xref: /linux/kernel/sched/core.c (revision 37f0e658eeeac720f3d558cf5aaf9edf0705ff23)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 /*
128  * Number of tasks to iterate in a single balance run.
129  * Limited because this is done with IRQs disabled.
130  */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132 
133 /*
134  * period over which we average the RT time consumption, measured
135  * in ms.
136  *
137  * default: 1s
138  */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140 
141 /*
142  * period over which we measure -rt task cpu usage in us.
143  * default: 1s
144  */
145 unsigned int sysctl_sched_rt_period = 1000000;
146 
147 __read_mostly int scheduler_running;
148 
149 /*
150  * part of the period that we allow rt tasks to run in us.
151  * default: 0.95s
152  */
153 int sysctl_sched_rt_runtime = 950000;
154 
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157 
158 /*
159  * this_rq_lock - lock this runqueue and disable interrupts.
160  */
161 static struct rq *this_rq_lock(void)
162 	__acquires(rq->lock)
163 {
164 	struct rq *rq;
165 
166 	local_irq_disable();
167 	rq = this_rq();
168 	raw_spin_lock(&rq->lock);
169 
170 	return rq;
171 }
172 
173 #ifdef CONFIG_SCHED_HRTICK
174 /*
175  * Use HR-timers to deliver accurate preemption points.
176  */
177 
178 static void hrtick_clear(struct rq *rq)
179 {
180 	if (hrtimer_active(&rq->hrtick_timer))
181 		hrtimer_cancel(&rq->hrtick_timer);
182 }
183 
184 /*
185  * High-resolution timer tick.
186  * Runs from hardirq context with interrupts disabled.
187  */
188 static enum hrtimer_restart hrtick(struct hrtimer *timer)
189 {
190 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191 
192 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193 
194 	raw_spin_lock(&rq->lock);
195 	update_rq_clock(rq);
196 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
197 	raw_spin_unlock(&rq->lock);
198 
199 	return HRTIMER_NORESTART;
200 }
201 
202 #ifdef CONFIG_SMP
203 
204 static void __hrtick_restart(struct rq *rq)
205 {
206 	struct hrtimer *timer = &rq->hrtick_timer;
207 
208 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
209 }
210 
211 /*
212  * called from hardirq (IPI) context
213  */
214 static void __hrtick_start(void *arg)
215 {
216 	struct rq *rq = arg;
217 
218 	raw_spin_lock(&rq->lock);
219 	__hrtick_restart(rq);
220 	rq->hrtick_csd_pending = 0;
221 	raw_spin_unlock(&rq->lock);
222 }
223 
224 /*
225  * Called to set the hrtick timer state.
226  *
227  * called with rq->lock held and irqs disabled
228  */
229 void hrtick_start(struct rq *rq, u64 delay)
230 {
231 	struct hrtimer *timer = &rq->hrtick_timer;
232 	ktime_t time;
233 	s64 delta;
234 
235 	/*
236 	 * Don't schedule slices shorter than 10000ns, that just
237 	 * doesn't make sense and can cause timer DoS.
238 	 */
239 	delta = max_t(s64, delay, 10000LL);
240 	time = ktime_add_ns(timer->base->get_time(), delta);
241 
242 	hrtimer_set_expires(timer, time);
243 
244 	if (rq == this_rq()) {
245 		__hrtick_restart(rq);
246 	} else if (!rq->hrtick_csd_pending) {
247 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
248 		rq->hrtick_csd_pending = 1;
249 	}
250 }
251 
252 static int
253 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254 {
255 	int cpu = (int)(long)hcpu;
256 
257 	switch (action) {
258 	case CPU_UP_CANCELED:
259 	case CPU_UP_CANCELED_FROZEN:
260 	case CPU_DOWN_PREPARE:
261 	case CPU_DOWN_PREPARE_FROZEN:
262 	case CPU_DEAD:
263 	case CPU_DEAD_FROZEN:
264 		hrtick_clear(cpu_rq(cpu));
265 		return NOTIFY_OK;
266 	}
267 
268 	return NOTIFY_DONE;
269 }
270 
271 static __init void init_hrtick(void)
272 {
273 	hotcpu_notifier(hotplug_hrtick, 0);
274 }
275 #else
276 /*
277  * Called to set the hrtick timer state.
278  *
279  * called with rq->lock held and irqs disabled
280  */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 	/*
284 	 * Don't schedule slices shorter than 10000ns, that just
285 	 * doesn't make sense. Rely on vruntime for fairness.
286 	 */
287 	delay = max_t(u64, delay, 10000LL);
288 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 		      HRTIMER_MODE_REL_PINNED);
290 }
291 
292 static inline void init_hrtick(void)
293 {
294 }
295 #endif /* CONFIG_SMP */
296 
297 static void init_rq_hrtick(struct rq *rq)
298 {
299 #ifdef CONFIG_SMP
300 	rq->hrtick_csd_pending = 0;
301 
302 	rq->hrtick_csd.flags = 0;
303 	rq->hrtick_csd.func = __hrtick_start;
304 	rq->hrtick_csd.info = rq;
305 #endif
306 
307 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 	rq->hrtick_timer.function = hrtick;
309 }
310 #else	/* CONFIG_SCHED_HRTICK */
311 static inline void hrtick_clear(struct rq *rq)
312 {
313 }
314 
315 static inline void init_rq_hrtick(struct rq *rq)
316 {
317 }
318 
319 static inline void init_hrtick(void)
320 {
321 }
322 #endif	/* CONFIG_SCHED_HRTICK */
323 
324 /*
325  * cmpxchg based fetch_or, macro so it works for different integer types
326  */
327 #define fetch_or(ptr, mask)						\
328 	({								\
329 		typeof(ptr) _ptr = (ptr);				\
330 		typeof(mask) _mask = (mask);				\
331 		typeof(*_ptr) _old, _val = *_ptr;			\
332 									\
333 		for (;;) {						\
334 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
335 			if (_old == _val)				\
336 				break;					\
337 			_val = _old;					\
338 		}							\
339 	_old;								\
340 })
341 
342 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
343 /*
344  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345  * this avoids any races wrt polling state changes and thereby avoids
346  * spurious IPIs.
347  */
348 static bool set_nr_and_not_polling(struct task_struct *p)
349 {
350 	struct thread_info *ti = task_thread_info(p);
351 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352 }
353 
354 /*
355  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356  *
357  * If this returns true, then the idle task promises to call
358  * sched_ttwu_pending() and reschedule soon.
359  */
360 static bool set_nr_if_polling(struct task_struct *p)
361 {
362 	struct thread_info *ti = task_thread_info(p);
363 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
364 
365 	for (;;) {
366 		if (!(val & _TIF_POLLING_NRFLAG))
367 			return false;
368 		if (val & _TIF_NEED_RESCHED)
369 			return true;
370 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 		if (old == val)
372 			break;
373 		val = old;
374 	}
375 	return true;
376 }
377 
378 #else
379 static bool set_nr_and_not_polling(struct task_struct *p)
380 {
381 	set_tsk_need_resched(p);
382 	return true;
383 }
384 
385 #ifdef CONFIG_SMP
386 static bool set_nr_if_polling(struct task_struct *p)
387 {
388 	return false;
389 }
390 #endif
391 #endif
392 
393 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394 {
395 	struct wake_q_node *node = &task->wake_q;
396 
397 	/*
398 	 * Atomically grab the task, if ->wake_q is !nil already it means
399 	 * its already queued (either by us or someone else) and will get the
400 	 * wakeup due to that.
401 	 *
402 	 * This cmpxchg() implies a full barrier, which pairs with the write
403 	 * barrier implied by the wakeup in wake_up_list().
404 	 */
405 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 		return;
407 
408 	get_task_struct(task);
409 
410 	/*
411 	 * The head is context local, there can be no concurrency.
412 	 */
413 	*head->lastp = node;
414 	head->lastp = &node->next;
415 }
416 
417 void wake_up_q(struct wake_q_head *head)
418 {
419 	struct wake_q_node *node = head->first;
420 
421 	while (node != WAKE_Q_TAIL) {
422 		struct task_struct *task;
423 
424 		task = container_of(node, struct task_struct, wake_q);
425 		BUG_ON(!task);
426 		/* task can safely be re-inserted now */
427 		node = node->next;
428 		task->wake_q.next = NULL;
429 
430 		/*
431 		 * wake_up_process() implies a wmb() to pair with the queueing
432 		 * in wake_q_add() so as not to miss wakeups.
433 		 */
434 		wake_up_process(task);
435 		put_task_struct(task);
436 	}
437 }
438 
439 /*
440  * resched_curr - mark rq's current task 'to be rescheduled now'.
441  *
442  * On UP this means the setting of the need_resched flag, on SMP it
443  * might also involve a cross-CPU call to trigger the scheduler on
444  * the target CPU.
445  */
446 void resched_curr(struct rq *rq)
447 {
448 	struct task_struct *curr = rq->curr;
449 	int cpu;
450 
451 	lockdep_assert_held(&rq->lock);
452 
453 	if (test_tsk_need_resched(curr))
454 		return;
455 
456 	cpu = cpu_of(rq);
457 
458 	if (cpu == smp_processor_id()) {
459 		set_tsk_need_resched(curr);
460 		set_preempt_need_resched();
461 		return;
462 	}
463 
464 	if (set_nr_and_not_polling(curr))
465 		smp_send_reschedule(cpu);
466 	else
467 		trace_sched_wake_idle_without_ipi(cpu);
468 }
469 
470 void resched_cpu(int cpu)
471 {
472 	struct rq *rq = cpu_rq(cpu);
473 	unsigned long flags;
474 
475 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
476 		return;
477 	resched_curr(rq);
478 	raw_spin_unlock_irqrestore(&rq->lock, flags);
479 }
480 
481 #ifdef CONFIG_SMP
482 #ifdef CONFIG_NO_HZ_COMMON
483 /*
484  * In the semi idle case, use the nearest busy cpu for migrating timers
485  * from an idle cpu.  This is good for power-savings.
486  *
487  * We don't do similar optimization for completely idle system, as
488  * selecting an idle cpu will add more delays to the timers than intended
489  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490  */
491 int get_nohz_timer_target(void)
492 {
493 	int i, cpu = smp_processor_id();
494 	struct sched_domain *sd;
495 
496 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
497 		return cpu;
498 
499 	rcu_read_lock();
500 	for_each_domain(cpu, sd) {
501 		for_each_cpu(i, sched_domain_span(sd)) {
502 			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
503 				cpu = i;
504 				goto unlock;
505 			}
506 		}
507 	}
508 
509 	if (!is_housekeeping_cpu(cpu))
510 		cpu = housekeeping_any_cpu();
511 unlock:
512 	rcu_read_unlock();
513 	return cpu;
514 }
515 /*
516  * When add_timer_on() enqueues a timer into the timer wheel of an
517  * idle CPU then this timer might expire before the next timer event
518  * which is scheduled to wake up that CPU. In case of a completely
519  * idle system the next event might even be infinite time into the
520  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521  * leaves the inner idle loop so the newly added timer is taken into
522  * account when the CPU goes back to idle and evaluates the timer
523  * wheel for the next timer event.
524  */
525 static void wake_up_idle_cpu(int cpu)
526 {
527 	struct rq *rq = cpu_rq(cpu);
528 
529 	if (cpu == smp_processor_id())
530 		return;
531 
532 	if (set_nr_and_not_polling(rq->idle))
533 		smp_send_reschedule(cpu);
534 	else
535 		trace_sched_wake_idle_without_ipi(cpu);
536 }
537 
538 static bool wake_up_full_nohz_cpu(int cpu)
539 {
540 	/*
541 	 * We just need the target to call irq_exit() and re-evaluate
542 	 * the next tick. The nohz full kick at least implies that.
543 	 * If needed we can still optimize that later with an
544 	 * empty IRQ.
545 	 */
546 	if (tick_nohz_full_cpu(cpu)) {
547 		if (cpu != smp_processor_id() ||
548 		    tick_nohz_tick_stopped())
549 			tick_nohz_full_kick_cpu(cpu);
550 		return true;
551 	}
552 
553 	return false;
554 }
555 
556 void wake_up_nohz_cpu(int cpu)
557 {
558 	if (!wake_up_full_nohz_cpu(cpu))
559 		wake_up_idle_cpu(cpu);
560 }
561 
562 static inline bool got_nohz_idle_kick(void)
563 {
564 	int cpu = smp_processor_id();
565 
566 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 		return false;
568 
569 	if (idle_cpu(cpu) && !need_resched())
570 		return true;
571 
572 	/*
573 	 * We can't run Idle Load Balance on this CPU for this time so we
574 	 * cancel it and clear NOHZ_BALANCE_KICK
575 	 */
576 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 	return false;
578 }
579 
580 #else /* CONFIG_NO_HZ_COMMON */
581 
582 static inline bool got_nohz_idle_kick(void)
583 {
584 	return false;
585 }
586 
587 #endif /* CONFIG_NO_HZ_COMMON */
588 
589 #ifdef CONFIG_NO_HZ_FULL
590 bool sched_can_stop_tick(struct rq *rq)
591 {
592 	int fifo_nr_running;
593 
594 	/* Deadline tasks, even if single, need the tick */
595 	if (rq->dl.dl_nr_running)
596 		return false;
597 
598 	/*
599 	 * If there are more than one RR tasks, we need the tick to effect the
600 	 * actual RR behaviour.
601 	 */
602 	if (rq->rt.rr_nr_running) {
603 		if (rq->rt.rr_nr_running == 1)
604 			return true;
605 		else
606 			return false;
607 	}
608 
609 	/*
610 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
611 	 * forced preemption between FIFO tasks.
612 	 */
613 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
614 	if (fifo_nr_running)
615 		return true;
616 
617 	/*
618 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
619 	 * if there's more than one we need the tick for involuntary
620 	 * preemption.
621 	 */
622 	if (rq->nr_running > 1)
623 		return false;
624 
625 	return true;
626 }
627 #endif /* CONFIG_NO_HZ_FULL */
628 
629 void sched_avg_update(struct rq *rq)
630 {
631 	s64 period = sched_avg_period();
632 
633 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
634 		/*
635 		 * Inline assembly required to prevent the compiler
636 		 * optimising this loop into a divmod call.
637 		 * See __iter_div_u64_rem() for another example of this.
638 		 */
639 		asm("" : "+rm" (rq->age_stamp));
640 		rq->age_stamp += period;
641 		rq->rt_avg /= 2;
642 	}
643 }
644 
645 #endif /* CONFIG_SMP */
646 
647 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649 /*
650  * Iterate task_group tree rooted at *from, calling @down when first entering a
651  * node and @up when leaving it for the final time.
652  *
653  * Caller must hold rcu_lock or sufficient equivalent.
654  */
655 int walk_tg_tree_from(struct task_group *from,
656 			     tg_visitor down, tg_visitor up, void *data)
657 {
658 	struct task_group *parent, *child;
659 	int ret;
660 
661 	parent = from;
662 
663 down:
664 	ret = (*down)(parent, data);
665 	if (ret)
666 		goto out;
667 	list_for_each_entry_rcu(child, &parent->children, siblings) {
668 		parent = child;
669 		goto down;
670 
671 up:
672 		continue;
673 	}
674 	ret = (*up)(parent, data);
675 	if (ret || parent == from)
676 		goto out;
677 
678 	child = parent;
679 	parent = parent->parent;
680 	if (parent)
681 		goto up;
682 out:
683 	return ret;
684 }
685 
686 int tg_nop(struct task_group *tg, void *data)
687 {
688 	return 0;
689 }
690 #endif
691 
692 static void set_load_weight(struct task_struct *p)
693 {
694 	int prio = p->static_prio - MAX_RT_PRIO;
695 	struct load_weight *load = &p->se.load;
696 
697 	/*
698 	 * SCHED_IDLE tasks get minimal weight:
699 	 */
700 	if (idle_policy(p->policy)) {
701 		load->weight = scale_load(WEIGHT_IDLEPRIO);
702 		load->inv_weight = WMULT_IDLEPRIO;
703 		return;
704 	}
705 
706 	load->weight = scale_load(sched_prio_to_weight[prio]);
707 	load->inv_weight = sched_prio_to_wmult[prio];
708 }
709 
710 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
711 {
712 	update_rq_clock(rq);
713 	if (!(flags & ENQUEUE_RESTORE))
714 		sched_info_queued(rq, p);
715 	p->sched_class->enqueue_task(rq, p, flags);
716 }
717 
718 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
719 {
720 	update_rq_clock(rq);
721 	if (!(flags & DEQUEUE_SAVE))
722 		sched_info_dequeued(rq, p);
723 	p->sched_class->dequeue_task(rq, p, flags);
724 }
725 
726 void activate_task(struct rq *rq, struct task_struct *p, int flags)
727 {
728 	if (task_contributes_to_load(p))
729 		rq->nr_uninterruptible--;
730 
731 	enqueue_task(rq, p, flags);
732 }
733 
734 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
735 {
736 	if (task_contributes_to_load(p))
737 		rq->nr_uninterruptible++;
738 
739 	dequeue_task(rq, p, flags);
740 }
741 
742 static void update_rq_clock_task(struct rq *rq, s64 delta)
743 {
744 /*
745  * In theory, the compile should just see 0 here, and optimize out the call
746  * to sched_rt_avg_update. But I don't trust it...
747  */
748 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
749 	s64 steal = 0, irq_delta = 0;
750 #endif
751 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
752 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
753 
754 	/*
755 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 	 * this case when a previous update_rq_clock() happened inside a
757 	 * {soft,}irq region.
758 	 *
759 	 * When this happens, we stop ->clock_task and only update the
760 	 * prev_irq_time stamp to account for the part that fit, so that a next
761 	 * update will consume the rest. This ensures ->clock_task is
762 	 * monotonic.
763 	 *
764 	 * It does however cause some slight miss-attribution of {soft,}irq
765 	 * time, a more accurate solution would be to update the irq_time using
766 	 * the current rq->clock timestamp, except that would require using
767 	 * atomic ops.
768 	 */
769 	if (irq_delta > delta)
770 		irq_delta = delta;
771 
772 	rq->prev_irq_time += irq_delta;
773 	delta -= irq_delta;
774 #endif
775 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
776 	if (static_key_false((&paravirt_steal_rq_enabled))) {
777 		steal = paravirt_steal_clock(cpu_of(rq));
778 		steal -= rq->prev_steal_time_rq;
779 
780 		if (unlikely(steal > delta))
781 			steal = delta;
782 
783 		rq->prev_steal_time_rq += steal;
784 		delta -= steal;
785 	}
786 #endif
787 
788 	rq->clock_task += delta;
789 
790 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
791 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
792 		sched_rt_avg_update(rq, irq_delta + steal);
793 #endif
794 }
795 
796 void sched_set_stop_task(int cpu, struct task_struct *stop)
797 {
798 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
799 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
800 
801 	if (stop) {
802 		/*
803 		 * Make it appear like a SCHED_FIFO task, its something
804 		 * userspace knows about and won't get confused about.
805 		 *
806 		 * Also, it will make PI more or less work without too
807 		 * much confusion -- but then, stop work should not
808 		 * rely on PI working anyway.
809 		 */
810 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
811 
812 		stop->sched_class = &stop_sched_class;
813 	}
814 
815 	cpu_rq(cpu)->stop = stop;
816 
817 	if (old_stop) {
818 		/*
819 		 * Reset it back to a normal scheduling class so that
820 		 * it can die in pieces.
821 		 */
822 		old_stop->sched_class = &rt_sched_class;
823 	}
824 }
825 
826 /*
827  * __normal_prio - return the priority that is based on the static prio
828  */
829 static inline int __normal_prio(struct task_struct *p)
830 {
831 	return p->static_prio;
832 }
833 
834 /*
835  * Calculate the expected normal priority: i.e. priority
836  * without taking RT-inheritance into account. Might be
837  * boosted by interactivity modifiers. Changes upon fork,
838  * setprio syscalls, and whenever the interactivity
839  * estimator recalculates.
840  */
841 static inline int normal_prio(struct task_struct *p)
842 {
843 	int prio;
844 
845 	if (task_has_dl_policy(p))
846 		prio = MAX_DL_PRIO-1;
847 	else if (task_has_rt_policy(p))
848 		prio = MAX_RT_PRIO-1 - p->rt_priority;
849 	else
850 		prio = __normal_prio(p);
851 	return prio;
852 }
853 
854 /*
855  * Calculate the current priority, i.e. the priority
856  * taken into account by the scheduler. This value might
857  * be boosted by RT tasks, or might be boosted by
858  * interactivity modifiers. Will be RT if the task got
859  * RT-boosted. If not then it returns p->normal_prio.
860  */
861 static int effective_prio(struct task_struct *p)
862 {
863 	p->normal_prio = normal_prio(p);
864 	/*
865 	 * If we are RT tasks or we were boosted to RT priority,
866 	 * keep the priority unchanged. Otherwise, update priority
867 	 * to the normal priority:
868 	 */
869 	if (!rt_prio(p->prio))
870 		return p->normal_prio;
871 	return p->prio;
872 }
873 
874 /**
875  * task_curr - is this task currently executing on a CPU?
876  * @p: the task in question.
877  *
878  * Return: 1 if the task is currently executing. 0 otherwise.
879  */
880 inline int task_curr(const struct task_struct *p)
881 {
882 	return cpu_curr(task_cpu(p)) == p;
883 }
884 
885 /*
886  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
887  * use the balance_callback list if you want balancing.
888  *
889  * this means any call to check_class_changed() must be followed by a call to
890  * balance_callback().
891  */
892 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
893 				       const struct sched_class *prev_class,
894 				       int oldprio)
895 {
896 	if (prev_class != p->sched_class) {
897 		if (prev_class->switched_from)
898 			prev_class->switched_from(rq, p);
899 
900 		p->sched_class->switched_to(rq, p);
901 	} else if (oldprio != p->prio || dl_task(p))
902 		p->sched_class->prio_changed(rq, p, oldprio);
903 }
904 
905 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
906 {
907 	const struct sched_class *class;
908 
909 	if (p->sched_class == rq->curr->sched_class) {
910 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
911 	} else {
912 		for_each_class(class) {
913 			if (class == rq->curr->sched_class)
914 				break;
915 			if (class == p->sched_class) {
916 				resched_curr(rq);
917 				break;
918 			}
919 		}
920 	}
921 
922 	/*
923 	 * A queue event has occurred, and we're going to schedule.  In
924 	 * this case, we can save a useless back to back clock update.
925 	 */
926 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
927 		rq_clock_skip_update(rq, true);
928 }
929 
930 #ifdef CONFIG_SMP
931 /*
932  * This is how migration works:
933  *
934  * 1) we invoke migration_cpu_stop() on the target CPU using
935  *    stop_one_cpu().
936  * 2) stopper starts to run (implicitly forcing the migrated thread
937  *    off the CPU)
938  * 3) it checks whether the migrated task is still in the wrong runqueue.
939  * 4) if it's in the wrong runqueue then the migration thread removes
940  *    it and puts it into the right queue.
941  * 5) stopper completes and stop_one_cpu() returns and the migration
942  *    is done.
943  */
944 
945 /*
946  * move_queued_task - move a queued task to new rq.
947  *
948  * Returns (locked) new rq. Old rq's lock is released.
949  */
950 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
951 {
952 	lockdep_assert_held(&rq->lock);
953 
954 	p->on_rq = TASK_ON_RQ_MIGRATING;
955 	dequeue_task(rq, p, 0);
956 	set_task_cpu(p, new_cpu);
957 	raw_spin_unlock(&rq->lock);
958 
959 	rq = cpu_rq(new_cpu);
960 
961 	raw_spin_lock(&rq->lock);
962 	BUG_ON(task_cpu(p) != new_cpu);
963 	enqueue_task(rq, p, 0);
964 	p->on_rq = TASK_ON_RQ_QUEUED;
965 	check_preempt_curr(rq, p, 0);
966 
967 	return rq;
968 }
969 
970 struct migration_arg {
971 	struct task_struct *task;
972 	int dest_cpu;
973 };
974 
975 /*
976  * Move (not current) task off this cpu, onto dest cpu. We're doing
977  * this because either it can't run here any more (set_cpus_allowed()
978  * away from this CPU, or CPU going down), or because we're
979  * attempting to rebalance this task on exec (sched_exec).
980  *
981  * So we race with normal scheduler movements, but that's OK, as long
982  * as the task is no longer on this CPU.
983  */
984 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
985 {
986 	if (unlikely(!cpu_active(dest_cpu)))
987 		return rq;
988 
989 	/* Affinity changed (again). */
990 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
991 		return rq;
992 
993 	rq = move_queued_task(rq, p, dest_cpu);
994 
995 	return rq;
996 }
997 
998 /*
999  * migration_cpu_stop - this will be executed by a highprio stopper thread
1000  * and performs thread migration by bumping thread off CPU then
1001  * 'pushing' onto another runqueue.
1002  */
1003 static int migration_cpu_stop(void *data)
1004 {
1005 	struct migration_arg *arg = data;
1006 	struct task_struct *p = arg->task;
1007 	struct rq *rq = this_rq();
1008 
1009 	/*
1010 	 * The original target cpu might have gone down and we might
1011 	 * be on another cpu but it doesn't matter.
1012 	 */
1013 	local_irq_disable();
1014 	/*
1015 	 * We need to explicitly wake pending tasks before running
1016 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1017 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1018 	 */
1019 	sched_ttwu_pending();
1020 
1021 	raw_spin_lock(&p->pi_lock);
1022 	raw_spin_lock(&rq->lock);
1023 	/*
1024 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1025 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1026 	 * we're holding p->pi_lock.
1027 	 */
1028 	if (task_rq(p) == rq && task_on_rq_queued(p))
1029 		rq = __migrate_task(rq, p, arg->dest_cpu);
1030 	raw_spin_unlock(&rq->lock);
1031 	raw_spin_unlock(&p->pi_lock);
1032 
1033 	local_irq_enable();
1034 	return 0;
1035 }
1036 
1037 /*
1038  * sched_class::set_cpus_allowed must do the below, but is not required to
1039  * actually call this function.
1040  */
1041 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1042 {
1043 	cpumask_copy(&p->cpus_allowed, new_mask);
1044 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1045 }
1046 
1047 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1048 {
1049 	struct rq *rq = task_rq(p);
1050 	bool queued, running;
1051 
1052 	lockdep_assert_held(&p->pi_lock);
1053 
1054 	queued = task_on_rq_queued(p);
1055 	running = task_current(rq, p);
1056 
1057 	if (queued) {
1058 		/*
1059 		 * Because __kthread_bind() calls this on blocked tasks without
1060 		 * holding rq->lock.
1061 		 */
1062 		lockdep_assert_held(&rq->lock);
1063 		dequeue_task(rq, p, DEQUEUE_SAVE);
1064 	}
1065 	if (running)
1066 		put_prev_task(rq, p);
1067 
1068 	p->sched_class->set_cpus_allowed(p, new_mask);
1069 
1070 	if (running)
1071 		p->sched_class->set_curr_task(rq);
1072 	if (queued)
1073 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1074 }
1075 
1076 /*
1077  * Change a given task's CPU affinity. Migrate the thread to a
1078  * proper CPU and schedule it away if the CPU it's executing on
1079  * is removed from the allowed bitmask.
1080  *
1081  * NOTE: the caller must have a valid reference to the task, the
1082  * task must not exit() & deallocate itself prematurely. The
1083  * call is not atomic; no spinlocks may be held.
1084  */
1085 static int __set_cpus_allowed_ptr(struct task_struct *p,
1086 				  const struct cpumask *new_mask, bool check)
1087 {
1088 	unsigned long flags;
1089 	struct rq *rq;
1090 	unsigned int dest_cpu;
1091 	int ret = 0;
1092 
1093 	rq = task_rq_lock(p, &flags);
1094 
1095 	/*
1096 	 * Must re-check here, to close a race against __kthread_bind(),
1097 	 * sched_setaffinity() is not guaranteed to observe the flag.
1098 	 */
1099 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1100 		ret = -EINVAL;
1101 		goto out;
1102 	}
1103 
1104 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1105 		goto out;
1106 
1107 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1108 		ret = -EINVAL;
1109 		goto out;
1110 	}
1111 
1112 	do_set_cpus_allowed(p, new_mask);
1113 
1114 	/* Can the task run on the task's current CPU? If so, we're done */
1115 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1116 		goto out;
1117 
1118 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1119 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1120 		struct migration_arg arg = { p, dest_cpu };
1121 		/* Need help from migration thread: drop lock and wait. */
1122 		task_rq_unlock(rq, p, &flags);
1123 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124 		tlb_migrate_finish(p->mm);
1125 		return 0;
1126 	} else if (task_on_rq_queued(p)) {
1127 		/*
1128 		 * OK, since we're going to drop the lock immediately
1129 		 * afterwards anyway.
1130 		 */
1131 		lockdep_unpin_lock(&rq->lock);
1132 		rq = move_queued_task(rq, p, dest_cpu);
1133 		lockdep_pin_lock(&rq->lock);
1134 	}
1135 out:
1136 	task_rq_unlock(rq, p, &flags);
1137 
1138 	return ret;
1139 }
1140 
1141 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1142 {
1143 	return __set_cpus_allowed_ptr(p, new_mask, false);
1144 }
1145 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1146 
1147 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1148 {
1149 #ifdef CONFIG_SCHED_DEBUG
1150 	/*
1151 	 * We should never call set_task_cpu() on a blocked task,
1152 	 * ttwu() will sort out the placement.
1153 	 */
1154 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1155 			!p->on_rq);
1156 
1157 	/*
1158 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1159 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1160 	 * time relying on p->on_rq.
1161 	 */
1162 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1163 		     p->sched_class == &fair_sched_class &&
1164 		     (p->on_rq && !task_on_rq_migrating(p)));
1165 
1166 #ifdef CONFIG_LOCKDEP
1167 	/*
1168 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1169 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1170 	 *
1171 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1172 	 * see task_group().
1173 	 *
1174 	 * Furthermore, all task_rq users should acquire both locks, see
1175 	 * task_rq_lock().
1176 	 */
1177 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1178 				      lockdep_is_held(&task_rq(p)->lock)));
1179 #endif
1180 #endif
1181 
1182 	trace_sched_migrate_task(p, new_cpu);
1183 
1184 	if (task_cpu(p) != new_cpu) {
1185 		if (p->sched_class->migrate_task_rq)
1186 			p->sched_class->migrate_task_rq(p);
1187 		p->se.nr_migrations++;
1188 		perf_event_task_migrate(p);
1189 	}
1190 
1191 	__set_task_cpu(p, new_cpu);
1192 }
1193 
1194 static void __migrate_swap_task(struct task_struct *p, int cpu)
1195 {
1196 	if (task_on_rq_queued(p)) {
1197 		struct rq *src_rq, *dst_rq;
1198 
1199 		src_rq = task_rq(p);
1200 		dst_rq = cpu_rq(cpu);
1201 
1202 		p->on_rq = TASK_ON_RQ_MIGRATING;
1203 		deactivate_task(src_rq, p, 0);
1204 		set_task_cpu(p, cpu);
1205 		activate_task(dst_rq, p, 0);
1206 		p->on_rq = TASK_ON_RQ_QUEUED;
1207 		check_preempt_curr(dst_rq, p, 0);
1208 	} else {
1209 		/*
1210 		 * Task isn't running anymore; make it appear like we migrated
1211 		 * it before it went to sleep. This means on wakeup we make the
1212 		 * previous cpu our targer instead of where it really is.
1213 		 */
1214 		p->wake_cpu = cpu;
1215 	}
1216 }
1217 
1218 struct migration_swap_arg {
1219 	struct task_struct *src_task, *dst_task;
1220 	int src_cpu, dst_cpu;
1221 };
1222 
1223 static int migrate_swap_stop(void *data)
1224 {
1225 	struct migration_swap_arg *arg = data;
1226 	struct rq *src_rq, *dst_rq;
1227 	int ret = -EAGAIN;
1228 
1229 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1230 		return -EAGAIN;
1231 
1232 	src_rq = cpu_rq(arg->src_cpu);
1233 	dst_rq = cpu_rq(arg->dst_cpu);
1234 
1235 	double_raw_lock(&arg->src_task->pi_lock,
1236 			&arg->dst_task->pi_lock);
1237 	double_rq_lock(src_rq, dst_rq);
1238 
1239 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1240 		goto unlock;
1241 
1242 	if (task_cpu(arg->src_task) != arg->src_cpu)
1243 		goto unlock;
1244 
1245 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1246 		goto unlock;
1247 
1248 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1249 		goto unlock;
1250 
1251 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1252 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1253 
1254 	ret = 0;
1255 
1256 unlock:
1257 	double_rq_unlock(src_rq, dst_rq);
1258 	raw_spin_unlock(&arg->dst_task->pi_lock);
1259 	raw_spin_unlock(&arg->src_task->pi_lock);
1260 
1261 	return ret;
1262 }
1263 
1264 /*
1265  * Cross migrate two tasks
1266  */
1267 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1268 {
1269 	struct migration_swap_arg arg;
1270 	int ret = -EINVAL;
1271 
1272 	arg = (struct migration_swap_arg){
1273 		.src_task = cur,
1274 		.src_cpu = task_cpu(cur),
1275 		.dst_task = p,
1276 		.dst_cpu = task_cpu(p),
1277 	};
1278 
1279 	if (arg.src_cpu == arg.dst_cpu)
1280 		goto out;
1281 
1282 	/*
1283 	 * These three tests are all lockless; this is OK since all of them
1284 	 * will be re-checked with proper locks held further down the line.
1285 	 */
1286 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 		goto out;
1288 
1289 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1290 		goto out;
1291 
1292 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1293 		goto out;
1294 
1295 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1296 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297 
1298 out:
1299 	return ret;
1300 }
1301 
1302 /*
1303  * wait_task_inactive - wait for a thread to unschedule.
1304  *
1305  * If @match_state is nonzero, it's the @p->state value just checked and
1306  * not expected to change.  If it changes, i.e. @p might have woken up,
1307  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1308  * we return a positive number (its total switch count).  If a second call
1309  * a short while later returns the same number, the caller can be sure that
1310  * @p has remained unscheduled the whole time.
1311  *
1312  * The caller must ensure that the task *will* unschedule sometime soon,
1313  * else this function might spin for a *long* time. This function can't
1314  * be called with interrupts off, or it may introduce deadlock with
1315  * smp_call_function() if an IPI is sent by the same process we are
1316  * waiting to become inactive.
1317  */
1318 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1319 {
1320 	unsigned long flags;
1321 	int running, queued;
1322 	unsigned long ncsw;
1323 	struct rq *rq;
1324 
1325 	for (;;) {
1326 		/*
1327 		 * We do the initial early heuristics without holding
1328 		 * any task-queue locks at all. We'll only try to get
1329 		 * the runqueue lock when things look like they will
1330 		 * work out!
1331 		 */
1332 		rq = task_rq(p);
1333 
1334 		/*
1335 		 * If the task is actively running on another CPU
1336 		 * still, just relax and busy-wait without holding
1337 		 * any locks.
1338 		 *
1339 		 * NOTE! Since we don't hold any locks, it's not
1340 		 * even sure that "rq" stays as the right runqueue!
1341 		 * But we don't care, since "task_running()" will
1342 		 * return false if the runqueue has changed and p
1343 		 * is actually now running somewhere else!
1344 		 */
1345 		while (task_running(rq, p)) {
1346 			if (match_state && unlikely(p->state != match_state))
1347 				return 0;
1348 			cpu_relax();
1349 		}
1350 
1351 		/*
1352 		 * Ok, time to look more closely! We need the rq
1353 		 * lock now, to be *sure*. If we're wrong, we'll
1354 		 * just go back and repeat.
1355 		 */
1356 		rq = task_rq_lock(p, &flags);
1357 		trace_sched_wait_task(p);
1358 		running = task_running(rq, p);
1359 		queued = task_on_rq_queued(p);
1360 		ncsw = 0;
1361 		if (!match_state || p->state == match_state)
1362 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1363 		task_rq_unlock(rq, p, &flags);
1364 
1365 		/*
1366 		 * If it changed from the expected state, bail out now.
1367 		 */
1368 		if (unlikely(!ncsw))
1369 			break;
1370 
1371 		/*
1372 		 * Was it really running after all now that we
1373 		 * checked with the proper locks actually held?
1374 		 *
1375 		 * Oops. Go back and try again..
1376 		 */
1377 		if (unlikely(running)) {
1378 			cpu_relax();
1379 			continue;
1380 		}
1381 
1382 		/*
1383 		 * It's not enough that it's not actively running,
1384 		 * it must be off the runqueue _entirely_, and not
1385 		 * preempted!
1386 		 *
1387 		 * So if it was still runnable (but just not actively
1388 		 * running right now), it's preempted, and we should
1389 		 * yield - it could be a while.
1390 		 */
1391 		if (unlikely(queued)) {
1392 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1393 
1394 			set_current_state(TASK_UNINTERRUPTIBLE);
1395 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1396 			continue;
1397 		}
1398 
1399 		/*
1400 		 * Ahh, all good. It wasn't running, and it wasn't
1401 		 * runnable, which means that it will never become
1402 		 * running in the future either. We're all done!
1403 		 */
1404 		break;
1405 	}
1406 
1407 	return ncsw;
1408 }
1409 
1410 /***
1411  * kick_process - kick a running thread to enter/exit the kernel
1412  * @p: the to-be-kicked thread
1413  *
1414  * Cause a process which is running on another CPU to enter
1415  * kernel-mode, without any delay. (to get signals handled.)
1416  *
1417  * NOTE: this function doesn't have to take the runqueue lock,
1418  * because all it wants to ensure is that the remote task enters
1419  * the kernel. If the IPI races and the task has been migrated
1420  * to another CPU then no harm is done and the purpose has been
1421  * achieved as well.
1422  */
1423 void kick_process(struct task_struct *p)
1424 {
1425 	int cpu;
1426 
1427 	preempt_disable();
1428 	cpu = task_cpu(p);
1429 	if ((cpu != smp_processor_id()) && task_curr(p))
1430 		smp_send_reschedule(cpu);
1431 	preempt_enable();
1432 }
1433 EXPORT_SYMBOL_GPL(kick_process);
1434 
1435 /*
1436  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1437  */
1438 static int select_fallback_rq(int cpu, struct task_struct *p)
1439 {
1440 	int nid = cpu_to_node(cpu);
1441 	const struct cpumask *nodemask = NULL;
1442 	enum { cpuset, possible, fail } state = cpuset;
1443 	int dest_cpu;
1444 
1445 	/*
1446 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1447 	 * will return -1. There is no cpu on the node, and we should
1448 	 * select the cpu on the other node.
1449 	 */
1450 	if (nid != -1) {
1451 		nodemask = cpumask_of_node(nid);
1452 
1453 		/* Look for allowed, online CPU in same node. */
1454 		for_each_cpu(dest_cpu, nodemask) {
1455 			if (!cpu_online(dest_cpu))
1456 				continue;
1457 			if (!cpu_active(dest_cpu))
1458 				continue;
1459 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1460 				return dest_cpu;
1461 		}
1462 	}
1463 
1464 	for (;;) {
1465 		/* Any allowed, online CPU? */
1466 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1467 			if (!cpu_online(dest_cpu))
1468 				continue;
1469 			if (!cpu_active(dest_cpu))
1470 				continue;
1471 			goto out;
1472 		}
1473 
1474 		/* No more Mr. Nice Guy. */
1475 		switch (state) {
1476 		case cpuset:
1477 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1478 				cpuset_cpus_allowed_fallback(p);
1479 				state = possible;
1480 				break;
1481 			}
1482 			/* fall-through */
1483 		case possible:
1484 			do_set_cpus_allowed(p, cpu_possible_mask);
1485 			state = fail;
1486 			break;
1487 
1488 		case fail:
1489 			BUG();
1490 			break;
1491 		}
1492 	}
1493 
1494 out:
1495 	if (state != cpuset) {
1496 		/*
1497 		 * Don't tell them about moving exiting tasks or
1498 		 * kernel threads (both mm NULL), since they never
1499 		 * leave kernel.
1500 		 */
1501 		if (p->mm && printk_ratelimit()) {
1502 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1503 					task_pid_nr(p), p->comm, cpu);
1504 		}
1505 	}
1506 
1507 	return dest_cpu;
1508 }
1509 
1510 /*
1511  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1512  */
1513 static inline
1514 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1515 {
1516 	lockdep_assert_held(&p->pi_lock);
1517 
1518 	if (p->nr_cpus_allowed > 1)
1519 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1520 
1521 	/*
1522 	 * In order not to call set_task_cpu() on a blocking task we need
1523 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1524 	 * cpu.
1525 	 *
1526 	 * Since this is common to all placement strategies, this lives here.
1527 	 *
1528 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1529 	 *   not worry about this generic constraint ]
1530 	 */
1531 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1532 		     !cpu_online(cpu)))
1533 		cpu = select_fallback_rq(task_cpu(p), p);
1534 
1535 	return cpu;
1536 }
1537 
1538 static void update_avg(u64 *avg, u64 sample)
1539 {
1540 	s64 diff = sample - *avg;
1541 	*avg += diff >> 3;
1542 }
1543 
1544 #else
1545 
1546 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1547 					 const struct cpumask *new_mask, bool check)
1548 {
1549 	return set_cpus_allowed_ptr(p, new_mask);
1550 }
1551 
1552 #endif /* CONFIG_SMP */
1553 
1554 static void
1555 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1556 {
1557 #ifdef CONFIG_SCHEDSTATS
1558 	struct rq *rq = this_rq();
1559 
1560 #ifdef CONFIG_SMP
1561 	int this_cpu = smp_processor_id();
1562 
1563 	if (cpu == this_cpu) {
1564 		schedstat_inc(rq, ttwu_local);
1565 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1566 	} else {
1567 		struct sched_domain *sd;
1568 
1569 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1570 		rcu_read_lock();
1571 		for_each_domain(this_cpu, sd) {
1572 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1573 				schedstat_inc(sd, ttwu_wake_remote);
1574 				break;
1575 			}
1576 		}
1577 		rcu_read_unlock();
1578 	}
1579 
1580 	if (wake_flags & WF_MIGRATED)
1581 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1582 
1583 #endif /* CONFIG_SMP */
1584 
1585 	schedstat_inc(rq, ttwu_count);
1586 	schedstat_inc(p, se.statistics.nr_wakeups);
1587 
1588 	if (wake_flags & WF_SYNC)
1589 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1590 
1591 #endif /* CONFIG_SCHEDSTATS */
1592 }
1593 
1594 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1595 {
1596 	activate_task(rq, p, en_flags);
1597 	p->on_rq = TASK_ON_RQ_QUEUED;
1598 
1599 	/* if a worker is waking up, notify workqueue */
1600 	if (p->flags & PF_WQ_WORKER)
1601 		wq_worker_waking_up(p, cpu_of(rq));
1602 }
1603 
1604 /*
1605  * Mark the task runnable and perform wakeup-preemption.
1606  */
1607 static void
1608 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1609 {
1610 	check_preempt_curr(rq, p, wake_flags);
1611 	p->state = TASK_RUNNING;
1612 	trace_sched_wakeup(p);
1613 
1614 #ifdef CONFIG_SMP
1615 	if (p->sched_class->task_woken) {
1616 		/*
1617 		 * Our task @p is fully woken up and running; so its safe to
1618 		 * drop the rq->lock, hereafter rq is only used for statistics.
1619 		 */
1620 		lockdep_unpin_lock(&rq->lock);
1621 		p->sched_class->task_woken(rq, p);
1622 		lockdep_pin_lock(&rq->lock);
1623 	}
1624 
1625 	if (rq->idle_stamp) {
1626 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1627 		u64 max = 2*rq->max_idle_balance_cost;
1628 
1629 		update_avg(&rq->avg_idle, delta);
1630 
1631 		if (rq->avg_idle > max)
1632 			rq->avg_idle = max;
1633 
1634 		rq->idle_stamp = 0;
1635 	}
1636 #endif
1637 }
1638 
1639 static void
1640 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1641 {
1642 	lockdep_assert_held(&rq->lock);
1643 
1644 #ifdef CONFIG_SMP
1645 	if (p->sched_contributes_to_load)
1646 		rq->nr_uninterruptible--;
1647 #endif
1648 
1649 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1650 	ttwu_do_wakeup(rq, p, wake_flags);
1651 }
1652 
1653 /*
1654  * Called in case the task @p isn't fully descheduled from its runqueue,
1655  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1656  * since all we need to do is flip p->state to TASK_RUNNING, since
1657  * the task is still ->on_rq.
1658  */
1659 static int ttwu_remote(struct task_struct *p, int wake_flags)
1660 {
1661 	struct rq *rq;
1662 	int ret = 0;
1663 
1664 	rq = __task_rq_lock(p);
1665 	if (task_on_rq_queued(p)) {
1666 		/* check_preempt_curr() may use rq clock */
1667 		update_rq_clock(rq);
1668 		ttwu_do_wakeup(rq, p, wake_flags);
1669 		ret = 1;
1670 	}
1671 	__task_rq_unlock(rq);
1672 
1673 	return ret;
1674 }
1675 
1676 #ifdef CONFIG_SMP
1677 void sched_ttwu_pending(void)
1678 {
1679 	struct rq *rq = this_rq();
1680 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1681 	struct task_struct *p;
1682 	unsigned long flags;
1683 
1684 	if (!llist)
1685 		return;
1686 
1687 	raw_spin_lock_irqsave(&rq->lock, flags);
1688 	lockdep_pin_lock(&rq->lock);
1689 
1690 	while (llist) {
1691 		p = llist_entry(llist, struct task_struct, wake_entry);
1692 		llist = llist_next(llist);
1693 		ttwu_do_activate(rq, p, 0);
1694 	}
1695 
1696 	lockdep_unpin_lock(&rq->lock);
1697 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1698 }
1699 
1700 void scheduler_ipi(void)
1701 {
1702 	/*
1703 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1704 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1705 	 * this IPI.
1706 	 */
1707 	preempt_fold_need_resched();
1708 
1709 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1710 		return;
1711 
1712 	/*
1713 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1714 	 * traditionally all their work was done from the interrupt return
1715 	 * path. Now that we actually do some work, we need to make sure
1716 	 * we do call them.
1717 	 *
1718 	 * Some archs already do call them, luckily irq_enter/exit nest
1719 	 * properly.
1720 	 *
1721 	 * Arguably we should visit all archs and update all handlers,
1722 	 * however a fair share of IPIs are still resched only so this would
1723 	 * somewhat pessimize the simple resched case.
1724 	 */
1725 	irq_enter();
1726 	sched_ttwu_pending();
1727 
1728 	/*
1729 	 * Check if someone kicked us for doing the nohz idle load balance.
1730 	 */
1731 	if (unlikely(got_nohz_idle_kick())) {
1732 		this_rq()->idle_balance = 1;
1733 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1734 	}
1735 	irq_exit();
1736 }
1737 
1738 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1739 {
1740 	struct rq *rq = cpu_rq(cpu);
1741 
1742 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1743 		if (!set_nr_if_polling(rq->idle))
1744 			smp_send_reschedule(cpu);
1745 		else
1746 			trace_sched_wake_idle_without_ipi(cpu);
1747 	}
1748 }
1749 
1750 void wake_up_if_idle(int cpu)
1751 {
1752 	struct rq *rq = cpu_rq(cpu);
1753 	unsigned long flags;
1754 
1755 	rcu_read_lock();
1756 
1757 	if (!is_idle_task(rcu_dereference(rq->curr)))
1758 		goto out;
1759 
1760 	if (set_nr_if_polling(rq->idle)) {
1761 		trace_sched_wake_idle_without_ipi(cpu);
1762 	} else {
1763 		raw_spin_lock_irqsave(&rq->lock, flags);
1764 		if (is_idle_task(rq->curr))
1765 			smp_send_reschedule(cpu);
1766 		/* Else cpu is not in idle, do nothing here */
1767 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1768 	}
1769 
1770 out:
1771 	rcu_read_unlock();
1772 }
1773 
1774 bool cpus_share_cache(int this_cpu, int that_cpu)
1775 {
1776 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1777 }
1778 #endif /* CONFIG_SMP */
1779 
1780 static void ttwu_queue(struct task_struct *p, int cpu)
1781 {
1782 	struct rq *rq = cpu_rq(cpu);
1783 
1784 #if defined(CONFIG_SMP)
1785 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1786 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1787 		ttwu_queue_remote(p, cpu);
1788 		return;
1789 	}
1790 #endif
1791 
1792 	raw_spin_lock(&rq->lock);
1793 	lockdep_pin_lock(&rq->lock);
1794 	ttwu_do_activate(rq, p, 0);
1795 	lockdep_unpin_lock(&rq->lock);
1796 	raw_spin_unlock(&rq->lock);
1797 }
1798 
1799 /*
1800  * Notes on Program-Order guarantees on SMP systems.
1801  *
1802  *  MIGRATION
1803  *
1804  * The basic program-order guarantee on SMP systems is that when a task [t]
1805  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1806  * execution on its new cpu [c1].
1807  *
1808  * For migration (of runnable tasks) this is provided by the following means:
1809  *
1810  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1811  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1812  *     rq(c1)->lock (if not at the same time, then in that order).
1813  *  C) LOCK of the rq(c1)->lock scheduling in task
1814  *
1815  * Transitivity guarantees that B happens after A and C after B.
1816  * Note: we only require RCpc transitivity.
1817  * Note: the cpu doing B need not be c0 or c1
1818  *
1819  * Example:
1820  *
1821  *   CPU0            CPU1            CPU2
1822  *
1823  *   LOCK rq(0)->lock
1824  *   sched-out X
1825  *   sched-in Y
1826  *   UNLOCK rq(0)->lock
1827  *
1828  *                                   LOCK rq(0)->lock // orders against CPU0
1829  *                                   dequeue X
1830  *                                   UNLOCK rq(0)->lock
1831  *
1832  *                                   LOCK rq(1)->lock
1833  *                                   enqueue X
1834  *                                   UNLOCK rq(1)->lock
1835  *
1836  *                   LOCK rq(1)->lock // orders against CPU2
1837  *                   sched-out Z
1838  *                   sched-in X
1839  *                   UNLOCK rq(1)->lock
1840  *
1841  *
1842  *  BLOCKING -- aka. SLEEP + WAKEUP
1843  *
1844  * For blocking we (obviously) need to provide the same guarantee as for
1845  * migration. However the means are completely different as there is no lock
1846  * chain to provide order. Instead we do:
1847  *
1848  *   1) smp_store_release(X->on_cpu, 0)
1849  *   2) smp_cond_acquire(!X->on_cpu)
1850  *
1851  * Example:
1852  *
1853  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1854  *
1855  *   LOCK rq(0)->lock LOCK X->pi_lock
1856  *   dequeue X
1857  *   sched-out X
1858  *   smp_store_release(X->on_cpu, 0);
1859  *
1860  *                    smp_cond_acquire(!X->on_cpu);
1861  *                    X->state = WAKING
1862  *                    set_task_cpu(X,2)
1863  *
1864  *                    LOCK rq(2)->lock
1865  *                    enqueue X
1866  *                    X->state = RUNNING
1867  *                    UNLOCK rq(2)->lock
1868  *
1869  *                                          LOCK rq(2)->lock // orders against CPU1
1870  *                                          sched-out Z
1871  *                                          sched-in X
1872  *                                          UNLOCK rq(2)->lock
1873  *
1874  *                    UNLOCK X->pi_lock
1875  *   UNLOCK rq(0)->lock
1876  *
1877  *
1878  * However; for wakeups there is a second guarantee we must provide, namely we
1879  * must observe the state that lead to our wakeup. That is, not only must our
1880  * task observe its own prior state, it must also observe the stores prior to
1881  * its wakeup.
1882  *
1883  * This means that any means of doing remote wakeups must order the CPU doing
1884  * the wakeup against the CPU the task is going to end up running on. This,
1885  * however, is already required for the regular Program-Order guarantee above,
1886  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1887  *
1888  */
1889 
1890 /**
1891  * try_to_wake_up - wake up a thread
1892  * @p: the thread to be awakened
1893  * @state: the mask of task states that can be woken
1894  * @wake_flags: wake modifier flags (WF_*)
1895  *
1896  * Put it on the run-queue if it's not already there. The "current"
1897  * thread is always on the run-queue (except when the actual
1898  * re-schedule is in progress), and as such you're allowed to do
1899  * the simpler "current->state = TASK_RUNNING" to mark yourself
1900  * runnable without the overhead of this.
1901  *
1902  * Return: %true if @p was woken up, %false if it was already running.
1903  * or @state didn't match @p's state.
1904  */
1905 static int
1906 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1907 {
1908 	unsigned long flags;
1909 	int cpu, success = 0;
1910 
1911 	/*
1912 	 * If we are going to wake up a thread waiting for CONDITION we
1913 	 * need to ensure that CONDITION=1 done by the caller can not be
1914 	 * reordered with p->state check below. This pairs with mb() in
1915 	 * set_current_state() the waiting thread does.
1916 	 */
1917 	smp_mb__before_spinlock();
1918 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1919 	if (!(p->state & state))
1920 		goto out;
1921 
1922 	trace_sched_waking(p);
1923 
1924 	success = 1; /* we're going to change ->state */
1925 	cpu = task_cpu(p);
1926 
1927 	if (p->on_rq && ttwu_remote(p, wake_flags))
1928 		goto stat;
1929 
1930 #ifdef CONFIG_SMP
1931 	/*
1932 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1933 	 * possible to, falsely, observe p->on_cpu == 0.
1934 	 *
1935 	 * One must be running (->on_cpu == 1) in order to remove oneself
1936 	 * from the runqueue.
1937 	 *
1938 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
1939 	 *      UNLOCK rq->lock
1940 	 *			RMB
1941 	 *      LOCK   rq->lock
1942 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
1943 	 *
1944 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1945 	 * from the consecutive calls to schedule(); the first switching to our
1946 	 * task, the second putting it to sleep.
1947 	 */
1948 	smp_rmb();
1949 
1950 	/*
1951 	 * If the owning (remote) cpu is still in the middle of schedule() with
1952 	 * this task as prev, wait until its done referencing the task.
1953 	 *
1954 	 * Pairs with the smp_store_release() in finish_lock_switch().
1955 	 *
1956 	 * This ensures that tasks getting woken will be fully ordered against
1957 	 * their previous state and preserve Program Order.
1958 	 */
1959 	smp_cond_acquire(!p->on_cpu);
1960 
1961 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1962 	p->state = TASK_WAKING;
1963 
1964 	if (p->sched_class->task_waking)
1965 		p->sched_class->task_waking(p);
1966 
1967 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1968 	if (task_cpu(p) != cpu) {
1969 		wake_flags |= WF_MIGRATED;
1970 		set_task_cpu(p, cpu);
1971 	}
1972 #endif /* CONFIG_SMP */
1973 
1974 	ttwu_queue(p, cpu);
1975 stat:
1976 	if (schedstat_enabled())
1977 		ttwu_stat(p, cpu, wake_flags);
1978 out:
1979 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1980 
1981 	return success;
1982 }
1983 
1984 /**
1985  * try_to_wake_up_local - try to wake up a local task with rq lock held
1986  * @p: the thread to be awakened
1987  *
1988  * Put @p on the run-queue if it's not already there. The caller must
1989  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1990  * the current task.
1991  */
1992 static void try_to_wake_up_local(struct task_struct *p)
1993 {
1994 	struct rq *rq = task_rq(p);
1995 
1996 	if (WARN_ON_ONCE(rq != this_rq()) ||
1997 	    WARN_ON_ONCE(p == current))
1998 		return;
1999 
2000 	lockdep_assert_held(&rq->lock);
2001 
2002 	if (!raw_spin_trylock(&p->pi_lock)) {
2003 		/*
2004 		 * This is OK, because current is on_cpu, which avoids it being
2005 		 * picked for load-balance and preemption/IRQs are still
2006 		 * disabled avoiding further scheduler activity on it and we've
2007 		 * not yet picked a replacement task.
2008 		 */
2009 		lockdep_unpin_lock(&rq->lock);
2010 		raw_spin_unlock(&rq->lock);
2011 		raw_spin_lock(&p->pi_lock);
2012 		raw_spin_lock(&rq->lock);
2013 		lockdep_pin_lock(&rq->lock);
2014 	}
2015 
2016 	if (!(p->state & TASK_NORMAL))
2017 		goto out;
2018 
2019 	trace_sched_waking(p);
2020 
2021 	if (!task_on_rq_queued(p))
2022 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2023 
2024 	ttwu_do_wakeup(rq, p, 0);
2025 	if (schedstat_enabled())
2026 		ttwu_stat(p, smp_processor_id(), 0);
2027 out:
2028 	raw_spin_unlock(&p->pi_lock);
2029 }
2030 
2031 /**
2032  * wake_up_process - Wake up a specific process
2033  * @p: The process to be woken up.
2034  *
2035  * Attempt to wake up the nominated process and move it to the set of runnable
2036  * processes.
2037  *
2038  * Return: 1 if the process was woken up, 0 if it was already running.
2039  *
2040  * It may be assumed that this function implies a write memory barrier before
2041  * changing the task state if and only if any tasks are woken up.
2042  */
2043 int wake_up_process(struct task_struct *p)
2044 {
2045 	return try_to_wake_up(p, TASK_NORMAL, 0);
2046 }
2047 EXPORT_SYMBOL(wake_up_process);
2048 
2049 int wake_up_state(struct task_struct *p, unsigned int state)
2050 {
2051 	return try_to_wake_up(p, state, 0);
2052 }
2053 
2054 /*
2055  * This function clears the sched_dl_entity static params.
2056  */
2057 void __dl_clear_params(struct task_struct *p)
2058 {
2059 	struct sched_dl_entity *dl_se = &p->dl;
2060 
2061 	dl_se->dl_runtime = 0;
2062 	dl_se->dl_deadline = 0;
2063 	dl_se->dl_period = 0;
2064 	dl_se->flags = 0;
2065 	dl_se->dl_bw = 0;
2066 
2067 	dl_se->dl_throttled = 0;
2068 	dl_se->dl_yielded = 0;
2069 }
2070 
2071 /*
2072  * Perform scheduler related setup for a newly forked process p.
2073  * p is forked by current.
2074  *
2075  * __sched_fork() is basic setup used by init_idle() too:
2076  */
2077 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2078 {
2079 	p->on_rq			= 0;
2080 
2081 	p->se.on_rq			= 0;
2082 	p->se.exec_start		= 0;
2083 	p->se.sum_exec_runtime		= 0;
2084 	p->se.prev_sum_exec_runtime	= 0;
2085 	p->se.nr_migrations		= 0;
2086 	p->se.vruntime			= 0;
2087 	INIT_LIST_HEAD(&p->se.group_node);
2088 
2089 #ifdef CONFIG_FAIR_GROUP_SCHED
2090 	p->se.cfs_rq			= NULL;
2091 #endif
2092 
2093 #ifdef CONFIG_SCHEDSTATS
2094 	/* Even if schedstat is disabled, there should not be garbage */
2095 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2096 #endif
2097 
2098 	RB_CLEAR_NODE(&p->dl.rb_node);
2099 	init_dl_task_timer(&p->dl);
2100 	__dl_clear_params(p);
2101 
2102 	INIT_LIST_HEAD(&p->rt.run_list);
2103 	p->rt.timeout		= 0;
2104 	p->rt.time_slice	= sched_rr_timeslice;
2105 	p->rt.on_rq		= 0;
2106 	p->rt.on_list		= 0;
2107 
2108 #ifdef CONFIG_PREEMPT_NOTIFIERS
2109 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2110 #endif
2111 
2112 #ifdef CONFIG_NUMA_BALANCING
2113 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2114 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2115 		p->mm->numa_scan_seq = 0;
2116 	}
2117 
2118 	if (clone_flags & CLONE_VM)
2119 		p->numa_preferred_nid = current->numa_preferred_nid;
2120 	else
2121 		p->numa_preferred_nid = -1;
2122 
2123 	p->node_stamp = 0ULL;
2124 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2125 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2126 	p->numa_work.next = &p->numa_work;
2127 	p->numa_faults = NULL;
2128 	p->last_task_numa_placement = 0;
2129 	p->last_sum_exec_runtime = 0;
2130 
2131 	p->numa_group = NULL;
2132 #endif /* CONFIG_NUMA_BALANCING */
2133 }
2134 
2135 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2136 
2137 #ifdef CONFIG_NUMA_BALANCING
2138 
2139 void set_numabalancing_state(bool enabled)
2140 {
2141 	if (enabled)
2142 		static_branch_enable(&sched_numa_balancing);
2143 	else
2144 		static_branch_disable(&sched_numa_balancing);
2145 }
2146 
2147 #ifdef CONFIG_PROC_SYSCTL
2148 int sysctl_numa_balancing(struct ctl_table *table, int write,
2149 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2150 {
2151 	struct ctl_table t;
2152 	int err;
2153 	int state = static_branch_likely(&sched_numa_balancing);
2154 
2155 	if (write && !capable(CAP_SYS_ADMIN))
2156 		return -EPERM;
2157 
2158 	t = *table;
2159 	t.data = &state;
2160 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2161 	if (err < 0)
2162 		return err;
2163 	if (write)
2164 		set_numabalancing_state(state);
2165 	return err;
2166 }
2167 #endif
2168 #endif
2169 
2170 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2171 
2172 #ifdef CONFIG_SCHEDSTATS
2173 static void set_schedstats(bool enabled)
2174 {
2175 	if (enabled)
2176 		static_branch_enable(&sched_schedstats);
2177 	else
2178 		static_branch_disable(&sched_schedstats);
2179 }
2180 
2181 void force_schedstat_enabled(void)
2182 {
2183 	if (!schedstat_enabled()) {
2184 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2185 		static_branch_enable(&sched_schedstats);
2186 	}
2187 }
2188 
2189 static int __init setup_schedstats(char *str)
2190 {
2191 	int ret = 0;
2192 	if (!str)
2193 		goto out;
2194 
2195 	if (!strcmp(str, "enable")) {
2196 		set_schedstats(true);
2197 		ret = 1;
2198 	} else if (!strcmp(str, "disable")) {
2199 		set_schedstats(false);
2200 		ret = 1;
2201 	}
2202 out:
2203 	if (!ret)
2204 		pr_warn("Unable to parse schedstats=\n");
2205 
2206 	return ret;
2207 }
2208 __setup("schedstats=", setup_schedstats);
2209 
2210 #ifdef CONFIG_PROC_SYSCTL
2211 int sysctl_schedstats(struct ctl_table *table, int write,
2212 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2213 {
2214 	struct ctl_table t;
2215 	int err;
2216 	int state = static_branch_likely(&sched_schedstats);
2217 
2218 	if (write && !capable(CAP_SYS_ADMIN))
2219 		return -EPERM;
2220 
2221 	t = *table;
2222 	t.data = &state;
2223 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2224 	if (err < 0)
2225 		return err;
2226 	if (write)
2227 		set_schedstats(state);
2228 	return err;
2229 }
2230 #endif
2231 #endif
2232 
2233 /*
2234  * fork()/clone()-time setup:
2235  */
2236 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2237 {
2238 	unsigned long flags;
2239 	int cpu = get_cpu();
2240 
2241 	__sched_fork(clone_flags, p);
2242 	/*
2243 	 * We mark the process as running here. This guarantees that
2244 	 * nobody will actually run it, and a signal or other external
2245 	 * event cannot wake it up and insert it on the runqueue either.
2246 	 */
2247 	p->state = TASK_RUNNING;
2248 
2249 	/*
2250 	 * Make sure we do not leak PI boosting priority to the child.
2251 	 */
2252 	p->prio = current->normal_prio;
2253 
2254 	/*
2255 	 * Revert to default priority/policy on fork if requested.
2256 	 */
2257 	if (unlikely(p->sched_reset_on_fork)) {
2258 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2259 			p->policy = SCHED_NORMAL;
2260 			p->static_prio = NICE_TO_PRIO(0);
2261 			p->rt_priority = 0;
2262 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2263 			p->static_prio = NICE_TO_PRIO(0);
2264 
2265 		p->prio = p->normal_prio = __normal_prio(p);
2266 		set_load_weight(p);
2267 
2268 		/*
2269 		 * We don't need the reset flag anymore after the fork. It has
2270 		 * fulfilled its duty:
2271 		 */
2272 		p->sched_reset_on_fork = 0;
2273 	}
2274 
2275 	if (dl_prio(p->prio)) {
2276 		put_cpu();
2277 		return -EAGAIN;
2278 	} else if (rt_prio(p->prio)) {
2279 		p->sched_class = &rt_sched_class;
2280 	} else {
2281 		p->sched_class = &fair_sched_class;
2282 	}
2283 
2284 	if (p->sched_class->task_fork)
2285 		p->sched_class->task_fork(p);
2286 
2287 	/*
2288 	 * The child is not yet in the pid-hash so no cgroup attach races,
2289 	 * and the cgroup is pinned to this child due to cgroup_fork()
2290 	 * is ran before sched_fork().
2291 	 *
2292 	 * Silence PROVE_RCU.
2293 	 */
2294 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2295 	set_task_cpu(p, cpu);
2296 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2297 
2298 #ifdef CONFIG_SCHED_INFO
2299 	if (likely(sched_info_on()))
2300 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2301 #endif
2302 #if defined(CONFIG_SMP)
2303 	p->on_cpu = 0;
2304 #endif
2305 	init_task_preempt_count(p);
2306 #ifdef CONFIG_SMP
2307 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2308 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2309 #endif
2310 
2311 	put_cpu();
2312 	return 0;
2313 }
2314 
2315 unsigned long to_ratio(u64 period, u64 runtime)
2316 {
2317 	if (runtime == RUNTIME_INF)
2318 		return 1ULL << 20;
2319 
2320 	/*
2321 	 * Doing this here saves a lot of checks in all
2322 	 * the calling paths, and returning zero seems
2323 	 * safe for them anyway.
2324 	 */
2325 	if (period == 0)
2326 		return 0;
2327 
2328 	return div64_u64(runtime << 20, period);
2329 }
2330 
2331 #ifdef CONFIG_SMP
2332 inline struct dl_bw *dl_bw_of(int i)
2333 {
2334 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2335 			 "sched RCU must be held");
2336 	return &cpu_rq(i)->rd->dl_bw;
2337 }
2338 
2339 static inline int dl_bw_cpus(int i)
2340 {
2341 	struct root_domain *rd = cpu_rq(i)->rd;
2342 	int cpus = 0;
2343 
2344 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2345 			 "sched RCU must be held");
2346 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2347 		cpus++;
2348 
2349 	return cpus;
2350 }
2351 #else
2352 inline struct dl_bw *dl_bw_of(int i)
2353 {
2354 	return &cpu_rq(i)->dl.dl_bw;
2355 }
2356 
2357 static inline int dl_bw_cpus(int i)
2358 {
2359 	return 1;
2360 }
2361 #endif
2362 
2363 /*
2364  * We must be sure that accepting a new task (or allowing changing the
2365  * parameters of an existing one) is consistent with the bandwidth
2366  * constraints. If yes, this function also accordingly updates the currently
2367  * allocated bandwidth to reflect the new situation.
2368  *
2369  * This function is called while holding p's rq->lock.
2370  *
2371  * XXX we should delay bw change until the task's 0-lag point, see
2372  * __setparam_dl().
2373  */
2374 static int dl_overflow(struct task_struct *p, int policy,
2375 		       const struct sched_attr *attr)
2376 {
2377 
2378 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2379 	u64 period = attr->sched_period ?: attr->sched_deadline;
2380 	u64 runtime = attr->sched_runtime;
2381 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2382 	int cpus, err = -1;
2383 
2384 	if (new_bw == p->dl.dl_bw)
2385 		return 0;
2386 
2387 	/*
2388 	 * Either if a task, enters, leave, or stays -deadline but changes
2389 	 * its parameters, we may need to update accordingly the total
2390 	 * allocated bandwidth of the container.
2391 	 */
2392 	raw_spin_lock(&dl_b->lock);
2393 	cpus = dl_bw_cpus(task_cpu(p));
2394 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2395 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2396 		__dl_add(dl_b, new_bw);
2397 		err = 0;
2398 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2399 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2400 		__dl_clear(dl_b, p->dl.dl_bw);
2401 		__dl_add(dl_b, new_bw);
2402 		err = 0;
2403 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2404 		__dl_clear(dl_b, p->dl.dl_bw);
2405 		err = 0;
2406 	}
2407 	raw_spin_unlock(&dl_b->lock);
2408 
2409 	return err;
2410 }
2411 
2412 extern void init_dl_bw(struct dl_bw *dl_b);
2413 
2414 /*
2415  * wake_up_new_task - wake up a newly created task for the first time.
2416  *
2417  * This function will do some initial scheduler statistics housekeeping
2418  * that must be done for every newly created context, then puts the task
2419  * on the runqueue and wakes it.
2420  */
2421 void wake_up_new_task(struct task_struct *p)
2422 {
2423 	unsigned long flags;
2424 	struct rq *rq;
2425 
2426 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2427 	/* Initialize new task's runnable average */
2428 	init_entity_runnable_average(&p->se);
2429 #ifdef CONFIG_SMP
2430 	/*
2431 	 * Fork balancing, do it here and not earlier because:
2432 	 *  - cpus_allowed can change in the fork path
2433 	 *  - any previously selected cpu might disappear through hotplug
2434 	 */
2435 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2436 #endif
2437 
2438 	rq = __task_rq_lock(p);
2439 	activate_task(rq, p, 0);
2440 	p->on_rq = TASK_ON_RQ_QUEUED;
2441 	trace_sched_wakeup_new(p);
2442 	check_preempt_curr(rq, p, WF_FORK);
2443 #ifdef CONFIG_SMP
2444 	if (p->sched_class->task_woken) {
2445 		/*
2446 		 * Nothing relies on rq->lock after this, so its fine to
2447 		 * drop it.
2448 		 */
2449 		lockdep_unpin_lock(&rq->lock);
2450 		p->sched_class->task_woken(rq, p);
2451 		lockdep_pin_lock(&rq->lock);
2452 	}
2453 #endif
2454 	task_rq_unlock(rq, p, &flags);
2455 }
2456 
2457 #ifdef CONFIG_PREEMPT_NOTIFIERS
2458 
2459 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2460 
2461 void preempt_notifier_inc(void)
2462 {
2463 	static_key_slow_inc(&preempt_notifier_key);
2464 }
2465 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2466 
2467 void preempt_notifier_dec(void)
2468 {
2469 	static_key_slow_dec(&preempt_notifier_key);
2470 }
2471 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2472 
2473 /**
2474  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2475  * @notifier: notifier struct to register
2476  */
2477 void preempt_notifier_register(struct preempt_notifier *notifier)
2478 {
2479 	if (!static_key_false(&preempt_notifier_key))
2480 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2481 
2482 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2483 }
2484 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2485 
2486 /**
2487  * preempt_notifier_unregister - no longer interested in preemption notifications
2488  * @notifier: notifier struct to unregister
2489  *
2490  * This is *not* safe to call from within a preemption notifier.
2491  */
2492 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2493 {
2494 	hlist_del(&notifier->link);
2495 }
2496 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2497 
2498 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2499 {
2500 	struct preempt_notifier *notifier;
2501 
2502 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2503 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2504 }
2505 
2506 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2507 {
2508 	if (static_key_false(&preempt_notifier_key))
2509 		__fire_sched_in_preempt_notifiers(curr);
2510 }
2511 
2512 static void
2513 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2514 				   struct task_struct *next)
2515 {
2516 	struct preempt_notifier *notifier;
2517 
2518 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2519 		notifier->ops->sched_out(notifier, next);
2520 }
2521 
2522 static __always_inline void
2523 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2524 				 struct task_struct *next)
2525 {
2526 	if (static_key_false(&preempt_notifier_key))
2527 		__fire_sched_out_preempt_notifiers(curr, next);
2528 }
2529 
2530 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2531 
2532 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533 {
2534 }
2535 
2536 static inline void
2537 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2538 				 struct task_struct *next)
2539 {
2540 }
2541 
2542 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2543 
2544 /**
2545  * prepare_task_switch - prepare to switch tasks
2546  * @rq: the runqueue preparing to switch
2547  * @prev: the current task that is being switched out
2548  * @next: the task we are going to switch to.
2549  *
2550  * This is called with the rq lock held and interrupts off. It must
2551  * be paired with a subsequent finish_task_switch after the context
2552  * switch.
2553  *
2554  * prepare_task_switch sets up locking and calls architecture specific
2555  * hooks.
2556  */
2557 static inline void
2558 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2559 		    struct task_struct *next)
2560 {
2561 	sched_info_switch(rq, prev, next);
2562 	perf_event_task_sched_out(prev, next);
2563 	fire_sched_out_preempt_notifiers(prev, next);
2564 	prepare_lock_switch(rq, next);
2565 	prepare_arch_switch(next);
2566 }
2567 
2568 /**
2569  * finish_task_switch - clean up after a task-switch
2570  * @prev: the thread we just switched away from.
2571  *
2572  * finish_task_switch must be called after the context switch, paired
2573  * with a prepare_task_switch call before the context switch.
2574  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2575  * and do any other architecture-specific cleanup actions.
2576  *
2577  * Note that we may have delayed dropping an mm in context_switch(). If
2578  * so, we finish that here outside of the runqueue lock. (Doing it
2579  * with the lock held can cause deadlocks; see schedule() for
2580  * details.)
2581  *
2582  * The context switch have flipped the stack from under us and restored the
2583  * local variables which were saved when this task called schedule() in the
2584  * past. prev == current is still correct but we need to recalculate this_rq
2585  * because prev may have moved to another CPU.
2586  */
2587 static struct rq *finish_task_switch(struct task_struct *prev)
2588 	__releases(rq->lock)
2589 {
2590 	struct rq *rq = this_rq();
2591 	struct mm_struct *mm = rq->prev_mm;
2592 	long prev_state;
2593 
2594 	/*
2595 	 * The previous task will have left us with a preempt_count of 2
2596 	 * because it left us after:
2597 	 *
2598 	 *	schedule()
2599 	 *	  preempt_disable();			// 1
2600 	 *	  __schedule()
2601 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2602 	 *
2603 	 * Also, see FORK_PREEMPT_COUNT.
2604 	 */
2605 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2606 		      "corrupted preempt_count: %s/%d/0x%x\n",
2607 		      current->comm, current->pid, preempt_count()))
2608 		preempt_count_set(FORK_PREEMPT_COUNT);
2609 
2610 	rq->prev_mm = NULL;
2611 
2612 	/*
2613 	 * A task struct has one reference for the use as "current".
2614 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2615 	 * schedule one last time. The schedule call will never return, and
2616 	 * the scheduled task must drop that reference.
2617 	 *
2618 	 * We must observe prev->state before clearing prev->on_cpu (in
2619 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2620 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2621 	 * transition, resulting in a double drop.
2622 	 */
2623 	prev_state = prev->state;
2624 	vtime_task_switch(prev);
2625 	perf_event_task_sched_in(prev, current);
2626 	finish_lock_switch(rq, prev);
2627 	finish_arch_post_lock_switch();
2628 
2629 	fire_sched_in_preempt_notifiers(current);
2630 	if (mm)
2631 		mmdrop(mm);
2632 	if (unlikely(prev_state == TASK_DEAD)) {
2633 		if (prev->sched_class->task_dead)
2634 			prev->sched_class->task_dead(prev);
2635 
2636 		/*
2637 		 * Remove function-return probe instances associated with this
2638 		 * task and put them back on the free list.
2639 		 */
2640 		kprobe_flush_task(prev);
2641 		put_task_struct(prev);
2642 	}
2643 
2644 	tick_nohz_task_switch();
2645 	return rq;
2646 }
2647 
2648 #ifdef CONFIG_SMP
2649 
2650 /* rq->lock is NOT held, but preemption is disabled */
2651 static void __balance_callback(struct rq *rq)
2652 {
2653 	struct callback_head *head, *next;
2654 	void (*func)(struct rq *rq);
2655 	unsigned long flags;
2656 
2657 	raw_spin_lock_irqsave(&rq->lock, flags);
2658 	head = rq->balance_callback;
2659 	rq->balance_callback = NULL;
2660 	while (head) {
2661 		func = (void (*)(struct rq *))head->func;
2662 		next = head->next;
2663 		head->next = NULL;
2664 		head = next;
2665 
2666 		func(rq);
2667 	}
2668 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2669 }
2670 
2671 static inline void balance_callback(struct rq *rq)
2672 {
2673 	if (unlikely(rq->balance_callback))
2674 		__balance_callback(rq);
2675 }
2676 
2677 #else
2678 
2679 static inline void balance_callback(struct rq *rq)
2680 {
2681 }
2682 
2683 #endif
2684 
2685 /**
2686  * schedule_tail - first thing a freshly forked thread must call.
2687  * @prev: the thread we just switched away from.
2688  */
2689 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2690 	__releases(rq->lock)
2691 {
2692 	struct rq *rq;
2693 
2694 	/*
2695 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2696 	 * finish_task_switch() for details.
2697 	 *
2698 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2699 	 * and the preempt_enable() will end up enabling preemption (on
2700 	 * PREEMPT_COUNT kernels).
2701 	 */
2702 
2703 	rq = finish_task_switch(prev);
2704 	balance_callback(rq);
2705 	preempt_enable();
2706 
2707 	if (current->set_child_tid)
2708 		put_user(task_pid_vnr(current), current->set_child_tid);
2709 }
2710 
2711 /*
2712  * context_switch - switch to the new MM and the new thread's register state.
2713  */
2714 static __always_inline struct rq *
2715 context_switch(struct rq *rq, struct task_struct *prev,
2716 	       struct task_struct *next)
2717 {
2718 	struct mm_struct *mm, *oldmm;
2719 
2720 	prepare_task_switch(rq, prev, next);
2721 
2722 	mm = next->mm;
2723 	oldmm = prev->active_mm;
2724 	/*
2725 	 * For paravirt, this is coupled with an exit in switch_to to
2726 	 * combine the page table reload and the switch backend into
2727 	 * one hypercall.
2728 	 */
2729 	arch_start_context_switch(prev);
2730 
2731 	if (!mm) {
2732 		next->active_mm = oldmm;
2733 		atomic_inc(&oldmm->mm_count);
2734 		enter_lazy_tlb(oldmm, next);
2735 	} else
2736 		switch_mm(oldmm, mm, next);
2737 
2738 	if (!prev->mm) {
2739 		prev->active_mm = NULL;
2740 		rq->prev_mm = oldmm;
2741 	}
2742 	/*
2743 	 * Since the runqueue lock will be released by the next
2744 	 * task (which is an invalid locking op but in the case
2745 	 * of the scheduler it's an obvious special-case), so we
2746 	 * do an early lockdep release here:
2747 	 */
2748 	lockdep_unpin_lock(&rq->lock);
2749 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2750 
2751 	/* Here we just switch the register state and the stack. */
2752 	switch_to(prev, next, prev);
2753 	barrier();
2754 
2755 	return finish_task_switch(prev);
2756 }
2757 
2758 /*
2759  * nr_running and nr_context_switches:
2760  *
2761  * externally visible scheduler statistics: current number of runnable
2762  * threads, total number of context switches performed since bootup.
2763  */
2764 unsigned long nr_running(void)
2765 {
2766 	unsigned long i, sum = 0;
2767 
2768 	for_each_online_cpu(i)
2769 		sum += cpu_rq(i)->nr_running;
2770 
2771 	return sum;
2772 }
2773 
2774 /*
2775  * Check if only the current task is running on the cpu.
2776  *
2777  * Caution: this function does not check that the caller has disabled
2778  * preemption, thus the result might have a time-of-check-to-time-of-use
2779  * race.  The caller is responsible to use it correctly, for example:
2780  *
2781  * - from a non-preemptable section (of course)
2782  *
2783  * - from a thread that is bound to a single CPU
2784  *
2785  * - in a loop with very short iterations (e.g. a polling loop)
2786  */
2787 bool single_task_running(void)
2788 {
2789 	return raw_rq()->nr_running == 1;
2790 }
2791 EXPORT_SYMBOL(single_task_running);
2792 
2793 unsigned long long nr_context_switches(void)
2794 {
2795 	int i;
2796 	unsigned long long sum = 0;
2797 
2798 	for_each_possible_cpu(i)
2799 		sum += cpu_rq(i)->nr_switches;
2800 
2801 	return sum;
2802 }
2803 
2804 unsigned long nr_iowait(void)
2805 {
2806 	unsigned long i, sum = 0;
2807 
2808 	for_each_possible_cpu(i)
2809 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2810 
2811 	return sum;
2812 }
2813 
2814 unsigned long nr_iowait_cpu(int cpu)
2815 {
2816 	struct rq *this = cpu_rq(cpu);
2817 	return atomic_read(&this->nr_iowait);
2818 }
2819 
2820 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2821 {
2822 	struct rq *rq = this_rq();
2823 	*nr_waiters = atomic_read(&rq->nr_iowait);
2824 	*load = rq->load.weight;
2825 }
2826 
2827 #ifdef CONFIG_SMP
2828 
2829 /*
2830  * sched_exec - execve() is a valuable balancing opportunity, because at
2831  * this point the task has the smallest effective memory and cache footprint.
2832  */
2833 void sched_exec(void)
2834 {
2835 	struct task_struct *p = current;
2836 	unsigned long flags;
2837 	int dest_cpu;
2838 
2839 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2840 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2841 	if (dest_cpu == smp_processor_id())
2842 		goto unlock;
2843 
2844 	if (likely(cpu_active(dest_cpu))) {
2845 		struct migration_arg arg = { p, dest_cpu };
2846 
2847 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2848 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2849 		return;
2850 	}
2851 unlock:
2852 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2853 }
2854 
2855 #endif
2856 
2857 DEFINE_PER_CPU(struct kernel_stat, kstat);
2858 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2859 
2860 EXPORT_PER_CPU_SYMBOL(kstat);
2861 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2862 
2863 /*
2864  * Return accounted runtime for the task.
2865  * In case the task is currently running, return the runtime plus current's
2866  * pending runtime that have not been accounted yet.
2867  */
2868 unsigned long long task_sched_runtime(struct task_struct *p)
2869 {
2870 	unsigned long flags;
2871 	struct rq *rq;
2872 	u64 ns;
2873 
2874 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2875 	/*
2876 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2877 	 * So we have a optimization chance when the task's delta_exec is 0.
2878 	 * Reading ->on_cpu is racy, but this is ok.
2879 	 *
2880 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2881 	 * If we race with it entering cpu, unaccounted time is 0. This is
2882 	 * indistinguishable from the read occurring a few cycles earlier.
2883 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2884 	 * been accounted, so we're correct here as well.
2885 	 */
2886 	if (!p->on_cpu || !task_on_rq_queued(p))
2887 		return p->se.sum_exec_runtime;
2888 #endif
2889 
2890 	rq = task_rq_lock(p, &flags);
2891 	/*
2892 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2893 	 * project cycles that may never be accounted to this
2894 	 * thread, breaking clock_gettime().
2895 	 */
2896 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2897 		update_rq_clock(rq);
2898 		p->sched_class->update_curr(rq);
2899 	}
2900 	ns = p->se.sum_exec_runtime;
2901 	task_rq_unlock(rq, p, &flags);
2902 
2903 	return ns;
2904 }
2905 
2906 /*
2907  * This function gets called by the timer code, with HZ frequency.
2908  * We call it with interrupts disabled.
2909  */
2910 void scheduler_tick(void)
2911 {
2912 	int cpu = smp_processor_id();
2913 	struct rq *rq = cpu_rq(cpu);
2914 	struct task_struct *curr = rq->curr;
2915 
2916 	sched_clock_tick();
2917 
2918 	raw_spin_lock(&rq->lock);
2919 	update_rq_clock(rq);
2920 	curr->sched_class->task_tick(rq, curr, 0);
2921 	update_cpu_load_active(rq);
2922 	calc_global_load_tick(rq);
2923 	raw_spin_unlock(&rq->lock);
2924 
2925 	perf_event_task_tick();
2926 
2927 #ifdef CONFIG_SMP
2928 	rq->idle_balance = idle_cpu(cpu);
2929 	trigger_load_balance(rq);
2930 #endif
2931 	rq_last_tick_reset(rq);
2932 }
2933 
2934 #ifdef CONFIG_NO_HZ_FULL
2935 /**
2936  * scheduler_tick_max_deferment
2937  *
2938  * Keep at least one tick per second when a single
2939  * active task is running because the scheduler doesn't
2940  * yet completely support full dynticks environment.
2941  *
2942  * This makes sure that uptime, CFS vruntime, load
2943  * balancing, etc... continue to move forward, even
2944  * with a very low granularity.
2945  *
2946  * Return: Maximum deferment in nanoseconds.
2947  */
2948 u64 scheduler_tick_max_deferment(void)
2949 {
2950 	struct rq *rq = this_rq();
2951 	unsigned long next, now = READ_ONCE(jiffies);
2952 
2953 	next = rq->last_sched_tick + HZ;
2954 
2955 	if (time_before_eq(next, now))
2956 		return 0;
2957 
2958 	return jiffies_to_nsecs(next - now);
2959 }
2960 #endif
2961 
2962 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2963 				defined(CONFIG_PREEMPT_TRACER))
2964 
2965 void preempt_count_add(int val)
2966 {
2967 #ifdef CONFIG_DEBUG_PREEMPT
2968 	/*
2969 	 * Underflow?
2970 	 */
2971 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2972 		return;
2973 #endif
2974 	__preempt_count_add(val);
2975 #ifdef CONFIG_DEBUG_PREEMPT
2976 	/*
2977 	 * Spinlock count overflowing soon?
2978 	 */
2979 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2980 				PREEMPT_MASK - 10);
2981 #endif
2982 	if (preempt_count() == val) {
2983 		unsigned long ip = get_lock_parent_ip();
2984 #ifdef CONFIG_DEBUG_PREEMPT
2985 		current->preempt_disable_ip = ip;
2986 #endif
2987 		trace_preempt_off(CALLER_ADDR0, ip);
2988 	}
2989 }
2990 EXPORT_SYMBOL(preempt_count_add);
2991 NOKPROBE_SYMBOL(preempt_count_add);
2992 
2993 void preempt_count_sub(int val)
2994 {
2995 #ifdef CONFIG_DEBUG_PREEMPT
2996 	/*
2997 	 * Underflow?
2998 	 */
2999 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3000 		return;
3001 	/*
3002 	 * Is the spinlock portion underflowing?
3003 	 */
3004 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3005 			!(preempt_count() & PREEMPT_MASK)))
3006 		return;
3007 #endif
3008 
3009 	if (preempt_count() == val)
3010 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3011 	__preempt_count_sub(val);
3012 }
3013 EXPORT_SYMBOL(preempt_count_sub);
3014 NOKPROBE_SYMBOL(preempt_count_sub);
3015 
3016 #endif
3017 
3018 /*
3019  * Print scheduling while atomic bug:
3020  */
3021 static noinline void __schedule_bug(struct task_struct *prev)
3022 {
3023 	if (oops_in_progress)
3024 		return;
3025 
3026 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3027 		prev->comm, prev->pid, preempt_count());
3028 
3029 	debug_show_held_locks(prev);
3030 	print_modules();
3031 	if (irqs_disabled())
3032 		print_irqtrace_events(prev);
3033 #ifdef CONFIG_DEBUG_PREEMPT
3034 	if (in_atomic_preempt_off()) {
3035 		pr_err("Preemption disabled at:");
3036 		print_ip_sym(current->preempt_disable_ip);
3037 		pr_cont("\n");
3038 	}
3039 #endif
3040 	dump_stack();
3041 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3042 }
3043 
3044 /*
3045  * Various schedule()-time debugging checks and statistics:
3046  */
3047 static inline void schedule_debug(struct task_struct *prev)
3048 {
3049 #ifdef CONFIG_SCHED_STACK_END_CHECK
3050 	BUG_ON(task_stack_end_corrupted(prev));
3051 #endif
3052 
3053 	if (unlikely(in_atomic_preempt_off())) {
3054 		__schedule_bug(prev);
3055 		preempt_count_set(PREEMPT_DISABLED);
3056 	}
3057 	rcu_sleep_check();
3058 
3059 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3060 
3061 	schedstat_inc(this_rq(), sched_count);
3062 }
3063 
3064 /*
3065  * Pick up the highest-prio task:
3066  */
3067 static inline struct task_struct *
3068 pick_next_task(struct rq *rq, struct task_struct *prev)
3069 {
3070 	const struct sched_class *class = &fair_sched_class;
3071 	struct task_struct *p;
3072 
3073 	/*
3074 	 * Optimization: we know that if all tasks are in
3075 	 * the fair class we can call that function directly:
3076 	 */
3077 	if (likely(prev->sched_class == class &&
3078 		   rq->nr_running == rq->cfs.h_nr_running)) {
3079 		p = fair_sched_class.pick_next_task(rq, prev);
3080 		if (unlikely(p == RETRY_TASK))
3081 			goto again;
3082 
3083 		/* assumes fair_sched_class->next == idle_sched_class */
3084 		if (unlikely(!p))
3085 			p = idle_sched_class.pick_next_task(rq, prev);
3086 
3087 		return p;
3088 	}
3089 
3090 again:
3091 	for_each_class(class) {
3092 		p = class->pick_next_task(rq, prev);
3093 		if (p) {
3094 			if (unlikely(p == RETRY_TASK))
3095 				goto again;
3096 			return p;
3097 		}
3098 	}
3099 
3100 	BUG(); /* the idle class will always have a runnable task */
3101 }
3102 
3103 /*
3104  * __schedule() is the main scheduler function.
3105  *
3106  * The main means of driving the scheduler and thus entering this function are:
3107  *
3108  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3109  *
3110  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3111  *      paths. For example, see arch/x86/entry_64.S.
3112  *
3113  *      To drive preemption between tasks, the scheduler sets the flag in timer
3114  *      interrupt handler scheduler_tick().
3115  *
3116  *   3. Wakeups don't really cause entry into schedule(). They add a
3117  *      task to the run-queue and that's it.
3118  *
3119  *      Now, if the new task added to the run-queue preempts the current
3120  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3121  *      called on the nearest possible occasion:
3122  *
3123  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3124  *
3125  *         - in syscall or exception context, at the next outmost
3126  *           preempt_enable(). (this might be as soon as the wake_up()'s
3127  *           spin_unlock()!)
3128  *
3129  *         - in IRQ context, return from interrupt-handler to
3130  *           preemptible context
3131  *
3132  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3133  *         then at the next:
3134  *
3135  *          - cond_resched() call
3136  *          - explicit schedule() call
3137  *          - return from syscall or exception to user-space
3138  *          - return from interrupt-handler to user-space
3139  *
3140  * WARNING: must be called with preemption disabled!
3141  */
3142 static void __sched notrace __schedule(bool preempt)
3143 {
3144 	struct task_struct *prev, *next;
3145 	unsigned long *switch_count;
3146 	struct rq *rq;
3147 	int cpu;
3148 
3149 	cpu = smp_processor_id();
3150 	rq = cpu_rq(cpu);
3151 	prev = rq->curr;
3152 
3153 	/*
3154 	 * do_exit() calls schedule() with preemption disabled as an exception;
3155 	 * however we must fix that up, otherwise the next task will see an
3156 	 * inconsistent (higher) preempt count.
3157 	 *
3158 	 * It also avoids the below schedule_debug() test from complaining
3159 	 * about this.
3160 	 */
3161 	if (unlikely(prev->state == TASK_DEAD))
3162 		preempt_enable_no_resched_notrace();
3163 
3164 	schedule_debug(prev);
3165 
3166 	if (sched_feat(HRTICK))
3167 		hrtick_clear(rq);
3168 
3169 	local_irq_disable();
3170 	rcu_note_context_switch();
3171 
3172 	/*
3173 	 * Make sure that signal_pending_state()->signal_pending() below
3174 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3175 	 * done by the caller to avoid the race with signal_wake_up().
3176 	 */
3177 	smp_mb__before_spinlock();
3178 	raw_spin_lock(&rq->lock);
3179 	lockdep_pin_lock(&rq->lock);
3180 
3181 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3182 
3183 	switch_count = &prev->nivcsw;
3184 	if (!preempt && prev->state) {
3185 		if (unlikely(signal_pending_state(prev->state, prev))) {
3186 			prev->state = TASK_RUNNING;
3187 		} else {
3188 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3189 			prev->on_rq = 0;
3190 
3191 			/*
3192 			 * If a worker went to sleep, notify and ask workqueue
3193 			 * whether it wants to wake up a task to maintain
3194 			 * concurrency.
3195 			 */
3196 			if (prev->flags & PF_WQ_WORKER) {
3197 				struct task_struct *to_wakeup;
3198 
3199 				to_wakeup = wq_worker_sleeping(prev);
3200 				if (to_wakeup)
3201 					try_to_wake_up_local(to_wakeup);
3202 			}
3203 		}
3204 		switch_count = &prev->nvcsw;
3205 	}
3206 
3207 	if (task_on_rq_queued(prev))
3208 		update_rq_clock(rq);
3209 
3210 	next = pick_next_task(rq, prev);
3211 	clear_tsk_need_resched(prev);
3212 	clear_preempt_need_resched();
3213 	rq->clock_skip_update = 0;
3214 
3215 	if (likely(prev != next)) {
3216 		rq->nr_switches++;
3217 		rq->curr = next;
3218 		++*switch_count;
3219 
3220 		trace_sched_switch(preempt, prev, next);
3221 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3222 	} else {
3223 		lockdep_unpin_lock(&rq->lock);
3224 		raw_spin_unlock_irq(&rq->lock);
3225 	}
3226 
3227 	balance_callback(rq);
3228 }
3229 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3230 
3231 static inline void sched_submit_work(struct task_struct *tsk)
3232 {
3233 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3234 		return;
3235 	/*
3236 	 * If we are going to sleep and we have plugged IO queued,
3237 	 * make sure to submit it to avoid deadlocks.
3238 	 */
3239 	if (blk_needs_flush_plug(tsk))
3240 		blk_schedule_flush_plug(tsk);
3241 }
3242 
3243 asmlinkage __visible void __sched schedule(void)
3244 {
3245 	struct task_struct *tsk = current;
3246 
3247 	sched_submit_work(tsk);
3248 	do {
3249 		preempt_disable();
3250 		__schedule(false);
3251 		sched_preempt_enable_no_resched();
3252 	} while (need_resched());
3253 }
3254 EXPORT_SYMBOL(schedule);
3255 
3256 #ifdef CONFIG_CONTEXT_TRACKING
3257 asmlinkage __visible void __sched schedule_user(void)
3258 {
3259 	/*
3260 	 * If we come here after a random call to set_need_resched(),
3261 	 * or we have been woken up remotely but the IPI has not yet arrived,
3262 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3263 	 * we find a better solution.
3264 	 *
3265 	 * NB: There are buggy callers of this function.  Ideally we
3266 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3267 	 * too frequently to make sense yet.
3268 	 */
3269 	enum ctx_state prev_state = exception_enter();
3270 	schedule();
3271 	exception_exit(prev_state);
3272 }
3273 #endif
3274 
3275 /**
3276  * schedule_preempt_disabled - called with preemption disabled
3277  *
3278  * Returns with preemption disabled. Note: preempt_count must be 1
3279  */
3280 void __sched schedule_preempt_disabled(void)
3281 {
3282 	sched_preempt_enable_no_resched();
3283 	schedule();
3284 	preempt_disable();
3285 }
3286 
3287 static void __sched notrace preempt_schedule_common(void)
3288 {
3289 	do {
3290 		preempt_disable_notrace();
3291 		__schedule(true);
3292 		preempt_enable_no_resched_notrace();
3293 
3294 		/*
3295 		 * Check again in case we missed a preemption opportunity
3296 		 * between schedule and now.
3297 		 */
3298 	} while (need_resched());
3299 }
3300 
3301 #ifdef CONFIG_PREEMPT
3302 /*
3303  * this is the entry point to schedule() from in-kernel preemption
3304  * off of preempt_enable. Kernel preemptions off return from interrupt
3305  * occur there and call schedule directly.
3306  */
3307 asmlinkage __visible void __sched notrace preempt_schedule(void)
3308 {
3309 	/*
3310 	 * If there is a non-zero preempt_count or interrupts are disabled,
3311 	 * we do not want to preempt the current task. Just return..
3312 	 */
3313 	if (likely(!preemptible()))
3314 		return;
3315 
3316 	preempt_schedule_common();
3317 }
3318 NOKPROBE_SYMBOL(preempt_schedule);
3319 EXPORT_SYMBOL(preempt_schedule);
3320 
3321 /**
3322  * preempt_schedule_notrace - preempt_schedule called by tracing
3323  *
3324  * The tracing infrastructure uses preempt_enable_notrace to prevent
3325  * recursion and tracing preempt enabling caused by the tracing
3326  * infrastructure itself. But as tracing can happen in areas coming
3327  * from userspace or just about to enter userspace, a preempt enable
3328  * can occur before user_exit() is called. This will cause the scheduler
3329  * to be called when the system is still in usermode.
3330  *
3331  * To prevent this, the preempt_enable_notrace will use this function
3332  * instead of preempt_schedule() to exit user context if needed before
3333  * calling the scheduler.
3334  */
3335 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3336 {
3337 	enum ctx_state prev_ctx;
3338 
3339 	if (likely(!preemptible()))
3340 		return;
3341 
3342 	do {
3343 		preempt_disable_notrace();
3344 		/*
3345 		 * Needs preempt disabled in case user_exit() is traced
3346 		 * and the tracer calls preempt_enable_notrace() causing
3347 		 * an infinite recursion.
3348 		 */
3349 		prev_ctx = exception_enter();
3350 		__schedule(true);
3351 		exception_exit(prev_ctx);
3352 
3353 		preempt_enable_no_resched_notrace();
3354 	} while (need_resched());
3355 }
3356 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3357 
3358 #endif /* CONFIG_PREEMPT */
3359 
3360 /*
3361  * this is the entry point to schedule() from kernel preemption
3362  * off of irq context.
3363  * Note, that this is called and return with irqs disabled. This will
3364  * protect us against recursive calling from irq.
3365  */
3366 asmlinkage __visible void __sched preempt_schedule_irq(void)
3367 {
3368 	enum ctx_state prev_state;
3369 
3370 	/* Catch callers which need to be fixed */
3371 	BUG_ON(preempt_count() || !irqs_disabled());
3372 
3373 	prev_state = exception_enter();
3374 
3375 	do {
3376 		preempt_disable();
3377 		local_irq_enable();
3378 		__schedule(true);
3379 		local_irq_disable();
3380 		sched_preempt_enable_no_resched();
3381 	} while (need_resched());
3382 
3383 	exception_exit(prev_state);
3384 }
3385 
3386 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3387 			  void *key)
3388 {
3389 	return try_to_wake_up(curr->private, mode, wake_flags);
3390 }
3391 EXPORT_SYMBOL(default_wake_function);
3392 
3393 #ifdef CONFIG_RT_MUTEXES
3394 
3395 /*
3396  * rt_mutex_setprio - set the current priority of a task
3397  * @p: task
3398  * @prio: prio value (kernel-internal form)
3399  *
3400  * This function changes the 'effective' priority of a task. It does
3401  * not touch ->normal_prio like __setscheduler().
3402  *
3403  * Used by the rt_mutex code to implement priority inheritance
3404  * logic. Call site only calls if the priority of the task changed.
3405  */
3406 void rt_mutex_setprio(struct task_struct *p, int prio)
3407 {
3408 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3409 	struct rq *rq;
3410 	const struct sched_class *prev_class;
3411 
3412 	BUG_ON(prio > MAX_PRIO);
3413 
3414 	rq = __task_rq_lock(p);
3415 
3416 	/*
3417 	 * Idle task boosting is a nono in general. There is one
3418 	 * exception, when PREEMPT_RT and NOHZ is active:
3419 	 *
3420 	 * The idle task calls get_next_timer_interrupt() and holds
3421 	 * the timer wheel base->lock on the CPU and another CPU wants
3422 	 * to access the timer (probably to cancel it). We can safely
3423 	 * ignore the boosting request, as the idle CPU runs this code
3424 	 * with interrupts disabled and will complete the lock
3425 	 * protected section without being interrupted. So there is no
3426 	 * real need to boost.
3427 	 */
3428 	if (unlikely(p == rq->idle)) {
3429 		WARN_ON(p != rq->curr);
3430 		WARN_ON(p->pi_blocked_on);
3431 		goto out_unlock;
3432 	}
3433 
3434 	trace_sched_pi_setprio(p, prio);
3435 	oldprio = p->prio;
3436 
3437 	if (oldprio == prio)
3438 		queue_flag &= ~DEQUEUE_MOVE;
3439 
3440 	prev_class = p->sched_class;
3441 	queued = task_on_rq_queued(p);
3442 	running = task_current(rq, p);
3443 	if (queued)
3444 		dequeue_task(rq, p, queue_flag);
3445 	if (running)
3446 		put_prev_task(rq, p);
3447 
3448 	/*
3449 	 * Boosting condition are:
3450 	 * 1. -rt task is running and holds mutex A
3451 	 *      --> -dl task blocks on mutex A
3452 	 *
3453 	 * 2. -dl task is running and holds mutex A
3454 	 *      --> -dl task blocks on mutex A and could preempt the
3455 	 *          running task
3456 	 */
3457 	if (dl_prio(prio)) {
3458 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3459 		if (!dl_prio(p->normal_prio) ||
3460 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3461 			p->dl.dl_boosted = 1;
3462 			queue_flag |= ENQUEUE_REPLENISH;
3463 		} else
3464 			p->dl.dl_boosted = 0;
3465 		p->sched_class = &dl_sched_class;
3466 	} else if (rt_prio(prio)) {
3467 		if (dl_prio(oldprio))
3468 			p->dl.dl_boosted = 0;
3469 		if (oldprio < prio)
3470 			queue_flag |= ENQUEUE_HEAD;
3471 		p->sched_class = &rt_sched_class;
3472 	} else {
3473 		if (dl_prio(oldprio))
3474 			p->dl.dl_boosted = 0;
3475 		if (rt_prio(oldprio))
3476 			p->rt.timeout = 0;
3477 		p->sched_class = &fair_sched_class;
3478 	}
3479 
3480 	p->prio = prio;
3481 
3482 	if (running)
3483 		p->sched_class->set_curr_task(rq);
3484 	if (queued)
3485 		enqueue_task(rq, p, queue_flag);
3486 
3487 	check_class_changed(rq, p, prev_class, oldprio);
3488 out_unlock:
3489 	preempt_disable(); /* avoid rq from going away on us */
3490 	__task_rq_unlock(rq);
3491 
3492 	balance_callback(rq);
3493 	preempt_enable();
3494 }
3495 #endif
3496 
3497 void set_user_nice(struct task_struct *p, long nice)
3498 {
3499 	int old_prio, delta, queued;
3500 	unsigned long flags;
3501 	struct rq *rq;
3502 
3503 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3504 		return;
3505 	/*
3506 	 * We have to be careful, if called from sys_setpriority(),
3507 	 * the task might be in the middle of scheduling on another CPU.
3508 	 */
3509 	rq = task_rq_lock(p, &flags);
3510 	/*
3511 	 * The RT priorities are set via sched_setscheduler(), but we still
3512 	 * allow the 'normal' nice value to be set - but as expected
3513 	 * it wont have any effect on scheduling until the task is
3514 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3515 	 */
3516 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3517 		p->static_prio = NICE_TO_PRIO(nice);
3518 		goto out_unlock;
3519 	}
3520 	queued = task_on_rq_queued(p);
3521 	if (queued)
3522 		dequeue_task(rq, p, DEQUEUE_SAVE);
3523 
3524 	p->static_prio = NICE_TO_PRIO(nice);
3525 	set_load_weight(p);
3526 	old_prio = p->prio;
3527 	p->prio = effective_prio(p);
3528 	delta = p->prio - old_prio;
3529 
3530 	if (queued) {
3531 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3532 		/*
3533 		 * If the task increased its priority or is running and
3534 		 * lowered its priority, then reschedule its CPU:
3535 		 */
3536 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3537 			resched_curr(rq);
3538 	}
3539 out_unlock:
3540 	task_rq_unlock(rq, p, &flags);
3541 }
3542 EXPORT_SYMBOL(set_user_nice);
3543 
3544 /*
3545  * can_nice - check if a task can reduce its nice value
3546  * @p: task
3547  * @nice: nice value
3548  */
3549 int can_nice(const struct task_struct *p, const int nice)
3550 {
3551 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3552 	int nice_rlim = nice_to_rlimit(nice);
3553 
3554 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3555 		capable(CAP_SYS_NICE));
3556 }
3557 
3558 #ifdef __ARCH_WANT_SYS_NICE
3559 
3560 /*
3561  * sys_nice - change the priority of the current process.
3562  * @increment: priority increment
3563  *
3564  * sys_setpriority is a more generic, but much slower function that
3565  * does similar things.
3566  */
3567 SYSCALL_DEFINE1(nice, int, increment)
3568 {
3569 	long nice, retval;
3570 
3571 	/*
3572 	 * Setpriority might change our priority at the same moment.
3573 	 * We don't have to worry. Conceptually one call occurs first
3574 	 * and we have a single winner.
3575 	 */
3576 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3577 	nice = task_nice(current) + increment;
3578 
3579 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3580 	if (increment < 0 && !can_nice(current, nice))
3581 		return -EPERM;
3582 
3583 	retval = security_task_setnice(current, nice);
3584 	if (retval)
3585 		return retval;
3586 
3587 	set_user_nice(current, nice);
3588 	return 0;
3589 }
3590 
3591 #endif
3592 
3593 /**
3594  * task_prio - return the priority value of a given task.
3595  * @p: the task in question.
3596  *
3597  * Return: The priority value as seen by users in /proc.
3598  * RT tasks are offset by -200. Normal tasks are centered
3599  * around 0, value goes from -16 to +15.
3600  */
3601 int task_prio(const struct task_struct *p)
3602 {
3603 	return p->prio - MAX_RT_PRIO;
3604 }
3605 
3606 /**
3607  * idle_cpu - is a given cpu idle currently?
3608  * @cpu: the processor in question.
3609  *
3610  * Return: 1 if the CPU is currently idle. 0 otherwise.
3611  */
3612 int idle_cpu(int cpu)
3613 {
3614 	struct rq *rq = cpu_rq(cpu);
3615 
3616 	if (rq->curr != rq->idle)
3617 		return 0;
3618 
3619 	if (rq->nr_running)
3620 		return 0;
3621 
3622 #ifdef CONFIG_SMP
3623 	if (!llist_empty(&rq->wake_list))
3624 		return 0;
3625 #endif
3626 
3627 	return 1;
3628 }
3629 
3630 /**
3631  * idle_task - return the idle task for a given cpu.
3632  * @cpu: the processor in question.
3633  *
3634  * Return: The idle task for the cpu @cpu.
3635  */
3636 struct task_struct *idle_task(int cpu)
3637 {
3638 	return cpu_rq(cpu)->idle;
3639 }
3640 
3641 /**
3642  * find_process_by_pid - find a process with a matching PID value.
3643  * @pid: the pid in question.
3644  *
3645  * The task of @pid, if found. %NULL otherwise.
3646  */
3647 static struct task_struct *find_process_by_pid(pid_t pid)
3648 {
3649 	return pid ? find_task_by_vpid(pid) : current;
3650 }
3651 
3652 /*
3653  * This function initializes the sched_dl_entity of a newly becoming
3654  * SCHED_DEADLINE task.
3655  *
3656  * Only the static values are considered here, the actual runtime and the
3657  * absolute deadline will be properly calculated when the task is enqueued
3658  * for the first time with its new policy.
3659  */
3660 static void
3661 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3662 {
3663 	struct sched_dl_entity *dl_se = &p->dl;
3664 
3665 	dl_se->dl_runtime = attr->sched_runtime;
3666 	dl_se->dl_deadline = attr->sched_deadline;
3667 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3668 	dl_se->flags = attr->sched_flags;
3669 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3670 
3671 	/*
3672 	 * Changing the parameters of a task is 'tricky' and we're not doing
3673 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3674 	 *
3675 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3676 	 * point. This would include retaining the task_struct until that time
3677 	 * and change dl_overflow() to not immediately decrement the current
3678 	 * amount.
3679 	 *
3680 	 * Instead we retain the current runtime/deadline and let the new
3681 	 * parameters take effect after the current reservation period lapses.
3682 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3683 	 * before the current scheduling deadline.
3684 	 *
3685 	 * We can still have temporary overloads because we do not delay the
3686 	 * change in bandwidth until that time; so admission control is
3687 	 * not on the safe side. It does however guarantee tasks will never
3688 	 * consume more than promised.
3689 	 */
3690 }
3691 
3692 /*
3693  * sched_setparam() passes in -1 for its policy, to let the functions
3694  * it calls know not to change it.
3695  */
3696 #define SETPARAM_POLICY	-1
3697 
3698 static void __setscheduler_params(struct task_struct *p,
3699 		const struct sched_attr *attr)
3700 {
3701 	int policy = attr->sched_policy;
3702 
3703 	if (policy == SETPARAM_POLICY)
3704 		policy = p->policy;
3705 
3706 	p->policy = policy;
3707 
3708 	if (dl_policy(policy))
3709 		__setparam_dl(p, attr);
3710 	else if (fair_policy(policy))
3711 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3712 
3713 	/*
3714 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3715 	 * !rt_policy. Always setting this ensures that things like
3716 	 * getparam()/getattr() don't report silly values for !rt tasks.
3717 	 */
3718 	p->rt_priority = attr->sched_priority;
3719 	p->normal_prio = normal_prio(p);
3720 	set_load_weight(p);
3721 }
3722 
3723 /* Actually do priority change: must hold pi & rq lock. */
3724 static void __setscheduler(struct rq *rq, struct task_struct *p,
3725 			   const struct sched_attr *attr, bool keep_boost)
3726 {
3727 	__setscheduler_params(p, attr);
3728 
3729 	/*
3730 	 * Keep a potential priority boosting if called from
3731 	 * sched_setscheduler().
3732 	 */
3733 	if (keep_boost)
3734 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3735 	else
3736 		p->prio = normal_prio(p);
3737 
3738 	if (dl_prio(p->prio))
3739 		p->sched_class = &dl_sched_class;
3740 	else if (rt_prio(p->prio))
3741 		p->sched_class = &rt_sched_class;
3742 	else
3743 		p->sched_class = &fair_sched_class;
3744 }
3745 
3746 static void
3747 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3748 {
3749 	struct sched_dl_entity *dl_se = &p->dl;
3750 
3751 	attr->sched_priority = p->rt_priority;
3752 	attr->sched_runtime = dl_se->dl_runtime;
3753 	attr->sched_deadline = dl_se->dl_deadline;
3754 	attr->sched_period = dl_se->dl_period;
3755 	attr->sched_flags = dl_se->flags;
3756 }
3757 
3758 /*
3759  * This function validates the new parameters of a -deadline task.
3760  * We ask for the deadline not being zero, and greater or equal
3761  * than the runtime, as well as the period of being zero or
3762  * greater than deadline. Furthermore, we have to be sure that
3763  * user parameters are above the internal resolution of 1us (we
3764  * check sched_runtime only since it is always the smaller one) and
3765  * below 2^63 ns (we have to check both sched_deadline and
3766  * sched_period, as the latter can be zero).
3767  */
3768 static bool
3769 __checkparam_dl(const struct sched_attr *attr)
3770 {
3771 	/* deadline != 0 */
3772 	if (attr->sched_deadline == 0)
3773 		return false;
3774 
3775 	/*
3776 	 * Since we truncate DL_SCALE bits, make sure we're at least
3777 	 * that big.
3778 	 */
3779 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3780 		return false;
3781 
3782 	/*
3783 	 * Since we use the MSB for wrap-around and sign issues, make
3784 	 * sure it's not set (mind that period can be equal to zero).
3785 	 */
3786 	if (attr->sched_deadline & (1ULL << 63) ||
3787 	    attr->sched_period & (1ULL << 63))
3788 		return false;
3789 
3790 	/* runtime <= deadline <= period (if period != 0) */
3791 	if ((attr->sched_period != 0 &&
3792 	     attr->sched_period < attr->sched_deadline) ||
3793 	    attr->sched_deadline < attr->sched_runtime)
3794 		return false;
3795 
3796 	return true;
3797 }
3798 
3799 /*
3800  * check the target process has a UID that matches the current process's
3801  */
3802 static bool check_same_owner(struct task_struct *p)
3803 {
3804 	const struct cred *cred = current_cred(), *pcred;
3805 	bool match;
3806 
3807 	rcu_read_lock();
3808 	pcred = __task_cred(p);
3809 	match = (uid_eq(cred->euid, pcred->euid) ||
3810 		 uid_eq(cred->euid, pcred->uid));
3811 	rcu_read_unlock();
3812 	return match;
3813 }
3814 
3815 static bool dl_param_changed(struct task_struct *p,
3816 		const struct sched_attr *attr)
3817 {
3818 	struct sched_dl_entity *dl_se = &p->dl;
3819 
3820 	if (dl_se->dl_runtime != attr->sched_runtime ||
3821 		dl_se->dl_deadline != attr->sched_deadline ||
3822 		dl_se->dl_period != attr->sched_period ||
3823 		dl_se->flags != attr->sched_flags)
3824 		return true;
3825 
3826 	return false;
3827 }
3828 
3829 static int __sched_setscheduler(struct task_struct *p,
3830 				const struct sched_attr *attr,
3831 				bool user, bool pi)
3832 {
3833 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3834 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3835 	int retval, oldprio, oldpolicy = -1, queued, running;
3836 	int new_effective_prio, policy = attr->sched_policy;
3837 	unsigned long flags;
3838 	const struct sched_class *prev_class;
3839 	struct rq *rq;
3840 	int reset_on_fork;
3841 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3842 
3843 	/* may grab non-irq protected spin_locks */
3844 	BUG_ON(in_interrupt());
3845 recheck:
3846 	/* double check policy once rq lock held */
3847 	if (policy < 0) {
3848 		reset_on_fork = p->sched_reset_on_fork;
3849 		policy = oldpolicy = p->policy;
3850 	} else {
3851 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3852 
3853 		if (!valid_policy(policy))
3854 			return -EINVAL;
3855 	}
3856 
3857 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3858 		return -EINVAL;
3859 
3860 	/*
3861 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3862 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3863 	 * SCHED_BATCH and SCHED_IDLE is 0.
3864 	 */
3865 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3866 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3867 		return -EINVAL;
3868 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3869 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3870 		return -EINVAL;
3871 
3872 	/*
3873 	 * Allow unprivileged RT tasks to decrease priority:
3874 	 */
3875 	if (user && !capable(CAP_SYS_NICE)) {
3876 		if (fair_policy(policy)) {
3877 			if (attr->sched_nice < task_nice(p) &&
3878 			    !can_nice(p, attr->sched_nice))
3879 				return -EPERM;
3880 		}
3881 
3882 		if (rt_policy(policy)) {
3883 			unsigned long rlim_rtprio =
3884 					task_rlimit(p, RLIMIT_RTPRIO);
3885 
3886 			/* can't set/change the rt policy */
3887 			if (policy != p->policy && !rlim_rtprio)
3888 				return -EPERM;
3889 
3890 			/* can't increase priority */
3891 			if (attr->sched_priority > p->rt_priority &&
3892 			    attr->sched_priority > rlim_rtprio)
3893 				return -EPERM;
3894 		}
3895 
3896 		 /*
3897 		  * Can't set/change SCHED_DEADLINE policy at all for now
3898 		  * (safest behavior); in the future we would like to allow
3899 		  * unprivileged DL tasks to increase their relative deadline
3900 		  * or reduce their runtime (both ways reducing utilization)
3901 		  */
3902 		if (dl_policy(policy))
3903 			return -EPERM;
3904 
3905 		/*
3906 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3907 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3908 		 */
3909 		if (idle_policy(p->policy) && !idle_policy(policy)) {
3910 			if (!can_nice(p, task_nice(p)))
3911 				return -EPERM;
3912 		}
3913 
3914 		/* can't change other user's priorities */
3915 		if (!check_same_owner(p))
3916 			return -EPERM;
3917 
3918 		/* Normal users shall not reset the sched_reset_on_fork flag */
3919 		if (p->sched_reset_on_fork && !reset_on_fork)
3920 			return -EPERM;
3921 	}
3922 
3923 	if (user) {
3924 		retval = security_task_setscheduler(p);
3925 		if (retval)
3926 			return retval;
3927 	}
3928 
3929 	/*
3930 	 * make sure no PI-waiters arrive (or leave) while we are
3931 	 * changing the priority of the task:
3932 	 *
3933 	 * To be able to change p->policy safely, the appropriate
3934 	 * runqueue lock must be held.
3935 	 */
3936 	rq = task_rq_lock(p, &flags);
3937 
3938 	/*
3939 	 * Changing the policy of the stop threads its a very bad idea
3940 	 */
3941 	if (p == rq->stop) {
3942 		task_rq_unlock(rq, p, &flags);
3943 		return -EINVAL;
3944 	}
3945 
3946 	/*
3947 	 * If not changing anything there's no need to proceed further,
3948 	 * but store a possible modification of reset_on_fork.
3949 	 */
3950 	if (unlikely(policy == p->policy)) {
3951 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3952 			goto change;
3953 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3954 			goto change;
3955 		if (dl_policy(policy) && dl_param_changed(p, attr))
3956 			goto change;
3957 
3958 		p->sched_reset_on_fork = reset_on_fork;
3959 		task_rq_unlock(rq, p, &flags);
3960 		return 0;
3961 	}
3962 change:
3963 
3964 	if (user) {
3965 #ifdef CONFIG_RT_GROUP_SCHED
3966 		/*
3967 		 * Do not allow realtime tasks into groups that have no runtime
3968 		 * assigned.
3969 		 */
3970 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3971 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3972 				!task_group_is_autogroup(task_group(p))) {
3973 			task_rq_unlock(rq, p, &flags);
3974 			return -EPERM;
3975 		}
3976 #endif
3977 #ifdef CONFIG_SMP
3978 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3979 			cpumask_t *span = rq->rd->span;
3980 
3981 			/*
3982 			 * Don't allow tasks with an affinity mask smaller than
3983 			 * the entire root_domain to become SCHED_DEADLINE. We
3984 			 * will also fail if there's no bandwidth available.
3985 			 */
3986 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3987 			    rq->rd->dl_bw.bw == 0) {
3988 				task_rq_unlock(rq, p, &flags);
3989 				return -EPERM;
3990 			}
3991 		}
3992 #endif
3993 	}
3994 
3995 	/* recheck policy now with rq lock held */
3996 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3997 		policy = oldpolicy = -1;
3998 		task_rq_unlock(rq, p, &flags);
3999 		goto recheck;
4000 	}
4001 
4002 	/*
4003 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4004 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4005 	 * is available.
4006 	 */
4007 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4008 		task_rq_unlock(rq, p, &flags);
4009 		return -EBUSY;
4010 	}
4011 
4012 	p->sched_reset_on_fork = reset_on_fork;
4013 	oldprio = p->prio;
4014 
4015 	if (pi) {
4016 		/*
4017 		 * Take priority boosted tasks into account. If the new
4018 		 * effective priority is unchanged, we just store the new
4019 		 * normal parameters and do not touch the scheduler class and
4020 		 * the runqueue. This will be done when the task deboost
4021 		 * itself.
4022 		 */
4023 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4024 		if (new_effective_prio == oldprio)
4025 			queue_flags &= ~DEQUEUE_MOVE;
4026 	}
4027 
4028 	queued = task_on_rq_queued(p);
4029 	running = task_current(rq, p);
4030 	if (queued)
4031 		dequeue_task(rq, p, queue_flags);
4032 	if (running)
4033 		put_prev_task(rq, p);
4034 
4035 	prev_class = p->sched_class;
4036 	__setscheduler(rq, p, attr, pi);
4037 
4038 	if (running)
4039 		p->sched_class->set_curr_task(rq);
4040 	if (queued) {
4041 		/*
4042 		 * We enqueue to tail when the priority of a task is
4043 		 * increased (user space view).
4044 		 */
4045 		if (oldprio < p->prio)
4046 			queue_flags |= ENQUEUE_HEAD;
4047 
4048 		enqueue_task(rq, p, queue_flags);
4049 	}
4050 
4051 	check_class_changed(rq, p, prev_class, oldprio);
4052 	preempt_disable(); /* avoid rq from going away on us */
4053 	task_rq_unlock(rq, p, &flags);
4054 
4055 	if (pi)
4056 		rt_mutex_adjust_pi(p);
4057 
4058 	/*
4059 	 * Run balance callbacks after we've adjusted the PI chain.
4060 	 */
4061 	balance_callback(rq);
4062 	preempt_enable();
4063 
4064 	return 0;
4065 }
4066 
4067 static int _sched_setscheduler(struct task_struct *p, int policy,
4068 			       const struct sched_param *param, bool check)
4069 {
4070 	struct sched_attr attr = {
4071 		.sched_policy   = policy,
4072 		.sched_priority = param->sched_priority,
4073 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4074 	};
4075 
4076 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4077 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4078 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4079 		policy &= ~SCHED_RESET_ON_FORK;
4080 		attr.sched_policy = policy;
4081 	}
4082 
4083 	return __sched_setscheduler(p, &attr, check, true);
4084 }
4085 /**
4086  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4087  * @p: the task in question.
4088  * @policy: new policy.
4089  * @param: structure containing the new RT priority.
4090  *
4091  * Return: 0 on success. An error code otherwise.
4092  *
4093  * NOTE that the task may be already dead.
4094  */
4095 int sched_setscheduler(struct task_struct *p, int policy,
4096 		       const struct sched_param *param)
4097 {
4098 	return _sched_setscheduler(p, policy, param, true);
4099 }
4100 EXPORT_SYMBOL_GPL(sched_setscheduler);
4101 
4102 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4103 {
4104 	return __sched_setscheduler(p, attr, true, true);
4105 }
4106 EXPORT_SYMBOL_GPL(sched_setattr);
4107 
4108 /**
4109  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4110  * @p: the task in question.
4111  * @policy: new policy.
4112  * @param: structure containing the new RT priority.
4113  *
4114  * Just like sched_setscheduler, only don't bother checking if the
4115  * current context has permission.  For example, this is needed in
4116  * stop_machine(): we create temporary high priority worker threads,
4117  * but our caller might not have that capability.
4118  *
4119  * Return: 0 on success. An error code otherwise.
4120  */
4121 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4122 			       const struct sched_param *param)
4123 {
4124 	return _sched_setscheduler(p, policy, param, false);
4125 }
4126 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4127 
4128 static int
4129 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4130 {
4131 	struct sched_param lparam;
4132 	struct task_struct *p;
4133 	int retval;
4134 
4135 	if (!param || pid < 0)
4136 		return -EINVAL;
4137 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4138 		return -EFAULT;
4139 
4140 	rcu_read_lock();
4141 	retval = -ESRCH;
4142 	p = find_process_by_pid(pid);
4143 	if (p != NULL)
4144 		retval = sched_setscheduler(p, policy, &lparam);
4145 	rcu_read_unlock();
4146 
4147 	return retval;
4148 }
4149 
4150 /*
4151  * Mimics kernel/events/core.c perf_copy_attr().
4152  */
4153 static int sched_copy_attr(struct sched_attr __user *uattr,
4154 			   struct sched_attr *attr)
4155 {
4156 	u32 size;
4157 	int ret;
4158 
4159 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4160 		return -EFAULT;
4161 
4162 	/*
4163 	 * zero the full structure, so that a short copy will be nice.
4164 	 */
4165 	memset(attr, 0, sizeof(*attr));
4166 
4167 	ret = get_user(size, &uattr->size);
4168 	if (ret)
4169 		return ret;
4170 
4171 	if (size > PAGE_SIZE)	/* silly large */
4172 		goto err_size;
4173 
4174 	if (!size)		/* abi compat */
4175 		size = SCHED_ATTR_SIZE_VER0;
4176 
4177 	if (size < SCHED_ATTR_SIZE_VER0)
4178 		goto err_size;
4179 
4180 	/*
4181 	 * If we're handed a bigger struct than we know of,
4182 	 * ensure all the unknown bits are 0 - i.e. new
4183 	 * user-space does not rely on any kernel feature
4184 	 * extensions we dont know about yet.
4185 	 */
4186 	if (size > sizeof(*attr)) {
4187 		unsigned char __user *addr;
4188 		unsigned char __user *end;
4189 		unsigned char val;
4190 
4191 		addr = (void __user *)uattr + sizeof(*attr);
4192 		end  = (void __user *)uattr + size;
4193 
4194 		for (; addr < end; addr++) {
4195 			ret = get_user(val, addr);
4196 			if (ret)
4197 				return ret;
4198 			if (val)
4199 				goto err_size;
4200 		}
4201 		size = sizeof(*attr);
4202 	}
4203 
4204 	ret = copy_from_user(attr, uattr, size);
4205 	if (ret)
4206 		return -EFAULT;
4207 
4208 	/*
4209 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4210 	 * to be strict and return an error on out-of-bounds values?
4211 	 */
4212 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4213 
4214 	return 0;
4215 
4216 err_size:
4217 	put_user(sizeof(*attr), &uattr->size);
4218 	return -E2BIG;
4219 }
4220 
4221 /**
4222  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4223  * @pid: the pid in question.
4224  * @policy: new policy.
4225  * @param: structure containing the new RT priority.
4226  *
4227  * Return: 0 on success. An error code otherwise.
4228  */
4229 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4230 		struct sched_param __user *, param)
4231 {
4232 	/* negative values for policy are not valid */
4233 	if (policy < 0)
4234 		return -EINVAL;
4235 
4236 	return do_sched_setscheduler(pid, policy, param);
4237 }
4238 
4239 /**
4240  * sys_sched_setparam - set/change the RT priority of a thread
4241  * @pid: the pid in question.
4242  * @param: structure containing the new RT priority.
4243  *
4244  * Return: 0 on success. An error code otherwise.
4245  */
4246 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4247 {
4248 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4249 }
4250 
4251 /**
4252  * sys_sched_setattr - same as above, but with extended sched_attr
4253  * @pid: the pid in question.
4254  * @uattr: structure containing the extended parameters.
4255  * @flags: for future extension.
4256  */
4257 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4258 			       unsigned int, flags)
4259 {
4260 	struct sched_attr attr;
4261 	struct task_struct *p;
4262 	int retval;
4263 
4264 	if (!uattr || pid < 0 || flags)
4265 		return -EINVAL;
4266 
4267 	retval = sched_copy_attr(uattr, &attr);
4268 	if (retval)
4269 		return retval;
4270 
4271 	if ((int)attr.sched_policy < 0)
4272 		return -EINVAL;
4273 
4274 	rcu_read_lock();
4275 	retval = -ESRCH;
4276 	p = find_process_by_pid(pid);
4277 	if (p != NULL)
4278 		retval = sched_setattr(p, &attr);
4279 	rcu_read_unlock();
4280 
4281 	return retval;
4282 }
4283 
4284 /**
4285  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4286  * @pid: the pid in question.
4287  *
4288  * Return: On success, the policy of the thread. Otherwise, a negative error
4289  * code.
4290  */
4291 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4292 {
4293 	struct task_struct *p;
4294 	int retval;
4295 
4296 	if (pid < 0)
4297 		return -EINVAL;
4298 
4299 	retval = -ESRCH;
4300 	rcu_read_lock();
4301 	p = find_process_by_pid(pid);
4302 	if (p) {
4303 		retval = security_task_getscheduler(p);
4304 		if (!retval)
4305 			retval = p->policy
4306 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4307 	}
4308 	rcu_read_unlock();
4309 	return retval;
4310 }
4311 
4312 /**
4313  * sys_sched_getparam - get the RT priority of a thread
4314  * @pid: the pid in question.
4315  * @param: structure containing the RT priority.
4316  *
4317  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4318  * code.
4319  */
4320 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4321 {
4322 	struct sched_param lp = { .sched_priority = 0 };
4323 	struct task_struct *p;
4324 	int retval;
4325 
4326 	if (!param || pid < 0)
4327 		return -EINVAL;
4328 
4329 	rcu_read_lock();
4330 	p = find_process_by_pid(pid);
4331 	retval = -ESRCH;
4332 	if (!p)
4333 		goto out_unlock;
4334 
4335 	retval = security_task_getscheduler(p);
4336 	if (retval)
4337 		goto out_unlock;
4338 
4339 	if (task_has_rt_policy(p))
4340 		lp.sched_priority = p->rt_priority;
4341 	rcu_read_unlock();
4342 
4343 	/*
4344 	 * This one might sleep, we cannot do it with a spinlock held ...
4345 	 */
4346 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4347 
4348 	return retval;
4349 
4350 out_unlock:
4351 	rcu_read_unlock();
4352 	return retval;
4353 }
4354 
4355 static int sched_read_attr(struct sched_attr __user *uattr,
4356 			   struct sched_attr *attr,
4357 			   unsigned int usize)
4358 {
4359 	int ret;
4360 
4361 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4362 		return -EFAULT;
4363 
4364 	/*
4365 	 * If we're handed a smaller struct than we know of,
4366 	 * ensure all the unknown bits are 0 - i.e. old
4367 	 * user-space does not get uncomplete information.
4368 	 */
4369 	if (usize < sizeof(*attr)) {
4370 		unsigned char *addr;
4371 		unsigned char *end;
4372 
4373 		addr = (void *)attr + usize;
4374 		end  = (void *)attr + sizeof(*attr);
4375 
4376 		for (; addr < end; addr++) {
4377 			if (*addr)
4378 				return -EFBIG;
4379 		}
4380 
4381 		attr->size = usize;
4382 	}
4383 
4384 	ret = copy_to_user(uattr, attr, attr->size);
4385 	if (ret)
4386 		return -EFAULT;
4387 
4388 	return 0;
4389 }
4390 
4391 /**
4392  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4393  * @pid: the pid in question.
4394  * @uattr: structure containing the extended parameters.
4395  * @size: sizeof(attr) for fwd/bwd comp.
4396  * @flags: for future extension.
4397  */
4398 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4399 		unsigned int, size, unsigned int, flags)
4400 {
4401 	struct sched_attr attr = {
4402 		.size = sizeof(struct sched_attr),
4403 	};
4404 	struct task_struct *p;
4405 	int retval;
4406 
4407 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4408 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4409 		return -EINVAL;
4410 
4411 	rcu_read_lock();
4412 	p = find_process_by_pid(pid);
4413 	retval = -ESRCH;
4414 	if (!p)
4415 		goto out_unlock;
4416 
4417 	retval = security_task_getscheduler(p);
4418 	if (retval)
4419 		goto out_unlock;
4420 
4421 	attr.sched_policy = p->policy;
4422 	if (p->sched_reset_on_fork)
4423 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4424 	if (task_has_dl_policy(p))
4425 		__getparam_dl(p, &attr);
4426 	else if (task_has_rt_policy(p))
4427 		attr.sched_priority = p->rt_priority;
4428 	else
4429 		attr.sched_nice = task_nice(p);
4430 
4431 	rcu_read_unlock();
4432 
4433 	retval = sched_read_attr(uattr, &attr, size);
4434 	return retval;
4435 
4436 out_unlock:
4437 	rcu_read_unlock();
4438 	return retval;
4439 }
4440 
4441 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4442 {
4443 	cpumask_var_t cpus_allowed, new_mask;
4444 	struct task_struct *p;
4445 	int retval;
4446 
4447 	rcu_read_lock();
4448 
4449 	p = find_process_by_pid(pid);
4450 	if (!p) {
4451 		rcu_read_unlock();
4452 		return -ESRCH;
4453 	}
4454 
4455 	/* Prevent p going away */
4456 	get_task_struct(p);
4457 	rcu_read_unlock();
4458 
4459 	if (p->flags & PF_NO_SETAFFINITY) {
4460 		retval = -EINVAL;
4461 		goto out_put_task;
4462 	}
4463 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4464 		retval = -ENOMEM;
4465 		goto out_put_task;
4466 	}
4467 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4468 		retval = -ENOMEM;
4469 		goto out_free_cpus_allowed;
4470 	}
4471 	retval = -EPERM;
4472 	if (!check_same_owner(p)) {
4473 		rcu_read_lock();
4474 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4475 			rcu_read_unlock();
4476 			goto out_free_new_mask;
4477 		}
4478 		rcu_read_unlock();
4479 	}
4480 
4481 	retval = security_task_setscheduler(p);
4482 	if (retval)
4483 		goto out_free_new_mask;
4484 
4485 
4486 	cpuset_cpus_allowed(p, cpus_allowed);
4487 	cpumask_and(new_mask, in_mask, cpus_allowed);
4488 
4489 	/*
4490 	 * Since bandwidth control happens on root_domain basis,
4491 	 * if admission test is enabled, we only admit -deadline
4492 	 * tasks allowed to run on all the CPUs in the task's
4493 	 * root_domain.
4494 	 */
4495 #ifdef CONFIG_SMP
4496 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4497 		rcu_read_lock();
4498 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4499 			retval = -EBUSY;
4500 			rcu_read_unlock();
4501 			goto out_free_new_mask;
4502 		}
4503 		rcu_read_unlock();
4504 	}
4505 #endif
4506 again:
4507 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4508 
4509 	if (!retval) {
4510 		cpuset_cpus_allowed(p, cpus_allowed);
4511 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4512 			/*
4513 			 * We must have raced with a concurrent cpuset
4514 			 * update. Just reset the cpus_allowed to the
4515 			 * cpuset's cpus_allowed
4516 			 */
4517 			cpumask_copy(new_mask, cpus_allowed);
4518 			goto again;
4519 		}
4520 	}
4521 out_free_new_mask:
4522 	free_cpumask_var(new_mask);
4523 out_free_cpus_allowed:
4524 	free_cpumask_var(cpus_allowed);
4525 out_put_task:
4526 	put_task_struct(p);
4527 	return retval;
4528 }
4529 
4530 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4531 			     struct cpumask *new_mask)
4532 {
4533 	if (len < cpumask_size())
4534 		cpumask_clear(new_mask);
4535 	else if (len > cpumask_size())
4536 		len = cpumask_size();
4537 
4538 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4539 }
4540 
4541 /**
4542  * sys_sched_setaffinity - set the cpu affinity of a process
4543  * @pid: pid of the process
4544  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4545  * @user_mask_ptr: user-space pointer to the new cpu mask
4546  *
4547  * Return: 0 on success. An error code otherwise.
4548  */
4549 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4550 		unsigned long __user *, user_mask_ptr)
4551 {
4552 	cpumask_var_t new_mask;
4553 	int retval;
4554 
4555 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4556 		return -ENOMEM;
4557 
4558 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4559 	if (retval == 0)
4560 		retval = sched_setaffinity(pid, new_mask);
4561 	free_cpumask_var(new_mask);
4562 	return retval;
4563 }
4564 
4565 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4566 {
4567 	struct task_struct *p;
4568 	unsigned long flags;
4569 	int retval;
4570 
4571 	rcu_read_lock();
4572 
4573 	retval = -ESRCH;
4574 	p = find_process_by_pid(pid);
4575 	if (!p)
4576 		goto out_unlock;
4577 
4578 	retval = security_task_getscheduler(p);
4579 	if (retval)
4580 		goto out_unlock;
4581 
4582 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4583 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4584 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4585 
4586 out_unlock:
4587 	rcu_read_unlock();
4588 
4589 	return retval;
4590 }
4591 
4592 /**
4593  * sys_sched_getaffinity - get the cpu affinity of a process
4594  * @pid: pid of the process
4595  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4596  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4597  *
4598  * Return: 0 on success. An error code otherwise.
4599  */
4600 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4601 		unsigned long __user *, user_mask_ptr)
4602 {
4603 	int ret;
4604 	cpumask_var_t mask;
4605 
4606 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4607 		return -EINVAL;
4608 	if (len & (sizeof(unsigned long)-1))
4609 		return -EINVAL;
4610 
4611 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4612 		return -ENOMEM;
4613 
4614 	ret = sched_getaffinity(pid, mask);
4615 	if (ret == 0) {
4616 		size_t retlen = min_t(size_t, len, cpumask_size());
4617 
4618 		if (copy_to_user(user_mask_ptr, mask, retlen))
4619 			ret = -EFAULT;
4620 		else
4621 			ret = retlen;
4622 	}
4623 	free_cpumask_var(mask);
4624 
4625 	return ret;
4626 }
4627 
4628 /**
4629  * sys_sched_yield - yield the current processor to other threads.
4630  *
4631  * This function yields the current CPU to other tasks. If there are no
4632  * other threads running on this CPU then this function will return.
4633  *
4634  * Return: 0.
4635  */
4636 SYSCALL_DEFINE0(sched_yield)
4637 {
4638 	struct rq *rq = this_rq_lock();
4639 
4640 	schedstat_inc(rq, yld_count);
4641 	current->sched_class->yield_task(rq);
4642 
4643 	/*
4644 	 * Since we are going to call schedule() anyway, there's
4645 	 * no need to preempt or enable interrupts:
4646 	 */
4647 	__release(rq->lock);
4648 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4649 	do_raw_spin_unlock(&rq->lock);
4650 	sched_preempt_enable_no_resched();
4651 
4652 	schedule();
4653 
4654 	return 0;
4655 }
4656 
4657 int __sched _cond_resched(void)
4658 {
4659 	if (should_resched(0)) {
4660 		preempt_schedule_common();
4661 		return 1;
4662 	}
4663 	return 0;
4664 }
4665 EXPORT_SYMBOL(_cond_resched);
4666 
4667 /*
4668  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4669  * call schedule, and on return reacquire the lock.
4670  *
4671  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4672  * operations here to prevent schedule() from being called twice (once via
4673  * spin_unlock(), once by hand).
4674  */
4675 int __cond_resched_lock(spinlock_t *lock)
4676 {
4677 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4678 	int ret = 0;
4679 
4680 	lockdep_assert_held(lock);
4681 
4682 	if (spin_needbreak(lock) || resched) {
4683 		spin_unlock(lock);
4684 		if (resched)
4685 			preempt_schedule_common();
4686 		else
4687 			cpu_relax();
4688 		ret = 1;
4689 		spin_lock(lock);
4690 	}
4691 	return ret;
4692 }
4693 EXPORT_SYMBOL(__cond_resched_lock);
4694 
4695 int __sched __cond_resched_softirq(void)
4696 {
4697 	BUG_ON(!in_softirq());
4698 
4699 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4700 		local_bh_enable();
4701 		preempt_schedule_common();
4702 		local_bh_disable();
4703 		return 1;
4704 	}
4705 	return 0;
4706 }
4707 EXPORT_SYMBOL(__cond_resched_softirq);
4708 
4709 /**
4710  * yield - yield the current processor to other threads.
4711  *
4712  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4713  *
4714  * The scheduler is at all times free to pick the calling task as the most
4715  * eligible task to run, if removing the yield() call from your code breaks
4716  * it, its already broken.
4717  *
4718  * Typical broken usage is:
4719  *
4720  * while (!event)
4721  * 	yield();
4722  *
4723  * where one assumes that yield() will let 'the other' process run that will
4724  * make event true. If the current task is a SCHED_FIFO task that will never
4725  * happen. Never use yield() as a progress guarantee!!
4726  *
4727  * If you want to use yield() to wait for something, use wait_event().
4728  * If you want to use yield() to be 'nice' for others, use cond_resched().
4729  * If you still want to use yield(), do not!
4730  */
4731 void __sched yield(void)
4732 {
4733 	set_current_state(TASK_RUNNING);
4734 	sys_sched_yield();
4735 }
4736 EXPORT_SYMBOL(yield);
4737 
4738 /**
4739  * yield_to - yield the current processor to another thread in
4740  * your thread group, or accelerate that thread toward the
4741  * processor it's on.
4742  * @p: target task
4743  * @preempt: whether task preemption is allowed or not
4744  *
4745  * It's the caller's job to ensure that the target task struct
4746  * can't go away on us before we can do any checks.
4747  *
4748  * Return:
4749  *	true (>0) if we indeed boosted the target task.
4750  *	false (0) if we failed to boost the target.
4751  *	-ESRCH if there's no task to yield to.
4752  */
4753 int __sched yield_to(struct task_struct *p, bool preempt)
4754 {
4755 	struct task_struct *curr = current;
4756 	struct rq *rq, *p_rq;
4757 	unsigned long flags;
4758 	int yielded = 0;
4759 
4760 	local_irq_save(flags);
4761 	rq = this_rq();
4762 
4763 again:
4764 	p_rq = task_rq(p);
4765 	/*
4766 	 * If we're the only runnable task on the rq and target rq also
4767 	 * has only one task, there's absolutely no point in yielding.
4768 	 */
4769 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4770 		yielded = -ESRCH;
4771 		goto out_irq;
4772 	}
4773 
4774 	double_rq_lock(rq, p_rq);
4775 	if (task_rq(p) != p_rq) {
4776 		double_rq_unlock(rq, p_rq);
4777 		goto again;
4778 	}
4779 
4780 	if (!curr->sched_class->yield_to_task)
4781 		goto out_unlock;
4782 
4783 	if (curr->sched_class != p->sched_class)
4784 		goto out_unlock;
4785 
4786 	if (task_running(p_rq, p) || p->state)
4787 		goto out_unlock;
4788 
4789 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4790 	if (yielded) {
4791 		schedstat_inc(rq, yld_count);
4792 		/*
4793 		 * Make p's CPU reschedule; pick_next_entity takes care of
4794 		 * fairness.
4795 		 */
4796 		if (preempt && rq != p_rq)
4797 			resched_curr(p_rq);
4798 	}
4799 
4800 out_unlock:
4801 	double_rq_unlock(rq, p_rq);
4802 out_irq:
4803 	local_irq_restore(flags);
4804 
4805 	if (yielded > 0)
4806 		schedule();
4807 
4808 	return yielded;
4809 }
4810 EXPORT_SYMBOL_GPL(yield_to);
4811 
4812 /*
4813  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4814  * that process accounting knows that this is a task in IO wait state.
4815  */
4816 long __sched io_schedule_timeout(long timeout)
4817 {
4818 	int old_iowait = current->in_iowait;
4819 	struct rq *rq;
4820 	long ret;
4821 
4822 	current->in_iowait = 1;
4823 	blk_schedule_flush_plug(current);
4824 
4825 	delayacct_blkio_start();
4826 	rq = raw_rq();
4827 	atomic_inc(&rq->nr_iowait);
4828 	ret = schedule_timeout(timeout);
4829 	current->in_iowait = old_iowait;
4830 	atomic_dec(&rq->nr_iowait);
4831 	delayacct_blkio_end();
4832 
4833 	return ret;
4834 }
4835 EXPORT_SYMBOL(io_schedule_timeout);
4836 
4837 /**
4838  * sys_sched_get_priority_max - return maximum RT priority.
4839  * @policy: scheduling class.
4840  *
4841  * Return: On success, this syscall returns the maximum
4842  * rt_priority that can be used by a given scheduling class.
4843  * On failure, a negative error code is returned.
4844  */
4845 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4846 {
4847 	int ret = -EINVAL;
4848 
4849 	switch (policy) {
4850 	case SCHED_FIFO:
4851 	case SCHED_RR:
4852 		ret = MAX_USER_RT_PRIO-1;
4853 		break;
4854 	case SCHED_DEADLINE:
4855 	case SCHED_NORMAL:
4856 	case SCHED_BATCH:
4857 	case SCHED_IDLE:
4858 		ret = 0;
4859 		break;
4860 	}
4861 	return ret;
4862 }
4863 
4864 /**
4865  * sys_sched_get_priority_min - return minimum RT priority.
4866  * @policy: scheduling class.
4867  *
4868  * Return: On success, this syscall returns the minimum
4869  * rt_priority that can be used by a given scheduling class.
4870  * On failure, a negative error code is returned.
4871  */
4872 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4873 {
4874 	int ret = -EINVAL;
4875 
4876 	switch (policy) {
4877 	case SCHED_FIFO:
4878 	case SCHED_RR:
4879 		ret = 1;
4880 		break;
4881 	case SCHED_DEADLINE:
4882 	case SCHED_NORMAL:
4883 	case SCHED_BATCH:
4884 	case SCHED_IDLE:
4885 		ret = 0;
4886 	}
4887 	return ret;
4888 }
4889 
4890 /**
4891  * sys_sched_rr_get_interval - return the default timeslice of a process.
4892  * @pid: pid of the process.
4893  * @interval: userspace pointer to the timeslice value.
4894  *
4895  * this syscall writes the default timeslice value of a given process
4896  * into the user-space timespec buffer. A value of '0' means infinity.
4897  *
4898  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4899  * an error code.
4900  */
4901 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4902 		struct timespec __user *, interval)
4903 {
4904 	struct task_struct *p;
4905 	unsigned int time_slice;
4906 	unsigned long flags;
4907 	struct rq *rq;
4908 	int retval;
4909 	struct timespec t;
4910 
4911 	if (pid < 0)
4912 		return -EINVAL;
4913 
4914 	retval = -ESRCH;
4915 	rcu_read_lock();
4916 	p = find_process_by_pid(pid);
4917 	if (!p)
4918 		goto out_unlock;
4919 
4920 	retval = security_task_getscheduler(p);
4921 	if (retval)
4922 		goto out_unlock;
4923 
4924 	rq = task_rq_lock(p, &flags);
4925 	time_slice = 0;
4926 	if (p->sched_class->get_rr_interval)
4927 		time_slice = p->sched_class->get_rr_interval(rq, p);
4928 	task_rq_unlock(rq, p, &flags);
4929 
4930 	rcu_read_unlock();
4931 	jiffies_to_timespec(time_slice, &t);
4932 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4933 	return retval;
4934 
4935 out_unlock:
4936 	rcu_read_unlock();
4937 	return retval;
4938 }
4939 
4940 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4941 
4942 void sched_show_task(struct task_struct *p)
4943 {
4944 	unsigned long free = 0;
4945 	int ppid;
4946 	unsigned long state = p->state;
4947 
4948 	if (state)
4949 		state = __ffs(state) + 1;
4950 	printk(KERN_INFO "%-15.15s %c", p->comm,
4951 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4952 #if BITS_PER_LONG == 32
4953 	if (state == TASK_RUNNING)
4954 		printk(KERN_CONT " running  ");
4955 	else
4956 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4957 #else
4958 	if (state == TASK_RUNNING)
4959 		printk(KERN_CONT "  running task    ");
4960 	else
4961 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4962 #endif
4963 #ifdef CONFIG_DEBUG_STACK_USAGE
4964 	free = stack_not_used(p);
4965 #endif
4966 	ppid = 0;
4967 	rcu_read_lock();
4968 	if (pid_alive(p))
4969 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4970 	rcu_read_unlock();
4971 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4972 		task_pid_nr(p), ppid,
4973 		(unsigned long)task_thread_info(p)->flags);
4974 
4975 	print_worker_info(KERN_INFO, p);
4976 	show_stack(p, NULL);
4977 }
4978 
4979 void show_state_filter(unsigned long state_filter)
4980 {
4981 	struct task_struct *g, *p;
4982 
4983 #if BITS_PER_LONG == 32
4984 	printk(KERN_INFO
4985 		"  task                PC stack   pid father\n");
4986 #else
4987 	printk(KERN_INFO
4988 		"  task                        PC stack   pid father\n");
4989 #endif
4990 	rcu_read_lock();
4991 	for_each_process_thread(g, p) {
4992 		/*
4993 		 * reset the NMI-timeout, listing all files on a slow
4994 		 * console might take a lot of time:
4995 		 */
4996 		touch_nmi_watchdog();
4997 		if (!state_filter || (p->state & state_filter))
4998 			sched_show_task(p);
4999 	}
5000 
5001 	touch_all_softlockup_watchdogs();
5002 
5003 #ifdef CONFIG_SCHED_DEBUG
5004 	sysrq_sched_debug_show();
5005 #endif
5006 	rcu_read_unlock();
5007 	/*
5008 	 * Only show locks if all tasks are dumped:
5009 	 */
5010 	if (!state_filter)
5011 		debug_show_all_locks();
5012 }
5013 
5014 void init_idle_bootup_task(struct task_struct *idle)
5015 {
5016 	idle->sched_class = &idle_sched_class;
5017 }
5018 
5019 /**
5020  * init_idle - set up an idle thread for a given CPU
5021  * @idle: task in question
5022  * @cpu: cpu the idle task belongs to
5023  *
5024  * NOTE: this function does not set the idle thread's NEED_RESCHED
5025  * flag, to make booting more robust.
5026  */
5027 void init_idle(struct task_struct *idle, int cpu)
5028 {
5029 	struct rq *rq = cpu_rq(cpu);
5030 	unsigned long flags;
5031 
5032 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5033 	raw_spin_lock(&rq->lock);
5034 
5035 	__sched_fork(0, idle);
5036 	idle->state = TASK_RUNNING;
5037 	idle->se.exec_start = sched_clock();
5038 
5039 	kasan_unpoison_task_stack(idle);
5040 
5041 #ifdef CONFIG_SMP
5042 	/*
5043 	 * Its possible that init_idle() gets called multiple times on a task,
5044 	 * in that case do_set_cpus_allowed() will not do the right thing.
5045 	 *
5046 	 * And since this is boot we can forgo the serialization.
5047 	 */
5048 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5049 #endif
5050 	/*
5051 	 * We're having a chicken and egg problem, even though we are
5052 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5053 	 * lockdep check in task_group() will fail.
5054 	 *
5055 	 * Similar case to sched_fork(). / Alternatively we could
5056 	 * use task_rq_lock() here and obtain the other rq->lock.
5057 	 *
5058 	 * Silence PROVE_RCU
5059 	 */
5060 	rcu_read_lock();
5061 	__set_task_cpu(idle, cpu);
5062 	rcu_read_unlock();
5063 
5064 	rq->curr = rq->idle = idle;
5065 	idle->on_rq = TASK_ON_RQ_QUEUED;
5066 #ifdef CONFIG_SMP
5067 	idle->on_cpu = 1;
5068 #endif
5069 	raw_spin_unlock(&rq->lock);
5070 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5071 
5072 	/* Set the preempt count _outside_ the spinlocks! */
5073 	init_idle_preempt_count(idle, cpu);
5074 
5075 	/*
5076 	 * The idle tasks have their own, simple scheduling class:
5077 	 */
5078 	idle->sched_class = &idle_sched_class;
5079 	ftrace_graph_init_idle_task(idle, cpu);
5080 	vtime_init_idle(idle, cpu);
5081 #ifdef CONFIG_SMP
5082 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5083 #endif
5084 }
5085 
5086 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5087 			      const struct cpumask *trial)
5088 {
5089 	int ret = 1, trial_cpus;
5090 	struct dl_bw *cur_dl_b;
5091 	unsigned long flags;
5092 
5093 	if (!cpumask_weight(cur))
5094 		return ret;
5095 
5096 	rcu_read_lock_sched();
5097 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5098 	trial_cpus = cpumask_weight(trial);
5099 
5100 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5101 	if (cur_dl_b->bw != -1 &&
5102 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5103 		ret = 0;
5104 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5105 	rcu_read_unlock_sched();
5106 
5107 	return ret;
5108 }
5109 
5110 int task_can_attach(struct task_struct *p,
5111 		    const struct cpumask *cs_cpus_allowed)
5112 {
5113 	int ret = 0;
5114 
5115 	/*
5116 	 * Kthreads which disallow setaffinity shouldn't be moved
5117 	 * to a new cpuset; we don't want to change their cpu
5118 	 * affinity and isolating such threads by their set of
5119 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5120 	 * applicable for such threads.  This prevents checking for
5121 	 * success of set_cpus_allowed_ptr() on all attached tasks
5122 	 * before cpus_allowed may be changed.
5123 	 */
5124 	if (p->flags & PF_NO_SETAFFINITY) {
5125 		ret = -EINVAL;
5126 		goto out;
5127 	}
5128 
5129 #ifdef CONFIG_SMP
5130 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5131 					      cs_cpus_allowed)) {
5132 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5133 							cs_cpus_allowed);
5134 		struct dl_bw *dl_b;
5135 		bool overflow;
5136 		int cpus;
5137 		unsigned long flags;
5138 
5139 		rcu_read_lock_sched();
5140 		dl_b = dl_bw_of(dest_cpu);
5141 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5142 		cpus = dl_bw_cpus(dest_cpu);
5143 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5144 		if (overflow)
5145 			ret = -EBUSY;
5146 		else {
5147 			/*
5148 			 * We reserve space for this task in the destination
5149 			 * root_domain, as we can't fail after this point.
5150 			 * We will free resources in the source root_domain
5151 			 * later on (see set_cpus_allowed_dl()).
5152 			 */
5153 			__dl_add(dl_b, p->dl.dl_bw);
5154 		}
5155 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5156 		rcu_read_unlock_sched();
5157 
5158 	}
5159 #endif
5160 out:
5161 	return ret;
5162 }
5163 
5164 #ifdef CONFIG_SMP
5165 
5166 #ifdef CONFIG_NUMA_BALANCING
5167 /* Migrate current task p to target_cpu */
5168 int migrate_task_to(struct task_struct *p, int target_cpu)
5169 {
5170 	struct migration_arg arg = { p, target_cpu };
5171 	int curr_cpu = task_cpu(p);
5172 
5173 	if (curr_cpu == target_cpu)
5174 		return 0;
5175 
5176 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5177 		return -EINVAL;
5178 
5179 	/* TODO: This is not properly updating schedstats */
5180 
5181 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5182 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5183 }
5184 
5185 /*
5186  * Requeue a task on a given node and accurately track the number of NUMA
5187  * tasks on the runqueues
5188  */
5189 void sched_setnuma(struct task_struct *p, int nid)
5190 {
5191 	struct rq *rq;
5192 	unsigned long flags;
5193 	bool queued, running;
5194 
5195 	rq = task_rq_lock(p, &flags);
5196 	queued = task_on_rq_queued(p);
5197 	running = task_current(rq, p);
5198 
5199 	if (queued)
5200 		dequeue_task(rq, p, DEQUEUE_SAVE);
5201 	if (running)
5202 		put_prev_task(rq, p);
5203 
5204 	p->numa_preferred_nid = nid;
5205 
5206 	if (running)
5207 		p->sched_class->set_curr_task(rq);
5208 	if (queued)
5209 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5210 	task_rq_unlock(rq, p, &flags);
5211 }
5212 #endif /* CONFIG_NUMA_BALANCING */
5213 
5214 #ifdef CONFIG_HOTPLUG_CPU
5215 /*
5216  * Ensures that the idle task is using init_mm right before its cpu goes
5217  * offline.
5218  */
5219 void idle_task_exit(void)
5220 {
5221 	struct mm_struct *mm = current->active_mm;
5222 
5223 	BUG_ON(cpu_online(smp_processor_id()));
5224 
5225 	if (mm != &init_mm) {
5226 		switch_mm(mm, &init_mm, current);
5227 		finish_arch_post_lock_switch();
5228 	}
5229 	mmdrop(mm);
5230 }
5231 
5232 /*
5233  * Since this CPU is going 'away' for a while, fold any nr_active delta
5234  * we might have. Assumes we're called after migrate_tasks() so that the
5235  * nr_active count is stable.
5236  *
5237  * Also see the comment "Global load-average calculations".
5238  */
5239 static void calc_load_migrate(struct rq *rq)
5240 {
5241 	long delta = calc_load_fold_active(rq);
5242 	if (delta)
5243 		atomic_long_add(delta, &calc_load_tasks);
5244 }
5245 
5246 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5247 {
5248 }
5249 
5250 static const struct sched_class fake_sched_class = {
5251 	.put_prev_task = put_prev_task_fake,
5252 };
5253 
5254 static struct task_struct fake_task = {
5255 	/*
5256 	 * Avoid pull_{rt,dl}_task()
5257 	 */
5258 	.prio = MAX_PRIO + 1,
5259 	.sched_class = &fake_sched_class,
5260 };
5261 
5262 /*
5263  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5264  * try_to_wake_up()->select_task_rq().
5265  *
5266  * Called with rq->lock held even though we'er in stop_machine() and
5267  * there's no concurrency possible, we hold the required locks anyway
5268  * because of lock validation efforts.
5269  */
5270 static void migrate_tasks(struct rq *dead_rq)
5271 {
5272 	struct rq *rq = dead_rq;
5273 	struct task_struct *next, *stop = rq->stop;
5274 	int dest_cpu;
5275 
5276 	/*
5277 	 * Fudge the rq selection such that the below task selection loop
5278 	 * doesn't get stuck on the currently eligible stop task.
5279 	 *
5280 	 * We're currently inside stop_machine() and the rq is either stuck
5281 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5282 	 * either way we should never end up calling schedule() until we're
5283 	 * done here.
5284 	 */
5285 	rq->stop = NULL;
5286 
5287 	/*
5288 	 * put_prev_task() and pick_next_task() sched
5289 	 * class method both need to have an up-to-date
5290 	 * value of rq->clock[_task]
5291 	 */
5292 	update_rq_clock(rq);
5293 
5294 	for (;;) {
5295 		/*
5296 		 * There's this thread running, bail when that's the only
5297 		 * remaining thread.
5298 		 */
5299 		if (rq->nr_running == 1)
5300 			break;
5301 
5302 		/*
5303 		 * pick_next_task assumes pinned rq->lock.
5304 		 */
5305 		lockdep_pin_lock(&rq->lock);
5306 		next = pick_next_task(rq, &fake_task);
5307 		BUG_ON(!next);
5308 		next->sched_class->put_prev_task(rq, next);
5309 
5310 		/*
5311 		 * Rules for changing task_struct::cpus_allowed are holding
5312 		 * both pi_lock and rq->lock, such that holding either
5313 		 * stabilizes the mask.
5314 		 *
5315 		 * Drop rq->lock is not quite as disastrous as it usually is
5316 		 * because !cpu_active at this point, which means load-balance
5317 		 * will not interfere. Also, stop-machine.
5318 		 */
5319 		lockdep_unpin_lock(&rq->lock);
5320 		raw_spin_unlock(&rq->lock);
5321 		raw_spin_lock(&next->pi_lock);
5322 		raw_spin_lock(&rq->lock);
5323 
5324 		/*
5325 		 * Since we're inside stop-machine, _nothing_ should have
5326 		 * changed the task, WARN if weird stuff happened, because in
5327 		 * that case the above rq->lock drop is a fail too.
5328 		 */
5329 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5330 			raw_spin_unlock(&next->pi_lock);
5331 			continue;
5332 		}
5333 
5334 		/* Find suitable destination for @next, with force if needed. */
5335 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5336 
5337 		rq = __migrate_task(rq, next, dest_cpu);
5338 		if (rq != dead_rq) {
5339 			raw_spin_unlock(&rq->lock);
5340 			rq = dead_rq;
5341 			raw_spin_lock(&rq->lock);
5342 		}
5343 		raw_spin_unlock(&next->pi_lock);
5344 	}
5345 
5346 	rq->stop = stop;
5347 }
5348 #endif /* CONFIG_HOTPLUG_CPU */
5349 
5350 static void set_rq_online(struct rq *rq)
5351 {
5352 	if (!rq->online) {
5353 		const struct sched_class *class;
5354 
5355 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5356 		rq->online = 1;
5357 
5358 		for_each_class(class) {
5359 			if (class->rq_online)
5360 				class->rq_online(rq);
5361 		}
5362 	}
5363 }
5364 
5365 static void set_rq_offline(struct rq *rq)
5366 {
5367 	if (rq->online) {
5368 		const struct sched_class *class;
5369 
5370 		for_each_class(class) {
5371 			if (class->rq_offline)
5372 				class->rq_offline(rq);
5373 		}
5374 
5375 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5376 		rq->online = 0;
5377 	}
5378 }
5379 
5380 /*
5381  * migration_call - callback that gets triggered when a CPU is added.
5382  * Here we can start up the necessary migration thread for the new CPU.
5383  */
5384 static int
5385 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5386 {
5387 	int cpu = (long)hcpu;
5388 	unsigned long flags;
5389 	struct rq *rq = cpu_rq(cpu);
5390 
5391 	switch (action & ~CPU_TASKS_FROZEN) {
5392 
5393 	case CPU_UP_PREPARE:
5394 		rq->calc_load_update = calc_load_update;
5395 		account_reset_rq(rq);
5396 		break;
5397 
5398 	case CPU_ONLINE:
5399 		/* Update our root-domain */
5400 		raw_spin_lock_irqsave(&rq->lock, flags);
5401 		if (rq->rd) {
5402 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5403 
5404 			set_rq_online(rq);
5405 		}
5406 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5407 		break;
5408 
5409 #ifdef CONFIG_HOTPLUG_CPU
5410 	case CPU_DYING:
5411 		sched_ttwu_pending();
5412 		/* Update our root-domain */
5413 		raw_spin_lock_irqsave(&rq->lock, flags);
5414 		if (rq->rd) {
5415 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5416 			set_rq_offline(rq);
5417 		}
5418 		migrate_tasks(rq);
5419 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5420 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5421 		break;
5422 
5423 	case CPU_DEAD:
5424 		calc_load_migrate(rq);
5425 		break;
5426 #endif
5427 	}
5428 
5429 	update_max_interval();
5430 
5431 	return NOTIFY_OK;
5432 }
5433 
5434 /*
5435  * Register at high priority so that task migration (migrate_all_tasks)
5436  * happens before everything else.  This has to be lower priority than
5437  * the notifier in the perf_event subsystem, though.
5438  */
5439 static struct notifier_block migration_notifier = {
5440 	.notifier_call = migration_call,
5441 	.priority = CPU_PRI_MIGRATION,
5442 };
5443 
5444 static void set_cpu_rq_start_time(void)
5445 {
5446 	int cpu = smp_processor_id();
5447 	struct rq *rq = cpu_rq(cpu);
5448 	rq->age_stamp = sched_clock_cpu(cpu);
5449 }
5450 
5451 static int sched_cpu_active(struct notifier_block *nfb,
5452 				      unsigned long action, void *hcpu)
5453 {
5454 	int cpu = (long)hcpu;
5455 
5456 	switch (action & ~CPU_TASKS_FROZEN) {
5457 	case CPU_STARTING:
5458 		set_cpu_rq_start_time();
5459 		return NOTIFY_OK;
5460 
5461 	case CPU_DOWN_FAILED:
5462 		set_cpu_active(cpu, true);
5463 		return NOTIFY_OK;
5464 
5465 	default:
5466 		return NOTIFY_DONE;
5467 	}
5468 }
5469 
5470 static int sched_cpu_inactive(struct notifier_block *nfb,
5471 					unsigned long action, void *hcpu)
5472 {
5473 	switch (action & ~CPU_TASKS_FROZEN) {
5474 	case CPU_DOWN_PREPARE:
5475 		set_cpu_active((long)hcpu, false);
5476 		return NOTIFY_OK;
5477 	default:
5478 		return NOTIFY_DONE;
5479 	}
5480 }
5481 
5482 static int __init migration_init(void)
5483 {
5484 	void *cpu = (void *)(long)smp_processor_id();
5485 	int err;
5486 
5487 	/* Initialize migration for the boot CPU */
5488 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5489 	BUG_ON(err == NOTIFY_BAD);
5490 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5491 	register_cpu_notifier(&migration_notifier);
5492 
5493 	/* Register cpu active notifiers */
5494 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5495 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5496 
5497 	return 0;
5498 }
5499 early_initcall(migration_init);
5500 
5501 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5502 
5503 #ifdef CONFIG_SCHED_DEBUG
5504 
5505 static __read_mostly int sched_debug_enabled;
5506 
5507 static int __init sched_debug_setup(char *str)
5508 {
5509 	sched_debug_enabled = 1;
5510 
5511 	return 0;
5512 }
5513 early_param("sched_debug", sched_debug_setup);
5514 
5515 static inline bool sched_debug(void)
5516 {
5517 	return sched_debug_enabled;
5518 }
5519 
5520 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5521 				  struct cpumask *groupmask)
5522 {
5523 	struct sched_group *group = sd->groups;
5524 
5525 	cpumask_clear(groupmask);
5526 
5527 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5528 
5529 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5530 		printk("does not load-balance\n");
5531 		if (sd->parent)
5532 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5533 					" has parent");
5534 		return -1;
5535 	}
5536 
5537 	printk(KERN_CONT "span %*pbl level %s\n",
5538 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5539 
5540 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5541 		printk(KERN_ERR "ERROR: domain->span does not contain "
5542 				"CPU%d\n", cpu);
5543 	}
5544 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5545 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5546 				" CPU%d\n", cpu);
5547 	}
5548 
5549 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5550 	do {
5551 		if (!group) {
5552 			printk("\n");
5553 			printk(KERN_ERR "ERROR: group is NULL\n");
5554 			break;
5555 		}
5556 
5557 		if (!cpumask_weight(sched_group_cpus(group))) {
5558 			printk(KERN_CONT "\n");
5559 			printk(KERN_ERR "ERROR: empty group\n");
5560 			break;
5561 		}
5562 
5563 		if (!(sd->flags & SD_OVERLAP) &&
5564 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5565 			printk(KERN_CONT "\n");
5566 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5567 			break;
5568 		}
5569 
5570 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5571 
5572 		printk(KERN_CONT " %*pbl",
5573 		       cpumask_pr_args(sched_group_cpus(group)));
5574 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5575 			printk(KERN_CONT " (cpu_capacity = %d)",
5576 				group->sgc->capacity);
5577 		}
5578 
5579 		group = group->next;
5580 	} while (group != sd->groups);
5581 	printk(KERN_CONT "\n");
5582 
5583 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5584 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5585 
5586 	if (sd->parent &&
5587 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5588 		printk(KERN_ERR "ERROR: parent span is not a superset "
5589 			"of domain->span\n");
5590 	return 0;
5591 }
5592 
5593 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5594 {
5595 	int level = 0;
5596 
5597 	if (!sched_debug_enabled)
5598 		return;
5599 
5600 	if (!sd) {
5601 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5602 		return;
5603 	}
5604 
5605 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5606 
5607 	for (;;) {
5608 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5609 			break;
5610 		level++;
5611 		sd = sd->parent;
5612 		if (!sd)
5613 			break;
5614 	}
5615 }
5616 #else /* !CONFIG_SCHED_DEBUG */
5617 # define sched_domain_debug(sd, cpu) do { } while (0)
5618 static inline bool sched_debug(void)
5619 {
5620 	return false;
5621 }
5622 #endif /* CONFIG_SCHED_DEBUG */
5623 
5624 static int sd_degenerate(struct sched_domain *sd)
5625 {
5626 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5627 		return 1;
5628 
5629 	/* Following flags need at least 2 groups */
5630 	if (sd->flags & (SD_LOAD_BALANCE |
5631 			 SD_BALANCE_NEWIDLE |
5632 			 SD_BALANCE_FORK |
5633 			 SD_BALANCE_EXEC |
5634 			 SD_SHARE_CPUCAPACITY |
5635 			 SD_SHARE_PKG_RESOURCES |
5636 			 SD_SHARE_POWERDOMAIN)) {
5637 		if (sd->groups != sd->groups->next)
5638 			return 0;
5639 	}
5640 
5641 	/* Following flags don't use groups */
5642 	if (sd->flags & (SD_WAKE_AFFINE))
5643 		return 0;
5644 
5645 	return 1;
5646 }
5647 
5648 static int
5649 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5650 {
5651 	unsigned long cflags = sd->flags, pflags = parent->flags;
5652 
5653 	if (sd_degenerate(parent))
5654 		return 1;
5655 
5656 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5657 		return 0;
5658 
5659 	/* Flags needing groups don't count if only 1 group in parent */
5660 	if (parent->groups == parent->groups->next) {
5661 		pflags &= ~(SD_LOAD_BALANCE |
5662 				SD_BALANCE_NEWIDLE |
5663 				SD_BALANCE_FORK |
5664 				SD_BALANCE_EXEC |
5665 				SD_SHARE_CPUCAPACITY |
5666 				SD_SHARE_PKG_RESOURCES |
5667 				SD_PREFER_SIBLING |
5668 				SD_SHARE_POWERDOMAIN);
5669 		if (nr_node_ids == 1)
5670 			pflags &= ~SD_SERIALIZE;
5671 	}
5672 	if (~cflags & pflags)
5673 		return 0;
5674 
5675 	return 1;
5676 }
5677 
5678 static void free_rootdomain(struct rcu_head *rcu)
5679 {
5680 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5681 
5682 	cpupri_cleanup(&rd->cpupri);
5683 	cpudl_cleanup(&rd->cpudl);
5684 	free_cpumask_var(rd->dlo_mask);
5685 	free_cpumask_var(rd->rto_mask);
5686 	free_cpumask_var(rd->online);
5687 	free_cpumask_var(rd->span);
5688 	kfree(rd);
5689 }
5690 
5691 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5692 {
5693 	struct root_domain *old_rd = NULL;
5694 	unsigned long flags;
5695 
5696 	raw_spin_lock_irqsave(&rq->lock, flags);
5697 
5698 	if (rq->rd) {
5699 		old_rd = rq->rd;
5700 
5701 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5702 			set_rq_offline(rq);
5703 
5704 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5705 
5706 		/*
5707 		 * If we dont want to free the old_rd yet then
5708 		 * set old_rd to NULL to skip the freeing later
5709 		 * in this function:
5710 		 */
5711 		if (!atomic_dec_and_test(&old_rd->refcount))
5712 			old_rd = NULL;
5713 	}
5714 
5715 	atomic_inc(&rd->refcount);
5716 	rq->rd = rd;
5717 
5718 	cpumask_set_cpu(rq->cpu, rd->span);
5719 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5720 		set_rq_online(rq);
5721 
5722 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5723 
5724 	if (old_rd)
5725 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5726 }
5727 
5728 static int init_rootdomain(struct root_domain *rd)
5729 {
5730 	memset(rd, 0, sizeof(*rd));
5731 
5732 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5733 		goto out;
5734 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5735 		goto free_span;
5736 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5737 		goto free_online;
5738 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5739 		goto free_dlo_mask;
5740 
5741 	init_dl_bw(&rd->dl_bw);
5742 	if (cpudl_init(&rd->cpudl) != 0)
5743 		goto free_dlo_mask;
5744 
5745 	if (cpupri_init(&rd->cpupri) != 0)
5746 		goto free_rto_mask;
5747 	return 0;
5748 
5749 free_rto_mask:
5750 	free_cpumask_var(rd->rto_mask);
5751 free_dlo_mask:
5752 	free_cpumask_var(rd->dlo_mask);
5753 free_online:
5754 	free_cpumask_var(rd->online);
5755 free_span:
5756 	free_cpumask_var(rd->span);
5757 out:
5758 	return -ENOMEM;
5759 }
5760 
5761 /*
5762  * By default the system creates a single root-domain with all cpus as
5763  * members (mimicking the global state we have today).
5764  */
5765 struct root_domain def_root_domain;
5766 
5767 static void init_defrootdomain(void)
5768 {
5769 	init_rootdomain(&def_root_domain);
5770 
5771 	atomic_set(&def_root_domain.refcount, 1);
5772 }
5773 
5774 static struct root_domain *alloc_rootdomain(void)
5775 {
5776 	struct root_domain *rd;
5777 
5778 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5779 	if (!rd)
5780 		return NULL;
5781 
5782 	if (init_rootdomain(rd) != 0) {
5783 		kfree(rd);
5784 		return NULL;
5785 	}
5786 
5787 	return rd;
5788 }
5789 
5790 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5791 {
5792 	struct sched_group *tmp, *first;
5793 
5794 	if (!sg)
5795 		return;
5796 
5797 	first = sg;
5798 	do {
5799 		tmp = sg->next;
5800 
5801 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5802 			kfree(sg->sgc);
5803 
5804 		kfree(sg);
5805 		sg = tmp;
5806 	} while (sg != first);
5807 }
5808 
5809 static void free_sched_domain(struct rcu_head *rcu)
5810 {
5811 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5812 
5813 	/*
5814 	 * If its an overlapping domain it has private groups, iterate and
5815 	 * nuke them all.
5816 	 */
5817 	if (sd->flags & SD_OVERLAP) {
5818 		free_sched_groups(sd->groups, 1);
5819 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5820 		kfree(sd->groups->sgc);
5821 		kfree(sd->groups);
5822 	}
5823 	kfree(sd);
5824 }
5825 
5826 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5827 {
5828 	call_rcu(&sd->rcu, free_sched_domain);
5829 }
5830 
5831 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5832 {
5833 	for (; sd; sd = sd->parent)
5834 		destroy_sched_domain(sd, cpu);
5835 }
5836 
5837 /*
5838  * Keep a special pointer to the highest sched_domain that has
5839  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5840  * allows us to avoid some pointer chasing select_idle_sibling().
5841  *
5842  * Also keep a unique ID per domain (we use the first cpu number in
5843  * the cpumask of the domain), this allows us to quickly tell if
5844  * two cpus are in the same cache domain, see cpus_share_cache().
5845  */
5846 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5847 DEFINE_PER_CPU(int, sd_llc_size);
5848 DEFINE_PER_CPU(int, sd_llc_id);
5849 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5850 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5851 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5852 
5853 static void update_top_cache_domain(int cpu)
5854 {
5855 	struct sched_domain *sd;
5856 	struct sched_domain *busy_sd = NULL;
5857 	int id = cpu;
5858 	int size = 1;
5859 
5860 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5861 	if (sd) {
5862 		id = cpumask_first(sched_domain_span(sd));
5863 		size = cpumask_weight(sched_domain_span(sd));
5864 		busy_sd = sd->parent; /* sd_busy */
5865 	}
5866 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5867 
5868 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5869 	per_cpu(sd_llc_size, cpu) = size;
5870 	per_cpu(sd_llc_id, cpu) = id;
5871 
5872 	sd = lowest_flag_domain(cpu, SD_NUMA);
5873 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5874 
5875 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5876 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5877 }
5878 
5879 /*
5880  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5881  * hold the hotplug lock.
5882  */
5883 static void
5884 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5885 {
5886 	struct rq *rq = cpu_rq(cpu);
5887 	struct sched_domain *tmp;
5888 
5889 	/* Remove the sched domains which do not contribute to scheduling. */
5890 	for (tmp = sd; tmp; ) {
5891 		struct sched_domain *parent = tmp->parent;
5892 		if (!parent)
5893 			break;
5894 
5895 		if (sd_parent_degenerate(tmp, parent)) {
5896 			tmp->parent = parent->parent;
5897 			if (parent->parent)
5898 				parent->parent->child = tmp;
5899 			/*
5900 			 * Transfer SD_PREFER_SIBLING down in case of a
5901 			 * degenerate parent; the spans match for this
5902 			 * so the property transfers.
5903 			 */
5904 			if (parent->flags & SD_PREFER_SIBLING)
5905 				tmp->flags |= SD_PREFER_SIBLING;
5906 			destroy_sched_domain(parent, cpu);
5907 		} else
5908 			tmp = tmp->parent;
5909 	}
5910 
5911 	if (sd && sd_degenerate(sd)) {
5912 		tmp = sd;
5913 		sd = sd->parent;
5914 		destroy_sched_domain(tmp, cpu);
5915 		if (sd)
5916 			sd->child = NULL;
5917 	}
5918 
5919 	sched_domain_debug(sd, cpu);
5920 
5921 	rq_attach_root(rq, rd);
5922 	tmp = rq->sd;
5923 	rcu_assign_pointer(rq->sd, sd);
5924 	destroy_sched_domains(tmp, cpu);
5925 
5926 	update_top_cache_domain(cpu);
5927 }
5928 
5929 /* Setup the mask of cpus configured for isolated domains */
5930 static int __init isolated_cpu_setup(char *str)
5931 {
5932 	int ret;
5933 
5934 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5935 	ret = cpulist_parse(str, cpu_isolated_map);
5936 	if (ret) {
5937 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5938 		return 0;
5939 	}
5940 	return 1;
5941 }
5942 __setup("isolcpus=", isolated_cpu_setup);
5943 
5944 struct s_data {
5945 	struct sched_domain ** __percpu sd;
5946 	struct root_domain	*rd;
5947 };
5948 
5949 enum s_alloc {
5950 	sa_rootdomain,
5951 	sa_sd,
5952 	sa_sd_storage,
5953 	sa_none,
5954 };
5955 
5956 /*
5957  * Build an iteration mask that can exclude certain CPUs from the upwards
5958  * domain traversal.
5959  *
5960  * Asymmetric node setups can result in situations where the domain tree is of
5961  * unequal depth, make sure to skip domains that already cover the entire
5962  * range.
5963  *
5964  * In that case build_sched_domains() will have terminated the iteration early
5965  * and our sibling sd spans will be empty. Domains should always include the
5966  * cpu they're built on, so check that.
5967  *
5968  */
5969 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5970 {
5971 	const struct cpumask *span = sched_domain_span(sd);
5972 	struct sd_data *sdd = sd->private;
5973 	struct sched_domain *sibling;
5974 	int i;
5975 
5976 	for_each_cpu(i, span) {
5977 		sibling = *per_cpu_ptr(sdd->sd, i);
5978 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5979 			continue;
5980 
5981 		cpumask_set_cpu(i, sched_group_mask(sg));
5982 	}
5983 }
5984 
5985 /*
5986  * Return the canonical balance cpu for this group, this is the first cpu
5987  * of this group that's also in the iteration mask.
5988  */
5989 int group_balance_cpu(struct sched_group *sg)
5990 {
5991 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5992 }
5993 
5994 static int
5995 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5996 {
5997 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5998 	const struct cpumask *span = sched_domain_span(sd);
5999 	struct cpumask *covered = sched_domains_tmpmask;
6000 	struct sd_data *sdd = sd->private;
6001 	struct sched_domain *sibling;
6002 	int i;
6003 
6004 	cpumask_clear(covered);
6005 
6006 	for_each_cpu(i, span) {
6007 		struct cpumask *sg_span;
6008 
6009 		if (cpumask_test_cpu(i, covered))
6010 			continue;
6011 
6012 		sibling = *per_cpu_ptr(sdd->sd, i);
6013 
6014 		/* See the comment near build_group_mask(). */
6015 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6016 			continue;
6017 
6018 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6019 				GFP_KERNEL, cpu_to_node(cpu));
6020 
6021 		if (!sg)
6022 			goto fail;
6023 
6024 		sg_span = sched_group_cpus(sg);
6025 		if (sibling->child)
6026 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6027 		else
6028 			cpumask_set_cpu(i, sg_span);
6029 
6030 		cpumask_or(covered, covered, sg_span);
6031 
6032 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6033 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6034 			build_group_mask(sd, sg);
6035 
6036 		/*
6037 		 * Initialize sgc->capacity such that even if we mess up the
6038 		 * domains and no possible iteration will get us here, we won't
6039 		 * die on a /0 trap.
6040 		 */
6041 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6042 
6043 		/*
6044 		 * Make sure the first group of this domain contains the
6045 		 * canonical balance cpu. Otherwise the sched_domain iteration
6046 		 * breaks. See update_sg_lb_stats().
6047 		 */
6048 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6049 		    group_balance_cpu(sg) == cpu)
6050 			groups = sg;
6051 
6052 		if (!first)
6053 			first = sg;
6054 		if (last)
6055 			last->next = sg;
6056 		last = sg;
6057 		last->next = first;
6058 	}
6059 	sd->groups = groups;
6060 
6061 	return 0;
6062 
6063 fail:
6064 	free_sched_groups(first, 0);
6065 
6066 	return -ENOMEM;
6067 }
6068 
6069 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6070 {
6071 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6072 	struct sched_domain *child = sd->child;
6073 
6074 	if (child)
6075 		cpu = cpumask_first(sched_domain_span(child));
6076 
6077 	if (sg) {
6078 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6079 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6080 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6081 	}
6082 
6083 	return cpu;
6084 }
6085 
6086 /*
6087  * build_sched_groups will build a circular linked list of the groups
6088  * covered by the given span, and will set each group's ->cpumask correctly,
6089  * and ->cpu_capacity to 0.
6090  *
6091  * Assumes the sched_domain tree is fully constructed
6092  */
6093 static int
6094 build_sched_groups(struct sched_domain *sd, int cpu)
6095 {
6096 	struct sched_group *first = NULL, *last = NULL;
6097 	struct sd_data *sdd = sd->private;
6098 	const struct cpumask *span = sched_domain_span(sd);
6099 	struct cpumask *covered;
6100 	int i;
6101 
6102 	get_group(cpu, sdd, &sd->groups);
6103 	atomic_inc(&sd->groups->ref);
6104 
6105 	if (cpu != cpumask_first(span))
6106 		return 0;
6107 
6108 	lockdep_assert_held(&sched_domains_mutex);
6109 	covered = sched_domains_tmpmask;
6110 
6111 	cpumask_clear(covered);
6112 
6113 	for_each_cpu(i, span) {
6114 		struct sched_group *sg;
6115 		int group, j;
6116 
6117 		if (cpumask_test_cpu(i, covered))
6118 			continue;
6119 
6120 		group = get_group(i, sdd, &sg);
6121 		cpumask_setall(sched_group_mask(sg));
6122 
6123 		for_each_cpu(j, span) {
6124 			if (get_group(j, sdd, NULL) != group)
6125 				continue;
6126 
6127 			cpumask_set_cpu(j, covered);
6128 			cpumask_set_cpu(j, sched_group_cpus(sg));
6129 		}
6130 
6131 		if (!first)
6132 			first = sg;
6133 		if (last)
6134 			last->next = sg;
6135 		last = sg;
6136 	}
6137 	last->next = first;
6138 
6139 	return 0;
6140 }
6141 
6142 /*
6143  * Initialize sched groups cpu_capacity.
6144  *
6145  * cpu_capacity indicates the capacity of sched group, which is used while
6146  * distributing the load between different sched groups in a sched domain.
6147  * Typically cpu_capacity for all the groups in a sched domain will be same
6148  * unless there are asymmetries in the topology. If there are asymmetries,
6149  * group having more cpu_capacity will pickup more load compared to the
6150  * group having less cpu_capacity.
6151  */
6152 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6153 {
6154 	struct sched_group *sg = sd->groups;
6155 
6156 	WARN_ON(!sg);
6157 
6158 	do {
6159 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6160 		sg = sg->next;
6161 	} while (sg != sd->groups);
6162 
6163 	if (cpu != group_balance_cpu(sg))
6164 		return;
6165 
6166 	update_group_capacity(sd, cpu);
6167 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6168 }
6169 
6170 /*
6171  * Initializers for schedule domains
6172  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6173  */
6174 
6175 static int default_relax_domain_level = -1;
6176 int sched_domain_level_max;
6177 
6178 static int __init setup_relax_domain_level(char *str)
6179 {
6180 	if (kstrtoint(str, 0, &default_relax_domain_level))
6181 		pr_warn("Unable to set relax_domain_level\n");
6182 
6183 	return 1;
6184 }
6185 __setup("relax_domain_level=", setup_relax_domain_level);
6186 
6187 static void set_domain_attribute(struct sched_domain *sd,
6188 				 struct sched_domain_attr *attr)
6189 {
6190 	int request;
6191 
6192 	if (!attr || attr->relax_domain_level < 0) {
6193 		if (default_relax_domain_level < 0)
6194 			return;
6195 		else
6196 			request = default_relax_domain_level;
6197 	} else
6198 		request = attr->relax_domain_level;
6199 	if (request < sd->level) {
6200 		/* turn off idle balance on this domain */
6201 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6202 	} else {
6203 		/* turn on idle balance on this domain */
6204 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6205 	}
6206 }
6207 
6208 static void __sdt_free(const struct cpumask *cpu_map);
6209 static int __sdt_alloc(const struct cpumask *cpu_map);
6210 
6211 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6212 				 const struct cpumask *cpu_map)
6213 {
6214 	switch (what) {
6215 	case sa_rootdomain:
6216 		if (!atomic_read(&d->rd->refcount))
6217 			free_rootdomain(&d->rd->rcu); /* fall through */
6218 	case sa_sd:
6219 		free_percpu(d->sd); /* fall through */
6220 	case sa_sd_storage:
6221 		__sdt_free(cpu_map); /* fall through */
6222 	case sa_none:
6223 		break;
6224 	}
6225 }
6226 
6227 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6228 						   const struct cpumask *cpu_map)
6229 {
6230 	memset(d, 0, sizeof(*d));
6231 
6232 	if (__sdt_alloc(cpu_map))
6233 		return sa_sd_storage;
6234 	d->sd = alloc_percpu(struct sched_domain *);
6235 	if (!d->sd)
6236 		return sa_sd_storage;
6237 	d->rd = alloc_rootdomain();
6238 	if (!d->rd)
6239 		return sa_sd;
6240 	return sa_rootdomain;
6241 }
6242 
6243 /*
6244  * NULL the sd_data elements we've used to build the sched_domain and
6245  * sched_group structure so that the subsequent __free_domain_allocs()
6246  * will not free the data we're using.
6247  */
6248 static void claim_allocations(int cpu, struct sched_domain *sd)
6249 {
6250 	struct sd_data *sdd = sd->private;
6251 
6252 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6253 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6254 
6255 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6256 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6257 
6258 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6259 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6260 }
6261 
6262 #ifdef CONFIG_NUMA
6263 static int sched_domains_numa_levels;
6264 enum numa_topology_type sched_numa_topology_type;
6265 static int *sched_domains_numa_distance;
6266 int sched_max_numa_distance;
6267 static struct cpumask ***sched_domains_numa_masks;
6268 static int sched_domains_curr_level;
6269 #endif
6270 
6271 /*
6272  * SD_flags allowed in topology descriptions.
6273  *
6274  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6275  * SD_SHARE_PKG_RESOURCES - describes shared caches
6276  * SD_NUMA                - describes NUMA topologies
6277  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6278  *
6279  * Odd one out:
6280  * SD_ASYM_PACKING        - describes SMT quirks
6281  */
6282 #define TOPOLOGY_SD_FLAGS		\
6283 	(SD_SHARE_CPUCAPACITY |		\
6284 	 SD_SHARE_PKG_RESOURCES |	\
6285 	 SD_NUMA |			\
6286 	 SD_ASYM_PACKING |		\
6287 	 SD_SHARE_POWERDOMAIN)
6288 
6289 static struct sched_domain *
6290 sd_init(struct sched_domain_topology_level *tl, int cpu)
6291 {
6292 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6293 	int sd_weight, sd_flags = 0;
6294 
6295 #ifdef CONFIG_NUMA
6296 	/*
6297 	 * Ugly hack to pass state to sd_numa_mask()...
6298 	 */
6299 	sched_domains_curr_level = tl->numa_level;
6300 #endif
6301 
6302 	sd_weight = cpumask_weight(tl->mask(cpu));
6303 
6304 	if (tl->sd_flags)
6305 		sd_flags = (*tl->sd_flags)();
6306 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6307 			"wrong sd_flags in topology description\n"))
6308 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6309 
6310 	*sd = (struct sched_domain){
6311 		.min_interval		= sd_weight,
6312 		.max_interval		= 2*sd_weight,
6313 		.busy_factor		= 32,
6314 		.imbalance_pct		= 125,
6315 
6316 		.cache_nice_tries	= 0,
6317 		.busy_idx		= 0,
6318 		.idle_idx		= 0,
6319 		.newidle_idx		= 0,
6320 		.wake_idx		= 0,
6321 		.forkexec_idx		= 0,
6322 
6323 		.flags			= 1*SD_LOAD_BALANCE
6324 					| 1*SD_BALANCE_NEWIDLE
6325 					| 1*SD_BALANCE_EXEC
6326 					| 1*SD_BALANCE_FORK
6327 					| 0*SD_BALANCE_WAKE
6328 					| 1*SD_WAKE_AFFINE
6329 					| 0*SD_SHARE_CPUCAPACITY
6330 					| 0*SD_SHARE_PKG_RESOURCES
6331 					| 0*SD_SERIALIZE
6332 					| 0*SD_PREFER_SIBLING
6333 					| 0*SD_NUMA
6334 					| sd_flags
6335 					,
6336 
6337 		.last_balance		= jiffies,
6338 		.balance_interval	= sd_weight,
6339 		.smt_gain		= 0,
6340 		.max_newidle_lb_cost	= 0,
6341 		.next_decay_max_lb_cost	= jiffies,
6342 #ifdef CONFIG_SCHED_DEBUG
6343 		.name			= tl->name,
6344 #endif
6345 	};
6346 
6347 	/*
6348 	 * Convert topological properties into behaviour.
6349 	 */
6350 
6351 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6352 		sd->flags |= SD_PREFER_SIBLING;
6353 		sd->imbalance_pct = 110;
6354 		sd->smt_gain = 1178; /* ~15% */
6355 
6356 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6357 		sd->imbalance_pct = 117;
6358 		sd->cache_nice_tries = 1;
6359 		sd->busy_idx = 2;
6360 
6361 #ifdef CONFIG_NUMA
6362 	} else if (sd->flags & SD_NUMA) {
6363 		sd->cache_nice_tries = 2;
6364 		sd->busy_idx = 3;
6365 		sd->idle_idx = 2;
6366 
6367 		sd->flags |= SD_SERIALIZE;
6368 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6369 			sd->flags &= ~(SD_BALANCE_EXEC |
6370 				       SD_BALANCE_FORK |
6371 				       SD_WAKE_AFFINE);
6372 		}
6373 
6374 #endif
6375 	} else {
6376 		sd->flags |= SD_PREFER_SIBLING;
6377 		sd->cache_nice_tries = 1;
6378 		sd->busy_idx = 2;
6379 		sd->idle_idx = 1;
6380 	}
6381 
6382 	sd->private = &tl->data;
6383 
6384 	return sd;
6385 }
6386 
6387 /*
6388  * Topology list, bottom-up.
6389  */
6390 static struct sched_domain_topology_level default_topology[] = {
6391 #ifdef CONFIG_SCHED_SMT
6392 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6393 #endif
6394 #ifdef CONFIG_SCHED_MC
6395 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6396 #endif
6397 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6398 	{ NULL, },
6399 };
6400 
6401 static struct sched_domain_topology_level *sched_domain_topology =
6402 	default_topology;
6403 
6404 #define for_each_sd_topology(tl)			\
6405 	for (tl = sched_domain_topology; tl->mask; tl++)
6406 
6407 void set_sched_topology(struct sched_domain_topology_level *tl)
6408 {
6409 	sched_domain_topology = tl;
6410 }
6411 
6412 #ifdef CONFIG_NUMA
6413 
6414 static const struct cpumask *sd_numa_mask(int cpu)
6415 {
6416 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6417 }
6418 
6419 static void sched_numa_warn(const char *str)
6420 {
6421 	static int done = false;
6422 	int i,j;
6423 
6424 	if (done)
6425 		return;
6426 
6427 	done = true;
6428 
6429 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6430 
6431 	for (i = 0; i < nr_node_ids; i++) {
6432 		printk(KERN_WARNING "  ");
6433 		for (j = 0; j < nr_node_ids; j++)
6434 			printk(KERN_CONT "%02d ", node_distance(i,j));
6435 		printk(KERN_CONT "\n");
6436 	}
6437 	printk(KERN_WARNING "\n");
6438 }
6439 
6440 bool find_numa_distance(int distance)
6441 {
6442 	int i;
6443 
6444 	if (distance == node_distance(0, 0))
6445 		return true;
6446 
6447 	for (i = 0; i < sched_domains_numa_levels; i++) {
6448 		if (sched_domains_numa_distance[i] == distance)
6449 			return true;
6450 	}
6451 
6452 	return false;
6453 }
6454 
6455 /*
6456  * A system can have three types of NUMA topology:
6457  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6458  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6459  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6460  *
6461  * The difference between a glueless mesh topology and a backplane
6462  * topology lies in whether communication between not directly
6463  * connected nodes goes through intermediary nodes (where programs
6464  * could run), or through backplane controllers. This affects
6465  * placement of programs.
6466  *
6467  * The type of topology can be discerned with the following tests:
6468  * - If the maximum distance between any nodes is 1 hop, the system
6469  *   is directly connected.
6470  * - If for two nodes A and B, located N > 1 hops away from each other,
6471  *   there is an intermediary node C, which is < N hops away from both
6472  *   nodes A and B, the system is a glueless mesh.
6473  */
6474 static void init_numa_topology_type(void)
6475 {
6476 	int a, b, c, n;
6477 
6478 	n = sched_max_numa_distance;
6479 
6480 	if (sched_domains_numa_levels <= 1) {
6481 		sched_numa_topology_type = NUMA_DIRECT;
6482 		return;
6483 	}
6484 
6485 	for_each_online_node(a) {
6486 		for_each_online_node(b) {
6487 			/* Find two nodes furthest removed from each other. */
6488 			if (node_distance(a, b) < n)
6489 				continue;
6490 
6491 			/* Is there an intermediary node between a and b? */
6492 			for_each_online_node(c) {
6493 				if (node_distance(a, c) < n &&
6494 				    node_distance(b, c) < n) {
6495 					sched_numa_topology_type =
6496 							NUMA_GLUELESS_MESH;
6497 					return;
6498 				}
6499 			}
6500 
6501 			sched_numa_topology_type = NUMA_BACKPLANE;
6502 			return;
6503 		}
6504 	}
6505 }
6506 
6507 static void sched_init_numa(void)
6508 {
6509 	int next_distance, curr_distance = node_distance(0, 0);
6510 	struct sched_domain_topology_level *tl;
6511 	int level = 0;
6512 	int i, j, k;
6513 
6514 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6515 	if (!sched_domains_numa_distance)
6516 		return;
6517 
6518 	/*
6519 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6520 	 * unique distances in the node_distance() table.
6521 	 *
6522 	 * Assumes node_distance(0,j) includes all distances in
6523 	 * node_distance(i,j) in order to avoid cubic time.
6524 	 */
6525 	next_distance = curr_distance;
6526 	for (i = 0; i < nr_node_ids; i++) {
6527 		for (j = 0; j < nr_node_ids; j++) {
6528 			for (k = 0; k < nr_node_ids; k++) {
6529 				int distance = node_distance(i, k);
6530 
6531 				if (distance > curr_distance &&
6532 				    (distance < next_distance ||
6533 				     next_distance == curr_distance))
6534 					next_distance = distance;
6535 
6536 				/*
6537 				 * While not a strong assumption it would be nice to know
6538 				 * about cases where if node A is connected to B, B is not
6539 				 * equally connected to A.
6540 				 */
6541 				if (sched_debug() && node_distance(k, i) != distance)
6542 					sched_numa_warn("Node-distance not symmetric");
6543 
6544 				if (sched_debug() && i && !find_numa_distance(distance))
6545 					sched_numa_warn("Node-0 not representative");
6546 			}
6547 			if (next_distance != curr_distance) {
6548 				sched_domains_numa_distance[level++] = next_distance;
6549 				sched_domains_numa_levels = level;
6550 				curr_distance = next_distance;
6551 			} else break;
6552 		}
6553 
6554 		/*
6555 		 * In case of sched_debug() we verify the above assumption.
6556 		 */
6557 		if (!sched_debug())
6558 			break;
6559 	}
6560 
6561 	if (!level)
6562 		return;
6563 
6564 	/*
6565 	 * 'level' contains the number of unique distances, excluding the
6566 	 * identity distance node_distance(i,i).
6567 	 *
6568 	 * The sched_domains_numa_distance[] array includes the actual distance
6569 	 * numbers.
6570 	 */
6571 
6572 	/*
6573 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6574 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6575 	 * the array will contain less then 'level' members. This could be
6576 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6577 	 * in other functions.
6578 	 *
6579 	 * We reset it to 'level' at the end of this function.
6580 	 */
6581 	sched_domains_numa_levels = 0;
6582 
6583 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6584 	if (!sched_domains_numa_masks)
6585 		return;
6586 
6587 	/*
6588 	 * Now for each level, construct a mask per node which contains all
6589 	 * cpus of nodes that are that many hops away from us.
6590 	 */
6591 	for (i = 0; i < level; i++) {
6592 		sched_domains_numa_masks[i] =
6593 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6594 		if (!sched_domains_numa_masks[i])
6595 			return;
6596 
6597 		for (j = 0; j < nr_node_ids; j++) {
6598 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6599 			if (!mask)
6600 				return;
6601 
6602 			sched_domains_numa_masks[i][j] = mask;
6603 
6604 			for_each_node(k) {
6605 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6606 					continue;
6607 
6608 				cpumask_or(mask, mask, cpumask_of_node(k));
6609 			}
6610 		}
6611 	}
6612 
6613 	/* Compute default topology size */
6614 	for (i = 0; sched_domain_topology[i].mask; i++);
6615 
6616 	tl = kzalloc((i + level + 1) *
6617 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6618 	if (!tl)
6619 		return;
6620 
6621 	/*
6622 	 * Copy the default topology bits..
6623 	 */
6624 	for (i = 0; sched_domain_topology[i].mask; i++)
6625 		tl[i] = sched_domain_topology[i];
6626 
6627 	/*
6628 	 * .. and append 'j' levels of NUMA goodness.
6629 	 */
6630 	for (j = 0; j < level; i++, j++) {
6631 		tl[i] = (struct sched_domain_topology_level){
6632 			.mask = sd_numa_mask,
6633 			.sd_flags = cpu_numa_flags,
6634 			.flags = SDTL_OVERLAP,
6635 			.numa_level = j,
6636 			SD_INIT_NAME(NUMA)
6637 		};
6638 	}
6639 
6640 	sched_domain_topology = tl;
6641 
6642 	sched_domains_numa_levels = level;
6643 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6644 
6645 	init_numa_topology_type();
6646 }
6647 
6648 static void sched_domains_numa_masks_set(int cpu)
6649 {
6650 	int i, j;
6651 	int node = cpu_to_node(cpu);
6652 
6653 	for (i = 0; i < sched_domains_numa_levels; i++) {
6654 		for (j = 0; j < nr_node_ids; j++) {
6655 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6656 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6657 		}
6658 	}
6659 }
6660 
6661 static void sched_domains_numa_masks_clear(int cpu)
6662 {
6663 	int i, j;
6664 	for (i = 0; i < sched_domains_numa_levels; i++) {
6665 		for (j = 0; j < nr_node_ids; j++)
6666 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6667 	}
6668 }
6669 
6670 /*
6671  * Update sched_domains_numa_masks[level][node] array when new cpus
6672  * are onlined.
6673  */
6674 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6675 					   unsigned long action,
6676 					   void *hcpu)
6677 {
6678 	int cpu = (long)hcpu;
6679 
6680 	switch (action & ~CPU_TASKS_FROZEN) {
6681 	case CPU_ONLINE:
6682 		sched_domains_numa_masks_set(cpu);
6683 		break;
6684 
6685 	case CPU_DEAD:
6686 		sched_domains_numa_masks_clear(cpu);
6687 		break;
6688 
6689 	default:
6690 		return NOTIFY_DONE;
6691 	}
6692 
6693 	return NOTIFY_OK;
6694 }
6695 #else
6696 static inline void sched_init_numa(void)
6697 {
6698 }
6699 
6700 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6701 					   unsigned long action,
6702 					   void *hcpu)
6703 {
6704 	return 0;
6705 }
6706 #endif /* CONFIG_NUMA */
6707 
6708 static int __sdt_alloc(const struct cpumask *cpu_map)
6709 {
6710 	struct sched_domain_topology_level *tl;
6711 	int j;
6712 
6713 	for_each_sd_topology(tl) {
6714 		struct sd_data *sdd = &tl->data;
6715 
6716 		sdd->sd = alloc_percpu(struct sched_domain *);
6717 		if (!sdd->sd)
6718 			return -ENOMEM;
6719 
6720 		sdd->sg = alloc_percpu(struct sched_group *);
6721 		if (!sdd->sg)
6722 			return -ENOMEM;
6723 
6724 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6725 		if (!sdd->sgc)
6726 			return -ENOMEM;
6727 
6728 		for_each_cpu(j, cpu_map) {
6729 			struct sched_domain *sd;
6730 			struct sched_group *sg;
6731 			struct sched_group_capacity *sgc;
6732 
6733 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6734 					GFP_KERNEL, cpu_to_node(j));
6735 			if (!sd)
6736 				return -ENOMEM;
6737 
6738 			*per_cpu_ptr(sdd->sd, j) = sd;
6739 
6740 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6741 					GFP_KERNEL, cpu_to_node(j));
6742 			if (!sg)
6743 				return -ENOMEM;
6744 
6745 			sg->next = sg;
6746 
6747 			*per_cpu_ptr(sdd->sg, j) = sg;
6748 
6749 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6750 					GFP_KERNEL, cpu_to_node(j));
6751 			if (!sgc)
6752 				return -ENOMEM;
6753 
6754 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6755 		}
6756 	}
6757 
6758 	return 0;
6759 }
6760 
6761 static void __sdt_free(const struct cpumask *cpu_map)
6762 {
6763 	struct sched_domain_topology_level *tl;
6764 	int j;
6765 
6766 	for_each_sd_topology(tl) {
6767 		struct sd_data *sdd = &tl->data;
6768 
6769 		for_each_cpu(j, cpu_map) {
6770 			struct sched_domain *sd;
6771 
6772 			if (sdd->sd) {
6773 				sd = *per_cpu_ptr(sdd->sd, j);
6774 				if (sd && (sd->flags & SD_OVERLAP))
6775 					free_sched_groups(sd->groups, 0);
6776 				kfree(*per_cpu_ptr(sdd->sd, j));
6777 			}
6778 
6779 			if (sdd->sg)
6780 				kfree(*per_cpu_ptr(sdd->sg, j));
6781 			if (sdd->sgc)
6782 				kfree(*per_cpu_ptr(sdd->sgc, j));
6783 		}
6784 		free_percpu(sdd->sd);
6785 		sdd->sd = NULL;
6786 		free_percpu(sdd->sg);
6787 		sdd->sg = NULL;
6788 		free_percpu(sdd->sgc);
6789 		sdd->sgc = NULL;
6790 	}
6791 }
6792 
6793 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6794 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6795 		struct sched_domain *child, int cpu)
6796 {
6797 	struct sched_domain *sd = sd_init(tl, cpu);
6798 	if (!sd)
6799 		return child;
6800 
6801 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6802 	if (child) {
6803 		sd->level = child->level + 1;
6804 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6805 		child->parent = sd;
6806 		sd->child = child;
6807 
6808 		if (!cpumask_subset(sched_domain_span(child),
6809 				    sched_domain_span(sd))) {
6810 			pr_err("BUG: arch topology borken\n");
6811 #ifdef CONFIG_SCHED_DEBUG
6812 			pr_err("     the %s domain not a subset of the %s domain\n",
6813 					child->name, sd->name);
6814 #endif
6815 			/* Fixup, ensure @sd has at least @child cpus. */
6816 			cpumask_or(sched_domain_span(sd),
6817 				   sched_domain_span(sd),
6818 				   sched_domain_span(child));
6819 		}
6820 
6821 	}
6822 	set_domain_attribute(sd, attr);
6823 
6824 	return sd;
6825 }
6826 
6827 /*
6828  * Build sched domains for a given set of cpus and attach the sched domains
6829  * to the individual cpus
6830  */
6831 static int build_sched_domains(const struct cpumask *cpu_map,
6832 			       struct sched_domain_attr *attr)
6833 {
6834 	enum s_alloc alloc_state;
6835 	struct sched_domain *sd;
6836 	struct s_data d;
6837 	int i, ret = -ENOMEM;
6838 
6839 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6840 	if (alloc_state != sa_rootdomain)
6841 		goto error;
6842 
6843 	/* Set up domains for cpus specified by the cpu_map. */
6844 	for_each_cpu(i, cpu_map) {
6845 		struct sched_domain_topology_level *tl;
6846 
6847 		sd = NULL;
6848 		for_each_sd_topology(tl) {
6849 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6850 			if (tl == sched_domain_topology)
6851 				*per_cpu_ptr(d.sd, i) = sd;
6852 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6853 				sd->flags |= SD_OVERLAP;
6854 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6855 				break;
6856 		}
6857 	}
6858 
6859 	/* Build the groups for the domains */
6860 	for_each_cpu(i, cpu_map) {
6861 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6862 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6863 			if (sd->flags & SD_OVERLAP) {
6864 				if (build_overlap_sched_groups(sd, i))
6865 					goto error;
6866 			} else {
6867 				if (build_sched_groups(sd, i))
6868 					goto error;
6869 			}
6870 		}
6871 	}
6872 
6873 	/* Calculate CPU capacity for physical packages and nodes */
6874 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6875 		if (!cpumask_test_cpu(i, cpu_map))
6876 			continue;
6877 
6878 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6879 			claim_allocations(i, sd);
6880 			init_sched_groups_capacity(i, sd);
6881 		}
6882 	}
6883 
6884 	/* Attach the domains */
6885 	rcu_read_lock();
6886 	for_each_cpu(i, cpu_map) {
6887 		sd = *per_cpu_ptr(d.sd, i);
6888 		cpu_attach_domain(sd, d.rd, i);
6889 	}
6890 	rcu_read_unlock();
6891 
6892 	ret = 0;
6893 error:
6894 	__free_domain_allocs(&d, alloc_state, cpu_map);
6895 	return ret;
6896 }
6897 
6898 static cpumask_var_t *doms_cur;	/* current sched domains */
6899 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6900 static struct sched_domain_attr *dattr_cur;
6901 				/* attribues of custom domains in 'doms_cur' */
6902 
6903 /*
6904  * Special case: If a kmalloc of a doms_cur partition (array of
6905  * cpumask) fails, then fallback to a single sched domain,
6906  * as determined by the single cpumask fallback_doms.
6907  */
6908 static cpumask_var_t fallback_doms;
6909 
6910 /*
6911  * arch_update_cpu_topology lets virtualized architectures update the
6912  * cpu core maps. It is supposed to return 1 if the topology changed
6913  * or 0 if it stayed the same.
6914  */
6915 int __weak arch_update_cpu_topology(void)
6916 {
6917 	return 0;
6918 }
6919 
6920 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6921 {
6922 	int i;
6923 	cpumask_var_t *doms;
6924 
6925 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6926 	if (!doms)
6927 		return NULL;
6928 	for (i = 0; i < ndoms; i++) {
6929 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6930 			free_sched_domains(doms, i);
6931 			return NULL;
6932 		}
6933 	}
6934 	return doms;
6935 }
6936 
6937 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6938 {
6939 	unsigned int i;
6940 	for (i = 0; i < ndoms; i++)
6941 		free_cpumask_var(doms[i]);
6942 	kfree(doms);
6943 }
6944 
6945 /*
6946  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6947  * For now this just excludes isolated cpus, but could be used to
6948  * exclude other special cases in the future.
6949  */
6950 static int init_sched_domains(const struct cpumask *cpu_map)
6951 {
6952 	int err;
6953 
6954 	arch_update_cpu_topology();
6955 	ndoms_cur = 1;
6956 	doms_cur = alloc_sched_domains(ndoms_cur);
6957 	if (!doms_cur)
6958 		doms_cur = &fallback_doms;
6959 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6960 	err = build_sched_domains(doms_cur[0], NULL);
6961 	register_sched_domain_sysctl();
6962 
6963 	return err;
6964 }
6965 
6966 /*
6967  * Detach sched domains from a group of cpus specified in cpu_map
6968  * These cpus will now be attached to the NULL domain
6969  */
6970 static void detach_destroy_domains(const struct cpumask *cpu_map)
6971 {
6972 	int i;
6973 
6974 	rcu_read_lock();
6975 	for_each_cpu(i, cpu_map)
6976 		cpu_attach_domain(NULL, &def_root_domain, i);
6977 	rcu_read_unlock();
6978 }
6979 
6980 /* handle null as "default" */
6981 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6982 			struct sched_domain_attr *new, int idx_new)
6983 {
6984 	struct sched_domain_attr tmp;
6985 
6986 	/* fast path */
6987 	if (!new && !cur)
6988 		return 1;
6989 
6990 	tmp = SD_ATTR_INIT;
6991 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6992 			new ? (new + idx_new) : &tmp,
6993 			sizeof(struct sched_domain_attr));
6994 }
6995 
6996 /*
6997  * Partition sched domains as specified by the 'ndoms_new'
6998  * cpumasks in the array doms_new[] of cpumasks. This compares
6999  * doms_new[] to the current sched domain partitioning, doms_cur[].
7000  * It destroys each deleted domain and builds each new domain.
7001  *
7002  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7003  * The masks don't intersect (don't overlap.) We should setup one
7004  * sched domain for each mask. CPUs not in any of the cpumasks will
7005  * not be load balanced. If the same cpumask appears both in the
7006  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7007  * it as it is.
7008  *
7009  * The passed in 'doms_new' should be allocated using
7010  * alloc_sched_domains.  This routine takes ownership of it and will
7011  * free_sched_domains it when done with it. If the caller failed the
7012  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7013  * and partition_sched_domains() will fallback to the single partition
7014  * 'fallback_doms', it also forces the domains to be rebuilt.
7015  *
7016  * If doms_new == NULL it will be replaced with cpu_online_mask.
7017  * ndoms_new == 0 is a special case for destroying existing domains,
7018  * and it will not create the default domain.
7019  *
7020  * Call with hotplug lock held
7021  */
7022 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7023 			     struct sched_domain_attr *dattr_new)
7024 {
7025 	int i, j, n;
7026 	int new_topology;
7027 
7028 	mutex_lock(&sched_domains_mutex);
7029 
7030 	/* always unregister in case we don't destroy any domains */
7031 	unregister_sched_domain_sysctl();
7032 
7033 	/* Let architecture update cpu core mappings. */
7034 	new_topology = arch_update_cpu_topology();
7035 
7036 	n = doms_new ? ndoms_new : 0;
7037 
7038 	/* Destroy deleted domains */
7039 	for (i = 0; i < ndoms_cur; i++) {
7040 		for (j = 0; j < n && !new_topology; j++) {
7041 			if (cpumask_equal(doms_cur[i], doms_new[j])
7042 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7043 				goto match1;
7044 		}
7045 		/* no match - a current sched domain not in new doms_new[] */
7046 		detach_destroy_domains(doms_cur[i]);
7047 match1:
7048 		;
7049 	}
7050 
7051 	n = ndoms_cur;
7052 	if (doms_new == NULL) {
7053 		n = 0;
7054 		doms_new = &fallback_doms;
7055 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7056 		WARN_ON_ONCE(dattr_new);
7057 	}
7058 
7059 	/* Build new domains */
7060 	for (i = 0; i < ndoms_new; i++) {
7061 		for (j = 0; j < n && !new_topology; j++) {
7062 			if (cpumask_equal(doms_new[i], doms_cur[j])
7063 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7064 				goto match2;
7065 		}
7066 		/* no match - add a new doms_new */
7067 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7068 match2:
7069 		;
7070 	}
7071 
7072 	/* Remember the new sched domains */
7073 	if (doms_cur != &fallback_doms)
7074 		free_sched_domains(doms_cur, ndoms_cur);
7075 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7076 	doms_cur = doms_new;
7077 	dattr_cur = dattr_new;
7078 	ndoms_cur = ndoms_new;
7079 
7080 	register_sched_domain_sysctl();
7081 
7082 	mutex_unlock(&sched_domains_mutex);
7083 }
7084 
7085 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7086 
7087 /*
7088  * Update cpusets according to cpu_active mask.  If cpusets are
7089  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7090  * around partition_sched_domains().
7091  *
7092  * If we come here as part of a suspend/resume, don't touch cpusets because we
7093  * want to restore it back to its original state upon resume anyway.
7094  */
7095 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7096 			     void *hcpu)
7097 {
7098 	switch (action) {
7099 	case CPU_ONLINE_FROZEN:
7100 	case CPU_DOWN_FAILED_FROZEN:
7101 
7102 		/*
7103 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7104 		 * resume sequence. As long as this is not the last online
7105 		 * operation in the resume sequence, just build a single sched
7106 		 * domain, ignoring cpusets.
7107 		 */
7108 		num_cpus_frozen--;
7109 		if (likely(num_cpus_frozen)) {
7110 			partition_sched_domains(1, NULL, NULL);
7111 			break;
7112 		}
7113 
7114 		/*
7115 		 * This is the last CPU online operation. So fall through and
7116 		 * restore the original sched domains by considering the
7117 		 * cpuset configurations.
7118 		 */
7119 
7120 	case CPU_ONLINE:
7121 		cpuset_update_active_cpus(true);
7122 		break;
7123 	default:
7124 		return NOTIFY_DONE;
7125 	}
7126 	return NOTIFY_OK;
7127 }
7128 
7129 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7130 			       void *hcpu)
7131 {
7132 	unsigned long flags;
7133 	long cpu = (long)hcpu;
7134 	struct dl_bw *dl_b;
7135 	bool overflow;
7136 	int cpus;
7137 
7138 	switch (action) {
7139 	case CPU_DOWN_PREPARE:
7140 		rcu_read_lock_sched();
7141 		dl_b = dl_bw_of(cpu);
7142 
7143 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7144 		cpus = dl_bw_cpus(cpu);
7145 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7146 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7147 
7148 		rcu_read_unlock_sched();
7149 
7150 		if (overflow)
7151 			return notifier_from_errno(-EBUSY);
7152 		cpuset_update_active_cpus(false);
7153 		break;
7154 	case CPU_DOWN_PREPARE_FROZEN:
7155 		num_cpus_frozen++;
7156 		partition_sched_domains(1, NULL, NULL);
7157 		break;
7158 	default:
7159 		return NOTIFY_DONE;
7160 	}
7161 	return NOTIFY_OK;
7162 }
7163 
7164 void __init sched_init_smp(void)
7165 {
7166 	cpumask_var_t non_isolated_cpus;
7167 
7168 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7169 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7170 
7171 	sched_init_numa();
7172 
7173 	/*
7174 	 * There's no userspace yet to cause hotplug operations; hence all the
7175 	 * cpu masks are stable and all blatant races in the below code cannot
7176 	 * happen.
7177 	 */
7178 	mutex_lock(&sched_domains_mutex);
7179 	init_sched_domains(cpu_active_mask);
7180 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7181 	if (cpumask_empty(non_isolated_cpus))
7182 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7183 	mutex_unlock(&sched_domains_mutex);
7184 
7185 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7186 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7187 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7188 
7189 	init_hrtick();
7190 
7191 	/* Move init over to a non-isolated CPU */
7192 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7193 		BUG();
7194 	sched_init_granularity();
7195 	free_cpumask_var(non_isolated_cpus);
7196 
7197 	init_sched_rt_class();
7198 	init_sched_dl_class();
7199 }
7200 #else
7201 void __init sched_init_smp(void)
7202 {
7203 	sched_init_granularity();
7204 }
7205 #endif /* CONFIG_SMP */
7206 
7207 int in_sched_functions(unsigned long addr)
7208 {
7209 	return in_lock_functions(addr) ||
7210 		(addr >= (unsigned long)__sched_text_start
7211 		&& addr < (unsigned long)__sched_text_end);
7212 }
7213 
7214 #ifdef CONFIG_CGROUP_SCHED
7215 /*
7216  * Default task group.
7217  * Every task in system belongs to this group at bootup.
7218  */
7219 struct task_group root_task_group;
7220 LIST_HEAD(task_groups);
7221 
7222 /* Cacheline aligned slab cache for task_group */
7223 static struct kmem_cache *task_group_cache __read_mostly;
7224 #endif
7225 
7226 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7227 
7228 void __init sched_init(void)
7229 {
7230 	int i, j;
7231 	unsigned long alloc_size = 0, ptr;
7232 
7233 #ifdef CONFIG_FAIR_GROUP_SCHED
7234 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7235 #endif
7236 #ifdef CONFIG_RT_GROUP_SCHED
7237 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7238 #endif
7239 	if (alloc_size) {
7240 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7241 
7242 #ifdef CONFIG_FAIR_GROUP_SCHED
7243 		root_task_group.se = (struct sched_entity **)ptr;
7244 		ptr += nr_cpu_ids * sizeof(void **);
7245 
7246 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7247 		ptr += nr_cpu_ids * sizeof(void **);
7248 
7249 #endif /* CONFIG_FAIR_GROUP_SCHED */
7250 #ifdef CONFIG_RT_GROUP_SCHED
7251 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7252 		ptr += nr_cpu_ids * sizeof(void **);
7253 
7254 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7255 		ptr += nr_cpu_ids * sizeof(void **);
7256 
7257 #endif /* CONFIG_RT_GROUP_SCHED */
7258 	}
7259 #ifdef CONFIG_CPUMASK_OFFSTACK
7260 	for_each_possible_cpu(i) {
7261 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7262 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7263 	}
7264 #endif /* CONFIG_CPUMASK_OFFSTACK */
7265 
7266 	init_rt_bandwidth(&def_rt_bandwidth,
7267 			global_rt_period(), global_rt_runtime());
7268 	init_dl_bandwidth(&def_dl_bandwidth,
7269 			global_rt_period(), global_rt_runtime());
7270 
7271 #ifdef CONFIG_SMP
7272 	init_defrootdomain();
7273 #endif
7274 
7275 #ifdef CONFIG_RT_GROUP_SCHED
7276 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7277 			global_rt_period(), global_rt_runtime());
7278 #endif /* CONFIG_RT_GROUP_SCHED */
7279 
7280 #ifdef CONFIG_CGROUP_SCHED
7281 	task_group_cache = KMEM_CACHE(task_group, 0);
7282 
7283 	list_add(&root_task_group.list, &task_groups);
7284 	INIT_LIST_HEAD(&root_task_group.children);
7285 	INIT_LIST_HEAD(&root_task_group.siblings);
7286 	autogroup_init(&init_task);
7287 #endif /* CONFIG_CGROUP_SCHED */
7288 
7289 	for_each_possible_cpu(i) {
7290 		struct rq *rq;
7291 
7292 		rq = cpu_rq(i);
7293 		raw_spin_lock_init(&rq->lock);
7294 		rq->nr_running = 0;
7295 		rq->calc_load_active = 0;
7296 		rq->calc_load_update = jiffies + LOAD_FREQ;
7297 		init_cfs_rq(&rq->cfs);
7298 		init_rt_rq(&rq->rt);
7299 		init_dl_rq(&rq->dl);
7300 #ifdef CONFIG_FAIR_GROUP_SCHED
7301 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7302 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7303 		/*
7304 		 * How much cpu bandwidth does root_task_group get?
7305 		 *
7306 		 * In case of task-groups formed thr' the cgroup filesystem, it
7307 		 * gets 100% of the cpu resources in the system. This overall
7308 		 * system cpu resource is divided among the tasks of
7309 		 * root_task_group and its child task-groups in a fair manner,
7310 		 * based on each entity's (task or task-group's) weight
7311 		 * (se->load.weight).
7312 		 *
7313 		 * In other words, if root_task_group has 10 tasks of weight
7314 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7315 		 * then A0's share of the cpu resource is:
7316 		 *
7317 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7318 		 *
7319 		 * We achieve this by letting root_task_group's tasks sit
7320 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7321 		 */
7322 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7323 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7324 #endif /* CONFIG_FAIR_GROUP_SCHED */
7325 
7326 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7327 #ifdef CONFIG_RT_GROUP_SCHED
7328 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7329 #endif
7330 
7331 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7332 			rq->cpu_load[j] = 0;
7333 
7334 		rq->last_load_update_tick = jiffies;
7335 
7336 #ifdef CONFIG_SMP
7337 		rq->sd = NULL;
7338 		rq->rd = NULL;
7339 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7340 		rq->balance_callback = NULL;
7341 		rq->active_balance = 0;
7342 		rq->next_balance = jiffies;
7343 		rq->push_cpu = 0;
7344 		rq->cpu = i;
7345 		rq->online = 0;
7346 		rq->idle_stamp = 0;
7347 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7348 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7349 
7350 		INIT_LIST_HEAD(&rq->cfs_tasks);
7351 
7352 		rq_attach_root(rq, &def_root_domain);
7353 #ifdef CONFIG_NO_HZ_COMMON
7354 		rq->nohz_flags = 0;
7355 #endif
7356 #ifdef CONFIG_NO_HZ_FULL
7357 		rq->last_sched_tick = 0;
7358 #endif
7359 #endif
7360 		init_rq_hrtick(rq);
7361 		atomic_set(&rq->nr_iowait, 0);
7362 	}
7363 
7364 	set_load_weight(&init_task);
7365 
7366 #ifdef CONFIG_PREEMPT_NOTIFIERS
7367 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7368 #endif
7369 
7370 	/*
7371 	 * The boot idle thread does lazy MMU switching as well:
7372 	 */
7373 	atomic_inc(&init_mm.mm_count);
7374 	enter_lazy_tlb(&init_mm, current);
7375 
7376 	/*
7377 	 * During early bootup we pretend to be a normal task:
7378 	 */
7379 	current->sched_class = &fair_sched_class;
7380 
7381 	/*
7382 	 * Make us the idle thread. Technically, schedule() should not be
7383 	 * called from this thread, however somewhere below it might be,
7384 	 * but because we are the idle thread, we just pick up running again
7385 	 * when this runqueue becomes "idle".
7386 	 */
7387 	init_idle(current, smp_processor_id());
7388 
7389 	calc_load_update = jiffies + LOAD_FREQ;
7390 
7391 #ifdef CONFIG_SMP
7392 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7393 	/* May be allocated at isolcpus cmdline parse time */
7394 	if (cpu_isolated_map == NULL)
7395 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7396 	idle_thread_set_boot_cpu();
7397 	set_cpu_rq_start_time();
7398 #endif
7399 	init_sched_fair_class();
7400 
7401 	scheduler_running = 1;
7402 }
7403 
7404 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7405 static inline int preempt_count_equals(int preempt_offset)
7406 {
7407 	int nested = preempt_count() + rcu_preempt_depth();
7408 
7409 	return (nested == preempt_offset);
7410 }
7411 
7412 void __might_sleep(const char *file, int line, int preempt_offset)
7413 {
7414 	/*
7415 	 * Blocking primitives will set (and therefore destroy) current->state,
7416 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7417 	 * otherwise we will destroy state.
7418 	 */
7419 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7420 			"do not call blocking ops when !TASK_RUNNING; "
7421 			"state=%lx set at [<%p>] %pS\n",
7422 			current->state,
7423 			(void *)current->task_state_change,
7424 			(void *)current->task_state_change);
7425 
7426 	___might_sleep(file, line, preempt_offset);
7427 }
7428 EXPORT_SYMBOL(__might_sleep);
7429 
7430 void ___might_sleep(const char *file, int line, int preempt_offset)
7431 {
7432 	static unsigned long prev_jiffy;	/* ratelimiting */
7433 
7434 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7435 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7436 	     !is_idle_task(current)) ||
7437 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7438 		return;
7439 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7440 		return;
7441 	prev_jiffy = jiffies;
7442 
7443 	printk(KERN_ERR
7444 		"BUG: sleeping function called from invalid context at %s:%d\n",
7445 			file, line);
7446 	printk(KERN_ERR
7447 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7448 			in_atomic(), irqs_disabled(),
7449 			current->pid, current->comm);
7450 
7451 	if (task_stack_end_corrupted(current))
7452 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7453 
7454 	debug_show_held_locks(current);
7455 	if (irqs_disabled())
7456 		print_irqtrace_events(current);
7457 #ifdef CONFIG_DEBUG_PREEMPT
7458 	if (!preempt_count_equals(preempt_offset)) {
7459 		pr_err("Preemption disabled at:");
7460 		print_ip_sym(current->preempt_disable_ip);
7461 		pr_cont("\n");
7462 	}
7463 #endif
7464 	dump_stack();
7465 }
7466 EXPORT_SYMBOL(___might_sleep);
7467 #endif
7468 
7469 #ifdef CONFIG_MAGIC_SYSRQ
7470 void normalize_rt_tasks(void)
7471 {
7472 	struct task_struct *g, *p;
7473 	struct sched_attr attr = {
7474 		.sched_policy = SCHED_NORMAL,
7475 	};
7476 
7477 	read_lock(&tasklist_lock);
7478 	for_each_process_thread(g, p) {
7479 		/*
7480 		 * Only normalize user tasks:
7481 		 */
7482 		if (p->flags & PF_KTHREAD)
7483 			continue;
7484 
7485 		p->se.exec_start		= 0;
7486 #ifdef CONFIG_SCHEDSTATS
7487 		p->se.statistics.wait_start	= 0;
7488 		p->se.statistics.sleep_start	= 0;
7489 		p->se.statistics.block_start	= 0;
7490 #endif
7491 
7492 		if (!dl_task(p) && !rt_task(p)) {
7493 			/*
7494 			 * Renice negative nice level userspace
7495 			 * tasks back to 0:
7496 			 */
7497 			if (task_nice(p) < 0)
7498 				set_user_nice(p, 0);
7499 			continue;
7500 		}
7501 
7502 		__sched_setscheduler(p, &attr, false, false);
7503 	}
7504 	read_unlock(&tasklist_lock);
7505 }
7506 
7507 #endif /* CONFIG_MAGIC_SYSRQ */
7508 
7509 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7510 /*
7511  * These functions are only useful for the IA64 MCA handling, or kdb.
7512  *
7513  * They can only be called when the whole system has been
7514  * stopped - every CPU needs to be quiescent, and no scheduling
7515  * activity can take place. Using them for anything else would
7516  * be a serious bug, and as a result, they aren't even visible
7517  * under any other configuration.
7518  */
7519 
7520 /**
7521  * curr_task - return the current task for a given cpu.
7522  * @cpu: the processor in question.
7523  *
7524  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7525  *
7526  * Return: The current task for @cpu.
7527  */
7528 struct task_struct *curr_task(int cpu)
7529 {
7530 	return cpu_curr(cpu);
7531 }
7532 
7533 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7534 
7535 #ifdef CONFIG_IA64
7536 /**
7537  * set_curr_task - set the current task for a given cpu.
7538  * @cpu: the processor in question.
7539  * @p: the task pointer to set.
7540  *
7541  * Description: This function must only be used when non-maskable interrupts
7542  * are serviced on a separate stack. It allows the architecture to switch the
7543  * notion of the current task on a cpu in a non-blocking manner. This function
7544  * must be called with all CPU's synchronized, and interrupts disabled, the
7545  * and caller must save the original value of the current task (see
7546  * curr_task() above) and restore that value before reenabling interrupts and
7547  * re-starting the system.
7548  *
7549  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7550  */
7551 void set_curr_task(int cpu, struct task_struct *p)
7552 {
7553 	cpu_curr(cpu) = p;
7554 }
7555 
7556 #endif
7557 
7558 #ifdef CONFIG_CGROUP_SCHED
7559 /* task_group_lock serializes the addition/removal of task groups */
7560 static DEFINE_SPINLOCK(task_group_lock);
7561 
7562 static void sched_free_group(struct task_group *tg)
7563 {
7564 	free_fair_sched_group(tg);
7565 	free_rt_sched_group(tg);
7566 	autogroup_free(tg);
7567 	kmem_cache_free(task_group_cache, tg);
7568 }
7569 
7570 /* allocate runqueue etc for a new task group */
7571 struct task_group *sched_create_group(struct task_group *parent)
7572 {
7573 	struct task_group *tg;
7574 
7575 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7576 	if (!tg)
7577 		return ERR_PTR(-ENOMEM);
7578 
7579 	if (!alloc_fair_sched_group(tg, parent))
7580 		goto err;
7581 
7582 	if (!alloc_rt_sched_group(tg, parent))
7583 		goto err;
7584 
7585 	return tg;
7586 
7587 err:
7588 	sched_free_group(tg);
7589 	return ERR_PTR(-ENOMEM);
7590 }
7591 
7592 void sched_online_group(struct task_group *tg, struct task_group *parent)
7593 {
7594 	unsigned long flags;
7595 
7596 	spin_lock_irqsave(&task_group_lock, flags);
7597 	list_add_rcu(&tg->list, &task_groups);
7598 
7599 	WARN_ON(!parent); /* root should already exist */
7600 
7601 	tg->parent = parent;
7602 	INIT_LIST_HEAD(&tg->children);
7603 	list_add_rcu(&tg->siblings, &parent->children);
7604 	spin_unlock_irqrestore(&task_group_lock, flags);
7605 }
7606 
7607 /* rcu callback to free various structures associated with a task group */
7608 static void sched_free_group_rcu(struct rcu_head *rhp)
7609 {
7610 	/* now it should be safe to free those cfs_rqs */
7611 	sched_free_group(container_of(rhp, struct task_group, rcu));
7612 }
7613 
7614 void sched_destroy_group(struct task_group *tg)
7615 {
7616 	/* wait for possible concurrent references to cfs_rqs complete */
7617 	call_rcu(&tg->rcu, sched_free_group_rcu);
7618 }
7619 
7620 void sched_offline_group(struct task_group *tg)
7621 {
7622 	unsigned long flags;
7623 
7624 	/* end participation in shares distribution */
7625 	unregister_fair_sched_group(tg);
7626 
7627 	spin_lock_irqsave(&task_group_lock, flags);
7628 	list_del_rcu(&tg->list);
7629 	list_del_rcu(&tg->siblings);
7630 	spin_unlock_irqrestore(&task_group_lock, flags);
7631 }
7632 
7633 /* change task's runqueue when it moves between groups.
7634  *	The caller of this function should have put the task in its new group
7635  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7636  *	reflect its new group.
7637  */
7638 void sched_move_task(struct task_struct *tsk)
7639 {
7640 	struct task_group *tg;
7641 	int queued, running;
7642 	unsigned long flags;
7643 	struct rq *rq;
7644 
7645 	rq = task_rq_lock(tsk, &flags);
7646 
7647 	running = task_current(rq, tsk);
7648 	queued = task_on_rq_queued(tsk);
7649 
7650 	if (queued)
7651 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7652 	if (unlikely(running))
7653 		put_prev_task(rq, tsk);
7654 
7655 	/*
7656 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7657 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7658 	 * to prevent lockdep warnings.
7659 	 */
7660 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7661 			  struct task_group, css);
7662 	tg = autogroup_task_group(tsk, tg);
7663 	tsk->sched_task_group = tg;
7664 
7665 #ifdef CONFIG_FAIR_GROUP_SCHED
7666 	if (tsk->sched_class->task_move_group)
7667 		tsk->sched_class->task_move_group(tsk);
7668 	else
7669 #endif
7670 		set_task_rq(tsk, task_cpu(tsk));
7671 
7672 	if (unlikely(running))
7673 		tsk->sched_class->set_curr_task(rq);
7674 	if (queued)
7675 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7676 
7677 	task_rq_unlock(rq, tsk, &flags);
7678 }
7679 #endif /* CONFIG_CGROUP_SCHED */
7680 
7681 #ifdef CONFIG_RT_GROUP_SCHED
7682 /*
7683  * Ensure that the real time constraints are schedulable.
7684  */
7685 static DEFINE_MUTEX(rt_constraints_mutex);
7686 
7687 /* Must be called with tasklist_lock held */
7688 static inline int tg_has_rt_tasks(struct task_group *tg)
7689 {
7690 	struct task_struct *g, *p;
7691 
7692 	/*
7693 	 * Autogroups do not have RT tasks; see autogroup_create().
7694 	 */
7695 	if (task_group_is_autogroup(tg))
7696 		return 0;
7697 
7698 	for_each_process_thread(g, p) {
7699 		if (rt_task(p) && task_group(p) == tg)
7700 			return 1;
7701 	}
7702 
7703 	return 0;
7704 }
7705 
7706 struct rt_schedulable_data {
7707 	struct task_group *tg;
7708 	u64 rt_period;
7709 	u64 rt_runtime;
7710 };
7711 
7712 static int tg_rt_schedulable(struct task_group *tg, void *data)
7713 {
7714 	struct rt_schedulable_data *d = data;
7715 	struct task_group *child;
7716 	unsigned long total, sum = 0;
7717 	u64 period, runtime;
7718 
7719 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7720 	runtime = tg->rt_bandwidth.rt_runtime;
7721 
7722 	if (tg == d->tg) {
7723 		period = d->rt_period;
7724 		runtime = d->rt_runtime;
7725 	}
7726 
7727 	/*
7728 	 * Cannot have more runtime than the period.
7729 	 */
7730 	if (runtime > period && runtime != RUNTIME_INF)
7731 		return -EINVAL;
7732 
7733 	/*
7734 	 * Ensure we don't starve existing RT tasks.
7735 	 */
7736 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7737 		return -EBUSY;
7738 
7739 	total = to_ratio(period, runtime);
7740 
7741 	/*
7742 	 * Nobody can have more than the global setting allows.
7743 	 */
7744 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7745 		return -EINVAL;
7746 
7747 	/*
7748 	 * The sum of our children's runtime should not exceed our own.
7749 	 */
7750 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7751 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7752 		runtime = child->rt_bandwidth.rt_runtime;
7753 
7754 		if (child == d->tg) {
7755 			period = d->rt_period;
7756 			runtime = d->rt_runtime;
7757 		}
7758 
7759 		sum += to_ratio(period, runtime);
7760 	}
7761 
7762 	if (sum > total)
7763 		return -EINVAL;
7764 
7765 	return 0;
7766 }
7767 
7768 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7769 {
7770 	int ret;
7771 
7772 	struct rt_schedulable_data data = {
7773 		.tg = tg,
7774 		.rt_period = period,
7775 		.rt_runtime = runtime,
7776 	};
7777 
7778 	rcu_read_lock();
7779 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7780 	rcu_read_unlock();
7781 
7782 	return ret;
7783 }
7784 
7785 static int tg_set_rt_bandwidth(struct task_group *tg,
7786 		u64 rt_period, u64 rt_runtime)
7787 {
7788 	int i, err = 0;
7789 
7790 	/*
7791 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7792 	 * kernel creating (and or operating) RT threads.
7793 	 */
7794 	if (tg == &root_task_group && rt_runtime == 0)
7795 		return -EINVAL;
7796 
7797 	/* No period doesn't make any sense. */
7798 	if (rt_period == 0)
7799 		return -EINVAL;
7800 
7801 	mutex_lock(&rt_constraints_mutex);
7802 	read_lock(&tasklist_lock);
7803 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7804 	if (err)
7805 		goto unlock;
7806 
7807 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7808 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7809 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7810 
7811 	for_each_possible_cpu(i) {
7812 		struct rt_rq *rt_rq = tg->rt_rq[i];
7813 
7814 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7815 		rt_rq->rt_runtime = rt_runtime;
7816 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7817 	}
7818 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7819 unlock:
7820 	read_unlock(&tasklist_lock);
7821 	mutex_unlock(&rt_constraints_mutex);
7822 
7823 	return err;
7824 }
7825 
7826 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7827 {
7828 	u64 rt_runtime, rt_period;
7829 
7830 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7831 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7832 	if (rt_runtime_us < 0)
7833 		rt_runtime = RUNTIME_INF;
7834 
7835 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7836 }
7837 
7838 static long sched_group_rt_runtime(struct task_group *tg)
7839 {
7840 	u64 rt_runtime_us;
7841 
7842 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7843 		return -1;
7844 
7845 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7846 	do_div(rt_runtime_us, NSEC_PER_USEC);
7847 	return rt_runtime_us;
7848 }
7849 
7850 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7851 {
7852 	u64 rt_runtime, rt_period;
7853 
7854 	rt_period = rt_period_us * NSEC_PER_USEC;
7855 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7856 
7857 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7858 }
7859 
7860 static long sched_group_rt_period(struct task_group *tg)
7861 {
7862 	u64 rt_period_us;
7863 
7864 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7865 	do_div(rt_period_us, NSEC_PER_USEC);
7866 	return rt_period_us;
7867 }
7868 #endif /* CONFIG_RT_GROUP_SCHED */
7869 
7870 #ifdef CONFIG_RT_GROUP_SCHED
7871 static int sched_rt_global_constraints(void)
7872 {
7873 	int ret = 0;
7874 
7875 	mutex_lock(&rt_constraints_mutex);
7876 	read_lock(&tasklist_lock);
7877 	ret = __rt_schedulable(NULL, 0, 0);
7878 	read_unlock(&tasklist_lock);
7879 	mutex_unlock(&rt_constraints_mutex);
7880 
7881 	return ret;
7882 }
7883 
7884 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7885 {
7886 	/* Don't accept realtime tasks when there is no way for them to run */
7887 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7888 		return 0;
7889 
7890 	return 1;
7891 }
7892 
7893 #else /* !CONFIG_RT_GROUP_SCHED */
7894 static int sched_rt_global_constraints(void)
7895 {
7896 	unsigned long flags;
7897 	int i, ret = 0;
7898 
7899 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7900 	for_each_possible_cpu(i) {
7901 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7902 
7903 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7904 		rt_rq->rt_runtime = global_rt_runtime();
7905 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7906 	}
7907 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7908 
7909 	return ret;
7910 }
7911 #endif /* CONFIG_RT_GROUP_SCHED */
7912 
7913 static int sched_dl_global_validate(void)
7914 {
7915 	u64 runtime = global_rt_runtime();
7916 	u64 period = global_rt_period();
7917 	u64 new_bw = to_ratio(period, runtime);
7918 	struct dl_bw *dl_b;
7919 	int cpu, ret = 0;
7920 	unsigned long flags;
7921 
7922 	/*
7923 	 * Here we want to check the bandwidth not being set to some
7924 	 * value smaller than the currently allocated bandwidth in
7925 	 * any of the root_domains.
7926 	 *
7927 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7928 	 * cycling on root_domains... Discussion on different/better
7929 	 * solutions is welcome!
7930 	 */
7931 	for_each_possible_cpu(cpu) {
7932 		rcu_read_lock_sched();
7933 		dl_b = dl_bw_of(cpu);
7934 
7935 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7936 		if (new_bw < dl_b->total_bw)
7937 			ret = -EBUSY;
7938 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7939 
7940 		rcu_read_unlock_sched();
7941 
7942 		if (ret)
7943 			break;
7944 	}
7945 
7946 	return ret;
7947 }
7948 
7949 static void sched_dl_do_global(void)
7950 {
7951 	u64 new_bw = -1;
7952 	struct dl_bw *dl_b;
7953 	int cpu;
7954 	unsigned long flags;
7955 
7956 	def_dl_bandwidth.dl_period = global_rt_period();
7957 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7958 
7959 	if (global_rt_runtime() != RUNTIME_INF)
7960 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7961 
7962 	/*
7963 	 * FIXME: As above...
7964 	 */
7965 	for_each_possible_cpu(cpu) {
7966 		rcu_read_lock_sched();
7967 		dl_b = dl_bw_of(cpu);
7968 
7969 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7970 		dl_b->bw = new_bw;
7971 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7972 
7973 		rcu_read_unlock_sched();
7974 	}
7975 }
7976 
7977 static int sched_rt_global_validate(void)
7978 {
7979 	if (sysctl_sched_rt_period <= 0)
7980 		return -EINVAL;
7981 
7982 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7983 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7984 		return -EINVAL;
7985 
7986 	return 0;
7987 }
7988 
7989 static void sched_rt_do_global(void)
7990 {
7991 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7992 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7993 }
7994 
7995 int sched_rt_handler(struct ctl_table *table, int write,
7996 		void __user *buffer, size_t *lenp,
7997 		loff_t *ppos)
7998 {
7999 	int old_period, old_runtime;
8000 	static DEFINE_MUTEX(mutex);
8001 	int ret;
8002 
8003 	mutex_lock(&mutex);
8004 	old_period = sysctl_sched_rt_period;
8005 	old_runtime = sysctl_sched_rt_runtime;
8006 
8007 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8008 
8009 	if (!ret && write) {
8010 		ret = sched_rt_global_validate();
8011 		if (ret)
8012 			goto undo;
8013 
8014 		ret = sched_dl_global_validate();
8015 		if (ret)
8016 			goto undo;
8017 
8018 		ret = sched_rt_global_constraints();
8019 		if (ret)
8020 			goto undo;
8021 
8022 		sched_rt_do_global();
8023 		sched_dl_do_global();
8024 	}
8025 	if (0) {
8026 undo:
8027 		sysctl_sched_rt_period = old_period;
8028 		sysctl_sched_rt_runtime = old_runtime;
8029 	}
8030 	mutex_unlock(&mutex);
8031 
8032 	return ret;
8033 }
8034 
8035 int sched_rr_handler(struct ctl_table *table, int write,
8036 		void __user *buffer, size_t *lenp,
8037 		loff_t *ppos)
8038 {
8039 	int ret;
8040 	static DEFINE_MUTEX(mutex);
8041 
8042 	mutex_lock(&mutex);
8043 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8044 	/* make sure that internally we keep jiffies */
8045 	/* also, writing zero resets timeslice to default */
8046 	if (!ret && write) {
8047 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8048 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8049 	}
8050 	mutex_unlock(&mutex);
8051 	return ret;
8052 }
8053 
8054 #ifdef CONFIG_CGROUP_SCHED
8055 
8056 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8057 {
8058 	return css ? container_of(css, struct task_group, css) : NULL;
8059 }
8060 
8061 static struct cgroup_subsys_state *
8062 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8063 {
8064 	struct task_group *parent = css_tg(parent_css);
8065 	struct task_group *tg;
8066 
8067 	if (!parent) {
8068 		/* This is early initialization for the top cgroup */
8069 		return &root_task_group.css;
8070 	}
8071 
8072 	tg = sched_create_group(parent);
8073 	if (IS_ERR(tg))
8074 		return ERR_PTR(-ENOMEM);
8075 
8076 	sched_online_group(tg, parent);
8077 
8078 	return &tg->css;
8079 }
8080 
8081 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8082 {
8083 	struct task_group *tg = css_tg(css);
8084 
8085 	sched_offline_group(tg);
8086 }
8087 
8088 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8089 {
8090 	struct task_group *tg = css_tg(css);
8091 
8092 	/*
8093 	 * Relies on the RCU grace period between css_released() and this.
8094 	 */
8095 	sched_free_group(tg);
8096 }
8097 
8098 static void cpu_cgroup_fork(struct task_struct *task)
8099 {
8100 	sched_move_task(task);
8101 }
8102 
8103 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8104 {
8105 	struct task_struct *task;
8106 	struct cgroup_subsys_state *css;
8107 
8108 	cgroup_taskset_for_each(task, css, tset) {
8109 #ifdef CONFIG_RT_GROUP_SCHED
8110 		if (!sched_rt_can_attach(css_tg(css), task))
8111 			return -EINVAL;
8112 #else
8113 		/* We don't support RT-tasks being in separate groups */
8114 		if (task->sched_class != &fair_sched_class)
8115 			return -EINVAL;
8116 #endif
8117 	}
8118 	return 0;
8119 }
8120 
8121 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8122 {
8123 	struct task_struct *task;
8124 	struct cgroup_subsys_state *css;
8125 
8126 	cgroup_taskset_for_each(task, css, tset)
8127 		sched_move_task(task);
8128 }
8129 
8130 #ifdef CONFIG_FAIR_GROUP_SCHED
8131 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8132 				struct cftype *cftype, u64 shareval)
8133 {
8134 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8135 }
8136 
8137 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8138 			       struct cftype *cft)
8139 {
8140 	struct task_group *tg = css_tg(css);
8141 
8142 	return (u64) scale_load_down(tg->shares);
8143 }
8144 
8145 #ifdef CONFIG_CFS_BANDWIDTH
8146 static DEFINE_MUTEX(cfs_constraints_mutex);
8147 
8148 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8149 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8150 
8151 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8152 
8153 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8154 {
8155 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8156 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8157 
8158 	if (tg == &root_task_group)
8159 		return -EINVAL;
8160 
8161 	/*
8162 	 * Ensure we have at some amount of bandwidth every period.  This is
8163 	 * to prevent reaching a state of large arrears when throttled via
8164 	 * entity_tick() resulting in prolonged exit starvation.
8165 	 */
8166 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8167 		return -EINVAL;
8168 
8169 	/*
8170 	 * Likewise, bound things on the otherside by preventing insane quota
8171 	 * periods.  This also allows us to normalize in computing quota
8172 	 * feasibility.
8173 	 */
8174 	if (period > max_cfs_quota_period)
8175 		return -EINVAL;
8176 
8177 	/*
8178 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8179 	 * unthrottle_offline_cfs_rqs().
8180 	 */
8181 	get_online_cpus();
8182 	mutex_lock(&cfs_constraints_mutex);
8183 	ret = __cfs_schedulable(tg, period, quota);
8184 	if (ret)
8185 		goto out_unlock;
8186 
8187 	runtime_enabled = quota != RUNTIME_INF;
8188 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8189 	/*
8190 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8191 	 * before making related changes, and on->off must occur afterwards
8192 	 */
8193 	if (runtime_enabled && !runtime_was_enabled)
8194 		cfs_bandwidth_usage_inc();
8195 	raw_spin_lock_irq(&cfs_b->lock);
8196 	cfs_b->period = ns_to_ktime(period);
8197 	cfs_b->quota = quota;
8198 
8199 	__refill_cfs_bandwidth_runtime(cfs_b);
8200 	/* restart the period timer (if active) to handle new period expiry */
8201 	if (runtime_enabled)
8202 		start_cfs_bandwidth(cfs_b);
8203 	raw_spin_unlock_irq(&cfs_b->lock);
8204 
8205 	for_each_online_cpu(i) {
8206 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8207 		struct rq *rq = cfs_rq->rq;
8208 
8209 		raw_spin_lock_irq(&rq->lock);
8210 		cfs_rq->runtime_enabled = runtime_enabled;
8211 		cfs_rq->runtime_remaining = 0;
8212 
8213 		if (cfs_rq->throttled)
8214 			unthrottle_cfs_rq(cfs_rq);
8215 		raw_spin_unlock_irq(&rq->lock);
8216 	}
8217 	if (runtime_was_enabled && !runtime_enabled)
8218 		cfs_bandwidth_usage_dec();
8219 out_unlock:
8220 	mutex_unlock(&cfs_constraints_mutex);
8221 	put_online_cpus();
8222 
8223 	return ret;
8224 }
8225 
8226 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8227 {
8228 	u64 quota, period;
8229 
8230 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8231 	if (cfs_quota_us < 0)
8232 		quota = RUNTIME_INF;
8233 	else
8234 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8235 
8236 	return tg_set_cfs_bandwidth(tg, period, quota);
8237 }
8238 
8239 long tg_get_cfs_quota(struct task_group *tg)
8240 {
8241 	u64 quota_us;
8242 
8243 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8244 		return -1;
8245 
8246 	quota_us = tg->cfs_bandwidth.quota;
8247 	do_div(quota_us, NSEC_PER_USEC);
8248 
8249 	return quota_us;
8250 }
8251 
8252 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8253 {
8254 	u64 quota, period;
8255 
8256 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8257 	quota = tg->cfs_bandwidth.quota;
8258 
8259 	return tg_set_cfs_bandwidth(tg, period, quota);
8260 }
8261 
8262 long tg_get_cfs_period(struct task_group *tg)
8263 {
8264 	u64 cfs_period_us;
8265 
8266 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8267 	do_div(cfs_period_us, NSEC_PER_USEC);
8268 
8269 	return cfs_period_us;
8270 }
8271 
8272 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8273 				  struct cftype *cft)
8274 {
8275 	return tg_get_cfs_quota(css_tg(css));
8276 }
8277 
8278 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8279 				   struct cftype *cftype, s64 cfs_quota_us)
8280 {
8281 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8282 }
8283 
8284 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8285 				   struct cftype *cft)
8286 {
8287 	return tg_get_cfs_period(css_tg(css));
8288 }
8289 
8290 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8291 				    struct cftype *cftype, u64 cfs_period_us)
8292 {
8293 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8294 }
8295 
8296 struct cfs_schedulable_data {
8297 	struct task_group *tg;
8298 	u64 period, quota;
8299 };
8300 
8301 /*
8302  * normalize group quota/period to be quota/max_period
8303  * note: units are usecs
8304  */
8305 static u64 normalize_cfs_quota(struct task_group *tg,
8306 			       struct cfs_schedulable_data *d)
8307 {
8308 	u64 quota, period;
8309 
8310 	if (tg == d->tg) {
8311 		period = d->period;
8312 		quota = d->quota;
8313 	} else {
8314 		period = tg_get_cfs_period(tg);
8315 		quota = tg_get_cfs_quota(tg);
8316 	}
8317 
8318 	/* note: these should typically be equivalent */
8319 	if (quota == RUNTIME_INF || quota == -1)
8320 		return RUNTIME_INF;
8321 
8322 	return to_ratio(period, quota);
8323 }
8324 
8325 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8326 {
8327 	struct cfs_schedulable_data *d = data;
8328 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8329 	s64 quota = 0, parent_quota = -1;
8330 
8331 	if (!tg->parent) {
8332 		quota = RUNTIME_INF;
8333 	} else {
8334 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8335 
8336 		quota = normalize_cfs_quota(tg, d);
8337 		parent_quota = parent_b->hierarchical_quota;
8338 
8339 		/*
8340 		 * ensure max(child_quota) <= parent_quota, inherit when no
8341 		 * limit is set
8342 		 */
8343 		if (quota == RUNTIME_INF)
8344 			quota = parent_quota;
8345 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8346 			return -EINVAL;
8347 	}
8348 	cfs_b->hierarchical_quota = quota;
8349 
8350 	return 0;
8351 }
8352 
8353 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8354 {
8355 	int ret;
8356 	struct cfs_schedulable_data data = {
8357 		.tg = tg,
8358 		.period = period,
8359 		.quota = quota,
8360 	};
8361 
8362 	if (quota != RUNTIME_INF) {
8363 		do_div(data.period, NSEC_PER_USEC);
8364 		do_div(data.quota, NSEC_PER_USEC);
8365 	}
8366 
8367 	rcu_read_lock();
8368 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8369 	rcu_read_unlock();
8370 
8371 	return ret;
8372 }
8373 
8374 static int cpu_stats_show(struct seq_file *sf, void *v)
8375 {
8376 	struct task_group *tg = css_tg(seq_css(sf));
8377 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8378 
8379 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8380 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8381 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8382 
8383 	return 0;
8384 }
8385 #endif /* CONFIG_CFS_BANDWIDTH */
8386 #endif /* CONFIG_FAIR_GROUP_SCHED */
8387 
8388 #ifdef CONFIG_RT_GROUP_SCHED
8389 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8390 				struct cftype *cft, s64 val)
8391 {
8392 	return sched_group_set_rt_runtime(css_tg(css), val);
8393 }
8394 
8395 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8396 			       struct cftype *cft)
8397 {
8398 	return sched_group_rt_runtime(css_tg(css));
8399 }
8400 
8401 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8402 				    struct cftype *cftype, u64 rt_period_us)
8403 {
8404 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8405 }
8406 
8407 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8408 				   struct cftype *cft)
8409 {
8410 	return sched_group_rt_period(css_tg(css));
8411 }
8412 #endif /* CONFIG_RT_GROUP_SCHED */
8413 
8414 static struct cftype cpu_files[] = {
8415 #ifdef CONFIG_FAIR_GROUP_SCHED
8416 	{
8417 		.name = "shares",
8418 		.read_u64 = cpu_shares_read_u64,
8419 		.write_u64 = cpu_shares_write_u64,
8420 	},
8421 #endif
8422 #ifdef CONFIG_CFS_BANDWIDTH
8423 	{
8424 		.name = "cfs_quota_us",
8425 		.read_s64 = cpu_cfs_quota_read_s64,
8426 		.write_s64 = cpu_cfs_quota_write_s64,
8427 	},
8428 	{
8429 		.name = "cfs_period_us",
8430 		.read_u64 = cpu_cfs_period_read_u64,
8431 		.write_u64 = cpu_cfs_period_write_u64,
8432 	},
8433 	{
8434 		.name = "stat",
8435 		.seq_show = cpu_stats_show,
8436 	},
8437 #endif
8438 #ifdef CONFIG_RT_GROUP_SCHED
8439 	{
8440 		.name = "rt_runtime_us",
8441 		.read_s64 = cpu_rt_runtime_read,
8442 		.write_s64 = cpu_rt_runtime_write,
8443 	},
8444 	{
8445 		.name = "rt_period_us",
8446 		.read_u64 = cpu_rt_period_read_uint,
8447 		.write_u64 = cpu_rt_period_write_uint,
8448 	},
8449 #endif
8450 	{ }	/* terminate */
8451 };
8452 
8453 struct cgroup_subsys cpu_cgrp_subsys = {
8454 	.css_alloc	= cpu_cgroup_css_alloc,
8455 	.css_released	= cpu_cgroup_css_released,
8456 	.css_free	= cpu_cgroup_css_free,
8457 	.fork		= cpu_cgroup_fork,
8458 	.can_attach	= cpu_cgroup_can_attach,
8459 	.attach		= cpu_cgroup_attach,
8460 	.legacy_cftypes	= cpu_files,
8461 	.early_init	= true,
8462 };
8463 
8464 #endif	/* CONFIG_CGROUP_SCHED */
8465 
8466 void dump_cpu_task(int cpu)
8467 {
8468 	pr_info("Task dump for CPU %d:\n", cpu);
8469 	sched_show_task(cpu_curr(cpu));
8470 }
8471 
8472 /*
8473  * Nice levels are multiplicative, with a gentle 10% change for every
8474  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8475  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8476  * that remained on nice 0.
8477  *
8478  * The "10% effect" is relative and cumulative: from _any_ nice level,
8479  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8480  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8481  * If a task goes up by ~10% and another task goes down by ~10% then
8482  * the relative distance between them is ~25%.)
8483  */
8484 const int sched_prio_to_weight[40] = {
8485  /* -20 */     88761,     71755,     56483,     46273,     36291,
8486  /* -15 */     29154,     23254,     18705,     14949,     11916,
8487  /* -10 */      9548,      7620,      6100,      4904,      3906,
8488  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8489  /*   0 */      1024,       820,       655,       526,       423,
8490  /*   5 */       335,       272,       215,       172,       137,
8491  /*  10 */       110,        87,        70,        56,        45,
8492  /*  15 */        36,        29,        23,        18,        15,
8493 };
8494 
8495 /*
8496  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8497  *
8498  * In cases where the weight does not change often, we can use the
8499  * precalculated inverse to speed up arithmetics by turning divisions
8500  * into multiplications:
8501  */
8502 const u32 sched_prio_to_wmult[40] = {
8503  /* -20 */     48388,     59856,     76040,     92818,    118348,
8504  /* -15 */    147320,    184698,    229616,    287308,    360437,
8505  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8506  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8507  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8508  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8509  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8510  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8511 };
8512