xref: /linux/kernel/sched/core.c (revision 363737d66427c18edb321a06933ac999d9ce5d7f)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83 
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
90 
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 {
93 	unsigned long delta;
94 	ktime_t soft, hard, now;
95 
96 	for (;;) {
97 		if (hrtimer_active(period_timer))
98 			break;
99 
100 		now = hrtimer_cb_get_time(period_timer);
101 		hrtimer_forward(period_timer, now, period);
102 
103 		soft = hrtimer_get_softexpires(period_timer);
104 		hard = hrtimer_get_expires(period_timer);
105 		delta = ktime_to_ns(ktime_sub(hard, soft));
106 		__hrtimer_start_range_ns(period_timer, soft, delta,
107 					 HRTIMER_MODE_ABS_PINNED, 0);
108 	}
109 }
110 
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113 
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
115 
116 void update_rq_clock(struct rq *rq)
117 {
118 	s64 delta;
119 
120 	if (rq->skip_clock_update > 0)
121 		return;
122 
123 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 	rq->clock += delta;
125 	update_rq_clock_task(rq, delta);
126 }
127 
128 /*
129  * Debugging: various feature bits
130  */
131 
132 #define SCHED_FEAT(name, enabled)	\
133 	(1UL << __SCHED_FEAT_##name) * enabled |
134 
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
137 	0;
138 
139 #undef SCHED_FEAT
140 
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled)	\
143 	#name ,
144 
145 static __read_mostly char *sched_feat_names[] = {
146 #include "features.h"
147 	NULL
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static ssize_t
197 sched_feat_write(struct file *filp, const char __user *ubuf,
198 		size_t cnt, loff_t *ppos)
199 {
200 	char buf[64];
201 	char *cmp;
202 	int neg = 0;
203 	int i;
204 
205 	if (cnt > 63)
206 		cnt = 63;
207 
208 	if (copy_from_user(&buf, ubuf, cnt))
209 		return -EFAULT;
210 
211 	buf[cnt] = 0;
212 	cmp = strstrip(buf);
213 
214 	if (strncmp(cmp, "NO_", 3) == 0) {
215 		neg = 1;
216 		cmp += 3;
217 	}
218 
219 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
220 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
221 			if (neg) {
222 				sysctl_sched_features &= ~(1UL << i);
223 				sched_feat_disable(i);
224 			} else {
225 				sysctl_sched_features |= (1UL << i);
226 				sched_feat_enable(i);
227 			}
228 			break;
229 		}
230 	}
231 
232 	if (i == __SCHED_FEAT_NR)
233 		return -EINVAL;
234 
235 	*ppos += cnt;
236 
237 	return cnt;
238 }
239 
240 static int sched_feat_open(struct inode *inode, struct file *filp)
241 {
242 	return single_open(filp, sched_feat_show, NULL);
243 }
244 
245 static const struct file_operations sched_feat_fops = {
246 	.open		= sched_feat_open,
247 	.write		= sched_feat_write,
248 	.read		= seq_read,
249 	.llseek		= seq_lseek,
250 	.release	= single_release,
251 };
252 
253 static __init int sched_init_debug(void)
254 {
255 	debugfs_create_file("sched_features", 0644, NULL, NULL,
256 			&sched_feat_fops);
257 
258 	return 0;
259 }
260 late_initcall(sched_init_debug);
261 #endif /* CONFIG_SCHED_DEBUG */
262 
263 /*
264  * Number of tasks to iterate in a single balance run.
265  * Limited because this is done with IRQs disabled.
266  */
267 const_debug unsigned int sysctl_sched_nr_migrate = 32;
268 
269 /*
270  * period over which we average the RT time consumption, measured
271  * in ms.
272  *
273  * default: 1s
274  */
275 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
276 
277 /*
278  * period over which we measure -rt task cpu usage in us.
279  * default: 1s
280  */
281 unsigned int sysctl_sched_rt_period = 1000000;
282 
283 __read_mostly int scheduler_running;
284 
285 /*
286  * part of the period that we allow rt tasks to run in us.
287  * default: 0.95s
288  */
289 int sysctl_sched_rt_runtime = 950000;
290 
291 
292 
293 /*
294  * __task_rq_lock - lock the rq @p resides on.
295  */
296 static inline struct rq *__task_rq_lock(struct task_struct *p)
297 	__acquires(rq->lock)
298 {
299 	struct rq *rq;
300 
301 	lockdep_assert_held(&p->pi_lock);
302 
303 	for (;;) {
304 		rq = task_rq(p);
305 		raw_spin_lock(&rq->lock);
306 		if (likely(rq == task_rq(p)))
307 			return rq;
308 		raw_spin_unlock(&rq->lock);
309 	}
310 }
311 
312 /*
313  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
314  */
315 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
316 	__acquires(p->pi_lock)
317 	__acquires(rq->lock)
318 {
319 	struct rq *rq;
320 
321 	for (;;) {
322 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
323 		rq = task_rq(p);
324 		raw_spin_lock(&rq->lock);
325 		if (likely(rq == task_rq(p)))
326 			return rq;
327 		raw_spin_unlock(&rq->lock);
328 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
329 	}
330 }
331 
332 static void __task_rq_unlock(struct rq *rq)
333 	__releases(rq->lock)
334 {
335 	raw_spin_unlock(&rq->lock);
336 }
337 
338 static inline void
339 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
340 	__releases(rq->lock)
341 	__releases(p->pi_lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
345 }
346 
347 /*
348  * this_rq_lock - lock this runqueue and disable interrupts.
349  */
350 static struct rq *this_rq_lock(void)
351 	__acquires(rq->lock)
352 {
353 	struct rq *rq;
354 
355 	local_irq_disable();
356 	rq = this_rq();
357 	raw_spin_lock(&rq->lock);
358 
359 	return rq;
360 }
361 
362 #ifdef CONFIG_SCHED_HRTICK
363 /*
364  * Use HR-timers to deliver accurate preemption points.
365  *
366  * Its all a bit involved since we cannot program an hrt while holding the
367  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
368  * reschedule event.
369  *
370  * When we get rescheduled we reprogram the hrtick_timer outside of the
371  * rq->lock.
372  */
373 
374 static void hrtick_clear(struct rq *rq)
375 {
376 	if (hrtimer_active(&rq->hrtick_timer))
377 		hrtimer_cancel(&rq->hrtick_timer);
378 }
379 
380 /*
381  * High-resolution timer tick.
382  * Runs from hardirq context with interrupts disabled.
383  */
384 static enum hrtimer_restart hrtick(struct hrtimer *timer)
385 {
386 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387 
388 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389 
390 	raw_spin_lock(&rq->lock);
391 	update_rq_clock(rq);
392 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393 	raw_spin_unlock(&rq->lock);
394 
395 	return HRTIMER_NORESTART;
396 }
397 
398 #ifdef CONFIG_SMP
399 /*
400  * called from hardirq (IPI) context
401  */
402 static void __hrtick_start(void *arg)
403 {
404 	struct rq *rq = arg;
405 
406 	raw_spin_lock(&rq->lock);
407 	hrtimer_restart(&rq->hrtick_timer);
408 	rq->hrtick_csd_pending = 0;
409 	raw_spin_unlock(&rq->lock);
410 }
411 
412 /*
413  * Called to set the hrtick timer state.
414  *
415  * called with rq->lock held and irqs disabled
416  */
417 void hrtick_start(struct rq *rq, u64 delay)
418 {
419 	struct hrtimer *timer = &rq->hrtick_timer;
420 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
421 
422 	hrtimer_set_expires(timer, time);
423 
424 	if (rq == this_rq()) {
425 		hrtimer_restart(timer);
426 	} else if (!rq->hrtick_csd_pending) {
427 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
428 		rq->hrtick_csd_pending = 1;
429 	}
430 }
431 
432 static int
433 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
434 {
435 	int cpu = (int)(long)hcpu;
436 
437 	switch (action) {
438 	case CPU_UP_CANCELED:
439 	case CPU_UP_CANCELED_FROZEN:
440 	case CPU_DOWN_PREPARE:
441 	case CPU_DOWN_PREPARE_FROZEN:
442 	case CPU_DEAD:
443 	case CPU_DEAD_FROZEN:
444 		hrtick_clear(cpu_rq(cpu));
445 		return NOTIFY_OK;
446 	}
447 
448 	return NOTIFY_DONE;
449 }
450 
451 static __init void init_hrtick(void)
452 {
453 	hotcpu_notifier(hotplug_hrtick, 0);
454 }
455 #else
456 /*
457  * Called to set the hrtick timer state.
458  *
459  * called with rq->lock held and irqs disabled
460  */
461 void hrtick_start(struct rq *rq, u64 delay)
462 {
463 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
464 			HRTIMER_MODE_REL_PINNED, 0);
465 }
466 
467 static inline void init_hrtick(void)
468 {
469 }
470 #endif /* CONFIG_SMP */
471 
472 static void init_rq_hrtick(struct rq *rq)
473 {
474 #ifdef CONFIG_SMP
475 	rq->hrtick_csd_pending = 0;
476 
477 	rq->hrtick_csd.flags = 0;
478 	rq->hrtick_csd.func = __hrtick_start;
479 	rq->hrtick_csd.info = rq;
480 #endif
481 
482 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
483 	rq->hrtick_timer.function = hrtick;
484 }
485 #else	/* CONFIG_SCHED_HRTICK */
486 static inline void hrtick_clear(struct rq *rq)
487 {
488 }
489 
490 static inline void init_rq_hrtick(struct rq *rq)
491 {
492 }
493 
494 static inline void init_hrtick(void)
495 {
496 }
497 #endif	/* CONFIG_SCHED_HRTICK */
498 
499 /*
500  * resched_task - mark a task 'to be rescheduled now'.
501  *
502  * On UP this means the setting of the need_resched flag, on SMP it
503  * might also involve a cross-CPU call to trigger the scheduler on
504  * the target CPU.
505  */
506 #ifdef CONFIG_SMP
507 
508 #ifndef tsk_is_polling
509 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
510 #endif
511 
512 void resched_task(struct task_struct *p)
513 {
514 	int cpu;
515 
516 	assert_raw_spin_locked(&task_rq(p)->lock);
517 
518 	if (test_tsk_need_resched(p))
519 		return;
520 
521 	set_tsk_need_resched(p);
522 
523 	cpu = task_cpu(p);
524 	if (cpu == smp_processor_id())
525 		return;
526 
527 	/* NEED_RESCHED must be visible before we test polling */
528 	smp_mb();
529 	if (!tsk_is_polling(p))
530 		smp_send_reschedule(cpu);
531 }
532 
533 void resched_cpu(int cpu)
534 {
535 	struct rq *rq = cpu_rq(cpu);
536 	unsigned long flags;
537 
538 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
539 		return;
540 	resched_task(cpu_curr(cpu));
541 	raw_spin_unlock_irqrestore(&rq->lock, flags);
542 }
543 
544 #ifdef CONFIG_NO_HZ
545 /*
546  * In the semi idle case, use the nearest busy cpu for migrating timers
547  * from an idle cpu.  This is good for power-savings.
548  *
549  * We don't do similar optimization for completely idle system, as
550  * selecting an idle cpu will add more delays to the timers than intended
551  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
552  */
553 int get_nohz_timer_target(void)
554 {
555 	int cpu = smp_processor_id();
556 	int i;
557 	struct sched_domain *sd;
558 
559 	rcu_read_lock();
560 	for_each_domain(cpu, sd) {
561 		for_each_cpu(i, sched_domain_span(sd)) {
562 			if (!idle_cpu(i)) {
563 				cpu = i;
564 				goto unlock;
565 			}
566 		}
567 	}
568 unlock:
569 	rcu_read_unlock();
570 	return cpu;
571 }
572 /*
573  * When add_timer_on() enqueues a timer into the timer wheel of an
574  * idle CPU then this timer might expire before the next timer event
575  * which is scheduled to wake up that CPU. In case of a completely
576  * idle system the next event might even be infinite time into the
577  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
578  * leaves the inner idle loop so the newly added timer is taken into
579  * account when the CPU goes back to idle and evaluates the timer
580  * wheel for the next timer event.
581  */
582 void wake_up_idle_cpu(int cpu)
583 {
584 	struct rq *rq = cpu_rq(cpu);
585 
586 	if (cpu == smp_processor_id())
587 		return;
588 
589 	/*
590 	 * This is safe, as this function is called with the timer
591 	 * wheel base lock of (cpu) held. When the CPU is on the way
592 	 * to idle and has not yet set rq->curr to idle then it will
593 	 * be serialized on the timer wheel base lock and take the new
594 	 * timer into account automatically.
595 	 */
596 	if (rq->curr != rq->idle)
597 		return;
598 
599 	/*
600 	 * We can set TIF_RESCHED on the idle task of the other CPU
601 	 * lockless. The worst case is that the other CPU runs the
602 	 * idle task through an additional NOOP schedule()
603 	 */
604 	set_tsk_need_resched(rq->idle);
605 
606 	/* NEED_RESCHED must be visible before we test polling */
607 	smp_mb();
608 	if (!tsk_is_polling(rq->idle))
609 		smp_send_reschedule(cpu);
610 }
611 
612 static inline bool got_nohz_idle_kick(void)
613 {
614 	int cpu = smp_processor_id();
615 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
616 }
617 
618 #else /* CONFIG_NO_HZ */
619 
620 static inline bool got_nohz_idle_kick(void)
621 {
622 	return false;
623 }
624 
625 #endif /* CONFIG_NO_HZ */
626 
627 void sched_avg_update(struct rq *rq)
628 {
629 	s64 period = sched_avg_period();
630 
631 	while ((s64)(rq->clock - rq->age_stamp) > period) {
632 		/*
633 		 * Inline assembly required to prevent the compiler
634 		 * optimising this loop into a divmod call.
635 		 * See __iter_div_u64_rem() for another example of this.
636 		 */
637 		asm("" : "+rm" (rq->age_stamp));
638 		rq->age_stamp += period;
639 		rq->rt_avg /= 2;
640 	}
641 }
642 
643 #else /* !CONFIG_SMP */
644 void resched_task(struct task_struct *p)
645 {
646 	assert_raw_spin_locked(&task_rq(p)->lock);
647 	set_tsk_need_resched(p);
648 }
649 #endif /* CONFIG_SMP */
650 
651 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
652 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
653 /*
654  * Iterate task_group tree rooted at *from, calling @down when first entering a
655  * node and @up when leaving it for the final time.
656  *
657  * Caller must hold rcu_lock or sufficient equivalent.
658  */
659 int walk_tg_tree_from(struct task_group *from,
660 			     tg_visitor down, tg_visitor up, void *data)
661 {
662 	struct task_group *parent, *child;
663 	int ret;
664 
665 	parent = from;
666 
667 down:
668 	ret = (*down)(parent, data);
669 	if (ret)
670 		goto out;
671 	list_for_each_entry_rcu(child, &parent->children, siblings) {
672 		parent = child;
673 		goto down;
674 
675 up:
676 		continue;
677 	}
678 	ret = (*up)(parent, data);
679 	if (ret || parent == from)
680 		goto out;
681 
682 	child = parent;
683 	parent = parent->parent;
684 	if (parent)
685 		goto up;
686 out:
687 	return ret;
688 }
689 
690 int tg_nop(struct task_group *tg, void *data)
691 {
692 	return 0;
693 }
694 #endif
695 
696 static void set_load_weight(struct task_struct *p)
697 {
698 	int prio = p->static_prio - MAX_RT_PRIO;
699 	struct load_weight *load = &p->se.load;
700 
701 	/*
702 	 * SCHED_IDLE tasks get minimal weight:
703 	 */
704 	if (p->policy == SCHED_IDLE) {
705 		load->weight = scale_load(WEIGHT_IDLEPRIO);
706 		load->inv_weight = WMULT_IDLEPRIO;
707 		return;
708 	}
709 
710 	load->weight = scale_load(prio_to_weight[prio]);
711 	load->inv_weight = prio_to_wmult[prio];
712 }
713 
714 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
715 {
716 	update_rq_clock(rq);
717 	sched_info_queued(p);
718 	p->sched_class->enqueue_task(rq, p, flags);
719 }
720 
721 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
722 {
723 	update_rq_clock(rq);
724 	sched_info_dequeued(p);
725 	p->sched_class->dequeue_task(rq, p, flags);
726 }
727 
728 void activate_task(struct rq *rq, struct task_struct *p, int flags)
729 {
730 	if (task_contributes_to_load(p))
731 		rq->nr_uninterruptible--;
732 
733 	enqueue_task(rq, p, flags);
734 }
735 
736 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 	if (task_contributes_to_load(p))
739 		rq->nr_uninterruptible++;
740 
741 	dequeue_task(rq, p, flags);
742 }
743 
744 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
745 
746 /*
747  * There are no locks covering percpu hardirq/softirq time.
748  * They are only modified in account_system_vtime, on corresponding CPU
749  * with interrupts disabled. So, writes are safe.
750  * They are read and saved off onto struct rq in update_rq_clock().
751  * This may result in other CPU reading this CPU's irq time and can
752  * race with irq/account_system_vtime on this CPU. We would either get old
753  * or new value with a side effect of accounting a slice of irq time to wrong
754  * task when irq is in progress while we read rq->clock. That is a worthy
755  * compromise in place of having locks on each irq in account_system_time.
756  */
757 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
758 static DEFINE_PER_CPU(u64, cpu_softirq_time);
759 
760 static DEFINE_PER_CPU(u64, irq_start_time);
761 static int sched_clock_irqtime;
762 
763 void enable_sched_clock_irqtime(void)
764 {
765 	sched_clock_irqtime = 1;
766 }
767 
768 void disable_sched_clock_irqtime(void)
769 {
770 	sched_clock_irqtime = 0;
771 }
772 
773 #ifndef CONFIG_64BIT
774 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
775 
776 static inline void irq_time_write_begin(void)
777 {
778 	__this_cpu_inc(irq_time_seq.sequence);
779 	smp_wmb();
780 }
781 
782 static inline void irq_time_write_end(void)
783 {
784 	smp_wmb();
785 	__this_cpu_inc(irq_time_seq.sequence);
786 }
787 
788 static inline u64 irq_time_read(int cpu)
789 {
790 	u64 irq_time;
791 	unsigned seq;
792 
793 	do {
794 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
795 		irq_time = per_cpu(cpu_softirq_time, cpu) +
796 			   per_cpu(cpu_hardirq_time, cpu);
797 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
798 
799 	return irq_time;
800 }
801 #else /* CONFIG_64BIT */
802 static inline void irq_time_write_begin(void)
803 {
804 }
805 
806 static inline void irq_time_write_end(void)
807 {
808 }
809 
810 static inline u64 irq_time_read(int cpu)
811 {
812 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
813 }
814 #endif /* CONFIG_64BIT */
815 
816 /*
817  * Called before incrementing preempt_count on {soft,}irq_enter
818  * and before decrementing preempt_count on {soft,}irq_exit.
819  */
820 void account_system_vtime(struct task_struct *curr)
821 {
822 	unsigned long flags;
823 	s64 delta;
824 	int cpu;
825 
826 	if (!sched_clock_irqtime)
827 		return;
828 
829 	local_irq_save(flags);
830 
831 	cpu = smp_processor_id();
832 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
833 	__this_cpu_add(irq_start_time, delta);
834 
835 	irq_time_write_begin();
836 	/*
837 	 * We do not account for softirq time from ksoftirqd here.
838 	 * We want to continue accounting softirq time to ksoftirqd thread
839 	 * in that case, so as not to confuse scheduler with a special task
840 	 * that do not consume any time, but still wants to run.
841 	 */
842 	if (hardirq_count())
843 		__this_cpu_add(cpu_hardirq_time, delta);
844 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
845 		__this_cpu_add(cpu_softirq_time, delta);
846 
847 	irq_time_write_end();
848 	local_irq_restore(flags);
849 }
850 EXPORT_SYMBOL_GPL(account_system_vtime);
851 
852 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
853 
854 #ifdef CONFIG_PARAVIRT
855 static inline u64 steal_ticks(u64 steal)
856 {
857 	if (unlikely(steal > NSEC_PER_SEC))
858 		return div_u64(steal, TICK_NSEC);
859 
860 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
861 }
862 #endif
863 
864 static void update_rq_clock_task(struct rq *rq, s64 delta)
865 {
866 /*
867  * In theory, the compile should just see 0 here, and optimize out the call
868  * to sched_rt_avg_update. But I don't trust it...
869  */
870 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
871 	s64 steal = 0, irq_delta = 0;
872 #endif
873 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
874 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
875 
876 	/*
877 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
878 	 * this case when a previous update_rq_clock() happened inside a
879 	 * {soft,}irq region.
880 	 *
881 	 * When this happens, we stop ->clock_task and only update the
882 	 * prev_irq_time stamp to account for the part that fit, so that a next
883 	 * update will consume the rest. This ensures ->clock_task is
884 	 * monotonic.
885 	 *
886 	 * It does however cause some slight miss-attribution of {soft,}irq
887 	 * time, a more accurate solution would be to update the irq_time using
888 	 * the current rq->clock timestamp, except that would require using
889 	 * atomic ops.
890 	 */
891 	if (irq_delta > delta)
892 		irq_delta = delta;
893 
894 	rq->prev_irq_time += irq_delta;
895 	delta -= irq_delta;
896 #endif
897 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
898 	if (static_key_false((&paravirt_steal_rq_enabled))) {
899 		u64 st;
900 
901 		steal = paravirt_steal_clock(cpu_of(rq));
902 		steal -= rq->prev_steal_time_rq;
903 
904 		if (unlikely(steal > delta))
905 			steal = delta;
906 
907 		st = steal_ticks(steal);
908 		steal = st * TICK_NSEC;
909 
910 		rq->prev_steal_time_rq += steal;
911 
912 		delta -= steal;
913 	}
914 #endif
915 
916 	rq->clock_task += delta;
917 
918 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
920 		sched_rt_avg_update(rq, irq_delta + steal);
921 #endif
922 }
923 
924 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
925 static int irqtime_account_hi_update(void)
926 {
927 	u64 *cpustat = kcpustat_this_cpu->cpustat;
928 	unsigned long flags;
929 	u64 latest_ns;
930 	int ret = 0;
931 
932 	local_irq_save(flags);
933 	latest_ns = this_cpu_read(cpu_hardirq_time);
934 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
935 		ret = 1;
936 	local_irq_restore(flags);
937 	return ret;
938 }
939 
940 static int irqtime_account_si_update(void)
941 {
942 	u64 *cpustat = kcpustat_this_cpu->cpustat;
943 	unsigned long flags;
944 	u64 latest_ns;
945 	int ret = 0;
946 
947 	local_irq_save(flags);
948 	latest_ns = this_cpu_read(cpu_softirq_time);
949 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
950 		ret = 1;
951 	local_irq_restore(flags);
952 	return ret;
953 }
954 
955 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
956 
957 #define sched_clock_irqtime	(0)
958 
959 #endif
960 
961 void sched_set_stop_task(int cpu, struct task_struct *stop)
962 {
963 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
964 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
965 
966 	if (stop) {
967 		/*
968 		 * Make it appear like a SCHED_FIFO task, its something
969 		 * userspace knows about and won't get confused about.
970 		 *
971 		 * Also, it will make PI more or less work without too
972 		 * much confusion -- but then, stop work should not
973 		 * rely on PI working anyway.
974 		 */
975 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
976 
977 		stop->sched_class = &stop_sched_class;
978 	}
979 
980 	cpu_rq(cpu)->stop = stop;
981 
982 	if (old_stop) {
983 		/*
984 		 * Reset it back to a normal scheduling class so that
985 		 * it can die in pieces.
986 		 */
987 		old_stop->sched_class = &rt_sched_class;
988 	}
989 }
990 
991 /*
992  * __normal_prio - return the priority that is based on the static prio
993  */
994 static inline int __normal_prio(struct task_struct *p)
995 {
996 	return p->static_prio;
997 }
998 
999 /*
1000  * Calculate the expected normal priority: i.e. priority
1001  * without taking RT-inheritance into account. Might be
1002  * boosted by interactivity modifiers. Changes upon fork,
1003  * setprio syscalls, and whenever the interactivity
1004  * estimator recalculates.
1005  */
1006 static inline int normal_prio(struct task_struct *p)
1007 {
1008 	int prio;
1009 
1010 	if (task_has_rt_policy(p))
1011 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1012 	else
1013 		prio = __normal_prio(p);
1014 	return prio;
1015 }
1016 
1017 /*
1018  * Calculate the current priority, i.e. the priority
1019  * taken into account by the scheduler. This value might
1020  * be boosted by RT tasks, or might be boosted by
1021  * interactivity modifiers. Will be RT if the task got
1022  * RT-boosted. If not then it returns p->normal_prio.
1023  */
1024 static int effective_prio(struct task_struct *p)
1025 {
1026 	p->normal_prio = normal_prio(p);
1027 	/*
1028 	 * If we are RT tasks or we were boosted to RT priority,
1029 	 * keep the priority unchanged. Otherwise, update priority
1030 	 * to the normal priority:
1031 	 */
1032 	if (!rt_prio(p->prio))
1033 		return p->normal_prio;
1034 	return p->prio;
1035 }
1036 
1037 /**
1038  * task_curr - is this task currently executing on a CPU?
1039  * @p: the task in question.
1040  */
1041 inline int task_curr(const struct task_struct *p)
1042 {
1043 	return cpu_curr(task_cpu(p)) == p;
1044 }
1045 
1046 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1047 				       const struct sched_class *prev_class,
1048 				       int oldprio)
1049 {
1050 	if (prev_class != p->sched_class) {
1051 		if (prev_class->switched_from)
1052 			prev_class->switched_from(rq, p);
1053 		p->sched_class->switched_to(rq, p);
1054 	} else if (oldprio != p->prio)
1055 		p->sched_class->prio_changed(rq, p, oldprio);
1056 }
1057 
1058 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1059 {
1060 	const struct sched_class *class;
1061 
1062 	if (p->sched_class == rq->curr->sched_class) {
1063 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1064 	} else {
1065 		for_each_class(class) {
1066 			if (class == rq->curr->sched_class)
1067 				break;
1068 			if (class == p->sched_class) {
1069 				resched_task(rq->curr);
1070 				break;
1071 			}
1072 		}
1073 	}
1074 
1075 	/*
1076 	 * A queue event has occurred, and we're going to schedule.  In
1077 	 * this case, we can save a useless back to back clock update.
1078 	 */
1079 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1080 		rq->skip_clock_update = 1;
1081 }
1082 
1083 #ifdef CONFIG_SMP
1084 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1085 {
1086 #ifdef CONFIG_SCHED_DEBUG
1087 	/*
1088 	 * We should never call set_task_cpu() on a blocked task,
1089 	 * ttwu() will sort out the placement.
1090 	 */
1091 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1092 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1093 
1094 #ifdef CONFIG_LOCKDEP
1095 	/*
1096 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1097 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1098 	 *
1099 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1100 	 * see set_task_rq().
1101 	 *
1102 	 * Furthermore, all task_rq users should acquire both locks, see
1103 	 * task_rq_lock().
1104 	 */
1105 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1106 				      lockdep_is_held(&task_rq(p)->lock)));
1107 #endif
1108 #endif
1109 
1110 	trace_sched_migrate_task(p, new_cpu);
1111 
1112 	if (task_cpu(p) != new_cpu) {
1113 		p->se.nr_migrations++;
1114 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1115 	}
1116 
1117 	__set_task_cpu(p, new_cpu);
1118 }
1119 
1120 struct migration_arg {
1121 	struct task_struct *task;
1122 	int dest_cpu;
1123 };
1124 
1125 static int migration_cpu_stop(void *data);
1126 
1127 /*
1128  * wait_task_inactive - wait for a thread to unschedule.
1129  *
1130  * If @match_state is nonzero, it's the @p->state value just checked and
1131  * not expected to change.  If it changes, i.e. @p might have woken up,
1132  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1133  * we return a positive number (its total switch count).  If a second call
1134  * a short while later returns the same number, the caller can be sure that
1135  * @p has remained unscheduled the whole time.
1136  *
1137  * The caller must ensure that the task *will* unschedule sometime soon,
1138  * else this function might spin for a *long* time. This function can't
1139  * be called with interrupts off, or it may introduce deadlock with
1140  * smp_call_function() if an IPI is sent by the same process we are
1141  * waiting to become inactive.
1142  */
1143 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1144 {
1145 	unsigned long flags;
1146 	int running, on_rq;
1147 	unsigned long ncsw;
1148 	struct rq *rq;
1149 
1150 	for (;;) {
1151 		/*
1152 		 * We do the initial early heuristics without holding
1153 		 * any task-queue locks at all. We'll only try to get
1154 		 * the runqueue lock when things look like they will
1155 		 * work out!
1156 		 */
1157 		rq = task_rq(p);
1158 
1159 		/*
1160 		 * If the task is actively running on another CPU
1161 		 * still, just relax and busy-wait without holding
1162 		 * any locks.
1163 		 *
1164 		 * NOTE! Since we don't hold any locks, it's not
1165 		 * even sure that "rq" stays as the right runqueue!
1166 		 * But we don't care, since "task_running()" will
1167 		 * return false if the runqueue has changed and p
1168 		 * is actually now running somewhere else!
1169 		 */
1170 		while (task_running(rq, p)) {
1171 			if (match_state && unlikely(p->state != match_state))
1172 				return 0;
1173 			cpu_relax();
1174 		}
1175 
1176 		/*
1177 		 * Ok, time to look more closely! We need the rq
1178 		 * lock now, to be *sure*. If we're wrong, we'll
1179 		 * just go back and repeat.
1180 		 */
1181 		rq = task_rq_lock(p, &flags);
1182 		trace_sched_wait_task(p);
1183 		running = task_running(rq, p);
1184 		on_rq = p->on_rq;
1185 		ncsw = 0;
1186 		if (!match_state || p->state == match_state)
1187 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1188 		task_rq_unlock(rq, p, &flags);
1189 
1190 		/*
1191 		 * If it changed from the expected state, bail out now.
1192 		 */
1193 		if (unlikely(!ncsw))
1194 			break;
1195 
1196 		/*
1197 		 * Was it really running after all now that we
1198 		 * checked with the proper locks actually held?
1199 		 *
1200 		 * Oops. Go back and try again..
1201 		 */
1202 		if (unlikely(running)) {
1203 			cpu_relax();
1204 			continue;
1205 		}
1206 
1207 		/*
1208 		 * It's not enough that it's not actively running,
1209 		 * it must be off the runqueue _entirely_, and not
1210 		 * preempted!
1211 		 *
1212 		 * So if it was still runnable (but just not actively
1213 		 * running right now), it's preempted, and we should
1214 		 * yield - it could be a while.
1215 		 */
1216 		if (unlikely(on_rq)) {
1217 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1218 
1219 			set_current_state(TASK_UNINTERRUPTIBLE);
1220 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1221 			continue;
1222 		}
1223 
1224 		/*
1225 		 * Ahh, all good. It wasn't running, and it wasn't
1226 		 * runnable, which means that it will never become
1227 		 * running in the future either. We're all done!
1228 		 */
1229 		break;
1230 	}
1231 
1232 	return ncsw;
1233 }
1234 
1235 /***
1236  * kick_process - kick a running thread to enter/exit the kernel
1237  * @p: the to-be-kicked thread
1238  *
1239  * Cause a process which is running on another CPU to enter
1240  * kernel-mode, without any delay. (to get signals handled.)
1241  *
1242  * NOTE: this function doesn't have to take the runqueue lock,
1243  * because all it wants to ensure is that the remote task enters
1244  * the kernel. If the IPI races and the task has been migrated
1245  * to another CPU then no harm is done and the purpose has been
1246  * achieved as well.
1247  */
1248 void kick_process(struct task_struct *p)
1249 {
1250 	int cpu;
1251 
1252 	preempt_disable();
1253 	cpu = task_cpu(p);
1254 	if ((cpu != smp_processor_id()) && task_curr(p))
1255 		smp_send_reschedule(cpu);
1256 	preempt_enable();
1257 }
1258 EXPORT_SYMBOL_GPL(kick_process);
1259 #endif /* CONFIG_SMP */
1260 
1261 #ifdef CONFIG_SMP
1262 /*
1263  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1264  */
1265 static int select_fallback_rq(int cpu, struct task_struct *p)
1266 {
1267 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268 	enum { cpuset, possible, fail } state = cpuset;
1269 	int dest_cpu;
1270 
1271 	/* Look for allowed, online CPU in same node. */
1272 	for_each_cpu(dest_cpu, nodemask) {
1273 		if (!cpu_online(dest_cpu))
1274 			continue;
1275 		if (!cpu_active(dest_cpu))
1276 			continue;
1277 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1278 			return dest_cpu;
1279 	}
1280 
1281 	for (;;) {
1282 		/* Any allowed, online CPU? */
1283 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1284 			if (!cpu_online(dest_cpu))
1285 				continue;
1286 			if (!cpu_active(dest_cpu))
1287 				continue;
1288 			goto out;
1289 		}
1290 
1291 		switch (state) {
1292 		case cpuset:
1293 			/* No more Mr. Nice Guy. */
1294 			cpuset_cpus_allowed_fallback(p);
1295 			state = possible;
1296 			break;
1297 
1298 		case possible:
1299 			do_set_cpus_allowed(p, cpu_possible_mask);
1300 			state = fail;
1301 			break;
1302 
1303 		case fail:
1304 			BUG();
1305 			break;
1306 		}
1307 	}
1308 
1309 out:
1310 	if (state != cpuset) {
1311 		/*
1312 		 * Don't tell them about moving exiting tasks or
1313 		 * kernel threads (both mm NULL), since they never
1314 		 * leave kernel.
1315 		 */
1316 		if (p->mm && printk_ratelimit()) {
1317 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1318 					task_pid_nr(p), p->comm, cpu);
1319 		}
1320 	}
1321 
1322 	return dest_cpu;
1323 }
1324 
1325 /*
1326  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1327  */
1328 static inline
1329 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1330 {
1331 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1332 
1333 	/*
1334 	 * In order not to call set_task_cpu() on a blocking task we need
1335 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1336 	 * cpu.
1337 	 *
1338 	 * Since this is common to all placement strategies, this lives here.
1339 	 *
1340 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1341 	 *   not worry about this generic constraint ]
1342 	 */
1343 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1344 		     !cpu_online(cpu)))
1345 		cpu = select_fallback_rq(task_cpu(p), p);
1346 
1347 	return cpu;
1348 }
1349 
1350 static void update_avg(u64 *avg, u64 sample)
1351 {
1352 	s64 diff = sample - *avg;
1353 	*avg += diff >> 3;
1354 }
1355 #endif
1356 
1357 static void
1358 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1359 {
1360 #ifdef CONFIG_SCHEDSTATS
1361 	struct rq *rq = this_rq();
1362 
1363 #ifdef CONFIG_SMP
1364 	int this_cpu = smp_processor_id();
1365 
1366 	if (cpu == this_cpu) {
1367 		schedstat_inc(rq, ttwu_local);
1368 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1369 	} else {
1370 		struct sched_domain *sd;
1371 
1372 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1373 		rcu_read_lock();
1374 		for_each_domain(this_cpu, sd) {
1375 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1376 				schedstat_inc(sd, ttwu_wake_remote);
1377 				break;
1378 			}
1379 		}
1380 		rcu_read_unlock();
1381 	}
1382 
1383 	if (wake_flags & WF_MIGRATED)
1384 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1385 
1386 #endif /* CONFIG_SMP */
1387 
1388 	schedstat_inc(rq, ttwu_count);
1389 	schedstat_inc(p, se.statistics.nr_wakeups);
1390 
1391 	if (wake_flags & WF_SYNC)
1392 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1393 
1394 #endif /* CONFIG_SCHEDSTATS */
1395 }
1396 
1397 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1398 {
1399 	activate_task(rq, p, en_flags);
1400 	p->on_rq = 1;
1401 
1402 	/* if a worker is waking up, notify workqueue */
1403 	if (p->flags & PF_WQ_WORKER)
1404 		wq_worker_waking_up(p, cpu_of(rq));
1405 }
1406 
1407 /*
1408  * Mark the task runnable and perform wakeup-preemption.
1409  */
1410 static void
1411 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1412 {
1413 	trace_sched_wakeup(p, true);
1414 	check_preempt_curr(rq, p, wake_flags);
1415 
1416 	p->state = TASK_RUNNING;
1417 #ifdef CONFIG_SMP
1418 	if (p->sched_class->task_woken)
1419 		p->sched_class->task_woken(rq, p);
1420 
1421 	if (rq->idle_stamp) {
1422 		u64 delta = rq->clock - rq->idle_stamp;
1423 		u64 max = 2*sysctl_sched_migration_cost;
1424 
1425 		if (delta > max)
1426 			rq->avg_idle = max;
1427 		else
1428 			update_avg(&rq->avg_idle, delta);
1429 		rq->idle_stamp = 0;
1430 	}
1431 #endif
1432 }
1433 
1434 static void
1435 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1436 {
1437 #ifdef CONFIG_SMP
1438 	if (p->sched_contributes_to_load)
1439 		rq->nr_uninterruptible--;
1440 #endif
1441 
1442 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1443 	ttwu_do_wakeup(rq, p, wake_flags);
1444 }
1445 
1446 /*
1447  * Called in case the task @p isn't fully descheduled from its runqueue,
1448  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1449  * since all we need to do is flip p->state to TASK_RUNNING, since
1450  * the task is still ->on_rq.
1451  */
1452 static int ttwu_remote(struct task_struct *p, int wake_flags)
1453 {
1454 	struct rq *rq;
1455 	int ret = 0;
1456 
1457 	rq = __task_rq_lock(p);
1458 	if (p->on_rq) {
1459 		ttwu_do_wakeup(rq, p, wake_flags);
1460 		ret = 1;
1461 	}
1462 	__task_rq_unlock(rq);
1463 
1464 	return ret;
1465 }
1466 
1467 #ifdef CONFIG_SMP
1468 static void sched_ttwu_pending(void)
1469 {
1470 	struct rq *rq = this_rq();
1471 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1472 	struct task_struct *p;
1473 
1474 	raw_spin_lock(&rq->lock);
1475 
1476 	while (llist) {
1477 		p = llist_entry(llist, struct task_struct, wake_entry);
1478 		llist = llist_next(llist);
1479 		ttwu_do_activate(rq, p, 0);
1480 	}
1481 
1482 	raw_spin_unlock(&rq->lock);
1483 }
1484 
1485 void scheduler_ipi(void)
1486 {
1487 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1488 		return;
1489 
1490 	/*
1491 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1492 	 * traditionally all their work was done from the interrupt return
1493 	 * path. Now that we actually do some work, we need to make sure
1494 	 * we do call them.
1495 	 *
1496 	 * Some archs already do call them, luckily irq_enter/exit nest
1497 	 * properly.
1498 	 *
1499 	 * Arguably we should visit all archs and update all handlers,
1500 	 * however a fair share of IPIs are still resched only so this would
1501 	 * somewhat pessimize the simple resched case.
1502 	 */
1503 	irq_enter();
1504 	sched_ttwu_pending();
1505 
1506 	/*
1507 	 * Check if someone kicked us for doing the nohz idle load balance.
1508 	 */
1509 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1510 		this_rq()->idle_balance = 1;
1511 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1512 	}
1513 	irq_exit();
1514 }
1515 
1516 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1517 {
1518 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1519 		smp_send_reschedule(cpu);
1520 }
1521 
1522 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1523 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1524 {
1525 	struct rq *rq;
1526 	int ret = 0;
1527 
1528 	rq = __task_rq_lock(p);
1529 	if (p->on_cpu) {
1530 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1531 		ttwu_do_wakeup(rq, p, wake_flags);
1532 		ret = 1;
1533 	}
1534 	__task_rq_unlock(rq);
1535 
1536 	return ret;
1537 
1538 }
1539 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1540 
1541 bool cpus_share_cache(int this_cpu, int that_cpu)
1542 {
1543 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544 }
1545 #endif /* CONFIG_SMP */
1546 
1547 static void ttwu_queue(struct task_struct *p, int cpu)
1548 {
1549 	struct rq *rq = cpu_rq(cpu);
1550 
1551 #if defined(CONFIG_SMP)
1552 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554 		ttwu_queue_remote(p, cpu);
1555 		return;
1556 	}
1557 #endif
1558 
1559 	raw_spin_lock(&rq->lock);
1560 	ttwu_do_activate(rq, p, 0);
1561 	raw_spin_unlock(&rq->lock);
1562 }
1563 
1564 /**
1565  * try_to_wake_up - wake up a thread
1566  * @p: the thread to be awakened
1567  * @state: the mask of task states that can be woken
1568  * @wake_flags: wake modifier flags (WF_*)
1569  *
1570  * Put it on the run-queue if it's not already there. The "current"
1571  * thread is always on the run-queue (except when the actual
1572  * re-schedule is in progress), and as such you're allowed to do
1573  * the simpler "current->state = TASK_RUNNING" to mark yourself
1574  * runnable without the overhead of this.
1575  *
1576  * Returns %true if @p was woken up, %false if it was already running
1577  * or @state didn't match @p's state.
1578  */
1579 static int
1580 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581 {
1582 	unsigned long flags;
1583 	int cpu, success = 0;
1584 
1585 	smp_wmb();
1586 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1587 	if (!(p->state & state))
1588 		goto out;
1589 
1590 	success = 1; /* we're going to change ->state */
1591 	cpu = task_cpu(p);
1592 
1593 	if (p->on_rq && ttwu_remote(p, wake_flags))
1594 		goto stat;
1595 
1596 #ifdef CONFIG_SMP
1597 	/*
1598 	 * If the owning (remote) cpu is still in the middle of schedule() with
1599 	 * this task as prev, wait until its done referencing the task.
1600 	 */
1601 	while (p->on_cpu) {
1602 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1603 		/*
1604 		 * In case the architecture enables interrupts in
1605 		 * context_switch(), we cannot busy wait, since that
1606 		 * would lead to deadlocks when an interrupt hits and
1607 		 * tries to wake up @prev. So bail and do a complete
1608 		 * remote wakeup.
1609 		 */
1610 		if (ttwu_activate_remote(p, wake_flags))
1611 			goto stat;
1612 #else
1613 		cpu_relax();
1614 #endif
1615 	}
1616 	/*
1617 	 * Pairs with the smp_wmb() in finish_lock_switch().
1618 	 */
1619 	smp_rmb();
1620 
1621 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1622 	p->state = TASK_WAKING;
1623 
1624 	if (p->sched_class->task_waking)
1625 		p->sched_class->task_waking(p);
1626 
1627 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1628 	if (task_cpu(p) != cpu) {
1629 		wake_flags |= WF_MIGRATED;
1630 		set_task_cpu(p, cpu);
1631 	}
1632 #endif /* CONFIG_SMP */
1633 
1634 	ttwu_queue(p, cpu);
1635 stat:
1636 	ttwu_stat(p, cpu, wake_flags);
1637 out:
1638 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1639 
1640 	return success;
1641 }
1642 
1643 /**
1644  * try_to_wake_up_local - try to wake up a local task with rq lock held
1645  * @p: the thread to be awakened
1646  *
1647  * Put @p on the run-queue if it's not already there. The caller must
1648  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1649  * the current task.
1650  */
1651 static void try_to_wake_up_local(struct task_struct *p)
1652 {
1653 	struct rq *rq = task_rq(p);
1654 
1655 	BUG_ON(rq != this_rq());
1656 	BUG_ON(p == current);
1657 	lockdep_assert_held(&rq->lock);
1658 
1659 	if (!raw_spin_trylock(&p->pi_lock)) {
1660 		raw_spin_unlock(&rq->lock);
1661 		raw_spin_lock(&p->pi_lock);
1662 		raw_spin_lock(&rq->lock);
1663 	}
1664 
1665 	if (!(p->state & TASK_NORMAL))
1666 		goto out;
1667 
1668 	if (!p->on_rq)
1669 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1670 
1671 	ttwu_do_wakeup(rq, p, 0);
1672 	ttwu_stat(p, smp_processor_id(), 0);
1673 out:
1674 	raw_spin_unlock(&p->pi_lock);
1675 }
1676 
1677 /**
1678  * wake_up_process - Wake up a specific process
1679  * @p: The process to be woken up.
1680  *
1681  * Attempt to wake up the nominated process and move it to the set of runnable
1682  * processes.  Returns 1 if the process was woken up, 0 if it was already
1683  * running.
1684  *
1685  * It may be assumed that this function implies a write memory barrier before
1686  * changing the task state if and only if any tasks are woken up.
1687  */
1688 int wake_up_process(struct task_struct *p)
1689 {
1690 	return try_to_wake_up(p, TASK_ALL, 0);
1691 }
1692 EXPORT_SYMBOL(wake_up_process);
1693 
1694 int wake_up_state(struct task_struct *p, unsigned int state)
1695 {
1696 	return try_to_wake_up(p, state, 0);
1697 }
1698 
1699 /*
1700  * Perform scheduler related setup for a newly forked process p.
1701  * p is forked by current.
1702  *
1703  * __sched_fork() is basic setup used by init_idle() too:
1704  */
1705 static void __sched_fork(struct task_struct *p)
1706 {
1707 	p->on_rq			= 0;
1708 
1709 	p->se.on_rq			= 0;
1710 	p->se.exec_start		= 0;
1711 	p->se.sum_exec_runtime		= 0;
1712 	p->se.prev_sum_exec_runtime	= 0;
1713 	p->se.nr_migrations		= 0;
1714 	p->se.vruntime			= 0;
1715 	INIT_LIST_HEAD(&p->se.group_node);
1716 
1717 #ifdef CONFIG_SCHEDSTATS
1718 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1719 #endif
1720 
1721 	INIT_LIST_HEAD(&p->rt.run_list);
1722 
1723 #ifdef CONFIG_PREEMPT_NOTIFIERS
1724 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1725 #endif
1726 }
1727 
1728 /*
1729  * fork()/clone()-time setup:
1730  */
1731 void sched_fork(struct task_struct *p)
1732 {
1733 	unsigned long flags;
1734 	int cpu = get_cpu();
1735 
1736 	__sched_fork(p);
1737 	/*
1738 	 * We mark the process as running here. This guarantees that
1739 	 * nobody will actually run it, and a signal or other external
1740 	 * event cannot wake it up and insert it on the runqueue either.
1741 	 */
1742 	p->state = TASK_RUNNING;
1743 
1744 	/*
1745 	 * Make sure we do not leak PI boosting priority to the child.
1746 	 */
1747 	p->prio = current->normal_prio;
1748 
1749 	/*
1750 	 * Revert to default priority/policy on fork if requested.
1751 	 */
1752 	if (unlikely(p->sched_reset_on_fork)) {
1753 		if (task_has_rt_policy(p)) {
1754 			p->policy = SCHED_NORMAL;
1755 			p->static_prio = NICE_TO_PRIO(0);
1756 			p->rt_priority = 0;
1757 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1758 			p->static_prio = NICE_TO_PRIO(0);
1759 
1760 		p->prio = p->normal_prio = __normal_prio(p);
1761 		set_load_weight(p);
1762 
1763 		/*
1764 		 * We don't need the reset flag anymore after the fork. It has
1765 		 * fulfilled its duty:
1766 		 */
1767 		p->sched_reset_on_fork = 0;
1768 	}
1769 
1770 	if (!rt_prio(p->prio))
1771 		p->sched_class = &fair_sched_class;
1772 
1773 	if (p->sched_class->task_fork)
1774 		p->sched_class->task_fork(p);
1775 
1776 	/*
1777 	 * The child is not yet in the pid-hash so no cgroup attach races,
1778 	 * and the cgroup is pinned to this child due to cgroup_fork()
1779 	 * is ran before sched_fork().
1780 	 *
1781 	 * Silence PROVE_RCU.
1782 	 */
1783 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1784 	set_task_cpu(p, cpu);
1785 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1786 
1787 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1788 	if (likely(sched_info_on()))
1789 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1790 #endif
1791 #if defined(CONFIG_SMP)
1792 	p->on_cpu = 0;
1793 #endif
1794 #ifdef CONFIG_PREEMPT_COUNT
1795 	/* Want to start with kernel preemption disabled. */
1796 	task_thread_info(p)->preempt_count = 1;
1797 #endif
1798 #ifdef CONFIG_SMP
1799 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1800 #endif
1801 
1802 	put_cpu();
1803 }
1804 
1805 /*
1806  * wake_up_new_task - wake up a newly created task for the first time.
1807  *
1808  * This function will do some initial scheduler statistics housekeeping
1809  * that must be done for every newly created context, then puts the task
1810  * on the runqueue and wakes it.
1811  */
1812 void wake_up_new_task(struct task_struct *p)
1813 {
1814 	unsigned long flags;
1815 	struct rq *rq;
1816 
1817 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1818 #ifdef CONFIG_SMP
1819 	/*
1820 	 * Fork balancing, do it here and not earlier because:
1821 	 *  - cpus_allowed can change in the fork path
1822 	 *  - any previously selected cpu might disappear through hotplug
1823 	 */
1824 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1825 #endif
1826 
1827 	rq = __task_rq_lock(p);
1828 	activate_task(rq, p, 0);
1829 	p->on_rq = 1;
1830 	trace_sched_wakeup_new(p, true);
1831 	check_preempt_curr(rq, p, WF_FORK);
1832 #ifdef CONFIG_SMP
1833 	if (p->sched_class->task_woken)
1834 		p->sched_class->task_woken(rq, p);
1835 #endif
1836 	task_rq_unlock(rq, p, &flags);
1837 }
1838 
1839 #ifdef CONFIG_PREEMPT_NOTIFIERS
1840 
1841 /**
1842  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1843  * @notifier: notifier struct to register
1844  */
1845 void preempt_notifier_register(struct preempt_notifier *notifier)
1846 {
1847 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1848 }
1849 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1850 
1851 /**
1852  * preempt_notifier_unregister - no longer interested in preemption notifications
1853  * @notifier: notifier struct to unregister
1854  *
1855  * This is safe to call from within a preemption notifier.
1856  */
1857 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1858 {
1859 	hlist_del(&notifier->link);
1860 }
1861 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1862 
1863 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1864 {
1865 	struct preempt_notifier *notifier;
1866 	struct hlist_node *node;
1867 
1868 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1869 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1870 }
1871 
1872 static void
1873 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1874 				 struct task_struct *next)
1875 {
1876 	struct preempt_notifier *notifier;
1877 	struct hlist_node *node;
1878 
1879 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1880 		notifier->ops->sched_out(notifier, next);
1881 }
1882 
1883 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1884 
1885 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1886 {
1887 }
1888 
1889 static void
1890 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1891 				 struct task_struct *next)
1892 {
1893 }
1894 
1895 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1896 
1897 /**
1898  * prepare_task_switch - prepare to switch tasks
1899  * @rq: the runqueue preparing to switch
1900  * @prev: the current task that is being switched out
1901  * @next: the task we are going to switch to.
1902  *
1903  * This is called with the rq lock held and interrupts off. It must
1904  * be paired with a subsequent finish_task_switch after the context
1905  * switch.
1906  *
1907  * prepare_task_switch sets up locking and calls architecture specific
1908  * hooks.
1909  */
1910 static inline void
1911 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1912 		    struct task_struct *next)
1913 {
1914 	sched_info_switch(prev, next);
1915 	perf_event_task_sched_out(prev, next);
1916 	fire_sched_out_preempt_notifiers(prev, next);
1917 	prepare_lock_switch(rq, next);
1918 	prepare_arch_switch(next);
1919 	trace_sched_switch(prev, next);
1920 }
1921 
1922 /**
1923  * finish_task_switch - clean up after a task-switch
1924  * @rq: runqueue associated with task-switch
1925  * @prev: the thread we just switched away from.
1926  *
1927  * finish_task_switch must be called after the context switch, paired
1928  * with a prepare_task_switch call before the context switch.
1929  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1930  * and do any other architecture-specific cleanup actions.
1931  *
1932  * Note that we may have delayed dropping an mm in context_switch(). If
1933  * so, we finish that here outside of the runqueue lock. (Doing it
1934  * with the lock held can cause deadlocks; see schedule() for
1935  * details.)
1936  */
1937 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1938 	__releases(rq->lock)
1939 {
1940 	struct mm_struct *mm = rq->prev_mm;
1941 	long prev_state;
1942 
1943 	rq->prev_mm = NULL;
1944 
1945 	/*
1946 	 * A task struct has one reference for the use as "current".
1947 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1948 	 * schedule one last time. The schedule call will never return, and
1949 	 * the scheduled task must drop that reference.
1950 	 * The test for TASK_DEAD must occur while the runqueue locks are
1951 	 * still held, otherwise prev could be scheduled on another cpu, die
1952 	 * there before we look at prev->state, and then the reference would
1953 	 * be dropped twice.
1954 	 *		Manfred Spraul <manfred@colorfullife.com>
1955 	 */
1956 	prev_state = prev->state;
1957 	finish_arch_switch(prev);
1958 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1959 	local_irq_disable();
1960 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1961 	perf_event_task_sched_in(prev, current);
1962 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1963 	local_irq_enable();
1964 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1965 	finish_lock_switch(rq, prev);
1966 	finish_arch_post_lock_switch();
1967 
1968 	fire_sched_in_preempt_notifiers(current);
1969 	if (mm)
1970 		mmdrop(mm);
1971 	if (unlikely(prev_state == TASK_DEAD)) {
1972 		/*
1973 		 * Remove function-return probe instances associated with this
1974 		 * task and put them back on the free list.
1975 		 */
1976 		kprobe_flush_task(prev);
1977 		put_task_struct(prev);
1978 	}
1979 }
1980 
1981 #ifdef CONFIG_SMP
1982 
1983 /* assumes rq->lock is held */
1984 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1985 {
1986 	if (prev->sched_class->pre_schedule)
1987 		prev->sched_class->pre_schedule(rq, prev);
1988 }
1989 
1990 /* rq->lock is NOT held, but preemption is disabled */
1991 static inline void post_schedule(struct rq *rq)
1992 {
1993 	if (rq->post_schedule) {
1994 		unsigned long flags;
1995 
1996 		raw_spin_lock_irqsave(&rq->lock, flags);
1997 		if (rq->curr->sched_class->post_schedule)
1998 			rq->curr->sched_class->post_schedule(rq);
1999 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2000 
2001 		rq->post_schedule = 0;
2002 	}
2003 }
2004 
2005 #else
2006 
2007 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2008 {
2009 }
2010 
2011 static inline void post_schedule(struct rq *rq)
2012 {
2013 }
2014 
2015 #endif
2016 
2017 /**
2018  * schedule_tail - first thing a freshly forked thread must call.
2019  * @prev: the thread we just switched away from.
2020  */
2021 asmlinkage void schedule_tail(struct task_struct *prev)
2022 	__releases(rq->lock)
2023 {
2024 	struct rq *rq = this_rq();
2025 
2026 	finish_task_switch(rq, prev);
2027 
2028 	/*
2029 	 * FIXME: do we need to worry about rq being invalidated by the
2030 	 * task_switch?
2031 	 */
2032 	post_schedule(rq);
2033 
2034 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2035 	/* In this case, finish_task_switch does not reenable preemption */
2036 	preempt_enable();
2037 #endif
2038 	if (current->set_child_tid)
2039 		put_user(task_pid_vnr(current), current->set_child_tid);
2040 }
2041 
2042 /*
2043  * context_switch - switch to the new MM and the new
2044  * thread's register state.
2045  */
2046 static inline void
2047 context_switch(struct rq *rq, struct task_struct *prev,
2048 	       struct task_struct *next)
2049 {
2050 	struct mm_struct *mm, *oldmm;
2051 
2052 	prepare_task_switch(rq, prev, next);
2053 
2054 	mm = next->mm;
2055 	oldmm = prev->active_mm;
2056 	/*
2057 	 * For paravirt, this is coupled with an exit in switch_to to
2058 	 * combine the page table reload and the switch backend into
2059 	 * one hypercall.
2060 	 */
2061 	arch_start_context_switch(prev);
2062 
2063 	if (!mm) {
2064 		next->active_mm = oldmm;
2065 		atomic_inc(&oldmm->mm_count);
2066 		enter_lazy_tlb(oldmm, next);
2067 	} else
2068 		switch_mm(oldmm, mm, next);
2069 
2070 	if (!prev->mm) {
2071 		prev->active_mm = NULL;
2072 		rq->prev_mm = oldmm;
2073 	}
2074 	/*
2075 	 * Since the runqueue lock will be released by the next
2076 	 * task (which is an invalid locking op but in the case
2077 	 * of the scheduler it's an obvious special-case), so we
2078 	 * do an early lockdep release here:
2079 	 */
2080 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2081 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2082 #endif
2083 
2084 	/* Here we just switch the register state and the stack. */
2085 	rcu_switch_from(prev);
2086 	switch_to(prev, next, prev);
2087 
2088 	barrier();
2089 	/*
2090 	 * this_rq must be evaluated again because prev may have moved
2091 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2092 	 * frame will be invalid.
2093 	 */
2094 	finish_task_switch(this_rq(), prev);
2095 }
2096 
2097 /*
2098  * nr_running, nr_uninterruptible and nr_context_switches:
2099  *
2100  * externally visible scheduler statistics: current number of runnable
2101  * threads, current number of uninterruptible-sleeping threads, total
2102  * number of context switches performed since bootup.
2103  */
2104 unsigned long nr_running(void)
2105 {
2106 	unsigned long i, sum = 0;
2107 
2108 	for_each_online_cpu(i)
2109 		sum += cpu_rq(i)->nr_running;
2110 
2111 	return sum;
2112 }
2113 
2114 unsigned long nr_uninterruptible(void)
2115 {
2116 	unsigned long i, sum = 0;
2117 
2118 	for_each_possible_cpu(i)
2119 		sum += cpu_rq(i)->nr_uninterruptible;
2120 
2121 	/*
2122 	 * Since we read the counters lockless, it might be slightly
2123 	 * inaccurate. Do not allow it to go below zero though:
2124 	 */
2125 	if (unlikely((long)sum < 0))
2126 		sum = 0;
2127 
2128 	return sum;
2129 }
2130 
2131 unsigned long long nr_context_switches(void)
2132 {
2133 	int i;
2134 	unsigned long long sum = 0;
2135 
2136 	for_each_possible_cpu(i)
2137 		sum += cpu_rq(i)->nr_switches;
2138 
2139 	return sum;
2140 }
2141 
2142 unsigned long nr_iowait(void)
2143 {
2144 	unsigned long i, sum = 0;
2145 
2146 	for_each_possible_cpu(i)
2147 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2148 
2149 	return sum;
2150 }
2151 
2152 unsigned long nr_iowait_cpu(int cpu)
2153 {
2154 	struct rq *this = cpu_rq(cpu);
2155 	return atomic_read(&this->nr_iowait);
2156 }
2157 
2158 unsigned long this_cpu_load(void)
2159 {
2160 	struct rq *this = this_rq();
2161 	return this->cpu_load[0];
2162 }
2163 
2164 
2165 /* Variables and functions for calc_load */
2166 static atomic_long_t calc_load_tasks;
2167 static unsigned long calc_load_update;
2168 unsigned long avenrun[3];
2169 EXPORT_SYMBOL(avenrun);
2170 
2171 static long calc_load_fold_active(struct rq *this_rq)
2172 {
2173 	long nr_active, delta = 0;
2174 
2175 	nr_active = this_rq->nr_running;
2176 	nr_active += (long) this_rq->nr_uninterruptible;
2177 
2178 	if (nr_active != this_rq->calc_load_active) {
2179 		delta = nr_active - this_rq->calc_load_active;
2180 		this_rq->calc_load_active = nr_active;
2181 	}
2182 
2183 	return delta;
2184 }
2185 
2186 static unsigned long
2187 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2188 {
2189 	load *= exp;
2190 	load += active * (FIXED_1 - exp);
2191 	load += 1UL << (FSHIFT - 1);
2192 	return load >> FSHIFT;
2193 }
2194 
2195 #ifdef CONFIG_NO_HZ
2196 /*
2197  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2198  *
2199  * When making the ILB scale, we should try to pull this in as well.
2200  */
2201 static atomic_long_t calc_load_tasks_idle;
2202 
2203 void calc_load_account_idle(struct rq *this_rq)
2204 {
2205 	long delta;
2206 
2207 	delta = calc_load_fold_active(this_rq);
2208 	if (delta)
2209 		atomic_long_add(delta, &calc_load_tasks_idle);
2210 }
2211 
2212 static long calc_load_fold_idle(void)
2213 {
2214 	long delta = 0;
2215 
2216 	/*
2217 	 * Its got a race, we don't care...
2218 	 */
2219 	if (atomic_long_read(&calc_load_tasks_idle))
2220 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2221 
2222 	return delta;
2223 }
2224 
2225 /**
2226  * fixed_power_int - compute: x^n, in O(log n) time
2227  *
2228  * @x:         base of the power
2229  * @frac_bits: fractional bits of @x
2230  * @n:         power to raise @x to.
2231  *
2232  * By exploiting the relation between the definition of the natural power
2233  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2234  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2235  * (where: n_i \elem {0, 1}, the binary vector representing n),
2236  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2237  * of course trivially computable in O(log_2 n), the length of our binary
2238  * vector.
2239  */
2240 static unsigned long
2241 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2242 {
2243 	unsigned long result = 1UL << frac_bits;
2244 
2245 	if (n) for (;;) {
2246 		if (n & 1) {
2247 			result *= x;
2248 			result += 1UL << (frac_bits - 1);
2249 			result >>= frac_bits;
2250 		}
2251 		n >>= 1;
2252 		if (!n)
2253 			break;
2254 		x *= x;
2255 		x += 1UL << (frac_bits - 1);
2256 		x >>= frac_bits;
2257 	}
2258 
2259 	return result;
2260 }
2261 
2262 /*
2263  * a1 = a0 * e + a * (1 - e)
2264  *
2265  * a2 = a1 * e + a * (1 - e)
2266  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2267  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2268  *
2269  * a3 = a2 * e + a * (1 - e)
2270  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2271  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2272  *
2273  *  ...
2274  *
2275  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2276  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2277  *    = a0 * e^n + a * (1 - e^n)
2278  *
2279  * [1] application of the geometric series:
2280  *
2281  *              n         1 - x^(n+1)
2282  *     S_n := \Sum x^i = -------------
2283  *             i=0          1 - x
2284  */
2285 static unsigned long
2286 calc_load_n(unsigned long load, unsigned long exp,
2287 	    unsigned long active, unsigned int n)
2288 {
2289 
2290 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2291 }
2292 
2293 /*
2294  * NO_HZ can leave us missing all per-cpu ticks calling
2295  * calc_load_account_active(), but since an idle CPU folds its delta into
2296  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2297  * in the pending idle delta if our idle period crossed a load cycle boundary.
2298  *
2299  * Once we've updated the global active value, we need to apply the exponential
2300  * weights adjusted to the number of cycles missed.
2301  */
2302 static void calc_global_nohz(void)
2303 {
2304 	long delta, active, n;
2305 
2306 	/*
2307 	 * If we crossed a calc_load_update boundary, make sure to fold
2308 	 * any pending idle changes, the respective CPUs might have
2309 	 * missed the tick driven calc_load_account_active() update
2310 	 * due to NO_HZ.
2311 	 */
2312 	delta = calc_load_fold_idle();
2313 	if (delta)
2314 		atomic_long_add(delta, &calc_load_tasks);
2315 
2316 	/*
2317 	 * It could be the one fold was all it took, we done!
2318 	 */
2319 	if (time_before(jiffies, calc_load_update + 10))
2320 		return;
2321 
2322 	/*
2323 	 * Catch-up, fold however many we are behind still
2324 	 */
2325 	delta = jiffies - calc_load_update - 10;
2326 	n = 1 + (delta / LOAD_FREQ);
2327 
2328 	active = atomic_long_read(&calc_load_tasks);
2329 	active = active > 0 ? active * FIXED_1 : 0;
2330 
2331 	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2332 	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2333 	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2334 
2335 	calc_load_update += n * LOAD_FREQ;
2336 }
2337 #else
2338 void calc_load_account_idle(struct rq *this_rq)
2339 {
2340 }
2341 
2342 static inline long calc_load_fold_idle(void)
2343 {
2344 	return 0;
2345 }
2346 
2347 static void calc_global_nohz(void)
2348 {
2349 }
2350 #endif
2351 
2352 /**
2353  * get_avenrun - get the load average array
2354  * @loads:	pointer to dest load array
2355  * @offset:	offset to add
2356  * @shift:	shift count to shift the result left
2357  *
2358  * These values are estimates at best, so no need for locking.
2359  */
2360 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2361 {
2362 	loads[0] = (avenrun[0] + offset) << shift;
2363 	loads[1] = (avenrun[1] + offset) << shift;
2364 	loads[2] = (avenrun[2] + offset) << shift;
2365 }
2366 
2367 /*
2368  * calc_load - update the avenrun load estimates 10 ticks after the
2369  * CPUs have updated calc_load_tasks.
2370  */
2371 void calc_global_load(unsigned long ticks)
2372 {
2373 	long active;
2374 
2375 	if (time_before(jiffies, calc_load_update + 10))
2376 		return;
2377 
2378 	active = atomic_long_read(&calc_load_tasks);
2379 	active = active > 0 ? active * FIXED_1 : 0;
2380 
2381 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2382 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2383 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2384 
2385 	calc_load_update += LOAD_FREQ;
2386 
2387 	/*
2388 	 * Account one period with whatever state we found before
2389 	 * folding in the nohz state and ageing the entire idle period.
2390 	 *
2391 	 * This avoids loosing a sample when we go idle between
2392 	 * calc_load_account_active() (10 ticks ago) and now and thus
2393 	 * under-accounting.
2394 	 */
2395 	calc_global_nohz();
2396 }
2397 
2398 /*
2399  * Called from update_cpu_load() to periodically update this CPU's
2400  * active count.
2401  */
2402 static void calc_load_account_active(struct rq *this_rq)
2403 {
2404 	long delta;
2405 
2406 	if (time_before(jiffies, this_rq->calc_load_update))
2407 		return;
2408 
2409 	delta  = calc_load_fold_active(this_rq);
2410 	delta += calc_load_fold_idle();
2411 	if (delta)
2412 		atomic_long_add(delta, &calc_load_tasks);
2413 
2414 	this_rq->calc_load_update += LOAD_FREQ;
2415 }
2416 
2417 /*
2418  * The exact cpuload at various idx values, calculated at every tick would be
2419  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2420  *
2421  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2422  * on nth tick when cpu may be busy, then we have:
2423  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2424  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2425  *
2426  * decay_load_missed() below does efficient calculation of
2427  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2429  *
2430  * The calculation is approximated on a 128 point scale.
2431  * degrade_zero_ticks is the number of ticks after which load at any
2432  * particular idx is approximated to be zero.
2433  * degrade_factor is a precomputed table, a row for each load idx.
2434  * Each column corresponds to degradation factor for a power of two ticks,
2435  * based on 128 point scale.
2436  * Example:
2437  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2438  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2439  *
2440  * With this power of 2 load factors, we can degrade the load n times
2441  * by looking at 1 bits in n and doing as many mult/shift instead of
2442  * n mult/shifts needed by the exact degradation.
2443  */
2444 #define DEGRADE_SHIFT		7
2445 static const unsigned char
2446 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2447 static const unsigned char
2448 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2449 					{0, 0, 0, 0, 0, 0, 0, 0},
2450 					{64, 32, 8, 0, 0, 0, 0, 0},
2451 					{96, 72, 40, 12, 1, 0, 0},
2452 					{112, 98, 75, 43, 15, 1, 0},
2453 					{120, 112, 98, 76, 45, 16, 2} };
2454 
2455 /*
2456  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2457  * would be when CPU is idle and so we just decay the old load without
2458  * adding any new load.
2459  */
2460 static unsigned long
2461 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2462 {
2463 	int j = 0;
2464 
2465 	if (!missed_updates)
2466 		return load;
2467 
2468 	if (missed_updates >= degrade_zero_ticks[idx])
2469 		return 0;
2470 
2471 	if (idx == 1)
2472 		return load >> missed_updates;
2473 
2474 	while (missed_updates) {
2475 		if (missed_updates % 2)
2476 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2477 
2478 		missed_updates >>= 1;
2479 		j++;
2480 	}
2481 	return load;
2482 }
2483 
2484 /*
2485  * Update rq->cpu_load[] statistics. This function is usually called every
2486  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2487  * every tick. We fix it up based on jiffies.
2488  */
2489 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2490 			      unsigned long pending_updates)
2491 {
2492 	int i, scale;
2493 
2494 	this_rq->nr_load_updates++;
2495 
2496 	/* Update our load: */
2497 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2498 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2499 		unsigned long old_load, new_load;
2500 
2501 		/* scale is effectively 1 << i now, and >> i divides by scale */
2502 
2503 		old_load = this_rq->cpu_load[i];
2504 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2505 		new_load = this_load;
2506 		/*
2507 		 * Round up the averaging division if load is increasing. This
2508 		 * prevents us from getting stuck on 9 if the load is 10, for
2509 		 * example.
2510 		 */
2511 		if (new_load > old_load)
2512 			new_load += scale - 1;
2513 
2514 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2515 	}
2516 
2517 	sched_avg_update(this_rq);
2518 }
2519 
2520 /*
2521  * Called from nohz_idle_balance() to update the load ratings before doing the
2522  * idle balance.
2523  */
2524 void update_idle_cpu_load(struct rq *this_rq)
2525 {
2526 	unsigned long curr_jiffies = jiffies;
2527 	unsigned long load = this_rq->load.weight;
2528 	unsigned long pending_updates;
2529 
2530 	/*
2531 	 * Bloody broken means of dealing with nohz, but better than nothing..
2532 	 * jiffies is updated by one cpu, another cpu can drift wrt the jiffy
2533 	 * update and see 0 difference the one time and 2 the next, even though
2534 	 * we ticked at roughtly the same rate.
2535 	 *
2536 	 * Hence we only use this from nohz_idle_balance() and skip this
2537 	 * nonsense when called from the scheduler_tick() since that's
2538 	 * guaranteed a stable rate.
2539 	 */
2540 	if (load || curr_jiffies == this_rq->last_load_update_tick)
2541 		return;
2542 
2543 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2544 	this_rq->last_load_update_tick = curr_jiffies;
2545 
2546 	__update_cpu_load(this_rq, load, pending_updates);
2547 }
2548 
2549 /*
2550  * Called from scheduler_tick()
2551  */
2552 static void update_cpu_load_active(struct rq *this_rq)
2553 {
2554 	/*
2555 	 * See the mess in update_idle_cpu_load().
2556 	 */
2557 	this_rq->last_load_update_tick = jiffies;
2558 	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2559 
2560 	calc_load_account_active(this_rq);
2561 }
2562 
2563 #ifdef CONFIG_SMP
2564 
2565 /*
2566  * sched_exec - execve() is a valuable balancing opportunity, because at
2567  * this point the task has the smallest effective memory and cache footprint.
2568  */
2569 void sched_exec(void)
2570 {
2571 	struct task_struct *p = current;
2572 	unsigned long flags;
2573 	int dest_cpu;
2574 
2575 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2576 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2577 	if (dest_cpu == smp_processor_id())
2578 		goto unlock;
2579 
2580 	if (likely(cpu_active(dest_cpu))) {
2581 		struct migration_arg arg = { p, dest_cpu };
2582 
2583 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2584 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2585 		return;
2586 	}
2587 unlock:
2588 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2589 }
2590 
2591 #endif
2592 
2593 DEFINE_PER_CPU(struct kernel_stat, kstat);
2594 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2595 
2596 EXPORT_PER_CPU_SYMBOL(kstat);
2597 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2598 
2599 /*
2600  * Return any ns on the sched_clock that have not yet been accounted in
2601  * @p in case that task is currently running.
2602  *
2603  * Called with task_rq_lock() held on @rq.
2604  */
2605 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2606 {
2607 	u64 ns = 0;
2608 
2609 	if (task_current(rq, p)) {
2610 		update_rq_clock(rq);
2611 		ns = rq->clock_task - p->se.exec_start;
2612 		if ((s64)ns < 0)
2613 			ns = 0;
2614 	}
2615 
2616 	return ns;
2617 }
2618 
2619 unsigned long long task_delta_exec(struct task_struct *p)
2620 {
2621 	unsigned long flags;
2622 	struct rq *rq;
2623 	u64 ns = 0;
2624 
2625 	rq = task_rq_lock(p, &flags);
2626 	ns = do_task_delta_exec(p, rq);
2627 	task_rq_unlock(rq, p, &flags);
2628 
2629 	return ns;
2630 }
2631 
2632 /*
2633  * Return accounted runtime for the task.
2634  * In case the task is currently running, return the runtime plus current's
2635  * pending runtime that have not been accounted yet.
2636  */
2637 unsigned long long task_sched_runtime(struct task_struct *p)
2638 {
2639 	unsigned long flags;
2640 	struct rq *rq;
2641 	u64 ns = 0;
2642 
2643 	rq = task_rq_lock(p, &flags);
2644 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2645 	task_rq_unlock(rq, p, &flags);
2646 
2647 	return ns;
2648 }
2649 
2650 #ifdef CONFIG_CGROUP_CPUACCT
2651 struct cgroup_subsys cpuacct_subsys;
2652 struct cpuacct root_cpuacct;
2653 #endif
2654 
2655 static inline void task_group_account_field(struct task_struct *p, int index,
2656 					    u64 tmp)
2657 {
2658 #ifdef CONFIG_CGROUP_CPUACCT
2659 	struct kernel_cpustat *kcpustat;
2660 	struct cpuacct *ca;
2661 #endif
2662 	/*
2663 	 * Since all updates are sure to touch the root cgroup, we
2664 	 * get ourselves ahead and touch it first. If the root cgroup
2665 	 * is the only cgroup, then nothing else should be necessary.
2666 	 *
2667 	 */
2668 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2669 
2670 #ifdef CONFIG_CGROUP_CPUACCT
2671 	if (unlikely(!cpuacct_subsys.active))
2672 		return;
2673 
2674 	rcu_read_lock();
2675 	ca = task_ca(p);
2676 	while (ca && (ca != &root_cpuacct)) {
2677 		kcpustat = this_cpu_ptr(ca->cpustat);
2678 		kcpustat->cpustat[index] += tmp;
2679 		ca = parent_ca(ca);
2680 	}
2681 	rcu_read_unlock();
2682 #endif
2683 }
2684 
2685 
2686 /*
2687  * Account user cpu time to a process.
2688  * @p: the process that the cpu time gets accounted to
2689  * @cputime: the cpu time spent in user space since the last update
2690  * @cputime_scaled: cputime scaled by cpu frequency
2691  */
2692 void account_user_time(struct task_struct *p, cputime_t cputime,
2693 		       cputime_t cputime_scaled)
2694 {
2695 	int index;
2696 
2697 	/* Add user time to process. */
2698 	p->utime += cputime;
2699 	p->utimescaled += cputime_scaled;
2700 	account_group_user_time(p, cputime);
2701 
2702 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2703 
2704 	/* Add user time to cpustat. */
2705 	task_group_account_field(p, index, (__force u64) cputime);
2706 
2707 	/* Account for user time used */
2708 	acct_update_integrals(p);
2709 }
2710 
2711 /*
2712  * Account guest cpu time to a process.
2713  * @p: the process that the cpu time gets accounted to
2714  * @cputime: the cpu time spent in virtual machine since the last update
2715  * @cputime_scaled: cputime scaled by cpu frequency
2716  */
2717 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2718 			       cputime_t cputime_scaled)
2719 {
2720 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2721 
2722 	/* Add guest time to process. */
2723 	p->utime += cputime;
2724 	p->utimescaled += cputime_scaled;
2725 	account_group_user_time(p, cputime);
2726 	p->gtime += cputime;
2727 
2728 	/* Add guest time to cpustat. */
2729 	if (TASK_NICE(p) > 0) {
2730 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2731 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2732 	} else {
2733 		cpustat[CPUTIME_USER] += (__force u64) cputime;
2734 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2735 	}
2736 }
2737 
2738 /*
2739  * Account system cpu time to a process and desired cpustat field
2740  * @p: the process that the cpu time gets accounted to
2741  * @cputime: the cpu time spent in kernel space since the last update
2742  * @cputime_scaled: cputime scaled by cpu frequency
2743  * @target_cputime64: pointer to cpustat field that has to be updated
2744  */
2745 static inline
2746 void __account_system_time(struct task_struct *p, cputime_t cputime,
2747 			cputime_t cputime_scaled, int index)
2748 {
2749 	/* Add system time to process. */
2750 	p->stime += cputime;
2751 	p->stimescaled += cputime_scaled;
2752 	account_group_system_time(p, cputime);
2753 
2754 	/* Add system time to cpustat. */
2755 	task_group_account_field(p, index, (__force u64) cputime);
2756 
2757 	/* Account for system time used */
2758 	acct_update_integrals(p);
2759 }
2760 
2761 /*
2762  * Account system cpu time to a process.
2763  * @p: the process that the cpu time gets accounted to
2764  * @hardirq_offset: the offset to subtract from hardirq_count()
2765  * @cputime: the cpu time spent in kernel space since the last update
2766  * @cputime_scaled: cputime scaled by cpu frequency
2767  */
2768 void account_system_time(struct task_struct *p, int hardirq_offset,
2769 			 cputime_t cputime, cputime_t cputime_scaled)
2770 {
2771 	int index;
2772 
2773 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2774 		account_guest_time(p, cputime, cputime_scaled);
2775 		return;
2776 	}
2777 
2778 	if (hardirq_count() - hardirq_offset)
2779 		index = CPUTIME_IRQ;
2780 	else if (in_serving_softirq())
2781 		index = CPUTIME_SOFTIRQ;
2782 	else
2783 		index = CPUTIME_SYSTEM;
2784 
2785 	__account_system_time(p, cputime, cputime_scaled, index);
2786 }
2787 
2788 /*
2789  * Account for involuntary wait time.
2790  * @cputime: the cpu time spent in involuntary wait
2791  */
2792 void account_steal_time(cputime_t cputime)
2793 {
2794 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2795 
2796 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2797 }
2798 
2799 /*
2800  * Account for idle time.
2801  * @cputime: the cpu time spent in idle wait
2802  */
2803 void account_idle_time(cputime_t cputime)
2804 {
2805 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2806 	struct rq *rq = this_rq();
2807 
2808 	if (atomic_read(&rq->nr_iowait) > 0)
2809 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2810 	else
2811 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2812 }
2813 
2814 static __always_inline bool steal_account_process_tick(void)
2815 {
2816 #ifdef CONFIG_PARAVIRT
2817 	if (static_key_false(&paravirt_steal_enabled)) {
2818 		u64 steal, st = 0;
2819 
2820 		steal = paravirt_steal_clock(smp_processor_id());
2821 		steal -= this_rq()->prev_steal_time;
2822 
2823 		st = steal_ticks(steal);
2824 		this_rq()->prev_steal_time += st * TICK_NSEC;
2825 
2826 		account_steal_time(st);
2827 		return st;
2828 	}
2829 #endif
2830 	return false;
2831 }
2832 
2833 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2834 
2835 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2836 /*
2837  * Account a tick to a process and cpustat
2838  * @p: the process that the cpu time gets accounted to
2839  * @user_tick: is the tick from userspace
2840  * @rq: the pointer to rq
2841  *
2842  * Tick demultiplexing follows the order
2843  * - pending hardirq update
2844  * - pending softirq update
2845  * - user_time
2846  * - idle_time
2847  * - system time
2848  *   - check for guest_time
2849  *   - else account as system_time
2850  *
2851  * Check for hardirq is done both for system and user time as there is
2852  * no timer going off while we are on hardirq and hence we may never get an
2853  * opportunity to update it solely in system time.
2854  * p->stime and friends are only updated on system time and not on irq
2855  * softirq as those do not count in task exec_runtime any more.
2856  */
2857 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2858 						struct rq *rq)
2859 {
2860 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2861 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2862 
2863 	if (steal_account_process_tick())
2864 		return;
2865 
2866 	if (irqtime_account_hi_update()) {
2867 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2868 	} else if (irqtime_account_si_update()) {
2869 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2870 	} else if (this_cpu_ksoftirqd() == p) {
2871 		/*
2872 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2873 		 * So, we have to handle it separately here.
2874 		 * Also, p->stime needs to be updated for ksoftirqd.
2875 		 */
2876 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2877 					CPUTIME_SOFTIRQ);
2878 	} else if (user_tick) {
2879 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2880 	} else if (p == rq->idle) {
2881 		account_idle_time(cputime_one_jiffy);
2882 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2883 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2884 	} else {
2885 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2886 					CPUTIME_SYSTEM);
2887 	}
2888 }
2889 
2890 static void irqtime_account_idle_ticks(int ticks)
2891 {
2892 	int i;
2893 	struct rq *rq = this_rq();
2894 
2895 	for (i = 0; i < ticks; i++)
2896 		irqtime_account_process_tick(current, 0, rq);
2897 }
2898 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2899 static void irqtime_account_idle_ticks(int ticks) {}
2900 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2901 						struct rq *rq) {}
2902 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2903 
2904 /*
2905  * Account a single tick of cpu time.
2906  * @p: the process that the cpu time gets accounted to
2907  * @user_tick: indicates if the tick is a user or a system tick
2908  */
2909 void account_process_tick(struct task_struct *p, int user_tick)
2910 {
2911 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2912 	struct rq *rq = this_rq();
2913 
2914 	if (sched_clock_irqtime) {
2915 		irqtime_account_process_tick(p, user_tick, rq);
2916 		return;
2917 	}
2918 
2919 	if (steal_account_process_tick())
2920 		return;
2921 
2922 	if (user_tick)
2923 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2924 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2925 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2926 				    one_jiffy_scaled);
2927 	else
2928 		account_idle_time(cputime_one_jiffy);
2929 }
2930 
2931 /*
2932  * Account multiple ticks of steal time.
2933  * @p: the process from which the cpu time has been stolen
2934  * @ticks: number of stolen ticks
2935  */
2936 void account_steal_ticks(unsigned long ticks)
2937 {
2938 	account_steal_time(jiffies_to_cputime(ticks));
2939 }
2940 
2941 /*
2942  * Account multiple ticks of idle time.
2943  * @ticks: number of stolen ticks
2944  */
2945 void account_idle_ticks(unsigned long ticks)
2946 {
2947 
2948 	if (sched_clock_irqtime) {
2949 		irqtime_account_idle_ticks(ticks);
2950 		return;
2951 	}
2952 
2953 	account_idle_time(jiffies_to_cputime(ticks));
2954 }
2955 
2956 #endif
2957 
2958 /*
2959  * Use precise platform statistics if available:
2960  */
2961 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2962 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2963 {
2964 	*ut = p->utime;
2965 	*st = p->stime;
2966 }
2967 
2968 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2969 {
2970 	struct task_cputime cputime;
2971 
2972 	thread_group_cputime(p, &cputime);
2973 
2974 	*ut = cputime.utime;
2975 	*st = cputime.stime;
2976 }
2977 #else
2978 
2979 #ifndef nsecs_to_cputime
2980 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2981 #endif
2982 
2983 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2984 {
2985 	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2986 
2987 	/*
2988 	 * Use CFS's precise accounting:
2989 	 */
2990 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2991 
2992 	if (total) {
2993 		u64 temp = (__force u64) rtime;
2994 
2995 		temp *= (__force u64) utime;
2996 		do_div(temp, (__force u32) total);
2997 		utime = (__force cputime_t) temp;
2998 	} else
2999 		utime = rtime;
3000 
3001 	/*
3002 	 * Compare with previous values, to keep monotonicity:
3003 	 */
3004 	p->prev_utime = max(p->prev_utime, utime);
3005 	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3006 
3007 	*ut = p->prev_utime;
3008 	*st = p->prev_stime;
3009 }
3010 
3011 /*
3012  * Must be called with siglock held.
3013  */
3014 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3015 {
3016 	struct signal_struct *sig = p->signal;
3017 	struct task_cputime cputime;
3018 	cputime_t rtime, utime, total;
3019 
3020 	thread_group_cputime(p, &cputime);
3021 
3022 	total = cputime.utime + cputime.stime;
3023 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3024 
3025 	if (total) {
3026 		u64 temp = (__force u64) rtime;
3027 
3028 		temp *= (__force u64) cputime.utime;
3029 		do_div(temp, (__force u32) total);
3030 		utime = (__force cputime_t) temp;
3031 	} else
3032 		utime = rtime;
3033 
3034 	sig->prev_utime = max(sig->prev_utime, utime);
3035 	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3036 
3037 	*ut = sig->prev_utime;
3038 	*st = sig->prev_stime;
3039 }
3040 #endif
3041 
3042 /*
3043  * This function gets called by the timer code, with HZ frequency.
3044  * We call it with interrupts disabled.
3045  */
3046 void scheduler_tick(void)
3047 {
3048 	int cpu = smp_processor_id();
3049 	struct rq *rq = cpu_rq(cpu);
3050 	struct task_struct *curr = rq->curr;
3051 
3052 	sched_clock_tick();
3053 
3054 	raw_spin_lock(&rq->lock);
3055 	update_rq_clock(rq);
3056 	update_cpu_load_active(rq);
3057 	curr->sched_class->task_tick(rq, curr, 0);
3058 	raw_spin_unlock(&rq->lock);
3059 
3060 	perf_event_task_tick();
3061 
3062 #ifdef CONFIG_SMP
3063 	rq->idle_balance = idle_cpu(cpu);
3064 	trigger_load_balance(rq, cpu);
3065 #endif
3066 }
3067 
3068 notrace unsigned long get_parent_ip(unsigned long addr)
3069 {
3070 	if (in_lock_functions(addr)) {
3071 		addr = CALLER_ADDR2;
3072 		if (in_lock_functions(addr))
3073 			addr = CALLER_ADDR3;
3074 	}
3075 	return addr;
3076 }
3077 
3078 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3079 				defined(CONFIG_PREEMPT_TRACER))
3080 
3081 void __kprobes add_preempt_count(int val)
3082 {
3083 #ifdef CONFIG_DEBUG_PREEMPT
3084 	/*
3085 	 * Underflow?
3086 	 */
3087 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3088 		return;
3089 #endif
3090 	preempt_count() += val;
3091 #ifdef CONFIG_DEBUG_PREEMPT
3092 	/*
3093 	 * Spinlock count overflowing soon?
3094 	 */
3095 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3096 				PREEMPT_MASK - 10);
3097 #endif
3098 	if (preempt_count() == val)
3099 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3100 }
3101 EXPORT_SYMBOL(add_preempt_count);
3102 
3103 void __kprobes sub_preempt_count(int val)
3104 {
3105 #ifdef CONFIG_DEBUG_PREEMPT
3106 	/*
3107 	 * Underflow?
3108 	 */
3109 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3110 		return;
3111 	/*
3112 	 * Is the spinlock portion underflowing?
3113 	 */
3114 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3115 			!(preempt_count() & PREEMPT_MASK)))
3116 		return;
3117 #endif
3118 
3119 	if (preempt_count() == val)
3120 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3121 	preempt_count() -= val;
3122 }
3123 EXPORT_SYMBOL(sub_preempt_count);
3124 
3125 #endif
3126 
3127 /*
3128  * Print scheduling while atomic bug:
3129  */
3130 static noinline void __schedule_bug(struct task_struct *prev)
3131 {
3132 	if (oops_in_progress)
3133 		return;
3134 
3135 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3136 		prev->comm, prev->pid, preempt_count());
3137 
3138 	debug_show_held_locks(prev);
3139 	print_modules();
3140 	if (irqs_disabled())
3141 		print_irqtrace_events(prev);
3142 	dump_stack();
3143 	add_taint(TAINT_WARN);
3144 }
3145 
3146 /*
3147  * Various schedule()-time debugging checks and statistics:
3148  */
3149 static inline void schedule_debug(struct task_struct *prev)
3150 {
3151 	/*
3152 	 * Test if we are atomic. Since do_exit() needs to call into
3153 	 * schedule() atomically, we ignore that path for now.
3154 	 * Otherwise, whine if we are scheduling when we should not be.
3155 	 */
3156 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3157 		__schedule_bug(prev);
3158 	rcu_sleep_check();
3159 
3160 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3161 
3162 	schedstat_inc(this_rq(), sched_count);
3163 }
3164 
3165 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3166 {
3167 	if (prev->on_rq || rq->skip_clock_update < 0)
3168 		update_rq_clock(rq);
3169 	prev->sched_class->put_prev_task(rq, prev);
3170 }
3171 
3172 /*
3173  * Pick up the highest-prio task:
3174  */
3175 static inline struct task_struct *
3176 pick_next_task(struct rq *rq)
3177 {
3178 	const struct sched_class *class;
3179 	struct task_struct *p;
3180 
3181 	/*
3182 	 * Optimization: we know that if all tasks are in
3183 	 * the fair class we can call that function directly:
3184 	 */
3185 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3186 		p = fair_sched_class.pick_next_task(rq);
3187 		if (likely(p))
3188 			return p;
3189 	}
3190 
3191 	for_each_class(class) {
3192 		p = class->pick_next_task(rq);
3193 		if (p)
3194 			return p;
3195 	}
3196 
3197 	BUG(); /* the idle class will always have a runnable task */
3198 }
3199 
3200 /*
3201  * __schedule() is the main scheduler function.
3202  */
3203 static void __sched __schedule(void)
3204 {
3205 	struct task_struct *prev, *next;
3206 	unsigned long *switch_count;
3207 	struct rq *rq;
3208 	int cpu;
3209 
3210 need_resched:
3211 	preempt_disable();
3212 	cpu = smp_processor_id();
3213 	rq = cpu_rq(cpu);
3214 	rcu_note_context_switch(cpu);
3215 	prev = rq->curr;
3216 
3217 	schedule_debug(prev);
3218 
3219 	if (sched_feat(HRTICK))
3220 		hrtick_clear(rq);
3221 
3222 	raw_spin_lock_irq(&rq->lock);
3223 
3224 	switch_count = &prev->nivcsw;
3225 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3226 		if (unlikely(signal_pending_state(prev->state, prev))) {
3227 			prev->state = TASK_RUNNING;
3228 		} else {
3229 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3230 			prev->on_rq = 0;
3231 
3232 			/*
3233 			 * If a worker went to sleep, notify and ask workqueue
3234 			 * whether it wants to wake up a task to maintain
3235 			 * concurrency.
3236 			 */
3237 			if (prev->flags & PF_WQ_WORKER) {
3238 				struct task_struct *to_wakeup;
3239 
3240 				to_wakeup = wq_worker_sleeping(prev, cpu);
3241 				if (to_wakeup)
3242 					try_to_wake_up_local(to_wakeup);
3243 			}
3244 		}
3245 		switch_count = &prev->nvcsw;
3246 	}
3247 
3248 	pre_schedule(rq, prev);
3249 
3250 	if (unlikely(!rq->nr_running))
3251 		idle_balance(cpu, rq);
3252 
3253 	put_prev_task(rq, prev);
3254 	next = pick_next_task(rq);
3255 	clear_tsk_need_resched(prev);
3256 	rq->skip_clock_update = 0;
3257 
3258 	if (likely(prev != next)) {
3259 		rq->nr_switches++;
3260 		rq->curr = next;
3261 		++*switch_count;
3262 
3263 		context_switch(rq, prev, next); /* unlocks the rq */
3264 		/*
3265 		 * The context switch have flipped the stack from under us
3266 		 * and restored the local variables which were saved when
3267 		 * this task called schedule() in the past. prev == current
3268 		 * is still correct, but it can be moved to another cpu/rq.
3269 		 */
3270 		cpu = smp_processor_id();
3271 		rq = cpu_rq(cpu);
3272 	} else
3273 		raw_spin_unlock_irq(&rq->lock);
3274 
3275 	post_schedule(rq);
3276 
3277 	sched_preempt_enable_no_resched();
3278 	if (need_resched())
3279 		goto need_resched;
3280 }
3281 
3282 static inline void sched_submit_work(struct task_struct *tsk)
3283 {
3284 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3285 		return;
3286 	/*
3287 	 * If we are going to sleep and we have plugged IO queued,
3288 	 * make sure to submit it to avoid deadlocks.
3289 	 */
3290 	if (blk_needs_flush_plug(tsk))
3291 		blk_schedule_flush_plug(tsk);
3292 }
3293 
3294 asmlinkage void __sched schedule(void)
3295 {
3296 	struct task_struct *tsk = current;
3297 
3298 	sched_submit_work(tsk);
3299 	__schedule();
3300 }
3301 EXPORT_SYMBOL(schedule);
3302 
3303 /**
3304  * schedule_preempt_disabled - called with preemption disabled
3305  *
3306  * Returns with preemption disabled. Note: preempt_count must be 1
3307  */
3308 void __sched schedule_preempt_disabled(void)
3309 {
3310 	sched_preempt_enable_no_resched();
3311 	schedule();
3312 	preempt_disable();
3313 }
3314 
3315 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3316 
3317 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3318 {
3319 	if (lock->owner != owner)
3320 		return false;
3321 
3322 	/*
3323 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3324 	 * lock->owner still matches owner, if that fails, owner might
3325 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3326 	 * ensures the memory stays valid.
3327 	 */
3328 	barrier();
3329 
3330 	return owner->on_cpu;
3331 }
3332 
3333 /*
3334  * Look out! "owner" is an entirely speculative pointer
3335  * access and not reliable.
3336  */
3337 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3338 {
3339 	if (!sched_feat(OWNER_SPIN))
3340 		return 0;
3341 
3342 	rcu_read_lock();
3343 	while (owner_running(lock, owner)) {
3344 		if (need_resched())
3345 			break;
3346 
3347 		arch_mutex_cpu_relax();
3348 	}
3349 	rcu_read_unlock();
3350 
3351 	/*
3352 	 * We break out the loop above on need_resched() and when the
3353 	 * owner changed, which is a sign for heavy contention. Return
3354 	 * success only when lock->owner is NULL.
3355 	 */
3356 	return lock->owner == NULL;
3357 }
3358 #endif
3359 
3360 #ifdef CONFIG_PREEMPT
3361 /*
3362  * this is the entry point to schedule() from in-kernel preemption
3363  * off of preempt_enable. Kernel preemptions off return from interrupt
3364  * occur there and call schedule directly.
3365  */
3366 asmlinkage void __sched notrace preempt_schedule(void)
3367 {
3368 	struct thread_info *ti = current_thread_info();
3369 
3370 	/*
3371 	 * If there is a non-zero preempt_count or interrupts are disabled,
3372 	 * we do not want to preempt the current task. Just return..
3373 	 */
3374 	if (likely(ti->preempt_count || irqs_disabled()))
3375 		return;
3376 
3377 	do {
3378 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3379 		__schedule();
3380 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3381 
3382 		/*
3383 		 * Check again in case we missed a preemption opportunity
3384 		 * between schedule and now.
3385 		 */
3386 		barrier();
3387 	} while (need_resched());
3388 }
3389 EXPORT_SYMBOL(preempt_schedule);
3390 
3391 /*
3392  * this is the entry point to schedule() from kernel preemption
3393  * off of irq context.
3394  * Note, that this is called and return with irqs disabled. This will
3395  * protect us against recursive calling from irq.
3396  */
3397 asmlinkage void __sched preempt_schedule_irq(void)
3398 {
3399 	struct thread_info *ti = current_thread_info();
3400 
3401 	/* Catch callers which need to be fixed */
3402 	BUG_ON(ti->preempt_count || !irqs_disabled());
3403 
3404 	do {
3405 		add_preempt_count(PREEMPT_ACTIVE);
3406 		local_irq_enable();
3407 		__schedule();
3408 		local_irq_disable();
3409 		sub_preempt_count(PREEMPT_ACTIVE);
3410 
3411 		/*
3412 		 * Check again in case we missed a preemption opportunity
3413 		 * between schedule and now.
3414 		 */
3415 		barrier();
3416 	} while (need_resched());
3417 }
3418 
3419 #endif /* CONFIG_PREEMPT */
3420 
3421 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3422 			  void *key)
3423 {
3424 	return try_to_wake_up(curr->private, mode, wake_flags);
3425 }
3426 EXPORT_SYMBOL(default_wake_function);
3427 
3428 /*
3429  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3430  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3431  * number) then we wake all the non-exclusive tasks and one exclusive task.
3432  *
3433  * There are circumstances in which we can try to wake a task which has already
3434  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3435  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3436  */
3437 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3438 			int nr_exclusive, int wake_flags, void *key)
3439 {
3440 	wait_queue_t *curr, *next;
3441 
3442 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3443 		unsigned flags = curr->flags;
3444 
3445 		if (curr->func(curr, mode, wake_flags, key) &&
3446 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3447 			break;
3448 	}
3449 }
3450 
3451 /**
3452  * __wake_up - wake up threads blocked on a waitqueue.
3453  * @q: the waitqueue
3454  * @mode: which threads
3455  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3456  * @key: is directly passed to the wakeup function
3457  *
3458  * It may be assumed that this function implies a write memory barrier before
3459  * changing the task state if and only if any tasks are woken up.
3460  */
3461 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3462 			int nr_exclusive, void *key)
3463 {
3464 	unsigned long flags;
3465 
3466 	spin_lock_irqsave(&q->lock, flags);
3467 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3468 	spin_unlock_irqrestore(&q->lock, flags);
3469 }
3470 EXPORT_SYMBOL(__wake_up);
3471 
3472 /*
3473  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3474  */
3475 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3476 {
3477 	__wake_up_common(q, mode, nr, 0, NULL);
3478 }
3479 EXPORT_SYMBOL_GPL(__wake_up_locked);
3480 
3481 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3482 {
3483 	__wake_up_common(q, mode, 1, 0, key);
3484 }
3485 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3486 
3487 /**
3488  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3489  * @q: the waitqueue
3490  * @mode: which threads
3491  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3492  * @key: opaque value to be passed to wakeup targets
3493  *
3494  * The sync wakeup differs that the waker knows that it will schedule
3495  * away soon, so while the target thread will be woken up, it will not
3496  * be migrated to another CPU - ie. the two threads are 'synchronized'
3497  * with each other. This can prevent needless bouncing between CPUs.
3498  *
3499  * On UP it can prevent extra preemption.
3500  *
3501  * It may be assumed that this function implies a write memory barrier before
3502  * changing the task state if and only if any tasks are woken up.
3503  */
3504 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3505 			int nr_exclusive, void *key)
3506 {
3507 	unsigned long flags;
3508 	int wake_flags = WF_SYNC;
3509 
3510 	if (unlikely(!q))
3511 		return;
3512 
3513 	if (unlikely(!nr_exclusive))
3514 		wake_flags = 0;
3515 
3516 	spin_lock_irqsave(&q->lock, flags);
3517 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3518 	spin_unlock_irqrestore(&q->lock, flags);
3519 }
3520 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3521 
3522 /*
3523  * __wake_up_sync - see __wake_up_sync_key()
3524  */
3525 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3526 {
3527 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3528 }
3529 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3530 
3531 /**
3532  * complete: - signals a single thread waiting on this completion
3533  * @x:  holds the state of this particular completion
3534  *
3535  * This will wake up a single thread waiting on this completion. Threads will be
3536  * awakened in the same order in which they were queued.
3537  *
3538  * See also complete_all(), wait_for_completion() and related routines.
3539  *
3540  * It may be assumed that this function implies a write memory barrier before
3541  * changing the task state if and only if any tasks are woken up.
3542  */
3543 void complete(struct completion *x)
3544 {
3545 	unsigned long flags;
3546 
3547 	spin_lock_irqsave(&x->wait.lock, flags);
3548 	x->done++;
3549 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3550 	spin_unlock_irqrestore(&x->wait.lock, flags);
3551 }
3552 EXPORT_SYMBOL(complete);
3553 
3554 /**
3555  * complete_all: - signals all threads waiting on this completion
3556  * @x:  holds the state of this particular completion
3557  *
3558  * This will wake up all threads waiting on this particular completion event.
3559  *
3560  * It may be assumed that this function implies a write memory barrier before
3561  * changing the task state if and only if any tasks are woken up.
3562  */
3563 void complete_all(struct completion *x)
3564 {
3565 	unsigned long flags;
3566 
3567 	spin_lock_irqsave(&x->wait.lock, flags);
3568 	x->done += UINT_MAX/2;
3569 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3570 	spin_unlock_irqrestore(&x->wait.lock, flags);
3571 }
3572 EXPORT_SYMBOL(complete_all);
3573 
3574 static inline long __sched
3575 do_wait_for_common(struct completion *x, long timeout, int state)
3576 {
3577 	if (!x->done) {
3578 		DECLARE_WAITQUEUE(wait, current);
3579 
3580 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3581 		do {
3582 			if (signal_pending_state(state, current)) {
3583 				timeout = -ERESTARTSYS;
3584 				break;
3585 			}
3586 			__set_current_state(state);
3587 			spin_unlock_irq(&x->wait.lock);
3588 			timeout = schedule_timeout(timeout);
3589 			spin_lock_irq(&x->wait.lock);
3590 		} while (!x->done && timeout);
3591 		__remove_wait_queue(&x->wait, &wait);
3592 		if (!x->done)
3593 			return timeout;
3594 	}
3595 	x->done--;
3596 	return timeout ?: 1;
3597 }
3598 
3599 static long __sched
3600 wait_for_common(struct completion *x, long timeout, int state)
3601 {
3602 	might_sleep();
3603 
3604 	spin_lock_irq(&x->wait.lock);
3605 	timeout = do_wait_for_common(x, timeout, state);
3606 	spin_unlock_irq(&x->wait.lock);
3607 	return timeout;
3608 }
3609 
3610 /**
3611  * wait_for_completion: - waits for completion of a task
3612  * @x:  holds the state of this particular completion
3613  *
3614  * This waits to be signaled for completion of a specific task. It is NOT
3615  * interruptible and there is no timeout.
3616  *
3617  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3618  * and interrupt capability. Also see complete().
3619  */
3620 void __sched wait_for_completion(struct completion *x)
3621 {
3622 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3623 }
3624 EXPORT_SYMBOL(wait_for_completion);
3625 
3626 /**
3627  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3628  * @x:  holds the state of this particular completion
3629  * @timeout:  timeout value in jiffies
3630  *
3631  * This waits for either a completion of a specific task to be signaled or for a
3632  * specified timeout to expire. The timeout is in jiffies. It is not
3633  * interruptible.
3634  *
3635  * The return value is 0 if timed out, and positive (at least 1, or number of
3636  * jiffies left till timeout) if completed.
3637  */
3638 unsigned long __sched
3639 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3640 {
3641 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3642 }
3643 EXPORT_SYMBOL(wait_for_completion_timeout);
3644 
3645 /**
3646  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3647  * @x:  holds the state of this particular completion
3648  *
3649  * This waits for completion of a specific task to be signaled. It is
3650  * interruptible.
3651  *
3652  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3653  */
3654 int __sched wait_for_completion_interruptible(struct completion *x)
3655 {
3656 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3657 	if (t == -ERESTARTSYS)
3658 		return t;
3659 	return 0;
3660 }
3661 EXPORT_SYMBOL(wait_for_completion_interruptible);
3662 
3663 /**
3664  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3665  * @x:  holds the state of this particular completion
3666  * @timeout:  timeout value in jiffies
3667  *
3668  * This waits for either a completion of a specific task to be signaled or for a
3669  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3670  *
3671  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3672  * positive (at least 1, or number of jiffies left till timeout) if completed.
3673  */
3674 long __sched
3675 wait_for_completion_interruptible_timeout(struct completion *x,
3676 					  unsigned long timeout)
3677 {
3678 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3679 }
3680 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3681 
3682 /**
3683  * wait_for_completion_killable: - waits for completion of a task (killable)
3684  * @x:  holds the state of this particular completion
3685  *
3686  * This waits to be signaled for completion of a specific task. It can be
3687  * interrupted by a kill signal.
3688  *
3689  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3690  */
3691 int __sched wait_for_completion_killable(struct completion *x)
3692 {
3693 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3694 	if (t == -ERESTARTSYS)
3695 		return t;
3696 	return 0;
3697 }
3698 EXPORT_SYMBOL(wait_for_completion_killable);
3699 
3700 /**
3701  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3702  * @x:  holds the state of this particular completion
3703  * @timeout:  timeout value in jiffies
3704  *
3705  * This waits for either a completion of a specific task to be
3706  * signaled or for a specified timeout to expire. It can be
3707  * interrupted by a kill signal. The timeout is in jiffies.
3708  *
3709  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3710  * positive (at least 1, or number of jiffies left till timeout) if completed.
3711  */
3712 long __sched
3713 wait_for_completion_killable_timeout(struct completion *x,
3714 				     unsigned long timeout)
3715 {
3716 	return wait_for_common(x, timeout, TASK_KILLABLE);
3717 }
3718 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3719 
3720 /**
3721  *	try_wait_for_completion - try to decrement a completion without blocking
3722  *	@x:	completion structure
3723  *
3724  *	Returns: 0 if a decrement cannot be done without blocking
3725  *		 1 if a decrement succeeded.
3726  *
3727  *	If a completion is being used as a counting completion,
3728  *	attempt to decrement the counter without blocking. This
3729  *	enables us to avoid waiting if the resource the completion
3730  *	is protecting is not available.
3731  */
3732 bool try_wait_for_completion(struct completion *x)
3733 {
3734 	unsigned long flags;
3735 	int ret = 1;
3736 
3737 	spin_lock_irqsave(&x->wait.lock, flags);
3738 	if (!x->done)
3739 		ret = 0;
3740 	else
3741 		x->done--;
3742 	spin_unlock_irqrestore(&x->wait.lock, flags);
3743 	return ret;
3744 }
3745 EXPORT_SYMBOL(try_wait_for_completion);
3746 
3747 /**
3748  *	completion_done - Test to see if a completion has any waiters
3749  *	@x:	completion structure
3750  *
3751  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3752  *		 1 if there are no waiters.
3753  *
3754  */
3755 bool completion_done(struct completion *x)
3756 {
3757 	unsigned long flags;
3758 	int ret = 1;
3759 
3760 	spin_lock_irqsave(&x->wait.lock, flags);
3761 	if (!x->done)
3762 		ret = 0;
3763 	spin_unlock_irqrestore(&x->wait.lock, flags);
3764 	return ret;
3765 }
3766 EXPORT_SYMBOL(completion_done);
3767 
3768 static long __sched
3769 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3770 {
3771 	unsigned long flags;
3772 	wait_queue_t wait;
3773 
3774 	init_waitqueue_entry(&wait, current);
3775 
3776 	__set_current_state(state);
3777 
3778 	spin_lock_irqsave(&q->lock, flags);
3779 	__add_wait_queue(q, &wait);
3780 	spin_unlock(&q->lock);
3781 	timeout = schedule_timeout(timeout);
3782 	spin_lock_irq(&q->lock);
3783 	__remove_wait_queue(q, &wait);
3784 	spin_unlock_irqrestore(&q->lock, flags);
3785 
3786 	return timeout;
3787 }
3788 
3789 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3790 {
3791 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3792 }
3793 EXPORT_SYMBOL(interruptible_sleep_on);
3794 
3795 long __sched
3796 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3797 {
3798 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3799 }
3800 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3801 
3802 void __sched sleep_on(wait_queue_head_t *q)
3803 {
3804 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3805 }
3806 EXPORT_SYMBOL(sleep_on);
3807 
3808 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3809 {
3810 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3811 }
3812 EXPORT_SYMBOL(sleep_on_timeout);
3813 
3814 #ifdef CONFIG_RT_MUTEXES
3815 
3816 /*
3817  * rt_mutex_setprio - set the current priority of a task
3818  * @p: task
3819  * @prio: prio value (kernel-internal form)
3820  *
3821  * This function changes the 'effective' priority of a task. It does
3822  * not touch ->normal_prio like __setscheduler().
3823  *
3824  * Used by the rt_mutex code to implement priority inheritance logic.
3825  */
3826 void rt_mutex_setprio(struct task_struct *p, int prio)
3827 {
3828 	int oldprio, on_rq, running;
3829 	struct rq *rq;
3830 	const struct sched_class *prev_class;
3831 
3832 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3833 
3834 	rq = __task_rq_lock(p);
3835 
3836 	/*
3837 	 * Idle task boosting is a nono in general. There is one
3838 	 * exception, when PREEMPT_RT and NOHZ is active:
3839 	 *
3840 	 * The idle task calls get_next_timer_interrupt() and holds
3841 	 * the timer wheel base->lock on the CPU and another CPU wants
3842 	 * to access the timer (probably to cancel it). We can safely
3843 	 * ignore the boosting request, as the idle CPU runs this code
3844 	 * with interrupts disabled and will complete the lock
3845 	 * protected section without being interrupted. So there is no
3846 	 * real need to boost.
3847 	 */
3848 	if (unlikely(p == rq->idle)) {
3849 		WARN_ON(p != rq->curr);
3850 		WARN_ON(p->pi_blocked_on);
3851 		goto out_unlock;
3852 	}
3853 
3854 	trace_sched_pi_setprio(p, prio);
3855 	oldprio = p->prio;
3856 	prev_class = p->sched_class;
3857 	on_rq = p->on_rq;
3858 	running = task_current(rq, p);
3859 	if (on_rq)
3860 		dequeue_task(rq, p, 0);
3861 	if (running)
3862 		p->sched_class->put_prev_task(rq, p);
3863 
3864 	if (rt_prio(prio))
3865 		p->sched_class = &rt_sched_class;
3866 	else
3867 		p->sched_class = &fair_sched_class;
3868 
3869 	p->prio = prio;
3870 
3871 	if (running)
3872 		p->sched_class->set_curr_task(rq);
3873 	if (on_rq)
3874 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3875 
3876 	check_class_changed(rq, p, prev_class, oldprio);
3877 out_unlock:
3878 	__task_rq_unlock(rq);
3879 }
3880 #endif
3881 void set_user_nice(struct task_struct *p, long nice)
3882 {
3883 	int old_prio, delta, on_rq;
3884 	unsigned long flags;
3885 	struct rq *rq;
3886 
3887 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3888 		return;
3889 	/*
3890 	 * We have to be careful, if called from sys_setpriority(),
3891 	 * the task might be in the middle of scheduling on another CPU.
3892 	 */
3893 	rq = task_rq_lock(p, &flags);
3894 	/*
3895 	 * The RT priorities are set via sched_setscheduler(), but we still
3896 	 * allow the 'normal' nice value to be set - but as expected
3897 	 * it wont have any effect on scheduling until the task is
3898 	 * SCHED_FIFO/SCHED_RR:
3899 	 */
3900 	if (task_has_rt_policy(p)) {
3901 		p->static_prio = NICE_TO_PRIO(nice);
3902 		goto out_unlock;
3903 	}
3904 	on_rq = p->on_rq;
3905 	if (on_rq)
3906 		dequeue_task(rq, p, 0);
3907 
3908 	p->static_prio = NICE_TO_PRIO(nice);
3909 	set_load_weight(p);
3910 	old_prio = p->prio;
3911 	p->prio = effective_prio(p);
3912 	delta = p->prio - old_prio;
3913 
3914 	if (on_rq) {
3915 		enqueue_task(rq, p, 0);
3916 		/*
3917 		 * If the task increased its priority or is running and
3918 		 * lowered its priority, then reschedule its CPU:
3919 		 */
3920 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3921 			resched_task(rq->curr);
3922 	}
3923 out_unlock:
3924 	task_rq_unlock(rq, p, &flags);
3925 }
3926 EXPORT_SYMBOL(set_user_nice);
3927 
3928 /*
3929  * can_nice - check if a task can reduce its nice value
3930  * @p: task
3931  * @nice: nice value
3932  */
3933 int can_nice(const struct task_struct *p, const int nice)
3934 {
3935 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3936 	int nice_rlim = 20 - nice;
3937 
3938 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3939 		capable(CAP_SYS_NICE));
3940 }
3941 
3942 #ifdef __ARCH_WANT_SYS_NICE
3943 
3944 /*
3945  * sys_nice - change the priority of the current process.
3946  * @increment: priority increment
3947  *
3948  * sys_setpriority is a more generic, but much slower function that
3949  * does similar things.
3950  */
3951 SYSCALL_DEFINE1(nice, int, increment)
3952 {
3953 	long nice, retval;
3954 
3955 	/*
3956 	 * Setpriority might change our priority at the same moment.
3957 	 * We don't have to worry. Conceptually one call occurs first
3958 	 * and we have a single winner.
3959 	 */
3960 	if (increment < -40)
3961 		increment = -40;
3962 	if (increment > 40)
3963 		increment = 40;
3964 
3965 	nice = TASK_NICE(current) + increment;
3966 	if (nice < -20)
3967 		nice = -20;
3968 	if (nice > 19)
3969 		nice = 19;
3970 
3971 	if (increment < 0 && !can_nice(current, nice))
3972 		return -EPERM;
3973 
3974 	retval = security_task_setnice(current, nice);
3975 	if (retval)
3976 		return retval;
3977 
3978 	set_user_nice(current, nice);
3979 	return 0;
3980 }
3981 
3982 #endif
3983 
3984 /**
3985  * task_prio - return the priority value of a given task.
3986  * @p: the task in question.
3987  *
3988  * This is the priority value as seen by users in /proc.
3989  * RT tasks are offset by -200. Normal tasks are centered
3990  * around 0, value goes from -16 to +15.
3991  */
3992 int task_prio(const struct task_struct *p)
3993 {
3994 	return p->prio - MAX_RT_PRIO;
3995 }
3996 
3997 /**
3998  * task_nice - return the nice value of a given task.
3999  * @p: the task in question.
4000  */
4001 int task_nice(const struct task_struct *p)
4002 {
4003 	return TASK_NICE(p);
4004 }
4005 EXPORT_SYMBOL(task_nice);
4006 
4007 /**
4008  * idle_cpu - is a given cpu idle currently?
4009  * @cpu: the processor in question.
4010  */
4011 int idle_cpu(int cpu)
4012 {
4013 	struct rq *rq = cpu_rq(cpu);
4014 
4015 	if (rq->curr != rq->idle)
4016 		return 0;
4017 
4018 	if (rq->nr_running)
4019 		return 0;
4020 
4021 #ifdef CONFIG_SMP
4022 	if (!llist_empty(&rq->wake_list))
4023 		return 0;
4024 #endif
4025 
4026 	return 1;
4027 }
4028 
4029 /**
4030  * idle_task - return the idle task for a given cpu.
4031  * @cpu: the processor in question.
4032  */
4033 struct task_struct *idle_task(int cpu)
4034 {
4035 	return cpu_rq(cpu)->idle;
4036 }
4037 
4038 /**
4039  * find_process_by_pid - find a process with a matching PID value.
4040  * @pid: the pid in question.
4041  */
4042 static struct task_struct *find_process_by_pid(pid_t pid)
4043 {
4044 	return pid ? find_task_by_vpid(pid) : current;
4045 }
4046 
4047 /* Actually do priority change: must hold rq lock. */
4048 static void
4049 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4050 {
4051 	p->policy = policy;
4052 	p->rt_priority = prio;
4053 	p->normal_prio = normal_prio(p);
4054 	/* we are holding p->pi_lock already */
4055 	p->prio = rt_mutex_getprio(p);
4056 	if (rt_prio(p->prio))
4057 		p->sched_class = &rt_sched_class;
4058 	else
4059 		p->sched_class = &fair_sched_class;
4060 	set_load_weight(p);
4061 }
4062 
4063 /*
4064  * check the target process has a UID that matches the current process's
4065  */
4066 static bool check_same_owner(struct task_struct *p)
4067 {
4068 	const struct cred *cred = current_cred(), *pcred;
4069 	bool match;
4070 
4071 	rcu_read_lock();
4072 	pcred = __task_cred(p);
4073 	match = (uid_eq(cred->euid, pcred->euid) ||
4074 		 uid_eq(cred->euid, pcred->uid));
4075 	rcu_read_unlock();
4076 	return match;
4077 }
4078 
4079 static int __sched_setscheduler(struct task_struct *p, int policy,
4080 				const struct sched_param *param, bool user)
4081 {
4082 	int retval, oldprio, oldpolicy = -1, on_rq, running;
4083 	unsigned long flags;
4084 	const struct sched_class *prev_class;
4085 	struct rq *rq;
4086 	int reset_on_fork;
4087 
4088 	/* may grab non-irq protected spin_locks */
4089 	BUG_ON(in_interrupt());
4090 recheck:
4091 	/* double check policy once rq lock held */
4092 	if (policy < 0) {
4093 		reset_on_fork = p->sched_reset_on_fork;
4094 		policy = oldpolicy = p->policy;
4095 	} else {
4096 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4097 		policy &= ~SCHED_RESET_ON_FORK;
4098 
4099 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4100 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4101 				policy != SCHED_IDLE)
4102 			return -EINVAL;
4103 	}
4104 
4105 	/*
4106 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4107 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4108 	 * SCHED_BATCH and SCHED_IDLE is 0.
4109 	 */
4110 	if (param->sched_priority < 0 ||
4111 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4112 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4113 		return -EINVAL;
4114 	if (rt_policy(policy) != (param->sched_priority != 0))
4115 		return -EINVAL;
4116 
4117 	/*
4118 	 * Allow unprivileged RT tasks to decrease priority:
4119 	 */
4120 	if (user && !capable(CAP_SYS_NICE)) {
4121 		if (rt_policy(policy)) {
4122 			unsigned long rlim_rtprio =
4123 					task_rlimit(p, RLIMIT_RTPRIO);
4124 
4125 			/* can't set/change the rt policy */
4126 			if (policy != p->policy && !rlim_rtprio)
4127 				return -EPERM;
4128 
4129 			/* can't increase priority */
4130 			if (param->sched_priority > p->rt_priority &&
4131 			    param->sched_priority > rlim_rtprio)
4132 				return -EPERM;
4133 		}
4134 
4135 		/*
4136 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4137 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4138 		 */
4139 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4140 			if (!can_nice(p, TASK_NICE(p)))
4141 				return -EPERM;
4142 		}
4143 
4144 		/* can't change other user's priorities */
4145 		if (!check_same_owner(p))
4146 			return -EPERM;
4147 
4148 		/* Normal users shall not reset the sched_reset_on_fork flag */
4149 		if (p->sched_reset_on_fork && !reset_on_fork)
4150 			return -EPERM;
4151 	}
4152 
4153 	if (user) {
4154 		retval = security_task_setscheduler(p);
4155 		if (retval)
4156 			return retval;
4157 	}
4158 
4159 	/*
4160 	 * make sure no PI-waiters arrive (or leave) while we are
4161 	 * changing the priority of the task:
4162 	 *
4163 	 * To be able to change p->policy safely, the appropriate
4164 	 * runqueue lock must be held.
4165 	 */
4166 	rq = task_rq_lock(p, &flags);
4167 
4168 	/*
4169 	 * Changing the policy of the stop threads its a very bad idea
4170 	 */
4171 	if (p == rq->stop) {
4172 		task_rq_unlock(rq, p, &flags);
4173 		return -EINVAL;
4174 	}
4175 
4176 	/*
4177 	 * If not changing anything there's no need to proceed further:
4178 	 */
4179 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4180 			param->sched_priority == p->rt_priority))) {
4181 
4182 		__task_rq_unlock(rq);
4183 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4184 		return 0;
4185 	}
4186 
4187 #ifdef CONFIG_RT_GROUP_SCHED
4188 	if (user) {
4189 		/*
4190 		 * Do not allow realtime tasks into groups that have no runtime
4191 		 * assigned.
4192 		 */
4193 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4194 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4195 				!task_group_is_autogroup(task_group(p))) {
4196 			task_rq_unlock(rq, p, &flags);
4197 			return -EPERM;
4198 		}
4199 	}
4200 #endif
4201 
4202 	/* recheck policy now with rq lock held */
4203 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4204 		policy = oldpolicy = -1;
4205 		task_rq_unlock(rq, p, &flags);
4206 		goto recheck;
4207 	}
4208 	on_rq = p->on_rq;
4209 	running = task_current(rq, p);
4210 	if (on_rq)
4211 		dequeue_task(rq, p, 0);
4212 	if (running)
4213 		p->sched_class->put_prev_task(rq, p);
4214 
4215 	p->sched_reset_on_fork = reset_on_fork;
4216 
4217 	oldprio = p->prio;
4218 	prev_class = p->sched_class;
4219 	__setscheduler(rq, p, policy, param->sched_priority);
4220 
4221 	if (running)
4222 		p->sched_class->set_curr_task(rq);
4223 	if (on_rq)
4224 		enqueue_task(rq, p, 0);
4225 
4226 	check_class_changed(rq, p, prev_class, oldprio);
4227 	task_rq_unlock(rq, p, &flags);
4228 
4229 	rt_mutex_adjust_pi(p);
4230 
4231 	return 0;
4232 }
4233 
4234 /**
4235  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4236  * @p: the task in question.
4237  * @policy: new policy.
4238  * @param: structure containing the new RT priority.
4239  *
4240  * NOTE that the task may be already dead.
4241  */
4242 int sched_setscheduler(struct task_struct *p, int policy,
4243 		       const struct sched_param *param)
4244 {
4245 	return __sched_setscheduler(p, policy, param, true);
4246 }
4247 EXPORT_SYMBOL_GPL(sched_setscheduler);
4248 
4249 /**
4250  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4251  * @p: the task in question.
4252  * @policy: new policy.
4253  * @param: structure containing the new RT priority.
4254  *
4255  * Just like sched_setscheduler, only don't bother checking if the
4256  * current context has permission.  For example, this is needed in
4257  * stop_machine(): we create temporary high priority worker threads,
4258  * but our caller might not have that capability.
4259  */
4260 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4261 			       const struct sched_param *param)
4262 {
4263 	return __sched_setscheduler(p, policy, param, false);
4264 }
4265 
4266 static int
4267 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4268 {
4269 	struct sched_param lparam;
4270 	struct task_struct *p;
4271 	int retval;
4272 
4273 	if (!param || pid < 0)
4274 		return -EINVAL;
4275 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4276 		return -EFAULT;
4277 
4278 	rcu_read_lock();
4279 	retval = -ESRCH;
4280 	p = find_process_by_pid(pid);
4281 	if (p != NULL)
4282 		retval = sched_setscheduler(p, policy, &lparam);
4283 	rcu_read_unlock();
4284 
4285 	return retval;
4286 }
4287 
4288 /**
4289  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4290  * @pid: the pid in question.
4291  * @policy: new policy.
4292  * @param: structure containing the new RT priority.
4293  */
4294 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4295 		struct sched_param __user *, param)
4296 {
4297 	/* negative values for policy are not valid */
4298 	if (policy < 0)
4299 		return -EINVAL;
4300 
4301 	return do_sched_setscheduler(pid, policy, param);
4302 }
4303 
4304 /**
4305  * sys_sched_setparam - set/change the RT priority of a thread
4306  * @pid: the pid in question.
4307  * @param: structure containing the new RT priority.
4308  */
4309 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4310 {
4311 	return do_sched_setscheduler(pid, -1, param);
4312 }
4313 
4314 /**
4315  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4316  * @pid: the pid in question.
4317  */
4318 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4319 {
4320 	struct task_struct *p;
4321 	int retval;
4322 
4323 	if (pid < 0)
4324 		return -EINVAL;
4325 
4326 	retval = -ESRCH;
4327 	rcu_read_lock();
4328 	p = find_process_by_pid(pid);
4329 	if (p) {
4330 		retval = security_task_getscheduler(p);
4331 		if (!retval)
4332 			retval = p->policy
4333 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4334 	}
4335 	rcu_read_unlock();
4336 	return retval;
4337 }
4338 
4339 /**
4340  * sys_sched_getparam - get the RT priority of a thread
4341  * @pid: the pid in question.
4342  * @param: structure containing the RT priority.
4343  */
4344 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4345 {
4346 	struct sched_param lp;
4347 	struct task_struct *p;
4348 	int retval;
4349 
4350 	if (!param || pid < 0)
4351 		return -EINVAL;
4352 
4353 	rcu_read_lock();
4354 	p = find_process_by_pid(pid);
4355 	retval = -ESRCH;
4356 	if (!p)
4357 		goto out_unlock;
4358 
4359 	retval = security_task_getscheduler(p);
4360 	if (retval)
4361 		goto out_unlock;
4362 
4363 	lp.sched_priority = p->rt_priority;
4364 	rcu_read_unlock();
4365 
4366 	/*
4367 	 * This one might sleep, we cannot do it with a spinlock held ...
4368 	 */
4369 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4370 
4371 	return retval;
4372 
4373 out_unlock:
4374 	rcu_read_unlock();
4375 	return retval;
4376 }
4377 
4378 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4379 {
4380 	cpumask_var_t cpus_allowed, new_mask;
4381 	struct task_struct *p;
4382 	int retval;
4383 
4384 	get_online_cpus();
4385 	rcu_read_lock();
4386 
4387 	p = find_process_by_pid(pid);
4388 	if (!p) {
4389 		rcu_read_unlock();
4390 		put_online_cpus();
4391 		return -ESRCH;
4392 	}
4393 
4394 	/* Prevent p going away */
4395 	get_task_struct(p);
4396 	rcu_read_unlock();
4397 
4398 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4399 		retval = -ENOMEM;
4400 		goto out_put_task;
4401 	}
4402 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4403 		retval = -ENOMEM;
4404 		goto out_free_cpus_allowed;
4405 	}
4406 	retval = -EPERM;
4407 	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4408 		goto out_unlock;
4409 
4410 	retval = security_task_setscheduler(p);
4411 	if (retval)
4412 		goto out_unlock;
4413 
4414 	cpuset_cpus_allowed(p, cpus_allowed);
4415 	cpumask_and(new_mask, in_mask, cpus_allowed);
4416 again:
4417 	retval = set_cpus_allowed_ptr(p, new_mask);
4418 
4419 	if (!retval) {
4420 		cpuset_cpus_allowed(p, cpus_allowed);
4421 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4422 			/*
4423 			 * We must have raced with a concurrent cpuset
4424 			 * update. Just reset the cpus_allowed to the
4425 			 * cpuset's cpus_allowed
4426 			 */
4427 			cpumask_copy(new_mask, cpus_allowed);
4428 			goto again;
4429 		}
4430 	}
4431 out_unlock:
4432 	free_cpumask_var(new_mask);
4433 out_free_cpus_allowed:
4434 	free_cpumask_var(cpus_allowed);
4435 out_put_task:
4436 	put_task_struct(p);
4437 	put_online_cpus();
4438 	return retval;
4439 }
4440 
4441 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4442 			     struct cpumask *new_mask)
4443 {
4444 	if (len < cpumask_size())
4445 		cpumask_clear(new_mask);
4446 	else if (len > cpumask_size())
4447 		len = cpumask_size();
4448 
4449 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4450 }
4451 
4452 /**
4453  * sys_sched_setaffinity - set the cpu affinity of a process
4454  * @pid: pid of the process
4455  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4456  * @user_mask_ptr: user-space pointer to the new cpu mask
4457  */
4458 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4459 		unsigned long __user *, user_mask_ptr)
4460 {
4461 	cpumask_var_t new_mask;
4462 	int retval;
4463 
4464 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4465 		return -ENOMEM;
4466 
4467 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4468 	if (retval == 0)
4469 		retval = sched_setaffinity(pid, new_mask);
4470 	free_cpumask_var(new_mask);
4471 	return retval;
4472 }
4473 
4474 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4475 {
4476 	struct task_struct *p;
4477 	unsigned long flags;
4478 	int retval;
4479 
4480 	get_online_cpus();
4481 	rcu_read_lock();
4482 
4483 	retval = -ESRCH;
4484 	p = find_process_by_pid(pid);
4485 	if (!p)
4486 		goto out_unlock;
4487 
4488 	retval = security_task_getscheduler(p);
4489 	if (retval)
4490 		goto out_unlock;
4491 
4492 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4493 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4494 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4495 
4496 out_unlock:
4497 	rcu_read_unlock();
4498 	put_online_cpus();
4499 
4500 	return retval;
4501 }
4502 
4503 /**
4504  * sys_sched_getaffinity - get the cpu affinity of a process
4505  * @pid: pid of the process
4506  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4507  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4508  */
4509 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4510 		unsigned long __user *, user_mask_ptr)
4511 {
4512 	int ret;
4513 	cpumask_var_t mask;
4514 
4515 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4516 		return -EINVAL;
4517 	if (len & (sizeof(unsigned long)-1))
4518 		return -EINVAL;
4519 
4520 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4521 		return -ENOMEM;
4522 
4523 	ret = sched_getaffinity(pid, mask);
4524 	if (ret == 0) {
4525 		size_t retlen = min_t(size_t, len, cpumask_size());
4526 
4527 		if (copy_to_user(user_mask_ptr, mask, retlen))
4528 			ret = -EFAULT;
4529 		else
4530 			ret = retlen;
4531 	}
4532 	free_cpumask_var(mask);
4533 
4534 	return ret;
4535 }
4536 
4537 /**
4538  * sys_sched_yield - yield the current processor to other threads.
4539  *
4540  * This function yields the current CPU to other tasks. If there are no
4541  * other threads running on this CPU then this function will return.
4542  */
4543 SYSCALL_DEFINE0(sched_yield)
4544 {
4545 	struct rq *rq = this_rq_lock();
4546 
4547 	schedstat_inc(rq, yld_count);
4548 	current->sched_class->yield_task(rq);
4549 
4550 	/*
4551 	 * Since we are going to call schedule() anyway, there's
4552 	 * no need to preempt or enable interrupts:
4553 	 */
4554 	__release(rq->lock);
4555 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4556 	do_raw_spin_unlock(&rq->lock);
4557 	sched_preempt_enable_no_resched();
4558 
4559 	schedule();
4560 
4561 	return 0;
4562 }
4563 
4564 static inline int should_resched(void)
4565 {
4566 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4567 }
4568 
4569 static void __cond_resched(void)
4570 {
4571 	add_preempt_count(PREEMPT_ACTIVE);
4572 	__schedule();
4573 	sub_preempt_count(PREEMPT_ACTIVE);
4574 }
4575 
4576 int __sched _cond_resched(void)
4577 {
4578 	if (should_resched()) {
4579 		__cond_resched();
4580 		return 1;
4581 	}
4582 	return 0;
4583 }
4584 EXPORT_SYMBOL(_cond_resched);
4585 
4586 /*
4587  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4588  * call schedule, and on return reacquire the lock.
4589  *
4590  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4591  * operations here to prevent schedule() from being called twice (once via
4592  * spin_unlock(), once by hand).
4593  */
4594 int __cond_resched_lock(spinlock_t *lock)
4595 {
4596 	int resched = should_resched();
4597 	int ret = 0;
4598 
4599 	lockdep_assert_held(lock);
4600 
4601 	if (spin_needbreak(lock) || resched) {
4602 		spin_unlock(lock);
4603 		if (resched)
4604 			__cond_resched();
4605 		else
4606 			cpu_relax();
4607 		ret = 1;
4608 		spin_lock(lock);
4609 	}
4610 	return ret;
4611 }
4612 EXPORT_SYMBOL(__cond_resched_lock);
4613 
4614 int __sched __cond_resched_softirq(void)
4615 {
4616 	BUG_ON(!in_softirq());
4617 
4618 	if (should_resched()) {
4619 		local_bh_enable();
4620 		__cond_resched();
4621 		local_bh_disable();
4622 		return 1;
4623 	}
4624 	return 0;
4625 }
4626 EXPORT_SYMBOL(__cond_resched_softirq);
4627 
4628 /**
4629  * yield - yield the current processor to other threads.
4630  *
4631  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4632  *
4633  * The scheduler is at all times free to pick the calling task as the most
4634  * eligible task to run, if removing the yield() call from your code breaks
4635  * it, its already broken.
4636  *
4637  * Typical broken usage is:
4638  *
4639  * while (!event)
4640  * 	yield();
4641  *
4642  * where one assumes that yield() will let 'the other' process run that will
4643  * make event true. If the current task is a SCHED_FIFO task that will never
4644  * happen. Never use yield() as a progress guarantee!!
4645  *
4646  * If you want to use yield() to wait for something, use wait_event().
4647  * If you want to use yield() to be 'nice' for others, use cond_resched().
4648  * If you still want to use yield(), do not!
4649  */
4650 void __sched yield(void)
4651 {
4652 	set_current_state(TASK_RUNNING);
4653 	sys_sched_yield();
4654 }
4655 EXPORT_SYMBOL(yield);
4656 
4657 /**
4658  * yield_to - yield the current processor to another thread in
4659  * your thread group, or accelerate that thread toward the
4660  * processor it's on.
4661  * @p: target task
4662  * @preempt: whether task preemption is allowed or not
4663  *
4664  * It's the caller's job to ensure that the target task struct
4665  * can't go away on us before we can do any checks.
4666  *
4667  * Returns true if we indeed boosted the target task.
4668  */
4669 bool __sched yield_to(struct task_struct *p, bool preempt)
4670 {
4671 	struct task_struct *curr = current;
4672 	struct rq *rq, *p_rq;
4673 	unsigned long flags;
4674 	bool yielded = 0;
4675 
4676 	local_irq_save(flags);
4677 	rq = this_rq();
4678 
4679 again:
4680 	p_rq = task_rq(p);
4681 	double_rq_lock(rq, p_rq);
4682 	while (task_rq(p) != p_rq) {
4683 		double_rq_unlock(rq, p_rq);
4684 		goto again;
4685 	}
4686 
4687 	if (!curr->sched_class->yield_to_task)
4688 		goto out;
4689 
4690 	if (curr->sched_class != p->sched_class)
4691 		goto out;
4692 
4693 	if (task_running(p_rq, p) || p->state)
4694 		goto out;
4695 
4696 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4697 	if (yielded) {
4698 		schedstat_inc(rq, yld_count);
4699 		/*
4700 		 * Make p's CPU reschedule; pick_next_entity takes care of
4701 		 * fairness.
4702 		 */
4703 		if (preempt && rq != p_rq)
4704 			resched_task(p_rq->curr);
4705 	} else {
4706 		/*
4707 		 * We might have set it in task_yield_fair(), but are
4708 		 * not going to schedule(), so don't want to skip
4709 		 * the next update.
4710 		 */
4711 		rq->skip_clock_update = 0;
4712 	}
4713 
4714 out:
4715 	double_rq_unlock(rq, p_rq);
4716 	local_irq_restore(flags);
4717 
4718 	if (yielded)
4719 		schedule();
4720 
4721 	return yielded;
4722 }
4723 EXPORT_SYMBOL_GPL(yield_to);
4724 
4725 /*
4726  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4727  * that process accounting knows that this is a task in IO wait state.
4728  */
4729 void __sched io_schedule(void)
4730 {
4731 	struct rq *rq = raw_rq();
4732 
4733 	delayacct_blkio_start();
4734 	atomic_inc(&rq->nr_iowait);
4735 	blk_flush_plug(current);
4736 	current->in_iowait = 1;
4737 	schedule();
4738 	current->in_iowait = 0;
4739 	atomic_dec(&rq->nr_iowait);
4740 	delayacct_blkio_end();
4741 }
4742 EXPORT_SYMBOL(io_schedule);
4743 
4744 long __sched io_schedule_timeout(long timeout)
4745 {
4746 	struct rq *rq = raw_rq();
4747 	long ret;
4748 
4749 	delayacct_blkio_start();
4750 	atomic_inc(&rq->nr_iowait);
4751 	blk_flush_plug(current);
4752 	current->in_iowait = 1;
4753 	ret = schedule_timeout(timeout);
4754 	current->in_iowait = 0;
4755 	atomic_dec(&rq->nr_iowait);
4756 	delayacct_blkio_end();
4757 	return ret;
4758 }
4759 
4760 /**
4761  * sys_sched_get_priority_max - return maximum RT priority.
4762  * @policy: scheduling class.
4763  *
4764  * this syscall returns the maximum rt_priority that can be used
4765  * by a given scheduling class.
4766  */
4767 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4768 {
4769 	int ret = -EINVAL;
4770 
4771 	switch (policy) {
4772 	case SCHED_FIFO:
4773 	case SCHED_RR:
4774 		ret = MAX_USER_RT_PRIO-1;
4775 		break;
4776 	case SCHED_NORMAL:
4777 	case SCHED_BATCH:
4778 	case SCHED_IDLE:
4779 		ret = 0;
4780 		break;
4781 	}
4782 	return ret;
4783 }
4784 
4785 /**
4786  * sys_sched_get_priority_min - return minimum RT priority.
4787  * @policy: scheduling class.
4788  *
4789  * this syscall returns the minimum rt_priority that can be used
4790  * by a given scheduling class.
4791  */
4792 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4793 {
4794 	int ret = -EINVAL;
4795 
4796 	switch (policy) {
4797 	case SCHED_FIFO:
4798 	case SCHED_RR:
4799 		ret = 1;
4800 		break;
4801 	case SCHED_NORMAL:
4802 	case SCHED_BATCH:
4803 	case SCHED_IDLE:
4804 		ret = 0;
4805 	}
4806 	return ret;
4807 }
4808 
4809 /**
4810  * sys_sched_rr_get_interval - return the default timeslice of a process.
4811  * @pid: pid of the process.
4812  * @interval: userspace pointer to the timeslice value.
4813  *
4814  * this syscall writes the default timeslice value of a given process
4815  * into the user-space timespec buffer. A value of '0' means infinity.
4816  */
4817 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4818 		struct timespec __user *, interval)
4819 {
4820 	struct task_struct *p;
4821 	unsigned int time_slice;
4822 	unsigned long flags;
4823 	struct rq *rq;
4824 	int retval;
4825 	struct timespec t;
4826 
4827 	if (pid < 0)
4828 		return -EINVAL;
4829 
4830 	retval = -ESRCH;
4831 	rcu_read_lock();
4832 	p = find_process_by_pid(pid);
4833 	if (!p)
4834 		goto out_unlock;
4835 
4836 	retval = security_task_getscheduler(p);
4837 	if (retval)
4838 		goto out_unlock;
4839 
4840 	rq = task_rq_lock(p, &flags);
4841 	time_slice = p->sched_class->get_rr_interval(rq, p);
4842 	task_rq_unlock(rq, p, &flags);
4843 
4844 	rcu_read_unlock();
4845 	jiffies_to_timespec(time_slice, &t);
4846 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4847 	return retval;
4848 
4849 out_unlock:
4850 	rcu_read_unlock();
4851 	return retval;
4852 }
4853 
4854 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4855 
4856 void sched_show_task(struct task_struct *p)
4857 {
4858 	unsigned long free = 0;
4859 	unsigned state;
4860 
4861 	state = p->state ? __ffs(p->state) + 1 : 0;
4862 	printk(KERN_INFO "%-15.15s %c", p->comm,
4863 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4864 #if BITS_PER_LONG == 32
4865 	if (state == TASK_RUNNING)
4866 		printk(KERN_CONT " running  ");
4867 	else
4868 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4869 #else
4870 	if (state == TASK_RUNNING)
4871 		printk(KERN_CONT "  running task    ");
4872 	else
4873 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4874 #endif
4875 #ifdef CONFIG_DEBUG_STACK_USAGE
4876 	free = stack_not_used(p);
4877 #endif
4878 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4879 		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4880 		(unsigned long)task_thread_info(p)->flags);
4881 
4882 	show_stack(p, NULL);
4883 }
4884 
4885 void show_state_filter(unsigned long state_filter)
4886 {
4887 	struct task_struct *g, *p;
4888 
4889 #if BITS_PER_LONG == 32
4890 	printk(KERN_INFO
4891 		"  task                PC stack   pid father\n");
4892 #else
4893 	printk(KERN_INFO
4894 		"  task                        PC stack   pid father\n");
4895 #endif
4896 	rcu_read_lock();
4897 	do_each_thread(g, p) {
4898 		/*
4899 		 * reset the NMI-timeout, listing all files on a slow
4900 		 * console might take a lot of time:
4901 		 */
4902 		touch_nmi_watchdog();
4903 		if (!state_filter || (p->state & state_filter))
4904 			sched_show_task(p);
4905 	} while_each_thread(g, p);
4906 
4907 	touch_all_softlockup_watchdogs();
4908 
4909 #ifdef CONFIG_SCHED_DEBUG
4910 	sysrq_sched_debug_show();
4911 #endif
4912 	rcu_read_unlock();
4913 	/*
4914 	 * Only show locks if all tasks are dumped:
4915 	 */
4916 	if (!state_filter)
4917 		debug_show_all_locks();
4918 }
4919 
4920 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4921 {
4922 	idle->sched_class = &idle_sched_class;
4923 }
4924 
4925 /**
4926  * init_idle - set up an idle thread for a given CPU
4927  * @idle: task in question
4928  * @cpu: cpu the idle task belongs to
4929  *
4930  * NOTE: this function does not set the idle thread's NEED_RESCHED
4931  * flag, to make booting more robust.
4932  */
4933 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4934 {
4935 	struct rq *rq = cpu_rq(cpu);
4936 	unsigned long flags;
4937 
4938 	raw_spin_lock_irqsave(&rq->lock, flags);
4939 
4940 	__sched_fork(idle);
4941 	idle->state = TASK_RUNNING;
4942 	idle->se.exec_start = sched_clock();
4943 
4944 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4945 	/*
4946 	 * We're having a chicken and egg problem, even though we are
4947 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4948 	 * lockdep check in task_group() will fail.
4949 	 *
4950 	 * Similar case to sched_fork(). / Alternatively we could
4951 	 * use task_rq_lock() here and obtain the other rq->lock.
4952 	 *
4953 	 * Silence PROVE_RCU
4954 	 */
4955 	rcu_read_lock();
4956 	__set_task_cpu(idle, cpu);
4957 	rcu_read_unlock();
4958 
4959 	rq->curr = rq->idle = idle;
4960 #if defined(CONFIG_SMP)
4961 	idle->on_cpu = 1;
4962 #endif
4963 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4964 
4965 	/* Set the preempt count _outside_ the spinlocks! */
4966 	task_thread_info(idle)->preempt_count = 0;
4967 
4968 	/*
4969 	 * The idle tasks have their own, simple scheduling class:
4970 	 */
4971 	idle->sched_class = &idle_sched_class;
4972 	ftrace_graph_init_idle_task(idle, cpu);
4973 #if defined(CONFIG_SMP)
4974 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4975 #endif
4976 }
4977 
4978 #ifdef CONFIG_SMP
4979 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4980 {
4981 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4982 		p->sched_class->set_cpus_allowed(p, new_mask);
4983 
4984 	cpumask_copy(&p->cpus_allowed, new_mask);
4985 	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4986 }
4987 
4988 /*
4989  * This is how migration works:
4990  *
4991  * 1) we invoke migration_cpu_stop() on the target CPU using
4992  *    stop_one_cpu().
4993  * 2) stopper starts to run (implicitly forcing the migrated thread
4994  *    off the CPU)
4995  * 3) it checks whether the migrated task is still in the wrong runqueue.
4996  * 4) if it's in the wrong runqueue then the migration thread removes
4997  *    it and puts it into the right queue.
4998  * 5) stopper completes and stop_one_cpu() returns and the migration
4999  *    is done.
5000  */
5001 
5002 /*
5003  * Change a given task's CPU affinity. Migrate the thread to a
5004  * proper CPU and schedule it away if the CPU it's executing on
5005  * is removed from the allowed bitmask.
5006  *
5007  * NOTE: the caller must have a valid reference to the task, the
5008  * task must not exit() & deallocate itself prematurely. The
5009  * call is not atomic; no spinlocks may be held.
5010  */
5011 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5012 {
5013 	unsigned long flags;
5014 	struct rq *rq;
5015 	unsigned int dest_cpu;
5016 	int ret = 0;
5017 
5018 	rq = task_rq_lock(p, &flags);
5019 
5020 	if (cpumask_equal(&p->cpus_allowed, new_mask))
5021 		goto out;
5022 
5023 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5024 		ret = -EINVAL;
5025 		goto out;
5026 	}
5027 
5028 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5029 		ret = -EINVAL;
5030 		goto out;
5031 	}
5032 
5033 	do_set_cpus_allowed(p, new_mask);
5034 
5035 	/* Can the task run on the task's current CPU? If so, we're done */
5036 	if (cpumask_test_cpu(task_cpu(p), new_mask))
5037 		goto out;
5038 
5039 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5040 	if (p->on_rq) {
5041 		struct migration_arg arg = { p, dest_cpu };
5042 		/* Need help from migration thread: drop lock and wait. */
5043 		task_rq_unlock(rq, p, &flags);
5044 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5045 		tlb_migrate_finish(p->mm);
5046 		return 0;
5047 	}
5048 out:
5049 	task_rq_unlock(rq, p, &flags);
5050 
5051 	return ret;
5052 }
5053 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5054 
5055 /*
5056  * Move (not current) task off this cpu, onto dest cpu. We're doing
5057  * this because either it can't run here any more (set_cpus_allowed()
5058  * away from this CPU, or CPU going down), or because we're
5059  * attempting to rebalance this task on exec (sched_exec).
5060  *
5061  * So we race with normal scheduler movements, but that's OK, as long
5062  * as the task is no longer on this CPU.
5063  *
5064  * Returns non-zero if task was successfully migrated.
5065  */
5066 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5067 {
5068 	struct rq *rq_dest, *rq_src;
5069 	int ret = 0;
5070 
5071 	if (unlikely(!cpu_active(dest_cpu)))
5072 		return ret;
5073 
5074 	rq_src = cpu_rq(src_cpu);
5075 	rq_dest = cpu_rq(dest_cpu);
5076 
5077 	raw_spin_lock(&p->pi_lock);
5078 	double_rq_lock(rq_src, rq_dest);
5079 	/* Already moved. */
5080 	if (task_cpu(p) != src_cpu)
5081 		goto done;
5082 	/* Affinity changed (again). */
5083 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5084 		goto fail;
5085 
5086 	/*
5087 	 * If we're not on a rq, the next wake-up will ensure we're
5088 	 * placed properly.
5089 	 */
5090 	if (p->on_rq) {
5091 		dequeue_task(rq_src, p, 0);
5092 		set_task_cpu(p, dest_cpu);
5093 		enqueue_task(rq_dest, p, 0);
5094 		check_preempt_curr(rq_dest, p, 0);
5095 	}
5096 done:
5097 	ret = 1;
5098 fail:
5099 	double_rq_unlock(rq_src, rq_dest);
5100 	raw_spin_unlock(&p->pi_lock);
5101 	return ret;
5102 }
5103 
5104 /*
5105  * migration_cpu_stop - this will be executed by a highprio stopper thread
5106  * and performs thread migration by bumping thread off CPU then
5107  * 'pushing' onto another runqueue.
5108  */
5109 static int migration_cpu_stop(void *data)
5110 {
5111 	struct migration_arg *arg = data;
5112 
5113 	/*
5114 	 * The original target cpu might have gone down and we might
5115 	 * be on another cpu but it doesn't matter.
5116 	 */
5117 	local_irq_disable();
5118 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5119 	local_irq_enable();
5120 	return 0;
5121 }
5122 
5123 #ifdef CONFIG_HOTPLUG_CPU
5124 
5125 /*
5126  * Ensures that the idle task is using init_mm right before its cpu goes
5127  * offline.
5128  */
5129 void idle_task_exit(void)
5130 {
5131 	struct mm_struct *mm = current->active_mm;
5132 
5133 	BUG_ON(cpu_online(smp_processor_id()));
5134 
5135 	if (mm != &init_mm)
5136 		switch_mm(mm, &init_mm, current);
5137 	mmdrop(mm);
5138 }
5139 
5140 /*
5141  * While a dead CPU has no uninterruptible tasks queued at this point,
5142  * it might still have a nonzero ->nr_uninterruptible counter, because
5143  * for performance reasons the counter is not stricly tracking tasks to
5144  * their home CPUs. So we just add the counter to another CPU's counter,
5145  * to keep the global sum constant after CPU-down:
5146  */
5147 static void migrate_nr_uninterruptible(struct rq *rq_src)
5148 {
5149 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5150 
5151 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5152 	rq_src->nr_uninterruptible = 0;
5153 }
5154 
5155 /*
5156  * remove the tasks which were accounted by rq from calc_load_tasks.
5157  */
5158 static void calc_global_load_remove(struct rq *rq)
5159 {
5160 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5161 	rq->calc_load_active = 0;
5162 }
5163 
5164 /*
5165  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5166  * try_to_wake_up()->select_task_rq().
5167  *
5168  * Called with rq->lock held even though we'er in stop_machine() and
5169  * there's no concurrency possible, we hold the required locks anyway
5170  * because of lock validation efforts.
5171  */
5172 static void migrate_tasks(unsigned int dead_cpu)
5173 {
5174 	struct rq *rq = cpu_rq(dead_cpu);
5175 	struct task_struct *next, *stop = rq->stop;
5176 	int dest_cpu;
5177 
5178 	/*
5179 	 * Fudge the rq selection such that the below task selection loop
5180 	 * doesn't get stuck on the currently eligible stop task.
5181 	 *
5182 	 * We're currently inside stop_machine() and the rq is either stuck
5183 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5184 	 * either way we should never end up calling schedule() until we're
5185 	 * done here.
5186 	 */
5187 	rq->stop = NULL;
5188 
5189 	/* Ensure any throttled groups are reachable by pick_next_task */
5190 	unthrottle_offline_cfs_rqs(rq);
5191 
5192 	for ( ; ; ) {
5193 		/*
5194 		 * There's this thread running, bail when that's the only
5195 		 * remaining thread.
5196 		 */
5197 		if (rq->nr_running == 1)
5198 			break;
5199 
5200 		next = pick_next_task(rq);
5201 		BUG_ON(!next);
5202 		next->sched_class->put_prev_task(rq, next);
5203 
5204 		/* Find suitable destination for @next, with force if needed. */
5205 		dest_cpu = select_fallback_rq(dead_cpu, next);
5206 		raw_spin_unlock(&rq->lock);
5207 
5208 		__migrate_task(next, dead_cpu, dest_cpu);
5209 
5210 		raw_spin_lock(&rq->lock);
5211 	}
5212 
5213 	rq->stop = stop;
5214 }
5215 
5216 #endif /* CONFIG_HOTPLUG_CPU */
5217 
5218 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5219 
5220 static struct ctl_table sd_ctl_dir[] = {
5221 	{
5222 		.procname	= "sched_domain",
5223 		.mode		= 0555,
5224 	},
5225 	{}
5226 };
5227 
5228 static struct ctl_table sd_ctl_root[] = {
5229 	{
5230 		.procname	= "kernel",
5231 		.mode		= 0555,
5232 		.child		= sd_ctl_dir,
5233 	},
5234 	{}
5235 };
5236 
5237 static struct ctl_table *sd_alloc_ctl_entry(int n)
5238 {
5239 	struct ctl_table *entry =
5240 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5241 
5242 	return entry;
5243 }
5244 
5245 static void sd_free_ctl_entry(struct ctl_table **tablep)
5246 {
5247 	struct ctl_table *entry;
5248 
5249 	/*
5250 	 * In the intermediate directories, both the child directory and
5251 	 * procname are dynamically allocated and could fail but the mode
5252 	 * will always be set. In the lowest directory the names are
5253 	 * static strings and all have proc handlers.
5254 	 */
5255 	for (entry = *tablep; entry->mode; entry++) {
5256 		if (entry->child)
5257 			sd_free_ctl_entry(&entry->child);
5258 		if (entry->proc_handler == NULL)
5259 			kfree(entry->procname);
5260 	}
5261 
5262 	kfree(*tablep);
5263 	*tablep = NULL;
5264 }
5265 
5266 static void
5267 set_table_entry(struct ctl_table *entry,
5268 		const char *procname, void *data, int maxlen,
5269 		umode_t mode, proc_handler *proc_handler)
5270 {
5271 	entry->procname = procname;
5272 	entry->data = data;
5273 	entry->maxlen = maxlen;
5274 	entry->mode = mode;
5275 	entry->proc_handler = proc_handler;
5276 }
5277 
5278 static struct ctl_table *
5279 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5280 {
5281 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5282 
5283 	if (table == NULL)
5284 		return NULL;
5285 
5286 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5287 		sizeof(long), 0644, proc_doulongvec_minmax);
5288 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5289 		sizeof(long), 0644, proc_doulongvec_minmax);
5290 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5291 		sizeof(int), 0644, proc_dointvec_minmax);
5292 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5293 		sizeof(int), 0644, proc_dointvec_minmax);
5294 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5295 		sizeof(int), 0644, proc_dointvec_minmax);
5296 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5297 		sizeof(int), 0644, proc_dointvec_minmax);
5298 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5299 		sizeof(int), 0644, proc_dointvec_minmax);
5300 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5301 		sizeof(int), 0644, proc_dointvec_minmax);
5302 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5303 		sizeof(int), 0644, proc_dointvec_minmax);
5304 	set_table_entry(&table[9], "cache_nice_tries",
5305 		&sd->cache_nice_tries,
5306 		sizeof(int), 0644, proc_dointvec_minmax);
5307 	set_table_entry(&table[10], "flags", &sd->flags,
5308 		sizeof(int), 0644, proc_dointvec_minmax);
5309 	set_table_entry(&table[11], "name", sd->name,
5310 		CORENAME_MAX_SIZE, 0444, proc_dostring);
5311 	/* &table[12] is terminator */
5312 
5313 	return table;
5314 }
5315 
5316 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5317 {
5318 	struct ctl_table *entry, *table;
5319 	struct sched_domain *sd;
5320 	int domain_num = 0, i;
5321 	char buf[32];
5322 
5323 	for_each_domain(cpu, sd)
5324 		domain_num++;
5325 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5326 	if (table == NULL)
5327 		return NULL;
5328 
5329 	i = 0;
5330 	for_each_domain(cpu, sd) {
5331 		snprintf(buf, 32, "domain%d", i);
5332 		entry->procname = kstrdup(buf, GFP_KERNEL);
5333 		entry->mode = 0555;
5334 		entry->child = sd_alloc_ctl_domain_table(sd);
5335 		entry++;
5336 		i++;
5337 	}
5338 	return table;
5339 }
5340 
5341 static struct ctl_table_header *sd_sysctl_header;
5342 static void register_sched_domain_sysctl(void)
5343 {
5344 	int i, cpu_num = num_possible_cpus();
5345 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5346 	char buf[32];
5347 
5348 	WARN_ON(sd_ctl_dir[0].child);
5349 	sd_ctl_dir[0].child = entry;
5350 
5351 	if (entry == NULL)
5352 		return;
5353 
5354 	for_each_possible_cpu(i) {
5355 		snprintf(buf, 32, "cpu%d", i);
5356 		entry->procname = kstrdup(buf, GFP_KERNEL);
5357 		entry->mode = 0555;
5358 		entry->child = sd_alloc_ctl_cpu_table(i);
5359 		entry++;
5360 	}
5361 
5362 	WARN_ON(sd_sysctl_header);
5363 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5364 }
5365 
5366 /* may be called multiple times per register */
5367 static void unregister_sched_domain_sysctl(void)
5368 {
5369 	if (sd_sysctl_header)
5370 		unregister_sysctl_table(sd_sysctl_header);
5371 	sd_sysctl_header = NULL;
5372 	if (sd_ctl_dir[0].child)
5373 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5374 }
5375 #else
5376 static void register_sched_domain_sysctl(void)
5377 {
5378 }
5379 static void unregister_sched_domain_sysctl(void)
5380 {
5381 }
5382 #endif
5383 
5384 static void set_rq_online(struct rq *rq)
5385 {
5386 	if (!rq->online) {
5387 		const struct sched_class *class;
5388 
5389 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5390 		rq->online = 1;
5391 
5392 		for_each_class(class) {
5393 			if (class->rq_online)
5394 				class->rq_online(rq);
5395 		}
5396 	}
5397 }
5398 
5399 static void set_rq_offline(struct rq *rq)
5400 {
5401 	if (rq->online) {
5402 		const struct sched_class *class;
5403 
5404 		for_each_class(class) {
5405 			if (class->rq_offline)
5406 				class->rq_offline(rq);
5407 		}
5408 
5409 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5410 		rq->online = 0;
5411 	}
5412 }
5413 
5414 /*
5415  * migration_call - callback that gets triggered when a CPU is added.
5416  * Here we can start up the necessary migration thread for the new CPU.
5417  */
5418 static int __cpuinit
5419 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5420 {
5421 	int cpu = (long)hcpu;
5422 	unsigned long flags;
5423 	struct rq *rq = cpu_rq(cpu);
5424 
5425 	switch (action & ~CPU_TASKS_FROZEN) {
5426 
5427 	case CPU_UP_PREPARE:
5428 		rq->calc_load_update = calc_load_update;
5429 		break;
5430 
5431 	case CPU_ONLINE:
5432 		/* Update our root-domain */
5433 		raw_spin_lock_irqsave(&rq->lock, flags);
5434 		if (rq->rd) {
5435 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5436 
5437 			set_rq_online(rq);
5438 		}
5439 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5440 		break;
5441 
5442 #ifdef CONFIG_HOTPLUG_CPU
5443 	case CPU_DYING:
5444 		sched_ttwu_pending();
5445 		/* Update our root-domain */
5446 		raw_spin_lock_irqsave(&rq->lock, flags);
5447 		if (rq->rd) {
5448 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5449 			set_rq_offline(rq);
5450 		}
5451 		migrate_tasks(cpu);
5452 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5453 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5454 
5455 		migrate_nr_uninterruptible(rq);
5456 		calc_global_load_remove(rq);
5457 		break;
5458 #endif
5459 	}
5460 
5461 	update_max_interval();
5462 
5463 	return NOTIFY_OK;
5464 }
5465 
5466 /*
5467  * Register at high priority so that task migration (migrate_all_tasks)
5468  * happens before everything else.  This has to be lower priority than
5469  * the notifier in the perf_event subsystem, though.
5470  */
5471 static struct notifier_block __cpuinitdata migration_notifier = {
5472 	.notifier_call = migration_call,
5473 	.priority = CPU_PRI_MIGRATION,
5474 };
5475 
5476 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5477 				      unsigned long action, void *hcpu)
5478 {
5479 	switch (action & ~CPU_TASKS_FROZEN) {
5480 	case CPU_STARTING:
5481 	case CPU_DOWN_FAILED:
5482 		set_cpu_active((long)hcpu, true);
5483 		return NOTIFY_OK;
5484 	default:
5485 		return NOTIFY_DONE;
5486 	}
5487 }
5488 
5489 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5490 					unsigned long action, void *hcpu)
5491 {
5492 	switch (action & ~CPU_TASKS_FROZEN) {
5493 	case CPU_DOWN_PREPARE:
5494 		set_cpu_active((long)hcpu, false);
5495 		return NOTIFY_OK;
5496 	default:
5497 		return NOTIFY_DONE;
5498 	}
5499 }
5500 
5501 static int __init migration_init(void)
5502 {
5503 	void *cpu = (void *)(long)smp_processor_id();
5504 	int err;
5505 
5506 	/* Initialize migration for the boot CPU */
5507 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5508 	BUG_ON(err == NOTIFY_BAD);
5509 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5510 	register_cpu_notifier(&migration_notifier);
5511 
5512 	/* Register cpu active notifiers */
5513 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5514 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5515 
5516 	return 0;
5517 }
5518 early_initcall(migration_init);
5519 #endif
5520 
5521 #ifdef CONFIG_SMP
5522 
5523 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5524 
5525 #ifdef CONFIG_SCHED_DEBUG
5526 
5527 static __read_mostly int sched_domain_debug_enabled;
5528 
5529 static int __init sched_domain_debug_setup(char *str)
5530 {
5531 	sched_domain_debug_enabled = 1;
5532 
5533 	return 0;
5534 }
5535 early_param("sched_debug", sched_domain_debug_setup);
5536 
5537 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5538 				  struct cpumask *groupmask)
5539 {
5540 	struct sched_group *group = sd->groups;
5541 	char str[256];
5542 
5543 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5544 	cpumask_clear(groupmask);
5545 
5546 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5547 
5548 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5549 		printk("does not load-balance\n");
5550 		if (sd->parent)
5551 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5552 					" has parent");
5553 		return -1;
5554 	}
5555 
5556 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5557 
5558 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5559 		printk(KERN_ERR "ERROR: domain->span does not contain "
5560 				"CPU%d\n", cpu);
5561 	}
5562 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5563 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5564 				" CPU%d\n", cpu);
5565 	}
5566 
5567 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5568 	do {
5569 		if (!group) {
5570 			printk("\n");
5571 			printk(KERN_ERR "ERROR: group is NULL\n");
5572 			break;
5573 		}
5574 
5575 		if (!group->sgp->power) {
5576 			printk(KERN_CONT "\n");
5577 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5578 					"set\n");
5579 			break;
5580 		}
5581 
5582 		if (!cpumask_weight(sched_group_cpus(group))) {
5583 			printk(KERN_CONT "\n");
5584 			printk(KERN_ERR "ERROR: empty group\n");
5585 			break;
5586 		}
5587 
5588 		if (!(sd->flags & SD_OVERLAP) &&
5589 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5590 			printk(KERN_CONT "\n");
5591 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5592 			break;
5593 		}
5594 
5595 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5596 
5597 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5598 
5599 		printk(KERN_CONT " %s", str);
5600 		if (group->sgp->power != SCHED_POWER_SCALE) {
5601 			printk(KERN_CONT " (cpu_power = %d)",
5602 				group->sgp->power);
5603 		}
5604 
5605 		group = group->next;
5606 	} while (group != sd->groups);
5607 	printk(KERN_CONT "\n");
5608 
5609 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5610 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5611 
5612 	if (sd->parent &&
5613 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5614 		printk(KERN_ERR "ERROR: parent span is not a superset "
5615 			"of domain->span\n");
5616 	return 0;
5617 }
5618 
5619 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5620 {
5621 	int level = 0;
5622 
5623 	if (!sched_domain_debug_enabled)
5624 		return;
5625 
5626 	if (!sd) {
5627 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5628 		return;
5629 	}
5630 
5631 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5632 
5633 	for (;;) {
5634 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5635 			break;
5636 		level++;
5637 		sd = sd->parent;
5638 		if (!sd)
5639 			break;
5640 	}
5641 }
5642 #else /* !CONFIG_SCHED_DEBUG */
5643 # define sched_domain_debug(sd, cpu) do { } while (0)
5644 #endif /* CONFIG_SCHED_DEBUG */
5645 
5646 static int sd_degenerate(struct sched_domain *sd)
5647 {
5648 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5649 		return 1;
5650 
5651 	/* Following flags need at least 2 groups */
5652 	if (sd->flags & (SD_LOAD_BALANCE |
5653 			 SD_BALANCE_NEWIDLE |
5654 			 SD_BALANCE_FORK |
5655 			 SD_BALANCE_EXEC |
5656 			 SD_SHARE_CPUPOWER |
5657 			 SD_SHARE_PKG_RESOURCES)) {
5658 		if (sd->groups != sd->groups->next)
5659 			return 0;
5660 	}
5661 
5662 	/* Following flags don't use groups */
5663 	if (sd->flags & (SD_WAKE_AFFINE))
5664 		return 0;
5665 
5666 	return 1;
5667 }
5668 
5669 static int
5670 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5671 {
5672 	unsigned long cflags = sd->flags, pflags = parent->flags;
5673 
5674 	if (sd_degenerate(parent))
5675 		return 1;
5676 
5677 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5678 		return 0;
5679 
5680 	/* Flags needing groups don't count if only 1 group in parent */
5681 	if (parent->groups == parent->groups->next) {
5682 		pflags &= ~(SD_LOAD_BALANCE |
5683 				SD_BALANCE_NEWIDLE |
5684 				SD_BALANCE_FORK |
5685 				SD_BALANCE_EXEC |
5686 				SD_SHARE_CPUPOWER |
5687 				SD_SHARE_PKG_RESOURCES);
5688 		if (nr_node_ids == 1)
5689 			pflags &= ~SD_SERIALIZE;
5690 	}
5691 	if (~cflags & pflags)
5692 		return 0;
5693 
5694 	return 1;
5695 }
5696 
5697 static void free_rootdomain(struct rcu_head *rcu)
5698 {
5699 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5700 
5701 	cpupri_cleanup(&rd->cpupri);
5702 	free_cpumask_var(rd->rto_mask);
5703 	free_cpumask_var(rd->online);
5704 	free_cpumask_var(rd->span);
5705 	kfree(rd);
5706 }
5707 
5708 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5709 {
5710 	struct root_domain *old_rd = NULL;
5711 	unsigned long flags;
5712 
5713 	raw_spin_lock_irqsave(&rq->lock, flags);
5714 
5715 	if (rq->rd) {
5716 		old_rd = rq->rd;
5717 
5718 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5719 			set_rq_offline(rq);
5720 
5721 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5722 
5723 		/*
5724 		 * If we dont want to free the old_rt yet then
5725 		 * set old_rd to NULL to skip the freeing later
5726 		 * in this function:
5727 		 */
5728 		if (!atomic_dec_and_test(&old_rd->refcount))
5729 			old_rd = NULL;
5730 	}
5731 
5732 	atomic_inc(&rd->refcount);
5733 	rq->rd = rd;
5734 
5735 	cpumask_set_cpu(rq->cpu, rd->span);
5736 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5737 		set_rq_online(rq);
5738 
5739 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5740 
5741 	if (old_rd)
5742 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5743 }
5744 
5745 static int init_rootdomain(struct root_domain *rd)
5746 {
5747 	memset(rd, 0, sizeof(*rd));
5748 
5749 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5750 		goto out;
5751 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5752 		goto free_span;
5753 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5754 		goto free_online;
5755 
5756 	if (cpupri_init(&rd->cpupri) != 0)
5757 		goto free_rto_mask;
5758 	return 0;
5759 
5760 free_rto_mask:
5761 	free_cpumask_var(rd->rto_mask);
5762 free_online:
5763 	free_cpumask_var(rd->online);
5764 free_span:
5765 	free_cpumask_var(rd->span);
5766 out:
5767 	return -ENOMEM;
5768 }
5769 
5770 /*
5771  * By default the system creates a single root-domain with all cpus as
5772  * members (mimicking the global state we have today).
5773  */
5774 struct root_domain def_root_domain;
5775 
5776 static void init_defrootdomain(void)
5777 {
5778 	init_rootdomain(&def_root_domain);
5779 
5780 	atomic_set(&def_root_domain.refcount, 1);
5781 }
5782 
5783 static struct root_domain *alloc_rootdomain(void)
5784 {
5785 	struct root_domain *rd;
5786 
5787 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5788 	if (!rd)
5789 		return NULL;
5790 
5791 	if (init_rootdomain(rd) != 0) {
5792 		kfree(rd);
5793 		return NULL;
5794 	}
5795 
5796 	return rd;
5797 }
5798 
5799 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5800 {
5801 	struct sched_group *tmp, *first;
5802 
5803 	if (!sg)
5804 		return;
5805 
5806 	first = sg;
5807 	do {
5808 		tmp = sg->next;
5809 
5810 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5811 			kfree(sg->sgp);
5812 
5813 		kfree(sg);
5814 		sg = tmp;
5815 	} while (sg != first);
5816 }
5817 
5818 static void free_sched_domain(struct rcu_head *rcu)
5819 {
5820 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5821 
5822 	/*
5823 	 * If its an overlapping domain it has private groups, iterate and
5824 	 * nuke them all.
5825 	 */
5826 	if (sd->flags & SD_OVERLAP) {
5827 		free_sched_groups(sd->groups, 1);
5828 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5829 		kfree(sd->groups->sgp);
5830 		kfree(sd->groups);
5831 	}
5832 	kfree(sd);
5833 }
5834 
5835 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5836 {
5837 	call_rcu(&sd->rcu, free_sched_domain);
5838 }
5839 
5840 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5841 {
5842 	for (; sd; sd = sd->parent)
5843 		destroy_sched_domain(sd, cpu);
5844 }
5845 
5846 /*
5847  * Keep a special pointer to the highest sched_domain that has
5848  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5849  * allows us to avoid some pointer chasing select_idle_sibling().
5850  *
5851  * Also keep a unique ID per domain (we use the first cpu number in
5852  * the cpumask of the domain), this allows us to quickly tell if
5853  * two cpus are in the same cache domain, see cpus_share_cache().
5854  */
5855 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5856 DEFINE_PER_CPU(int, sd_llc_id);
5857 
5858 static void update_top_cache_domain(int cpu)
5859 {
5860 	struct sched_domain *sd;
5861 	int id = cpu;
5862 
5863 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5864 	if (sd)
5865 		id = cpumask_first(sched_domain_span(sd));
5866 
5867 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5868 	per_cpu(sd_llc_id, cpu) = id;
5869 }
5870 
5871 /*
5872  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5873  * hold the hotplug lock.
5874  */
5875 static void
5876 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5877 {
5878 	struct rq *rq = cpu_rq(cpu);
5879 	struct sched_domain *tmp;
5880 
5881 	/* Remove the sched domains which do not contribute to scheduling. */
5882 	for (tmp = sd; tmp; ) {
5883 		struct sched_domain *parent = tmp->parent;
5884 		if (!parent)
5885 			break;
5886 
5887 		if (sd_parent_degenerate(tmp, parent)) {
5888 			tmp->parent = parent->parent;
5889 			if (parent->parent)
5890 				parent->parent->child = tmp;
5891 			destroy_sched_domain(parent, cpu);
5892 		} else
5893 			tmp = tmp->parent;
5894 	}
5895 
5896 	if (sd && sd_degenerate(sd)) {
5897 		tmp = sd;
5898 		sd = sd->parent;
5899 		destroy_sched_domain(tmp, cpu);
5900 		if (sd)
5901 			sd->child = NULL;
5902 	}
5903 
5904 	sched_domain_debug(sd, cpu);
5905 
5906 	rq_attach_root(rq, rd);
5907 	tmp = rq->sd;
5908 	rcu_assign_pointer(rq->sd, sd);
5909 	destroy_sched_domains(tmp, cpu);
5910 
5911 	update_top_cache_domain(cpu);
5912 }
5913 
5914 /* cpus with isolated domains */
5915 static cpumask_var_t cpu_isolated_map;
5916 
5917 /* Setup the mask of cpus configured for isolated domains */
5918 static int __init isolated_cpu_setup(char *str)
5919 {
5920 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5921 	cpulist_parse(str, cpu_isolated_map);
5922 	return 1;
5923 }
5924 
5925 __setup("isolcpus=", isolated_cpu_setup);
5926 
5927 static const struct cpumask *cpu_cpu_mask(int cpu)
5928 {
5929 	return cpumask_of_node(cpu_to_node(cpu));
5930 }
5931 
5932 struct sd_data {
5933 	struct sched_domain **__percpu sd;
5934 	struct sched_group **__percpu sg;
5935 	struct sched_group_power **__percpu sgp;
5936 };
5937 
5938 struct s_data {
5939 	struct sched_domain ** __percpu sd;
5940 	struct root_domain	*rd;
5941 };
5942 
5943 enum s_alloc {
5944 	sa_rootdomain,
5945 	sa_sd,
5946 	sa_sd_storage,
5947 	sa_none,
5948 };
5949 
5950 struct sched_domain_topology_level;
5951 
5952 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5953 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5954 
5955 #define SDTL_OVERLAP	0x01
5956 
5957 struct sched_domain_topology_level {
5958 	sched_domain_init_f init;
5959 	sched_domain_mask_f mask;
5960 	int		    flags;
5961 	int		    numa_level;
5962 	struct sd_data      data;
5963 };
5964 
5965 static int
5966 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5967 {
5968 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5969 	const struct cpumask *span = sched_domain_span(sd);
5970 	struct cpumask *covered = sched_domains_tmpmask;
5971 	struct sd_data *sdd = sd->private;
5972 	struct sched_domain *child;
5973 	int i;
5974 
5975 	cpumask_clear(covered);
5976 
5977 	for_each_cpu(i, span) {
5978 		struct cpumask *sg_span;
5979 
5980 		if (cpumask_test_cpu(i, covered))
5981 			continue;
5982 
5983 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5984 				GFP_KERNEL, cpu_to_node(cpu));
5985 
5986 		if (!sg)
5987 			goto fail;
5988 
5989 		sg_span = sched_group_cpus(sg);
5990 
5991 		child = *per_cpu_ptr(sdd->sd, i);
5992 		if (child->child) {
5993 			child = child->child;
5994 			cpumask_copy(sg_span, sched_domain_span(child));
5995 		} else
5996 			cpumask_set_cpu(i, sg_span);
5997 
5998 		cpumask_or(covered, covered, sg_span);
5999 
6000 		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6001 		atomic_inc(&sg->sgp->ref);
6002 
6003 		if (cpumask_test_cpu(cpu, sg_span))
6004 			groups = sg;
6005 
6006 		if (!first)
6007 			first = sg;
6008 		if (last)
6009 			last->next = sg;
6010 		last = sg;
6011 		last->next = first;
6012 	}
6013 	sd->groups = groups;
6014 
6015 	return 0;
6016 
6017 fail:
6018 	free_sched_groups(first, 0);
6019 
6020 	return -ENOMEM;
6021 }
6022 
6023 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6024 {
6025 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6026 	struct sched_domain *child = sd->child;
6027 
6028 	if (child)
6029 		cpu = cpumask_first(sched_domain_span(child));
6030 
6031 	if (sg) {
6032 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6033 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6034 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6035 	}
6036 
6037 	return cpu;
6038 }
6039 
6040 /*
6041  * build_sched_groups will build a circular linked list of the groups
6042  * covered by the given span, and will set each group's ->cpumask correctly,
6043  * and ->cpu_power to 0.
6044  *
6045  * Assumes the sched_domain tree is fully constructed
6046  */
6047 static int
6048 build_sched_groups(struct sched_domain *sd, int cpu)
6049 {
6050 	struct sched_group *first = NULL, *last = NULL;
6051 	struct sd_data *sdd = sd->private;
6052 	const struct cpumask *span = sched_domain_span(sd);
6053 	struct cpumask *covered;
6054 	int i;
6055 
6056 	get_group(cpu, sdd, &sd->groups);
6057 	atomic_inc(&sd->groups->ref);
6058 
6059 	if (cpu != cpumask_first(sched_domain_span(sd)))
6060 		return 0;
6061 
6062 	lockdep_assert_held(&sched_domains_mutex);
6063 	covered = sched_domains_tmpmask;
6064 
6065 	cpumask_clear(covered);
6066 
6067 	for_each_cpu(i, span) {
6068 		struct sched_group *sg;
6069 		int group = get_group(i, sdd, &sg);
6070 		int j;
6071 
6072 		if (cpumask_test_cpu(i, covered))
6073 			continue;
6074 
6075 		cpumask_clear(sched_group_cpus(sg));
6076 		sg->sgp->power = 0;
6077 
6078 		for_each_cpu(j, span) {
6079 			if (get_group(j, sdd, NULL) != group)
6080 				continue;
6081 
6082 			cpumask_set_cpu(j, covered);
6083 			cpumask_set_cpu(j, sched_group_cpus(sg));
6084 		}
6085 
6086 		if (!first)
6087 			first = sg;
6088 		if (last)
6089 			last->next = sg;
6090 		last = sg;
6091 	}
6092 	last->next = first;
6093 
6094 	return 0;
6095 }
6096 
6097 /*
6098  * Initialize sched groups cpu_power.
6099  *
6100  * cpu_power indicates the capacity of sched group, which is used while
6101  * distributing the load between different sched groups in a sched domain.
6102  * Typically cpu_power for all the groups in a sched domain will be same unless
6103  * there are asymmetries in the topology. If there are asymmetries, group
6104  * having more cpu_power will pickup more load compared to the group having
6105  * less cpu_power.
6106  */
6107 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6108 {
6109 	struct sched_group *sg = sd->groups;
6110 
6111 	WARN_ON(!sd || !sg);
6112 
6113 	do {
6114 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6115 		sg = sg->next;
6116 	} while (sg != sd->groups);
6117 
6118 	if (cpu != group_first_cpu(sg))
6119 		return;
6120 
6121 	update_group_power(sd, cpu);
6122 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6123 }
6124 
6125 int __weak arch_sd_sibling_asym_packing(void)
6126 {
6127        return 0*SD_ASYM_PACKING;
6128 }
6129 
6130 /*
6131  * Initializers for schedule domains
6132  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6133  */
6134 
6135 #ifdef CONFIG_SCHED_DEBUG
6136 # define SD_INIT_NAME(sd, type)		sd->name = #type
6137 #else
6138 # define SD_INIT_NAME(sd, type)		do { } while (0)
6139 #endif
6140 
6141 #define SD_INIT_FUNC(type)						\
6142 static noinline struct sched_domain *					\
6143 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6144 {									\
6145 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6146 	*sd = SD_##type##_INIT;						\
6147 	SD_INIT_NAME(sd, type);						\
6148 	sd->private = &tl->data;					\
6149 	return sd;							\
6150 }
6151 
6152 SD_INIT_FUNC(CPU)
6153 #ifdef CONFIG_SCHED_SMT
6154  SD_INIT_FUNC(SIBLING)
6155 #endif
6156 #ifdef CONFIG_SCHED_MC
6157  SD_INIT_FUNC(MC)
6158 #endif
6159 #ifdef CONFIG_SCHED_BOOK
6160  SD_INIT_FUNC(BOOK)
6161 #endif
6162 
6163 static int default_relax_domain_level = -1;
6164 int sched_domain_level_max;
6165 
6166 static int __init setup_relax_domain_level(char *str)
6167 {
6168 	unsigned long val;
6169 
6170 	val = simple_strtoul(str, NULL, 0);
6171 	if (val < sched_domain_level_max)
6172 		default_relax_domain_level = val;
6173 
6174 	return 1;
6175 }
6176 __setup("relax_domain_level=", setup_relax_domain_level);
6177 
6178 static void set_domain_attribute(struct sched_domain *sd,
6179 				 struct sched_domain_attr *attr)
6180 {
6181 	int request;
6182 
6183 	if (!attr || attr->relax_domain_level < 0) {
6184 		if (default_relax_domain_level < 0)
6185 			return;
6186 		else
6187 			request = default_relax_domain_level;
6188 	} else
6189 		request = attr->relax_domain_level;
6190 	if (request < sd->level) {
6191 		/* turn off idle balance on this domain */
6192 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6193 	} else {
6194 		/* turn on idle balance on this domain */
6195 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6196 	}
6197 }
6198 
6199 static void __sdt_free(const struct cpumask *cpu_map);
6200 static int __sdt_alloc(const struct cpumask *cpu_map);
6201 
6202 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6203 				 const struct cpumask *cpu_map)
6204 {
6205 	switch (what) {
6206 	case sa_rootdomain:
6207 		if (!atomic_read(&d->rd->refcount))
6208 			free_rootdomain(&d->rd->rcu); /* fall through */
6209 	case sa_sd:
6210 		free_percpu(d->sd); /* fall through */
6211 	case sa_sd_storage:
6212 		__sdt_free(cpu_map); /* fall through */
6213 	case sa_none:
6214 		break;
6215 	}
6216 }
6217 
6218 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6219 						   const struct cpumask *cpu_map)
6220 {
6221 	memset(d, 0, sizeof(*d));
6222 
6223 	if (__sdt_alloc(cpu_map))
6224 		return sa_sd_storage;
6225 	d->sd = alloc_percpu(struct sched_domain *);
6226 	if (!d->sd)
6227 		return sa_sd_storage;
6228 	d->rd = alloc_rootdomain();
6229 	if (!d->rd)
6230 		return sa_sd;
6231 	return sa_rootdomain;
6232 }
6233 
6234 /*
6235  * NULL the sd_data elements we've used to build the sched_domain and
6236  * sched_group structure so that the subsequent __free_domain_allocs()
6237  * will not free the data we're using.
6238  */
6239 static void claim_allocations(int cpu, struct sched_domain *sd)
6240 {
6241 	struct sd_data *sdd = sd->private;
6242 
6243 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6244 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6245 
6246 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6247 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6248 
6249 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6250 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6251 }
6252 
6253 #ifdef CONFIG_SCHED_SMT
6254 static const struct cpumask *cpu_smt_mask(int cpu)
6255 {
6256 	return topology_thread_cpumask(cpu);
6257 }
6258 #endif
6259 
6260 /*
6261  * Topology list, bottom-up.
6262  */
6263 static struct sched_domain_topology_level default_topology[] = {
6264 #ifdef CONFIG_SCHED_SMT
6265 	{ sd_init_SIBLING, cpu_smt_mask, },
6266 #endif
6267 #ifdef CONFIG_SCHED_MC
6268 	{ sd_init_MC, cpu_coregroup_mask, },
6269 #endif
6270 #ifdef CONFIG_SCHED_BOOK
6271 	{ sd_init_BOOK, cpu_book_mask, },
6272 #endif
6273 	{ sd_init_CPU, cpu_cpu_mask, },
6274 	{ NULL, },
6275 };
6276 
6277 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6278 
6279 #ifdef CONFIG_NUMA
6280 
6281 static int sched_domains_numa_levels;
6282 static int sched_domains_numa_scale;
6283 static int *sched_domains_numa_distance;
6284 static struct cpumask ***sched_domains_numa_masks;
6285 static int sched_domains_curr_level;
6286 
6287 static inline int sd_local_flags(int level)
6288 {
6289 	if (sched_domains_numa_distance[level] > REMOTE_DISTANCE)
6290 		return 0;
6291 
6292 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6293 }
6294 
6295 static struct sched_domain *
6296 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6297 {
6298 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6299 	int level = tl->numa_level;
6300 	int sd_weight = cpumask_weight(
6301 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6302 
6303 	*sd = (struct sched_domain){
6304 		.min_interval		= sd_weight,
6305 		.max_interval		= 2*sd_weight,
6306 		.busy_factor		= 32,
6307 		.imbalance_pct		= 125,
6308 		.cache_nice_tries	= 2,
6309 		.busy_idx		= 3,
6310 		.idle_idx		= 2,
6311 		.newidle_idx		= 0,
6312 		.wake_idx		= 0,
6313 		.forkexec_idx		= 0,
6314 
6315 		.flags			= 1*SD_LOAD_BALANCE
6316 					| 1*SD_BALANCE_NEWIDLE
6317 					| 0*SD_BALANCE_EXEC
6318 					| 0*SD_BALANCE_FORK
6319 					| 0*SD_BALANCE_WAKE
6320 					| 0*SD_WAKE_AFFINE
6321 					| 0*SD_PREFER_LOCAL
6322 					| 0*SD_SHARE_CPUPOWER
6323 					| 0*SD_SHARE_PKG_RESOURCES
6324 					| 1*SD_SERIALIZE
6325 					| 0*SD_PREFER_SIBLING
6326 					| sd_local_flags(level)
6327 					,
6328 		.last_balance		= jiffies,
6329 		.balance_interval	= sd_weight,
6330 	};
6331 	SD_INIT_NAME(sd, NUMA);
6332 	sd->private = &tl->data;
6333 
6334 	/*
6335 	 * Ugly hack to pass state to sd_numa_mask()...
6336 	 */
6337 	sched_domains_curr_level = tl->numa_level;
6338 
6339 	return sd;
6340 }
6341 
6342 static const struct cpumask *sd_numa_mask(int cpu)
6343 {
6344 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6345 }
6346 
6347 static void sched_init_numa(void)
6348 {
6349 	int next_distance, curr_distance = node_distance(0, 0);
6350 	struct sched_domain_topology_level *tl;
6351 	int level = 0;
6352 	int i, j, k;
6353 
6354 	sched_domains_numa_scale = curr_distance;
6355 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6356 	if (!sched_domains_numa_distance)
6357 		return;
6358 
6359 	/*
6360 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6361 	 * unique distances in the node_distance() table.
6362 	 *
6363 	 * Assumes node_distance(0,j) includes all distances in
6364 	 * node_distance(i,j) in order to avoid cubic time.
6365 	 *
6366 	 * XXX: could be optimized to O(n log n) by using sort()
6367 	 */
6368 	next_distance = curr_distance;
6369 	for (i = 0; i < nr_node_ids; i++) {
6370 		for (j = 0; j < nr_node_ids; j++) {
6371 			int distance = node_distance(0, j);
6372 			if (distance > curr_distance &&
6373 					(distance < next_distance ||
6374 					 next_distance == curr_distance))
6375 				next_distance = distance;
6376 		}
6377 		if (next_distance != curr_distance) {
6378 			sched_domains_numa_distance[level++] = next_distance;
6379 			sched_domains_numa_levels = level;
6380 			curr_distance = next_distance;
6381 		} else break;
6382 	}
6383 	/*
6384 	 * 'level' contains the number of unique distances, excluding the
6385 	 * identity distance node_distance(i,i).
6386 	 *
6387 	 * The sched_domains_nume_distance[] array includes the actual distance
6388 	 * numbers.
6389 	 */
6390 
6391 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6392 	if (!sched_domains_numa_masks)
6393 		return;
6394 
6395 	/*
6396 	 * Now for each level, construct a mask per node which contains all
6397 	 * cpus of nodes that are that many hops away from us.
6398 	 */
6399 	for (i = 0; i < level; i++) {
6400 		sched_domains_numa_masks[i] =
6401 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6402 		if (!sched_domains_numa_masks[i])
6403 			return;
6404 
6405 		for (j = 0; j < nr_node_ids; j++) {
6406 			struct cpumask *mask = kzalloc_node(cpumask_size(), GFP_KERNEL, j);
6407 			if (!mask)
6408 				return;
6409 
6410 			sched_domains_numa_masks[i][j] = mask;
6411 
6412 			for (k = 0; k < nr_node_ids; k++) {
6413 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6414 					continue;
6415 
6416 				cpumask_or(mask, mask, cpumask_of_node(k));
6417 			}
6418 		}
6419 	}
6420 
6421 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6422 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6423 	if (!tl)
6424 		return;
6425 
6426 	/*
6427 	 * Copy the default topology bits..
6428 	 */
6429 	for (i = 0; default_topology[i].init; i++)
6430 		tl[i] = default_topology[i];
6431 
6432 	/*
6433 	 * .. and append 'j' levels of NUMA goodness.
6434 	 */
6435 	for (j = 0; j < level; i++, j++) {
6436 		tl[i] = (struct sched_domain_topology_level){
6437 			.init = sd_numa_init,
6438 			.mask = sd_numa_mask,
6439 			.flags = SDTL_OVERLAP,
6440 			.numa_level = j,
6441 		};
6442 	}
6443 
6444 	sched_domain_topology = tl;
6445 }
6446 #else
6447 static inline void sched_init_numa(void)
6448 {
6449 }
6450 #endif /* CONFIG_NUMA */
6451 
6452 static int __sdt_alloc(const struct cpumask *cpu_map)
6453 {
6454 	struct sched_domain_topology_level *tl;
6455 	int j;
6456 
6457 	for (tl = sched_domain_topology; tl->init; tl++) {
6458 		struct sd_data *sdd = &tl->data;
6459 
6460 		sdd->sd = alloc_percpu(struct sched_domain *);
6461 		if (!sdd->sd)
6462 			return -ENOMEM;
6463 
6464 		sdd->sg = alloc_percpu(struct sched_group *);
6465 		if (!sdd->sg)
6466 			return -ENOMEM;
6467 
6468 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6469 		if (!sdd->sgp)
6470 			return -ENOMEM;
6471 
6472 		for_each_cpu(j, cpu_map) {
6473 			struct sched_domain *sd;
6474 			struct sched_group *sg;
6475 			struct sched_group_power *sgp;
6476 
6477 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6478 					GFP_KERNEL, cpu_to_node(j));
6479 			if (!sd)
6480 				return -ENOMEM;
6481 
6482 			*per_cpu_ptr(sdd->sd, j) = sd;
6483 
6484 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6485 					GFP_KERNEL, cpu_to_node(j));
6486 			if (!sg)
6487 				return -ENOMEM;
6488 
6489 			sg->next = sg;
6490 
6491 			*per_cpu_ptr(sdd->sg, j) = sg;
6492 
6493 			sgp = kzalloc_node(sizeof(struct sched_group_power),
6494 					GFP_KERNEL, cpu_to_node(j));
6495 			if (!sgp)
6496 				return -ENOMEM;
6497 
6498 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6499 		}
6500 	}
6501 
6502 	return 0;
6503 }
6504 
6505 static void __sdt_free(const struct cpumask *cpu_map)
6506 {
6507 	struct sched_domain_topology_level *tl;
6508 	int j;
6509 
6510 	for (tl = sched_domain_topology; tl->init; tl++) {
6511 		struct sd_data *sdd = &tl->data;
6512 
6513 		for_each_cpu(j, cpu_map) {
6514 			struct sched_domain *sd;
6515 
6516 			if (sdd->sd) {
6517 				sd = *per_cpu_ptr(sdd->sd, j);
6518 				if (sd && (sd->flags & SD_OVERLAP))
6519 					free_sched_groups(sd->groups, 0);
6520 				kfree(*per_cpu_ptr(sdd->sd, j));
6521 			}
6522 
6523 			if (sdd->sg)
6524 				kfree(*per_cpu_ptr(sdd->sg, j));
6525 			if (sdd->sgp)
6526 				kfree(*per_cpu_ptr(sdd->sgp, j));
6527 		}
6528 		free_percpu(sdd->sd);
6529 		sdd->sd = NULL;
6530 		free_percpu(sdd->sg);
6531 		sdd->sg = NULL;
6532 		free_percpu(sdd->sgp);
6533 		sdd->sgp = NULL;
6534 	}
6535 }
6536 
6537 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6538 		struct s_data *d, const struct cpumask *cpu_map,
6539 		struct sched_domain_attr *attr, struct sched_domain *child,
6540 		int cpu)
6541 {
6542 	struct sched_domain *sd = tl->init(tl, cpu);
6543 	if (!sd)
6544 		return child;
6545 
6546 	set_domain_attribute(sd, attr);
6547 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6548 	if (child) {
6549 		sd->level = child->level + 1;
6550 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6551 		child->parent = sd;
6552 	}
6553 	sd->child = child;
6554 
6555 	return sd;
6556 }
6557 
6558 /*
6559  * Build sched domains for a given set of cpus and attach the sched domains
6560  * to the individual cpus
6561  */
6562 static int build_sched_domains(const struct cpumask *cpu_map,
6563 			       struct sched_domain_attr *attr)
6564 {
6565 	enum s_alloc alloc_state = sa_none;
6566 	struct sched_domain *sd;
6567 	struct s_data d;
6568 	int i, ret = -ENOMEM;
6569 
6570 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6571 	if (alloc_state != sa_rootdomain)
6572 		goto error;
6573 
6574 	/* Set up domains for cpus specified by the cpu_map. */
6575 	for_each_cpu(i, cpu_map) {
6576 		struct sched_domain_topology_level *tl;
6577 
6578 		sd = NULL;
6579 		for (tl = sched_domain_topology; tl->init; tl++) {
6580 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6581 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6582 				sd->flags |= SD_OVERLAP;
6583 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6584 				break;
6585 		}
6586 
6587 		while (sd->child)
6588 			sd = sd->child;
6589 
6590 		*per_cpu_ptr(d.sd, i) = sd;
6591 	}
6592 
6593 	/* Build the groups for the domains */
6594 	for_each_cpu(i, cpu_map) {
6595 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6596 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6597 			if (sd->flags & SD_OVERLAP) {
6598 				if (build_overlap_sched_groups(sd, i))
6599 					goto error;
6600 			} else {
6601 				if (build_sched_groups(sd, i))
6602 					goto error;
6603 			}
6604 		}
6605 	}
6606 
6607 	/* Calculate CPU power for physical packages and nodes */
6608 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6609 		if (!cpumask_test_cpu(i, cpu_map))
6610 			continue;
6611 
6612 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6613 			claim_allocations(i, sd);
6614 			init_sched_groups_power(i, sd);
6615 		}
6616 	}
6617 
6618 	/* Attach the domains */
6619 	rcu_read_lock();
6620 	for_each_cpu(i, cpu_map) {
6621 		sd = *per_cpu_ptr(d.sd, i);
6622 		cpu_attach_domain(sd, d.rd, i);
6623 	}
6624 	rcu_read_unlock();
6625 
6626 	ret = 0;
6627 error:
6628 	__free_domain_allocs(&d, alloc_state, cpu_map);
6629 	return ret;
6630 }
6631 
6632 static cpumask_var_t *doms_cur;	/* current sched domains */
6633 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6634 static struct sched_domain_attr *dattr_cur;
6635 				/* attribues of custom domains in 'doms_cur' */
6636 
6637 /*
6638  * Special case: If a kmalloc of a doms_cur partition (array of
6639  * cpumask) fails, then fallback to a single sched domain,
6640  * as determined by the single cpumask fallback_doms.
6641  */
6642 static cpumask_var_t fallback_doms;
6643 
6644 /*
6645  * arch_update_cpu_topology lets virtualized architectures update the
6646  * cpu core maps. It is supposed to return 1 if the topology changed
6647  * or 0 if it stayed the same.
6648  */
6649 int __attribute__((weak)) arch_update_cpu_topology(void)
6650 {
6651 	return 0;
6652 }
6653 
6654 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6655 {
6656 	int i;
6657 	cpumask_var_t *doms;
6658 
6659 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6660 	if (!doms)
6661 		return NULL;
6662 	for (i = 0; i < ndoms; i++) {
6663 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6664 			free_sched_domains(doms, i);
6665 			return NULL;
6666 		}
6667 	}
6668 	return doms;
6669 }
6670 
6671 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6672 {
6673 	unsigned int i;
6674 	for (i = 0; i < ndoms; i++)
6675 		free_cpumask_var(doms[i]);
6676 	kfree(doms);
6677 }
6678 
6679 /*
6680  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6681  * For now this just excludes isolated cpus, but could be used to
6682  * exclude other special cases in the future.
6683  */
6684 static int init_sched_domains(const struct cpumask *cpu_map)
6685 {
6686 	int err;
6687 
6688 	arch_update_cpu_topology();
6689 	ndoms_cur = 1;
6690 	doms_cur = alloc_sched_domains(ndoms_cur);
6691 	if (!doms_cur)
6692 		doms_cur = &fallback_doms;
6693 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6694 	dattr_cur = NULL;
6695 	err = build_sched_domains(doms_cur[0], NULL);
6696 	register_sched_domain_sysctl();
6697 
6698 	return err;
6699 }
6700 
6701 /*
6702  * Detach sched domains from a group of cpus specified in cpu_map
6703  * These cpus will now be attached to the NULL domain
6704  */
6705 static void detach_destroy_domains(const struct cpumask *cpu_map)
6706 {
6707 	int i;
6708 
6709 	rcu_read_lock();
6710 	for_each_cpu(i, cpu_map)
6711 		cpu_attach_domain(NULL, &def_root_domain, i);
6712 	rcu_read_unlock();
6713 }
6714 
6715 /* handle null as "default" */
6716 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6717 			struct sched_domain_attr *new, int idx_new)
6718 {
6719 	struct sched_domain_attr tmp;
6720 
6721 	/* fast path */
6722 	if (!new && !cur)
6723 		return 1;
6724 
6725 	tmp = SD_ATTR_INIT;
6726 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6727 			new ? (new + idx_new) : &tmp,
6728 			sizeof(struct sched_domain_attr));
6729 }
6730 
6731 /*
6732  * Partition sched domains as specified by the 'ndoms_new'
6733  * cpumasks in the array doms_new[] of cpumasks. This compares
6734  * doms_new[] to the current sched domain partitioning, doms_cur[].
6735  * It destroys each deleted domain and builds each new domain.
6736  *
6737  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6738  * The masks don't intersect (don't overlap.) We should setup one
6739  * sched domain for each mask. CPUs not in any of the cpumasks will
6740  * not be load balanced. If the same cpumask appears both in the
6741  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6742  * it as it is.
6743  *
6744  * The passed in 'doms_new' should be allocated using
6745  * alloc_sched_domains.  This routine takes ownership of it and will
6746  * free_sched_domains it when done with it. If the caller failed the
6747  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6748  * and partition_sched_domains() will fallback to the single partition
6749  * 'fallback_doms', it also forces the domains to be rebuilt.
6750  *
6751  * If doms_new == NULL it will be replaced with cpu_online_mask.
6752  * ndoms_new == 0 is a special case for destroying existing domains,
6753  * and it will not create the default domain.
6754  *
6755  * Call with hotplug lock held
6756  */
6757 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6758 			     struct sched_domain_attr *dattr_new)
6759 {
6760 	int i, j, n;
6761 	int new_topology;
6762 
6763 	mutex_lock(&sched_domains_mutex);
6764 
6765 	/* always unregister in case we don't destroy any domains */
6766 	unregister_sched_domain_sysctl();
6767 
6768 	/* Let architecture update cpu core mappings. */
6769 	new_topology = arch_update_cpu_topology();
6770 
6771 	n = doms_new ? ndoms_new : 0;
6772 
6773 	/* Destroy deleted domains */
6774 	for (i = 0; i < ndoms_cur; i++) {
6775 		for (j = 0; j < n && !new_topology; j++) {
6776 			if (cpumask_equal(doms_cur[i], doms_new[j])
6777 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6778 				goto match1;
6779 		}
6780 		/* no match - a current sched domain not in new doms_new[] */
6781 		detach_destroy_domains(doms_cur[i]);
6782 match1:
6783 		;
6784 	}
6785 
6786 	if (doms_new == NULL) {
6787 		ndoms_cur = 0;
6788 		doms_new = &fallback_doms;
6789 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6790 		WARN_ON_ONCE(dattr_new);
6791 	}
6792 
6793 	/* Build new domains */
6794 	for (i = 0; i < ndoms_new; i++) {
6795 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6796 			if (cpumask_equal(doms_new[i], doms_cur[j])
6797 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6798 				goto match2;
6799 		}
6800 		/* no match - add a new doms_new */
6801 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6802 match2:
6803 		;
6804 	}
6805 
6806 	/* Remember the new sched domains */
6807 	if (doms_cur != &fallback_doms)
6808 		free_sched_domains(doms_cur, ndoms_cur);
6809 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6810 	doms_cur = doms_new;
6811 	dattr_cur = dattr_new;
6812 	ndoms_cur = ndoms_new;
6813 
6814 	register_sched_domain_sysctl();
6815 
6816 	mutex_unlock(&sched_domains_mutex);
6817 }
6818 
6819 /*
6820  * Update cpusets according to cpu_active mask.  If cpusets are
6821  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6822  * around partition_sched_domains().
6823  */
6824 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6825 			     void *hcpu)
6826 {
6827 	switch (action & ~CPU_TASKS_FROZEN) {
6828 	case CPU_ONLINE:
6829 	case CPU_DOWN_FAILED:
6830 		cpuset_update_active_cpus();
6831 		return NOTIFY_OK;
6832 	default:
6833 		return NOTIFY_DONE;
6834 	}
6835 }
6836 
6837 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6838 			       void *hcpu)
6839 {
6840 	switch (action & ~CPU_TASKS_FROZEN) {
6841 	case CPU_DOWN_PREPARE:
6842 		cpuset_update_active_cpus();
6843 		return NOTIFY_OK;
6844 	default:
6845 		return NOTIFY_DONE;
6846 	}
6847 }
6848 
6849 void __init sched_init_smp(void)
6850 {
6851 	cpumask_var_t non_isolated_cpus;
6852 
6853 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6854 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6855 
6856 	sched_init_numa();
6857 
6858 	get_online_cpus();
6859 	mutex_lock(&sched_domains_mutex);
6860 	init_sched_domains(cpu_active_mask);
6861 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6862 	if (cpumask_empty(non_isolated_cpus))
6863 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6864 	mutex_unlock(&sched_domains_mutex);
6865 	put_online_cpus();
6866 
6867 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6868 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6869 
6870 	/* RT runtime code needs to handle some hotplug events */
6871 	hotcpu_notifier(update_runtime, 0);
6872 
6873 	init_hrtick();
6874 
6875 	/* Move init over to a non-isolated CPU */
6876 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6877 		BUG();
6878 	sched_init_granularity();
6879 	free_cpumask_var(non_isolated_cpus);
6880 
6881 	init_sched_rt_class();
6882 }
6883 #else
6884 void __init sched_init_smp(void)
6885 {
6886 	sched_init_granularity();
6887 }
6888 #endif /* CONFIG_SMP */
6889 
6890 const_debug unsigned int sysctl_timer_migration = 1;
6891 
6892 int in_sched_functions(unsigned long addr)
6893 {
6894 	return in_lock_functions(addr) ||
6895 		(addr >= (unsigned long)__sched_text_start
6896 		&& addr < (unsigned long)__sched_text_end);
6897 }
6898 
6899 #ifdef CONFIG_CGROUP_SCHED
6900 struct task_group root_task_group;
6901 #endif
6902 
6903 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6904 
6905 void __init sched_init(void)
6906 {
6907 	int i, j;
6908 	unsigned long alloc_size = 0, ptr;
6909 
6910 #ifdef CONFIG_FAIR_GROUP_SCHED
6911 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6912 #endif
6913 #ifdef CONFIG_RT_GROUP_SCHED
6914 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6915 #endif
6916 #ifdef CONFIG_CPUMASK_OFFSTACK
6917 	alloc_size += num_possible_cpus() * cpumask_size();
6918 #endif
6919 	if (alloc_size) {
6920 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6921 
6922 #ifdef CONFIG_FAIR_GROUP_SCHED
6923 		root_task_group.se = (struct sched_entity **)ptr;
6924 		ptr += nr_cpu_ids * sizeof(void **);
6925 
6926 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6927 		ptr += nr_cpu_ids * sizeof(void **);
6928 
6929 #endif /* CONFIG_FAIR_GROUP_SCHED */
6930 #ifdef CONFIG_RT_GROUP_SCHED
6931 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6932 		ptr += nr_cpu_ids * sizeof(void **);
6933 
6934 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6935 		ptr += nr_cpu_ids * sizeof(void **);
6936 
6937 #endif /* CONFIG_RT_GROUP_SCHED */
6938 #ifdef CONFIG_CPUMASK_OFFSTACK
6939 		for_each_possible_cpu(i) {
6940 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6941 			ptr += cpumask_size();
6942 		}
6943 #endif /* CONFIG_CPUMASK_OFFSTACK */
6944 	}
6945 
6946 #ifdef CONFIG_SMP
6947 	init_defrootdomain();
6948 #endif
6949 
6950 	init_rt_bandwidth(&def_rt_bandwidth,
6951 			global_rt_period(), global_rt_runtime());
6952 
6953 #ifdef CONFIG_RT_GROUP_SCHED
6954 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6955 			global_rt_period(), global_rt_runtime());
6956 #endif /* CONFIG_RT_GROUP_SCHED */
6957 
6958 #ifdef CONFIG_CGROUP_SCHED
6959 	list_add(&root_task_group.list, &task_groups);
6960 	INIT_LIST_HEAD(&root_task_group.children);
6961 	INIT_LIST_HEAD(&root_task_group.siblings);
6962 	autogroup_init(&init_task);
6963 
6964 #endif /* CONFIG_CGROUP_SCHED */
6965 
6966 #ifdef CONFIG_CGROUP_CPUACCT
6967 	root_cpuacct.cpustat = &kernel_cpustat;
6968 	root_cpuacct.cpuusage = alloc_percpu(u64);
6969 	/* Too early, not expected to fail */
6970 	BUG_ON(!root_cpuacct.cpuusage);
6971 #endif
6972 	for_each_possible_cpu(i) {
6973 		struct rq *rq;
6974 
6975 		rq = cpu_rq(i);
6976 		raw_spin_lock_init(&rq->lock);
6977 		rq->nr_running = 0;
6978 		rq->calc_load_active = 0;
6979 		rq->calc_load_update = jiffies + LOAD_FREQ;
6980 		init_cfs_rq(&rq->cfs);
6981 		init_rt_rq(&rq->rt, rq);
6982 #ifdef CONFIG_FAIR_GROUP_SCHED
6983 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6984 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6985 		/*
6986 		 * How much cpu bandwidth does root_task_group get?
6987 		 *
6988 		 * In case of task-groups formed thr' the cgroup filesystem, it
6989 		 * gets 100% of the cpu resources in the system. This overall
6990 		 * system cpu resource is divided among the tasks of
6991 		 * root_task_group and its child task-groups in a fair manner,
6992 		 * based on each entity's (task or task-group's) weight
6993 		 * (se->load.weight).
6994 		 *
6995 		 * In other words, if root_task_group has 10 tasks of weight
6996 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6997 		 * then A0's share of the cpu resource is:
6998 		 *
6999 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7000 		 *
7001 		 * We achieve this by letting root_task_group's tasks sit
7002 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7003 		 */
7004 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7005 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7006 #endif /* CONFIG_FAIR_GROUP_SCHED */
7007 
7008 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7009 #ifdef CONFIG_RT_GROUP_SCHED
7010 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7011 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7012 #endif
7013 
7014 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7015 			rq->cpu_load[j] = 0;
7016 
7017 		rq->last_load_update_tick = jiffies;
7018 
7019 #ifdef CONFIG_SMP
7020 		rq->sd = NULL;
7021 		rq->rd = NULL;
7022 		rq->cpu_power = SCHED_POWER_SCALE;
7023 		rq->post_schedule = 0;
7024 		rq->active_balance = 0;
7025 		rq->next_balance = jiffies;
7026 		rq->push_cpu = 0;
7027 		rq->cpu = i;
7028 		rq->online = 0;
7029 		rq->idle_stamp = 0;
7030 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7031 
7032 		INIT_LIST_HEAD(&rq->cfs_tasks);
7033 
7034 		rq_attach_root(rq, &def_root_domain);
7035 #ifdef CONFIG_NO_HZ
7036 		rq->nohz_flags = 0;
7037 #endif
7038 #endif
7039 		init_rq_hrtick(rq);
7040 		atomic_set(&rq->nr_iowait, 0);
7041 	}
7042 
7043 	set_load_weight(&init_task);
7044 
7045 #ifdef CONFIG_PREEMPT_NOTIFIERS
7046 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7047 #endif
7048 
7049 #ifdef CONFIG_RT_MUTEXES
7050 	plist_head_init(&init_task.pi_waiters);
7051 #endif
7052 
7053 	/*
7054 	 * The boot idle thread does lazy MMU switching as well:
7055 	 */
7056 	atomic_inc(&init_mm.mm_count);
7057 	enter_lazy_tlb(&init_mm, current);
7058 
7059 	/*
7060 	 * Make us the idle thread. Technically, schedule() should not be
7061 	 * called from this thread, however somewhere below it might be,
7062 	 * but because we are the idle thread, we just pick up running again
7063 	 * when this runqueue becomes "idle".
7064 	 */
7065 	init_idle(current, smp_processor_id());
7066 
7067 	calc_load_update = jiffies + LOAD_FREQ;
7068 
7069 	/*
7070 	 * During early bootup we pretend to be a normal task:
7071 	 */
7072 	current->sched_class = &fair_sched_class;
7073 
7074 #ifdef CONFIG_SMP
7075 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7076 	/* May be allocated at isolcpus cmdline parse time */
7077 	if (cpu_isolated_map == NULL)
7078 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7079 	idle_thread_set_boot_cpu();
7080 #endif
7081 	init_sched_fair_class();
7082 
7083 	scheduler_running = 1;
7084 }
7085 
7086 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7087 static inline int preempt_count_equals(int preempt_offset)
7088 {
7089 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7090 
7091 	return (nested == preempt_offset);
7092 }
7093 
7094 void __might_sleep(const char *file, int line, int preempt_offset)
7095 {
7096 	static unsigned long prev_jiffy;	/* ratelimiting */
7097 
7098 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7099 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7100 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7101 		return;
7102 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7103 		return;
7104 	prev_jiffy = jiffies;
7105 
7106 	printk(KERN_ERR
7107 		"BUG: sleeping function called from invalid context at %s:%d\n",
7108 			file, line);
7109 	printk(KERN_ERR
7110 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7111 			in_atomic(), irqs_disabled(),
7112 			current->pid, current->comm);
7113 
7114 	debug_show_held_locks(current);
7115 	if (irqs_disabled())
7116 		print_irqtrace_events(current);
7117 	dump_stack();
7118 }
7119 EXPORT_SYMBOL(__might_sleep);
7120 #endif
7121 
7122 #ifdef CONFIG_MAGIC_SYSRQ
7123 static void normalize_task(struct rq *rq, struct task_struct *p)
7124 {
7125 	const struct sched_class *prev_class = p->sched_class;
7126 	int old_prio = p->prio;
7127 	int on_rq;
7128 
7129 	on_rq = p->on_rq;
7130 	if (on_rq)
7131 		dequeue_task(rq, p, 0);
7132 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7133 	if (on_rq) {
7134 		enqueue_task(rq, p, 0);
7135 		resched_task(rq->curr);
7136 	}
7137 
7138 	check_class_changed(rq, p, prev_class, old_prio);
7139 }
7140 
7141 void normalize_rt_tasks(void)
7142 {
7143 	struct task_struct *g, *p;
7144 	unsigned long flags;
7145 	struct rq *rq;
7146 
7147 	read_lock_irqsave(&tasklist_lock, flags);
7148 	do_each_thread(g, p) {
7149 		/*
7150 		 * Only normalize user tasks:
7151 		 */
7152 		if (!p->mm)
7153 			continue;
7154 
7155 		p->se.exec_start		= 0;
7156 #ifdef CONFIG_SCHEDSTATS
7157 		p->se.statistics.wait_start	= 0;
7158 		p->se.statistics.sleep_start	= 0;
7159 		p->se.statistics.block_start	= 0;
7160 #endif
7161 
7162 		if (!rt_task(p)) {
7163 			/*
7164 			 * Renice negative nice level userspace
7165 			 * tasks back to 0:
7166 			 */
7167 			if (TASK_NICE(p) < 0 && p->mm)
7168 				set_user_nice(p, 0);
7169 			continue;
7170 		}
7171 
7172 		raw_spin_lock(&p->pi_lock);
7173 		rq = __task_rq_lock(p);
7174 
7175 		normalize_task(rq, p);
7176 
7177 		__task_rq_unlock(rq);
7178 		raw_spin_unlock(&p->pi_lock);
7179 	} while_each_thread(g, p);
7180 
7181 	read_unlock_irqrestore(&tasklist_lock, flags);
7182 }
7183 
7184 #endif /* CONFIG_MAGIC_SYSRQ */
7185 
7186 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7187 /*
7188  * These functions are only useful for the IA64 MCA handling, or kdb.
7189  *
7190  * They can only be called when the whole system has been
7191  * stopped - every CPU needs to be quiescent, and no scheduling
7192  * activity can take place. Using them for anything else would
7193  * be a serious bug, and as a result, they aren't even visible
7194  * under any other configuration.
7195  */
7196 
7197 /**
7198  * curr_task - return the current task for a given cpu.
7199  * @cpu: the processor in question.
7200  *
7201  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7202  */
7203 struct task_struct *curr_task(int cpu)
7204 {
7205 	return cpu_curr(cpu);
7206 }
7207 
7208 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7209 
7210 #ifdef CONFIG_IA64
7211 /**
7212  * set_curr_task - set the current task for a given cpu.
7213  * @cpu: the processor in question.
7214  * @p: the task pointer to set.
7215  *
7216  * Description: This function must only be used when non-maskable interrupts
7217  * are serviced on a separate stack. It allows the architecture to switch the
7218  * notion of the current task on a cpu in a non-blocking manner. This function
7219  * must be called with all CPU's synchronized, and interrupts disabled, the
7220  * and caller must save the original value of the current task (see
7221  * curr_task() above) and restore that value before reenabling interrupts and
7222  * re-starting the system.
7223  *
7224  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7225  */
7226 void set_curr_task(int cpu, struct task_struct *p)
7227 {
7228 	cpu_curr(cpu) = p;
7229 }
7230 
7231 #endif
7232 
7233 #ifdef CONFIG_CGROUP_SCHED
7234 /* task_group_lock serializes the addition/removal of task groups */
7235 static DEFINE_SPINLOCK(task_group_lock);
7236 
7237 static void free_sched_group(struct task_group *tg)
7238 {
7239 	free_fair_sched_group(tg);
7240 	free_rt_sched_group(tg);
7241 	autogroup_free(tg);
7242 	kfree(tg);
7243 }
7244 
7245 /* allocate runqueue etc for a new task group */
7246 struct task_group *sched_create_group(struct task_group *parent)
7247 {
7248 	struct task_group *tg;
7249 	unsigned long flags;
7250 
7251 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7252 	if (!tg)
7253 		return ERR_PTR(-ENOMEM);
7254 
7255 	if (!alloc_fair_sched_group(tg, parent))
7256 		goto err;
7257 
7258 	if (!alloc_rt_sched_group(tg, parent))
7259 		goto err;
7260 
7261 	spin_lock_irqsave(&task_group_lock, flags);
7262 	list_add_rcu(&tg->list, &task_groups);
7263 
7264 	WARN_ON(!parent); /* root should already exist */
7265 
7266 	tg->parent = parent;
7267 	INIT_LIST_HEAD(&tg->children);
7268 	list_add_rcu(&tg->siblings, &parent->children);
7269 	spin_unlock_irqrestore(&task_group_lock, flags);
7270 
7271 	return tg;
7272 
7273 err:
7274 	free_sched_group(tg);
7275 	return ERR_PTR(-ENOMEM);
7276 }
7277 
7278 /* rcu callback to free various structures associated with a task group */
7279 static void free_sched_group_rcu(struct rcu_head *rhp)
7280 {
7281 	/* now it should be safe to free those cfs_rqs */
7282 	free_sched_group(container_of(rhp, struct task_group, rcu));
7283 }
7284 
7285 /* Destroy runqueue etc associated with a task group */
7286 void sched_destroy_group(struct task_group *tg)
7287 {
7288 	unsigned long flags;
7289 	int i;
7290 
7291 	/* end participation in shares distribution */
7292 	for_each_possible_cpu(i)
7293 		unregister_fair_sched_group(tg, i);
7294 
7295 	spin_lock_irqsave(&task_group_lock, flags);
7296 	list_del_rcu(&tg->list);
7297 	list_del_rcu(&tg->siblings);
7298 	spin_unlock_irqrestore(&task_group_lock, flags);
7299 
7300 	/* wait for possible concurrent references to cfs_rqs complete */
7301 	call_rcu(&tg->rcu, free_sched_group_rcu);
7302 }
7303 
7304 /* change task's runqueue when it moves between groups.
7305  *	The caller of this function should have put the task in its new group
7306  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7307  *	reflect its new group.
7308  */
7309 void sched_move_task(struct task_struct *tsk)
7310 {
7311 	int on_rq, running;
7312 	unsigned long flags;
7313 	struct rq *rq;
7314 
7315 	rq = task_rq_lock(tsk, &flags);
7316 
7317 	running = task_current(rq, tsk);
7318 	on_rq = tsk->on_rq;
7319 
7320 	if (on_rq)
7321 		dequeue_task(rq, tsk, 0);
7322 	if (unlikely(running))
7323 		tsk->sched_class->put_prev_task(rq, tsk);
7324 
7325 #ifdef CONFIG_FAIR_GROUP_SCHED
7326 	if (tsk->sched_class->task_move_group)
7327 		tsk->sched_class->task_move_group(tsk, on_rq);
7328 	else
7329 #endif
7330 		set_task_rq(tsk, task_cpu(tsk));
7331 
7332 	if (unlikely(running))
7333 		tsk->sched_class->set_curr_task(rq);
7334 	if (on_rq)
7335 		enqueue_task(rq, tsk, 0);
7336 
7337 	task_rq_unlock(rq, tsk, &flags);
7338 }
7339 #endif /* CONFIG_CGROUP_SCHED */
7340 
7341 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7342 static unsigned long to_ratio(u64 period, u64 runtime)
7343 {
7344 	if (runtime == RUNTIME_INF)
7345 		return 1ULL << 20;
7346 
7347 	return div64_u64(runtime << 20, period);
7348 }
7349 #endif
7350 
7351 #ifdef CONFIG_RT_GROUP_SCHED
7352 /*
7353  * Ensure that the real time constraints are schedulable.
7354  */
7355 static DEFINE_MUTEX(rt_constraints_mutex);
7356 
7357 /* Must be called with tasklist_lock held */
7358 static inline int tg_has_rt_tasks(struct task_group *tg)
7359 {
7360 	struct task_struct *g, *p;
7361 
7362 	do_each_thread(g, p) {
7363 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7364 			return 1;
7365 	} while_each_thread(g, p);
7366 
7367 	return 0;
7368 }
7369 
7370 struct rt_schedulable_data {
7371 	struct task_group *tg;
7372 	u64 rt_period;
7373 	u64 rt_runtime;
7374 };
7375 
7376 static int tg_rt_schedulable(struct task_group *tg, void *data)
7377 {
7378 	struct rt_schedulable_data *d = data;
7379 	struct task_group *child;
7380 	unsigned long total, sum = 0;
7381 	u64 period, runtime;
7382 
7383 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7384 	runtime = tg->rt_bandwidth.rt_runtime;
7385 
7386 	if (tg == d->tg) {
7387 		period = d->rt_period;
7388 		runtime = d->rt_runtime;
7389 	}
7390 
7391 	/*
7392 	 * Cannot have more runtime than the period.
7393 	 */
7394 	if (runtime > period && runtime != RUNTIME_INF)
7395 		return -EINVAL;
7396 
7397 	/*
7398 	 * Ensure we don't starve existing RT tasks.
7399 	 */
7400 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7401 		return -EBUSY;
7402 
7403 	total = to_ratio(period, runtime);
7404 
7405 	/*
7406 	 * Nobody can have more than the global setting allows.
7407 	 */
7408 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7409 		return -EINVAL;
7410 
7411 	/*
7412 	 * The sum of our children's runtime should not exceed our own.
7413 	 */
7414 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7415 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7416 		runtime = child->rt_bandwidth.rt_runtime;
7417 
7418 		if (child == d->tg) {
7419 			period = d->rt_period;
7420 			runtime = d->rt_runtime;
7421 		}
7422 
7423 		sum += to_ratio(period, runtime);
7424 	}
7425 
7426 	if (sum > total)
7427 		return -EINVAL;
7428 
7429 	return 0;
7430 }
7431 
7432 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7433 {
7434 	int ret;
7435 
7436 	struct rt_schedulable_data data = {
7437 		.tg = tg,
7438 		.rt_period = period,
7439 		.rt_runtime = runtime,
7440 	};
7441 
7442 	rcu_read_lock();
7443 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7444 	rcu_read_unlock();
7445 
7446 	return ret;
7447 }
7448 
7449 static int tg_set_rt_bandwidth(struct task_group *tg,
7450 		u64 rt_period, u64 rt_runtime)
7451 {
7452 	int i, err = 0;
7453 
7454 	mutex_lock(&rt_constraints_mutex);
7455 	read_lock(&tasklist_lock);
7456 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7457 	if (err)
7458 		goto unlock;
7459 
7460 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7461 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7462 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7463 
7464 	for_each_possible_cpu(i) {
7465 		struct rt_rq *rt_rq = tg->rt_rq[i];
7466 
7467 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7468 		rt_rq->rt_runtime = rt_runtime;
7469 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7470 	}
7471 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7472 unlock:
7473 	read_unlock(&tasklist_lock);
7474 	mutex_unlock(&rt_constraints_mutex);
7475 
7476 	return err;
7477 }
7478 
7479 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7480 {
7481 	u64 rt_runtime, rt_period;
7482 
7483 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7484 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7485 	if (rt_runtime_us < 0)
7486 		rt_runtime = RUNTIME_INF;
7487 
7488 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7489 }
7490 
7491 long sched_group_rt_runtime(struct task_group *tg)
7492 {
7493 	u64 rt_runtime_us;
7494 
7495 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7496 		return -1;
7497 
7498 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7499 	do_div(rt_runtime_us, NSEC_PER_USEC);
7500 	return rt_runtime_us;
7501 }
7502 
7503 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7504 {
7505 	u64 rt_runtime, rt_period;
7506 
7507 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7508 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7509 
7510 	if (rt_period == 0)
7511 		return -EINVAL;
7512 
7513 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7514 }
7515 
7516 long sched_group_rt_period(struct task_group *tg)
7517 {
7518 	u64 rt_period_us;
7519 
7520 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7521 	do_div(rt_period_us, NSEC_PER_USEC);
7522 	return rt_period_us;
7523 }
7524 
7525 static int sched_rt_global_constraints(void)
7526 {
7527 	u64 runtime, period;
7528 	int ret = 0;
7529 
7530 	if (sysctl_sched_rt_period <= 0)
7531 		return -EINVAL;
7532 
7533 	runtime = global_rt_runtime();
7534 	period = global_rt_period();
7535 
7536 	/*
7537 	 * Sanity check on the sysctl variables.
7538 	 */
7539 	if (runtime > period && runtime != RUNTIME_INF)
7540 		return -EINVAL;
7541 
7542 	mutex_lock(&rt_constraints_mutex);
7543 	read_lock(&tasklist_lock);
7544 	ret = __rt_schedulable(NULL, 0, 0);
7545 	read_unlock(&tasklist_lock);
7546 	mutex_unlock(&rt_constraints_mutex);
7547 
7548 	return ret;
7549 }
7550 
7551 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7552 {
7553 	/* Don't accept realtime tasks when there is no way for them to run */
7554 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7555 		return 0;
7556 
7557 	return 1;
7558 }
7559 
7560 #else /* !CONFIG_RT_GROUP_SCHED */
7561 static int sched_rt_global_constraints(void)
7562 {
7563 	unsigned long flags;
7564 	int i;
7565 
7566 	if (sysctl_sched_rt_period <= 0)
7567 		return -EINVAL;
7568 
7569 	/*
7570 	 * There's always some RT tasks in the root group
7571 	 * -- migration, kstopmachine etc..
7572 	 */
7573 	if (sysctl_sched_rt_runtime == 0)
7574 		return -EBUSY;
7575 
7576 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7577 	for_each_possible_cpu(i) {
7578 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7579 
7580 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7581 		rt_rq->rt_runtime = global_rt_runtime();
7582 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7583 	}
7584 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7585 
7586 	return 0;
7587 }
7588 #endif /* CONFIG_RT_GROUP_SCHED */
7589 
7590 int sched_rt_handler(struct ctl_table *table, int write,
7591 		void __user *buffer, size_t *lenp,
7592 		loff_t *ppos)
7593 {
7594 	int ret;
7595 	int old_period, old_runtime;
7596 	static DEFINE_MUTEX(mutex);
7597 
7598 	mutex_lock(&mutex);
7599 	old_period = sysctl_sched_rt_period;
7600 	old_runtime = sysctl_sched_rt_runtime;
7601 
7602 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7603 
7604 	if (!ret && write) {
7605 		ret = sched_rt_global_constraints();
7606 		if (ret) {
7607 			sysctl_sched_rt_period = old_period;
7608 			sysctl_sched_rt_runtime = old_runtime;
7609 		} else {
7610 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7611 			def_rt_bandwidth.rt_period =
7612 				ns_to_ktime(global_rt_period());
7613 		}
7614 	}
7615 	mutex_unlock(&mutex);
7616 
7617 	return ret;
7618 }
7619 
7620 #ifdef CONFIG_CGROUP_SCHED
7621 
7622 /* return corresponding task_group object of a cgroup */
7623 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7624 {
7625 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7626 			    struct task_group, css);
7627 }
7628 
7629 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7630 {
7631 	struct task_group *tg, *parent;
7632 
7633 	if (!cgrp->parent) {
7634 		/* This is early initialization for the top cgroup */
7635 		return &root_task_group.css;
7636 	}
7637 
7638 	parent = cgroup_tg(cgrp->parent);
7639 	tg = sched_create_group(parent);
7640 	if (IS_ERR(tg))
7641 		return ERR_PTR(-ENOMEM);
7642 
7643 	return &tg->css;
7644 }
7645 
7646 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7647 {
7648 	struct task_group *tg = cgroup_tg(cgrp);
7649 
7650 	sched_destroy_group(tg);
7651 }
7652 
7653 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7654 				 struct cgroup_taskset *tset)
7655 {
7656 	struct task_struct *task;
7657 
7658 	cgroup_taskset_for_each(task, cgrp, tset) {
7659 #ifdef CONFIG_RT_GROUP_SCHED
7660 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7661 			return -EINVAL;
7662 #else
7663 		/* We don't support RT-tasks being in separate groups */
7664 		if (task->sched_class != &fair_sched_class)
7665 			return -EINVAL;
7666 #endif
7667 	}
7668 	return 0;
7669 }
7670 
7671 static void cpu_cgroup_attach(struct cgroup *cgrp,
7672 			      struct cgroup_taskset *tset)
7673 {
7674 	struct task_struct *task;
7675 
7676 	cgroup_taskset_for_each(task, cgrp, tset)
7677 		sched_move_task(task);
7678 }
7679 
7680 static void
7681 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7682 		struct task_struct *task)
7683 {
7684 	/*
7685 	 * cgroup_exit() is called in the copy_process() failure path.
7686 	 * Ignore this case since the task hasn't ran yet, this avoids
7687 	 * trying to poke a half freed task state from generic code.
7688 	 */
7689 	if (!(task->flags & PF_EXITING))
7690 		return;
7691 
7692 	sched_move_task(task);
7693 }
7694 
7695 #ifdef CONFIG_FAIR_GROUP_SCHED
7696 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7697 				u64 shareval)
7698 {
7699 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7700 }
7701 
7702 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7703 {
7704 	struct task_group *tg = cgroup_tg(cgrp);
7705 
7706 	return (u64) scale_load_down(tg->shares);
7707 }
7708 
7709 #ifdef CONFIG_CFS_BANDWIDTH
7710 static DEFINE_MUTEX(cfs_constraints_mutex);
7711 
7712 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7713 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7714 
7715 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7716 
7717 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7718 {
7719 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7720 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7721 
7722 	if (tg == &root_task_group)
7723 		return -EINVAL;
7724 
7725 	/*
7726 	 * Ensure we have at some amount of bandwidth every period.  This is
7727 	 * to prevent reaching a state of large arrears when throttled via
7728 	 * entity_tick() resulting in prolonged exit starvation.
7729 	 */
7730 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7731 		return -EINVAL;
7732 
7733 	/*
7734 	 * Likewise, bound things on the otherside by preventing insane quota
7735 	 * periods.  This also allows us to normalize in computing quota
7736 	 * feasibility.
7737 	 */
7738 	if (period > max_cfs_quota_period)
7739 		return -EINVAL;
7740 
7741 	mutex_lock(&cfs_constraints_mutex);
7742 	ret = __cfs_schedulable(tg, period, quota);
7743 	if (ret)
7744 		goto out_unlock;
7745 
7746 	runtime_enabled = quota != RUNTIME_INF;
7747 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7748 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7749 	raw_spin_lock_irq(&cfs_b->lock);
7750 	cfs_b->period = ns_to_ktime(period);
7751 	cfs_b->quota = quota;
7752 
7753 	__refill_cfs_bandwidth_runtime(cfs_b);
7754 	/* restart the period timer (if active) to handle new period expiry */
7755 	if (runtime_enabled && cfs_b->timer_active) {
7756 		/* force a reprogram */
7757 		cfs_b->timer_active = 0;
7758 		__start_cfs_bandwidth(cfs_b);
7759 	}
7760 	raw_spin_unlock_irq(&cfs_b->lock);
7761 
7762 	for_each_possible_cpu(i) {
7763 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7764 		struct rq *rq = cfs_rq->rq;
7765 
7766 		raw_spin_lock_irq(&rq->lock);
7767 		cfs_rq->runtime_enabled = runtime_enabled;
7768 		cfs_rq->runtime_remaining = 0;
7769 
7770 		if (cfs_rq->throttled)
7771 			unthrottle_cfs_rq(cfs_rq);
7772 		raw_spin_unlock_irq(&rq->lock);
7773 	}
7774 out_unlock:
7775 	mutex_unlock(&cfs_constraints_mutex);
7776 
7777 	return ret;
7778 }
7779 
7780 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7781 {
7782 	u64 quota, period;
7783 
7784 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7785 	if (cfs_quota_us < 0)
7786 		quota = RUNTIME_INF;
7787 	else
7788 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7789 
7790 	return tg_set_cfs_bandwidth(tg, period, quota);
7791 }
7792 
7793 long tg_get_cfs_quota(struct task_group *tg)
7794 {
7795 	u64 quota_us;
7796 
7797 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7798 		return -1;
7799 
7800 	quota_us = tg->cfs_bandwidth.quota;
7801 	do_div(quota_us, NSEC_PER_USEC);
7802 
7803 	return quota_us;
7804 }
7805 
7806 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7807 {
7808 	u64 quota, period;
7809 
7810 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7811 	quota = tg->cfs_bandwidth.quota;
7812 
7813 	return tg_set_cfs_bandwidth(tg, period, quota);
7814 }
7815 
7816 long tg_get_cfs_period(struct task_group *tg)
7817 {
7818 	u64 cfs_period_us;
7819 
7820 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7821 	do_div(cfs_period_us, NSEC_PER_USEC);
7822 
7823 	return cfs_period_us;
7824 }
7825 
7826 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7827 {
7828 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7829 }
7830 
7831 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7832 				s64 cfs_quota_us)
7833 {
7834 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7835 }
7836 
7837 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7838 {
7839 	return tg_get_cfs_period(cgroup_tg(cgrp));
7840 }
7841 
7842 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7843 				u64 cfs_period_us)
7844 {
7845 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7846 }
7847 
7848 struct cfs_schedulable_data {
7849 	struct task_group *tg;
7850 	u64 period, quota;
7851 };
7852 
7853 /*
7854  * normalize group quota/period to be quota/max_period
7855  * note: units are usecs
7856  */
7857 static u64 normalize_cfs_quota(struct task_group *tg,
7858 			       struct cfs_schedulable_data *d)
7859 {
7860 	u64 quota, period;
7861 
7862 	if (tg == d->tg) {
7863 		period = d->period;
7864 		quota = d->quota;
7865 	} else {
7866 		period = tg_get_cfs_period(tg);
7867 		quota = tg_get_cfs_quota(tg);
7868 	}
7869 
7870 	/* note: these should typically be equivalent */
7871 	if (quota == RUNTIME_INF || quota == -1)
7872 		return RUNTIME_INF;
7873 
7874 	return to_ratio(period, quota);
7875 }
7876 
7877 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7878 {
7879 	struct cfs_schedulable_data *d = data;
7880 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7881 	s64 quota = 0, parent_quota = -1;
7882 
7883 	if (!tg->parent) {
7884 		quota = RUNTIME_INF;
7885 	} else {
7886 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7887 
7888 		quota = normalize_cfs_quota(tg, d);
7889 		parent_quota = parent_b->hierarchal_quota;
7890 
7891 		/*
7892 		 * ensure max(child_quota) <= parent_quota, inherit when no
7893 		 * limit is set
7894 		 */
7895 		if (quota == RUNTIME_INF)
7896 			quota = parent_quota;
7897 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7898 			return -EINVAL;
7899 	}
7900 	cfs_b->hierarchal_quota = quota;
7901 
7902 	return 0;
7903 }
7904 
7905 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7906 {
7907 	int ret;
7908 	struct cfs_schedulable_data data = {
7909 		.tg = tg,
7910 		.period = period,
7911 		.quota = quota,
7912 	};
7913 
7914 	if (quota != RUNTIME_INF) {
7915 		do_div(data.period, NSEC_PER_USEC);
7916 		do_div(data.quota, NSEC_PER_USEC);
7917 	}
7918 
7919 	rcu_read_lock();
7920 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7921 	rcu_read_unlock();
7922 
7923 	return ret;
7924 }
7925 
7926 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7927 		struct cgroup_map_cb *cb)
7928 {
7929 	struct task_group *tg = cgroup_tg(cgrp);
7930 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7931 
7932 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7933 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7934 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7935 
7936 	return 0;
7937 }
7938 #endif /* CONFIG_CFS_BANDWIDTH */
7939 #endif /* CONFIG_FAIR_GROUP_SCHED */
7940 
7941 #ifdef CONFIG_RT_GROUP_SCHED
7942 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7943 				s64 val)
7944 {
7945 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7946 }
7947 
7948 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7949 {
7950 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7951 }
7952 
7953 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7954 		u64 rt_period_us)
7955 {
7956 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7957 }
7958 
7959 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7960 {
7961 	return sched_group_rt_period(cgroup_tg(cgrp));
7962 }
7963 #endif /* CONFIG_RT_GROUP_SCHED */
7964 
7965 static struct cftype cpu_files[] = {
7966 #ifdef CONFIG_FAIR_GROUP_SCHED
7967 	{
7968 		.name = "shares",
7969 		.read_u64 = cpu_shares_read_u64,
7970 		.write_u64 = cpu_shares_write_u64,
7971 	},
7972 #endif
7973 #ifdef CONFIG_CFS_BANDWIDTH
7974 	{
7975 		.name = "cfs_quota_us",
7976 		.read_s64 = cpu_cfs_quota_read_s64,
7977 		.write_s64 = cpu_cfs_quota_write_s64,
7978 	},
7979 	{
7980 		.name = "cfs_period_us",
7981 		.read_u64 = cpu_cfs_period_read_u64,
7982 		.write_u64 = cpu_cfs_period_write_u64,
7983 	},
7984 	{
7985 		.name = "stat",
7986 		.read_map = cpu_stats_show,
7987 	},
7988 #endif
7989 #ifdef CONFIG_RT_GROUP_SCHED
7990 	{
7991 		.name = "rt_runtime_us",
7992 		.read_s64 = cpu_rt_runtime_read,
7993 		.write_s64 = cpu_rt_runtime_write,
7994 	},
7995 	{
7996 		.name = "rt_period_us",
7997 		.read_u64 = cpu_rt_period_read_uint,
7998 		.write_u64 = cpu_rt_period_write_uint,
7999 	},
8000 #endif
8001 	{ }	/* terminate */
8002 };
8003 
8004 struct cgroup_subsys cpu_cgroup_subsys = {
8005 	.name		= "cpu",
8006 	.create		= cpu_cgroup_create,
8007 	.destroy	= cpu_cgroup_destroy,
8008 	.can_attach	= cpu_cgroup_can_attach,
8009 	.attach		= cpu_cgroup_attach,
8010 	.exit		= cpu_cgroup_exit,
8011 	.subsys_id	= cpu_cgroup_subsys_id,
8012 	.base_cftypes	= cpu_files,
8013 	.early_init	= 1,
8014 };
8015 
8016 #endif	/* CONFIG_CGROUP_SCHED */
8017 
8018 #ifdef CONFIG_CGROUP_CPUACCT
8019 
8020 /*
8021  * CPU accounting code for task groups.
8022  *
8023  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8024  * (balbir@in.ibm.com).
8025  */
8026 
8027 /* create a new cpu accounting group */
8028 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8029 {
8030 	struct cpuacct *ca;
8031 
8032 	if (!cgrp->parent)
8033 		return &root_cpuacct.css;
8034 
8035 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8036 	if (!ca)
8037 		goto out;
8038 
8039 	ca->cpuusage = alloc_percpu(u64);
8040 	if (!ca->cpuusage)
8041 		goto out_free_ca;
8042 
8043 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8044 	if (!ca->cpustat)
8045 		goto out_free_cpuusage;
8046 
8047 	return &ca->css;
8048 
8049 out_free_cpuusage:
8050 	free_percpu(ca->cpuusage);
8051 out_free_ca:
8052 	kfree(ca);
8053 out:
8054 	return ERR_PTR(-ENOMEM);
8055 }
8056 
8057 /* destroy an existing cpu accounting group */
8058 static void cpuacct_destroy(struct cgroup *cgrp)
8059 {
8060 	struct cpuacct *ca = cgroup_ca(cgrp);
8061 
8062 	free_percpu(ca->cpustat);
8063 	free_percpu(ca->cpuusage);
8064 	kfree(ca);
8065 }
8066 
8067 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8068 {
8069 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8070 	u64 data;
8071 
8072 #ifndef CONFIG_64BIT
8073 	/*
8074 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8075 	 */
8076 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8077 	data = *cpuusage;
8078 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8079 #else
8080 	data = *cpuusage;
8081 #endif
8082 
8083 	return data;
8084 }
8085 
8086 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8087 {
8088 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8089 
8090 #ifndef CONFIG_64BIT
8091 	/*
8092 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8093 	 */
8094 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8095 	*cpuusage = val;
8096 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8097 #else
8098 	*cpuusage = val;
8099 #endif
8100 }
8101 
8102 /* return total cpu usage (in nanoseconds) of a group */
8103 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8104 {
8105 	struct cpuacct *ca = cgroup_ca(cgrp);
8106 	u64 totalcpuusage = 0;
8107 	int i;
8108 
8109 	for_each_present_cpu(i)
8110 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8111 
8112 	return totalcpuusage;
8113 }
8114 
8115 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8116 								u64 reset)
8117 {
8118 	struct cpuacct *ca = cgroup_ca(cgrp);
8119 	int err = 0;
8120 	int i;
8121 
8122 	if (reset) {
8123 		err = -EINVAL;
8124 		goto out;
8125 	}
8126 
8127 	for_each_present_cpu(i)
8128 		cpuacct_cpuusage_write(ca, i, 0);
8129 
8130 out:
8131 	return err;
8132 }
8133 
8134 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8135 				   struct seq_file *m)
8136 {
8137 	struct cpuacct *ca = cgroup_ca(cgroup);
8138 	u64 percpu;
8139 	int i;
8140 
8141 	for_each_present_cpu(i) {
8142 		percpu = cpuacct_cpuusage_read(ca, i);
8143 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8144 	}
8145 	seq_printf(m, "\n");
8146 	return 0;
8147 }
8148 
8149 static const char *cpuacct_stat_desc[] = {
8150 	[CPUACCT_STAT_USER] = "user",
8151 	[CPUACCT_STAT_SYSTEM] = "system",
8152 };
8153 
8154 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8155 			      struct cgroup_map_cb *cb)
8156 {
8157 	struct cpuacct *ca = cgroup_ca(cgrp);
8158 	int cpu;
8159 	s64 val = 0;
8160 
8161 	for_each_online_cpu(cpu) {
8162 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8163 		val += kcpustat->cpustat[CPUTIME_USER];
8164 		val += kcpustat->cpustat[CPUTIME_NICE];
8165 	}
8166 	val = cputime64_to_clock_t(val);
8167 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8168 
8169 	val = 0;
8170 	for_each_online_cpu(cpu) {
8171 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8172 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8173 		val += kcpustat->cpustat[CPUTIME_IRQ];
8174 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8175 	}
8176 
8177 	val = cputime64_to_clock_t(val);
8178 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8179 
8180 	return 0;
8181 }
8182 
8183 static struct cftype files[] = {
8184 	{
8185 		.name = "usage",
8186 		.read_u64 = cpuusage_read,
8187 		.write_u64 = cpuusage_write,
8188 	},
8189 	{
8190 		.name = "usage_percpu",
8191 		.read_seq_string = cpuacct_percpu_seq_read,
8192 	},
8193 	{
8194 		.name = "stat",
8195 		.read_map = cpuacct_stats_show,
8196 	},
8197 	{ }	/* terminate */
8198 };
8199 
8200 /*
8201  * charge this task's execution time to its accounting group.
8202  *
8203  * called with rq->lock held.
8204  */
8205 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8206 {
8207 	struct cpuacct *ca;
8208 	int cpu;
8209 
8210 	if (unlikely(!cpuacct_subsys.active))
8211 		return;
8212 
8213 	cpu = task_cpu(tsk);
8214 
8215 	rcu_read_lock();
8216 
8217 	ca = task_ca(tsk);
8218 
8219 	for (; ca; ca = parent_ca(ca)) {
8220 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8221 		*cpuusage += cputime;
8222 	}
8223 
8224 	rcu_read_unlock();
8225 }
8226 
8227 struct cgroup_subsys cpuacct_subsys = {
8228 	.name = "cpuacct",
8229 	.create = cpuacct_create,
8230 	.destroy = cpuacct_destroy,
8231 	.subsys_id = cpuacct_subsys_id,
8232 	.base_cftypes = files,
8233 };
8234 #endif	/* CONFIG_CGROUP_CPUACCT */
8235