1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/kasan.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/nmi.h> 33 #include <linux/init.h> 34 #include <linux/uaccess.h> 35 #include <linux/highmem.h> 36 #include <asm/mmu_context.h> 37 #include <linux/interrupt.h> 38 #include <linux/capability.h> 39 #include <linux/completion.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/debug_locks.h> 42 #include <linux/perf_event.h> 43 #include <linux/security.h> 44 #include <linux/notifier.h> 45 #include <linux/profile.h> 46 #include <linux/freezer.h> 47 #include <linux/vmalloc.h> 48 #include <linux/blkdev.h> 49 #include <linux/delay.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/smp.h> 52 #include <linux/threads.h> 53 #include <linux/timer.h> 54 #include <linux/rcupdate.h> 55 #include <linux/cpu.h> 56 #include <linux/cpuset.h> 57 #include <linux/percpu.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/sysctl.h> 61 #include <linux/syscalls.h> 62 #include <linux/times.h> 63 #include <linux/tsacct_kern.h> 64 #include <linux/kprobes.h> 65 #include <linux/delayacct.h> 66 #include <linux/unistd.h> 67 #include <linux/pagemap.h> 68 #include <linux/hrtimer.h> 69 #include <linux/tick.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/context_tracking.h> 75 #include <linux/compiler.h> 76 #include <linux/frame.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 DEFINE_MUTEX(sched_domains_mutex); 94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 95 96 static void update_rq_clock_task(struct rq *rq, s64 delta); 97 98 void update_rq_clock(struct rq *rq) 99 { 100 s64 delta; 101 102 lockdep_assert_held(&rq->lock); 103 104 if (rq->clock_skip_update & RQCF_ACT_SKIP) 105 return; 106 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 108 if (delta < 0) 109 return; 110 rq->clock += delta; 111 update_rq_clock_task(rq, delta); 112 } 113 114 /* 115 * Debugging: various feature bits 116 */ 117 118 #define SCHED_FEAT(name, enabled) \ 119 (1UL << __SCHED_FEAT_##name) * enabled | 120 121 const_debug unsigned int sysctl_sched_features = 122 #include "features.h" 123 0; 124 125 #undef SCHED_FEAT 126 127 /* 128 * Number of tasks to iterate in a single balance run. 129 * Limited because this is done with IRQs disabled. 130 */ 131 const_debug unsigned int sysctl_sched_nr_migrate = 32; 132 133 /* 134 * period over which we average the RT time consumption, measured 135 * in ms. 136 * 137 * default: 1s 138 */ 139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 140 141 /* 142 * period over which we measure -rt task cpu usage in us. 143 * default: 1s 144 */ 145 unsigned int sysctl_sched_rt_period = 1000000; 146 147 __read_mostly int scheduler_running; 148 149 /* 150 * part of the period that we allow rt tasks to run in us. 151 * default: 0.95s 152 */ 153 int sysctl_sched_rt_runtime = 950000; 154 155 /* cpus with isolated domains */ 156 cpumask_var_t cpu_isolated_map; 157 158 /* 159 * this_rq_lock - lock this runqueue and disable interrupts. 160 */ 161 static struct rq *this_rq_lock(void) 162 __acquires(rq->lock) 163 { 164 struct rq *rq; 165 166 local_irq_disable(); 167 rq = this_rq(); 168 raw_spin_lock(&rq->lock); 169 170 return rq; 171 } 172 173 #ifdef CONFIG_SCHED_HRTICK 174 /* 175 * Use HR-timers to deliver accurate preemption points. 176 */ 177 178 static void hrtick_clear(struct rq *rq) 179 { 180 if (hrtimer_active(&rq->hrtick_timer)) 181 hrtimer_cancel(&rq->hrtick_timer); 182 } 183 184 /* 185 * High-resolution timer tick. 186 * Runs from hardirq context with interrupts disabled. 187 */ 188 static enum hrtimer_restart hrtick(struct hrtimer *timer) 189 { 190 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 191 192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 193 194 raw_spin_lock(&rq->lock); 195 update_rq_clock(rq); 196 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 197 raw_spin_unlock(&rq->lock); 198 199 return HRTIMER_NORESTART; 200 } 201 202 #ifdef CONFIG_SMP 203 204 static void __hrtick_restart(struct rq *rq) 205 { 206 struct hrtimer *timer = &rq->hrtick_timer; 207 208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 209 } 210 211 /* 212 * called from hardirq (IPI) context 213 */ 214 static void __hrtick_start(void *arg) 215 { 216 struct rq *rq = arg; 217 218 raw_spin_lock(&rq->lock); 219 __hrtick_restart(rq); 220 rq->hrtick_csd_pending = 0; 221 raw_spin_unlock(&rq->lock); 222 } 223 224 /* 225 * Called to set the hrtick timer state. 226 * 227 * called with rq->lock held and irqs disabled 228 */ 229 void hrtick_start(struct rq *rq, u64 delay) 230 { 231 struct hrtimer *timer = &rq->hrtick_timer; 232 ktime_t time; 233 s64 delta; 234 235 /* 236 * Don't schedule slices shorter than 10000ns, that just 237 * doesn't make sense and can cause timer DoS. 238 */ 239 delta = max_t(s64, delay, 10000LL); 240 time = ktime_add_ns(timer->base->get_time(), delta); 241 242 hrtimer_set_expires(timer, time); 243 244 if (rq == this_rq()) { 245 __hrtick_restart(rq); 246 } else if (!rq->hrtick_csd_pending) { 247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 248 rq->hrtick_csd_pending = 1; 249 } 250 } 251 252 static int 253 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 254 { 255 int cpu = (int)(long)hcpu; 256 257 switch (action) { 258 case CPU_UP_CANCELED: 259 case CPU_UP_CANCELED_FROZEN: 260 case CPU_DOWN_PREPARE: 261 case CPU_DOWN_PREPARE_FROZEN: 262 case CPU_DEAD: 263 case CPU_DEAD_FROZEN: 264 hrtick_clear(cpu_rq(cpu)); 265 return NOTIFY_OK; 266 } 267 268 return NOTIFY_DONE; 269 } 270 271 static __init void init_hrtick(void) 272 { 273 hotcpu_notifier(hotplug_hrtick, 0); 274 } 275 #else 276 /* 277 * Called to set the hrtick timer state. 278 * 279 * called with rq->lock held and irqs disabled 280 */ 281 void hrtick_start(struct rq *rq, u64 delay) 282 { 283 /* 284 * Don't schedule slices shorter than 10000ns, that just 285 * doesn't make sense. Rely on vruntime for fairness. 286 */ 287 delay = max_t(u64, delay, 10000LL); 288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 289 HRTIMER_MODE_REL_PINNED); 290 } 291 292 static inline void init_hrtick(void) 293 { 294 } 295 #endif /* CONFIG_SMP */ 296 297 static void init_rq_hrtick(struct rq *rq) 298 { 299 #ifdef CONFIG_SMP 300 rq->hrtick_csd_pending = 0; 301 302 rq->hrtick_csd.flags = 0; 303 rq->hrtick_csd.func = __hrtick_start; 304 rq->hrtick_csd.info = rq; 305 #endif 306 307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 308 rq->hrtick_timer.function = hrtick; 309 } 310 #else /* CONFIG_SCHED_HRTICK */ 311 static inline void hrtick_clear(struct rq *rq) 312 { 313 } 314 315 static inline void init_rq_hrtick(struct rq *rq) 316 { 317 } 318 319 static inline void init_hrtick(void) 320 { 321 } 322 #endif /* CONFIG_SCHED_HRTICK */ 323 324 /* 325 * cmpxchg based fetch_or, macro so it works for different integer types 326 */ 327 #define fetch_or(ptr, mask) \ 328 ({ \ 329 typeof(ptr) _ptr = (ptr); \ 330 typeof(mask) _mask = (mask); \ 331 typeof(*_ptr) _old, _val = *_ptr; \ 332 \ 333 for (;;) { \ 334 _old = cmpxchg(_ptr, _val, _val | _mask); \ 335 if (_old == _val) \ 336 break; \ 337 _val = _old; \ 338 } \ 339 _old; \ 340 }) 341 342 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 343 /* 344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 345 * this avoids any races wrt polling state changes and thereby avoids 346 * spurious IPIs. 347 */ 348 static bool set_nr_and_not_polling(struct task_struct *p) 349 { 350 struct thread_info *ti = task_thread_info(p); 351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 352 } 353 354 /* 355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 356 * 357 * If this returns true, then the idle task promises to call 358 * sched_ttwu_pending() and reschedule soon. 359 */ 360 static bool set_nr_if_polling(struct task_struct *p) 361 { 362 struct thread_info *ti = task_thread_info(p); 363 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 364 365 for (;;) { 366 if (!(val & _TIF_POLLING_NRFLAG)) 367 return false; 368 if (val & _TIF_NEED_RESCHED) 369 return true; 370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 371 if (old == val) 372 break; 373 val = old; 374 } 375 return true; 376 } 377 378 #else 379 static bool set_nr_and_not_polling(struct task_struct *p) 380 { 381 set_tsk_need_resched(p); 382 return true; 383 } 384 385 #ifdef CONFIG_SMP 386 static bool set_nr_if_polling(struct task_struct *p) 387 { 388 return false; 389 } 390 #endif 391 #endif 392 393 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 394 { 395 struct wake_q_node *node = &task->wake_q; 396 397 /* 398 * Atomically grab the task, if ->wake_q is !nil already it means 399 * its already queued (either by us or someone else) and will get the 400 * wakeup due to that. 401 * 402 * This cmpxchg() implies a full barrier, which pairs with the write 403 * barrier implied by the wakeup in wake_up_list(). 404 */ 405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 406 return; 407 408 get_task_struct(task); 409 410 /* 411 * The head is context local, there can be no concurrency. 412 */ 413 *head->lastp = node; 414 head->lastp = &node->next; 415 } 416 417 void wake_up_q(struct wake_q_head *head) 418 { 419 struct wake_q_node *node = head->first; 420 421 while (node != WAKE_Q_TAIL) { 422 struct task_struct *task; 423 424 task = container_of(node, struct task_struct, wake_q); 425 BUG_ON(!task); 426 /* task can safely be re-inserted now */ 427 node = node->next; 428 task->wake_q.next = NULL; 429 430 /* 431 * wake_up_process() implies a wmb() to pair with the queueing 432 * in wake_q_add() so as not to miss wakeups. 433 */ 434 wake_up_process(task); 435 put_task_struct(task); 436 } 437 } 438 439 /* 440 * resched_curr - mark rq's current task 'to be rescheduled now'. 441 * 442 * On UP this means the setting of the need_resched flag, on SMP it 443 * might also involve a cross-CPU call to trigger the scheduler on 444 * the target CPU. 445 */ 446 void resched_curr(struct rq *rq) 447 { 448 struct task_struct *curr = rq->curr; 449 int cpu; 450 451 lockdep_assert_held(&rq->lock); 452 453 if (test_tsk_need_resched(curr)) 454 return; 455 456 cpu = cpu_of(rq); 457 458 if (cpu == smp_processor_id()) { 459 set_tsk_need_resched(curr); 460 set_preempt_need_resched(); 461 return; 462 } 463 464 if (set_nr_and_not_polling(curr)) 465 smp_send_reschedule(cpu); 466 else 467 trace_sched_wake_idle_without_ipi(cpu); 468 } 469 470 void resched_cpu(int cpu) 471 { 472 struct rq *rq = cpu_rq(cpu); 473 unsigned long flags; 474 475 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 476 return; 477 resched_curr(rq); 478 raw_spin_unlock_irqrestore(&rq->lock, flags); 479 } 480 481 #ifdef CONFIG_SMP 482 #ifdef CONFIG_NO_HZ_COMMON 483 /* 484 * In the semi idle case, use the nearest busy cpu for migrating timers 485 * from an idle cpu. This is good for power-savings. 486 * 487 * We don't do similar optimization for completely idle system, as 488 * selecting an idle cpu will add more delays to the timers than intended 489 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 490 */ 491 int get_nohz_timer_target(void) 492 { 493 int i, cpu = smp_processor_id(); 494 struct sched_domain *sd; 495 496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 497 return cpu; 498 499 rcu_read_lock(); 500 for_each_domain(cpu, sd) { 501 for_each_cpu(i, sched_domain_span(sd)) { 502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) { 503 cpu = i; 504 goto unlock; 505 } 506 } 507 } 508 509 if (!is_housekeeping_cpu(cpu)) 510 cpu = housekeeping_any_cpu(); 511 unlock: 512 rcu_read_unlock(); 513 return cpu; 514 } 515 /* 516 * When add_timer_on() enqueues a timer into the timer wheel of an 517 * idle CPU then this timer might expire before the next timer event 518 * which is scheduled to wake up that CPU. In case of a completely 519 * idle system the next event might even be infinite time into the 520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 521 * leaves the inner idle loop so the newly added timer is taken into 522 * account when the CPU goes back to idle and evaluates the timer 523 * wheel for the next timer event. 524 */ 525 static void wake_up_idle_cpu(int cpu) 526 { 527 struct rq *rq = cpu_rq(cpu); 528 529 if (cpu == smp_processor_id()) 530 return; 531 532 if (set_nr_and_not_polling(rq->idle)) 533 smp_send_reschedule(cpu); 534 else 535 trace_sched_wake_idle_without_ipi(cpu); 536 } 537 538 static bool wake_up_full_nohz_cpu(int cpu) 539 { 540 /* 541 * We just need the target to call irq_exit() and re-evaluate 542 * the next tick. The nohz full kick at least implies that. 543 * If needed we can still optimize that later with an 544 * empty IRQ. 545 */ 546 if (tick_nohz_full_cpu(cpu)) { 547 if (cpu != smp_processor_id() || 548 tick_nohz_tick_stopped()) 549 tick_nohz_full_kick_cpu(cpu); 550 return true; 551 } 552 553 return false; 554 } 555 556 void wake_up_nohz_cpu(int cpu) 557 { 558 if (!wake_up_full_nohz_cpu(cpu)) 559 wake_up_idle_cpu(cpu); 560 } 561 562 static inline bool got_nohz_idle_kick(void) 563 { 564 int cpu = smp_processor_id(); 565 566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 567 return false; 568 569 if (idle_cpu(cpu) && !need_resched()) 570 return true; 571 572 /* 573 * We can't run Idle Load Balance on this CPU for this time so we 574 * cancel it and clear NOHZ_BALANCE_KICK 575 */ 576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 577 return false; 578 } 579 580 #else /* CONFIG_NO_HZ_COMMON */ 581 582 static inline bool got_nohz_idle_kick(void) 583 { 584 return false; 585 } 586 587 #endif /* CONFIG_NO_HZ_COMMON */ 588 589 #ifdef CONFIG_NO_HZ_FULL 590 bool sched_can_stop_tick(struct rq *rq) 591 { 592 int fifo_nr_running; 593 594 /* Deadline tasks, even if single, need the tick */ 595 if (rq->dl.dl_nr_running) 596 return false; 597 598 /* 599 * If there are more than one RR tasks, we need the tick to effect the 600 * actual RR behaviour. 601 */ 602 if (rq->rt.rr_nr_running) { 603 if (rq->rt.rr_nr_running == 1) 604 return true; 605 else 606 return false; 607 } 608 609 /* 610 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 611 * forced preemption between FIFO tasks. 612 */ 613 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 614 if (fifo_nr_running) 615 return true; 616 617 /* 618 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 619 * if there's more than one we need the tick for involuntary 620 * preemption. 621 */ 622 if (rq->nr_running > 1) 623 return false; 624 625 return true; 626 } 627 #endif /* CONFIG_NO_HZ_FULL */ 628 629 void sched_avg_update(struct rq *rq) 630 { 631 s64 period = sched_avg_period(); 632 633 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 634 /* 635 * Inline assembly required to prevent the compiler 636 * optimising this loop into a divmod call. 637 * See __iter_div_u64_rem() for another example of this. 638 */ 639 asm("" : "+rm" (rq->age_stamp)); 640 rq->age_stamp += period; 641 rq->rt_avg /= 2; 642 } 643 } 644 645 #endif /* CONFIG_SMP */ 646 647 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 649 /* 650 * Iterate task_group tree rooted at *from, calling @down when first entering a 651 * node and @up when leaving it for the final time. 652 * 653 * Caller must hold rcu_lock or sufficient equivalent. 654 */ 655 int walk_tg_tree_from(struct task_group *from, 656 tg_visitor down, tg_visitor up, void *data) 657 { 658 struct task_group *parent, *child; 659 int ret; 660 661 parent = from; 662 663 down: 664 ret = (*down)(parent, data); 665 if (ret) 666 goto out; 667 list_for_each_entry_rcu(child, &parent->children, siblings) { 668 parent = child; 669 goto down; 670 671 up: 672 continue; 673 } 674 ret = (*up)(parent, data); 675 if (ret || parent == from) 676 goto out; 677 678 child = parent; 679 parent = parent->parent; 680 if (parent) 681 goto up; 682 out: 683 return ret; 684 } 685 686 int tg_nop(struct task_group *tg, void *data) 687 { 688 return 0; 689 } 690 #endif 691 692 static void set_load_weight(struct task_struct *p) 693 { 694 int prio = p->static_prio - MAX_RT_PRIO; 695 struct load_weight *load = &p->se.load; 696 697 /* 698 * SCHED_IDLE tasks get minimal weight: 699 */ 700 if (idle_policy(p->policy)) { 701 load->weight = scale_load(WEIGHT_IDLEPRIO); 702 load->inv_weight = WMULT_IDLEPRIO; 703 return; 704 } 705 706 load->weight = scale_load(sched_prio_to_weight[prio]); 707 load->inv_weight = sched_prio_to_wmult[prio]; 708 } 709 710 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 711 { 712 update_rq_clock(rq); 713 if (!(flags & ENQUEUE_RESTORE)) 714 sched_info_queued(rq, p); 715 p->sched_class->enqueue_task(rq, p, flags); 716 } 717 718 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 719 { 720 update_rq_clock(rq); 721 if (!(flags & DEQUEUE_SAVE)) 722 sched_info_dequeued(rq, p); 723 p->sched_class->dequeue_task(rq, p, flags); 724 } 725 726 void activate_task(struct rq *rq, struct task_struct *p, int flags) 727 { 728 if (task_contributes_to_load(p)) 729 rq->nr_uninterruptible--; 730 731 enqueue_task(rq, p, flags); 732 } 733 734 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 735 { 736 if (task_contributes_to_load(p)) 737 rq->nr_uninterruptible++; 738 739 dequeue_task(rq, p, flags); 740 } 741 742 static void update_rq_clock_task(struct rq *rq, s64 delta) 743 { 744 /* 745 * In theory, the compile should just see 0 here, and optimize out the call 746 * to sched_rt_avg_update. But I don't trust it... 747 */ 748 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 749 s64 steal = 0, irq_delta = 0; 750 #endif 751 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 752 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 753 754 /* 755 * Since irq_time is only updated on {soft,}irq_exit, we might run into 756 * this case when a previous update_rq_clock() happened inside a 757 * {soft,}irq region. 758 * 759 * When this happens, we stop ->clock_task and only update the 760 * prev_irq_time stamp to account for the part that fit, so that a next 761 * update will consume the rest. This ensures ->clock_task is 762 * monotonic. 763 * 764 * It does however cause some slight miss-attribution of {soft,}irq 765 * time, a more accurate solution would be to update the irq_time using 766 * the current rq->clock timestamp, except that would require using 767 * atomic ops. 768 */ 769 if (irq_delta > delta) 770 irq_delta = delta; 771 772 rq->prev_irq_time += irq_delta; 773 delta -= irq_delta; 774 #endif 775 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 776 if (static_key_false((¶virt_steal_rq_enabled))) { 777 steal = paravirt_steal_clock(cpu_of(rq)); 778 steal -= rq->prev_steal_time_rq; 779 780 if (unlikely(steal > delta)) 781 steal = delta; 782 783 rq->prev_steal_time_rq += steal; 784 delta -= steal; 785 } 786 #endif 787 788 rq->clock_task += delta; 789 790 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 791 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 792 sched_rt_avg_update(rq, irq_delta + steal); 793 #endif 794 } 795 796 void sched_set_stop_task(int cpu, struct task_struct *stop) 797 { 798 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 799 struct task_struct *old_stop = cpu_rq(cpu)->stop; 800 801 if (stop) { 802 /* 803 * Make it appear like a SCHED_FIFO task, its something 804 * userspace knows about and won't get confused about. 805 * 806 * Also, it will make PI more or less work without too 807 * much confusion -- but then, stop work should not 808 * rely on PI working anyway. 809 */ 810 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 811 812 stop->sched_class = &stop_sched_class; 813 } 814 815 cpu_rq(cpu)->stop = stop; 816 817 if (old_stop) { 818 /* 819 * Reset it back to a normal scheduling class so that 820 * it can die in pieces. 821 */ 822 old_stop->sched_class = &rt_sched_class; 823 } 824 } 825 826 /* 827 * __normal_prio - return the priority that is based on the static prio 828 */ 829 static inline int __normal_prio(struct task_struct *p) 830 { 831 return p->static_prio; 832 } 833 834 /* 835 * Calculate the expected normal priority: i.e. priority 836 * without taking RT-inheritance into account. Might be 837 * boosted by interactivity modifiers. Changes upon fork, 838 * setprio syscalls, and whenever the interactivity 839 * estimator recalculates. 840 */ 841 static inline int normal_prio(struct task_struct *p) 842 { 843 int prio; 844 845 if (task_has_dl_policy(p)) 846 prio = MAX_DL_PRIO-1; 847 else if (task_has_rt_policy(p)) 848 prio = MAX_RT_PRIO-1 - p->rt_priority; 849 else 850 prio = __normal_prio(p); 851 return prio; 852 } 853 854 /* 855 * Calculate the current priority, i.e. the priority 856 * taken into account by the scheduler. This value might 857 * be boosted by RT tasks, or might be boosted by 858 * interactivity modifiers. Will be RT if the task got 859 * RT-boosted. If not then it returns p->normal_prio. 860 */ 861 static int effective_prio(struct task_struct *p) 862 { 863 p->normal_prio = normal_prio(p); 864 /* 865 * If we are RT tasks or we were boosted to RT priority, 866 * keep the priority unchanged. Otherwise, update priority 867 * to the normal priority: 868 */ 869 if (!rt_prio(p->prio)) 870 return p->normal_prio; 871 return p->prio; 872 } 873 874 /** 875 * task_curr - is this task currently executing on a CPU? 876 * @p: the task in question. 877 * 878 * Return: 1 if the task is currently executing. 0 otherwise. 879 */ 880 inline int task_curr(const struct task_struct *p) 881 { 882 return cpu_curr(task_cpu(p)) == p; 883 } 884 885 /* 886 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 887 * use the balance_callback list if you want balancing. 888 * 889 * this means any call to check_class_changed() must be followed by a call to 890 * balance_callback(). 891 */ 892 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 893 const struct sched_class *prev_class, 894 int oldprio) 895 { 896 if (prev_class != p->sched_class) { 897 if (prev_class->switched_from) 898 prev_class->switched_from(rq, p); 899 900 p->sched_class->switched_to(rq, p); 901 } else if (oldprio != p->prio || dl_task(p)) 902 p->sched_class->prio_changed(rq, p, oldprio); 903 } 904 905 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 906 { 907 const struct sched_class *class; 908 909 if (p->sched_class == rq->curr->sched_class) { 910 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 911 } else { 912 for_each_class(class) { 913 if (class == rq->curr->sched_class) 914 break; 915 if (class == p->sched_class) { 916 resched_curr(rq); 917 break; 918 } 919 } 920 } 921 922 /* 923 * A queue event has occurred, and we're going to schedule. In 924 * this case, we can save a useless back to back clock update. 925 */ 926 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 927 rq_clock_skip_update(rq, true); 928 } 929 930 #ifdef CONFIG_SMP 931 /* 932 * This is how migration works: 933 * 934 * 1) we invoke migration_cpu_stop() on the target CPU using 935 * stop_one_cpu(). 936 * 2) stopper starts to run (implicitly forcing the migrated thread 937 * off the CPU) 938 * 3) it checks whether the migrated task is still in the wrong runqueue. 939 * 4) if it's in the wrong runqueue then the migration thread removes 940 * it and puts it into the right queue. 941 * 5) stopper completes and stop_one_cpu() returns and the migration 942 * is done. 943 */ 944 945 /* 946 * move_queued_task - move a queued task to new rq. 947 * 948 * Returns (locked) new rq. Old rq's lock is released. 949 */ 950 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 951 { 952 lockdep_assert_held(&rq->lock); 953 954 p->on_rq = TASK_ON_RQ_MIGRATING; 955 dequeue_task(rq, p, 0); 956 set_task_cpu(p, new_cpu); 957 raw_spin_unlock(&rq->lock); 958 959 rq = cpu_rq(new_cpu); 960 961 raw_spin_lock(&rq->lock); 962 BUG_ON(task_cpu(p) != new_cpu); 963 enqueue_task(rq, p, 0); 964 p->on_rq = TASK_ON_RQ_QUEUED; 965 check_preempt_curr(rq, p, 0); 966 967 return rq; 968 } 969 970 struct migration_arg { 971 struct task_struct *task; 972 int dest_cpu; 973 }; 974 975 /* 976 * Move (not current) task off this cpu, onto dest cpu. We're doing 977 * this because either it can't run here any more (set_cpus_allowed() 978 * away from this CPU, or CPU going down), or because we're 979 * attempting to rebalance this task on exec (sched_exec). 980 * 981 * So we race with normal scheduler movements, but that's OK, as long 982 * as the task is no longer on this CPU. 983 */ 984 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 985 { 986 if (unlikely(!cpu_active(dest_cpu))) 987 return rq; 988 989 /* Affinity changed (again). */ 990 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 991 return rq; 992 993 rq = move_queued_task(rq, p, dest_cpu); 994 995 return rq; 996 } 997 998 /* 999 * migration_cpu_stop - this will be executed by a highprio stopper thread 1000 * and performs thread migration by bumping thread off CPU then 1001 * 'pushing' onto another runqueue. 1002 */ 1003 static int migration_cpu_stop(void *data) 1004 { 1005 struct migration_arg *arg = data; 1006 struct task_struct *p = arg->task; 1007 struct rq *rq = this_rq(); 1008 1009 /* 1010 * The original target cpu might have gone down and we might 1011 * be on another cpu but it doesn't matter. 1012 */ 1013 local_irq_disable(); 1014 /* 1015 * We need to explicitly wake pending tasks before running 1016 * __migrate_task() such that we will not miss enforcing cpus_allowed 1017 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1018 */ 1019 sched_ttwu_pending(); 1020 1021 raw_spin_lock(&p->pi_lock); 1022 raw_spin_lock(&rq->lock); 1023 /* 1024 * If task_rq(p) != rq, it cannot be migrated here, because we're 1025 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1026 * we're holding p->pi_lock. 1027 */ 1028 if (task_rq(p) == rq && task_on_rq_queued(p)) 1029 rq = __migrate_task(rq, p, arg->dest_cpu); 1030 raw_spin_unlock(&rq->lock); 1031 raw_spin_unlock(&p->pi_lock); 1032 1033 local_irq_enable(); 1034 return 0; 1035 } 1036 1037 /* 1038 * sched_class::set_cpus_allowed must do the below, but is not required to 1039 * actually call this function. 1040 */ 1041 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1042 { 1043 cpumask_copy(&p->cpus_allowed, new_mask); 1044 p->nr_cpus_allowed = cpumask_weight(new_mask); 1045 } 1046 1047 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1048 { 1049 struct rq *rq = task_rq(p); 1050 bool queued, running; 1051 1052 lockdep_assert_held(&p->pi_lock); 1053 1054 queued = task_on_rq_queued(p); 1055 running = task_current(rq, p); 1056 1057 if (queued) { 1058 /* 1059 * Because __kthread_bind() calls this on blocked tasks without 1060 * holding rq->lock. 1061 */ 1062 lockdep_assert_held(&rq->lock); 1063 dequeue_task(rq, p, DEQUEUE_SAVE); 1064 } 1065 if (running) 1066 put_prev_task(rq, p); 1067 1068 p->sched_class->set_cpus_allowed(p, new_mask); 1069 1070 if (running) 1071 p->sched_class->set_curr_task(rq); 1072 if (queued) 1073 enqueue_task(rq, p, ENQUEUE_RESTORE); 1074 } 1075 1076 /* 1077 * Change a given task's CPU affinity. Migrate the thread to a 1078 * proper CPU and schedule it away if the CPU it's executing on 1079 * is removed from the allowed bitmask. 1080 * 1081 * NOTE: the caller must have a valid reference to the task, the 1082 * task must not exit() & deallocate itself prematurely. The 1083 * call is not atomic; no spinlocks may be held. 1084 */ 1085 static int __set_cpus_allowed_ptr(struct task_struct *p, 1086 const struct cpumask *new_mask, bool check) 1087 { 1088 unsigned long flags; 1089 struct rq *rq; 1090 unsigned int dest_cpu; 1091 int ret = 0; 1092 1093 rq = task_rq_lock(p, &flags); 1094 1095 /* 1096 * Must re-check here, to close a race against __kthread_bind(), 1097 * sched_setaffinity() is not guaranteed to observe the flag. 1098 */ 1099 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1100 ret = -EINVAL; 1101 goto out; 1102 } 1103 1104 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1105 goto out; 1106 1107 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 1108 ret = -EINVAL; 1109 goto out; 1110 } 1111 1112 do_set_cpus_allowed(p, new_mask); 1113 1114 /* Can the task run on the task's current CPU? If so, we're done */ 1115 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1116 goto out; 1117 1118 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 1119 if (task_running(rq, p) || p->state == TASK_WAKING) { 1120 struct migration_arg arg = { p, dest_cpu }; 1121 /* Need help from migration thread: drop lock and wait. */ 1122 task_rq_unlock(rq, p, &flags); 1123 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1124 tlb_migrate_finish(p->mm); 1125 return 0; 1126 } else if (task_on_rq_queued(p)) { 1127 /* 1128 * OK, since we're going to drop the lock immediately 1129 * afterwards anyway. 1130 */ 1131 lockdep_unpin_lock(&rq->lock); 1132 rq = move_queued_task(rq, p, dest_cpu); 1133 lockdep_pin_lock(&rq->lock); 1134 } 1135 out: 1136 task_rq_unlock(rq, p, &flags); 1137 1138 return ret; 1139 } 1140 1141 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1142 { 1143 return __set_cpus_allowed_ptr(p, new_mask, false); 1144 } 1145 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1146 1147 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1148 { 1149 #ifdef CONFIG_SCHED_DEBUG 1150 /* 1151 * We should never call set_task_cpu() on a blocked task, 1152 * ttwu() will sort out the placement. 1153 */ 1154 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1155 !p->on_rq); 1156 1157 /* 1158 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1159 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1160 * time relying on p->on_rq. 1161 */ 1162 WARN_ON_ONCE(p->state == TASK_RUNNING && 1163 p->sched_class == &fair_sched_class && 1164 (p->on_rq && !task_on_rq_migrating(p))); 1165 1166 #ifdef CONFIG_LOCKDEP 1167 /* 1168 * The caller should hold either p->pi_lock or rq->lock, when changing 1169 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1170 * 1171 * sched_move_task() holds both and thus holding either pins the cgroup, 1172 * see task_group(). 1173 * 1174 * Furthermore, all task_rq users should acquire both locks, see 1175 * task_rq_lock(). 1176 */ 1177 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1178 lockdep_is_held(&task_rq(p)->lock))); 1179 #endif 1180 #endif 1181 1182 trace_sched_migrate_task(p, new_cpu); 1183 1184 if (task_cpu(p) != new_cpu) { 1185 if (p->sched_class->migrate_task_rq) 1186 p->sched_class->migrate_task_rq(p); 1187 p->se.nr_migrations++; 1188 perf_event_task_migrate(p); 1189 } 1190 1191 __set_task_cpu(p, new_cpu); 1192 } 1193 1194 static void __migrate_swap_task(struct task_struct *p, int cpu) 1195 { 1196 if (task_on_rq_queued(p)) { 1197 struct rq *src_rq, *dst_rq; 1198 1199 src_rq = task_rq(p); 1200 dst_rq = cpu_rq(cpu); 1201 1202 p->on_rq = TASK_ON_RQ_MIGRATING; 1203 deactivate_task(src_rq, p, 0); 1204 set_task_cpu(p, cpu); 1205 activate_task(dst_rq, p, 0); 1206 p->on_rq = TASK_ON_RQ_QUEUED; 1207 check_preempt_curr(dst_rq, p, 0); 1208 } else { 1209 /* 1210 * Task isn't running anymore; make it appear like we migrated 1211 * it before it went to sleep. This means on wakeup we make the 1212 * previous cpu our targer instead of where it really is. 1213 */ 1214 p->wake_cpu = cpu; 1215 } 1216 } 1217 1218 struct migration_swap_arg { 1219 struct task_struct *src_task, *dst_task; 1220 int src_cpu, dst_cpu; 1221 }; 1222 1223 static int migrate_swap_stop(void *data) 1224 { 1225 struct migration_swap_arg *arg = data; 1226 struct rq *src_rq, *dst_rq; 1227 int ret = -EAGAIN; 1228 1229 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1230 return -EAGAIN; 1231 1232 src_rq = cpu_rq(arg->src_cpu); 1233 dst_rq = cpu_rq(arg->dst_cpu); 1234 1235 double_raw_lock(&arg->src_task->pi_lock, 1236 &arg->dst_task->pi_lock); 1237 double_rq_lock(src_rq, dst_rq); 1238 1239 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1240 goto unlock; 1241 1242 if (task_cpu(arg->src_task) != arg->src_cpu) 1243 goto unlock; 1244 1245 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1246 goto unlock; 1247 1248 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1249 goto unlock; 1250 1251 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1252 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1253 1254 ret = 0; 1255 1256 unlock: 1257 double_rq_unlock(src_rq, dst_rq); 1258 raw_spin_unlock(&arg->dst_task->pi_lock); 1259 raw_spin_unlock(&arg->src_task->pi_lock); 1260 1261 return ret; 1262 } 1263 1264 /* 1265 * Cross migrate two tasks 1266 */ 1267 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1268 { 1269 struct migration_swap_arg arg; 1270 int ret = -EINVAL; 1271 1272 arg = (struct migration_swap_arg){ 1273 .src_task = cur, 1274 .src_cpu = task_cpu(cur), 1275 .dst_task = p, 1276 .dst_cpu = task_cpu(p), 1277 }; 1278 1279 if (arg.src_cpu == arg.dst_cpu) 1280 goto out; 1281 1282 /* 1283 * These three tests are all lockless; this is OK since all of them 1284 * will be re-checked with proper locks held further down the line. 1285 */ 1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1287 goto out; 1288 1289 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1290 goto out; 1291 1292 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1293 goto out; 1294 1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1297 1298 out: 1299 return ret; 1300 } 1301 1302 /* 1303 * wait_task_inactive - wait for a thread to unschedule. 1304 * 1305 * If @match_state is nonzero, it's the @p->state value just checked and 1306 * not expected to change. If it changes, i.e. @p might have woken up, 1307 * then return zero. When we succeed in waiting for @p to be off its CPU, 1308 * we return a positive number (its total switch count). If a second call 1309 * a short while later returns the same number, the caller can be sure that 1310 * @p has remained unscheduled the whole time. 1311 * 1312 * The caller must ensure that the task *will* unschedule sometime soon, 1313 * else this function might spin for a *long* time. This function can't 1314 * be called with interrupts off, or it may introduce deadlock with 1315 * smp_call_function() if an IPI is sent by the same process we are 1316 * waiting to become inactive. 1317 */ 1318 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1319 { 1320 unsigned long flags; 1321 int running, queued; 1322 unsigned long ncsw; 1323 struct rq *rq; 1324 1325 for (;;) { 1326 /* 1327 * We do the initial early heuristics without holding 1328 * any task-queue locks at all. We'll only try to get 1329 * the runqueue lock when things look like they will 1330 * work out! 1331 */ 1332 rq = task_rq(p); 1333 1334 /* 1335 * If the task is actively running on another CPU 1336 * still, just relax and busy-wait without holding 1337 * any locks. 1338 * 1339 * NOTE! Since we don't hold any locks, it's not 1340 * even sure that "rq" stays as the right runqueue! 1341 * But we don't care, since "task_running()" will 1342 * return false if the runqueue has changed and p 1343 * is actually now running somewhere else! 1344 */ 1345 while (task_running(rq, p)) { 1346 if (match_state && unlikely(p->state != match_state)) 1347 return 0; 1348 cpu_relax(); 1349 } 1350 1351 /* 1352 * Ok, time to look more closely! We need the rq 1353 * lock now, to be *sure*. If we're wrong, we'll 1354 * just go back and repeat. 1355 */ 1356 rq = task_rq_lock(p, &flags); 1357 trace_sched_wait_task(p); 1358 running = task_running(rq, p); 1359 queued = task_on_rq_queued(p); 1360 ncsw = 0; 1361 if (!match_state || p->state == match_state) 1362 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1363 task_rq_unlock(rq, p, &flags); 1364 1365 /* 1366 * If it changed from the expected state, bail out now. 1367 */ 1368 if (unlikely(!ncsw)) 1369 break; 1370 1371 /* 1372 * Was it really running after all now that we 1373 * checked with the proper locks actually held? 1374 * 1375 * Oops. Go back and try again.. 1376 */ 1377 if (unlikely(running)) { 1378 cpu_relax(); 1379 continue; 1380 } 1381 1382 /* 1383 * It's not enough that it's not actively running, 1384 * it must be off the runqueue _entirely_, and not 1385 * preempted! 1386 * 1387 * So if it was still runnable (but just not actively 1388 * running right now), it's preempted, and we should 1389 * yield - it could be a while. 1390 */ 1391 if (unlikely(queued)) { 1392 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1393 1394 set_current_state(TASK_UNINTERRUPTIBLE); 1395 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1396 continue; 1397 } 1398 1399 /* 1400 * Ahh, all good. It wasn't running, and it wasn't 1401 * runnable, which means that it will never become 1402 * running in the future either. We're all done! 1403 */ 1404 break; 1405 } 1406 1407 return ncsw; 1408 } 1409 1410 /*** 1411 * kick_process - kick a running thread to enter/exit the kernel 1412 * @p: the to-be-kicked thread 1413 * 1414 * Cause a process which is running on another CPU to enter 1415 * kernel-mode, without any delay. (to get signals handled.) 1416 * 1417 * NOTE: this function doesn't have to take the runqueue lock, 1418 * because all it wants to ensure is that the remote task enters 1419 * the kernel. If the IPI races and the task has been migrated 1420 * to another CPU then no harm is done and the purpose has been 1421 * achieved as well. 1422 */ 1423 void kick_process(struct task_struct *p) 1424 { 1425 int cpu; 1426 1427 preempt_disable(); 1428 cpu = task_cpu(p); 1429 if ((cpu != smp_processor_id()) && task_curr(p)) 1430 smp_send_reschedule(cpu); 1431 preempt_enable(); 1432 } 1433 EXPORT_SYMBOL_GPL(kick_process); 1434 1435 /* 1436 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1437 */ 1438 static int select_fallback_rq(int cpu, struct task_struct *p) 1439 { 1440 int nid = cpu_to_node(cpu); 1441 const struct cpumask *nodemask = NULL; 1442 enum { cpuset, possible, fail } state = cpuset; 1443 int dest_cpu; 1444 1445 /* 1446 * If the node that the cpu is on has been offlined, cpu_to_node() 1447 * will return -1. There is no cpu on the node, and we should 1448 * select the cpu on the other node. 1449 */ 1450 if (nid != -1) { 1451 nodemask = cpumask_of_node(nid); 1452 1453 /* Look for allowed, online CPU in same node. */ 1454 for_each_cpu(dest_cpu, nodemask) { 1455 if (!cpu_online(dest_cpu)) 1456 continue; 1457 if (!cpu_active(dest_cpu)) 1458 continue; 1459 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1460 return dest_cpu; 1461 } 1462 } 1463 1464 for (;;) { 1465 /* Any allowed, online CPU? */ 1466 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1467 if (!cpu_online(dest_cpu)) 1468 continue; 1469 if (!cpu_active(dest_cpu)) 1470 continue; 1471 goto out; 1472 } 1473 1474 /* No more Mr. Nice Guy. */ 1475 switch (state) { 1476 case cpuset: 1477 if (IS_ENABLED(CONFIG_CPUSETS)) { 1478 cpuset_cpus_allowed_fallback(p); 1479 state = possible; 1480 break; 1481 } 1482 /* fall-through */ 1483 case possible: 1484 do_set_cpus_allowed(p, cpu_possible_mask); 1485 state = fail; 1486 break; 1487 1488 case fail: 1489 BUG(); 1490 break; 1491 } 1492 } 1493 1494 out: 1495 if (state != cpuset) { 1496 /* 1497 * Don't tell them about moving exiting tasks or 1498 * kernel threads (both mm NULL), since they never 1499 * leave kernel. 1500 */ 1501 if (p->mm && printk_ratelimit()) { 1502 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1503 task_pid_nr(p), p->comm, cpu); 1504 } 1505 } 1506 1507 return dest_cpu; 1508 } 1509 1510 /* 1511 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1512 */ 1513 static inline 1514 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1515 { 1516 lockdep_assert_held(&p->pi_lock); 1517 1518 if (p->nr_cpus_allowed > 1) 1519 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1520 1521 /* 1522 * In order not to call set_task_cpu() on a blocking task we need 1523 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1524 * cpu. 1525 * 1526 * Since this is common to all placement strategies, this lives here. 1527 * 1528 * [ this allows ->select_task() to simply return task_cpu(p) and 1529 * not worry about this generic constraint ] 1530 */ 1531 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1532 !cpu_online(cpu))) 1533 cpu = select_fallback_rq(task_cpu(p), p); 1534 1535 return cpu; 1536 } 1537 1538 static void update_avg(u64 *avg, u64 sample) 1539 { 1540 s64 diff = sample - *avg; 1541 *avg += diff >> 3; 1542 } 1543 1544 #else 1545 1546 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1547 const struct cpumask *new_mask, bool check) 1548 { 1549 return set_cpus_allowed_ptr(p, new_mask); 1550 } 1551 1552 #endif /* CONFIG_SMP */ 1553 1554 static void 1555 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1556 { 1557 #ifdef CONFIG_SCHEDSTATS 1558 struct rq *rq = this_rq(); 1559 1560 #ifdef CONFIG_SMP 1561 int this_cpu = smp_processor_id(); 1562 1563 if (cpu == this_cpu) { 1564 schedstat_inc(rq, ttwu_local); 1565 schedstat_inc(p, se.statistics.nr_wakeups_local); 1566 } else { 1567 struct sched_domain *sd; 1568 1569 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1570 rcu_read_lock(); 1571 for_each_domain(this_cpu, sd) { 1572 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1573 schedstat_inc(sd, ttwu_wake_remote); 1574 break; 1575 } 1576 } 1577 rcu_read_unlock(); 1578 } 1579 1580 if (wake_flags & WF_MIGRATED) 1581 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1582 1583 #endif /* CONFIG_SMP */ 1584 1585 schedstat_inc(rq, ttwu_count); 1586 schedstat_inc(p, se.statistics.nr_wakeups); 1587 1588 if (wake_flags & WF_SYNC) 1589 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1590 1591 #endif /* CONFIG_SCHEDSTATS */ 1592 } 1593 1594 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1595 { 1596 activate_task(rq, p, en_flags); 1597 p->on_rq = TASK_ON_RQ_QUEUED; 1598 1599 /* if a worker is waking up, notify workqueue */ 1600 if (p->flags & PF_WQ_WORKER) 1601 wq_worker_waking_up(p, cpu_of(rq)); 1602 } 1603 1604 /* 1605 * Mark the task runnable and perform wakeup-preemption. 1606 */ 1607 static void 1608 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1609 { 1610 check_preempt_curr(rq, p, wake_flags); 1611 p->state = TASK_RUNNING; 1612 trace_sched_wakeup(p); 1613 1614 #ifdef CONFIG_SMP 1615 if (p->sched_class->task_woken) { 1616 /* 1617 * Our task @p is fully woken up and running; so its safe to 1618 * drop the rq->lock, hereafter rq is only used for statistics. 1619 */ 1620 lockdep_unpin_lock(&rq->lock); 1621 p->sched_class->task_woken(rq, p); 1622 lockdep_pin_lock(&rq->lock); 1623 } 1624 1625 if (rq->idle_stamp) { 1626 u64 delta = rq_clock(rq) - rq->idle_stamp; 1627 u64 max = 2*rq->max_idle_balance_cost; 1628 1629 update_avg(&rq->avg_idle, delta); 1630 1631 if (rq->avg_idle > max) 1632 rq->avg_idle = max; 1633 1634 rq->idle_stamp = 0; 1635 } 1636 #endif 1637 } 1638 1639 static void 1640 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1641 { 1642 lockdep_assert_held(&rq->lock); 1643 1644 #ifdef CONFIG_SMP 1645 if (p->sched_contributes_to_load) 1646 rq->nr_uninterruptible--; 1647 #endif 1648 1649 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1650 ttwu_do_wakeup(rq, p, wake_flags); 1651 } 1652 1653 /* 1654 * Called in case the task @p isn't fully descheduled from its runqueue, 1655 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1656 * since all we need to do is flip p->state to TASK_RUNNING, since 1657 * the task is still ->on_rq. 1658 */ 1659 static int ttwu_remote(struct task_struct *p, int wake_flags) 1660 { 1661 struct rq *rq; 1662 int ret = 0; 1663 1664 rq = __task_rq_lock(p); 1665 if (task_on_rq_queued(p)) { 1666 /* check_preempt_curr() may use rq clock */ 1667 update_rq_clock(rq); 1668 ttwu_do_wakeup(rq, p, wake_flags); 1669 ret = 1; 1670 } 1671 __task_rq_unlock(rq); 1672 1673 return ret; 1674 } 1675 1676 #ifdef CONFIG_SMP 1677 void sched_ttwu_pending(void) 1678 { 1679 struct rq *rq = this_rq(); 1680 struct llist_node *llist = llist_del_all(&rq->wake_list); 1681 struct task_struct *p; 1682 unsigned long flags; 1683 1684 if (!llist) 1685 return; 1686 1687 raw_spin_lock_irqsave(&rq->lock, flags); 1688 lockdep_pin_lock(&rq->lock); 1689 1690 while (llist) { 1691 p = llist_entry(llist, struct task_struct, wake_entry); 1692 llist = llist_next(llist); 1693 ttwu_do_activate(rq, p, 0); 1694 } 1695 1696 lockdep_unpin_lock(&rq->lock); 1697 raw_spin_unlock_irqrestore(&rq->lock, flags); 1698 } 1699 1700 void scheduler_ipi(void) 1701 { 1702 /* 1703 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1704 * TIF_NEED_RESCHED remotely (for the first time) will also send 1705 * this IPI. 1706 */ 1707 preempt_fold_need_resched(); 1708 1709 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1710 return; 1711 1712 /* 1713 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1714 * traditionally all their work was done from the interrupt return 1715 * path. Now that we actually do some work, we need to make sure 1716 * we do call them. 1717 * 1718 * Some archs already do call them, luckily irq_enter/exit nest 1719 * properly. 1720 * 1721 * Arguably we should visit all archs and update all handlers, 1722 * however a fair share of IPIs are still resched only so this would 1723 * somewhat pessimize the simple resched case. 1724 */ 1725 irq_enter(); 1726 sched_ttwu_pending(); 1727 1728 /* 1729 * Check if someone kicked us for doing the nohz idle load balance. 1730 */ 1731 if (unlikely(got_nohz_idle_kick())) { 1732 this_rq()->idle_balance = 1; 1733 raise_softirq_irqoff(SCHED_SOFTIRQ); 1734 } 1735 irq_exit(); 1736 } 1737 1738 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1739 { 1740 struct rq *rq = cpu_rq(cpu); 1741 1742 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1743 if (!set_nr_if_polling(rq->idle)) 1744 smp_send_reschedule(cpu); 1745 else 1746 trace_sched_wake_idle_without_ipi(cpu); 1747 } 1748 } 1749 1750 void wake_up_if_idle(int cpu) 1751 { 1752 struct rq *rq = cpu_rq(cpu); 1753 unsigned long flags; 1754 1755 rcu_read_lock(); 1756 1757 if (!is_idle_task(rcu_dereference(rq->curr))) 1758 goto out; 1759 1760 if (set_nr_if_polling(rq->idle)) { 1761 trace_sched_wake_idle_without_ipi(cpu); 1762 } else { 1763 raw_spin_lock_irqsave(&rq->lock, flags); 1764 if (is_idle_task(rq->curr)) 1765 smp_send_reschedule(cpu); 1766 /* Else cpu is not in idle, do nothing here */ 1767 raw_spin_unlock_irqrestore(&rq->lock, flags); 1768 } 1769 1770 out: 1771 rcu_read_unlock(); 1772 } 1773 1774 bool cpus_share_cache(int this_cpu, int that_cpu) 1775 { 1776 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1777 } 1778 #endif /* CONFIG_SMP */ 1779 1780 static void ttwu_queue(struct task_struct *p, int cpu) 1781 { 1782 struct rq *rq = cpu_rq(cpu); 1783 1784 #if defined(CONFIG_SMP) 1785 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1786 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1787 ttwu_queue_remote(p, cpu); 1788 return; 1789 } 1790 #endif 1791 1792 raw_spin_lock(&rq->lock); 1793 lockdep_pin_lock(&rq->lock); 1794 ttwu_do_activate(rq, p, 0); 1795 lockdep_unpin_lock(&rq->lock); 1796 raw_spin_unlock(&rq->lock); 1797 } 1798 1799 /* 1800 * Notes on Program-Order guarantees on SMP systems. 1801 * 1802 * MIGRATION 1803 * 1804 * The basic program-order guarantee on SMP systems is that when a task [t] 1805 * migrates, all its activity on its old cpu [c0] happens-before any subsequent 1806 * execution on its new cpu [c1]. 1807 * 1808 * For migration (of runnable tasks) this is provided by the following means: 1809 * 1810 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1811 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1812 * rq(c1)->lock (if not at the same time, then in that order). 1813 * C) LOCK of the rq(c1)->lock scheduling in task 1814 * 1815 * Transitivity guarantees that B happens after A and C after B. 1816 * Note: we only require RCpc transitivity. 1817 * Note: the cpu doing B need not be c0 or c1 1818 * 1819 * Example: 1820 * 1821 * CPU0 CPU1 CPU2 1822 * 1823 * LOCK rq(0)->lock 1824 * sched-out X 1825 * sched-in Y 1826 * UNLOCK rq(0)->lock 1827 * 1828 * LOCK rq(0)->lock // orders against CPU0 1829 * dequeue X 1830 * UNLOCK rq(0)->lock 1831 * 1832 * LOCK rq(1)->lock 1833 * enqueue X 1834 * UNLOCK rq(1)->lock 1835 * 1836 * LOCK rq(1)->lock // orders against CPU2 1837 * sched-out Z 1838 * sched-in X 1839 * UNLOCK rq(1)->lock 1840 * 1841 * 1842 * BLOCKING -- aka. SLEEP + WAKEUP 1843 * 1844 * For blocking we (obviously) need to provide the same guarantee as for 1845 * migration. However the means are completely different as there is no lock 1846 * chain to provide order. Instead we do: 1847 * 1848 * 1) smp_store_release(X->on_cpu, 0) 1849 * 2) smp_cond_acquire(!X->on_cpu) 1850 * 1851 * Example: 1852 * 1853 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1854 * 1855 * LOCK rq(0)->lock LOCK X->pi_lock 1856 * dequeue X 1857 * sched-out X 1858 * smp_store_release(X->on_cpu, 0); 1859 * 1860 * smp_cond_acquire(!X->on_cpu); 1861 * X->state = WAKING 1862 * set_task_cpu(X,2) 1863 * 1864 * LOCK rq(2)->lock 1865 * enqueue X 1866 * X->state = RUNNING 1867 * UNLOCK rq(2)->lock 1868 * 1869 * LOCK rq(2)->lock // orders against CPU1 1870 * sched-out Z 1871 * sched-in X 1872 * UNLOCK rq(2)->lock 1873 * 1874 * UNLOCK X->pi_lock 1875 * UNLOCK rq(0)->lock 1876 * 1877 * 1878 * However; for wakeups there is a second guarantee we must provide, namely we 1879 * must observe the state that lead to our wakeup. That is, not only must our 1880 * task observe its own prior state, it must also observe the stores prior to 1881 * its wakeup. 1882 * 1883 * This means that any means of doing remote wakeups must order the CPU doing 1884 * the wakeup against the CPU the task is going to end up running on. This, 1885 * however, is already required for the regular Program-Order guarantee above, 1886 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire). 1887 * 1888 */ 1889 1890 /** 1891 * try_to_wake_up - wake up a thread 1892 * @p: the thread to be awakened 1893 * @state: the mask of task states that can be woken 1894 * @wake_flags: wake modifier flags (WF_*) 1895 * 1896 * Put it on the run-queue if it's not already there. The "current" 1897 * thread is always on the run-queue (except when the actual 1898 * re-schedule is in progress), and as such you're allowed to do 1899 * the simpler "current->state = TASK_RUNNING" to mark yourself 1900 * runnable without the overhead of this. 1901 * 1902 * Return: %true if @p was woken up, %false if it was already running. 1903 * or @state didn't match @p's state. 1904 */ 1905 static int 1906 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1907 { 1908 unsigned long flags; 1909 int cpu, success = 0; 1910 1911 /* 1912 * If we are going to wake up a thread waiting for CONDITION we 1913 * need to ensure that CONDITION=1 done by the caller can not be 1914 * reordered with p->state check below. This pairs with mb() in 1915 * set_current_state() the waiting thread does. 1916 */ 1917 smp_mb__before_spinlock(); 1918 raw_spin_lock_irqsave(&p->pi_lock, flags); 1919 if (!(p->state & state)) 1920 goto out; 1921 1922 trace_sched_waking(p); 1923 1924 success = 1; /* we're going to change ->state */ 1925 cpu = task_cpu(p); 1926 1927 if (p->on_rq && ttwu_remote(p, wake_flags)) 1928 goto stat; 1929 1930 #ifdef CONFIG_SMP 1931 /* 1932 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 1933 * possible to, falsely, observe p->on_cpu == 0. 1934 * 1935 * One must be running (->on_cpu == 1) in order to remove oneself 1936 * from the runqueue. 1937 * 1938 * [S] ->on_cpu = 1; [L] ->on_rq 1939 * UNLOCK rq->lock 1940 * RMB 1941 * LOCK rq->lock 1942 * [S] ->on_rq = 0; [L] ->on_cpu 1943 * 1944 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 1945 * from the consecutive calls to schedule(); the first switching to our 1946 * task, the second putting it to sleep. 1947 */ 1948 smp_rmb(); 1949 1950 /* 1951 * If the owning (remote) cpu is still in the middle of schedule() with 1952 * this task as prev, wait until its done referencing the task. 1953 * 1954 * Pairs with the smp_store_release() in finish_lock_switch(). 1955 * 1956 * This ensures that tasks getting woken will be fully ordered against 1957 * their previous state and preserve Program Order. 1958 */ 1959 smp_cond_acquire(!p->on_cpu); 1960 1961 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1962 p->state = TASK_WAKING; 1963 1964 if (p->sched_class->task_waking) 1965 p->sched_class->task_waking(p); 1966 1967 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1968 if (task_cpu(p) != cpu) { 1969 wake_flags |= WF_MIGRATED; 1970 set_task_cpu(p, cpu); 1971 } 1972 #endif /* CONFIG_SMP */ 1973 1974 ttwu_queue(p, cpu); 1975 stat: 1976 if (schedstat_enabled()) 1977 ttwu_stat(p, cpu, wake_flags); 1978 out: 1979 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1980 1981 return success; 1982 } 1983 1984 /** 1985 * try_to_wake_up_local - try to wake up a local task with rq lock held 1986 * @p: the thread to be awakened 1987 * 1988 * Put @p on the run-queue if it's not already there. The caller must 1989 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1990 * the current task. 1991 */ 1992 static void try_to_wake_up_local(struct task_struct *p) 1993 { 1994 struct rq *rq = task_rq(p); 1995 1996 if (WARN_ON_ONCE(rq != this_rq()) || 1997 WARN_ON_ONCE(p == current)) 1998 return; 1999 2000 lockdep_assert_held(&rq->lock); 2001 2002 if (!raw_spin_trylock(&p->pi_lock)) { 2003 /* 2004 * This is OK, because current is on_cpu, which avoids it being 2005 * picked for load-balance and preemption/IRQs are still 2006 * disabled avoiding further scheduler activity on it and we've 2007 * not yet picked a replacement task. 2008 */ 2009 lockdep_unpin_lock(&rq->lock); 2010 raw_spin_unlock(&rq->lock); 2011 raw_spin_lock(&p->pi_lock); 2012 raw_spin_lock(&rq->lock); 2013 lockdep_pin_lock(&rq->lock); 2014 } 2015 2016 if (!(p->state & TASK_NORMAL)) 2017 goto out; 2018 2019 trace_sched_waking(p); 2020 2021 if (!task_on_rq_queued(p)) 2022 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2023 2024 ttwu_do_wakeup(rq, p, 0); 2025 if (schedstat_enabled()) 2026 ttwu_stat(p, smp_processor_id(), 0); 2027 out: 2028 raw_spin_unlock(&p->pi_lock); 2029 } 2030 2031 /** 2032 * wake_up_process - Wake up a specific process 2033 * @p: The process to be woken up. 2034 * 2035 * Attempt to wake up the nominated process and move it to the set of runnable 2036 * processes. 2037 * 2038 * Return: 1 if the process was woken up, 0 if it was already running. 2039 * 2040 * It may be assumed that this function implies a write memory barrier before 2041 * changing the task state if and only if any tasks are woken up. 2042 */ 2043 int wake_up_process(struct task_struct *p) 2044 { 2045 return try_to_wake_up(p, TASK_NORMAL, 0); 2046 } 2047 EXPORT_SYMBOL(wake_up_process); 2048 2049 int wake_up_state(struct task_struct *p, unsigned int state) 2050 { 2051 return try_to_wake_up(p, state, 0); 2052 } 2053 2054 /* 2055 * This function clears the sched_dl_entity static params. 2056 */ 2057 void __dl_clear_params(struct task_struct *p) 2058 { 2059 struct sched_dl_entity *dl_se = &p->dl; 2060 2061 dl_se->dl_runtime = 0; 2062 dl_se->dl_deadline = 0; 2063 dl_se->dl_period = 0; 2064 dl_se->flags = 0; 2065 dl_se->dl_bw = 0; 2066 2067 dl_se->dl_throttled = 0; 2068 dl_se->dl_yielded = 0; 2069 } 2070 2071 /* 2072 * Perform scheduler related setup for a newly forked process p. 2073 * p is forked by current. 2074 * 2075 * __sched_fork() is basic setup used by init_idle() too: 2076 */ 2077 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2078 { 2079 p->on_rq = 0; 2080 2081 p->se.on_rq = 0; 2082 p->se.exec_start = 0; 2083 p->se.sum_exec_runtime = 0; 2084 p->se.prev_sum_exec_runtime = 0; 2085 p->se.nr_migrations = 0; 2086 p->se.vruntime = 0; 2087 INIT_LIST_HEAD(&p->se.group_node); 2088 2089 #ifdef CONFIG_FAIR_GROUP_SCHED 2090 p->se.cfs_rq = NULL; 2091 #endif 2092 2093 #ifdef CONFIG_SCHEDSTATS 2094 /* Even if schedstat is disabled, there should not be garbage */ 2095 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2096 #endif 2097 2098 RB_CLEAR_NODE(&p->dl.rb_node); 2099 init_dl_task_timer(&p->dl); 2100 __dl_clear_params(p); 2101 2102 INIT_LIST_HEAD(&p->rt.run_list); 2103 p->rt.timeout = 0; 2104 p->rt.time_slice = sched_rr_timeslice; 2105 p->rt.on_rq = 0; 2106 p->rt.on_list = 0; 2107 2108 #ifdef CONFIG_PREEMPT_NOTIFIERS 2109 INIT_HLIST_HEAD(&p->preempt_notifiers); 2110 #endif 2111 2112 #ifdef CONFIG_NUMA_BALANCING 2113 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2114 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2115 p->mm->numa_scan_seq = 0; 2116 } 2117 2118 if (clone_flags & CLONE_VM) 2119 p->numa_preferred_nid = current->numa_preferred_nid; 2120 else 2121 p->numa_preferred_nid = -1; 2122 2123 p->node_stamp = 0ULL; 2124 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2125 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2126 p->numa_work.next = &p->numa_work; 2127 p->numa_faults = NULL; 2128 p->last_task_numa_placement = 0; 2129 p->last_sum_exec_runtime = 0; 2130 2131 p->numa_group = NULL; 2132 #endif /* CONFIG_NUMA_BALANCING */ 2133 } 2134 2135 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2136 2137 #ifdef CONFIG_NUMA_BALANCING 2138 2139 void set_numabalancing_state(bool enabled) 2140 { 2141 if (enabled) 2142 static_branch_enable(&sched_numa_balancing); 2143 else 2144 static_branch_disable(&sched_numa_balancing); 2145 } 2146 2147 #ifdef CONFIG_PROC_SYSCTL 2148 int sysctl_numa_balancing(struct ctl_table *table, int write, 2149 void __user *buffer, size_t *lenp, loff_t *ppos) 2150 { 2151 struct ctl_table t; 2152 int err; 2153 int state = static_branch_likely(&sched_numa_balancing); 2154 2155 if (write && !capable(CAP_SYS_ADMIN)) 2156 return -EPERM; 2157 2158 t = *table; 2159 t.data = &state; 2160 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2161 if (err < 0) 2162 return err; 2163 if (write) 2164 set_numabalancing_state(state); 2165 return err; 2166 } 2167 #endif 2168 #endif 2169 2170 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2171 2172 #ifdef CONFIG_SCHEDSTATS 2173 static void set_schedstats(bool enabled) 2174 { 2175 if (enabled) 2176 static_branch_enable(&sched_schedstats); 2177 else 2178 static_branch_disable(&sched_schedstats); 2179 } 2180 2181 void force_schedstat_enabled(void) 2182 { 2183 if (!schedstat_enabled()) { 2184 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2185 static_branch_enable(&sched_schedstats); 2186 } 2187 } 2188 2189 static int __init setup_schedstats(char *str) 2190 { 2191 int ret = 0; 2192 if (!str) 2193 goto out; 2194 2195 if (!strcmp(str, "enable")) { 2196 set_schedstats(true); 2197 ret = 1; 2198 } else if (!strcmp(str, "disable")) { 2199 set_schedstats(false); 2200 ret = 1; 2201 } 2202 out: 2203 if (!ret) 2204 pr_warn("Unable to parse schedstats=\n"); 2205 2206 return ret; 2207 } 2208 __setup("schedstats=", setup_schedstats); 2209 2210 #ifdef CONFIG_PROC_SYSCTL 2211 int sysctl_schedstats(struct ctl_table *table, int write, 2212 void __user *buffer, size_t *lenp, loff_t *ppos) 2213 { 2214 struct ctl_table t; 2215 int err; 2216 int state = static_branch_likely(&sched_schedstats); 2217 2218 if (write && !capable(CAP_SYS_ADMIN)) 2219 return -EPERM; 2220 2221 t = *table; 2222 t.data = &state; 2223 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2224 if (err < 0) 2225 return err; 2226 if (write) 2227 set_schedstats(state); 2228 return err; 2229 } 2230 #endif 2231 #endif 2232 2233 /* 2234 * fork()/clone()-time setup: 2235 */ 2236 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2237 { 2238 unsigned long flags; 2239 int cpu = get_cpu(); 2240 2241 __sched_fork(clone_flags, p); 2242 /* 2243 * We mark the process as running here. This guarantees that 2244 * nobody will actually run it, and a signal or other external 2245 * event cannot wake it up and insert it on the runqueue either. 2246 */ 2247 p->state = TASK_RUNNING; 2248 2249 /* 2250 * Make sure we do not leak PI boosting priority to the child. 2251 */ 2252 p->prio = current->normal_prio; 2253 2254 /* 2255 * Revert to default priority/policy on fork if requested. 2256 */ 2257 if (unlikely(p->sched_reset_on_fork)) { 2258 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2259 p->policy = SCHED_NORMAL; 2260 p->static_prio = NICE_TO_PRIO(0); 2261 p->rt_priority = 0; 2262 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2263 p->static_prio = NICE_TO_PRIO(0); 2264 2265 p->prio = p->normal_prio = __normal_prio(p); 2266 set_load_weight(p); 2267 2268 /* 2269 * We don't need the reset flag anymore after the fork. It has 2270 * fulfilled its duty: 2271 */ 2272 p->sched_reset_on_fork = 0; 2273 } 2274 2275 if (dl_prio(p->prio)) { 2276 put_cpu(); 2277 return -EAGAIN; 2278 } else if (rt_prio(p->prio)) { 2279 p->sched_class = &rt_sched_class; 2280 } else { 2281 p->sched_class = &fair_sched_class; 2282 } 2283 2284 if (p->sched_class->task_fork) 2285 p->sched_class->task_fork(p); 2286 2287 /* 2288 * The child is not yet in the pid-hash so no cgroup attach races, 2289 * and the cgroup is pinned to this child due to cgroup_fork() 2290 * is ran before sched_fork(). 2291 * 2292 * Silence PROVE_RCU. 2293 */ 2294 raw_spin_lock_irqsave(&p->pi_lock, flags); 2295 set_task_cpu(p, cpu); 2296 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2297 2298 #ifdef CONFIG_SCHED_INFO 2299 if (likely(sched_info_on())) 2300 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2301 #endif 2302 #if defined(CONFIG_SMP) 2303 p->on_cpu = 0; 2304 #endif 2305 init_task_preempt_count(p); 2306 #ifdef CONFIG_SMP 2307 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2308 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2309 #endif 2310 2311 put_cpu(); 2312 return 0; 2313 } 2314 2315 unsigned long to_ratio(u64 period, u64 runtime) 2316 { 2317 if (runtime == RUNTIME_INF) 2318 return 1ULL << 20; 2319 2320 /* 2321 * Doing this here saves a lot of checks in all 2322 * the calling paths, and returning zero seems 2323 * safe for them anyway. 2324 */ 2325 if (period == 0) 2326 return 0; 2327 2328 return div64_u64(runtime << 20, period); 2329 } 2330 2331 #ifdef CONFIG_SMP 2332 inline struct dl_bw *dl_bw_of(int i) 2333 { 2334 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2335 "sched RCU must be held"); 2336 return &cpu_rq(i)->rd->dl_bw; 2337 } 2338 2339 static inline int dl_bw_cpus(int i) 2340 { 2341 struct root_domain *rd = cpu_rq(i)->rd; 2342 int cpus = 0; 2343 2344 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2345 "sched RCU must be held"); 2346 for_each_cpu_and(i, rd->span, cpu_active_mask) 2347 cpus++; 2348 2349 return cpus; 2350 } 2351 #else 2352 inline struct dl_bw *dl_bw_of(int i) 2353 { 2354 return &cpu_rq(i)->dl.dl_bw; 2355 } 2356 2357 static inline int dl_bw_cpus(int i) 2358 { 2359 return 1; 2360 } 2361 #endif 2362 2363 /* 2364 * We must be sure that accepting a new task (or allowing changing the 2365 * parameters of an existing one) is consistent with the bandwidth 2366 * constraints. If yes, this function also accordingly updates the currently 2367 * allocated bandwidth to reflect the new situation. 2368 * 2369 * This function is called while holding p's rq->lock. 2370 * 2371 * XXX we should delay bw change until the task's 0-lag point, see 2372 * __setparam_dl(). 2373 */ 2374 static int dl_overflow(struct task_struct *p, int policy, 2375 const struct sched_attr *attr) 2376 { 2377 2378 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2379 u64 period = attr->sched_period ?: attr->sched_deadline; 2380 u64 runtime = attr->sched_runtime; 2381 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2382 int cpus, err = -1; 2383 2384 if (new_bw == p->dl.dl_bw) 2385 return 0; 2386 2387 /* 2388 * Either if a task, enters, leave, or stays -deadline but changes 2389 * its parameters, we may need to update accordingly the total 2390 * allocated bandwidth of the container. 2391 */ 2392 raw_spin_lock(&dl_b->lock); 2393 cpus = dl_bw_cpus(task_cpu(p)); 2394 if (dl_policy(policy) && !task_has_dl_policy(p) && 2395 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2396 __dl_add(dl_b, new_bw); 2397 err = 0; 2398 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2399 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2400 __dl_clear(dl_b, p->dl.dl_bw); 2401 __dl_add(dl_b, new_bw); 2402 err = 0; 2403 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2404 __dl_clear(dl_b, p->dl.dl_bw); 2405 err = 0; 2406 } 2407 raw_spin_unlock(&dl_b->lock); 2408 2409 return err; 2410 } 2411 2412 extern void init_dl_bw(struct dl_bw *dl_b); 2413 2414 /* 2415 * wake_up_new_task - wake up a newly created task for the first time. 2416 * 2417 * This function will do some initial scheduler statistics housekeeping 2418 * that must be done for every newly created context, then puts the task 2419 * on the runqueue and wakes it. 2420 */ 2421 void wake_up_new_task(struct task_struct *p) 2422 { 2423 unsigned long flags; 2424 struct rq *rq; 2425 2426 raw_spin_lock_irqsave(&p->pi_lock, flags); 2427 /* Initialize new task's runnable average */ 2428 init_entity_runnable_average(&p->se); 2429 #ifdef CONFIG_SMP 2430 /* 2431 * Fork balancing, do it here and not earlier because: 2432 * - cpus_allowed can change in the fork path 2433 * - any previously selected cpu might disappear through hotplug 2434 */ 2435 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2436 #endif 2437 2438 rq = __task_rq_lock(p); 2439 activate_task(rq, p, 0); 2440 p->on_rq = TASK_ON_RQ_QUEUED; 2441 trace_sched_wakeup_new(p); 2442 check_preempt_curr(rq, p, WF_FORK); 2443 #ifdef CONFIG_SMP 2444 if (p->sched_class->task_woken) { 2445 /* 2446 * Nothing relies on rq->lock after this, so its fine to 2447 * drop it. 2448 */ 2449 lockdep_unpin_lock(&rq->lock); 2450 p->sched_class->task_woken(rq, p); 2451 lockdep_pin_lock(&rq->lock); 2452 } 2453 #endif 2454 task_rq_unlock(rq, p, &flags); 2455 } 2456 2457 #ifdef CONFIG_PREEMPT_NOTIFIERS 2458 2459 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2460 2461 void preempt_notifier_inc(void) 2462 { 2463 static_key_slow_inc(&preempt_notifier_key); 2464 } 2465 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2466 2467 void preempt_notifier_dec(void) 2468 { 2469 static_key_slow_dec(&preempt_notifier_key); 2470 } 2471 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2472 2473 /** 2474 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2475 * @notifier: notifier struct to register 2476 */ 2477 void preempt_notifier_register(struct preempt_notifier *notifier) 2478 { 2479 if (!static_key_false(&preempt_notifier_key)) 2480 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2481 2482 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2483 } 2484 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2485 2486 /** 2487 * preempt_notifier_unregister - no longer interested in preemption notifications 2488 * @notifier: notifier struct to unregister 2489 * 2490 * This is *not* safe to call from within a preemption notifier. 2491 */ 2492 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2493 { 2494 hlist_del(¬ifier->link); 2495 } 2496 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2497 2498 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2499 { 2500 struct preempt_notifier *notifier; 2501 2502 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2503 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2504 } 2505 2506 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2507 { 2508 if (static_key_false(&preempt_notifier_key)) 2509 __fire_sched_in_preempt_notifiers(curr); 2510 } 2511 2512 static void 2513 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2514 struct task_struct *next) 2515 { 2516 struct preempt_notifier *notifier; 2517 2518 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2519 notifier->ops->sched_out(notifier, next); 2520 } 2521 2522 static __always_inline void 2523 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2524 struct task_struct *next) 2525 { 2526 if (static_key_false(&preempt_notifier_key)) 2527 __fire_sched_out_preempt_notifiers(curr, next); 2528 } 2529 2530 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2531 2532 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2533 { 2534 } 2535 2536 static inline void 2537 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2538 struct task_struct *next) 2539 { 2540 } 2541 2542 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2543 2544 /** 2545 * prepare_task_switch - prepare to switch tasks 2546 * @rq: the runqueue preparing to switch 2547 * @prev: the current task that is being switched out 2548 * @next: the task we are going to switch to. 2549 * 2550 * This is called with the rq lock held and interrupts off. It must 2551 * be paired with a subsequent finish_task_switch after the context 2552 * switch. 2553 * 2554 * prepare_task_switch sets up locking and calls architecture specific 2555 * hooks. 2556 */ 2557 static inline void 2558 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2559 struct task_struct *next) 2560 { 2561 sched_info_switch(rq, prev, next); 2562 perf_event_task_sched_out(prev, next); 2563 fire_sched_out_preempt_notifiers(prev, next); 2564 prepare_lock_switch(rq, next); 2565 prepare_arch_switch(next); 2566 } 2567 2568 /** 2569 * finish_task_switch - clean up after a task-switch 2570 * @prev: the thread we just switched away from. 2571 * 2572 * finish_task_switch must be called after the context switch, paired 2573 * with a prepare_task_switch call before the context switch. 2574 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2575 * and do any other architecture-specific cleanup actions. 2576 * 2577 * Note that we may have delayed dropping an mm in context_switch(). If 2578 * so, we finish that here outside of the runqueue lock. (Doing it 2579 * with the lock held can cause deadlocks; see schedule() for 2580 * details.) 2581 * 2582 * The context switch have flipped the stack from under us and restored the 2583 * local variables which were saved when this task called schedule() in the 2584 * past. prev == current is still correct but we need to recalculate this_rq 2585 * because prev may have moved to another CPU. 2586 */ 2587 static struct rq *finish_task_switch(struct task_struct *prev) 2588 __releases(rq->lock) 2589 { 2590 struct rq *rq = this_rq(); 2591 struct mm_struct *mm = rq->prev_mm; 2592 long prev_state; 2593 2594 /* 2595 * The previous task will have left us with a preempt_count of 2 2596 * because it left us after: 2597 * 2598 * schedule() 2599 * preempt_disable(); // 1 2600 * __schedule() 2601 * raw_spin_lock_irq(&rq->lock) // 2 2602 * 2603 * Also, see FORK_PREEMPT_COUNT. 2604 */ 2605 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2606 "corrupted preempt_count: %s/%d/0x%x\n", 2607 current->comm, current->pid, preempt_count())) 2608 preempt_count_set(FORK_PREEMPT_COUNT); 2609 2610 rq->prev_mm = NULL; 2611 2612 /* 2613 * A task struct has one reference for the use as "current". 2614 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2615 * schedule one last time. The schedule call will never return, and 2616 * the scheduled task must drop that reference. 2617 * 2618 * We must observe prev->state before clearing prev->on_cpu (in 2619 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2620 * running on another CPU and we could rave with its RUNNING -> DEAD 2621 * transition, resulting in a double drop. 2622 */ 2623 prev_state = prev->state; 2624 vtime_task_switch(prev); 2625 perf_event_task_sched_in(prev, current); 2626 finish_lock_switch(rq, prev); 2627 finish_arch_post_lock_switch(); 2628 2629 fire_sched_in_preempt_notifiers(current); 2630 if (mm) 2631 mmdrop(mm); 2632 if (unlikely(prev_state == TASK_DEAD)) { 2633 if (prev->sched_class->task_dead) 2634 prev->sched_class->task_dead(prev); 2635 2636 /* 2637 * Remove function-return probe instances associated with this 2638 * task and put them back on the free list. 2639 */ 2640 kprobe_flush_task(prev); 2641 put_task_struct(prev); 2642 } 2643 2644 tick_nohz_task_switch(); 2645 return rq; 2646 } 2647 2648 #ifdef CONFIG_SMP 2649 2650 /* rq->lock is NOT held, but preemption is disabled */ 2651 static void __balance_callback(struct rq *rq) 2652 { 2653 struct callback_head *head, *next; 2654 void (*func)(struct rq *rq); 2655 unsigned long flags; 2656 2657 raw_spin_lock_irqsave(&rq->lock, flags); 2658 head = rq->balance_callback; 2659 rq->balance_callback = NULL; 2660 while (head) { 2661 func = (void (*)(struct rq *))head->func; 2662 next = head->next; 2663 head->next = NULL; 2664 head = next; 2665 2666 func(rq); 2667 } 2668 raw_spin_unlock_irqrestore(&rq->lock, flags); 2669 } 2670 2671 static inline void balance_callback(struct rq *rq) 2672 { 2673 if (unlikely(rq->balance_callback)) 2674 __balance_callback(rq); 2675 } 2676 2677 #else 2678 2679 static inline void balance_callback(struct rq *rq) 2680 { 2681 } 2682 2683 #endif 2684 2685 /** 2686 * schedule_tail - first thing a freshly forked thread must call. 2687 * @prev: the thread we just switched away from. 2688 */ 2689 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2690 __releases(rq->lock) 2691 { 2692 struct rq *rq; 2693 2694 /* 2695 * New tasks start with FORK_PREEMPT_COUNT, see there and 2696 * finish_task_switch() for details. 2697 * 2698 * finish_task_switch() will drop rq->lock() and lower preempt_count 2699 * and the preempt_enable() will end up enabling preemption (on 2700 * PREEMPT_COUNT kernels). 2701 */ 2702 2703 rq = finish_task_switch(prev); 2704 balance_callback(rq); 2705 preempt_enable(); 2706 2707 if (current->set_child_tid) 2708 put_user(task_pid_vnr(current), current->set_child_tid); 2709 } 2710 2711 /* 2712 * context_switch - switch to the new MM and the new thread's register state. 2713 */ 2714 static __always_inline struct rq * 2715 context_switch(struct rq *rq, struct task_struct *prev, 2716 struct task_struct *next) 2717 { 2718 struct mm_struct *mm, *oldmm; 2719 2720 prepare_task_switch(rq, prev, next); 2721 2722 mm = next->mm; 2723 oldmm = prev->active_mm; 2724 /* 2725 * For paravirt, this is coupled with an exit in switch_to to 2726 * combine the page table reload and the switch backend into 2727 * one hypercall. 2728 */ 2729 arch_start_context_switch(prev); 2730 2731 if (!mm) { 2732 next->active_mm = oldmm; 2733 atomic_inc(&oldmm->mm_count); 2734 enter_lazy_tlb(oldmm, next); 2735 } else 2736 switch_mm(oldmm, mm, next); 2737 2738 if (!prev->mm) { 2739 prev->active_mm = NULL; 2740 rq->prev_mm = oldmm; 2741 } 2742 /* 2743 * Since the runqueue lock will be released by the next 2744 * task (which is an invalid locking op but in the case 2745 * of the scheduler it's an obvious special-case), so we 2746 * do an early lockdep release here: 2747 */ 2748 lockdep_unpin_lock(&rq->lock); 2749 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2750 2751 /* Here we just switch the register state and the stack. */ 2752 switch_to(prev, next, prev); 2753 barrier(); 2754 2755 return finish_task_switch(prev); 2756 } 2757 2758 /* 2759 * nr_running and nr_context_switches: 2760 * 2761 * externally visible scheduler statistics: current number of runnable 2762 * threads, total number of context switches performed since bootup. 2763 */ 2764 unsigned long nr_running(void) 2765 { 2766 unsigned long i, sum = 0; 2767 2768 for_each_online_cpu(i) 2769 sum += cpu_rq(i)->nr_running; 2770 2771 return sum; 2772 } 2773 2774 /* 2775 * Check if only the current task is running on the cpu. 2776 * 2777 * Caution: this function does not check that the caller has disabled 2778 * preemption, thus the result might have a time-of-check-to-time-of-use 2779 * race. The caller is responsible to use it correctly, for example: 2780 * 2781 * - from a non-preemptable section (of course) 2782 * 2783 * - from a thread that is bound to a single CPU 2784 * 2785 * - in a loop with very short iterations (e.g. a polling loop) 2786 */ 2787 bool single_task_running(void) 2788 { 2789 return raw_rq()->nr_running == 1; 2790 } 2791 EXPORT_SYMBOL(single_task_running); 2792 2793 unsigned long long nr_context_switches(void) 2794 { 2795 int i; 2796 unsigned long long sum = 0; 2797 2798 for_each_possible_cpu(i) 2799 sum += cpu_rq(i)->nr_switches; 2800 2801 return sum; 2802 } 2803 2804 unsigned long nr_iowait(void) 2805 { 2806 unsigned long i, sum = 0; 2807 2808 for_each_possible_cpu(i) 2809 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2810 2811 return sum; 2812 } 2813 2814 unsigned long nr_iowait_cpu(int cpu) 2815 { 2816 struct rq *this = cpu_rq(cpu); 2817 return atomic_read(&this->nr_iowait); 2818 } 2819 2820 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2821 { 2822 struct rq *rq = this_rq(); 2823 *nr_waiters = atomic_read(&rq->nr_iowait); 2824 *load = rq->load.weight; 2825 } 2826 2827 #ifdef CONFIG_SMP 2828 2829 /* 2830 * sched_exec - execve() is a valuable balancing opportunity, because at 2831 * this point the task has the smallest effective memory and cache footprint. 2832 */ 2833 void sched_exec(void) 2834 { 2835 struct task_struct *p = current; 2836 unsigned long flags; 2837 int dest_cpu; 2838 2839 raw_spin_lock_irqsave(&p->pi_lock, flags); 2840 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2841 if (dest_cpu == smp_processor_id()) 2842 goto unlock; 2843 2844 if (likely(cpu_active(dest_cpu))) { 2845 struct migration_arg arg = { p, dest_cpu }; 2846 2847 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2848 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2849 return; 2850 } 2851 unlock: 2852 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2853 } 2854 2855 #endif 2856 2857 DEFINE_PER_CPU(struct kernel_stat, kstat); 2858 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2859 2860 EXPORT_PER_CPU_SYMBOL(kstat); 2861 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2862 2863 /* 2864 * Return accounted runtime for the task. 2865 * In case the task is currently running, return the runtime plus current's 2866 * pending runtime that have not been accounted yet. 2867 */ 2868 unsigned long long task_sched_runtime(struct task_struct *p) 2869 { 2870 unsigned long flags; 2871 struct rq *rq; 2872 u64 ns; 2873 2874 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2875 /* 2876 * 64-bit doesn't need locks to atomically read a 64bit value. 2877 * So we have a optimization chance when the task's delta_exec is 0. 2878 * Reading ->on_cpu is racy, but this is ok. 2879 * 2880 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2881 * If we race with it entering cpu, unaccounted time is 0. This is 2882 * indistinguishable from the read occurring a few cycles earlier. 2883 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2884 * been accounted, so we're correct here as well. 2885 */ 2886 if (!p->on_cpu || !task_on_rq_queued(p)) 2887 return p->se.sum_exec_runtime; 2888 #endif 2889 2890 rq = task_rq_lock(p, &flags); 2891 /* 2892 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2893 * project cycles that may never be accounted to this 2894 * thread, breaking clock_gettime(). 2895 */ 2896 if (task_current(rq, p) && task_on_rq_queued(p)) { 2897 update_rq_clock(rq); 2898 p->sched_class->update_curr(rq); 2899 } 2900 ns = p->se.sum_exec_runtime; 2901 task_rq_unlock(rq, p, &flags); 2902 2903 return ns; 2904 } 2905 2906 /* 2907 * This function gets called by the timer code, with HZ frequency. 2908 * We call it with interrupts disabled. 2909 */ 2910 void scheduler_tick(void) 2911 { 2912 int cpu = smp_processor_id(); 2913 struct rq *rq = cpu_rq(cpu); 2914 struct task_struct *curr = rq->curr; 2915 2916 sched_clock_tick(); 2917 2918 raw_spin_lock(&rq->lock); 2919 update_rq_clock(rq); 2920 curr->sched_class->task_tick(rq, curr, 0); 2921 update_cpu_load_active(rq); 2922 calc_global_load_tick(rq); 2923 raw_spin_unlock(&rq->lock); 2924 2925 perf_event_task_tick(); 2926 2927 #ifdef CONFIG_SMP 2928 rq->idle_balance = idle_cpu(cpu); 2929 trigger_load_balance(rq); 2930 #endif 2931 rq_last_tick_reset(rq); 2932 } 2933 2934 #ifdef CONFIG_NO_HZ_FULL 2935 /** 2936 * scheduler_tick_max_deferment 2937 * 2938 * Keep at least one tick per second when a single 2939 * active task is running because the scheduler doesn't 2940 * yet completely support full dynticks environment. 2941 * 2942 * This makes sure that uptime, CFS vruntime, load 2943 * balancing, etc... continue to move forward, even 2944 * with a very low granularity. 2945 * 2946 * Return: Maximum deferment in nanoseconds. 2947 */ 2948 u64 scheduler_tick_max_deferment(void) 2949 { 2950 struct rq *rq = this_rq(); 2951 unsigned long next, now = READ_ONCE(jiffies); 2952 2953 next = rq->last_sched_tick + HZ; 2954 2955 if (time_before_eq(next, now)) 2956 return 0; 2957 2958 return jiffies_to_nsecs(next - now); 2959 } 2960 #endif 2961 2962 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2963 defined(CONFIG_PREEMPT_TRACER)) 2964 2965 void preempt_count_add(int val) 2966 { 2967 #ifdef CONFIG_DEBUG_PREEMPT 2968 /* 2969 * Underflow? 2970 */ 2971 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2972 return; 2973 #endif 2974 __preempt_count_add(val); 2975 #ifdef CONFIG_DEBUG_PREEMPT 2976 /* 2977 * Spinlock count overflowing soon? 2978 */ 2979 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2980 PREEMPT_MASK - 10); 2981 #endif 2982 if (preempt_count() == val) { 2983 unsigned long ip = get_lock_parent_ip(); 2984 #ifdef CONFIG_DEBUG_PREEMPT 2985 current->preempt_disable_ip = ip; 2986 #endif 2987 trace_preempt_off(CALLER_ADDR0, ip); 2988 } 2989 } 2990 EXPORT_SYMBOL(preempt_count_add); 2991 NOKPROBE_SYMBOL(preempt_count_add); 2992 2993 void preempt_count_sub(int val) 2994 { 2995 #ifdef CONFIG_DEBUG_PREEMPT 2996 /* 2997 * Underflow? 2998 */ 2999 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3000 return; 3001 /* 3002 * Is the spinlock portion underflowing? 3003 */ 3004 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3005 !(preempt_count() & PREEMPT_MASK))) 3006 return; 3007 #endif 3008 3009 if (preempt_count() == val) 3010 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3011 __preempt_count_sub(val); 3012 } 3013 EXPORT_SYMBOL(preempt_count_sub); 3014 NOKPROBE_SYMBOL(preempt_count_sub); 3015 3016 #endif 3017 3018 /* 3019 * Print scheduling while atomic bug: 3020 */ 3021 static noinline void __schedule_bug(struct task_struct *prev) 3022 { 3023 if (oops_in_progress) 3024 return; 3025 3026 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3027 prev->comm, prev->pid, preempt_count()); 3028 3029 debug_show_held_locks(prev); 3030 print_modules(); 3031 if (irqs_disabled()) 3032 print_irqtrace_events(prev); 3033 #ifdef CONFIG_DEBUG_PREEMPT 3034 if (in_atomic_preempt_off()) { 3035 pr_err("Preemption disabled at:"); 3036 print_ip_sym(current->preempt_disable_ip); 3037 pr_cont("\n"); 3038 } 3039 #endif 3040 dump_stack(); 3041 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3042 } 3043 3044 /* 3045 * Various schedule()-time debugging checks and statistics: 3046 */ 3047 static inline void schedule_debug(struct task_struct *prev) 3048 { 3049 #ifdef CONFIG_SCHED_STACK_END_CHECK 3050 BUG_ON(task_stack_end_corrupted(prev)); 3051 #endif 3052 3053 if (unlikely(in_atomic_preempt_off())) { 3054 __schedule_bug(prev); 3055 preempt_count_set(PREEMPT_DISABLED); 3056 } 3057 rcu_sleep_check(); 3058 3059 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3060 3061 schedstat_inc(this_rq(), sched_count); 3062 } 3063 3064 /* 3065 * Pick up the highest-prio task: 3066 */ 3067 static inline struct task_struct * 3068 pick_next_task(struct rq *rq, struct task_struct *prev) 3069 { 3070 const struct sched_class *class = &fair_sched_class; 3071 struct task_struct *p; 3072 3073 /* 3074 * Optimization: we know that if all tasks are in 3075 * the fair class we can call that function directly: 3076 */ 3077 if (likely(prev->sched_class == class && 3078 rq->nr_running == rq->cfs.h_nr_running)) { 3079 p = fair_sched_class.pick_next_task(rq, prev); 3080 if (unlikely(p == RETRY_TASK)) 3081 goto again; 3082 3083 /* assumes fair_sched_class->next == idle_sched_class */ 3084 if (unlikely(!p)) 3085 p = idle_sched_class.pick_next_task(rq, prev); 3086 3087 return p; 3088 } 3089 3090 again: 3091 for_each_class(class) { 3092 p = class->pick_next_task(rq, prev); 3093 if (p) { 3094 if (unlikely(p == RETRY_TASK)) 3095 goto again; 3096 return p; 3097 } 3098 } 3099 3100 BUG(); /* the idle class will always have a runnable task */ 3101 } 3102 3103 /* 3104 * __schedule() is the main scheduler function. 3105 * 3106 * The main means of driving the scheduler and thus entering this function are: 3107 * 3108 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3109 * 3110 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3111 * paths. For example, see arch/x86/entry_64.S. 3112 * 3113 * To drive preemption between tasks, the scheduler sets the flag in timer 3114 * interrupt handler scheduler_tick(). 3115 * 3116 * 3. Wakeups don't really cause entry into schedule(). They add a 3117 * task to the run-queue and that's it. 3118 * 3119 * Now, if the new task added to the run-queue preempts the current 3120 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3121 * called on the nearest possible occasion: 3122 * 3123 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3124 * 3125 * - in syscall or exception context, at the next outmost 3126 * preempt_enable(). (this might be as soon as the wake_up()'s 3127 * spin_unlock()!) 3128 * 3129 * - in IRQ context, return from interrupt-handler to 3130 * preemptible context 3131 * 3132 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3133 * then at the next: 3134 * 3135 * - cond_resched() call 3136 * - explicit schedule() call 3137 * - return from syscall or exception to user-space 3138 * - return from interrupt-handler to user-space 3139 * 3140 * WARNING: must be called with preemption disabled! 3141 */ 3142 static void __sched notrace __schedule(bool preempt) 3143 { 3144 struct task_struct *prev, *next; 3145 unsigned long *switch_count; 3146 struct rq *rq; 3147 int cpu; 3148 3149 cpu = smp_processor_id(); 3150 rq = cpu_rq(cpu); 3151 prev = rq->curr; 3152 3153 /* 3154 * do_exit() calls schedule() with preemption disabled as an exception; 3155 * however we must fix that up, otherwise the next task will see an 3156 * inconsistent (higher) preempt count. 3157 * 3158 * It also avoids the below schedule_debug() test from complaining 3159 * about this. 3160 */ 3161 if (unlikely(prev->state == TASK_DEAD)) 3162 preempt_enable_no_resched_notrace(); 3163 3164 schedule_debug(prev); 3165 3166 if (sched_feat(HRTICK)) 3167 hrtick_clear(rq); 3168 3169 local_irq_disable(); 3170 rcu_note_context_switch(); 3171 3172 /* 3173 * Make sure that signal_pending_state()->signal_pending() below 3174 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3175 * done by the caller to avoid the race with signal_wake_up(). 3176 */ 3177 smp_mb__before_spinlock(); 3178 raw_spin_lock(&rq->lock); 3179 lockdep_pin_lock(&rq->lock); 3180 3181 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3182 3183 switch_count = &prev->nivcsw; 3184 if (!preempt && prev->state) { 3185 if (unlikely(signal_pending_state(prev->state, prev))) { 3186 prev->state = TASK_RUNNING; 3187 } else { 3188 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3189 prev->on_rq = 0; 3190 3191 /* 3192 * If a worker went to sleep, notify and ask workqueue 3193 * whether it wants to wake up a task to maintain 3194 * concurrency. 3195 */ 3196 if (prev->flags & PF_WQ_WORKER) { 3197 struct task_struct *to_wakeup; 3198 3199 to_wakeup = wq_worker_sleeping(prev); 3200 if (to_wakeup) 3201 try_to_wake_up_local(to_wakeup); 3202 } 3203 } 3204 switch_count = &prev->nvcsw; 3205 } 3206 3207 if (task_on_rq_queued(prev)) 3208 update_rq_clock(rq); 3209 3210 next = pick_next_task(rq, prev); 3211 clear_tsk_need_resched(prev); 3212 clear_preempt_need_resched(); 3213 rq->clock_skip_update = 0; 3214 3215 if (likely(prev != next)) { 3216 rq->nr_switches++; 3217 rq->curr = next; 3218 ++*switch_count; 3219 3220 trace_sched_switch(preempt, prev, next); 3221 rq = context_switch(rq, prev, next); /* unlocks the rq */ 3222 } else { 3223 lockdep_unpin_lock(&rq->lock); 3224 raw_spin_unlock_irq(&rq->lock); 3225 } 3226 3227 balance_callback(rq); 3228 } 3229 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */ 3230 3231 static inline void sched_submit_work(struct task_struct *tsk) 3232 { 3233 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3234 return; 3235 /* 3236 * If we are going to sleep and we have plugged IO queued, 3237 * make sure to submit it to avoid deadlocks. 3238 */ 3239 if (blk_needs_flush_plug(tsk)) 3240 blk_schedule_flush_plug(tsk); 3241 } 3242 3243 asmlinkage __visible void __sched schedule(void) 3244 { 3245 struct task_struct *tsk = current; 3246 3247 sched_submit_work(tsk); 3248 do { 3249 preempt_disable(); 3250 __schedule(false); 3251 sched_preempt_enable_no_resched(); 3252 } while (need_resched()); 3253 } 3254 EXPORT_SYMBOL(schedule); 3255 3256 #ifdef CONFIG_CONTEXT_TRACKING 3257 asmlinkage __visible void __sched schedule_user(void) 3258 { 3259 /* 3260 * If we come here after a random call to set_need_resched(), 3261 * or we have been woken up remotely but the IPI has not yet arrived, 3262 * we haven't yet exited the RCU idle mode. Do it here manually until 3263 * we find a better solution. 3264 * 3265 * NB: There are buggy callers of this function. Ideally we 3266 * should warn if prev_state != CONTEXT_USER, but that will trigger 3267 * too frequently to make sense yet. 3268 */ 3269 enum ctx_state prev_state = exception_enter(); 3270 schedule(); 3271 exception_exit(prev_state); 3272 } 3273 #endif 3274 3275 /** 3276 * schedule_preempt_disabled - called with preemption disabled 3277 * 3278 * Returns with preemption disabled. Note: preempt_count must be 1 3279 */ 3280 void __sched schedule_preempt_disabled(void) 3281 { 3282 sched_preempt_enable_no_resched(); 3283 schedule(); 3284 preempt_disable(); 3285 } 3286 3287 static void __sched notrace preempt_schedule_common(void) 3288 { 3289 do { 3290 preempt_disable_notrace(); 3291 __schedule(true); 3292 preempt_enable_no_resched_notrace(); 3293 3294 /* 3295 * Check again in case we missed a preemption opportunity 3296 * between schedule and now. 3297 */ 3298 } while (need_resched()); 3299 } 3300 3301 #ifdef CONFIG_PREEMPT 3302 /* 3303 * this is the entry point to schedule() from in-kernel preemption 3304 * off of preempt_enable. Kernel preemptions off return from interrupt 3305 * occur there and call schedule directly. 3306 */ 3307 asmlinkage __visible void __sched notrace preempt_schedule(void) 3308 { 3309 /* 3310 * If there is a non-zero preempt_count or interrupts are disabled, 3311 * we do not want to preempt the current task. Just return.. 3312 */ 3313 if (likely(!preemptible())) 3314 return; 3315 3316 preempt_schedule_common(); 3317 } 3318 NOKPROBE_SYMBOL(preempt_schedule); 3319 EXPORT_SYMBOL(preempt_schedule); 3320 3321 /** 3322 * preempt_schedule_notrace - preempt_schedule called by tracing 3323 * 3324 * The tracing infrastructure uses preempt_enable_notrace to prevent 3325 * recursion and tracing preempt enabling caused by the tracing 3326 * infrastructure itself. But as tracing can happen in areas coming 3327 * from userspace or just about to enter userspace, a preempt enable 3328 * can occur before user_exit() is called. This will cause the scheduler 3329 * to be called when the system is still in usermode. 3330 * 3331 * To prevent this, the preempt_enable_notrace will use this function 3332 * instead of preempt_schedule() to exit user context if needed before 3333 * calling the scheduler. 3334 */ 3335 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3336 { 3337 enum ctx_state prev_ctx; 3338 3339 if (likely(!preemptible())) 3340 return; 3341 3342 do { 3343 preempt_disable_notrace(); 3344 /* 3345 * Needs preempt disabled in case user_exit() is traced 3346 * and the tracer calls preempt_enable_notrace() causing 3347 * an infinite recursion. 3348 */ 3349 prev_ctx = exception_enter(); 3350 __schedule(true); 3351 exception_exit(prev_ctx); 3352 3353 preempt_enable_no_resched_notrace(); 3354 } while (need_resched()); 3355 } 3356 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3357 3358 #endif /* CONFIG_PREEMPT */ 3359 3360 /* 3361 * this is the entry point to schedule() from kernel preemption 3362 * off of irq context. 3363 * Note, that this is called and return with irqs disabled. This will 3364 * protect us against recursive calling from irq. 3365 */ 3366 asmlinkage __visible void __sched preempt_schedule_irq(void) 3367 { 3368 enum ctx_state prev_state; 3369 3370 /* Catch callers which need to be fixed */ 3371 BUG_ON(preempt_count() || !irqs_disabled()); 3372 3373 prev_state = exception_enter(); 3374 3375 do { 3376 preempt_disable(); 3377 local_irq_enable(); 3378 __schedule(true); 3379 local_irq_disable(); 3380 sched_preempt_enable_no_resched(); 3381 } while (need_resched()); 3382 3383 exception_exit(prev_state); 3384 } 3385 3386 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3387 void *key) 3388 { 3389 return try_to_wake_up(curr->private, mode, wake_flags); 3390 } 3391 EXPORT_SYMBOL(default_wake_function); 3392 3393 #ifdef CONFIG_RT_MUTEXES 3394 3395 /* 3396 * rt_mutex_setprio - set the current priority of a task 3397 * @p: task 3398 * @prio: prio value (kernel-internal form) 3399 * 3400 * This function changes the 'effective' priority of a task. It does 3401 * not touch ->normal_prio like __setscheduler(). 3402 * 3403 * Used by the rt_mutex code to implement priority inheritance 3404 * logic. Call site only calls if the priority of the task changed. 3405 */ 3406 void rt_mutex_setprio(struct task_struct *p, int prio) 3407 { 3408 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE; 3409 struct rq *rq; 3410 const struct sched_class *prev_class; 3411 3412 BUG_ON(prio > MAX_PRIO); 3413 3414 rq = __task_rq_lock(p); 3415 3416 /* 3417 * Idle task boosting is a nono in general. There is one 3418 * exception, when PREEMPT_RT and NOHZ is active: 3419 * 3420 * The idle task calls get_next_timer_interrupt() and holds 3421 * the timer wheel base->lock on the CPU and another CPU wants 3422 * to access the timer (probably to cancel it). We can safely 3423 * ignore the boosting request, as the idle CPU runs this code 3424 * with interrupts disabled and will complete the lock 3425 * protected section without being interrupted. So there is no 3426 * real need to boost. 3427 */ 3428 if (unlikely(p == rq->idle)) { 3429 WARN_ON(p != rq->curr); 3430 WARN_ON(p->pi_blocked_on); 3431 goto out_unlock; 3432 } 3433 3434 trace_sched_pi_setprio(p, prio); 3435 oldprio = p->prio; 3436 3437 if (oldprio == prio) 3438 queue_flag &= ~DEQUEUE_MOVE; 3439 3440 prev_class = p->sched_class; 3441 queued = task_on_rq_queued(p); 3442 running = task_current(rq, p); 3443 if (queued) 3444 dequeue_task(rq, p, queue_flag); 3445 if (running) 3446 put_prev_task(rq, p); 3447 3448 /* 3449 * Boosting condition are: 3450 * 1. -rt task is running and holds mutex A 3451 * --> -dl task blocks on mutex A 3452 * 3453 * 2. -dl task is running and holds mutex A 3454 * --> -dl task blocks on mutex A and could preempt the 3455 * running task 3456 */ 3457 if (dl_prio(prio)) { 3458 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3459 if (!dl_prio(p->normal_prio) || 3460 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3461 p->dl.dl_boosted = 1; 3462 queue_flag |= ENQUEUE_REPLENISH; 3463 } else 3464 p->dl.dl_boosted = 0; 3465 p->sched_class = &dl_sched_class; 3466 } else if (rt_prio(prio)) { 3467 if (dl_prio(oldprio)) 3468 p->dl.dl_boosted = 0; 3469 if (oldprio < prio) 3470 queue_flag |= ENQUEUE_HEAD; 3471 p->sched_class = &rt_sched_class; 3472 } else { 3473 if (dl_prio(oldprio)) 3474 p->dl.dl_boosted = 0; 3475 if (rt_prio(oldprio)) 3476 p->rt.timeout = 0; 3477 p->sched_class = &fair_sched_class; 3478 } 3479 3480 p->prio = prio; 3481 3482 if (running) 3483 p->sched_class->set_curr_task(rq); 3484 if (queued) 3485 enqueue_task(rq, p, queue_flag); 3486 3487 check_class_changed(rq, p, prev_class, oldprio); 3488 out_unlock: 3489 preempt_disable(); /* avoid rq from going away on us */ 3490 __task_rq_unlock(rq); 3491 3492 balance_callback(rq); 3493 preempt_enable(); 3494 } 3495 #endif 3496 3497 void set_user_nice(struct task_struct *p, long nice) 3498 { 3499 int old_prio, delta, queued; 3500 unsigned long flags; 3501 struct rq *rq; 3502 3503 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3504 return; 3505 /* 3506 * We have to be careful, if called from sys_setpriority(), 3507 * the task might be in the middle of scheduling on another CPU. 3508 */ 3509 rq = task_rq_lock(p, &flags); 3510 /* 3511 * The RT priorities are set via sched_setscheduler(), but we still 3512 * allow the 'normal' nice value to be set - but as expected 3513 * it wont have any effect on scheduling until the task is 3514 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3515 */ 3516 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3517 p->static_prio = NICE_TO_PRIO(nice); 3518 goto out_unlock; 3519 } 3520 queued = task_on_rq_queued(p); 3521 if (queued) 3522 dequeue_task(rq, p, DEQUEUE_SAVE); 3523 3524 p->static_prio = NICE_TO_PRIO(nice); 3525 set_load_weight(p); 3526 old_prio = p->prio; 3527 p->prio = effective_prio(p); 3528 delta = p->prio - old_prio; 3529 3530 if (queued) { 3531 enqueue_task(rq, p, ENQUEUE_RESTORE); 3532 /* 3533 * If the task increased its priority or is running and 3534 * lowered its priority, then reschedule its CPU: 3535 */ 3536 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3537 resched_curr(rq); 3538 } 3539 out_unlock: 3540 task_rq_unlock(rq, p, &flags); 3541 } 3542 EXPORT_SYMBOL(set_user_nice); 3543 3544 /* 3545 * can_nice - check if a task can reduce its nice value 3546 * @p: task 3547 * @nice: nice value 3548 */ 3549 int can_nice(const struct task_struct *p, const int nice) 3550 { 3551 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3552 int nice_rlim = nice_to_rlimit(nice); 3553 3554 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3555 capable(CAP_SYS_NICE)); 3556 } 3557 3558 #ifdef __ARCH_WANT_SYS_NICE 3559 3560 /* 3561 * sys_nice - change the priority of the current process. 3562 * @increment: priority increment 3563 * 3564 * sys_setpriority is a more generic, but much slower function that 3565 * does similar things. 3566 */ 3567 SYSCALL_DEFINE1(nice, int, increment) 3568 { 3569 long nice, retval; 3570 3571 /* 3572 * Setpriority might change our priority at the same moment. 3573 * We don't have to worry. Conceptually one call occurs first 3574 * and we have a single winner. 3575 */ 3576 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3577 nice = task_nice(current) + increment; 3578 3579 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3580 if (increment < 0 && !can_nice(current, nice)) 3581 return -EPERM; 3582 3583 retval = security_task_setnice(current, nice); 3584 if (retval) 3585 return retval; 3586 3587 set_user_nice(current, nice); 3588 return 0; 3589 } 3590 3591 #endif 3592 3593 /** 3594 * task_prio - return the priority value of a given task. 3595 * @p: the task in question. 3596 * 3597 * Return: The priority value as seen by users in /proc. 3598 * RT tasks are offset by -200. Normal tasks are centered 3599 * around 0, value goes from -16 to +15. 3600 */ 3601 int task_prio(const struct task_struct *p) 3602 { 3603 return p->prio - MAX_RT_PRIO; 3604 } 3605 3606 /** 3607 * idle_cpu - is a given cpu idle currently? 3608 * @cpu: the processor in question. 3609 * 3610 * Return: 1 if the CPU is currently idle. 0 otherwise. 3611 */ 3612 int idle_cpu(int cpu) 3613 { 3614 struct rq *rq = cpu_rq(cpu); 3615 3616 if (rq->curr != rq->idle) 3617 return 0; 3618 3619 if (rq->nr_running) 3620 return 0; 3621 3622 #ifdef CONFIG_SMP 3623 if (!llist_empty(&rq->wake_list)) 3624 return 0; 3625 #endif 3626 3627 return 1; 3628 } 3629 3630 /** 3631 * idle_task - return the idle task for a given cpu. 3632 * @cpu: the processor in question. 3633 * 3634 * Return: The idle task for the cpu @cpu. 3635 */ 3636 struct task_struct *idle_task(int cpu) 3637 { 3638 return cpu_rq(cpu)->idle; 3639 } 3640 3641 /** 3642 * find_process_by_pid - find a process with a matching PID value. 3643 * @pid: the pid in question. 3644 * 3645 * The task of @pid, if found. %NULL otherwise. 3646 */ 3647 static struct task_struct *find_process_by_pid(pid_t pid) 3648 { 3649 return pid ? find_task_by_vpid(pid) : current; 3650 } 3651 3652 /* 3653 * This function initializes the sched_dl_entity of a newly becoming 3654 * SCHED_DEADLINE task. 3655 * 3656 * Only the static values are considered here, the actual runtime and the 3657 * absolute deadline will be properly calculated when the task is enqueued 3658 * for the first time with its new policy. 3659 */ 3660 static void 3661 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3662 { 3663 struct sched_dl_entity *dl_se = &p->dl; 3664 3665 dl_se->dl_runtime = attr->sched_runtime; 3666 dl_se->dl_deadline = attr->sched_deadline; 3667 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3668 dl_se->flags = attr->sched_flags; 3669 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3670 3671 /* 3672 * Changing the parameters of a task is 'tricky' and we're not doing 3673 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3674 * 3675 * What we SHOULD do is delay the bandwidth release until the 0-lag 3676 * point. This would include retaining the task_struct until that time 3677 * and change dl_overflow() to not immediately decrement the current 3678 * amount. 3679 * 3680 * Instead we retain the current runtime/deadline and let the new 3681 * parameters take effect after the current reservation period lapses. 3682 * This is safe (albeit pessimistic) because the 0-lag point is always 3683 * before the current scheduling deadline. 3684 * 3685 * We can still have temporary overloads because we do not delay the 3686 * change in bandwidth until that time; so admission control is 3687 * not on the safe side. It does however guarantee tasks will never 3688 * consume more than promised. 3689 */ 3690 } 3691 3692 /* 3693 * sched_setparam() passes in -1 for its policy, to let the functions 3694 * it calls know not to change it. 3695 */ 3696 #define SETPARAM_POLICY -1 3697 3698 static void __setscheduler_params(struct task_struct *p, 3699 const struct sched_attr *attr) 3700 { 3701 int policy = attr->sched_policy; 3702 3703 if (policy == SETPARAM_POLICY) 3704 policy = p->policy; 3705 3706 p->policy = policy; 3707 3708 if (dl_policy(policy)) 3709 __setparam_dl(p, attr); 3710 else if (fair_policy(policy)) 3711 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3712 3713 /* 3714 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3715 * !rt_policy. Always setting this ensures that things like 3716 * getparam()/getattr() don't report silly values for !rt tasks. 3717 */ 3718 p->rt_priority = attr->sched_priority; 3719 p->normal_prio = normal_prio(p); 3720 set_load_weight(p); 3721 } 3722 3723 /* Actually do priority change: must hold pi & rq lock. */ 3724 static void __setscheduler(struct rq *rq, struct task_struct *p, 3725 const struct sched_attr *attr, bool keep_boost) 3726 { 3727 __setscheduler_params(p, attr); 3728 3729 /* 3730 * Keep a potential priority boosting if called from 3731 * sched_setscheduler(). 3732 */ 3733 if (keep_boost) 3734 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3735 else 3736 p->prio = normal_prio(p); 3737 3738 if (dl_prio(p->prio)) 3739 p->sched_class = &dl_sched_class; 3740 else if (rt_prio(p->prio)) 3741 p->sched_class = &rt_sched_class; 3742 else 3743 p->sched_class = &fair_sched_class; 3744 } 3745 3746 static void 3747 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3748 { 3749 struct sched_dl_entity *dl_se = &p->dl; 3750 3751 attr->sched_priority = p->rt_priority; 3752 attr->sched_runtime = dl_se->dl_runtime; 3753 attr->sched_deadline = dl_se->dl_deadline; 3754 attr->sched_period = dl_se->dl_period; 3755 attr->sched_flags = dl_se->flags; 3756 } 3757 3758 /* 3759 * This function validates the new parameters of a -deadline task. 3760 * We ask for the deadline not being zero, and greater or equal 3761 * than the runtime, as well as the period of being zero or 3762 * greater than deadline. Furthermore, we have to be sure that 3763 * user parameters are above the internal resolution of 1us (we 3764 * check sched_runtime only since it is always the smaller one) and 3765 * below 2^63 ns (we have to check both sched_deadline and 3766 * sched_period, as the latter can be zero). 3767 */ 3768 static bool 3769 __checkparam_dl(const struct sched_attr *attr) 3770 { 3771 /* deadline != 0 */ 3772 if (attr->sched_deadline == 0) 3773 return false; 3774 3775 /* 3776 * Since we truncate DL_SCALE bits, make sure we're at least 3777 * that big. 3778 */ 3779 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3780 return false; 3781 3782 /* 3783 * Since we use the MSB for wrap-around and sign issues, make 3784 * sure it's not set (mind that period can be equal to zero). 3785 */ 3786 if (attr->sched_deadline & (1ULL << 63) || 3787 attr->sched_period & (1ULL << 63)) 3788 return false; 3789 3790 /* runtime <= deadline <= period (if period != 0) */ 3791 if ((attr->sched_period != 0 && 3792 attr->sched_period < attr->sched_deadline) || 3793 attr->sched_deadline < attr->sched_runtime) 3794 return false; 3795 3796 return true; 3797 } 3798 3799 /* 3800 * check the target process has a UID that matches the current process's 3801 */ 3802 static bool check_same_owner(struct task_struct *p) 3803 { 3804 const struct cred *cred = current_cred(), *pcred; 3805 bool match; 3806 3807 rcu_read_lock(); 3808 pcred = __task_cred(p); 3809 match = (uid_eq(cred->euid, pcred->euid) || 3810 uid_eq(cred->euid, pcred->uid)); 3811 rcu_read_unlock(); 3812 return match; 3813 } 3814 3815 static bool dl_param_changed(struct task_struct *p, 3816 const struct sched_attr *attr) 3817 { 3818 struct sched_dl_entity *dl_se = &p->dl; 3819 3820 if (dl_se->dl_runtime != attr->sched_runtime || 3821 dl_se->dl_deadline != attr->sched_deadline || 3822 dl_se->dl_period != attr->sched_period || 3823 dl_se->flags != attr->sched_flags) 3824 return true; 3825 3826 return false; 3827 } 3828 3829 static int __sched_setscheduler(struct task_struct *p, 3830 const struct sched_attr *attr, 3831 bool user, bool pi) 3832 { 3833 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3834 MAX_RT_PRIO - 1 - attr->sched_priority; 3835 int retval, oldprio, oldpolicy = -1, queued, running; 3836 int new_effective_prio, policy = attr->sched_policy; 3837 unsigned long flags; 3838 const struct sched_class *prev_class; 3839 struct rq *rq; 3840 int reset_on_fork; 3841 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 3842 3843 /* may grab non-irq protected spin_locks */ 3844 BUG_ON(in_interrupt()); 3845 recheck: 3846 /* double check policy once rq lock held */ 3847 if (policy < 0) { 3848 reset_on_fork = p->sched_reset_on_fork; 3849 policy = oldpolicy = p->policy; 3850 } else { 3851 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3852 3853 if (!valid_policy(policy)) 3854 return -EINVAL; 3855 } 3856 3857 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3858 return -EINVAL; 3859 3860 /* 3861 * Valid priorities for SCHED_FIFO and SCHED_RR are 3862 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3863 * SCHED_BATCH and SCHED_IDLE is 0. 3864 */ 3865 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3866 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3867 return -EINVAL; 3868 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3869 (rt_policy(policy) != (attr->sched_priority != 0))) 3870 return -EINVAL; 3871 3872 /* 3873 * Allow unprivileged RT tasks to decrease priority: 3874 */ 3875 if (user && !capable(CAP_SYS_NICE)) { 3876 if (fair_policy(policy)) { 3877 if (attr->sched_nice < task_nice(p) && 3878 !can_nice(p, attr->sched_nice)) 3879 return -EPERM; 3880 } 3881 3882 if (rt_policy(policy)) { 3883 unsigned long rlim_rtprio = 3884 task_rlimit(p, RLIMIT_RTPRIO); 3885 3886 /* can't set/change the rt policy */ 3887 if (policy != p->policy && !rlim_rtprio) 3888 return -EPERM; 3889 3890 /* can't increase priority */ 3891 if (attr->sched_priority > p->rt_priority && 3892 attr->sched_priority > rlim_rtprio) 3893 return -EPERM; 3894 } 3895 3896 /* 3897 * Can't set/change SCHED_DEADLINE policy at all for now 3898 * (safest behavior); in the future we would like to allow 3899 * unprivileged DL tasks to increase their relative deadline 3900 * or reduce their runtime (both ways reducing utilization) 3901 */ 3902 if (dl_policy(policy)) 3903 return -EPERM; 3904 3905 /* 3906 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3907 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3908 */ 3909 if (idle_policy(p->policy) && !idle_policy(policy)) { 3910 if (!can_nice(p, task_nice(p))) 3911 return -EPERM; 3912 } 3913 3914 /* can't change other user's priorities */ 3915 if (!check_same_owner(p)) 3916 return -EPERM; 3917 3918 /* Normal users shall not reset the sched_reset_on_fork flag */ 3919 if (p->sched_reset_on_fork && !reset_on_fork) 3920 return -EPERM; 3921 } 3922 3923 if (user) { 3924 retval = security_task_setscheduler(p); 3925 if (retval) 3926 return retval; 3927 } 3928 3929 /* 3930 * make sure no PI-waiters arrive (or leave) while we are 3931 * changing the priority of the task: 3932 * 3933 * To be able to change p->policy safely, the appropriate 3934 * runqueue lock must be held. 3935 */ 3936 rq = task_rq_lock(p, &flags); 3937 3938 /* 3939 * Changing the policy of the stop threads its a very bad idea 3940 */ 3941 if (p == rq->stop) { 3942 task_rq_unlock(rq, p, &flags); 3943 return -EINVAL; 3944 } 3945 3946 /* 3947 * If not changing anything there's no need to proceed further, 3948 * but store a possible modification of reset_on_fork. 3949 */ 3950 if (unlikely(policy == p->policy)) { 3951 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3952 goto change; 3953 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3954 goto change; 3955 if (dl_policy(policy) && dl_param_changed(p, attr)) 3956 goto change; 3957 3958 p->sched_reset_on_fork = reset_on_fork; 3959 task_rq_unlock(rq, p, &flags); 3960 return 0; 3961 } 3962 change: 3963 3964 if (user) { 3965 #ifdef CONFIG_RT_GROUP_SCHED 3966 /* 3967 * Do not allow realtime tasks into groups that have no runtime 3968 * assigned. 3969 */ 3970 if (rt_bandwidth_enabled() && rt_policy(policy) && 3971 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3972 !task_group_is_autogroup(task_group(p))) { 3973 task_rq_unlock(rq, p, &flags); 3974 return -EPERM; 3975 } 3976 #endif 3977 #ifdef CONFIG_SMP 3978 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3979 cpumask_t *span = rq->rd->span; 3980 3981 /* 3982 * Don't allow tasks with an affinity mask smaller than 3983 * the entire root_domain to become SCHED_DEADLINE. We 3984 * will also fail if there's no bandwidth available. 3985 */ 3986 if (!cpumask_subset(span, &p->cpus_allowed) || 3987 rq->rd->dl_bw.bw == 0) { 3988 task_rq_unlock(rq, p, &flags); 3989 return -EPERM; 3990 } 3991 } 3992 #endif 3993 } 3994 3995 /* recheck policy now with rq lock held */ 3996 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3997 policy = oldpolicy = -1; 3998 task_rq_unlock(rq, p, &flags); 3999 goto recheck; 4000 } 4001 4002 /* 4003 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4004 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4005 * is available. 4006 */ 4007 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 4008 task_rq_unlock(rq, p, &flags); 4009 return -EBUSY; 4010 } 4011 4012 p->sched_reset_on_fork = reset_on_fork; 4013 oldprio = p->prio; 4014 4015 if (pi) { 4016 /* 4017 * Take priority boosted tasks into account. If the new 4018 * effective priority is unchanged, we just store the new 4019 * normal parameters and do not touch the scheduler class and 4020 * the runqueue. This will be done when the task deboost 4021 * itself. 4022 */ 4023 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 4024 if (new_effective_prio == oldprio) 4025 queue_flags &= ~DEQUEUE_MOVE; 4026 } 4027 4028 queued = task_on_rq_queued(p); 4029 running = task_current(rq, p); 4030 if (queued) 4031 dequeue_task(rq, p, queue_flags); 4032 if (running) 4033 put_prev_task(rq, p); 4034 4035 prev_class = p->sched_class; 4036 __setscheduler(rq, p, attr, pi); 4037 4038 if (running) 4039 p->sched_class->set_curr_task(rq); 4040 if (queued) { 4041 /* 4042 * We enqueue to tail when the priority of a task is 4043 * increased (user space view). 4044 */ 4045 if (oldprio < p->prio) 4046 queue_flags |= ENQUEUE_HEAD; 4047 4048 enqueue_task(rq, p, queue_flags); 4049 } 4050 4051 check_class_changed(rq, p, prev_class, oldprio); 4052 preempt_disable(); /* avoid rq from going away on us */ 4053 task_rq_unlock(rq, p, &flags); 4054 4055 if (pi) 4056 rt_mutex_adjust_pi(p); 4057 4058 /* 4059 * Run balance callbacks after we've adjusted the PI chain. 4060 */ 4061 balance_callback(rq); 4062 preempt_enable(); 4063 4064 return 0; 4065 } 4066 4067 static int _sched_setscheduler(struct task_struct *p, int policy, 4068 const struct sched_param *param, bool check) 4069 { 4070 struct sched_attr attr = { 4071 .sched_policy = policy, 4072 .sched_priority = param->sched_priority, 4073 .sched_nice = PRIO_TO_NICE(p->static_prio), 4074 }; 4075 4076 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4077 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4078 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4079 policy &= ~SCHED_RESET_ON_FORK; 4080 attr.sched_policy = policy; 4081 } 4082 4083 return __sched_setscheduler(p, &attr, check, true); 4084 } 4085 /** 4086 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4087 * @p: the task in question. 4088 * @policy: new policy. 4089 * @param: structure containing the new RT priority. 4090 * 4091 * Return: 0 on success. An error code otherwise. 4092 * 4093 * NOTE that the task may be already dead. 4094 */ 4095 int sched_setscheduler(struct task_struct *p, int policy, 4096 const struct sched_param *param) 4097 { 4098 return _sched_setscheduler(p, policy, param, true); 4099 } 4100 EXPORT_SYMBOL_GPL(sched_setscheduler); 4101 4102 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4103 { 4104 return __sched_setscheduler(p, attr, true, true); 4105 } 4106 EXPORT_SYMBOL_GPL(sched_setattr); 4107 4108 /** 4109 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4110 * @p: the task in question. 4111 * @policy: new policy. 4112 * @param: structure containing the new RT priority. 4113 * 4114 * Just like sched_setscheduler, only don't bother checking if the 4115 * current context has permission. For example, this is needed in 4116 * stop_machine(): we create temporary high priority worker threads, 4117 * but our caller might not have that capability. 4118 * 4119 * Return: 0 on success. An error code otherwise. 4120 */ 4121 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4122 const struct sched_param *param) 4123 { 4124 return _sched_setscheduler(p, policy, param, false); 4125 } 4126 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4127 4128 static int 4129 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4130 { 4131 struct sched_param lparam; 4132 struct task_struct *p; 4133 int retval; 4134 4135 if (!param || pid < 0) 4136 return -EINVAL; 4137 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4138 return -EFAULT; 4139 4140 rcu_read_lock(); 4141 retval = -ESRCH; 4142 p = find_process_by_pid(pid); 4143 if (p != NULL) 4144 retval = sched_setscheduler(p, policy, &lparam); 4145 rcu_read_unlock(); 4146 4147 return retval; 4148 } 4149 4150 /* 4151 * Mimics kernel/events/core.c perf_copy_attr(). 4152 */ 4153 static int sched_copy_attr(struct sched_attr __user *uattr, 4154 struct sched_attr *attr) 4155 { 4156 u32 size; 4157 int ret; 4158 4159 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4160 return -EFAULT; 4161 4162 /* 4163 * zero the full structure, so that a short copy will be nice. 4164 */ 4165 memset(attr, 0, sizeof(*attr)); 4166 4167 ret = get_user(size, &uattr->size); 4168 if (ret) 4169 return ret; 4170 4171 if (size > PAGE_SIZE) /* silly large */ 4172 goto err_size; 4173 4174 if (!size) /* abi compat */ 4175 size = SCHED_ATTR_SIZE_VER0; 4176 4177 if (size < SCHED_ATTR_SIZE_VER0) 4178 goto err_size; 4179 4180 /* 4181 * If we're handed a bigger struct than we know of, 4182 * ensure all the unknown bits are 0 - i.e. new 4183 * user-space does not rely on any kernel feature 4184 * extensions we dont know about yet. 4185 */ 4186 if (size > sizeof(*attr)) { 4187 unsigned char __user *addr; 4188 unsigned char __user *end; 4189 unsigned char val; 4190 4191 addr = (void __user *)uattr + sizeof(*attr); 4192 end = (void __user *)uattr + size; 4193 4194 for (; addr < end; addr++) { 4195 ret = get_user(val, addr); 4196 if (ret) 4197 return ret; 4198 if (val) 4199 goto err_size; 4200 } 4201 size = sizeof(*attr); 4202 } 4203 4204 ret = copy_from_user(attr, uattr, size); 4205 if (ret) 4206 return -EFAULT; 4207 4208 /* 4209 * XXX: do we want to be lenient like existing syscalls; or do we want 4210 * to be strict and return an error on out-of-bounds values? 4211 */ 4212 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4213 4214 return 0; 4215 4216 err_size: 4217 put_user(sizeof(*attr), &uattr->size); 4218 return -E2BIG; 4219 } 4220 4221 /** 4222 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4223 * @pid: the pid in question. 4224 * @policy: new policy. 4225 * @param: structure containing the new RT priority. 4226 * 4227 * Return: 0 on success. An error code otherwise. 4228 */ 4229 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4230 struct sched_param __user *, param) 4231 { 4232 /* negative values for policy are not valid */ 4233 if (policy < 0) 4234 return -EINVAL; 4235 4236 return do_sched_setscheduler(pid, policy, param); 4237 } 4238 4239 /** 4240 * sys_sched_setparam - set/change the RT priority of a thread 4241 * @pid: the pid in question. 4242 * @param: structure containing the new RT priority. 4243 * 4244 * Return: 0 on success. An error code otherwise. 4245 */ 4246 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4247 { 4248 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4249 } 4250 4251 /** 4252 * sys_sched_setattr - same as above, but with extended sched_attr 4253 * @pid: the pid in question. 4254 * @uattr: structure containing the extended parameters. 4255 * @flags: for future extension. 4256 */ 4257 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4258 unsigned int, flags) 4259 { 4260 struct sched_attr attr; 4261 struct task_struct *p; 4262 int retval; 4263 4264 if (!uattr || pid < 0 || flags) 4265 return -EINVAL; 4266 4267 retval = sched_copy_attr(uattr, &attr); 4268 if (retval) 4269 return retval; 4270 4271 if ((int)attr.sched_policy < 0) 4272 return -EINVAL; 4273 4274 rcu_read_lock(); 4275 retval = -ESRCH; 4276 p = find_process_by_pid(pid); 4277 if (p != NULL) 4278 retval = sched_setattr(p, &attr); 4279 rcu_read_unlock(); 4280 4281 return retval; 4282 } 4283 4284 /** 4285 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4286 * @pid: the pid in question. 4287 * 4288 * Return: On success, the policy of the thread. Otherwise, a negative error 4289 * code. 4290 */ 4291 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4292 { 4293 struct task_struct *p; 4294 int retval; 4295 4296 if (pid < 0) 4297 return -EINVAL; 4298 4299 retval = -ESRCH; 4300 rcu_read_lock(); 4301 p = find_process_by_pid(pid); 4302 if (p) { 4303 retval = security_task_getscheduler(p); 4304 if (!retval) 4305 retval = p->policy 4306 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4307 } 4308 rcu_read_unlock(); 4309 return retval; 4310 } 4311 4312 /** 4313 * sys_sched_getparam - get the RT priority of a thread 4314 * @pid: the pid in question. 4315 * @param: structure containing the RT priority. 4316 * 4317 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4318 * code. 4319 */ 4320 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4321 { 4322 struct sched_param lp = { .sched_priority = 0 }; 4323 struct task_struct *p; 4324 int retval; 4325 4326 if (!param || pid < 0) 4327 return -EINVAL; 4328 4329 rcu_read_lock(); 4330 p = find_process_by_pid(pid); 4331 retval = -ESRCH; 4332 if (!p) 4333 goto out_unlock; 4334 4335 retval = security_task_getscheduler(p); 4336 if (retval) 4337 goto out_unlock; 4338 4339 if (task_has_rt_policy(p)) 4340 lp.sched_priority = p->rt_priority; 4341 rcu_read_unlock(); 4342 4343 /* 4344 * This one might sleep, we cannot do it with a spinlock held ... 4345 */ 4346 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4347 4348 return retval; 4349 4350 out_unlock: 4351 rcu_read_unlock(); 4352 return retval; 4353 } 4354 4355 static int sched_read_attr(struct sched_attr __user *uattr, 4356 struct sched_attr *attr, 4357 unsigned int usize) 4358 { 4359 int ret; 4360 4361 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4362 return -EFAULT; 4363 4364 /* 4365 * If we're handed a smaller struct than we know of, 4366 * ensure all the unknown bits are 0 - i.e. old 4367 * user-space does not get uncomplete information. 4368 */ 4369 if (usize < sizeof(*attr)) { 4370 unsigned char *addr; 4371 unsigned char *end; 4372 4373 addr = (void *)attr + usize; 4374 end = (void *)attr + sizeof(*attr); 4375 4376 for (; addr < end; addr++) { 4377 if (*addr) 4378 return -EFBIG; 4379 } 4380 4381 attr->size = usize; 4382 } 4383 4384 ret = copy_to_user(uattr, attr, attr->size); 4385 if (ret) 4386 return -EFAULT; 4387 4388 return 0; 4389 } 4390 4391 /** 4392 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4393 * @pid: the pid in question. 4394 * @uattr: structure containing the extended parameters. 4395 * @size: sizeof(attr) for fwd/bwd comp. 4396 * @flags: for future extension. 4397 */ 4398 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4399 unsigned int, size, unsigned int, flags) 4400 { 4401 struct sched_attr attr = { 4402 .size = sizeof(struct sched_attr), 4403 }; 4404 struct task_struct *p; 4405 int retval; 4406 4407 if (!uattr || pid < 0 || size > PAGE_SIZE || 4408 size < SCHED_ATTR_SIZE_VER0 || flags) 4409 return -EINVAL; 4410 4411 rcu_read_lock(); 4412 p = find_process_by_pid(pid); 4413 retval = -ESRCH; 4414 if (!p) 4415 goto out_unlock; 4416 4417 retval = security_task_getscheduler(p); 4418 if (retval) 4419 goto out_unlock; 4420 4421 attr.sched_policy = p->policy; 4422 if (p->sched_reset_on_fork) 4423 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4424 if (task_has_dl_policy(p)) 4425 __getparam_dl(p, &attr); 4426 else if (task_has_rt_policy(p)) 4427 attr.sched_priority = p->rt_priority; 4428 else 4429 attr.sched_nice = task_nice(p); 4430 4431 rcu_read_unlock(); 4432 4433 retval = sched_read_attr(uattr, &attr, size); 4434 return retval; 4435 4436 out_unlock: 4437 rcu_read_unlock(); 4438 return retval; 4439 } 4440 4441 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4442 { 4443 cpumask_var_t cpus_allowed, new_mask; 4444 struct task_struct *p; 4445 int retval; 4446 4447 rcu_read_lock(); 4448 4449 p = find_process_by_pid(pid); 4450 if (!p) { 4451 rcu_read_unlock(); 4452 return -ESRCH; 4453 } 4454 4455 /* Prevent p going away */ 4456 get_task_struct(p); 4457 rcu_read_unlock(); 4458 4459 if (p->flags & PF_NO_SETAFFINITY) { 4460 retval = -EINVAL; 4461 goto out_put_task; 4462 } 4463 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4464 retval = -ENOMEM; 4465 goto out_put_task; 4466 } 4467 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4468 retval = -ENOMEM; 4469 goto out_free_cpus_allowed; 4470 } 4471 retval = -EPERM; 4472 if (!check_same_owner(p)) { 4473 rcu_read_lock(); 4474 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4475 rcu_read_unlock(); 4476 goto out_free_new_mask; 4477 } 4478 rcu_read_unlock(); 4479 } 4480 4481 retval = security_task_setscheduler(p); 4482 if (retval) 4483 goto out_free_new_mask; 4484 4485 4486 cpuset_cpus_allowed(p, cpus_allowed); 4487 cpumask_and(new_mask, in_mask, cpus_allowed); 4488 4489 /* 4490 * Since bandwidth control happens on root_domain basis, 4491 * if admission test is enabled, we only admit -deadline 4492 * tasks allowed to run on all the CPUs in the task's 4493 * root_domain. 4494 */ 4495 #ifdef CONFIG_SMP 4496 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4497 rcu_read_lock(); 4498 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4499 retval = -EBUSY; 4500 rcu_read_unlock(); 4501 goto out_free_new_mask; 4502 } 4503 rcu_read_unlock(); 4504 } 4505 #endif 4506 again: 4507 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4508 4509 if (!retval) { 4510 cpuset_cpus_allowed(p, cpus_allowed); 4511 if (!cpumask_subset(new_mask, cpus_allowed)) { 4512 /* 4513 * We must have raced with a concurrent cpuset 4514 * update. Just reset the cpus_allowed to the 4515 * cpuset's cpus_allowed 4516 */ 4517 cpumask_copy(new_mask, cpus_allowed); 4518 goto again; 4519 } 4520 } 4521 out_free_new_mask: 4522 free_cpumask_var(new_mask); 4523 out_free_cpus_allowed: 4524 free_cpumask_var(cpus_allowed); 4525 out_put_task: 4526 put_task_struct(p); 4527 return retval; 4528 } 4529 4530 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4531 struct cpumask *new_mask) 4532 { 4533 if (len < cpumask_size()) 4534 cpumask_clear(new_mask); 4535 else if (len > cpumask_size()) 4536 len = cpumask_size(); 4537 4538 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4539 } 4540 4541 /** 4542 * sys_sched_setaffinity - set the cpu affinity of a process 4543 * @pid: pid of the process 4544 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4545 * @user_mask_ptr: user-space pointer to the new cpu mask 4546 * 4547 * Return: 0 on success. An error code otherwise. 4548 */ 4549 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4550 unsigned long __user *, user_mask_ptr) 4551 { 4552 cpumask_var_t new_mask; 4553 int retval; 4554 4555 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4556 return -ENOMEM; 4557 4558 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4559 if (retval == 0) 4560 retval = sched_setaffinity(pid, new_mask); 4561 free_cpumask_var(new_mask); 4562 return retval; 4563 } 4564 4565 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4566 { 4567 struct task_struct *p; 4568 unsigned long flags; 4569 int retval; 4570 4571 rcu_read_lock(); 4572 4573 retval = -ESRCH; 4574 p = find_process_by_pid(pid); 4575 if (!p) 4576 goto out_unlock; 4577 4578 retval = security_task_getscheduler(p); 4579 if (retval) 4580 goto out_unlock; 4581 4582 raw_spin_lock_irqsave(&p->pi_lock, flags); 4583 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4584 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4585 4586 out_unlock: 4587 rcu_read_unlock(); 4588 4589 return retval; 4590 } 4591 4592 /** 4593 * sys_sched_getaffinity - get the cpu affinity of a process 4594 * @pid: pid of the process 4595 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4596 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4597 * 4598 * Return: 0 on success. An error code otherwise. 4599 */ 4600 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4601 unsigned long __user *, user_mask_ptr) 4602 { 4603 int ret; 4604 cpumask_var_t mask; 4605 4606 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4607 return -EINVAL; 4608 if (len & (sizeof(unsigned long)-1)) 4609 return -EINVAL; 4610 4611 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4612 return -ENOMEM; 4613 4614 ret = sched_getaffinity(pid, mask); 4615 if (ret == 0) { 4616 size_t retlen = min_t(size_t, len, cpumask_size()); 4617 4618 if (copy_to_user(user_mask_ptr, mask, retlen)) 4619 ret = -EFAULT; 4620 else 4621 ret = retlen; 4622 } 4623 free_cpumask_var(mask); 4624 4625 return ret; 4626 } 4627 4628 /** 4629 * sys_sched_yield - yield the current processor to other threads. 4630 * 4631 * This function yields the current CPU to other tasks. If there are no 4632 * other threads running on this CPU then this function will return. 4633 * 4634 * Return: 0. 4635 */ 4636 SYSCALL_DEFINE0(sched_yield) 4637 { 4638 struct rq *rq = this_rq_lock(); 4639 4640 schedstat_inc(rq, yld_count); 4641 current->sched_class->yield_task(rq); 4642 4643 /* 4644 * Since we are going to call schedule() anyway, there's 4645 * no need to preempt or enable interrupts: 4646 */ 4647 __release(rq->lock); 4648 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4649 do_raw_spin_unlock(&rq->lock); 4650 sched_preempt_enable_no_resched(); 4651 4652 schedule(); 4653 4654 return 0; 4655 } 4656 4657 int __sched _cond_resched(void) 4658 { 4659 if (should_resched(0)) { 4660 preempt_schedule_common(); 4661 return 1; 4662 } 4663 return 0; 4664 } 4665 EXPORT_SYMBOL(_cond_resched); 4666 4667 /* 4668 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4669 * call schedule, and on return reacquire the lock. 4670 * 4671 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4672 * operations here to prevent schedule() from being called twice (once via 4673 * spin_unlock(), once by hand). 4674 */ 4675 int __cond_resched_lock(spinlock_t *lock) 4676 { 4677 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4678 int ret = 0; 4679 4680 lockdep_assert_held(lock); 4681 4682 if (spin_needbreak(lock) || resched) { 4683 spin_unlock(lock); 4684 if (resched) 4685 preempt_schedule_common(); 4686 else 4687 cpu_relax(); 4688 ret = 1; 4689 spin_lock(lock); 4690 } 4691 return ret; 4692 } 4693 EXPORT_SYMBOL(__cond_resched_lock); 4694 4695 int __sched __cond_resched_softirq(void) 4696 { 4697 BUG_ON(!in_softirq()); 4698 4699 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4700 local_bh_enable(); 4701 preempt_schedule_common(); 4702 local_bh_disable(); 4703 return 1; 4704 } 4705 return 0; 4706 } 4707 EXPORT_SYMBOL(__cond_resched_softirq); 4708 4709 /** 4710 * yield - yield the current processor to other threads. 4711 * 4712 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4713 * 4714 * The scheduler is at all times free to pick the calling task as the most 4715 * eligible task to run, if removing the yield() call from your code breaks 4716 * it, its already broken. 4717 * 4718 * Typical broken usage is: 4719 * 4720 * while (!event) 4721 * yield(); 4722 * 4723 * where one assumes that yield() will let 'the other' process run that will 4724 * make event true. If the current task is a SCHED_FIFO task that will never 4725 * happen. Never use yield() as a progress guarantee!! 4726 * 4727 * If you want to use yield() to wait for something, use wait_event(). 4728 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4729 * If you still want to use yield(), do not! 4730 */ 4731 void __sched yield(void) 4732 { 4733 set_current_state(TASK_RUNNING); 4734 sys_sched_yield(); 4735 } 4736 EXPORT_SYMBOL(yield); 4737 4738 /** 4739 * yield_to - yield the current processor to another thread in 4740 * your thread group, or accelerate that thread toward the 4741 * processor it's on. 4742 * @p: target task 4743 * @preempt: whether task preemption is allowed or not 4744 * 4745 * It's the caller's job to ensure that the target task struct 4746 * can't go away on us before we can do any checks. 4747 * 4748 * Return: 4749 * true (>0) if we indeed boosted the target task. 4750 * false (0) if we failed to boost the target. 4751 * -ESRCH if there's no task to yield to. 4752 */ 4753 int __sched yield_to(struct task_struct *p, bool preempt) 4754 { 4755 struct task_struct *curr = current; 4756 struct rq *rq, *p_rq; 4757 unsigned long flags; 4758 int yielded = 0; 4759 4760 local_irq_save(flags); 4761 rq = this_rq(); 4762 4763 again: 4764 p_rq = task_rq(p); 4765 /* 4766 * If we're the only runnable task on the rq and target rq also 4767 * has only one task, there's absolutely no point in yielding. 4768 */ 4769 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4770 yielded = -ESRCH; 4771 goto out_irq; 4772 } 4773 4774 double_rq_lock(rq, p_rq); 4775 if (task_rq(p) != p_rq) { 4776 double_rq_unlock(rq, p_rq); 4777 goto again; 4778 } 4779 4780 if (!curr->sched_class->yield_to_task) 4781 goto out_unlock; 4782 4783 if (curr->sched_class != p->sched_class) 4784 goto out_unlock; 4785 4786 if (task_running(p_rq, p) || p->state) 4787 goto out_unlock; 4788 4789 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4790 if (yielded) { 4791 schedstat_inc(rq, yld_count); 4792 /* 4793 * Make p's CPU reschedule; pick_next_entity takes care of 4794 * fairness. 4795 */ 4796 if (preempt && rq != p_rq) 4797 resched_curr(p_rq); 4798 } 4799 4800 out_unlock: 4801 double_rq_unlock(rq, p_rq); 4802 out_irq: 4803 local_irq_restore(flags); 4804 4805 if (yielded > 0) 4806 schedule(); 4807 4808 return yielded; 4809 } 4810 EXPORT_SYMBOL_GPL(yield_to); 4811 4812 /* 4813 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4814 * that process accounting knows that this is a task in IO wait state. 4815 */ 4816 long __sched io_schedule_timeout(long timeout) 4817 { 4818 int old_iowait = current->in_iowait; 4819 struct rq *rq; 4820 long ret; 4821 4822 current->in_iowait = 1; 4823 blk_schedule_flush_plug(current); 4824 4825 delayacct_blkio_start(); 4826 rq = raw_rq(); 4827 atomic_inc(&rq->nr_iowait); 4828 ret = schedule_timeout(timeout); 4829 current->in_iowait = old_iowait; 4830 atomic_dec(&rq->nr_iowait); 4831 delayacct_blkio_end(); 4832 4833 return ret; 4834 } 4835 EXPORT_SYMBOL(io_schedule_timeout); 4836 4837 /** 4838 * sys_sched_get_priority_max - return maximum RT priority. 4839 * @policy: scheduling class. 4840 * 4841 * Return: On success, this syscall returns the maximum 4842 * rt_priority that can be used by a given scheduling class. 4843 * On failure, a negative error code is returned. 4844 */ 4845 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4846 { 4847 int ret = -EINVAL; 4848 4849 switch (policy) { 4850 case SCHED_FIFO: 4851 case SCHED_RR: 4852 ret = MAX_USER_RT_PRIO-1; 4853 break; 4854 case SCHED_DEADLINE: 4855 case SCHED_NORMAL: 4856 case SCHED_BATCH: 4857 case SCHED_IDLE: 4858 ret = 0; 4859 break; 4860 } 4861 return ret; 4862 } 4863 4864 /** 4865 * sys_sched_get_priority_min - return minimum RT priority. 4866 * @policy: scheduling class. 4867 * 4868 * Return: On success, this syscall returns the minimum 4869 * rt_priority that can be used by a given scheduling class. 4870 * On failure, a negative error code is returned. 4871 */ 4872 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4873 { 4874 int ret = -EINVAL; 4875 4876 switch (policy) { 4877 case SCHED_FIFO: 4878 case SCHED_RR: 4879 ret = 1; 4880 break; 4881 case SCHED_DEADLINE: 4882 case SCHED_NORMAL: 4883 case SCHED_BATCH: 4884 case SCHED_IDLE: 4885 ret = 0; 4886 } 4887 return ret; 4888 } 4889 4890 /** 4891 * sys_sched_rr_get_interval - return the default timeslice of a process. 4892 * @pid: pid of the process. 4893 * @interval: userspace pointer to the timeslice value. 4894 * 4895 * this syscall writes the default timeslice value of a given process 4896 * into the user-space timespec buffer. A value of '0' means infinity. 4897 * 4898 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4899 * an error code. 4900 */ 4901 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4902 struct timespec __user *, interval) 4903 { 4904 struct task_struct *p; 4905 unsigned int time_slice; 4906 unsigned long flags; 4907 struct rq *rq; 4908 int retval; 4909 struct timespec t; 4910 4911 if (pid < 0) 4912 return -EINVAL; 4913 4914 retval = -ESRCH; 4915 rcu_read_lock(); 4916 p = find_process_by_pid(pid); 4917 if (!p) 4918 goto out_unlock; 4919 4920 retval = security_task_getscheduler(p); 4921 if (retval) 4922 goto out_unlock; 4923 4924 rq = task_rq_lock(p, &flags); 4925 time_slice = 0; 4926 if (p->sched_class->get_rr_interval) 4927 time_slice = p->sched_class->get_rr_interval(rq, p); 4928 task_rq_unlock(rq, p, &flags); 4929 4930 rcu_read_unlock(); 4931 jiffies_to_timespec(time_slice, &t); 4932 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4933 return retval; 4934 4935 out_unlock: 4936 rcu_read_unlock(); 4937 return retval; 4938 } 4939 4940 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4941 4942 void sched_show_task(struct task_struct *p) 4943 { 4944 unsigned long free = 0; 4945 int ppid; 4946 unsigned long state = p->state; 4947 4948 if (state) 4949 state = __ffs(state) + 1; 4950 printk(KERN_INFO "%-15.15s %c", p->comm, 4951 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4952 #if BITS_PER_LONG == 32 4953 if (state == TASK_RUNNING) 4954 printk(KERN_CONT " running "); 4955 else 4956 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4957 #else 4958 if (state == TASK_RUNNING) 4959 printk(KERN_CONT " running task "); 4960 else 4961 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4962 #endif 4963 #ifdef CONFIG_DEBUG_STACK_USAGE 4964 free = stack_not_used(p); 4965 #endif 4966 ppid = 0; 4967 rcu_read_lock(); 4968 if (pid_alive(p)) 4969 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4970 rcu_read_unlock(); 4971 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4972 task_pid_nr(p), ppid, 4973 (unsigned long)task_thread_info(p)->flags); 4974 4975 print_worker_info(KERN_INFO, p); 4976 show_stack(p, NULL); 4977 } 4978 4979 void show_state_filter(unsigned long state_filter) 4980 { 4981 struct task_struct *g, *p; 4982 4983 #if BITS_PER_LONG == 32 4984 printk(KERN_INFO 4985 " task PC stack pid father\n"); 4986 #else 4987 printk(KERN_INFO 4988 " task PC stack pid father\n"); 4989 #endif 4990 rcu_read_lock(); 4991 for_each_process_thread(g, p) { 4992 /* 4993 * reset the NMI-timeout, listing all files on a slow 4994 * console might take a lot of time: 4995 */ 4996 touch_nmi_watchdog(); 4997 if (!state_filter || (p->state & state_filter)) 4998 sched_show_task(p); 4999 } 5000 5001 touch_all_softlockup_watchdogs(); 5002 5003 #ifdef CONFIG_SCHED_DEBUG 5004 sysrq_sched_debug_show(); 5005 #endif 5006 rcu_read_unlock(); 5007 /* 5008 * Only show locks if all tasks are dumped: 5009 */ 5010 if (!state_filter) 5011 debug_show_all_locks(); 5012 } 5013 5014 void init_idle_bootup_task(struct task_struct *idle) 5015 { 5016 idle->sched_class = &idle_sched_class; 5017 } 5018 5019 /** 5020 * init_idle - set up an idle thread for a given CPU 5021 * @idle: task in question 5022 * @cpu: cpu the idle task belongs to 5023 * 5024 * NOTE: this function does not set the idle thread's NEED_RESCHED 5025 * flag, to make booting more robust. 5026 */ 5027 void init_idle(struct task_struct *idle, int cpu) 5028 { 5029 struct rq *rq = cpu_rq(cpu); 5030 unsigned long flags; 5031 5032 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5033 raw_spin_lock(&rq->lock); 5034 5035 __sched_fork(0, idle); 5036 idle->state = TASK_RUNNING; 5037 idle->se.exec_start = sched_clock(); 5038 5039 kasan_unpoison_task_stack(idle); 5040 5041 #ifdef CONFIG_SMP 5042 /* 5043 * Its possible that init_idle() gets called multiple times on a task, 5044 * in that case do_set_cpus_allowed() will not do the right thing. 5045 * 5046 * And since this is boot we can forgo the serialization. 5047 */ 5048 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5049 #endif 5050 /* 5051 * We're having a chicken and egg problem, even though we are 5052 * holding rq->lock, the cpu isn't yet set to this cpu so the 5053 * lockdep check in task_group() will fail. 5054 * 5055 * Similar case to sched_fork(). / Alternatively we could 5056 * use task_rq_lock() here and obtain the other rq->lock. 5057 * 5058 * Silence PROVE_RCU 5059 */ 5060 rcu_read_lock(); 5061 __set_task_cpu(idle, cpu); 5062 rcu_read_unlock(); 5063 5064 rq->curr = rq->idle = idle; 5065 idle->on_rq = TASK_ON_RQ_QUEUED; 5066 #ifdef CONFIG_SMP 5067 idle->on_cpu = 1; 5068 #endif 5069 raw_spin_unlock(&rq->lock); 5070 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5071 5072 /* Set the preempt count _outside_ the spinlocks! */ 5073 init_idle_preempt_count(idle, cpu); 5074 5075 /* 5076 * The idle tasks have their own, simple scheduling class: 5077 */ 5078 idle->sched_class = &idle_sched_class; 5079 ftrace_graph_init_idle_task(idle, cpu); 5080 vtime_init_idle(idle, cpu); 5081 #ifdef CONFIG_SMP 5082 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5083 #endif 5084 } 5085 5086 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5087 const struct cpumask *trial) 5088 { 5089 int ret = 1, trial_cpus; 5090 struct dl_bw *cur_dl_b; 5091 unsigned long flags; 5092 5093 if (!cpumask_weight(cur)) 5094 return ret; 5095 5096 rcu_read_lock_sched(); 5097 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5098 trial_cpus = cpumask_weight(trial); 5099 5100 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5101 if (cur_dl_b->bw != -1 && 5102 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5103 ret = 0; 5104 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5105 rcu_read_unlock_sched(); 5106 5107 return ret; 5108 } 5109 5110 int task_can_attach(struct task_struct *p, 5111 const struct cpumask *cs_cpus_allowed) 5112 { 5113 int ret = 0; 5114 5115 /* 5116 * Kthreads which disallow setaffinity shouldn't be moved 5117 * to a new cpuset; we don't want to change their cpu 5118 * affinity and isolating such threads by their set of 5119 * allowed nodes is unnecessary. Thus, cpusets are not 5120 * applicable for such threads. This prevents checking for 5121 * success of set_cpus_allowed_ptr() on all attached tasks 5122 * before cpus_allowed may be changed. 5123 */ 5124 if (p->flags & PF_NO_SETAFFINITY) { 5125 ret = -EINVAL; 5126 goto out; 5127 } 5128 5129 #ifdef CONFIG_SMP 5130 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5131 cs_cpus_allowed)) { 5132 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5133 cs_cpus_allowed); 5134 struct dl_bw *dl_b; 5135 bool overflow; 5136 int cpus; 5137 unsigned long flags; 5138 5139 rcu_read_lock_sched(); 5140 dl_b = dl_bw_of(dest_cpu); 5141 raw_spin_lock_irqsave(&dl_b->lock, flags); 5142 cpus = dl_bw_cpus(dest_cpu); 5143 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5144 if (overflow) 5145 ret = -EBUSY; 5146 else { 5147 /* 5148 * We reserve space for this task in the destination 5149 * root_domain, as we can't fail after this point. 5150 * We will free resources in the source root_domain 5151 * later on (see set_cpus_allowed_dl()). 5152 */ 5153 __dl_add(dl_b, p->dl.dl_bw); 5154 } 5155 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5156 rcu_read_unlock_sched(); 5157 5158 } 5159 #endif 5160 out: 5161 return ret; 5162 } 5163 5164 #ifdef CONFIG_SMP 5165 5166 #ifdef CONFIG_NUMA_BALANCING 5167 /* Migrate current task p to target_cpu */ 5168 int migrate_task_to(struct task_struct *p, int target_cpu) 5169 { 5170 struct migration_arg arg = { p, target_cpu }; 5171 int curr_cpu = task_cpu(p); 5172 5173 if (curr_cpu == target_cpu) 5174 return 0; 5175 5176 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5177 return -EINVAL; 5178 5179 /* TODO: This is not properly updating schedstats */ 5180 5181 trace_sched_move_numa(p, curr_cpu, target_cpu); 5182 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5183 } 5184 5185 /* 5186 * Requeue a task on a given node and accurately track the number of NUMA 5187 * tasks on the runqueues 5188 */ 5189 void sched_setnuma(struct task_struct *p, int nid) 5190 { 5191 struct rq *rq; 5192 unsigned long flags; 5193 bool queued, running; 5194 5195 rq = task_rq_lock(p, &flags); 5196 queued = task_on_rq_queued(p); 5197 running = task_current(rq, p); 5198 5199 if (queued) 5200 dequeue_task(rq, p, DEQUEUE_SAVE); 5201 if (running) 5202 put_prev_task(rq, p); 5203 5204 p->numa_preferred_nid = nid; 5205 5206 if (running) 5207 p->sched_class->set_curr_task(rq); 5208 if (queued) 5209 enqueue_task(rq, p, ENQUEUE_RESTORE); 5210 task_rq_unlock(rq, p, &flags); 5211 } 5212 #endif /* CONFIG_NUMA_BALANCING */ 5213 5214 #ifdef CONFIG_HOTPLUG_CPU 5215 /* 5216 * Ensures that the idle task is using init_mm right before its cpu goes 5217 * offline. 5218 */ 5219 void idle_task_exit(void) 5220 { 5221 struct mm_struct *mm = current->active_mm; 5222 5223 BUG_ON(cpu_online(smp_processor_id())); 5224 5225 if (mm != &init_mm) { 5226 switch_mm(mm, &init_mm, current); 5227 finish_arch_post_lock_switch(); 5228 } 5229 mmdrop(mm); 5230 } 5231 5232 /* 5233 * Since this CPU is going 'away' for a while, fold any nr_active delta 5234 * we might have. Assumes we're called after migrate_tasks() so that the 5235 * nr_active count is stable. 5236 * 5237 * Also see the comment "Global load-average calculations". 5238 */ 5239 static void calc_load_migrate(struct rq *rq) 5240 { 5241 long delta = calc_load_fold_active(rq); 5242 if (delta) 5243 atomic_long_add(delta, &calc_load_tasks); 5244 } 5245 5246 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5247 { 5248 } 5249 5250 static const struct sched_class fake_sched_class = { 5251 .put_prev_task = put_prev_task_fake, 5252 }; 5253 5254 static struct task_struct fake_task = { 5255 /* 5256 * Avoid pull_{rt,dl}_task() 5257 */ 5258 .prio = MAX_PRIO + 1, 5259 .sched_class = &fake_sched_class, 5260 }; 5261 5262 /* 5263 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5264 * try_to_wake_up()->select_task_rq(). 5265 * 5266 * Called with rq->lock held even though we'er in stop_machine() and 5267 * there's no concurrency possible, we hold the required locks anyway 5268 * because of lock validation efforts. 5269 */ 5270 static void migrate_tasks(struct rq *dead_rq) 5271 { 5272 struct rq *rq = dead_rq; 5273 struct task_struct *next, *stop = rq->stop; 5274 int dest_cpu; 5275 5276 /* 5277 * Fudge the rq selection such that the below task selection loop 5278 * doesn't get stuck on the currently eligible stop task. 5279 * 5280 * We're currently inside stop_machine() and the rq is either stuck 5281 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5282 * either way we should never end up calling schedule() until we're 5283 * done here. 5284 */ 5285 rq->stop = NULL; 5286 5287 /* 5288 * put_prev_task() and pick_next_task() sched 5289 * class method both need to have an up-to-date 5290 * value of rq->clock[_task] 5291 */ 5292 update_rq_clock(rq); 5293 5294 for (;;) { 5295 /* 5296 * There's this thread running, bail when that's the only 5297 * remaining thread. 5298 */ 5299 if (rq->nr_running == 1) 5300 break; 5301 5302 /* 5303 * pick_next_task assumes pinned rq->lock. 5304 */ 5305 lockdep_pin_lock(&rq->lock); 5306 next = pick_next_task(rq, &fake_task); 5307 BUG_ON(!next); 5308 next->sched_class->put_prev_task(rq, next); 5309 5310 /* 5311 * Rules for changing task_struct::cpus_allowed are holding 5312 * both pi_lock and rq->lock, such that holding either 5313 * stabilizes the mask. 5314 * 5315 * Drop rq->lock is not quite as disastrous as it usually is 5316 * because !cpu_active at this point, which means load-balance 5317 * will not interfere. Also, stop-machine. 5318 */ 5319 lockdep_unpin_lock(&rq->lock); 5320 raw_spin_unlock(&rq->lock); 5321 raw_spin_lock(&next->pi_lock); 5322 raw_spin_lock(&rq->lock); 5323 5324 /* 5325 * Since we're inside stop-machine, _nothing_ should have 5326 * changed the task, WARN if weird stuff happened, because in 5327 * that case the above rq->lock drop is a fail too. 5328 */ 5329 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5330 raw_spin_unlock(&next->pi_lock); 5331 continue; 5332 } 5333 5334 /* Find suitable destination for @next, with force if needed. */ 5335 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5336 5337 rq = __migrate_task(rq, next, dest_cpu); 5338 if (rq != dead_rq) { 5339 raw_spin_unlock(&rq->lock); 5340 rq = dead_rq; 5341 raw_spin_lock(&rq->lock); 5342 } 5343 raw_spin_unlock(&next->pi_lock); 5344 } 5345 5346 rq->stop = stop; 5347 } 5348 #endif /* CONFIG_HOTPLUG_CPU */ 5349 5350 static void set_rq_online(struct rq *rq) 5351 { 5352 if (!rq->online) { 5353 const struct sched_class *class; 5354 5355 cpumask_set_cpu(rq->cpu, rq->rd->online); 5356 rq->online = 1; 5357 5358 for_each_class(class) { 5359 if (class->rq_online) 5360 class->rq_online(rq); 5361 } 5362 } 5363 } 5364 5365 static void set_rq_offline(struct rq *rq) 5366 { 5367 if (rq->online) { 5368 const struct sched_class *class; 5369 5370 for_each_class(class) { 5371 if (class->rq_offline) 5372 class->rq_offline(rq); 5373 } 5374 5375 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5376 rq->online = 0; 5377 } 5378 } 5379 5380 /* 5381 * migration_call - callback that gets triggered when a CPU is added. 5382 * Here we can start up the necessary migration thread for the new CPU. 5383 */ 5384 static int 5385 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5386 { 5387 int cpu = (long)hcpu; 5388 unsigned long flags; 5389 struct rq *rq = cpu_rq(cpu); 5390 5391 switch (action & ~CPU_TASKS_FROZEN) { 5392 5393 case CPU_UP_PREPARE: 5394 rq->calc_load_update = calc_load_update; 5395 account_reset_rq(rq); 5396 break; 5397 5398 case CPU_ONLINE: 5399 /* Update our root-domain */ 5400 raw_spin_lock_irqsave(&rq->lock, flags); 5401 if (rq->rd) { 5402 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5403 5404 set_rq_online(rq); 5405 } 5406 raw_spin_unlock_irqrestore(&rq->lock, flags); 5407 break; 5408 5409 #ifdef CONFIG_HOTPLUG_CPU 5410 case CPU_DYING: 5411 sched_ttwu_pending(); 5412 /* Update our root-domain */ 5413 raw_spin_lock_irqsave(&rq->lock, flags); 5414 if (rq->rd) { 5415 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5416 set_rq_offline(rq); 5417 } 5418 migrate_tasks(rq); 5419 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5420 raw_spin_unlock_irqrestore(&rq->lock, flags); 5421 break; 5422 5423 case CPU_DEAD: 5424 calc_load_migrate(rq); 5425 break; 5426 #endif 5427 } 5428 5429 update_max_interval(); 5430 5431 return NOTIFY_OK; 5432 } 5433 5434 /* 5435 * Register at high priority so that task migration (migrate_all_tasks) 5436 * happens before everything else. This has to be lower priority than 5437 * the notifier in the perf_event subsystem, though. 5438 */ 5439 static struct notifier_block migration_notifier = { 5440 .notifier_call = migration_call, 5441 .priority = CPU_PRI_MIGRATION, 5442 }; 5443 5444 static void set_cpu_rq_start_time(void) 5445 { 5446 int cpu = smp_processor_id(); 5447 struct rq *rq = cpu_rq(cpu); 5448 rq->age_stamp = sched_clock_cpu(cpu); 5449 } 5450 5451 static int sched_cpu_active(struct notifier_block *nfb, 5452 unsigned long action, void *hcpu) 5453 { 5454 int cpu = (long)hcpu; 5455 5456 switch (action & ~CPU_TASKS_FROZEN) { 5457 case CPU_STARTING: 5458 set_cpu_rq_start_time(); 5459 return NOTIFY_OK; 5460 5461 case CPU_DOWN_FAILED: 5462 set_cpu_active(cpu, true); 5463 return NOTIFY_OK; 5464 5465 default: 5466 return NOTIFY_DONE; 5467 } 5468 } 5469 5470 static int sched_cpu_inactive(struct notifier_block *nfb, 5471 unsigned long action, void *hcpu) 5472 { 5473 switch (action & ~CPU_TASKS_FROZEN) { 5474 case CPU_DOWN_PREPARE: 5475 set_cpu_active((long)hcpu, false); 5476 return NOTIFY_OK; 5477 default: 5478 return NOTIFY_DONE; 5479 } 5480 } 5481 5482 static int __init migration_init(void) 5483 { 5484 void *cpu = (void *)(long)smp_processor_id(); 5485 int err; 5486 5487 /* Initialize migration for the boot CPU */ 5488 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5489 BUG_ON(err == NOTIFY_BAD); 5490 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5491 register_cpu_notifier(&migration_notifier); 5492 5493 /* Register cpu active notifiers */ 5494 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5495 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5496 5497 return 0; 5498 } 5499 early_initcall(migration_init); 5500 5501 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5502 5503 #ifdef CONFIG_SCHED_DEBUG 5504 5505 static __read_mostly int sched_debug_enabled; 5506 5507 static int __init sched_debug_setup(char *str) 5508 { 5509 sched_debug_enabled = 1; 5510 5511 return 0; 5512 } 5513 early_param("sched_debug", sched_debug_setup); 5514 5515 static inline bool sched_debug(void) 5516 { 5517 return sched_debug_enabled; 5518 } 5519 5520 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5521 struct cpumask *groupmask) 5522 { 5523 struct sched_group *group = sd->groups; 5524 5525 cpumask_clear(groupmask); 5526 5527 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5528 5529 if (!(sd->flags & SD_LOAD_BALANCE)) { 5530 printk("does not load-balance\n"); 5531 if (sd->parent) 5532 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5533 " has parent"); 5534 return -1; 5535 } 5536 5537 printk(KERN_CONT "span %*pbl level %s\n", 5538 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5539 5540 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5541 printk(KERN_ERR "ERROR: domain->span does not contain " 5542 "CPU%d\n", cpu); 5543 } 5544 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5545 printk(KERN_ERR "ERROR: domain->groups does not contain" 5546 " CPU%d\n", cpu); 5547 } 5548 5549 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5550 do { 5551 if (!group) { 5552 printk("\n"); 5553 printk(KERN_ERR "ERROR: group is NULL\n"); 5554 break; 5555 } 5556 5557 if (!cpumask_weight(sched_group_cpus(group))) { 5558 printk(KERN_CONT "\n"); 5559 printk(KERN_ERR "ERROR: empty group\n"); 5560 break; 5561 } 5562 5563 if (!(sd->flags & SD_OVERLAP) && 5564 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5565 printk(KERN_CONT "\n"); 5566 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5567 break; 5568 } 5569 5570 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5571 5572 printk(KERN_CONT " %*pbl", 5573 cpumask_pr_args(sched_group_cpus(group))); 5574 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5575 printk(KERN_CONT " (cpu_capacity = %d)", 5576 group->sgc->capacity); 5577 } 5578 5579 group = group->next; 5580 } while (group != sd->groups); 5581 printk(KERN_CONT "\n"); 5582 5583 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5584 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5585 5586 if (sd->parent && 5587 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5588 printk(KERN_ERR "ERROR: parent span is not a superset " 5589 "of domain->span\n"); 5590 return 0; 5591 } 5592 5593 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5594 { 5595 int level = 0; 5596 5597 if (!sched_debug_enabled) 5598 return; 5599 5600 if (!sd) { 5601 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5602 return; 5603 } 5604 5605 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5606 5607 for (;;) { 5608 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5609 break; 5610 level++; 5611 sd = sd->parent; 5612 if (!sd) 5613 break; 5614 } 5615 } 5616 #else /* !CONFIG_SCHED_DEBUG */ 5617 # define sched_domain_debug(sd, cpu) do { } while (0) 5618 static inline bool sched_debug(void) 5619 { 5620 return false; 5621 } 5622 #endif /* CONFIG_SCHED_DEBUG */ 5623 5624 static int sd_degenerate(struct sched_domain *sd) 5625 { 5626 if (cpumask_weight(sched_domain_span(sd)) == 1) 5627 return 1; 5628 5629 /* Following flags need at least 2 groups */ 5630 if (sd->flags & (SD_LOAD_BALANCE | 5631 SD_BALANCE_NEWIDLE | 5632 SD_BALANCE_FORK | 5633 SD_BALANCE_EXEC | 5634 SD_SHARE_CPUCAPACITY | 5635 SD_SHARE_PKG_RESOURCES | 5636 SD_SHARE_POWERDOMAIN)) { 5637 if (sd->groups != sd->groups->next) 5638 return 0; 5639 } 5640 5641 /* Following flags don't use groups */ 5642 if (sd->flags & (SD_WAKE_AFFINE)) 5643 return 0; 5644 5645 return 1; 5646 } 5647 5648 static int 5649 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5650 { 5651 unsigned long cflags = sd->flags, pflags = parent->flags; 5652 5653 if (sd_degenerate(parent)) 5654 return 1; 5655 5656 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5657 return 0; 5658 5659 /* Flags needing groups don't count if only 1 group in parent */ 5660 if (parent->groups == parent->groups->next) { 5661 pflags &= ~(SD_LOAD_BALANCE | 5662 SD_BALANCE_NEWIDLE | 5663 SD_BALANCE_FORK | 5664 SD_BALANCE_EXEC | 5665 SD_SHARE_CPUCAPACITY | 5666 SD_SHARE_PKG_RESOURCES | 5667 SD_PREFER_SIBLING | 5668 SD_SHARE_POWERDOMAIN); 5669 if (nr_node_ids == 1) 5670 pflags &= ~SD_SERIALIZE; 5671 } 5672 if (~cflags & pflags) 5673 return 0; 5674 5675 return 1; 5676 } 5677 5678 static void free_rootdomain(struct rcu_head *rcu) 5679 { 5680 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5681 5682 cpupri_cleanup(&rd->cpupri); 5683 cpudl_cleanup(&rd->cpudl); 5684 free_cpumask_var(rd->dlo_mask); 5685 free_cpumask_var(rd->rto_mask); 5686 free_cpumask_var(rd->online); 5687 free_cpumask_var(rd->span); 5688 kfree(rd); 5689 } 5690 5691 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5692 { 5693 struct root_domain *old_rd = NULL; 5694 unsigned long flags; 5695 5696 raw_spin_lock_irqsave(&rq->lock, flags); 5697 5698 if (rq->rd) { 5699 old_rd = rq->rd; 5700 5701 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5702 set_rq_offline(rq); 5703 5704 cpumask_clear_cpu(rq->cpu, old_rd->span); 5705 5706 /* 5707 * If we dont want to free the old_rd yet then 5708 * set old_rd to NULL to skip the freeing later 5709 * in this function: 5710 */ 5711 if (!atomic_dec_and_test(&old_rd->refcount)) 5712 old_rd = NULL; 5713 } 5714 5715 atomic_inc(&rd->refcount); 5716 rq->rd = rd; 5717 5718 cpumask_set_cpu(rq->cpu, rd->span); 5719 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5720 set_rq_online(rq); 5721 5722 raw_spin_unlock_irqrestore(&rq->lock, flags); 5723 5724 if (old_rd) 5725 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5726 } 5727 5728 static int init_rootdomain(struct root_domain *rd) 5729 { 5730 memset(rd, 0, sizeof(*rd)); 5731 5732 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 5733 goto out; 5734 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 5735 goto free_span; 5736 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5737 goto free_online; 5738 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5739 goto free_dlo_mask; 5740 5741 init_dl_bw(&rd->dl_bw); 5742 if (cpudl_init(&rd->cpudl) != 0) 5743 goto free_dlo_mask; 5744 5745 if (cpupri_init(&rd->cpupri) != 0) 5746 goto free_rto_mask; 5747 return 0; 5748 5749 free_rto_mask: 5750 free_cpumask_var(rd->rto_mask); 5751 free_dlo_mask: 5752 free_cpumask_var(rd->dlo_mask); 5753 free_online: 5754 free_cpumask_var(rd->online); 5755 free_span: 5756 free_cpumask_var(rd->span); 5757 out: 5758 return -ENOMEM; 5759 } 5760 5761 /* 5762 * By default the system creates a single root-domain with all cpus as 5763 * members (mimicking the global state we have today). 5764 */ 5765 struct root_domain def_root_domain; 5766 5767 static void init_defrootdomain(void) 5768 { 5769 init_rootdomain(&def_root_domain); 5770 5771 atomic_set(&def_root_domain.refcount, 1); 5772 } 5773 5774 static struct root_domain *alloc_rootdomain(void) 5775 { 5776 struct root_domain *rd; 5777 5778 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5779 if (!rd) 5780 return NULL; 5781 5782 if (init_rootdomain(rd) != 0) { 5783 kfree(rd); 5784 return NULL; 5785 } 5786 5787 return rd; 5788 } 5789 5790 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5791 { 5792 struct sched_group *tmp, *first; 5793 5794 if (!sg) 5795 return; 5796 5797 first = sg; 5798 do { 5799 tmp = sg->next; 5800 5801 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5802 kfree(sg->sgc); 5803 5804 kfree(sg); 5805 sg = tmp; 5806 } while (sg != first); 5807 } 5808 5809 static void free_sched_domain(struct rcu_head *rcu) 5810 { 5811 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5812 5813 /* 5814 * If its an overlapping domain it has private groups, iterate and 5815 * nuke them all. 5816 */ 5817 if (sd->flags & SD_OVERLAP) { 5818 free_sched_groups(sd->groups, 1); 5819 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5820 kfree(sd->groups->sgc); 5821 kfree(sd->groups); 5822 } 5823 kfree(sd); 5824 } 5825 5826 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5827 { 5828 call_rcu(&sd->rcu, free_sched_domain); 5829 } 5830 5831 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5832 { 5833 for (; sd; sd = sd->parent) 5834 destroy_sched_domain(sd, cpu); 5835 } 5836 5837 /* 5838 * Keep a special pointer to the highest sched_domain that has 5839 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5840 * allows us to avoid some pointer chasing select_idle_sibling(). 5841 * 5842 * Also keep a unique ID per domain (we use the first cpu number in 5843 * the cpumask of the domain), this allows us to quickly tell if 5844 * two cpus are in the same cache domain, see cpus_share_cache(). 5845 */ 5846 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5847 DEFINE_PER_CPU(int, sd_llc_size); 5848 DEFINE_PER_CPU(int, sd_llc_id); 5849 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5850 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5851 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5852 5853 static void update_top_cache_domain(int cpu) 5854 { 5855 struct sched_domain *sd; 5856 struct sched_domain *busy_sd = NULL; 5857 int id = cpu; 5858 int size = 1; 5859 5860 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5861 if (sd) { 5862 id = cpumask_first(sched_domain_span(sd)); 5863 size = cpumask_weight(sched_domain_span(sd)); 5864 busy_sd = sd->parent; /* sd_busy */ 5865 } 5866 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5867 5868 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5869 per_cpu(sd_llc_size, cpu) = size; 5870 per_cpu(sd_llc_id, cpu) = id; 5871 5872 sd = lowest_flag_domain(cpu, SD_NUMA); 5873 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5874 5875 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5876 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5877 } 5878 5879 /* 5880 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5881 * hold the hotplug lock. 5882 */ 5883 static void 5884 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5885 { 5886 struct rq *rq = cpu_rq(cpu); 5887 struct sched_domain *tmp; 5888 5889 /* Remove the sched domains which do not contribute to scheduling. */ 5890 for (tmp = sd; tmp; ) { 5891 struct sched_domain *parent = tmp->parent; 5892 if (!parent) 5893 break; 5894 5895 if (sd_parent_degenerate(tmp, parent)) { 5896 tmp->parent = parent->parent; 5897 if (parent->parent) 5898 parent->parent->child = tmp; 5899 /* 5900 * Transfer SD_PREFER_SIBLING down in case of a 5901 * degenerate parent; the spans match for this 5902 * so the property transfers. 5903 */ 5904 if (parent->flags & SD_PREFER_SIBLING) 5905 tmp->flags |= SD_PREFER_SIBLING; 5906 destroy_sched_domain(parent, cpu); 5907 } else 5908 tmp = tmp->parent; 5909 } 5910 5911 if (sd && sd_degenerate(sd)) { 5912 tmp = sd; 5913 sd = sd->parent; 5914 destroy_sched_domain(tmp, cpu); 5915 if (sd) 5916 sd->child = NULL; 5917 } 5918 5919 sched_domain_debug(sd, cpu); 5920 5921 rq_attach_root(rq, rd); 5922 tmp = rq->sd; 5923 rcu_assign_pointer(rq->sd, sd); 5924 destroy_sched_domains(tmp, cpu); 5925 5926 update_top_cache_domain(cpu); 5927 } 5928 5929 /* Setup the mask of cpus configured for isolated domains */ 5930 static int __init isolated_cpu_setup(char *str) 5931 { 5932 int ret; 5933 5934 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5935 ret = cpulist_parse(str, cpu_isolated_map); 5936 if (ret) { 5937 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 5938 return 0; 5939 } 5940 return 1; 5941 } 5942 __setup("isolcpus=", isolated_cpu_setup); 5943 5944 struct s_data { 5945 struct sched_domain ** __percpu sd; 5946 struct root_domain *rd; 5947 }; 5948 5949 enum s_alloc { 5950 sa_rootdomain, 5951 sa_sd, 5952 sa_sd_storage, 5953 sa_none, 5954 }; 5955 5956 /* 5957 * Build an iteration mask that can exclude certain CPUs from the upwards 5958 * domain traversal. 5959 * 5960 * Asymmetric node setups can result in situations where the domain tree is of 5961 * unequal depth, make sure to skip domains that already cover the entire 5962 * range. 5963 * 5964 * In that case build_sched_domains() will have terminated the iteration early 5965 * and our sibling sd spans will be empty. Domains should always include the 5966 * cpu they're built on, so check that. 5967 * 5968 */ 5969 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5970 { 5971 const struct cpumask *span = sched_domain_span(sd); 5972 struct sd_data *sdd = sd->private; 5973 struct sched_domain *sibling; 5974 int i; 5975 5976 for_each_cpu(i, span) { 5977 sibling = *per_cpu_ptr(sdd->sd, i); 5978 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5979 continue; 5980 5981 cpumask_set_cpu(i, sched_group_mask(sg)); 5982 } 5983 } 5984 5985 /* 5986 * Return the canonical balance cpu for this group, this is the first cpu 5987 * of this group that's also in the iteration mask. 5988 */ 5989 int group_balance_cpu(struct sched_group *sg) 5990 { 5991 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5992 } 5993 5994 static int 5995 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5996 { 5997 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5998 const struct cpumask *span = sched_domain_span(sd); 5999 struct cpumask *covered = sched_domains_tmpmask; 6000 struct sd_data *sdd = sd->private; 6001 struct sched_domain *sibling; 6002 int i; 6003 6004 cpumask_clear(covered); 6005 6006 for_each_cpu(i, span) { 6007 struct cpumask *sg_span; 6008 6009 if (cpumask_test_cpu(i, covered)) 6010 continue; 6011 6012 sibling = *per_cpu_ptr(sdd->sd, i); 6013 6014 /* See the comment near build_group_mask(). */ 6015 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6016 continue; 6017 6018 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6019 GFP_KERNEL, cpu_to_node(cpu)); 6020 6021 if (!sg) 6022 goto fail; 6023 6024 sg_span = sched_group_cpus(sg); 6025 if (sibling->child) 6026 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 6027 else 6028 cpumask_set_cpu(i, sg_span); 6029 6030 cpumask_or(covered, covered, sg_span); 6031 6032 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6033 if (atomic_inc_return(&sg->sgc->ref) == 1) 6034 build_group_mask(sd, sg); 6035 6036 /* 6037 * Initialize sgc->capacity such that even if we mess up the 6038 * domains and no possible iteration will get us here, we won't 6039 * die on a /0 trap. 6040 */ 6041 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6042 6043 /* 6044 * Make sure the first group of this domain contains the 6045 * canonical balance cpu. Otherwise the sched_domain iteration 6046 * breaks. See update_sg_lb_stats(). 6047 */ 6048 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6049 group_balance_cpu(sg) == cpu) 6050 groups = sg; 6051 6052 if (!first) 6053 first = sg; 6054 if (last) 6055 last->next = sg; 6056 last = sg; 6057 last->next = first; 6058 } 6059 sd->groups = groups; 6060 6061 return 0; 6062 6063 fail: 6064 free_sched_groups(first, 0); 6065 6066 return -ENOMEM; 6067 } 6068 6069 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6070 { 6071 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6072 struct sched_domain *child = sd->child; 6073 6074 if (child) 6075 cpu = cpumask_first(sched_domain_span(child)); 6076 6077 if (sg) { 6078 *sg = *per_cpu_ptr(sdd->sg, cpu); 6079 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6080 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6081 } 6082 6083 return cpu; 6084 } 6085 6086 /* 6087 * build_sched_groups will build a circular linked list of the groups 6088 * covered by the given span, and will set each group's ->cpumask correctly, 6089 * and ->cpu_capacity to 0. 6090 * 6091 * Assumes the sched_domain tree is fully constructed 6092 */ 6093 static int 6094 build_sched_groups(struct sched_domain *sd, int cpu) 6095 { 6096 struct sched_group *first = NULL, *last = NULL; 6097 struct sd_data *sdd = sd->private; 6098 const struct cpumask *span = sched_domain_span(sd); 6099 struct cpumask *covered; 6100 int i; 6101 6102 get_group(cpu, sdd, &sd->groups); 6103 atomic_inc(&sd->groups->ref); 6104 6105 if (cpu != cpumask_first(span)) 6106 return 0; 6107 6108 lockdep_assert_held(&sched_domains_mutex); 6109 covered = sched_domains_tmpmask; 6110 6111 cpumask_clear(covered); 6112 6113 for_each_cpu(i, span) { 6114 struct sched_group *sg; 6115 int group, j; 6116 6117 if (cpumask_test_cpu(i, covered)) 6118 continue; 6119 6120 group = get_group(i, sdd, &sg); 6121 cpumask_setall(sched_group_mask(sg)); 6122 6123 for_each_cpu(j, span) { 6124 if (get_group(j, sdd, NULL) != group) 6125 continue; 6126 6127 cpumask_set_cpu(j, covered); 6128 cpumask_set_cpu(j, sched_group_cpus(sg)); 6129 } 6130 6131 if (!first) 6132 first = sg; 6133 if (last) 6134 last->next = sg; 6135 last = sg; 6136 } 6137 last->next = first; 6138 6139 return 0; 6140 } 6141 6142 /* 6143 * Initialize sched groups cpu_capacity. 6144 * 6145 * cpu_capacity indicates the capacity of sched group, which is used while 6146 * distributing the load between different sched groups in a sched domain. 6147 * Typically cpu_capacity for all the groups in a sched domain will be same 6148 * unless there are asymmetries in the topology. If there are asymmetries, 6149 * group having more cpu_capacity will pickup more load compared to the 6150 * group having less cpu_capacity. 6151 */ 6152 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6153 { 6154 struct sched_group *sg = sd->groups; 6155 6156 WARN_ON(!sg); 6157 6158 do { 6159 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6160 sg = sg->next; 6161 } while (sg != sd->groups); 6162 6163 if (cpu != group_balance_cpu(sg)) 6164 return; 6165 6166 update_group_capacity(sd, cpu); 6167 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6168 } 6169 6170 /* 6171 * Initializers for schedule domains 6172 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6173 */ 6174 6175 static int default_relax_domain_level = -1; 6176 int sched_domain_level_max; 6177 6178 static int __init setup_relax_domain_level(char *str) 6179 { 6180 if (kstrtoint(str, 0, &default_relax_domain_level)) 6181 pr_warn("Unable to set relax_domain_level\n"); 6182 6183 return 1; 6184 } 6185 __setup("relax_domain_level=", setup_relax_domain_level); 6186 6187 static void set_domain_attribute(struct sched_domain *sd, 6188 struct sched_domain_attr *attr) 6189 { 6190 int request; 6191 6192 if (!attr || attr->relax_domain_level < 0) { 6193 if (default_relax_domain_level < 0) 6194 return; 6195 else 6196 request = default_relax_domain_level; 6197 } else 6198 request = attr->relax_domain_level; 6199 if (request < sd->level) { 6200 /* turn off idle balance on this domain */ 6201 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6202 } else { 6203 /* turn on idle balance on this domain */ 6204 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6205 } 6206 } 6207 6208 static void __sdt_free(const struct cpumask *cpu_map); 6209 static int __sdt_alloc(const struct cpumask *cpu_map); 6210 6211 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6212 const struct cpumask *cpu_map) 6213 { 6214 switch (what) { 6215 case sa_rootdomain: 6216 if (!atomic_read(&d->rd->refcount)) 6217 free_rootdomain(&d->rd->rcu); /* fall through */ 6218 case sa_sd: 6219 free_percpu(d->sd); /* fall through */ 6220 case sa_sd_storage: 6221 __sdt_free(cpu_map); /* fall through */ 6222 case sa_none: 6223 break; 6224 } 6225 } 6226 6227 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6228 const struct cpumask *cpu_map) 6229 { 6230 memset(d, 0, sizeof(*d)); 6231 6232 if (__sdt_alloc(cpu_map)) 6233 return sa_sd_storage; 6234 d->sd = alloc_percpu(struct sched_domain *); 6235 if (!d->sd) 6236 return sa_sd_storage; 6237 d->rd = alloc_rootdomain(); 6238 if (!d->rd) 6239 return sa_sd; 6240 return sa_rootdomain; 6241 } 6242 6243 /* 6244 * NULL the sd_data elements we've used to build the sched_domain and 6245 * sched_group structure so that the subsequent __free_domain_allocs() 6246 * will not free the data we're using. 6247 */ 6248 static void claim_allocations(int cpu, struct sched_domain *sd) 6249 { 6250 struct sd_data *sdd = sd->private; 6251 6252 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6253 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6254 6255 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6256 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6257 6258 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6259 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6260 } 6261 6262 #ifdef CONFIG_NUMA 6263 static int sched_domains_numa_levels; 6264 enum numa_topology_type sched_numa_topology_type; 6265 static int *sched_domains_numa_distance; 6266 int sched_max_numa_distance; 6267 static struct cpumask ***sched_domains_numa_masks; 6268 static int sched_domains_curr_level; 6269 #endif 6270 6271 /* 6272 * SD_flags allowed in topology descriptions. 6273 * 6274 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6275 * SD_SHARE_PKG_RESOURCES - describes shared caches 6276 * SD_NUMA - describes NUMA topologies 6277 * SD_SHARE_POWERDOMAIN - describes shared power domain 6278 * 6279 * Odd one out: 6280 * SD_ASYM_PACKING - describes SMT quirks 6281 */ 6282 #define TOPOLOGY_SD_FLAGS \ 6283 (SD_SHARE_CPUCAPACITY | \ 6284 SD_SHARE_PKG_RESOURCES | \ 6285 SD_NUMA | \ 6286 SD_ASYM_PACKING | \ 6287 SD_SHARE_POWERDOMAIN) 6288 6289 static struct sched_domain * 6290 sd_init(struct sched_domain_topology_level *tl, int cpu) 6291 { 6292 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6293 int sd_weight, sd_flags = 0; 6294 6295 #ifdef CONFIG_NUMA 6296 /* 6297 * Ugly hack to pass state to sd_numa_mask()... 6298 */ 6299 sched_domains_curr_level = tl->numa_level; 6300 #endif 6301 6302 sd_weight = cpumask_weight(tl->mask(cpu)); 6303 6304 if (tl->sd_flags) 6305 sd_flags = (*tl->sd_flags)(); 6306 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6307 "wrong sd_flags in topology description\n")) 6308 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6309 6310 *sd = (struct sched_domain){ 6311 .min_interval = sd_weight, 6312 .max_interval = 2*sd_weight, 6313 .busy_factor = 32, 6314 .imbalance_pct = 125, 6315 6316 .cache_nice_tries = 0, 6317 .busy_idx = 0, 6318 .idle_idx = 0, 6319 .newidle_idx = 0, 6320 .wake_idx = 0, 6321 .forkexec_idx = 0, 6322 6323 .flags = 1*SD_LOAD_BALANCE 6324 | 1*SD_BALANCE_NEWIDLE 6325 | 1*SD_BALANCE_EXEC 6326 | 1*SD_BALANCE_FORK 6327 | 0*SD_BALANCE_WAKE 6328 | 1*SD_WAKE_AFFINE 6329 | 0*SD_SHARE_CPUCAPACITY 6330 | 0*SD_SHARE_PKG_RESOURCES 6331 | 0*SD_SERIALIZE 6332 | 0*SD_PREFER_SIBLING 6333 | 0*SD_NUMA 6334 | sd_flags 6335 , 6336 6337 .last_balance = jiffies, 6338 .balance_interval = sd_weight, 6339 .smt_gain = 0, 6340 .max_newidle_lb_cost = 0, 6341 .next_decay_max_lb_cost = jiffies, 6342 #ifdef CONFIG_SCHED_DEBUG 6343 .name = tl->name, 6344 #endif 6345 }; 6346 6347 /* 6348 * Convert topological properties into behaviour. 6349 */ 6350 6351 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6352 sd->flags |= SD_PREFER_SIBLING; 6353 sd->imbalance_pct = 110; 6354 sd->smt_gain = 1178; /* ~15% */ 6355 6356 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6357 sd->imbalance_pct = 117; 6358 sd->cache_nice_tries = 1; 6359 sd->busy_idx = 2; 6360 6361 #ifdef CONFIG_NUMA 6362 } else if (sd->flags & SD_NUMA) { 6363 sd->cache_nice_tries = 2; 6364 sd->busy_idx = 3; 6365 sd->idle_idx = 2; 6366 6367 sd->flags |= SD_SERIALIZE; 6368 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6369 sd->flags &= ~(SD_BALANCE_EXEC | 6370 SD_BALANCE_FORK | 6371 SD_WAKE_AFFINE); 6372 } 6373 6374 #endif 6375 } else { 6376 sd->flags |= SD_PREFER_SIBLING; 6377 sd->cache_nice_tries = 1; 6378 sd->busy_idx = 2; 6379 sd->idle_idx = 1; 6380 } 6381 6382 sd->private = &tl->data; 6383 6384 return sd; 6385 } 6386 6387 /* 6388 * Topology list, bottom-up. 6389 */ 6390 static struct sched_domain_topology_level default_topology[] = { 6391 #ifdef CONFIG_SCHED_SMT 6392 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6393 #endif 6394 #ifdef CONFIG_SCHED_MC 6395 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6396 #endif 6397 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6398 { NULL, }, 6399 }; 6400 6401 static struct sched_domain_topology_level *sched_domain_topology = 6402 default_topology; 6403 6404 #define for_each_sd_topology(tl) \ 6405 for (tl = sched_domain_topology; tl->mask; tl++) 6406 6407 void set_sched_topology(struct sched_domain_topology_level *tl) 6408 { 6409 sched_domain_topology = tl; 6410 } 6411 6412 #ifdef CONFIG_NUMA 6413 6414 static const struct cpumask *sd_numa_mask(int cpu) 6415 { 6416 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6417 } 6418 6419 static void sched_numa_warn(const char *str) 6420 { 6421 static int done = false; 6422 int i,j; 6423 6424 if (done) 6425 return; 6426 6427 done = true; 6428 6429 printk(KERN_WARNING "ERROR: %s\n\n", str); 6430 6431 for (i = 0; i < nr_node_ids; i++) { 6432 printk(KERN_WARNING " "); 6433 for (j = 0; j < nr_node_ids; j++) 6434 printk(KERN_CONT "%02d ", node_distance(i,j)); 6435 printk(KERN_CONT "\n"); 6436 } 6437 printk(KERN_WARNING "\n"); 6438 } 6439 6440 bool find_numa_distance(int distance) 6441 { 6442 int i; 6443 6444 if (distance == node_distance(0, 0)) 6445 return true; 6446 6447 for (i = 0; i < sched_domains_numa_levels; i++) { 6448 if (sched_domains_numa_distance[i] == distance) 6449 return true; 6450 } 6451 6452 return false; 6453 } 6454 6455 /* 6456 * A system can have three types of NUMA topology: 6457 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6458 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6459 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6460 * 6461 * The difference between a glueless mesh topology and a backplane 6462 * topology lies in whether communication between not directly 6463 * connected nodes goes through intermediary nodes (where programs 6464 * could run), or through backplane controllers. This affects 6465 * placement of programs. 6466 * 6467 * The type of topology can be discerned with the following tests: 6468 * - If the maximum distance between any nodes is 1 hop, the system 6469 * is directly connected. 6470 * - If for two nodes A and B, located N > 1 hops away from each other, 6471 * there is an intermediary node C, which is < N hops away from both 6472 * nodes A and B, the system is a glueless mesh. 6473 */ 6474 static void init_numa_topology_type(void) 6475 { 6476 int a, b, c, n; 6477 6478 n = sched_max_numa_distance; 6479 6480 if (sched_domains_numa_levels <= 1) { 6481 sched_numa_topology_type = NUMA_DIRECT; 6482 return; 6483 } 6484 6485 for_each_online_node(a) { 6486 for_each_online_node(b) { 6487 /* Find two nodes furthest removed from each other. */ 6488 if (node_distance(a, b) < n) 6489 continue; 6490 6491 /* Is there an intermediary node between a and b? */ 6492 for_each_online_node(c) { 6493 if (node_distance(a, c) < n && 6494 node_distance(b, c) < n) { 6495 sched_numa_topology_type = 6496 NUMA_GLUELESS_MESH; 6497 return; 6498 } 6499 } 6500 6501 sched_numa_topology_type = NUMA_BACKPLANE; 6502 return; 6503 } 6504 } 6505 } 6506 6507 static void sched_init_numa(void) 6508 { 6509 int next_distance, curr_distance = node_distance(0, 0); 6510 struct sched_domain_topology_level *tl; 6511 int level = 0; 6512 int i, j, k; 6513 6514 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6515 if (!sched_domains_numa_distance) 6516 return; 6517 6518 /* 6519 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6520 * unique distances in the node_distance() table. 6521 * 6522 * Assumes node_distance(0,j) includes all distances in 6523 * node_distance(i,j) in order to avoid cubic time. 6524 */ 6525 next_distance = curr_distance; 6526 for (i = 0; i < nr_node_ids; i++) { 6527 for (j = 0; j < nr_node_ids; j++) { 6528 for (k = 0; k < nr_node_ids; k++) { 6529 int distance = node_distance(i, k); 6530 6531 if (distance > curr_distance && 6532 (distance < next_distance || 6533 next_distance == curr_distance)) 6534 next_distance = distance; 6535 6536 /* 6537 * While not a strong assumption it would be nice to know 6538 * about cases where if node A is connected to B, B is not 6539 * equally connected to A. 6540 */ 6541 if (sched_debug() && node_distance(k, i) != distance) 6542 sched_numa_warn("Node-distance not symmetric"); 6543 6544 if (sched_debug() && i && !find_numa_distance(distance)) 6545 sched_numa_warn("Node-0 not representative"); 6546 } 6547 if (next_distance != curr_distance) { 6548 sched_domains_numa_distance[level++] = next_distance; 6549 sched_domains_numa_levels = level; 6550 curr_distance = next_distance; 6551 } else break; 6552 } 6553 6554 /* 6555 * In case of sched_debug() we verify the above assumption. 6556 */ 6557 if (!sched_debug()) 6558 break; 6559 } 6560 6561 if (!level) 6562 return; 6563 6564 /* 6565 * 'level' contains the number of unique distances, excluding the 6566 * identity distance node_distance(i,i). 6567 * 6568 * The sched_domains_numa_distance[] array includes the actual distance 6569 * numbers. 6570 */ 6571 6572 /* 6573 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6574 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6575 * the array will contain less then 'level' members. This could be 6576 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6577 * in other functions. 6578 * 6579 * We reset it to 'level' at the end of this function. 6580 */ 6581 sched_domains_numa_levels = 0; 6582 6583 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6584 if (!sched_domains_numa_masks) 6585 return; 6586 6587 /* 6588 * Now for each level, construct a mask per node which contains all 6589 * cpus of nodes that are that many hops away from us. 6590 */ 6591 for (i = 0; i < level; i++) { 6592 sched_domains_numa_masks[i] = 6593 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6594 if (!sched_domains_numa_masks[i]) 6595 return; 6596 6597 for (j = 0; j < nr_node_ids; j++) { 6598 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6599 if (!mask) 6600 return; 6601 6602 sched_domains_numa_masks[i][j] = mask; 6603 6604 for_each_node(k) { 6605 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6606 continue; 6607 6608 cpumask_or(mask, mask, cpumask_of_node(k)); 6609 } 6610 } 6611 } 6612 6613 /* Compute default topology size */ 6614 for (i = 0; sched_domain_topology[i].mask; i++); 6615 6616 tl = kzalloc((i + level + 1) * 6617 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6618 if (!tl) 6619 return; 6620 6621 /* 6622 * Copy the default topology bits.. 6623 */ 6624 for (i = 0; sched_domain_topology[i].mask; i++) 6625 tl[i] = sched_domain_topology[i]; 6626 6627 /* 6628 * .. and append 'j' levels of NUMA goodness. 6629 */ 6630 for (j = 0; j < level; i++, j++) { 6631 tl[i] = (struct sched_domain_topology_level){ 6632 .mask = sd_numa_mask, 6633 .sd_flags = cpu_numa_flags, 6634 .flags = SDTL_OVERLAP, 6635 .numa_level = j, 6636 SD_INIT_NAME(NUMA) 6637 }; 6638 } 6639 6640 sched_domain_topology = tl; 6641 6642 sched_domains_numa_levels = level; 6643 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6644 6645 init_numa_topology_type(); 6646 } 6647 6648 static void sched_domains_numa_masks_set(int cpu) 6649 { 6650 int i, j; 6651 int node = cpu_to_node(cpu); 6652 6653 for (i = 0; i < sched_domains_numa_levels; i++) { 6654 for (j = 0; j < nr_node_ids; j++) { 6655 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6656 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6657 } 6658 } 6659 } 6660 6661 static void sched_domains_numa_masks_clear(int cpu) 6662 { 6663 int i, j; 6664 for (i = 0; i < sched_domains_numa_levels; i++) { 6665 for (j = 0; j < nr_node_ids; j++) 6666 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6667 } 6668 } 6669 6670 /* 6671 * Update sched_domains_numa_masks[level][node] array when new cpus 6672 * are onlined. 6673 */ 6674 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6675 unsigned long action, 6676 void *hcpu) 6677 { 6678 int cpu = (long)hcpu; 6679 6680 switch (action & ~CPU_TASKS_FROZEN) { 6681 case CPU_ONLINE: 6682 sched_domains_numa_masks_set(cpu); 6683 break; 6684 6685 case CPU_DEAD: 6686 sched_domains_numa_masks_clear(cpu); 6687 break; 6688 6689 default: 6690 return NOTIFY_DONE; 6691 } 6692 6693 return NOTIFY_OK; 6694 } 6695 #else 6696 static inline void sched_init_numa(void) 6697 { 6698 } 6699 6700 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6701 unsigned long action, 6702 void *hcpu) 6703 { 6704 return 0; 6705 } 6706 #endif /* CONFIG_NUMA */ 6707 6708 static int __sdt_alloc(const struct cpumask *cpu_map) 6709 { 6710 struct sched_domain_topology_level *tl; 6711 int j; 6712 6713 for_each_sd_topology(tl) { 6714 struct sd_data *sdd = &tl->data; 6715 6716 sdd->sd = alloc_percpu(struct sched_domain *); 6717 if (!sdd->sd) 6718 return -ENOMEM; 6719 6720 sdd->sg = alloc_percpu(struct sched_group *); 6721 if (!sdd->sg) 6722 return -ENOMEM; 6723 6724 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6725 if (!sdd->sgc) 6726 return -ENOMEM; 6727 6728 for_each_cpu(j, cpu_map) { 6729 struct sched_domain *sd; 6730 struct sched_group *sg; 6731 struct sched_group_capacity *sgc; 6732 6733 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6734 GFP_KERNEL, cpu_to_node(j)); 6735 if (!sd) 6736 return -ENOMEM; 6737 6738 *per_cpu_ptr(sdd->sd, j) = sd; 6739 6740 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6741 GFP_KERNEL, cpu_to_node(j)); 6742 if (!sg) 6743 return -ENOMEM; 6744 6745 sg->next = sg; 6746 6747 *per_cpu_ptr(sdd->sg, j) = sg; 6748 6749 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6750 GFP_KERNEL, cpu_to_node(j)); 6751 if (!sgc) 6752 return -ENOMEM; 6753 6754 *per_cpu_ptr(sdd->sgc, j) = sgc; 6755 } 6756 } 6757 6758 return 0; 6759 } 6760 6761 static void __sdt_free(const struct cpumask *cpu_map) 6762 { 6763 struct sched_domain_topology_level *tl; 6764 int j; 6765 6766 for_each_sd_topology(tl) { 6767 struct sd_data *sdd = &tl->data; 6768 6769 for_each_cpu(j, cpu_map) { 6770 struct sched_domain *sd; 6771 6772 if (sdd->sd) { 6773 sd = *per_cpu_ptr(sdd->sd, j); 6774 if (sd && (sd->flags & SD_OVERLAP)) 6775 free_sched_groups(sd->groups, 0); 6776 kfree(*per_cpu_ptr(sdd->sd, j)); 6777 } 6778 6779 if (sdd->sg) 6780 kfree(*per_cpu_ptr(sdd->sg, j)); 6781 if (sdd->sgc) 6782 kfree(*per_cpu_ptr(sdd->sgc, j)); 6783 } 6784 free_percpu(sdd->sd); 6785 sdd->sd = NULL; 6786 free_percpu(sdd->sg); 6787 sdd->sg = NULL; 6788 free_percpu(sdd->sgc); 6789 sdd->sgc = NULL; 6790 } 6791 } 6792 6793 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6794 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6795 struct sched_domain *child, int cpu) 6796 { 6797 struct sched_domain *sd = sd_init(tl, cpu); 6798 if (!sd) 6799 return child; 6800 6801 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6802 if (child) { 6803 sd->level = child->level + 1; 6804 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6805 child->parent = sd; 6806 sd->child = child; 6807 6808 if (!cpumask_subset(sched_domain_span(child), 6809 sched_domain_span(sd))) { 6810 pr_err("BUG: arch topology borken\n"); 6811 #ifdef CONFIG_SCHED_DEBUG 6812 pr_err(" the %s domain not a subset of the %s domain\n", 6813 child->name, sd->name); 6814 #endif 6815 /* Fixup, ensure @sd has at least @child cpus. */ 6816 cpumask_or(sched_domain_span(sd), 6817 sched_domain_span(sd), 6818 sched_domain_span(child)); 6819 } 6820 6821 } 6822 set_domain_attribute(sd, attr); 6823 6824 return sd; 6825 } 6826 6827 /* 6828 * Build sched domains for a given set of cpus and attach the sched domains 6829 * to the individual cpus 6830 */ 6831 static int build_sched_domains(const struct cpumask *cpu_map, 6832 struct sched_domain_attr *attr) 6833 { 6834 enum s_alloc alloc_state; 6835 struct sched_domain *sd; 6836 struct s_data d; 6837 int i, ret = -ENOMEM; 6838 6839 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6840 if (alloc_state != sa_rootdomain) 6841 goto error; 6842 6843 /* Set up domains for cpus specified by the cpu_map. */ 6844 for_each_cpu(i, cpu_map) { 6845 struct sched_domain_topology_level *tl; 6846 6847 sd = NULL; 6848 for_each_sd_topology(tl) { 6849 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6850 if (tl == sched_domain_topology) 6851 *per_cpu_ptr(d.sd, i) = sd; 6852 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6853 sd->flags |= SD_OVERLAP; 6854 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6855 break; 6856 } 6857 } 6858 6859 /* Build the groups for the domains */ 6860 for_each_cpu(i, cpu_map) { 6861 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6862 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6863 if (sd->flags & SD_OVERLAP) { 6864 if (build_overlap_sched_groups(sd, i)) 6865 goto error; 6866 } else { 6867 if (build_sched_groups(sd, i)) 6868 goto error; 6869 } 6870 } 6871 } 6872 6873 /* Calculate CPU capacity for physical packages and nodes */ 6874 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6875 if (!cpumask_test_cpu(i, cpu_map)) 6876 continue; 6877 6878 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6879 claim_allocations(i, sd); 6880 init_sched_groups_capacity(i, sd); 6881 } 6882 } 6883 6884 /* Attach the domains */ 6885 rcu_read_lock(); 6886 for_each_cpu(i, cpu_map) { 6887 sd = *per_cpu_ptr(d.sd, i); 6888 cpu_attach_domain(sd, d.rd, i); 6889 } 6890 rcu_read_unlock(); 6891 6892 ret = 0; 6893 error: 6894 __free_domain_allocs(&d, alloc_state, cpu_map); 6895 return ret; 6896 } 6897 6898 static cpumask_var_t *doms_cur; /* current sched domains */ 6899 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6900 static struct sched_domain_attr *dattr_cur; 6901 /* attribues of custom domains in 'doms_cur' */ 6902 6903 /* 6904 * Special case: If a kmalloc of a doms_cur partition (array of 6905 * cpumask) fails, then fallback to a single sched domain, 6906 * as determined by the single cpumask fallback_doms. 6907 */ 6908 static cpumask_var_t fallback_doms; 6909 6910 /* 6911 * arch_update_cpu_topology lets virtualized architectures update the 6912 * cpu core maps. It is supposed to return 1 if the topology changed 6913 * or 0 if it stayed the same. 6914 */ 6915 int __weak arch_update_cpu_topology(void) 6916 { 6917 return 0; 6918 } 6919 6920 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6921 { 6922 int i; 6923 cpumask_var_t *doms; 6924 6925 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6926 if (!doms) 6927 return NULL; 6928 for (i = 0; i < ndoms; i++) { 6929 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6930 free_sched_domains(doms, i); 6931 return NULL; 6932 } 6933 } 6934 return doms; 6935 } 6936 6937 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6938 { 6939 unsigned int i; 6940 for (i = 0; i < ndoms; i++) 6941 free_cpumask_var(doms[i]); 6942 kfree(doms); 6943 } 6944 6945 /* 6946 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6947 * For now this just excludes isolated cpus, but could be used to 6948 * exclude other special cases in the future. 6949 */ 6950 static int init_sched_domains(const struct cpumask *cpu_map) 6951 { 6952 int err; 6953 6954 arch_update_cpu_topology(); 6955 ndoms_cur = 1; 6956 doms_cur = alloc_sched_domains(ndoms_cur); 6957 if (!doms_cur) 6958 doms_cur = &fallback_doms; 6959 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6960 err = build_sched_domains(doms_cur[0], NULL); 6961 register_sched_domain_sysctl(); 6962 6963 return err; 6964 } 6965 6966 /* 6967 * Detach sched domains from a group of cpus specified in cpu_map 6968 * These cpus will now be attached to the NULL domain 6969 */ 6970 static void detach_destroy_domains(const struct cpumask *cpu_map) 6971 { 6972 int i; 6973 6974 rcu_read_lock(); 6975 for_each_cpu(i, cpu_map) 6976 cpu_attach_domain(NULL, &def_root_domain, i); 6977 rcu_read_unlock(); 6978 } 6979 6980 /* handle null as "default" */ 6981 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6982 struct sched_domain_attr *new, int idx_new) 6983 { 6984 struct sched_domain_attr tmp; 6985 6986 /* fast path */ 6987 if (!new && !cur) 6988 return 1; 6989 6990 tmp = SD_ATTR_INIT; 6991 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6992 new ? (new + idx_new) : &tmp, 6993 sizeof(struct sched_domain_attr)); 6994 } 6995 6996 /* 6997 * Partition sched domains as specified by the 'ndoms_new' 6998 * cpumasks in the array doms_new[] of cpumasks. This compares 6999 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7000 * It destroys each deleted domain and builds each new domain. 7001 * 7002 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7003 * The masks don't intersect (don't overlap.) We should setup one 7004 * sched domain for each mask. CPUs not in any of the cpumasks will 7005 * not be load balanced. If the same cpumask appears both in the 7006 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7007 * it as it is. 7008 * 7009 * The passed in 'doms_new' should be allocated using 7010 * alloc_sched_domains. This routine takes ownership of it and will 7011 * free_sched_domains it when done with it. If the caller failed the 7012 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7013 * and partition_sched_domains() will fallback to the single partition 7014 * 'fallback_doms', it also forces the domains to be rebuilt. 7015 * 7016 * If doms_new == NULL it will be replaced with cpu_online_mask. 7017 * ndoms_new == 0 is a special case for destroying existing domains, 7018 * and it will not create the default domain. 7019 * 7020 * Call with hotplug lock held 7021 */ 7022 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7023 struct sched_domain_attr *dattr_new) 7024 { 7025 int i, j, n; 7026 int new_topology; 7027 7028 mutex_lock(&sched_domains_mutex); 7029 7030 /* always unregister in case we don't destroy any domains */ 7031 unregister_sched_domain_sysctl(); 7032 7033 /* Let architecture update cpu core mappings. */ 7034 new_topology = arch_update_cpu_topology(); 7035 7036 n = doms_new ? ndoms_new : 0; 7037 7038 /* Destroy deleted domains */ 7039 for (i = 0; i < ndoms_cur; i++) { 7040 for (j = 0; j < n && !new_topology; j++) { 7041 if (cpumask_equal(doms_cur[i], doms_new[j]) 7042 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7043 goto match1; 7044 } 7045 /* no match - a current sched domain not in new doms_new[] */ 7046 detach_destroy_domains(doms_cur[i]); 7047 match1: 7048 ; 7049 } 7050 7051 n = ndoms_cur; 7052 if (doms_new == NULL) { 7053 n = 0; 7054 doms_new = &fallback_doms; 7055 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7056 WARN_ON_ONCE(dattr_new); 7057 } 7058 7059 /* Build new domains */ 7060 for (i = 0; i < ndoms_new; i++) { 7061 for (j = 0; j < n && !new_topology; j++) { 7062 if (cpumask_equal(doms_new[i], doms_cur[j]) 7063 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7064 goto match2; 7065 } 7066 /* no match - add a new doms_new */ 7067 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7068 match2: 7069 ; 7070 } 7071 7072 /* Remember the new sched domains */ 7073 if (doms_cur != &fallback_doms) 7074 free_sched_domains(doms_cur, ndoms_cur); 7075 kfree(dattr_cur); /* kfree(NULL) is safe */ 7076 doms_cur = doms_new; 7077 dattr_cur = dattr_new; 7078 ndoms_cur = ndoms_new; 7079 7080 register_sched_domain_sysctl(); 7081 7082 mutex_unlock(&sched_domains_mutex); 7083 } 7084 7085 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7086 7087 /* 7088 * Update cpusets according to cpu_active mask. If cpusets are 7089 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7090 * around partition_sched_domains(). 7091 * 7092 * If we come here as part of a suspend/resume, don't touch cpusets because we 7093 * want to restore it back to its original state upon resume anyway. 7094 */ 7095 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 7096 void *hcpu) 7097 { 7098 switch (action) { 7099 case CPU_ONLINE_FROZEN: 7100 case CPU_DOWN_FAILED_FROZEN: 7101 7102 /* 7103 * num_cpus_frozen tracks how many CPUs are involved in suspend 7104 * resume sequence. As long as this is not the last online 7105 * operation in the resume sequence, just build a single sched 7106 * domain, ignoring cpusets. 7107 */ 7108 num_cpus_frozen--; 7109 if (likely(num_cpus_frozen)) { 7110 partition_sched_domains(1, NULL, NULL); 7111 break; 7112 } 7113 7114 /* 7115 * This is the last CPU online operation. So fall through and 7116 * restore the original sched domains by considering the 7117 * cpuset configurations. 7118 */ 7119 7120 case CPU_ONLINE: 7121 cpuset_update_active_cpus(true); 7122 break; 7123 default: 7124 return NOTIFY_DONE; 7125 } 7126 return NOTIFY_OK; 7127 } 7128 7129 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 7130 void *hcpu) 7131 { 7132 unsigned long flags; 7133 long cpu = (long)hcpu; 7134 struct dl_bw *dl_b; 7135 bool overflow; 7136 int cpus; 7137 7138 switch (action) { 7139 case CPU_DOWN_PREPARE: 7140 rcu_read_lock_sched(); 7141 dl_b = dl_bw_of(cpu); 7142 7143 raw_spin_lock_irqsave(&dl_b->lock, flags); 7144 cpus = dl_bw_cpus(cpu); 7145 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7146 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7147 7148 rcu_read_unlock_sched(); 7149 7150 if (overflow) 7151 return notifier_from_errno(-EBUSY); 7152 cpuset_update_active_cpus(false); 7153 break; 7154 case CPU_DOWN_PREPARE_FROZEN: 7155 num_cpus_frozen++; 7156 partition_sched_domains(1, NULL, NULL); 7157 break; 7158 default: 7159 return NOTIFY_DONE; 7160 } 7161 return NOTIFY_OK; 7162 } 7163 7164 void __init sched_init_smp(void) 7165 { 7166 cpumask_var_t non_isolated_cpus; 7167 7168 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7169 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7170 7171 sched_init_numa(); 7172 7173 /* 7174 * There's no userspace yet to cause hotplug operations; hence all the 7175 * cpu masks are stable and all blatant races in the below code cannot 7176 * happen. 7177 */ 7178 mutex_lock(&sched_domains_mutex); 7179 init_sched_domains(cpu_active_mask); 7180 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7181 if (cpumask_empty(non_isolated_cpus)) 7182 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7183 mutex_unlock(&sched_domains_mutex); 7184 7185 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7186 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7187 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7188 7189 init_hrtick(); 7190 7191 /* Move init over to a non-isolated CPU */ 7192 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7193 BUG(); 7194 sched_init_granularity(); 7195 free_cpumask_var(non_isolated_cpus); 7196 7197 init_sched_rt_class(); 7198 init_sched_dl_class(); 7199 } 7200 #else 7201 void __init sched_init_smp(void) 7202 { 7203 sched_init_granularity(); 7204 } 7205 #endif /* CONFIG_SMP */ 7206 7207 int in_sched_functions(unsigned long addr) 7208 { 7209 return in_lock_functions(addr) || 7210 (addr >= (unsigned long)__sched_text_start 7211 && addr < (unsigned long)__sched_text_end); 7212 } 7213 7214 #ifdef CONFIG_CGROUP_SCHED 7215 /* 7216 * Default task group. 7217 * Every task in system belongs to this group at bootup. 7218 */ 7219 struct task_group root_task_group; 7220 LIST_HEAD(task_groups); 7221 7222 /* Cacheline aligned slab cache for task_group */ 7223 static struct kmem_cache *task_group_cache __read_mostly; 7224 #endif 7225 7226 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7227 7228 void __init sched_init(void) 7229 { 7230 int i, j; 7231 unsigned long alloc_size = 0, ptr; 7232 7233 #ifdef CONFIG_FAIR_GROUP_SCHED 7234 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7235 #endif 7236 #ifdef CONFIG_RT_GROUP_SCHED 7237 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7238 #endif 7239 if (alloc_size) { 7240 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7241 7242 #ifdef CONFIG_FAIR_GROUP_SCHED 7243 root_task_group.se = (struct sched_entity **)ptr; 7244 ptr += nr_cpu_ids * sizeof(void **); 7245 7246 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7247 ptr += nr_cpu_ids * sizeof(void **); 7248 7249 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7250 #ifdef CONFIG_RT_GROUP_SCHED 7251 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7252 ptr += nr_cpu_ids * sizeof(void **); 7253 7254 root_task_group.rt_rq = (struct rt_rq **)ptr; 7255 ptr += nr_cpu_ids * sizeof(void **); 7256 7257 #endif /* CONFIG_RT_GROUP_SCHED */ 7258 } 7259 #ifdef CONFIG_CPUMASK_OFFSTACK 7260 for_each_possible_cpu(i) { 7261 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7262 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7263 } 7264 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7265 7266 init_rt_bandwidth(&def_rt_bandwidth, 7267 global_rt_period(), global_rt_runtime()); 7268 init_dl_bandwidth(&def_dl_bandwidth, 7269 global_rt_period(), global_rt_runtime()); 7270 7271 #ifdef CONFIG_SMP 7272 init_defrootdomain(); 7273 #endif 7274 7275 #ifdef CONFIG_RT_GROUP_SCHED 7276 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7277 global_rt_period(), global_rt_runtime()); 7278 #endif /* CONFIG_RT_GROUP_SCHED */ 7279 7280 #ifdef CONFIG_CGROUP_SCHED 7281 task_group_cache = KMEM_CACHE(task_group, 0); 7282 7283 list_add(&root_task_group.list, &task_groups); 7284 INIT_LIST_HEAD(&root_task_group.children); 7285 INIT_LIST_HEAD(&root_task_group.siblings); 7286 autogroup_init(&init_task); 7287 #endif /* CONFIG_CGROUP_SCHED */ 7288 7289 for_each_possible_cpu(i) { 7290 struct rq *rq; 7291 7292 rq = cpu_rq(i); 7293 raw_spin_lock_init(&rq->lock); 7294 rq->nr_running = 0; 7295 rq->calc_load_active = 0; 7296 rq->calc_load_update = jiffies + LOAD_FREQ; 7297 init_cfs_rq(&rq->cfs); 7298 init_rt_rq(&rq->rt); 7299 init_dl_rq(&rq->dl); 7300 #ifdef CONFIG_FAIR_GROUP_SCHED 7301 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7302 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7303 /* 7304 * How much cpu bandwidth does root_task_group get? 7305 * 7306 * In case of task-groups formed thr' the cgroup filesystem, it 7307 * gets 100% of the cpu resources in the system. This overall 7308 * system cpu resource is divided among the tasks of 7309 * root_task_group and its child task-groups in a fair manner, 7310 * based on each entity's (task or task-group's) weight 7311 * (se->load.weight). 7312 * 7313 * In other words, if root_task_group has 10 tasks of weight 7314 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7315 * then A0's share of the cpu resource is: 7316 * 7317 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7318 * 7319 * We achieve this by letting root_task_group's tasks sit 7320 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7321 */ 7322 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7323 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7324 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7325 7326 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7327 #ifdef CONFIG_RT_GROUP_SCHED 7328 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7329 #endif 7330 7331 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7332 rq->cpu_load[j] = 0; 7333 7334 rq->last_load_update_tick = jiffies; 7335 7336 #ifdef CONFIG_SMP 7337 rq->sd = NULL; 7338 rq->rd = NULL; 7339 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7340 rq->balance_callback = NULL; 7341 rq->active_balance = 0; 7342 rq->next_balance = jiffies; 7343 rq->push_cpu = 0; 7344 rq->cpu = i; 7345 rq->online = 0; 7346 rq->idle_stamp = 0; 7347 rq->avg_idle = 2*sysctl_sched_migration_cost; 7348 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7349 7350 INIT_LIST_HEAD(&rq->cfs_tasks); 7351 7352 rq_attach_root(rq, &def_root_domain); 7353 #ifdef CONFIG_NO_HZ_COMMON 7354 rq->nohz_flags = 0; 7355 #endif 7356 #ifdef CONFIG_NO_HZ_FULL 7357 rq->last_sched_tick = 0; 7358 #endif 7359 #endif 7360 init_rq_hrtick(rq); 7361 atomic_set(&rq->nr_iowait, 0); 7362 } 7363 7364 set_load_weight(&init_task); 7365 7366 #ifdef CONFIG_PREEMPT_NOTIFIERS 7367 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7368 #endif 7369 7370 /* 7371 * The boot idle thread does lazy MMU switching as well: 7372 */ 7373 atomic_inc(&init_mm.mm_count); 7374 enter_lazy_tlb(&init_mm, current); 7375 7376 /* 7377 * During early bootup we pretend to be a normal task: 7378 */ 7379 current->sched_class = &fair_sched_class; 7380 7381 /* 7382 * Make us the idle thread. Technically, schedule() should not be 7383 * called from this thread, however somewhere below it might be, 7384 * but because we are the idle thread, we just pick up running again 7385 * when this runqueue becomes "idle". 7386 */ 7387 init_idle(current, smp_processor_id()); 7388 7389 calc_load_update = jiffies + LOAD_FREQ; 7390 7391 #ifdef CONFIG_SMP 7392 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7393 /* May be allocated at isolcpus cmdline parse time */ 7394 if (cpu_isolated_map == NULL) 7395 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7396 idle_thread_set_boot_cpu(); 7397 set_cpu_rq_start_time(); 7398 #endif 7399 init_sched_fair_class(); 7400 7401 scheduler_running = 1; 7402 } 7403 7404 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7405 static inline int preempt_count_equals(int preempt_offset) 7406 { 7407 int nested = preempt_count() + rcu_preempt_depth(); 7408 7409 return (nested == preempt_offset); 7410 } 7411 7412 void __might_sleep(const char *file, int line, int preempt_offset) 7413 { 7414 /* 7415 * Blocking primitives will set (and therefore destroy) current->state, 7416 * since we will exit with TASK_RUNNING make sure we enter with it, 7417 * otherwise we will destroy state. 7418 */ 7419 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7420 "do not call blocking ops when !TASK_RUNNING; " 7421 "state=%lx set at [<%p>] %pS\n", 7422 current->state, 7423 (void *)current->task_state_change, 7424 (void *)current->task_state_change); 7425 7426 ___might_sleep(file, line, preempt_offset); 7427 } 7428 EXPORT_SYMBOL(__might_sleep); 7429 7430 void ___might_sleep(const char *file, int line, int preempt_offset) 7431 { 7432 static unsigned long prev_jiffy; /* ratelimiting */ 7433 7434 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7435 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7436 !is_idle_task(current)) || 7437 system_state != SYSTEM_RUNNING || oops_in_progress) 7438 return; 7439 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7440 return; 7441 prev_jiffy = jiffies; 7442 7443 printk(KERN_ERR 7444 "BUG: sleeping function called from invalid context at %s:%d\n", 7445 file, line); 7446 printk(KERN_ERR 7447 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7448 in_atomic(), irqs_disabled(), 7449 current->pid, current->comm); 7450 7451 if (task_stack_end_corrupted(current)) 7452 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7453 7454 debug_show_held_locks(current); 7455 if (irqs_disabled()) 7456 print_irqtrace_events(current); 7457 #ifdef CONFIG_DEBUG_PREEMPT 7458 if (!preempt_count_equals(preempt_offset)) { 7459 pr_err("Preemption disabled at:"); 7460 print_ip_sym(current->preempt_disable_ip); 7461 pr_cont("\n"); 7462 } 7463 #endif 7464 dump_stack(); 7465 } 7466 EXPORT_SYMBOL(___might_sleep); 7467 #endif 7468 7469 #ifdef CONFIG_MAGIC_SYSRQ 7470 void normalize_rt_tasks(void) 7471 { 7472 struct task_struct *g, *p; 7473 struct sched_attr attr = { 7474 .sched_policy = SCHED_NORMAL, 7475 }; 7476 7477 read_lock(&tasklist_lock); 7478 for_each_process_thread(g, p) { 7479 /* 7480 * Only normalize user tasks: 7481 */ 7482 if (p->flags & PF_KTHREAD) 7483 continue; 7484 7485 p->se.exec_start = 0; 7486 #ifdef CONFIG_SCHEDSTATS 7487 p->se.statistics.wait_start = 0; 7488 p->se.statistics.sleep_start = 0; 7489 p->se.statistics.block_start = 0; 7490 #endif 7491 7492 if (!dl_task(p) && !rt_task(p)) { 7493 /* 7494 * Renice negative nice level userspace 7495 * tasks back to 0: 7496 */ 7497 if (task_nice(p) < 0) 7498 set_user_nice(p, 0); 7499 continue; 7500 } 7501 7502 __sched_setscheduler(p, &attr, false, false); 7503 } 7504 read_unlock(&tasklist_lock); 7505 } 7506 7507 #endif /* CONFIG_MAGIC_SYSRQ */ 7508 7509 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7510 /* 7511 * These functions are only useful for the IA64 MCA handling, or kdb. 7512 * 7513 * They can only be called when the whole system has been 7514 * stopped - every CPU needs to be quiescent, and no scheduling 7515 * activity can take place. Using them for anything else would 7516 * be a serious bug, and as a result, they aren't even visible 7517 * under any other configuration. 7518 */ 7519 7520 /** 7521 * curr_task - return the current task for a given cpu. 7522 * @cpu: the processor in question. 7523 * 7524 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7525 * 7526 * Return: The current task for @cpu. 7527 */ 7528 struct task_struct *curr_task(int cpu) 7529 { 7530 return cpu_curr(cpu); 7531 } 7532 7533 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7534 7535 #ifdef CONFIG_IA64 7536 /** 7537 * set_curr_task - set the current task for a given cpu. 7538 * @cpu: the processor in question. 7539 * @p: the task pointer to set. 7540 * 7541 * Description: This function must only be used when non-maskable interrupts 7542 * are serviced on a separate stack. It allows the architecture to switch the 7543 * notion of the current task on a cpu in a non-blocking manner. This function 7544 * must be called with all CPU's synchronized, and interrupts disabled, the 7545 * and caller must save the original value of the current task (see 7546 * curr_task() above) and restore that value before reenabling interrupts and 7547 * re-starting the system. 7548 * 7549 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7550 */ 7551 void set_curr_task(int cpu, struct task_struct *p) 7552 { 7553 cpu_curr(cpu) = p; 7554 } 7555 7556 #endif 7557 7558 #ifdef CONFIG_CGROUP_SCHED 7559 /* task_group_lock serializes the addition/removal of task groups */ 7560 static DEFINE_SPINLOCK(task_group_lock); 7561 7562 static void sched_free_group(struct task_group *tg) 7563 { 7564 free_fair_sched_group(tg); 7565 free_rt_sched_group(tg); 7566 autogroup_free(tg); 7567 kmem_cache_free(task_group_cache, tg); 7568 } 7569 7570 /* allocate runqueue etc for a new task group */ 7571 struct task_group *sched_create_group(struct task_group *parent) 7572 { 7573 struct task_group *tg; 7574 7575 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7576 if (!tg) 7577 return ERR_PTR(-ENOMEM); 7578 7579 if (!alloc_fair_sched_group(tg, parent)) 7580 goto err; 7581 7582 if (!alloc_rt_sched_group(tg, parent)) 7583 goto err; 7584 7585 return tg; 7586 7587 err: 7588 sched_free_group(tg); 7589 return ERR_PTR(-ENOMEM); 7590 } 7591 7592 void sched_online_group(struct task_group *tg, struct task_group *parent) 7593 { 7594 unsigned long flags; 7595 7596 spin_lock_irqsave(&task_group_lock, flags); 7597 list_add_rcu(&tg->list, &task_groups); 7598 7599 WARN_ON(!parent); /* root should already exist */ 7600 7601 tg->parent = parent; 7602 INIT_LIST_HEAD(&tg->children); 7603 list_add_rcu(&tg->siblings, &parent->children); 7604 spin_unlock_irqrestore(&task_group_lock, flags); 7605 } 7606 7607 /* rcu callback to free various structures associated with a task group */ 7608 static void sched_free_group_rcu(struct rcu_head *rhp) 7609 { 7610 /* now it should be safe to free those cfs_rqs */ 7611 sched_free_group(container_of(rhp, struct task_group, rcu)); 7612 } 7613 7614 void sched_destroy_group(struct task_group *tg) 7615 { 7616 /* wait for possible concurrent references to cfs_rqs complete */ 7617 call_rcu(&tg->rcu, sched_free_group_rcu); 7618 } 7619 7620 void sched_offline_group(struct task_group *tg) 7621 { 7622 unsigned long flags; 7623 7624 /* end participation in shares distribution */ 7625 unregister_fair_sched_group(tg); 7626 7627 spin_lock_irqsave(&task_group_lock, flags); 7628 list_del_rcu(&tg->list); 7629 list_del_rcu(&tg->siblings); 7630 spin_unlock_irqrestore(&task_group_lock, flags); 7631 } 7632 7633 /* change task's runqueue when it moves between groups. 7634 * The caller of this function should have put the task in its new group 7635 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7636 * reflect its new group. 7637 */ 7638 void sched_move_task(struct task_struct *tsk) 7639 { 7640 struct task_group *tg; 7641 int queued, running; 7642 unsigned long flags; 7643 struct rq *rq; 7644 7645 rq = task_rq_lock(tsk, &flags); 7646 7647 running = task_current(rq, tsk); 7648 queued = task_on_rq_queued(tsk); 7649 7650 if (queued) 7651 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE); 7652 if (unlikely(running)) 7653 put_prev_task(rq, tsk); 7654 7655 /* 7656 * All callers are synchronized by task_rq_lock(); we do not use RCU 7657 * which is pointless here. Thus, we pass "true" to task_css_check() 7658 * to prevent lockdep warnings. 7659 */ 7660 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7661 struct task_group, css); 7662 tg = autogroup_task_group(tsk, tg); 7663 tsk->sched_task_group = tg; 7664 7665 #ifdef CONFIG_FAIR_GROUP_SCHED 7666 if (tsk->sched_class->task_move_group) 7667 tsk->sched_class->task_move_group(tsk); 7668 else 7669 #endif 7670 set_task_rq(tsk, task_cpu(tsk)); 7671 7672 if (unlikely(running)) 7673 tsk->sched_class->set_curr_task(rq); 7674 if (queued) 7675 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE); 7676 7677 task_rq_unlock(rq, tsk, &flags); 7678 } 7679 #endif /* CONFIG_CGROUP_SCHED */ 7680 7681 #ifdef CONFIG_RT_GROUP_SCHED 7682 /* 7683 * Ensure that the real time constraints are schedulable. 7684 */ 7685 static DEFINE_MUTEX(rt_constraints_mutex); 7686 7687 /* Must be called with tasklist_lock held */ 7688 static inline int tg_has_rt_tasks(struct task_group *tg) 7689 { 7690 struct task_struct *g, *p; 7691 7692 /* 7693 * Autogroups do not have RT tasks; see autogroup_create(). 7694 */ 7695 if (task_group_is_autogroup(tg)) 7696 return 0; 7697 7698 for_each_process_thread(g, p) { 7699 if (rt_task(p) && task_group(p) == tg) 7700 return 1; 7701 } 7702 7703 return 0; 7704 } 7705 7706 struct rt_schedulable_data { 7707 struct task_group *tg; 7708 u64 rt_period; 7709 u64 rt_runtime; 7710 }; 7711 7712 static int tg_rt_schedulable(struct task_group *tg, void *data) 7713 { 7714 struct rt_schedulable_data *d = data; 7715 struct task_group *child; 7716 unsigned long total, sum = 0; 7717 u64 period, runtime; 7718 7719 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7720 runtime = tg->rt_bandwidth.rt_runtime; 7721 7722 if (tg == d->tg) { 7723 period = d->rt_period; 7724 runtime = d->rt_runtime; 7725 } 7726 7727 /* 7728 * Cannot have more runtime than the period. 7729 */ 7730 if (runtime > period && runtime != RUNTIME_INF) 7731 return -EINVAL; 7732 7733 /* 7734 * Ensure we don't starve existing RT tasks. 7735 */ 7736 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7737 return -EBUSY; 7738 7739 total = to_ratio(period, runtime); 7740 7741 /* 7742 * Nobody can have more than the global setting allows. 7743 */ 7744 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7745 return -EINVAL; 7746 7747 /* 7748 * The sum of our children's runtime should not exceed our own. 7749 */ 7750 list_for_each_entry_rcu(child, &tg->children, siblings) { 7751 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7752 runtime = child->rt_bandwidth.rt_runtime; 7753 7754 if (child == d->tg) { 7755 period = d->rt_period; 7756 runtime = d->rt_runtime; 7757 } 7758 7759 sum += to_ratio(period, runtime); 7760 } 7761 7762 if (sum > total) 7763 return -EINVAL; 7764 7765 return 0; 7766 } 7767 7768 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7769 { 7770 int ret; 7771 7772 struct rt_schedulable_data data = { 7773 .tg = tg, 7774 .rt_period = period, 7775 .rt_runtime = runtime, 7776 }; 7777 7778 rcu_read_lock(); 7779 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7780 rcu_read_unlock(); 7781 7782 return ret; 7783 } 7784 7785 static int tg_set_rt_bandwidth(struct task_group *tg, 7786 u64 rt_period, u64 rt_runtime) 7787 { 7788 int i, err = 0; 7789 7790 /* 7791 * Disallowing the root group RT runtime is BAD, it would disallow the 7792 * kernel creating (and or operating) RT threads. 7793 */ 7794 if (tg == &root_task_group && rt_runtime == 0) 7795 return -EINVAL; 7796 7797 /* No period doesn't make any sense. */ 7798 if (rt_period == 0) 7799 return -EINVAL; 7800 7801 mutex_lock(&rt_constraints_mutex); 7802 read_lock(&tasklist_lock); 7803 err = __rt_schedulable(tg, rt_period, rt_runtime); 7804 if (err) 7805 goto unlock; 7806 7807 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7808 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7809 tg->rt_bandwidth.rt_runtime = rt_runtime; 7810 7811 for_each_possible_cpu(i) { 7812 struct rt_rq *rt_rq = tg->rt_rq[i]; 7813 7814 raw_spin_lock(&rt_rq->rt_runtime_lock); 7815 rt_rq->rt_runtime = rt_runtime; 7816 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7817 } 7818 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7819 unlock: 7820 read_unlock(&tasklist_lock); 7821 mutex_unlock(&rt_constraints_mutex); 7822 7823 return err; 7824 } 7825 7826 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7827 { 7828 u64 rt_runtime, rt_period; 7829 7830 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7831 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7832 if (rt_runtime_us < 0) 7833 rt_runtime = RUNTIME_INF; 7834 7835 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7836 } 7837 7838 static long sched_group_rt_runtime(struct task_group *tg) 7839 { 7840 u64 rt_runtime_us; 7841 7842 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7843 return -1; 7844 7845 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7846 do_div(rt_runtime_us, NSEC_PER_USEC); 7847 return rt_runtime_us; 7848 } 7849 7850 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 7851 { 7852 u64 rt_runtime, rt_period; 7853 7854 rt_period = rt_period_us * NSEC_PER_USEC; 7855 rt_runtime = tg->rt_bandwidth.rt_runtime; 7856 7857 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7858 } 7859 7860 static long sched_group_rt_period(struct task_group *tg) 7861 { 7862 u64 rt_period_us; 7863 7864 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7865 do_div(rt_period_us, NSEC_PER_USEC); 7866 return rt_period_us; 7867 } 7868 #endif /* CONFIG_RT_GROUP_SCHED */ 7869 7870 #ifdef CONFIG_RT_GROUP_SCHED 7871 static int sched_rt_global_constraints(void) 7872 { 7873 int ret = 0; 7874 7875 mutex_lock(&rt_constraints_mutex); 7876 read_lock(&tasklist_lock); 7877 ret = __rt_schedulable(NULL, 0, 0); 7878 read_unlock(&tasklist_lock); 7879 mutex_unlock(&rt_constraints_mutex); 7880 7881 return ret; 7882 } 7883 7884 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7885 { 7886 /* Don't accept realtime tasks when there is no way for them to run */ 7887 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7888 return 0; 7889 7890 return 1; 7891 } 7892 7893 #else /* !CONFIG_RT_GROUP_SCHED */ 7894 static int sched_rt_global_constraints(void) 7895 { 7896 unsigned long flags; 7897 int i, ret = 0; 7898 7899 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7900 for_each_possible_cpu(i) { 7901 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7902 7903 raw_spin_lock(&rt_rq->rt_runtime_lock); 7904 rt_rq->rt_runtime = global_rt_runtime(); 7905 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7906 } 7907 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7908 7909 return ret; 7910 } 7911 #endif /* CONFIG_RT_GROUP_SCHED */ 7912 7913 static int sched_dl_global_validate(void) 7914 { 7915 u64 runtime = global_rt_runtime(); 7916 u64 period = global_rt_period(); 7917 u64 new_bw = to_ratio(period, runtime); 7918 struct dl_bw *dl_b; 7919 int cpu, ret = 0; 7920 unsigned long flags; 7921 7922 /* 7923 * Here we want to check the bandwidth not being set to some 7924 * value smaller than the currently allocated bandwidth in 7925 * any of the root_domains. 7926 * 7927 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7928 * cycling on root_domains... Discussion on different/better 7929 * solutions is welcome! 7930 */ 7931 for_each_possible_cpu(cpu) { 7932 rcu_read_lock_sched(); 7933 dl_b = dl_bw_of(cpu); 7934 7935 raw_spin_lock_irqsave(&dl_b->lock, flags); 7936 if (new_bw < dl_b->total_bw) 7937 ret = -EBUSY; 7938 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7939 7940 rcu_read_unlock_sched(); 7941 7942 if (ret) 7943 break; 7944 } 7945 7946 return ret; 7947 } 7948 7949 static void sched_dl_do_global(void) 7950 { 7951 u64 new_bw = -1; 7952 struct dl_bw *dl_b; 7953 int cpu; 7954 unsigned long flags; 7955 7956 def_dl_bandwidth.dl_period = global_rt_period(); 7957 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7958 7959 if (global_rt_runtime() != RUNTIME_INF) 7960 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7961 7962 /* 7963 * FIXME: As above... 7964 */ 7965 for_each_possible_cpu(cpu) { 7966 rcu_read_lock_sched(); 7967 dl_b = dl_bw_of(cpu); 7968 7969 raw_spin_lock_irqsave(&dl_b->lock, flags); 7970 dl_b->bw = new_bw; 7971 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7972 7973 rcu_read_unlock_sched(); 7974 } 7975 } 7976 7977 static int sched_rt_global_validate(void) 7978 { 7979 if (sysctl_sched_rt_period <= 0) 7980 return -EINVAL; 7981 7982 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7983 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7984 return -EINVAL; 7985 7986 return 0; 7987 } 7988 7989 static void sched_rt_do_global(void) 7990 { 7991 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7992 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7993 } 7994 7995 int sched_rt_handler(struct ctl_table *table, int write, 7996 void __user *buffer, size_t *lenp, 7997 loff_t *ppos) 7998 { 7999 int old_period, old_runtime; 8000 static DEFINE_MUTEX(mutex); 8001 int ret; 8002 8003 mutex_lock(&mutex); 8004 old_period = sysctl_sched_rt_period; 8005 old_runtime = sysctl_sched_rt_runtime; 8006 8007 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8008 8009 if (!ret && write) { 8010 ret = sched_rt_global_validate(); 8011 if (ret) 8012 goto undo; 8013 8014 ret = sched_dl_global_validate(); 8015 if (ret) 8016 goto undo; 8017 8018 ret = sched_rt_global_constraints(); 8019 if (ret) 8020 goto undo; 8021 8022 sched_rt_do_global(); 8023 sched_dl_do_global(); 8024 } 8025 if (0) { 8026 undo: 8027 sysctl_sched_rt_period = old_period; 8028 sysctl_sched_rt_runtime = old_runtime; 8029 } 8030 mutex_unlock(&mutex); 8031 8032 return ret; 8033 } 8034 8035 int sched_rr_handler(struct ctl_table *table, int write, 8036 void __user *buffer, size_t *lenp, 8037 loff_t *ppos) 8038 { 8039 int ret; 8040 static DEFINE_MUTEX(mutex); 8041 8042 mutex_lock(&mutex); 8043 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8044 /* make sure that internally we keep jiffies */ 8045 /* also, writing zero resets timeslice to default */ 8046 if (!ret && write) { 8047 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8048 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8049 } 8050 mutex_unlock(&mutex); 8051 return ret; 8052 } 8053 8054 #ifdef CONFIG_CGROUP_SCHED 8055 8056 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8057 { 8058 return css ? container_of(css, struct task_group, css) : NULL; 8059 } 8060 8061 static struct cgroup_subsys_state * 8062 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8063 { 8064 struct task_group *parent = css_tg(parent_css); 8065 struct task_group *tg; 8066 8067 if (!parent) { 8068 /* This is early initialization for the top cgroup */ 8069 return &root_task_group.css; 8070 } 8071 8072 tg = sched_create_group(parent); 8073 if (IS_ERR(tg)) 8074 return ERR_PTR(-ENOMEM); 8075 8076 sched_online_group(tg, parent); 8077 8078 return &tg->css; 8079 } 8080 8081 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8082 { 8083 struct task_group *tg = css_tg(css); 8084 8085 sched_offline_group(tg); 8086 } 8087 8088 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8089 { 8090 struct task_group *tg = css_tg(css); 8091 8092 /* 8093 * Relies on the RCU grace period between css_released() and this. 8094 */ 8095 sched_free_group(tg); 8096 } 8097 8098 static void cpu_cgroup_fork(struct task_struct *task) 8099 { 8100 sched_move_task(task); 8101 } 8102 8103 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8104 { 8105 struct task_struct *task; 8106 struct cgroup_subsys_state *css; 8107 8108 cgroup_taskset_for_each(task, css, tset) { 8109 #ifdef CONFIG_RT_GROUP_SCHED 8110 if (!sched_rt_can_attach(css_tg(css), task)) 8111 return -EINVAL; 8112 #else 8113 /* We don't support RT-tasks being in separate groups */ 8114 if (task->sched_class != &fair_sched_class) 8115 return -EINVAL; 8116 #endif 8117 } 8118 return 0; 8119 } 8120 8121 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8122 { 8123 struct task_struct *task; 8124 struct cgroup_subsys_state *css; 8125 8126 cgroup_taskset_for_each(task, css, tset) 8127 sched_move_task(task); 8128 } 8129 8130 #ifdef CONFIG_FAIR_GROUP_SCHED 8131 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8132 struct cftype *cftype, u64 shareval) 8133 { 8134 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8135 } 8136 8137 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8138 struct cftype *cft) 8139 { 8140 struct task_group *tg = css_tg(css); 8141 8142 return (u64) scale_load_down(tg->shares); 8143 } 8144 8145 #ifdef CONFIG_CFS_BANDWIDTH 8146 static DEFINE_MUTEX(cfs_constraints_mutex); 8147 8148 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8149 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8150 8151 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8152 8153 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8154 { 8155 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8156 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8157 8158 if (tg == &root_task_group) 8159 return -EINVAL; 8160 8161 /* 8162 * Ensure we have at some amount of bandwidth every period. This is 8163 * to prevent reaching a state of large arrears when throttled via 8164 * entity_tick() resulting in prolonged exit starvation. 8165 */ 8166 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8167 return -EINVAL; 8168 8169 /* 8170 * Likewise, bound things on the otherside by preventing insane quota 8171 * periods. This also allows us to normalize in computing quota 8172 * feasibility. 8173 */ 8174 if (period > max_cfs_quota_period) 8175 return -EINVAL; 8176 8177 /* 8178 * Prevent race between setting of cfs_rq->runtime_enabled and 8179 * unthrottle_offline_cfs_rqs(). 8180 */ 8181 get_online_cpus(); 8182 mutex_lock(&cfs_constraints_mutex); 8183 ret = __cfs_schedulable(tg, period, quota); 8184 if (ret) 8185 goto out_unlock; 8186 8187 runtime_enabled = quota != RUNTIME_INF; 8188 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8189 /* 8190 * If we need to toggle cfs_bandwidth_used, off->on must occur 8191 * before making related changes, and on->off must occur afterwards 8192 */ 8193 if (runtime_enabled && !runtime_was_enabled) 8194 cfs_bandwidth_usage_inc(); 8195 raw_spin_lock_irq(&cfs_b->lock); 8196 cfs_b->period = ns_to_ktime(period); 8197 cfs_b->quota = quota; 8198 8199 __refill_cfs_bandwidth_runtime(cfs_b); 8200 /* restart the period timer (if active) to handle new period expiry */ 8201 if (runtime_enabled) 8202 start_cfs_bandwidth(cfs_b); 8203 raw_spin_unlock_irq(&cfs_b->lock); 8204 8205 for_each_online_cpu(i) { 8206 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8207 struct rq *rq = cfs_rq->rq; 8208 8209 raw_spin_lock_irq(&rq->lock); 8210 cfs_rq->runtime_enabled = runtime_enabled; 8211 cfs_rq->runtime_remaining = 0; 8212 8213 if (cfs_rq->throttled) 8214 unthrottle_cfs_rq(cfs_rq); 8215 raw_spin_unlock_irq(&rq->lock); 8216 } 8217 if (runtime_was_enabled && !runtime_enabled) 8218 cfs_bandwidth_usage_dec(); 8219 out_unlock: 8220 mutex_unlock(&cfs_constraints_mutex); 8221 put_online_cpus(); 8222 8223 return ret; 8224 } 8225 8226 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8227 { 8228 u64 quota, period; 8229 8230 period = ktime_to_ns(tg->cfs_bandwidth.period); 8231 if (cfs_quota_us < 0) 8232 quota = RUNTIME_INF; 8233 else 8234 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8235 8236 return tg_set_cfs_bandwidth(tg, period, quota); 8237 } 8238 8239 long tg_get_cfs_quota(struct task_group *tg) 8240 { 8241 u64 quota_us; 8242 8243 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8244 return -1; 8245 8246 quota_us = tg->cfs_bandwidth.quota; 8247 do_div(quota_us, NSEC_PER_USEC); 8248 8249 return quota_us; 8250 } 8251 8252 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8253 { 8254 u64 quota, period; 8255 8256 period = (u64)cfs_period_us * NSEC_PER_USEC; 8257 quota = tg->cfs_bandwidth.quota; 8258 8259 return tg_set_cfs_bandwidth(tg, period, quota); 8260 } 8261 8262 long tg_get_cfs_period(struct task_group *tg) 8263 { 8264 u64 cfs_period_us; 8265 8266 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8267 do_div(cfs_period_us, NSEC_PER_USEC); 8268 8269 return cfs_period_us; 8270 } 8271 8272 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8273 struct cftype *cft) 8274 { 8275 return tg_get_cfs_quota(css_tg(css)); 8276 } 8277 8278 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8279 struct cftype *cftype, s64 cfs_quota_us) 8280 { 8281 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8282 } 8283 8284 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8285 struct cftype *cft) 8286 { 8287 return tg_get_cfs_period(css_tg(css)); 8288 } 8289 8290 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8291 struct cftype *cftype, u64 cfs_period_us) 8292 { 8293 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8294 } 8295 8296 struct cfs_schedulable_data { 8297 struct task_group *tg; 8298 u64 period, quota; 8299 }; 8300 8301 /* 8302 * normalize group quota/period to be quota/max_period 8303 * note: units are usecs 8304 */ 8305 static u64 normalize_cfs_quota(struct task_group *tg, 8306 struct cfs_schedulable_data *d) 8307 { 8308 u64 quota, period; 8309 8310 if (tg == d->tg) { 8311 period = d->period; 8312 quota = d->quota; 8313 } else { 8314 period = tg_get_cfs_period(tg); 8315 quota = tg_get_cfs_quota(tg); 8316 } 8317 8318 /* note: these should typically be equivalent */ 8319 if (quota == RUNTIME_INF || quota == -1) 8320 return RUNTIME_INF; 8321 8322 return to_ratio(period, quota); 8323 } 8324 8325 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8326 { 8327 struct cfs_schedulable_data *d = data; 8328 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8329 s64 quota = 0, parent_quota = -1; 8330 8331 if (!tg->parent) { 8332 quota = RUNTIME_INF; 8333 } else { 8334 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8335 8336 quota = normalize_cfs_quota(tg, d); 8337 parent_quota = parent_b->hierarchical_quota; 8338 8339 /* 8340 * ensure max(child_quota) <= parent_quota, inherit when no 8341 * limit is set 8342 */ 8343 if (quota == RUNTIME_INF) 8344 quota = parent_quota; 8345 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8346 return -EINVAL; 8347 } 8348 cfs_b->hierarchical_quota = quota; 8349 8350 return 0; 8351 } 8352 8353 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8354 { 8355 int ret; 8356 struct cfs_schedulable_data data = { 8357 .tg = tg, 8358 .period = period, 8359 .quota = quota, 8360 }; 8361 8362 if (quota != RUNTIME_INF) { 8363 do_div(data.period, NSEC_PER_USEC); 8364 do_div(data.quota, NSEC_PER_USEC); 8365 } 8366 8367 rcu_read_lock(); 8368 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8369 rcu_read_unlock(); 8370 8371 return ret; 8372 } 8373 8374 static int cpu_stats_show(struct seq_file *sf, void *v) 8375 { 8376 struct task_group *tg = css_tg(seq_css(sf)); 8377 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8378 8379 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8380 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8381 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8382 8383 return 0; 8384 } 8385 #endif /* CONFIG_CFS_BANDWIDTH */ 8386 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8387 8388 #ifdef CONFIG_RT_GROUP_SCHED 8389 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8390 struct cftype *cft, s64 val) 8391 { 8392 return sched_group_set_rt_runtime(css_tg(css), val); 8393 } 8394 8395 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8396 struct cftype *cft) 8397 { 8398 return sched_group_rt_runtime(css_tg(css)); 8399 } 8400 8401 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8402 struct cftype *cftype, u64 rt_period_us) 8403 { 8404 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8405 } 8406 8407 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8408 struct cftype *cft) 8409 { 8410 return sched_group_rt_period(css_tg(css)); 8411 } 8412 #endif /* CONFIG_RT_GROUP_SCHED */ 8413 8414 static struct cftype cpu_files[] = { 8415 #ifdef CONFIG_FAIR_GROUP_SCHED 8416 { 8417 .name = "shares", 8418 .read_u64 = cpu_shares_read_u64, 8419 .write_u64 = cpu_shares_write_u64, 8420 }, 8421 #endif 8422 #ifdef CONFIG_CFS_BANDWIDTH 8423 { 8424 .name = "cfs_quota_us", 8425 .read_s64 = cpu_cfs_quota_read_s64, 8426 .write_s64 = cpu_cfs_quota_write_s64, 8427 }, 8428 { 8429 .name = "cfs_period_us", 8430 .read_u64 = cpu_cfs_period_read_u64, 8431 .write_u64 = cpu_cfs_period_write_u64, 8432 }, 8433 { 8434 .name = "stat", 8435 .seq_show = cpu_stats_show, 8436 }, 8437 #endif 8438 #ifdef CONFIG_RT_GROUP_SCHED 8439 { 8440 .name = "rt_runtime_us", 8441 .read_s64 = cpu_rt_runtime_read, 8442 .write_s64 = cpu_rt_runtime_write, 8443 }, 8444 { 8445 .name = "rt_period_us", 8446 .read_u64 = cpu_rt_period_read_uint, 8447 .write_u64 = cpu_rt_period_write_uint, 8448 }, 8449 #endif 8450 { } /* terminate */ 8451 }; 8452 8453 struct cgroup_subsys cpu_cgrp_subsys = { 8454 .css_alloc = cpu_cgroup_css_alloc, 8455 .css_released = cpu_cgroup_css_released, 8456 .css_free = cpu_cgroup_css_free, 8457 .fork = cpu_cgroup_fork, 8458 .can_attach = cpu_cgroup_can_attach, 8459 .attach = cpu_cgroup_attach, 8460 .legacy_cftypes = cpu_files, 8461 .early_init = true, 8462 }; 8463 8464 #endif /* CONFIG_CGROUP_SCHED */ 8465 8466 void dump_cpu_task(int cpu) 8467 { 8468 pr_info("Task dump for CPU %d:\n", cpu); 8469 sched_show_task(cpu_curr(cpu)); 8470 } 8471 8472 /* 8473 * Nice levels are multiplicative, with a gentle 10% change for every 8474 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8475 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8476 * that remained on nice 0. 8477 * 8478 * The "10% effect" is relative and cumulative: from _any_ nice level, 8479 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8480 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8481 * If a task goes up by ~10% and another task goes down by ~10% then 8482 * the relative distance between them is ~25%.) 8483 */ 8484 const int sched_prio_to_weight[40] = { 8485 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8486 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8487 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8488 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8489 /* 0 */ 1024, 820, 655, 526, 423, 8490 /* 5 */ 335, 272, 215, 172, 137, 8491 /* 10 */ 110, 87, 70, 56, 45, 8492 /* 15 */ 36, 29, 23, 18, 15, 8493 }; 8494 8495 /* 8496 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8497 * 8498 * In cases where the weight does not change often, we can use the 8499 * precalculated inverse to speed up arithmetics by turning divisions 8500 * into multiplications: 8501 */ 8502 const u32 sched_prio_to_wmult[40] = { 8503 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8504 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8505 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8506 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8507 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8508 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8509 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8510 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8511 }; 8512