xref: /linux/kernel/sched/core.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17 
18 #include "../workqueue_internal.h"
19 #include "../smpboot.h"
20 
21 #include "pelt.h"
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/sched.h>
25 
26 /*
27  * Export tracepoints that act as a bare tracehook (ie: have no trace event
28  * associated with them) to allow external modules to probe them.
29  */
30 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36 
37 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
38 
39 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
40 /*
41  * Debugging: various feature bits
42  *
43  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44  * sysctl_sched_features, defined in sched.h, to allow constants propagation
45  * at compile time and compiler optimization based on features default.
46  */
47 #define SCHED_FEAT(name, enabled)	\
48 	(1UL << __SCHED_FEAT_##name) * enabled |
49 const_debug unsigned int sysctl_sched_features =
50 #include "features.h"
51 	0;
52 #undef SCHED_FEAT
53 #endif
54 
55 /*
56  * Number of tasks to iterate in a single balance run.
57  * Limited because this is done with IRQs disabled.
58  */
59 const_debug unsigned int sysctl_sched_nr_migrate = 32;
60 
61 /*
62  * period over which we measure -rt task CPU usage in us.
63  * default: 1s
64  */
65 unsigned int sysctl_sched_rt_period = 1000000;
66 
67 __read_mostly int scheduler_running;
68 
69 /*
70  * part of the period that we allow rt tasks to run in us.
71  * default: 0.95s
72  */
73 int sysctl_sched_rt_runtime = 950000;
74 
75 /*
76  * __task_rq_lock - lock the rq @p resides on.
77  */
78 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
79 	__acquires(rq->lock)
80 {
81 	struct rq *rq;
82 
83 	lockdep_assert_held(&p->pi_lock);
84 
85 	for (;;) {
86 		rq = task_rq(p);
87 		raw_spin_lock(&rq->lock);
88 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
89 			rq_pin_lock(rq, rf);
90 			return rq;
91 		}
92 		raw_spin_unlock(&rq->lock);
93 
94 		while (unlikely(task_on_rq_migrating(p)))
95 			cpu_relax();
96 	}
97 }
98 
99 /*
100  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101  */
102 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
103 	__acquires(p->pi_lock)
104 	__acquires(rq->lock)
105 {
106 	struct rq *rq;
107 
108 	for (;;) {
109 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
110 		rq = task_rq(p);
111 		raw_spin_lock(&rq->lock);
112 		/*
113 		 *	move_queued_task()		task_rq_lock()
114 		 *
115 		 *	ACQUIRE (rq->lock)
116 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
117 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
118 		 *	[S] ->cpu = new_cpu		[L] task_rq()
119 		 *					[L] ->on_rq
120 		 *	RELEASE (rq->lock)
121 		 *
122 		 * If we observe the old CPU in task_rq_lock(), the acquire of
123 		 * the old rq->lock will fully serialize against the stores.
124 		 *
125 		 * If we observe the new CPU in task_rq_lock(), the address
126 		 * dependency headed by '[L] rq = task_rq()' and the acquire
127 		 * will pair with the WMB to ensure we then also see migrating.
128 		 */
129 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
130 			rq_pin_lock(rq, rf);
131 			return rq;
132 		}
133 		raw_spin_unlock(&rq->lock);
134 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
135 
136 		while (unlikely(task_on_rq_migrating(p)))
137 			cpu_relax();
138 	}
139 }
140 
141 /*
142  * RQ-clock updating methods:
143  */
144 
145 static void update_rq_clock_task(struct rq *rq, s64 delta)
146 {
147 /*
148  * In theory, the compile should just see 0 here, and optimize out the call
149  * to sched_rt_avg_update. But I don't trust it...
150  */
151 	s64 __maybe_unused steal = 0, irq_delta = 0;
152 
153 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155 
156 	/*
157 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 	 * this case when a previous update_rq_clock() happened inside a
159 	 * {soft,}irq region.
160 	 *
161 	 * When this happens, we stop ->clock_task and only update the
162 	 * prev_irq_time stamp to account for the part that fit, so that a next
163 	 * update will consume the rest. This ensures ->clock_task is
164 	 * monotonic.
165 	 *
166 	 * It does however cause some slight miss-attribution of {soft,}irq
167 	 * time, a more accurate solution would be to update the irq_time using
168 	 * the current rq->clock timestamp, except that would require using
169 	 * atomic ops.
170 	 */
171 	if (irq_delta > delta)
172 		irq_delta = delta;
173 
174 	rq->prev_irq_time += irq_delta;
175 	delta -= irq_delta;
176 #endif
177 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 	if (static_key_false((&paravirt_steal_rq_enabled))) {
179 		steal = paravirt_steal_clock(cpu_of(rq));
180 		steal -= rq->prev_steal_time_rq;
181 
182 		if (unlikely(steal > delta))
183 			steal = delta;
184 
185 		rq->prev_steal_time_rq += steal;
186 		delta -= steal;
187 	}
188 #endif
189 
190 	rq->clock_task += delta;
191 
192 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
193 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
194 		update_irq_load_avg(rq, irq_delta + steal);
195 #endif
196 	update_rq_clock_pelt(rq, delta);
197 }
198 
199 void update_rq_clock(struct rq *rq)
200 {
201 	s64 delta;
202 
203 	lockdep_assert_held(&rq->lock);
204 
205 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 		return;
207 
208 #ifdef CONFIG_SCHED_DEBUG
209 	if (sched_feat(WARN_DOUBLE_CLOCK))
210 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
211 	rq->clock_update_flags |= RQCF_UPDATED;
212 #endif
213 
214 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 	if (delta < 0)
216 		return;
217 	rq->clock += delta;
218 	update_rq_clock_task(rq, delta);
219 }
220 
221 
222 #ifdef CONFIG_SCHED_HRTICK
223 /*
224  * Use HR-timers to deliver accurate preemption points.
225  */
226 
227 static void hrtick_clear(struct rq *rq)
228 {
229 	if (hrtimer_active(&rq->hrtick_timer))
230 		hrtimer_cancel(&rq->hrtick_timer);
231 }
232 
233 /*
234  * High-resolution timer tick.
235  * Runs from hardirq context with interrupts disabled.
236  */
237 static enum hrtimer_restart hrtick(struct hrtimer *timer)
238 {
239 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
240 	struct rq_flags rf;
241 
242 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243 
244 	rq_lock(rq, &rf);
245 	update_rq_clock(rq);
246 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
247 	rq_unlock(rq, &rf);
248 
249 	return HRTIMER_NORESTART;
250 }
251 
252 #ifdef CONFIG_SMP
253 
254 static void __hrtick_restart(struct rq *rq)
255 {
256 	struct hrtimer *timer = &rq->hrtick_timer;
257 
258 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
259 }
260 
261 /*
262  * called from hardirq (IPI) context
263  */
264 static void __hrtick_start(void *arg)
265 {
266 	struct rq *rq = arg;
267 	struct rq_flags rf;
268 
269 	rq_lock(rq, &rf);
270 	__hrtick_restart(rq);
271 	rq->hrtick_csd_pending = 0;
272 	rq_unlock(rq, &rf);
273 }
274 
275 /*
276  * Called to set the hrtick timer state.
277  *
278  * called with rq->lock held and irqs disabled
279  */
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 	struct hrtimer *timer = &rq->hrtick_timer;
283 	ktime_t time;
284 	s64 delta;
285 
286 	/*
287 	 * Don't schedule slices shorter than 10000ns, that just
288 	 * doesn't make sense and can cause timer DoS.
289 	 */
290 	delta = max_t(s64, delay, 10000LL);
291 	time = ktime_add_ns(timer->base->get_time(), delta);
292 
293 	hrtimer_set_expires(timer, time);
294 
295 	if (rq == this_rq()) {
296 		__hrtick_restart(rq);
297 	} else if (!rq->hrtick_csd_pending) {
298 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 		rq->hrtick_csd_pending = 1;
300 	}
301 }
302 
303 #else
304 /*
305  * Called to set the hrtick timer state.
306  *
307  * called with rq->lock held and irqs disabled
308  */
309 void hrtick_start(struct rq *rq, u64 delay)
310 {
311 	/*
312 	 * Don't schedule slices shorter than 10000ns, that just
313 	 * doesn't make sense. Rely on vruntime for fairness.
314 	 */
315 	delay = max_t(u64, delay, 10000LL);
316 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 		      HRTIMER_MODE_REL_PINNED);
318 }
319 #endif /* CONFIG_SMP */
320 
321 static void hrtick_rq_init(struct rq *rq)
322 {
323 #ifdef CONFIG_SMP
324 	rq->hrtick_csd_pending = 0;
325 
326 	rq->hrtick_csd.flags = 0;
327 	rq->hrtick_csd.func = __hrtick_start;
328 	rq->hrtick_csd.info = rq;
329 #endif
330 
331 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
332 	rq->hrtick_timer.function = hrtick;
333 }
334 #else	/* CONFIG_SCHED_HRTICK */
335 static inline void hrtick_clear(struct rq *rq)
336 {
337 }
338 
339 static inline void hrtick_rq_init(struct rq *rq)
340 {
341 }
342 #endif	/* CONFIG_SCHED_HRTICK */
343 
344 /*
345  * cmpxchg based fetch_or, macro so it works for different integer types
346  */
347 #define fetch_or(ptr, mask)						\
348 	({								\
349 		typeof(ptr) _ptr = (ptr);				\
350 		typeof(mask) _mask = (mask);				\
351 		typeof(*_ptr) _old, _val = *_ptr;			\
352 									\
353 		for (;;) {						\
354 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
355 			if (_old == _val)				\
356 				break;					\
357 			_val = _old;					\
358 		}							\
359 	_old;								\
360 })
361 
362 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
363 /*
364  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365  * this avoids any races wrt polling state changes and thereby avoids
366  * spurious IPIs.
367  */
368 static bool set_nr_and_not_polling(struct task_struct *p)
369 {
370 	struct thread_info *ti = task_thread_info(p);
371 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372 }
373 
374 /*
375  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376  *
377  * If this returns true, then the idle task promises to call
378  * sched_ttwu_pending() and reschedule soon.
379  */
380 static bool set_nr_if_polling(struct task_struct *p)
381 {
382 	struct thread_info *ti = task_thread_info(p);
383 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
384 
385 	for (;;) {
386 		if (!(val & _TIF_POLLING_NRFLAG))
387 			return false;
388 		if (val & _TIF_NEED_RESCHED)
389 			return true;
390 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 		if (old == val)
392 			break;
393 		val = old;
394 	}
395 	return true;
396 }
397 
398 #else
399 static bool set_nr_and_not_polling(struct task_struct *p)
400 {
401 	set_tsk_need_resched(p);
402 	return true;
403 }
404 
405 #ifdef CONFIG_SMP
406 static bool set_nr_if_polling(struct task_struct *p)
407 {
408 	return false;
409 }
410 #endif
411 #endif
412 
413 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
414 {
415 	struct wake_q_node *node = &task->wake_q;
416 
417 	/*
418 	 * Atomically grab the task, if ->wake_q is !nil already it means
419 	 * its already queued (either by us or someone else) and will get the
420 	 * wakeup due to that.
421 	 *
422 	 * In order to ensure that a pending wakeup will observe our pending
423 	 * state, even in the failed case, an explicit smp_mb() must be used.
424 	 */
425 	smp_mb__before_atomic();
426 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
427 		return false;
428 
429 	/*
430 	 * The head is context local, there can be no concurrency.
431 	 */
432 	*head->lastp = node;
433 	head->lastp = &node->next;
434 	return true;
435 }
436 
437 /**
438  * wake_q_add() - queue a wakeup for 'later' waking.
439  * @head: the wake_q_head to add @task to
440  * @task: the task to queue for 'later' wakeup
441  *
442  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444  * instantly.
445  *
446  * This function must be used as-if it were wake_up_process(); IOW the task
447  * must be ready to be woken at this location.
448  */
449 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450 {
451 	if (__wake_q_add(head, task))
452 		get_task_struct(task);
453 }
454 
455 /**
456  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457  * @head: the wake_q_head to add @task to
458  * @task: the task to queue for 'later' wakeup
459  *
460  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462  * instantly.
463  *
464  * This function must be used as-if it were wake_up_process(); IOW the task
465  * must be ready to be woken at this location.
466  *
467  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468  * that already hold reference to @task can call the 'safe' version and trust
469  * wake_q to do the right thing depending whether or not the @task is already
470  * queued for wakeup.
471  */
472 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473 {
474 	if (!__wake_q_add(head, task))
475 		put_task_struct(task);
476 }
477 
478 void wake_up_q(struct wake_q_head *head)
479 {
480 	struct wake_q_node *node = head->first;
481 
482 	while (node != WAKE_Q_TAIL) {
483 		struct task_struct *task;
484 
485 		task = container_of(node, struct task_struct, wake_q);
486 		BUG_ON(!task);
487 		/* Task can safely be re-inserted now: */
488 		node = node->next;
489 		task->wake_q.next = NULL;
490 
491 		/*
492 		 * wake_up_process() executes a full barrier, which pairs with
493 		 * the queueing in wake_q_add() so as not to miss wakeups.
494 		 */
495 		wake_up_process(task);
496 		put_task_struct(task);
497 	}
498 }
499 
500 /*
501  * resched_curr - mark rq's current task 'to be rescheduled now'.
502  *
503  * On UP this means the setting of the need_resched flag, on SMP it
504  * might also involve a cross-CPU call to trigger the scheduler on
505  * the target CPU.
506  */
507 void resched_curr(struct rq *rq)
508 {
509 	struct task_struct *curr = rq->curr;
510 	int cpu;
511 
512 	lockdep_assert_held(&rq->lock);
513 
514 	if (test_tsk_need_resched(curr))
515 		return;
516 
517 	cpu = cpu_of(rq);
518 
519 	if (cpu == smp_processor_id()) {
520 		set_tsk_need_resched(curr);
521 		set_preempt_need_resched();
522 		return;
523 	}
524 
525 	if (set_nr_and_not_polling(curr))
526 		smp_send_reschedule(cpu);
527 	else
528 		trace_sched_wake_idle_without_ipi(cpu);
529 }
530 
531 void resched_cpu(int cpu)
532 {
533 	struct rq *rq = cpu_rq(cpu);
534 	unsigned long flags;
535 
536 	raw_spin_lock_irqsave(&rq->lock, flags);
537 	if (cpu_online(cpu) || cpu == smp_processor_id())
538 		resched_curr(rq);
539 	raw_spin_unlock_irqrestore(&rq->lock, flags);
540 }
541 
542 #ifdef CONFIG_SMP
543 #ifdef CONFIG_NO_HZ_COMMON
544 /*
545  * In the semi idle case, use the nearest busy CPU for migrating timers
546  * from an idle CPU.  This is good for power-savings.
547  *
548  * We don't do similar optimization for completely idle system, as
549  * selecting an idle CPU will add more delays to the timers than intended
550  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
551  */
552 int get_nohz_timer_target(void)
553 {
554 	int i, cpu = smp_processor_id();
555 	struct sched_domain *sd;
556 
557 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
558 		return cpu;
559 
560 	rcu_read_lock();
561 	for_each_domain(cpu, sd) {
562 		for_each_cpu(i, sched_domain_span(sd)) {
563 			if (cpu == i)
564 				continue;
565 
566 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
567 				cpu = i;
568 				goto unlock;
569 			}
570 		}
571 	}
572 
573 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 unlock:
576 	rcu_read_unlock();
577 	return cpu;
578 }
579 
580 /*
581  * When add_timer_on() enqueues a timer into the timer wheel of an
582  * idle CPU then this timer might expire before the next timer event
583  * which is scheduled to wake up that CPU. In case of a completely
584  * idle system the next event might even be infinite time into the
585  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586  * leaves the inner idle loop so the newly added timer is taken into
587  * account when the CPU goes back to idle and evaluates the timer
588  * wheel for the next timer event.
589  */
590 static void wake_up_idle_cpu(int cpu)
591 {
592 	struct rq *rq = cpu_rq(cpu);
593 
594 	if (cpu == smp_processor_id())
595 		return;
596 
597 	if (set_nr_and_not_polling(rq->idle))
598 		smp_send_reschedule(cpu);
599 	else
600 		trace_sched_wake_idle_without_ipi(cpu);
601 }
602 
603 static bool wake_up_full_nohz_cpu(int cpu)
604 {
605 	/*
606 	 * We just need the target to call irq_exit() and re-evaluate
607 	 * the next tick. The nohz full kick at least implies that.
608 	 * If needed we can still optimize that later with an
609 	 * empty IRQ.
610 	 */
611 	if (cpu_is_offline(cpu))
612 		return true;  /* Don't try to wake offline CPUs. */
613 	if (tick_nohz_full_cpu(cpu)) {
614 		if (cpu != smp_processor_id() ||
615 		    tick_nohz_tick_stopped())
616 			tick_nohz_full_kick_cpu(cpu);
617 		return true;
618 	}
619 
620 	return false;
621 }
622 
623 /*
624  * Wake up the specified CPU.  If the CPU is going offline, it is the
625  * caller's responsibility to deal with the lost wakeup, for example,
626  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627  */
628 void wake_up_nohz_cpu(int cpu)
629 {
630 	if (!wake_up_full_nohz_cpu(cpu))
631 		wake_up_idle_cpu(cpu);
632 }
633 
634 static inline bool got_nohz_idle_kick(void)
635 {
636 	int cpu = smp_processor_id();
637 
638 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
639 		return false;
640 
641 	if (idle_cpu(cpu) && !need_resched())
642 		return true;
643 
644 	/*
645 	 * We can't run Idle Load Balance on this CPU for this time so we
646 	 * cancel it and clear NOHZ_BALANCE_KICK
647 	 */
648 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
649 	return false;
650 }
651 
652 #else /* CONFIG_NO_HZ_COMMON */
653 
654 static inline bool got_nohz_idle_kick(void)
655 {
656 	return false;
657 }
658 
659 #endif /* CONFIG_NO_HZ_COMMON */
660 
661 #ifdef CONFIG_NO_HZ_FULL
662 bool sched_can_stop_tick(struct rq *rq)
663 {
664 	int fifo_nr_running;
665 
666 	/* Deadline tasks, even if single, need the tick */
667 	if (rq->dl.dl_nr_running)
668 		return false;
669 
670 	/*
671 	 * If there are more than one RR tasks, we need the tick to effect the
672 	 * actual RR behaviour.
673 	 */
674 	if (rq->rt.rr_nr_running) {
675 		if (rq->rt.rr_nr_running == 1)
676 			return true;
677 		else
678 			return false;
679 	}
680 
681 	/*
682 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 	 * forced preemption between FIFO tasks.
684 	 */
685 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 	if (fifo_nr_running)
687 		return true;
688 
689 	/*
690 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 	 * if there's more than one we need the tick for involuntary
692 	 * preemption.
693 	 */
694 	if (rq->nr_running > 1)
695 		return false;
696 
697 	return true;
698 }
699 #endif /* CONFIG_NO_HZ_FULL */
700 #endif /* CONFIG_SMP */
701 
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705  * Iterate task_group tree rooted at *from, calling @down when first entering a
706  * node and @up when leaving it for the final time.
707  *
708  * Caller must hold rcu_lock or sufficient equivalent.
709  */
710 int walk_tg_tree_from(struct task_group *from,
711 			     tg_visitor down, tg_visitor up, void *data)
712 {
713 	struct task_group *parent, *child;
714 	int ret;
715 
716 	parent = from;
717 
718 down:
719 	ret = (*down)(parent, data);
720 	if (ret)
721 		goto out;
722 	list_for_each_entry_rcu(child, &parent->children, siblings) {
723 		parent = child;
724 		goto down;
725 
726 up:
727 		continue;
728 	}
729 	ret = (*up)(parent, data);
730 	if (ret || parent == from)
731 		goto out;
732 
733 	child = parent;
734 	parent = parent->parent;
735 	if (parent)
736 		goto up;
737 out:
738 	return ret;
739 }
740 
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 	return 0;
744 }
745 #endif
746 
747 static void set_load_weight(struct task_struct *p, bool update_load)
748 {
749 	int prio = p->static_prio - MAX_RT_PRIO;
750 	struct load_weight *load = &p->se.load;
751 
752 	/*
753 	 * SCHED_IDLE tasks get minimal weight:
754 	 */
755 	if (task_has_idle_policy(p)) {
756 		load->weight = scale_load(WEIGHT_IDLEPRIO);
757 		load->inv_weight = WMULT_IDLEPRIO;
758 		p->se.runnable_weight = load->weight;
759 		return;
760 	}
761 
762 	/*
763 	 * SCHED_OTHER tasks have to update their load when changing their
764 	 * weight
765 	 */
766 	if (update_load && p->sched_class == &fair_sched_class) {
767 		reweight_task(p, prio);
768 	} else {
769 		load->weight = scale_load(sched_prio_to_weight[prio]);
770 		load->inv_weight = sched_prio_to_wmult[prio];
771 		p->se.runnable_weight = load->weight;
772 	}
773 }
774 
775 #ifdef CONFIG_UCLAMP_TASK
776 /* Max allowed minimum utilization */
777 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
778 
779 /* Max allowed maximum utilization */
780 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
781 
782 /* All clamps are required to be less or equal than these values */
783 static struct uclamp_se uclamp_default[UCLAMP_CNT];
784 
785 /* Integer rounded range for each bucket */
786 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
787 
788 #define for_each_clamp_id(clamp_id) \
789 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
790 
791 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
792 {
793 	return clamp_value / UCLAMP_BUCKET_DELTA;
794 }
795 
796 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
797 {
798 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
799 }
800 
801 static inline unsigned int uclamp_none(int clamp_id)
802 {
803 	if (clamp_id == UCLAMP_MIN)
804 		return 0;
805 	return SCHED_CAPACITY_SCALE;
806 }
807 
808 static inline void uclamp_se_set(struct uclamp_se *uc_se,
809 				 unsigned int value, bool user_defined)
810 {
811 	uc_se->value = value;
812 	uc_se->bucket_id = uclamp_bucket_id(value);
813 	uc_se->user_defined = user_defined;
814 }
815 
816 static inline unsigned int
817 uclamp_idle_value(struct rq *rq, unsigned int clamp_id,
818 		  unsigned int clamp_value)
819 {
820 	/*
821 	 * Avoid blocked utilization pushing up the frequency when we go
822 	 * idle (which drops the max-clamp) by retaining the last known
823 	 * max-clamp.
824 	 */
825 	if (clamp_id == UCLAMP_MAX) {
826 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
827 		return clamp_value;
828 	}
829 
830 	return uclamp_none(UCLAMP_MIN);
831 }
832 
833 static inline void uclamp_idle_reset(struct rq *rq, unsigned int clamp_id,
834 				     unsigned int clamp_value)
835 {
836 	/* Reset max-clamp retention only on idle exit */
837 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
838 		return;
839 
840 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
841 }
842 
843 static inline
844 unsigned int uclamp_rq_max_value(struct rq *rq, unsigned int clamp_id,
845 				 unsigned int clamp_value)
846 {
847 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
848 	int bucket_id = UCLAMP_BUCKETS - 1;
849 
850 	/*
851 	 * Since both min and max clamps are max aggregated, find the
852 	 * top most bucket with tasks in.
853 	 */
854 	for ( ; bucket_id >= 0; bucket_id--) {
855 		if (!bucket[bucket_id].tasks)
856 			continue;
857 		return bucket[bucket_id].value;
858 	}
859 
860 	/* No tasks -- default clamp values */
861 	return uclamp_idle_value(rq, clamp_id, clamp_value);
862 }
863 
864 /*
865  * The effective clamp bucket index of a task depends on, by increasing
866  * priority:
867  * - the task specific clamp value, when explicitly requested from userspace
868  * - the system default clamp value, defined by the sysadmin
869  */
870 static inline struct uclamp_se
871 uclamp_eff_get(struct task_struct *p, unsigned int clamp_id)
872 {
873 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
874 	struct uclamp_se uc_max = uclamp_default[clamp_id];
875 
876 	/* System default restrictions always apply */
877 	if (unlikely(uc_req.value > uc_max.value))
878 		return uc_max;
879 
880 	return uc_req;
881 }
882 
883 unsigned int uclamp_eff_value(struct task_struct *p, unsigned int clamp_id)
884 {
885 	struct uclamp_se uc_eff;
886 
887 	/* Task currently refcounted: use back-annotated (effective) value */
888 	if (p->uclamp[clamp_id].active)
889 		return p->uclamp[clamp_id].value;
890 
891 	uc_eff = uclamp_eff_get(p, clamp_id);
892 
893 	return uc_eff.value;
894 }
895 
896 /*
897  * When a task is enqueued on a rq, the clamp bucket currently defined by the
898  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
899  * updates the rq's clamp value if required.
900  *
901  * Tasks can have a task-specific value requested from user-space, track
902  * within each bucket the maximum value for tasks refcounted in it.
903  * This "local max aggregation" allows to track the exact "requested" value
904  * for each bucket when all its RUNNABLE tasks require the same clamp.
905  */
906 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
907 				    unsigned int clamp_id)
908 {
909 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
910 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
911 	struct uclamp_bucket *bucket;
912 
913 	lockdep_assert_held(&rq->lock);
914 
915 	/* Update task effective clamp */
916 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
917 
918 	bucket = &uc_rq->bucket[uc_se->bucket_id];
919 	bucket->tasks++;
920 	uc_se->active = true;
921 
922 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
923 
924 	/*
925 	 * Local max aggregation: rq buckets always track the max
926 	 * "requested" clamp value of its RUNNABLE tasks.
927 	 */
928 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
929 		bucket->value = uc_se->value;
930 
931 	if (uc_se->value > READ_ONCE(uc_rq->value))
932 		WRITE_ONCE(uc_rq->value, uc_se->value);
933 }
934 
935 /*
936  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
937  * is released. If this is the last task reference counting the rq's max
938  * active clamp value, then the rq's clamp value is updated.
939  *
940  * Both refcounted tasks and rq's cached clamp values are expected to be
941  * always valid. If it's detected they are not, as defensive programming,
942  * enforce the expected state and warn.
943  */
944 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
945 				    unsigned int clamp_id)
946 {
947 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 	struct uclamp_bucket *bucket;
950 	unsigned int bkt_clamp;
951 	unsigned int rq_clamp;
952 
953 	lockdep_assert_held(&rq->lock);
954 
955 	bucket = &uc_rq->bucket[uc_se->bucket_id];
956 	SCHED_WARN_ON(!bucket->tasks);
957 	if (likely(bucket->tasks))
958 		bucket->tasks--;
959 	uc_se->active = false;
960 
961 	/*
962 	 * Keep "local max aggregation" simple and accept to (possibly)
963 	 * overboost some RUNNABLE tasks in the same bucket.
964 	 * The rq clamp bucket value is reset to its base value whenever
965 	 * there are no more RUNNABLE tasks refcounting it.
966 	 */
967 	if (likely(bucket->tasks))
968 		return;
969 
970 	rq_clamp = READ_ONCE(uc_rq->value);
971 	/*
972 	 * Defensive programming: this should never happen. If it happens,
973 	 * e.g. due to future modification, warn and fixup the expected value.
974 	 */
975 	SCHED_WARN_ON(bucket->value > rq_clamp);
976 	if (bucket->value >= rq_clamp) {
977 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
978 		WRITE_ONCE(uc_rq->value, bkt_clamp);
979 	}
980 }
981 
982 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
983 {
984 	unsigned int clamp_id;
985 
986 	if (unlikely(!p->sched_class->uclamp_enabled))
987 		return;
988 
989 	for_each_clamp_id(clamp_id)
990 		uclamp_rq_inc_id(rq, p, clamp_id);
991 
992 	/* Reset clamp idle holding when there is one RUNNABLE task */
993 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
994 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
995 }
996 
997 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
998 {
999 	unsigned int clamp_id;
1000 
1001 	if (unlikely(!p->sched_class->uclamp_enabled))
1002 		return;
1003 
1004 	for_each_clamp_id(clamp_id)
1005 		uclamp_rq_dec_id(rq, p, clamp_id);
1006 }
1007 
1008 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1009 				void __user *buffer, size_t *lenp,
1010 				loff_t *ppos)
1011 {
1012 	int old_min, old_max;
1013 	static DEFINE_MUTEX(mutex);
1014 	int result;
1015 
1016 	mutex_lock(&mutex);
1017 	old_min = sysctl_sched_uclamp_util_min;
1018 	old_max = sysctl_sched_uclamp_util_max;
1019 
1020 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1021 	if (result)
1022 		goto undo;
1023 	if (!write)
1024 		goto done;
1025 
1026 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1027 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1028 		result = -EINVAL;
1029 		goto undo;
1030 	}
1031 
1032 	if (old_min != sysctl_sched_uclamp_util_min) {
1033 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1034 			      sysctl_sched_uclamp_util_min, false);
1035 	}
1036 	if (old_max != sysctl_sched_uclamp_util_max) {
1037 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1038 			      sysctl_sched_uclamp_util_max, false);
1039 	}
1040 
1041 	/*
1042 	 * Updating all the RUNNABLE task is expensive, keep it simple and do
1043 	 * just a lazy update at each next enqueue time.
1044 	 */
1045 	goto done;
1046 
1047 undo:
1048 	sysctl_sched_uclamp_util_min = old_min;
1049 	sysctl_sched_uclamp_util_max = old_max;
1050 done:
1051 	mutex_unlock(&mutex);
1052 
1053 	return result;
1054 }
1055 
1056 static int uclamp_validate(struct task_struct *p,
1057 			   const struct sched_attr *attr)
1058 {
1059 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1060 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1061 
1062 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1063 		lower_bound = attr->sched_util_min;
1064 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1065 		upper_bound = attr->sched_util_max;
1066 
1067 	if (lower_bound > upper_bound)
1068 		return -EINVAL;
1069 	if (upper_bound > SCHED_CAPACITY_SCALE)
1070 		return -EINVAL;
1071 
1072 	return 0;
1073 }
1074 
1075 static void __setscheduler_uclamp(struct task_struct *p,
1076 				  const struct sched_attr *attr)
1077 {
1078 	unsigned int clamp_id;
1079 
1080 	/*
1081 	 * On scheduling class change, reset to default clamps for tasks
1082 	 * without a task-specific value.
1083 	 */
1084 	for_each_clamp_id(clamp_id) {
1085 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1086 		unsigned int clamp_value = uclamp_none(clamp_id);
1087 
1088 		/* Keep using defined clamps across class changes */
1089 		if (uc_se->user_defined)
1090 			continue;
1091 
1092 		/* By default, RT tasks always get 100% boost */
1093 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1094 			clamp_value = uclamp_none(UCLAMP_MAX);
1095 
1096 		uclamp_se_set(uc_se, clamp_value, false);
1097 	}
1098 
1099 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1100 		return;
1101 
1102 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1103 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1104 			      attr->sched_util_min, true);
1105 	}
1106 
1107 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1108 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1109 			      attr->sched_util_max, true);
1110 	}
1111 }
1112 
1113 static void uclamp_fork(struct task_struct *p)
1114 {
1115 	unsigned int clamp_id;
1116 
1117 	for_each_clamp_id(clamp_id)
1118 		p->uclamp[clamp_id].active = false;
1119 
1120 	if (likely(!p->sched_reset_on_fork))
1121 		return;
1122 
1123 	for_each_clamp_id(clamp_id) {
1124 		unsigned int clamp_value = uclamp_none(clamp_id);
1125 
1126 		/* By default, RT tasks always get 100% boost */
1127 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1128 			clamp_value = uclamp_none(UCLAMP_MAX);
1129 
1130 		uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1131 	}
1132 }
1133 
1134 static void __init init_uclamp(void)
1135 {
1136 	struct uclamp_se uc_max = {};
1137 	unsigned int clamp_id;
1138 	int cpu;
1139 
1140 	for_each_possible_cpu(cpu) {
1141 		memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
1142 		cpu_rq(cpu)->uclamp_flags = 0;
1143 	}
1144 
1145 	for_each_clamp_id(clamp_id) {
1146 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1147 			      uclamp_none(clamp_id), false);
1148 	}
1149 
1150 	/* System defaults allow max clamp values for both indexes */
1151 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1152 	for_each_clamp_id(clamp_id)
1153 		uclamp_default[clamp_id] = uc_max;
1154 }
1155 
1156 #else /* CONFIG_UCLAMP_TASK */
1157 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1158 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1159 static inline int uclamp_validate(struct task_struct *p,
1160 				  const struct sched_attr *attr)
1161 {
1162 	return -EOPNOTSUPP;
1163 }
1164 static void __setscheduler_uclamp(struct task_struct *p,
1165 				  const struct sched_attr *attr) { }
1166 static inline void uclamp_fork(struct task_struct *p) { }
1167 static inline void init_uclamp(void) { }
1168 #endif /* CONFIG_UCLAMP_TASK */
1169 
1170 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1171 {
1172 	if (!(flags & ENQUEUE_NOCLOCK))
1173 		update_rq_clock(rq);
1174 
1175 	if (!(flags & ENQUEUE_RESTORE)) {
1176 		sched_info_queued(rq, p);
1177 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1178 	}
1179 
1180 	uclamp_rq_inc(rq, p);
1181 	p->sched_class->enqueue_task(rq, p, flags);
1182 }
1183 
1184 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1185 {
1186 	if (!(flags & DEQUEUE_NOCLOCK))
1187 		update_rq_clock(rq);
1188 
1189 	if (!(flags & DEQUEUE_SAVE)) {
1190 		sched_info_dequeued(rq, p);
1191 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1192 	}
1193 
1194 	uclamp_rq_dec(rq, p);
1195 	p->sched_class->dequeue_task(rq, p, flags);
1196 }
1197 
1198 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1199 {
1200 	if (task_contributes_to_load(p))
1201 		rq->nr_uninterruptible--;
1202 
1203 	enqueue_task(rq, p, flags);
1204 
1205 	p->on_rq = TASK_ON_RQ_QUEUED;
1206 }
1207 
1208 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1209 {
1210 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1211 
1212 	if (task_contributes_to_load(p))
1213 		rq->nr_uninterruptible++;
1214 
1215 	dequeue_task(rq, p, flags);
1216 }
1217 
1218 /*
1219  * __normal_prio - return the priority that is based on the static prio
1220  */
1221 static inline int __normal_prio(struct task_struct *p)
1222 {
1223 	return p->static_prio;
1224 }
1225 
1226 /*
1227  * Calculate the expected normal priority: i.e. priority
1228  * without taking RT-inheritance into account. Might be
1229  * boosted by interactivity modifiers. Changes upon fork,
1230  * setprio syscalls, and whenever the interactivity
1231  * estimator recalculates.
1232  */
1233 static inline int normal_prio(struct task_struct *p)
1234 {
1235 	int prio;
1236 
1237 	if (task_has_dl_policy(p))
1238 		prio = MAX_DL_PRIO-1;
1239 	else if (task_has_rt_policy(p))
1240 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1241 	else
1242 		prio = __normal_prio(p);
1243 	return prio;
1244 }
1245 
1246 /*
1247  * Calculate the current priority, i.e. the priority
1248  * taken into account by the scheduler. This value might
1249  * be boosted by RT tasks, or might be boosted by
1250  * interactivity modifiers. Will be RT if the task got
1251  * RT-boosted. If not then it returns p->normal_prio.
1252  */
1253 static int effective_prio(struct task_struct *p)
1254 {
1255 	p->normal_prio = normal_prio(p);
1256 	/*
1257 	 * If we are RT tasks or we were boosted to RT priority,
1258 	 * keep the priority unchanged. Otherwise, update priority
1259 	 * to the normal priority:
1260 	 */
1261 	if (!rt_prio(p->prio))
1262 		return p->normal_prio;
1263 	return p->prio;
1264 }
1265 
1266 /**
1267  * task_curr - is this task currently executing on a CPU?
1268  * @p: the task in question.
1269  *
1270  * Return: 1 if the task is currently executing. 0 otherwise.
1271  */
1272 inline int task_curr(const struct task_struct *p)
1273 {
1274 	return cpu_curr(task_cpu(p)) == p;
1275 }
1276 
1277 /*
1278  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1279  * use the balance_callback list if you want balancing.
1280  *
1281  * this means any call to check_class_changed() must be followed by a call to
1282  * balance_callback().
1283  */
1284 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1285 				       const struct sched_class *prev_class,
1286 				       int oldprio)
1287 {
1288 	if (prev_class != p->sched_class) {
1289 		if (prev_class->switched_from)
1290 			prev_class->switched_from(rq, p);
1291 
1292 		p->sched_class->switched_to(rq, p);
1293 	} else if (oldprio != p->prio || dl_task(p))
1294 		p->sched_class->prio_changed(rq, p, oldprio);
1295 }
1296 
1297 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1298 {
1299 	const struct sched_class *class;
1300 
1301 	if (p->sched_class == rq->curr->sched_class) {
1302 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1303 	} else {
1304 		for_each_class(class) {
1305 			if (class == rq->curr->sched_class)
1306 				break;
1307 			if (class == p->sched_class) {
1308 				resched_curr(rq);
1309 				break;
1310 			}
1311 		}
1312 	}
1313 
1314 	/*
1315 	 * A queue event has occurred, and we're going to schedule.  In
1316 	 * this case, we can save a useless back to back clock update.
1317 	 */
1318 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1319 		rq_clock_skip_update(rq);
1320 }
1321 
1322 #ifdef CONFIG_SMP
1323 
1324 static inline bool is_per_cpu_kthread(struct task_struct *p)
1325 {
1326 	if (!(p->flags & PF_KTHREAD))
1327 		return false;
1328 
1329 	if (p->nr_cpus_allowed != 1)
1330 		return false;
1331 
1332 	return true;
1333 }
1334 
1335 /*
1336  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1337  * __set_cpus_allowed_ptr() and select_fallback_rq().
1338  */
1339 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1340 {
1341 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1342 		return false;
1343 
1344 	if (is_per_cpu_kthread(p))
1345 		return cpu_online(cpu);
1346 
1347 	return cpu_active(cpu);
1348 }
1349 
1350 /*
1351  * This is how migration works:
1352  *
1353  * 1) we invoke migration_cpu_stop() on the target CPU using
1354  *    stop_one_cpu().
1355  * 2) stopper starts to run (implicitly forcing the migrated thread
1356  *    off the CPU)
1357  * 3) it checks whether the migrated task is still in the wrong runqueue.
1358  * 4) if it's in the wrong runqueue then the migration thread removes
1359  *    it and puts it into the right queue.
1360  * 5) stopper completes and stop_one_cpu() returns and the migration
1361  *    is done.
1362  */
1363 
1364 /*
1365  * move_queued_task - move a queued task to new rq.
1366  *
1367  * Returns (locked) new rq. Old rq's lock is released.
1368  */
1369 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1370 				   struct task_struct *p, int new_cpu)
1371 {
1372 	lockdep_assert_held(&rq->lock);
1373 
1374 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1375 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1376 	set_task_cpu(p, new_cpu);
1377 	rq_unlock(rq, rf);
1378 
1379 	rq = cpu_rq(new_cpu);
1380 
1381 	rq_lock(rq, rf);
1382 	BUG_ON(task_cpu(p) != new_cpu);
1383 	enqueue_task(rq, p, 0);
1384 	p->on_rq = TASK_ON_RQ_QUEUED;
1385 	check_preempt_curr(rq, p, 0);
1386 
1387 	return rq;
1388 }
1389 
1390 struct migration_arg {
1391 	struct task_struct *task;
1392 	int dest_cpu;
1393 };
1394 
1395 /*
1396  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1397  * this because either it can't run here any more (set_cpus_allowed()
1398  * away from this CPU, or CPU going down), or because we're
1399  * attempting to rebalance this task on exec (sched_exec).
1400  *
1401  * So we race with normal scheduler movements, but that's OK, as long
1402  * as the task is no longer on this CPU.
1403  */
1404 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1405 				 struct task_struct *p, int dest_cpu)
1406 {
1407 	/* Affinity changed (again). */
1408 	if (!is_cpu_allowed(p, dest_cpu))
1409 		return rq;
1410 
1411 	update_rq_clock(rq);
1412 	rq = move_queued_task(rq, rf, p, dest_cpu);
1413 
1414 	return rq;
1415 }
1416 
1417 /*
1418  * migration_cpu_stop - this will be executed by a highprio stopper thread
1419  * and performs thread migration by bumping thread off CPU then
1420  * 'pushing' onto another runqueue.
1421  */
1422 static int migration_cpu_stop(void *data)
1423 {
1424 	struct migration_arg *arg = data;
1425 	struct task_struct *p = arg->task;
1426 	struct rq *rq = this_rq();
1427 	struct rq_flags rf;
1428 
1429 	/*
1430 	 * The original target CPU might have gone down and we might
1431 	 * be on another CPU but it doesn't matter.
1432 	 */
1433 	local_irq_disable();
1434 	/*
1435 	 * We need to explicitly wake pending tasks before running
1436 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1437 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1438 	 */
1439 	sched_ttwu_pending();
1440 
1441 	raw_spin_lock(&p->pi_lock);
1442 	rq_lock(rq, &rf);
1443 	/*
1444 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1445 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1446 	 * we're holding p->pi_lock.
1447 	 */
1448 	if (task_rq(p) == rq) {
1449 		if (task_on_rq_queued(p))
1450 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1451 		else
1452 			p->wake_cpu = arg->dest_cpu;
1453 	}
1454 	rq_unlock(rq, &rf);
1455 	raw_spin_unlock(&p->pi_lock);
1456 
1457 	local_irq_enable();
1458 	return 0;
1459 }
1460 
1461 /*
1462  * sched_class::set_cpus_allowed must do the below, but is not required to
1463  * actually call this function.
1464  */
1465 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1466 {
1467 	cpumask_copy(&p->cpus_mask, new_mask);
1468 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1469 }
1470 
1471 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1472 {
1473 	struct rq *rq = task_rq(p);
1474 	bool queued, running;
1475 
1476 	lockdep_assert_held(&p->pi_lock);
1477 
1478 	queued = task_on_rq_queued(p);
1479 	running = task_current(rq, p);
1480 
1481 	if (queued) {
1482 		/*
1483 		 * Because __kthread_bind() calls this on blocked tasks without
1484 		 * holding rq->lock.
1485 		 */
1486 		lockdep_assert_held(&rq->lock);
1487 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1488 	}
1489 	if (running)
1490 		put_prev_task(rq, p);
1491 
1492 	p->sched_class->set_cpus_allowed(p, new_mask);
1493 
1494 	if (queued)
1495 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1496 	if (running)
1497 		set_curr_task(rq, p);
1498 }
1499 
1500 /*
1501  * Change a given task's CPU affinity. Migrate the thread to a
1502  * proper CPU and schedule it away if the CPU it's executing on
1503  * is removed from the allowed bitmask.
1504  *
1505  * NOTE: the caller must have a valid reference to the task, the
1506  * task must not exit() & deallocate itself prematurely. The
1507  * call is not atomic; no spinlocks may be held.
1508  */
1509 static int __set_cpus_allowed_ptr(struct task_struct *p,
1510 				  const struct cpumask *new_mask, bool check)
1511 {
1512 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1513 	unsigned int dest_cpu;
1514 	struct rq_flags rf;
1515 	struct rq *rq;
1516 	int ret = 0;
1517 
1518 	rq = task_rq_lock(p, &rf);
1519 	update_rq_clock(rq);
1520 
1521 	if (p->flags & PF_KTHREAD) {
1522 		/*
1523 		 * Kernel threads are allowed on online && !active CPUs
1524 		 */
1525 		cpu_valid_mask = cpu_online_mask;
1526 	}
1527 
1528 	/*
1529 	 * Must re-check here, to close a race against __kthread_bind(),
1530 	 * sched_setaffinity() is not guaranteed to observe the flag.
1531 	 */
1532 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1533 		ret = -EINVAL;
1534 		goto out;
1535 	}
1536 
1537 	if (cpumask_equal(p->cpus_ptr, new_mask))
1538 		goto out;
1539 
1540 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1541 		ret = -EINVAL;
1542 		goto out;
1543 	}
1544 
1545 	do_set_cpus_allowed(p, new_mask);
1546 
1547 	if (p->flags & PF_KTHREAD) {
1548 		/*
1549 		 * For kernel threads that do indeed end up on online &&
1550 		 * !active we want to ensure they are strict per-CPU threads.
1551 		 */
1552 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1553 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1554 			p->nr_cpus_allowed != 1);
1555 	}
1556 
1557 	/* Can the task run on the task's current CPU? If so, we're done */
1558 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1559 		goto out;
1560 
1561 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1562 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1563 		struct migration_arg arg = { p, dest_cpu };
1564 		/* Need help from migration thread: drop lock and wait. */
1565 		task_rq_unlock(rq, p, &rf);
1566 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1567 		return 0;
1568 	} else if (task_on_rq_queued(p)) {
1569 		/*
1570 		 * OK, since we're going to drop the lock immediately
1571 		 * afterwards anyway.
1572 		 */
1573 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1574 	}
1575 out:
1576 	task_rq_unlock(rq, p, &rf);
1577 
1578 	return ret;
1579 }
1580 
1581 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1582 {
1583 	return __set_cpus_allowed_ptr(p, new_mask, false);
1584 }
1585 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1586 
1587 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1588 {
1589 #ifdef CONFIG_SCHED_DEBUG
1590 	/*
1591 	 * We should never call set_task_cpu() on a blocked task,
1592 	 * ttwu() will sort out the placement.
1593 	 */
1594 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1595 			!p->on_rq);
1596 
1597 	/*
1598 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1599 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1600 	 * time relying on p->on_rq.
1601 	 */
1602 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1603 		     p->sched_class == &fair_sched_class &&
1604 		     (p->on_rq && !task_on_rq_migrating(p)));
1605 
1606 #ifdef CONFIG_LOCKDEP
1607 	/*
1608 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1609 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1610 	 *
1611 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1612 	 * see task_group().
1613 	 *
1614 	 * Furthermore, all task_rq users should acquire both locks, see
1615 	 * task_rq_lock().
1616 	 */
1617 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1618 				      lockdep_is_held(&task_rq(p)->lock)));
1619 #endif
1620 	/*
1621 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1622 	 */
1623 	WARN_ON_ONCE(!cpu_online(new_cpu));
1624 #endif
1625 
1626 	trace_sched_migrate_task(p, new_cpu);
1627 
1628 	if (task_cpu(p) != new_cpu) {
1629 		if (p->sched_class->migrate_task_rq)
1630 			p->sched_class->migrate_task_rq(p, new_cpu);
1631 		p->se.nr_migrations++;
1632 		rseq_migrate(p);
1633 		perf_event_task_migrate(p);
1634 	}
1635 
1636 	__set_task_cpu(p, new_cpu);
1637 }
1638 
1639 #ifdef CONFIG_NUMA_BALANCING
1640 static void __migrate_swap_task(struct task_struct *p, int cpu)
1641 {
1642 	if (task_on_rq_queued(p)) {
1643 		struct rq *src_rq, *dst_rq;
1644 		struct rq_flags srf, drf;
1645 
1646 		src_rq = task_rq(p);
1647 		dst_rq = cpu_rq(cpu);
1648 
1649 		rq_pin_lock(src_rq, &srf);
1650 		rq_pin_lock(dst_rq, &drf);
1651 
1652 		deactivate_task(src_rq, p, 0);
1653 		set_task_cpu(p, cpu);
1654 		activate_task(dst_rq, p, 0);
1655 		check_preempt_curr(dst_rq, p, 0);
1656 
1657 		rq_unpin_lock(dst_rq, &drf);
1658 		rq_unpin_lock(src_rq, &srf);
1659 
1660 	} else {
1661 		/*
1662 		 * Task isn't running anymore; make it appear like we migrated
1663 		 * it before it went to sleep. This means on wakeup we make the
1664 		 * previous CPU our target instead of where it really is.
1665 		 */
1666 		p->wake_cpu = cpu;
1667 	}
1668 }
1669 
1670 struct migration_swap_arg {
1671 	struct task_struct *src_task, *dst_task;
1672 	int src_cpu, dst_cpu;
1673 };
1674 
1675 static int migrate_swap_stop(void *data)
1676 {
1677 	struct migration_swap_arg *arg = data;
1678 	struct rq *src_rq, *dst_rq;
1679 	int ret = -EAGAIN;
1680 
1681 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1682 		return -EAGAIN;
1683 
1684 	src_rq = cpu_rq(arg->src_cpu);
1685 	dst_rq = cpu_rq(arg->dst_cpu);
1686 
1687 	double_raw_lock(&arg->src_task->pi_lock,
1688 			&arg->dst_task->pi_lock);
1689 	double_rq_lock(src_rq, dst_rq);
1690 
1691 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1692 		goto unlock;
1693 
1694 	if (task_cpu(arg->src_task) != arg->src_cpu)
1695 		goto unlock;
1696 
1697 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1698 		goto unlock;
1699 
1700 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1701 		goto unlock;
1702 
1703 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1704 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1705 
1706 	ret = 0;
1707 
1708 unlock:
1709 	double_rq_unlock(src_rq, dst_rq);
1710 	raw_spin_unlock(&arg->dst_task->pi_lock);
1711 	raw_spin_unlock(&arg->src_task->pi_lock);
1712 
1713 	return ret;
1714 }
1715 
1716 /*
1717  * Cross migrate two tasks
1718  */
1719 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1720 		int target_cpu, int curr_cpu)
1721 {
1722 	struct migration_swap_arg arg;
1723 	int ret = -EINVAL;
1724 
1725 	arg = (struct migration_swap_arg){
1726 		.src_task = cur,
1727 		.src_cpu = curr_cpu,
1728 		.dst_task = p,
1729 		.dst_cpu = target_cpu,
1730 	};
1731 
1732 	if (arg.src_cpu == arg.dst_cpu)
1733 		goto out;
1734 
1735 	/*
1736 	 * These three tests are all lockless; this is OK since all of them
1737 	 * will be re-checked with proper locks held further down the line.
1738 	 */
1739 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1740 		goto out;
1741 
1742 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1743 		goto out;
1744 
1745 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1746 		goto out;
1747 
1748 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1749 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1750 
1751 out:
1752 	return ret;
1753 }
1754 #endif /* CONFIG_NUMA_BALANCING */
1755 
1756 /*
1757  * wait_task_inactive - wait for a thread to unschedule.
1758  *
1759  * If @match_state is nonzero, it's the @p->state value just checked and
1760  * not expected to change.  If it changes, i.e. @p might have woken up,
1761  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1762  * we return a positive number (its total switch count).  If a second call
1763  * a short while later returns the same number, the caller can be sure that
1764  * @p has remained unscheduled the whole time.
1765  *
1766  * The caller must ensure that the task *will* unschedule sometime soon,
1767  * else this function might spin for a *long* time. This function can't
1768  * be called with interrupts off, or it may introduce deadlock with
1769  * smp_call_function() if an IPI is sent by the same process we are
1770  * waiting to become inactive.
1771  */
1772 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1773 {
1774 	int running, queued;
1775 	struct rq_flags rf;
1776 	unsigned long ncsw;
1777 	struct rq *rq;
1778 
1779 	for (;;) {
1780 		/*
1781 		 * We do the initial early heuristics without holding
1782 		 * any task-queue locks at all. We'll only try to get
1783 		 * the runqueue lock when things look like they will
1784 		 * work out!
1785 		 */
1786 		rq = task_rq(p);
1787 
1788 		/*
1789 		 * If the task is actively running on another CPU
1790 		 * still, just relax and busy-wait without holding
1791 		 * any locks.
1792 		 *
1793 		 * NOTE! Since we don't hold any locks, it's not
1794 		 * even sure that "rq" stays as the right runqueue!
1795 		 * But we don't care, since "task_running()" will
1796 		 * return false if the runqueue has changed and p
1797 		 * is actually now running somewhere else!
1798 		 */
1799 		while (task_running(rq, p)) {
1800 			if (match_state && unlikely(p->state != match_state))
1801 				return 0;
1802 			cpu_relax();
1803 		}
1804 
1805 		/*
1806 		 * Ok, time to look more closely! We need the rq
1807 		 * lock now, to be *sure*. If we're wrong, we'll
1808 		 * just go back and repeat.
1809 		 */
1810 		rq = task_rq_lock(p, &rf);
1811 		trace_sched_wait_task(p);
1812 		running = task_running(rq, p);
1813 		queued = task_on_rq_queued(p);
1814 		ncsw = 0;
1815 		if (!match_state || p->state == match_state)
1816 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1817 		task_rq_unlock(rq, p, &rf);
1818 
1819 		/*
1820 		 * If it changed from the expected state, bail out now.
1821 		 */
1822 		if (unlikely(!ncsw))
1823 			break;
1824 
1825 		/*
1826 		 * Was it really running after all now that we
1827 		 * checked with the proper locks actually held?
1828 		 *
1829 		 * Oops. Go back and try again..
1830 		 */
1831 		if (unlikely(running)) {
1832 			cpu_relax();
1833 			continue;
1834 		}
1835 
1836 		/*
1837 		 * It's not enough that it's not actively running,
1838 		 * it must be off the runqueue _entirely_, and not
1839 		 * preempted!
1840 		 *
1841 		 * So if it was still runnable (but just not actively
1842 		 * running right now), it's preempted, and we should
1843 		 * yield - it could be a while.
1844 		 */
1845 		if (unlikely(queued)) {
1846 			ktime_t to = NSEC_PER_SEC / HZ;
1847 
1848 			set_current_state(TASK_UNINTERRUPTIBLE);
1849 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1850 			continue;
1851 		}
1852 
1853 		/*
1854 		 * Ahh, all good. It wasn't running, and it wasn't
1855 		 * runnable, which means that it will never become
1856 		 * running in the future either. We're all done!
1857 		 */
1858 		break;
1859 	}
1860 
1861 	return ncsw;
1862 }
1863 
1864 /***
1865  * kick_process - kick a running thread to enter/exit the kernel
1866  * @p: the to-be-kicked thread
1867  *
1868  * Cause a process which is running on another CPU to enter
1869  * kernel-mode, without any delay. (to get signals handled.)
1870  *
1871  * NOTE: this function doesn't have to take the runqueue lock,
1872  * because all it wants to ensure is that the remote task enters
1873  * the kernel. If the IPI races and the task has been migrated
1874  * to another CPU then no harm is done and the purpose has been
1875  * achieved as well.
1876  */
1877 void kick_process(struct task_struct *p)
1878 {
1879 	int cpu;
1880 
1881 	preempt_disable();
1882 	cpu = task_cpu(p);
1883 	if ((cpu != smp_processor_id()) && task_curr(p))
1884 		smp_send_reschedule(cpu);
1885 	preempt_enable();
1886 }
1887 EXPORT_SYMBOL_GPL(kick_process);
1888 
1889 /*
1890  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1891  *
1892  * A few notes on cpu_active vs cpu_online:
1893  *
1894  *  - cpu_active must be a subset of cpu_online
1895  *
1896  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1897  *    see __set_cpus_allowed_ptr(). At this point the newly online
1898  *    CPU isn't yet part of the sched domains, and balancing will not
1899  *    see it.
1900  *
1901  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1902  *    avoid the load balancer to place new tasks on the to be removed
1903  *    CPU. Existing tasks will remain running there and will be taken
1904  *    off.
1905  *
1906  * This means that fallback selection must not select !active CPUs.
1907  * And can assume that any active CPU must be online. Conversely
1908  * select_task_rq() below may allow selection of !active CPUs in order
1909  * to satisfy the above rules.
1910  */
1911 static int select_fallback_rq(int cpu, struct task_struct *p)
1912 {
1913 	int nid = cpu_to_node(cpu);
1914 	const struct cpumask *nodemask = NULL;
1915 	enum { cpuset, possible, fail } state = cpuset;
1916 	int dest_cpu;
1917 
1918 	/*
1919 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1920 	 * will return -1. There is no CPU on the node, and we should
1921 	 * select the CPU on the other node.
1922 	 */
1923 	if (nid != -1) {
1924 		nodemask = cpumask_of_node(nid);
1925 
1926 		/* Look for allowed, online CPU in same node. */
1927 		for_each_cpu(dest_cpu, nodemask) {
1928 			if (!cpu_active(dest_cpu))
1929 				continue;
1930 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
1931 				return dest_cpu;
1932 		}
1933 	}
1934 
1935 	for (;;) {
1936 		/* Any allowed, online CPU? */
1937 		for_each_cpu(dest_cpu, p->cpus_ptr) {
1938 			if (!is_cpu_allowed(p, dest_cpu))
1939 				continue;
1940 
1941 			goto out;
1942 		}
1943 
1944 		/* No more Mr. Nice Guy. */
1945 		switch (state) {
1946 		case cpuset:
1947 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1948 				cpuset_cpus_allowed_fallback(p);
1949 				state = possible;
1950 				break;
1951 			}
1952 			/* Fall-through */
1953 		case possible:
1954 			do_set_cpus_allowed(p, cpu_possible_mask);
1955 			state = fail;
1956 			break;
1957 
1958 		case fail:
1959 			BUG();
1960 			break;
1961 		}
1962 	}
1963 
1964 out:
1965 	if (state != cpuset) {
1966 		/*
1967 		 * Don't tell them about moving exiting tasks or
1968 		 * kernel threads (both mm NULL), since they never
1969 		 * leave kernel.
1970 		 */
1971 		if (p->mm && printk_ratelimit()) {
1972 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1973 					task_pid_nr(p), p->comm, cpu);
1974 		}
1975 	}
1976 
1977 	return dest_cpu;
1978 }
1979 
1980 /*
1981  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
1982  */
1983 static inline
1984 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1985 {
1986 	lockdep_assert_held(&p->pi_lock);
1987 
1988 	if (p->nr_cpus_allowed > 1)
1989 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1990 	else
1991 		cpu = cpumask_any(p->cpus_ptr);
1992 
1993 	/*
1994 	 * In order not to call set_task_cpu() on a blocking task we need
1995 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
1996 	 * CPU.
1997 	 *
1998 	 * Since this is common to all placement strategies, this lives here.
1999 	 *
2000 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2001 	 *   not worry about this generic constraint ]
2002 	 */
2003 	if (unlikely(!is_cpu_allowed(p, cpu)))
2004 		cpu = select_fallback_rq(task_cpu(p), p);
2005 
2006 	return cpu;
2007 }
2008 
2009 static void update_avg(u64 *avg, u64 sample)
2010 {
2011 	s64 diff = sample - *avg;
2012 	*avg += diff >> 3;
2013 }
2014 
2015 void sched_set_stop_task(int cpu, struct task_struct *stop)
2016 {
2017 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2018 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2019 
2020 	if (stop) {
2021 		/*
2022 		 * Make it appear like a SCHED_FIFO task, its something
2023 		 * userspace knows about and won't get confused about.
2024 		 *
2025 		 * Also, it will make PI more or less work without too
2026 		 * much confusion -- but then, stop work should not
2027 		 * rely on PI working anyway.
2028 		 */
2029 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2030 
2031 		stop->sched_class = &stop_sched_class;
2032 	}
2033 
2034 	cpu_rq(cpu)->stop = stop;
2035 
2036 	if (old_stop) {
2037 		/*
2038 		 * Reset it back to a normal scheduling class so that
2039 		 * it can die in pieces.
2040 		 */
2041 		old_stop->sched_class = &rt_sched_class;
2042 	}
2043 }
2044 
2045 #else
2046 
2047 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2048 					 const struct cpumask *new_mask, bool check)
2049 {
2050 	return set_cpus_allowed_ptr(p, new_mask);
2051 }
2052 
2053 #endif /* CONFIG_SMP */
2054 
2055 static void
2056 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2057 {
2058 	struct rq *rq;
2059 
2060 	if (!schedstat_enabled())
2061 		return;
2062 
2063 	rq = this_rq();
2064 
2065 #ifdef CONFIG_SMP
2066 	if (cpu == rq->cpu) {
2067 		__schedstat_inc(rq->ttwu_local);
2068 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2069 	} else {
2070 		struct sched_domain *sd;
2071 
2072 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2073 		rcu_read_lock();
2074 		for_each_domain(rq->cpu, sd) {
2075 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2076 				__schedstat_inc(sd->ttwu_wake_remote);
2077 				break;
2078 			}
2079 		}
2080 		rcu_read_unlock();
2081 	}
2082 
2083 	if (wake_flags & WF_MIGRATED)
2084 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2085 #endif /* CONFIG_SMP */
2086 
2087 	__schedstat_inc(rq->ttwu_count);
2088 	__schedstat_inc(p->se.statistics.nr_wakeups);
2089 
2090 	if (wake_flags & WF_SYNC)
2091 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2092 }
2093 
2094 /*
2095  * Mark the task runnable and perform wakeup-preemption.
2096  */
2097 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2098 			   struct rq_flags *rf)
2099 {
2100 	check_preempt_curr(rq, p, wake_flags);
2101 	p->state = TASK_RUNNING;
2102 	trace_sched_wakeup(p);
2103 
2104 #ifdef CONFIG_SMP
2105 	if (p->sched_class->task_woken) {
2106 		/*
2107 		 * Our task @p is fully woken up and running; so its safe to
2108 		 * drop the rq->lock, hereafter rq is only used for statistics.
2109 		 */
2110 		rq_unpin_lock(rq, rf);
2111 		p->sched_class->task_woken(rq, p);
2112 		rq_repin_lock(rq, rf);
2113 	}
2114 
2115 	if (rq->idle_stamp) {
2116 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2117 		u64 max = 2*rq->max_idle_balance_cost;
2118 
2119 		update_avg(&rq->avg_idle, delta);
2120 
2121 		if (rq->avg_idle > max)
2122 			rq->avg_idle = max;
2123 
2124 		rq->idle_stamp = 0;
2125 	}
2126 #endif
2127 }
2128 
2129 static void
2130 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2131 		 struct rq_flags *rf)
2132 {
2133 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2134 
2135 	lockdep_assert_held(&rq->lock);
2136 
2137 #ifdef CONFIG_SMP
2138 	if (p->sched_contributes_to_load)
2139 		rq->nr_uninterruptible--;
2140 
2141 	if (wake_flags & WF_MIGRATED)
2142 		en_flags |= ENQUEUE_MIGRATED;
2143 #endif
2144 
2145 	activate_task(rq, p, en_flags);
2146 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2147 }
2148 
2149 /*
2150  * Called in case the task @p isn't fully descheduled from its runqueue,
2151  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2152  * since all we need to do is flip p->state to TASK_RUNNING, since
2153  * the task is still ->on_rq.
2154  */
2155 static int ttwu_remote(struct task_struct *p, int wake_flags)
2156 {
2157 	struct rq_flags rf;
2158 	struct rq *rq;
2159 	int ret = 0;
2160 
2161 	rq = __task_rq_lock(p, &rf);
2162 	if (task_on_rq_queued(p)) {
2163 		/* check_preempt_curr() may use rq clock */
2164 		update_rq_clock(rq);
2165 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2166 		ret = 1;
2167 	}
2168 	__task_rq_unlock(rq, &rf);
2169 
2170 	return ret;
2171 }
2172 
2173 #ifdef CONFIG_SMP
2174 void sched_ttwu_pending(void)
2175 {
2176 	struct rq *rq = this_rq();
2177 	struct llist_node *llist = llist_del_all(&rq->wake_list);
2178 	struct task_struct *p, *t;
2179 	struct rq_flags rf;
2180 
2181 	if (!llist)
2182 		return;
2183 
2184 	rq_lock_irqsave(rq, &rf);
2185 	update_rq_clock(rq);
2186 
2187 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2188 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2189 
2190 	rq_unlock_irqrestore(rq, &rf);
2191 }
2192 
2193 void scheduler_ipi(void)
2194 {
2195 	/*
2196 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2197 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2198 	 * this IPI.
2199 	 */
2200 	preempt_fold_need_resched();
2201 
2202 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2203 		return;
2204 
2205 	/*
2206 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2207 	 * traditionally all their work was done from the interrupt return
2208 	 * path. Now that we actually do some work, we need to make sure
2209 	 * we do call them.
2210 	 *
2211 	 * Some archs already do call them, luckily irq_enter/exit nest
2212 	 * properly.
2213 	 *
2214 	 * Arguably we should visit all archs and update all handlers,
2215 	 * however a fair share of IPIs are still resched only so this would
2216 	 * somewhat pessimize the simple resched case.
2217 	 */
2218 	irq_enter();
2219 	sched_ttwu_pending();
2220 
2221 	/*
2222 	 * Check if someone kicked us for doing the nohz idle load balance.
2223 	 */
2224 	if (unlikely(got_nohz_idle_kick())) {
2225 		this_rq()->idle_balance = 1;
2226 		raise_softirq_irqoff(SCHED_SOFTIRQ);
2227 	}
2228 	irq_exit();
2229 }
2230 
2231 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2232 {
2233 	struct rq *rq = cpu_rq(cpu);
2234 
2235 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2236 
2237 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2238 		if (!set_nr_if_polling(rq->idle))
2239 			smp_send_reschedule(cpu);
2240 		else
2241 			trace_sched_wake_idle_without_ipi(cpu);
2242 	}
2243 }
2244 
2245 void wake_up_if_idle(int cpu)
2246 {
2247 	struct rq *rq = cpu_rq(cpu);
2248 	struct rq_flags rf;
2249 
2250 	rcu_read_lock();
2251 
2252 	if (!is_idle_task(rcu_dereference(rq->curr)))
2253 		goto out;
2254 
2255 	if (set_nr_if_polling(rq->idle)) {
2256 		trace_sched_wake_idle_without_ipi(cpu);
2257 	} else {
2258 		rq_lock_irqsave(rq, &rf);
2259 		if (is_idle_task(rq->curr))
2260 			smp_send_reschedule(cpu);
2261 		/* Else CPU is not idle, do nothing here: */
2262 		rq_unlock_irqrestore(rq, &rf);
2263 	}
2264 
2265 out:
2266 	rcu_read_unlock();
2267 }
2268 
2269 bool cpus_share_cache(int this_cpu, int that_cpu)
2270 {
2271 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2272 }
2273 #endif /* CONFIG_SMP */
2274 
2275 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2276 {
2277 	struct rq *rq = cpu_rq(cpu);
2278 	struct rq_flags rf;
2279 
2280 #if defined(CONFIG_SMP)
2281 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2282 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2283 		ttwu_queue_remote(p, cpu, wake_flags);
2284 		return;
2285 	}
2286 #endif
2287 
2288 	rq_lock(rq, &rf);
2289 	update_rq_clock(rq);
2290 	ttwu_do_activate(rq, p, wake_flags, &rf);
2291 	rq_unlock(rq, &rf);
2292 }
2293 
2294 /*
2295  * Notes on Program-Order guarantees on SMP systems.
2296  *
2297  *  MIGRATION
2298  *
2299  * The basic program-order guarantee on SMP systems is that when a task [t]
2300  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2301  * execution on its new CPU [c1].
2302  *
2303  * For migration (of runnable tasks) this is provided by the following means:
2304  *
2305  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2306  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2307  *     rq(c1)->lock (if not at the same time, then in that order).
2308  *  C) LOCK of the rq(c1)->lock scheduling in task
2309  *
2310  * Release/acquire chaining guarantees that B happens after A and C after B.
2311  * Note: the CPU doing B need not be c0 or c1
2312  *
2313  * Example:
2314  *
2315  *   CPU0            CPU1            CPU2
2316  *
2317  *   LOCK rq(0)->lock
2318  *   sched-out X
2319  *   sched-in Y
2320  *   UNLOCK rq(0)->lock
2321  *
2322  *                                   LOCK rq(0)->lock // orders against CPU0
2323  *                                   dequeue X
2324  *                                   UNLOCK rq(0)->lock
2325  *
2326  *                                   LOCK rq(1)->lock
2327  *                                   enqueue X
2328  *                                   UNLOCK rq(1)->lock
2329  *
2330  *                   LOCK rq(1)->lock // orders against CPU2
2331  *                   sched-out Z
2332  *                   sched-in X
2333  *                   UNLOCK rq(1)->lock
2334  *
2335  *
2336  *  BLOCKING -- aka. SLEEP + WAKEUP
2337  *
2338  * For blocking we (obviously) need to provide the same guarantee as for
2339  * migration. However the means are completely different as there is no lock
2340  * chain to provide order. Instead we do:
2341  *
2342  *   1) smp_store_release(X->on_cpu, 0)
2343  *   2) smp_cond_load_acquire(!X->on_cpu)
2344  *
2345  * Example:
2346  *
2347  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2348  *
2349  *   LOCK rq(0)->lock LOCK X->pi_lock
2350  *   dequeue X
2351  *   sched-out X
2352  *   smp_store_release(X->on_cpu, 0);
2353  *
2354  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2355  *                    X->state = WAKING
2356  *                    set_task_cpu(X,2)
2357  *
2358  *                    LOCK rq(2)->lock
2359  *                    enqueue X
2360  *                    X->state = RUNNING
2361  *                    UNLOCK rq(2)->lock
2362  *
2363  *                                          LOCK rq(2)->lock // orders against CPU1
2364  *                                          sched-out Z
2365  *                                          sched-in X
2366  *                                          UNLOCK rq(2)->lock
2367  *
2368  *                    UNLOCK X->pi_lock
2369  *   UNLOCK rq(0)->lock
2370  *
2371  *
2372  * However, for wakeups there is a second guarantee we must provide, namely we
2373  * must ensure that CONDITION=1 done by the caller can not be reordered with
2374  * accesses to the task state; see try_to_wake_up() and set_current_state().
2375  */
2376 
2377 /**
2378  * try_to_wake_up - wake up a thread
2379  * @p: the thread to be awakened
2380  * @state: the mask of task states that can be woken
2381  * @wake_flags: wake modifier flags (WF_*)
2382  *
2383  * If (@state & @p->state) @p->state = TASK_RUNNING.
2384  *
2385  * If the task was not queued/runnable, also place it back on a runqueue.
2386  *
2387  * Atomic against schedule() which would dequeue a task, also see
2388  * set_current_state().
2389  *
2390  * This function executes a full memory barrier before accessing the task
2391  * state; see set_current_state().
2392  *
2393  * Return: %true if @p->state changes (an actual wakeup was done),
2394  *	   %false otherwise.
2395  */
2396 static int
2397 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2398 {
2399 	unsigned long flags;
2400 	int cpu, success = 0;
2401 
2402 	preempt_disable();
2403 	if (p == current) {
2404 		/*
2405 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2406 		 * == smp_processor_id()'. Together this means we can special
2407 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2408 		 * without taking any locks.
2409 		 *
2410 		 * In particular:
2411 		 *  - we rely on Program-Order guarantees for all the ordering,
2412 		 *  - we're serialized against set_special_state() by virtue of
2413 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2414 		 */
2415 		if (!(p->state & state))
2416 			goto out;
2417 
2418 		success = 1;
2419 		cpu = task_cpu(p);
2420 		trace_sched_waking(p);
2421 		p->state = TASK_RUNNING;
2422 		trace_sched_wakeup(p);
2423 		goto out;
2424 	}
2425 
2426 	/*
2427 	 * If we are going to wake up a thread waiting for CONDITION we
2428 	 * need to ensure that CONDITION=1 done by the caller can not be
2429 	 * reordered with p->state check below. This pairs with mb() in
2430 	 * set_current_state() the waiting thread does.
2431 	 */
2432 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2433 	smp_mb__after_spinlock();
2434 	if (!(p->state & state))
2435 		goto unlock;
2436 
2437 	trace_sched_waking(p);
2438 
2439 	/* We're going to change ->state: */
2440 	success = 1;
2441 	cpu = task_cpu(p);
2442 
2443 	/*
2444 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2445 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2446 	 * in smp_cond_load_acquire() below.
2447 	 *
2448 	 * sched_ttwu_pending()			try_to_wake_up()
2449 	 *   STORE p->on_rq = 1			  LOAD p->state
2450 	 *   UNLOCK rq->lock
2451 	 *
2452 	 * __schedule() (switch to task 'p')
2453 	 *   LOCK rq->lock			  smp_rmb();
2454 	 *   smp_mb__after_spinlock();
2455 	 *   UNLOCK rq->lock
2456 	 *
2457 	 * [task p]
2458 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2459 	 *
2460 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2461 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2462 	 */
2463 	smp_rmb();
2464 	if (p->on_rq && ttwu_remote(p, wake_flags))
2465 		goto unlock;
2466 
2467 #ifdef CONFIG_SMP
2468 	/*
2469 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2470 	 * possible to, falsely, observe p->on_cpu == 0.
2471 	 *
2472 	 * One must be running (->on_cpu == 1) in order to remove oneself
2473 	 * from the runqueue.
2474 	 *
2475 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2476 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2477 	 *   UNLOCK rq->lock
2478 	 *
2479 	 * __schedule() (put 'p' to sleep)
2480 	 *   LOCK rq->lock			  smp_rmb();
2481 	 *   smp_mb__after_spinlock();
2482 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2483 	 *
2484 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2485 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2486 	 */
2487 	smp_rmb();
2488 
2489 	/*
2490 	 * If the owning (remote) CPU is still in the middle of schedule() with
2491 	 * this task as prev, wait until its done referencing the task.
2492 	 *
2493 	 * Pairs with the smp_store_release() in finish_task().
2494 	 *
2495 	 * This ensures that tasks getting woken will be fully ordered against
2496 	 * their previous state and preserve Program Order.
2497 	 */
2498 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2499 
2500 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2501 	p->state = TASK_WAKING;
2502 
2503 	if (p->in_iowait) {
2504 		delayacct_blkio_end(p);
2505 		atomic_dec(&task_rq(p)->nr_iowait);
2506 	}
2507 
2508 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2509 	if (task_cpu(p) != cpu) {
2510 		wake_flags |= WF_MIGRATED;
2511 		psi_ttwu_dequeue(p);
2512 		set_task_cpu(p, cpu);
2513 	}
2514 
2515 #else /* CONFIG_SMP */
2516 
2517 	if (p->in_iowait) {
2518 		delayacct_blkio_end(p);
2519 		atomic_dec(&task_rq(p)->nr_iowait);
2520 	}
2521 
2522 #endif /* CONFIG_SMP */
2523 
2524 	ttwu_queue(p, cpu, wake_flags);
2525 unlock:
2526 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2527 out:
2528 	if (success)
2529 		ttwu_stat(p, cpu, wake_flags);
2530 	preempt_enable();
2531 
2532 	return success;
2533 }
2534 
2535 /**
2536  * wake_up_process - Wake up a specific process
2537  * @p: The process to be woken up.
2538  *
2539  * Attempt to wake up the nominated process and move it to the set of runnable
2540  * processes.
2541  *
2542  * Return: 1 if the process was woken up, 0 if it was already running.
2543  *
2544  * This function executes a full memory barrier before accessing the task state.
2545  */
2546 int wake_up_process(struct task_struct *p)
2547 {
2548 	return try_to_wake_up(p, TASK_NORMAL, 0);
2549 }
2550 EXPORT_SYMBOL(wake_up_process);
2551 
2552 int wake_up_state(struct task_struct *p, unsigned int state)
2553 {
2554 	return try_to_wake_up(p, state, 0);
2555 }
2556 
2557 /*
2558  * Perform scheduler related setup for a newly forked process p.
2559  * p is forked by current.
2560  *
2561  * __sched_fork() is basic setup used by init_idle() too:
2562  */
2563 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2564 {
2565 	p->on_rq			= 0;
2566 
2567 	p->se.on_rq			= 0;
2568 	p->se.exec_start		= 0;
2569 	p->se.sum_exec_runtime		= 0;
2570 	p->se.prev_sum_exec_runtime	= 0;
2571 	p->se.nr_migrations		= 0;
2572 	p->se.vruntime			= 0;
2573 	INIT_LIST_HEAD(&p->se.group_node);
2574 
2575 #ifdef CONFIG_FAIR_GROUP_SCHED
2576 	p->se.cfs_rq			= NULL;
2577 #endif
2578 
2579 #ifdef CONFIG_SCHEDSTATS
2580 	/* Even if schedstat is disabled, there should not be garbage */
2581 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2582 #endif
2583 
2584 	RB_CLEAR_NODE(&p->dl.rb_node);
2585 	init_dl_task_timer(&p->dl);
2586 	init_dl_inactive_task_timer(&p->dl);
2587 	__dl_clear_params(p);
2588 
2589 	INIT_LIST_HEAD(&p->rt.run_list);
2590 	p->rt.timeout		= 0;
2591 	p->rt.time_slice	= sched_rr_timeslice;
2592 	p->rt.on_rq		= 0;
2593 	p->rt.on_list		= 0;
2594 
2595 #ifdef CONFIG_PREEMPT_NOTIFIERS
2596 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2597 #endif
2598 
2599 #ifdef CONFIG_COMPACTION
2600 	p->capture_control = NULL;
2601 #endif
2602 	init_numa_balancing(clone_flags, p);
2603 }
2604 
2605 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2606 
2607 #ifdef CONFIG_NUMA_BALANCING
2608 
2609 void set_numabalancing_state(bool enabled)
2610 {
2611 	if (enabled)
2612 		static_branch_enable(&sched_numa_balancing);
2613 	else
2614 		static_branch_disable(&sched_numa_balancing);
2615 }
2616 
2617 #ifdef CONFIG_PROC_SYSCTL
2618 int sysctl_numa_balancing(struct ctl_table *table, int write,
2619 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2620 {
2621 	struct ctl_table t;
2622 	int err;
2623 	int state = static_branch_likely(&sched_numa_balancing);
2624 
2625 	if (write && !capable(CAP_SYS_ADMIN))
2626 		return -EPERM;
2627 
2628 	t = *table;
2629 	t.data = &state;
2630 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2631 	if (err < 0)
2632 		return err;
2633 	if (write)
2634 		set_numabalancing_state(state);
2635 	return err;
2636 }
2637 #endif
2638 #endif
2639 
2640 #ifdef CONFIG_SCHEDSTATS
2641 
2642 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2643 static bool __initdata __sched_schedstats = false;
2644 
2645 static void set_schedstats(bool enabled)
2646 {
2647 	if (enabled)
2648 		static_branch_enable(&sched_schedstats);
2649 	else
2650 		static_branch_disable(&sched_schedstats);
2651 }
2652 
2653 void force_schedstat_enabled(void)
2654 {
2655 	if (!schedstat_enabled()) {
2656 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2657 		static_branch_enable(&sched_schedstats);
2658 	}
2659 }
2660 
2661 static int __init setup_schedstats(char *str)
2662 {
2663 	int ret = 0;
2664 	if (!str)
2665 		goto out;
2666 
2667 	/*
2668 	 * This code is called before jump labels have been set up, so we can't
2669 	 * change the static branch directly just yet.  Instead set a temporary
2670 	 * variable so init_schedstats() can do it later.
2671 	 */
2672 	if (!strcmp(str, "enable")) {
2673 		__sched_schedstats = true;
2674 		ret = 1;
2675 	} else if (!strcmp(str, "disable")) {
2676 		__sched_schedstats = false;
2677 		ret = 1;
2678 	}
2679 out:
2680 	if (!ret)
2681 		pr_warn("Unable to parse schedstats=\n");
2682 
2683 	return ret;
2684 }
2685 __setup("schedstats=", setup_schedstats);
2686 
2687 static void __init init_schedstats(void)
2688 {
2689 	set_schedstats(__sched_schedstats);
2690 }
2691 
2692 #ifdef CONFIG_PROC_SYSCTL
2693 int sysctl_schedstats(struct ctl_table *table, int write,
2694 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2695 {
2696 	struct ctl_table t;
2697 	int err;
2698 	int state = static_branch_likely(&sched_schedstats);
2699 
2700 	if (write && !capable(CAP_SYS_ADMIN))
2701 		return -EPERM;
2702 
2703 	t = *table;
2704 	t.data = &state;
2705 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2706 	if (err < 0)
2707 		return err;
2708 	if (write)
2709 		set_schedstats(state);
2710 	return err;
2711 }
2712 #endif /* CONFIG_PROC_SYSCTL */
2713 #else  /* !CONFIG_SCHEDSTATS */
2714 static inline void init_schedstats(void) {}
2715 #endif /* CONFIG_SCHEDSTATS */
2716 
2717 /*
2718  * fork()/clone()-time setup:
2719  */
2720 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2721 {
2722 	unsigned long flags;
2723 
2724 	__sched_fork(clone_flags, p);
2725 	/*
2726 	 * We mark the process as NEW here. This guarantees that
2727 	 * nobody will actually run it, and a signal or other external
2728 	 * event cannot wake it up and insert it on the runqueue either.
2729 	 */
2730 	p->state = TASK_NEW;
2731 
2732 	/*
2733 	 * Make sure we do not leak PI boosting priority to the child.
2734 	 */
2735 	p->prio = current->normal_prio;
2736 
2737 	uclamp_fork(p);
2738 
2739 	/*
2740 	 * Revert to default priority/policy on fork if requested.
2741 	 */
2742 	if (unlikely(p->sched_reset_on_fork)) {
2743 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2744 			p->policy = SCHED_NORMAL;
2745 			p->static_prio = NICE_TO_PRIO(0);
2746 			p->rt_priority = 0;
2747 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2748 			p->static_prio = NICE_TO_PRIO(0);
2749 
2750 		p->prio = p->normal_prio = __normal_prio(p);
2751 		set_load_weight(p, false);
2752 
2753 		/*
2754 		 * We don't need the reset flag anymore after the fork. It has
2755 		 * fulfilled its duty:
2756 		 */
2757 		p->sched_reset_on_fork = 0;
2758 	}
2759 
2760 	if (dl_prio(p->prio))
2761 		return -EAGAIN;
2762 	else if (rt_prio(p->prio))
2763 		p->sched_class = &rt_sched_class;
2764 	else
2765 		p->sched_class = &fair_sched_class;
2766 
2767 	init_entity_runnable_average(&p->se);
2768 
2769 	/*
2770 	 * The child is not yet in the pid-hash so no cgroup attach races,
2771 	 * and the cgroup is pinned to this child due to cgroup_fork()
2772 	 * is ran before sched_fork().
2773 	 *
2774 	 * Silence PROVE_RCU.
2775 	 */
2776 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2777 	/*
2778 	 * We're setting the CPU for the first time, we don't migrate,
2779 	 * so use __set_task_cpu().
2780 	 */
2781 	__set_task_cpu(p, smp_processor_id());
2782 	if (p->sched_class->task_fork)
2783 		p->sched_class->task_fork(p);
2784 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2785 
2786 #ifdef CONFIG_SCHED_INFO
2787 	if (likely(sched_info_on()))
2788 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2789 #endif
2790 #if defined(CONFIG_SMP)
2791 	p->on_cpu = 0;
2792 #endif
2793 	init_task_preempt_count(p);
2794 #ifdef CONFIG_SMP
2795 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2796 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2797 #endif
2798 	return 0;
2799 }
2800 
2801 unsigned long to_ratio(u64 period, u64 runtime)
2802 {
2803 	if (runtime == RUNTIME_INF)
2804 		return BW_UNIT;
2805 
2806 	/*
2807 	 * Doing this here saves a lot of checks in all
2808 	 * the calling paths, and returning zero seems
2809 	 * safe for them anyway.
2810 	 */
2811 	if (period == 0)
2812 		return 0;
2813 
2814 	return div64_u64(runtime << BW_SHIFT, period);
2815 }
2816 
2817 /*
2818  * wake_up_new_task - wake up a newly created task for the first time.
2819  *
2820  * This function will do some initial scheduler statistics housekeeping
2821  * that must be done for every newly created context, then puts the task
2822  * on the runqueue and wakes it.
2823  */
2824 void wake_up_new_task(struct task_struct *p)
2825 {
2826 	struct rq_flags rf;
2827 	struct rq *rq;
2828 
2829 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2830 	p->state = TASK_RUNNING;
2831 #ifdef CONFIG_SMP
2832 	/*
2833 	 * Fork balancing, do it here and not earlier because:
2834 	 *  - cpus_ptr can change in the fork path
2835 	 *  - any previously selected CPU might disappear through hotplug
2836 	 *
2837 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2838 	 * as we're not fully set-up yet.
2839 	 */
2840 	p->recent_used_cpu = task_cpu(p);
2841 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2842 #endif
2843 	rq = __task_rq_lock(p, &rf);
2844 	update_rq_clock(rq);
2845 	post_init_entity_util_avg(p);
2846 
2847 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2848 	trace_sched_wakeup_new(p);
2849 	check_preempt_curr(rq, p, WF_FORK);
2850 #ifdef CONFIG_SMP
2851 	if (p->sched_class->task_woken) {
2852 		/*
2853 		 * Nothing relies on rq->lock after this, so its fine to
2854 		 * drop it.
2855 		 */
2856 		rq_unpin_lock(rq, &rf);
2857 		p->sched_class->task_woken(rq, p);
2858 		rq_repin_lock(rq, &rf);
2859 	}
2860 #endif
2861 	task_rq_unlock(rq, p, &rf);
2862 }
2863 
2864 #ifdef CONFIG_PREEMPT_NOTIFIERS
2865 
2866 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2867 
2868 void preempt_notifier_inc(void)
2869 {
2870 	static_branch_inc(&preempt_notifier_key);
2871 }
2872 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2873 
2874 void preempt_notifier_dec(void)
2875 {
2876 	static_branch_dec(&preempt_notifier_key);
2877 }
2878 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2879 
2880 /**
2881  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2882  * @notifier: notifier struct to register
2883  */
2884 void preempt_notifier_register(struct preempt_notifier *notifier)
2885 {
2886 	if (!static_branch_unlikely(&preempt_notifier_key))
2887 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2888 
2889 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2890 }
2891 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2892 
2893 /**
2894  * preempt_notifier_unregister - no longer interested in preemption notifications
2895  * @notifier: notifier struct to unregister
2896  *
2897  * This is *not* safe to call from within a preemption notifier.
2898  */
2899 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2900 {
2901 	hlist_del(&notifier->link);
2902 }
2903 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2904 
2905 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2906 {
2907 	struct preempt_notifier *notifier;
2908 
2909 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2910 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2911 }
2912 
2913 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2914 {
2915 	if (static_branch_unlikely(&preempt_notifier_key))
2916 		__fire_sched_in_preempt_notifiers(curr);
2917 }
2918 
2919 static void
2920 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2921 				   struct task_struct *next)
2922 {
2923 	struct preempt_notifier *notifier;
2924 
2925 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2926 		notifier->ops->sched_out(notifier, next);
2927 }
2928 
2929 static __always_inline void
2930 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2931 				 struct task_struct *next)
2932 {
2933 	if (static_branch_unlikely(&preempt_notifier_key))
2934 		__fire_sched_out_preempt_notifiers(curr, next);
2935 }
2936 
2937 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2938 
2939 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2940 {
2941 }
2942 
2943 static inline void
2944 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2945 				 struct task_struct *next)
2946 {
2947 }
2948 
2949 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2950 
2951 static inline void prepare_task(struct task_struct *next)
2952 {
2953 #ifdef CONFIG_SMP
2954 	/*
2955 	 * Claim the task as running, we do this before switching to it
2956 	 * such that any running task will have this set.
2957 	 */
2958 	next->on_cpu = 1;
2959 #endif
2960 }
2961 
2962 static inline void finish_task(struct task_struct *prev)
2963 {
2964 #ifdef CONFIG_SMP
2965 	/*
2966 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2967 	 * We must ensure this doesn't happen until the switch is completely
2968 	 * finished.
2969 	 *
2970 	 * In particular, the load of prev->state in finish_task_switch() must
2971 	 * happen before this.
2972 	 *
2973 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2974 	 */
2975 	smp_store_release(&prev->on_cpu, 0);
2976 #endif
2977 }
2978 
2979 static inline void
2980 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2981 {
2982 	/*
2983 	 * Since the runqueue lock will be released by the next
2984 	 * task (which is an invalid locking op but in the case
2985 	 * of the scheduler it's an obvious special-case), so we
2986 	 * do an early lockdep release here:
2987 	 */
2988 	rq_unpin_lock(rq, rf);
2989 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2990 #ifdef CONFIG_DEBUG_SPINLOCK
2991 	/* this is a valid case when another task releases the spinlock */
2992 	rq->lock.owner = next;
2993 #endif
2994 }
2995 
2996 static inline void finish_lock_switch(struct rq *rq)
2997 {
2998 	/*
2999 	 * If we are tracking spinlock dependencies then we have to
3000 	 * fix up the runqueue lock - which gets 'carried over' from
3001 	 * prev into current:
3002 	 */
3003 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3004 	raw_spin_unlock_irq(&rq->lock);
3005 }
3006 
3007 /*
3008  * NOP if the arch has not defined these:
3009  */
3010 
3011 #ifndef prepare_arch_switch
3012 # define prepare_arch_switch(next)	do { } while (0)
3013 #endif
3014 
3015 #ifndef finish_arch_post_lock_switch
3016 # define finish_arch_post_lock_switch()	do { } while (0)
3017 #endif
3018 
3019 /**
3020  * prepare_task_switch - prepare to switch tasks
3021  * @rq: the runqueue preparing to switch
3022  * @prev: the current task that is being switched out
3023  * @next: the task we are going to switch to.
3024  *
3025  * This is called with the rq lock held and interrupts off. It must
3026  * be paired with a subsequent finish_task_switch after the context
3027  * switch.
3028  *
3029  * prepare_task_switch sets up locking and calls architecture specific
3030  * hooks.
3031  */
3032 static inline void
3033 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3034 		    struct task_struct *next)
3035 {
3036 	kcov_prepare_switch(prev);
3037 	sched_info_switch(rq, prev, next);
3038 	perf_event_task_sched_out(prev, next);
3039 	rseq_preempt(prev);
3040 	fire_sched_out_preempt_notifiers(prev, next);
3041 	prepare_task(next);
3042 	prepare_arch_switch(next);
3043 }
3044 
3045 /**
3046  * finish_task_switch - clean up after a task-switch
3047  * @prev: the thread we just switched away from.
3048  *
3049  * finish_task_switch must be called after the context switch, paired
3050  * with a prepare_task_switch call before the context switch.
3051  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3052  * and do any other architecture-specific cleanup actions.
3053  *
3054  * Note that we may have delayed dropping an mm in context_switch(). If
3055  * so, we finish that here outside of the runqueue lock. (Doing it
3056  * with the lock held can cause deadlocks; see schedule() for
3057  * details.)
3058  *
3059  * The context switch have flipped the stack from under us and restored the
3060  * local variables which were saved when this task called schedule() in the
3061  * past. prev == current is still correct but we need to recalculate this_rq
3062  * because prev may have moved to another CPU.
3063  */
3064 static struct rq *finish_task_switch(struct task_struct *prev)
3065 	__releases(rq->lock)
3066 {
3067 	struct rq *rq = this_rq();
3068 	struct mm_struct *mm = rq->prev_mm;
3069 	long prev_state;
3070 
3071 	/*
3072 	 * The previous task will have left us with a preempt_count of 2
3073 	 * because it left us after:
3074 	 *
3075 	 *	schedule()
3076 	 *	  preempt_disable();			// 1
3077 	 *	  __schedule()
3078 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3079 	 *
3080 	 * Also, see FORK_PREEMPT_COUNT.
3081 	 */
3082 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3083 		      "corrupted preempt_count: %s/%d/0x%x\n",
3084 		      current->comm, current->pid, preempt_count()))
3085 		preempt_count_set(FORK_PREEMPT_COUNT);
3086 
3087 	rq->prev_mm = NULL;
3088 
3089 	/*
3090 	 * A task struct has one reference for the use as "current".
3091 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3092 	 * schedule one last time. The schedule call will never return, and
3093 	 * the scheduled task must drop that reference.
3094 	 *
3095 	 * We must observe prev->state before clearing prev->on_cpu (in
3096 	 * finish_task), otherwise a concurrent wakeup can get prev
3097 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3098 	 * transition, resulting in a double drop.
3099 	 */
3100 	prev_state = prev->state;
3101 	vtime_task_switch(prev);
3102 	perf_event_task_sched_in(prev, current);
3103 	finish_task(prev);
3104 	finish_lock_switch(rq);
3105 	finish_arch_post_lock_switch();
3106 	kcov_finish_switch(current);
3107 
3108 	fire_sched_in_preempt_notifiers(current);
3109 	/*
3110 	 * When switching through a kernel thread, the loop in
3111 	 * membarrier_{private,global}_expedited() may have observed that
3112 	 * kernel thread and not issued an IPI. It is therefore possible to
3113 	 * schedule between user->kernel->user threads without passing though
3114 	 * switch_mm(). Membarrier requires a barrier after storing to
3115 	 * rq->curr, before returning to userspace, so provide them here:
3116 	 *
3117 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3118 	 *   provided by mmdrop(),
3119 	 * - a sync_core for SYNC_CORE.
3120 	 */
3121 	if (mm) {
3122 		membarrier_mm_sync_core_before_usermode(mm);
3123 		mmdrop(mm);
3124 	}
3125 	if (unlikely(prev_state == TASK_DEAD)) {
3126 		if (prev->sched_class->task_dead)
3127 			prev->sched_class->task_dead(prev);
3128 
3129 		/*
3130 		 * Remove function-return probe instances associated with this
3131 		 * task and put them back on the free list.
3132 		 */
3133 		kprobe_flush_task(prev);
3134 
3135 		/* Task is done with its stack. */
3136 		put_task_stack(prev);
3137 
3138 		put_task_struct(prev);
3139 	}
3140 
3141 	tick_nohz_task_switch();
3142 	return rq;
3143 }
3144 
3145 #ifdef CONFIG_SMP
3146 
3147 /* rq->lock is NOT held, but preemption is disabled */
3148 static void __balance_callback(struct rq *rq)
3149 {
3150 	struct callback_head *head, *next;
3151 	void (*func)(struct rq *rq);
3152 	unsigned long flags;
3153 
3154 	raw_spin_lock_irqsave(&rq->lock, flags);
3155 	head = rq->balance_callback;
3156 	rq->balance_callback = NULL;
3157 	while (head) {
3158 		func = (void (*)(struct rq *))head->func;
3159 		next = head->next;
3160 		head->next = NULL;
3161 		head = next;
3162 
3163 		func(rq);
3164 	}
3165 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3166 }
3167 
3168 static inline void balance_callback(struct rq *rq)
3169 {
3170 	if (unlikely(rq->balance_callback))
3171 		__balance_callback(rq);
3172 }
3173 
3174 #else
3175 
3176 static inline void balance_callback(struct rq *rq)
3177 {
3178 }
3179 
3180 #endif
3181 
3182 /**
3183  * schedule_tail - first thing a freshly forked thread must call.
3184  * @prev: the thread we just switched away from.
3185  */
3186 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3187 	__releases(rq->lock)
3188 {
3189 	struct rq *rq;
3190 
3191 	/*
3192 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3193 	 * finish_task_switch() for details.
3194 	 *
3195 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3196 	 * and the preempt_enable() will end up enabling preemption (on
3197 	 * PREEMPT_COUNT kernels).
3198 	 */
3199 
3200 	rq = finish_task_switch(prev);
3201 	balance_callback(rq);
3202 	preempt_enable();
3203 
3204 	if (current->set_child_tid)
3205 		put_user(task_pid_vnr(current), current->set_child_tid);
3206 
3207 	calculate_sigpending();
3208 }
3209 
3210 /*
3211  * context_switch - switch to the new MM and the new thread's register state.
3212  */
3213 static __always_inline struct rq *
3214 context_switch(struct rq *rq, struct task_struct *prev,
3215 	       struct task_struct *next, struct rq_flags *rf)
3216 {
3217 	struct mm_struct *mm, *oldmm;
3218 
3219 	prepare_task_switch(rq, prev, next);
3220 
3221 	mm = next->mm;
3222 	oldmm = prev->active_mm;
3223 	/*
3224 	 * For paravirt, this is coupled with an exit in switch_to to
3225 	 * combine the page table reload and the switch backend into
3226 	 * one hypercall.
3227 	 */
3228 	arch_start_context_switch(prev);
3229 
3230 	/*
3231 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
3232 	 * NULL, we will pass through mmdrop() in finish_task_switch().
3233 	 * Both of these contain the full memory barrier required by
3234 	 * membarrier after storing to rq->curr, before returning to
3235 	 * user-space.
3236 	 */
3237 	if (!mm) {
3238 		next->active_mm = oldmm;
3239 		mmgrab(oldmm);
3240 		enter_lazy_tlb(oldmm, next);
3241 	} else
3242 		switch_mm_irqs_off(oldmm, mm, next);
3243 
3244 	if (!prev->mm) {
3245 		prev->active_mm = NULL;
3246 		rq->prev_mm = oldmm;
3247 	}
3248 
3249 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3250 
3251 	prepare_lock_switch(rq, next, rf);
3252 
3253 	/* Here we just switch the register state and the stack. */
3254 	switch_to(prev, next, prev);
3255 	barrier();
3256 
3257 	return finish_task_switch(prev);
3258 }
3259 
3260 /*
3261  * nr_running and nr_context_switches:
3262  *
3263  * externally visible scheduler statistics: current number of runnable
3264  * threads, total number of context switches performed since bootup.
3265  */
3266 unsigned long nr_running(void)
3267 {
3268 	unsigned long i, sum = 0;
3269 
3270 	for_each_online_cpu(i)
3271 		sum += cpu_rq(i)->nr_running;
3272 
3273 	return sum;
3274 }
3275 
3276 /*
3277  * Check if only the current task is running on the CPU.
3278  *
3279  * Caution: this function does not check that the caller has disabled
3280  * preemption, thus the result might have a time-of-check-to-time-of-use
3281  * race.  The caller is responsible to use it correctly, for example:
3282  *
3283  * - from a non-preemptible section (of course)
3284  *
3285  * - from a thread that is bound to a single CPU
3286  *
3287  * - in a loop with very short iterations (e.g. a polling loop)
3288  */
3289 bool single_task_running(void)
3290 {
3291 	return raw_rq()->nr_running == 1;
3292 }
3293 EXPORT_SYMBOL(single_task_running);
3294 
3295 unsigned long long nr_context_switches(void)
3296 {
3297 	int i;
3298 	unsigned long long sum = 0;
3299 
3300 	for_each_possible_cpu(i)
3301 		sum += cpu_rq(i)->nr_switches;
3302 
3303 	return sum;
3304 }
3305 
3306 /*
3307  * Consumers of these two interfaces, like for example the cpuidle menu
3308  * governor, are using nonsensical data. Preferring shallow idle state selection
3309  * for a CPU that has IO-wait which might not even end up running the task when
3310  * it does become runnable.
3311  */
3312 
3313 unsigned long nr_iowait_cpu(int cpu)
3314 {
3315 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3316 }
3317 
3318 /*
3319  * IO-wait accounting, and how its mostly bollocks (on SMP).
3320  *
3321  * The idea behind IO-wait account is to account the idle time that we could
3322  * have spend running if it were not for IO. That is, if we were to improve the
3323  * storage performance, we'd have a proportional reduction in IO-wait time.
3324  *
3325  * This all works nicely on UP, where, when a task blocks on IO, we account
3326  * idle time as IO-wait, because if the storage were faster, it could've been
3327  * running and we'd not be idle.
3328  *
3329  * This has been extended to SMP, by doing the same for each CPU. This however
3330  * is broken.
3331  *
3332  * Imagine for instance the case where two tasks block on one CPU, only the one
3333  * CPU will have IO-wait accounted, while the other has regular idle. Even
3334  * though, if the storage were faster, both could've ran at the same time,
3335  * utilising both CPUs.
3336  *
3337  * This means, that when looking globally, the current IO-wait accounting on
3338  * SMP is a lower bound, by reason of under accounting.
3339  *
3340  * Worse, since the numbers are provided per CPU, they are sometimes
3341  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3342  * associated with any one particular CPU, it can wake to another CPU than it
3343  * blocked on. This means the per CPU IO-wait number is meaningless.
3344  *
3345  * Task CPU affinities can make all that even more 'interesting'.
3346  */
3347 
3348 unsigned long nr_iowait(void)
3349 {
3350 	unsigned long i, sum = 0;
3351 
3352 	for_each_possible_cpu(i)
3353 		sum += nr_iowait_cpu(i);
3354 
3355 	return sum;
3356 }
3357 
3358 #ifdef CONFIG_SMP
3359 
3360 /*
3361  * sched_exec - execve() is a valuable balancing opportunity, because at
3362  * this point the task has the smallest effective memory and cache footprint.
3363  */
3364 void sched_exec(void)
3365 {
3366 	struct task_struct *p = current;
3367 	unsigned long flags;
3368 	int dest_cpu;
3369 
3370 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3371 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3372 	if (dest_cpu == smp_processor_id())
3373 		goto unlock;
3374 
3375 	if (likely(cpu_active(dest_cpu))) {
3376 		struct migration_arg arg = { p, dest_cpu };
3377 
3378 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3379 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3380 		return;
3381 	}
3382 unlock:
3383 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3384 }
3385 
3386 #endif
3387 
3388 DEFINE_PER_CPU(struct kernel_stat, kstat);
3389 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3390 
3391 EXPORT_PER_CPU_SYMBOL(kstat);
3392 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3393 
3394 /*
3395  * The function fair_sched_class.update_curr accesses the struct curr
3396  * and its field curr->exec_start; when called from task_sched_runtime(),
3397  * we observe a high rate of cache misses in practice.
3398  * Prefetching this data results in improved performance.
3399  */
3400 static inline void prefetch_curr_exec_start(struct task_struct *p)
3401 {
3402 #ifdef CONFIG_FAIR_GROUP_SCHED
3403 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3404 #else
3405 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3406 #endif
3407 	prefetch(curr);
3408 	prefetch(&curr->exec_start);
3409 }
3410 
3411 /*
3412  * Return accounted runtime for the task.
3413  * In case the task is currently running, return the runtime plus current's
3414  * pending runtime that have not been accounted yet.
3415  */
3416 unsigned long long task_sched_runtime(struct task_struct *p)
3417 {
3418 	struct rq_flags rf;
3419 	struct rq *rq;
3420 	u64 ns;
3421 
3422 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3423 	/*
3424 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3425 	 * So we have a optimization chance when the task's delta_exec is 0.
3426 	 * Reading ->on_cpu is racy, but this is ok.
3427 	 *
3428 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3429 	 * If we race with it entering CPU, unaccounted time is 0. This is
3430 	 * indistinguishable from the read occurring a few cycles earlier.
3431 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3432 	 * been accounted, so we're correct here as well.
3433 	 */
3434 	if (!p->on_cpu || !task_on_rq_queued(p))
3435 		return p->se.sum_exec_runtime;
3436 #endif
3437 
3438 	rq = task_rq_lock(p, &rf);
3439 	/*
3440 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3441 	 * project cycles that may never be accounted to this
3442 	 * thread, breaking clock_gettime().
3443 	 */
3444 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3445 		prefetch_curr_exec_start(p);
3446 		update_rq_clock(rq);
3447 		p->sched_class->update_curr(rq);
3448 	}
3449 	ns = p->se.sum_exec_runtime;
3450 	task_rq_unlock(rq, p, &rf);
3451 
3452 	return ns;
3453 }
3454 
3455 /*
3456  * This function gets called by the timer code, with HZ frequency.
3457  * We call it with interrupts disabled.
3458  */
3459 void scheduler_tick(void)
3460 {
3461 	int cpu = smp_processor_id();
3462 	struct rq *rq = cpu_rq(cpu);
3463 	struct task_struct *curr = rq->curr;
3464 	struct rq_flags rf;
3465 
3466 	sched_clock_tick();
3467 
3468 	rq_lock(rq, &rf);
3469 
3470 	update_rq_clock(rq);
3471 	curr->sched_class->task_tick(rq, curr, 0);
3472 	calc_global_load_tick(rq);
3473 	psi_task_tick(rq);
3474 
3475 	rq_unlock(rq, &rf);
3476 
3477 	perf_event_task_tick();
3478 
3479 #ifdef CONFIG_SMP
3480 	rq->idle_balance = idle_cpu(cpu);
3481 	trigger_load_balance(rq);
3482 #endif
3483 }
3484 
3485 #ifdef CONFIG_NO_HZ_FULL
3486 
3487 struct tick_work {
3488 	int			cpu;
3489 	struct delayed_work	work;
3490 };
3491 
3492 static struct tick_work __percpu *tick_work_cpu;
3493 
3494 static void sched_tick_remote(struct work_struct *work)
3495 {
3496 	struct delayed_work *dwork = to_delayed_work(work);
3497 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3498 	int cpu = twork->cpu;
3499 	struct rq *rq = cpu_rq(cpu);
3500 	struct task_struct *curr;
3501 	struct rq_flags rf;
3502 	u64 delta;
3503 
3504 	/*
3505 	 * Handle the tick only if it appears the remote CPU is running in full
3506 	 * dynticks mode. The check is racy by nature, but missing a tick or
3507 	 * having one too much is no big deal because the scheduler tick updates
3508 	 * statistics and checks timeslices in a time-independent way, regardless
3509 	 * of when exactly it is running.
3510 	 */
3511 	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3512 		goto out_requeue;
3513 
3514 	rq_lock_irq(rq, &rf);
3515 	curr = rq->curr;
3516 	if (is_idle_task(curr))
3517 		goto out_unlock;
3518 
3519 	update_rq_clock(rq);
3520 	delta = rq_clock_task(rq) - curr->se.exec_start;
3521 
3522 	/*
3523 	 * Make sure the next tick runs within a reasonable
3524 	 * amount of time.
3525 	 */
3526 	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3527 	curr->sched_class->task_tick(rq, curr, 0);
3528 
3529 out_unlock:
3530 	rq_unlock_irq(rq, &rf);
3531 
3532 out_requeue:
3533 	/*
3534 	 * Run the remote tick once per second (1Hz). This arbitrary
3535 	 * frequency is large enough to avoid overload but short enough
3536 	 * to keep scheduler internal stats reasonably up to date.
3537 	 */
3538 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3539 }
3540 
3541 static void sched_tick_start(int cpu)
3542 {
3543 	struct tick_work *twork;
3544 
3545 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3546 		return;
3547 
3548 	WARN_ON_ONCE(!tick_work_cpu);
3549 
3550 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3551 	twork->cpu = cpu;
3552 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3553 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3554 }
3555 
3556 #ifdef CONFIG_HOTPLUG_CPU
3557 static void sched_tick_stop(int cpu)
3558 {
3559 	struct tick_work *twork;
3560 
3561 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3562 		return;
3563 
3564 	WARN_ON_ONCE(!tick_work_cpu);
3565 
3566 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3567 	cancel_delayed_work_sync(&twork->work);
3568 }
3569 #endif /* CONFIG_HOTPLUG_CPU */
3570 
3571 int __init sched_tick_offload_init(void)
3572 {
3573 	tick_work_cpu = alloc_percpu(struct tick_work);
3574 	BUG_ON(!tick_work_cpu);
3575 
3576 	return 0;
3577 }
3578 
3579 #else /* !CONFIG_NO_HZ_FULL */
3580 static inline void sched_tick_start(int cpu) { }
3581 static inline void sched_tick_stop(int cpu) { }
3582 #endif
3583 
3584 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3585 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3586 /*
3587  * If the value passed in is equal to the current preempt count
3588  * then we just disabled preemption. Start timing the latency.
3589  */
3590 static inline void preempt_latency_start(int val)
3591 {
3592 	if (preempt_count() == val) {
3593 		unsigned long ip = get_lock_parent_ip();
3594 #ifdef CONFIG_DEBUG_PREEMPT
3595 		current->preempt_disable_ip = ip;
3596 #endif
3597 		trace_preempt_off(CALLER_ADDR0, ip);
3598 	}
3599 }
3600 
3601 void preempt_count_add(int val)
3602 {
3603 #ifdef CONFIG_DEBUG_PREEMPT
3604 	/*
3605 	 * Underflow?
3606 	 */
3607 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3608 		return;
3609 #endif
3610 	__preempt_count_add(val);
3611 #ifdef CONFIG_DEBUG_PREEMPT
3612 	/*
3613 	 * Spinlock count overflowing soon?
3614 	 */
3615 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3616 				PREEMPT_MASK - 10);
3617 #endif
3618 	preempt_latency_start(val);
3619 }
3620 EXPORT_SYMBOL(preempt_count_add);
3621 NOKPROBE_SYMBOL(preempt_count_add);
3622 
3623 /*
3624  * If the value passed in equals to the current preempt count
3625  * then we just enabled preemption. Stop timing the latency.
3626  */
3627 static inline void preempt_latency_stop(int val)
3628 {
3629 	if (preempt_count() == val)
3630 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3631 }
3632 
3633 void preempt_count_sub(int val)
3634 {
3635 #ifdef CONFIG_DEBUG_PREEMPT
3636 	/*
3637 	 * Underflow?
3638 	 */
3639 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3640 		return;
3641 	/*
3642 	 * Is the spinlock portion underflowing?
3643 	 */
3644 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3645 			!(preempt_count() & PREEMPT_MASK)))
3646 		return;
3647 #endif
3648 
3649 	preempt_latency_stop(val);
3650 	__preempt_count_sub(val);
3651 }
3652 EXPORT_SYMBOL(preempt_count_sub);
3653 NOKPROBE_SYMBOL(preempt_count_sub);
3654 
3655 #else
3656 static inline void preempt_latency_start(int val) { }
3657 static inline void preempt_latency_stop(int val) { }
3658 #endif
3659 
3660 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3661 {
3662 #ifdef CONFIG_DEBUG_PREEMPT
3663 	return p->preempt_disable_ip;
3664 #else
3665 	return 0;
3666 #endif
3667 }
3668 
3669 /*
3670  * Print scheduling while atomic bug:
3671  */
3672 static noinline void __schedule_bug(struct task_struct *prev)
3673 {
3674 	/* Save this before calling printk(), since that will clobber it */
3675 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3676 
3677 	if (oops_in_progress)
3678 		return;
3679 
3680 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3681 		prev->comm, prev->pid, preempt_count());
3682 
3683 	debug_show_held_locks(prev);
3684 	print_modules();
3685 	if (irqs_disabled())
3686 		print_irqtrace_events(prev);
3687 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3688 	    && in_atomic_preempt_off()) {
3689 		pr_err("Preemption disabled at:");
3690 		print_ip_sym(preempt_disable_ip);
3691 		pr_cont("\n");
3692 	}
3693 	if (panic_on_warn)
3694 		panic("scheduling while atomic\n");
3695 
3696 	dump_stack();
3697 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3698 }
3699 
3700 /*
3701  * Various schedule()-time debugging checks and statistics:
3702  */
3703 static inline void schedule_debug(struct task_struct *prev)
3704 {
3705 #ifdef CONFIG_SCHED_STACK_END_CHECK
3706 	if (task_stack_end_corrupted(prev))
3707 		panic("corrupted stack end detected inside scheduler\n");
3708 #endif
3709 
3710 	if (unlikely(in_atomic_preempt_off())) {
3711 		__schedule_bug(prev);
3712 		preempt_count_set(PREEMPT_DISABLED);
3713 	}
3714 	rcu_sleep_check();
3715 
3716 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3717 
3718 	schedstat_inc(this_rq()->sched_count);
3719 }
3720 
3721 /*
3722  * Pick up the highest-prio task:
3723  */
3724 static inline struct task_struct *
3725 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3726 {
3727 	const struct sched_class *class;
3728 	struct task_struct *p;
3729 
3730 	/*
3731 	 * Optimization: we know that if all tasks are in the fair class we can
3732 	 * call that function directly, but only if the @prev task wasn't of a
3733 	 * higher scheduling class, because otherwise those loose the
3734 	 * opportunity to pull in more work from other CPUs.
3735 	 */
3736 	if (likely((prev->sched_class == &idle_sched_class ||
3737 		    prev->sched_class == &fair_sched_class) &&
3738 		   rq->nr_running == rq->cfs.h_nr_running)) {
3739 
3740 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3741 		if (unlikely(p == RETRY_TASK))
3742 			goto again;
3743 
3744 		/* Assumes fair_sched_class->next == idle_sched_class */
3745 		if (unlikely(!p))
3746 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3747 
3748 		return p;
3749 	}
3750 
3751 again:
3752 	for_each_class(class) {
3753 		p = class->pick_next_task(rq, prev, rf);
3754 		if (p) {
3755 			if (unlikely(p == RETRY_TASK))
3756 				goto again;
3757 			return p;
3758 		}
3759 	}
3760 
3761 	/* The idle class should always have a runnable task: */
3762 	BUG();
3763 }
3764 
3765 /*
3766  * __schedule() is the main scheduler function.
3767  *
3768  * The main means of driving the scheduler and thus entering this function are:
3769  *
3770  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3771  *
3772  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3773  *      paths. For example, see arch/x86/entry_64.S.
3774  *
3775  *      To drive preemption between tasks, the scheduler sets the flag in timer
3776  *      interrupt handler scheduler_tick().
3777  *
3778  *   3. Wakeups don't really cause entry into schedule(). They add a
3779  *      task to the run-queue and that's it.
3780  *
3781  *      Now, if the new task added to the run-queue preempts the current
3782  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3783  *      called on the nearest possible occasion:
3784  *
3785  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3786  *
3787  *         - in syscall or exception context, at the next outmost
3788  *           preempt_enable(). (this might be as soon as the wake_up()'s
3789  *           spin_unlock()!)
3790  *
3791  *         - in IRQ context, return from interrupt-handler to
3792  *           preemptible context
3793  *
3794  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3795  *         then at the next:
3796  *
3797  *          - cond_resched() call
3798  *          - explicit schedule() call
3799  *          - return from syscall or exception to user-space
3800  *          - return from interrupt-handler to user-space
3801  *
3802  * WARNING: must be called with preemption disabled!
3803  */
3804 static void __sched notrace __schedule(bool preempt)
3805 {
3806 	struct task_struct *prev, *next;
3807 	unsigned long *switch_count;
3808 	struct rq_flags rf;
3809 	struct rq *rq;
3810 	int cpu;
3811 
3812 	cpu = smp_processor_id();
3813 	rq = cpu_rq(cpu);
3814 	prev = rq->curr;
3815 
3816 	schedule_debug(prev);
3817 
3818 	if (sched_feat(HRTICK))
3819 		hrtick_clear(rq);
3820 
3821 	local_irq_disable();
3822 	rcu_note_context_switch(preempt);
3823 
3824 	/*
3825 	 * Make sure that signal_pending_state()->signal_pending() below
3826 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3827 	 * done by the caller to avoid the race with signal_wake_up().
3828 	 *
3829 	 * The membarrier system call requires a full memory barrier
3830 	 * after coming from user-space, before storing to rq->curr.
3831 	 */
3832 	rq_lock(rq, &rf);
3833 	smp_mb__after_spinlock();
3834 
3835 	/* Promote REQ to ACT */
3836 	rq->clock_update_flags <<= 1;
3837 	update_rq_clock(rq);
3838 
3839 	switch_count = &prev->nivcsw;
3840 	if (!preempt && prev->state) {
3841 		if (signal_pending_state(prev->state, prev)) {
3842 			prev->state = TASK_RUNNING;
3843 		} else {
3844 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3845 
3846 			if (prev->in_iowait) {
3847 				atomic_inc(&rq->nr_iowait);
3848 				delayacct_blkio_start();
3849 			}
3850 		}
3851 		switch_count = &prev->nvcsw;
3852 	}
3853 
3854 	next = pick_next_task(rq, prev, &rf);
3855 	clear_tsk_need_resched(prev);
3856 	clear_preempt_need_resched();
3857 
3858 	if (likely(prev != next)) {
3859 		rq->nr_switches++;
3860 		rq->curr = next;
3861 		/*
3862 		 * The membarrier system call requires each architecture
3863 		 * to have a full memory barrier after updating
3864 		 * rq->curr, before returning to user-space.
3865 		 *
3866 		 * Here are the schemes providing that barrier on the
3867 		 * various architectures:
3868 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3869 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3870 		 * - finish_lock_switch() for weakly-ordered
3871 		 *   architectures where spin_unlock is a full barrier,
3872 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3873 		 *   is a RELEASE barrier),
3874 		 */
3875 		++*switch_count;
3876 
3877 		trace_sched_switch(preempt, prev, next);
3878 
3879 		/* Also unlocks the rq: */
3880 		rq = context_switch(rq, prev, next, &rf);
3881 	} else {
3882 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3883 		rq_unlock_irq(rq, &rf);
3884 	}
3885 
3886 	balance_callback(rq);
3887 }
3888 
3889 void __noreturn do_task_dead(void)
3890 {
3891 	/* Causes final put_task_struct in finish_task_switch(): */
3892 	set_special_state(TASK_DEAD);
3893 
3894 	/* Tell freezer to ignore us: */
3895 	current->flags |= PF_NOFREEZE;
3896 
3897 	__schedule(false);
3898 	BUG();
3899 
3900 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3901 	for (;;)
3902 		cpu_relax();
3903 }
3904 
3905 static inline void sched_submit_work(struct task_struct *tsk)
3906 {
3907 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3908 		return;
3909 
3910 	/*
3911 	 * If a worker went to sleep, notify and ask workqueue whether
3912 	 * it wants to wake up a task to maintain concurrency.
3913 	 * As this function is called inside the schedule() context,
3914 	 * we disable preemption to avoid it calling schedule() again
3915 	 * in the possible wakeup of a kworker.
3916 	 */
3917 	if (tsk->flags & PF_WQ_WORKER) {
3918 		preempt_disable();
3919 		wq_worker_sleeping(tsk);
3920 		preempt_enable_no_resched();
3921 	}
3922 
3923 	/*
3924 	 * If we are going to sleep and we have plugged IO queued,
3925 	 * make sure to submit it to avoid deadlocks.
3926 	 */
3927 	if (blk_needs_flush_plug(tsk))
3928 		blk_schedule_flush_plug(tsk);
3929 }
3930 
3931 static void sched_update_worker(struct task_struct *tsk)
3932 {
3933 	if (tsk->flags & PF_WQ_WORKER)
3934 		wq_worker_running(tsk);
3935 }
3936 
3937 asmlinkage __visible void __sched schedule(void)
3938 {
3939 	struct task_struct *tsk = current;
3940 
3941 	sched_submit_work(tsk);
3942 	do {
3943 		preempt_disable();
3944 		__schedule(false);
3945 		sched_preempt_enable_no_resched();
3946 	} while (need_resched());
3947 	sched_update_worker(tsk);
3948 }
3949 EXPORT_SYMBOL(schedule);
3950 
3951 /*
3952  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3953  * state (have scheduled out non-voluntarily) by making sure that all
3954  * tasks have either left the run queue or have gone into user space.
3955  * As idle tasks do not do either, they must not ever be preempted
3956  * (schedule out non-voluntarily).
3957  *
3958  * schedule_idle() is similar to schedule_preempt_disable() except that it
3959  * never enables preemption because it does not call sched_submit_work().
3960  */
3961 void __sched schedule_idle(void)
3962 {
3963 	/*
3964 	 * As this skips calling sched_submit_work(), which the idle task does
3965 	 * regardless because that function is a nop when the task is in a
3966 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3967 	 * current task can be in any other state. Note, idle is always in the
3968 	 * TASK_RUNNING state.
3969 	 */
3970 	WARN_ON_ONCE(current->state);
3971 	do {
3972 		__schedule(false);
3973 	} while (need_resched());
3974 }
3975 
3976 #ifdef CONFIG_CONTEXT_TRACKING
3977 asmlinkage __visible void __sched schedule_user(void)
3978 {
3979 	/*
3980 	 * If we come here after a random call to set_need_resched(),
3981 	 * or we have been woken up remotely but the IPI has not yet arrived,
3982 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3983 	 * we find a better solution.
3984 	 *
3985 	 * NB: There are buggy callers of this function.  Ideally we
3986 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3987 	 * too frequently to make sense yet.
3988 	 */
3989 	enum ctx_state prev_state = exception_enter();
3990 	schedule();
3991 	exception_exit(prev_state);
3992 }
3993 #endif
3994 
3995 /**
3996  * schedule_preempt_disabled - called with preemption disabled
3997  *
3998  * Returns with preemption disabled. Note: preempt_count must be 1
3999  */
4000 void __sched schedule_preempt_disabled(void)
4001 {
4002 	sched_preempt_enable_no_resched();
4003 	schedule();
4004 	preempt_disable();
4005 }
4006 
4007 static void __sched notrace preempt_schedule_common(void)
4008 {
4009 	do {
4010 		/*
4011 		 * Because the function tracer can trace preempt_count_sub()
4012 		 * and it also uses preempt_enable/disable_notrace(), if
4013 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4014 		 * by the function tracer will call this function again and
4015 		 * cause infinite recursion.
4016 		 *
4017 		 * Preemption must be disabled here before the function
4018 		 * tracer can trace. Break up preempt_disable() into two
4019 		 * calls. One to disable preemption without fear of being
4020 		 * traced. The other to still record the preemption latency,
4021 		 * which can also be traced by the function tracer.
4022 		 */
4023 		preempt_disable_notrace();
4024 		preempt_latency_start(1);
4025 		__schedule(true);
4026 		preempt_latency_stop(1);
4027 		preempt_enable_no_resched_notrace();
4028 
4029 		/*
4030 		 * Check again in case we missed a preemption opportunity
4031 		 * between schedule and now.
4032 		 */
4033 	} while (need_resched());
4034 }
4035 
4036 #ifdef CONFIG_PREEMPT
4037 /*
4038  * this is the entry point to schedule() from in-kernel preemption
4039  * off of preempt_enable. Kernel preemptions off return from interrupt
4040  * occur there and call schedule directly.
4041  */
4042 asmlinkage __visible void __sched notrace preempt_schedule(void)
4043 {
4044 	/*
4045 	 * If there is a non-zero preempt_count or interrupts are disabled,
4046 	 * we do not want to preempt the current task. Just return..
4047 	 */
4048 	if (likely(!preemptible()))
4049 		return;
4050 
4051 	preempt_schedule_common();
4052 }
4053 NOKPROBE_SYMBOL(preempt_schedule);
4054 EXPORT_SYMBOL(preempt_schedule);
4055 
4056 /**
4057  * preempt_schedule_notrace - preempt_schedule called by tracing
4058  *
4059  * The tracing infrastructure uses preempt_enable_notrace to prevent
4060  * recursion and tracing preempt enabling caused by the tracing
4061  * infrastructure itself. But as tracing can happen in areas coming
4062  * from userspace or just about to enter userspace, a preempt enable
4063  * can occur before user_exit() is called. This will cause the scheduler
4064  * to be called when the system is still in usermode.
4065  *
4066  * To prevent this, the preempt_enable_notrace will use this function
4067  * instead of preempt_schedule() to exit user context if needed before
4068  * calling the scheduler.
4069  */
4070 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4071 {
4072 	enum ctx_state prev_ctx;
4073 
4074 	if (likely(!preemptible()))
4075 		return;
4076 
4077 	do {
4078 		/*
4079 		 * Because the function tracer can trace preempt_count_sub()
4080 		 * and it also uses preempt_enable/disable_notrace(), if
4081 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4082 		 * by the function tracer will call this function again and
4083 		 * cause infinite recursion.
4084 		 *
4085 		 * Preemption must be disabled here before the function
4086 		 * tracer can trace. Break up preempt_disable() into two
4087 		 * calls. One to disable preemption without fear of being
4088 		 * traced. The other to still record the preemption latency,
4089 		 * which can also be traced by the function tracer.
4090 		 */
4091 		preempt_disable_notrace();
4092 		preempt_latency_start(1);
4093 		/*
4094 		 * Needs preempt disabled in case user_exit() is traced
4095 		 * and the tracer calls preempt_enable_notrace() causing
4096 		 * an infinite recursion.
4097 		 */
4098 		prev_ctx = exception_enter();
4099 		__schedule(true);
4100 		exception_exit(prev_ctx);
4101 
4102 		preempt_latency_stop(1);
4103 		preempt_enable_no_resched_notrace();
4104 	} while (need_resched());
4105 }
4106 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4107 
4108 #endif /* CONFIG_PREEMPT */
4109 
4110 /*
4111  * this is the entry point to schedule() from kernel preemption
4112  * off of irq context.
4113  * Note, that this is called and return with irqs disabled. This will
4114  * protect us against recursive calling from irq.
4115  */
4116 asmlinkage __visible void __sched preempt_schedule_irq(void)
4117 {
4118 	enum ctx_state prev_state;
4119 
4120 	/* Catch callers which need to be fixed */
4121 	BUG_ON(preempt_count() || !irqs_disabled());
4122 
4123 	prev_state = exception_enter();
4124 
4125 	do {
4126 		preempt_disable();
4127 		local_irq_enable();
4128 		__schedule(true);
4129 		local_irq_disable();
4130 		sched_preempt_enable_no_resched();
4131 	} while (need_resched());
4132 
4133 	exception_exit(prev_state);
4134 }
4135 
4136 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4137 			  void *key)
4138 {
4139 	return try_to_wake_up(curr->private, mode, wake_flags);
4140 }
4141 EXPORT_SYMBOL(default_wake_function);
4142 
4143 #ifdef CONFIG_RT_MUTEXES
4144 
4145 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4146 {
4147 	if (pi_task)
4148 		prio = min(prio, pi_task->prio);
4149 
4150 	return prio;
4151 }
4152 
4153 static inline int rt_effective_prio(struct task_struct *p, int prio)
4154 {
4155 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4156 
4157 	return __rt_effective_prio(pi_task, prio);
4158 }
4159 
4160 /*
4161  * rt_mutex_setprio - set the current priority of a task
4162  * @p: task to boost
4163  * @pi_task: donor task
4164  *
4165  * This function changes the 'effective' priority of a task. It does
4166  * not touch ->normal_prio like __setscheduler().
4167  *
4168  * Used by the rt_mutex code to implement priority inheritance
4169  * logic. Call site only calls if the priority of the task changed.
4170  */
4171 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4172 {
4173 	int prio, oldprio, queued, running, queue_flag =
4174 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4175 	const struct sched_class *prev_class;
4176 	struct rq_flags rf;
4177 	struct rq *rq;
4178 
4179 	/* XXX used to be waiter->prio, not waiter->task->prio */
4180 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4181 
4182 	/*
4183 	 * If nothing changed; bail early.
4184 	 */
4185 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4186 		return;
4187 
4188 	rq = __task_rq_lock(p, &rf);
4189 	update_rq_clock(rq);
4190 	/*
4191 	 * Set under pi_lock && rq->lock, such that the value can be used under
4192 	 * either lock.
4193 	 *
4194 	 * Note that there is loads of tricky to make this pointer cache work
4195 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4196 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4197 	 * task is allowed to run again (and can exit). This ensures the pointer
4198 	 * points to a blocked task -- which guaratees the task is present.
4199 	 */
4200 	p->pi_top_task = pi_task;
4201 
4202 	/*
4203 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4204 	 */
4205 	if (prio == p->prio && !dl_prio(prio))
4206 		goto out_unlock;
4207 
4208 	/*
4209 	 * Idle task boosting is a nono in general. There is one
4210 	 * exception, when PREEMPT_RT and NOHZ is active:
4211 	 *
4212 	 * The idle task calls get_next_timer_interrupt() and holds
4213 	 * the timer wheel base->lock on the CPU and another CPU wants
4214 	 * to access the timer (probably to cancel it). We can safely
4215 	 * ignore the boosting request, as the idle CPU runs this code
4216 	 * with interrupts disabled and will complete the lock
4217 	 * protected section without being interrupted. So there is no
4218 	 * real need to boost.
4219 	 */
4220 	if (unlikely(p == rq->idle)) {
4221 		WARN_ON(p != rq->curr);
4222 		WARN_ON(p->pi_blocked_on);
4223 		goto out_unlock;
4224 	}
4225 
4226 	trace_sched_pi_setprio(p, pi_task);
4227 	oldprio = p->prio;
4228 
4229 	if (oldprio == prio)
4230 		queue_flag &= ~DEQUEUE_MOVE;
4231 
4232 	prev_class = p->sched_class;
4233 	queued = task_on_rq_queued(p);
4234 	running = task_current(rq, p);
4235 	if (queued)
4236 		dequeue_task(rq, p, queue_flag);
4237 	if (running)
4238 		put_prev_task(rq, p);
4239 
4240 	/*
4241 	 * Boosting condition are:
4242 	 * 1. -rt task is running and holds mutex A
4243 	 *      --> -dl task blocks on mutex A
4244 	 *
4245 	 * 2. -dl task is running and holds mutex A
4246 	 *      --> -dl task blocks on mutex A and could preempt the
4247 	 *          running task
4248 	 */
4249 	if (dl_prio(prio)) {
4250 		if (!dl_prio(p->normal_prio) ||
4251 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4252 			p->dl.dl_boosted = 1;
4253 			queue_flag |= ENQUEUE_REPLENISH;
4254 		} else
4255 			p->dl.dl_boosted = 0;
4256 		p->sched_class = &dl_sched_class;
4257 	} else if (rt_prio(prio)) {
4258 		if (dl_prio(oldprio))
4259 			p->dl.dl_boosted = 0;
4260 		if (oldprio < prio)
4261 			queue_flag |= ENQUEUE_HEAD;
4262 		p->sched_class = &rt_sched_class;
4263 	} else {
4264 		if (dl_prio(oldprio))
4265 			p->dl.dl_boosted = 0;
4266 		if (rt_prio(oldprio))
4267 			p->rt.timeout = 0;
4268 		p->sched_class = &fair_sched_class;
4269 	}
4270 
4271 	p->prio = prio;
4272 
4273 	if (queued)
4274 		enqueue_task(rq, p, queue_flag);
4275 	if (running)
4276 		set_curr_task(rq, p);
4277 
4278 	check_class_changed(rq, p, prev_class, oldprio);
4279 out_unlock:
4280 	/* Avoid rq from going away on us: */
4281 	preempt_disable();
4282 	__task_rq_unlock(rq, &rf);
4283 
4284 	balance_callback(rq);
4285 	preempt_enable();
4286 }
4287 #else
4288 static inline int rt_effective_prio(struct task_struct *p, int prio)
4289 {
4290 	return prio;
4291 }
4292 #endif
4293 
4294 void set_user_nice(struct task_struct *p, long nice)
4295 {
4296 	bool queued, running;
4297 	int old_prio, delta;
4298 	struct rq_flags rf;
4299 	struct rq *rq;
4300 
4301 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4302 		return;
4303 	/*
4304 	 * We have to be careful, if called from sys_setpriority(),
4305 	 * the task might be in the middle of scheduling on another CPU.
4306 	 */
4307 	rq = task_rq_lock(p, &rf);
4308 	update_rq_clock(rq);
4309 
4310 	/*
4311 	 * The RT priorities are set via sched_setscheduler(), but we still
4312 	 * allow the 'normal' nice value to be set - but as expected
4313 	 * it wont have any effect on scheduling until the task is
4314 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4315 	 */
4316 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4317 		p->static_prio = NICE_TO_PRIO(nice);
4318 		goto out_unlock;
4319 	}
4320 	queued = task_on_rq_queued(p);
4321 	running = task_current(rq, p);
4322 	if (queued)
4323 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4324 	if (running)
4325 		put_prev_task(rq, p);
4326 
4327 	p->static_prio = NICE_TO_PRIO(nice);
4328 	set_load_weight(p, true);
4329 	old_prio = p->prio;
4330 	p->prio = effective_prio(p);
4331 	delta = p->prio - old_prio;
4332 
4333 	if (queued) {
4334 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4335 		/*
4336 		 * If the task increased its priority or is running and
4337 		 * lowered its priority, then reschedule its CPU:
4338 		 */
4339 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
4340 			resched_curr(rq);
4341 	}
4342 	if (running)
4343 		set_curr_task(rq, p);
4344 out_unlock:
4345 	task_rq_unlock(rq, p, &rf);
4346 }
4347 EXPORT_SYMBOL(set_user_nice);
4348 
4349 /*
4350  * can_nice - check if a task can reduce its nice value
4351  * @p: task
4352  * @nice: nice value
4353  */
4354 int can_nice(const struct task_struct *p, const int nice)
4355 {
4356 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4357 	int nice_rlim = nice_to_rlimit(nice);
4358 
4359 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4360 		capable(CAP_SYS_NICE));
4361 }
4362 
4363 #ifdef __ARCH_WANT_SYS_NICE
4364 
4365 /*
4366  * sys_nice - change the priority of the current process.
4367  * @increment: priority increment
4368  *
4369  * sys_setpriority is a more generic, but much slower function that
4370  * does similar things.
4371  */
4372 SYSCALL_DEFINE1(nice, int, increment)
4373 {
4374 	long nice, retval;
4375 
4376 	/*
4377 	 * Setpriority might change our priority at the same moment.
4378 	 * We don't have to worry. Conceptually one call occurs first
4379 	 * and we have a single winner.
4380 	 */
4381 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4382 	nice = task_nice(current) + increment;
4383 
4384 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4385 	if (increment < 0 && !can_nice(current, nice))
4386 		return -EPERM;
4387 
4388 	retval = security_task_setnice(current, nice);
4389 	if (retval)
4390 		return retval;
4391 
4392 	set_user_nice(current, nice);
4393 	return 0;
4394 }
4395 
4396 #endif
4397 
4398 /**
4399  * task_prio - return the priority value of a given task.
4400  * @p: the task in question.
4401  *
4402  * Return: The priority value as seen by users in /proc.
4403  * RT tasks are offset by -200. Normal tasks are centered
4404  * around 0, value goes from -16 to +15.
4405  */
4406 int task_prio(const struct task_struct *p)
4407 {
4408 	return p->prio - MAX_RT_PRIO;
4409 }
4410 
4411 /**
4412  * idle_cpu - is a given CPU idle currently?
4413  * @cpu: the processor in question.
4414  *
4415  * Return: 1 if the CPU is currently idle. 0 otherwise.
4416  */
4417 int idle_cpu(int cpu)
4418 {
4419 	struct rq *rq = cpu_rq(cpu);
4420 
4421 	if (rq->curr != rq->idle)
4422 		return 0;
4423 
4424 	if (rq->nr_running)
4425 		return 0;
4426 
4427 #ifdef CONFIG_SMP
4428 	if (!llist_empty(&rq->wake_list))
4429 		return 0;
4430 #endif
4431 
4432 	return 1;
4433 }
4434 
4435 /**
4436  * available_idle_cpu - is a given CPU idle for enqueuing work.
4437  * @cpu: the CPU in question.
4438  *
4439  * Return: 1 if the CPU is currently idle. 0 otherwise.
4440  */
4441 int available_idle_cpu(int cpu)
4442 {
4443 	if (!idle_cpu(cpu))
4444 		return 0;
4445 
4446 	if (vcpu_is_preempted(cpu))
4447 		return 0;
4448 
4449 	return 1;
4450 }
4451 
4452 /**
4453  * idle_task - return the idle task for a given CPU.
4454  * @cpu: the processor in question.
4455  *
4456  * Return: The idle task for the CPU @cpu.
4457  */
4458 struct task_struct *idle_task(int cpu)
4459 {
4460 	return cpu_rq(cpu)->idle;
4461 }
4462 
4463 /**
4464  * find_process_by_pid - find a process with a matching PID value.
4465  * @pid: the pid in question.
4466  *
4467  * The task of @pid, if found. %NULL otherwise.
4468  */
4469 static struct task_struct *find_process_by_pid(pid_t pid)
4470 {
4471 	return pid ? find_task_by_vpid(pid) : current;
4472 }
4473 
4474 /*
4475  * sched_setparam() passes in -1 for its policy, to let the functions
4476  * it calls know not to change it.
4477  */
4478 #define SETPARAM_POLICY	-1
4479 
4480 static void __setscheduler_params(struct task_struct *p,
4481 		const struct sched_attr *attr)
4482 {
4483 	int policy = attr->sched_policy;
4484 
4485 	if (policy == SETPARAM_POLICY)
4486 		policy = p->policy;
4487 
4488 	p->policy = policy;
4489 
4490 	if (dl_policy(policy))
4491 		__setparam_dl(p, attr);
4492 	else if (fair_policy(policy))
4493 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4494 
4495 	/*
4496 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4497 	 * !rt_policy. Always setting this ensures that things like
4498 	 * getparam()/getattr() don't report silly values for !rt tasks.
4499 	 */
4500 	p->rt_priority = attr->sched_priority;
4501 	p->normal_prio = normal_prio(p);
4502 	set_load_weight(p, true);
4503 }
4504 
4505 /* Actually do priority change: must hold pi & rq lock. */
4506 static void __setscheduler(struct rq *rq, struct task_struct *p,
4507 			   const struct sched_attr *attr, bool keep_boost)
4508 {
4509 	/*
4510 	 * If params can't change scheduling class changes aren't allowed
4511 	 * either.
4512 	 */
4513 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4514 		return;
4515 
4516 	__setscheduler_params(p, attr);
4517 
4518 	/*
4519 	 * Keep a potential priority boosting if called from
4520 	 * sched_setscheduler().
4521 	 */
4522 	p->prio = normal_prio(p);
4523 	if (keep_boost)
4524 		p->prio = rt_effective_prio(p, p->prio);
4525 
4526 	if (dl_prio(p->prio))
4527 		p->sched_class = &dl_sched_class;
4528 	else if (rt_prio(p->prio))
4529 		p->sched_class = &rt_sched_class;
4530 	else
4531 		p->sched_class = &fair_sched_class;
4532 }
4533 
4534 /*
4535  * Check the target process has a UID that matches the current process's:
4536  */
4537 static bool check_same_owner(struct task_struct *p)
4538 {
4539 	const struct cred *cred = current_cred(), *pcred;
4540 	bool match;
4541 
4542 	rcu_read_lock();
4543 	pcred = __task_cred(p);
4544 	match = (uid_eq(cred->euid, pcred->euid) ||
4545 		 uid_eq(cred->euid, pcred->uid));
4546 	rcu_read_unlock();
4547 	return match;
4548 }
4549 
4550 static int __sched_setscheduler(struct task_struct *p,
4551 				const struct sched_attr *attr,
4552 				bool user, bool pi)
4553 {
4554 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4555 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4556 	int retval, oldprio, oldpolicy = -1, queued, running;
4557 	int new_effective_prio, policy = attr->sched_policy;
4558 	const struct sched_class *prev_class;
4559 	struct rq_flags rf;
4560 	int reset_on_fork;
4561 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4562 	struct rq *rq;
4563 
4564 	/* The pi code expects interrupts enabled */
4565 	BUG_ON(pi && in_interrupt());
4566 recheck:
4567 	/* Double check policy once rq lock held: */
4568 	if (policy < 0) {
4569 		reset_on_fork = p->sched_reset_on_fork;
4570 		policy = oldpolicy = p->policy;
4571 	} else {
4572 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4573 
4574 		if (!valid_policy(policy))
4575 			return -EINVAL;
4576 	}
4577 
4578 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4579 		return -EINVAL;
4580 
4581 	/*
4582 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4583 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4584 	 * SCHED_BATCH and SCHED_IDLE is 0.
4585 	 */
4586 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4587 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4588 		return -EINVAL;
4589 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4590 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4591 		return -EINVAL;
4592 
4593 	/*
4594 	 * Allow unprivileged RT tasks to decrease priority:
4595 	 */
4596 	if (user && !capable(CAP_SYS_NICE)) {
4597 		if (fair_policy(policy)) {
4598 			if (attr->sched_nice < task_nice(p) &&
4599 			    !can_nice(p, attr->sched_nice))
4600 				return -EPERM;
4601 		}
4602 
4603 		if (rt_policy(policy)) {
4604 			unsigned long rlim_rtprio =
4605 					task_rlimit(p, RLIMIT_RTPRIO);
4606 
4607 			/* Can't set/change the rt policy: */
4608 			if (policy != p->policy && !rlim_rtprio)
4609 				return -EPERM;
4610 
4611 			/* Can't increase priority: */
4612 			if (attr->sched_priority > p->rt_priority &&
4613 			    attr->sched_priority > rlim_rtprio)
4614 				return -EPERM;
4615 		}
4616 
4617 		 /*
4618 		  * Can't set/change SCHED_DEADLINE policy at all for now
4619 		  * (safest behavior); in the future we would like to allow
4620 		  * unprivileged DL tasks to increase their relative deadline
4621 		  * or reduce their runtime (both ways reducing utilization)
4622 		  */
4623 		if (dl_policy(policy))
4624 			return -EPERM;
4625 
4626 		/*
4627 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4628 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4629 		 */
4630 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4631 			if (!can_nice(p, task_nice(p)))
4632 				return -EPERM;
4633 		}
4634 
4635 		/* Can't change other user's priorities: */
4636 		if (!check_same_owner(p))
4637 			return -EPERM;
4638 
4639 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4640 		if (p->sched_reset_on_fork && !reset_on_fork)
4641 			return -EPERM;
4642 	}
4643 
4644 	if (user) {
4645 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4646 			return -EINVAL;
4647 
4648 		retval = security_task_setscheduler(p);
4649 		if (retval)
4650 			return retval;
4651 	}
4652 
4653 	/* Update task specific "requested" clamps */
4654 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4655 		retval = uclamp_validate(p, attr);
4656 		if (retval)
4657 			return retval;
4658 	}
4659 
4660 	/*
4661 	 * Make sure no PI-waiters arrive (or leave) while we are
4662 	 * changing the priority of the task:
4663 	 *
4664 	 * To be able to change p->policy safely, the appropriate
4665 	 * runqueue lock must be held.
4666 	 */
4667 	rq = task_rq_lock(p, &rf);
4668 	update_rq_clock(rq);
4669 
4670 	/*
4671 	 * Changing the policy of the stop threads its a very bad idea:
4672 	 */
4673 	if (p == rq->stop) {
4674 		task_rq_unlock(rq, p, &rf);
4675 		return -EINVAL;
4676 	}
4677 
4678 	/*
4679 	 * If not changing anything there's no need to proceed further,
4680 	 * but store a possible modification of reset_on_fork.
4681 	 */
4682 	if (unlikely(policy == p->policy)) {
4683 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4684 			goto change;
4685 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4686 			goto change;
4687 		if (dl_policy(policy) && dl_param_changed(p, attr))
4688 			goto change;
4689 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4690 			goto change;
4691 
4692 		p->sched_reset_on_fork = reset_on_fork;
4693 		task_rq_unlock(rq, p, &rf);
4694 		return 0;
4695 	}
4696 change:
4697 
4698 	if (user) {
4699 #ifdef CONFIG_RT_GROUP_SCHED
4700 		/*
4701 		 * Do not allow realtime tasks into groups that have no runtime
4702 		 * assigned.
4703 		 */
4704 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4705 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4706 				!task_group_is_autogroup(task_group(p))) {
4707 			task_rq_unlock(rq, p, &rf);
4708 			return -EPERM;
4709 		}
4710 #endif
4711 #ifdef CONFIG_SMP
4712 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4713 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4714 			cpumask_t *span = rq->rd->span;
4715 
4716 			/*
4717 			 * Don't allow tasks with an affinity mask smaller than
4718 			 * the entire root_domain to become SCHED_DEADLINE. We
4719 			 * will also fail if there's no bandwidth available.
4720 			 */
4721 			if (!cpumask_subset(span, p->cpus_ptr) ||
4722 			    rq->rd->dl_bw.bw == 0) {
4723 				task_rq_unlock(rq, p, &rf);
4724 				return -EPERM;
4725 			}
4726 		}
4727 #endif
4728 	}
4729 
4730 	/* Re-check policy now with rq lock held: */
4731 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4732 		policy = oldpolicy = -1;
4733 		task_rq_unlock(rq, p, &rf);
4734 		goto recheck;
4735 	}
4736 
4737 	/*
4738 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4739 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4740 	 * is available.
4741 	 */
4742 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4743 		task_rq_unlock(rq, p, &rf);
4744 		return -EBUSY;
4745 	}
4746 
4747 	p->sched_reset_on_fork = reset_on_fork;
4748 	oldprio = p->prio;
4749 
4750 	if (pi) {
4751 		/*
4752 		 * Take priority boosted tasks into account. If the new
4753 		 * effective priority is unchanged, we just store the new
4754 		 * normal parameters and do not touch the scheduler class and
4755 		 * the runqueue. This will be done when the task deboost
4756 		 * itself.
4757 		 */
4758 		new_effective_prio = rt_effective_prio(p, newprio);
4759 		if (new_effective_prio == oldprio)
4760 			queue_flags &= ~DEQUEUE_MOVE;
4761 	}
4762 
4763 	queued = task_on_rq_queued(p);
4764 	running = task_current(rq, p);
4765 	if (queued)
4766 		dequeue_task(rq, p, queue_flags);
4767 	if (running)
4768 		put_prev_task(rq, p);
4769 
4770 	prev_class = p->sched_class;
4771 
4772 	__setscheduler(rq, p, attr, pi);
4773 	__setscheduler_uclamp(p, attr);
4774 
4775 	if (queued) {
4776 		/*
4777 		 * We enqueue to tail when the priority of a task is
4778 		 * increased (user space view).
4779 		 */
4780 		if (oldprio < p->prio)
4781 			queue_flags |= ENQUEUE_HEAD;
4782 
4783 		enqueue_task(rq, p, queue_flags);
4784 	}
4785 	if (running)
4786 		set_curr_task(rq, p);
4787 
4788 	check_class_changed(rq, p, prev_class, oldprio);
4789 
4790 	/* Avoid rq from going away on us: */
4791 	preempt_disable();
4792 	task_rq_unlock(rq, p, &rf);
4793 
4794 	if (pi)
4795 		rt_mutex_adjust_pi(p);
4796 
4797 	/* Run balance callbacks after we've adjusted the PI chain: */
4798 	balance_callback(rq);
4799 	preempt_enable();
4800 
4801 	return 0;
4802 }
4803 
4804 static int _sched_setscheduler(struct task_struct *p, int policy,
4805 			       const struct sched_param *param, bool check)
4806 {
4807 	struct sched_attr attr = {
4808 		.sched_policy   = policy,
4809 		.sched_priority = param->sched_priority,
4810 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4811 	};
4812 
4813 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4814 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4815 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4816 		policy &= ~SCHED_RESET_ON_FORK;
4817 		attr.sched_policy = policy;
4818 	}
4819 
4820 	return __sched_setscheduler(p, &attr, check, true);
4821 }
4822 /**
4823  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4824  * @p: the task in question.
4825  * @policy: new policy.
4826  * @param: structure containing the new RT priority.
4827  *
4828  * Return: 0 on success. An error code otherwise.
4829  *
4830  * NOTE that the task may be already dead.
4831  */
4832 int sched_setscheduler(struct task_struct *p, int policy,
4833 		       const struct sched_param *param)
4834 {
4835 	return _sched_setscheduler(p, policy, param, true);
4836 }
4837 EXPORT_SYMBOL_GPL(sched_setscheduler);
4838 
4839 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4840 {
4841 	return __sched_setscheduler(p, attr, true, true);
4842 }
4843 EXPORT_SYMBOL_GPL(sched_setattr);
4844 
4845 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4846 {
4847 	return __sched_setscheduler(p, attr, false, true);
4848 }
4849 
4850 /**
4851  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4852  * @p: the task in question.
4853  * @policy: new policy.
4854  * @param: structure containing the new RT priority.
4855  *
4856  * Just like sched_setscheduler, only don't bother checking if the
4857  * current context has permission.  For example, this is needed in
4858  * stop_machine(): we create temporary high priority worker threads,
4859  * but our caller might not have that capability.
4860  *
4861  * Return: 0 on success. An error code otherwise.
4862  */
4863 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4864 			       const struct sched_param *param)
4865 {
4866 	return _sched_setscheduler(p, policy, param, false);
4867 }
4868 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4869 
4870 static int
4871 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4872 {
4873 	struct sched_param lparam;
4874 	struct task_struct *p;
4875 	int retval;
4876 
4877 	if (!param || pid < 0)
4878 		return -EINVAL;
4879 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4880 		return -EFAULT;
4881 
4882 	rcu_read_lock();
4883 	retval = -ESRCH;
4884 	p = find_process_by_pid(pid);
4885 	if (p != NULL)
4886 		retval = sched_setscheduler(p, policy, &lparam);
4887 	rcu_read_unlock();
4888 
4889 	return retval;
4890 }
4891 
4892 /*
4893  * Mimics kernel/events/core.c perf_copy_attr().
4894  */
4895 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4896 {
4897 	u32 size;
4898 	int ret;
4899 
4900 	if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
4901 		return -EFAULT;
4902 
4903 	/* Zero the full structure, so that a short copy will be nice: */
4904 	memset(attr, 0, sizeof(*attr));
4905 
4906 	ret = get_user(size, &uattr->size);
4907 	if (ret)
4908 		return ret;
4909 
4910 	/* Bail out on silly large: */
4911 	if (size > PAGE_SIZE)
4912 		goto err_size;
4913 
4914 	/* ABI compatibility quirk: */
4915 	if (!size)
4916 		size = SCHED_ATTR_SIZE_VER0;
4917 
4918 	if (size < SCHED_ATTR_SIZE_VER0)
4919 		goto err_size;
4920 
4921 	/*
4922 	 * If we're handed a bigger struct than we know of,
4923 	 * ensure all the unknown bits are 0 - i.e. new
4924 	 * user-space does not rely on any kernel feature
4925 	 * extensions we dont know about yet.
4926 	 */
4927 	if (size > sizeof(*attr)) {
4928 		unsigned char __user *addr;
4929 		unsigned char __user *end;
4930 		unsigned char val;
4931 
4932 		addr = (void __user *)uattr + sizeof(*attr);
4933 		end  = (void __user *)uattr + size;
4934 
4935 		for (; addr < end; addr++) {
4936 			ret = get_user(val, addr);
4937 			if (ret)
4938 				return ret;
4939 			if (val)
4940 				goto err_size;
4941 		}
4942 		size = sizeof(*attr);
4943 	}
4944 
4945 	ret = copy_from_user(attr, uattr, size);
4946 	if (ret)
4947 		return -EFAULT;
4948 
4949 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
4950 	    size < SCHED_ATTR_SIZE_VER1)
4951 		return -EINVAL;
4952 
4953 	/*
4954 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4955 	 * to be strict and return an error on out-of-bounds values?
4956 	 */
4957 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4958 
4959 	return 0;
4960 
4961 err_size:
4962 	put_user(sizeof(*attr), &uattr->size);
4963 	return -E2BIG;
4964 }
4965 
4966 /**
4967  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4968  * @pid: the pid in question.
4969  * @policy: new policy.
4970  * @param: structure containing the new RT priority.
4971  *
4972  * Return: 0 on success. An error code otherwise.
4973  */
4974 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4975 {
4976 	if (policy < 0)
4977 		return -EINVAL;
4978 
4979 	return do_sched_setscheduler(pid, policy, param);
4980 }
4981 
4982 /**
4983  * sys_sched_setparam - set/change the RT priority of a thread
4984  * @pid: the pid in question.
4985  * @param: structure containing the new RT priority.
4986  *
4987  * Return: 0 on success. An error code otherwise.
4988  */
4989 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4990 {
4991 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4992 }
4993 
4994 /**
4995  * sys_sched_setattr - same as above, but with extended sched_attr
4996  * @pid: the pid in question.
4997  * @uattr: structure containing the extended parameters.
4998  * @flags: for future extension.
4999  */
5000 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5001 			       unsigned int, flags)
5002 {
5003 	struct sched_attr attr;
5004 	struct task_struct *p;
5005 	int retval;
5006 
5007 	if (!uattr || pid < 0 || flags)
5008 		return -EINVAL;
5009 
5010 	retval = sched_copy_attr(uattr, &attr);
5011 	if (retval)
5012 		return retval;
5013 
5014 	if ((int)attr.sched_policy < 0)
5015 		return -EINVAL;
5016 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5017 		attr.sched_policy = SETPARAM_POLICY;
5018 
5019 	rcu_read_lock();
5020 	retval = -ESRCH;
5021 	p = find_process_by_pid(pid);
5022 	if (likely(p))
5023 		get_task_struct(p);
5024 	rcu_read_unlock();
5025 
5026 	if (likely(p)) {
5027 		retval = sched_setattr(p, &attr);
5028 		put_task_struct(p);
5029 	}
5030 
5031 	return retval;
5032 }
5033 
5034 /**
5035  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5036  * @pid: the pid in question.
5037  *
5038  * Return: On success, the policy of the thread. Otherwise, a negative error
5039  * code.
5040  */
5041 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5042 {
5043 	struct task_struct *p;
5044 	int retval;
5045 
5046 	if (pid < 0)
5047 		return -EINVAL;
5048 
5049 	retval = -ESRCH;
5050 	rcu_read_lock();
5051 	p = find_process_by_pid(pid);
5052 	if (p) {
5053 		retval = security_task_getscheduler(p);
5054 		if (!retval)
5055 			retval = p->policy
5056 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5057 	}
5058 	rcu_read_unlock();
5059 	return retval;
5060 }
5061 
5062 /**
5063  * sys_sched_getparam - get the RT priority of a thread
5064  * @pid: the pid in question.
5065  * @param: structure containing the RT priority.
5066  *
5067  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5068  * code.
5069  */
5070 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5071 {
5072 	struct sched_param lp = { .sched_priority = 0 };
5073 	struct task_struct *p;
5074 	int retval;
5075 
5076 	if (!param || pid < 0)
5077 		return -EINVAL;
5078 
5079 	rcu_read_lock();
5080 	p = find_process_by_pid(pid);
5081 	retval = -ESRCH;
5082 	if (!p)
5083 		goto out_unlock;
5084 
5085 	retval = security_task_getscheduler(p);
5086 	if (retval)
5087 		goto out_unlock;
5088 
5089 	if (task_has_rt_policy(p))
5090 		lp.sched_priority = p->rt_priority;
5091 	rcu_read_unlock();
5092 
5093 	/*
5094 	 * This one might sleep, we cannot do it with a spinlock held ...
5095 	 */
5096 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5097 
5098 	return retval;
5099 
5100 out_unlock:
5101 	rcu_read_unlock();
5102 	return retval;
5103 }
5104 
5105 static int sched_read_attr(struct sched_attr __user *uattr,
5106 			   struct sched_attr *attr,
5107 			   unsigned int usize)
5108 {
5109 	int ret;
5110 
5111 	if (!access_ok(uattr, usize))
5112 		return -EFAULT;
5113 
5114 	/*
5115 	 * If we're handed a smaller struct than we know of,
5116 	 * ensure all the unknown bits are 0 - i.e. old
5117 	 * user-space does not get uncomplete information.
5118 	 */
5119 	if (usize < sizeof(*attr)) {
5120 		unsigned char *addr;
5121 		unsigned char *end;
5122 
5123 		addr = (void *)attr + usize;
5124 		end  = (void *)attr + sizeof(*attr);
5125 
5126 		for (; addr < end; addr++) {
5127 			if (*addr)
5128 				return -EFBIG;
5129 		}
5130 
5131 		attr->size = usize;
5132 	}
5133 
5134 	ret = copy_to_user(uattr, attr, attr->size);
5135 	if (ret)
5136 		return -EFAULT;
5137 
5138 	return 0;
5139 }
5140 
5141 /**
5142  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5143  * @pid: the pid in question.
5144  * @uattr: structure containing the extended parameters.
5145  * @size: sizeof(attr) for fwd/bwd comp.
5146  * @flags: for future extension.
5147  */
5148 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5149 		unsigned int, size, unsigned int, flags)
5150 {
5151 	struct sched_attr attr = {
5152 		.size = sizeof(struct sched_attr),
5153 	};
5154 	struct task_struct *p;
5155 	int retval;
5156 
5157 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
5158 	    size < SCHED_ATTR_SIZE_VER0 || flags)
5159 		return -EINVAL;
5160 
5161 	rcu_read_lock();
5162 	p = find_process_by_pid(pid);
5163 	retval = -ESRCH;
5164 	if (!p)
5165 		goto out_unlock;
5166 
5167 	retval = security_task_getscheduler(p);
5168 	if (retval)
5169 		goto out_unlock;
5170 
5171 	attr.sched_policy = p->policy;
5172 	if (p->sched_reset_on_fork)
5173 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5174 	if (task_has_dl_policy(p))
5175 		__getparam_dl(p, &attr);
5176 	else if (task_has_rt_policy(p))
5177 		attr.sched_priority = p->rt_priority;
5178 	else
5179 		attr.sched_nice = task_nice(p);
5180 
5181 #ifdef CONFIG_UCLAMP_TASK
5182 	attr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5183 	attr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5184 #endif
5185 
5186 	rcu_read_unlock();
5187 
5188 	retval = sched_read_attr(uattr, &attr, size);
5189 	return retval;
5190 
5191 out_unlock:
5192 	rcu_read_unlock();
5193 	return retval;
5194 }
5195 
5196 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5197 {
5198 	cpumask_var_t cpus_allowed, new_mask;
5199 	struct task_struct *p;
5200 	int retval;
5201 
5202 	rcu_read_lock();
5203 
5204 	p = find_process_by_pid(pid);
5205 	if (!p) {
5206 		rcu_read_unlock();
5207 		return -ESRCH;
5208 	}
5209 
5210 	/* Prevent p going away */
5211 	get_task_struct(p);
5212 	rcu_read_unlock();
5213 
5214 	if (p->flags & PF_NO_SETAFFINITY) {
5215 		retval = -EINVAL;
5216 		goto out_put_task;
5217 	}
5218 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5219 		retval = -ENOMEM;
5220 		goto out_put_task;
5221 	}
5222 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5223 		retval = -ENOMEM;
5224 		goto out_free_cpus_allowed;
5225 	}
5226 	retval = -EPERM;
5227 	if (!check_same_owner(p)) {
5228 		rcu_read_lock();
5229 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5230 			rcu_read_unlock();
5231 			goto out_free_new_mask;
5232 		}
5233 		rcu_read_unlock();
5234 	}
5235 
5236 	retval = security_task_setscheduler(p);
5237 	if (retval)
5238 		goto out_free_new_mask;
5239 
5240 
5241 	cpuset_cpus_allowed(p, cpus_allowed);
5242 	cpumask_and(new_mask, in_mask, cpus_allowed);
5243 
5244 	/*
5245 	 * Since bandwidth control happens on root_domain basis,
5246 	 * if admission test is enabled, we only admit -deadline
5247 	 * tasks allowed to run on all the CPUs in the task's
5248 	 * root_domain.
5249 	 */
5250 #ifdef CONFIG_SMP
5251 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5252 		rcu_read_lock();
5253 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5254 			retval = -EBUSY;
5255 			rcu_read_unlock();
5256 			goto out_free_new_mask;
5257 		}
5258 		rcu_read_unlock();
5259 	}
5260 #endif
5261 again:
5262 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5263 
5264 	if (!retval) {
5265 		cpuset_cpus_allowed(p, cpus_allowed);
5266 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5267 			/*
5268 			 * We must have raced with a concurrent cpuset
5269 			 * update. Just reset the cpus_allowed to the
5270 			 * cpuset's cpus_allowed
5271 			 */
5272 			cpumask_copy(new_mask, cpus_allowed);
5273 			goto again;
5274 		}
5275 	}
5276 out_free_new_mask:
5277 	free_cpumask_var(new_mask);
5278 out_free_cpus_allowed:
5279 	free_cpumask_var(cpus_allowed);
5280 out_put_task:
5281 	put_task_struct(p);
5282 	return retval;
5283 }
5284 
5285 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5286 			     struct cpumask *new_mask)
5287 {
5288 	if (len < cpumask_size())
5289 		cpumask_clear(new_mask);
5290 	else if (len > cpumask_size())
5291 		len = cpumask_size();
5292 
5293 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5294 }
5295 
5296 /**
5297  * sys_sched_setaffinity - set the CPU affinity of a process
5298  * @pid: pid of the process
5299  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5300  * @user_mask_ptr: user-space pointer to the new CPU mask
5301  *
5302  * Return: 0 on success. An error code otherwise.
5303  */
5304 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5305 		unsigned long __user *, user_mask_ptr)
5306 {
5307 	cpumask_var_t new_mask;
5308 	int retval;
5309 
5310 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5311 		return -ENOMEM;
5312 
5313 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5314 	if (retval == 0)
5315 		retval = sched_setaffinity(pid, new_mask);
5316 	free_cpumask_var(new_mask);
5317 	return retval;
5318 }
5319 
5320 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5321 {
5322 	struct task_struct *p;
5323 	unsigned long flags;
5324 	int retval;
5325 
5326 	rcu_read_lock();
5327 
5328 	retval = -ESRCH;
5329 	p = find_process_by_pid(pid);
5330 	if (!p)
5331 		goto out_unlock;
5332 
5333 	retval = security_task_getscheduler(p);
5334 	if (retval)
5335 		goto out_unlock;
5336 
5337 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5338 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5339 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5340 
5341 out_unlock:
5342 	rcu_read_unlock();
5343 
5344 	return retval;
5345 }
5346 
5347 /**
5348  * sys_sched_getaffinity - get the CPU affinity of a process
5349  * @pid: pid of the process
5350  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5351  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5352  *
5353  * Return: size of CPU mask copied to user_mask_ptr on success. An
5354  * error code otherwise.
5355  */
5356 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5357 		unsigned long __user *, user_mask_ptr)
5358 {
5359 	int ret;
5360 	cpumask_var_t mask;
5361 
5362 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5363 		return -EINVAL;
5364 	if (len & (sizeof(unsigned long)-1))
5365 		return -EINVAL;
5366 
5367 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5368 		return -ENOMEM;
5369 
5370 	ret = sched_getaffinity(pid, mask);
5371 	if (ret == 0) {
5372 		unsigned int retlen = min(len, cpumask_size());
5373 
5374 		if (copy_to_user(user_mask_ptr, mask, retlen))
5375 			ret = -EFAULT;
5376 		else
5377 			ret = retlen;
5378 	}
5379 	free_cpumask_var(mask);
5380 
5381 	return ret;
5382 }
5383 
5384 /**
5385  * sys_sched_yield - yield the current processor to other threads.
5386  *
5387  * This function yields the current CPU to other tasks. If there are no
5388  * other threads running on this CPU then this function will return.
5389  *
5390  * Return: 0.
5391  */
5392 static void do_sched_yield(void)
5393 {
5394 	struct rq_flags rf;
5395 	struct rq *rq;
5396 
5397 	rq = this_rq_lock_irq(&rf);
5398 
5399 	schedstat_inc(rq->yld_count);
5400 	current->sched_class->yield_task(rq);
5401 
5402 	/*
5403 	 * Since we are going to call schedule() anyway, there's
5404 	 * no need to preempt or enable interrupts:
5405 	 */
5406 	preempt_disable();
5407 	rq_unlock(rq, &rf);
5408 	sched_preempt_enable_no_resched();
5409 
5410 	schedule();
5411 }
5412 
5413 SYSCALL_DEFINE0(sched_yield)
5414 {
5415 	do_sched_yield();
5416 	return 0;
5417 }
5418 
5419 #ifndef CONFIG_PREEMPT
5420 int __sched _cond_resched(void)
5421 {
5422 	if (should_resched(0)) {
5423 		preempt_schedule_common();
5424 		return 1;
5425 	}
5426 	rcu_all_qs();
5427 	return 0;
5428 }
5429 EXPORT_SYMBOL(_cond_resched);
5430 #endif
5431 
5432 /*
5433  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5434  * call schedule, and on return reacquire the lock.
5435  *
5436  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5437  * operations here to prevent schedule() from being called twice (once via
5438  * spin_unlock(), once by hand).
5439  */
5440 int __cond_resched_lock(spinlock_t *lock)
5441 {
5442 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5443 	int ret = 0;
5444 
5445 	lockdep_assert_held(lock);
5446 
5447 	if (spin_needbreak(lock) || resched) {
5448 		spin_unlock(lock);
5449 		if (resched)
5450 			preempt_schedule_common();
5451 		else
5452 			cpu_relax();
5453 		ret = 1;
5454 		spin_lock(lock);
5455 	}
5456 	return ret;
5457 }
5458 EXPORT_SYMBOL(__cond_resched_lock);
5459 
5460 /**
5461  * yield - yield the current processor to other threads.
5462  *
5463  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5464  *
5465  * The scheduler is at all times free to pick the calling task as the most
5466  * eligible task to run, if removing the yield() call from your code breaks
5467  * it, its already broken.
5468  *
5469  * Typical broken usage is:
5470  *
5471  * while (!event)
5472  *	yield();
5473  *
5474  * where one assumes that yield() will let 'the other' process run that will
5475  * make event true. If the current task is a SCHED_FIFO task that will never
5476  * happen. Never use yield() as a progress guarantee!!
5477  *
5478  * If you want to use yield() to wait for something, use wait_event().
5479  * If you want to use yield() to be 'nice' for others, use cond_resched().
5480  * If you still want to use yield(), do not!
5481  */
5482 void __sched yield(void)
5483 {
5484 	set_current_state(TASK_RUNNING);
5485 	do_sched_yield();
5486 }
5487 EXPORT_SYMBOL(yield);
5488 
5489 /**
5490  * yield_to - yield the current processor to another thread in
5491  * your thread group, or accelerate that thread toward the
5492  * processor it's on.
5493  * @p: target task
5494  * @preempt: whether task preemption is allowed or not
5495  *
5496  * It's the caller's job to ensure that the target task struct
5497  * can't go away on us before we can do any checks.
5498  *
5499  * Return:
5500  *	true (>0) if we indeed boosted the target task.
5501  *	false (0) if we failed to boost the target.
5502  *	-ESRCH if there's no task to yield to.
5503  */
5504 int __sched yield_to(struct task_struct *p, bool preempt)
5505 {
5506 	struct task_struct *curr = current;
5507 	struct rq *rq, *p_rq;
5508 	unsigned long flags;
5509 	int yielded = 0;
5510 
5511 	local_irq_save(flags);
5512 	rq = this_rq();
5513 
5514 again:
5515 	p_rq = task_rq(p);
5516 	/*
5517 	 * If we're the only runnable task on the rq and target rq also
5518 	 * has only one task, there's absolutely no point in yielding.
5519 	 */
5520 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5521 		yielded = -ESRCH;
5522 		goto out_irq;
5523 	}
5524 
5525 	double_rq_lock(rq, p_rq);
5526 	if (task_rq(p) != p_rq) {
5527 		double_rq_unlock(rq, p_rq);
5528 		goto again;
5529 	}
5530 
5531 	if (!curr->sched_class->yield_to_task)
5532 		goto out_unlock;
5533 
5534 	if (curr->sched_class != p->sched_class)
5535 		goto out_unlock;
5536 
5537 	if (task_running(p_rq, p) || p->state)
5538 		goto out_unlock;
5539 
5540 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5541 	if (yielded) {
5542 		schedstat_inc(rq->yld_count);
5543 		/*
5544 		 * Make p's CPU reschedule; pick_next_entity takes care of
5545 		 * fairness.
5546 		 */
5547 		if (preempt && rq != p_rq)
5548 			resched_curr(p_rq);
5549 	}
5550 
5551 out_unlock:
5552 	double_rq_unlock(rq, p_rq);
5553 out_irq:
5554 	local_irq_restore(flags);
5555 
5556 	if (yielded > 0)
5557 		schedule();
5558 
5559 	return yielded;
5560 }
5561 EXPORT_SYMBOL_GPL(yield_to);
5562 
5563 int io_schedule_prepare(void)
5564 {
5565 	int old_iowait = current->in_iowait;
5566 
5567 	current->in_iowait = 1;
5568 	blk_schedule_flush_plug(current);
5569 
5570 	return old_iowait;
5571 }
5572 
5573 void io_schedule_finish(int token)
5574 {
5575 	current->in_iowait = token;
5576 }
5577 
5578 /*
5579  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5580  * that process accounting knows that this is a task in IO wait state.
5581  */
5582 long __sched io_schedule_timeout(long timeout)
5583 {
5584 	int token;
5585 	long ret;
5586 
5587 	token = io_schedule_prepare();
5588 	ret = schedule_timeout(timeout);
5589 	io_schedule_finish(token);
5590 
5591 	return ret;
5592 }
5593 EXPORT_SYMBOL(io_schedule_timeout);
5594 
5595 void __sched io_schedule(void)
5596 {
5597 	int token;
5598 
5599 	token = io_schedule_prepare();
5600 	schedule();
5601 	io_schedule_finish(token);
5602 }
5603 EXPORT_SYMBOL(io_schedule);
5604 
5605 /**
5606  * sys_sched_get_priority_max - return maximum RT priority.
5607  * @policy: scheduling class.
5608  *
5609  * Return: On success, this syscall returns the maximum
5610  * rt_priority that can be used by a given scheduling class.
5611  * On failure, a negative error code is returned.
5612  */
5613 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5614 {
5615 	int ret = -EINVAL;
5616 
5617 	switch (policy) {
5618 	case SCHED_FIFO:
5619 	case SCHED_RR:
5620 		ret = MAX_USER_RT_PRIO-1;
5621 		break;
5622 	case SCHED_DEADLINE:
5623 	case SCHED_NORMAL:
5624 	case SCHED_BATCH:
5625 	case SCHED_IDLE:
5626 		ret = 0;
5627 		break;
5628 	}
5629 	return ret;
5630 }
5631 
5632 /**
5633  * sys_sched_get_priority_min - return minimum RT priority.
5634  * @policy: scheduling class.
5635  *
5636  * Return: On success, this syscall returns the minimum
5637  * rt_priority that can be used by a given scheduling class.
5638  * On failure, a negative error code is returned.
5639  */
5640 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5641 {
5642 	int ret = -EINVAL;
5643 
5644 	switch (policy) {
5645 	case SCHED_FIFO:
5646 	case SCHED_RR:
5647 		ret = 1;
5648 		break;
5649 	case SCHED_DEADLINE:
5650 	case SCHED_NORMAL:
5651 	case SCHED_BATCH:
5652 	case SCHED_IDLE:
5653 		ret = 0;
5654 	}
5655 	return ret;
5656 }
5657 
5658 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5659 {
5660 	struct task_struct *p;
5661 	unsigned int time_slice;
5662 	struct rq_flags rf;
5663 	struct rq *rq;
5664 	int retval;
5665 
5666 	if (pid < 0)
5667 		return -EINVAL;
5668 
5669 	retval = -ESRCH;
5670 	rcu_read_lock();
5671 	p = find_process_by_pid(pid);
5672 	if (!p)
5673 		goto out_unlock;
5674 
5675 	retval = security_task_getscheduler(p);
5676 	if (retval)
5677 		goto out_unlock;
5678 
5679 	rq = task_rq_lock(p, &rf);
5680 	time_slice = 0;
5681 	if (p->sched_class->get_rr_interval)
5682 		time_slice = p->sched_class->get_rr_interval(rq, p);
5683 	task_rq_unlock(rq, p, &rf);
5684 
5685 	rcu_read_unlock();
5686 	jiffies_to_timespec64(time_slice, t);
5687 	return 0;
5688 
5689 out_unlock:
5690 	rcu_read_unlock();
5691 	return retval;
5692 }
5693 
5694 /**
5695  * sys_sched_rr_get_interval - return the default timeslice of a process.
5696  * @pid: pid of the process.
5697  * @interval: userspace pointer to the timeslice value.
5698  *
5699  * this syscall writes the default timeslice value of a given process
5700  * into the user-space timespec buffer. A value of '0' means infinity.
5701  *
5702  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5703  * an error code.
5704  */
5705 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5706 		struct __kernel_timespec __user *, interval)
5707 {
5708 	struct timespec64 t;
5709 	int retval = sched_rr_get_interval(pid, &t);
5710 
5711 	if (retval == 0)
5712 		retval = put_timespec64(&t, interval);
5713 
5714 	return retval;
5715 }
5716 
5717 #ifdef CONFIG_COMPAT_32BIT_TIME
5718 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5719 		struct old_timespec32 __user *, interval)
5720 {
5721 	struct timespec64 t;
5722 	int retval = sched_rr_get_interval(pid, &t);
5723 
5724 	if (retval == 0)
5725 		retval = put_old_timespec32(&t, interval);
5726 	return retval;
5727 }
5728 #endif
5729 
5730 void sched_show_task(struct task_struct *p)
5731 {
5732 	unsigned long free = 0;
5733 	int ppid;
5734 
5735 	if (!try_get_task_stack(p))
5736 		return;
5737 
5738 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5739 
5740 	if (p->state == TASK_RUNNING)
5741 		printk(KERN_CONT "  running task    ");
5742 #ifdef CONFIG_DEBUG_STACK_USAGE
5743 	free = stack_not_used(p);
5744 #endif
5745 	ppid = 0;
5746 	rcu_read_lock();
5747 	if (pid_alive(p))
5748 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5749 	rcu_read_unlock();
5750 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5751 		task_pid_nr(p), ppid,
5752 		(unsigned long)task_thread_info(p)->flags);
5753 
5754 	print_worker_info(KERN_INFO, p);
5755 	show_stack(p, NULL);
5756 	put_task_stack(p);
5757 }
5758 EXPORT_SYMBOL_GPL(sched_show_task);
5759 
5760 static inline bool
5761 state_filter_match(unsigned long state_filter, struct task_struct *p)
5762 {
5763 	/* no filter, everything matches */
5764 	if (!state_filter)
5765 		return true;
5766 
5767 	/* filter, but doesn't match */
5768 	if (!(p->state & state_filter))
5769 		return false;
5770 
5771 	/*
5772 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5773 	 * TASK_KILLABLE).
5774 	 */
5775 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5776 		return false;
5777 
5778 	return true;
5779 }
5780 
5781 
5782 void show_state_filter(unsigned long state_filter)
5783 {
5784 	struct task_struct *g, *p;
5785 
5786 #if BITS_PER_LONG == 32
5787 	printk(KERN_INFO
5788 		"  task                PC stack   pid father\n");
5789 #else
5790 	printk(KERN_INFO
5791 		"  task                        PC stack   pid father\n");
5792 #endif
5793 	rcu_read_lock();
5794 	for_each_process_thread(g, p) {
5795 		/*
5796 		 * reset the NMI-timeout, listing all files on a slow
5797 		 * console might take a lot of time:
5798 		 * Also, reset softlockup watchdogs on all CPUs, because
5799 		 * another CPU might be blocked waiting for us to process
5800 		 * an IPI.
5801 		 */
5802 		touch_nmi_watchdog();
5803 		touch_all_softlockup_watchdogs();
5804 		if (state_filter_match(state_filter, p))
5805 			sched_show_task(p);
5806 	}
5807 
5808 #ifdef CONFIG_SCHED_DEBUG
5809 	if (!state_filter)
5810 		sysrq_sched_debug_show();
5811 #endif
5812 	rcu_read_unlock();
5813 	/*
5814 	 * Only show locks if all tasks are dumped:
5815 	 */
5816 	if (!state_filter)
5817 		debug_show_all_locks();
5818 }
5819 
5820 /**
5821  * init_idle - set up an idle thread for a given CPU
5822  * @idle: task in question
5823  * @cpu: CPU the idle task belongs to
5824  *
5825  * NOTE: this function does not set the idle thread's NEED_RESCHED
5826  * flag, to make booting more robust.
5827  */
5828 void init_idle(struct task_struct *idle, int cpu)
5829 {
5830 	struct rq *rq = cpu_rq(cpu);
5831 	unsigned long flags;
5832 
5833 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5834 	raw_spin_lock(&rq->lock);
5835 
5836 	__sched_fork(0, idle);
5837 	idle->state = TASK_RUNNING;
5838 	idle->se.exec_start = sched_clock();
5839 	idle->flags |= PF_IDLE;
5840 
5841 	kasan_unpoison_task_stack(idle);
5842 
5843 #ifdef CONFIG_SMP
5844 	/*
5845 	 * Its possible that init_idle() gets called multiple times on a task,
5846 	 * in that case do_set_cpus_allowed() will not do the right thing.
5847 	 *
5848 	 * And since this is boot we can forgo the serialization.
5849 	 */
5850 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5851 #endif
5852 	/*
5853 	 * We're having a chicken and egg problem, even though we are
5854 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5855 	 * lockdep check in task_group() will fail.
5856 	 *
5857 	 * Similar case to sched_fork(). / Alternatively we could
5858 	 * use task_rq_lock() here and obtain the other rq->lock.
5859 	 *
5860 	 * Silence PROVE_RCU
5861 	 */
5862 	rcu_read_lock();
5863 	__set_task_cpu(idle, cpu);
5864 	rcu_read_unlock();
5865 
5866 	rq->curr = rq->idle = idle;
5867 	idle->on_rq = TASK_ON_RQ_QUEUED;
5868 #ifdef CONFIG_SMP
5869 	idle->on_cpu = 1;
5870 #endif
5871 	raw_spin_unlock(&rq->lock);
5872 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5873 
5874 	/* Set the preempt count _outside_ the spinlocks! */
5875 	init_idle_preempt_count(idle, cpu);
5876 
5877 	/*
5878 	 * The idle tasks have their own, simple scheduling class:
5879 	 */
5880 	idle->sched_class = &idle_sched_class;
5881 	ftrace_graph_init_idle_task(idle, cpu);
5882 	vtime_init_idle(idle, cpu);
5883 #ifdef CONFIG_SMP
5884 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5885 #endif
5886 }
5887 
5888 #ifdef CONFIG_SMP
5889 
5890 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5891 			      const struct cpumask *trial)
5892 {
5893 	int ret = 1;
5894 
5895 	if (!cpumask_weight(cur))
5896 		return ret;
5897 
5898 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5899 
5900 	return ret;
5901 }
5902 
5903 int task_can_attach(struct task_struct *p,
5904 		    const struct cpumask *cs_cpus_allowed)
5905 {
5906 	int ret = 0;
5907 
5908 	/*
5909 	 * Kthreads which disallow setaffinity shouldn't be moved
5910 	 * to a new cpuset; we don't want to change their CPU
5911 	 * affinity and isolating such threads by their set of
5912 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5913 	 * applicable for such threads.  This prevents checking for
5914 	 * success of set_cpus_allowed_ptr() on all attached tasks
5915 	 * before cpus_mask may be changed.
5916 	 */
5917 	if (p->flags & PF_NO_SETAFFINITY) {
5918 		ret = -EINVAL;
5919 		goto out;
5920 	}
5921 
5922 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5923 					      cs_cpus_allowed))
5924 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5925 
5926 out:
5927 	return ret;
5928 }
5929 
5930 bool sched_smp_initialized __read_mostly;
5931 
5932 #ifdef CONFIG_NUMA_BALANCING
5933 /* Migrate current task p to target_cpu */
5934 int migrate_task_to(struct task_struct *p, int target_cpu)
5935 {
5936 	struct migration_arg arg = { p, target_cpu };
5937 	int curr_cpu = task_cpu(p);
5938 
5939 	if (curr_cpu == target_cpu)
5940 		return 0;
5941 
5942 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
5943 		return -EINVAL;
5944 
5945 	/* TODO: This is not properly updating schedstats */
5946 
5947 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5948 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5949 }
5950 
5951 /*
5952  * Requeue a task on a given node and accurately track the number of NUMA
5953  * tasks on the runqueues
5954  */
5955 void sched_setnuma(struct task_struct *p, int nid)
5956 {
5957 	bool queued, running;
5958 	struct rq_flags rf;
5959 	struct rq *rq;
5960 
5961 	rq = task_rq_lock(p, &rf);
5962 	queued = task_on_rq_queued(p);
5963 	running = task_current(rq, p);
5964 
5965 	if (queued)
5966 		dequeue_task(rq, p, DEQUEUE_SAVE);
5967 	if (running)
5968 		put_prev_task(rq, p);
5969 
5970 	p->numa_preferred_nid = nid;
5971 
5972 	if (queued)
5973 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5974 	if (running)
5975 		set_curr_task(rq, p);
5976 	task_rq_unlock(rq, p, &rf);
5977 }
5978 #endif /* CONFIG_NUMA_BALANCING */
5979 
5980 #ifdef CONFIG_HOTPLUG_CPU
5981 /*
5982  * Ensure that the idle task is using init_mm right before its CPU goes
5983  * offline.
5984  */
5985 void idle_task_exit(void)
5986 {
5987 	struct mm_struct *mm = current->active_mm;
5988 
5989 	BUG_ON(cpu_online(smp_processor_id()));
5990 
5991 	if (mm != &init_mm) {
5992 		switch_mm(mm, &init_mm, current);
5993 		current->active_mm = &init_mm;
5994 		finish_arch_post_lock_switch();
5995 	}
5996 	mmdrop(mm);
5997 }
5998 
5999 /*
6000  * Since this CPU is going 'away' for a while, fold any nr_active delta
6001  * we might have. Assumes we're called after migrate_tasks() so that the
6002  * nr_active count is stable. We need to take the teardown thread which
6003  * is calling this into account, so we hand in adjust = 1 to the load
6004  * calculation.
6005  *
6006  * Also see the comment "Global load-average calculations".
6007  */
6008 static void calc_load_migrate(struct rq *rq)
6009 {
6010 	long delta = calc_load_fold_active(rq, 1);
6011 	if (delta)
6012 		atomic_long_add(delta, &calc_load_tasks);
6013 }
6014 
6015 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
6016 {
6017 }
6018 
6019 static const struct sched_class fake_sched_class = {
6020 	.put_prev_task = put_prev_task_fake,
6021 };
6022 
6023 static struct task_struct fake_task = {
6024 	/*
6025 	 * Avoid pull_{rt,dl}_task()
6026 	 */
6027 	.prio = MAX_PRIO + 1,
6028 	.sched_class = &fake_sched_class,
6029 };
6030 
6031 /*
6032  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6033  * try_to_wake_up()->select_task_rq().
6034  *
6035  * Called with rq->lock held even though we'er in stop_machine() and
6036  * there's no concurrency possible, we hold the required locks anyway
6037  * because of lock validation efforts.
6038  */
6039 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6040 {
6041 	struct rq *rq = dead_rq;
6042 	struct task_struct *next, *stop = rq->stop;
6043 	struct rq_flags orf = *rf;
6044 	int dest_cpu;
6045 
6046 	/*
6047 	 * Fudge the rq selection such that the below task selection loop
6048 	 * doesn't get stuck on the currently eligible stop task.
6049 	 *
6050 	 * We're currently inside stop_machine() and the rq is either stuck
6051 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6052 	 * either way we should never end up calling schedule() until we're
6053 	 * done here.
6054 	 */
6055 	rq->stop = NULL;
6056 
6057 	/*
6058 	 * put_prev_task() and pick_next_task() sched
6059 	 * class method both need to have an up-to-date
6060 	 * value of rq->clock[_task]
6061 	 */
6062 	update_rq_clock(rq);
6063 
6064 	for (;;) {
6065 		/*
6066 		 * There's this thread running, bail when that's the only
6067 		 * remaining thread:
6068 		 */
6069 		if (rq->nr_running == 1)
6070 			break;
6071 
6072 		/*
6073 		 * pick_next_task() assumes pinned rq->lock:
6074 		 */
6075 		next = pick_next_task(rq, &fake_task, rf);
6076 		BUG_ON(!next);
6077 		put_prev_task(rq, next);
6078 
6079 		/*
6080 		 * Rules for changing task_struct::cpus_mask are holding
6081 		 * both pi_lock and rq->lock, such that holding either
6082 		 * stabilizes the mask.
6083 		 *
6084 		 * Drop rq->lock is not quite as disastrous as it usually is
6085 		 * because !cpu_active at this point, which means load-balance
6086 		 * will not interfere. Also, stop-machine.
6087 		 */
6088 		rq_unlock(rq, rf);
6089 		raw_spin_lock(&next->pi_lock);
6090 		rq_relock(rq, rf);
6091 
6092 		/*
6093 		 * Since we're inside stop-machine, _nothing_ should have
6094 		 * changed the task, WARN if weird stuff happened, because in
6095 		 * that case the above rq->lock drop is a fail too.
6096 		 */
6097 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6098 			raw_spin_unlock(&next->pi_lock);
6099 			continue;
6100 		}
6101 
6102 		/* Find suitable destination for @next, with force if needed. */
6103 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6104 		rq = __migrate_task(rq, rf, next, dest_cpu);
6105 		if (rq != dead_rq) {
6106 			rq_unlock(rq, rf);
6107 			rq = dead_rq;
6108 			*rf = orf;
6109 			rq_relock(rq, rf);
6110 		}
6111 		raw_spin_unlock(&next->pi_lock);
6112 	}
6113 
6114 	rq->stop = stop;
6115 }
6116 #endif /* CONFIG_HOTPLUG_CPU */
6117 
6118 void set_rq_online(struct rq *rq)
6119 {
6120 	if (!rq->online) {
6121 		const struct sched_class *class;
6122 
6123 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6124 		rq->online = 1;
6125 
6126 		for_each_class(class) {
6127 			if (class->rq_online)
6128 				class->rq_online(rq);
6129 		}
6130 	}
6131 }
6132 
6133 void set_rq_offline(struct rq *rq)
6134 {
6135 	if (rq->online) {
6136 		const struct sched_class *class;
6137 
6138 		for_each_class(class) {
6139 			if (class->rq_offline)
6140 				class->rq_offline(rq);
6141 		}
6142 
6143 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6144 		rq->online = 0;
6145 	}
6146 }
6147 
6148 /*
6149  * used to mark begin/end of suspend/resume:
6150  */
6151 static int num_cpus_frozen;
6152 
6153 /*
6154  * Update cpusets according to cpu_active mask.  If cpusets are
6155  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6156  * around partition_sched_domains().
6157  *
6158  * If we come here as part of a suspend/resume, don't touch cpusets because we
6159  * want to restore it back to its original state upon resume anyway.
6160  */
6161 static void cpuset_cpu_active(void)
6162 {
6163 	if (cpuhp_tasks_frozen) {
6164 		/*
6165 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6166 		 * resume sequence. As long as this is not the last online
6167 		 * operation in the resume sequence, just build a single sched
6168 		 * domain, ignoring cpusets.
6169 		 */
6170 		partition_sched_domains(1, NULL, NULL);
6171 		if (--num_cpus_frozen)
6172 			return;
6173 		/*
6174 		 * This is the last CPU online operation. So fall through and
6175 		 * restore the original sched domains by considering the
6176 		 * cpuset configurations.
6177 		 */
6178 		cpuset_force_rebuild();
6179 	}
6180 	cpuset_update_active_cpus();
6181 }
6182 
6183 static int cpuset_cpu_inactive(unsigned int cpu)
6184 {
6185 	if (!cpuhp_tasks_frozen) {
6186 		if (dl_cpu_busy(cpu))
6187 			return -EBUSY;
6188 		cpuset_update_active_cpus();
6189 	} else {
6190 		num_cpus_frozen++;
6191 		partition_sched_domains(1, NULL, NULL);
6192 	}
6193 	return 0;
6194 }
6195 
6196 int sched_cpu_activate(unsigned int cpu)
6197 {
6198 	struct rq *rq = cpu_rq(cpu);
6199 	struct rq_flags rf;
6200 
6201 #ifdef CONFIG_SCHED_SMT
6202 	/*
6203 	 * When going up, increment the number of cores with SMT present.
6204 	 */
6205 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6206 		static_branch_inc_cpuslocked(&sched_smt_present);
6207 #endif
6208 	set_cpu_active(cpu, true);
6209 
6210 	if (sched_smp_initialized) {
6211 		sched_domains_numa_masks_set(cpu);
6212 		cpuset_cpu_active();
6213 	}
6214 
6215 	/*
6216 	 * Put the rq online, if not already. This happens:
6217 	 *
6218 	 * 1) In the early boot process, because we build the real domains
6219 	 *    after all CPUs have been brought up.
6220 	 *
6221 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6222 	 *    domains.
6223 	 */
6224 	rq_lock_irqsave(rq, &rf);
6225 	if (rq->rd) {
6226 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6227 		set_rq_online(rq);
6228 	}
6229 	rq_unlock_irqrestore(rq, &rf);
6230 
6231 	update_max_interval();
6232 
6233 	return 0;
6234 }
6235 
6236 int sched_cpu_deactivate(unsigned int cpu)
6237 {
6238 	int ret;
6239 
6240 	set_cpu_active(cpu, false);
6241 	/*
6242 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6243 	 * users of this state to go away such that all new such users will
6244 	 * observe it.
6245 	 *
6246 	 * Do sync before park smpboot threads to take care the rcu boost case.
6247 	 */
6248 	synchronize_rcu();
6249 
6250 #ifdef CONFIG_SCHED_SMT
6251 	/*
6252 	 * When going down, decrement the number of cores with SMT present.
6253 	 */
6254 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6255 		static_branch_dec_cpuslocked(&sched_smt_present);
6256 #endif
6257 
6258 	if (!sched_smp_initialized)
6259 		return 0;
6260 
6261 	ret = cpuset_cpu_inactive(cpu);
6262 	if (ret) {
6263 		set_cpu_active(cpu, true);
6264 		return ret;
6265 	}
6266 	sched_domains_numa_masks_clear(cpu);
6267 	return 0;
6268 }
6269 
6270 static void sched_rq_cpu_starting(unsigned int cpu)
6271 {
6272 	struct rq *rq = cpu_rq(cpu);
6273 
6274 	rq->calc_load_update = calc_load_update;
6275 	update_max_interval();
6276 }
6277 
6278 int sched_cpu_starting(unsigned int cpu)
6279 {
6280 	sched_rq_cpu_starting(cpu);
6281 	sched_tick_start(cpu);
6282 	return 0;
6283 }
6284 
6285 #ifdef CONFIG_HOTPLUG_CPU
6286 int sched_cpu_dying(unsigned int cpu)
6287 {
6288 	struct rq *rq = cpu_rq(cpu);
6289 	struct rq_flags rf;
6290 
6291 	/* Handle pending wakeups and then migrate everything off */
6292 	sched_ttwu_pending();
6293 	sched_tick_stop(cpu);
6294 
6295 	rq_lock_irqsave(rq, &rf);
6296 	if (rq->rd) {
6297 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6298 		set_rq_offline(rq);
6299 	}
6300 	migrate_tasks(rq, &rf);
6301 	BUG_ON(rq->nr_running != 1);
6302 	rq_unlock_irqrestore(rq, &rf);
6303 
6304 	calc_load_migrate(rq);
6305 	update_max_interval();
6306 	nohz_balance_exit_idle(rq);
6307 	hrtick_clear(rq);
6308 	return 0;
6309 }
6310 #endif
6311 
6312 void __init sched_init_smp(void)
6313 {
6314 	sched_init_numa();
6315 
6316 	/*
6317 	 * There's no userspace yet to cause hotplug operations; hence all the
6318 	 * CPU masks are stable and all blatant races in the below code cannot
6319 	 * happen.
6320 	 */
6321 	mutex_lock(&sched_domains_mutex);
6322 	sched_init_domains(cpu_active_mask);
6323 	mutex_unlock(&sched_domains_mutex);
6324 
6325 	/* Move init over to a non-isolated CPU */
6326 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6327 		BUG();
6328 	sched_init_granularity();
6329 
6330 	init_sched_rt_class();
6331 	init_sched_dl_class();
6332 
6333 	sched_smp_initialized = true;
6334 }
6335 
6336 static int __init migration_init(void)
6337 {
6338 	sched_cpu_starting(smp_processor_id());
6339 	return 0;
6340 }
6341 early_initcall(migration_init);
6342 
6343 #else
6344 void __init sched_init_smp(void)
6345 {
6346 	sched_init_granularity();
6347 }
6348 #endif /* CONFIG_SMP */
6349 
6350 int in_sched_functions(unsigned long addr)
6351 {
6352 	return in_lock_functions(addr) ||
6353 		(addr >= (unsigned long)__sched_text_start
6354 		&& addr < (unsigned long)__sched_text_end);
6355 }
6356 
6357 #ifdef CONFIG_CGROUP_SCHED
6358 /*
6359  * Default task group.
6360  * Every task in system belongs to this group at bootup.
6361  */
6362 struct task_group root_task_group;
6363 LIST_HEAD(task_groups);
6364 
6365 /* Cacheline aligned slab cache for task_group */
6366 static struct kmem_cache *task_group_cache __read_mostly;
6367 #endif
6368 
6369 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6370 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6371 
6372 void __init sched_init(void)
6373 {
6374 	unsigned long alloc_size = 0, ptr;
6375 	int i;
6376 
6377 	wait_bit_init();
6378 
6379 #ifdef CONFIG_FAIR_GROUP_SCHED
6380 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6381 #endif
6382 #ifdef CONFIG_RT_GROUP_SCHED
6383 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6384 #endif
6385 	if (alloc_size) {
6386 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6387 
6388 #ifdef CONFIG_FAIR_GROUP_SCHED
6389 		root_task_group.se = (struct sched_entity **)ptr;
6390 		ptr += nr_cpu_ids * sizeof(void **);
6391 
6392 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6393 		ptr += nr_cpu_ids * sizeof(void **);
6394 
6395 #endif /* CONFIG_FAIR_GROUP_SCHED */
6396 #ifdef CONFIG_RT_GROUP_SCHED
6397 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6398 		ptr += nr_cpu_ids * sizeof(void **);
6399 
6400 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6401 		ptr += nr_cpu_ids * sizeof(void **);
6402 
6403 #endif /* CONFIG_RT_GROUP_SCHED */
6404 	}
6405 #ifdef CONFIG_CPUMASK_OFFSTACK
6406 	for_each_possible_cpu(i) {
6407 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6408 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6409 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6410 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6411 	}
6412 #endif /* CONFIG_CPUMASK_OFFSTACK */
6413 
6414 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6415 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6416 
6417 #ifdef CONFIG_SMP
6418 	init_defrootdomain();
6419 #endif
6420 
6421 #ifdef CONFIG_RT_GROUP_SCHED
6422 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6423 			global_rt_period(), global_rt_runtime());
6424 #endif /* CONFIG_RT_GROUP_SCHED */
6425 
6426 #ifdef CONFIG_CGROUP_SCHED
6427 	task_group_cache = KMEM_CACHE(task_group, 0);
6428 
6429 	list_add(&root_task_group.list, &task_groups);
6430 	INIT_LIST_HEAD(&root_task_group.children);
6431 	INIT_LIST_HEAD(&root_task_group.siblings);
6432 	autogroup_init(&init_task);
6433 #endif /* CONFIG_CGROUP_SCHED */
6434 
6435 	for_each_possible_cpu(i) {
6436 		struct rq *rq;
6437 
6438 		rq = cpu_rq(i);
6439 		raw_spin_lock_init(&rq->lock);
6440 		rq->nr_running = 0;
6441 		rq->calc_load_active = 0;
6442 		rq->calc_load_update = jiffies + LOAD_FREQ;
6443 		init_cfs_rq(&rq->cfs);
6444 		init_rt_rq(&rq->rt);
6445 		init_dl_rq(&rq->dl);
6446 #ifdef CONFIG_FAIR_GROUP_SCHED
6447 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6448 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6449 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6450 		/*
6451 		 * How much CPU bandwidth does root_task_group get?
6452 		 *
6453 		 * In case of task-groups formed thr' the cgroup filesystem, it
6454 		 * gets 100% of the CPU resources in the system. This overall
6455 		 * system CPU resource is divided among the tasks of
6456 		 * root_task_group and its child task-groups in a fair manner,
6457 		 * based on each entity's (task or task-group's) weight
6458 		 * (se->load.weight).
6459 		 *
6460 		 * In other words, if root_task_group has 10 tasks of weight
6461 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6462 		 * then A0's share of the CPU resource is:
6463 		 *
6464 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6465 		 *
6466 		 * We achieve this by letting root_task_group's tasks sit
6467 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6468 		 */
6469 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6470 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6471 #endif /* CONFIG_FAIR_GROUP_SCHED */
6472 
6473 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6474 #ifdef CONFIG_RT_GROUP_SCHED
6475 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6476 #endif
6477 #ifdef CONFIG_SMP
6478 		rq->sd = NULL;
6479 		rq->rd = NULL;
6480 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6481 		rq->balance_callback = NULL;
6482 		rq->active_balance = 0;
6483 		rq->next_balance = jiffies;
6484 		rq->push_cpu = 0;
6485 		rq->cpu = i;
6486 		rq->online = 0;
6487 		rq->idle_stamp = 0;
6488 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6489 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6490 
6491 		INIT_LIST_HEAD(&rq->cfs_tasks);
6492 
6493 		rq_attach_root(rq, &def_root_domain);
6494 #ifdef CONFIG_NO_HZ_COMMON
6495 		rq->last_load_update_tick = jiffies;
6496 		rq->last_blocked_load_update_tick = jiffies;
6497 		atomic_set(&rq->nohz_flags, 0);
6498 #endif
6499 #endif /* CONFIG_SMP */
6500 		hrtick_rq_init(rq);
6501 		atomic_set(&rq->nr_iowait, 0);
6502 	}
6503 
6504 	set_load_weight(&init_task, false);
6505 
6506 	/*
6507 	 * The boot idle thread does lazy MMU switching as well:
6508 	 */
6509 	mmgrab(&init_mm);
6510 	enter_lazy_tlb(&init_mm, current);
6511 
6512 	/*
6513 	 * Make us the idle thread. Technically, schedule() should not be
6514 	 * called from this thread, however somewhere below it might be,
6515 	 * but because we are the idle thread, we just pick up running again
6516 	 * when this runqueue becomes "idle".
6517 	 */
6518 	init_idle(current, smp_processor_id());
6519 
6520 	calc_load_update = jiffies + LOAD_FREQ;
6521 
6522 #ifdef CONFIG_SMP
6523 	idle_thread_set_boot_cpu();
6524 #endif
6525 	init_sched_fair_class();
6526 
6527 	init_schedstats();
6528 
6529 	psi_init();
6530 
6531 	init_uclamp();
6532 
6533 	scheduler_running = 1;
6534 }
6535 
6536 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6537 static inline int preempt_count_equals(int preempt_offset)
6538 {
6539 	int nested = preempt_count() + rcu_preempt_depth();
6540 
6541 	return (nested == preempt_offset);
6542 }
6543 
6544 void __might_sleep(const char *file, int line, int preempt_offset)
6545 {
6546 	/*
6547 	 * Blocking primitives will set (and therefore destroy) current->state,
6548 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6549 	 * otherwise we will destroy state.
6550 	 */
6551 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6552 			"do not call blocking ops when !TASK_RUNNING; "
6553 			"state=%lx set at [<%p>] %pS\n",
6554 			current->state,
6555 			(void *)current->task_state_change,
6556 			(void *)current->task_state_change);
6557 
6558 	___might_sleep(file, line, preempt_offset);
6559 }
6560 EXPORT_SYMBOL(__might_sleep);
6561 
6562 void ___might_sleep(const char *file, int line, int preempt_offset)
6563 {
6564 	/* Ratelimiting timestamp: */
6565 	static unsigned long prev_jiffy;
6566 
6567 	unsigned long preempt_disable_ip;
6568 
6569 	/* WARN_ON_ONCE() by default, no rate limit required: */
6570 	rcu_sleep_check();
6571 
6572 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6573 	     !is_idle_task(current)) ||
6574 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6575 	    oops_in_progress)
6576 		return;
6577 
6578 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6579 		return;
6580 	prev_jiffy = jiffies;
6581 
6582 	/* Save this before calling printk(), since that will clobber it: */
6583 	preempt_disable_ip = get_preempt_disable_ip(current);
6584 
6585 	printk(KERN_ERR
6586 		"BUG: sleeping function called from invalid context at %s:%d\n",
6587 			file, line);
6588 	printk(KERN_ERR
6589 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6590 			in_atomic(), irqs_disabled(),
6591 			current->pid, current->comm);
6592 
6593 	if (task_stack_end_corrupted(current))
6594 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6595 
6596 	debug_show_held_locks(current);
6597 	if (irqs_disabled())
6598 		print_irqtrace_events(current);
6599 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6600 	    && !preempt_count_equals(preempt_offset)) {
6601 		pr_err("Preemption disabled at:");
6602 		print_ip_sym(preempt_disable_ip);
6603 		pr_cont("\n");
6604 	}
6605 	dump_stack();
6606 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6607 }
6608 EXPORT_SYMBOL(___might_sleep);
6609 
6610 void __cant_sleep(const char *file, int line, int preempt_offset)
6611 {
6612 	static unsigned long prev_jiffy;
6613 
6614 	if (irqs_disabled())
6615 		return;
6616 
6617 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6618 		return;
6619 
6620 	if (preempt_count() > preempt_offset)
6621 		return;
6622 
6623 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6624 		return;
6625 	prev_jiffy = jiffies;
6626 
6627 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6628 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6629 			in_atomic(), irqs_disabled(),
6630 			current->pid, current->comm);
6631 
6632 	debug_show_held_locks(current);
6633 	dump_stack();
6634 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6635 }
6636 EXPORT_SYMBOL_GPL(__cant_sleep);
6637 #endif
6638 
6639 #ifdef CONFIG_MAGIC_SYSRQ
6640 void normalize_rt_tasks(void)
6641 {
6642 	struct task_struct *g, *p;
6643 	struct sched_attr attr = {
6644 		.sched_policy = SCHED_NORMAL,
6645 	};
6646 
6647 	read_lock(&tasklist_lock);
6648 	for_each_process_thread(g, p) {
6649 		/*
6650 		 * Only normalize user tasks:
6651 		 */
6652 		if (p->flags & PF_KTHREAD)
6653 			continue;
6654 
6655 		p->se.exec_start = 0;
6656 		schedstat_set(p->se.statistics.wait_start,  0);
6657 		schedstat_set(p->se.statistics.sleep_start, 0);
6658 		schedstat_set(p->se.statistics.block_start, 0);
6659 
6660 		if (!dl_task(p) && !rt_task(p)) {
6661 			/*
6662 			 * Renice negative nice level userspace
6663 			 * tasks back to 0:
6664 			 */
6665 			if (task_nice(p) < 0)
6666 				set_user_nice(p, 0);
6667 			continue;
6668 		}
6669 
6670 		__sched_setscheduler(p, &attr, false, false);
6671 	}
6672 	read_unlock(&tasklist_lock);
6673 }
6674 
6675 #endif /* CONFIG_MAGIC_SYSRQ */
6676 
6677 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6678 /*
6679  * These functions are only useful for the IA64 MCA handling, or kdb.
6680  *
6681  * They can only be called when the whole system has been
6682  * stopped - every CPU needs to be quiescent, and no scheduling
6683  * activity can take place. Using them for anything else would
6684  * be a serious bug, and as a result, they aren't even visible
6685  * under any other configuration.
6686  */
6687 
6688 /**
6689  * curr_task - return the current task for a given CPU.
6690  * @cpu: the processor in question.
6691  *
6692  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6693  *
6694  * Return: The current task for @cpu.
6695  */
6696 struct task_struct *curr_task(int cpu)
6697 {
6698 	return cpu_curr(cpu);
6699 }
6700 
6701 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6702 
6703 #ifdef CONFIG_IA64
6704 /**
6705  * set_curr_task - set the current task for a given CPU.
6706  * @cpu: the processor in question.
6707  * @p: the task pointer to set.
6708  *
6709  * Description: This function must only be used when non-maskable interrupts
6710  * are serviced on a separate stack. It allows the architecture to switch the
6711  * notion of the current task on a CPU in a non-blocking manner. This function
6712  * must be called with all CPU's synchronized, and interrupts disabled, the
6713  * and caller must save the original value of the current task (see
6714  * curr_task() above) and restore that value before reenabling interrupts and
6715  * re-starting the system.
6716  *
6717  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6718  */
6719 void ia64_set_curr_task(int cpu, struct task_struct *p)
6720 {
6721 	cpu_curr(cpu) = p;
6722 }
6723 
6724 #endif
6725 
6726 #ifdef CONFIG_CGROUP_SCHED
6727 /* task_group_lock serializes the addition/removal of task groups */
6728 static DEFINE_SPINLOCK(task_group_lock);
6729 
6730 static void sched_free_group(struct task_group *tg)
6731 {
6732 	free_fair_sched_group(tg);
6733 	free_rt_sched_group(tg);
6734 	autogroup_free(tg);
6735 	kmem_cache_free(task_group_cache, tg);
6736 }
6737 
6738 /* allocate runqueue etc for a new task group */
6739 struct task_group *sched_create_group(struct task_group *parent)
6740 {
6741 	struct task_group *tg;
6742 
6743 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6744 	if (!tg)
6745 		return ERR_PTR(-ENOMEM);
6746 
6747 	if (!alloc_fair_sched_group(tg, parent))
6748 		goto err;
6749 
6750 	if (!alloc_rt_sched_group(tg, parent))
6751 		goto err;
6752 
6753 	return tg;
6754 
6755 err:
6756 	sched_free_group(tg);
6757 	return ERR_PTR(-ENOMEM);
6758 }
6759 
6760 void sched_online_group(struct task_group *tg, struct task_group *parent)
6761 {
6762 	unsigned long flags;
6763 
6764 	spin_lock_irqsave(&task_group_lock, flags);
6765 	list_add_rcu(&tg->list, &task_groups);
6766 
6767 	/* Root should already exist: */
6768 	WARN_ON(!parent);
6769 
6770 	tg->parent = parent;
6771 	INIT_LIST_HEAD(&tg->children);
6772 	list_add_rcu(&tg->siblings, &parent->children);
6773 	spin_unlock_irqrestore(&task_group_lock, flags);
6774 
6775 	online_fair_sched_group(tg);
6776 }
6777 
6778 /* rcu callback to free various structures associated with a task group */
6779 static void sched_free_group_rcu(struct rcu_head *rhp)
6780 {
6781 	/* Now it should be safe to free those cfs_rqs: */
6782 	sched_free_group(container_of(rhp, struct task_group, rcu));
6783 }
6784 
6785 void sched_destroy_group(struct task_group *tg)
6786 {
6787 	/* Wait for possible concurrent references to cfs_rqs complete: */
6788 	call_rcu(&tg->rcu, sched_free_group_rcu);
6789 }
6790 
6791 void sched_offline_group(struct task_group *tg)
6792 {
6793 	unsigned long flags;
6794 
6795 	/* End participation in shares distribution: */
6796 	unregister_fair_sched_group(tg);
6797 
6798 	spin_lock_irqsave(&task_group_lock, flags);
6799 	list_del_rcu(&tg->list);
6800 	list_del_rcu(&tg->siblings);
6801 	spin_unlock_irqrestore(&task_group_lock, flags);
6802 }
6803 
6804 static void sched_change_group(struct task_struct *tsk, int type)
6805 {
6806 	struct task_group *tg;
6807 
6808 	/*
6809 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6810 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6811 	 * to prevent lockdep warnings.
6812 	 */
6813 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6814 			  struct task_group, css);
6815 	tg = autogroup_task_group(tsk, tg);
6816 	tsk->sched_task_group = tg;
6817 
6818 #ifdef CONFIG_FAIR_GROUP_SCHED
6819 	if (tsk->sched_class->task_change_group)
6820 		tsk->sched_class->task_change_group(tsk, type);
6821 	else
6822 #endif
6823 		set_task_rq(tsk, task_cpu(tsk));
6824 }
6825 
6826 /*
6827  * Change task's runqueue when it moves between groups.
6828  *
6829  * The caller of this function should have put the task in its new group by
6830  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6831  * its new group.
6832  */
6833 void sched_move_task(struct task_struct *tsk)
6834 {
6835 	int queued, running, queue_flags =
6836 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6837 	struct rq_flags rf;
6838 	struct rq *rq;
6839 
6840 	rq = task_rq_lock(tsk, &rf);
6841 	update_rq_clock(rq);
6842 
6843 	running = task_current(rq, tsk);
6844 	queued = task_on_rq_queued(tsk);
6845 
6846 	if (queued)
6847 		dequeue_task(rq, tsk, queue_flags);
6848 	if (running)
6849 		put_prev_task(rq, tsk);
6850 
6851 	sched_change_group(tsk, TASK_MOVE_GROUP);
6852 
6853 	if (queued)
6854 		enqueue_task(rq, tsk, queue_flags);
6855 	if (running)
6856 		set_curr_task(rq, tsk);
6857 
6858 	task_rq_unlock(rq, tsk, &rf);
6859 }
6860 
6861 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6862 {
6863 	return css ? container_of(css, struct task_group, css) : NULL;
6864 }
6865 
6866 static struct cgroup_subsys_state *
6867 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6868 {
6869 	struct task_group *parent = css_tg(parent_css);
6870 	struct task_group *tg;
6871 
6872 	if (!parent) {
6873 		/* This is early initialization for the top cgroup */
6874 		return &root_task_group.css;
6875 	}
6876 
6877 	tg = sched_create_group(parent);
6878 	if (IS_ERR(tg))
6879 		return ERR_PTR(-ENOMEM);
6880 
6881 	return &tg->css;
6882 }
6883 
6884 /* Expose task group only after completing cgroup initialization */
6885 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6886 {
6887 	struct task_group *tg = css_tg(css);
6888 	struct task_group *parent = css_tg(css->parent);
6889 
6890 	if (parent)
6891 		sched_online_group(tg, parent);
6892 	return 0;
6893 }
6894 
6895 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6896 {
6897 	struct task_group *tg = css_tg(css);
6898 
6899 	sched_offline_group(tg);
6900 }
6901 
6902 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6903 {
6904 	struct task_group *tg = css_tg(css);
6905 
6906 	/*
6907 	 * Relies on the RCU grace period between css_released() and this.
6908 	 */
6909 	sched_free_group(tg);
6910 }
6911 
6912 /*
6913  * This is called before wake_up_new_task(), therefore we really only
6914  * have to set its group bits, all the other stuff does not apply.
6915  */
6916 static void cpu_cgroup_fork(struct task_struct *task)
6917 {
6918 	struct rq_flags rf;
6919 	struct rq *rq;
6920 
6921 	rq = task_rq_lock(task, &rf);
6922 
6923 	update_rq_clock(rq);
6924 	sched_change_group(task, TASK_SET_GROUP);
6925 
6926 	task_rq_unlock(rq, task, &rf);
6927 }
6928 
6929 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6930 {
6931 	struct task_struct *task;
6932 	struct cgroup_subsys_state *css;
6933 	int ret = 0;
6934 
6935 	cgroup_taskset_for_each(task, css, tset) {
6936 #ifdef CONFIG_RT_GROUP_SCHED
6937 		if (!sched_rt_can_attach(css_tg(css), task))
6938 			return -EINVAL;
6939 #else
6940 		/* We don't support RT-tasks being in separate groups */
6941 		if (task->sched_class != &fair_sched_class)
6942 			return -EINVAL;
6943 #endif
6944 		/*
6945 		 * Serialize against wake_up_new_task() such that if its
6946 		 * running, we're sure to observe its full state.
6947 		 */
6948 		raw_spin_lock_irq(&task->pi_lock);
6949 		/*
6950 		 * Avoid calling sched_move_task() before wake_up_new_task()
6951 		 * has happened. This would lead to problems with PELT, due to
6952 		 * move wanting to detach+attach while we're not attached yet.
6953 		 */
6954 		if (task->state == TASK_NEW)
6955 			ret = -EINVAL;
6956 		raw_spin_unlock_irq(&task->pi_lock);
6957 
6958 		if (ret)
6959 			break;
6960 	}
6961 	return ret;
6962 }
6963 
6964 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6965 {
6966 	struct task_struct *task;
6967 	struct cgroup_subsys_state *css;
6968 
6969 	cgroup_taskset_for_each(task, css, tset)
6970 		sched_move_task(task);
6971 }
6972 
6973 #ifdef CONFIG_FAIR_GROUP_SCHED
6974 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6975 				struct cftype *cftype, u64 shareval)
6976 {
6977 	if (shareval > scale_load_down(ULONG_MAX))
6978 		shareval = MAX_SHARES;
6979 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6980 }
6981 
6982 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6983 			       struct cftype *cft)
6984 {
6985 	struct task_group *tg = css_tg(css);
6986 
6987 	return (u64) scale_load_down(tg->shares);
6988 }
6989 
6990 #ifdef CONFIG_CFS_BANDWIDTH
6991 static DEFINE_MUTEX(cfs_constraints_mutex);
6992 
6993 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6994 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6995 
6996 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6997 
6998 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6999 {
7000 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7001 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7002 
7003 	if (tg == &root_task_group)
7004 		return -EINVAL;
7005 
7006 	/*
7007 	 * Ensure we have at some amount of bandwidth every period.  This is
7008 	 * to prevent reaching a state of large arrears when throttled via
7009 	 * entity_tick() resulting in prolonged exit starvation.
7010 	 */
7011 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7012 		return -EINVAL;
7013 
7014 	/*
7015 	 * Likewise, bound things on the otherside by preventing insane quota
7016 	 * periods.  This also allows us to normalize in computing quota
7017 	 * feasibility.
7018 	 */
7019 	if (period > max_cfs_quota_period)
7020 		return -EINVAL;
7021 
7022 	/*
7023 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7024 	 * unthrottle_offline_cfs_rqs().
7025 	 */
7026 	get_online_cpus();
7027 	mutex_lock(&cfs_constraints_mutex);
7028 	ret = __cfs_schedulable(tg, period, quota);
7029 	if (ret)
7030 		goto out_unlock;
7031 
7032 	runtime_enabled = quota != RUNTIME_INF;
7033 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7034 	/*
7035 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7036 	 * before making related changes, and on->off must occur afterwards
7037 	 */
7038 	if (runtime_enabled && !runtime_was_enabled)
7039 		cfs_bandwidth_usage_inc();
7040 	raw_spin_lock_irq(&cfs_b->lock);
7041 	cfs_b->period = ns_to_ktime(period);
7042 	cfs_b->quota = quota;
7043 
7044 	__refill_cfs_bandwidth_runtime(cfs_b);
7045 
7046 	/* Restart the period timer (if active) to handle new period expiry: */
7047 	if (runtime_enabled)
7048 		start_cfs_bandwidth(cfs_b);
7049 
7050 	raw_spin_unlock_irq(&cfs_b->lock);
7051 
7052 	for_each_online_cpu(i) {
7053 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7054 		struct rq *rq = cfs_rq->rq;
7055 		struct rq_flags rf;
7056 
7057 		rq_lock_irq(rq, &rf);
7058 		cfs_rq->runtime_enabled = runtime_enabled;
7059 		cfs_rq->runtime_remaining = 0;
7060 
7061 		if (cfs_rq->throttled)
7062 			unthrottle_cfs_rq(cfs_rq);
7063 		rq_unlock_irq(rq, &rf);
7064 	}
7065 	if (runtime_was_enabled && !runtime_enabled)
7066 		cfs_bandwidth_usage_dec();
7067 out_unlock:
7068 	mutex_unlock(&cfs_constraints_mutex);
7069 	put_online_cpus();
7070 
7071 	return ret;
7072 }
7073 
7074 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7075 {
7076 	u64 quota, period;
7077 
7078 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7079 	if (cfs_quota_us < 0)
7080 		quota = RUNTIME_INF;
7081 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7082 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7083 	else
7084 		return -EINVAL;
7085 
7086 	return tg_set_cfs_bandwidth(tg, period, quota);
7087 }
7088 
7089 static long tg_get_cfs_quota(struct task_group *tg)
7090 {
7091 	u64 quota_us;
7092 
7093 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7094 		return -1;
7095 
7096 	quota_us = tg->cfs_bandwidth.quota;
7097 	do_div(quota_us, NSEC_PER_USEC);
7098 
7099 	return quota_us;
7100 }
7101 
7102 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7103 {
7104 	u64 quota, period;
7105 
7106 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7107 		return -EINVAL;
7108 
7109 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7110 	quota = tg->cfs_bandwidth.quota;
7111 
7112 	return tg_set_cfs_bandwidth(tg, period, quota);
7113 }
7114 
7115 static long tg_get_cfs_period(struct task_group *tg)
7116 {
7117 	u64 cfs_period_us;
7118 
7119 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7120 	do_div(cfs_period_us, NSEC_PER_USEC);
7121 
7122 	return cfs_period_us;
7123 }
7124 
7125 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7126 				  struct cftype *cft)
7127 {
7128 	return tg_get_cfs_quota(css_tg(css));
7129 }
7130 
7131 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7132 				   struct cftype *cftype, s64 cfs_quota_us)
7133 {
7134 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7135 }
7136 
7137 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7138 				   struct cftype *cft)
7139 {
7140 	return tg_get_cfs_period(css_tg(css));
7141 }
7142 
7143 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7144 				    struct cftype *cftype, u64 cfs_period_us)
7145 {
7146 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7147 }
7148 
7149 struct cfs_schedulable_data {
7150 	struct task_group *tg;
7151 	u64 period, quota;
7152 };
7153 
7154 /*
7155  * normalize group quota/period to be quota/max_period
7156  * note: units are usecs
7157  */
7158 static u64 normalize_cfs_quota(struct task_group *tg,
7159 			       struct cfs_schedulable_data *d)
7160 {
7161 	u64 quota, period;
7162 
7163 	if (tg == d->tg) {
7164 		period = d->period;
7165 		quota = d->quota;
7166 	} else {
7167 		period = tg_get_cfs_period(tg);
7168 		quota = tg_get_cfs_quota(tg);
7169 	}
7170 
7171 	/* note: these should typically be equivalent */
7172 	if (quota == RUNTIME_INF || quota == -1)
7173 		return RUNTIME_INF;
7174 
7175 	return to_ratio(period, quota);
7176 }
7177 
7178 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7179 {
7180 	struct cfs_schedulable_data *d = data;
7181 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7182 	s64 quota = 0, parent_quota = -1;
7183 
7184 	if (!tg->parent) {
7185 		quota = RUNTIME_INF;
7186 	} else {
7187 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7188 
7189 		quota = normalize_cfs_quota(tg, d);
7190 		parent_quota = parent_b->hierarchical_quota;
7191 
7192 		/*
7193 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7194 		 * always take the min.  On cgroup1, only inherit when no
7195 		 * limit is set:
7196 		 */
7197 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7198 			quota = min(quota, parent_quota);
7199 		} else {
7200 			if (quota == RUNTIME_INF)
7201 				quota = parent_quota;
7202 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7203 				return -EINVAL;
7204 		}
7205 	}
7206 	cfs_b->hierarchical_quota = quota;
7207 
7208 	return 0;
7209 }
7210 
7211 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7212 {
7213 	int ret;
7214 	struct cfs_schedulable_data data = {
7215 		.tg = tg,
7216 		.period = period,
7217 		.quota = quota,
7218 	};
7219 
7220 	if (quota != RUNTIME_INF) {
7221 		do_div(data.period, NSEC_PER_USEC);
7222 		do_div(data.quota, NSEC_PER_USEC);
7223 	}
7224 
7225 	rcu_read_lock();
7226 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7227 	rcu_read_unlock();
7228 
7229 	return ret;
7230 }
7231 
7232 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7233 {
7234 	struct task_group *tg = css_tg(seq_css(sf));
7235 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7236 
7237 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7238 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7239 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7240 
7241 	if (schedstat_enabled() && tg != &root_task_group) {
7242 		u64 ws = 0;
7243 		int i;
7244 
7245 		for_each_possible_cpu(i)
7246 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7247 
7248 		seq_printf(sf, "wait_sum %llu\n", ws);
7249 	}
7250 
7251 	return 0;
7252 }
7253 #endif /* CONFIG_CFS_BANDWIDTH */
7254 #endif /* CONFIG_FAIR_GROUP_SCHED */
7255 
7256 #ifdef CONFIG_RT_GROUP_SCHED
7257 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7258 				struct cftype *cft, s64 val)
7259 {
7260 	return sched_group_set_rt_runtime(css_tg(css), val);
7261 }
7262 
7263 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7264 			       struct cftype *cft)
7265 {
7266 	return sched_group_rt_runtime(css_tg(css));
7267 }
7268 
7269 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7270 				    struct cftype *cftype, u64 rt_period_us)
7271 {
7272 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7273 }
7274 
7275 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7276 				   struct cftype *cft)
7277 {
7278 	return sched_group_rt_period(css_tg(css));
7279 }
7280 #endif /* CONFIG_RT_GROUP_SCHED */
7281 
7282 static struct cftype cpu_legacy_files[] = {
7283 #ifdef CONFIG_FAIR_GROUP_SCHED
7284 	{
7285 		.name = "shares",
7286 		.read_u64 = cpu_shares_read_u64,
7287 		.write_u64 = cpu_shares_write_u64,
7288 	},
7289 #endif
7290 #ifdef CONFIG_CFS_BANDWIDTH
7291 	{
7292 		.name = "cfs_quota_us",
7293 		.read_s64 = cpu_cfs_quota_read_s64,
7294 		.write_s64 = cpu_cfs_quota_write_s64,
7295 	},
7296 	{
7297 		.name = "cfs_period_us",
7298 		.read_u64 = cpu_cfs_period_read_u64,
7299 		.write_u64 = cpu_cfs_period_write_u64,
7300 	},
7301 	{
7302 		.name = "stat",
7303 		.seq_show = cpu_cfs_stat_show,
7304 	},
7305 #endif
7306 #ifdef CONFIG_RT_GROUP_SCHED
7307 	{
7308 		.name = "rt_runtime_us",
7309 		.read_s64 = cpu_rt_runtime_read,
7310 		.write_s64 = cpu_rt_runtime_write,
7311 	},
7312 	{
7313 		.name = "rt_period_us",
7314 		.read_u64 = cpu_rt_period_read_uint,
7315 		.write_u64 = cpu_rt_period_write_uint,
7316 	},
7317 #endif
7318 	{ }	/* Terminate */
7319 };
7320 
7321 static int cpu_extra_stat_show(struct seq_file *sf,
7322 			       struct cgroup_subsys_state *css)
7323 {
7324 #ifdef CONFIG_CFS_BANDWIDTH
7325 	{
7326 		struct task_group *tg = css_tg(css);
7327 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7328 		u64 throttled_usec;
7329 
7330 		throttled_usec = cfs_b->throttled_time;
7331 		do_div(throttled_usec, NSEC_PER_USEC);
7332 
7333 		seq_printf(sf, "nr_periods %d\n"
7334 			   "nr_throttled %d\n"
7335 			   "throttled_usec %llu\n",
7336 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7337 			   throttled_usec);
7338 	}
7339 #endif
7340 	return 0;
7341 }
7342 
7343 #ifdef CONFIG_FAIR_GROUP_SCHED
7344 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7345 			       struct cftype *cft)
7346 {
7347 	struct task_group *tg = css_tg(css);
7348 	u64 weight = scale_load_down(tg->shares);
7349 
7350 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7351 }
7352 
7353 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7354 				struct cftype *cft, u64 weight)
7355 {
7356 	/*
7357 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7358 	 * values which are 1, 100 and 10000 respectively.  While it loses
7359 	 * a bit of range on both ends, it maps pretty well onto the shares
7360 	 * value used by scheduler and the round-trip conversions preserve
7361 	 * the original value over the entire range.
7362 	 */
7363 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7364 		return -ERANGE;
7365 
7366 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7367 
7368 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7369 }
7370 
7371 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7372 				    struct cftype *cft)
7373 {
7374 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7375 	int last_delta = INT_MAX;
7376 	int prio, delta;
7377 
7378 	/* find the closest nice value to the current weight */
7379 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7380 		delta = abs(sched_prio_to_weight[prio] - weight);
7381 		if (delta >= last_delta)
7382 			break;
7383 		last_delta = delta;
7384 	}
7385 
7386 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7387 }
7388 
7389 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7390 				     struct cftype *cft, s64 nice)
7391 {
7392 	unsigned long weight;
7393 	int idx;
7394 
7395 	if (nice < MIN_NICE || nice > MAX_NICE)
7396 		return -ERANGE;
7397 
7398 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7399 	idx = array_index_nospec(idx, 40);
7400 	weight = sched_prio_to_weight[idx];
7401 
7402 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7403 }
7404 #endif
7405 
7406 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7407 						  long period, long quota)
7408 {
7409 	if (quota < 0)
7410 		seq_puts(sf, "max");
7411 	else
7412 		seq_printf(sf, "%ld", quota);
7413 
7414 	seq_printf(sf, " %ld\n", period);
7415 }
7416 
7417 /* caller should put the current value in *@periodp before calling */
7418 static int __maybe_unused cpu_period_quota_parse(char *buf,
7419 						 u64 *periodp, u64 *quotap)
7420 {
7421 	char tok[21];	/* U64_MAX */
7422 
7423 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7424 		return -EINVAL;
7425 
7426 	*periodp *= NSEC_PER_USEC;
7427 
7428 	if (sscanf(tok, "%llu", quotap))
7429 		*quotap *= NSEC_PER_USEC;
7430 	else if (!strcmp(tok, "max"))
7431 		*quotap = RUNTIME_INF;
7432 	else
7433 		return -EINVAL;
7434 
7435 	return 0;
7436 }
7437 
7438 #ifdef CONFIG_CFS_BANDWIDTH
7439 static int cpu_max_show(struct seq_file *sf, void *v)
7440 {
7441 	struct task_group *tg = css_tg(seq_css(sf));
7442 
7443 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7444 	return 0;
7445 }
7446 
7447 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7448 			     char *buf, size_t nbytes, loff_t off)
7449 {
7450 	struct task_group *tg = css_tg(of_css(of));
7451 	u64 period = tg_get_cfs_period(tg);
7452 	u64 quota;
7453 	int ret;
7454 
7455 	ret = cpu_period_quota_parse(buf, &period, &quota);
7456 	if (!ret)
7457 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7458 	return ret ?: nbytes;
7459 }
7460 #endif
7461 
7462 static struct cftype cpu_files[] = {
7463 #ifdef CONFIG_FAIR_GROUP_SCHED
7464 	{
7465 		.name = "weight",
7466 		.flags = CFTYPE_NOT_ON_ROOT,
7467 		.read_u64 = cpu_weight_read_u64,
7468 		.write_u64 = cpu_weight_write_u64,
7469 	},
7470 	{
7471 		.name = "weight.nice",
7472 		.flags = CFTYPE_NOT_ON_ROOT,
7473 		.read_s64 = cpu_weight_nice_read_s64,
7474 		.write_s64 = cpu_weight_nice_write_s64,
7475 	},
7476 #endif
7477 #ifdef CONFIG_CFS_BANDWIDTH
7478 	{
7479 		.name = "max",
7480 		.flags = CFTYPE_NOT_ON_ROOT,
7481 		.seq_show = cpu_max_show,
7482 		.write = cpu_max_write,
7483 	},
7484 #endif
7485 	{ }	/* terminate */
7486 };
7487 
7488 struct cgroup_subsys cpu_cgrp_subsys = {
7489 	.css_alloc	= cpu_cgroup_css_alloc,
7490 	.css_online	= cpu_cgroup_css_online,
7491 	.css_released	= cpu_cgroup_css_released,
7492 	.css_free	= cpu_cgroup_css_free,
7493 	.css_extra_stat_show = cpu_extra_stat_show,
7494 	.fork		= cpu_cgroup_fork,
7495 	.can_attach	= cpu_cgroup_can_attach,
7496 	.attach		= cpu_cgroup_attach,
7497 	.legacy_cftypes	= cpu_legacy_files,
7498 	.dfl_cftypes	= cpu_files,
7499 	.early_init	= true,
7500 	.threaded	= true,
7501 };
7502 
7503 #endif	/* CONFIG_CGROUP_SCHED */
7504 
7505 void dump_cpu_task(int cpu)
7506 {
7507 	pr_info("Task dump for CPU %d:\n", cpu);
7508 	sched_show_task(cpu_curr(cpu));
7509 }
7510 
7511 /*
7512  * Nice levels are multiplicative, with a gentle 10% change for every
7513  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7514  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7515  * that remained on nice 0.
7516  *
7517  * The "10% effect" is relative and cumulative: from _any_ nice level,
7518  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7519  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7520  * If a task goes up by ~10% and another task goes down by ~10% then
7521  * the relative distance between them is ~25%.)
7522  */
7523 const int sched_prio_to_weight[40] = {
7524  /* -20 */     88761,     71755,     56483,     46273,     36291,
7525  /* -15 */     29154,     23254,     18705,     14949,     11916,
7526  /* -10 */      9548,      7620,      6100,      4904,      3906,
7527  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7528  /*   0 */      1024,       820,       655,       526,       423,
7529  /*   5 */       335,       272,       215,       172,       137,
7530  /*  10 */       110,        87,        70,        56,        45,
7531  /*  15 */        36,        29,        23,        18,        15,
7532 };
7533 
7534 /*
7535  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7536  *
7537  * In cases where the weight does not change often, we can use the
7538  * precalculated inverse to speed up arithmetics by turning divisions
7539  * into multiplications:
7540  */
7541 const u32 sched_prio_to_wmult[40] = {
7542  /* -20 */     48388,     59856,     76040,     92818,    118348,
7543  /* -15 */    147320,    184698,    229616,    287308,    360437,
7544  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7545  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7546  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7547  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7548  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7549  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7550 };
7551 
7552 #undef CREATE_TRACE_POINTS
7553