xref: /linux/kernel/sched/core.c (revision 2bc46b3ad3c15165f91459b07ff8682478683194)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 /*
128  * Number of tasks to iterate in a single balance run.
129  * Limited because this is done with IRQs disabled.
130  */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132 
133 /*
134  * period over which we average the RT time consumption, measured
135  * in ms.
136  *
137  * default: 1s
138  */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140 
141 /*
142  * period over which we measure -rt task cpu usage in us.
143  * default: 1s
144  */
145 unsigned int sysctl_sched_rt_period = 1000000;
146 
147 __read_mostly int scheduler_running;
148 
149 /*
150  * part of the period that we allow rt tasks to run in us.
151  * default: 0.95s
152  */
153 int sysctl_sched_rt_runtime = 950000;
154 
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157 
158 /*
159  * this_rq_lock - lock this runqueue and disable interrupts.
160  */
161 static struct rq *this_rq_lock(void)
162 	__acquires(rq->lock)
163 {
164 	struct rq *rq;
165 
166 	local_irq_disable();
167 	rq = this_rq();
168 	raw_spin_lock(&rq->lock);
169 
170 	return rq;
171 }
172 
173 /*
174  * __task_rq_lock - lock the rq @p resides on.
175  */
176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
177 	__acquires(rq->lock)
178 {
179 	struct rq *rq;
180 
181 	lockdep_assert_held(&p->pi_lock);
182 
183 	for (;;) {
184 		rq = task_rq(p);
185 		raw_spin_lock(&rq->lock);
186 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187 			rf->cookie = lockdep_pin_lock(&rq->lock);
188 			return rq;
189 		}
190 		raw_spin_unlock(&rq->lock);
191 
192 		while (unlikely(task_on_rq_migrating(p)))
193 			cpu_relax();
194 	}
195 }
196 
197 /*
198  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199  */
200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
201 	__acquires(p->pi_lock)
202 	__acquires(rq->lock)
203 {
204 	struct rq *rq;
205 
206 	for (;;) {
207 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
208 		rq = task_rq(p);
209 		raw_spin_lock(&rq->lock);
210 		/*
211 		 *	move_queued_task()		task_rq_lock()
212 		 *
213 		 *	ACQUIRE (rq->lock)
214 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
215 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
216 		 *	[S] ->cpu = new_cpu		[L] task_rq()
217 		 *					[L] ->on_rq
218 		 *	RELEASE (rq->lock)
219 		 *
220 		 * If we observe the old cpu in task_rq_lock, the acquire of
221 		 * the old rq->lock will fully serialize against the stores.
222 		 *
223 		 * If we observe the new cpu in task_rq_lock, the acquire will
224 		 * pair with the WMB to ensure we must then also see migrating.
225 		 */
226 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227 			rf->cookie = lockdep_pin_lock(&rq->lock);
228 			return rq;
229 		}
230 		raw_spin_unlock(&rq->lock);
231 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
232 
233 		while (unlikely(task_on_rq_migrating(p)))
234 			cpu_relax();
235 	}
236 }
237 
238 #ifdef CONFIG_SCHED_HRTICK
239 /*
240  * Use HR-timers to deliver accurate preemption points.
241  */
242 
243 static void hrtick_clear(struct rq *rq)
244 {
245 	if (hrtimer_active(&rq->hrtick_timer))
246 		hrtimer_cancel(&rq->hrtick_timer);
247 }
248 
249 /*
250  * High-resolution timer tick.
251  * Runs from hardirq context with interrupts disabled.
252  */
253 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 {
255 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256 
257 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258 
259 	raw_spin_lock(&rq->lock);
260 	update_rq_clock(rq);
261 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 	raw_spin_unlock(&rq->lock);
263 
264 	return HRTIMER_NORESTART;
265 }
266 
267 #ifdef CONFIG_SMP
268 
269 static void __hrtick_restart(struct rq *rq)
270 {
271 	struct hrtimer *timer = &rq->hrtick_timer;
272 
273 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275 
276 /*
277  * called from hardirq (IPI) context
278  */
279 static void __hrtick_start(void *arg)
280 {
281 	struct rq *rq = arg;
282 
283 	raw_spin_lock(&rq->lock);
284 	__hrtick_restart(rq);
285 	rq->hrtick_csd_pending = 0;
286 	raw_spin_unlock(&rq->lock);
287 }
288 
289 /*
290  * Called to set the hrtick timer state.
291  *
292  * called with rq->lock held and irqs disabled
293  */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 	struct hrtimer *timer = &rq->hrtick_timer;
297 	ktime_t time;
298 	s64 delta;
299 
300 	/*
301 	 * Don't schedule slices shorter than 10000ns, that just
302 	 * doesn't make sense and can cause timer DoS.
303 	 */
304 	delta = max_t(s64, delay, 10000LL);
305 	time = ktime_add_ns(timer->base->get_time(), delta);
306 
307 	hrtimer_set_expires(timer, time);
308 
309 	if (rq == this_rq()) {
310 		__hrtick_restart(rq);
311 	} else if (!rq->hrtick_csd_pending) {
312 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 		rq->hrtick_csd_pending = 1;
314 	}
315 }
316 
317 #else
318 /*
319  * Called to set the hrtick timer state.
320  *
321  * called with rq->lock held and irqs disabled
322  */
323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325 	/*
326 	 * Don't schedule slices shorter than 10000ns, that just
327 	 * doesn't make sense. Rely on vruntime for fairness.
328 	 */
329 	delay = max_t(u64, delay, 10000LL);
330 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 		      HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334 
335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338 	rq->hrtick_csd_pending = 0;
339 
340 	rq->hrtick_csd.flags = 0;
341 	rq->hrtick_csd.func = __hrtick_start;
342 	rq->hrtick_csd.info = rq;
343 #endif
344 
345 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 	rq->hrtick_timer.function = hrtick;
347 }
348 #else	/* CONFIG_SCHED_HRTICK */
349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352 
353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif	/* CONFIG_SCHED_HRTICK */
357 
358 /*
359  * cmpxchg based fetch_or, macro so it works for different integer types
360  */
361 #define fetch_or(ptr, mask)						\
362 	({								\
363 		typeof(ptr) _ptr = (ptr);				\
364 		typeof(mask) _mask = (mask);				\
365 		typeof(*_ptr) _old, _val = *_ptr;			\
366 									\
367 		for (;;) {						\
368 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
369 			if (_old == _val)				\
370 				break;					\
371 			_val = _old;					\
372 		}							\
373 	_old;								\
374 })
375 
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379  * this avoids any races wrt polling state changes and thereby avoids
380  * spurious IPIs.
381  */
382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384 	struct thread_info *ti = task_thread_info(p);
385 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387 
388 /*
389  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390  *
391  * If this returns true, then the idle task promises to call
392  * sched_ttwu_pending() and reschedule soon.
393  */
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 	struct thread_info *ti = task_thread_info(p);
397 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398 
399 	for (;;) {
400 		if (!(val & _TIF_POLLING_NRFLAG))
401 			return false;
402 		if (val & _TIF_NEED_RESCHED)
403 			return true;
404 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 		if (old == val)
406 			break;
407 		val = old;
408 	}
409 	return true;
410 }
411 
412 #else
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 	set_tsk_need_resched(p);
416 	return true;
417 }
418 
419 #ifdef CONFIG_SMP
420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422 	return false;
423 }
424 #endif
425 #endif
426 
427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429 	struct wake_q_node *node = &task->wake_q;
430 
431 	/*
432 	 * Atomically grab the task, if ->wake_q is !nil already it means
433 	 * its already queued (either by us or someone else) and will get the
434 	 * wakeup due to that.
435 	 *
436 	 * This cmpxchg() implies a full barrier, which pairs with the write
437 	 * barrier implied by the wakeup in wake_up_q().
438 	 */
439 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 		return;
441 
442 	get_task_struct(task);
443 
444 	/*
445 	 * The head is context local, there can be no concurrency.
446 	 */
447 	*head->lastp = node;
448 	head->lastp = &node->next;
449 }
450 
451 void wake_up_q(struct wake_q_head *head)
452 {
453 	struct wake_q_node *node = head->first;
454 
455 	while (node != WAKE_Q_TAIL) {
456 		struct task_struct *task;
457 
458 		task = container_of(node, struct task_struct, wake_q);
459 		BUG_ON(!task);
460 		/* task can safely be re-inserted now */
461 		node = node->next;
462 		task->wake_q.next = NULL;
463 
464 		/*
465 		 * wake_up_process() implies a wmb() to pair with the queueing
466 		 * in wake_q_add() so as not to miss wakeups.
467 		 */
468 		wake_up_process(task);
469 		put_task_struct(task);
470 	}
471 }
472 
473 /*
474  * resched_curr - mark rq's current task 'to be rescheduled now'.
475  *
476  * On UP this means the setting of the need_resched flag, on SMP it
477  * might also involve a cross-CPU call to trigger the scheduler on
478  * the target CPU.
479  */
480 void resched_curr(struct rq *rq)
481 {
482 	struct task_struct *curr = rq->curr;
483 	int cpu;
484 
485 	lockdep_assert_held(&rq->lock);
486 
487 	if (test_tsk_need_resched(curr))
488 		return;
489 
490 	cpu = cpu_of(rq);
491 
492 	if (cpu == smp_processor_id()) {
493 		set_tsk_need_resched(curr);
494 		set_preempt_need_resched();
495 		return;
496 	}
497 
498 	if (set_nr_and_not_polling(curr))
499 		smp_send_reschedule(cpu);
500 	else
501 		trace_sched_wake_idle_without_ipi(cpu);
502 }
503 
504 void resched_cpu(int cpu)
505 {
506 	struct rq *rq = cpu_rq(cpu);
507 	unsigned long flags;
508 
509 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
510 		return;
511 	resched_curr(rq);
512 	raw_spin_unlock_irqrestore(&rq->lock, flags);
513 }
514 
515 #ifdef CONFIG_SMP
516 #ifdef CONFIG_NO_HZ_COMMON
517 /*
518  * In the semi idle case, use the nearest busy cpu for migrating timers
519  * from an idle cpu.  This is good for power-savings.
520  *
521  * We don't do similar optimization for completely idle system, as
522  * selecting an idle cpu will add more delays to the timers than intended
523  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524  */
525 int get_nohz_timer_target(void)
526 {
527 	int i, cpu = smp_processor_id();
528 	struct sched_domain *sd;
529 
530 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531 		return cpu;
532 
533 	rcu_read_lock();
534 	for_each_domain(cpu, sd) {
535 		for_each_cpu(i, sched_domain_span(sd)) {
536 			if (cpu == i)
537 				continue;
538 
539 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540 				cpu = i;
541 				goto unlock;
542 			}
543 		}
544 	}
545 
546 	if (!is_housekeeping_cpu(cpu))
547 		cpu = housekeeping_any_cpu();
548 unlock:
549 	rcu_read_unlock();
550 	return cpu;
551 }
552 /*
553  * When add_timer_on() enqueues a timer into the timer wheel of an
554  * idle CPU then this timer might expire before the next timer event
555  * which is scheduled to wake up that CPU. In case of a completely
556  * idle system the next event might even be infinite time into the
557  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558  * leaves the inner idle loop so the newly added timer is taken into
559  * account when the CPU goes back to idle and evaluates the timer
560  * wheel for the next timer event.
561  */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 	struct rq *rq = cpu_rq(cpu);
565 
566 	if (cpu == smp_processor_id())
567 		return;
568 
569 	if (set_nr_and_not_polling(rq->idle))
570 		smp_send_reschedule(cpu);
571 	else
572 		trace_sched_wake_idle_without_ipi(cpu);
573 }
574 
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 	/*
578 	 * We just need the target to call irq_exit() and re-evaluate
579 	 * the next tick. The nohz full kick at least implies that.
580 	 * If needed we can still optimize that later with an
581 	 * empty IRQ.
582 	 */
583 	if (tick_nohz_full_cpu(cpu)) {
584 		if (cpu != smp_processor_id() ||
585 		    tick_nohz_tick_stopped())
586 			tick_nohz_full_kick_cpu(cpu);
587 		return true;
588 	}
589 
590 	return false;
591 }
592 
593 void wake_up_nohz_cpu(int cpu)
594 {
595 	if (!wake_up_full_nohz_cpu(cpu))
596 		wake_up_idle_cpu(cpu);
597 }
598 
599 static inline bool got_nohz_idle_kick(void)
600 {
601 	int cpu = smp_processor_id();
602 
603 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604 		return false;
605 
606 	if (idle_cpu(cpu) && !need_resched())
607 		return true;
608 
609 	/*
610 	 * We can't run Idle Load Balance on this CPU for this time so we
611 	 * cancel it and clear NOHZ_BALANCE_KICK
612 	 */
613 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 	return false;
615 }
616 
617 #else /* CONFIG_NO_HZ_COMMON */
618 
619 static inline bool got_nohz_idle_kick(void)
620 {
621 	return false;
622 }
623 
624 #endif /* CONFIG_NO_HZ_COMMON */
625 
626 #ifdef CONFIG_NO_HZ_FULL
627 bool sched_can_stop_tick(struct rq *rq)
628 {
629 	int fifo_nr_running;
630 
631 	/* Deadline tasks, even if single, need the tick */
632 	if (rq->dl.dl_nr_running)
633 		return false;
634 
635 	/*
636 	 * If there are more than one RR tasks, we need the tick to effect the
637 	 * actual RR behaviour.
638 	 */
639 	if (rq->rt.rr_nr_running) {
640 		if (rq->rt.rr_nr_running == 1)
641 			return true;
642 		else
643 			return false;
644 	}
645 
646 	/*
647 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648 	 * forced preemption between FIFO tasks.
649 	 */
650 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651 	if (fifo_nr_running)
652 		return true;
653 
654 	/*
655 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656 	 * if there's more than one we need the tick for involuntary
657 	 * preemption.
658 	 */
659 	if (rq->nr_running > 1)
660 		return false;
661 
662 	return true;
663 }
664 #endif /* CONFIG_NO_HZ_FULL */
665 
666 void sched_avg_update(struct rq *rq)
667 {
668 	s64 period = sched_avg_period();
669 
670 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671 		/*
672 		 * Inline assembly required to prevent the compiler
673 		 * optimising this loop into a divmod call.
674 		 * See __iter_div_u64_rem() for another example of this.
675 		 */
676 		asm("" : "+rm" (rq->age_stamp));
677 		rq->age_stamp += period;
678 		rq->rt_avg /= 2;
679 	}
680 }
681 
682 #endif /* CONFIG_SMP */
683 
684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
686 /*
687  * Iterate task_group tree rooted at *from, calling @down when first entering a
688  * node and @up when leaving it for the final time.
689  *
690  * Caller must hold rcu_lock or sufficient equivalent.
691  */
692 int walk_tg_tree_from(struct task_group *from,
693 			     tg_visitor down, tg_visitor up, void *data)
694 {
695 	struct task_group *parent, *child;
696 	int ret;
697 
698 	parent = from;
699 
700 down:
701 	ret = (*down)(parent, data);
702 	if (ret)
703 		goto out;
704 	list_for_each_entry_rcu(child, &parent->children, siblings) {
705 		parent = child;
706 		goto down;
707 
708 up:
709 		continue;
710 	}
711 	ret = (*up)(parent, data);
712 	if (ret || parent == from)
713 		goto out;
714 
715 	child = parent;
716 	parent = parent->parent;
717 	if (parent)
718 		goto up;
719 out:
720 	return ret;
721 }
722 
723 int tg_nop(struct task_group *tg, void *data)
724 {
725 	return 0;
726 }
727 #endif
728 
729 static void set_load_weight(struct task_struct *p)
730 {
731 	int prio = p->static_prio - MAX_RT_PRIO;
732 	struct load_weight *load = &p->se.load;
733 
734 	/*
735 	 * SCHED_IDLE tasks get minimal weight:
736 	 */
737 	if (idle_policy(p->policy)) {
738 		load->weight = scale_load(WEIGHT_IDLEPRIO);
739 		load->inv_weight = WMULT_IDLEPRIO;
740 		return;
741 	}
742 
743 	load->weight = scale_load(sched_prio_to_weight[prio]);
744 	load->inv_weight = sched_prio_to_wmult[prio];
745 }
746 
747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
748 {
749 	update_rq_clock(rq);
750 	if (!(flags & ENQUEUE_RESTORE))
751 		sched_info_queued(rq, p);
752 	p->sched_class->enqueue_task(rq, p, flags);
753 }
754 
755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 	update_rq_clock(rq);
758 	if (!(flags & DEQUEUE_SAVE))
759 		sched_info_dequeued(rq, p);
760 	p->sched_class->dequeue_task(rq, p, flags);
761 }
762 
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	if (task_contributes_to_load(p))
766 		rq->nr_uninterruptible--;
767 
768 	enqueue_task(rq, p, flags);
769 }
770 
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 	if (task_contributes_to_load(p))
774 		rq->nr_uninterruptible++;
775 
776 	dequeue_task(rq, p, flags);
777 }
778 
779 static void update_rq_clock_task(struct rq *rq, s64 delta)
780 {
781 /*
782  * In theory, the compile should just see 0 here, and optimize out the call
783  * to sched_rt_avg_update. But I don't trust it...
784  */
785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786 	s64 steal = 0, irq_delta = 0;
787 #endif
788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
789 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
790 
791 	/*
792 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
793 	 * this case when a previous update_rq_clock() happened inside a
794 	 * {soft,}irq region.
795 	 *
796 	 * When this happens, we stop ->clock_task and only update the
797 	 * prev_irq_time stamp to account for the part that fit, so that a next
798 	 * update will consume the rest. This ensures ->clock_task is
799 	 * monotonic.
800 	 *
801 	 * It does however cause some slight miss-attribution of {soft,}irq
802 	 * time, a more accurate solution would be to update the irq_time using
803 	 * the current rq->clock timestamp, except that would require using
804 	 * atomic ops.
805 	 */
806 	if (irq_delta > delta)
807 		irq_delta = delta;
808 
809 	rq->prev_irq_time += irq_delta;
810 	delta -= irq_delta;
811 #endif
812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
813 	if (static_key_false((&paravirt_steal_rq_enabled))) {
814 		steal = paravirt_steal_clock(cpu_of(rq));
815 		steal -= rq->prev_steal_time_rq;
816 
817 		if (unlikely(steal > delta))
818 			steal = delta;
819 
820 		rq->prev_steal_time_rq += steal;
821 		delta -= steal;
822 	}
823 #endif
824 
825 	rq->clock_task += delta;
826 
827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
828 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
829 		sched_rt_avg_update(rq, irq_delta + steal);
830 #endif
831 }
832 
833 void sched_set_stop_task(int cpu, struct task_struct *stop)
834 {
835 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
837 
838 	if (stop) {
839 		/*
840 		 * Make it appear like a SCHED_FIFO task, its something
841 		 * userspace knows about and won't get confused about.
842 		 *
843 		 * Also, it will make PI more or less work without too
844 		 * much confusion -- but then, stop work should not
845 		 * rely on PI working anyway.
846 		 */
847 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848 
849 		stop->sched_class = &stop_sched_class;
850 	}
851 
852 	cpu_rq(cpu)->stop = stop;
853 
854 	if (old_stop) {
855 		/*
856 		 * Reset it back to a normal scheduling class so that
857 		 * it can die in pieces.
858 		 */
859 		old_stop->sched_class = &rt_sched_class;
860 	}
861 }
862 
863 /*
864  * __normal_prio - return the priority that is based on the static prio
865  */
866 static inline int __normal_prio(struct task_struct *p)
867 {
868 	return p->static_prio;
869 }
870 
871 /*
872  * Calculate the expected normal priority: i.e. priority
873  * without taking RT-inheritance into account. Might be
874  * boosted by interactivity modifiers. Changes upon fork,
875  * setprio syscalls, and whenever the interactivity
876  * estimator recalculates.
877  */
878 static inline int normal_prio(struct task_struct *p)
879 {
880 	int prio;
881 
882 	if (task_has_dl_policy(p))
883 		prio = MAX_DL_PRIO-1;
884 	else if (task_has_rt_policy(p))
885 		prio = MAX_RT_PRIO-1 - p->rt_priority;
886 	else
887 		prio = __normal_prio(p);
888 	return prio;
889 }
890 
891 /*
892  * Calculate the current priority, i.e. the priority
893  * taken into account by the scheduler. This value might
894  * be boosted by RT tasks, or might be boosted by
895  * interactivity modifiers. Will be RT if the task got
896  * RT-boosted. If not then it returns p->normal_prio.
897  */
898 static int effective_prio(struct task_struct *p)
899 {
900 	p->normal_prio = normal_prio(p);
901 	/*
902 	 * If we are RT tasks or we were boosted to RT priority,
903 	 * keep the priority unchanged. Otherwise, update priority
904 	 * to the normal priority:
905 	 */
906 	if (!rt_prio(p->prio))
907 		return p->normal_prio;
908 	return p->prio;
909 }
910 
911 /**
912  * task_curr - is this task currently executing on a CPU?
913  * @p: the task in question.
914  *
915  * Return: 1 if the task is currently executing. 0 otherwise.
916  */
917 inline int task_curr(const struct task_struct *p)
918 {
919 	return cpu_curr(task_cpu(p)) == p;
920 }
921 
922 /*
923  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924  * use the balance_callback list if you want balancing.
925  *
926  * this means any call to check_class_changed() must be followed by a call to
927  * balance_callback().
928  */
929 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930 				       const struct sched_class *prev_class,
931 				       int oldprio)
932 {
933 	if (prev_class != p->sched_class) {
934 		if (prev_class->switched_from)
935 			prev_class->switched_from(rq, p);
936 
937 		p->sched_class->switched_to(rq, p);
938 	} else if (oldprio != p->prio || dl_task(p))
939 		p->sched_class->prio_changed(rq, p, oldprio);
940 }
941 
942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
943 {
944 	const struct sched_class *class;
945 
946 	if (p->sched_class == rq->curr->sched_class) {
947 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948 	} else {
949 		for_each_class(class) {
950 			if (class == rq->curr->sched_class)
951 				break;
952 			if (class == p->sched_class) {
953 				resched_curr(rq);
954 				break;
955 			}
956 		}
957 	}
958 
959 	/*
960 	 * A queue event has occurred, and we're going to schedule.  In
961 	 * this case, we can save a useless back to back clock update.
962 	 */
963 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
964 		rq_clock_skip_update(rq, true);
965 }
966 
967 #ifdef CONFIG_SMP
968 /*
969  * This is how migration works:
970  *
971  * 1) we invoke migration_cpu_stop() on the target CPU using
972  *    stop_one_cpu().
973  * 2) stopper starts to run (implicitly forcing the migrated thread
974  *    off the CPU)
975  * 3) it checks whether the migrated task is still in the wrong runqueue.
976  * 4) if it's in the wrong runqueue then the migration thread removes
977  *    it and puts it into the right queue.
978  * 5) stopper completes and stop_one_cpu() returns and the migration
979  *    is done.
980  */
981 
982 /*
983  * move_queued_task - move a queued task to new rq.
984  *
985  * Returns (locked) new rq. Old rq's lock is released.
986  */
987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
988 {
989 	lockdep_assert_held(&rq->lock);
990 
991 	p->on_rq = TASK_ON_RQ_MIGRATING;
992 	dequeue_task(rq, p, 0);
993 	set_task_cpu(p, new_cpu);
994 	raw_spin_unlock(&rq->lock);
995 
996 	rq = cpu_rq(new_cpu);
997 
998 	raw_spin_lock(&rq->lock);
999 	BUG_ON(task_cpu(p) != new_cpu);
1000 	enqueue_task(rq, p, 0);
1001 	p->on_rq = TASK_ON_RQ_QUEUED;
1002 	check_preempt_curr(rq, p, 0);
1003 
1004 	return rq;
1005 }
1006 
1007 struct migration_arg {
1008 	struct task_struct *task;
1009 	int dest_cpu;
1010 };
1011 
1012 /*
1013  * Move (not current) task off this cpu, onto dest cpu. We're doing
1014  * this because either it can't run here any more (set_cpus_allowed()
1015  * away from this CPU, or CPU going down), or because we're
1016  * attempting to rebalance this task on exec (sched_exec).
1017  *
1018  * So we race with normal scheduler movements, but that's OK, as long
1019  * as the task is no longer on this CPU.
1020  */
1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1022 {
1023 	if (unlikely(!cpu_active(dest_cpu)))
1024 		return rq;
1025 
1026 	/* Affinity changed (again). */
1027 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028 		return rq;
1029 
1030 	rq = move_queued_task(rq, p, dest_cpu);
1031 
1032 	return rq;
1033 }
1034 
1035 /*
1036  * migration_cpu_stop - this will be executed by a highprio stopper thread
1037  * and performs thread migration by bumping thread off CPU then
1038  * 'pushing' onto another runqueue.
1039  */
1040 static int migration_cpu_stop(void *data)
1041 {
1042 	struct migration_arg *arg = data;
1043 	struct task_struct *p = arg->task;
1044 	struct rq *rq = this_rq();
1045 
1046 	/*
1047 	 * The original target cpu might have gone down and we might
1048 	 * be on another cpu but it doesn't matter.
1049 	 */
1050 	local_irq_disable();
1051 	/*
1052 	 * We need to explicitly wake pending tasks before running
1053 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1054 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055 	 */
1056 	sched_ttwu_pending();
1057 
1058 	raw_spin_lock(&p->pi_lock);
1059 	raw_spin_lock(&rq->lock);
1060 	/*
1061 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1062 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063 	 * we're holding p->pi_lock.
1064 	 */
1065 	if (task_rq(p) == rq && task_on_rq_queued(p))
1066 		rq = __migrate_task(rq, p, arg->dest_cpu);
1067 	raw_spin_unlock(&rq->lock);
1068 	raw_spin_unlock(&p->pi_lock);
1069 
1070 	local_irq_enable();
1071 	return 0;
1072 }
1073 
1074 /*
1075  * sched_class::set_cpus_allowed must do the below, but is not required to
1076  * actually call this function.
1077  */
1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1079 {
1080 	cpumask_copy(&p->cpus_allowed, new_mask);
1081 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1082 }
1083 
1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085 {
1086 	struct rq *rq = task_rq(p);
1087 	bool queued, running;
1088 
1089 	lockdep_assert_held(&p->pi_lock);
1090 
1091 	queued = task_on_rq_queued(p);
1092 	running = task_current(rq, p);
1093 
1094 	if (queued) {
1095 		/*
1096 		 * Because __kthread_bind() calls this on blocked tasks without
1097 		 * holding rq->lock.
1098 		 */
1099 		lockdep_assert_held(&rq->lock);
1100 		dequeue_task(rq, p, DEQUEUE_SAVE);
1101 	}
1102 	if (running)
1103 		put_prev_task(rq, p);
1104 
1105 	p->sched_class->set_cpus_allowed(p, new_mask);
1106 
1107 	if (running)
1108 		p->sched_class->set_curr_task(rq);
1109 	if (queued)
1110 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1111 }
1112 
1113 /*
1114  * Change a given task's CPU affinity. Migrate the thread to a
1115  * proper CPU and schedule it away if the CPU it's executing on
1116  * is removed from the allowed bitmask.
1117  *
1118  * NOTE: the caller must have a valid reference to the task, the
1119  * task must not exit() & deallocate itself prematurely. The
1120  * call is not atomic; no spinlocks may be held.
1121  */
1122 static int __set_cpus_allowed_ptr(struct task_struct *p,
1123 				  const struct cpumask *new_mask, bool check)
1124 {
1125 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1126 	unsigned int dest_cpu;
1127 	struct rq_flags rf;
1128 	struct rq *rq;
1129 	int ret = 0;
1130 
1131 	rq = task_rq_lock(p, &rf);
1132 
1133 	if (p->flags & PF_KTHREAD) {
1134 		/*
1135 		 * Kernel threads are allowed on online && !active CPUs
1136 		 */
1137 		cpu_valid_mask = cpu_online_mask;
1138 	}
1139 
1140 	/*
1141 	 * Must re-check here, to close a race against __kthread_bind(),
1142 	 * sched_setaffinity() is not guaranteed to observe the flag.
1143 	 */
1144 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145 		ret = -EINVAL;
1146 		goto out;
1147 	}
1148 
1149 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1150 		goto out;
1151 
1152 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1153 		ret = -EINVAL;
1154 		goto out;
1155 	}
1156 
1157 	do_set_cpus_allowed(p, new_mask);
1158 
1159 	if (p->flags & PF_KTHREAD) {
1160 		/*
1161 		 * For kernel threads that do indeed end up on online &&
1162 		 * !active we want to ensure they are strict per-cpu threads.
1163 		 */
1164 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1166 			p->nr_cpus_allowed != 1);
1167 	}
1168 
1169 	/* Can the task run on the task's current CPU? If so, we're done */
1170 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1171 		goto out;
1172 
1173 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1174 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1175 		struct migration_arg arg = { p, dest_cpu };
1176 		/* Need help from migration thread: drop lock and wait. */
1177 		task_rq_unlock(rq, p, &rf);
1178 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179 		tlb_migrate_finish(p->mm);
1180 		return 0;
1181 	} else if (task_on_rq_queued(p)) {
1182 		/*
1183 		 * OK, since we're going to drop the lock immediately
1184 		 * afterwards anyway.
1185 		 */
1186 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1187 		rq = move_queued_task(rq, p, dest_cpu);
1188 		lockdep_repin_lock(&rq->lock, rf.cookie);
1189 	}
1190 out:
1191 	task_rq_unlock(rq, p, &rf);
1192 
1193 	return ret;
1194 }
1195 
1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197 {
1198 	return __set_cpus_allowed_ptr(p, new_mask, false);
1199 }
1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201 
1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1203 {
1204 #ifdef CONFIG_SCHED_DEBUG
1205 	/*
1206 	 * We should never call set_task_cpu() on a blocked task,
1207 	 * ttwu() will sort out the placement.
1208 	 */
1209 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1210 			!p->on_rq);
1211 
1212 	/*
1213 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215 	 * time relying on p->on_rq.
1216 	 */
1217 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218 		     p->sched_class == &fair_sched_class &&
1219 		     (p->on_rq && !task_on_rq_migrating(p)));
1220 
1221 #ifdef CONFIG_LOCKDEP
1222 	/*
1223 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1224 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225 	 *
1226 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1227 	 * see task_group().
1228 	 *
1229 	 * Furthermore, all task_rq users should acquire both locks, see
1230 	 * task_rq_lock().
1231 	 */
1232 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233 				      lockdep_is_held(&task_rq(p)->lock)));
1234 #endif
1235 #endif
1236 
1237 	trace_sched_migrate_task(p, new_cpu);
1238 
1239 	if (task_cpu(p) != new_cpu) {
1240 		if (p->sched_class->migrate_task_rq)
1241 			p->sched_class->migrate_task_rq(p);
1242 		p->se.nr_migrations++;
1243 		perf_event_task_migrate(p);
1244 	}
1245 
1246 	__set_task_cpu(p, new_cpu);
1247 }
1248 
1249 static void __migrate_swap_task(struct task_struct *p, int cpu)
1250 {
1251 	if (task_on_rq_queued(p)) {
1252 		struct rq *src_rq, *dst_rq;
1253 
1254 		src_rq = task_rq(p);
1255 		dst_rq = cpu_rq(cpu);
1256 
1257 		p->on_rq = TASK_ON_RQ_MIGRATING;
1258 		deactivate_task(src_rq, p, 0);
1259 		set_task_cpu(p, cpu);
1260 		activate_task(dst_rq, p, 0);
1261 		p->on_rq = TASK_ON_RQ_QUEUED;
1262 		check_preempt_curr(dst_rq, p, 0);
1263 	} else {
1264 		/*
1265 		 * Task isn't running anymore; make it appear like we migrated
1266 		 * it before it went to sleep. This means on wakeup we make the
1267 		 * previous cpu our targer instead of where it really is.
1268 		 */
1269 		p->wake_cpu = cpu;
1270 	}
1271 }
1272 
1273 struct migration_swap_arg {
1274 	struct task_struct *src_task, *dst_task;
1275 	int src_cpu, dst_cpu;
1276 };
1277 
1278 static int migrate_swap_stop(void *data)
1279 {
1280 	struct migration_swap_arg *arg = data;
1281 	struct rq *src_rq, *dst_rq;
1282 	int ret = -EAGAIN;
1283 
1284 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285 		return -EAGAIN;
1286 
1287 	src_rq = cpu_rq(arg->src_cpu);
1288 	dst_rq = cpu_rq(arg->dst_cpu);
1289 
1290 	double_raw_lock(&arg->src_task->pi_lock,
1291 			&arg->dst_task->pi_lock);
1292 	double_rq_lock(src_rq, dst_rq);
1293 
1294 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295 		goto unlock;
1296 
1297 	if (task_cpu(arg->src_task) != arg->src_cpu)
1298 		goto unlock;
1299 
1300 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301 		goto unlock;
1302 
1303 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304 		goto unlock;
1305 
1306 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1307 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1308 
1309 	ret = 0;
1310 
1311 unlock:
1312 	double_rq_unlock(src_rq, dst_rq);
1313 	raw_spin_unlock(&arg->dst_task->pi_lock);
1314 	raw_spin_unlock(&arg->src_task->pi_lock);
1315 
1316 	return ret;
1317 }
1318 
1319 /*
1320  * Cross migrate two tasks
1321  */
1322 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323 {
1324 	struct migration_swap_arg arg;
1325 	int ret = -EINVAL;
1326 
1327 	arg = (struct migration_swap_arg){
1328 		.src_task = cur,
1329 		.src_cpu = task_cpu(cur),
1330 		.dst_task = p,
1331 		.dst_cpu = task_cpu(p),
1332 	};
1333 
1334 	if (arg.src_cpu == arg.dst_cpu)
1335 		goto out;
1336 
1337 	/*
1338 	 * These three tests are all lockless; this is OK since all of them
1339 	 * will be re-checked with proper locks held further down the line.
1340 	 */
1341 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342 		goto out;
1343 
1344 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345 		goto out;
1346 
1347 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348 		goto out;
1349 
1350 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352 
1353 out:
1354 	return ret;
1355 }
1356 
1357 /*
1358  * wait_task_inactive - wait for a thread to unschedule.
1359  *
1360  * If @match_state is nonzero, it's the @p->state value just checked and
1361  * not expected to change.  If it changes, i.e. @p might have woken up,
1362  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1363  * we return a positive number (its total switch count).  If a second call
1364  * a short while later returns the same number, the caller can be sure that
1365  * @p has remained unscheduled the whole time.
1366  *
1367  * The caller must ensure that the task *will* unschedule sometime soon,
1368  * else this function might spin for a *long* time. This function can't
1369  * be called with interrupts off, or it may introduce deadlock with
1370  * smp_call_function() if an IPI is sent by the same process we are
1371  * waiting to become inactive.
1372  */
1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1374 {
1375 	int running, queued;
1376 	struct rq_flags rf;
1377 	unsigned long ncsw;
1378 	struct rq *rq;
1379 
1380 	for (;;) {
1381 		/*
1382 		 * We do the initial early heuristics without holding
1383 		 * any task-queue locks at all. We'll only try to get
1384 		 * the runqueue lock when things look like they will
1385 		 * work out!
1386 		 */
1387 		rq = task_rq(p);
1388 
1389 		/*
1390 		 * If the task is actively running on another CPU
1391 		 * still, just relax and busy-wait without holding
1392 		 * any locks.
1393 		 *
1394 		 * NOTE! Since we don't hold any locks, it's not
1395 		 * even sure that "rq" stays as the right runqueue!
1396 		 * But we don't care, since "task_running()" will
1397 		 * return false if the runqueue has changed and p
1398 		 * is actually now running somewhere else!
1399 		 */
1400 		while (task_running(rq, p)) {
1401 			if (match_state && unlikely(p->state != match_state))
1402 				return 0;
1403 			cpu_relax();
1404 		}
1405 
1406 		/*
1407 		 * Ok, time to look more closely! We need the rq
1408 		 * lock now, to be *sure*. If we're wrong, we'll
1409 		 * just go back and repeat.
1410 		 */
1411 		rq = task_rq_lock(p, &rf);
1412 		trace_sched_wait_task(p);
1413 		running = task_running(rq, p);
1414 		queued = task_on_rq_queued(p);
1415 		ncsw = 0;
1416 		if (!match_state || p->state == match_state)
1417 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418 		task_rq_unlock(rq, p, &rf);
1419 
1420 		/*
1421 		 * If it changed from the expected state, bail out now.
1422 		 */
1423 		if (unlikely(!ncsw))
1424 			break;
1425 
1426 		/*
1427 		 * Was it really running after all now that we
1428 		 * checked with the proper locks actually held?
1429 		 *
1430 		 * Oops. Go back and try again..
1431 		 */
1432 		if (unlikely(running)) {
1433 			cpu_relax();
1434 			continue;
1435 		}
1436 
1437 		/*
1438 		 * It's not enough that it's not actively running,
1439 		 * it must be off the runqueue _entirely_, and not
1440 		 * preempted!
1441 		 *
1442 		 * So if it was still runnable (but just not actively
1443 		 * running right now), it's preempted, and we should
1444 		 * yield - it could be a while.
1445 		 */
1446 		if (unlikely(queued)) {
1447 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448 
1449 			set_current_state(TASK_UNINTERRUPTIBLE);
1450 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451 			continue;
1452 		}
1453 
1454 		/*
1455 		 * Ahh, all good. It wasn't running, and it wasn't
1456 		 * runnable, which means that it will never become
1457 		 * running in the future either. We're all done!
1458 		 */
1459 		break;
1460 	}
1461 
1462 	return ncsw;
1463 }
1464 
1465 /***
1466  * kick_process - kick a running thread to enter/exit the kernel
1467  * @p: the to-be-kicked thread
1468  *
1469  * Cause a process which is running on another CPU to enter
1470  * kernel-mode, without any delay. (to get signals handled.)
1471  *
1472  * NOTE: this function doesn't have to take the runqueue lock,
1473  * because all it wants to ensure is that the remote task enters
1474  * the kernel. If the IPI races and the task has been migrated
1475  * to another CPU then no harm is done and the purpose has been
1476  * achieved as well.
1477  */
1478 void kick_process(struct task_struct *p)
1479 {
1480 	int cpu;
1481 
1482 	preempt_disable();
1483 	cpu = task_cpu(p);
1484 	if ((cpu != smp_processor_id()) && task_curr(p))
1485 		smp_send_reschedule(cpu);
1486 	preempt_enable();
1487 }
1488 EXPORT_SYMBOL_GPL(kick_process);
1489 
1490 /*
1491  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492  *
1493  * A few notes on cpu_active vs cpu_online:
1494  *
1495  *  - cpu_active must be a subset of cpu_online
1496  *
1497  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498  *    see __set_cpus_allowed_ptr(). At this point the newly online
1499  *    cpu isn't yet part of the sched domains, and balancing will not
1500  *    see it.
1501  *
1502  *  - on cpu-down we clear cpu_active() to mask the sched domains and
1503  *    avoid the load balancer to place new tasks on the to be removed
1504  *    cpu. Existing tasks will remain running there and will be taken
1505  *    off.
1506  *
1507  * This means that fallback selection must not select !active CPUs.
1508  * And can assume that any active CPU must be online. Conversely
1509  * select_task_rq() below may allow selection of !active CPUs in order
1510  * to satisfy the above rules.
1511  */
1512 static int select_fallback_rq(int cpu, struct task_struct *p)
1513 {
1514 	int nid = cpu_to_node(cpu);
1515 	const struct cpumask *nodemask = NULL;
1516 	enum { cpuset, possible, fail } state = cpuset;
1517 	int dest_cpu;
1518 
1519 	/*
1520 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 	 * will return -1. There is no cpu on the node, and we should
1522 	 * select the cpu on the other node.
1523 	 */
1524 	if (nid != -1) {
1525 		nodemask = cpumask_of_node(nid);
1526 
1527 		/* Look for allowed, online CPU in same node. */
1528 		for_each_cpu(dest_cpu, nodemask) {
1529 			if (!cpu_active(dest_cpu))
1530 				continue;
1531 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532 				return dest_cpu;
1533 		}
1534 	}
1535 
1536 	for (;;) {
1537 		/* Any allowed, online CPU? */
1538 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539 			if (!cpu_active(dest_cpu))
1540 				continue;
1541 			goto out;
1542 		}
1543 
1544 		/* No more Mr. Nice Guy. */
1545 		switch (state) {
1546 		case cpuset:
1547 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1548 				cpuset_cpus_allowed_fallback(p);
1549 				state = possible;
1550 				break;
1551 			}
1552 			/* fall-through */
1553 		case possible:
1554 			do_set_cpus_allowed(p, cpu_possible_mask);
1555 			state = fail;
1556 			break;
1557 
1558 		case fail:
1559 			BUG();
1560 			break;
1561 		}
1562 	}
1563 
1564 out:
1565 	if (state != cpuset) {
1566 		/*
1567 		 * Don't tell them about moving exiting tasks or
1568 		 * kernel threads (both mm NULL), since they never
1569 		 * leave kernel.
1570 		 */
1571 		if (p->mm && printk_ratelimit()) {
1572 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1573 					task_pid_nr(p), p->comm, cpu);
1574 		}
1575 	}
1576 
1577 	return dest_cpu;
1578 }
1579 
1580 /*
1581  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1582  */
1583 static inline
1584 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1585 {
1586 	lockdep_assert_held(&p->pi_lock);
1587 
1588 	if (tsk_nr_cpus_allowed(p) > 1)
1589 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1590 	else
1591 		cpu = cpumask_any(tsk_cpus_allowed(p));
1592 
1593 	/*
1594 	 * In order not to call set_task_cpu() on a blocking task we need
1595 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1596 	 * cpu.
1597 	 *
1598 	 * Since this is common to all placement strategies, this lives here.
1599 	 *
1600 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1601 	 *   not worry about this generic constraint ]
1602 	 */
1603 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1604 		     !cpu_online(cpu)))
1605 		cpu = select_fallback_rq(task_cpu(p), p);
1606 
1607 	return cpu;
1608 }
1609 
1610 static void update_avg(u64 *avg, u64 sample)
1611 {
1612 	s64 diff = sample - *avg;
1613 	*avg += diff >> 3;
1614 }
1615 
1616 #else
1617 
1618 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1619 					 const struct cpumask *new_mask, bool check)
1620 {
1621 	return set_cpus_allowed_ptr(p, new_mask);
1622 }
1623 
1624 #endif /* CONFIG_SMP */
1625 
1626 static void
1627 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1628 {
1629 #ifdef CONFIG_SCHEDSTATS
1630 	struct rq *rq = this_rq();
1631 
1632 #ifdef CONFIG_SMP
1633 	int this_cpu = smp_processor_id();
1634 
1635 	if (cpu == this_cpu) {
1636 		schedstat_inc(rq, ttwu_local);
1637 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1638 	} else {
1639 		struct sched_domain *sd;
1640 
1641 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1642 		rcu_read_lock();
1643 		for_each_domain(this_cpu, sd) {
1644 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1645 				schedstat_inc(sd, ttwu_wake_remote);
1646 				break;
1647 			}
1648 		}
1649 		rcu_read_unlock();
1650 	}
1651 
1652 	if (wake_flags & WF_MIGRATED)
1653 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1654 
1655 #endif /* CONFIG_SMP */
1656 
1657 	schedstat_inc(rq, ttwu_count);
1658 	schedstat_inc(p, se.statistics.nr_wakeups);
1659 
1660 	if (wake_flags & WF_SYNC)
1661 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1662 
1663 #endif /* CONFIG_SCHEDSTATS */
1664 }
1665 
1666 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1667 {
1668 	activate_task(rq, p, en_flags);
1669 	p->on_rq = TASK_ON_RQ_QUEUED;
1670 
1671 	/* if a worker is waking up, notify workqueue */
1672 	if (p->flags & PF_WQ_WORKER)
1673 		wq_worker_waking_up(p, cpu_of(rq));
1674 }
1675 
1676 /*
1677  * Mark the task runnable and perform wakeup-preemption.
1678  */
1679 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1680 			   struct pin_cookie cookie)
1681 {
1682 	check_preempt_curr(rq, p, wake_flags);
1683 	p->state = TASK_RUNNING;
1684 	trace_sched_wakeup(p);
1685 
1686 #ifdef CONFIG_SMP
1687 	if (p->sched_class->task_woken) {
1688 		/*
1689 		 * Our task @p is fully woken up and running; so its safe to
1690 		 * drop the rq->lock, hereafter rq is only used for statistics.
1691 		 */
1692 		lockdep_unpin_lock(&rq->lock, cookie);
1693 		p->sched_class->task_woken(rq, p);
1694 		lockdep_repin_lock(&rq->lock, cookie);
1695 	}
1696 
1697 	if (rq->idle_stamp) {
1698 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1699 		u64 max = 2*rq->max_idle_balance_cost;
1700 
1701 		update_avg(&rq->avg_idle, delta);
1702 
1703 		if (rq->avg_idle > max)
1704 			rq->avg_idle = max;
1705 
1706 		rq->idle_stamp = 0;
1707 	}
1708 #endif
1709 }
1710 
1711 static void
1712 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1713 		 struct pin_cookie cookie)
1714 {
1715 	int en_flags = ENQUEUE_WAKEUP;
1716 
1717 	lockdep_assert_held(&rq->lock);
1718 
1719 #ifdef CONFIG_SMP
1720 	if (p->sched_contributes_to_load)
1721 		rq->nr_uninterruptible--;
1722 
1723 	if (wake_flags & WF_MIGRATED)
1724 		en_flags |= ENQUEUE_MIGRATED;
1725 #endif
1726 
1727 	ttwu_activate(rq, p, en_flags);
1728 	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1729 }
1730 
1731 /*
1732  * Called in case the task @p isn't fully descheduled from its runqueue,
1733  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1734  * since all we need to do is flip p->state to TASK_RUNNING, since
1735  * the task is still ->on_rq.
1736  */
1737 static int ttwu_remote(struct task_struct *p, int wake_flags)
1738 {
1739 	struct rq_flags rf;
1740 	struct rq *rq;
1741 	int ret = 0;
1742 
1743 	rq = __task_rq_lock(p, &rf);
1744 	if (task_on_rq_queued(p)) {
1745 		/* check_preempt_curr() may use rq clock */
1746 		update_rq_clock(rq);
1747 		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1748 		ret = 1;
1749 	}
1750 	__task_rq_unlock(rq, &rf);
1751 
1752 	return ret;
1753 }
1754 
1755 #ifdef CONFIG_SMP
1756 void sched_ttwu_pending(void)
1757 {
1758 	struct rq *rq = this_rq();
1759 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1760 	struct pin_cookie cookie;
1761 	struct task_struct *p;
1762 	unsigned long flags;
1763 
1764 	if (!llist)
1765 		return;
1766 
1767 	raw_spin_lock_irqsave(&rq->lock, flags);
1768 	cookie = lockdep_pin_lock(&rq->lock);
1769 
1770 	while (llist) {
1771 		int wake_flags = 0;
1772 
1773 		p = llist_entry(llist, struct task_struct, wake_entry);
1774 		llist = llist_next(llist);
1775 
1776 		if (p->sched_remote_wakeup)
1777 			wake_flags = WF_MIGRATED;
1778 
1779 		ttwu_do_activate(rq, p, wake_flags, cookie);
1780 	}
1781 
1782 	lockdep_unpin_lock(&rq->lock, cookie);
1783 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1784 }
1785 
1786 void scheduler_ipi(void)
1787 {
1788 	/*
1789 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1790 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1791 	 * this IPI.
1792 	 */
1793 	preempt_fold_need_resched();
1794 
1795 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1796 		return;
1797 
1798 	/*
1799 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1800 	 * traditionally all their work was done from the interrupt return
1801 	 * path. Now that we actually do some work, we need to make sure
1802 	 * we do call them.
1803 	 *
1804 	 * Some archs already do call them, luckily irq_enter/exit nest
1805 	 * properly.
1806 	 *
1807 	 * Arguably we should visit all archs and update all handlers,
1808 	 * however a fair share of IPIs are still resched only so this would
1809 	 * somewhat pessimize the simple resched case.
1810 	 */
1811 	irq_enter();
1812 	sched_ttwu_pending();
1813 
1814 	/*
1815 	 * Check if someone kicked us for doing the nohz idle load balance.
1816 	 */
1817 	if (unlikely(got_nohz_idle_kick())) {
1818 		this_rq()->idle_balance = 1;
1819 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1820 	}
1821 	irq_exit();
1822 }
1823 
1824 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1825 {
1826 	struct rq *rq = cpu_rq(cpu);
1827 
1828 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1829 
1830 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1831 		if (!set_nr_if_polling(rq->idle))
1832 			smp_send_reschedule(cpu);
1833 		else
1834 			trace_sched_wake_idle_without_ipi(cpu);
1835 	}
1836 }
1837 
1838 void wake_up_if_idle(int cpu)
1839 {
1840 	struct rq *rq = cpu_rq(cpu);
1841 	unsigned long flags;
1842 
1843 	rcu_read_lock();
1844 
1845 	if (!is_idle_task(rcu_dereference(rq->curr)))
1846 		goto out;
1847 
1848 	if (set_nr_if_polling(rq->idle)) {
1849 		trace_sched_wake_idle_without_ipi(cpu);
1850 	} else {
1851 		raw_spin_lock_irqsave(&rq->lock, flags);
1852 		if (is_idle_task(rq->curr))
1853 			smp_send_reschedule(cpu);
1854 		/* Else cpu is not in idle, do nothing here */
1855 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1856 	}
1857 
1858 out:
1859 	rcu_read_unlock();
1860 }
1861 
1862 bool cpus_share_cache(int this_cpu, int that_cpu)
1863 {
1864 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1865 }
1866 #endif /* CONFIG_SMP */
1867 
1868 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1869 {
1870 	struct rq *rq = cpu_rq(cpu);
1871 	struct pin_cookie cookie;
1872 
1873 #if defined(CONFIG_SMP)
1874 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1875 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1876 		ttwu_queue_remote(p, cpu, wake_flags);
1877 		return;
1878 	}
1879 #endif
1880 
1881 	raw_spin_lock(&rq->lock);
1882 	cookie = lockdep_pin_lock(&rq->lock);
1883 	ttwu_do_activate(rq, p, wake_flags, cookie);
1884 	lockdep_unpin_lock(&rq->lock, cookie);
1885 	raw_spin_unlock(&rq->lock);
1886 }
1887 
1888 /*
1889  * Notes on Program-Order guarantees on SMP systems.
1890  *
1891  *  MIGRATION
1892  *
1893  * The basic program-order guarantee on SMP systems is that when a task [t]
1894  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1895  * execution on its new cpu [c1].
1896  *
1897  * For migration (of runnable tasks) this is provided by the following means:
1898  *
1899  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1900  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1901  *     rq(c1)->lock (if not at the same time, then in that order).
1902  *  C) LOCK of the rq(c1)->lock scheduling in task
1903  *
1904  * Transitivity guarantees that B happens after A and C after B.
1905  * Note: we only require RCpc transitivity.
1906  * Note: the cpu doing B need not be c0 or c1
1907  *
1908  * Example:
1909  *
1910  *   CPU0            CPU1            CPU2
1911  *
1912  *   LOCK rq(0)->lock
1913  *   sched-out X
1914  *   sched-in Y
1915  *   UNLOCK rq(0)->lock
1916  *
1917  *                                   LOCK rq(0)->lock // orders against CPU0
1918  *                                   dequeue X
1919  *                                   UNLOCK rq(0)->lock
1920  *
1921  *                                   LOCK rq(1)->lock
1922  *                                   enqueue X
1923  *                                   UNLOCK rq(1)->lock
1924  *
1925  *                   LOCK rq(1)->lock // orders against CPU2
1926  *                   sched-out Z
1927  *                   sched-in X
1928  *                   UNLOCK rq(1)->lock
1929  *
1930  *
1931  *  BLOCKING -- aka. SLEEP + WAKEUP
1932  *
1933  * For blocking we (obviously) need to provide the same guarantee as for
1934  * migration. However the means are completely different as there is no lock
1935  * chain to provide order. Instead we do:
1936  *
1937  *   1) smp_store_release(X->on_cpu, 0)
1938  *   2) smp_cond_acquire(!X->on_cpu)
1939  *
1940  * Example:
1941  *
1942  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1943  *
1944  *   LOCK rq(0)->lock LOCK X->pi_lock
1945  *   dequeue X
1946  *   sched-out X
1947  *   smp_store_release(X->on_cpu, 0);
1948  *
1949  *                    smp_cond_acquire(!X->on_cpu);
1950  *                    X->state = WAKING
1951  *                    set_task_cpu(X,2)
1952  *
1953  *                    LOCK rq(2)->lock
1954  *                    enqueue X
1955  *                    X->state = RUNNING
1956  *                    UNLOCK rq(2)->lock
1957  *
1958  *                                          LOCK rq(2)->lock // orders against CPU1
1959  *                                          sched-out Z
1960  *                                          sched-in X
1961  *                                          UNLOCK rq(2)->lock
1962  *
1963  *                    UNLOCK X->pi_lock
1964  *   UNLOCK rq(0)->lock
1965  *
1966  *
1967  * However; for wakeups there is a second guarantee we must provide, namely we
1968  * must observe the state that lead to our wakeup. That is, not only must our
1969  * task observe its own prior state, it must also observe the stores prior to
1970  * its wakeup.
1971  *
1972  * This means that any means of doing remote wakeups must order the CPU doing
1973  * the wakeup against the CPU the task is going to end up running on. This,
1974  * however, is already required for the regular Program-Order guarantee above,
1975  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1976  *
1977  */
1978 
1979 /**
1980  * try_to_wake_up - wake up a thread
1981  * @p: the thread to be awakened
1982  * @state: the mask of task states that can be woken
1983  * @wake_flags: wake modifier flags (WF_*)
1984  *
1985  * Put it on the run-queue if it's not already there. The "current"
1986  * thread is always on the run-queue (except when the actual
1987  * re-schedule is in progress), and as such you're allowed to do
1988  * the simpler "current->state = TASK_RUNNING" to mark yourself
1989  * runnable without the overhead of this.
1990  *
1991  * Return: %true if @p was woken up, %false if it was already running.
1992  * or @state didn't match @p's state.
1993  */
1994 static int
1995 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1996 {
1997 	unsigned long flags;
1998 	int cpu, success = 0;
1999 
2000 	/*
2001 	 * If we are going to wake up a thread waiting for CONDITION we
2002 	 * need to ensure that CONDITION=1 done by the caller can not be
2003 	 * reordered with p->state check below. This pairs with mb() in
2004 	 * set_current_state() the waiting thread does.
2005 	 */
2006 	smp_mb__before_spinlock();
2007 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2008 	if (!(p->state & state))
2009 		goto out;
2010 
2011 	trace_sched_waking(p);
2012 
2013 	success = 1; /* we're going to change ->state */
2014 	cpu = task_cpu(p);
2015 
2016 	if (p->on_rq && ttwu_remote(p, wake_flags))
2017 		goto stat;
2018 
2019 #ifdef CONFIG_SMP
2020 	/*
2021 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022 	 * possible to, falsely, observe p->on_cpu == 0.
2023 	 *
2024 	 * One must be running (->on_cpu == 1) in order to remove oneself
2025 	 * from the runqueue.
2026 	 *
2027 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2028 	 *      UNLOCK rq->lock
2029 	 *			RMB
2030 	 *      LOCK   rq->lock
2031 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2032 	 *
2033 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034 	 * from the consecutive calls to schedule(); the first switching to our
2035 	 * task, the second putting it to sleep.
2036 	 */
2037 	smp_rmb();
2038 
2039 	/*
2040 	 * If the owning (remote) cpu is still in the middle of schedule() with
2041 	 * this task as prev, wait until its done referencing the task.
2042 	 *
2043 	 * Pairs with the smp_store_release() in finish_lock_switch().
2044 	 *
2045 	 * This ensures that tasks getting woken will be fully ordered against
2046 	 * their previous state and preserve Program Order.
2047 	 */
2048 	smp_cond_acquire(!p->on_cpu);
2049 
2050 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2051 	p->state = TASK_WAKING;
2052 
2053 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2054 	if (task_cpu(p) != cpu) {
2055 		wake_flags |= WF_MIGRATED;
2056 		set_task_cpu(p, cpu);
2057 	}
2058 #endif /* CONFIG_SMP */
2059 
2060 	ttwu_queue(p, cpu, wake_flags);
2061 stat:
2062 	if (schedstat_enabled())
2063 		ttwu_stat(p, cpu, wake_flags);
2064 out:
2065 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2066 
2067 	return success;
2068 }
2069 
2070 /**
2071  * try_to_wake_up_local - try to wake up a local task with rq lock held
2072  * @p: the thread to be awakened
2073  *
2074  * Put @p on the run-queue if it's not already there. The caller must
2075  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2076  * the current task.
2077  */
2078 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2079 {
2080 	struct rq *rq = task_rq(p);
2081 
2082 	if (WARN_ON_ONCE(rq != this_rq()) ||
2083 	    WARN_ON_ONCE(p == current))
2084 		return;
2085 
2086 	lockdep_assert_held(&rq->lock);
2087 
2088 	if (!raw_spin_trylock(&p->pi_lock)) {
2089 		/*
2090 		 * This is OK, because current is on_cpu, which avoids it being
2091 		 * picked for load-balance and preemption/IRQs are still
2092 		 * disabled avoiding further scheduler activity on it and we've
2093 		 * not yet picked a replacement task.
2094 		 */
2095 		lockdep_unpin_lock(&rq->lock, cookie);
2096 		raw_spin_unlock(&rq->lock);
2097 		raw_spin_lock(&p->pi_lock);
2098 		raw_spin_lock(&rq->lock);
2099 		lockdep_repin_lock(&rq->lock, cookie);
2100 	}
2101 
2102 	if (!(p->state & TASK_NORMAL))
2103 		goto out;
2104 
2105 	trace_sched_waking(p);
2106 
2107 	if (!task_on_rq_queued(p))
2108 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2109 
2110 	ttwu_do_wakeup(rq, p, 0, cookie);
2111 	if (schedstat_enabled())
2112 		ttwu_stat(p, smp_processor_id(), 0);
2113 out:
2114 	raw_spin_unlock(&p->pi_lock);
2115 }
2116 
2117 /**
2118  * wake_up_process - Wake up a specific process
2119  * @p: The process to be woken up.
2120  *
2121  * Attempt to wake up the nominated process and move it to the set of runnable
2122  * processes.
2123  *
2124  * Return: 1 if the process was woken up, 0 if it was already running.
2125  *
2126  * It may be assumed that this function implies a write memory barrier before
2127  * changing the task state if and only if any tasks are woken up.
2128  */
2129 int wake_up_process(struct task_struct *p)
2130 {
2131 	return try_to_wake_up(p, TASK_NORMAL, 0);
2132 }
2133 EXPORT_SYMBOL(wake_up_process);
2134 
2135 int wake_up_state(struct task_struct *p, unsigned int state)
2136 {
2137 	return try_to_wake_up(p, state, 0);
2138 }
2139 
2140 /*
2141  * This function clears the sched_dl_entity static params.
2142  */
2143 void __dl_clear_params(struct task_struct *p)
2144 {
2145 	struct sched_dl_entity *dl_se = &p->dl;
2146 
2147 	dl_se->dl_runtime = 0;
2148 	dl_se->dl_deadline = 0;
2149 	dl_se->dl_period = 0;
2150 	dl_se->flags = 0;
2151 	dl_se->dl_bw = 0;
2152 
2153 	dl_se->dl_throttled = 0;
2154 	dl_se->dl_yielded = 0;
2155 }
2156 
2157 /*
2158  * Perform scheduler related setup for a newly forked process p.
2159  * p is forked by current.
2160  *
2161  * __sched_fork() is basic setup used by init_idle() too:
2162  */
2163 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2164 {
2165 	p->on_rq			= 0;
2166 
2167 	p->se.on_rq			= 0;
2168 	p->se.exec_start		= 0;
2169 	p->se.sum_exec_runtime		= 0;
2170 	p->se.prev_sum_exec_runtime	= 0;
2171 	p->se.nr_migrations		= 0;
2172 	p->se.vruntime			= 0;
2173 	INIT_LIST_HEAD(&p->se.group_node);
2174 
2175 #ifdef CONFIG_FAIR_GROUP_SCHED
2176 	p->se.cfs_rq			= NULL;
2177 #endif
2178 
2179 #ifdef CONFIG_SCHEDSTATS
2180 	/* Even if schedstat is disabled, there should not be garbage */
2181 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2182 #endif
2183 
2184 	RB_CLEAR_NODE(&p->dl.rb_node);
2185 	init_dl_task_timer(&p->dl);
2186 	__dl_clear_params(p);
2187 
2188 	INIT_LIST_HEAD(&p->rt.run_list);
2189 	p->rt.timeout		= 0;
2190 	p->rt.time_slice	= sched_rr_timeslice;
2191 	p->rt.on_rq		= 0;
2192 	p->rt.on_list		= 0;
2193 
2194 #ifdef CONFIG_PREEMPT_NOTIFIERS
2195 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2196 #endif
2197 
2198 #ifdef CONFIG_NUMA_BALANCING
2199 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2200 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2201 		p->mm->numa_scan_seq = 0;
2202 	}
2203 
2204 	if (clone_flags & CLONE_VM)
2205 		p->numa_preferred_nid = current->numa_preferred_nid;
2206 	else
2207 		p->numa_preferred_nid = -1;
2208 
2209 	p->node_stamp = 0ULL;
2210 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2211 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2212 	p->numa_work.next = &p->numa_work;
2213 	p->numa_faults = NULL;
2214 	p->last_task_numa_placement = 0;
2215 	p->last_sum_exec_runtime = 0;
2216 
2217 	p->numa_group = NULL;
2218 #endif /* CONFIG_NUMA_BALANCING */
2219 }
2220 
2221 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2222 
2223 #ifdef CONFIG_NUMA_BALANCING
2224 
2225 void set_numabalancing_state(bool enabled)
2226 {
2227 	if (enabled)
2228 		static_branch_enable(&sched_numa_balancing);
2229 	else
2230 		static_branch_disable(&sched_numa_balancing);
2231 }
2232 
2233 #ifdef CONFIG_PROC_SYSCTL
2234 int sysctl_numa_balancing(struct ctl_table *table, int write,
2235 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2236 {
2237 	struct ctl_table t;
2238 	int err;
2239 	int state = static_branch_likely(&sched_numa_balancing);
2240 
2241 	if (write && !capable(CAP_SYS_ADMIN))
2242 		return -EPERM;
2243 
2244 	t = *table;
2245 	t.data = &state;
2246 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2247 	if (err < 0)
2248 		return err;
2249 	if (write)
2250 		set_numabalancing_state(state);
2251 	return err;
2252 }
2253 #endif
2254 #endif
2255 
2256 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2257 
2258 #ifdef CONFIG_SCHEDSTATS
2259 static void set_schedstats(bool enabled)
2260 {
2261 	if (enabled)
2262 		static_branch_enable(&sched_schedstats);
2263 	else
2264 		static_branch_disable(&sched_schedstats);
2265 }
2266 
2267 void force_schedstat_enabled(void)
2268 {
2269 	if (!schedstat_enabled()) {
2270 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2271 		static_branch_enable(&sched_schedstats);
2272 	}
2273 }
2274 
2275 static int __init setup_schedstats(char *str)
2276 {
2277 	int ret = 0;
2278 	if (!str)
2279 		goto out;
2280 
2281 	if (!strcmp(str, "enable")) {
2282 		set_schedstats(true);
2283 		ret = 1;
2284 	} else if (!strcmp(str, "disable")) {
2285 		set_schedstats(false);
2286 		ret = 1;
2287 	}
2288 out:
2289 	if (!ret)
2290 		pr_warn("Unable to parse schedstats=\n");
2291 
2292 	return ret;
2293 }
2294 __setup("schedstats=", setup_schedstats);
2295 
2296 #ifdef CONFIG_PROC_SYSCTL
2297 int sysctl_schedstats(struct ctl_table *table, int write,
2298 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2299 {
2300 	struct ctl_table t;
2301 	int err;
2302 	int state = static_branch_likely(&sched_schedstats);
2303 
2304 	if (write && !capable(CAP_SYS_ADMIN))
2305 		return -EPERM;
2306 
2307 	t = *table;
2308 	t.data = &state;
2309 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2310 	if (err < 0)
2311 		return err;
2312 	if (write)
2313 		set_schedstats(state);
2314 	return err;
2315 }
2316 #endif
2317 #endif
2318 
2319 /*
2320  * fork()/clone()-time setup:
2321  */
2322 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2323 {
2324 	unsigned long flags;
2325 	int cpu = get_cpu();
2326 
2327 	__sched_fork(clone_flags, p);
2328 	/*
2329 	 * We mark the process as running here. This guarantees that
2330 	 * nobody will actually run it, and a signal or other external
2331 	 * event cannot wake it up and insert it on the runqueue either.
2332 	 */
2333 	p->state = TASK_RUNNING;
2334 
2335 	/*
2336 	 * Make sure we do not leak PI boosting priority to the child.
2337 	 */
2338 	p->prio = current->normal_prio;
2339 
2340 	/*
2341 	 * Revert to default priority/policy on fork if requested.
2342 	 */
2343 	if (unlikely(p->sched_reset_on_fork)) {
2344 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2345 			p->policy = SCHED_NORMAL;
2346 			p->static_prio = NICE_TO_PRIO(0);
2347 			p->rt_priority = 0;
2348 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2349 			p->static_prio = NICE_TO_PRIO(0);
2350 
2351 		p->prio = p->normal_prio = __normal_prio(p);
2352 		set_load_weight(p);
2353 
2354 		/*
2355 		 * We don't need the reset flag anymore after the fork. It has
2356 		 * fulfilled its duty:
2357 		 */
2358 		p->sched_reset_on_fork = 0;
2359 	}
2360 
2361 	if (dl_prio(p->prio)) {
2362 		put_cpu();
2363 		return -EAGAIN;
2364 	} else if (rt_prio(p->prio)) {
2365 		p->sched_class = &rt_sched_class;
2366 	} else {
2367 		p->sched_class = &fair_sched_class;
2368 	}
2369 
2370 	if (p->sched_class->task_fork)
2371 		p->sched_class->task_fork(p);
2372 
2373 	/*
2374 	 * The child is not yet in the pid-hash so no cgroup attach races,
2375 	 * and the cgroup is pinned to this child due to cgroup_fork()
2376 	 * is ran before sched_fork().
2377 	 *
2378 	 * Silence PROVE_RCU.
2379 	 */
2380 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2381 	set_task_cpu(p, cpu);
2382 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2383 
2384 #ifdef CONFIG_SCHED_INFO
2385 	if (likely(sched_info_on()))
2386 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2387 #endif
2388 #if defined(CONFIG_SMP)
2389 	p->on_cpu = 0;
2390 #endif
2391 	init_task_preempt_count(p);
2392 #ifdef CONFIG_SMP
2393 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2394 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2395 #endif
2396 
2397 	put_cpu();
2398 	return 0;
2399 }
2400 
2401 unsigned long to_ratio(u64 period, u64 runtime)
2402 {
2403 	if (runtime == RUNTIME_INF)
2404 		return 1ULL << 20;
2405 
2406 	/*
2407 	 * Doing this here saves a lot of checks in all
2408 	 * the calling paths, and returning zero seems
2409 	 * safe for them anyway.
2410 	 */
2411 	if (period == 0)
2412 		return 0;
2413 
2414 	return div64_u64(runtime << 20, period);
2415 }
2416 
2417 #ifdef CONFIG_SMP
2418 inline struct dl_bw *dl_bw_of(int i)
2419 {
2420 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2421 			 "sched RCU must be held");
2422 	return &cpu_rq(i)->rd->dl_bw;
2423 }
2424 
2425 static inline int dl_bw_cpus(int i)
2426 {
2427 	struct root_domain *rd = cpu_rq(i)->rd;
2428 	int cpus = 0;
2429 
2430 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2431 			 "sched RCU must be held");
2432 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2433 		cpus++;
2434 
2435 	return cpus;
2436 }
2437 #else
2438 inline struct dl_bw *dl_bw_of(int i)
2439 {
2440 	return &cpu_rq(i)->dl.dl_bw;
2441 }
2442 
2443 static inline int dl_bw_cpus(int i)
2444 {
2445 	return 1;
2446 }
2447 #endif
2448 
2449 /*
2450  * We must be sure that accepting a new task (or allowing changing the
2451  * parameters of an existing one) is consistent with the bandwidth
2452  * constraints. If yes, this function also accordingly updates the currently
2453  * allocated bandwidth to reflect the new situation.
2454  *
2455  * This function is called while holding p's rq->lock.
2456  *
2457  * XXX we should delay bw change until the task's 0-lag point, see
2458  * __setparam_dl().
2459  */
2460 static int dl_overflow(struct task_struct *p, int policy,
2461 		       const struct sched_attr *attr)
2462 {
2463 
2464 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2465 	u64 period = attr->sched_period ?: attr->sched_deadline;
2466 	u64 runtime = attr->sched_runtime;
2467 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2468 	int cpus, err = -1;
2469 
2470 	/* !deadline task may carry old deadline bandwidth */
2471 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2472 		return 0;
2473 
2474 	/*
2475 	 * Either if a task, enters, leave, or stays -deadline but changes
2476 	 * its parameters, we may need to update accordingly the total
2477 	 * allocated bandwidth of the container.
2478 	 */
2479 	raw_spin_lock(&dl_b->lock);
2480 	cpus = dl_bw_cpus(task_cpu(p));
2481 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2482 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2483 		__dl_add(dl_b, new_bw);
2484 		err = 0;
2485 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2486 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2487 		__dl_clear(dl_b, p->dl.dl_bw);
2488 		__dl_add(dl_b, new_bw);
2489 		err = 0;
2490 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2491 		__dl_clear(dl_b, p->dl.dl_bw);
2492 		err = 0;
2493 	}
2494 	raw_spin_unlock(&dl_b->lock);
2495 
2496 	return err;
2497 }
2498 
2499 extern void init_dl_bw(struct dl_bw *dl_b);
2500 
2501 /*
2502  * wake_up_new_task - wake up a newly created task for the first time.
2503  *
2504  * This function will do some initial scheduler statistics housekeeping
2505  * that must be done for every newly created context, then puts the task
2506  * on the runqueue and wakes it.
2507  */
2508 void wake_up_new_task(struct task_struct *p)
2509 {
2510 	struct rq_flags rf;
2511 	struct rq *rq;
2512 
2513 	/* Initialize new task's runnable average */
2514 	init_entity_runnable_average(&p->se);
2515 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2516 #ifdef CONFIG_SMP
2517 	/*
2518 	 * Fork balancing, do it here and not earlier because:
2519 	 *  - cpus_allowed can change in the fork path
2520 	 *  - any previously selected cpu might disappear through hotplug
2521 	 */
2522 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2523 #endif
2524 	/* Post initialize new task's util average when its cfs_rq is set */
2525 	post_init_entity_util_avg(&p->se);
2526 
2527 	rq = __task_rq_lock(p, &rf);
2528 	activate_task(rq, p, 0);
2529 	p->on_rq = TASK_ON_RQ_QUEUED;
2530 	trace_sched_wakeup_new(p);
2531 	check_preempt_curr(rq, p, WF_FORK);
2532 #ifdef CONFIG_SMP
2533 	if (p->sched_class->task_woken) {
2534 		/*
2535 		 * Nothing relies on rq->lock after this, so its fine to
2536 		 * drop it.
2537 		 */
2538 		lockdep_unpin_lock(&rq->lock, rf.cookie);
2539 		p->sched_class->task_woken(rq, p);
2540 		lockdep_repin_lock(&rq->lock, rf.cookie);
2541 	}
2542 #endif
2543 	task_rq_unlock(rq, p, &rf);
2544 }
2545 
2546 #ifdef CONFIG_PREEMPT_NOTIFIERS
2547 
2548 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2549 
2550 void preempt_notifier_inc(void)
2551 {
2552 	static_key_slow_inc(&preempt_notifier_key);
2553 }
2554 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2555 
2556 void preempt_notifier_dec(void)
2557 {
2558 	static_key_slow_dec(&preempt_notifier_key);
2559 }
2560 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2561 
2562 /**
2563  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2564  * @notifier: notifier struct to register
2565  */
2566 void preempt_notifier_register(struct preempt_notifier *notifier)
2567 {
2568 	if (!static_key_false(&preempt_notifier_key))
2569 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2570 
2571 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2572 }
2573 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2574 
2575 /**
2576  * preempt_notifier_unregister - no longer interested in preemption notifications
2577  * @notifier: notifier struct to unregister
2578  *
2579  * This is *not* safe to call from within a preemption notifier.
2580  */
2581 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2582 {
2583 	hlist_del(&notifier->link);
2584 }
2585 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2586 
2587 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2588 {
2589 	struct preempt_notifier *notifier;
2590 
2591 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2592 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2593 }
2594 
2595 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2596 {
2597 	if (static_key_false(&preempt_notifier_key))
2598 		__fire_sched_in_preempt_notifiers(curr);
2599 }
2600 
2601 static void
2602 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2603 				   struct task_struct *next)
2604 {
2605 	struct preempt_notifier *notifier;
2606 
2607 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2608 		notifier->ops->sched_out(notifier, next);
2609 }
2610 
2611 static __always_inline void
2612 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2613 				 struct task_struct *next)
2614 {
2615 	if (static_key_false(&preempt_notifier_key))
2616 		__fire_sched_out_preempt_notifiers(curr, next);
2617 }
2618 
2619 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2620 
2621 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2622 {
2623 }
2624 
2625 static inline void
2626 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2627 				 struct task_struct *next)
2628 {
2629 }
2630 
2631 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2632 
2633 /**
2634  * prepare_task_switch - prepare to switch tasks
2635  * @rq: the runqueue preparing to switch
2636  * @prev: the current task that is being switched out
2637  * @next: the task we are going to switch to.
2638  *
2639  * This is called with the rq lock held and interrupts off. It must
2640  * be paired with a subsequent finish_task_switch after the context
2641  * switch.
2642  *
2643  * prepare_task_switch sets up locking and calls architecture specific
2644  * hooks.
2645  */
2646 static inline void
2647 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2648 		    struct task_struct *next)
2649 {
2650 	sched_info_switch(rq, prev, next);
2651 	perf_event_task_sched_out(prev, next);
2652 	fire_sched_out_preempt_notifiers(prev, next);
2653 	prepare_lock_switch(rq, next);
2654 	prepare_arch_switch(next);
2655 }
2656 
2657 /**
2658  * finish_task_switch - clean up after a task-switch
2659  * @prev: the thread we just switched away from.
2660  *
2661  * finish_task_switch must be called after the context switch, paired
2662  * with a prepare_task_switch call before the context switch.
2663  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2664  * and do any other architecture-specific cleanup actions.
2665  *
2666  * Note that we may have delayed dropping an mm in context_switch(). If
2667  * so, we finish that here outside of the runqueue lock. (Doing it
2668  * with the lock held can cause deadlocks; see schedule() for
2669  * details.)
2670  *
2671  * The context switch have flipped the stack from under us and restored the
2672  * local variables which were saved when this task called schedule() in the
2673  * past. prev == current is still correct but we need to recalculate this_rq
2674  * because prev may have moved to another CPU.
2675  */
2676 static struct rq *finish_task_switch(struct task_struct *prev)
2677 	__releases(rq->lock)
2678 {
2679 	struct rq *rq = this_rq();
2680 	struct mm_struct *mm = rq->prev_mm;
2681 	long prev_state;
2682 
2683 	/*
2684 	 * The previous task will have left us with a preempt_count of 2
2685 	 * because it left us after:
2686 	 *
2687 	 *	schedule()
2688 	 *	  preempt_disable();			// 1
2689 	 *	  __schedule()
2690 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2691 	 *
2692 	 * Also, see FORK_PREEMPT_COUNT.
2693 	 */
2694 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2695 		      "corrupted preempt_count: %s/%d/0x%x\n",
2696 		      current->comm, current->pid, preempt_count()))
2697 		preempt_count_set(FORK_PREEMPT_COUNT);
2698 
2699 	rq->prev_mm = NULL;
2700 
2701 	/*
2702 	 * A task struct has one reference for the use as "current".
2703 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2704 	 * schedule one last time. The schedule call will never return, and
2705 	 * the scheduled task must drop that reference.
2706 	 *
2707 	 * We must observe prev->state before clearing prev->on_cpu (in
2708 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2709 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2710 	 * transition, resulting in a double drop.
2711 	 */
2712 	prev_state = prev->state;
2713 	vtime_task_switch(prev);
2714 	perf_event_task_sched_in(prev, current);
2715 	finish_lock_switch(rq, prev);
2716 	finish_arch_post_lock_switch();
2717 
2718 	fire_sched_in_preempt_notifiers(current);
2719 	if (mm)
2720 		mmdrop(mm);
2721 	if (unlikely(prev_state == TASK_DEAD)) {
2722 		if (prev->sched_class->task_dead)
2723 			prev->sched_class->task_dead(prev);
2724 
2725 		/*
2726 		 * Remove function-return probe instances associated with this
2727 		 * task and put them back on the free list.
2728 		 */
2729 		kprobe_flush_task(prev);
2730 		put_task_struct(prev);
2731 	}
2732 
2733 	tick_nohz_task_switch();
2734 	return rq;
2735 }
2736 
2737 #ifdef CONFIG_SMP
2738 
2739 /* rq->lock is NOT held, but preemption is disabled */
2740 static void __balance_callback(struct rq *rq)
2741 {
2742 	struct callback_head *head, *next;
2743 	void (*func)(struct rq *rq);
2744 	unsigned long flags;
2745 
2746 	raw_spin_lock_irqsave(&rq->lock, flags);
2747 	head = rq->balance_callback;
2748 	rq->balance_callback = NULL;
2749 	while (head) {
2750 		func = (void (*)(struct rq *))head->func;
2751 		next = head->next;
2752 		head->next = NULL;
2753 		head = next;
2754 
2755 		func(rq);
2756 	}
2757 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2758 }
2759 
2760 static inline void balance_callback(struct rq *rq)
2761 {
2762 	if (unlikely(rq->balance_callback))
2763 		__balance_callback(rq);
2764 }
2765 
2766 #else
2767 
2768 static inline void balance_callback(struct rq *rq)
2769 {
2770 }
2771 
2772 #endif
2773 
2774 /**
2775  * schedule_tail - first thing a freshly forked thread must call.
2776  * @prev: the thread we just switched away from.
2777  */
2778 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2779 	__releases(rq->lock)
2780 {
2781 	struct rq *rq;
2782 
2783 	/*
2784 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2785 	 * finish_task_switch() for details.
2786 	 *
2787 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2788 	 * and the preempt_enable() will end up enabling preemption (on
2789 	 * PREEMPT_COUNT kernels).
2790 	 */
2791 
2792 	rq = finish_task_switch(prev);
2793 	balance_callback(rq);
2794 	preempt_enable();
2795 
2796 	if (current->set_child_tid)
2797 		put_user(task_pid_vnr(current), current->set_child_tid);
2798 }
2799 
2800 /*
2801  * context_switch - switch to the new MM and the new thread's register state.
2802  */
2803 static __always_inline struct rq *
2804 context_switch(struct rq *rq, struct task_struct *prev,
2805 	       struct task_struct *next, struct pin_cookie cookie)
2806 {
2807 	struct mm_struct *mm, *oldmm;
2808 
2809 	prepare_task_switch(rq, prev, next);
2810 
2811 	mm = next->mm;
2812 	oldmm = prev->active_mm;
2813 	/*
2814 	 * For paravirt, this is coupled with an exit in switch_to to
2815 	 * combine the page table reload and the switch backend into
2816 	 * one hypercall.
2817 	 */
2818 	arch_start_context_switch(prev);
2819 
2820 	if (!mm) {
2821 		next->active_mm = oldmm;
2822 		atomic_inc(&oldmm->mm_count);
2823 		enter_lazy_tlb(oldmm, next);
2824 	} else
2825 		switch_mm_irqs_off(oldmm, mm, next);
2826 
2827 	if (!prev->mm) {
2828 		prev->active_mm = NULL;
2829 		rq->prev_mm = oldmm;
2830 	}
2831 	/*
2832 	 * Since the runqueue lock will be released by the next
2833 	 * task (which is an invalid locking op but in the case
2834 	 * of the scheduler it's an obvious special-case), so we
2835 	 * do an early lockdep release here:
2836 	 */
2837 	lockdep_unpin_lock(&rq->lock, cookie);
2838 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2839 
2840 	/* Here we just switch the register state and the stack. */
2841 	switch_to(prev, next, prev);
2842 	barrier();
2843 
2844 	return finish_task_switch(prev);
2845 }
2846 
2847 /*
2848  * nr_running and nr_context_switches:
2849  *
2850  * externally visible scheduler statistics: current number of runnable
2851  * threads, total number of context switches performed since bootup.
2852  */
2853 unsigned long nr_running(void)
2854 {
2855 	unsigned long i, sum = 0;
2856 
2857 	for_each_online_cpu(i)
2858 		sum += cpu_rq(i)->nr_running;
2859 
2860 	return sum;
2861 }
2862 
2863 /*
2864  * Check if only the current task is running on the cpu.
2865  *
2866  * Caution: this function does not check that the caller has disabled
2867  * preemption, thus the result might have a time-of-check-to-time-of-use
2868  * race.  The caller is responsible to use it correctly, for example:
2869  *
2870  * - from a non-preemptable section (of course)
2871  *
2872  * - from a thread that is bound to a single CPU
2873  *
2874  * - in a loop with very short iterations (e.g. a polling loop)
2875  */
2876 bool single_task_running(void)
2877 {
2878 	return raw_rq()->nr_running == 1;
2879 }
2880 EXPORT_SYMBOL(single_task_running);
2881 
2882 unsigned long long nr_context_switches(void)
2883 {
2884 	int i;
2885 	unsigned long long sum = 0;
2886 
2887 	for_each_possible_cpu(i)
2888 		sum += cpu_rq(i)->nr_switches;
2889 
2890 	return sum;
2891 }
2892 
2893 unsigned long nr_iowait(void)
2894 {
2895 	unsigned long i, sum = 0;
2896 
2897 	for_each_possible_cpu(i)
2898 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2899 
2900 	return sum;
2901 }
2902 
2903 unsigned long nr_iowait_cpu(int cpu)
2904 {
2905 	struct rq *this = cpu_rq(cpu);
2906 	return atomic_read(&this->nr_iowait);
2907 }
2908 
2909 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2910 {
2911 	struct rq *rq = this_rq();
2912 	*nr_waiters = atomic_read(&rq->nr_iowait);
2913 	*load = rq->load.weight;
2914 }
2915 
2916 #ifdef CONFIG_SMP
2917 
2918 /*
2919  * sched_exec - execve() is a valuable balancing opportunity, because at
2920  * this point the task has the smallest effective memory and cache footprint.
2921  */
2922 void sched_exec(void)
2923 {
2924 	struct task_struct *p = current;
2925 	unsigned long flags;
2926 	int dest_cpu;
2927 
2928 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2929 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2930 	if (dest_cpu == smp_processor_id())
2931 		goto unlock;
2932 
2933 	if (likely(cpu_active(dest_cpu))) {
2934 		struct migration_arg arg = { p, dest_cpu };
2935 
2936 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2937 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2938 		return;
2939 	}
2940 unlock:
2941 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2942 }
2943 
2944 #endif
2945 
2946 DEFINE_PER_CPU(struct kernel_stat, kstat);
2947 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2948 
2949 EXPORT_PER_CPU_SYMBOL(kstat);
2950 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2951 
2952 /*
2953  * Return accounted runtime for the task.
2954  * In case the task is currently running, return the runtime plus current's
2955  * pending runtime that have not been accounted yet.
2956  */
2957 unsigned long long task_sched_runtime(struct task_struct *p)
2958 {
2959 	struct rq_flags rf;
2960 	struct rq *rq;
2961 	u64 ns;
2962 
2963 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2964 	/*
2965 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2966 	 * So we have a optimization chance when the task's delta_exec is 0.
2967 	 * Reading ->on_cpu is racy, but this is ok.
2968 	 *
2969 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2970 	 * If we race with it entering cpu, unaccounted time is 0. This is
2971 	 * indistinguishable from the read occurring a few cycles earlier.
2972 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2973 	 * been accounted, so we're correct here as well.
2974 	 */
2975 	if (!p->on_cpu || !task_on_rq_queued(p))
2976 		return p->se.sum_exec_runtime;
2977 #endif
2978 
2979 	rq = task_rq_lock(p, &rf);
2980 	/*
2981 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2982 	 * project cycles that may never be accounted to this
2983 	 * thread, breaking clock_gettime().
2984 	 */
2985 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2986 		update_rq_clock(rq);
2987 		p->sched_class->update_curr(rq);
2988 	}
2989 	ns = p->se.sum_exec_runtime;
2990 	task_rq_unlock(rq, p, &rf);
2991 
2992 	return ns;
2993 }
2994 
2995 /*
2996  * This function gets called by the timer code, with HZ frequency.
2997  * We call it with interrupts disabled.
2998  */
2999 void scheduler_tick(void)
3000 {
3001 	int cpu = smp_processor_id();
3002 	struct rq *rq = cpu_rq(cpu);
3003 	struct task_struct *curr = rq->curr;
3004 
3005 	sched_clock_tick();
3006 
3007 	raw_spin_lock(&rq->lock);
3008 	update_rq_clock(rq);
3009 	curr->sched_class->task_tick(rq, curr, 0);
3010 	cpu_load_update_active(rq);
3011 	calc_global_load_tick(rq);
3012 	raw_spin_unlock(&rq->lock);
3013 
3014 	perf_event_task_tick();
3015 
3016 #ifdef CONFIG_SMP
3017 	rq->idle_balance = idle_cpu(cpu);
3018 	trigger_load_balance(rq);
3019 #endif
3020 	rq_last_tick_reset(rq);
3021 }
3022 
3023 #ifdef CONFIG_NO_HZ_FULL
3024 /**
3025  * scheduler_tick_max_deferment
3026  *
3027  * Keep at least one tick per second when a single
3028  * active task is running because the scheduler doesn't
3029  * yet completely support full dynticks environment.
3030  *
3031  * This makes sure that uptime, CFS vruntime, load
3032  * balancing, etc... continue to move forward, even
3033  * with a very low granularity.
3034  *
3035  * Return: Maximum deferment in nanoseconds.
3036  */
3037 u64 scheduler_tick_max_deferment(void)
3038 {
3039 	struct rq *rq = this_rq();
3040 	unsigned long next, now = READ_ONCE(jiffies);
3041 
3042 	next = rq->last_sched_tick + HZ;
3043 
3044 	if (time_before_eq(next, now))
3045 		return 0;
3046 
3047 	return jiffies_to_nsecs(next - now);
3048 }
3049 #endif
3050 
3051 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3052 				defined(CONFIG_PREEMPT_TRACER))
3053 /*
3054  * If the value passed in is equal to the current preempt count
3055  * then we just disabled preemption. Start timing the latency.
3056  */
3057 static inline void preempt_latency_start(int val)
3058 {
3059 	if (preempt_count() == val) {
3060 		unsigned long ip = get_lock_parent_ip();
3061 #ifdef CONFIG_DEBUG_PREEMPT
3062 		current->preempt_disable_ip = ip;
3063 #endif
3064 		trace_preempt_off(CALLER_ADDR0, ip);
3065 	}
3066 }
3067 
3068 void preempt_count_add(int val)
3069 {
3070 #ifdef CONFIG_DEBUG_PREEMPT
3071 	/*
3072 	 * Underflow?
3073 	 */
3074 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3075 		return;
3076 #endif
3077 	__preempt_count_add(val);
3078 #ifdef CONFIG_DEBUG_PREEMPT
3079 	/*
3080 	 * Spinlock count overflowing soon?
3081 	 */
3082 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3083 				PREEMPT_MASK - 10);
3084 #endif
3085 	preempt_latency_start(val);
3086 }
3087 EXPORT_SYMBOL(preempt_count_add);
3088 NOKPROBE_SYMBOL(preempt_count_add);
3089 
3090 /*
3091  * If the value passed in equals to the current preempt count
3092  * then we just enabled preemption. Stop timing the latency.
3093  */
3094 static inline void preempt_latency_stop(int val)
3095 {
3096 	if (preempt_count() == val)
3097 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3098 }
3099 
3100 void preempt_count_sub(int val)
3101 {
3102 #ifdef CONFIG_DEBUG_PREEMPT
3103 	/*
3104 	 * Underflow?
3105 	 */
3106 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3107 		return;
3108 	/*
3109 	 * Is the spinlock portion underflowing?
3110 	 */
3111 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3112 			!(preempt_count() & PREEMPT_MASK)))
3113 		return;
3114 #endif
3115 
3116 	preempt_latency_stop(val);
3117 	__preempt_count_sub(val);
3118 }
3119 EXPORT_SYMBOL(preempt_count_sub);
3120 NOKPROBE_SYMBOL(preempt_count_sub);
3121 
3122 #else
3123 static inline void preempt_latency_start(int val) { }
3124 static inline void preempt_latency_stop(int val) { }
3125 #endif
3126 
3127 /*
3128  * Print scheduling while atomic bug:
3129  */
3130 static noinline void __schedule_bug(struct task_struct *prev)
3131 {
3132 	if (oops_in_progress)
3133 		return;
3134 
3135 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3136 		prev->comm, prev->pid, preempt_count());
3137 
3138 	debug_show_held_locks(prev);
3139 	print_modules();
3140 	if (irqs_disabled())
3141 		print_irqtrace_events(prev);
3142 #ifdef CONFIG_DEBUG_PREEMPT
3143 	if (in_atomic_preempt_off()) {
3144 		pr_err("Preemption disabled at:");
3145 		print_ip_sym(current->preempt_disable_ip);
3146 		pr_cont("\n");
3147 	}
3148 #endif
3149 	dump_stack();
3150 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3151 }
3152 
3153 /*
3154  * Various schedule()-time debugging checks and statistics:
3155  */
3156 static inline void schedule_debug(struct task_struct *prev)
3157 {
3158 #ifdef CONFIG_SCHED_STACK_END_CHECK
3159 	BUG_ON(task_stack_end_corrupted(prev));
3160 #endif
3161 
3162 	if (unlikely(in_atomic_preempt_off())) {
3163 		__schedule_bug(prev);
3164 		preempt_count_set(PREEMPT_DISABLED);
3165 	}
3166 	rcu_sleep_check();
3167 
3168 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3169 
3170 	schedstat_inc(this_rq(), sched_count);
3171 }
3172 
3173 /*
3174  * Pick up the highest-prio task:
3175  */
3176 static inline struct task_struct *
3177 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3178 {
3179 	const struct sched_class *class = &fair_sched_class;
3180 	struct task_struct *p;
3181 
3182 	/*
3183 	 * Optimization: we know that if all tasks are in
3184 	 * the fair class we can call that function directly:
3185 	 */
3186 	if (likely(prev->sched_class == class &&
3187 		   rq->nr_running == rq->cfs.h_nr_running)) {
3188 		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3189 		if (unlikely(p == RETRY_TASK))
3190 			goto again;
3191 
3192 		/* assumes fair_sched_class->next == idle_sched_class */
3193 		if (unlikely(!p))
3194 			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3195 
3196 		return p;
3197 	}
3198 
3199 again:
3200 	for_each_class(class) {
3201 		p = class->pick_next_task(rq, prev, cookie);
3202 		if (p) {
3203 			if (unlikely(p == RETRY_TASK))
3204 				goto again;
3205 			return p;
3206 		}
3207 	}
3208 
3209 	BUG(); /* the idle class will always have a runnable task */
3210 }
3211 
3212 /*
3213  * __schedule() is the main scheduler function.
3214  *
3215  * The main means of driving the scheduler and thus entering this function are:
3216  *
3217  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3218  *
3219  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3220  *      paths. For example, see arch/x86/entry_64.S.
3221  *
3222  *      To drive preemption between tasks, the scheduler sets the flag in timer
3223  *      interrupt handler scheduler_tick().
3224  *
3225  *   3. Wakeups don't really cause entry into schedule(). They add a
3226  *      task to the run-queue and that's it.
3227  *
3228  *      Now, if the new task added to the run-queue preempts the current
3229  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3230  *      called on the nearest possible occasion:
3231  *
3232  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3233  *
3234  *         - in syscall or exception context, at the next outmost
3235  *           preempt_enable(). (this might be as soon as the wake_up()'s
3236  *           spin_unlock()!)
3237  *
3238  *         - in IRQ context, return from interrupt-handler to
3239  *           preemptible context
3240  *
3241  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3242  *         then at the next:
3243  *
3244  *          - cond_resched() call
3245  *          - explicit schedule() call
3246  *          - return from syscall or exception to user-space
3247  *          - return from interrupt-handler to user-space
3248  *
3249  * WARNING: must be called with preemption disabled!
3250  */
3251 static void __sched notrace __schedule(bool preempt)
3252 {
3253 	struct task_struct *prev, *next;
3254 	unsigned long *switch_count;
3255 	struct pin_cookie cookie;
3256 	struct rq *rq;
3257 	int cpu;
3258 
3259 	cpu = smp_processor_id();
3260 	rq = cpu_rq(cpu);
3261 	prev = rq->curr;
3262 
3263 	/*
3264 	 * do_exit() calls schedule() with preemption disabled as an exception;
3265 	 * however we must fix that up, otherwise the next task will see an
3266 	 * inconsistent (higher) preempt count.
3267 	 *
3268 	 * It also avoids the below schedule_debug() test from complaining
3269 	 * about this.
3270 	 */
3271 	if (unlikely(prev->state == TASK_DEAD))
3272 		preempt_enable_no_resched_notrace();
3273 
3274 	schedule_debug(prev);
3275 
3276 	if (sched_feat(HRTICK))
3277 		hrtick_clear(rq);
3278 
3279 	local_irq_disable();
3280 	rcu_note_context_switch();
3281 
3282 	/*
3283 	 * Make sure that signal_pending_state()->signal_pending() below
3284 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3285 	 * done by the caller to avoid the race with signal_wake_up().
3286 	 */
3287 	smp_mb__before_spinlock();
3288 	raw_spin_lock(&rq->lock);
3289 	cookie = lockdep_pin_lock(&rq->lock);
3290 
3291 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3292 
3293 	switch_count = &prev->nivcsw;
3294 	if (!preempt && prev->state) {
3295 		if (unlikely(signal_pending_state(prev->state, prev))) {
3296 			prev->state = TASK_RUNNING;
3297 		} else {
3298 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3299 			prev->on_rq = 0;
3300 
3301 			/*
3302 			 * If a worker went to sleep, notify and ask workqueue
3303 			 * whether it wants to wake up a task to maintain
3304 			 * concurrency.
3305 			 */
3306 			if (prev->flags & PF_WQ_WORKER) {
3307 				struct task_struct *to_wakeup;
3308 
3309 				to_wakeup = wq_worker_sleeping(prev);
3310 				if (to_wakeup)
3311 					try_to_wake_up_local(to_wakeup, cookie);
3312 			}
3313 		}
3314 		switch_count = &prev->nvcsw;
3315 	}
3316 
3317 	if (task_on_rq_queued(prev))
3318 		update_rq_clock(rq);
3319 
3320 	next = pick_next_task(rq, prev, cookie);
3321 	clear_tsk_need_resched(prev);
3322 	clear_preempt_need_resched();
3323 	rq->clock_skip_update = 0;
3324 
3325 	if (likely(prev != next)) {
3326 		rq->nr_switches++;
3327 		rq->curr = next;
3328 		++*switch_count;
3329 
3330 		trace_sched_switch(preempt, prev, next);
3331 		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3332 	} else {
3333 		lockdep_unpin_lock(&rq->lock, cookie);
3334 		raw_spin_unlock_irq(&rq->lock);
3335 	}
3336 
3337 	balance_callback(rq);
3338 }
3339 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3340 
3341 static inline void sched_submit_work(struct task_struct *tsk)
3342 {
3343 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3344 		return;
3345 	/*
3346 	 * If we are going to sleep and we have plugged IO queued,
3347 	 * make sure to submit it to avoid deadlocks.
3348 	 */
3349 	if (blk_needs_flush_plug(tsk))
3350 		blk_schedule_flush_plug(tsk);
3351 }
3352 
3353 asmlinkage __visible void __sched schedule(void)
3354 {
3355 	struct task_struct *tsk = current;
3356 
3357 	sched_submit_work(tsk);
3358 	do {
3359 		preempt_disable();
3360 		__schedule(false);
3361 		sched_preempt_enable_no_resched();
3362 	} while (need_resched());
3363 }
3364 EXPORT_SYMBOL(schedule);
3365 
3366 #ifdef CONFIG_CONTEXT_TRACKING
3367 asmlinkage __visible void __sched schedule_user(void)
3368 {
3369 	/*
3370 	 * If we come here after a random call to set_need_resched(),
3371 	 * or we have been woken up remotely but the IPI has not yet arrived,
3372 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3373 	 * we find a better solution.
3374 	 *
3375 	 * NB: There are buggy callers of this function.  Ideally we
3376 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3377 	 * too frequently to make sense yet.
3378 	 */
3379 	enum ctx_state prev_state = exception_enter();
3380 	schedule();
3381 	exception_exit(prev_state);
3382 }
3383 #endif
3384 
3385 /**
3386  * schedule_preempt_disabled - called with preemption disabled
3387  *
3388  * Returns with preemption disabled. Note: preempt_count must be 1
3389  */
3390 void __sched schedule_preempt_disabled(void)
3391 {
3392 	sched_preempt_enable_no_resched();
3393 	schedule();
3394 	preempt_disable();
3395 }
3396 
3397 static void __sched notrace preempt_schedule_common(void)
3398 {
3399 	do {
3400 		/*
3401 		 * Because the function tracer can trace preempt_count_sub()
3402 		 * and it also uses preempt_enable/disable_notrace(), if
3403 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3404 		 * by the function tracer will call this function again and
3405 		 * cause infinite recursion.
3406 		 *
3407 		 * Preemption must be disabled here before the function
3408 		 * tracer can trace. Break up preempt_disable() into two
3409 		 * calls. One to disable preemption without fear of being
3410 		 * traced. The other to still record the preemption latency,
3411 		 * which can also be traced by the function tracer.
3412 		 */
3413 		preempt_disable_notrace();
3414 		preempt_latency_start(1);
3415 		__schedule(true);
3416 		preempt_latency_stop(1);
3417 		preempt_enable_no_resched_notrace();
3418 
3419 		/*
3420 		 * Check again in case we missed a preemption opportunity
3421 		 * between schedule and now.
3422 		 */
3423 	} while (need_resched());
3424 }
3425 
3426 #ifdef CONFIG_PREEMPT
3427 /*
3428  * this is the entry point to schedule() from in-kernel preemption
3429  * off of preempt_enable. Kernel preemptions off return from interrupt
3430  * occur there and call schedule directly.
3431  */
3432 asmlinkage __visible void __sched notrace preempt_schedule(void)
3433 {
3434 	/*
3435 	 * If there is a non-zero preempt_count or interrupts are disabled,
3436 	 * we do not want to preempt the current task. Just return..
3437 	 */
3438 	if (likely(!preemptible()))
3439 		return;
3440 
3441 	preempt_schedule_common();
3442 }
3443 NOKPROBE_SYMBOL(preempt_schedule);
3444 EXPORT_SYMBOL(preempt_schedule);
3445 
3446 /**
3447  * preempt_schedule_notrace - preempt_schedule called by tracing
3448  *
3449  * The tracing infrastructure uses preempt_enable_notrace to prevent
3450  * recursion and tracing preempt enabling caused by the tracing
3451  * infrastructure itself. But as tracing can happen in areas coming
3452  * from userspace or just about to enter userspace, a preempt enable
3453  * can occur before user_exit() is called. This will cause the scheduler
3454  * to be called when the system is still in usermode.
3455  *
3456  * To prevent this, the preempt_enable_notrace will use this function
3457  * instead of preempt_schedule() to exit user context if needed before
3458  * calling the scheduler.
3459  */
3460 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3461 {
3462 	enum ctx_state prev_ctx;
3463 
3464 	if (likely(!preemptible()))
3465 		return;
3466 
3467 	do {
3468 		/*
3469 		 * Because the function tracer can trace preempt_count_sub()
3470 		 * and it also uses preempt_enable/disable_notrace(), if
3471 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3472 		 * by the function tracer will call this function again and
3473 		 * cause infinite recursion.
3474 		 *
3475 		 * Preemption must be disabled here before the function
3476 		 * tracer can trace. Break up preempt_disable() into two
3477 		 * calls. One to disable preemption without fear of being
3478 		 * traced. The other to still record the preemption latency,
3479 		 * which can also be traced by the function tracer.
3480 		 */
3481 		preempt_disable_notrace();
3482 		preempt_latency_start(1);
3483 		/*
3484 		 * Needs preempt disabled in case user_exit() is traced
3485 		 * and the tracer calls preempt_enable_notrace() causing
3486 		 * an infinite recursion.
3487 		 */
3488 		prev_ctx = exception_enter();
3489 		__schedule(true);
3490 		exception_exit(prev_ctx);
3491 
3492 		preempt_latency_stop(1);
3493 		preempt_enable_no_resched_notrace();
3494 	} while (need_resched());
3495 }
3496 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3497 
3498 #endif /* CONFIG_PREEMPT */
3499 
3500 /*
3501  * this is the entry point to schedule() from kernel preemption
3502  * off of irq context.
3503  * Note, that this is called and return with irqs disabled. This will
3504  * protect us against recursive calling from irq.
3505  */
3506 asmlinkage __visible void __sched preempt_schedule_irq(void)
3507 {
3508 	enum ctx_state prev_state;
3509 
3510 	/* Catch callers which need to be fixed */
3511 	BUG_ON(preempt_count() || !irqs_disabled());
3512 
3513 	prev_state = exception_enter();
3514 
3515 	do {
3516 		preempt_disable();
3517 		local_irq_enable();
3518 		__schedule(true);
3519 		local_irq_disable();
3520 		sched_preempt_enable_no_resched();
3521 	} while (need_resched());
3522 
3523 	exception_exit(prev_state);
3524 }
3525 
3526 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3527 			  void *key)
3528 {
3529 	return try_to_wake_up(curr->private, mode, wake_flags);
3530 }
3531 EXPORT_SYMBOL(default_wake_function);
3532 
3533 #ifdef CONFIG_RT_MUTEXES
3534 
3535 /*
3536  * rt_mutex_setprio - set the current priority of a task
3537  * @p: task
3538  * @prio: prio value (kernel-internal form)
3539  *
3540  * This function changes the 'effective' priority of a task. It does
3541  * not touch ->normal_prio like __setscheduler().
3542  *
3543  * Used by the rt_mutex code to implement priority inheritance
3544  * logic. Call site only calls if the priority of the task changed.
3545  */
3546 void rt_mutex_setprio(struct task_struct *p, int prio)
3547 {
3548 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3549 	const struct sched_class *prev_class;
3550 	struct rq_flags rf;
3551 	struct rq *rq;
3552 
3553 	BUG_ON(prio > MAX_PRIO);
3554 
3555 	rq = __task_rq_lock(p, &rf);
3556 
3557 	/*
3558 	 * Idle task boosting is a nono in general. There is one
3559 	 * exception, when PREEMPT_RT and NOHZ is active:
3560 	 *
3561 	 * The idle task calls get_next_timer_interrupt() and holds
3562 	 * the timer wheel base->lock on the CPU and another CPU wants
3563 	 * to access the timer (probably to cancel it). We can safely
3564 	 * ignore the boosting request, as the idle CPU runs this code
3565 	 * with interrupts disabled and will complete the lock
3566 	 * protected section without being interrupted. So there is no
3567 	 * real need to boost.
3568 	 */
3569 	if (unlikely(p == rq->idle)) {
3570 		WARN_ON(p != rq->curr);
3571 		WARN_ON(p->pi_blocked_on);
3572 		goto out_unlock;
3573 	}
3574 
3575 	trace_sched_pi_setprio(p, prio);
3576 	oldprio = p->prio;
3577 
3578 	if (oldprio == prio)
3579 		queue_flag &= ~DEQUEUE_MOVE;
3580 
3581 	prev_class = p->sched_class;
3582 	queued = task_on_rq_queued(p);
3583 	running = task_current(rq, p);
3584 	if (queued)
3585 		dequeue_task(rq, p, queue_flag);
3586 	if (running)
3587 		put_prev_task(rq, p);
3588 
3589 	/*
3590 	 * Boosting condition are:
3591 	 * 1. -rt task is running and holds mutex A
3592 	 *      --> -dl task blocks on mutex A
3593 	 *
3594 	 * 2. -dl task is running and holds mutex A
3595 	 *      --> -dl task blocks on mutex A and could preempt the
3596 	 *          running task
3597 	 */
3598 	if (dl_prio(prio)) {
3599 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3600 		if (!dl_prio(p->normal_prio) ||
3601 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3602 			p->dl.dl_boosted = 1;
3603 			queue_flag |= ENQUEUE_REPLENISH;
3604 		} else
3605 			p->dl.dl_boosted = 0;
3606 		p->sched_class = &dl_sched_class;
3607 	} else if (rt_prio(prio)) {
3608 		if (dl_prio(oldprio))
3609 			p->dl.dl_boosted = 0;
3610 		if (oldprio < prio)
3611 			queue_flag |= ENQUEUE_HEAD;
3612 		p->sched_class = &rt_sched_class;
3613 	} else {
3614 		if (dl_prio(oldprio))
3615 			p->dl.dl_boosted = 0;
3616 		if (rt_prio(oldprio))
3617 			p->rt.timeout = 0;
3618 		p->sched_class = &fair_sched_class;
3619 	}
3620 
3621 	p->prio = prio;
3622 
3623 	if (running)
3624 		p->sched_class->set_curr_task(rq);
3625 	if (queued)
3626 		enqueue_task(rq, p, queue_flag);
3627 
3628 	check_class_changed(rq, p, prev_class, oldprio);
3629 out_unlock:
3630 	preempt_disable(); /* avoid rq from going away on us */
3631 	__task_rq_unlock(rq, &rf);
3632 
3633 	balance_callback(rq);
3634 	preempt_enable();
3635 }
3636 #endif
3637 
3638 void set_user_nice(struct task_struct *p, long nice)
3639 {
3640 	int old_prio, delta, queued;
3641 	struct rq_flags rf;
3642 	struct rq *rq;
3643 
3644 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3645 		return;
3646 	/*
3647 	 * We have to be careful, if called from sys_setpriority(),
3648 	 * the task might be in the middle of scheduling on another CPU.
3649 	 */
3650 	rq = task_rq_lock(p, &rf);
3651 	/*
3652 	 * The RT priorities are set via sched_setscheduler(), but we still
3653 	 * allow the 'normal' nice value to be set - but as expected
3654 	 * it wont have any effect on scheduling until the task is
3655 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3656 	 */
3657 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3658 		p->static_prio = NICE_TO_PRIO(nice);
3659 		goto out_unlock;
3660 	}
3661 	queued = task_on_rq_queued(p);
3662 	if (queued)
3663 		dequeue_task(rq, p, DEQUEUE_SAVE);
3664 
3665 	p->static_prio = NICE_TO_PRIO(nice);
3666 	set_load_weight(p);
3667 	old_prio = p->prio;
3668 	p->prio = effective_prio(p);
3669 	delta = p->prio - old_prio;
3670 
3671 	if (queued) {
3672 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3673 		/*
3674 		 * If the task increased its priority or is running and
3675 		 * lowered its priority, then reschedule its CPU:
3676 		 */
3677 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3678 			resched_curr(rq);
3679 	}
3680 out_unlock:
3681 	task_rq_unlock(rq, p, &rf);
3682 }
3683 EXPORT_SYMBOL(set_user_nice);
3684 
3685 /*
3686  * can_nice - check if a task can reduce its nice value
3687  * @p: task
3688  * @nice: nice value
3689  */
3690 int can_nice(const struct task_struct *p, const int nice)
3691 {
3692 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3693 	int nice_rlim = nice_to_rlimit(nice);
3694 
3695 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3696 		capable(CAP_SYS_NICE));
3697 }
3698 
3699 #ifdef __ARCH_WANT_SYS_NICE
3700 
3701 /*
3702  * sys_nice - change the priority of the current process.
3703  * @increment: priority increment
3704  *
3705  * sys_setpriority is a more generic, but much slower function that
3706  * does similar things.
3707  */
3708 SYSCALL_DEFINE1(nice, int, increment)
3709 {
3710 	long nice, retval;
3711 
3712 	/*
3713 	 * Setpriority might change our priority at the same moment.
3714 	 * We don't have to worry. Conceptually one call occurs first
3715 	 * and we have a single winner.
3716 	 */
3717 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3718 	nice = task_nice(current) + increment;
3719 
3720 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3721 	if (increment < 0 && !can_nice(current, nice))
3722 		return -EPERM;
3723 
3724 	retval = security_task_setnice(current, nice);
3725 	if (retval)
3726 		return retval;
3727 
3728 	set_user_nice(current, nice);
3729 	return 0;
3730 }
3731 
3732 #endif
3733 
3734 /**
3735  * task_prio - return the priority value of a given task.
3736  * @p: the task in question.
3737  *
3738  * Return: The priority value as seen by users in /proc.
3739  * RT tasks are offset by -200. Normal tasks are centered
3740  * around 0, value goes from -16 to +15.
3741  */
3742 int task_prio(const struct task_struct *p)
3743 {
3744 	return p->prio - MAX_RT_PRIO;
3745 }
3746 
3747 /**
3748  * idle_cpu - is a given cpu idle currently?
3749  * @cpu: the processor in question.
3750  *
3751  * Return: 1 if the CPU is currently idle. 0 otherwise.
3752  */
3753 int idle_cpu(int cpu)
3754 {
3755 	struct rq *rq = cpu_rq(cpu);
3756 
3757 	if (rq->curr != rq->idle)
3758 		return 0;
3759 
3760 	if (rq->nr_running)
3761 		return 0;
3762 
3763 #ifdef CONFIG_SMP
3764 	if (!llist_empty(&rq->wake_list))
3765 		return 0;
3766 #endif
3767 
3768 	return 1;
3769 }
3770 
3771 /**
3772  * idle_task - return the idle task for a given cpu.
3773  * @cpu: the processor in question.
3774  *
3775  * Return: The idle task for the cpu @cpu.
3776  */
3777 struct task_struct *idle_task(int cpu)
3778 {
3779 	return cpu_rq(cpu)->idle;
3780 }
3781 
3782 /**
3783  * find_process_by_pid - find a process with a matching PID value.
3784  * @pid: the pid in question.
3785  *
3786  * The task of @pid, if found. %NULL otherwise.
3787  */
3788 static struct task_struct *find_process_by_pid(pid_t pid)
3789 {
3790 	return pid ? find_task_by_vpid(pid) : current;
3791 }
3792 
3793 /*
3794  * This function initializes the sched_dl_entity of a newly becoming
3795  * SCHED_DEADLINE task.
3796  *
3797  * Only the static values are considered here, the actual runtime and the
3798  * absolute deadline will be properly calculated when the task is enqueued
3799  * for the first time with its new policy.
3800  */
3801 static void
3802 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3803 {
3804 	struct sched_dl_entity *dl_se = &p->dl;
3805 
3806 	dl_se->dl_runtime = attr->sched_runtime;
3807 	dl_se->dl_deadline = attr->sched_deadline;
3808 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3809 	dl_se->flags = attr->sched_flags;
3810 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3811 
3812 	/*
3813 	 * Changing the parameters of a task is 'tricky' and we're not doing
3814 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3815 	 *
3816 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3817 	 * point. This would include retaining the task_struct until that time
3818 	 * and change dl_overflow() to not immediately decrement the current
3819 	 * amount.
3820 	 *
3821 	 * Instead we retain the current runtime/deadline and let the new
3822 	 * parameters take effect after the current reservation period lapses.
3823 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3824 	 * before the current scheduling deadline.
3825 	 *
3826 	 * We can still have temporary overloads because we do not delay the
3827 	 * change in bandwidth until that time; so admission control is
3828 	 * not on the safe side. It does however guarantee tasks will never
3829 	 * consume more than promised.
3830 	 */
3831 }
3832 
3833 /*
3834  * sched_setparam() passes in -1 for its policy, to let the functions
3835  * it calls know not to change it.
3836  */
3837 #define SETPARAM_POLICY	-1
3838 
3839 static void __setscheduler_params(struct task_struct *p,
3840 		const struct sched_attr *attr)
3841 {
3842 	int policy = attr->sched_policy;
3843 
3844 	if (policy == SETPARAM_POLICY)
3845 		policy = p->policy;
3846 
3847 	p->policy = policy;
3848 
3849 	if (dl_policy(policy))
3850 		__setparam_dl(p, attr);
3851 	else if (fair_policy(policy))
3852 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3853 
3854 	/*
3855 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3856 	 * !rt_policy. Always setting this ensures that things like
3857 	 * getparam()/getattr() don't report silly values for !rt tasks.
3858 	 */
3859 	p->rt_priority = attr->sched_priority;
3860 	p->normal_prio = normal_prio(p);
3861 	set_load_weight(p);
3862 }
3863 
3864 /* Actually do priority change: must hold pi & rq lock. */
3865 static void __setscheduler(struct rq *rq, struct task_struct *p,
3866 			   const struct sched_attr *attr, bool keep_boost)
3867 {
3868 	__setscheduler_params(p, attr);
3869 
3870 	/*
3871 	 * Keep a potential priority boosting if called from
3872 	 * sched_setscheduler().
3873 	 */
3874 	if (keep_boost)
3875 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3876 	else
3877 		p->prio = normal_prio(p);
3878 
3879 	if (dl_prio(p->prio))
3880 		p->sched_class = &dl_sched_class;
3881 	else if (rt_prio(p->prio))
3882 		p->sched_class = &rt_sched_class;
3883 	else
3884 		p->sched_class = &fair_sched_class;
3885 }
3886 
3887 static void
3888 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3889 {
3890 	struct sched_dl_entity *dl_se = &p->dl;
3891 
3892 	attr->sched_priority = p->rt_priority;
3893 	attr->sched_runtime = dl_se->dl_runtime;
3894 	attr->sched_deadline = dl_se->dl_deadline;
3895 	attr->sched_period = dl_se->dl_period;
3896 	attr->sched_flags = dl_se->flags;
3897 }
3898 
3899 /*
3900  * This function validates the new parameters of a -deadline task.
3901  * We ask for the deadline not being zero, and greater or equal
3902  * than the runtime, as well as the period of being zero or
3903  * greater than deadline. Furthermore, we have to be sure that
3904  * user parameters are above the internal resolution of 1us (we
3905  * check sched_runtime only since it is always the smaller one) and
3906  * below 2^63 ns (we have to check both sched_deadline and
3907  * sched_period, as the latter can be zero).
3908  */
3909 static bool
3910 __checkparam_dl(const struct sched_attr *attr)
3911 {
3912 	/* deadline != 0 */
3913 	if (attr->sched_deadline == 0)
3914 		return false;
3915 
3916 	/*
3917 	 * Since we truncate DL_SCALE bits, make sure we're at least
3918 	 * that big.
3919 	 */
3920 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3921 		return false;
3922 
3923 	/*
3924 	 * Since we use the MSB for wrap-around and sign issues, make
3925 	 * sure it's not set (mind that period can be equal to zero).
3926 	 */
3927 	if (attr->sched_deadline & (1ULL << 63) ||
3928 	    attr->sched_period & (1ULL << 63))
3929 		return false;
3930 
3931 	/* runtime <= deadline <= period (if period != 0) */
3932 	if ((attr->sched_period != 0 &&
3933 	     attr->sched_period < attr->sched_deadline) ||
3934 	    attr->sched_deadline < attr->sched_runtime)
3935 		return false;
3936 
3937 	return true;
3938 }
3939 
3940 /*
3941  * check the target process has a UID that matches the current process's
3942  */
3943 static bool check_same_owner(struct task_struct *p)
3944 {
3945 	const struct cred *cred = current_cred(), *pcred;
3946 	bool match;
3947 
3948 	rcu_read_lock();
3949 	pcred = __task_cred(p);
3950 	match = (uid_eq(cred->euid, pcred->euid) ||
3951 		 uid_eq(cred->euid, pcred->uid));
3952 	rcu_read_unlock();
3953 	return match;
3954 }
3955 
3956 static bool dl_param_changed(struct task_struct *p,
3957 		const struct sched_attr *attr)
3958 {
3959 	struct sched_dl_entity *dl_se = &p->dl;
3960 
3961 	if (dl_se->dl_runtime != attr->sched_runtime ||
3962 		dl_se->dl_deadline != attr->sched_deadline ||
3963 		dl_se->dl_period != attr->sched_period ||
3964 		dl_se->flags != attr->sched_flags)
3965 		return true;
3966 
3967 	return false;
3968 }
3969 
3970 static int __sched_setscheduler(struct task_struct *p,
3971 				const struct sched_attr *attr,
3972 				bool user, bool pi)
3973 {
3974 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3975 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3976 	int retval, oldprio, oldpolicy = -1, queued, running;
3977 	int new_effective_prio, policy = attr->sched_policy;
3978 	const struct sched_class *prev_class;
3979 	struct rq_flags rf;
3980 	int reset_on_fork;
3981 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3982 	struct rq *rq;
3983 
3984 	/* may grab non-irq protected spin_locks */
3985 	BUG_ON(in_interrupt());
3986 recheck:
3987 	/* double check policy once rq lock held */
3988 	if (policy < 0) {
3989 		reset_on_fork = p->sched_reset_on_fork;
3990 		policy = oldpolicy = p->policy;
3991 	} else {
3992 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3993 
3994 		if (!valid_policy(policy))
3995 			return -EINVAL;
3996 	}
3997 
3998 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3999 		return -EINVAL;
4000 
4001 	/*
4002 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4003 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4004 	 * SCHED_BATCH and SCHED_IDLE is 0.
4005 	 */
4006 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4007 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4008 		return -EINVAL;
4009 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4010 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4011 		return -EINVAL;
4012 
4013 	/*
4014 	 * Allow unprivileged RT tasks to decrease priority:
4015 	 */
4016 	if (user && !capable(CAP_SYS_NICE)) {
4017 		if (fair_policy(policy)) {
4018 			if (attr->sched_nice < task_nice(p) &&
4019 			    !can_nice(p, attr->sched_nice))
4020 				return -EPERM;
4021 		}
4022 
4023 		if (rt_policy(policy)) {
4024 			unsigned long rlim_rtprio =
4025 					task_rlimit(p, RLIMIT_RTPRIO);
4026 
4027 			/* can't set/change the rt policy */
4028 			if (policy != p->policy && !rlim_rtprio)
4029 				return -EPERM;
4030 
4031 			/* can't increase priority */
4032 			if (attr->sched_priority > p->rt_priority &&
4033 			    attr->sched_priority > rlim_rtprio)
4034 				return -EPERM;
4035 		}
4036 
4037 		 /*
4038 		  * Can't set/change SCHED_DEADLINE policy at all for now
4039 		  * (safest behavior); in the future we would like to allow
4040 		  * unprivileged DL tasks to increase their relative deadline
4041 		  * or reduce their runtime (both ways reducing utilization)
4042 		  */
4043 		if (dl_policy(policy))
4044 			return -EPERM;
4045 
4046 		/*
4047 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4048 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4049 		 */
4050 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4051 			if (!can_nice(p, task_nice(p)))
4052 				return -EPERM;
4053 		}
4054 
4055 		/* can't change other user's priorities */
4056 		if (!check_same_owner(p))
4057 			return -EPERM;
4058 
4059 		/* Normal users shall not reset the sched_reset_on_fork flag */
4060 		if (p->sched_reset_on_fork && !reset_on_fork)
4061 			return -EPERM;
4062 	}
4063 
4064 	if (user) {
4065 		retval = security_task_setscheduler(p);
4066 		if (retval)
4067 			return retval;
4068 	}
4069 
4070 	/*
4071 	 * make sure no PI-waiters arrive (or leave) while we are
4072 	 * changing the priority of the task:
4073 	 *
4074 	 * To be able to change p->policy safely, the appropriate
4075 	 * runqueue lock must be held.
4076 	 */
4077 	rq = task_rq_lock(p, &rf);
4078 
4079 	/*
4080 	 * Changing the policy of the stop threads its a very bad idea
4081 	 */
4082 	if (p == rq->stop) {
4083 		task_rq_unlock(rq, p, &rf);
4084 		return -EINVAL;
4085 	}
4086 
4087 	/*
4088 	 * If not changing anything there's no need to proceed further,
4089 	 * but store a possible modification of reset_on_fork.
4090 	 */
4091 	if (unlikely(policy == p->policy)) {
4092 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4093 			goto change;
4094 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4095 			goto change;
4096 		if (dl_policy(policy) && dl_param_changed(p, attr))
4097 			goto change;
4098 
4099 		p->sched_reset_on_fork = reset_on_fork;
4100 		task_rq_unlock(rq, p, &rf);
4101 		return 0;
4102 	}
4103 change:
4104 
4105 	if (user) {
4106 #ifdef CONFIG_RT_GROUP_SCHED
4107 		/*
4108 		 * Do not allow realtime tasks into groups that have no runtime
4109 		 * assigned.
4110 		 */
4111 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4112 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4113 				!task_group_is_autogroup(task_group(p))) {
4114 			task_rq_unlock(rq, p, &rf);
4115 			return -EPERM;
4116 		}
4117 #endif
4118 #ifdef CONFIG_SMP
4119 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4120 			cpumask_t *span = rq->rd->span;
4121 
4122 			/*
4123 			 * Don't allow tasks with an affinity mask smaller than
4124 			 * the entire root_domain to become SCHED_DEADLINE. We
4125 			 * will also fail if there's no bandwidth available.
4126 			 */
4127 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4128 			    rq->rd->dl_bw.bw == 0) {
4129 				task_rq_unlock(rq, p, &rf);
4130 				return -EPERM;
4131 			}
4132 		}
4133 #endif
4134 	}
4135 
4136 	/* recheck policy now with rq lock held */
4137 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4138 		policy = oldpolicy = -1;
4139 		task_rq_unlock(rq, p, &rf);
4140 		goto recheck;
4141 	}
4142 
4143 	/*
4144 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4145 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4146 	 * is available.
4147 	 */
4148 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4149 		task_rq_unlock(rq, p, &rf);
4150 		return -EBUSY;
4151 	}
4152 
4153 	p->sched_reset_on_fork = reset_on_fork;
4154 	oldprio = p->prio;
4155 
4156 	if (pi) {
4157 		/*
4158 		 * Take priority boosted tasks into account. If the new
4159 		 * effective priority is unchanged, we just store the new
4160 		 * normal parameters and do not touch the scheduler class and
4161 		 * the runqueue. This will be done when the task deboost
4162 		 * itself.
4163 		 */
4164 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4165 		if (new_effective_prio == oldprio)
4166 			queue_flags &= ~DEQUEUE_MOVE;
4167 	}
4168 
4169 	queued = task_on_rq_queued(p);
4170 	running = task_current(rq, p);
4171 	if (queued)
4172 		dequeue_task(rq, p, queue_flags);
4173 	if (running)
4174 		put_prev_task(rq, p);
4175 
4176 	prev_class = p->sched_class;
4177 	__setscheduler(rq, p, attr, pi);
4178 
4179 	if (running)
4180 		p->sched_class->set_curr_task(rq);
4181 	if (queued) {
4182 		/*
4183 		 * We enqueue to tail when the priority of a task is
4184 		 * increased (user space view).
4185 		 */
4186 		if (oldprio < p->prio)
4187 			queue_flags |= ENQUEUE_HEAD;
4188 
4189 		enqueue_task(rq, p, queue_flags);
4190 	}
4191 
4192 	check_class_changed(rq, p, prev_class, oldprio);
4193 	preempt_disable(); /* avoid rq from going away on us */
4194 	task_rq_unlock(rq, p, &rf);
4195 
4196 	if (pi)
4197 		rt_mutex_adjust_pi(p);
4198 
4199 	/*
4200 	 * Run balance callbacks after we've adjusted the PI chain.
4201 	 */
4202 	balance_callback(rq);
4203 	preempt_enable();
4204 
4205 	return 0;
4206 }
4207 
4208 static int _sched_setscheduler(struct task_struct *p, int policy,
4209 			       const struct sched_param *param, bool check)
4210 {
4211 	struct sched_attr attr = {
4212 		.sched_policy   = policy,
4213 		.sched_priority = param->sched_priority,
4214 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4215 	};
4216 
4217 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4218 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4219 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4220 		policy &= ~SCHED_RESET_ON_FORK;
4221 		attr.sched_policy = policy;
4222 	}
4223 
4224 	return __sched_setscheduler(p, &attr, check, true);
4225 }
4226 /**
4227  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4228  * @p: the task in question.
4229  * @policy: new policy.
4230  * @param: structure containing the new RT priority.
4231  *
4232  * Return: 0 on success. An error code otherwise.
4233  *
4234  * NOTE that the task may be already dead.
4235  */
4236 int sched_setscheduler(struct task_struct *p, int policy,
4237 		       const struct sched_param *param)
4238 {
4239 	return _sched_setscheduler(p, policy, param, true);
4240 }
4241 EXPORT_SYMBOL_GPL(sched_setscheduler);
4242 
4243 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4244 {
4245 	return __sched_setscheduler(p, attr, true, true);
4246 }
4247 EXPORT_SYMBOL_GPL(sched_setattr);
4248 
4249 /**
4250  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4251  * @p: the task in question.
4252  * @policy: new policy.
4253  * @param: structure containing the new RT priority.
4254  *
4255  * Just like sched_setscheduler, only don't bother checking if the
4256  * current context has permission.  For example, this is needed in
4257  * stop_machine(): we create temporary high priority worker threads,
4258  * but our caller might not have that capability.
4259  *
4260  * Return: 0 on success. An error code otherwise.
4261  */
4262 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4263 			       const struct sched_param *param)
4264 {
4265 	return _sched_setscheduler(p, policy, param, false);
4266 }
4267 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4268 
4269 static int
4270 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4271 {
4272 	struct sched_param lparam;
4273 	struct task_struct *p;
4274 	int retval;
4275 
4276 	if (!param || pid < 0)
4277 		return -EINVAL;
4278 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4279 		return -EFAULT;
4280 
4281 	rcu_read_lock();
4282 	retval = -ESRCH;
4283 	p = find_process_by_pid(pid);
4284 	if (p != NULL)
4285 		retval = sched_setscheduler(p, policy, &lparam);
4286 	rcu_read_unlock();
4287 
4288 	return retval;
4289 }
4290 
4291 /*
4292  * Mimics kernel/events/core.c perf_copy_attr().
4293  */
4294 static int sched_copy_attr(struct sched_attr __user *uattr,
4295 			   struct sched_attr *attr)
4296 {
4297 	u32 size;
4298 	int ret;
4299 
4300 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4301 		return -EFAULT;
4302 
4303 	/*
4304 	 * zero the full structure, so that a short copy will be nice.
4305 	 */
4306 	memset(attr, 0, sizeof(*attr));
4307 
4308 	ret = get_user(size, &uattr->size);
4309 	if (ret)
4310 		return ret;
4311 
4312 	if (size > PAGE_SIZE)	/* silly large */
4313 		goto err_size;
4314 
4315 	if (!size)		/* abi compat */
4316 		size = SCHED_ATTR_SIZE_VER0;
4317 
4318 	if (size < SCHED_ATTR_SIZE_VER0)
4319 		goto err_size;
4320 
4321 	/*
4322 	 * If we're handed a bigger struct than we know of,
4323 	 * ensure all the unknown bits are 0 - i.e. new
4324 	 * user-space does not rely on any kernel feature
4325 	 * extensions we dont know about yet.
4326 	 */
4327 	if (size > sizeof(*attr)) {
4328 		unsigned char __user *addr;
4329 		unsigned char __user *end;
4330 		unsigned char val;
4331 
4332 		addr = (void __user *)uattr + sizeof(*attr);
4333 		end  = (void __user *)uattr + size;
4334 
4335 		for (; addr < end; addr++) {
4336 			ret = get_user(val, addr);
4337 			if (ret)
4338 				return ret;
4339 			if (val)
4340 				goto err_size;
4341 		}
4342 		size = sizeof(*attr);
4343 	}
4344 
4345 	ret = copy_from_user(attr, uattr, size);
4346 	if (ret)
4347 		return -EFAULT;
4348 
4349 	/*
4350 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4351 	 * to be strict and return an error on out-of-bounds values?
4352 	 */
4353 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4354 
4355 	return 0;
4356 
4357 err_size:
4358 	put_user(sizeof(*attr), &uattr->size);
4359 	return -E2BIG;
4360 }
4361 
4362 /**
4363  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4364  * @pid: the pid in question.
4365  * @policy: new policy.
4366  * @param: structure containing the new RT priority.
4367  *
4368  * Return: 0 on success. An error code otherwise.
4369  */
4370 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4371 		struct sched_param __user *, param)
4372 {
4373 	/* negative values for policy are not valid */
4374 	if (policy < 0)
4375 		return -EINVAL;
4376 
4377 	return do_sched_setscheduler(pid, policy, param);
4378 }
4379 
4380 /**
4381  * sys_sched_setparam - set/change the RT priority of a thread
4382  * @pid: the pid in question.
4383  * @param: structure containing the new RT priority.
4384  *
4385  * Return: 0 on success. An error code otherwise.
4386  */
4387 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4388 {
4389 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4390 }
4391 
4392 /**
4393  * sys_sched_setattr - same as above, but with extended sched_attr
4394  * @pid: the pid in question.
4395  * @uattr: structure containing the extended parameters.
4396  * @flags: for future extension.
4397  */
4398 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4399 			       unsigned int, flags)
4400 {
4401 	struct sched_attr attr;
4402 	struct task_struct *p;
4403 	int retval;
4404 
4405 	if (!uattr || pid < 0 || flags)
4406 		return -EINVAL;
4407 
4408 	retval = sched_copy_attr(uattr, &attr);
4409 	if (retval)
4410 		return retval;
4411 
4412 	if ((int)attr.sched_policy < 0)
4413 		return -EINVAL;
4414 
4415 	rcu_read_lock();
4416 	retval = -ESRCH;
4417 	p = find_process_by_pid(pid);
4418 	if (p != NULL)
4419 		retval = sched_setattr(p, &attr);
4420 	rcu_read_unlock();
4421 
4422 	return retval;
4423 }
4424 
4425 /**
4426  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4427  * @pid: the pid in question.
4428  *
4429  * Return: On success, the policy of the thread. Otherwise, a negative error
4430  * code.
4431  */
4432 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4433 {
4434 	struct task_struct *p;
4435 	int retval;
4436 
4437 	if (pid < 0)
4438 		return -EINVAL;
4439 
4440 	retval = -ESRCH;
4441 	rcu_read_lock();
4442 	p = find_process_by_pid(pid);
4443 	if (p) {
4444 		retval = security_task_getscheduler(p);
4445 		if (!retval)
4446 			retval = p->policy
4447 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4448 	}
4449 	rcu_read_unlock();
4450 	return retval;
4451 }
4452 
4453 /**
4454  * sys_sched_getparam - get the RT priority of a thread
4455  * @pid: the pid in question.
4456  * @param: structure containing the RT priority.
4457  *
4458  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4459  * code.
4460  */
4461 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4462 {
4463 	struct sched_param lp = { .sched_priority = 0 };
4464 	struct task_struct *p;
4465 	int retval;
4466 
4467 	if (!param || pid < 0)
4468 		return -EINVAL;
4469 
4470 	rcu_read_lock();
4471 	p = find_process_by_pid(pid);
4472 	retval = -ESRCH;
4473 	if (!p)
4474 		goto out_unlock;
4475 
4476 	retval = security_task_getscheduler(p);
4477 	if (retval)
4478 		goto out_unlock;
4479 
4480 	if (task_has_rt_policy(p))
4481 		lp.sched_priority = p->rt_priority;
4482 	rcu_read_unlock();
4483 
4484 	/*
4485 	 * This one might sleep, we cannot do it with a spinlock held ...
4486 	 */
4487 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4488 
4489 	return retval;
4490 
4491 out_unlock:
4492 	rcu_read_unlock();
4493 	return retval;
4494 }
4495 
4496 static int sched_read_attr(struct sched_attr __user *uattr,
4497 			   struct sched_attr *attr,
4498 			   unsigned int usize)
4499 {
4500 	int ret;
4501 
4502 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4503 		return -EFAULT;
4504 
4505 	/*
4506 	 * If we're handed a smaller struct than we know of,
4507 	 * ensure all the unknown bits are 0 - i.e. old
4508 	 * user-space does not get uncomplete information.
4509 	 */
4510 	if (usize < sizeof(*attr)) {
4511 		unsigned char *addr;
4512 		unsigned char *end;
4513 
4514 		addr = (void *)attr + usize;
4515 		end  = (void *)attr + sizeof(*attr);
4516 
4517 		for (; addr < end; addr++) {
4518 			if (*addr)
4519 				return -EFBIG;
4520 		}
4521 
4522 		attr->size = usize;
4523 	}
4524 
4525 	ret = copy_to_user(uattr, attr, attr->size);
4526 	if (ret)
4527 		return -EFAULT;
4528 
4529 	return 0;
4530 }
4531 
4532 /**
4533  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4534  * @pid: the pid in question.
4535  * @uattr: structure containing the extended parameters.
4536  * @size: sizeof(attr) for fwd/bwd comp.
4537  * @flags: for future extension.
4538  */
4539 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4540 		unsigned int, size, unsigned int, flags)
4541 {
4542 	struct sched_attr attr = {
4543 		.size = sizeof(struct sched_attr),
4544 	};
4545 	struct task_struct *p;
4546 	int retval;
4547 
4548 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4549 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4550 		return -EINVAL;
4551 
4552 	rcu_read_lock();
4553 	p = find_process_by_pid(pid);
4554 	retval = -ESRCH;
4555 	if (!p)
4556 		goto out_unlock;
4557 
4558 	retval = security_task_getscheduler(p);
4559 	if (retval)
4560 		goto out_unlock;
4561 
4562 	attr.sched_policy = p->policy;
4563 	if (p->sched_reset_on_fork)
4564 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4565 	if (task_has_dl_policy(p))
4566 		__getparam_dl(p, &attr);
4567 	else if (task_has_rt_policy(p))
4568 		attr.sched_priority = p->rt_priority;
4569 	else
4570 		attr.sched_nice = task_nice(p);
4571 
4572 	rcu_read_unlock();
4573 
4574 	retval = sched_read_attr(uattr, &attr, size);
4575 	return retval;
4576 
4577 out_unlock:
4578 	rcu_read_unlock();
4579 	return retval;
4580 }
4581 
4582 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4583 {
4584 	cpumask_var_t cpus_allowed, new_mask;
4585 	struct task_struct *p;
4586 	int retval;
4587 
4588 	rcu_read_lock();
4589 
4590 	p = find_process_by_pid(pid);
4591 	if (!p) {
4592 		rcu_read_unlock();
4593 		return -ESRCH;
4594 	}
4595 
4596 	/* Prevent p going away */
4597 	get_task_struct(p);
4598 	rcu_read_unlock();
4599 
4600 	if (p->flags & PF_NO_SETAFFINITY) {
4601 		retval = -EINVAL;
4602 		goto out_put_task;
4603 	}
4604 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4605 		retval = -ENOMEM;
4606 		goto out_put_task;
4607 	}
4608 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4609 		retval = -ENOMEM;
4610 		goto out_free_cpus_allowed;
4611 	}
4612 	retval = -EPERM;
4613 	if (!check_same_owner(p)) {
4614 		rcu_read_lock();
4615 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4616 			rcu_read_unlock();
4617 			goto out_free_new_mask;
4618 		}
4619 		rcu_read_unlock();
4620 	}
4621 
4622 	retval = security_task_setscheduler(p);
4623 	if (retval)
4624 		goto out_free_new_mask;
4625 
4626 
4627 	cpuset_cpus_allowed(p, cpus_allowed);
4628 	cpumask_and(new_mask, in_mask, cpus_allowed);
4629 
4630 	/*
4631 	 * Since bandwidth control happens on root_domain basis,
4632 	 * if admission test is enabled, we only admit -deadline
4633 	 * tasks allowed to run on all the CPUs in the task's
4634 	 * root_domain.
4635 	 */
4636 #ifdef CONFIG_SMP
4637 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4638 		rcu_read_lock();
4639 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4640 			retval = -EBUSY;
4641 			rcu_read_unlock();
4642 			goto out_free_new_mask;
4643 		}
4644 		rcu_read_unlock();
4645 	}
4646 #endif
4647 again:
4648 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4649 
4650 	if (!retval) {
4651 		cpuset_cpus_allowed(p, cpus_allowed);
4652 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4653 			/*
4654 			 * We must have raced with a concurrent cpuset
4655 			 * update. Just reset the cpus_allowed to the
4656 			 * cpuset's cpus_allowed
4657 			 */
4658 			cpumask_copy(new_mask, cpus_allowed);
4659 			goto again;
4660 		}
4661 	}
4662 out_free_new_mask:
4663 	free_cpumask_var(new_mask);
4664 out_free_cpus_allowed:
4665 	free_cpumask_var(cpus_allowed);
4666 out_put_task:
4667 	put_task_struct(p);
4668 	return retval;
4669 }
4670 
4671 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4672 			     struct cpumask *new_mask)
4673 {
4674 	if (len < cpumask_size())
4675 		cpumask_clear(new_mask);
4676 	else if (len > cpumask_size())
4677 		len = cpumask_size();
4678 
4679 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4680 }
4681 
4682 /**
4683  * sys_sched_setaffinity - set the cpu affinity of a process
4684  * @pid: pid of the process
4685  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4686  * @user_mask_ptr: user-space pointer to the new cpu mask
4687  *
4688  * Return: 0 on success. An error code otherwise.
4689  */
4690 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4691 		unsigned long __user *, user_mask_ptr)
4692 {
4693 	cpumask_var_t new_mask;
4694 	int retval;
4695 
4696 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4697 		return -ENOMEM;
4698 
4699 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4700 	if (retval == 0)
4701 		retval = sched_setaffinity(pid, new_mask);
4702 	free_cpumask_var(new_mask);
4703 	return retval;
4704 }
4705 
4706 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4707 {
4708 	struct task_struct *p;
4709 	unsigned long flags;
4710 	int retval;
4711 
4712 	rcu_read_lock();
4713 
4714 	retval = -ESRCH;
4715 	p = find_process_by_pid(pid);
4716 	if (!p)
4717 		goto out_unlock;
4718 
4719 	retval = security_task_getscheduler(p);
4720 	if (retval)
4721 		goto out_unlock;
4722 
4723 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4724 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4725 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4726 
4727 out_unlock:
4728 	rcu_read_unlock();
4729 
4730 	return retval;
4731 }
4732 
4733 /**
4734  * sys_sched_getaffinity - get the cpu affinity of a process
4735  * @pid: pid of the process
4736  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4737  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4738  *
4739  * Return: 0 on success. An error code otherwise.
4740  */
4741 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4742 		unsigned long __user *, user_mask_ptr)
4743 {
4744 	int ret;
4745 	cpumask_var_t mask;
4746 
4747 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4748 		return -EINVAL;
4749 	if (len & (sizeof(unsigned long)-1))
4750 		return -EINVAL;
4751 
4752 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4753 		return -ENOMEM;
4754 
4755 	ret = sched_getaffinity(pid, mask);
4756 	if (ret == 0) {
4757 		size_t retlen = min_t(size_t, len, cpumask_size());
4758 
4759 		if (copy_to_user(user_mask_ptr, mask, retlen))
4760 			ret = -EFAULT;
4761 		else
4762 			ret = retlen;
4763 	}
4764 	free_cpumask_var(mask);
4765 
4766 	return ret;
4767 }
4768 
4769 /**
4770  * sys_sched_yield - yield the current processor to other threads.
4771  *
4772  * This function yields the current CPU to other tasks. If there are no
4773  * other threads running on this CPU then this function will return.
4774  *
4775  * Return: 0.
4776  */
4777 SYSCALL_DEFINE0(sched_yield)
4778 {
4779 	struct rq *rq = this_rq_lock();
4780 
4781 	schedstat_inc(rq, yld_count);
4782 	current->sched_class->yield_task(rq);
4783 
4784 	/*
4785 	 * Since we are going to call schedule() anyway, there's
4786 	 * no need to preempt or enable interrupts:
4787 	 */
4788 	__release(rq->lock);
4789 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4790 	do_raw_spin_unlock(&rq->lock);
4791 	sched_preempt_enable_no_resched();
4792 
4793 	schedule();
4794 
4795 	return 0;
4796 }
4797 
4798 int __sched _cond_resched(void)
4799 {
4800 	if (should_resched(0)) {
4801 		preempt_schedule_common();
4802 		return 1;
4803 	}
4804 	return 0;
4805 }
4806 EXPORT_SYMBOL(_cond_resched);
4807 
4808 /*
4809  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4810  * call schedule, and on return reacquire the lock.
4811  *
4812  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4813  * operations here to prevent schedule() from being called twice (once via
4814  * spin_unlock(), once by hand).
4815  */
4816 int __cond_resched_lock(spinlock_t *lock)
4817 {
4818 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4819 	int ret = 0;
4820 
4821 	lockdep_assert_held(lock);
4822 
4823 	if (spin_needbreak(lock) || resched) {
4824 		spin_unlock(lock);
4825 		if (resched)
4826 			preempt_schedule_common();
4827 		else
4828 			cpu_relax();
4829 		ret = 1;
4830 		spin_lock(lock);
4831 	}
4832 	return ret;
4833 }
4834 EXPORT_SYMBOL(__cond_resched_lock);
4835 
4836 int __sched __cond_resched_softirq(void)
4837 {
4838 	BUG_ON(!in_softirq());
4839 
4840 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4841 		local_bh_enable();
4842 		preempt_schedule_common();
4843 		local_bh_disable();
4844 		return 1;
4845 	}
4846 	return 0;
4847 }
4848 EXPORT_SYMBOL(__cond_resched_softirq);
4849 
4850 /**
4851  * yield - yield the current processor to other threads.
4852  *
4853  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4854  *
4855  * The scheduler is at all times free to pick the calling task as the most
4856  * eligible task to run, if removing the yield() call from your code breaks
4857  * it, its already broken.
4858  *
4859  * Typical broken usage is:
4860  *
4861  * while (!event)
4862  * 	yield();
4863  *
4864  * where one assumes that yield() will let 'the other' process run that will
4865  * make event true. If the current task is a SCHED_FIFO task that will never
4866  * happen. Never use yield() as a progress guarantee!!
4867  *
4868  * If you want to use yield() to wait for something, use wait_event().
4869  * If you want to use yield() to be 'nice' for others, use cond_resched().
4870  * If you still want to use yield(), do not!
4871  */
4872 void __sched yield(void)
4873 {
4874 	set_current_state(TASK_RUNNING);
4875 	sys_sched_yield();
4876 }
4877 EXPORT_SYMBOL(yield);
4878 
4879 /**
4880  * yield_to - yield the current processor to another thread in
4881  * your thread group, or accelerate that thread toward the
4882  * processor it's on.
4883  * @p: target task
4884  * @preempt: whether task preemption is allowed or not
4885  *
4886  * It's the caller's job to ensure that the target task struct
4887  * can't go away on us before we can do any checks.
4888  *
4889  * Return:
4890  *	true (>0) if we indeed boosted the target task.
4891  *	false (0) if we failed to boost the target.
4892  *	-ESRCH if there's no task to yield to.
4893  */
4894 int __sched yield_to(struct task_struct *p, bool preempt)
4895 {
4896 	struct task_struct *curr = current;
4897 	struct rq *rq, *p_rq;
4898 	unsigned long flags;
4899 	int yielded = 0;
4900 
4901 	local_irq_save(flags);
4902 	rq = this_rq();
4903 
4904 again:
4905 	p_rq = task_rq(p);
4906 	/*
4907 	 * If we're the only runnable task on the rq and target rq also
4908 	 * has only one task, there's absolutely no point in yielding.
4909 	 */
4910 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4911 		yielded = -ESRCH;
4912 		goto out_irq;
4913 	}
4914 
4915 	double_rq_lock(rq, p_rq);
4916 	if (task_rq(p) != p_rq) {
4917 		double_rq_unlock(rq, p_rq);
4918 		goto again;
4919 	}
4920 
4921 	if (!curr->sched_class->yield_to_task)
4922 		goto out_unlock;
4923 
4924 	if (curr->sched_class != p->sched_class)
4925 		goto out_unlock;
4926 
4927 	if (task_running(p_rq, p) || p->state)
4928 		goto out_unlock;
4929 
4930 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4931 	if (yielded) {
4932 		schedstat_inc(rq, yld_count);
4933 		/*
4934 		 * Make p's CPU reschedule; pick_next_entity takes care of
4935 		 * fairness.
4936 		 */
4937 		if (preempt && rq != p_rq)
4938 			resched_curr(p_rq);
4939 	}
4940 
4941 out_unlock:
4942 	double_rq_unlock(rq, p_rq);
4943 out_irq:
4944 	local_irq_restore(flags);
4945 
4946 	if (yielded > 0)
4947 		schedule();
4948 
4949 	return yielded;
4950 }
4951 EXPORT_SYMBOL_GPL(yield_to);
4952 
4953 /*
4954  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4955  * that process accounting knows that this is a task in IO wait state.
4956  */
4957 long __sched io_schedule_timeout(long timeout)
4958 {
4959 	int old_iowait = current->in_iowait;
4960 	struct rq *rq;
4961 	long ret;
4962 
4963 	current->in_iowait = 1;
4964 	blk_schedule_flush_plug(current);
4965 
4966 	delayacct_blkio_start();
4967 	rq = raw_rq();
4968 	atomic_inc(&rq->nr_iowait);
4969 	ret = schedule_timeout(timeout);
4970 	current->in_iowait = old_iowait;
4971 	atomic_dec(&rq->nr_iowait);
4972 	delayacct_blkio_end();
4973 
4974 	return ret;
4975 }
4976 EXPORT_SYMBOL(io_schedule_timeout);
4977 
4978 /**
4979  * sys_sched_get_priority_max - return maximum RT priority.
4980  * @policy: scheduling class.
4981  *
4982  * Return: On success, this syscall returns the maximum
4983  * rt_priority that can be used by a given scheduling class.
4984  * On failure, a negative error code is returned.
4985  */
4986 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4987 {
4988 	int ret = -EINVAL;
4989 
4990 	switch (policy) {
4991 	case SCHED_FIFO:
4992 	case SCHED_RR:
4993 		ret = MAX_USER_RT_PRIO-1;
4994 		break;
4995 	case SCHED_DEADLINE:
4996 	case SCHED_NORMAL:
4997 	case SCHED_BATCH:
4998 	case SCHED_IDLE:
4999 		ret = 0;
5000 		break;
5001 	}
5002 	return ret;
5003 }
5004 
5005 /**
5006  * sys_sched_get_priority_min - return minimum RT priority.
5007  * @policy: scheduling class.
5008  *
5009  * Return: On success, this syscall returns the minimum
5010  * rt_priority that can be used by a given scheduling class.
5011  * On failure, a negative error code is returned.
5012  */
5013 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5014 {
5015 	int ret = -EINVAL;
5016 
5017 	switch (policy) {
5018 	case SCHED_FIFO:
5019 	case SCHED_RR:
5020 		ret = 1;
5021 		break;
5022 	case SCHED_DEADLINE:
5023 	case SCHED_NORMAL:
5024 	case SCHED_BATCH:
5025 	case SCHED_IDLE:
5026 		ret = 0;
5027 	}
5028 	return ret;
5029 }
5030 
5031 /**
5032  * sys_sched_rr_get_interval - return the default timeslice of a process.
5033  * @pid: pid of the process.
5034  * @interval: userspace pointer to the timeslice value.
5035  *
5036  * this syscall writes the default timeslice value of a given process
5037  * into the user-space timespec buffer. A value of '0' means infinity.
5038  *
5039  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5040  * an error code.
5041  */
5042 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5043 		struct timespec __user *, interval)
5044 {
5045 	struct task_struct *p;
5046 	unsigned int time_slice;
5047 	struct rq_flags rf;
5048 	struct timespec t;
5049 	struct rq *rq;
5050 	int retval;
5051 
5052 	if (pid < 0)
5053 		return -EINVAL;
5054 
5055 	retval = -ESRCH;
5056 	rcu_read_lock();
5057 	p = find_process_by_pid(pid);
5058 	if (!p)
5059 		goto out_unlock;
5060 
5061 	retval = security_task_getscheduler(p);
5062 	if (retval)
5063 		goto out_unlock;
5064 
5065 	rq = task_rq_lock(p, &rf);
5066 	time_slice = 0;
5067 	if (p->sched_class->get_rr_interval)
5068 		time_slice = p->sched_class->get_rr_interval(rq, p);
5069 	task_rq_unlock(rq, p, &rf);
5070 
5071 	rcu_read_unlock();
5072 	jiffies_to_timespec(time_slice, &t);
5073 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5074 	return retval;
5075 
5076 out_unlock:
5077 	rcu_read_unlock();
5078 	return retval;
5079 }
5080 
5081 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5082 
5083 void sched_show_task(struct task_struct *p)
5084 {
5085 	unsigned long free = 0;
5086 	int ppid;
5087 	unsigned long state = p->state;
5088 
5089 	if (state)
5090 		state = __ffs(state) + 1;
5091 	printk(KERN_INFO "%-15.15s %c", p->comm,
5092 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5093 #if BITS_PER_LONG == 32
5094 	if (state == TASK_RUNNING)
5095 		printk(KERN_CONT " running  ");
5096 	else
5097 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5098 #else
5099 	if (state == TASK_RUNNING)
5100 		printk(KERN_CONT "  running task    ");
5101 	else
5102 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5103 #endif
5104 #ifdef CONFIG_DEBUG_STACK_USAGE
5105 	free = stack_not_used(p);
5106 #endif
5107 	ppid = 0;
5108 	rcu_read_lock();
5109 	if (pid_alive(p))
5110 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5111 	rcu_read_unlock();
5112 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5113 		task_pid_nr(p), ppid,
5114 		(unsigned long)task_thread_info(p)->flags);
5115 
5116 	print_worker_info(KERN_INFO, p);
5117 	show_stack(p, NULL);
5118 }
5119 
5120 void show_state_filter(unsigned long state_filter)
5121 {
5122 	struct task_struct *g, *p;
5123 
5124 #if BITS_PER_LONG == 32
5125 	printk(KERN_INFO
5126 		"  task                PC stack   pid father\n");
5127 #else
5128 	printk(KERN_INFO
5129 		"  task                        PC stack   pid father\n");
5130 #endif
5131 	rcu_read_lock();
5132 	for_each_process_thread(g, p) {
5133 		/*
5134 		 * reset the NMI-timeout, listing all files on a slow
5135 		 * console might take a lot of time:
5136 		 */
5137 		touch_nmi_watchdog();
5138 		if (!state_filter || (p->state & state_filter))
5139 			sched_show_task(p);
5140 	}
5141 
5142 	touch_all_softlockup_watchdogs();
5143 
5144 #ifdef CONFIG_SCHED_DEBUG
5145 	if (!state_filter)
5146 		sysrq_sched_debug_show();
5147 #endif
5148 	rcu_read_unlock();
5149 	/*
5150 	 * Only show locks if all tasks are dumped:
5151 	 */
5152 	if (!state_filter)
5153 		debug_show_all_locks();
5154 }
5155 
5156 void init_idle_bootup_task(struct task_struct *idle)
5157 {
5158 	idle->sched_class = &idle_sched_class;
5159 }
5160 
5161 /**
5162  * init_idle - set up an idle thread for a given CPU
5163  * @idle: task in question
5164  * @cpu: cpu the idle task belongs to
5165  *
5166  * NOTE: this function does not set the idle thread's NEED_RESCHED
5167  * flag, to make booting more robust.
5168  */
5169 void init_idle(struct task_struct *idle, int cpu)
5170 {
5171 	struct rq *rq = cpu_rq(cpu);
5172 	unsigned long flags;
5173 
5174 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5175 	raw_spin_lock(&rq->lock);
5176 
5177 	__sched_fork(0, idle);
5178 	idle->state = TASK_RUNNING;
5179 	idle->se.exec_start = sched_clock();
5180 
5181 	kasan_unpoison_task_stack(idle);
5182 
5183 #ifdef CONFIG_SMP
5184 	/*
5185 	 * Its possible that init_idle() gets called multiple times on a task,
5186 	 * in that case do_set_cpus_allowed() will not do the right thing.
5187 	 *
5188 	 * And since this is boot we can forgo the serialization.
5189 	 */
5190 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5191 #endif
5192 	/*
5193 	 * We're having a chicken and egg problem, even though we are
5194 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5195 	 * lockdep check in task_group() will fail.
5196 	 *
5197 	 * Similar case to sched_fork(). / Alternatively we could
5198 	 * use task_rq_lock() here and obtain the other rq->lock.
5199 	 *
5200 	 * Silence PROVE_RCU
5201 	 */
5202 	rcu_read_lock();
5203 	__set_task_cpu(idle, cpu);
5204 	rcu_read_unlock();
5205 
5206 	rq->curr = rq->idle = idle;
5207 	idle->on_rq = TASK_ON_RQ_QUEUED;
5208 #ifdef CONFIG_SMP
5209 	idle->on_cpu = 1;
5210 #endif
5211 	raw_spin_unlock(&rq->lock);
5212 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5213 
5214 	/* Set the preempt count _outside_ the spinlocks! */
5215 	init_idle_preempt_count(idle, cpu);
5216 
5217 	/*
5218 	 * The idle tasks have their own, simple scheduling class:
5219 	 */
5220 	idle->sched_class = &idle_sched_class;
5221 	ftrace_graph_init_idle_task(idle, cpu);
5222 	vtime_init_idle(idle, cpu);
5223 #ifdef CONFIG_SMP
5224 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5225 #endif
5226 }
5227 
5228 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5229 			      const struct cpumask *trial)
5230 {
5231 	int ret = 1, trial_cpus;
5232 	struct dl_bw *cur_dl_b;
5233 	unsigned long flags;
5234 
5235 	if (!cpumask_weight(cur))
5236 		return ret;
5237 
5238 	rcu_read_lock_sched();
5239 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5240 	trial_cpus = cpumask_weight(trial);
5241 
5242 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5243 	if (cur_dl_b->bw != -1 &&
5244 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5245 		ret = 0;
5246 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5247 	rcu_read_unlock_sched();
5248 
5249 	return ret;
5250 }
5251 
5252 int task_can_attach(struct task_struct *p,
5253 		    const struct cpumask *cs_cpus_allowed)
5254 {
5255 	int ret = 0;
5256 
5257 	/*
5258 	 * Kthreads which disallow setaffinity shouldn't be moved
5259 	 * to a new cpuset; we don't want to change their cpu
5260 	 * affinity and isolating such threads by their set of
5261 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5262 	 * applicable for such threads.  This prevents checking for
5263 	 * success of set_cpus_allowed_ptr() on all attached tasks
5264 	 * before cpus_allowed may be changed.
5265 	 */
5266 	if (p->flags & PF_NO_SETAFFINITY) {
5267 		ret = -EINVAL;
5268 		goto out;
5269 	}
5270 
5271 #ifdef CONFIG_SMP
5272 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5273 					      cs_cpus_allowed)) {
5274 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5275 							cs_cpus_allowed);
5276 		struct dl_bw *dl_b;
5277 		bool overflow;
5278 		int cpus;
5279 		unsigned long flags;
5280 
5281 		rcu_read_lock_sched();
5282 		dl_b = dl_bw_of(dest_cpu);
5283 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5284 		cpus = dl_bw_cpus(dest_cpu);
5285 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5286 		if (overflow)
5287 			ret = -EBUSY;
5288 		else {
5289 			/*
5290 			 * We reserve space for this task in the destination
5291 			 * root_domain, as we can't fail after this point.
5292 			 * We will free resources in the source root_domain
5293 			 * later on (see set_cpus_allowed_dl()).
5294 			 */
5295 			__dl_add(dl_b, p->dl.dl_bw);
5296 		}
5297 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5298 		rcu_read_unlock_sched();
5299 
5300 	}
5301 #endif
5302 out:
5303 	return ret;
5304 }
5305 
5306 #ifdef CONFIG_SMP
5307 
5308 static bool sched_smp_initialized __read_mostly;
5309 
5310 #ifdef CONFIG_NUMA_BALANCING
5311 /* Migrate current task p to target_cpu */
5312 int migrate_task_to(struct task_struct *p, int target_cpu)
5313 {
5314 	struct migration_arg arg = { p, target_cpu };
5315 	int curr_cpu = task_cpu(p);
5316 
5317 	if (curr_cpu == target_cpu)
5318 		return 0;
5319 
5320 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5321 		return -EINVAL;
5322 
5323 	/* TODO: This is not properly updating schedstats */
5324 
5325 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5326 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5327 }
5328 
5329 /*
5330  * Requeue a task on a given node and accurately track the number of NUMA
5331  * tasks on the runqueues
5332  */
5333 void sched_setnuma(struct task_struct *p, int nid)
5334 {
5335 	bool queued, running;
5336 	struct rq_flags rf;
5337 	struct rq *rq;
5338 
5339 	rq = task_rq_lock(p, &rf);
5340 	queued = task_on_rq_queued(p);
5341 	running = task_current(rq, p);
5342 
5343 	if (queued)
5344 		dequeue_task(rq, p, DEQUEUE_SAVE);
5345 	if (running)
5346 		put_prev_task(rq, p);
5347 
5348 	p->numa_preferred_nid = nid;
5349 
5350 	if (running)
5351 		p->sched_class->set_curr_task(rq);
5352 	if (queued)
5353 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5354 	task_rq_unlock(rq, p, &rf);
5355 }
5356 #endif /* CONFIG_NUMA_BALANCING */
5357 
5358 #ifdef CONFIG_HOTPLUG_CPU
5359 /*
5360  * Ensures that the idle task is using init_mm right before its cpu goes
5361  * offline.
5362  */
5363 void idle_task_exit(void)
5364 {
5365 	struct mm_struct *mm = current->active_mm;
5366 
5367 	BUG_ON(cpu_online(smp_processor_id()));
5368 
5369 	if (mm != &init_mm) {
5370 		switch_mm_irqs_off(mm, &init_mm, current);
5371 		finish_arch_post_lock_switch();
5372 	}
5373 	mmdrop(mm);
5374 }
5375 
5376 /*
5377  * Since this CPU is going 'away' for a while, fold any nr_active delta
5378  * we might have. Assumes we're called after migrate_tasks() so that the
5379  * nr_active count is stable.
5380  *
5381  * Also see the comment "Global load-average calculations".
5382  */
5383 static void calc_load_migrate(struct rq *rq)
5384 {
5385 	long delta = calc_load_fold_active(rq);
5386 	if (delta)
5387 		atomic_long_add(delta, &calc_load_tasks);
5388 }
5389 
5390 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5391 {
5392 }
5393 
5394 static const struct sched_class fake_sched_class = {
5395 	.put_prev_task = put_prev_task_fake,
5396 };
5397 
5398 static struct task_struct fake_task = {
5399 	/*
5400 	 * Avoid pull_{rt,dl}_task()
5401 	 */
5402 	.prio = MAX_PRIO + 1,
5403 	.sched_class = &fake_sched_class,
5404 };
5405 
5406 /*
5407  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5408  * try_to_wake_up()->select_task_rq().
5409  *
5410  * Called with rq->lock held even though we'er in stop_machine() and
5411  * there's no concurrency possible, we hold the required locks anyway
5412  * because of lock validation efforts.
5413  */
5414 static void migrate_tasks(struct rq *dead_rq)
5415 {
5416 	struct rq *rq = dead_rq;
5417 	struct task_struct *next, *stop = rq->stop;
5418 	struct pin_cookie cookie;
5419 	int dest_cpu;
5420 
5421 	/*
5422 	 * Fudge the rq selection such that the below task selection loop
5423 	 * doesn't get stuck on the currently eligible stop task.
5424 	 *
5425 	 * We're currently inside stop_machine() and the rq is either stuck
5426 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5427 	 * either way we should never end up calling schedule() until we're
5428 	 * done here.
5429 	 */
5430 	rq->stop = NULL;
5431 
5432 	/*
5433 	 * put_prev_task() and pick_next_task() sched
5434 	 * class method both need to have an up-to-date
5435 	 * value of rq->clock[_task]
5436 	 */
5437 	update_rq_clock(rq);
5438 
5439 	for (;;) {
5440 		/*
5441 		 * There's this thread running, bail when that's the only
5442 		 * remaining thread.
5443 		 */
5444 		if (rq->nr_running == 1)
5445 			break;
5446 
5447 		/*
5448 		 * pick_next_task assumes pinned rq->lock.
5449 		 */
5450 		cookie = lockdep_pin_lock(&rq->lock);
5451 		next = pick_next_task(rq, &fake_task, cookie);
5452 		BUG_ON(!next);
5453 		next->sched_class->put_prev_task(rq, next);
5454 
5455 		/*
5456 		 * Rules for changing task_struct::cpus_allowed are holding
5457 		 * both pi_lock and rq->lock, such that holding either
5458 		 * stabilizes the mask.
5459 		 *
5460 		 * Drop rq->lock is not quite as disastrous as it usually is
5461 		 * because !cpu_active at this point, which means load-balance
5462 		 * will not interfere. Also, stop-machine.
5463 		 */
5464 		lockdep_unpin_lock(&rq->lock, cookie);
5465 		raw_spin_unlock(&rq->lock);
5466 		raw_spin_lock(&next->pi_lock);
5467 		raw_spin_lock(&rq->lock);
5468 
5469 		/*
5470 		 * Since we're inside stop-machine, _nothing_ should have
5471 		 * changed the task, WARN if weird stuff happened, because in
5472 		 * that case the above rq->lock drop is a fail too.
5473 		 */
5474 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5475 			raw_spin_unlock(&next->pi_lock);
5476 			continue;
5477 		}
5478 
5479 		/* Find suitable destination for @next, with force if needed. */
5480 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5481 
5482 		rq = __migrate_task(rq, next, dest_cpu);
5483 		if (rq != dead_rq) {
5484 			raw_spin_unlock(&rq->lock);
5485 			rq = dead_rq;
5486 			raw_spin_lock(&rq->lock);
5487 		}
5488 		raw_spin_unlock(&next->pi_lock);
5489 	}
5490 
5491 	rq->stop = stop;
5492 }
5493 #endif /* CONFIG_HOTPLUG_CPU */
5494 
5495 static void set_rq_online(struct rq *rq)
5496 {
5497 	if (!rq->online) {
5498 		const struct sched_class *class;
5499 
5500 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5501 		rq->online = 1;
5502 
5503 		for_each_class(class) {
5504 			if (class->rq_online)
5505 				class->rq_online(rq);
5506 		}
5507 	}
5508 }
5509 
5510 static void set_rq_offline(struct rq *rq)
5511 {
5512 	if (rq->online) {
5513 		const struct sched_class *class;
5514 
5515 		for_each_class(class) {
5516 			if (class->rq_offline)
5517 				class->rq_offline(rq);
5518 		}
5519 
5520 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5521 		rq->online = 0;
5522 	}
5523 }
5524 
5525 static void set_cpu_rq_start_time(unsigned int cpu)
5526 {
5527 	struct rq *rq = cpu_rq(cpu);
5528 
5529 	rq->age_stamp = sched_clock_cpu(cpu);
5530 }
5531 
5532 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5533 
5534 #ifdef CONFIG_SCHED_DEBUG
5535 
5536 static __read_mostly int sched_debug_enabled;
5537 
5538 static int __init sched_debug_setup(char *str)
5539 {
5540 	sched_debug_enabled = 1;
5541 
5542 	return 0;
5543 }
5544 early_param("sched_debug", sched_debug_setup);
5545 
5546 static inline bool sched_debug(void)
5547 {
5548 	return sched_debug_enabled;
5549 }
5550 
5551 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5552 				  struct cpumask *groupmask)
5553 {
5554 	struct sched_group *group = sd->groups;
5555 
5556 	cpumask_clear(groupmask);
5557 
5558 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5559 
5560 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5561 		printk("does not load-balance\n");
5562 		if (sd->parent)
5563 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5564 					" has parent");
5565 		return -1;
5566 	}
5567 
5568 	printk(KERN_CONT "span %*pbl level %s\n",
5569 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5570 
5571 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5572 		printk(KERN_ERR "ERROR: domain->span does not contain "
5573 				"CPU%d\n", cpu);
5574 	}
5575 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5576 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5577 				" CPU%d\n", cpu);
5578 	}
5579 
5580 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5581 	do {
5582 		if (!group) {
5583 			printk("\n");
5584 			printk(KERN_ERR "ERROR: group is NULL\n");
5585 			break;
5586 		}
5587 
5588 		if (!cpumask_weight(sched_group_cpus(group))) {
5589 			printk(KERN_CONT "\n");
5590 			printk(KERN_ERR "ERROR: empty group\n");
5591 			break;
5592 		}
5593 
5594 		if (!(sd->flags & SD_OVERLAP) &&
5595 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5596 			printk(KERN_CONT "\n");
5597 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5598 			break;
5599 		}
5600 
5601 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5602 
5603 		printk(KERN_CONT " %*pbl",
5604 		       cpumask_pr_args(sched_group_cpus(group)));
5605 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5606 			printk(KERN_CONT " (cpu_capacity = %d)",
5607 				group->sgc->capacity);
5608 		}
5609 
5610 		group = group->next;
5611 	} while (group != sd->groups);
5612 	printk(KERN_CONT "\n");
5613 
5614 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5615 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5616 
5617 	if (sd->parent &&
5618 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5619 		printk(KERN_ERR "ERROR: parent span is not a superset "
5620 			"of domain->span\n");
5621 	return 0;
5622 }
5623 
5624 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5625 {
5626 	int level = 0;
5627 
5628 	if (!sched_debug_enabled)
5629 		return;
5630 
5631 	if (!sd) {
5632 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5633 		return;
5634 	}
5635 
5636 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5637 
5638 	for (;;) {
5639 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5640 			break;
5641 		level++;
5642 		sd = sd->parent;
5643 		if (!sd)
5644 			break;
5645 	}
5646 }
5647 #else /* !CONFIG_SCHED_DEBUG */
5648 # define sched_domain_debug(sd, cpu) do { } while (0)
5649 static inline bool sched_debug(void)
5650 {
5651 	return false;
5652 }
5653 #endif /* CONFIG_SCHED_DEBUG */
5654 
5655 static int sd_degenerate(struct sched_domain *sd)
5656 {
5657 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5658 		return 1;
5659 
5660 	/* Following flags need at least 2 groups */
5661 	if (sd->flags & (SD_LOAD_BALANCE |
5662 			 SD_BALANCE_NEWIDLE |
5663 			 SD_BALANCE_FORK |
5664 			 SD_BALANCE_EXEC |
5665 			 SD_SHARE_CPUCAPACITY |
5666 			 SD_SHARE_PKG_RESOURCES |
5667 			 SD_SHARE_POWERDOMAIN)) {
5668 		if (sd->groups != sd->groups->next)
5669 			return 0;
5670 	}
5671 
5672 	/* Following flags don't use groups */
5673 	if (sd->flags & (SD_WAKE_AFFINE))
5674 		return 0;
5675 
5676 	return 1;
5677 }
5678 
5679 static int
5680 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5681 {
5682 	unsigned long cflags = sd->flags, pflags = parent->flags;
5683 
5684 	if (sd_degenerate(parent))
5685 		return 1;
5686 
5687 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5688 		return 0;
5689 
5690 	/* Flags needing groups don't count if only 1 group in parent */
5691 	if (parent->groups == parent->groups->next) {
5692 		pflags &= ~(SD_LOAD_BALANCE |
5693 				SD_BALANCE_NEWIDLE |
5694 				SD_BALANCE_FORK |
5695 				SD_BALANCE_EXEC |
5696 				SD_SHARE_CPUCAPACITY |
5697 				SD_SHARE_PKG_RESOURCES |
5698 				SD_PREFER_SIBLING |
5699 				SD_SHARE_POWERDOMAIN);
5700 		if (nr_node_ids == 1)
5701 			pflags &= ~SD_SERIALIZE;
5702 	}
5703 	if (~cflags & pflags)
5704 		return 0;
5705 
5706 	return 1;
5707 }
5708 
5709 static void free_rootdomain(struct rcu_head *rcu)
5710 {
5711 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5712 
5713 	cpupri_cleanup(&rd->cpupri);
5714 	cpudl_cleanup(&rd->cpudl);
5715 	free_cpumask_var(rd->dlo_mask);
5716 	free_cpumask_var(rd->rto_mask);
5717 	free_cpumask_var(rd->online);
5718 	free_cpumask_var(rd->span);
5719 	kfree(rd);
5720 }
5721 
5722 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5723 {
5724 	struct root_domain *old_rd = NULL;
5725 	unsigned long flags;
5726 
5727 	raw_spin_lock_irqsave(&rq->lock, flags);
5728 
5729 	if (rq->rd) {
5730 		old_rd = rq->rd;
5731 
5732 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5733 			set_rq_offline(rq);
5734 
5735 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5736 
5737 		/*
5738 		 * If we dont want to free the old_rd yet then
5739 		 * set old_rd to NULL to skip the freeing later
5740 		 * in this function:
5741 		 */
5742 		if (!atomic_dec_and_test(&old_rd->refcount))
5743 			old_rd = NULL;
5744 	}
5745 
5746 	atomic_inc(&rd->refcount);
5747 	rq->rd = rd;
5748 
5749 	cpumask_set_cpu(rq->cpu, rd->span);
5750 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5751 		set_rq_online(rq);
5752 
5753 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5754 
5755 	if (old_rd)
5756 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5757 }
5758 
5759 static int init_rootdomain(struct root_domain *rd)
5760 {
5761 	memset(rd, 0, sizeof(*rd));
5762 
5763 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5764 		goto out;
5765 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5766 		goto free_span;
5767 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5768 		goto free_online;
5769 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5770 		goto free_dlo_mask;
5771 
5772 	init_dl_bw(&rd->dl_bw);
5773 	if (cpudl_init(&rd->cpudl) != 0)
5774 		goto free_dlo_mask;
5775 
5776 	if (cpupri_init(&rd->cpupri) != 0)
5777 		goto free_rto_mask;
5778 	return 0;
5779 
5780 free_rto_mask:
5781 	free_cpumask_var(rd->rto_mask);
5782 free_dlo_mask:
5783 	free_cpumask_var(rd->dlo_mask);
5784 free_online:
5785 	free_cpumask_var(rd->online);
5786 free_span:
5787 	free_cpumask_var(rd->span);
5788 out:
5789 	return -ENOMEM;
5790 }
5791 
5792 /*
5793  * By default the system creates a single root-domain with all cpus as
5794  * members (mimicking the global state we have today).
5795  */
5796 struct root_domain def_root_domain;
5797 
5798 static void init_defrootdomain(void)
5799 {
5800 	init_rootdomain(&def_root_domain);
5801 
5802 	atomic_set(&def_root_domain.refcount, 1);
5803 }
5804 
5805 static struct root_domain *alloc_rootdomain(void)
5806 {
5807 	struct root_domain *rd;
5808 
5809 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5810 	if (!rd)
5811 		return NULL;
5812 
5813 	if (init_rootdomain(rd) != 0) {
5814 		kfree(rd);
5815 		return NULL;
5816 	}
5817 
5818 	return rd;
5819 }
5820 
5821 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5822 {
5823 	struct sched_group *tmp, *first;
5824 
5825 	if (!sg)
5826 		return;
5827 
5828 	first = sg;
5829 	do {
5830 		tmp = sg->next;
5831 
5832 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5833 			kfree(sg->sgc);
5834 
5835 		kfree(sg);
5836 		sg = tmp;
5837 	} while (sg != first);
5838 }
5839 
5840 static void free_sched_domain(struct rcu_head *rcu)
5841 {
5842 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5843 
5844 	/*
5845 	 * If its an overlapping domain it has private groups, iterate and
5846 	 * nuke them all.
5847 	 */
5848 	if (sd->flags & SD_OVERLAP) {
5849 		free_sched_groups(sd->groups, 1);
5850 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5851 		kfree(sd->groups->sgc);
5852 		kfree(sd->groups);
5853 	}
5854 	kfree(sd);
5855 }
5856 
5857 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5858 {
5859 	call_rcu(&sd->rcu, free_sched_domain);
5860 }
5861 
5862 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5863 {
5864 	for (; sd; sd = sd->parent)
5865 		destroy_sched_domain(sd, cpu);
5866 }
5867 
5868 /*
5869  * Keep a special pointer to the highest sched_domain that has
5870  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5871  * allows us to avoid some pointer chasing select_idle_sibling().
5872  *
5873  * Also keep a unique ID per domain (we use the first cpu number in
5874  * the cpumask of the domain), this allows us to quickly tell if
5875  * two cpus are in the same cache domain, see cpus_share_cache().
5876  */
5877 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5878 DEFINE_PER_CPU(int, sd_llc_size);
5879 DEFINE_PER_CPU(int, sd_llc_id);
5880 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5881 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5882 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5883 
5884 static void update_top_cache_domain(int cpu)
5885 {
5886 	struct sched_domain *sd;
5887 	struct sched_domain *busy_sd = NULL;
5888 	int id = cpu;
5889 	int size = 1;
5890 
5891 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5892 	if (sd) {
5893 		id = cpumask_first(sched_domain_span(sd));
5894 		size = cpumask_weight(sched_domain_span(sd));
5895 		busy_sd = sd->parent; /* sd_busy */
5896 	}
5897 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5898 
5899 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5900 	per_cpu(sd_llc_size, cpu) = size;
5901 	per_cpu(sd_llc_id, cpu) = id;
5902 
5903 	sd = lowest_flag_domain(cpu, SD_NUMA);
5904 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5905 
5906 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5907 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5908 }
5909 
5910 /*
5911  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5912  * hold the hotplug lock.
5913  */
5914 static void
5915 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5916 {
5917 	struct rq *rq = cpu_rq(cpu);
5918 	struct sched_domain *tmp;
5919 
5920 	/* Remove the sched domains which do not contribute to scheduling. */
5921 	for (tmp = sd; tmp; ) {
5922 		struct sched_domain *parent = tmp->parent;
5923 		if (!parent)
5924 			break;
5925 
5926 		if (sd_parent_degenerate(tmp, parent)) {
5927 			tmp->parent = parent->parent;
5928 			if (parent->parent)
5929 				parent->parent->child = tmp;
5930 			/*
5931 			 * Transfer SD_PREFER_SIBLING down in case of a
5932 			 * degenerate parent; the spans match for this
5933 			 * so the property transfers.
5934 			 */
5935 			if (parent->flags & SD_PREFER_SIBLING)
5936 				tmp->flags |= SD_PREFER_SIBLING;
5937 			destroy_sched_domain(parent, cpu);
5938 		} else
5939 			tmp = tmp->parent;
5940 	}
5941 
5942 	if (sd && sd_degenerate(sd)) {
5943 		tmp = sd;
5944 		sd = sd->parent;
5945 		destroy_sched_domain(tmp, cpu);
5946 		if (sd)
5947 			sd->child = NULL;
5948 	}
5949 
5950 	sched_domain_debug(sd, cpu);
5951 
5952 	rq_attach_root(rq, rd);
5953 	tmp = rq->sd;
5954 	rcu_assign_pointer(rq->sd, sd);
5955 	destroy_sched_domains(tmp, cpu);
5956 
5957 	update_top_cache_domain(cpu);
5958 }
5959 
5960 /* Setup the mask of cpus configured for isolated domains */
5961 static int __init isolated_cpu_setup(char *str)
5962 {
5963 	int ret;
5964 
5965 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5966 	ret = cpulist_parse(str, cpu_isolated_map);
5967 	if (ret) {
5968 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5969 		return 0;
5970 	}
5971 	return 1;
5972 }
5973 __setup("isolcpus=", isolated_cpu_setup);
5974 
5975 struct s_data {
5976 	struct sched_domain ** __percpu sd;
5977 	struct root_domain	*rd;
5978 };
5979 
5980 enum s_alloc {
5981 	sa_rootdomain,
5982 	sa_sd,
5983 	sa_sd_storage,
5984 	sa_none,
5985 };
5986 
5987 /*
5988  * Build an iteration mask that can exclude certain CPUs from the upwards
5989  * domain traversal.
5990  *
5991  * Asymmetric node setups can result in situations where the domain tree is of
5992  * unequal depth, make sure to skip domains that already cover the entire
5993  * range.
5994  *
5995  * In that case build_sched_domains() will have terminated the iteration early
5996  * and our sibling sd spans will be empty. Domains should always include the
5997  * cpu they're built on, so check that.
5998  *
5999  */
6000 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6001 {
6002 	const struct cpumask *span = sched_domain_span(sd);
6003 	struct sd_data *sdd = sd->private;
6004 	struct sched_domain *sibling;
6005 	int i;
6006 
6007 	for_each_cpu(i, span) {
6008 		sibling = *per_cpu_ptr(sdd->sd, i);
6009 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6010 			continue;
6011 
6012 		cpumask_set_cpu(i, sched_group_mask(sg));
6013 	}
6014 }
6015 
6016 /*
6017  * Return the canonical balance cpu for this group, this is the first cpu
6018  * of this group that's also in the iteration mask.
6019  */
6020 int group_balance_cpu(struct sched_group *sg)
6021 {
6022 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6023 }
6024 
6025 static int
6026 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6027 {
6028 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6029 	const struct cpumask *span = sched_domain_span(sd);
6030 	struct cpumask *covered = sched_domains_tmpmask;
6031 	struct sd_data *sdd = sd->private;
6032 	struct sched_domain *sibling;
6033 	int i;
6034 
6035 	cpumask_clear(covered);
6036 
6037 	for_each_cpu(i, span) {
6038 		struct cpumask *sg_span;
6039 
6040 		if (cpumask_test_cpu(i, covered))
6041 			continue;
6042 
6043 		sibling = *per_cpu_ptr(sdd->sd, i);
6044 
6045 		/* See the comment near build_group_mask(). */
6046 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6047 			continue;
6048 
6049 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6050 				GFP_KERNEL, cpu_to_node(cpu));
6051 
6052 		if (!sg)
6053 			goto fail;
6054 
6055 		sg_span = sched_group_cpus(sg);
6056 		if (sibling->child)
6057 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6058 		else
6059 			cpumask_set_cpu(i, sg_span);
6060 
6061 		cpumask_or(covered, covered, sg_span);
6062 
6063 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6064 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6065 			build_group_mask(sd, sg);
6066 
6067 		/*
6068 		 * Initialize sgc->capacity such that even if we mess up the
6069 		 * domains and no possible iteration will get us here, we won't
6070 		 * die on a /0 trap.
6071 		 */
6072 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6073 
6074 		/*
6075 		 * Make sure the first group of this domain contains the
6076 		 * canonical balance cpu. Otherwise the sched_domain iteration
6077 		 * breaks. See update_sg_lb_stats().
6078 		 */
6079 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6080 		    group_balance_cpu(sg) == cpu)
6081 			groups = sg;
6082 
6083 		if (!first)
6084 			first = sg;
6085 		if (last)
6086 			last->next = sg;
6087 		last = sg;
6088 		last->next = first;
6089 	}
6090 	sd->groups = groups;
6091 
6092 	return 0;
6093 
6094 fail:
6095 	free_sched_groups(first, 0);
6096 
6097 	return -ENOMEM;
6098 }
6099 
6100 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6101 {
6102 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6103 	struct sched_domain *child = sd->child;
6104 
6105 	if (child)
6106 		cpu = cpumask_first(sched_domain_span(child));
6107 
6108 	if (sg) {
6109 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6110 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6111 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6112 	}
6113 
6114 	return cpu;
6115 }
6116 
6117 /*
6118  * build_sched_groups will build a circular linked list of the groups
6119  * covered by the given span, and will set each group's ->cpumask correctly,
6120  * and ->cpu_capacity to 0.
6121  *
6122  * Assumes the sched_domain tree is fully constructed
6123  */
6124 static int
6125 build_sched_groups(struct sched_domain *sd, int cpu)
6126 {
6127 	struct sched_group *first = NULL, *last = NULL;
6128 	struct sd_data *sdd = sd->private;
6129 	const struct cpumask *span = sched_domain_span(sd);
6130 	struct cpumask *covered;
6131 	int i;
6132 
6133 	get_group(cpu, sdd, &sd->groups);
6134 	atomic_inc(&sd->groups->ref);
6135 
6136 	if (cpu != cpumask_first(span))
6137 		return 0;
6138 
6139 	lockdep_assert_held(&sched_domains_mutex);
6140 	covered = sched_domains_tmpmask;
6141 
6142 	cpumask_clear(covered);
6143 
6144 	for_each_cpu(i, span) {
6145 		struct sched_group *sg;
6146 		int group, j;
6147 
6148 		if (cpumask_test_cpu(i, covered))
6149 			continue;
6150 
6151 		group = get_group(i, sdd, &sg);
6152 		cpumask_setall(sched_group_mask(sg));
6153 
6154 		for_each_cpu(j, span) {
6155 			if (get_group(j, sdd, NULL) != group)
6156 				continue;
6157 
6158 			cpumask_set_cpu(j, covered);
6159 			cpumask_set_cpu(j, sched_group_cpus(sg));
6160 		}
6161 
6162 		if (!first)
6163 			first = sg;
6164 		if (last)
6165 			last->next = sg;
6166 		last = sg;
6167 	}
6168 	last->next = first;
6169 
6170 	return 0;
6171 }
6172 
6173 /*
6174  * Initialize sched groups cpu_capacity.
6175  *
6176  * cpu_capacity indicates the capacity of sched group, which is used while
6177  * distributing the load between different sched groups in a sched domain.
6178  * Typically cpu_capacity for all the groups in a sched domain will be same
6179  * unless there are asymmetries in the topology. If there are asymmetries,
6180  * group having more cpu_capacity will pickup more load compared to the
6181  * group having less cpu_capacity.
6182  */
6183 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6184 {
6185 	struct sched_group *sg = sd->groups;
6186 
6187 	WARN_ON(!sg);
6188 
6189 	do {
6190 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6191 		sg = sg->next;
6192 	} while (sg != sd->groups);
6193 
6194 	if (cpu != group_balance_cpu(sg))
6195 		return;
6196 
6197 	update_group_capacity(sd, cpu);
6198 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6199 }
6200 
6201 /*
6202  * Initializers for schedule domains
6203  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6204  */
6205 
6206 static int default_relax_domain_level = -1;
6207 int sched_domain_level_max;
6208 
6209 static int __init setup_relax_domain_level(char *str)
6210 {
6211 	if (kstrtoint(str, 0, &default_relax_domain_level))
6212 		pr_warn("Unable to set relax_domain_level\n");
6213 
6214 	return 1;
6215 }
6216 __setup("relax_domain_level=", setup_relax_domain_level);
6217 
6218 static void set_domain_attribute(struct sched_domain *sd,
6219 				 struct sched_domain_attr *attr)
6220 {
6221 	int request;
6222 
6223 	if (!attr || attr->relax_domain_level < 0) {
6224 		if (default_relax_domain_level < 0)
6225 			return;
6226 		else
6227 			request = default_relax_domain_level;
6228 	} else
6229 		request = attr->relax_domain_level;
6230 	if (request < sd->level) {
6231 		/* turn off idle balance on this domain */
6232 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6233 	} else {
6234 		/* turn on idle balance on this domain */
6235 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6236 	}
6237 }
6238 
6239 static void __sdt_free(const struct cpumask *cpu_map);
6240 static int __sdt_alloc(const struct cpumask *cpu_map);
6241 
6242 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6243 				 const struct cpumask *cpu_map)
6244 {
6245 	switch (what) {
6246 	case sa_rootdomain:
6247 		if (!atomic_read(&d->rd->refcount))
6248 			free_rootdomain(&d->rd->rcu); /* fall through */
6249 	case sa_sd:
6250 		free_percpu(d->sd); /* fall through */
6251 	case sa_sd_storage:
6252 		__sdt_free(cpu_map); /* fall through */
6253 	case sa_none:
6254 		break;
6255 	}
6256 }
6257 
6258 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6259 						   const struct cpumask *cpu_map)
6260 {
6261 	memset(d, 0, sizeof(*d));
6262 
6263 	if (__sdt_alloc(cpu_map))
6264 		return sa_sd_storage;
6265 	d->sd = alloc_percpu(struct sched_domain *);
6266 	if (!d->sd)
6267 		return sa_sd_storage;
6268 	d->rd = alloc_rootdomain();
6269 	if (!d->rd)
6270 		return sa_sd;
6271 	return sa_rootdomain;
6272 }
6273 
6274 /*
6275  * NULL the sd_data elements we've used to build the sched_domain and
6276  * sched_group structure so that the subsequent __free_domain_allocs()
6277  * will not free the data we're using.
6278  */
6279 static void claim_allocations(int cpu, struct sched_domain *sd)
6280 {
6281 	struct sd_data *sdd = sd->private;
6282 
6283 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6284 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6285 
6286 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6287 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6288 
6289 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6290 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6291 }
6292 
6293 #ifdef CONFIG_NUMA
6294 static int sched_domains_numa_levels;
6295 enum numa_topology_type sched_numa_topology_type;
6296 static int *sched_domains_numa_distance;
6297 int sched_max_numa_distance;
6298 static struct cpumask ***sched_domains_numa_masks;
6299 static int sched_domains_curr_level;
6300 #endif
6301 
6302 /*
6303  * SD_flags allowed in topology descriptions.
6304  *
6305  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6306  * SD_SHARE_PKG_RESOURCES - describes shared caches
6307  * SD_NUMA                - describes NUMA topologies
6308  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6309  *
6310  * Odd one out:
6311  * SD_ASYM_PACKING        - describes SMT quirks
6312  */
6313 #define TOPOLOGY_SD_FLAGS		\
6314 	(SD_SHARE_CPUCAPACITY |		\
6315 	 SD_SHARE_PKG_RESOURCES |	\
6316 	 SD_NUMA |			\
6317 	 SD_ASYM_PACKING |		\
6318 	 SD_SHARE_POWERDOMAIN)
6319 
6320 static struct sched_domain *
6321 sd_init(struct sched_domain_topology_level *tl, int cpu)
6322 {
6323 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6324 	int sd_weight, sd_flags = 0;
6325 
6326 #ifdef CONFIG_NUMA
6327 	/*
6328 	 * Ugly hack to pass state to sd_numa_mask()...
6329 	 */
6330 	sched_domains_curr_level = tl->numa_level;
6331 #endif
6332 
6333 	sd_weight = cpumask_weight(tl->mask(cpu));
6334 
6335 	if (tl->sd_flags)
6336 		sd_flags = (*tl->sd_flags)();
6337 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6338 			"wrong sd_flags in topology description\n"))
6339 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6340 
6341 	*sd = (struct sched_domain){
6342 		.min_interval		= sd_weight,
6343 		.max_interval		= 2*sd_weight,
6344 		.busy_factor		= 32,
6345 		.imbalance_pct		= 125,
6346 
6347 		.cache_nice_tries	= 0,
6348 		.busy_idx		= 0,
6349 		.idle_idx		= 0,
6350 		.newidle_idx		= 0,
6351 		.wake_idx		= 0,
6352 		.forkexec_idx		= 0,
6353 
6354 		.flags			= 1*SD_LOAD_BALANCE
6355 					| 1*SD_BALANCE_NEWIDLE
6356 					| 1*SD_BALANCE_EXEC
6357 					| 1*SD_BALANCE_FORK
6358 					| 0*SD_BALANCE_WAKE
6359 					| 1*SD_WAKE_AFFINE
6360 					| 0*SD_SHARE_CPUCAPACITY
6361 					| 0*SD_SHARE_PKG_RESOURCES
6362 					| 0*SD_SERIALIZE
6363 					| 0*SD_PREFER_SIBLING
6364 					| 0*SD_NUMA
6365 					| sd_flags
6366 					,
6367 
6368 		.last_balance		= jiffies,
6369 		.balance_interval	= sd_weight,
6370 		.smt_gain		= 0,
6371 		.max_newidle_lb_cost	= 0,
6372 		.next_decay_max_lb_cost	= jiffies,
6373 #ifdef CONFIG_SCHED_DEBUG
6374 		.name			= tl->name,
6375 #endif
6376 	};
6377 
6378 	/*
6379 	 * Convert topological properties into behaviour.
6380 	 */
6381 
6382 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6383 		sd->flags |= SD_PREFER_SIBLING;
6384 		sd->imbalance_pct = 110;
6385 		sd->smt_gain = 1178; /* ~15% */
6386 
6387 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6388 		sd->imbalance_pct = 117;
6389 		sd->cache_nice_tries = 1;
6390 		sd->busy_idx = 2;
6391 
6392 #ifdef CONFIG_NUMA
6393 	} else if (sd->flags & SD_NUMA) {
6394 		sd->cache_nice_tries = 2;
6395 		sd->busy_idx = 3;
6396 		sd->idle_idx = 2;
6397 
6398 		sd->flags |= SD_SERIALIZE;
6399 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6400 			sd->flags &= ~(SD_BALANCE_EXEC |
6401 				       SD_BALANCE_FORK |
6402 				       SD_WAKE_AFFINE);
6403 		}
6404 
6405 #endif
6406 	} else {
6407 		sd->flags |= SD_PREFER_SIBLING;
6408 		sd->cache_nice_tries = 1;
6409 		sd->busy_idx = 2;
6410 		sd->idle_idx = 1;
6411 	}
6412 
6413 	sd->private = &tl->data;
6414 
6415 	return sd;
6416 }
6417 
6418 /*
6419  * Topology list, bottom-up.
6420  */
6421 static struct sched_domain_topology_level default_topology[] = {
6422 #ifdef CONFIG_SCHED_SMT
6423 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6424 #endif
6425 #ifdef CONFIG_SCHED_MC
6426 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6427 #endif
6428 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6429 	{ NULL, },
6430 };
6431 
6432 static struct sched_domain_topology_level *sched_domain_topology =
6433 	default_topology;
6434 
6435 #define for_each_sd_topology(tl)			\
6436 	for (tl = sched_domain_topology; tl->mask; tl++)
6437 
6438 void set_sched_topology(struct sched_domain_topology_level *tl)
6439 {
6440 	sched_domain_topology = tl;
6441 }
6442 
6443 #ifdef CONFIG_NUMA
6444 
6445 static const struct cpumask *sd_numa_mask(int cpu)
6446 {
6447 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6448 }
6449 
6450 static void sched_numa_warn(const char *str)
6451 {
6452 	static int done = false;
6453 	int i,j;
6454 
6455 	if (done)
6456 		return;
6457 
6458 	done = true;
6459 
6460 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6461 
6462 	for (i = 0; i < nr_node_ids; i++) {
6463 		printk(KERN_WARNING "  ");
6464 		for (j = 0; j < nr_node_ids; j++)
6465 			printk(KERN_CONT "%02d ", node_distance(i,j));
6466 		printk(KERN_CONT "\n");
6467 	}
6468 	printk(KERN_WARNING "\n");
6469 }
6470 
6471 bool find_numa_distance(int distance)
6472 {
6473 	int i;
6474 
6475 	if (distance == node_distance(0, 0))
6476 		return true;
6477 
6478 	for (i = 0; i < sched_domains_numa_levels; i++) {
6479 		if (sched_domains_numa_distance[i] == distance)
6480 			return true;
6481 	}
6482 
6483 	return false;
6484 }
6485 
6486 /*
6487  * A system can have three types of NUMA topology:
6488  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6489  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6490  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6491  *
6492  * The difference between a glueless mesh topology and a backplane
6493  * topology lies in whether communication between not directly
6494  * connected nodes goes through intermediary nodes (where programs
6495  * could run), or through backplane controllers. This affects
6496  * placement of programs.
6497  *
6498  * The type of topology can be discerned with the following tests:
6499  * - If the maximum distance between any nodes is 1 hop, the system
6500  *   is directly connected.
6501  * - If for two nodes A and B, located N > 1 hops away from each other,
6502  *   there is an intermediary node C, which is < N hops away from both
6503  *   nodes A and B, the system is a glueless mesh.
6504  */
6505 static void init_numa_topology_type(void)
6506 {
6507 	int a, b, c, n;
6508 
6509 	n = sched_max_numa_distance;
6510 
6511 	if (sched_domains_numa_levels <= 1) {
6512 		sched_numa_topology_type = NUMA_DIRECT;
6513 		return;
6514 	}
6515 
6516 	for_each_online_node(a) {
6517 		for_each_online_node(b) {
6518 			/* Find two nodes furthest removed from each other. */
6519 			if (node_distance(a, b) < n)
6520 				continue;
6521 
6522 			/* Is there an intermediary node between a and b? */
6523 			for_each_online_node(c) {
6524 				if (node_distance(a, c) < n &&
6525 				    node_distance(b, c) < n) {
6526 					sched_numa_topology_type =
6527 							NUMA_GLUELESS_MESH;
6528 					return;
6529 				}
6530 			}
6531 
6532 			sched_numa_topology_type = NUMA_BACKPLANE;
6533 			return;
6534 		}
6535 	}
6536 }
6537 
6538 static void sched_init_numa(void)
6539 {
6540 	int next_distance, curr_distance = node_distance(0, 0);
6541 	struct sched_domain_topology_level *tl;
6542 	int level = 0;
6543 	int i, j, k;
6544 
6545 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6546 	if (!sched_domains_numa_distance)
6547 		return;
6548 
6549 	/*
6550 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6551 	 * unique distances in the node_distance() table.
6552 	 *
6553 	 * Assumes node_distance(0,j) includes all distances in
6554 	 * node_distance(i,j) in order to avoid cubic time.
6555 	 */
6556 	next_distance = curr_distance;
6557 	for (i = 0; i < nr_node_ids; i++) {
6558 		for (j = 0; j < nr_node_ids; j++) {
6559 			for (k = 0; k < nr_node_ids; k++) {
6560 				int distance = node_distance(i, k);
6561 
6562 				if (distance > curr_distance &&
6563 				    (distance < next_distance ||
6564 				     next_distance == curr_distance))
6565 					next_distance = distance;
6566 
6567 				/*
6568 				 * While not a strong assumption it would be nice to know
6569 				 * about cases where if node A is connected to B, B is not
6570 				 * equally connected to A.
6571 				 */
6572 				if (sched_debug() && node_distance(k, i) != distance)
6573 					sched_numa_warn("Node-distance not symmetric");
6574 
6575 				if (sched_debug() && i && !find_numa_distance(distance))
6576 					sched_numa_warn("Node-0 not representative");
6577 			}
6578 			if (next_distance != curr_distance) {
6579 				sched_domains_numa_distance[level++] = next_distance;
6580 				sched_domains_numa_levels = level;
6581 				curr_distance = next_distance;
6582 			} else break;
6583 		}
6584 
6585 		/*
6586 		 * In case of sched_debug() we verify the above assumption.
6587 		 */
6588 		if (!sched_debug())
6589 			break;
6590 	}
6591 
6592 	if (!level)
6593 		return;
6594 
6595 	/*
6596 	 * 'level' contains the number of unique distances, excluding the
6597 	 * identity distance node_distance(i,i).
6598 	 *
6599 	 * The sched_domains_numa_distance[] array includes the actual distance
6600 	 * numbers.
6601 	 */
6602 
6603 	/*
6604 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6605 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6606 	 * the array will contain less then 'level' members. This could be
6607 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6608 	 * in other functions.
6609 	 *
6610 	 * We reset it to 'level' at the end of this function.
6611 	 */
6612 	sched_domains_numa_levels = 0;
6613 
6614 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6615 	if (!sched_domains_numa_masks)
6616 		return;
6617 
6618 	/*
6619 	 * Now for each level, construct a mask per node which contains all
6620 	 * cpus of nodes that are that many hops away from us.
6621 	 */
6622 	for (i = 0; i < level; i++) {
6623 		sched_domains_numa_masks[i] =
6624 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6625 		if (!sched_domains_numa_masks[i])
6626 			return;
6627 
6628 		for (j = 0; j < nr_node_ids; j++) {
6629 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6630 			if (!mask)
6631 				return;
6632 
6633 			sched_domains_numa_masks[i][j] = mask;
6634 
6635 			for_each_node(k) {
6636 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6637 					continue;
6638 
6639 				cpumask_or(mask, mask, cpumask_of_node(k));
6640 			}
6641 		}
6642 	}
6643 
6644 	/* Compute default topology size */
6645 	for (i = 0; sched_domain_topology[i].mask; i++);
6646 
6647 	tl = kzalloc((i + level + 1) *
6648 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6649 	if (!tl)
6650 		return;
6651 
6652 	/*
6653 	 * Copy the default topology bits..
6654 	 */
6655 	for (i = 0; sched_domain_topology[i].mask; i++)
6656 		tl[i] = sched_domain_topology[i];
6657 
6658 	/*
6659 	 * .. and append 'j' levels of NUMA goodness.
6660 	 */
6661 	for (j = 0; j < level; i++, j++) {
6662 		tl[i] = (struct sched_domain_topology_level){
6663 			.mask = sd_numa_mask,
6664 			.sd_flags = cpu_numa_flags,
6665 			.flags = SDTL_OVERLAP,
6666 			.numa_level = j,
6667 			SD_INIT_NAME(NUMA)
6668 		};
6669 	}
6670 
6671 	sched_domain_topology = tl;
6672 
6673 	sched_domains_numa_levels = level;
6674 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6675 
6676 	init_numa_topology_type();
6677 }
6678 
6679 static void sched_domains_numa_masks_set(unsigned int cpu)
6680 {
6681 	int node = cpu_to_node(cpu);
6682 	int i, j;
6683 
6684 	for (i = 0; i < sched_domains_numa_levels; i++) {
6685 		for (j = 0; j < nr_node_ids; j++) {
6686 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6687 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6688 		}
6689 	}
6690 }
6691 
6692 static void sched_domains_numa_masks_clear(unsigned int cpu)
6693 {
6694 	int i, j;
6695 
6696 	for (i = 0; i < sched_domains_numa_levels; i++) {
6697 		for (j = 0; j < nr_node_ids; j++)
6698 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6699 	}
6700 }
6701 
6702 #else
6703 static inline void sched_init_numa(void) { }
6704 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6705 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6706 #endif /* CONFIG_NUMA */
6707 
6708 static int __sdt_alloc(const struct cpumask *cpu_map)
6709 {
6710 	struct sched_domain_topology_level *tl;
6711 	int j;
6712 
6713 	for_each_sd_topology(tl) {
6714 		struct sd_data *sdd = &tl->data;
6715 
6716 		sdd->sd = alloc_percpu(struct sched_domain *);
6717 		if (!sdd->sd)
6718 			return -ENOMEM;
6719 
6720 		sdd->sg = alloc_percpu(struct sched_group *);
6721 		if (!sdd->sg)
6722 			return -ENOMEM;
6723 
6724 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6725 		if (!sdd->sgc)
6726 			return -ENOMEM;
6727 
6728 		for_each_cpu(j, cpu_map) {
6729 			struct sched_domain *sd;
6730 			struct sched_group *sg;
6731 			struct sched_group_capacity *sgc;
6732 
6733 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6734 					GFP_KERNEL, cpu_to_node(j));
6735 			if (!sd)
6736 				return -ENOMEM;
6737 
6738 			*per_cpu_ptr(sdd->sd, j) = sd;
6739 
6740 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6741 					GFP_KERNEL, cpu_to_node(j));
6742 			if (!sg)
6743 				return -ENOMEM;
6744 
6745 			sg->next = sg;
6746 
6747 			*per_cpu_ptr(sdd->sg, j) = sg;
6748 
6749 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6750 					GFP_KERNEL, cpu_to_node(j));
6751 			if (!sgc)
6752 				return -ENOMEM;
6753 
6754 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6755 		}
6756 	}
6757 
6758 	return 0;
6759 }
6760 
6761 static void __sdt_free(const struct cpumask *cpu_map)
6762 {
6763 	struct sched_domain_topology_level *tl;
6764 	int j;
6765 
6766 	for_each_sd_topology(tl) {
6767 		struct sd_data *sdd = &tl->data;
6768 
6769 		for_each_cpu(j, cpu_map) {
6770 			struct sched_domain *sd;
6771 
6772 			if (sdd->sd) {
6773 				sd = *per_cpu_ptr(sdd->sd, j);
6774 				if (sd && (sd->flags & SD_OVERLAP))
6775 					free_sched_groups(sd->groups, 0);
6776 				kfree(*per_cpu_ptr(sdd->sd, j));
6777 			}
6778 
6779 			if (sdd->sg)
6780 				kfree(*per_cpu_ptr(sdd->sg, j));
6781 			if (sdd->sgc)
6782 				kfree(*per_cpu_ptr(sdd->sgc, j));
6783 		}
6784 		free_percpu(sdd->sd);
6785 		sdd->sd = NULL;
6786 		free_percpu(sdd->sg);
6787 		sdd->sg = NULL;
6788 		free_percpu(sdd->sgc);
6789 		sdd->sgc = NULL;
6790 	}
6791 }
6792 
6793 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6794 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6795 		struct sched_domain *child, int cpu)
6796 {
6797 	struct sched_domain *sd = sd_init(tl, cpu);
6798 	if (!sd)
6799 		return child;
6800 
6801 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6802 	if (child) {
6803 		sd->level = child->level + 1;
6804 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6805 		child->parent = sd;
6806 		sd->child = child;
6807 
6808 		if (!cpumask_subset(sched_domain_span(child),
6809 				    sched_domain_span(sd))) {
6810 			pr_err("BUG: arch topology borken\n");
6811 #ifdef CONFIG_SCHED_DEBUG
6812 			pr_err("     the %s domain not a subset of the %s domain\n",
6813 					child->name, sd->name);
6814 #endif
6815 			/* Fixup, ensure @sd has at least @child cpus. */
6816 			cpumask_or(sched_domain_span(sd),
6817 				   sched_domain_span(sd),
6818 				   sched_domain_span(child));
6819 		}
6820 
6821 	}
6822 	set_domain_attribute(sd, attr);
6823 
6824 	return sd;
6825 }
6826 
6827 /*
6828  * Build sched domains for a given set of cpus and attach the sched domains
6829  * to the individual cpus
6830  */
6831 static int build_sched_domains(const struct cpumask *cpu_map,
6832 			       struct sched_domain_attr *attr)
6833 {
6834 	enum s_alloc alloc_state;
6835 	struct sched_domain *sd;
6836 	struct s_data d;
6837 	int i, ret = -ENOMEM;
6838 
6839 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6840 	if (alloc_state != sa_rootdomain)
6841 		goto error;
6842 
6843 	/* Set up domains for cpus specified by the cpu_map. */
6844 	for_each_cpu(i, cpu_map) {
6845 		struct sched_domain_topology_level *tl;
6846 
6847 		sd = NULL;
6848 		for_each_sd_topology(tl) {
6849 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6850 			if (tl == sched_domain_topology)
6851 				*per_cpu_ptr(d.sd, i) = sd;
6852 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6853 				sd->flags |= SD_OVERLAP;
6854 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6855 				break;
6856 		}
6857 	}
6858 
6859 	/* Build the groups for the domains */
6860 	for_each_cpu(i, cpu_map) {
6861 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6862 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6863 			if (sd->flags & SD_OVERLAP) {
6864 				if (build_overlap_sched_groups(sd, i))
6865 					goto error;
6866 			} else {
6867 				if (build_sched_groups(sd, i))
6868 					goto error;
6869 			}
6870 		}
6871 	}
6872 
6873 	/* Calculate CPU capacity for physical packages and nodes */
6874 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6875 		if (!cpumask_test_cpu(i, cpu_map))
6876 			continue;
6877 
6878 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6879 			claim_allocations(i, sd);
6880 			init_sched_groups_capacity(i, sd);
6881 		}
6882 	}
6883 
6884 	/* Attach the domains */
6885 	rcu_read_lock();
6886 	for_each_cpu(i, cpu_map) {
6887 		sd = *per_cpu_ptr(d.sd, i);
6888 		cpu_attach_domain(sd, d.rd, i);
6889 	}
6890 	rcu_read_unlock();
6891 
6892 	ret = 0;
6893 error:
6894 	__free_domain_allocs(&d, alloc_state, cpu_map);
6895 	return ret;
6896 }
6897 
6898 static cpumask_var_t *doms_cur;	/* current sched domains */
6899 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6900 static struct sched_domain_attr *dattr_cur;
6901 				/* attribues of custom domains in 'doms_cur' */
6902 
6903 /*
6904  * Special case: If a kmalloc of a doms_cur partition (array of
6905  * cpumask) fails, then fallback to a single sched domain,
6906  * as determined by the single cpumask fallback_doms.
6907  */
6908 static cpumask_var_t fallback_doms;
6909 
6910 /*
6911  * arch_update_cpu_topology lets virtualized architectures update the
6912  * cpu core maps. It is supposed to return 1 if the topology changed
6913  * or 0 if it stayed the same.
6914  */
6915 int __weak arch_update_cpu_topology(void)
6916 {
6917 	return 0;
6918 }
6919 
6920 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6921 {
6922 	int i;
6923 	cpumask_var_t *doms;
6924 
6925 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6926 	if (!doms)
6927 		return NULL;
6928 	for (i = 0; i < ndoms; i++) {
6929 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6930 			free_sched_domains(doms, i);
6931 			return NULL;
6932 		}
6933 	}
6934 	return doms;
6935 }
6936 
6937 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6938 {
6939 	unsigned int i;
6940 	for (i = 0; i < ndoms; i++)
6941 		free_cpumask_var(doms[i]);
6942 	kfree(doms);
6943 }
6944 
6945 /*
6946  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6947  * For now this just excludes isolated cpus, but could be used to
6948  * exclude other special cases in the future.
6949  */
6950 static int init_sched_domains(const struct cpumask *cpu_map)
6951 {
6952 	int err;
6953 
6954 	arch_update_cpu_topology();
6955 	ndoms_cur = 1;
6956 	doms_cur = alloc_sched_domains(ndoms_cur);
6957 	if (!doms_cur)
6958 		doms_cur = &fallback_doms;
6959 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6960 	err = build_sched_domains(doms_cur[0], NULL);
6961 	register_sched_domain_sysctl();
6962 
6963 	return err;
6964 }
6965 
6966 /*
6967  * Detach sched domains from a group of cpus specified in cpu_map
6968  * These cpus will now be attached to the NULL domain
6969  */
6970 static void detach_destroy_domains(const struct cpumask *cpu_map)
6971 {
6972 	int i;
6973 
6974 	rcu_read_lock();
6975 	for_each_cpu(i, cpu_map)
6976 		cpu_attach_domain(NULL, &def_root_domain, i);
6977 	rcu_read_unlock();
6978 }
6979 
6980 /* handle null as "default" */
6981 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6982 			struct sched_domain_attr *new, int idx_new)
6983 {
6984 	struct sched_domain_attr tmp;
6985 
6986 	/* fast path */
6987 	if (!new && !cur)
6988 		return 1;
6989 
6990 	tmp = SD_ATTR_INIT;
6991 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6992 			new ? (new + idx_new) : &tmp,
6993 			sizeof(struct sched_domain_attr));
6994 }
6995 
6996 /*
6997  * Partition sched domains as specified by the 'ndoms_new'
6998  * cpumasks in the array doms_new[] of cpumasks. This compares
6999  * doms_new[] to the current sched domain partitioning, doms_cur[].
7000  * It destroys each deleted domain and builds each new domain.
7001  *
7002  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7003  * The masks don't intersect (don't overlap.) We should setup one
7004  * sched domain for each mask. CPUs not in any of the cpumasks will
7005  * not be load balanced. If the same cpumask appears both in the
7006  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7007  * it as it is.
7008  *
7009  * The passed in 'doms_new' should be allocated using
7010  * alloc_sched_domains.  This routine takes ownership of it and will
7011  * free_sched_domains it when done with it. If the caller failed the
7012  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7013  * and partition_sched_domains() will fallback to the single partition
7014  * 'fallback_doms', it also forces the domains to be rebuilt.
7015  *
7016  * If doms_new == NULL it will be replaced with cpu_online_mask.
7017  * ndoms_new == 0 is a special case for destroying existing domains,
7018  * and it will not create the default domain.
7019  *
7020  * Call with hotplug lock held
7021  */
7022 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7023 			     struct sched_domain_attr *dattr_new)
7024 {
7025 	int i, j, n;
7026 	int new_topology;
7027 
7028 	mutex_lock(&sched_domains_mutex);
7029 
7030 	/* always unregister in case we don't destroy any domains */
7031 	unregister_sched_domain_sysctl();
7032 
7033 	/* Let architecture update cpu core mappings. */
7034 	new_topology = arch_update_cpu_topology();
7035 
7036 	n = doms_new ? ndoms_new : 0;
7037 
7038 	/* Destroy deleted domains */
7039 	for (i = 0; i < ndoms_cur; i++) {
7040 		for (j = 0; j < n && !new_topology; j++) {
7041 			if (cpumask_equal(doms_cur[i], doms_new[j])
7042 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7043 				goto match1;
7044 		}
7045 		/* no match - a current sched domain not in new doms_new[] */
7046 		detach_destroy_domains(doms_cur[i]);
7047 match1:
7048 		;
7049 	}
7050 
7051 	n = ndoms_cur;
7052 	if (doms_new == NULL) {
7053 		n = 0;
7054 		doms_new = &fallback_doms;
7055 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7056 		WARN_ON_ONCE(dattr_new);
7057 	}
7058 
7059 	/* Build new domains */
7060 	for (i = 0; i < ndoms_new; i++) {
7061 		for (j = 0; j < n && !new_topology; j++) {
7062 			if (cpumask_equal(doms_new[i], doms_cur[j])
7063 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7064 				goto match2;
7065 		}
7066 		/* no match - add a new doms_new */
7067 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7068 match2:
7069 		;
7070 	}
7071 
7072 	/* Remember the new sched domains */
7073 	if (doms_cur != &fallback_doms)
7074 		free_sched_domains(doms_cur, ndoms_cur);
7075 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7076 	doms_cur = doms_new;
7077 	dattr_cur = dattr_new;
7078 	ndoms_cur = ndoms_new;
7079 
7080 	register_sched_domain_sysctl();
7081 
7082 	mutex_unlock(&sched_domains_mutex);
7083 }
7084 
7085 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7086 
7087 /*
7088  * Update cpusets according to cpu_active mask.  If cpusets are
7089  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7090  * around partition_sched_domains().
7091  *
7092  * If we come here as part of a suspend/resume, don't touch cpusets because we
7093  * want to restore it back to its original state upon resume anyway.
7094  */
7095 static void cpuset_cpu_active(void)
7096 {
7097 	if (cpuhp_tasks_frozen) {
7098 		/*
7099 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7100 		 * resume sequence. As long as this is not the last online
7101 		 * operation in the resume sequence, just build a single sched
7102 		 * domain, ignoring cpusets.
7103 		 */
7104 		num_cpus_frozen--;
7105 		if (likely(num_cpus_frozen)) {
7106 			partition_sched_domains(1, NULL, NULL);
7107 			return;
7108 		}
7109 		/*
7110 		 * This is the last CPU online operation. So fall through and
7111 		 * restore the original sched domains by considering the
7112 		 * cpuset configurations.
7113 		 */
7114 	}
7115 	cpuset_update_active_cpus(true);
7116 }
7117 
7118 static int cpuset_cpu_inactive(unsigned int cpu)
7119 {
7120 	unsigned long flags;
7121 	struct dl_bw *dl_b;
7122 	bool overflow;
7123 	int cpus;
7124 
7125 	if (!cpuhp_tasks_frozen) {
7126 		rcu_read_lock_sched();
7127 		dl_b = dl_bw_of(cpu);
7128 
7129 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7130 		cpus = dl_bw_cpus(cpu);
7131 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7132 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7133 
7134 		rcu_read_unlock_sched();
7135 
7136 		if (overflow)
7137 			return -EBUSY;
7138 		cpuset_update_active_cpus(false);
7139 	} else {
7140 		num_cpus_frozen++;
7141 		partition_sched_domains(1, NULL, NULL);
7142 	}
7143 	return 0;
7144 }
7145 
7146 int sched_cpu_activate(unsigned int cpu)
7147 {
7148 	struct rq *rq = cpu_rq(cpu);
7149 	unsigned long flags;
7150 
7151 	set_cpu_active(cpu, true);
7152 
7153 	if (sched_smp_initialized) {
7154 		sched_domains_numa_masks_set(cpu);
7155 		cpuset_cpu_active();
7156 	}
7157 
7158 	/*
7159 	 * Put the rq online, if not already. This happens:
7160 	 *
7161 	 * 1) In the early boot process, because we build the real domains
7162 	 *    after all cpus have been brought up.
7163 	 *
7164 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7165 	 *    domains.
7166 	 */
7167 	raw_spin_lock_irqsave(&rq->lock, flags);
7168 	if (rq->rd) {
7169 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7170 		set_rq_online(rq);
7171 	}
7172 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7173 
7174 	update_max_interval();
7175 
7176 	return 0;
7177 }
7178 
7179 int sched_cpu_deactivate(unsigned int cpu)
7180 {
7181 	int ret;
7182 
7183 	set_cpu_active(cpu, false);
7184 	/*
7185 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7186 	 * users of this state to go away such that all new such users will
7187 	 * observe it.
7188 	 *
7189 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7190 	 * not imply sync_sched(), so wait for both.
7191 	 *
7192 	 * Do sync before park smpboot threads to take care the rcu boost case.
7193 	 */
7194 	if (IS_ENABLED(CONFIG_PREEMPT))
7195 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
7196 	else
7197 		synchronize_rcu();
7198 
7199 	if (!sched_smp_initialized)
7200 		return 0;
7201 
7202 	ret = cpuset_cpu_inactive(cpu);
7203 	if (ret) {
7204 		set_cpu_active(cpu, true);
7205 		return ret;
7206 	}
7207 	sched_domains_numa_masks_clear(cpu);
7208 	return 0;
7209 }
7210 
7211 static void sched_rq_cpu_starting(unsigned int cpu)
7212 {
7213 	struct rq *rq = cpu_rq(cpu);
7214 
7215 	rq->calc_load_update = calc_load_update;
7216 	account_reset_rq(rq);
7217 	update_max_interval();
7218 }
7219 
7220 int sched_cpu_starting(unsigned int cpu)
7221 {
7222 	set_cpu_rq_start_time(cpu);
7223 	sched_rq_cpu_starting(cpu);
7224 	return 0;
7225 }
7226 
7227 #ifdef CONFIG_HOTPLUG_CPU
7228 int sched_cpu_dying(unsigned int cpu)
7229 {
7230 	struct rq *rq = cpu_rq(cpu);
7231 	unsigned long flags;
7232 
7233 	/* Handle pending wakeups and then migrate everything off */
7234 	sched_ttwu_pending();
7235 	raw_spin_lock_irqsave(&rq->lock, flags);
7236 	if (rq->rd) {
7237 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7238 		set_rq_offline(rq);
7239 	}
7240 	migrate_tasks(rq);
7241 	BUG_ON(rq->nr_running != 1);
7242 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7243 	calc_load_migrate(rq);
7244 	update_max_interval();
7245 	nohz_balance_exit_idle(cpu);
7246 	hrtick_clear(rq);
7247 	return 0;
7248 }
7249 #endif
7250 
7251 void __init sched_init_smp(void)
7252 {
7253 	cpumask_var_t non_isolated_cpus;
7254 
7255 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7256 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7257 
7258 	sched_init_numa();
7259 
7260 	/*
7261 	 * There's no userspace yet to cause hotplug operations; hence all the
7262 	 * cpu masks are stable and all blatant races in the below code cannot
7263 	 * happen.
7264 	 */
7265 	mutex_lock(&sched_domains_mutex);
7266 	init_sched_domains(cpu_active_mask);
7267 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7268 	if (cpumask_empty(non_isolated_cpus))
7269 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7270 	mutex_unlock(&sched_domains_mutex);
7271 
7272 	/* Move init over to a non-isolated CPU */
7273 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7274 		BUG();
7275 	sched_init_granularity();
7276 	free_cpumask_var(non_isolated_cpus);
7277 
7278 	init_sched_rt_class();
7279 	init_sched_dl_class();
7280 	sched_smp_initialized = true;
7281 }
7282 
7283 static int __init migration_init(void)
7284 {
7285 	sched_rq_cpu_starting(smp_processor_id());
7286 	return 0;
7287 }
7288 early_initcall(migration_init);
7289 
7290 #else
7291 void __init sched_init_smp(void)
7292 {
7293 	sched_init_granularity();
7294 }
7295 #endif /* CONFIG_SMP */
7296 
7297 int in_sched_functions(unsigned long addr)
7298 {
7299 	return in_lock_functions(addr) ||
7300 		(addr >= (unsigned long)__sched_text_start
7301 		&& addr < (unsigned long)__sched_text_end);
7302 }
7303 
7304 #ifdef CONFIG_CGROUP_SCHED
7305 /*
7306  * Default task group.
7307  * Every task in system belongs to this group at bootup.
7308  */
7309 struct task_group root_task_group;
7310 LIST_HEAD(task_groups);
7311 
7312 /* Cacheline aligned slab cache for task_group */
7313 static struct kmem_cache *task_group_cache __read_mostly;
7314 #endif
7315 
7316 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7317 
7318 void __init sched_init(void)
7319 {
7320 	int i, j;
7321 	unsigned long alloc_size = 0, ptr;
7322 
7323 #ifdef CONFIG_FAIR_GROUP_SCHED
7324 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7325 #endif
7326 #ifdef CONFIG_RT_GROUP_SCHED
7327 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7328 #endif
7329 	if (alloc_size) {
7330 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7331 
7332 #ifdef CONFIG_FAIR_GROUP_SCHED
7333 		root_task_group.se = (struct sched_entity **)ptr;
7334 		ptr += nr_cpu_ids * sizeof(void **);
7335 
7336 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7337 		ptr += nr_cpu_ids * sizeof(void **);
7338 
7339 #endif /* CONFIG_FAIR_GROUP_SCHED */
7340 #ifdef CONFIG_RT_GROUP_SCHED
7341 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7342 		ptr += nr_cpu_ids * sizeof(void **);
7343 
7344 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7345 		ptr += nr_cpu_ids * sizeof(void **);
7346 
7347 #endif /* CONFIG_RT_GROUP_SCHED */
7348 	}
7349 #ifdef CONFIG_CPUMASK_OFFSTACK
7350 	for_each_possible_cpu(i) {
7351 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7352 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7353 	}
7354 #endif /* CONFIG_CPUMASK_OFFSTACK */
7355 
7356 	init_rt_bandwidth(&def_rt_bandwidth,
7357 			global_rt_period(), global_rt_runtime());
7358 	init_dl_bandwidth(&def_dl_bandwidth,
7359 			global_rt_period(), global_rt_runtime());
7360 
7361 #ifdef CONFIG_SMP
7362 	init_defrootdomain();
7363 #endif
7364 
7365 #ifdef CONFIG_RT_GROUP_SCHED
7366 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7367 			global_rt_period(), global_rt_runtime());
7368 #endif /* CONFIG_RT_GROUP_SCHED */
7369 
7370 #ifdef CONFIG_CGROUP_SCHED
7371 	task_group_cache = KMEM_CACHE(task_group, 0);
7372 
7373 	list_add(&root_task_group.list, &task_groups);
7374 	INIT_LIST_HEAD(&root_task_group.children);
7375 	INIT_LIST_HEAD(&root_task_group.siblings);
7376 	autogroup_init(&init_task);
7377 #endif /* CONFIG_CGROUP_SCHED */
7378 
7379 	for_each_possible_cpu(i) {
7380 		struct rq *rq;
7381 
7382 		rq = cpu_rq(i);
7383 		raw_spin_lock_init(&rq->lock);
7384 		rq->nr_running = 0;
7385 		rq->calc_load_active = 0;
7386 		rq->calc_load_update = jiffies + LOAD_FREQ;
7387 		init_cfs_rq(&rq->cfs);
7388 		init_rt_rq(&rq->rt);
7389 		init_dl_rq(&rq->dl);
7390 #ifdef CONFIG_FAIR_GROUP_SCHED
7391 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7392 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7393 		/*
7394 		 * How much cpu bandwidth does root_task_group get?
7395 		 *
7396 		 * In case of task-groups formed thr' the cgroup filesystem, it
7397 		 * gets 100% of the cpu resources in the system. This overall
7398 		 * system cpu resource is divided among the tasks of
7399 		 * root_task_group and its child task-groups in a fair manner,
7400 		 * based on each entity's (task or task-group's) weight
7401 		 * (se->load.weight).
7402 		 *
7403 		 * In other words, if root_task_group has 10 tasks of weight
7404 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7405 		 * then A0's share of the cpu resource is:
7406 		 *
7407 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7408 		 *
7409 		 * We achieve this by letting root_task_group's tasks sit
7410 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7411 		 */
7412 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7413 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7414 #endif /* CONFIG_FAIR_GROUP_SCHED */
7415 
7416 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7417 #ifdef CONFIG_RT_GROUP_SCHED
7418 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7419 #endif
7420 
7421 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7422 			rq->cpu_load[j] = 0;
7423 
7424 #ifdef CONFIG_SMP
7425 		rq->sd = NULL;
7426 		rq->rd = NULL;
7427 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7428 		rq->balance_callback = NULL;
7429 		rq->active_balance = 0;
7430 		rq->next_balance = jiffies;
7431 		rq->push_cpu = 0;
7432 		rq->cpu = i;
7433 		rq->online = 0;
7434 		rq->idle_stamp = 0;
7435 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7436 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7437 
7438 		INIT_LIST_HEAD(&rq->cfs_tasks);
7439 
7440 		rq_attach_root(rq, &def_root_domain);
7441 #ifdef CONFIG_NO_HZ_COMMON
7442 		rq->last_load_update_tick = jiffies;
7443 		rq->nohz_flags = 0;
7444 #endif
7445 #ifdef CONFIG_NO_HZ_FULL
7446 		rq->last_sched_tick = 0;
7447 #endif
7448 #endif /* CONFIG_SMP */
7449 		init_rq_hrtick(rq);
7450 		atomic_set(&rq->nr_iowait, 0);
7451 	}
7452 
7453 	set_load_weight(&init_task);
7454 
7455 #ifdef CONFIG_PREEMPT_NOTIFIERS
7456 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7457 #endif
7458 
7459 	/*
7460 	 * The boot idle thread does lazy MMU switching as well:
7461 	 */
7462 	atomic_inc(&init_mm.mm_count);
7463 	enter_lazy_tlb(&init_mm, current);
7464 
7465 	/*
7466 	 * During early bootup we pretend to be a normal task:
7467 	 */
7468 	current->sched_class = &fair_sched_class;
7469 
7470 	/*
7471 	 * Make us the idle thread. Technically, schedule() should not be
7472 	 * called from this thread, however somewhere below it might be,
7473 	 * but because we are the idle thread, we just pick up running again
7474 	 * when this runqueue becomes "idle".
7475 	 */
7476 	init_idle(current, smp_processor_id());
7477 
7478 	calc_load_update = jiffies + LOAD_FREQ;
7479 
7480 #ifdef CONFIG_SMP
7481 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7482 	/* May be allocated at isolcpus cmdline parse time */
7483 	if (cpu_isolated_map == NULL)
7484 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7485 	idle_thread_set_boot_cpu();
7486 	set_cpu_rq_start_time(smp_processor_id());
7487 #endif
7488 	init_sched_fair_class();
7489 
7490 	scheduler_running = 1;
7491 }
7492 
7493 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7494 static inline int preempt_count_equals(int preempt_offset)
7495 {
7496 	int nested = preempt_count() + rcu_preempt_depth();
7497 
7498 	return (nested == preempt_offset);
7499 }
7500 
7501 void __might_sleep(const char *file, int line, int preempt_offset)
7502 {
7503 	/*
7504 	 * Blocking primitives will set (and therefore destroy) current->state,
7505 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7506 	 * otherwise we will destroy state.
7507 	 */
7508 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7509 			"do not call blocking ops when !TASK_RUNNING; "
7510 			"state=%lx set at [<%p>] %pS\n",
7511 			current->state,
7512 			(void *)current->task_state_change,
7513 			(void *)current->task_state_change);
7514 
7515 	___might_sleep(file, line, preempt_offset);
7516 }
7517 EXPORT_SYMBOL(__might_sleep);
7518 
7519 void ___might_sleep(const char *file, int line, int preempt_offset)
7520 {
7521 	static unsigned long prev_jiffy;	/* ratelimiting */
7522 
7523 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7524 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7525 	     !is_idle_task(current)) ||
7526 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7527 		return;
7528 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7529 		return;
7530 	prev_jiffy = jiffies;
7531 
7532 	printk(KERN_ERR
7533 		"BUG: sleeping function called from invalid context at %s:%d\n",
7534 			file, line);
7535 	printk(KERN_ERR
7536 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7537 			in_atomic(), irqs_disabled(),
7538 			current->pid, current->comm);
7539 
7540 	if (task_stack_end_corrupted(current))
7541 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7542 
7543 	debug_show_held_locks(current);
7544 	if (irqs_disabled())
7545 		print_irqtrace_events(current);
7546 #ifdef CONFIG_DEBUG_PREEMPT
7547 	if (!preempt_count_equals(preempt_offset)) {
7548 		pr_err("Preemption disabled at:");
7549 		print_ip_sym(current->preempt_disable_ip);
7550 		pr_cont("\n");
7551 	}
7552 #endif
7553 	dump_stack();
7554 }
7555 EXPORT_SYMBOL(___might_sleep);
7556 #endif
7557 
7558 #ifdef CONFIG_MAGIC_SYSRQ
7559 void normalize_rt_tasks(void)
7560 {
7561 	struct task_struct *g, *p;
7562 	struct sched_attr attr = {
7563 		.sched_policy = SCHED_NORMAL,
7564 	};
7565 
7566 	read_lock(&tasklist_lock);
7567 	for_each_process_thread(g, p) {
7568 		/*
7569 		 * Only normalize user tasks:
7570 		 */
7571 		if (p->flags & PF_KTHREAD)
7572 			continue;
7573 
7574 		p->se.exec_start		= 0;
7575 #ifdef CONFIG_SCHEDSTATS
7576 		p->se.statistics.wait_start	= 0;
7577 		p->se.statistics.sleep_start	= 0;
7578 		p->se.statistics.block_start	= 0;
7579 #endif
7580 
7581 		if (!dl_task(p) && !rt_task(p)) {
7582 			/*
7583 			 * Renice negative nice level userspace
7584 			 * tasks back to 0:
7585 			 */
7586 			if (task_nice(p) < 0)
7587 				set_user_nice(p, 0);
7588 			continue;
7589 		}
7590 
7591 		__sched_setscheduler(p, &attr, false, false);
7592 	}
7593 	read_unlock(&tasklist_lock);
7594 }
7595 
7596 #endif /* CONFIG_MAGIC_SYSRQ */
7597 
7598 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7599 /*
7600  * These functions are only useful for the IA64 MCA handling, or kdb.
7601  *
7602  * They can only be called when the whole system has been
7603  * stopped - every CPU needs to be quiescent, and no scheduling
7604  * activity can take place. Using them for anything else would
7605  * be a serious bug, and as a result, they aren't even visible
7606  * under any other configuration.
7607  */
7608 
7609 /**
7610  * curr_task - return the current task for a given cpu.
7611  * @cpu: the processor in question.
7612  *
7613  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7614  *
7615  * Return: The current task for @cpu.
7616  */
7617 struct task_struct *curr_task(int cpu)
7618 {
7619 	return cpu_curr(cpu);
7620 }
7621 
7622 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7623 
7624 #ifdef CONFIG_IA64
7625 /**
7626  * set_curr_task - set the current task for a given cpu.
7627  * @cpu: the processor in question.
7628  * @p: the task pointer to set.
7629  *
7630  * Description: This function must only be used when non-maskable interrupts
7631  * are serviced on a separate stack. It allows the architecture to switch the
7632  * notion of the current task on a cpu in a non-blocking manner. This function
7633  * must be called with all CPU's synchronized, and interrupts disabled, the
7634  * and caller must save the original value of the current task (see
7635  * curr_task() above) and restore that value before reenabling interrupts and
7636  * re-starting the system.
7637  *
7638  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7639  */
7640 void set_curr_task(int cpu, struct task_struct *p)
7641 {
7642 	cpu_curr(cpu) = p;
7643 }
7644 
7645 #endif
7646 
7647 #ifdef CONFIG_CGROUP_SCHED
7648 /* task_group_lock serializes the addition/removal of task groups */
7649 static DEFINE_SPINLOCK(task_group_lock);
7650 
7651 static void sched_free_group(struct task_group *tg)
7652 {
7653 	free_fair_sched_group(tg);
7654 	free_rt_sched_group(tg);
7655 	autogroup_free(tg);
7656 	kmem_cache_free(task_group_cache, tg);
7657 }
7658 
7659 /* allocate runqueue etc for a new task group */
7660 struct task_group *sched_create_group(struct task_group *parent)
7661 {
7662 	struct task_group *tg;
7663 
7664 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7665 	if (!tg)
7666 		return ERR_PTR(-ENOMEM);
7667 
7668 	if (!alloc_fair_sched_group(tg, parent))
7669 		goto err;
7670 
7671 	if (!alloc_rt_sched_group(tg, parent))
7672 		goto err;
7673 
7674 	return tg;
7675 
7676 err:
7677 	sched_free_group(tg);
7678 	return ERR_PTR(-ENOMEM);
7679 }
7680 
7681 void sched_online_group(struct task_group *tg, struct task_group *parent)
7682 {
7683 	unsigned long flags;
7684 
7685 	spin_lock_irqsave(&task_group_lock, flags);
7686 	list_add_rcu(&tg->list, &task_groups);
7687 
7688 	WARN_ON(!parent); /* root should already exist */
7689 
7690 	tg->parent = parent;
7691 	INIT_LIST_HEAD(&tg->children);
7692 	list_add_rcu(&tg->siblings, &parent->children);
7693 	spin_unlock_irqrestore(&task_group_lock, flags);
7694 }
7695 
7696 /* rcu callback to free various structures associated with a task group */
7697 static void sched_free_group_rcu(struct rcu_head *rhp)
7698 {
7699 	/* now it should be safe to free those cfs_rqs */
7700 	sched_free_group(container_of(rhp, struct task_group, rcu));
7701 }
7702 
7703 void sched_destroy_group(struct task_group *tg)
7704 {
7705 	/* wait for possible concurrent references to cfs_rqs complete */
7706 	call_rcu(&tg->rcu, sched_free_group_rcu);
7707 }
7708 
7709 void sched_offline_group(struct task_group *tg)
7710 {
7711 	unsigned long flags;
7712 
7713 	/* end participation in shares distribution */
7714 	unregister_fair_sched_group(tg);
7715 
7716 	spin_lock_irqsave(&task_group_lock, flags);
7717 	list_del_rcu(&tg->list);
7718 	list_del_rcu(&tg->siblings);
7719 	spin_unlock_irqrestore(&task_group_lock, flags);
7720 }
7721 
7722 /* change task's runqueue when it moves between groups.
7723  *	The caller of this function should have put the task in its new group
7724  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7725  *	reflect its new group.
7726  */
7727 void sched_move_task(struct task_struct *tsk)
7728 {
7729 	struct task_group *tg;
7730 	int queued, running;
7731 	struct rq_flags rf;
7732 	struct rq *rq;
7733 
7734 	rq = task_rq_lock(tsk, &rf);
7735 
7736 	running = task_current(rq, tsk);
7737 	queued = task_on_rq_queued(tsk);
7738 
7739 	if (queued)
7740 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7741 	if (unlikely(running))
7742 		put_prev_task(rq, tsk);
7743 
7744 	/*
7745 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7746 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7747 	 * to prevent lockdep warnings.
7748 	 */
7749 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7750 			  struct task_group, css);
7751 	tg = autogroup_task_group(tsk, tg);
7752 	tsk->sched_task_group = tg;
7753 
7754 #ifdef CONFIG_FAIR_GROUP_SCHED
7755 	if (tsk->sched_class->task_move_group)
7756 		tsk->sched_class->task_move_group(tsk);
7757 	else
7758 #endif
7759 		set_task_rq(tsk, task_cpu(tsk));
7760 
7761 	if (unlikely(running))
7762 		tsk->sched_class->set_curr_task(rq);
7763 	if (queued)
7764 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7765 
7766 	task_rq_unlock(rq, tsk, &rf);
7767 }
7768 #endif /* CONFIG_CGROUP_SCHED */
7769 
7770 #ifdef CONFIG_RT_GROUP_SCHED
7771 /*
7772  * Ensure that the real time constraints are schedulable.
7773  */
7774 static DEFINE_MUTEX(rt_constraints_mutex);
7775 
7776 /* Must be called with tasklist_lock held */
7777 static inline int tg_has_rt_tasks(struct task_group *tg)
7778 {
7779 	struct task_struct *g, *p;
7780 
7781 	/*
7782 	 * Autogroups do not have RT tasks; see autogroup_create().
7783 	 */
7784 	if (task_group_is_autogroup(tg))
7785 		return 0;
7786 
7787 	for_each_process_thread(g, p) {
7788 		if (rt_task(p) && task_group(p) == tg)
7789 			return 1;
7790 	}
7791 
7792 	return 0;
7793 }
7794 
7795 struct rt_schedulable_data {
7796 	struct task_group *tg;
7797 	u64 rt_period;
7798 	u64 rt_runtime;
7799 };
7800 
7801 static int tg_rt_schedulable(struct task_group *tg, void *data)
7802 {
7803 	struct rt_schedulable_data *d = data;
7804 	struct task_group *child;
7805 	unsigned long total, sum = 0;
7806 	u64 period, runtime;
7807 
7808 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7809 	runtime = tg->rt_bandwidth.rt_runtime;
7810 
7811 	if (tg == d->tg) {
7812 		period = d->rt_period;
7813 		runtime = d->rt_runtime;
7814 	}
7815 
7816 	/*
7817 	 * Cannot have more runtime than the period.
7818 	 */
7819 	if (runtime > period && runtime != RUNTIME_INF)
7820 		return -EINVAL;
7821 
7822 	/*
7823 	 * Ensure we don't starve existing RT tasks.
7824 	 */
7825 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7826 		return -EBUSY;
7827 
7828 	total = to_ratio(period, runtime);
7829 
7830 	/*
7831 	 * Nobody can have more than the global setting allows.
7832 	 */
7833 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7834 		return -EINVAL;
7835 
7836 	/*
7837 	 * The sum of our children's runtime should not exceed our own.
7838 	 */
7839 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7840 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7841 		runtime = child->rt_bandwidth.rt_runtime;
7842 
7843 		if (child == d->tg) {
7844 			period = d->rt_period;
7845 			runtime = d->rt_runtime;
7846 		}
7847 
7848 		sum += to_ratio(period, runtime);
7849 	}
7850 
7851 	if (sum > total)
7852 		return -EINVAL;
7853 
7854 	return 0;
7855 }
7856 
7857 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7858 {
7859 	int ret;
7860 
7861 	struct rt_schedulable_data data = {
7862 		.tg = tg,
7863 		.rt_period = period,
7864 		.rt_runtime = runtime,
7865 	};
7866 
7867 	rcu_read_lock();
7868 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7869 	rcu_read_unlock();
7870 
7871 	return ret;
7872 }
7873 
7874 static int tg_set_rt_bandwidth(struct task_group *tg,
7875 		u64 rt_period, u64 rt_runtime)
7876 {
7877 	int i, err = 0;
7878 
7879 	/*
7880 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7881 	 * kernel creating (and or operating) RT threads.
7882 	 */
7883 	if (tg == &root_task_group && rt_runtime == 0)
7884 		return -EINVAL;
7885 
7886 	/* No period doesn't make any sense. */
7887 	if (rt_period == 0)
7888 		return -EINVAL;
7889 
7890 	mutex_lock(&rt_constraints_mutex);
7891 	read_lock(&tasklist_lock);
7892 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7893 	if (err)
7894 		goto unlock;
7895 
7896 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7897 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7898 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7899 
7900 	for_each_possible_cpu(i) {
7901 		struct rt_rq *rt_rq = tg->rt_rq[i];
7902 
7903 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7904 		rt_rq->rt_runtime = rt_runtime;
7905 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7906 	}
7907 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7908 unlock:
7909 	read_unlock(&tasklist_lock);
7910 	mutex_unlock(&rt_constraints_mutex);
7911 
7912 	return err;
7913 }
7914 
7915 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7916 {
7917 	u64 rt_runtime, rt_period;
7918 
7919 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7920 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7921 	if (rt_runtime_us < 0)
7922 		rt_runtime = RUNTIME_INF;
7923 
7924 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7925 }
7926 
7927 static long sched_group_rt_runtime(struct task_group *tg)
7928 {
7929 	u64 rt_runtime_us;
7930 
7931 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7932 		return -1;
7933 
7934 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7935 	do_div(rt_runtime_us, NSEC_PER_USEC);
7936 	return rt_runtime_us;
7937 }
7938 
7939 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7940 {
7941 	u64 rt_runtime, rt_period;
7942 
7943 	rt_period = rt_period_us * NSEC_PER_USEC;
7944 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7945 
7946 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7947 }
7948 
7949 static long sched_group_rt_period(struct task_group *tg)
7950 {
7951 	u64 rt_period_us;
7952 
7953 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7954 	do_div(rt_period_us, NSEC_PER_USEC);
7955 	return rt_period_us;
7956 }
7957 #endif /* CONFIG_RT_GROUP_SCHED */
7958 
7959 #ifdef CONFIG_RT_GROUP_SCHED
7960 static int sched_rt_global_constraints(void)
7961 {
7962 	int ret = 0;
7963 
7964 	mutex_lock(&rt_constraints_mutex);
7965 	read_lock(&tasklist_lock);
7966 	ret = __rt_schedulable(NULL, 0, 0);
7967 	read_unlock(&tasklist_lock);
7968 	mutex_unlock(&rt_constraints_mutex);
7969 
7970 	return ret;
7971 }
7972 
7973 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7974 {
7975 	/* Don't accept realtime tasks when there is no way for them to run */
7976 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7977 		return 0;
7978 
7979 	return 1;
7980 }
7981 
7982 #else /* !CONFIG_RT_GROUP_SCHED */
7983 static int sched_rt_global_constraints(void)
7984 {
7985 	unsigned long flags;
7986 	int i;
7987 
7988 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7989 	for_each_possible_cpu(i) {
7990 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7991 
7992 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7993 		rt_rq->rt_runtime = global_rt_runtime();
7994 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7995 	}
7996 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7997 
7998 	return 0;
7999 }
8000 #endif /* CONFIG_RT_GROUP_SCHED */
8001 
8002 static int sched_dl_global_validate(void)
8003 {
8004 	u64 runtime = global_rt_runtime();
8005 	u64 period = global_rt_period();
8006 	u64 new_bw = to_ratio(period, runtime);
8007 	struct dl_bw *dl_b;
8008 	int cpu, ret = 0;
8009 	unsigned long flags;
8010 
8011 	/*
8012 	 * Here we want to check the bandwidth not being set to some
8013 	 * value smaller than the currently allocated bandwidth in
8014 	 * any of the root_domains.
8015 	 *
8016 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8017 	 * cycling on root_domains... Discussion on different/better
8018 	 * solutions is welcome!
8019 	 */
8020 	for_each_possible_cpu(cpu) {
8021 		rcu_read_lock_sched();
8022 		dl_b = dl_bw_of(cpu);
8023 
8024 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8025 		if (new_bw < dl_b->total_bw)
8026 			ret = -EBUSY;
8027 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8028 
8029 		rcu_read_unlock_sched();
8030 
8031 		if (ret)
8032 			break;
8033 	}
8034 
8035 	return ret;
8036 }
8037 
8038 static void sched_dl_do_global(void)
8039 {
8040 	u64 new_bw = -1;
8041 	struct dl_bw *dl_b;
8042 	int cpu;
8043 	unsigned long flags;
8044 
8045 	def_dl_bandwidth.dl_period = global_rt_period();
8046 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8047 
8048 	if (global_rt_runtime() != RUNTIME_INF)
8049 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8050 
8051 	/*
8052 	 * FIXME: As above...
8053 	 */
8054 	for_each_possible_cpu(cpu) {
8055 		rcu_read_lock_sched();
8056 		dl_b = dl_bw_of(cpu);
8057 
8058 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8059 		dl_b->bw = new_bw;
8060 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8061 
8062 		rcu_read_unlock_sched();
8063 	}
8064 }
8065 
8066 static int sched_rt_global_validate(void)
8067 {
8068 	if (sysctl_sched_rt_period <= 0)
8069 		return -EINVAL;
8070 
8071 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8072 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8073 		return -EINVAL;
8074 
8075 	return 0;
8076 }
8077 
8078 static void sched_rt_do_global(void)
8079 {
8080 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8081 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8082 }
8083 
8084 int sched_rt_handler(struct ctl_table *table, int write,
8085 		void __user *buffer, size_t *lenp,
8086 		loff_t *ppos)
8087 {
8088 	int old_period, old_runtime;
8089 	static DEFINE_MUTEX(mutex);
8090 	int ret;
8091 
8092 	mutex_lock(&mutex);
8093 	old_period = sysctl_sched_rt_period;
8094 	old_runtime = sysctl_sched_rt_runtime;
8095 
8096 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8097 
8098 	if (!ret && write) {
8099 		ret = sched_rt_global_validate();
8100 		if (ret)
8101 			goto undo;
8102 
8103 		ret = sched_dl_global_validate();
8104 		if (ret)
8105 			goto undo;
8106 
8107 		ret = sched_rt_global_constraints();
8108 		if (ret)
8109 			goto undo;
8110 
8111 		sched_rt_do_global();
8112 		sched_dl_do_global();
8113 	}
8114 	if (0) {
8115 undo:
8116 		sysctl_sched_rt_period = old_period;
8117 		sysctl_sched_rt_runtime = old_runtime;
8118 	}
8119 	mutex_unlock(&mutex);
8120 
8121 	return ret;
8122 }
8123 
8124 int sched_rr_handler(struct ctl_table *table, int write,
8125 		void __user *buffer, size_t *lenp,
8126 		loff_t *ppos)
8127 {
8128 	int ret;
8129 	static DEFINE_MUTEX(mutex);
8130 
8131 	mutex_lock(&mutex);
8132 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8133 	/* make sure that internally we keep jiffies */
8134 	/* also, writing zero resets timeslice to default */
8135 	if (!ret && write) {
8136 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8137 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8138 	}
8139 	mutex_unlock(&mutex);
8140 	return ret;
8141 }
8142 
8143 #ifdef CONFIG_CGROUP_SCHED
8144 
8145 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8146 {
8147 	return css ? container_of(css, struct task_group, css) : NULL;
8148 }
8149 
8150 static struct cgroup_subsys_state *
8151 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8152 {
8153 	struct task_group *parent = css_tg(parent_css);
8154 	struct task_group *tg;
8155 
8156 	if (!parent) {
8157 		/* This is early initialization for the top cgroup */
8158 		return &root_task_group.css;
8159 	}
8160 
8161 	tg = sched_create_group(parent);
8162 	if (IS_ERR(tg))
8163 		return ERR_PTR(-ENOMEM);
8164 
8165 	sched_online_group(tg, parent);
8166 
8167 	return &tg->css;
8168 }
8169 
8170 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8171 {
8172 	struct task_group *tg = css_tg(css);
8173 
8174 	sched_offline_group(tg);
8175 }
8176 
8177 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8178 {
8179 	struct task_group *tg = css_tg(css);
8180 
8181 	/*
8182 	 * Relies on the RCU grace period between css_released() and this.
8183 	 */
8184 	sched_free_group(tg);
8185 }
8186 
8187 static void cpu_cgroup_fork(struct task_struct *task)
8188 {
8189 	sched_move_task(task);
8190 }
8191 
8192 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8193 {
8194 	struct task_struct *task;
8195 	struct cgroup_subsys_state *css;
8196 
8197 	cgroup_taskset_for_each(task, css, tset) {
8198 #ifdef CONFIG_RT_GROUP_SCHED
8199 		if (!sched_rt_can_attach(css_tg(css), task))
8200 			return -EINVAL;
8201 #else
8202 		/* We don't support RT-tasks being in separate groups */
8203 		if (task->sched_class != &fair_sched_class)
8204 			return -EINVAL;
8205 #endif
8206 	}
8207 	return 0;
8208 }
8209 
8210 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8211 {
8212 	struct task_struct *task;
8213 	struct cgroup_subsys_state *css;
8214 
8215 	cgroup_taskset_for_each(task, css, tset)
8216 		sched_move_task(task);
8217 }
8218 
8219 #ifdef CONFIG_FAIR_GROUP_SCHED
8220 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8221 				struct cftype *cftype, u64 shareval)
8222 {
8223 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8224 }
8225 
8226 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8227 			       struct cftype *cft)
8228 {
8229 	struct task_group *tg = css_tg(css);
8230 
8231 	return (u64) scale_load_down(tg->shares);
8232 }
8233 
8234 #ifdef CONFIG_CFS_BANDWIDTH
8235 static DEFINE_MUTEX(cfs_constraints_mutex);
8236 
8237 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8238 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8239 
8240 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8241 
8242 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8243 {
8244 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8245 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8246 
8247 	if (tg == &root_task_group)
8248 		return -EINVAL;
8249 
8250 	/*
8251 	 * Ensure we have at some amount of bandwidth every period.  This is
8252 	 * to prevent reaching a state of large arrears when throttled via
8253 	 * entity_tick() resulting in prolonged exit starvation.
8254 	 */
8255 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8256 		return -EINVAL;
8257 
8258 	/*
8259 	 * Likewise, bound things on the otherside by preventing insane quota
8260 	 * periods.  This also allows us to normalize in computing quota
8261 	 * feasibility.
8262 	 */
8263 	if (period > max_cfs_quota_period)
8264 		return -EINVAL;
8265 
8266 	/*
8267 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8268 	 * unthrottle_offline_cfs_rqs().
8269 	 */
8270 	get_online_cpus();
8271 	mutex_lock(&cfs_constraints_mutex);
8272 	ret = __cfs_schedulable(tg, period, quota);
8273 	if (ret)
8274 		goto out_unlock;
8275 
8276 	runtime_enabled = quota != RUNTIME_INF;
8277 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8278 	/*
8279 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8280 	 * before making related changes, and on->off must occur afterwards
8281 	 */
8282 	if (runtime_enabled && !runtime_was_enabled)
8283 		cfs_bandwidth_usage_inc();
8284 	raw_spin_lock_irq(&cfs_b->lock);
8285 	cfs_b->period = ns_to_ktime(period);
8286 	cfs_b->quota = quota;
8287 
8288 	__refill_cfs_bandwidth_runtime(cfs_b);
8289 	/* restart the period timer (if active) to handle new period expiry */
8290 	if (runtime_enabled)
8291 		start_cfs_bandwidth(cfs_b);
8292 	raw_spin_unlock_irq(&cfs_b->lock);
8293 
8294 	for_each_online_cpu(i) {
8295 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8296 		struct rq *rq = cfs_rq->rq;
8297 
8298 		raw_spin_lock_irq(&rq->lock);
8299 		cfs_rq->runtime_enabled = runtime_enabled;
8300 		cfs_rq->runtime_remaining = 0;
8301 
8302 		if (cfs_rq->throttled)
8303 			unthrottle_cfs_rq(cfs_rq);
8304 		raw_spin_unlock_irq(&rq->lock);
8305 	}
8306 	if (runtime_was_enabled && !runtime_enabled)
8307 		cfs_bandwidth_usage_dec();
8308 out_unlock:
8309 	mutex_unlock(&cfs_constraints_mutex);
8310 	put_online_cpus();
8311 
8312 	return ret;
8313 }
8314 
8315 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8316 {
8317 	u64 quota, period;
8318 
8319 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8320 	if (cfs_quota_us < 0)
8321 		quota = RUNTIME_INF;
8322 	else
8323 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8324 
8325 	return tg_set_cfs_bandwidth(tg, period, quota);
8326 }
8327 
8328 long tg_get_cfs_quota(struct task_group *tg)
8329 {
8330 	u64 quota_us;
8331 
8332 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8333 		return -1;
8334 
8335 	quota_us = tg->cfs_bandwidth.quota;
8336 	do_div(quota_us, NSEC_PER_USEC);
8337 
8338 	return quota_us;
8339 }
8340 
8341 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8342 {
8343 	u64 quota, period;
8344 
8345 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8346 	quota = tg->cfs_bandwidth.quota;
8347 
8348 	return tg_set_cfs_bandwidth(tg, period, quota);
8349 }
8350 
8351 long tg_get_cfs_period(struct task_group *tg)
8352 {
8353 	u64 cfs_period_us;
8354 
8355 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8356 	do_div(cfs_period_us, NSEC_PER_USEC);
8357 
8358 	return cfs_period_us;
8359 }
8360 
8361 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8362 				  struct cftype *cft)
8363 {
8364 	return tg_get_cfs_quota(css_tg(css));
8365 }
8366 
8367 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8368 				   struct cftype *cftype, s64 cfs_quota_us)
8369 {
8370 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8371 }
8372 
8373 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8374 				   struct cftype *cft)
8375 {
8376 	return tg_get_cfs_period(css_tg(css));
8377 }
8378 
8379 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8380 				    struct cftype *cftype, u64 cfs_period_us)
8381 {
8382 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8383 }
8384 
8385 struct cfs_schedulable_data {
8386 	struct task_group *tg;
8387 	u64 period, quota;
8388 };
8389 
8390 /*
8391  * normalize group quota/period to be quota/max_period
8392  * note: units are usecs
8393  */
8394 static u64 normalize_cfs_quota(struct task_group *tg,
8395 			       struct cfs_schedulable_data *d)
8396 {
8397 	u64 quota, period;
8398 
8399 	if (tg == d->tg) {
8400 		period = d->period;
8401 		quota = d->quota;
8402 	} else {
8403 		period = tg_get_cfs_period(tg);
8404 		quota = tg_get_cfs_quota(tg);
8405 	}
8406 
8407 	/* note: these should typically be equivalent */
8408 	if (quota == RUNTIME_INF || quota == -1)
8409 		return RUNTIME_INF;
8410 
8411 	return to_ratio(period, quota);
8412 }
8413 
8414 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8415 {
8416 	struct cfs_schedulable_data *d = data;
8417 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8418 	s64 quota = 0, parent_quota = -1;
8419 
8420 	if (!tg->parent) {
8421 		quota = RUNTIME_INF;
8422 	} else {
8423 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8424 
8425 		quota = normalize_cfs_quota(tg, d);
8426 		parent_quota = parent_b->hierarchical_quota;
8427 
8428 		/*
8429 		 * ensure max(child_quota) <= parent_quota, inherit when no
8430 		 * limit is set
8431 		 */
8432 		if (quota == RUNTIME_INF)
8433 			quota = parent_quota;
8434 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8435 			return -EINVAL;
8436 	}
8437 	cfs_b->hierarchical_quota = quota;
8438 
8439 	return 0;
8440 }
8441 
8442 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8443 {
8444 	int ret;
8445 	struct cfs_schedulable_data data = {
8446 		.tg = tg,
8447 		.period = period,
8448 		.quota = quota,
8449 	};
8450 
8451 	if (quota != RUNTIME_INF) {
8452 		do_div(data.period, NSEC_PER_USEC);
8453 		do_div(data.quota, NSEC_PER_USEC);
8454 	}
8455 
8456 	rcu_read_lock();
8457 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8458 	rcu_read_unlock();
8459 
8460 	return ret;
8461 }
8462 
8463 static int cpu_stats_show(struct seq_file *sf, void *v)
8464 {
8465 	struct task_group *tg = css_tg(seq_css(sf));
8466 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8467 
8468 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8469 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8470 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8471 
8472 	return 0;
8473 }
8474 #endif /* CONFIG_CFS_BANDWIDTH */
8475 #endif /* CONFIG_FAIR_GROUP_SCHED */
8476 
8477 #ifdef CONFIG_RT_GROUP_SCHED
8478 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8479 				struct cftype *cft, s64 val)
8480 {
8481 	return sched_group_set_rt_runtime(css_tg(css), val);
8482 }
8483 
8484 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8485 			       struct cftype *cft)
8486 {
8487 	return sched_group_rt_runtime(css_tg(css));
8488 }
8489 
8490 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8491 				    struct cftype *cftype, u64 rt_period_us)
8492 {
8493 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8494 }
8495 
8496 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8497 				   struct cftype *cft)
8498 {
8499 	return sched_group_rt_period(css_tg(css));
8500 }
8501 #endif /* CONFIG_RT_GROUP_SCHED */
8502 
8503 static struct cftype cpu_files[] = {
8504 #ifdef CONFIG_FAIR_GROUP_SCHED
8505 	{
8506 		.name = "shares",
8507 		.read_u64 = cpu_shares_read_u64,
8508 		.write_u64 = cpu_shares_write_u64,
8509 	},
8510 #endif
8511 #ifdef CONFIG_CFS_BANDWIDTH
8512 	{
8513 		.name = "cfs_quota_us",
8514 		.read_s64 = cpu_cfs_quota_read_s64,
8515 		.write_s64 = cpu_cfs_quota_write_s64,
8516 	},
8517 	{
8518 		.name = "cfs_period_us",
8519 		.read_u64 = cpu_cfs_period_read_u64,
8520 		.write_u64 = cpu_cfs_period_write_u64,
8521 	},
8522 	{
8523 		.name = "stat",
8524 		.seq_show = cpu_stats_show,
8525 	},
8526 #endif
8527 #ifdef CONFIG_RT_GROUP_SCHED
8528 	{
8529 		.name = "rt_runtime_us",
8530 		.read_s64 = cpu_rt_runtime_read,
8531 		.write_s64 = cpu_rt_runtime_write,
8532 	},
8533 	{
8534 		.name = "rt_period_us",
8535 		.read_u64 = cpu_rt_period_read_uint,
8536 		.write_u64 = cpu_rt_period_write_uint,
8537 	},
8538 #endif
8539 	{ }	/* terminate */
8540 };
8541 
8542 struct cgroup_subsys cpu_cgrp_subsys = {
8543 	.css_alloc	= cpu_cgroup_css_alloc,
8544 	.css_released	= cpu_cgroup_css_released,
8545 	.css_free	= cpu_cgroup_css_free,
8546 	.fork		= cpu_cgroup_fork,
8547 	.can_attach	= cpu_cgroup_can_attach,
8548 	.attach		= cpu_cgroup_attach,
8549 	.legacy_cftypes	= cpu_files,
8550 	.early_init	= true,
8551 };
8552 
8553 #endif	/* CONFIG_CGROUP_SCHED */
8554 
8555 void dump_cpu_task(int cpu)
8556 {
8557 	pr_info("Task dump for CPU %d:\n", cpu);
8558 	sched_show_task(cpu_curr(cpu));
8559 }
8560 
8561 /*
8562  * Nice levels are multiplicative, with a gentle 10% change for every
8563  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8564  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8565  * that remained on nice 0.
8566  *
8567  * The "10% effect" is relative and cumulative: from _any_ nice level,
8568  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8569  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8570  * If a task goes up by ~10% and another task goes down by ~10% then
8571  * the relative distance between them is ~25%.)
8572  */
8573 const int sched_prio_to_weight[40] = {
8574  /* -20 */     88761,     71755,     56483,     46273,     36291,
8575  /* -15 */     29154,     23254,     18705,     14949,     11916,
8576  /* -10 */      9548,      7620,      6100,      4904,      3906,
8577  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8578  /*   0 */      1024,       820,       655,       526,       423,
8579  /*   5 */       335,       272,       215,       172,       137,
8580  /*  10 */       110,        87,        70,        56,        45,
8581  /*  15 */        36,        29,        23,        18,        15,
8582 };
8583 
8584 /*
8585  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8586  *
8587  * In cases where the weight does not change often, we can use the
8588  * precalculated inverse to speed up arithmetics by turning divisions
8589  * into multiplications:
8590  */
8591 const u32 sched_prio_to_wmult[40] = {
8592  /* -20 */     48388,     59856,     76040,     92818,    118348,
8593  /* -15 */    147320,    184698,    229616,    287308,    360437,
8594  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8595  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8596  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8597  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8598  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8599  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8600 };
8601