1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #define INSTANTIATE_EXPORTED_MIGRATE_DISABLE 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hrtimer_api.h> 14 #include <linux/ktime_api.h> 15 #include <linux/sched/signal.h> 16 #include <linux/syscalls_api.h> 17 #include <linux/debug_locks.h> 18 #include <linux/prefetch.h> 19 #include <linux/capability.h> 20 #include <linux/pgtable_api.h> 21 #include <linux/wait_bit.h> 22 #include <linux/jiffies.h> 23 #include <linux/spinlock_api.h> 24 #include <linux/cpumask_api.h> 25 #include <linux/lockdep_api.h> 26 #include <linux/hardirq.h> 27 #include <linux/softirq.h> 28 #include <linux/refcount_api.h> 29 #include <linux/topology.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/cond_resched.h> 32 #include <linux/sched/cputime.h> 33 #include <linux/sched/debug.h> 34 #include <linux/sched/hotplug.h> 35 #include <linux/sched/init.h> 36 #include <linux/sched/isolation.h> 37 #include <linux/sched/loadavg.h> 38 #include <linux/sched/mm.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/rseq_api.h> 41 #include <linux/sched/rt.h> 42 43 #include <linux/blkdev.h> 44 #include <linux/context_tracking.h> 45 #include <linux/cpuset.h> 46 #include <linux/delayacct.h> 47 #include <linux/init_task.h> 48 #include <linux/interrupt.h> 49 #include <linux/ioprio.h> 50 #include <linux/kallsyms.h> 51 #include <linux/kcov.h> 52 #include <linux/kprobes.h> 53 #include <linux/llist_api.h> 54 #include <linux/mmu_context.h> 55 #include <linux/mmzone.h> 56 #include <linux/mutex_api.h> 57 #include <linux/nmi.h> 58 #include <linux/nospec.h> 59 #include <linux/perf_event_api.h> 60 #include <linux/profile.h> 61 #include <linux/psi.h> 62 #include <linux/rcuwait_api.h> 63 #include <linux/rseq.h> 64 #include <linux/sched/wake_q.h> 65 #include <linux/scs.h> 66 #include <linux/slab.h> 67 #include <linux/syscalls.h> 68 #include <linux/vtime.h> 69 #include <linux/wait_api.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/livepatch_sched.h> 72 73 #ifdef CONFIG_PREEMPT_DYNAMIC 74 # ifdef CONFIG_GENERIC_IRQ_ENTRY 75 # include <linux/irq-entry-common.h> 76 # endif 77 #endif 78 79 #include <uapi/linux/sched/types.h> 80 81 #include <asm/irq_regs.h> 82 #include <asm/switch_to.h> 83 #include <asm/tlb.h> 84 85 #define CREATE_TRACE_POINTS 86 #include <linux/sched/rseq_api.h> 87 #include <trace/events/sched.h> 88 #include <trace/events/ipi.h> 89 #undef CREATE_TRACE_POINTS 90 91 #include "sched.h" 92 #include "stats.h" 93 94 #include "autogroup.h" 95 #include "pelt.h" 96 #include "smp.h" 97 98 #include "../workqueue_internal.h" 99 #include "../../io_uring/io-wq.h" 100 #include "../smpboot.h" 101 #include "../locking/mutex.h" 102 103 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 105 106 /* 107 * Export tracepoints that act as a bare tracehook (ie: have no trace event 108 * associated with them) to allow external modules to probe them. 109 */ 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 120 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 121 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 122 123 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 124 125 #ifdef CONFIG_SCHED_PROXY_EXEC 126 DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec); 127 static int __init setup_proxy_exec(char *str) 128 { 129 bool proxy_enable = true; 130 131 if (*str && kstrtobool(str + 1, &proxy_enable)) { 132 pr_warn("Unable to parse sched_proxy_exec=\n"); 133 return 0; 134 } 135 136 if (proxy_enable) { 137 pr_info("sched_proxy_exec enabled via boot arg\n"); 138 static_branch_enable(&__sched_proxy_exec); 139 } else { 140 pr_info("sched_proxy_exec disabled via boot arg\n"); 141 static_branch_disable(&__sched_proxy_exec); 142 } 143 return 1; 144 } 145 #else 146 static int __init setup_proxy_exec(char *str) 147 { 148 pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n"); 149 return 0; 150 } 151 #endif 152 __setup("sched_proxy_exec", setup_proxy_exec); 153 154 /* 155 * Debugging: various feature bits 156 * 157 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 158 * sysctl_sched_features, defined in sched.h, to allow constants propagation 159 * at compile time and compiler optimization based on features default. 160 */ 161 #define SCHED_FEAT(name, enabled) \ 162 (1UL << __SCHED_FEAT_##name) * enabled | 163 __read_mostly unsigned int sysctl_sched_features = 164 #include "features.h" 165 0; 166 #undef SCHED_FEAT 167 168 /* 169 * Print a warning if need_resched is set for the given duration (if 170 * LATENCY_WARN is enabled). 171 * 172 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 173 * per boot. 174 */ 175 __read_mostly int sysctl_resched_latency_warn_ms = 100; 176 __read_mostly int sysctl_resched_latency_warn_once = 1; 177 178 /* 179 * Number of tasks to iterate in a single balance run. 180 * Limited because this is done with IRQs disabled. 181 */ 182 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 183 184 __read_mostly int scheduler_running; 185 186 #ifdef CONFIG_SCHED_CORE 187 188 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 189 190 /* kernel prio, less is more */ 191 static inline int __task_prio(const struct task_struct *p) 192 { 193 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 194 return -2; 195 196 if (p->dl_server) 197 return -1; /* deadline */ 198 199 if (rt_or_dl_prio(p->prio)) 200 return p->prio; /* [-1, 99] */ 201 202 if (p->sched_class == &idle_sched_class) 203 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 204 205 if (task_on_scx(p)) 206 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 207 208 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 209 } 210 211 /* 212 * l(a,b) 213 * le(a,b) := !l(b,a) 214 * g(a,b) := l(b,a) 215 * ge(a,b) := !l(a,b) 216 */ 217 218 /* real prio, less is less */ 219 static inline bool prio_less(const struct task_struct *a, 220 const struct task_struct *b, bool in_fi) 221 { 222 223 int pa = __task_prio(a), pb = __task_prio(b); 224 225 if (-pa < -pb) 226 return true; 227 228 if (-pb < -pa) 229 return false; 230 231 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 232 const struct sched_dl_entity *a_dl, *b_dl; 233 234 a_dl = &a->dl; 235 /* 236 * Since,'a' and 'b' can be CFS tasks served by DL server, 237 * __task_prio() can return -1 (for DL) even for those. In that 238 * case, get to the dl_server's DL entity. 239 */ 240 if (a->dl_server) 241 a_dl = a->dl_server; 242 243 b_dl = &b->dl; 244 if (b->dl_server) 245 b_dl = b->dl_server; 246 247 return !dl_time_before(a_dl->deadline, b_dl->deadline); 248 } 249 250 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 251 return cfs_prio_less(a, b, in_fi); 252 253 #ifdef CONFIG_SCHED_CLASS_EXT 254 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 255 return scx_prio_less(a, b, in_fi); 256 #endif 257 258 return false; 259 } 260 261 static inline bool __sched_core_less(const struct task_struct *a, 262 const struct task_struct *b) 263 { 264 if (a->core_cookie < b->core_cookie) 265 return true; 266 267 if (a->core_cookie > b->core_cookie) 268 return false; 269 270 /* flip prio, so high prio is leftmost */ 271 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 272 return true; 273 274 return false; 275 } 276 277 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 278 279 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 280 { 281 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 282 } 283 284 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 285 { 286 const struct task_struct *p = __node_2_sc(node); 287 unsigned long cookie = (unsigned long)key; 288 289 if (cookie < p->core_cookie) 290 return -1; 291 292 if (cookie > p->core_cookie) 293 return 1; 294 295 return 0; 296 } 297 298 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 299 { 300 if (p->se.sched_delayed) 301 return; 302 303 rq->core->core_task_seq++; 304 305 if (!p->core_cookie) 306 return; 307 308 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 309 } 310 311 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 312 { 313 if (p->se.sched_delayed) 314 return; 315 316 rq->core->core_task_seq++; 317 318 if (sched_core_enqueued(p)) { 319 rb_erase(&p->core_node, &rq->core_tree); 320 RB_CLEAR_NODE(&p->core_node); 321 } 322 323 /* 324 * Migrating the last task off the cpu, with the cpu in forced idle 325 * state. Reschedule to create an accounting edge for forced idle, 326 * and re-examine whether the core is still in forced idle state. 327 */ 328 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 329 rq->core->core_forceidle_count && rq->curr == rq->idle) 330 resched_curr(rq); 331 } 332 333 static int sched_task_is_throttled(struct task_struct *p, int cpu) 334 { 335 if (p->sched_class->task_is_throttled) 336 return p->sched_class->task_is_throttled(p, cpu); 337 338 return 0; 339 } 340 341 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 342 { 343 struct rb_node *node = &p->core_node; 344 int cpu = task_cpu(p); 345 346 do { 347 node = rb_next(node); 348 if (!node) 349 return NULL; 350 351 p = __node_2_sc(node); 352 if (p->core_cookie != cookie) 353 return NULL; 354 355 } while (sched_task_is_throttled(p, cpu)); 356 357 return p; 358 } 359 360 /* 361 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 362 * If no suitable task is found, NULL will be returned. 363 */ 364 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 365 { 366 struct task_struct *p; 367 struct rb_node *node; 368 369 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 370 if (!node) 371 return NULL; 372 373 p = __node_2_sc(node); 374 if (!sched_task_is_throttled(p, rq->cpu)) 375 return p; 376 377 return sched_core_next(p, cookie); 378 } 379 380 /* 381 * Magic required such that: 382 * 383 * raw_spin_rq_lock(rq); 384 * ... 385 * raw_spin_rq_unlock(rq); 386 * 387 * ends up locking and unlocking the _same_ lock, and all CPUs 388 * always agree on what rq has what lock. 389 * 390 * XXX entirely possible to selectively enable cores, don't bother for now. 391 */ 392 393 static DEFINE_MUTEX(sched_core_mutex); 394 static atomic_t sched_core_count; 395 static struct cpumask sched_core_mask; 396 397 static void sched_core_lock(int cpu, unsigned long *flags) 398 { 399 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 400 int t, i = 0; 401 402 local_irq_save(*flags); 403 for_each_cpu(t, smt_mask) 404 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 405 } 406 407 static void sched_core_unlock(int cpu, unsigned long *flags) 408 { 409 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 410 int t; 411 412 for_each_cpu(t, smt_mask) 413 raw_spin_unlock(&cpu_rq(t)->__lock); 414 local_irq_restore(*flags); 415 } 416 417 static void __sched_core_flip(bool enabled) 418 { 419 unsigned long flags; 420 int cpu, t; 421 422 cpus_read_lock(); 423 424 /* 425 * Toggle the online cores, one by one. 426 */ 427 cpumask_copy(&sched_core_mask, cpu_online_mask); 428 for_each_cpu(cpu, &sched_core_mask) { 429 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 430 431 sched_core_lock(cpu, &flags); 432 433 for_each_cpu(t, smt_mask) 434 cpu_rq(t)->core_enabled = enabled; 435 436 cpu_rq(cpu)->core->core_forceidle_start = 0; 437 438 sched_core_unlock(cpu, &flags); 439 440 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 441 } 442 443 /* 444 * Toggle the offline CPUs. 445 */ 446 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 447 cpu_rq(cpu)->core_enabled = enabled; 448 449 cpus_read_unlock(); 450 } 451 452 static void sched_core_assert_empty(void) 453 { 454 int cpu; 455 456 for_each_possible_cpu(cpu) 457 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 458 } 459 460 static void __sched_core_enable(void) 461 { 462 static_branch_enable(&__sched_core_enabled); 463 /* 464 * Ensure all previous instances of raw_spin_rq_*lock() have finished 465 * and future ones will observe !sched_core_disabled(). 466 */ 467 synchronize_rcu(); 468 __sched_core_flip(true); 469 sched_core_assert_empty(); 470 } 471 472 static void __sched_core_disable(void) 473 { 474 sched_core_assert_empty(); 475 __sched_core_flip(false); 476 static_branch_disable(&__sched_core_enabled); 477 } 478 479 void sched_core_get(void) 480 { 481 if (atomic_inc_not_zero(&sched_core_count)) 482 return; 483 484 mutex_lock(&sched_core_mutex); 485 if (!atomic_read(&sched_core_count)) 486 __sched_core_enable(); 487 488 smp_mb__before_atomic(); 489 atomic_inc(&sched_core_count); 490 mutex_unlock(&sched_core_mutex); 491 } 492 493 static void __sched_core_put(struct work_struct *work) 494 { 495 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 496 __sched_core_disable(); 497 mutex_unlock(&sched_core_mutex); 498 } 499 } 500 501 void sched_core_put(void) 502 { 503 static DECLARE_WORK(_work, __sched_core_put); 504 505 /* 506 * "There can be only one" 507 * 508 * Either this is the last one, or we don't actually need to do any 509 * 'work'. If it is the last *again*, we rely on 510 * WORK_STRUCT_PENDING_BIT. 511 */ 512 if (!atomic_add_unless(&sched_core_count, -1, 1)) 513 schedule_work(&_work); 514 } 515 516 #else /* !CONFIG_SCHED_CORE: */ 517 518 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 519 static inline void 520 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 521 522 #endif /* !CONFIG_SCHED_CORE */ 523 524 /* need a wrapper since we may need to trace from modules */ 525 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); 526 527 /* Call via the helper macro trace_set_current_state. */ 528 void __trace_set_current_state(int state_value) 529 { 530 trace_sched_set_state_tp(current, state_value); 531 } 532 EXPORT_SYMBOL(__trace_set_current_state); 533 534 /* 535 * Serialization rules: 536 * 537 * Lock order: 538 * 539 * p->pi_lock 540 * rq->lock 541 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 542 * 543 * rq1->lock 544 * rq2->lock where: rq1 < rq2 545 * 546 * Regular state: 547 * 548 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 549 * local CPU's rq->lock, it optionally removes the task from the runqueue and 550 * always looks at the local rq data structures to find the most eligible task 551 * to run next. 552 * 553 * Task enqueue is also under rq->lock, possibly taken from another CPU. 554 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 555 * the local CPU to avoid bouncing the runqueue state around [ see 556 * ttwu_queue_wakelist() ] 557 * 558 * Task wakeup, specifically wakeups that involve migration, are horribly 559 * complicated to avoid having to take two rq->locks. 560 * 561 * Special state: 562 * 563 * System-calls and anything external will use task_rq_lock() which acquires 564 * both p->pi_lock and rq->lock. As a consequence the state they change is 565 * stable while holding either lock: 566 * 567 * - sched_setaffinity()/ 568 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 569 * - set_user_nice(): p->se.load, p->*prio 570 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 571 * p->se.load, p->rt_priority, 572 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 573 * - sched_setnuma(): p->numa_preferred_nid 574 * - sched_move_task(): p->sched_task_group 575 * - uclamp_update_active() p->uclamp* 576 * 577 * p->state <- TASK_*: 578 * 579 * is changed locklessly using set_current_state(), __set_current_state() or 580 * set_special_state(), see their respective comments, or by 581 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 582 * concurrent self. 583 * 584 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 585 * 586 * is set by activate_task() and cleared by deactivate_task()/block_task(), 587 * under rq->lock. Non-zero indicates the task is runnable, the special 588 * ON_RQ_MIGRATING state is used for migration without holding both 589 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 590 * 591 * Additionally it is possible to be ->on_rq but still be considered not 592 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 593 * but will be dequeued as soon as they get picked again. See the 594 * task_is_runnable() helper. 595 * 596 * p->on_cpu <- { 0, 1 }: 597 * 598 * is set by prepare_task() and cleared by finish_task() such that it will be 599 * set before p is scheduled-in and cleared after p is scheduled-out, both 600 * under rq->lock. Non-zero indicates the task is running on its CPU. 601 * 602 * [ The astute reader will observe that it is possible for two tasks on one 603 * CPU to have ->on_cpu = 1 at the same time. ] 604 * 605 * task_cpu(p): is changed by set_task_cpu(), the rules are: 606 * 607 * - Don't call set_task_cpu() on a blocked task: 608 * 609 * We don't care what CPU we're not running on, this simplifies hotplug, 610 * the CPU assignment of blocked tasks isn't required to be valid. 611 * 612 * - for try_to_wake_up(), called under p->pi_lock: 613 * 614 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 615 * 616 * - for migration called under rq->lock: 617 * [ see task_on_rq_migrating() in task_rq_lock() ] 618 * 619 * o move_queued_task() 620 * o detach_task() 621 * 622 * - for migration called under double_rq_lock(): 623 * 624 * o __migrate_swap_task() 625 * o push_rt_task() / pull_rt_task() 626 * o push_dl_task() / pull_dl_task() 627 * o dl_task_offline_migration() 628 * 629 */ 630 631 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 632 { 633 raw_spinlock_t *lock; 634 635 /* Matches synchronize_rcu() in __sched_core_enable() */ 636 preempt_disable(); 637 if (sched_core_disabled()) { 638 raw_spin_lock_nested(&rq->__lock, subclass); 639 /* preempt_count *MUST* be > 1 */ 640 preempt_enable_no_resched(); 641 return; 642 } 643 644 for (;;) { 645 lock = __rq_lockp(rq); 646 raw_spin_lock_nested(lock, subclass); 647 if (likely(lock == __rq_lockp(rq))) { 648 /* preempt_count *MUST* be > 1 */ 649 preempt_enable_no_resched(); 650 return; 651 } 652 raw_spin_unlock(lock); 653 } 654 } 655 656 bool raw_spin_rq_trylock(struct rq *rq) 657 { 658 raw_spinlock_t *lock; 659 bool ret; 660 661 /* Matches synchronize_rcu() in __sched_core_enable() */ 662 preempt_disable(); 663 if (sched_core_disabled()) { 664 ret = raw_spin_trylock(&rq->__lock); 665 preempt_enable(); 666 return ret; 667 } 668 669 for (;;) { 670 lock = __rq_lockp(rq); 671 ret = raw_spin_trylock(lock); 672 if (!ret || (likely(lock == __rq_lockp(rq)))) { 673 preempt_enable(); 674 return ret; 675 } 676 raw_spin_unlock(lock); 677 } 678 } 679 680 void raw_spin_rq_unlock(struct rq *rq) 681 { 682 raw_spin_unlock(rq_lockp(rq)); 683 } 684 685 /* 686 * double_rq_lock - safely lock two runqueues 687 */ 688 void double_rq_lock(struct rq *rq1, struct rq *rq2) 689 { 690 lockdep_assert_irqs_disabled(); 691 692 if (rq_order_less(rq2, rq1)) 693 swap(rq1, rq2); 694 695 raw_spin_rq_lock(rq1); 696 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 697 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 698 699 double_rq_clock_clear_update(rq1, rq2); 700 } 701 702 /* 703 * __task_rq_lock - lock the rq @p resides on. 704 */ 705 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 706 __acquires(rq->lock) 707 { 708 struct rq *rq; 709 710 lockdep_assert_held(&p->pi_lock); 711 712 for (;;) { 713 rq = task_rq(p); 714 raw_spin_rq_lock(rq); 715 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 716 rq_pin_lock(rq, rf); 717 return rq; 718 } 719 raw_spin_rq_unlock(rq); 720 721 while (unlikely(task_on_rq_migrating(p))) 722 cpu_relax(); 723 } 724 } 725 726 /* 727 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 728 */ 729 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 730 __acquires(p->pi_lock) 731 __acquires(rq->lock) 732 { 733 struct rq *rq; 734 735 for (;;) { 736 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 737 rq = task_rq(p); 738 raw_spin_rq_lock(rq); 739 /* 740 * move_queued_task() task_rq_lock() 741 * 742 * ACQUIRE (rq->lock) 743 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 744 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 745 * [S] ->cpu = new_cpu [L] task_rq() 746 * [L] ->on_rq 747 * RELEASE (rq->lock) 748 * 749 * If we observe the old CPU in task_rq_lock(), the acquire of 750 * the old rq->lock will fully serialize against the stores. 751 * 752 * If we observe the new CPU in task_rq_lock(), the address 753 * dependency headed by '[L] rq = task_rq()' and the acquire 754 * will pair with the WMB to ensure we then also see migrating. 755 */ 756 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 757 rq_pin_lock(rq, rf); 758 return rq; 759 } 760 raw_spin_rq_unlock(rq); 761 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 762 763 while (unlikely(task_on_rq_migrating(p))) 764 cpu_relax(); 765 } 766 } 767 768 /* 769 * RQ-clock updating methods: 770 */ 771 772 static void update_rq_clock_task(struct rq *rq, s64 delta) 773 { 774 /* 775 * In theory, the compile should just see 0 here, and optimize out the call 776 * to sched_rt_avg_update. But I don't trust it... 777 */ 778 s64 __maybe_unused steal = 0, irq_delta = 0; 779 780 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 781 if (irqtime_enabled()) { 782 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 783 784 /* 785 * Since irq_time is only updated on {soft,}irq_exit, we might run into 786 * this case when a previous update_rq_clock() happened inside a 787 * {soft,}IRQ region. 788 * 789 * When this happens, we stop ->clock_task and only update the 790 * prev_irq_time stamp to account for the part that fit, so that a next 791 * update will consume the rest. This ensures ->clock_task is 792 * monotonic. 793 * 794 * It does however cause some slight miss-attribution of {soft,}IRQ 795 * time, a more accurate solution would be to update the irq_time using 796 * the current rq->clock timestamp, except that would require using 797 * atomic ops. 798 */ 799 if (irq_delta > delta) 800 irq_delta = delta; 801 802 rq->prev_irq_time += irq_delta; 803 delta -= irq_delta; 804 delayacct_irq(rq->curr, irq_delta); 805 } 806 #endif 807 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 808 if (static_key_false((¶virt_steal_rq_enabled))) { 809 u64 prev_steal; 810 811 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 812 steal -= rq->prev_steal_time_rq; 813 814 if (unlikely(steal > delta)) 815 steal = delta; 816 817 rq->prev_steal_time_rq = prev_steal; 818 delta -= steal; 819 } 820 #endif 821 822 rq->clock_task += delta; 823 824 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 825 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 826 update_irq_load_avg(rq, irq_delta + steal); 827 #endif 828 update_rq_clock_pelt(rq, delta); 829 } 830 831 void update_rq_clock(struct rq *rq) 832 { 833 s64 delta; 834 u64 clock; 835 836 lockdep_assert_rq_held(rq); 837 838 if (rq->clock_update_flags & RQCF_ACT_SKIP) 839 return; 840 841 if (sched_feat(WARN_DOUBLE_CLOCK)) 842 WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); 843 rq->clock_update_flags |= RQCF_UPDATED; 844 845 clock = sched_clock_cpu(cpu_of(rq)); 846 scx_rq_clock_update(rq, clock); 847 848 delta = clock - rq->clock; 849 if (delta < 0) 850 return; 851 rq->clock += delta; 852 853 update_rq_clock_task(rq, delta); 854 } 855 856 #ifdef CONFIG_SCHED_HRTICK 857 /* 858 * Use HR-timers to deliver accurate preemption points. 859 */ 860 861 static void hrtick_clear(struct rq *rq) 862 { 863 if (hrtimer_active(&rq->hrtick_timer)) 864 hrtimer_cancel(&rq->hrtick_timer); 865 } 866 867 /* 868 * High-resolution timer tick. 869 * Runs from hardirq context with interrupts disabled. 870 */ 871 static enum hrtimer_restart hrtick(struct hrtimer *timer) 872 { 873 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 874 struct rq_flags rf; 875 876 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 877 878 rq_lock(rq, &rf); 879 update_rq_clock(rq); 880 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 881 rq_unlock(rq, &rf); 882 883 return HRTIMER_NORESTART; 884 } 885 886 static void __hrtick_restart(struct rq *rq) 887 { 888 struct hrtimer *timer = &rq->hrtick_timer; 889 ktime_t time = rq->hrtick_time; 890 891 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 892 } 893 894 /* 895 * called from hardirq (IPI) context 896 */ 897 static void __hrtick_start(void *arg) 898 { 899 struct rq *rq = arg; 900 struct rq_flags rf; 901 902 rq_lock(rq, &rf); 903 __hrtick_restart(rq); 904 rq_unlock(rq, &rf); 905 } 906 907 /* 908 * Called to set the hrtick timer state. 909 * 910 * called with rq->lock held and IRQs disabled 911 */ 912 void hrtick_start(struct rq *rq, u64 delay) 913 { 914 struct hrtimer *timer = &rq->hrtick_timer; 915 s64 delta; 916 917 /* 918 * Don't schedule slices shorter than 10000ns, that just 919 * doesn't make sense and can cause timer DoS. 920 */ 921 delta = max_t(s64, delay, 10000LL); 922 rq->hrtick_time = ktime_add_ns(hrtimer_cb_get_time(timer), delta); 923 924 if (rq == this_rq()) 925 __hrtick_restart(rq); 926 else 927 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 928 } 929 930 static void hrtick_rq_init(struct rq *rq) 931 { 932 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 933 hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 934 } 935 #else /* !CONFIG_SCHED_HRTICK: */ 936 static inline void hrtick_clear(struct rq *rq) 937 { 938 } 939 940 static inline void hrtick_rq_init(struct rq *rq) 941 { 942 } 943 #endif /* !CONFIG_SCHED_HRTICK */ 944 945 /* 946 * try_cmpxchg based fetch_or() macro so it works for different integer types: 947 */ 948 #define fetch_or(ptr, mask) \ 949 ({ \ 950 typeof(ptr) _ptr = (ptr); \ 951 typeof(mask) _mask = (mask); \ 952 typeof(*_ptr) _val = *_ptr; \ 953 \ 954 do { \ 955 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 956 _val; \ 957 }) 958 959 #ifdef TIF_POLLING_NRFLAG 960 /* 961 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 962 * this avoids any races wrt polling state changes and thereby avoids 963 * spurious IPIs. 964 */ 965 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 966 { 967 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 968 } 969 970 /* 971 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 972 * 973 * If this returns true, then the idle task promises to call 974 * sched_ttwu_pending() and reschedule soon. 975 */ 976 static bool set_nr_if_polling(struct task_struct *p) 977 { 978 struct thread_info *ti = task_thread_info(p); 979 typeof(ti->flags) val = READ_ONCE(ti->flags); 980 981 do { 982 if (!(val & _TIF_POLLING_NRFLAG)) 983 return false; 984 if (val & _TIF_NEED_RESCHED) 985 return true; 986 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 987 988 return true; 989 } 990 991 #else 992 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 993 { 994 set_ti_thread_flag(ti, tif); 995 return true; 996 } 997 998 static inline bool set_nr_if_polling(struct task_struct *p) 999 { 1000 return false; 1001 } 1002 #endif 1003 1004 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 1005 { 1006 struct wake_q_node *node = &task->wake_q; 1007 1008 /* 1009 * Atomically grab the task, if ->wake_q is !nil already it means 1010 * it's already queued (either by us or someone else) and will get the 1011 * wakeup due to that. 1012 * 1013 * In order to ensure that a pending wakeup will observe our pending 1014 * state, even in the failed case, an explicit smp_mb() must be used. 1015 */ 1016 smp_mb__before_atomic(); 1017 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1018 return false; 1019 1020 /* 1021 * The head is context local, there can be no concurrency. 1022 */ 1023 *head->lastp = node; 1024 head->lastp = &node->next; 1025 return true; 1026 } 1027 1028 /** 1029 * wake_q_add() - queue a wakeup for 'later' waking. 1030 * @head: the wake_q_head to add @task to 1031 * @task: the task to queue for 'later' wakeup 1032 * 1033 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1034 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1035 * instantly. 1036 * 1037 * This function must be used as-if it were wake_up_process(); IOW the task 1038 * must be ready to be woken at this location. 1039 */ 1040 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1041 { 1042 if (__wake_q_add(head, task)) 1043 get_task_struct(task); 1044 } 1045 1046 /** 1047 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1048 * @head: the wake_q_head to add @task to 1049 * @task: the task to queue for 'later' wakeup 1050 * 1051 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1052 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1053 * instantly. 1054 * 1055 * This function must be used as-if it were wake_up_process(); IOW the task 1056 * must be ready to be woken at this location. 1057 * 1058 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1059 * that already hold reference to @task can call the 'safe' version and trust 1060 * wake_q to do the right thing depending whether or not the @task is already 1061 * queued for wakeup. 1062 */ 1063 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1064 { 1065 if (!__wake_q_add(head, task)) 1066 put_task_struct(task); 1067 } 1068 1069 void wake_up_q(struct wake_q_head *head) 1070 { 1071 struct wake_q_node *node = head->first; 1072 1073 while (node != WAKE_Q_TAIL) { 1074 struct task_struct *task; 1075 1076 task = container_of(node, struct task_struct, wake_q); 1077 node = node->next; 1078 /* pairs with cmpxchg_relaxed() in __wake_q_add() */ 1079 WRITE_ONCE(task->wake_q.next, NULL); 1080 /* Task can safely be re-inserted now. */ 1081 1082 /* 1083 * wake_up_process() executes a full barrier, which pairs with 1084 * the queueing in wake_q_add() so as not to miss wakeups. 1085 */ 1086 wake_up_process(task); 1087 put_task_struct(task); 1088 } 1089 } 1090 1091 /* 1092 * resched_curr - mark rq's current task 'to be rescheduled now'. 1093 * 1094 * On UP this means the setting of the need_resched flag, on SMP it 1095 * might also involve a cross-CPU call to trigger the scheduler on 1096 * the target CPU. 1097 */ 1098 static void __resched_curr(struct rq *rq, int tif) 1099 { 1100 struct task_struct *curr = rq->curr; 1101 struct thread_info *cti = task_thread_info(curr); 1102 int cpu; 1103 1104 lockdep_assert_rq_held(rq); 1105 1106 /* 1107 * Always immediately preempt the idle task; no point in delaying doing 1108 * actual work. 1109 */ 1110 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1111 tif = TIF_NEED_RESCHED; 1112 1113 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1114 return; 1115 1116 cpu = cpu_of(rq); 1117 1118 trace_sched_set_need_resched_tp(curr, cpu, tif); 1119 if (cpu == smp_processor_id()) { 1120 set_ti_thread_flag(cti, tif); 1121 if (tif == TIF_NEED_RESCHED) 1122 set_preempt_need_resched(); 1123 return; 1124 } 1125 1126 if (set_nr_and_not_polling(cti, tif)) { 1127 if (tif == TIF_NEED_RESCHED) 1128 smp_send_reschedule(cpu); 1129 } else { 1130 trace_sched_wake_idle_without_ipi(cpu); 1131 } 1132 } 1133 1134 void __trace_set_need_resched(struct task_struct *curr, int tif) 1135 { 1136 trace_sched_set_need_resched_tp(curr, smp_processor_id(), tif); 1137 } 1138 1139 void resched_curr(struct rq *rq) 1140 { 1141 __resched_curr(rq, TIF_NEED_RESCHED); 1142 } 1143 1144 #ifdef CONFIG_PREEMPT_DYNAMIC 1145 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1146 static __always_inline bool dynamic_preempt_lazy(void) 1147 { 1148 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1149 } 1150 #else 1151 static __always_inline bool dynamic_preempt_lazy(void) 1152 { 1153 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1154 } 1155 #endif 1156 1157 static __always_inline int get_lazy_tif_bit(void) 1158 { 1159 if (dynamic_preempt_lazy()) 1160 return TIF_NEED_RESCHED_LAZY; 1161 1162 return TIF_NEED_RESCHED; 1163 } 1164 1165 void resched_curr_lazy(struct rq *rq) 1166 { 1167 __resched_curr(rq, get_lazy_tif_bit()); 1168 } 1169 1170 void resched_cpu(int cpu) 1171 { 1172 struct rq *rq = cpu_rq(cpu); 1173 unsigned long flags; 1174 1175 raw_spin_rq_lock_irqsave(rq, flags); 1176 if (cpu_online(cpu) || cpu == smp_processor_id()) 1177 resched_curr(rq); 1178 raw_spin_rq_unlock_irqrestore(rq, flags); 1179 } 1180 1181 #ifdef CONFIG_NO_HZ_COMMON 1182 /* 1183 * In the semi idle case, use the nearest busy CPU for migrating timers 1184 * from an idle CPU. This is good for power-savings. 1185 * 1186 * We don't do similar optimization for completely idle system, as 1187 * selecting an idle CPU will add more delays to the timers than intended 1188 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1189 */ 1190 int get_nohz_timer_target(void) 1191 { 1192 int i, cpu = smp_processor_id(), default_cpu = -1; 1193 struct sched_domain *sd; 1194 const struct cpumask *hk_mask; 1195 1196 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1197 if (!idle_cpu(cpu)) 1198 return cpu; 1199 default_cpu = cpu; 1200 } 1201 1202 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1203 1204 guard(rcu)(); 1205 1206 for_each_domain(cpu, sd) { 1207 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1208 if (cpu == i) 1209 continue; 1210 1211 if (!idle_cpu(i)) 1212 return i; 1213 } 1214 } 1215 1216 if (default_cpu == -1) 1217 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1218 1219 return default_cpu; 1220 } 1221 1222 /* 1223 * When add_timer_on() enqueues a timer into the timer wheel of an 1224 * idle CPU then this timer might expire before the next timer event 1225 * which is scheduled to wake up that CPU. In case of a completely 1226 * idle system the next event might even be infinite time into the 1227 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1228 * leaves the inner idle loop so the newly added timer is taken into 1229 * account when the CPU goes back to idle and evaluates the timer 1230 * wheel for the next timer event. 1231 */ 1232 static void wake_up_idle_cpu(int cpu) 1233 { 1234 struct rq *rq = cpu_rq(cpu); 1235 1236 if (cpu == smp_processor_id()) 1237 return; 1238 1239 /* 1240 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1241 * part of the idle loop. This forces an exit from the idle loop 1242 * and a round trip to schedule(). Now this could be optimized 1243 * because a simple new idle loop iteration is enough to 1244 * re-evaluate the next tick. Provided some re-ordering of tick 1245 * nohz functions that would need to follow TIF_NR_POLLING 1246 * clearing: 1247 * 1248 * - On most architectures, a simple fetch_or on ti::flags with a 1249 * "0" value would be enough to know if an IPI needs to be sent. 1250 * 1251 * - x86 needs to perform a last need_resched() check between 1252 * monitor and mwait which doesn't take timers into account. 1253 * There a dedicated TIF_TIMER flag would be required to 1254 * fetch_or here and be checked along with TIF_NEED_RESCHED 1255 * before mwait(). 1256 * 1257 * However, remote timer enqueue is not such a frequent event 1258 * and testing of the above solutions didn't appear to report 1259 * much benefits. 1260 */ 1261 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1262 smp_send_reschedule(cpu); 1263 else 1264 trace_sched_wake_idle_without_ipi(cpu); 1265 } 1266 1267 static bool wake_up_full_nohz_cpu(int cpu) 1268 { 1269 /* 1270 * We just need the target to call irq_exit() and re-evaluate 1271 * the next tick. The nohz full kick at least implies that. 1272 * If needed we can still optimize that later with an 1273 * empty IRQ. 1274 */ 1275 if (cpu_is_offline(cpu)) 1276 return true; /* Don't try to wake offline CPUs. */ 1277 if (tick_nohz_full_cpu(cpu)) { 1278 if (cpu != smp_processor_id() || 1279 tick_nohz_tick_stopped()) 1280 tick_nohz_full_kick_cpu(cpu); 1281 return true; 1282 } 1283 1284 return false; 1285 } 1286 1287 /* 1288 * Wake up the specified CPU. If the CPU is going offline, it is the 1289 * caller's responsibility to deal with the lost wakeup, for example, 1290 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1291 */ 1292 void wake_up_nohz_cpu(int cpu) 1293 { 1294 if (!wake_up_full_nohz_cpu(cpu)) 1295 wake_up_idle_cpu(cpu); 1296 } 1297 1298 static void nohz_csd_func(void *info) 1299 { 1300 struct rq *rq = info; 1301 int cpu = cpu_of(rq); 1302 unsigned int flags; 1303 1304 /* 1305 * Release the rq::nohz_csd. 1306 */ 1307 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1308 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1309 1310 rq->idle_balance = idle_cpu(cpu); 1311 if (rq->idle_balance) { 1312 rq->nohz_idle_balance = flags; 1313 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1314 } 1315 } 1316 1317 #endif /* CONFIG_NO_HZ_COMMON */ 1318 1319 #ifdef CONFIG_NO_HZ_FULL 1320 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1321 { 1322 if (rq->nr_running != 1) 1323 return false; 1324 1325 if (p->sched_class != &fair_sched_class) 1326 return false; 1327 1328 if (!task_on_rq_queued(p)) 1329 return false; 1330 1331 return true; 1332 } 1333 1334 bool sched_can_stop_tick(struct rq *rq) 1335 { 1336 int fifo_nr_running; 1337 1338 /* Deadline tasks, even if single, need the tick */ 1339 if (rq->dl.dl_nr_running) 1340 return false; 1341 1342 /* 1343 * If there are more than one RR tasks, we need the tick to affect the 1344 * actual RR behaviour. 1345 */ 1346 if (rq->rt.rr_nr_running) { 1347 if (rq->rt.rr_nr_running == 1) 1348 return true; 1349 else 1350 return false; 1351 } 1352 1353 /* 1354 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1355 * forced preemption between FIFO tasks. 1356 */ 1357 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1358 if (fifo_nr_running) 1359 return true; 1360 1361 /* 1362 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1363 * left. For CFS, if there's more than one we need the tick for 1364 * involuntary preemption. For SCX, ask. 1365 */ 1366 if (scx_enabled() && !scx_can_stop_tick(rq)) 1367 return false; 1368 1369 if (rq->cfs.h_nr_queued > 1) 1370 return false; 1371 1372 /* 1373 * If there is one task and it has CFS runtime bandwidth constraints 1374 * and it's on the cpu now we don't want to stop the tick. 1375 * This check prevents clearing the bit if a newly enqueued task here is 1376 * dequeued by migrating while the constrained task continues to run. 1377 * E.g. going from 2->1 without going through pick_next_task(). 1378 */ 1379 if (__need_bw_check(rq, rq->curr)) { 1380 if (cfs_task_bw_constrained(rq->curr)) 1381 return false; 1382 } 1383 1384 return true; 1385 } 1386 #endif /* CONFIG_NO_HZ_FULL */ 1387 1388 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED) 1389 /* 1390 * Iterate task_group tree rooted at *from, calling @down when first entering a 1391 * node and @up when leaving it for the final time. 1392 * 1393 * Caller must hold rcu_lock or sufficient equivalent. 1394 */ 1395 int walk_tg_tree_from(struct task_group *from, 1396 tg_visitor down, tg_visitor up, void *data) 1397 { 1398 struct task_group *parent, *child; 1399 int ret; 1400 1401 parent = from; 1402 1403 down: 1404 ret = (*down)(parent, data); 1405 if (ret) 1406 goto out; 1407 list_for_each_entry_rcu(child, &parent->children, siblings) { 1408 parent = child; 1409 goto down; 1410 1411 up: 1412 continue; 1413 } 1414 ret = (*up)(parent, data); 1415 if (ret || parent == from) 1416 goto out; 1417 1418 child = parent; 1419 parent = parent->parent; 1420 if (parent) 1421 goto up; 1422 out: 1423 return ret; 1424 } 1425 1426 int tg_nop(struct task_group *tg, void *data) 1427 { 1428 return 0; 1429 } 1430 #endif 1431 1432 void set_load_weight(struct task_struct *p, bool update_load) 1433 { 1434 int prio = p->static_prio - MAX_RT_PRIO; 1435 struct load_weight lw; 1436 1437 if (task_has_idle_policy(p)) { 1438 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1439 lw.inv_weight = WMULT_IDLEPRIO; 1440 } else { 1441 lw.weight = scale_load(sched_prio_to_weight[prio]); 1442 lw.inv_weight = sched_prio_to_wmult[prio]; 1443 } 1444 1445 /* 1446 * SCHED_OTHER tasks have to update their load when changing their 1447 * weight 1448 */ 1449 if (update_load && p->sched_class->reweight_task) 1450 p->sched_class->reweight_task(task_rq(p), p, &lw); 1451 else 1452 p->se.load = lw; 1453 } 1454 1455 #ifdef CONFIG_UCLAMP_TASK 1456 /* 1457 * Serializes updates of utilization clamp values 1458 * 1459 * The (slow-path) user-space triggers utilization clamp value updates which 1460 * can require updates on (fast-path) scheduler's data structures used to 1461 * support enqueue/dequeue operations. 1462 * While the per-CPU rq lock protects fast-path update operations, user-space 1463 * requests are serialized using a mutex to reduce the risk of conflicting 1464 * updates or API abuses. 1465 */ 1466 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1467 1468 /* Max allowed minimum utilization */ 1469 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1470 1471 /* Max allowed maximum utilization */ 1472 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1473 1474 /* 1475 * By default RT tasks run at the maximum performance point/capacity of the 1476 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1477 * SCHED_CAPACITY_SCALE. 1478 * 1479 * This knob allows admins to change the default behavior when uclamp is being 1480 * used. In battery powered devices, particularly, running at the maximum 1481 * capacity and frequency will increase energy consumption and shorten the 1482 * battery life. 1483 * 1484 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1485 * 1486 * This knob will not override the system default sched_util_clamp_min defined 1487 * above. 1488 */ 1489 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1490 1491 /* All clamps are required to be less or equal than these values */ 1492 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1493 1494 /* 1495 * This static key is used to reduce the uclamp overhead in the fast path. It 1496 * primarily disables the call to uclamp_rq_{inc, dec}() in 1497 * enqueue/dequeue_task(). 1498 * 1499 * This allows users to continue to enable uclamp in their kernel config with 1500 * minimum uclamp overhead in the fast path. 1501 * 1502 * As soon as userspace modifies any of the uclamp knobs, the static key is 1503 * enabled, since we have an actual users that make use of uclamp 1504 * functionality. 1505 * 1506 * The knobs that would enable this static key are: 1507 * 1508 * * A task modifying its uclamp value with sched_setattr(). 1509 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1510 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1511 */ 1512 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1513 1514 static inline unsigned int 1515 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1516 unsigned int clamp_value) 1517 { 1518 /* 1519 * Avoid blocked utilization pushing up the frequency when we go 1520 * idle (which drops the max-clamp) by retaining the last known 1521 * max-clamp. 1522 */ 1523 if (clamp_id == UCLAMP_MAX) { 1524 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1525 return clamp_value; 1526 } 1527 1528 return uclamp_none(UCLAMP_MIN); 1529 } 1530 1531 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1532 unsigned int clamp_value) 1533 { 1534 /* Reset max-clamp retention only on idle exit */ 1535 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1536 return; 1537 1538 uclamp_rq_set(rq, clamp_id, clamp_value); 1539 } 1540 1541 static inline 1542 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1543 unsigned int clamp_value) 1544 { 1545 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1546 int bucket_id = UCLAMP_BUCKETS - 1; 1547 1548 /* 1549 * Since both min and max clamps are max aggregated, find the 1550 * top most bucket with tasks in. 1551 */ 1552 for ( ; bucket_id >= 0; bucket_id--) { 1553 if (!bucket[bucket_id].tasks) 1554 continue; 1555 return bucket[bucket_id].value; 1556 } 1557 1558 /* No tasks -- default clamp values */ 1559 return uclamp_idle_value(rq, clamp_id, clamp_value); 1560 } 1561 1562 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1563 { 1564 unsigned int default_util_min; 1565 struct uclamp_se *uc_se; 1566 1567 lockdep_assert_held(&p->pi_lock); 1568 1569 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1570 1571 /* Only sync if user didn't override the default */ 1572 if (uc_se->user_defined) 1573 return; 1574 1575 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1576 uclamp_se_set(uc_se, default_util_min, false); 1577 } 1578 1579 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1580 { 1581 if (!rt_task(p)) 1582 return; 1583 1584 /* Protect updates to p->uclamp_* */ 1585 guard(task_rq_lock)(p); 1586 __uclamp_update_util_min_rt_default(p); 1587 } 1588 1589 static inline struct uclamp_se 1590 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1591 { 1592 /* Copy by value as we could modify it */ 1593 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1594 #ifdef CONFIG_UCLAMP_TASK_GROUP 1595 unsigned int tg_min, tg_max, value; 1596 1597 /* 1598 * Tasks in autogroups or root task group will be 1599 * restricted by system defaults. 1600 */ 1601 if (task_group_is_autogroup(task_group(p))) 1602 return uc_req; 1603 if (task_group(p) == &root_task_group) 1604 return uc_req; 1605 1606 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1607 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1608 value = uc_req.value; 1609 value = clamp(value, tg_min, tg_max); 1610 uclamp_se_set(&uc_req, value, false); 1611 #endif 1612 1613 return uc_req; 1614 } 1615 1616 /* 1617 * The effective clamp bucket index of a task depends on, by increasing 1618 * priority: 1619 * - the task specific clamp value, when explicitly requested from userspace 1620 * - the task group effective clamp value, for tasks not either in the root 1621 * group or in an autogroup 1622 * - the system default clamp value, defined by the sysadmin 1623 */ 1624 static inline struct uclamp_se 1625 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1626 { 1627 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1628 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1629 1630 /* System default restrictions always apply */ 1631 if (unlikely(uc_req.value > uc_max.value)) 1632 return uc_max; 1633 1634 return uc_req; 1635 } 1636 1637 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1638 { 1639 struct uclamp_se uc_eff; 1640 1641 /* Task currently refcounted: use back-annotated (effective) value */ 1642 if (p->uclamp[clamp_id].active) 1643 return (unsigned long)p->uclamp[clamp_id].value; 1644 1645 uc_eff = uclamp_eff_get(p, clamp_id); 1646 1647 return (unsigned long)uc_eff.value; 1648 } 1649 1650 /* 1651 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1652 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1653 * updates the rq's clamp value if required. 1654 * 1655 * Tasks can have a task-specific value requested from user-space, track 1656 * within each bucket the maximum value for tasks refcounted in it. 1657 * This "local max aggregation" allows to track the exact "requested" value 1658 * for each bucket when all its RUNNABLE tasks require the same clamp. 1659 */ 1660 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1661 enum uclamp_id clamp_id) 1662 { 1663 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1664 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1665 struct uclamp_bucket *bucket; 1666 1667 lockdep_assert_rq_held(rq); 1668 1669 /* Update task effective clamp */ 1670 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1671 1672 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1673 bucket->tasks++; 1674 uc_se->active = true; 1675 1676 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1677 1678 /* 1679 * Local max aggregation: rq buckets always track the max 1680 * "requested" clamp value of its RUNNABLE tasks. 1681 */ 1682 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1683 bucket->value = uc_se->value; 1684 1685 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1686 uclamp_rq_set(rq, clamp_id, uc_se->value); 1687 } 1688 1689 /* 1690 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1691 * is released. If this is the last task reference counting the rq's max 1692 * active clamp value, then the rq's clamp value is updated. 1693 * 1694 * Both refcounted tasks and rq's cached clamp values are expected to be 1695 * always valid. If it's detected they are not, as defensive programming, 1696 * enforce the expected state and warn. 1697 */ 1698 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1699 enum uclamp_id clamp_id) 1700 { 1701 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1702 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1703 struct uclamp_bucket *bucket; 1704 unsigned int bkt_clamp; 1705 unsigned int rq_clamp; 1706 1707 lockdep_assert_rq_held(rq); 1708 1709 /* 1710 * If sched_uclamp_used was enabled after task @p was enqueued, 1711 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1712 * 1713 * In this case the uc_se->active flag should be false since no uclamp 1714 * accounting was performed at enqueue time and we can just return 1715 * here. 1716 * 1717 * Need to be careful of the following enqueue/dequeue ordering 1718 * problem too 1719 * 1720 * enqueue(taskA) 1721 * // sched_uclamp_used gets enabled 1722 * enqueue(taskB) 1723 * dequeue(taskA) 1724 * // Must not decrement bucket->tasks here 1725 * dequeue(taskB) 1726 * 1727 * where we could end up with stale data in uc_se and 1728 * bucket[uc_se->bucket_id]. 1729 * 1730 * The following check here eliminates the possibility of such race. 1731 */ 1732 if (unlikely(!uc_se->active)) 1733 return; 1734 1735 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1736 1737 WARN_ON_ONCE(!bucket->tasks); 1738 if (likely(bucket->tasks)) 1739 bucket->tasks--; 1740 1741 uc_se->active = false; 1742 1743 /* 1744 * Keep "local max aggregation" simple and accept to (possibly) 1745 * overboost some RUNNABLE tasks in the same bucket. 1746 * The rq clamp bucket value is reset to its base value whenever 1747 * there are no more RUNNABLE tasks refcounting it. 1748 */ 1749 if (likely(bucket->tasks)) 1750 return; 1751 1752 rq_clamp = uclamp_rq_get(rq, clamp_id); 1753 /* 1754 * Defensive programming: this should never happen. If it happens, 1755 * e.g. due to future modification, warn and fix up the expected value. 1756 */ 1757 WARN_ON_ONCE(bucket->value > rq_clamp); 1758 if (bucket->value >= rq_clamp) { 1759 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1760 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1761 } 1762 } 1763 1764 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) 1765 { 1766 enum uclamp_id clamp_id; 1767 1768 /* 1769 * Avoid any overhead until uclamp is actually used by the userspace. 1770 * 1771 * The condition is constructed such that a NOP is generated when 1772 * sched_uclamp_used is disabled. 1773 */ 1774 if (!uclamp_is_used()) 1775 return; 1776 1777 if (unlikely(!p->sched_class->uclamp_enabled)) 1778 return; 1779 1780 /* Only inc the delayed task which being woken up. */ 1781 if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) 1782 return; 1783 1784 for_each_clamp_id(clamp_id) 1785 uclamp_rq_inc_id(rq, p, clamp_id); 1786 1787 /* Reset clamp idle holding when there is one RUNNABLE task */ 1788 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1789 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1790 } 1791 1792 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1793 { 1794 enum uclamp_id clamp_id; 1795 1796 /* 1797 * Avoid any overhead until uclamp is actually used by the userspace. 1798 * 1799 * The condition is constructed such that a NOP is generated when 1800 * sched_uclamp_used is disabled. 1801 */ 1802 if (!uclamp_is_used()) 1803 return; 1804 1805 if (unlikely(!p->sched_class->uclamp_enabled)) 1806 return; 1807 1808 if (p->se.sched_delayed) 1809 return; 1810 1811 for_each_clamp_id(clamp_id) 1812 uclamp_rq_dec_id(rq, p, clamp_id); 1813 } 1814 1815 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1816 enum uclamp_id clamp_id) 1817 { 1818 if (!p->uclamp[clamp_id].active) 1819 return; 1820 1821 uclamp_rq_dec_id(rq, p, clamp_id); 1822 uclamp_rq_inc_id(rq, p, clamp_id); 1823 1824 /* 1825 * Make sure to clear the idle flag if we've transiently reached 0 1826 * active tasks on rq. 1827 */ 1828 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1829 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1830 } 1831 1832 static inline void 1833 uclamp_update_active(struct task_struct *p) 1834 { 1835 enum uclamp_id clamp_id; 1836 struct rq_flags rf; 1837 struct rq *rq; 1838 1839 /* 1840 * Lock the task and the rq where the task is (or was) queued. 1841 * 1842 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1843 * price to pay to safely serialize util_{min,max} updates with 1844 * enqueues, dequeues and migration operations. 1845 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1846 */ 1847 rq = task_rq_lock(p, &rf); 1848 1849 /* 1850 * Setting the clamp bucket is serialized by task_rq_lock(). 1851 * If the task is not yet RUNNABLE and its task_struct is not 1852 * affecting a valid clamp bucket, the next time it's enqueued, 1853 * it will already see the updated clamp bucket value. 1854 */ 1855 for_each_clamp_id(clamp_id) 1856 uclamp_rq_reinc_id(rq, p, clamp_id); 1857 1858 task_rq_unlock(rq, p, &rf); 1859 } 1860 1861 #ifdef CONFIG_UCLAMP_TASK_GROUP 1862 static inline void 1863 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1864 { 1865 struct css_task_iter it; 1866 struct task_struct *p; 1867 1868 css_task_iter_start(css, 0, &it); 1869 while ((p = css_task_iter_next(&it))) 1870 uclamp_update_active(p); 1871 css_task_iter_end(&it); 1872 } 1873 1874 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1875 #endif 1876 1877 #ifdef CONFIG_SYSCTL 1878 #ifdef CONFIG_UCLAMP_TASK_GROUP 1879 static void uclamp_update_root_tg(void) 1880 { 1881 struct task_group *tg = &root_task_group; 1882 1883 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1884 sysctl_sched_uclamp_util_min, false); 1885 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1886 sysctl_sched_uclamp_util_max, false); 1887 1888 guard(rcu)(); 1889 cpu_util_update_eff(&root_task_group.css); 1890 } 1891 #else 1892 static void uclamp_update_root_tg(void) { } 1893 #endif 1894 1895 static void uclamp_sync_util_min_rt_default(void) 1896 { 1897 struct task_struct *g, *p; 1898 1899 /* 1900 * copy_process() sysctl_uclamp 1901 * uclamp_min_rt = X; 1902 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1903 * // link thread smp_mb__after_spinlock() 1904 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1905 * sched_post_fork() for_each_process_thread() 1906 * __uclamp_sync_rt() __uclamp_sync_rt() 1907 * 1908 * Ensures that either sched_post_fork() will observe the new 1909 * uclamp_min_rt or for_each_process_thread() will observe the new 1910 * task. 1911 */ 1912 read_lock(&tasklist_lock); 1913 smp_mb__after_spinlock(); 1914 read_unlock(&tasklist_lock); 1915 1916 guard(rcu)(); 1917 for_each_process_thread(g, p) 1918 uclamp_update_util_min_rt_default(p); 1919 } 1920 1921 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1922 void *buffer, size_t *lenp, loff_t *ppos) 1923 { 1924 bool update_root_tg = false; 1925 int old_min, old_max, old_min_rt; 1926 int result; 1927 1928 guard(mutex)(&uclamp_mutex); 1929 1930 old_min = sysctl_sched_uclamp_util_min; 1931 old_max = sysctl_sched_uclamp_util_max; 1932 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1933 1934 result = proc_dointvec(table, write, buffer, lenp, ppos); 1935 if (result) 1936 goto undo; 1937 if (!write) 1938 return 0; 1939 1940 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1941 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1942 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1943 1944 result = -EINVAL; 1945 goto undo; 1946 } 1947 1948 if (old_min != sysctl_sched_uclamp_util_min) { 1949 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1950 sysctl_sched_uclamp_util_min, false); 1951 update_root_tg = true; 1952 } 1953 if (old_max != sysctl_sched_uclamp_util_max) { 1954 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1955 sysctl_sched_uclamp_util_max, false); 1956 update_root_tg = true; 1957 } 1958 1959 if (update_root_tg) { 1960 sched_uclamp_enable(); 1961 uclamp_update_root_tg(); 1962 } 1963 1964 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1965 sched_uclamp_enable(); 1966 uclamp_sync_util_min_rt_default(); 1967 } 1968 1969 /* 1970 * We update all RUNNABLE tasks only when task groups are in use. 1971 * Otherwise, keep it simple and do just a lazy update at each next 1972 * task enqueue time. 1973 */ 1974 return 0; 1975 1976 undo: 1977 sysctl_sched_uclamp_util_min = old_min; 1978 sysctl_sched_uclamp_util_max = old_max; 1979 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1980 return result; 1981 } 1982 #endif /* CONFIG_SYSCTL */ 1983 1984 static void uclamp_fork(struct task_struct *p) 1985 { 1986 enum uclamp_id clamp_id; 1987 1988 /* 1989 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1990 * as the task is still at its early fork stages. 1991 */ 1992 for_each_clamp_id(clamp_id) 1993 p->uclamp[clamp_id].active = false; 1994 1995 if (likely(!p->sched_reset_on_fork)) 1996 return; 1997 1998 for_each_clamp_id(clamp_id) { 1999 uclamp_se_set(&p->uclamp_req[clamp_id], 2000 uclamp_none(clamp_id), false); 2001 } 2002 } 2003 2004 static void uclamp_post_fork(struct task_struct *p) 2005 { 2006 uclamp_update_util_min_rt_default(p); 2007 } 2008 2009 static void __init init_uclamp_rq(struct rq *rq) 2010 { 2011 enum uclamp_id clamp_id; 2012 struct uclamp_rq *uc_rq = rq->uclamp; 2013 2014 for_each_clamp_id(clamp_id) { 2015 uc_rq[clamp_id] = (struct uclamp_rq) { 2016 .value = uclamp_none(clamp_id) 2017 }; 2018 } 2019 2020 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2021 } 2022 2023 static void __init init_uclamp(void) 2024 { 2025 struct uclamp_se uc_max = {}; 2026 enum uclamp_id clamp_id; 2027 int cpu; 2028 2029 for_each_possible_cpu(cpu) 2030 init_uclamp_rq(cpu_rq(cpu)); 2031 2032 for_each_clamp_id(clamp_id) { 2033 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2034 uclamp_none(clamp_id), false); 2035 } 2036 2037 /* System defaults allow max clamp values for both indexes */ 2038 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2039 for_each_clamp_id(clamp_id) { 2040 uclamp_default[clamp_id] = uc_max; 2041 #ifdef CONFIG_UCLAMP_TASK_GROUP 2042 root_task_group.uclamp_req[clamp_id] = uc_max; 2043 root_task_group.uclamp[clamp_id] = uc_max; 2044 #endif 2045 } 2046 } 2047 2048 #else /* !CONFIG_UCLAMP_TASK: */ 2049 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } 2050 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2051 static inline void uclamp_fork(struct task_struct *p) { } 2052 static inline void uclamp_post_fork(struct task_struct *p) { } 2053 static inline void init_uclamp(void) { } 2054 #endif /* !CONFIG_UCLAMP_TASK */ 2055 2056 bool sched_task_on_rq(struct task_struct *p) 2057 { 2058 return task_on_rq_queued(p); 2059 } 2060 2061 unsigned long get_wchan(struct task_struct *p) 2062 { 2063 unsigned long ip = 0; 2064 unsigned int state; 2065 2066 if (!p || p == current) 2067 return 0; 2068 2069 /* Only get wchan if task is blocked and we can keep it that way. */ 2070 raw_spin_lock_irq(&p->pi_lock); 2071 state = READ_ONCE(p->__state); 2072 smp_rmb(); /* see try_to_wake_up() */ 2073 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2074 ip = __get_wchan(p); 2075 raw_spin_unlock_irq(&p->pi_lock); 2076 2077 return ip; 2078 } 2079 2080 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2081 { 2082 if (!(flags & ENQUEUE_NOCLOCK)) 2083 update_rq_clock(rq); 2084 2085 /* 2086 * Can be before ->enqueue_task() because uclamp considers the 2087 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared 2088 * in ->enqueue_task(). 2089 */ 2090 uclamp_rq_inc(rq, p, flags); 2091 2092 rq->queue_mask |= p->sched_class->queue_mask; 2093 p->sched_class->enqueue_task(rq, p, flags); 2094 2095 psi_enqueue(p, flags); 2096 2097 if (!(flags & ENQUEUE_RESTORE)) 2098 sched_info_enqueue(rq, p); 2099 2100 if (sched_core_enabled(rq)) 2101 sched_core_enqueue(rq, p); 2102 } 2103 2104 /* 2105 * Must only return false when DEQUEUE_SLEEP. 2106 */ 2107 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2108 { 2109 if (sched_core_enabled(rq)) 2110 sched_core_dequeue(rq, p, flags); 2111 2112 if (!(flags & DEQUEUE_NOCLOCK)) 2113 update_rq_clock(rq); 2114 2115 if (!(flags & DEQUEUE_SAVE)) 2116 sched_info_dequeue(rq, p); 2117 2118 psi_dequeue(p, flags); 2119 2120 /* 2121 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2122 * and mark the task ->sched_delayed. 2123 */ 2124 uclamp_rq_dec(rq, p); 2125 rq->queue_mask |= p->sched_class->queue_mask; 2126 return p->sched_class->dequeue_task(rq, p, flags); 2127 } 2128 2129 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2130 { 2131 if (task_on_rq_migrating(p)) 2132 flags |= ENQUEUE_MIGRATED; 2133 if (flags & ENQUEUE_MIGRATED) 2134 sched_mm_cid_migrate_to(rq, p); 2135 2136 enqueue_task(rq, p, flags); 2137 2138 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2139 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2140 } 2141 2142 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2143 { 2144 WARN_ON_ONCE(flags & DEQUEUE_SLEEP); 2145 2146 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2147 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2148 2149 /* 2150 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2151 * dequeue_task() and cleared *after* enqueue_task(). 2152 */ 2153 2154 dequeue_task(rq, p, flags); 2155 } 2156 2157 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2158 { 2159 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2160 __block_task(rq, p); 2161 } 2162 2163 /** 2164 * task_curr - is this task currently executing on a CPU? 2165 * @p: the task in question. 2166 * 2167 * Return: 1 if the task is currently executing. 0 otherwise. 2168 */ 2169 inline int task_curr(const struct task_struct *p) 2170 { 2171 return cpu_curr(task_cpu(p)) == p; 2172 } 2173 2174 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2175 { 2176 struct task_struct *donor = rq->donor; 2177 2178 if (p->sched_class == donor->sched_class) 2179 donor->sched_class->wakeup_preempt(rq, p, flags); 2180 else if (sched_class_above(p->sched_class, donor->sched_class)) 2181 resched_curr(rq); 2182 2183 /* 2184 * A queue event has occurred, and we're going to schedule. In 2185 * this case, we can save a useless back to back clock update. 2186 */ 2187 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2188 rq_clock_skip_update(rq); 2189 } 2190 2191 static __always_inline 2192 int __task_state_match(struct task_struct *p, unsigned int state) 2193 { 2194 if (READ_ONCE(p->__state) & state) 2195 return 1; 2196 2197 if (READ_ONCE(p->saved_state) & state) 2198 return -1; 2199 2200 return 0; 2201 } 2202 2203 static __always_inline 2204 int task_state_match(struct task_struct *p, unsigned int state) 2205 { 2206 /* 2207 * Serialize against current_save_and_set_rtlock_wait_state(), 2208 * current_restore_rtlock_saved_state(), and __refrigerator(). 2209 */ 2210 guard(raw_spinlock_irq)(&p->pi_lock); 2211 return __task_state_match(p, state); 2212 } 2213 2214 /* 2215 * wait_task_inactive - wait for a thread to unschedule. 2216 * 2217 * Wait for the thread to block in any of the states set in @match_state. 2218 * If it changes, i.e. @p might have woken up, then return zero. When we 2219 * succeed in waiting for @p to be off its CPU, we return a positive number 2220 * (its total switch count). If a second call a short while later returns the 2221 * same number, the caller can be sure that @p has remained unscheduled the 2222 * whole time. 2223 * 2224 * The caller must ensure that the task *will* unschedule sometime soon, 2225 * else this function might spin for a *long* time. This function can't 2226 * be called with interrupts off, or it may introduce deadlock with 2227 * smp_call_function() if an IPI is sent by the same process we are 2228 * waiting to become inactive. 2229 */ 2230 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2231 { 2232 int running, queued, match; 2233 struct rq_flags rf; 2234 unsigned long ncsw; 2235 struct rq *rq; 2236 2237 for (;;) { 2238 /* 2239 * We do the initial early heuristics without holding 2240 * any task-queue locks at all. We'll only try to get 2241 * the runqueue lock when things look like they will 2242 * work out! 2243 */ 2244 rq = task_rq(p); 2245 2246 /* 2247 * If the task is actively running on another CPU 2248 * still, just relax and busy-wait without holding 2249 * any locks. 2250 * 2251 * NOTE! Since we don't hold any locks, it's not 2252 * even sure that "rq" stays as the right runqueue! 2253 * But we don't care, since "task_on_cpu()" will 2254 * return false if the runqueue has changed and p 2255 * is actually now running somewhere else! 2256 */ 2257 while (task_on_cpu(rq, p)) { 2258 if (!task_state_match(p, match_state)) 2259 return 0; 2260 cpu_relax(); 2261 } 2262 2263 /* 2264 * Ok, time to look more closely! We need the rq 2265 * lock now, to be *sure*. If we're wrong, we'll 2266 * just go back and repeat. 2267 */ 2268 rq = task_rq_lock(p, &rf); 2269 /* 2270 * If task is sched_delayed, force dequeue it, to avoid always 2271 * hitting the tick timeout in the queued case 2272 */ 2273 if (p->se.sched_delayed) 2274 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 2275 trace_sched_wait_task(p); 2276 running = task_on_cpu(rq, p); 2277 queued = task_on_rq_queued(p); 2278 ncsw = 0; 2279 if ((match = __task_state_match(p, match_state))) { 2280 /* 2281 * When matching on p->saved_state, consider this task 2282 * still queued so it will wait. 2283 */ 2284 if (match < 0) 2285 queued = 1; 2286 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2287 } 2288 task_rq_unlock(rq, p, &rf); 2289 2290 /* 2291 * If it changed from the expected state, bail out now. 2292 */ 2293 if (unlikely(!ncsw)) 2294 break; 2295 2296 /* 2297 * Was it really running after all now that we 2298 * checked with the proper locks actually held? 2299 * 2300 * Oops. Go back and try again.. 2301 */ 2302 if (unlikely(running)) { 2303 cpu_relax(); 2304 continue; 2305 } 2306 2307 /* 2308 * It's not enough that it's not actively running, 2309 * it must be off the runqueue _entirely_, and not 2310 * preempted! 2311 * 2312 * So if it was still runnable (but just not actively 2313 * running right now), it's preempted, and we should 2314 * yield - it could be a while. 2315 */ 2316 if (unlikely(queued)) { 2317 ktime_t to = NSEC_PER_SEC / HZ; 2318 2319 set_current_state(TASK_UNINTERRUPTIBLE); 2320 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2321 continue; 2322 } 2323 2324 /* 2325 * Ahh, all good. It wasn't running, and it wasn't 2326 * runnable, which means that it will never become 2327 * running in the future either. We're all done! 2328 */ 2329 break; 2330 } 2331 2332 return ncsw; 2333 } 2334 2335 static void 2336 do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2337 2338 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2339 { 2340 struct affinity_context ac = { 2341 .new_mask = cpumask_of(rq->cpu), 2342 .flags = SCA_MIGRATE_DISABLE, 2343 }; 2344 2345 if (likely(!p->migration_disabled)) 2346 return; 2347 2348 if (p->cpus_ptr != &p->cpus_mask) 2349 return; 2350 2351 scoped_guard (task_rq_lock, p) 2352 do_set_cpus_allowed(p, &ac); 2353 } 2354 2355 void ___migrate_enable(void) 2356 { 2357 struct task_struct *p = current; 2358 struct affinity_context ac = { 2359 .new_mask = &p->cpus_mask, 2360 .flags = SCA_MIGRATE_ENABLE, 2361 }; 2362 2363 __set_cpus_allowed_ptr(p, &ac); 2364 } 2365 EXPORT_SYMBOL_GPL(___migrate_enable); 2366 2367 void migrate_disable(void) 2368 { 2369 __migrate_disable(); 2370 } 2371 EXPORT_SYMBOL_GPL(migrate_disable); 2372 2373 void migrate_enable(void) 2374 { 2375 __migrate_enable(); 2376 } 2377 EXPORT_SYMBOL_GPL(migrate_enable); 2378 2379 static inline bool rq_has_pinned_tasks(struct rq *rq) 2380 { 2381 return rq->nr_pinned; 2382 } 2383 2384 /* 2385 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2386 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2387 */ 2388 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2389 { 2390 /* When not in the task's cpumask, no point in looking further. */ 2391 if (!task_allowed_on_cpu(p, cpu)) 2392 return false; 2393 2394 /* migrate_disabled() must be allowed to finish. */ 2395 if (is_migration_disabled(p)) 2396 return cpu_online(cpu); 2397 2398 /* Non kernel threads are not allowed during either online or offline. */ 2399 if (!(p->flags & PF_KTHREAD)) 2400 return cpu_active(cpu); 2401 2402 /* KTHREAD_IS_PER_CPU is always allowed. */ 2403 if (kthread_is_per_cpu(p)) 2404 return cpu_online(cpu); 2405 2406 /* Regular kernel threads don't get to stay during offline. */ 2407 if (cpu_dying(cpu)) 2408 return false; 2409 2410 /* But are allowed during online. */ 2411 return cpu_online(cpu); 2412 } 2413 2414 /* 2415 * This is how migration works: 2416 * 2417 * 1) we invoke migration_cpu_stop() on the target CPU using 2418 * stop_one_cpu(). 2419 * 2) stopper starts to run (implicitly forcing the migrated thread 2420 * off the CPU) 2421 * 3) it checks whether the migrated task is still in the wrong runqueue. 2422 * 4) if it's in the wrong runqueue then the migration thread removes 2423 * it and puts it into the right queue. 2424 * 5) stopper completes and stop_one_cpu() returns and the migration 2425 * is done. 2426 */ 2427 2428 /* 2429 * move_queued_task - move a queued task to new rq. 2430 * 2431 * Returns (locked) new rq. Old rq's lock is released. 2432 */ 2433 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2434 struct task_struct *p, int new_cpu) 2435 { 2436 lockdep_assert_rq_held(rq); 2437 2438 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2439 set_task_cpu(p, new_cpu); 2440 rq_unlock(rq, rf); 2441 2442 rq = cpu_rq(new_cpu); 2443 2444 rq_lock(rq, rf); 2445 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2446 activate_task(rq, p, 0); 2447 wakeup_preempt(rq, p, 0); 2448 2449 return rq; 2450 } 2451 2452 struct migration_arg { 2453 struct task_struct *task; 2454 int dest_cpu; 2455 struct set_affinity_pending *pending; 2456 }; 2457 2458 /* 2459 * @refs: number of wait_for_completion() 2460 * @stop_pending: is @stop_work in use 2461 */ 2462 struct set_affinity_pending { 2463 refcount_t refs; 2464 unsigned int stop_pending; 2465 struct completion done; 2466 struct cpu_stop_work stop_work; 2467 struct migration_arg arg; 2468 }; 2469 2470 /* 2471 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2472 * this because either it can't run here any more (set_cpus_allowed() 2473 * away from this CPU, or CPU going down), or because we're 2474 * attempting to rebalance this task on exec (sched_exec). 2475 * 2476 * So we race with normal scheduler movements, but that's OK, as long 2477 * as the task is no longer on this CPU. 2478 */ 2479 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2480 struct task_struct *p, int dest_cpu) 2481 { 2482 /* Affinity changed (again). */ 2483 if (!is_cpu_allowed(p, dest_cpu)) 2484 return rq; 2485 2486 rq = move_queued_task(rq, rf, p, dest_cpu); 2487 2488 return rq; 2489 } 2490 2491 /* 2492 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2493 * and performs thread migration by bumping thread off CPU then 2494 * 'pushing' onto another runqueue. 2495 */ 2496 static int migration_cpu_stop(void *data) 2497 { 2498 struct migration_arg *arg = data; 2499 struct set_affinity_pending *pending = arg->pending; 2500 struct task_struct *p = arg->task; 2501 struct rq *rq = this_rq(); 2502 bool complete = false; 2503 struct rq_flags rf; 2504 2505 /* 2506 * The original target CPU might have gone down and we might 2507 * be on another CPU but it doesn't matter. 2508 */ 2509 local_irq_save(rf.flags); 2510 /* 2511 * We need to explicitly wake pending tasks before running 2512 * __migrate_task() such that we will not miss enforcing cpus_ptr 2513 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2514 */ 2515 flush_smp_call_function_queue(); 2516 2517 raw_spin_lock(&p->pi_lock); 2518 rq_lock(rq, &rf); 2519 2520 /* 2521 * If we were passed a pending, then ->stop_pending was set, thus 2522 * p->migration_pending must have remained stable. 2523 */ 2524 WARN_ON_ONCE(pending && pending != p->migration_pending); 2525 2526 /* 2527 * If task_rq(p) != rq, it cannot be migrated here, because we're 2528 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2529 * we're holding p->pi_lock. 2530 */ 2531 if (task_rq(p) == rq) { 2532 if (is_migration_disabled(p)) 2533 goto out; 2534 2535 if (pending) { 2536 p->migration_pending = NULL; 2537 complete = true; 2538 2539 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2540 goto out; 2541 } 2542 2543 if (task_on_rq_queued(p)) { 2544 update_rq_clock(rq); 2545 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2546 } else { 2547 p->wake_cpu = arg->dest_cpu; 2548 } 2549 2550 /* 2551 * XXX __migrate_task() can fail, at which point we might end 2552 * up running on a dodgy CPU, AFAICT this can only happen 2553 * during CPU hotplug, at which point we'll get pushed out 2554 * anyway, so it's probably not a big deal. 2555 */ 2556 2557 } else if (pending) { 2558 /* 2559 * This happens when we get migrated between migrate_enable()'s 2560 * preempt_enable() and scheduling the stopper task. At that 2561 * point we're a regular task again and not current anymore. 2562 * 2563 * A !PREEMPT kernel has a giant hole here, which makes it far 2564 * more likely. 2565 */ 2566 2567 /* 2568 * The task moved before the stopper got to run. We're holding 2569 * ->pi_lock, so the allowed mask is stable - if it got 2570 * somewhere allowed, we're done. 2571 */ 2572 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2573 p->migration_pending = NULL; 2574 complete = true; 2575 goto out; 2576 } 2577 2578 /* 2579 * When migrate_enable() hits a rq mis-match we can't reliably 2580 * determine is_migration_disabled() and so have to chase after 2581 * it. 2582 */ 2583 WARN_ON_ONCE(!pending->stop_pending); 2584 preempt_disable(); 2585 rq_unlock(rq, &rf); 2586 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2587 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2588 &pending->arg, &pending->stop_work); 2589 preempt_enable(); 2590 return 0; 2591 } 2592 out: 2593 if (pending) 2594 pending->stop_pending = false; 2595 rq_unlock(rq, &rf); 2596 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2597 2598 if (complete) 2599 complete_all(&pending->done); 2600 2601 return 0; 2602 } 2603 2604 int push_cpu_stop(void *arg) 2605 { 2606 struct rq *lowest_rq = NULL, *rq = this_rq(); 2607 struct task_struct *p = arg; 2608 2609 raw_spin_lock_irq(&p->pi_lock); 2610 raw_spin_rq_lock(rq); 2611 2612 if (task_rq(p) != rq) 2613 goto out_unlock; 2614 2615 if (is_migration_disabled(p)) { 2616 p->migration_flags |= MDF_PUSH; 2617 goto out_unlock; 2618 } 2619 2620 p->migration_flags &= ~MDF_PUSH; 2621 2622 if (p->sched_class->find_lock_rq) 2623 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2624 2625 if (!lowest_rq) 2626 goto out_unlock; 2627 2628 // XXX validate p is still the highest prio task 2629 if (task_rq(p) == rq) { 2630 move_queued_task_locked(rq, lowest_rq, p); 2631 resched_curr(lowest_rq); 2632 } 2633 2634 double_unlock_balance(rq, lowest_rq); 2635 2636 out_unlock: 2637 rq->push_busy = false; 2638 raw_spin_rq_unlock(rq); 2639 raw_spin_unlock_irq(&p->pi_lock); 2640 2641 put_task_struct(p); 2642 return 0; 2643 } 2644 2645 /* 2646 * sched_class::set_cpus_allowed must do the below, but is not required to 2647 * actually call this function. 2648 */ 2649 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2650 { 2651 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2652 p->cpus_ptr = ctx->new_mask; 2653 return; 2654 } 2655 2656 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2657 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2658 2659 /* 2660 * Swap in a new user_cpus_ptr if SCA_USER flag set 2661 */ 2662 if (ctx->flags & SCA_USER) 2663 swap(p->user_cpus_ptr, ctx->user_mask); 2664 } 2665 2666 static void 2667 do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2668 { 2669 scoped_guard (sched_change, p, DEQUEUE_SAVE) { 2670 p->sched_class->set_cpus_allowed(p, ctx); 2671 mm_set_cpus_allowed(p->mm, ctx->new_mask); 2672 } 2673 } 2674 2675 /* 2676 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2677 * affinity (if any) should be destroyed too. 2678 */ 2679 void set_cpus_allowed_force(struct task_struct *p, const struct cpumask *new_mask) 2680 { 2681 struct affinity_context ac = { 2682 .new_mask = new_mask, 2683 .user_mask = NULL, 2684 .flags = SCA_USER, /* clear the user requested mask */ 2685 }; 2686 union cpumask_rcuhead { 2687 cpumask_t cpumask; 2688 struct rcu_head rcu; 2689 }; 2690 2691 scoped_guard (__task_rq_lock, p) 2692 do_set_cpus_allowed(p, &ac); 2693 2694 /* 2695 * Because this is called with p->pi_lock held, it is not possible 2696 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2697 * kfree_rcu(). 2698 */ 2699 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2700 } 2701 2702 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2703 int node) 2704 { 2705 cpumask_t *user_mask; 2706 unsigned long flags; 2707 2708 /* 2709 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2710 * may differ by now due to racing. 2711 */ 2712 dst->user_cpus_ptr = NULL; 2713 2714 /* 2715 * This check is racy and losing the race is a valid situation. 2716 * It is not worth the extra overhead of taking the pi_lock on 2717 * every fork/clone. 2718 */ 2719 if (data_race(!src->user_cpus_ptr)) 2720 return 0; 2721 2722 user_mask = alloc_user_cpus_ptr(node); 2723 if (!user_mask) 2724 return -ENOMEM; 2725 2726 /* 2727 * Use pi_lock to protect content of user_cpus_ptr 2728 * 2729 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2730 * set_cpus_allowed_force(). 2731 */ 2732 raw_spin_lock_irqsave(&src->pi_lock, flags); 2733 if (src->user_cpus_ptr) { 2734 swap(dst->user_cpus_ptr, user_mask); 2735 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2736 } 2737 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2738 2739 if (unlikely(user_mask)) 2740 kfree(user_mask); 2741 2742 return 0; 2743 } 2744 2745 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2746 { 2747 struct cpumask *user_mask = NULL; 2748 2749 swap(p->user_cpus_ptr, user_mask); 2750 2751 return user_mask; 2752 } 2753 2754 void release_user_cpus_ptr(struct task_struct *p) 2755 { 2756 kfree(clear_user_cpus_ptr(p)); 2757 } 2758 2759 /* 2760 * This function is wildly self concurrent; here be dragons. 2761 * 2762 * 2763 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2764 * designated task is enqueued on an allowed CPU. If that task is currently 2765 * running, we have to kick it out using the CPU stopper. 2766 * 2767 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2768 * Consider: 2769 * 2770 * Initial conditions: P0->cpus_mask = [0, 1] 2771 * 2772 * P0@CPU0 P1 2773 * 2774 * migrate_disable(); 2775 * <preempted> 2776 * set_cpus_allowed_ptr(P0, [1]); 2777 * 2778 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2779 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2780 * This means we need the following scheme: 2781 * 2782 * P0@CPU0 P1 2783 * 2784 * migrate_disable(); 2785 * <preempted> 2786 * set_cpus_allowed_ptr(P0, [1]); 2787 * <blocks> 2788 * <resumes> 2789 * migrate_enable(); 2790 * __set_cpus_allowed_ptr(); 2791 * <wakes local stopper> 2792 * `--> <woken on migration completion> 2793 * 2794 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2795 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2796 * task p are serialized by p->pi_lock, which we can leverage: the one that 2797 * should come into effect at the end of the Migrate-Disable region is the last 2798 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2799 * but we still need to properly signal those waiting tasks at the appropriate 2800 * moment. 2801 * 2802 * This is implemented using struct set_affinity_pending. The first 2803 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2804 * setup an instance of that struct and install it on the targeted task_struct. 2805 * Any and all further callers will reuse that instance. Those then wait for 2806 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2807 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2808 * 2809 * 2810 * (1) In the cases covered above. There is one more where the completion is 2811 * signaled within affine_move_task() itself: when a subsequent affinity request 2812 * occurs after the stopper bailed out due to the targeted task still being 2813 * Migrate-Disable. Consider: 2814 * 2815 * Initial conditions: P0->cpus_mask = [0, 1] 2816 * 2817 * CPU0 P1 P2 2818 * <P0> 2819 * migrate_disable(); 2820 * <preempted> 2821 * set_cpus_allowed_ptr(P0, [1]); 2822 * <blocks> 2823 * <migration/0> 2824 * migration_cpu_stop() 2825 * is_migration_disabled() 2826 * <bails> 2827 * set_cpus_allowed_ptr(P0, [0, 1]); 2828 * <signal completion> 2829 * <awakes> 2830 * 2831 * Note that the above is safe vs a concurrent migrate_enable(), as any 2832 * pending affinity completion is preceded by an uninstallation of 2833 * p->migration_pending done with p->pi_lock held. 2834 */ 2835 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2836 int dest_cpu, unsigned int flags) 2837 __releases(rq->lock) 2838 __releases(p->pi_lock) 2839 { 2840 struct set_affinity_pending my_pending = { }, *pending = NULL; 2841 bool stop_pending, complete = false; 2842 2843 /* 2844 * Can the task run on the task's current CPU? If so, we're done 2845 * 2846 * We are also done if the task is the current donor, boosting a lock- 2847 * holding proxy, (and potentially has been migrated outside its 2848 * current or previous affinity mask) 2849 */ 2850 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) || 2851 (task_current_donor(rq, p) && !task_current(rq, p))) { 2852 struct task_struct *push_task = NULL; 2853 2854 if ((flags & SCA_MIGRATE_ENABLE) && 2855 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2856 rq->push_busy = true; 2857 push_task = get_task_struct(p); 2858 } 2859 2860 /* 2861 * If there are pending waiters, but no pending stop_work, 2862 * then complete now. 2863 */ 2864 pending = p->migration_pending; 2865 if (pending && !pending->stop_pending) { 2866 p->migration_pending = NULL; 2867 complete = true; 2868 } 2869 2870 preempt_disable(); 2871 task_rq_unlock(rq, p, rf); 2872 if (push_task) { 2873 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2874 p, &rq->push_work); 2875 } 2876 preempt_enable(); 2877 2878 if (complete) 2879 complete_all(&pending->done); 2880 2881 return 0; 2882 } 2883 2884 if (!(flags & SCA_MIGRATE_ENABLE)) { 2885 /* serialized by p->pi_lock */ 2886 if (!p->migration_pending) { 2887 /* Install the request */ 2888 refcount_set(&my_pending.refs, 1); 2889 init_completion(&my_pending.done); 2890 my_pending.arg = (struct migration_arg) { 2891 .task = p, 2892 .dest_cpu = dest_cpu, 2893 .pending = &my_pending, 2894 }; 2895 2896 p->migration_pending = &my_pending; 2897 } else { 2898 pending = p->migration_pending; 2899 refcount_inc(&pending->refs); 2900 /* 2901 * Affinity has changed, but we've already installed a 2902 * pending. migration_cpu_stop() *must* see this, else 2903 * we risk a completion of the pending despite having a 2904 * task on a disallowed CPU. 2905 * 2906 * Serialized by p->pi_lock, so this is safe. 2907 */ 2908 pending->arg.dest_cpu = dest_cpu; 2909 } 2910 } 2911 pending = p->migration_pending; 2912 /* 2913 * - !MIGRATE_ENABLE: 2914 * we'll have installed a pending if there wasn't one already. 2915 * 2916 * - MIGRATE_ENABLE: 2917 * we're here because the current CPU isn't matching anymore, 2918 * the only way that can happen is because of a concurrent 2919 * set_cpus_allowed_ptr() call, which should then still be 2920 * pending completion. 2921 * 2922 * Either way, we really should have a @pending here. 2923 */ 2924 if (WARN_ON_ONCE(!pending)) { 2925 task_rq_unlock(rq, p, rf); 2926 return -EINVAL; 2927 } 2928 2929 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2930 /* 2931 * MIGRATE_ENABLE gets here because 'p == current', but for 2932 * anything else we cannot do is_migration_disabled(), punt 2933 * and have the stopper function handle it all race-free. 2934 */ 2935 stop_pending = pending->stop_pending; 2936 if (!stop_pending) 2937 pending->stop_pending = true; 2938 2939 if (flags & SCA_MIGRATE_ENABLE) 2940 p->migration_flags &= ~MDF_PUSH; 2941 2942 preempt_disable(); 2943 task_rq_unlock(rq, p, rf); 2944 if (!stop_pending) { 2945 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2946 &pending->arg, &pending->stop_work); 2947 } 2948 preempt_enable(); 2949 2950 if (flags & SCA_MIGRATE_ENABLE) 2951 return 0; 2952 } else { 2953 2954 if (!is_migration_disabled(p)) { 2955 if (task_on_rq_queued(p)) 2956 rq = move_queued_task(rq, rf, p, dest_cpu); 2957 2958 if (!pending->stop_pending) { 2959 p->migration_pending = NULL; 2960 complete = true; 2961 } 2962 } 2963 task_rq_unlock(rq, p, rf); 2964 2965 if (complete) 2966 complete_all(&pending->done); 2967 } 2968 2969 wait_for_completion(&pending->done); 2970 2971 if (refcount_dec_and_test(&pending->refs)) 2972 wake_up_var(&pending->refs); /* No UaF, just an address */ 2973 2974 /* 2975 * Block the original owner of &pending until all subsequent callers 2976 * have seen the completion and decremented the refcount 2977 */ 2978 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2979 2980 /* ARGH */ 2981 WARN_ON_ONCE(my_pending.stop_pending); 2982 2983 return 0; 2984 } 2985 2986 /* 2987 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2988 */ 2989 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2990 struct affinity_context *ctx, 2991 struct rq *rq, 2992 struct rq_flags *rf) 2993 __releases(rq->lock) 2994 __releases(p->pi_lock) 2995 { 2996 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2997 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2998 bool kthread = p->flags & PF_KTHREAD; 2999 unsigned int dest_cpu; 3000 int ret = 0; 3001 3002 update_rq_clock(rq); 3003 3004 if (kthread || is_migration_disabled(p)) { 3005 /* 3006 * Kernel threads are allowed on online && !active CPUs, 3007 * however, during cpu-hot-unplug, even these might get pushed 3008 * away if not KTHREAD_IS_PER_CPU. 3009 * 3010 * Specifically, migration_disabled() tasks must not fail the 3011 * cpumask_any_and_distribute() pick below, esp. so on 3012 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3013 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3014 */ 3015 cpu_valid_mask = cpu_online_mask; 3016 } 3017 3018 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3019 ret = -EINVAL; 3020 goto out; 3021 } 3022 3023 /* 3024 * Must re-check here, to close a race against __kthread_bind(), 3025 * sched_setaffinity() is not guaranteed to observe the flag. 3026 */ 3027 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3028 ret = -EINVAL; 3029 goto out; 3030 } 3031 3032 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3033 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3034 if (ctx->flags & SCA_USER) 3035 swap(p->user_cpus_ptr, ctx->user_mask); 3036 goto out; 3037 } 3038 3039 if (WARN_ON_ONCE(p == current && 3040 is_migration_disabled(p) && 3041 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3042 ret = -EBUSY; 3043 goto out; 3044 } 3045 } 3046 3047 /* 3048 * Picking a ~random cpu helps in cases where we are changing affinity 3049 * for groups of tasks (ie. cpuset), so that load balancing is not 3050 * immediately required to distribute the tasks within their new mask. 3051 */ 3052 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3053 if (dest_cpu >= nr_cpu_ids) { 3054 ret = -EINVAL; 3055 goto out; 3056 } 3057 3058 do_set_cpus_allowed(p, ctx); 3059 3060 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3061 3062 out: 3063 task_rq_unlock(rq, p, rf); 3064 3065 return ret; 3066 } 3067 3068 /* 3069 * Change a given task's CPU affinity. Migrate the thread to a 3070 * proper CPU and schedule it away if the CPU it's executing on 3071 * is removed from the allowed bitmask. 3072 * 3073 * NOTE: the caller must have a valid reference to the task, the 3074 * task must not exit() & deallocate itself prematurely. The 3075 * call is not atomic; no spinlocks may be held. 3076 */ 3077 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3078 { 3079 struct rq_flags rf; 3080 struct rq *rq; 3081 3082 rq = task_rq_lock(p, &rf); 3083 /* 3084 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3085 * flags are set. 3086 */ 3087 if (p->user_cpus_ptr && 3088 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3089 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3090 ctx->new_mask = rq->scratch_mask; 3091 3092 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3093 } 3094 3095 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3096 { 3097 struct affinity_context ac = { 3098 .new_mask = new_mask, 3099 .flags = 0, 3100 }; 3101 3102 return __set_cpus_allowed_ptr(p, &ac); 3103 } 3104 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3105 3106 /* 3107 * Change a given task's CPU affinity to the intersection of its current 3108 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3109 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3110 * affinity or use cpu_online_mask instead. 3111 * 3112 * If the resulting mask is empty, leave the affinity unchanged and return 3113 * -EINVAL. 3114 */ 3115 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3116 struct cpumask *new_mask, 3117 const struct cpumask *subset_mask) 3118 { 3119 struct affinity_context ac = { 3120 .new_mask = new_mask, 3121 .flags = 0, 3122 }; 3123 struct rq_flags rf; 3124 struct rq *rq; 3125 int err; 3126 3127 rq = task_rq_lock(p, &rf); 3128 3129 /* 3130 * Forcefully restricting the affinity of a deadline task is 3131 * likely to cause problems, so fail and noisily override the 3132 * mask entirely. 3133 */ 3134 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3135 err = -EPERM; 3136 goto err_unlock; 3137 } 3138 3139 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3140 err = -EINVAL; 3141 goto err_unlock; 3142 } 3143 3144 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3145 3146 err_unlock: 3147 task_rq_unlock(rq, p, &rf); 3148 return err; 3149 } 3150 3151 /* 3152 * Restrict the CPU affinity of task @p so that it is a subset of 3153 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3154 * old affinity mask. If the resulting mask is empty, we warn and walk 3155 * up the cpuset hierarchy until we find a suitable mask. 3156 */ 3157 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3158 { 3159 cpumask_var_t new_mask; 3160 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3161 3162 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3163 3164 /* 3165 * __migrate_task() can fail silently in the face of concurrent 3166 * offlining of the chosen destination CPU, so take the hotplug 3167 * lock to ensure that the migration succeeds. 3168 */ 3169 cpus_read_lock(); 3170 if (!cpumask_available(new_mask)) 3171 goto out_set_mask; 3172 3173 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3174 goto out_free_mask; 3175 3176 /* 3177 * We failed to find a valid subset of the affinity mask for the 3178 * task, so override it based on its cpuset hierarchy. 3179 */ 3180 cpuset_cpus_allowed(p, new_mask); 3181 override_mask = new_mask; 3182 3183 out_set_mask: 3184 if (printk_ratelimit()) { 3185 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3186 task_pid_nr(p), p->comm, 3187 cpumask_pr_args(override_mask)); 3188 } 3189 3190 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3191 out_free_mask: 3192 cpus_read_unlock(); 3193 free_cpumask_var(new_mask); 3194 } 3195 3196 /* 3197 * Restore the affinity of a task @p which was previously restricted by a 3198 * call to force_compatible_cpus_allowed_ptr(). 3199 * 3200 * It is the caller's responsibility to serialise this with any calls to 3201 * force_compatible_cpus_allowed_ptr(@p). 3202 */ 3203 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3204 { 3205 struct affinity_context ac = { 3206 .new_mask = task_user_cpus(p), 3207 .flags = 0, 3208 }; 3209 int ret; 3210 3211 /* 3212 * Try to restore the old affinity mask with __sched_setaffinity(). 3213 * Cpuset masking will be done there too. 3214 */ 3215 ret = __sched_setaffinity(p, &ac); 3216 WARN_ON_ONCE(ret); 3217 } 3218 3219 #ifdef CONFIG_SMP 3220 3221 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3222 { 3223 unsigned int state = READ_ONCE(p->__state); 3224 3225 /* 3226 * We should never call set_task_cpu() on a blocked task, 3227 * ttwu() will sort out the placement. 3228 */ 3229 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3230 3231 /* 3232 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3233 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3234 * time relying on p->on_rq. 3235 */ 3236 WARN_ON_ONCE(state == TASK_RUNNING && 3237 p->sched_class == &fair_sched_class && 3238 (p->on_rq && !task_on_rq_migrating(p))); 3239 3240 #ifdef CONFIG_LOCKDEP 3241 /* 3242 * The caller should hold either p->pi_lock or rq->lock, when changing 3243 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3244 * 3245 * sched_move_task() holds both and thus holding either pins the cgroup, 3246 * see task_group(). 3247 * 3248 * Furthermore, all task_rq users should acquire both locks, see 3249 * task_rq_lock(). 3250 */ 3251 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3252 lockdep_is_held(__rq_lockp(task_rq(p))))); 3253 #endif 3254 /* 3255 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3256 */ 3257 WARN_ON_ONCE(!cpu_online(new_cpu)); 3258 3259 WARN_ON_ONCE(is_migration_disabled(p)); 3260 3261 trace_sched_migrate_task(p, new_cpu); 3262 3263 if (task_cpu(p) != new_cpu) { 3264 if (p->sched_class->migrate_task_rq) 3265 p->sched_class->migrate_task_rq(p, new_cpu); 3266 p->se.nr_migrations++; 3267 rseq_migrate(p); 3268 sched_mm_cid_migrate_from(p); 3269 perf_event_task_migrate(p); 3270 } 3271 3272 __set_task_cpu(p, new_cpu); 3273 } 3274 #endif /* CONFIG_SMP */ 3275 3276 #ifdef CONFIG_NUMA_BALANCING 3277 static void __migrate_swap_task(struct task_struct *p, int cpu) 3278 { 3279 if (task_on_rq_queued(p)) { 3280 struct rq *src_rq, *dst_rq; 3281 struct rq_flags srf, drf; 3282 3283 src_rq = task_rq(p); 3284 dst_rq = cpu_rq(cpu); 3285 3286 rq_pin_lock(src_rq, &srf); 3287 rq_pin_lock(dst_rq, &drf); 3288 3289 move_queued_task_locked(src_rq, dst_rq, p); 3290 wakeup_preempt(dst_rq, p, 0); 3291 3292 rq_unpin_lock(dst_rq, &drf); 3293 rq_unpin_lock(src_rq, &srf); 3294 3295 } else { 3296 /* 3297 * Task isn't running anymore; make it appear like we migrated 3298 * it before it went to sleep. This means on wakeup we make the 3299 * previous CPU our target instead of where it really is. 3300 */ 3301 p->wake_cpu = cpu; 3302 } 3303 } 3304 3305 struct migration_swap_arg { 3306 struct task_struct *src_task, *dst_task; 3307 int src_cpu, dst_cpu; 3308 }; 3309 3310 static int migrate_swap_stop(void *data) 3311 { 3312 struct migration_swap_arg *arg = data; 3313 struct rq *src_rq, *dst_rq; 3314 3315 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3316 return -EAGAIN; 3317 3318 src_rq = cpu_rq(arg->src_cpu); 3319 dst_rq = cpu_rq(arg->dst_cpu); 3320 3321 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3322 guard(double_rq_lock)(src_rq, dst_rq); 3323 3324 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3325 return -EAGAIN; 3326 3327 if (task_cpu(arg->src_task) != arg->src_cpu) 3328 return -EAGAIN; 3329 3330 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3331 return -EAGAIN; 3332 3333 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3334 return -EAGAIN; 3335 3336 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3337 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3338 3339 return 0; 3340 } 3341 3342 /* 3343 * Cross migrate two tasks 3344 */ 3345 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3346 int target_cpu, int curr_cpu) 3347 { 3348 struct migration_swap_arg arg; 3349 int ret = -EINVAL; 3350 3351 arg = (struct migration_swap_arg){ 3352 .src_task = cur, 3353 .src_cpu = curr_cpu, 3354 .dst_task = p, 3355 .dst_cpu = target_cpu, 3356 }; 3357 3358 if (arg.src_cpu == arg.dst_cpu) 3359 goto out; 3360 3361 /* 3362 * These three tests are all lockless; this is OK since all of them 3363 * will be re-checked with proper locks held further down the line. 3364 */ 3365 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3366 goto out; 3367 3368 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3369 goto out; 3370 3371 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3372 goto out; 3373 3374 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3375 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3376 3377 out: 3378 return ret; 3379 } 3380 #endif /* CONFIG_NUMA_BALANCING */ 3381 3382 /*** 3383 * kick_process - kick a running thread to enter/exit the kernel 3384 * @p: the to-be-kicked thread 3385 * 3386 * Cause a process which is running on another CPU to enter 3387 * kernel-mode, without any delay. (to get signals handled.) 3388 * 3389 * NOTE: this function doesn't have to take the runqueue lock, 3390 * because all it wants to ensure is that the remote task enters 3391 * the kernel. If the IPI races and the task has been migrated 3392 * to another CPU then no harm is done and the purpose has been 3393 * achieved as well. 3394 */ 3395 void kick_process(struct task_struct *p) 3396 { 3397 guard(preempt)(); 3398 int cpu = task_cpu(p); 3399 3400 if ((cpu != smp_processor_id()) && task_curr(p)) 3401 smp_send_reschedule(cpu); 3402 } 3403 EXPORT_SYMBOL_GPL(kick_process); 3404 3405 /* 3406 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3407 * 3408 * A few notes on cpu_active vs cpu_online: 3409 * 3410 * - cpu_active must be a subset of cpu_online 3411 * 3412 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3413 * see __set_cpus_allowed_ptr(). At this point the newly online 3414 * CPU isn't yet part of the sched domains, and balancing will not 3415 * see it. 3416 * 3417 * - on CPU-down we clear cpu_active() to mask the sched domains and 3418 * avoid the load balancer to place new tasks on the to be removed 3419 * CPU. Existing tasks will remain running there and will be taken 3420 * off. 3421 * 3422 * This means that fallback selection must not select !active CPUs. 3423 * And can assume that any active CPU must be online. Conversely 3424 * select_task_rq() below may allow selection of !active CPUs in order 3425 * to satisfy the above rules. 3426 */ 3427 static int select_fallback_rq(int cpu, struct task_struct *p) 3428 { 3429 int nid = cpu_to_node(cpu); 3430 const struct cpumask *nodemask = NULL; 3431 enum { cpuset, possible, fail } state = cpuset; 3432 int dest_cpu; 3433 3434 /* 3435 * If the node that the CPU is on has been offlined, cpu_to_node() 3436 * will return -1. There is no CPU on the node, and we should 3437 * select the CPU on the other node. 3438 */ 3439 if (nid != -1) { 3440 nodemask = cpumask_of_node(nid); 3441 3442 /* Look for allowed, online CPU in same node. */ 3443 for_each_cpu(dest_cpu, nodemask) { 3444 if (is_cpu_allowed(p, dest_cpu)) 3445 return dest_cpu; 3446 } 3447 } 3448 3449 for (;;) { 3450 /* Any allowed, online CPU? */ 3451 for_each_cpu(dest_cpu, p->cpus_ptr) { 3452 if (!is_cpu_allowed(p, dest_cpu)) 3453 continue; 3454 3455 goto out; 3456 } 3457 3458 /* No more Mr. Nice Guy. */ 3459 switch (state) { 3460 case cpuset: 3461 if (cpuset_cpus_allowed_fallback(p)) { 3462 state = possible; 3463 break; 3464 } 3465 fallthrough; 3466 case possible: 3467 set_cpus_allowed_force(p, task_cpu_fallback_mask(p)); 3468 state = fail; 3469 break; 3470 case fail: 3471 BUG(); 3472 break; 3473 } 3474 } 3475 3476 out: 3477 if (state != cpuset) { 3478 /* 3479 * Don't tell them about moving exiting tasks or 3480 * kernel threads (both mm NULL), since they never 3481 * leave kernel. 3482 */ 3483 if (p->mm && printk_ratelimit()) { 3484 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3485 task_pid_nr(p), p->comm, cpu); 3486 } 3487 } 3488 3489 return dest_cpu; 3490 } 3491 3492 /* 3493 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3494 */ 3495 static inline 3496 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3497 { 3498 lockdep_assert_held(&p->pi_lock); 3499 3500 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3501 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3502 *wake_flags |= WF_RQ_SELECTED; 3503 } else { 3504 cpu = cpumask_any(p->cpus_ptr); 3505 } 3506 3507 /* 3508 * In order not to call set_task_cpu() on a blocking task we need 3509 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3510 * CPU. 3511 * 3512 * Since this is common to all placement strategies, this lives here. 3513 * 3514 * [ this allows ->select_task() to simply return task_cpu(p) and 3515 * not worry about this generic constraint ] 3516 */ 3517 if (unlikely(!is_cpu_allowed(p, cpu))) 3518 cpu = select_fallback_rq(task_cpu(p), p); 3519 3520 return cpu; 3521 } 3522 3523 void sched_set_stop_task(int cpu, struct task_struct *stop) 3524 { 3525 static struct lock_class_key stop_pi_lock; 3526 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3527 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3528 3529 if (stop) { 3530 /* 3531 * Make it appear like a SCHED_FIFO task, its something 3532 * userspace knows about and won't get confused about. 3533 * 3534 * Also, it will make PI more or less work without too 3535 * much confusion -- but then, stop work should not 3536 * rely on PI working anyway. 3537 */ 3538 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3539 3540 stop->sched_class = &stop_sched_class; 3541 3542 /* 3543 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3544 * adjust the effective priority of a task. As a result, 3545 * rt_mutex_setprio() can trigger (RT) balancing operations, 3546 * which can then trigger wakeups of the stop thread to push 3547 * around the current task. 3548 * 3549 * The stop task itself will never be part of the PI-chain, it 3550 * never blocks, therefore that ->pi_lock recursion is safe. 3551 * Tell lockdep about this by placing the stop->pi_lock in its 3552 * own class. 3553 */ 3554 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3555 } 3556 3557 cpu_rq(cpu)->stop = stop; 3558 3559 if (old_stop) { 3560 /* 3561 * Reset it back to a normal scheduling class so that 3562 * it can die in pieces. 3563 */ 3564 old_stop->sched_class = &rt_sched_class; 3565 } 3566 } 3567 3568 static void 3569 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3570 { 3571 struct rq *rq; 3572 3573 if (!schedstat_enabled()) 3574 return; 3575 3576 rq = this_rq(); 3577 3578 if (cpu == rq->cpu) { 3579 __schedstat_inc(rq->ttwu_local); 3580 __schedstat_inc(p->stats.nr_wakeups_local); 3581 } else { 3582 struct sched_domain *sd; 3583 3584 __schedstat_inc(p->stats.nr_wakeups_remote); 3585 3586 guard(rcu)(); 3587 for_each_domain(rq->cpu, sd) { 3588 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3589 __schedstat_inc(sd->ttwu_wake_remote); 3590 break; 3591 } 3592 } 3593 } 3594 3595 if (wake_flags & WF_MIGRATED) 3596 __schedstat_inc(p->stats.nr_wakeups_migrate); 3597 3598 __schedstat_inc(rq->ttwu_count); 3599 __schedstat_inc(p->stats.nr_wakeups); 3600 3601 if (wake_flags & WF_SYNC) 3602 __schedstat_inc(p->stats.nr_wakeups_sync); 3603 } 3604 3605 /* 3606 * Mark the task runnable. 3607 */ 3608 static inline void ttwu_do_wakeup(struct task_struct *p) 3609 { 3610 WRITE_ONCE(p->__state, TASK_RUNNING); 3611 trace_sched_wakeup(p); 3612 } 3613 3614 static void 3615 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3616 struct rq_flags *rf) 3617 { 3618 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3619 3620 lockdep_assert_rq_held(rq); 3621 3622 if (p->sched_contributes_to_load) 3623 rq->nr_uninterruptible--; 3624 3625 if (wake_flags & WF_RQ_SELECTED) 3626 en_flags |= ENQUEUE_RQ_SELECTED; 3627 if (wake_flags & WF_MIGRATED) 3628 en_flags |= ENQUEUE_MIGRATED; 3629 else 3630 if (p->in_iowait) { 3631 delayacct_blkio_end(p); 3632 atomic_dec(&task_rq(p)->nr_iowait); 3633 } 3634 3635 activate_task(rq, p, en_flags); 3636 wakeup_preempt(rq, p, wake_flags); 3637 3638 ttwu_do_wakeup(p); 3639 3640 if (p->sched_class->task_woken) { 3641 /* 3642 * Our task @p is fully woken up and running; so it's safe to 3643 * drop the rq->lock, hereafter rq is only used for statistics. 3644 */ 3645 rq_unpin_lock(rq, rf); 3646 p->sched_class->task_woken(rq, p); 3647 rq_repin_lock(rq, rf); 3648 } 3649 3650 if (rq->idle_stamp) { 3651 u64 delta = rq_clock(rq) - rq->idle_stamp; 3652 u64 max = 2*rq->max_idle_balance_cost; 3653 3654 update_avg(&rq->avg_idle, delta); 3655 3656 if (rq->avg_idle > max) 3657 rq->avg_idle = max; 3658 3659 rq->idle_stamp = 0; 3660 } 3661 } 3662 3663 /* 3664 * Consider @p being inside a wait loop: 3665 * 3666 * for (;;) { 3667 * set_current_state(TASK_UNINTERRUPTIBLE); 3668 * 3669 * if (CONDITION) 3670 * break; 3671 * 3672 * schedule(); 3673 * } 3674 * __set_current_state(TASK_RUNNING); 3675 * 3676 * between set_current_state() and schedule(). In this case @p is still 3677 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3678 * an atomic manner. 3679 * 3680 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3681 * then schedule() must still happen and p->state can be changed to 3682 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3683 * need to do a full wakeup with enqueue. 3684 * 3685 * Returns: %true when the wakeup is done, 3686 * %false otherwise. 3687 */ 3688 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3689 { 3690 struct rq_flags rf; 3691 struct rq *rq; 3692 int ret = 0; 3693 3694 rq = __task_rq_lock(p, &rf); 3695 if (task_on_rq_queued(p)) { 3696 update_rq_clock(rq); 3697 if (p->se.sched_delayed) 3698 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3699 if (!task_on_cpu(rq, p)) { 3700 /* 3701 * When on_rq && !on_cpu the task is preempted, see if 3702 * it should preempt the task that is current now. 3703 */ 3704 wakeup_preempt(rq, p, wake_flags); 3705 } 3706 ttwu_do_wakeup(p); 3707 ret = 1; 3708 } 3709 __task_rq_unlock(rq, p, &rf); 3710 3711 return ret; 3712 } 3713 3714 void sched_ttwu_pending(void *arg) 3715 { 3716 struct llist_node *llist = arg; 3717 struct rq *rq = this_rq(); 3718 struct task_struct *p, *t; 3719 struct rq_flags rf; 3720 3721 if (!llist) 3722 return; 3723 3724 rq_lock_irqsave(rq, &rf); 3725 update_rq_clock(rq); 3726 3727 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3728 if (WARN_ON_ONCE(p->on_cpu)) 3729 smp_cond_load_acquire(&p->on_cpu, !VAL); 3730 3731 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3732 set_task_cpu(p, cpu_of(rq)); 3733 3734 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3735 } 3736 3737 /* 3738 * Must be after enqueueing at least once task such that 3739 * idle_cpu() does not observe a false-negative -- if it does, 3740 * it is possible for select_idle_siblings() to stack a number 3741 * of tasks on this CPU during that window. 3742 * 3743 * It is OK to clear ttwu_pending when another task pending. 3744 * We will receive IPI after local IRQ enabled and then enqueue it. 3745 * Since now nr_running > 0, idle_cpu() will always get correct result. 3746 */ 3747 WRITE_ONCE(rq->ttwu_pending, 0); 3748 rq_unlock_irqrestore(rq, &rf); 3749 } 3750 3751 /* 3752 * Prepare the scene for sending an IPI for a remote smp_call 3753 * 3754 * Returns true if the caller can proceed with sending the IPI. 3755 * Returns false otherwise. 3756 */ 3757 bool call_function_single_prep_ipi(int cpu) 3758 { 3759 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3760 trace_sched_wake_idle_without_ipi(cpu); 3761 return false; 3762 } 3763 3764 return true; 3765 } 3766 3767 /* 3768 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3769 * necessary. The wakee CPU on receipt of the IPI will queue the task 3770 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3771 * of the wakeup instead of the waker. 3772 */ 3773 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3774 { 3775 struct rq *rq = cpu_rq(cpu); 3776 3777 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3778 3779 WRITE_ONCE(rq->ttwu_pending, 1); 3780 #ifdef CONFIG_SMP 3781 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3782 #endif 3783 } 3784 3785 void wake_up_if_idle(int cpu) 3786 { 3787 struct rq *rq = cpu_rq(cpu); 3788 3789 guard(rcu)(); 3790 if (is_idle_task(rcu_dereference(rq->curr))) { 3791 guard(rq_lock_irqsave)(rq); 3792 if (is_idle_task(rq->curr)) 3793 resched_curr(rq); 3794 } 3795 } 3796 3797 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3798 { 3799 if (!sched_asym_cpucap_active()) 3800 return true; 3801 3802 if (this_cpu == that_cpu) 3803 return true; 3804 3805 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3806 } 3807 3808 bool cpus_share_cache(int this_cpu, int that_cpu) 3809 { 3810 if (this_cpu == that_cpu) 3811 return true; 3812 3813 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3814 } 3815 3816 /* 3817 * Whether CPUs are share cache resources, which means LLC on non-cluster 3818 * machines and LLC tag or L2 on machines with clusters. 3819 */ 3820 bool cpus_share_resources(int this_cpu, int that_cpu) 3821 { 3822 if (this_cpu == that_cpu) 3823 return true; 3824 3825 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3826 } 3827 3828 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3829 { 3830 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ 3831 if (!scx_allow_ttwu_queue(p)) 3832 return false; 3833 3834 #ifdef CONFIG_SMP 3835 if (p->sched_class == &stop_sched_class) 3836 return false; 3837 #endif 3838 3839 /* 3840 * Do not complicate things with the async wake_list while the CPU is 3841 * in hotplug state. 3842 */ 3843 if (!cpu_active(cpu)) 3844 return false; 3845 3846 /* Ensure the task will still be allowed to run on the CPU. */ 3847 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3848 return false; 3849 3850 /* 3851 * If the CPU does not share cache, then queue the task on the 3852 * remote rqs wakelist to avoid accessing remote data. 3853 */ 3854 if (!cpus_share_cache(smp_processor_id(), cpu)) 3855 return true; 3856 3857 if (cpu == smp_processor_id()) 3858 return false; 3859 3860 /* 3861 * If the wakee cpu is idle, or the task is descheduling and the 3862 * only running task on the CPU, then use the wakelist to offload 3863 * the task activation to the idle (or soon-to-be-idle) CPU as 3864 * the current CPU is likely busy. nr_running is checked to 3865 * avoid unnecessary task stacking. 3866 * 3867 * Note that we can only get here with (wakee) p->on_rq=0, 3868 * p->on_cpu can be whatever, we've done the dequeue, so 3869 * the wakee has been accounted out of ->nr_running. 3870 */ 3871 if (!cpu_rq(cpu)->nr_running) 3872 return true; 3873 3874 return false; 3875 } 3876 3877 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3878 { 3879 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3880 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3881 __ttwu_queue_wakelist(p, cpu, wake_flags); 3882 return true; 3883 } 3884 3885 return false; 3886 } 3887 3888 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3889 { 3890 struct rq *rq = cpu_rq(cpu); 3891 struct rq_flags rf; 3892 3893 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3894 return; 3895 3896 rq_lock(rq, &rf); 3897 update_rq_clock(rq); 3898 ttwu_do_activate(rq, p, wake_flags, &rf); 3899 rq_unlock(rq, &rf); 3900 } 3901 3902 /* 3903 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3904 * 3905 * The caller holds p::pi_lock if p != current or has preemption 3906 * disabled when p == current. 3907 * 3908 * The rules of saved_state: 3909 * 3910 * The related locking code always holds p::pi_lock when updating 3911 * p::saved_state, which means the code is fully serialized in both cases. 3912 * 3913 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3914 * No other bits set. This allows to distinguish all wakeup scenarios. 3915 * 3916 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3917 * allows us to prevent early wakeup of tasks before they can be run on 3918 * asymmetric ISA architectures (eg ARMv9). 3919 */ 3920 static __always_inline 3921 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3922 { 3923 int match; 3924 3925 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3926 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3927 state != TASK_RTLOCK_WAIT); 3928 } 3929 3930 *success = !!(match = __task_state_match(p, state)); 3931 3932 /* 3933 * Saved state preserves the task state across blocking on 3934 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3935 * set p::saved_state to TASK_RUNNING, but do not wake the task 3936 * because it waits for a lock wakeup or __thaw_task(). Also 3937 * indicate success because from the regular waker's point of 3938 * view this has succeeded. 3939 * 3940 * After acquiring the lock the task will restore p::__state 3941 * from p::saved_state which ensures that the regular 3942 * wakeup is not lost. The restore will also set 3943 * p::saved_state to TASK_RUNNING so any further tests will 3944 * not result in false positives vs. @success 3945 */ 3946 if (match < 0) 3947 p->saved_state = TASK_RUNNING; 3948 3949 return match > 0; 3950 } 3951 3952 /* 3953 * Notes on Program-Order guarantees on SMP systems. 3954 * 3955 * MIGRATION 3956 * 3957 * The basic program-order guarantee on SMP systems is that when a task [t] 3958 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3959 * execution on its new CPU [c1]. 3960 * 3961 * For migration (of runnable tasks) this is provided by the following means: 3962 * 3963 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3964 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3965 * rq(c1)->lock (if not at the same time, then in that order). 3966 * C) LOCK of the rq(c1)->lock scheduling in task 3967 * 3968 * Release/acquire chaining guarantees that B happens after A and C after B. 3969 * Note: the CPU doing B need not be c0 or c1 3970 * 3971 * Example: 3972 * 3973 * CPU0 CPU1 CPU2 3974 * 3975 * LOCK rq(0)->lock 3976 * sched-out X 3977 * sched-in Y 3978 * UNLOCK rq(0)->lock 3979 * 3980 * LOCK rq(0)->lock // orders against CPU0 3981 * dequeue X 3982 * UNLOCK rq(0)->lock 3983 * 3984 * LOCK rq(1)->lock 3985 * enqueue X 3986 * UNLOCK rq(1)->lock 3987 * 3988 * LOCK rq(1)->lock // orders against CPU2 3989 * sched-out Z 3990 * sched-in X 3991 * UNLOCK rq(1)->lock 3992 * 3993 * 3994 * BLOCKING -- aka. SLEEP + WAKEUP 3995 * 3996 * For blocking we (obviously) need to provide the same guarantee as for 3997 * migration. However the means are completely different as there is no lock 3998 * chain to provide order. Instead we do: 3999 * 4000 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4001 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4002 * 4003 * Example: 4004 * 4005 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4006 * 4007 * LOCK rq(0)->lock LOCK X->pi_lock 4008 * dequeue X 4009 * sched-out X 4010 * smp_store_release(X->on_cpu, 0); 4011 * 4012 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4013 * X->state = WAKING 4014 * set_task_cpu(X,2) 4015 * 4016 * LOCK rq(2)->lock 4017 * enqueue X 4018 * X->state = RUNNING 4019 * UNLOCK rq(2)->lock 4020 * 4021 * LOCK rq(2)->lock // orders against CPU1 4022 * sched-out Z 4023 * sched-in X 4024 * UNLOCK rq(2)->lock 4025 * 4026 * UNLOCK X->pi_lock 4027 * UNLOCK rq(0)->lock 4028 * 4029 * 4030 * However, for wakeups there is a second guarantee we must provide, namely we 4031 * must ensure that CONDITION=1 done by the caller can not be reordered with 4032 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4033 */ 4034 4035 /** 4036 * try_to_wake_up - wake up a thread 4037 * @p: the thread to be awakened 4038 * @state: the mask of task states that can be woken 4039 * @wake_flags: wake modifier flags (WF_*) 4040 * 4041 * Conceptually does: 4042 * 4043 * If (@state & @p->state) @p->state = TASK_RUNNING. 4044 * 4045 * If the task was not queued/runnable, also place it back on a runqueue. 4046 * 4047 * This function is atomic against schedule() which would dequeue the task. 4048 * 4049 * It issues a full memory barrier before accessing @p->state, see the comment 4050 * with set_current_state(). 4051 * 4052 * Uses p->pi_lock to serialize against concurrent wake-ups. 4053 * 4054 * Relies on p->pi_lock stabilizing: 4055 * - p->sched_class 4056 * - p->cpus_ptr 4057 * - p->sched_task_group 4058 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4059 * 4060 * Tries really hard to only take one task_rq(p)->lock for performance. 4061 * Takes rq->lock in: 4062 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4063 * - ttwu_queue() -- new rq, for enqueue of the task; 4064 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4065 * 4066 * As a consequence we race really badly with just about everything. See the 4067 * many memory barriers and their comments for details. 4068 * 4069 * Return: %true if @p->state changes (an actual wakeup was done), 4070 * %false otherwise. 4071 */ 4072 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4073 { 4074 guard(preempt)(); 4075 int cpu, success = 0; 4076 4077 wake_flags |= WF_TTWU; 4078 4079 if (p == current) { 4080 /* 4081 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4082 * == smp_processor_id()'. Together this means we can special 4083 * case the whole 'p->on_rq && ttwu_runnable()' case below 4084 * without taking any locks. 4085 * 4086 * Specifically, given current runs ttwu() we must be before 4087 * schedule()'s block_task(), as such this must not observe 4088 * sched_delayed. 4089 * 4090 * In particular: 4091 * - we rely on Program-Order guarantees for all the ordering, 4092 * - we're serialized against set_special_state() by virtue of 4093 * it disabling IRQs (this allows not taking ->pi_lock). 4094 */ 4095 WARN_ON_ONCE(p->se.sched_delayed); 4096 if (!ttwu_state_match(p, state, &success)) 4097 goto out; 4098 4099 trace_sched_waking(p); 4100 ttwu_do_wakeup(p); 4101 goto out; 4102 } 4103 4104 /* 4105 * If we are going to wake up a thread waiting for CONDITION we 4106 * need to ensure that CONDITION=1 done by the caller can not be 4107 * reordered with p->state check below. This pairs with smp_store_mb() 4108 * in set_current_state() that the waiting thread does. 4109 */ 4110 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4111 smp_mb__after_spinlock(); 4112 if (!ttwu_state_match(p, state, &success)) 4113 break; 4114 4115 trace_sched_waking(p); 4116 4117 /* 4118 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4119 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4120 * in smp_cond_load_acquire() below. 4121 * 4122 * sched_ttwu_pending() try_to_wake_up() 4123 * STORE p->on_rq = 1 LOAD p->state 4124 * UNLOCK rq->lock 4125 * 4126 * __schedule() (switch to task 'p') 4127 * LOCK rq->lock smp_rmb(); 4128 * smp_mb__after_spinlock(); 4129 * UNLOCK rq->lock 4130 * 4131 * [task p] 4132 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4133 * 4134 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4135 * __schedule(). See the comment for smp_mb__after_spinlock(). 4136 * 4137 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4138 */ 4139 smp_rmb(); 4140 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4141 break; 4142 4143 /* 4144 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4145 * possible to, falsely, observe p->on_cpu == 0. 4146 * 4147 * One must be running (->on_cpu == 1) in order to remove oneself 4148 * from the runqueue. 4149 * 4150 * __schedule() (switch to task 'p') try_to_wake_up() 4151 * STORE p->on_cpu = 1 LOAD p->on_rq 4152 * UNLOCK rq->lock 4153 * 4154 * __schedule() (put 'p' to sleep) 4155 * LOCK rq->lock smp_rmb(); 4156 * smp_mb__after_spinlock(); 4157 * STORE p->on_rq = 0 LOAD p->on_cpu 4158 * 4159 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4160 * __schedule(). See the comment for smp_mb__after_spinlock(). 4161 * 4162 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4163 * schedule()'s block_task() has 'happened' and p will no longer 4164 * care about it's own p->state. See the comment in __schedule(). 4165 */ 4166 smp_acquire__after_ctrl_dep(); 4167 4168 /* 4169 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4170 * == 0), which means we need to do an enqueue, change p->state to 4171 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4172 * enqueue, such as ttwu_queue_wakelist(). 4173 */ 4174 WRITE_ONCE(p->__state, TASK_WAKING); 4175 4176 /* 4177 * If the owning (remote) CPU is still in the middle of schedule() with 4178 * this task as prev, considering queueing p on the remote CPUs wake_list 4179 * which potentially sends an IPI instead of spinning on p->on_cpu to 4180 * let the waker make forward progress. This is safe because IRQs are 4181 * disabled and the IPI will deliver after on_cpu is cleared. 4182 * 4183 * Ensure we load task_cpu(p) after p->on_cpu: 4184 * 4185 * set_task_cpu(p, cpu); 4186 * STORE p->cpu = @cpu 4187 * __schedule() (switch to task 'p') 4188 * LOCK rq->lock 4189 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4190 * STORE p->on_cpu = 1 LOAD p->cpu 4191 * 4192 * to ensure we observe the correct CPU on which the task is currently 4193 * scheduling. 4194 */ 4195 if (smp_load_acquire(&p->on_cpu) && 4196 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4197 break; 4198 4199 /* 4200 * If the owning (remote) CPU is still in the middle of schedule() with 4201 * this task as prev, wait until it's done referencing the task. 4202 * 4203 * Pairs with the smp_store_release() in finish_task(). 4204 * 4205 * This ensures that tasks getting woken will be fully ordered against 4206 * their previous state and preserve Program Order. 4207 */ 4208 smp_cond_load_acquire(&p->on_cpu, !VAL); 4209 4210 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4211 if (task_cpu(p) != cpu) { 4212 if (p->in_iowait) { 4213 delayacct_blkio_end(p); 4214 atomic_dec(&task_rq(p)->nr_iowait); 4215 } 4216 4217 wake_flags |= WF_MIGRATED; 4218 psi_ttwu_dequeue(p); 4219 set_task_cpu(p, cpu); 4220 } 4221 4222 ttwu_queue(p, cpu, wake_flags); 4223 } 4224 out: 4225 if (success) 4226 ttwu_stat(p, task_cpu(p), wake_flags); 4227 4228 return success; 4229 } 4230 4231 static bool __task_needs_rq_lock(struct task_struct *p) 4232 { 4233 unsigned int state = READ_ONCE(p->__state); 4234 4235 /* 4236 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4237 * the task is blocked. Make sure to check @state since ttwu() can drop 4238 * locks at the end, see ttwu_queue_wakelist(). 4239 */ 4240 if (state == TASK_RUNNING || state == TASK_WAKING) 4241 return true; 4242 4243 /* 4244 * Ensure we load p->on_rq after p->__state, otherwise it would be 4245 * possible to, falsely, observe p->on_rq == 0. 4246 * 4247 * See try_to_wake_up() for a longer comment. 4248 */ 4249 smp_rmb(); 4250 if (p->on_rq) 4251 return true; 4252 4253 /* 4254 * Ensure the task has finished __schedule() and will not be referenced 4255 * anymore. Again, see try_to_wake_up() for a longer comment. 4256 */ 4257 smp_rmb(); 4258 smp_cond_load_acquire(&p->on_cpu, !VAL); 4259 4260 return false; 4261 } 4262 4263 /** 4264 * task_call_func - Invoke a function on task in fixed state 4265 * @p: Process for which the function is to be invoked, can be @current. 4266 * @func: Function to invoke. 4267 * @arg: Argument to function. 4268 * 4269 * Fix the task in it's current state by avoiding wakeups and or rq operations 4270 * and call @func(@arg) on it. This function can use task_is_runnable() and 4271 * task_curr() to work out what the state is, if required. Given that @func 4272 * can be invoked with a runqueue lock held, it had better be quite 4273 * lightweight. 4274 * 4275 * Returns: 4276 * Whatever @func returns 4277 */ 4278 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4279 { 4280 struct rq *rq = NULL; 4281 struct rq_flags rf; 4282 int ret; 4283 4284 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4285 4286 if (__task_needs_rq_lock(p)) 4287 rq = __task_rq_lock(p, &rf); 4288 4289 /* 4290 * At this point the task is pinned; either: 4291 * - blocked and we're holding off wakeups (pi->lock) 4292 * - woken, and we're holding off enqueue (rq->lock) 4293 * - queued, and we're holding off schedule (rq->lock) 4294 * - running, and we're holding off de-schedule (rq->lock) 4295 * 4296 * The called function (@func) can use: task_curr(), p->on_rq and 4297 * p->__state to differentiate between these states. 4298 */ 4299 ret = func(p, arg); 4300 4301 if (rq) 4302 __task_rq_unlock(rq, p, &rf); 4303 4304 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4305 return ret; 4306 } 4307 4308 /** 4309 * cpu_curr_snapshot - Return a snapshot of the currently running task 4310 * @cpu: The CPU on which to snapshot the task. 4311 * 4312 * Returns the task_struct pointer of the task "currently" running on 4313 * the specified CPU. 4314 * 4315 * If the specified CPU was offline, the return value is whatever it 4316 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4317 * task, but there is no guarantee. Callers wishing a useful return 4318 * value must take some action to ensure that the specified CPU remains 4319 * online throughout. 4320 * 4321 * This function executes full memory barriers before and after fetching 4322 * the pointer, which permits the caller to confine this function's fetch 4323 * with respect to the caller's accesses to other shared variables. 4324 */ 4325 struct task_struct *cpu_curr_snapshot(int cpu) 4326 { 4327 struct rq *rq = cpu_rq(cpu); 4328 struct task_struct *t; 4329 struct rq_flags rf; 4330 4331 rq_lock_irqsave(rq, &rf); 4332 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4333 t = rcu_dereference(cpu_curr(cpu)); 4334 rq_unlock_irqrestore(rq, &rf); 4335 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4336 4337 return t; 4338 } 4339 4340 /** 4341 * wake_up_process - Wake up a specific process 4342 * @p: The process to be woken up. 4343 * 4344 * Attempt to wake up the nominated process and move it to the set of runnable 4345 * processes. 4346 * 4347 * Return: 1 if the process was woken up, 0 if it was already running. 4348 * 4349 * This function executes a full memory barrier before accessing the task state. 4350 */ 4351 int wake_up_process(struct task_struct *p) 4352 { 4353 return try_to_wake_up(p, TASK_NORMAL, 0); 4354 } 4355 EXPORT_SYMBOL(wake_up_process); 4356 4357 int wake_up_state(struct task_struct *p, unsigned int state) 4358 { 4359 return try_to_wake_up(p, state, 0); 4360 } 4361 4362 /* 4363 * Perform scheduler related setup for a newly forked process p. 4364 * p is forked by current. 4365 * 4366 * __sched_fork() is basic setup which is also used by sched_init() to 4367 * initialize the boot CPU's idle task. 4368 */ 4369 static void __sched_fork(u64 clone_flags, struct task_struct *p) 4370 { 4371 p->on_rq = 0; 4372 4373 p->se.on_rq = 0; 4374 p->se.exec_start = 0; 4375 p->se.sum_exec_runtime = 0; 4376 p->se.prev_sum_exec_runtime = 0; 4377 p->se.nr_migrations = 0; 4378 p->se.vruntime = 0; 4379 p->se.vlag = 0; 4380 INIT_LIST_HEAD(&p->se.group_node); 4381 4382 /* A delayed task cannot be in clone(). */ 4383 WARN_ON_ONCE(p->se.sched_delayed); 4384 4385 #ifdef CONFIG_FAIR_GROUP_SCHED 4386 p->se.cfs_rq = NULL; 4387 #ifdef CONFIG_CFS_BANDWIDTH 4388 init_cfs_throttle_work(p); 4389 #endif 4390 #endif 4391 4392 #ifdef CONFIG_SCHEDSTATS 4393 /* Even if schedstat is disabled, there should not be garbage */ 4394 memset(&p->stats, 0, sizeof(p->stats)); 4395 #endif 4396 4397 init_dl_entity(&p->dl); 4398 4399 INIT_LIST_HEAD(&p->rt.run_list); 4400 p->rt.timeout = 0; 4401 p->rt.time_slice = sched_rr_timeslice; 4402 p->rt.on_rq = 0; 4403 p->rt.on_list = 0; 4404 4405 #ifdef CONFIG_SCHED_CLASS_EXT 4406 init_scx_entity(&p->scx); 4407 #endif 4408 4409 #ifdef CONFIG_PREEMPT_NOTIFIERS 4410 INIT_HLIST_HEAD(&p->preempt_notifiers); 4411 #endif 4412 4413 #ifdef CONFIG_COMPACTION 4414 p->capture_control = NULL; 4415 #endif 4416 init_numa_balancing(clone_flags, p); 4417 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4418 p->migration_pending = NULL; 4419 init_sched_mm_cid(p); 4420 } 4421 4422 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4423 4424 #ifdef CONFIG_NUMA_BALANCING 4425 4426 int sysctl_numa_balancing_mode; 4427 4428 static void __set_numabalancing_state(bool enabled) 4429 { 4430 if (enabled) 4431 static_branch_enable(&sched_numa_balancing); 4432 else 4433 static_branch_disable(&sched_numa_balancing); 4434 } 4435 4436 void set_numabalancing_state(bool enabled) 4437 { 4438 if (enabled) 4439 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4440 else 4441 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4442 __set_numabalancing_state(enabled); 4443 } 4444 4445 #ifdef CONFIG_PROC_SYSCTL 4446 static void reset_memory_tiering(void) 4447 { 4448 struct pglist_data *pgdat; 4449 4450 for_each_online_pgdat(pgdat) { 4451 pgdat->nbp_threshold = 0; 4452 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4453 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4454 } 4455 } 4456 4457 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4458 void *buffer, size_t *lenp, loff_t *ppos) 4459 { 4460 struct ctl_table t; 4461 int err; 4462 int state = sysctl_numa_balancing_mode; 4463 4464 if (write && !capable(CAP_SYS_ADMIN)) 4465 return -EPERM; 4466 4467 t = *table; 4468 t.data = &state; 4469 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4470 if (err < 0) 4471 return err; 4472 if (write) { 4473 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4474 (state & NUMA_BALANCING_MEMORY_TIERING)) 4475 reset_memory_tiering(); 4476 sysctl_numa_balancing_mode = state; 4477 __set_numabalancing_state(state); 4478 } 4479 return err; 4480 } 4481 #endif /* CONFIG_PROC_SYSCTL */ 4482 #endif /* CONFIG_NUMA_BALANCING */ 4483 4484 #ifdef CONFIG_SCHEDSTATS 4485 4486 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4487 4488 static void set_schedstats(bool enabled) 4489 { 4490 if (enabled) 4491 static_branch_enable(&sched_schedstats); 4492 else 4493 static_branch_disable(&sched_schedstats); 4494 } 4495 4496 void force_schedstat_enabled(void) 4497 { 4498 if (!schedstat_enabled()) { 4499 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4500 static_branch_enable(&sched_schedstats); 4501 } 4502 } 4503 4504 static int __init setup_schedstats(char *str) 4505 { 4506 int ret = 0; 4507 if (!str) 4508 goto out; 4509 4510 if (!strcmp(str, "enable")) { 4511 set_schedstats(true); 4512 ret = 1; 4513 } else if (!strcmp(str, "disable")) { 4514 set_schedstats(false); 4515 ret = 1; 4516 } 4517 out: 4518 if (!ret) 4519 pr_warn("Unable to parse schedstats=\n"); 4520 4521 return ret; 4522 } 4523 __setup("schedstats=", setup_schedstats); 4524 4525 #ifdef CONFIG_PROC_SYSCTL 4526 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4527 size_t *lenp, loff_t *ppos) 4528 { 4529 struct ctl_table t; 4530 int err; 4531 int state = static_branch_likely(&sched_schedstats); 4532 4533 if (write && !capable(CAP_SYS_ADMIN)) 4534 return -EPERM; 4535 4536 t = *table; 4537 t.data = &state; 4538 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4539 if (err < 0) 4540 return err; 4541 if (write) 4542 set_schedstats(state); 4543 return err; 4544 } 4545 #endif /* CONFIG_PROC_SYSCTL */ 4546 #endif /* CONFIG_SCHEDSTATS */ 4547 4548 #ifdef CONFIG_SYSCTL 4549 static const struct ctl_table sched_core_sysctls[] = { 4550 #ifdef CONFIG_SCHEDSTATS 4551 { 4552 .procname = "sched_schedstats", 4553 .data = NULL, 4554 .maxlen = sizeof(unsigned int), 4555 .mode = 0644, 4556 .proc_handler = sysctl_schedstats, 4557 .extra1 = SYSCTL_ZERO, 4558 .extra2 = SYSCTL_ONE, 4559 }, 4560 #endif /* CONFIG_SCHEDSTATS */ 4561 #ifdef CONFIG_UCLAMP_TASK 4562 { 4563 .procname = "sched_util_clamp_min", 4564 .data = &sysctl_sched_uclamp_util_min, 4565 .maxlen = sizeof(unsigned int), 4566 .mode = 0644, 4567 .proc_handler = sysctl_sched_uclamp_handler, 4568 }, 4569 { 4570 .procname = "sched_util_clamp_max", 4571 .data = &sysctl_sched_uclamp_util_max, 4572 .maxlen = sizeof(unsigned int), 4573 .mode = 0644, 4574 .proc_handler = sysctl_sched_uclamp_handler, 4575 }, 4576 { 4577 .procname = "sched_util_clamp_min_rt_default", 4578 .data = &sysctl_sched_uclamp_util_min_rt_default, 4579 .maxlen = sizeof(unsigned int), 4580 .mode = 0644, 4581 .proc_handler = sysctl_sched_uclamp_handler, 4582 }, 4583 #endif /* CONFIG_UCLAMP_TASK */ 4584 #ifdef CONFIG_NUMA_BALANCING 4585 { 4586 .procname = "numa_balancing", 4587 .data = NULL, /* filled in by handler */ 4588 .maxlen = sizeof(unsigned int), 4589 .mode = 0644, 4590 .proc_handler = sysctl_numa_balancing, 4591 .extra1 = SYSCTL_ZERO, 4592 .extra2 = SYSCTL_FOUR, 4593 }, 4594 #endif /* CONFIG_NUMA_BALANCING */ 4595 }; 4596 static int __init sched_core_sysctl_init(void) 4597 { 4598 register_sysctl_init("kernel", sched_core_sysctls); 4599 return 0; 4600 } 4601 late_initcall(sched_core_sysctl_init); 4602 #endif /* CONFIG_SYSCTL */ 4603 4604 /* 4605 * fork()/clone()-time setup: 4606 */ 4607 int sched_fork(u64 clone_flags, struct task_struct *p) 4608 { 4609 __sched_fork(clone_flags, p); 4610 /* 4611 * We mark the process as NEW here. This guarantees that 4612 * nobody will actually run it, and a signal or other external 4613 * event cannot wake it up and insert it on the runqueue either. 4614 */ 4615 p->__state = TASK_NEW; 4616 4617 /* 4618 * Make sure we do not leak PI boosting priority to the child. 4619 */ 4620 p->prio = current->normal_prio; 4621 4622 uclamp_fork(p); 4623 4624 /* 4625 * Revert to default priority/policy on fork if requested. 4626 */ 4627 if (unlikely(p->sched_reset_on_fork)) { 4628 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4629 p->policy = SCHED_NORMAL; 4630 p->static_prio = NICE_TO_PRIO(0); 4631 p->rt_priority = 0; 4632 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4633 p->static_prio = NICE_TO_PRIO(0); 4634 4635 p->prio = p->normal_prio = p->static_prio; 4636 set_load_weight(p, false); 4637 p->se.custom_slice = 0; 4638 p->se.slice = sysctl_sched_base_slice; 4639 4640 /* 4641 * We don't need the reset flag anymore after the fork. It has 4642 * fulfilled its duty: 4643 */ 4644 p->sched_reset_on_fork = 0; 4645 } 4646 4647 if (dl_prio(p->prio)) 4648 return -EAGAIN; 4649 4650 scx_pre_fork(p); 4651 4652 if (rt_prio(p->prio)) { 4653 p->sched_class = &rt_sched_class; 4654 #ifdef CONFIG_SCHED_CLASS_EXT 4655 } else if (task_should_scx(p->policy)) { 4656 p->sched_class = &ext_sched_class; 4657 #endif 4658 } else { 4659 p->sched_class = &fair_sched_class; 4660 } 4661 4662 init_entity_runnable_average(&p->se); 4663 4664 4665 #ifdef CONFIG_SCHED_INFO 4666 if (likely(sched_info_on())) 4667 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4668 #endif 4669 p->on_cpu = 0; 4670 init_task_preempt_count(p); 4671 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4672 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4673 4674 return 0; 4675 } 4676 4677 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4678 { 4679 unsigned long flags; 4680 4681 /* 4682 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4683 * required yet, but lockdep gets upset if rules are violated. 4684 */ 4685 raw_spin_lock_irqsave(&p->pi_lock, flags); 4686 #ifdef CONFIG_CGROUP_SCHED 4687 if (1) { 4688 struct task_group *tg; 4689 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4690 struct task_group, css); 4691 tg = autogroup_task_group(p, tg); 4692 p->sched_task_group = tg; 4693 } 4694 #endif 4695 rseq_migrate(p); 4696 /* 4697 * We're setting the CPU for the first time, we don't migrate, 4698 * so use __set_task_cpu(). 4699 */ 4700 __set_task_cpu(p, smp_processor_id()); 4701 if (p->sched_class->task_fork) 4702 p->sched_class->task_fork(p); 4703 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4704 4705 return scx_fork(p); 4706 } 4707 4708 void sched_cancel_fork(struct task_struct *p) 4709 { 4710 scx_cancel_fork(p); 4711 } 4712 4713 void sched_post_fork(struct task_struct *p) 4714 { 4715 uclamp_post_fork(p); 4716 scx_post_fork(p); 4717 } 4718 4719 unsigned long to_ratio(u64 period, u64 runtime) 4720 { 4721 if (runtime == RUNTIME_INF) 4722 return BW_UNIT; 4723 4724 /* 4725 * Doing this here saves a lot of checks in all 4726 * the calling paths, and returning zero seems 4727 * safe for them anyway. 4728 */ 4729 if (period == 0) 4730 return 0; 4731 4732 return div64_u64(runtime << BW_SHIFT, period); 4733 } 4734 4735 /* 4736 * wake_up_new_task - wake up a newly created task for the first time. 4737 * 4738 * This function will do some initial scheduler statistics housekeeping 4739 * that must be done for every newly created context, then puts the task 4740 * on the runqueue and wakes it. 4741 */ 4742 void wake_up_new_task(struct task_struct *p) 4743 { 4744 struct rq_flags rf; 4745 struct rq *rq; 4746 int wake_flags = WF_FORK; 4747 4748 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4749 WRITE_ONCE(p->__state, TASK_RUNNING); 4750 /* 4751 * Fork balancing, do it here and not earlier because: 4752 * - cpus_ptr can change in the fork path 4753 * - any previously selected CPU might disappear through hotplug 4754 * 4755 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4756 * as we're not fully set-up yet. 4757 */ 4758 p->recent_used_cpu = task_cpu(p); 4759 rseq_migrate(p); 4760 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4761 rq = __task_rq_lock(p, &rf); 4762 update_rq_clock(rq); 4763 post_init_entity_util_avg(p); 4764 4765 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4766 trace_sched_wakeup_new(p); 4767 wakeup_preempt(rq, p, wake_flags); 4768 if (p->sched_class->task_woken) { 4769 /* 4770 * Nothing relies on rq->lock after this, so it's fine to 4771 * drop it. 4772 */ 4773 rq_unpin_lock(rq, &rf); 4774 p->sched_class->task_woken(rq, p); 4775 rq_repin_lock(rq, &rf); 4776 } 4777 task_rq_unlock(rq, p, &rf); 4778 } 4779 4780 #ifdef CONFIG_PREEMPT_NOTIFIERS 4781 4782 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4783 4784 void preempt_notifier_inc(void) 4785 { 4786 static_branch_inc(&preempt_notifier_key); 4787 } 4788 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4789 4790 void preempt_notifier_dec(void) 4791 { 4792 static_branch_dec(&preempt_notifier_key); 4793 } 4794 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4795 4796 /** 4797 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4798 * @notifier: notifier struct to register 4799 */ 4800 void preempt_notifier_register(struct preempt_notifier *notifier) 4801 { 4802 if (!static_branch_unlikely(&preempt_notifier_key)) 4803 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4804 4805 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4806 } 4807 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4808 4809 /** 4810 * preempt_notifier_unregister - no longer interested in preemption notifications 4811 * @notifier: notifier struct to unregister 4812 * 4813 * This is *not* safe to call from within a preemption notifier. 4814 */ 4815 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4816 { 4817 hlist_del(¬ifier->link); 4818 } 4819 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4820 4821 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4822 { 4823 struct preempt_notifier *notifier; 4824 4825 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4826 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4827 } 4828 4829 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4830 { 4831 if (static_branch_unlikely(&preempt_notifier_key)) 4832 __fire_sched_in_preempt_notifiers(curr); 4833 } 4834 4835 static void 4836 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4837 struct task_struct *next) 4838 { 4839 struct preempt_notifier *notifier; 4840 4841 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4842 notifier->ops->sched_out(notifier, next); 4843 } 4844 4845 static __always_inline void 4846 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4847 struct task_struct *next) 4848 { 4849 if (static_branch_unlikely(&preempt_notifier_key)) 4850 __fire_sched_out_preempt_notifiers(curr, next); 4851 } 4852 4853 #else /* !CONFIG_PREEMPT_NOTIFIERS: */ 4854 4855 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4856 { 4857 } 4858 4859 static inline void 4860 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4861 struct task_struct *next) 4862 { 4863 } 4864 4865 #endif /* !CONFIG_PREEMPT_NOTIFIERS */ 4866 4867 static inline void prepare_task(struct task_struct *next) 4868 { 4869 /* 4870 * Claim the task as running, we do this before switching to it 4871 * such that any running task will have this set. 4872 * 4873 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4874 * its ordering comment. 4875 */ 4876 WRITE_ONCE(next->on_cpu, 1); 4877 } 4878 4879 static inline void finish_task(struct task_struct *prev) 4880 { 4881 /* 4882 * This must be the very last reference to @prev from this CPU. After 4883 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4884 * must ensure this doesn't happen until the switch is completely 4885 * finished. 4886 * 4887 * In particular, the load of prev->state in finish_task_switch() must 4888 * happen before this. 4889 * 4890 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4891 */ 4892 smp_store_release(&prev->on_cpu, 0); 4893 } 4894 4895 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4896 { 4897 void (*func)(struct rq *rq); 4898 struct balance_callback *next; 4899 4900 lockdep_assert_rq_held(rq); 4901 4902 while (head) { 4903 func = (void (*)(struct rq *))head->func; 4904 next = head->next; 4905 head->next = NULL; 4906 head = next; 4907 4908 func(rq); 4909 } 4910 } 4911 4912 static void balance_push(struct rq *rq); 4913 4914 /* 4915 * balance_push_callback is a right abuse of the callback interface and plays 4916 * by significantly different rules. 4917 * 4918 * Where the normal balance_callback's purpose is to be ran in the same context 4919 * that queued it (only later, when it's safe to drop rq->lock again), 4920 * balance_push_callback is specifically targeted at __schedule(). 4921 * 4922 * This abuse is tolerated because it places all the unlikely/odd cases behind 4923 * a single test, namely: rq->balance_callback == NULL. 4924 */ 4925 struct balance_callback balance_push_callback = { 4926 .next = NULL, 4927 .func = balance_push, 4928 }; 4929 4930 static inline struct balance_callback * 4931 __splice_balance_callbacks(struct rq *rq, bool split) 4932 { 4933 struct balance_callback *head = rq->balance_callback; 4934 4935 if (likely(!head)) 4936 return NULL; 4937 4938 lockdep_assert_rq_held(rq); 4939 /* 4940 * Must not take balance_push_callback off the list when 4941 * splice_balance_callbacks() and balance_callbacks() are not 4942 * in the same rq->lock section. 4943 * 4944 * In that case it would be possible for __schedule() to interleave 4945 * and observe the list empty. 4946 */ 4947 if (split && head == &balance_push_callback) 4948 head = NULL; 4949 else 4950 rq->balance_callback = NULL; 4951 4952 return head; 4953 } 4954 4955 struct balance_callback *splice_balance_callbacks(struct rq *rq) 4956 { 4957 return __splice_balance_callbacks(rq, true); 4958 } 4959 4960 static void __balance_callbacks(struct rq *rq) 4961 { 4962 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4963 } 4964 4965 void balance_callbacks(struct rq *rq, struct balance_callback *head) 4966 { 4967 unsigned long flags; 4968 4969 if (unlikely(head)) { 4970 raw_spin_rq_lock_irqsave(rq, flags); 4971 do_balance_callbacks(rq, head); 4972 raw_spin_rq_unlock_irqrestore(rq, flags); 4973 } 4974 } 4975 4976 static inline void 4977 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4978 { 4979 /* 4980 * Since the runqueue lock will be released by the next 4981 * task (which is an invalid locking op but in the case 4982 * of the scheduler it's an obvious special-case), so we 4983 * do an early lockdep release here: 4984 */ 4985 rq_unpin_lock(rq, rf); 4986 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4987 #ifdef CONFIG_DEBUG_SPINLOCK 4988 /* this is a valid case when another task releases the spinlock */ 4989 rq_lockp(rq)->owner = next; 4990 #endif 4991 } 4992 4993 static inline void finish_lock_switch(struct rq *rq) 4994 { 4995 /* 4996 * If we are tracking spinlock dependencies then we have to 4997 * fix up the runqueue lock - which gets 'carried over' from 4998 * prev into current: 4999 */ 5000 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5001 __balance_callbacks(rq); 5002 raw_spin_rq_unlock_irq(rq); 5003 } 5004 5005 /* 5006 * NOP if the arch has not defined these: 5007 */ 5008 5009 #ifndef prepare_arch_switch 5010 # define prepare_arch_switch(next) do { } while (0) 5011 #endif 5012 5013 #ifndef finish_arch_post_lock_switch 5014 # define finish_arch_post_lock_switch() do { } while (0) 5015 #endif 5016 5017 static inline void kmap_local_sched_out(void) 5018 { 5019 #ifdef CONFIG_KMAP_LOCAL 5020 if (unlikely(current->kmap_ctrl.idx)) 5021 __kmap_local_sched_out(); 5022 #endif 5023 } 5024 5025 static inline void kmap_local_sched_in(void) 5026 { 5027 #ifdef CONFIG_KMAP_LOCAL 5028 if (unlikely(current->kmap_ctrl.idx)) 5029 __kmap_local_sched_in(); 5030 #endif 5031 } 5032 5033 /** 5034 * prepare_task_switch - prepare to switch tasks 5035 * @rq: the runqueue preparing to switch 5036 * @prev: the current task that is being switched out 5037 * @next: the task we are going to switch to. 5038 * 5039 * This is called with the rq lock held and interrupts off. It must 5040 * be paired with a subsequent finish_task_switch after the context 5041 * switch. 5042 * 5043 * prepare_task_switch sets up locking and calls architecture specific 5044 * hooks. 5045 */ 5046 static inline void 5047 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5048 struct task_struct *next) 5049 { 5050 kcov_prepare_switch(prev); 5051 sched_info_switch(rq, prev, next); 5052 perf_event_task_sched_out(prev, next); 5053 rseq_preempt(prev); 5054 fire_sched_out_preempt_notifiers(prev, next); 5055 kmap_local_sched_out(); 5056 prepare_task(next); 5057 prepare_arch_switch(next); 5058 } 5059 5060 /** 5061 * finish_task_switch - clean up after a task-switch 5062 * @prev: the thread we just switched away from. 5063 * 5064 * finish_task_switch must be called after the context switch, paired 5065 * with a prepare_task_switch call before the context switch. 5066 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5067 * and do any other architecture-specific cleanup actions. 5068 * 5069 * Note that we may have delayed dropping an mm in context_switch(). If 5070 * so, we finish that here outside of the runqueue lock. (Doing it 5071 * with the lock held can cause deadlocks; see schedule() for 5072 * details.) 5073 * 5074 * The context switch have flipped the stack from under us and restored the 5075 * local variables which were saved when this task called schedule() in the 5076 * past. 'prev == current' is still correct but we need to recalculate this_rq 5077 * because prev may have moved to another CPU. 5078 */ 5079 static struct rq *finish_task_switch(struct task_struct *prev) 5080 __releases(rq->lock) 5081 { 5082 struct rq *rq = this_rq(); 5083 struct mm_struct *mm = rq->prev_mm; 5084 unsigned int prev_state; 5085 5086 /* 5087 * The previous task will have left us with a preempt_count of 2 5088 * because it left us after: 5089 * 5090 * schedule() 5091 * preempt_disable(); // 1 5092 * __schedule() 5093 * raw_spin_lock_irq(&rq->lock) // 2 5094 * 5095 * Also, see FORK_PREEMPT_COUNT. 5096 */ 5097 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5098 "corrupted preempt_count: %s/%d/0x%x\n", 5099 current->comm, current->pid, preempt_count())) 5100 preempt_count_set(FORK_PREEMPT_COUNT); 5101 5102 rq->prev_mm = NULL; 5103 5104 /* 5105 * A task struct has one reference for the use as "current". 5106 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5107 * schedule one last time. The schedule call will never return, and 5108 * the scheduled task must drop that reference. 5109 * 5110 * We must observe prev->state before clearing prev->on_cpu (in 5111 * finish_task), otherwise a concurrent wakeup can get prev 5112 * running on another CPU and we could rave with its RUNNING -> DEAD 5113 * transition, resulting in a double drop. 5114 */ 5115 prev_state = READ_ONCE(prev->__state); 5116 vtime_task_switch(prev); 5117 perf_event_task_sched_in(prev, current); 5118 finish_task(prev); 5119 tick_nohz_task_switch(); 5120 finish_lock_switch(rq); 5121 finish_arch_post_lock_switch(); 5122 kcov_finish_switch(current); 5123 /* 5124 * kmap_local_sched_out() is invoked with rq::lock held and 5125 * interrupts disabled. There is no requirement for that, but the 5126 * sched out code does not have an interrupt enabled section. 5127 * Restoring the maps on sched in does not require interrupts being 5128 * disabled either. 5129 */ 5130 kmap_local_sched_in(); 5131 5132 fire_sched_in_preempt_notifiers(current); 5133 /* 5134 * When switching through a kernel thread, the loop in 5135 * membarrier_{private,global}_expedited() may have observed that 5136 * kernel thread and not issued an IPI. It is therefore possible to 5137 * schedule between user->kernel->user threads without passing though 5138 * switch_mm(). Membarrier requires a barrier after storing to 5139 * rq->curr, before returning to userspace, so provide them here: 5140 * 5141 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5142 * provided by mmdrop_lazy_tlb(), 5143 * - a sync_core for SYNC_CORE. 5144 */ 5145 if (mm) { 5146 membarrier_mm_sync_core_before_usermode(mm); 5147 mmdrop_lazy_tlb_sched(mm); 5148 } 5149 5150 if (unlikely(prev_state == TASK_DEAD)) { 5151 if (prev->sched_class->task_dead) 5152 prev->sched_class->task_dead(prev); 5153 5154 /* Task is done with its stack. */ 5155 put_task_stack(prev); 5156 5157 put_task_struct_rcu_user(prev); 5158 } 5159 5160 return rq; 5161 } 5162 5163 /** 5164 * schedule_tail - first thing a freshly forked thread must call. 5165 * @prev: the thread we just switched away from. 5166 */ 5167 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5168 __releases(rq->lock) 5169 { 5170 /* 5171 * New tasks start with FORK_PREEMPT_COUNT, see there and 5172 * finish_task_switch() for details. 5173 * 5174 * finish_task_switch() will drop rq->lock() and lower preempt_count 5175 * and the preempt_enable() will end up enabling preemption (on 5176 * PREEMPT_COUNT kernels). 5177 */ 5178 5179 finish_task_switch(prev); 5180 /* 5181 * This is a special case: the newly created task has just 5182 * switched the context for the first time. It is returning from 5183 * schedule for the first time in this path. 5184 */ 5185 trace_sched_exit_tp(true); 5186 preempt_enable(); 5187 5188 if (current->set_child_tid) 5189 put_user(task_pid_vnr(current), current->set_child_tid); 5190 5191 calculate_sigpending(); 5192 } 5193 5194 /* 5195 * context_switch - switch to the new MM and the new thread's register state. 5196 */ 5197 static __always_inline struct rq * 5198 context_switch(struct rq *rq, struct task_struct *prev, 5199 struct task_struct *next, struct rq_flags *rf) 5200 { 5201 prepare_task_switch(rq, prev, next); 5202 5203 /* 5204 * For paravirt, this is coupled with an exit in switch_to to 5205 * combine the page table reload and the switch backend into 5206 * one hypercall. 5207 */ 5208 arch_start_context_switch(prev); 5209 5210 /* 5211 * kernel -> kernel lazy + transfer active 5212 * user -> kernel lazy + mmgrab_lazy_tlb() active 5213 * 5214 * kernel -> user switch + mmdrop_lazy_tlb() active 5215 * user -> user switch 5216 * 5217 * switch_mm_cid() needs to be updated if the barriers provided 5218 * by context_switch() are modified. 5219 */ 5220 if (!next->mm) { // to kernel 5221 enter_lazy_tlb(prev->active_mm, next); 5222 5223 next->active_mm = prev->active_mm; 5224 if (prev->mm) // from user 5225 mmgrab_lazy_tlb(prev->active_mm); 5226 else 5227 prev->active_mm = NULL; 5228 } else { // to user 5229 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5230 /* 5231 * sys_membarrier() requires an smp_mb() between setting 5232 * rq->curr / membarrier_switch_mm() and returning to userspace. 5233 * 5234 * The below provides this either through switch_mm(), or in 5235 * case 'prev->active_mm == next->mm' through 5236 * finish_task_switch()'s mmdrop(). 5237 */ 5238 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5239 lru_gen_use_mm(next->mm); 5240 5241 if (!prev->mm) { // from kernel 5242 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5243 rq->prev_mm = prev->active_mm; 5244 prev->active_mm = NULL; 5245 } 5246 } 5247 5248 /* switch_mm_cid() requires the memory barriers above. */ 5249 switch_mm_cid(rq, prev, next); 5250 5251 prepare_lock_switch(rq, next, rf); 5252 5253 /* Here we just switch the register state and the stack. */ 5254 switch_to(prev, next, prev); 5255 barrier(); 5256 5257 return finish_task_switch(prev); 5258 } 5259 5260 /* 5261 * nr_running and nr_context_switches: 5262 * 5263 * externally visible scheduler statistics: current number of runnable 5264 * threads, total number of context switches performed since bootup. 5265 */ 5266 unsigned int nr_running(void) 5267 { 5268 unsigned int i, sum = 0; 5269 5270 for_each_online_cpu(i) 5271 sum += cpu_rq(i)->nr_running; 5272 5273 return sum; 5274 } 5275 5276 /* 5277 * Check if only the current task is running on the CPU. 5278 * 5279 * Caution: this function does not check that the caller has disabled 5280 * preemption, thus the result might have a time-of-check-to-time-of-use 5281 * race. The caller is responsible to use it correctly, for example: 5282 * 5283 * - from a non-preemptible section (of course) 5284 * 5285 * - from a thread that is bound to a single CPU 5286 * 5287 * - in a loop with very short iterations (e.g. a polling loop) 5288 */ 5289 bool single_task_running(void) 5290 { 5291 return raw_rq()->nr_running == 1; 5292 } 5293 EXPORT_SYMBOL(single_task_running); 5294 5295 unsigned long long nr_context_switches_cpu(int cpu) 5296 { 5297 return cpu_rq(cpu)->nr_switches; 5298 } 5299 5300 unsigned long long nr_context_switches(void) 5301 { 5302 int i; 5303 unsigned long long sum = 0; 5304 5305 for_each_possible_cpu(i) 5306 sum += cpu_rq(i)->nr_switches; 5307 5308 return sum; 5309 } 5310 5311 /* 5312 * Consumers of these two interfaces, like for example the cpuidle menu 5313 * governor, are using nonsensical data. Preferring shallow idle state selection 5314 * for a CPU that has IO-wait which might not even end up running the task when 5315 * it does become runnable. 5316 */ 5317 5318 unsigned int nr_iowait_cpu(int cpu) 5319 { 5320 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5321 } 5322 5323 /* 5324 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5325 * 5326 * The idea behind IO-wait account is to account the idle time that we could 5327 * have spend running if it were not for IO. That is, if we were to improve the 5328 * storage performance, we'd have a proportional reduction in IO-wait time. 5329 * 5330 * This all works nicely on UP, where, when a task blocks on IO, we account 5331 * idle time as IO-wait, because if the storage were faster, it could've been 5332 * running and we'd not be idle. 5333 * 5334 * This has been extended to SMP, by doing the same for each CPU. This however 5335 * is broken. 5336 * 5337 * Imagine for instance the case where two tasks block on one CPU, only the one 5338 * CPU will have IO-wait accounted, while the other has regular idle. Even 5339 * though, if the storage were faster, both could've ran at the same time, 5340 * utilising both CPUs. 5341 * 5342 * This means, that when looking globally, the current IO-wait accounting on 5343 * SMP is a lower bound, by reason of under accounting. 5344 * 5345 * Worse, since the numbers are provided per CPU, they are sometimes 5346 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5347 * associated with any one particular CPU, it can wake to another CPU than it 5348 * blocked on. This means the per CPU IO-wait number is meaningless. 5349 * 5350 * Task CPU affinities can make all that even more 'interesting'. 5351 */ 5352 5353 unsigned int nr_iowait(void) 5354 { 5355 unsigned int i, sum = 0; 5356 5357 for_each_possible_cpu(i) 5358 sum += nr_iowait_cpu(i); 5359 5360 return sum; 5361 } 5362 5363 /* 5364 * sched_exec - execve() is a valuable balancing opportunity, because at 5365 * this point the task has the smallest effective memory and cache footprint. 5366 */ 5367 void sched_exec(void) 5368 { 5369 struct task_struct *p = current; 5370 struct migration_arg arg; 5371 int dest_cpu; 5372 5373 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5374 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5375 if (dest_cpu == smp_processor_id()) 5376 return; 5377 5378 if (unlikely(!cpu_active(dest_cpu))) 5379 return; 5380 5381 arg = (struct migration_arg){ p, dest_cpu }; 5382 } 5383 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5384 } 5385 5386 DEFINE_PER_CPU(struct kernel_stat, kstat); 5387 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5388 5389 EXPORT_PER_CPU_SYMBOL(kstat); 5390 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5391 5392 /* 5393 * The function fair_sched_class.update_curr accesses the struct curr 5394 * and its field curr->exec_start; when called from task_sched_runtime(), 5395 * we observe a high rate of cache misses in practice. 5396 * Prefetching this data results in improved performance. 5397 */ 5398 static inline void prefetch_curr_exec_start(struct task_struct *p) 5399 { 5400 #ifdef CONFIG_FAIR_GROUP_SCHED 5401 struct sched_entity *curr = p->se.cfs_rq->curr; 5402 #else 5403 struct sched_entity *curr = task_rq(p)->cfs.curr; 5404 #endif 5405 prefetch(curr); 5406 prefetch(&curr->exec_start); 5407 } 5408 5409 /* 5410 * Return accounted runtime for the task. 5411 * In case the task is currently running, return the runtime plus current's 5412 * pending runtime that have not been accounted yet. 5413 */ 5414 unsigned long long task_sched_runtime(struct task_struct *p) 5415 { 5416 struct rq_flags rf; 5417 struct rq *rq; 5418 u64 ns; 5419 5420 #ifdef CONFIG_64BIT 5421 /* 5422 * 64-bit doesn't need locks to atomically read a 64-bit value. 5423 * So we have a optimization chance when the task's delta_exec is 0. 5424 * Reading ->on_cpu is racy, but this is OK. 5425 * 5426 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5427 * If we race with it entering CPU, unaccounted time is 0. This is 5428 * indistinguishable from the read occurring a few cycles earlier. 5429 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5430 * been accounted, so we're correct here as well. 5431 */ 5432 if (!p->on_cpu || !task_on_rq_queued(p)) 5433 return p->se.sum_exec_runtime; 5434 #endif 5435 5436 rq = task_rq_lock(p, &rf); 5437 /* 5438 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5439 * project cycles that may never be accounted to this 5440 * thread, breaking clock_gettime(). 5441 */ 5442 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5443 prefetch_curr_exec_start(p); 5444 update_rq_clock(rq); 5445 p->sched_class->update_curr(rq); 5446 } 5447 ns = p->se.sum_exec_runtime; 5448 task_rq_unlock(rq, p, &rf); 5449 5450 return ns; 5451 } 5452 5453 static u64 cpu_resched_latency(struct rq *rq) 5454 { 5455 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5456 u64 resched_latency, now = rq_clock(rq); 5457 static bool warned_once; 5458 5459 if (sysctl_resched_latency_warn_once && warned_once) 5460 return 0; 5461 5462 if (!need_resched() || !latency_warn_ms) 5463 return 0; 5464 5465 if (system_state == SYSTEM_BOOTING) 5466 return 0; 5467 5468 if (!rq->last_seen_need_resched_ns) { 5469 rq->last_seen_need_resched_ns = now; 5470 rq->ticks_without_resched = 0; 5471 return 0; 5472 } 5473 5474 rq->ticks_without_resched++; 5475 resched_latency = now - rq->last_seen_need_resched_ns; 5476 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5477 return 0; 5478 5479 warned_once = true; 5480 5481 return resched_latency; 5482 } 5483 5484 static int __init setup_resched_latency_warn_ms(char *str) 5485 { 5486 long val; 5487 5488 if ((kstrtol(str, 0, &val))) { 5489 pr_warn("Unable to set resched_latency_warn_ms\n"); 5490 return 1; 5491 } 5492 5493 sysctl_resched_latency_warn_ms = val; 5494 return 1; 5495 } 5496 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5497 5498 /* 5499 * This function gets called by the timer code, with HZ frequency. 5500 * We call it with interrupts disabled. 5501 */ 5502 void sched_tick(void) 5503 { 5504 int cpu = smp_processor_id(); 5505 struct rq *rq = cpu_rq(cpu); 5506 /* accounting goes to the donor task */ 5507 struct task_struct *donor; 5508 struct rq_flags rf; 5509 unsigned long hw_pressure; 5510 u64 resched_latency; 5511 5512 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5513 arch_scale_freq_tick(); 5514 5515 sched_clock_tick(); 5516 5517 rq_lock(rq, &rf); 5518 donor = rq->donor; 5519 5520 psi_account_irqtime(rq, donor, NULL); 5521 5522 update_rq_clock(rq); 5523 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5524 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5525 5526 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5527 resched_curr(rq); 5528 5529 donor->sched_class->task_tick(rq, donor, 0); 5530 if (sched_feat(LATENCY_WARN)) 5531 resched_latency = cpu_resched_latency(rq); 5532 calc_global_load_tick(rq); 5533 sched_core_tick(rq); 5534 task_tick_mm_cid(rq, donor); 5535 scx_tick(rq); 5536 5537 rq_unlock(rq, &rf); 5538 5539 if (sched_feat(LATENCY_WARN) && resched_latency) 5540 resched_latency_warn(cpu, resched_latency); 5541 5542 perf_event_task_tick(); 5543 5544 if (donor->flags & PF_WQ_WORKER) 5545 wq_worker_tick(donor); 5546 5547 if (!scx_switched_all()) { 5548 rq->idle_balance = idle_cpu(cpu); 5549 sched_balance_trigger(rq); 5550 } 5551 } 5552 5553 #ifdef CONFIG_NO_HZ_FULL 5554 5555 struct tick_work { 5556 int cpu; 5557 atomic_t state; 5558 struct delayed_work work; 5559 }; 5560 /* Values for ->state, see diagram below. */ 5561 #define TICK_SCHED_REMOTE_OFFLINE 0 5562 #define TICK_SCHED_REMOTE_OFFLINING 1 5563 #define TICK_SCHED_REMOTE_RUNNING 2 5564 5565 /* 5566 * State diagram for ->state: 5567 * 5568 * 5569 * TICK_SCHED_REMOTE_OFFLINE 5570 * | ^ 5571 * | | 5572 * | | sched_tick_remote() 5573 * | | 5574 * | | 5575 * +--TICK_SCHED_REMOTE_OFFLINING 5576 * | ^ 5577 * | | 5578 * sched_tick_start() | | sched_tick_stop() 5579 * | | 5580 * V | 5581 * TICK_SCHED_REMOTE_RUNNING 5582 * 5583 * 5584 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5585 * and sched_tick_start() are happy to leave the state in RUNNING. 5586 */ 5587 5588 static struct tick_work __percpu *tick_work_cpu; 5589 5590 static void sched_tick_remote(struct work_struct *work) 5591 { 5592 struct delayed_work *dwork = to_delayed_work(work); 5593 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5594 int cpu = twork->cpu; 5595 struct rq *rq = cpu_rq(cpu); 5596 int os; 5597 5598 /* 5599 * Handle the tick only if it appears the remote CPU is running in full 5600 * dynticks mode. The check is racy by nature, but missing a tick or 5601 * having one too much is no big deal because the scheduler tick updates 5602 * statistics and checks timeslices in a time-independent way, regardless 5603 * of when exactly it is running. 5604 */ 5605 if (tick_nohz_tick_stopped_cpu(cpu)) { 5606 guard(rq_lock_irq)(rq); 5607 struct task_struct *curr = rq->curr; 5608 5609 if (cpu_online(cpu)) { 5610 /* 5611 * Since this is a remote tick for full dynticks mode, 5612 * we are always sure that there is no proxy (only a 5613 * single task is running). 5614 */ 5615 WARN_ON_ONCE(rq->curr != rq->donor); 5616 update_rq_clock(rq); 5617 5618 if (!is_idle_task(curr)) { 5619 /* 5620 * Make sure the next tick runs within a 5621 * reasonable amount of time. 5622 */ 5623 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5624 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5625 } 5626 curr->sched_class->task_tick(rq, curr, 0); 5627 5628 calc_load_nohz_remote(rq); 5629 } 5630 } 5631 5632 /* 5633 * Run the remote tick once per second (1Hz). This arbitrary 5634 * frequency is large enough to avoid overload but short enough 5635 * to keep scheduler internal stats reasonably up to date. But 5636 * first update state to reflect hotplug activity if required. 5637 */ 5638 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5639 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5640 if (os == TICK_SCHED_REMOTE_RUNNING) 5641 queue_delayed_work(system_unbound_wq, dwork, HZ); 5642 } 5643 5644 static void sched_tick_start(int cpu) 5645 { 5646 int os; 5647 struct tick_work *twork; 5648 5649 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5650 return; 5651 5652 WARN_ON_ONCE(!tick_work_cpu); 5653 5654 twork = per_cpu_ptr(tick_work_cpu, cpu); 5655 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5656 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5657 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5658 twork->cpu = cpu; 5659 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5660 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5661 } 5662 } 5663 5664 #ifdef CONFIG_HOTPLUG_CPU 5665 static void sched_tick_stop(int cpu) 5666 { 5667 struct tick_work *twork; 5668 int os; 5669 5670 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5671 return; 5672 5673 WARN_ON_ONCE(!tick_work_cpu); 5674 5675 twork = per_cpu_ptr(tick_work_cpu, cpu); 5676 /* There cannot be competing actions, but don't rely on stop-machine. */ 5677 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5678 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5679 /* Don't cancel, as this would mess up the state machine. */ 5680 } 5681 #endif /* CONFIG_HOTPLUG_CPU */ 5682 5683 int __init sched_tick_offload_init(void) 5684 { 5685 tick_work_cpu = alloc_percpu(struct tick_work); 5686 BUG_ON(!tick_work_cpu); 5687 return 0; 5688 } 5689 5690 #else /* !CONFIG_NO_HZ_FULL: */ 5691 static inline void sched_tick_start(int cpu) { } 5692 static inline void sched_tick_stop(int cpu) { } 5693 #endif /* !CONFIG_NO_HZ_FULL */ 5694 5695 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5696 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5697 /* 5698 * If the value passed in is equal to the current preempt count 5699 * then we just disabled preemption. Start timing the latency. 5700 */ 5701 static inline void preempt_latency_start(int val) 5702 { 5703 if (preempt_count() == val) { 5704 unsigned long ip = get_lock_parent_ip(); 5705 #ifdef CONFIG_DEBUG_PREEMPT 5706 current->preempt_disable_ip = ip; 5707 #endif 5708 trace_preempt_off(CALLER_ADDR0, ip); 5709 } 5710 } 5711 5712 void preempt_count_add(int val) 5713 { 5714 #ifdef CONFIG_DEBUG_PREEMPT 5715 /* 5716 * Underflow? 5717 */ 5718 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5719 return; 5720 #endif 5721 __preempt_count_add(val); 5722 #ifdef CONFIG_DEBUG_PREEMPT 5723 /* 5724 * Spinlock count overflowing soon? 5725 */ 5726 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5727 PREEMPT_MASK - 10); 5728 #endif 5729 preempt_latency_start(val); 5730 } 5731 EXPORT_SYMBOL(preempt_count_add); 5732 NOKPROBE_SYMBOL(preempt_count_add); 5733 5734 /* 5735 * If the value passed in equals to the current preempt count 5736 * then we just enabled preemption. Stop timing the latency. 5737 */ 5738 static inline void preempt_latency_stop(int val) 5739 { 5740 if (preempt_count() == val) 5741 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5742 } 5743 5744 void preempt_count_sub(int val) 5745 { 5746 #ifdef CONFIG_DEBUG_PREEMPT 5747 /* 5748 * Underflow? 5749 */ 5750 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5751 return; 5752 /* 5753 * Is the spinlock portion underflowing? 5754 */ 5755 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5756 !(preempt_count() & PREEMPT_MASK))) 5757 return; 5758 #endif 5759 5760 preempt_latency_stop(val); 5761 __preempt_count_sub(val); 5762 } 5763 EXPORT_SYMBOL(preempt_count_sub); 5764 NOKPROBE_SYMBOL(preempt_count_sub); 5765 5766 #else 5767 static inline void preempt_latency_start(int val) { } 5768 static inline void preempt_latency_stop(int val) { } 5769 #endif 5770 5771 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5772 { 5773 #ifdef CONFIG_DEBUG_PREEMPT 5774 return p->preempt_disable_ip; 5775 #else 5776 return 0; 5777 #endif 5778 } 5779 5780 /* 5781 * Print scheduling while atomic bug: 5782 */ 5783 static noinline void __schedule_bug(struct task_struct *prev) 5784 { 5785 /* Save this before calling printk(), since that will clobber it */ 5786 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5787 5788 if (oops_in_progress) 5789 return; 5790 5791 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5792 prev->comm, prev->pid, preempt_count()); 5793 5794 debug_show_held_locks(prev); 5795 print_modules(); 5796 if (irqs_disabled()) 5797 print_irqtrace_events(prev); 5798 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5799 pr_err("Preemption disabled at:"); 5800 print_ip_sym(KERN_ERR, preempt_disable_ip); 5801 } 5802 check_panic_on_warn("scheduling while atomic"); 5803 5804 dump_stack(); 5805 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5806 } 5807 5808 /* 5809 * Various schedule()-time debugging checks and statistics: 5810 */ 5811 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5812 { 5813 #ifdef CONFIG_SCHED_STACK_END_CHECK 5814 if (task_stack_end_corrupted(prev)) 5815 panic("corrupted stack end detected inside scheduler\n"); 5816 5817 if (task_scs_end_corrupted(prev)) 5818 panic("corrupted shadow stack detected inside scheduler\n"); 5819 #endif 5820 5821 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5822 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5823 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5824 prev->comm, prev->pid, prev->non_block_count); 5825 dump_stack(); 5826 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5827 } 5828 #endif 5829 5830 if (unlikely(in_atomic_preempt_off())) { 5831 __schedule_bug(prev); 5832 preempt_count_set(PREEMPT_DISABLED); 5833 } 5834 rcu_sleep_check(); 5835 WARN_ON_ONCE(ct_state() == CT_STATE_USER); 5836 5837 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5838 5839 schedstat_inc(this_rq()->sched_count); 5840 } 5841 5842 static void prev_balance(struct rq *rq, struct task_struct *prev, 5843 struct rq_flags *rf) 5844 { 5845 const struct sched_class *start_class = prev->sched_class; 5846 const struct sched_class *class; 5847 5848 /* 5849 * We must do the balancing pass before put_prev_task(), such 5850 * that when we release the rq->lock the task is in the same 5851 * state as before we took rq->lock. 5852 * 5853 * We can terminate the balance pass as soon as we know there is 5854 * a runnable task of @class priority or higher. 5855 */ 5856 for_active_class_range(class, start_class, &idle_sched_class) { 5857 if (class->balance && class->balance(rq, prev, rf)) 5858 break; 5859 } 5860 } 5861 5862 /* 5863 * Pick up the highest-prio task: 5864 */ 5865 static inline struct task_struct * 5866 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5867 { 5868 const struct sched_class *class; 5869 struct task_struct *p; 5870 5871 rq->dl_server = NULL; 5872 5873 if (scx_enabled()) 5874 goto restart; 5875 5876 /* 5877 * Optimization: we know that if all tasks are in the fair class we can 5878 * call that function directly, but only if the @prev task wasn't of a 5879 * higher scheduling class, because otherwise those lose the 5880 * opportunity to pull in more work from other CPUs. 5881 */ 5882 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5883 rq->nr_running == rq->cfs.h_nr_queued)) { 5884 5885 p = pick_next_task_fair(rq, prev, rf); 5886 if (unlikely(p == RETRY_TASK)) 5887 goto restart; 5888 5889 /* Assume the next prioritized class is idle_sched_class */ 5890 if (!p) { 5891 p = pick_task_idle(rq, rf); 5892 put_prev_set_next_task(rq, prev, p); 5893 } 5894 5895 return p; 5896 } 5897 5898 restart: 5899 prev_balance(rq, prev, rf); 5900 5901 for_each_active_class(class) { 5902 if (class->pick_next_task) { 5903 p = class->pick_next_task(rq, prev, rf); 5904 if (unlikely(p == RETRY_TASK)) 5905 goto restart; 5906 if (p) 5907 return p; 5908 } else { 5909 p = class->pick_task(rq, rf); 5910 if (unlikely(p == RETRY_TASK)) 5911 goto restart; 5912 if (p) { 5913 put_prev_set_next_task(rq, prev, p); 5914 return p; 5915 } 5916 } 5917 } 5918 5919 BUG(); /* The idle class should always have a runnable task. */ 5920 } 5921 5922 #ifdef CONFIG_SCHED_CORE 5923 static inline bool is_task_rq_idle(struct task_struct *t) 5924 { 5925 return (task_rq(t)->idle == t); 5926 } 5927 5928 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5929 { 5930 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5931 } 5932 5933 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5934 { 5935 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5936 return true; 5937 5938 return a->core_cookie == b->core_cookie; 5939 } 5940 5941 /* 5942 * Careful; this can return RETRY_TASK, it does not include the retry-loop 5943 * itself due to the whole SMT pick retry thing below. 5944 */ 5945 static inline struct task_struct *pick_task(struct rq *rq, struct rq_flags *rf) 5946 { 5947 const struct sched_class *class; 5948 struct task_struct *p; 5949 5950 rq->dl_server = NULL; 5951 5952 for_each_active_class(class) { 5953 p = class->pick_task(rq, rf); 5954 if (p) 5955 return p; 5956 } 5957 5958 BUG(); /* The idle class should always have a runnable task. */ 5959 } 5960 5961 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5962 5963 static void queue_core_balance(struct rq *rq); 5964 5965 static struct task_struct * 5966 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5967 { 5968 struct task_struct *next, *p, *max; 5969 const struct cpumask *smt_mask; 5970 bool fi_before = false; 5971 bool core_clock_updated = (rq == rq->core); 5972 unsigned long cookie; 5973 int i, cpu, occ = 0; 5974 struct rq *rq_i; 5975 bool need_sync; 5976 5977 if (!sched_core_enabled(rq)) 5978 return __pick_next_task(rq, prev, rf); 5979 5980 cpu = cpu_of(rq); 5981 5982 /* Stopper task is switching into idle, no need core-wide selection. */ 5983 if (cpu_is_offline(cpu)) { 5984 /* 5985 * Reset core_pick so that we don't enter the fastpath when 5986 * coming online. core_pick would already be migrated to 5987 * another cpu during offline. 5988 */ 5989 rq->core_pick = NULL; 5990 rq->core_dl_server = NULL; 5991 return __pick_next_task(rq, prev, rf); 5992 } 5993 5994 /* 5995 * If there were no {en,de}queues since we picked (IOW, the task 5996 * pointers are all still valid), and we haven't scheduled the last 5997 * pick yet, do so now. 5998 * 5999 * rq->core_pick can be NULL if no selection was made for a CPU because 6000 * it was either offline or went offline during a sibling's core-wide 6001 * selection. In this case, do a core-wide selection. 6002 */ 6003 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6004 rq->core->core_pick_seq != rq->core_sched_seq && 6005 rq->core_pick) { 6006 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6007 6008 next = rq->core_pick; 6009 rq->dl_server = rq->core_dl_server; 6010 rq->core_pick = NULL; 6011 rq->core_dl_server = NULL; 6012 goto out_set_next; 6013 } 6014 6015 prev_balance(rq, prev, rf); 6016 6017 smt_mask = cpu_smt_mask(cpu); 6018 need_sync = !!rq->core->core_cookie; 6019 6020 /* reset state */ 6021 rq->core->core_cookie = 0UL; 6022 if (rq->core->core_forceidle_count) { 6023 if (!core_clock_updated) { 6024 update_rq_clock(rq->core); 6025 core_clock_updated = true; 6026 } 6027 sched_core_account_forceidle(rq); 6028 /* reset after accounting force idle */ 6029 rq->core->core_forceidle_start = 0; 6030 rq->core->core_forceidle_count = 0; 6031 rq->core->core_forceidle_occupation = 0; 6032 need_sync = true; 6033 fi_before = true; 6034 } 6035 6036 /* 6037 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6038 * 6039 * @task_seq guards the task state ({en,de}queues) 6040 * @pick_seq is the @task_seq we did a selection on 6041 * @sched_seq is the @pick_seq we scheduled 6042 * 6043 * However, preemptions can cause multiple picks on the same task set. 6044 * 'Fix' this by also increasing @task_seq for every pick. 6045 */ 6046 rq->core->core_task_seq++; 6047 6048 /* 6049 * Optimize for common case where this CPU has no cookies 6050 * and there are no cookied tasks running on siblings. 6051 */ 6052 if (!need_sync) { 6053 restart_single: 6054 next = pick_task(rq, rf); 6055 if (unlikely(next == RETRY_TASK)) 6056 goto restart_single; 6057 if (!next->core_cookie) { 6058 rq->core_pick = NULL; 6059 rq->core_dl_server = NULL; 6060 /* 6061 * For robustness, update the min_vruntime_fi for 6062 * unconstrained picks as well. 6063 */ 6064 WARN_ON_ONCE(fi_before); 6065 task_vruntime_update(rq, next, false); 6066 goto out_set_next; 6067 } 6068 } 6069 6070 /* 6071 * For each thread: do the regular task pick and find the max prio task 6072 * amongst them. 6073 * 6074 * Tie-break prio towards the current CPU 6075 */ 6076 restart_multi: 6077 max = NULL; 6078 for_each_cpu_wrap(i, smt_mask, cpu) { 6079 rq_i = cpu_rq(i); 6080 6081 /* 6082 * Current cpu always has its clock updated on entrance to 6083 * pick_next_task(). If the current cpu is not the core, 6084 * the core may also have been updated above. 6085 */ 6086 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6087 update_rq_clock(rq_i); 6088 6089 p = pick_task(rq_i, rf); 6090 if (unlikely(p == RETRY_TASK)) 6091 goto restart_multi; 6092 6093 rq_i->core_pick = p; 6094 rq_i->core_dl_server = rq_i->dl_server; 6095 6096 if (!max || prio_less(max, p, fi_before)) 6097 max = p; 6098 } 6099 6100 cookie = rq->core->core_cookie = max->core_cookie; 6101 6102 /* 6103 * For each thread: try and find a runnable task that matches @max or 6104 * force idle. 6105 */ 6106 for_each_cpu(i, smt_mask) { 6107 rq_i = cpu_rq(i); 6108 p = rq_i->core_pick; 6109 6110 if (!cookie_equals(p, cookie)) { 6111 p = NULL; 6112 if (cookie) 6113 p = sched_core_find(rq_i, cookie); 6114 if (!p) 6115 p = idle_sched_class.pick_task(rq_i, rf); 6116 } 6117 6118 rq_i->core_pick = p; 6119 rq_i->core_dl_server = NULL; 6120 6121 if (p == rq_i->idle) { 6122 if (rq_i->nr_running) { 6123 rq->core->core_forceidle_count++; 6124 if (!fi_before) 6125 rq->core->core_forceidle_seq++; 6126 } 6127 } else { 6128 occ++; 6129 } 6130 } 6131 6132 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6133 rq->core->core_forceidle_start = rq_clock(rq->core); 6134 rq->core->core_forceidle_occupation = occ; 6135 } 6136 6137 rq->core->core_pick_seq = rq->core->core_task_seq; 6138 next = rq->core_pick; 6139 rq->core_sched_seq = rq->core->core_pick_seq; 6140 6141 /* Something should have been selected for current CPU */ 6142 WARN_ON_ONCE(!next); 6143 6144 /* 6145 * Reschedule siblings 6146 * 6147 * NOTE: L1TF -- at this point we're no longer running the old task and 6148 * sending an IPI (below) ensures the sibling will no longer be running 6149 * their task. This ensures there is no inter-sibling overlap between 6150 * non-matching user state. 6151 */ 6152 for_each_cpu(i, smt_mask) { 6153 rq_i = cpu_rq(i); 6154 6155 /* 6156 * An online sibling might have gone offline before a task 6157 * could be picked for it, or it might be offline but later 6158 * happen to come online, but its too late and nothing was 6159 * picked for it. That's Ok - it will pick tasks for itself, 6160 * so ignore it. 6161 */ 6162 if (!rq_i->core_pick) 6163 continue; 6164 6165 /* 6166 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6167 * fi_before fi update? 6168 * 0 0 1 6169 * 0 1 1 6170 * 1 0 1 6171 * 1 1 0 6172 */ 6173 if (!(fi_before && rq->core->core_forceidle_count)) 6174 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6175 6176 rq_i->core_pick->core_occupation = occ; 6177 6178 if (i == cpu) { 6179 rq_i->core_pick = NULL; 6180 rq_i->core_dl_server = NULL; 6181 continue; 6182 } 6183 6184 /* Did we break L1TF mitigation requirements? */ 6185 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6186 6187 if (rq_i->curr == rq_i->core_pick) { 6188 rq_i->core_pick = NULL; 6189 rq_i->core_dl_server = NULL; 6190 continue; 6191 } 6192 6193 resched_curr(rq_i); 6194 } 6195 6196 out_set_next: 6197 put_prev_set_next_task(rq, prev, next); 6198 if (rq->core->core_forceidle_count && next == rq->idle) 6199 queue_core_balance(rq); 6200 6201 return next; 6202 } 6203 6204 static bool try_steal_cookie(int this, int that) 6205 { 6206 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6207 struct task_struct *p; 6208 unsigned long cookie; 6209 bool success = false; 6210 6211 guard(irq)(); 6212 guard(double_rq_lock)(dst, src); 6213 6214 cookie = dst->core->core_cookie; 6215 if (!cookie) 6216 return false; 6217 6218 if (dst->curr != dst->idle) 6219 return false; 6220 6221 p = sched_core_find(src, cookie); 6222 if (!p) 6223 return false; 6224 6225 do { 6226 if (p == src->core_pick || p == src->curr) 6227 goto next; 6228 6229 if (!is_cpu_allowed(p, this)) 6230 goto next; 6231 6232 if (p->core_occupation > dst->idle->core_occupation) 6233 goto next; 6234 /* 6235 * sched_core_find() and sched_core_next() will ensure 6236 * that task @p is not throttled now, we also need to 6237 * check whether the runqueue of the destination CPU is 6238 * being throttled. 6239 */ 6240 if (sched_task_is_throttled(p, this)) 6241 goto next; 6242 6243 move_queued_task_locked(src, dst, p); 6244 resched_curr(dst); 6245 6246 success = true; 6247 break; 6248 6249 next: 6250 p = sched_core_next(p, cookie); 6251 } while (p); 6252 6253 return success; 6254 } 6255 6256 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6257 { 6258 int i; 6259 6260 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6261 if (i == cpu) 6262 continue; 6263 6264 if (need_resched()) 6265 break; 6266 6267 if (try_steal_cookie(cpu, i)) 6268 return true; 6269 } 6270 6271 return false; 6272 } 6273 6274 static void sched_core_balance(struct rq *rq) 6275 { 6276 struct sched_domain *sd; 6277 int cpu = cpu_of(rq); 6278 6279 guard(preempt)(); 6280 guard(rcu)(); 6281 6282 raw_spin_rq_unlock_irq(rq); 6283 for_each_domain(cpu, sd) { 6284 if (need_resched()) 6285 break; 6286 6287 if (steal_cookie_task(cpu, sd)) 6288 break; 6289 } 6290 raw_spin_rq_lock_irq(rq); 6291 } 6292 6293 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6294 6295 static void queue_core_balance(struct rq *rq) 6296 { 6297 if (!sched_core_enabled(rq)) 6298 return; 6299 6300 if (!rq->core->core_cookie) 6301 return; 6302 6303 if (!rq->nr_running) /* not forced idle */ 6304 return; 6305 6306 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6307 } 6308 6309 DEFINE_LOCK_GUARD_1(core_lock, int, 6310 sched_core_lock(*_T->lock, &_T->flags), 6311 sched_core_unlock(*_T->lock, &_T->flags), 6312 unsigned long flags) 6313 6314 static void sched_core_cpu_starting(unsigned int cpu) 6315 { 6316 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6317 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6318 int t; 6319 6320 guard(core_lock)(&cpu); 6321 6322 WARN_ON_ONCE(rq->core != rq); 6323 6324 /* if we're the first, we'll be our own leader */ 6325 if (cpumask_weight(smt_mask) == 1) 6326 return; 6327 6328 /* find the leader */ 6329 for_each_cpu(t, smt_mask) { 6330 if (t == cpu) 6331 continue; 6332 rq = cpu_rq(t); 6333 if (rq->core == rq) { 6334 core_rq = rq; 6335 break; 6336 } 6337 } 6338 6339 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6340 return; 6341 6342 /* install and validate core_rq */ 6343 for_each_cpu(t, smt_mask) { 6344 rq = cpu_rq(t); 6345 6346 if (t == cpu) 6347 rq->core = core_rq; 6348 6349 WARN_ON_ONCE(rq->core != core_rq); 6350 } 6351 } 6352 6353 static void sched_core_cpu_deactivate(unsigned int cpu) 6354 { 6355 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6356 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6357 int t; 6358 6359 guard(core_lock)(&cpu); 6360 6361 /* if we're the last man standing, nothing to do */ 6362 if (cpumask_weight(smt_mask) == 1) { 6363 WARN_ON_ONCE(rq->core != rq); 6364 return; 6365 } 6366 6367 /* if we're not the leader, nothing to do */ 6368 if (rq->core != rq) 6369 return; 6370 6371 /* find a new leader */ 6372 for_each_cpu(t, smt_mask) { 6373 if (t == cpu) 6374 continue; 6375 core_rq = cpu_rq(t); 6376 break; 6377 } 6378 6379 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6380 return; 6381 6382 /* copy the shared state to the new leader */ 6383 core_rq->core_task_seq = rq->core_task_seq; 6384 core_rq->core_pick_seq = rq->core_pick_seq; 6385 core_rq->core_cookie = rq->core_cookie; 6386 core_rq->core_forceidle_count = rq->core_forceidle_count; 6387 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6388 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6389 6390 /* 6391 * Accounting edge for forced idle is handled in pick_next_task(). 6392 * Don't need another one here, since the hotplug thread shouldn't 6393 * have a cookie. 6394 */ 6395 core_rq->core_forceidle_start = 0; 6396 6397 /* install new leader */ 6398 for_each_cpu(t, smt_mask) { 6399 rq = cpu_rq(t); 6400 rq->core = core_rq; 6401 } 6402 } 6403 6404 static inline void sched_core_cpu_dying(unsigned int cpu) 6405 { 6406 struct rq *rq = cpu_rq(cpu); 6407 6408 if (rq->core != rq) 6409 rq->core = rq; 6410 } 6411 6412 #else /* !CONFIG_SCHED_CORE: */ 6413 6414 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6415 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6416 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6417 6418 static struct task_struct * 6419 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6420 { 6421 return __pick_next_task(rq, prev, rf); 6422 } 6423 6424 #endif /* !CONFIG_SCHED_CORE */ 6425 6426 /* 6427 * Constants for the sched_mode argument of __schedule(). 6428 * 6429 * The mode argument allows RT enabled kernels to differentiate a 6430 * preemption from blocking on an 'sleeping' spin/rwlock. 6431 */ 6432 #define SM_IDLE (-1) 6433 #define SM_NONE 0 6434 #define SM_PREEMPT 1 6435 #define SM_RTLOCK_WAIT 2 6436 6437 /* 6438 * Helper function for __schedule() 6439 * 6440 * Tries to deactivate the task, unless the should_block arg 6441 * is false or if a signal is pending. In the case a signal 6442 * is pending, marks the task's __state as RUNNING (and clear 6443 * blocked_on). 6444 */ 6445 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6446 unsigned long *task_state_p, bool should_block) 6447 { 6448 unsigned long task_state = *task_state_p; 6449 int flags = DEQUEUE_NOCLOCK; 6450 6451 if (signal_pending_state(task_state, p)) { 6452 WRITE_ONCE(p->__state, TASK_RUNNING); 6453 *task_state_p = TASK_RUNNING; 6454 return false; 6455 } 6456 6457 /* 6458 * We check should_block after signal_pending because we 6459 * will want to wake the task in that case. But if 6460 * should_block is false, its likely due to the task being 6461 * blocked on a mutex, and we want to keep it on the runqueue 6462 * to be selectable for proxy-execution. 6463 */ 6464 if (!should_block) 6465 return false; 6466 6467 p->sched_contributes_to_load = 6468 (task_state & TASK_UNINTERRUPTIBLE) && 6469 !(task_state & TASK_NOLOAD) && 6470 !(task_state & TASK_FROZEN); 6471 6472 if (unlikely(is_special_task_state(task_state))) 6473 flags |= DEQUEUE_SPECIAL; 6474 6475 /* 6476 * __schedule() ttwu() 6477 * prev_state = prev->state; if (p->on_rq && ...) 6478 * if (prev_state) goto out; 6479 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6480 * p->state = TASK_WAKING 6481 * 6482 * Where __schedule() and ttwu() have matching control dependencies. 6483 * 6484 * After this, schedule() must not care about p->state any more. 6485 */ 6486 block_task(rq, p, flags); 6487 return true; 6488 } 6489 6490 #ifdef CONFIG_SCHED_PROXY_EXEC 6491 static inline struct task_struct *proxy_resched_idle(struct rq *rq) 6492 { 6493 put_prev_set_next_task(rq, rq->donor, rq->idle); 6494 rq_set_donor(rq, rq->idle); 6495 set_tsk_need_resched(rq->idle); 6496 return rq->idle; 6497 } 6498 6499 static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor) 6500 { 6501 unsigned long state = READ_ONCE(donor->__state); 6502 6503 /* Don't deactivate if the state has been changed to TASK_RUNNING */ 6504 if (state == TASK_RUNNING) 6505 return false; 6506 /* 6507 * Because we got donor from pick_next_task(), it is *crucial* 6508 * that we call proxy_resched_idle() before we deactivate it. 6509 * As once we deactivate donor, donor->on_rq is set to zero, 6510 * which allows ttwu() to immediately try to wake the task on 6511 * another rq. So we cannot use *any* references to donor 6512 * after that point. So things like cfs_rq->curr or rq->donor 6513 * need to be changed from next *before* we deactivate. 6514 */ 6515 proxy_resched_idle(rq); 6516 return try_to_block_task(rq, donor, &state, true); 6517 } 6518 6519 static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor) 6520 { 6521 if (!__proxy_deactivate(rq, donor)) { 6522 /* 6523 * XXX: For now, if deactivation failed, set donor 6524 * as unblocked, as we aren't doing proxy-migrations 6525 * yet (more logic will be needed then). 6526 */ 6527 donor->blocked_on = NULL; 6528 } 6529 return NULL; 6530 } 6531 6532 /* 6533 * Find runnable lock owner to proxy for mutex blocked donor 6534 * 6535 * Follow the blocked-on relation: 6536 * task->blocked_on -> mutex->owner -> task... 6537 * 6538 * Lock order: 6539 * 6540 * p->pi_lock 6541 * rq->lock 6542 * mutex->wait_lock 6543 * 6544 * Returns the task that is going to be used as execution context (the one 6545 * that is actually going to be run on cpu_of(rq)). 6546 */ 6547 static struct task_struct * 6548 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) 6549 { 6550 struct task_struct *owner = NULL; 6551 int this_cpu = cpu_of(rq); 6552 struct task_struct *p; 6553 struct mutex *mutex; 6554 6555 /* Follow blocked_on chain. */ 6556 for (p = donor; task_is_blocked(p); p = owner) { 6557 mutex = p->blocked_on; 6558 /* Something changed in the chain, so pick again */ 6559 if (!mutex) 6560 return NULL; 6561 /* 6562 * By taking mutex->wait_lock we hold off concurrent mutex_unlock() 6563 * and ensure @owner sticks around. 6564 */ 6565 guard(raw_spinlock)(&mutex->wait_lock); 6566 6567 /* Check again that p is blocked with wait_lock held */ 6568 if (mutex != __get_task_blocked_on(p)) { 6569 /* 6570 * Something changed in the blocked_on chain and 6571 * we don't know if only at this level. So, let's 6572 * just bail out completely and let __schedule() 6573 * figure things out (pick_again loop). 6574 */ 6575 return NULL; 6576 } 6577 6578 owner = __mutex_owner(mutex); 6579 if (!owner) { 6580 __clear_task_blocked_on(p, mutex); 6581 return p; 6582 } 6583 6584 if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) { 6585 /* XXX Don't handle blocked owners/delayed dequeue yet */ 6586 return proxy_deactivate(rq, donor); 6587 } 6588 6589 if (task_cpu(owner) != this_cpu) { 6590 /* XXX Don't handle migrations yet */ 6591 return proxy_deactivate(rq, donor); 6592 } 6593 6594 if (task_on_rq_migrating(owner)) { 6595 /* 6596 * One of the chain of mutex owners is currently migrating to this 6597 * CPU, but has not yet been enqueued because we are holding the 6598 * rq lock. As a simple solution, just schedule rq->idle to give 6599 * the migration a chance to complete. Much like the migrate_task 6600 * case we should end up back in find_proxy_task(), this time 6601 * hopefully with all relevant tasks already enqueued. 6602 */ 6603 return proxy_resched_idle(rq); 6604 } 6605 6606 /* 6607 * Its possible to race where after we check owner->on_rq 6608 * but before we check (owner_cpu != this_cpu) that the 6609 * task on another cpu was migrated back to this cpu. In 6610 * that case it could slip by our checks. So double check 6611 * we are still on this cpu and not migrating. If we get 6612 * inconsistent results, try again. 6613 */ 6614 if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu) 6615 return NULL; 6616 6617 if (owner == p) { 6618 /* 6619 * It's possible we interleave with mutex_unlock like: 6620 * 6621 * lock(&rq->lock); 6622 * find_proxy_task() 6623 * mutex_unlock() 6624 * lock(&wait_lock); 6625 * donor(owner) = current->blocked_donor; 6626 * unlock(&wait_lock); 6627 * 6628 * wake_up_q(); 6629 * ... 6630 * ttwu_runnable() 6631 * __task_rq_lock() 6632 * lock(&wait_lock); 6633 * owner == p 6634 * 6635 * Which leaves us to finish the ttwu_runnable() and make it go. 6636 * 6637 * So schedule rq->idle so that ttwu_runnable() can get the rq 6638 * lock and mark owner as running. 6639 */ 6640 return proxy_resched_idle(rq); 6641 } 6642 /* 6643 * OK, now we're absolutely sure @owner is on this 6644 * rq, therefore holding @rq->lock is sufficient to 6645 * guarantee its existence, as per ttwu_remote(). 6646 */ 6647 } 6648 6649 WARN_ON_ONCE(owner && !owner->on_rq); 6650 return owner; 6651 } 6652 #else /* SCHED_PROXY_EXEC */ 6653 static struct task_struct * 6654 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) 6655 { 6656 WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n"); 6657 return donor; 6658 } 6659 #endif /* SCHED_PROXY_EXEC */ 6660 6661 static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner) 6662 { 6663 if (!sched_proxy_exec()) 6664 return; 6665 /* 6666 * pick_next_task() calls set_next_task() on the chosen task 6667 * at some point, which ensures it is not push/pullable. 6668 * However, the chosen/donor task *and* the mutex owner form an 6669 * atomic pair wrt push/pull. 6670 * 6671 * Make sure owner we run is not pushable. Unfortunately we can 6672 * only deal with that by means of a dequeue/enqueue cycle. :-/ 6673 */ 6674 dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE); 6675 enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE); 6676 } 6677 6678 /* 6679 * __schedule() is the main scheduler function. 6680 * 6681 * The main means of driving the scheduler and thus entering this function are: 6682 * 6683 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6684 * 6685 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6686 * paths. For example, see arch/x86/entry_64.S. 6687 * 6688 * To drive preemption between tasks, the scheduler sets the flag in timer 6689 * interrupt handler sched_tick(). 6690 * 6691 * 3. Wakeups don't really cause entry into schedule(). They add a 6692 * task to the run-queue and that's it. 6693 * 6694 * Now, if the new task added to the run-queue preempts the current 6695 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6696 * called on the nearest possible occasion: 6697 * 6698 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6699 * 6700 * - in syscall or exception context, at the next outmost 6701 * preempt_enable(). (this might be as soon as the wake_up()'s 6702 * spin_unlock()!) 6703 * 6704 * - in IRQ context, return from interrupt-handler to 6705 * preemptible context 6706 * 6707 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6708 * then at the next: 6709 * 6710 * - cond_resched() call 6711 * - explicit schedule() call 6712 * - return from syscall or exception to user-space 6713 * - return from interrupt-handler to user-space 6714 * 6715 * WARNING: must be called with preemption disabled! 6716 */ 6717 static void __sched notrace __schedule(int sched_mode) 6718 { 6719 struct task_struct *prev, *next; 6720 /* 6721 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6722 * as a preemption by schedule_debug() and RCU. 6723 */ 6724 bool preempt = sched_mode > SM_NONE; 6725 bool is_switch = false; 6726 unsigned long *switch_count; 6727 unsigned long prev_state; 6728 struct rq_flags rf; 6729 struct rq *rq; 6730 int cpu; 6731 6732 /* Trace preemptions consistently with task switches */ 6733 trace_sched_entry_tp(sched_mode == SM_PREEMPT); 6734 6735 cpu = smp_processor_id(); 6736 rq = cpu_rq(cpu); 6737 prev = rq->curr; 6738 6739 schedule_debug(prev, preempt); 6740 6741 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6742 hrtick_clear(rq); 6743 6744 klp_sched_try_switch(prev); 6745 6746 local_irq_disable(); 6747 rcu_note_context_switch(preempt); 6748 migrate_disable_switch(rq, prev); 6749 6750 /* 6751 * Make sure that signal_pending_state()->signal_pending() below 6752 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6753 * done by the caller to avoid the race with signal_wake_up(): 6754 * 6755 * __set_current_state(@state) signal_wake_up() 6756 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6757 * wake_up_state(p, state) 6758 * LOCK rq->lock LOCK p->pi_state 6759 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6760 * if (signal_pending_state()) if (p->state & @state) 6761 * 6762 * Also, the membarrier system call requires a full memory barrier 6763 * after coming from user-space, before storing to rq->curr; this 6764 * barrier matches a full barrier in the proximity of the membarrier 6765 * system call exit. 6766 */ 6767 rq_lock(rq, &rf); 6768 smp_mb__after_spinlock(); 6769 6770 /* Promote REQ to ACT */ 6771 rq->clock_update_flags <<= 1; 6772 update_rq_clock(rq); 6773 rq->clock_update_flags = RQCF_UPDATED; 6774 6775 switch_count = &prev->nivcsw; 6776 6777 /* Task state changes only considers SM_PREEMPT as preemption */ 6778 preempt = sched_mode == SM_PREEMPT; 6779 6780 /* 6781 * We must load prev->state once (task_struct::state is volatile), such 6782 * that we form a control dependency vs deactivate_task() below. 6783 */ 6784 prev_state = READ_ONCE(prev->__state); 6785 if (sched_mode == SM_IDLE) { 6786 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6787 if (!rq->nr_running && !scx_enabled()) { 6788 next = prev; 6789 goto picked; 6790 } 6791 } else if (!preempt && prev_state) { 6792 /* 6793 * We pass task_is_blocked() as the should_block arg 6794 * in order to keep mutex-blocked tasks on the runqueue 6795 * for slection with proxy-exec (without proxy-exec 6796 * task_is_blocked() will always be false). 6797 */ 6798 try_to_block_task(rq, prev, &prev_state, 6799 !task_is_blocked(prev)); 6800 switch_count = &prev->nvcsw; 6801 } 6802 6803 pick_again: 6804 next = pick_next_task(rq, rq->donor, &rf); 6805 rq_set_donor(rq, next); 6806 if (unlikely(task_is_blocked(next))) { 6807 next = find_proxy_task(rq, next, &rf); 6808 if (!next) 6809 goto pick_again; 6810 if (next == rq->idle) 6811 goto keep_resched; 6812 } 6813 picked: 6814 clear_tsk_need_resched(prev); 6815 clear_preempt_need_resched(); 6816 keep_resched: 6817 rq->last_seen_need_resched_ns = 0; 6818 6819 is_switch = prev != next; 6820 if (likely(is_switch)) { 6821 rq->nr_switches++; 6822 /* 6823 * RCU users of rcu_dereference(rq->curr) may not see 6824 * changes to task_struct made by pick_next_task(). 6825 */ 6826 RCU_INIT_POINTER(rq->curr, next); 6827 6828 if (!task_current_donor(rq, next)) 6829 proxy_tag_curr(rq, next); 6830 6831 /* 6832 * The membarrier system call requires each architecture 6833 * to have a full memory barrier after updating 6834 * rq->curr, before returning to user-space. 6835 * 6836 * Here are the schemes providing that barrier on the 6837 * various architectures: 6838 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6839 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6840 * on PowerPC and on RISC-V. 6841 * - finish_lock_switch() for weakly-ordered 6842 * architectures where spin_unlock is a full barrier, 6843 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6844 * is a RELEASE barrier), 6845 * 6846 * The barrier matches a full barrier in the proximity of 6847 * the membarrier system call entry. 6848 * 6849 * On RISC-V, this barrier pairing is also needed for the 6850 * SYNC_CORE command when switching between processes, cf. 6851 * the inline comments in membarrier_arch_switch_mm(). 6852 */ 6853 ++*switch_count; 6854 6855 psi_account_irqtime(rq, prev, next); 6856 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6857 prev->se.sched_delayed); 6858 6859 trace_sched_switch(preempt, prev, next, prev_state); 6860 6861 /* Also unlocks the rq: */ 6862 rq = context_switch(rq, prev, next, &rf); 6863 } else { 6864 /* In case next was already curr but just got blocked_donor */ 6865 if (!task_current_donor(rq, next)) 6866 proxy_tag_curr(rq, next); 6867 6868 rq_unpin_lock(rq, &rf); 6869 __balance_callbacks(rq); 6870 raw_spin_rq_unlock_irq(rq); 6871 } 6872 trace_sched_exit_tp(is_switch); 6873 } 6874 6875 void __noreturn do_task_dead(void) 6876 { 6877 /* Causes final put_task_struct in finish_task_switch(): */ 6878 set_special_state(TASK_DEAD); 6879 6880 /* Tell freezer to ignore us: */ 6881 current->flags |= PF_NOFREEZE; 6882 6883 __schedule(SM_NONE); 6884 BUG(); 6885 6886 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6887 for (;;) 6888 cpu_relax(); 6889 } 6890 6891 static inline void sched_submit_work(struct task_struct *tsk) 6892 { 6893 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6894 unsigned int task_flags; 6895 6896 /* 6897 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6898 * will use a blocking primitive -- which would lead to recursion. 6899 */ 6900 lock_map_acquire_try(&sched_map); 6901 6902 task_flags = tsk->flags; 6903 /* 6904 * If a worker goes to sleep, notify and ask workqueue whether it 6905 * wants to wake up a task to maintain concurrency. 6906 */ 6907 if (task_flags & PF_WQ_WORKER) 6908 wq_worker_sleeping(tsk); 6909 else if (task_flags & PF_IO_WORKER) 6910 io_wq_worker_sleeping(tsk); 6911 6912 /* 6913 * spinlock and rwlock must not flush block requests. This will 6914 * deadlock if the callback attempts to acquire a lock which is 6915 * already acquired. 6916 */ 6917 WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); 6918 6919 /* 6920 * If we are going to sleep and we have plugged IO queued, 6921 * make sure to submit it to avoid deadlocks. 6922 */ 6923 blk_flush_plug(tsk->plug, true); 6924 6925 lock_map_release(&sched_map); 6926 } 6927 6928 static void sched_update_worker(struct task_struct *tsk) 6929 { 6930 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6931 if (tsk->flags & PF_BLOCK_TS) 6932 blk_plug_invalidate_ts(tsk); 6933 if (tsk->flags & PF_WQ_WORKER) 6934 wq_worker_running(tsk); 6935 else if (tsk->flags & PF_IO_WORKER) 6936 io_wq_worker_running(tsk); 6937 } 6938 } 6939 6940 static __always_inline void __schedule_loop(int sched_mode) 6941 { 6942 do { 6943 preempt_disable(); 6944 __schedule(sched_mode); 6945 sched_preempt_enable_no_resched(); 6946 } while (need_resched()); 6947 } 6948 6949 asmlinkage __visible void __sched schedule(void) 6950 { 6951 struct task_struct *tsk = current; 6952 6953 #ifdef CONFIG_RT_MUTEXES 6954 lockdep_assert(!tsk->sched_rt_mutex); 6955 #endif 6956 6957 if (!task_is_running(tsk)) 6958 sched_submit_work(tsk); 6959 __schedule_loop(SM_NONE); 6960 sched_update_worker(tsk); 6961 } 6962 EXPORT_SYMBOL(schedule); 6963 6964 /* 6965 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6966 * state (have scheduled out non-voluntarily) by making sure that all 6967 * tasks have either left the run queue or have gone into user space. 6968 * As idle tasks do not do either, they must not ever be preempted 6969 * (schedule out non-voluntarily). 6970 * 6971 * schedule_idle() is similar to schedule_preempt_disable() except that it 6972 * never enables preemption because it does not call sched_submit_work(). 6973 */ 6974 void __sched schedule_idle(void) 6975 { 6976 /* 6977 * As this skips calling sched_submit_work(), which the idle task does 6978 * regardless because that function is a NOP when the task is in a 6979 * TASK_RUNNING state, make sure this isn't used someplace that the 6980 * current task can be in any other state. Note, idle is always in the 6981 * TASK_RUNNING state. 6982 */ 6983 WARN_ON_ONCE(current->__state); 6984 do { 6985 __schedule(SM_IDLE); 6986 } while (need_resched()); 6987 } 6988 6989 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6990 asmlinkage __visible void __sched schedule_user(void) 6991 { 6992 /* 6993 * If we come here after a random call to set_need_resched(), 6994 * or we have been woken up remotely but the IPI has not yet arrived, 6995 * we haven't yet exited the RCU idle mode. Do it here manually until 6996 * we find a better solution. 6997 * 6998 * NB: There are buggy callers of this function. Ideally we 6999 * should warn if prev_state != CT_STATE_USER, but that will trigger 7000 * too frequently to make sense yet. 7001 */ 7002 enum ctx_state prev_state = exception_enter(); 7003 schedule(); 7004 exception_exit(prev_state); 7005 } 7006 #endif 7007 7008 /** 7009 * schedule_preempt_disabled - called with preemption disabled 7010 * 7011 * Returns with preemption disabled. Note: preempt_count must be 1 7012 */ 7013 void __sched schedule_preempt_disabled(void) 7014 { 7015 sched_preempt_enable_no_resched(); 7016 schedule(); 7017 preempt_disable(); 7018 } 7019 7020 #ifdef CONFIG_PREEMPT_RT 7021 void __sched notrace schedule_rtlock(void) 7022 { 7023 __schedule_loop(SM_RTLOCK_WAIT); 7024 } 7025 NOKPROBE_SYMBOL(schedule_rtlock); 7026 #endif 7027 7028 static void __sched notrace preempt_schedule_common(void) 7029 { 7030 do { 7031 /* 7032 * Because the function tracer can trace preempt_count_sub() 7033 * and it also uses preempt_enable/disable_notrace(), if 7034 * NEED_RESCHED is set, the preempt_enable_notrace() called 7035 * by the function tracer will call this function again and 7036 * cause infinite recursion. 7037 * 7038 * Preemption must be disabled here before the function 7039 * tracer can trace. Break up preempt_disable() into two 7040 * calls. One to disable preemption without fear of being 7041 * traced. The other to still record the preemption latency, 7042 * which can also be traced by the function tracer. 7043 */ 7044 preempt_disable_notrace(); 7045 preempt_latency_start(1); 7046 __schedule(SM_PREEMPT); 7047 preempt_latency_stop(1); 7048 preempt_enable_no_resched_notrace(); 7049 7050 /* 7051 * Check again in case we missed a preemption opportunity 7052 * between schedule and now. 7053 */ 7054 } while (need_resched()); 7055 } 7056 7057 #ifdef CONFIG_PREEMPTION 7058 /* 7059 * This is the entry point to schedule() from in-kernel preemption 7060 * off of preempt_enable. 7061 */ 7062 asmlinkage __visible void __sched notrace preempt_schedule(void) 7063 { 7064 /* 7065 * If there is a non-zero preempt_count or interrupts are disabled, 7066 * we do not want to preempt the current task. Just return.. 7067 */ 7068 if (likely(!preemptible())) 7069 return; 7070 preempt_schedule_common(); 7071 } 7072 NOKPROBE_SYMBOL(preempt_schedule); 7073 EXPORT_SYMBOL(preempt_schedule); 7074 7075 #ifdef CONFIG_PREEMPT_DYNAMIC 7076 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7077 # ifndef preempt_schedule_dynamic_enabled 7078 # define preempt_schedule_dynamic_enabled preempt_schedule 7079 # define preempt_schedule_dynamic_disabled NULL 7080 # endif 7081 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 7082 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 7083 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7084 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 7085 void __sched notrace dynamic_preempt_schedule(void) 7086 { 7087 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 7088 return; 7089 preempt_schedule(); 7090 } 7091 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 7092 EXPORT_SYMBOL(dynamic_preempt_schedule); 7093 # endif 7094 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7095 7096 /** 7097 * preempt_schedule_notrace - preempt_schedule called by tracing 7098 * 7099 * The tracing infrastructure uses preempt_enable_notrace to prevent 7100 * recursion and tracing preempt enabling caused by the tracing 7101 * infrastructure itself. But as tracing can happen in areas coming 7102 * from userspace or just about to enter userspace, a preempt enable 7103 * can occur before user_exit() is called. This will cause the scheduler 7104 * to be called when the system is still in usermode. 7105 * 7106 * To prevent this, the preempt_enable_notrace will use this function 7107 * instead of preempt_schedule() to exit user context if needed before 7108 * calling the scheduler. 7109 */ 7110 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7111 { 7112 enum ctx_state prev_ctx; 7113 7114 if (likely(!preemptible())) 7115 return; 7116 7117 do { 7118 /* 7119 * Because the function tracer can trace preempt_count_sub() 7120 * and it also uses preempt_enable/disable_notrace(), if 7121 * NEED_RESCHED is set, the preempt_enable_notrace() called 7122 * by the function tracer will call this function again and 7123 * cause infinite recursion. 7124 * 7125 * Preemption must be disabled here before the function 7126 * tracer can trace. Break up preempt_disable() into two 7127 * calls. One to disable preemption without fear of being 7128 * traced. The other to still record the preemption latency, 7129 * which can also be traced by the function tracer. 7130 */ 7131 preempt_disable_notrace(); 7132 preempt_latency_start(1); 7133 /* 7134 * Needs preempt disabled in case user_exit() is traced 7135 * and the tracer calls preempt_enable_notrace() causing 7136 * an infinite recursion. 7137 */ 7138 prev_ctx = exception_enter(); 7139 __schedule(SM_PREEMPT); 7140 exception_exit(prev_ctx); 7141 7142 preempt_latency_stop(1); 7143 preempt_enable_no_resched_notrace(); 7144 } while (need_resched()); 7145 } 7146 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7147 7148 #ifdef CONFIG_PREEMPT_DYNAMIC 7149 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7150 # ifndef preempt_schedule_notrace_dynamic_enabled 7151 # define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7152 # define preempt_schedule_notrace_dynamic_disabled NULL 7153 # endif 7154 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7155 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7156 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7157 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7158 void __sched notrace dynamic_preempt_schedule_notrace(void) 7159 { 7160 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7161 return; 7162 preempt_schedule_notrace(); 7163 } 7164 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7165 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7166 # endif 7167 #endif 7168 7169 #endif /* CONFIG_PREEMPTION */ 7170 7171 /* 7172 * This is the entry point to schedule() from kernel preemption 7173 * off of IRQ context. 7174 * Note, that this is called and return with IRQs disabled. This will 7175 * protect us against recursive calling from IRQ contexts. 7176 */ 7177 asmlinkage __visible void __sched preempt_schedule_irq(void) 7178 { 7179 enum ctx_state prev_state; 7180 7181 /* Catch callers which need to be fixed */ 7182 BUG_ON(preempt_count() || !irqs_disabled()); 7183 7184 prev_state = exception_enter(); 7185 7186 do { 7187 preempt_disable(); 7188 local_irq_enable(); 7189 __schedule(SM_PREEMPT); 7190 local_irq_disable(); 7191 sched_preempt_enable_no_resched(); 7192 } while (need_resched()); 7193 7194 exception_exit(prev_state); 7195 } 7196 7197 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7198 void *key) 7199 { 7200 WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7201 return try_to_wake_up(curr->private, mode, wake_flags); 7202 } 7203 EXPORT_SYMBOL(default_wake_function); 7204 7205 const struct sched_class *__setscheduler_class(int policy, int prio) 7206 { 7207 if (dl_prio(prio)) 7208 return &dl_sched_class; 7209 7210 if (rt_prio(prio)) 7211 return &rt_sched_class; 7212 7213 #ifdef CONFIG_SCHED_CLASS_EXT 7214 if (task_should_scx(policy)) 7215 return &ext_sched_class; 7216 #endif 7217 7218 return &fair_sched_class; 7219 } 7220 7221 #ifdef CONFIG_RT_MUTEXES 7222 7223 /* 7224 * Would be more useful with typeof()/auto_type but they don't mix with 7225 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7226 * name such that if someone were to implement this function we get to compare 7227 * notes. 7228 */ 7229 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7230 7231 void rt_mutex_pre_schedule(void) 7232 { 7233 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7234 sched_submit_work(current); 7235 } 7236 7237 void rt_mutex_schedule(void) 7238 { 7239 lockdep_assert(current->sched_rt_mutex); 7240 __schedule_loop(SM_NONE); 7241 } 7242 7243 void rt_mutex_post_schedule(void) 7244 { 7245 sched_update_worker(current); 7246 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7247 } 7248 7249 /* 7250 * rt_mutex_setprio - set the current priority of a task 7251 * @p: task to boost 7252 * @pi_task: donor task 7253 * 7254 * This function changes the 'effective' priority of a task. It does 7255 * not touch ->normal_prio like __setscheduler(). 7256 * 7257 * Used by the rt_mutex code to implement priority inheritance 7258 * logic. Call site only calls if the priority of the task changed. 7259 */ 7260 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7261 { 7262 int prio, oldprio, queue_flag = 7263 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7264 const struct sched_class *prev_class, *next_class; 7265 struct rq_flags rf; 7266 struct rq *rq; 7267 7268 /* XXX used to be waiter->prio, not waiter->task->prio */ 7269 prio = __rt_effective_prio(pi_task, p->normal_prio); 7270 7271 /* 7272 * If nothing changed; bail early. 7273 */ 7274 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7275 return; 7276 7277 rq = __task_rq_lock(p, &rf); 7278 update_rq_clock(rq); 7279 /* 7280 * Set under pi_lock && rq->lock, such that the value can be used under 7281 * either lock. 7282 * 7283 * Note that there is loads of tricky to make this pointer cache work 7284 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7285 * ensure a task is de-boosted (pi_task is set to NULL) before the 7286 * task is allowed to run again (and can exit). This ensures the pointer 7287 * points to a blocked task -- which guarantees the task is present. 7288 */ 7289 p->pi_top_task = pi_task; 7290 7291 /* 7292 * For FIFO/RR we only need to set prio, if that matches we're done. 7293 */ 7294 if (prio == p->prio && !dl_prio(prio)) 7295 goto out_unlock; 7296 7297 /* 7298 * Idle task boosting is a no-no in general. There is one 7299 * exception, when PREEMPT_RT and NOHZ is active: 7300 * 7301 * The idle task calls get_next_timer_interrupt() and holds 7302 * the timer wheel base->lock on the CPU and another CPU wants 7303 * to access the timer (probably to cancel it). We can safely 7304 * ignore the boosting request, as the idle CPU runs this code 7305 * with interrupts disabled and will complete the lock 7306 * protected section without being interrupted. So there is no 7307 * real need to boost. 7308 */ 7309 if (unlikely(p == rq->idle)) { 7310 WARN_ON(p != rq->curr); 7311 WARN_ON(p->pi_blocked_on); 7312 goto out_unlock; 7313 } 7314 7315 trace_sched_pi_setprio(p, pi_task); 7316 oldprio = p->prio; 7317 7318 if (oldprio == prio) 7319 queue_flag &= ~DEQUEUE_MOVE; 7320 7321 prev_class = p->sched_class; 7322 next_class = __setscheduler_class(p->policy, prio); 7323 7324 if (prev_class != next_class) 7325 queue_flag |= DEQUEUE_CLASS; 7326 7327 scoped_guard (sched_change, p, queue_flag) { 7328 /* 7329 * Boosting condition are: 7330 * 1. -rt task is running and holds mutex A 7331 * --> -dl task blocks on mutex A 7332 * 7333 * 2. -dl task is running and holds mutex A 7334 * --> -dl task blocks on mutex A and could preempt the 7335 * running task 7336 */ 7337 if (dl_prio(prio)) { 7338 if (!dl_prio(p->normal_prio) || 7339 (pi_task && dl_prio(pi_task->prio) && 7340 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7341 p->dl.pi_se = pi_task->dl.pi_se; 7342 scope->flags |= ENQUEUE_REPLENISH; 7343 } else { 7344 p->dl.pi_se = &p->dl; 7345 } 7346 } else if (rt_prio(prio)) { 7347 if (dl_prio(oldprio)) 7348 p->dl.pi_se = &p->dl; 7349 if (oldprio < prio) 7350 scope->flags |= ENQUEUE_HEAD; 7351 } else { 7352 if (dl_prio(oldprio)) 7353 p->dl.pi_se = &p->dl; 7354 if (rt_prio(oldprio)) 7355 p->rt.timeout = 0; 7356 } 7357 7358 p->sched_class = next_class; 7359 p->prio = prio; 7360 } 7361 out_unlock: 7362 /* Avoid rq from going away on us: */ 7363 preempt_disable(); 7364 7365 rq_unpin_lock(rq, &rf); 7366 __balance_callbacks(rq); 7367 rq_repin_lock(rq, &rf); 7368 __task_rq_unlock(rq, p, &rf); 7369 7370 preempt_enable(); 7371 } 7372 #endif /* CONFIG_RT_MUTEXES */ 7373 7374 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7375 int __sched __cond_resched(void) 7376 { 7377 if (should_resched(0) && !irqs_disabled()) { 7378 preempt_schedule_common(); 7379 return 1; 7380 } 7381 /* 7382 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick 7383 * whether the current CPU is in an RCU read-side critical section, 7384 * so the tick can report quiescent states even for CPUs looping 7385 * in kernel context. In contrast, in non-preemptible kernels, 7386 * RCU readers leave no in-memory hints, which means that CPU-bound 7387 * processes executing in kernel context might never report an 7388 * RCU quiescent state. Therefore, the following code causes 7389 * cond_resched() to report a quiescent state, but only when RCU 7390 * is in urgent need of one. 7391 * A third case, preemptible, but non-PREEMPT_RCU provides for 7392 * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). 7393 */ 7394 #ifndef CONFIG_PREEMPT_RCU 7395 rcu_all_qs(); 7396 #endif 7397 return 0; 7398 } 7399 EXPORT_SYMBOL(__cond_resched); 7400 #endif 7401 7402 #ifdef CONFIG_PREEMPT_DYNAMIC 7403 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7404 # define cond_resched_dynamic_enabled __cond_resched 7405 # define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7406 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7407 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7408 7409 # define might_resched_dynamic_enabled __cond_resched 7410 # define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7411 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7412 EXPORT_STATIC_CALL_TRAMP(might_resched); 7413 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7414 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7415 int __sched dynamic_cond_resched(void) 7416 { 7417 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7418 return 0; 7419 return __cond_resched(); 7420 } 7421 EXPORT_SYMBOL(dynamic_cond_resched); 7422 7423 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7424 int __sched dynamic_might_resched(void) 7425 { 7426 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7427 return 0; 7428 return __cond_resched(); 7429 } 7430 EXPORT_SYMBOL(dynamic_might_resched); 7431 # endif 7432 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7433 7434 /* 7435 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7436 * call schedule, and on return reacquire the lock. 7437 * 7438 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7439 * operations here to prevent schedule() from being called twice (once via 7440 * spin_unlock(), once by hand). 7441 */ 7442 int __cond_resched_lock(spinlock_t *lock) 7443 { 7444 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7445 int ret = 0; 7446 7447 lockdep_assert_held(lock); 7448 7449 if (spin_needbreak(lock) || resched) { 7450 spin_unlock(lock); 7451 if (!_cond_resched()) 7452 cpu_relax(); 7453 ret = 1; 7454 spin_lock(lock); 7455 } 7456 return ret; 7457 } 7458 EXPORT_SYMBOL(__cond_resched_lock); 7459 7460 int __cond_resched_rwlock_read(rwlock_t *lock) 7461 { 7462 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7463 int ret = 0; 7464 7465 lockdep_assert_held_read(lock); 7466 7467 if (rwlock_needbreak(lock) || resched) { 7468 read_unlock(lock); 7469 if (!_cond_resched()) 7470 cpu_relax(); 7471 ret = 1; 7472 read_lock(lock); 7473 } 7474 return ret; 7475 } 7476 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7477 7478 int __cond_resched_rwlock_write(rwlock_t *lock) 7479 { 7480 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7481 int ret = 0; 7482 7483 lockdep_assert_held_write(lock); 7484 7485 if (rwlock_needbreak(lock) || resched) { 7486 write_unlock(lock); 7487 if (!_cond_resched()) 7488 cpu_relax(); 7489 ret = 1; 7490 write_lock(lock); 7491 } 7492 return ret; 7493 } 7494 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7495 7496 #ifdef CONFIG_PREEMPT_DYNAMIC 7497 7498 # ifdef CONFIG_GENERIC_IRQ_ENTRY 7499 # include <linux/irq-entry-common.h> 7500 # endif 7501 7502 /* 7503 * SC:cond_resched 7504 * SC:might_resched 7505 * SC:preempt_schedule 7506 * SC:preempt_schedule_notrace 7507 * SC:irqentry_exit_cond_resched 7508 * 7509 * 7510 * NONE: 7511 * cond_resched <- __cond_resched 7512 * might_resched <- RET0 7513 * preempt_schedule <- NOP 7514 * preempt_schedule_notrace <- NOP 7515 * irqentry_exit_cond_resched <- NOP 7516 * dynamic_preempt_lazy <- false 7517 * 7518 * VOLUNTARY: 7519 * cond_resched <- __cond_resched 7520 * might_resched <- __cond_resched 7521 * preempt_schedule <- NOP 7522 * preempt_schedule_notrace <- NOP 7523 * irqentry_exit_cond_resched <- NOP 7524 * dynamic_preempt_lazy <- false 7525 * 7526 * FULL: 7527 * cond_resched <- RET0 7528 * might_resched <- RET0 7529 * preempt_schedule <- preempt_schedule 7530 * preempt_schedule_notrace <- preempt_schedule_notrace 7531 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7532 * dynamic_preempt_lazy <- false 7533 * 7534 * LAZY: 7535 * cond_resched <- RET0 7536 * might_resched <- RET0 7537 * preempt_schedule <- preempt_schedule 7538 * preempt_schedule_notrace <- preempt_schedule_notrace 7539 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7540 * dynamic_preempt_lazy <- true 7541 */ 7542 7543 enum { 7544 preempt_dynamic_undefined = -1, 7545 preempt_dynamic_none, 7546 preempt_dynamic_voluntary, 7547 preempt_dynamic_full, 7548 preempt_dynamic_lazy, 7549 }; 7550 7551 int preempt_dynamic_mode = preempt_dynamic_undefined; 7552 7553 int sched_dynamic_mode(const char *str) 7554 { 7555 # ifndef CONFIG_PREEMPT_RT 7556 if (!strcmp(str, "none")) 7557 return preempt_dynamic_none; 7558 7559 if (!strcmp(str, "voluntary")) 7560 return preempt_dynamic_voluntary; 7561 # endif 7562 7563 if (!strcmp(str, "full")) 7564 return preempt_dynamic_full; 7565 7566 # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7567 if (!strcmp(str, "lazy")) 7568 return preempt_dynamic_lazy; 7569 # endif 7570 7571 return -EINVAL; 7572 } 7573 7574 # define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7575 # define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7576 7577 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7578 # define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7579 # define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7580 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7581 # define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7582 # define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7583 # else 7584 # error "Unsupported PREEMPT_DYNAMIC mechanism" 7585 # endif 7586 7587 static DEFINE_MUTEX(sched_dynamic_mutex); 7588 7589 static void __sched_dynamic_update(int mode) 7590 { 7591 /* 7592 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7593 * the ZERO state, which is invalid. 7594 */ 7595 preempt_dynamic_enable(cond_resched); 7596 preempt_dynamic_enable(might_resched); 7597 preempt_dynamic_enable(preempt_schedule); 7598 preempt_dynamic_enable(preempt_schedule_notrace); 7599 preempt_dynamic_enable(irqentry_exit_cond_resched); 7600 preempt_dynamic_key_disable(preempt_lazy); 7601 7602 switch (mode) { 7603 case preempt_dynamic_none: 7604 preempt_dynamic_enable(cond_resched); 7605 preempt_dynamic_disable(might_resched); 7606 preempt_dynamic_disable(preempt_schedule); 7607 preempt_dynamic_disable(preempt_schedule_notrace); 7608 preempt_dynamic_disable(irqentry_exit_cond_resched); 7609 preempt_dynamic_key_disable(preempt_lazy); 7610 if (mode != preempt_dynamic_mode) 7611 pr_info("Dynamic Preempt: none\n"); 7612 break; 7613 7614 case preempt_dynamic_voluntary: 7615 preempt_dynamic_enable(cond_resched); 7616 preempt_dynamic_enable(might_resched); 7617 preempt_dynamic_disable(preempt_schedule); 7618 preempt_dynamic_disable(preempt_schedule_notrace); 7619 preempt_dynamic_disable(irqentry_exit_cond_resched); 7620 preempt_dynamic_key_disable(preempt_lazy); 7621 if (mode != preempt_dynamic_mode) 7622 pr_info("Dynamic Preempt: voluntary\n"); 7623 break; 7624 7625 case preempt_dynamic_full: 7626 preempt_dynamic_disable(cond_resched); 7627 preempt_dynamic_disable(might_resched); 7628 preempt_dynamic_enable(preempt_schedule); 7629 preempt_dynamic_enable(preempt_schedule_notrace); 7630 preempt_dynamic_enable(irqentry_exit_cond_resched); 7631 preempt_dynamic_key_disable(preempt_lazy); 7632 if (mode != preempt_dynamic_mode) 7633 pr_info("Dynamic Preempt: full\n"); 7634 break; 7635 7636 case preempt_dynamic_lazy: 7637 preempt_dynamic_disable(cond_resched); 7638 preempt_dynamic_disable(might_resched); 7639 preempt_dynamic_enable(preempt_schedule); 7640 preempt_dynamic_enable(preempt_schedule_notrace); 7641 preempt_dynamic_enable(irqentry_exit_cond_resched); 7642 preempt_dynamic_key_enable(preempt_lazy); 7643 if (mode != preempt_dynamic_mode) 7644 pr_info("Dynamic Preempt: lazy\n"); 7645 break; 7646 } 7647 7648 preempt_dynamic_mode = mode; 7649 } 7650 7651 void sched_dynamic_update(int mode) 7652 { 7653 mutex_lock(&sched_dynamic_mutex); 7654 __sched_dynamic_update(mode); 7655 mutex_unlock(&sched_dynamic_mutex); 7656 } 7657 7658 static int __init setup_preempt_mode(char *str) 7659 { 7660 int mode = sched_dynamic_mode(str); 7661 if (mode < 0) { 7662 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7663 return 0; 7664 } 7665 7666 sched_dynamic_update(mode); 7667 return 1; 7668 } 7669 __setup("preempt=", setup_preempt_mode); 7670 7671 static void __init preempt_dynamic_init(void) 7672 { 7673 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7674 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7675 sched_dynamic_update(preempt_dynamic_none); 7676 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7677 sched_dynamic_update(preempt_dynamic_voluntary); 7678 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7679 sched_dynamic_update(preempt_dynamic_lazy); 7680 } else { 7681 /* Default static call setting, nothing to do */ 7682 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7683 preempt_dynamic_mode = preempt_dynamic_full; 7684 pr_info("Dynamic Preempt: full\n"); 7685 } 7686 } 7687 } 7688 7689 # define PREEMPT_MODEL_ACCESSOR(mode) \ 7690 bool preempt_model_##mode(void) \ 7691 { \ 7692 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7693 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7694 } \ 7695 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7696 7697 PREEMPT_MODEL_ACCESSOR(none); 7698 PREEMPT_MODEL_ACCESSOR(voluntary); 7699 PREEMPT_MODEL_ACCESSOR(full); 7700 PREEMPT_MODEL_ACCESSOR(lazy); 7701 7702 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7703 7704 #define preempt_dynamic_mode -1 7705 7706 static inline void preempt_dynamic_init(void) { } 7707 7708 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7709 7710 const char *preempt_modes[] = { 7711 "none", "voluntary", "full", "lazy", NULL, 7712 }; 7713 7714 const char *preempt_model_str(void) 7715 { 7716 bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && 7717 (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || 7718 IS_ENABLED(CONFIG_PREEMPT_LAZY)); 7719 static char buf[128]; 7720 7721 if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { 7722 struct seq_buf s; 7723 7724 seq_buf_init(&s, buf, sizeof(buf)); 7725 seq_buf_puts(&s, "PREEMPT"); 7726 7727 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 7728 seq_buf_printf(&s, "%sRT%s", 7729 brace ? "_{" : "_", 7730 brace ? "," : ""); 7731 7732 if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { 7733 seq_buf_printf(&s, "(%s)%s", 7734 preempt_dynamic_mode >= 0 ? 7735 preempt_modes[preempt_dynamic_mode] : "undef", 7736 brace ? "}" : ""); 7737 return seq_buf_str(&s); 7738 } 7739 7740 if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7741 seq_buf_printf(&s, "LAZY%s", 7742 brace ? "}" : ""); 7743 return seq_buf_str(&s); 7744 } 7745 7746 return seq_buf_str(&s); 7747 } 7748 7749 if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) 7750 return "VOLUNTARY"; 7751 7752 return "NONE"; 7753 } 7754 7755 int io_schedule_prepare(void) 7756 { 7757 int old_iowait = current->in_iowait; 7758 7759 current->in_iowait = 1; 7760 blk_flush_plug(current->plug, true); 7761 return old_iowait; 7762 } 7763 7764 void io_schedule_finish(int token) 7765 { 7766 current->in_iowait = token; 7767 } 7768 7769 /* 7770 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7771 * that process accounting knows that this is a task in IO wait state. 7772 */ 7773 long __sched io_schedule_timeout(long timeout) 7774 { 7775 int token; 7776 long ret; 7777 7778 token = io_schedule_prepare(); 7779 ret = schedule_timeout(timeout); 7780 io_schedule_finish(token); 7781 7782 return ret; 7783 } 7784 EXPORT_SYMBOL(io_schedule_timeout); 7785 7786 void __sched io_schedule(void) 7787 { 7788 int token; 7789 7790 token = io_schedule_prepare(); 7791 schedule(); 7792 io_schedule_finish(token); 7793 } 7794 EXPORT_SYMBOL(io_schedule); 7795 7796 void sched_show_task(struct task_struct *p) 7797 { 7798 unsigned long free; 7799 int ppid; 7800 7801 if (!try_get_task_stack(p)) 7802 return; 7803 7804 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7805 7806 if (task_is_running(p)) 7807 pr_cont(" running task "); 7808 free = stack_not_used(p); 7809 ppid = 0; 7810 rcu_read_lock(); 7811 if (pid_alive(p)) 7812 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7813 rcu_read_unlock(); 7814 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", 7815 free, task_pid_nr(p), task_tgid_nr(p), 7816 ppid, p->flags, read_task_thread_flags(p)); 7817 7818 print_worker_info(KERN_INFO, p); 7819 print_stop_info(KERN_INFO, p); 7820 print_scx_info(KERN_INFO, p); 7821 show_stack(p, NULL, KERN_INFO); 7822 put_task_stack(p); 7823 } 7824 EXPORT_SYMBOL_GPL(sched_show_task); 7825 7826 static inline bool 7827 state_filter_match(unsigned long state_filter, struct task_struct *p) 7828 { 7829 unsigned int state = READ_ONCE(p->__state); 7830 7831 /* no filter, everything matches */ 7832 if (!state_filter) 7833 return true; 7834 7835 /* filter, but doesn't match */ 7836 if (!(state & state_filter)) 7837 return false; 7838 7839 /* 7840 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7841 * TASK_KILLABLE). 7842 */ 7843 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7844 return false; 7845 7846 return true; 7847 } 7848 7849 7850 void show_state_filter(unsigned int state_filter) 7851 { 7852 struct task_struct *g, *p; 7853 7854 rcu_read_lock(); 7855 for_each_process_thread(g, p) { 7856 /* 7857 * reset the NMI-timeout, listing all files on a slow 7858 * console might take a lot of time: 7859 * Also, reset softlockup watchdogs on all CPUs, because 7860 * another CPU might be blocked waiting for us to process 7861 * an IPI. 7862 */ 7863 touch_nmi_watchdog(); 7864 touch_all_softlockup_watchdogs(); 7865 if (state_filter_match(state_filter, p)) 7866 sched_show_task(p); 7867 } 7868 7869 if (!state_filter) 7870 sysrq_sched_debug_show(); 7871 7872 rcu_read_unlock(); 7873 /* 7874 * Only show locks if all tasks are dumped: 7875 */ 7876 if (!state_filter) 7877 debug_show_all_locks(); 7878 } 7879 7880 /** 7881 * init_idle - set up an idle thread for a given CPU 7882 * @idle: task in question 7883 * @cpu: CPU the idle task belongs to 7884 * 7885 * NOTE: this function does not set the idle thread's NEED_RESCHED 7886 * flag, to make booting more robust. 7887 */ 7888 void __init init_idle(struct task_struct *idle, int cpu) 7889 { 7890 struct affinity_context ac = (struct affinity_context) { 7891 .new_mask = cpumask_of(cpu), 7892 .flags = 0, 7893 }; 7894 struct rq *rq = cpu_rq(cpu); 7895 unsigned long flags; 7896 7897 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7898 raw_spin_rq_lock(rq); 7899 7900 idle->__state = TASK_RUNNING; 7901 idle->se.exec_start = sched_clock(); 7902 /* 7903 * PF_KTHREAD should already be set at this point; regardless, make it 7904 * look like a proper per-CPU kthread. 7905 */ 7906 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7907 kthread_set_per_cpu(idle, cpu); 7908 7909 /* 7910 * No validation and serialization required at boot time and for 7911 * setting up the idle tasks of not yet online CPUs. 7912 */ 7913 set_cpus_allowed_common(idle, &ac); 7914 /* 7915 * We're having a chicken and egg problem, even though we are 7916 * holding rq->lock, the CPU isn't yet set to this CPU so the 7917 * lockdep check in task_group() will fail. 7918 * 7919 * Similar case to sched_fork(). / Alternatively we could 7920 * use task_rq_lock() here and obtain the other rq->lock. 7921 * 7922 * Silence PROVE_RCU 7923 */ 7924 rcu_read_lock(); 7925 __set_task_cpu(idle, cpu); 7926 rcu_read_unlock(); 7927 7928 rq->idle = idle; 7929 rq_set_donor(rq, idle); 7930 rcu_assign_pointer(rq->curr, idle); 7931 idle->on_rq = TASK_ON_RQ_QUEUED; 7932 idle->on_cpu = 1; 7933 raw_spin_rq_unlock(rq); 7934 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7935 7936 /* Set the preempt count _outside_ the spinlocks! */ 7937 init_idle_preempt_count(idle, cpu); 7938 7939 /* 7940 * The idle tasks have their own, simple scheduling class: 7941 */ 7942 idle->sched_class = &idle_sched_class; 7943 ftrace_graph_init_idle_task(idle, cpu); 7944 vtime_init_idle(idle, cpu); 7945 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7946 } 7947 7948 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7949 const struct cpumask *trial) 7950 { 7951 int ret = 1; 7952 7953 if (cpumask_empty(cur)) 7954 return ret; 7955 7956 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7957 7958 return ret; 7959 } 7960 7961 int task_can_attach(struct task_struct *p) 7962 { 7963 int ret = 0; 7964 7965 /* 7966 * Kthreads which disallow setaffinity shouldn't be moved 7967 * to a new cpuset; we don't want to change their CPU 7968 * affinity and isolating such threads by their set of 7969 * allowed nodes is unnecessary. Thus, cpusets are not 7970 * applicable for such threads. This prevents checking for 7971 * success of set_cpus_allowed_ptr() on all attached tasks 7972 * before cpus_mask may be changed. 7973 */ 7974 if (p->flags & PF_NO_SETAFFINITY) 7975 ret = -EINVAL; 7976 7977 return ret; 7978 } 7979 7980 bool sched_smp_initialized __read_mostly; 7981 7982 #ifdef CONFIG_NUMA_BALANCING 7983 /* Migrate current task p to target_cpu */ 7984 int migrate_task_to(struct task_struct *p, int target_cpu) 7985 { 7986 struct migration_arg arg = { p, target_cpu }; 7987 int curr_cpu = task_cpu(p); 7988 7989 if (curr_cpu == target_cpu) 7990 return 0; 7991 7992 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7993 return -EINVAL; 7994 7995 /* TODO: This is not properly updating schedstats */ 7996 7997 trace_sched_move_numa(p, curr_cpu, target_cpu); 7998 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7999 } 8000 8001 /* 8002 * Requeue a task on a given node and accurately track the number of NUMA 8003 * tasks on the runqueues 8004 */ 8005 void sched_setnuma(struct task_struct *p, int nid) 8006 { 8007 guard(task_rq_lock)(p); 8008 scoped_guard (sched_change, p, DEQUEUE_SAVE) 8009 p->numa_preferred_nid = nid; 8010 } 8011 #endif /* CONFIG_NUMA_BALANCING */ 8012 8013 #ifdef CONFIG_HOTPLUG_CPU 8014 /* 8015 * Invoked on the outgoing CPU in context of the CPU hotplug thread 8016 * after ensuring that there are no user space tasks left on the CPU. 8017 * 8018 * If there is a lazy mm in use on the hotplug thread, drop it and 8019 * switch to init_mm. 8020 * 8021 * The reference count on init_mm is dropped in finish_cpu(). 8022 */ 8023 static void sched_force_init_mm(void) 8024 { 8025 struct mm_struct *mm = current->active_mm; 8026 8027 if (mm != &init_mm) { 8028 mmgrab_lazy_tlb(&init_mm); 8029 local_irq_disable(); 8030 current->active_mm = &init_mm; 8031 switch_mm_irqs_off(mm, &init_mm, current); 8032 local_irq_enable(); 8033 finish_arch_post_lock_switch(); 8034 mmdrop_lazy_tlb(mm); 8035 } 8036 8037 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8038 } 8039 8040 static int __balance_push_cpu_stop(void *arg) 8041 { 8042 struct task_struct *p = arg; 8043 struct rq *rq = this_rq(); 8044 struct rq_flags rf; 8045 int cpu; 8046 8047 raw_spin_lock_irq(&p->pi_lock); 8048 rq_lock(rq, &rf); 8049 8050 update_rq_clock(rq); 8051 8052 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8053 cpu = select_fallback_rq(rq->cpu, p); 8054 rq = __migrate_task(rq, &rf, p, cpu); 8055 } 8056 8057 rq_unlock(rq, &rf); 8058 raw_spin_unlock_irq(&p->pi_lock); 8059 8060 put_task_struct(p); 8061 8062 return 0; 8063 } 8064 8065 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8066 8067 /* 8068 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8069 * 8070 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8071 * effective when the hotplug motion is down. 8072 */ 8073 static void balance_push(struct rq *rq) 8074 { 8075 struct task_struct *push_task = rq->curr; 8076 8077 lockdep_assert_rq_held(rq); 8078 8079 /* 8080 * Ensure the thing is persistent until balance_push_set(.on = false); 8081 */ 8082 rq->balance_callback = &balance_push_callback; 8083 8084 /* 8085 * Only active while going offline and when invoked on the outgoing 8086 * CPU. 8087 */ 8088 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8089 return; 8090 8091 /* 8092 * Both the cpu-hotplug and stop task are in this case and are 8093 * required to complete the hotplug process. 8094 */ 8095 if (kthread_is_per_cpu(push_task) || 8096 is_migration_disabled(push_task)) { 8097 8098 /* 8099 * If this is the idle task on the outgoing CPU try to wake 8100 * up the hotplug control thread which might wait for the 8101 * last task to vanish. The rcuwait_active() check is 8102 * accurate here because the waiter is pinned on this CPU 8103 * and can't obviously be running in parallel. 8104 * 8105 * On RT kernels this also has to check whether there are 8106 * pinned and scheduled out tasks on the runqueue. They 8107 * need to leave the migrate disabled section first. 8108 */ 8109 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8110 rcuwait_active(&rq->hotplug_wait)) { 8111 raw_spin_rq_unlock(rq); 8112 rcuwait_wake_up(&rq->hotplug_wait); 8113 raw_spin_rq_lock(rq); 8114 } 8115 return; 8116 } 8117 8118 get_task_struct(push_task); 8119 /* 8120 * Temporarily drop rq->lock such that we can wake-up the stop task. 8121 * Both preemption and IRQs are still disabled. 8122 */ 8123 preempt_disable(); 8124 raw_spin_rq_unlock(rq); 8125 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8126 this_cpu_ptr(&push_work)); 8127 preempt_enable(); 8128 /* 8129 * At this point need_resched() is true and we'll take the loop in 8130 * schedule(). The next pick is obviously going to be the stop task 8131 * which kthread_is_per_cpu() and will push this task away. 8132 */ 8133 raw_spin_rq_lock(rq); 8134 } 8135 8136 static void balance_push_set(int cpu, bool on) 8137 { 8138 struct rq *rq = cpu_rq(cpu); 8139 struct rq_flags rf; 8140 8141 rq_lock_irqsave(rq, &rf); 8142 if (on) { 8143 WARN_ON_ONCE(rq->balance_callback); 8144 rq->balance_callback = &balance_push_callback; 8145 } else if (rq->balance_callback == &balance_push_callback) { 8146 rq->balance_callback = NULL; 8147 } 8148 rq_unlock_irqrestore(rq, &rf); 8149 } 8150 8151 /* 8152 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8153 * inactive. All tasks which are not per CPU kernel threads are either 8154 * pushed off this CPU now via balance_push() or placed on a different CPU 8155 * during wakeup. Wait until the CPU is quiescent. 8156 */ 8157 static void balance_hotplug_wait(void) 8158 { 8159 struct rq *rq = this_rq(); 8160 8161 rcuwait_wait_event(&rq->hotplug_wait, 8162 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8163 TASK_UNINTERRUPTIBLE); 8164 } 8165 8166 #else /* !CONFIG_HOTPLUG_CPU: */ 8167 8168 static inline void balance_push(struct rq *rq) 8169 { 8170 } 8171 8172 static inline void balance_push_set(int cpu, bool on) 8173 { 8174 } 8175 8176 static inline void balance_hotplug_wait(void) 8177 { 8178 } 8179 8180 #endif /* !CONFIG_HOTPLUG_CPU */ 8181 8182 void set_rq_online(struct rq *rq) 8183 { 8184 if (!rq->online) { 8185 const struct sched_class *class; 8186 8187 cpumask_set_cpu(rq->cpu, rq->rd->online); 8188 rq->online = 1; 8189 8190 for_each_class(class) { 8191 if (class->rq_online) 8192 class->rq_online(rq); 8193 } 8194 } 8195 } 8196 8197 void set_rq_offline(struct rq *rq) 8198 { 8199 if (rq->online) { 8200 const struct sched_class *class; 8201 8202 update_rq_clock(rq); 8203 for_each_class(class) { 8204 if (class->rq_offline) 8205 class->rq_offline(rq); 8206 } 8207 8208 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8209 rq->online = 0; 8210 } 8211 } 8212 8213 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8214 { 8215 struct rq_flags rf; 8216 8217 rq_lock_irqsave(rq, &rf); 8218 if (rq->rd) { 8219 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8220 set_rq_online(rq); 8221 } 8222 rq_unlock_irqrestore(rq, &rf); 8223 } 8224 8225 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8226 { 8227 struct rq_flags rf; 8228 8229 rq_lock_irqsave(rq, &rf); 8230 if (rq->rd) { 8231 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8232 set_rq_offline(rq); 8233 } 8234 rq_unlock_irqrestore(rq, &rf); 8235 } 8236 8237 /* 8238 * used to mark begin/end of suspend/resume: 8239 */ 8240 static int num_cpus_frozen; 8241 8242 /* 8243 * Update cpusets according to cpu_active mask. If cpusets are 8244 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8245 * around partition_sched_domains(). 8246 * 8247 * If we come here as part of a suspend/resume, don't touch cpusets because we 8248 * want to restore it back to its original state upon resume anyway. 8249 */ 8250 static void cpuset_cpu_active(void) 8251 { 8252 if (cpuhp_tasks_frozen) { 8253 /* 8254 * num_cpus_frozen tracks how many CPUs are involved in suspend 8255 * resume sequence. As long as this is not the last online 8256 * operation in the resume sequence, just build a single sched 8257 * domain, ignoring cpusets. 8258 */ 8259 cpuset_reset_sched_domains(); 8260 if (--num_cpus_frozen) 8261 return; 8262 /* 8263 * This is the last CPU online operation. So fall through and 8264 * restore the original sched domains by considering the 8265 * cpuset configurations. 8266 */ 8267 cpuset_force_rebuild(); 8268 } 8269 cpuset_update_active_cpus(); 8270 } 8271 8272 static void cpuset_cpu_inactive(unsigned int cpu) 8273 { 8274 if (!cpuhp_tasks_frozen) { 8275 cpuset_update_active_cpus(); 8276 } else { 8277 num_cpus_frozen++; 8278 cpuset_reset_sched_domains(); 8279 } 8280 } 8281 8282 static inline void sched_smt_present_inc(int cpu) 8283 { 8284 #ifdef CONFIG_SCHED_SMT 8285 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8286 static_branch_inc_cpuslocked(&sched_smt_present); 8287 #endif 8288 } 8289 8290 static inline void sched_smt_present_dec(int cpu) 8291 { 8292 #ifdef CONFIG_SCHED_SMT 8293 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8294 static_branch_dec_cpuslocked(&sched_smt_present); 8295 #endif 8296 } 8297 8298 int sched_cpu_activate(unsigned int cpu) 8299 { 8300 struct rq *rq = cpu_rq(cpu); 8301 8302 /* 8303 * Clear the balance_push callback and prepare to schedule 8304 * regular tasks. 8305 */ 8306 balance_push_set(cpu, false); 8307 8308 /* 8309 * When going up, increment the number of cores with SMT present. 8310 */ 8311 sched_smt_present_inc(cpu); 8312 set_cpu_active(cpu, true); 8313 8314 if (sched_smp_initialized) { 8315 sched_update_numa(cpu, true); 8316 sched_domains_numa_masks_set(cpu); 8317 cpuset_cpu_active(); 8318 } 8319 8320 scx_rq_activate(rq); 8321 8322 /* 8323 * Put the rq online, if not already. This happens: 8324 * 8325 * 1) In the early boot process, because we build the real domains 8326 * after all CPUs have been brought up. 8327 * 8328 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8329 * domains. 8330 */ 8331 sched_set_rq_online(rq, cpu); 8332 8333 return 0; 8334 } 8335 8336 int sched_cpu_deactivate(unsigned int cpu) 8337 { 8338 struct rq *rq = cpu_rq(cpu); 8339 int ret; 8340 8341 ret = dl_bw_deactivate(cpu); 8342 8343 if (ret) 8344 return ret; 8345 8346 /* 8347 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8348 * load balancing when not active 8349 */ 8350 nohz_balance_exit_idle(rq); 8351 8352 set_cpu_active(cpu, false); 8353 8354 /* 8355 * From this point forward, this CPU will refuse to run any task that 8356 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8357 * push those tasks away until this gets cleared, see 8358 * sched_cpu_dying(). 8359 */ 8360 balance_push_set(cpu, true); 8361 8362 /* 8363 * We've cleared cpu_active_mask / set balance_push, wait for all 8364 * preempt-disabled and RCU users of this state to go away such that 8365 * all new such users will observe it. 8366 * 8367 * Specifically, we rely on ttwu to no longer target this CPU, see 8368 * ttwu_queue_cond() and is_cpu_allowed(). 8369 * 8370 * Do sync before park smpboot threads to take care the RCU boost case. 8371 */ 8372 synchronize_rcu(); 8373 8374 sched_set_rq_offline(rq, cpu); 8375 8376 scx_rq_deactivate(rq); 8377 8378 /* 8379 * When going down, decrement the number of cores with SMT present. 8380 */ 8381 sched_smt_present_dec(cpu); 8382 8383 #ifdef CONFIG_SCHED_SMT 8384 sched_core_cpu_deactivate(cpu); 8385 #endif 8386 8387 if (!sched_smp_initialized) 8388 return 0; 8389 8390 sched_update_numa(cpu, false); 8391 cpuset_cpu_inactive(cpu); 8392 sched_domains_numa_masks_clear(cpu); 8393 return 0; 8394 } 8395 8396 static void sched_rq_cpu_starting(unsigned int cpu) 8397 { 8398 struct rq *rq = cpu_rq(cpu); 8399 8400 rq->calc_load_update = calc_load_update; 8401 update_max_interval(); 8402 } 8403 8404 int sched_cpu_starting(unsigned int cpu) 8405 { 8406 sched_core_cpu_starting(cpu); 8407 sched_rq_cpu_starting(cpu); 8408 sched_tick_start(cpu); 8409 return 0; 8410 } 8411 8412 #ifdef CONFIG_HOTPLUG_CPU 8413 8414 /* 8415 * Invoked immediately before the stopper thread is invoked to bring the 8416 * CPU down completely. At this point all per CPU kthreads except the 8417 * hotplug thread (current) and the stopper thread (inactive) have been 8418 * either parked or have been unbound from the outgoing CPU. Ensure that 8419 * any of those which might be on the way out are gone. 8420 * 8421 * If after this point a bound task is being woken on this CPU then the 8422 * responsible hotplug callback has failed to do it's job. 8423 * sched_cpu_dying() will catch it with the appropriate fireworks. 8424 */ 8425 int sched_cpu_wait_empty(unsigned int cpu) 8426 { 8427 balance_hotplug_wait(); 8428 sched_force_init_mm(); 8429 return 0; 8430 } 8431 8432 /* 8433 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8434 * might have. Called from the CPU stopper task after ensuring that the 8435 * stopper is the last running task on the CPU, so nr_active count is 8436 * stable. We need to take the tear-down thread which is calling this into 8437 * account, so we hand in adjust = 1 to the load calculation. 8438 * 8439 * Also see the comment "Global load-average calculations". 8440 */ 8441 static void calc_load_migrate(struct rq *rq) 8442 { 8443 long delta = calc_load_fold_active(rq, 1); 8444 8445 if (delta) 8446 atomic_long_add(delta, &calc_load_tasks); 8447 } 8448 8449 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8450 { 8451 struct task_struct *g, *p; 8452 int cpu = cpu_of(rq); 8453 8454 lockdep_assert_rq_held(rq); 8455 8456 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8457 for_each_process_thread(g, p) { 8458 if (task_cpu(p) != cpu) 8459 continue; 8460 8461 if (!task_on_rq_queued(p)) 8462 continue; 8463 8464 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8465 } 8466 } 8467 8468 int sched_cpu_dying(unsigned int cpu) 8469 { 8470 struct rq *rq = cpu_rq(cpu); 8471 struct rq_flags rf; 8472 8473 /* Handle pending wakeups and then migrate everything off */ 8474 sched_tick_stop(cpu); 8475 8476 rq_lock_irqsave(rq, &rf); 8477 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8478 WARN(true, "Dying CPU not properly vacated!"); 8479 dump_rq_tasks(rq, KERN_WARNING); 8480 } 8481 rq_unlock_irqrestore(rq, &rf); 8482 8483 calc_load_migrate(rq); 8484 update_max_interval(); 8485 hrtick_clear(rq); 8486 sched_core_cpu_dying(cpu); 8487 return 0; 8488 } 8489 #endif /* CONFIG_HOTPLUG_CPU */ 8490 8491 void __init sched_init_smp(void) 8492 { 8493 sched_init_numa(NUMA_NO_NODE); 8494 8495 /* 8496 * There's no userspace yet to cause hotplug operations; hence all the 8497 * CPU masks are stable and all blatant races in the below code cannot 8498 * happen. 8499 */ 8500 sched_domains_mutex_lock(); 8501 sched_init_domains(cpu_active_mask); 8502 sched_domains_mutex_unlock(); 8503 8504 /* Move init over to a non-isolated CPU */ 8505 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8506 BUG(); 8507 current->flags &= ~PF_NO_SETAFFINITY; 8508 sched_init_granularity(); 8509 8510 init_sched_rt_class(); 8511 init_sched_dl_class(); 8512 8513 sched_init_dl_servers(); 8514 8515 sched_smp_initialized = true; 8516 } 8517 8518 static int __init migration_init(void) 8519 { 8520 sched_cpu_starting(smp_processor_id()); 8521 return 0; 8522 } 8523 early_initcall(migration_init); 8524 8525 int in_sched_functions(unsigned long addr) 8526 { 8527 return in_lock_functions(addr) || 8528 (addr >= (unsigned long)__sched_text_start 8529 && addr < (unsigned long)__sched_text_end); 8530 } 8531 8532 #ifdef CONFIG_CGROUP_SCHED 8533 /* 8534 * Default task group. 8535 * Every task in system belongs to this group at bootup. 8536 */ 8537 struct task_group root_task_group; 8538 LIST_HEAD(task_groups); 8539 8540 /* Cacheline aligned slab cache for task_group */ 8541 static struct kmem_cache *task_group_cache __ro_after_init; 8542 #endif 8543 8544 void __init sched_init(void) 8545 { 8546 unsigned long ptr = 0; 8547 int i; 8548 8549 /* Make sure the linker didn't screw up */ 8550 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8551 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8552 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8553 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8554 #ifdef CONFIG_SCHED_CLASS_EXT 8555 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8556 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8557 #endif 8558 8559 wait_bit_init(); 8560 8561 #ifdef CONFIG_FAIR_GROUP_SCHED 8562 ptr += 2 * nr_cpu_ids * sizeof(void **); 8563 #endif 8564 #ifdef CONFIG_RT_GROUP_SCHED 8565 ptr += 2 * nr_cpu_ids * sizeof(void **); 8566 #endif 8567 if (ptr) { 8568 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8569 8570 #ifdef CONFIG_FAIR_GROUP_SCHED 8571 root_task_group.se = (struct sched_entity **)ptr; 8572 ptr += nr_cpu_ids * sizeof(void **); 8573 8574 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8575 ptr += nr_cpu_ids * sizeof(void **); 8576 8577 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8578 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8579 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8580 #ifdef CONFIG_EXT_GROUP_SCHED 8581 scx_tg_init(&root_task_group); 8582 #endif /* CONFIG_EXT_GROUP_SCHED */ 8583 #ifdef CONFIG_RT_GROUP_SCHED 8584 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8585 ptr += nr_cpu_ids * sizeof(void **); 8586 8587 root_task_group.rt_rq = (struct rt_rq **)ptr; 8588 ptr += nr_cpu_ids * sizeof(void **); 8589 8590 #endif /* CONFIG_RT_GROUP_SCHED */ 8591 } 8592 8593 init_defrootdomain(); 8594 8595 #ifdef CONFIG_RT_GROUP_SCHED 8596 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8597 global_rt_period(), global_rt_runtime()); 8598 #endif /* CONFIG_RT_GROUP_SCHED */ 8599 8600 #ifdef CONFIG_CGROUP_SCHED 8601 task_group_cache = KMEM_CACHE(task_group, 0); 8602 8603 list_add(&root_task_group.list, &task_groups); 8604 INIT_LIST_HEAD(&root_task_group.children); 8605 INIT_LIST_HEAD(&root_task_group.siblings); 8606 autogroup_init(&init_task); 8607 #endif /* CONFIG_CGROUP_SCHED */ 8608 8609 for_each_possible_cpu(i) { 8610 struct rq *rq; 8611 8612 rq = cpu_rq(i); 8613 raw_spin_lock_init(&rq->__lock); 8614 rq->nr_running = 0; 8615 rq->calc_load_active = 0; 8616 rq->calc_load_update = jiffies + LOAD_FREQ; 8617 init_cfs_rq(&rq->cfs); 8618 init_rt_rq(&rq->rt); 8619 init_dl_rq(&rq->dl); 8620 #ifdef CONFIG_FAIR_GROUP_SCHED 8621 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8622 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8623 /* 8624 * How much CPU bandwidth does root_task_group get? 8625 * 8626 * In case of task-groups formed through the cgroup filesystem, it 8627 * gets 100% of the CPU resources in the system. This overall 8628 * system CPU resource is divided among the tasks of 8629 * root_task_group and its child task-groups in a fair manner, 8630 * based on each entity's (task or task-group's) weight 8631 * (se->load.weight). 8632 * 8633 * In other words, if root_task_group has 10 tasks of weight 8634 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8635 * then A0's share of the CPU resource is: 8636 * 8637 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8638 * 8639 * We achieve this by letting root_task_group's tasks sit 8640 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8641 */ 8642 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8643 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8644 8645 #ifdef CONFIG_RT_GROUP_SCHED 8646 /* 8647 * This is required for init cpu because rt.c:__enable_runtime() 8648 * starts working after scheduler_running, which is not the case 8649 * yet. 8650 */ 8651 rq->rt.rt_runtime = global_rt_runtime(); 8652 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8653 #endif 8654 rq->sd = NULL; 8655 rq->rd = NULL; 8656 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8657 rq->balance_callback = &balance_push_callback; 8658 rq->active_balance = 0; 8659 rq->next_balance = jiffies; 8660 rq->push_cpu = 0; 8661 rq->cpu = i; 8662 rq->online = 0; 8663 rq->idle_stamp = 0; 8664 rq->avg_idle = 2*sysctl_sched_migration_cost; 8665 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8666 8667 INIT_LIST_HEAD(&rq->cfs_tasks); 8668 8669 rq_attach_root(rq, &def_root_domain); 8670 #ifdef CONFIG_NO_HZ_COMMON 8671 rq->last_blocked_load_update_tick = jiffies; 8672 atomic_set(&rq->nohz_flags, 0); 8673 8674 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8675 #endif 8676 #ifdef CONFIG_HOTPLUG_CPU 8677 rcuwait_init(&rq->hotplug_wait); 8678 #endif 8679 hrtick_rq_init(rq); 8680 atomic_set(&rq->nr_iowait, 0); 8681 fair_server_init(rq); 8682 8683 #ifdef CONFIG_SCHED_CORE 8684 rq->core = rq; 8685 rq->core_pick = NULL; 8686 rq->core_dl_server = NULL; 8687 rq->core_enabled = 0; 8688 rq->core_tree = RB_ROOT; 8689 rq->core_forceidle_count = 0; 8690 rq->core_forceidle_occupation = 0; 8691 rq->core_forceidle_start = 0; 8692 8693 rq->core_cookie = 0UL; 8694 #endif 8695 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8696 } 8697 8698 set_load_weight(&init_task, false); 8699 init_task.se.slice = sysctl_sched_base_slice, 8700 8701 /* 8702 * The boot idle thread does lazy MMU switching as well: 8703 */ 8704 mmgrab_lazy_tlb(&init_mm); 8705 enter_lazy_tlb(&init_mm, current); 8706 8707 /* 8708 * The idle task doesn't need the kthread struct to function, but it 8709 * is dressed up as a per-CPU kthread and thus needs to play the part 8710 * if we want to avoid special-casing it in code that deals with per-CPU 8711 * kthreads. 8712 */ 8713 WARN_ON(!set_kthread_struct(current)); 8714 8715 /* 8716 * Make us the idle thread. Technically, schedule() should not be 8717 * called from this thread, however somewhere below it might be, 8718 * but because we are the idle thread, we just pick up running again 8719 * when this runqueue becomes "idle". 8720 */ 8721 __sched_fork(0, current); 8722 init_idle(current, smp_processor_id()); 8723 8724 calc_load_update = jiffies + LOAD_FREQ; 8725 8726 idle_thread_set_boot_cpu(); 8727 8728 balance_push_set(smp_processor_id(), false); 8729 init_sched_fair_class(); 8730 init_sched_ext_class(); 8731 8732 psi_init(); 8733 8734 init_uclamp(); 8735 8736 preempt_dynamic_init(); 8737 8738 scheduler_running = 1; 8739 } 8740 8741 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8742 8743 void __might_sleep(const char *file, int line) 8744 { 8745 unsigned int state = get_current_state(); 8746 /* 8747 * Blocking primitives will set (and therefore destroy) current->state, 8748 * since we will exit with TASK_RUNNING make sure we enter with it, 8749 * otherwise we will destroy state. 8750 */ 8751 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8752 "do not call blocking ops when !TASK_RUNNING; " 8753 "state=%x set at [<%p>] %pS\n", state, 8754 (void *)current->task_state_change, 8755 (void *)current->task_state_change); 8756 8757 __might_resched(file, line, 0); 8758 } 8759 EXPORT_SYMBOL(__might_sleep); 8760 8761 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8762 { 8763 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8764 return; 8765 8766 if (preempt_count() == preempt_offset) 8767 return; 8768 8769 pr_err("Preemption disabled at:"); 8770 print_ip_sym(KERN_ERR, ip); 8771 } 8772 8773 static inline bool resched_offsets_ok(unsigned int offsets) 8774 { 8775 unsigned int nested = preempt_count(); 8776 8777 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8778 8779 return nested == offsets; 8780 } 8781 8782 void __might_resched(const char *file, int line, unsigned int offsets) 8783 { 8784 /* Ratelimiting timestamp: */ 8785 static unsigned long prev_jiffy; 8786 8787 unsigned long preempt_disable_ip; 8788 8789 /* WARN_ON_ONCE() by default, no rate limit required: */ 8790 rcu_sleep_check(); 8791 8792 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8793 !is_idle_task(current) && !current->non_block_count) || 8794 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8795 oops_in_progress) 8796 return; 8797 8798 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8799 return; 8800 prev_jiffy = jiffies; 8801 8802 /* Save this before calling printk(), since that will clobber it: */ 8803 preempt_disable_ip = get_preempt_disable_ip(current); 8804 8805 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8806 file, line); 8807 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8808 in_atomic(), irqs_disabled(), current->non_block_count, 8809 current->pid, current->comm); 8810 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8811 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8812 8813 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8814 pr_err("RCU nest depth: %d, expected: %u\n", 8815 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8816 } 8817 8818 if (task_stack_end_corrupted(current)) 8819 pr_emerg("Thread overran stack, or stack corrupted\n"); 8820 8821 debug_show_held_locks(current); 8822 if (irqs_disabled()) 8823 print_irqtrace_events(current); 8824 8825 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8826 preempt_disable_ip); 8827 8828 dump_stack(); 8829 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8830 } 8831 EXPORT_SYMBOL(__might_resched); 8832 8833 void __cant_sleep(const char *file, int line, int preempt_offset) 8834 { 8835 static unsigned long prev_jiffy; 8836 8837 if (irqs_disabled()) 8838 return; 8839 8840 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8841 return; 8842 8843 if (preempt_count() > preempt_offset) 8844 return; 8845 8846 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8847 return; 8848 prev_jiffy = jiffies; 8849 8850 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8851 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8852 in_atomic(), irqs_disabled(), 8853 current->pid, current->comm); 8854 8855 debug_show_held_locks(current); 8856 dump_stack(); 8857 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8858 } 8859 EXPORT_SYMBOL_GPL(__cant_sleep); 8860 8861 # ifdef CONFIG_SMP 8862 void __cant_migrate(const char *file, int line) 8863 { 8864 static unsigned long prev_jiffy; 8865 8866 if (irqs_disabled()) 8867 return; 8868 8869 if (is_migration_disabled(current)) 8870 return; 8871 8872 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8873 return; 8874 8875 if (preempt_count() > 0) 8876 return; 8877 8878 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8879 return; 8880 prev_jiffy = jiffies; 8881 8882 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8883 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8884 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8885 current->pid, current->comm); 8886 8887 debug_show_held_locks(current); 8888 dump_stack(); 8889 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8890 } 8891 EXPORT_SYMBOL_GPL(__cant_migrate); 8892 # endif /* CONFIG_SMP */ 8893 #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */ 8894 8895 #ifdef CONFIG_MAGIC_SYSRQ 8896 void normalize_rt_tasks(void) 8897 { 8898 struct task_struct *g, *p; 8899 struct sched_attr attr = { 8900 .sched_policy = SCHED_NORMAL, 8901 }; 8902 8903 read_lock(&tasklist_lock); 8904 for_each_process_thread(g, p) { 8905 /* 8906 * Only normalize user tasks: 8907 */ 8908 if (p->flags & PF_KTHREAD) 8909 continue; 8910 8911 p->se.exec_start = 0; 8912 schedstat_set(p->stats.wait_start, 0); 8913 schedstat_set(p->stats.sleep_start, 0); 8914 schedstat_set(p->stats.block_start, 0); 8915 8916 if (!rt_or_dl_task(p)) { 8917 /* 8918 * Renice negative nice level userspace 8919 * tasks back to 0: 8920 */ 8921 if (task_nice(p) < 0) 8922 set_user_nice(p, 0); 8923 continue; 8924 } 8925 8926 __sched_setscheduler(p, &attr, false, false); 8927 } 8928 read_unlock(&tasklist_lock); 8929 } 8930 8931 #endif /* CONFIG_MAGIC_SYSRQ */ 8932 8933 #ifdef CONFIG_KGDB_KDB 8934 /* 8935 * These functions are only useful for KDB. 8936 * 8937 * They can only be called when the whole system has been 8938 * stopped - every CPU needs to be quiescent, and no scheduling 8939 * activity can take place. Using them for anything else would 8940 * be a serious bug, and as a result, they aren't even visible 8941 * under any other configuration. 8942 */ 8943 8944 /** 8945 * curr_task - return the current task for a given CPU. 8946 * @cpu: the processor in question. 8947 * 8948 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8949 * 8950 * Return: The current task for @cpu. 8951 */ 8952 struct task_struct *curr_task(int cpu) 8953 { 8954 return cpu_curr(cpu); 8955 } 8956 8957 #endif /* CONFIG_KGDB_KDB */ 8958 8959 #ifdef CONFIG_CGROUP_SCHED 8960 /* task_group_lock serializes the addition/removal of task groups */ 8961 static DEFINE_SPINLOCK(task_group_lock); 8962 8963 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8964 struct task_group *parent) 8965 { 8966 #ifdef CONFIG_UCLAMP_TASK_GROUP 8967 enum uclamp_id clamp_id; 8968 8969 for_each_clamp_id(clamp_id) { 8970 uclamp_se_set(&tg->uclamp_req[clamp_id], 8971 uclamp_none(clamp_id), false); 8972 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8973 } 8974 #endif 8975 } 8976 8977 static void sched_free_group(struct task_group *tg) 8978 { 8979 free_fair_sched_group(tg); 8980 free_rt_sched_group(tg); 8981 autogroup_free(tg); 8982 kmem_cache_free(task_group_cache, tg); 8983 } 8984 8985 static void sched_free_group_rcu(struct rcu_head *rcu) 8986 { 8987 sched_free_group(container_of(rcu, struct task_group, rcu)); 8988 } 8989 8990 static void sched_unregister_group(struct task_group *tg) 8991 { 8992 unregister_fair_sched_group(tg); 8993 unregister_rt_sched_group(tg); 8994 /* 8995 * We have to wait for yet another RCU grace period to expire, as 8996 * print_cfs_stats() might run concurrently. 8997 */ 8998 call_rcu(&tg->rcu, sched_free_group_rcu); 8999 } 9000 9001 /* allocate runqueue etc for a new task group */ 9002 struct task_group *sched_create_group(struct task_group *parent) 9003 { 9004 struct task_group *tg; 9005 9006 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9007 if (!tg) 9008 return ERR_PTR(-ENOMEM); 9009 9010 if (!alloc_fair_sched_group(tg, parent)) 9011 goto err; 9012 9013 if (!alloc_rt_sched_group(tg, parent)) 9014 goto err; 9015 9016 scx_tg_init(tg); 9017 alloc_uclamp_sched_group(tg, parent); 9018 9019 return tg; 9020 9021 err: 9022 sched_free_group(tg); 9023 return ERR_PTR(-ENOMEM); 9024 } 9025 9026 void sched_online_group(struct task_group *tg, struct task_group *parent) 9027 { 9028 unsigned long flags; 9029 9030 spin_lock_irqsave(&task_group_lock, flags); 9031 list_add_tail_rcu(&tg->list, &task_groups); 9032 9033 /* Root should already exist: */ 9034 WARN_ON(!parent); 9035 9036 tg->parent = parent; 9037 INIT_LIST_HEAD(&tg->children); 9038 list_add_rcu(&tg->siblings, &parent->children); 9039 spin_unlock_irqrestore(&task_group_lock, flags); 9040 9041 online_fair_sched_group(tg); 9042 } 9043 9044 /* RCU callback to free various structures associated with a task group */ 9045 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9046 { 9047 /* Now it should be safe to free those cfs_rqs: */ 9048 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9049 } 9050 9051 void sched_destroy_group(struct task_group *tg) 9052 { 9053 /* Wait for possible concurrent references to cfs_rqs complete: */ 9054 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9055 } 9056 9057 void sched_release_group(struct task_group *tg) 9058 { 9059 unsigned long flags; 9060 9061 /* 9062 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9063 * sched_cfs_period_timer()). 9064 * 9065 * For this to be effective, we have to wait for all pending users of 9066 * this task group to leave their RCU critical section to ensure no new 9067 * user will see our dying task group any more. Specifically ensure 9068 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9069 * 9070 * We therefore defer calling unregister_fair_sched_group() to 9071 * sched_unregister_group() which is guarantied to get called only after the 9072 * current RCU grace period has expired. 9073 */ 9074 spin_lock_irqsave(&task_group_lock, flags); 9075 list_del_rcu(&tg->list); 9076 list_del_rcu(&tg->siblings); 9077 spin_unlock_irqrestore(&task_group_lock, flags); 9078 } 9079 9080 static void sched_change_group(struct task_struct *tsk) 9081 { 9082 struct task_group *tg; 9083 9084 /* 9085 * All callers are synchronized by task_rq_lock(); we do not use RCU 9086 * which is pointless here. Thus, we pass "true" to task_css_check() 9087 * to prevent lockdep warnings. 9088 */ 9089 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9090 struct task_group, css); 9091 tg = autogroup_task_group(tsk, tg); 9092 tsk->sched_task_group = tg; 9093 9094 #ifdef CONFIG_FAIR_GROUP_SCHED 9095 if (tsk->sched_class->task_change_group) 9096 tsk->sched_class->task_change_group(tsk); 9097 else 9098 #endif 9099 set_task_rq(tsk, task_cpu(tsk)); 9100 } 9101 9102 /* 9103 * Change task's runqueue when it moves between groups. 9104 * 9105 * The caller of this function should have put the task in its new group by 9106 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9107 * its new group. 9108 */ 9109 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 9110 { 9111 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 9112 bool resched = false; 9113 struct rq *rq; 9114 9115 CLASS(task_rq_lock, rq_guard)(tsk); 9116 rq = rq_guard.rq; 9117 9118 scoped_guard (sched_change, tsk, queue_flags) { 9119 sched_change_group(tsk); 9120 if (!for_autogroup) 9121 scx_cgroup_move_task(tsk); 9122 if (scope->running) 9123 resched = true; 9124 } 9125 9126 if (resched) 9127 resched_curr(rq); 9128 } 9129 9130 static struct cgroup_subsys_state * 9131 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9132 { 9133 struct task_group *parent = css_tg(parent_css); 9134 struct task_group *tg; 9135 9136 if (!parent) { 9137 /* This is early initialization for the top cgroup */ 9138 return &root_task_group.css; 9139 } 9140 9141 tg = sched_create_group(parent); 9142 if (IS_ERR(tg)) 9143 return ERR_PTR(-ENOMEM); 9144 9145 return &tg->css; 9146 } 9147 9148 /* Expose task group only after completing cgroup initialization */ 9149 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9150 { 9151 struct task_group *tg = css_tg(css); 9152 struct task_group *parent = css_tg(css->parent); 9153 int ret; 9154 9155 ret = scx_tg_online(tg); 9156 if (ret) 9157 return ret; 9158 9159 if (parent) 9160 sched_online_group(tg, parent); 9161 9162 #ifdef CONFIG_UCLAMP_TASK_GROUP 9163 /* Propagate the effective uclamp value for the new group */ 9164 guard(mutex)(&uclamp_mutex); 9165 guard(rcu)(); 9166 cpu_util_update_eff(css); 9167 #endif 9168 9169 return 0; 9170 } 9171 9172 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9173 { 9174 struct task_group *tg = css_tg(css); 9175 9176 scx_tg_offline(tg); 9177 } 9178 9179 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9180 { 9181 struct task_group *tg = css_tg(css); 9182 9183 sched_release_group(tg); 9184 } 9185 9186 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9187 { 9188 struct task_group *tg = css_tg(css); 9189 9190 /* 9191 * Relies on the RCU grace period between css_released() and this. 9192 */ 9193 sched_unregister_group(tg); 9194 } 9195 9196 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9197 { 9198 #ifdef CONFIG_RT_GROUP_SCHED 9199 struct task_struct *task; 9200 struct cgroup_subsys_state *css; 9201 9202 if (!rt_group_sched_enabled()) 9203 goto scx_check; 9204 9205 cgroup_taskset_for_each(task, css, tset) { 9206 if (!sched_rt_can_attach(css_tg(css), task)) 9207 return -EINVAL; 9208 } 9209 scx_check: 9210 #endif /* CONFIG_RT_GROUP_SCHED */ 9211 return scx_cgroup_can_attach(tset); 9212 } 9213 9214 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9215 { 9216 struct task_struct *task; 9217 struct cgroup_subsys_state *css; 9218 9219 cgroup_taskset_for_each(task, css, tset) 9220 sched_move_task(task, false); 9221 } 9222 9223 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9224 { 9225 scx_cgroup_cancel_attach(tset); 9226 } 9227 9228 #ifdef CONFIG_UCLAMP_TASK_GROUP 9229 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9230 { 9231 struct cgroup_subsys_state *top_css = css; 9232 struct uclamp_se *uc_parent = NULL; 9233 struct uclamp_se *uc_se = NULL; 9234 unsigned int eff[UCLAMP_CNT]; 9235 enum uclamp_id clamp_id; 9236 unsigned int clamps; 9237 9238 lockdep_assert_held(&uclamp_mutex); 9239 WARN_ON_ONCE(!rcu_read_lock_held()); 9240 9241 css_for_each_descendant_pre(css, top_css) { 9242 uc_parent = css_tg(css)->parent 9243 ? css_tg(css)->parent->uclamp : NULL; 9244 9245 for_each_clamp_id(clamp_id) { 9246 /* Assume effective clamps matches requested clamps */ 9247 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9248 /* Cap effective clamps with parent's effective clamps */ 9249 if (uc_parent && 9250 eff[clamp_id] > uc_parent[clamp_id].value) { 9251 eff[clamp_id] = uc_parent[clamp_id].value; 9252 } 9253 } 9254 /* Ensure protection is always capped by limit */ 9255 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9256 9257 /* Propagate most restrictive effective clamps */ 9258 clamps = 0x0; 9259 uc_se = css_tg(css)->uclamp; 9260 for_each_clamp_id(clamp_id) { 9261 if (eff[clamp_id] == uc_se[clamp_id].value) 9262 continue; 9263 uc_se[clamp_id].value = eff[clamp_id]; 9264 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9265 clamps |= (0x1 << clamp_id); 9266 } 9267 if (!clamps) { 9268 css = css_rightmost_descendant(css); 9269 continue; 9270 } 9271 9272 /* Immediately update descendants RUNNABLE tasks */ 9273 uclamp_update_active_tasks(css); 9274 } 9275 } 9276 9277 /* 9278 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9279 * C expression. Since there is no way to convert a macro argument (N) into a 9280 * character constant, use two levels of macros. 9281 */ 9282 #define _POW10(exp) ((unsigned int)1e##exp) 9283 #define POW10(exp) _POW10(exp) 9284 9285 struct uclamp_request { 9286 #define UCLAMP_PERCENT_SHIFT 2 9287 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9288 s64 percent; 9289 u64 util; 9290 int ret; 9291 }; 9292 9293 static inline struct uclamp_request 9294 capacity_from_percent(char *buf) 9295 { 9296 struct uclamp_request req = { 9297 .percent = UCLAMP_PERCENT_SCALE, 9298 .util = SCHED_CAPACITY_SCALE, 9299 .ret = 0, 9300 }; 9301 9302 buf = strim(buf); 9303 if (strcmp(buf, "max")) { 9304 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9305 &req.percent); 9306 if (req.ret) 9307 return req; 9308 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9309 req.ret = -ERANGE; 9310 return req; 9311 } 9312 9313 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9314 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9315 } 9316 9317 return req; 9318 } 9319 9320 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9321 size_t nbytes, loff_t off, 9322 enum uclamp_id clamp_id) 9323 { 9324 struct uclamp_request req; 9325 struct task_group *tg; 9326 9327 req = capacity_from_percent(buf); 9328 if (req.ret) 9329 return req.ret; 9330 9331 sched_uclamp_enable(); 9332 9333 guard(mutex)(&uclamp_mutex); 9334 guard(rcu)(); 9335 9336 tg = css_tg(of_css(of)); 9337 if (tg->uclamp_req[clamp_id].value != req.util) 9338 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9339 9340 /* 9341 * Because of not recoverable conversion rounding we keep track of the 9342 * exact requested value 9343 */ 9344 tg->uclamp_pct[clamp_id] = req.percent; 9345 9346 /* Update effective clamps to track the most restrictive value */ 9347 cpu_util_update_eff(of_css(of)); 9348 9349 return nbytes; 9350 } 9351 9352 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9353 char *buf, size_t nbytes, 9354 loff_t off) 9355 { 9356 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9357 } 9358 9359 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9360 char *buf, size_t nbytes, 9361 loff_t off) 9362 { 9363 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9364 } 9365 9366 static inline void cpu_uclamp_print(struct seq_file *sf, 9367 enum uclamp_id clamp_id) 9368 { 9369 struct task_group *tg; 9370 u64 util_clamp; 9371 u64 percent; 9372 u32 rem; 9373 9374 scoped_guard (rcu) { 9375 tg = css_tg(seq_css(sf)); 9376 util_clamp = tg->uclamp_req[clamp_id].value; 9377 } 9378 9379 if (util_clamp == SCHED_CAPACITY_SCALE) { 9380 seq_puts(sf, "max\n"); 9381 return; 9382 } 9383 9384 percent = tg->uclamp_pct[clamp_id]; 9385 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9386 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9387 } 9388 9389 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9390 { 9391 cpu_uclamp_print(sf, UCLAMP_MIN); 9392 return 0; 9393 } 9394 9395 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9396 { 9397 cpu_uclamp_print(sf, UCLAMP_MAX); 9398 return 0; 9399 } 9400 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9401 9402 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9403 static unsigned long tg_weight(struct task_group *tg) 9404 { 9405 #ifdef CONFIG_FAIR_GROUP_SCHED 9406 return scale_load_down(tg->shares); 9407 #else 9408 return sched_weight_from_cgroup(tg->scx.weight); 9409 #endif 9410 } 9411 9412 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9413 struct cftype *cftype, u64 shareval) 9414 { 9415 int ret; 9416 9417 if (shareval > scale_load_down(ULONG_MAX)) 9418 shareval = MAX_SHARES; 9419 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9420 if (!ret) 9421 scx_group_set_weight(css_tg(css), 9422 sched_weight_to_cgroup(shareval)); 9423 return ret; 9424 } 9425 9426 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9427 struct cftype *cft) 9428 { 9429 return tg_weight(css_tg(css)); 9430 } 9431 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9432 9433 #ifdef CONFIG_CFS_BANDWIDTH 9434 static DEFINE_MUTEX(cfs_constraints_mutex); 9435 9436 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9437 9438 static int tg_set_cfs_bandwidth(struct task_group *tg, 9439 u64 period_us, u64 quota_us, u64 burst_us) 9440 { 9441 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9442 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9443 u64 period, quota, burst; 9444 9445 period = (u64)period_us * NSEC_PER_USEC; 9446 9447 if (quota_us == RUNTIME_INF) 9448 quota = RUNTIME_INF; 9449 else 9450 quota = (u64)quota_us * NSEC_PER_USEC; 9451 9452 burst = (u64)burst_us * NSEC_PER_USEC; 9453 9454 /* 9455 * Prevent race between setting of cfs_rq->runtime_enabled and 9456 * unthrottle_offline_cfs_rqs(). 9457 */ 9458 guard(cpus_read_lock)(); 9459 guard(mutex)(&cfs_constraints_mutex); 9460 9461 ret = __cfs_schedulable(tg, period, quota); 9462 if (ret) 9463 return ret; 9464 9465 runtime_enabled = quota != RUNTIME_INF; 9466 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9467 /* 9468 * If we need to toggle cfs_bandwidth_used, off->on must occur 9469 * before making related changes, and on->off must occur afterwards 9470 */ 9471 if (runtime_enabled && !runtime_was_enabled) 9472 cfs_bandwidth_usage_inc(); 9473 9474 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9475 cfs_b->period = ns_to_ktime(period); 9476 cfs_b->quota = quota; 9477 cfs_b->burst = burst; 9478 9479 __refill_cfs_bandwidth_runtime(cfs_b); 9480 9481 /* 9482 * Restart the period timer (if active) to handle new 9483 * period expiry: 9484 */ 9485 if (runtime_enabled) 9486 start_cfs_bandwidth(cfs_b); 9487 } 9488 9489 for_each_online_cpu(i) { 9490 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9491 struct rq *rq = cfs_rq->rq; 9492 9493 guard(rq_lock_irq)(rq); 9494 cfs_rq->runtime_enabled = runtime_enabled; 9495 cfs_rq->runtime_remaining = 0; 9496 9497 if (cfs_rq->throttled) 9498 unthrottle_cfs_rq(cfs_rq); 9499 } 9500 9501 if (runtime_was_enabled && !runtime_enabled) 9502 cfs_bandwidth_usage_dec(); 9503 9504 return 0; 9505 } 9506 9507 static u64 tg_get_cfs_period(struct task_group *tg) 9508 { 9509 u64 cfs_period_us; 9510 9511 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9512 do_div(cfs_period_us, NSEC_PER_USEC); 9513 9514 return cfs_period_us; 9515 } 9516 9517 static u64 tg_get_cfs_quota(struct task_group *tg) 9518 { 9519 u64 quota_us; 9520 9521 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9522 return RUNTIME_INF; 9523 9524 quota_us = tg->cfs_bandwidth.quota; 9525 do_div(quota_us, NSEC_PER_USEC); 9526 9527 return quota_us; 9528 } 9529 9530 static u64 tg_get_cfs_burst(struct task_group *tg) 9531 { 9532 u64 burst_us; 9533 9534 burst_us = tg->cfs_bandwidth.burst; 9535 do_div(burst_us, NSEC_PER_USEC); 9536 9537 return burst_us; 9538 } 9539 9540 struct cfs_schedulable_data { 9541 struct task_group *tg; 9542 u64 period, quota; 9543 }; 9544 9545 /* 9546 * normalize group quota/period to be quota/max_period 9547 * note: units are usecs 9548 */ 9549 static u64 normalize_cfs_quota(struct task_group *tg, 9550 struct cfs_schedulable_data *d) 9551 { 9552 u64 quota, period; 9553 9554 if (tg == d->tg) { 9555 period = d->period; 9556 quota = d->quota; 9557 } else { 9558 period = tg_get_cfs_period(tg); 9559 quota = tg_get_cfs_quota(tg); 9560 } 9561 9562 /* note: these should typically be equivalent */ 9563 if (quota == RUNTIME_INF || quota == -1) 9564 return RUNTIME_INF; 9565 9566 return to_ratio(period, quota); 9567 } 9568 9569 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9570 { 9571 struct cfs_schedulable_data *d = data; 9572 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9573 s64 quota = 0, parent_quota = -1; 9574 9575 if (!tg->parent) { 9576 quota = RUNTIME_INF; 9577 } else { 9578 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9579 9580 quota = normalize_cfs_quota(tg, d); 9581 parent_quota = parent_b->hierarchical_quota; 9582 9583 /* 9584 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9585 * always take the non-RUNTIME_INF min. On cgroup1, only 9586 * inherit when no limit is set. In both cases this is used 9587 * by the scheduler to determine if a given CFS task has a 9588 * bandwidth constraint at some higher level. 9589 */ 9590 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9591 if (quota == RUNTIME_INF) 9592 quota = parent_quota; 9593 else if (parent_quota != RUNTIME_INF) 9594 quota = min(quota, parent_quota); 9595 } else { 9596 if (quota == RUNTIME_INF) 9597 quota = parent_quota; 9598 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9599 return -EINVAL; 9600 } 9601 } 9602 cfs_b->hierarchical_quota = quota; 9603 9604 return 0; 9605 } 9606 9607 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9608 { 9609 struct cfs_schedulable_data data = { 9610 .tg = tg, 9611 .period = period, 9612 .quota = quota, 9613 }; 9614 9615 if (quota != RUNTIME_INF) { 9616 do_div(data.period, NSEC_PER_USEC); 9617 do_div(data.quota, NSEC_PER_USEC); 9618 } 9619 9620 guard(rcu)(); 9621 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9622 } 9623 9624 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9625 { 9626 struct task_group *tg = css_tg(seq_css(sf)); 9627 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9628 9629 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9630 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9631 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9632 9633 if (schedstat_enabled() && tg != &root_task_group) { 9634 struct sched_statistics *stats; 9635 u64 ws = 0; 9636 int i; 9637 9638 for_each_possible_cpu(i) { 9639 stats = __schedstats_from_se(tg->se[i]); 9640 ws += schedstat_val(stats->wait_sum); 9641 } 9642 9643 seq_printf(sf, "wait_sum %llu\n", ws); 9644 } 9645 9646 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9647 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9648 9649 return 0; 9650 } 9651 9652 static u64 throttled_time_self(struct task_group *tg) 9653 { 9654 int i; 9655 u64 total = 0; 9656 9657 for_each_possible_cpu(i) { 9658 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9659 } 9660 9661 return total; 9662 } 9663 9664 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9665 { 9666 struct task_group *tg = css_tg(seq_css(sf)); 9667 9668 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9669 9670 return 0; 9671 } 9672 #endif /* CONFIG_CFS_BANDWIDTH */ 9673 9674 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 9675 const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */ 9676 static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */ 9677 /* More than 203 days if BW_SHIFT equals 20. */ 9678 static const u64 max_bw_runtime_us = MAX_BW; 9679 9680 static void tg_bandwidth(struct task_group *tg, 9681 u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p) 9682 { 9683 #ifdef CONFIG_CFS_BANDWIDTH 9684 if (period_us_p) 9685 *period_us_p = tg_get_cfs_period(tg); 9686 if (quota_us_p) 9687 *quota_us_p = tg_get_cfs_quota(tg); 9688 if (burst_us_p) 9689 *burst_us_p = tg_get_cfs_burst(tg); 9690 #else /* !CONFIG_CFS_BANDWIDTH */ 9691 if (period_us_p) 9692 *period_us_p = tg->scx.bw_period_us; 9693 if (quota_us_p) 9694 *quota_us_p = tg->scx.bw_quota_us; 9695 if (burst_us_p) 9696 *burst_us_p = tg->scx.bw_burst_us; 9697 #endif /* CONFIG_CFS_BANDWIDTH */ 9698 } 9699 9700 static u64 cpu_period_read_u64(struct cgroup_subsys_state *css, 9701 struct cftype *cft) 9702 { 9703 u64 period_us; 9704 9705 tg_bandwidth(css_tg(css), &period_us, NULL, NULL); 9706 return period_us; 9707 } 9708 9709 static int tg_set_bandwidth(struct task_group *tg, 9710 u64 period_us, u64 quota_us, u64 burst_us) 9711 { 9712 const u64 max_usec = U64_MAX / NSEC_PER_USEC; 9713 int ret = 0; 9714 9715 if (tg == &root_task_group) 9716 return -EINVAL; 9717 9718 /* Values should survive translation to nsec */ 9719 if (period_us > max_usec || 9720 (quota_us != RUNTIME_INF && quota_us > max_usec) || 9721 burst_us > max_usec) 9722 return -EINVAL; 9723 9724 /* 9725 * Ensure we have some amount of bandwidth every period. This is to 9726 * prevent reaching a state of large arrears when throttled via 9727 * entity_tick() resulting in prolonged exit starvation. 9728 */ 9729 if (quota_us < min_bw_quota_period_us || 9730 period_us < min_bw_quota_period_us) 9731 return -EINVAL; 9732 9733 /* 9734 * Likewise, bound things on the other side by preventing insane quota 9735 * periods. This also allows us to normalize in computing quota 9736 * feasibility. 9737 */ 9738 if (period_us > max_bw_quota_period_us) 9739 return -EINVAL; 9740 9741 /* 9742 * Bound quota to defend quota against overflow during bandwidth shift. 9743 */ 9744 if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us) 9745 return -EINVAL; 9746 9747 if (quota_us != RUNTIME_INF && (burst_us > quota_us || 9748 burst_us + quota_us > max_bw_runtime_us)) 9749 return -EINVAL; 9750 9751 #ifdef CONFIG_CFS_BANDWIDTH 9752 ret = tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us); 9753 #endif /* CONFIG_CFS_BANDWIDTH */ 9754 if (!ret) 9755 scx_group_set_bandwidth(tg, period_us, quota_us, burst_us); 9756 return ret; 9757 } 9758 9759 static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css, 9760 struct cftype *cft) 9761 { 9762 u64 quota_us; 9763 9764 tg_bandwidth(css_tg(css), NULL, "a_us, NULL); 9765 return quota_us; /* (s64)RUNTIME_INF becomes -1 */ 9766 } 9767 9768 static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css, 9769 struct cftype *cft) 9770 { 9771 u64 burst_us; 9772 9773 tg_bandwidth(css_tg(css), NULL, NULL, &burst_us); 9774 return burst_us; 9775 } 9776 9777 static int cpu_period_write_u64(struct cgroup_subsys_state *css, 9778 struct cftype *cftype, u64 period_us) 9779 { 9780 struct task_group *tg = css_tg(css); 9781 u64 quota_us, burst_us; 9782 9783 tg_bandwidth(tg, NULL, "a_us, &burst_us); 9784 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9785 } 9786 9787 static int cpu_quota_write_s64(struct cgroup_subsys_state *css, 9788 struct cftype *cftype, s64 quota_us) 9789 { 9790 struct task_group *tg = css_tg(css); 9791 u64 period_us, burst_us; 9792 9793 if (quota_us < 0) 9794 quota_us = RUNTIME_INF; 9795 9796 tg_bandwidth(tg, &period_us, NULL, &burst_us); 9797 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9798 } 9799 9800 static int cpu_burst_write_u64(struct cgroup_subsys_state *css, 9801 struct cftype *cftype, u64 burst_us) 9802 { 9803 struct task_group *tg = css_tg(css); 9804 u64 period_us, quota_us; 9805 9806 tg_bandwidth(tg, &period_us, "a_us, NULL); 9807 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9808 } 9809 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ 9810 9811 #ifdef CONFIG_RT_GROUP_SCHED 9812 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9813 struct cftype *cft, s64 val) 9814 { 9815 return sched_group_set_rt_runtime(css_tg(css), val); 9816 } 9817 9818 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9819 struct cftype *cft) 9820 { 9821 return sched_group_rt_runtime(css_tg(css)); 9822 } 9823 9824 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9825 struct cftype *cftype, u64 rt_period_us) 9826 { 9827 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9828 } 9829 9830 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9831 struct cftype *cft) 9832 { 9833 return sched_group_rt_period(css_tg(css)); 9834 } 9835 #endif /* CONFIG_RT_GROUP_SCHED */ 9836 9837 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9838 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9839 struct cftype *cft) 9840 { 9841 return css_tg(css)->idle; 9842 } 9843 9844 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9845 struct cftype *cft, s64 idle) 9846 { 9847 int ret; 9848 9849 ret = sched_group_set_idle(css_tg(css), idle); 9850 if (!ret) 9851 scx_group_set_idle(css_tg(css), idle); 9852 return ret; 9853 } 9854 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9855 9856 static struct cftype cpu_legacy_files[] = { 9857 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9858 { 9859 .name = "shares", 9860 .read_u64 = cpu_shares_read_u64, 9861 .write_u64 = cpu_shares_write_u64, 9862 }, 9863 { 9864 .name = "idle", 9865 .read_s64 = cpu_idle_read_s64, 9866 .write_s64 = cpu_idle_write_s64, 9867 }, 9868 #endif 9869 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 9870 { 9871 .name = "cfs_period_us", 9872 .read_u64 = cpu_period_read_u64, 9873 .write_u64 = cpu_period_write_u64, 9874 }, 9875 { 9876 .name = "cfs_quota_us", 9877 .read_s64 = cpu_quota_read_s64, 9878 .write_s64 = cpu_quota_write_s64, 9879 }, 9880 { 9881 .name = "cfs_burst_us", 9882 .read_u64 = cpu_burst_read_u64, 9883 .write_u64 = cpu_burst_write_u64, 9884 }, 9885 #endif 9886 #ifdef CONFIG_CFS_BANDWIDTH 9887 { 9888 .name = "stat", 9889 .seq_show = cpu_cfs_stat_show, 9890 }, 9891 { 9892 .name = "stat.local", 9893 .seq_show = cpu_cfs_local_stat_show, 9894 }, 9895 #endif 9896 #ifdef CONFIG_UCLAMP_TASK_GROUP 9897 { 9898 .name = "uclamp.min", 9899 .flags = CFTYPE_NOT_ON_ROOT, 9900 .seq_show = cpu_uclamp_min_show, 9901 .write = cpu_uclamp_min_write, 9902 }, 9903 { 9904 .name = "uclamp.max", 9905 .flags = CFTYPE_NOT_ON_ROOT, 9906 .seq_show = cpu_uclamp_max_show, 9907 .write = cpu_uclamp_max_write, 9908 }, 9909 #endif 9910 { } /* Terminate */ 9911 }; 9912 9913 #ifdef CONFIG_RT_GROUP_SCHED 9914 static struct cftype rt_group_files[] = { 9915 { 9916 .name = "rt_runtime_us", 9917 .read_s64 = cpu_rt_runtime_read, 9918 .write_s64 = cpu_rt_runtime_write, 9919 }, 9920 { 9921 .name = "rt_period_us", 9922 .read_u64 = cpu_rt_period_read_uint, 9923 .write_u64 = cpu_rt_period_write_uint, 9924 }, 9925 { } /* Terminate */ 9926 }; 9927 9928 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 9929 DEFINE_STATIC_KEY_FALSE(rt_group_sched); 9930 # else 9931 DEFINE_STATIC_KEY_TRUE(rt_group_sched); 9932 # endif 9933 9934 static int __init setup_rt_group_sched(char *str) 9935 { 9936 long val; 9937 9938 if (kstrtol(str, 0, &val) || val < 0 || val > 1) { 9939 pr_warn("Unable to set rt_group_sched\n"); 9940 return 1; 9941 } 9942 if (val) 9943 static_branch_enable(&rt_group_sched); 9944 else 9945 static_branch_disable(&rt_group_sched); 9946 9947 return 1; 9948 } 9949 __setup("rt_group_sched=", setup_rt_group_sched); 9950 9951 static int __init cpu_rt_group_init(void) 9952 { 9953 if (!rt_group_sched_enabled()) 9954 return 0; 9955 9956 WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); 9957 return 0; 9958 } 9959 subsys_initcall(cpu_rt_group_init); 9960 #endif /* CONFIG_RT_GROUP_SCHED */ 9961 9962 static int cpu_extra_stat_show(struct seq_file *sf, 9963 struct cgroup_subsys_state *css) 9964 { 9965 #ifdef CONFIG_CFS_BANDWIDTH 9966 { 9967 struct task_group *tg = css_tg(css); 9968 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9969 u64 throttled_usec, burst_usec; 9970 9971 throttled_usec = cfs_b->throttled_time; 9972 do_div(throttled_usec, NSEC_PER_USEC); 9973 burst_usec = cfs_b->burst_time; 9974 do_div(burst_usec, NSEC_PER_USEC); 9975 9976 seq_printf(sf, "nr_periods %d\n" 9977 "nr_throttled %d\n" 9978 "throttled_usec %llu\n" 9979 "nr_bursts %d\n" 9980 "burst_usec %llu\n", 9981 cfs_b->nr_periods, cfs_b->nr_throttled, 9982 throttled_usec, cfs_b->nr_burst, burst_usec); 9983 } 9984 #endif /* CONFIG_CFS_BANDWIDTH */ 9985 return 0; 9986 } 9987 9988 static int cpu_local_stat_show(struct seq_file *sf, 9989 struct cgroup_subsys_state *css) 9990 { 9991 #ifdef CONFIG_CFS_BANDWIDTH 9992 { 9993 struct task_group *tg = css_tg(css); 9994 u64 throttled_self_usec; 9995 9996 throttled_self_usec = throttled_time_self(tg); 9997 do_div(throttled_self_usec, NSEC_PER_USEC); 9998 9999 seq_printf(sf, "throttled_usec %llu\n", 10000 throttled_self_usec); 10001 } 10002 #endif 10003 return 0; 10004 } 10005 10006 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10007 10008 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10009 struct cftype *cft) 10010 { 10011 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 10012 } 10013 10014 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10015 struct cftype *cft, u64 cgrp_weight) 10016 { 10017 unsigned long weight; 10018 int ret; 10019 10020 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 10021 return -ERANGE; 10022 10023 weight = sched_weight_from_cgroup(cgrp_weight); 10024 10025 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10026 if (!ret) 10027 scx_group_set_weight(css_tg(css), cgrp_weight); 10028 return ret; 10029 } 10030 10031 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10032 struct cftype *cft) 10033 { 10034 unsigned long weight = tg_weight(css_tg(css)); 10035 int last_delta = INT_MAX; 10036 int prio, delta; 10037 10038 /* find the closest nice value to the current weight */ 10039 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10040 delta = abs(sched_prio_to_weight[prio] - weight); 10041 if (delta >= last_delta) 10042 break; 10043 last_delta = delta; 10044 } 10045 10046 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10047 } 10048 10049 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10050 struct cftype *cft, s64 nice) 10051 { 10052 unsigned long weight; 10053 int idx, ret; 10054 10055 if (nice < MIN_NICE || nice > MAX_NICE) 10056 return -ERANGE; 10057 10058 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10059 idx = array_index_nospec(idx, 40); 10060 weight = sched_prio_to_weight[idx]; 10061 10062 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10063 if (!ret) 10064 scx_group_set_weight(css_tg(css), 10065 sched_weight_to_cgroup(weight)); 10066 return ret; 10067 } 10068 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 10069 10070 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10071 long period, long quota) 10072 { 10073 if (quota < 0) 10074 seq_puts(sf, "max"); 10075 else 10076 seq_printf(sf, "%ld", quota); 10077 10078 seq_printf(sf, " %ld\n", period); 10079 } 10080 10081 /* caller should put the current value in *@periodp before calling */ 10082 static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p, 10083 u64 *quota_us_p) 10084 { 10085 char tok[21]; /* U64_MAX */ 10086 10087 if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1) 10088 return -EINVAL; 10089 10090 if (sscanf(tok, "%llu", quota_us_p) < 1) { 10091 if (!strcmp(tok, "max")) 10092 *quota_us_p = RUNTIME_INF; 10093 else 10094 return -EINVAL; 10095 } 10096 10097 return 0; 10098 } 10099 10100 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10101 static int cpu_max_show(struct seq_file *sf, void *v) 10102 { 10103 struct task_group *tg = css_tg(seq_css(sf)); 10104 u64 period_us, quota_us; 10105 10106 tg_bandwidth(tg, &period_us, "a_us, NULL); 10107 cpu_period_quota_print(sf, period_us, quota_us); 10108 return 0; 10109 } 10110 10111 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10112 char *buf, size_t nbytes, loff_t off) 10113 { 10114 struct task_group *tg = css_tg(of_css(of)); 10115 u64 period_us, quota_us, burst_us; 10116 int ret; 10117 10118 tg_bandwidth(tg, &period_us, NULL, &burst_us); 10119 ret = cpu_period_quota_parse(buf, &period_us, "a_us); 10120 if (!ret) 10121 ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us); 10122 return ret ?: nbytes; 10123 } 10124 #endif /* CONFIG_CFS_BANDWIDTH */ 10125 10126 static struct cftype cpu_files[] = { 10127 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10128 { 10129 .name = "weight", 10130 .flags = CFTYPE_NOT_ON_ROOT, 10131 .read_u64 = cpu_weight_read_u64, 10132 .write_u64 = cpu_weight_write_u64, 10133 }, 10134 { 10135 .name = "weight.nice", 10136 .flags = CFTYPE_NOT_ON_ROOT, 10137 .read_s64 = cpu_weight_nice_read_s64, 10138 .write_s64 = cpu_weight_nice_write_s64, 10139 }, 10140 { 10141 .name = "idle", 10142 .flags = CFTYPE_NOT_ON_ROOT, 10143 .read_s64 = cpu_idle_read_s64, 10144 .write_s64 = cpu_idle_write_s64, 10145 }, 10146 #endif 10147 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10148 { 10149 .name = "max", 10150 .flags = CFTYPE_NOT_ON_ROOT, 10151 .seq_show = cpu_max_show, 10152 .write = cpu_max_write, 10153 }, 10154 { 10155 .name = "max.burst", 10156 .flags = CFTYPE_NOT_ON_ROOT, 10157 .read_u64 = cpu_burst_read_u64, 10158 .write_u64 = cpu_burst_write_u64, 10159 }, 10160 #endif /* CONFIG_CFS_BANDWIDTH */ 10161 #ifdef CONFIG_UCLAMP_TASK_GROUP 10162 { 10163 .name = "uclamp.min", 10164 .flags = CFTYPE_NOT_ON_ROOT, 10165 .seq_show = cpu_uclamp_min_show, 10166 .write = cpu_uclamp_min_write, 10167 }, 10168 { 10169 .name = "uclamp.max", 10170 .flags = CFTYPE_NOT_ON_ROOT, 10171 .seq_show = cpu_uclamp_max_show, 10172 .write = cpu_uclamp_max_write, 10173 }, 10174 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10175 { } /* terminate */ 10176 }; 10177 10178 struct cgroup_subsys cpu_cgrp_subsys = { 10179 .css_alloc = cpu_cgroup_css_alloc, 10180 .css_online = cpu_cgroup_css_online, 10181 .css_offline = cpu_cgroup_css_offline, 10182 .css_released = cpu_cgroup_css_released, 10183 .css_free = cpu_cgroup_css_free, 10184 .css_extra_stat_show = cpu_extra_stat_show, 10185 .css_local_stat_show = cpu_local_stat_show, 10186 .can_attach = cpu_cgroup_can_attach, 10187 .attach = cpu_cgroup_attach, 10188 .cancel_attach = cpu_cgroup_cancel_attach, 10189 .legacy_cftypes = cpu_legacy_files, 10190 .dfl_cftypes = cpu_files, 10191 .early_init = true, 10192 .threaded = true, 10193 }; 10194 10195 #endif /* CONFIG_CGROUP_SCHED */ 10196 10197 void dump_cpu_task(int cpu) 10198 { 10199 if (in_hardirq() && cpu == smp_processor_id()) { 10200 struct pt_regs *regs; 10201 10202 regs = get_irq_regs(); 10203 if (regs) { 10204 show_regs(regs); 10205 return; 10206 } 10207 } 10208 10209 if (trigger_single_cpu_backtrace(cpu)) 10210 return; 10211 10212 pr_info("Task dump for CPU %d:\n", cpu); 10213 sched_show_task(cpu_curr(cpu)); 10214 } 10215 10216 /* 10217 * Nice levels are multiplicative, with a gentle 10% change for every 10218 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10219 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10220 * that remained on nice 0. 10221 * 10222 * The "10% effect" is relative and cumulative: from _any_ nice level, 10223 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10224 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10225 * If a task goes up by ~10% and another task goes down by ~10% then 10226 * the relative distance between them is ~25%.) 10227 */ 10228 const int sched_prio_to_weight[40] = { 10229 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10230 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10231 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10232 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10233 /* 0 */ 1024, 820, 655, 526, 423, 10234 /* 5 */ 335, 272, 215, 172, 137, 10235 /* 10 */ 110, 87, 70, 56, 45, 10236 /* 15 */ 36, 29, 23, 18, 15, 10237 }; 10238 10239 /* 10240 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10241 * 10242 * In cases where the weight does not change often, we can use the 10243 * pre-calculated inverse to speed up arithmetics by turning divisions 10244 * into multiplications: 10245 */ 10246 const u32 sched_prio_to_wmult[40] = { 10247 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10248 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10249 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10250 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10251 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10252 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10253 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10254 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10255 }; 10256 10257 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10258 { 10259 trace_sched_update_nr_running_tp(rq, count); 10260 } 10261 10262 #ifdef CONFIG_SCHED_MM_CID 10263 10264 /* 10265 * @cid_lock: Guarantee forward-progress of cid allocation. 10266 * 10267 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10268 * is only used when contention is detected by the lock-free allocation so 10269 * forward progress can be guaranteed. 10270 */ 10271 DEFINE_RAW_SPINLOCK(cid_lock); 10272 10273 /* 10274 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10275 * 10276 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10277 * detected, it is set to 1 to ensure that all newly coming allocations are 10278 * serialized by @cid_lock until the allocation which detected contention 10279 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10280 * of a cid allocation. 10281 */ 10282 int use_cid_lock; 10283 10284 /* 10285 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10286 * concurrently with respect to the execution of the source runqueue context 10287 * switch. 10288 * 10289 * There is one basic properties we want to guarantee here: 10290 * 10291 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10292 * used by a task. That would lead to concurrent allocation of the cid and 10293 * userspace corruption. 10294 * 10295 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10296 * that a pair of loads observe at least one of a pair of stores, which can be 10297 * shown as: 10298 * 10299 * X = Y = 0 10300 * 10301 * w[X]=1 w[Y]=1 10302 * MB MB 10303 * r[Y]=y r[X]=x 10304 * 10305 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10306 * values 0 and 1, this algorithm cares about specific state transitions of the 10307 * runqueue current task (as updated by the scheduler context switch), and the 10308 * per-mm/cpu cid value. 10309 * 10310 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10311 * task->mm != mm for the rest of the discussion. There are two scheduler state 10312 * transitions on context switch we care about: 10313 * 10314 * (TSA) Store to rq->curr with transition from (N) to (Y) 10315 * 10316 * (TSB) Store to rq->curr with transition from (Y) to (N) 10317 * 10318 * On the remote-clear side, there is one transition we care about: 10319 * 10320 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10321 * 10322 * There is also a transition to UNSET state which can be performed from all 10323 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10324 * guarantees that only a single thread will succeed: 10325 * 10326 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10327 * 10328 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10329 * when a thread is actively using the cid (property (1)). 10330 * 10331 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10332 * 10333 * Scenario A) (TSA)+(TMA) (from next task perspective) 10334 * 10335 * CPU0 CPU1 10336 * 10337 * Context switch CS-1 Remote-clear 10338 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10339 * (implied barrier after cmpxchg) 10340 * - switch_mm_cid() 10341 * - memory barrier (see switch_mm_cid() 10342 * comment explaining how this barrier 10343 * is combined with other scheduler 10344 * barriers) 10345 * - mm_cid_get (next) 10346 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10347 * 10348 * This Dekker ensures that either task (Y) is observed by the 10349 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10350 * observed. 10351 * 10352 * If task (Y) store is observed by rcu_dereference(), it means that there is 10353 * still an active task on the cpu. Remote-clear will therefore not transition 10354 * to UNSET, which fulfills property (1). 10355 * 10356 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10357 * it will move its state to UNSET, which clears the percpu cid perhaps 10358 * uselessly (which is not an issue for correctness). Because task (Y) is not 10359 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10360 * state to UNSET is done with a cmpxchg expecting that the old state has the 10361 * LAZY flag set, only one thread will successfully UNSET. 10362 * 10363 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10364 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10365 * CPU1 will observe task (Y) and do nothing more, which is fine. 10366 * 10367 * What we are effectively preventing with this Dekker is a scenario where 10368 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10369 * because this would UNSET a cid which is actively used. 10370 */ 10371 10372 void sched_mm_cid_migrate_from(struct task_struct *t) 10373 { 10374 t->migrate_from_cpu = task_cpu(t); 10375 } 10376 10377 static 10378 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10379 struct task_struct *t, 10380 struct mm_cid *src_pcpu_cid) 10381 { 10382 struct mm_struct *mm = t->mm; 10383 struct task_struct *src_task; 10384 int src_cid, last_mm_cid; 10385 10386 if (!mm) 10387 return -1; 10388 10389 last_mm_cid = t->last_mm_cid; 10390 /* 10391 * If the migrated task has no last cid, or if the current 10392 * task on src rq uses the cid, it means the source cid does not need 10393 * to be moved to the destination cpu. 10394 */ 10395 if (last_mm_cid == -1) 10396 return -1; 10397 src_cid = READ_ONCE(src_pcpu_cid->cid); 10398 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10399 return -1; 10400 10401 /* 10402 * If we observe an active task using the mm on this rq, it means we 10403 * are not the last task to be migrated from this cpu for this mm, so 10404 * there is no need to move src_cid to the destination cpu. 10405 */ 10406 guard(rcu)(); 10407 src_task = rcu_dereference(src_rq->curr); 10408 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10409 t->last_mm_cid = -1; 10410 return -1; 10411 } 10412 10413 return src_cid; 10414 } 10415 10416 static 10417 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10418 struct task_struct *t, 10419 struct mm_cid *src_pcpu_cid, 10420 int src_cid) 10421 { 10422 struct task_struct *src_task; 10423 struct mm_struct *mm = t->mm; 10424 int lazy_cid; 10425 10426 if (src_cid == -1) 10427 return -1; 10428 10429 /* 10430 * Attempt to clear the source cpu cid to move it to the destination 10431 * cpu. 10432 */ 10433 lazy_cid = mm_cid_set_lazy_put(src_cid); 10434 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10435 return -1; 10436 10437 /* 10438 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10439 * rq->curr->mm matches the scheduler barrier in context_switch() 10440 * between store to rq->curr and load of prev and next task's 10441 * per-mm/cpu cid. 10442 * 10443 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10444 * rq->curr->mm_cid_active matches the barrier in 10445 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10446 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10447 * load of per-mm/cpu cid. 10448 */ 10449 10450 /* 10451 * If we observe an active task using the mm on this rq after setting 10452 * the lazy-put flag, this task will be responsible for transitioning 10453 * from lazy-put flag set to MM_CID_UNSET. 10454 */ 10455 scoped_guard (rcu) { 10456 src_task = rcu_dereference(src_rq->curr); 10457 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10458 /* 10459 * We observed an active task for this mm, there is therefore 10460 * no point in moving this cid to the destination cpu. 10461 */ 10462 t->last_mm_cid = -1; 10463 return -1; 10464 } 10465 } 10466 10467 /* 10468 * The src_cid is unused, so it can be unset. 10469 */ 10470 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10471 return -1; 10472 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); 10473 return src_cid; 10474 } 10475 10476 /* 10477 * Migration to dst cpu. Called with dst_rq lock held. 10478 * Interrupts are disabled, which keeps the window of cid ownership without the 10479 * source rq lock held small. 10480 */ 10481 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10482 { 10483 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10484 struct mm_struct *mm = t->mm; 10485 int src_cid, src_cpu; 10486 bool dst_cid_is_set; 10487 struct rq *src_rq; 10488 10489 lockdep_assert_rq_held(dst_rq); 10490 10491 if (!mm) 10492 return; 10493 src_cpu = t->migrate_from_cpu; 10494 if (src_cpu == -1) { 10495 t->last_mm_cid = -1; 10496 return; 10497 } 10498 /* 10499 * Move the src cid if the dst cid is unset. This keeps id 10500 * allocation closest to 0 in cases where few threads migrate around 10501 * many CPUs. 10502 * 10503 * If destination cid or recent cid is already set, we may have 10504 * to just clear the src cid to ensure compactness in frequent 10505 * migrations scenarios. 10506 * 10507 * It is not useful to clear the src cid when the number of threads is 10508 * greater or equal to the number of allowed CPUs, because user-space 10509 * can expect that the number of allowed cids can reach the number of 10510 * allowed CPUs. 10511 */ 10512 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10513 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || 10514 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); 10515 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) 10516 return; 10517 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10518 src_rq = cpu_rq(src_cpu); 10519 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10520 if (src_cid == -1) 10521 return; 10522 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10523 src_cid); 10524 if (src_cid == -1) 10525 return; 10526 if (dst_cid_is_set) { 10527 __mm_cid_put(mm, src_cid); 10528 return; 10529 } 10530 /* Move src_cid to dst cpu. */ 10531 mm_cid_snapshot_time(dst_rq, mm); 10532 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10533 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); 10534 } 10535 10536 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10537 int cpu) 10538 { 10539 struct rq *rq = cpu_rq(cpu); 10540 struct task_struct *t; 10541 int cid, lazy_cid; 10542 10543 cid = READ_ONCE(pcpu_cid->cid); 10544 if (!mm_cid_is_valid(cid)) 10545 return; 10546 10547 /* 10548 * Clear the cpu cid if it is set to keep cid allocation compact. If 10549 * there happens to be other tasks left on the source cpu using this 10550 * mm, the next task using this mm will reallocate its cid on context 10551 * switch. 10552 */ 10553 lazy_cid = mm_cid_set_lazy_put(cid); 10554 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10555 return; 10556 10557 /* 10558 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10559 * rq->curr->mm matches the scheduler barrier in context_switch() 10560 * between store to rq->curr and load of prev and next task's 10561 * per-mm/cpu cid. 10562 * 10563 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10564 * rq->curr->mm_cid_active matches the barrier in 10565 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10566 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10567 * load of per-mm/cpu cid. 10568 */ 10569 10570 /* 10571 * If we observe an active task using the mm on this rq after setting 10572 * the lazy-put flag, that task will be responsible for transitioning 10573 * from lazy-put flag set to MM_CID_UNSET. 10574 */ 10575 scoped_guard (rcu) { 10576 t = rcu_dereference(rq->curr); 10577 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10578 return; 10579 } 10580 10581 /* 10582 * The cid is unused, so it can be unset. 10583 * Disable interrupts to keep the window of cid ownership without rq 10584 * lock small. 10585 */ 10586 scoped_guard (irqsave) { 10587 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10588 __mm_cid_put(mm, cid); 10589 } 10590 } 10591 10592 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10593 { 10594 struct rq *rq = cpu_rq(cpu); 10595 struct mm_cid *pcpu_cid; 10596 struct task_struct *curr; 10597 u64 rq_clock; 10598 10599 /* 10600 * rq->clock load is racy on 32-bit but one spurious clear once in a 10601 * while is irrelevant. 10602 */ 10603 rq_clock = READ_ONCE(rq->clock); 10604 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10605 10606 /* 10607 * In order to take care of infrequently scheduled tasks, bump the time 10608 * snapshot associated with this cid if an active task using the mm is 10609 * observed on this rq. 10610 */ 10611 scoped_guard (rcu) { 10612 curr = rcu_dereference(rq->curr); 10613 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10614 WRITE_ONCE(pcpu_cid->time, rq_clock); 10615 return; 10616 } 10617 } 10618 10619 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10620 return; 10621 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10622 } 10623 10624 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10625 int weight) 10626 { 10627 struct mm_cid *pcpu_cid; 10628 int cid; 10629 10630 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10631 cid = READ_ONCE(pcpu_cid->cid); 10632 if (!mm_cid_is_valid(cid) || cid < weight) 10633 return; 10634 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10635 } 10636 10637 static void task_mm_cid_work(struct callback_head *work) 10638 { 10639 unsigned long now = jiffies, old_scan, next_scan; 10640 struct task_struct *t = current; 10641 struct cpumask *cidmask; 10642 struct mm_struct *mm; 10643 int weight, cpu; 10644 10645 WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work)); 10646 10647 work->next = work; /* Prevent double-add */ 10648 if (t->flags & PF_EXITING) 10649 return; 10650 mm = t->mm; 10651 if (!mm) 10652 return; 10653 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10654 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10655 if (!old_scan) { 10656 unsigned long res; 10657 10658 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10659 if (res != old_scan) 10660 old_scan = res; 10661 else 10662 old_scan = next_scan; 10663 } 10664 if (time_before(now, old_scan)) 10665 return; 10666 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10667 return; 10668 cidmask = mm_cidmask(mm); 10669 /* Clear cids that were not recently used. */ 10670 for_each_possible_cpu(cpu) 10671 sched_mm_cid_remote_clear_old(mm, cpu); 10672 weight = cpumask_weight(cidmask); 10673 /* 10674 * Clear cids that are greater or equal to the cidmask weight to 10675 * recompact it. 10676 */ 10677 for_each_possible_cpu(cpu) 10678 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10679 } 10680 10681 void init_sched_mm_cid(struct task_struct *t) 10682 { 10683 struct mm_struct *mm = t->mm; 10684 int mm_users = 0; 10685 10686 if (mm) { 10687 mm_users = atomic_read(&mm->mm_users); 10688 if (mm_users == 1) 10689 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10690 } 10691 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10692 init_task_work(&t->cid_work, task_mm_cid_work); 10693 } 10694 10695 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10696 { 10697 struct callback_head *work = &curr->cid_work; 10698 unsigned long now = jiffies; 10699 10700 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10701 work->next != work) 10702 return; 10703 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10704 return; 10705 10706 /* No page allocation under rq lock */ 10707 task_work_add(curr, work, TWA_RESUME); 10708 } 10709 10710 void sched_mm_cid_exit_signals(struct task_struct *t) 10711 { 10712 struct mm_struct *mm = t->mm; 10713 struct rq *rq; 10714 10715 if (!mm) 10716 return; 10717 10718 preempt_disable(); 10719 rq = this_rq(); 10720 guard(rq_lock_irqsave)(rq); 10721 preempt_enable_no_resched(); /* holding spinlock */ 10722 WRITE_ONCE(t->mm_cid_active, 0); 10723 /* 10724 * Store t->mm_cid_active before loading per-mm/cpu cid. 10725 * Matches barrier in sched_mm_cid_remote_clear_old(). 10726 */ 10727 smp_mb(); 10728 mm_cid_put(mm); 10729 t->last_mm_cid = t->mm_cid = -1; 10730 } 10731 10732 void sched_mm_cid_before_execve(struct task_struct *t) 10733 { 10734 struct mm_struct *mm = t->mm; 10735 struct rq *rq; 10736 10737 if (!mm) 10738 return; 10739 10740 preempt_disable(); 10741 rq = this_rq(); 10742 guard(rq_lock_irqsave)(rq); 10743 preempt_enable_no_resched(); /* holding spinlock */ 10744 WRITE_ONCE(t->mm_cid_active, 0); 10745 /* 10746 * Store t->mm_cid_active before loading per-mm/cpu cid. 10747 * Matches barrier in sched_mm_cid_remote_clear_old(). 10748 */ 10749 smp_mb(); 10750 mm_cid_put(mm); 10751 t->last_mm_cid = t->mm_cid = -1; 10752 } 10753 10754 void sched_mm_cid_after_execve(struct task_struct *t) 10755 { 10756 struct mm_struct *mm = t->mm; 10757 struct rq *rq; 10758 10759 if (!mm) 10760 return; 10761 10762 preempt_disable(); 10763 rq = this_rq(); 10764 scoped_guard (rq_lock_irqsave, rq) { 10765 preempt_enable_no_resched(); /* holding spinlock */ 10766 WRITE_ONCE(t->mm_cid_active, 1); 10767 /* 10768 * Store t->mm_cid_active before loading per-mm/cpu cid. 10769 * Matches barrier in sched_mm_cid_remote_clear_old(). 10770 */ 10771 smp_mb(); 10772 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); 10773 } 10774 } 10775 10776 void sched_mm_cid_fork(struct task_struct *t) 10777 { 10778 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10779 t->mm_cid_active = 1; 10780 } 10781 #endif /* CONFIG_SCHED_MM_CID */ 10782 10783 static DEFINE_PER_CPU(struct sched_change_ctx, sched_change_ctx); 10784 10785 struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags) 10786 { 10787 struct sched_change_ctx *ctx = this_cpu_ptr(&sched_change_ctx); 10788 struct rq *rq = task_rq(p); 10789 10790 /* 10791 * Must exclusively use matched flags since this is both dequeue and 10792 * enqueue. 10793 */ 10794 WARN_ON_ONCE(flags & 0xFFFF0000); 10795 10796 lockdep_assert_rq_held(rq); 10797 10798 if (!(flags & DEQUEUE_NOCLOCK)) { 10799 update_rq_clock(rq); 10800 flags |= DEQUEUE_NOCLOCK; 10801 } 10802 10803 if (flags & DEQUEUE_CLASS) { 10804 if (p->sched_class->switching_from) 10805 p->sched_class->switching_from(rq, p); 10806 } 10807 10808 *ctx = (struct sched_change_ctx){ 10809 .p = p, 10810 .flags = flags, 10811 .queued = task_on_rq_queued(p), 10812 .running = task_current_donor(rq, p), 10813 }; 10814 10815 if (!(flags & DEQUEUE_CLASS)) { 10816 if (p->sched_class->get_prio) 10817 ctx->prio = p->sched_class->get_prio(rq, p); 10818 else 10819 ctx->prio = p->prio; 10820 } 10821 10822 if (ctx->queued) 10823 dequeue_task(rq, p, flags); 10824 if (ctx->running) 10825 put_prev_task(rq, p); 10826 10827 if ((flags & DEQUEUE_CLASS) && p->sched_class->switched_from) 10828 p->sched_class->switched_from(rq, p); 10829 10830 return ctx; 10831 } 10832 10833 void sched_change_end(struct sched_change_ctx *ctx) 10834 { 10835 struct task_struct *p = ctx->p; 10836 struct rq *rq = task_rq(p); 10837 10838 lockdep_assert_rq_held(rq); 10839 10840 if ((ctx->flags & ENQUEUE_CLASS) && p->sched_class->switching_to) 10841 p->sched_class->switching_to(rq, p); 10842 10843 if (ctx->queued) 10844 enqueue_task(rq, p, ctx->flags); 10845 if (ctx->running) 10846 set_next_task(rq, p); 10847 10848 if (ctx->flags & ENQUEUE_CLASS) { 10849 if (p->sched_class->switched_to) 10850 p->sched_class->switched_to(rq, p); 10851 } else { 10852 p->sched_class->prio_changed(rq, p, ctx->prio); 10853 } 10854 } 10855