xref: /linux/kernel/sched/core.c (revision 39f75da7bcc829ddc4d40bb60d0e95520de7898b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 
62 /*
63  * Print a warning if need_resched is set for the given duration (if
64  * LATENCY_WARN is enabled).
65  *
66  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67  * per boot.
68  */
69 __read_mostly int sysctl_resched_latency_warn_ms = 100;
70 __read_mostly int sysctl_resched_latency_warn_once = 1;
71 #endif /* CONFIG_SCHED_DEBUG */
72 
73 /*
74  * Number of tasks to iterate in a single balance run.
75  * Limited because this is done with IRQs disabled.
76  */
77 const_debug unsigned int sysctl_sched_nr_migrate = 32;
78 
79 /*
80  * period over which we measure -rt task CPU usage in us.
81  * default: 1s
82  */
83 unsigned int sysctl_sched_rt_period = 1000000;
84 
85 __read_mostly int scheduler_running;
86 
87 #ifdef CONFIG_SCHED_CORE
88 
89 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90 
91 /* kernel prio, less is more */
92 static inline int __task_prio(struct task_struct *p)
93 {
94 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 		return -2;
96 
97 	if (rt_prio(p->prio)) /* includes deadline */
98 		return p->prio; /* [-1, 99] */
99 
100 	if (p->sched_class == &idle_sched_class)
101 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102 
103 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104 }
105 
106 /*
107  * l(a,b)
108  * le(a,b) := !l(b,a)
109  * g(a,b)  := l(b,a)
110  * ge(a,b) := !l(a,b)
111  */
112 
113 /* real prio, less is less */
114 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
115 {
116 
117 	int pa = __task_prio(a), pb = __task_prio(b);
118 
119 	if (-pa < -pb)
120 		return true;
121 
122 	if (-pb < -pa)
123 		return false;
124 
125 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
127 
128 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
129 		return cfs_prio_less(a, b, in_fi);
130 
131 	return false;
132 }
133 
134 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135 {
136 	if (a->core_cookie < b->core_cookie)
137 		return true;
138 
139 	if (a->core_cookie > b->core_cookie)
140 		return false;
141 
142 	/* flip prio, so high prio is leftmost */
143 	if (prio_less(b, a, task_rq(a)->core->core_forceidle))
144 		return true;
145 
146 	return false;
147 }
148 
149 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150 
151 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152 {
153 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154 }
155 
156 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157 {
158 	const struct task_struct *p = __node_2_sc(node);
159 	unsigned long cookie = (unsigned long)key;
160 
161 	if (cookie < p->core_cookie)
162 		return -1;
163 
164 	if (cookie > p->core_cookie)
165 		return 1;
166 
167 	return 0;
168 }
169 
170 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
171 {
172 	rq->core->core_task_seq++;
173 
174 	if (!p->core_cookie)
175 		return;
176 
177 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178 }
179 
180 void sched_core_dequeue(struct rq *rq, struct task_struct *p)
181 {
182 	rq->core->core_task_seq++;
183 
184 	if (!sched_core_enqueued(p))
185 		return;
186 
187 	rb_erase(&p->core_node, &rq->core_tree);
188 	RB_CLEAR_NODE(&p->core_node);
189 }
190 
191 /*
192  * Find left-most (aka, highest priority) task matching @cookie.
193  */
194 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195 {
196 	struct rb_node *node;
197 
198 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 	/*
200 	 * The idle task always matches any cookie!
201 	 */
202 	if (!node)
203 		return idle_sched_class.pick_task(rq);
204 
205 	return __node_2_sc(node);
206 }
207 
208 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209 {
210 	struct rb_node *node = &p->core_node;
211 
212 	node = rb_next(node);
213 	if (!node)
214 		return NULL;
215 
216 	p = container_of(node, struct task_struct, core_node);
217 	if (p->core_cookie != cookie)
218 		return NULL;
219 
220 	return p;
221 }
222 
223 /*
224  * Magic required such that:
225  *
226  *	raw_spin_rq_lock(rq);
227  *	...
228  *	raw_spin_rq_unlock(rq);
229  *
230  * ends up locking and unlocking the _same_ lock, and all CPUs
231  * always agree on what rq has what lock.
232  *
233  * XXX entirely possible to selectively enable cores, don't bother for now.
234  */
235 
236 static DEFINE_MUTEX(sched_core_mutex);
237 static atomic_t sched_core_count;
238 static struct cpumask sched_core_mask;
239 
240 static void __sched_core_flip(bool enabled)
241 {
242 	int cpu, t, i;
243 
244 	cpus_read_lock();
245 
246 	/*
247 	 * Toggle the online cores, one by one.
248 	 */
249 	cpumask_copy(&sched_core_mask, cpu_online_mask);
250 	for_each_cpu(cpu, &sched_core_mask) {
251 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
252 
253 		i = 0;
254 		local_irq_disable();
255 		for_each_cpu(t, smt_mask) {
256 			/* supports up to SMT8 */
257 			raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
258 		}
259 
260 		for_each_cpu(t, smt_mask)
261 			cpu_rq(t)->core_enabled = enabled;
262 
263 		for_each_cpu(t, smt_mask)
264 			raw_spin_unlock(&cpu_rq(t)->__lock);
265 		local_irq_enable();
266 
267 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
268 	}
269 
270 	/*
271 	 * Toggle the offline CPUs.
272 	 */
273 	cpumask_copy(&sched_core_mask, cpu_possible_mask);
274 	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
275 
276 	for_each_cpu(cpu, &sched_core_mask)
277 		cpu_rq(cpu)->core_enabled = enabled;
278 
279 	cpus_read_unlock();
280 }
281 
282 static void sched_core_assert_empty(void)
283 {
284 	int cpu;
285 
286 	for_each_possible_cpu(cpu)
287 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
288 }
289 
290 static void __sched_core_enable(void)
291 {
292 	static_branch_enable(&__sched_core_enabled);
293 	/*
294 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
295 	 * and future ones will observe !sched_core_disabled().
296 	 */
297 	synchronize_rcu();
298 	__sched_core_flip(true);
299 	sched_core_assert_empty();
300 }
301 
302 static void __sched_core_disable(void)
303 {
304 	sched_core_assert_empty();
305 	__sched_core_flip(false);
306 	static_branch_disable(&__sched_core_enabled);
307 }
308 
309 void sched_core_get(void)
310 {
311 	if (atomic_inc_not_zero(&sched_core_count))
312 		return;
313 
314 	mutex_lock(&sched_core_mutex);
315 	if (!atomic_read(&sched_core_count))
316 		__sched_core_enable();
317 
318 	smp_mb__before_atomic();
319 	atomic_inc(&sched_core_count);
320 	mutex_unlock(&sched_core_mutex);
321 }
322 
323 static void __sched_core_put(struct work_struct *work)
324 {
325 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
326 		__sched_core_disable();
327 		mutex_unlock(&sched_core_mutex);
328 	}
329 }
330 
331 void sched_core_put(void)
332 {
333 	static DECLARE_WORK(_work, __sched_core_put);
334 
335 	/*
336 	 * "There can be only one"
337 	 *
338 	 * Either this is the last one, or we don't actually need to do any
339 	 * 'work'. If it is the last *again*, we rely on
340 	 * WORK_STRUCT_PENDING_BIT.
341 	 */
342 	if (!atomic_add_unless(&sched_core_count, -1, 1))
343 		schedule_work(&_work);
344 }
345 
346 #else /* !CONFIG_SCHED_CORE */
347 
348 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
349 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
350 
351 #endif /* CONFIG_SCHED_CORE */
352 
353 /*
354  * part of the period that we allow rt tasks to run in us.
355  * default: 0.95s
356  */
357 int sysctl_sched_rt_runtime = 950000;
358 
359 
360 /*
361  * Serialization rules:
362  *
363  * Lock order:
364  *
365  *   p->pi_lock
366  *     rq->lock
367  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
368  *
369  *  rq1->lock
370  *    rq2->lock  where: rq1 < rq2
371  *
372  * Regular state:
373  *
374  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
375  * local CPU's rq->lock, it optionally removes the task from the runqueue and
376  * always looks at the local rq data structures to find the most eligible task
377  * to run next.
378  *
379  * Task enqueue is also under rq->lock, possibly taken from another CPU.
380  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
381  * the local CPU to avoid bouncing the runqueue state around [ see
382  * ttwu_queue_wakelist() ]
383  *
384  * Task wakeup, specifically wakeups that involve migration, are horribly
385  * complicated to avoid having to take two rq->locks.
386  *
387  * Special state:
388  *
389  * System-calls and anything external will use task_rq_lock() which acquires
390  * both p->pi_lock and rq->lock. As a consequence the state they change is
391  * stable while holding either lock:
392  *
393  *  - sched_setaffinity()/
394  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
395  *  - set_user_nice():		p->se.load, p->*prio
396  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
397  *				p->se.load, p->rt_priority,
398  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
399  *  - sched_setnuma():		p->numa_preferred_nid
400  *  - sched_move_task()/
401  *    cpu_cgroup_fork():	p->sched_task_group
402  *  - uclamp_update_active()	p->uclamp*
403  *
404  * p->state <- TASK_*:
405  *
406  *   is changed locklessly using set_current_state(), __set_current_state() or
407  *   set_special_state(), see their respective comments, or by
408  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
409  *   concurrent self.
410  *
411  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
412  *
413  *   is set by activate_task() and cleared by deactivate_task(), under
414  *   rq->lock. Non-zero indicates the task is runnable, the special
415  *   ON_RQ_MIGRATING state is used for migration without holding both
416  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
417  *
418  * p->on_cpu <- { 0, 1 }:
419  *
420  *   is set by prepare_task() and cleared by finish_task() such that it will be
421  *   set before p is scheduled-in and cleared after p is scheduled-out, both
422  *   under rq->lock. Non-zero indicates the task is running on its CPU.
423  *
424  *   [ The astute reader will observe that it is possible for two tasks on one
425  *     CPU to have ->on_cpu = 1 at the same time. ]
426  *
427  * task_cpu(p): is changed by set_task_cpu(), the rules are:
428  *
429  *  - Don't call set_task_cpu() on a blocked task:
430  *
431  *    We don't care what CPU we're not running on, this simplifies hotplug,
432  *    the CPU assignment of blocked tasks isn't required to be valid.
433  *
434  *  - for try_to_wake_up(), called under p->pi_lock:
435  *
436  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
437  *
438  *  - for migration called under rq->lock:
439  *    [ see task_on_rq_migrating() in task_rq_lock() ]
440  *
441  *    o move_queued_task()
442  *    o detach_task()
443  *
444  *  - for migration called under double_rq_lock():
445  *
446  *    o __migrate_swap_task()
447  *    o push_rt_task() / pull_rt_task()
448  *    o push_dl_task() / pull_dl_task()
449  *    o dl_task_offline_migration()
450  *
451  */
452 
453 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
454 {
455 	raw_spinlock_t *lock;
456 
457 	/* Matches synchronize_rcu() in __sched_core_enable() */
458 	preempt_disable();
459 	if (sched_core_disabled()) {
460 		raw_spin_lock_nested(&rq->__lock, subclass);
461 		/* preempt_count *MUST* be > 1 */
462 		preempt_enable_no_resched();
463 		return;
464 	}
465 
466 	for (;;) {
467 		lock = __rq_lockp(rq);
468 		raw_spin_lock_nested(lock, subclass);
469 		if (likely(lock == __rq_lockp(rq))) {
470 			/* preempt_count *MUST* be > 1 */
471 			preempt_enable_no_resched();
472 			return;
473 		}
474 		raw_spin_unlock(lock);
475 	}
476 }
477 
478 bool raw_spin_rq_trylock(struct rq *rq)
479 {
480 	raw_spinlock_t *lock;
481 	bool ret;
482 
483 	/* Matches synchronize_rcu() in __sched_core_enable() */
484 	preempt_disable();
485 	if (sched_core_disabled()) {
486 		ret = raw_spin_trylock(&rq->__lock);
487 		preempt_enable();
488 		return ret;
489 	}
490 
491 	for (;;) {
492 		lock = __rq_lockp(rq);
493 		ret = raw_spin_trylock(lock);
494 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
495 			preempt_enable();
496 			return ret;
497 		}
498 		raw_spin_unlock(lock);
499 	}
500 }
501 
502 void raw_spin_rq_unlock(struct rq *rq)
503 {
504 	raw_spin_unlock(rq_lockp(rq));
505 }
506 
507 #ifdef CONFIG_SMP
508 /*
509  * double_rq_lock - safely lock two runqueues
510  */
511 void double_rq_lock(struct rq *rq1, struct rq *rq2)
512 {
513 	lockdep_assert_irqs_disabled();
514 
515 	if (rq_order_less(rq2, rq1))
516 		swap(rq1, rq2);
517 
518 	raw_spin_rq_lock(rq1);
519 	if (__rq_lockp(rq1) == __rq_lockp(rq2))
520 		return;
521 
522 	raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
523 }
524 #endif
525 
526 /*
527  * __task_rq_lock - lock the rq @p resides on.
528  */
529 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
530 	__acquires(rq->lock)
531 {
532 	struct rq *rq;
533 
534 	lockdep_assert_held(&p->pi_lock);
535 
536 	for (;;) {
537 		rq = task_rq(p);
538 		raw_spin_rq_lock(rq);
539 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
540 			rq_pin_lock(rq, rf);
541 			return rq;
542 		}
543 		raw_spin_rq_unlock(rq);
544 
545 		while (unlikely(task_on_rq_migrating(p)))
546 			cpu_relax();
547 	}
548 }
549 
550 /*
551  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
552  */
553 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
554 	__acquires(p->pi_lock)
555 	__acquires(rq->lock)
556 {
557 	struct rq *rq;
558 
559 	for (;;) {
560 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
561 		rq = task_rq(p);
562 		raw_spin_rq_lock(rq);
563 		/*
564 		 *	move_queued_task()		task_rq_lock()
565 		 *
566 		 *	ACQUIRE (rq->lock)
567 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
568 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
569 		 *	[S] ->cpu = new_cpu		[L] task_rq()
570 		 *					[L] ->on_rq
571 		 *	RELEASE (rq->lock)
572 		 *
573 		 * If we observe the old CPU in task_rq_lock(), the acquire of
574 		 * the old rq->lock will fully serialize against the stores.
575 		 *
576 		 * If we observe the new CPU in task_rq_lock(), the address
577 		 * dependency headed by '[L] rq = task_rq()' and the acquire
578 		 * will pair with the WMB to ensure we then also see migrating.
579 		 */
580 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
581 			rq_pin_lock(rq, rf);
582 			return rq;
583 		}
584 		raw_spin_rq_unlock(rq);
585 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
586 
587 		while (unlikely(task_on_rq_migrating(p)))
588 			cpu_relax();
589 	}
590 }
591 
592 /*
593  * RQ-clock updating methods:
594  */
595 
596 static void update_rq_clock_task(struct rq *rq, s64 delta)
597 {
598 /*
599  * In theory, the compile should just see 0 here, and optimize out the call
600  * to sched_rt_avg_update. But I don't trust it...
601  */
602 	s64 __maybe_unused steal = 0, irq_delta = 0;
603 
604 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
605 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
606 
607 	/*
608 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
609 	 * this case when a previous update_rq_clock() happened inside a
610 	 * {soft,}irq region.
611 	 *
612 	 * When this happens, we stop ->clock_task and only update the
613 	 * prev_irq_time stamp to account for the part that fit, so that a next
614 	 * update will consume the rest. This ensures ->clock_task is
615 	 * monotonic.
616 	 *
617 	 * It does however cause some slight miss-attribution of {soft,}irq
618 	 * time, a more accurate solution would be to update the irq_time using
619 	 * the current rq->clock timestamp, except that would require using
620 	 * atomic ops.
621 	 */
622 	if (irq_delta > delta)
623 		irq_delta = delta;
624 
625 	rq->prev_irq_time += irq_delta;
626 	delta -= irq_delta;
627 #endif
628 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
629 	if (static_key_false((&paravirt_steal_rq_enabled))) {
630 		steal = paravirt_steal_clock(cpu_of(rq));
631 		steal -= rq->prev_steal_time_rq;
632 
633 		if (unlikely(steal > delta))
634 			steal = delta;
635 
636 		rq->prev_steal_time_rq += steal;
637 		delta -= steal;
638 	}
639 #endif
640 
641 	rq->clock_task += delta;
642 
643 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
644 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
645 		update_irq_load_avg(rq, irq_delta + steal);
646 #endif
647 	update_rq_clock_pelt(rq, delta);
648 }
649 
650 void update_rq_clock(struct rq *rq)
651 {
652 	s64 delta;
653 
654 	lockdep_assert_rq_held(rq);
655 
656 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
657 		return;
658 
659 #ifdef CONFIG_SCHED_DEBUG
660 	if (sched_feat(WARN_DOUBLE_CLOCK))
661 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
662 	rq->clock_update_flags |= RQCF_UPDATED;
663 #endif
664 
665 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
666 	if (delta < 0)
667 		return;
668 	rq->clock += delta;
669 	update_rq_clock_task(rq, delta);
670 }
671 
672 #ifdef CONFIG_SCHED_HRTICK
673 /*
674  * Use HR-timers to deliver accurate preemption points.
675  */
676 
677 static void hrtick_clear(struct rq *rq)
678 {
679 	if (hrtimer_active(&rq->hrtick_timer))
680 		hrtimer_cancel(&rq->hrtick_timer);
681 }
682 
683 /*
684  * High-resolution timer tick.
685  * Runs from hardirq context with interrupts disabled.
686  */
687 static enum hrtimer_restart hrtick(struct hrtimer *timer)
688 {
689 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
690 	struct rq_flags rf;
691 
692 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
693 
694 	rq_lock(rq, &rf);
695 	update_rq_clock(rq);
696 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
697 	rq_unlock(rq, &rf);
698 
699 	return HRTIMER_NORESTART;
700 }
701 
702 #ifdef CONFIG_SMP
703 
704 static void __hrtick_restart(struct rq *rq)
705 {
706 	struct hrtimer *timer = &rq->hrtick_timer;
707 	ktime_t time = rq->hrtick_time;
708 
709 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
710 }
711 
712 /*
713  * called from hardirq (IPI) context
714  */
715 static void __hrtick_start(void *arg)
716 {
717 	struct rq *rq = arg;
718 	struct rq_flags rf;
719 
720 	rq_lock(rq, &rf);
721 	__hrtick_restart(rq);
722 	rq_unlock(rq, &rf);
723 }
724 
725 /*
726  * Called to set the hrtick timer state.
727  *
728  * called with rq->lock held and irqs disabled
729  */
730 void hrtick_start(struct rq *rq, u64 delay)
731 {
732 	struct hrtimer *timer = &rq->hrtick_timer;
733 	s64 delta;
734 
735 	/*
736 	 * Don't schedule slices shorter than 10000ns, that just
737 	 * doesn't make sense and can cause timer DoS.
738 	 */
739 	delta = max_t(s64, delay, 10000LL);
740 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
741 
742 	if (rq == this_rq())
743 		__hrtick_restart(rq);
744 	else
745 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
746 }
747 
748 #else
749 /*
750  * Called to set the hrtick timer state.
751  *
752  * called with rq->lock held and irqs disabled
753  */
754 void hrtick_start(struct rq *rq, u64 delay)
755 {
756 	/*
757 	 * Don't schedule slices shorter than 10000ns, that just
758 	 * doesn't make sense. Rely on vruntime for fairness.
759 	 */
760 	delay = max_t(u64, delay, 10000LL);
761 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
762 		      HRTIMER_MODE_REL_PINNED_HARD);
763 }
764 
765 #endif /* CONFIG_SMP */
766 
767 static void hrtick_rq_init(struct rq *rq)
768 {
769 #ifdef CONFIG_SMP
770 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
771 #endif
772 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
773 	rq->hrtick_timer.function = hrtick;
774 }
775 #else	/* CONFIG_SCHED_HRTICK */
776 static inline void hrtick_clear(struct rq *rq)
777 {
778 }
779 
780 static inline void hrtick_rq_init(struct rq *rq)
781 {
782 }
783 #endif	/* CONFIG_SCHED_HRTICK */
784 
785 /*
786  * cmpxchg based fetch_or, macro so it works for different integer types
787  */
788 #define fetch_or(ptr, mask)						\
789 	({								\
790 		typeof(ptr) _ptr = (ptr);				\
791 		typeof(mask) _mask = (mask);				\
792 		typeof(*_ptr) _old, _val = *_ptr;			\
793 									\
794 		for (;;) {						\
795 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
796 			if (_old == _val)				\
797 				break;					\
798 			_val = _old;					\
799 		}							\
800 	_old;								\
801 })
802 
803 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
804 /*
805  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
806  * this avoids any races wrt polling state changes and thereby avoids
807  * spurious IPIs.
808  */
809 static bool set_nr_and_not_polling(struct task_struct *p)
810 {
811 	struct thread_info *ti = task_thread_info(p);
812 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
813 }
814 
815 /*
816  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
817  *
818  * If this returns true, then the idle task promises to call
819  * sched_ttwu_pending() and reschedule soon.
820  */
821 static bool set_nr_if_polling(struct task_struct *p)
822 {
823 	struct thread_info *ti = task_thread_info(p);
824 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
825 
826 	for (;;) {
827 		if (!(val & _TIF_POLLING_NRFLAG))
828 			return false;
829 		if (val & _TIF_NEED_RESCHED)
830 			return true;
831 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
832 		if (old == val)
833 			break;
834 		val = old;
835 	}
836 	return true;
837 }
838 
839 #else
840 static bool set_nr_and_not_polling(struct task_struct *p)
841 {
842 	set_tsk_need_resched(p);
843 	return true;
844 }
845 
846 #ifdef CONFIG_SMP
847 static bool set_nr_if_polling(struct task_struct *p)
848 {
849 	return false;
850 }
851 #endif
852 #endif
853 
854 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
855 {
856 	struct wake_q_node *node = &task->wake_q;
857 
858 	/*
859 	 * Atomically grab the task, if ->wake_q is !nil already it means
860 	 * it's already queued (either by us or someone else) and will get the
861 	 * wakeup due to that.
862 	 *
863 	 * In order to ensure that a pending wakeup will observe our pending
864 	 * state, even in the failed case, an explicit smp_mb() must be used.
865 	 */
866 	smp_mb__before_atomic();
867 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
868 		return false;
869 
870 	/*
871 	 * The head is context local, there can be no concurrency.
872 	 */
873 	*head->lastp = node;
874 	head->lastp = &node->next;
875 	return true;
876 }
877 
878 /**
879  * wake_q_add() - queue a wakeup for 'later' waking.
880  * @head: the wake_q_head to add @task to
881  * @task: the task to queue for 'later' wakeup
882  *
883  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
884  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
885  * instantly.
886  *
887  * This function must be used as-if it were wake_up_process(); IOW the task
888  * must be ready to be woken at this location.
889  */
890 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
891 {
892 	if (__wake_q_add(head, task))
893 		get_task_struct(task);
894 }
895 
896 /**
897  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
898  * @head: the wake_q_head to add @task to
899  * @task: the task to queue for 'later' wakeup
900  *
901  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
902  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
903  * instantly.
904  *
905  * This function must be used as-if it were wake_up_process(); IOW the task
906  * must be ready to be woken at this location.
907  *
908  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
909  * that already hold reference to @task can call the 'safe' version and trust
910  * wake_q to do the right thing depending whether or not the @task is already
911  * queued for wakeup.
912  */
913 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
914 {
915 	if (!__wake_q_add(head, task))
916 		put_task_struct(task);
917 }
918 
919 void wake_up_q(struct wake_q_head *head)
920 {
921 	struct wake_q_node *node = head->first;
922 
923 	while (node != WAKE_Q_TAIL) {
924 		struct task_struct *task;
925 
926 		task = container_of(node, struct task_struct, wake_q);
927 		/* Task can safely be re-inserted now: */
928 		node = node->next;
929 		task->wake_q.next = NULL;
930 
931 		/*
932 		 * wake_up_process() executes a full barrier, which pairs with
933 		 * the queueing in wake_q_add() so as not to miss wakeups.
934 		 */
935 		wake_up_process(task);
936 		put_task_struct(task);
937 	}
938 }
939 
940 /*
941  * resched_curr - mark rq's current task 'to be rescheduled now'.
942  *
943  * On UP this means the setting of the need_resched flag, on SMP it
944  * might also involve a cross-CPU call to trigger the scheduler on
945  * the target CPU.
946  */
947 void resched_curr(struct rq *rq)
948 {
949 	struct task_struct *curr = rq->curr;
950 	int cpu;
951 
952 	lockdep_assert_rq_held(rq);
953 
954 	if (test_tsk_need_resched(curr))
955 		return;
956 
957 	cpu = cpu_of(rq);
958 
959 	if (cpu == smp_processor_id()) {
960 		set_tsk_need_resched(curr);
961 		set_preempt_need_resched();
962 		return;
963 	}
964 
965 	if (set_nr_and_not_polling(curr))
966 		smp_send_reschedule(cpu);
967 	else
968 		trace_sched_wake_idle_without_ipi(cpu);
969 }
970 
971 void resched_cpu(int cpu)
972 {
973 	struct rq *rq = cpu_rq(cpu);
974 	unsigned long flags;
975 
976 	raw_spin_rq_lock_irqsave(rq, flags);
977 	if (cpu_online(cpu) || cpu == smp_processor_id())
978 		resched_curr(rq);
979 	raw_spin_rq_unlock_irqrestore(rq, flags);
980 }
981 
982 #ifdef CONFIG_SMP
983 #ifdef CONFIG_NO_HZ_COMMON
984 /*
985  * In the semi idle case, use the nearest busy CPU for migrating timers
986  * from an idle CPU.  This is good for power-savings.
987  *
988  * We don't do similar optimization for completely idle system, as
989  * selecting an idle CPU will add more delays to the timers than intended
990  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
991  */
992 int get_nohz_timer_target(void)
993 {
994 	int i, cpu = smp_processor_id(), default_cpu = -1;
995 	struct sched_domain *sd;
996 
997 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
998 		if (!idle_cpu(cpu))
999 			return cpu;
1000 		default_cpu = cpu;
1001 	}
1002 
1003 	rcu_read_lock();
1004 	for_each_domain(cpu, sd) {
1005 		for_each_cpu_and(i, sched_domain_span(sd),
1006 			housekeeping_cpumask(HK_FLAG_TIMER)) {
1007 			if (cpu == i)
1008 				continue;
1009 
1010 			if (!idle_cpu(i)) {
1011 				cpu = i;
1012 				goto unlock;
1013 			}
1014 		}
1015 	}
1016 
1017 	if (default_cpu == -1)
1018 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1019 	cpu = default_cpu;
1020 unlock:
1021 	rcu_read_unlock();
1022 	return cpu;
1023 }
1024 
1025 /*
1026  * When add_timer_on() enqueues a timer into the timer wheel of an
1027  * idle CPU then this timer might expire before the next timer event
1028  * which is scheduled to wake up that CPU. In case of a completely
1029  * idle system the next event might even be infinite time into the
1030  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1031  * leaves the inner idle loop so the newly added timer is taken into
1032  * account when the CPU goes back to idle and evaluates the timer
1033  * wheel for the next timer event.
1034  */
1035 static void wake_up_idle_cpu(int cpu)
1036 {
1037 	struct rq *rq = cpu_rq(cpu);
1038 
1039 	if (cpu == smp_processor_id())
1040 		return;
1041 
1042 	if (set_nr_and_not_polling(rq->idle))
1043 		smp_send_reschedule(cpu);
1044 	else
1045 		trace_sched_wake_idle_without_ipi(cpu);
1046 }
1047 
1048 static bool wake_up_full_nohz_cpu(int cpu)
1049 {
1050 	/*
1051 	 * We just need the target to call irq_exit() and re-evaluate
1052 	 * the next tick. The nohz full kick at least implies that.
1053 	 * If needed we can still optimize that later with an
1054 	 * empty IRQ.
1055 	 */
1056 	if (cpu_is_offline(cpu))
1057 		return true;  /* Don't try to wake offline CPUs. */
1058 	if (tick_nohz_full_cpu(cpu)) {
1059 		if (cpu != smp_processor_id() ||
1060 		    tick_nohz_tick_stopped())
1061 			tick_nohz_full_kick_cpu(cpu);
1062 		return true;
1063 	}
1064 
1065 	return false;
1066 }
1067 
1068 /*
1069  * Wake up the specified CPU.  If the CPU is going offline, it is the
1070  * caller's responsibility to deal with the lost wakeup, for example,
1071  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1072  */
1073 void wake_up_nohz_cpu(int cpu)
1074 {
1075 	if (!wake_up_full_nohz_cpu(cpu))
1076 		wake_up_idle_cpu(cpu);
1077 }
1078 
1079 static void nohz_csd_func(void *info)
1080 {
1081 	struct rq *rq = info;
1082 	int cpu = cpu_of(rq);
1083 	unsigned int flags;
1084 
1085 	/*
1086 	 * Release the rq::nohz_csd.
1087 	 */
1088 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1089 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1090 
1091 	rq->idle_balance = idle_cpu(cpu);
1092 	if (rq->idle_balance && !need_resched()) {
1093 		rq->nohz_idle_balance = flags;
1094 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1095 	}
1096 }
1097 
1098 #endif /* CONFIG_NO_HZ_COMMON */
1099 
1100 #ifdef CONFIG_NO_HZ_FULL
1101 bool sched_can_stop_tick(struct rq *rq)
1102 {
1103 	int fifo_nr_running;
1104 
1105 	/* Deadline tasks, even if single, need the tick */
1106 	if (rq->dl.dl_nr_running)
1107 		return false;
1108 
1109 	/*
1110 	 * If there are more than one RR tasks, we need the tick to affect the
1111 	 * actual RR behaviour.
1112 	 */
1113 	if (rq->rt.rr_nr_running) {
1114 		if (rq->rt.rr_nr_running == 1)
1115 			return true;
1116 		else
1117 			return false;
1118 	}
1119 
1120 	/*
1121 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1122 	 * forced preemption between FIFO tasks.
1123 	 */
1124 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1125 	if (fifo_nr_running)
1126 		return true;
1127 
1128 	/*
1129 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1130 	 * if there's more than one we need the tick for involuntary
1131 	 * preemption.
1132 	 */
1133 	if (rq->nr_running > 1)
1134 		return false;
1135 
1136 	return true;
1137 }
1138 #endif /* CONFIG_NO_HZ_FULL */
1139 #endif /* CONFIG_SMP */
1140 
1141 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1142 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1143 /*
1144  * Iterate task_group tree rooted at *from, calling @down when first entering a
1145  * node and @up when leaving it for the final time.
1146  *
1147  * Caller must hold rcu_lock or sufficient equivalent.
1148  */
1149 int walk_tg_tree_from(struct task_group *from,
1150 			     tg_visitor down, tg_visitor up, void *data)
1151 {
1152 	struct task_group *parent, *child;
1153 	int ret;
1154 
1155 	parent = from;
1156 
1157 down:
1158 	ret = (*down)(parent, data);
1159 	if (ret)
1160 		goto out;
1161 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1162 		parent = child;
1163 		goto down;
1164 
1165 up:
1166 		continue;
1167 	}
1168 	ret = (*up)(parent, data);
1169 	if (ret || parent == from)
1170 		goto out;
1171 
1172 	child = parent;
1173 	parent = parent->parent;
1174 	if (parent)
1175 		goto up;
1176 out:
1177 	return ret;
1178 }
1179 
1180 int tg_nop(struct task_group *tg, void *data)
1181 {
1182 	return 0;
1183 }
1184 #endif
1185 
1186 static void set_load_weight(struct task_struct *p, bool update_load)
1187 {
1188 	int prio = p->static_prio - MAX_RT_PRIO;
1189 	struct load_weight *load = &p->se.load;
1190 
1191 	/*
1192 	 * SCHED_IDLE tasks get minimal weight:
1193 	 */
1194 	if (task_has_idle_policy(p)) {
1195 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1196 		load->inv_weight = WMULT_IDLEPRIO;
1197 		return;
1198 	}
1199 
1200 	/*
1201 	 * SCHED_OTHER tasks have to update their load when changing their
1202 	 * weight
1203 	 */
1204 	if (update_load && p->sched_class == &fair_sched_class) {
1205 		reweight_task(p, prio);
1206 	} else {
1207 		load->weight = scale_load(sched_prio_to_weight[prio]);
1208 		load->inv_weight = sched_prio_to_wmult[prio];
1209 	}
1210 }
1211 
1212 #ifdef CONFIG_UCLAMP_TASK
1213 /*
1214  * Serializes updates of utilization clamp values
1215  *
1216  * The (slow-path) user-space triggers utilization clamp value updates which
1217  * can require updates on (fast-path) scheduler's data structures used to
1218  * support enqueue/dequeue operations.
1219  * While the per-CPU rq lock protects fast-path update operations, user-space
1220  * requests are serialized using a mutex to reduce the risk of conflicting
1221  * updates or API abuses.
1222  */
1223 static DEFINE_MUTEX(uclamp_mutex);
1224 
1225 /* Max allowed minimum utilization */
1226 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1227 
1228 /* Max allowed maximum utilization */
1229 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1230 
1231 /*
1232  * By default RT tasks run at the maximum performance point/capacity of the
1233  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1234  * SCHED_CAPACITY_SCALE.
1235  *
1236  * This knob allows admins to change the default behavior when uclamp is being
1237  * used. In battery powered devices, particularly, running at the maximum
1238  * capacity and frequency will increase energy consumption and shorten the
1239  * battery life.
1240  *
1241  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1242  *
1243  * This knob will not override the system default sched_util_clamp_min defined
1244  * above.
1245  */
1246 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1247 
1248 /* All clamps are required to be less or equal than these values */
1249 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1250 
1251 /*
1252  * This static key is used to reduce the uclamp overhead in the fast path. It
1253  * primarily disables the call to uclamp_rq_{inc, dec}() in
1254  * enqueue/dequeue_task().
1255  *
1256  * This allows users to continue to enable uclamp in their kernel config with
1257  * minimum uclamp overhead in the fast path.
1258  *
1259  * As soon as userspace modifies any of the uclamp knobs, the static key is
1260  * enabled, since we have an actual users that make use of uclamp
1261  * functionality.
1262  *
1263  * The knobs that would enable this static key are:
1264  *
1265  *   * A task modifying its uclamp value with sched_setattr().
1266  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1267  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1268  */
1269 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1270 
1271 /* Integer rounded range for each bucket */
1272 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1273 
1274 #define for_each_clamp_id(clamp_id) \
1275 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1276 
1277 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1278 {
1279 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1280 }
1281 
1282 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1283 {
1284 	if (clamp_id == UCLAMP_MIN)
1285 		return 0;
1286 	return SCHED_CAPACITY_SCALE;
1287 }
1288 
1289 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1290 				 unsigned int value, bool user_defined)
1291 {
1292 	uc_se->value = value;
1293 	uc_se->bucket_id = uclamp_bucket_id(value);
1294 	uc_se->user_defined = user_defined;
1295 }
1296 
1297 static inline unsigned int
1298 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1299 		  unsigned int clamp_value)
1300 {
1301 	/*
1302 	 * Avoid blocked utilization pushing up the frequency when we go
1303 	 * idle (which drops the max-clamp) by retaining the last known
1304 	 * max-clamp.
1305 	 */
1306 	if (clamp_id == UCLAMP_MAX) {
1307 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1308 		return clamp_value;
1309 	}
1310 
1311 	return uclamp_none(UCLAMP_MIN);
1312 }
1313 
1314 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1315 				     unsigned int clamp_value)
1316 {
1317 	/* Reset max-clamp retention only on idle exit */
1318 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1319 		return;
1320 
1321 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1322 }
1323 
1324 static inline
1325 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1326 				   unsigned int clamp_value)
1327 {
1328 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1329 	int bucket_id = UCLAMP_BUCKETS - 1;
1330 
1331 	/*
1332 	 * Since both min and max clamps are max aggregated, find the
1333 	 * top most bucket with tasks in.
1334 	 */
1335 	for ( ; bucket_id >= 0; bucket_id--) {
1336 		if (!bucket[bucket_id].tasks)
1337 			continue;
1338 		return bucket[bucket_id].value;
1339 	}
1340 
1341 	/* No tasks -- default clamp values */
1342 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1343 }
1344 
1345 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1346 {
1347 	unsigned int default_util_min;
1348 	struct uclamp_se *uc_se;
1349 
1350 	lockdep_assert_held(&p->pi_lock);
1351 
1352 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1353 
1354 	/* Only sync if user didn't override the default */
1355 	if (uc_se->user_defined)
1356 		return;
1357 
1358 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1359 	uclamp_se_set(uc_se, default_util_min, false);
1360 }
1361 
1362 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1363 {
1364 	struct rq_flags rf;
1365 	struct rq *rq;
1366 
1367 	if (!rt_task(p))
1368 		return;
1369 
1370 	/* Protect updates to p->uclamp_* */
1371 	rq = task_rq_lock(p, &rf);
1372 	__uclamp_update_util_min_rt_default(p);
1373 	task_rq_unlock(rq, p, &rf);
1374 }
1375 
1376 static void uclamp_sync_util_min_rt_default(void)
1377 {
1378 	struct task_struct *g, *p;
1379 
1380 	/*
1381 	 * copy_process()			sysctl_uclamp
1382 	 *					  uclamp_min_rt = X;
1383 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1384 	 *   // link thread			  smp_mb__after_spinlock()
1385 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1386 	 *   sched_post_fork()			  for_each_process_thread()
1387 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1388 	 *
1389 	 * Ensures that either sched_post_fork() will observe the new
1390 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1391 	 * task.
1392 	 */
1393 	read_lock(&tasklist_lock);
1394 	smp_mb__after_spinlock();
1395 	read_unlock(&tasklist_lock);
1396 
1397 	rcu_read_lock();
1398 	for_each_process_thread(g, p)
1399 		uclamp_update_util_min_rt_default(p);
1400 	rcu_read_unlock();
1401 }
1402 
1403 static inline struct uclamp_se
1404 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1405 {
1406 	/* Copy by value as we could modify it */
1407 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1408 #ifdef CONFIG_UCLAMP_TASK_GROUP
1409 	unsigned int tg_min, tg_max, value;
1410 
1411 	/*
1412 	 * Tasks in autogroups or root task group will be
1413 	 * restricted by system defaults.
1414 	 */
1415 	if (task_group_is_autogroup(task_group(p)))
1416 		return uc_req;
1417 	if (task_group(p) == &root_task_group)
1418 		return uc_req;
1419 
1420 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1421 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1422 	value = uc_req.value;
1423 	value = clamp(value, tg_min, tg_max);
1424 	uclamp_se_set(&uc_req, value, false);
1425 #endif
1426 
1427 	return uc_req;
1428 }
1429 
1430 /*
1431  * The effective clamp bucket index of a task depends on, by increasing
1432  * priority:
1433  * - the task specific clamp value, when explicitly requested from userspace
1434  * - the task group effective clamp value, for tasks not either in the root
1435  *   group or in an autogroup
1436  * - the system default clamp value, defined by the sysadmin
1437  */
1438 static inline struct uclamp_se
1439 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1440 {
1441 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1442 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1443 
1444 	/* System default restrictions always apply */
1445 	if (unlikely(uc_req.value > uc_max.value))
1446 		return uc_max;
1447 
1448 	return uc_req;
1449 }
1450 
1451 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1452 {
1453 	struct uclamp_se uc_eff;
1454 
1455 	/* Task currently refcounted: use back-annotated (effective) value */
1456 	if (p->uclamp[clamp_id].active)
1457 		return (unsigned long)p->uclamp[clamp_id].value;
1458 
1459 	uc_eff = uclamp_eff_get(p, clamp_id);
1460 
1461 	return (unsigned long)uc_eff.value;
1462 }
1463 
1464 /*
1465  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1466  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1467  * updates the rq's clamp value if required.
1468  *
1469  * Tasks can have a task-specific value requested from user-space, track
1470  * within each bucket the maximum value for tasks refcounted in it.
1471  * This "local max aggregation" allows to track the exact "requested" value
1472  * for each bucket when all its RUNNABLE tasks require the same clamp.
1473  */
1474 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1475 				    enum uclamp_id clamp_id)
1476 {
1477 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1478 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1479 	struct uclamp_bucket *bucket;
1480 
1481 	lockdep_assert_rq_held(rq);
1482 
1483 	/* Update task effective clamp */
1484 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1485 
1486 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1487 	bucket->tasks++;
1488 	uc_se->active = true;
1489 
1490 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1491 
1492 	/*
1493 	 * Local max aggregation: rq buckets always track the max
1494 	 * "requested" clamp value of its RUNNABLE tasks.
1495 	 */
1496 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1497 		bucket->value = uc_se->value;
1498 
1499 	if (uc_se->value > READ_ONCE(uc_rq->value))
1500 		WRITE_ONCE(uc_rq->value, uc_se->value);
1501 }
1502 
1503 /*
1504  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1505  * is released. If this is the last task reference counting the rq's max
1506  * active clamp value, then the rq's clamp value is updated.
1507  *
1508  * Both refcounted tasks and rq's cached clamp values are expected to be
1509  * always valid. If it's detected they are not, as defensive programming,
1510  * enforce the expected state and warn.
1511  */
1512 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1513 				    enum uclamp_id clamp_id)
1514 {
1515 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1516 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1517 	struct uclamp_bucket *bucket;
1518 	unsigned int bkt_clamp;
1519 	unsigned int rq_clamp;
1520 
1521 	lockdep_assert_rq_held(rq);
1522 
1523 	/*
1524 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1525 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1526 	 *
1527 	 * In this case the uc_se->active flag should be false since no uclamp
1528 	 * accounting was performed at enqueue time and we can just return
1529 	 * here.
1530 	 *
1531 	 * Need to be careful of the following enqueue/dequeue ordering
1532 	 * problem too
1533 	 *
1534 	 *	enqueue(taskA)
1535 	 *	// sched_uclamp_used gets enabled
1536 	 *	enqueue(taskB)
1537 	 *	dequeue(taskA)
1538 	 *	// Must not decrement bucket->tasks here
1539 	 *	dequeue(taskB)
1540 	 *
1541 	 * where we could end up with stale data in uc_se and
1542 	 * bucket[uc_se->bucket_id].
1543 	 *
1544 	 * The following check here eliminates the possibility of such race.
1545 	 */
1546 	if (unlikely(!uc_se->active))
1547 		return;
1548 
1549 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1550 
1551 	SCHED_WARN_ON(!bucket->tasks);
1552 	if (likely(bucket->tasks))
1553 		bucket->tasks--;
1554 
1555 	uc_se->active = false;
1556 
1557 	/*
1558 	 * Keep "local max aggregation" simple and accept to (possibly)
1559 	 * overboost some RUNNABLE tasks in the same bucket.
1560 	 * The rq clamp bucket value is reset to its base value whenever
1561 	 * there are no more RUNNABLE tasks refcounting it.
1562 	 */
1563 	if (likely(bucket->tasks))
1564 		return;
1565 
1566 	rq_clamp = READ_ONCE(uc_rq->value);
1567 	/*
1568 	 * Defensive programming: this should never happen. If it happens,
1569 	 * e.g. due to future modification, warn and fixup the expected value.
1570 	 */
1571 	SCHED_WARN_ON(bucket->value > rq_clamp);
1572 	if (bucket->value >= rq_clamp) {
1573 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1574 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1575 	}
1576 }
1577 
1578 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1579 {
1580 	enum uclamp_id clamp_id;
1581 
1582 	/*
1583 	 * Avoid any overhead until uclamp is actually used by the userspace.
1584 	 *
1585 	 * The condition is constructed such that a NOP is generated when
1586 	 * sched_uclamp_used is disabled.
1587 	 */
1588 	if (!static_branch_unlikely(&sched_uclamp_used))
1589 		return;
1590 
1591 	if (unlikely(!p->sched_class->uclamp_enabled))
1592 		return;
1593 
1594 	for_each_clamp_id(clamp_id)
1595 		uclamp_rq_inc_id(rq, p, clamp_id);
1596 
1597 	/* Reset clamp idle holding when there is one RUNNABLE task */
1598 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1599 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1600 }
1601 
1602 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1603 {
1604 	enum uclamp_id clamp_id;
1605 
1606 	/*
1607 	 * Avoid any overhead until uclamp is actually used by the userspace.
1608 	 *
1609 	 * The condition is constructed such that a NOP is generated when
1610 	 * sched_uclamp_used is disabled.
1611 	 */
1612 	if (!static_branch_unlikely(&sched_uclamp_used))
1613 		return;
1614 
1615 	if (unlikely(!p->sched_class->uclamp_enabled))
1616 		return;
1617 
1618 	for_each_clamp_id(clamp_id)
1619 		uclamp_rq_dec_id(rq, p, clamp_id);
1620 }
1621 
1622 static inline void
1623 uclamp_update_active(struct task_struct *p)
1624 {
1625 	enum uclamp_id clamp_id;
1626 	struct rq_flags rf;
1627 	struct rq *rq;
1628 
1629 	/*
1630 	 * Lock the task and the rq where the task is (or was) queued.
1631 	 *
1632 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1633 	 * price to pay to safely serialize util_{min,max} updates with
1634 	 * enqueues, dequeues and migration operations.
1635 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1636 	 */
1637 	rq = task_rq_lock(p, &rf);
1638 
1639 	/*
1640 	 * Setting the clamp bucket is serialized by task_rq_lock().
1641 	 * If the task is not yet RUNNABLE and its task_struct is not
1642 	 * affecting a valid clamp bucket, the next time it's enqueued,
1643 	 * it will already see the updated clamp bucket value.
1644 	 */
1645 	for_each_clamp_id(clamp_id) {
1646 		if (p->uclamp[clamp_id].active) {
1647 			uclamp_rq_dec_id(rq, p, clamp_id);
1648 			uclamp_rq_inc_id(rq, p, clamp_id);
1649 		}
1650 	}
1651 
1652 	task_rq_unlock(rq, p, &rf);
1653 }
1654 
1655 #ifdef CONFIG_UCLAMP_TASK_GROUP
1656 static inline void
1657 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1658 {
1659 	struct css_task_iter it;
1660 	struct task_struct *p;
1661 
1662 	css_task_iter_start(css, 0, &it);
1663 	while ((p = css_task_iter_next(&it)))
1664 		uclamp_update_active(p);
1665 	css_task_iter_end(&it);
1666 }
1667 
1668 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1669 static void uclamp_update_root_tg(void)
1670 {
1671 	struct task_group *tg = &root_task_group;
1672 
1673 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1674 		      sysctl_sched_uclamp_util_min, false);
1675 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1676 		      sysctl_sched_uclamp_util_max, false);
1677 
1678 	rcu_read_lock();
1679 	cpu_util_update_eff(&root_task_group.css);
1680 	rcu_read_unlock();
1681 }
1682 #else
1683 static void uclamp_update_root_tg(void) { }
1684 #endif
1685 
1686 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1687 				void *buffer, size_t *lenp, loff_t *ppos)
1688 {
1689 	bool update_root_tg = false;
1690 	int old_min, old_max, old_min_rt;
1691 	int result;
1692 
1693 	mutex_lock(&uclamp_mutex);
1694 	old_min = sysctl_sched_uclamp_util_min;
1695 	old_max = sysctl_sched_uclamp_util_max;
1696 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1697 
1698 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1699 	if (result)
1700 		goto undo;
1701 	if (!write)
1702 		goto done;
1703 
1704 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1705 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1706 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1707 
1708 		result = -EINVAL;
1709 		goto undo;
1710 	}
1711 
1712 	if (old_min != sysctl_sched_uclamp_util_min) {
1713 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1714 			      sysctl_sched_uclamp_util_min, false);
1715 		update_root_tg = true;
1716 	}
1717 	if (old_max != sysctl_sched_uclamp_util_max) {
1718 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1719 			      sysctl_sched_uclamp_util_max, false);
1720 		update_root_tg = true;
1721 	}
1722 
1723 	if (update_root_tg) {
1724 		static_branch_enable(&sched_uclamp_used);
1725 		uclamp_update_root_tg();
1726 	}
1727 
1728 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1729 		static_branch_enable(&sched_uclamp_used);
1730 		uclamp_sync_util_min_rt_default();
1731 	}
1732 
1733 	/*
1734 	 * We update all RUNNABLE tasks only when task groups are in use.
1735 	 * Otherwise, keep it simple and do just a lazy update at each next
1736 	 * task enqueue time.
1737 	 */
1738 
1739 	goto done;
1740 
1741 undo:
1742 	sysctl_sched_uclamp_util_min = old_min;
1743 	sysctl_sched_uclamp_util_max = old_max;
1744 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1745 done:
1746 	mutex_unlock(&uclamp_mutex);
1747 
1748 	return result;
1749 }
1750 
1751 static int uclamp_validate(struct task_struct *p,
1752 			   const struct sched_attr *attr)
1753 {
1754 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1755 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1756 
1757 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1758 		util_min = attr->sched_util_min;
1759 
1760 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1761 			return -EINVAL;
1762 	}
1763 
1764 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1765 		util_max = attr->sched_util_max;
1766 
1767 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1768 			return -EINVAL;
1769 	}
1770 
1771 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1772 		return -EINVAL;
1773 
1774 	/*
1775 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1776 	 *
1777 	 * We need to do that here, because enabling static branches is a
1778 	 * blocking operation which obviously cannot be done while holding
1779 	 * scheduler locks.
1780 	 */
1781 	static_branch_enable(&sched_uclamp_used);
1782 
1783 	return 0;
1784 }
1785 
1786 static bool uclamp_reset(const struct sched_attr *attr,
1787 			 enum uclamp_id clamp_id,
1788 			 struct uclamp_se *uc_se)
1789 {
1790 	/* Reset on sched class change for a non user-defined clamp value. */
1791 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1792 	    !uc_se->user_defined)
1793 		return true;
1794 
1795 	/* Reset on sched_util_{min,max} == -1. */
1796 	if (clamp_id == UCLAMP_MIN &&
1797 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1798 	    attr->sched_util_min == -1) {
1799 		return true;
1800 	}
1801 
1802 	if (clamp_id == UCLAMP_MAX &&
1803 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1804 	    attr->sched_util_max == -1) {
1805 		return true;
1806 	}
1807 
1808 	return false;
1809 }
1810 
1811 static void __setscheduler_uclamp(struct task_struct *p,
1812 				  const struct sched_attr *attr)
1813 {
1814 	enum uclamp_id clamp_id;
1815 
1816 	for_each_clamp_id(clamp_id) {
1817 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1818 		unsigned int value;
1819 
1820 		if (!uclamp_reset(attr, clamp_id, uc_se))
1821 			continue;
1822 
1823 		/*
1824 		 * RT by default have a 100% boost value that could be modified
1825 		 * at runtime.
1826 		 */
1827 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1828 			value = sysctl_sched_uclamp_util_min_rt_default;
1829 		else
1830 			value = uclamp_none(clamp_id);
1831 
1832 		uclamp_se_set(uc_se, value, false);
1833 
1834 	}
1835 
1836 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1837 		return;
1838 
1839 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1840 	    attr->sched_util_min != -1) {
1841 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1842 			      attr->sched_util_min, true);
1843 	}
1844 
1845 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1846 	    attr->sched_util_max != -1) {
1847 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1848 			      attr->sched_util_max, true);
1849 	}
1850 }
1851 
1852 static void uclamp_fork(struct task_struct *p)
1853 {
1854 	enum uclamp_id clamp_id;
1855 
1856 	/*
1857 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1858 	 * as the task is still at its early fork stages.
1859 	 */
1860 	for_each_clamp_id(clamp_id)
1861 		p->uclamp[clamp_id].active = false;
1862 
1863 	if (likely(!p->sched_reset_on_fork))
1864 		return;
1865 
1866 	for_each_clamp_id(clamp_id) {
1867 		uclamp_se_set(&p->uclamp_req[clamp_id],
1868 			      uclamp_none(clamp_id), false);
1869 	}
1870 }
1871 
1872 static void uclamp_post_fork(struct task_struct *p)
1873 {
1874 	uclamp_update_util_min_rt_default(p);
1875 }
1876 
1877 static void __init init_uclamp_rq(struct rq *rq)
1878 {
1879 	enum uclamp_id clamp_id;
1880 	struct uclamp_rq *uc_rq = rq->uclamp;
1881 
1882 	for_each_clamp_id(clamp_id) {
1883 		uc_rq[clamp_id] = (struct uclamp_rq) {
1884 			.value = uclamp_none(clamp_id)
1885 		};
1886 	}
1887 
1888 	rq->uclamp_flags = 0;
1889 }
1890 
1891 static void __init init_uclamp(void)
1892 {
1893 	struct uclamp_se uc_max = {};
1894 	enum uclamp_id clamp_id;
1895 	int cpu;
1896 
1897 	for_each_possible_cpu(cpu)
1898 		init_uclamp_rq(cpu_rq(cpu));
1899 
1900 	for_each_clamp_id(clamp_id) {
1901 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1902 			      uclamp_none(clamp_id), false);
1903 	}
1904 
1905 	/* System defaults allow max clamp values for both indexes */
1906 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1907 	for_each_clamp_id(clamp_id) {
1908 		uclamp_default[clamp_id] = uc_max;
1909 #ifdef CONFIG_UCLAMP_TASK_GROUP
1910 		root_task_group.uclamp_req[clamp_id] = uc_max;
1911 		root_task_group.uclamp[clamp_id] = uc_max;
1912 #endif
1913 	}
1914 }
1915 
1916 #else /* CONFIG_UCLAMP_TASK */
1917 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1918 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1919 static inline int uclamp_validate(struct task_struct *p,
1920 				  const struct sched_attr *attr)
1921 {
1922 	return -EOPNOTSUPP;
1923 }
1924 static void __setscheduler_uclamp(struct task_struct *p,
1925 				  const struct sched_attr *attr) { }
1926 static inline void uclamp_fork(struct task_struct *p) { }
1927 static inline void uclamp_post_fork(struct task_struct *p) { }
1928 static inline void init_uclamp(void) { }
1929 #endif /* CONFIG_UCLAMP_TASK */
1930 
1931 bool sched_task_on_rq(struct task_struct *p)
1932 {
1933 	return task_on_rq_queued(p);
1934 }
1935 
1936 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1937 {
1938 	if (!(flags & ENQUEUE_NOCLOCK))
1939 		update_rq_clock(rq);
1940 
1941 	if (!(flags & ENQUEUE_RESTORE)) {
1942 		sched_info_enqueue(rq, p);
1943 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1944 	}
1945 
1946 	uclamp_rq_inc(rq, p);
1947 	p->sched_class->enqueue_task(rq, p, flags);
1948 
1949 	if (sched_core_enabled(rq))
1950 		sched_core_enqueue(rq, p);
1951 }
1952 
1953 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1954 {
1955 	if (sched_core_enabled(rq))
1956 		sched_core_dequeue(rq, p);
1957 
1958 	if (!(flags & DEQUEUE_NOCLOCK))
1959 		update_rq_clock(rq);
1960 
1961 	if (!(flags & DEQUEUE_SAVE)) {
1962 		sched_info_dequeue(rq, p);
1963 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1964 	}
1965 
1966 	uclamp_rq_dec(rq, p);
1967 	p->sched_class->dequeue_task(rq, p, flags);
1968 }
1969 
1970 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1971 {
1972 	enqueue_task(rq, p, flags);
1973 
1974 	p->on_rq = TASK_ON_RQ_QUEUED;
1975 }
1976 
1977 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1978 {
1979 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1980 
1981 	dequeue_task(rq, p, flags);
1982 }
1983 
1984 static inline int __normal_prio(int policy, int rt_prio, int nice)
1985 {
1986 	int prio;
1987 
1988 	if (dl_policy(policy))
1989 		prio = MAX_DL_PRIO - 1;
1990 	else if (rt_policy(policy))
1991 		prio = MAX_RT_PRIO - 1 - rt_prio;
1992 	else
1993 		prio = NICE_TO_PRIO(nice);
1994 
1995 	return prio;
1996 }
1997 
1998 /*
1999  * Calculate the expected normal priority: i.e. priority
2000  * without taking RT-inheritance into account. Might be
2001  * boosted by interactivity modifiers. Changes upon fork,
2002  * setprio syscalls, and whenever the interactivity
2003  * estimator recalculates.
2004  */
2005 static inline int normal_prio(struct task_struct *p)
2006 {
2007 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2008 }
2009 
2010 /*
2011  * Calculate the current priority, i.e. the priority
2012  * taken into account by the scheduler. This value might
2013  * be boosted by RT tasks, or might be boosted by
2014  * interactivity modifiers. Will be RT if the task got
2015  * RT-boosted. If not then it returns p->normal_prio.
2016  */
2017 static int effective_prio(struct task_struct *p)
2018 {
2019 	p->normal_prio = normal_prio(p);
2020 	/*
2021 	 * If we are RT tasks or we were boosted to RT priority,
2022 	 * keep the priority unchanged. Otherwise, update priority
2023 	 * to the normal priority:
2024 	 */
2025 	if (!rt_prio(p->prio))
2026 		return p->normal_prio;
2027 	return p->prio;
2028 }
2029 
2030 /**
2031  * task_curr - is this task currently executing on a CPU?
2032  * @p: the task in question.
2033  *
2034  * Return: 1 if the task is currently executing. 0 otherwise.
2035  */
2036 inline int task_curr(const struct task_struct *p)
2037 {
2038 	return cpu_curr(task_cpu(p)) == p;
2039 }
2040 
2041 /*
2042  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2043  * use the balance_callback list if you want balancing.
2044  *
2045  * this means any call to check_class_changed() must be followed by a call to
2046  * balance_callback().
2047  */
2048 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2049 				       const struct sched_class *prev_class,
2050 				       int oldprio)
2051 {
2052 	if (prev_class != p->sched_class) {
2053 		if (prev_class->switched_from)
2054 			prev_class->switched_from(rq, p);
2055 
2056 		p->sched_class->switched_to(rq, p);
2057 	} else if (oldprio != p->prio || dl_task(p))
2058 		p->sched_class->prio_changed(rq, p, oldprio);
2059 }
2060 
2061 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2062 {
2063 	if (p->sched_class == rq->curr->sched_class)
2064 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2065 	else if (p->sched_class > rq->curr->sched_class)
2066 		resched_curr(rq);
2067 
2068 	/*
2069 	 * A queue event has occurred, and we're going to schedule.  In
2070 	 * this case, we can save a useless back to back clock update.
2071 	 */
2072 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2073 		rq_clock_skip_update(rq);
2074 }
2075 
2076 #ifdef CONFIG_SMP
2077 
2078 static void
2079 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2080 
2081 static int __set_cpus_allowed_ptr(struct task_struct *p,
2082 				  const struct cpumask *new_mask,
2083 				  u32 flags);
2084 
2085 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2086 {
2087 	if (likely(!p->migration_disabled))
2088 		return;
2089 
2090 	if (p->cpus_ptr != &p->cpus_mask)
2091 		return;
2092 
2093 	/*
2094 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2095 	 */
2096 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2097 }
2098 
2099 void migrate_disable(void)
2100 {
2101 	struct task_struct *p = current;
2102 
2103 	if (p->migration_disabled) {
2104 		p->migration_disabled++;
2105 		return;
2106 	}
2107 
2108 	preempt_disable();
2109 	this_rq()->nr_pinned++;
2110 	p->migration_disabled = 1;
2111 	preempt_enable();
2112 }
2113 EXPORT_SYMBOL_GPL(migrate_disable);
2114 
2115 void migrate_enable(void)
2116 {
2117 	struct task_struct *p = current;
2118 
2119 	if (p->migration_disabled > 1) {
2120 		p->migration_disabled--;
2121 		return;
2122 	}
2123 
2124 	/*
2125 	 * Ensure stop_task runs either before or after this, and that
2126 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2127 	 */
2128 	preempt_disable();
2129 	if (p->cpus_ptr != &p->cpus_mask)
2130 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2131 	/*
2132 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2133 	 * regular cpus_mask, otherwise things that race (eg.
2134 	 * select_fallback_rq) get confused.
2135 	 */
2136 	barrier();
2137 	p->migration_disabled = 0;
2138 	this_rq()->nr_pinned--;
2139 	preempt_enable();
2140 }
2141 EXPORT_SYMBOL_GPL(migrate_enable);
2142 
2143 static inline bool rq_has_pinned_tasks(struct rq *rq)
2144 {
2145 	return rq->nr_pinned;
2146 }
2147 
2148 /*
2149  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2150  * __set_cpus_allowed_ptr() and select_fallback_rq().
2151  */
2152 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2153 {
2154 	/* When not in the task's cpumask, no point in looking further. */
2155 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2156 		return false;
2157 
2158 	/* migrate_disabled() must be allowed to finish. */
2159 	if (is_migration_disabled(p))
2160 		return cpu_online(cpu);
2161 
2162 	/* Non kernel threads are not allowed during either online or offline. */
2163 	if (!(p->flags & PF_KTHREAD))
2164 		return cpu_active(cpu);
2165 
2166 	/* KTHREAD_IS_PER_CPU is always allowed. */
2167 	if (kthread_is_per_cpu(p))
2168 		return cpu_online(cpu);
2169 
2170 	/* Regular kernel threads don't get to stay during offline. */
2171 	if (cpu_dying(cpu))
2172 		return false;
2173 
2174 	/* But are allowed during online. */
2175 	return cpu_online(cpu);
2176 }
2177 
2178 /*
2179  * This is how migration works:
2180  *
2181  * 1) we invoke migration_cpu_stop() on the target CPU using
2182  *    stop_one_cpu().
2183  * 2) stopper starts to run (implicitly forcing the migrated thread
2184  *    off the CPU)
2185  * 3) it checks whether the migrated task is still in the wrong runqueue.
2186  * 4) if it's in the wrong runqueue then the migration thread removes
2187  *    it and puts it into the right queue.
2188  * 5) stopper completes and stop_one_cpu() returns and the migration
2189  *    is done.
2190  */
2191 
2192 /*
2193  * move_queued_task - move a queued task to new rq.
2194  *
2195  * Returns (locked) new rq. Old rq's lock is released.
2196  */
2197 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2198 				   struct task_struct *p, int new_cpu)
2199 {
2200 	lockdep_assert_rq_held(rq);
2201 
2202 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2203 	set_task_cpu(p, new_cpu);
2204 	rq_unlock(rq, rf);
2205 
2206 	rq = cpu_rq(new_cpu);
2207 
2208 	rq_lock(rq, rf);
2209 	BUG_ON(task_cpu(p) != new_cpu);
2210 	activate_task(rq, p, 0);
2211 	check_preempt_curr(rq, p, 0);
2212 
2213 	return rq;
2214 }
2215 
2216 struct migration_arg {
2217 	struct task_struct		*task;
2218 	int				dest_cpu;
2219 	struct set_affinity_pending	*pending;
2220 };
2221 
2222 /*
2223  * @refs: number of wait_for_completion()
2224  * @stop_pending: is @stop_work in use
2225  */
2226 struct set_affinity_pending {
2227 	refcount_t		refs;
2228 	unsigned int		stop_pending;
2229 	struct completion	done;
2230 	struct cpu_stop_work	stop_work;
2231 	struct migration_arg	arg;
2232 };
2233 
2234 /*
2235  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2236  * this because either it can't run here any more (set_cpus_allowed()
2237  * away from this CPU, or CPU going down), or because we're
2238  * attempting to rebalance this task on exec (sched_exec).
2239  *
2240  * So we race with normal scheduler movements, but that's OK, as long
2241  * as the task is no longer on this CPU.
2242  */
2243 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2244 				 struct task_struct *p, int dest_cpu)
2245 {
2246 	/* Affinity changed (again). */
2247 	if (!is_cpu_allowed(p, dest_cpu))
2248 		return rq;
2249 
2250 	update_rq_clock(rq);
2251 	rq = move_queued_task(rq, rf, p, dest_cpu);
2252 
2253 	return rq;
2254 }
2255 
2256 /*
2257  * migration_cpu_stop - this will be executed by a highprio stopper thread
2258  * and performs thread migration by bumping thread off CPU then
2259  * 'pushing' onto another runqueue.
2260  */
2261 static int migration_cpu_stop(void *data)
2262 {
2263 	struct migration_arg *arg = data;
2264 	struct set_affinity_pending *pending = arg->pending;
2265 	struct task_struct *p = arg->task;
2266 	struct rq *rq = this_rq();
2267 	bool complete = false;
2268 	struct rq_flags rf;
2269 
2270 	/*
2271 	 * The original target CPU might have gone down and we might
2272 	 * be on another CPU but it doesn't matter.
2273 	 */
2274 	local_irq_save(rf.flags);
2275 	/*
2276 	 * We need to explicitly wake pending tasks before running
2277 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2278 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2279 	 */
2280 	flush_smp_call_function_from_idle();
2281 
2282 	raw_spin_lock(&p->pi_lock);
2283 	rq_lock(rq, &rf);
2284 
2285 	/*
2286 	 * If we were passed a pending, then ->stop_pending was set, thus
2287 	 * p->migration_pending must have remained stable.
2288 	 */
2289 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2290 
2291 	/*
2292 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2293 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2294 	 * we're holding p->pi_lock.
2295 	 */
2296 	if (task_rq(p) == rq) {
2297 		if (is_migration_disabled(p))
2298 			goto out;
2299 
2300 		if (pending) {
2301 			p->migration_pending = NULL;
2302 			complete = true;
2303 
2304 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2305 				goto out;
2306 		}
2307 
2308 		if (task_on_rq_queued(p))
2309 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2310 		else
2311 			p->wake_cpu = arg->dest_cpu;
2312 
2313 		/*
2314 		 * XXX __migrate_task() can fail, at which point we might end
2315 		 * up running on a dodgy CPU, AFAICT this can only happen
2316 		 * during CPU hotplug, at which point we'll get pushed out
2317 		 * anyway, so it's probably not a big deal.
2318 		 */
2319 
2320 	} else if (pending) {
2321 		/*
2322 		 * This happens when we get migrated between migrate_enable()'s
2323 		 * preempt_enable() and scheduling the stopper task. At that
2324 		 * point we're a regular task again and not current anymore.
2325 		 *
2326 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2327 		 * more likely.
2328 		 */
2329 
2330 		/*
2331 		 * The task moved before the stopper got to run. We're holding
2332 		 * ->pi_lock, so the allowed mask is stable - if it got
2333 		 * somewhere allowed, we're done.
2334 		 */
2335 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2336 			p->migration_pending = NULL;
2337 			complete = true;
2338 			goto out;
2339 		}
2340 
2341 		/*
2342 		 * When migrate_enable() hits a rq mis-match we can't reliably
2343 		 * determine is_migration_disabled() and so have to chase after
2344 		 * it.
2345 		 */
2346 		WARN_ON_ONCE(!pending->stop_pending);
2347 		task_rq_unlock(rq, p, &rf);
2348 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2349 				    &pending->arg, &pending->stop_work);
2350 		return 0;
2351 	}
2352 out:
2353 	if (pending)
2354 		pending->stop_pending = false;
2355 	task_rq_unlock(rq, p, &rf);
2356 
2357 	if (complete)
2358 		complete_all(&pending->done);
2359 
2360 	return 0;
2361 }
2362 
2363 int push_cpu_stop(void *arg)
2364 {
2365 	struct rq *lowest_rq = NULL, *rq = this_rq();
2366 	struct task_struct *p = arg;
2367 
2368 	raw_spin_lock_irq(&p->pi_lock);
2369 	raw_spin_rq_lock(rq);
2370 
2371 	if (task_rq(p) != rq)
2372 		goto out_unlock;
2373 
2374 	if (is_migration_disabled(p)) {
2375 		p->migration_flags |= MDF_PUSH;
2376 		goto out_unlock;
2377 	}
2378 
2379 	p->migration_flags &= ~MDF_PUSH;
2380 
2381 	if (p->sched_class->find_lock_rq)
2382 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2383 
2384 	if (!lowest_rq)
2385 		goto out_unlock;
2386 
2387 	// XXX validate p is still the highest prio task
2388 	if (task_rq(p) == rq) {
2389 		deactivate_task(rq, p, 0);
2390 		set_task_cpu(p, lowest_rq->cpu);
2391 		activate_task(lowest_rq, p, 0);
2392 		resched_curr(lowest_rq);
2393 	}
2394 
2395 	double_unlock_balance(rq, lowest_rq);
2396 
2397 out_unlock:
2398 	rq->push_busy = false;
2399 	raw_spin_rq_unlock(rq);
2400 	raw_spin_unlock_irq(&p->pi_lock);
2401 
2402 	put_task_struct(p);
2403 	return 0;
2404 }
2405 
2406 /*
2407  * sched_class::set_cpus_allowed must do the below, but is not required to
2408  * actually call this function.
2409  */
2410 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2411 {
2412 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2413 		p->cpus_ptr = new_mask;
2414 		return;
2415 	}
2416 
2417 	cpumask_copy(&p->cpus_mask, new_mask);
2418 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2419 }
2420 
2421 static void
2422 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2423 {
2424 	struct rq *rq = task_rq(p);
2425 	bool queued, running;
2426 
2427 	/*
2428 	 * This here violates the locking rules for affinity, since we're only
2429 	 * supposed to change these variables while holding both rq->lock and
2430 	 * p->pi_lock.
2431 	 *
2432 	 * HOWEVER, it magically works, because ttwu() is the only code that
2433 	 * accesses these variables under p->pi_lock and only does so after
2434 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2435 	 * before finish_task().
2436 	 *
2437 	 * XXX do further audits, this smells like something putrid.
2438 	 */
2439 	if (flags & SCA_MIGRATE_DISABLE)
2440 		SCHED_WARN_ON(!p->on_cpu);
2441 	else
2442 		lockdep_assert_held(&p->pi_lock);
2443 
2444 	queued = task_on_rq_queued(p);
2445 	running = task_current(rq, p);
2446 
2447 	if (queued) {
2448 		/*
2449 		 * Because __kthread_bind() calls this on blocked tasks without
2450 		 * holding rq->lock.
2451 		 */
2452 		lockdep_assert_rq_held(rq);
2453 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2454 	}
2455 	if (running)
2456 		put_prev_task(rq, p);
2457 
2458 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2459 
2460 	if (queued)
2461 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2462 	if (running)
2463 		set_next_task(rq, p);
2464 }
2465 
2466 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2467 {
2468 	__do_set_cpus_allowed(p, new_mask, 0);
2469 }
2470 
2471 /*
2472  * This function is wildly self concurrent; here be dragons.
2473  *
2474  *
2475  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2476  * designated task is enqueued on an allowed CPU. If that task is currently
2477  * running, we have to kick it out using the CPU stopper.
2478  *
2479  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2480  * Consider:
2481  *
2482  *     Initial conditions: P0->cpus_mask = [0, 1]
2483  *
2484  *     P0@CPU0                  P1
2485  *
2486  *     migrate_disable();
2487  *     <preempted>
2488  *                              set_cpus_allowed_ptr(P0, [1]);
2489  *
2490  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2491  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2492  * This means we need the following scheme:
2493  *
2494  *     P0@CPU0                  P1
2495  *
2496  *     migrate_disable();
2497  *     <preempted>
2498  *                              set_cpus_allowed_ptr(P0, [1]);
2499  *                                <blocks>
2500  *     <resumes>
2501  *     migrate_enable();
2502  *       __set_cpus_allowed_ptr();
2503  *       <wakes local stopper>
2504  *                         `--> <woken on migration completion>
2505  *
2506  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2507  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2508  * task p are serialized by p->pi_lock, which we can leverage: the one that
2509  * should come into effect at the end of the Migrate-Disable region is the last
2510  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2511  * but we still need to properly signal those waiting tasks at the appropriate
2512  * moment.
2513  *
2514  * This is implemented using struct set_affinity_pending. The first
2515  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2516  * setup an instance of that struct and install it on the targeted task_struct.
2517  * Any and all further callers will reuse that instance. Those then wait for
2518  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2519  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2520  *
2521  *
2522  * (1) In the cases covered above. There is one more where the completion is
2523  * signaled within affine_move_task() itself: when a subsequent affinity request
2524  * occurs after the stopper bailed out due to the targeted task still being
2525  * Migrate-Disable. Consider:
2526  *
2527  *     Initial conditions: P0->cpus_mask = [0, 1]
2528  *
2529  *     CPU0		  P1				P2
2530  *     <P0>
2531  *       migrate_disable();
2532  *       <preempted>
2533  *                        set_cpus_allowed_ptr(P0, [1]);
2534  *                          <blocks>
2535  *     <migration/0>
2536  *       migration_cpu_stop()
2537  *         is_migration_disabled()
2538  *           <bails>
2539  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2540  *                                                         <signal completion>
2541  *                          <awakes>
2542  *
2543  * Note that the above is safe vs a concurrent migrate_enable(), as any
2544  * pending affinity completion is preceded by an uninstallation of
2545  * p->migration_pending done with p->pi_lock held.
2546  */
2547 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2548 			    int dest_cpu, unsigned int flags)
2549 {
2550 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2551 	bool stop_pending, complete = false;
2552 
2553 	/* Can the task run on the task's current CPU? If so, we're done */
2554 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2555 		struct task_struct *push_task = NULL;
2556 
2557 		if ((flags & SCA_MIGRATE_ENABLE) &&
2558 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2559 			rq->push_busy = true;
2560 			push_task = get_task_struct(p);
2561 		}
2562 
2563 		/*
2564 		 * If there are pending waiters, but no pending stop_work,
2565 		 * then complete now.
2566 		 */
2567 		pending = p->migration_pending;
2568 		if (pending && !pending->stop_pending) {
2569 			p->migration_pending = NULL;
2570 			complete = true;
2571 		}
2572 
2573 		task_rq_unlock(rq, p, rf);
2574 
2575 		if (push_task) {
2576 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2577 					    p, &rq->push_work);
2578 		}
2579 
2580 		if (complete)
2581 			complete_all(&pending->done);
2582 
2583 		return 0;
2584 	}
2585 
2586 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2587 		/* serialized by p->pi_lock */
2588 		if (!p->migration_pending) {
2589 			/* Install the request */
2590 			refcount_set(&my_pending.refs, 1);
2591 			init_completion(&my_pending.done);
2592 			my_pending.arg = (struct migration_arg) {
2593 				.task = p,
2594 				.dest_cpu = dest_cpu,
2595 				.pending = &my_pending,
2596 			};
2597 
2598 			p->migration_pending = &my_pending;
2599 		} else {
2600 			pending = p->migration_pending;
2601 			refcount_inc(&pending->refs);
2602 			/*
2603 			 * Affinity has changed, but we've already installed a
2604 			 * pending. migration_cpu_stop() *must* see this, else
2605 			 * we risk a completion of the pending despite having a
2606 			 * task on a disallowed CPU.
2607 			 *
2608 			 * Serialized by p->pi_lock, so this is safe.
2609 			 */
2610 			pending->arg.dest_cpu = dest_cpu;
2611 		}
2612 	}
2613 	pending = p->migration_pending;
2614 	/*
2615 	 * - !MIGRATE_ENABLE:
2616 	 *   we'll have installed a pending if there wasn't one already.
2617 	 *
2618 	 * - MIGRATE_ENABLE:
2619 	 *   we're here because the current CPU isn't matching anymore,
2620 	 *   the only way that can happen is because of a concurrent
2621 	 *   set_cpus_allowed_ptr() call, which should then still be
2622 	 *   pending completion.
2623 	 *
2624 	 * Either way, we really should have a @pending here.
2625 	 */
2626 	if (WARN_ON_ONCE(!pending)) {
2627 		task_rq_unlock(rq, p, rf);
2628 		return -EINVAL;
2629 	}
2630 
2631 	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2632 		/*
2633 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2634 		 * anything else we cannot do is_migration_disabled(), punt
2635 		 * and have the stopper function handle it all race-free.
2636 		 */
2637 		stop_pending = pending->stop_pending;
2638 		if (!stop_pending)
2639 			pending->stop_pending = true;
2640 
2641 		if (flags & SCA_MIGRATE_ENABLE)
2642 			p->migration_flags &= ~MDF_PUSH;
2643 
2644 		task_rq_unlock(rq, p, rf);
2645 
2646 		if (!stop_pending) {
2647 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2648 					    &pending->arg, &pending->stop_work);
2649 		}
2650 
2651 		if (flags & SCA_MIGRATE_ENABLE)
2652 			return 0;
2653 	} else {
2654 
2655 		if (!is_migration_disabled(p)) {
2656 			if (task_on_rq_queued(p))
2657 				rq = move_queued_task(rq, rf, p, dest_cpu);
2658 
2659 			if (!pending->stop_pending) {
2660 				p->migration_pending = NULL;
2661 				complete = true;
2662 			}
2663 		}
2664 		task_rq_unlock(rq, p, rf);
2665 
2666 		if (complete)
2667 			complete_all(&pending->done);
2668 	}
2669 
2670 	wait_for_completion(&pending->done);
2671 
2672 	if (refcount_dec_and_test(&pending->refs))
2673 		wake_up_var(&pending->refs); /* No UaF, just an address */
2674 
2675 	/*
2676 	 * Block the original owner of &pending until all subsequent callers
2677 	 * have seen the completion and decremented the refcount
2678 	 */
2679 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2680 
2681 	/* ARGH */
2682 	WARN_ON_ONCE(my_pending.stop_pending);
2683 
2684 	return 0;
2685 }
2686 
2687 /*
2688  * Change a given task's CPU affinity. Migrate the thread to a
2689  * proper CPU and schedule it away if the CPU it's executing on
2690  * is removed from the allowed bitmask.
2691  *
2692  * NOTE: the caller must have a valid reference to the task, the
2693  * task must not exit() & deallocate itself prematurely. The
2694  * call is not atomic; no spinlocks may be held.
2695  */
2696 static int __set_cpus_allowed_ptr(struct task_struct *p,
2697 				  const struct cpumask *new_mask,
2698 				  u32 flags)
2699 {
2700 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2701 	unsigned int dest_cpu;
2702 	struct rq_flags rf;
2703 	struct rq *rq;
2704 	int ret = 0;
2705 
2706 	rq = task_rq_lock(p, &rf);
2707 	update_rq_clock(rq);
2708 
2709 	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2710 		/*
2711 		 * Kernel threads are allowed on online && !active CPUs,
2712 		 * however, during cpu-hot-unplug, even these might get pushed
2713 		 * away if not KTHREAD_IS_PER_CPU.
2714 		 *
2715 		 * Specifically, migration_disabled() tasks must not fail the
2716 		 * cpumask_any_and_distribute() pick below, esp. so on
2717 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2718 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2719 		 */
2720 		cpu_valid_mask = cpu_online_mask;
2721 	}
2722 
2723 	/*
2724 	 * Must re-check here, to close a race against __kthread_bind(),
2725 	 * sched_setaffinity() is not guaranteed to observe the flag.
2726 	 */
2727 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2728 		ret = -EINVAL;
2729 		goto out;
2730 	}
2731 
2732 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2733 		if (cpumask_equal(&p->cpus_mask, new_mask))
2734 			goto out;
2735 
2736 		if (WARN_ON_ONCE(p == current &&
2737 				 is_migration_disabled(p) &&
2738 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2739 			ret = -EBUSY;
2740 			goto out;
2741 		}
2742 	}
2743 
2744 	/*
2745 	 * Picking a ~random cpu helps in cases where we are changing affinity
2746 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2747 	 * immediately required to distribute the tasks within their new mask.
2748 	 */
2749 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2750 	if (dest_cpu >= nr_cpu_ids) {
2751 		ret = -EINVAL;
2752 		goto out;
2753 	}
2754 
2755 	__do_set_cpus_allowed(p, new_mask, flags);
2756 
2757 	return affine_move_task(rq, p, &rf, dest_cpu, flags);
2758 
2759 out:
2760 	task_rq_unlock(rq, p, &rf);
2761 
2762 	return ret;
2763 }
2764 
2765 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2766 {
2767 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2768 }
2769 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2770 
2771 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2772 {
2773 #ifdef CONFIG_SCHED_DEBUG
2774 	unsigned int state = READ_ONCE(p->__state);
2775 
2776 	/*
2777 	 * We should never call set_task_cpu() on a blocked task,
2778 	 * ttwu() will sort out the placement.
2779 	 */
2780 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
2781 
2782 	/*
2783 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2784 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2785 	 * time relying on p->on_rq.
2786 	 */
2787 	WARN_ON_ONCE(state == TASK_RUNNING &&
2788 		     p->sched_class == &fair_sched_class &&
2789 		     (p->on_rq && !task_on_rq_migrating(p)));
2790 
2791 #ifdef CONFIG_LOCKDEP
2792 	/*
2793 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2794 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2795 	 *
2796 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2797 	 * see task_group().
2798 	 *
2799 	 * Furthermore, all task_rq users should acquire both locks, see
2800 	 * task_rq_lock().
2801 	 */
2802 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2803 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
2804 #endif
2805 	/*
2806 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2807 	 */
2808 	WARN_ON_ONCE(!cpu_online(new_cpu));
2809 
2810 	WARN_ON_ONCE(is_migration_disabled(p));
2811 #endif
2812 
2813 	trace_sched_migrate_task(p, new_cpu);
2814 
2815 	if (task_cpu(p) != new_cpu) {
2816 		if (p->sched_class->migrate_task_rq)
2817 			p->sched_class->migrate_task_rq(p, new_cpu);
2818 		p->se.nr_migrations++;
2819 		rseq_migrate(p);
2820 		perf_event_task_migrate(p);
2821 	}
2822 
2823 	__set_task_cpu(p, new_cpu);
2824 }
2825 
2826 #ifdef CONFIG_NUMA_BALANCING
2827 static void __migrate_swap_task(struct task_struct *p, int cpu)
2828 {
2829 	if (task_on_rq_queued(p)) {
2830 		struct rq *src_rq, *dst_rq;
2831 		struct rq_flags srf, drf;
2832 
2833 		src_rq = task_rq(p);
2834 		dst_rq = cpu_rq(cpu);
2835 
2836 		rq_pin_lock(src_rq, &srf);
2837 		rq_pin_lock(dst_rq, &drf);
2838 
2839 		deactivate_task(src_rq, p, 0);
2840 		set_task_cpu(p, cpu);
2841 		activate_task(dst_rq, p, 0);
2842 		check_preempt_curr(dst_rq, p, 0);
2843 
2844 		rq_unpin_lock(dst_rq, &drf);
2845 		rq_unpin_lock(src_rq, &srf);
2846 
2847 	} else {
2848 		/*
2849 		 * Task isn't running anymore; make it appear like we migrated
2850 		 * it before it went to sleep. This means on wakeup we make the
2851 		 * previous CPU our target instead of where it really is.
2852 		 */
2853 		p->wake_cpu = cpu;
2854 	}
2855 }
2856 
2857 struct migration_swap_arg {
2858 	struct task_struct *src_task, *dst_task;
2859 	int src_cpu, dst_cpu;
2860 };
2861 
2862 static int migrate_swap_stop(void *data)
2863 {
2864 	struct migration_swap_arg *arg = data;
2865 	struct rq *src_rq, *dst_rq;
2866 	int ret = -EAGAIN;
2867 
2868 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2869 		return -EAGAIN;
2870 
2871 	src_rq = cpu_rq(arg->src_cpu);
2872 	dst_rq = cpu_rq(arg->dst_cpu);
2873 
2874 	double_raw_lock(&arg->src_task->pi_lock,
2875 			&arg->dst_task->pi_lock);
2876 	double_rq_lock(src_rq, dst_rq);
2877 
2878 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2879 		goto unlock;
2880 
2881 	if (task_cpu(arg->src_task) != arg->src_cpu)
2882 		goto unlock;
2883 
2884 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2885 		goto unlock;
2886 
2887 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2888 		goto unlock;
2889 
2890 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2891 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2892 
2893 	ret = 0;
2894 
2895 unlock:
2896 	double_rq_unlock(src_rq, dst_rq);
2897 	raw_spin_unlock(&arg->dst_task->pi_lock);
2898 	raw_spin_unlock(&arg->src_task->pi_lock);
2899 
2900 	return ret;
2901 }
2902 
2903 /*
2904  * Cross migrate two tasks
2905  */
2906 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2907 		int target_cpu, int curr_cpu)
2908 {
2909 	struct migration_swap_arg arg;
2910 	int ret = -EINVAL;
2911 
2912 	arg = (struct migration_swap_arg){
2913 		.src_task = cur,
2914 		.src_cpu = curr_cpu,
2915 		.dst_task = p,
2916 		.dst_cpu = target_cpu,
2917 	};
2918 
2919 	if (arg.src_cpu == arg.dst_cpu)
2920 		goto out;
2921 
2922 	/*
2923 	 * These three tests are all lockless; this is OK since all of them
2924 	 * will be re-checked with proper locks held further down the line.
2925 	 */
2926 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2927 		goto out;
2928 
2929 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2930 		goto out;
2931 
2932 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2933 		goto out;
2934 
2935 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2936 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2937 
2938 out:
2939 	return ret;
2940 }
2941 #endif /* CONFIG_NUMA_BALANCING */
2942 
2943 /*
2944  * wait_task_inactive - wait for a thread to unschedule.
2945  *
2946  * If @match_state is nonzero, it's the @p->state value just checked and
2947  * not expected to change.  If it changes, i.e. @p might have woken up,
2948  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2949  * we return a positive number (its total switch count).  If a second call
2950  * a short while later returns the same number, the caller can be sure that
2951  * @p has remained unscheduled the whole time.
2952  *
2953  * The caller must ensure that the task *will* unschedule sometime soon,
2954  * else this function might spin for a *long* time. This function can't
2955  * be called with interrupts off, or it may introduce deadlock with
2956  * smp_call_function() if an IPI is sent by the same process we are
2957  * waiting to become inactive.
2958  */
2959 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2960 {
2961 	int running, queued;
2962 	struct rq_flags rf;
2963 	unsigned long ncsw;
2964 	struct rq *rq;
2965 
2966 	for (;;) {
2967 		/*
2968 		 * We do the initial early heuristics without holding
2969 		 * any task-queue locks at all. We'll only try to get
2970 		 * the runqueue lock when things look like they will
2971 		 * work out!
2972 		 */
2973 		rq = task_rq(p);
2974 
2975 		/*
2976 		 * If the task is actively running on another CPU
2977 		 * still, just relax and busy-wait without holding
2978 		 * any locks.
2979 		 *
2980 		 * NOTE! Since we don't hold any locks, it's not
2981 		 * even sure that "rq" stays as the right runqueue!
2982 		 * But we don't care, since "task_running()" will
2983 		 * return false if the runqueue has changed and p
2984 		 * is actually now running somewhere else!
2985 		 */
2986 		while (task_running(rq, p)) {
2987 			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
2988 				return 0;
2989 			cpu_relax();
2990 		}
2991 
2992 		/*
2993 		 * Ok, time to look more closely! We need the rq
2994 		 * lock now, to be *sure*. If we're wrong, we'll
2995 		 * just go back and repeat.
2996 		 */
2997 		rq = task_rq_lock(p, &rf);
2998 		trace_sched_wait_task(p);
2999 		running = task_running(rq, p);
3000 		queued = task_on_rq_queued(p);
3001 		ncsw = 0;
3002 		if (!match_state || READ_ONCE(p->__state) == match_state)
3003 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3004 		task_rq_unlock(rq, p, &rf);
3005 
3006 		/*
3007 		 * If it changed from the expected state, bail out now.
3008 		 */
3009 		if (unlikely(!ncsw))
3010 			break;
3011 
3012 		/*
3013 		 * Was it really running after all now that we
3014 		 * checked with the proper locks actually held?
3015 		 *
3016 		 * Oops. Go back and try again..
3017 		 */
3018 		if (unlikely(running)) {
3019 			cpu_relax();
3020 			continue;
3021 		}
3022 
3023 		/*
3024 		 * It's not enough that it's not actively running,
3025 		 * it must be off the runqueue _entirely_, and not
3026 		 * preempted!
3027 		 *
3028 		 * So if it was still runnable (but just not actively
3029 		 * running right now), it's preempted, and we should
3030 		 * yield - it could be a while.
3031 		 */
3032 		if (unlikely(queued)) {
3033 			ktime_t to = NSEC_PER_SEC / HZ;
3034 
3035 			set_current_state(TASK_UNINTERRUPTIBLE);
3036 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3037 			continue;
3038 		}
3039 
3040 		/*
3041 		 * Ahh, all good. It wasn't running, and it wasn't
3042 		 * runnable, which means that it will never become
3043 		 * running in the future either. We're all done!
3044 		 */
3045 		break;
3046 	}
3047 
3048 	return ncsw;
3049 }
3050 
3051 /***
3052  * kick_process - kick a running thread to enter/exit the kernel
3053  * @p: the to-be-kicked thread
3054  *
3055  * Cause a process which is running on another CPU to enter
3056  * kernel-mode, without any delay. (to get signals handled.)
3057  *
3058  * NOTE: this function doesn't have to take the runqueue lock,
3059  * because all it wants to ensure is that the remote task enters
3060  * the kernel. If the IPI races and the task has been migrated
3061  * to another CPU then no harm is done and the purpose has been
3062  * achieved as well.
3063  */
3064 void kick_process(struct task_struct *p)
3065 {
3066 	int cpu;
3067 
3068 	preempt_disable();
3069 	cpu = task_cpu(p);
3070 	if ((cpu != smp_processor_id()) && task_curr(p))
3071 		smp_send_reschedule(cpu);
3072 	preempt_enable();
3073 }
3074 EXPORT_SYMBOL_GPL(kick_process);
3075 
3076 /*
3077  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3078  *
3079  * A few notes on cpu_active vs cpu_online:
3080  *
3081  *  - cpu_active must be a subset of cpu_online
3082  *
3083  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3084  *    see __set_cpus_allowed_ptr(). At this point the newly online
3085  *    CPU isn't yet part of the sched domains, and balancing will not
3086  *    see it.
3087  *
3088  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3089  *    avoid the load balancer to place new tasks on the to be removed
3090  *    CPU. Existing tasks will remain running there and will be taken
3091  *    off.
3092  *
3093  * This means that fallback selection must not select !active CPUs.
3094  * And can assume that any active CPU must be online. Conversely
3095  * select_task_rq() below may allow selection of !active CPUs in order
3096  * to satisfy the above rules.
3097  */
3098 static int select_fallback_rq(int cpu, struct task_struct *p)
3099 {
3100 	int nid = cpu_to_node(cpu);
3101 	const struct cpumask *nodemask = NULL;
3102 	enum { cpuset, possible, fail } state = cpuset;
3103 	int dest_cpu;
3104 
3105 	/*
3106 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3107 	 * will return -1. There is no CPU on the node, and we should
3108 	 * select the CPU on the other node.
3109 	 */
3110 	if (nid != -1) {
3111 		nodemask = cpumask_of_node(nid);
3112 
3113 		/* Look for allowed, online CPU in same node. */
3114 		for_each_cpu(dest_cpu, nodemask) {
3115 			if (!cpu_active(dest_cpu))
3116 				continue;
3117 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
3118 				return dest_cpu;
3119 		}
3120 	}
3121 
3122 	for (;;) {
3123 		/* Any allowed, online CPU? */
3124 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3125 			if (!is_cpu_allowed(p, dest_cpu))
3126 				continue;
3127 
3128 			goto out;
3129 		}
3130 
3131 		/* No more Mr. Nice Guy. */
3132 		switch (state) {
3133 		case cpuset:
3134 			if (IS_ENABLED(CONFIG_CPUSETS)) {
3135 				cpuset_cpus_allowed_fallback(p);
3136 				state = possible;
3137 				break;
3138 			}
3139 			fallthrough;
3140 		case possible:
3141 			/*
3142 			 * XXX When called from select_task_rq() we only
3143 			 * hold p->pi_lock and again violate locking order.
3144 			 *
3145 			 * More yuck to audit.
3146 			 */
3147 			do_set_cpus_allowed(p, cpu_possible_mask);
3148 			state = fail;
3149 			break;
3150 
3151 		case fail:
3152 			BUG();
3153 			break;
3154 		}
3155 	}
3156 
3157 out:
3158 	if (state != cpuset) {
3159 		/*
3160 		 * Don't tell them about moving exiting tasks or
3161 		 * kernel threads (both mm NULL), since they never
3162 		 * leave kernel.
3163 		 */
3164 		if (p->mm && printk_ratelimit()) {
3165 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3166 					task_pid_nr(p), p->comm, cpu);
3167 		}
3168 	}
3169 
3170 	return dest_cpu;
3171 }
3172 
3173 /*
3174  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3175  */
3176 static inline
3177 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3178 {
3179 	lockdep_assert_held(&p->pi_lock);
3180 
3181 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3182 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3183 	else
3184 		cpu = cpumask_any(p->cpus_ptr);
3185 
3186 	/*
3187 	 * In order not to call set_task_cpu() on a blocking task we need
3188 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3189 	 * CPU.
3190 	 *
3191 	 * Since this is common to all placement strategies, this lives here.
3192 	 *
3193 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3194 	 *   not worry about this generic constraint ]
3195 	 */
3196 	if (unlikely(!is_cpu_allowed(p, cpu)))
3197 		cpu = select_fallback_rq(task_cpu(p), p);
3198 
3199 	return cpu;
3200 }
3201 
3202 void sched_set_stop_task(int cpu, struct task_struct *stop)
3203 {
3204 	static struct lock_class_key stop_pi_lock;
3205 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3206 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3207 
3208 	if (stop) {
3209 		/*
3210 		 * Make it appear like a SCHED_FIFO task, its something
3211 		 * userspace knows about and won't get confused about.
3212 		 *
3213 		 * Also, it will make PI more or less work without too
3214 		 * much confusion -- but then, stop work should not
3215 		 * rely on PI working anyway.
3216 		 */
3217 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3218 
3219 		stop->sched_class = &stop_sched_class;
3220 
3221 		/*
3222 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3223 		 * adjust the effective priority of a task. As a result,
3224 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3225 		 * which can then trigger wakeups of the stop thread to push
3226 		 * around the current task.
3227 		 *
3228 		 * The stop task itself will never be part of the PI-chain, it
3229 		 * never blocks, therefore that ->pi_lock recursion is safe.
3230 		 * Tell lockdep about this by placing the stop->pi_lock in its
3231 		 * own class.
3232 		 */
3233 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3234 	}
3235 
3236 	cpu_rq(cpu)->stop = stop;
3237 
3238 	if (old_stop) {
3239 		/*
3240 		 * Reset it back to a normal scheduling class so that
3241 		 * it can die in pieces.
3242 		 */
3243 		old_stop->sched_class = &rt_sched_class;
3244 	}
3245 }
3246 
3247 #else /* CONFIG_SMP */
3248 
3249 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3250 					 const struct cpumask *new_mask,
3251 					 u32 flags)
3252 {
3253 	return set_cpus_allowed_ptr(p, new_mask);
3254 }
3255 
3256 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3257 
3258 static inline bool rq_has_pinned_tasks(struct rq *rq)
3259 {
3260 	return false;
3261 }
3262 
3263 #endif /* !CONFIG_SMP */
3264 
3265 static void
3266 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3267 {
3268 	struct rq *rq;
3269 
3270 	if (!schedstat_enabled())
3271 		return;
3272 
3273 	rq = this_rq();
3274 
3275 #ifdef CONFIG_SMP
3276 	if (cpu == rq->cpu) {
3277 		__schedstat_inc(rq->ttwu_local);
3278 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
3279 	} else {
3280 		struct sched_domain *sd;
3281 
3282 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
3283 		rcu_read_lock();
3284 		for_each_domain(rq->cpu, sd) {
3285 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3286 				__schedstat_inc(sd->ttwu_wake_remote);
3287 				break;
3288 			}
3289 		}
3290 		rcu_read_unlock();
3291 	}
3292 
3293 	if (wake_flags & WF_MIGRATED)
3294 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
3295 #endif /* CONFIG_SMP */
3296 
3297 	__schedstat_inc(rq->ttwu_count);
3298 	__schedstat_inc(p->se.statistics.nr_wakeups);
3299 
3300 	if (wake_flags & WF_SYNC)
3301 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
3302 }
3303 
3304 /*
3305  * Mark the task runnable and perform wakeup-preemption.
3306  */
3307 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3308 			   struct rq_flags *rf)
3309 {
3310 	check_preempt_curr(rq, p, wake_flags);
3311 	WRITE_ONCE(p->__state, TASK_RUNNING);
3312 	trace_sched_wakeup(p);
3313 
3314 #ifdef CONFIG_SMP
3315 	if (p->sched_class->task_woken) {
3316 		/*
3317 		 * Our task @p is fully woken up and running; so it's safe to
3318 		 * drop the rq->lock, hereafter rq is only used for statistics.
3319 		 */
3320 		rq_unpin_lock(rq, rf);
3321 		p->sched_class->task_woken(rq, p);
3322 		rq_repin_lock(rq, rf);
3323 	}
3324 
3325 	if (rq->idle_stamp) {
3326 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3327 		u64 max = 2*rq->max_idle_balance_cost;
3328 
3329 		update_avg(&rq->avg_idle, delta);
3330 
3331 		if (rq->avg_idle > max)
3332 			rq->avg_idle = max;
3333 
3334 		rq->wake_stamp = jiffies;
3335 		rq->wake_avg_idle = rq->avg_idle / 2;
3336 
3337 		rq->idle_stamp = 0;
3338 	}
3339 #endif
3340 }
3341 
3342 static void
3343 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3344 		 struct rq_flags *rf)
3345 {
3346 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3347 
3348 	lockdep_assert_rq_held(rq);
3349 
3350 	if (p->sched_contributes_to_load)
3351 		rq->nr_uninterruptible--;
3352 
3353 #ifdef CONFIG_SMP
3354 	if (wake_flags & WF_MIGRATED)
3355 		en_flags |= ENQUEUE_MIGRATED;
3356 	else
3357 #endif
3358 	if (p->in_iowait) {
3359 		delayacct_blkio_end(p);
3360 		atomic_dec(&task_rq(p)->nr_iowait);
3361 	}
3362 
3363 	activate_task(rq, p, en_flags);
3364 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3365 }
3366 
3367 /*
3368  * Consider @p being inside a wait loop:
3369  *
3370  *   for (;;) {
3371  *      set_current_state(TASK_UNINTERRUPTIBLE);
3372  *
3373  *      if (CONDITION)
3374  *         break;
3375  *
3376  *      schedule();
3377  *   }
3378  *   __set_current_state(TASK_RUNNING);
3379  *
3380  * between set_current_state() and schedule(). In this case @p is still
3381  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3382  * an atomic manner.
3383  *
3384  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3385  * then schedule() must still happen and p->state can be changed to
3386  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3387  * need to do a full wakeup with enqueue.
3388  *
3389  * Returns: %true when the wakeup is done,
3390  *          %false otherwise.
3391  */
3392 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3393 {
3394 	struct rq_flags rf;
3395 	struct rq *rq;
3396 	int ret = 0;
3397 
3398 	rq = __task_rq_lock(p, &rf);
3399 	if (task_on_rq_queued(p)) {
3400 		/* check_preempt_curr() may use rq clock */
3401 		update_rq_clock(rq);
3402 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3403 		ret = 1;
3404 	}
3405 	__task_rq_unlock(rq, &rf);
3406 
3407 	return ret;
3408 }
3409 
3410 #ifdef CONFIG_SMP
3411 void sched_ttwu_pending(void *arg)
3412 {
3413 	struct llist_node *llist = arg;
3414 	struct rq *rq = this_rq();
3415 	struct task_struct *p, *t;
3416 	struct rq_flags rf;
3417 
3418 	if (!llist)
3419 		return;
3420 
3421 	/*
3422 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3423 	 * Races such that false-negatives are possible, since they
3424 	 * are shorter lived that false-positives would be.
3425 	 */
3426 	WRITE_ONCE(rq->ttwu_pending, 0);
3427 
3428 	rq_lock_irqsave(rq, &rf);
3429 	update_rq_clock(rq);
3430 
3431 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3432 		if (WARN_ON_ONCE(p->on_cpu))
3433 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3434 
3435 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3436 			set_task_cpu(p, cpu_of(rq));
3437 
3438 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3439 	}
3440 
3441 	rq_unlock_irqrestore(rq, &rf);
3442 }
3443 
3444 void send_call_function_single_ipi(int cpu)
3445 {
3446 	struct rq *rq = cpu_rq(cpu);
3447 
3448 	if (!set_nr_if_polling(rq->idle))
3449 		arch_send_call_function_single_ipi(cpu);
3450 	else
3451 		trace_sched_wake_idle_without_ipi(cpu);
3452 }
3453 
3454 /*
3455  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3456  * necessary. The wakee CPU on receipt of the IPI will queue the task
3457  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3458  * of the wakeup instead of the waker.
3459  */
3460 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3461 {
3462 	struct rq *rq = cpu_rq(cpu);
3463 
3464 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3465 
3466 	WRITE_ONCE(rq->ttwu_pending, 1);
3467 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3468 }
3469 
3470 void wake_up_if_idle(int cpu)
3471 {
3472 	struct rq *rq = cpu_rq(cpu);
3473 	struct rq_flags rf;
3474 
3475 	rcu_read_lock();
3476 
3477 	if (!is_idle_task(rcu_dereference(rq->curr)))
3478 		goto out;
3479 
3480 	if (set_nr_if_polling(rq->idle)) {
3481 		trace_sched_wake_idle_without_ipi(cpu);
3482 	} else {
3483 		rq_lock_irqsave(rq, &rf);
3484 		if (is_idle_task(rq->curr))
3485 			smp_send_reschedule(cpu);
3486 		/* Else CPU is not idle, do nothing here: */
3487 		rq_unlock_irqrestore(rq, &rf);
3488 	}
3489 
3490 out:
3491 	rcu_read_unlock();
3492 }
3493 
3494 bool cpus_share_cache(int this_cpu, int that_cpu)
3495 {
3496 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3497 }
3498 
3499 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3500 {
3501 	/*
3502 	 * Do not complicate things with the async wake_list while the CPU is
3503 	 * in hotplug state.
3504 	 */
3505 	if (!cpu_active(cpu))
3506 		return false;
3507 
3508 	/*
3509 	 * If the CPU does not share cache, then queue the task on the
3510 	 * remote rqs wakelist to avoid accessing remote data.
3511 	 */
3512 	if (!cpus_share_cache(smp_processor_id(), cpu))
3513 		return true;
3514 
3515 	/*
3516 	 * If the task is descheduling and the only running task on the
3517 	 * CPU then use the wakelist to offload the task activation to
3518 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3519 	 * nr_running is checked to avoid unnecessary task stacking.
3520 	 */
3521 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3522 		return true;
3523 
3524 	return false;
3525 }
3526 
3527 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3528 {
3529 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3530 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3531 			return false;
3532 
3533 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3534 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3535 		return true;
3536 	}
3537 
3538 	return false;
3539 }
3540 
3541 #else /* !CONFIG_SMP */
3542 
3543 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3544 {
3545 	return false;
3546 }
3547 
3548 #endif /* CONFIG_SMP */
3549 
3550 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3551 {
3552 	struct rq *rq = cpu_rq(cpu);
3553 	struct rq_flags rf;
3554 
3555 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3556 		return;
3557 
3558 	rq_lock(rq, &rf);
3559 	update_rq_clock(rq);
3560 	ttwu_do_activate(rq, p, wake_flags, &rf);
3561 	rq_unlock(rq, &rf);
3562 }
3563 
3564 /*
3565  * Notes on Program-Order guarantees on SMP systems.
3566  *
3567  *  MIGRATION
3568  *
3569  * The basic program-order guarantee on SMP systems is that when a task [t]
3570  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3571  * execution on its new CPU [c1].
3572  *
3573  * For migration (of runnable tasks) this is provided by the following means:
3574  *
3575  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3576  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3577  *     rq(c1)->lock (if not at the same time, then in that order).
3578  *  C) LOCK of the rq(c1)->lock scheduling in task
3579  *
3580  * Release/acquire chaining guarantees that B happens after A and C after B.
3581  * Note: the CPU doing B need not be c0 or c1
3582  *
3583  * Example:
3584  *
3585  *   CPU0            CPU1            CPU2
3586  *
3587  *   LOCK rq(0)->lock
3588  *   sched-out X
3589  *   sched-in Y
3590  *   UNLOCK rq(0)->lock
3591  *
3592  *                                   LOCK rq(0)->lock // orders against CPU0
3593  *                                   dequeue X
3594  *                                   UNLOCK rq(0)->lock
3595  *
3596  *                                   LOCK rq(1)->lock
3597  *                                   enqueue X
3598  *                                   UNLOCK rq(1)->lock
3599  *
3600  *                   LOCK rq(1)->lock // orders against CPU2
3601  *                   sched-out Z
3602  *                   sched-in X
3603  *                   UNLOCK rq(1)->lock
3604  *
3605  *
3606  *  BLOCKING -- aka. SLEEP + WAKEUP
3607  *
3608  * For blocking we (obviously) need to provide the same guarantee as for
3609  * migration. However the means are completely different as there is no lock
3610  * chain to provide order. Instead we do:
3611  *
3612  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3613  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3614  *
3615  * Example:
3616  *
3617  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3618  *
3619  *   LOCK rq(0)->lock LOCK X->pi_lock
3620  *   dequeue X
3621  *   sched-out X
3622  *   smp_store_release(X->on_cpu, 0);
3623  *
3624  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3625  *                    X->state = WAKING
3626  *                    set_task_cpu(X,2)
3627  *
3628  *                    LOCK rq(2)->lock
3629  *                    enqueue X
3630  *                    X->state = RUNNING
3631  *                    UNLOCK rq(2)->lock
3632  *
3633  *                                          LOCK rq(2)->lock // orders against CPU1
3634  *                                          sched-out Z
3635  *                                          sched-in X
3636  *                                          UNLOCK rq(2)->lock
3637  *
3638  *                    UNLOCK X->pi_lock
3639  *   UNLOCK rq(0)->lock
3640  *
3641  *
3642  * However, for wakeups there is a second guarantee we must provide, namely we
3643  * must ensure that CONDITION=1 done by the caller can not be reordered with
3644  * accesses to the task state; see try_to_wake_up() and set_current_state().
3645  */
3646 
3647 /**
3648  * try_to_wake_up - wake up a thread
3649  * @p: the thread to be awakened
3650  * @state: the mask of task states that can be woken
3651  * @wake_flags: wake modifier flags (WF_*)
3652  *
3653  * Conceptually does:
3654  *
3655  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3656  *
3657  * If the task was not queued/runnable, also place it back on a runqueue.
3658  *
3659  * This function is atomic against schedule() which would dequeue the task.
3660  *
3661  * It issues a full memory barrier before accessing @p->state, see the comment
3662  * with set_current_state().
3663  *
3664  * Uses p->pi_lock to serialize against concurrent wake-ups.
3665  *
3666  * Relies on p->pi_lock stabilizing:
3667  *  - p->sched_class
3668  *  - p->cpus_ptr
3669  *  - p->sched_task_group
3670  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3671  *
3672  * Tries really hard to only take one task_rq(p)->lock for performance.
3673  * Takes rq->lock in:
3674  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3675  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3676  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3677  *
3678  * As a consequence we race really badly with just about everything. See the
3679  * many memory barriers and their comments for details.
3680  *
3681  * Return: %true if @p->state changes (an actual wakeup was done),
3682  *	   %false otherwise.
3683  */
3684 static int
3685 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3686 {
3687 	unsigned long flags;
3688 	int cpu, success = 0;
3689 
3690 	preempt_disable();
3691 	if (p == current) {
3692 		/*
3693 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3694 		 * == smp_processor_id()'. Together this means we can special
3695 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3696 		 * without taking any locks.
3697 		 *
3698 		 * In particular:
3699 		 *  - we rely on Program-Order guarantees for all the ordering,
3700 		 *  - we're serialized against set_special_state() by virtue of
3701 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3702 		 */
3703 		if (!(READ_ONCE(p->__state) & state))
3704 			goto out;
3705 
3706 		success = 1;
3707 		trace_sched_waking(p);
3708 		WRITE_ONCE(p->__state, TASK_RUNNING);
3709 		trace_sched_wakeup(p);
3710 		goto out;
3711 	}
3712 
3713 	/*
3714 	 * If we are going to wake up a thread waiting for CONDITION we
3715 	 * need to ensure that CONDITION=1 done by the caller can not be
3716 	 * reordered with p->state check below. This pairs with smp_store_mb()
3717 	 * in set_current_state() that the waiting thread does.
3718 	 */
3719 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3720 	smp_mb__after_spinlock();
3721 	if (!(READ_ONCE(p->__state) & state))
3722 		goto unlock;
3723 
3724 	trace_sched_waking(p);
3725 
3726 	/* We're going to change ->state: */
3727 	success = 1;
3728 
3729 	/*
3730 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3731 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3732 	 * in smp_cond_load_acquire() below.
3733 	 *
3734 	 * sched_ttwu_pending()			try_to_wake_up()
3735 	 *   STORE p->on_rq = 1			  LOAD p->state
3736 	 *   UNLOCK rq->lock
3737 	 *
3738 	 * __schedule() (switch to task 'p')
3739 	 *   LOCK rq->lock			  smp_rmb();
3740 	 *   smp_mb__after_spinlock();
3741 	 *   UNLOCK rq->lock
3742 	 *
3743 	 * [task p]
3744 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3745 	 *
3746 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3747 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3748 	 *
3749 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3750 	 */
3751 	smp_rmb();
3752 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3753 		goto unlock;
3754 
3755 #ifdef CONFIG_SMP
3756 	/*
3757 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3758 	 * possible to, falsely, observe p->on_cpu == 0.
3759 	 *
3760 	 * One must be running (->on_cpu == 1) in order to remove oneself
3761 	 * from the runqueue.
3762 	 *
3763 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3764 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3765 	 *   UNLOCK rq->lock
3766 	 *
3767 	 * __schedule() (put 'p' to sleep)
3768 	 *   LOCK rq->lock			  smp_rmb();
3769 	 *   smp_mb__after_spinlock();
3770 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3771 	 *
3772 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3773 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3774 	 *
3775 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3776 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3777 	 * care about it's own p->state. See the comment in __schedule().
3778 	 */
3779 	smp_acquire__after_ctrl_dep();
3780 
3781 	/*
3782 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3783 	 * == 0), which means we need to do an enqueue, change p->state to
3784 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3785 	 * enqueue, such as ttwu_queue_wakelist().
3786 	 */
3787 	WRITE_ONCE(p->__state, TASK_WAKING);
3788 
3789 	/*
3790 	 * If the owning (remote) CPU is still in the middle of schedule() with
3791 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3792 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3793 	 * let the waker make forward progress. This is safe because IRQs are
3794 	 * disabled and the IPI will deliver after on_cpu is cleared.
3795 	 *
3796 	 * Ensure we load task_cpu(p) after p->on_cpu:
3797 	 *
3798 	 * set_task_cpu(p, cpu);
3799 	 *   STORE p->cpu = @cpu
3800 	 * __schedule() (switch to task 'p')
3801 	 *   LOCK rq->lock
3802 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3803 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3804 	 *
3805 	 * to ensure we observe the correct CPU on which the task is currently
3806 	 * scheduling.
3807 	 */
3808 	if (smp_load_acquire(&p->on_cpu) &&
3809 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3810 		goto unlock;
3811 
3812 	/*
3813 	 * If the owning (remote) CPU is still in the middle of schedule() with
3814 	 * this task as prev, wait until it's done referencing the task.
3815 	 *
3816 	 * Pairs with the smp_store_release() in finish_task().
3817 	 *
3818 	 * This ensures that tasks getting woken will be fully ordered against
3819 	 * their previous state and preserve Program Order.
3820 	 */
3821 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3822 
3823 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3824 	if (task_cpu(p) != cpu) {
3825 		if (p->in_iowait) {
3826 			delayacct_blkio_end(p);
3827 			atomic_dec(&task_rq(p)->nr_iowait);
3828 		}
3829 
3830 		wake_flags |= WF_MIGRATED;
3831 		psi_ttwu_dequeue(p);
3832 		set_task_cpu(p, cpu);
3833 	}
3834 #else
3835 	cpu = task_cpu(p);
3836 #endif /* CONFIG_SMP */
3837 
3838 	ttwu_queue(p, cpu, wake_flags);
3839 unlock:
3840 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3841 out:
3842 	if (success)
3843 		ttwu_stat(p, task_cpu(p), wake_flags);
3844 	preempt_enable();
3845 
3846 	return success;
3847 }
3848 
3849 /**
3850  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3851  * @p: Process for which the function is to be invoked, can be @current.
3852  * @func: Function to invoke.
3853  * @arg: Argument to function.
3854  *
3855  * If the specified task can be quickly locked into a definite state
3856  * (either sleeping or on a given runqueue), arrange to keep it in that
3857  * state while invoking @func(@arg).  This function can use ->on_rq and
3858  * task_curr() to work out what the state is, if required.  Given that
3859  * @func can be invoked with a runqueue lock held, it had better be quite
3860  * lightweight.
3861  *
3862  * Returns:
3863  *	@false if the task slipped out from under the locks.
3864  *	@true if the task was locked onto a runqueue or is sleeping.
3865  *		However, @func can override this by returning @false.
3866  */
3867 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3868 {
3869 	struct rq_flags rf;
3870 	bool ret = false;
3871 	struct rq *rq;
3872 
3873 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3874 	if (p->on_rq) {
3875 		rq = __task_rq_lock(p, &rf);
3876 		if (task_rq(p) == rq)
3877 			ret = func(p, arg);
3878 		rq_unlock(rq, &rf);
3879 	} else {
3880 		switch (READ_ONCE(p->__state)) {
3881 		case TASK_RUNNING:
3882 		case TASK_WAKING:
3883 			break;
3884 		default:
3885 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3886 			if (!p->on_rq)
3887 				ret = func(p, arg);
3888 		}
3889 	}
3890 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3891 	return ret;
3892 }
3893 
3894 /**
3895  * wake_up_process - Wake up a specific process
3896  * @p: The process to be woken up.
3897  *
3898  * Attempt to wake up the nominated process and move it to the set of runnable
3899  * processes.
3900  *
3901  * Return: 1 if the process was woken up, 0 if it was already running.
3902  *
3903  * This function executes a full memory barrier before accessing the task state.
3904  */
3905 int wake_up_process(struct task_struct *p)
3906 {
3907 	return try_to_wake_up(p, TASK_NORMAL, 0);
3908 }
3909 EXPORT_SYMBOL(wake_up_process);
3910 
3911 int wake_up_state(struct task_struct *p, unsigned int state)
3912 {
3913 	return try_to_wake_up(p, state, 0);
3914 }
3915 
3916 /*
3917  * Perform scheduler related setup for a newly forked process p.
3918  * p is forked by current.
3919  *
3920  * __sched_fork() is basic setup used by init_idle() too:
3921  */
3922 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3923 {
3924 	p->on_rq			= 0;
3925 
3926 	p->se.on_rq			= 0;
3927 	p->se.exec_start		= 0;
3928 	p->se.sum_exec_runtime		= 0;
3929 	p->se.prev_sum_exec_runtime	= 0;
3930 	p->se.nr_migrations		= 0;
3931 	p->se.vruntime			= 0;
3932 	INIT_LIST_HEAD(&p->se.group_node);
3933 
3934 #ifdef CONFIG_FAIR_GROUP_SCHED
3935 	p->se.cfs_rq			= NULL;
3936 #endif
3937 
3938 #ifdef CONFIG_SCHEDSTATS
3939 	/* Even if schedstat is disabled, there should not be garbage */
3940 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3941 #endif
3942 
3943 	RB_CLEAR_NODE(&p->dl.rb_node);
3944 	init_dl_task_timer(&p->dl);
3945 	init_dl_inactive_task_timer(&p->dl);
3946 	__dl_clear_params(p);
3947 
3948 	INIT_LIST_HEAD(&p->rt.run_list);
3949 	p->rt.timeout		= 0;
3950 	p->rt.time_slice	= sched_rr_timeslice;
3951 	p->rt.on_rq		= 0;
3952 	p->rt.on_list		= 0;
3953 
3954 #ifdef CONFIG_PREEMPT_NOTIFIERS
3955 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3956 #endif
3957 
3958 #ifdef CONFIG_COMPACTION
3959 	p->capture_control = NULL;
3960 #endif
3961 	init_numa_balancing(clone_flags, p);
3962 #ifdef CONFIG_SMP
3963 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3964 	p->migration_pending = NULL;
3965 #endif
3966 }
3967 
3968 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3969 
3970 #ifdef CONFIG_NUMA_BALANCING
3971 
3972 void set_numabalancing_state(bool enabled)
3973 {
3974 	if (enabled)
3975 		static_branch_enable(&sched_numa_balancing);
3976 	else
3977 		static_branch_disable(&sched_numa_balancing);
3978 }
3979 
3980 #ifdef CONFIG_PROC_SYSCTL
3981 int sysctl_numa_balancing(struct ctl_table *table, int write,
3982 			  void *buffer, size_t *lenp, loff_t *ppos)
3983 {
3984 	struct ctl_table t;
3985 	int err;
3986 	int state = static_branch_likely(&sched_numa_balancing);
3987 
3988 	if (write && !capable(CAP_SYS_ADMIN))
3989 		return -EPERM;
3990 
3991 	t = *table;
3992 	t.data = &state;
3993 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3994 	if (err < 0)
3995 		return err;
3996 	if (write)
3997 		set_numabalancing_state(state);
3998 	return err;
3999 }
4000 #endif
4001 #endif
4002 
4003 #ifdef CONFIG_SCHEDSTATS
4004 
4005 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4006 
4007 static void set_schedstats(bool enabled)
4008 {
4009 	if (enabled)
4010 		static_branch_enable(&sched_schedstats);
4011 	else
4012 		static_branch_disable(&sched_schedstats);
4013 }
4014 
4015 void force_schedstat_enabled(void)
4016 {
4017 	if (!schedstat_enabled()) {
4018 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4019 		static_branch_enable(&sched_schedstats);
4020 	}
4021 }
4022 
4023 static int __init setup_schedstats(char *str)
4024 {
4025 	int ret = 0;
4026 	if (!str)
4027 		goto out;
4028 
4029 	if (!strcmp(str, "enable")) {
4030 		set_schedstats(true);
4031 		ret = 1;
4032 	} else if (!strcmp(str, "disable")) {
4033 		set_schedstats(false);
4034 		ret = 1;
4035 	}
4036 out:
4037 	if (!ret)
4038 		pr_warn("Unable to parse schedstats=\n");
4039 
4040 	return ret;
4041 }
4042 __setup("schedstats=", setup_schedstats);
4043 
4044 #ifdef CONFIG_PROC_SYSCTL
4045 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4046 		size_t *lenp, loff_t *ppos)
4047 {
4048 	struct ctl_table t;
4049 	int err;
4050 	int state = static_branch_likely(&sched_schedstats);
4051 
4052 	if (write && !capable(CAP_SYS_ADMIN))
4053 		return -EPERM;
4054 
4055 	t = *table;
4056 	t.data = &state;
4057 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4058 	if (err < 0)
4059 		return err;
4060 	if (write)
4061 		set_schedstats(state);
4062 	return err;
4063 }
4064 #endif /* CONFIG_PROC_SYSCTL */
4065 #endif /* CONFIG_SCHEDSTATS */
4066 
4067 /*
4068  * fork()/clone()-time setup:
4069  */
4070 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4071 {
4072 	unsigned long flags;
4073 
4074 	__sched_fork(clone_flags, p);
4075 	/*
4076 	 * We mark the process as NEW here. This guarantees that
4077 	 * nobody will actually run it, and a signal or other external
4078 	 * event cannot wake it up and insert it on the runqueue either.
4079 	 */
4080 	p->__state = TASK_NEW;
4081 
4082 	/*
4083 	 * Make sure we do not leak PI boosting priority to the child.
4084 	 */
4085 	p->prio = current->normal_prio;
4086 
4087 	uclamp_fork(p);
4088 
4089 	/*
4090 	 * Revert to default priority/policy on fork if requested.
4091 	 */
4092 	if (unlikely(p->sched_reset_on_fork)) {
4093 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4094 			p->policy = SCHED_NORMAL;
4095 			p->static_prio = NICE_TO_PRIO(0);
4096 			p->rt_priority = 0;
4097 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4098 			p->static_prio = NICE_TO_PRIO(0);
4099 
4100 		p->prio = p->normal_prio = p->static_prio;
4101 		set_load_weight(p, false);
4102 
4103 		/*
4104 		 * We don't need the reset flag anymore after the fork. It has
4105 		 * fulfilled its duty:
4106 		 */
4107 		p->sched_reset_on_fork = 0;
4108 	}
4109 
4110 	if (dl_prio(p->prio))
4111 		return -EAGAIN;
4112 	else if (rt_prio(p->prio))
4113 		p->sched_class = &rt_sched_class;
4114 	else
4115 		p->sched_class = &fair_sched_class;
4116 
4117 	init_entity_runnable_average(&p->se);
4118 
4119 	/*
4120 	 * The child is not yet in the pid-hash so no cgroup attach races,
4121 	 * and the cgroup is pinned to this child due to cgroup_fork()
4122 	 * is ran before sched_fork().
4123 	 *
4124 	 * Silence PROVE_RCU.
4125 	 */
4126 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4127 	rseq_migrate(p);
4128 	/*
4129 	 * We're setting the CPU for the first time, we don't migrate,
4130 	 * so use __set_task_cpu().
4131 	 */
4132 	__set_task_cpu(p, smp_processor_id());
4133 	if (p->sched_class->task_fork)
4134 		p->sched_class->task_fork(p);
4135 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4136 
4137 #ifdef CONFIG_SCHED_INFO
4138 	if (likely(sched_info_on()))
4139 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4140 #endif
4141 #if defined(CONFIG_SMP)
4142 	p->on_cpu = 0;
4143 #endif
4144 	init_task_preempt_count(p);
4145 #ifdef CONFIG_SMP
4146 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4147 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4148 #endif
4149 	return 0;
4150 }
4151 
4152 void sched_post_fork(struct task_struct *p)
4153 {
4154 	uclamp_post_fork(p);
4155 }
4156 
4157 unsigned long to_ratio(u64 period, u64 runtime)
4158 {
4159 	if (runtime == RUNTIME_INF)
4160 		return BW_UNIT;
4161 
4162 	/*
4163 	 * Doing this here saves a lot of checks in all
4164 	 * the calling paths, and returning zero seems
4165 	 * safe for them anyway.
4166 	 */
4167 	if (period == 0)
4168 		return 0;
4169 
4170 	return div64_u64(runtime << BW_SHIFT, period);
4171 }
4172 
4173 /*
4174  * wake_up_new_task - wake up a newly created task for the first time.
4175  *
4176  * This function will do some initial scheduler statistics housekeeping
4177  * that must be done for every newly created context, then puts the task
4178  * on the runqueue and wakes it.
4179  */
4180 void wake_up_new_task(struct task_struct *p)
4181 {
4182 	struct rq_flags rf;
4183 	struct rq *rq;
4184 
4185 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4186 	WRITE_ONCE(p->__state, TASK_RUNNING);
4187 #ifdef CONFIG_SMP
4188 	/*
4189 	 * Fork balancing, do it here and not earlier because:
4190 	 *  - cpus_ptr can change in the fork path
4191 	 *  - any previously selected CPU might disappear through hotplug
4192 	 *
4193 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4194 	 * as we're not fully set-up yet.
4195 	 */
4196 	p->recent_used_cpu = task_cpu(p);
4197 	rseq_migrate(p);
4198 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4199 #endif
4200 	rq = __task_rq_lock(p, &rf);
4201 	update_rq_clock(rq);
4202 	post_init_entity_util_avg(p);
4203 
4204 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4205 	trace_sched_wakeup_new(p);
4206 	check_preempt_curr(rq, p, WF_FORK);
4207 #ifdef CONFIG_SMP
4208 	if (p->sched_class->task_woken) {
4209 		/*
4210 		 * Nothing relies on rq->lock after this, so it's fine to
4211 		 * drop it.
4212 		 */
4213 		rq_unpin_lock(rq, &rf);
4214 		p->sched_class->task_woken(rq, p);
4215 		rq_repin_lock(rq, &rf);
4216 	}
4217 #endif
4218 	task_rq_unlock(rq, p, &rf);
4219 }
4220 
4221 #ifdef CONFIG_PREEMPT_NOTIFIERS
4222 
4223 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4224 
4225 void preempt_notifier_inc(void)
4226 {
4227 	static_branch_inc(&preempt_notifier_key);
4228 }
4229 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4230 
4231 void preempt_notifier_dec(void)
4232 {
4233 	static_branch_dec(&preempt_notifier_key);
4234 }
4235 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4236 
4237 /**
4238  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4239  * @notifier: notifier struct to register
4240  */
4241 void preempt_notifier_register(struct preempt_notifier *notifier)
4242 {
4243 	if (!static_branch_unlikely(&preempt_notifier_key))
4244 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4245 
4246 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4247 }
4248 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4249 
4250 /**
4251  * preempt_notifier_unregister - no longer interested in preemption notifications
4252  * @notifier: notifier struct to unregister
4253  *
4254  * This is *not* safe to call from within a preemption notifier.
4255  */
4256 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4257 {
4258 	hlist_del(&notifier->link);
4259 }
4260 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4261 
4262 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4263 {
4264 	struct preempt_notifier *notifier;
4265 
4266 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4267 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4268 }
4269 
4270 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4271 {
4272 	if (static_branch_unlikely(&preempt_notifier_key))
4273 		__fire_sched_in_preempt_notifiers(curr);
4274 }
4275 
4276 static void
4277 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4278 				   struct task_struct *next)
4279 {
4280 	struct preempt_notifier *notifier;
4281 
4282 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4283 		notifier->ops->sched_out(notifier, next);
4284 }
4285 
4286 static __always_inline void
4287 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4288 				 struct task_struct *next)
4289 {
4290 	if (static_branch_unlikely(&preempt_notifier_key))
4291 		__fire_sched_out_preempt_notifiers(curr, next);
4292 }
4293 
4294 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4295 
4296 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4297 {
4298 }
4299 
4300 static inline void
4301 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4302 				 struct task_struct *next)
4303 {
4304 }
4305 
4306 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4307 
4308 static inline void prepare_task(struct task_struct *next)
4309 {
4310 #ifdef CONFIG_SMP
4311 	/*
4312 	 * Claim the task as running, we do this before switching to it
4313 	 * such that any running task will have this set.
4314 	 *
4315 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
4316 	 */
4317 	WRITE_ONCE(next->on_cpu, 1);
4318 #endif
4319 }
4320 
4321 static inline void finish_task(struct task_struct *prev)
4322 {
4323 #ifdef CONFIG_SMP
4324 	/*
4325 	 * This must be the very last reference to @prev from this CPU. After
4326 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4327 	 * must ensure this doesn't happen until the switch is completely
4328 	 * finished.
4329 	 *
4330 	 * In particular, the load of prev->state in finish_task_switch() must
4331 	 * happen before this.
4332 	 *
4333 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4334 	 */
4335 	smp_store_release(&prev->on_cpu, 0);
4336 #endif
4337 }
4338 
4339 #ifdef CONFIG_SMP
4340 
4341 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4342 {
4343 	void (*func)(struct rq *rq);
4344 	struct callback_head *next;
4345 
4346 	lockdep_assert_rq_held(rq);
4347 
4348 	while (head) {
4349 		func = (void (*)(struct rq *))head->func;
4350 		next = head->next;
4351 		head->next = NULL;
4352 		head = next;
4353 
4354 		func(rq);
4355 	}
4356 }
4357 
4358 static void balance_push(struct rq *rq);
4359 
4360 struct callback_head balance_push_callback = {
4361 	.next = NULL,
4362 	.func = (void (*)(struct callback_head *))balance_push,
4363 };
4364 
4365 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4366 {
4367 	struct callback_head *head = rq->balance_callback;
4368 
4369 	lockdep_assert_rq_held(rq);
4370 	if (head)
4371 		rq->balance_callback = NULL;
4372 
4373 	return head;
4374 }
4375 
4376 static void __balance_callbacks(struct rq *rq)
4377 {
4378 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4379 }
4380 
4381 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4382 {
4383 	unsigned long flags;
4384 
4385 	if (unlikely(head)) {
4386 		raw_spin_rq_lock_irqsave(rq, flags);
4387 		do_balance_callbacks(rq, head);
4388 		raw_spin_rq_unlock_irqrestore(rq, flags);
4389 	}
4390 }
4391 
4392 #else
4393 
4394 static inline void __balance_callbacks(struct rq *rq)
4395 {
4396 }
4397 
4398 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4399 {
4400 	return NULL;
4401 }
4402 
4403 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4404 {
4405 }
4406 
4407 #endif
4408 
4409 static inline void
4410 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4411 {
4412 	/*
4413 	 * Since the runqueue lock will be released by the next
4414 	 * task (which is an invalid locking op but in the case
4415 	 * of the scheduler it's an obvious special-case), so we
4416 	 * do an early lockdep release here:
4417 	 */
4418 	rq_unpin_lock(rq, rf);
4419 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4420 #ifdef CONFIG_DEBUG_SPINLOCK
4421 	/* this is a valid case when another task releases the spinlock */
4422 	rq_lockp(rq)->owner = next;
4423 #endif
4424 }
4425 
4426 static inline void finish_lock_switch(struct rq *rq)
4427 {
4428 	/*
4429 	 * If we are tracking spinlock dependencies then we have to
4430 	 * fix up the runqueue lock - which gets 'carried over' from
4431 	 * prev into current:
4432 	 */
4433 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4434 	__balance_callbacks(rq);
4435 	raw_spin_rq_unlock_irq(rq);
4436 }
4437 
4438 /*
4439  * NOP if the arch has not defined these:
4440  */
4441 
4442 #ifndef prepare_arch_switch
4443 # define prepare_arch_switch(next)	do { } while (0)
4444 #endif
4445 
4446 #ifndef finish_arch_post_lock_switch
4447 # define finish_arch_post_lock_switch()	do { } while (0)
4448 #endif
4449 
4450 static inline void kmap_local_sched_out(void)
4451 {
4452 #ifdef CONFIG_KMAP_LOCAL
4453 	if (unlikely(current->kmap_ctrl.idx))
4454 		__kmap_local_sched_out();
4455 #endif
4456 }
4457 
4458 static inline void kmap_local_sched_in(void)
4459 {
4460 #ifdef CONFIG_KMAP_LOCAL
4461 	if (unlikely(current->kmap_ctrl.idx))
4462 		__kmap_local_sched_in();
4463 #endif
4464 }
4465 
4466 /**
4467  * prepare_task_switch - prepare to switch tasks
4468  * @rq: the runqueue preparing to switch
4469  * @prev: the current task that is being switched out
4470  * @next: the task we are going to switch to.
4471  *
4472  * This is called with the rq lock held and interrupts off. It must
4473  * be paired with a subsequent finish_task_switch after the context
4474  * switch.
4475  *
4476  * prepare_task_switch sets up locking and calls architecture specific
4477  * hooks.
4478  */
4479 static inline void
4480 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4481 		    struct task_struct *next)
4482 {
4483 	kcov_prepare_switch(prev);
4484 	sched_info_switch(rq, prev, next);
4485 	perf_event_task_sched_out(prev, next);
4486 	rseq_preempt(prev);
4487 	fire_sched_out_preempt_notifiers(prev, next);
4488 	kmap_local_sched_out();
4489 	prepare_task(next);
4490 	prepare_arch_switch(next);
4491 }
4492 
4493 /**
4494  * finish_task_switch - clean up after a task-switch
4495  * @prev: the thread we just switched away from.
4496  *
4497  * finish_task_switch must be called after the context switch, paired
4498  * with a prepare_task_switch call before the context switch.
4499  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4500  * and do any other architecture-specific cleanup actions.
4501  *
4502  * Note that we may have delayed dropping an mm in context_switch(). If
4503  * so, we finish that here outside of the runqueue lock. (Doing it
4504  * with the lock held can cause deadlocks; see schedule() for
4505  * details.)
4506  *
4507  * The context switch have flipped the stack from under us and restored the
4508  * local variables which were saved when this task called schedule() in the
4509  * past. prev == current is still correct but we need to recalculate this_rq
4510  * because prev may have moved to another CPU.
4511  */
4512 static struct rq *finish_task_switch(struct task_struct *prev)
4513 	__releases(rq->lock)
4514 {
4515 	struct rq *rq = this_rq();
4516 	struct mm_struct *mm = rq->prev_mm;
4517 	long prev_state;
4518 
4519 	/*
4520 	 * The previous task will have left us with a preempt_count of 2
4521 	 * because it left us after:
4522 	 *
4523 	 *	schedule()
4524 	 *	  preempt_disable();			// 1
4525 	 *	  __schedule()
4526 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4527 	 *
4528 	 * Also, see FORK_PREEMPT_COUNT.
4529 	 */
4530 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4531 		      "corrupted preempt_count: %s/%d/0x%x\n",
4532 		      current->comm, current->pid, preempt_count()))
4533 		preempt_count_set(FORK_PREEMPT_COUNT);
4534 
4535 	rq->prev_mm = NULL;
4536 
4537 	/*
4538 	 * A task struct has one reference for the use as "current".
4539 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4540 	 * schedule one last time. The schedule call will never return, and
4541 	 * the scheduled task must drop that reference.
4542 	 *
4543 	 * We must observe prev->state before clearing prev->on_cpu (in
4544 	 * finish_task), otherwise a concurrent wakeup can get prev
4545 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4546 	 * transition, resulting in a double drop.
4547 	 */
4548 	prev_state = READ_ONCE(prev->__state);
4549 	vtime_task_switch(prev);
4550 	perf_event_task_sched_in(prev, current);
4551 	finish_task(prev);
4552 	tick_nohz_task_switch();
4553 	finish_lock_switch(rq);
4554 	finish_arch_post_lock_switch();
4555 	kcov_finish_switch(current);
4556 	/*
4557 	 * kmap_local_sched_out() is invoked with rq::lock held and
4558 	 * interrupts disabled. There is no requirement for that, but the
4559 	 * sched out code does not have an interrupt enabled section.
4560 	 * Restoring the maps on sched in does not require interrupts being
4561 	 * disabled either.
4562 	 */
4563 	kmap_local_sched_in();
4564 
4565 	fire_sched_in_preempt_notifiers(current);
4566 	/*
4567 	 * When switching through a kernel thread, the loop in
4568 	 * membarrier_{private,global}_expedited() may have observed that
4569 	 * kernel thread and not issued an IPI. It is therefore possible to
4570 	 * schedule between user->kernel->user threads without passing though
4571 	 * switch_mm(). Membarrier requires a barrier after storing to
4572 	 * rq->curr, before returning to userspace, so provide them here:
4573 	 *
4574 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4575 	 *   provided by mmdrop(),
4576 	 * - a sync_core for SYNC_CORE.
4577 	 */
4578 	if (mm) {
4579 		membarrier_mm_sync_core_before_usermode(mm);
4580 		mmdrop(mm);
4581 	}
4582 	if (unlikely(prev_state == TASK_DEAD)) {
4583 		if (prev->sched_class->task_dead)
4584 			prev->sched_class->task_dead(prev);
4585 
4586 		/*
4587 		 * Remove function-return probe instances associated with this
4588 		 * task and put them back on the free list.
4589 		 */
4590 		kprobe_flush_task(prev);
4591 
4592 		/* Task is done with its stack. */
4593 		put_task_stack(prev);
4594 
4595 		put_task_struct_rcu_user(prev);
4596 	}
4597 
4598 	return rq;
4599 }
4600 
4601 /**
4602  * schedule_tail - first thing a freshly forked thread must call.
4603  * @prev: the thread we just switched away from.
4604  */
4605 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4606 	__releases(rq->lock)
4607 {
4608 	/*
4609 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4610 	 * finish_task_switch() for details.
4611 	 *
4612 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4613 	 * and the preempt_enable() will end up enabling preemption (on
4614 	 * PREEMPT_COUNT kernels).
4615 	 */
4616 
4617 	finish_task_switch(prev);
4618 	preempt_enable();
4619 
4620 	if (current->set_child_tid)
4621 		put_user(task_pid_vnr(current), current->set_child_tid);
4622 
4623 	calculate_sigpending();
4624 }
4625 
4626 /*
4627  * context_switch - switch to the new MM and the new thread's register state.
4628  */
4629 static __always_inline struct rq *
4630 context_switch(struct rq *rq, struct task_struct *prev,
4631 	       struct task_struct *next, struct rq_flags *rf)
4632 {
4633 	prepare_task_switch(rq, prev, next);
4634 
4635 	/*
4636 	 * For paravirt, this is coupled with an exit in switch_to to
4637 	 * combine the page table reload and the switch backend into
4638 	 * one hypercall.
4639 	 */
4640 	arch_start_context_switch(prev);
4641 
4642 	/*
4643 	 * kernel -> kernel   lazy + transfer active
4644 	 *   user -> kernel   lazy + mmgrab() active
4645 	 *
4646 	 * kernel ->   user   switch + mmdrop() active
4647 	 *   user ->   user   switch
4648 	 */
4649 	if (!next->mm) {                                // to kernel
4650 		enter_lazy_tlb(prev->active_mm, next);
4651 
4652 		next->active_mm = prev->active_mm;
4653 		if (prev->mm)                           // from user
4654 			mmgrab(prev->active_mm);
4655 		else
4656 			prev->active_mm = NULL;
4657 	} else {                                        // to user
4658 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4659 		/*
4660 		 * sys_membarrier() requires an smp_mb() between setting
4661 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4662 		 *
4663 		 * The below provides this either through switch_mm(), or in
4664 		 * case 'prev->active_mm == next->mm' through
4665 		 * finish_task_switch()'s mmdrop().
4666 		 */
4667 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4668 
4669 		if (!prev->mm) {                        // from kernel
4670 			/* will mmdrop() in finish_task_switch(). */
4671 			rq->prev_mm = prev->active_mm;
4672 			prev->active_mm = NULL;
4673 		}
4674 	}
4675 
4676 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4677 
4678 	prepare_lock_switch(rq, next, rf);
4679 
4680 	/* Here we just switch the register state and the stack. */
4681 	switch_to(prev, next, prev);
4682 	barrier();
4683 
4684 	return finish_task_switch(prev);
4685 }
4686 
4687 /*
4688  * nr_running and nr_context_switches:
4689  *
4690  * externally visible scheduler statistics: current number of runnable
4691  * threads, total number of context switches performed since bootup.
4692  */
4693 unsigned int nr_running(void)
4694 {
4695 	unsigned int i, sum = 0;
4696 
4697 	for_each_online_cpu(i)
4698 		sum += cpu_rq(i)->nr_running;
4699 
4700 	return sum;
4701 }
4702 
4703 /*
4704  * Check if only the current task is running on the CPU.
4705  *
4706  * Caution: this function does not check that the caller has disabled
4707  * preemption, thus the result might have a time-of-check-to-time-of-use
4708  * race.  The caller is responsible to use it correctly, for example:
4709  *
4710  * - from a non-preemptible section (of course)
4711  *
4712  * - from a thread that is bound to a single CPU
4713  *
4714  * - in a loop with very short iterations (e.g. a polling loop)
4715  */
4716 bool single_task_running(void)
4717 {
4718 	return raw_rq()->nr_running == 1;
4719 }
4720 EXPORT_SYMBOL(single_task_running);
4721 
4722 unsigned long long nr_context_switches(void)
4723 {
4724 	int i;
4725 	unsigned long long sum = 0;
4726 
4727 	for_each_possible_cpu(i)
4728 		sum += cpu_rq(i)->nr_switches;
4729 
4730 	return sum;
4731 }
4732 
4733 /*
4734  * Consumers of these two interfaces, like for example the cpuidle menu
4735  * governor, are using nonsensical data. Preferring shallow idle state selection
4736  * for a CPU that has IO-wait which might not even end up running the task when
4737  * it does become runnable.
4738  */
4739 
4740 unsigned int nr_iowait_cpu(int cpu)
4741 {
4742 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4743 }
4744 
4745 /*
4746  * IO-wait accounting, and how it's mostly bollocks (on SMP).
4747  *
4748  * The idea behind IO-wait account is to account the idle time that we could
4749  * have spend running if it were not for IO. That is, if we were to improve the
4750  * storage performance, we'd have a proportional reduction in IO-wait time.
4751  *
4752  * This all works nicely on UP, where, when a task blocks on IO, we account
4753  * idle time as IO-wait, because if the storage were faster, it could've been
4754  * running and we'd not be idle.
4755  *
4756  * This has been extended to SMP, by doing the same for each CPU. This however
4757  * is broken.
4758  *
4759  * Imagine for instance the case where two tasks block on one CPU, only the one
4760  * CPU will have IO-wait accounted, while the other has regular idle. Even
4761  * though, if the storage were faster, both could've ran at the same time,
4762  * utilising both CPUs.
4763  *
4764  * This means, that when looking globally, the current IO-wait accounting on
4765  * SMP is a lower bound, by reason of under accounting.
4766  *
4767  * Worse, since the numbers are provided per CPU, they are sometimes
4768  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4769  * associated with any one particular CPU, it can wake to another CPU than it
4770  * blocked on. This means the per CPU IO-wait number is meaningless.
4771  *
4772  * Task CPU affinities can make all that even more 'interesting'.
4773  */
4774 
4775 unsigned int nr_iowait(void)
4776 {
4777 	unsigned int i, sum = 0;
4778 
4779 	for_each_possible_cpu(i)
4780 		sum += nr_iowait_cpu(i);
4781 
4782 	return sum;
4783 }
4784 
4785 #ifdef CONFIG_SMP
4786 
4787 /*
4788  * sched_exec - execve() is a valuable balancing opportunity, because at
4789  * this point the task has the smallest effective memory and cache footprint.
4790  */
4791 void sched_exec(void)
4792 {
4793 	struct task_struct *p = current;
4794 	unsigned long flags;
4795 	int dest_cpu;
4796 
4797 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4798 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4799 	if (dest_cpu == smp_processor_id())
4800 		goto unlock;
4801 
4802 	if (likely(cpu_active(dest_cpu))) {
4803 		struct migration_arg arg = { p, dest_cpu };
4804 
4805 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4806 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4807 		return;
4808 	}
4809 unlock:
4810 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4811 }
4812 
4813 #endif
4814 
4815 DEFINE_PER_CPU(struct kernel_stat, kstat);
4816 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4817 
4818 EXPORT_PER_CPU_SYMBOL(kstat);
4819 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4820 
4821 /*
4822  * The function fair_sched_class.update_curr accesses the struct curr
4823  * and its field curr->exec_start; when called from task_sched_runtime(),
4824  * we observe a high rate of cache misses in practice.
4825  * Prefetching this data results in improved performance.
4826  */
4827 static inline void prefetch_curr_exec_start(struct task_struct *p)
4828 {
4829 #ifdef CONFIG_FAIR_GROUP_SCHED
4830 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4831 #else
4832 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4833 #endif
4834 	prefetch(curr);
4835 	prefetch(&curr->exec_start);
4836 }
4837 
4838 /*
4839  * Return accounted runtime for the task.
4840  * In case the task is currently running, return the runtime plus current's
4841  * pending runtime that have not been accounted yet.
4842  */
4843 unsigned long long task_sched_runtime(struct task_struct *p)
4844 {
4845 	struct rq_flags rf;
4846 	struct rq *rq;
4847 	u64 ns;
4848 
4849 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4850 	/*
4851 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4852 	 * So we have a optimization chance when the task's delta_exec is 0.
4853 	 * Reading ->on_cpu is racy, but this is ok.
4854 	 *
4855 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4856 	 * If we race with it entering CPU, unaccounted time is 0. This is
4857 	 * indistinguishable from the read occurring a few cycles earlier.
4858 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4859 	 * been accounted, so we're correct here as well.
4860 	 */
4861 	if (!p->on_cpu || !task_on_rq_queued(p))
4862 		return p->se.sum_exec_runtime;
4863 #endif
4864 
4865 	rq = task_rq_lock(p, &rf);
4866 	/*
4867 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4868 	 * project cycles that may never be accounted to this
4869 	 * thread, breaking clock_gettime().
4870 	 */
4871 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4872 		prefetch_curr_exec_start(p);
4873 		update_rq_clock(rq);
4874 		p->sched_class->update_curr(rq);
4875 	}
4876 	ns = p->se.sum_exec_runtime;
4877 	task_rq_unlock(rq, p, &rf);
4878 
4879 	return ns;
4880 }
4881 
4882 #ifdef CONFIG_SCHED_DEBUG
4883 static u64 cpu_resched_latency(struct rq *rq)
4884 {
4885 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
4886 	u64 resched_latency, now = rq_clock(rq);
4887 	static bool warned_once;
4888 
4889 	if (sysctl_resched_latency_warn_once && warned_once)
4890 		return 0;
4891 
4892 	if (!need_resched() || !latency_warn_ms)
4893 		return 0;
4894 
4895 	if (system_state == SYSTEM_BOOTING)
4896 		return 0;
4897 
4898 	if (!rq->last_seen_need_resched_ns) {
4899 		rq->last_seen_need_resched_ns = now;
4900 		rq->ticks_without_resched = 0;
4901 		return 0;
4902 	}
4903 
4904 	rq->ticks_without_resched++;
4905 	resched_latency = now - rq->last_seen_need_resched_ns;
4906 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
4907 		return 0;
4908 
4909 	warned_once = true;
4910 
4911 	return resched_latency;
4912 }
4913 
4914 static int __init setup_resched_latency_warn_ms(char *str)
4915 {
4916 	long val;
4917 
4918 	if ((kstrtol(str, 0, &val))) {
4919 		pr_warn("Unable to set resched_latency_warn_ms\n");
4920 		return 1;
4921 	}
4922 
4923 	sysctl_resched_latency_warn_ms = val;
4924 	return 1;
4925 }
4926 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
4927 #else
4928 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
4929 #endif /* CONFIG_SCHED_DEBUG */
4930 
4931 /*
4932  * This function gets called by the timer code, with HZ frequency.
4933  * We call it with interrupts disabled.
4934  */
4935 void scheduler_tick(void)
4936 {
4937 	int cpu = smp_processor_id();
4938 	struct rq *rq = cpu_rq(cpu);
4939 	struct task_struct *curr = rq->curr;
4940 	struct rq_flags rf;
4941 	unsigned long thermal_pressure;
4942 	u64 resched_latency;
4943 
4944 	arch_scale_freq_tick();
4945 	sched_clock_tick();
4946 
4947 	rq_lock(rq, &rf);
4948 
4949 	update_rq_clock(rq);
4950 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4951 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4952 	curr->sched_class->task_tick(rq, curr, 0);
4953 	if (sched_feat(LATENCY_WARN))
4954 		resched_latency = cpu_resched_latency(rq);
4955 	calc_global_load_tick(rq);
4956 
4957 	rq_unlock(rq, &rf);
4958 
4959 	if (sched_feat(LATENCY_WARN) && resched_latency)
4960 		resched_latency_warn(cpu, resched_latency);
4961 
4962 	perf_event_task_tick();
4963 
4964 #ifdef CONFIG_SMP
4965 	rq->idle_balance = idle_cpu(cpu);
4966 	trigger_load_balance(rq);
4967 #endif
4968 }
4969 
4970 #ifdef CONFIG_NO_HZ_FULL
4971 
4972 struct tick_work {
4973 	int			cpu;
4974 	atomic_t		state;
4975 	struct delayed_work	work;
4976 };
4977 /* Values for ->state, see diagram below. */
4978 #define TICK_SCHED_REMOTE_OFFLINE	0
4979 #define TICK_SCHED_REMOTE_OFFLINING	1
4980 #define TICK_SCHED_REMOTE_RUNNING	2
4981 
4982 /*
4983  * State diagram for ->state:
4984  *
4985  *
4986  *          TICK_SCHED_REMOTE_OFFLINE
4987  *                    |   ^
4988  *                    |   |
4989  *                    |   | sched_tick_remote()
4990  *                    |   |
4991  *                    |   |
4992  *                    +--TICK_SCHED_REMOTE_OFFLINING
4993  *                    |   ^
4994  *                    |   |
4995  * sched_tick_start() |   | sched_tick_stop()
4996  *                    |   |
4997  *                    V   |
4998  *          TICK_SCHED_REMOTE_RUNNING
4999  *
5000  *
5001  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5002  * and sched_tick_start() are happy to leave the state in RUNNING.
5003  */
5004 
5005 static struct tick_work __percpu *tick_work_cpu;
5006 
5007 static void sched_tick_remote(struct work_struct *work)
5008 {
5009 	struct delayed_work *dwork = to_delayed_work(work);
5010 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5011 	int cpu = twork->cpu;
5012 	struct rq *rq = cpu_rq(cpu);
5013 	struct task_struct *curr;
5014 	struct rq_flags rf;
5015 	u64 delta;
5016 	int os;
5017 
5018 	/*
5019 	 * Handle the tick only if it appears the remote CPU is running in full
5020 	 * dynticks mode. The check is racy by nature, but missing a tick or
5021 	 * having one too much is no big deal because the scheduler tick updates
5022 	 * statistics and checks timeslices in a time-independent way, regardless
5023 	 * of when exactly it is running.
5024 	 */
5025 	if (!tick_nohz_tick_stopped_cpu(cpu))
5026 		goto out_requeue;
5027 
5028 	rq_lock_irq(rq, &rf);
5029 	curr = rq->curr;
5030 	if (cpu_is_offline(cpu))
5031 		goto out_unlock;
5032 
5033 	update_rq_clock(rq);
5034 
5035 	if (!is_idle_task(curr)) {
5036 		/*
5037 		 * Make sure the next tick runs within a reasonable
5038 		 * amount of time.
5039 		 */
5040 		delta = rq_clock_task(rq) - curr->se.exec_start;
5041 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5042 	}
5043 	curr->sched_class->task_tick(rq, curr, 0);
5044 
5045 	calc_load_nohz_remote(rq);
5046 out_unlock:
5047 	rq_unlock_irq(rq, &rf);
5048 out_requeue:
5049 
5050 	/*
5051 	 * Run the remote tick once per second (1Hz). This arbitrary
5052 	 * frequency is large enough to avoid overload but short enough
5053 	 * to keep scheduler internal stats reasonably up to date.  But
5054 	 * first update state to reflect hotplug activity if required.
5055 	 */
5056 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5057 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5058 	if (os == TICK_SCHED_REMOTE_RUNNING)
5059 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5060 }
5061 
5062 static void sched_tick_start(int cpu)
5063 {
5064 	int os;
5065 	struct tick_work *twork;
5066 
5067 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5068 		return;
5069 
5070 	WARN_ON_ONCE(!tick_work_cpu);
5071 
5072 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5073 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5074 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5075 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5076 		twork->cpu = cpu;
5077 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5078 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5079 	}
5080 }
5081 
5082 #ifdef CONFIG_HOTPLUG_CPU
5083 static void sched_tick_stop(int cpu)
5084 {
5085 	struct tick_work *twork;
5086 	int os;
5087 
5088 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5089 		return;
5090 
5091 	WARN_ON_ONCE(!tick_work_cpu);
5092 
5093 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5094 	/* There cannot be competing actions, but don't rely on stop-machine. */
5095 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5096 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5097 	/* Don't cancel, as this would mess up the state machine. */
5098 }
5099 #endif /* CONFIG_HOTPLUG_CPU */
5100 
5101 int __init sched_tick_offload_init(void)
5102 {
5103 	tick_work_cpu = alloc_percpu(struct tick_work);
5104 	BUG_ON(!tick_work_cpu);
5105 	return 0;
5106 }
5107 
5108 #else /* !CONFIG_NO_HZ_FULL */
5109 static inline void sched_tick_start(int cpu) { }
5110 static inline void sched_tick_stop(int cpu) { }
5111 #endif
5112 
5113 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5114 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5115 /*
5116  * If the value passed in is equal to the current preempt count
5117  * then we just disabled preemption. Start timing the latency.
5118  */
5119 static inline void preempt_latency_start(int val)
5120 {
5121 	if (preempt_count() == val) {
5122 		unsigned long ip = get_lock_parent_ip();
5123 #ifdef CONFIG_DEBUG_PREEMPT
5124 		current->preempt_disable_ip = ip;
5125 #endif
5126 		trace_preempt_off(CALLER_ADDR0, ip);
5127 	}
5128 }
5129 
5130 void preempt_count_add(int val)
5131 {
5132 #ifdef CONFIG_DEBUG_PREEMPT
5133 	/*
5134 	 * Underflow?
5135 	 */
5136 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5137 		return;
5138 #endif
5139 	__preempt_count_add(val);
5140 #ifdef CONFIG_DEBUG_PREEMPT
5141 	/*
5142 	 * Spinlock count overflowing soon?
5143 	 */
5144 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5145 				PREEMPT_MASK - 10);
5146 #endif
5147 	preempt_latency_start(val);
5148 }
5149 EXPORT_SYMBOL(preempt_count_add);
5150 NOKPROBE_SYMBOL(preempt_count_add);
5151 
5152 /*
5153  * If the value passed in equals to the current preempt count
5154  * then we just enabled preemption. Stop timing the latency.
5155  */
5156 static inline void preempt_latency_stop(int val)
5157 {
5158 	if (preempt_count() == val)
5159 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5160 }
5161 
5162 void preempt_count_sub(int val)
5163 {
5164 #ifdef CONFIG_DEBUG_PREEMPT
5165 	/*
5166 	 * Underflow?
5167 	 */
5168 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5169 		return;
5170 	/*
5171 	 * Is the spinlock portion underflowing?
5172 	 */
5173 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5174 			!(preempt_count() & PREEMPT_MASK)))
5175 		return;
5176 #endif
5177 
5178 	preempt_latency_stop(val);
5179 	__preempt_count_sub(val);
5180 }
5181 EXPORT_SYMBOL(preempt_count_sub);
5182 NOKPROBE_SYMBOL(preempt_count_sub);
5183 
5184 #else
5185 static inline void preempt_latency_start(int val) { }
5186 static inline void preempt_latency_stop(int val) { }
5187 #endif
5188 
5189 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5190 {
5191 #ifdef CONFIG_DEBUG_PREEMPT
5192 	return p->preempt_disable_ip;
5193 #else
5194 	return 0;
5195 #endif
5196 }
5197 
5198 /*
5199  * Print scheduling while atomic bug:
5200  */
5201 static noinline void __schedule_bug(struct task_struct *prev)
5202 {
5203 	/* Save this before calling printk(), since that will clobber it */
5204 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5205 
5206 	if (oops_in_progress)
5207 		return;
5208 
5209 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5210 		prev->comm, prev->pid, preempt_count());
5211 
5212 	debug_show_held_locks(prev);
5213 	print_modules();
5214 	if (irqs_disabled())
5215 		print_irqtrace_events(prev);
5216 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5217 	    && in_atomic_preempt_off()) {
5218 		pr_err("Preemption disabled at:");
5219 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5220 	}
5221 	if (panic_on_warn)
5222 		panic("scheduling while atomic\n");
5223 
5224 	dump_stack();
5225 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5226 }
5227 
5228 /*
5229  * Various schedule()-time debugging checks and statistics:
5230  */
5231 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5232 {
5233 #ifdef CONFIG_SCHED_STACK_END_CHECK
5234 	if (task_stack_end_corrupted(prev))
5235 		panic("corrupted stack end detected inside scheduler\n");
5236 
5237 	if (task_scs_end_corrupted(prev))
5238 		panic("corrupted shadow stack detected inside scheduler\n");
5239 #endif
5240 
5241 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5242 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5243 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5244 			prev->comm, prev->pid, prev->non_block_count);
5245 		dump_stack();
5246 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5247 	}
5248 #endif
5249 
5250 	if (unlikely(in_atomic_preempt_off())) {
5251 		__schedule_bug(prev);
5252 		preempt_count_set(PREEMPT_DISABLED);
5253 	}
5254 	rcu_sleep_check();
5255 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5256 
5257 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5258 
5259 	schedstat_inc(this_rq()->sched_count);
5260 }
5261 
5262 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5263 				  struct rq_flags *rf)
5264 {
5265 #ifdef CONFIG_SMP
5266 	const struct sched_class *class;
5267 	/*
5268 	 * We must do the balancing pass before put_prev_task(), such
5269 	 * that when we release the rq->lock the task is in the same
5270 	 * state as before we took rq->lock.
5271 	 *
5272 	 * We can terminate the balance pass as soon as we know there is
5273 	 * a runnable task of @class priority or higher.
5274 	 */
5275 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5276 		if (class->balance(rq, prev, rf))
5277 			break;
5278 	}
5279 #endif
5280 
5281 	put_prev_task(rq, prev);
5282 }
5283 
5284 /*
5285  * Pick up the highest-prio task:
5286  */
5287 static inline struct task_struct *
5288 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5289 {
5290 	const struct sched_class *class;
5291 	struct task_struct *p;
5292 
5293 	/*
5294 	 * Optimization: we know that if all tasks are in the fair class we can
5295 	 * call that function directly, but only if the @prev task wasn't of a
5296 	 * higher scheduling class, because otherwise those lose the
5297 	 * opportunity to pull in more work from other CPUs.
5298 	 */
5299 	if (likely(prev->sched_class <= &fair_sched_class &&
5300 		   rq->nr_running == rq->cfs.h_nr_running)) {
5301 
5302 		p = pick_next_task_fair(rq, prev, rf);
5303 		if (unlikely(p == RETRY_TASK))
5304 			goto restart;
5305 
5306 		/* Assume the next prioritized class is idle_sched_class */
5307 		if (!p) {
5308 			put_prev_task(rq, prev);
5309 			p = pick_next_task_idle(rq);
5310 		}
5311 
5312 		return p;
5313 	}
5314 
5315 restart:
5316 	put_prev_task_balance(rq, prev, rf);
5317 
5318 	for_each_class(class) {
5319 		p = class->pick_next_task(rq);
5320 		if (p)
5321 			return p;
5322 	}
5323 
5324 	/* The idle class should always have a runnable task: */
5325 	BUG();
5326 }
5327 
5328 #ifdef CONFIG_SCHED_CORE
5329 static inline bool is_task_rq_idle(struct task_struct *t)
5330 {
5331 	return (task_rq(t)->idle == t);
5332 }
5333 
5334 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5335 {
5336 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5337 }
5338 
5339 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5340 {
5341 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5342 		return true;
5343 
5344 	return a->core_cookie == b->core_cookie;
5345 }
5346 
5347 // XXX fairness/fwd progress conditions
5348 /*
5349  * Returns
5350  * - NULL if there is no runnable task for this class.
5351  * - the highest priority task for this runqueue if it matches
5352  *   rq->core->core_cookie or its priority is greater than max.
5353  * - Else returns idle_task.
5354  */
5355 static struct task_struct *
5356 pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
5357 {
5358 	struct task_struct *class_pick, *cookie_pick;
5359 	unsigned long cookie = rq->core->core_cookie;
5360 
5361 	class_pick = class->pick_task(rq);
5362 	if (!class_pick)
5363 		return NULL;
5364 
5365 	if (!cookie) {
5366 		/*
5367 		 * If class_pick is tagged, return it only if it has
5368 		 * higher priority than max.
5369 		 */
5370 		if (max && class_pick->core_cookie &&
5371 		    prio_less(class_pick, max, in_fi))
5372 			return idle_sched_class.pick_task(rq);
5373 
5374 		return class_pick;
5375 	}
5376 
5377 	/*
5378 	 * If class_pick is idle or matches cookie, return early.
5379 	 */
5380 	if (cookie_equals(class_pick, cookie))
5381 		return class_pick;
5382 
5383 	cookie_pick = sched_core_find(rq, cookie);
5384 
5385 	/*
5386 	 * If class > max && class > cookie, it is the highest priority task on
5387 	 * the core (so far) and it must be selected, otherwise we must go with
5388 	 * the cookie pick in order to satisfy the constraint.
5389 	 */
5390 	if (prio_less(cookie_pick, class_pick, in_fi) &&
5391 	    (!max || prio_less(max, class_pick, in_fi)))
5392 		return class_pick;
5393 
5394 	return cookie_pick;
5395 }
5396 
5397 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5398 
5399 static struct task_struct *
5400 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5401 {
5402 	struct task_struct *next, *max = NULL;
5403 	const struct sched_class *class;
5404 	const struct cpumask *smt_mask;
5405 	bool fi_before = false;
5406 	int i, j, cpu, occ = 0;
5407 	bool need_sync;
5408 
5409 	if (!sched_core_enabled(rq))
5410 		return __pick_next_task(rq, prev, rf);
5411 
5412 	cpu = cpu_of(rq);
5413 
5414 	/* Stopper task is switching into idle, no need core-wide selection. */
5415 	if (cpu_is_offline(cpu)) {
5416 		/*
5417 		 * Reset core_pick so that we don't enter the fastpath when
5418 		 * coming online. core_pick would already be migrated to
5419 		 * another cpu during offline.
5420 		 */
5421 		rq->core_pick = NULL;
5422 		return __pick_next_task(rq, prev, rf);
5423 	}
5424 
5425 	/*
5426 	 * If there were no {en,de}queues since we picked (IOW, the task
5427 	 * pointers are all still valid), and we haven't scheduled the last
5428 	 * pick yet, do so now.
5429 	 *
5430 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5431 	 * it was either offline or went offline during a sibling's core-wide
5432 	 * selection. In this case, do a core-wide selection.
5433 	 */
5434 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5435 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5436 	    rq->core_pick) {
5437 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5438 
5439 		next = rq->core_pick;
5440 		if (next != prev) {
5441 			put_prev_task(rq, prev);
5442 			set_next_task(rq, next);
5443 		}
5444 
5445 		rq->core_pick = NULL;
5446 		return next;
5447 	}
5448 
5449 	put_prev_task_balance(rq, prev, rf);
5450 
5451 	smt_mask = cpu_smt_mask(cpu);
5452 	need_sync = !!rq->core->core_cookie;
5453 
5454 	/* reset state */
5455 	rq->core->core_cookie = 0UL;
5456 	if (rq->core->core_forceidle) {
5457 		need_sync = true;
5458 		fi_before = true;
5459 		rq->core->core_forceidle = false;
5460 	}
5461 
5462 	/*
5463 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5464 	 *
5465 	 * @task_seq guards the task state ({en,de}queues)
5466 	 * @pick_seq is the @task_seq we did a selection on
5467 	 * @sched_seq is the @pick_seq we scheduled
5468 	 *
5469 	 * However, preemptions can cause multiple picks on the same task set.
5470 	 * 'Fix' this by also increasing @task_seq for every pick.
5471 	 */
5472 	rq->core->core_task_seq++;
5473 
5474 	/*
5475 	 * Optimize for common case where this CPU has no cookies
5476 	 * and there are no cookied tasks running on siblings.
5477 	 */
5478 	if (!need_sync) {
5479 		for_each_class(class) {
5480 			next = class->pick_task(rq);
5481 			if (next)
5482 				break;
5483 		}
5484 
5485 		if (!next->core_cookie) {
5486 			rq->core_pick = NULL;
5487 			/*
5488 			 * For robustness, update the min_vruntime_fi for
5489 			 * unconstrained picks as well.
5490 			 */
5491 			WARN_ON_ONCE(fi_before);
5492 			task_vruntime_update(rq, next, false);
5493 			goto done;
5494 		}
5495 	}
5496 
5497 	for_each_cpu(i, smt_mask) {
5498 		struct rq *rq_i = cpu_rq(i);
5499 
5500 		rq_i->core_pick = NULL;
5501 
5502 		if (i != cpu)
5503 			update_rq_clock(rq_i);
5504 	}
5505 
5506 	/*
5507 	 * Try and select tasks for each sibling in descending sched_class
5508 	 * order.
5509 	 */
5510 	for_each_class(class) {
5511 again:
5512 		for_each_cpu_wrap(i, smt_mask, cpu) {
5513 			struct rq *rq_i = cpu_rq(i);
5514 			struct task_struct *p;
5515 
5516 			if (rq_i->core_pick)
5517 				continue;
5518 
5519 			/*
5520 			 * If this sibling doesn't yet have a suitable task to
5521 			 * run; ask for the most eligible task, given the
5522 			 * highest priority task already selected for this
5523 			 * core.
5524 			 */
5525 			p = pick_task(rq_i, class, max, fi_before);
5526 			if (!p)
5527 				continue;
5528 
5529 			if (!is_task_rq_idle(p))
5530 				occ++;
5531 
5532 			rq_i->core_pick = p;
5533 			if (rq_i->idle == p && rq_i->nr_running) {
5534 				rq->core->core_forceidle = true;
5535 				if (!fi_before)
5536 					rq->core->core_forceidle_seq++;
5537 			}
5538 
5539 			/*
5540 			 * If this new candidate is of higher priority than the
5541 			 * previous; and they're incompatible; we need to wipe
5542 			 * the slate and start over. pick_task makes sure that
5543 			 * p's priority is more than max if it doesn't match
5544 			 * max's cookie.
5545 			 *
5546 			 * NOTE: this is a linear max-filter and is thus bounded
5547 			 * in execution time.
5548 			 */
5549 			if (!max || !cookie_match(max, p)) {
5550 				struct task_struct *old_max = max;
5551 
5552 				rq->core->core_cookie = p->core_cookie;
5553 				max = p;
5554 
5555 				if (old_max) {
5556 					rq->core->core_forceidle = false;
5557 					for_each_cpu(j, smt_mask) {
5558 						if (j == i)
5559 							continue;
5560 
5561 						cpu_rq(j)->core_pick = NULL;
5562 					}
5563 					occ = 1;
5564 					goto again;
5565 				}
5566 			}
5567 		}
5568 	}
5569 
5570 	rq->core->core_pick_seq = rq->core->core_task_seq;
5571 	next = rq->core_pick;
5572 	rq->core_sched_seq = rq->core->core_pick_seq;
5573 
5574 	/* Something should have been selected for current CPU */
5575 	WARN_ON_ONCE(!next);
5576 
5577 	/*
5578 	 * Reschedule siblings
5579 	 *
5580 	 * NOTE: L1TF -- at this point we're no longer running the old task and
5581 	 * sending an IPI (below) ensures the sibling will no longer be running
5582 	 * their task. This ensures there is no inter-sibling overlap between
5583 	 * non-matching user state.
5584 	 */
5585 	for_each_cpu(i, smt_mask) {
5586 		struct rq *rq_i = cpu_rq(i);
5587 
5588 		/*
5589 		 * An online sibling might have gone offline before a task
5590 		 * could be picked for it, or it might be offline but later
5591 		 * happen to come online, but its too late and nothing was
5592 		 * picked for it.  That's Ok - it will pick tasks for itself,
5593 		 * so ignore it.
5594 		 */
5595 		if (!rq_i->core_pick)
5596 			continue;
5597 
5598 		/*
5599 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5600 		 * fi_before     fi      update?
5601 		 *  0            0       1
5602 		 *  0            1       1
5603 		 *  1            0       1
5604 		 *  1            1       0
5605 		 */
5606 		if (!(fi_before && rq->core->core_forceidle))
5607 			task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5608 
5609 		rq_i->core_pick->core_occupation = occ;
5610 
5611 		if (i == cpu) {
5612 			rq_i->core_pick = NULL;
5613 			continue;
5614 		}
5615 
5616 		/* Did we break L1TF mitigation requirements? */
5617 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5618 
5619 		if (rq_i->curr == rq_i->core_pick) {
5620 			rq_i->core_pick = NULL;
5621 			continue;
5622 		}
5623 
5624 		resched_curr(rq_i);
5625 	}
5626 
5627 done:
5628 	set_next_task(rq, next);
5629 	return next;
5630 }
5631 
5632 static bool try_steal_cookie(int this, int that)
5633 {
5634 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5635 	struct task_struct *p;
5636 	unsigned long cookie;
5637 	bool success = false;
5638 
5639 	local_irq_disable();
5640 	double_rq_lock(dst, src);
5641 
5642 	cookie = dst->core->core_cookie;
5643 	if (!cookie)
5644 		goto unlock;
5645 
5646 	if (dst->curr != dst->idle)
5647 		goto unlock;
5648 
5649 	p = sched_core_find(src, cookie);
5650 	if (p == src->idle)
5651 		goto unlock;
5652 
5653 	do {
5654 		if (p == src->core_pick || p == src->curr)
5655 			goto next;
5656 
5657 		if (!cpumask_test_cpu(this, &p->cpus_mask))
5658 			goto next;
5659 
5660 		if (p->core_occupation > dst->idle->core_occupation)
5661 			goto next;
5662 
5663 		p->on_rq = TASK_ON_RQ_MIGRATING;
5664 		deactivate_task(src, p, 0);
5665 		set_task_cpu(p, this);
5666 		activate_task(dst, p, 0);
5667 		p->on_rq = TASK_ON_RQ_QUEUED;
5668 
5669 		resched_curr(dst);
5670 
5671 		success = true;
5672 		break;
5673 
5674 next:
5675 		p = sched_core_next(p, cookie);
5676 	} while (p);
5677 
5678 unlock:
5679 	double_rq_unlock(dst, src);
5680 	local_irq_enable();
5681 
5682 	return success;
5683 }
5684 
5685 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5686 {
5687 	int i;
5688 
5689 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5690 		if (i == cpu)
5691 			continue;
5692 
5693 		if (need_resched())
5694 			break;
5695 
5696 		if (try_steal_cookie(cpu, i))
5697 			return true;
5698 	}
5699 
5700 	return false;
5701 }
5702 
5703 static void sched_core_balance(struct rq *rq)
5704 {
5705 	struct sched_domain *sd;
5706 	int cpu = cpu_of(rq);
5707 
5708 	preempt_disable();
5709 	rcu_read_lock();
5710 	raw_spin_rq_unlock_irq(rq);
5711 	for_each_domain(cpu, sd) {
5712 		if (need_resched())
5713 			break;
5714 
5715 		if (steal_cookie_task(cpu, sd))
5716 			break;
5717 	}
5718 	raw_spin_rq_lock_irq(rq);
5719 	rcu_read_unlock();
5720 	preempt_enable();
5721 }
5722 
5723 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5724 
5725 void queue_core_balance(struct rq *rq)
5726 {
5727 	if (!sched_core_enabled(rq))
5728 		return;
5729 
5730 	if (!rq->core->core_cookie)
5731 		return;
5732 
5733 	if (!rq->nr_running) /* not forced idle */
5734 		return;
5735 
5736 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5737 }
5738 
5739 static inline void sched_core_cpu_starting(unsigned int cpu)
5740 {
5741 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5742 	struct rq *rq, *core_rq = NULL;
5743 	int i;
5744 
5745 	core_rq = cpu_rq(cpu)->core;
5746 
5747 	if (!core_rq) {
5748 		for_each_cpu(i, smt_mask) {
5749 			rq = cpu_rq(i);
5750 			if (rq->core && rq->core == rq)
5751 				core_rq = rq;
5752 		}
5753 
5754 		if (!core_rq)
5755 			core_rq = cpu_rq(cpu);
5756 
5757 		for_each_cpu(i, smt_mask) {
5758 			rq = cpu_rq(i);
5759 
5760 			WARN_ON_ONCE(rq->core && rq->core != core_rq);
5761 			rq->core = core_rq;
5762 		}
5763 	}
5764 }
5765 #else /* !CONFIG_SCHED_CORE */
5766 
5767 static inline void sched_core_cpu_starting(unsigned int cpu) {}
5768 
5769 static struct task_struct *
5770 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5771 {
5772 	return __pick_next_task(rq, prev, rf);
5773 }
5774 
5775 #endif /* CONFIG_SCHED_CORE */
5776 
5777 /*
5778  * __schedule() is the main scheduler function.
5779  *
5780  * The main means of driving the scheduler and thus entering this function are:
5781  *
5782  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
5783  *
5784  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
5785  *      paths. For example, see arch/x86/entry_64.S.
5786  *
5787  *      To drive preemption between tasks, the scheduler sets the flag in timer
5788  *      interrupt handler scheduler_tick().
5789  *
5790  *   3. Wakeups don't really cause entry into schedule(). They add a
5791  *      task to the run-queue and that's it.
5792  *
5793  *      Now, if the new task added to the run-queue preempts the current
5794  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
5795  *      called on the nearest possible occasion:
5796  *
5797  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
5798  *
5799  *         - in syscall or exception context, at the next outmost
5800  *           preempt_enable(). (this might be as soon as the wake_up()'s
5801  *           spin_unlock()!)
5802  *
5803  *         - in IRQ context, return from interrupt-handler to
5804  *           preemptible context
5805  *
5806  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
5807  *         then at the next:
5808  *
5809  *          - cond_resched() call
5810  *          - explicit schedule() call
5811  *          - return from syscall or exception to user-space
5812  *          - return from interrupt-handler to user-space
5813  *
5814  * WARNING: must be called with preemption disabled!
5815  */
5816 static void __sched notrace __schedule(bool preempt)
5817 {
5818 	struct task_struct *prev, *next;
5819 	unsigned long *switch_count;
5820 	unsigned long prev_state;
5821 	struct rq_flags rf;
5822 	struct rq *rq;
5823 	int cpu;
5824 
5825 	cpu = smp_processor_id();
5826 	rq = cpu_rq(cpu);
5827 	prev = rq->curr;
5828 
5829 	schedule_debug(prev, preempt);
5830 
5831 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
5832 		hrtick_clear(rq);
5833 
5834 	local_irq_disable();
5835 	rcu_note_context_switch(preempt);
5836 
5837 	/*
5838 	 * Make sure that signal_pending_state()->signal_pending() below
5839 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
5840 	 * done by the caller to avoid the race with signal_wake_up():
5841 	 *
5842 	 * __set_current_state(@state)		signal_wake_up()
5843 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
5844 	 *					  wake_up_state(p, state)
5845 	 *   LOCK rq->lock			    LOCK p->pi_state
5846 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
5847 	 *     if (signal_pending_state())	    if (p->state & @state)
5848 	 *
5849 	 * Also, the membarrier system call requires a full memory barrier
5850 	 * after coming from user-space, before storing to rq->curr.
5851 	 */
5852 	rq_lock(rq, &rf);
5853 	smp_mb__after_spinlock();
5854 
5855 	/* Promote REQ to ACT */
5856 	rq->clock_update_flags <<= 1;
5857 	update_rq_clock(rq);
5858 
5859 	switch_count = &prev->nivcsw;
5860 
5861 	/*
5862 	 * We must load prev->state once (task_struct::state is volatile), such
5863 	 * that:
5864 	 *
5865 	 *  - we form a control dependency vs deactivate_task() below.
5866 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
5867 	 */
5868 	prev_state = READ_ONCE(prev->__state);
5869 	if (!preempt && prev_state) {
5870 		if (signal_pending_state(prev_state, prev)) {
5871 			WRITE_ONCE(prev->__state, TASK_RUNNING);
5872 		} else {
5873 			prev->sched_contributes_to_load =
5874 				(prev_state & TASK_UNINTERRUPTIBLE) &&
5875 				!(prev_state & TASK_NOLOAD) &&
5876 				!(prev->flags & PF_FROZEN);
5877 
5878 			if (prev->sched_contributes_to_load)
5879 				rq->nr_uninterruptible++;
5880 
5881 			/*
5882 			 * __schedule()			ttwu()
5883 			 *   prev_state = prev->state;    if (p->on_rq && ...)
5884 			 *   if (prev_state)		    goto out;
5885 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
5886 			 *				  p->state = TASK_WAKING
5887 			 *
5888 			 * Where __schedule() and ttwu() have matching control dependencies.
5889 			 *
5890 			 * After this, schedule() must not care about p->state any more.
5891 			 */
5892 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5893 
5894 			if (prev->in_iowait) {
5895 				atomic_inc(&rq->nr_iowait);
5896 				delayacct_blkio_start();
5897 			}
5898 		}
5899 		switch_count = &prev->nvcsw;
5900 	}
5901 
5902 	next = pick_next_task(rq, prev, &rf);
5903 	clear_tsk_need_resched(prev);
5904 	clear_preempt_need_resched();
5905 #ifdef CONFIG_SCHED_DEBUG
5906 	rq->last_seen_need_resched_ns = 0;
5907 #endif
5908 
5909 	if (likely(prev != next)) {
5910 		rq->nr_switches++;
5911 		/*
5912 		 * RCU users of rcu_dereference(rq->curr) may not see
5913 		 * changes to task_struct made by pick_next_task().
5914 		 */
5915 		RCU_INIT_POINTER(rq->curr, next);
5916 		/*
5917 		 * The membarrier system call requires each architecture
5918 		 * to have a full memory barrier after updating
5919 		 * rq->curr, before returning to user-space.
5920 		 *
5921 		 * Here are the schemes providing that barrier on the
5922 		 * various architectures:
5923 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5924 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5925 		 * - finish_lock_switch() for weakly-ordered
5926 		 *   architectures where spin_unlock is a full barrier,
5927 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5928 		 *   is a RELEASE barrier),
5929 		 */
5930 		++*switch_count;
5931 
5932 		migrate_disable_switch(rq, prev);
5933 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5934 
5935 		trace_sched_switch(preempt, prev, next);
5936 
5937 		/* Also unlocks the rq: */
5938 		rq = context_switch(rq, prev, next, &rf);
5939 	} else {
5940 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5941 
5942 		rq_unpin_lock(rq, &rf);
5943 		__balance_callbacks(rq);
5944 		raw_spin_rq_unlock_irq(rq);
5945 	}
5946 }
5947 
5948 void __noreturn do_task_dead(void)
5949 {
5950 	/* Causes final put_task_struct in finish_task_switch(): */
5951 	set_special_state(TASK_DEAD);
5952 
5953 	/* Tell freezer to ignore us: */
5954 	current->flags |= PF_NOFREEZE;
5955 
5956 	__schedule(false);
5957 	BUG();
5958 
5959 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5960 	for (;;)
5961 		cpu_relax();
5962 }
5963 
5964 static inline void sched_submit_work(struct task_struct *tsk)
5965 {
5966 	unsigned int task_flags;
5967 
5968 	if (task_is_running(tsk))
5969 		return;
5970 
5971 	task_flags = tsk->flags;
5972 	/*
5973 	 * If a worker went to sleep, notify and ask workqueue whether
5974 	 * it wants to wake up a task to maintain concurrency.
5975 	 * As this function is called inside the schedule() context,
5976 	 * we disable preemption to avoid it calling schedule() again
5977 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5978 	 * requires it.
5979 	 */
5980 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5981 		preempt_disable();
5982 		if (task_flags & PF_WQ_WORKER)
5983 			wq_worker_sleeping(tsk);
5984 		else
5985 			io_wq_worker_sleeping(tsk);
5986 		preempt_enable_no_resched();
5987 	}
5988 
5989 	if (tsk_is_pi_blocked(tsk))
5990 		return;
5991 
5992 	/*
5993 	 * If we are going to sleep and we have plugged IO queued,
5994 	 * make sure to submit it to avoid deadlocks.
5995 	 */
5996 	if (blk_needs_flush_plug(tsk))
5997 		blk_schedule_flush_plug(tsk);
5998 }
5999 
6000 static void sched_update_worker(struct task_struct *tsk)
6001 {
6002 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6003 		if (tsk->flags & PF_WQ_WORKER)
6004 			wq_worker_running(tsk);
6005 		else
6006 			io_wq_worker_running(tsk);
6007 	}
6008 }
6009 
6010 asmlinkage __visible void __sched schedule(void)
6011 {
6012 	struct task_struct *tsk = current;
6013 
6014 	sched_submit_work(tsk);
6015 	do {
6016 		preempt_disable();
6017 		__schedule(false);
6018 		sched_preempt_enable_no_resched();
6019 	} while (need_resched());
6020 	sched_update_worker(tsk);
6021 }
6022 EXPORT_SYMBOL(schedule);
6023 
6024 /*
6025  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6026  * state (have scheduled out non-voluntarily) by making sure that all
6027  * tasks have either left the run queue or have gone into user space.
6028  * As idle tasks do not do either, they must not ever be preempted
6029  * (schedule out non-voluntarily).
6030  *
6031  * schedule_idle() is similar to schedule_preempt_disable() except that it
6032  * never enables preemption because it does not call sched_submit_work().
6033  */
6034 void __sched schedule_idle(void)
6035 {
6036 	/*
6037 	 * As this skips calling sched_submit_work(), which the idle task does
6038 	 * regardless because that function is a nop when the task is in a
6039 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6040 	 * current task can be in any other state. Note, idle is always in the
6041 	 * TASK_RUNNING state.
6042 	 */
6043 	WARN_ON_ONCE(current->__state);
6044 	do {
6045 		__schedule(false);
6046 	} while (need_resched());
6047 }
6048 
6049 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6050 asmlinkage __visible void __sched schedule_user(void)
6051 {
6052 	/*
6053 	 * If we come here after a random call to set_need_resched(),
6054 	 * or we have been woken up remotely but the IPI has not yet arrived,
6055 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6056 	 * we find a better solution.
6057 	 *
6058 	 * NB: There are buggy callers of this function.  Ideally we
6059 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6060 	 * too frequently to make sense yet.
6061 	 */
6062 	enum ctx_state prev_state = exception_enter();
6063 	schedule();
6064 	exception_exit(prev_state);
6065 }
6066 #endif
6067 
6068 /**
6069  * schedule_preempt_disabled - called with preemption disabled
6070  *
6071  * Returns with preemption disabled. Note: preempt_count must be 1
6072  */
6073 void __sched schedule_preempt_disabled(void)
6074 {
6075 	sched_preempt_enable_no_resched();
6076 	schedule();
6077 	preempt_disable();
6078 }
6079 
6080 static void __sched notrace preempt_schedule_common(void)
6081 {
6082 	do {
6083 		/*
6084 		 * Because the function tracer can trace preempt_count_sub()
6085 		 * and it also uses preempt_enable/disable_notrace(), if
6086 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6087 		 * by the function tracer will call this function again and
6088 		 * cause infinite recursion.
6089 		 *
6090 		 * Preemption must be disabled here before the function
6091 		 * tracer can trace. Break up preempt_disable() into two
6092 		 * calls. One to disable preemption without fear of being
6093 		 * traced. The other to still record the preemption latency,
6094 		 * which can also be traced by the function tracer.
6095 		 */
6096 		preempt_disable_notrace();
6097 		preempt_latency_start(1);
6098 		__schedule(true);
6099 		preempt_latency_stop(1);
6100 		preempt_enable_no_resched_notrace();
6101 
6102 		/*
6103 		 * Check again in case we missed a preemption opportunity
6104 		 * between schedule and now.
6105 		 */
6106 	} while (need_resched());
6107 }
6108 
6109 #ifdef CONFIG_PREEMPTION
6110 /*
6111  * This is the entry point to schedule() from in-kernel preemption
6112  * off of preempt_enable.
6113  */
6114 asmlinkage __visible void __sched notrace preempt_schedule(void)
6115 {
6116 	/*
6117 	 * If there is a non-zero preempt_count or interrupts are disabled,
6118 	 * we do not want to preempt the current task. Just return..
6119 	 */
6120 	if (likely(!preemptible()))
6121 		return;
6122 
6123 	preempt_schedule_common();
6124 }
6125 NOKPROBE_SYMBOL(preempt_schedule);
6126 EXPORT_SYMBOL(preempt_schedule);
6127 
6128 #ifdef CONFIG_PREEMPT_DYNAMIC
6129 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6130 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6131 #endif
6132 
6133 
6134 /**
6135  * preempt_schedule_notrace - preempt_schedule called by tracing
6136  *
6137  * The tracing infrastructure uses preempt_enable_notrace to prevent
6138  * recursion and tracing preempt enabling caused by the tracing
6139  * infrastructure itself. But as tracing can happen in areas coming
6140  * from userspace or just about to enter userspace, a preempt enable
6141  * can occur before user_exit() is called. This will cause the scheduler
6142  * to be called when the system is still in usermode.
6143  *
6144  * To prevent this, the preempt_enable_notrace will use this function
6145  * instead of preempt_schedule() to exit user context if needed before
6146  * calling the scheduler.
6147  */
6148 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6149 {
6150 	enum ctx_state prev_ctx;
6151 
6152 	if (likely(!preemptible()))
6153 		return;
6154 
6155 	do {
6156 		/*
6157 		 * Because the function tracer can trace preempt_count_sub()
6158 		 * and it also uses preempt_enable/disable_notrace(), if
6159 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6160 		 * by the function tracer will call this function again and
6161 		 * cause infinite recursion.
6162 		 *
6163 		 * Preemption must be disabled here before the function
6164 		 * tracer can trace. Break up preempt_disable() into two
6165 		 * calls. One to disable preemption without fear of being
6166 		 * traced. The other to still record the preemption latency,
6167 		 * which can also be traced by the function tracer.
6168 		 */
6169 		preempt_disable_notrace();
6170 		preempt_latency_start(1);
6171 		/*
6172 		 * Needs preempt disabled in case user_exit() is traced
6173 		 * and the tracer calls preempt_enable_notrace() causing
6174 		 * an infinite recursion.
6175 		 */
6176 		prev_ctx = exception_enter();
6177 		__schedule(true);
6178 		exception_exit(prev_ctx);
6179 
6180 		preempt_latency_stop(1);
6181 		preempt_enable_no_resched_notrace();
6182 	} while (need_resched());
6183 }
6184 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6185 
6186 #ifdef CONFIG_PREEMPT_DYNAMIC
6187 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6188 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6189 #endif
6190 
6191 #endif /* CONFIG_PREEMPTION */
6192 
6193 #ifdef CONFIG_PREEMPT_DYNAMIC
6194 
6195 #include <linux/entry-common.h>
6196 
6197 /*
6198  * SC:cond_resched
6199  * SC:might_resched
6200  * SC:preempt_schedule
6201  * SC:preempt_schedule_notrace
6202  * SC:irqentry_exit_cond_resched
6203  *
6204  *
6205  * NONE:
6206  *   cond_resched               <- __cond_resched
6207  *   might_resched              <- RET0
6208  *   preempt_schedule           <- NOP
6209  *   preempt_schedule_notrace   <- NOP
6210  *   irqentry_exit_cond_resched <- NOP
6211  *
6212  * VOLUNTARY:
6213  *   cond_resched               <- __cond_resched
6214  *   might_resched              <- __cond_resched
6215  *   preempt_schedule           <- NOP
6216  *   preempt_schedule_notrace   <- NOP
6217  *   irqentry_exit_cond_resched <- NOP
6218  *
6219  * FULL:
6220  *   cond_resched               <- RET0
6221  *   might_resched              <- RET0
6222  *   preempt_schedule           <- preempt_schedule
6223  *   preempt_schedule_notrace   <- preempt_schedule_notrace
6224  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6225  */
6226 
6227 enum {
6228 	preempt_dynamic_none = 0,
6229 	preempt_dynamic_voluntary,
6230 	preempt_dynamic_full,
6231 };
6232 
6233 int preempt_dynamic_mode = preempt_dynamic_full;
6234 
6235 int sched_dynamic_mode(const char *str)
6236 {
6237 	if (!strcmp(str, "none"))
6238 		return preempt_dynamic_none;
6239 
6240 	if (!strcmp(str, "voluntary"))
6241 		return preempt_dynamic_voluntary;
6242 
6243 	if (!strcmp(str, "full"))
6244 		return preempt_dynamic_full;
6245 
6246 	return -EINVAL;
6247 }
6248 
6249 void sched_dynamic_update(int mode)
6250 {
6251 	/*
6252 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6253 	 * the ZERO state, which is invalid.
6254 	 */
6255 	static_call_update(cond_resched, __cond_resched);
6256 	static_call_update(might_resched, __cond_resched);
6257 	static_call_update(preempt_schedule, __preempt_schedule_func);
6258 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6259 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6260 
6261 	switch (mode) {
6262 	case preempt_dynamic_none:
6263 		static_call_update(cond_resched, __cond_resched);
6264 		static_call_update(might_resched, (void *)&__static_call_return0);
6265 		static_call_update(preempt_schedule, NULL);
6266 		static_call_update(preempt_schedule_notrace, NULL);
6267 		static_call_update(irqentry_exit_cond_resched, NULL);
6268 		pr_info("Dynamic Preempt: none\n");
6269 		break;
6270 
6271 	case preempt_dynamic_voluntary:
6272 		static_call_update(cond_resched, __cond_resched);
6273 		static_call_update(might_resched, __cond_resched);
6274 		static_call_update(preempt_schedule, NULL);
6275 		static_call_update(preempt_schedule_notrace, NULL);
6276 		static_call_update(irqentry_exit_cond_resched, NULL);
6277 		pr_info("Dynamic Preempt: voluntary\n");
6278 		break;
6279 
6280 	case preempt_dynamic_full:
6281 		static_call_update(cond_resched, (void *)&__static_call_return0);
6282 		static_call_update(might_resched, (void *)&__static_call_return0);
6283 		static_call_update(preempt_schedule, __preempt_schedule_func);
6284 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6285 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6286 		pr_info("Dynamic Preempt: full\n");
6287 		break;
6288 	}
6289 
6290 	preempt_dynamic_mode = mode;
6291 }
6292 
6293 static int __init setup_preempt_mode(char *str)
6294 {
6295 	int mode = sched_dynamic_mode(str);
6296 	if (mode < 0) {
6297 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6298 		return 1;
6299 	}
6300 
6301 	sched_dynamic_update(mode);
6302 	return 0;
6303 }
6304 __setup("preempt=", setup_preempt_mode);
6305 
6306 #endif /* CONFIG_PREEMPT_DYNAMIC */
6307 
6308 /*
6309  * This is the entry point to schedule() from kernel preemption
6310  * off of irq context.
6311  * Note, that this is called and return with irqs disabled. This will
6312  * protect us against recursive calling from irq.
6313  */
6314 asmlinkage __visible void __sched preempt_schedule_irq(void)
6315 {
6316 	enum ctx_state prev_state;
6317 
6318 	/* Catch callers which need to be fixed */
6319 	BUG_ON(preempt_count() || !irqs_disabled());
6320 
6321 	prev_state = exception_enter();
6322 
6323 	do {
6324 		preempt_disable();
6325 		local_irq_enable();
6326 		__schedule(true);
6327 		local_irq_disable();
6328 		sched_preempt_enable_no_resched();
6329 	} while (need_resched());
6330 
6331 	exception_exit(prev_state);
6332 }
6333 
6334 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6335 			  void *key)
6336 {
6337 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6338 	return try_to_wake_up(curr->private, mode, wake_flags);
6339 }
6340 EXPORT_SYMBOL(default_wake_function);
6341 
6342 static void __setscheduler_prio(struct task_struct *p, int prio)
6343 {
6344 	if (dl_prio(prio))
6345 		p->sched_class = &dl_sched_class;
6346 	else if (rt_prio(prio))
6347 		p->sched_class = &rt_sched_class;
6348 	else
6349 		p->sched_class = &fair_sched_class;
6350 
6351 	p->prio = prio;
6352 }
6353 
6354 #ifdef CONFIG_RT_MUTEXES
6355 
6356 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6357 {
6358 	if (pi_task)
6359 		prio = min(prio, pi_task->prio);
6360 
6361 	return prio;
6362 }
6363 
6364 static inline int rt_effective_prio(struct task_struct *p, int prio)
6365 {
6366 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6367 
6368 	return __rt_effective_prio(pi_task, prio);
6369 }
6370 
6371 /*
6372  * rt_mutex_setprio - set the current priority of a task
6373  * @p: task to boost
6374  * @pi_task: donor task
6375  *
6376  * This function changes the 'effective' priority of a task. It does
6377  * not touch ->normal_prio like __setscheduler().
6378  *
6379  * Used by the rt_mutex code to implement priority inheritance
6380  * logic. Call site only calls if the priority of the task changed.
6381  */
6382 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6383 {
6384 	int prio, oldprio, queued, running, queue_flag =
6385 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6386 	const struct sched_class *prev_class;
6387 	struct rq_flags rf;
6388 	struct rq *rq;
6389 
6390 	/* XXX used to be waiter->prio, not waiter->task->prio */
6391 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6392 
6393 	/*
6394 	 * If nothing changed; bail early.
6395 	 */
6396 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6397 		return;
6398 
6399 	rq = __task_rq_lock(p, &rf);
6400 	update_rq_clock(rq);
6401 	/*
6402 	 * Set under pi_lock && rq->lock, such that the value can be used under
6403 	 * either lock.
6404 	 *
6405 	 * Note that there is loads of tricky to make this pointer cache work
6406 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6407 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6408 	 * task is allowed to run again (and can exit). This ensures the pointer
6409 	 * points to a blocked task -- which guarantees the task is present.
6410 	 */
6411 	p->pi_top_task = pi_task;
6412 
6413 	/*
6414 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6415 	 */
6416 	if (prio == p->prio && !dl_prio(prio))
6417 		goto out_unlock;
6418 
6419 	/*
6420 	 * Idle task boosting is a nono in general. There is one
6421 	 * exception, when PREEMPT_RT and NOHZ is active:
6422 	 *
6423 	 * The idle task calls get_next_timer_interrupt() and holds
6424 	 * the timer wheel base->lock on the CPU and another CPU wants
6425 	 * to access the timer (probably to cancel it). We can safely
6426 	 * ignore the boosting request, as the idle CPU runs this code
6427 	 * with interrupts disabled and will complete the lock
6428 	 * protected section without being interrupted. So there is no
6429 	 * real need to boost.
6430 	 */
6431 	if (unlikely(p == rq->idle)) {
6432 		WARN_ON(p != rq->curr);
6433 		WARN_ON(p->pi_blocked_on);
6434 		goto out_unlock;
6435 	}
6436 
6437 	trace_sched_pi_setprio(p, pi_task);
6438 	oldprio = p->prio;
6439 
6440 	if (oldprio == prio)
6441 		queue_flag &= ~DEQUEUE_MOVE;
6442 
6443 	prev_class = p->sched_class;
6444 	queued = task_on_rq_queued(p);
6445 	running = task_current(rq, p);
6446 	if (queued)
6447 		dequeue_task(rq, p, queue_flag);
6448 	if (running)
6449 		put_prev_task(rq, p);
6450 
6451 	/*
6452 	 * Boosting condition are:
6453 	 * 1. -rt task is running and holds mutex A
6454 	 *      --> -dl task blocks on mutex A
6455 	 *
6456 	 * 2. -dl task is running and holds mutex A
6457 	 *      --> -dl task blocks on mutex A and could preempt the
6458 	 *          running task
6459 	 */
6460 	if (dl_prio(prio)) {
6461 		if (!dl_prio(p->normal_prio) ||
6462 		    (pi_task && dl_prio(pi_task->prio) &&
6463 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6464 			p->dl.pi_se = pi_task->dl.pi_se;
6465 			queue_flag |= ENQUEUE_REPLENISH;
6466 		} else {
6467 			p->dl.pi_se = &p->dl;
6468 		}
6469 	} else if (rt_prio(prio)) {
6470 		if (dl_prio(oldprio))
6471 			p->dl.pi_se = &p->dl;
6472 		if (oldprio < prio)
6473 			queue_flag |= ENQUEUE_HEAD;
6474 	} else {
6475 		if (dl_prio(oldprio))
6476 			p->dl.pi_se = &p->dl;
6477 		if (rt_prio(oldprio))
6478 			p->rt.timeout = 0;
6479 	}
6480 
6481 	__setscheduler_prio(p, prio);
6482 
6483 	if (queued)
6484 		enqueue_task(rq, p, queue_flag);
6485 	if (running)
6486 		set_next_task(rq, p);
6487 
6488 	check_class_changed(rq, p, prev_class, oldprio);
6489 out_unlock:
6490 	/* Avoid rq from going away on us: */
6491 	preempt_disable();
6492 
6493 	rq_unpin_lock(rq, &rf);
6494 	__balance_callbacks(rq);
6495 	raw_spin_rq_unlock(rq);
6496 
6497 	preempt_enable();
6498 }
6499 #else
6500 static inline int rt_effective_prio(struct task_struct *p, int prio)
6501 {
6502 	return prio;
6503 }
6504 #endif
6505 
6506 void set_user_nice(struct task_struct *p, long nice)
6507 {
6508 	bool queued, running;
6509 	int old_prio;
6510 	struct rq_flags rf;
6511 	struct rq *rq;
6512 
6513 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6514 		return;
6515 	/*
6516 	 * We have to be careful, if called from sys_setpriority(),
6517 	 * the task might be in the middle of scheduling on another CPU.
6518 	 */
6519 	rq = task_rq_lock(p, &rf);
6520 	update_rq_clock(rq);
6521 
6522 	/*
6523 	 * The RT priorities are set via sched_setscheduler(), but we still
6524 	 * allow the 'normal' nice value to be set - but as expected
6525 	 * it won't have any effect on scheduling until the task is
6526 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6527 	 */
6528 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6529 		p->static_prio = NICE_TO_PRIO(nice);
6530 		goto out_unlock;
6531 	}
6532 	queued = task_on_rq_queued(p);
6533 	running = task_current(rq, p);
6534 	if (queued)
6535 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6536 	if (running)
6537 		put_prev_task(rq, p);
6538 
6539 	p->static_prio = NICE_TO_PRIO(nice);
6540 	set_load_weight(p, true);
6541 	old_prio = p->prio;
6542 	p->prio = effective_prio(p);
6543 
6544 	if (queued)
6545 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6546 	if (running)
6547 		set_next_task(rq, p);
6548 
6549 	/*
6550 	 * If the task increased its priority or is running and
6551 	 * lowered its priority, then reschedule its CPU:
6552 	 */
6553 	p->sched_class->prio_changed(rq, p, old_prio);
6554 
6555 out_unlock:
6556 	task_rq_unlock(rq, p, &rf);
6557 }
6558 EXPORT_SYMBOL(set_user_nice);
6559 
6560 /*
6561  * can_nice - check if a task can reduce its nice value
6562  * @p: task
6563  * @nice: nice value
6564  */
6565 int can_nice(const struct task_struct *p, const int nice)
6566 {
6567 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
6568 	int nice_rlim = nice_to_rlimit(nice);
6569 
6570 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6571 		capable(CAP_SYS_NICE));
6572 }
6573 
6574 #ifdef __ARCH_WANT_SYS_NICE
6575 
6576 /*
6577  * sys_nice - change the priority of the current process.
6578  * @increment: priority increment
6579  *
6580  * sys_setpriority is a more generic, but much slower function that
6581  * does similar things.
6582  */
6583 SYSCALL_DEFINE1(nice, int, increment)
6584 {
6585 	long nice, retval;
6586 
6587 	/*
6588 	 * Setpriority might change our priority at the same moment.
6589 	 * We don't have to worry. Conceptually one call occurs first
6590 	 * and we have a single winner.
6591 	 */
6592 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6593 	nice = task_nice(current) + increment;
6594 
6595 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6596 	if (increment < 0 && !can_nice(current, nice))
6597 		return -EPERM;
6598 
6599 	retval = security_task_setnice(current, nice);
6600 	if (retval)
6601 		return retval;
6602 
6603 	set_user_nice(current, nice);
6604 	return 0;
6605 }
6606 
6607 #endif
6608 
6609 /**
6610  * task_prio - return the priority value of a given task.
6611  * @p: the task in question.
6612  *
6613  * Return: The priority value as seen by users in /proc.
6614  *
6615  * sched policy         return value   kernel prio    user prio/nice
6616  *
6617  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
6618  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
6619  * deadline                     -101             -1           0
6620  */
6621 int task_prio(const struct task_struct *p)
6622 {
6623 	return p->prio - MAX_RT_PRIO;
6624 }
6625 
6626 /**
6627  * idle_cpu - is a given CPU idle currently?
6628  * @cpu: the processor in question.
6629  *
6630  * Return: 1 if the CPU is currently idle. 0 otherwise.
6631  */
6632 int idle_cpu(int cpu)
6633 {
6634 	struct rq *rq = cpu_rq(cpu);
6635 
6636 	if (rq->curr != rq->idle)
6637 		return 0;
6638 
6639 	if (rq->nr_running)
6640 		return 0;
6641 
6642 #ifdef CONFIG_SMP
6643 	if (rq->ttwu_pending)
6644 		return 0;
6645 #endif
6646 
6647 	return 1;
6648 }
6649 
6650 /**
6651  * available_idle_cpu - is a given CPU idle for enqueuing work.
6652  * @cpu: the CPU in question.
6653  *
6654  * Return: 1 if the CPU is currently idle. 0 otherwise.
6655  */
6656 int available_idle_cpu(int cpu)
6657 {
6658 	if (!idle_cpu(cpu))
6659 		return 0;
6660 
6661 	if (vcpu_is_preempted(cpu))
6662 		return 0;
6663 
6664 	return 1;
6665 }
6666 
6667 /**
6668  * idle_task - return the idle task for a given CPU.
6669  * @cpu: the processor in question.
6670  *
6671  * Return: The idle task for the CPU @cpu.
6672  */
6673 struct task_struct *idle_task(int cpu)
6674 {
6675 	return cpu_rq(cpu)->idle;
6676 }
6677 
6678 #ifdef CONFIG_SMP
6679 /*
6680  * This function computes an effective utilization for the given CPU, to be
6681  * used for frequency selection given the linear relation: f = u * f_max.
6682  *
6683  * The scheduler tracks the following metrics:
6684  *
6685  *   cpu_util_{cfs,rt,dl,irq}()
6686  *   cpu_bw_dl()
6687  *
6688  * Where the cfs,rt and dl util numbers are tracked with the same metric and
6689  * synchronized windows and are thus directly comparable.
6690  *
6691  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
6692  * which excludes things like IRQ and steal-time. These latter are then accrued
6693  * in the irq utilization.
6694  *
6695  * The DL bandwidth number otoh is not a measured metric but a value computed
6696  * based on the task model parameters and gives the minimal utilization
6697  * required to meet deadlines.
6698  */
6699 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
6700 				 unsigned long max, enum cpu_util_type type,
6701 				 struct task_struct *p)
6702 {
6703 	unsigned long dl_util, util, irq;
6704 	struct rq *rq = cpu_rq(cpu);
6705 
6706 	if (!uclamp_is_used() &&
6707 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
6708 		return max;
6709 	}
6710 
6711 	/*
6712 	 * Early check to see if IRQ/steal time saturates the CPU, can be
6713 	 * because of inaccuracies in how we track these -- see
6714 	 * update_irq_load_avg().
6715 	 */
6716 	irq = cpu_util_irq(rq);
6717 	if (unlikely(irq >= max))
6718 		return max;
6719 
6720 	/*
6721 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
6722 	 * CFS tasks and we use the same metric to track the effective
6723 	 * utilization (PELT windows are synchronized) we can directly add them
6724 	 * to obtain the CPU's actual utilization.
6725 	 *
6726 	 * CFS and RT utilization can be boosted or capped, depending on
6727 	 * utilization clamp constraints requested by currently RUNNABLE
6728 	 * tasks.
6729 	 * When there are no CFS RUNNABLE tasks, clamps are released and
6730 	 * frequency will be gracefully reduced with the utilization decay.
6731 	 */
6732 	util = util_cfs + cpu_util_rt(rq);
6733 	if (type == FREQUENCY_UTIL)
6734 		util = uclamp_rq_util_with(rq, util, p);
6735 
6736 	dl_util = cpu_util_dl(rq);
6737 
6738 	/*
6739 	 * For frequency selection we do not make cpu_util_dl() a permanent part
6740 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
6741 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
6742 	 * that we select f_max when there is no idle time.
6743 	 *
6744 	 * NOTE: numerical errors or stop class might cause us to not quite hit
6745 	 * saturation when we should -- something for later.
6746 	 */
6747 	if (util + dl_util >= max)
6748 		return max;
6749 
6750 	/*
6751 	 * OTOH, for energy computation we need the estimated running time, so
6752 	 * include util_dl and ignore dl_bw.
6753 	 */
6754 	if (type == ENERGY_UTIL)
6755 		util += dl_util;
6756 
6757 	/*
6758 	 * There is still idle time; further improve the number by using the
6759 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
6760 	 * need to scale the task numbers:
6761 	 *
6762 	 *              max - irq
6763 	 *   U' = irq + --------- * U
6764 	 *                 max
6765 	 */
6766 	util = scale_irq_capacity(util, irq, max);
6767 	util += irq;
6768 
6769 	/*
6770 	 * Bandwidth required by DEADLINE must always be granted while, for
6771 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
6772 	 * to gracefully reduce the frequency when no tasks show up for longer
6773 	 * periods of time.
6774 	 *
6775 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
6776 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
6777 	 * an interface. So, we only do the latter for now.
6778 	 */
6779 	if (type == FREQUENCY_UTIL)
6780 		util += cpu_bw_dl(rq);
6781 
6782 	return min(max, util);
6783 }
6784 
6785 unsigned long sched_cpu_util(int cpu, unsigned long max)
6786 {
6787 	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
6788 				  ENERGY_UTIL, NULL);
6789 }
6790 #endif /* CONFIG_SMP */
6791 
6792 /**
6793  * find_process_by_pid - find a process with a matching PID value.
6794  * @pid: the pid in question.
6795  *
6796  * The task of @pid, if found. %NULL otherwise.
6797  */
6798 static struct task_struct *find_process_by_pid(pid_t pid)
6799 {
6800 	return pid ? find_task_by_vpid(pid) : current;
6801 }
6802 
6803 /*
6804  * sched_setparam() passes in -1 for its policy, to let the functions
6805  * it calls know not to change it.
6806  */
6807 #define SETPARAM_POLICY	-1
6808 
6809 static void __setscheduler_params(struct task_struct *p,
6810 		const struct sched_attr *attr)
6811 {
6812 	int policy = attr->sched_policy;
6813 
6814 	if (policy == SETPARAM_POLICY)
6815 		policy = p->policy;
6816 
6817 	p->policy = policy;
6818 
6819 	if (dl_policy(policy))
6820 		__setparam_dl(p, attr);
6821 	else if (fair_policy(policy))
6822 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6823 
6824 	/*
6825 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6826 	 * !rt_policy. Always setting this ensures that things like
6827 	 * getparam()/getattr() don't report silly values for !rt tasks.
6828 	 */
6829 	p->rt_priority = attr->sched_priority;
6830 	p->normal_prio = normal_prio(p);
6831 	set_load_weight(p, true);
6832 }
6833 
6834 /*
6835  * Check the target process has a UID that matches the current process's:
6836  */
6837 static bool check_same_owner(struct task_struct *p)
6838 {
6839 	const struct cred *cred = current_cred(), *pcred;
6840 	bool match;
6841 
6842 	rcu_read_lock();
6843 	pcred = __task_cred(p);
6844 	match = (uid_eq(cred->euid, pcred->euid) ||
6845 		 uid_eq(cred->euid, pcred->uid));
6846 	rcu_read_unlock();
6847 	return match;
6848 }
6849 
6850 static int __sched_setscheduler(struct task_struct *p,
6851 				const struct sched_attr *attr,
6852 				bool user, bool pi)
6853 {
6854 	int oldpolicy = -1, policy = attr->sched_policy;
6855 	int retval, oldprio, newprio, queued, running;
6856 	const struct sched_class *prev_class;
6857 	struct callback_head *head;
6858 	struct rq_flags rf;
6859 	int reset_on_fork;
6860 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6861 	struct rq *rq;
6862 
6863 	/* The pi code expects interrupts enabled */
6864 	BUG_ON(pi && in_interrupt());
6865 recheck:
6866 	/* Double check policy once rq lock held: */
6867 	if (policy < 0) {
6868 		reset_on_fork = p->sched_reset_on_fork;
6869 		policy = oldpolicy = p->policy;
6870 	} else {
6871 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6872 
6873 		if (!valid_policy(policy))
6874 			return -EINVAL;
6875 	}
6876 
6877 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6878 		return -EINVAL;
6879 
6880 	/*
6881 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
6882 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6883 	 * SCHED_BATCH and SCHED_IDLE is 0.
6884 	 */
6885 	if (attr->sched_priority > MAX_RT_PRIO-1)
6886 		return -EINVAL;
6887 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6888 	    (rt_policy(policy) != (attr->sched_priority != 0)))
6889 		return -EINVAL;
6890 
6891 	/*
6892 	 * Allow unprivileged RT tasks to decrease priority:
6893 	 */
6894 	if (user && !capable(CAP_SYS_NICE)) {
6895 		if (fair_policy(policy)) {
6896 			if (attr->sched_nice < task_nice(p) &&
6897 			    !can_nice(p, attr->sched_nice))
6898 				return -EPERM;
6899 		}
6900 
6901 		if (rt_policy(policy)) {
6902 			unsigned long rlim_rtprio =
6903 					task_rlimit(p, RLIMIT_RTPRIO);
6904 
6905 			/* Can't set/change the rt policy: */
6906 			if (policy != p->policy && !rlim_rtprio)
6907 				return -EPERM;
6908 
6909 			/* Can't increase priority: */
6910 			if (attr->sched_priority > p->rt_priority &&
6911 			    attr->sched_priority > rlim_rtprio)
6912 				return -EPERM;
6913 		}
6914 
6915 		 /*
6916 		  * Can't set/change SCHED_DEADLINE policy at all for now
6917 		  * (safest behavior); in the future we would like to allow
6918 		  * unprivileged DL tasks to increase their relative deadline
6919 		  * or reduce their runtime (both ways reducing utilization)
6920 		  */
6921 		if (dl_policy(policy))
6922 			return -EPERM;
6923 
6924 		/*
6925 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6926 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
6927 		 */
6928 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
6929 			if (!can_nice(p, task_nice(p)))
6930 				return -EPERM;
6931 		}
6932 
6933 		/* Can't change other user's priorities: */
6934 		if (!check_same_owner(p))
6935 			return -EPERM;
6936 
6937 		/* Normal users shall not reset the sched_reset_on_fork flag: */
6938 		if (p->sched_reset_on_fork && !reset_on_fork)
6939 			return -EPERM;
6940 	}
6941 
6942 	if (user) {
6943 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
6944 			return -EINVAL;
6945 
6946 		retval = security_task_setscheduler(p);
6947 		if (retval)
6948 			return retval;
6949 	}
6950 
6951 	/* Update task specific "requested" clamps */
6952 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6953 		retval = uclamp_validate(p, attr);
6954 		if (retval)
6955 			return retval;
6956 	}
6957 
6958 	if (pi)
6959 		cpuset_read_lock();
6960 
6961 	/*
6962 	 * Make sure no PI-waiters arrive (or leave) while we are
6963 	 * changing the priority of the task:
6964 	 *
6965 	 * To be able to change p->policy safely, the appropriate
6966 	 * runqueue lock must be held.
6967 	 */
6968 	rq = task_rq_lock(p, &rf);
6969 	update_rq_clock(rq);
6970 
6971 	/*
6972 	 * Changing the policy of the stop threads its a very bad idea:
6973 	 */
6974 	if (p == rq->stop) {
6975 		retval = -EINVAL;
6976 		goto unlock;
6977 	}
6978 
6979 	/*
6980 	 * If not changing anything there's no need to proceed further,
6981 	 * but store a possible modification of reset_on_fork.
6982 	 */
6983 	if (unlikely(policy == p->policy)) {
6984 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
6985 			goto change;
6986 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6987 			goto change;
6988 		if (dl_policy(policy) && dl_param_changed(p, attr))
6989 			goto change;
6990 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6991 			goto change;
6992 
6993 		p->sched_reset_on_fork = reset_on_fork;
6994 		retval = 0;
6995 		goto unlock;
6996 	}
6997 change:
6998 
6999 	if (user) {
7000 #ifdef CONFIG_RT_GROUP_SCHED
7001 		/*
7002 		 * Do not allow realtime tasks into groups that have no runtime
7003 		 * assigned.
7004 		 */
7005 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7006 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7007 				!task_group_is_autogroup(task_group(p))) {
7008 			retval = -EPERM;
7009 			goto unlock;
7010 		}
7011 #endif
7012 #ifdef CONFIG_SMP
7013 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7014 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7015 			cpumask_t *span = rq->rd->span;
7016 
7017 			/*
7018 			 * Don't allow tasks with an affinity mask smaller than
7019 			 * the entire root_domain to become SCHED_DEADLINE. We
7020 			 * will also fail if there's no bandwidth available.
7021 			 */
7022 			if (!cpumask_subset(span, p->cpus_ptr) ||
7023 			    rq->rd->dl_bw.bw == 0) {
7024 				retval = -EPERM;
7025 				goto unlock;
7026 			}
7027 		}
7028 #endif
7029 	}
7030 
7031 	/* Re-check policy now with rq lock held: */
7032 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7033 		policy = oldpolicy = -1;
7034 		task_rq_unlock(rq, p, &rf);
7035 		if (pi)
7036 			cpuset_read_unlock();
7037 		goto recheck;
7038 	}
7039 
7040 	/*
7041 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7042 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7043 	 * is available.
7044 	 */
7045 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7046 		retval = -EBUSY;
7047 		goto unlock;
7048 	}
7049 
7050 	p->sched_reset_on_fork = reset_on_fork;
7051 	oldprio = p->prio;
7052 
7053 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7054 	if (pi) {
7055 		/*
7056 		 * Take priority boosted tasks into account. If the new
7057 		 * effective priority is unchanged, we just store the new
7058 		 * normal parameters and do not touch the scheduler class and
7059 		 * the runqueue. This will be done when the task deboost
7060 		 * itself.
7061 		 */
7062 		newprio = rt_effective_prio(p, newprio);
7063 		if (newprio == oldprio)
7064 			queue_flags &= ~DEQUEUE_MOVE;
7065 	}
7066 
7067 	queued = task_on_rq_queued(p);
7068 	running = task_current(rq, p);
7069 	if (queued)
7070 		dequeue_task(rq, p, queue_flags);
7071 	if (running)
7072 		put_prev_task(rq, p);
7073 
7074 	prev_class = p->sched_class;
7075 
7076 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7077 		__setscheduler_params(p, attr);
7078 		__setscheduler_prio(p, newprio);
7079 	}
7080 	__setscheduler_uclamp(p, attr);
7081 
7082 	if (queued) {
7083 		/*
7084 		 * We enqueue to tail when the priority of a task is
7085 		 * increased (user space view).
7086 		 */
7087 		if (oldprio < p->prio)
7088 			queue_flags |= ENQUEUE_HEAD;
7089 
7090 		enqueue_task(rq, p, queue_flags);
7091 	}
7092 	if (running)
7093 		set_next_task(rq, p);
7094 
7095 	check_class_changed(rq, p, prev_class, oldprio);
7096 
7097 	/* Avoid rq from going away on us: */
7098 	preempt_disable();
7099 	head = splice_balance_callbacks(rq);
7100 	task_rq_unlock(rq, p, &rf);
7101 
7102 	if (pi) {
7103 		cpuset_read_unlock();
7104 		rt_mutex_adjust_pi(p);
7105 	}
7106 
7107 	/* Run balance callbacks after we've adjusted the PI chain: */
7108 	balance_callbacks(rq, head);
7109 	preempt_enable();
7110 
7111 	return 0;
7112 
7113 unlock:
7114 	task_rq_unlock(rq, p, &rf);
7115 	if (pi)
7116 		cpuset_read_unlock();
7117 	return retval;
7118 }
7119 
7120 static int _sched_setscheduler(struct task_struct *p, int policy,
7121 			       const struct sched_param *param, bool check)
7122 {
7123 	struct sched_attr attr = {
7124 		.sched_policy   = policy,
7125 		.sched_priority = param->sched_priority,
7126 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7127 	};
7128 
7129 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7130 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7131 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7132 		policy &= ~SCHED_RESET_ON_FORK;
7133 		attr.sched_policy = policy;
7134 	}
7135 
7136 	return __sched_setscheduler(p, &attr, check, true);
7137 }
7138 /**
7139  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7140  * @p: the task in question.
7141  * @policy: new policy.
7142  * @param: structure containing the new RT priority.
7143  *
7144  * Use sched_set_fifo(), read its comment.
7145  *
7146  * Return: 0 on success. An error code otherwise.
7147  *
7148  * NOTE that the task may be already dead.
7149  */
7150 int sched_setscheduler(struct task_struct *p, int policy,
7151 		       const struct sched_param *param)
7152 {
7153 	return _sched_setscheduler(p, policy, param, true);
7154 }
7155 
7156 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7157 {
7158 	return __sched_setscheduler(p, attr, true, true);
7159 }
7160 
7161 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7162 {
7163 	return __sched_setscheduler(p, attr, false, true);
7164 }
7165 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7166 
7167 /**
7168  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7169  * @p: the task in question.
7170  * @policy: new policy.
7171  * @param: structure containing the new RT priority.
7172  *
7173  * Just like sched_setscheduler, only don't bother checking if the
7174  * current context has permission.  For example, this is needed in
7175  * stop_machine(): we create temporary high priority worker threads,
7176  * but our caller might not have that capability.
7177  *
7178  * Return: 0 on success. An error code otherwise.
7179  */
7180 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7181 			       const struct sched_param *param)
7182 {
7183 	return _sched_setscheduler(p, policy, param, false);
7184 }
7185 
7186 /*
7187  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7188  * incapable of resource management, which is the one thing an OS really should
7189  * be doing.
7190  *
7191  * This is of course the reason it is limited to privileged users only.
7192  *
7193  * Worse still; it is fundamentally impossible to compose static priority
7194  * workloads. You cannot take two correctly working static prio workloads
7195  * and smash them together and still expect them to work.
7196  *
7197  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7198  *
7199  *   MAX_RT_PRIO / 2
7200  *
7201  * The administrator _MUST_ configure the system, the kernel simply doesn't
7202  * know enough information to make a sensible choice.
7203  */
7204 void sched_set_fifo(struct task_struct *p)
7205 {
7206 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7207 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7208 }
7209 EXPORT_SYMBOL_GPL(sched_set_fifo);
7210 
7211 /*
7212  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7213  */
7214 void sched_set_fifo_low(struct task_struct *p)
7215 {
7216 	struct sched_param sp = { .sched_priority = 1 };
7217 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7218 }
7219 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7220 
7221 void sched_set_normal(struct task_struct *p, int nice)
7222 {
7223 	struct sched_attr attr = {
7224 		.sched_policy = SCHED_NORMAL,
7225 		.sched_nice = nice,
7226 	};
7227 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7228 }
7229 EXPORT_SYMBOL_GPL(sched_set_normal);
7230 
7231 static int
7232 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7233 {
7234 	struct sched_param lparam;
7235 	struct task_struct *p;
7236 	int retval;
7237 
7238 	if (!param || pid < 0)
7239 		return -EINVAL;
7240 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7241 		return -EFAULT;
7242 
7243 	rcu_read_lock();
7244 	retval = -ESRCH;
7245 	p = find_process_by_pid(pid);
7246 	if (likely(p))
7247 		get_task_struct(p);
7248 	rcu_read_unlock();
7249 
7250 	if (likely(p)) {
7251 		retval = sched_setscheduler(p, policy, &lparam);
7252 		put_task_struct(p);
7253 	}
7254 
7255 	return retval;
7256 }
7257 
7258 /*
7259  * Mimics kernel/events/core.c perf_copy_attr().
7260  */
7261 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7262 {
7263 	u32 size;
7264 	int ret;
7265 
7266 	/* Zero the full structure, so that a short copy will be nice: */
7267 	memset(attr, 0, sizeof(*attr));
7268 
7269 	ret = get_user(size, &uattr->size);
7270 	if (ret)
7271 		return ret;
7272 
7273 	/* ABI compatibility quirk: */
7274 	if (!size)
7275 		size = SCHED_ATTR_SIZE_VER0;
7276 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7277 		goto err_size;
7278 
7279 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7280 	if (ret) {
7281 		if (ret == -E2BIG)
7282 			goto err_size;
7283 		return ret;
7284 	}
7285 
7286 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7287 	    size < SCHED_ATTR_SIZE_VER1)
7288 		return -EINVAL;
7289 
7290 	/*
7291 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7292 	 * to be strict and return an error on out-of-bounds values?
7293 	 */
7294 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7295 
7296 	return 0;
7297 
7298 err_size:
7299 	put_user(sizeof(*attr), &uattr->size);
7300 	return -E2BIG;
7301 }
7302 
7303 /**
7304  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7305  * @pid: the pid in question.
7306  * @policy: new policy.
7307  * @param: structure containing the new RT priority.
7308  *
7309  * Return: 0 on success. An error code otherwise.
7310  */
7311 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7312 {
7313 	if (policy < 0)
7314 		return -EINVAL;
7315 
7316 	return do_sched_setscheduler(pid, policy, param);
7317 }
7318 
7319 /**
7320  * sys_sched_setparam - set/change the RT priority of a thread
7321  * @pid: the pid in question.
7322  * @param: structure containing the new RT priority.
7323  *
7324  * Return: 0 on success. An error code otherwise.
7325  */
7326 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7327 {
7328 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7329 }
7330 
7331 /**
7332  * sys_sched_setattr - same as above, but with extended sched_attr
7333  * @pid: the pid in question.
7334  * @uattr: structure containing the extended parameters.
7335  * @flags: for future extension.
7336  */
7337 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7338 			       unsigned int, flags)
7339 {
7340 	struct sched_attr attr;
7341 	struct task_struct *p;
7342 	int retval;
7343 
7344 	if (!uattr || pid < 0 || flags)
7345 		return -EINVAL;
7346 
7347 	retval = sched_copy_attr(uattr, &attr);
7348 	if (retval)
7349 		return retval;
7350 
7351 	if ((int)attr.sched_policy < 0)
7352 		return -EINVAL;
7353 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7354 		attr.sched_policy = SETPARAM_POLICY;
7355 
7356 	rcu_read_lock();
7357 	retval = -ESRCH;
7358 	p = find_process_by_pid(pid);
7359 	if (likely(p))
7360 		get_task_struct(p);
7361 	rcu_read_unlock();
7362 
7363 	if (likely(p)) {
7364 		retval = sched_setattr(p, &attr);
7365 		put_task_struct(p);
7366 	}
7367 
7368 	return retval;
7369 }
7370 
7371 /**
7372  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7373  * @pid: the pid in question.
7374  *
7375  * Return: On success, the policy of the thread. Otherwise, a negative error
7376  * code.
7377  */
7378 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7379 {
7380 	struct task_struct *p;
7381 	int retval;
7382 
7383 	if (pid < 0)
7384 		return -EINVAL;
7385 
7386 	retval = -ESRCH;
7387 	rcu_read_lock();
7388 	p = find_process_by_pid(pid);
7389 	if (p) {
7390 		retval = security_task_getscheduler(p);
7391 		if (!retval)
7392 			retval = p->policy
7393 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7394 	}
7395 	rcu_read_unlock();
7396 	return retval;
7397 }
7398 
7399 /**
7400  * sys_sched_getparam - get the RT priority of a thread
7401  * @pid: the pid in question.
7402  * @param: structure containing the RT priority.
7403  *
7404  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7405  * code.
7406  */
7407 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7408 {
7409 	struct sched_param lp = { .sched_priority = 0 };
7410 	struct task_struct *p;
7411 	int retval;
7412 
7413 	if (!param || pid < 0)
7414 		return -EINVAL;
7415 
7416 	rcu_read_lock();
7417 	p = find_process_by_pid(pid);
7418 	retval = -ESRCH;
7419 	if (!p)
7420 		goto out_unlock;
7421 
7422 	retval = security_task_getscheduler(p);
7423 	if (retval)
7424 		goto out_unlock;
7425 
7426 	if (task_has_rt_policy(p))
7427 		lp.sched_priority = p->rt_priority;
7428 	rcu_read_unlock();
7429 
7430 	/*
7431 	 * This one might sleep, we cannot do it with a spinlock held ...
7432 	 */
7433 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7434 
7435 	return retval;
7436 
7437 out_unlock:
7438 	rcu_read_unlock();
7439 	return retval;
7440 }
7441 
7442 /*
7443  * Copy the kernel size attribute structure (which might be larger
7444  * than what user-space knows about) to user-space.
7445  *
7446  * Note that all cases are valid: user-space buffer can be larger or
7447  * smaller than the kernel-space buffer. The usual case is that both
7448  * have the same size.
7449  */
7450 static int
7451 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7452 			struct sched_attr *kattr,
7453 			unsigned int usize)
7454 {
7455 	unsigned int ksize = sizeof(*kattr);
7456 
7457 	if (!access_ok(uattr, usize))
7458 		return -EFAULT;
7459 
7460 	/*
7461 	 * sched_getattr() ABI forwards and backwards compatibility:
7462 	 *
7463 	 * If usize == ksize then we just copy everything to user-space and all is good.
7464 	 *
7465 	 * If usize < ksize then we only copy as much as user-space has space for,
7466 	 * this keeps ABI compatibility as well. We skip the rest.
7467 	 *
7468 	 * If usize > ksize then user-space is using a newer version of the ABI,
7469 	 * which part the kernel doesn't know about. Just ignore it - tooling can
7470 	 * detect the kernel's knowledge of attributes from the attr->size value
7471 	 * which is set to ksize in this case.
7472 	 */
7473 	kattr->size = min(usize, ksize);
7474 
7475 	if (copy_to_user(uattr, kattr, kattr->size))
7476 		return -EFAULT;
7477 
7478 	return 0;
7479 }
7480 
7481 /**
7482  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7483  * @pid: the pid in question.
7484  * @uattr: structure containing the extended parameters.
7485  * @usize: sizeof(attr) for fwd/bwd comp.
7486  * @flags: for future extension.
7487  */
7488 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7489 		unsigned int, usize, unsigned int, flags)
7490 {
7491 	struct sched_attr kattr = { };
7492 	struct task_struct *p;
7493 	int retval;
7494 
7495 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7496 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
7497 		return -EINVAL;
7498 
7499 	rcu_read_lock();
7500 	p = find_process_by_pid(pid);
7501 	retval = -ESRCH;
7502 	if (!p)
7503 		goto out_unlock;
7504 
7505 	retval = security_task_getscheduler(p);
7506 	if (retval)
7507 		goto out_unlock;
7508 
7509 	kattr.sched_policy = p->policy;
7510 	if (p->sched_reset_on_fork)
7511 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7512 	if (task_has_dl_policy(p))
7513 		__getparam_dl(p, &kattr);
7514 	else if (task_has_rt_policy(p))
7515 		kattr.sched_priority = p->rt_priority;
7516 	else
7517 		kattr.sched_nice = task_nice(p);
7518 
7519 #ifdef CONFIG_UCLAMP_TASK
7520 	/*
7521 	 * This could race with another potential updater, but this is fine
7522 	 * because it'll correctly read the old or the new value. We don't need
7523 	 * to guarantee who wins the race as long as it doesn't return garbage.
7524 	 */
7525 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7526 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7527 #endif
7528 
7529 	rcu_read_unlock();
7530 
7531 	return sched_attr_copy_to_user(uattr, &kattr, usize);
7532 
7533 out_unlock:
7534 	rcu_read_unlock();
7535 	return retval;
7536 }
7537 
7538 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7539 {
7540 	cpumask_var_t cpus_allowed, new_mask;
7541 	struct task_struct *p;
7542 	int retval;
7543 
7544 	rcu_read_lock();
7545 
7546 	p = find_process_by_pid(pid);
7547 	if (!p) {
7548 		rcu_read_unlock();
7549 		return -ESRCH;
7550 	}
7551 
7552 	/* Prevent p going away */
7553 	get_task_struct(p);
7554 	rcu_read_unlock();
7555 
7556 	if (p->flags & PF_NO_SETAFFINITY) {
7557 		retval = -EINVAL;
7558 		goto out_put_task;
7559 	}
7560 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
7561 		retval = -ENOMEM;
7562 		goto out_put_task;
7563 	}
7564 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7565 		retval = -ENOMEM;
7566 		goto out_free_cpus_allowed;
7567 	}
7568 	retval = -EPERM;
7569 	if (!check_same_owner(p)) {
7570 		rcu_read_lock();
7571 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7572 			rcu_read_unlock();
7573 			goto out_free_new_mask;
7574 		}
7575 		rcu_read_unlock();
7576 	}
7577 
7578 	retval = security_task_setscheduler(p);
7579 	if (retval)
7580 		goto out_free_new_mask;
7581 
7582 
7583 	cpuset_cpus_allowed(p, cpus_allowed);
7584 	cpumask_and(new_mask, in_mask, cpus_allowed);
7585 
7586 	/*
7587 	 * Since bandwidth control happens on root_domain basis,
7588 	 * if admission test is enabled, we only admit -deadline
7589 	 * tasks allowed to run on all the CPUs in the task's
7590 	 * root_domain.
7591 	 */
7592 #ifdef CONFIG_SMP
7593 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
7594 		rcu_read_lock();
7595 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
7596 			retval = -EBUSY;
7597 			rcu_read_unlock();
7598 			goto out_free_new_mask;
7599 		}
7600 		rcu_read_unlock();
7601 	}
7602 #endif
7603 again:
7604 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
7605 
7606 	if (!retval) {
7607 		cpuset_cpus_allowed(p, cpus_allowed);
7608 		if (!cpumask_subset(new_mask, cpus_allowed)) {
7609 			/*
7610 			 * We must have raced with a concurrent cpuset
7611 			 * update. Just reset the cpus_allowed to the
7612 			 * cpuset's cpus_allowed
7613 			 */
7614 			cpumask_copy(new_mask, cpus_allowed);
7615 			goto again;
7616 		}
7617 	}
7618 out_free_new_mask:
7619 	free_cpumask_var(new_mask);
7620 out_free_cpus_allowed:
7621 	free_cpumask_var(cpus_allowed);
7622 out_put_task:
7623 	put_task_struct(p);
7624 	return retval;
7625 }
7626 
7627 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
7628 			     struct cpumask *new_mask)
7629 {
7630 	if (len < cpumask_size())
7631 		cpumask_clear(new_mask);
7632 	else if (len > cpumask_size())
7633 		len = cpumask_size();
7634 
7635 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
7636 }
7637 
7638 /**
7639  * sys_sched_setaffinity - set the CPU affinity of a process
7640  * @pid: pid of the process
7641  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
7642  * @user_mask_ptr: user-space pointer to the new CPU mask
7643  *
7644  * Return: 0 on success. An error code otherwise.
7645  */
7646 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
7647 		unsigned long __user *, user_mask_ptr)
7648 {
7649 	cpumask_var_t new_mask;
7650 	int retval;
7651 
7652 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
7653 		return -ENOMEM;
7654 
7655 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
7656 	if (retval == 0)
7657 		retval = sched_setaffinity(pid, new_mask);
7658 	free_cpumask_var(new_mask);
7659 	return retval;
7660 }
7661 
7662 long sched_getaffinity(pid_t pid, struct cpumask *mask)
7663 {
7664 	struct task_struct *p;
7665 	unsigned long flags;
7666 	int retval;
7667 
7668 	rcu_read_lock();
7669 
7670 	retval = -ESRCH;
7671 	p = find_process_by_pid(pid);
7672 	if (!p)
7673 		goto out_unlock;
7674 
7675 	retval = security_task_getscheduler(p);
7676 	if (retval)
7677 		goto out_unlock;
7678 
7679 	raw_spin_lock_irqsave(&p->pi_lock, flags);
7680 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
7681 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
7682 
7683 out_unlock:
7684 	rcu_read_unlock();
7685 
7686 	return retval;
7687 }
7688 
7689 /**
7690  * sys_sched_getaffinity - get the CPU affinity of a process
7691  * @pid: pid of the process
7692  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
7693  * @user_mask_ptr: user-space pointer to hold the current CPU mask
7694  *
7695  * Return: size of CPU mask copied to user_mask_ptr on success. An
7696  * error code otherwise.
7697  */
7698 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
7699 		unsigned long __user *, user_mask_ptr)
7700 {
7701 	int ret;
7702 	cpumask_var_t mask;
7703 
7704 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
7705 		return -EINVAL;
7706 	if (len & (sizeof(unsigned long)-1))
7707 		return -EINVAL;
7708 
7709 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
7710 		return -ENOMEM;
7711 
7712 	ret = sched_getaffinity(pid, mask);
7713 	if (ret == 0) {
7714 		unsigned int retlen = min(len, cpumask_size());
7715 
7716 		if (copy_to_user(user_mask_ptr, mask, retlen))
7717 			ret = -EFAULT;
7718 		else
7719 			ret = retlen;
7720 	}
7721 	free_cpumask_var(mask);
7722 
7723 	return ret;
7724 }
7725 
7726 static void do_sched_yield(void)
7727 {
7728 	struct rq_flags rf;
7729 	struct rq *rq;
7730 
7731 	rq = this_rq_lock_irq(&rf);
7732 
7733 	schedstat_inc(rq->yld_count);
7734 	current->sched_class->yield_task(rq);
7735 
7736 	preempt_disable();
7737 	rq_unlock_irq(rq, &rf);
7738 	sched_preempt_enable_no_resched();
7739 
7740 	schedule();
7741 }
7742 
7743 /**
7744  * sys_sched_yield - yield the current processor to other threads.
7745  *
7746  * This function yields the current CPU to other tasks. If there are no
7747  * other threads running on this CPU then this function will return.
7748  *
7749  * Return: 0.
7750  */
7751 SYSCALL_DEFINE0(sched_yield)
7752 {
7753 	do_sched_yield();
7754 	return 0;
7755 }
7756 
7757 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7758 int __sched __cond_resched(void)
7759 {
7760 	if (should_resched(0)) {
7761 		preempt_schedule_common();
7762 		return 1;
7763 	}
7764 #ifndef CONFIG_PREEMPT_RCU
7765 	rcu_all_qs();
7766 #endif
7767 	return 0;
7768 }
7769 EXPORT_SYMBOL(__cond_resched);
7770 #endif
7771 
7772 #ifdef CONFIG_PREEMPT_DYNAMIC
7773 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7774 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7775 
7776 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7777 EXPORT_STATIC_CALL_TRAMP(might_resched);
7778 #endif
7779 
7780 /*
7781  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7782  * call schedule, and on return reacquire the lock.
7783  *
7784  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7785  * operations here to prevent schedule() from being called twice (once via
7786  * spin_unlock(), once by hand).
7787  */
7788 int __cond_resched_lock(spinlock_t *lock)
7789 {
7790 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7791 	int ret = 0;
7792 
7793 	lockdep_assert_held(lock);
7794 
7795 	if (spin_needbreak(lock) || resched) {
7796 		spin_unlock(lock);
7797 		if (resched)
7798 			preempt_schedule_common();
7799 		else
7800 			cpu_relax();
7801 		ret = 1;
7802 		spin_lock(lock);
7803 	}
7804 	return ret;
7805 }
7806 EXPORT_SYMBOL(__cond_resched_lock);
7807 
7808 int __cond_resched_rwlock_read(rwlock_t *lock)
7809 {
7810 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7811 	int ret = 0;
7812 
7813 	lockdep_assert_held_read(lock);
7814 
7815 	if (rwlock_needbreak(lock) || resched) {
7816 		read_unlock(lock);
7817 		if (resched)
7818 			preempt_schedule_common();
7819 		else
7820 			cpu_relax();
7821 		ret = 1;
7822 		read_lock(lock);
7823 	}
7824 	return ret;
7825 }
7826 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7827 
7828 int __cond_resched_rwlock_write(rwlock_t *lock)
7829 {
7830 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7831 	int ret = 0;
7832 
7833 	lockdep_assert_held_write(lock);
7834 
7835 	if (rwlock_needbreak(lock) || resched) {
7836 		write_unlock(lock);
7837 		if (resched)
7838 			preempt_schedule_common();
7839 		else
7840 			cpu_relax();
7841 		ret = 1;
7842 		write_lock(lock);
7843 	}
7844 	return ret;
7845 }
7846 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7847 
7848 /**
7849  * yield - yield the current processor to other threads.
7850  *
7851  * Do not ever use this function, there's a 99% chance you're doing it wrong.
7852  *
7853  * The scheduler is at all times free to pick the calling task as the most
7854  * eligible task to run, if removing the yield() call from your code breaks
7855  * it, it's already broken.
7856  *
7857  * Typical broken usage is:
7858  *
7859  * while (!event)
7860  *	yield();
7861  *
7862  * where one assumes that yield() will let 'the other' process run that will
7863  * make event true. If the current task is a SCHED_FIFO task that will never
7864  * happen. Never use yield() as a progress guarantee!!
7865  *
7866  * If you want to use yield() to wait for something, use wait_event().
7867  * If you want to use yield() to be 'nice' for others, use cond_resched().
7868  * If you still want to use yield(), do not!
7869  */
7870 void __sched yield(void)
7871 {
7872 	set_current_state(TASK_RUNNING);
7873 	do_sched_yield();
7874 }
7875 EXPORT_SYMBOL(yield);
7876 
7877 /**
7878  * yield_to - yield the current processor to another thread in
7879  * your thread group, or accelerate that thread toward the
7880  * processor it's on.
7881  * @p: target task
7882  * @preempt: whether task preemption is allowed or not
7883  *
7884  * It's the caller's job to ensure that the target task struct
7885  * can't go away on us before we can do any checks.
7886  *
7887  * Return:
7888  *	true (>0) if we indeed boosted the target task.
7889  *	false (0) if we failed to boost the target.
7890  *	-ESRCH if there's no task to yield to.
7891  */
7892 int __sched yield_to(struct task_struct *p, bool preempt)
7893 {
7894 	struct task_struct *curr = current;
7895 	struct rq *rq, *p_rq;
7896 	unsigned long flags;
7897 	int yielded = 0;
7898 
7899 	local_irq_save(flags);
7900 	rq = this_rq();
7901 
7902 again:
7903 	p_rq = task_rq(p);
7904 	/*
7905 	 * If we're the only runnable task on the rq and target rq also
7906 	 * has only one task, there's absolutely no point in yielding.
7907 	 */
7908 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7909 		yielded = -ESRCH;
7910 		goto out_irq;
7911 	}
7912 
7913 	double_rq_lock(rq, p_rq);
7914 	if (task_rq(p) != p_rq) {
7915 		double_rq_unlock(rq, p_rq);
7916 		goto again;
7917 	}
7918 
7919 	if (!curr->sched_class->yield_to_task)
7920 		goto out_unlock;
7921 
7922 	if (curr->sched_class != p->sched_class)
7923 		goto out_unlock;
7924 
7925 	if (task_running(p_rq, p) || !task_is_running(p))
7926 		goto out_unlock;
7927 
7928 	yielded = curr->sched_class->yield_to_task(rq, p);
7929 	if (yielded) {
7930 		schedstat_inc(rq->yld_count);
7931 		/*
7932 		 * Make p's CPU reschedule; pick_next_entity takes care of
7933 		 * fairness.
7934 		 */
7935 		if (preempt && rq != p_rq)
7936 			resched_curr(p_rq);
7937 	}
7938 
7939 out_unlock:
7940 	double_rq_unlock(rq, p_rq);
7941 out_irq:
7942 	local_irq_restore(flags);
7943 
7944 	if (yielded > 0)
7945 		schedule();
7946 
7947 	return yielded;
7948 }
7949 EXPORT_SYMBOL_GPL(yield_to);
7950 
7951 int io_schedule_prepare(void)
7952 {
7953 	int old_iowait = current->in_iowait;
7954 
7955 	current->in_iowait = 1;
7956 	blk_schedule_flush_plug(current);
7957 
7958 	return old_iowait;
7959 }
7960 
7961 void io_schedule_finish(int token)
7962 {
7963 	current->in_iowait = token;
7964 }
7965 
7966 /*
7967  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7968  * that process accounting knows that this is a task in IO wait state.
7969  */
7970 long __sched io_schedule_timeout(long timeout)
7971 {
7972 	int token;
7973 	long ret;
7974 
7975 	token = io_schedule_prepare();
7976 	ret = schedule_timeout(timeout);
7977 	io_schedule_finish(token);
7978 
7979 	return ret;
7980 }
7981 EXPORT_SYMBOL(io_schedule_timeout);
7982 
7983 void __sched io_schedule(void)
7984 {
7985 	int token;
7986 
7987 	token = io_schedule_prepare();
7988 	schedule();
7989 	io_schedule_finish(token);
7990 }
7991 EXPORT_SYMBOL(io_schedule);
7992 
7993 /**
7994  * sys_sched_get_priority_max - return maximum RT priority.
7995  * @policy: scheduling class.
7996  *
7997  * Return: On success, this syscall returns the maximum
7998  * rt_priority that can be used by a given scheduling class.
7999  * On failure, a negative error code is returned.
8000  */
8001 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8002 {
8003 	int ret = -EINVAL;
8004 
8005 	switch (policy) {
8006 	case SCHED_FIFO:
8007 	case SCHED_RR:
8008 		ret = MAX_RT_PRIO-1;
8009 		break;
8010 	case SCHED_DEADLINE:
8011 	case SCHED_NORMAL:
8012 	case SCHED_BATCH:
8013 	case SCHED_IDLE:
8014 		ret = 0;
8015 		break;
8016 	}
8017 	return ret;
8018 }
8019 
8020 /**
8021  * sys_sched_get_priority_min - return minimum RT priority.
8022  * @policy: scheduling class.
8023  *
8024  * Return: On success, this syscall returns the minimum
8025  * rt_priority that can be used by a given scheduling class.
8026  * On failure, a negative error code is returned.
8027  */
8028 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8029 {
8030 	int ret = -EINVAL;
8031 
8032 	switch (policy) {
8033 	case SCHED_FIFO:
8034 	case SCHED_RR:
8035 		ret = 1;
8036 		break;
8037 	case SCHED_DEADLINE:
8038 	case SCHED_NORMAL:
8039 	case SCHED_BATCH:
8040 	case SCHED_IDLE:
8041 		ret = 0;
8042 	}
8043 	return ret;
8044 }
8045 
8046 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8047 {
8048 	struct task_struct *p;
8049 	unsigned int time_slice;
8050 	struct rq_flags rf;
8051 	struct rq *rq;
8052 	int retval;
8053 
8054 	if (pid < 0)
8055 		return -EINVAL;
8056 
8057 	retval = -ESRCH;
8058 	rcu_read_lock();
8059 	p = find_process_by_pid(pid);
8060 	if (!p)
8061 		goto out_unlock;
8062 
8063 	retval = security_task_getscheduler(p);
8064 	if (retval)
8065 		goto out_unlock;
8066 
8067 	rq = task_rq_lock(p, &rf);
8068 	time_slice = 0;
8069 	if (p->sched_class->get_rr_interval)
8070 		time_slice = p->sched_class->get_rr_interval(rq, p);
8071 	task_rq_unlock(rq, p, &rf);
8072 
8073 	rcu_read_unlock();
8074 	jiffies_to_timespec64(time_slice, t);
8075 	return 0;
8076 
8077 out_unlock:
8078 	rcu_read_unlock();
8079 	return retval;
8080 }
8081 
8082 /**
8083  * sys_sched_rr_get_interval - return the default timeslice of a process.
8084  * @pid: pid of the process.
8085  * @interval: userspace pointer to the timeslice value.
8086  *
8087  * this syscall writes the default timeslice value of a given process
8088  * into the user-space timespec buffer. A value of '0' means infinity.
8089  *
8090  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8091  * an error code.
8092  */
8093 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8094 		struct __kernel_timespec __user *, interval)
8095 {
8096 	struct timespec64 t;
8097 	int retval = sched_rr_get_interval(pid, &t);
8098 
8099 	if (retval == 0)
8100 		retval = put_timespec64(&t, interval);
8101 
8102 	return retval;
8103 }
8104 
8105 #ifdef CONFIG_COMPAT_32BIT_TIME
8106 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8107 		struct old_timespec32 __user *, interval)
8108 {
8109 	struct timespec64 t;
8110 	int retval = sched_rr_get_interval(pid, &t);
8111 
8112 	if (retval == 0)
8113 		retval = put_old_timespec32(&t, interval);
8114 	return retval;
8115 }
8116 #endif
8117 
8118 void sched_show_task(struct task_struct *p)
8119 {
8120 	unsigned long free = 0;
8121 	int ppid;
8122 
8123 	if (!try_get_task_stack(p))
8124 		return;
8125 
8126 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8127 
8128 	if (task_is_running(p))
8129 		pr_cont("  running task    ");
8130 #ifdef CONFIG_DEBUG_STACK_USAGE
8131 	free = stack_not_used(p);
8132 #endif
8133 	ppid = 0;
8134 	rcu_read_lock();
8135 	if (pid_alive(p))
8136 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8137 	rcu_read_unlock();
8138 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8139 		free, task_pid_nr(p), ppid,
8140 		(unsigned long)task_thread_info(p)->flags);
8141 
8142 	print_worker_info(KERN_INFO, p);
8143 	print_stop_info(KERN_INFO, p);
8144 	show_stack(p, NULL, KERN_INFO);
8145 	put_task_stack(p);
8146 }
8147 EXPORT_SYMBOL_GPL(sched_show_task);
8148 
8149 static inline bool
8150 state_filter_match(unsigned long state_filter, struct task_struct *p)
8151 {
8152 	unsigned int state = READ_ONCE(p->__state);
8153 
8154 	/* no filter, everything matches */
8155 	if (!state_filter)
8156 		return true;
8157 
8158 	/* filter, but doesn't match */
8159 	if (!(state & state_filter))
8160 		return false;
8161 
8162 	/*
8163 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8164 	 * TASK_KILLABLE).
8165 	 */
8166 	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8167 		return false;
8168 
8169 	return true;
8170 }
8171 
8172 
8173 void show_state_filter(unsigned int state_filter)
8174 {
8175 	struct task_struct *g, *p;
8176 
8177 	rcu_read_lock();
8178 	for_each_process_thread(g, p) {
8179 		/*
8180 		 * reset the NMI-timeout, listing all files on a slow
8181 		 * console might take a lot of time:
8182 		 * Also, reset softlockup watchdogs on all CPUs, because
8183 		 * another CPU might be blocked waiting for us to process
8184 		 * an IPI.
8185 		 */
8186 		touch_nmi_watchdog();
8187 		touch_all_softlockup_watchdogs();
8188 		if (state_filter_match(state_filter, p))
8189 			sched_show_task(p);
8190 	}
8191 
8192 #ifdef CONFIG_SCHED_DEBUG
8193 	if (!state_filter)
8194 		sysrq_sched_debug_show();
8195 #endif
8196 	rcu_read_unlock();
8197 	/*
8198 	 * Only show locks if all tasks are dumped:
8199 	 */
8200 	if (!state_filter)
8201 		debug_show_all_locks();
8202 }
8203 
8204 /**
8205  * init_idle - set up an idle thread for a given CPU
8206  * @idle: task in question
8207  * @cpu: CPU the idle task belongs to
8208  *
8209  * NOTE: this function does not set the idle thread's NEED_RESCHED
8210  * flag, to make booting more robust.
8211  */
8212 void __init init_idle(struct task_struct *idle, int cpu)
8213 {
8214 	struct rq *rq = cpu_rq(cpu);
8215 	unsigned long flags;
8216 
8217 	__sched_fork(0, idle);
8218 
8219 	/*
8220 	 * The idle task doesn't need the kthread struct to function, but it
8221 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8222 	 * if we want to avoid special-casing it in code that deals with per-CPU
8223 	 * kthreads.
8224 	 */
8225 	set_kthread_struct(idle);
8226 
8227 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8228 	raw_spin_rq_lock(rq);
8229 
8230 	idle->__state = TASK_RUNNING;
8231 	idle->se.exec_start = sched_clock();
8232 	/*
8233 	 * PF_KTHREAD should already be set at this point; regardless, make it
8234 	 * look like a proper per-CPU kthread.
8235 	 */
8236 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8237 	kthread_set_per_cpu(idle, cpu);
8238 
8239 	scs_task_reset(idle);
8240 	kasan_unpoison_task_stack(idle);
8241 
8242 #ifdef CONFIG_SMP
8243 	/*
8244 	 * It's possible that init_idle() gets called multiple times on a task,
8245 	 * in that case do_set_cpus_allowed() will not do the right thing.
8246 	 *
8247 	 * And since this is boot we can forgo the serialization.
8248 	 */
8249 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8250 #endif
8251 	/*
8252 	 * We're having a chicken and egg problem, even though we are
8253 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8254 	 * lockdep check in task_group() will fail.
8255 	 *
8256 	 * Similar case to sched_fork(). / Alternatively we could
8257 	 * use task_rq_lock() here and obtain the other rq->lock.
8258 	 *
8259 	 * Silence PROVE_RCU
8260 	 */
8261 	rcu_read_lock();
8262 	__set_task_cpu(idle, cpu);
8263 	rcu_read_unlock();
8264 
8265 	rq->idle = idle;
8266 	rcu_assign_pointer(rq->curr, idle);
8267 	idle->on_rq = TASK_ON_RQ_QUEUED;
8268 #ifdef CONFIG_SMP
8269 	idle->on_cpu = 1;
8270 #endif
8271 	raw_spin_rq_unlock(rq);
8272 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8273 
8274 	/* Set the preempt count _outside_ the spinlocks! */
8275 	init_idle_preempt_count(idle, cpu);
8276 
8277 	/*
8278 	 * The idle tasks have their own, simple scheduling class:
8279 	 */
8280 	idle->sched_class = &idle_sched_class;
8281 	ftrace_graph_init_idle_task(idle, cpu);
8282 	vtime_init_idle(idle, cpu);
8283 #ifdef CONFIG_SMP
8284 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8285 #endif
8286 }
8287 
8288 #ifdef CONFIG_SMP
8289 
8290 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8291 			      const struct cpumask *trial)
8292 {
8293 	int ret = 1;
8294 
8295 	if (!cpumask_weight(cur))
8296 		return ret;
8297 
8298 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8299 
8300 	return ret;
8301 }
8302 
8303 int task_can_attach(struct task_struct *p,
8304 		    const struct cpumask *cs_cpus_allowed)
8305 {
8306 	int ret = 0;
8307 
8308 	/*
8309 	 * Kthreads which disallow setaffinity shouldn't be moved
8310 	 * to a new cpuset; we don't want to change their CPU
8311 	 * affinity and isolating such threads by their set of
8312 	 * allowed nodes is unnecessary.  Thus, cpusets are not
8313 	 * applicable for such threads.  This prevents checking for
8314 	 * success of set_cpus_allowed_ptr() on all attached tasks
8315 	 * before cpus_mask may be changed.
8316 	 */
8317 	if (p->flags & PF_NO_SETAFFINITY) {
8318 		ret = -EINVAL;
8319 		goto out;
8320 	}
8321 
8322 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8323 					      cs_cpus_allowed))
8324 		ret = dl_task_can_attach(p, cs_cpus_allowed);
8325 
8326 out:
8327 	return ret;
8328 }
8329 
8330 bool sched_smp_initialized __read_mostly;
8331 
8332 #ifdef CONFIG_NUMA_BALANCING
8333 /* Migrate current task p to target_cpu */
8334 int migrate_task_to(struct task_struct *p, int target_cpu)
8335 {
8336 	struct migration_arg arg = { p, target_cpu };
8337 	int curr_cpu = task_cpu(p);
8338 
8339 	if (curr_cpu == target_cpu)
8340 		return 0;
8341 
8342 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8343 		return -EINVAL;
8344 
8345 	/* TODO: This is not properly updating schedstats */
8346 
8347 	trace_sched_move_numa(p, curr_cpu, target_cpu);
8348 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8349 }
8350 
8351 /*
8352  * Requeue a task on a given node and accurately track the number of NUMA
8353  * tasks on the runqueues
8354  */
8355 void sched_setnuma(struct task_struct *p, int nid)
8356 {
8357 	bool queued, running;
8358 	struct rq_flags rf;
8359 	struct rq *rq;
8360 
8361 	rq = task_rq_lock(p, &rf);
8362 	queued = task_on_rq_queued(p);
8363 	running = task_current(rq, p);
8364 
8365 	if (queued)
8366 		dequeue_task(rq, p, DEQUEUE_SAVE);
8367 	if (running)
8368 		put_prev_task(rq, p);
8369 
8370 	p->numa_preferred_nid = nid;
8371 
8372 	if (queued)
8373 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8374 	if (running)
8375 		set_next_task(rq, p);
8376 	task_rq_unlock(rq, p, &rf);
8377 }
8378 #endif /* CONFIG_NUMA_BALANCING */
8379 
8380 #ifdef CONFIG_HOTPLUG_CPU
8381 /*
8382  * Ensure that the idle task is using init_mm right before its CPU goes
8383  * offline.
8384  */
8385 void idle_task_exit(void)
8386 {
8387 	struct mm_struct *mm = current->active_mm;
8388 
8389 	BUG_ON(cpu_online(smp_processor_id()));
8390 	BUG_ON(current != this_rq()->idle);
8391 
8392 	if (mm != &init_mm) {
8393 		switch_mm(mm, &init_mm, current);
8394 		finish_arch_post_lock_switch();
8395 	}
8396 
8397 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8398 }
8399 
8400 static int __balance_push_cpu_stop(void *arg)
8401 {
8402 	struct task_struct *p = arg;
8403 	struct rq *rq = this_rq();
8404 	struct rq_flags rf;
8405 	int cpu;
8406 
8407 	raw_spin_lock_irq(&p->pi_lock);
8408 	rq_lock(rq, &rf);
8409 
8410 	update_rq_clock(rq);
8411 
8412 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8413 		cpu = select_fallback_rq(rq->cpu, p);
8414 		rq = __migrate_task(rq, &rf, p, cpu);
8415 	}
8416 
8417 	rq_unlock(rq, &rf);
8418 	raw_spin_unlock_irq(&p->pi_lock);
8419 
8420 	put_task_struct(p);
8421 
8422 	return 0;
8423 }
8424 
8425 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8426 
8427 /*
8428  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8429  *
8430  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8431  * effective when the hotplug motion is down.
8432  */
8433 static void balance_push(struct rq *rq)
8434 {
8435 	struct task_struct *push_task = rq->curr;
8436 
8437 	lockdep_assert_rq_held(rq);
8438 	SCHED_WARN_ON(rq->cpu != smp_processor_id());
8439 
8440 	/*
8441 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8442 	 */
8443 	rq->balance_callback = &balance_push_callback;
8444 
8445 	/*
8446 	 * Only active while going offline.
8447 	 */
8448 	if (!cpu_dying(rq->cpu))
8449 		return;
8450 
8451 	/*
8452 	 * Both the cpu-hotplug and stop task are in this case and are
8453 	 * required to complete the hotplug process.
8454 	 */
8455 	if (kthread_is_per_cpu(push_task) ||
8456 	    is_migration_disabled(push_task)) {
8457 
8458 		/*
8459 		 * If this is the idle task on the outgoing CPU try to wake
8460 		 * up the hotplug control thread which might wait for the
8461 		 * last task to vanish. The rcuwait_active() check is
8462 		 * accurate here because the waiter is pinned on this CPU
8463 		 * and can't obviously be running in parallel.
8464 		 *
8465 		 * On RT kernels this also has to check whether there are
8466 		 * pinned and scheduled out tasks on the runqueue. They
8467 		 * need to leave the migrate disabled section first.
8468 		 */
8469 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8470 		    rcuwait_active(&rq->hotplug_wait)) {
8471 			raw_spin_rq_unlock(rq);
8472 			rcuwait_wake_up(&rq->hotplug_wait);
8473 			raw_spin_rq_lock(rq);
8474 		}
8475 		return;
8476 	}
8477 
8478 	get_task_struct(push_task);
8479 	/*
8480 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8481 	 * Both preemption and IRQs are still disabled.
8482 	 */
8483 	raw_spin_rq_unlock(rq);
8484 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8485 			    this_cpu_ptr(&push_work));
8486 	/*
8487 	 * At this point need_resched() is true and we'll take the loop in
8488 	 * schedule(). The next pick is obviously going to be the stop task
8489 	 * which kthread_is_per_cpu() and will push this task away.
8490 	 */
8491 	raw_spin_rq_lock(rq);
8492 }
8493 
8494 static void balance_push_set(int cpu, bool on)
8495 {
8496 	struct rq *rq = cpu_rq(cpu);
8497 	struct rq_flags rf;
8498 
8499 	rq_lock_irqsave(rq, &rf);
8500 	if (on) {
8501 		WARN_ON_ONCE(rq->balance_callback);
8502 		rq->balance_callback = &balance_push_callback;
8503 	} else if (rq->balance_callback == &balance_push_callback) {
8504 		rq->balance_callback = NULL;
8505 	}
8506 	rq_unlock_irqrestore(rq, &rf);
8507 }
8508 
8509 /*
8510  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8511  * inactive. All tasks which are not per CPU kernel threads are either
8512  * pushed off this CPU now via balance_push() or placed on a different CPU
8513  * during wakeup. Wait until the CPU is quiescent.
8514  */
8515 static void balance_hotplug_wait(void)
8516 {
8517 	struct rq *rq = this_rq();
8518 
8519 	rcuwait_wait_event(&rq->hotplug_wait,
8520 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8521 			   TASK_UNINTERRUPTIBLE);
8522 }
8523 
8524 #else
8525 
8526 static inline void balance_push(struct rq *rq)
8527 {
8528 }
8529 
8530 static inline void balance_push_set(int cpu, bool on)
8531 {
8532 }
8533 
8534 static inline void balance_hotplug_wait(void)
8535 {
8536 }
8537 
8538 #endif /* CONFIG_HOTPLUG_CPU */
8539 
8540 void set_rq_online(struct rq *rq)
8541 {
8542 	if (!rq->online) {
8543 		const struct sched_class *class;
8544 
8545 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8546 		rq->online = 1;
8547 
8548 		for_each_class(class) {
8549 			if (class->rq_online)
8550 				class->rq_online(rq);
8551 		}
8552 	}
8553 }
8554 
8555 void set_rq_offline(struct rq *rq)
8556 {
8557 	if (rq->online) {
8558 		const struct sched_class *class;
8559 
8560 		for_each_class(class) {
8561 			if (class->rq_offline)
8562 				class->rq_offline(rq);
8563 		}
8564 
8565 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8566 		rq->online = 0;
8567 	}
8568 }
8569 
8570 /*
8571  * used to mark begin/end of suspend/resume:
8572  */
8573 static int num_cpus_frozen;
8574 
8575 /*
8576  * Update cpusets according to cpu_active mask.  If cpusets are
8577  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8578  * around partition_sched_domains().
8579  *
8580  * If we come here as part of a suspend/resume, don't touch cpusets because we
8581  * want to restore it back to its original state upon resume anyway.
8582  */
8583 static void cpuset_cpu_active(void)
8584 {
8585 	if (cpuhp_tasks_frozen) {
8586 		/*
8587 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8588 		 * resume sequence. As long as this is not the last online
8589 		 * operation in the resume sequence, just build a single sched
8590 		 * domain, ignoring cpusets.
8591 		 */
8592 		partition_sched_domains(1, NULL, NULL);
8593 		if (--num_cpus_frozen)
8594 			return;
8595 		/*
8596 		 * This is the last CPU online operation. So fall through and
8597 		 * restore the original sched domains by considering the
8598 		 * cpuset configurations.
8599 		 */
8600 		cpuset_force_rebuild();
8601 	}
8602 	cpuset_update_active_cpus();
8603 }
8604 
8605 static int cpuset_cpu_inactive(unsigned int cpu)
8606 {
8607 	if (!cpuhp_tasks_frozen) {
8608 		if (dl_cpu_busy(cpu))
8609 			return -EBUSY;
8610 		cpuset_update_active_cpus();
8611 	} else {
8612 		num_cpus_frozen++;
8613 		partition_sched_domains(1, NULL, NULL);
8614 	}
8615 	return 0;
8616 }
8617 
8618 int sched_cpu_activate(unsigned int cpu)
8619 {
8620 	struct rq *rq = cpu_rq(cpu);
8621 	struct rq_flags rf;
8622 
8623 	/*
8624 	 * Clear the balance_push callback and prepare to schedule
8625 	 * regular tasks.
8626 	 */
8627 	balance_push_set(cpu, false);
8628 
8629 #ifdef CONFIG_SCHED_SMT
8630 	/*
8631 	 * When going up, increment the number of cores with SMT present.
8632 	 */
8633 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8634 		static_branch_inc_cpuslocked(&sched_smt_present);
8635 #endif
8636 	set_cpu_active(cpu, true);
8637 
8638 	if (sched_smp_initialized) {
8639 		sched_domains_numa_masks_set(cpu);
8640 		cpuset_cpu_active();
8641 	}
8642 
8643 	/*
8644 	 * Put the rq online, if not already. This happens:
8645 	 *
8646 	 * 1) In the early boot process, because we build the real domains
8647 	 *    after all CPUs have been brought up.
8648 	 *
8649 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8650 	 *    domains.
8651 	 */
8652 	rq_lock_irqsave(rq, &rf);
8653 	if (rq->rd) {
8654 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8655 		set_rq_online(rq);
8656 	}
8657 	rq_unlock_irqrestore(rq, &rf);
8658 
8659 	return 0;
8660 }
8661 
8662 int sched_cpu_deactivate(unsigned int cpu)
8663 {
8664 	struct rq *rq = cpu_rq(cpu);
8665 	struct rq_flags rf;
8666 	int ret;
8667 
8668 	/*
8669 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8670 	 * load balancing when not active
8671 	 */
8672 	nohz_balance_exit_idle(rq);
8673 
8674 	set_cpu_active(cpu, false);
8675 
8676 	/*
8677 	 * From this point forward, this CPU will refuse to run any task that
8678 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8679 	 * push those tasks away until this gets cleared, see
8680 	 * sched_cpu_dying().
8681 	 */
8682 	balance_push_set(cpu, true);
8683 
8684 	/*
8685 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8686 	 * preempt-disabled and RCU users of this state to go away such that
8687 	 * all new such users will observe it.
8688 	 *
8689 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8690 	 * ttwu_queue_cond() and is_cpu_allowed().
8691 	 *
8692 	 * Do sync before park smpboot threads to take care the rcu boost case.
8693 	 */
8694 	synchronize_rcu();
8695 
8696 	rq_lock_irqsave(rq, &rf);
8697 	if (rq->rd) {
8698 		update_rq_clock(rq);
8699 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8700 		set_rq_offline(rq);
8701 	}
8702 	rq_unlock_irqrestore(rq, &rf);
8703 
8704 #ifdef CONFIG_SCHED_SMT
8705 	/*
8706 	 * When going down, decrement the number of cores with SMT present.
8707 	 */
8708 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8709 		static_branch_dec_cpuslocked(&sched_smt_present);
8710 #endif
8711 
8712 	if (!sched_smp_initialized)
8713 		return 0;
8714 
8715 	ret = cpuset_cpu_inactive(cpu);
8716 	if (ret) {
8717 		balance_push_set(cpu, false);
8718 		set_cpu_active(cpu, true);
8719 		return ret;
8720 	}
8721 	sched_domains_numa_masks_clear(cpu);
8722 	return 0;
8723 }
8724 
8725 static void sched_rq_cpu_starting(unsigned int cpu)
8726 {
8727 	struct rq *rq = cpu_rq(cpu);
8728 
8729 	rq->calc_load_update = calc_load_update;
8730 	update_max_interval();
8731 }
8732 
8733 int sched_cpu_starting(unsigned int cpu)
8734 {
8735 	sched_core_cpu_starting(cpu);
8736 	sched_rq_cpu_starting(cpu);
8737 	sched_tick_start(cpu);
8738 	return 0;
8739 }
8740 
8741 #ifdef CONFIG_HOTPLUG_CPU
8742 
8743 /*
8744  * Invoked immediately before the stopper thread is invoked to bring the
8745  * CPU down completely. At this point all per CPU kthreads except the
8746  * hotplug thread (current) and the stopper thread (inactive) have been
8747  * either parked or have been unbound from the outgoing CPU. Ensure that
8748  * any of those which might be on the way out are gone.
8749  *
8750  * If after this point a bound task is being woken on this CPU then the
8751  * responsible hotplug callback has failed to do it's job.
8752  * sched_cpu_dying() will catch it with the appropriate fireworks.
8753  */
8754 int sched_cpu_wait_empty(unsigned int cpu)
8755 {
8756 	balance_hotplug_wait();
8757 	return 0;
8758 }
8759 
8760 /*
8761  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8762  * might have. Called from the CPU stopper task after ensuring that the
8763  * stopper is the last running task on the CPU, so nr_active count is
8764  * stable. We need to take the teardown thread which is calling this into
8765  * account, so we hand in adjust = 1 to the load calculation.
8766  *
8767  * Also see the comment "Global load-average calculations".
8768  */
8769 static void calc_load_migrate(struct rq *rq)
8770 {
8771 	long delta = calc_load_fold_active(rq, 1);
8772 
8773 	if (delta)
8774 		atomic_long_add(delta, &calc_load_tasks);
8775 }
8776 
8777 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8778 {
8779 	struct task_struct *g, *p;
8780 	int cpu = cpu_of(rq);
8781 
8782 	lockdep_assert_rq_held(rq);
8783 
8784 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8785 	for_each_process_thread(g, p) {
8786 		if (task_cpu(p) != cpu)
8787 			continue;
8788 
8789 		if (!task_on_rq_queued(p))
8790 			continue;
8791 
8792 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8793 	}
8794 }
8795 
8796 int sched_cpu_dying(unsigned int cpu)
8797 {
8798 	struct rq *rq = cpu_rq(cpu);
8799 	struct rq_flags rf;
8800 
8801 	/* Handle pending wakeups and then migrate everything off */
8802 	sched_tick_stop(cpu);
8803 
8804 	rq_lock_irqsave(rq, &rf);
8805 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8806 		WARN(true, "Dying CPU not properly vacated!");
8807 		dump_rq_tasks(rq, KERN_WARNING);
8808 	}
8809 	rq_unlock_irqrestore(rq, &rf);
8810 
8811 	calc_load_migrate(rq);
8812 	update_max_interval();
8813 	hrtick_clear(rq);
8814 	return 0;
8815 }
8816 #endif
8817 
8818 void __init sched_init_smp(void)
8819 {
8820 	sched_init_numa();
8821 
8822 	/*
8823 	 * There's no userspace yet to cause hotplug operations; hence all the
8824 	 * CPU masks are stable and all blatant races in the below code cannot
8825 	 * happen.
8826 	 */
8827 	mutex_lock(&sched_domains_mutex);
8828 	sched_init_domains(cpu_active_mask);
8829 	mutex_unlock(&sched_domains_mutex);
8830 
8831 	/* Move init over to a non-isolated CPU */
8832 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8833 		BUG();
8834 	current->flags &= ~PF_NO_SETAFFINITY;
8835 	sched_init_granularity();
8836 
8837 	init_sched_rt_class();
8838 	init_sched_dl_class();
8839 
8840 	sched_smp_initialized = true;
8841 }
8842 
8843 static int __init migration_init(void)
8844 {
8845 	sched_cpu_starting(smp_processor_id());
8846 	return 0;
8847 }
8848 early_initcall(migration_init);
8849 
8850 #else
8851 void __init sched_init_smp(void)
8852 {
8853 	sched_init_granularity();
8854 }
8855 #endif /* CONFIG_SMP */
8856 
8857 int in_sched_functions(unsigned long addr)
8858 {
8859 	return in_lock_functions(addr) ||
8860 		(addr >= (unsigned long)__sched_text_start
8861 		&& addr < (unsigned long)__sched_text_end);
8862 }
8863 
8864 #ifdef CONFIG_CGROUP_SCHED
8865 /*
8866  * Default task group.
8867  * Every task in system belongs to this group at bootup.
8868  */
8869 struct task_group root_task_group;
8870 LIST_HEAD(task_groups);
8871 
8872 /* Cacheline aligned slab cache for task_group */
8873 static struct kmem_cache *task_group_cache __read_mostly;
8874 #endif
8875 
8876 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8877 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8878 
8879 void __init sched_init(void)
8880 {
8881 	unsigned long ptr = 0;
8882 	int i;
8883 
8884 	/* Make sure the linker didn't screw up */
8885 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8886 	       &fair_sched_class + 1 != &rt_sched_class ||
8887 	       &rt_sched_class + 1   != &dl_sched_class);
8888 #ifdef CONFIG_SMP
8889 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8890 #endif
8891 
8892 	wait_bit_init();
8893 
8894 #ifdef CONFIG_FAIR_GROUP_SCHED
8895 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8896 #endif
8897 #ifdef CONFIG_RT_GROUP_SCHED
8898 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8899 #endif
8900 	if (ptr) {
8901 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8902 
8903 #ifdef CONFIG_FAIR_GROUP_SCHED
8904 		root_task_group.se = (struct sched_entity **)ptr;
8905 		ptr += nr_cpu_ids * sizeof(void **);
8906 
8907 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8908 		ptr += nr_cpu_ids * sizeof(void **);
8909 
8910 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8911 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8912 #endif /* CONFIG_FAIR_GROUP_SCHED */
8913 #ifdef CONFIG_RT_GROUP_SCHED
8914 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8915 		ptr += nr_cpu_ids * sizeof(void **);
8916 
8917 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8918 		ptr += nr_cpu_ids * sizeof(void **);
8919 
8920 #endif /* CONFIG_RT_GROUP_SCHED */
8921 	}
8922 #ifdef CONFIG_CPUMASK_OFFSTACK
8923 	for_each_possible_cpu(i) {
8924 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8925 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8926 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8927 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8928 	}
8929 #endif /* CONFIG_CPUMASK_OFFSTACK */
8930 
8931 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8932 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
8933 
8934 #ifdef CONFIG_SMP
8935 	init_defrootdomain();
8936 #endif
8937 
8938 #ifdef CONFIG_RT_GROUP_SCHED
8939 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8940 			global_rt_period(), global_rt_runtime());
8941 #endif /* CONFIG_RT_GROUP_SCHED */
8942 
8943 #ifdef CONFIG_CGROUP_SCHED
8944 	task_group_cache = KMEM_CACHE(task_group, 0);
8945 
8946 	list_add(&root_task_group.list, &task_groups);
8947 	INIT_LIST_HEAD(&root_task_group.children);
8948 	INIT_LIST_HEAD(&root_task_group.siblings);
8949 	autogroup_init(&init_task);
8950 #endif /* CONFIG_CGROUP_SCHED */
8951 
8952 	for_each_possible_cpu(i) {
8953 		struct rq *rq;
8954 
8955 		rq = cpu_rq(i);
8956 		raw_spin_lock_init(&rq->__lock);
8957 		rq->nr_running = 0;
8958 		rq->calc_load_active = 0;
8959 		rq->calc_load_update = jiffies + LOAD_FREQ;
8960 		init_cfs_rq(&rq->cfs);
8961 		init_rt_rq(&rq->rt);
8962 		init_dl_rq(&rq->dl);
8963 #ifdef CONFIG_FAIR_GROUP_SCHED
8964 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8965 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8966 		/*
8967 		 * How much CPU bandwidth does root_task_group get?
8968 		 *
8969 		 * In case of task-groups formed thr' the cgroup filesystem, it
8970 		 * gets 100% of the CPU resources in the system. This overall
8971 		 * system CPU resource is divided among the tasks of
8972 		 * root_task_group and its child task-groups in a fair manner,
8973 		 * based on each entity's (task or task-group's) weight
8974 		 * (se->load.weight).
8975 		 *
8976 		 * In other words, if root_task_group has 10 tasks of weight
8977 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8978 		 * then A0's share of the CPU resource is:
8979 		 *
8980 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8981 		 *
8982 		 * We achieve this by letting root_task_group's tasks sit
8983 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8984 		 */
8985 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8986 #endif /* CONFIG_FAIR_GROUP_SCHED */
8987 
8988 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8989 #ifdef CONFIG_RT_GROUP_SCHED
8990 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8991 #endif
8992 #ifdef CONFIG_SMP
8993 		rq->sd = NULL;
8994 		rq->rd = NULL;
8995 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
8996 		rq->balance_callback = &balance_push_callback;
8997 		rq->active_balance = 0;
8998 		rq->next_balance = jiffies;
8999 		rq->push_cpu = 0;
9000 		rq->cpu = i;
9001 		rq->online = 0;
9002 		rq->idle_stamp = 0;
9003 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9004 		rq->wake_stamp = jiffies;
9005 		rq->wake_avg_idle = rq->avg_idle;
9006 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9007 
9008 		INIT_LIST_HEAD(&rq->cfs_tasks);
9009 
9010 		rq_attach_root(rq, &def_root_domain);
9011 #ifdef CONFIG_NO_HZ_COMMON
9012 		rq->last_blocked_load_update_tick = jiffies;
9013 		atomic_set(&rq->nohz_flags, 0);
9014 
9015 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9016 #endif
9017 #ifdef CONFIG_HOTPLUG_CPU
9018 		rcuwait_init(&rq->hotplug_wait);
9019 #endif
9020 #endif /* CONFIG_SMP */
9021 		hrtick_rq_init(rq);
9022 		atomic_set(&rq->nr_iowait, 0);
9023 
9024 #ifdef CONFIG_SCHED_CORE
9025 		rq->core = NULL;
9026 		rq->core_pick = NULL;
9027 		rq->core_enabled = 0;
9028 		rq->core_tree = RB_ROOT;
9029 		rq->core_forceidle = false;
9030 
9031 		rq->core_cookie = 0UL;
9032 #endif
9033 	}
9034 
9035 	set_load_weight(&init_task, false);
9036 
9037 	/*
9038 	 * The boot idle thread does lazy MMU switching as well:
9039 	 */
9040 	mmgrab(&init_mm);
9041 	enter_lazy_tlb(&init_mm, current);
9042 
9043 	/*
9044 	 * Make us the idle thread. Technically, schedule() should not be
9045 	 * called from this thread, however somewhere below it might be,
9046 	 * but because we are the idle thread, we just pick up running again
9047 	 * when this runqueue becomes "idle".
9048 	 */
9049 	init_idle(current, smp_processor_id());
9050 
9051 	calc_load_update = jiffies + LOAD_FREQ;
9052 
9053 #ifdef CONFIG_SMP
9054 	idle_thread_set_boot_cpu();
9055 	balance_push_set(smp_processor_id(), false);
9056 #endif
9057 	init_sched_fair_class();
9058 
9059 	psi_init();
9060 
9061 	init_uclamp();
9062 
9063 	scheduler_running = 1;
9064 }
9065 
9066 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9067 static inline int preempt_count_equals(int preempt_offset)
9068 {
9069 	int nested = preempt_count() + rcu_preempt_depth();
9070 
9071 	return (nested == preempt_offset);
9072 }
9073 
9074 void __might_sleep(const char *file, int line, int preempt_offset)
9075 {
9076 	unsigned int state = get_current_state();
9077 	/*
9078 	 * Blocking primitives will set (and therefore destroy) current->state,
9079 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9080 	 * otherwise we will destroy state.
9081 	 */
9082 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9083 			"do not call blocking ops when !TASK_RUNNING; "
9084 			"state=%x set at [<%p>] %pS\n", state,
9085 			(void *)current->task_state_change,
9086 			(void *)current->task_state_change);
9087 
9088 	___might_sleep(file, line, preempt_offset);
9089 }
9090 EXPORT_SYMBOL(__might_sleep);
9091 
9092 void ___might_sleep(const char *file, int line, int preempt_offset)
9093 {
9094 	/* Ratelimiting timestamp: */
9095 	static unsigned long prev_jiffy;
9096 
9097 	unsigned long preempt_disable_ip;
9098 
9099 	/* WARN_ON_ONCE() by default, no rate limit required: */
9100 	rcu_sleep_check();
9101 
9102 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
9103 	     !is_idle_task(current) && !current->non_block_count) ||
9104 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9105 	    oops_in_progress)
9106 		return;
9107 
9108 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9109 		return;
9110 	prev_jiffy = jiffies;
9111 
9112 	/* Save this before calling printk(), since that will clobber it: */
9113 	preempt_disable_ip = get_preempt_disable_ip(current);
9114 
9115 	printk(KERN_ERR
9116 		"BUG: sleeping function called from invalid context at %s:%d\n",
9117 			file, line);
9118 	printk(KERN_ERR
9119 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9120 			in_atomic(), irqs_disabled(), current->non_block_count,
9121 			current->pid, current->comm);
9122 
9123 	if (task_stack_end_corrupted(current))
9124 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9125 
9126 	debug_show_held_locks(current);
9127 	if (irqs_disabled())
9128 		print_irqtrace_events(current);
9129 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9130 	    && !preempt_count_equals(preempt_offset)) {
9131 		pr_err("Preemption disabled at:");
9132 		print_ip_sym(KERN_ERR, preempt_disable_ip);
9133 	}
9134 	dump_stack();
9135 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9136 }
9137 EXPORT_SYMBOL(___might_sleep);
9138 
9139 void __cant_sleep(const char *file, int line, int preempt_offset)
9140 {
9141 	static unsigned long prev_jiffy;
9142 
9143 	if (irqs_disabled())
9144 		return;
9145 
9146 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9147 		return;
9148 
9149 	if (preempt_count() > preempt_offset)
9150 		return;
9151 
9152 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9153 		return;
9154 	prev_jiffy = jiffies;
9155 
9156 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9157 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9158 			in_atomic(), irqs_disabled(),
9159 			current->pid, current->comm);
9160 
9161 	debug_show_held_locks(current);
9162 	dump_stack();
9163 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9164 }
9165 EXPORT_SYMBOL_GPL(__cant_sleep);
9166 
9167 #ifdef CONFIG_SMP
9168 void __cant_migrate(const char *file, int line)
9169 {
9170 	static unsigned long prev_jiffy;
9171 
9172 	if (irqs_disabled())
9173 		return;
9174 
9175 	if (is_migration_disabled(current))
9176 		return;
9177 
9178 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9179 		return;
9180 
9181 	if (preempt_count() > 0)
9182 		return;
9183 
9184 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9185 		return;
9186 	prev_jiffy = jiffies;
9187 
9188 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9189 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9190 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9191 	       current->pid, current->comm);
9192 
9193 	debug_show_held_locks(current);
9194 	dump_stack();
9195 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9196 }
9197 EXPORT_SYMBOL_GPL(__cant_migrate);
9198 #endif
9199 #endif
9200 
9201 #ifdef CONFIG_MAGIC_SYSRQ
9202 void normalize_rt_tasks(void)
9203 {
9204 	struct task_struct *g, *p;
9205 	struct sched_attr attr = {
9206 		.sched_policy = SCHED_NORMAL,
9207 	};
9208 
9209 	read_lock(&tasklist_lock);
9210 	for_each_process_thread(g, p) {
9211 		/*
9212 		 * Only normalize user tasks:
9213 		 */
9214 		if (p->flags & PF_KTHREAD)
9215 			continue;
9216 
9217 		p->se.exec_start = 0;
9218 		schedstat_set(p->se.statistics.wait_start,  0);
9219 		schedstat_set(p->se.statistics.sleep_start, 0);
9220 		schedstat_set(p->se.statistics.block_start, 0);
9221 
9222 		if (!dl_task(p) && !rt_task(p)) {
9223 			/*
9224 			 * Renice negative nice level userspace
9225 			 * tasks back to 0:
9226 			 */
9227 			if (task_nice(p) < 0)
9228 				set_user_nice(p, 0);
9229 			continue;
9230 		}
9231 
9232 		__sched_setscheduler(p, &attr, false, false);
9233 	}
9234 	read_unlock(&tasklist_lock);
9235 }
9236 
9237 #endif /* CONFIG_MAGIC_SYSRQ */
9238 
9239 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9240 /*
9241  * These functions are only useful for the IA64 MCA handling, or kdb.
9242  *
9243  * They can only be called when the whole system has been
9244  * stopped - every CPU needs to be quiescent, and no scheduling
9245  * activity can take place. Using them for anything else would
9246  * be a serious bug, and as a result, they aren't even visible
9247  * under any other configuration.
9248  */
9249 
9250 /**
9251  * curr_task - return the current task for a given CPU.
9252  * @cpu: the processor in question.
9253  *
9254  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9255  *
9256  * Return: The current task for @cpu.
9257  */
9258 struct task_struct *curr_task(int cpu)
9259 {
9260 	return cpu_curr(cpu);
9261 }
9262 
9263 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9264 
9265 #ifdef CONFIG_IA64
9266 /**
9267  * ia64_set_curr_task - set the current task for a given CPU.
9268  * @cpu: the processor in question.
9269  * @p: the task pointer to set.
9270  *
9271  * Description: This function must only be used when non-maskable interrupts
9272  * are serviced on a separate stack. It allows the architecture to switch the
9273  * notion of the current task on a CPU in a non-blocking manner. This function
9274  * must be called with all CPU's synchronized, and interrupts disabled, the
9275  * and caller must save the original value of the current task (see
9276  * curr_task() above) and restore that value before reenabling interrupts and
9277  * re-starting the system.
9278  *
9279  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9280  */
9281 void ia64_set_curr_task(int cpu, struct task_struct *p)
9282 {
9283 	cpu_curr(cpu) = p;
9284 }
9285 
9286 #endif
9287 
9288 #ifdef CONFIG_CGROUP_SCHED
9289 /* task_group_lock serializes the addition/removal of task groups */
9290 static DEFINE_SPINLOCK(task_group_lock);
9291 
9292 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9293 					    struct task_group *parent)
9294 {
9295 #ifdef CONFIG_UCLAMP_TASK_GROUP
9296 	enum uclamp_id clamp_id;
9297 
9298 	for_each_clamp_id(clamp_id) {
9299 		uclamp_se_set(&tg->uclamp_req[clamp_id],
9300 			      uclamp_none(clamp_id), false);
9301 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9302 	}
9303 #endif
9304 }
9305 
9306 static void sched_free_group(struct task_group *tg)
9307 {
9308 	free_fair_sched_group(tg);
9309 	free_rt_sched_group(tg);
9310 	autogroup_free(tg);
9311 	kmem_cache_free(task_group_cache, tg);
9312 }
9313 
9314 /* allocate runqueue etc for a new task group */
9315 struct task_group *sched_create_group(struct task_group *parent)
9316 {
9317 	struct task_group *tg;
9318 
9319 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9320 	if (!tg)
9321 		return ERR_PTR(-ENOMEM);
9322 
9323 	if (!alloc_fair_sched_group(tg, parent))
9324 		goto err;
9325 
9326 	if (!alloc_rt_sched_group(tg, parent))
9327 		goto err;
9328 
9329 	alloc_uclamp_sched_group(tg, parent);
9330 
9331 	return tg;
9332 
9333 err:
9334 	sched_free_group(tg);
9335 	return ERR_PTR(-ENOMEM);
9336 }
9337 
9338 void sched_online_group(struct task_group *tg, struct task_group *parent)
9339 {
9340 	unsigned long flags;
9341 
9342 	spin_lock_irqsave(&task_group_lock, flags);
9343 	list_add_rcu(&tg->list, &task_groups);
9344 
9345 	/* Root should already exist: */
9346 	WARN_ON(!parent);
9347 
9348 	tg->parent = parent;
9349 	INIT_LIST_HEAD(&tg->children);
9350 	list_add_rcu(&tg->siblings, &parent->children);
9351 	spin_unlock_irqrestore(&task_group_lock, flags);
9352 
9353 	online_fair_sched_group(tg);
9354 }
9355 
9356 /* rcu callback to free various structures associated with a task group */
9357 static void sched_free_group_rcu(struct rcu_head *rhp)
9358 {
9359 	/* Now it should be safe to free those cfs_rqs: */
9360 	sched_free_group(container_of(rhp, struct task_group, rcu));
9361 }
9362 
9363 void sched_destroy_group(struct task_group *tg)
9364 {
9365 	/* Wait for possible concurrent references to cfs_rqs complete: */
9366 	call_rcu(&tg->rcu, sched_free_group_rcu);
9367 }
9368 
9369 void sched_offline_group(struct task_group *tg)
9370 {
9371 	unsigned long flags;
9372 
9373 	/* End participation in shares distribution: */
9374 	unregister_fair_sched_group(tg);
9375 
9376 	spin_lock_irqsave(&task_group_lock, flags);
9377 	list_del_rcu(&tg->list);
9378 	list_del_rcu(&tg->siblings);
9379 	spin_unlock_irqrestore(&task_group_lock, flags);
9380 }
9381 
9382 static void sched_change_group(struct task_struct *tsk, int type)
9383 {
9384 	struct task_group *tg;
9385 
9386 	/*
9387 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9388 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9389 	 * to prevent lockdep warnings.
9390 	 */
9391 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9392 			  struct task_group, css);
9393 	tg = autogroup_task_group(tsk, tg);
9394 	tsk->sched_task_group = tg;
9395 
9396 #ifdef CONFIG_FAIR_GROUP_SCHED
9397 	if (tsk->sched_class->task_change_group)
9398 		tsk->sched_class->task_change_group(tsk, type);
9399 	else
9400 #endif
9401 		set_task_rq(tsk, task_cpu(tsk));
9402 }
9403 
9404 /*
9405  * Change task's runqueue when it moves between groups.
9406  *
9407  * The caller of this function should have put the task in its new group by
9408  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9409  * its new group.
9410  */
9411 void sched_move_task(struct task_struct *tsk)
9412 {
9413 	int queued, running, queue_flags =
9414 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9415 	struct rq_flags rf;
9416 	struct rq *rq;
9417 
9418 	rq = task_rq_lock(tsk, &rf);
9419 	update_rq_clock(rq);
9420 
9421 	running = task_current(rq, tsk);
9422 	queued = task_on_rq_queued(tsk);
9423 
9424 	if (queued)
9425 		dequeue_task(rq, tsk, queue_flags);
9426 	if (running)
9427 		put_prev_task(rq, tsk);
9428 
9429 	sched_change_group(tsk, TASK_MOVE_GROUP);
9430 
9431 	if (queued)
9432 		enqueue_task(rq, tsk, queue_flags);
9433 	if (running) {
9434 		set_next_task(rq, tsk);
9435 		/*
9436 		 * After changing group, the running task may have joined a
9437 		 * throttled one but it's still the running task. Trigger a
9438 		 * resched to make sure that task can still run.
9439 		 */
9440 		resched_curr(rq);
9441 	}
9442 
9443 	task_rq_unlock(rq, tsk, &rf);
9444 }
9445 
9446 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9447 {
9448 	return css ? container_of(css, struct task_group, css) : NULL;
9449 }
9450 
9451 static struct cgroup_subsys_state *
9452 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9453 {
9454 	struct task_group *parent = css_tg(parent_css);
9455 	struct task_group *tg;
9456 
9457 	if (!parent) {
9458 		/* This is early initialization for the top cgroup */
9459 		return &root_task_group.css;
9460 	}
9461 
9462 	tg = sched_create_group(parent);
9463 	if (IS_ERR(tg))
9464 		return ERR_PTR(-ENOMEM);
9465 
9466 	return &tg->css;
9467 }
9468 
9469 /* Expose task group only after completing cgroup initialization */
9470 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9471 {
9472 	struct task_group *tg = css_tg(css);
9473 	struct task_group *parent = css_tg(css->parent);
9474 
9475 	if (parent)
9476 		sched_online_group(tg, parent);
9477 
9478 #ifdef CONFIG_UCLAMP_TASK_GROUP
9479 	/* Propagate the effective uclamp value for the new group */
9480 	mutex_lock(&uclamp_mutex);
9481 	rcu_read_lock();
9482 	cpu_util_update_eff(css);
9483 	rcu_read_unlock();
9484 	mutex_unlock(&uclamp_mutex);
9485 #endif
9486 
9487 	return 0;
9488 }
9489 
9490 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9491 {
9492 	struct task_group *tg = css_tg(css);
9493 
9494 	sched_offline_group(tg);
9495 }
9496 
9497 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9498 {
9499 	struct task_group *tg = css_tg(css);
9500 
9501 	/*
9502 	 * Relies on the RCU grace period between css_released() and this.
9503 	 */
9504 	sched_free_group(tg);
9505 }
9506 
9507 /*
9508  * This is called before wake_up_new_task(), therefore we really only
9509  * have to set its group bits, all the other stuff does not apply.
9510  */
9511 static void cpu_cgroup_fork(struct task_struct *task)
9512 {
9513 	struct rq_flags rf;
9514 	struct rq *rq;
9515 
9516 	rq = task_rq_lock(task, &rf);
9517 
9518 	update_rq_clock(rq);
9519 	sched_change_group(task, TASK_SET_GROUP);
9520 
9521 	task_rq_unlock(rq, task, &rf);
9522 }
9523 
9524 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9525 {
9526 	struct task_struct *task;
9527 	struct cgroup_subsys_state *css;
9528 	int ret = 0;
9529 
9530 	cgroup_taskset_for_each(task, css, tset) {
9531 #ifdef CONFIG_RT_GROUP_SCHED
9532 		if (!sched_rt_can_attach(css_tg(css), task))
9533 			return -EINVAL;
9534 #endif
9535 		/*
9536 		 * Serialize against wake_up_new_task() such that if it's
9537 		 * running, we're sure to observe its full state.
9538 		 */
9539 		raw_spin_lock_irq(&task->pi_lock);
9540 		/*
9541 		 * Avoid calling sched_move_task() before wake_up_new_task()
9542 		 * has happened. This would lead to problems with PELT, due to
9543 		 * move wanting to detach+attach while we're not attached yet.
9544 		 */
9545 		if (READ_ONCE(task->__state) == TASK_NEW)
9546 			ret = -EINVAL;
9547 		raw_spin_unlock_irq(&task->pi_lock);
9548 
9549 		if (ret)
9550 			break;
9551 	}
9552 	return ret;
9553 }
9554 
9555 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9556 {
9557 	struct task_struct *task;
9558 	struct cgroup_subsys_state *css;
9559 
9560 	cgroup_taskset_for_each(task, css, tset)
9561 		sched_move_task(task);
9562 }
9563 
9564 #ifdef CONFIG_UCLAMP_TASK_GROUP
9565 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9566 {
9567 	struct cgroup_subsys_state *top_css = css;
9568 	struct uclamp_se *uc_parent = NULL;
9569 	struct uclamp_se *uc_se = NULL;
9570 	unsigned int eff[UCLAMP_CNT];
9571 	enum uclamp_id clamp_id;
9572 	unsigned int clamps;
9573 
9574 	lockdep_assert_held(&uclamp_mutex);
9575 	SCHED_WARN_ON(!rcu_read_lock_held());
9576 
9577 	css_for_each_descendant_pre(css, top_css) {
9578 		uc_parent = css_tg(css)->parent
9579 			? css_tg(css)->parent->uclamp : NULL;
9580 
9581 		for_each_clamp_id(clamp_id) {
9582 			/* Assume effective clamps matches requested clamps */
9583 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9584 			/* Cap effective clamps with parent's effective clamps */
9585 			if (uc_parent &&
9586 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9587 				eff[clamp_id] = uc_parent[clamp_id].value;
9588 			}
9589 		}
9590 		/* Ensure protection is always capped by limit */
9591 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9592 
9593 		/* Propagate most restrictive effective clamps */
9594 		clamps = 0x0;
9595 		uc_se = css_tg(css)->uclamp;
9596 		for_each_clamp_id(clamp_id) {
9597 			if (eff[clamp_id] == uc_se[clamp_id].value)
9598 				continue;
9599 			uc_se[clamp_id].value = eff[clamp_id];
9600 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9601 			clamps |= (0x1 << clamp_id);
9602 		}
9603 		if (!clamps) {
9604 			css = css_rightmost_descendant(css);
9605 			continue;
9606 		}
9607 
9608 		/* Immediately update descendants RUNNABLE tasks */
9609 		uclamp_update_active_tasks(css);
9610 	}
9611 }
9612 
9613 /*
9614  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9615  * C expression. Since there is no way to convert a macro argument (N) into a
9616  * character constant, use two levels of macros.
9617  */
9618 #define _POW10(exp) ((unsigned int)1e##exp)
9619 #define POW10(exp) _POW10(exp)
9620 
9621 struct uclamp_request {
9622 #define UCLAMP_PERCENT_SHIFT	2
9623 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9624 	s64 percent;
9625 	u64 util;
9626 	int ret;
9627 };
9628 
9629 static inline struct uclamp_request
9630 capacity_from_percent(char *buf)
9631 {
9632 	struct uclamp_request req = {
9633 		.percent = UCLAMP_PERCENT_SCALE,
9634 		.util = SCHED_CAPACITY_SCALE,
9635 		.ret = 0,
9636 	};
9637 
9638 	buf = strim(buf);
9639 	if (strcmp(buf, "max")) {
9640 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9641 					     &req.percent);
9642 		if (req.ret)
9643 			return req;
9644 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9645 			req.ret = -ERANGE;
9646 			return req;
9647 		}
9648 
9649 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9650 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9651 	}
9652 
9653 	return req;
9654 }
9655 
9656 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9657 				size_t nbytes, loff_t off,
9658 				enum uclamp_id clamp_id)
9659 {
9660 	struct uclamp_request req;
9661 	struct task_group *tg;
9662 
9663 	req = capacity_from_percent(buf);
9664 	if (req.ret)
9665 		return req.ret;
9666 
9667 	static_branch_enable(&sched_uclamp_used);
9668 
9669 	mutex_lock(&uclamp_mutex);
9670 	rcu_read_lock();
9671 
9672 	tg = css_tg(of_css(of));
9673 	if (tg->uclamp_req[clamp_id].value != req.util)
9674 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9675 
9676 	/*
9677 	 * Because of not recoverable conversion rounding we keep track of the
9678 	 * exact requested value
9679 	 */
9680 	tg->uclamp_pct[clamp_id] = req.percent;
9681 
9682 	/* Update effective clamps to track the most restrictive value */
9683 	cpu_util_update_eff(of_css(of));
9684 
9685 	rcu_read_unlock();
9686 	mutex_unlock(&uclamp_mutex);
9687 
9688 	return nbytes;
9689 }
9690 
9691 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9692 				    char *buf, size_t nbytes,
9693 				    loff_t off)
9694 {
9695 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9696 }
9697 
9698 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9699 				    char *buf, size_t nbytes,
9700 				    loff_t off)
9701 {
9702 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9703 }
9704 
9705 static inline void cpu_uclamp_print(struct seq_file *sf,
9706 				    enum uclamp_id clamp_id)
9707 {
9708 	struct task_group *tg;
9709 	u64 util_clamp;
9710 	u64 percent;
9711 	u32 rem;
9712 
9713 	rcu_read_lock();
9714 	tg = css_tg(seq_css(sf));
9715 	util_clamp = tg->uclamp_req[clamp_id].value;
9716 	rcu_read_unlock();
9717 
9718 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9719 		seq_puts(sf, "max\n");
9720 		return;
9721 	}
9722 
9723 	percent = tg->uclamp_pct[clamp_id];
9724 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9725 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9726 }
9727 
9728 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9729 {
9730 	cpu_uclamp_print(sf, UCLAMP_MIN);
9731 	return 0;
9732 }
9733 
9734 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9735 {
9736 	cpu_uclamp_print(sf, UCLAMP_MAX);
9737 	return 0;
9738 }
9739 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9740 
9741 #ifdef CONFIG_FAIR_GROUP_SCHED
9742 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9743 				struct cftype *cftype, u64 shareval)
9744 {
9745 	if (shareval > scale_load_down(ULONG_MAX))
9746 		shareval = MAX_SHARES;
9747 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
9748 }
9749 
9750 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9751 			       struct cftype *cft)
9752 {
9753 	struct task_group *tg = css_tg(css);
9754 
9755 	return (u64) scale_load_down(tg->shares);
9756 }
9757 
9758 #ifdef CONFIG_CFS_BANDWIDTH
9759 static DEFINE_MUTEX(cfs_constraints_mutex);
9760 
9761 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9762 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9763 /* More than 203 days if BW_SHIFT equals 20. */
9764 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9765 
9766 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9767 
9768 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9769 				u64 burst)
9770 {
9771 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9772 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9773 
9774 	if (tg == &root_task_group)
9775 		return -EINVAL;
9776 
9777 	/*
9778 	 * Ensure we have at some amount of bandwidth every period.  This is
9779 	 * to prevent reaching a state of large arrears when throttled via
9780 	 * entity_tick() resulting in prolonged exit starvation.
9781 	 */
9782 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9783 		return -EINVAL;
9784 
9785 	/*
9786 	 * Likewise, bound things on the other side by preventing insane quota
9787 	 * periods.  This also allows us to normalize in computing quota
9788 	 * feasibility.
9789 	 */
9790 	if (period > max_cfs_quota_period)
9791 		return -EINVAL;
9792 
9793 	/*
9794 	 * Bound quota to defend quota against overflow during bandwidth shift.
9795 	 */
9796 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9797 		return -EINVAL;
9798 
9799 	if (quota != RUNTIME_INF && (burst > quota ||
9800 				     burst + quota > max_cfs_runtime))
9801 		return -EINVAL;
9802 
9803 	/*
9804 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9805 	 * unthrottle_offline_cfs_rqs().
9806 	 */
9807 	get_online_cpus();
9808 	mutex_lock(&cfs_constraints_mutex);
9809 	ret = __cfs_schedulable(tg, period, quota);
9810 	if (ret)
9811 		goto out_unlock;
9812 
9813 	runtime_enabled = quota != RUNTIME_INF;
9814 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9815 	/*
9816 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9817 	 * before making related changes, and on->off must occur afterwards
9818 	 */
9819 	if (runtime_enabled && !runtime_was_enabled)
9820 		cfs_bandwidth_usage_inc();
9821 	raw_spin_lock_irq(&cfs_b->lock);
9822 	cfs_b->period = ns_to_ktime(period);
9823 	cfs_b->quota = quota;
9824 	cfs_b->burst = burst;
9825 
9826 	__refill_cfs_bandwidth_runtime(cfs_b);
9827 
9828 	/* Restart the period timer (if active) to handle new period expiry: */
9829 	if (runtime_enabled)
9830 		start_cfs_bandwidth(cfs_b);
9831 
9832 	raw_spin_unlock_irq(&cfs_b->lock);
9833 
9834 	for_each_online_cpu(i) {
9835 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9836 		struct rq *rq = cfs_rq->rq;
9837 		struct rq_flags rf;
9838 
9839 		rq_lock_irq(rq, &rf);
9840 		cfs_rq->runtime_enabled = runtime_enabled;
9841 		cfs_rq->runtime_remaining = 0;
9842 
9843 		if (cfs_rq->throttled)
9844 			unthrottle_cfs_rq(cfs_rq);
9845 		rq_unlock_irq(rq, &rf);
9846 	}
9847 	if (runtime_was_enabled && !runtime_enabled)
9848 		cfs_bandwidth_usage_dec();
9849 out_unlock:
9850 	mutex_unlock(&cfs_constraints_mutex);
9851 	put_online_cpus();
9852 
9853 	return ret;
9854 }
9855 
9856 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9857 {
9858 	u64 quota, period, burst;
9859 
9860 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9861 	burst = tg->cfs_bandwidth.burst;
9862 	if (cfs_quota_us < 0)
9863 		quota = RUNTIME_INF;
9864 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9865 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9866 	else
9867 		return -EINVAL;
9868 
9869 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9870 }
9871 
9872 static long tg_get_cfs_quota(struct task_group *tg)
9873 {
9874 	u64 quota_us;
9875 
9876 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9877 		return -1;
9878 
9879 	quota_us = tg->cfs_bandwidth.quota;
9880 	do_div(quota_us, NSEC_PER_USEC);
9881 
9882 	return quota_us;
9883 }
9884 
9885 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9886 {
9887 	u64 quota, period, burst;
9888 
9889 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9890 		return -EINVAL;
9891 
9892 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9893 	quota = tg->cfs_bandwidth.quota;
9894 	burst = tg->cfs_bandwidth.burst;
9895 
9896 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9897 }
9898 
9899 static long tg_get_cfs_period(struct task_group *tg)
9900 {
9901 	u64 cfs_period_us;
9902 
9903 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9904 	do_div(cfs_period_us, NSEC_PER_USEC);
9905 
9906 	return cfs_period_us;
9907 }
9908 
9909 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9910 {
9911 	u64 quota, period, burst;
9912 
9913 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9914 		return -EINVAL;
9915 
9916 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9917 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9918 	quota = tg->cfs_bandwidth.quota;
9919 
9920 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9921 }
9922 
9923 static long tg_get_cfs_burst(struct task_group *tg)
9924 {
9925 	u64 burst_us;
9926 
9927 	burst_us = tg->cfs_bandwidth.burst;
9928 	do_div(burst_us, NSEC_PER_USEC);
9929 
9930 	return burst_us;
9931 }
9932 
9933 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9934 				  struct cftype *cft)
9935 {
9936 	return tg_get_cfs_quota(css_tg(css));
9937 }
9938 
9939 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9940 				   struct cftype *cftype, s64 cfs_quota_us)
9941 {
9942 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9943 }
9944 
9945 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9946 				   struct cftype *cft)
9947 {
9948 	return tg_get_cfs_period(css_tg(css));
9949 }
9950 
9951 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9952 				    struct cftype *cftype, u64 cfs_period_us)
9953 {
9954 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9955 }
9956 
9957 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9958 				  struct cftype *cft)
9959 {
9960 	return tg_get_cfs_burst(css_tg(css));
9961 }
9962 
9963 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9964 				   struct cftype *cftype, u64 cfs_burst_us)
9965 {
9966 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9967 }
9968 
9969 struct cfs_schedulable_data {
9970 	struct task_group *tg;
9971 	u64 period, quota;
9972 };
9973 
9974 /*
9975  * normalize group quota/period to be quota/max_period
9976  * note: units are usecs
9977  */
9978 static u64 normalize_cfs_quota(struct task_group *tg,
9979 			       struct cfs_schedulable_data *d)
9980 {
9981 	u64 quota, period;
9982 
9983 	if (tg == d->tg) {
9984 		period = d->period;
9985 		quota = d->quota;
9986 	} else {
9987 		period = tg_get_cfs_period(tg);
9988 		quota = tg_get_cfs_quota(tg);
9989 	}
9990 
9991 	/* note: these should typically be equivalent */
9992 	if (quota == RUNTIME_INF || quota == -1)
9993 		return RUNTIME_INF;
9994 
9995 	return to_ratio(period, quota);
9996 }
9997 
9998 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9999 {
10000 	struct cfs_schedulable_data *d = data;
10001 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10002 	s64 quota = 0, parent_quota = -1;
10003 
10004 	if (!tg->parent) {
10005 		quota = RUNTIME_INF;
10006 	} else {
10007 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10008 
10009 		quota = normalize_cfs_quota(tg, d);
10010 		parent_quota = parent_b->hierarchical_quota;
10011 
10012 		/*
10013 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10014 		 * always take the min.  On cgroup1, only inherit when no
10015 		 * limit is set:
10016 		 */
10017 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10018 			quota = min(quota, parent_quota);
10019 		} else {
10020 			if (quota == RUNTIME_INF)
10021 				quota = parent_quota;
10022 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10023 				return -EINVAL;
10024 		}
10025 	}
10026 	cfs_b->hierarchical_quota = quota;
10027 
10028 	return 0;
10029 }
10030 
10031 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10032 {
10033 	int ret;
10034 	struct cfs_schedulable_data data = {
10035 		.tg = tg,
10036 		.period = period,
10037 		.quota = quota,
10038 	};
10039 
10040 	if (quota != RUNTIME_INF) {
10041 		do_div(data.period, NSEC_PER_USEC);
10042 		do_div(data.quota, NSEC_PER_USEC);
10043 	}
10044 
10045 	rcu_read_lock();
10046 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10047 	rcu_read_unlock();
10048 
10049 	return ret;
10050 }
10051 
10052 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10053 {
10054 	struct task_group *tg = css_tg(seq_css(sf));
10055 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10056 
10057 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10058 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10059 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10060 
10061 	if (schedstat_enabled() && tg != &root_task_group) {
10062 		u64 ws = 0;
10063 		int i;
10064 
10065 		for_each_possible_cpu(i)
10066 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10067 
10068 		seq_printf(sf, "wait_sum %llu\n", ws);
10069 	}
10070 
10071 	return 0;
10072 }
10073 #endif /* CONFIG_CFS_BANDWIDTH */
10074 #endif /* CONFIG_FAIR_GROUP_SCHED */
10075 
10076 #ifdef CONFIG_RT_GROUP_SCHED
10077 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10078 				struct cftype *cft, s64 val)
10079 {
10080 	return sched_group_set_rt_runtime(css_tg(css), val);
10081 }
10082 
10083 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10084 			       struct cftype *cft)
10085 {
10086 	return sched_group_rt_runtime(css_tg(css));
10087 }
10088 
10089 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10090 				    struct cftype *cftype, u64 rt_period_us)
10091 {
10092 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10093 }
10094 
10095 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10096 				   struct cftype *cft)
10097 {
10098 	return sched_group_rt_period(css_tg(css));
10099 }
10100 #endif /* CONFIG_RT_GROUP_SCHED */
10101 
10102 static struct cftype cpu_legacy_files[] = {
10103 #ifdef CONFIG_FAIR_GROUP_SCHED
10104 	{
10105 		.name = "shares",
10106 		.read_u64 = cpu_shares_read_u64,
10107 		.write_u64 = cpu_shares_write_u64,
10108 	},
10109 #endif
10110 #ifdef CONFIG_CFS_BANDWIDTH
10111 	{
10112 		.name = "cfs_quota_us",
10113 		.read_s64 = cpu_cfs_quota_read_s64,
10114 		.write_s64 = cpu_cfs_quota_write_s64,
10115 	},
10116 	{
10117 		.name = "cfs_period_us",
10118 		.read_u64 = cpu_cfs_period_read_u64,
10119 		.write_u64 = cpu_cfs_period_write_u64,
10120 	},
10121 	{
10122 		.name = "cfs_burst_us",
10123 		.read_u64 = cpu_cfs_burst_read_u64,
10124 		.write_u64 = cpu_cfs_burst_write_u64,
10125 	},
10126 	{
10127 		.name = "stat",
10128 		.seq_show = cpu_cfs_stat_show,
10129 	},
10130 #endif
10131 #ifdef CONFIG_RT_GROUP_SCHED
10132 	{
10133 		.name = "rt_runtime_us",
10134 		.read_s64 = cpu_rt_runtime_read,
10135 		.write_s64 = cpu_rt_runtime_write,
10136 	},
10137 	{
10138 		.name = "rt_period_us",
10139 		.read_u64 = cpu_rt_period_read_uint,
10140 		.write_u64 = cpu_rt_period_write_uint,
10141 	},
10142 #endif
10143 #ifdef CONFIG_UCLAMP_TASK_GROUP
10144 	{
10145 		.name = "uclamp.min",
10146 		.flags = CFTYPE_NOT_ON_ROOT,
10147 		.seq_show = cpu_uclamp_min_show,
10148 		.write = cpu_uclamp_min_write,
10149 	},
10150 	{
10151 		.name = "uclamp.max",
10152 		.flags = CFTYPE_NOT_ON_ROOT,
10153 		.seq_show = cpu_uclamp_max_show,
10154 		.write = cpu_uclamp_max_write,
10155 	},
10156 #endif
10157 	{ }	/* Terminate */
10158 };
10159 
10160 static int cpu_extra_stat_show(struct seq_file *sf,
10161 			       struct cgroup_subsys_state *css)
10162 {
10163 #ifdef CONFIG_CFS_BANDWIDTH
10164 	{
10165 		struct task_group *tg = css_tg(css);
10166 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10167 		u64 throttled_usec;
10168 
10169 		throttled_usec = cfs_b->throttled_time;
10170 		do_div(throttled_usec, NSEC_PER_USEC);
10171 
10172 		seq_printf(sf, "nr_periods %d\n"
10173 			   "nr_throttled %d\n"
10174 			   "throttled_usec %llu\n",
10175 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10176 			   throttled_usec);
10177 	}
10178 #endif
10179 	return 0;
10180 }
10181 
10182 #ifdef CONFIG_FAIR_GROUP_SCHED
10183 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10184 			       struct cftype *cft)
10185 {
10186 	struct task_group *tg = css_tg(css);
10187 	u64 weight = scale_load_down(tg->shares);
10188 
10189 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10190 }
10191 
10192 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10193 				struct cftype *cft, u64 weight)
10194 {
10195 	/*
10196 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10197 	 * values which are 1, 100 and 10000 respectively.  While it loses
10198 	 * a bit of range on both ends, it maps pretty well onto the shares
10199 	 * value used by scheduler and the round-trip conversions preserve
10200 	 * the original value over the entire range.
10201 	 */
10202 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10203 		return -ERANGE;
10204 
10205 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10206 
10207 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10208 }
10209 
10210 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10211 				    struct cftype *cft)
10212 {
10213 	unsigned long weight = scale_load_down(css_tg(css)->shares);
10214 	int last_delta = INT_MAX;
10215 	int prio, delta;
10216 
10217 	/* find the closest nice value to the current weight */
10218 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10219 		delta = abs(sched_prio_to_weight[prio] - weight);
10220 		if (delta >= last_delta)
10221 			break;
10222 		last_delta = delta;
10223 	}
10224 
10225 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10226 }
10227 
10228 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10229 				     struct cftype *cft, s64 nice)
10230 {
10231 	unsigned long weight;
10232 	int idx;
10233 
10234 	if (nice < MIN_NICE || nice > MAX_NICE)
10235 		return -ERANGE;
10236 
10237 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10238 	idx = array_index_nospec(idx, 40);
10239 	weight = sched_prio_to_weight[idx];
10240 
10241 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10242 }
10243 #endif
10244 
10245 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10246 						  long period, long quota)
10247 {
10248 	if (quota < 0)
10249 		seq_puts(sf, "max");
10250 	else
10251 		seq_printf(sf, "%ld", quota);
10252 
10253 	seq_printf(sf, " %ld\n", period);
10254 }
10255 
10256 /* caller should put the current value in *@periodp before calling */
10257 static int __maybe_unused cpu_period_quota_parse(char *buf,
10258 						 u64 *periodp, u64 *quotap)
10259 {
10260 	char tok[21];	/* U64_MAX */
10261 
10262 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10263 		return -EINVAL;
10264 
10265 	*periodp *= NSEC_PER_USEC;
10266 
10267 	if (sscanf(tok, "%llu", quotap))
10268 		*quotap *= NSEC_PER_USEC;
10269 	else if (!strcmp(tok, "max"))
10270 		*quotap = RUNTIME_INF;
10271 	else
10272 		return -EINVAL;
10273 
10274 	return 0;
10275 }
10276 
10277 #ifdef CONFIG_CFS_BANDWIDTH
10278 static int cpu_max_show(struct seq_file *sf, void *v)
10279 {
10280 	struct task_group *tg = css_tg(seq_css(sf));
10281 
10282 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10283 	return 0;
10284 }
10285 
10286 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10287 			     char *buf, size_t nbytes, loff_t off)
10288 {
10289 	struct task_group *tg = css_tg(of_css(of));
10290 	u64 period = tg_get_cfs_period(tg);
10291 	u64 burst = tg_get_cfs_burst(tg);
10292 	u64 quota;
10293 	int ret;
10294 
10295 	ret = cpu_period_quota_parse(buf, &period, &quota);
10296 	if (!ret)
10297 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10298 	return ret ?: nbytes;
10299 }
10300 #endif
10301 
10302 static struct cftype cpu_files[] = {
10303 #ifdef CONFIG_FAIR_GROUP_SCHED
10304 	{
10305 		.name = "weight",
10306 		.flags = CFTYPE_NOT_ON_ROOT,
10307 		.read_u64 = cpu_weight_read_u64,
10308 		.write_u64 = cpu_weight_write_u64,
10309 	},
10310 	{
10311 		.name = "weight.nice",
10312 		.flags = CFTYPE_NOT_ON_ROOT,
10313 		.read_s64 = cpu_weight_nice_read_s64,
10314 		.write_s64 = cpu_weight_nice_write_s64,
10315 	},
10316 #endif
10317 #ifdef CONFIG_CFS_BANDWIDTH
10318 	{
10319 		.name = "max",
10320 		.flags = CFTYPE_NOT_ON_ROOT,
10321 		.seq_show = cpu_max_show,
10322 		.write = cpu_max_write,
10323 	},
10324 	{
10325 		.name = "max.burst",
10326 		.flags = CFTYPE_NOT_ON_ROOT,
10327 		.read_u64 = cpu_cfs_burst_read_u64,
10328 		.write_u64 = cpu_cfs_burst_write_u64,
10329 	},
10330 #endif
10331 #ifdef CONFIG_UCLAMP_TASK_GROUP
10332 	{
10333 		.name = "uclamp.min",
10334 		.flags = CFTYPE_NOT_ON_ROOT,
10335 		.seq_show = cpu_uclamp_min_show,
10336 		.write = cpu_uclamp_min_write,
10337 	},
10338 	{
10339 		.name = "uclamp.max",
10340 		.flags = CFTYPE_NOT_ON_ROOT,
10341 		.seq_show = cpu_uclamp_max_show,
10342 		.write = cpu_uclamp_max_write,
10343 	},
10344 #endif
10345 	{ }	/* terminate */
10346 };
10347 
10348 struct cgroup_subsys cpu_cgrp_subsys = {
10349 	.css_alloc	= cpu_cgroup_css_alloc,
10350 	.css_online	= cpu_cgroup_css_online,
10351 	.css_released	= cpu_cgroup_css_released,
10352 	.css_free	= cpu_cgroup_css_free,
10353 	.css_extra_stat_show = cpu_extra_stat_show,
10354 	.fork		= cpu_cgroup_fork,
10355 	.can_attach	= cpu_cgroup_can_attach,
10356 	.attach		= cpu_cgroup_attach,
10357 	.legacy_cftypes	= cpu_legacy_files,
10358 	.dfl_cftypes	= cpu_files,
10359 	.early_init	= true,
10360 	.threaded	= true,
10361 };
10362 
10363 #endif	/* CONFIG_CGROUP_SCHED */
10364 
10365 void dump_cpu_task(int cpu)
10366 {
10367 	pr_info("Task dump for CPU %d:\n", cpu);
10368 	sched_show_task(cpu_curr(cpu));
10369 }
10370 
10371 /*
10372  * Nice levels are multiplicative, with a gentle 10% change for every
10373  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10374  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10375  * that remained on nice 0.
10376  *
10377  * The "10% effect" is relative and cumulative: from _any_ nice level,
10378  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10379  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10380  * If a task goes up by ~10% and another task goes down by ~10% then
10381  * the relative distance between them is ~25%.)
10382  */
10383 const int sched_prio_to_weight[40] = {
10384  /* -20 */     88761,     71755,     56483,     46273,     36291,
10385  /* -15 */     29154,     23254,     18705,     14949,     11916,
10386  /* -10 */      9548,      7620,      6100,      4904,      3906,
10387  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10388  /*   0 */      1024,       820,       655,       526,       423,
10389  /*   5 */       335,       272,       215,       172,       137,
10390  /*  10 */       110,        87,        70,        56,        45,
10391  /*  15 */        36,        29,        23,        18,        15,
10392 };
10393 
10394 /*
10395  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10396  *
10397  * In cases where the weight does not change often, we can use the
10398  * precalculated inverse to speed up arithmetics by turning divisions
10399  * into multiplications:
10400  */
10401 const u32 sched_prio_to_wmult[40] = {
10402  /* -20 */     48388,     59856,     76040,     92818,    118348,
10403  /* -15 */    147320,    184698,    229616,    287308,    360437,
10404  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10405  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10406  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10407  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10408  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10409  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10410 };
10411 
10412 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10413 {
10414         trace_sched_update_nr_running_tp(rq, count);
10415 }
10416