xref: /linux/kernel/sched/core.c (revision 3c27b40830cad0917c92fecf0c9cb1ec41de17cc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 
70 #ifdef CONFIG_PREEMPT_DYNAMIC
71 # ifdef CONFIG_GENERIC_ENTRY
72 #  include <linux/entry-common.h>
73 # endif
74 #endif
75 
76 #include <uapi/linux/sched/types.h>
77 
78 #include <asm/irq_regs.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <linux/sched/rseq_api.h>
84 #include <trace/events/sched.h>
85 #include <trace/events/ipi.h>
86 #undef CREATE_TRACE_POINTS
87 
88 #include "sched.h"
89 #include "stats.h"
90 
91 #include "autogroup.h"
92 #include "pelt.h"
93 #include "smp.h"
94 
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
118 
119 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
120 
121 #ifdef CONFIG_SCHED_DEBUG
122 /*
123  * Debugging: various feature bits
124  *
125  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
126  * sysctl_sched_features, defined in sched.h, to allow constants propagation
127  * at compile time and compiler optimization based on features default.
128  */
129 #define SCHED_FEAT(name, enabled)	\
130 	(1UL << __SCHED_FEAT_##name) * enabled |
131 const_debug unsigned int sysctl_sched_features =
132 #include "features.h"
133 	0;
134 #undef SCHED_FEAT
135 
136 /*
137  * Print a warning if need_resched is set for the given duration (if
138  * LATENCY_WARN is enabled).
139  *
140  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
141  * per boot.
142  */
143 __read_mostly int sysctl_resched_latency_warn_ms = 100;
144 __read_mostly int sysctl_resched_latency_warn_once = 1;
145 #endif /* CONFIG_SCHED_DEBUG */
146 
147 /*
148  * Number of tasks to iterate in a single balance run.
149  * Limited because this is done with IRQs disabled.
150  */
151 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
152 
153 __read_mostly int scheduler_running;
154 
155 #ifdef CONFIG_SCHED_CORE
156 
157 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
158 
159 /* kernel prio, less is more */
160 static inline int __task_prio(const struct task_struct *p)
161 {
162 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
163 		return -2;
164 
165 	if (p->dl_server)
166 		return -1; /* deadline */
167 
168 	if (rt_or_dl_prio(p->prio))
169 		return p->prio; /* [-1, 99] */
170 
171 	if (p->sched_class == &idle_sched_class)
172 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
173 
174 	if (task_on_scx(p))
175 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
176 
177 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
178 }
179 
180 /*
181  * l(a,b)
182  * le(a,b) := !l(b,a)
183  * g(a,b)  := l(b,a)
184  * ge(a,b) := !l(a,b)
185  */
186 
187 /* real prio, less is less */
188 static inline bool prio_less(const struct task_struct *a,
189 			     const struct task_struct *b, bool in_fi)
190 {
191 
192 	int pa = __task_prio(a), pb = __task_prio(b);
193 
194 	if (-pa < -pb)
195 		return true;
196 
197 	if (-pb < -pa)
198 		return false;
199 
200 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
201 		const struct sched_dl_entity *a_dl, *b_dl;
202 
203 		a_dl = &a->dl;
204 		/*
205 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
206 		 * __task_prio() can return -1 (for DL) even for those. In that
207 		 * case, get to the dl_server's DL entity.
208 		 */
209 		if (a->dl_server)
210 			a_dl = a->dl_server;
211 
212 		b_dl = &b->dl;
213 		if (b->dl_server)
214 			b_dl = b->dl_server;
215 
216 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
217 	}
218 
219 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
220 		return cfs_prio_less(a, b, in_fi);
221 
222 #ifdef CONFIG_SCHED_CLASS_EXT
223 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
224 		return scx_prio_less(a, b, in_fi);
225 #endif
226 
227 	return false;
228 }
229 
230 static inline bool __sched_core_less(const struct task_struct *a,
231 				     const struct task_struct *b)
232 {
233 	if (a->core_cookie < b->core_cookie)
234 		return true;
235 
236 	if (a->core_cookie > b->core_cookie)
237 		return false;
238 
239 	/* flip prio, so high prio is leftmost */
240 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
241 		return true;
242 
243 	return false;
244 }
245 
246 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
247 
248 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
249 {
250 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
251 }
252 
253 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
254 {
255 	const struct task_struct *p = __node_2_sc(node);
256 	unsigned long cookie = (unsigned long)key;
257 
258 	if (cookie < p->core_cookie)
259 		return -1;
260 
261 	if (cookie > p->core_cookie)
262 		return 1;
263 
264 	return 0;
265 }
266 
267 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
268 {
269 	if (p->se.sched_delayed)
270 		return;
271 
272 	rq->core->core_task_seq++;
273 
274 	if (!p->core_cookie)
275 		return;
276 
277 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
278 }
279 
280 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
281 {
282 	if (p->se.sched_delayed)
283 		return;
284 
285 	rq->core->core_task_seq++;
286 
287 	if (sched_core_enqueued(p)) {
288 		rb_erase(&p->core_node, &rq->core_tree);
289 		RB_CLEAR_NODE(&p->core_node);
290 	}
291 
292 	/*
293 	 * Migrating the last task off the cpu, with the cpu in forced idle
294 	 * state. Reschedule to create an accounting edge for forced idle,
295 	 * and re-examine whether the core is still in forced idle state.
296 	 */
297 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
298 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
299 		resched_curr(rq);
300 }
301 
302 static int sched_task_is_throttled(struct task_struct *p, int cpu)
303 {
304 	if (p->sched_class->task_is_throttled)
305 		return p->sched_class->task_is_throttled(p, cpu);
306 
307 	return 0;
308 }
309 
310 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
311 {
312 	struct rb_node *node = &p->core_node;
313 	int cpu = task_cpu(p);
314 
315 	do {
316 		node = rb_next(node);
317 		if (!node)
318 			return NULL;
319 
320 		p = __node_2_sc(node);
321 		if (p->core_cookie != cookie)
322 			return NULL;
323 
324 	} while (sched_task_is_throttled(p, cpu));
325 
326 	return p;
327 }
328 
329 /*
330  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
331  * If no suitable task is found, NULL will be returned.
332  */
333 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
334 {
335 	struct task_struct *p;
336 	struct rb_node *node;
337 
338 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
339 	if (!node)
340 		return NULL;
341 
342 	p = __node_2_sc(node);
343 	if (!sched_task_is_throttled(p, rq->cpu))
344 		return p;
345 
346 	return sched_core_next(p, cookie);
347 }
348 
349 /*
350  * Magic required such that:
351  *
352  *	raw_spin_rq_lock(rq);
353  *	...
354  *	raw_spin_rq_unlock(rq);
355  *
356  * ends up locking and unlocking the _same_ lock, and all CPUs
357  * always agree on what rq has what lock.
358  *
359  * XXX entirely possible to selectively enable cores, don't bother for now.
360  */
361 
362 static DEFINE_MUTEX(sched_core_mutex);
363 static atomic_t sched_core_count;
364 static struct cpumask sched_core_mask;
365 
366 static void sched_core_lock(int cpu, unsigned long *flags)
367 {
368 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
369 	int t, i = 0;
370 
371 	local_irq_save(*flags);
372 	for_each_cpu(t, smt_mask)
373 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
374 }
375 
376 static void sched_core_unlock(int cpu, unsigned long *flags)
377 {
378 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
379 	int t;
380 
381 	for_each_cpu(t, smt_mask)
382 		raw_spin_unlock(&cpu_rq(t)->__lock);
383 	local_irq_restore(*flags);
384 }
385 
386 static void __sched_core_flip(bool enabled)
387 {
388 	unsigned long flags;
389 	int cpu, t;
390 
391 	cpus_read_lock();
392 
393 	/*
394 	 * Toggle the online cores, one by one.
395 	 */
396 	cpumask_copy(&sched_core_mask, cpu_online_mask);
397 	for_each_cpu(cpu, &sched_core_mask) {
398 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
399 
400 		sched_core_lock(cpu, &flags);
401 
402 		for_each_cpu(t, smt_mask)
403 			cpu_rq(t)->core_enabled = enabled;
404 
405 		cpu_rq(cpu)->core->core_forceidle_start = 0;
406 
407 		sched_core_unlock(cpu, &flags);
408 
409 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
410 	}
411 
412 	/*
413 	 * Toggle the offline CPUs.
414 	 */
415 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
416 		cpu_rq(cpu)->core_enabled = enabled;
417 
418 	cpus_read_unlock();
419 }
420 
421 static void sched_core_assert_empty(void)
422 {
423 	int cpu;
424 
425 	for_each_possible_cpu(cpu)
426 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
427 }
428 
429 static void __sched_core_enable(void)
430 {
431 	static_branch_enable(&__sched_core_enabled);
432 	/*
433 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
434 	 * and future ones will observe !sched_core_disabled().
435 	 */
436 	synchronize_rcu();
437 	__sched_core_flip(true);
438 	sched_core_assert_empty();
439 }
440 
441 static void __sched_core_disable(void)
442 {
443 	sched_core_assert_empty();
444 	__sched_core_flip(false);
445 	static_branch_disable(&__sched_core_enabled);
446 }
447 
448 void sched_core_get(void)
449 {
450 	if (atomic_inc_not_zero(&sched_core_count))
451 		return;
452 
453 	mutex_lock(&sched_core_mutex);
454 	if (!atomic_read(&sched_core_count))
455 		__sched_core_enable();
456 
457 	smp_mb__before_atomic();
458 	atomic_inc(&sched_core_count);
459 	mutex_unlock(&sched_core_mutex);
460 }
461 
462 static void __sched_core_put(struct work_struct *work)
463 {
464 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
465 		__sched_core_disable();
466 		mutex_unlock(&sched_core_mutex);
467 	}
468 }
469 
470 void sched_core_put(void)
471 {
472 	static DECLARE_WORK(_work, __sched_core_put);
473 
474 	/*
475 	 * "There can be only one"
476 	 *
477 	 * Either this is the last one, or we don't actually need to do any
478 	 * 'work'. If it is the last *again*, we rely on
479 	 * WORK_STRUCT_PENDING_BIT.
480 	 */
481 	if (!atomic_add_unless(&sched_core_count, -1, 1))
482 		schedule_work(&_work);
483 }
484 
485 #else /* !CONFIG_SCHED_CORE */
486 
487 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
488 static inline void
489 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
490 
491 #endif /* CONFIG_SCHED_CORE */
492 
493 /*
494  * Serialization rules:
495  *
496  * Lock order:
497  *
498  *   p->pi_lock
499  *     rq->lock
500  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
501  *
502  *  rq1->lock
503  *    rq2->lock  where: rq1 < rq2
504  *
505  * Regular state:
506  *
507  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
508  * local CPU's rq->lock, it optionally removes the task from the runqueue and
509  * always looks at the local rq data structures to find the most eligible task
510  * to run next.
511  *
512  * Task enqueue is also under rq->lock, possibly taken from another CPU.
513  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
514  * the local CPU to avoid bouncing the runqueue state around [ see
515  * ttwu_queue_wakelist() ]
516  *
517  * Task wakeup, specifically wakeups that involve migration, are horribly
518  * complicated to avoid having to take two rq->locks.
519  *
520  * Special state:
521  *
522  * System-calls and anything external will use task_rq_lock() which acquires
523  * both p->pi_lock and rq->lock. As a consequence the state they change is
524  * stable while holding either lock:
525  *
526  *  - sched_setaffinity()/
527  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
528  *  - set_user_nice():		p->se.load, p->*prio
529  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
530  *				p->se.load, p->rt_priority,
531  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
532  *  - sched_setnuma():		p->numa_preferred_nid
533  *  - sched_move_task():	p->sched_task_group
534  *  - uclamp_update_active()	p->uclamp*
535  *
536  * p->state <- TASK_*:
537  *
538  *   is changed locklessly using set_current_state(), __set_current_state() or
539  *   set_special_state(), see their respective comments, or by
540  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
541  *   concurrent self.
542  *
543  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
544  *
545  *   is set by activate_task() and cleared by deactivate_task(), under
546  *   rq->lock. Non-zero indicates the task is runnable, the special
547  *   ON_RQ_MIGRATING state is used for migration without holding both
548  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
549  *
550  *   Additionally it is possible to be ->on_rq but still be considered not
551  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
552  *   but will be dequeued as soon as they get picked again. See the
553  *   task_is_runnable() helper.
554  *
555  * p->on_cpu <- { 0, 1 }:
556  *
557  *   is set by prepare_task() and cleared by finish_task() such that it will be
558  *   set before p is scheduled-in and cleared after p is scheduled-out, both
559  *   under rq->lock. Non-zero indicates the task is running on its CPU.
560  *
561  *   [ The astute reader will observe that it is possible for two tasks on one
562  *     CPU to have ->on_cpu = 1 at the same time. ]
563  *
564  * task_cpu(p): is changed by set_task_cpu(), the rules are:
565  *
566  *  - Don't call set_task_cpu() on a blocked task:
567  *
568  *    We don't care what CPU we're not running on, this simplifies hotplug,
569  *    the CPU assignment of blocked tasks isn't required to be valid.
570  *
571  *  - for try_to_wake_up(), called under p->pi_lock:
572  *
573  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
574  *
575  *  - for migration called under rq->lock:
576  *    [ see task_on_rq_migrating() in task_rq_lock() ]
577  *
578  *    o move_queued_task()
579  *    o detach_task()
580  *
581  *  - for migration called under double_rq_lock():
582  *
583  *    o __migrate_swap_task()
584  *    o push_rt_task() / pull_rt_task()
585  *    o push_dl_task() / pull_dl_task()
586  *    o dl_task_offline_migration()
587  *
588  */
589 
590 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
591 {
592 	raw_spinlock_t *lock;
593 
594 	/* Matches synchronize_rcu() in __sched_core_enable() */
595 	preempt_disable();
596 	if (sched_core_disabled()) {
597 		raw_spin_lock_nested(&rq->__lock, subclass);
598 		/* preempt_count *MUST* be > 1 */
599 		preempt_enable_no_resched();
600 		return;
601 	}
602 
603 	for (;;) {
604 		lock = __rq_lockp(rq);
605 		raw_spin_lock_nested(lock, subclass);
606 		if (likely(lock == __rq_lockp(rq))) {
607 			/* preempt_count *MUST* be > 1 */
608 			preempt_enable_no_resched();
609 			return;
610 		}
611 		raw_spin_unlock(lock);
612 	}
613 }
614 
615 bool raw_spin_rq_trylock(struct rq *rq)
616 {
617 	raw_spinlock_t *lock;
618 	bool ret;
619 
620 	/* Matches synchronize_rcu() in __sched_core_enable() */
621 	preempt_disable();
622 	if (sched_core_disabled()) {
623 		ret = raw_spin_trylock(&rq->__lock);
624 		preempt_enable();
625 		return ret;
626 	}
627 
628 	for (;;) {
629 		lock = __rq_lockp(rq);
630 		ret = raw_spin_trylock(lock);
631 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
632 			preempt_enable();
633 			return ret;
634 		}
635 		raw_spin_unlock(lock);
636 	}
637 }
638 
639 void raw_spin_rq_unlock(struct rq *rq)
640 {
641 	raw_spin_unlock(rq_lockp(rq));
642 }
643 
644 #ifdef CONFIG_SMP
645 /*
646  * double_rq_lock - safely lock two runqueues
647  */
648 void double_rq_lock(struct rq *rq1, struct rq *rq2)
649 {
650 	lockdep_assert_irqs_disabled();
651 
652 	if (rq_order_less(rq2, rq1))
653 		swap(rq1, rq2);
654 
655 	raw_spin_rq_lock(rq1);
656 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
657 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
658 
659 	double_rq_clock_clear_update(rq1, rq2);
660 }
661 #endif
662 
663 /*
664  * __task_rq_lock - lock the rq @p resides on.
665  */
666 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
667 	__acquires(rq->lock)
668 {
669 	struct rq *rq;
670 
671 	lockdep_assert_held(&p->pi_lock);
672 
673 	for (;;) {
674 		rq = task_rq(p);
675 		raw_spin_rq_lock(rq);
676 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
677 			rq_pin_lock(rq, rf);
678 			return rq;
679 		}
680 		raw_spin_rq_unlock(rq);
681 
682 		while (unlikely(task_on_rq_migrating(p)))
683 			cpu_relax();
684 	}
685 }
686 
687 /*
688  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
689  */
690 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
691 	__acquires(p->pi_lock)
692 	__acquires(rq->lock)
693 {
694 	struct rq *rq;
695 
696 	for (;;) {
697 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
698 		rq = task_rq(p);
699 		raw_spin_rq_lock(rq);
700 		/*
701 		 *	move_queued_task()		task_rq_lock()
702 		 *
703 		 *	ACQUIRE (rq->lock)
704 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
705 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
706 		 *	[S] ->cpu = new_cpu		[L] task_rq()
707 		 *					[L] ->on_rq
708 		 *	RELEASE (rq->lock)
709 		 *
710 		 * If we observe the old CPU in task_rq_lock(), the acquire of
711 		 * the old rq->lock will fully serialize against the stores.
712 		 *
713 		 * If we observe the new CPU in task_rq_lock(), the address
714 		 * dependency headed by '[L] rq = task_rq()' and the acquire
715 		 * will pair with the WMB to ensure we then also see migrating.
716 		 */
717 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
718 			rq_pin_lock(rq, rf);
719 			return rq;
720 		}
721 		raw_spin_rq_unlock(rq);
722 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
723 
724 		while (unlikely(task_on_rq_migrating(p)))
725 			cpu_relax();
726 	}
727 }
728 
729 /*
730  * RQ-clock updating methods:
731  */
732 
733 static void update_rq_clock_task(struct rq *rq, s64 delta)
734 {
735 /*
736  * In theory, the compile should just see 0 here, and optimize out the call
737  * to sched_rt_avg_update. But I don't trust it...
738  */
739 	s64 __maybe_unused steal = 0, irq_delta = 0;
740 
741 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
742 	if (irqtime_enabled()) {
743 		irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
744 
745 		/*
746 		 * Since irq_time is only updated on {soft,}irq_exit, we might run into
747 		 * this case when a previous update_rq_clock() happened inside a
748 		 * {soft,}IRQ region.
749 		 *
750 		 * When this happens, we stop ->clock_task and only update the
751 		 * prev_irq_time stamp to account for the part that fit, so that a next
752 		 * update will consume the rest. This ensures ->clock_task is
753 		 * monotonic.
754 		 *
755 		 * It does however cause some slight miss-attribution of {soft,}IRQ
756 		 * time, a more accurate solution would be to update the irq_time using
757 		 * the current rq->clock timestamp, except that would require using
758 		 * atomic ops.
759 		 */
760 		if (irq_delta > delta)
761 			irq_delta = delta;
762 
763 		rq->prev_irq_time += irq_delta;
764 		delta -= irq_delta;
765 		delayacct_irq(rq->curr, irq_delta);
766 	}
767 #endif
768 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
769 	if (static_key_false((&paravirt_steal_rq_enabled))) {
770 		u64 prev_steal;
771 
772 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
773 		steal -= rq->prev_steal_time_rq;
774 
775 		if (unlikely(steal > delta))
776 			steal = delta;
777 
778 		rq->prev_steal_time_rq = prev_steal;
779 		delta -= steal;
780 	}
781 #endif
782 
783 	rq->clock_task += delta;
784 
785 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
786 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
787 		update_irq_load_avg(rq, irq_delta + steal);
788 #endif
789 	update_rq_clock_pelt(rq, delta);
790 }
791 
792 void update_rq_clock(struct rq *rq)
793 {
794 	s64 delta;
795 	u64 clock;
796 
797 	lockdep_assert_rq_held(rq);
798 
799 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
800 		return;
801 
802 #ifdef CONFIG_SCHED_DEBUG
803 	if (sched_feat(WARN_DOUBLE_CLOCK))
804 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
805 	rq->clock_update_flags |= RQCF_UPDATED;
806 #endif
807 	clock = sched_clock_cpu(cpu_of(rq));
808 	scx_rq_clock_update(rq, clock);
809 
810 	delta = clock - rq->clock;
811 	if (delta < 0)
812 		return;
813 	rq->clock += delta;
814 
815 	update_rq_clock_task(rq, delta);
816 }
817 
818 #ifdef CONFIG_SCHED_HRTICK
819 /*
820  * Use HR-timers to deliver accurate preemption points.
821  */
822 
823 static void hrtick_clear(struct rq *rq)
824 {
825 	if (hrtimer_active(&rq->hrtick_timer))
826 		hrtimer_cancel(&rq->hrtick_timer);
827 }
828 
829 /*
830  * High-resolution timer tick.
831  * Runs from hardirq context with interrupts disabled.
832  */
833 static enum hrtimer_restart hrtick(struct hrtimer *timer)
834 {
835 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
836 	struct rq_flags rf;
837 
838 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
839 
840 	rq_lock(rq, &rf);
841 	update_rq_clock(rq);
842 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
843 	rq_unlock(rq, &rf);
844 
845 	return HRTIMER_NORESTART;
846 }
847 
848 #ifdef CONFIG_SMP
849 
850 static void __hrtick_restart(struct rq *rq)
851 {
852 	struct hrtimer *timer = &rq->hrtick_timer;
853 	ktime_t time = rq->hrtick_time;
854 
855 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
856 }
857 
858 /*
859  * called from hardirq (IPI) context
860  */
861 static void __hrtick_start(void *arg)
862 {
863 	struct rq *rq = arg;
864 	struct rq_flags rf;
865 
866 	rq_lock(rq, &rf);
867 	__hrtick_restart(rq);
868 	rq_unlock(rq, &rf);
869 }
870 
871 /*
872  * Called to set the hrtick timer state.
873  *
874  * called with rq->lock held and IRQs disabled
875  */
876 void hrtick_start(struct rq *rq, u64 delay)
877 {
878 	struct hrtimer *timer = &rq->hrtick_timer;
879 	s64 delta;
880 
881 	/*
882 	 * Don't schedule slices shorter than 10000ns, that just
883 	 * doesn't make sense and can cause timer DoS.
884 	 */
885 	delta = max_t(s64, delay, 10000LL);
886 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
887 
888 	if (rq == this_rq())
889 		__hrtick_restart(rq);
890 	else
891 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
892 }
893 
894 #else
895 /*
896  * Called to set the hrtick timer state.
897  *
898  * called with rq->lock held and IRQs disabled
899  */
900 void hrtick_start(struct rq *rq, u64 delay)
901 {
902 	/*
903 	 * Don't schedule slices shorter than 10000ns, that just
904 	 * doesn't make sense. Rely on vruntime for fairness.
905 	 */
906 	delay = max_t(u64, delay, 10000LL);
907 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
908 		      HRTIMER_MODE_REL_PINNED_HARD);
909 }
910 
911 #endif /* CONFIG_SMP */
912 
913 static void hrtick_rq_init(struct rq *rq)
914 {
915 #ifdef CONFIG_SMP
916 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
917 #endif
918 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
919 	rq->hrtick_timer.function = hrtick;
920 }
921 #else	/* CONFIG_SCHED_HRTICK */
922 static inline void hrtick_clear(struct rq *rq)
923 {
924 }
925 
926 static inline void hrtick_rq_init(struct rq *rq)
927 {
928 }
929 #endif	/* CONFIG_SCHED_HRTICK */
930 
931 /*
932  * try_cmpxchg based fetch_or() macro so it works for different integer types:
933  */
934 #define fetch_or(ptr, mask)						\
935 	({								\
936 		typeof(ptr) _ptr = (ptr);				\
937 		typeof(mask) _mask = (mask);				\
938 		typeof(*_ptr) _val = *_ptr;				\
939 									\
940 		do {							\
941 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
942 	_val;								\
943 })
944 
945 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
946 /*
947  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
948  * this avoids any races wrt polling state changes and thereby avoids
949  * spurious IPIs.
950  */
951 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
952 {
953 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
954 }
955 
956 /*
957  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
958  *
959  * If this returns true, then the idle task promises to call
960  * sched_ttwu_pending() and reschedule soon.
961  */
962 static bool set_nr_if_polling(struct task_struct *p)
963 {
964 	struct thread_info *ti = task_thread_info(p);
965 	typeof(ti->flags) val = READ_ONCE(ti->flags);
966 
967 	do {
968 		if (!(val & _TIF_POLLING_NRFLAG))
969 			return false;
970 		if (val & _TIF_NEED_RESCHED)
971 			return true;
972 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
973 
974 	return true;
975 }
976 
977 #else
978 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
979 {
980 	set_ti_thread_flag(ti, tif);
981 	return true;
982 }
983 
984 #ifdef CONFIG_SMP
985 static inline bool set_nr_if_polling(struct task_struct *p)
986 {
987 	return false;
988 }
989 #endif
990 #endif
991 
992 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
993 {
994 	struct wake_q_node *node = &task->wake_q;
995 
996 	/*
997 	 * Atomically grab the task, if ->wake_q is !nil already it means
998 	 * it's already queued (either by us or someone else) and will get the
999 	 * wakeup due to that.
1000 	 *
1001 	 * In order to ensure that a pending wakeup will observe our pending
1002 	 * state, even in the failed case, an explicit smp_mb() must be used.
1003 	 */
1004 	smp_mb__before_atomic();
1005 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1006 		return false;
1007 
1008 	/*
1009 	 * The head is context local, there can be no concurrency.
1010 	 */
1011 	*head->lastp = node;
1012 	head->lastp = &node->next;
1013 	return true;
1014 }
1015 
1016 /**
1017  * wake_q_add() - queue a wakeup for 'later' waking.
1018  * @head: the wake_q_head to add @task to
1019  * @task: the task to queue for 'later' wakeup
1020  *
1021  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1022  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1023  * instantly.
1024  *
1025  * This function must be used as-if it were wake_up_process(); IOW the task
1026  * must be ready to be woken at this location.
1027  */
1028 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1029 {
1030 	if (__wake_q_add(head, task))
1031 		get_task_struct(task);
1032 }
1033 
1034 /**
1035  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1036  * @head: the wake_q_head to add @task to
1037  * @task: the task to queue for 'later' wakeup
1038  *
1039  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1040  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1041  * instantly.
1042  *
1043  * This function must be used as-if it were wake_up_process(); IOW the task
1044  * must be ready to be woken at this location.
1045  *
1046  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1047  * that already hold reference to @task can call the 'safe' version and trust
1048  * wake_q to do the right thing depending whether or not the @task is already
1049  * queued for wakeup.
1050  */
1051 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1052 {
1053 	if (!__wake_q_add(head, task))
1054 		put_task_struct(task);
1055 }
1056 
1057 void wake_up_q(struct wake_q_head *head)
1058 {
1059 	struct wake_q_node *node = head->first;
1060 
1061 	while (node != WAKE_Q_TAIL) {
1062 		struct task_struct *task;
1063 
1064 		task = container_of(node, struct task_struct, wake_q);
1065 		/* Task can safely be re-inserted now: */
1066 		node = node->next;
1067 		task->wake_q.next = NULL;
1068 
1069 		/*
1070 		 * wake_up_process() executes a full barrier, which pairs with
1071 		 * the queueing in wake_q_add() so as not to miss wakeups.
1072 		 */
1073 		wake_up_process(task);
1074 		put_task_struct(task);
1075 	}
1076 }
1077 
1078 /*
1079  * resched_curr - mark rq's current task 'to be rescheduled now'.
1080  *
1081  * On UP this means the setting of the need_resched flag, on SMP it
1082  * might also involve a cross-CPU call to trigger the scheduler on
1083  * the target CPU.
1084  */
1085 static void __resched_curr(struct rq *rq, int tif)
1086 {
1087 	struct task_struct *curr = rq->curr;
1088 	struct thread_info *cti = task_thread_info(curr);
1089 	int cpu;
1090 
1091 	lockdep_assert_rq_held(rq);
1092 
1093 	/*
1094 	 * Always immediately preempt the idle task; no point in delaying doing
1095 	 * actual work.
1096 	 */
1097 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1098 		tif = TIF_NEED_RESCHED;
1099 
1100 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1101 		return;
1102 
1103 	cpu = cpu_of(rq);
1104 
1105 	if (cpu == smp_processor_id()) {
1106 		set_ti_thread_flag(cti, tif);
1107 		if (tif == TIF_NEED_RESCHED)
1108 			set_preempt_need_resched();
1109 		return;
1110 	}
1111 
1112 	if (set_nr_and_not_polling(cti, tif)) {
1113 		if (tif == TIF_NEED_RESCHED)
1114 			smp_send_reschedule(cpu);
1115 	} else {
1116 		trace_sched_wake_idle_without_ipi(cpu);
1117 	}
1118 }
1119 
1120 void resched_curr(struct rq *rq)
1121 {
1122 	__resched_curr(rq, TIF_NEED_RESCHED);
1123 }
1124 
1125 #ifdef CONFIG_PREEMPT_DYNAMIC
1126 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1127 static __always_inline bool dynamic_preempt_lazy(void)
1128 {
1129 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1130 }
1131 #else
1132 static __always_inline bool dynamic_preempt_lazy(void)
1133 {
1134 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1135 }
1136 #endif
1137 
1138 static __always_inline int get_lazy_tif_bit(void)
1139 {
1140 	if (dynamic_preempt_lazy())
1141 		return TIF_NEED_RESCHED_LAZY;
1142 
1143 	return TIF_NEED_RESCHED;
1144 }
1145 
1146 void resched_curr_lazy(struct rq *rq)
1147 {
1148 	__resched_curr(rq, get_lazy_tif_bit());
1149 }
1150 
1151 void resched_cpu(int cpu)
1152 {
1153 	struct rq *rq = cpu_rq(cpu);
1154 	unsigned long flags;
1155 
1156 	raw_spin_rq_lock_irqsave(rq, flags);
1157 	if (cpu_online(cpu) || cpu == smp_processor_id())
1158 		resched_curr(rq);
1159 	raw_spin_rq_unlock_irqrestore(rq, flags);
1160 }
1161 
1162 #ifdef CONFIG_SMP
1163 #ifdef CONFIG_NO_HZ_COMMON
1164 /*
1165  * In the semi idle case, use the nearest busy CPU for migrating timers
1166  * from an idle CPU.  This is good for power-savings.
1167  *
1168  * We don't do similar optimization for completely idle system, as
1169  * selecting an idle CPU will add more delays to the timers than intended
1170  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1171  */
1172 int get_nohz_timer_target(void)
1173 {
1174 	int i, cpu = smp_processor_id(), default_cpu = -1;
1175 	struct sched_domain *sd;
1176 	const struct cpumask *hk_mask;
1177 
1178 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1179 		if (!idle_cpu(cpu))
1180 			return cpu;
1181 		default_cpu = cpu;
1182 	}
1183 
1184 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1185 
1186 	guard(rcu)();
1187 
1188 	for_each_domain(cpu, sd) {
1189 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1190 			if (cpu == i)
1191 				continue;
1192 
1193 			if (!idle_cpu(i))
1194 				return i;
1195 		}
1196 	}
1197 
1198 	if (default_cpu == -1)
1199 		default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1200 
1201 	return default_cpu;
1202 }
1203 
1204 /*
1205  * When add_timer_on() enqueues a timer into the timer wheel of an
1206  * idle CPU then this timer might expire before the next timer event
1207  * which is scheduled to wake up that CPU. In case of a completely
1208  * idle system the next event might even be infinite time into the
1209  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210  * leaves the inner idle loop so the newly added timer is taken into
1211  * account when the CPU goes back to idle and evaluates the timer
1212  * wheel for the next timer event.
1213  */
1214 static void wake_up_idle_cpu(int cpu)
1215 {
1216 	struct rq *rq = cpu_rq(cpu);
1217 
1218 	if (cpu == smp_processor_id())
1219 		return;
1220 
1221 	/*
1222 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1223 	 * part of the idle loop. This forces an exit from the idle loop
1224 	 * and a round trip to schedule(). Now this could be optimized
1225 	 * because a simple new idle loop iteration is enough to
1226 	 * re-evaluate the next tick. Provided some re-ordering of tick
1227 	 * nohz functions that would need to follow TIF_NR_POLLING
1228 	 * clearing:
1229 	 *
1230 	 * - On most architectures, a simple fetch_or on ti::flags with a
1231 	 *   "0" value would be enough to know if an IPI needs to be sent.
1232 	 *
1233 	 * - x86 needs to perform a last need_resched() check between
1234 	 *   monitor and mwait which doesn't take timers into account.
1235 	 *   There a dedicated TIF_TIMER flag would be required to
1236 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1237 	 *   before mwait().
1238 	 *
1239 	 * However, remote timer enqueue is not such a frequent event
1240 	 * and testing of the above solutions didn't appear to report
1241 	 * much benefits.
1242 	 */
1243 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1244 		smp_send_reschedule(cpu);
1245 	else
1246 		trace_sched_wake_idle_without_ipi(cpu);
1247 }
1248 
1249 static bool wake_up_full_nohz_cpu(int cpu)
1250 {
1251 	/*
1252 	 * We just need the target to call irq_exit() and re-evaluate
1253 	 * the next tick. The nohz full kick at least implies that.
1254 	 * If needed we can still optimize that later with an
1255 	 * empty IRQ.
1256 	 */
1257 	if (cpu_is_offline(cpu))
1258 		return true;  /* Don't try to wake offline CPUs. */
1259 	if (tick_nohz_full_cpu(cpu)) {
1260 		if (cpu != smp_processor_id() ||
1261 		    tick_nohz_tick_stopped())
1262 			tick_nohz_full_kick_cpu(cpu);
1263 		return true;
1264 	}
1265 
1266 	return false;
1267 }
1268 
1269 /*
1270  * Wake up the specified CPU.  If the CPU is going offline, it is the
1271  * caller's responsibility to deal with the lost wakeup, for example,
1272  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1273  */
1274 void wake_up_nohz_cpu(int cpu)
1275 {
1276 	if (!wake_up_full_nohz_cpu(cpu))
1277 		wake_up_idle_cpu(cpu);
1278 }
1279 
1280 static void nohz_csd_func(void *info)
1281 {
1282 	struct rq *rq = info;
1283 	int cpu = cpu_of(rq);
1284 	unsigned int flags;
1285 
1286 	/*
1287 	 * Release the rq::nohz_csd.
1288 	 */
1289 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1290 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1291 
1292 	rq->idle_balance = idle_cpu(cpu);
1293 	if (rq->idle_balance) {
1294 		rq->nohz_idle_balance = flags;
1295 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1296 	}
1297 }
1298 
1299 #endif /* CONFIG_NO_HZ_COMMON */
1300 
1301 #ifdef CONFIG_NO_HZ_FULL
1302 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1303 {
1304 	if (rq->nr_running != 1)
1305 		return false;
1306 
1307 	if (p->sched_class != &fair_sched_class)
1308 		return false;
1309 
1310 	if (!task_on_rq_queued(p))
1311 		return false;
1312 
1313 	return true;
1314 }
1315 
1316 bool sched_can_stop_tick(struct rq *rq)
1317 {
1318 	int fifo_nr_running;
1319 
1320 	/* Deadline tasks, even if single, need the tick */
1321 	if (rq->dl.dl_nr_running)
1322 		return false;
1323 
1324 	/*
1325 	 * If there are more than one RR tasks, we need the tick to affect the
1326 	 * actual RR behaviour.
1327 	 */
1328 	if (rq->rt.rr_nr_running) {
1329 		if (rq->rt.rr_nr_running == 1)
1330 			return true;
1331 		else
1332 			return false;
1333 	}
1334 
1335 	/*
1336 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1337 	 * forced preemption between FIFO tasks.
1338 	 */
1339 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1340 	if (fifo_nr_running)
1341 		return true;
1342 
1343 	/*
1344 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1345 	 * left. For CFS, if there's more than one we need the tick for
1346 	 * involuntary preemption. For SCX, ask.
1347 	 */
1348 	if (scx_enabled() && !scx_can_stop_tick(rq))
1349 		return false;
1350 
1351 	if (rq->cfs.h_nr_queued > 1)
1352 		return false;
1353 
1354 	/*
1355 	 * If there is one task and it has CFS runtime bandwidth constraints
1356 	 * and it's on the cpu now we don't want to stop the tick.
1357 	 * This check prevents clearing the bit if a newly enqueued task here is
1358 	 * dequeued by migrating while the constrained task continues to run.
1359 	 * E.g. going from 2->1 without going through pick_next_task().
1360 	 */
1361 	if (__need_bw_check(rq, rq->curr)) {
1362 		if (cfs_task_bw_constrained(rq->curr))
1363 			return false;
1364 	}
1365 
1366 	return true;
1367 }
1368 #endif /* CONFIG_NO_HZ_FULL */
1369 #endif /* CONFIG_SMP */
1370 
1371 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1372 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1373 /*
1374  * Iterate task_group tree rooted at *from, calling @down when first entering a
1375  * node and @up when leaving it for the final time.
1376  *
1377  * Caller must hold rcu_lock or sufficient equivalent.
1378  */
1379 int walk_tg_tree_from(struct task_group *from,
1380 			     tg_visitor down, tg_visitor up, void *data)
1381 {
1382 	struct task_group *parent, *child;
1383 	int ret;
1384 
1385 	parent = from;
1386 
1387 down:
1388 	ret = (*down)(parent, data);
1389 	if (ret)
1390 		goto out;
1391 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1392 		parent = child;
1393 		goto down;
1394 
1395 up:
1396 		continue;
1397 	}
1398 	ret = (*up)(parent, data);
1399 	if (ret || parent == from)
1400 		goto out;
1401 
1402 	child = parent;
1403 	parent = parent->parent;
1404 	if (parent)
1405 		goto up;
1406 out:
1407 	return ret;
1408 }
1409 
1410 int tg_nop(struct task_group *tg, void *data)
1411 {
1412 	return 0;
1413 }
1414 #endif
1415 
1416 void set_load_weight(struct task_struct *p, bool update_load)
1417 {
1418 	int prio = p->static_prio - MAX_RT_PRIO;
1419 	struct load_weight lw;
1420 
1421 	if (task_has_idle_policy(p)) {
1422 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1423 		lw.inv_weight = WMULT_IDLEPRIO;
1424 	} else {
1425 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1426 		lw.inv_weight = sched_prio_to_wmult[prio];
1427 	}
1428 
1429 	/*
1430 	 * SCHED_OTHER tasks have to update their load when changing their
1431 	 * weight
1432 	 */
1433 	if (update_load && p->sched_class->reweight_task)
1434 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1435 	else
1436 		p->se.load = lw;
1437 }
1438 
1439 #ifdef CONFIG_UCLAMP_TASK
1440 /*
1441  * Serializes updates of utilization clamp values
1442  *
1443  * The (slow-path) user-space triggers utilization clamp value updates which
1444  * can require updates on (fast-path) scheduler's data structures used to
1445  * support enqueue/dequeue operations.
1446  * While the per-CPU rq lock protects fast-path update operations, user-space
1447  * requests are serialized using a mutex to reduce the risk of conflicting
1448  * updates or API abuses.
1449  */
1450 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1451 
1452 /* Max allowed minimum utilization */
1453 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1454 
1455 /* Max allowed maximum utilization */
1456 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1457 
1458 /*
1459  * By default RT tasks run at the maximum performance point/capacity of the
1460  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1461  * SCHED_CAPACITY_SCALE.
1462  *
1463  * This knob allows admins to change the default behavior when uclamp is being
1464  * used. In battery powered devices, particularly, running at the maximum
1465  * capacity and frequency will increase energy consumption and shorten the
1466  * battery life.
1467  *
1468  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1469  *
1470  * This knob will not override the system default sched_util_clamp_min defined
1471  * above.
1472  */
1473 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1474 
1475 /* All clamps are required to be less or equal than these values */
1476 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1477 
1478 /*
1479  * This static key is used to reduce the uclamp overhead in the fast path. It
1480  * primarily disables the call to uclamp_rq_{inc, dec}() in
1481  * enqueue/dequeue_task().
1482  *
1483  * This allows users to continue to enable uclamp in their kernel config with
1484  * minimum uclamp overhead in the fast path.
1485  *
1486  * As soon as userspace modifies any of the uclamp knobs, the static key is
1487  * enabled, since we have an actual users that make use of uclamp
1488  * functionality.
1489  *
1490  * The knobs that would enable this static key are:
1491  *
1492  *   * A task modifying its uclamp value with sched_setattr().
1493  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1494  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1495  */
1496 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1497 
1498 static inline unsigned int
1499 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1500 		  unsigned int clamp_value)
1501 {
1502 	/*
1503 	 * Avoid blocked utilization pushing up the frequency when we go
1504 	 * idle (which drops the max-clamp) by retaining the last known
1505 	 * max-clamp.
1506 	 */
1507 	if (clamp_id == UCLAMP_MAX) {
1508 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1509 		return clamp_value;
1510 	}
1511 
1512 	return uclamp_none(UCLAMP_MIN);
1513 }
1514 
1515 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1516 				     unsigned int clamp_value)
1517 {
1518 	/* Reset max-clamp retention only on idle exit */
1519 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1520 		return;
1521 
1522 	uclamp_rq_set(rq, clamp_id, clamp_value);
1523 }
1524 
1525 static inline
1526 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1527 				   unsigned int clamp_value)
1528 {
1529 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1530 	int bucket_id = UCLAMP_BUCKETS - 1;
1531 
1532 	/*
1533 	 * Since both min and max clamps are max aggregated, find the
1534 	 * top most bucket with tasks in.
1535 	 */
1536 	for ( ; bucket_id >= 0; bucket_id--) {
1537 		if (!bucket[bucket_id].tasks)
1538 			continue;
1539 		return bucket[bucket_id].value;
1540 	}
1541 
1542 	/* No tasks -- default clamp values */
1543 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1544 }
1545 
1546 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1547 {
1548 	unsigned int default_util_min;
1549 	struct uclamp_se *uc_se;
1550 
1551 	lockdep_assert_held(&p->pi_lock);
1552 
1553 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1554 
1555 	/* Only sync if user didn't override the default */
1556 	if (uc_se->user_defined)
1557 		return;
1558 
1559 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1560 	uclamp_se_set(uc_se, default_util_min, false);
1561 }
1562 
1563 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1564 {
1565 	if (!rt_task(p))
1566 		return;
1567 
1568 	/* Protect updates to p->uclamp_* */
1569 	guard(task_rq_lock)(p);
1570 	__uclamp_update_util_min_rt_default(p);
1571 }
1572 
1573 static inline struct uclamp_se
1574 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1575 {
1576 	/* Copy by value as we could modify it */
1577 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1578 #ifdef CONFIG_UCLAMP_TASK_GROUP
1579 	unsigned int tg_min, tg_max, value;
1580 
1581 	/*
1582 	 * Tasks in autogroups or root task group will be
1583 	 * restricted by system defaults.
1584 	 */
1585 	if (task_group_is_autogroup(task_group(p)))
1586 		return uc_req;
1587 	if (task_group(p) == &root_task_group)
1588 		return uc_req;
1589 
1590 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1591 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1592 	value = uc_req.value;
1593 	value = clamp(value, tg_min, tg_max);
1594 	uclamp_se_set(&uc_req, value, false);
1595 #endif
1596 
1597 	return uc_req;
1598 }
1599 
1600 /*
1601  * The effective clamp bucket index of a task depends on, by increasing
1602  * priority:
1603  * - the task specific clamp value, when explicitly requested from userspace
1604  * - the task group effective clamp value, for tasks not either in the root
1605  *   group or in an autogroup
1606  * - the system default clamp value, defined by the sysadmin
1607  */
1608 static inline struct uclamp_se
1609 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1610 {
1611 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1612 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1613 
1614 	/* System default restrictions always apply */
1615 	if (unlikely(uc_req.value > uc_max.value))
1616 		return uc_max;
1617 
1618 	return uc_req;
1619 }
1620 
1621 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1622 {
1623 	struct uclamp_se uc_eff;
1624 
1625 	/* Task currently refcounted: use back-annotated (effective) value */
1626 	if (p->uclamp[clamp_id].active)
1627 		return (unsigned long)p->uclamp[clamp_id].value;
1628 
1629 	uc_eff = uclamp_eff_get(p, clamp_id);
1630 
1631 	return (unsigned long)uc_eff.value;
1632 }
1633 
1634 /*
1635  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1636  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1637  * updates the rq's clamp value if required.
1638  *
1639  * Tasks can have a task-specific value requested from user-space, track
1640  * within each bucket the maximum value for tasks refcounted in it.
1641  * This "local max aggregation" allows to track the exact "requested" value
1642  * for each bucket when all its RUNNABLE tasks require the same clamp.
1643  */
1644 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1645 				    enum uclamp_id clamp_id)
1646 {
1647 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1648 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1649 	struct uclamp_bucket *bucket;
1650 
1651 	lockdep_assert_rq_held(rq);
1652 
1653 	/* Update task effective clamp */
1654 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1655 
1656 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1657 	bucket->tasks++;
1658 	uc_se->active = true;
1659 
1660 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1661 
1662 	/*
1663 	 * Local max aggregation: rq buckets always track the max
1664 	 * "requested" clamp value of its RUNNABLE tasks.
1665 	 */
1666 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1667 		bucket->value = uc_se->value;
1668 
1669 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1670 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1671 }
1672 
1673 /*
1674  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1675  * is released. If this is the last task reference counting the rq's max
1676  * active clamp value, then the rq's clamp value is updated.
1677  *
1678  * Both refcounted tasks and rq's cached clamp values are expected to be
1679  * always valid. If it's detected they are not, as defensive programming,
1680  * enforce the expected state and warn.
1681  */
1682 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1683 				    enum uclamp_id clamp_id)
1684 {
1685 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1686 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1687 	struct uclamp_bucket *bucket;
1688 	unsigned int bkt_clamp;
1689 	unsigned int rq_clamp;
1690 
1691 	lockdep_assert_rq_held(rq);
1692 
1693 	/*
1694 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1695 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1696 	 *
1697 	 * In this case the uc_se->active flag should be false since no uclamp
1698 	 * accounting was performed at enqueue time and we can just return
1699 	 * here.
1700 	 *
1701 	 * Need to be careful of the following enqueue/dequeue ordering
1702 	 * problem too
1703 	 *
1704 	 *	enqueue(taskA)
1705 	 *	// sched_uclamp_used gets enabled
1706 	 *	enqueue(taskB)
1707 	 *	dequeue(taskA)
1708 	 *	// Must not decrement bucket->tasks here
1709 	 *	dequeue(taskB)
1710 	 *
1711 	 * where we could end up with stale data in uc_se and
1712 	 * bucket[uc_se->bucket_id].
1713 	 *
1714 	 * The following check here eliminates the possibility of such race.
1715 	 */
1716 	if (unlikely(!uc_se->active))
1717 		return;
1718 
1719 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1720 
1721 	SCHED_WARN_ON(!bucket->tasks);
1722 	if (likely(bucket->tasks))
1723 		bucket->tasks--;
1724 
1725 	uc_se->active = false;
1726 
1727 	/*
1728 	 * Keep "local max aggregation" simple and accept to (possibly)
1729 	 * overboost some RUNNABLE tasks in the same bucket.
1730 	 * The rq clamp bucket value is reset to its base value whenever
1731 	 * there are no more RUNNABLE tasks refcounting it.
1732 	 */
1733 	if (likely(bucket->tasks))
1734 		return;
1735 
1736 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1737 	/*
1738 	 * Defensive programming: this should never happen. If it happens,
1739 	 * e.g. due to future modification, warn and fix up the expected value.
1740 	 */
1741 	SCHED_WARN_ON(bucket->value > rq_clamp);
1742 	if (bucket->value >= rq_clamp) {
1743 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1744 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1745 	}
1746 }
1747 
1748 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1749 {
1750 	enum uclamp_id clamp_id;
1751 
1752 	/*
1753 	 * Avoid any overhead until uclamp is actually used by the userspace.
1754 	 *
1755 	 * The condition is constructed such that a NOP is generated when
1756 	 * sched_uclamp_used is disabled.
1757 	 */
1758 	if (!static_branch_unlikely(&sched_uclamp_used))
1759 		return;
1760 
1761 	if (unlikely(!p->sched_class->uclamp_enabled))
1762 		return;
1763 
1764 	if (p->se.sched_delayed)
1765 		return;
1766 
1767 	for_each_clamp_id(clamp_id)
1768 		uclamp_rq_inc_id(rq, p, clamp_id);
1769 
1770 	/* Reset clamp idle holding when there is one RUNNABLE task */
1771 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1772 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1773 }
1774 
1775 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1776 {
1777 	enum uclamp_id clamp_id;
1778 
1779 	/*
1780 	 * Avoid any overhead until uclamp is actually used by the userspace.
1781 	 *
1782 	 * The condition is constructed such that a NOP is generated when
1783 	 * sched_uclamp_used is disabled.
1784 	 */
1785 	if (!static_branch_unlikely(&sched_uclamp_used))
1786 		return;
1787 
1788 	if (unlikely(!p->sched_class->uclamp_enabled))
1789 		return;
1790 
1791 	if (p->se.sched_delayed)
1792 		return;
1793 
1794 	for_each_clamp_id(clamp_id)
1795 		uclamp_rq_dec_id(rq, p, clamp_id);
1796 }
1797 
1798 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1799 				      enum uclamp_id clamp_id)
1800 {
1801 	if (!p->uclamp[clamp_id].active)
1802 		return;
1803 
1804 	uclamp_rq_dec_id(rq, p, clamp_id);
1805 	uclamp_rq_inc_id(rq, p, clamp_id);
1806 
1807 	/*
1808 	 * Make sure to clear the idle flag if we've transiently reached 0
1809 	 * active tasks on rq.
1810 	 */
1811 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1812 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1813 }
1814 
1815 static inline void
1816 uclamp_update_active(struct task_struct *p)
1817 {
1818 	enum uclamp_id clamp_id;
1819 	struct rq_flags rf;
1820 	struct rq *rq;
1821 
1822 	/*
1823 	 * Lock the task and the rq where the task is (or was) queued.
1824 	 *
1825 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1826 	 * price to pay to safely serialize util_{min,max} updates with
1827 	 * enqueues, dequeues and migration operations.
1828 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1829 	 */
1830 	rq = task_rq_lock(p, &rf);
1831 
1832 	/*
1833 	 * Setting the clamp bucket is serialized by task_rq_lock().
1834 	 * If the task is not yet RUNNABLE and its task_struct is not
1835 	 * affecting a valid clamp bucket, the next time it's enqueued,
1836 	 * it will already see the updated clamp bucket value.
1837 	 */
1838 	for_each_clamp_id(clamp_id)
1839 		uclamp_rq_reinc_id(rq, p, clamp_id);
1840 
1841 	task_rq_unlock(rq, p, &rf);
1842 }
1843 
1844 #ifdef CONFIG_UCLAMP_TASK_GROUP
1845 static inline void
1846 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1847 {
1848 	struct css_task_iter it;
1849 	struct task_struct *p;
1850 
1851 	css_task_iter_start(css, 0, &it);
1852 	while ((p = css_task_iter_next(&it)))
1853 		uclamp_update_active(p);
1854 	css_task_iter_end(&it);
1855 }
1856 
1857 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1858 #endif
1859 
1860 #ifdef CONFIG_SYSCTL
1861 #ifdef CONFIG_UCLAMP_TASK_GROUP
1862 static void uclamp_update_root_tg(void)
1863 {
1864 	struct task_group *tg = &root_task_group;
1865 
1866 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1867 		      sysctl_sched_uclamp_util_min, false);
1868 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1869 		      sysctl_sched_uclamp_util_max, false);
1870 
1871 	guard(rcu)();
1872 	cpu_util_update_eff(&root_task_group.css);
1873 }
1874 #else
1875 static void uclamp_update_root_tg(void) { }
1876 #endif
1877 
1878 static void uclamp_sync_util_min_rt_default(void)
1879 {
1880 	struct task_struct *g, *p;
1881 
1882 	/*
1883 	 * copy_process()			sysctl_uclamp
1884 	 *					  uclamp_min_rt = X;
1885 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1886 	 *   // link thread			  smp_mb__after_spinlock()
1887 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1888 	 *   sched_post_fork()			  for_each_process_thread()
1889 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1890 	 *
1891 	 * Ensures that either sched_post_fork() will observe the new
1892 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1893 	 * task.
1894 	 */
1895 	read_lock(&tasklist_lock);
1896 	smp_mb__after_spinlock();
1897 	read_unlock(&tasklist_lock);
1898 
1899 	guard(rcu)();
1900 	for_each_process_thread(g, p)
1901 		uclamp_update_util_min_rt_default(p);
1902 }
1903 
1904 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1905 				void *buffer, size_t *lenp, loff_t *ppos)
1906 {
1907 	bool update_root_tg = false;
1908 	int old_min, old_max, old_min_rt;
1909 	int result;
1910 
1911 	guard(mutex)(&uclamp_mutex);
1912 
1913 	old_min = sysctl_sched_uclamp_util_min;
1914 	old_max = sysctl_sched_uclamp_util_max;
1915 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1916 
1917 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1918 	if (result)
1919 		goto undo;
1920 	if (!write)
1921 		return 0;
1922 
1923 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1924 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1925 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1926 
1927 		result = -EINVAL;
1928 		goto undo;
1929 	}
1930 
1931 	if (old_min != sysctl_sched_uclamp_util_min) {
1932 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1933 			      sysctl_sched_uclamp_util_min, false);
1934 		update_root_tg = true;
1935 	}
1936 	if (old_max != sysctl_sched_uclamp_util_max) {
1937 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1938 			      sysctl_sched_uclamp_util_max, false);
1939 		update_root_tg = true;
1940 	}
1941 
1942 	if (update_root_tg) {
1943 		static_branch_enable(&sched_uclamp_used);
1944 		uclamp_update_root_tg();
1945 	}
1946 
1947 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1948 		static_branch_enable(&sched_uclamp_used);
1949 		uclamp_sync_util_min_rt_default();
1950 	}
1951 
1952 	/*
1953 	 * We update all RUNNABLE tasks only when task groups are in use.
1954 	 * Otherwise, keep it simple and do just a lazy update at each next
1955 	 * task enqueue time.
1956 	 */
1957 	return 0;
1958 
1959 undo:
1960 	sysctl_sched_uclamp_util_min = old_min;
1961 	sysctl_sched_uclamp_util_max = old_max;
1962 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1963 	return result;
1964 }
1965 #endif
1966 
1967 static void uclamp_fork(struct task_struct *p)
1968 {
1969 	enum uclamp_id clamp_id;
1970 
1971 	/*
1972 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1973 	 * as the task is still at its early fork stages.
1974 	 */
1975 	for_each_clamp_id(clamp_id)
1976 		p->uclamp[clamp_id].active = false;
1977 
1978 	if (likely(!p->sched_reset_on_fork))
1979 		return;
1980 
1981 	for_each_clamp_id(clamp_id) {
1982 		uclamp_se_set(&p->uclamp_req[clamp_id],
1983 			      uclamp_none(clamp_id), false);
1984 	}
1985 }
1986 
1987 static void uclamp_post_fork(struct task_struct *p)
1988 {
1989 	uclamp_update_util_min_rt_default(p);
1990 }
1991 
1992 static void __init init_uclamp_rq(struct rq *rq)
1993 {
1994 	enum uclamp_id clamp_id;
1995 	struct uclamp_rq *uc_rq = rq->uclamp;
1996 
1997 	for_each_clamp_id(clamp_id) {
1998 		uc_rq[clamp_id] = (struct uclamp_rq) {
1999 			.value = uclamp_none(clamp_id)
2000 		};
2001 	}
2002 
2003 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2004 }
2005 
2006 static void __init init_uclamp(void)
2007 {
2008 	struct uclamp_se uc_max = {};
2009 	enum uclamp_id clamp_id;
2010 	int cpu;
2011 
2012 	for_each_possible_cpu(cpu)
2013 		init_uclamp_rq(cpu_rq(cpu));
2014 
2015 	for_each_clamp_id(clamp_id) {
2016 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2017 			      uclamp_none(clamp_id), false);
2018 	}
2019 
2020 	/* System defaults allow max clamp values for both indexes */
2021 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2022 	for_each_clamp_id(clamp_id) {
2023 		uclamp_default[clamp_id] = uc_max;
2024 #ifdef CONFIG_UCLAMP_TASK_GROUP
2025 		root_task_group.uclamp_req[clamp_id] = uc_max;
2026 		root_task_group.uclamp[clamp_id] = uc_max;
2027 #endif
2028 	}
2029 }
2030 
2031 #else /* !CONFIG_UCLAMP_TASK */
2032 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2033 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2034 static inline void uclamp_fork(struct task_struct *p) { }
2035 static inline void uclamp_post_fork(struct task_struct *p) { }
2036 static inline void init_uclamp(void) { }
2037 #endif /* CONFIG_UCLAMP_TASK */
2038 
2039 bool sched_task_on_rq(struct task_struct *p)
2040 {
2041 	return task_on_rq_queued(p);
2042 }
2043 
2044 unsigned long get_wchan(struct task_struct *p)
2045 {
2046 	unsigned long ip = 0;
2047 	unsigned int state;
2048 
2049 	if (!p || p == current)
2050 		return 0;
2051 
2052 	/* Only get wchan if task is blocked and we can keep it that way. */
2053 	raw_spin_lock_irq(&p->pi_lock);
2054 	state = READ_ONCE(p->__state);
2055 	smp_rmb(); /* see try_to_wake_up() */
2056 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2057 		ip = __get_wchan(p);
2058 	raw_spin_unlock_irq(&p->pi_lock);
2059 
2060 	return ip;
2061 }
2062 
2063 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2064 {
2065 	if (!(flags & ENQUEUE_NOCLOCK))
2066 		update_rq_clock(rq);
2067 
2068 	p->sched_class->enqueue_task(rq, p, flags);
2069 	/*
2070 	 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
2071 	 * ->sched_delayed.
2072 	 */
2073 	uclamp_rq_inc(rq, p);
2074 
2075 	psi_enqueue(p, flags);
2076 
2077 	if (!(flags & ENQUEUE_RESTORE))
2078 		sched_info_enqueue(rq, p);
2079 
2080 	if (sched_core_enabled(rq))
2081 		sched_core_enqueue(rq, p);
2082 }
2083 
2084 /*
2085  * Must only return false when DEQUEUE_SLEEP.
2086  */
2087 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2088 {
2089 	if (sched_core_enabled(rq))
2090 		sched_core_dequeue(rq, p, flags);
2091 
2092 	if (!(flags & DEQUEUE_NOCLOCK))
2093 		update_rq_clock(rq);
2094 
2095 	if (!(flags & DEQUEUE_SAVE))
2096 		sched_info_dequeue(rq, p);
2097 
2098 	psi_dequeue(p, flags);
2099 
2100 	/*
2101 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2102 	 * and mark the task ->sched_delayed.
2103 	 */
2104 	uclamp_rq_dec(rq, p);
2105 	return p->sched_class->dequeue_task(rq, p, flags);
2106 }
2107 
2108 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2109 {
2110 	if (task_on_rq_migrating(p))
2111 		flags |= ENQUEUE_MIGRATED;
2112 	if (flags & ENQUEUE_MIGRATED)
2113 		sched_mm_cid_migrate_to(rq, p);
2114 
2115 	enqueue_task(rq, p, flags);
2116 
2117 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2118 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2119 }
2120 
2121 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2122 {
2123 	SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
2124 
2125 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2126 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2127 
2128 	/*
2129 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2130 	 * dequeue_task() and cleared *after* enqueue_task().
2131 	 */
2132 
2133 	dequeue_task(rq, p, flags);
2134 }
2135 
2136 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2137 {
2138 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2139 		__block_task(rq, p);
2140 }
2141 
2142 /**
2143  * task_curr - is this task currently executing on a CPU?
2144  * @p: the task in question.
2145  *
2146  * Return: 1 if the task is currently executing. 0 otherwise.
2147  */
2148 inline int task_curr(const struct task_struct *p)
2149 {
2150 	return cpu_curr(task_cpu(p)) == p;
2151 }
2152 
2153 /*
2154  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2155  * mess with locking.
2156  */
2157 void check_class_changing(struct rq *rq, struct task_struct *p,
2158 			  const struct sched_class *prev_class)
2159 {
2160 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2161 		p->sched_class->switching_to(rq, p);
2162 }
2163 
2164 /*
2165  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2166  * use the balance_callback list if you want balancing.
2167  *
2168  * this means any call to check_class_changed() must be followed by a call to
2169  * balance_callback().
2170  */
2171 void check_class_changed(struct rq *rq, struct task_struct *p,
2172 			 const struct sched_class *prev_class,
2173 			 int oldprio)
2174 {
2175 	if (prev_class != p->sched_class) {
2176 		if (prev_class->switched_from)
2177 			prev_class->switched_from(rq, p);
2178 
2179 		p->sched_class->switched_to(rq, p);
2180 	} else if (oldprio != p->prio || dl_task(p))
2181 		p->sched_class->prio_changed(rq, p, oldprio);
2182 }
2183 
2184 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2185 {
2186 	struct task_struct *donor = rq->donor;
2187 
2188 	if (p->sched_class == donor->sched_class)
2189 		donor->sched_class->wakeup_preempt(rq, p, flags);
2190 	else if (sched_class_above(p->sched_class, donor->sched_class))
2191 		resched_curr(rq);
2192 
2193 	/*
2194 	 * A queue event has occurred, and we're going to schedule.  In
2195 	 * this case, we can save a useless back to back clock update.
2196 	 */
2197 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2198 		rq_clock_skip_update(rq);
2199 }
2200 
2201 static __always_inline
2202 int __task_state_match(struct task_struct *p, unsigned int state)
2203 {
2204 	if (READ_ONCE(p->__state) & state)
2205 		return 1;
2206 
2207 	if (READ_ONCE(p->saved_state) & state)
2208 		return -1;
2209 
2210 	return 0;
2211 }
2212 
2213 static __always_inline
2214 int task_state_match(struct task_struct *p, unsigned int state)
2215 {
2216 	/*
2217 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2218 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2219 	 */
2220 	guard(raw_spinlock_irq)(&p->pi_lock);
2221 	return __task_state_match(p, state);
2222 }
2223 
2224 /*
2225  * wait_task_inactive - wait for a thread to unschedule.
2226  *
2227  * Wait for the thread to block in any of the states set in @match_state.
2228  * If it changes, i.e. @p might have woken up, then return zero.  When we
2229  * succeed in waiting for @p to be off its CPU, we return a positive number
2230  * (its total switch count).  If a second call a short while later returns the
2231  * same number, the caller can be sure that @p has remained unscheduled the
2232  * whole time.
2233  *
2234  * The caller must ensure that the task *will* unschedule sometime soon,
2235  * else this function might spin for a *long* time. This function can't
2236  * be called with interrupts off, or it may introduce deadlock with
2237  * smp_call_function() if an IPI is sent by the same process we are
2238  * waiting to become inactive.
2239  */
2240 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2241 {
2242 	int running, queued, match;
2243 	struct rq_flags rf;
2244 	unsigned long ncsw;
2245 	struct rq *rq;
2246 
2247 	for (;;) {
2248 		/*
2249 		 * We do the initial early heuristics without holding
2250 		 * any task-queue locks at all. We'll only try to get
2251 		 * the runqueue lock when things look like they will
2252 		 * work out!
2253 		 */
2254 		rq = task_rq(p);
2255 
2256 		/*
2257 		 * If the task is actively running on another CPU
2258 		 * still, just relax and busy-wait without holding
2259 		 * any locks.
2260 		 *
2261 		 * NOTE! Since we don't hold any locks, it's not
2262 		 * even sure that "rq" stays as the right runqueue!
2263 		 * But we don't care, since "task_on_cpu()" will
2264 		 * return false if the runqueue has changed and p
2265 		 * is actually now running somewhere else!
2266 		 */
2267 		while (task_on_cpu(rq, p)) {
2268 			if (!task_state_match(p, match_state))
2269 				return 0;
2270 			cpu_relax();
2271 		}
2272 
2273 		/*
2274 		 * Ok, time to look more closely! We need the rq
2275 		 * lock now, to be *sure*. If we're wrong, we'll
2276 		 * just go back and repeat.
2277 		 */
2278 		rq = task_rq_lock(p, &rf);
2279 		trace_sched_wait_task(p);
2280 		running = task_on_cpu(rq, p);
2281 		queued = task_on_rq_queued(p);
2282 		ncsw = 0;
2283 		if ((match = __task_state_match(p, match_state))) {
2284 			/*
2285 			 * When matching on p->saved_state, consider this task
2286 			 * still queued so it will wait.
2287 			 */
2288 			if (match < 0)
2289 				queued = 1;
2290 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2291 		}
2292 		task_rq_unlock(rq, p, &rf);
2293 
2294 		/*
2295 		 * If it changed from the expected state, bail out now.
2296 		 */
2297 		if (unlikely(!ncsw))
2298 			break;
2299 
2300 		/*
2301 		 * Was it really running after all now that we
2302 		 * checked with the proper locks actually held?
2303 		 *
2304 		 * Oops. Go back and try again..
2305 		 */
2306 		if (unlikely(running)) {
2307 			cpu_relax();
2308 			continue;
2309 		}
2310 
2311 		/*
2312 		 * It's not enough that it's not actively running,
2313 		 * it must be off the runqueue _entirely_, and not
2314 		 * preempted!
2315 		 *
2316 		 * So if it was still runnable (but just not actively
2317 		 * running right now), it's preempted, and we should
2318 		 * yield - it could be a while.
2319 		 */
2320 		if (unlikely(queued)) {
2321 			ktime_t to = NSEC_PER_SEC / HZ;
2322 
2323 			set_current_state(TASK_UNINTERRUPTIBLE);
2324 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2325 			continue;
2326 		}
2327 
2328 		/*
2329 		 * Ahh, all good. It wasn't running, and it wasn't
2330 		 * runnable, which means that it will never become
2331 		 * running in the future either. We're all done!
2332 		 */
2333 		break;
2334 	}
2335 
2336 	return ncsw;
2337 }
2338 
2339 #ifdef CONFIG_SMP
2340 
2341 static void
2342 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2343 
2344 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2345 {
2346 	struct affinity_context ac = {
2347 		.new_mask  = cpumask_of(rq->cpu),
2348 		.flags     = SCA_MIGRATE_DISABLE,
2349 	};
2350 
2351 	if (likely(!p->migration_disabled))
2352 		return;
2353 
2354 	if (p->cpus_ptr != &p->cpus_mask)
2355 		return;
2356 
2357 	/*
2358 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2359 	 */
2360 	__do_set_cpus_allowed(p, &ac);
2361 }
2362 
2363 void migrate_disable(void)
2364 {
2365 	struct task_struct *p = current;
2366 
2367 	if (p->migration_disabled) {
2368 #ifdef CONFIG_DEBUG_PREEMPT
2369 		/*
2370 		 *Warn about overflow half-way through the range.
2371 		 */
2372 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2373 #endif
2374 		p->migration_disabled++;
2375 		return;
2376 	}
2377 
2378 	guard(preempt)();
2379 	this_rq()->nr_pinned++;
2380 	p->migration_disabled = 1;
2381 }
2382 EXPORT_SYMBOL_GPL(migrate_disable);
2383 
2384 void migrate_enable(void)
2385 {
2386 	struct task_struct *p = current;
2387 	struct affinity_context ac = {
2388 		.new_mask  = &p->cpus_mask,
2389 		.flags     = SCA_MIGRATE_ENABLE,
2390 	};
2391 
2392 #ifdef CONFIG_DEBUG_PREEMPT
2393 	/*
2394 	 * Check both overflow from migrate_disable() and superfluous
2395 	 * migrate_enable().
2396 	 */
2397 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2398 		return;
2399 #endif
2400 
2401 	if (p->migration_disabled > 1) {
2402 		p->migration_disabled--;
2403 		return;
2404 	}
2405 
2406 	/*
2407 	 * Ensure stop_task runs either before or after this, and that
2408 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2409 	 */
2410 	guard(preempt)();
2411 	if (p->cpus_ptr != &p->cpus_mask)
2412 		__set_cpus_allowed_ptr(p, &ac);
2413 	/*
2414 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2415 	 * regular cpus_mask, otherwise things that race (eg.
2416 	 * select_fallback_rq) get confused.
2417 	 */
2418 	barrier();
2419 	p->migration_disabled = 0;
2420 	this_rq()->nr_pinned--;
2421 }
2422 EXPORT_SYMBOL_GPL(migrate_enable);
2423 
2424 static inline bool rq_has_pinned_tasks(struct rq *rq)
2425 {
2426 	return rq->nr_pinned;
2427 }
2428 
2429 /*
2430  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2431  * __set_cpus_allowed_ptr() and select_fallback_rq().
2432  */
2433 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2434 {
2435 	/* When not in the task's cpumask, no point in looking further. */
2436 	if (!task_allowed_on_cpu(p, cpu))
2437 		return false;
2438 
2439 	/* migrate_disabled() must be allowed to finish. */
2440 	if (is_migration_disabled(p))
2441 		return cpu_online(cpu);
2442 
2443 	/* Non kernel threads are not allowed during either online or offline. */
2444 	if (!(p->flags & PF_KTHREAD))
2445 		return cpu_active(cpu);
2446 
2447 	/* KTHREAD_IS_PER_CPU is always allowed. */
2448 	if (kthread_is_per_cpu(p))
2449 		return cpu_online(cpu);
2450 
2451 	/* Regular kernel threads don't get to stay during offline. */
2452 	if (cpu_dying(cpu))
2453 		return false;
2454 
2455 	/* But are allowed during online. */
2456 	return cpu_online(cpu);
2457 }
2458 
2459 /*
2460  * This is how migration works:
2461  *
2462  * 1) we invoke migration_cpu_stop() on the target CPU using
2463  *    stop_one_cpu().
2464  * 2) stopper starts to run (implicitly forcing the migrated thread
2465  *    off the CPU)
2466  * 3) it checks whether the migrated task is still in the wrong runqueue.
2467  * 4) if it's in the wrong runqueue then the migration thread removes
2468  *    it and puts it into the right queue.
2469  * 5) stopper completes and stop_one_cpu() returns and the migration
2470  *    is done.
2471  */
2472 
2473 /*
2474  * move_queued_task - move a queued task to new rq.
2475  *
2476  * Returns (locked) new rq. Old rq's lock is released.
2477  */
2478 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2479 				   struct task_struct *p, int new_cpu)
2480 {
2481 	lockdep_assert_rq_held(rq);
2482 
2483 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2484 	set_task_cpu(p, new_cpu);
2485 	rq_unlock(rq, rf);
2486 
2487 	rq = cpu_rq(new_cpu);
2488 
2489 	rq_lock(rq, rf);
2490 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2491 	activate_task(rq, p, 0);
2492 	wakeup_preempt(rq, p, 0);
2493 
2494 	return rq;
2495 }
2496 
2497 struct migration_arg {
2498 	struct task_struct		*task;
2499 	int				dest_cpu;
2500 	struct set_affinity_pending	*pending;
2501 };
2502 
2503 /*
2504  * @refs: number of wait_for_completion()
2505  * @stop_pending: is @stop_work in use
2506  */
2507 struct set_affinity_pending {
2508 	refcount_t		refs;
2509 	unsigned int		stop_pending;
2510 	struct completion	done;
2511 	struct cpu_stop_work	stop_work;
2512 	struct migration_arg	arg;
2513 };
2514 
2515 /*
2516  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2517  * this because either it can't run here any more (set_cpus_allowed()
2518  * away from this CPU, or CPU going down), or because we're
2519  * attempting to rebalance this task on exec (sched_exec).
2520  *
2521  * So we race with normal scheduler movements, but that's OK, as long
2522  * as the task is no longer on this CPU.
2523  */
2524 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2525 				 struct task_struct *p, int dest_cpu)
2526 {
2527 	/* Affinity changed (again). */
2528 	if (!is_cpu_allowed(p, dest_cpu))
2529 		return rq;
2530 
2531 	rq = move_queued_task(rq, rf, p, dest_cpu);
2532 
2533 	return rq;
2534 }
2535 
2536 /*
2537  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2538  * and performs thread migration by bumping thread off CPU then
2539  * 'pushing' onto another runqueue.
2540  */
2541 static int migration_cpu_stop(void *data)
2542 {
2543 	struct migration_arg *arg = data;
2544 	struct set_affinity_pending *pending = arg->pending;
2545 	struct task_struct *p = arg->task;
2546 	struct rq *rq = this_rq();
2547 	bool complete = false;
2548 	struct rq_flags rf;
2549 
2550 	/*
2551 	 * The original target CPU might have gone down and we might
2552 	 * be on another CPU but it doesn't matter.
2553 	 */
2554 	local_irq_save(rf.flags);
2555 	/*
2556 	 * We need to explicitly wake pending tasks before running
2557 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2558 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2559 	 */
2560 	flush_smp_call_function_queue();
2561 
2562 	raw_spin_lock(&p->pi_lock);
2563 	rq_lock(rq, &rf);
2564 
2565 	/*
2566 	 * If we were passed a pending, then ->stop_pending was set, thus
2567 	 * p->migration_pending must have remained stable.
2568 	 */
2569 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2570 
2571 	/*
2572 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2573 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2574 	 * we're holding p->pi_lock.
2575 	 */
2576 	if (task_rq(p) == rq) {
2577 		if (is_migration_disabled(p))
2578 			goto out;
2579 
2580 		if (pending) {
2581 			p->migration_pending = NULL;
2582 			complete = true;
2583 
2584 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2585 				goto out;
2586 		}
2587 
2588 		if (task_on_rq_queued(p)) {
2589 			update_rq_clock(rq);
2590 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2591 		} else {
2592 			p->wake_cpu = arg->dest_cpu;
2593 		}
2594 
2595 		/*
2596 		 * XXX __migrate_task() can fail, at which point we might end
2597 		 * up running on a dodgy CPU, AFAICT this can only happen
2598 		 * during CPU hotplug, at which point we'll get pushed out
2599 		 * anyway, so it's probably not a big deal.
2600 		 */
2601 
2602 	} else if (pending) {
2603 		/*
2604 		 * This happens when we get migrated between migrate_enable()'s
2605 		 * preempt_enable() and scheduling the stopper task. At that
2606 		 * point we're a regular task again and not current anymore.
2607 		 *
2608 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2609 		 * more likely.
2610 		 */
2611 
2612 		/*
2613 		 * The task moved before the stopper got to run. We're holding
2614 		 * ->pi_lock, so the allowed mask is stable - if it got
2615 		 * somewhere allowed, we're done.
2616 		 */
2617 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2618 			p->migration_pending = NULL;
2619 			complete = true;
2620 			goto out;
2621 		}
2622 
2623 		/*
2624 		 * When migrate_enable() hits a rq mis-match we can't reliably
2625 		 * determine is_migration_disabled() and so have to chase after
2626 		 * it.
2627 		 */
2628 		WARN_ON_ONCE(!pending->stop_pending);
2629 		preempt_disable();
2630 		task_rq_unlock(rq, p, &rf);
2631 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2632 				    &pending->arg, &pending->stop_work);
2633 		preempt_enable();
2634 		return 0;
2635 	}
2636 out:
2637 	if (pending)
2638 		pending->stop_pending = false;
2639 	task_rq_unlock(rq, p, &rf);
2640 
2641 	if (complete)
2642 		complete_all(&pending->done);
2643 
2644 	return 0;
2645 }
2646 
2647 int push_cpu_stop(void *arg)
2648 {
2649 	struct rq *lowest_rq = NULL, *rq = this_rq();
2650 	struct task_struct *p = arg;
2651 
2652 	raw_spin_lock_irq(&p->pi_lock);
2653 	raw_spin_rq_lock(rq);
2654 
2655 	if (task_rq(p) != rq)
2656 		goto out_unlock;
2657 
2658 	if (is_migration_disabled(p)) {
2659 		p->migration_flags |= MDF_PUSH;
2660 		goto out_unlock;
2661 	}
2662 
2663 	p->migration_flags &= ~MDF_PUSH;
2664 
2665 	if (p->sched_class->find_lock_rq)
2666 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2667 
2668 	if (!lowest_rq)
2669 		goto out_unlock;
2670 
2671 	// XXX validate p is still the highest prio task
2672 	if (task_rq(p) == rq) {
2673 		move_queued_task_locked(rq, lowest_rq, p);
2674 		resched_curr(lowest_rq);
2675 	}
2676 
2677 	double_unlock_balance(rq, lowest_rq);
2678 
2679 out_unlock:
2680 	rq->push_busy = false;
2681 	raw_spin_rq_unlock(rq);
2682 	raw_spin_unlock_irq(&p->pi_lock);
2683 
2684 	put_task_struct(p);
2685 	return 0;
2686 }
2687 
2688 /*
2689  * sched_class::set_cpus_allowed must do the below, but is not required to
2690  * actually call this function.
2691  */
2692 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2693 {
2694 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2695 		p->cpus_ptr = ctx->new_mask;
2696 		return;
2697 	}
2698 
2699 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2700 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2701 
2702 	/*
2703 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2704 	 */
2705 	if (ctx->flags & SCA_USER)
2706 		swap(p->user_cpus_ptr, ctx->user_mask);
2707 }
2708 
2709 static void
2710 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2711 {
2712 	struct rq *rq = task_rq(p);
2713 	bool queued, running;
2714 
2715 	/*
2716 	 * This here violates the locking rules for affinity, since we're only
2717 	 * supposed to change these variables while holding both rq->lock and
2718 	 * p->pi_lock.
2719 	 *
2720 	 * HOWEVER, it magically works, because ttwu() is the only code that
2721 	 * accesses these variables under p->pi_lock and only does so after
2722 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2723 	 * before finish_task().
2724 	 *
2725 	 * XXX do further audits, this smells like something putrid.
2726 	 */
2727 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2728 		SCHED_WARN_ON(!p->on_cpu);
2729 	else
2730 		lockdep_assert_held(&p->pi_lock);
2731 
2732 	queued = task_on_rq_queued(p);
2733 	running = task_current_donor(rq, p);
2734 
2735 	if (queued) {
2736 		/*
2737 		 * Because __kthread_bind() calls this on blocked tasks without
2738 		 * holding rq->lock.
2739 		 */
2740 		lockdep_assert_rq_held(rq);
2741 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2742 	}
2743 	if (running)
2744 		put_prev_task(rq, p);
2745 
2746 	p->sched_class->set_cpus_allowed(p, ctx);
2747 	mm_set_cpus_allowed(p->mm, ctx->new_mask);
2748 
2749 	if (queued)
2750 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2751 	if (running)
2752 		set_next_task(rq, p);
2753 }
2754 
2755 /*
2756  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2757  * affinity (if any) should be destroyed too.
2758  */
2759 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2760 {
2761 	struct affinity_context ac = {
2762 		.new_mask  = new_mask,
2763 		.user_mask = NULL,
2764 		.flags     = SCA_USER,	/* clear the user requested mask */
2765 	};
2766 	union cpumask_rcuhead {
2767 		cpumask_t cpumask;
2768 		struct rcu_head rcu;
2769 	};
2770 
2771 	__do_set_cpus_allowed(p, &ac);
2772 
2773 	/*
2774 	 * Because this is called with p->pi_lock held, it is not possible
2775 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2776 	 * kfree_rcu().
2777 	 */
2778 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2779 }
2780 
2781 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2782 		      int node)
2783 {
2784 	cpumask_t *user_mask;
2785 	unsigned long flags;
2786 
2787 	/*
2788 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2789 	 * may differ by now due to racing.
2790 	 */
2791 	dst->user_cpus_ptr = NULL;
2792 
2793 	/*
2794 	 * This check is racy and losing the race is a valid situation.
2795 	 * It is not worth the extra overhead of taking the pi_lock on
2796 	 * every fork/clone.
2797 	 */
2798 	if (data_race(!src->user_cpus_ptr))
2799 		return 0;
2800 
2801 	user_mask = alloc_user_cpus_ptr(node);
2802 	if (!user_mask)
2803 		return -ENOMEM;
2804 
2805 	/*
2806 	 * Use pi_lock to protect content of user_cpus_ptr
2807 	 *
2808 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2809 	 * do_set_cpus_allowed().
2810 	 */
2811 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2812 	if (src->user_cpus_ptr) {
2813 		swap(dst->user_cpus_ptr, user_mask);
2814 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2815 	}
2816 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2817 
2818 	if (unlikely(user_mask))
2819 		kfree(user_mask);
2820 
2821 	return 0;
2822 }
2823 
2824 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2825 {
2826 	struct cpumask *user_mask = NULL;
2827 
2828 	swap(p->user_cpus_ptr, user_mask);
2829 
2830 	return user_mask;
2831 }
2832 
2833 void release_user_cpus_ptr(struct task_struct *p)
2834 {
2835 	kfree(clear_user_cpus_ptr(p));
2836 }
2837 
2838 /*
2839  * This function is wildly self concurrent; here be dragons.
2840  *
2841  *
2842  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2843  * designated task is enqueued on an allowed CPU. If that task is currently
2844  * running, we have to kick it out using the CPU stopper.
2845  *
2846  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2847  * Consider:
2848  *
2849  *     Initial conditions: P0->cpus_mask = [0, 1]
2850  *
2851  *     P0@CPU0                  P1
2852  *
2853  *     migrate_disable();
2854  *     <preempted>
2855  *                              set_cpus_allowed_ptr(P0, [1]);
2856  *
2857  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2858  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2859  * This means we need the following scheme:
2860  *
2861  *     P0@CPU0                  P1
2862  *
2863  *     migrate_disable();
2864  *     <preempted>
2865  *                              set_cpus_allowed_ptr(P0, [1]);
2866  *                                <blocks>
2867  *     <resumes>
2868  *     migrate_enable();
2869  *       __set_cpus_allowed_ptr();
2870  *       <wakes local stopper>
2871  *                         `--> <woken on migration completion>
2872  *
2873  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2874  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2875  * task p are serialized by p->pi_lock, which we can leverage: the one that
2876  * should come into effect at the end of the Migrate-Disable region is the last
2877  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2878  * but we still need to properly signal those waiting tasks at the appropriate
2879  * moment.
2880  *
2881  * This is implemented using struct set_affinity_pending. The first
2882  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2883  * setup an instance of that struct and install it on the targeted task_struct.
2884  * Any and all further callers will reuse that instance. Those then wait for
2885  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2886  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2887  *
2888  *
2889  * (1) In the cases covered above. There is one more where the completion is
2890  * signaled within affine_move_task() itself: when a subsequent affinity request
2891  * occurs after the stopper bailed out due to the targeted task still being
2892  * Migrate-Disable. Consider:
2893  *
2894  *     Initial conditions: P0->cpus_mask = [0, 1]
2895  *
2896  *     CPU0		  P1				P2
2897  *     <P0>
2898  *       migrate_disable();
2899  *       <preempted>
2900  *                        set_cpus_allowed_ptr(P0, [1]);
2901  *                          <blocks>
2902  *     <migration/0>
2903  *       migration_cpu_stop()
2904  *         is_migration_disabled()
2905  *           <bails>
2906  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2907  *                                                         <signal completion>
2908  *                          <awakes>
2909  *
2910  * Note that the above is safe vs a concurrent migrate_enable(), as any
2911  * pending affinity completion is preceded by an uninstallation of
2912  * p->migration_pending done with p->pi_lock held.
2913  */
2914 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2915 			    int dest_cpu, unsigned int flags)
2916 	__releases(rq->lock)
2917 	__releases(p->pi_lock)
2918 {
2919 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2920 	bool stop_pending, complete = false;
2921 
2922 	/* Can the task run on the task's current CPU? If so, we're done */
2923 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2924 		struct task_struct *push_task = NULL;
2925 
2926 		if ((flags & SCA_MIGRATE_ENABLE) &&
2927 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2928 			rq->push_busy = true;
2929 			push_task = get_task_struct(p);
2930 		}
2931 
2932 		/*
2933 		 * If there are pending waiters, but no pending stop_work,
2934 		 * then complete now.
2935 		 */
2936 		pending = p->migration_pending;
2937 		if (pending && !pending->stop_pending) {
2938 			p->migration_pending = NULL;
2939 			complete = true;
2940 		}
2941 
2942 		preempt_disable();
2943 		task_rq_unlock(rq, p, rf);
2944 		if (push_task) {
2945 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2946 					    p, &rq->push_work);
2947 		}
2948 		preempt_enable();
2949 
2950 		if (complete)
2951 			complete_all(&pending->done);
2952 
2953 		return 0;
2954 	}
2955 
2956 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2957 		/* serialized by p->pi_lock */
2958 		if (!p->migration_pending) {
2959 			/* Install the request */
2960 			refcount_set(&my_pending.refs, 1);
2961 			init_completion(&my_pending.done);
2962 			my_pending.arg = (struct migration_arg) {
2963 				.task = p,
2964 				.dest_cpu = dest_cpu,
2965 				.pending = &my_pending,
2966 			};
2967 
2968 			p->migration_pending = &my_pending;
2969 		} else {
2970 			pending = p->migration_pending;
2971 			refcount_inc(&pending->refs);
2972 			/*
2973 			 * Affinity has changed, but we've already installed a
2974 			 * pending. migration_cpu_stop() *must* see this, else
2975 			 * we risk a completion of the pending despite having a
2976 			 * task on a disallowed CPU.
2977 			 *
2978 			 * Serialized by p->pi_lock, so this is safe.
2979 			 */
2980 			pending->arg.dest_cpu = dest_cpu;
2981 		}
2982 	}
2983 	pending = p->migration_pending;
2984 	/*
2985 	 * - !MIGRATE_ENABLE:
2986 	 *   we'll have installed a pending if there wasn't one already.
2987 	 *
2988 	 * - MIGRATE_ENABLE:
2989 	 *   we're here because the current CPU isn't matching anymore,
2990 	 *   the only way that can happen is because of a concurrent
2991 	 *   set_cpus_allowed_ptr() call, which should then still be
2992 	 *   pending completion.
2993 	 *
2994 	 * Either way, we really should have a @pending here.
2995 	 */
2996 	if (WARN_ON_ONCE(!pending)) {
2997 		task_rq_unlock(rq, p, rf);
2998 		return -EINVAL;
2999 	}
3000 
3001 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3002 		/*
3003 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3004 		 * anything else we cannot do is_migration_disabled(), punt
3005 		 * and have the stopper function handle it all race-free.
3006 		 */
3007 		stop_pending = pending->stop_pending;
3008 		if (!stop_pending)
3009 			pending->stop_pending = true;
3010 
3011 		if (flags & SCA_MIGRATE_ENABLE)
3012 			p->migration_flags &= ~MDF_PUSH;
3013 
3014 		preempt_disable();
3015 		task_rq_unlock(rq, p, rf);
3016 		if (!stop_pending) {
3017 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3018 					    &pending->arg, &pending->stop_work);
3019 		}
3020 		preempt_enable();
3021 
3022 		if (flags & SCA_MIGRATE_ENABLE)
3023 			return 0;
3024 	} else {
3025 
3026 		if (!is_migration_disabled(p)) {
3027 			if (task_on_rq_queued(p))
3028 				rq = move_queued_task(rq, rf, p, dest_cpu);
3029 
3030 			if (!pending->stop_pending) {
3031 				p->migration_pending = NULL;
3032 				complete = true;
3033 			}
3034 		}
3035 		task_rq_unlock(rq, p, rf);
3036 
3037 		if (complete)
3038 			complete_all(&pending->done);
3039 	}
3040 
3041 	wait_for_completion(&pending->done);
3042 
3043 	if (refcount_dec_and_test(&pending->refs))
3044 		wake_up_var(&pending->refs); /* No UaF, just an address */
3045 
3046 	/*
3047 	 * Block the original owner of &pending until all subsequent callers
3048 	 * have seen the completion and decremented the refcount
3049 	 */
3050 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3051 
3052 	/* ARGH */
3053 	WARN_ON_ONCE(my_pending.stop_pending);
3054 
3055 	return 0;
3056 }
3057 
3058 /*
3059  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3060  */
3061 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3062 					 struct affinity_context *ctx,
3063 					 struct rq *rq,
3064 					 struct rq_flags *rf)
3065 	__releases(rq->lock)
3066 	__releases(p->pi_lock)
3067 {
3068 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3069 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3070 	bool kthread = p->flags & PF_KTHREAD;
3071 	unsigned int dest_cpu;
3072 	int ret = 0;
3073 
3074 	update_rq_clock(rq);
3075 
3076 	if (kthread || is_migration_disabled(p)) {
3077 		/*
3078 		 * Kernel threads are allowed on online && !active CPUs,
3079 		 * however, during cpu-hot-unplug, even these might get pushed
3080 		 * away if not KTHREAD_IS_PER_CPU.
3081 		 *
3082 		 * Specifically, migration_disabled() tasks must not fail the
3083 		 * cpumask_any_and_distribute() pick below, esp. so on
3084 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3085 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3086 		 */
3087 		cpu_valid_mask = cpu_online_mask;
3088 	}
3089 
3090 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3091 		ret = -EINVAL;
3092 		goto out;
3093 	}
3094 
3095 	/*
3096 	 * Must re-check here, to close a race against __kthread_bind(),
3097 	 * sched_setaffinity() is not guaranteed to observe the flag.
3098 	 */
3099 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3100 		ret = -EINVAL;
3101 		goto out;
3102 	}
3103 
3104 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3105 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3106 			if (ctx->flags & SCA_USER)
3107 				swap(p->user_cpus_ptr, ctx->user_mask);
3108 			goto out;
3109 		}
3110 
3111 		if (WARN_ON_ONCE(p == current &&
3112 				 is_migration_disabled(p) &&
3113 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3114 			ret = -EBUSY;
3115 			goto out;
3116 		}
3117 	}
3118 
3119 	/*
3120 	 * Picking a ~random cpu helps in cases where we are changing affinity
3121 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3122 	 * immediately required to distribute the tasks within their new mask.
3123 	 */
3124 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3125 	if (dest_cpu >= nr_cpu_ids) {
3126 		ret = -EINVAL;
3127 		goto out;
3128 	}
3129 
3130 	__do_set_cpus_allowed(p, ctx);
3131 
3132 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3133 
3134 out:
3135 	task_rq_unlock(rq, p, rf);
3136 
3137 	return ret;
3138 }
3139 
3140 /*
3141  * Change a given task's CPU affinity. Migrate the thread to a
3142  * proper CPU and schedule it away if the CPU it's executing on
3143  * is removed from the allowed bitmask.
3144  *
3145  * NOTE: the caller must have a valid reference to the task, the
3146  * task must not exit() & deallocate itself prematurely. The
3147  * call is not atomic; no spinlocks may be held.
3148  */
3149 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3150 {
3151 	struct rq_flags rf;
3152 	struct rq *rq;
3153 
3154 	rq = task_rq_lock(p, &rf);
3155 	/*
3156 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3157 	 * flags are set.
3158 	 */
3159 	if (p->user_cpus_ptr &&
3160 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3161 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3162 		ctx->new_mask = rq->scratch_mask;
3163 
3164 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3165 }
3166 
3167 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3168 {
3169 	struct affinity_context ac = {
3170 		.new_mask  = new_mask,
3171 		.flags     = 0,
3172 	};
3173 
3174 	return __set_cpus_allowed_ptr(p, &ac);
3175 }
3176 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3177 
3178 /*
3179  * Change a given task's CPU affinity to the intersection of its current
3180  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3181  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3182  * affinity or use cpu_online_mask instead.
3183  *
3184  * If the resulting mask is empty, leave the affinity unchanged and return
3185  * -EINVAL.
3186  */
3187 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3188 				     struct cpumask *new_mask,
3189 				     const struct cpumask *subset_mask)
3190 {
3191 	struct affinity_context ac = {
3192 		.new_mask  = new_mask,
3193 		.flags     = 0,
3194 	};
3195 	struct rq_flags rf;
3196 	struct rq *rq;
3197 	int err;
3198 
3199 	rq = task_rq_lock(p, &rf);
3200 
3201 	/*
3202 	 * Forcefully restricting the affinity of a deadline task is
3203 	 * likely to cause problems, so fail and noisily override the
3204 	 * mask entirely.
3205 	 */
3206 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3207 		err = -EPERM;
3208 		goto err_unlock;
3209 	}
3210 
3211 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3212 		err = -EINVAL;
3213 		goto err_unlock;
3214 	}
3215 
3216 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3217 
3218 err_unlock:
3219 	task_rq_unlock(rq, p, &rf);
3220 	return err;
3221 }
3222 
3223 /*
3224  * Restrict the CPU affinity of task @p so that it is a subset of
3225  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3226  * old affinity mask. If the resulting mask is empty, we warn and walk
3227  * up the cpuset hierarchy until we find a suitable mask.
3228  */
3229 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3230 {
3231 	cpumask_var_t new_mask;
3232 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3233 
3234 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3235 
3236 	/*
3237 	 * __migrate_task() can fail silently in the face of concurrent
3238 	 * offlining of the chosen destination CPU, so take the hotplug
3239 	 * lock to ensure that the migration succeeds.
3240 	 */
3241 	cpus_read_lock();
3242 	if (!cpumask_available(new_mask))
3243 		goto out_set_mask;
3244 
3245 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3246 		goto out_free_mask;
3247 
3248 	/*
3249 	 * We failed to find a valid subset of the affinity mask for the
3250 	 * task, so override it based on its cpuset hierarchy.
3251 	 */
3252 	cpuset_cpus_allowed(p, new_mask);
3253 	override_mask = new_mask;
3254 
3255 out_set_mask:
3256 	if (printk_ratelimit()) {
3257 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3258 				task_pid_nr(p), p->comm,
3259 				cpumask_pr_args(override_mask));
3260 	}
3261 
3262 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3263 out_free_mask:
3264 	cpus_read_unlock();
3265 	free_cpumask_var(new_mask);
3266 }
3267 
3268 /*
3269  * Restore the affinity of a task @p which was previously restricted by a
3270  * call to force_compatible_cpus_allowed_ptr().
3271  *
3272  * It is the caller's responsibility to serialise this with any calls to
3273  * force_compatible_cpus_allowed_ptr(@p).
3274  */
3275 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3276 {
3277 	struct affinity_context ac = {
3278 		.new_mask  = task_user_cpus(p),
3279 		.flags     = 0,
3280 	};
3281 	int ret;
3282 
3283 	/*
3284 	 * Try to restore the old affinity mask with __sched_setaffinity().
3285 	 * Cpuset masking will be done there too.
3286 	 */
3287 	ret = __sched_setaffinity(p, &ac);
3288 	WARN_ON_ONCE(ret);
3289 }
3290 
3291 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3292 {
3293 #ifdef CONFIG_SCHED_DEBUG
3294 	unsigned int state = READ_ONCE(p->__state);
3295 
3296 	/*
3297 	 * We should never call set_task_cpu() on a blocked task,
3298 	 * ttwu() will sort out the placement.
3299 	 */
3300 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3301 
3302 	/*
3303 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3304 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3305 	 * time relying on p->on_rq.
3306 	 */
3307 	WARN_ON_ONCE(state == TASK_RUNNING &&
3308 		     p->sched_class == &fair_sched_class &&
3309 		     (p->on_rq && !task_on_rq_migrating(p)));
3310 
3311 #ifdef CONFIG_LOCKDEP
3312 	/*
3313 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3314 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3315 	 *
3316 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3317 	 * see task_group().
3318 	 *
3319 	 * Furthermore, all task_rq users should acquire both locks, see
3320 	 * task_rq_lock().
3321 	 */
3322 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3323 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3324 #endif
3325 	/*
3326 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3327 	 */
3328 	WARN_ON_ONCE(!cpu_online(new_cpu));
3329 
3330 	WARN_ON_ONCE(is_migration_disabled(p));
3331 #endif
3332 
3333 	trace_sched_migrate_task(p, new_cpu);
3334 
3335 	if (task_cpu(p) != new_cpu) {
3336 		if (p->sched_class->migrate_task_rq)
3337 			p->sched_class->migrate_task_rq(p, new_cpu);
3338 		p->se.nr_migrations++;
3339 		rseq_migrate(p);
3340 		sched_mm_cid_migrate_from(p);
3341 		perf_event_task_migrate(p);
3342 	}
3343 
3344 	__set_task_cpu(p, new_cpu);
3345 }
3346 
3347 #ifdef CONFIG_NUMA_BALANCING
3348 static void __migrate_swap_task(struct task_struct *p, int cpu)
3349 {
3350 	if (task_on_rq_queued(p)) {
3351 		struct rq *src_rq, *dst_rq;
3352 		struct rq_flags srf, drf;
3353 
3354 		src_rq = task_rq(p);
3355 		dst_rq = cpu_rq(cpu);
3356 
3357 		rq_pin_lock(src_rq, &srf);
3358 		rq_pin_lock(dst_rq, &drf);
3359 
3360 		move_queued_task_locked(src_rq, dst_rq, p);
3361 		wakeup_preempt(dst_rq, p, 0);
3362 
3363 		rq_unpin_lock(dst_rq, &drf);
3364 		rq_unpin_lock(src_rq, &srf);
3365 
3366 	} else {
3367 		/*
3368 		 * Task isn't running anymore; make it appear like we migrated
3369 		 * it before it went to sleep. This means on wakeup we make the
3370 		 * previous CPU our target instead of where it really is.
3371 		 */
3372 		p->wake_cpu = cpu;
3373 	}
3374 }
3375 
3376 struct migration_swap_arg {
3377 	struct task_struct *src_task, *dst_task;
3378 	int src_cpu, dst_cpu;
3379 };
3380 
3381 static int migrate_swap_stop(void *data)
3382 {
3383 	struct migration_swap_arg *arg = data;
3384 	struct rq *src_rq, *dst_rq;
3385 
3386 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3387 		return -EAGAIN;
3388 
3389 	src_rq = cpu_rq(arg->src_cpu);
3390 	dst_rq = cpu_rq(arg->dst_cpu);
3391 
3392 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3393 	guard(double_rq_lock)(src_rq, dst_rq);
3394 
3395 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3396 		return -EAGAIN;
3397 
3398 	if (task_cpu(arg->src_task) != arg->src_cpu)
3399 		return -EAGAIN;
3400 
3401 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3402 		return -EAGAIN;
3403 
3404 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3405 		return -EAGAIN;
3406 
3407 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3408 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3409 
3410 	return 0;
3411 }
3412 
3413 /*
3414  * Cross migrate two tasks
3415  */
3416 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3417 		int target_cpu, int curr_cpu)
3418 {
3419 	struct migration_swap_arg arg;
3420 	int ret = -EINVAL;
3421 
3422 	arg = (struct migration_swap_arg){
3423 		.src_task = cur,
3424 		.src_cpu = curr_cpu,
3425 		.dst_task = p,
3426 		.dst_cpu = target_cpu,
3427 	};
3428 
3429 	if (arg.src_cpu == arg.dst_cpu)
3430 		goto out;
3431 
3432 	/*
3433 	 * These three tests are all lockless; this is OK since all of them
3434 	 * will be re-checked with proper locks held further down the line.
3435 	 */
3436 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3437 		goto out;
3438 
3439 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3440 		goto out;
3441 
3442 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3443 		goto out;
3444 
3445 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3446 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3447 
3448 out:
3449 	return ret;
3450 }
3451 #endif /* CONFIG_NUMA_BALANCING */
3452 
3453 /***
3454  * kick_process - kick a running thread to enter/exit the kernel
3455  * @p: the to-be-kicked thread
3456  *
3457  * Cause a process which is running on another CPU to enter
3458  * kernel-mode, without any delay. (to get signals handled.)
3459  *
3460  * NOTE: this function doesn't have to take the runqueue lock,
3461  * because all it wants to ensure is that the remote task enters
3462  * the kernel. If the IPI races and the task has been migrated
3463  * to another CPU then no harm is done and the purpose has been
3464  * achieved as well.
3465  */
3466 void kick_process(struct task_struct *p)
3467 {
3468 	guard(preempt)();
3469 	int cpu = task_cpu(p);
3470 
3471 	if ((cpu != smp_processor_id()) && task_curr(p))
3472 		smp_send_reschedule(cpu);
3473 }
3474 EXPORT_SYMBOL_GPL(kick_process);
3475 
3476 /*
3477  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3478  *
3479  * A few notes on cpu_active vs cpu_online:
3480  *
3481  *  - cpu_active must be a subset of cpu_online
3482  *
3483  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3484  *    see __set_cpus_allowed_ptr(). At this point the newly online
3485  *    CPU isn't yet part of the sched domains, and balancing will not
3486  *    see it.
3487  *
3488  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3489  *    avoid the load balancer to place new tasks on the to be removed
3490  *    CPU. Existing tasks will remain running there and will be taken
3491  *    off.
3492  *
3493  * This means that fallback selection must not select !active CPUs.
3494  * And can assume that any active CPU must be online. Conversely
3495  * select_task_rq() below may allow selection of !active CPUs in order
3496  * to satisfy the above rules.
3497  */
3498 static int select_fallback_rq(int cpu, struct task_struct *p)
3499 {
3500 	int nid = cpu_to_node(cpu);
3501 	const struct cpumask *nodemask = NULL;
3502 	enum { cpuset, possible, fail } state = cpuset;
3503 	int dest_cpu;
3504 
3505 	/*
3506 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3507 	 * will return -1. There is no CPU on the node, and we should
3508 	 * select the CPU on the other node.
3509 	 */
3510 	if (nid != -1) {
3511 		nodemask = cpumask_of_node(nid);
3512 
3513 		/* Look for allowed, online CPU in same node. */
3514 		for_each_cpu(dest_cpu, nodemask) {
3515 			if (is_cpu_allowed(p, dest_cpu))
3516 				return dest_cpu;
3517 		}
3518 	}
3519 
3520 	for (;;) {
3521 		/* Any allowed, online CPU? */
3522 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3523 			if (!is_cpu_allowed(p, dest_cpu))
3524 				continue;
3525 
3526 			goto out;
3527 		}
3528 
3529 		/* No more Mr. Nice Guy. */
3530 		switch (state) {
3531 		case cpuset:
3532 			if (cpuset_cpus_allowed_fallback(p)) {
3533 				state = possible;
3534 				break;
3535 			}
3536 			fallthrough;
3537 		case possible:
3538 			/*
3539 			 * XXX When called from select_task_rq() we only
3540 			 * hold p->pi_lock and again violate locking order.
3541 			 *
3542 			 * More yuck to audit.
3543 			 */
3544 			do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
3545 			state = fail;
3546 			break;
3547 		case fail:
3548 			BUG();
3549 			break;
3550 		}
3551 	}
3552 
3553 out:
3554 	if (state != cpuset) {
3555 		/*
3556 		 * Don't tell them about moving exiting tasks or
3557 		 * kernel threads (both mm NULL), since they never
3558 		 * leave kernel.
3559 		 */
3560 		if (p->mm && printk_ratelimit()) {
3561 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3562 					task_pid_nr(p), p->comm, cpu);
3563 		}
3564 	}
3565 
3566 	return dest_cpu;
3567 }
3568 
3569 /*
3570  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3571  */
3572 static inline
3573 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3574 {
3575 	lockdep_assert_held(&p->pi_lock);
3576 
3577 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3578 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3579 		*wake_flags |= WF_RQ_SELECTED;
3580 	} else {
3581 		cpu = cpumask_any(p->cpus_ptr);
3582 	}
3583 
3584 	/*
3585 	 * In order not to call set_task_cpu() on a blocking task we need
3586 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3587 	 * CPU.
3588 	 *
3589 	 * Since this is common to all placement strategies, this lives here.
3590 	 *
3591 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3592 	 *   not worry about this generic constraint ]
3593 	 */
3594 	if (unlikely(!is_cpu_allowed(p, cpu)))
3595 		cpu = select_fallback_rq(task_cpu(p), p);
3596 
3597 	return cpu;
3598 }
3599 
3600 void sched_set_stop_task(int cpu, struct task_struct *stop)
3601 {
3602 	static struct lock_class_key stop_pi_lock;
3603 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3604 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3605 
3606 	if (stop) {
3607 		/*
3608 		 * Make it appear like a SCHED_FIFO task, its something
3609 		 * userspace knows about and won't get confused about.
3610 		 *
3611 		 * Also, it will make PI more or less work without too
3612 		 * much confusion -- but then, stop work should not
3613 		 * rely on PI working anyway.
3614 		 */
3615 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3616 
3617 		stop->sched_class = &stop_sched_class;
3618 
3619 		/*
3620 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3621 		 * adjust the effective priority of a task. As a result,
3622 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3623 		 * which can then trigger wakeups of the stop thread to push
3624 		 * around the current task.
3625 		 *
3626 		 * The stop task itself will never be part of the PI-chain, it
3627 		 * never blocks, therefore that ->pi_lock recursion is safe.
3628 		 * Tell lockdep about this by placing the stop->pi_lock in its
3629 		 * own class.
3630 		 */
3631 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3632 	}
3633 
3634 	cpu_rq(cpu)->stop = stop;
3635 
3636 	if (old_stop) {
3637 		/*
3638 		 * Reset it back to a normal scheduling class so that
3639 		 * it can die in pieces.
3640 		 */
3641 		old_stop->sched_class = &rt_sched_class;
3642 	}
3643 }
3644 
3645 #else /* CONFIG_SMP */
3646 
3647 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3648 
3649 static inline bool rq_has_pinned_tasks(struct rq *rq)
3650 {
3651 	return false;
3652 }
3653 
3654 #endif /* !CONFIG_SMP */
3655 
3656 static void
3657 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3658 {
3659 	struct rq *rq;
3660 
3661 	if (!schedstat_enabled())
3662 		return;
3663 
3664 	rq = this_rq();
3665 
3666 #ifdef CONFIG_SMP
3667 	if (cpu == rq->cpu) {
3668 		__schedstat_inc(rq->ttwu_local);
3669 		__schedstat_inc(p->stats.nr_wakeups_local);
3670 	} else {
3671 		struct sched_domain *sd;
3672 
3673 		__schedstat_inc(p->stats.nr_wakeups_remote);
3674 
3675 		guard(rcu)();
3676 		for_each_domain(rq->cpu, sd) {
3677 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3678 				__schedstat_inc(sd->ttwu_wake_remote);
3679 				break;
3680 			}
3681 		}
3682 	}
3683 
3684 	if (wake_flags & WF_MIGRATED)
3685 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3686 #endif /* CONFIG_SMP */
3687 
3688 	__schedstat_inc(rq->ttwu_count);
3689 	__schedstat_inc(p->stats.nr_wakeups);
3690 
3691 	if (wake_flags & WF_SYNC)
3692 		__schedstat_inc(p->stats.nr_wakeups_sync);
3693 }
3694 
3695 /*
3696  * Mark the task runnable.
3697  */
3698 static inline void ttwu_do_wakeup(struct task_struct *p)
3699 {
3700 	WRITE_ONCE(p->__state, TASK_RUNNING);
3701 	trace_sched_wakeup(p);
3702 }
3703 
3704 static void
3705 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3706 		 struct rq_flags *rf)
3707 {
3708 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3709 
3710 	lockdep_assert_rq_held(rq);
3711 
3712 	if (p->sched_contributes_to_load)
3713 		rq->nr_uninterruptible--;
3714 
3715 #ifdef CONFIG_SMP
3716 	if (wake_flags & WF_RQ_SELECTED)
3717 		en_flags |= ENQUEUE_RQ_SELECTED;
3718 	if (wake_flags & WF_MIGRATED)
3719 		en_flags |= ENQUEUE_MIGRATED;
3720 	else
3721 #endif
3722 	if (p->in_iowait) {
3723 		delayacct_blkio_end(p);
3724 		atomic_dec(&task_rq(p)->nr_iowait);
3725 	}
3726 
3727 	activate_task(rq, p, en_flags);
3728 	wakeup_preempt(rq, p, wake_flags);
3729 
3730 	ttwu_do_wakeup(p);
3731 
3732 #ifdef CONFIG_SMP
3733 	if (p->sched_class->task_woken) {
3734 		/*
3735 		 * Our task @p is fully woken up and running; so it's safe to
3736 		 * drop the rq->lock, hereafter rq is only used for statistics.
3737 		 */
3738 		rq_unpin_lock(rq, rf);
3739 		p->sched_class->task_woken(rq, p);
3740 		rq_repin_lock(rq, rf);
3741 	}
3742 
3743 	if (rq->idle_stamp) {
3744 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3745 		u64 max = 2*rq->max_idle_balance_cost;
3746 
3747 		update_avg(&rq->avg_idle, delta);
3748 
3749 		if (rq->avg_idle > max)
3750 			rq->avg_idle = max;
3751 
3752 		rq->idle_stamp = 0;
3753 	}
3754 #endif
3755 }
3756 
3757 /*
3758  * Consider @p being inside a wait loop:
3759  *
3760  *   for (;;) {
3761  *      set_current_state(TASK_UNINTERRUPTIBLE);
3762  *
3763  *      if (CONDITION)
3764  *         break;
3765  *
3766  *      schedule();
3767  *   }
3768  *   __set_current_state(TASK_RUNNING);
3769  *
3770  * between set_current_state() and schedule(). In this case @p is still
3771  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3772  * an atomic manner.
3773  *
3774  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3775  * then schedule() must still happen and p->state can be changed to
3776  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3777  * need to do a full wakeup with enqueue.
3778  *
3779  * Returns: %true when the wakeup is done,
3780  *          %false otherwise.
3781  */
3782 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3783 {
3784 	struct rq_flags rf;
3785 	struct rq *rq;
3786 	int ret = 0;
3787 
3788 	rq = __task_rq_lock(p, &rf);
3789 	if (task_on_rq_queued(p)) {
3790 		update_rq_clock(rq);
3791 		if (p->se.sched_delayed)
3792 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3793 		if (!task_on_cpu(rq, p)) {
3794 			/*
3795 			 * When on_rq && !on_cpu the task is preempted, see if
3796 			 * it should preempt the task that is current now.
3797 			 */
3798 			wakeup_preempt(rq, p, wake_flags);
3799 		}
3800 		ttwu_do_wakeup(p);
3801 		ret = 1;
3802 	}
3803 	__task_rq_unlock(rq, &rf);
3804 
3805 	return ret;
3806 }
3807 
3808 #ifdef CONFIG_SMP
3809 void sched_ttwu_pending(void *arg)
3810 {
3811 	struct llist_node *llist = arg;
3812 	struct rq *rq = this_rq();
3813 	struct task_struct *p, *t;
3814 	struct rq_flags rf;
3815 
3816 	if (!llist)
3817 		return;
3818 
3819 	rq_lock_irqsave(rq, &rf);
3820 	update_rq_clock(rq);
3821 
3822 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3823 		if (WARN_ON_ONCE(p->on_cpu))
3824 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3825 
3826 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3827 			set_task_cpu(p, cpu_of(rq));
3828 
3829 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3830 	}
3831 
3832 	/*
3833 	 * Must be after enqueueing at least once task such that
3834 	 * idle_cpu() does not observe a false-negative -- if it does,
3835 	 * it is possible for select_idle_siblings() to stack a number
3836 	 * of tasks on this CPU during that window.
3837 	 *
3838 	 * It is OK to clear ttwu_pending when another task pending.
3839 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3840 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3841 	 */
3842 	WRITE_ONCE(rq->ttwu_pending, 0);
3843 	rq_unlock_irqrestore(rq, &rf);
3844 }
3845 
3846 /*
3847  * Prepare the scene for sending an IPI for a remote smp_call
3848  *
3849  * Returns true if the caller can proceed with sending the IPI.
3850  * Returns false otherwise.
3851  */
3852 bool call_function_single_prep_ipi(int cpu)
3853 {
3854 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3855 		trace_sched_wake_idle_without_ipi(cpu);
3856 		return false;
3857 	}
3858 
3859 	return true;
3860 }
3861 
3862 /*
3863  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3864  * necessary. The wakee CPU on receipt of the IPI will queue the task
3865  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3866  * of the wakeup instead of the waker.
3867  */
3868 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3869 {
3870 	struct rq *rq = cpu_rq(cpu);
3871 
3872 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3873 
3874 	WRITE_ONCE(rq->ttwu_pending, 1);
3875 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3876 }
3877 
3878 void wake_up_if_idle(int cpu)
3879 {
3880 	struct rq *rq = cpu_rq(cpu);
3881 
3882 	guard(rcu)();
3883 	if (is_idle_task(rcu_dereference(rq->curr))) {
3884 		guard(rq_lock_irqsave)(rq);
3885 		if (is_idle_task(rq->curr))
3886 			resched_curr(rq);
3887 	}
3888 }
3889 
3890 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3891 {
3892 	if (!sched_asym_cpucap_active())
3893 		return true;
3894 
3895 	if (this_cpu == that_cpu)
3896 		return true;
3897 
3898 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3899 }
3900 
3901 bool cpus_share_cache(int this_cpu, int that_cpu)
3902 {
3903 	if (this_cpu == that_cpu)
3904 		return true;
3905 
3906 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3907 }
3908 
3909 /*
3910  * Whether CPUs are share cache resources, which means LLC on non-cluster
3911  * machines and LLC tag or L2 on machines with clusters.
3912  */
3913 bool cpus_share_resources(int this_cpu, int that_cpu)
3914 {
3915 	if (this_cpu == that_cpu)
3916 		return true;
3917 
3918 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3919 }
3920 
3921 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3922 {
3923 	/*
3924 	 * The BPF scheduler may depend on select_task_rq() being invoked during
3925 	 * wakeups. In addition, @p may end up executing on a different CPU
3926 	 * regardless of what happens in the wakeup path making the ttwu_queue
3927 	 * optimization less meaningful. Skip if on SCX.
3928 	 */
3929 	if (task_on_scx(p))
3930 		return false;
3931 
3932 	/*
3933 	 * Do not complicate things with the async wake_list while the CPU is
3934 	 * in hotplug state.
3935 	 */
3936 	if (!cpu_active(cpu))
3937 		return false;
3938 
3939 	/* Ensure the task will still be allowed to run on the CPU. */
3940 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3941 		return false;
3942 
3943 	/*
3944 	 * If the CPU does not share cache, then queue the task on the
3945 	 * remote rqs wakelist to avoid accessing remote data.
3946 	 */
3947 	if (!cpus_share_cache(smp_processor_id(), cpu))
3948 		return true;
3949 
3950 	if (cpu == smp_processor_id())
3951 		return false;
3952 
3953 	/*
3954 	 * If the wakee cpu is idle, or the task is descheduling and the
3955 	 * only running task on the CPU, then use the wakelist to offload
3956 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3957 	 * the current CPU is likely busy. nr_running is checked to
3958 	 * avoid unnecessary task stacking.
3959 	 *
3960 	 * Note that we can only get here with (wakee) p->on_rq=0,
3961 	 * p->on_cpu can be whatever, we've done the dequeue, so
3962 	 * the wakee has been accounted out of ->nr_running.
3963 	 */
3964 	if (!cpu_rq(cpu)->nr_running)
3965 		return true;
3966 
3967 	return false;
3968 }
3969 
3970 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3971 {
3972 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3973 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3974 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3975 		return true;
3976 	}
3977 
3978 	return false;
3979 }
3980 
3981 #else /* !CONFIG_SMP */
3982 
3983 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3984 {
3985 	return false;
3986 }
3987 
3988 #endif /* CONFIG_SMP */
3989 
3990 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3991 {
3992 	struct rq *rq = cpu_rq(cpu);
3993 	struct rq_flags rf;
3994 
3995 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3996 		return;
3997 
3998 	rq_lock(rq, &rf);
3999 	update_rq_clock(rq);
4000 	ttwu_do_activate(rq, p, wake_flags, &rf);
4001 	rq_unlock(rq, &rf);
4002 }
4003 
4004 /*
4005  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4006  *
4007  * The caller holds p::pi_lock if p != current or has preemption
4008  * disabled when p == current.
4009  *
4010  * The rules of saved_state:
4011  *
4012  *   The related locking code always holds p::pi_lock when updating
4013  *   p::saved_state, which means the code is fully serialized in both cases.
4014  *
4015  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4016  *   No other bits set. This allows to distinguish all wakeup scenarios.
4017  *
4018  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4019  *   allows us to prevent early wakeup of tasks before they can be run on
4020  *   asymmetric ISA architectures (eg ARMv9).
4021  */
4022 static __always_inline
4023 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4024 {
4025 	int match;
4026 
4027 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4028 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4029 			     state != TASK_RTLOCK_WAIT);
4030 	}
4031 
4032 	*success = !!(match = __task_state_match(p, state));
4033 
4034 	/*
4035 	 * Saved state preserves the task state across blocking on
4036 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4037 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4038 	 * because it waits for a lock wakeup or __thaw_task(). Also
4039 	 * indicate success because from the regular waker's point of
4040 	 * view this has succeeded.
4041 	 *
4042 	 * After acquiring the lock the task will restore p::__state
4043 	 * from p::saved_state which ensures that the regular
4044 	 * wakeup is not lost. The restore will also set
4045 	 * p::saved_state to TASK_RUNNING so any further tests will
4046 	 * not result in false positives vs. @success
4047 	 */
4048 	if (match < 0)
4049 		p->saved_state = TASK_RUNNING;
4050 
4051 	return match > 0;
4052 }
4053 
4054 /*
4055  * Notes on Program-Order guarantees on SMP systems.
4056  *
4057  *  MIGRATION
4058  *
4059  * The basic program-order guarantee on SMP systems is that when a task [t]
4060  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4061  * execution on its new CPU [c1].
4062  *
4063  * For migration (of runnable tasks) this is provided by the following means:
4064  *
4065  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4066  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4067  *     rq(c1)->lock (if not at the same time, then in that order).
4068  *  C) LOCK of the rq(c1)->lock scheduling in task
4069  *
4070  * Release/acquire chaining guarantees that B happens after A and C after B.
4071  * Note: the CPU doing B need not be c0 or c1
4072  *
4073  * Example:
4074  *
4075  *   CPU0            CPU1            CPU2
4076  *
4077  *   LOCK rq(0)->lock
4078  *   sched-out X
4079  *   sched-in Y
4080  *   UNLOCK rq(0)->lock
4081  *
4082  *                                   LOCK rq(0)->lock // orders against CPU0
4083  *                                   dequeue X
4084  *                                   UNLOCK rq(0)->lock
4085  *
4086  *                                   LOCK rq(1)->lock
4087  *                                   enqueue X
4088  *                                   UNLOCK rq(1)->lock
4089  *
4090  *                   LOCK rq(1)->lock // orders against CPU2
4091  *                   sched-out Z
4092  *                   sched-in X
4093  *                   UNLOCK rq(1)->lock
4094  *
4095  *
4096  *  BLOCKING -- aka. SLEEP + WAKEUP
4097  *
4098  * For blocking we (obviously) need to provide the same guarantee as for
4099  * migration. However the means are completely different as there is no lock
4100  * chain to provide order. Instead we do:
4101  *
4102  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4103  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4104  *
4105  * Example:
4106  *
4107  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4108  *
4109  *   LOCK rq(0)->lock LOCK X->pi_lock
4110  *   dequeue X
4111  *   sched-out X
4112  *   smp_store_release(X->on_cpu, 0);
4113  *
4114  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4115  *                    X->state = WAKING
4116  *                    set_task_cpu(X,2)
4117  *
4118  *                    LOCK rq(2)->lock
4119  *                    enqueue X
4120  *                    X->state = RUNNING
4121  *                    UNLOCK rq(2)->lock
4122  *
4123  *                                          LOCK rq(2)->lock // orders against CPU1
4124  *                                          sched-out Z
4125  *                                          sched-in X
4126  *                                          UNLOCK rq(2)->lock
4127  *
4128  *                    UNLOCK X->pi_lock
4129  *   UNLOCK rq(0)->lock
4130  *
4131  *
4132  * However, for wakeups there is a second guarantee we must provide, namely we
4133  * must ensure that CONDITION=1 done by the caller can not be reordered with
4134  * accesses to the task state; see try_to_wake_up() and set_current_state().
4135  */
4136 
4137 /**
4138  * try_to_wake_up - wake up a thread
4139  * @p: the thread to be awakened
4140  * @state: the mask of task states that can be woken
4141  * @wake_flags: wake modifier flags (WF_*)
4142  *
4143  * Conceptually does:
4144  *
4145  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4146  *
4147  * If the task was not queued/runnable, also place it back on a runqueue.
4148  *
4149  * This function is atomic against schedule() which would dequeue the task.
4150  *
4151  * It issues a full memory barrier before accessing @p->state, see the comment
4152  * with set_current_state().
4153  *
4154  * Uses p->pi_lock to serialize against concurrent wake-ups.
4155  *
4156  * Relies on p->pi_lock stabilizing:
4157  *  - p->sched_class
4158  *  - p->cpus_ptr
4159  *  - p->sched_task_group
4160  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4161  *
4162  * Tries really hard to only take one task_rq(p)->lock for performance.
4163  * Takes rq->lock in:
4164  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4165  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4166  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4167  *
4168  * As a consequence we race really badly with just about everything. See the
4169  * many memory barriers and their comments for details.
4170  *
4171  * Return: %true if @p->state changes (an actual wakeup was done),
4172  *	   %false otherwise.
4173  */
4174 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4175 {
4176 	guard(preempt)();
4177 	int cpu, success = 0;
4178 
4179 	wake_flags |= WF_TTWU;
4180 
4181 	if (p == current) {
4182 		/*
4183 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4184 		 * == smp_processor_id()'. Together this means we can special
4185 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4186 		 * without taking any locks.
4187 		 *
4188 		 * Specifically, given current runs ttwu() we must be before
4189 		 * schedule()'s block_task(), as such this must not observe
4190 		 * sched_delayed.
4191 		 *
4192 		 * In particular:
4193 		 *  - we rely on Program-Order guarantees for all the ordering,
4194 		 *  - we're serialized against set_special_state() by virtue of
4195 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4196 		 */
4197 		SCHED_WARN_ON(p->se.sched_delayed);
4198 		if (!ttwu_state_match(p, state, &success))
4199 			goto out;
4200 
4201 		trace_sched_waking(p);
4202 		ttwu_do_wakeup(p);
4203 		goto out;
4204 	}
4205 
4206 	/*
4207 	 * If we are going to wake up a thread waiting for CONDITION we
4208 	 * need to ensure that CONDITION=1 done by the caller can not be
4209 	 * reordered with p->state check below. This pairs with smp_store_mb()
4210 	 * in set_current_state() that the waiting thread does.
4211 	 */
4212 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4213 		smp_mb__after_spinlock();
4214 		if (!ttwu_state_match(p, state, &success))
4215 			break;
4216 
4217 		trace_sched_waking(p);
4218 
4219 		/*
4220 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4221 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4222 		 * in smp_cond_load_acquire() below.
4223 		 *
4224 		 * sched_ttwu_pending()			try_to_wake_up()
4225 		 *   STORE p->on_rq = 1			  LOAD p->state
4226 		 *   UNLOCK rq->lock
4227 		 *
4228 		 * __schedule() (switch to task 'p')
4229 		 *   LOCK rq->lock			  smp_rmb();
4230 		 *   smp_mb__after_spinlock();
4231 		 *   UNLOCK rq->lock
4232 		 *
4233 		 * [task p]
4234 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4235 		 *
4236 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4237 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4238 		 *
4239 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4240 		 */
4241 		smp_rmb();
4242 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4243 			break;
4244 
4245 #ifdef CONFIG_SMP
4246 		/*
4247 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4248 		 * possible to, falsely, observe p->on_cpu == 0.
4249 		 *
4250 		 * One must be running (->on_cpu == 1) in order to remove oneself
4251 		 * from the runqueue.
4252 		 *
4253 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4254 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4255 		 *   UNLOCK rq->lock
4256 		 *
4257 		 * __schedule() (put 'p' to sleep)
4258 		 *   LOCK rq->lock			  smp_rmb();
4259 		 *   smp_mb__after_spinlock();
4260 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4261 		 *
4262 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4263 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4264 		 *
4265 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4266 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4267 		 * care about it's own p->state. See the comment in __schedule().
4268 		 */
4269 		smp_acquire__after_ctrl_dep();
4270 
4271 		/*
4272 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4273 		 * == 0), which means we need to do an enqueue, change p->state to
4274 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4275 		 * enqueue, such as ttwu_queue_wakelist().
4276 		 */
4277 		WRITE_ONCE(p->__state, TASK_WAKING);
4278 
4279 		/*
4280 		 * If the owning (remote) CPU is still in the middle of schedule() with
4281 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4282 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4283 		 * let the waker make forward progress. This is safe because IRQs are
4284 		 * disabled and the IPI will deliver after on_cpu is cleared.
4285 		 *
4286 		 * Ensure we load task_cpu(p) after p->on_cpu:
4287 		 *
4288 		 * set_task_cpu(p, cpu);
4289 		 *   STORE p->cpu = @cpu
4290 		 * __schedule() (switch to task 'p')
4291 		 *   LOCK rq->lock
4292 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4293 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4294 		 *
4295 		 * to ensure we observe the correct CPU on which the task is currently
4296 		 * scheduling.
4297 		 */
4298 		if (smp_load_acquire(&p->on_cpu) &&
4299 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4300 			break;
4301 
4302 		/*
4303 		 * If the owning (remote) CPU is still in the middle of schedule() with
4304 		 * this task as prev, wait until it's done referencing the task.
4305 		 *
4306 		 * Pairs with the smp_store_release() in finish_task().
4307 		 *
4308 		 * This ensures that tasks getting woken will be fully ordered against
4309 		 * their previous state and preserve Program Order.
4310 		 */
4311 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4312 
4313 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4314 		if (task_cpu(p) != cpu) {
4315 			if (p->in_iowait) {
4316 				delayacct_blkio_end(p);
4317 				atomic_dec(&task_rq(p)->nr_iowait);
4318 			}
4319 
4320 			wake_flags |= WF_MIGRATED;
4321 			psi_ttwu_dequeue(p);
4322 			set_task_cpu(p, cpu);
4323 		}
4324 #else
4325 		cpu = task_cpu(p);
4326 #endif /* CONFIG_SMP */
4327 
4328 		ttwu_queue(p, cpu, wake_flags);
4329 	}
4330 out:
4331 	if (success)
4332 		ttwu_stat(p, task_cpu(p), wake_flags);
4333 
4334 	return success;
4335 }
4336 
4337 static bool __task_needs_rq_lock(struct task_struct *p)
4338 {
4339 	unsigned int state = READ_ONCE(p->__state);
4340 
4341 	/*
4342 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4343 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4344 	 * locks at the end, see ttwu_queue_wakelist().
4345 	 */
4346 	if (state == TASK_RUNNING || state == TASK_WAKING)
4347 		return true;
4348 
4349 	/*
4350 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4351 	 * possible to, falsely, observe p->on_rq == 0.
4352 	 *
4353 	 * See try_to_wake_up() for a longer comment.
4354 	 */
4355 	smp_rmb();
4356 	if (p->on_rq)
4357 		return true;
4358 
4359 #ifdef CONFIG_SMP
4360 	/*
4361 	 * Ensure the task has finished __schedule() and will not be referenced
4362 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4363 	 */
4364 	smp_rmb();
4365 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4366 #endif
4367 
4368 	return false;
4369 }
4370 
4371 /**
4372  * task_call_func - Invoke a function on task in fixed state
4373  * @p: Process for which the function is to be invoked, can be @current.
4374  * @func: Function to invoke.
4375  * @arg: Argument to function.
4376  *
4377  * Fix the task in it's current state by avoiding wakeups and or rq operations
4378  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4379  * task_curr() to work out what the state is, if required.  Given that @func
4380  * can be invoked with a runqueue lock held, it had better be quite
4381  * lightweight.
4382  *
4383  * Returns:
4384  *   Whatever @func returns
4385  */
4386 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4387 {
4388 	struct rq *rq = NULL;
4389 	struct rq_flags rf;
4390 	int ret;
4391 
4392 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4393 
4394 	if (__task_needs_rq_lock(p))
4395 		rq = __task_rq_lock(p, &rf);
4396 
4397 	/*
4398 	 * At this point the task is pinned; either:
4399 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4400 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4401 	 *  - queued, and we're holding off schedule	 (rq->lock)
4402 	 *  - running, and we're holding off de-schedule (rq->lock)
4403 	 *
4404 	 * The called function (@func) can use: task_curr(), p->on_rq and
4405 	 * p->__state to differentiate between these states.
4406 	 */
4407 	ret = func(p, arg);
4408 
4409 	if (rq)
4410 		rq_unlock(rq, &rf);
4411 
4412 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4413 	return ret;
4414 }
4415 
4416 /**
4417  * cpu_curr_snapshot - Return a snapshot of the currently running task
4418  * @cpu: The CPU on which to snapshot the task.
4419  *
4420  * Returns the task_struct pointer of the task "currently" running on
4421  * the specified CPU.
4422  *
4423  * If the specified CPU was offline, the return value is whatever it
4424  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4425  * task, but there is no guarantee.  Callers wishing a useful return
4426  * value must take some action to ensure that the specified CPU remains
4427  * online throughout.
4428  *
4429  * This function executes full memory barriers before and after fetching
4430  * the pointer, which permits the caller to confine this function's fetch
4431  * with respect to the caller's accesses to other shared variables.
4432  */
4433 struct task_struct *cpu_curr_snapshot(int cpu)
4434 {
4435 	struct rq *rq = cpu_rq(cpu);
4436 	struct task_struct *t;
4437 	struct rq_flags rf;
4438 
4439 	rq_lock_irqsave(rq, &rf);
4440 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4441 	t = rcu_dereference(cpu_curr(cpu));
4442 	rq_unlock_irqrestore(rq, &rf);
4443 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4444 
4445 	return t;
4446 }
4447 
4448 /**
4449  * wake_up_process - Wake up a specific process
4450  * @p: The process to be woken up.
4451  *
4452  * Attempt to wake up the nominated process and move it to the set of runnable
4453  * processes.
4454  *
4455  * Return: 1 if the process was woken up, 0 if it was already running.
4456  *
4457  * This function executes a full memory barrier before accessing the task state.
4458  */
4459 int wake_up_process(struct task_struct *p)
4460 {
4461 	return try_to_wake_up(p, TASK_NORMAL, 0);
4462 }
4463 EXPORT_SYMBOL(wake_up_process);
4464 
4465 int wake_up_state(struct task_struct *p, unsigned int state)
4466 {
4467 	return try_to_wake_up(p, state, 0);
4468 }
4469 
4470 /*
4471  * Perform scheduler related setup for a newly forked process p.
4472  * p is forked by current.
4473  *
4474  * __sched_fork() is basic setup which is also used by sched_init() to
4475  * initialize the boot CPU's idle task.
4476  */
4477 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4478 {
4479 	p->on_rq			= 0;
4480 
4481 	p->se.on_rq			= 0;
4482 	p->se.exec_start		= 0;
4483 	p->se.sum_exec_runtime		= 0;
4484 	p->se.prev_sum_exec_runtime	= 0;
4485 	p->se.nr_migrations		= 0;
4486 	p->se.vruntime			= 0;
4487 	p->se.vlag			= 0;
4488 	INIT_LIST_HEAD(&p->se.group_node);
4489 
4490 	/* A delayed task cannot be in clone(). */
4491 	SCHED_WARN_ON(p->se.sched_delayed);
4492 
4493 #ifdef CONFIG_FAIR_GROUP_SCHED
4494 	p->se.cfs_rq			= NULL;
4495 #endif
4496 
4497 #ifdef CONFIG_SCHEDSTATS
4498 	/* Even if schedstat is disabled, there should not be garbage */
4499 	memset(&p->stats, 0, sizeof(p->stats));
4500 #endif
4501 
4502 	init_dl_entity(&p->dl);
4503 
4504 	INIT_LIST_HEAD(&p->rt.run_list);
4505 	p->rt.timeout		= 0;
4506 	p->rt.time_slice	= sched_rr_timeslice;
4507 	p->rt.on_rq		= 0;
4508 	p->rt.on_list		= 0;
4509 
4510 #ifdef CONFIG_SCHED_CLASS_EXT
4511 	init_scx_entity(&p->scx);
4512 #endif
4513 
4514 #ifdef CONFIG_PREEMPT_NOTIFIERS
4515 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4516 #endif
4517 
4518 #ifdef CONFIG_COMPACTION
4519 	p->capture_control = NULL;
4520 #endif
4521 	init_numa_balancing(clone_flags, p);
4522 #ifdef CONFIG_SMP
4523 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4524 	p->migration_pending = NULL;
4525 #endif
4526 	init_sched_mm_cid(p);
4527 }
4528 
4529 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4530 
4531 #ifdef CONFIG_NUMA_BALANCING
4532 
4533 int sysctl_numa_balancing_mode;
4534 
4535 static void __set_numabalancing_state(bool enabled)
4536 {
4537 	if (enabled)
4538 		static_branch_enable(&sched_numa_balancing);
4539 	else
4540 		static_branch_disable(&sched_numa_balancing);
4541 }
4542 
4543 void set_numabalancing_state(bool enabled)
4544 {
4545 	if (enabled)
4546 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4547 	else
4548 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4549 	__set_numabalancing_state(enabled);
4550 }
4551 
4552 #ifdef CONFIG_PROC_SYSCTL
4553 static void reset_memory_tiering(void)
4554 {
4555 	struct pglist_data *pgdat;
4556 
4557 	for_each_online_pgdat(pgdat) {
4558 		pgdat->nbp_threshold = 0;
4559 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4560 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4561 	}
4562 }
4563 
4564 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4565 			  void *buffer, size_t *lenp, loff_t *ppos)
4566 {
4567 	struct ctl_table t;
4568 	int err;
4569 	int state = sysctl_numa_balancing_mode;
4570 
4571 	if (write && !capable(CAP_SYS_ADMIN))
4572 		return -EPERM;
4573 
4574 	t = *table;
4575 	t.data = &state;
4576 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4577 	if (err < 0)
4578 		return err;
4579 	if (write) {
4580 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4581 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4582 			reset_memory_tiering();
4583 		sysctl_numa_balancing_mode = state;
4584 		__set_numabalancing_state(state);
4585 	}
4586 	return err;
4587 }
4588 #endif
4589 #endif
4590 
4591 #ifdef CONFIG_SCHEDSTATS
4592 
4593 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4594 
4595 static void set_schedstats(bool enabled)
4596 {
4597 	if (enabled)
4598 		static_branch_enable(&sched_schedstats);
4599 	else
4600 		static_branch_disable(&sched_schedstats);
4601 }
4602 
4603 void force_schedstat_enabled(void)
4604 {
4605 	if (!schedstat_enabled()) {
4606 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4607 		static_branch_enable(&sched_schedstats);
4608 	}
4609 }
4610 
4611 static int __init setup_schedstats(char *str)
4612 {
4613 	int ret = 0;
4614 	if (!str)
4615 		goto out;
4616 
4617 	if (!strcmp(str, "enable")) {
4618 		set_schedstats(true);
4619 		ret = 1;
4620 	} else if (!strcmp(str, "disable")) {
4621 		set_schedstats(false);
4622 		ret = 1;
4623 	}
4624 out:
4625 	if (!ret)
4626 		pr_warn("Unable to parse schedstats=\n");
4627 
4628 	return ret;
4629 }
4630 __setup("schedstats=", setup_schedstats);
4631 
4632 #ifdef CONFIG_PROC_SYSCTL
4633 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4634 		size_t *lenp, loff_t *ppos)
4635 {
4636 	struct ctl_table t;
4637 	int err;
4638 	int state = static_branch_likely(&sched_schedstats);
4639 
4640 	if (write && !capable(CAP_SYS_ADMIN))
4641 		return -EPERM;
4642 
4643 	t = *table;
4644 	t.data = &state;
4645 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4646 	if (err < 0)
4647 		return err;
4648 	if (write)
4649 		set_schedstats(state);
4650 	return err;
4651 }
4652 #endif /* CONFIG_PROC_SYSCTL */
4653 #endif /* CONFIG_SCHEDSTATS */
4654 
4655 #ifdef CONFIG_SYSCTL
4656 static const struct ctl_table sched_core_sysctls[] = {
4657 #ifdef CONFIG_SCHEDSTATS
4658 	{
4659 		.procname       = "sched_schedstats",
4660 		.data           = NULL,
4661 		.maxlen         = sizeof(unsigned int),
4662 		.mode           = 0644,
4663 		.proc_handler   = sysctl_schedstats,
4664 		.extra1         = SYSCTL_ZERO,
4665 		.extra2         = SYSCTL_ONE,
4666 	},
4667 #endif /* CONFIG_SCHEDSTATS */
4668 #ifdef CONFIG_UCLAMP_TASK
4669 	{
4670 		.procname       = "sched_util_clamp_min",
4671 		.data           = &sysctl_sched_uclamp_util_min,
4672 		.maxlen         = sizeof(unsigned int),
4673 		.mode           = 0644,
4674 		.proc_handler   = sysctl_sched_uclamp_handler,
4675 	},
4676 	{
4677 		.procname       = "sched_util_clamp_max",
4678 		.data           = &sysctl_sched_uclamp_util_max,
4679 		.maxlen         = sizeof(unsigned int),
4680 		.mode           = 0644,
4681 		.proc_handler   = sysctl_sched_uclamp_handler,
4682 	},
4683 	{
4684 		.procname       = "sched_util_clamp_min_rt_default",
4685 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4686 		.maxlen         = sizeof(unsigned int),
4687 		.mode           = 0644,
4688 		.proc_handler   = sysctl_sched_uclamp_handler,
4689 	},
4690 #endif /* CONFIG_UCLAMP_TASK */
4691 #ifdef CONFIG_NUMA_BALANCING
4692 	{
4693 		.procname	= "numa_balancing",
4694 		.data		= NULL, /* filled in by handler */
4695 		.maxlen		= sizeof(unsigned int),
4696 		.mode		= 0644,
4697 		.proc_handler	= sysctl_numa_balancing,
4698 		.extra1		= SYSCTL_ZERO,
4699 		.extra2		= SYSCTL_FOUR,
4700 	},
4701 #endif /* CONFIG_NUMA_BALANCING */
4702 };
4703 static int __init sched_core_sysctl_init(void)
4704 {
4705 	register_sysctl_init("kernel", sched_core_sysctls);
4706 	return 0;
4707 }
4708 late_initcall(sched_core_sysctl_init);
4709 #endif /* CONFIG_SYSCTL */
4710 
4711 /*
4712  * fork()/clone()-time setup:
4713  */
4714 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4715 {
4716 	__sched_fork(clone_flags, p);
4717 	/*
4718 	 * We mark the process as NEW here. This guarantees that
4719 	 * nobody will actually run it, and a signal or other external
4720 	 * event cannot wake it up and insert it on the runqueue either.
4721 	 */
4722 	p->__state = TASK_NEW;
4723 
4724 	/*
4725 	 * Make sure we do not leak PI boosting priority to the child.
4726 	 */
4727 	p->prio = current->normal_prio;
4728 
4729 	uclamp_fork(p);
4730 
4731 	/*
4732 	 * Revert to default priority/policy on fork if requested.
4733 	 */
4734 	if (unlikely(p->sched_reset_on_fork)) {
4735 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4736 			p->policy = SCHED_NORMAL;
4737 			p->static_prio = NICE_TO_PRIO(0);
4738 			p->rt_priority = 0;
4739 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4740 			p->static_prio = NICE_TO_PRIO(0);
4741 
4742 		p->prio = p->normal_prio = p->static_prio;
4743 		set_load_weight(p, false);
4744 		p->se.custom_slice = 0;
4745 		p->se.slice = sysctl_sched_base_slice;
4746 
4747 		/*
4748 		 * We don't need the reset flag anymore after the fork. It has
4749 		 * fulfilled its duty:
4750 		 */
4751 		p->sched_reset_on_fork = 0;
4752 	}
4753 
4754 	if (dl_prio(p->prio))
4755 		return -EAGAIN;
4756 
4757 	scx_pre_fork(p);
4758 
4759 	if (rt_prio(p->prio)) {
4760 		p->sched_class = &rt_sched_class;
4761 #ifdef CONFIG_SCHED_CLASS_EXT
4762 	} else if (task_should_scx(p->policy)) {
4763 		p->sched_class = &ext_sched_class;
4764 #endif
4765 	} else {
4766 		p->sched_class = &fair_sched_class;
4767 	}
4768 
4769 	init_entity_runnable_average(&p->se);
4770 
4771 
4772 #ifdef CONFIG_SCHED_INFO
4773 	if (likely(sched_info_on()))
4774 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4775 #endif
4776 #if defined(CONFIG_SMP)
4777 	p->on_cpu = 0;
4778 #endif
4779 	init_task_preempt_count(p);
4780 #ifdef CONFIG_SMP
4781 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4782 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4783 #endif
4784 	return 0;
4785 }
4786 
4787 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4788 {
4789 	unsigned long flags;
4790 
4791 	/*
4792 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4793 	 * required yet, but lockdep gets upset if rules are violated.
4794 	 */
4795 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4796 #ifdef CONFIG_CGROUP_SCHED
4797 	if (1) {
4798 		struct task_group *tg;
4799 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4800 				  struct task_group, css);
4801 		tg = autogroup_task_group(p, tg);
4802 		p->sched_task_group = tg;
4803 	}
4804 #endif
4805 	rseq_migrate(p);
4806 	/*
4807 	 * We're setting the CPU for the first time, we don't migrate,
4808 	 * so use __set_task_cpu().
4809 	 */
4810 	__set_task_cpu(p, smp_processor_id());
4811 	if (p->sched_class->task_fork)
4812 		p->sched_class->task_fork(p);
4813 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4814 
4815 	return scx_fork(p);
4816 }
4817 
4818 void sched_cancel_fork(struct task_struct *p)
4819 {
4820 	scx_cancel_fork(p);
4821 }
4822 
4823 void sched_post_fork(struct task_struct *p)
4824 {
4825 	uclamp_post_fork(p);
4826 	scx_post_fork(p);
4827 }
4828 
4829 unsigned long to_ratio(u64 period, u64 runtime)
4830 {
4831 	if (runtime == RUNTIME_INF)
4832 		return BW_UNIT;
4833 
4834 	/*
4835 	 * Doing this here saves a lot of checks in all
4836 	 * the calling paths, and returning zero seems
4837 	 * safe for them anyway.
4838 	 */
4839 	if (period == 0)
4840 		return 0;
4841 
4842 	return div64_u64(runtime << BW_SHIFT, period);
4843 }
4844 
4845 /*
4846  * wake_up_new_task - wake up a newly created task for the first time.
4847  *
4848  * This function will do some initial scheduler statistics housekeeping
4849  * that must be done for every newly created context, then puts the task
4850  * on the runqueue and wakes it.
4851  */
4852 void wake_up_new_task(struct task_struct *p)
4853 {
4854 	struct rq_flags rf;
4855 	struct rq *rq;
4856 	int wake_flags = WF_FORK;
4857 
4858 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4859 	WRITE_ONCE(p->__state, TASK_RUNNING);
4860 #ifdef CONFIG_SMP
4861 	/*
4862 	 * Fork balancing, do it here and not earlier because:
4863 	 *  - cpus_ptr can change in the fork path
4864 	 *  - any previously selected CPU might disappear through hotplug
4865 	 *
4866 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4867 	 * as we're not fully set-up yet.
4868 	 */
4869 	p->recent_used_cpu = task_cpu(p);
4870 	rseq_migrate(p);
4871 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4872 #endif
4873 	rq = __task_rq_lock(p, &rf);
4874 	update_rq_clock(rq);
4875 	post_init_entity_util_avg(p);
4876 
4877 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4878 	trace_sched_wakeup_new(p);
4879 	wakeup_preempt(rq, p, wake_flags);
4880 #ifdef CONFIG_SMP
4881 	if (p->sched_class->task_woken) {
4882 		/*
4883 		 * Nothing relies on rq->lock after this, so it's fine to
4884 		 * drop it.
4885 		 */
4886 		rq_unpin_lock(rq, &rf);
4887 		p->sched_class->task_woken(rq, p);
4888 		rq_repin_lock(rq, &rf);
4889 	}
4890 #endif
4891 	task_rq_unlock(rq, p, &rf);
4892 }
4893 
4894 #ifdef CONFIG_PREEMPT_NOTIFIERS
4895 
4896 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4897 
4898 void preempt_notifier_inc(void)
4899 {
4900 	static_branch_inc(&preempt_notifier_key);
4901 }
4902 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4903 
4904 void preempt_notifier_dec(void)
4905 {
4906 	static_branch_dec(&preempt_notifier_key);
4907 }
4908 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4909 
4910 /**
4911  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4912  * @notifier: notifier struct to register
4913  */
4914 void preempt_notifier_register(struct preempt_notifier *notifier)
4915 {
4916 	if (!static_branch_unlikely(&preempt_notifier_key))
4917 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4918 
4919 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4920 }
4921 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4922 
4923 /**
4924  * preempt_notifier_unregister - no longer interested in preemption notifications
4925  * @notifier: notifier struct to unregister
4926  *
4927  * This is *not* safe to call from within a preemption notifier.
4928  */
4929 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4930 {
4931 	hlist_del(&notifier->link);
4932 }
4933 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4934 
4935 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4936 {
4937 	struct preempt_notifier *notifier;
4938 
4939 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4940 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4941 }
4942 
4943 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4944 {
4945 	if (static_branch_unlikely(&preempt_notifier_key))
4946 		__fire_sched_in_preempt_notifiers(curr);
4947 }
4948 
4949 static void
4950 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4951 				   struct task_struct *next)
4952 {
4953 	struct preempt_notifier *notifier;
4954 
4955 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4956 		notifier->ops->sched_out(notifier, next);
4957 }
4958 
4959 static __always_inline void
4960 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4961 				 struct task_struct *next)
4962 {
4963 	if (static_branch_unlikely(&preempt_notifier_key))
4964 		__fire_sched_out_preempt_notifiers(curr, next);
4965 }
4966 
4967 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4968 
4969 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4970 {
4971 }
4972 
4973 static inline void
4974 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4975 				 struct task_struct *next)
4976 {
4977 }
4978 
4979 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4980 
4981 static inline void prepare_task(struct task_struct *next)
4982 {
4983 #ifdef CONFIG_SMP
4984 	/*
4985 	 * Claim the task as running, we do this before switching to it
4986 	 * such that any running task will have this set.
4987 	 *
4988 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4989 	 * its ordering comment.
4990 	 */
4991 	WRITE_ONCE(next->on_cpu, 1);
4992 #endif
4993 }
4994 
4995 static inline void finish_task(struct task_struct *prev)
4996 {
4997 #ifdef CONFIG_SMP
4998 	/*
4999 	 * This must be the very last reference to @prev from this CPU. After
5000 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5001 	 * must ensure this doesn't happen until the switch is completely
5002 	 * finished.
5003 	 *
5004 	 * In particular, the load of prev->state in finish_task_switch() must
5005 	 * happen before this.
5006 	 *
5007 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5008 	 */
5009 	smp_store_release(&prev->on_cpu, 0);
5010 #endif
5011 }
5012 
5013 #ifdef CONFIG_SMP
5014 
5015 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5016 {
5017 	void (*func)(struct rq *rq);
5018 	struct balance_callback *next;
5019 
5020 	lockdep_assert_rq_held(rq);
5021 
5022 	while (head) {
5023 		func = (void (*)(struct rq *))head->func;
5024 		next = head->next;
5025 		head->next = NULL;
5026 		head = next;
5027 
5028 		func(rq);
5029 	}
5030 }
5031 
5032 static void balance_push(struct rq *rq);
5033 
5034 /*
5035  * balance_push_callback is a right abuse of the callback interface and plays
5036  * by significantly different rules.
5037  *
5038  * Where the normal balance_callback's purpose is to be ran in the same context
5039  * that queued it (only later, when it's safe to drop rq->lock again),
5040  * balance_push_callback is specifically targeted at __schedule().
5041  *
5042  * This abuse is tolerated because it places all the unlikely/odd cases behind
5043  * a single test, namely: rq->balance_callback == NULL.
5044  */
5045 struct balance_callback balance_push_callback = {
5046 	.next = NULL,
5047 	.func = balance_push,
5048 };
5049 
5050 static inline struct balance_callback *
5051 __splice_balance_callbacks(struct rq *rq, bool split)
5052 {
5053 	struct balance_callback *head = rq->balance_callback;
5054 
5055 	if (likely(!head))
5056 		return NULL;
5057 
5058 	lockdep_assert_rq_held(rq);
5059 	/*
5060 	 * Must not take balance_push_callback off the list when
5061 	 * splice_balance_callbacks() and balance_callbacks() are not
5062 	 * in the same rq->lock section.
5063 	 *
5064 	 * In that case it would be possible for __schedule() to interleave
5065 	 * and observe the list empty.
5066 	 */
5067 	if (split && head == &balance_push_callback)
5068 		head = NULL;
5069 	else
5070 		rq->balance_callback = NULL;
5071 
5072 	return head;
5073 }
5074 
5075 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5076 {
5077 	return __splice_balance_callbacks(rq, true);
5078 }
5079 
5080 static void __balance_callbacks(struct rq *rq)
5081 {
5082 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5083 }
5084 
5085 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5086 {
5087 	unsigned long flags;
5088 
5089 	if (unlikely(head)) {
5090 		raw_spin_rq_lock_irqsave(rq, flags);
5091 		do_balance_callbacks(rq, head);
5092 		raw_spin_rq_unlock_irqrestore(rq, flags);
5093 	}
5094 }
5095 
5096 #else
5097 
5098 static inline void __balance_callbacks(struct rq *rq)
5099 {
5100 }
5101 
5102 #endif
5103 
5104 static inline void
5105 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5106 {
5107 	/*
5108 	 * Since the runqueue lock will be released by the next
5109 	 * task (which is an invalid locking op but in the case
5110 	 * of the scheduler it's an obvious special-case), so we
5111 	 * do an early lockdep release here:
5112 	 */
5113 	rq_unpin_lock(rq, rf);
5114 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5115 #ifdef CONFIG_DEBUG_SPINLOCK
5116 	/* this is a valid case when another task releases the spinlock */
5117 	rq_lockp(rq)->owner = next;
5118 #endif
5119 }
5120 
5121 static inline void finish_lock_switch(struct rq *rq)
5122 {
5123 	/*
5124 	 * If we are tracking spinlock dependencies then we have to
5125 	 * fix up the runqueue lock - which gets 'carried over' from
5126 	 * prev into current:
5127 	 */
5128 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5129 	__balance_callbacks(rq);
5130 	raw_spin_rq_unlock_irq(rq);
5131 }
5132 
5133 /*
5134  * NOP if the arch has not defined these:
5135  */
5136 
5137 #ifndef prepare_arch_switch
5138 # define prepare_arch_switch(next)	do { } while (0)
5139 #endif
5140 
5141 #ifndef finish_arch_post_lock_switch
5142 # define finish_arch_post_lock_switch()	do { } while (0)
5143 #endif
5144 
5145 static inline void kmap_local_sched_out(void)
5146 {
5147 #ifdef CONFIG_KMAP_LOCAL
5148 	if (unlikely(current->kmap_ctrl.idx))
5149 		__kmap_local_sched_out();
5150 #endif
5151 }
5152 
5153 static inline void kmap_local_sched_in(void)
5154 {
5155 #ifdef CONFIG_KMAP_LOCAL
5156 	if (unlikely(current->kmap_ctrl.idx))
5157 		__kmap_local_sched_in();
5158 #endif
5159 }
5160 
5161 /**
5162  * prepare_task_switch - prepare to switch tasks
5163  * @rq: the runqueue preparing to switch
5164  * @prev: the current task that is being switched out
5165  * @next: the task we are going to switch to.
5166  *
5167  * This is called with the rq lock held and interrupts off. It must
5168  * be paired with a subsequent finish_task_switch after the context
5169  * switch.
5170  *
5171  * prepare_task_switch sets up locking and calls architecture specific
5172  * hooks.
5173  */
5174 static inline void
5175 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5176 		    struct task_struct *next)
5177 {
5178 	kcov_prepare_switch(prev);
5179 	sched_info_switch(rq, prev, next);
5180 	perf_event_task_sched_out(prev, next);
5181 	rseq_preempt(prev);
5182 	fire_sched_out_preempt_notifiers(prev, next);
5183 	kmap_local_sched_out();
5184 	prepare_task(next);
5185 	prepare_arch_switch(next);
5186 }
5187 
5188 /**
5189  * finish_task_switch - clean up after a task-switch
5190  * @prev: the thread we just switched away from.
5191  *
5192  * finish_task_switch must be called after the context switch, paired
5193  * with a prepare_task_switch call before the context switch.
5194  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5195  * and do any other architecture-specific cleanup actions.
5196  *
5197  * Note that we may have delayed dropping an mm in context_switch(). If
5198  * so, we finish that here outside of the runqueue lock. (Doing it
5199  * with the lock held can cause deadlocks; see schedule() for
5200  * details.)
5201  *
5202  * The context switch have flipped the stack from under us and restored the
5203  * local variables which were saved when this task called schedule() in the
5204  * past. 'prev == current' is still correct but we need to recalculate this_rq
5205  * because prev may have moved to another CPU.
5206  */
5207 static struct rq *finish_task_switch(struct task_struct *prev)
5208 	__releases(rq->lock)
5209 {
5210 	struct rq *rq = this_rq();
5211 	struct mm_struct *mm = rq->prev_mm;
5212 	unsigned int prev_state;
5213 
5214 	/*
5215 	 * The previous task will have left us with a preempt_count of 2
5216 	 * because it left us after:
5217 	 *
5218 	 *	schedule()
5219 	 *	  preempt_disable();			// 1
5220 	 *	  __schedule()
5221 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5222 	 *
5223 	 * Also, see FORK_PREEMPT_COUNT.
5224 	 */
5225 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5226 		      "corrupted preempt_count: %s/%d/0x%x\n",
5227 		      current->comm, current->pid, preempt_count()))
5228 		preempt_count_set(FORK_PREEMPT_COUNT);
5229 
5230 	rq->prev_mm = NULL;
5231 
5232 	/*
5233 	 * A task struct has one reference for the use as "current".
5234 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5235 	 * schedule one last time. The schedule call will never return, and
5236 	 * the scheduled task must drop that reference.
5237 	 *
5238 	 * We must observe prev->state before clearing prev->on_cpu (in
5239 	 * finish_task), otherwise a concurrent wakeup can get prev
5240 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5241 	 * transition, resulting in a double drop.
5242 	 */
5243 	prev_state = READ_ONCE(prev->__state);
5244 	vtime_task_switch(prev);
5245 	perf_event_task_sched_in(prev, current);
5246 	finish_task(prev);
5247 	tick_nohz_task_switch();
5248 	finish_lock_switch(rq);
5249 	finish_arch_post_lock_switch();
5250 	kcov_finish_switch(current);
5251 	/*
5252 	 * kmap_local_sched_out() is invoked with rq::lock held and
5253 	 * interrupts disabled. There is no requirement for that, but the
5254 	 * sched out code does not have an interrupt enabled section.
5255 	 * Restoring the maps on sched in does not require interrupts being
5256 	 * disabled either.
5257 	 */
5258 	kmap_local_sched_in();
5259 
5260 	fire_sched_in_preempt_notifiers(current);
5261 	/*
5262 	 * When switching through a kernel thread, the loop in
5263 	 * membarrier_{private,global}_expedited() may have observed that
5264 	 * kernel thread and not issued an IPI. It is therefore possible to
5265 	 * schedule between user->kernel->user threads without passing though
5266 	 * switch_mm(). Membarrier requires a barrier after storing to
5267 	 * rq->curr, before returning to userspace, so provide them here:
5268 	 *
5269 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5270 	 *   provided by mmdrop_lazy_tlb(),
5271 	 * - a sync_core for SYNC_CORE.
5272 	 */
5273 	if (mm) {
5274 		membarrier_mm_sync_core_before_usermode(mm);
5275 		mmdrop_lazy_tlb_sched(mm);
5276 	}
5277 
5278 	if (unlikely(prev_state == TASK_DEAD)) {
5279 		if (prev->sched_class->task_dead)
5280 			prev->sched_class->task_dead(prev);
5281 
5282 		/* Task is done with its stack. */
5283 		put_task_stack(prev);
5284 
5285 		put_task_struct_rcu_user(prev);
5286 	}
5287 
5288 	return rq;
5289 }
5290 
5291 /**
5292  * schedule_tail - first thing a freshly forked thread must call.
5293  * @prev: the thread we just switched away from.
5294  */
5295 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5296 	__releases(rq->lock)
5297 {
5298 	/*
5299 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5300 	 * finish_task_switch() for details.
5301 	 *
5302 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5303 	 * and the preempt_enable() will end up enabling preemption (on
5304 	 * PREEMPT_COUNT kernels).
5305 	 */
5306 
5307 	finish_task_switch(prev);
5308 	preempt_enable();
5309 
5310 	if (current->set_child_tid)
5311 		put_user(task_pid_vnr(current), current->set_child_tid);
5312 
5313 	calculate_sigpending();
5314 }
5315 
5316 /*
5317  * context_switch - switch to the new MM and the new thread's register state.
5318  */
5319 static __always_inline struct rq *
5320 context_switch(struct rq *rq, struct task_struct *prev,
5321 	       struct task_struct *next, struct rq_flags *rf)
5322 {
5323 	prepare_task_switch(rq, prev, next);
5324 
5325 	/*
5326 	 * For paravirt, this is coupled with an exit in switch_to to
5327 	 * combine the page table reload and the switch backend into
5328 	 * one hypercall.
5329 	 */
5330 	arch_start_context_switch(prev);
5331 
5332 	/*
5333 	 * kernel -> kernel   lazy + transfer active
5334 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5335 	 *
5336 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5337 	 *   user ->   user   switch
5338 	 *
5339 	 * switch_mm_cid() needs to be updated if the barriers provided
5340 	 * by context_switch() are modified.
5341 	 */
5342 	if (!next->mm) {                                // to kernel
5343 		enter_lazy_tlb(prev->active_mm, next);
5344 
5345 		next->active_mm = prev->active_mm;
5346 		if (prev->mm)                           // from user
5347 			mmgrab_lazy_tlb(prev->active_mm);
5348 		else
5349 			prev->active_mm = NULL;
5350 	} else {                                        // to user
5351 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5352 		/*
5353 		 * sys_membarrier() requires an smp_mb() between setting
5354 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5355 		 *
5356 		 * The below provides this either through switch_mm(), or in
5357 		 * case 'prev->active_mm == next->mm' through
5358 		 * finish_task_switch()'s mmdrop().
5359 		 */
5360 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5361 		lru_gen_use_mm(next->mm);
5362 
5363 		if (!prev->mm) {                        // from kernel
5364 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5365 			rq->prev_mm = prev->active_mm;
5366 			prev->active_mm = NULL;
5367 		}
5368 	}
5369 
5370 	/* switch_mm_cid() requires the memory barriers above. */
5371 	switch_mm_cid(rq, prev, next);
5372 
5373 	prepare_lock_switch(rq, next, rf);
5374 
5375 	/* Here we just switch the register state and the stack. */
5376 	switch_to(prev, next, prev);
5377 	barrier();
5378 
5379 	return finish_task_switch(prev);
5380 }
5381 
5382 /*
5383  * nr_running and nr_context_switches:
5384  *
5385  * externally visible scheduler statistics: current number of runnable
5386  * threads, total number of context switches performed since bootup.
5387  */
5388 unsigned int nr_running(void)
5389 {
5390 	unsigned int i, sum = 0;
5391 
5392 	for_each_online_cpu(i)
5393 		sum += cpu_rq(i)->nr_running;
5394 
5395 	return sum;
5396 }
5397 
5398 /*
5399  * Check if only the current task is running on the CPU.
5400  *
5401  * Caution: this function does not check that the caller has disabled
5402  * preemption, thus the result might have a time-of-check-to-time-of-use
5403  * race.  The caller is responsible to use it correctly, for example:
5404  *
5405  * - from a non-preemptible section (of course)
5406  *
5407  * - from a thread that is bound to a single CPU
5408  *
5409  * - in a loop with very short iterations (e.g. a polling loop)
5410  */
5411 bool single_task_running(void)
5412 {
5413 	return raw_rq()->nr_running == 1;
5414 }
5415 EXPORT_SYMBOL(single_task_running);
5416 
5417 unsigned long long nr_context_switches_cpu(int cpu)
5418 {
5419 	return cpu_rq(cpu)->nr_switches;
5420 }
5421 
5422 unsigned long long nr_context_switches(void)
5423 {
5424 	int i;
5425 	unsigned long long sum = 0;
5426 
5427 	for_each_possible_cpu(i)
5428 		sum += cpu_rq(i)->nr_switches;
5429 
5430 	return sum;
5431 }
5432 
5433 /*
5434  * Consumers of these two interfaces, like for example the cpuidle menu
5435  * governor, are using nonsensical data. Preferring shallow idle state selection
5436  * for a CPU that has IO-wait which might not even end up running the task when
5437  * it does become runnable.
5438  */
5439 
5440 unsigned int nr_iowait_cpu(int cpu)
5441 {
5442 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5443 }
5444 
5445 /*
5446  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5447  *
5448  * The idea behind IO-wait account is to account the idle time that we could
5449  * have spend running if it were not for IO. That is, if we were to improve the
5450  * storage performance, we'd have a proportional reduction in IO-wait time.
5451  *
5452  * This all works nicely on UP, where, when a task blocks on IO, we account
5453  * idle time as IO-wait, because if the storage were faster, it could've been
5454  * running and we'd not be idle.
5455  *
5456  * This has been extended to SMP, by doing the same for each CPU. This however
5457  * is broken.
5458  *
5459  * Imagine for instance the case where two tasks block on one CPU, only the one
5460  * CPU will have IO-wait accounted, while the other has regular idle. Even
5461  * though, if the storage were faster, both could've ran at the same time,
5462  * utilising both CPUs.
5463  *
5464  * This means, that when looking globally, the current IO-wait accounting on
5465  * SMP is a lower bound, by reason of under accounting.
5466  *
5467  * Worse, since the numbers are provided per CPU, they are sometimes
5468  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5469  * associated with any one particular CPU, it can wake to another CPU than it
5470  * blocked on. This means the per CPU IO-wait number is meaningless.
5471  *
5472  * Task CPU affinities can make all that even more 'interesting'.
5473  */
5474 
5475 unsigned int nr_iowait(void)
5476 {
5477 	unsigned int i, sum = 0;
5478 
5479 	for_each_possible_cpu(i)
5480 		sum += nr_iowait_cpu(i);
5481 
5482 	return sum;
5483 }
5484 
5485 #ifdef CONFIG_SMP
5486 
5487 /*
5488  * sched_exec - execve() is a valuable balancing opportunity, because at
5489  * this point the task has the smallest effective memory and cache footprint.
5490  */
5491 void sched_exec(void)
5492 {
5493 	struct task_struct *p = current;
5494 	struct migration_arg arg;
5495 	int dest_cpu;
5496 
5497 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5498 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5499 		if (dest_cpu == smp_processor_id())
5500 			return;
5501 
5502 		if (unlikely(!cpu_active(dest_cpu)))
5503 			return;
5504 
5505 		arg = (struct migration_arg){ p, dest_cpu };
5506 	}
5507 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5508 }
5509 
5510 #endif
5511 
5512 DEFINE_PER_CPU(struct kernel_stat, kstat);
5513 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5514 
5515 EXPORT_PER_CPU_SYMBOL(kstat);
5516 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5517 
5518 /*
5519  * The function fair_sched_class.update_curr accesses the struct curr
5520  * and its field curr->exec_start; when called from task_sched_runtime(),
5521  * we observe a high rate of cache misses in practice.
5522  * Prefetching this data results in improved performance.
5523  */
5524 static inline void prefetch_curr_exec_start(struct task_struct *p)
5525 {
5526 #ifdef CONFIG_FAIR_GROUP_SCHED
5527 	struct sched_entity *curr = p->se.cfs_rq->curr;
5528 #else
5529 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5530 #endif
5531 	prefetch(curr);
5532 	prefetch(&curr->exec_start);
5533 }
5534 
5535 /*
5536  * Return accounted runtime for the task.
5537  * In case the task is currently running, return the runtime plus current's
5538  * pending runtime that have not been accounted yet.
5539  */
5540 unsigned long long task_sched_runtime(struct task_struct *p)
5541 {
5542 	struct rq_flags rf;
5543 	struct rq *rq;
5544 	u64 ns;
5545 
5546 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5547 	/*
5548 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5549 	 * So we have a optimization chance when the task's delta_exec is 0.
5550 	 * Reading ->on_cpu is racy, but this is OK.
5551 	 *
5552 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5553 	 * If we race with it entering CPU, unaccounted time is 0. This is
5554 	 * indistinguishable from the read occurring a few cycles earlier.
5555 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5556 	 * been accounted, so we're correct here as well.
5557 	 */
5558 	if (!p->on_cpu || !task_on_rq_queued(p))
5559 		return p->se.sum_exec_runtime;
5560 #endif
5561 
5562 	rq = task_rq_lock(p, &rf);
5563 	/*
5564 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5565 	 * project cycles that may never be accounted to this
5566 	 * thread, breaking clock_gettime().
5567 	 */
5568 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5569 		prefetch_curr_exec_start(p);
5570 		update_rq_clock(rq);
5571 		p->sched_class->update_curr(rq);
5572 	}
5573 	ns = p->se.sum_exec_runtime;
5574 	task_rq_unlock(rq, p, &rf);
5575 
5576 	return ns;
5577 }
5578 
5579 #ifdef CONFIG_SCHED_DEBUG
5580 static u64 cpu_resched_latency(struct rq *rq)
5581 {
5582 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5583 	u64 resched_latency, now = rq_clock(rq);
5584 	static bool warned_once;
5585 
5586 	if (sysctl_resched_latency_warn_once && warned_once)
5587 		return 0;
5588 
5589 	if (!need_resched() || !latency_warn_ms)
5590 		return 0;
5591 
5592 	if (system_state == SYSTEM_BOOTING)
5593 		return 0;
5594 
5595 	if (!rq->last_seen_need_resched_ns) {
5596 		rq->last_seen_need_resched_ns = now;
5597 		rq->ticks_without_resched = 0;
5598 		return 0;
5599 	}
5600 
5601 	rq->ticks_without_resched++;
5602 	resched_latency = now - rq->last_seen_need_resched_ns;
5603 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5604 		return 0;
5605 
5606 	warned_once = true;
5607 
5608 	return resched_latency;
5609 }
5610 
5611 static int __init setup_resched_latency_warn_ms(char *str)
5612 {
5613 	long val;
5614 
5615 	if ((kstrtol(str, 0, &val))) {
5616 		pr_warn("Unable to set resched_latency_warn_ms\n");
5617 		return 1;
5618 	}
5619 
5620 	sysctl_resched_latency_warn_ms = val;
5621 	return 1;
5622 }
5623 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5624 #else
5625 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5626 #endif /* CONFIG_SCHED_DEBUG */
5627 
5628 /*
5629  * This function gets called by the timer code, with HZ frequency.
5630  * We call it with interrupts disabled.
5631  */
5632 void sched_tick(void)
5633 {
5634 	int cpu = smp_processor_id();
5635 	struct rq *rq = cpu_rq(cpu);
5636 	/* accounting goes to the donor task */
5637 	struct task_struct *donor;
5638 	struct rq_flags rf;
5639 	unsigned long hw_pressure;
5640 	u64 resched_latency;
5641 
5642 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5643 		arch_scale_freq_tick();
5644 
5645 	sched_clock_tick();
5646 
5647 	rq_lock(rq, &rf);
5648 	donor = rq->donor;
5649 
5650 	psi_account_irqtime(rq, donor, NULL);
5651 
5652 	update_rq_clock(rq);
5653 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5654 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5655 
5656 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5657 		resched_curr(rq);
5658 
5659 	donor->sched_class->task_tick(rq, donor, 0);
5660 	if (sched_feat(LATENCY_WARN))
5661 		resched_latency = cpu_resched_latency(rq);
5662 	calc_global_load_tick(rq);
5663 	sched_core_tick(rq);
5664 	task_tick_mm_cid(rq, donor);
5665 	scx_tick(rq);
5666 
5667 	rq_unlock(rq, &rf);
5668 
5669 	if (sched_feat(LATENCY_WARN) && resched_latency)
5670 		resched_latency_warn(cpu, resched_latency);
5671 
5672 	perf_event_task_tick();
5673 
5674 	if (donor->flags & PF_WQ_WORKER)
5675 		wq_worker_tick(donor);
5676 
5677 #ifdef CONFIG_SMP
5678 	if (!scx_switched_all()) {
5679 		rq->idle_balance = idle_cpu(cpu);
5680 		sched_balance_trigger(rq);
5681 	}
5682 #endif
5683 }
5684 
5685 #ifdef CONFIG_NO_HZ_FULL
5686 
5687 struct tick_work {
5688 	int			cpu;
5689 	atomic_t		state;
5690 	struct delayed_work	work;
5691 };
5692 /* Values for ->state, see diagram below. */
5693 #define TICK_SCHED_REMOTE_OFFLINE	0
5694 #define TICK_SCHED_REMOTE_OFFLINING	1
5695 #define TICK_SCHED_REMOTE_RUNNING	2
5696 
5697 /*
5698  * State diagram for ->state:
5699  *
5700  *
5701  *          TICK_SCHED_REMOTE_OFFLINE
5702  *                    |   ^
5703  *                    |   |
5704  *                    |   | sched_tick_remote()
5705  *                    |   |
5706  *                    |   |
5707  *                    +--TICK_SCHED_REMOTE_OFFLINING
5708  *                    |   ^
5709  *                    |   |
5710  * sched_tick_start() |   | sched_tick_stop()
5711  *                    |   |
5712  *                    V   |
5713  *          TICK_SCHED_REMOTE_RUNNING
5714  *
5715  *
5716  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5717  * and sched_tick_start() are happy to leave the state in RUNNING.
5718  */
5719 
5720 static struct tick_work __percpu *tick_work_cpu;
5721 
5722 static void sched_tick_remote(struct work_struct *work)
5723 {
5724 	struct delayed_work *dwork = to_delayed_work(work);
5725 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5726 	int cpu = twork->cpu;
5727 	struct rq *rq = cpu_rq(cpu);
5728 	int os;
5729 
5730 	/*
5731 	 * Handle the tick only if it appears the remote CPU is running in full
5732 	 * dynticks mode. The check is racy by nature, but missing a tick or
5733 	 * having one too much is no big deal because the scheduler tick updates
5734 	 * statistics and checks timeslices in a time-independent way, regardless
5735 	 * of when exactly it is running.
5736 	 */
5737 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5738 		guard(rq_lock_irq)(rq);
5739 		struct task_struct *curr = rq->curr;
5740 
5741 		if (cpu_online(cpu)) {
5742 			/*
5743 			 * Since this is a remote tick for full dynticks mode,
5744 			 * we are always sure that there is no proxy (only a
5745 			 * single task is running).
5746 			 */
5747 			SCHED_WARN_ON(rq->curr != rq->donor);
5748 			update_rq_clock(rq);
5749 
5750 			if (!is_idle_task(curr)) {
5751 				/*
5752 				 * Make sure the next tick runs within a
5753 				 * reasonable amount of time.
5754 				 */
5755 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5756 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5757 			}
5758 			curr->sched_class->task_tick(rq, curr, 0);
5759 
5760 			calc_load_nohz_remote(rq);
5761 		}
5762 	}
5763 
5764 	/*
5765 	 * Run the remote tick once per second (1Hz). This arbitrary
5766 	 * frequency is large enough to avoid overload but short enough
5767 	 * to keep scheduler internal stats reasonably up to date.  But
5768 	 * first update state to reflect hotplug activity if required.
5769 	 */
5770 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5771 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5772 	if (os == TICK_SCHED_REMOTE_RUNNING)
5773 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5774 }
5775 
5776 static void sched_tick_start(int cpu)
5777 {
5778 	int os;
5779 	struct tick_work *twork;
5780 
5781 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5782 		return;
5783 
5784 	WARN_ON_ONCE(!tick_work_cpu);
5785 
5786 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5787 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5788 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5789 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5790 		twork->cpu = cpu;
5791 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5792 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5793 	}
5794 }
5795 
5796 #ifdef CONFIG_HOTPLUG_CPU
5797 static void sched_tick_stop(int cpu)
5798 {
5799 	struct tick_work *twork;
5800 	int os;
5801 
5802 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5803 		return;
5804 
5805 	WARN_ON_ONCE(!tick_work_cpu);
5806 
5807 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5808 	/* There cannot be competing actions, but don't rely on stop-machine. */
5809 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5810 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5811 	/* Don't cancel, as this would mess up the state machine. */
5812 }
5813 #endif /* CONFIG_HOTPLUG_CPU */
5814 
5815 int __init sched_tick_offload_init(void)
5816 {
5817 	tick_work_cpu = alloc_percpu(struct tick_work);
5818 	BUG_ON(!tick_work_cpu);
5819 	return 0;
5820 }
5821 
5822 #else /* !CONFIG_NO_HZ_FULL */
5823 static inline void sched_tick_start(int cpu) { }
5824 static inline void sched_tick_stop(int cpu) { }
5825 #endif
5826 
5827 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5828 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5829 /*
5830  * If the value passed in is equal to the current preempt count
5831  * then we just disabled preemption. Start timing the latency.
5832  */
5833 static inline void preempt_latency_start(int val)
5834 {
5835 	if (preempt_count() == val) {
5836 		unsigned long ip = get_lock_parent_ip();
5837 #ifdef CONFIG_DEBUG_PREEMPT
5838 		current->preempt_disable_ip = ip;
5839 #endif
5840 		trace_preempt_off(CALLER_ADDR0, ip);
5841 	}
5842 }
5843 
5844 void preempt_count_add(int val)
5845 {
5846 #ifdef CONFIG_DEBUG_PREEMPT
5847 	/*
5848 	 * Underflow?
5849 	 */
5850 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5851 		return;
5852 #endif
5853 	__preempt_count_add(val);
5854 #ifdef CONFIG_DEBUG_PREEMPT
5855 	/*
5856 	 * Spinlock count overflowing soon?
5857 	 */
5858 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5859 				PREEMPT_MASK - 10);
5860 #endif
5861 	preempt_latency_start(val);
5862 }
5863 EXPORT_SYMBOL(preempt_count_add);
5864 NOKPROBE_SYMBOL(preempt_count_add);
5865 
5866 /*
5867  * If the value passed in equals to the current preempt count
5868  * then we just enabled preemption. Stop timing the latency.
5869  */
5870 static inline void preempt_latency_stop(int val)
5871 {
5872 	if (preempt_count() == val)
5873 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5874 }
5875 
5876 void preempt_count_sub(int val)
5877 {
5878 #ifdef CONFIG_DEBUG_PREEMPT
5879 	/*
5880 	 * Underflow?
5881 	 */
5882 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5883 		return;
5884 	/*
5885 	 * Is the spinlock portion underflowing?
5886 	 */
5887 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5888 			!(preempt_count() & PREEMPT_MASK)))
5889 		return;
5890 #endif
5891 
5892 	preempt_latency_stop(val);
5893 	__preempt_count_sub(val);
5894 }
5895 EXPORT_SYMBOL(preempt_count_sub);
5896 NOKPROBE_SYMBOL(preempt_count_sub);
5897 
5898 #else
5899 static inline void preempt_latency_start(int val) { }
5900 static inline void preempt_latency_stop(int val) { }
5901 #endif
5902 
5903 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5904 {
5905 #ifdef CONFIG_DEBUG_PREEMPT
5906 	return p->preempt_disable_ip;
5907 #else
5908 	return 0;
5909 #endif
5910 }
5911 
5912 /*
5913  * Print scheduling while atomic bug:
5914  */
5915 static noinline void __schedule_bug(struct task_struct *prev)
5916 {
5917 	/* Save this before calling printk(), since that will clobber it */
5918 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5919 
5920 	if (oops_in_progress)
5921 		return;
5922 
5923 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5924 		prev->comm, prev->pid, preempt_count());
5925 
5926 	debug_show_held_locks(prev);
5927 	print_modules();
5928 	if (irqs_disabled())
5929 		print_irqtrace_events(prev);
5930 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5931 		pr_err("Preemption disabled at:");
5932 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5933 	}
5934 	check_panic_on_warn("scheduling while atomic");
5935 
5936 	dump_stack();
5937 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5938 }
5939 
5940 /*
5941  * Various schedule()-time debugging checks and statistics:
5942  */
5943 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5944 {
5945 #ifdef CONFIG_SCHED_STACK_END_CHECK
5946 	if (task_stack_end_corrupted(prev))
5947 		panic("corrupted stack end detected inside scheduler\n");
5948 
5949 	if (task_scs_end_corrupted(prev))
5950 		panic("corrupted shadow stack detected inside scheduler\n");
5951 #endif
5952 
5953 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5954 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5955 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5956 			prev->comm, prev->pid, prev->non_block_count);
5957 		dump_stack();
5958 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5959 	}
5960 #endif
5961 
5962 	if (unlikely(in_atomic_preempt_off())) {
5963 		__schedule_bug(prev);
5964 		preempt_count_set(PREEMPT_DISABLED);
5965 	}
5966 	rcu_sleep_check();
5967 	SCHED_WARN_ON(ct_state() == CT_STATE_USER);
5968 
5969 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5970 
5971 	schedstat_inc(this_rq()->sched_count);
5972 }
5973 
5974 static void prev_balance(struct rq *rq, struct task_struct *prev,
5975 			 struct rq_flags *rf)
5976 {
5977 	const struct sched_class *start_class = prev->sched_class;
5978 	const struct sched_class *class;
5979 
5980 #ifdef CONFIG_SCHED_CLASS_EXT
5981 	/*
5982 	 * SCX requires a balance() call before every pick_task() including when
5983 	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
5984 	 * SCX instead. Also, set a flag to detect missing balance() call.
5985 	 */
5986 	if (scx_enabled()) {
5987 		rq->scx.flags |= SCX_RQ_BAL_PENDING;
5988 		if (sched_class_above(&ext_sched_class, start_class))
5989 			start_class = &ext_sched_class;
5990 	}
5991 #endif
5992 
5993 	/*
5994 	 * We must do the balancing pass before put_prev_task(), such
5995 	 * that when we release the rq->lock the task is in the same
5996 	 * state as before we took rq->lock.
5997 	 *
5998 	 * We can terminate the balance pass as soon as we know there is
5999 	 * a runnable task of @class priority or higher.
6000 	 */
6001 	for_active_class_range(class, start_class, &idle_sched_class) {
6002 		if (class->balance && class->balance(rq, prev, rf))
6003 			break;
6004 	}
6005 }
6006 
6007 /*
6008  * Pick up the highest-prio task:
6009  */
6010 static inline struct task_struct *
6011 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6012 {
6013 	const struct sched_class *class;
6014 	struct task_struct *p;
6015 
6016 	rq->dl_server = NULL;
6017 
6018 	if (scx_enabled())
6019 		goto restart;
6020 
6021 	/*
6022 	 * Optimization: we know that if all tasks are in the fair class we can
6023 	 * call that function directly, but only if the @prev task wasn't of a
6024 	 * higher scheduling class, because otherwise those lose the
6025 	 * opportunity to pull in more work from other CPUs.
6026 	 */
6027 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6028 		   rq->nr_running == rq->cfs.h_nr_queued)) {
6029 
6030 		p = pick_next_task_fair(rq, prev, rf);
6031 		if (unlikely(p == RETRY_TASK))
6032 			goto restart;
6033 
6034 		/* Assume the next prioritized class is idle_sched_class */
6035 		if (!p) {
6036 			p = pick_task_idle(rq);
6037 			put_prev_set_next_task(rq, prev, p);
6038 		}
6039 
6040 		return p;
6041 	}
6042 
6043 restart:
6044 	prev_balance(rq, prev, rf);
6045 
6046 	for_each_active_class(class) {
6047 		if (class->pick_next_task) {
6048 			p = class->pick_next_task(rq, prev);
6049 			if (p)
6050 				return p;
6051 		} else {
6052 			p = class->pick_task(rq);
6053 			if (p) {
6054 				put_prev_set_next_task(rq, prev, p);
6055 				return p;
6056 			}
6057 		}
6058 	}
6059 
6060 	BUG(); /* The idle class should always have a runnable task. */
6061 }
6062 
6063 #ifdef CONFIG_SCHED_CORE
6064 static inline bool is_task_rq_idle(struct task_struct *t)
6065 {
6066 	return (task_rq(t)->idle == t);
6067 }
6068 
6069 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6070 {
6071 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6072 }
6073 
6074 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6075 {
6076 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6077 		return true;
6078 
6079 	return a->core_cookie == b->core_cookie;
6080 }
6081 
6082 static inline struct task_struct *pick_task(struct rq *rq)
6083 {
6084 	const struct sched_class *class;
6085 	struct task_struct *p;
6086 
6087 	rq->dl_server = NULL;
6088 
6089 	for_each_active_class(class) {
6090 		p = class->pick_task(rq);
6091 		if (p)
6092 			return p;
6093 	}
6094 
6095 	BUG(); /* The idle class should always have a runnable task. */
6096 }
6097 
6098 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6099 
6100 static void queue_core_balance(struct rq *rq);
6101 
6102 static struct task_struct *
6103 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6104 {
6105 	struct task_struct *next, *p, *max = NULL;
6106 	const struct cpumask *smt_mask;
6107 	bool fi_before = false;
6108 	bool core_clock_updated = (rq == rq->core);
6109 	unsigned long cookie;
6110 	int i, cpu, occ = 0;
6111 	struct rq *rq_i;
6112 	bool need_sync;
6113 
6114 	if (!sched_core_enabled(rq))
6115 		return __pick_next_task(rq, prev, rf);
6116 
6117 	cpu = cpu_of(rq);
6118 
6119 	/* Stopper task is switching into idle, no need core-wide selection. */
6120 	if (cpu_is_offline(cpu)) {
6121 		/*
6122 		 * Reset core_pick so that we don't enter the fastpath when
6123 		 * coming online. core_pick would already be migrated to
6124 		 * another cpu during offline.
6125 		 */
6126 		rq->core_pick = NULL;
6127 		rq->core_dl_server = NULL;
6128 		return __pick_next_task(rq, prev, rf);
6129 	}
6130 
6131 	/*
6132 	 * If there were no {en,de}queues since we picked (IOW, the task
6133 	 * pointers are all still valid), and we haven't scheduled the last
6134 	 * pick yet, do so now.
6135 	 *
6136 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6137 	 * it was either offline or went offline during a sibling's core-wide
6138 	 * selection. In this case, do a core-wide selection.
6139 	 */
6140 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6141 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6142 	    rq->core_pick) {
6143 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6144 
6145 		next = rq->core_pick;
6146 		rq->dl_server = rq->core_dl_server;
6147 		rq->core_pick = NULL;
6148 		rq->core_dl_server = NULL;
6149 		goto out_set_next;
6150 	}
6151 
6152 	prev_balance(rq, prev, rf);
6153 
6154 	smt_mask = cpu_smt_mask(cpu);
6155 	need_sync = !!rq->core->core_cookie;
6156 
6157 	/* reset state */
6158 	rq->core->core_cookie = 0UL;
6159 	if (rq->core->core_forceidle_count) {
6160 		if (!core_clock_updated) {
6161 			update_rq_clock(rq->core);
6162 			core_clock_updated = true;
6163 		}
6164 		sched_core_account_forceidle(rq);
6165 		/* reset after accounting force idle */
6166 		rq->core->core_forceidle_start = 0;
6167 		rq->core->core_forceidle_count = 0;
6168 		rq->core->core_forceidle_occupation = 0;
6169 		need_sync = true;
6170 		fi_before = true;
6171 	}
6172 
6173 	/*
6174 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6175 	 *
6176 	 * @task_seq guards the task state ({en,de}queues)
6177 	 * @pick_seq is the @task_seq we did a selection on
6178 	 * @sched_seq is the @pick_seq we scheduled
6179 	 *
6180 	 * However, preemptions can cause multiple picks on the same task set.
6181 	 * 'Fix' this by also increasing @task_seq for every pick.
6182 	 */
6183 	rq->core->core_task_seq++;
6184 
6185 	/*
6186 	 * Optimize for common case where this CPU has no cookies
6187 	 * and there are no cookied tasks running on siblings.
6188 	 */
6189 	if (!need_sync) {
6190 		next = pick_task(rq);
6191 		if (!next->core_cookie) {
6192 			rq->core_pick = NULL;
6193 			rq->core_dl_server = NULL;
6194 			/*
6195 			 * For robustness, update the min_vruntime_fi for
6196 			 * unconstrained picks as well.
6197 			 */
6198 			WARN_ON_ONCE(fi_before);
6199 			task_vruntime_update(rq, next, false);
6200 			goto out_set_next;
6201 		}
6202 	}
6203 
6204 	/*
6205 	 * For each thread: do the regular task pick and find the max prio task
6206 	 * amongst them.
6207 	 *
6208 	 * Tie-break prio towards the current CPU
6209 	 */
6210 	for_each_cpu_wrap(i, smt_mask, cpu) {
6211 		rq_i = cpu_rq(i);
6212 
6213 		/*
6214 		 * Current cpu always has its clock updated on entrance to
6215 		 * pick_next_task(). If the current cpu is not the core,
6216 		 * the core may also have been updated above.
6217 		 */
6218 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6219 			update_rq_clock(rq_i);
6220 
6221 		rq_i->core_pick = p = pick_task(rq_i);
6222 		rq_i->core_dl_server = rq_i->dl_server;
6223 
6224 		if (!max || prio_less(max, p, fi_before))
6225 			max = p;
6226 	}
6227 
6228 	cookie = rq->core->core_cookie = max->core_cookie;
6229 
6230 	/*
6231 	 * For each thread: try and find a runnable task that matches @max or
6232 	 * force idle.
6233 	 */
6234 	for_each_cpu(i, smt_mask) {
6235 		rq_i = cpu_rq(i);
6236 		p = rq_i->core_pick;
6237 
6238 		if (!cookie_equals(p, cookie)) {
6239 			p = NULL;
6240 			if (cookie)
6241 				p = sched_core_find(rq_i, cookie);
6242 			if (!p)
6243 				p = idle_sched_class.pick_task(rq_i);
6244 		}
6245 
6246 		rq_i->core_pick = p;
6247 		rq_i->core_dl_server = NULL;
6248 
6249 		if (p == rq_i->idle) {
6250 			if (rq_i->nr_running) {
6251 				rq->core->core_forceidle_count++;
6252 				if (!fi_before)
6253 					rq->core->core_forceidle_seq++;
6254 			}
6255 		} else {
6256 			occ++;
6257 		}
6258 	}
6259 
6260 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6261 		rq->core->core_forceidle_start = rq_clock(rq->core);
6262 		rq->core->core_forceidle_occupation = occ;
6263 	}
6264 
6265 	rq->core->core_pick_seq = rq->core->core_task_seq;
6266 	next = rq->core_pick;
6267 	rq->core_sched_seq = rq->core->core_pick_seq;
6268 
6269 	/* Something should have been selected for current CPU */
6270 	WARN_ON_ONCE(!next);
6271 
6272 	/*
6273 	 * Reschedule siblings
6274 	 *
6275 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6276 	 * sending an IPI (below) ensures the sibling will no longer be running
6277 	 * their task. This ensures there is no inter-sibling overlap between
6278 	 * non-matching user state.
6279 	 */
6280 	for_each_cpu(i, smt_mask) {
6281 		rq_i = cpu_rq(i);
6282 
6283 		/*
6284 		 * An online sibling might have gone offline before a task
6285 		 * could be picked for it, or it might be offline but later
6286 		 * happen to come online, but its too late and nothing was
6287 		 * picked for it.  That's Ok - it will pick tasks for itself,
6288 		 * so ignore it.
6289 		 */
6290 		if (!rq_i->core_pick)
6291 			continue;
6292 
6293 		/*
6294 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6295 		 * fi_before     fi      update?
6296 		 *  0            0       1
6297 		 *  0            1       1
6298 		 *  1            0       1
6299 		 *  1            1       0
6300 		 */
6301 		if (!(fi_before && rq->core->core_forceidle_count))
6302 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6303 
6304 		rq_i->core_pick->core_occupation = occ;
6305 
6306 		if (i == cpu) {
6307 			rq_i->core_pick = NULL;
6308 			rq_i->core_dl_server = NULL;
6309 			continue;
6310 		}
6311 
6312 		/* Did we break L1TF mitigation requirements? */
6313 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6314 
6315 		if (rq_i->curr == rq_i->core_pick) {
6316 			rq_i->core_pick = NULL;
6317 			rq_i->core_dl_server = NULL;
6318 			continue;
6319 		}
6320 
6321 		resched_curr(rq_i);
6322 	}
6323 
6324 out_set_next:
6325 	put_prev_set_next_task(rq, prev, next);
6326 	if (rq->core->core_forceidle_count && next == rq->idle)
6327 		queue_core_balance(rq);
6328 
6329 	return next;
6330 }
6331 
6332 static bool try_steal_cookie(int this, int that)
6333 {
6334 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6335 	struct task_struct *p;
6336 	unsigned long cookie;
6337 	bool success = false;
6338 
6339 	guard(irq)();
6340 	guard(double_rq_lock)(dst, src);
6341 
6342 	cookie = dst->core->core_cookie;
6343 	if (!cookie)
6344 		return false;
6345 
6346 	if (dst->curr != dst->idle)
6347 		return false;
6348 
6349 	p = sched_core_find(src, cookie);
6350 	if (!p)
6351 		return false;
6352 
6353 	do {
6354 		if (p == src->core_pick || p == src->curr)
6355 			goto next;
6356 
6357 		if (!is_cpu_allowed(p, this))
6358 			goto next;
6359 
6360 		if (p->core_occupation > dst->idle->core_occupation)
6361 			goto next;
6362 		/*
6363 		 * sched_core_find() and sched_core_next() will ensure
6364 		 * that task @p is not throttled now, we also need to
6365 		 * check whether the runqueue of the destination CPU is
6366 		 * being throttled.
6367 		 */
6368 		if (sched_task_is_throttled(p, this))
6369 			goto next;
6370 
6371 		move_queued_task_locked(src, dst, p);
6372 		resched_curr(dst);
6373 
6374 		success = true;
6375 		break;
6376 
6377 next:
6378 		p = sched_core_next(p, cookie);
6379 	} while (p);
6380 
6381 	return success;
6382 }
6383 
6384 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6385 {
6386 	int i;
6387 
6388 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6389 		if (i == cpu)
6390 			continue;
6391 
6392 		if (need_resched())
6393 			break;
6394 
6395 		if (try_steal_cookie(cpu, i))
6396 			return true;
6397 	}
6398 
6399 	return false;
6400 }
6401 
6402 static void sched_core_balance(struct rq *rq)
6403 {
6404 	struct sched_domain *sd;
6405 	int cpu = cpu_of(rq);
6406 
6407 	guard(preempt)();
6408 	guard(rcu)();
6409 
6410 	raw_spin_rq_unlock_irq(rq);
6411 	for_each_domain(cpu, sd) {
6412 		if (need_resched())
6413 			break;
6414 
6415 		if (steal_cookie_task(cpu, sd))
6416 			break;
6417 	}
6418 	raw_spin_rq_lock_irq(rq);
6419 }
6420 
6421 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6422 
6423 static void queue_core_balance(struct rq *rq)
6424 {
6425 	if (!sched_core_enabled(rq))
6426 		return;
6427 
6428 	if (!rq->core->core_cookie)
6429 		return;
6430 
6431 	if (!rq->nr_running) /* not forced idle */
6432 		return;
6433 
6434 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6435 }
6436 
6437 DEFINE_LOCK_GUARD_1(core_lock, int,
6438 		    sched_core_lock(*_T->lock, &_T->flags),
6439 		    sched_core_unlock(*_T->lock, &_T->flags),
6440 		    unsigned long flags)
6441 
6442 static void sched_core_cpu_starting(unsigned int cpu)
6443 {
6444 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6445 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6446 	int t;
6447 
6448 	guard(core_lock)(&cpu);
6449 
6450 	WARN_ON_ONCE(rq->core != rq);
6451 
6452 	/* if we're the first, we'll be our own leader */
6453 	if (cpumask_weight(smt_mask) == 1)
6454 		return;
6455 
6456 	/* find the leader */
6457 	for_each_cpu(t, smt_mask) {
6458 		if (t == cpu)
6459 			continue;
6460 		rq = cpu_rq(t);
6461 		if (rq->core == rq) {
6462 			core_rq = rq;
6463 			break;
6464 		}
6465 	}
6466 
6467 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6468 		return;
6469 
6470 	/* install and validate core_rq */
6471 	for_each_cpu(t, smt_mask) {
6472 		rq = cpu_rq(t);
6473 
6474 		if (t == cpu)
6475 			rq->core = core_rq;
6476 
6477 		WARN_ON_ONCE(rq->core != core_rq);
6478 	}
6479 }
6480 
6481 static void sched_core_cpu_deactivate(unsigned int cpu)
6482 {
6483 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6484 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6485 	int t;
6486 
6487 	guard(core_lock)(&cpu);
6488 
6489 	/* if we're the last man standing, nothing to do */
6490 	if (cpumask_weight(smt_mask) == 1) {
6491 		WARN_ON_ONCE(rq->core != rq);
6492 		return;
6493 	}
6494 
6495 	/* if we're not the leader, nothing to do */
6496 	if (rq->core != rq)
6497 		return;
6498 
6499 	/* find a new leader */
6500 	for_each_cpu(t, smt_mask) {
6501 		if (t == cpu)
6502 			continue;
6503 		core_rq = cpu_rq(t);
6504 		break;
6505 	}
6506 
6507 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6508 		return;
6509 
6510 	/* copy the shared state to the new leader */
6511 	core_rq->core_task_seq             = rq->core_task_seq;
6512 	core_rq->core_pick_seq             = rq->core_pick_seq;
6513 	core_rq->core_cookie               = rq->core_cookie;
6514 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6515 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6516 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6517 
6518 	/*
6519 	 * Accounting edge for forced idle is handled in pick_next_task().
6520 	 * Don't need another one here, since the hotplug thread shouldn't
6521 	 * have a cookie.
6522 	 */
6523 	core_rq->core_forceidle_start = 0;
6524 
6525 	/* install new leader */
6526 	for_each_cpu(t, smt_mask) {
6527 		rq = cpu_rq(t);
6528 		rq->core = core_rq;
6529 	}
6530 }
6531 
6532 static inline void sched_core_cpu_dying(unsigned int cpu)
6533 {
6534 	struct rq *rq = cpu_rq(cpu);
6535 
6536 	if (rq->core != rq)
6537 		rq->core = rq;
6538 }
6539 
6540 #else /* !CONFIG_SCHED_CORE */
6541 
6542 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6543 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6544 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6545 
6546 static struct task_struct *
6547 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6548 {
6549 	return __pick_next_task(rq, prev, rf);
6550 }
6551 
6552 #endif /* CONFIG_SCHED_CORE */
6553 
6554 /*
6555  * Constants for the sched_mode argument of __schedule().
6556  *
6557  * The mode argument allows RT enabled kernels to differentiate a
6558  * preemption from blocking on an 'sleeping' spin/rwlock.
6559  */
6560 #define SM_IDLE			(-1)
6561 #define SM_NONE			0
6562 #define SM_PREEMPT		1
6563 #define SM_RTLOCK_WAIT		2
6564 
6565 /*
6566  * Helper function for __schedule()
6567  *
6568  * If a task does not have signals pending, deactivate it
6569  * Otherwise marks the task's __state as RUNNING
6570  */
6571 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6572 			      unsigned long task_state)
6573 {
6574 	int flags = DEQUEUE_NOCLOCK;
6575 
6576 	if (signal_pending_state(task_state, p)) {
6577 		WRITE_ONCE(p->__state, TASK_RUNNING);
6578 		return false;
6579 	}
6580 
6581 	p->sched_contributes_to_load =
6582 		(task_state & TASK_UNINTERRUPTIBLE) &&
6583 		!(task_state & TASK_NOLOAD) &&
6584 		!(task_state & TASK_FROZEN);
6585 
6586 	if (unlikely(is_special_task_state(task_state)))
6587 		flags |= DEQUEUE_SPECIAL;
6588 
6589 	/*
6590 	 * __schedule()			ttwu()
6591 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6592 	 *   if (prev_state)		    goto out;
6593 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6594 	 *				  p->state = TASK_WAKING
6595 	 *
6596 	 * Where __schedule() and ttwu() have matching control dependencies.
6597 	 *
6598 	 * After this, schedule() must not care about p->state any more.
6599 	 */
6600 	block_task(rq, p, flags);
6601 	return true;
6602 }
6603 
6604 /*
6605  * __schedule() is the main scheduler function.
6606  *
6607  * The main means of driving the scheduler and thus entering this function are:
6608  *
6609  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6610  *
6611  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6612  *      paths. For example, see arch/x86/entry_64.S.
6613  *
6614  *      To drive preemption between tasks, the scheduler sets the flag in timer
6615  *      interrupt handler sched_tick().
6616  *
6617  *   3. Wakeups don't really cause entry into schedule(). They add a
6618  *      task to the run-queue and that's it.
6619  *
6620  *      Now, if the new task added to the run-queue preempts the current
6621  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6622  *      called on the nearest possible occasion:
6623  *
6624  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6625  *
6626  *         - in syscall or exception context, at the next outmost
6627  *           preempt_enable(). (this might be as soon as the wake_up()'s
6628  *           spin_unlock()!)
6629  *
6630  *         - in IRQ context, return from interrupt-handler to
6631  *           preemptible context
6632  *
6633  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6634  *         then at the next:
6635  *
6636  *          - cond_resched() call
6637  *          - explicit schedule() call
6638  *          - return from syscall or exception to user-space
6639  *          - return from interrupt-handler to user-space
6640  *
6641  * WARNING: must be called with preemption disabled!
6642  */
6643 static void __sched notrace __schedule(int sched_mode)
6644 {
6645 	struct task_struct *prev, *next;
6646 	/*
6647 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6648 	 * as a preemption by schedule_debug() and RCU.
6649 	 */
6650 	bool preempt = sched_mode > SM_NONE;
6651 	unsigned long *switch_count;
6652 	unsigned long prev_state;
6653 	struct rq_flags rf;
6654 	struct rq *rq;
6655 	int cpu;
6656 
6657 	cpu = smp_processor_id();
6658 	rq = cpu_rq(cpu);
6659 	prev = rq->curr;
6660 
6661 	schedule_debug(prev, preempt);
6662 
6663 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6664 		hrtick_clear(rq);
6665 
6666 	local_irq_disable();
6667 	rcu_note_context_switch(preempt);
6668 
6669 	/*
6670 	 * Make sure that signal_pending_state()->signal_pending() below
6671 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6672 	 * done by the caller to avoid the race with signal_wake_up():
6673 	 *
6674 	 * __set_current_state(@state)		signal_wake_up()
6675 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6676 	 *					  wake_up_state(p, state)
6677 	 *   LOCK rq->lock			    LOCK p->pi_state
6678 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6679 	 *     if (signal_pending_state())	    if (p->state & @state)
6680 	 *
6681 	 * Also, the membarrier system call requires a full memory barrier
6682 	 * after coming from user-space, before storing to rq->curr; this
6683 	 * barrier matches a full barrier in the proximity of the membarrier
6684 	 * system call exit.
6685 	 */
6686 	rq_lock(rq, &rf);
6687 	smp_mb__after_spinlock();
6688 
6689 	/* Promote REQ to ACT */
6690 	rq->clock_update_flags <<= 1;
6691 	update_rq_clock(rq);
6692 	rq->clock_update_flags = RQCF_UPDATED;
6693 
6694 	switch_count = &prev->nivcsw;
6695 
6696 	/* Task state changes only considers SM_PREEMPT as preemption */
6697 	preempt = sched_mode == SM_PREEMPT;
6698 
6699 	/*
6700 	 * We must load prev->state once (task_struct::state is volatile), such
6701 	 * that we form a control dependency vs deactivate_task() below.
6702 	 */
6703 	prev_state = READ_ONCE(prev->__state);
6704 	if (sched_mode == SM_IDLE) {
6705 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6706 		if (!rq->nr_running && !scx_enabled()) {
6707 			next = prev;
6708 			goto picked;
6709 		}
6710 	} else if (!preempt && prev_state) {
6711 		try_to_block_task(rq, prev, prev_state);
6712 		switch_count = &prev->nvcsw;
6713 	}
6714 
6715 	next = pick_next_task(rq, prev, &rf);
6716 	rq_set_donor(rq, next);
6717 picked:
6718 	clear_tsk_need_resched(prev);
6719 	clear_preempt_need_resched();
6720 #ifdef CONFIG_SCHED_DEBUG
6721 	rq->last_seen_need_resched_ns = 0;
6722 #endif
6723 
6724 	if (likely(prev != next)) {
6725 		rq->nr_switches++;
6726 		/*
6727 		 * RCU users of rcu_dereference(rq->curr) may not see
6728 		 * changes to task_struct made by pick_next_task().
6729 		 */
6730 		RCU_INIT_POINTER(rq->curr, next);
6731 		/*
6732 		 * The membarrier system call requires each architecture
6733 		 * to have a full memory barrier after updating
6734 		 * rq->curr, before returning to user-space.
6735 		 *
6736 		 * Here are the schemes providing that barrier on the
6737 		 * various architectures:
6738 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6739 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6740 		 *   on PowerPC and on RISC-V.
6741 		 * - finish_lock_switch() for weakly-ordered
6742 		 *   architectures where spin_unlock is a full barrier,
6743 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6744 		 *   is a RELEASE barrier),
6745 		 *
6746 		 * The barrier matches a full barrier in the proximity of
6747 		 * the membarrier system call entry.
6748 		 *
6749 		 * On RISC-V, this barrier pairing is also needed for the
6750 		 * SYNC_CORE command when switching between processes, cf.
6751 		 * the inline comments in membarrier_arch_switch_mm().
6752 		 */
6753 		++*switch_count;
6754 
6755 		migrate_disable_switch(rq, prev);
6756 		psi_account_irqtime(rq, prev, next);
6757 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6758 					     prev->se.sched_delayed);
6759 
6760 		trace_sched_switch(preempt, prev, next, prev_state);
6761 
6762 		/* Also unlocks the rq: */
6763 		rq = context_switch(rq, prev, next, &rf);
6764 	} else {
6765 		rq_unpin_lock(rq, &rf);
6766 		__balance_callbacks(rq);
6767 		raw_spin_rq_unlock_irq(rq);
6768 	}
6769 }
6770 
6771 void __noreturn do_task_dead(void)
6772 {
6773 	/* Causes final put_task_struct in finish_task_switch(): */
6774 	set_special_state(TASK_DEAD);
6775 
6776 	/* Tell freezer to ignore us: */
6777 	current->flags |= PF_NOFREEZE;
6778 
6779 	__schedule(SM_NONE);
6780 	BUG();
6781 
6782 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6783 	for (;;)
6784 		cpu_relax();
6785 }
6786 
6787 static inline void sched_submit_work(struct task_struct *tsk)
6788 {
6789 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6790 	unsigned int task_flags;
6791 
6792 	/*
6793 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6794 	 * will use a blocking primitive -- which would lead to recursion.
6795 	 */
6796 	lock_map_acquire_try(&sched_map);
6797 
6798 	task_flags = tsk->flags;
6799 	/*
6800 	 * If a worker goes to sleep, notify and ask workqueue whether it
6801 	 * wants to wake up a task to maintain concurrency.
6802 	 */
6803 	if (task_flags & PF_WQ_WORKER)
6804 		wq_worker_sleeping(tsk);
6805 	else if (task_flags & PF_IO_WORKER)
6806 		io_wq_worker_sleeping(tsk);
6807 
6808 	/*
6809 	 * spinlock and rwlock must not flush block requests.  This will
6810 	 * deadlock if the callback attempts to acquire a lock which is
6811 	 * already acquired.
6812 	 */
6813 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6814 
6815 	/*
6816 	 * If we are going to sleep and we have plugged IO queued,
6817 	 * make sure to submit it to avoid deadlocks.
6818 	 */
6819 	blk_flush_plug(tsk->plug, true);
6820 
6821 	lock_map_release(&sched_map);
6822 }
6823 
6824 static void sched_update_worker(struct task_struct *tsk)
6825 {
6826 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6827 		if (tsk->flags & PF_BLOCK_TS)
6828 			blk_plug_invalidate_ts(tsk);
6829 		if (tsk->flags & PF_WQ_WORKER)
6830 			wq_worker_running(tsk);
6831 		else if (tsk->flags & PF_IO_WORKER)
6832 			io_wq_worker_running(tsk);
6833 	}
6834 }
6835 
6836 static __always_inline void __schedule_loop(int sched_mode)
6837 {
6838 	do {
6839 		preempt_disable();
6840 		__schedule(sched_mode);
6841 		sched_preempt_enable_no_resched();
6842 	} while (need_resched());
6843 }
6844 
6845 asmlinkage __visible void __sched schedule(void)
6846 {
6847 	struct task_struct *tsk = current;
6848 
6849 #ifdef CONFIG_RT_MUTEXES
6850 	lockdep_assert(!tsk->sched_rt_mutex);
6851 #endif
6852 
6853 	if (!task_is_running(tsk))
6854 		sched_submit_work(tsk);
6855 	__schedule_loop(SM_NONE);
6856 	sched_update_worker(tsk);
6857 }
6858 EXPORT_SYMBOL(schedule);
6859 
6860 /*
6861  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6862  * state (have scheduled out non-voluntarily) by making sure that all
6863  * tasks have either left the run queue or have gone into user space.
6864  * As idle tasks do not do either, they must not ever be preempted
6865  * (schedule out non-voluntarily).
6866  *
6867  * schedule_idle() is similar to schedule_preempt_disable() except that it
6868  * never enables preemption because it does not call sched_submit_work().
6869  */
6870 void __sched schedule_idle(void)
6871 {
6872 	/*
6873 	 * As this skips calling sched_submit_work(), which the idle task does
6874 	 * regardless because that function is a NOP when the task is in a
6875 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6876 	 * current task can be in any other state. Note, idle is always in the
6877 	 * TASK_RUNNING state.
6878 	 */
6879 	WARN_ON_ONCE(current->__state);
6880 	do {
6881 		__schedule(SM_IDLE);
6882 	} while (need_resched());
6883 }
6884 
6885 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6886 asmlinkage __visible void __sched schedule_user(void)
6887 {
6888 	/*
6889 	 * If we come here after a random call to set_need_resched(),
6890 	 * or we have been woken up remotely but the IPI has not yet arrived,
6891 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6892 	 * we find a better solution.
6893 	 *
6894 	 * NB: There are buggy callers of this function.  Ideally we
6895 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6896 	 * too frequently to make sense yet.
6897 	 */
6898 	enum ctx_state prev_state = exception_enter();
6899 	schedule();
6900 	exception_exit(prev_state);
6901 }
6902 #endif
6903 
6904 /**
6905  * schedule_preempt_disabled - called with preemption disabled
6906  *
6907  * Returns with preemption disabled. Note: preempt_count must be 1
6908  */
6909 void __sched schedule_preempt_disabled(void)
6910 {
6911 	sched_preempt_enable_no_resched();
6912 	schedule();
6913 	preempt_disable();
6914 }
6915 
6916 #ifdef CONFIG_PREEMPT_RT
6917 void __sched notrace schedule_rtlock(void)
6918 {
6919 	__schedule_loop(SM_RTLOCK_WAIT);
6920 }
6921 NOKPROBE_SYMBOL(schedule_rtlock);
6922 #endif
6923 
6924 static void __sched notrace preempt_schedule_common(void)
6925 {
6926 	do {
6927 		/*
6928 		 * Because the function tracer can trace preempt_count_sub()
6929 		 * and it also uses preempt_enable/disable_notrace(), if
6930 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6931 		 * by the function tracer will call this function again and
6932 		 * cause infinite recursion.
6933 		 *
6934 		 * Preemption must be disabled here before the function
6935 		 * tracer can trace. Break up preempt_disable() into two
6936 		 * calls. One to disable preemption without fear of being
6937 		 * traced. The other to still record the preemption latency,
6938 		 * which can also be traced by the function tracer.
6939 		 */
6940 		preempt_disable_notrace();
6941 		preempt_latency_start(1);
6942 		__schedule(SM_PREEMPT);
6943 		preempt_latency_stop(1);
6944 		preempt_enable_no_resched_notrace();
6945 
6946 		/*
6947 		 * Check again in case we missed a preemption opportunity
6948 		 * between schedule and now.
6949 		 */
6950 	} while (need_resched());
6951 }
6952 
6953 #ifdef CONFIG_PREEMPTION
6954 /*
6955  * This is the entry point to schedule() from in-kernel preemption
6956  * off of preempt_enable.
6957  */
6958 asmlinkage __visible void __sched notrace preempt_schedule(void)
6959 {
6960 	/*
6961 	 * If there is a non-zero preempt_count or interrupts are disabled,
6962 	 * we do not want to preempt the current task. Just return..
6963 	 */
6964 	if (likely(!preemptible()))
6965 		return;
6966 	preempt_schedule_common();
6967 }
6968 NOKPROBE_SYMBOL(preempt_schedule);
6969 EXPORT_SYMBOL(preempt_schedule);
6970 
6971 #ifdef CONFIG_PREEMPT_DYNAMIC
6972 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6973 #ifndef preempt_schedule_dynamic_enabled
6974 #define preempt_schedule_dynamic_enabled	preempt_schedule
6975 #define preempt_schedule_dynamic_disabled	NULL
6976 #endif
6977 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6978 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6979 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6980 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6981 void __sched notrace dynamic_preempt_schedule(void)
6982 {
6983 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6984 		return;
6985 	preempt_schedule();
6986 }
6987 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6988 EXPORT_SYMBOL(dynamic_preempt_schedule);
6989 #endif
6990 #endif
6991 
6992 /**
6993  * preempt_schedule_notrace - preempt_schedule called by tracing
6994  *
6995  * The tracing infrastructure uses preempt_enable_notrace to prevent
6996  * recursion and tracing preempt enabling caused by the tracing
6997  * infrastructure itself. But as tracing can happen in areas coming
6998  * from userspace or just about to enter userspace, a preempt enable
6999  * can occur before user_exit() is called. This will cause the scheduler
7000  * to be called when the system is still in usermode.
7001  *
7002  * To prevent this, the preempt_enable_notrace will use this function
7003  * instead of preempt_schedule() to exit user context if needed before
7004  * calling the scheduler.
7005  */
7006 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7007 {
7008 	enum ctx_state prev_ctx;
7009 
7010 	if (likely(!preemptible()))
7011 		return;
7012 
7013 	do {
7014 		/*
7015 		 * Because the function tracer can trace preempt_count_sub()
7016 		 * and it also uses preempt_enable/disable_notrace(), if
7017 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7018 		 * by the function tracer will call this function again and
7019 		 * cause infinite recursion.
7020 		 *
7021 		 * Preemption must be disabled here before the function
7022 		 * tracer can trace. Break up preempt_disable() into two
7023 		 * calls. One to disable preemption without fear of being
7024 		 * traced. The other to still record the preemption latency,
7025 		 * which can also be traced by the function tracer.
7026 		 */
7027 		preempt_disable_notrace();
7028 		preempt_latency_start(1);
7029 		/*
7030 		 * Needs preempt disabled in case user_exit() is traced
7031 		 * and the tracer calls preempt_enable_notrace() causing
7032 		 * an infinite recursion.
7033 		 */
7034 		prev_ctx = exception_enter();
7035 		__schedule(SM_PREEMPT);
7036 		exception_exit(prev_ctx);
7037 
7038 		preempt_latency_stop(1);
7039 		preempt_enable_no_resched_notrace();
7040 	} while (need_resched());
7041 }
7042 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7043 
7044 #ifdef CONFIG_PREEMPT_DYNAMIC
7045 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7046 #ifndef preempt_schedule_notrace_dynamic_enabled
7047 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7048 #define preempt_schedule_notrace_dynamic_disabled	NULL
7049 #endif
7050 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7051 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7052 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7053 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7054 void __sched notrace dynamic_preempt_schedule_notrace(void)
7055 {
7056 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7057 		return;
7058 	preempt_schedule_notrace();
7059 }
7060 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7061 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7062 #endif
7063 #endif
7064 
7065 #endif /* CONFIG_PREEMPTION */
7066 
7067 /*
7068  * This is the entry point to schedule() from kernel preemption
7069  * off of IRQ context.
7070  * Note, that this is called and return with IRQs disabled. This will
7071  * protect us against recursive calling from IRQ contexts.
7072  */
7073 asmlinkage __visible void __sched preempt_schedule_irq(void)
7074 {
7075 	enum ctx_state prev_state;
7076 
7077 	/* Catch callers which need to be fixed */
7078 	BUG_ON(preempt_count() || !irqs_disabled());
7079 
7080 	prev_state = exception_enter();
7081 
7082 	do {
7083 		preempt_disable();
7084 		local_irq_enable();
7085 		__schedule(SM_PREEMPT);
7086 		local_irq_disable();
7087 		sched_preempt_enable_no_resched();
7088 	} while (need_resched());
7089 
7090 	exception_exit(prev_state);
7091 }
7092 
7093 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7094 			  void *key)
7095 {
7096 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7097 	return try_to_wake_up(curr->private, mode, wake_flags);
7098 }
7099 EXPORT_SYMBOL(default_wake_function);
7100 
7101 const struct sched_class *__setscheduler_class(int policy, int prio)
7102 {
7103 	if (dl_prio(prio))
7104 		return &dl_sched_class;
7105 
7106 	if (rt_prio(prio))
7107 		return &rt_sched_class;
7108 
7109 #ifdef CONFIG_SCHED_CLASS_EXT
7110 	if (task_should_scx(policy))
7111 		return &ext_sched_class;
7112 #endif
7113 
7114 	return &fair_sched_class;
7115 }
7116 
7117 #ifdef CONFIG_RT_MUTEXES
7118 
7119 /*
7120  * Would be more useful with typeof()/auto_type but they don't mix with
7121  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7122  * name such that if someone were to implement this function we get to compare
7123  * notes.
7124  */
7125 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7126 
7127 void rt_mutex_pre_schedule(void)
7128 {
7129 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7130 	sched_submit_work(current);
7131 }
7132 
7133 void rt_mutex_schedule(void)
7134 {
7135 	lockdep_assert(current->sched_rt_mutex);
7136 	__schedule_loop(SM_NONE);
7137 }
7138 
7139 void rt_mutex_post_schedule(void)
7140 {
7141 	sched_update_worker(current);
7142 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7143 }
7144 
7145 /*
7146  * rt_mutex_setprio - set the current priority of a task
7147  * @p: task to boost
7148  * @pi_task: donor task
7149  *
7150  * This function changes the 'effective' priority of a task. It does
7151  * not touch ->normal_prio like __setscheduler().
7152  *
7153  * Used by the rt_mutex code to implement priority inheritance
7154  * logic. Call site only calls if the priority of the task changed.
7155  */
7156 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7157 {
7158 	int prio, oldprio, queued, running, queue_flag =
7159 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7160 	const struct sched_class *prev_class, *next_class;
7161 	struct rq_flags rf;
7162 	struct rq *rq;
7163 
7164 	/* XXX used to be waiter->prio, not waiter->task->prio */
7165 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7166 
7167 	/*
7168 	 * If nothing changed; bail early.
7169 	 */
7170 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7171 		return;
7172 
7173 	rq = __task_rq_lock(p, &rf);
7174 	update_rq_clock(rq);
7175 	/*
7176 	 * Set under pi_lock && rq->lock, such that the value can be used under
7177 	 * either lock.
7178 	 *
7179 	 * Note that there is loads of tricky to make this pointer cache work
7180 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7181 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7182 	 * task is allowed to run again (and can exit). This ensures the pointer
7183 	 * points to a blocked task -- which guarantees the task is present.
7184 	 */
7185 	p->pi_top_task = pi_task;
7186 
7187 	/*
7188 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7189 	 */
7190 	if (prio == p->prio && !dl_prio(prio))
7191 		goto out_unlock;
7192 
7193 	/*
7194 	 * Idle task boosting is a no-no in general. There is one
7195 	 * exception, when PREEMPT_RT and NOHZ is active:
7196 	 *
7197 	 * The idle task calls get_next_timer_interrupt() and holds
7198 	 * the timer wheel base->lock on the CPU and another CPU wants
7199 	 * to access the timer (probably to cancel it). We can safely
7200 	 * ignore the boosting request, as the idle CPU runs this code
7201 	 * with interrupts disabled and will complete the lock
7202 	 * protected section without being interrupted. So there is no
7203 	 * real need to boost.
7204 	 */
7205 	if (unlikely(p == rq->idle)) {
7206 		WARN_ON(p != rq->curr);
7207 		WARN_ON(p->pi_blocked_on);
7208 		goto out_unlock;
7209 	}
7210 
7211 	trace_sched_pi_setprio(p, pi_task);
7212 	oldprio = p->prio;
7213 
7214 	if (oldprio == prio)
7215 		queue_flag &= ~DEQUEUE_MOVE;
7216 
7217 	prev_class = p->sched_class;
7218 	next_class = __setscheduler_class(p->policy, prio);
7219 
7220 	if (prev_class != next_class && p->se.sched_delayed)
7221 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7222 
7223 	queued = task_on_rq_queued(p);
7224 	running = task_current_donor(rq, p);
7225 	if (queued)
7226 		dequeue_task(rq, p, queue_flag);
7227 	if (running)
7228 		put_prev_task(rq, p);
7229 
7230 	/*
7231 	 * Boosting condition are:
7232 	 * 1. -rt task is running and holds mutex A
7233 	 *      --> -dl task blocks on mutex A
7234 	 *
7235 	 * 2. -dl task is running and holds mutex A
7236 	 *      --> -dl task blocks on mutex A and could preempt the
7237 	 *          running task
7238 	 */
7239 	if (dl_prio(prio)) {
7240 		if (!dl_prio(p->normal_prio) ||
7241 		    (pi_task && dl_prio(pi_task->prio) &&
7242 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7243 			p->dl.pi_se = pi_task->dl.pi_se;
7244 			queue_flag |= ENQUEUE_REPLENISH;
7245 		} else {
7246 			p->dl.pi_se = &p->dl;
7247 		}
7248 	} else if (rt_prio(prio)) {
7249 		if (dl_prio(oldprio))
7250 			p->dl.pi_se = &p->dl;
7251 		if (oldprio < prio)
7252 			queue_flag |= ENQUEUE_HEAD;
7253 	} else {
7254 		if (dl_prio(oldprio))
7255 			p->dl.pi_se = &p->dl;
7256 		if (rt_prio(oldprio))
7257 			p->rt.timeout = 0;
7258 	}
7259 
7260 	p->sched_class = next_class;
7261 	p->prio = prio;
7262 
7263 	check_class_changing(rq, p, prev_class);
7264 
7265 	if (queued)
7266 		enqueue_task(rq, p, queue_flag);
7267 	if (running)
7268 		set_next_task(rq, p);
7269 
7270 	check_class_changed(rq, p, prev_class, oldprio);
7271 out_unlock:
7272 	/* Avoid rq from going away on us: */
7273 	preempt_disable();
7274 
7275 	rq_unpin_lock(rq, &rf);
7276 	__balance_callbacks(rq);
7277 	raw_spin_rq_unlock(rq);
7278 
7279 	preempt_enable();
7280 }
7281 #endif
7282 
7283 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7284 int __sched __cond_resched(void)
7285 {
7286 	if (should_resched(0)) {
7287 		preempt_schedule_common();
7288 		return 1;
7289 	}
7290 	/*
7291 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
7292 	 * whether the current CPU is in an RCU read-side critical section,
7293 	 * so the tick can report quiescent states even for CPUs looping
7294 	 * in kernel context.  In contrast, in non-preemptible kernels,
7295 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7296 	 * processes executing in kernel context might never report an
7297 	 * RCU quiescent state.  Therefore, the following code causes
7298 	 * cond_resched() to report a quiescent state, but only when RCU
7299 	 * is in urgent need of one.
7300 	 */
7301 #ifndef CONFIG_PREEMPT_RCU
7302 	rcu_all_qs();
7303 #endif
7304 	return 0;
7305 }
7306 EXPORT_SYMBOL(__cond_resched);
7307 #endif
7308 
7309 #ifdef CONFIG_PREEMPT_DYNAMIC
7310 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7311 #define cond_resched_dynamic_enabled	__cond_resched
7312 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7313 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7314 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7315 
7316 #define might_resched_dynamic_enabled	__cond_resched
7317 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7318 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7319 EXPORT_STATIC_CALL_TRAMP(might_resched);
7320 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7321 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7322 int __sched dynamic_cond_resched(void)
7323 {
7324 	klp_sched_try_switch();
7325 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7326 		return 0;
7327 	return __cond_resched();
7328 }
7329 EXPORT_SYMBOL(dynamic_cond_resched);
7330 
7331 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7332 int __sched dynamic_might_resched(void)
7333 {
7334 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7335 		return 0;
7336 	return __cond_resched();
7337 }
7338 EXPORT_SYMBOL(dynamic_might_resched);
7339 #endif
7340 #endif
7341 
7342 /*
7343  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7344  * call schedule, and on return reacquire the lock.
7345  *
7346  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7347  * operations here to prevent schedule() from being called twice (once via
7348  * spin_unlock(), once by hand).
7349  */
7350 int __cond_resched_lock(spinlock_t *lock)
7351 {
7352 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7353 	int ret = 0;
7354 
7355 	lockdep_assert_held(lock);
7356 
7357 	if (spin_needbreak(lock) || resched) {
7358 		spin_unlock(lock);
7359 		if (!_cond_resched())
7360 			cpu_relax();
7361 		ret = 1;
7362 		spin_lock(lock);
7363 	}
7364 	return ret;
7365 }
7366 EXPORT_SYMBOL(__cond_resched_lock);
7367 
7368 int __cond_resched_rwlock_read(rwlock_t *lock)
7369 {
7370 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7371 	int ret = 0;
7372 
7373 	lockdep_assert_held_read(lock);
7374 
7375 	if (rwlock_needbreak(lock) || resched) {
7376 		read_unlock(lock);
7377 		if (!_cond_resched())
7378 			cpu_relax();
7379 		ret = 1;
7380 		read_lock(lock);
7381 	}
7382 	return ret;
7383 }
7384 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7385 
7386 int __cond_resched_rwlock_write(rwlock_t *lock)
7387 {
7388 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7389 	int ret = 0;
7390 
7391 	lockdep_assert_held_write(lock);
7392 
7393 	if (rwlock_needbreak(lock) || resched) {
7394 		write_unlock(lock);
7395 		if (!_cond_resched())
7396 			cpu_relax();
7397 		ret = 1;
7398 		write_lock(lock);
7399 	}
7400 	return ret;
7401 }
7402 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7403 
7404 #ifdef CONFIG_PREEMPT_DYNAMIC
7405 
7406 #ifdef CONFIG_GENERIC_ENTRY
7407 #include <linux/entry-common.h>
7408 #endif
7409 
7410 /*
7411  * SC:cond_resched
7412  * SC:might_resched
7413  * SC:preempt_schedule
7414  * SC:preempt_schedule_notrace
7415  * SC:irqentry_exit_cond_resched
7416  *
7417  *
7418  * NONE:
7419  *   cond_resched               <- __cond_resched
7420  *   might_resched              <- RET0
7421  *   preempt_schedule           <- NOP
7422  *   preempt_schedule_notrace   <- NOP
7423  *   irqentry_exit_cond_resched <- NOP
7424  *   dynamic_preempt_lazy       <- false
7425  *
7426  * VOLUNTARY:
7427  *   cond_resched               <- __cond_resched
7428  *   might_resched              <- __cond_resched
7429  *   preempt_schedule           <- NOP
7430  *   preempt_schedule_notrace   <- NOP
7431  *   irqentry_exit_cond_resched <- NOP
7432  *   dynamic_preempt_lazy       <- false
7433  *
7434  * FULL:
7435  *   cond_resched               <- RET0
7436  *   might_resched              <- RET0
7437  *   preempt_schedule           <- preempt_schedule
7438  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7439  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7440  *   dynamic_preempt_lazy       <- false
7441  *
7442  * LAZY:
7443  *   cond_resched               <- RET0
7444  *   might_resched              <- RET0
7445  *   preempt_schedule           <- preempt_schedule
7446  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7447  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7448  *   dynamic_preempt_lazy       <- true
7449  */
7450 
7451 enum {
7452 	preempt_dynamic_undefined = -1,
7453 	preempt_dynamic_none,
7454 	preempt_dynamic_voluntary,
7455 	preempt_dynamic_full,
7456 	preempt_dynamic_lazy,
7457 };
7458 
7459 int preempt_dynamic_mode = preempt_dynamic_undefined;
7460 
7461 int sched_dynamic_mode(const char *str)
7462 {
7463 #ifndef CONFIG_PREEMPT_RT
7464 	if (!strcmp(str, "none"))
7465 		return preempt_dynamic_none;
7466 
7467 	if (!strcmp(str, "voluntary"))
7468 		return preempt_dynamic_voluntary;
7469 #endif
7470 
7471 	if (!strcmp(str, "full"))
7472 		return preempt_dynamic_full;
7473 
7474 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7475 	if (!strcmp(str, "lazy"))
7476 		return preempt_dynamic_lazy;
7477 #endif
7478 
7479 	return -EINVAL;
7480 }
7481 
7482 #define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7483 #define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7484 
7485 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7486 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7487 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7488 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7489 #define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7490 #define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7491 #else
7492 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7493 #endif
7494 
7495 static DEFINE_MUTEX(sched_dynamic_mutex);
7496 static bool klp_override;
7497 
7498 static void __sched_dynamic_update(int mode)
7499 {
7500 	/*
7501 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7502 	 * the ZERO state, which is invalid.
7503 	 */
7504 	if (!klp_override)
7505 		preempt_dynamic_enable(cond_resched);
7506 	preempt_dynamic_enable(might_resched);
7507 	preempt_dynamic_enable(preempt_schedule);
7508 	preempt_dynamic_enable(preempt_schedule_notrace);
7509 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7510 	preempt_dynamic_key_disable(preempt_lazy);
7511 
7512 	switch (mode) {
7513 	case preempt_dynamic_none:
7514 		if (!klp_override)
7515 			preempt_dynamic_enable(cond_resched);
7516 		preempt_dynamic_disable(might_resched);
7517 		preempt_dynamic_disable(preempt_schedule);
7518 		preempt_dynamic_disable(preempt_schedule_notrace);
7519 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7520 		preempt_dynamic_key_disable(preempt_lazy);
7521 		if (mode != preempt_dynamic_mode)
7522 			pr_info("Dynamic Preempt: none\n");
7523 		break;
7524 
7525 	case preempt_dynamic_voluntary:
7526 		if (!klp_override)
7527 			preempt_dynamic_enable(cond_resched);
7528 		preempt_dynamic_enable(might_resched);
7529 		preempt_dynamic_disable(preempt_schedule);
7530 		preempt_dynamic_disable(preempt_schedule_notrace);
7531 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7532 		preempt_dynamic_key_disable(preempt_lazy);
7533 		if (mode != preempt_dynamic_mode)
7534 			pr_info("Dynamic Preempt: voluntary\n");
7535 		break;
7536 
7537 	case preempt_dynamic_full:
7538 		if (!klp_override)
7539 			preempt_dynamic_disable(cond_resched);
7540 		preempt_dynamic_disable(might_resched);
7541 		preempt_dynamic_enable(preempt_schedule);
7542 		preempt_dynamic_enable(preempt_schedule_notrace);
7543 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7544 		preempt_dynamic_key_disable(preempt_lazy);
7545 		if (mode != preempt_dynamic_mode)
7546 			pr_info("Dynamic Preempt: full\n");
7547 		break;
7548 
7549 	case preempt_dynamic_lazy:
7550 		if (!klp_override)
7551 			preempt_dynamic_disable(cond_resched);
7552 		preempt_dynamic_disable(might_resched);
7553 		preempt_dynamic_enable(preempt_schedule);
7554 		preempt_dynamic_enable(preempt_schedule_notrace);
7555 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7556 		preempt_dynamic_key_enable(preempt_lazy);
7557 		if (mode != preempt_dynamic_mode)
7558 			pr_info("Dynamic Preempt: lazy\n");
7559 		break;
7560 	}
7561 
7562 	preempt_dynamic_mode = mode;
7563 }
7564 
7565 void sched_dynamic_update(int mode)
7566 {
7567 	mutex_lock(&sched_dynamic_mutex);
7568 	__sched_dynamic_update(mode);
7569 	mutex_unlock(&sched_dynamic_mutex);
7570 }
7571 
7572 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7573 
7574 static int klp_cond_resched(void)
7575 {
7576 	__klp_sched_try_switch();
7577 	return __cond_resched();
7578 }
7579 
7580 void sched_dynamic_klp_enable(void)
7581 {
7582 	mutex_lock(&sched_dynamic_mutex);
7583 
7584 	klp_override = true;
7585 	static_call_update(cond_resched, klp_cond_resched);
7586 
7587 	mutex_unlock(&sched_dynamic_mutex);
7588 }
7589 
7590 void sched_dynamic_klp_disable(void)
7591 {
7592 	mutex_lock(&sched_dynamic_mutex);
7593 
7594 	klp_override = false;
7595 	__sched_dynamic_update(preempt_dynamic_mode);
7596 
7597 	mutex_unlock(&sched_dynamic_mutex);
7598 }
7599 
7600 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7601 
7602 static int __init setup_preempt_mode(char *str)
7603 {
7604 	int mode = sched_dynamic_mode(str);
7605 	if (mode < 0) {
7606 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7607 		return 0;
7608 	}
7609 
7610 	sched_dynamic_update(mode);
7611 	return 1;
7612 }
7613 __setup("preempt=", setup_preempt_mode);
7614 
7615 static void __init preempt_dynamic_init(void)
7616 {
7617 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7618 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7619 			sched_dynamic_update(preempt_dynamic_none);
7620 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7621 			sched_dynamic_update(preempt_dynamic_voluntary);
7622 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7623 			sched_dynamic_update(preempt_dynamic_lazy);
7624 		} else {
7625 			/* Default static call setting, nothing to do */
7626 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7627 			preempt_dynamic_mode = preempt_dynamic_full;
7628 			pr_info("Dynamic Preempt: full\n");
7629 		}
7630 	}
7631 }
7632 
7633 #define PREEMPT_MODEL_ACCESSOR(mode) \
7634 	bool preempt_model_##mode(void)						 \
7635 	{									 \
7636 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7637 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7638 	}									 \
7639 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7640 
7641 PREEMPT_MODEL_ACCESSOR(none);
7642 PREEMPT_MODEL_ACCESSOR(voluntary);
7643 PREEMPT_MODEL_ACCESSOR(full);
7644 PREEMPT_MODEL_ACCESSOR(lazy);
7645 
7646 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7647 
7648 static inline void preempt_dynamic_init(void) { }
7649 
7650 #endif /* CONFIG_PREEMPT_DYNAMIC */
7651 
7652 int io_schedule_prepare(void)
7653 {
7654 	int old_iowait = current->in_iowait;
7655 
7656 	current->in_iowait = 1;
7657 	blk_flush_plug(current->plug, true);
7658 	return old_iowait;
7659 }
7660 
7661 void io_schedule_finish(int token)
7662 {
7663 	current->in_iowait = token;
7664 }
7665 
7666 /*
7667  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7668  * that process accounting knows that this is a task in IO wait state.
7669  */
7670 long __sched io_schedule_timeout(long timeout)
7671 {
7672 	int token;
7673 	long ret;
7674 
7675 	token = io_schedule_prepare();
7676 	ret = schedule_timeout(timeout);
7677 	io_schedule_finish(token);
7678 
7679 	return ret;
7680 }
7681 EXPORT_SYMBOL(io_schedule_timeout);
7682 
7683 void __sched io_schedule(void)
7684 {
7685 	int token;
7686 
7687 	token = io_schedule_prepare();
7688 	schedule();
7689 	io_schedule_finish(token);
7690 }
7691 EXPORT_SYMBOL(io_schedule);
7692 
7693 void sched_show_task(struct task_struct *p)
7694 {
7695 	unsigned long free;
7696 	int ppid;
7697 
7698 	if (!try_get_task_stack(p))
7699 		return;
7700 
7701 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7702 
7703 	if (task_is_running(p))
7704 		pr_cont("  running task    ");
7705 	free = stack_not_used(p);
7706 	ppid = 0;
7707 	rcu_read_lock();
7708 	if (pid_alive(p))
7709 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7710 	rcu_read_unlock();
7711 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7712 		free, task_pid_nr(p), task_tgid_nr(p),
7713 		ppid, p->flags, read_task_thread_flags(p));
7714 
7715 	print_worker_info(KERN_INFO, p);
7716 	print_stop_info(KERN_INFO, p);
7717 	print_scx_info(KERN_INFO, p);
7718 	show_stack(p, NULL, KERN_INFO);
7719 	put_task_stack(p);
7720 }
7721 EXPORT_SYMBOL_GPL(sched_show_task);
7722 
7723 static inline bool
7724 state_filter_match(unsigned long state_filter, struct task_struct *p)
7725 {
7726 	unsigned int state = READ_ONCE(p->__state);
7727 
7728 	/* no filter, everything matches */
7729 	if (!state_filter)
7730 		return true;
7731 
7732 	/* filter, but doesn't match */
7733 	if (!(state & state_filter))
7734 		return false;
7735 
7736 	/*
7737 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7738 	 * TASK_KILLABLE).
7739 	 */
7740 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7741 		return false;
7742 
7743 	return true;
7744 }
7745 
7746 
7747 void show_state_filter(unsigned int state_filter)
7748 {
7749 	struct task_struct *g, *p;
7750 
7751 	rcu_read_lock();
7752 	for_each_process_thread(g, p) {
7753 		/*
7754 		 * reset the NMI-timeout, listing all files on a slow
7755 		 * console might take a lot of time:
7756 		 * Also, reset softlockup watchdogs on all CPUs, because
7757 		 * another CPU might be blocked waiting for us to process
7758 		 * an IPI.
7759 		 */
7760 		touch_nmi_watchdog();
7761 		touch_all_softlockup_watchdogs();
7762 		if (state_filter_match(state_filter, p))
7763 			sched_show_task(p);
7764 	}
7765 
7766 #ifdef CONFIG_SCHED_DEBUG
7767 	if (!state_filter)
7768 		sysrq_sched_debug_show();
7769 #endif
7770 	rcu_read_unlock();
7771 	/*
7772 	 * Only show locks if all tasks are dumped:
7773 	 */
7774 	if (!state_filter)
7775 		debug_show_all_locks();
7776 }
7777 
7778 /**
7779  * init_idle - set up an idle thread for a given CPU
7780  * @idle: task in question
7781  * @cpu: CPU the idle task belongs to
7782  *
7783  * NOTE: this function does not set the idle thread's NEED_RESCHED
7784  * flag, to make booting more robust.
7785  */
7786 void __init init_idle(struct task_struct *idle, int cpu)
7787 {
7788 #ifdef CONFIG_SMP
7789 	struct affinity_context ac = (struct affinity_context) {
7790 		.new_mask  = cpumask_of(cpu),
7791 		.flags     = 0,
7792 	};
7793 #endif
7794 	struct rq *rq = cpu_rq(cpu);
7795 	unsigned long flags;
7796 
7797 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7798 	raw_spin_rq_lock(rq);
7799 
7800 	idle->__state = TASK_RUNNING;
7801 	idle->se.exec_start = sched_clock();
7802 	/*
7803 	 * PF_KTHREAD should already be set at this point; regardless, make it
7804 	 * look like a proper per-CPU kthread.
7805 	 */
7806 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7807 	kthread_set_per_cpu(idle, cpu);
7808 
7809 #ifdef CONFIG_SMP
7810 	/*
7811 	 * No validation and serialization required at boot time and for
7812 	 * setting up the idle tasks of not yet online CPUs.
7813 	 */
7814 	set_cpus_allowed_common(idle, &ac);
7815 #endif
7816 	/*
7817 	 * We're having a chicken and egg problem, even though we are
7818 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7819 	 * lockdep check in task_group() will fail.
7820 	 *
7821 	 * Similar case to sched_fork(). / Alternatively we could
7822 	 * use task_rq_lock() here and obtain the other rq->lock.
7823 	 *
7824 	 * Silence PROVE_RCU
7825 	 */
7826 	rcu_read_lock();
7827 	__set_task_cpu(idle, cpu);
7828 	rcu_read_unlock();
7829 
7830 	rq->idle = idle;
7831 	rq_set_donor(rq, idle);
7832 	rcu_assign_pointer(rq->curr, idle);
7833 	idle->on_rq = TASK_ON_RQ_QUEUED;
7834 #ifdef CONFIG_SMP
7835 	idle->on_cpu = 1;
7836 #endif
7837 	raw_spin_rq_unlock(rq);
7838 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7839 
7840 	/* Set the preempt count _outside_ the spinlocks! */
7841 	init_idle_preempt_count(idle, cpu);
7842 
7843 	/*
7844 	 * The idle tasks have their own, simple scheduling class:
7845 	 */
7846 	idle->sched_class = &idle_sched_class;
7847 	ftrace_graph_init_idle_task(idle, cpu);
7848 	vtime_init_idle(idle, cpu);
7849 #ifdef CONFIG_SMP
7850 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7851 #endif
7852 }
7853 
7854 #ifdef CONFIG_SMP
7855 
7856 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7857 			      const struct cpumask *trial)
7858 {
7859 	int ret = 1;
7860 
7861 	if (cpumask_empty(cur))
7862 		return ret;
7863 
7864 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7865 
7866 	return ret;
7867 }
7868 
7869 int task_can_attach(struct task_struct *p)
7870 {
7871 	int ret = 0;
7872 
7873 	/*
7874 	 * Kthreads which disallow setaffinity shouldn't be moved
7875 	 * to a new cpuset; we don't want to change their CPU
7876 	 * affinity and isolating such threads by their set of
7877 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7878 	 * applicable for such threads.  This prevents checking for
7879 	 * success of set_cpus_allowed_ptr() on all attached tasks
7880 	 * before cpus_mask may be changed.
7881 	 */
7882 	if (p->flags & PF_NO_SETAFFINITY)
7883 		ret = -EINVAL;
7884 
7885 	return ret;
7886 }
7887 
7888 bool sched_smp_initialized __read_mostly;
7889 
7890 #ifdef CONFIG_NUMA_BALANCING
7891 /* Migrate current task p to target_cpu */
7892 int migrate_task_to(struct task_struct *p, int target_cpu)
7893 {
7894 	struct migration_arg arg = { p, target_cpu };
7895 	int curr_cpu = task_cpu(p);
7896 
7897 	if (curr_cpu == target_cpu)
7898 		return 0;
7899 
7900 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7901 		return -EINVAL;
7902 
7903 	/* TODO: This is not properly updating schedstats */
7904 
7905 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7906 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7907 }
7908 
7909 /*
7910  * Requeue a task on a given node and accurately track the number of NUMA
7911  * tasks on the runqueues
7912  */
7913 void sched_setnuma(struct task_struct *p, int nid)
7914 {
7915 	bool queued, running;
7916 	struct rq_flags rf;
7917 	struct rq *rq;
7918 
7919 	rq = task_rq_lock(p, &rf);
7920 	queued = task_on_rq_queued(p);
7921 	running = task_current_donor(rq, p);
7922 
7923 	if (queued)
7924 		dequeue_task(rq, p, DEQUEUE_SAVE);
7925 	if (running)
7926 		put_prev_task(rq, p);
7927 
7928 	p->numa_preferred_nid = nid;
7929 
7930 	if (queued)
7931 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7932 	if (running)
7933 		set_next_task(rq, p);
7934 	task_rq_unlock(rq, p, &rf);
7935 }
7936 #endif /* CONFIG_NUMA_BALANCING */
7937 
7938 #ifdef CONFIG_HOTPLUG_CPU
7939 /*
7940  * Invoked on the outgoing CPU in context of the CPU hotplug thread
7941  * after ensuring that there are no user space tasks left on the CPU.
7942  *
7943  * If there is a lazy mm in use on the hotplug thread, drop it and
7944  * switch to init_mm.
7945  *
7946  * The reference count on init_mm is dropped in finish_cpu().
7947  */
7948 static void sched_force_init_mm(void)
7949 {
7950 	struct mm_struct *mm = current->active_mm;
7951 
7952 	if (mm != &init_mm) {
7953 		mmgrab_lazy_tlb(&init_mm);
7954 		local_irq_disable();
7955 		current->active_mm = &init_mm;
7956 		switch_mm_irqs_off(mm, &init_mm, current);
7957 		local_irq_enable();
7958 		finish_arch_post_lock_switch();
7959 		mmdrop_lazy_tlb(mm);
7960 	}
7961 
7962 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7963 }
7964 
7965 static int __balance_push_cpu_stop(void *arg)
7966 {
7967 	struct task_struct *p = arg;
7968 	struct rq *rq = this_rq();
7969 	struct rq_flags rf;
7970 	int cpu;
7971 
7972 	raw_spin_lock_irq(&p->pi_lock);
7973 	rq_lock(rq, &rf);
7974 
7975 	update_rq_clock(rq);
7976 
7977 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7978 		cpu = select_fallback_rq(rq->cpu, p);
7979 		rq = __migrate_task(rq, &rf, p, cpu);
7980 	}
7981 
7982 	rq_unlock(rq, &rf);
7983 	raw_spin_unlock_irq(&p->pi_lock);
7984 
7985 	put_task_struct(p);
7986 
7987 	return 0;
7988 }
7989 
7990 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7991 
7992 /*
7993  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7994  *
7995  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7996  * effective when the hotplug motion is down.
7997  */
7998 static void balance_push(struct rq *rq)
7999 {
8000 	struct task_struct *push_task = rq->curr;
8001 
8002 	lockdep_assert_rq_held(rq);
8003 
8004 	/*
8005 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8006 	 */
8007 	rq->balance_callback = &balance_push_callback;
8008 
8009 	/*
8010 	 * Only active while going offline and when invoked on the outgoing
8011 	 * CPU.
8012 	 */
8013 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8014 		return;
8015 
8016 	/*
8017 	 * Both the cpu-hotplug and stop task are in this case and are
8018 	 * required to complete the hotplug process.
8019 	 */
8020 	if (kthread_is_per_cpu(push_task) ||
8021 	    is_migration_disabled(push_task)) {
8022 
8023 		/*
8024 		 * If this is the idle task on the outgoing CPU try to wake
8025 		 * up the hotplug control thread which might wait for the
8026 		 * last task to vanish. The rcuwait_active() check is
8027 		 * accurate here because the waiter is pinned on this CPU
8028 		 * and can't obviously be running in parallel.
8029 		 *
8030 		 * On RT kernels this also has to check whether there are
8031 		 * pinned and scheduled out tasks on the runqueue. They
8032 		 * need to leave the migrate disabled section first.
8033 		 */
8034 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8035 		    rcuwait_active(&rq->hotplug_wait)) {
8036 			raw_spin_rq_unlock(rq);
8037 			rcuwait_wake_up(&rq->hotplug_wait);
8038 			raw_spin_rq_lock(rq);
8039 		}
8040 		return;
8041 	}
8042 
8043 	get_task_struct(push_task);
8044 	/*
8045 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8046 	 * Both preemption and IRQs are still disabled.
8047 	 */
8048 	preempt_disable();
8049 	raw_spin_rq_unlock(rq);
8050 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8051 			    this_cpu_ptr(&push_work));
8052 	preempt_enable();
8053 	/*
8054 	 * At this point need_resched() is true and we'll take the loop in
8055 	 * schedule(). The next pick is obviously going to be the stop task
8056 	 * which kthread_is_per_cpu() and will push this task away.
8057 	 */
8058 	raw_spin_rq_lock(rq);
8059 }
8060 
8061 static void balance_push_set(int cpu, bool on)
8062 {
8063 	struct rq *rq = cpu_rq(cpu);
8064 	struct rq_flags rf;
8065 
8066 	rq_lock_irqsave(rq, &rf);
8067 	if (on) {
8068 		WARN_ON_ONCE(rq->balance_callback);
8069 		rq->balance_callback = &balance_push_callback;
8070 	} else if (rq->balance_callback == &balance_push_callback) {
8071 		rq->balance_callback = NULL;
8072 	}
8073 	rq_unlock_irqrestore(rq, &rf);
8074 }
8075 
8076 /*
8077  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8078  * inactive. All tasks which are not per CPU kernel threads are either
8079  * pushed off this CPU now via balance_push() or placed on a different CPU
8080  * during wakeup. Wait until the CPU is quiescent.
8081  */
8082 static void balance_hotplug_wait(void)
8083 {
8084 	struct rq *rq = this_rq();
8085 
8086 	rcuwait_wait_event(&rq->hotplug_wait,
8087 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8088 			   TASK_UNINTERRUPTIBLE);
8089 }
8090 
8091 #else
8092 
8093 static inline void balance_push(struct rq *rq)
8094 {
8095 }
8096 
8097 static inline void balance_push_set(int cpu, bool on)
8098 {
8099 }
8100 
8101 static inline void balance_hotplug_wait(void)
8102 {
8103 }
8104 
8105 #endif /* CONFIG_HOTPLUG_CPU */
8106 
8107 void set_rq_online(struct rq *rq)
8108 {
8109 	if (!rq->online) {
8110 		const struct sched_class *class;
8111 
8112 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8113 		rq->online = 1;
8114 
8115 		for_each_class(class) {
8116 			if (class->rq_online)
8117 				class->rq_online(rq);
8118 		}
8119 	}
8120 }
8121 
8122 void set_rq_offline(struct rq *rq)
8123 {
8124 	if (rq->online) {
8125 		const struct sched_class *class;
8126 
8127 		update_rq_clock(rq);
8128 		for_each_class(class) {
8129 			if (class->rq_offline)
8130 				class->rq_offline(rq);
8131 		}
8132 
8133 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8134 		rq->online = 0;
8135 	}
8136 }
8137 
8138 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8139 {
8140 	struct rq_flags rf;
8141 
8142 	rq_lock_irqsave(rq, &rf);
8143 	if (rq->rd) {
8144 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8145 		set_rq_online(rq);
8146 	}
8147 	rq_unlock_irqrestore(rq, &rf);
8148 }
8149 
8150 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8151 {
8152 	struct rq_flags rf;
8153 
8154 	rq_lock_irqsave(rq, &rf);
8155 	if (rq->rd) {
8156 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8157 		set_rq_offline(rq);
8158 	}
8159 	rq_unlock_irqrestore(rq, &rf);
8160 }
8161 
8162 /*
8163  * used to mark begin/end of suspend/resume:
8164  */
8165 static int num_cpus_frozen;
8166 
8167 /*
8168  * Update cpusets according to cpu_active mask.  If cpusets are
8169  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8170  * around partition_sched_domains().
8171  *
8172  * If we come here as part of a suspend/resume, don't touch cpusets because we
8173  * want to restore it back to its original state upon resume anyway.
8174  */
8175 static void cpuset_cpu_active(void)
8176 {
8177 	if (cpuhp_tasks_frozen) {
8178 		/*
8179 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8180 		 * resume sequence. As long as this is not the last online
8181 		 * operation in the resume sequence, just build a single sched
8182 		 * domain, ignoring cpusets.
8183 		 */
8184 		partition_sched_domains(1, NULL, NULL);
8185 		if (--num_cpus_frozen)
8186 			return;
8187 		/*
8188 		 * This is the last CPU online operation. So fall through and
8189 		 * restore the original sched domains by considering the
8190 		 * cpuset configurations.
8191 		 */
8192 		cpuset_force_rebuild();
8193 	}
8194 	cpuset_update_active_cpus();
8195 }
8196 
8197 static void cpuset_cpu_inactive(unsigned int cpu)
8198 {
8199 	if (!cpuhp_tasks_frozen) {
8200 		cpuset_update_active_cpus();
8201 	} else {
8202 		num_cpus_frozen++;
8203 		partition_sched_domains(1, NULL, NULL);
8204 	}
8205 }
8206 
8207 static inline void sched_smt_present_inc(int cpu)
8208 {
8209 #ifdef CONFIG_SCHED_SMT
8210 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8211 		static_branch_inc_cpuslocked(&sched_smt_present);
8212 #endif
8213 }
8214 
8215 static inline void sched_smt_present_dec(int cpu)
8216 {
8217 #ifdef CONFIG_SCHED_SMT
8218 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8219 		static_branch_dec_cpuslocked(&sched_smt_present);
8220 #endif
8221 }
8222 
8223 int sched_cpu_activate(unsigned int cpu)
8224 {
8225 	struct rq *rq = cpu_rq(cpu);
8226 
8227 	/*
8228 	 * Clear the balance_push callback and prepare to schedule
8229 	 * regular tasks.
8230 	 */
8231 	balance_push_set(cpu, false);
8232 
8233 	/*
8234 	 * When going up, increment the number of cores with SMT present.
8235 	 */
8236 	sched_smt_present_inc(cpu);
8237 	set_cpu_active(cpu, true);
8238 
8239 	if (sched_smp_initialized) {
8240 		sched_update_numa(cpu, true);
8241 		sched_domains_numa_masks_set(cpu);
8242 		cpuset_cpu_active();
8243 	}
8244 
8245 	scx_rq_activate(rq);
8246 
8247 	/*
8248 	 * Put the rq online, if not already. This happens:
8249 	 *
8250 	 * 1) In the early boot process, because we build the real domains
8251 	 *    after all CPUs have been brought up.
8252 	 *
8253 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8254 	 *    domains.
8255 	 */
8256 	sched_set_rq_online(rq, cpu);
8257 
8258 	return 0;
8259 }
8260 
8261 int sched_cpu_deactivate(unsigned int cpu)
8262 {
8263 	struct rq *rq = cpu_rq(cpu);
8264 	int ret;
8265 
8266 	ret = dl_bw_deactivate(cpu);
8267 
8268 	if (ret)
8269 		return ret;
8270 
8271 	/*
8272 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8273 	 * load balancing when not active
8274 	 */
8275 	nohz_balance_exit_idle(rq);
8276 
8277 	set_cpu_active(cpu, false);
8278 
8279 	/*
8280 	 * From this point forward, this CPU will refuse to run any task that
8281 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8282 	 * push those tasks away until this gets cleared, see
8283 	 * sched_cpu_dying().
8284 	 */
8285 	balance_push_set(cpu, true);
8286 
8287 	/*
8288 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8289 	 * preempt-disabled and RCU users of this state to go away such that
8290 	 * all new such users will observe it.
8291 	 *
8292 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8293 	 * ttwu_queue_cond() and is_cpu_allowed().
8294 	 *
8295 	 * Do sync before park smpboot threads to take care the RCU boost case.
8296 	 */
8297 	synchronize_rcu();
8298 
8299 	sched_set_rq_offline(rq, cpu);
8300 
8301 	scx_rq_deactivate(rq);
8302 
8303 	/*
8304 	 * When going down, decrement the number of cores with SMT present.
8305 	 */
8306 	sched_smt_present_dec(cpu);
8307 
8308 #ifdef CONFIG_SCHED_SMT
8309 	sched_core_cpu_deactivate(cpu);
8310 #endif
8311 
8312 	if (!sched_smp_initialized)
8313 		return 0;
8314 
8315 	sched_update_numa(cpu, false);
8316 	cpuset_cpu_inactive(cpu);
8317 	sched_domains_numa_masks_clear(cpu);
8318 	return 0;
8319 }
8320 
8321 static void sched_rq_cpu_starting(unsigned int cpu)
8322 {
8323 	struct rq *rq = cpu_rq(cpu);
8324 
8325 	rq->calc_load_update = calc_load_update;
8326 	update_max_interval();
8327 }
8328 
8329 int sched_cpu_starting(unsigned int cpu)
8330 {
8331 	sched_core_cpu_starting(cpu);
8332 	sched_rq_cpu_starting(cpu);
8333 	sched_tick_start(cpu);
8334 	return 0;
8335 }
8336 
8337 #ifdef CONFIG_HOTPLUG_CPU
8338 
8339 /*
8340  * Invoked immediately before the stopper thread is invoked to bring the
8341  * CPU down completely. At this point all per CPU kthreads except the
8342  * hotplug thread (current) and the stopper thread (inactive) have been
8343  * either parked or have been unbound from the outgoing CPU. Ensure that
8344  * any of those which might be on the way out are gone.
8345  *
8346  * If after this point a bound task is being woken on this CPU then the
8347  * responsible hotplug callback has failed to do it's job.
8348  * sched_cpu_dying() will catch it with the appropriate fireworks.
8349  */
8350 int sched_cpu_wait_empty(unsigned int cpu)
8351 {
8352 	balance_hotplug_wait();
8353 	sched_force_init_mm();
8354 	return 0;
8355 }
8356 
8357 /*
8358  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8359  * might have. Called from the CPU stopper task after ensuring that the
8360  * stopper is the last running task on the CPU, so nr_active count is
8361  * stable. We need to take the tear-down thread which is calling this into
8362  * account, so we hand in adjust = 1 to the load calculation.
8363  *
8364  * Also see the comment "Global load-average calculations".
8365  */
8366 static void calc_load_migrate(struct rq *rq)
8367 {
8368 	long delta = calc_load_fold_active(rq, 1);
8369 
8370 	if (delta)
8371 		atomic_long_add(delta, &calc_load_tasks);
8372 }
8373 
8374 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8375 {
8376 	struct task_struct *g, *p;
8377 	int cpu = cpu_of(rq);
8378 
8379 	lockdep_assert_rq_held(rq);
8380 
8381 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8382 	for_each_process_thread(g, p) {
8383 		if (task_cpu(p) != cpu)
8384 			continue;
8385 
8386 		if (!task_on_rq_queued(p))
8387 			continue;
8388 
8389 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8390 	}
8391 }
8392 
8393 int sched_cpu_dying(unsigned int cpu)
8394 {
8395 	struct rq *rq = cpu_rq(cpu);
8396 	struct rq_flags rf;
8397 
8398 	/* Handle pending wakeups and then migrate everything off */
8399 	sched_tick_stop(cpu);
8400 
8401 	rq_lock_irqsave(rq, &rf);
8402 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8403 		WARN(true, "Dying CPU not properly vacated!");
8404 		dump_rq_tasks(rq, KERN_WARNING);
8405 	}
8406 	rq_unlock_irqrestore(rq, &rf);
8407 
8408 	calc_load_migrate(rq);
8409 	update_max_interval();
8410 	hrtick_clear(rq);
8411 	sched_core_cpu_dying(cpu);
8412 	return 0;
8413 }
8414 #endif
8415 
8416 void __init sched_init_smp(void)
8417 {
8418 	sched_init_numa(NUMA_NO_NODE);
8419 
8420 	/*
8421 	 * There's no userspace yet to cause hotplug operations; hence all the
8422 	 * CPU masks are stable and all blatant races in the below code cannot
8423 	 * happen.
8424 	 */
8425 	mutex_lock(&sched_domains_mutex);
8426 	sched_init_domains(cpu_active_mask);
8427 	mutex_unlock(&sched_domains_mutex);
8428 
8429 	/* Move init over to a non-isolated CPU */
8430 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8431 		BUG();
8432 	current->flags &= ~PF_NO_SETAFFINITY;
8433 	sched_init_granularity();
8434 
8435 	init_sched_rt_class();
8436 	init_sched_dl_class();
8437 
8438 	sched_smp_initialized = true;
8439 }
8440 
8441 static int __init migration_init(void)
8442 {
8443 	sched_cpu_starting(smp_processor_id());
8444 	return 0;
8445 }
8446 early_initcall(migration_init);
8447 
8448 #else
8449 void __init sched_init_smp(void)
8450 {
8451 	sched_init_granularity();
8452 }
8453 #endif /* CONFIG_SMP */
8454 
8455 int in_sched_functions(unsigned long addr)
8456 {
8457 	return in_lock_functions(addr) ||
8458 		(addr >= (unsigned long)__sched_text_start
8459 		&& addr < (unsigned long)__sched_text_end);
8460 }
8461 
8462 #ifdef CONFIG_CGROUP_SCHED
8463 /*
8464  * Default task group.
8465  * Every task in system belongs to this group at bootup.
8466  */
8467 struct task_group root_task_group;
8468 LIST_HEAD(task_groups);
8469 
8470 /* Cacheline aligned slab cache for task_group */
8471 static struct kmem_cache *task_group_cache __ro_after_init;
8472 #endif
8473 
8474 void __init sched_init(void)
8475 {
8476 	unsigned long ptr = 0;
8477 	int i;
8478 
8479 	/* Make sure the linker didn't screw up */
8480 #ifdef CONFIG_SMP
8481 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8482 #endif
8483 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8484 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8485 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8486 #ifdef CONFIG_SCHED_CLASS_EXT
8487 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8488 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8489 #endif
8490 
8491 	wait_bit_init();
8492 
8493 #ifdef CONFIG_FAIR_GROUP_SCHED
8494 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8495 #endif
8496 #ifdef CONFIG_RT_GROUP_SCHED
8497 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8498 #endif
8499 	if (ptr) {
8500 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8501 
8502 #ifdef CONFIG_FAIR_GROUP_SCHED
8503 		root_task_group.se = (struct sched_entity **)ptr;
8504 		ptr += nr_cpu_ids * sizeof(void **);
8505 
8506 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8507 		ptr += nr_cpu_ids * sizeof(void **);
8508 
8509 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8510 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8511 #endif /* CONFIG_FAIR_GROUP_SCHED */
8512 #ifdef CONFIG_EXT_GROUP_SCHED
8513 		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8514 #endif /* CONFIG_EXT_GROUP_SCHED */
8515 #ifdef CONFIG_RT_GROUP_SCHED
8516 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8517 		ptr += nr_cpu_ids * sizeof(void **);
8518 
8519 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8520 		ptr += nr_cpu_ids * sizeof(void **);
8521 
8522 #endif /* CONFIG_RT_GROUP_SCHED */
8523 	}
8524 
8525 #ifdef CONFIG_SMP
8526 	init_defrootdomain();
8527 #endif
8528 
8529 #ifdef CONFIG_RT_GROUP_SCHED
8530 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8531 			global_rt_period(), global_rt_runtime());
8532 #endif /* CONFIG_RT_GROUP_SCHED */
8533 
8534 #ifdef CONFIG_CGROUP_SCHED
8535 	task_group_cache = KMEM_CACHE(task_group, 0);
8536 
8537 	list_add(&root_task_group.list, &task_groups);
8538 	INIT_LIST_HEAD(&root_task_group.children);
8539 	INIT_LIST_HEAD(&root_task_group.siblings);
8540 	autogroup_init(&init_task);
8541 #endif /* CONFIG_CGROUP_SCHED */
8542 
8543 	for_each_possible_cpu(i) {
8544 		struct rq *rq;
8545 
8546 		rq = cpu_rq(i);
8547 		raw_spin_lock_init(&rq->__lock);
8548 		rq->nr_running = 0;
8549 		rq->calc_load_active = 0;
8550 		rq->calc_load_update = jiffies + LOAD_FREQ;
8551 		init_cfs_rq(&rq->cfs);
8552 		init_rt_rq(&rq->rt);
8553 		init_dl_rq(&rq->dl);
8554 #ifdef CONFIG_FAIR_GROUP_SCHED
8555 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8556 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8557 		/*
8558 		 * How much CPU bandwidth does root_task_group get?
8559 		 *
8560 		 * In case of task-groups formed through the cgroup filesystem, it
8561 		 * gets 100% of the CPU resources in the system. This overall
8562 		 * system CPU resource is divided among the tasks of
8563 		 * root_task_group and its child task-groups in a fair manner,
8564 		 * based on each entity's (task or task-group's) weight
8565 		 * (se->load.weight).
8566 		 *
8567 		 * In other words, if root_task_group has 10 tasks of weight
8568 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8569 		 * then A0's share of the CPU resource is:
8570 		 *
8571 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8572 		 *
8573 		 * We achieve this by letting root_task_group's tasks sit
8574 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8575 		 */
8576 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8577 #endif /* CONFIG_FAIR_GROUP_SCHED */
8578 
8579 #ifdef CONFIG_RT_GROUP_SCHED
8580 		/*
8581 		 * This is required for init cpu because rt.c:__enable_runtime()
8582 		 * starts working after scheduler_running, which is not the case
8583 		 * yet.
8584 		 */
8585 		rq->rt.rt_runtime = global_rt_runtime();
8586 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8587 #endif
8588 #ifdef CONFIG_SMP
8589 		rq->sd = NULL;
8590 		rq->rd = NULL;
8591 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8592 		rq->balance_callback = &balance_push_callback;
8593 		rq->active_balance = 0;
8594 		rq->next_balance = jiffies;
8595 		rq->push_cpu = 0;
8596 		rq->cpu = i;
8597 		rq->online = 0;
8598 		rq->idle_stamp = 0;
8599 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8600 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8601 
8602 		INIT_LIST_HEAD(&rq->cfs_tasks);
8603 
8604 		rq_attach_root(rq, &def_root_domain);
8605 #ifdef CONFIG_NO_HZ_COMMON
8606 		rq->last_blocked_load_update_tick = jiffies;
8607 		atomic_set(&rq->nohz_flags, 0);
8608 
8609 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8610 #endif
8611 #ifdef CONFIG_HOTPLUG_CPU
8612 		rcuwait_init(&rq->hotplug_wait);
8613 #endif
8614 #endif /* CONFIG_SMP */
8615 		hrtick_rq_init(rq);
8616 		atomic_set(&rq->nr_iowait, 0);
8617 		fair_server_init(rq);
8618 
8619 #ifdef CONFIG_SCHED_CORE
8620 		rq->core = rq;
8621 		rq->core_pick = NULL;
8622 		rq->core_dl_server = NULL;
8623 		rq->core_enabled = 0;
8624 		rq->core_tree = RB_ROOT;
8625 		rq->core_forceidle_count = 0;
8626 		rq->core_forceidle_occupation = 0;
8627 		rq->core_forceidle_start = 0;
8628 
8629 		rq->core_cookie = 0UL;
8630 #endif
8631 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8632 	}
8633 
8634 	set_load_weight(&init_task, false);
8635 	init_task.se.slice = sysctl_sched_base_slice,
8636 
8637 	/*
8638 	 * The boot idle thread does lazy MMU switching as well:
8639 	 */
8640 	mmgrab_lazy_tlb(&init_mm);
8641 	enter_lazy_tlb(&init_mm, current);
8642 
8643 	/*
8644 	 * The idle task doesn't need the kthread struct to function, but it
8645 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8646 	 * if we want to avoid special-casing it in code that deals with per-CPU
8647 	 * kthreads.
8648 	 */
8649 	WARN_ON(!set_kthread_struct(current));
8650 
8651 	/*
8652 	 * Make us the idle thread. Technically, schedule() should not be
8653 	 * called from this thread, however somewhere below it might be,
8654 	 * but because we are the idle thread, we just pick up running again
8655 	 * when this runqueue becomes "idle".
8656 	 */
8657 	__sched_fork(0, current);
8658 	init_idle(current, smp_processor_id());
8659 
8660 	calc_load_update = jiffies + LOAD_FREQ;
8661 
8662 #ifdef CONFIG_SMP
8663 	idle_thread_set_boot_cpu();
8664 	balance_push_set(smp_processor_id(), false);
8665 #endif
8666 	init_sched_fair_class();
8667 	init_sched_ext_class();
8668 
8669 	psi_init();
8670 
8671 	init_uclamp();
8672 
8673 	preempt_dynamic_init();
8674 
8675 	scheduler_running = 1;
8676 }
8677 
8678 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8679 
8680 void __might_sleep(const char *file, int line)
8681 {
8682 	unsigned int state = get_current_state();
8683 	/*
8684 	 * Blocking primitives will set (and therefore destroy) current->state,
8685 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8686 	 * otherwise we will destroy state.
8687 	 */
8688 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8689 			"do not call blocking ops when !TASK_RUNNING; "
8690 			"state=%x set at [<%p>] %pS\n", state,
8691 			(void *)current->task_state_change,
8692 			(void *)current->task_state_change);
8693 
8694 	__might_resched(file, line, 0);
8695 }
8696 EXPORT_SYMBOL(__might_sleep);
8697 
8698 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8699 {
8700 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8701 		return;
8702 
8703 	if (preempt_count() == preempt_offset)
8704 		return;
8705 
8706 	pr_err("Preemption disabled at:");
8707 	print_ip_sym(KERN_ERR, ip);
8708 }
8709 
8710 static inline bool resched_offsets_ok(unsigned int offsets)
8711 {
8712 	unsigned int nested = preempt_count();
8713 
8714 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8715 
8716 	return nested == offsets;
8717 }
8718 
8719 void __might_resched(const char *file, int line, unsigned int offsets)
8720 {
8721 	/* Ratelimiting timestamp: */
8722 	static unsigned long prev_jiffy;
8723 
8724 	unsigned long preempt_disable_ip;
8725 
8726 	/* WARN_ON_ONCE() by default, no rate limit required: */
8727 	rcu_sleep_check();
8728 
8729 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8730 	     !is_idle_task(current) && !current->non_block_count) ||
8731 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8732 	    oops_in_progress)
8733 		return;
8734 
8735 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8736 		return;
8737 	prev_jiffy = jiffies;
8738 
8739 	/* Save this before calling printk(), since that will clobber it: */
8740 	preempt_disable_ip = get_preempt_disable_ip(current);
8741 
8742 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8743 	       file, line);
8744 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8745 	       in_atomic(), irqs_disabled(), current->non_block_count,
8746 	       current->pid, current->comm);
8747 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8748 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8749 
8750 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8751 		pr_err("RCU nest depth: %d, expected: %u\n",
8752 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8753 	}
8754 
8755 	if (task_stack_end_corrupted(current))
8756 		pr_emerg("Thread overran stack, or stack corrupted\n");
8757 
8758 	debug_show_held_locks(current);
8759 	if (irqs_disabled())
8760 		print_irqtrace_events(current);
8761 
8762 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8763 				 preempt_disable_ip);
8764 
8765 	dump_stack();
8766 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8767 }
8768 EXPORT_SYMBOL(__might_resched);
8769 
8770 void __cant_sleep(const char *file, int line, int preempt_offset)
8771 {
8772 	static unsigned long prev_jiffy;
8773 
8774 	if (irqs_disabled())
8775 		return;
8776 
8777 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8778 		return;
8779 
8780 	if (preempt_count() > preempt_offset)
8781 		return;
8782 
8783 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8784 		return;
8785 	prev_jiffy = jiffies;
8786 
8787 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8788 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8789 			in_atomic(), irqs_disabled(),
8790 			current->pid, current->comm);
8791 
8792 	debug_show_held_locks(current);
8793 	dump_stack();
8794 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8795 }
8796 EXPORT_SYMBOL_GPL(__cant_sleep);
8797 
8798 #ifdef CONFIG_SMP
8799 void __cant_migrate(const char *file, int line)
8800 {
8801 	static unsigned long prev_jiffy;
8802 
8803 	if (irqs_disabled())
8804 		return;
8805 
8806 	if (is_migration_disabled(current))
8807 		return;
8808 
8809 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8810 		return;
8811 
8812 	if (preempt_count() > 0)
8813 		return;
8814 
8815 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8816 		return;
8817 	prev_jiffy = jiffies;
8818 
8819 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8820 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8821 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8822 	       current->pid, current->comm);
8823 
8824 	debug_show_held_locks(current);
8825 	dump_stack();
8826 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8827 }
8828 EXPORT_SYMBOL_GPL(__cant_migrate);
8829 #endif
8830 #endif
8831 
8832 #ifdef CONFIG_MAGIC_SYSRQ
8833 void normalize_rt_tasks(void)
8834 {
8835 	struct task_struct *g, *p;
8836 	struct sched_attr attr = {
8837 		.sched_policy = SCHED_NORMAL,
8838 	};
8839 
8840 	read_lock(&tasklist_lock);
8841 	for_each_process_thread(g, p) {
8842 		/*
8843 		 * Only normalize user tasks:
8844 		 */
8845 		if (p->flags & PF_KTHREAD)
8846 			continue;
8847 
8848 		p->se.exec_start = 0;
8849 		schedstat_set(p->stats.wait_start,  0);
8850 		schedstat_set(p->stats.sleep_start, 0);
8851 		schedstat_set(p->stats.block_start, 0);
8852 
8853 		if (!rt_or_dl_task(p)) {
8854 			/*
8855 			 * Renice negative nice level userspace
8856 			 * tasks back to 0:
8857 			 */
8858 			if (task_nice(p) < 0)
8859 				set_user_nice(p, 0);
8860 			continue;
8861 		}
8862 
8863 		__sched_setscheduler(p, &attr, false, false);
8864 	}
8865 	read_unlock(&tasklist_lock);
8866 }
8867 
8868 #endif /* CONFIG_MAGIC_SYSRQ */
8869 
8870 #if defined(CONFIG_KGDB_KDB)
8871 /*
8872  * These functions are only useful for KDB.
8873  *
8874  * They can only be called when the whole system has been
8875  * stopped - every CPU needs to be quiescent, and no scheduling
8876  * activity can take place. Using them for anything else would
8877  * be a serious bug, and as a result, they aren't even visible
8878  * under any other configuration.
8879  */
8880 
8881 /**
8882  * curr_task - return the current task for a given CPU.
8883  * @cpu: the processor in question.
8884  *
8885  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8886  *
8887  * Return: The current task for @cpu.
8888  */
8889 struct task_struct *curr_task(int cpu)
8890 {
8891 	return cpu_curr(cpu);
8892 }
8893 
8894 #endif /* defined(CONFIG_KGDB_KDB) */
8895 
8896 #ifdef CONFIG_CGROUP_SCHED
8897 /* task_group_lock serializes the addition/removal of task groups */
8898 static DEFINE_SPINLOCK(task_group_lock);
8899 
8900 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8901 					    struct task_group *parent)
8902 {
8903 #ifdef CONFIG_UCLAMP_TASK_GROUP
8904 	enum uclamp_id clamp_id;
8905 
8906 	for_each_clamp_id(clamp_id) {
8907 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8908 			      uclamp_none(clamp_id), false);
8909 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8910 	}
8911 #endif
8912 }
8913 
8914 static void sched_free_group(struct task_group *tg)
8915 {
8916 	free_fair_sched_group(tg);
8917 	free_rt_sched_group(tg);
8918 	autogroup_free(tg);
8919 	kmem_cache_free(task_group_cache, tg);
8920 }
8921 
8922 static void sched_free_group_rcu(struct rcu_head *rcu)
8923 {
8924 	sched_free_group(container_of(rcu, struct task_group, rcu));
8925 }
8926 
8927 static void sched_unregister_group(struct task_group *tg)
8928 {
8929 	unregister_fair_sched_group(tg);
8930 	unregister_rt_sched_group(tg);
8931 	/*
8932 	 * We have to wait for yet another RCU grace period to expire, as
8933 	 * print_cfs_stats() might run concurrently.
8934 	 */
8935 	call_rcu(&tg->rcu, sched_free_group_rcu);
8936 }
8937 
8938 /* allocate runqueue etc for a new task group */
8939 struct task_group *sched_create_group(struct task_group *parent)
8940 {
8941 	struct task_group *tg;
8942 
8943 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8944 	if (!tg)
8945 		return ERR_PTR(-ENOMEM);
8946 
8947 	if (!alloc_fair_sched_group(tg, parent))
8948 		goto err;
8949 
8950 	if (!alloc_rt_sched_group(tg, parent))
8951 		goto err;
8952 
8953 	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8954 	alloc_uclamp_sched_group(tg, parent);
8955 
8956 	return tg;
8957 
8958 err:
8959 	sched_free_group(tg);
8960 	return ERR_PTR(-ENOMEM);
8961 }
8962 
8963 void sched_online_group(struct task_group *tg, struct task_group *parent)
8964 {
8965 	unsigned long flags;
8966 
8967 	spin_lock_irqsave(&task_group_lock, flags);
8968 	list_add_rcu(&tg->list, &task_groups);
8969 
8970 	/* Root should already exist: */
8971 	WARN_ON(!parent);
8972 
8973 	tg->parent = parent;
8974 	INIT_LIST_HEAD(&tg->children);
8975 	list_add_rcu(&tg->siblings, &parent->children);
8976 	spin_unlock_irqrestore(&task_group_lock, flags);
8977 
8978 	online_fair_sched_group(tg);
8979 }
8980 
8981 /* RCU callback to free various structures associated with a task group */
8982 static void sched_unregister_group_rcu(struct rcu_head *rhp)
8983 {
8984 	/* Now it should be safe to free those cfs_rqs: */
8985 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
8986 }
8987 
8988 void sched_destroy_group(struct task_group *tg)
8989 {
8990 	/* Wait for possible concurrent references to cfs_rqs complete: */
8991 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
8992 }
8993 
8994 void sched_release_group(struct task_group *tg)
8995 {
8996 	unsigned long flags;
8997 
8998 	/*
8999 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9000 	 * sched_cfs_period_timer()).
9001 	 *
9002 	 * For this to be effective, we have to wait for all pending users of
9003 	 * this task group to leave their RCU critical section to ensure no new
9004 	 * user will see our dying task group any more. Specifically ensure
9005 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9006 	 *
9007 	 * We therefore defer calling unregister_fair_sched_group() to
9008 	 * sched_unregister_group() which is guarantied to get called only after the
9009 	 * current RCU grace period has expired.
9010 	 */
9011 	spin_lock_irqsave(&task_group_lock, flags);
9012 	list_del_rcu(&tg->list);
9013 	list_del_rcu(&tg->siblings);
9014 	spin_unlock_irqrestore(&task_group_lock, flags);
9015 }
9016 
9017 static struct task_group *sched_get_task_group(struct task_struct *tsk)
9018 {
9019 	struct task_group *tg;
9020 
9021 	/*
9022 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9023 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9024 	 * to prevent lockdep warnings.
9025 	 */
9026 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9027 			  struct task_group, css);
9028 	tg = autogroup_task_group(tsk, tg);
9029 
9030 	return tg;
9031 }
9032 
9033 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
9034 {
9035 	tsk->sched_task_group = group;
9036 
9037 #ifdef CONFIG_FAIR_GROUP_SCHED
9038 	if (tsk->sched_class->task_change_group)
9039 		tsk->sched_class->task_change_group(tsk);
9040 	else
9041 #endif
9042 		set_task_rq(tsk, task_cpu(tsk));
9043 }
9044 
9045 /*
9046  * Change task's runqueue when it moves between groups.
9047  *
9048  * The caller of this function should have put the task in its new group by
9049  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9050  * its new group.
9051  */
9052 void sched_move_task(struct task_struct *tsk)
9053 {
9054 	int queued, running, queue_flags =
9055 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9056 	struct task_group *group;
9057 	struct rq *rq;
9058 
9059 	CLASS(task_rq_lock, rq_guard)(tsk);
9060 	rq = rq_guard.rq;
9061 
9062 	/*
9063 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
9064 	 * group changes.
9065 	 */
9066 	group = sched_get_task_group(tsk);
9067 	if (group == tsk->sched_task_group)
9068 		return;
9069 
9070 	update_rq_clock(rq);
9071 
9072 	running = task_current_donor(rq, tsk);
9073 	queued = task_on_rq_queued(tsk);
9074 
9075 	if (queued)
9076 		dequeue_task(rq, tsk, queue_flags);
9077 	if (running)
9078 		put_prev_task(rq, tsk);
9079 
9080 	sched_change_group(tsk, group);
9081 	scx_move_task(tsk);
9082 
9083 	if (queued)
9084 		enqueue_task(rq, tsk, queue_flags);
9085 	if (running) {
9086 		set_next_task(rq, tsk);
9087 		/*
9088 		 * After changing group, the running task may have joined a
9089 		 * throttled one but it's still the running task. Trigger a
9090 		 * resched to make sure that task can still run.
9091 		 */
9092 		resched_curr(rq);
9093 	}
9094 }
9095 
9096 static struct cgroup_subsys_state *
9097 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9098 {
9099 	struct task_group *parent = css_tg(parent_css);
9100 	struct task_group *tg;
9101 
9102 	if (!parent) {
9103 		/* This is early initialization for the top cgroup */
9104 		return &root_task_group.css;
9105 	}
9106 
9107 	tg = sched_create_group(parent);
9108 	if (IS_ERR(tg))
9109 		return ERR_PTR(-ENOMEM);
9110 
9111 	return &tg->css;
9112 }
9113 
9114 /* Expose task group only after completing cgroup initialization */
9115 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9116 {
9117 	struct task_group *tg = css_tg(css);
9118 	struct task_group *parent = css_tg(css->parent);
9119 	int ret;
9120 
9121 	ret = scx_tg_online(tg);
9122 	if (ret)
9123 		return ret;
9124 
9125 	if (parent)
9126 		sched_online_group(tg, parent);
9127 
9128 #ifdef CONFIG_UCLAMP_TASK_GROUP
9129 	/* Propagate the effective uclamp value for the new group */
9130 	guard(mutex)(&uclamp_mutex);
9131 	guard(rcu)();
9132 	cpu_util_update_eff(css);
9133 #endif
9134 
9135 	return 0;
9136 }
9137 
9138 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9139 {
9140 	struct task_group *tg = css_tg(css);
9141 
9142 	scx_tg_offline(tg);
9143 }
9144 
9145 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9146 {
9147 	struct task_group *tg = css_tg(css);
9148 
9149 	sched_release_group(tg);
9150 }
9151 
9152 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9153 {
9154 	struct task_group *tg = css_tg(css);
9155 
9156 	/*
9157 	 * Relies on the RCU grace period between css_released() and this.
9158 	 */
9159 	sched_unregister_group(tg);
9160 }
9161 
9162 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9163 {
9164 #ifdef CONFIG_RT_GROUP_SCHED
9165 	struct task_struct *task;
9166 	struct cgroup_subsys_state *css;
9167 
9168 	cgroup_taskset_for_each(task, css, tset) {
9169 		if (!sched_rt_can_attach(css_tg(css), task))
9170 			return -EINVAL;
9171 	}
9172 #endif
9173 	return scx_cgroup_can_attach(tset);
9174 }
9175 
9176 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9177 {
9178 	struct task_struct *task;
9179 	struct cgroup_subsys_state *css;
9180 
9181 	cgroup_taskset_for_each(task, css, tset)
9182 		sched_move_task(task);
9183 
9184 	scx_cgroup_finish_attach();
9185 }
9186 
9187 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9188 {
9189 	scx_cgroup_cancel_attach(tset);
9190 }
9191 
9192 #ifdef CONFIG_UCLAMP_TASK_GROUP
9193 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9194 {
9195 	struct cgroup_subsys_state *top_css = css;
9196 	struct uclamp_se *uc_parent = NULL;
9197 	struct uclamp_se *uc_se = NULL;
9198 	unsigned int eff[UCLAMP_CNT];
9199 	enum uclamp_id clamp_id;
9200 	unsigned int clamps;
9201 
9202 	lockdep_assert_held(&uclamp_mutex);
9203 	SCHED_WARN_ON(!rcu_read_lock_held());
9204 
9205 	css_for_each_descendant_pre(css, top_css) {
9206 		uc_parent = css_tg(css)->parent
9207 			? css_tg(css)->parent->uclamp : NULL;
9208 
9209 		for_each_clamp_id(clamp_id) {
9210 			/* Assume effective clamps matches requested clamps */
9211 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9212 			/* Cap effective clamps with parent's effective clamps */
9213 			if (uc_parent &&
9214 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9215 				eff[clamp_id] = uc_parent[clamp_id].value;
9216 			}
9217 		}
9218 		/* Ensure protection is always capped by limit */
9219 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9220 
9221 		/* Propagate most restrictive effective clamps */
9222 		clamps = 0x0;
9223 		uc_se = css_tg(css)->uclamp;
9224 		for_each_clamp_id(clamp_id) {
9225 			if (eff[clamp_id] == uc_se[clamp_id].value)
9226 				continue;
9227 			uc_se[clamp_id].value = eff[clamp_id];
9228 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9229 			clamps |= (0x1 << clamp_id);
9230 		}
9231 		if (!clamps) {
9232 			css = css_rightmost_descendant(css);
9233 			continue;
9234 		}
9235 
9236 		/* Immediately update descendants RUNNABLE tasks */
9237 		uclamp_update_active_tasks(css);
9238 	}
9239 }
9240 
9241 /*
9242  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9243  * C expression. Since there is no way to convert a macro argument (N) into a
9244  * character constant, use two levels of macros.
9245  */
9246 #define _POW10(exp) ((unsigned int)1e##exp)
9247 #define POW10(exp) _POW10(exp)
9248 
9249 struct uclamp_request {
9250 #define UCLAMP_PERCENT_SHIFT	2
9251 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9252 	s64 percent;
9253 	u64 util;
9254 	int ret;
9255 };
9256 
9257 static inline struct uclamp_request
9258 capacity_from_percent(char *buf)
9259 {
9260 	struct uclamp_request req = {
9261 		.percent = UCLAMP_PERCENT_SCALE,
9262 		.util = SCHED_CAPACITY_SCALE,
9263 		.ret = 0,
9264 	};
9265 
9266 	buf = strim(buf);
9267 	if (strcmp(buf, "max")) {
9268 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9269 					     &req.percent);
9270 		if (req.ret)
9271 			return req;
9272 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9273 			req.ret = -ERANGE;
9274 			return req;
9275 		}
9276 
9277 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9278 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9279 	}
9280 
9281 	return req;
9282 }
9283 
9284 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9285 				size_t nbytes, loff_t off,
9286 				enum uclamp_id clamp_id)
9287 {
9288 	struct uclamp_request req;
9289 	struct task_group *tg;
9290 
9291 	req = capacity_from_percent(buf);
9292 	if (req.ret)
9293 		return req.ret;
9294 
9295 	static_branch_enable(&sched_uclamp_used);
9296 
9297 	guard(mutex)(&uclamp_mutex);
9298 	guard(rcu)();
9299 
9300 	tg = css_tg(of_css(of));
9301 	if (tg->uclamp_req[clamp_id].value != req.util)
9302 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9303 
9304 	/*
9305 	 * Because of not recoverable conversion rounding we keep track of the
9306 	 * exact requested value
9307 	 */
9308 	tg->uclamp_pct[clamp_id] = req.percent;
9309 
9310 	/* Update effective clamps to track the most restrictive value */
9311 	cpu_util_update_eff(of_css(of));
9312 
9313 	return nbytes;
9314 }
9315 
9316 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9317 				    char *buf, size_t nbytes,
9318 				    loff_t off)
9319 {
9320 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9321 }
9322 
9323 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9324 				    char *buf, size_t nbytes,
9325 				    loff_t off)
9326 {
9327 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9328 }
9329 
9330 static inline void cpu_uclamp_print(struct seq_file *sf,
9331 				    enum uclamp_id clamp_id)
9332 {
9333 	struct task_group *tg;
9334 	u64 util_clamp;
9335 	u64 percent;
9336 	u32 rem;
9337 
9338 	scoped_guard (rcu) {
9339 		tg = css_tg(seq_css(sf));
9340 		util_clamp = tg->uclamp_req[clamp_id].value;
9341 	}
9342 
9343 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9344 		seq_puts(sf, "max\n");
9345 		return;
9346 	}
9347 
9348 	percent = tg->uclamp_pct[clamp_id];
9349 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9350 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9351 }
9352 
9353 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9354 {
9355 	cpu_uclamp_print(sf, UCLAMP_MIN);
9356 	return 0;
9357 }
9358 
9359 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9360 {
9361 	cpu_uclamp_print(sf, UCLAMP_MAX);
9362 	return 0;
9363 }
9364 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9365 
9366 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9367 static unsigned long tg_weight(struct task_group *tg)
9368 {
9369 #ifdef CONFIG_FAIR_GROUP_SCHED
9370 	return scale_load_down(tg->shares);
9371 #else
9372 	return sched_weight_from_cgroup(tg->scx_weight);
9373 #endif
9374 }
9375 
9376 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9377 				struct cftype *cftype, u64 shareval)
9378 {
9379 	int ret;
9380 
9381 	if (shareval > scale_load_down(ULONG_MAX))
9382 		shareval = MAX_SHARES;
9383 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9384 	if (!ret)
9385 		scx_group_set_weight(css_tg(css),
9386 				     sched_weight_to_cgroup(shareval));
9387 	return ret;
9388 }
9389 
9390 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9391 			       struct cftype *cft)
9392 {
9393 	return tg_weight(css_tg(css));
9394 }
9395 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9396 
9397 #ifdef CONFIG_CFS_BANDWIDTH
9398 static DEFINE_MUTEX(cfs_constraints_mutex);
9399 
9400 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9401 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9402 /* More than 203 days if BW_SHIFT equals 20. */
9403 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9404 
9405 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9406 
9407 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9408 				u64 burst)
9409 {
9410 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9411 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9412 
9413 	if (tg == &root_task_group)
9414 		return -EINVAL;
9415 
9416 	/*
9417 	 * Ensure we have at some amount of bandwidth every period.  This is
9418 	 * to prevent reaching a state of large arrears when throttled via
9419 	 * entity_tick() resulting in prolonged exit starvation.
9420 	 */
9421 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9422 		return -EINVAL;
9423 
9424 	/*
9425 	 * Likewise, bound things on the other side by preventing insane quota
9426 	 * periods.  This also allows us to normalize in computing quota
9427 	 * feasibility.
9428 	 */
9429 	if (period > max_cfs_quota_period)
9430 		return -EINVAL;
9431 
9432 	/*
9433 	 * Bound quota to defend quota against overflow during bandwidth shift.
9434 	 */
9435 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9436 		return -EINVAL;
9437 
9438 	if (quota != RUNTIME_INF && (burst > quota ||
9439 				     burst + quota > max_cfs_runtime))
9440 		return -EINVAL;
9441 
9442 	/*
9443 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9444 	 * unthrottle_offline_cfs_rqs().
9445 	 */
9446 	guard(cpus_read_lock)();
9447 	guard(mutex)(&cfs_constraints_mutex);
9448 
9449 	ret = __cfs_schedulable(tg, period, quota);
9450 	if (ret)
9451 		return ret;
9452 
9453 	runtime_enabled = quota != RUNTIME_INF;
9454 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9455 	/*
9456 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9457 	 * before making related changes, and on->off must occur afterwards
9458 	 */
9459 	if (runtime_enabled && !runtime_was_enabled)
9460 		cfs_bandwidth_usage_inc();
9461 
9462 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9463 		cfs_b->period = ns_to_ktime(period);
9464 		cfs_b->quota = quota;
9465 		cfs_b->burst = burst;
9466 
9467 		__refill_cfs_bandwidth_runtime(cfs_b);
9468 
9469 		/*
9470 		 * Restart the period timer (if active) to handle new
9471 		 * period expiry:
9472 		 */
9473 		if (runtime_enabled)
9474 			start_cfs_bandwidth(cfs_b);
9475 	}
9476 
9477 	for_each_online_cpu(i) {
9478 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9479 		struct rq *rq = cfs_rq->rq;
9480 
9481 		guard(rq_lock_irq)(rq);
9482 		cfs_rq->runtime_enabled = runtime_enabled;
9483 		cfs_rq->runtime_remaining = 0;
9484 
9485 		if (cfs_rq->throttled)
9486 			unthrottle_cfs_rq(cfs_rq);
9487 	}
9488 
9489 	if (runtime_was_enabled && !runtime_enabled)
9490 		cfs_bandwidth_usage_dec();
9491 
9492 	return 0;
9493 }
9494 
9495 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9496 {
9497 	u64 quota, period, burst;
9498 
9499 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9500 	burst = tg->cfs_bandwidth.burst;
9501 	if (cfs_quota_us < 0)
9502 		quota = RUNTIME_INF;
9503 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9504 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9505 	else
9506 		return -EINVAL;
9507 
9508 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9509 }
9510 
9511 static long tg_get_cfs_quota(struct task_group *tg)
9512 {
9513 	u64 quota_us;
9514 
9515 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9516 		return -1;
9517 
9518 	quota_us = tg->cfs_bandwidth.quota;
9519 	do_div(quota_us, NSEC_PER_USEC);
9520 
9521 	return quota_us;
9522 }
9523 
9524 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9525 {
9526 	u64 quota, period, burst;
9527 
9528 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9529 		return -EINVAL;
9530 
9531 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9532 	quota = tg->cfs_bandwidth.quota;
9533 	burst = tg->cfs_bandwidth.burst;
9534 
9535 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9536 }
9537 
9538 static long tg_get_cfs_period(struct task_group *tg)
9539 {
9540 	u64 cfs_period_us;
9541 
9542 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9543 	do_div(cfs_period_us, NSEC_PER_USEC);
9544 
9545 	return cfs_period_us;
9546 }
9547 
9548 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9549 {
9550 	u64 quota, period, burst;
9551 
9552 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9553 		return -EINVAL;
9554 
9555 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9556 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9557 	quota = tg->cfs_bandwidth.quota;
9558 
9559 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9560 }
9561 
9562 static long tg_get_cfs_burst(struct task_group *tg)
9563 {
9564 	u64 burst_us;
9565 
9566 	burst_us = tg->cfs_bandwidth.burst;
9567 	do_div(burst_us, NSEC_PER_USEC);
9568 
9569 	return burst_us;
9570 }
9571 
9572 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9573 				  struct cftype *cft)
9574 {
9575 	return tg_get_cfs_quota(css_tg(css));
9576 }
9577 
9578 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9579 				   struct cftype *cftype, s64 cfs_quota_us)
9580 {
9581 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9582 }
9583 
9584 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9585 				   struct cftype *cft)
9586 {
9587 	return tg_get_cfs_period(css_tg(css));
9588 }
9589 
9590 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9591 				    struct cftype *cftype, u64 cfs_period_us)
9592 {
9593 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9594 }
9595 
9596 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9597 				  struct cftype *cft)
9598 {
9599 	return tg_get_cfs_burst(css_tg(css));
9600 }
9601 
9602 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9603 				   struct cftype *cftype, u64 cfs_burst_us)
9604 {
9605 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9606 }
9607 
9608 struct cfs_schedulable_data {
9609 	struct task_group *tg;
9610 	u64 period, quota;
9611 };
9612 
9613 /*
9614  * normalize group quota/period to be quota/max_period
9615  * note: units are usecs
9616  */
9617 static u64 normalize_cfs_quota(struct task_group *tg,
9618 			       struct cfs_schedulable_data *d)
9619 {
9620 	u64 quota, period;
9621 
9622 	if (tg == d->tg) {
9623 		period = d->period;
9624 		quota = d->quota;
9625 	} else {
9626 		period = tg_get_cfs_period(tg);
9627 		quota = tg_get_cfs_quota(tg);
9628 	}
9629 
9630 	/* note: these should typically be equivalent */
9631 	if (quota == RUNTIME_INF || quota == -1)
9632 		return RUNTIME_INF;
9633 
9634 	return to_ratio(period, quota);
9635 }
9636 
9637 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9638 {
9639 	struct cfs_schedulable_data *d = data;
9640 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9641 	s64 quota = 0, parent_quota = -1;
9642 
9643 	if (!tg->parent) {
9644 		quota = RUNTIME_INF;
9645 	} else {
9646 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9647 
9648 		quota = normalize_cfs_quota(tg, d);
9649 		parent_quota = parent_b->hierarchical_quota;
9650 
9651 		/*
9652 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9653 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9654 		 * inherit when no limit is set. In both cases this is used
9655 		 * by the scheduler to determine if a given CFS task has a
9656 		 * bandwidth constraint at some higher level.
9657 		 */
9658 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9659 			if (quota == RUNTIME_INF)
9660 				quota = parent_quota;
9661 			else if (parent_quota != RUNTIME_INF)
9662 				quota = min(quota, parent_quota);
9663 		} else {
9664 			if (quota == RUNTIME_INF)
9665 				quota = parent_quota;
9666 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9667 				return -EINVAL;
9668 		}
9669 	}
9670 	cfs_b->hierarchical_quota = quota;
9671 
9672 	return 0;
9673 }
9674 
9675 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9676 {
9677 	struct cfs_schedulable_data data = {
9678 		.tg = tg,
9679 		.period = period,
9680 		.quota = quota,
9681 	};
9682 
9683 	if (quota != RUNTIME_INF) {
9684 		do_div(data.period, NSEC_PER_USEC);
9685 		do_div(data.quota, NSEC_PER_USEC);
9686 	}
9687 
9688 	guard(rcu)();
9689 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9690 }
9691 
9692 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9693 {
9694 	struct task_group *tg = css_tg(seq_css(sf));
9695 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9696 
9697 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9698 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9699 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9700 
9701 	if (schedstat_enabled() && tg != &root_task_group) {
9702 		struct sched_statistics *stats;
9703 		u64 ws = 0;
9704 		int i;
9705 
9706 		for_each_possible_cpu(i) {
9707 			stats = __schedstats_from_se(tg->se[i]);
9708 			ws += schedstat_val(stats->wait_sum);
9709 		}
9710 
9711 		seq_printf(sf, "wait_sum %llu\n", ws);
9712 	}
9713 
9714 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9715 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9716 
9717 	return 0;
9718 }
9719 
9720 static u64 throttled_time_self(struct task_group *tg)
9721 {
9722 	int i;
9723 	u64 total = 0;
9724 
9725 	for_each_possible_cpu(i) {
9726 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9727 	}
9728 
9729 	return total;
9730 }
9731 
9732 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9733 {
9734 	struct task_group *tg = css_tg(seq_css(sf));
9735 
9736 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9737 
9738 	return 0;
9739 }
9740 #endif /* CONFIG_CFS_BANDWIDTH */
9741 
9742 #ifdef CONFIG_RT_GROUP_SCHED
9743 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9744 				struct cftype *cft, s64 val)
9745 {
9746 	return sched_group_set_rt_runtime(css_tg(css), val);
9747 }
9748 
9749 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9750 			       struct cftype *cft)
9751 {
9752 	return sched_group_rt_runtime(css_tg(css));
9753 }
9754 
9755 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9756 				    struct cftype *cftype, u64 rt_period_us)
9757 {
9758 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9759 }
9760 
9761 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9762 				   struct cftype *cft)
9763 {
9764 	return sched_group_rt_period(css_tg(css));
9765 }
9766 #endif /* CONFIG_RT_GROUP_SCHED */
9767 
9768 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9769 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9770 			       struct cftype *cft)
9771 {
9772 	return css_tg(css)->idle;
9773 }
9774 
9775 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9776 				struct cftype *cft, s64 idle)
9777 {
9778 	int ret;
9779 
9780 	ret = sched_group_set_idle(css_tg(css), idle);
9781 	if (!ret)
9782 		scx_group_set_idle(css_tg(css), idle);
9783 	return ret;
9784 }
9785 #endif
9786 
9787 static struct cftype cpu_legacy_files[] = {
9788 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9789 	{
9790 		.name = "shares",
9791 		.read_u64 = cpu_shares_read_u64,
9792 		.write_u64 = cpu_shares_write_u64,
9793 	},
9794 	{
9795 		.name = "idle",
9796 		.read_s64 = cpu_idle_read_s64,
9797 		.write_s64 = cpu_idle_write_s64,
9798 	},
9799 #endif
9800 #ifdef CONFIG_CFS_BANDWIDTH
9801 	{
9802 		.name = "cfs_quota_us",
9803 		.read_s64 = cpu_cfs_quota_read_s64,
9804 		.write_s64 = cpu_cfs_quota_write_s64,
9805 	},
9806 	{
9807 		.name = "cfs_period_us",
9808 		.read_u64 = cpu_cfs_period_read_u64,
9809 		.write_u64 = cpu_cfs_period_write_u64,
9810 	},
9811 	{
9812 		.name = "cfs_burst_us",
9813 		.read_u64 = cpu_cfs_burst_read_u64,
9814 		.write_u64 = cpu_cfs_burst_write_u64,
9815 	},
9816 	{
9817 		.name = "stat",
9818 		.seq_show = cpu_cfs_stat_show,
9819 	},
9820 	{
9821 		.name = "stat.local",
9822 		.seq_show = cpu_cfs_local_stat_show,
9823 	},
9824 #endif
9825 #ifdef CONFIG_RT_GROUP_SCHED
9826 	{
9827 		.name = "rt_runtime_us",
9828 		.read_s64 = cpu_rt_runtime_read,
9829 		.write_s64 = cpu_rt_runtime_write,
9830 	},
9831 	{
9832 		.name = "rt_period_us",
9833 		.read_u64 = cpu_rt_period_read_uint,
9834 		.write_u64 = cpu_rt_period_write_uint,
9835 	},
9836 #endif
9837 #ifdef CONFIG_UCLAMP_TASK_GROUP
9838 	{
9839 		.name = "uclamp.min",
9840 		.flags = CFTYPE_NOT_ON_ROOT,
9841 		.seq_show = cpu_uclamp_min_show,
9842 		.write = cpu_uclamp_min_write,
9843 	},
9844 	{
9845 		.name = "uclamp.max",
9846 		.flags = CFTYPE_NOT_ON_ROOT,
9847 		.seq_show = cpu_uclamp_max_show,
9848 		.write = cpu_uclamp_max_write,
9849 	},
9850 #endif
9851 	{ }	/* Terminate */
9852 };
9853 
9854 static int cpu_extra_stat_show(struct seq_file *sf,
9855 			       struct cgroup_subsys_state *css)
9856 {
9857 #ifdef CONFIG_CFS_BANDWIDTH
9858 	{
9859 		struct task_group *tg = css_tg(css);
9860 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9861 		u64 throttled_usec, burst_usec;
9862 
9863 		throttled_usec = cfs_b->throttled_time;
9864 		do_div(throttled_usec, NSEC_PER_USEC);
9865 		burst_usec = cfs_b->burst_time;
9866 		do_div(burst_usec, NSEC_PER_USEC);
9867 
9868 		seq_printf(sf, "nr_periods %d\n"
9869 			   "nr_throttled %d\n"
9870 			   "throttled_usec %llu\n"
9871 			   "nr_bursts %d\n"
9872 			   "burst_usec %llu\n",
9873 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9874 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9875 	}
9876 #endif
9877 	return 0;
9878 }
9879 
9880 static int cpu_local_stat_show(struct seq_file *sf,
9881 			       struct cgroup_subsys_state *css)
9882 {
9883 #ifdef CONFIG_CFS_BANDWIDTH
9884 	{
9885 		struct task_group *tg = css_tg(css);
9886 		u64 throttled_self_usec;
9887 
9888 		throttled_self_usec = throttled_time_self(tg);
9889 		do_div(throttled_self_usec, NSEC_PER_USEC);
9890 
9891 		seq_printf(sf, "throttled_usec %llu\n",
9892 			   throttled_self_usec);
9893 	}
9894 #endif
9895 	return 0;
9896 }
9897 
9898 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9899 
9900 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9901 			       struct cftype *cft)
9902 {
9903 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9904 }
9905 
9906 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9907 				struct cftype *cft, u64 cgrp_weight)
9908 {
9909 	unsigned long weight;
9910 	int ret;
9911 
9912 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9913 		return -ERANGE;
9914 
9915 	weight = sched_weight_from_cgroup(cgrp_weight);
9916 
9917 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9918 	if (!ret)
9919 		scx_group_set_weight(css_tg(css), cgrp_weight);
9920 	return ret;
9921 }
9922 
9923 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9924 				    struct cftype *cft)
9925 {
9926 	unsigned long weight = tg_weight(css_tg(css));
9927 	int last_delta = INT_MAX;
9928 	int prio, delta;
9929 
9930 	/* find the closest nice value to the current weight */
9931 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9932 		delta = abs(sched_prio_to_weight[prio] - weight);
9933 		if (delta >= last_delta)
9934 			break;
9935 		last_delta = delta;
9936 	}
9937 
9938 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9939 }
9940 
9941 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9942 				     struct cftype *cft, s64 nice)
9943 {
9944 	unsigned long weight;
9945 	int idx, ret;
9946 
9947 	if (nice < MIN_NICE || nice > MAX_NICE)
9948 		return -ERANGE;
9949 
9950 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9951 	idx = array_index_nospec(idx, 40);
9952 	weight = sched_prio_to_weight[idx];
9953 
9954 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9955 	if (!ret)
9956 		scx_group_set_weight(css_tg(css),
9957 				     sched_weight_to_cgroup(weight));
9958 	return ret;
9959 }
9960 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9961 
9962 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9963 						  long period, long quota)
9964 {
9965 	if (quota < 0)
9966 		seq_puts(sf, "max");
9967 	else
9968 		seq_printf(sf, "%ld", quota);
9969 
9970 	seq_printf(sf, " %ld\n", period);
9971 }
9972 
9973 /* caller should put the current value in *@periodp before calling */
9974 static int __maybe_unused cpu_period_quota_parse(char *buf,
9975 						 u64 *periodp, u64 *quotap)
9976 {
9977 	char tok[21];	/* U64_MAX */
9978 
9979 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9980 		return -EINVAL;
9981 
9982 	*periodp *= NSEC_PER_USEC;
9983 
9984 	if (sscanf(tok, "%llu", quotap))
9985 		*quotap *= NSEC_PER_USEC;
9986 	else if (!strcmp(tok, "max"))
9987 		*quotap = RUNTIME_INF;
9988 	else
9989 		return -EINVAL;
9990 
9991 	return 0;
9992 }
9993 
9994 #ifdef CONFIG_CFS_BANDWIDTH
9995 static int cpu_max_show(struct seq_file *sf, void *v)
9996 {
9997 	struct task_group *tg = css_tg(seq_css(sf));
9998 
9999 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10000 	return 0;
10001 }
10002 
10003 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10004 			     char *buf, size_t nbytes, loff_t off)
10005 {
10006 	struct task_group *tg = css_tg(of_css(of));
10007 	u64 period = tg_get_cfs_period(tg);
10008 	u64 burst = tg->cfs_bandwidth.burst;
10009 	u64 quota;
10010 	int ret;
10011 
10012 	ret = cpu_period_quota_parse(buf, &period, &quota);
10013 	if (!ret)
10014 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10015 	return ret ?: nbytes;
10016 }
10017 #endif
10018 
10019 static struct cftype cpu_files[] = {
10020 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10021 	{
10022 		.name = "weight",
10023 		.flags = CFTYPE_NOT_ON_ROOT,
10024 		.read_u64 = cpu_weight_read_u64,
10025 		.write_u64 = cpu_weight_write_u64,
10026 	},
10027 	{
10028 		.name = "weight.nice",
10029 		.flags = CFTYPE_NOT_ON_ROOT,
10030 		.read_s64 = cpu_weight_nice_read_s64,
10031 		.write_s64 = cpu_weight_nice_write_s64,
10032 	},
10033 	{
10034 		.name = "idle",
10035 		.flags = CFTYPE_NOT_ON_ROOT,
10036 		.read_s64 = cpu_idle_read_s64,
10037 		.write_s64 = cpu_idle_write_s64,
10038 	},
10039 #endif
10040 #ifdef CONFIG_CFS_BANDWIDTH
10041 	{
10042 		.name = "max",
10043 		.flags = CFTYPE_NOT_ON_ROOT,
10044 		.seq_show = cpu_max_show,
10045 		.write = cpu_max_write,
10046 	},
10047 	{
10048 		.name = "max.burst",
10049 		.flags = CFTYPE_NOT_ON_ROOT,
10050 		.read_u64 = cpu_cfs_burst_read_u64,
10051 		.write_u64 = cpu_cfs_burst_write_u64,
10052 	},
10053 #endif
10054 #ifdef CONFIG_UCLAMP_TASK_GROUP
10055 	{
10056 		.name = "uclamp.min",
10057 		.flags = CFTYPE_NOT_ON_ROOT,
10058 		.seq_show = cpu_uclamp_min_show,
10059 		.write = cpu_uclamp_min_write,
10060 	},
10061 	{
10062 		.name = "uclamp.max",
10063 		.flags = CFTYPE_NOT_ON_ROOT,
10064 		.seq_show = cpu_uclamp_max_show,
10065 		.write = cpu_uclamp_max_write,
10066 	},
10067 #endif
10068 	{ }	/* terminate */
10069 };
10070 
10071 struct cgroup_subsys cpu_cgrp_subsys = {
10072 	.css_alloc	= cpu_cgroup_css_alloc,
10073 	.css_online	= cpu_cgroup_css_online,
10074 	.css_offline	= cpu_cgroup_css_offline,
10075 	.css_released	= cpu_cgroup_css_released,
10076 	.css_free	= cpu_cgroup_css_free,
10077 	.css_extra_stat_show = cpu_extra_stat_show,
10078 	.css_local_stat_show = cpu_local_stat_show,
10079 	.can_attach	= cpu_cgroup_can_attach,
10080 	.attach		= cpu_cgroup_attach,
10081 	.cancel_attach	= cpu_cgroup_cancel_attach,
10082 	.legacy_cftypes	= cpu_legacy_files,
10083 	.dfl_cftypes	= cpu_files,
10084 	.early_init	= true,
10085 	.threaded	= true,
10086 };
10087 
10088 #endif	/* CONFIG_CGROUP_SCHED */
10089 
10090 void dump_cpu_task(int cpu)
10091 {
10092 	if (in_hardirq() && cpu == smp_processor_id()) {
10093 		struct pt_regs *regs;
10094 
10095 		regs = get_irq_regs();
10096 		if (regs) {
10097 			show_regs(regs);
10098 			return;
10099 		}
10100 	}
10101 
10102 	if (trigger_single_cpu_backtrace(cpu))
10103 		return;
10104 
10105 	pr_info("Task dump for CPU %d:\n", cpu);
10106 	sched_show_task(cpu_curr(cpu));
10107 }
10108 
10109 /*
10110  * Nice levels are multiplicative, with a gentle 10% change for every
10111  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10112  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10113  * that remained on nice 0.
10114  *
10115  * The "10% effect" is relative and cumulative: from _any_ nice level,
10116  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10117  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10118  * If a task goes up by ~10% and another task goes down by ~10% then
10119  * the relative distance between them is ~25%.)
10120  */
10121 const int sched_prio_to_weight[40] = {
10122  /* -20 */     88761,     71755,     56483,     46273,     36291,
10123  /* -15 */     29154,     23254,     18705,     14949,     11916,
10124  /* -10 */      9548,      7620,      6100,      4904,      3906,
10125  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10126  /*   0 */      1024,       820,       655,       526,       423,
10127  /*   5 */       335,       272,       215,       172,       137,
10128  /*  10 */       110,        87,        70,        56,        45,
10129  /*  15 */        36,        29,        23,        18,        15,
10130 };
10131 
10132 /*
10133  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10134  *
10135  * In cases where the weight does not change often, we can use the
10136  * pre-calculated inverse to speed up arithmetics by turning divisions
10137  * into multiplications:
10138  */
10139 const u32 sched_prio_to_wmult[40] = {
10140  /* -20 */     48388,     59856,     76040,     92818,    118348,
10141  /* -15 */    147320,    184698,    229616,    287308,    360437,
10142  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10143  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10144  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10145  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10146  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10147  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10148 };
10149 
10150 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10151 {
10152         trace_sched_update_nr_running_tp(rq, count);
10153 }
10154 
10155 #ifdef CONFIG_SCHED_MM_CID
10156 
10157 /*
10158  * @cid_lock: Guarantee forward-progress of cid allocation.
10159  *
10160  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10161  * is only used when contention is detected by the lock-free allocation so
10162  * forward progress can be guaranteed.
10163  */
10164 DEFINE_RAW_SPINLOCK(cid_lock);
10165 
10166 /*
10167  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10168  *
10169  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10170  * detected, it is set to 1 to ensure that all newly coming allocations are
10171  * serialized by @cid_lock until the allocation which detected contention
10172  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10173  * of a cid allocation.
10174  */
10175 int use_cid_lock;
10176 
10177 /*
10178  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10179  * concurrently with respect to the execution of the source runqueue context
10180  * switch.
10181  *
10182  * There is one basic properties we want to guarantee here:
10183  *
10184  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10185  * used by a task. That would lead to concurrent allocation of the cid and
10186  * userspace corruption.
10187  *
10188  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10189  * that a pair of loads observe at least one of a pair of stores, which can be
10190  * shown as:
10191  *
10192  *      X = Y = 0
10193  *
10194  *      w[X]=1          w[Y]=1
10195  *      MB              MB
10196  *      r[Y]=y          r[X]=x
10197  *
10198  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10199  * values 0 and 1, this algorithm cares about specific state transitions of the
10200  * runqueue current task (as updated by the scheduler context switch), and the
10201  * per-mm/cpu cid value.
10202  *
10203  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10204  * task->mm != mm for the rest of the discussion. There are two scheduler state
10205  * transitions on context switch we care about:
10206  *
10207  * (TSA) Store to rq->curr with transition from (N) to (Y)
10208  *
10209  * (TSB) Store to rq->curr with transition from (Y) to (N)
10210  *
10211  * On the remote-clear side, there is one transition we care about:
10212  *
10213  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10214  *
10215  * There is also a transition to UNSET state which can be performed from all
10216  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10217  * guarantees that only a single thread will succeed:
10218  *
10219  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10220  *
10221  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10222  * when a thread is actively using the cid (property (1)).
10223  *
10224  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10225  *
10226  * Scenario A) (TSA)+(TMA) (from next task perspective)
10227  *
10228  * CPU0                                      CPU1
10229  *
10230  * Context switch CS-1                       Remote-clear
10231  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10232  *                                             (implied barrier after cmpxchg)
10233  *   - switch_mm_cid()
10234  *     - memory barrier (see switch_mm_cid()
10235  *       comment explaining how this barrier
10236  *       is combined with other scheduler
10237  *       barriers)
10238  *     - mm_cid_get (next)
10239  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10240  *
10241  * This Dekker ensures that either task (Y) is observed by the
10242  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10243  * observed.
10244  *
10245  * If task (Y) store is observed by rcu_dereference(), it means that there is
10246  * still an active task on the cpu. Remote-clear will therefore not transition
10247  * to UNSET, which fulfills property (1).
10248  *
10249  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10250  * it will move its state to UNSET, which clears the percpu cid perhaps
10251  * uselessly (which is not an issue for correctness). Because task (Y) is not
10252  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10253  * state to UNSET is done with a cmpxchg expecting that the old state has the
10254  * LAZY flag set, only one thread will successfully UNSET.
10255  *
10256  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10257  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10258  * CPU1 will observe task (Y) and do nothing more, which is fine.
10259  *
10260  * What we are effectively preventing with this Dekker is a scenario where
10261  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10262  * because this would UNSET a cid which is actively used.
10263  */
10264 
10265 void sched_mm_cid_migrate_from(struct task_struct *t)
10266 {
10267 	t->migrate_from_cpu = task_cpu(t);
10268 }
10269 
10270 static
10271 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10272 					  struct task_struct *t,
10273 					  struct mm_cid *src_pcpu_cid)
10274 {
10275 	struct mm_struct *mm = t->mm;
10276 	struct task_struct *src_task;
10277 	int src_cid, last_mm_cid;
10278 
10279 	if (!mm)
10280 		return -1;
10281 
10282 	last_mm_cid = t->last_mm_cid;
10283 	/*
10284 	 * If the migrated task has no last cid, or if the current
10285 	 * task on src rq uses the cid, it means the source cid does not need
10286 	 * to be moved to the destination cpu.
10287 	 */
10288 	if (last_mm_cid == -1)
10289 		return -1;
10290 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10291 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10292 		return -1;
10293 
10294 	/*
10295 	 * If we observe an active task using the mm on this rq, it means we
10296 	 * are not the last task to be migrated from this cpu for this mm, so
10297 	 * there is no need to move src_cid to the destination cpu.
10298 	 */
10299 	guard(rcu)();
10300 	src_task = rcu_dereference(src_rq->curr);
10301 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10302 		t->last_mm_cid = -1;
10303 		return -1;
10304 	}
10305 
10306 	return src_cid;
10307 }
10308 
10309 static
10310 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10311 					      struct task_struct *t,
10312 					      struct mm_cid *src_pcpu_cid,
10313 					      int src_cid)
10314 {
10315 	struct task_struct *src_task;
10316 	struct mm_struct *mm = t->mm;
10317 	int lazy_cid;
10318 
10319 	if (src_cid == -1)
10320 		return -1;
10321 
10322 	/*
10323 	 * Attempt to clear the source cpu cid to move it to the destination
10324 	 * cpu.
10325 	 */
10326 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10327 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10328 		return -1;
10329 
10330 	/*
10331 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10332 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10333 	 * between store to rq->curr and load of prev and next task's
10334 	 * per-mm/cpu cid.
10335 	 *
10336 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10337 	 * rq->curr->mm_cid_active matches the barrier in
10338 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10339 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10340 	 * load of per-mm/cpu cid.
10341 	 */
10342 
10343 	/*
10344 	 * If we observe an active task using the mm on this rq after setting
10345 	 * the lazy-put flag, this task will be responsible for transitioning
10346 	 * from lazy-put flag set to MM_CID_UNSET.
10347 	 */
10348 	scoped_guard (rcu) {
10349 		src_task = rcu_dereference(src_rq->curr);
10350 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10351 			/*
10352 			 * We observed an active task for this mm, there is therefore
10353 			 * no point in moving this cid to the destination cpu.
10354 			 */
10355 			t->last_mm_cid = -1;
10356 			return -1;
10357 		}
10358 	}
10359 
10360 	/*
10361 	 * The src_cid is unused, so it can be unset.
10362 	 */
10363 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10364 		return -1;
10365 	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10366 	return src_cid;
10367 }
10368 
10369 /*
10370  * Migration to dst cpu. Called with dst_rq lock held.
10371  * Interrupts are disabled, which keeps the window of cid ownership without the
10372  * source rq lock held small.
10373  */
10374 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10375 {
10376 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10377 	struct mm_struct *mm = t->mm;
10378 	int src_cid, src_cpu;
10379 	bool dst_cid_is_set;
10380 	struct rq *src_rq;
10381 
10382 	lockdep_assert_rq_held(dst_rq);
10383 
10384 	if (!mm)
10385 		return;
10386 	src_cpu = t->migrate_from_cpu;
10387 	if (src_cpu == -1) {
10388 		t->last_mm_cid = -1;
10389 		return;
10390 	}
10391 	/*
10392 	 * Move the src cid if the dst cid is unset. This keeps id
10393 	 * allocation closest to 0 in cases where few threads migrate around
10394 	 * many CPUs.
10395 	 *
10396 	 * If destination cid or recent cid is already set, we may have
10397 	 * to just clear the src cid to ensure compactness in frequent
10398 	 * migrations scenarios.
10399 	 *
10400 	 * It is not useful to clear the src cid when the number of threads is
10401 	 * greater or equal to the number of allowed CPUs, because user-space
10402 	 * can expect that the number of allowed cids can reach the number of
10403 	 * allowed CPUs.
10404 	 */
10405 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10406 	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10407 			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10408 	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10409 		return;
10410 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10411 	src_rq = cpu_rq(src_cpu);
10412 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10413 	if (src_cid == -1)
10414 		return;
10415 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10416 							    src_cid);
10417 	if (src_cid == -1)
10418 		return;
10419 	if (dst_cid_is_set) {
10420 		__mm_cid_put(mm, src_cid);
10421 		return;
10422 	}
10423 	/* Move src_cid to dst cpu. */
10424 	mm_cid_snapshot_time(dst_rq, mm);
10425 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10426 	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10427 }
10428 
10429 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10430 				      int cpu)
10431 {
10432 	struct rq *rq = cpu_rq(cpu);
10433 	struct task_struct *t;
10434 	int cid, lazy_cid;
10435 
10436 	cid = READ_ONCE(pcpu_cid->cid);
10437 	if (!mm_cid_is_valid(cid))
10438 		return;
10439 
10440 	/*
10441 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10442 	 * there happens to be other tasks left on the source cpu using this
10443 	 * mm, the next task using this mm will reallocate its cid on context
10444 	 * switch.
10445 	 */
10446 	lazy_cid = mm_cid_set_lazy_put(cid);
10447 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10448 		return;
10449 
10450 	/*
10451 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10452 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10453 	 * between store to rq->curr and load of prev and next task's
10454 	 * per-mm/cpu cid.
10455 	 *
10456 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10457 	 * rq->curr->mm_cid_active matches the barrier in
10458 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10459 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10460 	 * load of per-mm/cpu cid.
10461 	 */
10462 
10463 	/*
10464 	 * If we observe an active task using the mm on this rq after setting
10465 	 * the lazy-put flag, that task will be responsible for transitioning
10466 	 * from lazy-put flag set to MM_CID_UNSET.
10467 	 */
10468 	scoped_guard (rcu) {
10469 		t = rcu_dereference(rq->curr);
10470 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10471 			return;
10472 	}
10473 
10474 	/*
10475 	 * The cid is unused, so it can be unset.
10476 	 * Disable interrupts to keep the window of cid ownership without rq
10477 	 * lock small.
10478 	 */
10479 	scoped_guard (irqsave) {
10480 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10481 			__mm_cid_put(mm, cid);
10482 	}
10483 }
10484 
10485 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10486 {
10487 	struct rq *rq = cpu_rq(cpu);
10488 	struct mm_cid *pcpu_cid;
10489 	struct task_struct *curr;
10490 	u64 rq_clock;
10491 
10492 	/*
10493 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10494 	 * while is irrelevant.
10495 	 */
10496 	rq_clock = READ_ONCE(rq->clock);
10497 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10498 
10499 	/*
10500 	 * In order to take care of infrequently scheduled tasks, bump the time
10501 	 * snapshot associated with this cid if an active task using the mm is
10502 	 * observed on this rq.
10503 	 */
10504 	scoped_guard (rcu) {
10505 		curr = rcu_dereference(rq->curr);
10506 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10507 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10508 			return;
10509 		}
10510 	}
10511 
10512 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10513 		return;
10514 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10515 }
10516 
10517 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10518 					     int weight)
10519 {
10520 	struct mm_cid *pcpu_cid;
10521 	int cid;
10522 
10523 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10524 	cid = READ_ONCE(pcpu_cid->cid);
10525 	if (!mm_cid_is_valid(cid) || cid < weight)
10526 		return;
10527 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10528 }
10529 
10530 static void task_mm_cid_work(struct callback_head *work)
10531 {
10532 	unsigned long now = jiffies, old_scan, next_scan;
10533 	struct task_struct *t = current;
10534 	struct cpumask *cidmask;
10535 	struct mm_struct *mm;
10536 	int weight, cpu;
10537 
10538 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10539 
10540 	work->next = work;	/* Prevent double-add */
10541 	if (t->flags & PF_EXITING)
10542 		return;
10543 	mm = t->mm;
10544 	if (!mm)
10545 		return;
10546 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10547 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10548 	if (!old_scan) {
10549 		unsigned long res;
10550 
10551 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10552 		if (res != old_scan)
10553 			old_scan = res;
10554 		else
10555 			old_scan = next_scan;
10556 	}
10557 	if (time_before(now, old_scan))
10558 		return;
10559 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10560 		return;
10561 	cidmask = mm_cidmask(mm);
10562 	/* Clear cids that were not recently used. */
10563 	for_each_possible_cpu(cpu)
10564 		sched_mm_cid_remote_clear_old(mm, cpu);
10565 	weight = cpumask_weight(cidmask);
10566 	/*
10567 	 * Clear cids that are greater or equal to the cidmask weight to
10568 	 * recompact it.
10569 	 */
10570 	for_each_possible_cpu(cpu)
10571 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10572 }
10573 
10574 void init_sched_mm_cid(struct task_struct *t)
10575 {
10576 	struct mm_struct *mm = t->mm;
10577 	int mm_users = 0;
10578 
10579 	if (mm) {
10580 		mm_users = atomic_read(&mm->mm_users);
10581 		if (mm_users == 1)
10582 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10583 	}
10584 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10585 	init_task_work(&t->cid_work, task_mm_cid_work);
10586 }
10587 
10588 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10589 {
10590 	struct callback_head *work = &curr->cid_work;
10591 	unsigned long now = jiffies;
10592 
10593 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10594 	    work->next != work)
10595 		return;
10596 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10597 		return;
10598 
10599 	/* No page allocation under rq lock */
10600 	task_work_add(curr, work, TWA_RESUME);
10601 }
10602 
10603 void sched_mm_cid_exit_signals(struct task_struct *t)
10604 {
10605 	struct mm_struct *mm = t->mm;
10606 	struct rq *rq;
10607 
10608 	if (!mm)
10609 		return;
10610 
10611 	preempt_disable();
10612 	rq = this_rq();
10613 	guard(rq_lock_irqsave)(rq);
10614 	preempt_enable_no_resched();	/* holding spinlock */
10615 	WRITE_ONCE(t->mm_cid_active, 0);
10616 	/*
10617 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10618 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10619 	 */
10620 	smp_mb();
10621 	mm_cid_put(mm);
10622 	t->last_mm_cid = t->mm_cid = -1;
10623 }
10624 
10625 void sched_mm_cid_before_execve(struct task_struct *t)
10626 {
10627 	struct mm_struct *mm = t->mm;
10628 	struct rq *rq;
10629 
10630 	if (!mm)
10631 		return;
10632 
10633 	preempt_disable();
10634 	rq = this_rq();
10635 	guard(rq_lock_irqsave)(rq);
10636 	preempt_enable_no_resched();	/* holding spinlock */
10637 	WRITE_ONCE(t->mm_cid_active, 0);
10638 	/*
10639 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10640 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10641 	 */
10642 	smp_mb();
10643 	mm_cid_put(mm);
10644 	t->last_mm_cid = t->mm_cid = -1;
10645 }
10646 
10647 void sched_mm_cid_after_execve(struct task_struct *t)
10648 {
10649 	struct mm_struct *mm = t->mm;
10650 	struct rq *rq;
10651 
10652 	if (!mm)
10653 		return;
10654 
10655 	preempt_disable();
10656 	rq = this_rq();
10657 	scoped_guard (rq_lock_irqsave, rq) {
10658 		preempt_enable_no_resched();	/* holding spinlock */
10659 		WRITE_ONCE(t->mm_cid_active, 1);
10660 		/*
10661 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10662 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10663 		 */
10664 		smp_mb();
10665 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10666 	}
10667 	rseq_set_notify_resume(t);
10668 }
10669 
10670 void sched_mm_cid_fork(struct task_struct *t)
10671 {
10672 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10673 	t->mm_cid_active = 1;
10674 }
10675 #endif
10676 
10677 #ifdef CONFIG_SCHED_CLASS_EXT
10678 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10679 			    struct sched_enq_and_set_ctx *ctx)
10680 {
10681 	struct rq *rq = task_rq(p);
10682 
10683 	lockdep_assert_rq_held(rq);
10684 
10685 	*ctx = (struct sched_enq_and_set_ctx){
10686 		.p = p,
10687 		.queue_flags = queue_flags,
10688 		.queued = task_on_rq_queued(p),
10689 		.running = task_current(rq, p),
10690 	};
10691 
10692 	update_rq_clock(rq);
10693 	if (ctx->queued)
10694 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10695 	if (ctx->running)
10696 		put_prev_task(rq, p);
10697 }
10698 
10699 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10700 {
10701 	struct rq *rq = task_rq(ctx->p);
10702 
10703 	lockdep_assert_rq_held(rq);
10704 
10705 	if (ctx->queued)
10706 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10707 	if (ctx->running)
10708 		set_next_task(rq, ctx->p);
10709 }
10710 #endif	/* CONFIG_SCHED_CLASS_EXT */
10711