675 		update_avg(&rq->avg_idle, delta);
1676 
1677 		if (rq->avg_idle > max)
1678 			rq->avg_idle = max;
1679 
1680 		rq->idle_stamp = 0;
1681 	}
1682 #endif
1683 }
1684 
1685 static void
1686 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1687 {
1688 	lockdep_assert_held(&rq->lock);
1689 
1690 #ifdef CONFIG_SMP
1691 	if (p->sched_contributes_to_load)
1692 		rq->nr_uninterruptible--;
1693 #endif
1694 
1695 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1696 	ttwu_do_wakeup(rq, p, wake_flags);
1697 }
1698 
1699 /*
1700  * Called in case the task @p isn't fully descheduled from its runqueue,
1701  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1702  * since all we need to do is flip p->state to TASK_RUNNING, since
1703  * the task is still ->on_rq.
1704  */
1705 static int ttwu_remote(struct task_struct *p, int wake_flags)
1706 {
1707 	struct rq *rq;
1708 	int ret = 0;
1709 
1710 	rq = __task_rq_lock(p);
1711 	if (task_on_rq_queued(p)) {
1712 		/* check_preempt_curr() may use rq clock */
1713 		update_rq_clock(rq);
1714 		ttwu_do_wakeup(rq, p, wake_flags);
1715 		ret = 1;
1716 	}
1717 	__task_rq_unlock(rq);
1718 
1719 	return ret;
1720 }
1721 
1722 #ifdef CONFIG_SMP
1723 void sched_ttwu_pending(void)
1724 {
1725 	struct rq *rq = this_rq();
1726 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1727 	struct task_struct *p;
1728 	unsigned long flags;
1729 
1730 	if (!llist)
1731 		return;
1732 
1733 	raw_spin_lock_irqsave(&rq->lock, flags);
1734 	lockdep_pin_lock(&rq->lock);
1735 
1736 	while (llist) {
1737 		p = llist_entry(llist, struct task_struct, wake_entry);
1738 		llist = llist_next(llist);
1739 		ttwu_do_activate(rq, p, 0);
1740 	}
1741 
1742 	lockdep_unpin_lock(&rq->lock);
1743 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1744 }
1745 
1746 void scheduler_ipi(void)
1747 {
1748 	/*
1749 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1750 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1751 	 * this IPI.
1752 	 */
1753 	preempt_fold_need_resched();
1754 
1755 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1756 		return;
1757 
1758 	/*
1759 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1760 	 * traditionally all their work was done from the interrupt return
1761 	 * path. Now that we actually do some work, we need to make sure
1762 	 * we do call them.
1763 	 *
1764 	 * Some archs already do call them, luckily irq_enter/exit nest
1765 	 * properly.
1766 	 *
1767 	 * Arguably we should visit all archs and update all handlers,
1768 	 * however a fair share of IPIs are still resched only so this would
1769 	 * somewhat pessimize the simple resched case.
1770 	 */
1771 	irq_enter();
1772 	sched_ttwu_pending();
1773 
1774 	/*
1775 	 * Check if someone kicked us for doing the nohz idle load balance.
1776 	 */
1777 	if (unlikely(got_nohz_idle_kick())) {
1778 		this_rq()->idle_balance = 1;
1779 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1780 	}
1781 	irq_exit();
1782 }
1783 
1784 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1785 {
1786 	struct rq *rq = cpu_rq(cpu);
1787 
1788 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1789 		if (!set_nr_if_polling(rq->idle))
1790 			smp_send_reschedule(cpu);
1791 		else
1792 			trace_sched_wake_idle_without_ipi(cpu);
1793 	}
1794 }
1795 
1796 void wake_up_if_idle(int cpu)
1797 {
1798 	struct rq *rq = cpu_rq(cpu);
1799 	unsigned long flags;
1800 
1801 	rcu_read_lock();
1802 
1803 	if (!is_idle_task(rcu_dereference(rq->curr)))
1804 		goto out;
1805 
1806 	if (set_nr_if_polling(rq->idle)) {
1807 		trace_sched_wake_idle_without_ipi(cpu);
1808 	} else {
1809 		raw_spin_lock_irqsave(&rq->lock, flags);
1810 		if (is_idle_task(rq->curr))
1811 			smp_send_reschedule(cpu);
1812 		/* Else cpu is not in idle, do nothing here */
1813 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1814 	}
1815 
1816 out:
1817 	rcu_read_unlock();
1818 }
1819 
1820 bool cpus_share_cache(int this_cpu, int that_cpu)
1821 {
1822 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1823 }
1824 #endif /* CONFIG_SMP */
1825 
1826 static void ttwu_queue(struct task_struct *p, int cpu)
1827 {
1828 	struct rq *rq = cpu_rq(cpu);
1829 
1830 #if defined(CONFIG_SMP)
1831 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1832 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1833 		ttwu_queue_remote(p, cpu);
1834 		return;
1835 	}
1836 #endif
1837 
1838 	raw_spin_lock(&rq->lock);
1839 	lockdep_pin_lock(&rq->lock);
1840 	ttwu_do_activate(rq, p, 0);
1841 	lockdep_unpin_lock(&rq->lock);
1842 	raw_spin_unlock(&rq->lock);
1843 }
1844 
1845 /**
1846  * try_to_wake_up - wake up a thread
1847  * @p: the thread to be awakened
1848  * @state: the mask of task states that can be woken
1849  * @wake_flags: wake modifier flags (WF_*)
1850  *
1851  * Put it on the run-queue if it's not already there. The "current"
1852  * thread is always on the run-queue (except when the actual
1853  * re-schedule is in progress), and as such you're allowed to do
1854  * the simpler "current->state = TASK_RUNNING" to mark yourself
1855  * runnable without the overhead of this.
1856  *
1857  * Return: %true if @p was woken up, %false if it was already running.
1858  * or @state didn't match @p's state.
1859  */
1860 static int
1861 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1862 {
1863 	unsigned long flags;
1864 	int cpu, success = 0;
1865 
1866 	/*
1867 	 * If we are going to wake up a thread waiting for CONDITION we
1868 	 * need to ensure that CONDITION=1 done by the caller can not be
1869 	 * reordered with p->state check below. This pairs with mb() in
1870 	 * set_current_state() the waiting thread does.
1871 	 */
1872 	smp_mb__before_spinlock();
1873 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1874 	if (!(p->state & state))
1875 		goto out;
1876 
1877 	success = 1; /* we're going to change ->state */
1878 	cpu = task_cpu(p);
1879 
1880 	if (p->on_rq && ttwu_remote(p, wake_flags))
1881 		goto stat;
1882 
1883 #ifdef CONFIG_SMP
1884 	/*
1885 	 * If the owning (remote) cpu is still in the middle of schedule() with
1886 	 * this task as prev, wait until its done referencing the task.
1887 	 */
1888 	while (p->on_cpu)
1889 		cpu_relax();
1890 	/*
1891 	 * Pairs with the smp_wmb() in finish_lock_switch().
1892 	 */
1893 	smp_rmb();
1894 
1895 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1896 	p->state = TASK_WAKING;
1897 
1898 	if (p->sched_class->task_waking)
1899 		p->sched_class->task_waking(p);
1900 
1901 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1902 	if (task_cpu(p) != cpu) {
1903 		wake_flags |= WF_MIGRATED;
1904 		set_task_cpu(p, cpu);
1905 	}
1906 #endif /* CONFIG_SMP */
1907 
1908 	ttwu_queue(p, cpu);
1909 stat:
1910 	ttwu_stat(p, cpu, wake_flags);
1911 out:
1912 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1913 
1914 	return success;
1915 }
1916 
1917 /**
1918  * try_to_wake_up_local - try to wake up a local task with rq lock held
1919  * @p: the thread to be awakened
1920  *
1921  * Put @p on the run-queue if it's not already there. The caller must
1922  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1923  * the current task.
1924  */
1925 static void try_to_wake_up_local(struct task_struct *p)
1926 {
1927 	struct rq *rq = task_rq(p);
1928 
1929 	if (WARN_ON_ONCE(rq != this_rq()) ||
1930 	    WARN_ON_ONCE(p == current))
1931 		return;
1932 
1933 	lockdep_assert_held(&rq->lock);
1934 
1935 	if (!raw_spin_trylock(&p->pi_lock)) {
1936 		/*
1937 		 * This is OK, because current is on_cpu, which avoids it being
1938 		 * picked for load-balance and preemption/IRQs are still
1939 		 * disabled avoiding further scheduler activity on it and we've
1940 		 * not yet picked a replacement task.
1941 		 */
1942 		lockdep_unpin_lock(&rq->lock);
1943 		raw_spin_unlock(&rq->lock);
1944 		raw_spin_lock(&p->pi_lock);
1945 		raw_spin_lock(&rq->lock);
1946 		lockdep_pin_lock(&rq->lock);
1947 	}
1948 
1949 	if (!(p->state & TASK_NORMAL))
1950 		goto out;
1951 
1952 	if (!task_on_rq_queued(p))
1953 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1954 
1955 	ttwu_do_wakeup(rq, p, 0);
1956 	ttwu_stat(p, smp_processor_id(), 0);
1957 out:
1958 	raw_spin_unlock(&p->pi_lock);
1959 }
1960 
1961 /**
1962  * wake_up_process - Wake up a specific process
1963  * @p: The process to be woken up.
1964  *
1965  * Attempt to wake up the nominated process and move it to the set of runnable
1966  * processes.
1967  *
1968  * Return: 1 if the process was woken up, 0 if it was already running.
1969  *
1970  * It may be assumed that this function implies a write memory barrier before
1971  * changing the task state if and only if any tasks are woken up.
1972  */
1973 int wake_up_process(struct task_struct *p)
1974 {
1975 	WARN_ON(task_is_stopped_or_traced(p));
1976 	return try_to_wake_up(p, TASK_NORMAL, 0);
1977 }
1978 EXPORT_SYMBOL(wake_up_process);
1979 
1980 int wake_up_state(struct task_struct *p, unsigned int state)
1981 {
1982 	return try_to_wake_up(p, state, 0);
1983 }
1984 
1985 /*
1986  * This function clears the sched_dl_entity static params.
1987  */
1988 void __dl_clear_params(struct task_struct *p)
1989 {
1990 	struct sched_dl_entity *dl_se = &p->dl;
1991 
1992 	dl_se->dl_runtime = 0;
1993 	dl_se->dl_deadline = 0;
1994 	dl_se->dl_period = 0;
1995 	dl_se->flags = 0;
1996 	dl_se->dl_bw = 0;
1997 
1998 	dl_se->dl_throttled = 0;
1999 	dl_se->dl_new = 1;
2000 	dl_se->dl_yielded = 0;
2001 }
2002 
2003 /*
2004  * Perform scheduler related setup for a newly forked process p.
2005  * p is forked by current.
2006  *
2007  * __sched_fork() is basic setup used by init_idle() too:
2008  */
2009 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2010 {
2011 	p->on_rq			= 0;
2012 
2013 	p->se.on_rq			= 0;
2014 	p->se.exec_start		= 0;
2015 	p->se.sum_exec_runtime		= 0;
2016 	p->se.prev_sum_exec_runtime	= 0;
2017 	p->se.nr_migrations		= 0;
2018 	p->se.vruntime			= 0;
2019 #ifdef CONFIG_SMP
2020 	p->se.avg.decay_count		= 0;
2021 #endif
2022 	INIT_LIST_HEAD(&p->se.group_node);
2023 
2024 #ifdef CONFIG_SCHEDSTATS
2025 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2026 #endif
2027 
2028 	RB_CLEAR_NODE(&p->dl.rb_node);
2029 	init_dl_task_timer(&p->dl);
2030 	__dl_clear_params(p);
2031 
2032 	INIT_LIST_HEAD(&p->rt.run_list);
2033 
2034 #ifdef CONFIG_PREEMPT_NOTIFIERS
2035 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2036 #endif
2037 
2038 #ifdef CONFIG_NUMA_BALANCING
2039 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2040 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2041 		p->mm->numa_scan_seq = 0;
2042 	}
2043 
2044 	if (clone_flags & CLONE_VM)
2045 		p->numa_preferred_nid = current->numa_preferred_nid;
2046 	else
2047 		p->numa_preferred_nid = -1;
2048 
2049 	p->node_stamp = 0ULL;
2050 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2051 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2052 	p->numa_work.next = &p->numa_work;
2053 	p->numa_faults = NULL;
2054 	p->last_task_numa_placement = 0;
2055 	p->last_sum_exec_runtime = 0;
2056 
2057 	p->numa_group = NULL;
2058 #endif /* CONFIG_NUMA_BALANCING */
2059 }
2060 
2061 #ifdef CONFIG_NUMA_BALANCING
2062 #ifdef CONFIG_SCHED_DEBUG
2063 void set_numabalancing_state(bool enabled)
2064 {
2065 	if (enabled)
2066 		sched_feat_set("NUMA");
2067 	else
2068 		sched_feat_set("NO_NUMA");
2069 }
2070 #else
2071 __read_mostly bool numabalancing_enabled;
2072 
2073 void set_numabalancing_state(bool enabled)
2074 {
2075 	numabalancing_enabled = enabled;
2076 }
2077 #endif /* CONFIG_SCHED_DEBUG */
2078 
2079 #ifdef CONFIG_PROC_SYSCTL
2080 int sysctl_numa_balancing(struct ctl_table *table, int write,
2081 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2082 {
2083 	struct ctl_table t;
2084 	int err;
2085 	int state = numabalancing_enabled;
2086 
2087 	if (write && !capable(CAP_SYS_ADMIN))
2088 		return -EPERM;
2089 
2090 	t = *table;
2091 	t.data = &state;
2092 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2093 	if (err < 0)
2094 		return err;
2095 	if (write)
2096 		set_numabalancing_state(state);
2097 	return err;
2098 }
2099 #endif
2100 #endif
2101 
2102 /*
2103  * fork()/clone()-time setup:
2104  */
2105 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2106 {
2107 	unsigned long flags;
2108 	int cpu = get_cpu();
2109 
2110 	__sched_fork(clone_flags, p);
2111 	/*
2112 	 * We mark the process as running here. This guarantees that
2113 	 * nobody will actually run it, and a signal or other external
2114 	 * event cannot wake it up and insert it on the runqueue either.
2115 	 */
2116 	p->state = TASK_RUNNING;
2117 
2118 	/*
2119 	 * Make sure we do not leak PI boosting priority to the child.
2120 	 */
2121 	p->prio = current->normal_prio;
2122 
2123 	/*
2124 	 * Revert to default priority/policy on fork if requested.
2125 	 */
2126 	if (unlikely(p->sched_reset_on_fork)) {
2127 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2128 			p->policy = SCHED_NORMAL;
2129 			p->static_prio = NICE_TO_PRIO(0);
2130 			p->rt_priority = 0;
2131 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2132 			p->static_prio = NICE_TO_PRIO(0);
2133 
2134 		p->prio = p->normal_prio = __normal_prio(p);
2135 		set_load_weight(p);
2136 
2137 		/*
2138 		 * We don't need the reset flag anymore after the fork. It has
2139 		 * fulfilled its duty:
2140 		 */
2141 		p->sched_reset_on_fork = 0;
2142 	}
2143 
2144 	if (dl_prio(p->prio)) {
2145 		put_cpu();
2146 		return -EAGAIN;
2147 	} else if (rt_prio(p->prio)) {
2148 		p->sched_class = &rt_sched_class;
2149 	} else {
2150 		p->sched_class = &fair_sched_class;
2151 	}
2152 
2153 	if (p->sched_class->task_fork)
2154 		p->sched_class->task_fork(p);
2155 
2156 	/*
2157 	 * The child is not yet in the pid-hash so no cgroup attach races,
2158 	 * and the cgroup is pinned to this child due to cgroup_fork()
2159 	 * is ran before sched_fork().
2160 	 *
2161 	 * Silence PROVE_RCU.
2162 	 */
2163 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2164 	set_task_cpu(p, cpu);
2165 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2166 
2167 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2168 	if (likely(sched_info_on()))
2169 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2170 #endif
2171 #if defined(CONFIG_SMP)
2172 	p->on_cpu = 0;
2173 #endif
2174 	init_task_preempt_count(p);
2175 #ifdef CONFIG_SMP
2176 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2177 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2178 #endif
2179 
2180 	put_cpu();
2181 	return 0;
2182 }
2183 
2184 unsigned long to_ratio(u64 period, u64 runtime)
2185 {
2186 	if (runtime == RUNTIME_INF)
2187 		return 1ULL << 20;
2188 
2189 	/*
2190 	 * Doing this here saves a lot of checks in all
2191 	 * the calling paths, and returning zero seems
2192 	 * safe for them anyway.
2193 	 */
2194 	if (period == 0)
2195 		return 0;
2196 
2197 	return div64_u64(runtime << 20, period);
2198 }
2199 
2200 #ifdef CONFIG_SMP
2201 inline struct dl_bw *dl_bw_of(int i)
2202 {
2203 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2204 			   "sched RCU must be held");
2205 	return &cpu_rq(i)->rd->dl_bw;
2206 }
2207 
2208 static inline int dl_bw_cpus(int i)
2209 {
2210 	struct root_domain *rd = cpu_rq(i)->rd;
2211 	int cpus = 0;
2212 
2213 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2214 			   "sched RCU must be held");
2215 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2216 		cpus++;
2217 
2218 	return cpus;
2219 }
2220 #else
2221 inline struct dl_bw *dl_bw_of(int i)
2222 {
2223 	return &cpu_rq(i)->dl.dl_bw;
2224 }
2225 
2226 static inline int dl_bw_cpus(int i)
2227 {
2228 	return 1;
2229 }
2230 #endif
2231 
2232 /*
2233  * We must be sure that accepting a new task (or allowing changing the
2234  * parameters of an existing one) is consistent with the bandwidth
2235  * constraints. If yes, this function also accordingly updates the currently
2236  * allocated bandwidth to reflect the new situation.
2237  *
2238  * This function is called while holding p's rq->lock.
2239  *
2240  * XXX we should delay bw change until the task's 0-lag point, see
2241  * __setparam_dl().
2242  */
2243 static int dl_overflow(struct task_struct *p, int policy,
2244 		       const struct sched_attr *attr)
2245 {
2246 
2247 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2248 	u64 period = attr->sched_period ?: attr->sched_deadline;
2249 	u64 runtime = attr->sched_runtime;
2250 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2251 	int cpus, err = -1;
2252 
2253 	if (new_bw == p->dl.dl_bw)
2254 		return 0;
2255 
2256 	/*
2257 	 * Either if a task, enters, leave, or stays -deadline but changes
2258 	 * its parameters, we may need to update accordingly the total
2259 	 * allocated bandwidth of the container.
2260 	 */
2261 	raw_spin_lock(&dl_b->lock);
2262 	cpus = dl_bw_cpus(task_cpu(p));
2263 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2264 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2265 		__dl_add(dl_b, new_bw);
2266 		err = 0;
2267 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2268 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2269 		__dl_clear(dl_b, p->dl.dl_bw);
2270 		__dl_add(dl_b, new_bw);
2271 		err = 0;
2272 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2273 		__dl_clear(dl_b, p->dl.dl_bw);
2274 		err = 0;
2275 	}
2276 	raw_spin_unlock(&dl_b->lock);
2277 
2278 	return err;
2279 }
2280 
2281 extern void init_dl_bw(struct dl_bw *dl_b);
2282 
2283 /*
2284  * wake_up_new_task - wake up a newly created task for the first time.
2285  *
2286  * This function will do some initial scheduler statistics housekeeping
2287  * that must be done for every newly created context, then puts the task
2288  * on the runqueue and wakes it.
2289  */
2290 void wake_up_new_task(struct task_struct *p)
2291 {
2292 	unsigned long flags;
2293 	struct rq *rq;
2294 
2295 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2296 #ifdef CONFIG_SMP
2297 	/*
2298 	 * Fork balancing, do it here and not earlier because:
2299 	 *  - cpus_allowed can change in the fork path
2300 	 *  - any previously selected cpu might disappear through hotplug
2301 	 */
2302 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2303 #endif
2304 
2305 	/* Initialize new task's runnable average */
2306 	init_task_runnable_average(p);
2307 	rq = __task_rq_lock(p);
2308 	activate_task(rq, p, 0);
2309 	p->on_rq = TASK_ON_RQ_QUEUED;
2310 	trace_sched_wakeup_new(p, true);
2311 	check_preempt_curr(rq, p, WF_FORK);
2312 #ifdef CONFIG_SMP
2313 	if (p->sched_class->task_woken)
2314 		p->sched_class->task_woken(rq, p);
2315 #endif
2316 	task_rq_unlock(rq, p, &flags);
2317 }
2318 
2319 #ifdef CONFIG_PREEMPT_NOTIFIERS
2320 
2321 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2322 
2323 /**
2324  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2325  * @notifier: notifier struct to register
2326  */
2327 void preempt_notifier_register(struct preempt_notifier *notifier)
2328 {
2329 	static_key_slow_inc(&preempt_notifier_key);
2330 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2331 }
2332 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2333 
2334 /**
2335  * preempt_notifier_unregister - no longer interested in preemption notifications
2336  * @notifier: notifier struct to unregister
2337  *
2338  * This is *not* safe to call from within a preemption notifier.
2339  */
2340 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2341 {
2342 	hlist_del(&notifier->link);
2343 	static_key_slow_dec(&preempt_notifier_key);
2344 }
2345 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2346 
2347 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2348 {
2349 	struct preempt_notifier *notifier;
2350 
2351 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2352 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2353 }
2354 
2355 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2356 {
2357 	if (static_key_false(&preempt_notifier_key))
2358 		__fire_sched_in_preempt_notifiers(curr);
2359 }
2360 
2361 static void
2362 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2363 				   struct task_struct *next)
2364 {
2365 	struct preempt_notifier *notifier;
2366 
2367 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2368 		notifier->ops->sched_out(notifier, next);
2369 }
2370 
2371 static __always_inline void
2372 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2373 				 struct task_struct *next)
2374 {
2375 	if (static_key_false(&preempt_notifier_key))
2376 		__fire_sched_out_preempt_notifiers(curr, next);
2377 }
2378 
2379 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2380 
2381 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2382 {
2383 }
2384 
2385 static inline void
2386 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2387 				 struct task_struct *next)
2388 {
2389 }
2390 
2391 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2392 
2393 /**
2394  * prepare_task_switch - prepare to switch tasks
2395  * @rq: the runqueue preparing to switch
2396  * @prev: the current task that is being switched out
2397  * @next: the task we are going to switch to.
2398  *
2399  * This is called with the rq lock held and interrupts off. It must
2400  * be paired with a subsequent finish_task_switch after the context
2401  * switch.
2402  *
2403  * prepare_task_switch sets up locking and calls architecture specific
2404  * hooks.
2405  */
2406 static inline void
2407 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2408 		    struct task_struct *next)
2409 {
2410 	trace_sched_switch(prev, next);
2411 	sched_info_switch(rq, prev, next);
2412 	perf_event_task_sched_out(prev, next);
2413 	fire_sched_out_preempt_notifiers(prev, next);
2414 	prepare_lock_switch(rq, next);
2415 	prepare_arch_switch(next);
2416 }
2417 
2418 /**
2419  * finish_task_switch - clean up after a task-switch
2420  * @prev: the thread we just switched away from.
2421  *
2422  * finish_task_switch must be called after the context switch, paired
2423  * with a prepare_task_switch call before the context switch.
2424  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2425  * and do any other architecture-specific cleanup actions.
2426  *
2427  * Note that we may have delayed dropping an mm in context_switch(). If
2428  * so, we finish that here outside of the runqueue lock. (Doing it
2429  * with the lock held can cause deadlocks; see schedule() for
2430  * details.)
2431  *
2432  * The context switch have flipped the stack from under us and restored the
2433  * local variables which were saved when this task called schedule() in the
2434  * past. prev == current is still correct but we need to recalculate this_rq
2435  * because prev may have moved to another CPU.
2436  */
2437 static struct rq *finish_task_switch(struct task_struct *prev)
2438 	__releases(rq->lock)
2439 {
2440 	struct rq *rq = this_rq();
2441 	struct mm_struct *mm = rq->prev_mm;
2442 	long prev_state;
2443 
2444 	rq->prev_mm = NULL;
2445 
2446 	/*
2447 	 * A task struct has one reference for the use as "current".
2448 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2449 	 * schedule one last time. The schedule call will never return, and
2450 	 * the scheduled task must drop that reference.
2451 	 * The test for TASK_DEAD must occur while the runqueue locks are
2452 	 * still held, otherwise prev could be scheduled on another cpu, die
2453 	 * there before we look at prev->state, and then the reference would
2454 	 * be dropped twice.
2455 	 *		Manfred Spraul <manfred@colorfullife.com>
2456 	 */
2457 	prev_state = prev->state;
2458 	vtime_task_switch(prev);
2459 	finish_arch_switch(prev);
2460 	perf_event_task_sched_in(prev, current);
2461 	finish_lock_switch(rq, prev);
2462 	finish_arch_post_lock_switch();
2463 
2464 	fire_sched_in_preempt_notifiers(current);
2465 	if (mm)
2466 		mmdrop(mm);
2467 	if (unlikely(prev_state == TASK_DEAD)) {
2468 		if (prev->sched_class->task_dead)
2469 			prev->sched_class->task_dead(prev);
2470 
2471 		/*
2472 		 * Remove function-return probe instances associated with this
2473 		 * task and put them back on the free list.
2474 		 */
2475 		kprobe_flush_task(prev);
2476 		put_task_struct(prev);
2477 	}
2478 
2479 	tick_nohz_task_switch(current);
2480 	return rq;
2481 }
2482 
2483 #ifdef CONFIG_SMP
2484 
2485 /* rq->lock is NOT held, but preemption is disabled */
2486 static void __balance_callback(struct rq *rq)
2487 {
2488 	struct callback_head *head, *next;
2489 	void (*func)(struct rq *rq);
2490 	unsigned long flags;
2491 
2492 	raw_spin_lock_irqsave(&rq->lock, flags);
2493 	head = rq->balance_callback;
2494 	rq->balance_callback = NULL;
2495 	while (head) {
2496 		func = (void (*)(struct rq *))head->func;
2497 		next = head->next;
2498 		head->next = NULL;
2499 		head = next;
2500 
2501 		func(rq);
2502 	}
2503 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2504 }
2505 
2506 static inline void balance_callback(struct rq *rq)
2507 {
2508 	if (unlikely(rq->balance_callback))
2509 		__balance_callback(rq);
2510 }
2511 
2512 #else
2513 
2514 static inline void balance_callback(struct rq *rq)
2515 {
2516 }
2517 
2518 #endif
2519 
2520 /**
2521  * schedule_tail - first thing a freshly forked thread must call.
2522  * @prev: the thread we just switched away from.
2523  */
2524 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2525 	__releases(rq->lock)
2526 {
2527 	struct rq *rq;
2528 
2529 	/* finish_task_switch() drops rq->lock and enables preemtion */
2530 	preempt_disable();
2531 	rq = finish_task_switch(prev);
2532 	balance_callback(rq);
2533 	preempt_enable();
2534 
2535 	if (current->set_child_tid)
2536 		put_user(task_pid_vnr(current), current->set_child_tid);
2537 }
2538 
2539 /*
2540  * context_switch - switch to the new MM and the new thread's register state.
2541  */
2542 static inline struct rq *
2543 context_switch(struct rq *rq, struct task_struct *prev,
2544 	       struct task_struct *next)
2545 {
2546 	struct mm_struct *mm, *oldmm;
2547 
2548 	prepare_task_switch(rq, prev, next);
2549 
2550 	mm = next->mm;
2551 	oldmm = prev->active_mm;
2552 	/*
2553 	 * For paravirt, this is coupled with an exit in switch_to to
2554 	 * combine the page table reload and the switch backend into
2555 	 * one hypercall.
2556 	 */
2557 	arch_start_context_switch(prev);
2558 
2559 	if (!mm) {
2560 		next->active_mm = oldmm;
2561 		atomic_inc(&oldmm->mm_count);
2562 		enter_lazy_tlb(oldmm, next);
2563 	} else
2564 		switch_mm(oldmm, mm, next);
2565 
2566 	if (!prev->mm) {
2567 		prev->active_mm = NULL;
2568 		rq->prev_mm = oldmm;
2569 	}
2570 	/*
2571 	 * Since the runqueue lock will be released by the next
2572 	 * task (which is an invalid locking op but in the case
2573 	 * of the scheduler it's an obvious special-case), so we
2574 	 * do an early lockdep release here:
2575 	 */
2576 	lockdep_unpin_lock(&rq->lock);
2577 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2578 
2579 	/* Here we just switch the register state and the stack. */
2580 	switch_to(prev, next, prev);
2581 	barrier();
2582 
2583 	return finish_task_switch(prev);
2584 }
2585 
2586 /*
2587  * nr_running and nr_context_switches:
2588  *
2589  * externally visible scheduler statistics: current number of runnable
2590  * threads, total number of context switches performed since bootup.
2591  */
2592 unsigned long nr_running(void)
2593 {
2594 	unsigned long i, sum = 0;
2595 
2596 	for_each_online_cpu(i)
2597 		sum += cpu_rq(i)->nr_running;
2598 
2599 	return sum;
2600 }
2601 
2602 /*
2603  * Check if only the current task is running on the cpu.
2604  */
2605 bool single_task_running(void)
2606 {
2607 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2608 		return true;
2609 	else
2610 		return false;
2611 }
2612 EXPORT_SYMBOL(single_task_running);
2613 
2614 unsigned long long nr_context_switches(void)
2615 {
2616 	int i;
2617 	unsigned long long sum = 0;
2618 
2619 	for_each_possible_cpu(i)
2620 		sum += cpu_rq(i)->nr_switches;
2621 
2622 	return sum;
2623 }
2624 
2625 unsigned long nr_iowait(void)
2626 {
2627 	unsigned long i, sum = 0;
2628 
2629 	for_each_possible_cpu(i)
2630 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2631 
2632 	return sum;
2633 }
2634 
2635 unsigned long nr_iowait_cpu(int cpu)
2636 {
2637 	struct rq *this = cpu_rq(cpu);
2638 	return atomic_read(&this->nr_iowait);
2639 }
2640 
2641 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2642 {
2643 	struct rq *rq = this_rq();
2644 	*nr_waiters = atomic_read(&rq->nr_iowait);
2645 	*load = rq->load.weight;
2646 }
2647 
2648 #ifdef CONFIG_SMP
2649 
2650 /*
2651  * sched_exec - execve() is a valuable balancing opportunity, because at
2652  * this point the task has the smallest effective memory and cache footprint.
2653  */
2654 void sched_exec(void)
2655 {
2656 	struct task_struct *p = current;
2657 	unsigned long flags;
2658 	int dest_cpu;
2659 
2660 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2661 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2662 	if (dest_cpu == smp_processor_id())
2663 		goto unlock;
2664 
2665 	if (likely(cpu_active(dest_cpu))) {
2666 		struct migration_arg arg = { p, dest_cpu };
2667 
2668 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2669 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2670 		return;
2671 	}
2672 unlock:
2673 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2674 }
2675 
2676 #endif
2677 
2678 DEFINE_PER_CPU(struct kernel_stat, kstat);
2679 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2680 
2681 EXPORT_PER_CPU_SYMBOL(kstat);
2682 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2683 
2684 /*
2685  * Return accounted runtime for the task.
2686  * In case the task is currently running, return the runtime plus current's
2687  * pending runtime that have not been accounted yet.
2688  */
2689 unsigned long long task_sched_runtime(struct task_struct *p)
2690 {
2691 	unsigned long flags;
2692 	struct rq *rq;
2693 	u64 ns;
2694 
2695 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2696 	/*
2697 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2698 	 * So we have a optimization chance when the task's delta_exec is 0.
2699 	 * Reading ->on_cpu is racy, but this is ok.
2700 	 *
2701 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2702 	 * If we race with it entering cpu, unaccounted time is 0. This is
2703 	 * indistinguishable from the read occurring a few cycles earlier.
2704 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2705 	 * been accounted, so we're correct here as well.
2706 	 */
2707 	if (!p->on_cpu || !task_on_rq_queued(p))
2708 		return p->se.sum_exec_runtime;
2709 #endif
2710 
2711 	rq = task_rq_lock(p, &flags);
2712 	/*
2713 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2714 	 * project cycles that may never be accounted to this
2715 	 * thread, breaking clock_gettime().
2716 	 */
2717 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2718 		update_rq_clock(rq);
2719 		p->sched_class->update_curr(rq);
2720 	}
2721 	ns = p->se.sum_exec_runtime;
2722 	task_rq_unlock(rq, p, &flags);
2723 
2724 	return ns;
2725 }
2726 
2727 /*
2728  * This function gets called by the timer code, with HZ frequency.
2729  * We call it with interrupts disabled.
2730  */
2731 void scheduler_tick(void)
2732 {
2733 	int cpu = smp_processor_id();
2734 	struct rq *rq = cpu_rq(cpu);
2735 	struct task_struct *curr = rq->curr;
2736 
2737 	sched_clock_tick();
2738 
2739 	raw_spin_lock(&rq->lock);
2740 	update_rq_clock(rq);
2741 	curr->sched_class->task_tick(rq, curr, 0);
2742 	update_cpu_load_active(rq);
2743 	calc_global_load_tick(rq);
2744 	raw_spin_unlock(&rq->lock);
2745 
2746 	perf_event_task_tick();
2747 
2748 #ifdef CONFIG_SMP
2749 	rq->idle_balance = idle_cpu(cpu);
2750 	trigger_load_balance(rq);
2751 #endif
2752 	rq_last_tick_reset(rq);
2753 }
2754 
2755 #ifdef CONFIG_NO_HZ_FULL
2756 /**
2757  * scheduler_tick_max_deferment
2758  *
2759  * Keep at least one tick per second when a single
2760  * active task is running because the scheduler doesn't
2761  * yet completely support full dynticks environment.
2762  *
2763  * This makes sure that uptime, CFS vruntime, load
2764  * balancing, etc... continue to move forward, even
2765  * with a very low granularity.
2766  *
2767  * Return: Maximum deferment in nanoseconds.
2768  */
2769 u64 scheduler_tick_max_deferment(void)
2770 {
2771 	struct rq *rq = this_rq();
2772 	unsigned long next, now = READ_ONCE(jiffies);
2773 
2774 	next = rq->last_sched_tick + HZ;
2775 
2776 	if (time_before_eq(next, now))
2777 		return 0;
2778 
2779 	return jiffies_to_nsecs(next - now);
2780 }
2781 #endif
2782 
2783 notrace unsigned long get_parent_ip(unsigned long addr)
2784 {
2785 	if (in_lock_functions(addr)) {
2786 		addr = CALLER_ADDR2;
2787 		if (in_lock_functions(addr))
2788 			addr = CALLER_ADDR3;
2789 	}
2790 	return addr;
2791 }
2792 
2793 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2794 				defined(CONFIG_PREEMPT_TRACER))
2795 
2796 void preempt_count_add(int val)
2797 {
2798 #ifdef CONFIG_DEBUG_PREEMPT
2799 	/*
2800 	 * Underflow?
2801 	 */
2802 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2803 		return;
2804 #endif
2805 	__preempt_count_add(val);
2806 #ifdef CONFIG_DEBUG_PREEMPT
2807 	/*
2808 	 * Spinlock count overflowing soon?
2809 	 */
2810 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2811 				PREEMPT_MASK - 10);
2812 #endif
2813 	if (preempt_count() == val) {
2814 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2815 #ifdef CONFIG_DEBUG_PREEMPT
2816 		current->preempt_disable_ip = ip;
2817 #endif
2818 		trace_preempt_off(CALLER_ADDR0, ip);
2819 	}
2820 }
2821 EXPORT_SYMBOL(preempt_count_add);
2822 NOKPROBE_SYMBOL(preempt_count_add);
2823 
2824 void preempt_count_sub(int val)
2825 {
2826 #ifdef CONFIG_DEBUG_PREEMPT
2827 	/*
2828 	 * Underflow?
2829 	 */
2830 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2831 		return;
2832 	/*
2833 	 * Is the spinlock portion underflowing?
2834 	 */
2835 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2836 			!(preempt_count() & PREEMPT_MASK)))
2837 		return;
2838 #endif
2839 
2840 	if (preempt_count() == val)
2841 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2842 	__preempt_count_sub(val);
2843 }
2844 EXPORT_SYMBOL(preempt_count_sub);
2845 NOKPROBE_SYMBOL(preempt_count_sub);
2846 
2847 #endif
2848 
2849 /*
2850  * Print scheduling while atomic bug:
2851  */
2852 static noinline void __schedule_bug(struct task_struct *prev)
2853 {
2854 	if (oops_in_progress)
2855 		return;
2856 
2857 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2858 		prev->comm, prev->pid, preempt_count());
2859 
2860 	debug_show_held_locks(prev);
2861 	print_modules();
2862 	if (irqs_disabled())
2863 		print_irqtrace_events(prev);
2864 #ifdef CONFIG_DEBUG_PREEMPT
2865 	if (in_atomic_preempt_off()) {
2866 		pr_err("Preemption disabled at:");
2867 		print_ip_sym(current->preempt_disable_ip);
2868 		pr_cont("\n");
2869 	}
2870 #endif
2871 	dump_stack();
2872 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2873 }
2874 
2875 /*
2876  * Various schedule()-time debugging checks and statistics:
2877  */
2878 static inline void schedule_debug(struct task_struct *prev)
2879 {
2880 #ifdef CONFIG_SCHED_STACK_END_CHECK
2881 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2882 #endif
2883 	/*
2884 	 * Test if we are atomic. Since do_exit() needs to call into
2885 	 * schedule() atomically, we ignore that path. Otherwise whine
2886 	 * if we are scheduling when we should not.
2887 	 */
2888 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2889 		__schedule_bug(prev);
2890 	rcu_sleep_check();
2891 
2892 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2893 
2894 	schedstat_inc(this_rq(), sched_count);
2895 }
2896 
2897 /*
2898  * Pick up the highest-prio task:
2899  */
2900 static inline struct task_struct *
2901 pick_next_task(struct rq *rq, struct task_struct *prev)
2902 {
2903 	const struct sched_class *class = &fair_sched_class;
2904 	struct task_struct *p;
2905 
2906 	/*
2907 	 * Optimization: we know that if all tasks are in
2908 	 * the fair class we can call that function directly:
2909 	 */
2910 	if (likely(prev->sched_class == class &&
2911 		   rq->nr_running == rq->cfs.h_nr_running)) {
2912 		p = fair_sched_class.pick_next_task(rq, prev);
2913 		if (unlikely(p == RETRY_TASK))
2914 			goto again;
2915 
2916 		/* assumes fair_sched_class->next == idle_sched_class */
2917 		if (unlikely(!p))
2918 			p = idle_sched_class.pick_next_task(rq, prev);
2919 
2920 		return p;
2921 	}
2922 
2923 again:
2924 	for_each_class(class) {
2925 		p = class->pick_next_task(rq, prev);
2926 		if (p) {
2927 			if (unlikely(p == RETRY_TASK))
2928 				goto again;
2929 			return p;
2930 		}
2931 	}
2932 
2933 	BUG(); /* the idle class will always have a runnable task */
2934 }
2935 
2936 /*
2937  * __schedule() is the main scheduler function.
2938  *
2939  * The main means of driving the scheduler and thus entering this function are:
2940  *
2941  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2942  *
2943  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2944  *      paths. For example, see arch/x86/entry_64.S.
2945  *
2946  *      To drive preemption between tasks, the scheduler sets the flag in timer
2947  *      interrupt handler scheduler_tick().
2948  *
2949  *   3. Wakeups don't really cause entry into schedule(). They add a
2950  *      task to the run-queue and that's it.
2951  *
2952  *      Now, if the new task added to the run-queue preempts the current
2953  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2954  *      called on the nearest possible occasion:
2955  *
2956  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2957  *
2958  *         - in syscall or exception context, at the next outmost
2959  *           preempt_enable(). (this might be as soon as the wake_up()'s
2960  *           spin_unlock()!)
2961  *
2962  *         - in IRQ context, return from interrupt-handler to
2963  *           preemptible context
2964  *
2965  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2966  *         then at the next:
2967  *
2968  *          - cond_resched() call
2969  *          - explicit schedule() call
2970  *          - return from syscall or exception to user-space
2971  *          - return from interrupt-handler to user-space
2972  *
2973  * WARNING: must be called with preemption disabled!
2974  */
2975 static void __sched __schedule(void)
2976 {
2977 	struct task_struct *prev, *next;
2978 	unsigned long *switch_count;
2979 	struct rq *rq;
2980 	int cpu;
2981 
2982 	cpu = smp_processor_id();
2983 	rq = cpu_rq(cpu);
2984 	rcu_note_context_switch();
2985 	prev = rq->curr;
2986 
2987 	schedule_debug(prev);
2988 
2989 	if (sched_feat(HRTICK))
2990 		hrtick_clear(rq);
2991 
2992 	/*
2993 	 * Make sure that signal_pending_state()->signal_pending() below
2994 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2995 	 * done by the caller to avoid the race with signal_wake_up().
2996 	 */
2997 	smp_mb__before_spinlock();
2998 	raw_spin_lock_irq(&rq->lock);
2999 	lockdep_pin_lock(&rq->lock);
3000 
3001 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3002 
3003 	switch_count = &prev->nivcsw;
3004 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3005 		if (unlikely(signal_pending_state(prev->state, prev))) {
3006 			prev->state = TASK_RUNNING;
3007 		} else {
3008 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3009 			prev->on_rq = 0;
3010 
3011 			/*
3012 			 * If a worker went to sleep, notify and ask workqueue
3013 			 * whether it wants to wake up a task to maintain
3014 			 * concurrency.
3015 			 */
3016 			if (prev->flags & PF_WQ_WORKER) {
3017 				struct task_struct *to_wakeup;
3018 
3019 				to_wakeup = wq_worker_sleeping(prev, cpu);
3020 				if (to_wakeup)
3021 					try_to_wake_up_local(to_wakeup);
3022 			}
3023 		}
3024 		switch_count = &prev->nvcsw;
3025 	}
3026 
3027 	if (task_on_rq_queued(prev))
3028 		update_rq_clock(rq);
3029 
3030 	next = pick_next_task(rq, prev);
3031 	clear_tsk_need_resched(prev);
3032 	clear_preempt_need_resched();
3033 	rq->clock_skip_update = 0;
3034 
3035 	if (likely(prev != next)) {
3036 		rq->nr_switches++;
3037 		rq->curr = next;
3038 		++*switch_count;
3039 
3040 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3041 		cpu = cpu_of(rq);
3042 	} else {
3043 		lockdep_unpin_lock(&rq->lock);
3044 		raw_spin_unlock_irq(&rq->lock);
3045 	}
3046 
3047 	balance_callback(rq);
3048 }
3049 
3050 static inline void sched_submit_work(struct task_struct *tsk)
3051 {
3052 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3053 		return;
3054 	/*
3055 	 * If we are going to sleep and we have plugged IO queued,
3056 	 * make sure to submit it to avoid deadlocks.
3057 	 */
3058 	if (blk_needs_flush_plug(tsk))
3059 		blk_schedule_flush_plug(tsk);
3060 }
3061 
3062 asmlinkage __visible void __sched schedule(void)
3063 {
3064 	struct task_struct *tsk = current;
3065 
3066 	sched_submit_work(tsk);
3067 	do {
3068 		preempt_disable();
3069 		__schedule();
3070 		sched_preempt_enable_no_resched();
3071 	} while (need_resched());
3072 }
3073 EXPORT_SYMBOL(schedule);
3074 
3075 #ifdef CONFIG_CONTEXT_TRACKING
3076 asmlinkage __visible void __sched schedule_user(void)
3077 {
3078 	/*
3079 	 * If we come here after a random call to set_need_resched(),
3080 	 * or we have been woken up remotely but the IPI has not yet arrived,
3081 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3082 	 * we find a better solution.
3083 	 *
3084 	 * NB: There are buggy callers of this function.  Ideally we
3085 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3086 	 * too frequently to make sense yet.
3087 	 */
3088 	enum ctx_state prev_state = exception_enter();
3089 	schedule();
3090 	exception_exit(prev_state);
3091 }
3092 #endif
3093 
3094 /**
3095  * schedule_preempt_disabled - called with preemption disabled
3096  *
3097  * Returns with preemption disabled. Note: preempt_count must be 1
3098  */
3099 void __sched schedule_preempt_disabled(void)
3100 {
3101 	sched_preempt_enable_no_resched();
3102 	schedule();
3103 	preempt_disable();
3104 }
3105 
3106 static void __sched notrace preempt_schedule_common(void)
3107 {
3108 	do {
3109 		preempt_active_enter();
3110 		__schedule();
3111 		preempt_active_exit();
3112 
3113 		/*
3114 		 * Check again in case we missed a preemption opportunity
3115 		 * between schedule and now.
3116 		 */
3117 	} while (need_resched());
3118 }
3119 
3120 #ifdef CONFIG_PREEMPT
3121 /*
3122  * this is the entry point to schedule() from in-kernel preemption
3123  * off of preempt_enable. Kernel preemptions off return from interrupt
3124  * occur there and call schedule directly.
3125  */
3126 asmlinkage __visible void __sched notrace preempt_schedule(void)
3127 {
3128 	/*
3129 	 * If there is a non-zero preempt_count or interrupts are disabled,
3130 	 * we do not want to preempt the current task. Just return..
3131 	 */
3132 	if (likely(!preemptible()))
3133 		return;
3134 
3135 	preempt_schedule_common();
3136 }
3137 NOKPROBE_SYMBOL(preempt_schedule);
3138 EXPORT_SYMBOL(preempt_schedule);
3139 
3140 /**
3141  * preempt_schedule_notrace - preempt_schedule called by tracing
3142  *
3143  * The tracing infrastructure uses preempt_enable_notrace to prevent
3144  * recursion and tracing preempt enabling caused by the tracing
3145  * infrastructure itself. But as tracing can happen in areas coming
3146  * from userspace or just about to enter userspace, a preempt enable
3147  * can occur before user_exit() is called. This will cause the scheduler
3148  * to be called when the system is still in usermode.
3149  *
3150  * To prevent this, the preempt_enable_notrace will use this function
3151  * instead of preempt_schedule() to exit user context if needed before
3152  * calling the scheduler.
3153  */
3154 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3155 {
3156 	enum ctx_state prev_ctx;
3157 
3158 	if (likely(!preemptible()))
3159 		return;
3160 
3161 	do {
3162 		/*
3163 		 * Use raw __prempt_count() ops that don't call function.
3164 		 * We can't call functions before disabling preemption which
3165 		 * disarm preemption tracing recursions.
3166 		 */
3167 		__preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3168 		barrier();
3169 		/*
3170 		 * Needs preempt disabled in case user_exit() is traced
3171 		 * and the tracer calls preempt_enable_notrace() causing
3172 		 * an infinite recursion.
3173 		 */
3174 		prev_ctx = exception_enter();
3175 		__schedule();
3176 		exception_exit(prev_ctx);
3177 
3178 		barrier();
3179 		__preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3180 	} while (need_resched());
3181 }
3182 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3183 
3184 #endif /* CONFIG_PREEMPT */
3185 
3186 /*
3187  * this is the entry point to schedule() from kernel preemption
3188  * off of irq context.
3189  * Note, that this is called and return with irqs disabled. This will
3190  * protect us against recursive calling from irq.
3191  */
3192 asmlinkage __visible void __sched preempt_schedule_irq(void)
3193 {
3194 	enum ctx_state prev_state;
3195 
3196 	/* Catch callers which need to be fixed */
3197 	BUG_ON(preempt_count() || !irqs_disabled());
3198 
3199 	prev_state = exception_enter();
3200 
3201 	do {
3202 		preempt_active_enter();
3203 		local_irq_enable();
3204 		__schedule();
3205 		local_irq_disable();
3206 		preempt_active_exit();
3207 	} while (need_resched());
3208 
3209 	exception_exit(prev_state);
3210 }
3211 
3212 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3213 			  void *key)
3214 {
3215 	return try_to_wake_up(curr->private, mode, wake_flags);
3216 }
3217 EXPORT_SYMBOL(default_wake_function);
3218 
3219 #ifdef CONFIG_RT_MUTEXES
3220 
3221 /*
3222  * rt_mutex_setprio - set the current priority of a task
3223  * @p: task
3224  * @prio: prio value (kernel-internal form)
3225  *
3226  * This function changes the 'effective' priority of a task. It does
3227  * not touch ->normal_prio like __setscheduler().
3228  *
3229  * Used by the rt_mutex code to implement priority inheritance
3230  * logic. Call site only calls if the priority of the task changed.
3231  */
3232 void rt_mutex_setprio(struct task_struct *p, int prio)
3233 {
3234 	int oldprio, queued, running, enqueue_flag = 0;
3235 	struct rq *rq;
3236 	const struct sched_class *prev_class;
3237 
3238 	BUG_ON(prio > MAX_PRIO);
3239 
3240 	rq = __task_rq_lock(p);
3241 
3242 	/*
3243 	 * Idle task boosting is a nono in general. There is one
3244 	 * exception, when PREEMPT_RT and NOHZ is active:
3245 	 *
3246 	 * The idle task calls get_next_timer_interrupt() and holds
3247 	 * the timer wheel base->lock on the CPU and another CPU wants
3248 	 * to access the timer (probably to cancel it). We can safely
3249 	 * ignore the boosting request, as the idle CPU runs this code
3250 	 * with interrupts disabled and will complete the lock
3251 	 * protected section without being interrupted. So there is no
3252 	 * real need to boost.
3253 	 */
3254 	if (unlikely(p == rq->idle)) {
3255 		WARN_ON(p != rq->curr);
3256 		WARN_ON(p->pi_blocked_on);
3257 		goto out_unlock;
3258 	}
3259 
3260 	trace_sched_pi_setprio(p, prio);
3261 	oldprio = p->prio;
3262 	prev_class = p->sched_class;
3263 	queued = task_on_rq_queued(p);
3264 	running = task_current(rq, p);
3265 	if (queued)
3266 		dequeue_task(rq, p, 0);
3267 	if (running)
3268 		put_prev_task(rq, p);
3269 
3270 	/*
3271 	 * Boosting condition are:
3272 	 * 1. -rt task is running and holds mutex A
3273 	 *      --> -dl task blocks on mutex A
3274 	 *
3275 	 * 2. -dl task is running and holds mutex A
3276 	 *      --> -dl task blocks on mutex A and could preempt the
3277 	 *          running task
3278 	 */
3279 	if (dl_prio(prio)) {
3280 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3281 		if (!dl_prio(p->normal_prio) ||
3282 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3283 			p->dl.dl_boosted = 1;
3284 			enqueue_flag = ENQUEUE_REPLENISH;
3285 		} else
3286 			p->dl.dl_boosted = 0;
3287 		p->sched_class = &dl_sched_class;
3288 	} else if (rt_prio(prio)) {
3289 		if (dl_prio(oldprio))
3290 			p->dl.dl_boosted = 0;
3291 		if (oldprio < prio)
3292 			enqueue_flag = ENQUEUE_HEAD;
3293 		p->sched_class = &rt_sched_class;
3294 	} else {
3295 		if (dl_prio(oldprio))
3296 			p->dl.dl_boosted = 0;
3297 		if (rt_prio(oldprio))
3298 			p->rt.timeout = 0;
3299 		p->sched_class = &fair_sched_class;
3300 	}
3301 
3302 	p->prio = prio;
3303 
3304 	if (running)
3305 		p->sched_class->set_curr_task(rq);
3306 	if (queued)
3307 		enqueue_task(rq, p, enqueue_flag);
3308 
3309 	check_class_changed(rq, p, prev_class, oldprio);
3310 out_unlock:
3311 	preempt_disable(); /* avoid rq from going away on us */
3312 	__task_rq_unlock(rq);
3313 
3314 	balance_callback(rq);
3315 	preempt_enable();
3316 }
3317 #endif
3318 
3319 void set_user_nice(struct task_struct *p, long nice)
3320 {
3321 	int old_prio, delta, queued;
3322 	unsigned long flags;
3323 	struct rq *rq;
3324 
3325 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3326 		return;
3327 	/*
3328 	 * We have to be careful, if called from sys_setpriority(),
3329 	 * the task might be in the middle of scheduling on another CPU.
3330 	 */
3331 	rq = task_rq_lock(p, &flags);
3332 	/*
3333 	 * The RT priorities are set via sched_setscheduler(), but we still
3334 	 * allow the 'normal' nice value to be set - but as expected
3335 	 * it wont have any effect on scheduling until the task is
3336 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3337 	 */
3338 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3339 		p->static_prio = NICE_TO_PRIO(nice);
3340 		goto out_unlock;
3341 	}
3342 	queued = task_on_rq_queued(p);
3343 	if (queued)
3344 		dequeue_task(rq, p, 0);
3345 
3346 	p->static_prio = NICE_TO_PRIO(nice);
3347 	set_load_weight(p);
3348 	old_prio = p->prio;
3349 	p->prio = effective_prio(p);
3350 	delta = p->prio - old_prio;
3351 
3352 	if (queued) {
3353 		enqueue_task(rq, p, 0);
3354 		/*
3355 		 * If the task increased its priority or is running and
3356 		 * lowered its priority, then reschedule its CPU:
3357 		 */
3358 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3359 			resched_curr(rq);
3360 	}
3361 out_unlock:
3362 	task_rq_unlock(rq, p, &flags);
3363 }
3364 EXPORT_SYMBOL(set_user_nice);
3365 
3366 /*
3367  * can_nice - check if a task can reduce its nice value
3368  * @p: task
3369  * @nice: nice value
3370  */
3371 int can_nice(const struct task_struct *p, const int nice)
3372 {
3373 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3374 	int nice_rlim = nice_to_rlimit(nice);
3375 
3376 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3377 		capable(CAP_SYS_NICE));
3378 }
3379 
3380 #ifdef __ARCH_WANT_SYS_NICE
3381 
3382 /*
3383  * sys_nice - change the priority of the current process.
3384  * @increment: priority increment
3385  *
3386  * sys_setpriority is a more generic, but much slower function that
3387  * does similar things.
3388  */
3389 SYSCALL_DEFINE1(nice, int, increment)
3390 {
3391 	long nice, retval;
3392 
3393 	/*
3394 	 * Setpriority might change our priority at the same moment.
3395 	 * We don't have to worry. Conceptually one call occurs first
3396 	 * and we have a single winner.
3397 	 */
3398 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3399 	nice = task_nice(current) + increment;
3400 
3401 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3402 	if (increment < 0 && !can_nice(current, nice))
3403 		return -EPERM;
3404 
3405 	retval = security_task_setnice(current, nice);
3406 	if (retval)
3407 		return retval;
3408 
3409 	set_user_nice(current, nice);
3410 	return 0;
3411 }
3412 
3413 #endif
3414 
3415 /**
3416  * task_prio - return the priority value of a given task.
3417  * @p: the task in question.
3418  *
3419  * Return: The priority value as seen by users in /proc.
3420  * RT tasks are offset by -200. Normal tasks are centered
3421  * around 0, value goes from -16 to +15.
3422  */
3423 int task_prio(const struct task_struct *p)
3424 {
3425 	return p->prio - MAX_RT_PRIO;
3426 }
3427 
3428 /**
3429  * idle_cpu - is a given cpu idle currently?
3430  * @cpu: the processor in question.
3431  *
3432  * Return: 1 if the CPU is currently idle. 0 otherwise.
3433  */
3434 int idle_cpu(int cpu)
3435 {
3436 	struct rq *rq = cpu_rq(cpu);
3437 
3438 	if (rq->curr != rq->idle)
3439 		return 0;
3440 
3441 	if (rq->nr_running)
3442 		return 0;
3443 
3444 #ifdef CONFIG_SMP
3445 	if (!llist_empty(&rq->wake_list))
3446 		return 0;
3447 #endif
3448 
3449 	return 1;
3450 }
3451 
3452 /**
3453  * idle_task - return the idle task for a given cpu.
3454  * @cpu: the processor in question.
3455  *
3456  * Return: The idle task for the cpu @cpu.
3457  */
3458 struct task_struct *idle_task(int cpu)
3459 {
3460 	return cpu_rq(cpu)->idle;
3461 }
3462 
3463 /**
3464  * find_process_by_pid - find a process with a matching PID value.
3465  * @pid: the pid in question.
3466  *
3467  * The task of @pid, if found. %NULL otherwise.
3468  */
3469 static struct task_struct *find_process_by_pid(pid_t pid)
3470 {
3471 	return pid ? find_task_by_vpid(pid) : current;
3472 }
3473 
3474 /*
3475  * This function initializes the sched_dl_entity of a newly becoming
3476  * SCHED_DEADLINE task.
3477  *
3478  * Only the static values are considered here, the actual runtime and the
3479  * absolute deadline will be properly calculated when the task is enqueued
3480  * for the first time with its new policy.
3481  */
3482 static void
3483 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3484 {
3485 	struct sched_dl_entity *dl_se = &p->dl;
3486 
3487 	dl_se->dl_runtime = attr->sched_runtime;
3488 	dl_se->dl_deadline = attr->sched_deadline;
3489 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3490 	dl_se->flags = attr->sched_flags;
3491 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3492 
3493 	/*
3494 	 * Changing the parameters of a task is 'tricky' and we're not doing
3495 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3496 	 *
3497 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3498 	 * point. This would include retaining the task_struct until that time
3499 	 * and change dl_overflow() to not immediately decrement the current
3500 	 * amount.
3501 	 *
3502 	 * Instead we retain the current runtime/deadline and let the new
3503 	 * parameters take effect after the current reservation period lapses.
3504 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3505 	 * before the current scheduling deadline.
3506 	 *
3507 	 * We can still have temporary overloads because we do not delay the
3508 	 * change in bandwidth until that time; so admission control is
3509 	 * not on the safe side. It does however guarantee tasks will never
3510 	 * consume more than promised.
3511 	 */
3512 }
3513 
3514 /*
3515  * sched_setparam() passes in -1 for its policy, to let the functions
3516  * it calls know not to change it.
3517  */
3518 #define SETPARAM_POLICY	-1
3519 
3520 static void __setscheduler_params(struct task_struct *p,
3521 		const struct sched_attr *attr)
3522 {
3523 	int policy = attr->sched_policy;
3524 
3525 	if (policy == SETPARAM_POLICY)
3526 		policy = p->policy;
3527 
3528 	p->policy = policy;
3529 
3530 	if (dl_policy(policy))
3531 		__setparam_dl(p, attr);
3532 	else if (fair_policy(policy))
3533 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3534 
3535 	/*
3536 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3537 	 * !rt_policy. Always setting this ensures that things like
3538 	 * getparam()/getattr() don't report silly values for !rt tasks.
3539 	 */
3540 	p->rt_priority = attr->sched_priority;
3541 	p->normal_prio = normal_prio(p);
3542 	set_load_weight(p);
3543 }
3544 
3545 /* Actually do priority change: must hold pi & rq lock. */
3546 static void __setscheduler(struct rq *rq, struct task_struct *p,
3547 			   const struct sched_attr *attr, bool keep_boost)
3548 {
3549 	__setscheduler_params(p, attr);
3550 
3551 	/*
3552 	 * Keep a potential priority boosting if called from
3553 	 * sched_setscheduler().
3554 	 */
3555 	if (keep_boost)
3556 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3557 	else
3558 		p->prio = normal_prio(p);
3559 
3560 	if (dl_prio(p->prio))
3561 		p->sched_class = &dl_sched_class;
3562 	else if (rt_prio(p->prio))
3563 		p->sched_class = &rt_sched_class;
3564 	else
3565 		p->sched_class = &fair_sched_class;
3566 }
3567 
3568 static void
3569 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3570 {
3571 	struct sched_dl_entity *dl_se = &p->dl;
3572 
3573 	attr->sched_priority = p->rt_priority;
3574 	attr->sched_runtime = dl_se->dl_runtime;
3575 	attr->sched_deadline = dl_se->dl_deadline;
3576 	attr->sched_period = dl_se->dl_period;
3577 	attr->sched_flags = dl_se->flags;
3578 }
3579 
3580 /*
3581  * This function validates the new parameters of a -deadline task.
3582  * We ask for the deadline not being zero, and greater or equal
3583  * than the runtime, as well as the period of being zero or
3584  * greater than deadline. Furthermore, we have to be sure that
3585  * user parameters are above the internal resolution of 1us (we
3586  * check sched_runtime only since it is always the smaller one) and
3587  * below 2^63 ns (we have to check both sched_deadline and
3588  * sched_period, as the latter can be zero).
3589  */
3590 static bool
3591 __checkparam_dl(const struct sched_attr *attr)
3592 {
3593 	/* deadline != 0 */
3594 	if (attr->sched_deadline == 0)
3595 		return false;
3596 
3597 	/*
3598 	 * Since we truncate DL_SCALE bits, make sure we're at least
3599 	 * that big.
3600 	 */
3601 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3602 		return false;
3603 
3604 	/*
3605 	 * Since we use the MSB for wrap-around and sign issues, make
3606 	 * sure it's not set (mind that period can be equal to zero).
3607 	 */
3608 	if (attr->sched_deadline & (1ULL << 63) ||
3609 	    attr->sched_period & (1ULL << 63))
3610 		return false;
3611 
3612 	/* runtime <= deadline <= period (if period != 0) */
3613 	if ((attr->sched_period != 0 &&
3614 	     attr->sched_period < attr->sched_deadline) ||
3615 	    attr->sched_deadline < attr->sched_runtime)
3616 		return false;
3617 
3618 	return true;
3619 }
3620 
3621 /*
3622  * check the target process has a UID that matches the current process's
3623  */
3624 static bool check_same_owner(struct task_struct *p)
3625 {
3626 	const struct cred *cred = current_cred(), *pcred;
3627 	bool match;
3628 
3629 	rcu_read_lock();
3630 	pcred = __task_cred(p);
3631 	match = (uid_eq(cred->euid, pcred->euid) ||
3632 		 uid_eq(cred->euid, pcred->uid));
3633 	rcu_read_unlock();
3634 	return match;
3635 }
3636 
3637 static bool dl_param_changed(struct task_struct *p,
3638 		const struct sched_attr *attr)
3639 {
3640 	struct sched_dl_entity *dl_se = &p->dl;
3641 
3642 	if (dl_se->dl_runtime != attr->sched_runtime ||
3643 		dl_se->dl_deadline != attr->sched_deadline ||
3644 		dl_se->dl_period != attr->sched_period ||
3645 		dl_se->flags != attr->sched_flags)
3646 		return true;
3647 
3648 	return false;
3649 }
3650 
3651 static int __sched_setscheduler(struct task_struct *p,
3652 				const struct sched_attr *attr,
3653 				bool user, bool pi)
3654 {
3655 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3656 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3657 	int retval, oldprio, oldpolicy = -1, queued, running;
3658 	int new_effective_prio, policy = attr->sched_policy;
3659 	unsigned long flags;
3660 	const struct sched_class *prev_class;
3661 	struct rq *rq;
3662 	int reset_on_fork;
3663 
3664 	/* may grab non-irq protected spin_locks */
3665 	BUG_ON(in_interrupt());
3666 recheck:
3667 	/* double check policy once rq lock held */
3668 	if (policy < 0) {
3669 		reset_on_fork = p->sched_reset_on_fork;
3670 		policy = oldpolicy = p->policy;
3671 	} else {
3672 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3673 
3674 		if (policy != SCHED_DEADLINE &&
3675 				policy != SCHED_FIFO && policy != SCHED_RR &&
3676 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3677 				policy != SCHED_IDLE)
3678 			return -EINVAL;
3679 	}
3680 
3681 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3682 		return -EINVAL;
3683 
3684 	/*
3685 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3686 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3687 	 * SCHED_BATCH and SCHED_IDLE is 0.
3688 	 */
3689 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3690 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3691 		return -EINVAL;
3692 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3693 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3694 		return -EINVAL;
3695 
3696 	/*
3697 	 * Allow unprivileged RT tasks to decrease priority:
3698 	 */
3699 	if (user && !capable(CAP_SYS_NICE)) {
3700 		if (fair_policy(policy)) {
3701 			if (attr->sched_nice < task_nice(p) &&
3702 			    !can_nice(p, attr->sched_nice))
3703 				return -EPERM;
3704 		}
3705 
3706 		if (rt_policy(policy)) {
3707 			unsigned long rlim_rtprio =
3708 					task_rlimit(p, RLIMIT_RTPRIO);
3709 
3710 			/* can't set/change the rt policy */
3711 			if (policy != p->policy && !rlim_rtprio)
3712 				return -EPERM;
3713 
3714 			/* can't increase priority */
3715 			if (attr->sched_priority > p->rt_priority &&
3716 			    attr->sched_priority > rlim_rtprio)
3717 				return -EPERM;
3718 		}
3719 
3720 		 /*
3721 		  * Can't set/change SCHED_DEADLINE policy at all for now
3722 		  * (safest behavior); in the future we would like to allow
3723 		  * unprivileged DL tasks to increase their relative deadline
3724 		  * or reduce their runtime (both ways reducing utilization)
3725 		  */
3726 		if (dl_policy(policy))
3727 			return -EPERM;
3728 
3729 		/*
3730 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3731 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3732 		 */
3733 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3734 			if (!can_nice(p, task_nice(p)))
3735 				return -EPERM;
3736 		}
3737 
3738 		/* can't change other user's priorities */
3739 		if (!check_same_owner(p))
3740 			return -EPERM;
3741 
3742 		/* Normal users shall not reset the sched_reset_on_fork flag */
3743 		if (p->sched_reset_on_fork && !reset_on_fork)
3744 			return -EPERM;
3745 	}
3746 
3747 	if (user) {
3748 		retval = security_task_setscheduler(p);
3749 		if (retval)
3750 			return retval;
3751 	}
3752 
3753 	/*
3754 	 * make sure no PI-waiters arrive (or leave) while we are
3755 	 * changing the priority of the task:
3756 	 *
3757 	 * To be able to change p->policy safely, the appropriate
3758 	 * runqueue lock must be held.
3759 	 */
3760 	rq = task_rq_lock(p, &flags);
3761 
3762 	/*
3763 	 * Changing the policy of the stop threads its a very bad idea
3764 	 */
3765 	if (p == rq->stop) {
3766 		task_rq_unlock(rq, p, &flags);
3767 		return -EINVAL;
3768 	}
3769 
3770 	/*
3771 	 * If not changing anything there's no need to proceed further,
3772 	 * but store a possible modification of reset_on_fork.
3773 	 */
3774 	if (unlikely(policy == p->policy)) {
3775 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3776 			goto change;
3777 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3778 			goto change;
3779 		if (dl_policy(policy) && dl_param_changed(p, attr))
3780 			goto change;
3781 
3782 		p->sched_reset_on_fork = reset_on_fork;
3783 		task_rq_unlock(rq, p, &flags);
3784 		return 0;
3785 	}
3786 change:
3787 
3788 	if (user) {
3789 #ifdef CONFIG_RT_GROUP_SCHED
3790 		/*
3791 		 * Do not allow realtime tasks into groups that have no runtime
3792 		 * assigned.
3793 		 */
3794 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3795 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3796 				!task_group_is_autogroup(task_group(p))) {
3797 			task_rq_unlock(rq, p, &flags);
3798 			return -EPERM;
3799 		}
3800 #endif
3801 #ifdef CONFIG_SMP
3802 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3803 			cpumask_t *span = rq->rd->span;
3804 
3805 			/*
3806 			 * Don't allow tasks with an affinity mask smaller than
3807 			 * the entire root_domain to become SCHED_DEADLINE. We
3808 			 * will also fail if there's no bandwidth available.
3809 			 */
3810 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3811 			    rq->rd->dl_bw.bw == 0) {
3812 				task_rq_unlock(rq, p, &flags);
3813 				return -EPERM;
3814 			}
3815 		}
3816 #endif
3817 	}
3818 
3819 	/* recheck policy now with rq lock held */
3820 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3821 		policy = oldpolicy = -1;
3822 		task_rq_unlock(rq, p, &flags);
3823 		goto recheck;
3824 	}
3825 
3826 	/*
3827 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3828 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3829 	 * is available.
3830 	 */
3831 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3832 		task_rq_unlock(rq, p, &flags);
3833 		return -EBUSY;
3834 	}
3835 
3836 	p->sched_reset_on_fork = reset_on_fork;
3837 	oldprio = p->prio;
3838 
3839 	if (pi) {
3840 		/*
3841 		 * Take priority boosted tasks into account. If the new
3842 		 * effective priority is unchanged, we just store the new
3843 		 * normal parameters and do not touch the scheduler class and
3844 		 * the runqueue. This will be done when the task deboost
3845 		 * itself.
3846 		 */
3847 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3848 		if (new_effective_prio == oldprio) {
3849 			__setscheduler_params(p, attr);
3850 			task_rq_unlock(rq, p, &flags);
3851 			return 0;
3852 		}
3853 	}
3854 
3855 	queued = task_on_rq_queued(p);
3856 	running = task_current(rq, p);
3857 	if (queued)
3858 		dequeue_task(rq, p, 0);
3859 	if (running)
3860 		put_prev_task(rq, p);
3861 
3862 	prev_class = p->sched_class;
3863 	__setscheduler(rq, p, attr, pi);
3864 
3865 	if (running)
3866 		p->sched_class->set_curr_task(rq);
3867 	if (queued) {
3868 		/*
3869 		 * We enqueue to tail when the priority of a task is
3870 		 * increased (user space view).
3871 		 */
3872 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3873 	}
3874 
3875 	check_class_changed(rq, p, prev_class, oldprio);
3876 	preempt_disable(); /* avoid rq from going away on us */
3877 	task_rq_unlock(rq, p, &flags);
3878 
3879 	if (pi)
3880 		rt_mutex_adjust_pi(p);
3881 
3882 	/*
3883 	 * Run balance callbacks after we've adjusted the PI chain.
3884 	 */
3885 	balance_callback(rq);
3886 	preempt_enable();
3887 
3888 	return 0;
3889 }
3890 
3891 static int _sched_setscheduler(struct task_struct *p, int policy,
3892 			       const struct sched_param *param, bool check)
3893 {
3894 	struct sched_attr attr = {
3895 		.sched_policy   = policy,
3896 		.sched_priority = param->sched_priority,
3897 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3898 	};
3899 
3900 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3901 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3902 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3903 		policy &= ~SCHED_RESET_ON_FORK;
3904 		attr.sched_policy = policy;
3905 	}
3906 
3907 	return __sched_setscheduler(p, &attr, check, true);
3908 }
3909 /**
3910  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3911  * @p: the task in question.
3912  * @policy: new policy.
3913  * @param: structure containing the new RT priority.
3914  *
3915  * Return: 0 on success. An error code otherwise.
3916  *
3917  * NOTE that the task may be already dead.
3918  */
3919 int sched_setscheduler(struct task_struct *p, int policy,
3920 		       const struct sched_param *param)
3921 {
3922 	return _sched_setscheduler(p, policy, param, true);
3923 }
3924 EXPORT_SYMBOL_GPL(sched_setscheduler);
3925 
3926 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3927 {
3928 	return __sched_setscheduler(p, attr, true, true);
3929 }
3930 EXPORT_SYMBOL_GPL(sched_setattr);
3931 
3932 /**
3933  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3934  * @p: the task in question.
3935  * @policy: new policy.
3936  * @param: structure containing the new RT priority.
3937  *
3938  * Just like sched_setscheduler, only don't bother checking if the
3939  * current context has permission.  For example, this is needed in
3940  * stop_machine(): we create temporary high priority worker threads,
3941  * but our caller might not have that capability.
3942  *
3943  * Return: 0 on success. An error code otherwise.
3944  */
3945 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3946 			       const struct sched_param *param)
3947 {
3948 	return _sched_setscheduler(p, policy, param, false);
3949 }
3950 
3951 static int
3952 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3953 {
3954 	struct sched_param lparam;
3955 	struct task_struct *p;
3956 	int retval;
3957 
3958 	if (!param || pid < 0)
3959 		return -EINVAL;
3960 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3961 		return -EFAULT;
3962 
3963 	rcu_read_lock();
3964 	retval = -ESRCH;
3965 	p = find_process_by_pid(pid);
3966 	if (p != NULL)
3967 		retval = sched_setscheduler(p, policy, &lparam);
3968 	rcu_read_unlock();
3969 
3970 	return retval;
3971 }
3972 
3973 /*
3974  * Mimics kernel/events/core.c perf_copy_attr().
3975  */
3976 static int sched_copy_attr(struct sched_attr __user *uattr,
3977 			   struct sched_attr *attr)
3978 {
3979 	u32 size;
3980 	int ret;
3981 
3982 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3983 		return -EFAULT;
3984 
3985 	/*
3986 	 * zero the full structure, so that a short copy will be nice.
3987 	 */
3988 	memset(attr, 0, sizeof(*attr));
3989 
3990 	ret = get_user(size, &uattr->size);
3991 	if (ret)
3992 		return ret;
3993 
3994 	if (size > PAGE_SIZE)	/* silly large */
3995 		goto err_size;
3996 
3997 	if (!size)		/* abi compat */
3998 		size = SCHED_ATTR_SIZE_VER0;
3999 
4000 	if (size < SCHED_ATTR_SIZE_VER0)
4001 		goto err_size;
4002 
4003 	/*
4004 	 * If we're handed a bigger struct than we know of,
4005 	 * ensure all the unknown bits are 0 - i.e. new
4006 	 * user-space does not rely on any kernel feature
4007 	 * extensions we dont know about yet.
4008 	 */
4009 	if (size > sizeof(*attr)) {
4010 		unsigned char __user *addr;
4011 		unsigned char __user *end;
4012 		unsigned char val;
4013 
4014 		addr = (void __user *)uattr + sizeof(*attr);
4015 		end  = (void __user *)uattr + size;
4016 
4017 		for (; addr < end; addr++) {
4018 			ret = get_user(val, addr);
4019 			if (ret)
4020 				return ret;
4021 			if (val)
4022 				goto err_size;
4023 		}
4024 		size = sizeof(*attr);
4025 	}
4026 
4027 	ret = copy_from_user(attr, uattr, size);
4028 	if (ret)
4029 		return -EFAULT;
4030 
4031 	/*
4032 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4033 	 * to be strict and return an error on out-of-bounds values?
4034 	 */
4035 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4036 
4037 	return 0;
4038 
4039 err_size:
4040 	put_user(sizeof(*attr), &uattr->size);
4041 	return -E2BIG;
4042 }
4043 
4044 /**
4045  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4046  * @pid: the pid in question.
4047  * @policy: new policy.
4048  * @param: structure containing the new RT priority.
4049  *
4050  * Return: 0 on success. An error code otherwise.
4051  */
4052 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4053 		struct sched_param __user *, param)
4054 {
4055 	/* negative values for policy are not valid */
4056 	if (policy < 0)
4057 		return -EINVAL;
4058 
4059 	return do_sched_setscheduler(pid, policy, param);
4060 }
4061 
4062 /**
4063  * sys_sched_setparam - set/change the RT priority of a thread
4064  * @pid: the pid in question.
4065  * @param: structure containing the new RT priority.
4066  *
4067  * Return: 0 on success. An error code otherwise.
4068  */
4069 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4070 {
4071 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4072 }
4073 
4074 /**
4075  * sys_sched_setattr - same as above, but with extended sched_attr
4076  * @pid: the pid in question.
4077  * @uattr: structure containing the extended parameters.
4078  * @flags: for future extension.
4079  */
4080 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4081 			       unsigned int, flags)
4082 {
4083 	struct sched_attr attr;
4084 	struct task_struct *p;
4085 	int retval;
4086 
4087 	if (!uattr || pid < 0 || flags)
4088 		return -EINVAL;
4089 
4090 	retval = sched_copy_attr(uattr, &attr);
4091 	if (retval)
4092 		return retval;
4093 
4094 	if ((int)attr.sched_policy < 0)
4095 		return -EINVAL;
4096 
4097 	rcu_read_lock();
4098 	retval = -ESRCH;
4099 	p = find_process_by_pid(pid);
4100 	if (p != NULL)
4101 		retval = sched_setattr(p, &attr);
4102 	rcu_read_unlock();
4103 
4104 	return retval;
4105 }
4106 
4107 /**
4108  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4109  * @pid: the pid in question.
4110  *
4111  * Return: On success, the policy of the thread. Otherwise, a negative error
4112  * code.
4113  */
4114 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4115 {
4116 	struct task_struct *p;
4117 	int retval;
4118 
4119 	if (pid < 0)
4120 		return -EINVAL;
4121 
4122 	retval = -ESRCH;
4123 	rcu_read_lock();
4124 	p = find_process_by_pid(pid);
4125 	if (p) {
4126 		retval = security_task_getscheduler(p);
4127 		if (!retval)
4128 			retval = p->policy
4129 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4130 	}
4131 	rcu_read_unlock();
4132 	return retval;
4133 }
4134 
4135 /**
4136  * sys_sched_getparam - get the RT priority of a thread
4137  * @pid: the pid in question.
4138  * @param: structure containing the RT priority.
4139  *
4140  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4141  * code.
4142  */
4143 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4144 {
4145 	struct sched_param lp = { .sched_priority = 0 };
4146 	struct task_struct *p;
4147 	int retval;
4148 
4149 	if (!param || pid < 0)
4150 		return -EINVAL;
4151 
4152 	rcu_read_lock();
4153 	p = find_process_by_pid(pid);
4154 	retval = -ESRCH;
4155 	if (!p)
4156 		goto out_unlock;
4157 
4158 	retval = security_task_getscheduler(p);
4159 	if (retval)
4160 		goto out_unlock;
4161 
4162 	if (task_has_rt_policy(p))
4163 		lp.sched_priority = p->rt_priority;
4164 	rcu_read_unlock();
4165 
4166 	/*
4167 	 * This one might sleep, we cannot do it with a spinlock held ...
4168 	 */
4169 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4170 
4171 	return retval;
4172 
4173 out_unlock:
4174 	rcu_read_unlock();
4175 	return retval;
4176 }
4177 
4178 static int sched_read_attr(struct sched_attr __user *uattr,
4179 			   struct sched_attr *attr,
4180 			   unsigned int usize)
4181 {
4182 	int ret;
4183 
4184 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4185 		return -EFAULT;
4186 
4187 	/*
4188 	 * If we're handed a smaller struct than we know of,
4189 	 * ensure all the unknown bits are 0 - i.e. old
4190 	 * user-space does not get uncomplete information.
4191 	 */
4192 	if (usize < sizeof(*attr)) {
4193 		unsigned char *addr;
4194 		unsigned char *end;
4195 
4196 		addr = (void *)attr + usize;
4197 		end  = (void *)attr + sizeof(*attr);
4198 
4199 		for (; addr < end; addr++) {
4200 			if (*addr)
4201 				return -EFBIG;
4202 		}
4203 
4204 		attr->size = usize;
4205 	}
4206 
4207 	ret = copy_to_user(uattr, attr, attr->size);
4208 	if (ret)
4209 		return -EFAULT;
4210 
4211 	return 0;
4212 }
4213 
4214 /**
4215  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4216  * @pid: the pid in question.
4217  * @uattr: structure containing the extended parameters.
4218  * @size: sizeof(attr) for fwd/bwd comp.
4219  * @flags: for future extension.
4220  */
4221 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4222 		unsigned int, size, unsigned int, flags)
4223 {
4224 	struct sched_attr attr = {
4225 		.size = sizeof(struct sched_attr),
4226 	};
4227 	struct task_struct *p;
4228 	int retval;
4229 
4230 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4231 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4232 		return -EINVAL;
4233 
4234 	rcu_read_lock();
4235 	p = find_process_by_pid(pid);
4236 	retval = -ESRCH;
4237 	if (!p)
4238 		goto out_unlock;
4239 
4240 	retval = security_task_getscheduler(p);
4241 	if (retval)
4242 		goto out_unlock;
4243 
4244 	attr.sched_policy = p->policy;
4245 	if (p->sched_reset_on_fork)
4246 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4247 	if (task_has_dl_policy(p))
4248 		__getparam_dl(p, &attr);
4249 	else if (task_has_rt_policy(p))
4250 		attr.sched_priority = p->rt_priority;
4251 	else
4252 		attr.sched_nice = task_nice(p);
4253 
4254 	rcu_read_unlock();
4255 
4256 	retval = sched_read_attr(uattr, &attr, size);
4257 	return retval;
4258 
4259 out_unlock:
4260 	rcu_read_unlock();
4261 	return retval;
4262 }
4263 
4264 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4265 {
4266 	cpumask_var_t cpus_allowed, new_mask;
4267 	struct task_struct *p;
4268 	int retval;
4269 
4270 	rcu_read_lock();
4271 
4272 	p = find_process_by_pid(pid);
4273 	if (!p) {
4274 		rcu_read_unlock();
4275 		return -ESRCH;
4276 	}
4277 
4278 	/* Prevent p going away */
4279 	get_task_struct(p);
4280 	rcu_read_unlock();
4281 
4282 	if (p->flags & PF_NO_SETAFFINITY) {
4283 		retval = -EINVAL;
4284 		goto out_put_task;
4285 	}
4286 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4287 		retval = -ENOMEM;
4288 		goto out_put_task;
4289 	}
4290 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4291 		retval = -ENOMEM;
4292 		goto out_free_cpus_allowed;
4293 	}
4294 	retval = -EPERM;
4295 	if (!check_same_owner(p)) {
4296 		rcu_read_lock();
4297 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4298 			rcu_read_unlock();
4299 			goto out_free_new_mask;
4300 		}
4301 		rcu_read_unlock();
4302 	}
4303 
4304 	retval = security_task_setscheduler(p);
4305 	if (retval)
4306 		goto out_free_new_mask;
4307 
4308 
4309 	cpuset_cpus_allowed(p, cpus_allowed);
4310 	cpumask_and(new_mask, in_mask, cpus_allowed);
4311 
4312 	/*
4313 	 * Since bandwidth control happens on root_domain basis,
4314 	 * if admission test is enabled, we only admit -deadline
4315 	 * tasks allowed to run on all the CPUs in the task's
4316 	 * root_domain.
4317 	 */
4318 #ifdef CONFIG_SMP
4319 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4320 		rcu_read_lock();
4321 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4322 			retval = -EBUSY;
4323 			rcu_read_unlock();
4324 			goto out_free_new_mask;
4325 		}
4326 		rcu_read_unlock();
4327 	}
4328 #endif
4329 again:
4330 	retval = set_cpus_allowed_ptr(p, new_mask);
4331 
4332 	if (!retval) {
4333 		cpuset_cpus_allowed(p, cpus_allowed);
4334 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4335 			/*
4336 			 * We must have raced with a concurrent cpuset
4337 			 * update. Just reset the cpus_allowed to the
4338 			 * cpuset's cpus_allowed
4339 			 */
4340 			cpumask_copy(new_mask, cpus_allowed);
4341 			goto again;
4342 		}
4343 	}
4344 out_free_new_mask:
4345 	free_cpumask_var(new_mask);
4346 out_free_cpus_allowed:
4347 	free_cpumask_var(cpus_allowed);
4348 out_put_task:
4349 	put_task_struct(p);
4350 	return retval;
4351 }
4352 
4353 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4354 			     struct cpumask *new_mask)
4355 {
4356 	if (len < cpumask_size())
4357 		cpumask_clear(new_mask);
4358 	else if (len > cpumask_size())
4359 		len = cpumask_size();
4360 
4361 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4362 }
4363 
4364 /**
4365  * sys_sched_setaffinity - set the cpu affinity of a process
4366  * @pid: pid of the process
4367  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4368  * @user_mask_ptr: user-space pointer to the new cpu mask
4369  *
4370  * Return: 0 on success. An error code otherwise.
4371  */
4372 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4373 		unsigned long __user *, user_mask_ptr)
4374 {
4375 	cpumask_var_t new_mask;
4376 	int retval;
4377 
4378 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4379 		return -ENOMEM;
4380 
4381 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4382 	if (retval == 0)
4383 		retval = sched_setaffinity(pid, new_mask);
4384 	free_cpumask_var(new_mask);
4385 	return retval;
4386 }
4387 
4388 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4389 {
4390 	struct task_struct *p;
4391 	unsigned long flags;
4392 	int retval;
4393 
4394 	rcu_read_lock();
4395 
4396 	retval = -ESRCH;
4397 	p = find_process_by_pid(pid);
4398 	if (!p)
4399 		goto out_unlock;
4400 
4401 	retval = security_task_getscheduler(p);
4402 	if (retval)
4403 		goto out_unlock;
4404 
4405 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4406 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4407 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4408 
4409 out_unlock:
4410 	rcu_read_unlock();
4411 
4412 	return retval;
4413 }
4414 
4415 /**
4416  * sys_sched_getaffinity - get the cpu affinity of a process
4417  * @pid: pid of the process
4418  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4419  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4420  *
4421  * Return: 0 on success. An error code otherwise.
4422  */
4423 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4424 		unsigned long __user *, user_mask_ptr)
4425 {
4426 	int ret;
4427 	cpumask_var_t mask;
4428 
4429 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4430 		return -EINVAL;
4431 	if (len & (sizeof(unsigned long)-1))
4432 		return -EINVAL;
4433 
4434 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4435 		return -ENOMEM;
4436 
4437 	ret = sched_getaffinity(pid, mask);
4438 	if (ret == 0) {
4439 		size_t retlen = min_t(size_t, len, cpumask_size());
4440 
4441 		if (copy_to_user(user_mask_ptr, mask, retlen))
4442 			ret = -EFAULT;
4443 		else
4444 			ret = retlen;
4445 	}
4446 	free_cpumask_var(mask);
4447 
4448 	return ret;
4449 }
4450 
4451 /**
4452  * sys_sched_yield - yield the current processor to other threads.
4453  *
4454  * This function yields the current CPU to other tasks. If there are no
4455  * other threads running on this CPU then this function will return.
4456  *
4457  * Return: 0.
4458  */
4459 SYSCALL_DEFINE0(sched_yield)
4460 {
4461 	struct rq *rq = this_rq_lock();
4462 
4463 	schedstat_inc(rq, yld_count);
4464 	current->sched_class->yield_task(rq);
4465 
4466 	/*
4467 	 * Since we are going to call schedule() anyway, there's
4468 	 * no need to preempt or enable interrupts:
4469 	 */
4470 	__release(rq->lock);
4471 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4472 	do_raw_spin_unlock(&rq->lock);
4473 	sched_preempt_enable_no_resched();
4474 
4475 	schedule();
4476 
4477 	return 0;
4478 }
4479 
4480 int __sched _cond_resched(void)
4481 {
4482 	if (should_resched()) {
4483 		preempt_schedule_common();
4484 		return 1;
4485 	}
4486 	return 0;
4487 }
4488 EXPORT_SYMBOL(_cond_resched);
4489 
4490 /*
4491  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4492  * call schedule, and on return reacquire the lock.
4493  *
4494  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4495  * operations here to prevent schedule() from being called twice (once via
4496  * spin_unlock(), once by hand).
4497  */
4498 int __cond_resched_lock(spinlock_t *lock)
4499 {
4500 	int resched = should_resched();
4501 	int ret = 0;
4502 
4503 	lockdep_assert_held(lock);
4504 
4505 	if (spin_needbreak(lock) || resched) {
4506 		spin_unlock(lock);
4507 		if (resched)
4508 			preempt_schedule_common();
4509 		else
4510 			cpu_relax();
4511 		ret = 1;
4512 		spin_lock(lock);
4513 	}
4514 	return ret;
4515 }
4516 EXPORT_SYMBOL(__cond_resched_lock);
4517 
4518 int __sched __cond_resched_softirq(void)
4519 {
4520 	BUG_ON(!in_softirq());
4521 
4522 	if (should_resched()) {
4523 		local_bh_enable();
4524 		preempt_schedule_common();
4525 		local_bh_disable();
4526 		return 1;
4527 	}
4528 	return 0;
4529 }
4530 EXPORT_SYMBOL(__cond_resched_softirq);
4531 
4532 /**
4533  * yield - yield the current processor to other threads.
4534  *
4535  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4536  *
4537  * The scheduler is at all times free to pick the calling task as the most
4538  * eligible task to run, if removing the yield() call from your code breaks
4539  * it, its already broken.
4540  *
4541  * Typical broken usage is:
4542  *
4543  * while (!event)
4544  * 	yield();
4545  *
4546  * where one assumes that yield() will let 'the other' process run that will
4547  * make event true. If the current task is a SCHED_FIFO task that will never
4548  * happen. Never use yield() as a progress guarantee!!
4549  *
4550  * If you want to use yield() to wait for something, use wait_event().
4551  * If you want to use yield() to be 'nice' for others, use cond_resched().
4552  * If you still want to use yield(), do not!
4553  */
4554 void __sched yield(void)
4555 {
4556 	set_current_state(TASK_RUNNING);
4557 	sys_sched_yield();
4558 }
4559 EXPORT_SYMBOL(yield);
4560 
4561 /**
4562  * yield_to - yield the current processor to another thread in
4563  * your thread group, or accelerate that thread toward the
4564  * processor it's on.
4565  * @p: target task
4566  * @preempt: whether task preemption is allowed or not
4567  *
4568  * It's the caller's job to ensure that the target task struct
4569  * can't go away on us before we can do any checks.
4570  *
4571  * Return:
4572  *	true (>0) if we indeed boosted the target task.
4573  *	false (0) if we failed to boost the target.
4574  *	-ESRCH if there's no task to yield to.
4575  */
4576 int __sched yield_to(struct task_struct *p, bool preempt)
4577 {
4578 	struct task_struct *curr = current;
4579 	struct rq *rq, *p_rq;
4580 	unsigned long flags;
4581 	int yielded = 0;
4582 
4583 	local_irq_save(flags);
4584 	rq = this_rq();
4585 
4586 again:
4587 	p_rq = task_rq(p);
4588 	/*
4589 	 * If we're the only runnable task on the rq and target rq also
4590 	 * has only one task, there's absolutely no point in yielding.
4591 	 */
4592 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4593 		yielded = -ESRCH;
4594 		goto out_irq;
4595 	}
4596 
4597 	double_rq_lock(rq, p_rq);
4598 	if (task_rq(p) != p_rq) {
4599 		double_rq_unlock(rq, p_rq);
4600 		goto again;
4601 	}
4602 
4603 	if (!curr->sched_class->yield_to_task)
4604 		goto out_unlock;
4605 
4606 	if (curr->sched_class != p->sched_class)
4607 		goto out_unlock;
4608 
4609 	if (task_running(p_rq, p) || p->state)
4610 		goto out_unlock;
4611 
4612 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4613 	if (yielded) {
4614 		schedstat_inc(rq, yld_count);
4615 		/*
4616 		 * Make p's CPU reschedule; pick_next_entity takes care of
4617 		 * fairness.
4618 		 */
4619 		if (preempt && rq != p_rq)
4620 			resched_curr(p_rq);
4621 	}
4622 
4623 out_unlock:
4624 	double_rq_unlock(rq, p_rq);
4625 out_irq:
4626 	local_irq_restore(flags);
4627 
4628 	if (yielded > 0)
4629 		schedule();
4630 
4631 	return yielded;
4632 }
4633 EXPORT_SYMBOL_GPL(yield_to);
4634 
4635 /*
4636  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4637  * that process accounting knows that this is a task in IO wait state.
4638  */
4639 long __sched io_schedule_timeout(long timeout)
4640 {
4641 	int old_iowait = current->in_iowait;
4642 	struct rq *rq;
4643 	long ret;
4644 
4645 	current->in_iowait = 1;
4646 	blk_schedule_flush_plug(current);
4647 
4648 	delayacct_blkio_start();
4649 	rq = raw_rq();
4650 	atomic_inc(&rq->nr_iowait);
4651 	ret = schedule_timeout(timeout);
4652 	current->in_iowait = old_iowait;
4653 	atomic_dec(&rq->nr_iowait);
4654 	delayacct_blkio_end();
4655 
4656 	return ret;
4657 }
4658 EXPORT_SYMBOL(io_schedule_timeout);
4659 
4660 /**
4661  * sys_sched_get_priority_max - return maximum RT priority.
4662  * @policy: scheduling class.
4663  *
4664  * Return: On success, this syscall returns the maximum
4665  * rt_priority that can be used by a given scheduling class.
4666  * On failure, a negative error code is returned.
4667  */
4668 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4669 {
4670 	int ret = -EINVAL;
4671 
4672 	switch (policy) {
4673 	case SCHED_FIFO:
4674 	case SCHED_RR:
4675 		ret = MAX_USER_RT_PRIO-1;
4676 		break;
4677 	case SCHED_DEADLINE:
4678 	case SCHED_NORMAL:
4679 	case SCHED_BATCH:
4680 	case SCHED_IDLE:
4681 		ret = 0;
4682 		break;
4683 	}
4684 	return ret;
4685 }
4686 
4687 /**
4688  * sys_sched_get_priority_min - return minimum RT priority.
4689  * @policy: scheduling class.
4690  *
4691  * Return: On success, this syscall returns the minimum
4692  * rt_priority that can be used by a given scheduling class.
4693  * On failure, a negative error code is returned.
4694  */
4695 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4696 {
4697 	int ret = -EINVAL;
4698 
4699 	switch (policy) {
4700 	case SCHED_FIFO:
4701 	case SCHED_RR:
4702 		ret = 1;
4703 		break;
4704 	case SCHED_DEADLINE:
4705 	case SCHED_NORMAL:
4706 	case SCHED_BATCH:
4707 	case SCHED_IDLE:
4708 		ret = 0;
4709 	}
4710 	return ret;
4711 }
4712 
4713 /**
4714  * sys_sched_rr_get_interval - return the default timeslice of a process.
4715  * @pid: pid of the process.
4716  * @interval: userspace pointer to the timeslice value.
4717  *
4718  * this syscall writes the default timeslice value of a given process
4719  * into the user-space timespec buffer. A value of '0' means infinity.
4720  *
4721  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4722  * an error code.
4723  */
4724 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4725 		struct timespec __user *, interval)
4726 {
4727 	struct task_struct *p;
4728 	unsigned int time_slice;
4729 	unsigned long flags;
4730 	struct rq *rq;
4731 	int retval;
4732 	struct timespec t;
4733 
4734 	if (pid < 0)
4735 		return -EINVAL;
4736 
4737 	retval = -ESRCH;
4738 	rcu_read_lock();
4739 	p = find_process_by_pid(pid);
4740 	if (!p)
4741 		goto out_unlock;
4742 
4743 	retval = security_task_getscheduler(p);
4744 	if (retval)
4745 		goto out_unlock;
4746 
4747 	rq = task_rq_lock(p, &flags);
4748 	time_slice = 0;
4749 	if (p->sched_class->get_rr_interval)
4750 		time_slice = p->sched_class->get_rr_interval(rq, p);
4751 	task_rq_unlock(rq, p, &flags);
4752 
4753 	rcu_read_unlock();
4754 	jiffies_to_timespec(time_slice, &t);
4755 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4756 	return retval;
4757 
4758 out_unlock:
4759 	rcu_read_unlock();
4760 	return retval;
4761 }
4762 
4763 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4764 
4765 void sched_show_task(struct task_struct *p)
4766 {
4767 	unsigned long free = 0;
4768 	int ppid;
4769 	unsigned long state = p->state;
4770 
4771 	if (state)
4772 		state = __ffs(state) + 1;
4773 	printk(KERN_INFO "%-15.15s %c", p->comm,
4774 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4775 #if BITS_PER_LONG == 32
4776 	if (state == TASK_RUNNING)
4777 		printk(KERN_CONT " running  ");
4778 	else
4779 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4780 #else
4781 	if (state == TASK_RUNNING)
4782 		printk(KERN_CONT "  running task    ");
4783 	else
4784 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4785 #endif
4786 #ifdef CONFIG_DEBUG_STACK_USAGE
4787 	free = stack_not_used(p);
4788 #endif
4789 	ppid = 0;
4790 	rcu_read_lock();
4791 	if (pid_alive(p))
4792 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4793 	rcu_read_unlock();
4794 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4795 		task_pid_nr(p), ppid,
4796 		(unsigned long)task_thread_info(p)->flags);
4797 
4798 	print_worker_info(KERN_INFO, p);
4799 	show_stack(p, NULL);
4800 }
4801 
4802 void show_state_filter(unsigned long state_filter)
4803 {
4804 	struct task_struct *g, *p;
4805 
4806 #if BITS_PER_LONG == 32
4807 	printk(KERN_INFO
4808 		"  task                PC stack   pid father\n");
4809 #else
4810 	printk(KERN_INFO
4811 		"  task                        PC stack   pid father\n");
4812 #endif
4813 	rcu_read_lock();
4814 	for_each_process_thread(g, p) {
4815 		/*
4816 		 * reset the NMI-timeout, listing all files on a slow
4817 		 * console might take a lot of time:
4818 		 */
4819 		touch_nmi_watchdog();
4820 		if (!state_filter || (p->state & state_filter))
4821 			sched_show_task(p);
4822 	}
4823 
4824 	touch_all_softlockup_watchdogs();
4825 
4826 #ifdef CONFIG_SCHED_DEBUG
4827 	sysrq_sched_debug_show();
4828 #endif
4829 	rcu_read_unlock();
4830 	/*
4831 	 * Only show locks if all tasks are dumped:
4832 	 */
4833 	if (!state_filter)
4834 		debug_show_all_locks();
4835 }
4836 
4837 void init_idle_bootup_task(struct task_struct *idle)
4838 {
4839 	idle->sched_class = &idle_sched_class;
4840 }
4841 
4842 /**
4843  * init_idle - set up an idle thread for a given CPU
4844  * @idle: task in question
4845  * @cpu: cpu the idle task belongs to
4846  *
4847  * NOTE: this function does not set the idle thread's NEED_RESCHED
4848  * flag, to make booting more robust.
4849  */
4850 void init_idle(struct task_struct *idle, int cpu)
4851 {
4852 	struct rq *rq = cpu_rq(cpu);
4853 	unsigned long flags;
4854 
4855 	raw_spin_lock_irqsave(&rq->lock, flags);
4856 
4857 	__sched_fork(0, idle);
4858 	idle->state = TASK_RUNNING;
4859 	idle->se.exec_start = sched_clock();
4860 
4861 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4862 	/*
4863 	 * We're having a chicken and egg problem, even though we are
4864 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4865 	 * lockdep check in task_group() will fail.
4866 	 *
4867 	 * Similar case to sched_fork(). / Alternatively we could
4868 	 * use task_rq_lock() here and obtain the other rq->lock.
4869 	 *
4870 	 * Silence PROVE_RCU
4871 	 */
4872 	rcu_read_lock();
4873 	__set_task_cpu(idle, cpu);
4874 	rcu_read_unlock();
4875 
4876 	rq->curr = rq->idle = idle;
4877 	idle->on_rq = TASK_ON_RQ_QUEUED;
4878 #if defined(CONFIG_SMP)
4879 	idle->on_cpu = 1;
4880 #endif
4881 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4882 
4883 	/* Set the preempt count _outside_ the spinlocks! */
4884 	init_idle_preempt_count(idle, cpu);
4885 
4886 	/*
4887 	 * The idle tasks have their own, simple scheduling class:
4888 	 */
4889 	idle->sched_class = &idle_sched_class;
4890 	ftrace_graph_init_idle_task(idle, cpu);
4891 	vtime_init_idle(idle, cpu);
4892 #if defined(CONFIG_SMP)
4893 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4894 #endif
4895 }
4896 
4897 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4898 			      const struct cpumask *trial)
4899 {
4900 	int ret = 1, trial_cpus;
4901 	struct dl_bw *cur_dl_b;
4902 	unsigned long flags;
4903 
4904 	if (!cpumask_weight(cur))
4905 		return ret;
4906 
4907 	rcu_read_lock_sched();
4908 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4909 	trial_cpus = cpumask_weight(trial);
4910 
4911 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4912 	if (cur_dl_b->bw != -1 &&
4913 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4914 		ret = 0;
4915 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4916 	rcu_read_unlock_sched();
4917 
4918 	return ret;
4919 }
4920 
4921 int task_can_attach(struct task_struct *p,
4922 		    const struct cpumask *cs_cpus_allowed)
4923 {
4924 	int ret = 0;
4925 
4926 	/*
4927 	 * Kthreads which disallow setaffinity shouldn't be moved
4928 	 * to a new cpuset; we don't want to change their cpu
4929 	 * affinity and isolating such threads by their set of
4930 	 * allowed nodes is unnecessary.  Thus, cpusets are not
4931 	 * applicable for such threads.  This prevents checking for
4932 	 * success of set_cpus_allowed_ptr() on all attached tasks
4933 	 * before cpus_allowed may be changed.
4934 	 */
4935 	if (p->flags & PF_NO_SETAFFINITY) {
4936 		ret = -EINVAL;
4937 		goto out;
4938 	}
4939 
4940 #ifdef CONFIG_SMP
4941 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4942 					      cs_cpus_allowed)) {
4943 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4944 							cs_cpus_allowed);
4945 		struct dl_bw *dl_b;
4946 		bool overflow;
4947 		int cpus;
4948 		unsigned long flags;
4949 
4950 		rcu_read_lock_sched();
4951 		dl_b = dl_bw_of(dest_cpu);
4952 		raw_spin_lock_irqsave(&dl_b->lock, flags);
4953 		cpus = dl_bw_cpus(dest_cpu);
4954 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4955 		if (overflow)
4956 			ret = -EBUSY;
4957 		else {
4958 			/*
4959 			 * We reserve space for this task in the destination
4960 			 * root_domain, as we can't fail after this point.
4961 			 * We will free resources in the source root_domain
4962 			 * later on (see set_cpus_allowed_dl()).
4963 			 */
4964 			__dl_add(dl_b, p->dl.dl_bw);
4965 		}
4966 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4967 		rcu_read_unlock_sched();
4968 
4969 	}
4970 #endif
4971 out:
4972 	return ret;
4973 }
4974 
4975 #ifdef CONFIG_SMP
4976 
4977 #ifdef CONFIG_NUMA_BALANCING
4978 /* Migrate current task p to target_cpu */
4979 int migrate_task_to(struct task_struct *p, int target_cpu)
4980 {
4981 	struct migration_arg arg = { p, target_cpu };
4982 	int curr_cpu = task_cpu(p);
4983 
4984 	if (curr_cpu == target_cpu)
4985 		return 0;
4986 
4987 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4988 		return -EINVAL;
4989 
4990 	/* TODO: This is not properly updating schedstats */
4991 
4992 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4993 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4994 }
4995 
4996 /*
4997  * Requeue a task on a given node and accurately track the number of NUMA
4998  * tasks on the runqueues
4999  */
5000 void sched_setnuma(struct task_struct *p, int nid)
5001 {
5002 	struct rq *rq;
5003 	unsigned long flags;
5004 	bool queued, running;
5005 
5006 	rq = task_rq_lock(p, &flags);
5007 	queued = task_on_rq_queued(p);
5008 	running = task_current(rq, p);
5009 
5010 	if (queued)
5011 		dequeue_task(rq, p, 0);
5012 	if (running)
5013 		put_prev_task(rq, p);
5014 
5015 	p->numa_preferred_nid = nid;
5016 
5017 	if (running)
5018 		p->sched_class->set_curr_task(rq);
5019 	if (queued)
5020 		enqueue_task(rq, p, 0);
5021 	task_rq_unlock(rq, p, &flags);
5022 }
5023 #endif /* CONFIG_NUMA_BALANCING */
5024 
5025 #ifdef CONFIG_HOTPLUG_CPU
5026 /*
5027  * Ensures that the idle task is using init_mm right before its cpu goes
5028  * offline.
5029  */
5030 void idle_task_exit(void)
5031 {
5032 	struct mm_struct *mm = current->active_mm;
5033 
5034 	BUG_ON(cpu_online(smp_processor_id()));
5035 
5036 	if (mm != &init_mm) {
5037 		switch_mm(mm, &init_mm, current);
5038 		finish_arch_post_lock_switch();
5039 	}
5040 	mmdrop(mm);
5041 }
5042 
5043 /*
5044  * Since this CPU is going 'away' for a while, fold any nr_active delta
5045  * we might have. Assumes we're called after migrate_tasks() so that the
5046  * nr_active count is stable.
5047  *
5048  * Also see the comment "Global load-average calculations".
5049  */
5050 static void calc_load_migrate(struct rq *rq)
5051 {
5052 	long delta = calc_load_fold_active(rq);
5053 	if (delta)
5054 		atomic_long_add(delta, &calc_load_tasks);
5055 }
5056 
5057 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5058 {
5059 }
5060 
5061 static const struct sched_class fake_sched_class = {
5062 	.put_prev_task = put_prev_task_fake,
5063 };
5064 
5065 static struct task_struct fake_task = {
5066 	/*
5067 	 * Avoid pull_{rt,dl}_task()
5068 	 */
5069 	.prio = MAX_PRIO + 1,
5070 	.sched_class = &fake_sched_class,
5071 };
5072 
5073 /*
5074  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5075  * try_to_wake_up()->select_task_rq().
5076  *
5077  * Called with rq->lock held even though we'er in stop_machine() and
5078  * there's no concurrency possible, we hold the required locks anyway
5079  * because of lock validation efforts.
5080  */
5081 static void migrate_tasks(struct rq *dead_rq)
5082 {
5083 	struct rq *rq = dead_rq;
5084 	struct task_struct *next, *stop = rq->stop;
5085 	int dest_cpu;
5086 
5087 	/*
5088 	 * Fudge the rq selection such that the below task selection loop
5089 	 * doesn't get stuck on the currently eligible stop task.
5090 	 *
5091 	 * We're currently inside stop_machine() and the rq is either stuck
5092 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5093 	 * either way we should never end up calling schedule() until we're
5094 	 * done here.
5095 	 */
5096 	rq->stop = NULL;
5097 
5098 	/*
5099 	 * put_prev_task() and pick_next_task() sched
5100 	 * class method both need to have an up-to-date
5101 	 * value of rq->clock[_task]
5102 	 */
5103 	update_rq_clock(rq);
5104 
5105 	for (;;) {
5106 		/*
5107 		 * There's this thread running, bail when that's the only
5108 		 * remaining thread.
5109 		 */
5110 		if (rq->nr_running == 1)
5111 			break;
5112 
5113 		/*
5114 		 * Ensure rq->lock covers the entire task selection
5115 		 * until the migration.
5116 		 */
5117 		lockdep_pin_lock(&rq->lock);
5118 		next = pick_next_task(rq, &fake_task);
5119 		BUG_ON(!next);
5120 		next->sched_class->put_prev_task(rq, next);
5121 
5122 		/* Find suitable destination for @next, with force if needed. */
5123 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5124 
5125 		lockdep_unpin_lock(&rq->lock);
5126 		rq = __migrate_task(rq, next, dest_cpu);
5127 		if (rq != dead_rq) {
5128 			raw_spin_unlock(&rq->lock);
5129 			rq = dead_rq;
5130 			raw_spin_lock(&rq->lock);
5131 		}
5132 	}
5133 
5134 	rq->stop = stop;
5135 }
5136 #endif /* CONFIG_HOTPLUG_CPU */
5137 
5138 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5139 
5140 static struct ctl_table sd_ctl_dir[] = {
5141 	{
5142 		.procname	= "sched_domain",
5143 		.mode		= 0555,
5144 	},
5145 	{}
5146 };
5147 
5148 static struct ctl_table sd_ctl_root[] = {
5149 	{
5150 		.procname	= "kernel",
5151 		.mode		= 0555,
5152 		.child		= sd_ctl_dir,
5153 	},
5154 	{}
5155 };
5156 
5157 static struct ctl_table *sd_alloc_ctl_entry(int n)
5158 {
5159 	struct ctl_table *entry =
5160 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5161 
5162 	return entry;
5163 }
5164 
5165 static void sd_free_ctl_entry(struct ctl_table **tablep)
5166 {
5167 	struct ctl_table *entry;
5168 
5169 	/*
5170 	 * In the intermediate directories, both the child directory and
5171 	 * procname are dynamically allocated and could fail but the mode
5172 	 * will always be set. In the lowest directory the names are
5173 	 * static strings and all have proc handlers.
5174 	 */
5175 	for (entry = *tablep; entry->mode; entry++) {
5176 		if (entry->child)
5177 			sd_free_ctl_entry(&entry->child);
5178 		if (entry->proc_handler == NULL)
5179 			kfree(entry->procname);
5180 	}
5181 
5182 	kfree(*tablep);
5183 	*tablep = NULL;
5184 }
5185 
5186 static int min_load_idx = 0;
5187 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5188 
5189 static void
5190 set_table_entry(struct ctl_table *entry,
5191 		const char *procname, void *data, int maxlen,
5192 		umode_t mode, proc_handler *proc_handler,
5193 		bool load_idx)
5194 {
5195 	entry->procname = procname;
5196 	entry->data = data;
5197 	entry->maxlen = maxlen;
5198 	entry->mode = mode;
5199 	entry->proc_handler = proc_handler;
5200 
5201 	if (load_idx) {
5202 		entry->extra1 = &min_load_idx;
5203 		entry->extra2 = &max_load_idx;
5204 	}
5205 }
5206 
5207 static struct ctl_table *
5208 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5209 {
5210 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5211 
5212 	if (table == NULL)
5213 		return NULL;
5214 
5215 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5216 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5217 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5218 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5219 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5220 		sizeof(int), 0644, proc_dointvec_minmax, true);
5221 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5222 		sizeof(int), 0644, proc_dointvec_minmax, true);
5223 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5224 		sizeof(int), 0644, proc_dointvec_minmax, true);
5225 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5226 		sizeof(int), 0644, proc_dointvec_minmax, true);
5227 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5228 		sizeof(int), 0644, proc_dointvec_minmax, true);
5229 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5230 		sizeof(int), 0644, proc_dointvec_minmax, false);
5231 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5232 		sizeof(int), 0644, proc_dointvec_minmax, false);
5233 	set_table_entry(&table[9], "cache_nice_tries",
5234 		&sd->cache_nice_tries,
5235 		sizeof(int), 0644, proc_dointvec_minmax, false);
5236 	set_table_entry(&table[10], "flags", &sd->flags,
5237 		sizeof(int), 0644, proc_dointvec_minmax, false);
5238 	set_table_entry(&table[11], "max_newidle_lb_cost",
5239 		&sd->max_newidle_lb_cost,
5240 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5241 	set_table_entry(&table[12], "name", sd->name,
5242 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5243 	/* &table[13] is terminator */
5244 
5245 	return table;
5246 }
5247 
5248 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5249 {
5250 	struct ctl_table *entry, *table;
5251 	struct sched_domain *sd;
5252 	int domain_num = 0, i;
5253 	char buf[32];
5254 
5255 	for_each_domain(cpu, sd)
5256 		domain_num++;
5257 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5258 	if (table == NULL)
5259 		return NULL;
5260 
5261 	i = 0;
5262 	for_each_domain(cpu, sd) {
5263 		snprintf(buf, 32, "domain%d", i);
5264 		entry->procname = kstrdup(buf, GFP_KERNEL);
5265 		entry->mode = 0555;
5266 		entry->child = sd_alloc_ctl_domain_table(sd);
5267 		entry++;
5268 		i++;
5269 	}
5270 	return table;
5271 }
5272 
5273 static struct ctl_table_header *sd_sysctl_header;
5274 static void register_sched_domain_sysctl(void)
5275 {
5276 	int i, cpu_num = num_possible_cpus();
5277 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5278 	char buf[32];
5279 
5280 	WARN_ON(sd_ctl_dir[0].child);
5281 	sd_ctl_dir[0].child = entry;
5282 
5283 	if (entry == NULL)
5284 		return;
5285 
5286 	for_each_possible_cpu(i) {
5287 		snprintf(buf, 32, "cpu%d", i);
5288 		entry->procname = kstrdup(buf, GFP_KERNEL);
5289 		entry->mode = 0555;
5290 		entry->child = sd_alloc_ctl_cpu_table(i);
5291 		entry++;
5292 	}
5293 
5294 	WARN_ON(sd_sysctl_header);
5295 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5296 }
5297 
5298 /* may be called multiple times per register */
5299 static void unregister_sched_domain_sysctl(void)
5300 {
5301 	if (sd_sysctl_header)
5302 		unregister_sysctl_table(sd_sysctl_header);
5303 	sd_sysctl_header = NULL;
5304 	if (sd_ctl_dir[0].child)
5305 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5306 }
5307 #else
5308 static void register_sched_domain_sysctl(void)
5309 {
5310 }
5311 static void unregister_sched_domain_sysctl(void)
5312 {
5313 }
5314 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5315 
5316 static void set_rq_online(struct rq *rq)
5317 {
5318 	if (!rq->online) {
5319 		const struct sched_class *class;
5320 
5321 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5322 		rq->online = 1;
5323 
5324 		for_each_class(class) {
5325 			if (class->rq_online)
5326 				class->rq_online(rq);
5327 		}
5328 	}
5329 }
5330 
5331 static void set_rq_offline(struct rq *rq)
5332 {
5333 	if (rq->online) {
5334 		const struct sched_class *class;
5335 
5336 		for_each_class(class) {
5337 			if (class->rq_offline)
5338 				class->rq_offline(rq);
5339 		}
5340 
5341 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5342 		rq->online = 0;
5343 	}
5344 }
5345 
5346 /*
5347  * migration_call - callback that gets triggered when a CPU is added.
5348  * Here we can start up the necessary migration thread for the new CPU.
5349  */
5350 static int
5351 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5352 {
5353 	int cpu = (long)hcpu;
5354 	unsigned long flags;
5355 	struct rq *rq = cpu_rq(cpu);
5356 
5357 	switch (action & ~CPU_TASKS_FROZEN) {
5358 
5359 	case CPU_UP_PREPARE:
5360 		rq->calc_load_update = calc_load_update;
5361 		break;
5362 
5363 	case CPU_ONLINE:
5364 		/* Update our root-domain */
5365 		raw_spin_lock_irqsave(&rq->lock, flags);
5366 		if (rq->rd) {
5367 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5368 
5369 			set_rq_online(rq);
5370 		}
5371 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5372 		break;
5373 
5374 #ifdef CONFIG_HOTPLUG_CPU
5375 	case CPU_DYING:
5376 		sched_ttwu_pending();
5377 		/* Update our root-domain */
5378 		raw_spin_lock_irqsave(&rq->lock, flags);
5379 		if (rq->rd) {
5380 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5381 			set_rq_offline(rq);
5382 		}
5383 		migrate_tasks(rq);
5384 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5385 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5386 		break;
5387 
5388 	case CPU_DEAD:
5389 		calc_load_migrate(rq);
5390 		break;
5391 #endif
5392 	}
5393 
5394 	update_max_interval();
5395 
5396 	return NOTIFY_OK;
5397 }
5398 
5399 /*
5400  * Register at high priority so that task migration (migrate_all_tasks)
5401  * happens before everything else.  This has to be lower priority than
5402  * the notifier in the perf_event subsystem, though.
5403  */
5404 static struct notifier_block migration_notifier = {
5405 	.notifier_call = migration_call,
5406 	.priority = CPU_PRI_MIGRATION,
5407 };
5408 
5409 static void set_cpu_rq_start_time(void)
5410 {
5411 	int cpu = smp_processor_id();
5412 	struct rq *rq = cpu_rq(cpu);
5413 	rq->age_stamp = sched_clock_cpu(cpu);
5414 }
5415 
5416 static int sched_cpu_active(struct notifier_block *nfb,
5417 				      unsigned long action, void *hcpu)
5418 {
5419 	switch (action & ~CPU_TASKS_FROZEN) {
5420 	case CPU_STARTING:
5421 		set_cpu_rq_start_time();
5422 		return NOTIFY_OK;
5423 	case CPU_DOWN_FAILED:
5424 		set_cpu_active((long)hcpu, true);
5425 		return NOTIFY_OK;
5426 	default:
5427 		return NOTIFY_DONE;
5428 	}
5429 }
5430 
5431 static int sched_cpu_inactive(struct notifier_block *nfb,
5432 					unsigned long action, void *hcpu)
5433 {
5434 	switch (action & ~CPU_TASKS_FROZEN) {
5435 	case CPU_DOWN_PREPARE:
5436 		set_cpu_active((long)hcpu, false);
5437 		return NOTIFY_OK;
5438 	default:
5439 		return NOTIFY_DONE;
5440 	}
5441 }
5442 
5443 static int __init migration_init(void)
5444 {
5445 	void *cpu = (void *)(long)smp_processor_id();
5446 	int err;
5447 
5448 	/* Initialize migration for the boot CPU */
5449 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5450 	BUG_ON(err == NOTIFY_BAD);
5451 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5452 	register_cpu_notifier(&migration_notifier);
5453 
5454 	/* Register cpu active notifiers */
5455 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5456 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5457 
5458 	return 0;
5459 }
5460 early_initcall(migration_init);
5461 
5462 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5463 
5464 #ifdef CONFIG_SCHED_DEBUG
5465 
5466 static __read_mostly int sched_debug_enabled;
5467 
5468 static int __init sched_debug_setup(char *str)
5469 {
5470 	sched_debug_enabled = 1;
5471 
5472 	return 0;
5473 }
5474 early_param("sched_debug", sched_debug_setup);
5475 
5476 static inline bool sched_debug(void)
5477 {
5478 	return sched_debug_enabled;
5479 }
5480 
5481 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5482 				  struct cpumask *groupmask)
5483 {
5484 	struct sched_group *group = sd->groups;
5485 
5486 	cpumask_clear(groupmask);
5487 
5488 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5489 
5490 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5491 		printk("does not load-balance\n");
5492 		if (sd->parent)
5493 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5494 					" has parent");
5495 		return -1;
5496 	}
5497 
5498 	printk(KERN_CONT "span %*pbl level %s\n",
5499 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5500 
5501 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5502 		printk(KERN_ERR "ERROR: domain->span does not contain "
5503 				"CPU%d\n", cpu);
5504 	}
5505 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5506 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5507 				" CPU%d\n", cpu);
5508 	}
5509 
5510 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5511 	do {
5512 		if (!group) {
5513 			printk("\n");
5514 			printk(KERN_ERR "ERROR: group is NULL\n");
5515 			break;
5516 		}
5517 
5518 		if (!cpumask_weight(sched_group_cpus(group))) {
5519 			printk(KERN_CONT "\n");
5520 			printk(KERN_ERR "ERROR: empty group\n");
5521 			break;
5522 		}
5523 
5524 		if (!(sd->flags & SD_OVERLAP) &&
5525 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5526 			printk(KERN_CONT "\n");
5527 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5528 			break;
5529 		}
5530 
5531 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5532 
5533 		printk(KERN_CONT " %*pbl",
5534 		       cpumask_pr_args(sched_group_cpus(group)));
5535 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5536 			printk(KERN_CONT " (cpu_capacity = %d)",
5537 				group->sgc->capacity);
5538 		}
5539 
5540 		group = group->next;
5541 	} while (group != sd->groups);
5542 	printk(KERN_CONT "\n");
5543 
5544 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5545 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5546 
5547 	if (sd->parent &&
5548 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5549 		printk(KERN_ERR "ERROR: parent span is not a superset "
5550 			"of domain->span\n");
5551 	return 0;
5552 }
5553 
5554 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5555 {
5556 	int level = 0;
5557 
5558 	if (!sched_debug_enabled)
5559 		return;
5560 
5561 	if (!sd) {
5562 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5563 		return;
5564 	}
5565 
5566 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5567 
5568 	for (;;) {
5569 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5570 			break;
5571 		level++;
5572 		sd = sd->parent;
5573 		if (!sd)
5574 			break;
5575 	}
5576 }
5577 #else /* !CONFIG_SCHED_DEBUG */
5578 # define sched_domain_debug(sd, cpu) do { } while (0)
5579 static inline bool sched_debug(void)
5580 {
5581 	return false;
5582 }
5583 #endif /* CONFIG_SCHED_DEBUG */
5584 
5585 static int sd_degenerate(struct sched_domain *sd)
5586 {
5587 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5588 		return 1;
5589 
5590 	/* Following flags need at least 2 groups */
5591 	if (sd->flags & (SD_LOAD_BALANCE |
5592 			 SD_BALANCE_NEWIDLE |
5593 			 SD_BALANCE_FORK |
5594 			 SD_BALANCE_EXEC |
5595 			 SD_SHARE_CPUCAPACITY |
5596 			 SD_SHARE_PKG_RESOURCES |
5597 			 SD_SHARE_POWERDOMAIN)) {
5598 		if (sd->groups != sd->groups->next)
5599 			return 0;
5600 	}
5601 
5602 	/* Following flags don't use groups */
5603 	if (sd->flags & (SD_WAKE_AFFINE))
5604 		return 0;
5605 
5606 	return 1;
5607 }
5608 
5609 static int
5610 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5611 {
5612 	unsigned long cflags = sd->flags, pflags = parent->flags;
5613 
5614 	if (sd_degenerate(parent))
5615 		return 1;
5616 
5617 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5618 		return 0;
5619 
5620 	/* Flags needing groups don't count if only 1 group in parent */
5621 	if (parent->groups == parent->groups->next) {
5622 		pflags &= ~(SD_LOAD_BALANCE |
5623 				SD_BALANCE_NEWIDLE |
5624 				SD_BALANCE_FORK |
5625 				SD_BALANCE_EXEC |
5626 				SD_SHARE_CPUCAPACITY |
5627 				SD_SHARE_PKG_RESOURCES |
5628 				SD_PREFER_SIBLING |
5629 				SD_SHARE_POWERDOMAIN);
5630 		if (nr_node_ids == 1)
5631 			pflags &= ~SD_SERIALIZE;
5632 	}
5633 	if (~cflags & pflags)
5634 		return 0;
5635 
5636 	return 1;
5637 }
5638 
5639 static void free_rootdomain(struct rcu_head *rcu)
5640 {
5641 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5642 
5643 	cpupri_cleanup(&rd->cpupri);
5644 	cpudl_cleanup(&rd->cpudl);
5645 	free_cpumask_var(rd->dlo_mask);
5646 	free_cpumask_var(rd->rto_mask);
5647 	free_cpumask_var(rd->online);
5648 	free_cpumask_var(rd->span);
5649 	kfree(rd);
5650 }
5651 
5652 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5653 {
5654 	struct root_domain *old_rd = NULL;
5655 	unsigned long flags;
5656 
5657 	raw_spin_lock_irqsave(&rq->lock, flags);
5658 
5659 	if (rq->rd) {
5660 		old_rd = rq->rd;
5661 
5662 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5663 			set_rq_offline(rq);
5664 
5665 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5666 
5667 		/*
5668 		 * If we dont want to free the old_rd yet then
5669 		 * set old_rd to NULL to skip the freeing later
5670 		 * in this function:
5671 		 */
5672 		if (!atomic_dec_and_test(&old_rd->refcount))
5673 			old_rd = NULL;
5674 	}
5675 
5676 	atomic_inc(&rd->refcount);
5677 	rq->rd = rd;
5678 
5679 	cpumask_set_cpu(rq->cpu, rd->span);
5680 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5681 		set_rq_online(rq);
5682 
5683 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5684 
5685 	if (old_rd)
5686 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5687 }
5688 
5689 static int init_rootdomain(struct root_domain *rd)
5690 {
5691 	memset(rd, 0, sizeof(*rd));
5692 
5693 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5694 		goto out;
5695 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5696 		goto free_span;
5697 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5698 		goto free_online;
5699 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5700 		goto free_dlo_mask;
5701 
5702 	init_dl_bw(&rd->dl_bw);
5703 	if (cpudl_init(&rd->cpudl) != 0)
5704 		goto free_dlo_mask;
5705 
5706 	if (cpupri_init(&rd->cpupri) != 0)
5707 		goto free_rto_mask;
5708 	return 0;
5709 
5710 free_rto_mask:
5711 	free_cpumask_var(rd->rto_mask);
5712 free_dlo_mask:
5713 	free_cpumask_var(rd->dlo_mask);
5714 free_online:
5715 	free_cpumask_var(rd->online);
5716 free_span:
5717 	free_cpumask_var(rd->span);
5718 out:
5719 	return -ENOMEM;
5720 }
5721 
5722 /*
5723  * By default the system creates a single root-domain with all cpus as
5724  * members (mimicking the global state we have today).
5725  */
5726 struct root_domain def_root_domain;
5727 
5728 static void init_defrootdomain(void)
5729 {
5730 	init_rootdomain(&def_root_domain);
5731 
5732 	atomic_set(&def_root_domain.refcount, 1);
5733 }
5734 
5735 static struct root_domain *alloc_rootdomain(void)
5736 {
5737 	struct root_domain *rd;
5738 
5739 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5740 	if (!rd)
5741 		return NULL;
5742 
5743 	if (init_rootdomain(rd) != 0) {
5744 		kfree(rd);
5745 		return NULL;
5746 	}
5747 
5748 	return rd;
5749 }
5750 
5751 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5752 {
5753 	struct sched_group *tmp, *first;
5754 
5755 	if (!sg)
5756 		return;
5757 
5758 	first = sg;
5759 	do {
5760 		tmp = sg->next;
5761 
5762 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5763 			kfree(sg->sgc);
5764 
5765 		kfree(sg);
5766 		sg = tmp;
5767 	} while (sg != first);
5768 }
5769 
5770 static void free_sched_domain(struct rcu_head *rcu)
5771 {
5772 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5773 
5774 	/*
5775 	 * If its an overlapping domain it has private groups, iterate and
5776 	 * nuke them all.
5777 	 */
5778 	if (sd->flags & SD_OVERLAP) {
5779 		free_sched_groups(sd->groups, 1);
5780 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5781 		kfree(sd->groups->sgc);
5782 		kfree(sd->groups);
5783 	}
5784 	kfree(sd);
5785 }
5786 
5787 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5788 {
5789 	call_rcu(&sd->rcu, free_sched_domain);
5790 }
5791 
5792 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5793 {
5794 	for (; sd; sd = sd->parent)
5795 		destroy_sched_domain(sd, cpu);
5796 }
5797 
5798 /*
5799  * Keep a special pointer to the highest sched_domain that has
5800  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5801  * allows us to avoid some pointer chasing select_idle_sibling().
5802  *
5803  * Also keep a unique ID per domain (we use the first cpu number in
5804  * the cpumask of the domain), this allows us to quickly tell if
5805  * two cpus are in the same cache domain, see cpus_share_cache().
5806  */
5807 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5808 DEFINE_PER_CPU(int, sd_llc_size);
5809 DEFINE_PER_CPU(int, sd_llc_id);
5810 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5811 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5812 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5813 
5814 static void update_top_cache_domain(int cpu)
5815 {
5816 	struct sched_domain *sd;
5817 	struct sched_domain *busy_sd = NULL;
5818 	int id = cpu;
5819 	int size = 1;
5820 
5821 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5822 	if (sd) {
5823 		id = cpumask_first(sched_domain_span(sd));
5824 		size = cpumask_weight(sched_domain_span(sd));
5825 		busy_sd = sd->parent; /* sd_busy */
5826 	}
5827 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5828 
5829 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5830 	per_cpu(sd_llc_size, cpu) = size;
5831 	per_cpu(sd_llc_id, cpu) = id;
5832 
5833 	sd = lowest_flag_domain(cpu, SD_NUMA);
5834 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5835 
5836 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5837 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5838 }
5839 
5840 /*
5841  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5842  * hold the hotplug lock.
5843  */
5844 static void
5845 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5846 {
5847 	struct rq *rq = cpu_rq(cpu);
5848 	struct sched_domain *tmp;
5849 
5850 	/* Remove the sched domains which do not contribute to scheduling. */
5851 	for (tmp = sd; tmp; ) {
5852 		struct sched_domain *parent = tmp->parent;
5853 		if (!parent)
5854 			break;
5855 
5856 		if (sd_parent_degenerate(tmp, parent)) {
5857 			tmp->parent = parent->parent;
5858 			if (parent->parent)
5859 				parent->parent->child = tmp;
5860 			/*
5861 			 * Transfer SD_PREFER_SIBLING down in case of a
5862 			 * degenerate parent; the spans match for this
5863 			 * so the property transfers.
5864 			 */
5865 			if (parent->flags & SD_PREFER_SIBLING)
5866 				tmp->flags |= SD_PREFER_SIBLING;
5867 			destroy_sched_domain(parent, cpu);
5868 		} else
5869 			tmp = tmp->parent;
5870 	}
5871 
5872 	if (sd && sd_degenerate(sd)) {
5873 		tmp = sd;
5874 		sd = sd->parent;
5875 		destroy_sched_domain(tmp, cpu);
5876 		if (sd)
5877 			sd->child = NULL;
5878 	}
5879 
5880 	sched_domain_debug(sd, cpu);
5881 
5882 	rq_attach_root(rq, rd);
5883 	tmp = rq->sd;
5884 	rcu_assign_pointer(rq->sd, sd);
5885 	destroy_sched_domains(tmp, cpu);
5886 
5887 	update_top_cache_domain(cpu);
5888 }
5889 
5890 /* Setup the mask of cpus configured for isolated domains */
5891 static int __init isolated_cpu_setup(char *str)
5892 {
5893 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5894 	cpulist_parse(str, cpu_isolated_map);
5895 	return 1;
5896 }
5897 
5898 __setup("isolcpus=", isolated_cpu_setup);
5899 
5900 struct s_data {
5901 	struct sched_domain ** __percpu sd;
5902 	struct root_domain	*rd;
5903 };
5904 
5905 enum s_alloc {
5906 	sa_rootdomain,
5907 	sa_sd,
5908 	sa_sd_storage,
5909 	sa_none,
5910 };
5911 
5912 /*
5913  * Build an iteration mask that can exclude certain CPUs from the upwards
5914  * domain traversal.
5915  *
5916  * Asymmetric node setups can result in situations where the domain tree is of
5917  * unequal depth, make sure to skip domains that already cover the entire
5918  * range.
5919  *
5920  * In that case build_sched_domains() will have terminated the iteration early
5921  * and our sibling sd spans will be empty. Domains should always include the
5922  * cpu they're built on, so check that.
5923  *
5924  */
5925 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5926 {
5927 	const struct cpumask *span = sched_domain_span(sd);
5928 	struct sd_data *sdd = sd->private;
5929 	struct sched_domain *sibling;
5930 	int i;
5931 
5932 	for_each_cpu(i, span) {
5933 		sibling = *per_cpu_ptr(sdd->sd, i);
5934 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5935 			continue;
5936 
5937 		cpumask_set_cpu(i, sched_group_mask(sg));
5938 	}
5939 }
5940 
5941 /*
5942  * Return the canonical balance cpu for this group, this is the first cpu
5943  * of this group that's also in the iteration mask.
5944  */
5945 int group_balance_cpu(struct sched_group *sg)
5946 {
5947 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5948 }
5949 
5950 static int
5951 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5952 {
5953 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5954 	const struct cpumask *span = sched_domain_span(sd);
5955 	struct cpumask *covered = sched_domains_tmpmask;
5956 	struct sd_data *sdd = sd->private;
5957 	struct sched_domain *sibling;
5958 	int i;
5959 
5960 	cpumask_clear(covered);
5961 
5962 	for_each_cpu(i, span) {
5963 		struct cpumask *sg_span;
5964 
5965 		if (cpumask_test_cpu(i, covered))
5966 			continue;
5967 
5968 		sibling = *per_cpu_ptr(sdd->sd, i);
5969 
5970 		/* See the comment near build_group_mask(). */
5971 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5972 			continue;
5973 
5974 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5975 				GFP_KERNEL, cpu_to_node(cpu));
5976 
5977 		if (!sg)
5978 			goto fail;
5979 
5980 		sg_span = sched_group_cpus(sg);
5981 		if (sibling->child)
5982 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5983 		else
5984 			cpumask_set_cpu(i, sg_span);
5985 
5986 		cpumask_or(covered, covered, sg_span);
5987 
5988 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5989 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5990 			build_group_mask(sd, sg);
5991 
5992 		/*
5993 		 * Initialize sgc->capacity such that even if we mess up the
5994 		 * domains and no possible iteration will get us here, we won't
5995 		 * die on a /0 trap.
5996 		 */
5997 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5998 
5999 		/*
6000 		 * Make sure the first group of this domain contains the
6001 		 * canonical balance cpu. Otherwise the sched_domain iteration
6002 		 * breaks. See update_sg_lb_stats().
6003 		 */
6004 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6005 		    group_balance_cpu(sg) == cpu)
6006 			groups = sg;
6007 
6008 		if (!first)
6009 			first = sg;
6010 		if (last)
6011 			last->next = sg;
6012 		last = sg;
6013 		last->next = first;
6014 	}
6015 	sd->groups = groups;
6016 
6017 	return 0;
6018 
6019 fail:
6020 	free_sched_groups(first, 0);
6021 
6022 	return -ENOMEM;
6023 }
6024 
6025 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6026 {
6027 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6028 	struct sched_domain *child = sd->child;
6029 
6030 	if (child)
6031 		cpu = cpumask_first(sched_domain_span(child));
6032 
6033 	if (sg) {
6034 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6035 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6036 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6037 	}
6038 
6039 	return cpu;
6040 }
6041 
6042 /*
6043  * build_sched_groups will build a circular linked list of the groups
6044  * covered by the given span, and will set each group's ->cpumask correctly,
6045  * and ->cpu_capacity to 0.
6046  *
6047  * Assumes the sched_domain tree is fully constructed
6048  */
6049 static int
6050 build_sched_groups(struct sched_domain *sd, int cpu)
6051 {
6052 	struct sched_group *first = NULL, *last = NULL;
6053 	struct sd_data *sdd = sd->private;
6054 	const struct cpumask *span = sched_domain_span(sd);
6055 	struct cpumask *covered;
6056 	int i;
6057 
6058 	get_group(cpu, sdd, &sd->groups);
6059 	atomic_inc(&sd->groups->ref);
6060 
6061 	if (cpu != cpumask_first(span))
6062 		return 0;
6063 
6064 	lockdep_assert_held(&sched_domains_mutex);
6065 	covered = sched_domains_tmpmask;
6066 
6067 	cpumask_clear(covered);
6068 
6069 	for_each_cpu(i, span) {
6070 		struct sched_group *sg;
6071 		int group, j;
6072 
6073 		if (cpumask_test_cpu(i, covered))
6074 			continue;
6075 
6076 		group = get_group(i, sdd, &sg);
6077 		cpumask_setall(sched_group_mask(sg));
6078 
6079 		for_each_cpu(j, span) {
6080 			if (get_group(j, sdd, NULL) != group)
6081 				continue;
6082 
6083 			cpumask_set_cpu(j, covered);
6084 			cpumask_set_cpu(j, sched_group_cpus(sg));
6085 		}
6086 
6087 		if (!first)
6088 			first = sg;
6089 		if (last)
6090 			last->next = sg;
6091 		last = sg;
6092 	}
6093 	last->next = first;
6094 
6095 	return 0;
6096 }
6097 
6098 /*
6099  * Initialize sched groups cpu_capacity.
6100  *
6101  * cpu_capacity indicates the capacity of sched group, which is used while
6102  * distributing the load between different sched groups in a sched domain.
6103  * Typically cpu_capacity for all the groups in a sched domain will be same
6104  * unless there are asymmetries in the topology. If there are asymmetries,
6105  * group having more cpu_capacity will pickup more load compared to the
6106  * group having less cpu_capacity.
6107  */
6108 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6109 {
6110 	struct sched_group *sg = sd->groups;
6111 
6112 	WARN_ON(!sg);
6113 
6114 	do {
6115 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6116 		sg = sg->next;
6117 	} while (sg != sd->groups);
6118 
6119 	if (cpu != group_balance_cpu(sg))
6120 		return;
6121 
6122 	update_group_capacity(sd, cpu);
6123 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6124 }
6125 
6126 /*
6127  * Initializers for schedule domains
6128  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6129  */
6130 
6131 static int default_relax_domain_level = -1;
6132 int sched_domain_level_max;
6133 
6134 static int __init setup_relax_domain_level(char *str)
6135 {
6136 	if (kstrtoint(str, 0, &default_relax_domain_level))
6137 		pr_warn("Unable to set relax_domain_level\n");
6138 
6139 	return 1;
6140 }
6141 __setup("relax_domain_level=", setup_relax_domain_level);
6142 
6143 static void set_domain_attribute(struct sched_domain *sd,
6144 				 struct sched_domain_attr *attr)
6145 {
6146 	int request;
6147 
6148 	if (!attr || attr->relax_domain_level < 0) {
6149 		if (default_relax_domain_level < 0)
6150 			return;
6151 		else
6152 			request = default_relax_domain_level;
6153 	} else
6154 		request = attr->relax_domain_level;
6155 	if (request < sd->level) {
6156 		/* turn off idle balance on this domain */
6157 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6158 	} else {
6159 		/* turn on idle balance on this domain */
6160 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6161 	}
6162 }
6163 
6164 static void __sdt_free(const struct cpumask *cpu_map);
6165 static int __sdt_alloc(const struct cpumask *cpu_map);
6166 
6167 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6168 				 const struct cpumask *cpu_map)
6169 {
6170 	switch (what) {
6171 	case sa_rootdomain:
6172 		if (!atomic_read(&d->rd->refcount))
6173 			free_rootdomain(&d->rd->rcu); /* fall through */
6174 	case sa_sd:
6175 		free_percpu(d->sd); /* fall through */
6176 	case sa_sd_storage:
6177 		__sdt_free(cpu_map); /* fall through */
6178 	case sa_none:
6179 		break;
6180 	}
6181 }
6182 
6183 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6184 						   const struct cpumask *cpu_map)
6185 {
6186 	memset(d, 0, sizeof(*d));
6187 
6188 	if (__sdt_alloc(cpu_map))
6189 		return sa_sd_storage;
6190 	d->sd = alloc_percpu(struct sched_domain *);
6191 	if (!d->sd)
6192 		return sa_sd_storage;
6193 	d->rd = alloc_rootdomain();
6194 	if (!d->rd)
6195 		return sa_sd;
6196 	return sa_rootdomain;
6197 }
6198 
6199 /*
6200  * NULL the sd_data elements we've used to build the sched_domain and
6201  * sched_group structure so that the subsequent __free_domain_allocs()
6202  * will not free the data we're using.
6203  */
6204 static void claim_allocations(int cpu, struct sched_domain *sd)
6205 {
6206 	struct sd_data *sdd = sd->private;
6207 
6208 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6209 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6210 
6211 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6212 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6213 
6214 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6215 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6216 }
6217 
6218 #ifdef CONFIG_NUMA
6219 static int sched_domains_numa_levels;
6220 enum numa_topology_type sched_numa_topology_type;
6221 static int *sched_domains_numa_distance;
6222 int sched_max_numa_distance;
6223 static struct cpumask ***sched_domains_numa_masks;
6224 static int sched_domains_curr_level;
6225 #endif
6226 
6227 /*
6228  * SD_flags allowed in topology descriptions.
6229  *
6230  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6231  * SD_SHARE_PKG_RESOURCES - describes shared caches
6232  * SD_NUMA                - describes NUMA topologies
6233  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6234  *
6235  * Odd one out:
6236  * SD_ASYM_PACKING        - describes SMT quirks
6237  */
6238 #define TOPOLOGY_SD_FLAGS		\
6239 	(SD_SHARE_CPUCAPACITY |		\
6240 	 SD_SHARE_PKG_RESOURCES |	\
6241 	 SD_NUMA |			\
6242 	 SD_ASYM_PACKING |		\
6243 	 SD_SHARE_POWERDOMAIN)
6244 
6245 static struct sched_domain *
6246 sd_init(struct sched_domain_topology_level *tl, int cpu)
6247 {
6248 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6249 	int sd_weight, sd_flags = 0;
6250 
6251 #ifdef CONFIG_NUMA
6252 	/*
6253 	 * Ugly hack to pass state to sd_numa_mask()...
6254 	 */
6255 	sched_domains_curr_level = tl->numa_level;
6256 #endif
6257 
6258 	sd_weight = cpumask_weight(tl->mask(cpu));
6259 
6260 	if (tl->sd_flags)
6261 		sd_flags = (*tl->sd_flags)();
6262 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6263 			"wrong sd_flags in topology description\n"))
6264 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6265 
6266 	*sd = (struct sched_domain){
6267 		.min_interval		= sd_weight,
6268 		.max_interval		= 2*sd_weight,
6269 		.busy_factor		= 32,
6270 		.imbalance_pct		= 125,
6271 
6272 		.cache_nice_tries	= 0,
6273 		.busy_idx		= 0,
6274 		.idle_idx		= 0,
6275 		.newidle_idx		= 0,
6276 		.wake_idx		= 0,
6277 		.forkexec_idx		= 0,
6278 
6279 		.flags			= 1*SD_LOAD_BALANCE
6280 					| 1*SD_BALANCE_NEWIDLE
6281 					| 1*SD_BALANCE_EXEC
6282 					| 1*SD_BALANCE_FORK
6283 					| 0*SD_BALANCE_WAKE
6284 					| 1*SD_WAKE_AFFINE
6285 					| 0*SD_SHARE_CPUCAPACITY
6286 					| 0*SD_SHARE_PKG_RESOURCES
6287 					| 0*SD_SERIALIZE
6288 					| 0*SD_PREFER_SIBLING
6289 					| 0*SD_NUMA
6290 					| sd_flags
6291 					,
6292 
6293 		.last_balance		= jiffies,
6294 		.balance_interval	= sd_weight,
6295 		.smt_gain		= 0,
6296 		.max_newidle_lb_cost	= 0,
6297 		.next_decay_max_lb_cost	= jiffies,
6298 #ifdef CONFIG_SCHED_DEBUG
6299 		.name			= tl->name,
6300 #endif
6301 	};
6302 
6303 	/*
6304 	 * Convert topological properties into behaviour.
6305 	 */
6306 
6307 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6308 		sd->flags |= SD_PREFER_SIBLING;
6309 		sd->imbalance_pct = 110;
6310 		sd->smt_gain = 1178; /* ~15% */
6311 
6312 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6313 		sd->imbalance_pct = 117;
6314 		sd->cache_nice_tries = 1;
6315 		sd->busy_idx = 2;
6316 
6317 #ifdef CONFIG_NUMA
6318 	} else if (sd->flags & SD_NUMA) {
6319 		sd->cache_nice_tries = 2;
6320 		sd->busy_idx = 3;
6321 		sd->idle_idx = 2;
6322 
6323 		sd->flags |= SD_SERIALIZE;
6324 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6325 			sd->flags &= ~(SD_BALANCE_EXEC |
6326 				       SD_BALANCE_FORK |
6327 				       SD_WAKE_AFFINE);
6328 		}
6329 
6330 #endif
6331 	} else {
6332 		sd->flags |= SD_PREFER_SIBLING;
6333 		sd->cache_nice_tries = 1;
6334 		sd->busy_idx = 2;
6335 		sd->idle_idx = 1;
6336 	}
6337 
6338 	sd->private = &tl->data;
6339 
6340 	return sd;
6341 }
6342 
6343 /*
6344  * Topology list, bottom-up.
6345  */
6346 static struct sched_domain_topology_level default_topology[] = {
6347 #ifdef CONFIG_SCHED_SMT
6348 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6349 #endif
6350 #ifdef CONFIG_SCHED_MC
6351 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6352 #endif
6353 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6354 	{ NULL, },
6355 };
6356 
6357 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6358 
6359 #define for_each_sd_topology(tl)			\
6360 	for (tl = sched_domain_topology; tl->mask; tl++)
6361 
6362 void set_sched_topology(struct sched_domain_topology_level *tl)
6363 {
6364 	sched_domain_topology = tl;
6365 }
6366 
6367 #ifdef CONFIG_NUMA
6368 
6369 static const struct cpumask *sd_numa_mask(int cpu)
6370 {
6371 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6372 }
6373 
6374 static void sched_numa_warn(const char *str)
6375 {
6376 	static int done = false;
6377 	int i,j;
6378 
6379 	if (done)
6380 		return;
6381 
6382 	done = true;
6383 
6384 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6385 
6386 	for (i = 0; i < nr_node_ids; i++) {
6387 		printk(KERN_WARNING "  ");
6388 		for (j = 0; j < nr_node_ids; j++)
6389 			printk(KERN_CONT "%02d ", node_distance(i,j));
6390 		printk(KERN_CONT "\n");
6391 	}
6392 	printk(KERN_WARNING "\n");
6393 }
6394 
6395 bool find_numa_distance(int distance)
6396 {
6397 	int i;
6398 
6399 	if (distance == node_distance(0, 0))
6400 		return true;
6401 
6402 	for (i = 0; i < sched_domains_numa_levels; i++) {
6403 		if (sched_domains_numa_distance[i] == distance)
6404 			return true;
6405 	}
6406 
6407 	return false;
6408 }
6409 
6410 /*
6411  * A system can have three types of NUMA topology:
6412  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6413  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6414  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6415  *
6416  * The difference between a glueless mesh topology and a backplane
6417  * topology lies in whether communication between not directly
6418  * connected nodes goes through intermediary nodes (where programs
6419  * could run), or through backplane controllers. This affects
6420  * placement of programs.
6421  *
6422  * The type of topology can be discerned with the following tests:
6423  * - If the maximum distance between any nodes is 1 hop, the system
6424  *   is directly connected.
6425  * - If for two nodes A and B, located N > 1 hops away from each other,
6426  *   there is an intermediary node C, which is < N hops away from both
6427  *   nodes A and B, the system is a glueless mesh.
6428  */
6429 static void init_numa_topology_type(void)
6430 {
6431 	int a, b, c, n;
6432 
6433 	n = sched_max_numa_distance;
6434 
6435 	if (n <= 1)
6436 		sched_numa_topology_type = NUMA_DIRECT;
6437 
6438 	for_each_online_node(a) {
6439 		for_each_online_node(b) {
6440 			/* Find two nodes furthest removed from each other. */
6441 			if (node_distance(a, b) < n)
6442 				continue;
6443 
6444 			/* Is there an intermediary node between a and b? */
6445 			for_each_online_node(c) {
6446 				if (node_distance(a, c) < n &&
6447 				    node_distance(b, c) < n) {
6448 					sched_numa_topology_type =
6449 							NUMA_GLUELESS_MESH;
6450 					return;
6451 				}
6452 			}
6453 
6454 			sched_numa_topology_type = NUMA_BACKPLANE;
6455 			return;
6456 		}
6457 	}
6458 }
6459 
6460 static void sched_init_numa(void)
6461 {
6462 	int next_distance, curr_distance = node_distance(0, 0);
6463 	struct sched_domain_topology_level *tl;
6464 	int level = 0;
6465 	int i, j, k;
6466 
6467 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6468 	if (!sched_domains_numa_distance)
6469 		return;
6470 
6471 	/*
6472 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6473 	 * unique distances in the node_distance() table.
6474 	 *
6475 	 * Assumes node_distance(0,j) includes all distances in
6476 	 * node_distance(i,j) in order to avoid cubic time.
6477 	 */
6478 	next_distance = curr_distance;
6479 	for (i = 0; i < nr_node_ids; i++) {
6480 		for (j = 0; j < nr_node_ids; j++) {
6481 			for (k = 0; k < nr_node_ids; k++) {
6482 				int distance = node_distance(i, k);
6483 
6484 				if (distance > curr_distance &&
6485 				    (distance < next_distance ||
6486 				     next_distance == curr_distance))
6487 					next_distance = distance;
6488 
6489 				/*
6490 				 * While not a strong assumption it would be nice to know
6491 				 * about cases where if node A is connected to B, B is not
6492 				 * equally connected to A.
6493 				 */
6494 				if (sched_debug() && node_distance(k, i) != distance)
6495 					sched_numa_warn("Node-distance not symmetric");
6496 
6497 				if (sched_debug() && i && !find_numa_distance(distance))
6498 					sched_numa_warn("Node-0 not representative");
6499 			}
6500 			if (next_distance != curr_distance) {
6501 				sched_domains_numa_distance[level++] = next_distance;
6502 				sched_domains_numa_levels = level;
6503 				curr_distance = next_distance;
6504 			} else break;
6505 		}
6506 
6507 		/*
6508 		 * In case of sched_debug() we verify the above assumption.
6509 		 */
6510 		if (!sched_debug())
6511 			break;
6512 	}
6513 
6514 	if (!level)
6515 		return;
6516 
6517 	/*
6518 	 * 'level' contains the number of unique distances, excluding the
6519 	 * identity distance node_distance(i,i).
6520 	 *
6521 	 * The sched_domains_numa_distance[] array includes the actual distance
6522 	 * numbers.
6523 	 */
6524 
6525 	/*
6526 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6527 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6528 	 * the array will contain less then 'level' members. This could be
6529 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6530 	 * in other functions.
6531 	 *
6532 	 * We reset it to 'level' at the end of this function.
6533 	 */
6534 	sched_domains_numa_levels = 0;
6535 
6536 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6537 	if (!sched_domains_numa_masks)
6538 		return;
6539 
6540 	/*
6541 	 * Now for each level, construct a mask per node which contains all
6542 	 * cpus of nodes that are that many hops away from us.
6543 	 */
6544 	for (i = 0; i < level; i++) {
6545 		sched_domains_numa_masks[i] =
6546 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6547 		if (!sched_domains_numa_masks[i])
6548 			return;
6549 
6550 		for (j = 0; j < nr_node_ids; j++) {
6551 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6552 			if (!mask)
6553 				return;
6554 
6555 			sched_domains_numa_masks[i][j] = mask;
6556 
6557 			for (k = 0; k < nr_node_ids; k++) {
6558 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6559 					continue;
6560 
6561 				cpumask_or(mask, mask, cpumask_of_node(k));
6562 			}
6563 		}
6564 	}
6565 
6566 	/* Compute default topology size */
6567 	for (i = 0; sched_domain_topology[i].mask; i++);
6568 
6569 	tl = kzalloc((i + level + 1) *
6570 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6571 	if (!tl)
6572 		return;
6573 
6574 	/*
6575 	 * Copy the default topology bits..
6576 	 */
6577 	for (i = 0; sched_domain_topology[i].mask; i++)
6578 		tl[i] = sched_domain_topology[i];
6579 
6580 	/*
6581 	 * .. and append 'j' levels of NUMA goodness.
6582 	 */
6583 	for (j = 0; j < level; i++, j++) {
6584 		tl[i] = (struct sched_domain_topology_level){
6585 			.mask = sd_numa_mask,
6586 			.sd_flags = cpu_numa_flags,
6587 			.flags = SDTL_OVERLAP,
6588 			.numa_level = j,
6589 			SD_INIT_NAME(NUMA)
6590 		};
6591 	}
6592 
6593 	sched_domain_topology = tl;
6594 
6595 	sched_domains_numa_levels = level;
6596 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6597 
6598 	init_numa_topology_type();
6599 }
6600 
6601 static void sched_domains_numa_masks_set(int cpu)
6602 {
6603 	int i, j;
6604 	int node = cpu_to_node(cpu);
6605 
6606 	for (i = 0; i < sched_domains_numa_levels; i++) {
6607 		for (j = 0; j < nr_node_ids; j++) {
6608 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6609 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6610 		}
6611 	}
6612 }
6613 
6614 static void sched_domains_numa_masks_clear(int cpu)
6615 {
6616 	int i, j;
6617 	for (i = 0; i < sched_domains_numa_levels; i++) {
6618 		for (j = 0; j < nr_node_ids; j++)
6619 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6620 	}
6621 }
6622 
6623 /*
6624  * Update sched_domains_numa_masks[level][node] array when new cpus
6625  * are onlined.
6626  */
6627 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6628 					   unsigned long action,
6629 					   void *hcpu)
6630 {
6631 	int cpu = (long)hcpu;
6632 
6633 	switch (action & ~CPU_TASKS_FROZEN) {
6634 	case CPU_ONLINE:
6635 		sched_domains_numa_masks_set(cpu);
6636 		break;
6637 
6638 	case CPU_DEAD:
6639 		sched_domains_numa_masks_clear(cpu);
6640 		break;
6641 
6642 	default:
6643 		return NOTIFY_DONE;
6644 	}
6645 
6646 	return NOTIFY_OK;
6647 }
6648 #else
6649 static inline void sched_init_numa(void)
6650 {
6651 }
6652 
6653 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6654 					   unsigned long action,
6655 					   void *hcpu)
6656 {
6657 	return 0;
6658 }
6659 #endif /* CONFIG_NUMA */
6660 
6661 static int __sdt_alloc(const struct cpumask *cpu_map)
6662 {
6663 	struct sched_domain_topology_level *tl;
6664 	int j;
6665 
6666 	for_each_sd_topology(tl) {
6667 		struct sd_data *sdd = &tl->data;
6668 
6669 		sdd->sd = alloc_percpu(struct sched_domain *);
6670 		if (!sdd->sd)
6671 			return -ENOMEM;
6672 
6673 		sdd->sg = alloc_percpu(struct sched_group *);
6674 		if (!sdd->sg)
6675 			return -ENOMEM;
6676 
6677 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6678 		if (!sdd->sgc)
6679 			return -ENOMEM;
6680 
6681 		for_each_cpu(j, cpu_map) {
6682 			struct sched_domain *sd;
6683 			struct sched_group *sg;
6684 			struct sched_group_capacity *sgc;
6685 
6686 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6687 					GFP_KERNEL, cpu_to_node(j));
6688 			if (!sd)
6689 				return -ENOMEM;
6690 
6691 			*per_cpu_ptr(sdd->sd, j) = sd;
6692 
6693 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6694 					GFP_KERNEL, cpu_to_node(j));
6695 			if (!sg)
6696 				return -ENOMEM;
6697 
6698 			sg->next = sg;
6699 
6700 			*per_cpu_ptr(sdd->sg, j) = sg;
6701 
6702 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6703 					GFP_KERNEL, cpu_to_node(j));
6704 			if (!sgc)
6705 				return -ENOMEM;
6706 
6707 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6708 		}
6709 	}
6710 
6711 	return 0;
6712 }
6713 
6714 static void __sdt_free(const struct cpumask *cpu_map)
6715 {
6716 	struct sched_domain_topology_level *tl;
6717 	int j;
6718 
6719 	for_each_sd_topology(tl) {
6720 		struct sd_data *sdd = &tl->data;
6721 
6722 		for_each_cpu(j, cpu_map) {
6723 			struct sched_domain *sd;
6724 
6725 			if (sdd->sd) {
6726 				sd = *per_cpu_ptr(sdd->sd, j);
6727 				if (sd && (sd->flags & SD_OVERLAP))
6728 					free_sched_groups(sd->groups, 0);
6729 				kfree(*per_cpu_ptr(sdd->sd, j));
6730 			}
6731 
6732 			if (sdd->sg)
6733 				kfree(*per_cpu_ptr(sdd->sg, j));
6734 			if (sdd->sgc)
6735 				kfree(*per_cpu_ptr(sdd->sgc, j));
6736 		}
6737 		free_percpu(sdd->sd);
6738 		sdd->sd = NULL;
6739 		free_percpu(sdd->sg);
6740 		sdd->sg = NULL;
6741 		free_percpu(sdd->sgc);
6742 		sdd->sgc = NULL;
6743 	}
6744 }
6745 
6746 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6747 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6748 		struct sched_domain *child, int cpu)
6749 {
6750 	struct sched_domain *sd = sd_init(tl, cpu);
6751 	if (!sd)
6752 		return child;
6753 
6754 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6755 	if (child) {
6756 		sd->level = child->level + 1;
6757 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6758 		child->parent = sd;
6759 		sd->child = child;
6760 
6761 		if (!cpumask_subset(sched_domain_span(child),
6762 				    sched_domain_span(sd))) {
6763 			pr_err("BUG: arch topology borken\n");
6764 #ifdef CONFIG_SCHED_DEBUG
6765 			pr_err("     the %s domain not a subset of the %s domain\n",
6766 					child->name, sd->name);
6767 #endif
6768 			/* Fixup, ensure @sd has at least @child cpus. */
6769 			cpumask_or(sched_domain_span(sd),
6770 				   sched_domain_span(sd),
6771 				   sched_domain_span(child));
6772 		}
6773 
6774 	}
6775 	set_domain_attribute(sd, attr);
6776 
6777 	return sd;
6778 }
6779 
6780 /*
6781  * Build sched domains for a given set of cpus and attach the sched domains
6782  * to the individual cpus
6783  */
6784 static int build_sched_domains(const struct cpumask *cpu_map,
6785 			       struct sched_domain_attr *attr)
6786 {
6787 	enum s_alloc alloc_state;
6788 	struct sched_domain *sd;
6789 	struct s_data d;
6790 	int i, ret = -ENOMEM;
6791 
6792 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6793 	if (alloc_state != sa_rootdomain)
6794 		goto error;
6795 
6796 	/* Set up domains for cpus specified by the cpu_map. */
6797 	for_each_cpu(i, cpu_map) {
6798 		struct sched_domain_topology_level *tl;
6799 
6800 		sd = NULL;
6801 		for_each_sd_topology(tl) {
6802 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6803 			if (tl == sched_domain_topology)
6804 				*per_cpu_ptr(d.sd, i) = sd;
6805 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6806 				sd->flags |= SD_OVERLAP;
6807 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6808 				break;
6809 		}
6810 	}
6811 
6812 	/* Build the groups for the domains */
6813 	for_each_cpu(i, cpu_map) {
6814 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6815 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6816 			if (sd->flags & SD_OVERLAP) {
6817 				if (build_overlap_sched_groups(sd, i))
6818 					goto error;
6819 			} else {
6820 				if (build_sched_groups(sd, i))
6821 					goto error;
6822 			}
6823 		}
6824 	}
6825 
6826 	/* Calculate CPU capacity for physical packages and nodes */
6827 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6828 		if (!cpumask_test_cpu(i, cpu_map))
6829 			continue;
6830 
6831 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6832 			claim_allocations(i, sd);
6833 			init_sched_groups_capacity(i, sd);
6834 		}
6835 	}
6836 
6837 	/* Attach the domains */
6838 	rcu_read_lock();
6839 	for_each_cpu(i, cpu_map) {
6840 		sd = *per_cpu_ptr(d.sd, i);
6841 		cpu_attach_domain(sd, d.rd, i);
6842 	}
6843 	rcu_read_unlock();
6844 
6845 	ret = 0;
6846 error:
6847 	__free_domain_allocs(&d, alloc_state, cpu_map);
6848 	return ret;
6849 }
6850 
6851 static cpumask_var_t *doms_cur;	/* current sched domains */
6852 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6853 static struct sched_domain_attr *dattr_cur;
6854 				/* attribues of custom domains in 'doms_cur' */
6855 
6856 /*
6857  * Special case: If a kmalloc of a doms_cur partition (array of
6858  * cpumask) fails, then fallback to a single sched domain,
6859  * as determined by the single cpumask fallback_doms.
6860  */
6861 static cpumask_var_t fallback_doms;
6862 
6863 /*
6864  * arch_update_cpu_topology lets virtualized architectures update the
6865  * cpu core maps. It is supposed to return 1 if the topology changed
6866  * or 0 if it stayed the same.
6867  */
6868 int __weak arch_update_cpu_topology(void)
6869 {
6870 	return 0;
6871 }
6872 
6873 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6874 {
6875 	int i;
6876 	cpumask_var_t *doms;
6877 
6878 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6879 	if (!doms)
6880 		return NULL;
6881 	for (i = 0; i < ndoms; i++) {
6882 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6883 			free_sched_domains(doms, i);
6884 			return NULL;
6885 		}
6886 	}
6887 	return doms;
6888 }
6889 
6890 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6891 {
6892 	unsigned int i;
6893 	for (i = 0; i < ndoms; i++)
6894 		free_cpumask_var(doms[i]);
6895 	kfree(doms);
6896 }
6897 
6898 /*
6899  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6900  * For now this just excludes isolated cpus, but could be used to
6901  * exclude other special cases in the future.
6902  */
6903 static int init_sched_domains(const struct cpumask *cpu_map)
6904 {
6905 	int err;
6906 
6907 	arch_update_cpu_topology();
6908 	ndoms_cur = 1;
6909 	doms_cur = alloc_sched_domains(ndoms_cur);
6910 	if (!doms_cur)
6911 		doms_cur = &fallback_doms;
6912 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6913 	err = build_sched_domains(doms_cur[0], NULL);
6914 	register_sched_domain_sysctl();
6915 
6916 	return err;
6917 }
6918 
6919 /*
6920  * Detach sched domains from a group of cpus specified in cpu_map
6921  * These cpus will now be attached to the NULL domain
6922  */
6923 static void detach_destroy_domains(const struct cpumask *cpu_map)
6924 {
6925 	int i;
6926 
6927 	rcu_read_lock();
6928 	for_each_cpu(i, cpu_map)
6929 		cpu_attach_domain(NULL, &def_root_domain, i);
6930 	rcu_read_unlock();
6931 }
6932 
6933 /* handle null as "default" */
6934 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6935 			struct sched_domain_attr *new, int idx_new)
6936 {
6937 	struct sched_domain_attr tmp;
6938 
6939 	/* fast path */
6940 	if (!new && !cur)
6941 		return 1;
6942 
6943 	tmp = SD_ATTR_INIT;
6944 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6945 			new ? (new + idx_new) : &tmp,
6946 			sizeof(struct sched_domain_attr));
6947 }
6948 
6949 /*
6950  * Partition sched domains as specified by the 'ndoms_new'
6951  * cpumasks in the array doms_new[] of cpumasks. This compares
6952  * doms_new[] to the current sched domain partitioning, doms_cur[].
6953  * It destroys each deleted domain and builds each new domain.
6954  *
6955  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6956  * The masks don't intersect (don't overlap.) We should setup one
6957  * sched domain for each mask. CPUs not in any of the cpumasks will
6958  * not be load balanced. If the same cpumask appears both in the
6959  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6960  * it as it is.
6961  *
6962  * The passed in 'doms_new' should be allocated using
6963  * alloc_sched_domains.  This routine takes ownership of it and will
6964  * free_sched_domains it when done with it. If the caller failed the
6965  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6966  * and partition_sched_domains() will fallback to the single partition
6967  * 'fallback_doms', it also forces the domains to be rebuilt.
6968  *
6969  * If doms_new == NULL it will be replaced with cpu_online_mask.
6970  * ndoms_new == 0 is a special case for destroying existing domains,
6971  * and it will not create the default domain.
6972  *
6973  * Call with hotplug lock held
6974  */
6975 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6976 			     struct sched_domain_attr *dattr_new)
6977 {
6978 	int i, j, n;
6979 	int new_topology;
6980 
6981 	mutex_lock(&sched_domains_mutex);
6982 
6983 	/* always unregister in case we don't destroy any domains */
6984 	unregister_sched_domain_sysctl();
6985 
6986 	/* Let architecture update cpu core mappings. */
6987 	new_topology = arch_update_cpu_topology();
6988 
6989 	n = doms_new ? ndoms_new : 0;
6990 
6991 	/* Destroy deleted domains */
6992 	for (i = 0; i < ndoms_cur; i++) {
6993 		for (j = 0; j < n && !new_topology; j++) {
6994 			if (cpumask_equal(doms_cur[i], doms_new[j])
6995 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6996 				goto match1;
6997 		}
6998 		/* no match - a current sched domain not in new doms_new[] */
6999 		detach_destroy_domains(doms_cur[i]);
7000 match1:
7001 		;
7002 	}
7003 
7004 	n = ndoms_cur;
7005 	if (doms_new == NULL) {
7006 		n = 0;
7007 		doms_new = &fallback_doms;
7008 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7009 		WARN_ON_ONCE(dattr_new);
7010 	}
7011 
7012 	/* Build new domains */
7013 	for (i = 0; i < ndoms_new; i++) {
7014 		for (j = 0; j < n && !new_topology; j++) {
7015 			if (cpumask_equal(doms_new[i], doms_cur[j])
7016 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7017 				goto match2;
7018 		}
7019 		/* no match - add a new doms_new */
7020 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7021 match2:
7022 		;
7023 	}
7024 
7025 	/* Remember the new sched domains */
7026 	if (doms_cur != &fallback_doms)
7027 		free_sched_domains(doms_cur, ndoms_cur);
7028 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7029 	doms_cur = doms_new;
7030 	dattr_cur = dattr_new;
7031 	ndoms_cur = ndoms_new;
7032 
7033 	register_sched_domain_sysctl();
7034 
7035 	mutex_unlock(&sched_domains_mutex);
7036 }
7037 
7038 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7039 
7040 /*
7041  * Update cpusets according to cpu_active mask.  If cpusets are
7042  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7043  * around partition_sched_domains().
7044  *
7045  * If we come here as part of a suspend/resume, don't touch cpusets because we
7046  * want to restore it back to its original state upon resume anyway.
7047  */
7048 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7049 			     void *hcpu)
7050 {
7051 	switch (action) {
7052 	case CPU_ONLINE_FROZEN:
7053 	case CPU_DOWN_FAILED_FROZEN:
7054 
7055 		/*
7056 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7057 		 * resume sequence. As long as this is not the last online
7058 		 * operation in the resume sequence, just build a single sched
7059 		 * domain, ignoring cpusets.
7060 		 */
7061 		num_cpus_frozen--;
7062 		if (likely(num_cpus_frozen)) {
7063 			partition_sched_domains(1, NULL, NULL);
7064 			break;
7065 		}
7066 
7067 		/*
7068 		 * This is the last CPU online operation. So fall through and
7069 		 * restore the original sched domains by considering the
7070 		 * cpuset configurations.
7071 		 */
7072 
7073 	case CPU_ONLINE:
7074 		cpuset_update_active_cpus(true);
7075 		break;
7076 	default:
7077 		return NOTIFY_DONE;
7078 	}
7079 	return NOTIFY_OK;
7080 }
7081 
7082 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7083 			       void *hcpu)
7084 {
7085 	unsigned long flags;
7086 	long cpu = (long)hcpu;
7087 	struct dl_bw *dl_b;
7088 	bool overflow;
7089 	int cpus;
7090 
7091 	switch (action) {
7092 	case CPU_DOWN_PREPARE:
7093 		rcu_read_lock_sched();
7094 		dl_b = dl_bw_of(cpu);
7095 
7096 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7097 		cpus = dl_bw_cpus(cpu);
7098 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7099 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7100 
7101 		rcu_read_unlock_sched();
7102 
7103 		if (overflow)
7104 			return notifier_from_errno(-EBUSY);
7105 		cpuset_update_active_cpus(false);
7106 		break;
7107 	case CPU_DOWN_PREPARE_FROZEN:
7108 		num_cpus_frozen++;
7109 		partition_sched_domains(1, NULL, NULL);
7110 		break;
7111 	default:
7112 		return NOTIFY_DONE;
7113 	}
7114 	return NOTIFY_OK;
7115 }
7116 
7117 void __init sched_init_smp(void)
7118 {
7119 	cpumask_var_t non_isolated_cpus;
7120 
7121 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7122 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7123 
7124 	/* nohz_full won't take effect without isolating the cpus. */
7125 	tick_nohz_full_add_cpus_to(cpu_isolated_map);
7126 
7127 	sched_init_numa();
7128 
7129 	/*
7130 	 * There's no userspace yet to cause hotplug operations; hence all the
7131 	 * cpu masks are stable and all blatant races in the below code cannot
7132 	 * happen.
7133 	 */
7134 	mutex_lock(&sched_domains_mutex);
7135 	init_sched_domains(cpu_active_mask);
7136 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7137 	if (cpumask_empty(non_isolated_cpus))
7138 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7139 	mutex_unlock(&sched_domains_mutex);
7140 
7141 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7142 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7143 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7144 
7145 	init_hrtick();
7146 
7147 	/* Move init over to a non-isolated CPU */
7148 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7149 		BUG();
7150 	sched_init_granularity();
7151 	free_cpumask_var(non_isolated_cpus);
7152 
7153 	init_sched_rt_class();
7154 	init_sched_dl_class();
7155 }
7156 #else
7157 void __init sched_init_smp(void)
7158 {
7159 	sched_init_granularity();
7160 }
7161 #endif /* CONFIG_SMP */
7162 
7163 int in_sched_functions(unsigned long addr)
7164 {
7165 	return in_lock_functions(addr) ||
7166 		(addr >= (unsigned long)__sched_text_start
7167 		&& addr < (unsigned long)__sched_text_end);
7168 }
7169 
7170 #ifdef CONFIG_CGROUP_SCHED
7171 /*
7172  * Default task group.
7173  * Every task in system belongs to this group at bootup.
7174  */
7175 struct task_group root_task_group;
7176 LIST_HEAD(task_groups);
7177 #endif
7178 
7179 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7180 
7181 void __init sched_init(void)
7182 {
7183 	int i, j;
7184 	unsigned long alloc_size = 0, ptr;
7185 
7186 #ifdef CONFIG_FAIR_GROUP_SCHED
7187 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7188 #endif
7189 #ifdef CONFIG_RT_GROUP_SCHED
7190 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7191 #endif
7192 	if (alloc_size) {
7193 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7194 
7195 #ifdef CONFIG_FAIR_GROUP_SCHED
7196 		root_task_group.se = (struct sched_entity **)ptr;
7197 		ptr += nr_cpu_ids * sizeof(void **);
7198 
7199 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7200 		ptr += nr_cpu_ids * sizeof(void **);
7201 
7202 #endif /* CONFIG_FAIR_GROUP_SCHED */
7203 #ifdef CONFIG_RT_GROUP_SCHED
7204 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7205 		ptr += nr_cpu_ids * sizeof(void **);
7206 
7207 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7208 		ptr += nr_cpu_ids * sizeof(void **);
7209 
7210 #endif /* CONFIG_RT_GROUP_SCHED */
7211 	}
7212 #ifdef CONFIG_CPUMASK_OFFSTACK
7213 	for_each_possible_cpu(i) {
7214 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7215 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7216 	}
7217 #endif /* CONFIG_CPUMASK_OFFSTACK */
7218 
7219 	init_rt_bandwidth(&def_rt_bandwidth,
7220 			global_rt_period(), global_rt_runtime());
7221 	init_dl_bandwidth(&def_dl_bandwidth,
7222 			global_rt_period(), global_rt_runtime());
7223 
7224 #ifdef CONFIG_SMP
7225 	init_defrootdomain();
7226 #endif
7227 
7228 #ifdef CONFIG_RT_GROUP_SCHED
7229 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7230 			global_rt_period(), global_rt_runtime());
7231 #endif /* CONFIG_RT_GROUP_SCHED */
7232 
7233 #ifdef CONFIG_CGROUP_SCHED
7234 	list_add(&root_task_group.list, &task_groups);
7235 	INIT_LIST_HEAD(&root_task_group.children);
7236 	INIT_LIST_HEAD(&root_task_group.siblings);
7237 	autogroup_init(&init_task);
7238 
7239 #endif /* CONFIG_CGROUP_SCHED */
7240 
7241 	for_each_possible_cpu(i) {
7242 		struct rq *rq;
7243 
7244 		rq = cpu_rq(i);
7245 		raw_spin_lock_init(&rq->lock);
7246 		rq->nr_running = 0;
7247 		rq->calc_load_active = 0;
7248 		rq->calc_load_update = jiffies + LOAD_FREQ;
7249 		init_cfs_rq(&rq->cfs);
7250 		init_rt_rq(&rq->rt);
7251 		init_dl_rq(&rq->dl);
7252 #ifdef CONFIG_FAIR_GROUP_SCHED
7253 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7254 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7255 		/*
7256 		 * How much cpu bandwidth does root_task_group get?
7257 		 *
7258 		 * In case of task-groups formed thr' the cgroup filesystem, it
7259 		 * gets 100% of the cpu resources in the system. This overall
7260 		 * system cpu resource is divided among the tasks of
7261 		 * root_task_group and its child task-groups in a fair manner,
7262 		 * based on each entity's (task or task-group's) weight
7263 		 * (se->load.weight).
7264 		 *
7265 		 * In other words, if root_task_group has 10 tasks of weight
7266 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7267 		 * then A0's share of the cpu resource is:
7268 		 *
7269 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7270 		 *
7271 		 * We achieve this by letting root_task_group's tasks sit
7272 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7273 		 */
7274 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7275 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7276 #endif /* CONFIG_FAIR_GROUP_SCHED */
7277 
7278 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7279 #ifdef CONFIG_RT_GROUP_SCHED
7280 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7281 #endif
7282 
7283 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7284 			rq->cpu_load[j] = 0;
7285 
7286 		rq->last_load_update_tick = jiffies;
7287 
7288 #ifdef CONFIG_SMP
7289 		rq->sd = NULL;
7290 		rq->rd = NULL;
7291 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7292 		rq->balance_callback = NULL;
7293 		rq->active_balance = 0;
7294 		rq->next_balance = jiffies;
7295 		rq->push_cpu = 0;
7296 		rq->cpu = i;
7297 		rq->online = 0;
7298 		rq->idle_stamp = 0;
7299 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7300 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7301 
7302 		INIT_LIST_HEAD(&rq->cfs_tasks);
7303 
7304 		rq_attach_root(rq, &def_root_domain);
7305 #ifdef CONFIG_NO_HZ_COMMON
7306 		rq->nohz_flags = 0;
7307 #endif
7308 #ifdef CONFIG_NO_HZ_FULL
7309 		rq->last_sched_tick = 0;
7310 #endif
7311 #endif
7312 		init_rq_hrtick(rq);
7313 		atomic_set(&rq->nr_iowait, 0);
7314 	}
7315 
7316 	set_load_weight(&init_task);
7317 
7318 #ifdef CONFIG_PREEMPT_NOTIFIERS
7319 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7320 #endif
7321 
7322 	/*
7323 	 * The boot idle thread does lazy MMU switching as well:
7324 	 */
7325 	atomic_inc(&init_mm.mm_count);
7326 	enter_lazy_tlb(&init_mm, current);
7327 
7328 	/*
7329 	 * During early bootup we pretend to be a normal task:
7330 	 */
7331 	current->sched_class = &fair_sched_class;
7332 
7333 	/*
7334 	 * Make us the idle thread. Technically, schedule() should not be
7335 	 * called from this thread, however somewhere below it might be,
7336 	 * but because we are the idle thread, we just pick up running again
7337 	 * when this runqueue becomes "idle".
7338 	 */
7339 	init_idle(current, smp_processor_id());
7340 
7341 	calc_load_update = jiffies + LOAD_FREQ;
7342 
7343 #ifdef CONFIG_SMP
7344 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7345 	/* May be allocated at isolcpus cmdline parse time */
7346 	if (cpu_isolated_map == NULL)
7347 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7348 	idle_thread_set_boot_cpu();
7349 	set_cpu_rq_start_time();
7350 #endif
7351 	init_sched_fair_class();
7352 
7353 	scheduler_running = 1;
7354 }
7355 
7356 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7357 static inline int preempt_count_equals(int preempt_offset)
7358 {
7359 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7360 
7361 	return (nested == preempt_offset);
7362 }
7363 
7364 void __might_sleep(const char *file, int line, int preempt_offset)
7365 {
7366 	/*
7367 	 * Blocking primitives will set (and therefore destroy) current->state,
7368 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7369 	 * otherwise we will destroy state.
7370 	 */
7371 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7372 			"do not call blocking ops when !TASK_RUNNING; "
7373 			"state=%lx set at [<%p>] %pS\n",
7374 			current->state,
7375 			(void *)current->task_state_change,
7376 			(void *)current->task_state_change);
7377 
7378 	___might_sleep(file, line, preempt_offset);
7379 }
7380 EXPORT_SYMBOL(__might_sleep);
7381 
7382 void ___might_sleep(const char *file, int line, int preempt_offset)
7383 {
7384 	static unsigned long prev_jiffy;	/* ratelimiting */
7385 
7386 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7387 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7388 	     !is_idle_task(current)) ||
7389 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7390 		return;
7391 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7392 		return;
7393 	prev_jiffy = jiffies;
7394 
7395 	printk(KERN_ERR
7396 		"BUG: sleeping function called from invalid context at %s:%d\n",
7397 			file, line);
7398 	printk(KERN_ERR
7399 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7400 			in_atomic(), irqs_disabled(),
7401 			current->pid, current->comm);
7402 
7403 	if (task_stack_end_corrupted(current))
7404 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7405 
7406 	debug_show_held_locks(current);
7407 	if (irqs_disabled())
7408 		print_irqtrace_events(current);
7409 #ifdef CONFIG_DEBUG_PREEMPT
7410 	if (!preempt_count_equals(preempt_offset)) {
7411 		pr_err("Preemption disabled at:");
7412 		print_ip_sym(current->preempt_disable_ip);
7413 		pr_cont("\n");
7414 	}
7415 #endif
7416 	dump_stack();
7417 }
7418 EXPORT_SYMBOL(___might_sleep);
7419 #endif
7420 
7421 #ifdef CONFIG_MAGIC_SYSRQ
7422 void normalize_rt_tasks(void)
7423 {
7424 	struct task_struct *g, *p;
7425 	struct sched_attr attr = {
7426 		.sched_policy = SCHED_NORMAL,
7427 	};
7428 
7429 	read_lock(&tasklist_lock);
7430 	for_each_process_thread(g, p) {
7431 		/*
7432 		 * Only normalize user tasks:
7433 		 */
7434 		if (p->flags & PF_KTHREAD)
7435 			continue;
7436 
7437 		p->se.exec_start		= 0;
7438 #ifdef CONFIG_SCHEDSTATS
7439 		p->se.statistics.wait_start	= 0;
7440 		p->se.statistics.sleep_start	= 0;
7441 		p->se.statistics.block_start	= 0;
7442 #endif
7443 
7444 		if (!dl_task(p) && !rt_task(p)) {
7445 			/*
7446 			 * Renice negative nice level userspace
7447 			 * tasks back to 0:
7448 			 */
7449 			if (task_nice(p) < 0)
7450 				set_user_nice(p, 0);
7451 			continue;
7452 		}
7453 
7454 		__sched_setscheduler(p, &attr, false, false);
7455 	}
7456 	read_unlock(&tasklist_lock);
7457 }
7458 
7459 #endif /* CONFIG_MAGIC_SYSRQ */
7460 
7461 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7462 /*
7463  * These functions are only useful for the IA64 MCA handling, or kdb.
7464  *
7465  * They can only be called when the whole system has been
7466  * stopped - every CPU needs to be quiescent, and no scheduling
7467  * activity can take place. Using them for anything else would
7468  * be a serious bug, and as a result, they aren't even visible
7469  * under any other configuration.
7470  */
7471 
7472 /**
7473  * curr_task - return the current task for a given cpu.
7474  * @cpu: the processor in question.
7475  *
7476  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7477  *
7478  * Return: The current task for @cpu.
7479  */
7480 struct task_struct *curr_task(int cpu)
7481 {
7482 	return cpu_curr(cpu);
7483 }
7484 
7485 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7486 
7487 #ifdef CONFIG_IA64
7488 /**
7489  * set_curr_task - set the current task for a given cpu.
7490  * @cpu: the processor in question.
7491  * @p: the task pointer to set.
7492  *
7493  * Description: This function must only be used when non-maskable interrupts
7494  * are serviced on a separate stack. It allows the architecture to switch the
7495  * notion of the current task on a cpu in a non-blocking manner. This function
7496  * must be called with all CPU's synchronized, and interrupts disabled, the
7497  * and caller must save the original value of the current task (see
7498  * curr_task() above) and restore that value before reenabling interrupts and
7499  * re-starting the system.
7500  *
7501  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7502  */
7503 void set_curr_task(int cpu, struct task_struct *p)
7504 {
7505 	cpu_curr(cpu) = p;
7506 }
7507 
7508 #endif
7509 
7510 #ifdef CONFIG_CGROUP_SCHED
7511 /* task_group_lock serializes the addition/removal of task groups */
7512 static DEFINE_SPINLOCK(task_group_lock);
7513 
7514 static void free_sched_group(struct task_group *tg)
7515 {
7516 	free_fair_sched_group(tg);
7517 	free_rt_sched_group(tg);
7518 	autogroup_free(tg);
7519 	kfree(tg);
7520 }
7521 
7522 /* allocate runqueue etc for a new task group */
7523 struct task_group *sched_create_group(struct task_group *parent)
7524 {
7525 	struct task_group *tg;
7526 
7527 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7528 	if (!tg)
7529 		return ERR_PTR(-ENOMEM);
7530 
7531 	if (!alloc_fair_sched_group(tg, parent))
7532 		goto err;
7533 
7534 	if (!alloc_rt_sched_group(tg, parent))
7535 		goto err;
7536 
7537 	return tg;
7538 
7539 err:
7540 	free_sched_group(tg);
7541 	return ERR_PTR(-ENOMEM);
7542 }
7543 
7544 void sched_online_group(struct task_group *tg, struct task_group *parent)
7545 {
7546 	unsigned long flags;
7547 
7548 	spin_lock_irqsave(&task_group_lock, flags);
7549 	list_add_rcu(&tg->list, &task_groups);
7550 
7551 	WARN_ON(!parent); /* root should already exist */
7552 
7553 	tg->parent = parent;
7554 	INIT_LIST_HEAD(&tg->children);
7555 	list_add_rcu(&tg->siblings, &parent->children);
7556 	spin_unlock_irqrestore(&task_group_lock, flags);
7557 }
7558 
7559 /* rcu callback to free various structures associated with a task group */
7560 static void free_sched_group_rcu(struct rcu_head *rhp)
7561 {
7562 	/* now it should be safe to free those cfs_rqs */
7563 	free_sched_group(container_of(rhp, struct task_group, rcu));
7564 }
7565 
7566 /* Destroy runqueue etc associated with a task group */
7567 void sched_destroy_group(struct task_group *tg)
7568 {
7569 	/* wait for possible concurrent references to cfs_rqs complete */
7570 	call_rcu(&tg->rcu, free_sched_group_rcu);
7571 }
7572 
7573 void sched_offline_group(struct task_group *tg)
7574 {
7575 	unsigned long flags;
7576 	int i;
7577 
7578 	/* end participation in shares distribution */
7579 	for_each_possible_cpu(i)
7580 		unregister_fair_sched_group(tg, i);
7581 
7582 	spin_lock_irqsave(&task_group_lock, flags);
7583 	list_del_rcu(&tg->list);
7584 	list_del_rcu(&tg->siblings);
7585 	spin_unlock_irqrestore(&task_group_lock, flags);
7586 }
7587 
7588 /* change task's runqueue when it moves between groups.
7589  *	The caller of this function should have put the task in its new group
7590  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7591  *	reflect its new group.
7592  */
7593 void sched_move_task(struct task_struct *tsk)
7594 {
7595 	struct task_group *tg;
7596 	int queued, running;
7597 	unsigned long flags;
7598 	struct rq *rq;
7599 
7600 	rq = task_rq_lock(tsk, &flags);
7601 
7602 	running = task_current(rq, tsk);
7603 	queued = task_on_rq_queued(tsk);
7604 
7605 	if (queued)
7606 		dequeue_task(rq, tsk, 0);
7607 	if (unlikely(running))
7608 		put_prev_task(rq, tsk);
7609 
7610 	/*
7611 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7612 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7613 	 * to prevent lockdep warnings.
7614 	 */
7615 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7616 			  struct task_group, css);
7617 	tg = autogroup_task_group(tsk, tg);
7618 	tsk->sched_task_group = tg;
7619 
7620 #ifdef CONFIG_FAIR_GROUP_SCHED
7621 	if (tsk->sched_class->task_move_group)
7622 		tsk->sched_class->task_move_group(tsk, queued);
7623 	else
7624 #endif
7625 		set_task_rq(tsk, task_cpu(tsk));
7626 
7627 	if (unlikely(running))
7628 		tsk->sched_class->set_curr_task(rq);
7629 	if (queued)
7630 		enqueue_task(rq, tsk, 0);
7631 
7632 	task_rq_unlock(rq, tsk, &flags);
7633 }
7634 #endif /* CONFIG_CGROUP_SCHED */
7635 
7636 #ifdef CONFIG_RT_GROUP_SCHED
7637 /*
7638  * Ensure that the real time constraints are schedulable.
7639  */
7640 static DEFINE_MUTEX(rt_constraints_mutex);
7641 
7642 /* Must be called with tasklist_lock held */
7643 static inline int tg_has_rt_tasks(struct task_group *tg)
7644 {
7645 	struct task_struct *g, *p;
7646 
7647 	/*
7648 	 * Autogroups do not have RT tasks; see autogroup_create().
7649 	 */
7650 	if (task_group_is_autogroup(tg))
7651 		return 0;
7652 
7653 	for_each_process_thread(g, p) {
7654 		if (rt_task(p) && task_group(p) == tg)
7655 			return 1;
7656 	}
7657 
7658 	return 0;
7659 }
7660 
7661 struct rt_schedulable_data {
7662 	struct task_group *tg;
7663 	u64 rt_period;
7664 	u64 rt_runtime;
7665 };
7666 
7667 static int tg_rt_schedulable(struct task_group *tg, void *data)
7668 {
7669 	struct rt_schedulable_data *d = data;
7670 	struct task_group *child;
7671 	unsigned long total, sum = 0;
7672 	u64 period, runtime;
7673 
7674 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7675 	runtime = tg->rt_bandwidth.rt_runtime;
7676 
7677 	if (tg == d->tg) {
7678 		period = d->rt_period;
7679 		runtime = d->rt_runtime;
7680 	}
7681 
7682 	/*
7683 	 * Cannot have more runtime than the period.
7684 	 */
7685 	if (runtime > period && runtime != RUNTIME_INF)
7686 		return -EINVAL;
7687 
7688 	/*
7689 	 * Ensure we don't starve existing RT tasks.
7690 	 */
7691 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7692 		return -EBUSY;
7693 
7694 	total = to_ratio(period, runtime);
7695 
7696 	/*
7697 	 * Nobody can have more than the global setting allows.
7698 	 */
7699 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7700 		return -EINVAL;
7701 
7702 	/*
7703 	 * The sum of our children's runtime should not exceed our own.
7704 	 */
7705 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7706 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7707 		runtime = child->rt_bandwidth.rt_runtime;
7708 
7709 		if (child == d->tg) {
7710 			period = d->rt_period;
7711 			runtime = d->rt_runtime;
7712 		}
7713 
7714 		sum += to_ratio(period, runtime);
7715 	}
7716 
7717 	if (sum > total)
7718 		return -EINVAL;
7719 
7720 	return 0;
7721 }
7722 
7723 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7724 {
7725 	int ret;
7726 
7727 	struct rt_schedulable_data data = {
7728 		.tg = tg,
7729 		.rt_period = period,
7730 		.rt_runtime = runtime,
7731 	};
7732 
7733 	rcu_read_lock();
7734 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7735 	rcu_read_unlock();
7736 
7737 	return ret;
7738 }
7739 
7740 static int tg_set_rt_bandwidth(struct task_group *tg,
7741 		u64 rt_period, u64 rt_runtime)
7742 {
7743 	int i, err = 0;
7744 
7745 	/*
7746 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7747 	 * kernel creating (and or operating) RT threads.
7748 	 */
7749 	if (tg == &root_task_group && rt_runtime == 0)
7750 		return -EINVAL;
7751 
7752 	/* No period doesn't make any sense. */
7753 	if (rt_period == 0)
7754 		return -EINVAL;
7755 
7756 	mutex_lock(&rt_constraints_mutex);
7757 	read_lock(&tasklist_lock);
7758 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7759 	if (err)
7760 		goto unlock;
7761 
7762 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7763 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7764 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7765 
7766 	for_each_possible_cpu(i) {
7767 		struct rt_rq *rt_rq = tg->rt_rq[i];
7768 
7769 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7770 		rt_rq->rt_runtime = rt_runtime;
7771 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7772 	}
7773 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7774 unlock:
7775 	read_unlock(&tasklist_lock);
7776 	mutex_unlock(&rt_constraints_mutex);
7777 
7778 	return err;
7779 }
7780 
7781 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7782 {
7783 	u64 rt_runtime, rt_period;
7784 
7785 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7786 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7787 	if (rt_runtime_us < 0)
7788 		rt_runtime = RUNTIME_INF;
7789 
7790 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7791 }
7792 
7793 static long sched_group_rt_runtime(struct task_group *tg)
7794 {
7795 	u64 rt_runtime_us;
7796 
7797 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7798 		return -1;
7799 
7800 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7801 	do_div(rt_runtime_us, NSEC_PER_USEC);
7802 	return rt_runtime_us;
7803 }
7804 
7805 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7806 {
7807 	u64 rt_runtime, rt_period;
7808 
7809 	rt_period = rt_period_us * NSEC_PER_USEC;
7810 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7811 
7812 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7813 }
7814 
7815 static long sched_group_rt_period(struct task_group *tg)
7816 {
7817 	u64 rt_period_us;
7818 
7819 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7820 	do_div(rt_period_us, NSEC_PER_USEC);
7821 	return rt_period_us;
7822 }
7823 #endif /* CONFIG_RT_GROUP_SCHED */
7824 
7825 #ifdef CONFIG_RT_GROUP_SCHED
7826 static int sched_rt_global_constraints(void)
7827 {
7828 	int ret = 0;
7829 
7830 	mutex_lock(&rt_constraints_mutex);
7831 	read_lock(&tasklist_lock);
7832 	ret = __rt_schedulable(NULL, 0, 0);
7833 	read_unlock(&tasklist_lock);
7834 	mutex_unlock(&rt_constraints_mutex);
7835 
7836 	return ret;
7837 }
7838 
7839 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7840 {
7841 	/* Don't accept realtime tasks when there is no way for them to run */
7842 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7843 		return 0;
7844 
7845 	return 1;
7846 }
7847 
7848 #else /* !CONFIG_RT_GROUP_SCHED */
7849 static int sched_rt_global_constraints(void)
7850 {
7851 	unsigned long flags;
7852 	int i, ret = 0;
7853 
7854 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7855 	for_each_possible_cpu(i) {
7856 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7857 
7858 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7859 		rt_rq->rt_runtime = global_rt_runtime();
7860 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7861 	}
7862 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7863 
7864 	return ret;
7865 }
7866 #endif /* CONFIG_RT_GROUP_SCHED */
7867 
7868 static int sched_dl_global_validate(void)
7869 {
7870 	u64 runtime = global_rt_runtime();
7871 	u64 period = global_rt_period();
7872 	u64 new_bw = to_ratio(period, runtime);
7873 	struct dl_bw *dl_b;
7874 	int cpu, ret = 0;
7875 	unsigned long flags;
7876 
7877 	/*
7878 	 * Here we want to check the bandwidth not being set to some
7879 	 * value smaller than the currently allocated bandwidth in
7880 	 * any of the root_domains.
7881 	 *
7882 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7883 	 * cycling on root_domains... Discussion on different/better
7884 	 * solutions is welcome!
7885 	 */
7886 	for_each_possible_cpu(cpu) {
7887 		rcu_read_lock_sched();
7888 		dl_b = dl_bw_of(cpu);
7889 
7890 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7891 		if (new_bw < dl_b->total_bw)
7892 			ret = -EBUSY;
7893 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7894 
7895 		rcu_read_unlock_sched();
7896 
7897 		if (ret)
7898 			break;
7899 	}
7900 
7901 	return ret;
7902 }
7903 
7904 static void sched_dl_do_global(void)
7905 {
7906 	u64 new_bw = -1;
7907 	struct dl_bw *dl_b;
7908 	int cpu;
7909 	unsigned long flags;
7910 
7911 	def_dl_bandwidth.dl_period = global_rt_period();
7912 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7913 
7914 	if (global_rt_runtime() != RUNTIME_INF)
7915 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7916 
7917 	/*
7918 	 * FIXME: As above...
7919 	 */
7920 	for_each_possible_cpu(cpu) {
7921 		rcu_read_lock_sched();
7922 		dl_b = dl_bw_of(cpu);
7923 
7924 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7925 		dl_b->bw = new_bw;
7926 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7927 
7928 		rcu_read_unlock_sched();
7929 	}
7930 }
7931 
7932 static int sched_rt_global_validate(void)
7933 {
7934 	if (sysctl_sched_rt_period <= 0)
7935 		return -EINVAL;
7936 
7937 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7938 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7939 		return -EINVAL;
7940 
7941 	return 0;
7942 }
7943 
7944 static void sched_rt_do_global(void)
7945 {
7946 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7947 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7948 }
7949 
7950 int sched_rt_handler(struct ctl_table *table, int write,
7951 		void __user *buffer, size_t *lenp,
7952 		loff_t *ppos)
7953 {
7954 	int old_period, old_runtime;
7955 	static DEFINE_MUTEX(mutex);
7956 	int ret;
7957 
7958 	mutex_lock(&mutex);
7959 	old_period = sysctl_sched_rt_period;
7960 	old_runtime = sysctl_sched_rt_runtime;
7961 
7962 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7963 
7964 	if (!ret && write) {
7965 		ret = sched_rt_global_validate();
7966 		if (ret)
7967 			goto undo;
7968 
7969 		ret = sched_dl_global_validate();
7970 		if (ret)
7971 			goto undo;
7972 
7973 		ret = sched_rt_global_constraints();
7974 		if (ret)
7975 			goto undo;
7976 
7977 		sched_rt_do_global();
7978 		sched_dl_do_global();
7979 	}
7980 	if (0) {
7981 undo:
7982 		sysctl_sched_rt_period = old_period;
7983 		sysctl_sched_rt_runtime = old_runtime;
7984 	}
7985 	mutex_unlock(&mutex);
7986 
7987 	return ret;
7988 }
7989 
7990 int sched_rr_handler(struct ctl_table *table, int write,
7991 		void __user *buffer, size_t *lenp,
7992 		loff_t *ppos)
7993 {
7994 	int ret;
7995 	static DEFINE_MUTEX(mutex);
7996 
7997 	mutex_lock(&mutex);
7998 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7999 	/* make sure that internally we keep jiffies */
8000 	/* also, writing zero resets timeslice to default */
8001 	if (!ret && write) {
8002 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8003 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8004 	}
8005 	mutex_unlock(&mutex);
8006 	return ret;
8007 }
8008 
8009 #ifdef CONFIG_CGROUP_SCHED
8010 
8011 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8012 {
8013 	return css ? container_of(css, struct task_group, css) : NULL;
8014 }
8015 
8016 static struct cgroup_subsys_state *
8017 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8018 {
8019 	struct task_group *parent = css_tg(parent_css);
8020 	struct task_group *tg;
8021 
8022 	if (!parent) {
8023 		/* This is early initialization for the top cgroup */
8024 		return &root_task_group.css;
8025 	}
8026 
8027 	tg = sched_create_group(parent);
8028 	if (IS_ERR(tg))
8029 		return ERR_PTR(-ENOMEM);
8030 
8031 	return &tg->css;
8032 }
8033 
8034 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8035 {
8036 	struct task_group *tg = css_tg(css);
8037 	struct task_group *parent = css_tg(css->parent);
8038 
8039 	if (parent)
8040 		sched_online_group(tg, parent);
8041 	return 0;
8042 }
8043 
8044 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8045 {
8046 	struct task_group *tg = css_tg(css);
8047 
8048 	sched_destroy_group(tg);
8049 }
8050 
8051 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8052 {
8053 	struct task_group *tg = css_tg(css);
8054 
8055 	sched_offline_group(tg);
8056 }
8057 
8058 static void cpu_cgroup_fork(struct task_struct *task)
8059 {
8060 	sched_move_task(task);
8061 }
8062 
8063 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8064 				 struct cgroup_taskset *tset)
8065 {
8066 	struct task_struct *task;
8067 
8068 	cgroup_taskset_for_each(task, tset) {
8069 #ifdef CONFIG_RT_GROUP_SCHED
8070 		if (!sched_rt_can_attach(css_tg(css), task))
8071 			return -EINVAL;
8072 #else
8073 		/* We don't support RT-tasks being in separate groups */
8074 		if (task->sched_class != &fair_sched_class)
8075 			return -EINVAL;
8076 #endif
8077 	}
8078 	return 0;
8079 }
8080 
8081 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8082 			      struct cgroup_taskset *tset)
8083 {
8084 	struct task_struct *task;
8085 
8086 	cgroup_taskset_for_each(task, tset)
8087 		sched_move_task(task);
8088 }
8089 
8090 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8091 			    struct cgroup_subsys_state *old_css,
8092 			    struct task_struct *task)
8093 {
8094 	/*
8095 	 * cgroup_exit() is called in the copy_process() failure path.
8096 	 * Ignore this case since the task hasn't ran yet, this avoids
8097 	 * trying to poke a half freed task state from generic code.
8098 	 */
8099 	if (!(task->flags & PF_EXITING))
8100 		return;
8101 
8102 	sched_move_task(task);
8103 }
8104 
8105 #ifdef CONFIG_FAIR_GROUP_SCHED
8106 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8107 				struct cftype *cftype, u64 shareval)
8108 {
8109 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8110 }
8111 
8112 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8113 			       struct cftype *cft)
8114 {
8115 	struct task_group *tg = css_tg(css);
8116 
8117 	return (u64) scale_load_down(tg->shares);
8118 }
8119 
8120 #ifdef CONFIG_CFS_BANDWIDTH
8121 static DEFINE_MUTEX(cfs_constraints_mutex);
8122 
8123 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8124 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8125 
8126 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8127 
8128 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8129 {
8130 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8131 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8132 
8133 	if (tg == &root_task_group)
8134 		return -EINVAL;
8135 
8136 	/*
8137 	 * Ensure we have at some amount of bandwidth every period.  This is
8138 	 * to prevent reaching a state of large arrears when throttled via
8139 	 * entity_tick() resulting in prolonged exit starvation.
8140 	 */
8141 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8142 		return -EINVAL;
8143 
8144 	/*
8145 	 * Likewise, bound things on the otherside by preventing insane quota
8146 	 * periods.  This also allows us to normalize in computing quota
8147 	 * feasibility.
8148 	 */
8149 	if (period > max_cfs_quota_period)
8150 		return -EINVAL;
8151 
8152 	/*
8153 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8154 	 * unthrottle_offline_cfs_rqs().
8155 	 */
8156 	get_online_cpus();
8157 	mutex_lock(&cfs_constraints_mutex);
8158 	ret = __cfs_schedulable(tg, period, quota);
8159 	if (ret)
8160 		goto out_unlock;
8161 
8162 	runtime_enabled = quota != RUNTIME_INF;
8163 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8164 	/*
8165 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8166 	 * before making related changes, and on->off must occur afterwards
8167 	 */
8168 	if (runtime_enabled && !runtime_was_enabled)
8169 		cfs_bandwidth_usage_inc();
8170 	raw_spin_lock_irq(&cfs_b->lock);
8171 	cfs_b->period = ns_to_ktime(period);
8172 	cfs_b->quota = quota;
8173 
8174 	__refill_cfs_bandwidth_runtime(cfs_b);
8175 	/* restart the period timer (if active) to handle new period expiry */
8176 	if (runtime_enabled)
8177 		start_cfs_bandwidth(cfs_b);
8178 	raw_spin_unlock_irq(&cfs_b->lock);
8179 
8180 	for_each_online_cpu(i) {
8181 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8182 		struct rq *rq = cfs_rq->rq;
8183 
8184 		raw_spin_lock_irq(&rq->lock);
8185 		cfs_rq->runtime_enabled = runtime_enabled;
8186 		cfs_rq->runtime_remaining = 0;
8187 
8188 		if (cfs_rq->throttled)
8189 			unthrottle_cfs_rq(cfs_rq);
8190 		raw_spin_unlock_irq(&rq->lock);
8191 	}
8192 	if (runtime_was_enabled && !runtime_enabled)
8193 		cfs_bandwidth_usage_dec();
8194 out_unlock:
8195 	mutex_unlock(&cfs_constraints_mutex);
8196 	put_online_cpus();
8197 
8198 	return ret;
8199 }
8200 
8201 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8202 {
8203 	u64 quota, period;
8204 
8205 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8206 	if (cfs_quota_us < 0)
8207 		quota = RUNTIME_INF;
8208 	else
8209 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8210 
8211 	return tg_set_cfs_bandwidth(tg, period, quota);
8212 }
8213 
8214 long tg_get_cfs_quota(struct task_group *tg)
8215 {
8216 	u64 quota_us;
8217 
8218 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8219 		return -1;
8220 
8221 	quota_us = tg->cfs_bandwidth.quota;
8222 	do_div(quota_us, NSEC_PER_USEC);
8223 
8224 	return quota_us;
8225 }
8226 
8227 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8228 {
8229 	u64 quota, period;
8230 
8231 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8232 	quota = tg->cfs_bandwidth.quota;
8233 
8234 	return tg_set_cfs_bandwidth(tg, period, quota);
8235 }
8236 
8237 long tg_get_cfs_period(struct task_group *tg)
8238 {
8239 	u64 cfs_period_us;
8240 
8241 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8242 	do_div(cfs_period_us, NSEC_PER_USEC);
8243 
8244 	return cfs_period_us;
8245 }
8246 
8247 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8248 				  struct cftype *cft)
8249 {
8250 	return tg_get_cfs_quota(css_tg(css));
8251 }
8252 
8253 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8254 				   struct cftype *cftype, s64 cfs_quota_us)
8255 {
8256 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8257 }
8258 
8259 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8260 				   struct cftype *cft)
8261 {
8262 	return tg_get_cfs_period(css_tg(css));
8263 }
8264 
8265 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8266 				    struct cftype *cftype, u64 cfs_period_us)
8267 {
8268 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8269 }
8270 
8271 struct cfs_schedulable_data {
8272 	struct task_group *tg;
8273 	u64 period, quota;
8274 };
8275 
8276 /*
8277  * normalize group quota/period to be quota/max_period
8278  * note: units are usecs
8279  */
8280 static u64 normalize_cfs_quota(struct task_group *tg,
8281 			       struct cfs_schedulable_data *d)
8282 {
8283 	u64 quota, period;
8284 
8285 	if (tg == d->tg) {
8286 		period = d->period;
8287 		quota = d->quota;
8288 	} else {
8289 		period = tg_get_cfs_period(tg);
8290 		quota = tg_get_cfs_quota(tg);
8291 	}
8292 
8293 	/* note: these should typically be equivalent */
8294 	if (quota == RUNTIME_INF || quota == -1)
8295 		return RUNTIME_INF;
8296 
8297 	return to_ratio(period, quota);
8298 }
8299 
8300 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8301 {
8302 	struct cfs_schedulable_data *d = data;
8303 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8304 	s64 quota = 0, parent_quota = -1;
8305 
8306 	if (!tg->parent) {
8307 		quota = RUNTIME_INF;
8308 	} else {
8309 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8310 
8311 		quota = normalize_cfs_quota(tg, d);
8312 		parent_quota = parent_b->hierarchical_quota;
8313 
8314 		/*
8315 		 * ensure max(child_quota) <= parent_quota, inherit when no
8316 		 * limit is set
8317 		 */
8318 		if (quota == RUNTIME_INF)
8319 			quota = parent_quota;
8320 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8321 			return -EINVAL;
8322 	}
8323 	cfs_b->hierarchical_quota = quota;
8324 
8325 	return 0;
8326 }
8327 
8328 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8329 {
8330 	int ret;
8331 	struct cfs_schedulable_data data = {
8332 		.tg = tg,
8333 		.period = period,
8334 		.quota = quota,
8335 	};
8336 
8337 	if (quota != RUNTIME_INF) {
8338 		do_div(data.period, NSEC_PER_USEC);
8339 		do_div(data.quota, NSEC_PER_USEC);
8340 	}
8341 
8342 	rcu_read_lock();
8343 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8344 	rcu_read_unlock();
8345 
8346 	return ret;
8347 }
8348 
8349 static int cpu_stats_show(struct seq_file *sf, void *v)
8350 {
8351 	struct task_group *tg = css_tg(seq_css(sf));
8352 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8353 
8354 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8355 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8356 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8357 
8358 	return 0;
8359 }
8360 #endif /* CONFIG_CFS_BANDWIDTH */
8361 #endif /* CONFIG_FAIR_GROUP_SCHED */
8362 
8363 #ifdef CONFIG_RT_GROUP_SCHED
8364 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8365 				struct cftype *cft, s64 val)
8366 {
8367 	return sched_group_set_rt_runtime(css_tg(css), val);
8368 }
8369 
8370 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8371 			       struct cftype *cft)
8372 {
8373 	return sched_group_rt_runtime(css_tg(css));
8374 }
8375 
8376 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8377 				    struct cftype *cftype, u64 rt_period_us)
8378 {
8379 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8380 }
8381 
8382 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8383 				   struct cftype *cft)
8384 {
8385 	return sched_group_rt_period(css_tg(css));
8386 }
8387 #endif /* CONFIG_RT_GROUP_SCHED */
8388 
8389 static struct cftype cpu_files[] = {
8390 #ifdef CONFIG_FAIR_GROUP_SCHED
8391 	{
8392 		.name = "shares",
8393 		.read_u64 = cpu_shares_read_u64,
8394 		.write_u64 = cpu_shares_write_u64,
8395 	},
8396 #endif
8397 #ifdef CONFIG_CFS_BANDWIDTH
8398 	{
8399 		.name = "cfs_quota_us",
8400 		.read_s64 = cpu_cfs_quota_read_s64,
8401 		.write_s64 = cpu_cfs_quota_write_s64,
8402 	},
8403 	{
8404 		.name = "cfs_period_us",
8405 		.read_u64 = cpu_cfs_period_read_u64,
8406 		.write_u64 = cpu_cfs_period_write_u64,
8407 	},
8408 	{
8409 		.name = "stat",
8410 		.seq_show = cpu_stats_show,
8411 	},
8412 #endif
8413 #ifdef CONFIG_RT_GROUP_SCHED
8414 	{
8415 		.name = "rt_runtime_us",
8416 		.read_s64 = cpu_rt_runtime_read,
8417 		.write_s64 = cpu_rt_runtime_write,
8418 	},
8419 	{
8420 		.name = "rt_period_us",
8421 		.read_u64 = cpu_rt_period_read_uint,
8422 		.write_u64 = cpu_rt_period_write_uint,
8423 	},
8424 #endif
8425 	{ }	/* terminate */
8426 };
8427 
8428 struct cgroup_subsys cpu_cgrp_subsys = {
8429 	.css_alloc	= cpu_cgroup_css_alloc,
8430 	.css_free	= cpu_cgroup_css_free,
8431 	.css_online	= cpu_cgroup_css_online,
8432 	.css_offline	= cpu_cgroup_css_offline,
8433 	.fork		= cpu_cgroup_fork,
8434 	.can_attach	= cpu_cgroup_can_attach,
8435 	.attach		= cpu_cgroup_attach,
8436 	.exit		= cpu_cgroup_exit,
8437 	.legacy_cftypes	= cpu_files,
8438 	.early_init	= 1,
8439 };
8440 
8441 #endif	/* CONFIG_CGROUP_SCHED */
8442 
8443 void dump_cpu_task(int cpu)
8444 {
8445 	pr_info("Task dump for CPU %d:\n", cpu);
8446 	sched_show_task(cpu_curr(cpu));
8447 }
8448