1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 #include "stats.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 #ifdef CONFIG_SCHED_DEBUG 123 /* 124 * Debugging: various feature bits 125 * 126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 127 * sysctl_sched_features, defined in sched.h, to allow constants propagation 128 * at compile time and compiler optimization based on features default. 129 */ 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 #undef SCHED_FEAT 136 137 /* 138 * Print a warning if need_resched is set for the given duration (if 139 * LATENCY_WARN is enabled). 140 * 141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 142 * per boot. 143 */ 144 __read_mostly int sysctl_resched_latency_warn_ms = 100; 145 __read_mostly int sysctl_resched_latency_warn_once = 1; 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 /* 149 * Number of tasks to iterate in a single balance run. 150 * Limited because this is done with IRQs disabled. 151 */ 152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 153 154 __read_mostly int scheduler_running; 155 156 #ifdef CONFIG_SCHED_CORE 157 158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 159 160 /* kernel prio, less is more */ 161 static inline int __task_prio(const struct task_struct *p) 162 { 163 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 164 return -2; 165 166 if (p->dl_server) 167 return -1; /* deadline */ 168 169 if (rt_or_dl_prio(p->prio)) 170 return p->prio; /* [-1, 99] */ 171 172 if (p->sched_class == &idle_sched_class) 173 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 174 175 if (task_on_scx(p)) 176 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 177 178 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 179 } 180 181 /* 182 * l(a,b) 183 * le(a,b) := !l(b,a) 184 * g(a,b) := l(b,a) 185 * ge(a,b) := !l(a,b) 186 */ 187 188 /* real prio, less is less */ 189 static inline bool prio_less(const struct task_struct *a, 190 const struct task_struct *b, bool in_fi) 191 { 192 193 int pa = __task_prio(a), pb = __task_prio(b); 194 195 if (-pa < -pb) 196 return true; 197 198 if (-pb < -pa) 199 return false; 200 201 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 202 const struct sched_dl_entity *a_dl, *b_dl; 203 204 a_dl = &a->dl; 205 /* 206 * Since,'a' and 'b' can be CFS tasks served by DL server, 207 * __task_prio() can return -1 (for DL) even for those. In that 208 * case, get to the dl_server's DL entity. 209 */ 210 if (a->dl_server) 211 a_dl = a->dl_server; 212 213 b_dl = &b->dl; 214 if (b->dl_server) 215 b_dl = b->dl_server; 216 217 return !dl_time_before(a_dl->deadline, b_dl->deadline); 218 } 219 220 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 221 return cfs_prio_less(a, b, in_fi); 222 223 #ifdef CONFIG_SCHED_CLASS_EXT 224 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 225 return scx_prio_less(a, b, in_fi); 226 #endif 227 228 return false; 229 } 230 231 static inline bool __sched_core_less(const struct task_struct *a, 232 const struct task_struct *b) 233 { 234 if (a->core_cookie < b->core_cookie) 235 return true; 236 237 if (a->core_cookie > b->core_cookie) 238 return false; 239 240 /* flip prio, so high prio is leftmost */ 241 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 242 return true; 243 244 return false; 245 } 246 247 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 248 249 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 250 { 251 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 252 } 253 254 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 255 { 256 const struct task_struct *p = __node_2_sc(node); 257 unsigned long cookie = (unsigned long)key; 258 259 if (cookie < p->core_cookie) 260 return -1; 261 262 if (cookie > p->core_cookie) 263 return 1; 264 265 return 0; 266 } 267 268 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 269 { 270 if (p->se.sched_delayed) 271 return; 272 273 rq->core->core_task_seq++; 274 275 if (!p->core_cookie) 276 return; 277 278 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 279 } 280 281 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 282 { 283 if (p->se.sched_delayed) 284 return; 285 286 rq->core->core_task_seq++; 287 288 if (sched_core_enqueued(p)) { 289 rb_erase(&p->core_node, &rq->core_tree); 290 RB_CLEAR_NODE(&p->core_node); 291 } 292 293 /* 294 * Migrating the last task off the cpu, with the cpu in forced idle 295 * state. Reschedule to create an accounting edge for forced idle, 296 * and re-examine whether the core is still in forced idle state. 297 */ 298 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 299 rq->core->core_forceidle_count && rq->curr == rq->idle) 300 resched_curr(rq); 301 } 302 303 static int sched_task_is_throttled(struct task_struct *p, int cpu) 304 { 305 if (p->sched_class->task_is_throttled) 306 return p->sched_class->task_is_throttled(p, cpu); 307 308 return 0; 309 } 310 311 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 312 { 313 struct rb_node *node = &p->core_node; 314 int cpu = task_cpu(p); 315 316 do { 317 node = rb_next(node); 318 if (!node) 319 return NULL; 320 321 p = __node_2_sc(node); 322 if (p->core_cookie != cookie) 323 return NULL; 324 325 } while (sched_task_is_throttled(p, cpu)); 326 327 return p; 328 } 329 330 /* 331 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 332 * If no suitable task is found, NULL will be returned. 333 */ 334 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 335 { 336 struct task_struct *p; 337 struct rb_node *node; 338 339 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 340 if (!node) 341 return NULL; 342 343 p = __node_2_sc(node); 344 if (!sched_task_is_throttled(p, rq->cpu)) 345 return p; 346 347 return sched_core_next(p, cookie); 348 } 349 350 /* 351 * Magic required such that: 352 * 353 * raw_spin_rq_lock(rq); 354 * ... 355 * raw_spin_rq_unlock(rq); 356 * 357 * ends up locking and unlocking the _same_ lock, and all CPUs 358 * always agree on what rq has what lock. 359 * 360 * XXX entirely possible to selectively enable cores, don't bother for now. 361 */ 362 363 static DEFINE_MUTEX(sched_core_mutex); 364 static atomic_t sched_core_count; 365 static struct cpumask sched_core_mask; 366 367 static void sched_core_lock(int cpu, unsigned long *flags) 368 { 369 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 370 int t, i = 0; 371 372 local_irq_save(*flags); 373 for_each_cpu(t, smt_mask) 374 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 375 } 376 377 static void sched_core_unlock(int cpu, unsigned long *flags) 378 { 379 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 380 int t; 381 382 for_each_cpu(t, smt_mask) 383 raw_spin_unlock(&cpu_rq(t)->__lock); 384 local_irq_restore(*flags); 385 } 386 387 static void __sched_core_flip(bool enabled) 388 { 389 unsigned long flags; 390 int cpu, t; 391 392 cpus_read_lock(); 393 394 /* 395 * Toggle the online cores, one by one. 396 */ 397 cpumask_copy(&sched_core_mask, cpu_online_mask); 398 for_each_cpu(cpu, &sched_core_mask) { 399 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 400 401 sched_core_lock(cpu, &flags); 402 403 for_each_cpu(t, smt_mask) 404 cpu_rq(t)->core_enabled = enabled; 405 406 cpu_rq(cpu)->core->core_forceidle_start = 0; 407 408 sched_core_unlock(cpu, &flags); 409 410 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 411 } 412 413 /* 414 * Toggle the offline CPUs. 415 */ 416 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 417 cpu_rq(cpu)->core_enabled = enabled; 418 419 cpus_read_unlock(); 420 } 421 422 static void sched_core_assert_empty(void) 423 { 424 int cpu; 425 426 for_each_possible_cpu(cpu) 427 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 428 } 429 430 static void __sched_core_enable(void) 431 { 432 static_branch_enable(&__sched_core_enabled); 433 /* 434 * Ensure all previous instances of raw_spin_rq_*lock() have finished 435 * and future ones will observe !sched_core_disabled(). 436 */ 437 synchronize_rcu(); 438 __sched_core_flip(true); 439 sched_core_assert_empty(); 440 } 441 442 static void __sched_core_disable(void) 443 { 444 sched_core_assert_empty(); 445 __sched_core_flip(false); 446 static_branch_disable(&__sched_core_enabled); 447 } 448 449 void sched_core_get(void) 450 { 451 if (atomic_inc_not_zero(&sched_core_count)) 452 return; 453 454 mutex_lock(&sched_core_mutex); 455 if (!atomic_read(&sched_core_count)) 456 __sched_core_enable(); 457 458 smp_mb__before_atomic(); 459 atomic_inc(&sched_core_count); 460 mutex_unlock(&sched_core_mutex); 461 } 462 463 static void __sched_core_put(struct work_struct *work) 464 { 465 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 466 __sched_core_disable(); 467 mutex_unlock(&sched_core_mutex); 468 } 469 } 470 471 void sched_core_put(void) 472 { 473 static DECLARE_WORK(_work, __sched_core_put); 474 475 /* 476 * "There can be only one" 477 * 478 * Either this is the last one, or we don't actually need to do any 479 * 'work'. If it is the last *again*, we rely on 480 * WORK_STRUCT_PENDING_BIT. 481 */ 482 if (!atomic_add_unless(&sched_core_count, -1, 1)) 483 schedule_work(&_work); 484 } 485 486 #else /* !CONFIG_SCHED_CORE */ 487 488 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 489 static inline void 490 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 491 492 #endif /* CONFIG_SCHED_CORE */ 493 494 /* 495 * Serialization rules: 496 * 497 * Lock order: 498 * 499 * p->pi_lock 500 * rq->lock 501 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 502 * 503 * rq1->lock 504 * rq2->lock where: rq1 < rq2 505 * 506 * Regular state: 507 * 508 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 509 * local CPU's rq->lock, it optionally removes the task from the runqueue and 510 * always looks at the local rq data structures to find the most eligible task 511 * to run next. 512 * 513 * Task enqueue is also under rq->lock, possibly taken from another CPU. 514 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 515 * the local CPU to avoid bouncing the runqueue state around [ see 516 * ttwu_queue_wakelist() ] 517 * 518 * Task wakeup, specifically wakeups that involve migration, are horribly 519 * complicated to avoid having to take two rq->locks. 520 * 521 * Special state: 522 * 523 * System-calls and anything external will use task_rq_lock() which acquires 524 * both p->pi_lock and rq->lock. As a consequence the state they change is 525 * stable while holding either lock: 526 * 527 * - sched_setaffinity()/ 528 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 529 * - set_user_nice(): p->se.load, p->*prio 530 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 531 * p->se.load, p->rt_priority, 532 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 533 * - sched_setnuma(): p->numa_preferred_nid 534 * - sched_move_task(): p->sched_task_group 535 * - uclamp_update_active() p->uclamp* 536 * 537 * p->state <- TASK_*: 538 * 539 * is changed locklessly using set_current_state(), __set_current_state() or 540 * set_special_state(), see their respective comments, or by 541 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 542 * concurrent self. 543 * 544 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 545 * 546 * is set by activate_task() and cleared by deactivate_task(), under 547 * rq->lock. Non-zero indicates the task is runnable, the special 548 * ON_RQ_MIGRATING state is used for migration without holding both 549 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 550 * 551 * Additionally it is possible to be ->on_rq but still be considered not 552 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 553 * but will be dequeued as soon as they get picked again. See the 554 * task_is_runnable() helper. 555 * 556 * p->on_cpu <- { 0, 1 }: 557 * 558 * is set by prepare_task() and cleared by finish_task() such that it will be 559 * set before p is scheduled-in and cleared after p is scheduled-out, both 560 * under rq->lock. Non-zero indicates the task is running on its CPU. 561 * 562 * [ The astute reader will observe that it is possible for two tasks on one 563 * CPU to have ->on_cpu = 1 at the same time. ] 564 * 565 * task_cpu(p): is changed by set_task_cpu(), the rules are: 566 * 567 * - Don't call set_task_cpu() on a blocked task: 568 * 569 * We don't care what CPU we're not running on, this simplifies hotplug, 570 * the CPU assignment of blocked tasks isn't required to be valid. 571 * 572 * - for try_to_wake_up(), called under p->pi_lock: 573 * 574 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 575 * 576 * - for migration called under rq->lock: 577 * [ see task_on_rq_migrating() in task_rq_lock() ] 578 * 579 * o move_queued_task() 580 * o detach_task() 581 * 582 * - for migration called under double_rq_lock(): 583 * 584 * o __migrate_swap_task() 585 * o push_rt_task() / pull_rt_task() 586 * o push_dl_task() / pull_dl_task() 587 * o dl_task_offline_migration() 588 * 589 */ 590 591 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 592 { 593 raw_spinlock_t *lock; 594 595 /* Matches synchronize_rcu() in __sched_core_enable() */ 596 preempt_disable(); 597 if (sched_core_disabled()) { 598 raw_spin_lock_nested(&rq->__lock, subclass); 599 /* preempt_count *MUST* be > 1 */ 600 preempt_enable_no_resched(); 601 return; 602 } 603 604 for (;;) { 605 lock = __rq_lockp(rq); 606 raw_spin_lock_nested(lock, subclass); 607 if (likely(lock == __rq_lockp(rq))) { 608 /* preempt_count *MUST* be > 1 */ 609 preempt_enable_no_resched(); 610 return; 611 } 612 raw_spin_unlock(lock); 613 } 614 } 615 616 bool raw_spin_rq_trylock(struct rq *rq) 617 { 618 raw_spinlock_t *lock; 619 bool ret; 620 621 /* Matches synchronize_rcu() in __sched_core_enable() */ 622 preempt_disable(); 623 if (sched_core_disabled()) { 624 ret = raw_spin_trylock(&rq->__lock); 625 preempt_enable(); 626 return ret; 627 } 628 629 for (;;) { 630 lock = __rq_lockp(rq); 631 ret = raw_spin_trylock(lock); 632 if (!ret || (likely(lock == __rq_lockp(rq)))) { 633 preempt_enable(); 634 return ret; 635 } 636 raw_spin_unlock(lock); 637 } 638 } 639 640 void raw_spin_rq_unlock(struct rq *rq) 641 { 642 raw_spin_unlock(rq_lockp(rq)); 643 } 644 645 #ifdef CONFIG_SMP 646 /* 647 * double_rq_lock - safely lock two runqueues 648 */ 649 void double_rq_lock(struct rq *rq1, struct rq *rq2) 650 { 651 lockdep_assert_irqs_disabled(); 652 653 if (rq_order_less(rq2, rq1)) 654 swap(rq1, rq2); 655 656 raw_spin_rq_lock(rq1); 657 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 658 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 659 660 double_rq_clock_clear_update(rq1, rq2); 661 } 662 #endif 663 664 /* 665 * __task_rq_lock - lock the rq @p resides on. 666 */ 667 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 668 __acquires(rq->lock) 669 { 670 struct rq *rq; 671 672 lockdep_assert_held(&p->pi_lock); 673 674 for (;;) { 675 rq = task_rq(p); 676 raw_spin_rq_lock(rq); 677 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 678 rq_pin_lock(rq, rf); 679 return rq; 680 } 681 raw_spin_rq_unlock(rq); 682 683 while (unlikely(task_on_rq_migrating(p))) 684 cpu_relax(); 685 } 686 } 687 688 /* 689 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 690 */ 691 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 692 __acquires(p->pi_lock) 693 __acquires(rq->lock) 694 { 695 struct rq *rq; 696 697 for (;;) { 698 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 699 rq = task_rq(p); 700 raw_spin_rq_lock(rq); 701 /* 702 * move_queued_task() task_rq_lock() 703 * 704 * ACQUIRE (rq->lock) 705 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 706 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 707 * [S] ->cpu = new_cpu [L] task_rq() 708 * [L] ->on_rq 709 * RELEASE (rq->lock) 710 * 711 * If we observe the old CPU in task_rq_lock(), the acquire of 712 * the old rq->lock will fully serialize against the stores. 713 * 714 * If we observe the new CPU in task_rq_lock(), the address 715 * dependency headed by '[L] rq = task_rq()' and the acquire 716 * will pair with the WMB to ensure we then also see migrating. 717 */ 718 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 719 rq_pin_lock(rq, rf); 720 return rq; 721 } 722 raw_spin_rq_unlock(rq); 723 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 724 725 while (unlikely(task_on_rq_migrating(p))) 726 cpu_relax(); 727 } 728 } 729 730 /* 731 * RQ-clock updating methods: 732 */ 733 734 static void update_rq_clock_task(struct rq *rq, s64 delta) 735 { 736 /* 737 * In theory, the compile should just see 0 here, and optimize out the call 738 * to sched_rt_avg_update. But I don't trust it... 739 */ 740 s64 __maybe_unused steal = 0, irq_delta = 0; 741 742 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 743 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 744 745 /* 746 * Since irq_time is only updated on {soft,}irq_exit, we might run into 747 * this case when a previous update_rq_clock() happened inside a 748 * {soft,}IRQ region. 749 * 750 * When this happens, we stop ->clock_task and only update the 751 * prev_irq_time stamp to account for the part that fit, so that a next 752 * update will consume the rest. This ensures ->clock_task is 753 * monotonic. 754 * 755 * It does however cause some slight miss-attribution of {soft,}IRQ 756 * time, a more accurate solution would be to update the irq_time using 757 * the current rq->clock timestamp, except that would require using 758 * atomic ops. 759 */ 760 if (irq_delta > delta) 761 irq_delta = delta; 762 763 rq->prev_irq_time += irq_delta; 764 delta -= irq_delta; 765 delayacct_irq(rq->curr, irq_delta); 766 #endif 767 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 768 if (static_key_false((¶virt_steal_rq_enabled))) { 769 steal = paravirt_steal_clock(cpu_of(rq)); 770 steal -= rq->prev_steal_time_rq; 771 772 if (unlikely(steal > delta)) 773 steal = delta; 774 775 rq->prev_steal_time_rq += steal; 776 delta -= steal; 777 } 778 #endif 779 780 rq->clock_task += delta; 781 782 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 783 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 784 update_irq_load_avg(rq, irq_delta + steal); 785 #endif 786 update_rq_clock_pelt(rq, delta); 787 } 788 789 void update_rq_clock(struct rq *rq) 790 { 791 s64 delta; 792 u64 clock; 793 794 lockdep_assert_rq_held(rq); 795 796 if (rq->clock_update_flags & RQCF_ACT_SKIP) 797 return; 798 799 #ifdef CONFIG_SCHED_DEBUG 800 if (sched_feat(WARN_DOUBLE_CLOCK)) 801 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 802 rq->clock_update_flags |= RQCF_UPDATED; 803 #endif 804 clock = sched_clock_cpu(cpu_of(rq)); 805 scx_rq_clock_update(rq, clock); 806 807 delta = clock - rq->clock; 808 if (delta < 0) 809 return; 810 rq->clock += delta; 811 812 update_rq_clock_task(rq, delta); 813 } 814 815 #ifdef CONFIG_SCHED_HRTICK 816 /* 817 * Use HR-timers to deliver accurate preemption points. 818 */ 819 820 static void hrtick_clear(struct rq *rq) 821 { 822 if (hrtimer_active(&rq->hrtick_timer)) 823 hrtimer_cancel(&rq->hrtick_timer); 824 } 825 826 /* 827 * High-resolution timer tick. 828 * Runs from hardirq context with interrupts disabled. 829 */ 830 static enum hrtimer_restart hrtick(struct hrtimer *timer) 831 { 832 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 833 struct rq_flags rf; 834 835 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 836 837 rq_lock(rq, &rf); 838 update_rq_clock(rq); 839 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 840 rq_unlock(rq, &rf); 841 842 return HRTIMER_NORESTART; 843 } 844 845 #ifdef CONFIG_SMP 846 847 static void __hrtick_restart(struct rq *rq) 848 { 849 struct hrtimer *timer = &rq->hrtick_timer; 850 ktime_t time = rq->hrtick_time; 851 852 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 853 } 854 855 /* 856 * called from hardirq (IPI) context 857 */ 858 static void __hrtick_start(void *arg) 859 { 860 struct rq *rq = arg; 861 struct rq_flags rf; 862 863 rq_lock(rq, &rf); 864 __hrtick_restart(rq); 865 rq_unlock(rq, &rf); 866 } 867 868 /* 869 * Called to set the hrtick timer state. 870 * 871 * called with rq->lock held and IRQs disabled 872 */ 873 void hrtick_start(struct rq *rq, u64 delay) 874 { 875 struct hrtimer *timer = &rq->hrtick_timer; 876 s64 delta; 877 878 /* 879 * Don't schedule slices shorter than 10000ns, that just 880 * doesn't make sense and can cause timer DoS. 881 */ 882 delta = max_t(s64, delay, 10000LL); 883 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 884 885 if (rq == this_rq()) 886 __hrtick_restart(rq); 887 else 888 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 889 } 890 891 #else 892 /* 893 * Called to set the hrtick timer state. 894 * 895 * called with rq->lock held and IRQs disabled 896 */ 897 void hrtick_start(struct rq *rq, u64 delay) 898 { 899 /* 900 * Don't schedule slices shorter than 10000ns, that just 901 * doesn't make sense. Rely on vruntime for fairness. 902 */ 903 delay = max_t(u64, delay, 10000LL); 904 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 905 HRTIMER_MODE_REL_PINNED_HARD); 906 } 907 908 #endif /* CONFIG_SMP */ 909 910 static void hrtick_rq_init(struct rq *rq) 911 { 912 #ifdef CONFIG_SMP 913 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 914 #endif 915 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 916 rq->hrtick_timer.function = hrtick; 917 } 918 #else /* CONFIG_SCHED_HRTICK */ 919 static inline void hrtick_clear(struct rq *rq) 920 { 921 } 922 923 static inline void hrtick_rq_init(struct rq *rq) 924 { 925 } 926 #endif /* CONFIG_SCHED_HRTICK */ 927 928 /* 929 * try_cmpxchg based fetch_or() macro so it works for different integer types: 930 */ 931 #define fetch_or(ptr, mask) \ 932 ({ \ 933 typeof(ptr) _ptr = (ptr); \ 934 typeof(mask) _mask = (mask); \ 935 typeof(*_ptr) _val = *_ptr; \ 936 \ 937 do { \ 938 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 939 _val; \ 940 }) 941 942 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 943 /* 944 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 945 * this avoids any races wrt polling state changes and thereby avoids 946 * spurious IPIs. 947 */ 948 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 949 { 950 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 951 } 952 953 /* 954 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 955 * 956 * If this returns true, then the idle task promises to call 957 * sched_ttwu_pending() and reschedule soon. 958 */ 959 static bool set_nr_if_polling(struct task_struct *p) 960 { 961 struct thread_info *ti = task_thread_info(p); 962 typeof(ti->flags) val = READ_ONCE(ti->flags); 963 964 do { 965 if (!(val & _TIF_POLLING_NRFLAG)) 966 return false; 967 if (val & _TIF_NEED_RESCHED) 968 return true; 969 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 970 971 return true; 972 } 973 974 #else 975 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 976 { 977 set_ti_thread_flag(ti, tif); 978 return true; 979 } 980 981 #ifdef CONFIG_SMP 982 static inline bool set_nr_if_polling(struct task_struct *p) 983 { 984 return false; 985 } 986 #endif 987 #endif 988 989 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 990 { 991 struct wake_q_node *node = &task->wake_q; 992 993 /* 994 * Atomically grab the task, if ->wake_q is !nil already it means 995 * it's already queued (either by us or someone else) and will get the 996 * wakeup due to that. 997 * 998 * In order to ensure that a pending wakeup will observe our pending 999 * state, even in the failed case, an explicit smp_mb() must be used. 1000 */ 1001 smp_mb__before_atomic(); 1002 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1003 return false; 1004 1005 /* 1006 * The head is context local, there can be no concurrency. 1007 */ 1008 *head->lastp = node; 1009 head->lastp = &node->next; 1010 return true; 1011 } 1012 1013 /** 1014 * wake_q_add() - queue a wakeup for 'later' waking. 1015 * @head: the wake_q_head to add @task to 1016 * @task: the task to queue for 'later' wakeup 1017 * 1018 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1019 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1020 * instantly. 1021 * 1022 * This function must be used as-if it were wake_up_process(); IOW the task 1023 * must be ready to be woken at this location. 1024 */ 1025 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1026 { 1027 if (__wake_q_add(head, task)) 1028 get_task_struct(task); 1029 } 1030 1031 /** 1032 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1033 * @head: the wake_q_head to add @task to 1034 * @task: the task to queue for 'later' wakeup 1035 * 1036 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1037 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1038 * instantly. 1039 * 1040 * This function must be used as-if it were wake_up_process(); IOW the task 1041 * must be ready to be woken at this location. 1042 * 1043 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1044 * that already hold reference to @task can call the 'safe' version and trust 1045 * wake_q to do the right thing depending whether or not the @task is already 1046 * queued for wakeup. 1047 */ 1048 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1049 { 1050 if (!__wake_q_add(head, task)) 1051 put_task_struct(task); 1052 } 1053 1054 void wake_up_q(struct wake_q_head *head) 1055 { 1056 struct wake_q_node *node = head->first; 1057 1058 while (node != WAKE_Q_TAIL) { 1059 struct task_struct *task; 1060 1061 task = container_of(node, struct task_struct, wake_q); 1062 /* Task can safely be re-inserted now: */ 1063 node = node->next; 1064 task->wake_q.next = NULL; 1065 1066 /* 1067 * wake_up_process() executes a full barrier, which pairs with 1068 * the queueing in wake_q_add() so as not to miss wakeups. 1069 */ 1070 wake_up_process(task); 1071 put_task_struct(task); 1072 } 1073 } 1074 1075 /* 1076 * resched_curr - mark rq's current task 'to be rescheduled now'. 1077 * 1078 * On UP this means the setting of the need_resched flag, on SMP it 1079 * might also involve a cross-CPU call to trigger the scheduler on 1080 * the target CPU. 1081 */ 1082 static void __resched_curr(struct rq *rq, int tif) 1083 { 1084 struct task_struct *curr = rq->curr; 1085 struct thread_info *cti = task_thread_info(curr); 1086 int cpu; 1087 1088 lockdep_assert_rq_held(rq); 1089 1090 /* 1091 * Always immediately preempt the idle task; no point in delaying doing 1092 * actual work. 1093 */ 1094 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1095 tif = TIF_NEED_RESCHED; 1096 1097 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1098 return; 1099 1100 cpu = cpu_of(rq); 1101 1102 if (cpu == smp_processor_id()) { 1103 set_ti_thread_flag(cti, tif); 1104 if (tif == TIF_NEED_RESCHED) 1105 set_preempt_need_resched(); 1106 return; 1107 } 1108 1109 if (set_nr_and_not_polling(cti, tif)) { 1110 if (tif == TIF_NEED_RESCHED) 1111 smp_send_reschedule(cpu); 1112 } else { 1113 trace_sched_wake_idle_without_ipi(cpu); 1114 } 1115 } 1116 1117 void resched_curr(struct rq *rq) 1118 { 1119 __resched_curr(rq, TIF_NEED_RESCHED); 1120 } 1121 1122 #ifdef CONFIG_PREEMPT_DYNAMIC 1123 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1124 static __always_inline bool dynamic_preempt_lazy(void) 1125 { 1126 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1127 } 1128 #else 1129 static __always_inline bool dynamic_preempt_lazy(void) 1130 { 1131 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1132 } 1133 #endif 1134 1135 static __always_inline int get_lazy_tif_bit(void) 1136 { 1137 if (dynamic_preempt_lazy()) 1138 return TIF_NEED_RESCHED_LAZY; 1139 1140 return TIF_NEED_RESCHED; 1141 } 1142 1143 void resched_curr_lazy(struct rq *rq) 1144 { 1145 __resched_curr(rq, get_lazy_tif_bit()); 1146 } 1147 1148 void resched_cpu(int cpu) 1149 { 1150 struct rq *rq = cpu_rq(cpu); 1151 unsigned long flags; 1152 1153 raw_spin_rq_lock_irqsave(rq, flags); 1154 if (cpu_online(cpu) || cpu == smp_processor_id()) 1155 resched_curr(rq); 1156 raw_spin_rq_unlock_irqrestore(rq, flags); 1157 } 1158 1159 #ifdef CONFIG_SMP 1160 #ifdef CONFIG_NO_HZ_COMMON 1161 /* 1162 * In the semi idle case, use the nearest busy CPU for migrating timers 1163 * from an idle CPU. This is good for power-savings. 1164 * 1165 * We don't do similar optimization for completely idle system, as 1166 * selecting an idle CPU will add more delays to the timers than intended 1167 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1168 */ 1169 int get_nohz_timer_target(void) 1170 { 1171 int i, cpu = smp_processor_id(), default_cpu = -1; 1172 struct sched_domain *sd; 1173 const struct cpumask *hk_mask; 1174 1175 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1176 if (!idle_cpu(cpu)) 1177 return cpu; 1178 default_cpu = cpu; 1179 } 1180 1181 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1182 1183 guard(rcu)(); 1184 1185 for_each_domain(cpu, sd) { 1186 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1187 if (cpu == i) 1188 continue; 1189 1190 if (!idle_cpu(i)) 1191 return i; 1192 } 1193 } 1194 1195 if (default_cpu == -1) 1196 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1197 1198 return default_cpu; 1199 } 1200 1201 /* 1202 * When add_timer_on() enqueues a timer into the timer wheel of an 1203 * idle CPU then this timer might expire before the next timer event 1204 * which is scheduled to wake up that CPU. In case of a completely 1205 * idle system the next event might even be infinite time into the 1206 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1207 * leaves the inner idle loop so the newly added timer is taken into 1208 * account when the CPU goes back to idle and evaluates the timer 1209 * wheel for the next timer event. 1210 */ 1211 static void wake_up_idle_cpu(int cpu) 1212 { 1213 struct rq *rq = cpu_rq(cpu); 1214 1215 if (cpu == smp_processor_id()) 1216 return; 1217 1218 /* 1219 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1220 * part of the idle loop. This forces an exit from the idle loop 1221 * and a round trip to schedule(). Now this could be optimized 1222 * because a simple new idle loop iteration is enough to 1223 * re-evaluate the next tick. Provided some re-ordering of tick 1224 * nohz functions that would need to follow TIF_NR_POLLING 1225 * clearing: 1226 * 1227 * - On most architectures, a simple fetch_or on ti::flags with a 1228 * "0" value would be enough to know if an IPI needs to be sent. 1229 * 1230 * - x86 needs to perform a last need_resched() check between 1231 * monitor and mwait which doesn't take timers into account. 1232 * There a dedicated TIF_TIMER flag would be required to 1233 * fetch_or here and be checked along with TIF_NEED_RESCHED 1234 * before mwait(). 1235 * 1236 * However, remote timer enqueue is not such a frequent event 1237 * and testing of the above solutions didn't appear to report 1238 * much benefits. 1239 */ 1240 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1241 smp_send_reschedule(cpu); 1242 else 1243 trace_sched_wake_idle_without_ipi(cpu); 1244 } 1245 1246 static bool wake_up_full_nohz_cpu(int cpu) 1247 { 1248 /* 1249 * We just need the target to call irq_exit() and re-evaluate 1250 * the next tick. The nohz full kick at least implies that. 1251 * If needed we can still optimize that later with an 1252 * empty IRQ. 1253 */ 1254 if (cpu_is_offline(cpu)) 1255 return true; /* Don't try to wake offline CPUs. */ 1256 if (tick_nohz_full_cpu(cpu)) { 1257 if (cpu != smp_processor_id() || 1258 tick_nohz_tick_stopped()) 1259 tick_nohz_full_kick_cpu(cpu); 1260 return true; 1261 } 1262 1263 return false; 1264 } 1265 1266 /* 1267 * Wake up the specified CPU. If the CPU is going offline, it is the 1268 * caller's responsibility to deal with the lost wakeup, for example, 1269 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1270 */ 1271 void wake_up_nohz_cpu(int cpu) 1272 { 1273 if (!wake_up_full_nohz_cpu(cpu)) 1274 wake_up_idle_cpu(cpu); 1275 } 1276 1277 static void nohz_csd_func(void *info) 1278 { 1279 struct rq *rq = info; 1280 int cpu = cpu_of(rq); 1281 unsigned int flags; 1282 1283 /* 1284 * Release the rq::nohz_csd. 1285 */ 1286 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1287 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1288 1289 rq->idle_balance = idle_cpu(cpu); 1290 if (rq->idle_balance && !need_resched()) { 1291 rq->nohz_idle_balance = flags; 1292 raise_softirq_irqoff(SCHED_SOFTIRQ); 1293 } 1294 } 1295 1296 #endif /* CONFIG_NO_HZ_COMMON */ 1297 1298 #ifdef CONFIG_NO_HZ_FULL 1299 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1300 { 1301 if (rq->nr_running != 1) 1302 return false; 1303 1304 if (p->sched_class != &fair_sched_class) 1305 return false; 1306 1307 if (!task_on_rq_queued(p)) 1308 return false; 1309 1310 return true; 1311 } 1312 1313 bool sched_can_stop_tick(struct rq *rq) 1314 { 1315 int fifo_nr_running; 1316 1317 /* Deadline tasks, even if single, need the tick */ 1318 if (rq->dl.dl_nr_running) 1319 return false; 1320 1321 /* 1322 * If there are more than one RR tasks, we need the tick to affect the 1323 * actual RR behaviour. 1324 */ 1325 if (rq->rt.rr_nr_running) { 1326 if (rq->rt.rr_nr_running == 1) 1327 return true; 1328 else 1329 return false; 1330 } 1331 1332 /* 1333 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1334 * forced preemption between FIFO tasks. 1335 */ 1336 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1337 if (fifo_nr_running) 1338 return true; 1339 1340 /* 1341 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1342 * left. For CFS, if there's more than one we need the tick for 1343 * involuntary preemption. For SCX, ask. 1344 */ 1345 if (scx_enabled() && !scx_can_stop_tick(rq)) 1346 return false; 1347 1348 if (rq->cfs.nr_running > 1) 1349 return false; 1350 1351 /* 1352 * If there is one task and it has CFS runtime bandwidth constraints 1353 * and it's on the cpu now we don't want to stop the tick. 1354 * This check prevents clearing the bit if a newly enqueued task here is 1355 * dequeued by migrating while the constrained task continues to run. 1356 * E.g. going from 2->1 without going through pick_next_task(). 1357 */ 1358 if (__need_bw_check(rq, rq->curr)) { 1359 if (cfs_task_bw_constrained(rq->curr)) 1360 return false; 1361 } 1362 1363 return true; 1364 } 1365 #endif /* CONFIG_NO_HZ_FULL */ 1366 #endif /* CONFIG_SMP */ 1367 1368 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1369 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1370 /* 1371 * Iterate task_group tree rooted at *from, calling @down when first entering a 1372 * node and @up when leaving it for the final time. 1373 * 1374 * Caller must hold rcu_lock or sufficient equivalent. 1375 */ 1376 int walk_tg_tree_from(struct task_group *from, 1377 tg_visitor down, tg_visitor up, void *data) 1378 { 1379 struct task_group *parent, *child; 1380 int ret; 1381 1382 parent = from; 1383 1384 down: 1385 ret = (*down)(parent, data); 1386 if (ret) 1387 goto out; 1388 list_for_each_entry_rcu(child, &parent->children, siblings) { 1389 parent = child; 1390 goto down; 1391 1392 up: 1393 continue; 1394 } 1395 ret = (*up)(parent, data); 1396 if (ret || parent == from) 1397 goto out; 1398 1399 child = parent; 1400 parent = parent->parent; 1401 if (parent) 1402 goto up; 1403 out: 1404 return ret; 1405 } 1406 1407 int tg_nop(struct task_group *tg, void *data) 1408 { 1409 return 0; 1410 } 1411 #endif 1412 1413 void set_load_weight(struct task_struct *p, bool update_load) 1414 { 1415 int prio = p->static_prio - MAX_RT_PRIO; 1416 struct load_weight lw; 1417 1418 if (task_has_idle_policy(p)) { 1419 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1420 lw.inv_weight = WMULT_IDLEPRIO; 1421 } else { 1422 lw.weight = scale_load(sched_prio_to_weight[prio]); 1423 lw.inv_weight = sched_prio_to_wmult[prio]; 1424 } 1425 1426 /* 1427 * SCHED_OTHER tasks have to update their load when changing their 1428 * weight 1429 */ 1430 if (update_load && p->sched_class->reweight_task) 1431 p->sched_class->reweight_task(task_rq(p), p, &lw); 1432 else 1433 p->se.load = lw; 1434 } 1435 1436 #ifdef CONFIG_UCLAMP_TASK 1437 /* 1438 * Serializes updates of utilization clamp values 1439 * 1440 * The (slow-path) user-space triggers utilization clamp value updates which 1441 * can require updates on (fast-path) scheduler's data structures used to 1442 * support enqueue/dequeue operations. 1443 * While the per-CPU rq lock protects fast-path update operations, user-space 1444 * requests are serialized using a mutex to reduce the risk of conflicting 1445 * updates or API abuses. 1446 */ 1447 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1448 1449 /* Max allowed minimum utilization */ 1450 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1451 1452 /* Max allowed maximum utilization */ 1453 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1454 1455 /* 1456 * By default RT tasks run at the maximum performance point/capacity of the 1457 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1458 * SCHED_CAPACITY_SCALE. 1459 * 1460 * This knob allows admins to change the default behavior when uclamp is being 1461 * used. In battery powered devices, particularly, running at the maximum 1462 * capacity and frequency will increase energy consumption and shorten the 1463 * battery life. 1464 * 1465 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1466 * 1467 * This knob will not override the system default sched_util_clamp_min defined 1468 * above. 1469 */ 1470 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1471 1472 /* All clamps are required to be less or equal than these values */ 1473 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1474 1475 /* 1476 * This static key is used to reduce the uclamp overhead in the fast path. It 1477 * primarily disables the call to uclamp_rq_{inc, dec}() in 1478 * enqueue/dequeue_task(). 1479 * 1480 * This allows users to continue to enable uclamp in their kernel config with 1481 * minimum uclamp overhead in the fast path. 1482 * 1483 * As soon as userspace modifies any of the uclamp knobs, the static key is 1484 * enabled, since we have an actual users that make use of uclamp 1485 * functionality. 1486 * 1487 * The knobs that would enable this static key are: 1488 * 1489 * * A task modifying its uclamp value with sched_setattr(). 1490 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1491 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1492 */ 1493 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1494 1495 static inline unsigned int 1496 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1497 unsigned int clamp_value) 1498 { 1499 /* 1500 * Avoid blocked utilization pushing up the frequency when we go 1501 * idle (which drops the max-clamp) by retaining the last known 1502 * max-clamp. 1503 */ 1504 if (clamp_id == UCLAMP_MAX) { 1505 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1506 return clamp_value; 1507 } 1508 1509 return uclamp_none(UCLAMP_MIN); 1510 } 1511 1512 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1513 unsigned int clamp_value) 1514 { 1515 /* Reset max-clamp retention only on idle exit */ 1516 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1517 return; 1518 1519 uclamp_rq_set(rq, clamp_id, clamp_value); 1520 } 1521 1522 static inline 1523 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1524 unsigned int clamp_value) 1525 { 1526 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1527 int bucket_id = UCLAMP_BUCKETS - 1; 1528 1529 /* 1530 * Since both min and max clamps are max aggregated, find the 1531 * top most bucket with tasks in. 1532 */ 1533 for ( ; bucket_id >= 0; bucket_id--) { 1534 if (!bucket[bucket_id].tasks) 1535 continue; 1536 return bucket[bucket_id].value; 1537 } 1538 1539 /* No tasks -- default clamp values */ 1540 return uclamp_idle_value(rq, clamp_id, clamp_value); 1541 } 1542 1543 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1544 { 1545 unsigned int default_util_min; 1546 struct uclamp_se *uc_se; 1547 1548 lockdep_assert_held(&p->pi_lock); 1549 1550 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1551 1552 /* Only sync if user didn't override the default */ 1553 if (uc_se->user_defined) 1554 return; 1555 1556 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1557 uclamp_se_set(uc_se, default_util_min, false); 1558 } 1559 1560 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1561 { 1562 if (!rt_task(p)) 1563 return; 1564 1565 /* Protect updates to p->uclamp_* */ 1566 guard(task_rq_lock)(p); 1567 __uclamp_update_util_min_rt_default(p); 1568 } 1569 1570 static inline struct uclamp_se 1571 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1572 { 1573 /* Copy by value as we could modify it */ 1574 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1575 #ifdef CONFIG_UCLAMP_TASK_GROUP 1576 unsigned int tg_min, tg_max, value; 1577 1578 /* 1579 * Tasks in autogroups or root task group will be 1580 * restricted by system defaults. 1581 */ 1582 if (task_group_is_autogroup(task_group(p))) 1583 return uc_req; 1584 if (task_group(p) == &root_task_group) 1585 return uc_req; 1586 1587 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1588 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1589 value = uc_req.value; 1590 value = clamp(value, tg_min, tg_max); 1591 uclamp_se_set(&uc_req, value, false); 1592 #endif 1593 1594 return uc_req; 1595 } 1596 1597 /* 1598 * The effective clamp bucket index of a task depends on, by increasing 1599 * priority: 1600 * - the task specific clamp value, when explicitly requested from userspace 1601 * - the task group effective clamp value, for tasks not either in the root 1602 * group or in an autogroup 1603 * - the system default clamp value, defined by the sysadmin 1604 */ 1605 static inline struct uclamp_se 1606 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1607 { 1608 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1609 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1610 1611 /* System default restrictions always apply */ 1612 if (unlikely(uc_req.value > uc_max.value)) 1613 return uc_max; 1614 1615 return uc_req; 1616 } 1617 1618 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1619 { 1620 struct uclamp_se uc_eff; 1621 1622 /* Task currently refcounted: use back-annotated (effective) value */ 1623 if (p->uclamp[clamp_id].active) 1624 return (unsigned long)p->uclamp[clamp_id].value; 1625 1626 uc_eff = uclamp_eff_get(p, clamp_id); 1627 1628 return (unsigned long)uc_eff.value; 1629 } 1630 1631 /* 1632 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1633 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1634 * updates the rq's clamp value if required. 1635 * 1636 * Tasks can have a task-specific value requested from user-space, track 1637 * within each bucket the maximum value for tasks refcounted in it. 1638 * This "local max aggregation" allows to track the exact "requested" value 1639 * for each bucket when all its RUNNABLE tasks require the same clamp. 1640 */ 1641 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1642 enum uclamp_id clamp_id) 1643 { 1644 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1645 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1646 struct uclamp_bucket *bucket; 1647 1648 lockdep_assert_rq_held(rq); 1649 1650 /* Update task effective clamp */ 1651 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1652 1653 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1654 bucket->tasks++; 1655 uc_se->active = true; 1656 1657 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1658 1659 /* 1660 * Local max aggregation: rq buckets always track the max 1661 * "requested" clamp value of its RUNNABLE tasks. 1662 */ 1663 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1664 bucket->value = uc_se->value; 1665 1666 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1667 uclamp_rq_set(rq, clamp_id, uc_se->value); 1668 } 1669 1670 /* 1671 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1672 * is released. If this is the last task reference counting the rq's max 1673 * active clamp value, then the rq's clamp value is updated. 1674 * 1675 * Both refcounted tasks and rq's cached clamp values are expected to be 1676 * always valid. If it's detected they are not, as defensive programming, 1677 * enforce the expected state and warn. 1678 */ 1679 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1680 enum uclamp_id clamp_id) 1681 { 1682 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1683 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1684 struct uclamp_bucket *bucket; 1685 unsigned int bkt_clamp; 1686 unsigned int rq_clamp; 1687 1688 lockdep_assert_rq_held(rq); 1689 1690 /* 1691 * If sched_uclamp_used was enabled after task @p was enqueued, 1692 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1693 * 1694 * In this case the uc_se->active flag should be false since no uclamp 1695 * accounting was performed at enqueue time and we can just return 1696 * here. 1697 * 1698 * Need to be careful of the following enqueue/dequeue ordering 1699 * problem too 1700 * 1701 * enqueue(taskA) 1702 * // sched_uclamp_used gets enabled 1703 * enqueue(taskB) 1704 * dequeue(taskA) 1705 * // Must not decrement bucket->tasks here 1706 * dequeue(taskB) 1707 * 1708 * where we could end up with stale data in uc_se and 1709 * bucket[uc_se->bucket_id]. 1710 * 1711 * The following check here eliminates the possibility of such race. 1712 */ 1713 if (unlikely(!uc_se->active)) 1714 return; 1715 1716 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1717 1718 SCHED_WARN_ON(!bucket->tasks); 1719 if (likely(bucket->tasks)) 1720 bucket->tasks--; 1721 1722 uc_se->active = false; 1723 1724 /* 1725 * Keep "local max aggregation" simple and accept to (possibly) 1726 * overboost some RUNNABLE tasks in the same bucket. 1727 * The rq clamp bucket value is reset to its base value whenever 1728 * there are no more RUNNABLE tasks refcounting it. 1729 */ 1730 if (likely(bucket->tasks)) 1731 return; 1732 1733 rq_clamp = uclamp_rq_get(rq, clamp_id); 1734 /* 1735 * Defensive programming: this should never happen. If it happens, 1736 * e.g. due to future modification, warn and fix up the expected value. 1737 */ 1738 SCHED_WARN_ON(bucket->value > rq_clamp); 1739 if (bucket->value >= rq_clamp) { 1740 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1741 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1742 } 1743 } 1744 1745 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1746 { 1747 enum uclamp_id clamp_id; 1748 1749 /* 1750 * Avoid any overhead until uclamp is actually used by the userspace. 1751 * 1752 * The condition is constructed such that a NOP is generated when 1753 * sched_uclamp_used is disabled. 1754 */ 1755 if (!static_branch_unlikely(&sched_uclamp_used)) 1756 return; 1757 1758 if (unlikely(!p->sched_class->uclamp_enabled)) 1759 return; 1760 1761 if (p->se.sched_delayed) 1762 return; 1763 1764 for_each_clamp_id(clamp_id) 1765 uclamp_rq_inc_id(rq, p, clamp_id); 1766 1767 /* Reset clamp idle holding when there is one RUNNABLE task */ 1768 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1769 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1770 } 1771 1772 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1773 { 1774 enum uclamp_id clamp_id; 1775 1776 /* 1777 * Avoid any overhead until uclamp is actually used by the userspace. 1778 * 1779 * The condition is constructed such that a NOP is generated when 1780 * sched_uclamp_used is disabled. 1781 */ 1782 if (!static_branch_unlikely(&sched_uclamp_used)) 1783 return; 1784 1785 if (unlikely(!p->sched_class->uclamp_enabled)) 1786 return; 1787 1788 if (p->se.sched_delayed) 1789 return; 1790 1791 for_each_clamp_id(clamp_id) 1792 uclamp_rq_dec_id(rq, p, clamp_id); 1793 } 1794 1795 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1796 enum uclamp_id clamp_id) 1797 { 1798 if (!p->uclamp[clamp_id].active) 1799 return; 1800 1801 uclamp_rq_dec_id(rq, p, clamp_id); 1802 uclamp_rq_inc_id(rq, p, clamp_id); 1803 1804 /* 1805 * Make sure to clear the idle flag if we've transiently reached 0 1806 * active tasks on rq. 1807 */ 1808 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1809 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1810 } 1811 1812 static inline void 1813 uclamp_update_active(struct task_struct *p) 1814 { 1815 enum uclamp_id clamp_id; 1816 struct rq_flags rf; 1817 struct rq *rq; 1818 1819 /* 1820 * Lock the task and the rq where the task is (or was) queued. 1821 * 1822 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1823 * price to pay to safely serialize util_{min,max} updates with 1824 * enqueues, dequeues and migration operations. 1825 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1826 */ 1827 rq = task_rq_lock(p, &rf); 1828 1829 /* 1830 * Setting the clamp bucket is serialized by task_rq_lock(). 1831 * If the task is not yet RUNNABLE and its task_struct is not 1832 * affecting a valid clamp bucket, the next time it's enqueued, 1833 * it will already see the updated clamp bucket value. 1834 */ 1835 for_each_clamp_id(clamp_id) 1836 uclamp_rq_reinc_id(rq, p, clamp_id); 1837 1838 task_rq_unlock(rq, p, &rf); 1839 } 1840 1841 #ifdef CONFIG_UCLAMP_TASK_GROUP 1842 static inline void 1843 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1844 { 1845 struct css_task_iter it; 1846 struct task_struct *p; 1847 1848 css_task_iter_start(css, 0, &it); 1849 while ((p = css_task_iter_next(&it))) 1850 uclamp_update_active(p); 1851 css_task_iter_end(&it); 1852 } 1853 1854 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1855 #endif 1856 1857 #ifdef CONFIG_SYSCTL 1858 #ifdef CONFIG_UCLAMP_TASK_GROUP 1859 static void uclamp_update_root_tg(void) 1860 { 1861 struct task_group *tg = &root_task_group; 1862 1863 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1864 sysctl_sched_uclamp_util_min, false); 1865 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1866 sysctl_sched_uclamp_util_max, false); 1867 1868 guard(rcu)(); 1869 cpu_util_update_eff(&root_task_group.css); 1870 } 1871 #else 1872 static void uclamp_update_root_tg(void) { } 1873 #endif 1874 1875 static void uclamp_sync_util_min_rt_default(void) 1876 { 1877 struct task_struct *g, *p; 1878 1879 /* 1880 * copy_process() sysctl_uclamp 1881 * uclamp_min_rt = X; 1882 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1883 * // link thread smp_mb__after_spinlock() 1884 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1885 * sched_post_fork() for_each_process_thread() 1886 * __uclamp_sync_rt() __uclamp_sync_rt() 1887 * 1888 * Ensures that either sched_post_fork() will observe the new 1889 * uclamp_min_rt or for_each_process_thread() will observe the new 1890 * task. 1891 */ 1892 read_lock(&tasklist_lock); 1893 smp_mb__after_spinlock(); 1894 read_unlock(&tasklist_lock); 1895 1896 guard(rcu)(); 1897 for_each_process_thread(g, p) 1898 uclamp_update_util_min_rt_default(p); 1899 } 1900 1901 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1902 void *buffer, size_t *lenp, loff_t *ppos) 1903 { 1904 bool update_root_tg = false; 1905 int old_min, old_max, old_min_rt; 1906 int result; 1907 1908 guard(mutex)(&uclamp_mutex); 1909 1910 old_min = sysctl_sched_uclamp_util_min; 1911 old_max = sysctl_sched_uclamp_util_max; 1912 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1913 1914 result = proc_dointvec(table, write, buffer, lenp, ppos); 1915 if (result) 1916 goto undo; 1917 if (!write) 1918 return 0; 1919 1920 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1921 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1922 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1923 1924 result = -EINVAL; 1925 goto undo; 1926 } 1927 1928 if (old_min != sysctl_sched_uclamp_util_min) { 1929 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1930 sysctl_sched_uclamp_util_min, false); 1931 update_root_tg = true; 1932 } 1933 if (old_max != sysctl_sched_uclamp_util_max) { 1934 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1935 sysctl_sched_uclamp_util_max, false); 1936 update_root_tg = true; 1937 } 1938 1939 if (update_root_tg) { 1940 static_branch_enable(&sched_uclamp_used); 1941 uclamp_update_root_tg(); 1942 } 1943 1944 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1945 static_branch_enable(&sched_uclamp_used); 1946 uclamp_sync_util_min_rt_default(); 1947 } 1948 1949 /* 1950 * We update all RUNNABLE tasks only when task groups are in use. 1951 * Otherwise, keep it simple and do just a lazy update at each next 1952 * task enqueue time. 1953 */ 1954 return 0; 1955 1956 undo: 1957 sysctl_sched_uclamp_util_min = old_min; 1958 sysctl_sched_uclamp_util_max = old_max; 1959 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1960 return result; 1961 } 1962 #endif 1963 1964 static void uclamp_fork(struct task_struct *p) 1965 { 1966 enum uclamp_id clamp_id; 1967 1968 /* 1969 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1970 * as the task is still at its early fork stages. 1971 */ 1972 for_each_clamp_id(clamp_id) 1973 p->uclamp[clamp_id].active = false; 1974 1975 if (likely(!p->sched_reset_on_fork)) 1976 return; 1977 1978 for_each_clamp_id(clamp_id) { 1979 uclamp_se_set(&p->uclamp_req[clamp_id], 1980 uclamp_none(clamp_id), false); 1981 } 1982 } 1983 1984 static void uclamp_post_fork(struct task_struct *p) 1985 { 1986 uclamp_update_util_min_rt_default(p); 1987 } 1988 1989 static void __init init_uclamp_rq(struct rq *rq) 1990 { 1991 enum uclamp_id clamp_id; 1992 struct uclamp_rq *uc_rq = rq->uclamp; 1993 1994 for_each_clamp_id(clamp_id) { 1995 uc_rq[clamp_id] = (struct uclamp_rq) { 1996 .value = uclamp_none(clamp_id) 1997 }; 1998 } 1999 2000 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2001 } 2002 2003 static void __init init_uclamp(void) 2004 { 2005 struct uclamp_se uc_max = {}; 2006 enum uclamp_id clamp_id; 2007 int cpu; 2008 2009 for_each_possible_cpu(cpu) 2010 init_uclamp_rq(cpu_rq(cpu)); 2011 2012 for_each_clamp_id(clamp_id) { 2013 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2014 uclamp_none(clamp_id), false); 2015 } 2016 2017 /* System defaults allow max clamp values for both indexes */ 2018 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2019 for_each_clamp_id(clamp_id) { 2020 uclamp_default[clamp_id] = uc_max; 2021 #ifdef CONFIG_UCLAMP_TASK_GROUP 2022 root_task_group.uclamp_req[clamp_id] = uc_max; 2023 root_task_group.uclamp[clamp_id] = uc_max; 2024 #endif 2025 } 2026 } 2027 2028 #else /* !CONFIG_UCLAMP_TASK */ 2029 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2030 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2031 static inline void uclamp_fork(struct task_struct *p) { } 2032 static inline void uclamp_post_fork(struct task_struct *p) { } 2033 static inline void init_uclamp(void) { } 2034 #endif /* CONFIG_UCLAMP_TASK */ 2035 2036 bool sched_task_on_rq(struct task_struct *p) 2037 { 2038 return task_on_rq_queued(p); 2039 } 2040 2041 unsigned long get_wchan(struct task_struct *p) 2042 { 2043 unsigned long ip = 0; 2044 unsigned int state; 2045 2046 if (!p || p == current) 2047 return 0; 2048 2049 /* Only get wchan if task is blocked and we can keep it that way. */ 2050 raw_spin_lock_irq(&p->pi_lock); 2051 state = READ_ONCE(p->__state); 2052 smp_rmb(); /* see try_to_wake_up() */ 2053 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2054 ip = __get_wchan(p); 2055 raw_spin_unlock_irq(&p->pi_lock); 2056 2057 return ip; 2058 } 2059 2060 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2061 { 2062 if (!(flags & ENQUEUE_NOCLOCK)) 2063 update_rq_clock(rq); 2064 2065 p->sched_class->enqueue_task(rq, p, flags); 2066 /* 2067 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear 2068 * ->sched_delayed. 2069 */ 2070 uclamp_rq_inc(rq, p); 2071 2072 psi_enqueue(p, flags); 2073 2074 if (!(flags & ENQUEUE_RESTORE)) 2075 sched_info_enqueue(rq, p); 2076 2077 if (sched_core_enabled(rq)) 2078 sched_core_enqueue(rq, p); 2079 } 2080 2081 /* 2082 * Must only return false when DEQUEUE_SLEEP. 2083 */ 2084 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2085 { 2086 if (sched_core_enabled(rq)) 2087 sched_core_dequeue(rq, p, flags); 2088 2089 if (!(flags & DEQUEUE_NOCLOCK)) 2090 update_rq_clock(rq); 2091 2092 if (!(flags & DEQUEUE_SAVE)) 2093 sched_info_dequeue(rq, p); 2094 2095 psi_dequeue(p, flags); 2096 2097 /* 2098 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2099 * and mark the task ->sched_delayed. 2100 */ 2101 uclamp_rq_dec(rq, p); 2102 return p->sched_class->dequeue_task(rq, p, flags); 2103 } 2104 2105 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2106 { 2107 if (task_on_rq_migrating(p)) 2108 flags |= ENQUEUE_MIGRATED; 2109 if (flags & ENQUEUE_MIGRATED) 2110 sched_mm_cid_migrate_to(rq, p); 2111 2112 enqueue_task(rq, p, flags); 2113 2114 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2115 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2116 } 2117 2118 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2119 { 2120 SCHED_WARN_ON(flags & DEQUEUE_SLEEP); 2121 2122 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2123 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2124 2125 /* 2126 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2127 * dequeue_task() and cleared *after* enqueue_task(). 2128 */ 2129 2130 dequeue_task(rq, p, flags); 2131 } 2132 2133 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2134 { 2135 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2136 __block_task(rq, p); 2137 } 2138 2139 /** 2140 * task_curr - is this task currently executing on a CPU? 2141 * @p: the task in question. 2142 * 2143 * Return: 1 if the task is currently executing. 0 otherwise. 2144 */ 2145 inline int task_curr(const struct task_struct *p) 2146 { 2147 return cpu_curr(task_cpu(p)) == p; 2148 } 2149 2150 /* 2151 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2152 * mess with locking. 2153 */ 2154 void check_class_changing(struct rq *rq, struct task_struct *p, 2155 const struct sched_class *prev_class) 2156 { 2157 if (prev_class != p->sched_class && p->sched_class->switching_to) 2158 p->sched_class->switching_to(rq, p); 2159 } 2160 2161 /* 2162 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2163 * use the balance_callback list if you want balancing. 2164 * 2165 * this means any call to check_class_changed() must be followed by a call to 2166 * balance_callback(). 2167 */ 2168 void check_class_changed(struct rq *rq, struct task_struct *p, 2169 const struct sched_class *prev_class, 2170 int oldprio) 2171 { 2172 if (prev_class != p->sched_class) { 2173 if (prev_class->switched_from) 2174 prev_class->switched_from(rq, p); 2175 2176 p->sched_class->switched_to(rq, p); 2177 } else if (oldprio != p->prio || dl_task(p)) 2178 p->sched_class->prio_changed(rq, p, oldprio); 2179 } 2180 2181 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2182 { 2183 struct task_struct *donor = rq->donor; 2184 2185 if (p->sched_class == donor->sched_class) 2186 donor->sched_class->wakeup_preempt(rq, p, flags); 2187 else if (sched_class_above(p->sched_class, donor->sched_class)) 2188 resched_curr(rq); 2189 2190 /* 2191 * A queue event has occurred, and we're going to schedule. In 2192 * this case, we can save a useless back to back clock update. 2193 */ 2194 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2195 rq_clock_skip_update(rq); 2196 } 2197 2198 static __always_inline 2199 int __task_state_match(struct task_struct *p, unsigned int state) 2200 { 2201 if (READ_ONCE(p->__state) & state) 2202 return 1; 2203 2204 if (READ_ONCE(p->saved_state) & state) 2205 return -1; 2206 2207 return 0; 2208 } 2209 2210 static __always_inline 2211 int task_state_match(struct task_struct *p, unsigned int state) 2212 { 2213 /* 2214 * Serialize against current_save_and_set_rtlock_wait_state(), 2215 * current_restore_rtlock_saved_state(), and __refrigerator(). 2216 */ 2217 guard(raw_spinlock_irq)(&p->pi_lock); 2218 return __task_state_match(p, state); 2219 } 2220 2221 /* 2222 * wait_task_inactive - wait for a thread to unschedule. 2223 * 2224 * Wait for the thread to block in any of the states set in @match_state. 2225 * If it changes, i.e. @p might have woken up, then return zero. When we 2226 * succeed in waiting for @p to be off its CPU, we return a positive number 2227 * (its total switch count). If a second call a short while later returns the 2228 * same number, the caller can be sure that @p has remained unscheduled the 2229 * whole time. 2230 * 2231 * The caller must ensure that the task *will* unschedule sometime soon, 2232 * else this function might spin for a *long* time. This function can't 2233 * be called with interrupts off, or it may introduce deadlock with 2234 * smp_call_function() if an IPI is sent by the same process we are 2235 * waiting to become inactive. 2236 */ 2237 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2238 { 2239 int running, queued, match; 2240 struct rq_flags rf; 2241 unsigned long ncsw; 2242 struct rq *rq; 2243 2244 for (;;) { 2245 /* 2246 * We do the initial early heuristics without holding 2247 * any task-queue locks at all. We'll only try to get 2248 * the runqueue lock when things look like they will 2249 * work out! 2250 */ 2251 rq = task_rq(p); 2252 2253 /* 2254 * If the task is actively running on another CPU 2255 * still, just relax and busy-wait without holding 2256 * any locks. 2257 * 2258 * NOTE! Since we don't hold any locks, it's not 2259 * even sure that "rq" stays as the right runqueue! 2260 * But we don't care, since "task_on_cpu()" will 2261 * return false if the runqueue has changed and p 2262 * is actually now running somewhere else! 2263 */ 2264 while (task_on_cpu(rq, p)) { 2265 if (!task_state_match(p, match_state)) 2266 return 0; 2267 cpu_relax(); 2268 } 2269 2270 /* 2271 * Ok, time to look more closely! We need the rq 2272 * lock now, to be *sure*. If we're wrong, we'll 2273 * just go back and repeat. 2274 */ 2275 rq = task_rq_lock(p, &rf); 2276 trace_sched_wait_task(p); 2277 running = task_on_cpu(rq, p); 2278 queued = task_on_rq_queued(p); 2279 ncsw = 0; 2280 if ((match = __task_state_match(p, match_state))) { 2281 /* 2282 * When matching on p->saved_state, consider this task 2283 * still queued so it will wait. 2284 */ 2285 if (match < 0) 2286 queued = 1; 2287 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2288 } 2289 task_rq_unlock(rq, p, &rf); 2290 2291 /* 2292 * If it changed from the expected state, bail out now. 2293 */ 2294 if (unlikely(!ncsw)) 2295 break; 2296 2297 /* 2298 * Was it really running after all now that we 2299 * checked with the proper locks actually held? 2300 * 2301 * Oops. Go back and try again.. 2302 */ 2303 if (unlikely(running)) { 2304 cpu_relax(); 2305 continue; 2306 } 2307 2308 /* 2309 * It's not enough that it's not actively running, 2310 * it must be off the runqueue _entirely_, and not 2311 * preempted! 2312 * 2313 * So if it was still runnable (but just not actively 2314 * running right now), it's preempted, and we should 2315 * yield - it could be a while. 2316 */ 2317 if (unlikely(queued)) { 2318 ktime_t to = NSEC_PER_SEC / HZ; 2319 2320 set_current_state(TASK_UNINTERRUPTIBLE); 2321 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2322 continue; 2323 } 2324 2325 /* 2326 * Ahh, all good. It wasn't running, and it wasn't 2327 * runnable, which means that it will never become 2328 * running in the future either. We're all done! 2329 */ 2330 break; 2331 } 2332 2333 return ncsw; 2334 } 2335 2336 #ifdef CONFIG_SMP 2337 2338 static void 2339 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2340 2341 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2342 { 2343 struct affinity_context ac = { 2344 .new_mask = cpumask_of(rq->cpu), 2345 .flags = SCA_MIGRATE_DISABLE, 2346 }; 2347 2348 if (likely(!p->migration_disabled)) 2349 return; 2350 2351 if (p->cpus_ptr != &p->cpus_mask) 2352 return; 2353 2354 /* 2355 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2356 */ 2357 __do_set_cpus_allowed(p, &ac); 2358 } 2359 2360 void migrate_disable(void) 2361 { 2362 struct task_struct *p = current; 2363 2364 if (p->migration_disabled) { 2365 #ifdef CONFIG_DEBUG_PREEMPT 2366 /* 2367 *Warn about overflow half-way through the range. 2368 */ 2369 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2370 #endif 2371 p->migration_disabled++; 2372 return; 2373 } 2374 2375 guard(preempt)(); 2376 this_rq()->nr_pinned++; 2377 p->migration_disabled = 1; 2378 } 2379 EXPORT_SYMBOL_GPL(migrate_disable); 2380 2381 void migrate_enable(void) 2382 { 2383 struct task_struct *p = current; 2384 struct affinity_context ac = { 2385 .new_mask = &p->cpus_mask, 2386 .flags = SCA_MIGRATE_ENABLE, 2387 }; 2388 2389 #ifdef CONFIG_DEBUG_PREEMPT 2390 /* 2391 * Check both overflow from migrate_disable() and superfluous 2392 * migrate_enable(). 2393 */ 2394 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2395 return; 2396 #endif 2397 2398 if (p->migration_disabled > 1) { 2399 p->migration_disabled--; 2400 return; 2401 } 2402 2403 /* 2404 * Ensure stop_task runs either before or after this, and that 2405 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2406 */ 2407 guard(preempt)(); 2408 if (p->cpus_ptr != &p->cpus_mask) 2409 __set_cpus_allowed_ptr(p, &ac); 2410 /* 2411 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2412 * regular cpus_mask, otherwise things that race (eg. 2413 * select_fallback_rq) get confused. 2414 */ 2415 barrier(); 2416 p->migration_disabled = 0; 2417 this_rq()->nr_pinned--; 2418 } 2419 EXPORT_SYMBOL_GPL(migrate_enable); 2420 2421 static inline bool rq_has_pinned_tasks(struct rq *rq) 2422 { 2423 return rq->nr_pinned; 2424 } 2425 2426 /* 2427 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2428 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2429 */ 2430 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2431 { 2432 /* When not in the task's cpumask, no point in looking further. */ 2433 if (!task_allowed_on_cpu(p, cpu)) 2434 return false; 2435 2436 /* migrate_disabled() must be allowed to finish. */ 2437 if (is_migration_disabled(p)) 2438 return cpu_online(cpu); 2439 2440 /* Non kernel threads are not allowed during either online or offline. */ 2441 if (!(p->flags & PF_KTHREAD)) 2442 return cpu_active(cpu); 2443 2444 /* KTHREAD_IS_PER_CPU is always allowed. */ 2445 if (kthread_is_per_cpu(p)) 2446 return cpu_online(cpu); 2447 2448 /* Regular kernel threads don't get to stay during offline. */ 2449 if (cpu_dying(cpu)) 2450 return false; 2451 2452 /* But are allowed during online. */ 2453 return cpu_online(cpu); 2454 } 2455 2456 /* 2457 * This is how migration works: 2458 * 2459 * 1) we invoke migration_cpu_stop() on the target CPU using 2460 * stop_one_cpu(). 2461 * 2) stopper starts to run (implicitly forcing the migrated thread 2462 * off the CPU) 2463 * 3) it checks whether the migrated task is still in the wrong runqueue. 2464 * 4) if it's in the wrong runqueue then the migration thread removes 2465 * it and puts it into the right queue. 2466 * 5) stopper completes and stop_one_cpu() returns and the migration 2467 * is done. 2468 */ 2469 2470 /* 2471 * move_queued_task - move a queued task to new rq. 2472 * 2473 * Returns (locked) new rq. Old rq's lock is released. 2474 */ 2475 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2476 struct task_struct *p, int new_cpu) 2477 { 2478 lockdep_assert_rq_held(rq); 2479 2480 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2481 set_task_cpu(p, new_cpu); 2482 rq_unlock(rq, rf); 2483 2484 rq = cpu_rq(new_cpu); 2485 2486 rq_lock(rq, rf); 2487 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2488 activate_task(rq, p, 0); 2489 wakeup_preempt(rq, p, 0); 2490 2491 return rq; 2492 } 2493 2494 struct migration_arg { 2495 struct task_struct *task; 2496 int dest_cpu; 2497 struct set_affinity_pending *pending; 2498 }; 2499 2500 /* 2501 * @refs: number of wait_for_completion() 2502 * @stop_pending: is @stop_work in use 2503 */ 2504 struct set_affinity_pending { 2505 refcount_t refs; 2506 unsigned int stop_pending; 2507 struct completion done; 2508 struct cpu_stop_work stop_work; 2509 struct migration_arg arg; 2510 }; 2511 2512 /* 2513 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2514 * this because either it can't run here any more (set_cpus_allowed() 2515 * away from this CPU, or CPU going down), or because we're 2516 * attempting to rebalance this task on exec (sched_exec). 2517 * 2518 * So we race with normal scheduler movements, but that's OK, as long 2519 * as the task is no longer on this CPU. 2520 */ 2521 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2522 struct task_struct *p, int dest_cpu) 2523 { 2524 /* Affinity changed (again). */ 2525 if (!is_cpu_allowed(p, dest_cpu)) 2526 return rq; 2527 2528 rq = move_queued_task(rq, rf, p, dest_cpu); 2529 2530 return rq; 2531 } 2532 2533 /* 2534 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2535 * and performs thread migration by bumping thread off CPU then 2536 * 'pushing' onto another runqueue. 2537 */ 2538 static int migration_cpu_stop(void *data) 2539 { 2540 struct migration_arg *arg = data; 2541 struct set_affinity_pending *pending = arg->pending; 2542 struct task_struct *p = arg->task; 2543 struct rq *rq = this_rq(); 2544 bool complete = false; 2545 struct rq_flags rf; 2546 2547 /* 2548 * The original target CPU might have gone down and we might 2549 * be on another CPU but it doesn't matter. 2550 */ 2551 local_irq_save(rf.flags); 2552 /* 2553 * We need to explicitly wake pending tasks before running 2554 * __migrate_task() such that we will not miss enforcing cpus_ptr 2555 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2556 */ 2557 flush_smp_call_function_queue(); 2558 2559 raw_spin_lock(&p->pi_lock); 2560 rq_lock(rq, &rf); 2561 2562 /* 2563 * If we were passed a pending, then ->stop_pending was set, thus 2564 * p->migration_pending must have remained stable. 2565 */ 2566 WARN_ON_ONCE(pending && pending != p->migration_pending); 2567 2568 /* 2569 * If task_rq(p) != rq, it cannot be migrated here, because we're 2570 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2571 * we're holding p->pi_lock. 2572 */ 2573 if (task_rq(p) == rq) { 2574 if (is_migration_disabled(p)) 2575 goto out; 2576 2577 if (pending) { 2578 p->migration_pending = NULL; 2579 complete = true; 2580 2581 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2582 goto out; 2583 } 2584 2585 if (task_on_rq_queued(p)) { 2586 update_rq_clock(rq); 2587 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2588 } else { 2589 p->wake_cpu = arg->dest_cpu; 2590 } 2591 2592 /* 2593 * XXX __migrate_task() can fail, at which point we might end 2594 * up running on a dodgy CPU, AFAICT this can only happen 2595 * during CPU hotplug, at which point we'll get pushed out 2596 * anyway, so it's probably not a big deal. 2597 */ 2598 2599 } else if (pending) { 2600 /* 2601 * This happens when we get migrated between migrate_enable()'s 2602 * preempt_enable() and scheduling the stopper task. At that 2603 * point we're a regular task again and not current anymore. 2604 * 2605 * A !PREEMPT kernel has a giant hole here, which makes it far 2606 * more likely. 2607 */ 2608 2609 /* 2610 * The task moved before the stopper got to run. We're holding 2611 * ->pi_lock, so the allowed mask is stable - if it got 2612 * somewhere allowed, we're done. 2613 */ 2614 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2615 p->migration_pending = NULL; 2616 complete = true; 2617 goto out; 2618 } 2619 2620 /* 2621 * When migrate_enable() hits a rq mis-match we can't reliably 2622 * determine is_migration_disabled() and so have to chase after 2623 * it. 2624 */ 2625 WARN_ON_ONCE(!pending->stop_pending); 2626 preempt_disable(); 2627 task_rq_unlock(rq, p, &rf); 2628 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2629 &pending->arg, &pending->stop_work); 2630 preempt_enable(); 2631 return 0; 2632 } 2633 out: 2634 if (pending) 2635 pending->stop_pending = false; 2636 task_rq_unlock(rq, p, &rf); 2637 2638 if (complete) 2639 complete_all(&pending->done); 2640 2641 return 0; 2642 } 2643 2644 int push_cpu_stop(void *arg) 2645 { 2646 struct rq *lowest_rq = NULL, *rq = this_rq(); 2647 struct task_struct *p = arg; 2648 2649 raw_spin_lock_irq(&p->pi_lock); 2650 raw_spin_rq_lock(rq); 2651 2652 if (task_rq(p) != rq) 2653 goto out_unlock; 2654 2655 if (is_migration_disabled(p)) { 2656 p->migration_flags |= MDF_PUSH; 2657 goto out_unlock; 2658 } 2659 2660 p->migration_flags &= ~MDF_PUSH; 2661 2662 if (p->sched_class->find_lock_rq) 2663 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2664 2665 if (!lowest_rq) 2666 goto out_unlock; 2667 2668 // XXX validate p is still the highest prio task 2669 if (task_rq(p) == rq) { 2670 move_queued_task_locked(rq, lowest_rq, p); 2671 resched_curr(lowest_rq); 2672 } 2673 2674 double_unlock_balance(rq, lowest_rq); 2675 2676 out_unlock: 2677 rq->push_busy = false; 2678 raw_spin_rq_unlock(rq); 2679 raw_spin_unlock_irq(&p->pi_lock); 2680 2681 put_task_struct(p); 2682 return 0; 2683 } 2684 2685 /* 2686 * sched_class::set_cpus_allowed must do the below, but is not required to 2687 * actually call this function. 2688 */ 2689 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2690 { 2691 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2692 p->cpus_ptr = ctx->new_mask; 2693 return; 2694 } 2695 2696 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2697 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2698 2699 /* 2700 * Swap in a new user_cpus_ptr if SCA_USER flag set 2701 */ 2702 if (ctx->flags & SCA_USER) 2703 swap(p->user_cpus_ptr, ctx->user_mask); 2704 } 2705 2706 static void 2707 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2708 { 2709 struct rq *rq = task_rq(p); 2710 bool queued, running; 2711 2712 /* 2713 * This here violates the locking rules for affinity, since we're only 2714 * supposed to change these variables while holding both rq->lock and 2715 * p->pi_lock. 2716 * 2717 * HOWEVER, it magically works, because ttwu() is the only code that 2718 * accesses these variables under p->pi_lock and only does so after 2719 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2720 * before finish_task(). 2721 * 2722 * XXX do further audits, this smells like something putrid. 2723 */ 2724 if (ctx->flags & SCA_MIGRATE_DISABLE) 2725 SCHED_WARN_ON(!p->on_cpu); 2726 else 2727 lockdep_assert_held(&p->pi_lock); 2728 2729 queued = task_on_rq_queued(p); 2730 running = task_current_donor(rq, p); 2731 2732 if (queued) { 2733 /* 2734 * Because __kthread_bind() calls this on blocked tasks without 2735 * holding rq->lock. 2736 */ 2737 lockdep_assert_rq_held(rq); 2738 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2739 } 2740 if (running) 2741 put_prev_task(rq, p); 2742 2743 p->sched_class->set_cpus_allowed(p, ctx); 2744 mm_set_cpus_allowed(p->mm, ctx->new_mask); 2745 2746 if (queued) 2747 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2748 if (running) 2749 set_next_task(rq, p); 2750 } 2751 2752 /* 2753 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2754 * affinity (if any) should be destroyed too. 2755 */ 2756 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2757 { 2758 struct affinity_context ac = { 2759 .new_mask = new_mask, 2760 .user_mask = NULL, 2761 .flags = SCA_USER, /* clear the user requested mask */ 2762 }; 2763 union cpumask_rcuhead { 2764 cpumask_t cpumask; 2765 struct rcu_head rcu; 2766 }; 2767 2768 __do_set_cpus_allowed(p, &ac); 2769 2770 /* 2771 * Because this is called with p->pi_lock held, it is not possible 2772 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2773 * kfree_rcu(). 2774 */ 2775 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2776 } 2777 2778 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2779 int node) 2780 { 2781 cpumask_t *user_mask; 2782 unsigned long flags; 2783 2784 /* 2785 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2786 * may differ by now due to racing. 2787 */ 2788 dst->user_cpus_ptr = NULL; 2789 2790 /* 2791 * This check is racy and losing the race is a valid situation. 2792 * It is not worth the extra overhead of taking the pi_lock on 2793 * every fork/clone. 2794 */ 2795 if (data_race(!src->user_cpus_ptr)) 2796 return 0; 2797 2798 user_mask = alloc_user_cpus_ptr(node); 2799 if (!user_mask) 2800 return -ENOMEM; 2801 2802 /* 2803 * Use pi_lock to protect content of user_cpus_ptr 2804 * 2805 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2806 * do_set_cpus_allowed(). 2807 */ 2808 raw_spin_lock_irqsave(&src->pi_lock, flags); 2809 if (src->user_cpus_ptr) { 2810 swap(dst->user_cpus_ptr, user_mask); 2811 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2812 } 2813 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2814 2815 if (unlikely(user_mask)) 2816 kfree(user_mask); 2817 2818 return 0; 2819 } 2820 2821 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2822 { 2823 struct cpumask *user_mask = NULL; 2824 2825 swap(p->user_cpus_ptr, user_mask); 2826 2827 return user_mask; 2828 } 2829 2830 void release_user_cpus_ptr(struct task_struct *p) 2831 { 2832 kfree(clear_user_cpus_ptr(p)); 2833 } 2834 2835 /* 2836 * This function is wildly self concurrent; here be dragons. 2837 * 2838 * 2839 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2840 * designated task is enqueued on an allowed CPU. If that task is currently 2841 * running, we have to kick it out using the CPU stopper. 2842 * 2843 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2844 * Consider: 2845 * 2846 * Initial conditions: P0->cpus_mask = [0, 1] 2847 * 2848 * P0@CPU0 P1 2849 * 2850 * migrate_disable(); 2851 * <preempted> 2852 * set_cpus_allowed_ptr(P0, [1]); 2853 * 2854 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2855 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2856 * This means we need the following scheme: 2857 * 2858 * P0@CPU0 P1 2859 * 2860 * migrate_disable(); 2861 * <preempted> 2862 * set_cpus_allowed_ptr(P0, [1]); 2863 * <blocks> 2864 * <resumes> 2865 * migrate_enable(); 2866 * __set_cpus_allowed_ptr(); 2867 * <wakes local stopper> 2868 * `--> <woken on migration completion> 2869 * 2870 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2871 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2872 * task p are serialized by p->pi_lock, which we can leverage: the one that 2873 * should come into effect at the end of the Migrate-Disable region is the last 2874 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2875 * but we still need to properly signal those waiting tasks at the appropriate 2876 * moment. 2877 * 2878 * This is implemented using struct set_affinity_pending. The first 2879 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2880 * setup an instance of that struct and install it on the targeted task_struct. 2881 * Any and all further callers will reuse that instance. Those then wait for 2882 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2883 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2884 * 2885 * 2886 * (1) In the cases covered above. There is one more where the completion is 2887 * signaled within affine_move_task() itself: when a subsequent affinity request 2888 * occurs after the stopper bailed out due to the targeted task still being 2889 * Migrate-Disable. Consider: 2890 * 2891 * Initial conditions: P0->cpus_mask = [0, 1] 2892 * 2893 * CPU0 P1 P2 2894 * <P0> 2895 * migrate_disable(); 2896 * <preempted> 2897 * set_cpus_allowed_ptr(P0, [1]); 2898 * <blocks> 2899 * <migration/0> 2900 * migration_cpu_stop() 2901 * is_migration_disabled() 2902 * <bails> 2903 * set_cpus_allowed_ptr(P0, [0, 1]); 2904 * <signal completion> 2905 * <awakes> 2906 * 2907 * Note that the above is safe vs a concurrent migrate_enable(), as any 2908 * pending affinity completion is preceded by an uninstallation of 2909 * p->migration_pending done with p->pi_lock held. 2910 */ 2911 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2912 int dest_cpu, unsigned int flags) 2913 __releases(rq->lock) 2914 __releases(p->pi_lock) 2915 { 2916 struct set_affinity_pending my_pending = { }, *pending = NULL; 2917 bool stop_pending, complete = false; 2918 2919 /* Can the task run on the task's current CPU? If so, we're done */ 2920 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2921 struct task_struct *push_task = NULL; 2922 2923 if ((flags & SCA_MIGRATE_ENABLE) && 2924 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2925 rq->push_busy = true; 2926 push_task = get_task_struct(p); 2927 } 2928 2929 /* 2930 * If there are pending waiters, but no pending stop_work, 2931 * then complete now. 2932 */ 2933 pending = p->migration_pending; 2934 if (pending && !pending->stop_pending) { 2935 p->migration_pending = NULL; 2936 complete = true; 2937 } 2938 2939 preempt_disable(); 2940 task_rq_unlock(rq, p, rf); 2941 if (push_task) { 2942 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2943 p, &rq->push_work); 2944 } 2945 preempt_enable(); 2946 2947 if (complete) 2948 complete_all(&pending->done); 2949 2950 return 0; 2951 } 2952 2953 if (!(flags & SCA_MIGRATE_ENABLE)) { 2954 /* serialized by p->pi_lock */ 2955 if (!p->migration_pending) { 2956 /* Install the request */ 2957 refcount_set(&my_pending.refs, 1); 2958 init_completion(&my_pending.done); 2959 my_pending.arg = (struct migration_arg) { 2960 .task = p, 2961 .dest_cpu = dest_cpu, 2962 .pending = &my_pending, 2963 }; 2964 2965 p->migration_pending = &my_pending; 2966 } else { 2967 pending = p->migration_pending; 2968 refcount_inc(&pending->refs); 2969 /* 2970 * Affinity has changed, but we've already installed a 2971 * pending. migration_cpu_stop() *must* see this, else 2972 * we risk a completion of the pending despite having a 2973 * task on a disallowed CPU. 2974 * 2975 * Serialized by p->pi_lock, so this is safe. 2976 */ 2977 pending->arg.dest_cpu = dest_cpu; 2978 } 2979 } 2980 pending = p->migration_pending; 2981 /* 2982 * - !MIGRATE_ENABLE: 2983 * we'll have installed a pending if there wasn't one already. 2984 * 2985 * - MIGRATE_ENABLE: 2986 * we're here because the current CPU isn't matching anymore, 2987 * the only way that can happen is because of a concurrent 2988 * set_cpus_allowed_ptr() call, which should then still be 2989 * pending completion. 2990 * 2991 * Either way, we really should have a @pending here. 2992 */ 2993 if (WARN_ON_ONCE(!pending)) { 2994 task_rq_unlock(rq, p, rf); 2995 return -EINVAL; 2996 } 2997 2998 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2999 /* 3000 * MIGRATE_ENABLE gets here because 'p == current', but for 3001 * anything else we cannot do is_migration_disabled(), punt 3002 * and have the stopper function handle it all race-free. 3003 */ 3004 stop_pending = pending->stop_pending; 3005 if (!stop_pending) 3006 pending->stop_pending = true; 3007 3008 if (flags & SCA_MIGRATE_ENABLE) 3009 p->migration_flags &= ~MDF_PUSH; 3010 3011 preempt_disable(); 3012 task_rq_unlock(rq, p, rf); 3013 if (!stop_pending) { 3014 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3015 &pending->arg, &pending->stop_work); 3016 } 3017 preempt_enable(); 3018 3019 if (flags & SCA_MIGRATE_ENABLE) 3020 return 0; 3021 } else { 3022 3023 if (!is_migration_disabled(p)) { 3024 if (task_on_rq_queued(p)) 3025 rq = move_queued_task(rq, rf, p, dest_cpu); 3026 3027 if (!pending->stop_pending) { 3028 p->migration_pending = NULL; 3029 complete = true; 3030 } 3031 } 3032 task_rq_unlock(rq, p, rf); 3033 3034 if (complete) 3035 complete_all(&pending->done); 3036 } 3037 3038 wait_for_completion(&pending->done); 3039 3040 if (refcount_dec_and_test(&pending->refs)) 3041 wake_up_var(&pending->refs); /* No UaF, just an address */ 3042 3043 /* 3044 * Block the original owner of &pending until all subsequent callers 3045 * have seen the completion and decremented the refcount 3046 */ 3047 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3048 3049 /* ARGH */ 3050 WARN_ON_ONCE(my_pending.stop_pending); 3051 3052 return 0; 3053 } 3054 3055 /* 3056 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3057 */ 3058 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3059 struct affinity_context *ctx, 3060 struct rq *rq, 3061 struct rq_flags *rf) 3062 __releases(rq->lock) 3063 __releases(p->pi_lock) 3064 { 3065 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3066 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3067 bool kthread = p->flags & PF_KTHREAD; 3068 unsigned int dest_cpu; 3069 int ret = 0; 3070 3071 update_rq_clock(rq); 3072 3073 if (kthread || is_migration_disabled(p)) { 3074 /* 3075 * Kernel threads are allowed on online && !active CPUs, 3076 * however, during cpu-hot-unplug, even these might get pushed 3077 * away if not KTHREAD_IS_PER_CPU. 3078 * 3079 * Specifically, migration_disabled() tasks must not fail the 3080 * cpumask_any_and_distribute() pick below, esp. so on 3081 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3082 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3083 */ 3084 cpu_valid_mask = cpu_online_mask; 3085 } 3086 3087 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3088 ret = -EINVAL; 3089 goto out; 3090 } 3091 3092 /* 3093 * Must re-check here, to close a race against __kthread_bind(), 3094 * sched_setaffinity() is not guaranteed to observe the flag. 3095 */ 3096 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3097 ret = -EINVAL; 3098 goto out; 3099 } 3100 3101 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3102 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3103 if (ctx->flags & SCA_USER) 3104 swap(p->user_cpus_ptr, ctx->user_mask); 3105 goto out; 3106 } 3107 3108 if (WARN_ON_ONCE(p == current && 3109 is_migration_disabled(p) && 3110 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3111 ret = -EBUSY; 3112 goto out; 3113 } 3114 } 3115 3116 /* 3117 * Picking a ~random cpu helps in cases where we are changing affinity 3118 * for groups of tasks (ie. cpuset), so that load balancing is not 3119 * immediately required to distribute the tasks within their new mask. 3120 */ 3121 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3122 if (dest_cpu >= nr_cpu_ids) { 3123 ret = -EINVAL; 3124 goto out; 3125 } 3126 3127 __do_set_cpus_allowed(p, ctx); 3128 3129 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3130 3131 out: 3132 task_rq_unlock(rq, p, rf); 3133 3134 return ret; 3135 } 3136 3137 /* 3138 * Change a given task's CPU affinity. Migrate the thread to a 3139 * proper CPU and schedule it away if the CPU it's executing on 3140 * is removed from the allowed bitmask. 3141 * 3142 * NOTE: the caller must have a valid reference to the task, the 3143 * task must not exit() & deallocate itself prematurely. The 3144 * call is not atomic; no spinlocks may be held. 3145 */ 3146 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3147 { 3148 struct rq_flags rf; 3149 struct rq *rq; 3150 3151 rq = task_rq_lock(p, &rf); 3152 /* 3153 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3154 * flags are set. 3155 */ 3156 if (p->user_cpus_ptr && 3157 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3158 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3159 ctx->new_mask = rq->scratch_mask; 3160 3161 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3162 } 3163 3164 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3165 { 3166 struct affinity_context ac = { 3167 .new_mask = new_mask, 3168 .flags = 0, 3169 }; 3170 3171 return __set_cpus_allowed_ptr(p, &ac); 3172 } 3173 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3174 3175 /* 3176 * Change a given task's CPU affinity to the intersection of its current 3177 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3178 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3179 * affinity or use cpu_online_mask instead. 3180 * 3181 * If the resulting mask is empty, leave the affinity unchanged and return 3182 * -EINVAL. 3183 */ 3184 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3185 struct cpumask *new_mask, 3186 const struct cpumask *subset_mask) 3187 { 3188 struct affinity_context ac = { 3189 .new_mask = new_mask, 3190 .flags = 0, 3191 }; 3192 struct rq_flags rf; 3193 struct rq *rq; 3194 int err; 3195 3196 rq = task_rq_lock(p, &rf); 3197 3198 /* 3199 * Forcefully restricting the affinity of a deadline task is 3200 * likely to cause problems, so fail and noisily override the 3201 * mask entirely. 3202 */ 3203 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3204 err = -EPERM; 3205 goto err_unlock; 3206 } 3207 3208 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3209 err = -EINVAL; 3210 goto err_unlock; 3211 } 3212 3213 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3214 3215 err_unlock: 3216 task_rq_unlock(rq, p, &rf); 3217 return err; 3218 } 3219 3220 /* 3221 * Restrict the CPU affinity of task @p so that it is a subset of 3222 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3223 * old affinity mask. If the resulting mask is empty, we warn and walk 3224 * up the cpuset hierarchy until we find a suitable mask. 3225 */ 3226 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3227 { 3228 cpumask_var_t new_mask; 3229 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3230 3231 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3232 3233 /* 3234 * __migrate_task() can fail silently in the face of concurrent 3235 * offlining of the chosen destination CPU, so take the hotplug 3236 * lock to ensure that the migration succeeds. 3237 */ 3238 cpus_read_lock(); 3239 if (!cpumask_available(new_mask)) 3240 goto out_set_mask; 3241 3242 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3243 goto out_free_mask; 3244 3245 /* 3246 * We failed to find a valid subset of the affinity mask for the 3247 * task, so override it based on its cpuset hierarchy. 3248 */ 3249 cpuset_cpus_allowed(p, new_mask); 3250 override_mask = new_mask; 3251 3252 out_set_mask: 3253 if (printk_ratelimit()) { 3254 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3255 task_pid_nr(p), p->comm, 3256 cpumask_pr_args(override_mask)); 3257 } 3258 3259 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3260 out_free_mask: 3261 cpus_read_unlock(); 3262 free_cpumask_var(new_mask); 3263 } 3264 3265 /* 3266 * Restore the affinity of a task @p which was previously restricted by a 3267 * call to force_compatible_cpus_allowed_ptr(). 3268 * 3269 * It is the caller's responsibility to serialise this with any calls to 3270 * force_compatible_cpus_allowed_ptr(@p). 3271 */ 3272 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3273 { 3274 struct affinity_context ac = { 3275 .new_mask = task_user_cpus(p), 3276 .flags = 0, 3277 }; 3278 int ret; 3279 3280 /* 3281 * Try to restore the old affinity mask with __sched_setaffinity(). 3282 * Cpuset masking will be done there too. 3283 */ 3284 ret = __sched_setaffinity(p, &ac); 3285 WARN_ON_ONCE(ret); 3286 } 3287 3288 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3289 { 3290 #ifdef CONFIG_SCHED_DEBUG 3291 unsigned int state = READ_ONCE(p->__state); 3292 3293 /* 3294 * We should never call set_task_cpu() on a blocked task, 3295 * ttwu() will sort out the placement. 3296 */ 3297 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3298 3299 /* 3300 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3301 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3302 * time relying on p->on_rq. 3303 */ 3304 WARN_ON_ONCE(state == TASK_RUNNING && 3305 p->sched_class == &fair_sched_class && 3306 (p->on_rq && !task_on_rq_migrating(p))); 3307 3308 #ifdef CONFIG_LOCKDEP 3309 /* 3310 * The caller should hold either p->pi_lock or rq->lock, when changing 3311 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3312 * 3313 * sched_move_task() holds both and thus holding either pins the cgroup, 3314 * see task_group(). 3315 * 3316 * Furthermore, all task_rq users should acquire both locks, see 3317 * task_rq_lock(). 3318 */ 3319 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3320 lockdep_is_held(__rq_lockp(task_rq(p))))); 3321 #endif 3322 /* 3323 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3324 */ 3325 WARN_ON_ONCE(!cpu_online(new_cpu)); 3326 3327 WARN_ON_ONCE(is_migration_disabled(p)); 3328 #endif 3329 3330 trace_sched_migrate_task(p, new_cpu); 3331 3332 if (task_cpu(p) != new_cpu) { 3333 if (p->sched_class->migrate_task_rq) 3334 p->sched_class->migrate_task_rq(p, new_cpu); 3335 p->se.nr_migrations++; 3336 rseq_migrate(p); 3337 sched_mm_cid_migrate_from(p); 3338 perf_event_task_migrate(p); 3339 } 3340 3341 __set_task_cpu(p, new_cpu); 3342 } 3343 3344 #ifdef CONFIG_NUMA_BALANCING 3345 static void __migrate_swap_task(struct task_struct *p, int cpu) 3346 { 3347 if (task_on_rq_queued(p)) { 3348 struct rq *src_rq, *dst_rq; 3349 struct rq_flags srf, drf; 3350 3351 src_rq = task_rq(p); 3352 dst_rq = cpu_rq(cpu); 3353 3354 rq_pin_lock(src_rq, &srf); 3355 rq_pin_lock(dst_rq, &drf); 3356 3357 move_queued_task_locked(src_rq, dst_rq, p); 3358 wakeup_preempt(dst_rq, p, 0); 3359 3360 rq_unpin_lock(dst_rq, &drf); 3361 rq_unpin_lock(src_rq, &srf); 3362 3363 } else { 3364 /* 3365 * Task isn't running anymore; make it appear like we migrated 3366 * it before it went to sleep. This means on wakeup we make the 3367 * previous CPU our target instead of where it really is. 3368 */ 3369 p->wake_cpu = cpu; 3370 } 3371 } 3372 3373 struct migration_swap_arg { 3374 struct task_struct *src_task, *dst_task; 3375 int src_cpu, dst_cpu; 3376 }; 3377 3378 static int migrate_swap_stop(void *data) 3379 { 3380 struct migration_swap_arg *arg = data; 3381 struct rq *src_rq, *dst_rq; 3382 3383 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3384 return -EAGAIN; 3385 3386 src_rq = cpu_rq(arg->src_cpu); 3387 dst_rq = cpu_rq(arg->dst_cpu); 3388 3389 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3390 guard(double_rq_lock)(src_rq, dst_rq); 3391 3392 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3393 return -EAGAIN; 3394 3395 if (task_cpu(arg->src_task) != arg->src_cpu) 3396 return -EAGAIN; 3397 3398 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3399 return -EAGAIN; 3400 3401 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3402 return -EAGAIN; 3403 3404 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3405 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3406 3407 return 0; 3408 } 3409 3410 /* 3411 * Cross migrate two tasks 3412 */ 3413 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3414 int target_cpu, int curr_cpu) 3415 { 3416 struct migration_swap_arg arg; 3417 int ret = -EINVAL; 3418 3419 arg = (struct migration_swap_arg){ 3420 .src_task = cur, 3421 .src_cpu = curr_cpu, 3422 .dst_task = p, 3423 .dst_cpu = target_cpu, 3424 }; 3425 3426 if (arg.src_cpu == arg.dst_cpu) 3427 goto out; 3428 3429 /* 3430 * These three tests are all lockless; this is OK since all of them 3431 * will be re-checked with proper locks held further down the line. 3432 */ 3433 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3434 goto out; 3435 3436 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3437 goto out; 3438 3439 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3440 goto out; 3441 3442 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3443 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3444 3445 out: 3446 return ret; 3447 } 3448 #endif /* CONFIG_NUMA_BALANCING */ 3449 3450 /*** 3451 * kick_process - kick a running thread to enter/exit the kernel 3452 * @p: the to-be-kicked thread 3453 * 3454 * Cause a process which is running on another CPU to enter 3455 * kernel-mode, without any delay. (to get signals handled.) 3456 * 3457 * NOTE: this function doesn't have to take the runqueue lock, 3458 * because all it wants to ensure is that the remote task enters 3459 * the kernel. If the IPI races and the task has been migrated 3460 * to another CPU then no harm is done and the purpose has been 3461 * achieved as well. 3462 */ 3463 void kick_process(struct task_struct *p) 3464 { 3465 guard(preempt)(); 3466 int cpu = task_cpu(p); 3467 3468 if ((cpu != smp_processor_id()) && task_curr(p)) 3469 smp_send_reschedule(cpu); 3470 } 3471 EXPORT_SYMBOL_GPL(kick_process); 3472 3473 /* 3474 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3475 * 3476 * A few notes on cpu_active vs cpu_online: 3477 * 3478 * - cpu_active must be a subset of cpu_online 3479 * 3480 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3481 * see __set_cpus_allowed_ptr(). At this point the newly online 3482 * CPU isn't yet part of the sched domains, and balancing will not 3483 * see it. 3484 * 3485 * - on CPU-down we clear cpu_active() to mask the sched domains and 3486 * avoid the load balancer to place new tasks on the to be removed 3487 * CPU. Existing tasks will remain running there and will be taken 3488 * off. 3489 * 3490 * This means that fallback selection must not select !active CPUs. 3491 * And can assume that any active CPU must be online. Conversely 3492 * select_task_rq() below may allow selection of !active CPUs in order 3493 * to satisfy the above rules. 3494 */ 3495 static int select_fallback_rq(int cpu, struct task_struct *p) 3496 { 3497 int nid = cpu_to_node(cpu); 3498 const struct cpumask *nodemask = NULL; 3499 enum { cpuset, possible, fail } state = cpuset; 3500 int dest_cpu; 3501 3502 /* 3503 * If the node that the CPU is on has been offlined, cpu_to_node() 3504 * will return -1. There is no CPU on the node, and we should 3505 * select the CPU on the other node. 3506 */ 3507 if (nid != -1) { 3508 nodemask = cpumask_of_node(nid); 3509 3510 /* Look for allowed, online CPU in same node. */ 3511 for_each_cpu(dest_cpu, nodemask) { 3512 if (is_cpu_allowed(p, dest_cpu)) 3513 return dest_cpu; 3514 } 3515 } 3516 3517 for (;;) { 3518 /* Any allowed, online CPU? */ 3519 for_each_cpu(dest_cpu, p->cpus_ptr) { 3520 if (!is_cpu_allowed(p, dest_cpu)) 3521 continue; 3522 3523 goto out; 3524 } 3525 3526 /* No more Mr. Nice Guy. */ 3527 switch (state) { 3528 case cpuset: 3529 if (cpuset_cpus_allowed_fallback(p)) { 3530 state = possible; 3531 break; 3532 } 3533 fallthrough; 3534 case possible: 3535 /* 3536 * XXX When called from select_task_rq() we only 3537 * hold p->pi_lock and again violate locking order. 3538 * 3539 * More yuck to audit. 3540 */ 3541 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3542 state = fail; 3543 break; 3544 case fail: 3545 BUG(); 3546 break; 3547 } 3548 } 3549 3550 out: 3551 if (state != cpuset) { 3552 /* 3553 * Don't tell them about moving exiting tasks or 3554 * kernel threads (both mm NULL), since they never 3555 * leave kernel. 3556 */ 3557 if (p->mm && printk_ratelimit()) { 3558 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3559 task_pid_nr(p), p->comm, cpu); 3560 } 3561 } 3562 3563 return dest_cpu; 3564 } 3565 3566 /* 3567 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3568 */ 3569 static inline 3570 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3571 { 3572 lockdep_assert_held(&p->pi_lock); 3573 3574 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3575 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3576 *wake_flags |= WF_RQ_SELECTED; 3577 } else { 3578 cpu = cpumask_any(p->cpus_ptr); 3579 } 3580 3581 /* 3582 * In order not to call set_task_cpu() on a blocking task we need 3583 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3584 * CPU. 3585 * 3586 * Since this is common to all placement strategies, this lives here. 3587 * 3588 * [ this allows ->select_task() to simply return task_cpu(p) and 3589 * not worry about this generic constraint ] 3590 */ 3591 if (unlikely(!is_cpu_allowed(p, cpu))) 3592 cpu = select_fallback_rq(task_cpu(p), p); 3593 3594 return cpu; 3595 } 3596 3597 void sched_set_stop_task(int cpu, struct task_struct *stop) 3598 { 3599 static struct lock_class_key stop_pi_lock; 3600 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3601 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3602 3603 if (stop) { 3604 /* 3605 * Make it appear like a SCHED_FIFO task, its something 3606 * userspace knows about and won't get confused about. 3607 * 3608 * Also, it will make PI more or less work without too 3609 * much confusion -- but then, stop work should not 3610 * rely on PI working anyway. 3611 */ 3612 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3613 3614 stop->sched_class = &stop_sched_class; 3615 3616 /* 3617 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3618 * adjust the effective priority of a task. As a result, 3619 * rt_mutex_setprio() can trigger (RT) balancing operations, 3620 * which can then trigger wakeups of the stop thread to push 3621 * around the current task. 3622 * 3623 * The stop task itself will never be part of the PI-chain, it 3624 * never blocks, therefore that ->pi_lock recursion is safe. 3625 * Tell lockdep about this by placing the stop->pi_lock in its 3626 * own class. 3627 */ 3628 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3629 } 3630 3631 cpu_rq(cpu)->stop = stop; 3632 3633 if (old_stop) { 3634 /* 3635 * Reset it back to a normal scheduling class so that 3636 * it can die in pieces. 3637 */ 3638 old_stop->sched_class = &rt_sched_class; 3639 } 3640 } 3641 3642 #else /* CONFIG_SMP */ 3643 3644 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3645 3646 static inline bool rq_has_pinned_tasks(struct rq *rq) 3647 { 3648 return false; 3649 } 3650 3651 #endif /* !CONFIG_SMP */ 3652 3653 static void 3654 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3655 { 3656 struct rq *rq; 3657 3658 if (!schedstat_enabled()) 3659 return; 3660 3661 rq = this_rq(); 3662 3663 #ifdef CONFIG_SMP 3664 if (cpu == rq->cpu) { 3665 __schedstat_inc(rq->ttwu_local); 3666 __schedstat_inc(p->stats.nr_wakeups_local); 3667 } else { 3668 struct sched_domain *sd; 3669 3670 __schedstat_inc(p->stats.nr_wakeups_remote); 3671 3672 guard(rcu)(); 3673 for_each_domain(rq->cpu, sd) { 3674 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3675 __schedstat_inc(sd->ttwu_wake_remote); 3676 break; 3677 } 3678 } 3679 } 3680 3681 if (wake_flags & WF_MIGRATED) 3682 __schedstat_inc(p->stats.nr_wakeups_migrate); 3683 #endif /* CONFIG_SMP */ 3684 3685 __schedstat_inc(rq->ttwu_count); 3686 __schedstat_inc(p->stats.nr_wakeups); 3687 3688 if (wake_flags & WF_SYNC) 3689 __schedstat_inc(p->stats.nr_wakeups_sync); 3690 } 3691 3692 /* 3693 * Mark the task runnable. 3694 */ 3695 static inline void ttwu_do_wakeup(struct task_struct *p) 3696 { 3697 WRITE_ONCE(p->__state, TASK_RUNNING); 3698 trace_sched_wakeup(p); 3699 } 3700 3701 static void 3702 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3703 struct rq_flags *rf) 3704 { 3705 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3706 3707 lockdep_assert_rq_held(rq); 3708 3709 if (p->sched_contributes_to_load) 3710 rq->nr_uninterruptible--; 3711 3712 #ifdef CONFIG_SMP 3713 if (wake_flags & WF_RQ_SELECTED) 3714 en_flags |= ENQUEUE_RQ_SELECTED; 3715 if (wake_flags & WF_MIGRATED) 3716 en_flags |= ENQUEUE_MIGRATED; 3717 else 3718 #endif 3719 if (p->in_iowait) { 3720 delayacct_blkio_end(p); 3721 atomic_dec(&task_rq(p)->nr_iowait); 3722 } 3723 3724 activate_task(rq, p, en_flags); 3725 wakeup_preempt(rq, p, wake_flags); 3726 3727 ttwu_do_wakeup(p); 3728 3729 #ifdef CONFIG_SMP 3730 if (p->sched_class->task_woken) { 3731 /* 3732 * Our task @p is fully woken up and running; so it's safe to 3733 * drop the rq->lock, hereafter rq is only used for statistics. 3734 */ 3735 rq_unpin_lock(rq, rf); 3736 p->sched_class->task_woken(rq, p); 3737 rq_repin_lock(rq, rf); 3738 } 3739 3740 if (rq->idle_stamp) { 3741 u64 delta = rq_clock(rq) - rq->idle_stamp; 3742 u64 max = 2*rq->max_idle_balance_cost; 3743 3744 update_avg(&rq->avg_idle, delta); 3745 3746 if (rq->avg_idle > max) 3747 rq->avg_idle = max; 3748 3749 rq->idle_stamp = 0; 3750 } 3751 #endif 3752 } 3753 3754 /* 3755 * Consider @p being inside a wait loop: 3756 * 3757 * for (;;) { 3758 * set_current_state(TASK_UNINTERRUPTIBLE); 3759 * 3760 * if (CONDITION) 3761 * break; 3762 * 3763 * schedule(); 3764 * } 3765 * __set_current_state(TASK_RUNNING); 3766 * 3767 * between set_current_state() and schedule(). In this case @p is still 3768 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3769 * an atomic manner. 3770 * 3771 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3772 * then schedule() must still happen and p->state can be changed to 3773 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3774 * need to do a full wakeup with enqueue. 3775 * 3776 * Returns: %true when the wakeup is done, 3777 * %false otherwise. 3778 */ 3779 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3780 { 3781 struct rq_flags rf; 3782 struct rq *rq; 3783 int ret = 0; 3784 3785 rq = __task_rq_lock(p, &rf); 3786 if (task_on_rq_queued(p)) { 3787 update_rq_clock(rq); 3788 if (p->se.sched_delayed) 3789 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3790 if (!task_on_cpu(rq, p)) { 3791 /* 3792 * When on_rq && !on_cpu the task is preempted, see if 3793 * it should preempt the task that is current now. 3794 */ 3795 wakeup_preempt(rq, p, wake_flags); 3796 } 3797 ttwu_do_wakeup(p); 3798 ret = 1; 3799 } 3800 __task_rq_unlock(rq, &rf); 3801 3802 return ret; 3803 } 3804 3805 #ifdef CONFIG_SMP 3806 void sched_ttwu_pending(void *arg) 3807 { 3808 struct llist_node *llist = arg; 3809 struct rq *rq = this_rq(); 3810 struct task_struct *p, *t; 3811 struct rq_flags rf; 3812 3813 if (!llist) 3814 return; 3815 3816 rq_lock_irqsave(rq, &rf); 3817 update_rq_clock(rq); 3818 3819 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3820 if (WARN_ON_ONCE(p->on_cpu)) 3821 smp_cond_load_acquire(&p->on_cpu, !VAL); 3822 3823 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3824 set_task_cpu(p, cpu_of(rq)); 3825 3826 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3827 } 3828 3829 /* 3830 * Must be after enqueueing at least once task such that 3831 * idle_cpu() does not observe a false-negative -- if it does, 3832 * it is possible for select_idle_siblings() to stack a number 3833 * of tasks on this CPU during that window. 3834 * 3835 * It is OK to clear ttwu_pending when another task pending. 3836 * We will receive IPI after local IRQ enabled and then enqueue it. 3837 * Since now nr_running > 0, idle_cpu() will always get correct result. 3838 */ 3839 WRITE_ONCE(rq->ttwu_pending, 0); 3840 rq_unlock_irqrestore(rq, &rf); 3841 } 3842 3843 /* 3844 * Prepare the scene for sending an IPI for a remote smp_call 3845 * 3846 * Returns true if the caller can proceed with sending the IPI. 3847 * Returns false otherwise. 3848 */ 3849 bool call_function_single_prep_ipi(int cpu) 3850 { 3851 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3852 trace_sched_wake_idle_without_ipi(cpu); 3853 return false; 3854 } 3855 3856 return true; 3857 } 3858 3859 /* 3860 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3861 * necessary. The wakee CPU on receipt of the IPI will queue the task 3862 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3863 * of the wakeup instead of the waker. 3864 */ 3865 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3866 { 3867 struct rq *rq = cpu_rq(cpu); 3868 3869 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3870 3871 WRITE_ONCE(rq->ttwu_pending, 1); 3872 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3873 } 3874 3875 void wake_up_if_idle(int cpu) 3876 { 3877 struct rq *rq = cpu_rq(cpu); 3878 3879 guard(rcu)(); 3880 if (is_idle_task(rcu_dereference(rq->curr))) { 3881 guard(rq_lock_irqsave)(rq); 3882 if (is_idle_task(rq->curr)) 3883 resched_curr(rq); 3884 } 3885 } 3886 3887 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3888 { 3889 if (!sched_asym_cpucap_active()) 3890 return true; 3891 3892 if (this_cpu == that_cpu) 3893 return true; 3894 3895 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3896 } 3897 3898 bool cpus_share_cache(int this_cpu, int that_cpu) 3899 { 3900 if (this_cpu == that_cpu) 3901 return true; 3902 3903 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3904 } 3905 3906 /* 3907 * Whether CPUs are share cache resources, which means LLC on non-cluster 3908 * machines and LLC tag or L2 on machines with clusters. 3909 */ 3910 bool cpus_share_resources(int this_cpu, int that_cpu) 3911 { 3912 if (this_cpu == that_cpu) 3913 return true; 3914 3915 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3916 } 3917 3918 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3919 { 3920 /* 3921 * The BPF scheduler may depend on select_task_rq() being invoked during 3922 * wakeups. In addition, @p may end up executing on a different CPU 3923 * regardless of what happens in the wakeup path making the ttwu_queue 3924 * optimization less meaningful. Skip if on SCX. 3925 */ 3926 if (task_on_scx(p)) 3927 return false; 3928 3929 /* 3930 * Do not complicate things with the async wake_list while the CPU is 3931 * in hotplug state. 3932 */ 3933 if (!cpu_active(cpu)) 3934 return false; 3935 3936 /* Ensure the task will still be allowed to run on the CPU. */ 3937 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3938 return false; 3939 3940 /* 3941 * If the CPU does not share cache, then queue the task on the 3942 * remote rqs wakelist to avoid accessing remote data. 3943 */ 3944 if (!cpus_share_cache(smp_processor_id(), cpu)) 3945 return true; 3946 3947 if (cpu == smp_processor_id()) 3948 return false; 3949 3950 /* 3951 * If the wakee cpu is idle, or the task is descheduling and the 3952 * only running task on the CPU, then use the wakelist to offload 3953 * the task activation to the idle (or soon-to-be-idle) CPU as 3954 * the current CPU is likely busy. nr_running is checked to 3955 * avoid unnecessary task stacking. 3956 * 3957 * Note that we can only get here with (wakee) p->on_rq=0, 3958 * p->on_cpu can be whatever, we've done the dequeue, so 3959 * the wakee has been accounted out of ->nr_running. 3960 */ 3961 if (!cpu_rq(cpu)->nr_running) 3962 return true; 3963 3964 return false; 3965 } 3966 3967 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3968 { 3969 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3970 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3971 __ttwu_queue_wakelist(p, cpu, wake_flags); 3972 return true; 3973 } 3974 3975 return false; 3976 } 3977 3978 #else /* !CONFIG_SMP */ 3979 3980 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3981 { 3982 return false; 3983 } 3984 3985 #endif /* CONFIG_SMP */ 3986 3987 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3988 { 3989 struct rq *rq = cpu_rq(cpu); 3990 struct rq_flags rf; 3991 3992 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3993 return; 3994 3995 rq_lock(rq, &rf); 3996 update_rq_clock(rq); 3997 ttwu_do_activate(rq, p, wake_flags, &rf); 3998 rq_unlock(rq, &rf); 3999 } 4000 4001 /* 4002 * Invoked from try_to_wake_up() to check whether the task can be woken up. 4003 * 4004 * The caller holds p::pi_lock if p != current or has preemption 4005 * disabled when p == current. 4006 * 4007 * The rules of saved_state: 4008 * 4009 * The related locking code always holds p::pi_lock when updating 4010 * p::saved_state, which means the code is fully serialized in both cases. 4011 * 4012 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 4013 * No other bits set. This allows to distinguish all wakeup scenarios. 4014 * 4015 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 4016 * allows us to prevent early wakeup of tasks before they can be run on 4017 * asymmetric ISA architectures (eg ARMv9). 4018 */ 4019 static __always_inline 4020 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 4021 { 4022 int match; 4023 4024 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 4025 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 4026 state != TASK_RTLOCK_WAIT); 4027 } 4028 4029 *success = !!(match = __task_state_match(p, state)); 4030 4031 /* 4032 * Saved state preserves the task state across blocking on 4033 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 4034 * set p::saved_state to TASK_RUNNING, but do not wake the task 4035 * because it waits for a lock wakeup or __thaw_task(). Also 4036 * indicate success because from the regular waker's point of 4037 * view this has succeeded. 4038 * 4039 * After acquiring the lock the task will restore p::__state 4040 * from p::saved_state which ensures that the regular 4041 * wakeup is not lost. The restore will also set 4042 * p::saved_state to TASK_RUNNING so any further tests will 4043 * not result in false positives vs. @success 4044 */ 4045 if (match < 0) 4046 p->saved_state = TASK_RUNNING; 4047 4048 return match > 0; 4049 } 4050 4051 /* 4052 * Notes on Program-Order guarantees on SMP systems. 4053 * 4054 * MIGRATION 4055 * 4056 * The basic program-order guarantee on SMP systems is that when a task [t] 4057 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4058 * execution on its new CPU [c1]. 4059 * 4060 * For migration (of runnable tasks) this is provided by the following means: 4061 * 4062 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4063 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4064 * rq(c1)->lock (if not at the same time, then in that order). 4065 * C) LOCK of the rq(c1)->lock scheduling in task 4066 * 4067 * Release/acquire chaining guarantees that B happens after A and C after B. 4068 * Note: the CPU doing B need not be c0 or c1 4069 * 4070 * Example: 4071 * 4072 * CPU0 CPU1 CPU2 4073 * 4074 * LOCK rq(0)->lock 4075 * sched-out X 4076 * sched-in Y 4077 * UNLOCK rq(0)->lock 4078 * 4079 * LOCK rq(0)->lock // orders against CPU0 4080 * dequeue X 4081 * UNLOCK rq(0)->lock 4082 * 4083 * LOCK rq(1)->lock 4084 * enqueue X 4085 * UNLOCK rq(1)->lock 4086 * 4087 * LOCK rq(1)->lock // orders against CPU2 4088 * sched-out Z 4089 * sched-in X 4090 * UNLOCK rq(1)->lock 4091 * 4092 * 4093 * BLOCKING -- aka. SLEEP + WAKEUP 4094 * 4095 * For blocking we (obviously) need to provide the same guarantee as for 4096 * migration. However the means are completely different as there is no lock 4097 * chain to provide order. Instead we do: 4098 * 4099 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4100 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4101 * 4102 * Example: 4103 * 4104 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4105 * 4106 * LOCK rq(0)->lock LOCK X->pi_lock 4107 * dequeue X 4108 * sched-out X 4109 * smp_store_release(X->on_cpu, 0); 4110 * 4111 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4112 * X->state = WAKING 4113 * set_task_cpu(X,2) 4114 * 4115 * LOCK rq(2)->lock 4116 * enqueue X 4117 * X->state = RUNNING 4118 * UNLOCK rq(2)->lock 4119 * 4120 * LOCK rq(2)->lock // orders against CPU1 4121 * sched-out Z 4122 * sched-in X 4123 * UNLOCK rq(2)->lock 4124 * 4125 * UNLOCK X->pi_lock 4126 * UNLOCK rq(0)->lock 4127 * 4128 * 4129 * However, for wakeups there is a second guarantee we must provide, namely we 4130 * must ensure that CONDITION=1 done by the caller can not be reordered with 4131 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4132 */ 4133 4134 /** 4135 * try_to_wake_up - wake up a thread 4136 * @p: the thread to be awakened 4137 * @state: the mask of task states that can be woken 4138 * @wake_flags: wake modifier flags (WF_*) 4139 * 4140 * Conceptually does: 4141 * 4142 * If (@state & @p->state) @p->state = TASK_RUNNING. 4143 * 4144 * If the task was not queued/runnable, also place it back on a runqueue. 4145 * 4146 * This function is atomic against schedule() which would dequeue the task. 4147 * 4148 * It issues a full memory barrier before accessing @p->state, see the comment 4149 * with set_current_state(). 4150 * 4151 * Uses p->pi_lock to serialize against concurrent wake-ups. 4152 * 4153 * Relies on p->pi_lock stabilizing: 4154 * - p->sched_class 4155 * - p->cpus_ptr 4156 * - p->sched_task_group 4157 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4158 * 4159 * Tries really hard to only take one task_rq(p)->lock for performance. 4160 * Takes rq->lock in: 4161 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4162 * - ttwu_queue() -- new rq, for enqueue of the task; 4163 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4164 * 4165 * As a consequence we race really badly with just about everything. See the 4166 * many memory barriers and their comments for details. 4167 * 4168 * Return: %true if @p->state changes (an actual wakeup was done), 4169 * %false otherwise. 4170 */ 4171 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4172 { 4173 guard(preempt)(); 4174 int cpu, success = 0; 4175 4176 wake_flags |= WF_TTWU; 4177 4178 if (p == current) { 4179 /* 4180 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4181 * == smp_processor_id()'. Together this means we can special 4182 * case the whole 'p->on_rq && ttwu_runnable()' case below 4183 * without taking any locks. 4184 * 4185 * Specifically, given current runs ttwu() we must be before 4186 * schedule()'s block_task(), as such this must not observe 4187 * sched_delayed. 4188 * 4189 * In particular: 4190 * - we rely on Program-Order guarantees for all the ordering, 4191 * - we're serialized against set_special_state() by virtue of 4192 * it disabling IRQs (this allows not taking ->pi_lock). 4193 */ 4194 SCHED_WARN_ON(p->se.sched_delayed); 4195 if (!ttwu_state_match(p, state, &success)) 4196 goto out; 4197 4198 trace_sched_waking(p); 4199 ttwu_do_wakeup(p); 4200 goto out; 4201 } 4202 4203 /* 4204 * If we are going to wake up a thread waiting for CONDITION we 4205 * need to ensure that CONDITION=1 done by the caller can not be 4206 * reordered with p->state check below. This pairs with smp_store_mb() 4207 * in set_current_state() that the waiting thread does. 4208 */ 4209 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4210 smp_mb__after_spinlock(); 4211 if (!ttwu_state_match(p, state, &success)) 4212 break; 4213 4214 trace_sched_waking(p); 4215 4216 /* 4217 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4218 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4219 * in smp_cond_load_acquire() below. 4220 * 4221 * sched_ttwu_pending() try_to_wake_up() 4222 * STORE p->on_rq = 1 LOAD p->state 4223 * UNLOCK rq->lock 4224 * 4225 * __schedule() (switch to task 'p') 4226 * LOCK rq->lock smp_rmb(); 4227 * smp_mb__after_spinlock(); 4228 * UNLOCK rq->lock 4229 * 4230 * [task p] 4231 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4232 * 4233 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4234 * __schedule(). See the comment for smp_mb__after_spinlock(). 4235 * 4236 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4237 */ 4238 smp_rmb(); 4239 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4240 break; 4241 4242 #ifdef CONFIG_SMP 4243 /* 4244 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4245 * possible to, falsely, observe p->on_cpu == 0. 4246 * 4247 * One must be running (->on_cpu == 1) in order to remove oneself 4248 * from the runqueue. 4249 * 4250 * __schedule() (switch to task 'p') try_to_wake_up() 4251 * STORE p->on_cpu = 1 LOAD p->on_rq 4252 * UNLOCK rq->lock 4253 * 4254 * __schedule() (put 'p' to sleep) 4255 * LOCK rq->lock smp_rmb(); 4256 * smp_mb__after_spinlock(); 4257 * STORE p->on_rq = 0 LOAD p->on_cpu 4258 * 4259 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4260 * __schedule(). See the comment for smp_mb__after_spinlock(). 4261 * 4262 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4263 * schedule()'s deactivate_task() has 'happened' and p will no longer 4264 * care about it's own p->state. See the comment in __schedule(). 4265 */ 4266 smp_acquire__after_ctrl_dep(); 4267 4268 /* 4269 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4270 * == 0), which means we need to do an enqueue, change p->state to 4271 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4272 * enqueue, such as ttwu_queue_wakelist(). 4273 */ 4274 WRITE_ONCE(p->__state, TASK_WAKING); 4275 4276 /* 4277 * If the owning (remote) CPU is still in the middle of schedule() with 4278 * this task as prev, considering queueing p on the remote CPUs wake_list 4279 * which potentially sends an IPI instead of spinning on p->on_cpu to 4280 * let the waker make forward progress. This is safe because IRQs are 4281 * disabled and the IPI will deliver after on_cpu is cleared. 4282 * 4283 * Ensure we load task_cpu(p) after p->on_cpu: 4284 * 4285 * set_task_cpu(p, cpu); 4286 * STORE p->cpu = @cpu 4287 * __schedule() (switch to task 'p') 4288 * LOCK rq->lock 4289 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4290 * STORE p->on_cpu = 1 LOAD p->cpu 4291 * 4292 * to ensure we observe the correct CPU on which the task is currently 4293 * scheduling. 4294 */ 4295 if (smp_load_acquire(&p->on_cpu) && 4296 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4297 break; 4298 4299 /* 4300 * If the owning (remote) CPU is still in the middle of schedule() with 4301 * this task as prev, wait until it's done referencing the task. 4302 * 4303 * Pairs with the smp_store_release() in finish_task(). 4304 * 4305 * This ensures that tasks getting woken will be fully ordered against 4306 * their previous state and preserve Program Order. 4307 */ 4308 smp_cond_load_acquire(&p->on_cpu, !VAL); 4309 4310 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4311 if (task_cpu(p) != cpu) { 4312 if (p->in_iowait) { 4313 delayacct_blkio_end(p); 4314 atomic_dec(&task_rq(p)->nr_iowait); 4315 } 4316 4317 wake_flags |= WF_MIGRATED; 4318 psi_ttwu_dequeue(p); 4319 set_task_cpu(p, cpu); 4320 } 4321 #else 4322 cpu = task_cpu(p); 4323 #endif /* CONFIG_SMP */ 4324 4325 ttwu_queue(p, cpu, wake_flags); 4326 } 4327 out: 4328 if (success) 4329 ttwu_stat(p, task_cpu(p), wake_flags); 4330 4331 return success; 4332 } 4333 4334 static bool __task_needs_rq_lock(struct task_struct *p) 4335 { 4336 unsigned int state = READ_ONCE(p->__state); 4337 4338 /* 4339 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4340 * the task is blocked. Make sure to check @state since ttwu() can drop 4341 * locks at the end, see ttwu_queue_wakelist(). 4342 */ 4343 if (state == TASK_RUNNING || state == TASK_WAKING) 4344 return true; 4345 4346 /* 4347 * Ensure we load p->on_rq after p->__state, otherwise it would be 4348 * possible to, falsely, observe p->on_rq == 0. 4349 * 4350 * See try_to_wake_up() for a longer comment. 4351 */ 4352 smp_rmb(); 4353 if (p->on_rq) 4354 return true; 4355 4356 #ifdef CONFIG_SMP 4357 /* 4358 * Ensure the task has finished __schedule() and will not be referenced 4359 * anymore. Again, see try_to_wake_up() for a longer comment. 4360 */ 4361 smp_rmb(); 4362 smp_cond_load_acquire(&p->on_cpu, !VAL); 4363 #endif 4364 4365 return false; 4366 } 4367 4368 /** 4369 * task_call_func - Invoke a function on task in fixed state 4370 * @p: Process for which the function is to be invoked, can be @current. 4371 * @func: Function to invoke. 4372 * @arg: Argument to function. 4373 * 4374 * Fix the task in it's current state by avoiding wakeups and or rq operations 4375 * and call @func(@arg) on it. This function can use task_is_runnable() and 4376 * task_curr() to work out what the state is, if required. Given that @func 4377 * can be invoked with a runqueue lock held, it had better be quite 4378 * lightweight. 4379 * 4380 * Returns: 4381 * Whatever @func returns 4382 */ 4383 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4384 { 4385 struct rq *rq = NULL; 4386 struct rq_flags rf; 4387 int ret; 4388 4389 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4390 4391 if (__task_needs_rq_lock(p)) 4392 rq = __task_rq_lock(p, &rf); 4393 4394 /* 4395 * At this point the task is pinned; either: 4396 * - blocked and we're holding off wakeups (pi->lock) 4397 * - woken, and we're holding off enqueue (rq->lock) 4398 * - queued, and we're holding off schedule (rq->lock) 4399 * - running, and we're holding off de-schedule (rq->lock) 4400 * 4401 * The called function (@func) can use: task_curr(), p->on_rq and 4402 * p->__state to differentiate between these states. 4403 */ 4404 ret = func(p, arg); 4405 4406 if (rq) 4407 rq_unlock(rq, &rf); 4408 4409 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4410 return ret; 4411 } 4412 4413 /** 4414 * cpu_curr_snapshot - Return a snapshot of the currently running task 4415 * @cpu: The CPU on which to snapshot the task. 4416 * 4417 * Returns the task_struct pointer of the task "currently" running on 4418 * the specified CPU. 4419 * 4420 * If the specified CPU was offline, the return value is whatever it 4421 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4422 * task, but there is no guarantee. Callers wishing a useful return 4423 * value must take some action to ensure that the specified CPU remains 4424 * online throughout. 4425 * 4426 * This function executes full memory barriers before and after fetching 4427 * the pointer, which permits the caller to confine this function's fetch 4428 * with respect to the caller's accesses to other shared variables. 4429 */ 4430 struct task_struct *cpu_curr_snapshot(int cpu) 4431 { 4432 struct rq *rq = cpu_rq(cpu); 4433 struct task_struct *t; 4434 struct rq_flags rf; 4435 4436 rq_lock_irqsave(rq, &rf); 4437 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4438 t = rcu_dereference(cpu_curr(cpu)); 4439 rq_unlock_irqrestore(rq, &rf); 4440 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4441 4442 return t; 4443 } 4444 4445 /** 4446 * wake_up_process - Wake up a specific process 4447 * @p: The process to be woken up. 4448 * 4449 * Attempt to wake up the nominated process and move it to the set of runnable 4450 * processes. 4451 * 4452 * Return: 1 if the process was woken up, 0 if it was already running. 4453 * 4454 * This function executes a full memory barrier before accessing the task state. 4455 */ 4456 int wake_up_process(struct task_struct *p) 4457 { 4458 return try_to_wake_up(p, TASK_NORMAL, 0); 4459 } 4460 EXPORT_SYMBOL(wake_up_process); 4461 4462 int wake_up_state(struct task_struct *p, unsigned int state) 4463 { 4464 return try_to_wake_up(p, state, 0); 4465 } 4466 4467 /* 4468 * Perform scheduler related setup for a newly forked process p. 4469 * p is forked by current. 4470 * 4471 * __sched_fork() is basic setup which is also used by sched_init() to 4472 * initialize the boot CPU's idle task. 4473 */ 4474 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4475 { 4476 p->on_rq = 0; 4477 4478 p->se.on_rq = 0; 4479 p->se.exec_start = 0; 4480 p->se.sum_exec_runtime = 0; 4481 p->se.prev_sum_exec_runtime = 0; 4482 p->se.nr_migrations = 0; 4483 p->se.vruntime = 0; 4484 p->se.vlag = 0; 4485 INIT_LIST_HEAD(&p->se.group_node); 4486 4487 /* A delayed task cannot be in clone(). */ 4488 SCHED_WARN_ON(p->se.sched_delayed); 4489 4490 #ifdef CONFIG_FAIR_GROUP_SCHED 4491 p->se.cfs_rq = NULL; 4492 #endif 4493 4494 #ifdef CONFIG_SCHEDSTATS 4495 /* Even if schedstat is disabled, there should not be garbage */ 4496 memset(&p->stats, 0, sizeof(p->stats)); 4497 #endif 4498 4499 init_dl_entity(&p->dl); 4500 4501 INIT_LIST_HEAD(&p->rt.run_list); 4502 p->rt.timeout = 0; 4503 p->rt.time_slice = sched_rr_timeslice; 4504 p->rt.on_rq = 0; 4505 p->rt.on_list = 0; 4506 4507 #ifdef CONFIG_SCHED_CLASS_EXT 4508 init_scx_entity(&p->scx); 4509 #endif 4510 4511 #ifdef CONFIG_PREEMPT_NOTIFIERS 4512 INIT_HLIST_HEAD(&p->preempt_notifiers); 4513 #endif 4514 4515 #ifdef CONFIG_COMPACTION 4516 p->capture_control = NULL; 4517 #endif 4518 init_numa_balancing(clone_flags, p); 4519 #ifdef CONFIG_SMP 4520 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4521 p->migration_pending = NULL; 4522 #endif 4523 init_sched_mm_cid(p); 4524 } 4525 4526 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4527 4528 #ifdef CONFIG_NUMA_BALANCING 4529 4530 int sysctl_numa_balancing_mode; 4531 4532 static void __set_numabalancing_state(bool enabled) 4533 { 4534 if (enabled) 4535 static_branch_enable(&sched_numa_balancing); 4536 else 4537 static_branch_disable(&sched_numa_balancing); 4538 } 4539 4540 void set_numabalancing_state(bool enabled) 4541 { 4542 if (enabled) 4543 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4544 else 4545 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4546 __set_numabalancing_state(enabled); 4547 } 4548 4549 #ifdef CONFIG_PROC_SYSCTL 4550 static void reset_memory_tiering(void) 4551 { 4552 struct pglist_data *pgdat; 4553 4554 for_each_online_pgdat(pgdat) { 4555 pgdat->nbp_threshold = 0; 4556 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4557 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4558 } 4559 } 4560 4561 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4562 void *buffer, size_t *lenp, loff_t *ppos) 4563 { 4564 struct ctl_table t; 4565 int err; 4566 int state = sysctl_numa_balancing_mode; 4567 4568 if (write && !capable(CAP_SYS_ADMIN)) 4569 return -EPERM; 4570 4571 t = *table; 4572 t.data = &state; 4573 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4574 if (err < 0) 4575 return err; 4576 if (write) { 4577 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4578 (state & NUMA_BALANCING_MEMORY_TIERING)) 4579 reset_memory_tiering(); 4580 sysctl_numa_balancing_mode = state; 4581 __set_numabalancing_state(state); 4582 } 4583 return err; 4584 } 4585 #endif 4586 #endif 4587 4588 #ifdef CONFIG_SCHEDSTATS 4589 4590 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4591 4592 static void set_schedstats(bool enabled) 4593 { 4594 if (enabled) 4595 static_branch_enable(&sched_schedstats); 4596 else 4597 static_branch_disable(&sched_schedstats); 4598 } 4599 4600 void force_schedstat_enabled(void) 4601 { 4602 if (!schedstat_enabled()) { 4603 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4604 static_branch_enable(&sched_schedstats); 4605 } 4606 } 4607 4608 static int __init setup_schedstats(char *str) 4609 { 4610 int ret = 0; 4611 if (!str) 4612 goto out; 4613 4614 if (!strcmp(str, "enable")) { 4615 set_schedstats(true); 4616 ret = 1; 4617 } else if (!strcmp(str, "disable")) { 4618 set_schedstats(false); 4619 ret = 1; 4620 } 4621 out: 4622 if (!ret) 4623 pr_warn("Unable to parse schedstats=\n"); 4624 4625 return ret; 4626 } 4627 __setup("schedstats=", setup_schedstats); 4628 4629 #ifdef CONFIG_PROC_SYSCTL 4630 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4631 size_t *lenp, loff_t *ppos) 4632 { 4633 struct ctl_table t; 4634 int err; 4635 int state = static_branch_likely(&sched_schedstats); 4636 4637 if (write && !capable(CAP_SYS_ADMIN)) 4638 return -EPERM; 4639 4640 t = *table; 4641 t.data = &state; 4642 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4643 if (err < 0) 4644 return err; 4645 if (write) 4646 set_schedstats(state); 4647 return err; 4648 } 4649 #endif /* CONFIG_PROC_SYSCTL */ 4650 #endif /* CONFIG_SCHEDSTATS */ 4651 4652 #ifdef CONFIG_SYSCTL 4653 static struct ctl_table sched_core_sysctls[] = { 4654 #ifdef CONFIG_SCHEDSTATS 4655 { 4656 .procname = "sched_schedstats", 4657 .data = NULL, 4658 .maxlen = sizeof(unsigned int), 4659 .mode = 0644, 4660 .proc_handler = sysctl_schedstats, 4661 .extra1 = SYSCTL_ZERO, 4662 .extra2 = SYSCTL_ONE, 4663 }, 4664 #endif /* CONFIG_SCHEDSTATS */ 4665 #ifdef CONFIG_UCLAMP_TASK 4666 { 4667 .procname = "sched_util_clamp_min", 4668 .data = &sysctl_sched_uclamp_util_min, 4669 .maxlen = sizeof(unsigned int), 4670 .mode = 0644, 4671 .proc_handler = sysctl_sched_uclamp_handler, 4672 }, 4673 { 4674 .procname = "sched_util_clamp_max", 4675 .data = &sysctl_sched_uclamp_util_max, 4676 .maxlen = sizeof(unsigned int), 4677 .mode = 0644, 4678 .proc_handler = sysctl_sched_uclamp_handler, 4679 }, 4680 { 4681 .procname = "sched_util_clamp_min_rt_default", 4682 .data = &sysctl_sched_uclamp_util_min_rt_default, 4683 .maxlen = sizeof(unsigned int), 4684 .mode = 0644, 4685 .proc_handler = sysctl_sched_uclamp_handler, 4686 }, 4687 #endif /* CONFIG_UCLAMP_TASK */ 4688 #ifdef CONFIG_NUMA_BALANCING 4689 { 4690 .procname = "numa_balancing", 4691 .data = NULL, /* filled in by handler */ 4692 .maxlen = sizeof(unsigned int), 4693 .mode = 0644, 4694 .proc_handler = sysctl_numa_balancing, 4695 .extra1 = SYSCTL_ZERO, 4696 .extra2 = SYSCTL_FOUR, 4697 }, 4698 #endif /* CONFIG_NUMA_BALANCING */ 4699 }; 4700 static int __init sched_core_sysctl_init(void) 4701 { 4702 register_sysctl_init("kernel", sched_core_sysctls); 4703 return 0; 4704 } 4705 late_initcall(sched_core_sysctl_init); 4706 #endif /* CONFIG_SYSCTL */ 4707 4708 /* 4709 * fork()/clone()-time setup: 4710 */ 4711 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4712 { 4713 __sched_fork(clone_flags, p); 4714 /* 4715 * We mark the process as NEW here. This guarantees that 4716 * nobody will actually run it, and a signal or other external 4717 * event cannot wake it up and insert it on the runqueue either. 4718 */ 4719 p->__state = TASK_NEW; 4720 4721 /* 4722 * Make sure we do not leak PI boosting priority to the child. 4723 */ 4724 p->prio = current->normal_prio; 4725 4726 uclamp_fork(p); 4727 4728 /* 4729 * Revert to default priority/policy on fork if requested. 4730 */ 4731 if (unlikely(p->sched_reset_on_fork)) { 4732 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4733 p->policy = SCHED_NORMAL; 4734 p->static_prio = NICE_TO_PRIO(0); 4735 p->rt_priority = 0; 4736 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4737 p->static_prio = NICE_TO_PRIO(0); 4738 4739 p->prio = p->normal_prio = p->static_prio; 4740 set_load_weight(p, false); 4741 p->se.custom_slice = 0; 4742 p->se.slice = sysctl_sched_base_slice; 4743 4744 /* 4745 * We don't need the reset flag anymore after the fork. It has 4746 * fulfilled its duty: 4747 */ 4748 p->sched_reset_on_fork = 0; 4749 } 4750 4751 if (dl_prio(p->prio)) 4752 return -EAGAIN; 4753 4754 scx_pre_fork(p); 4755 4756 if (rt_prio(p->prio)) { 4757 p->sched_class = &rt_sched_class; 4758 #ifdef CONFIG_SCHED_CLASS_EXT 4759 } else if (task_should_scx(p->policy)) { 4760 p->sched_class = &ext_sched_class; 4761 #endif 4762 } else { 4763 p->sched_class = &fair_sched_class; 4764 } 4765 4766 init_entity_runnable_average(&p->se); 4767 4768 4769 #ifdef CONFIG_SCHED_INFO 4770 if (likely(sched_info_on())) 4771 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4772 #endif 4773 #if defined(CONFIG_SMP) 4774 p->on_cpu = 0; 4775 #endif 4776 init_task_preempt_count(p); 4777 #ifdef CONFIG_SMP 4778 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4779 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4780 #endif 4781 return 0; 4782 } 4783 4784 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4785 { 4786 unsigned long flags; 4787 4788 /* 4789 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4790 * required yet, but lockdep gets upset if rules are violated. 4791 */ 4792 raw_spin_lock_irqsave(&p->pi_lock, flags); 4793 #ifdef CONFIG_CGROUP_SCHED 4794 if (1) { 4795 struct task_group *tg; 4796 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4797 struct task_group, css); 4798 tg = autogroup_task_group(p, tg); 4799 p->sched_task_group = tg; 4800 } 4801 #endif 4802 rseq_migrate(p); 4803 /* 4804 * We're setting the CPU for the first time, we don't migrate, 4805 * so use __set_task_cpu(). 4806 */ 4807 __set_task_cpu(p, smp_processor_id()); 4808 if (p->sched_class->task_fork) 4809 p->sched_class->task_fork(p); 4810 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4811 4812 return scx_fork(p); 4813 } 4814 4815 void sched_cancel_fork(struct task_struct *p) 4816 { 4817 scx_cancel_fork(p); 4818 } 4819 4820 void sched_post_fork(struct task_struct *p) 4821 { 4822 uclamp_post_fork(p); 4823 scx_post_fork(p); 4824 } 4825 4826 unsigned long to_ratio(u64 period, u64 runtime) 4827 { 4828 if (runtime == RUNTIME_INF) 4829 return BW_UNIT; 4830 4831 /* 4832 * Doing this here saves a lot of checks in all 4833 * the calling paths, and returning zero seems 4834 * safe for them anyway. 4835 */ 4836 if (period == 0) 4837 return 0; 4838 4839 return div64_u64(runtime << BW_SHIFT, period); 4840 } 4841 4842 /* 4843 * wake_up_new_task - wake up a newly created task for the first time. 4844 * 4845 * This function will do some initial scheduler statistics housekeeping 4846 * that must be done for every newly created context, then puts the task 4847 * on the runqueue and wakes it. 4848 */ 4849 void wake_up_new_task(struct task_struct *p) 4850 { 4851 struct rq_flags rf; 4852 struct rq *rq; 4853 int wake_flags = WF_FORK; 4854 4855 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4856 WRITE_ONCE(p->__state, TASK_RUNNING); 4857 #ifdef CONFIG_SMP 4858 /* 4859 * Fork balancing, do it here and not earlier because: 4860 * - cpus_ptr can change in the fork path 4861 * - any previously selected CPU might disappear through hotplug 4862 * 4863 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4864 * as we're not fully set-up yet. 4865 */ 4866 p->recent_used_cpu = task_cpu(p); 4867 rseq_migrate(p); 4868 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4869 #endif 4870 rq = __task_rq_lock(p, &rf); 4871 update_rq_clock(rq); 4872 post_init_entity_util_avg(p); 4873 4874 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4875 trace_sched_wakeup_new(p); 4876 wakeup_preempt(rq, p, wake_flags); 4877 #ifdef CONFIG_SMP 4878 if (p->sched_class->task_woken) { 4879 /* 4880 * Nothing relies on rq->lock after this, so it's fine to 4881 * drop it. 4882 */ 4883 rq_unpin_lock(rq, &rf); 4884 p->sched_class->task_woken(rq, p); 4885 rq_repin_lock(rq, &rf); 4886 } 4887 #endif 4888 task_rq_unlock(rq, p, &rf); 4889 } 4890 4891 #ifdef CONFIG_PREEMPT_NOTIFIERS 4892 4893 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4894 4895 void preempt_notifier_inc(void) 4896 { 4897 static_branch_inc(&preempt_notifier_key); 4898 } 4899 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4900 4901 void preempt_notifier_dec(void) 4902 { 4903 static_branch_dec(&preempt_notifier_key); 4904 } 4905 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4906 4907 /** 4908 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4909 * @notifier: notifier struct to register 4910 */ 4911 void preempt_notifier_register(struct preempt_notifier *notifier) 4912 { 4913 if (!static_branch_unlikely(&preempt_notifier_key)) 4914 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4915 4916 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4917 } 4918 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4919 4920 /** 4921 * preempt_notifier_unregister - no longer interested in preemption notifications 4922 * @notifier: notifier struct to unregister 4923 * 4924 * This is *not* safe to call from within a preemption notifier. 4925 */ 4926 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4927 { 4928 hlist_del(¬ifier->link); 4929 } 4930 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4931 4932 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4933 { 4934 struct preempt_notifier *notifier; 4935 4936 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4937 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4938 } 4939 4940 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4941 { 4942 if (static_branch_unlikely(&preempt_notifier_key)) 4943 __fire_sched_in_preempt_notifiers(curr); 4944 } 4945 4946 static void 4947 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4948 struct task_struct *next) 4949 { 4950 struct preempt_notifier *notifier; 4951 4952 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4953 notifier->ops->sched_out(notifier, next); 4954 } 4955 4956 static __always_inline void 4957 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4958 struct task_struct *next) 4959 { 4960 if (static_branch_unlikely(&preempt_notifier_key)) 4961 __fire_sched_out_preempt_notifiers(curr, next); 4962 } 4963 4964 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4965 4966 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4967 { 4968 } 4969 4970 static inline void 4971 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4972 struct task_struct *next) 4973 { 4974 } 4975 4976 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4977 4978 static inline void prepare_task(struct task_struct *next) 4979 { 4980 #ifdef CONFIG_SMP 4981 /* 4982 * Claim the task as running, we do this before switching to it 4983 * such that any running task will have this set. 4984 * 4985 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4986 * its ordering comment. 4987 */ 4988 WRITE_ONCE(next->on_cpu, 1); 4989 #endif 4990 } 4991 4992 static inline void finish_task(struct task_struct *prev) 4993 { 4994 #ifdef CONFIG_SMP 4995 /* 4996 * This must be the very last reference to @prev from this CPU. After 4997 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4998 * must ensure this doesn't happen until the switch is completely 4999 * finished. 5000 * 5001 * In particular, the load of prev->state in finish_task_switch() must 5002 * happen before this. 5003 * 5004 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 5005 */ 5006 smp_store_release(&prev->on_cpu, 0); 5007 #endif 5008 } 5009 5010 #ifdef CONFIG_SMP 5011 5012 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 5013 { 5014 void (*func)(struct rq *rq); 5015 struct balance_callback *next; 5016 5017 lockdep_assert_rq_held(rq); 5018 5019 while (head) { 5020 func = (void (*)(struct rq *))head->func; 5021 next = head->next; 5022 head->next = NULL; 5023 head = next; 5024 5025 func(rq); 5026 } 5027 } 5028 5029 static void balance_push(struct rq *rq); 5030 5031 /* 5032 * balance_push_callback is a right abuse of the callback interface and plays 5033 * by significantly different rules. 5034 * 5035 * Where the normal balance_callback's purpose is to be ran in the same context 5036 * that queued it (only later, when it's safe to drop rq->lock again), 5037 * balance_push_callback is specifically targeted at __schedule(). 5038 * 5039 * This abuse is tolerated because it places all the unlikely/odd cases behind 5040 * a single test, namely: rq->balance_callback == NULL. 5041 */ 5042 struct balance_callback balance_push_callback = { 5043 .next = NULL, 5044 .func = balance_push, 5045 }; 5046 5047 static inline struct balance_callback * 5048 __splice_balance_callbacks(struct rq *rq, bool split) 5049 { 5050 struct balance_callback *head = rq->balance_callback; 5051 5052 if (likely(!head)) 5053 return NULL; 5054 5055 lockdep_assert_rq_held(rq); 5056 /* 5057 * Must not take balance_push_callback off the list when 5058 * splice_balance_callbacks() and balance_callbacks() are not 5059 * in the same rq->lock section. 5060 * 5061 * In that case it would be possible for __schedule() to interleave 5062 * and observe the list empty. 5063 */ 5064 if (split && head == &balance_push_callback) 5065 head = NULL; 5066 else 5067 rq->balance_callback = NULL; 5068 5069 return head; 5070 } 5071 5072 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5073 { 5074 return __splice_balance_callbacks(rq, true); 5075 } 5076 5077 static void __balance_callbacks(struct rq *rq) 5078 { 5079 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5080 } 5081 5082 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5083 { 5084 unsigned long flags; 5085 5086 if (unlikely(head)) { 5087 raw_spin_rq_lock_irqsave(rq, flags); 5088 do_balance_callbacks(rq, head); 5089 raw_spin_rq_unlock_irqrestore(rq, flags); 5090 } 5091 } 5092 5093 #else 5094 5095 static inline void __balance_callbacks(struct rq *rq) 5096 { 5097 } 5098 5099 #endif 5100 5101 static inline void 5102 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5103 { 5104 /* 5105 * Since the runqueue lock will be released by the next 5106 * task (which is an invalid locking op but in the case 5107 * of the scheduler it's an obvious special-case), so we 5108 * do an early lockdep release here: 5109 */ 5110 rq_unpin_lock(rq, rf); 5111 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5112 #ifdef CONFIG_DEBUG_SPINLOCK 5113 /* this is a valid case when another task releases the spinlock */ 5114 rq_lockp(rq)->owner = next; 5115 #endif 5116 } 5117 5118 static inline void finish_lock_switch(struct rq *rq) 5119 { 5120 /* 5121 * If we are tracking spinlock dependencies then we have to 5122 * fix up the runqueue lock - which gets 'carried over' from 5123 * prev into current: 5124 */ 5125 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5126 __balance_callbacks(rq); 5127 raw_spin_rq_unlock_irq(rq); 5128 } 5129 5130 /* 5131 * NOP if the arch has not defined these: 5132 */ 5133 5134 #ifndef prepare_arch_switch 5135 # define prepare_arch_switch(next) do { } while (0) 5136 #endif 5137 5138 #ifndef finish_arch_post_lock_switch 5139 # define finish_arch_post_lock_switch() do { } while (0) 5140 #endif 5141 5142 static inline void kmap_local_sched_out(void) 5143 { 5144 #ifdef CONFIG_KMAP_LOCAL 5145 if (unlikely(current->kmap_ctrl.idx)) 5146 __kmap_local_sched_out(); 5147 #endif 5148 } 5149 5150 static inline void kmap_local_sched_in(void) 5151 { 5152 #ifdef CONFIG_KMAP_LOCAL 5153 if (unlikely(current->kmap_ctrl.idx)) 5154 __kmap_local_sched_in(); 5155 #endif 5156 } 5157 5158 /** 5159 * prepare_task_switch - prepare to switch tasks 5160 * @rq: the runqueue preparing to switch 5161 * @prev: the current task that is being switched out 5162 * @next: the task we are going to switch to. 5163 * 5164 * This is called with the rq lock held and interrupts off. It must 5165 * be paired with a subsequent finish_task_switch after the context 5166 * switch. 5167 * 5168 * prepare_task_switch sets up locking and calls architecture specific 5169 * hooks. 5170 */ 5171 static inline void 5172 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5173 struct task_struct *next) 5174 { 5175 kcov_prepare_switch(prev); 5176 sched_info_switch(rq, prev, next); 5177 perf_event_task_sched_out(prev, next); 5178 rseq_preempt(prev); 5179 fire_sched_out_preempt_notifiers(prev, next); 5180 kmap_local_sched_out(); 5181 prepare_task(next); 5182 prepare_arch_switch(next); 5183 } 5184 5185 /** 5186 * finish_task_switch - clean up after a task-switch 5187 * @prev: the thread we just switched away from. 5188 * 5189 * finish_task_switch must be called after the context switch, paired 5190 * with a prepare_task_switch call before the context switch. 5191 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5192 * and do any other architecture-specific cleanup actions. 5193 * 5194 * Note that we may have delayed dropping an mm in context_switch(). If 5195 * so, we finish that here outside of the runqueue lock. (Doing it 5196 * with the lock held can cause deadlocks; see schedule() for 5197 * details.) 5198 * 5199 * The context switch have flipped the stack from under us and restored the 5200 * local variables which were saved when this task called schedule() in the 5201 * past. 'prev == current' is still correct but we need to recalculate this_rq 5202 * because prev may have moved to another CPU. 5203 */ 5204 static struct rq *finish_task_switch(struct task_struct *prev) 5205 __releases(rq->lock) 5206 { 5207 struct rq *rq = this_rq(); 5208 struct mm_struct *mm = rq->prev_mm; 5209 unsigned int prev_state; 5210 5211 /* 5212 * The previous task will have left us with a preempt_count of 2 5213 * because it left us after: 5214 * 5215 * schedule() 5216 * preempt_disable(); // 1 5217 * __schedule() 5218 * raw_spin_lock_irq(&rq->lock) // 2 5219 * 5220 * Also, see FORK_PREEMPT_COUNT. 5221 */ 5222 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5223 "corrupted preempt_count: %s/%d/0x%x\n", 5224 current->comm, current->pid, preempt_count())) 5225 preempt_count_set(FORK_PREEMPT_COUNT); 5226 5227 rq->prev_mm = NULL; 5228 5229 /* 5230 * A task struct has one reference for the use as "current". 5231 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5232 * schedule one last time. The schedule call will never return, and 5233 * the scheduled task must drop that reference. 5234 * 5235 * We must observe prev->state before clearing prev->on_cpu (in 5236 * finish_task), otherwise a concurrent wakeup can get prev 5237 * running on another CPU and we could rave with its RUNNING -> DEAD 5238 * transition, resulting in a double drop. 5239 */ 5240 prev_state = READ_ONCE(prev->__state); 5241 vtime_task_switch(prev); 5242 perf_event_task_sched_in(prev, current); 5243 finish_task(prev); 5244 tick_nohz_task_switch(); 5245 finish_lock_switch(rq); 5246 finish_arch_post_lock_switch(); 5247 kcov_finish_switch(current); 5248 /* 5249 * kmap_local_sched_out() is invoked with rq::lock held and 5250 * interrupts disabled. There is no requirement for that, but the 5251 * sched out code does not have an interrupt enabled section. 5252 * Restoring the maps on sched in does not require interrupts being 5253 * disabled either. 5254 */ 5255 kmap_local_sched_in(); 5256 5257 fire_sched_in_preempt_notifiers(current); 5258 /* 5259 * When switching through a kernel thread, the loop in 5260 * membarrier_{private,global}_expedited() may have observed that 5261 * kernel thread and not issued an IPI. It is therefore possible to 5262 * schedule between user->kernel->user threads without passing though 5263 * switch_mm(). Membarrier requires a barrier after storing to 5264 * rq->curr, before returning to userspace, so provide them here: 5265 * 5266 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5267 * provided by mmdrop_lazy_tlb(), 5268 * - a sync_core for SYNC_CORE. 5269 */ 5270 if (mm) { 5271 membarrier_mm_sync_core_before_usermode(mm); 5272 mmdrop_lazy_tlb_sched(mm); 5273 } 5274 5275 if (unlikely(prev_state == TASK_DEAD)) { 5276 if (prev->sched_class->task_dead) 5277 prev->sched_class->task_dead(prev); 5278 5279 /* Task is done with its stack. */ 5280 put_task_stack(prev); 5281 5282 put_task_struct_rcu_user(prev); 5283 } 5284 5285 return rq; 5286 } 5287 5288 /** 5289 * schedule_tail - first thing a freshly forked thread must call. 5290 * @prev: the thread we just switched away from. 5291 */ 5292 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5293 __releases(rq->lock) 5294 { 5295 /* 5296 * New tasks start with FORK_PREEMPT_COUNT, see there and 5297 * finish_task_switch() for details. 5298 * 5299 * finish_task_switch() will drop rq->lock() and lower preempt_count 5300 * and the preempt_enable() will end up enabling preemption (on 5301 * PREEMPT_COUNT kernels). 5302 */ 5303 5304 finish_task_switch(prev); 5305 preempt_enable(); 5306 5307 if (current->set_child_tid) 5308 put_user(task_pid_vnr(current), current->set_child_tid); 5309 5310 calculate_sigpending(); 5311 } 5312 5313 /* 5314 * context_switch - switch to the new MM and the new thread's register state. 5315 */ 5316 static __always_inline struct rq * 5317 context_switch(struct rq *rq, struct task_struct *prev, 5318 struct task_struct *next, struct rq_flags *rf) 5319 { 5320 prepare_task_switch(rq, prev, next); 5321 5322 /* 5323 * For paravirt, this is coupled with an exit in switch_to to 5324 * combine the page table reload and the switch backend into 5325 * one hypercall. 5326 */ 5327 arch_start_context_switch(prev); 5328 5329 /* 5330 * kernel -> kernel lazy + transfer active 5331 * user -> kernel lazy + mmgrab_lazy_tlb() active 5332 * 5333 * kernel -> user switch + mmdrop_lazy_tlb() active 5334 * user -> user switch 5335 * 5336 * switch_mm_cid() needs to be updated if the barriers provided 5337 * by context_switch() are modified. 5338 */ 5339 if (!next->mm) { // to kernel 5340 enter_lazy_tlb(prev->active_mm, next); 5341 5342 next->active_mm = prev->active_mm; 5343 if (prev->mm) // from user 5344 mmgrab_lazy_tlb(prev->active_mm); 5345 else 5346 prev->active_mm = NULL; 5347 } else { // to user 5348 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5349 /* 5350 * sys_membarrier() requires an smp_mb() between setting 5351 * rq->curr / membarrier_switch_mm() and returning to userspace. 5352 * 5353 * The below provides this either through switch_mm(), or in 5354 * case 'prev->active_mm == next->mm' through 5355 * finish_task_switch()'s mmdrop(). 5356 */ 5357 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5358 lru_gen_use_mm(next->mm); 5359 5360 if (!prev->mm) { // from kernel 5361 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5362 rq->prev_mm = prev->active_mm; 5363 prev->active_mm = NULL; 5364 } 5365 } 5366 5367 /* switch_mm_cid() requires the memory barriers above. */ 5368 switch_mm_cid(rq, prev, next); 5369 5370 prepare_lock_switch(rq, next, rf); 5371 5372 /* Here we just switch the register state and the stack. */ 5373 switch_to(prev, next, prev); 5374 barrier(); 5375 5376 return finish_task_switch(prev); 5377 } 5378 5379 /* 5380 * nr_running and nr_context_switches: 5381 * 5382 * externally visible scheduler statistics: current number of runnable 5383 * threads, total number of context switches performed since bootup. 5384 */ 5385 unsigned int nr_running(void) 5386 { 5387 unsigned int i, sum = 0; 5388 5389 for_each_online_cpu(i) 5390 sum += cpu_rq(i)->nr_running; 5391 5392 return sum; 5393 } 5394 5395 /* 5396 * Check if only the current task is running on the CPU. 5397 * 5398 * Caution: this function does not check that the caller has disabled 5399 * preemption, thus the result might have a time-of-check-to-time-of-use 5400 * race. The caller is responsible to use it correctly, for example: 5401 * 5402 * - from a non-preemptible section (of course) 5403 * 5404 * - from a thread that is bound to a single CPU 5405 * 5406 * - in a loop with very short iterations (e.g. a polling loop) 5407 */ 5408 bool single_task_running(void) 5409 { 5410 return raw_rq()->nr_running == 1; 5411 } 5412 EXPORT_SYMBOL(single_task_running); 5413 5414 unsigned long long nr_context_switches_cpu(int cpu) 5415 { 5416 return cpu_rq(cpu)->nr_switches; 5417 } 5418 5419 unsigned long long nr_context_switches(void) 5420 { 5421 int i; 5422 unsigned long long sum = 0; 5423 5424 for_each_possible_cpu(i) 5425 sum += cpu_rq(i)->nr_switches; 5426 5427 return sum; 5428 } 5429 5430 /* 5431 * Consumers of these two interfaces, like for example the cpuidle menu 5432 * governor, are using nonsensical data. Preferring shallow idle state selection 5433 * for a CPU that has IO-wait which might not even end up running the task when 5434 * it does become runnable. 5435 */ 5436 5437 unsigned int nr_iowait_cpu(int cpu) 5438 { 5439 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5440 } 5441 5442 /* 5443 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5444 * 5445 * The idea behind IO-wait account is to account the idle time that we could 5446 * have spend running if it were not for IO. That is, if we were to improve the 5447 * storage performance, we'd have a proportional reduction in IO-wait time. 5448 * 5449 * This all works nicely on UP, where, when a task blocks on IO, we account 5450 * idle time as IO-wait, because if the storage were faster, it could've been 5451 * running and we'd not be idle. 5452 * 5453 * This has been extended to SMP, by doing the same for each CPU. This however 5454 * is broken. 5455 * 5456 * Imagine for instance the case where two tasks block on one CPU, only the one 5457 * CPU will have IO-wait accounted, while the other has regular idle. Even 5458 * though, if the storage were faster, both could've ran at the same time, 5459 * utilising both CPUs. 5460 * 5461 * This means, that when looking globally, the current IO-wait accounting on 5462 * SMP is a lower bound, by reason of under accounting. 5463 * 5464 * Worse, since the numbers are provided per CPU, they are sometimes 5465 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5466 * associated with any one particular CPU, it can wake to another CPU than it 5467 * blocked on. This means the per CPU IO-wait number is meaningless. 5468 * 5469 * Task CPU affinities can make all that even more 'interesting'. 5470 */ 5471 5472 unsigned int nr_iowait(void) 5473 { 5474 unsigned int i, sum = 0; 5475 5476 for_each_possible_cpu(i) 5477 sum += nr_iowait_cpu(i); 5478 5479 return sum; 5480 } 5481 5482 #ifdef CONFIG_SMP 5483 5484 /* 5485 * sched_exec - execve() is a valuable balancing opportunity, because at 5486 * this point the task has the smallest effective memory and cache footprint. 5487 */ 5488 void sched_exec(void) 5489 { 5490 struct task_struct *p = current; 5491 struct migration_arg arg; 5492 int dest_cpu; 5493 5494 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5495 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5496 if (dest_cpu == smp_processor_id()) 5497 return; 5498 5499 if (unlikely(!cpu_active(dest_cpu))) 5500 return; 5501 5502 arg = (struct migration_arg){ p, dest_cpu }; 5503 } 5504 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5505 } 5506 5507 #endif 5508 5509 DEFINE_PER_CPU(struct kernel_stat, kstat); 5510 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5511 5512 EXPORT_PER_CPU_SYMBOL(kstat); 5513 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5514 5515 /* 5516 * The function fair_sched_class.update_curr accesses the struct curr 5517 * and its field curr->exec_start; when called from task_sched_runtime(), 5518 * we observe a high rate of cache misses in practice. 5519 * Prefetching this data results in improved performance. 5520 */ 5521 static inline void prefetch_curr_exec_start(struct task_struct *p) 5522 { 5523 #ifdef CONFIG_FAIR_GROUP_SCHED 5524 struct sched_entity *curr = p->se.cfs_rq->curr; 5525 #else 5526 struct sched_entity *curr = task_rq(p)->cfs.curr; 5527 #endif 5528 prefetch(curr); 5529 prefetch(&curr->exec_start); 5530 } 5531 5532 /* 5533 * Return accounted runtime for the task. 5534 * In case the task is currently running, return the runtime plus current's 5535 * pending runtime that have not been accounted yet. 5536 */ 5537 unsigned long long task_sched_runtime(struct task_struct *p) 5538 { 5539 struct rq_flags rf; 5540 struct rq *rq; 5541 u64 ns; 5542 5543 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5544 /* 5545 * 64-bit doesn't need locks to atomically read a 64-bit value. 5546 * So we have a optimization chance when the task's delta_exec is 0. 5547 * Reading ->on_cpu is racy, but this is OK. 5548 * 5549 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5550 * If we race with it entering CPU, unaccounted time is 0. This is 5551 * indistinguishable from the read occurring a few cycles earlier. 5552 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5553 * been accounted, so we're correct here as well. 5554 */ 5555 if (!p->on_cpu || !task_on_rq_queued(p)) 5556 return p->se.sum_exec_runtime; 5557 #endif 5558 5559 rq = task_rq_lock(p, &rf); 5560 /* 5561 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5562 * project cycles that may never be accounted to this 5563 * thread, breaking clock_gettime(). 5564 */ 5565 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5566 prefetch_curr_exec_start(p); 5567 update_rq_clock(rq); 5568 p->sched_class->update_curr(rq); 5569 } 5570 ns = p->se.sum_exec_runtime; 5571 task_rq_unlock(rq, p, &rf); 5572 5573 return ns; 5574 } 5575 5576 #ifdef CONFIG_SCHED_DEBUG 5577 static u64 cpu_resched_latency(struct rq *rq) 5578 { 5579 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5580 u64 resched_latency, now = rq_clock(rq); 5581 static bool warned_once; 5582 5583 if (sysctl_resched_latency_warn_once && warned_once) 5584 return 0; 5585 5586 if (!need_resched() || !latency_warn_ms) 5587 return 0; 5588 5589 if (system_state == SYSTEM_BOOTING) 5590 return 0; 5591 5592 if (!rq->last_seen_need_resched_ns) { 5593 rq->last_seen_need_resched_ns = now; 5594 rq->ticks_without_resched = 0; 5595 return 0; 5596 } 5597 5598 rq->ticks_without_resched++; 5599 resched_latency = now - rq->last_seen_need_resched_ns; 5600 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5601 return 0; 5602 5603 warned_once = true; 5604 5605 return resched_latency; 5606 } 5607 5608 static int __init setup_resched_latency_warn_ms(char *str) 5609 { 5610 long val; 5611 5612 if ((kstrtol(str, 0, &val))) { 5613 pr_warn("Unable to set resched_latency_warn_ms\n"); 5614 return 1; 5615 } 5616 5617 sysctl_resched_latency_warn_ms = val; 5618 return 1; 5619 } 5620 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5621 #else 5622 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5623 #endif /* CONFIG_SCHED_DEBUG */ 5624 5625 /* 5626 * This function gets called by the timer code, with HZ frequency. 5627 * We call it with interrupts disabled. 5628 */ 5629 void sched_tick(void) 5630 { 5631 int cpu = smp_processor_id(); 5632 struct rq *rq = cpu_rq(cpu); 5633 /* accounting goes to the donor task */ 5634 struct task_struct *donor; 5635 struct rq_flags rf; 5636 unsigned long hw_pressure; 5637 u64 resched_latency; 5638 5639 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5640 arch_scale_freq_tick(); 5641 5642 sched_clock_tick(); 5643 5644 rq_lock(rq, &rf); 5645 donor = rq->donor; 5646 5647 psi_account_irqtime(rq, donor, NULL); 5648 5649 update_rq_clock(rq); 5650 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5651 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5652 5653 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5654 resched_curr(rq); 5655 5656 donor->sched_class->task_tick(rq, donor, 0); 5657 if (sched_feat(LATENCY_WARN)) 5658 resched_latency = cpu_resched_latency(rq); 5659 calc_global_load_tick(rq); 5660 sched_core_tick(rq); 5661 task_tick_mm_cid(rq, donor); 5662 scx_tick(rq); 5663 5664 rq_unlock(rq, &rf); 5665 5666 if (sched_feat(LATENCY_WARN) && resched_latency) 5667 resched_latency_warn(cpu, resched_latency); 5668 5669 perf_event_task_tick(); 5670 5671 if (donor->flags & PF_WQ_WORKER) 5672 wq_worker_tick(donor); 5673 5674 #ifdef CONFIG_SMP 5675 if (!scx_switched_all()) { 5676 rq->idle_balance = idle_cpu(cpu); 5677 sched_balance_trigger(rq); 5678 } 5679 #endif 5680 } 5681 5682 #ifdef CONFIG_NO_HZ_FULL 5683 5684 struct tick_work { 5685 int cpu; 5686 atomic_t state; 5687 struct delayed_work work; 5688 }; 5689 /* Values for ->state, see diagram below. */ 5690 #define TICK_SCHED_REMOTE_OFFLINE 0 5691 #define TICK_SCHED_REMOTE_OFFLINING 1 5692 #define TICK_SCHED_REMOTE_RUNNING 2 5693 5694 /* 5695 * State diagram for ->state: 5696 * 5697 * 5698 * TICK_SCHED_REMOTE_OFFLINE 5699 * | ^ 5700 * | | 5701 * | | sched_tick_remote() 5702 * | | 5703 * | | 5704 * +--TICK_SCHED_REMOTE_OFFLINING 5705 * | ^ 5706 * | | 5707 * sched_tick_start() | | sched_tick_stop() 5708 * | | 5709 * V | 5710 * TICK_SCHED_REMOTE_RUNNING 5711 * 5712 * 5713 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5714 * and sched_tick_start() are happy to leave the state in RUNNING. 5715 */ 5716 5717 static struct tick_work __percpu *tick_work_cpu; 5718 5719 static void sched_tick_remote(struct work_struct *work) 5720 { 5721 struct delayed_work *dwork = to_delayed_work(work); 5722 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5723 int cpu = twork->cpu; 5724 struct rq *rq = cpu_rq(cpu); 5725 int os; 5726 5727 /* 5728 * Handle the tick only if it appears the remote CPU is running in full 5729 * dynticks mode. The check is racy by nature, but missing a tick or 5730 * having one too much is no big deal because the scheduler tick updates 5731 * statistics and checks timeslices in a time-independent way, regardless 5732 * of when exactly it is running. 5733 */ 5734 if (tick_nohz_tick_stopped_cpu(cpu)) { 5735 guard(rq_lock_irq)(rq); 5736 struct task_struct *curr = rq->curr; 5737 5738 if (cpu_online(cpu)) { 5739 /* 5740 * Since this is a remote tick for full dynticks mode, 5741 * we are always sure that there is no proxy (only a 5742 * single task is running). 5743 */ 5744 SCHED_WARN_ON(rq->curr != rq->donor); 5745 update_rq_clock(rq); 5746 5747 if (!is_idle_task(curr)) { 5748 /* 5749 * Make sure the next tick runs within a 5750 * reasonable amount of time. 5751 */ 5752 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5753 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5754 } 5755 curr->sched_class->task_tick(rq, curr, 0); 5756 5757 calc_load_nohz_remote(rq); 5758 } 5759 } 5760 5761 /* 5762 * Run the remote tick once per second (1Hz). This arbitrary 5763 * frequency is large enough to avoid overload but short enough 5764 * to keep scheduler internal stats reasonably up to date. But 5765 * first update state to reflect hotplug activity if required. 5766 */ 5767 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5768 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5769 if (os == TICK_SCHED_REMOTE_RUNNING) 5770 queue_delayed_work(system_unbound_wq, dwork, HZ); 5771 } 5772 5773 static void sched_tick_start(int cpu) 5774 { 5775 int os; 5776 struct tick_work *twork; 5777 5778 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5779 return; 5780 5781 WARN_ON_ONCE(!tick_work_cpu); 5782 5783 twork = per_cpu_ptr(tick_work_cpu, cpu); 5784 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5785 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5786 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5787 twork->cpu = cpu; 5788 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5789 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5790 } 5791 } 5792 5793 #ifdef CONFIG_HOTPLUG_CPU 5794 static void sched_tick_stop(int cpu) 5795 { 5796 struct tick_work *twork; 5797 int os; 5798 5799 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5800 return; 5801 5802 WARN_ON_ONCE(!tick_work_cpu); 5803 5804 twork = per_cpu_ptr(tick_work_cpu, cpu); 5805 /* There cannot be competing actions, but don't rely on stop-machine. */ 5806 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5807 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5808 /* Don't cancel, as this would mess up the state machine. */ 5809 } 5810 #endif /* CONFIG_HOTPLUG_CPU */ 5811 5812 int __init sched_tick_offload_init(void) 5813 { 5814 tick_work_cpu = alloc_percpu(struct tick_work); 5815 BUG_ON(!tick_work_cpu); 5816 return 0; 5817 } 5818 5819 #else /* !CONFIG_NO_HZ_FULL */ 5820 static inline void sched_tick_start(int cpu) { } 5821 static inline void sched_tick_stop(int cpu) { } 5822 #endif 5823 5824 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5825 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5826 /* 5827 * If the value passed in is equal to the current preempt count 5828 * then we just disabled preemption. Start timing the latency. 5829 */ 5830 static inline void preempt_latency_start(int val) 5831 { 5832 if (preempt_count() == val) { 5833 unsigned long ip = get_lock_parent_ip(); 5834 #ifdef CONFIG_DEBUG_PREEMPT 5835 current->preempt_disable_ip = ip; 5836 #endif 5837 trace_preempt_off(CALLER_ADDR0, ip); 5838 } 5839 } 5840 5841 void preempt_count_add(int val) 5842 { 5843 #ifdef CONFIG_DEBUG_PREEMPT 5844 /* 5845 * Underflow? 5846 */ 5847 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5848 return; 5849 #endif 5850 __preempt_count_add(val); 5851 #ifdef CONFIG_DEBUG_PREEMPT 5852 /* 5853 * Spinlock count overflowing soon? 5854 */ 5855 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5856 PREEMPT_MASK - 10); 5857 #endif 5858 preempt_latency_start(val); 5859 } 5860 EXPORT_SYMBOL(preempt_count_add); 5861 NOKPROBE_SYMBOL(preempt_count_add); 5862 5863 /* 5864 * If the value passed in equals to the current preempt count 5865 * then we just enabled preemption. Stop timing the latency. 5866 */ 5867 static inline void preempt_latency_stop(int val) 5868 { 5869 if (preempt_count() == val) 5870 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5871 } 5872 5873 void preempt_count_sub(int val) 5874 { 5875 #ifdef CONFIG_DEBUG_PREEMPT 5876 /* 5877 * Underflow? 5878 */ 5879 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5880 return; 5881 /* 5882 * Is the spinlock portion underflowing? 5883 */ 5884 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5885 !(preempt_count() & PREEMPT_MASK))) 5886 return; 5887 #endif 5888 5889 preempt_latency_stop(val); 5890 __preempt_count_sub(val); 5891 } 5892 EXPORT_SYMBOL(preempt_count_sub); 5893 NOKPROBE_SYMBOL(preempt_count_sub); 5894 5895 #else 5896 static inline void preempt_latency_start(int val) { } 5897 static inline void preempt_latency_stop(int val) { } 5898 #endif 5899 5900 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5901 { 5902 #ifdef CONFIG_DEBUG_PREEMPT 5903 return p->preempt_disable_ip; 5904 #else 5905 return 0; 5906 #endif 5907 } 5908 5909 /* 5910 * Print scheduling while atomic bug: 5911 */ 5912 static noinline void __schedule_bug(struct task_struct *prev) 5913 { 5914 /* Save this before calling printk(), since that will clobber it */ 5915 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5916 5917 if (oops_in_progress) 5918 return; 5919 5920 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5921 prev->comm, prev->pid, preempt_count()); 5922 5923 debug_show_held_locks(prev); 5924 print_modules(); 5925 if (irqs_disabled()) 5926 print_irqtrace_events(prev); 5927 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5928 pr_err("Preemption disabled at:"); 5929 print_ip_sym(KERN_ERR, preempt_disable_ip); 5930 } 5931 check_panic_on_warn("scheduling while atomic"); 5932 5933 dump_stack(); 5934 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5935 } 5936 5937 /* 5938 * Various schedule()-time debugging checks and statistics: 5939 */ 5940 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5941 { 5942 #ifdef CONFIG_SCHED_STACK_END_CHECK 5943 if (task_stack_end_corrupted(prev)) 5944 panic("corrupted stack end detected inside scheduler\n"); 5945 5946 if (task_scs_end_corrupted(prev)) 5947 panic("corrupted shadow stack detected inside scheduler\n"); 5948 #endif 5949 5950 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5951 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5952 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5953 prev->comm, prev->pid, prev->non_block_count); 5954 dump_stack(); 5955 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5956 } 5957 #endif 5958 5959 if (unlikely(in_atomic_preempt_off())) { 5960 __schedule_bug(prev); 5961 preempt_count_set(PREEMPT_DISABLED); 5962 } 5963 rcu_sleep_check(); 5964 SCHED_WARN_ON(ct_state() == CT_STATE_USER); 5965 5966 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5967 5968 schedstat_inc(this_rq()->sched_count); 5969 } 5970 5971 static void prev_balance(struct rq *rq, struct task_struct *prev, 5972 struct rq_flags *rf) 5973 { 5974 const struct sched_class *start_class = prev->sched_class; 5975 const struct sched_class *class; 5976 5977 #ifdef CONFIG_SCHED_CLASS_EXT 5978 /* 5979 * SCX requires a balance() call before every pick_task() including when 5980 * waking up from SCHED_IDLE. If @start_class is below SCX, start from 5981 * SCX instead. Also, set a flag to detect missing balance() call. 5982 */ 5983 if (scx_enabled()) { 5984 rq->scx.flags |= SCX_RQ_BAL_PENDING; 5985 if (sched_class_above(&ext_sched_class, start_class)) 5986 start_class = &ext_sched_class; 5987 } 5988 #endif 5989 5990 /* 5991 * We must do the balancing pass before put_prev_task(), such 5992 * that when we release the rq->lock the task is in the same 5993 * state as before we took rq->lock. 5994 * 5995 * We can terminate the balance pass as soon as we know there is 5996 * a runnable task of @class priority or higher. 5997 */ 5998 for_active_class_range(class, start_class, &idle_sched_class) { 5999 if (class->balance && class->balance(rq, prev, rf)) 6000 break; 6001 } 6002 } 6003 6004 /* 6005 * Pick up the highest-prio task: 6006 */ 6007 static inline struct task_struct * 6008 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6009 { 6010 const struct sched_class *class; 6011 struct task_struct *p; 6012 6013 rq->dl_server = NULL; 6014 6015 if (scx_enabled()) 6016 goto restart; 6017 6018 /* 6019 * Optimization: we know that if all tasks are in the fair class we can 6020 * call that function directly, but only if the @prev task wasn't of a 6021 * higher scheduling class, because otherwise those lose the 6022 * opportunity to pull in more work from other CPUs. 6023 */ 6024 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 6025 rq->nr_running == rq->cfs.h_nr_running)) { 6026 6027 p = pick_next_task_fair(rq, prev, rf); 6028 if (unlikely(p == RETRY_TASK)) 6029 goto restart; 6030 6031 /* Assume the next prioritized class is idle_sched_class */ 6032 if (!p) { 6033 p = pick_task_idle(rq); 6034 put_prev_set_next_task(rq, prev, p); 6035 } 6036 6037 return p; 6038 } 6039 6040 restart: 6041 prev_balance(rq, prev, rf); 6042 6043 for_each_active_class(class) { 6044 if (class->pick_next_task) { 6045 p = class->pick_next_task(rq, prev); 6046 if (p) 6047 return p; 6048 } else { 6049 p = class->pick_task(rq); 6050 if (p) { 6051 put_prev_set_next_task(rq, prev, p); 6052 return p; 6053 } 6054 } 6055 } 6056 6057 BUG(); /* The idle class should always have a runnable task. */ 6058 } 6059 6060 #ifdef CONFIG_SCHED_CORE 6061 static inline bool is_task_rq_idle(struct task_struct *t) 6062 { 6063 return (task_rq(t)->idle == t); 6064 } 6065 6066 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6067 { 6068 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6069 } 6070 6071 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6072 { 6073 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6074 return true; 6075 6076 return a->core_cookie == b->core_cookie; 6077 } 6078 6079 static inline struct task_struct *pick_task(struct rq *rq) 6080 { 6081 const struct sched_class *class; 6082 struct task_struct *p; 6083 6084 rq->dl_server = NULL; 6085 6086 for_each_active_class(class) { 6087 p = class->pick_task(rq); 6088 if (p) 6089 return p; 6090 } 6091 6092 BUG(); /* The idle class should always have a runnable task. */ 6093 } 6094 6095 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6096 6097 static void queue_core_balance(struct rq *rq); 6098 6099 static struct task_struct * 6100 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6101 { 6102 struct task_struct *next, *p, *max = NULL; 6103 const struct cpumask *smt_mask; 6104 bool fi_before = false; 6105 bool core_clock_updated = (rq == rq->core); 6106 unsigned long cookie; 6107 int i, cpu, occ = 0; 6108 struct rq *rq_i; 6109 bool need_sync; 6110 6111 if (!sched_core_enabled(rq)) 6112 return __pick_next_task(rq, prev, rf); 6113 6114 cpu = cpu_of(rq); 6115 6116 /* Stopper task is switching into idle, no need core-wide selection. */ 6117 if (cpu_is_offline(cpu)) { 6118 /* 6119 * Reset core_pick so that we don't enter the fastpath when 6120 * coming online. core_pick would already be migrated to 6121 * another cpu during offline. 6122 */ 6123 rq->core_pick = NULL; 6124 rq->core_dl_server = NULL; 6125 return __pick_next_task(rq, prev, rf); 6126 } 6127 6128 /* 6129 * If there were no {en,de}queues since we picked (IOW, the task 6130 * pointers are all still valid), and we haven't scheduled the last 6131 * pick yet, do so now. 6132 * 6133 * rq->core_pick can be NULL if no selection was made for a CPU because 6134 * it was either offline or went offline during a sibling's core-wide 6135 * selection. In this case, do a core-wide selection. 6136 */ 6137 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6138 rq->core->core_pick_seq != rq->core_sched_seq && 6139 rq->core_pick) { 6140 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6141 6142 next = rq->core_pick; 6143 rq->dl_server = rq->core_dl_server; 6144 rq->core_pick = NULL; 6145 rq->core_dl_server = NULL; 6146 goto out_set_next; 6147 } 6148 6149 prev_balance(rq, prev, rf); 6150 6151 smt_mask = cpu_smt_mask(cpu); 6152 need_sync = !!rq->core->core_cookie; 6153 6154 /* reset state */ 6155 rq->core->core_cookie = 0UL; 6156 if (rq->core->core_forceidle_count) { 6157 if (!core_clock_updated) { 6158 update_rq_clock(rq->core); 6159 core_clock_updated = true; 6160 } 6161 sched_core_account_forceidle(rq); 6162 /* reset after accounting force idle */ 6163 rq->core->core_forceidle_start = 0; 6164 rq->core->core_forceidle_count = 0; 6165 rq->core->core_forceidle_occupation = 0; 6166 need_sync = true; 6167 fi_before = true; 6168 } 6169 6170 /* 6171 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6172 * 6173 * @task_seq guards the task state ({en,de}queues) 6174 * @pick_seq is the @task_seq we did a selection on 6175 * @sched_seq is the @pick_seq we scheduled 6176 * 6177 * However, preemptions can cause multiple picks on the same task set. 6178 * 'Fix' this by also increasing @task_seq for every pick. 6179 */ 6180 rq->core->core_task_seq++; 6181 6182 /* 6183 * Optimize for common case where this CPU has no cookies 6184 * and there are no cookied tasks running on siblings. 6185 */ 6186 if (!need_sync) { 6187 next = pick_task(rq); 6188 if (!next->core_cookie) { 6189 rq->core_pick = NULL; 6190 rq->core_dl_server = NULL; 6191 /* 6192 * For robustness, update the min_vruntime_fi for 6193 * unconstrained picks as well. 6194 */ 6195 WARN_ON_ONCE(fi_before); 6196 task_vruntime_update(rq, next, false); 6197 goto out_set_next; 6198 } 6199 } 6200 6201 /* 6202 * For each thread: do the regular task pick and find the max prio task 6203 * amongst them. 6204 * 6205 * Tie-break prio towards the current CPU 6206 */ 6207 for_each_cpu_wrap(i, smt_mask, cpu) { 6208 rq_i = cpu_rq(i); 6209 6210 /* 6211 * Current cpu always has its clock updated on entrance to 6212 * pick_next_task(). If the current cpu is not the core, 6213 * the core may also have been updated above. 6214 */ 6215 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6216 update_rq_clock(rq_i); 6217 6218 rq_i->core_pick = p = pick_task(rq_i); 6219 rq_i->core_dl_server = rq_i->dl_server; 6220 6221 if (!max || prio_less(max, p, fi_before)) 6222 max = p; 6223 } 6224 6225 cookie = rq->core->core_cookie = max->core_cookie; 6226 6227 /* 6228 * For each thread: try and find a runnable task that matches @max or 6229 * force idle. 6230 */ 6231 for_each_cpu(i, smt_mask) { 6232 rq_i = cpu_rq(i); 6233 p = rq_i->core_pick; 6234 6235 if (!cookie_equals(p, cookie)) { 6236 p = NULL; 6237 if (cookie) 6238 p = sched_core_find(rq_i, cookie); 6239 if (!p) 6240 p = idle_sched_class.pick_task(rq_i); 6241 } 6242 6243 rq_i->core_pick = p; 6244 rq_i->core_dl_server = NULL; 6245 6246 if (p == rq_i->idle) { 6247 if (rq_i->nr_running) { 6248 rq->core->core_forceidle_count++; 6249 if (!fi_before) 6250 rq->core->core_forceidle_seq++; 6251 } 6252 } else { 6253 occ++; 6254 } 6255 } 6256 6257 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6258 rq->core->core_forceidle_start = rq_clock(rq->core); 6259 rq->core->core_forceidle_occupation = occ; 6260 } 6261 6262 rq->core->core_pick_seq = rq->core->core_task_seq; 6263 next = rq->core_pick; 6264 rq->core_sched_seq = rq->core->core_pick_seq; 6265 6266 /* Something should have been selected for current CPU */ 6267 WARN_ON_ONCE(!next); 6268 6269 /* 6270 * Reschedule siblings 6271 * 6272 * NOTE: L1TF -- at this point we're no longer running the old task and 6273 * sending an IPI (below) ensures the sibling will no longer be running 6274 * their task. This ensures there is no inter-sibling overlap between 6275 * non-matching user state. 6276 */ 6277 for_each_cpu(i, smt_mask) { 6278 rq_i = cpu_rq(i); 6279 6280 /* 6281 * An online sibling might have gone offline before a task 6282 * could be picked for it, or it might be offline but later 6283 * happen to come online, but its too late and nothing was 6284 * picked for it. That's Ok - it will pick tasks for itself, 6285 * so ignore it. 6286 */ 6287 if (!rq_i->core_pick) 6288 continue; 6289 6290 /* 6291 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6292 * fi_before fi update? 6293 * 0 0 1 6294 * 0 1 1 6295 * 1 0 1 6296 * 1 1 0 6297 */ 6298 if (!(fi_before && rq->core->core_forceidle_count)) 6299 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6300 6301 rq_i->core_pick->core_occupation = occ; 6302 6303 if (i == cpu) { 6304 rq_i->core_pick = NULL; 6305 rq_i->core_dl_server = NULL; 6306 continue; 6307 } 6308 6309 /* Did we break L1TF mitigation requirements? */ 6310 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6311 6312 if (rq_i->curr == rq_i->core_pick) { 6313 rq_i->core_pick = NULL; 6314 rq_i->core_dl_server = NULL; 6315 continue; 6316 } 6317 6318 resched_curr(rq_i); 6319 } 6320 6321 out_set_next: 6322 put_prev_set_next_task(rq, prev, next); 6323 if (rq->core->core_forceidle_count && next == rq->idle) 6324 queue_core_balance(rq); 6325 6326 return next; 6327 } 6328 6329 static bool try_steal_cookie(int this, int that) 6330 { 6331 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6332 struct task_struct *p; 6333 unsigned long cookie; 6334 bool success = false; 6335 6336 guard(irq)(); 6337 guard(double_rq_lock)(dst, src); 6338 6339 cookie = dst->core->core_cookie; 6340 if (!cookie) 6341 return false; 6342 6343 if (dst->curr != dst->idle) 6344 return false; 6345 6346 p = sched_core_find(src, cookie); 6347 if (!p) 6348 return false; 6349 6350 do { 6351 if (p == src->core_pick || p == src->curr) 6352 goto next; 6353 6354 if (!is_cpu_allowed(p, this)) 6355 goto next; 6356 6357 if (p->core_occupation > dst->idle->core_occupation) 6358 goto next; 6359 /* 6360 * sched_core_find() and sched_core_next() will ensure 6361 * that task @p is not throttled now, we also need to 6362 * check whether the runqueue of the destination CPU is 6363 * being throttled. 6364 */ 6365 if (sched_task_is_throttled(p, this)) 6366 goto next; 6367 6368 move_queued_task_locked(src, dst, p); 6369 resched_curr(dst); 6370 6371 success = true; 6372 break; 6373 6374 next: 6375 p = sched_core_next(p, cookie); 6376 } while (p); 6377 6378 return success; 6379 } 6380 6381 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6382 { 6383 int i; 6384 6385 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6386 if (i == cpu) 6387 continue; 6388 6389 if (need_resched()) 6390 break; 6391 6392 if (try_steal_cookie(cpu, i)) 6393 return true; 6394 } 6395 6396 return false; 6397 } 6398 6399 static void sched_core_balance(struct rq *rq) 6400 { 6401 struct sched_domain *sd; 6402 int cpu = cpu_of(rq); 6403 6404 guard(preempt)(); 6405 guard(rcu)(); 6406 6407 raw_spin_rq_unlock_irq(rq); 6408 for_each_domain(cpu, sd) { 6409 if (need_resched()) 6410 break; 6411 6412 if (steal_cookie_task(cpu, sd)) 6413 break; 6414 } 6415 raw_spin_rq_lock_irq(rq); 6416 } 6417 6418 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6419 6420 static void queue_core_balance(struct rq *rq) 6421 { 6422 if (!sched_core_enabled(rq)) 6423 return; 6424 6425 if (!rq->core->core_cookie) 6426 return; 6427 6428 if (!rq->nr_running) /* not forced idle */ 6429 return; 6430 6431 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6432 } 6433 6434 DEFINE_LOCK_GUARD_1(core_lock, int, 6435 sched_core_lock(*_T->lock, &_T->flags), 6436 sched_core_unlock(*_T->lock, &_T->flags), 6437 unsigned long flags) 6438 6439 static void sched_core_cpu_starting(unsigned int cpu) 6440 { 6441 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6442 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6443 int t; 6444 6445 guard(core_lock)(&cpu); 6446 6447 WARN_ON_ONCE(rq->core != rq); 6448 6449 /* if we're the first, we'll be our own leader */ 6450 if (cpumask_weight(smt_mask) == 1) 6451 return; 6452 6453 /* find the leader */ 6454 for_each_cpu(t, smt_mask) { 6455 if (t == cpu) 6456 continue; 6457 rq = cpu_rq(t); 6458 if (rq->core == rq) { 6459 core_rq = rq; 6460 break; 6461 } 6462 } 6463 6464 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6465 return; 6466 6467 /* install and validate core_rq */ 6468 for_each_cpu(t, smt_mask) { 6469 rq = cpu_rq(t); 6470 6471 if (t == cpu) 6472 rq->core = core_rq; 6473 6474 WARN_ON_ONCE(rq->core != core_rq); 6475 } 6476 } 6477 6478 static void sched_core_cpu_deactivate(unsigned int cpu) 6479 { 6480 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6481 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6482 int t; 6483 6484 guard(core_lock)(&cpu); 6485 6486 /* if we're the last man standing, nothing to do */ 6487 if (cpumask_weight(smt_mask) == 1) { 6488 WARN_ON_ONCE(rq->core != rq); 6489 return; 6490 } 6491 6492 /* if we're not the leader, nothing to do */ 6493 if (rq->core != rq) 6494 return; 6495 6496 /* find a new leader */ 6497 for_each_cpu(t, smt_mask) { 6498 if (t == cpu) 6499 continue; 6500 core_rq = cpu_rq(t); 6501 break; 6502 } 6503 6504 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6505 return; 6506 6507 /* copy the shared state to the new leader */ 6508 core_rq->core_task_seq = rq->core_task_seq; 6509 core_rq->core_pick_seq = rq->core_pick_seq; 6510 core_rq->core_cookie = rq->core_cookie; 6511 core_rq->core_forceidle_count = rq->core_forceidle_count; 6512 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6513 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6514 6515 /* 6516 * Accounting edge for forced idle is handled in pick_next_task(). 6517 * Don't need another one here, since the hotplug thread shouldn't 6518 * have a cookie. 6519 */ 6520 core_rq->core_forceidle_start = 0; 6521 6522 /* install new leader */ 6523 for_each_cpu(t, smt_mask) { 6524 rq = cpu_rq(t); 6525 rq->core = core_rq; 6526 } 6527 } 6528 6529 static inline void sched_core_cpu_dying(unsigned int cpu) 6530 { 6531 struct rq *rq = cpu_rq(cpu); 6532 6533 if (rq->core != rq) 6534 rq->core = rq; 6535 } 6536 6537 #else /* !CONFIG_SCHED_CORE */ 6538 6539 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6540 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6541 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6542 6543 static struct task_struct * 6544 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6545 { 6546 return __pick_next_task(rq, prev, rf); 6547 } 6548 6549 #endif /* CONFIG_SCHED_CORE */ 6550 6551 /* 6552 * Constants for the sched_mode argument of __schedule(). 6553 * 6554 * The mode argument allows RT enabled kernels to differentiate a 6555 * preemption from blocking on an 'sleeping' spin/rwlock. 6556 */ 6557 #define SM_IDLE (-1) 6558 #define SM_NONE 0 6559 #define SM_PREEMPT 1 6560 #define SM_RTLOCK_WAIT 2 6561 6562 /* 6563 * Helper function for __schedule() 6564 * 6565 * If a task does not have signals pending, deactivate it 6566 * Otherwise marks the task's __state as RUNNING 6567 */ 6568 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6569 unsigned long task_state) 6570 { 6571 int flags = DEQUEUE_NOCLOCK; 6572 6573 if (signal_pending_state(task_state, p)) { 6574 WRITE_ONCE(p->__state, TASK_RUNNING); 6575 return false; 6576 } 6577 6578 p->sched_contributes_to_load = 6579 (task_state & TASK_UNINTERRUPTIBLE) && 6580 !(task_state & TASK_NOLOAD) && 6581 !(task_state & TASK_FROZEN); 6582 6583 if (unlikely(is_special_task_state(task_state))) 6584 flags |= DEQUEUE_SPECIAL; 6585 6586 /* 6587 * __schedule() ttwu() 6588 * prev_state = prev->state; if (p->on_rq && ...) 6589 * if (prev_state) goto out; 6590 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6591 * p->state = TASK_WAKING 6592 * 6593 * Where __schedule() and ttwu() have matching control dependencies. 6594 * 6595 * After this, schedule() must not care about p->state any more. 6596 */ 6597 block_task(rq, p, flags); 6598 return true; 6599 } 6600 6601 /* 6602 * __schedule() is the main scheduler function. 6603 * 6604 * The main means of driving the scheduler and thus entering this function are: 6605 * 6606 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6607 * 6608 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6609 * paths. For example, see arch/x86/entry_64.S. 6610 * 6611 * To drive preemption between tasks, the scheduler sets the flag in timer 6612 * interrupt handler sched_tick(). 6613 * 6614 * 3. Wakeups don't really cause entry into schedule(). They add a 6615 * task to the run-queue and that's it. 6616 * 6617 * Now, if the new task added to the run-queue preempts the current 6618 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6619 * called on the nearest possible occasion: 6620 * 6621 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6622 * 6623 * - in syscall or exception context, at the next outmost 6624 * preempt_enable(). (this might be as soon as the wake_up()'s 6625 * spin_unlock()!) 6626 * 6627 * - in IRQ context, return from interrupt-handler to 6628 * preemptible context 6629 * 6630 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6631 * then at the next: 6632 * 6633 * - cond_resched() call 6634 * - explicit schedule() call 6635 * - return from syscall or exception to user-space 6636 * - return from interrupt-handler to user-space 6637 * 6638 * WARNING: must be called with preemption disabled! 6639 */ 6640 static void __sched notrace __schedule(int sched_mode) 6641 { 6642 struct task_struct *prev, *next; 6643 /* 6644 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6645 * as a preemption by schedule_debug() and RCU. 6646 */ 6647 bool preempt = sched_mode > SM_NONE; 6648 bool block = false; 6649 unsigned long *switch_count; 6650 unsigned long prev_state; 6651 struct rq_flags rf; 6652 struct rq *rq; 6653 int cpu; 6654 6655 cpu = smp_processor_id(); 6656 rq = cpu_rq(cpu); 6657 prev = rq->curr; 6658 6659 schedule_debug(prev, preempt); 6660 6661 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6662 hrtick_clear(rq); 6663 6664 local_irq_disable(); 6665 rcu_note_context_switch(preempt); 6666 6667 /* 6668 * Make sure that signal_pending_state()->signal_pending() below 6669 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6670 * done by the caller to avoid the race with signal_wake_up(): 6671 * 6672 * __set_current_state(@state) signal_wake_up() 6673 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6674 * wake_up_state(p, state) 6675 * LOCK rq->lock LOCK p->pi_state 6676 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6677 * if (signal_pending_state()) if (p->state & @state) 6678 * 6679 * Also, the membarrier system call requires a full memory barrier 6680 * after coming from user-space, before storing to rq->curr; this 6681 * barrier matches a full barrier in the proximity of the membarrier 6682 * system call exit. 6683 */ 6684 rq_lock(rq, &rf); 6685 smp_mb__after_spinlock(); 6686 6687 /* Promote REQ to ACT */ 6688 rq->clock_update_flags <<= 1; 6689 update_rq_clock(rq); 6690 rq->clock_update_flags = RQCF_UPDATED; 6691 6692 switch_count = &prev->nivcsw; 6693 6694 /* Task state changes only considers SM_PREEMPT as preemption */ 6695 preempt = sched_mode == SM_PREEMPT; 6696 6697 /* 6698 * We must load prev->state once (task_struct::state is volatile), such 6699 * that we form a control dependency vs deactivate_task() below. 6700 */ 6701 prev_state = READ_ONCE(prev->__state); 6702 if (sched_mode == SM_IDLE) { 6703 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6704 if (!rq->nr_running && !scx_enabled()) { 6705 next = prev; 6706 goto picked; 6707 } 6708 } else if (!preempt && prev_state) { 6709 block = try_to_block_task(rq, prev, prev_state); 6710 switch_count = &prev->nvcsw; 6711 } 6712 6713 next = pick_next_task(rq, prev, &rf); 6714 rq_set_donor(rq, next); 6715 picked: 6716 clear_tsk_need_resched(prev); 6717 clear_preempt_need_resched(); 6718 #ifdef CONFIG_SCHED_DEBUG 6719 rq->last_seen_need_resched_ns = 0; 6720 #endif 6721 6722 if (likely(prev != next)) { 6723 rq->nr_switches++; 6724 /* 6725 * RCU users of rcu_dereference(rq->curr) may not see 6726 * changes to task_struct made by pick_next_task(). 6727 */ 6728 RCU_INIT_POINTER(rq->curr, next); 6729 /* 6730 * The membarrier system call requires each architecture 6731 * to have a full memory barrier after updating 6732 * rq->curr, before returning to user-space. 6733 * 6734 * Here are the schemes providing that barrier on the 6735 * various architectures: 6736 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6737 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6738 * on PowerPC and on RISC-V. 6739 * - finish_lock_switch() for weakly-ordered 6740 * architectures where spin_unlock is a full barrier, 6741 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6742 * is a RELEASE barrier), 6743 * 6744 * The barrier matches a full barrier in the proximity of 6745 * the membarrier system call entry. 6746 * 6747 * On RISC-V, this barrier pairing is also needed for the 6748 * SYNC_CORE command when switching between processes, cf. 6749 * the inline comments in membarrier_arch_switch_mm(). 6750 */ 6751 ++*switch_count; 6752 6753 migrate_disable_switch(rq, prev); 6754 psi_account_irqtime(rq, prev, next); 6755 psi_sched_switch(prev, next, block); 6756 6757 trace_sched_switch(preempt, prev, next, prev_state); 6758 6759 /* Also unlocks the rq: */ 6760 rq = context_switch(rq, prev, next, &rf); 6761 } else { 6762 rq_unpin_lock(rq, &rf); 6763 __balance_callbacks(rq); 6764 raw_spin_rq_unlock_irq(rq); 6765 } 6766 } 6767 6768 void __noreturn do_task_dead(void) 6769 { 6770 /* Causes final put_task_struct in finish_task_switch(): */ 6771 set_special_state(TASK_DEAD); 6772 6773 /* Tell freezer to ignore us: */ 6774 current->flags |= PF_NOFREEZE; 6775 6776 __schedule(SM_NONE); 6777 BUG(); 6778 6779 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6780 for (;;) 6781 cpu_relax(); 6782 } 6783 6784 static inline void sched_submit_work(struct task_struct *tsk) 6785 { 6786 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6787 unsigned int task_flags; 6788 6789 /* 6790 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6791 * will use a blocking primitive -- which would lead to recursion. 6792 */ 6793 lock_map_acquire_try(&sched_map); 6794 6795 task_flags = tsk->flags; 6796 /* 6797 * If a worker goes to sleep, notify and ask workqueue whether it 6798 * wants to wake up a task to maintain concurrency. 6799 */ 6800 if (task_flags & PF_WQ_WORKER) 6801 wq_worker_sleeping(tsk); 6802 else if (task_flags & PF_IO_WORKER) 6803 io_wq_worker_sleeping(tsk); 6804 6805 /* 6806 * spinlock and rwlock must not flush block requests. This will 6807 * deadlock if the callback attempts to acquire a lock which is 6808 * already acquired. 6809 */ 6810 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6811 6812 /* 6813 * If we are going to sleep and we have plugged IO queued, 6814 * make sure to submit it to avoid deadlocks. 6815 */ 6816 blk_flush_plug(tsk->plug, true); 6817 6818 lock_map_release(&sched_map); 6819 } 6820 6821 static void sched_update_worker(struct task_struct *tsk) 6822 { 6823 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6824 if (tsk->flags & PF_BLOCK_TS) 6825 blk_plug_invalidate_ts(tsk); 6826 if (tsk->flags & PF_WQ_WORKER) 6827 wq_worker_running(tsk); 6828 else if (tsk->flags & PF_IO_WORKER) 6829 io_wq_worker_running(tsk); 6830 } 6831 } 6832 6833 static __always_inline void __schedule_loop(int sched_mode) 6834 { 6835 do { 6836 preempt_disable(); 6837 __schedule(sched_mode); 6838 sched_preempt_enable_no_resched(); 6839 } while (need_resched()); 6840 } 6841 6842 asmlinkage __visible void __sched schedule(void) 6843 { 6844 struct task_struct *tsk = current; 6845 6846 #ifdef CONFIG_RT_MUTEXES 6847 lockdep_assert(!tsk->sched_rt_mutex); 6848 #endif 6849 6850 if (!task_is_running(tsk)) 6851 sched_submit_work(tsk); 6852 __schedule_loop(SM_NONE); 6853 sched_update_worker(tsk); 6854 } 6855 EXPORT_SYMBOL(schedule); 6856 6857 /* 6858 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6859 * state (have scheduled out non-voluntarily) by making sure that all 6860 * tasks have either left the run queue or have gone into user space. 6861 * As idle tasks do not do either, they must not ever be preempted 6862 * (schedule out non-voluntarily). 6863 * 6864 * schedule_idle() is similar to schedule_preempt_disable() except that it 6865 * never enables preemption because it does not call sched_submit_work(). 6866 */ 6867 void __sched schedule_idle(void) 6868 { 6869 /* 6870 * As this skips calling sched_submit_work(), which the idle task does 6871 * regardless because that function is a NOP when the task is in a 6872 * TASK_RUNNING state, make sure this isn't used someplace that the 6873 * current task can be in any other state. Note, idle is always in the 6874 * TASK_RUNNING state. 6875 */ 6876 WARN_ON_ONCE(current->__state); 6877 do { 6878 __schedule(SM_IDLE); 6879 } while (need_resched()); 6880 } 6881 6882 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6883 asmlinkage __visible void __sched schedule_user(void) 6884 { 6885 /* 6886 * If we come here after a random call to set_need_resched(), 6887 * or we have been woken up remotely but the IPI has not yet arrived, 6888 * we haven't yet exited the RCU idle mode. Do it here manually until 6889 * we find a better solution. 6890 * 6891 * NB: There are buggy callers of this function. Ideally we 6892 * should warn if prev_state != CT_STATE_USER, but that will trigger 6893 * too frequently to make sense yet. 6894 */ 6895 enum ctx_state prev_state = exception_enter(); 6896 schedule(); 6897 exception_exit(prev_state); 6898 } 6899 #endif 6900 6901 /** 6902 * schedule_preempt_disabled - called with preemption disabled 6903 * 6904 * Returns with preemption disabled. Note: preempt_count must be 1 6905 */ 6906 void __sched schedule_preempt_disabled(void) 6907 { 6908 sched_preempt_enable_no_resched(); 6909 schedule(); 6910 preempt_disable(); 6911 } 6912 6913 #ifdef CONFIG_PREEMPT_RT 6914 void __sched notrace schedule_rtlock(void) 6915 { 6916 __schedule_loop(SM_RTLOCK_WAIT); 6917 } 6918 NOKPROBE_SYMBOL(schedule_rtlock); 6919 #endif 6920 6921 static void __sched notrace preempt_schedule_common(void) 6922 { 6923 do { 6924 /* 6925 * Because the function tracer can trace preempt_count_sub() 6926 * and it also uses preempt_enable/disable_notrace(), if 6927 * NEED_RESCHED is set, the preempt_enable_notrace() called 6928 * by the function tracer will call this function again and 6929 * cause infinite recursion. 6930 * 6931 * Preemption must be disabled here before the function 6932 * tracer can trace. Break up preempt_disable() into two 6933 * calls. One to disable preemption without fear of being 6934 * traced. The other to still record the preemption latency, 6935 * which can also be traced by the function tracer. 6936 */ 6937 preempt_disable_notrace(); 6938 preempt_latency_start(1); 6939 __schedule(SM_PREEMPT); 6940 preempt_latency_stop(1); 6941 preempt_enable_no_resched_notrace(); 6942 6943 /* 6944 * Check again in case we missed a preemption opportunity 6945 * between schedule and now. 6946 */ 6947 } while (need_resched()); 6948 } 6949 6950 #ifdef CONFIG_PREEMPTION 6951 /* 6952 * This is the entry point to schedule() from in-kernel preemption 6953 * off of preempt_enable. 6954 */ 6955 asmlinkage __visible void __sched notrace preempt_schedule(void) 6956 { 6957 /* 6958 * If there is a non-zero preempt_count or interrupts are disabled, 6959 * we do not want to preempt the current task. Just return.. 6960 */ 6961 if (likely(!preemptible())) 6962 return; 6963 preempt_schedule_common(); 6964 } 6965 NOKPROBE_SYMBOL(preempt_schedule); 6966 EXPORT_SYMBOL(preempt_schedule); 6967 6968 #ifdef CONFIG_PREEMPT_DYNAMIC 6969 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6970 #ifndef preempt_schedule_dynamic_enabled 6971 #define preempt_schedule_dynamic_enabled preempt_schedule 6972 #define preempt_schedule_dynamic_disabled NULL 6973 #endif 6974 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6975 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6976 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6977 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6978 void __sched notrace dynamic_preempt_schedule(void) 6979 { 6980 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6981 return; 6982 preempt_schedule(); 6983 } 6984 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6985 EXPORT_SYMBOL(dynamic_preempt_schedule); 6986 #endif 6987 #endif 6988 6989 /** 6990 * preempt_schedule_notrace - preempt_schedule called by tracing 6991 * 6992 * The tracing infrastructure uses preempt_enable_notrace to prevent 6993 * recursion and tracing preempt enabling caused by the tracing 6994 * infrastructure itself. But as tracing can happen in areas coming 6995 * from userspace or just about to enter userspace, a preempt enable 6996 * can occur before user_exit() is called. This will cause the scheduler 6997 * to be called when the system is still in usermode. 6998 * 6999 * To prevent this, the preempt_enable_notrace will use this function 7000 * instead of preempt_schedule() to exit user context if needed before 7001 * calling the scheduler. 7002 */ 7003 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7004 { 7005 enum ctx_state prev_ctx; 7006 7007 if (likely(!preemptible())) 7008 return; 7009 7010 do { 7011 /* 7012 * Because the function tracer can trace preempt_count_sub() 7013 * and it also uses preempt_enable/disable_notrace(), if 7014 * NEED_RESCHED is set, the preempt_enable_notrace() called 7015 * by the function tracer will call this function again and 7016 * cause infinite recursion. 7017 * 7018 * Preemption must be disabled here before the function 7019 * tracer can trace. Break up preempt_disable() into two 7020 * calls. One to disable preemption without fear of being 7021 * traced. The other to still record the preemption latency, 7022 * which can also be traced by the function tracer. 7023 */ 7024 preempt_disable_notrace(); 7025 preempt_latency_start(1); 7026 /* 7027 * Needs preempt disabled in case user_exit() is traced 7028 * and the tracer calls preempt_enable_notrace() causing 7029 * an infinite recursion. 7030 */ 7031 prev_ctx = exception_enter(); 7032 __schedule(SM_PREEMPT); 7033 exception_exit(prev_ctx); 7034 7035 preempt_latency_stop(1); 7036 preempt_enable_no_resched_notrace(); 7037 } while (need_resched()); 7038 } 7039 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7040 7041 #ifdef CONFIG_PREEMPT_DYNAMIC 7042 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7043 #ifndef preempt_schedule_notrace_dynamic_enabled 7044 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7045 #define preempt_schedule_notrace_dynamic_disabled NULL 7046 #endif 7047 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7048 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7049 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7050 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7051 void __sched notrace dynamic_preempt_schedule_notrace(void) 7052 { 7053 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7054 return; 7055 preempt_schedule_notrace(); 7056 } 7057 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7058 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7059 #endif 7060 #endif 7061 7062 #endif /* CONFIG_PREEMPTION */ 7063 7064 /* 7065 * This is the entry point to schedule() from kernel preemption 7066 * off of IRQ context. 7067 * Note, that this is called and return with IRQs disabled. This will 7068 * protect us against recursive calling from IRQ contexts. 7069 */ 7070 asmlinkage __visible void __sched preempt_schedule_irq(void) 7071 { 7072 enum ctx_state prev_state; 7073 7074 /* Catch callers which need to be fixed */ 7075 BUG_ON(preempt_count() || !irqs_disabled()); 7076 7077 prev_state = exception_enter(); 7078 7079 do { 7080 preempt_disable(); 7081 local_irq_enable(); 7082 __schedule(SM_PREEMPT); 7083 local_irq_disable(); 7084 sched_preempt_enable_no_resched(); 7085 } while (need_resched()); 7086 7087 exception_exit(prev_state); 7088 } 7089 7090 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7091 void *key) 7092 { 7093 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7094 return try_to_wake_up(curr->private, mode, wake_flags); 7095 } 7096 EXPORT_SYMBOL(default_wake_function); 7097 7098 const struct sched_class *__setscheduler_class(int policy, int prio) 7099 { 7100 if (dl_prio(prio)) 7101 return &dl_sched_class; 7102 7103 if (rt_prio(prio)) 7104 return &rt_sched_class; 7105 7106 #ifdef CONFIG_SCHED_CLASS_EXT 7107 if (task_should_scx(policy)) 7108 return &ext_sched_class; 7109 #endif 7110 7111 return &fair_sched_class; 7112 } 7113 7114 #ifdef CONFIG_RT_MUTEXES 7115 7116 /* 7117 * Would be more useful with typeof()/auto_type but they don't mix with 7118 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7119 * name such that if someone were to implement this function we get to compare 7120 * notes. 7121 */ 7122 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7123 7124 void rt_mutex_pre_schedule(void) 7125 { 7126 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7127 sched_submit_work(current); 7128 } 7129 7130 void rt_mutex_schedule(void) 7131 { 7132 lockdep_assert(current->sched_rt_mutex); 7133 __schedule_loop(SM_NONE); 7134 } 7135 7136 void rt_mutex_post_schedule(void) 7137 { 7138 sched_update_worker(current); 7139 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7140 } 7141 7142 /* 7143 * rt_mutex_setprio - set the current priority of a task 7144 * @p: task to boost 7145 * @pi_task: donor task 7146 * 7147 * This function changes the 'effective' priority of a task. It does 7148 * not touch ->normal_prio like __setscheduler(). 7149 * 7150 * Used by the rt_mutex code to implement priority inheritance 7151 * logic. Call site only calls if the priority of the task changed. 7152 */ 7153 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7154 { 7155 int prio, oldprio, queued, running, queue_flag = 7156 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7157 const struct sched_class *prev_class, *next_class; 7158 struct rq_flags rf; 7159 struct rq *rq; 7160 7161 /* XXX used to be waiter->prio, not waiter->task->prio */ 7162 prio = __rt_effective_prio(pi_task, p->normal_prio); 7163 7164 /* 7165 * If nothing changed; bail early. 7166 */ 7167 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7168 return; 7169 7170 rq = __task_rq_lock(p, &rf); 7171 update_rq_clock(rq); 7172 /* 7173 * Set under pi_lock && rq->lock, such that the value can be used under 7174 * either lock. 7175 * 7176 * Note that there is loads of tricky to make this pointer cache work 7177 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7178 * ensure a task is de-boosted (pi_task is set to NULL) before the 7179 * task is allowed to run again (and can exit). This ensures the pointer 7180 * points to a blocked task -- which guarantees the task is present. 7181 */ 7182 p->pi_top_task = pi_task; 7183 7184 /* 7185 * For FIFO/RR we only need to set prio, if that matches we're done. 7186 */ 7187 if (prio == p->prio && !dl_prio(prio)) 7188 goto out_unlock; 7189 7190 /* 7191 * Idle task boosting is a no-no in general. There is one 7192 * exception, when PREEMPT_RT and NOHZ is active: 7193 * 7194 * The idle task calls get_next_timer_interrupt() and holds 7195 * the timer wheel base->lock on the CPU and another CPU wants 7196 * to access the timer (probably to cancel it). We can safely 7197 * ignore the boosting request, as the idle CPU runs this code 7198 * with interrupts disabled and will complete the lock 7199 * protected section without being interrupted. So there is no 7200 * real need to boost. 7201 */ 7202 if (unlikely(p == rq->idle)) { 7203 WARN_ON(p != rq->curr); 7204 WARN_ON(p->pi_blocked_on); 7205 goto out_unlock; 7206 } 7207 7208 trace_sched_pi_setprio(p, pi_task); 7209 oldprio = p->prio; 7210 7211 if (oldprio == prio) 7212 queue_flag &= ~DEQUEUE_MOVE; 7213 7214 prev_class = p->sched_class; 7215 next_class = __setscheduler_class(p->policy, prio); 7216 7217 if (prev_class != next_class && p->se.sched_delayed) 7218 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 7219 7220 queued = task_on_rq_queued(p); 7221 running = task_current_donor(rq, p); 7222 if (queued) 7223 dequeue_task(rq, p, queue_flag); 7224 if (running) 7225 put_prev_task(rq, p); 7226 7227 /* 7228 * Boosting condition are: 7229 * 1. -rt task is running and holds mutex A 7230 * --> -dl task blocks on mutex A 7231 * 7232 * 2. -dl task is running and holds mutex A 7233 * --> -dl task blocks on mutex A and could preempt the 7234 * running task 7235 */ 7236 if (dl_prio(prio)) { 7237 if (!dl_prio(p->normal_prio) || 7238 (pi_task && dl_prio(pi_task->prio) && 7239 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7240 p->dl.pi_se = pi_task->dl.pi_se; 7241 queue_flag |= ENQUEUE_REPLENISH; 7242 } else { 7243 p->dl.pi_se = &p->dl; 7244 } 7245 } else if (rt_prio(prio)) { 7246 if (dl_prio(oldprio)) 7247 p->dl.pi_se = &p->dl; 7248 if (oldprio < prio) 7249 queue_flag |= ENQUEUE_HEAD; 7250 } else { 7251 if (dl_prio(oldprio)) 7252 p->dl.pi_se = &p->dl; 7253 if (rt_prio(oldprio)) 7254 p->rt.timeout = 0; 7255 } 7256 7257 p->sched_class = next_class; 7258 p->prio = prio; 7259 7260 check_class_changing(rq, p, prev_class); 7261 7262 if (queued) 7263 enqueue_task(rq, p, queue_flag); 7264 if (running) 7265 set_next_task(rq, p); 7266 7267 check_class_changed(rq, p, prev_class, oldprio); 7268 out_unlock: 7269 /* Avoid rq from going away on us: */ 7270 preempt_disable(); 7271 7272 rq_unpin_lock(rq, &rf); 7273 __balance_callbacks(rq); 7274 raw_spin_rq_unlock(rq); 7275 7276 preempt_enable(); 7277 } 7278 #endif 7279 7280 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7281 int __sched __cond_resched(void) 7282 { 7283 if (should_resched(0)) { 7284 preempt_schedule_common(); 7285 return 1; 7286 } 7287 /* 7288 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 7289 * whether the current CPU is in an RCU read-side critical section, 7290 * so the tick can report quiescent states even for CPUs looping 7291 * in kernel context. In contrast, in non-preemptible kernels, 7292 * RCU readers leave no in-memory hints, which means that CPU-bound 7293 * processes executing in kernel context might never report an 7294 * RCU quiescent state. Therefore, the following code causes 7295 * cond_resched() to report a quiescent state, but only when RCU 7296 * is in urgent need of one. 7297 */ 7298 #ifndef CONFIG_PREEMPT_RCU 7299 rcu_all_qs(); 7300 #endif 7301 return 0; 7302 } 7303 EXPORT_SYMBOL(__cond_resched); 7304 #endif 7305 7306 #ifdef CONFIG_PREEMPT_DYNAMIC 7307 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7308 #define cond_resched_dynamic_enabled __cond_resched 7309 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7310 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7311 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7312 7313 #define might_resched_dynamic_enabled __cond_resched 7314 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7315 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7316 EXPORT_STATIC_CALL_TRAMP(might_resched); 7317 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7318 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7319 int __sched dynamic_cond_resched(void) 7320 { 7321 klp_sched_try_switch(); 7322 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7323 return 0; 7324 return __cond_resched(); 7325 } 7326 EXPORT_SYMBOL(dynamic_cond_resched); 7327 7328 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7329 int __sched dynamic_might_resched(void) 7330 { 7331 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7332 return 0; 7333 return __cond_resched(); 7334 } 7335 EXPORT_SYMBOL(dynamic_might_resched); 7336 #endif 7337 #endif 7338 7339 /* 7340 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7341 * call schedule, and on return reacquire the lock. 7342 * 7343 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7344 * operations here to prevent schedule() from being called twice (once via 7345 * spin_unlock(), once by hand). 7346 */ 7347 int __cond_resched_lock(spinlock_t *lock) 7348 { 7349 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7350 int ret = 0; 7351 7352 lockdep_assert_held(lock); 7353 7354 if (spin_needbreak(lock) || resched) { 7355 spin_unlock(lock); 7356 if (!_cond_resched()) 7357 cpu_relax(); 7358 ret = 1; 7359 spin_lock(lock); 7360 } 7361 return ret; 7362 } 7363 EXPORT_SYMBOL(__cond_resched_lock); 7364 7365 int __cond_resched_rwlock_read(rwlock_t *lock) 7366 { 7367 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7368 int ret = 0; 7369 7370 lockdep_assert_held_read(lock); 7371 7372 if (rwlock_needbreak(lock) || resched) { 7373 read_unlock(lock); 7374 if (!_cond_resched()) 7375 cpu_relax(); 7376 ret = 1; 7377 read_lock(lock); 7378 } 7379 return ret; 7380 } 7381 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7382 7383 int __cond_resched_rwlock_write(rwlock_t *lock) 7384 { 7385 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7386 int ret = 0; 7387 7388 lockdep_assert_held_write(lock); 7389 7390 if (rwlock_needbreak(lock) || resched) { 7391 write_unlock(lock); 7392 if (!_cond_resched()) 7393 cpu_relax(); 7394 ret = 1; 7395 write_lock(lock); 7396 } 7397 return ret; 7398 } 7399 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7400 7401 #ifdef CONFIG_PREEMPT_DYNAMIC 7402 7403 #ifdef CONFIG_GENERIC_ENTRY 7404 #include <linux/entry-common.h> 7405 #endif 7406 7407 /* 7408 * SC:cond_resched 7409 * SC:might_resched 7410 * SC:preempt_schedule 7411 * SC:preempt_schedule_notrace 7412 * SC:irqentry_exit_cond_resched 7413 * 7414 * 7415 * NONE: 7416 * cond_resched <- __cond_resched 7417 * might_resched <- RET0 7418 * preempt_schedule <- NOP 7419 * preempt_schedule_notrace <- NOP 7420 * irqentry_exit_cond_resched <- NOP 7421 * dynamic_preempt_lazy <- false 7422 * 7423 * VOLUNTARY: 7424 * cond_resched <- __cond_resched 7425 * might_resched <- __cond_resched 7426 * preempt_schedule <- NOP 7427 * preempt_schedule_notrace <- NOP 7428 * irqentry_exit_cond_resched <- NOP 7429 * dynamic_preempt_lazy <- false 7430 * 7431 * FULL: 7432 * cond_resched <- RET0 7433 * might_resched <- RET0 7434 * preempt_schedule <- preempt_schedule 7435 * preempt_schedule_notrace <- preempt_schedule_notrace 7436 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7437 * dynamic_preempt_lazy <- false 7438 * 7439 * LAZY: 7440 * cond_resched <- RET0 7441 * might_resched <- RET0 7442 * preempt_schedule <- preempt_schedule 7443 * preempt_schedule_notrace <- preempt_schedule_notrace 7444 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7445 * dynamic_preempt_lazy <- true 7446 */ 7447 7448 enum { 7449 preempt_dynamic_undefined = -1, 7450 preempt_dynamic_none, 7451 preempt_dynamic_voluntary, 7452 preempt_dynamic_full, 7453 preempt_dynamic_lazy, 7454 }; 7455 7456 int preempt_dynamic_mode = preempt_dynamic_undefined; 7457 7458 int sched_dynamic_mode(const char *str) 7459 { 7460 #ifndef CONFIG_PREEMPT_RT 7461 if (!strcmp(str, "none")) 7462 return preempt_dynamic_none; 7463 7464 if (!strcmp(str, "voluntary")) 7465 return preempt_dynamic_voluntary; 7466 #endif 7467 7468 if (!strcmp(str, "full")) 7469 return preempt_dynamic_full; 7470 7471 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7472 if (!strcmp(str, "lazy")) 7473 return preempt_dynamic_lazy; 7474 #endif 7475 7476 return -EINVAL; 7477 } 7478 7479 #define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7480 #define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7481 7482 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7483 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7484 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7485 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7486 #define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7487 #define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7488 #else 7489 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7490 #endif 7491 7492 static DEFINE_MUTEX(sched_dynamic_mutex); 7493 static bool klp_override; 7494 7495 static void __sched_dynamic_update(int mode) 7496 { 7497 /* 7498 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7499 * the ZERO state, which is invalid. 7500 */ 7501 if (!klp_override) 7502 preempt_dynamic_enable(cond_resched); 7503 preempt_dynamic_enable(might_resched); 7504 preempt_dynamic_enable(preempt_schedule); 7505 preempt_dynamic_enable(preempt_schedule_notrace); 7506 preempt_dynamic_enable(irqentry_exit_cond_resched); 7507 preempt_dynamic_key_disable(preempt_lazy); 7508 7509 switch (mode) { 7510 case preempt_dynamic_none: 7511 if (!klp_override) 7512 preempt_dynamic_enable(cond_resched); 7513 preempt_dynamic_disable(might_resched); 7514 preempt_dynamic_disable(preempt_schedule); 7515 preempt_dynamic_disable(preempt_schedule_notrace); 7516 preempt_dynamic_disable(irqentry_exit_cond_resched); 7517 preempt_dynamic_key_disable(preempt_lazy); 7518 if (mode != preempt_dynamic_mode) 7519 pr_info("Dynamic Preempt: none\n"); 7520 break; 7521 7522 case preempt_dynamic_voluntary: 7523 if (!klp_override) 7524 preempt_dynamic_enable(cond_resched); 7525 preempt_dynamic_enable(might_resched); 7526 preempt_dynamic_disable(preempt_schedule); 7527 preempt_dynamic_disable(preempt_schedule_notrace); 7528 preempt_dynamic_disable(irqentry_exit_cond_resched); 7529 preempt_dynamic_key_disable(preempt_lazy); 7530 if (mode != preempt_dynamic_mode) 7531 pr_info("Dynamic Preempt: voluntary\n"); 7532 break; 7533 7534 case preempt_dynamic_full: 7535 if (!klp_override) 7536 preempt_dynamic_disable(cond_resched); 7537 preempt_dynamic_disable(might_resched); 7538 preempt_dynamic_enable(preempt_schedule); 7539 preempt_dynamic_enable(preempt_schedule_notrace); 7540 preempt_dynamic_enable(irqentry_exit_cond_resched); 7541 preempt_dynamic_key_disable(preempt_lazy); 7542 if (mode != preempt_dynamic_mode) 7543 pr_info("Dynamic Preempt: full\n"); 7544 break; 7545 7546 case preempt_dynamic_lazy: 7547 if (!klp_override) 7548 preempt_dynamic_disable(cond_resched); 7549 preempt_dynamic_disable(might_resched); 7550 preempt_dynamic_enable(preempt_schedule); 7551 preempt_dynamic_enable(preempt_schedule_notrace); 7552 preempt_dynamic_enable(irqentry_exit_cond_resched); 7553 preempt_dynamic_key_enable(preempt_lazy); 7554 if (mode != preempt_dynamic_mode) 7555 pr_info("Dynamic Preempt: lazy\n"); 7556 break; 7557 } 7558 7559 preempt_dynamic_mode = mode; 7560 } 7561 7562 void sched_dynamic_update(int mode) 7563 { 7564 mutex_lock(&sched_dynamic_mutex); 7565 __sched_dynamic_update(mode); 7566 mutex_unlock(&sched_dynamic_mutex); 7567 } 7568 7569 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7570 7571 static int klp_cond_resched(void) 7572 { 7573 __klp_sched_try_switch(); 7574 return __cond_resched(); 7575 } 7576 7577 void sched_dynamic_klp_enable(void) 7578 { 7579 mutex_lock(&sched_dynamic_mutex); 7580 7581 klp_override = true; 7582 static_call_update(cond_resched, klp_cond_resched); 7583 7584 mutex_unlock(&sched_dynamic_mutex); 7585 } 7586 7587 void sched_dynamic_klp_disable(void) 7588 { 7589 mutex_lock(&sched_dynamic_mutex); 7590 7591 klp_override = false; 7592 __sched_dynamic_update(preempt_dynamic_mode); 7593 7594 mutex_unlock(&sched_dynamic_mutex); 7595 } 7596 7597 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7598 7599 static int __init setup_preempt_mode(char *str) 7600 { 7601 int mode = sched_dynamic_mode(str); 7602 if (mode < 0) { 7603 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7604 return 0; 7605 } 7606 7607 sched_dynamic_update(mode); 7608 return 1; 7609 } 7610 __setup("preempt=", setup_preempt_mode); 7611 7612 static void __init preempt_dynamic_init(void) 7613 { 7614 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7615 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7616 sched_dynamic_update(preempt_dynamic_none); 7617 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7618 sched_dynamic_update(preempt_dynamic_voluntary); 7619 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7620 sched_dynamic_update(preempt_dynamic_lazy); 7621 } else { 7622 /* Default static call setting, nothing to do */ 7623 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7624 preempt_dynamic_mode = preempt_dynamic_full; 7625 pr_info("Dynamic Preempt: full\n"); 7626 } 7627 } 7628 } 7629 7630 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7631 bool preempt_model_##mode(void) \ 7632 { \ 7633 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7634 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7635 } \ 7636 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7637 7638 PREEMPT_MODEL_ACCESSOR(none); 7639 PREEMPT_MODEL_ACCESSOR(voluntary); 7640 PREEMPT_MODEL_ACCESSOR(full); 7641 PREEMPT_MODEL_ACCESSOR(lazy); 7642 7643 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7644 7645 static inline void preempt_dynamic_init(void) { } 7646 7647 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7648 7649 int io_schedule_prepare(void) 7650 { 7651 int old_iowait = current->in_iowait; 7652 7653 current->in_iowait = 1; 7654 blk_flush_plug(current->plug, true); 7655 return old_iowait; 7656 } 7657 7658 void io_schedule_finish(int token) 7659 { 7660 current->in_iowait = token; 7661 } 7662 7663 /* 7664 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7665 * that process accounting knows that this is a task in IO wait state. 7666 */ 7667 long __sched io_schedule_timeout(long timeout) 7668 { 7669 int token; 7670 long ret; 7671 7672 token = io_schedule_prepare(); 7673 ret = schedule_timeout(timeout); 7674 io_schedule_finish(token); 7675 7676 return ret; 7677 } 7678 EXPORT_SYMBOL(io_schedule_timeout); 7679 7680 void __sched io_schedule(void) 7681 { 7682 int token; 7683 7684 token = io_schedule_prepare(); 7685 schedule(); 7686 io_schedule_finish(token); 7687 } 7688 EXPORT_SYMBOL(io_schedule); 7689 7690 void sched_show_task(struct task_struct *p) 7691 { 7692 unsigned long free; 7693 int ppid; 7694 7695 if (!try_get_task_stack(p)) 7696 return; 7697 7698 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7699 7700 if (task_is_running(p)) 7701 pr_cont(" running task "); 7702 free = stack_not_used(p); 7703 ppid = 0; 7704 rcu_read_lock(); 7705 if (pid_alive(p)) 7706 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7707 rcu_read_unlock(); 7708 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", 7709 free, task_pid_nr(p), task_tgid_nr(p), 7710 ppid, read_task_thread_flags(p)); 7711 7712 print_worker_info(KERN_INFO, p); 7713 print_stop_info(KERN_INFO, p); 7714 print_scx_info(KERN_INFO, p); 7715 show_stack(p, NULL, KERN_INFO); 7716 put_task_stack(p); 7717 } 7718 EXPORT_SYMBOL_GPL(sched_show_task); 7719 7720 static inline bool 7721 state_filter_match(unsigned long state_filter, struct task_struct *p) 7722 { 7723 unsigned int state = READ_ONCE(p->__state); 7724 7725 /* no filter, everything matches */ 7726 if (!state_filter) 7727 return true; 7728 7729 /* filter, but doesn't match */ 7730 if (!(state & state_filter)) 7731 return false; 7732 7733 /* 7734 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7735 * TASK_KILLABLE). 7736 */ 7737 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7738 return false; 7739 7740 return true; 7741 } 7742 7743 7744 void show_state_filter(unsigned int state_filter) 7745 { 7746 struct task_struct *g, *p; 7747 7748 rcu_read_lock(); 7749 for_each_process_thread(g, p) { 7750 /* 7751 * reset the NMI-timeout, listing all files on a slow 7752 * console might take a lot of time: 7753 * Also, reset softlockup watchdogs on all CPUs, because 7754 * another CPU might be blocked waiting for us to process 7755 * an IPI. 7756 */ 7757 touch_nmi_watchdog(); 7758 touch_all_softlockup_watchdogs(); 7759 if (state_filter_match(state_filter, p)) 7760 sched_show_task(p); 7761 } 7762 7763 #ifdef CONFIG_SCHED_DEBUG 7764 if (!state_filter) 7765 sysrq_sched_debug_show(); 7766 #endif 7767 rcu_read_unlock(); 7768 /* 7769 * Only show locks if all tasks are dumped: 7770 */ 7771 if (!state_filter) 7772 debug_show_all_locks(); 7773 } 7774 7775 /** 7776 * init_idle - set up an idle thread for a given CPU 7777 * @idle: task in question 7778 * @cpu: CPU the idle task belongs to 7779 * 7780 * NOTE: this function does not set the idle thread's NEED_RESCHED 7781 * flag, to make booting more robust. 7782 */ 7783 void __init init_idle(struct task_struct *idle, int cpu) 7784 { 7785 #ifdef CONFIG_SMP 7786 struct affinity_context ac = (struct affinity_context) { 7787 .new_mask = cpumask_of(cpu), 7788 .flags = 0, 7789 }; 7790 #endif 7791 struct rq *rq = cpu_rq(cpu); 7792 unsigned long flags; 7793 7794 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7795 raw_spin_rq_lock(rq); 7796 7797 idle->__state = TASK_RUNNING; 7798 idle->se.exec_start = sched_clock(); 7799 /* 7800 * PF_KTHREAD should already be set at this point; regardless, make it 7801 * look like a proper per-CPU kthread. 7802 */ 7803 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7804 kthread_set_per_cpu(idle, cpu); 7805 7806 #ifdef CONFIG_SMP 7807 /* 7808 * No validation and serialization required at boot time and for 7809 * setting up the idle tasks of not yet online CPUs. 7810 */ 7811 set_cpus_allowed_common(idle, &ac); 7812 #endif 7813 /* 7814 * We're having a chicken and egg problem, even though we are 7815 * holding rq->lock, the CPU isn't yet set to this CPU so the 7816 * lockdep check in task_group() will fail. 7817 * 7818 * Similar case to sched_fork(). / Alternatively we could 7819 * use task_rq_lock() here and obtain the other rq->lock. 7820 * 7821 * Silence PROVE_RCU 7822 */ 7823 rcu_read_lock(); 7824 __set_task_cpu(idle, cpu); 7825 rcu_read_unlock(); 7826 7827 rq->idle = idle; 7828 rq_set_donor(rq, idle); 7829 rcu_assign_pointer(rq->curr, idle); 7830 idle->on_rq = TASK_ON_RQ_QUEUED; 7831 #ifdef CONFIG_SMP 7832 idle->on_cpu = 1; 7833 #endif 7834 raw_spin_rq_unlock(rq); 7835 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7836 7837 /* Set the preempt count _outside_ the spinlocks! */ 7838 init_idle_preempt_count(idle, cpu); 7839 7840 /* 7841 * The idle tasks have their own, simple scheduling class: 7842 */ 7843 idle->sched_class = &idle_sched_class; 7844 ftrace_graph_init_idle_task(idle, cpu); 7845 vtime_init_idle(idle, cpu); 7846 #ifdef CONFIG_SMP 7847 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7848 #endif 7849 } 7850 7851 #ifdef CONFIG_SMP 7852 7853 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7854 const struct cpumask *trial) 7855 { 7856 int ret = 1; 7857 7858 if (cpumask_empty(cur)) 7859 return ret; 7860 7861 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7862 7863 return ret; 7864 } 7865 7866 int task_can_attach(struct task_struct *p) 7867 { 7868 int ret = 0; 7869 7870 /* 7871 * Kthreads which disallow setaffinity shouldn't be moved 7872 * to a new cpuset; we don't want to change their CPU 7873 * affinity and isolating such threads by their set of 7874 * allowed nodes is unnecessary. Thus, cpusets are not 7875 * applicable for such threads. This prevents checking for 7876 * success of set_cpus_allowed_ptr() on all attached tasks 7877 * before cpus_mask may be changed. 7878 */ 7879 if (p->flags & PF_NO_SETAFFINITY) 7880 ret = -EINVAL; 7881 7882 return ret; 7883 } 7884 7885 bool sched_smp_initialized __read_mostly; 7886 7887 #ifdef CONFIG_NUMA_BALANCING 7888 /* Migrate current task p to target_cpu */ 7889 int migrate_task_to(struct task_struct *p, int target_cpu) 7890 { 7891 struct migration_arg arg = { p, target_cpu }; 7892 int curr_cpu = task_cpu(p); 7893 7894 if (curr_cpu == target_cpu) 7895 return 0; 7896 7897 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7898 return -EINVAL; 7899 7900 /* TODO: This is not properly updating schedstats */ 7901 7902 trace_sched_move_numa(p, curr_cpu, target_cpu); 7903 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7904 } 7905 7906 /* 7907 * Requeue a task on a given node and accurately track the number of NUMA 7908 * tasks on the runqueues 7909 */ 7910 void sched_setnuma(struct task_struct *p, int nid) 7911 { 7912 bool queued, running; 7913 struct rq_flags rf; 7914 struct rq *rq; 7915 7916 rq = task_rq_lock(p, &rf); 7917 queued = task_on_rq_queued(p); 7918 running = task_current_donor(rq, p); 7919 7920 if (queued) 7921 dequeue_task(rq, p, DEQUEUE_SAVE); 7922 if (running) 7923 put_prev_task(rq, p); 7924 7925 p->numa_preferred_nid = nid; 7926 7927 if (queued) 7928 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7929 if (running) 7930 set_next_task(rq, p); 7931 task_rq_unlock(rq, p, &rf); 7932 } 7933 #endif /* CONFIG_NUMA_BALANCING */ 7934 7935 #ifdef CONFIG_HOTPLUG_CPU 7936 /* 7937 * Ensure that the idle task is using init_mm right before its CPU goes 7938 * offline. 7939 */ 7940 void idle_task_exit(void) 7941 { 7942 struct mm_struct *mm = current->active_mm; 7943 7944 BUG_ON(cpu_online(smp_processor_id())); 7945 BUG_ON(current != this_rq()->idle); 7946 7947 if (mm != &init_mm) { 7948 switch_mm(mm, &init_mm, current); 7949 finish_arch_post_lock_switch(); 7950 } 7951 7952 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7953 } 7954 7955 static int __balance_push_cpu_stop(void *arg) 7956 { 7957 struct task_struct *p = arg; 7958 struct rq *rq = this_rq(); 7959 struct rq_flags rf; 7960 int cpu; 7961 7962 raw_spin_lock_irq(&p->pi_lock); 7963 rq_lock(rq, &rf); 7964 7965 update_rq_clock(rq); 7966 7967 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7968 cpu = select_fallback_rq(rq->cpu, p); 7969 rq = __migrate_task(rq, &rf, p, cpu); 7970 } 7971 7972 rq_unlock(rq, &rf); 7973 raw_spin_unlock_irq(&p->pi_lock); 7974 7975 put_task_struct(p); 7976 7977 return 0; 7978 } 7979 7980 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7981 7982 /* 7983 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7984 * 7985 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7986 * effective when the hotplug motion is down. 7987 */ 7988 static void balance_push(struct rq *rq) 7989 { 7990 struct task_struct *push_task = rq->curr; 7991 7992 lockdep_assert_rq_held(rq); 7993 7994 /* 7995 * Ensure the thing is persistent until balance_push_set(.on = false); 7996 */ 7997 rq->balance_callback = &balance_push_callback; 7998 7999 /* 8000 * Only active while going offline and when invoked on the outgoing 8001 * CPU. 8002 */ 8003 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8004 return; 8005 8006 /* 8007 * Both the cpu-hotplug and stop task are in this case and are 8008 * required to complete the hotplug process. 8009 */ 8010 if (kthread_is_per_cpu(push_task) || 8011 is_migration_disabled(push_task)) { 8012 8013 /* 8014 * If this is the idle task on the outgoing CPU try to wake 8015 * up the hotplug control thread which might wait for the 8016 * last task to vanish. The rcuwait_active() check is 8017 * accurate here because the waiter is pinned on this CPU 8018 * and can't obviously be running in parallel. 8019 * 8020 * On RT kernels this also has to check whether there are 8021 * pinned and scheduled out tasks on the runqueue. They 8022 * need to leave the migrate disabled section first. 8023 */ 8024 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8025 rcuwait_active(&rq->hotplug_wait)) { 8026 raw_spin_rq_unlock(rq); 8027 rcuwait_wake_up(&rq->hotplug_wait); 8028 raw_spin_rq_lock(rq); 8029 } 8030 return; 8031 } 8032 8033 get_task_struct(push_task); 8034 /* 8035 * Temporarily drop rq->lock such that we can wake-up the stop task. 8036 * Both preemption and IRQs are still disabled. 8037 */ 8038 preempt_disable(); 8039 raw_spin_rq_unlock(rq); 8040 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8041 this_cpu_ptr(&push_work)); 8042 preempt_enable(); 8043 /* 8044 * At this point need_resched() is true and we'll take the loop in 8045 * schedule(). The next pick is obviously going to be the stop task 8046 * which kthread_is_per_cpu() and will push this task away. 8047 */ 8048 raw_spin_rq_lock(rq); 8049 } 8050 8051 static void balance_push_set(int cpu, bool on) 8052 { 8053 struct rq *rq = cpu_rq(cpu); 8054 struct rq_flags rf; 8055 8056 rq_lock_irqsave(rq, &rf); 8057 if (on) { 8058 WARN_ON_ONCE(rq->balance_callback); 8059 rq->balance_callback = &balance_push_callback; 8060 } else if (rq->balance_callback == &balance_push_callback) { 8061 rq->balance_callback = NULL; 8062 } 8063 rq_unlock_irqrestore(rq, &rf); 8064 } 8065 8066 /* 8067 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8068 * inactive. All tasks which are not per CPU kernel threads are either 8069 * pushed off this CPU now via balance_push() or placed on a different CPU 8070 * during wakeup. Wait until the CPU is quiescent. 8071 */ 8072 static void balance_hotplug_wait(void) 8073 { 8074 struct rq *rq = this_rq(); 8075 8076 rcuwait_wait_event(&rq->hotplug_wait, 8077 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8078 TASK_UNINTERRUPTIBLE); 8079 } 8080 8081 #else 8082 8083 static inline void balance_push(struct rq *rq) 8084 { 8085 } 8086 8087 static inline void balance_push_set(int cpu, bool on) 8088 { 8089 } 8090 8091 static inline void balance_hotplug_wait(void) 8092 { 8093 } 8094 8095 #endif /* CONFIG_HOTPLUG_CPU */ 8096 8097 void set_rq_online(struct rq *rq) 8098 { 8099 if (!rq->online) { 8100 const struct sched_class *class; 8101 8102 cpumask_set_cpu(rq->cpu, rq->rd->online); 8103 rq->online = 1; 8104 8105 for_each_class(class) { 8106 if (class->rq_online) 8107 class->rq_online(rq); 8108 } 8109 } 8110 } 8111 8112 void set_rq_offline(struct rq *rq) 8113 { 8114 if (rq->online) { 8115 const struct sched_class *class; 8116 8117 update_rq_clock(rq); 8118 for_each_class(class) { 8119 if (class->rq_offline) 8120 class->rq_offline(rq); 8121 } 8122 8123 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8124 rq->online = 0; 8125 } 8126 } 8127 8128 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8129 { 8130 struct rq_flags rf; 8131 8132 rq_lock_irqsave(rq, &rf); 8133 if (rq->rd) { 8134 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8135 set_rq_online(rq); 8136 } 8137 rq_unlock_irqrestore(rq, &rf); 8138 } 8139 8140 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8141 { 8142 struct rq_flags rf; 8143 8144 rq_lock_irqsave(rq, &rf); 8145 if (rq->rd) { 8146 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8147 set_rq_offline(rq); 8148 } 8149 rq_unlock_irqrestore(rq, &rf); 8150 } 8151 8152 /* 8153 * used to mark begin/end of suspend/resume: 8154 */ 8155 static int num_cpus_frozen; 8156 8157 /* 8158 * Update cpusets according to cpu_active mask. If cpusets are 8159 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8160 * around partition_sched_domains(). 8161 * 8162 * If we come here as part of a suspend/resume, don't touch cpusets because we 8163 * want to restore it back to its original state upon resume anyway. 8164 */ 8165 static void cpuset_cpu_active(void) 8166 { 8167 if (cpuhp_tasks_frozen) { 8168 /* 8169 * num_cpus_frozen tracks how many CPUs are involved in suspend 8170 * resume sequence. As long as this is not the last online 8171 * operation in the resume sequence, just build a single sched 8172 * domain, ignoring cpusets. 8173 */ 8174 partition_sched_domains(1, NULL, NULL); 8175 if (--num_cpus_frozen) 8176 return; 8177 /* 8178 * This is the last CPU online operation. So fall through and 8179 * restore the original sched domains by considering the 8180 * cpuset configurations. 8181 */ 8182 cpuset_force_rebuild(); 8183 } 8184 cpuset_update_active_cpus(); 8185 } 8186 8187 static int cpuset_cpu_inactive(unsigned int cpu) 8188 { 8189 if (!cpuhp_tasks_frozen) { 8190 int ret = dl_bw_check_overflow(cpu); 8191 8192 if (ret) 8193 return ret; 8194 cpuset_update_active_cpus(); 8195 } else { 8196 num_cpus_frozen++; 8197 partition_sched_domains(1, NULL, NULL); 8198 } 8199 return 0; 8200 } 8201 8202 static inline void sched_smt_present_inc(int cpu) 8203 { 8204 #ifdef CONFIG_SCHED_SMT 8205 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8206 static_branch_inc_cpuslocked(&sched_smt_present); 8207 #endif 8208 } 8209 8210 static inline void sched_smt_present_dec(int cpu) 8211 { 8212 #ifdef CONFIG_SCHED_SMT 8213 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8214 static_branch_dec_cpuslocked(&sched_smt_present); 8215 #endif 8216 } 8217 8218 int sched_cpu_activate(unsigned int cpu) 8219 { 8220 struct rq *rq = cpu_rq(cpu); 8221 8222 /* 8223 * Clear the balance_push callback and prepare to schedule 8224 * regular tasks. 8225 */ 8226 balance_push_set(cpu, false); 8227 8228 /* 8229 * When going up, increment the number of cores with SMT present. 8230 */ 8231 sched_smt_present_inc(cpu); 8232 set_cpu_active(cpu, true); 8233 8234 if (sched_smp_initialized) { 8235 sched_update_numa(cpu, true); 8236 sched_domains_numa_masks_set(cpu); 8237 cpuset_cpu_active(); 8238 } 8239 8240 scx_rq_activate(rq); 8241 8242 /* 8243 * Put the rq online, if not already. This happens: 8244 * 8245 * 1) In the early boot process, because we build the real domains 8246 * after all CPUs have been brought up. 8247 * 8248 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8249 * domains. 8250 */ 8251 sched_set_rq_online(rq, cpu); 8252 8253 return 0; 8254 } 8255 8256 int sched_cpu_deactivate(unsigned int cpu) 8257 { 8258 struct rq *rq = cpu_rq(cpu); 8259 int ret; 8260 8261 /* 8262 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8263 * load balancing when not active 8264 */ 8265 nohz_balance_exit_idle(rq); 8266 8267 set_cpu_active(cpu, false); 8268 8269 /* 8270 * From this point forward, this CPU will refuse to run any task that 8271 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8272 * push those tasks away until this gets cleared, see 8273 * sched_cpu_dying(). 8274 */ 8275 balance_push_set(cpu, true); 8276 8277 /* 8278 * We've cleared cpu_active_mask / set balance_push, wait for all 8279 * preempt-disabled and RCU users of this state to go away such that 8280 * all new such users will observe it. 8281 * 8282 * Specifically, we rely on ttwu to no longer target this CPU, see 8283 * ttwu_queue_cond() and is_cpu_allowed(). 8284 * 8285 * Do sync before park smpboot threads to take care the RCU boost case. 8286 */ 8287 synchronize_rcu(); 8288 8289 sched_set_rq_offline(rq, cpu); 8290 8291 scx_rq_deactivate(rq); 8292 8293 /* 8294 * When going down, decrement the number of cores with SMT present. 8295 */ 8296 sched_smt_present_dec(cpu); 8297 8298 #ifdef CONFIG_SCHED_SMT 8299 sched_core_cpu_deactivate(cpu); 8300 #endif 8301 8302 if (!sched_smp_initialized) 8303 return 0; 8304 8305 sched_update_numa(cpu, false); 8306 ret = cpuset_cpu_inactive(cpu); 8307 if (ret) { 8308 sched_smt_present_inc(cpu); 8309 sched_set_rq_online(rq, cpu); 8310 balance_push_set(cpu, false); 8311 set_cpu_active(cpu, true); 8312 sched_update_numa(cpu, true); 8313 return ret; 8314 } 8315 sched_domains_numa_masks_clear(cpu); 8316 return 0; 8317 } 8318 8319 static void sched_rq_cpu_starting(unsigned int cpu) 8320 { 8321 struct rq *rq = cpu_rq(cpu); 8322 8323 rq->calc_load_update = calc_load_update; 8324 update_max_interval(); 8325 } 8326 8327 int sched_cpu_starting(unsigned int cpu) 8328 { 8329 sched_core_cpu_starting(cpu); 8330 sched_rq_cpu_starting(cpu); 8331 sched_tick_start(cpu); 8332 return 0; 8333 } 8334 8335 #ifdef CONFIG_HOTPLUG_CPU 8336 8337 /* 8338 * Invoked immediately before the stopper thread is invoked to bring the 8339 * CPU down completely. At this point all per CPU kthreads except the 8340 * hotplug thread (current) and the stopper thread (inactive) have been 8341 * either parked or have been unbound from the outgoing CPU. Ensure that 8342 * any of those which might be on the way out are gone. 8343 * 8344 * If after this point a bound task is being woken on this CPU then the 8345 * responsible hotplug callback has failed to do it's job. 8346 * sched_cpu_dying() will catch it with the appropriate fireworks. 8347 */ 8348 int sched_cpu_wait_empty(unsigned int cpu) 8349 { 8350 balance_hotplug_wait(); 8351 return 0; 8352 } 8353 8354 /* 8355 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8356 * might have. Called from the CPU stopper task after ensuring that the 8357 * stopper is the last running task on the CPU, so nr_active count is 8358 * stable. We need to take the tear-down thread which is calling this into 8359 * account, so we hand in adjust = 1 to the load calculation. 8360 * 8361 * Also see the comment "Global load-average calculations". 8362 */ 8363 static void calc_load_migrate(struct rq *rq) 8364 { 8365 long delta = calc_load_fold_active(rq, 1); 8366 8367 if (delta) 8368 atomic_long_add(delta, &calc_load_tasks); 8369 } 8370 8371 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8372 { 8373 struct task_struct *g, *p; 8374 int cpu = cpu_of(rq); 8375 8376 lockdep_assert_rq_held(rq); 8377 8378 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8379 for_each_process_thread(g, p) { 8380 if (task_cpu(p) != cpu) 8381 continue; 8382 8383 if (!task_on_rq_queued(p)) 8384 continue; 8385 8386 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8387 } 8388 } 8389 8390 int sched_cpu_dying(unsigned int cpu) 8391 { 8392 struct rq *rq = cpu_rq(cpu); 8393 struct rq_flags rf; 8394 8395 /* Handle pending wakeups and then migrate everything off */ 8396 sched_tick_stop(cpu); 8397 8398 rq_lock_irqsave(rq, &rf); 8399 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8400 WARN(true, "Dying CPU not properly vacated!"); 8401 dump_rq_tasks(rq, KERN_WARNING); 8402 } 8403 rq_unlock_irqrestore(rq, &rf); 8404 8405 calc_load_migrate(rq); 8406 update_max_interval(); 8407 hrtick_clear(rq); 8408 sched_core_cpu_dying(cpu); 8409 return 0; 8410 } 8411 #endif 8412 8413 void __init sched_init_smp(void) 8414 { 8415 sched_init_numa(NUMA_NO_NODE); 8416 8417 /* 8418 * There's no userspace yet to cause hotplug operations; hence all the 8419 * CPU masks are stable and all blatant races in the below code cannot 8420 * happen. 8421 */ 8422 mutex_lock(&sched_domains_mutex); 8423 sched_init_domains(cpu_active_mask); 8424 mutex_unlock(&sched_domains_mutex); 8425 8426 /* Move init over to a non-isolated CPU */ 8427 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8428 BUG(); 8429 current->flags &= ~PF_NO_SETAFFINITY; 8430 sched_init_granularity(); 8431 8432 init_sched_rt_class(); 8433 init_sched_dl_class(); 8434 8435 sched_smp_initialized = true; 8436 } 8437 8438 static int __init migration_init(void) 8439 { 8440 sched_cpu_starting(smp_processor_id()); 8441 return 0; 8442 } 8443 early_initcall(migration_init); 8444 8445 #else 8446 void __init sched_init_smp(void) 8447 { 8448 sched_init_granularity(); 8449 } 8450 #endif /* CONFIG_SMP */ 8451 8452 int in_sched_functions(unsigned long addr) 8453 { 8454 return in_lock_functions(addr) || 8455 (addr >= (unsigned long)__sched_text_start 8456 && addr < (unsigned long)__sched_text_end); 8457 } 8458 8459 #ifdef CONFIG_CGROUP_SCHED 8460 /* 8461 * Default task group. 8462 * Every task in system belongs to this group at bootup. 8463 */ 8464 struct task_group root_task_group; 8465 LIST_HEAD(task_groups); 8466 8467 /* Cacheline aligned slab cache for task_group */ 8468 static struct kmem_cache *task_group_cache __ro_after_init; 8469 #endif 8470 8471 void __init sched_init(void) 8472 { 8473 unsigned long ptr = 0; 8474 int i; 8475 8476 /* Make sure the linker didn't screw up */ 8477 #ifdef CONFIG_SMP 8478 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8479 #endif 8480 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8481 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8482 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8483 #ifdef CONFIG_SCHED_CLASS_EXT 8484 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8485 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8486 #endif 8487 8488 wait_bit_init(); 8489 8490 #ifdef CONFIG_FAIR_GROUP_SCHED 8491 ptr += 2 * nr_cpu_ids * sizeof(void **); 8492 #endif 8493 #ifdef CONFIG_RT_GROUP_SCHED 8494 ptr += 2 * nr_cpu_ids * sizeof(void **); 8495 #endif 8496 if (ptr) { 8497 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8498 8499 #ifdef CONFIG_FAIR_GROUP_SCHED 8500 root_task_group.se = (struct sched_entity **)ptr; 8501 ptr += nr_cpu_ids * sizeof(void **); 8502 8503 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8504 ptr += nr_cpu_ids * sizeof(void **); 8505 8506 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8507 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8508 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8509 #ifdef CONFIG_EXT_GROUP_SCHED 8510 root_task_group.scx_weight = CGROUP_WEIGHT_DFL; 8511 #endif /* CONFIG_EXT_GROUP_SCHED */ 8512 #ifdef CONFIG_RT_GROUP_SCHED 8513 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8514 ptr += nr_cpu_ids * sizeof(void **); 8515 8516 root_task_group.rt_rq = (struct rt_rq **)ptr; 8517 ptr += nr_cpu_ids * sizeof(void **); 8518 8519 #endif /* CONFIG_RT_GROUP_SCHED */ 8520 } 8521 8522 #ifdef CONFIG_SMP 8523 init_defrootdomain(); 8524 #endif 8525 8526 #ifdef CONFIG_RT_GROUP_SCHED 8527 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8528 global_rt_period(), global_rt_runtime()); 8529 #endif /* CONFIG_RT_GROUP_SCHED */ 8530 8531 #ifdef CONFIG_CGROUP_SCHED 8532 task_group_cache = KMEM_CACHE(task_group, 0); 8533 8534 list_add(&root_task_group.list, &task_groups); 8535 INIT_LIST_HEAD(&root_task_group.children); 8536 INIT_LIST_HEAD(&root_task_group.siblings); 8537 autogroup_init(&init_task); 8538 #endif /* CONFIG_CGROUP_SCHED */ 8539 8540 for_each_possible_cpu(i) { 8541 struct rq *rq; 8542 8543 rq = cpu_rq(i); 8544 raw_spin_lock_init(&rq->__lock); 8545 rq->nr_running = 0; 8546 rq->calc_load_active = 0; 8547 rq->calc_load_update = jiffies + LOAD_FREQ; 8548 init_cfs_rq(&rq->cfs); 8549 init_rt_rq(&rq->rt); 8550 init_dl_rq(&rq->dl); 8551 #ifdef CONFIG_FAIR_GROUP_SCHED 8552 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8553 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8554 /* 8555 * How much CPU bandwidth does root_task_group get? 8556 * 8557 * In case of task-groups formed through the cgroup filesystem, it 8558 * gets 100% of the CPU resources in the system. This overall 8559 * system CPU resource is divided among the tasks of 8560 * root_task_group and its child task-groups in a fair manner, 8561 * based on each entity's (task or task-group's) weight 8562 * (se->load.weight). 8563 * 8564 * In other words, if root_task_group has 10 tasks of weight 8565 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8566 * then A0's share of the CPU resource is: 8567 * 8568 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8569 * 8570 * We achieve this by letting root_task_group's tasks sit 8571 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8572 */ 8573 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8574 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8575 8576 #ifdef CONFIG_RT_GROUP_SCHED 8577 /* 8578 * This is required for init cpu because rt.c:__enable_runtime() 8579 * starts working after scheduler_running, which is not the case 8580 * yet. 8581 */ 8582 rq->rt.rt_runtime = global_rt_runtime(); 8583 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8584 #endif 8585 #ifdef CONFIG_SMP 8586 rq->sd = NULL; 8587 rq->rd = NULL; 8588 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8589 rq->balance_callback = &balance_push_callback; 8590 rq->active_balance = 0; 8591 rq->next_balance = jiffies; 8592 rq->push_cpu = 0; 8593 rq->cpu = i; 8594 rq->online = 0; 8595 rq->idle_stamp = 0; 8596 rq->avg_idle = 2*sysctl_sched_migration_cost; 8597 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8598 8599 INIT_LIST_HEAD(&rq->cfs_tasks); 8600 8601 rq_attach_root(rq, &def_root_domain); 8602 #ifdef CONFIG_NO_HZ_COMMON 8603 rq->last_blocked_load_update_tick = jiffies; 8604 atomic_set(&rq->nohz_flags, 0); 8605 8606 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8607 #endif 8608 #ifdef CONFIG_HOTPLUG_CPU 8609 rcuwait_init(&rq->hotplug_wait); 8610 #endif 8611 #endif /* CONFIG_SMP */ 8612 hrtick_rq_init(rq); 8613 atomic_set(&rq->nr_iowait, 0); 8614 fair_server_init(rq); 8615 8616 #ifdef CONFIG_SCHED_CORE 8617 rq->core = rq; 8618 rq->core_pick = NULL; 8619 rq->core_dl_server = NULL; 8620 rq->core_enabled = 0; 8621 rq->core_tree = RB_ROOT; 8622 rq->core_forceidle_count = 0; 8623 rq->core_forceidle_occupation = 0; 8624 rq->core_forceidle_start = 0; 8625 8626 rq->core_cookie = 0UL; 8627 #endif 8628 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8629 } 8630 8631 set_load_weight(&init_task, false); 8632 init_task.se.slice = sysctl_sched_base_slice, 8633 8634 /* 8635 * The boot idle thread does lazy MMU switching as well: 8636 */ 8637 mmgrab_lazy_tlb(&init_mm); 8638 enter_lazy_tlb(&init_mm, current); 8639 8640 /* 8641 * The idle task doesn't need the kthread struct to function, but it 8642 * is dressed up as a per-CPU kthread and thus needs to play the part 8643 * if we want to avoid special-casing it in code that deals with per-CPU 8644 * kthreads. 8645 */ 8646 WARN_ON(!set_kthread_struct(current)); 8647 8648 /* 8649 * Make us the idle thread. Technically, schedule() should not be 8650 * called from this thread, however somewhere below it might be, 8651 * but because we are the idle thread, we just pick up running again 8652 * when this runqueue becomes "idle". 8653 */ 8654 __sched_fork(0, current); 8655 init_idle(current, smp_processor_id()); 8656 8657 calc_load_update = jiffies + LOAD_FREQ; 8658 8659 #ifdef CONFIG_SMP 8660 idle_thread_set_boot_cpu(); 8661 balance_push_set(smp_processor_id(), false); 8662 #endif 8663 init_sched_fair_class(); 8664 init_sched_ext_class(); 8665 8666 psi_init(); 8667 8668 init_uclamp(); 8669 8670 preempt_dynamic_init(); 8671 8672 scheduler_running = 1; 8673 } 8674 8675 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8676 8677 void __might_sleep(const char *file, int line) 8678 { 8679 unsigned int state = get_current_state(); 8680 /* 8681 * Blocking primitives will set (and therefore destroy) current->state, 8682 * since we will exit with TASK_RUNNING make sure we enter with it, 8683 * otherwise we will destroy state. 8684 */ 8685 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8686 "do not call blocking ops when !TASK_RUNNING; " 8687 "state=%x set at [<%p>] %pS\n", state, 8688 (void *)current->task_state_change, 8689 (void *)current->task_state_change); 8690 8691 __might_resched(file, line, 0); 8692 } 8693 EXPORT_SYMBOL(__might_sleep); 8694 8695 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8696 { 8697 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8698 return; 8699 8700 if (preempt_count() == preempt_offset) 8701 return; 8702 8703 pr_err("Preemption disabled at:"); 8704 print_ip_sym(KERN_ERR, ip); 8705 } 8706 8707 static inline bool resched_offsets_ok(unsigned int offsets) 8708 { 8709 unsigned int nested = preempt_count(); 8710 8711 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8712 8713 return nested == offsets; 8714 } 8715 8716 void __might_resched(const char *file, int line, unsigned int offsets) 8717 { 8718 /* Ratelimiting timestamp: */ 8719 static unsigned long prev_jiffy; 8720 8721 unsigned long preempt_disable_ip; 8722 8723 /* WARN_ON_ONCE() by default, no rate limit required: */ 8724 rcu_sleep_check(); 8725 8726 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8727 !is_idle_task(current) && !current->non_block_count) || 8728 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8729 oops_in_progress) 8730 return; 8731 8732 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8733 return; 8734 prev_jiffy = jiffies; 8735 8736 /* Save this before calling printk(), since that will clobber it: */ 8737 preempt_disable_ip = get_preempt_disable_ip(current); 8738 8739 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8740 file, line); 8741 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8742 in_atomic(), irqs_disabled(), current->non_block_count, 8743 current->pid, current->comm); 8744 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8745 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8746 8747 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8748 pr_err("RCU nest depth: %d, expected: %u\n", 8749 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8750 } 8751 8752 if (task_stack_end_corrupted(current)) 8753 pr_emerg("Thread overran stack, or stack corrupted\n"); 8754 8755 debug_show_held_locks(current); 8756 if (irqs_disabled()) 8757 print_irqtrace_events(current); 8758 8759 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8760 preempt_disable_ip); 8761 8762 dump_stack(); 8763 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8764 } 8765 EXPORT_SYMBOL(__might_resched); 8766 8767 void __cant_sleep(const char *file, int line, int preempt_offset) 8768 { 8769 static unsigned long prev_jiffy; 8770 8771 if (irqs_disabled()) 8772 return; 8773 8774 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8775 return; 8776 8777 if (preempt_count() > preempt_offset) 8778 return; 8779 8780 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8781 return; 8782 prev_jiffy = jiffies; 8783 8784 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8785 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8786 in_atomic(), irqs_disabled(), 8787 current->pid, current->comm); 8788 8789 debug_show_held_locks(current); 8790 dump_stack(); 8791 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8792 } 8793 EXPORT_SYMBOL_GPL(__cant_sleep); 8794 8795 #ifdef CONFIG_SMP 8796 void __cant_migrate(const char *file, int line) 8797 { 8798 static unsigned long prev_jiffy; 8799 8800 if (irqs_disabled()) 8801 return; 8802 8803 if (is_migration_disabled(current)) 8804 return; 8805 8806 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8807 return; 8808 8809 if (preempt_count() > 0) 8810 return; 8811 8812 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8813 return; 8814 prev_jiffy = jiffies; 8815 8816 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8817 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8818 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8819 current->pid, current->comm); 8820 8821 debug_show_held_locks(current); 8822 dump_stack(); 8823 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8824 } 8825 EXPORT_SYMBOL_GPL(__cant_migrate); 8826 #endif 8827 #endif 8828 8829 #ifdef CONFIG_MAGIC_SYSRQ 8830 void normalize_rt_tasks(void) 8831 { 8832 struct task_struct *g, *p; 8833 struct sched_attr attr = { 8834 .sched_policy = SCHED_NORMAL, 8835 }; 8836 8837 read_lock(&tasklist_lock); 8838 for_each_process_thread(g, p) { 8839 /* 8840 * Only normalize user tasks: 8841 */ 8842 if (p->flags & PF_KTHREAD) 8843 continue; 8844 8845 p->se.exec_start = 0; 8846 schedstat_set(p->stats.wait_start, 0); 8847 schedstat_set(p->stats.sleep_start, 0); 8848 schedstat_set(p->stats.block_start, 0); 8849 8850 if (!rt_or_dl_task(p)) { 8851 /* 8852 * Renice negative nice level userspace 8853 * tasks back to 0: 8854 */ 8855 if (task_nice(p) < 0) 8856 set_user_nice(p, 0); 8857 continue; 8858 } 8859 8860 __sched_setscheduler(p, &attr, false, false); 8861 } 8862 read_unlock(&tasklist_lock); 8863 } 8864 8865 #endif /* CONFIG_MAGIC_SYSRQ */ 8866 8867 #if defined(CONFIG_KGDB_KDB) 8868 /* 8869 * These functions are only useful for KDB. 8870 * 8871 * They can only be called when the whole system has been 8872 * stopped - every CPU needs to be quiescent, and no scheduling 8873 * activity can take place. Using them for anything else would 8874 * be a serious bug, and as a result, they aren't even visible 8875 * under any other configuration. 8876 */ 8877 8878 /** 8879 * curr_task - return the current task for a given CPU. 8880 * @cpu: the processor in question. 8881 * 8882 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8883 * 8884 * Return: The current task for @cpu. 8885 */ 8886 struct task_struct *curr_task(int cpu) 8887 { 8888 return cpu_curr(cpu); 8889 } 8890 8891 #endif /* defined(CONFIG_KGDB_KDB) */ 8892 8893 #ifdef CONFIG_CGROUP_SCHED 8894 /* task_group_lock serializes the addition/removal of task groups */ 8895 static DEFINE_SPINLOCK(task_group_lock); 8896 8897 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8898 struct task_group *parent) 8899 { 8900 #ifdef CONFIG_UCLAMP_TASK_GROUP 8901 enum uclamp_id clamp_id; 8902 8903 for_each_clamp_id(clamp_id) { 8904 uclamp_se_set(&tg->uclamp_req[clamp_id], 8905 uclamp_none(clamp_id), false); 8906 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8907 } 8908 #endif 8909 } 8910 8911 static void sched_free_group(struct task_group *tg) 8912 { 8913 free_fair_sched_group(tg); 8914 free_rt_sched_group(tg); 8915 autogroup_free(tg); 8916 kmem_cache_free(task_group_cache, tg); 8917 } 8918 8919 static void sched_free_group_rcu(struct rcu_head *rcu) 8920 { 8921 sched_free_group(container_of(rcu, struct task_group, rcu)); 8922 } 8923 8924 static void sched_unregister_group(struct task_group *tg) 8925 { 8926 unregister_fair_sched_group(tg); 8927 unregister_rt_sched_group(tg); 8928 /* 8929 * We have to wait for yet another RCU grace period to expire, as 8930 * print_cfs_stats() might run concurrently. 8931 */ 8932 call_rcu(&tg->rcu, sched_free_group_rcu); 8933 } 8934 8935 /* allocate runqueue etc for a new task group */ 8936 struct task_group *sched_create_group(struct task_group *parent) 8937 { 8938 struct task_group *tg; 8939 8940 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8941 if (!tg) 8942 return ERR_PTR(-ENOMEM); 8943 8944 if (!alloc_fair_sched_group(tg, parent)) 8945 goto err; 8946 8947 if (!alloc_rt_sched_group(tg, parent)) 8948 goto err; 8949 8950 scx_group_set_weight(tg, CGROUP_WEIGHT_DFL); 8951 alloc_uclamp_sched_group(tg, parent); 8952 8953 return tg; 8954 8955 err: 8956 sched_free_group(tg); 8957 return ERR_PTR(-ENOMEM); 8958 } 8959 8960 void sched_online_group(struct task_group *tg, struct task_group *parent) 8961 { 8962 unsigned long flags; 8963 8964 spin_lock_irqsave(&task_group_lock, flags); 8965 list_add_rcu(&tg->list, &task_groups); 8966 8967 /* Root should already exist: */ 8968 WARN_ON(!parent); 8969 8970 tg->parent = parent; 8971 INIT_LIST_HEAD(&tg->children); 8972 list_add_rcu(&tg->siblings, &parent->children); 8973 spin_unlock_irqrestore(&task_group_lock, flags); 8974 8975 online_fair_sched_group(tg); 8976 } 8977 8978 /* RCU callback to free various structures associated with a task group */ 8979 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8980 { 8981 /* Now it should be safe to free those cfs_rqs: */ 8982 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8983 } 8984 8985 void sched_destroy_group(struct task_group *tg) 8986 { 8987 /* Wait for possible concurrent references to cfs_rqs complete: */ 8988 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8989 } 8990 8991 void sched_release_group(struct task_group *tg) 8992 { 8993 unsigned long flags; 8994 8995 /* 8996 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 8997 * sched_cfs_period_timer()). 8998 * 8999 * For this to be effective, we have to wait for all pending users of 9000 * this task group to leave their RCU critical section to ensure no new 9001 * user will see our dying task group any more. Specifically ensure 9002 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9003 * 9004 * We therefore defer calling unregister_fair_sched_group() to 9005 * sched_unregister_group() which is guarantied to get called only after the 9006 * current RCU grace period has expired. 9007 */ 9008 spin_lock_irqsave(&task_group_lock, flags); 9009 list_del_rcu(&tg->list); 9010 list_del_rcu(&tg->siblings); 9011 spin_unlock_irqrestore(&task_group_lock, flags); 9012 } 9013 9014 static struct task_group *sched_get_task_group(struct task_struct *tsk) 9015 { 9016 struct task_group *tg; 9017 9018 /* 9019 * All callers are synchronized by task_rq_lock(); we do not use RCU 9020 * which is pointless here. Thus, we pass "true" to task_css_check() 9021 * to prevent lockdep warnings. 9022 */ 9023 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9024 struct task_group, css); 9025 tg = autogroup_task_group(tsk, tg); 9026 9027 return tg; 9028 } 9029 9030 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 9031 { 9032 tsk->sched_task_group = group; 9033 9034 #ifdef CONFIG_FAIR_GROUP_SCHED 9035 if (tsk->sched_class->task_change_group) 9036 tsk->sched_class->task_change_group(tsk); 9037 else 9038 #endif 9039 set_task_rq(tsk, task_cpu(tsk)); 9040 } 9041 9042 /* 9043 * Change task's runqueue when it moves between groups. 9044 * 9045 * The caller of this function should have put the task in its new group by 9046 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9047 * its new group. 9048 */ 9049 void sched_move_task(struct task_struct *tsk) 9050 { 9051 int queued, running, queue_flags = 9052 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9053 struct task_group *group; 9054 struct rq *rq; 9055 9056 CLASS(task_rq_lock, rq_guard)(tsk); 9057 rq = rq_guard.rq; 9058 9059 /* 9060 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 9061 * group changes. 9062 */ 9063 group = sched_get_task_group(tsk); 9064 if (group == tsk->sched_task_group) 9065 return; 9066 9067 update_rq_clock(rq); 9068 9069 running = task_current_donor(rq, tsk); 9070 queued = task_on_rq_queued(tsk); 9071 9072 if (queued) 9073 dequeue_task(rq, tsk, queue_flags); 9074 if (running) 9075 put_prev_task(rq, tsk); 9076 9077 sched_change_group(tsk, group); 9078 scx_move_task(tsk); 9079 9080 if (queued) 9081 enqueue_task(rq, tsk, queue_flags); 9082 if (running) { 9083 set_next_task(rq, tsk); 9084 /* 9085 * After changing group, the running task may have joined a 9086 * throttled one but it's still the running task. Trigger a 9087 * resched to make sure that task can still run. 9088 */ 9089 resched_curr(rq); 9090 } 9091 } 9092 9093 static struct cgroup_subsys_state * 9094 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9095 { 9096 struct task_group *parent = css_tg(parent_css); 9097 struct task_group *tg; 9098 9099 if (!parent) { 9100 /* This is early initialization for the top cgroup */ 9101 return &root_task_group.css; 9102 } 9103 9104 tg = sched_create_group(parent); 9105 if (IS_ERR(tg)) 9106 return ERR_PTR(-ENOMEM); 9107 9108 return &tg->css; 9109 } 9110 9111 /* Expose task group only after completing cgroup initialization */ 9112 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9113 { 9114 struct task_group *tg = css_tg(css); 9115 struct task_group *parent = css_tg(css->parent); 9116 int ret; 9117 9118 ret = scx_tg_online(tg); 9119 if (ret) 9120 return ret; 9121 9122 if (parent) 9123 sched_online_group(tg, parent); 9124 9125 #ifdef CONFIG_UCLAMP_TASK_GROUP 9126 /* Propagate the effective uclamp value for the new group */ 9127 guard(mutex)(&uclamp_mutex); 9128 guard(rcu)(); 9129 cpu_util_update_eff(css); 9130 #endif 9131 9132 return 0; 9133 } 9134 9135 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9136 { 9137 struct task_group *tg = css_tg(css); 9138 9139 scx_tg_offline(tg); 9140 } 9141 9142 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9143 { 9144 struct task_group *tg = css_tg(css); 9145 9146 sched_release_group(tg); 9147 } 9148 9149 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9150 { 9151 struct task_group *tg = css_tg(css); 9152 9153 /* 9154 * Relies on the RCU grace period between css_released() and this. 9155 */ 9156 sched_unregister_group(tg); 9157 } 9158 9159 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9160 { 9161 #ifdef CONFIG_RT_GROUP_SCHED 9162 struct task_struct *task; 9163 struct cgroup_subsys_state *css; 9164 9165 cgroup_taskset_for_each(task, css, tset) { 9166 if (!sched_rt_can_attach(css_tg(css), task)) 9167 return -EINVAL; 9168 } 9169 #endif 9170 return scx_cgroup_can_attach(tset); 9171 } 9172 9173 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9174 { 9175 struct task_struct *task; 9176 struct cgroup_subsys_state *css; 9177 9178 cgroup_taskset_for_each(task, css, tset) 9179 sched_move_task(task); 9180 9181 scx_cgroup_finish_attach(); 9182 } 9183 9184 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9185 { 9186 scx_cgroup_cancel_attach(tset); 9187 } 9188 9189 #ifdef CONFIG_UCLAMP_TASK_GROUP 9190 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9191 { 9192 struct cgroup_subsys_state *top_css = css; 9193 struct uclamp_se *uc_parent = NULL; 9194 struct uclamp_se *uc_se = NULL; 9195 unsigned int eff[UCLAMP_CNT]; 9196 enum uclamp_id clamp_id; 9197 unsigned int clamps; 9198 9199 lockdep_assert_held(&uclamp_mutex); 9200 SCHED_WARN_ON(!rcu_read_lock_held()); 9201 9202 css_for_each_descendant_pre(css, top_css) { 9203 uc_parent = css_tg(css)->parent 9204 ? css_tg(css)->parent->uclamp : NULL; 9205 9206 for_each_clamp_id(clamp_id) { 9207 /* Assume effective clamps matches requested clamps */ 9208 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9209 /* Cap effective clamps with parent's effective clamps */ 9210 if (uc_parent && 9211 eff[clamp_id] > uc_parent[clamp_id].value) { 9212 eff[clamp_id] = uc_parent[clamp_id].value; 9213 } 9214 } 9215 /* Ensure protection is always capped by limit */ 9216 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9217 9218 /* Propagate most restrictive effective clamps */ 9219 clamps = 0x0; 9220 uc_se = css_tg(css)->uclamp; 9221 for_each_clamp_id(clamp_id) { 9222 if (eff[clamp_id] == uc_se[clamp_id].value) 9223 continue; 9224 uc_se[clamp_id].value = eff[clamp_id]; 9225 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9226 clamps |= (0x1 << clamp_id); 9227 } 9228 if (!clamps) { 9229 css = css_rightmost_descendant(css); 9230 continue; 9231 } 9232 9233 /* Immediately update descendants RUNNABLE tasks */ 9234 uclamp_update_active_tasks(css); 9235 } 9236 } 9237 9238 /* 9239 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9240 * C expression. Since there is no way to convert a macro argument (N) into a 9241 * character constant, use two levels of macros. 9242 */ 9243 #define _POW10(exp) ((unsigned int)1e##exp) 9244 #define POW10(exp) _POW10(exp) 9245 9246 struct uclamp_request { 9247 #define UCLAMP_PERCENT_SHIFT 2 9248 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9249 s64 percent; 9250 u64 util; 9251 int ret; 9252 }; 9253 9254 static inline struct uclamp_request 9255 capacity_from_percent(char *buf) 9256 { 9257 struct uclamp_request req = { 9258 .percent = UCLAMP_PERCENT_SCALE, 9259 .util = SCHED_CAPACITY_SCALE, 9260 .ret = 0, 9261 }; 9262 9263 buf = strim(buf); 9264 if (strcmp(buf, "max")) { 9265 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9266 &req.percent); 9267 if (req.ret) 9268 return req; 9269 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9270 req.ret = -ERANGE; 9271 return req; 9272 } 9273 9274 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9275 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9276 } 9277 9278 return req; 9279 } 9280 9281 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9282 size_t nbytes, loff_t off, 9283 enum uclamp_id clamp_id) 9284 { 9285 struct uclamp_request req; 9286 struct task_group *tg; 9287 9288 req = capacity_from_percent(buf); 9289 if (req.ret) 9290 return req.ret; 9291 9292 static_branch_enable(&sched_uclamp_used); 9293 9294 guard(mutex)(&uclamp_mutex); 9295 guard(rcu)(); 9296 9297 tg = css_tg(of_css(of)); 9298 if (tg->uclamp_req[clamp_id].value != req.util) 9299 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9300 9301 /* 9302 * Because of not recoverable conversion rounding we keep track of the 9303 * exact requested value 9304 */ 9305 tg->uclamp_pct[clamp_id] = req.percent; 9306 9307 /* Update effective clamps to track the most restrictive value */ 9308 cpu_util_update_eff(of_css(of)); 9309 9310 return nbytes; 9311 } 9312 9313 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9314 char *buf, size_t nbytes, 9315 loff_t off) 9316 { 9317 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9318 } 9319 9320 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9321 char *buf, size_t nbytes, 9322 loff_t off) 9323 { 9324 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9325 } 9326 9327 static inline void cpu_uclamp_print(struct seq_file *sf, 9328 enum uclamp_id clamp_id) 9329 { 9330 struct task_group *tg; 9331 u64 util_clamp; 9332 u64 percent; 9333 u32 rem; 9334 9335 scoped_guard (rcu) { 9336 tg = css_tg(seq_css(sf)); 9337 util_clamp = tg->uclamp_req[clamp_id].value; 9338 } 9339 9340 if (util_clamp == SCHED_CAPACITY_SCALE) { 9341 seq_puts(sf, "max\n"); 9342 return; 9343 } 9344 9345 percent = tg->uclamp_pct[clamp_id]; 9346 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9347 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9348 } 9349 9350 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9351 { 9352 cpu_uclamp_print(sf, UCLAMP_MIN); 9353 return 0; 9354 } 9355 9356 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9357 { 9358 cpu_uclamp_print(sf, UCLAMP_MAX); 9359 return 0; 9360 } 9361 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9362 9363 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9364 static unsigned long tg_weight(struct task_group *tg) 9365 { 9366 #ifdef CONFIG_FAIR_GROUP_SCHED 9367 return scale_load_down(tg->shares); 9368 #else 9369 return sched_weight_from_cgroup(tg->scx_weight); 9370 #endif 9371 } 9372 9373 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9374 struct cftype *cftype, u64 shareval) 9375 { 9376 int ret; 9377 9378 if (shareval > scale_load_down(ULONG_MAX)) 9379 shareval = MAX_SHARES; 9380 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9381 if (!ret) 9382 scx_group_set_weight(css_tg(css), 9383 sched_weight_to_cgroup(shareval)); 9384 return ret; 9385 } 9386 9387 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9388 struct cftype *cft) 9389 { 9390 return tg_weight(css_tg(css)); 9391 } 9392 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9393 9394 #ifdef CONFIG_CFS_BANDWIDTH 9395 static DEFINE_MUTEX(cfs_constraints_mutex); 9396 9397 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9398 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9399 /* More than 203 days if BW_SHIFT equals 20. */ 9400 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9401 9402 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9403 9404 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9405 u64 burst) 9406 { 9407 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9408 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9409 9410 if (tg == &root_task_group) 9411 return -EINVAL; 9412 9413 /* 9414 * Ensure we have at some amount of bandwidth every period. This is 9415 * to prevent reaching a state of large arrears when throttled via 9416 * entity_tick() resulting in prolonged exit starvation. 9417 */ 9418 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9419 return -EINVAL; 9420 9421 /* 9422 * Likewise, bound things on the other side by preventing insane quota 9423 * periods. This also allows us to normalize in computing quota 9424 * feasibility. 9425 */ 9426 if (period > max_cfs_quota_period) 9427 return -EINVAL; 9428 9429 /* 9430 * Bound quota to defend quota against overflow during bandwidth shift. 9431 */ 9432 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9433 return -EINVAL; 9434 9435 if (quota != RUNTIME_INF && (burst > quota || 9436 burst + quota > max_cfs_runtime)) 9437 return -EINVAL; 9438 9439 /* 9440 * Prevent race between setting of cfs_rq->runtime_enabled and 9441 * unthrottle_offline_cfs_rqs(). 9442 */ 9443 guard(cpus_read_lock)(); 9444 guard(mutex)(&cfs_constraints_mutex); 9445 9446 ret = __cfs_schedulable(tg, period, quota); 9447 if (ret) 9448 return ret; 9449 9450 runtime_enabled = quota != RUNTIME_INF; 9451 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9452 /* 9453 * If we need to toggle cfs_bandwidth_used, off->on must occur 9454 * before making related changes, and on->off must occur afterwards 9455 */ 9456 if (runtime_enabled && !runtime_was_enabled) 9457 cfs_bandwidth_usage_inc(); 9458 9459 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9460 cfs_b->period = ns_to_ktime(period); 9461 cfs_b->quota = quota; 9462 cfs_b->burst = burst; 9463 9464 __refill_cfs_bandwidth_runtime(cfs_b); 9465 9466 /* 9467 * Restart the period timer (if active) to handle new 9468 * period expiry: 9469 */ 9470 if (runtime_enabled) 9471 start_cfs_bandwidth(cfs_b); 9472 } 9473 9474 for_each_online_cpu(i) { 9475 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9476 struct rq *rq = cfs_rq->rq; 9477 9478 guard(rq_lock_irq)(rq); 9479 cfs_rq->runtime_enabled = runtime_enabled; 9480 cfs_rq->runtime_remaining = 0; 9481 9482 if (cfs_rq->throttled) 9483 unthrottle_cfs_rq(cfs_rq); 9484 } 9485 9486 if (runtime_was_enabled && !runtime_enabled) 9487 cfs_bandwidth_usage_dec(); 9488 9489 return 0; 9490 } 9491 9492 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9493 { 9494 u64 quota, period, burst; 9495 9496 period = ktime_to_ns(tg->cfs_bandwidth.period); 9497 burst = tg->cfs_bandwidth.burst; 9498 if (cfs_quota_us < 0) 9499 quota = RUNTIME_INF; 9500 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9501 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9502 else 9503 return -EINVAL; 9504 9505 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9506 } 9507 9508 static long tg_get_cfs_quota(struct task_group *tg) 9509 { 9510 u64 quota_us; 9511 9512 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9513 return -1; 9514 9515 quota_us = tg->cfs_bandwidth.quota; 9516 do_div(quota_us, NSEC_PER_USEC); 9517 9518 return quota_us; 9519 } 9520 9521 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9522 { 9523 u64 quota, period, burst; 9524 9525 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9526 return -EINVAL; 9527 9528 period = (u64)cfs_period_us * NSEC_PER_USEC; 9529 quota = tg->cfs_bandwidth.quota; 9530 burst = tg->cfs_bandwidth.burst; 9531 9532 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9533 } 9534 9535 static long tg_get_cfs_period(struct task_group *tg) 9536 { 9537 u64 cfs_period_us; 9538 9539 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9540 do_div(cfs_period_us, NSEC_PER_USEC); 9541 9542 return cfs_period_us; 9543 } 9544 9545 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9546 { 9547 u64 quota, period, burst; 9548 9549 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9550 return -EINVAL; 9551 9552 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9553 period = ktime_to_ns(tg->cfs_bandwidth.period); 9554 quota = tg->cfs_bandwidth.quota; 9555 9556 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9557 } 9558 9559 static long tg_get_cfs_burst(struct task_group *tg) 9560 { 9561 u64 burst_us; 9562 9563 burst_us = tg->cfs_bandwidth.burst; 9564 do_div(burst_us, NSEC_PER_USEC); 9565 9566 return burst_us; 9567 } 9568 9569 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9570 struct cftype *cft) 9571 { 9572 return tg_get_cfs_quota(css_tg(css)); 9573 } 9574 9575 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9576 struct cftype *cftype, s64 cfs_quota_us) 9577 { 9578 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9579 } 9580 9581 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9582 struct cftype *cft) 9583 { 9584 return tg_get_cfs_period(css_tg(css)); 9585 } 9586 9587 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9588 struct cftype *cftype, u64 cfs_period_us) 9589 { 9590 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9591 } 9592 9593 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9594 struct cftype *cft) 9595 { 9596 return tg_get_cfs_burst(css_tg(css)); 9597 } 9598 9599 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9600 struct cftype *cftype, u64 cfs_burst_us) 9601 { 9602 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9603 } 9604 9605 struct cfs_schedulable_data { 9606 struct task_group *tg; 9607 u64 period, quota; 9608 }; 9609 9610 /* 9611 * normalize group quota/period to be quota/max_period 9612 * note: units are usecs 9613 */ 9614 static u64 normalize_cfs_quota(struct task_group *tg, 9615 struct cfs_schedulable_data *d) 9616 { 9617 u64 quota, period; 9618 9619 if (tg == d->tg) { 9620 period = d->period; 9621 quota = d->quota; 9622 } else { 9623 period = tg_get_cfs_period(tg); 9624 quota = tg_get_cfs_quota(tg); 9625 } 9626 9627 /* note: these should typically be equivalent */ 9628 if (quota == RUNTIME_INF || quota == -1) 9629 return RUNTIME_INF; 9630 9631 return to_ratio(period, quota); 9632 } 9633 9634 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9635 { 9636 struct cfs_schedulable_data *d = data; 9637 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9638 s64 quota = 0, parent_quota = -1; 9639 9640 if (!tg->parent) { 9641 quota = RUNTIME_INF; 9642 } else { 9643 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9644 9645 quota = normalize_cfs_quota(tg, d); 9646 parent_quota = parent_b->hierarchical_quota; 9647 9648 /* 9649 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9650 * always take the non-RUNTIME_INF min. On cgroup1, only 9651 * inherit when no limit is set. In both cases this is used 9652 * by the scheduler to determine if a given CFS task has a 9653 * bandwidth constraint at some higher level. 9654 */ 9655 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9656 if (quota == RUNTIME_INF) 9657 quota = parent_quota; 9658 else if (parent_quota != RUNTIME_INF) 9659 quota = min(quota, parent_quota); 9660 } else { 9661 if (quota == RUNTIME_INF) 9662 quota = parent_quota; 9663 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9664 return -EINVAL; 9665 } 9666 } 9667 cfs_b->hierarchical_quota = quota; 9668 9669 return 0; 9670 } 9671 9672 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9673 { 9674 struct cfs_schedulable_data data = { 9675 .tg = tg, 9676 .period = period, 9677 .quota = quota, 9678 }; 9679 9680 if (quota != RUNTIME_INF) { 9681 do_div(data.period, NSEC_PER_USEC); 9682 do_div(data.quota, NSEC_PER_USEC); 9683 } 9684 9685 guard(rcu)(); 9686 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9687 } 9688 9689 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9690 { 9691 struct task_group *tg = css_tg(seq_css(sf)); 9692 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9693 9694 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9695 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9696 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9697 9698 if (schedstat_enabled() && tg != &root_task_group) { 9699 struct sched_statistics *stats; 9700 u64 ws = 0; 9701 int i; 9702 9703 for_each_possible_cpu(i) { 9704 stats = __schedstats_from_se(tg->se[i]); 9705 ws += schedstat_val(stats->wait_sum); 9706 } 9707 9708 seq_printf(sf, "wait_sum %llu\n", ws); 9709 } 9710 9711 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9712 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9713 9714 return 0; 9715 } 9716 9717 static u64 throttled_time_self(struct task_group *tg) 9718 { 9719 int i; 9720 u64 total = 0; 9721 9722 for_each_possible_cpu(i) { 9723 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9724 } 9725 9726 return total; 9727 } 9728 9729 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9730 { 9731 struct task_group *tg = css_tg(seq_css(sf)); 9732 9733 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9734 9735 return 0; 9736 } 9737 #endif /* CONFIG_CFS_BANDWIDTH */ 9738 9739 #ifdef CONFIG_RT_GROUP_SCHED 9740 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9741 struct cftype *cft, s64 val) 9742 { 9743 return sched_group_set_rt_runtime(css_tg(css), val); 9744 } 9745 9746 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9747 struct cftype *cft) 9748 { 9749 return sched_group_rt_runtime(css_tg(css)); 9750 } 9751 9752 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9753 struct cftype *cftype, u64 rt_period_us) 9754 { 9755 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9756 } 9757 9758 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9759 struct cftype *cft) 9760 { 9761 return sched_group_rt_period(css_tg(css)); 9762 } 9763 #endif /* CONFIG_RT_GROUP_SCHED */ 9764 9765 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9766 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9767 struct cftype *cft) 9768 { 9769 return css_tg(css)->idle; 9770 } 9771 9772 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9773 struct cftype *cft, s64 idle) 9774 { 9775 int ret; 9776 9777 ret = sched_group_set_idle(css_tg(css), idle); 9778 if (!ret) 9779 scx_group_set_idle(css_tg(css), idle); 9780 return ret; 9781 } 9782 #endif 9783 9784 static struct cftype cpu_legacy_files[] = { 9785 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9786 { 9787 .name = "shares", 9788 .read_u64 = cpu_shares_read_u64, 9789 .write_u64 = cpu_shares_write_u64, 9790 }, 9791 { 9792 .name = "idle", 9793 .read_s64 = cpu_idle_read_s64, 9794 .write_s64 = cpu_idle_write_s64, 9795 }, 9796 #endif 9797 #ifdef CONFIG_CFS_BANDWIDTH 9798 { 9799 .name = "cfs_quota_us", 9800 .read_s64 = cpu_cfs_quota_read_s64, 9801 .write_s64 = cpu_cfs_quota_write_s64, 9802 }, 9803 { 9804 .name = "cfs_period_us", 9805 .read_u64 = cpu_cfs_period_read_u64, 9806 .write_u64 = cpu_cfs_period_write_u64, 9807 }, 9808 { 9809 .name = "cfs_burst_us", 9810 .read_u64 = cpu_cfs_burst_read_u64, 9811 .write_u64 = cpu_cfs_burst_write_u64, 9812 }, 9813 { 9814 .name = "stat", 9815 .seq_show = cpu_cfs_stat_show, 9816 }, 9817 { 9818 .name = "stat.local", 9819 .seq_show = cpu_cfs_local_stat_show, 9820 }, 9821 #endif 9822 #ifdef CONFIG_RT_GROUP_SCHED 9823 { 9824 .name = "rt_runtime_us", 9825 .read_s64 = cpu_rt_runtime_read, 9826 .write_s64 = cpu_rt_runtime_write, 9827 }, 9828 { 9829 .name = "rt_period_us", 9830 .read_u64 = cpu_rt_period_read_uint, 9831 .write_u64 = cpu_rt_period_write_uint, 9832 }, 9833 #endif 9834 #ifdef CONFIG_UCLAMP_TASK_GROUP 9835 { 9836 .name = "uclamp.min", 9837 .flags = CFTYPE_NOT_ON_ROOT, 9838 .seq_show = cpu_uclamp_min_show, 9839 .write = cpu_uclamp_min_write, 9840 }, 9841 { 9842 .name = "uclamp.max", 9843 .flags = CFTYPE_NOT_ON_ROOT, 9844 .seq_show = cpu_uclamp_max_show, 9845 .write = cpu_uclamp_max_write, 9846 }, 9847 #endif 9848 { } /* Terminate */ 9849 }; 9850 9851 static int cpu_extra_stat_show(struct seq_file *sf, 9852 struct cgroup_subsys_state *css) 9853 { 9854 #ifdef CONFIG_CFS_BANDWIDTH 9855 { 9856 struct task_group *tg = css_tg(css); 9857 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9858 u64 throttled_usec, burst_usec; 9859 9860 throttled_usec = cfs_b->throttled_time; 9861 do_div(throttled_usec, NSEC_PER_USEC); 9862 burst_usec = cfs_b->burst_time; 9863 do_div(burst_usec, NSEC_PER_USEC); 9864 9865 seq_printf(sf, "nr_periods %d\n" 9866 "nr_throttled %d\n" 9867 "throttled_usec %llu\n" 9868 "nr_bursts %d\n" 9869 "burst_usec %llu\n", 9870 cfs_b->nr_periods, cfs_b->nr_throttled, 9871 throttled_usec, cfs_b->nr_burst, burst_usec); 9872 } 9873 #endif 9874 return 0; 9875 } 9876 9877 static int cpu_local_stat_show(struct seq_file *sf, 9878 struct cgroup_subsys_state *css) 9879 { 9880 #ifdef CONFIG_CFS_BANDWIDTH 9881 { 9882 struct task_group *tg = css_tg(css); 9883 u64 throttled_self_usec; 9884 9885 throttled_self_usec = throttled_time_self(tg); 9886 do_div(throttled_self_usec, NSEC_PER_USEC); 9887 9888 seq_printf(sf, "throttled_usec %llu\n", 9889 throttled_self_usec); 9890 } 9891 #endif 9892 return 0; 9893 } 9894 9895 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9896 9897 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9898 struct cftype *cft) 9899 { 9900 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9901 } 9902 9903 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9904 struct cftype *cft, u64 cgrp_weight) 9905 { 9906 unsigned long weight; 9907 int ret; 9908 9909 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9910 return -ERANGE; 9911 9912 weight = sched_weight_from_cgroup(cgrp_weight); 9913 9914 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9915 if (!ret) 9916 scx_group_set_weight(css_tg(css), cgrp_weight); 9917 return ret; 9918 } 9919 9920 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9921 struct cftype *cft) 9922 { 9923 unsigned long weight = tg_weight(css_tg(css)); 9924 int last_delta = INT_MAX; 9925 int prio, delta; 9926 9927 /* find the closest nice value to the current weight */ 9928 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9929 delta = abs(sched_prio_to_weight[prio] - weight); 9930 if (delta >= last_delta) 9931 break; 9932 last_delta = delta; 9933 } 9934 9935 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9936 } 9937 9938 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9939 struct cftype *cft, s64 nice) 9940 { 9941 unsigned long weight; 9942 int idx, ret; 9943 9944 if (nice < MIN_NICE || nice > MAX_NICE) 9945 return -ERANGE; 9946 9947 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9948 idx = array_index_nospec(idx, 40); 9949 weight = sched_prio_to_weight[idx]; 9950 9951 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9952 if (!ret) 9953 scx_group_set_weight(css_tg(css), 9954 sched_weight_to_cgroup(weight)); 9955 return ret; 9956 } 9957 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9958 9959 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9960 long period, long quota) 9961 { 9962 if (quota < 0) 9963 seq_puts(sf, "max"); 9964 else 9965 seq_printf(sf, "%ld", quota); 9966 9967 seq_printf(sf, " %ld\n", period); 9968 } 9969 9970 /* caller should put the current value in *@periodp before calling */ 9971 static int __maybe_unused cpu_period_quota_parse(char *buf, 9972 u64 *periodp, u64 *quotap) 9973 { 9974 char tok[21]; /* U64_MAX */ 9975 9976 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9977 return -EINVAL; 9978 9979 *periodp *= NSEC_PER_USEC; 9980 9981 if (sscanf(tok, "%llu", quotap)) 9982 *quotap *= NSEC_PER_USEC; 9983 else if (!strcmp(tok, "max")) 9984 *quotap = RUNTIME_INF; 9985 else 9986 return -EINVAL; 9987 9988 return 0; 9989 } 9990 9991 #ifdef CONFIG_CFS_BANDWIDTH 9992 static int cpu_max_show(struct seq_file *sf, void *v) 9993 { 9994 struct task_group *tg = css_tg(seq_css(sf)); 9995 9996 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9997 return 0; 9998 } 9999 10000 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10001 char *buf, size_t nbytes, loff_t off) 10002 { 10003 struct task_group *tg = css_tg(of_css(of)); 10004 u64 period = tg_get_cfs_period(tg); 10005 u64 burst = tg->cfs_bandwidth.burst; 10006 u64 quota; 10007 int ret; 10008 10009 ret = cpu_period_quota_parse(buf, &period, "a); 10010 if (!ret) 10011 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10012 return ret ?: nbytes; 10013 } 10014 #endif 10015 10016 static struct cftype cpu_files[] = { 10017 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10018 { 10019 .name = "weight", 10020 .flags = CFTYPE_NOT_ON_ROOT, 10021 .read_u64 = cpu_weight_read_u64, 10022 .write_u64 = cpu_weight_write_u64, 10023 }, 10024 { 10025 .name = "weight.nice", 10026 .flags = CFTYPE_NOT_ON_ROOT, 10027 .read_s64 = cpu_weight_nice_read_s64, 10028 .write_s64 = cpu_weight_nice_write_s64, 10029 }, 10030 { 10031 .name = "idle", 10032 .flags = CFTYPE_NOT_ON_ROOT, 10033 .read_s64 = cpu_idle_read_s64, 10034 .write_s64 = cpu_idle_write_s64, 10035 }, 10036 #endif 10037 #ifdef CONFIG_CFS_BANDWIDTH 10038 { 10039 .name = "max", 10040 .flags = CFTYPE_NOT_ON_ROOT, 10041 .seq_show = cpu_max_show, 10042 .write = cpu_max_write, 10043 }, 10044 { 10045 .name = "max.burst", 10046 .flags = CFTYPE_NOT_ON_ROOT, 10047 .read_u64 = cpu_cfs_burst_read_u64, 10048 .write_u64 = cpu_cfs_burst_write_u64, 10049 }, 10050 #endif 10051 #ifdef CONFIG_UCLAMP_TASK_GROUP 10052 { 10053 .name = "uclamp.min", 10054 .flags = CFTYPE_NOT_ON_ROOT, 10055 .seq_show = cpu_uclamp_min_show, 10056 .write = cpu_uclamp_min_write, 10057 }, 10058 { 10059 .name = "uclamp.max", 10060 .flags = CFTYPE_NOT_ON_ROOT, 10061 .seq_show = cpu_uclamp_max_show, 10062 .write = cpu_uclamp_max_write, 10063 }, 10064 #endif 10065 { } /* terminate */ 10066 }; 10067 10068 struct cgroup_subsys cpu_cgrp_subsys = { 10069 .css_alloc = cpu_cgroup_css_alloc, 10070 .css_online = cpu_cgroup_css_online, 10071 .css_offline = cpu_cgroup_css_offline, 10072 .css_released = cpu_cgroup_css_released, 10073 .css_free = cpu_cgroup_css_free, 10074 .css_extra_stat_show = cpu_extra_stat_show, 10075 .css_local_stat_show = cpu_local_stat_show, 10076 .can_attach = cpu_cgroup_can_attach, 10077 .attach = cpu_cgroup_attach, 10078 .cancel_attach = cpu_cgroup_cancel_attach, 10079 .legacy_cftypes = cpu_legacy_files, 10080 .dfl_cftypes = cpu_files, 10081 .early_init = true, 10082 .threaded = true, 10083 }; 10084 10085 #endif /* CONFIG_CGROUP_SCHED */ 10086 10087 void dump_cpu_task(int cpu) 10088 { 10089 if (in_hardirq() && cpu == smp_processor_id()) { 10090 struct pt_regs *regs; 10091 10092 regs = get_irq_regs(); 10093 if (regs) { 10094 show_regs(regs); 10095 return; 10096 } 10097 } 10098 10099 if (trigger_single_cpu_backtrace(cpu)) 10100 return; 10101 10102 pr_info("Task dump for CPU %d:\n", cpu); 10103 sched_show_task(cpu_curr(cpu)); 10104 } 10105 10106 /* 10107 * Nice levels are multiplicative, with a gentle 10% change for every 10108 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10109 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10110 * that remained on nice 0. 10111 * 10112 * The "10% effect" is relative and cumulative: from _any_ nice level, 10113 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10114 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10115 * If a task goes up by ~10% and another task goes down by ~10% then 10116 * the relative distance between them is ~25%.) 10117 */ 10118 const int sched_prio_to_weight[40] = { 10119 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10120 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10121 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10122 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10123 /* 0 */ 1024, 820, 655, 526, 423, 10124 /* 5 */ 335, 272, 215, 172, 137, 10125 /* 10 */ 110, 87, 70, 56, 45, 10126 /* 15 */ 36, 29, 23, 18, 15, 10127 }; 10128 10129 /* 10130 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10131 * 10132 * In cases where the weight does not change often, we can use the 10133 * pre-calculated inverse to speed up arithmetics by turning divisions 10134 * into multiplications: 10135 */ 10136 const u32 sched_prio_to_wmult[40] = { 10137 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10138 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10139 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10140 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10141 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10142 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10143 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10144 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10145 }; 10146 10147 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10148 { 10149 trace_sched_update_nr_running_tp(rq, count); 10150 } 10151 10152 #ifdef CONFIG_SCHED_MM_CID 10153 10154 /* 10155 * @cid_lock: Guarantee forward-progress of cid allocation. 10156 * 10157 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10158 * is only used when contention is detected by the lock-free allocation so 10159 * forward progress can be guaranteed. 10160 */ 10161 DEFINE_RAW_SPINLOCK(cid_lock); 10162 10163 /* 10164 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10165 * 10166 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10167 * detected, it is set to 1 to ensure that all newly coming allocations are 10168 * serialized by @cid_lock until the allocation which detected contention 10169 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10170 * of a cid allocation. 10171 */ 10172 int use_cid_lock; 10173 10174 /* 10175 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10176 * concurrently with respect to the execution of the source runqueue context 10177 * switch. 10178 * 10179 * There is one basic properties we want to guarantee here: 10180 * 10181 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10182 * used by a task. That would lead to concurrent allocation of the cid and 10183 * userspace corruption. 10184 * 10185 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10186 * that a pair of loads observe at least one of a pair of stores, which can be 10187 * shown as: 10188 * 10189 * X = Y = 0 10190 * 10191 * w[X]=1 w[Y]=1 10192 * MB MB 10193 * r[Y]=y r[X]=x 10194 * 10195 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10196 * values 0 and 1, this algorithm cares about specific state transitions of the 10197 * runqueue current task (as updated by the scheduler context switch), and the 10198 * per-mm/cpu cid value. 10199 * 10200 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10201 * task->mm != mm for the rest of the discussion. There are two scheduler state 10202 * transitions on context switch we care about: 10203 * 10204 * (TSA) Store to rq->curr with transition from (N) to (Y) 10205 * 10206 * (TSB) Store to rq->curr with transition from (Y) to (N) 10207 * 10208 * On the remote-clear side, there is one transition we care about: 10209 * 10210 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10211 * 10212 * There is also a transition to UNSET state which can be performed from all 10213 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10214 * guarantees that only a single thread will succeed: 10215 * 10216 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10217 * 10218 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10219 * when a thread is actively using the cid (property (1)). 10220 * 10221 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10222 * 10223 * Scenario A) (TSA)+(TMA) (from next task perspective) 10224 * 10225 * CPU0 CPU1 10226 * 10227 * Context switch CS-1 Remote-clear 10228 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10229 * (implied barrier after cmpxchg) 10230 * - switch_mm_cid() 10231 * - memory barrier (see switch_mm_cid() 10232 * comment explaining how this barrier 10233 * is combined with other scheduler 10234 * barriers) 10235 * - mm_cid_get (next) 10236 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10237 * 10238 * This Dekker ensures that either task (Y) is observed by the 10239 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10240 * observed. 10241 * 10242 * If task (Y) store is observed by rcu_dereference(), it means that there is 10243 * still an active task on the cpu. Remote-clear will therefore not transition 10244 * to UNSET, which fulfills property (1). 10245 * 10246 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10247 * it will move its state to UNSET, which clears the percpu cid perhaps 10248 * uselessly (which is not an issue for correctness). Because task (Y) is not 10249 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10250 * state to UNSET is done with a cmpxchg expecting that the old state has the 10251 * LAZY flag set, only one thread will successfully UNSET. 10252 * 10253 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10254 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10255 * CPU1 will observe task (Y) and do nothing more, which is fine. 10256 * 10257 * What we are effectively preventing with this Dekker is a scenario where 10258 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10259 * because this would UNSET a cid which is actively used. 10260 */ 10261 10262 void sched_mm_cid_migrate_from(struct task_struct *t) 10263 { 10264 t->migrate_from_cpu = task_cpu(t); 10265 } 10266 10267 static 10268 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10269 struct task_struct *t, 10270 struct mm_cid *src_pcpu_cid) 10271 { 10272 struct mm_struct *mm = t->mm; 10273 struct task_struct *src_task; 10274 int src_cid, last_mm_cid; 10275 10276 if (!mm) 10277 return -1; 10278 10279 last_mm_cid = t->last_mm_cid; 10280 /* 10281 * If the migrated task has no last cid, or if the current 10282 * task on src rq uses the cid, it means the source cid does not need 10283 * to be moved to the destination cpu. 10284 */ 10285 if (last_mm_cid == -1) 10286 return -1; 10287 src_cid = READ_ONCE(src_pcpu_cid->cid); 10288 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10289 return -1; 10290 10291 /* 10292 * If we observe an active task using the mm on this rq, it means we 10293 * are not the last task to be migrated from this cpu for this mm, so 10294 * there is no need to move src_cid to the destination cpu. 10295 */ 10296 guard(rcu)(); 10297 src_task = rcu_dereference(src_rq->curr); 10298 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10299 t->last_mm_cid = -1; 10300 return -1; 10301 } 10302 10303 return src_cid; 10304 } 10305 10306 static 10307 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10308 struct task_struct *t, 10309 struct mm_cid *src_pcpu_cid, 10310 int src_cid) 10311 { 10312 struct task_struct *src_task; 10313 struct mm_struct *mm = t->mm; 10314 int lazy_cid; 10315 10316 if (src_cid == -1) 10317 return -1; 10318 10319 /* 10320 * Attempt to clear the source cpu cid to move it to the destination 10321 * cpu. 10322 */ 10323 lazy_cid = mm_cid_set_lazy_put(src_cid); 10324 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10325 return -1; 10326 10327 /* 10328 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10329 * rq->curr->mm matches the scheduler barrier in context_switch() 10330 * between store to rq->curr and load of prev and next task's 10331 * per-mm/cpu cid. 10332 * 10333 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10334 * rq->curr->mm_cid_active matches the barrier in 10335 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10336 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10337 * load of per-mm/cpu cid. 10338 */ 10339 10340 /* 10341 * If we observe an active task using the mm on this rq after setting 10342 * the lazy-put flag, this task will be responsible for transitioning 10343 * from lazy-put flag set to MM_CID_UNSET. 10344 */ 10345 scoped_guard (rcu) { 10346 src_task = rcu_dereference(src_rq->curr); 10347 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10348 /* 10349 * We observed an active task for this mm, there is therefore 10350 * no point in moving this cid to the destination cpu. 10351 */ 10352 t->last_mm_cid = -1; 10353 return -1; 10354 } 10355 } 10356 10357 /* 10358 * The src_cid is unused, so it can be unset. 10359 */ 10360 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10361 return -1; 10362 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); 10363 return src_cid; 10364 } 10365 10366 /* 10367 * Migration to dst cpu. Called with dst_rq lock held. 10368 * Interrupts are disabled, which keeps the window of cid ownership without the 10369 * source rq lock held small. 10370 */ 10371 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10372 { 10373 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10374 struct mm_struct *mm = t->mm; 10375 int src_cid, src_cpu; 10376 bool dst_cid_is_set; 10377 struct rq *src_rq; 10378 10379 lockdep_assert_rq_held(dst_rq); 10380 10381 if (!mm) 10382 return; 10383 src_cpu = t->migrate_from_cpu; 10384 if (src_cpu == -1) { 10385 t->last_mm_cid = -1; 10386 return; 10387 } 10388 /* 10389 * Move the src cid if the dst cid is unset. This keeps id 10390 * allocation closest to 0 in cases where few threads migrate around 10391 * many CPUs. 10392 * 10393 * If destination cid or recent cid is already set, we may have 10394 * to just clear the src cid to ensure compactness in frequent 10395 * migrations scenarios. 10396 * 10397 * It is not useful to clear the src cid when the number of threads is 10398 * greater or equal to the number of allowed CPUs, because user-space 10399 * can expect that the number of allowed cids can reach the number of 10400 * allowed CPUs. 10401 */ 10402 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10403 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || 10404 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); 10405 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) 10406 return; 10407 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10408 src_rq = cpu_rq(src_cpu); 10409 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10410 if (src_cid == -1) 10411 return; 10412 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10413 src_cid); 10414 if (src_cid == -1) 10415 return; 10416 if (dst_cid_is_set) { 10417 __mm_cid_put(mm, src_cid); 10418 return; 10419 } 10420 /* Move src_cid to dst cpu. */ 10421 mm_cid_snapshot_time(dst_rq, mm); 10422 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10423 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); 10424 } 10425 10426 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10427 int cpu) 10428 { 10429 struct rq *rq = cpu_rq(cpu); 10430 struct task_struct *t; 10431 int cid, lazy_cid; 10432 10433 cid = READ_ONCE(pcpu_cid->cid); 10434 if (!mm_cid_is_valid(cid)) 10435 return; 10436 10437 /* 10438 * Clear the cpu cid if it is set to keep cid allocation compact. If 10439 * there happens to be other tasks left on the source cpu using this 10440 * mm, the next task using this mm will reallocate its cid on context 10441 * switch. 10442 */ 10443 lazy_cid = mm_cid_set_lazy_put(cid); 10444 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10445 return; 10446 10447 /* 10448 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10449 * rq->curr->mm matches the scheduler barrier in context_switch() 10450 * between store to rq->curr and load of prev and next task's 10451 * per-mm/cpu cid. 10452 * 10453 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10454 * rq->curr->mm_cid_active matches the barrier in 10455 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10456 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10457 * load of per-mm/cpu cid. 10458 */ 10459 10460 /* 10461 * If we observe an active task using the mm on this rq after setting 10462 * the lazy-put flag, that task will be responsible for transitioning 10463 * from lazy-put flag set to MM_CID_UNSET. 10464 */ 10465 scoped_guard (rcu) { 10466 t = rcu_dereference(rq->curr); 10467 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10468 return; 10469 } 10470 10471 /* 10472 * The cid is unused, so it can be unset. 10473 * Disable interrupts to keep the window of cid ownership without rq 10474 * lock small. 10475 */ 10476 scoped_guard (irqsave) { 10477 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10478 __mm_cid_put(mm, cid); 10479 } 10480 } 10481 10482 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10483 { 10484 struct rq *rq = cpu_rq(cpu); 10485 struct mm_cid *pcpu_cid; 10486 struct task_struct *curr; 10487 u64 rq_clock; 10488 10489 /* 10490 * rq->clock load is racy on 32-bit but one spurious clear once in a 10491 * while is irrelevant. 10492 */ 10493 rq_clock = READ_ONCE(rq->clock); 10494 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10495 10496 /* 10497 * In order to take care of infrequently scheduled tasks, bump the time 10498 * snapshot associated with this cid if an active task using the mm is 10499 * observed on this rq. 10500 */ 10501 scoped_guard (rcu) { 10502 curr = rcu_dereference(rq->curr); 10503 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10504 WRITE_ONCE(pcpu_cid->time, rq_clock); 10505 return; 10506 } 10507 } 10508 10509 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10510 return; 10511 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10512 } 10513 10514 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10515 int weight) 10516 { 10517 struct mm_cid *pcpu_cid; 10518 int cid; 10519 10520 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10521 cid = READ_ONCE(pcpu_cid->cid); 10522 if (!mm_cid_is_valid(cid) || cid < weight) 10523 return; 10524 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10525 } 10526 10527 static void task_mm_cid_work(struct callback_head *work) 10528 { 10529 unsigned long now = jiffies, old_scan, next_scan; 10530 struct task_struct *t = current; 10531 struct cpumask *cidmask; 10532 struct mm_struct *mm; 10533 int weight, cpu; 10534 10535 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 10536 10537 work->next = work; /* Prevent double-add */ 10538 if (t->flags & PF_EXITING) 10539 return; 10540 mm = t->mm; 10541 if (!mm) 10542 return; 10543 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10544 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10545 if (!old_scan) { 10546 unsigned long res; 10547 10548 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10549 if (res != old_scan) 10550 old_scan = res; 10551 else 10552 old_scan = next_scan; 10553 } 10554 if (time_before(now, old_scan)) 10555 return; 10556 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10557 return; 10558 cidmask = mm_cidmask(mm); 10559 /* Clear cids that were not recently used. */ 10560 for_each_possible_cpu(cpu) 10561 sched_mm_cid_remote_clear_old(mm, cpu); 10562 weight = cpumask_weight(cidmask); 10563 /* 10564 * Clear cids that are greater or equal to the cidmask weight to 10565 * recompact it. 10566 */ 10567 for_each_possible_cpu(cpu) 10568 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10569 } 10570 10571 void init_sched_mm_cid(struct task_struct *t) 10572 { 10573 struct mm_struct *mm = t->mm; 10574 int mm_users = 0; 10575 10576 if (mm) { 10577 mm_users = atomic_read(&mm->mm_users); 10578 if (mm_users == 1) 10579 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10580 } 10581 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10582 init_task_work(&t->cid_work, task_mm_cid_work); 10583 } 10584 10585 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10586 { 10587 struct callback_head *work = &curr->cid_work; 10588 unsigned long now = jiffies; 10589 10590 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10591 work->next != work) 10592 return; 10593 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10594 return; 10595 10596 /* No page allocation under rq lock */ 10597 task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC); 10598 } 10599 10600 void sched_mm_cid_exit_signals(struct task_struct *t) 10601 { 10602 struct mm_struct *mm = t->mm; 10603 struct rq *rq; 10604 10605 if (!mm) 10606 return; 10607 10608 preempt_disable(); 10609 rq = this_rq(); 10610 guard(rq_lock_irqsave)(rq); 10611 preempt_enable_no_resched(); /* holding spinlock */ 10612 WRITE_ONCE(t->mm_cid_active, 0); 10613 /* 10614 * Store t->mm_cid_active before loading per-mm/cpu cid. 10615 * Matches barrier in sched_mm_cid_remote_clear_old(). 10616 */ 10617 smp_mb(); 10618 mm_cid_put(mm); 10619 t->last_mm_cid = t->mm_cid = -1; 10620 } 10621 10622 void sched_mm_cid_before_execve(struct task_struct *t) 10623 { 10624 struct mm_struct *mm = t->mm; 10625 struct rq *rq; 10626 10627 if (!mm) 10628 return; 10629 10630 preempt_disable(); 10631 rq = this_rq(); 10632 guard(rq_lock_irqsave)(rq); 10633 preempt_enable_no_resched(); /* holding spinlock */ 10634 WRITE_ONCE(t->mm_cid_active, 0); 10635 /* 10636 * Store t->mm_cid_active before loading per-mm/cpu cid. 10637 * Matches barrier in sched_mm_cid_remote_clear_old(). 10638 */ 10639 smp_mb(); 10640 mm_cid_put(mm); 10641 t->last_mm_cid = t->mm_cid = -1; 10642 } 10643 10644 void sched_mm_cid_after_execve(struct task_struct *t) 10645 { 10646 struct mm_struct *mm = t->mm; 10647 struct rq *rq; 10648 10649 if (!mm) 10650 return; 10651 10652 preempt_disable(); 10653 rq = this_rq(); 10654 scoped_guard (rq_lock_irqsave, rq) { 10655 preempt_enable_no_resched(); /* holding spinlock */ 10656 WRITE_ONCE(t->mm_cid_active, 1); 10657 /* 10658 * Store t->mm_cid_active before loading per-mm/cpu cid. 10659 * Matches barrier in sched_mm_cid_remote_clear_old(). 10660 */ 10661 smp_mb(); 10662 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); 10663 } 10664 rseq_set_notify_resume(t); 10665 } 10666 10667 void sched_mm_cid_fork(struct task_struct *t) 10668 { 10669 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10670 t->mm_cid_active = 1; 10671 } 10672 #endif 10673 10674 #ifdef CONFIG_SCHED_CLASS_EXT 10675 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10676 struct sched_enq_and_set_ctx *ctx) 10677 { 10678 struct rq *rq = task_rq(p); 10679 10680 lockdep_assert_rq_held(rq); 10681 10682 *ctx = (struct sched_enq_and_set_ctx){ 10683 .p = p, 10684 .queue_flags = queue_flags, 10685 .queued = task_on_rq_queued(p), 10686 .running = task_current(rq, p), 10687 }; 10688 10689 update_rq_clock(rq); 10690 if (ctx->queued) 10691 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10692 if (ctx->running) 10693 put_prev_task(rq, p); 10694 } 10695 10696 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10697 { 10698 struct rq *rq = task_rq(ctx->p); 10699 10700 lockdep_assert_rq_held(rq); 10701 10702 if (ctx->queued) 10703 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10704 if (ctx->running) 10705 set_next_task(rq, ctx->p); 10706 } 10707 #endif /* CONFIG_SCHED_CLASS_EXT */ 10708