1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/kasan.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/nmi.h> 33 #include <linux/init.h> 34 #include <linux/uaccess.h> 35 #include <linux/highmem.h> 36 #include <linux/mmu_context.h> 37 #include <linux/interrupt.h> 38 #include <linux/capability.h> 39 #include <linux/completion.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/debug_locks.h> 42 #include <linux/perf_event.h> 43 #include <linux/security.h> 44 #include <linux/notifier.h> 45 #include <linux/profile.h> 46 #include <linux/freezer.h> 47 #include <linux/vmalloc.h> 48 #include <linux/blkdev.h> 49 #include <linux/delay.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/smp.h> 52 #include <linux/threads.h> 53 #include <linux/timer.h> 54 #include <linux/rcupdate.h> 55 #include <linux/cpu.h> 56 #include <linux/cpuset.h> 57 #include <linux/percpu.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/sysctl.h> 61 #include <linux/syscalls.h> 62 #include <linux/times.h> 63 #include <linux/tsacct_kern.h> 64 #include <linux/kprobes.h> 65 #include <linux/delayacct.h> 66 #include <linux/unistd.h> 67 #include <linux/pagemap.h> 68 #include <linux/hrtimer.h> 69 #include <linux/tick.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/context_tracking.h> 75 #include <linux/compiler.h> 76 #include <linux/frame.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 DEFINE_MUTEX(sched_domains_mutex); 94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 95 96 static void update_rq_clock_task(struct rq *rq, s64 delta); 97 98 void update_rq_clock(struct rq *rq) 99 { 100 s64 delta; 101 102 lockdep_assert_held(&rq->lock); 103 104 if (rq->clock_skip_update & RQCF_ACT_SKIP) 105 return; 106 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 108 if (delta < 0) 109 return; 110 rq->clock += delta; 111 update_rq_clock_task(rq, delta); 112 } 113 114 /* 115 * Debugging: various feature bits 116 */ 117 118 #define SCHED_FEAT(name, enabled) \ 119 (1UL << __SCHED_FEAT_##name) * enabled | 120 121 const_debug unsigned int sysctl_sched_features = 122 #include "features.h" 123 0; 124 125 #undef SCHED_FEAT 126 127 /* 128 * Number of tasks to iterate in a single balance run. 129 * Limited because this is done with IRQs disabled. 130 */ 131 const_debug unsigned int sysctl_sched_nr_migrate = 32; 132 133 /* 134 * period over which we average the RT time consumption, measured 135 * in ms. 136 * 137 * default: 1s 138 */ 139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 140 141 /* 142 * period over which we measure -rt task cpu usage in us. 143 * default: 1s 144 */ 145 unsigned int sysctl_sched_rt_period = 1000000; 146 147 __read_mostly int scheduler_running; 148 149 /* 150 * part of the period that we allow rt tasks to run in us. 151 * default: 0.95s 152 */ 153 int sysctl_sched_rt_runtime = 950000; 154 155 /* cpus with isolated domains */ 156 cpumask_var_t cpu_isolated_map; 157 158 /* 159 * this_rq_lock - lock this runqueue and disable interrupts. 160 */ 161 static struct rq *this_rq_lock(void) 162 __acquires(rq->lock) 163 { 164 struct rq *rq; 165 166 local_irq_disable(); 167 rq = this_rq(); 168 raw_spin_lock(&rq->lock); 169 170 return rq; 171 } 172 173 /* 174 * __task_rq_lock - lock the rq @p resides on. 175 */ 176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 177 __acquires(rq->lock) 178 { 179 struct rq *rq; 180 181 lockdep_assert_held(&p->pi_lock); 182 183 for (;;) { 184 rq = task_rq(p); 185 raw_spin_lock(&rq->lock); 186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 187 rf->cookie = lockdep_pin_lock(&rq->lock); 188 return rq; 189 } 190 raw_spin_unlock(&rq->lock); 191 192 while (unlikely(task_on_rq_migrating(p))) 193 cpu_relax(); 194 } 195 } 196 197 /* 198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 199 */ 200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 201 __acquires(p->pi_lock) 202 __acquires(rq->lock) 203 { 204 struct rq *rq; 205 206 for (;;) { 207 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 208 rq = task_rq(p); 209 raw_spin_lock(&rq->lock); 210 /* 211 * move_queued_task() task_rq_lock() 212 * 213 * ACQUIRE (rq->lock) 214 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 216 * [S] ->cpu = new_cpu [L] task_rq() 217 * [L] ->on_rq 218 * RELEASE (rq->lock) 219 * 220 * If we observe the old cpu in task_rq_lock, the acquire of 221 * the old rq->lock will fully serialize against the stores. 222 * 223 * If we observe the new cpu in task_rq_lock, the acquire will 224 * pair with the WMB to ensure we must then also see migrating. 225 */ 226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 227 rf->cookie = lockdep_pin_lock(&rq->lock); 228 return rq; 229 } 230 raw_spin_unlock(&rq->lock); 231 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 232 233 while (unlikely(task_on_rq_migrating(p))) 234 cpu_relax(); 235 } 236 } 237 238 #ifdef CONFIG_SCHED_HRTICK 239 /* 240 * Use HR-timers to deliver accurate preemption points. 241 */ 242 243 static void hrtick_clear(struct rq *rq) 244 { 245 if (hrtimer_active(&rq->hrtick_timer)) 246 hrtimer_cancel(&rq->hrtick_timer); 247 } 248 249 /* 250 * High-resolution timer tick. 251 * Runs from hardirq context with interrupts disabled. 252 */ 253 static enum hrtimer_restart hrtick(struct hrtimer *timer) 254 { 255 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 256 257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 258 259 raw_spin_lock(&rq->lock); 260 update_rq_clock(rq); 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 262 raw_spin_unlock(&rq->lock); 263 264 return HRTIMER_NORESTART; 265 } 266 267 #ifdef CONFIG_SMP 268 269 static void __hrtick_restart(struct rq *rq) 270 { 271 struct hrtimer *timer = &rq->hrtick_timer; 272 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 274 } 275 276 /* 277 * called from hardirq (IPI) context 278 */ 279 static void __hrtick_start(void *arg) 280 { 281 struct rq *rq = arg; 282 283 raw_spin_lock(&rq->lock); 284 __hrtick_restart(rq); 285 rq->hrtick_csd_pending = 0; 286 raw_spin_unlock(&rq->lock); 287 } 288 289 /* 290 * Called to set the hrtick timer state. 291 * 292 * called with rq->lock held and irqs disabled 293 */ 294 void hrtick_start(struct rq *rq, u64 delay) 295 { 296 struct hrtimer *timer = &rq->hrtick_timer; 297 ktime_t time; 298 s64 delta; 299 300 /* 301 * Don't schedule slices shorter than 10000ns, that just 302 * doesn't make sense and can cause timer DoS. 303 */ 304 delta = max_t(s64, delay, 10000LL); 305 time = ktime_add_ns(timer->base->get_time(), delta); 306 307 hrtimer_set_expires(timer, time); 308 309 if (rq == this_rq()) { 310 __hrtick_restart(rq); 311 } else if (!rq->hrtick_csd_pending) { 312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 313 rq->hrtick_csd_pending = 1; 314 } 315 } 316 317 #else 318 /* 319 * Called to set the hrtick timer state. 320 * 321 * called with rq->lock held and irqs disabled 322 */ 323 void hrtick_start(struct rq *rq, u64 delay) 324 { 325 /* 326 * Don't schedule slices shorter than 10000ns, that just 327 * doesn't make sense. Rely on vruntime for fairness. 328 */ 329 delay = max_t(u64, delay, 10000LL); 330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 331 HRTIMER_MODE_REL_PINNED); 332 } 333 #endif /* CONFIG_SMP */ 334 335 static void init_rq_hrtick(struct rq *rq) 336 { 337 #ifdef CONFIG_SMP 338 rq->hrtick_csd_pending = 0; 339 340 rq->hrtick_csd.flags = 0; 341 rq->hrtick_csd.func = __hrtick_start; 342 rq->hrtick_csd.info = rq; 343 #endif 344 345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 346 rq->hrtick_timer.function = hrtick; 347 } 348 #else /* CONFIG_SCHED_HRTICK */ 349 static inline void hrtick_clear(struct rq *rq) 350 { 351 } 352 353 static inline void init_rq_hrtick(struct rq *rq) 354 { 355 } 356 #endif /* CONFIG_SCHED_HRTICK */ 357 358 /* 359 * cmpxchg based fetch_or, macro so it works for different integer types 360 */ 361 #define fetch_or(ptr, mask) \ 362 ({ \ 363 typeof(ptr) _ptr = (ptr); \ 364 typeof(mask) _mask = (mask); \ 365 typeof(*_ptr) _old, _val = *_ptr; \ 366 \ 367 for (;;) { \ 368 _old = cmpxchg(_ptr, _val, _val | _mask); \ 369 if (_old == _val) \ 370 break; \ 371 _val = _old; \ 372 } \ 373 _old; \ 374 }) 375 376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 377 /* 378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 379 * this avoids any races wrt polling state changes and thereby avoids 380 * spurious IPIs. 381 */ 382 static bool set_nr_and_not_polling(struct task_struct *p) 383 { 384 struct thread_info *ti = task_thread_info(p); 385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 386 } 387 388 /* 389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 390 * 391 * If this returns true, then the idle task promises to call 392 * sched_ttwu_pending() and reschedule soon. 393 */ 394 static bool set_nr_if_polling(struct task_struct *p) 395 { 396 struct thread_info *ti = task_thread_info(p); 397 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 398 399 for (;;) { 400 if (!(val & _TIF_POLLING_NRFLAG)) 401 return false; 402 if (val & _TIF_NEED_RESCHED) 403 return true; 404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 405 if (old == val) 406 break; 407 val = old; 408 } 409 return true; 410 } 411 412 #else 413 static bool set_nr_and_not_polling(struct task_struct *p) 414 { 415 set_tsk_need_resched(p); 416 return true; 417 } 418 419 #ifdef CONFIG_SMP 420 static bool set_nr_if_polling(struct task_struct *p) 421 { 422 return false; 423 } 424 #endif 425 #endif 426 427 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 428 { 429 struct wake_q_node *node = &task->wake_q; 430 431 /* 432 * Atomically grab the task, if ->wake_q is !nil already it means 433 * its already queued (either by us or someone else) and will get the 434 * wakeup due to that. 435 * 436 * This cmpxchg() implies a full barrier, which pairs with the write 437 * barrier implied by the wakeup in wake_up_q(). 438 */ 439 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 440 return; 441 442 get_task_struct(task); 443 444 /* 445 * The head is context local, there can be no concurrency. 446 */ 447 *head->lastp = node; 448 head->lastp = &node->next; 449 } 450 451 void wake_up_q(struct wake_q_head *head) 452 { 453 struct wake_q_node *node = head->first; 454 455 while (node != WAKE_Q_TAIL) { 456 struct task_struct *task; 457 458 task = container_of(node, struct task_struct, wake_q); 459 BUG_ON(!task); 460 /* task can safely be re-inserted now */ 461 node = node->next; 462 task->wake_q.next = NULL; 463 464 /* 465 * wake_up_process() implies a wmb() to pair with the queueing 466 * in wake_q_add() so as not to miss wakeups. 467 */ 468 wake_up_process(task); 469 put_task_struct(task); 470 } 471 } 472 473 /* 474 * resched_curr - mark rq's current task 'to be rescheduled now'. 475 * 476 * On UP this means the setting of the need_resched flag, on SMP it 477 * might also involve a cross-CPU call to trigger the scheduler on 478 * the target CPU. 479 */ 480 void resched_curr(struct rq *rq) 481 { 482 struct task_struct *curr = rq->curr; 483 int cpu; 484 485 lockdep_assert_held(&rq->lock); 486 487 if (test_tsk_need_resched(curr)) 488 return; 489 490 cpu = cpu_of(rq); 491 492 if (cpu == smp_processor_id()) { 493 set_tsk_need_resched(curr); 494 set_preempt_need_resched(); 495 return; 496 } 497 498 if (set_nr_and_not_polling(curr)) 499 smp_send_reschedule(cpu); 500 else 501 trace_sched_wake_idle_without_ipi(cpu); 502 } 503 504 void resched_cpu(int cpu) 505 { 506 struct rq *rq = cpu_rq(cpu); 507 unsigned long flags; 508 509 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 510 return; 511 resched_curr(rq); 512 raw_spin_unlock_irqrestore(&rq->lock, flags); 513 } 514 515 #ifdef CONFIG_SMP 516 #ifdef CONFIG_NO_HZ_COMMON 517 /* 518 * In the semi idle case, use the nearest busy cpu for migrating timers 519 * from an idle cpu. This is good for power-savings. 520 * 521 * We don't do similar optimization for completely idle system, as 522 * selecting an idle cpu will add more delays to the timers than intended 523 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 524 */ 525 int get_nohz_timer_target(void) 526 { 527 int i, cpu = smp_processor_id(); 528 struct sched_domain *sd; 529 530 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 531 return cpu; 532 533 rcu_read_lock(); 534 for_each_domain(cpu, sd) { 535 for_each_cpu(i, sched_domain_span(sd)) { 536 if (cpu == i) 537 continue; 538 539 if (!idle_cpu(i) && is_housekeeping_cpu(i)) { 540 cpu = i; 541 goto unlock; 542 } 543 } 544 } 545 546 if (!is_housekeeping_cpu(cpu)) 547 cpu = housekeeping_any_cpu(); 548 unlock: 549 rcu_read_unlock(); 550 return cpu; 551 } 552 /* 553 * When add_timer_on() enqueues a timer into the timer wheel of an 554 * idle CPU then this timer might expire before the next timer event 555 * which is scheduled to wake up that CPU. In case of a completely 556 * idle system the next event might even be infinite time into the 557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 558 * leaves the inner idle loop so the newly added timer is taken into 559 * account when the CPU goes back to idle and evaluates the timer 560 * wheel for the next timer event. 561 */ 562 static void wake_up_idle_cpu(int cpu) 563 { 564 struct rq *rq = cpu_rq(cpu); 565 566 if (cpu == smp_processor_id()) 567 return; 568 569 if (set_nr_and_not_polling(rq->idle)) 570 smp_send_reschedule(cpu); 571 else 572 trace_sched_wake_idle_without_ipi(cpu); 573 } 574 575 static bool wake_up_full_nohz_cpu(int cpu) 576 { 577 /* 578 * We just need the target to call irq_exit() and re-evaluate 579 * the next tick. The nohz full kick at least implies that. 580 * If needed we can still optimize that later with an 581 * empty IRQ. 582 */ 583 if (tick_nohz_full_cpu(cpu)) { 584 if (cpu != smp_processor_id() || 585 tick_nohz_tick_stopped()) 586 tick_nohz_full_kick_cpu(cpu); 587 return true; 588 } 589 590 return false; 591 } 592 593 void wake_up_nohz_cpu(int cpu) 594 { 595 if (!wake_up_full_nohz_cpu(cpu)) 596 wake_up_idle_cpu(cpu); 597 } 598 599 static inline bool got_nohz_idle_kick(void) 600 { 601 int cpu = smp_processor_id(); 602 603 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 604 return false; 605 606 if (idle_cpu(cpu) && !need_resched()) 607 return true; 608 609 /* 610 * We can't run Idle Load Balance on this CPU for this time so we 611 * cancel it and clear NOHZ_BALANCE_KICK 612 */ 613 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 614 return false; 615 } 616 617 #else /* CONFIG_NO_HZ_COMMON */ 618 619 static inline bool got_nohz_idle_kick(void) 620 { 621 return false; 622 } 623 624 #endif /* CONFIG_NO_HZ_COMMON */ 625 626 #ifdef CONFIG_NO_HZ_FULL 627 bool sched_can_stop_tick(struct rq *rq) 628 { 629 int fifo_nr_running; 630 631 /* Deadline tasks, even if single, need the tick */ 632 if (rq->dl.dl_nr_running) 633 return false; 634 635 /* 636 * If there are more than one RR tasks, we need the tick to effect the 637 * actual RR behaviour. 638 */ 639 if (rq->rt.rr_nr_running) { 640 if (rq->rt.rr_nr_running == 1) 641 return true; 642 else 643 return false; 644 } 645 646 /* 647 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 648 * forced preemption between FIFO tasks. 649 */ 650 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 651 if (fifo_nr_running) 652 return true; 653 654 /* 655 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 656 * if there's more than one we need the tick for involuntary 657 * preemption. 658 */ 659 if (rq->nr_running > 1) 660 return false; 661 662 return true; 663 } 664 #endif /* CONFIG_NO_HZ_FULL */ 665 666 void sched_avg_update(struct rq *rq) 667 { 668 s64 period = sched_avg_period(); 669 670 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 671 /* 672 * Inline assembly required to prevent the compiler 673 * optimising this loop into a divmod call. 674 * See __iter_div_u64_rem() for another example of this. 675 */ 676 asm("" : "+rm" (rq->age_stamp)); 677 rq->age_stamp += period; 678 rq->rt_avg /= 2; 679 } 680 } 681 682 #endif /* CONFIG_SMP */ 683 684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 685 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 686 /* 687 * Iterate task_group tree rooted at *from, calling @down when first entering a 688 * node and @up when leaving it for the final time. 689 * 690 * Caller must hold rcu_lock or sufficient equivalent. 691 */ 692 int walk_tg_tree_from(struct task_group *from, 693 tg_visitor down, tg_visitor up, void *data) 694 { 695 struct task_group *parent, *child; 696 int ret; 697 698 parent = from; 699 700 down: 701 ret = (*down)(parent, data); 702 if (ret) 703 goto out; 704 list_for_each_entry_rcu(child, &parent->children, siblings) { 705 parent = child; 706 goto down; 707 708 up: 709 continue; 710 } 711 ret = (*up)(parent, data); 712 if (ret || parent == from) 713 goto out; 714 715 child = parent; 716 parent = parent->parent; 717 if (parent) 718 goto up; 719 out: 720 return ret; 721 } 722 723 int tg_nop(struct task_group *tg, void *data) 724 { 725 return 0; 726 } 727 #endif 728 729 static void set_load_weight(struct task_struct *p) 730 { 731 int prio = p->static_prio - MAX_RT_PRIO; 732 struct load_weight *load = &p->se.load; 733 734 /* 735 * SCHED_IDLE tasks get minimal weight: 736 */ 737 if (idle_policy(p->policy)) { 738 load->weight = scale_load(WEIGHT_IDLEPRIO); 739 load->inv_weight = WMULT_IDLEPRIO; 740 return; 741 } 742 743 load->weight = scale_load(sched_prio_to_weight[prio]); 744 load->inv_weight = sched_prio_to_wmult[prio]; 745 } 746 747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 748 { 749 update_rq_clock(rq); 750 if (!(flags & ENQUEUE_RESTORE)) 751 sched_info_queued(rq, p); 752 p->sched_class->enqueue_task(rq, p, flags); 753 } 754 755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 756 { 757 update_rq_clock(rq); 758 if (!(flags & DEQUEUE_SAVE)) 759 sched_info_dequeued(rq, p); 760 p->sched_class->dequeue_task(rq, p, flags); 761 } 762 763 void activate_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 if (task_contributes_to_load(p)) 766 rq->nr_uninterruptible--; 767 768 enqueue_task(rq, p, flags); 769 } 770 771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 772 { 773 if (task_contributes_to_load(p)) 774 rq->nr_uninterruptible++; 775 776 dequeue_task(rq, p, flags); 777 } 778 779 static void update_rq_clock_task(struct rq *rq, s64 delta) 780 { 781 /* 782 * In theory, the compile should just see 0 here, and optimize out the call 783 * to sched_rt_avg_update. But I don't trust it... 784 */ 785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 786 s64 steal = 0, irq_delta = 0; 787 #endif 788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 789 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 790 791 /* 792 * Since irq_time is only updated on {soft,}irq_exit, we might run into 793 * this case when a previous update_rq_clock() happened inside a 794 * {soft,}irq region. 795 * 796 * When this happens, we stop ->clock_task and only update the 797 * prev_irq_time stamp to account for the part that fit, so that a next 798 * update will consume the rest. This ensures ->clock_task is 799 * monotonic. 800 * 801 * It does however cause some slight miss-attribution of {soft,}irq 802 * time, a more accurate solution would be to update the irq_time using 803 * the current rq->clock timestamp, except that would require using 804 * atomic ops. 805 */ 806 if (irq_delta > delta) 807 irq_delta = delta; 808 809 rq->prev_irq_time += irq_delta; 810 delta -= irq_delta; 811 #endif 812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 813 if (static_key_false((¶virt_steal_rq_enabled))) { 814 steal = paravirt_steal_clock(cpu_of(rq)); 815 steal -= rq->prev_steal_time_rq; 816 817 if (unlikely(steal > delta)) 818 steal = delta; 819 820 rq->prev_steal_time_rq += steal; 821 delta -= steal; 822 } 823 #endif 824 825 rq->clock_task += delta; 826 827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 828 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 829 sched_rt_avg_update(rq, irq_delta + steal); 830 #endif 831 } 832 833 void sched_set_stop_task(int cpu, struct task_struct *stop) 834 { 835 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 836 struct task_struct *old_stop = cpu_rq(cpu)->stop; 837 838 if (stop) { 839 /* 840 * Make it appear like a SCHED_FIFO task, its something 841 * userspace knows about and won't get confused about. 842 * 843 * Also, it will make PI more or less work without too 844 * much confusion -- but then, stop work should not 845 * rely on PI working anyway. 846 */ 847 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 848 849 stop->sched_class = &stop_sched_class; 850 } 851 852 cpu_rq(cpu)->stop = stop; 853 854 if (old_stop) { 855 /* 856 * Reset it back to a normal scheduling class so that 857 * it can die in pieces. 858 */ 859 old_stop->sched_class = &rt_sched_class; 860 } 861 } 862 863 /* 864 * __normal_prio - return the priority that is based on the static prio 865 */ 866 static inline int __normal_prio(struct task_struct *p) 867 { 868 return p->static_prio; 869 } 870 871 /* 872 * Calculate the expected normal priority: i.e. priority 873 * without taking RT-inheritance into account. Might be 874 * boosted by interactivity modifiers. Changes upon fork, 875 * setprio syscalls, and whenever the interactivity 876 * estimator recalculates. 877 */ 878 static inline int normal_prio(struct task_struct *p) 879 { 880 int prio; 881 882 if (task_has_dl_policy(p)) 883 prio = MAX_DL_PRIO-1; 884 else if (task_has_rt_policy(p)) 885 prio = MAX_RT_PRIO-1 - p->rt_priority; 886 else 887 prio = __normal_prio(p); 888 return prio; 889 } 890 891 /* 892 * Calculate the current priority, i.e. the priority 893 * taken into account by the scheduler. This value might 894 * be boosted by RT tasks, or might be boosted by 895 * interactivity modifiers. Will be RT if the task got 896 * RT-boosted. If not then it returns p->normal_prio. 897 */ 898 static int effective_prio(struct task_struct *p) 899 { 900 p->normal_prio = normal_prio(p); 901 /* 902 * If we are RT tasks or we were boosted to RT priority, 903 * keep the priority unchanged. Otherwise, update priority 904 * to the normal priority: 905 */ 906 if (!rt_prio(p->prio)) 907 return p->normal_prio; 908 return p->prio; 909 } 910 911 /** 912 * task_curr - is this task currently executing on a CPU? 913 * @p: the task in question. 914 * 915 * Return: 1 if the task is currently executing. 0 otherwise. 916 */ 917 inline int task_curr(const struct task_struct *p) 918 { 919 return cpu_curr(task_cpu(p)) == p; 920 } 921 922 /* 923 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 924 * use the balance_callback list if you want balancing. 925 * 926 * this means any call to check_class_changed() must be followed by a call to 927 * balance_callback(). 928 */ 929 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 930 const struct sched_class *prev_class, 931 int oldprio) 932 { 933 if (prev_class != p->sched_class) { 934 if (prev_class->switched_from) 935 prev_class->switched_from(rq, p); 936 937 p->sched_class->switched_to(rq, p); 938 } else if (oldprio != p->prio || dl_task(p)) 939 p->sched_class->prio_changed(rq, p, oldprio); 940 } 941 942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 943 { 944 const struct sched_class *class; 945 946 if (p->sched_class == rq->curr->sched_class) { 947 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 948 } else { 949 for_each_class(class) { 950 if (class == rq->curr->sched_class) 951 break; 952 if (class == p->sched_class) { 953 resched_curr(rq); 954 break; 955 } 956 } 957 } 958 959 /* 960 * A queue event has occurred, and we're going to schedule. In 961 * this case, we can save a useless back to back clock update. 962 */ 963 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 964 rq_clock_skip_update(rq, true); 965 } 966 967 #ifdef CONFIG_SMP 968 /* 969 * This is how migration works: 970 * 971 * 1) we invoke migration_cpu_stop() on the target CPU using 972 * stop_one_cpu(). 973 * 2) stopper starts to run (implicitly forcing the migrated thread 974 * off the CPU) 975 * 3) it checks whether the migrated task is still in the wrong runqueue. 976 * 4) if it's in the wrong runqueue then the migration thread removes 977 * it and puts it into the right queue. 978 * 5) stopper completes and stop_one_cpu() returns and the migration 979 * is done. 980 */ 981 982 /* 983 * move_queued_task - move a queued task to new rq. 984 * 985 * Returns (locked) new rq. Old rq's lock is released. 986 */ 987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 988 { 989 lockdep_assert_held(&rq->lock); 990 991 p->on_rq = TASK_ON_RQ_MIGRATING; 992 dequeue_task(rq, p, 0); 993 set_task_cpu(p, new_cpu); 994 raw_spin_unlock(&rq->lock); 995 996 rq = cpu_rq(new_cpu); 997 998 raw_spin_lock(&rq->lock); 999 BUG_ON(task_cpu(p) != new_cpu); 1000 enqueue_task(rq, p, 0); 1001 p->on_rq = TASK_ON_RQ_QUEUED; 1002 check_preempt_curr(rq, p, 0); 1003 1004 return rq; 1005 } 1006 1007 struct migration_arg { 1008 struct task_struct *task; 1009 int dest_cpu; 1010 }; 1011 1012 /* 1013 * Move (not current) task off this cpu, onto dest cpu. We're doing 1014 * this because either it can't run here any more (set_cpus_allowed() 1015 * away from this CPU, or CPU going down), or because we're 1016 * attempting to rebalance this task on exec (sched_exec). 1017 * 1018 * So we race with normal scheduler movements, but that's OK, as long 1019 * as the task is no longer on this CPU. 1020 */ 1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 1022 { 1023 if (unlikely(!cpu_active(dest_cpu))) 1024 return rq; 1025 1026 /* Affinity changed (again). */ 1027 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1028 return rq; 1029 1030 rq = move_queued_task(rq, p, dest_cpu); 1031 1032 return rq; 1033 } 1034 1035 /* 1036 * migration_cpu_stop - this will be executed by a highprio stopper thread 1037 * and performs thread migration by bumping thread off CPU then 1038 * 'pushing' onto another runqueue. 1039 */ 1040 static int migration_cpu_stop(void *data) 1041 { 1042 struct migration_arg *arg = data; 1043 struct task_struct *p = arg->task; 1044 struct rq *rq = this_rq(); 1045 1046 /* 1047 * The original target cpu might have gone down and we might 1048 * be on another cpu but it doesn't matter. 1049 */ 1050 local_irq_disable(); 1051 /* 1052 * We need to explicitly wake pending tasks before running 1053 * __migrate_task() such that we will not miss enforcing cpus_allowed 1054 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1055 */ 1056 sched_ttwu_pending(); 1057 1058 raw_spin_lock(&p->pi_lock); 1059 raw_spin_lock(&rq->lock); 1060 /* 1061 * If task_rq(p) != rq, it cannot be migrated here, because we're 1062 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1063 * we're holding p->pi_lock. 1064 */ 1065 if (task_rq(p) == rq && task_on_rq_queued(p)) 1066 rq = __migrate_task(rq, p, arg->dest_cpu); 1067 raw_spin_unlock(&rq->lock); 1068 raw_spin_unlock(&p->pi_lock); 1069 1070 local_irq_enable(); 1071 return 0; 1072 } 1073 1074 /* 1075 * sched_class::set_cpus_allowed must do the below, but is not required to 1076 * actually call this function. 1077 */ 1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1079 { 1080 cpumask_copy(&p->cpus_allowed, new_mask); 1081 p->nr_cpus_allowed = cpumask_weight(new_mask); 1082 } 1083 1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1085 { 1086 struct rq *rq = task_rq(p); 1087 bool queued, running; 1088 1089 lockdep_assert_held(&p->pi_lock); 1090 1091 queued = task_on_rq_queued(p); 1092 running = task_current(rq, p); 1093 1094 if (queued) { 1095 /* 1096 * Because __kthread_bind() calls this on blocked tasks without 1097 * holding rq->lock. 1098 */ 1099 lockdep_assert_held(&rq->lock); 1100 dequeue_task(rq, p, DEQUEUE_SAVE); 1101 } 1102 if (running) 1103 put_prev_task(rq, p); 1104 1105 p->sched_class->set_cpus_allowed(p, new_mask); 1106 1107 if (running) 1108 p->sched_class->set_curr_task(rq); 1109 if (queued) 1110 enqueue_task(rq, p, ENQUEUE_RESTORE); 1111 } 1112 1113 /* 1114 * Change a given task's CPU affinity. Migrate the thread to a 1115 * proper CPU and schedule it away if the CPU it's executing on 1116 * is removed from the allowed bitmask. 1117 * 1118 * NOTE: the caller must have a valid reference to the task, the 1119 * task must not exit() & deallocate itself prematurely. The 1120 * call is not atomic; no spinlocks may be held. 1121 */ 1122 static int __set_cpus_allowed_ptr(struct task_struct *p, 1123 const struct cpumask *new_mask, bool check) 1124 { 1125 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1126 unsigned int dest_cpu; 1127 struct rq_flags rf; 1128 struct rq *rq; 1129 int ret = 0; 1130 1131 rq = task_rq_lock(p, &rf); 1132 1133 if (p->flags & PF_KTHREAD) { 1134 /* 1135 * Kernel threads are allowed on online && !active CPUs 1136 */ 1137 cpu_valid_mask = cpu_online_mask; 1138 } 1139 1140 /* 1141 * Must re-check here, to close a race against __kthread_bind(), 1142 * sched_setaffinity() is not guaranteed to observe the flag. 1143 */ 1144 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1145 ret = -EINVAL; 1146 goto out; 1147 } 1148 1149 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1150 goto out; 1151 1152 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1153 ret = -EINVAL; 1154 goto out; 1155 } 1156 1157 do_set_cpus_allowed(p, new_mask); 1158 1159 if (p->flags & PF_KTHREAD) { 1160 /* 1161 * For kernel threads that do indeed end up on online && 1162 * !active we want to ensure they are strict per-cpu threads. 1163 */ 1164 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1165 !cpumask_intersects(new_mask, cpu_active_mask) && 1166 p->nr_cpus_allowed != 1); 1167 } 1168 1169 /* Can the task run on the task's current CPU? If so, we're done */ 1170 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1171 goto out; 1172 1173 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1174 if (task_running(rq, p) || p->state == TASK_WAKING) { 1175 struct migration_arg arg = { p, dest_cpu }; 1176 /* Need help from migration thread: drop lock and wait. */ 1177 task_rq_unlock(rq, p, &rf); 1178 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1179 tlb_migrate_finish(p->mm); 1180 return 0; 1181 } else if (task_on_rq_queued(p)) { 1182 /* 1183 * OK, since we're going to drop the lock immediately 1184 * afterwards anyway. 1185 */ 1186 lockdep_unpin_lock(&rq->lock, rf.cookie); 1187 rq = move_queued_task(rq, p, dest_cpu); 1188 lockdep_repin_lock(&rq->lock, rf.cookie); 1189 } 1190 out: 1191 task_rq_unlock(rq, p, &rf); 1192 1193 return ret; 1194 } 1195 1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1197 { 1198 return __set_cpus_allowed_ptr(p, new_mask, false); 1199 } 1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1201 1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1203 { 1204 #ifdef CONFIG_SCHED_DEBUG 1205 /* 1206 * We should never call set_task_cpu() on a blocked task, 1207 * ttwu() will sort out the placement. 1208 */ 1209 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1210 !p->on_rq); 1211 1212 /* 1213 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1214 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1215 * time relying on p->on_rq. 1216 */ 1217 WARN_ON_ONCE(p->state == TASK_RUNNING && 1218 p->sched_class == &fair_sched_class && 1219 (p->on_rq && !task_on_rq_migrating(p))); 1220 1221 #ifdef CONFIG_LOCKDEP 1222 /* 1223 * The caller should hold either p->pi_lock or rq->lock, when changing 1224 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1225 * 1226 * sched_move_task() holds both and thus holding either pins the cgroup, 1227 * see task_group(). 1228 * 1229 * Furthermore, all task_rq users should acquire both locks, see 1230 * task_rq_lock(). 1231 */ 1232 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1233 lockdep_is_held(&task_rq(p)->lock))); 1234 #endif 1235 #endif 1236 1237 trace_sched_migrate_task(p, new_cpu); 1238 1239 if (task_cpu(p) != new_cpu) { 1240 if (p->sched_class->migrate_task_rq) 1241 p->sched_class->migrate_task_rq(p); 1242 p->se.nr_migrations++; 1243 perf_event_task_migrate(p); 1244 } 1245 1246 __set_task_cpu(p, new_cpu); 1247 } 1248 1249 static void __migrate_swap_task(struct task_struct *p, int cpu) 1250 { 1251 if (task_on_rq_queued(p)) { 1252 struct rq *src_rq, *dst_rq; 1253 1254 src_rq = task_rq(p); 1255 dst_rq = cpu_rq(cpu); 1256 1257 p->on_rq = TASK_ON_RQ_MIGRATING; 1258 deactivate_task(src_rq, p, 0); 1259 set_task_cpu(p, cpu); 1260 activate_task(dst_rq, p, 0); 1261 p->on_rq = TASK_ON_RQ_QUEUED; 1262 check_preempt_curr(dst_rq, p, 0); 1263 } else { 1264 /* 1265 * Task isn't running anymore; make it appear like we migrated 1266 * it before it went to sleep. This means on wakeup we make the 1267 * previous cpu our targer instead of where it really is. 1268 */ 1269 p->wake_cpu = cpu; 1270 } 1271 } 1272 1273 struct migration_swap_arg { 1274 struct task_struct *src_task, *dst_task; 1275 int src_cpu, dst_cpu; 1276 }; 1277 1278 static int migrate_swap_stop(void *data) 1279 { 1280 struct migration_swap_arg *arg = data; 1281 struct rq *src_rq, *dst_rq; 1282 int ret = -EAGAIN; 1283 1284 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1285 return -EAGAIN; 1286 1287 src_rq = cpu_rq(arg->src_cpu); 1288 dst_rq = cpu_rq(arg->dst_cpu); 1289 1290 double_raw_lock(&arg->src_task->pi_lock, 1291 &arg->dst_task->pi_lock); 1292 double_rq_lock(src_rq, dst_rq); 1293 1294 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1295 goto unlock; 1296 1297 if (task_cpu(arg->src_task) != arg->src_cpu) 1298 goto unlock; 1299 1300 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1301 goto unlock; 1302 1303 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1304 goto unlock; 1305 1306 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1307 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1308 1309 ret = 0; 1310 1311 unlock: 1312 double_rq_unlock(src_rq, dst_rq); 1313 raw_spin_unlock(&arg->dst_task->pi_lock); 1314 raw_spin_unlock(&arg->src_task->pi_lock); 1315 1316 return ret; 1317 } 1318 1319 /* 1320 * Cross migrate two tasks 1321 */ 1322 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1323 { 1324 struct migration_swap_arg arg; 1325 int ret = -EINVAL; 1326 1327 arg = (struct migration_swap_arg){ 1328 .src_task = cur, 1329 .src_cpu = task_cpu(cur), 1330 .dst_task = p, 1331 .dst_cpu = task_cpu(p), 1332 }; 1333 1334 if (arg.src_cpu == arg.dst_cpu) 1335 goto out; 1336 1337 /* 1338 * These three tests are all lockless; this is OK since all of them 1339 * will be re-checked with proper locks held further down the line. 1340 */ 1341 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1342 goto out; 1343 1344 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1345 goto out; 1346 1347 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1348 goto out; 1349 1350 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1351 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1352 1353 out: 1354 return ret; 1355 } 1356 1357 /* 1358 * wait_task_inactive - wait for a thread to unschedule. 1359 * 1360 * If @match_state is nonzero, it's the @p->state value just checked and 1361 * not expected to change. If it changes, i.e. @p might have woken up, 1362 * then return zero. When we succeed in waiting for @p to be off its CPU, 1363 * we return a positive number (its total switch count). If a second call 1364 * a short while later returns the same number, the caller can be sure that 1365 * @p has remained unscheduled the whole time. 1366 * 1367 * The caller must ensure that the task *will* unschedule sometime soon, 1368 * else this function might spin for a *long* time. This function can't 1369 * be called with interrupts off, or it may introduce deadlock with 1370 * smp_call_function() if an IPI is sent by the same process we are 1371 * waiting to become inactive. 1372 */ 1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1374 { 1375 int running, queued; 1376 struct rq_flags rf; 1377 unsigned long ncsw; 1378 struct rq *rq; 1379 1380 for (;;) { 1381 /* 1382 * We do the initial early heuristics without holding 1383 * any task-queue locks at all. We'll only try to get 1384 * the runqueue lock when things look like they will 1385 * work out! 1386 */ 1387 rq = task_rq(p); 1388 1389 /* 1390 * If the task is actively running on another CPU 1391 * still, just relax and busy-wait without holding 1392 * any locks. 1393 * 1394 * NOTE! Since we don't hold any locks, it's not 1395 * even sure that "rq" stays as the right runqueue! 1396 * But we don't care, since "task_running()" will 1397 * return false if the runqueue has changed and p 1398 * is actually now running somewhere else! 1399 */ 1400 while (task_running(rq, p)) { 1401 if (match_state && unlikely(p->state != match_state)) 1402 return 0; 1403 cpu_relax(); 1404 } 1405 1406 /* 1407 * Ok, time to look more closely! We need the rq 1408 * lock now, to be *sure*. If we're wrong, we'll 1409 * just go back and repeat. 1410 */ 1411 rq = task_rq_lock(p, &rf); 1412 trace_sched_wait_task(p); 1413 running = task_running(rq, p); 1414 queued = task_on_rq_queued(p); 1415 ncsw = 0; 1416 if (!match_state || p->state == match_state) 1417 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1418 task_rq_unlock(rq, p, &rf); 1419 1420 /* 1421 * If it changed from the expected state, bail out now. 1422 */ 1423 if (unlikely(!ncsw)) 1424 break; 1425 1426 /* 1427 * Was it really running after all now that we 1428 * checked with the proper locks actually held? 1429 * 1430 * Oops. Go back and try again.. 1431 */ 1432 if (unlikely(running)) { 1433 cpu_relax(); 1434 continue; 1435 } 1436 1437 /* 1438 * It's not enough that it's not actively running, 1439 * it must be off the runqueue _entirely_, and not 1440 * preempted! 1441 * 1442 * So if it was still runnable (but just not actively 1443 * running right now), it's preempted, and we should 1444 * yield - it could be a while. 1445 */ 1446 if (unlikely(queued)) { 1447 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1448 1449 set_current_state(TASK_UNINTERRUPTIBLE); 1450 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1451 continue; 1452 } 1453 1454 /* 1455 * Ahh, all good. It wasn't running, and it wasn't 1456 * runnable, which means that it will never become 1457 * running in the future either. We're all done! 1458 */ 1459 break; 1460 } 1461 1462 return ncsw; 1463 } 1464 1465 /*** 1466 * kick_process - kick a running thread to enter/exit the kernel 1467 * @p: the to-be-kicked thread 1468 * 1469 * Cause a process which is running on another CPU to enter 1470 * kernel-mode, without any delay. (to get signals handled.) 1471 * 1472 * NOTE: this function doesn't have to take the runqueue lock, 1473 * because all it wants to ensure is that the remote task enters 1474 * the kernel. If the IPI races and the task has been migrated 1475 * to another CPU then no harm is done and the purpose has been 1476 * achieved as well. 1477 */ 1478 void kick_process(struct task_struct *p) 1479 { 1480 int cpu; 1481 1482 preempt_disable(); 1483 cpu = task_cpu(p); 1484 if ((cpu != smp_processor_id()) && task_curr(p)) 1485 smp_send_reschedule(cpu); 1486 preempt_enable(); 1487 } 1488 EXPORT_SYMBOL_GPL(kick_process); 1489 1490 /* 1491 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1492 * 1493 * A few notes on cpu_active vs cpu_online: 1494 * 1495 * - cpu_active must be a subset of cpu_online 1496 * 1497 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1498 * see __set_cpus_allowed_ptr(). At this point the newly online 1499 * cpu isn't yet part of the sched domains, and balancing will not 1500 * see it. 1501 * 1502 * - on cpu-down we clear cpu_active() to mask the sched domains and 1503 * avoid the load balancer to place new tasks on the to be removed 1504 * cpu. Existing tasks will remain running there and will be taken 1505 * off. 1506 * 1507 * This means that fallback selection must not select !active CPUs. 1508 * And can assume that any active CPU must be online. Conversely 1509 * select_task_rq() below may allow selection of !active CPUs in order 1510 * to satisfy the above rules. 1511 */ 1512 static int select_fallback_rq(int cpu, struct task_struct *p) 1513 { 1514 int nid = cpu_to_node(cpu); 1515 const struct cpumask *nodemask = NULL; 1516 enum { cpuset, possible, fail } state = cpuset; 1517 int dest_cpu; 1518 1519 /* 1520 * If the node that the cpu is on has been offlined, cpu_to_node() 1521 * will return -1. There is no cpu on the node, and we should 1522 * select the cpu on the other node. 1523 */ 1524 if (nid != -1) { 1525 nodemask = cpumask_of_node(nid); 1526 1527 /* Look for allowed, online CPU in same node. */ 1528 for_each_cpu(dest_cpu, nodemask) { 1529 if (!cpu_active(dest_cpu)) 1530 continue; 1531 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1532 return dest_cpu; 1533 } 1534 } 1535 1536 for (;;) { 1537 /* Any allowed, online CPU? */ 1538 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1539 if (!cpu_active(dest_cpu)) 1540 continue; 1541 goto out; 1542 } 1543 1544 /* No more Mr. Nice Guy. */ 1545 switch (state) { 1546 case cpuset: 1547 if (IS_ENABLED(CONFIG_CPUSETS)) { 1548 cpuset_cpus_allowed_fallback(p); 1549 state = possible; 1550 break; 1551 } 1552 /* fall-through */ 1553 case possible: 1554 do_set_cpus_allowed(p, cpu_possible_mask); 1555 state = fail; 1556 break; 1557 1558 case fail: 1559 BUG(); 1560 break; 1561 } 1562 } 1563 1564 out: 1565 if (state != cpuset) { 1566 /* 1567 * Don't tell them about moving exiting tasks or 1568 * kernel threads (both mm NULL), since they never 1569 * leave kernel. 1570 */ 1571 if (p->mm && printk_ratelimit()) { 1572 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1573 task_pid_nr(p), p->comm, cpu); 1574 } 1575 } 1576 1577 return dest_cpu; 1578 } 1579 1580 /* 1581 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1582 */ 1583 static inline 1584 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1585 { 1586 lockdep_assert_held(&p->pi_lock); 1587 1588 if (tsk_nr_cpus_allowed(p) > 1) 1589 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1590 else 1591 cpu = cpumask_any(tsk_cpus_allowed(p)); 1592 1593 /* 1594 * In order not to call set_task_cpu() on a blocking task we need 1595 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1596 * cpu. 1597 * 1598 * Since this is common to all placement strategies, this lives here. 1599 * 1600 * [ this allows ->select_task() to simply return task_cpu(p) and 1601 * not worry about this generic constraint ] 1602 */ 1603 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1604 !cpu_online(cpu))) 1605 cpu = select_fallback_rq(task_cpu(p), p); 1606 1607 return cpu; 1608 } 1609 1610 static void update_avg(u64 *avg, u64 sample) 1611 { 1612 s64 diff = sample - *avg; 1613 *avg += diff >> 3; 1614 } 1615 1616 #else 1617 1618 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1619 const struct cpumask *new_mask, bool check) 1620 { 1621 return set_cpus_allowed_ptr(p, new_mask); 1622 } 1623 1624 #endif /* CONFIG_SMP */ 1625 1626 static void 1627 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1628 { 1629 #ifdef CONFIG_SCHEDSTATS 1630 struct rq *rq = this_rq(); 1631 1632 #ifdef CONFIG_SMP 1633 int this_cpu = smp_processor_id(); 1634 1635 if (cpu == this_cpu) { 1636 schedstat_inc(rq, ttwu_local); 1637 schedstat_inc(p, se.statistics.nr_wakeups_local); 1638 } else { 1639 struct sched_domain *sd; 1640 1641 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1642 rcu_read_lock(); 1643 for_each_domain(this_cpu, sd) { 1644 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1645 schedstat_inc(sd, ttwu_wake_remote); 1646 break; 1647 } 1648 } 1649 rcu_read_unlock(); 1650 } 1651 1652 if (wake_flags & WF_MIGRATED) 1653 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1654 1655 #endif /* CONFIG_SMP */ 1656 1657 schedstat_inc(rq, ttwu_count); 1658 schedstat_inc(p, se.statistics.nr_wakeups); 1659 1660 if (wake_flags & WF_SYNC) 1661 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1662 1663 #endif /* CONFIG_SCHEDSTATS */ 1664 } 1665 1666 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1667 { 1668 activate_task(rq, p, en_flags); 1669 p->on_rq = TASK_ON_RQ_QUEUED; 1670 1671 /* if a worker is waking up, notify workqueue */ 1672 if (p->flags & PF_WQ_WORKER) 1673 wq_worker_waking_up(p, cpu_of(rq)); 1674 } 1675 1676 /* 1677 * Mark the task runnable and perform wakeup-preemption. 1678 */ 1679 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1680 struct pin_cookie cookie) 1681 { 1682 check_preempt_curr(rq, p, wake_flags); 1683 p->state = TASK_RUNNING; 1684 trace_sched_wakeup(p); 1685 1686 #ifdef CONFIG_SMP 1687 if (p->sched_class->task_woken) { 1688 /* 1689 * Our task @p is fully woken up and running; so its safe to 1690 * drop the rq->lock, hereafter rq is only used for statistics. 1691 */ 1692 lockdep_unpin_lock(&rq->lock, cookie); 1693 p->sched_class->task_woken(rq, p); 1694 lockdep_repin_lock(&rq->lock, cookie); 1695 } 1696 1697 if (rq->idle_stamp) { 1698 u64 delta = rq_clock(rq) - rq->idle_stamp; 1699 u64 max = 2*rq->max_idle_balance_cost; 1700 1701 update_avg(&rq->avg_idle, delta); 1702 1703 if (rq->avg_idle > max) 1704 rq->avg_idle = max; 1705 1706 rq->idle_stamp = 0; 1707 } 1708 #endif 1709 } 1710 1711 static void 1712 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1713 struct pin_cookie cookie) 1714 { 1715 int en_flags = ENQUEUE_WAKEUP; 1716 1717 lockdep_assert_held(&rq->lock); 1718 1719 #ifdef CONFIG_SMP 1720 if (p->sched_contributes_to_load) 1721 rq->nr_uninterruptible--; 1722 1723 if (wake_flags & WF_MIGRATED) 1724 en_flags |= ENQUEUE_MIGRATED; 1725 #endif 1726 1727 ttwu_activate(rq, p, en_flags); 1728 ttwu_do_wakeup(rq, p, wake_flags, cookie); 1729 } 1730 1731 /* 1732 * Called in case the task @p isn't fully descheduled from its runqueue, 1733 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1734 * since all we need to do is flip p->state to TASK_RUNNING, since 1735 * the task is still ->on_rq. 1736 */ 1737 static int ttwu_remote(struct task_struct *p, int wake_flags) 1738 { 1739 struct rq_flags rf; 1740 struct rq *rq; 1741 int ret = 0; 1742 1743 rq = __task_rq_lock(p, &rf); 1744 if (task_on_rq_queued(p)) { 1745 /* check_preempt_curr() may use rq clock */ 1746 update_rq_clock(rq); 1747 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie); 1748 ret = 1; 1749 } 1750 __task_rq_unlock(rq, &rf); 1751 1752 return ret; 1753 } 1754 1755 #ifdef CONFIG_SMP 1756 void sched_ttwu_pending(void) 1757 { 1758 struct rq *rq = this_rq(); 1759 struct llist_node *llist = llist_del_all(&rq->wake_list); 1760 struct pin_cookie cookie; 1761 struct task_struct *p; 1762 unsigned long flags; 1763 1764 if (!llist) 1765 return; 1766 1767 raw_spin_lock_irqsave(&rq->lock, flags); 1768 cookie = lockdep_pin_lock(&rq->lock); 1769 1770 while (llist) { 1771 int wake_flags = 0; 1772 1773 p = llist_entry(llist, struct task_struct, wake_entry); 1774 llist = llist_next(llist); 1775 1776 if (p->sched_remote_wakeup) 1777 wake_flags = WF_MIGRATED; 1778 1779 ttwu_do_activate(rq, p, wake_flags, cookie); 1780 } 1781 1782 lockdep_unpin_lock(&rq->lock, cookie); 1783 raw_spin_unlock_irqrestore(&rq->lock, flags); 1784 } 1785 1786 void scheduler_ipi(void) 1787 { 1788 /* 1789 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1790 * TIF_NEED_RESCHED remotely (for the first time) will also send 1791 * this IPI. 1792 */ 1793 preempt_fold_need_resched(); 1794 1795 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1796 return; 1797 1798 /* 1799 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1800 * traditionally all their work was done from the interrupt return 1801 * path. Now that we actually do some work, we need to make sure 1802 * we do call them. 1803 * 1804 * Some archs already do call them, luckily irq_enter/exit nest 1805 * properly. 1806 * 1807 * Arguably we should visit all archs and update all handlers, 1808 * however a fair share of IPIs are still resched only so this would 1809 * somewhat pessimize the simple resched case. 1810 */ 1811 irq_enter(); 1812 sched_ttwu_pending(); 1813 1814 /* 1815 * Check if someone kicked us for doing the nohz idle load balance. 1816 */ 1817 if (unlikely(got_nohz_idle_kick())) { 1818 this_rq()->idle_balance = 1; 1819 raise_softirq_irqoff(SCHED_SOFTIRQ); 1820 } 1821 irq_exit(); 1822 } 1823 1824 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1825 { 1826 struct rq *rq = cpu_rq(cpu); 1827 1828 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1829 1830 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1831 if (!set_nr_if_polling(rq->idle)) 1832 smp_send_reschedule(cpu); 1833 else 1834 trace_sched_wake_idle_without_ipi(cpu); 1835 } 1836 } 1837 1838 void wake_up_if_idle(int cpu) 1839 { 1840 struct rq *rq = cpu_rq(cpu); 1841 unsigned long flags; 1842 1843 rcu_read_lock(); 1844 1845 if (!is_idle_task(rcu_dereference(rq->curr))) 1846 goto out; 1847 1848 if (set_nr_if_polling(rq->idle)) { 1849 trace_sched_wake_idle_without_ipi(cpu); 1850 } else { 1851 raw_spin_lock_irqsave(&rq->lock, flags); 1852 if (is_idle_task(rq->curr)) 1853 smp_send_reschedule(cpu); 1854 /* Else cpu is not in idle, do nothing here */ 1855 raw_spin_unlock_irqrestore(&rq->lock, flags); 1856 } 1857 1858 out: 1859 rcu_read_unlock(); 1860 } 1861 1862 bool cpus_share_cache(int this_cpu, int that_cpu) 1863 { 1864 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1865 } 1866 #endif /* CONFIG_SMP */ 1867 1868 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1869 { 1870 struct rq *rq = cpu_rq(cpu); 1871 struct pin_cookie cookie; 1872 1873 #if defined(CONFIG_SMP) 1874 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1875 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1876 ttwu_queue_remote(p, cpu, wake_flags); 1877 return; 1878 } 1879 #endif 1880 1881 raw_spin_lock(&rq->lock); 1882 cookie = lockdep_pin_lock(&rq->lock); 1883 ttwu_do_activate(rq, p, wake_flags, cookie); 1884 lockdep_unpin_lock(&rq->lock, cookie); 1885 raw_spin_unlock(&rq->lock); 1886 } 1887 1888 /* 1889 * Notes on Program-Order guarantees on SMP systems. 1890 * 1891 * MIGRATION 1892 * 1893 * The basic program-order guarantee on SMP systems is that when a task [t] 1894 * migrates, all its activity on its old cpu [c0] happens-before any subsequent 1895 * execution on its new cpu [c1]. 1896 * 1897 * For migration (of runnable tasks) this is provided by the following means: 1898 * 1899 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1900 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1901 * rq(c1)->lock (if not at the same time, then in that order). 1902 * C) LOCK of the rq(c1)->lock scheduling in task 1903 * 1904 * Transitivity guarantees that B happens after A and C after B. 1905 * Note: we only require RCpc transitivity. 1906 * Note: the cpu doing B need not be c0 or c1 1907 * 1908 * Example: 1909 * 1910 * CPU0 CPU1 CPU2 1911 * 1912 * LOCK rq(0)->lock 1913 * sched-out X 1914 * sched-in Y 1915 * UNLOCK rq(0)->lock 1916 * 1917 * LOCK rq(0)->lock // orders against CPU0 1918 * dequeue X 1919 * UNLOCK rq(0)->lock 1920 * 1921 * LOCK rq(1)->lock 1922 * enqueue X 1923 * UNLOCK rq(1)->lock 1924 * 1925 * LOCK rq(1)->lock // orders against CPU2 1926 * sched-out Z 1927 * sched-in X 1928 * UNLOCK rq(1)->lock 1929 * 1930 * 1931 * BLOCKING -- aka. SLEEP + WAKEUP 1932 * 1933 * For blocking we (obviously) need to provide the same guarantee as for 1934 * migration. However the means are completely different as there is no lock 1935 * chain to provide order. Instead we do: 1936 * 1937 * 1) smp_store_release(X->on_cpu, 0) 1938 * 2) smp_cond_acquire(!X->on_cpu) 1939 * 1940 * Example: 1941 * 1942 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1943 * 1944 * LOCK rq(0)->lock LOCK X->pi_lock 1945 * dequeue X 1946 * sched-out X 1947 * smp_store_release(X->on_cpu, 0); 1948 * 1949 * smp_cond_acquire(!X->on_cpu); 1950 * X->state = WAKING 1951 * set_task_cpu(X,2) 1952 * 1953 * LOCK rq(2)->lock 1954 * enqueue X 1955 * X->state = RUNNING 1956 * UNLOCK rq(2)->lock 1957 * 1958 * LOCK rq(2)->lock // orders against CPU1 1959 * sched-out Z 1960 * sched-in X 1961 * UNLOCK rq(2)->lock 1962 * 1963 * UNLOCK X->pi_lock 1964 * UNLOCK rq(0)->lock 1965 * 1966 * 1967 * However; for wakeups there is a second guarantee we must provide, namely we 1968 * must observe the state that lead to our wakeup. That is, not only must our 1969 * task observe its own prior state, it must also observe the stores prior to 1970 * its wakeup. 1971 * 1972 * This means that any means of doing remote wakeups must order the CPU doing 1973 * the wakeup against the CPU the task is going to end up running on. This, 1974 * however, is already required for the regular Program-Order guarantee above, 1975 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire). 1976 * 1977 */ 1978 1979 /** 1980 * try_to_wake_up - wake up a thread 1981 * @p: the thread to be awakened 1982 * @state: the mask of task states that can be woken 1983 * @wake_flags: wake modifier flags (WF_*) 1984 * 1985 * Put it on the run-queue if it's not already there. The "current" 1986 * thread is always on the run-queue (except when the actual 1987 * re-schedule is in progress), and as such you're allowed to do 1988 * the simpler "current->state = TASK_RUNNING" to mark yourself 1989 * runnable without the overhead of this. 1990 * 1991 * Return: %true if @p was woken up, %false if it was already running. 1992 * or @state didn't match @p's state. 1993 */ 1994 static int 1995 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1996 { 1997 unsigned long flags; 1998 int cpu, success = 0; 1999 2000 /* 2001 * If we are going to wake up a thread waiting for CONDITION we 2002 * need to ensure that CONDITION=1 done by the caller can not be 2003 * reordered with p->state check below. This pairs with mb() in 2004 * set_current_state() the waiting thread does. 2005 */ 2006 smp_mb__before_spinlock(); 2007 raw_spin_lock_irqsave(&p->pi_lock, flags); 2008 if (!(p->state & state)) 2009 goto out; 2010 2011 trace_sched_waking(p); 2012 2013 success = 1; /* we're going to change ->state */ 2014 cpu = task_cpu(p); 2015 2016 if (p->on_rq && ttwu_remote(p, wake_flags)) 2017 goto stat; 2018 2019 #ifdef CONFIG_SMP 2020 /* 2021 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2022 * possible to, falsely, observe p->on_cpu == 0. 2023 * 2024 * One must be running (->on_cpu == 1) in order to remove oneself 2025 * from the runqueue. 2026 * 2027 * [S] ->on_cpu = 1; [L] ->on_rq 2028 * UNLOCK rq->lock 2029 * RMB 2030 * LOCK rq->lock 2031 * [S] ->on_rq = 0; [L] ->on_cpu 2032 * 2033 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2034 * from the consecutive calls to schedule(); the first switching to our 2035 * task, the second putting it to sleep. 2036 */ 2037 smp_rmb(); 2038 2039 /* 2040 * If the owning (remote) cpu is still in the middle of schedule() with 2041 * this task as prev, wait until its done referencing the task. 2042 * 2043 * Pairs with the smp_store_release() in finish_lock_switch(). 2044 * 2045 * This ensures that tasks getting woken will be fully ordered against 2046 * their previous state and preserve Program Order. 2047 */ 2048 smp_cond_acquire(!p->on_cpu); 2049 2050 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2051 p->state = TASK_WAKING; 2052 2053 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2054 if (task_cpu(p) != cpu) { 2055 wake_flags |= WF_MIGRATED; 2056 set_task_cpu(p, cpu); 2057 } 2058 #endif /* CONFIG_SMP */ 2059 2060 ttwu_queue(p, cpu, wake_flags); 2061 stat: 2062 if (schedstat_enabled()) 2063 ttwu_stat(p, cpu, wake_flags); 2064 out: 2065 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2066 2067 return success; 2068 } 2069 2070 /** 2071 * try_to_wake_up_local - try to wake up a local task with rq lock held 2072 * @p: the thread to be awakened 2073 * 2074 * Put @p on the run-queue if it's not already there. The caller must 2075 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2076 * the current task. 2077 */ 2078 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie) 2079 { 2080 struct rq *rq = task_rq(p); 2081 2082 if (WARN_ON_ONCE(rq != this_rq()) || 2083 WARN_ON_ONCE(p == current)) 2084 return; 2085 2086 lockdep_assert_held(&rq->lock); 2087 2088 if (!raw_spin_trylock(&p->pi_lock)) { 2089 /* 2090 * This is OK, because current is on_cpu, which avoids it being 2091 * picked for load-balance and preemption/IRQs are still 2092 * disabled avoiding further scheduler activity on it and we've 2093 * not yet picked a replacement task. 2094 */ 2095 lockdep_unpin_lock(&rq->lock, cookie); 2096 raw_spin_unlock(&rq->lock); 2097 raw_spin_lock(&p->pi_lock); 2098 raw_spin_lock(&rq->lock); 2099 lockdep_repin_lock(&rq->lock, cookie); 2100 } 2101 2102 if (!(p->state & TASK_NORMAL)) 2103 goto out; 2104 2105 trace_sched_waking(p); 2106 2107 if (!task_on_rq_queued(p)) 2108 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2109 2110 ttwu_do_wakeup(rq, p, 0, cookie); 2111 if (schedstat_enabled()) 2112 ttwu_stat(p, smp_processor_id(), 0); 2113 out: 2114 raw_spin_unlock(&p->pi_lock); 2115 } 2116 2117 /** 2118 * wake_up_process - Wake up a specific process 2119 * @p: The process to be woken up. 2120 * 2121 * Attempt to wake up the nominated process and move it to the set of runnable 2122 * processes. 2123 * 2124 * Return: 1 if the process was woken up, 0 if it was already running. 2125 * 2126 * It may be assumed that this function implies a write memory barrier before 2127 * changing the task state if and only if any tasks are woken up. 2128 */ 2129 int wake_up_process(struct task_struct *p) 2130 { 2131 return try_to_wake_up(p, TASK_NORMAL, 0); 2132 } 2133 EXPORT_SYMBOL(wake_up_process); 2134 2135 int wake_up_state(struct task_struct *p, unsigned int state) 2136 { 2137 return try_to_wake_up(p, state, 0); 2138 } 2139 2140 /* 2141 * This function clears the sched_dl_entity static params. 2142 */ 2143 void __dl_clear_params(struct task_struct *p) 2144 { 2145 struct sched_dl_entity *dl_se = &p->dl; 2146 2147 dl_se->dl_runtime = 0; 2148 dl_se->dl_deadline = 0; 2149 dl_se->dl_period = 0; 2150 dl_se->flags = 0; 2151 dl_se->dl_bw = 0; 2152 2153 dl_se->dl_throttled = 0; 2154 dl_se->dl_yielded = 0; 2155 } 2156 2157 /* 2158 * Perform scheduler related setup for a newly forked process p. 2159 * p is forked by current. 2160 * 2161 * __sched_fork() is basic setup used by init_idle() too: 2162 */ 2163 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2164 { 2165 p->on_rq = 0; 2166 2167 p->se.on_rq = 0; 2168 p->se.exec_start = 0; 2169 p->se.sum_exec_runtime = 0; 2170 p->se.prev_sum_exec_runtime = 0; 2171 p->se.nr_migrations = 0; 2172 p->se.vruntime = 0; 2173 INIT_LIST_HEAD(&p->se.group_node); 2174 2175 #ifdef CONFIG_FAIR_GROUP_SCHED 2176 p->se.cfs_rq = NULL; 2177 #endif 2178 2179 #ifdef CONFIG_SCHEDSTATS 2180 /* Even if schedstat is disabled, there should not be garbage */ 2181 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2182 #endif 2183 2184 RB_CLEAR_NODE(&p->dl.rb_node); 2185 init_dl_task_timer(&p->dl); 2186 __dl_clear_params(p); 2187 2188 INIT_LIST_HEAD(&p->rt.run_list); 2189 p->rt.timeout = 0; 2190 p->rt.time_slice = sched_rr_timeslice; 2191 p->rt.on_rq = 0; 2192 p->rt.on_list = 0; 2193 2194 #ifdef CONFIG_PREEMPT_NOTIFIERS 2195 INIT_HLIST_HEAD(&p->preempt_notifiers); 2196 #endif 2197 2198 #ifdef CONFIG_NUMA_BALANCING 2199 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2200 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2201 p->mm->numa_scan_seq = 0; 2202 } 2203 2204 if (clone_flags & CLONE_VM) 2205 p->numa_preferred_nid = current->numa_preferred_nid; 2206 else 2207 p->numa_preferred_nid = -1; 2208 2209 p->node_stamp = 0ULL; 2210 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2211 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2212 p->numa_work.next = &p->numa_work; 2213 p->numa_faults = NULL; 2214 p->last_task_numa_placement = 0; 2215 p->last_sum_exec_runtime = 0; 2216 2217 p->numa_group = NULL; 2218 #endif /* CONFIG_NUMA_BALANCING */ 2219 } 2220 2221 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2222 2223 #ifdef CONFIG_NUMA_BALANCING 2224 2225 void set_numabalancing_state(bool enabled) 2226 { 2227 if (enabled) 2228 static_branch_enable(&sched_numa_balancing); 2229 else 2230 static_branch_disable(&sched_numa_balancing); 2231 } 2232 2233 #ifdef CONFIG_PROC_SYSCTL 2234 int sysctl_numa_balancing(struct ctl_table *table, int write, 2235 void __user *buffer, size_t *lenp, loff_t *ppos) 2236 { 2237 struct ctl_table t; 2238 int err; 2239 int state = static_branch_likely(&sched_numa_balancing); 2240 2241 if (write && !capable(CAP_SYS_ADMIN)) 2242 return -EPERM; 2243 2244 t = *table; 2245 t.data = &state; 2246 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2247 if (err < 0) 2248 return err; 2249 if (write) 2250 set_numabalancing_state(state); 2251 return err; 2252 } 2253 #endif 2254 #endif 2255 2256 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2257 2258 #ifdef CONFIG_SCHEDSTATS 2259 static void set_schedstats(bool enabled) 2260 { 2261 if (enabled) 2262 static_branch_enable(&sched_schedstats); 2263 else 2264 static_branch_disable(&sched_schedstats); 2265 } 2266 2267 void force_schedstat_enabled(void) 2268 { 2269 if (!schedstat_enabled()) { 2270 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2271 static_branch_enable(&sched_schedstats); 2272 } 2273 } 2274 2275 static int __init setup_schedstats(char *str) 2276 { 2277 int ret = 0; 2278 if (!str) 2279 goto out; 2280 2281 if (!strcmp(str, "enable")) { 2282 set_schedstats(true); 2283 ret = 1; 2284 } else if (!strcmp(str, "disable")) { 2285 set_schedstats(false); 2286 ret = 1; 2287 } 2288 out: 2289 if (!ret) 2290 pr_warn("Unable to parse schedstats=\n"); 2291 2292 return ret; 2293 } 2294 __setup("schedstats=", setup_schedstats); 2295 2296 #ifdef CONFIG_PROC_SYSCTL 2297 int sysctl_schedstats(struct ctl_table *table, int write, 2298 void __user *buffer, size_t *lenp, loff_t *ppos) 2299 { 2300 struct ctl_table t; 2301 int err; 2302 int state = static_branch_likely(&sched_schedstats); 2303 2304 if (write && !capable(CAP_SYS_ADMIN)) 2305 return -EPERM; 2306 2307 t = *table; 2308 t.data = &state; 2309 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2310 if (err < 0) 2311 return err; 2312 if (write) 2313 set_schedstats(state); 2314 return err; 2315 } 2316 #endif 2317 #endif 2318 2319 /* 2320 * fork()/clone()-time setup: 2321 */ 2322 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2323 { 2324 unsigned long flags; 2325 int cpu = get_cpu(); 2326 2327 __sched_fork(clone_flags, p); 2328 /* 2329 * We mark the process as running here. This guarantees that 2330 * nobody will actually run it, and a signal or other external 2331 * event cannot wake it up and insert it on the runqueue either. 2332 */ 2333 p->state = TASK_RUNNING; 2334 2335 /* 2336 * Make sure we do not leak PI boosting priority to the child. 2337 */ 2338 p->prio = current->normal_prio; 2339 2340 /* 2341 * Revert to default priority/policy on fork if requested. 2342 */ 2343 if (unlikely(p->sched_reset_on_fork)) { 2344 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2345 p->policy = SCHED_NORMAL; 2346 p->static_prio = NICE_TO_PRIO(0); 2347 p->rt_priority = 0; 2348 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2349 p->static_prio = NICE_TO_PRIO(0); 2350 2351 p->prio = p->normal_prio = __normal_prio(p); 2352 set_load_weight(p); 2353 2354 /* 2355 * We don't need the reset flag anymore after the fork. It has 2356 * fulfilled its duty: 2357 */ 2358 p->sched_reset_on_fork = 0; 2359 } 2360 2361 if (dl_prio(p->prio)) { 2362 put_cpu(); 2363 return -EAGAIN; 2364 } else if (rt_prio(p->prio)) { 2365 p->sched_class = &rt_sched_class; 2366 } else { 2367 p->sched_class = &fair_sched_class; 2368 } 2369 2370 if (p->sched_class->task_fork) 2371 p->sched_class->task_fork(p); 2372 2373 /* 2374 * The child is not yet in the pid-hash so no cgroup attach races, 2375 * and the cgroup is pinned to this child due to cgroup_fork() 2376 * is ran before sched_fork(). 2377 * 2378 * Silence PROVE_RCU. 2379 */ 2380 raw_spin_lock_irqsave(&p->pi_lock, flags); 2381 set_task_cpu(p, cpu); 2382 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2383 2384 #ifdef CONFIG_SCHED_INFO 2385 if (likely(sched_info_on())) 2386 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2387 #endif 2388 #if defined(CONFIG_SMP) 2389 p->on_cpu = 0; 2390 #endif 2391 init_task_preempt_count(p); 2392 #ifdef CONFIG_SMP 2393 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2394 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2395 #endif 2396 2397 put_cpu(); 2398 return 0; 2399 } 2400 2401 unsigned long to_ratio(u64 period, u64 runtime) 2402 { 2403 if (runtime == RUNTIME_INF) 2404 return 1ULL << 20; 2405 2406 /* 2407 * Doing this here saves a lot of checks in all 2408 * the calling paths, and returning zero seems 2409 * safe for them anyway. 2410 */ 2411 if (period == 0) 2412 return 0; 2413 2414 return div64_u64(runtime << 20, period); 2415 } 2416 2417 #ifdef CONFIG_SMP 2418 inline struct dl_bw *dl_bw_of(int i) 2419 { 2420 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2421 "sched RCU must be held"); 2422 return &cpu_rq(i)->rd->dl_bw; 2423 } 2424 2425 static inline int dl_bw_cpus(int i) 2426 { 2427 struct root_domain *rd = cpu_rq(i)->rd; 2428 int cpus = 0; 2429 2430 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2431 "sched RCU must be held"); 2432 for_each_cpu_and(i, rd->span, cpu_active_mask) 2433 cpus++; 2434 2435 return cpus; 2436 } 2437 #else 2438 inline struct dl_bw *dl_bw_of(int i) 2439 { 2440 return &cpu_rq(i)->dl.dl_bw; 2441 } 2442 2443 static inline int dl_bw_cpus(int i) 2444 { 2445 return 1; 2446 } 2447 #endif 2448 2449 /* 2450 * We must be sure that accepting a new task (or allowing changing the 2451 * parameters of an existing one) is consistent with the bandwidth 2452 * constraints. If yes, this function also accordingly updates the currently 2453 * allocated bandwidth to reflect the new situation. 2454 * 2455 * This function is called while holding p's rq->lock. 2456 * 2457 * XXX we should delay bw change until the task's 0-lag point, see 2458 * __setparam_dl(). 2459 */ 2460 static int dl_overflow(struct task_struct *p, int policy, 2461 const struct sched_attr *attr) 2462 { 2463 2464 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2465 u64 period = attr->sched_period ?: attr->sched_deadline; 2466 u64 runtime = attr->sched_runtime; 2467 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2468 int cpus, err = -1; 2469 2470 /* !deadline task may carry old deadline bandwidth */ 2471 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2472 return 0; 2473 2474 /* 2475 * Either if a task, enters, leave, or stays -deadline but changes 2476 * its parameters, we may need to update accordingly the total 2477 * allocated bandwidth of the container. 2478 */ 2479 raw_spin_lock(&dl_b->lock); 2480 cpus = dl_bw_cpus(task_cpu(p)); 2481 if (dl_policy(policy) && !task_has_dl_policy(p) && 2482 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2483 __dl_add(dl_b, new_bw); 2484 err = 0; 2485 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2486 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2487 __dl_clear(dl_b, p->dl.dl_bw); 2488 __dl_add(dl_b, new_bw); 2489 err = 0; 2490 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2491 __dl_clear(dl_b, p->dl.dl_bw); 2492 err = 0; 2493 } 2494 raw_spin_unlock(&dl_b->lock); 2495 2496 return err; 2497 } 2498 2499 extern void init_dl_bw(struct dl_bw *dl_b); 2500 2501 /* 2502 * wake_up_new_task - wake up a newly created task for the first time. 2503 * 2504 * This function will do some initial scheduler statistics housekeeping 2505 * that must be done for every newly created context, then puts the task 2506 * on the runqueue and wakes it. 2507 */ 2508 void wake_up_new_task(struct task_struct *p) 2509 { 2510 struct rq_flags rf; 2511 struct rq *rq; 2512 2513 /* Initialize new task's runnable average */ 2514 init_entity_runnable_average(&p->se); 2515 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2516 #ifdef CONFIG_SMP 2517 /* 2518 * Fork balancing, do it here and not earlier because: 2519 * - cpus_allowed can change in the fork path 2520 * - any previously selected cpu might disappear through hotplug 2521 */ 2522 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2523 #endif 2524 /* Post initialize new task's util average when its cfs_rq is set */ 2525 post_init_entity_util_avg(&p->se); 2526 2527 rq = __task_rq_lock(p, &rf); 2528 activate_task(rq, p, 0); 2529 p->on_rq = TASK_ON_RQ_QUEUED; 2530 trace_sched_wakeup_new(p); 2531 check_preempt_curr(rq, p, WF_FORK); 2532 #ifdef CONFIG_SMP 2533 if (p->sched_class->task_woken) { 2534 /* 2535 * Nothing relies on rq->lock after this, so its fine to 2536 * drop it. 2537 */ 2538 lockdep_unpin_lock(&rq->lock, rf.cookie); 2539 p->sched_class->task_woken(rq, p); 2540 lockdep_repin_lock(&rq->lock, rf.cookie); 2541 } 2542 #endif 2543 task_rq_unlock(rq, p, &rf); 2544 } 2545 2546 #ifdef CONFIG_PREEMPT_NOTIFIERS 2547 2548 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2549 2550 void preempt_notifier_inc(void) 2551 { 2552 static_key_slow_inc(&preempt_notifier_key); 2553 } 2554 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2555 2556 void preempt_notifier_dec(void) 2557 { 2558 static_key_slow_dec(&preempt_notifier_key); 2559 } 2560 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2561 2562 /** 2563 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2564 * @notifier: notifier struct to register 2565 */ 2566 void preempt_notifier_register(struct preempt_notifier *notifier) 2567 { 2568 if (!static_key_false(&preempt_notifier_key)) 2569 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2570 2571 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2572 } 2573 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2574 2575 /** 2576 * preempt_notifier_unregister - no longer interested in preemption notifications 2577 * @notifier: notifier struct to unregister 2578 * 2579 * This is *not* safe to call from within a preemption notifier. 2580 */ 2581 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2582 { 2583 hlist_del(¬ifier->link); 2584 } 2585 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2586 2587 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2588 { 2589 struct preempt_notifier *notifier; 2590 2591 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2592 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2593 } 2594 2595 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2596 { 2597 if (static_key_false(&preempt_notifier_key)) 2598 __fire_sched_in_preempt_notifiers(curr); 2599 } 2600 2601 static void 2602 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2603 struct task_struct *next) 2604 { 2605 struct preempt_notifier *notifier; 2606 2607 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2608 notifier->ops->sched_out(notifier, next); 2609 } 2610 2611 static __always_inline void 2612 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2613 struct task_struct *next) 2614 { 2615 if (static_key_false(&preempt_notifier_key)) 2616 __fire_sched_out_preempt_notifiers(curr, next); 2617 } 2618 2619 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2620 2621 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2622 { 2623 } 2624 2625 static inline void 2626 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2627 struct task_struct *next) 2628 { 2629 } 2630 2631 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2632 2633 /** 2634 * prepare_task_switch - prepare to switch tasks 2635 * @rq: the runqueue preparing to switch 2636 * @prev: the current task that is being switched out 2637 * @next: the task we are going to switch to. 2638 * 2639 * This is called with the rq lock held and interrupts off. It must 2640 * be paired with a subsequent finish_task_switch after the context 2641 * switch. 2642 * 2643 * prepare_task_switch sets up locking and calls architecture specific 2644 * hooks. 2645 */ 2646 static inline void 2647 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2648 struct task_struct *next) 2649 { 2650 sched_info_switch(rq, prev, next); 2651 perf_event_task_sched_out(prev, next); 2652 fire_sched_out_preempt_notifiers(prev, next); 2653 prepare_lock_switch(rq, next); 2654 prepare_arch_switch(next); 2655 } 2656 2657 /** 2658 * finish_task_switch - clean up after a task-switch 2659 * @prev: the thread we just switched away from. 2660 * 2661 * finish_task_switch must be called after the context switch, paired 2662 * with a prepare_task_switch call before the context switch. 2663 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2664 * and do any other architecture-specific cleanup actions. 2665 * 2666 * Note that we may have delayed dropping an mm in context_switch(). If 2667 * so, we finish that here outside of the runqueue lock. (Doing it 2668 * with the lock held can cause deadlocks; see schedule() for 2669 * details.) 2670 * 2671 * The context switch have flipped the stack from under us and restored the 2672 * local variables which were saved when this task called schedule() in the 2673 * past. prev == current is still correct but we need to recalculate this_rq 2674 * because prev may have moved to another CPU. 2675 */ 2676 static struct rq *finish_task_switch(struct task_struct *prev) 2677 __releases(rq->lock) 2678 { 2679 struct rq *rq = this_rq(); 2680 struct mm_struct *mm = rq->prev_mm; 2681 long prev_state; 2682 2683 /* 2684 * The previous task will have left us with a preempt_count of 2 2685 * because it left us after: 2686 * 2687 * schedule() 2688 * preempt_disable(); // 1 2689 * __schedule() 2690 * raw_spin_lock_irq(&rq->lock) // 2 2691 * 2692 * Also, see FORK_PREEMPT_COUNT. 2693 */ 2694 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2695 "corrupted preempt_count: %s/%d/0x%x\n", 2696 current->comm, current->pid, preempt_count())) 2697 preempt_count_set(FORK_PREEMPT_COUNT); 2698 2699 rq->prev_mm = NULL; 2700 2701 /* 2702 * A task struct has one reference for the use as "current". 2703 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2704 * schedule one last time. The schedule call will never return, and 2705 * the scheduled task must drop that reference. 2706 * 2707 * We must observe prev->state before clearing prev->on_cpu (in 2708 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2709 * running on another CPU and we could rave with its RUNNING -> DEAD 2710 * transition, resulting in a double drop. 2711 */ 2712 prev_state = prev->state; 2713 vtime_task_switch(prev); 2714 perf_event_task_sched_in(prev, current); 2715 finish_lock_switch(rq, prev); 2716 finish_arch_post_lock_switch(); 2717 2718 fire_sched_in_preempt_notifiers(current); 2719 if (mm) 2720 mmdrop(mm); 2721 if (unlikely(prev_state == TASK_DEAD)) { 2722 if (prev->sched_class->task_dead) 2723 prev->sched_class->task_dead(prev); 2724 2725 /* 2726 * Remove function-return probe instances associated with this 2727 * task and put them back on the free list. 2728 */ 2729 kprobe_flush_task(prev); 2730 put_task_struct(prev); 2731 } 2732 2733 tick_nohz_task_switch(); 2734 return rq; 2735 } 2736 2737 #ifdef CONFIG_SMP 2738 2739 /* rq->lock is NOT held, but preemption is disabled */ 2740 static void __balance_callback(struct rq *rq) 2741 { 2742 struct callback_head *head, *next; 2743 void (*func)(struct rq *rq); 2744 unsigned long flags; 2745 2746 raw_spin_lock_irqsave(&rq->lock, flags); 2747 head = rq->balance_callback; 2748 rq->balance_callback = NULL; 2749 while (head) { 2750 func = (void (*)(struct rq *))head->func; 2751 next = head->next; 2752 head->next = NULL; 2753 head = next; 2754 2755 func(rq); 2756 } 2757 raw_spin_unlock_irqrestore(&rq->lock, flags); 2758 } 2759 2760 static inline void balance_callback(struct rq *rq) 2761 { 2762 if (unlikely(rq->balance_callback)) 2763 __balance_callback(rq); 2764 } 2765 2766 #else 2767 2768 static inline void balance_callback(struct rq *rq) 2769 { 2770 } 2771 2772 #endif 2773 2774 /** 2775 * schedule_tail - first thing a freshly forked thread must call. 2776 * @prev: the thread we just switched away from. 2777 */ 2778 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2779 __releases(rq->lock) 2780 { 2781 struct rq *rq; 2782 2783 /* 2784 * New tasks start with FORK_PREEMPT_COUNT, see there and 2785 * finish_task_switch() for details. 2786 * 2787 * finish_task_switch() will drop rq->lock() and lower preempt_count 2788 * and the preempt_enable() will end up enabling preemption (on 2789 * PREEMPT_COUNT kernels). 2790 */ 2791 2792 rq = finish_task_switch(prev); 2793 balance_callback(rq); 2794 preempt_enable(); 2795 2796 if (current->set_child_tid) 2797 put_user(task_pid_vnr(current), current->set_child_tid); 2798 } 2799 2800 /* 2801 * context_switch - switch to the new MM and the new thread's register state. 2802 */ 2803 static __always_inline struct rq * 2804 context_switch(struct rq *rq, struct task_struct *prev, 2805 struct task_struct *next, struct pin_cookie cookie) 2806 { 2807 struct mm_struct *mm, *oldmm; 2808 2809 prepare_task_switch(rq, prev, next); 2810 2811 mm = next->mm; 2812 oldmm = prev->active_mm; 2813 /* 2814 * For paravirt, this is coupled with an exit in switch_to to 2815 * combine the page table reload and the switch backend into 2816 * one hypercall. 2817 */ 2818 arch_start_context_switch(prev); 2819 2820 if (!mm) { 2821 next->active_mm = oldmm; 2822 atomic_inc(&oldmm->mm_count); 2823 enter_lazy_tlb(oldmm, next); 2824 } else 2825 switch_mm_irqs_off(oldmm, mm, next); 2826 2827 if (!prev->mm) { 2828 prev->active_mm = NULL; 2829 rq->prev_mm = oldmm; 2830 } 2831 /* 2832 * Since the runqueue lock will be released by the next 2833 * task (which is an invalid locking op but in the case 2834 * of the scheduler it's an obvious special-case), so we 2835 * do an early lockdep release here: 2836 */ 2837 lockdep_unpin_lock(&rq->lock, cookie); 2838 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2839 2840 /* Here we just switch the register state and the stack. */ 2841 switch_to(prev, next, prev); 2842 barrier(); 2843 2844 return finish_task_switch(prev); 2845 } 2846 2847 /* 2848 * nr_running and nr_context_switches: 2849 * 2850 * externally visible scheduler statistics: current number of runnable 2851 * threads, total number of context switches performed since bootup. 2852 */ 2853 unsigned long nr_running(void) 2854 { 2855 unsigned long i, sum = 0; 2856 2857 for_each_online_cpu(i) 2858 sum += cpu_rq(i)->nr_running; 2859 2860 return sum; 2861 } 2862 2863 /* 2864 * Check if only the current task is running on the cpu. 2865 * 2866 * Caution: this function does not check that the caller has disabled 2867 * preemption, thus the result might have a time-of-check-to-time-of-use 2868 * race. The caller is responsible to use it correctly, for example: 2869 * 2870 * - from a non-preemptable section (of course) 2871 * 2872 * - from a thread that is bound to a single CPU 2873 * 2874 * - in a loop with very short iterations (e.g. a polling loop) 2875 */ 2876 bool single_task_running(void) 2877 { 2878 return raw_rq()->nr_running == 1; 2879 } 2880 EXPORT_SYMBOL(single_task_running); 2881 2882 unsigned long long nr_context_switches(void) 2883 { 2884 int i; 2885 unsigned long long sum = 0; 2886 2887 for_each_possible_cpu(i) 2888 sum += cpu_rq(i)->nr_switches; 2889 2890 return sum; 2891 } 2892 2893 unsigned long nr_iowait(void) 2894 { 2895 unsigned long i, sum = 0; 2896 2897 for_each_possible_cpu(i) 2898 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2899 2900 return sum; 2901 } 2902 2903 unsigned long nr_iowait_cpu(int cpu) 2904 { 2905 struct rq *this = cpu_rq(cpu); 2906 return atomic_read(&this->nr_iowait); 2907 } 2908 2909 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2910 { 2911 struct rq *rq = this_rq(); 2912 *nr_waiters = atomic_read(&rq->nr_iowait); 2913 *load = rq->load.weight; 2914 } 2915 2916 #ifdef CONFIG_SMP 2917 2918 /* 2919 * sched_exec - execve() is a valuable balancing opportunity, because at 2920 * this point the task has the smallest effective memory and cache footprint. 2921 */ 2922 void sched_exec(void) 2923 { 2924 struct task_struct *p = current; 2925 unsigned long flags; 2926 int dest_cpu; 2927 2928 raw_spin_lock_irqsave(&p->pi_lock, flags); 2929 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2930 if (dest_cpu == smp_processor_id()) 2931 goto unlock; 2932 2933 if (likely(cpu_active(dest_cpu))) { 2934 struct migration_arg arg = { p, dest_cpu }; 2935 2936 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2937 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2938 return; 2939 } 2940 unlock: 2941 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2942 } 2943 2944 #endif 2945 2946 DEFINE_PER_CPU(struct kernel_stat, kstat); 2947 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2948 2949 EXPORT_PER_CPU_SYMBOL(kstat); 2950 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2951 2952 /* 2953 * Return accounted runtime for the task. 2954 * In case the task is currently running, return the runtime plus current's 2955 * pending runtime that have not been accounted yet. 2956 */ 2957 unsigned long long task_sched_runtime(struct task_struct *p) 2958 { 2959 struct rq_flags rf; 2960 struct rq *rq; 2961 u64 ns; 2962 2963 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2964 /* 2965 * 64-bit doesn't need locks to atomically read a 64bit value. 2966 * So we have a optimization chance when the task's delta_exec is 0. 2967 * Reading ->on_cpu is racy, but this is ok. 2968 * 2969 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2970 * If we race with it entering cpu, unaccounted time is 0. This is 2971 * indistinguishable from the read occurring a few cycles earlier. 2972 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2973 * been accounted, so we're correct here as well. 2974 */ 2975 if (!p->on_cpu || !task_on_rq_queued(p)) 2976 return p->se.sum_exec_runtime; 2977 #endif 2978 2979 rq = task_rq_lock(p, &rf); 2980 /* 2981 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2982 * project cycles that may never be accounted to this 2983 * thread, breaking clock_gettime(). 2984 */ 2985 if (task_current(rq, p) && task_on_rq_queued(p)) { 2986 update_rq_clock(rq); 2987 p->sched_class->update_curr(rq); 2988 } 2989 ns = p->se.sum_exec_runtime; 2990 task_rq_unlock(rq, p, &rf); 2991 2992 return ns; 2993 } 2994 2995 /* 2996 * This function gets called by the timer code, with HZ frequency. 2997 * We call it with interrupts disabled. 2998 */ 2999 void scheduler_tick(void) 3000 { 3001 int cpu = smp_processor_id(); 3002 struct rq *rq = cpu_rq(cpu); 3003 struct task_struct *curr = rq->curr; 3004 3005 sched_clock_tick(); 3006 3007 raw_spin_lock(&rq->lock); 3008 update_rq_clock(rq); 3009 curr->sched_class->task_tick(rq, curr, 0); 3010 cpu_load_update_active(rq); 3011 calc_global_load_tick(rq); 3012 raw_spin_unlock(&rq->lock); 3013 3014 perf_event_task_tick(); 3015 3016 #ifdef CONFIG_SMP 3017 rq->idle_balance = idle_cpu(cpu); 3018 trigger_load_balance(rq); 3019 #endif 3020 rq_last_tick_reset(rq); 3021 } 3022 3023 #ifdef CONFIG_NO_HZ_FULL 3024 /** 3025 * scheduler_tick_max_deferment 3026 * 3027 * Keep at least one tick per second when a single 3028 * active task is running because the scheduler doesn't 3029 * yet completely support full dynticks environment. 3030 * 3031 * This makes sure that uptime, CFS vruntime, load 3032 * balancing, etc... continue to move forward, even 3033 * with a very low granularity. 3034 * 3035 * Return: Maximum deferment in nanoseconds. 3036 */ 3037 u64 scheduler_tick_max_deferment(void) 3038 { 3039 struct rq *rq = this_rq(); 3040 unsigned long next, now = READ_ONCE(jiffies); 3041 3042 next = rq->last_sched_tick + HZ; 3043 3044 if (time_before_eq(next, now)) 3045 return 0; 3046 3047 return jiffies_to_nsecs(next - now); 3048 } 3049 #endif 3050 3051 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3052 defined(CONFIG_PREEMPT_TRACER)) 3053 /* 3054 * If the value passed in is equal to the current preempt count 3055 * then we just disabled preemption. Start timing the latency. 3056 */ 3057 static inline void preempt_latency_start(int val) 3058 { 3059 if (preempt_count() == val) { 3060 unsigned long ip = get_lock_parent_ip(); 3061 #ifdef CONFIG_DEBUG_PREEMPT 3062 current->preempt_disable_ip = ip; 3063 #endif 3064 trace_preempt_off(CALLER_ADDR0, ip); 3065 } 3066 } 3067 3068 void preempt_count_add(int val) 3069 { 3070 #ifdef CONFIG_DEBUG_PREEMPT 3071 /* 3072 * Underflow? 3073 */ 3074 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3075 return; 3076 #endif 3077 __preempt_count_add(val); 3078 #ifdef CONFIG_DEBUG_PREEMPT 3079 /* 3080 * Spinlock count overflowing soon? 3081 */ 3082 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3083 PREEMPT_MASK - 10); 3084 #endif 3085 preempt_latency_start(val); 3086 } 3087 EXPORT_SYMBOL(preempt_count_add); 3088 NOKPROBE_SYMBOL(preempt_count_add); 3089 3090 /* 3091 * If the value passed in equals to the current preempt count 3092 * then we just enabled preemption. Stop timing the latency. 3093 */ 3094 static inline void preempt_latency_stop(int val) 3095 { 3096 if (preempt_count() == val) 3097 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3098 } 3099 3100 void preempt_count_sub(int val) 3101 { 3102 #ifdef CONFIG_DEBUG_PREEMPT 3103 /* 3104 * Underflow? 3105 */ 3106 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3107 return; 3108 /* 3109 * Is the spinlock portion underflowing? 3110 */ 3111 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3112 !(preempt_count() & PREEMPT_MASK))) 3113 return; 3114 #endif 3115 3116 preempt_latency_stop(val); 3117 __preempt_count_sub(val); 3118 } 3119 EXPORT_SYMBOL(preempt_count_sub); 3120 NOKPROBE_SYMBOL(preempt_count_sub); 3121 3122 #else 3123 static inline void preempt_latency_start(int val) { } 3124 static inline void preempt_latency_stop(int val) { } 3125 #endif 3126 3127 /* 3128 * Print scheduling while atomic bug: 3129 */ 3130 static noinline void __schedule_bug(struct task_struct *prev) 3131 { 3132 if (oops_in_progress) 3133 return; 3134 3135 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3136 prev->comm, prev->pid, preempt_count()); 3137 3138 debug_show_held_locks(prev); 3139 print_modules(); 3140 if (irqs_disabled()) 3141 print_irqtrace_events(prev); 3142 #ifdef CONFIG_DEBUG_PREEMPT 3143 if (in_atomic_preempt_off()) { 3144 pr_err("Preemption disabled at:"); 3145 print_ip_sym(current->preempt_disable_ip); 3146 pr_cont("\n"); 3147 } 3148 #endif 3149 dump_stack(); 3150 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3151 } 3152 3153 /* 3154 * Various schedule()-time debugging checks and statistics: 3155 */ 3156 static inline void schedule_debug(struct task_struct *prev) 3157 { 3158 #ifdef CONFIG_SCHED_STACK_END_CHECK 3159 BUG_ON(task_stack_end_corrupted(prev)); 3160 #endif 3161 3162 if (unlikely(in_atomic_preempt_off())) { 3163 __schedule_bug(prev); 3164 preempt_count_set(PREEMPT_DISABLED); 3165 } 3166 rcu_sleep_check(); 3167 3168 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3169 3170 schedstat_inc(this_rq(), sched_count); 3171 } 3172 3173 /* 3174 * Pick up the highest-prio task: 3175 */ 3176 static inline struct task_struct * 3177 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) 3178 { 3179 const struct sched_class *class = &fair_sched_class; 3180 struct task_struct *p; 3181 3182 /* 3183 * Optimization: we know that if all tasks are in 3184 * the fair class we can call that function directly: 3185 */ 3186 if (likely(prev->sched_class == class && 3187 rq->nr_running == rq->cfs.h_nr_running)) { 3188 p = fair_sched_class.pick_next_task(rq, prev, cookie); 3189 if (unlikely(p == RETRY_TASK)) 3190 goto again; 3191 3192 /* assumes fair_sched_class->next == idle_sched_class */ 3193 if (unlikely(!p)) 3194 p = idle_sched_class.pick_next_task(rq, prev, cookie); 3195 3196 return p; 3197 } 3198 3199 again: 3200 for_each_class(class) { 3201 p = class->pick_next_task(rq, prev, cookie); 3202 if (p) { 3203 if (unlikely(p == RETRY_TASK)) 3204 goto again; 3205 return p; 3206 } 3207 } 3208 3209 BUG(); /* the idle class will always have a runnable task */ 3210 } 3211 3212 /* 3213 * __schedule() is the main scheduler function. 3214 * 3215 * The main means of driving the scheduler and thus entering this function are: 3216 * 3217 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3218 * 3219 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3220 * paths. For example, see arch/x86/entry_64.S. 3221 * 3222 * To drive preemption between tasks, the scheduler sets the flag in timer 3223 * interrupt handler scheduler_tick(). 3224 * 3225 * 3. Wakeups don't really cause entry into schedule(). They add a 3226 * task to the run-queue and that's it. 3227 * 3228 * Now, if the new task added to the run-queue preempts the current 3229 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3230 * called on the nearest possible occasion: 3231 * 3232 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3233 * 3234 * - in syscall or exception context, at the next outmost 3235 * preempt_enable(). (this might be as soon as the wake_up()'s 3236 * spin_unlock()!) 3237 * 3238 * - in IRQ context, return from interrupt-handler to 3239 * preemptible context 3240 * 3241 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3242 * then at the next: 3243 * 3244 * - cond_resched() call 3245 * - explicit schedule() call 3246 * - return from syscall or exception to user-space 3247 * - return from interrupt-handler to user-space 3248 * 3249 * WARNING: must be called with preemption disabled! 3250 */ 3251 static void __sched notrace __schedule(bool preempt) 3252 { 3253 struct task_struct *prev, *next; 3254 unsigned long *switch_count; 3255 struct pin_cookie cookie; 3256 struct rq *rq; 3257 int cpu; 3258 3259 cpu = smp_processor_id(); 3260 rq = cpu_rq(cpu); 3261 prev = rq->curr; 3262 3263 /* 3264 * do_exit() calls schedule() with preemption disabled as an exception; 3265 * however we must fix that up, otherwise the next task will see an 3266 * inconsistent (higher) preempt count. 3267 * 3268 * It also avoids the below schedule_debug() test from complaining 3269 * about this. 3270 */ 3271 if (unlikely(prev->state == TASK_DEAD)) 3272 preempt_enable_no_resched_notrace(); 3273 3274 schedule_debug(prev); 3275 3276 if (sched_feat(HRTICK)) 3277 hrtick_clear(rq); 3278 3279 local_irq_disable(); 3280 rcu_note_context_switch(); 3281 3282 /* 3283 * Make sure that signal_pending_state()->signal_pending() below 3284 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3285 * done by the caller to avoid the race with signal_wake_up(). 3286 */ 3287 smp_mb__before_spinlock(); 3288 raw_spin_lock(&rq->lock); 3289 cookie = lockdep_pin_lock(&rq->lock); 3290 3291 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3292 3293 switch_count = &prev->nivcsw; 3294 if (!preempt && prev->state) { 3295 if (unlikely(signal_pending_state(prev->state, prev))) { 3296 prev->state = TASK_RUNNING; 3297 } else { 3298 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3299 prev->on_rq = 0; 3300 3301 /* 3302 * If a worker went to sleep, notify and ask workqueue 3303 * whether it wants to wake up a task to maintain 3304 * concurrency. 3305 */ 3306 if (prev->flags & PF_WQ_WORKER) { 3307 struct task_struct *to_wakeup; 3308 3309 to_wakeup = wq_worker_sleeping(prev); 3310 if (to_wakeup) 3311 try_to_wake_up_local(to_wakeup, cookie); 3312 } 3313 } 3314 switch_count = &prev->nvcsw; 3315 } 3316 3317 if (task_on_rq_queued(prev)) 3318 update_rq_clock(rq); 3319 3320 next = pick_next_task(rq, prev, cookie); 3321 clear_tsk_need_resched(prev); 3322 clear_preempt_need_resched(); 3323 rq->clock_skip_update = 0; 3324 3325 if (likely(prev != next)) { 3326 rq->nr_switches++; 3327 rq->curr = next; 3328 ++*switch_count; 3329 3330 trace_sched_switch(preempt, prev, next); 3331 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */ 3332 } else { 3333 lockdep_unpin_lock(&rq->lock, cookie); 3334 raw_spin_unlock_irq(&rq->lock); 3335 } 3336 3337 balance_callback(rq); 3338 } 3339 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */ 3340 3341 static inline void sched_submit_work(struct task_struct *tsk) 3342 { 3343 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3344 return; 3345 /* 3346 * If we are going to sleep and we have plugged IO queued, 3347 * make sure to submit it to avoid deadlocks. 3348 */ 3349 if (blk_needs_flush_plug(tsk)) 3350 blk_schedule_flush_plug(tsk); 3351 } 3352 3353 asmlinkage __visible void __sched schedule(void) 3354 { 3355 struct task_struct *tsk = current; 3356 3357 sched_submit_work(tsk); 3358 do { 3359 preempt_disable(); 3360 __schedule(false); 3361 sched_preempt_enable_no_resched(); 3362 } while (need_resched()); 3363 } 3364 EXPORT_SYMBOL(schedule); 3365 3366 #ifdef CONFIG_CONTEXT_TRACKING 3367 asmlinkage __visible void __sched schedule_user(void) 3368 { 3369 /* 3370 * If we come here after a random call to set_need_resched(), 3371 * or we have been woken up remotely but the IPI has not yet arrived, 3372 * we haven't yet exited the RCU idle mode. Do it here manually until 3373 * we find a better solution. 3374 * 3375 * NB: There are buggy callers of this function. Ideally we 3376 * should warn if prev_state != CONTEXT_USER, but that will trigger 3377 * too frequently to make sense yet. 3378 */ 3379 enum ctx_state prev_state = exception_enter(); 3380 schedule(); 3381 exception_exit(prev_state); 3382 } 3383 #endif 3384 3385 /** 3386 * schedule_preempt_disabled - called with preemption disabled 3387 * 3388 * Returns with preemption disabled. Note: preempt_count must be 1 3389 */ 3390 void __sched schedule_preempt_disabled(void) 3391 { 3392 sched_preempt_enable_no_resched(); 3393 schedule(); 3394 preempt_disable(); 3395 } 3396 3397 static void __sched notrace preempt_schedule_common(void) 3398 { 3399 do { 3400 /* 3401 * Because the function tracer can trace preempt_count_sub() 3402 * and it also uses preempt_enable/disable_notrace(), if 3403 * NEED_RESCHED is set, the preempt_enable_notrace() called 3404 * by the function tracer will call this function again and 3405 * cause infinite recursion. 3406 * 3407 * Preemption must be disabled here before the function 3408 * tracer can trace. Break up preempt_disable() into two 3409 * calls. One to disable preemption without fear of being 3410 * traced. The other to still record the preemption latency, 3411 * which can also be traced by the function tracer. 3412 */ 3413 preempt_disable_notrace(); 3414 preempt_latency_start(1); 3415 __schedule(true); 3416 preempt_latency_stop(1); 3417 preempt_enable_no_resched_notrace(); 3418 3419 /* 3420 * Check again in case we missed a preemption opportunity 3421 * between schedule and now. 3422 */ 3423 } while (need_resched()); 3424 } 3425 3426 #ifdef CONFIG_PREEMPT 3427 /* 3428 * this is the entry point to schedule() from in-kernel preemption 3429 * off of preempt_enable. Kernel preemptions off return from interrupt 3430 * occur there and call schedule directly. 3431 */ 3432 asmlinkage __visible void __sched notrace preempt_schedule(void) 3433 { 3434 /* 3435 * If there is a non-zero preempt_count or interrupts are disabled, 3436 * we do not want to preempt the current task. Just return.. 3437 */ 3438 if (likely(!preemptible())) 3439 return; 3440 3441 preempt_schedule_common(); 3442 } 3443 NOKPROBE_SYMBOL(preempt_schedule); 3444 EXPORT_SYMBOL(preempt_schedule); 3445 3446 /** 3447 * preempt_schedule_notrace - preempt_schedule called by tracing 3448 * 3449 * The tracing infrastructure uses preempt_enable_notrace to prevent 3450 * recursion and tracing preempt enabling caused by the tracing 3451 * infrastructure itself. But as tracing can happen in areas coming 3452 * from userspace or just about to enter userspace, a preempt enable 3453 * can occur before user_exit() is called. This will cause the scheduler 3454 * to be called when the system is still in usermode. 3455 * 3456 * To prevent this, the preempt_enable_notrace will use this function 3457 * instead of preempt_schedule() to exit user context if needed before 3458 * calling the scheduler. 3459 */ 3460 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3461 { 3462 enum ctx_state prev_ctx; 3463 3464 if (likely(!preemptible())) 3465 return; 3466 3467 do { 3468 /* 3469 * Because the function tracer can trace preempt_count_sub() 3470 * and it also uses preempt_enable/disable_notrace(), if 3471 * NEED_RESCHED is set, the preempt_enable_notrace() called 3472 * by the function tracer will call this function again and 3473 * cause infinite recursion. 3474 * 3475 * Preemption must be disabled here before the function 3476 * tracer can trace. Break up preempt_disable() into two 3477 * calls. One to disable preemption without fear of being 3478 * traced. The other to still record the preemption latency, 3479 * which can also be traced by the function tracer. 3480 */ 3481 preempt_disable_notrace(); 3482 preempt_latency_start(1); 3483 /* 3484 * Needs preempt disabled in case user_exit() is traced 3485 * and the tracer calls preempt_enable_notrace() causing 3486 * an infinite recursion. 3487 */ 3488 prev_ctx = exception_enter(); 3489 __schedule(true); 3490 exception_exit(prev_ctx); 3491 3492 preempt_latency_stop(1); 3493 preempt_enable_no_resched_notrace(); 3494 } while (need_resched()); 3495 } 3496 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3497 3498 #endif /* CONFIG_PREEMPT */ 3499 3500 /* 3501 * this is the entry point to schedule() from kernel preemption 3502 * off of irq context. 3503 * Note, that this is called and return with irqs disabled. This will 3504 * protect us against recursive calling from irq. 3505 */ 3506 asmlinkage __visible void __sched preempt_schedule_irq(void) 3507 { 3508 enum ctx_state prev_state; 3509 3510 /* Catch callers which need to be fixed */ 3511 BUG_ON(preempt_count() || !irqs_disabled()); 3512 3513 prev_state = exception_enter(); 3514 3515 do { 3516 preempt_disable(); 3517 local_irq_enable(); 3518 __schedule(true); 3519 local_irq_disable(); 3520 sched_preempt_enable_no_resched(); 3521 } while (need_resched()); 3522 3523 exception_exit(prev_state); 3524 } 3525 3526 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3527 void *key) 3528 { 3529 return try_to_wake_up(curr->private, mode, wake_flags); 3530 } 3531 EXPORT_SYMBOL(default_wake_function); 3532 3533 #ifdef CONFIG_RT_MUTEXES 3534 3535 /* 3536 * rt_mutex_setprio - set the current priority of a task 3537 * @p: task 3538 * @prio: prio value (kernel-internal form) 3539 * 3540 * This function changes the 'effective' priority of a task. It does 3541 * not touch ->normal_prio like __setscheduler(). 3542 * 3543 * Used by the rt_mutex code to implement priority inheritance 3544 * logic. Call site only calls if the priority of the task changed. 3545 */ 3546 void rt_mutex_setprio(struct task_struct *p, int prio) 3547 { 3548 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE; 3549 const struct sched_class *prev_class; 3550 struct rq_flags rf; 3551 struct rq *rq; 3552 3553 BUG_ON(prio > MAX_PRIO); 3554 3555 rq = __task_rq_lock(p, &rf); 3556 3557 /* 3558 * Idle task boosting is a nono in general. There is one 3559 * exception, when PREEMPT_RT and NOHZ is active: 3560 * 3561 * The idle task calls get_next_timer_interrupt() and holds 3562 * the timer wheel base->lock on the CPU and another CPU wants 3563 * to access the timer (probably to cancel it). We can safely 3564 * ignore the boosting request, as the idle CPU runs this code 3565 * with interrupts disabled and will complete the lock 3566 * protected section without being interrupted. So there is no 3567 * real need to boost. 3568 */ 3569 if (unlikely(p == rq->idle)) { 3570 WARN_ON(p != rq->curr); 3571 WARN_ON(p->pi_blocked_on); 3572 goto out_unlock; 3573 } 3574 3575 trace_sched_pi_setprio(p, prio); 3576 oldprio = p->prio; 3577 3578 if (oldprio == prio) 3579 queue_flag &= ~DEQUEUE_MOVE; 3580 3581 prev_class = p->sched_class; 3582 queued = task_on_rq_queued(p); 3583 running = task_current(rq, p); 3584 if (queued) 3585 dequeue_task(rq, p, queue_flag); 3586 if (running) 3587 put_prev_task(rq, p); 3588 3589 /* 3590 * Boosting condition are: 3591 * 1. -rt task is running and holds mutex A 3592 * --> -dl task blocks on mutex A 3593 * 3594 * 2. -dl task is running and holds mutex A 3595 * --> -dl task blocks on mutex A and could preempt the 3596 * running task 3597 */ 3598 if (dl_prio(prio)) { 3599 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3600 if (!dl_prio(p->normal_prio) || 3601 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3602 p->dl.dl_boosted = 1; 3603 queue_flag |= ENQUEUE_REPLENISH; 3604 } else 3605 p->dl.dl_boosted = 0; 3606 p->sched_class = &dl_sched_class; 3607 } else if (rt_prio(prio)) { 3608 if (dl_prio(oldprio)) 3609 p->dl.dl_boosted = 0; 3610 if (oldprio < prio) 3611 queue_flag |= ENQUEUE_HEAD; 3612 p->sched_class = &rt_sched_class; 3613 } else { 3614 if (dl_prio(oldprio)) 3615 p->dl.dl_boosted = 0; 3616 if (rt_prio(oldprio)) 3617 p->rt.timeout = 0; 3618 p->sched_class = &fair_sched_class; 3619 } 3620 3621 p->prio = prio; 3622 3623 if (running) 3624 p->sched_class->set_curr_task(rq); 3625 if (queued) 3626 enqueue_task(rq, p, queue_flag); 3627 3628 check_class_changed(rq, p, prev_class, oldprio); 3629 out_unlock: 3630 preempt_disable(); /* avoid rq from going away on us */ 3631 __task_rq_unlock(rq, &rf); 3632 3633 balance_callback(rq); 3634 preempt_enable(); 3635 } 3636 #endif 3637 3638 void set_user_nice(struct task_struct *p, long nice) 3639 { 3640 int old_prio, delta, queued; 3641 struct rq_flags rf; 3642 struct rq *rq; 3643 3644 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3645 return; 3646 /* 3647 * We have to be careful, if called from sys_setpriority(), 3648 * the task might be in the middle of scheduling on another CPU. 3649 */ 3650 rq = task_rq_lock(p, &rf); 3651 /* 3652 * The RT priorities are set via sched_setscheduler(), but we still 3653 * allow the 'normal' nice value to be set - but as expected 3654 * it wont have any effect on scheduling until the task is 3655 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3656 */ 3657 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3658 p->static_prio = NICE_TO_PRIO(nice); 3659 goto out_unlock; 3660 } 3661 queued = task_on_rq_queued(p); 3662 if (queued) 3663 dequeue_task(rq, p, DEQUEUE_SAVE); 3664 3665 p->static_prio = NICE_TO_PRIO(nice); 3666 set_load_weight(p); 3667 old_prio = p->prio; 3668 p->prio = effective_prio(p); 3669 delta = p->prio - old_prio; 3670 3671 if (queued) { 3672 enqueue_task(rq, p, ENQUEUE_RESTORE); 3673 /* 3674 * If the task increased its priority or is running and 3675 * lowered its priority, then reschedule its CPU: 3676 */ 3677 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3678 resched_curr(rq); 3679 } 3680 out_unlock: 3681 task_rq_unlock(rq, p, &rf); 3682 } 3683 EXPORT_SYMBOL(set_user_nice); 3684 3685 /* 3686 * can_nice - check if a task can reduce its nice value 3687 * @p: task 3688 * @nice: nice value 3689 */ 3690 int can_nice(const struct task_struct *p, const int nice) 3691 { 3692 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3693 int nice_rlim = nice_to_rlimit(nice); 3694 3695 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3696 capable(CAP_SYS_NICE)); 3697 } 3698 3699 #ifdef __ARCH_WANT_SYS_NICE 3700 3701 /* 3702 * sys_nice - change the priority of the current process. 3703 * @increment: priority increment 3704 * 3705 * sys_setpriority is a more generic, but much slower function that 3706 * does similar things. 3707 */ 3708 SYSCALL_DEFINE1(nice, int, increment) 3709 { 3710 long nice, retval; 3711 3712 /* 3713 * Setpriority might change our priority at the same moment. 3714 * We don't have to worry. Conceptually one call occurs first 3715 * and we have a single winner. 3716 */ 3717 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3718 nice = task_nice(current) + increment; 3719 3720 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3721 if (increment < 0 && !can_nice(current, nice)) 3722 return -EPERM; 3723 3724 retval = security_task_setnice(current, nice); 3725 if (retval) 3726 return retval; 3727 3728 set_user_nice(current, nice); 3729 return 0; 3730 } 3731 3732 #endif 3733 3734 /** 3735 * task_prio - return the priority value of a given task. 3736 * @p: the task in question. 3737 * 3738 * Return: The priority value as seen by users in /proc. 3739 * RT tasks are offset by -200. Normal tasks are centered 3740 * around 0, value goes from -16 to +15. 3741 */ 3742 int task_prio(const struct task_struct *p) 3743 { 3744 return p->prio - MAX_RT_PRIO; 3745 } 3746 3747 /** 3748 * idle_cpu - is a given cpu idle currently? 3749 * @cpu: the processor in question. 3750 * 3751 * Return: 1 if the CPU is currently idle. 0 otherwise. 3752 */ 3753 int idle_cpu(int cpu) 3754 { 3755 struct rq *rq = cpu_rq(cpu); 3756 3757 if (rq->curr != rq->idle) 3758 return 0; 3759 3760 if (rq->nr_running) 3761 return 0; 3762 3763 #ifdef CONFIG_SMP 3764 if (!llist_empty(&rq->wake_list)) 3765 return 0; 3766 #endif 3767 3768 return 1; 3769 } 3770 3771 /** 3772 * idle_task - return the idle task for a given cpu. 3773 * @cpu: the processor in question. 3774 * 3775 * Return: The idle task for the cpu @cpu. 3776 */ 3777 struct task_struct *idle_task(int cpu) 3778 { 3779 return cpu_rq(cpu)->idle; 3780 } 3781 3782 /** 3783 * find_process_by_pid - find a process with a matching PID value. 3784 * @pid: the pid in question. 3785 * 3786 * The task of @pid, if found. %NULL otherwise. 3787 */ 3788 static struct task_struct *find_process_by_pid(pid_t pid) 3789 { 3790 return pid ? find_task_by_vpid(pid) : current; 3791 } 3792 3793 /* 3794 * This function initializes the sched_dl_entity of a newly becoming 3795 * SCHED_DEADLINE task. 3796 * 3797 * Only the static values are considered here, the actual runtime and the 3798 * absolute deadline will be properly calculated when the task is enqueued 3799 * for the first time with its new policy. 3800 */ 3801 static void 3802 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3803 { 3804 struct sched_dl_entity *dl_se = &p->dl; 3805 3806 dl_se->dl_runtime = attr->sched_runtime; 3807 dl_se->dl_deadline = attr->sched_deadline; 3808 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3809 dl_se->flags = attr->sched_flags; 3810 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3811 3812 /* 3813 * Changing the parameters of a task is 'tricky' and we're not doing 3814 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3815 * 3816 * What we SHOULD do is delay the bandwidth release until the 0-lag 3817 * point. This would include retaining the task_struct until that time 3818 * and change dl_overflow() to not immediately decrement the current 3819 * amount. 3820 * 3821 * Instead we retain the current runtime/deadline and let the new 3822 * parameters take effect after the current reservation period lapses. 3823 * This is safe (albeit pessimistic) because the 0-lag point is always 3824 * before the current scheduling deadline. 3825 * 3826 * We can still have temporary overloads because we do not delay the 3827 * change in bandwidth until that time; so admission control is 3828 * not on the safe side. It does however guarantee tasks will never 3829 * consume more than promised. 3830 */ 3831 } 3832 3833 /* 3834 * sched_setparam() passes in -1 for its policy, to let the functions 3835 * it calls know not to change it. 3836 */ 3837 #define SETPARAM_POLICY -1 3838 3839 static void __setscheduler_params(struct task_struct *p, 3840 const struct sched_attr *attr) 3841 { 3842 int policy = attr->sched_policy; 3843 3844 if (policy == SETPARAM_POLICY) 3845 policy = p->policy; 3846 3847 p->policy = policy; 3848 3849 if (dl_policy(policy)) 3850 __setparam_dl(p, attr); 3851 else if (fair_policy(policy)) 3852 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3853 3854 /* 3855 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3856 * !rt_policy. Always setting this ensures that things like 3857 * getparam()/getattr() don't report silly values for !rt tasks. 3858 */ 3859 p->rt_priority = attr->sched_priority; 3860 p->normal_prio = normal_prio(p); 3861 set_load_weight(p); 3862 } 3863 3864 /* Actually do priority change: must hold pi & rq lock. */ 3865 static void __setscheduler(struct rq *rq, struct task_struct *p, 3866 const struct sched_attr *attr, bool keep_boost) 3867 { 3868 __setscheduler_params(p, attr); 3869 3870 /* 3871 * Keep a potential priority boosting if called from 3872 * sched_setscheduler(). 3873 */ 3874 if (keep_boost) 3875 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3876 else 3877 p->prio = normal_prio(p); 3878 3879 if (dl_prio(p->prio)) 3880 p->sched_class = &dl_sched_class; 3881 else if (rt_prio(p->prio)) 3882 p->sched_class = &rt_sched_class; 3883 else 3884 p->sched_class = &fair_sched_class; 3885 } 3886 3887 static void 3888 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3889 { 3890 struct sched_dl_entity *dl_se = &p->dl; 3891 3892 attr->sched_priority = p->rt_priority; 3893 attr->sched_runtime = dl_se->dl_runtime; 3894 attr->sched_deadline = dl_se->dl_deadline; 3895 attr->sched_period = dl_se->dl_period; 3896 attr->sched_flags = dl_se->flags; 3897 } 3898 3899 /* 3900 * This function validates the new parameters of a -deadline task. 3901 * We ask for the deadline not being zero, and greater or equal 3902 * than the runtime, as well as the period of being zero or 3903 * greater than deadline. Furthermore, we have to be sure that 3904 * user parameters are above the internal resolution of 1us (we 3905 * check sched_runtime only since it is always the smaller one) and 3906 * below 2^63 ns (we have to check both sched_deadline and 3907 * sched_period, as the latter can be zero). 3908 */ 3909 static bool 3910 __checkparam_dl(const struct sched_attr *attr) 3911 { 3912 /* deadline != 0 */ 3913 if (attr->sched_deadline == 0) 3914 return false; 3915 3916 /* 3917 * Since we truncate DL_SCALE bits, make sure we're at least 3918 * that big. 3919 */ 3920 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3921 return false; 3922 3923 /* 3924 * Since we use the MSB for wrap-around and sign issues, make 3925 * sure it's not set (mind that period can be equal to zero). 3926 */ 3927 if (attr->sched_deadline & (1ULL << 63) || 3928 attr->sched_period & (1ULL << 63)) 3929 return false; 3930 3931 /* runtime <= deadline <= period (if period != 0) */ 3932 if ((attr->sched_period != 0 && 3933 attr->sched_period < attr->sched_deadline) || 3934 attr->sched_deadline < attr->sched_runtime) 3935 return false; 3936 3937 return true; 3938 } 3939 3940 /* 3941 * check the target process has a UID that matches the current process's 3942 */ 3943 static bool check_same_owner(struct task_struct *p) 3944 { 3945 const struct cred *cred = current_cred(), *pcred; 3946 bool match; 3947 3948 rcu_read_lock(); 3949 pcred = __task_cred(p); 3950 match = (uid_eq(cred->euid, pcred->euid) || 3951 uid_eq(cred->euid, pcred->uid)); 3952 rcu_read_unlock(); 3953 return match; 3954 } 3955 3956 static bool dl_param_changed(struct task_struct *p, 3957 const struct sched_attr *attr) 3958 { 3959 struct sched_dl_entity *dl_se = &p->dl; 3960 3961 if (dl_se->dl_runtime != attr->sched_runtime || 3962 dl_se->dl_deadline != attr->sched_deadline || 3963 dl_se->dl_period != attr->sched_period || 3964 dl_se->flags != attr->sched_flags) 3965 return true; 3966 3967 return false; 3968 } 3969 3970 static int __sched_setscheduler(struct task_struct *p, 3971 const struct sched_attr *attr, 3972 bool user, bool pi) 3973 { 3974 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3975 MAX_RT_PRIO - 1 - attr->sched_priority; 3976 int retval, oldprio, oldpolicy = -1, queued, running; 3977 int new_effective_prio, policy = attr->sched_policy; 3978 const struct sched_class *prev_class; 3979 struct rq_flags rf; 3980 int reset_on_fork; 3981 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 3982 struct rq *rq; 3983 3984 /* may grab non-irq protected spin_locks */ 3985 BUG_ON(in_interrupt()); 3986 recheck: 3987 /* double check policy once rq lock held */ 3988 if (policy < 0) { 3989 reset_on_fork = p->sched_reset_on_fork; 3990 policy = oldpolicy = p->policy; 3991 } else { 3992 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3993 3994 if (!valid_policy(policy)) 3995 return -EINVAL; 3996 } 3997 3998 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3999 return -EINVAL; 4000 4001 /* 4002 * Valid priorities for SCHED_FIFO and SCHED_RR are 4003 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4004 * SCHED_BATCH and SCHED_IDLE is 0. 4005 */ 4006 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4007 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4008 return -EINVAL; 4009 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4010 (rt_policy(policy) != (attr->sched_priority != 0))) 4011 return -EINVAL; 4012 4013 /* 4014 * Allow unprivileged RT tasks to decrease priority: 4015 */ 4016 if (user && !capable(CAP_SYS_NICE)) { 4017 if (fair_policy(policy)) { 4018 if (attr->sched_nice < task_nice(p) && 4019 !can_nice(p, attr->sched_nice)) 4020 return -EPERM; 4021 } 4022 4023 if (rt_policy(policy)) { 4024 unsigned long rlim_rtprio = 4025 task_rlimit(p, RLIMIT_RTPRIO); 4026 4027 /* can't set/change the rt policy */ 4028 if (policy != p->policy && !rlim_rtprio) 4029 return -EPERM; 4030 4031 /* can't increase priority */ 4032 if (attr->sched_priority > p->rt_priority && 4033 attr->sched_priority > rlim_rtprio) 4034 return -EPERM; 4035 } 4036 4037 /* 4038 * Can't set/change SCHED_DEADLINE policy at all for now 4039 * (safest behavior); in the future we would like to allow 4040 * unprivileged DL tasks to increase their relative deadline 4041 * or reduce their runtime (both ways reducing utilization) 4042 */ 4043 if (dl_policy(policy)) 4044 return -EPERM; 4045 4046 /* 4047 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4048 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4049 */ 4050 if (idle_policy(p->policy) && !idle_policy(policy)) { 4051 if (!can_nice(p, task_nice(p))) 4052 return -EPERM; 4053 } 4054 4055 /* can't change other user's priorities */ 4056 if (!check_same_owner(p)) 4057 return -EPERM; 4058 4059 /* Normal users shall not reset the sched_reset_on_fork flag */ 4060 if (p->sched_reset_on_fork && !reset_on_fork) 4061 return -EPERM; 4062 } 4063 4064 if (user) { 4065 retval = security_task_setscheduler(p); 4066 if (retval) 4067 return retval; 4068 } 4069 4070 /* 4071 * make sure no PI-waiters arrive (or leave) while we are 4072 * changing the priority of the task: 4073 * 4074 * To be able to change p->policy safely, the appropriate 4075 * runqueue lock must be held. 4076 */ 4077 rq = task_rq_lock(p, &rf); 4078 4079 /* 4080 * Changing the policy of the stop threads its a very bad idea 4081 */ 4082 if (p == rq->stop) { 4083 task_rq_unlock(rq, p, &rf); 4084 return -EINVAL; 4085 } 4086 4087 /* 4088 * If not changing anything there's no need to proceed further, 4089 * but store a possible modification of reset_on_fork. 4090 */ 4091 if (unlikely(policy == p->policy)) { 4092 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4093 goto change; 4094 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4095 goto change; 4096 if (dl_policy(policy) && dl_param_changed(p, attr)) 4097 goto change; 4098 4099 p->sched_reset_on_fork = reset_on_fork; 4100 task_rq_unlock(rq, p, &rf); 4101 return 0; 4102 } 4103 change: 4104 4105 if (user) { 4106 #ifdef CONFIG_RT_GROUP_SCHED 4107 /* 4108 * Do not allow realtime tasks into groups that have no runtime 4109 * assigned. 4110 */ 4111 if (rt_bandwidth_enabled() && rt_policy(policy) && 4112 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4113 !task_group_is_autogroup(task_group(p))) { 4114 task_rq_unlock(rq, p, &rf); 4115 return -EPERM; 4116 } 4117 #endif 4118 #ifdef CONFIG_SMP 4119 if (dl_bandwidth_enabled() && dl_policy(policy)) { 4120 cpumask_t *span = rq->rd->span; 4121 4122 /* 4123 * Don't allow tasks with an affinity mask smaller than 4124 * the entire root_domain to become SCHED_DEADLINE. We 4125 * will also fail if there's no bandwidth available. 4126 */ 4127 if (!cpumask_subset(span, &p->cpus_allowed) || 4128 rq->rd->dl_bw.bw == 0) { 4129 task_rq_unlock(rq, p, &rf); 4130 return -EPERM; 4131 } 4132 } 4133 #endif 4134 } 4135 4136 /* recheck policy now with rq lock held */ 4137 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4138 policy = oldpolicy = -1; 4139 task_rq_unlock(rq, p, &rf); 4140 goto recheck; 4141 } 4142 4143 /* 4144 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4145 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4146 * is available. 4147 */ 4148 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 4149 task_rq_unlock(rq, p, &rf); 4150 return -EBUSY; 4151 } 4152 4153 p->sched_reset_on_fork = reset_on_fork; 4154 oldprio = p->prio; 4155 4156 if (pi) { 4157 /* 4158 * Take priority boosted tasks into account. If the new 4159 * effective priority is unchanged, we just store the new 4160 * normal parameters and do not touch the scheduler class and 4161 * the runqueue. This will be done when the task deboost 4162 * itself. 4163 */ 4164 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 4165 if (new_effective_prio == oldprio) 4166 queue_flags &= ~DEQUEUE_MOVE; 4167 } 4168 4169 queued = task_on_rq_queued(p); 4170 running = task_current(rq, p); 4171 if (queued) 4172 dequeue_task(rq, p, queue_flags); 4173 if (running) 4174 put_prev_task(rq, p); 4175 4176 prev_class = p->sched_class; 4177 __setscheduler(rq, p, attr, pi); 4178 4179 if (running) 4180 p->sched_class->set_curr_task(rq); 4181 if (queued) { 4182 /* 4183 * We enqueue to tail when the priority of a task is 4184 * increased (user space view). 4185 */ 4186 if (oldprio < p->prio) 4187 queue_flags |= ENQUEUE_HEAD; 4188 4189 enqueue_task(rq, p, queue_flags); 4190 } 4191 4192 check_class_changed(rq, p, prev_class, oldprio); 4193 preempt_disable(); /* avoid rq from going away on us */ 4194 task_rq_unlock(rq, p, &rf); 4195 4196 if (pi) 4197 rt_mutex_adjust_pi(p); 4198 4199 /* 4200 * Run balance callbacks after we've adjusted the PI chain. 4201 */ 4202 balance_callback(rq); 4203 preempt_enable(); 4204 4205 return 0; 4206 } 4207 4208 static int _sched_setscheduler(struct task_struct *p, int policy, 4209 const struct sched_param *param, bool check) 4210 { 4211 struct sched_attr attr = { 4212 .sched_policy = policy, 4213 .sched_priority = param->sched_priority, 4214 .sched_nice = PRIO_TO_NICE(p->static_prio), 4215 }; 4216 4217 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4218 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4219 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4220 policy &= ~SCHED_RESET_ON_FORK; 4221 attr.sched_policy = policy; 4222 } 4223 4224 return __sched_setscheduler(p, &attr, check, true); 4225 } 4226 /** 4227 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4228 * @p: the task in question. 4229 * @policy: new policy. 4230 * @param: structure containing the new RT priority. 4231 * 4232 * Return: 0 on success. An error code otherwise. 4233 * 4234 * NOTE that the task may be already dead. 4235 */ 4236 int sched_setscheduler(struct task_struct *p, int policy, 4237 const struct sched_param *param) 4238 { 4239 return _sched_setscheduler(p, policy, param, true); 4240 } 4241 EXPORT_SYMBOL_GPL(sched_setscheduler); 4242 4243 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4244 { 4245 return __sched_setscheduler(p, attr, true, true); 4246 } 4247 EXPORT_SYMBOL_GPL(sched_setattr); 4248 4249 /** 4250 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4251 * @p: the task in question. 4252 * @policy: new policy. 4253 * @param: structure containing the new RT priority. 4254 * 4255 * Just like sched_setscheduler, only don't bother checking if the 4256 * current context has permission. For example, this is needed in 4257 * stop_machine(): we create temporary high priority worker threads, 4258 * but our caller might not have that capability. 4259 * 4260 * Return: 0 on success. An error code otherwise. 4261 */ 4262 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4263 const struct sched_param *param) 4264 { 4265 return _sched_setscheduler(p, policy, param, false); 4266 } 4267 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4268 4269 static int 4270 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4271 { 4272 struct sched_param lparam; 4273 struct task_struct *p; 4274 int retval; 4275 4276 if (!param || pid < 0) 4277 return -EINVAL; 4278 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4279 return -EFAULT; 4280 4281 rcu_read_lock(); 4282 retval = -ESRCH; 4283 p = find_process_by_pid(pid); 4284 if (p != NULL) 4285 retval = sched_setscheduler(p, policy, &lparam); 4286 rcu_read_unlock(); 4287 4288 return retval; 4289 } 4290 4291 /* 4292 * Mimics kernel/events/core.c perf_copy_attr(). 4293 */ 4294 static int sched_copy_attr(struct sched_attr __user *uattr, 4295 struct sched_attr *attr) 4296 { 4297 u32 size; 4298 int ret; 4299 4300 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4301 return -EFAULT; 4302 4303 /* 4304 * zero the full structure, so that a short copy will be nice. 4305 */ 4306 memset(attr, 0, sizeof(*attr)); 4307 4308 ret = get_user(size, &uattr->size); 4309 if (ret) 4310 return ret; 4311 4312 if (size > PAGE_SIZE) /* silly large */ 4313 goto err_size; 4314 4315 if (!size) /* abi compat */ 4316 size = SCHED_ATTR_SIZE_VER0; 4317 4318 if (size < SCHED_ATTR_SIZE_VER0) 4319 goto err_size; 4320 4321 /* 4322 * If we're handed a bigger struct than we know of, 4323 * ensure all the unknown bits are 0 - i.e. new 4324 * user-space does not rely on any kernel feature 4325 * extensions we dont know about yet. 4326 */ 4327 if (size > sizeof(*attr)) { 4328 unsigned char __user *addr; 4329 unsigned char __user *end; 4330 unsigned char val; 4331 4332 addr = (void __user *)uattr + sizeof(*attr); 4333 end = (void __user *)uattr + size; 4334 4335 for (; addr < end; addr++) { 4336 ret = get_user(val, addr); 4337 if (ret) 4338 return ret; 4339 if (val) 4340 goto err_size; 4341 } 4342 size = sizeof(*attr); 4343 } 4344 4345 ret = copy_from_user(attr, uattr, size); 4346 if (ret) 4347 return -EFAULT; 4348 4349 /* 4350 * XXX: do we want to be lenient like existing syscalls; or do we want 4351 * to be strict and return an error on out-of-bounds values? 4352 */ 4353 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4354 4355 return 0; 4356 4357 err_size: 4358 put_user(sizeof(*attr), &uattr->size); 4359 return -E2BIG; 4360 } 4361 4362 /** 4363 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4364 * @pid: the pid in question. 4365 * @policy: new policy. 4366 * @param: structure containing the new RT priority. 4367 * 4368 * Return: 0 on success. An error code otherwise. 4369 */ 4370 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4371 struct sched_param __user *, param) 4372 { 4373 /* negative values for policy are not valid */ 4374 if (policy < 0) 4375 return -EINVAL; 4376 4377 return do_sched_setscheduler(pid, policy, param); 4378 } 4379 4380 /** 4381 * sys_sched_setparam - set/change the RT priority of a thread 4382 * @pid: the pid in question. 4383 * @param: structure containing the new RT priority. 4384 * 4385 * Return: 0 on success. An error code otherwise. 4386 */ 4387 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4388 { 4389 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4390 } 4391 4392 /** 4393 * sys_sched_setattr - same as above, but with extended sched_attr 4394 * @pid: the pid in question. 4395 * @uattr: structure containing the extended parameters. 4396 * @flags: for future extension. 4397 */ 4398 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4399 unsigned int, flags) 4400 { 4401 struct sched_attr attr; 4402 struct task_struct *p; 4403 int retval; 4404 4405 if (!uattr || pid < 0 || flags) 4406 return -EINVAL; 4407 4408 retval = sched_copy_attr(uattr, &attr); 4409 if (retval) 4410 return retval; 4411 4412 if ((int)attr.sched_policy < 0) 4413 return -EINVAL; 4414 4415 rcu_read_lock(); 4416 retval = -ESRCH; 4417 p = find_process_by_pid(pid); 4418 if (p != NULL) 4419 retval = sched_setattr(p, &attr); 4420 rcu_read_unlock(); 4421 4422 return retval; 4423 } 4424 4425 /** 4426 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4427 * @pid: the pid in question. 4428 * 4429 * Return: On success, the policy of the thread. Otherwise, a negative error 4430 * code. 4431 */ 4432 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4433 { 4434 struct task_struct *p; 4435 int retval; 4436 4437 if (pid < 0) 4438 return -EINVAL; 4439 4440 retval = -ESRCH; 4441 rcu_read_lock(); 4442 p = find_process_by_pid(pid); 4443 if (p) { 4444 retval = security_task_getscheduler(p); 4445 if (!retval) 4446 retval = p->policy 4447 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4448 } 4449 rcu_read_unlock(); 4450 return retval; 4451 } 4452 4453 /** 4454 * sys_sched_getparam - get the RT priority of a thread 4455 * @pid: the pid in question. 4456 * @param: structure containing the RT priority. 4457 * 4458 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4459 * code. 4460 */ 4461 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4462 { 4463 struct sched_param lp = { .sched_priority = 0 }; 4464 struct task_struct *p; 4465 int retval; 4466 4467 if (!param || pid < 0) 4468 return -EINVAL; 4469 4470 rcu_read_lock(); 4471 p = find_process_by_pid(pid); 4472 retval = -ESRCH; 4473 if (!p) 4474 goto out_unlock; 4475 4476 retval = security_task_getscheduler(p); 4477 if (retval) 4478 goto out_unlock; 4479 4480 if (task_has_rt_policy(p)) 4481 lp.sched_priority = p->rt_priority; 4482 rcu_read_unlock(); 4483 4484 /* 4485 * This one might sleep, we cannot do it with a spinlock held ... 4486 */ 4487 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4488 4489 return retval; 4490 4491 out_unlock: 4492 rcu_read_unlock(); 4493 return retval; 4494 } 4495 4496 static int sched_read_attr(struct sched_attr __user *uattr, 4497 struct sched_attr *attr, 4498 unsigned int usize) 4499 { 4500 int ret; 4501 4502 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4503 return -EFAULT; 4504 4505 /* 4506 * If we're handed a smaller struct than we know of, 4507 * ensure all the unknown bits are 0 - i.e. old 4508 * user-space does not get uncomplete information. 4509 */ 4510 if (usize < sizeof(*attr)) { 4511 unsigned char *addr; 4512 unsigned char *end; 4513 4514 addr = (void *)attr + usize; 4515 end = (void *)attr + sizeof(*attr); 4516 4517 for (; addr < end; addr++) { 4518 if (*addr) 4519 return -EFBIG; 4520 } 4521 4522 attr->size = usize; 4523 } 4524 4525 ret = copy_to_user(uattr, attr, attr->size); 4526 if (ret) 4527 return -EFAULT; 4528 4529 return 0; 4530 } 4531 4532 /** 4533 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4534 * @pid: the pid in question. 4535 * @uattr: structure containing the extended parameters. 4536 * @size: sizeof(attr) for fwd/bwd comp. 4537 * @flags: for future extension. 4538 */ 4539 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4540 unsigned int, size, unsigned int, flags) 4541 { 4542 struct sched_attr attr = { 4543 .size = sizeof(struct sched_attr), 4544 }; 4545 struct task_struct *p; 4546 int retval; 4547 4548 if (!uattr || pid < 0 || size > PAGE_SIZE || 4549 size < SCHED_ATTR_SIZE_VER0 || flags) 4550 return -EINVAL; 4551 4552 rcu_read_lock(); 4553 p = find_process_by_pid(pid); 4554 retval = -ESRCH; 4555 if (!p) 4556 goto out_unlock; 4557 4558 retval = security_task_getscheduler(p); 4559 if (retval) 4560 goto out_unlock; 4561 4562 attr.sched_policy = p->policy; 4563 if (p->sched_reset_on_fork) 4564 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4565 if (task_has_dl_policy(p)) 4566 __getparam_dl(p, &attr); 4567 else if (task_has_rt_policy(p)) 4568 attr.sched_priority = p->rt_priority; 4569 else 4570 attr.sched_nice = task_nice(p); 4571 4572 rcu_read_unlock(); 4573 4574 retval = sched_read_attr(uattr, &attr, size); 4575 return retval; 4576 4577 out_unlock: 4578 rcu_read_unlock(); 4579 return retval; 4580 } 4581 4582 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4583 { 4584 cpumask_var_t cpus_allowed, new_mask; 4585 struct task_struct *p; 4586 int retval; 4587 4588 rcu_read_lock(); 4589 4590 p = find_process_by_pid(pid); 4591 if (!p) { 4592 rcu_read_unlock(); 4593 return -ESRCH; 4594 } 4595 4596 /* Prevent p going away */ 4597 get_task_struct(p); 4598 rcu_read_unlock(); 4599 4600 if (p->flags & PF_NO_SETAFFINITY) { 4601 retval = -EINVAL; 4602 goto out_put_task; 4603 } 4604 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4605 retval = -ENOMEM; 4606 goto out_put_task; 4607 } 4608 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4609 retval = -ENOMEM; 4610 goto out_free_cpus_allowed; 4611 } 4612 retval = -EPERM; 4613 if (!check_same_owner(p)) { 4614 rcu_read_lock(); 4615 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4616 rcu_read_unlock(); 4617 goto out_free_new_mask; 4618 } 4619 rcu_read_unlock(); 4620 } 4621 4622 retval = security_task_setscheduler(p); 4623 if (retval) 4624 goto out_free_new_mask; 4625 4626 4627 cpuset_cpus_allowed(p, cpus_allowed); 4628 cpumask_and(new_mask, in_mask, cpus_allowed); 4629 4630 /* 4631 * Since bandwidth control happens on root_domain basis, 4632 * if admission test is enabled, we only admit -deadline 4633 * tasks allowed to run on all the CPUs in the task's 4634 * root_domain. 4635 */ 4636 #ifdef CONFIG_SMP 4637 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4638 rcu_read_lock(); 4639 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4640 retval = -EBUSY; 4641 rcu_read_unlock(); 4642 goto out_free_new_mask; 4643 } 4644 rcu_read_unlock(); 4645 } 4646 #endif 4647 again: 4648 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4649 4650 if (!retval) { 4651 cpuset_cpus_allowed(p, cpus_allowed); 4652 if (!cpumask_subset(new_mask, cpus_allowed)) { 4653 /* 4654 * We must have raced with a concurrent cpuset 4655 * update. Just reset the cpus_allowed to the 4656 * cpuset's cpus_allowed 4657 */ 4658 cpumask_copy(new_mask, cpus_allowed); 4659 goto again; 4660 } 4661 } 4662 out_free_new_mask: 4663 free_cpumask_var(new_mask); 4664 out_free_cpus_allowed: 4665 free_cpumask_var(cpus_allowed); 4666 out_put_task: 4667 put_task_struct(p); 4668 return retval; 4669 } 4670 4671 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4672 struct cpumask *new_mask) 4673 { 4674 if (len < cpumask_size()) 4675 cpumask_clear(new_mask); 4676 else if (len > cpumask_size()) 4677 len = cpumask_size(); 4678 4679 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4680 } 4681 4682 /** 4683 * sys_sched_setaffinity - set the cpu affinity of a process 4684 * @pid: pid of the process 4685 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4686 * @user_mask_ptr: user-space pointer to the new cpu mask 4687 * 4688 * Return: 0 on success. An error code otherwise. 4689 */ 4690 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4691 unsigned long __user *, user_mask_ptr) 4692 { 4693 cpumask_var_t new_mask; 4694 int retval; 4695 4696 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4697 return -ENOMEM; 4698 4699 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4700 if (retval == 0) 4701 retval = sched_setaffinity(pid, new_mask); 4702 free_cpumask_var(new_mask); 4703 return retval; 4704 } 4705 4706 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4707 { 4708 struct task_struct *p; 4709 unsigned long flags; 4710 int retval; 4711 4712 rcu_read_lock(); 4713 4714 retval = -ESRCH; 4715 p = find_process_by_pid(pid); 4716 if (!p) 4717 goto out_unlock; 4718 4719 retval = security_task_getscheduler(p); 4720 if (retval) 4721 goto out_unlock; 4722 4723 raw_spin_lock_irqsave(&p->pi_lock, flags); 4724 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4725 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4726 4727 out_unlock: 4728 rcu_read_unlock(); 4729 4730 return retval; 4731 } 4732 4733 /** 4734 * sys_sched_getaffinity - get the cpu affinity of a process 4735 * @pid: pid of the process 4736 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4737 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4738 * 4739 * Return: 0 on success. An error code otherwise. 4740 */ 4741 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4742 unsigned long __user *, user_mask_ptr) 4743 { 4744 int ret; 4745 cpumask_var_t mask; 4746 4747 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4748 return -EINVAL; 4749 if (len & (sizeof(unsigned long)-1)) 4750 return -EINVAL; 4751 4752 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4753 return -ENOMEM; 4754 4755 ret = sched_getaffinity(pid, mask); 4756 if (ret == 0) { 4757 size_t retlen = min_t(size_t, len, cpumask_size()); 4758 4759 if (copy_to_user(user_mask_ptr, mask, retlen)) 4760 ret = -EFAULT; 4761 else 4762 ret = retlen; 4763 } 4764 free_cpumask_var(mask); 4765 4766 return ret; 4767 } 4768 4769 /** 4770 * sys_sched_yield - yield the current processor to other threads. 4771 * 4772 * This function yields the current CPU to other tasks. If there are no 4773 * other threads running on this CPU then this function will return. 4774 * 4775 * Return: 0. 4776 */ 4777 SYSCALL_DEFINE0(sched_yield) 4778 { 4779 struct rq *rq = this_rq_lock(); 4780 4781 schedstat_inc(rq, yld_count); 4782 current->sched_class->yield_task(rq); 4783 4784 /* 4785 * Since we are going to call schedule() anyway, there's 4786 * no need to preempt or enable interrupts: 4787 */ 4788 __release(rq->lock); 4789 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4790 do_raw_spin_unlock(&rq->lock); 4791 sched_preempt_enable_no_resched(); 4792 4793 schedule(); 4794 4795 return 0; 4796 } 4797 4798 int __sched _cond_resched(void) 4799 { 4800 if (should_resched(0)) { 4801 preempt_schedule_common(); 4802 return 1; 4803 } 4804 return 0; 4805 } 4806 EXPORT_SYMBOL(_cond_resched); 4807 4808 /* 4809 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4810 * call schedule, and on return reacquire the lock. 4811 * 4812 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4813 * operations here to prevent schedule() from being called twice (once via 4814 * spin_unlock(), once by hand). 4815 */ 4816 int __cond_resched_lock(spinlock_t *lock) 4817 { 4818 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4819 int ret = 0; 4820 4821 lockdep_assert_held(lock); 4822 4823 if (spin_needbreak(lock) || resched) { 4824 spin_unlock(lock); 4825 if (resched) 4826 preempt_schedule_common(); 4827 else 4828 cpu_relax(); 4829 ret = 1; 4830 spin_lock(lock); 4831 } 4832 return ret; 4833 } 4834 EXPORT_SYMBOL(__cond_resched_lock); 4835 4836 int __sched __cond_resched_softirq(void) 4837 { 4838 BUG_ON(!in_softirq()); 4839 4840 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4841 local_bh_enable(); 4842 preempt_schedule_common(); 4843 local_bh_disable(); 4844 return 1; 4845 } 4846 return 0; 4847 } 4848 EXPORT_SYMBOL(__cond_resched_softirq); 4849 4850 /** 4851 * yield - yield the current processor to other threads. 4852 * 4853 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4854 * 4855 * The scheduler is at all times free to pick the calling task as the most 4856 * eligible task to run, if removing the yield() call from your code breaks 4857 * it, its already broken. 4858 * 4859 * Typical broken usage is: 4860 * 4861 * while (!event) 4862 * yield(); 4863 * 4864 * where one assumes that yield() will let 'the other' process run that will 4865 * make event true. If the current task is a SCHED_FIFO task that will never 4866 * happen. Never use yield() as a progress guarantee!! 4867 * 4868 * If you want to use yield() to wait for something, use wait_event(). 4869 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4870 * If you still want to use yield(), do not! 4871 */ 4872 void __sched yield(void) 4873 { 4874 set_current_state(TASK_RUNNING); 4875 sys_sched_yield(); 4876 } 4877 EXPORT_SYMBOL(yield); 4878 4879 /** 4880 * yield_to - yield the current processor to another thread in 4881 * your thread group, or accelerate that thread toward the 4882 * processor it's on. 4883 * @p: target task 4884 * @preempt: whether task preemption is allowed or not 4885 * 4886 * It's the caller's job to ensure that the target task struct 4887 * can't go away on us before we can do any checks. 4888 * 4889 * Return: 4890 * true (>0) if we indeed boosted the target task. 4891 * false (0) if we failed to boost the target. 4892 * -ESRCH if there's no task to yield to. 4893 */ 4894 int __sched yield_to(struct task_struct *p, bool preempt) 4895 { 4896 struct task_struct *curr = current; 4897 struct rq *rq, *p_rq; 4898 unsigned long flags; 4899 int yielded = 0; 4900 4901 local_irq_save(flags); 4902 rq = this_rq(); 4903 4904 again: 4905 p_rq = task_rq(p); 4906 /* 4907 * If we're the only runnable task on the rq and target rq also 4908 * has only one task, there's absolutely no point in yielding. 4909 */ 4910 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4911 yielded = -ESRCH; 4912 goto out_irq; 4913 } 4914 4915 double_rq_lock(rq, p_rq); 4916 if (task_rq(p) != p_rq) { 4917 double_rq_unlock(rq, p_rq); 4918 goto again; 4919 } 4920 4921 if (!curr->sched_class->yield_to_task) 4922 goto out_unlock; 4923 4924 if (curr->sched_class != p->sched_class) 4925 goto out_unlock; 4926 4927 if (task_running(p_rq, p) || p->state) 4928 goto out_unlock; 4929 4930 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4931 if (yielded) { 4932 schedstat_inc(rq, yld_count); 4933 /* 4934 * Make p's CPU reschedule; pick_next_entity takes care of 4935 * fairness. 4936 */ 4937 if (preempt && rq != p_rq) 4938 resched_curr(p_rq); 4939 } 4940 4941 out_unlock: 4942 double_rq_unlock(rq, p_rq); 4943 out_irq: 4944 local_irq_restore(flags); 4945 4946 if (yielded > 0) 4947 schedule(); 4948 4949 return yielded; 4950 } 4951 EXPORT_SYMBOL_GPL(yield_to); 4952 4953 /* 4954 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4955 * that process accounting knows that this is a task in IO wait state. 4956 */ 4957 long __sched io_schedule_timeout(long timeout) 4958 { 4959 int old_iowait = current->in_iowait; 4960 struct rq *rq; 4961 long ret; 4962 4963 current->in_iowait = 1; 4964 blk_schedule_flush_plug(current); 4965 4966 delayacct_blkio_start(); 4967 rq = raw_rq(); 4968 atomic_inc(&rq->nr_iowait); 4969 ret = schedule_timeout(timeout); 4970 current->in_iowait = old_iowait; 4971 atomic_dec(&rq->nr_iowait); 4972 delayacct_blkio_end(); 4973 4974 return ret; 4975 } 4976 EXPORT_SYMBOL(io_schedule_timeout); 4977 4978 /** 4979 * sys_sched_get_priority_max - return maximum RT priority. 4980 * @policy: scheduling class. 4981 * 4982 * Return: On success, this syscall returns the maximum 4983 * rt_priority that can be used by a given scheduling class. 4984 * On failure, a negative error code is returned. 4985 */ 4986 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4987 { 4988 int ret = -EINVAL; 4989 4990 switch (policy) { 4991 case SCHED_FIFO: 4992 case SCHED_RR: 4993 ret = MAX_USER_RT_PRIO-1; 4994 break; 4995 case SCHED_DEADLINE: 4996 case SCHED_NORMAL: 4997 case SCHED_BATCH: 4998 case SCHED_IDLE: 4999 ret = 0; 5000 break; 5001 } 5002 return ret; 5003 } 5004 5005 /** 5006 * sys_sched_get_priority_min - return minimum RT priority. 5007 * @policy: scheduling class. 5008 * 5009 * Return: On success, this syscall returns the minimum 5010 * rt_priority that can be used by a given scheduling class. 5011 * On failure, a negative error code is returned. 5012 */ 5013 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5014 { 5015 int ret = -EINVAL; 5016 5017 switch (policy) { 5018 case SCHED_FIFO: 5019 case SCHED_RR: 5020 ret = 1; 5021 break; 5022 case SCHED_DEADLINE: 5023 case SCHED_NORMAL: 5024 case SCHED_BATCH: 5025 case SCHED_IDLE: 5026 ret = 0; 5027 } 5028 return ret; 5029 } 5030 5031 /** 5032 * sys_sched_rr_get_interval - return the default timeslice of a process. 5033 * @pid: pid of the process. 5034 * @interval: userspace pointer to the timeslice value. 5035 * 5036 * this syscall writes the default timeslice value of a given process 5037 * into the user-space timespec buffer. A value of '0' means infinity. 5038 * 5039 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5040 * an error code. 5041 */ 5042 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5043 struct timespec __user *, interval) 5044 { 5045 struct task_struct *p; 5046 unsigned int time_slice; 5047 struct rq_flags rf; 5048 struct timespec t; 5049 struct rq *rq; 5050 int retval; 5051 5052 if (pid < 0) 5053 return -EINVAL; 5054 5055 retval = -ESRCH; 5056 rcu_read_lock(); 5057 p = find_process_by_pid(pid); 5058 if (!p) 5059 goto out_unlock; 5060 5061 retval = security_task_getscheduler(p); 5062 if (retval) 5063 goto out_unlock; 5064 5065 rq = task_rq_lock(p, &rf); 5066 time_slice = 0; 5067 if (p->sched_class->get_rr_interval) 5068 time_slice = p->sched_class->get_rr_interval(rq, p); 5069 task_rq_unlock(rq, p, &rf); 5070 5071 rcu_read_unlock(); 5072 jiffies_to_timespec(time_slice, &t); 5073 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5074 return retval; 5075 5076 out_unlock: 5077 rcu_read_unlock(); 5078 return retval; 5079 } 5080 5081 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 5082 5083 void sched_show_task(struct task_struct *p) 5084 { 5085 unsigned long free = 0; 5086 int ppid; 5087 unsigned long state = p->state; 5088 5089 if (state) 5090 state = __ffs(state) + 1; 5091 printk(KERN_INFO "%-15.15s %c", p->comm, 5092 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 5093 #if BITS_PER_LONG == 32 5094 if (state == TASK_RUNNING) 5095 printk(KERN_CONT " running "); 5096 else 5097 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 5098 #else 5099 if (state == TASK_RUNNING) 5100 printk(KERN_CONT " running task "); 5101 else 5102 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 5103 #endif 5104 #ifdef CONFIG_DEBUG_STACK_USAGE 5105 free = stack_not_used(p); 5106 #endif 5107 ppid = 0; 5108 rcu_read_lock(); 5109 if (pid_alive(p)) 5110 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5111 rcu_read_unlock(); 5112 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5113 task_pid_nr(p), ppid, 5114 (unsigned long)task_thread_info(p)->flags); 5115 5116 print_worker_info(KERN_INFO, p); 5117 show_stack(p, NULL); 5118 } 5119 5120 void show_state_filter(unsigned long state_filter) 5121 { 5122 struct task_struct *g, *p; 5123 5124 #if BITS_PER_LONG == 32 5125 printk(KERN_INFO 5126 " task PC stack pid father\n"); 5127 #else 5128 printk(KERN_INFO 5129 " task PC stack pid father\n"); 5130 #endif 5131 rcu_read_lock(); 5132 for_each_process_thread(g, p) { 5133 /* 5134 * reset the NMI-timeout, listing all files on a slow 5135 * console might take a lot of time: 5136 */ 5137 touch_nmi_watchdog(); 5138 if (!state_filter || (p->state & state_filter)) 5139 sched_show_task(p); 5140 } 5141 5142 touch_all_softlockup_watchdogs(); 5143 5144 #ifdef CONFIG_SCHED_DEBUG 5145 if (!state_filter) 5146 sysrq_sched_debug_show(); 5147 #endif 5148 rcu_read_unlock(); 5149 /* 5150 * Only show locks if all tasks are dumped: 5151 */ 5152 if (!state_filter) 5153 debug_show_all_locks(); 5154 } 5155 5156 void init_idle_bootup_task(struct task_struct *idle) 5157 { 5158 idle->sched_class = &idle_sched_class; 5159 } 5160 5161 /** 5162 * init_idle - set up an idle thread for a given CPU 5163 * @idle: task in question 5164 * @cpu: cpu the idle task belongs to 5165 * 5166 * NOTE: this function does not set the idle thread's NEED_RESCHED 5167 * flag, to make booting more robust. 5168 */ 5169 void init_idle(struct task_struct *idle, int cpu) 5170 { 5171 struct rq *rq = cpu_rq(cpu); 5172 unsigned long flags; 5173 5174 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5175 raw_spin_lock(&rq->lock); 5176 5177 __sched_fork(0, idle); 5178 idle->state = TASK_RUNNING; 5179 idle->se.exec_start = sched_clock(); 5180 5181 kasan_unpoison_task_stack(idle); 5182 5183 #ifdef CONFIG_SMP 5184 /* 5185 * Its possible that init_idle() gets called multiple times on a task, 5186 * in that case do_set_cpus_allowed() will not do the right thing. 5187 * 5188 * And since this is boot we can forgo the serialization. 5189 */ 5190 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5191 #endif 5192 /* 5193 * We're having a chicken and egg problem, even though we are 5194 * holding rq->lock, the cpu isn't yet set to this cpu so the 5195 * lockdep check in task_group() will fail. 5196 * 5197 * Similar case to sched_fork(). / Alternatively we could 5198 * use task_rq_lock() here and obtain the other rq->lock. 5199 * 5200 * Silence PROVE_RCU 5201 */ 5202 rcu_read_lock(); 5203 __set_task_cpu(idle, cpu); 5204 rcu_read_unlock(); 5205 5206 rq->curr = rq->idle = idle; 5207 idle->on_rq = TASK_ON_RQ_QUEUED; 5208 #ifdef CONFIG_SMP 5209 idle->on_cpu = 1; 5210 #endif 5211 raw_spin_unlock(&rq->lock); 5212 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5213 5214 /* Set the preempt count _outside_ the spinlocks! */ 5215 init_idle_preempt_count(idle, cpu); 5216 5217 /* 5218 * The idle tasks have their own, simple scheduling class: 5219 */ 5220 idle->sched_class = &idle_sched_class; 5221 ftrace_graph_init_idle_task(idle, cpu); 5222 vtime_init_idle(idle, cpu); 5223 #ifdef CONFIG_SMP 5224 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5225 #endif 5226 } 5227 5228 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5229 const struct cpumask *trial) 5230 { 5231 int ret = 1, trial_cpus; 5232 struct dl_bw *cur_dl_b; 5233 unsigned long flags; 5234 5235 if (!cpumask_weight(cur)) 5236 return ret; 5237 5238 rcu_read_lock_sched(); 5239 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5240 trial_cpus = cpumask_weight(trial); 5241 5242 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5243 if (cur_dl_b->bw != -1 && 5244 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5245 ret = 0; 5246 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5247 rcu_read_unlock_sched(); 5248 5249 return ret; 5250 } 5251 5252 int task_can_attach(struct task_struct *p, 5253 const struct cpumask *cs_cpus_allowed) 5254 { 5255 int ret = 0; 5256 5257 /* 5258 * Kthreads which disallow setaffinity shouldn't be moved 5259 * to a new cpuset; we don't want to change their cpu 5260 * affinity and isolating such threads by their set of 5261 * allowed nodes is unnecessary. Thus, cpusets are not 5262 * applicable for such threads. This prevents checking for 5263 * success of set_cpus_allowed_ptr() on all attached tasks 5264 * before cpus_allowed may be changed. 5265 */ 5266 if (p->flags & PF_NO_SETAFFINITY) { 5267 ret = -EINVAL; 5268 goto out; 5269 } 5270 5271 #ifdef CONFIG_SMP 5272 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5273 cs_cpus_allowed)) { 5274 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5275 cs_cpus_allowed); 5276 struct dl_bw *dl_b; 5277 bool overflow; 5278 int cpus; 5279 unsigned long flags; 5280 5281 rcu_read_lock_sched(); 5282 dl_b = dl_bw_of(dest_cpu); 5283 raw_spin_lock_irqsave(&dl_b->lock, flags); 5284 cpus = dl_bw_cpus(dest_cpu); 5285 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5286 if (overflow) 5287 ret = -EBUSY; 5288 else { 5289 /* 5290 * We reserve space for this task in the destination 5291 * root_domain, as we can't fail after this point. 5292 * We will free resources in the source root_domain 5293 * later on (see set_cpus_allowed_dl()). 5294 */ 5295 __dl_add(dl_b, p->dl.dl_bw); 5296 } 5297 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5298 rcu_read_unlock_sched(); 5299 5300 } 5301 #endif 5302 out: 5303 return ret; 5304 } 5305 5306 #ifdef CONFIG_SMP 5307 5308 static bool sched_smp_initialized __read_mostly; 5309 5310 #ifdef CONFIG_NUMA_BALANCING 5311 /* Migrate current task p to target_cpu */ 5312 int migrate_task_to(struct task_struct *p, int target_cpu) 5313 { 5314 struct migration_arg arg = { p, target_cpu }; 5315 int curr_cpu = task_cpu(p); 5316 5317 if (curr_cpu == target_cpu) 5318 return 0; 5319 5320 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5321 return -EINVAL; 5322 5323 /* TODO: This is not properly updating schedstats */ 5324 5325 trace_sched_move_numa(p, curr_cpu, target_cpu); 5326 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5327 } 5328 5329 /* 5330 * Requeue a task on a given node and accurately track the number of NUMA 5331 * tasks on the runqueues 5332 */ 5333 void sched_setnuma(struct task_struct *p, int nid) 5334 { 5335 bool queued, running; 5336 struct rq_flags rf; 5337 struct rq *rq; 5338 5339 rq = task_rq_lock(p, &rf); 5340 queued = task_on_rq_queued(p); 5341 running = task_current(rq, p); 5342 5343 if (queued) 5344 dequeue_task(rq, p, DEQUEUE_SAVE); 5345 if (running) 5346 put_prev_task(rq, p); 5347 5348 p->numa_preferred_nid = nid; 5349 5350 if (running) 5351 p->sched_class->set_curr_task(rq); 5352 if (queued) 5353 enqueue_task(rq, p, ENQUEUE_RESTORE); 5354 task_rq_unlock(rq, p, &rf); 5355 } 5356 #endif /* CONFIG_NUMA_BALANCING */ 5357 5358 #ifdef CONFIG_HOTPLUG_CPU 5359 /* 5360 * Ensures that the idle task is using init_mm right before its cpu goes 5361 * offline. 5362 */ 5363 void idle_task_exit(void) 5364 { 5365 struct mm_struct *mm = current->active_mm; 5366 5367 BUG_ON(cpu_online(smp_processor_id())); 5368 5369 if (mm != &init_mm) { 5370 switch_mm_irqs_off(mm, &init_mm, current); 5371 finish_arch_post_lock_switch(); 5372 } 5373 mmdrop(mm); 5374 } 5375 5376 /* 5377 * Since this CPU is going 'away' for a while, fold any nr_active delta 5378 * we might have. Assumes we're called after migrate_tasks() so that the 5379 * nr_active count is stable. 5380 * 5381 * Also see the comment "Global load-average calculations". 5382 */ 5383 static void calc_load_migrate(struct rq *rq) 5384 { 5385 long delta = calc_load_fold_active(rq); 5386 if (delta) 5387 atomic_long_add(delta, &calc_load_tasks); 5388 } 5389 5390 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5391 { 5392 } 5393 5394 static const struct sched_class fake_sched_class = { 5395 .put_prev_task = put_prev_task_fake, 5396 }; 5397 5398 static struct task_struct fake_task = { 5399 /* 5400 * Avoid pull_{rt,dl}_task() 5401 */ 5402 .prio = MAX_PRIO + 1, 5403 .sched_class = &fake_sched_class, 5404 }; 5405 5406 /* 5407 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5408 * try_to_wake_up()->select_task_rq(). 5409 * 5410 * Called with rq->lock held even though we'er in stop_machine() and 5411 * there's no concurrency possible, we hold the required locks anyway 5412 * because of lock validation efforts. 5413 */ 5414 static void migrate_tasks(struct rq *dead_rq) 5415 { 5416 struct rq *rq = dead_rq; 5417 struct task_struct *next, *stop = rq->stop; 5418 struct pin_cookie cookie; 5419 int dest_cpu; 5420 5421 /* 5422 * Fudge the rq selection such that the below task selection loop 5423 * doesn't get stuck on the currently eligible stop task. 5424 * 5425 * We're currently inside stop_machine() and the rq is either stuck 5426 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5427 * either way we should never end up calling schedule() until we're 5428 * done here. 5429 */ 5430 rq->stop = NULL; 5431 5432 /* 5433 * put_prev_task() and pick_next_task() sched 5434 * class method both need to have an up-to-date 5435 * value of rq->clock[_task] 5436 */ 5437 update_rq_clock(rq); 5438 5439 for (;;) { 5440 /* 5441 * There's this thread running, bail when that's the only 5442 * remaining thread. 5443 */ 5444 if (rq->nr_running == 1) 5445 break; 5446 5447 /* 5448 * pick_next_task assumes pinned rq->lock. 5449 */ 5450 cookie = lockdep_pin_lock(&rq->lock); 5451 next = pick_next_task(rq, &fake_task, cookie); 5452 BUG_ON(!next); 5453 next->sched_class->put_prev_task(rq, next); 5454 5455 /* 5456 * Rules for changing task_struct::cpus_allowed are holding 5457 * both pi_lock and rq->lock, such that holding either 5458 * stabilizes the mask. 5459 * 5460 * Drop rq->lock is not quite as disastrous as it usually is 5461 * because !cpu_active at this point, which means load-balance 5462 * will not interfere. Also, stop-machine. 5463 */ 5464 lockdep_unpin_lock(&rq->lock, cookie); 5465 raw_spin_unlock(&rq->lock); 5466 raw_spin_lock(&next->pi_lock); 5467 raw_spin_lock(&rq->lock); 5468 5469 /* 5470 * Since we're inside stop-machine, _nothing_ should have 5471 * changed the task, WARN if weird stuff happened, because in 5472 * that case the above rq->lock drop is a fail too. 5473 */ 5474 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5475 raw_spin_unlock(&next->pi_lock); 5476 continue; 5477 } 5478 5479 /* Find suitable destination for @next, with force if needed. */ 5480 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5481 5482 rq = __migrate_task(rq, next, dest_cpu); 5483 if (rq != dead_rq) { 5484 raw_spin_unlock(&rq->lock); 5485 rq = dead_rq; 5486 raw_spin_lock(&rq->lock); 5487 } 5488 raw_spin_unlock(&next->pi_lock); 5489 } 5490 5491 rq->stop = stop; 5492 } 5493 #endif /* CONFIG_HOTPLUG_CPU */ 5494 5495 static void set_rq_online(struct rq *rq) 5496 { 5497 if (!rq->online) { 5498 const struct sched_class *class; 5499 5500 cpumask_set_cpu(rq->cpu, rq->rd->online); 5501 rq->online = 1; 5502 5503 for_each_class(class) { 5504 if (class->rq_online) 5505 class->rq_online(rq); 5506 } 5507 } 5508 } 5509 5510 static void set_rq_offline(struct rq *rq) 5511 { 5512 if (rq->online) { 5513 const struct sched_class *class; 5514 5515 for_each_class(class) { 5516 if (class->rq_offline) 5517 class->rq_offline(rq); 5518 } 5519 5520 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5521 rq->online = 0; 5522 } 5523 } 5524 5525 static void set_cpu_rq_start_time(unsigned int cpu) 5526 { 5527 struct rq *rq = cpu_rq(cpu); 5528 5529 rq->age_stamp = sched_clock_cpu(cpu); 5530 } 5531 5532 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5533 5534 #ifdef CONFIG_SCHED_DEBUG 5535 5536 static __read_mostly int sched_debug_enabled; 5537 5538 static int __init sched_debug_setup(char *str) 5539 { 5540 sched_debug_enabled = 1; 5541 5542 return 0; 5543 } 5544 early_param("sched_debug", sched_debug_setup); 5545 5546 static inline bool sched_debug(void) 5547 { 5548 return sched_debug_enabled; 5549 } 5550 5551 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5552 struct cpumask *groupmask) 5553 { 5554 struct sched_group *group = sd->groups; 5555 5556 cpumask_clear(groupmask); 5557 5558 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5559 5560 if (!(sd->flags & SD_LOAD_BALANCE)) { 5561 printk("does not load-balance\n"); 5562 if (sd->parent) 5563 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5564 " has parent"); 5565 return -1; 5566 } 5567 5568 printk(KERN_CONT "span %*pbl level %s\n", 5569 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5570 5571 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5572 printk(KERN_ERR "ERROR: domain->span does not contain " 5573 "CPU%d\n", cpu); 5574 } 5575 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5576 printk(KERN_ERR "ERROR: domain->groups does not contain" 5577 " CPU%d\n", cpu); 5578 } 5579 5580 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5581 do { 5582 if (!group) { 5583 printk("\n"); 5584 printk(KERN_ERR "ERROR: group is NULL\n"); 5585 break; 5586 } 5587 5588 if (!cpumask_weight(sched_group_cpus(group))) { 5589 printk(KERN_CONT "\n"); 5590 printk(KERN_ERR "ERROR: empty group\n"); 5591 break; 5592 } 5593 5594 if (!(sd->flags & SD_OVERLAP) && 5595 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5596 printk(KERN_CONT "\n"); 5597 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5598 break; 5599 } 5600 5601 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5602 5603 printk(KERN_CONT " %*pbl", 5604 cpumask_pr_args(sched_group_cpus(group))); 5605 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5606 printk(KERN_CONT " (cpu_capacity = %d)", 5607 group->sgc->capacity); 5608 } 5609 5610 group = group->next; 5611 } while (group != sd->groups); 5612 printk(KERN_CONT "\n"); 5613 5614 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5615 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5616 5617 if (sd->parent && 5618 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5619 printk(KERN_ERR "ERROR: parent span is not a superset " 5620 "of domain->span\n"); 5621 return 0; 5622 } 5623 5624 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5625 { 5626 int level = 0; 5627 5628 if (!sched_debug_enabled) 5629 return; 5630 5631 if (!sd) { 5632 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5633 return; 5634 } 5635 5636 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5637 5638 for (;;) { 5639 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5640 break; 5641 level++; 5642 sd = sd->parent; 5643 if (!sd) 5644 break; 5645 } 5646 } 5647 #else /* !CONFIG_SCHED_DEBUG */ 5648 # define sched_domain_debug(sd, cpu) do { } while (0) 5649 static inline bool sched_debug(void) 5650 { 5651 return false; 5652 } 5653 #endif /* CONFIG_SCHED_DEBUG */ 5654 5655 static int sd_degenerate(struct sched_domain *sd) 5656 { 5657 if (cpumask_weight(sched_domain_span(sd)) == 1) 5658 return 1; 5659 5660 /* Following flags need at least 2 groups */ 5661 if (sd->flags & (SD_LOAD_BALANCE | 5662 SD_BALANCE_NEWIDLE | 5663 SD_BALANCE_FORK | 5664 SD_BALANCE_EXEC | 5665 SD_SHARE_CPUCAPACITY | 5666 SD_SHARE_PKG_RESOURCES | 5667 SD_SHARE_POWERDOMAIN)) { 5668 if (sd->groups != sd->groups->next) 5669 return 0; 5670 } 5671 5672 /* Following flags don't use groups */ 5673 if (sd->flags & (SD_WAKE_AFFINE)) 5674 return 0; 5675 5676 return 1; 5677 } 5678 5679 static int 5680 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5681 { 5682 unsigned long cflags = sd->flags, pflags = parent->flags; 5683 5684 if (sd_degenerate(parent)) 5685 return 1; 5686 5687 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5688 return 0; 5689 5690 /* Flags needing groups don't count if only 1 group in parent */ 5691 if (parent->groups == parent->groups->next) { 5692 pflags &= ~(SD_LOAD_BALANCE | 5693 SD_BALANCE_NEWIDLE | 5694 SD_BALANCE_FORK | 5695 SD_BALANCE_EXEC | 5696 SD_SHARE_CPUCAPACITY | 5697 SD_SHARE_PKG_RESOURCES | 5698 SD_PREFER_SIBLING | 5699 SD_SHARE_POWERDOMAIN); 5700 if (nr_node_ids == 1) 5701 pflags &= ~SD_SERIALIZE; 5702 } 5703 if (~cflags & pflags) 5704 return 0; 5705 5706 return 1; 5707 } 5708 5709 static void free_rootdomain(struct rcu_head *rcu) 5710 { 5711 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5712 5713 cpupri_cleanup(&rd->cpupri); 5714 cpudl_cleanup(&rd->cpudl); 5715 free_cpumask_var(rd->dlo_mask); 5716 free_cpumask_var(rd->rto_mask); 5717 free_cpumask_var(rd->online); 5718 free_cpumask_var(rd->span); 5719 kfree(rd); 5720 } 5721 5722 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5723 { 5724 struct root_domain *old_rd = NULL; 5725 unsigned long flags; 5726 5727 raw_spin_lock_irqsave(&rq->lock, flags); 5728 5729 if (rq->rd) { 5730 old_rd = rq->rd; 5731 5732 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5733 set_rq_offline(rq); 5734 5735 cpumask_clear_cpu(rq->cpu, old_rd->span); 5736 5737 /* 5738 * If we dont want to free the old_rd yet then 5739 * set old_rd to NULL to skip the freeing later 5740 * in this function: 5741 */ 5742 if (!atomic_dec_and_test(&old_rd->refcount)) 5743 old_rd = NULL; 5744 } 5745 5746 atomic_inc(&rd->refcount); 5747 rq->rd = rd; 5748 5749 cpumask_set_cpu(rq->cpu, rd->span); 5750 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5751 set_rq_online(rq); 5752 5753 raw_spin_unlock_irqrestore(&rq->lock, flags); 5754 5755 if (old_rd) 5756 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5757 } 5758 5759 static int init_rootdomain(struct root_domain *rd) 5760 { 5761 memset(rd, 0, sizeof(*rd)); 5762 5763 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 5764 goto out; 5765 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 5766 goto free_span; 5767 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5768 goto free_online; 5769 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5770 goto free_dlo_mask; 5771 5772 init_dl_bw(&rd->dl_bw); 5773 if (cpudl_init(&rd->cpudl) != 0) 5774 goto free_dlo_mask; 5775 5776 if (cpupri_init(&rd->cpupri) != 0) 5777 goto free_rto_mask; 5778 return 0; 5779 5780 free_rto_mask: 5781 free_cpumask_var(rd->rto_mask); 5782 free_dlo_mask: 5783 free_cpumask_var(rd->dlo_mask); 5784 free_online: 5785 free_cpumask_var(rd->online); 5786 free_span: 5787 free_cpumask_var(rd->span); 5788 out: 5789 return -ENOMEM; 5790 } 5791 5792 /* 5793 * By default the system creates a single root-domain with all cpus as 5794 * members (mimicking the global state we have today). 5795 */ 5796 struct root_domain def_root_domain; 5797 5798 static void init_defrootdomain(void) 5799 { 5800 init_rootdomain(&def_root_domain); 5801 5802 atomic_set(&def_root_domain.refcount, 1); 5803 } 5804 5805 static struct root_domain *alloc_rootdomain(void) 5806 { 5807 struct root_domain *rd; 5808 5809 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5810 if (!rd) 5811 return NULL; 5812 5813 if (init_rootdomain(rd) != 0) { 5814 kfree(rd); 5815 return NULL; 5816 } 5817 5818 return rd; 5819 } 5820 5821 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5822 { 5823 struct sched_group *tmp, *first; 5824 5825 if (!sg) 5826 return; 5827 5828 first = sg; 5829 do { 5830 tmp = sg->next; 5831 5832 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5833 kfree(sg->sgc); 5834 5835 kfree(sg); 5836 sg = tmp; 5837 } while (sg != first); 5838 } 5839 5840 static void free_sched_domain(struct rcu_head *rcu) 5841 { 5842 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5843 5844 /* 5845 * If its an overlapping domain it has private groups, iterate and 5846 * nuke them all. 5847 */ 5848 if (sd->flags & SD_OVERLAP) { 5849 free_sched_groups(sd->groups, 1); 5850 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5851 kfree(sd->groups->sgc); 5852 kfree(sd->groups); 5853 } 5854 kfree(sd); 5855 } 5856 5857 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5858 { 5859 call_rcu(&sd->rcu, free_sched_domain); 5860 } 5861 5862 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5863 { 5864 for (; sd; sd = sd->parent) 5865 destroy_sched_domain(sd, cpu); 5866 } 5867 5868 /* 5869 * Keep a special pointer to the highest sched_domain that has 5870 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5871 * allows us to avoid some pointer chasing select_idle_sibling(). 5872 * 5873 * Also keep a unique ID per domain (we use the first cpu number in 5874 * the cpumask of the domain), this allows us to quickly tell if 5875 * two cpus are in the same cache domain, see cpus_share_cache(). 5876 */ 5877 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5878 DEFINE_PER_CPU(int, sd_llc_size); 5879 DEFINE_PER_CPU(int, sd_llc_id); 5880 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5881 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5882 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5883 5884 static void update_top_cache_domain(int cpu) 5885 { 5886 struct sched_domain *sd; 5887 struct sched_domain *busy_sd = NULL; 5888 int id = cpu; 5889 int size = 1; 5890 5891 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5892 if (sd) { 5893 id = cpumask_first(sched_domain_span(sd)); 5894 size = cpumask_weight(sched_domain_span(sd)); 5895 busy_sd = sd->parent; /* sd_busy */ 5896 } 5897 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5898 5899 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5900 per_cpu(sd_llc_size, cpu) = size; 5901 per_cpu(sd_llc_id, cpu) = id; 5902 5903 sd = lowest_flag_domain(cpu, SD_NUMA); 5904 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5905 5906 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5907 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5908 } 5909 5910 /* 5911 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5912 * hold the hotplug lock. 5913 */ 5914 static void 5915 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5916 { 5917 struct rq *rq = cpu_rq(cpu); 5918 struct sched_domain *tmp; 5919 5920 /* Remove the sched domains which do not contribute to scheduling. */ 5921 for (tmp = sd; tmp; ) { 5922 struct sched_domain *parent = tmp->parent; 5923 if (!parent) 5924 break; 5925 5926 if (sd_parent_degenerate(tmp, parent)) { 5927 tmp->parent = parent->parent; 5928 if (parent->parent) 5929 parent->parent->child = tmp; 5930 /* 5931 * Transfer SD_PREFER_SIBLING down in case of a 5932 * degenerate parent; the spans match for this 5933 * so the property transfers. 5934 */ 5935 if (parent->flags & SD_PREFER_SIBLING) 5936 tmp->flags |= SD_PREFER_SIBLING; 5937 destroy_sched_domain(parent, cpu); 5938 } else 5939 tmp = tmp->parent; 5940 } 5941 5942 if (sd && sd_degenerate(sd)) { 5943 tmp = sd; 5944 sd = sd->parent; 5945 destroy_sched_domain(tmp, cpu); 5946 if (sd) 5947 sd->child = NULL; 5948 } 5949 5950 sched_domain_debug(sd, cpu); 5951 5952 rq_attach_root(rq, rd); 5953 tmp = rq->sd; 5954 rcu_assign_pointer(rq->sd, sd); 5955 destroy_sched_domains(tmp, cpu); 5956 5957 update_top_cache_domain(cpu); 5958 } 5959 5960 /* Setup the mask of cpus configured for isolated domains */ 5961 static int __init isolated_cpu_setup(char *str) 5962 { 5963 int ret; 5964 5965 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5966 ret = cpulist_parse(str, cpu_isolated_map); 5967 if (ret) { 5968 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 5969 return 0; 5970 } 5971 return 1; 5972 } 5973 __setup("isolcpus=", isolated_cpu_setup); 5974 5975 struct s_data { 5976 struct sched_domain ** __percpu sd; 5977 struct root_domain *rd; 5978 }; 5979 5980 enum s_alloc { 5981 sa_rootdomain, 5982 sa_sd, 5983 sa_sd_storage, 5984 sa_none, 5985 }; 5986 5987 /* 5988 * Build an iteration mask that can exclude certain CPUs from the upwards 5989 * domain traversal. 5990 * 5991 * Asymmetric node setups can result in situations where the domain tree is of 5992 * unequal depth, make sure to skip domains that already cover the entire 5993 * range. 5994 * 5995 * In that case build_sched_domains() will have terminated the iteration early 5996 * and our sibling sd spans will be empty. Domains should always include the 5997 * cpu they're built on, so check that. 5998 * 5999 */ 6000 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 6001 { 6002 const struct cpumask *span = sched_domain_span(sd); 6003 struct sd_data *sdd = sd->private; 6004 struct sched_domain *sibling; 6005 int i; 6006 6007 for_each_cpu(i, span) { 6008 sibling = *per_cpu_ptr(sdd->sd, i); 6009 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6010 continue; 6011 6012 cpumask_set_cpu(i, sched_group_mask(sg)); 6013 } 6014 } 6015 6016 /* 6017 * Return the canonical balance cpu for this group, this is the first cpu 6018 * of this group that's also in the iteration mask. 6019 */ 6020 int group_balance_cpu(struct sched_group *sg) 6021 { 6022 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 6023 } 6024 6025 static int 6026 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6027 { 6028 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6029 const struct cpumask *span = sched_domain_span(sd); 6030 struct cpumask *covered = sched_domains_tmpmask; 6031 struct sd_data *sdd = sd->private; 6032 struct sched_domain *sibling; 6033 int i; 6034 6035 cpumask_clear(covered); 6036 6037 for_each_cpu(i, span) { 6038 struct cpumask *sg_span; 6039 6040 if (cpumask_test_cpu(i, covered)) 6041 continue; 6042 6043 sibling = *per_cpu_ptr(sdd->sd, i); 6044 6045 /* See the comment near build_group_mask(). */ 6046 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6047 continue; 6048 6049 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6050 GFP_KERNEL, cpu_to_node(cpu)); 6051 6052 if (!sg) 6053 goto fail; 6054 6055 sg_span = sched_group_cpus(sg); 6056 if (sibling->child) 6057 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 6058 else 6059 cpumask_set_cpu(i, sg_span); 6060 6061 cpumask_or(covered, covered, sg_span); 6062 6063 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6064 if (atomic_inc_return(&sg->sgc->ref) == 1) 6065 build_group_mask(sd, sg); 6066 6067 /* 6068 * Initialize sgc->capacity such that even if we mess up the 6069 * domains and no possible iteration will get us here, we won't 6070 * die on a /0 trap. 6071 */ 6072 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6073 6074 /* 6075 * Make sure the first group of this domain contains the 6076 * canonical balance cpu. Otherwise the sched_domain iteration 6077 * breaks. See update_sg_lb_stats(). 6078 */ 6079 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6080 group_balance_cpu(sg) == cpu) 6081 groups = sg; 6082 6083 if (!first) 6084 first = sg; 6085 if (last) 6086 last->next = sg; 6087 last = sg; 6088 last->next = first; 6089 } 6090 sd->groups = groups; 6091 6092 return 0; 6093 6094 fail: 6095 free_sched_groups(first, 0); 6096 6097 return -ENOMEM; 6098 } 6099 6100 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6101 { 6102 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6103 struct sched_domain *child = sd->child; 6104 6105 if (child) 6106 cpu = cpumask_first(sched_domain_span(child)); 6107 6108 if (sg) { 6109 *sg = *per_cpu_ptr(sdd->sg, cpu); 6110 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6111 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6112 } 6113 6114 return cpu; 6115 } 6116 6117 /* 6118 * build_sched_groups will build a circular linked list of the groups 6119 * covered by the given span, and will set each group's ->cpumask correctly, 6120 * and ->cpu_capacity to 0. 6121 * 6122 * Assumes the sched_domain tree is fully constructed 6123 */ 6124 static int 6125 build_sched_groups(struct sched_domain *sd, int cpu) 6126 { 6127 struct sched_group *first = NULL, *last = NULL; 6128 struct sd_data *sdd = sd->private; 6129 const struct cpumask *span = sched_domain_span(sd); 6130 struct cpumask *covered; 6131 int i; 6132 6133 get_group(cpu, sdd, &sd->groups); 6134 atomic_inc(&sd->groups->ref); 6135 6136 if (cpu != cpumask_first(span)) 6137 return 0; 6138 6139 lockdep_assert_held(&sched_domains_mutex); 6140 covered = sched_domains_tmpmask; 6141 6142 cpumask_clear(covered); 6143 6144 for_each_cpu(i, span) { 6145 struct sched_group *sg; 6146 int group, j; 6147 6148 if (cpumask_test_cpu(i, covered)) 6149 continue; 6150 6151 group = get_group(i, sdd, &sg); 6152 cpumask_setall(sched_group_mask(sg)); 6153 6154 for_each_cpu(j, span) { 6155 if (get_group(j, sdd, NULL) != group) 6156 continue; 6157 6158 cpumask_set_cpu(j, covered); 6159 cpumask_set_cpu(j, sched_group_cpus(sg)); 6160 } 6161 6162 if (!first) 6163 first = sg; 6164 if (last) 6165 last->next = sg; 6166 last = sg; 6167 } 6168 last->next = first; 6169 6170 return 0; 6171 } 6172 6173 /* 6174 * Initialize sched groups cpu_capacity. 6175 * 6176 * cpu_capacity indicates the capacity of sched group, which is used while 6177 * distributing the load between different sched groups in a sched domain. 6178 * Typically cpu_capacity for all the groups in a sched domain will be same 6179 * unless there are asymmetries in the topology. If there are asymmetries, 6180 * group having more cpu_capacity will pickup more load compared to the 6181 * group having less cpu_capacity. 6182 */ 6183 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6184 { 6185 struct sched_group *sg = sd->groups; 6186 6187 WARN_ON(!sg); 6188 6189 do { 6190 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6191 sg = sg->next; 6192 } while (sg != sd->groups); 6193 6194 if (cpu != group_balance_cpu(sg)) 6195 return; 6196 6197 update_group_capacity(sd, cpu); 6198 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6199 } 6200 6201 /* 6202 * Initializers for schedule domains 6203 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6204 */ 6205 6206 static int default_relax_domain_level = -1; 6207 int sched_domain_level_max; 6208 6209 static int __init setup_relax_domain_level(char *str) 6210 { 6211 if (kstrtoint(str, 0, &default_relax_domain_level)) 6212 pr_warn("Unable to set relax_domain_level\n"); 6213 6214 return 1; 6215 } 6216 __setup("relax_domain_level=", setup_relax_domain_level); 6217 6218 static void set_domain_attribute(struct sched_domain *sd, 6219 struct sched_domain_attr *attr) 6220 { 6221 int request; 6222 6223 if (!attr || attr->relax_domain_level < 0) { 6224 if (default_relax_domain_level < 0) 6225 return; 6226 else 6227 request = default_relax_domain_level; 6228 } else 6229 request = attr->relax_domain_level; 6230 if (request < sd->level) { 6231 /* turn off idle balance on this domain */ 6232 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6233 } else { 6234 /* turn on idle balance on this domain */ 6235 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6236 } 6237 } 6238 6239 static void __sdt_free(const struct cpumask *cpu_map); 6240 static int __sdt_alloc(const struct cpumask *cpu_map); 6241 6242 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6243 const struct cpumask *cpu_map) 6244 { 6245 switch (what) { 6246 case sa_rootdomain: 6247 if (!atomic_read(&d->rd->refcount)) 6248 free_rootdomain(&d->rd->rcu); /* fall through */ 6249 case sa_sd: 6250 free_percpu(d->sd); /* fall through */ 6251 case sa_sd_storage: 6252 __sdt_free(cpu_map); /* fall through */ 6253 case sa_none: 6254 break; 6255 } 6256 } 6257 6258 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6259 const struct cpumask *cpu_map) 6260 { 6261 memset(d, 0, sizeof(*d)); 6262 6263 if (__sdt_alloc(cpu_map)) 6264 return sa_sd_storage; 6265 d->sd = alloc_percpu(struct sched_domain *); 6266 if (!d->sd) 6267 return sa_sd_storage; 6268 d->rd = alloc_rootdomain(); 6269 if (!d->rd) 6270 return sa_sd; 6271 return sa_rootdomain; 6272 } 6273 6274 /* 6275 * NULL the sd_data elements we've used to build the sched_domain and 6276 * sched_group structure so that the subsequent __free_domain_allocs() 6277 * will not free the data we're using. 6278 */ 6279 static void claim_allocations(int cpu, struct sched_domain *sd) 6280 { 6281 struct sd_data *sdd = sd->private; 6282 6283 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6284 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6285 6286 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6287 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6288 6289 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6290 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6291 } 6292 6293 #ifdef CONFIG_NUMA 6294 static int sched_domains_numa_levels; 6295 enum numa_topology_type sched_numa_topology_type; 6296 static int *sched_domains_numa_distance; 6297 int sched_max_numa_distance; 6298 static struct cpumask ***sched_domains_numa_masks; 6299 static int sched_domains_curr_level; 6300 #endif 6301 6302 /* 6303 * SD_flags allowed in topology descriptions. 6304 * 6305 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6306 * SD_SHARE_PKG_RESOURCES - describes shared caches 6307 * SD_NUMA - describes NUMA topologies 6308 * SD_SHARE_POWERDOMAIN - describes shared power domain 6309 * 6310 * Odd one out: 6311 * SD_ASYM_PACKING - describes SMT quirks 6312 */ 6313 #define TOPOLOGY_SD_FLAGS \ 6314 (SD_SHARE_CPUCAPACITY | \ 6315 SD_SHARE_PKG_RESOURCES | \ 6316 SD_NUMA | \ 6317 SD_ASYM_PACKING | \ 6318 SD_SHARE_POWERDOMAIN) 6319 6320 static struct sched_domain * 6321 sd_init(struct sched_domain_topology_level *tl, int cpu) 6322 { 6323 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6324 int sd_weight, sd_flags = 0; 6325 6326 #ifdef CONFIG_NUMA 6327 /* 6328 * Ugly hack to pass state to sd_numa_mask()... 6329 */ 6330 sched_domains_curr_level = tl->numa_level; 6331 #endif 6332 6333 sd_weight = cpumask_weight(tl->mask(cpu)); 6334 6335 if (tl->sd_flags) 6336 sd_flags = (*tl->sd_flags)(); 6337 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6338 "wrong sd_flags in topology description\n")) 6339 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6340 6341 *sd = (struct sched_domain){ 6342 .min_interval = sd_weight, 6343 .max_interval = 2*sd_weight, 6344 .busy_factor = 32, 6345 .imbalance_pct = 125, 6346 6347 .cache_nice_tries = 0, 6348 .busy_idx = 0, 6349 .idle_idx = 0, 6350 .newidle_idx = 0, 6351 .wake_idx = 0, 6352 .forkexec_idx = 0, 6353 6354 .flags = 1*SD_LOAD_BALANCE 6355 | 1*SD_BALANCE_NEWIDLE 6356 | 1*SD_BALANCE_EXEC 6357 | 1*SD_BALANCE_FORK 6358 | 0*SD_BALANCE_WAKE 6359 | 1*SD_WAKE_AFFINE 6360 | 0*SD_SHARE_CPUCAPACITY 6361 | 0*SD_SHARE_PKG_RESOURCES 6362 | 0*SD_SERIALIZE 6363 | 0*SD_PREFER_SIBLING 6364 | 0*SD_NUMA 6365 | sd_flags 6366 , 6367 6368 .last_balance = jiffies, 6369 .balance_interval = sd_weight, 6370 .smt_gain = 0, 6371 .max_newidle_lb_cost = 0, 6372 .next_decay_max_lb_cost = jiffies, 6373 #ifdef CONFIG_SCHED_DEBUG 6374 .name = tl->name, 6375 #endif 6376 }; 6377 6378 /* 6379 * Convert topological properties into behaviour. 6380 */ 6381 6382 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6383 sd->flags |= SD_PREFER_SIBLING; 6384 sd->imbalance_pct = 110; 6385 sd->smt_gain = 1178; /* ~15% */ 6386 6387 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6388 sd->imbalance_pct = 117; 6389 sd->cache_nice_tries = 1; 6390 sd->busy_idx = 2; 6391 6392 #ifdef CONFIG_NUMA 6393 } else if (sd->flags & SD_NUMA) { 6394 sd->cache_nice_tries = 2; 6395 sd->busy_idx = 3; 6396 sd->idle_idx = 2; 6397 6398 sd->flags |= SD_SERIALIZE; 6399 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6400 sd->flags &= ~(SD_BALANCE_EXEC | 6401 SD_BALANCE_FORK | 6402 SD_WAKE_AFFINE); 6403 } 6404 6405 #endif 6406 } else { 6407 sd->flags |= SD_PREFER_SIBLING; 6408 sd->cache_nice_tries = 1; 6409 sd->busy_idx = 2; 6410 sd->idle_idx = 1; 6411 } 6412 6413 sd->private = &tl->data; 6414 6415 return sd; 6416 } 6417 6418 /* 6419 * Topology list, bottom-up. 6420 */ 6421 static struct sched_domain_topology_level default_topology[] = { 6422 #ifdef CONFIG_SCHED_SMT 6423 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6424 #endif 6425 #ifdef CONFIG_SCHED_MC 6426 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6427 #endif 6428 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6429 { NULL, }, 6430 }; 6431 6432 static struct sched_domain_topology_level *sched_domain_topology = 6433 default_topology; 6434 6435 #define for_each_sd_topology(tl) \ 6436 for (tl = sched_domain_topology; tl->mask; tl++) 6437 6438 void set_sched_topology(struct sched_domain_topology_level *tl) 6439 { 6440 sched_domain_topology = tl; 6441 } 6442 6443 #ifdef CONFIG_NUMA 6444 6445 static const struct cpumask *sd_numa_mask(int cpu) 6446 { 6447 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6448 } 6449 6450 static void sched_numa_warn(const char *str) 6451 { 6452 static int done = false; 6453 int i,j; 6454 6455 if (done) 6456 return; 6457 6458 done = true; 6459 6460 printk(KERN_WARNING "ERROR: %s\n\n", str); 6461 6462 for (i = 0; i < nr_node_ids; i++) { 6463 printk(KERN_WARNING " "); 6464 for (j = 0; j < nr_node_ids; j++) 6465 printk(KERN_CONT "%02d ", node_distance(i,j)); 6466 printk(KERN_CONT "\n"); 6467 } 6468 printk(KERN_WARNING "\n"); 6469 } 6470 6471 bool find_numa_distance(int distance) 6472 { 6473 int i; 6474 6475 if (distance == node_distance(0, 0)) 6476 return true; 6477 6478 for (i = 0; i < sched_domains_numa_levels; i++) { 6479 if (sched_domains_numa_distance[i] == distance) 6480 return true; 6481 } 6482 6483 return false; 6484 } 6485 6486 /* 6487 * A system can have three types of NUMA topology: 6488 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6489 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6490 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6491 * 6492 * The difference between a glueless mesh topology and a backplane 6493 * topology lies in whether communication between not directly 6494 * connected nodes goes through intermediary nodes (where programs 6495 * could run), or through backplane controllers. This affects 6496 * placement of programs. 6497 * 6498 * The type of topology can be discerned with the following tests: 6499 * - If the maximum distance between any nodes is 1 hop, the system 6500 * is directly connected. 6501 * - If for two nodes A and B, located N > 1 hops away from each other, 6502 * there is an intermediary node C, which is < N hops away from both 6503 * nodes A and B, the system is a glueless mesh. 6504 */ 6505 static void init_numa_topology_type(void) 6506 { 6507 int a, b, c, n; 6508 6509 n = sched_max_numa_distance; 6510 6511 if (sched_domains_numa_levels <= 1) { 6512 sched_numa_topology_type = NUMA_DIRECT; 6513 return; 6514 } 6515 6516 for_each_online_node(a) { 6517 for_each_online_node(b) { 6518 /* Find two nodes furthest removed from each other. */ 6519 if (node_distance(a, b) < n) 6520 continue; 6521 6522 /* Is there an intermediary node between a and b? */ 6523 for_each_online_node(c) { 6524 if (node_distance(a, c) < n && 6525 node_distance(b, c) < n) { 6526 sched_numa_topology_type = 6527 NUMA_GLUELESS_MESH; 6528 return; 6529 } 6530 } 6531 6532 sched_numa_topology_type = NUMA_BACKPLANE; 6533 return; 6534 } 6535 } 6536 } 6537 6538 static void sched_init_numa(void) 6539 { 6540 int next_distance, curr_distance = node_distance(0, 0); 6541 struct sched_domain_topology_level *tl; 6542 int level = 0; 6543 int i, j, k; 6544 6545 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6546 if (!sched_domains_numa_distance) 6547 return; 6548 6549 /* 6550 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6551 * unique distances in the node_distance() table. 6552 * 6553 * Assumes node_distance(0,j) includes all distances in 6554 * node_distance(i,j) in order to avoid cubic time. 6555 */ 6556 next_distance = curr_distance; 6557 for (i = 0; i < nr_node_ids; i++) { 6558 for (j = 0; j < nr_node_ids; j++) { 6559 for (k = 0; k < nr_node_ids; k++) { 6560 int distance = node_distance(i, k); 6561 6562 if (distance > curr_distance && 6563 (distance < next_distance || 6564 next_distance == curr_distance)) 6565 next_distance = distance; 6566 6567 /* 6568 * While not a strong assumption it would be nice to know 6569 * about cases where if node A is connected to B, B is not 6570 * equally connected to A. 6571 */ 6572 if (sched_debug() && node_distance(k, i) != distance) 6573 sched_numa_warn("Node-distance not symmetric"); 6574 6575 if (sched_debug() && i && !find_numa_distance(distance)) 6576 sched_numa_warn("Node-0 not representative"); 6577 } 6578 if (next_distance != curr_distance) { 6579 sched_domains_numa_distance[level++] = next_distance; 6580 sched_domains_numa_levels = level; 6581 curr_distance = next_distance; 6582 } else break; 6583 } 6584 6585 /* 6586 * In case of sched_debug() we verify the above assumption. 6587 */ 6588 if (!sched_debug()) 6589 break; 6590 } 6591 6592 if (!level) 6593 return; 6594 6595 /* 6596 * 'level' contains the number of unique distances, excluding the 6597 * identity distance node_distance(i,i). 6598 * 6599 * The sched_domains_numa_distance[] array includes the actual distance 6600 * numbers. 6601 */ 6602 6603 /* 6604 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6605 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6606 * the array will contain less then 'level' members. This could be 6607 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6608 * in other functions. 6609 * 6610 * We reset it to 'level' at the end of this function. 6611 */ 6612 sched_domains_numa_levels = 0; 6613 6614 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6615 if (!sched_domains_numa_masks) 6616 return; 6617 6618 /* 6619 * Now for each level, construct a mask per node which contains all 6620 * cpus of nodes that are that many hops away from us. 6621 */ 6622 for (i = 0; i < level; i++) { 6623 sched_domains_numa_masks[i] = 6624 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6625 if (!sched_domains_numa_masks[i]) 6626 return; 6627 6628 for (j = 0; j < nr_node_ids; j++) { 6629 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6630 if (!mask) 6631 return; 6632 6633 sched_domains_numa_masks[i][j] = mask; 6634 6635 for_each_node(k) { 6636 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6637 continue; 6638 6639 cpumask_or(mask, mask, cpumask_of_node(k)); 6640 } 6641 } 6642 } 6643 6644 /* Compute default topology size */ 6645 for (i = 0; sched_domain_topology[i].mask; i++); 6646 6647 tl = kzalloc((i + level + 1) * 6648 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6649 if (!tl) 6650 return; 6651 6652 /* 6653 * Copy the default topology bits.. 6654 */ 6655 for (i = 0; sched_domain_topology[i].mask; i++) 6656 tl[i] = sched_domain_topology[i]; 6657 6658 /* 6659 * .. and append 'j' levels of NUMA goodness. 6660 */ 6661 for (j = 0; j < level; i++, j++) { 6662 tl[i] = (struct sched_domain_topology_level){ 6663 .mask = sd_numa_mask, 6664 .sd_flags = cpu_numa_flags, 6665 .flags = SDTL_OVERLAP, 6666 .numa_level = j, 6667 SD_INIT_NAME(NUMA) 6668 }; 6669 } 6670 6671 sched_domain_topology = tl; 6672 6673 sched_domains_numa_levels = level; 6674 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6675 6676 init_numa_topology_type(); 6677 } 6678 6679 static void sched_domains_numa_masks_set(unsigned int cpu) 6680 { 6681 int node = cpu_to_node(cpu); 6682 int i, j; 6683 6684 for (i = 0; i < sched_domains_numa_levels; i++) { 6685 for (j = 0; j < nr_node_ids; j++) { 6686 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6687 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6688 } 6689 } 6690 } 6691 6692 static void sched_domains_numa_masks_clear(unsigned int cpu) 6693 { 6694 int i, j; 6695 6696 for (i = 0; i < sched_domains_numa_levels; i++) { 6697 for (j = 0; j < nr_node_ids; j++) 6698 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6699 } 6700 } 6701 6702 #else 6703 static inline void sched_init_numa(void) { } 6704 static void sched_domains_numa_masks_set(unsigned int cpu) { } 6705 static void sched_domains_numa_masks_clear(unsigned int cpu) { } 6706 #endif /* CONFIG_NUMA */ 6707 6708 static int __sdt_alloc(const struct cpumask *cpu_map) 6709 { 6710 struct sched_domain_topology_level *tl; 6711 int j; 6712 6713 for_each_sd_topology(tl) { 6714 struct sd_data *sdd = &tl->data; 6715 6716 sdd->sd = alloc_percpu(struct sched_domain *); 6717 if (!sdd->sd) 6718 return -ENOMEM; 6719 6720 sdd->sg = alloc_percpu(struct sched_group *); 6721 if (!sdd->sg) 6722 return -ENOMEM; 6723 6724 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6725 if (!sdd->sgc) 6726 return -ENOMEM; 6727 6728 for_each_cpu(j, cpu_map) { 6729 struct sched_domain *sd; 6730 struct sched_group *sg; 6731 struct sched_group_capacity *sgc; 6732 6733 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6734 GFP_KERNEL, cpu_to_node(j)); 6735 if (!sd) 6736 return -ENOMEM; 6737 6738 *per_cpu_ptr(sdd->sd, j) = sd; 6739 6740 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6741 GFP_KERNEL, cpu_to_node(j)); 6742 if (!sg) 6743 return -ENOMEM; 6744 6745 sg->next = sg; 6746 6747 *per_cpu_ptr(sdd->sg, j) = sg; 6748 6749 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6750 GFP_KERNEL, cpu_to_node(j)); 6751 if (!sgc) 6752 return -ENOMEM; 6753 6754 *per_cpu_ptr(sdd->sgc, j) = sgc; 6755 } 6756 } 6757 6758 return 0; 6759 } 6760 6761 static void __sdt_free(const struct cpumask *cpu_map) 6762 { 6763 struct sched_domain_topology_level *tl; 6764 int j; 6765 6766 for_each_sd_topology(tl) { 6767 struct sd_data *sdd = &tl->data; 6768 6769 for_each_cpu(j, cpu_map) { 6770 struct sched_domain *sd; 6771 6772 if (sdd->sd) { 6773 sd = *per_cpu_ptr(sdd->sd, j); 6774 if (sd && (sd->flags & SD_OVERLAP)) 6775 free_sched_groups(sd->groups, 0); 6776 kfree(*per_cpu_ptr(sdd->sd, j)); 6777 } 6778 6779 if (sdd->sg) 6780 kfree(*per_cpu_ptr(sdd->sg, j)); 6781 if (sdd->sgc) 6782 kfree(*per_cpu_ptr(sdd->sgc, j)); 6783 } 6784 free_percpu(sdd->sd); 6785 sdd->sd = NULL; 6786 free_percpu(sdd->sg); 6787 sdd->sg = NULL; 6788 free_percpu(sdd->sgc); 6789 sdd->sgc = NULL; 6790 } 6791 } 6792 6793 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6794 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6795 struct sched_domain *child, int cpu) 6796 { 6797 struct sched_domain *sd = sd_init(tl, cpu); 6798 if (!sd) 6799 return child; 6800 6801 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6802 if (child) { 6803 sd->level = child->level + 1; 6804 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6805 child->parent = sd; 6806 sd->child = child; 6807 6808 if (!cpumask_subset(sched_domain_span(child), 6809 sched_domain_span(sd))) { 6810 pr_err("BUG: arch topology borken\n"); 6811 #ifdef CONFIG_SCHED_DEBUG 6812 pr_err(" the %s domain not a subset of the %s domain\n", 6813 child->name, sd->name); 6814 #endif 6815 /* Fixup, ensure @sd has at least @child cpus. */ 6816 cpumask_or(sched_domain_span(sd), 6817 sched_domain_span(sd), 6818 sched_domain_span(child)); 6819 } 6820 6821 } 6822 set_domain_attribute(sd, attr); 6823 6824 return sd; 6825 } 6826 6827 /* 6828 * Build sched domains for a given set of cpus and attach the sched domains 6829 * to the individual cpus 6830 */ 6831 static int build_sched_domains(const struct cpumask *cpu_map, 6832 struct sched_domain_attr *attr) 6833 { 6834 enum s_alloc alloc_state; 6835 struct sched_domain *sd; 6836 struct s_data d; 6837 int i, ret = -ENOMEM; 6838 6839 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6840 if (alloc_state != sa_rootdomain) 6841 goto error; 6842 6843 /* Set up domains for cpus specified by the cpu_map. */ 6844 for_each_cpu(i, cpu_map) { 6845 struct sched_domain_topology_level *tl; 6846 6847 sd = NULL; 6848 for_each_sd_topology(tl) { 6849 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6850 if (tl == sched_domain_topology) 6851 *per_cpu_ptr(d.sd, i) = sd; 6852 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6853 sd->flags |= SD_OVERLAP; 6854 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6855 break; 6856 } 6857 } 6858 6859 /* Build the groups for the domains */ 6860 for_each_cpu(i, cpu_map) { 6861 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6862 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6863 if (sd->flags & SD_OVERLAP) { 6864 if (build_overlap_sched_groups(sd, i)) 6865 goto error; 6866 } else { 6867 if (build_sched_groups(sd, i)) 6868 goto error; 6869 } 6870 } 6871 } 6872 6873 /* Calculate CPU capacity for physical packages and nodes */ 6874 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6875 if (!cpumask_test_cpu(i, cpu_map)) 6876 continue; 6877 6878 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6879 claim_allocations(i, sd); 6880 init_sched_groups_capacity(i, sd); 6881 } 6882 } 6883 6884 /* Attach the domains */ 6885 rcu_read_lock(); 6886 for_each_cpu(i, cpu_map) { 6887 sd = *per_cpu_ptr(d.sd, i); 6888 cpu_attach_domain(sd, d.rd, i); 6889 } 6890 rcu_read_unlock(); 6891 6892 ret = 0; 6893 error: 6894 __free_domain_allocs(&d, alloc_state, cpu_map); 6895 return ret; 6896 } 6897 6898 static cpumask_var_t *doms_cur; /* current sched domains */ 6899 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6900 static struct sched_domain_attr *dattr_cur; 6901 /* attribues of custom domains in 'doms_cur' */ 6902 6903 /* 6904 * Special case: If a kmalloc of a doms_cur partition (array of 6905 * cpumask) fails, then fallback to a single sched domain, 6906 * as determined by the single cpumask fallback_doms. 6907 */ 6908 static cpumask_var_t fallback_doms; 6909 6910 /* 6911 * arch_update_cpu_topology lets virtualized architectures update the 6912 * cpu core maps. It is supposed to return 1 if the topology changed 6913 * or 0 if it stayed the same. 6914 */ 6915 int __weak arch_update_cpu_topology(void) 6916 { 6917 return 0; 6918 } 6919 6920 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6921 { 6922 int i; 6923 cpumask_var_t *doms; 6924 6925 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6926 if (!doms) 6927 return NULL; 6928 for (i = 0; i < ndoms; i++) { 6929 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6930 free_sched_domains(doms, i); 6931 return NULL; 6932 } 6933 } 6934 return doms; 6935 } 6936 6937 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6938 { 6939 unsigned int i; 6940 for (i = 0; i < ndoms; i++) 6941 free_cpumask_var(doms[i]); 6942 kfree(doms); 6943 } 6944 6945 /* 6946 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6947 * For now this just excludes isolated cpus, but could be used to 6948 * exclude other special cases in the future. 6949 */ 6950 static int init_sched_domains(const struct cpumask *cpu_map) 6951 { 6952 int err; 6953 6954 arch_update_cpu_topology(); 6955 ndoms_cur = 1; 6956 doms_cur = alloc_sched_domains(ndoms_cur); 6957 if (!doms_cur) 6958 doms_cur = &fallback_doms; 6959 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6960 err = build_sched_domains(doms_cur[0], NULL); 6961 register_sched_domain_sysctl(); 6962 6963 return err; 6964 } 6965 6966 /* 6967 * Detach sched domains from a group of cpus specified in cpu_map 6968 * These cpus will now be attached to the NULL domain 6969 */ 6970 static void detach_destroy_domains(const struct cpumask *cpu_map) 6971 { 6972 int i; 6973 6974 rcu_read_lock(); 6975 for_each_cpu(i, cpu_map) 6976 cpu_attach_domain(NULL, &def_root_domain, i); 6977 rcu_read_unlock(); 6978 } 6979 6980 /* handle null as "default" */ 6981 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6982 struct sched_domain_attr *new, int idx_new) 6983 { 6984 struct sched_domain_attr tmp; 6985 6986 /* fast path */ 6987 if (!new && !cur) 6988 return 1; 6989 6990 tmp = SD_ATTR_INIT; 6991 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6992 new ? (new + idx_new) : &tmp, 6993 sizeof(struct sched_domain_attr)); 6994 } 6995 6996 /* 6997 * Partition sched domains as specified by the 'ndoms_new' 6998 * cpumasks in the array doms_new[] of cpumasks. This compares 6999 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7000 * It destroys each deleted domain and builds each new domain. 7001 * 7002 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7003 * The masks don't intersect (don't overlap.) We should setup one 7004 * sched domain for each mask. CPUs not in any of the cpumasks will 7005 * not be load balanced. If the same cpumask appears both in the 7006 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7007 * it as it is. 7008 * 7009 * The passed in 'doms_new' should be allocated using 7010 * alloc_sched_domains. This routine takes ownership of it and will 7011 * free_sched_domains it when done with it. If the caller failed the 7012 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7013 * and partition_sched_domains() will fallback to the single partition 7014 * 'fallback_doms', it also forces the domains to be rebuilt. 7015 * 7016 * If doms_new == NULL it will be replaced with cpu_online_mask. 7017 * ndoms_new == 0 is a special case for destroying existing domains, 7018 * and it will not create the default domain. 7019 * 7020 * Call with hotplug lock held 7021 */ 7022 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7023 struct sched_domain_attr *dattr_new) 7024 { 7025 int i, j, n; 7026 int new_topology; 7027 7028 mutex_lock(&sched_domains_mutex); 7029 7030 /* always unregister in case we don't destroy any domains */ 7031 unregister_sched_domain_sysctl(); 7032 7033 /* Let architecture update cpu core mappings. */ 7034 new_topology = arch_update_cpu_topology(); 7035 7036 n = doms_new ? ndoms_new : 0; 7037 7038 /* Destroy deleted domains */ 7039 for (i = 0; i < ndoms_cur; i++) { 7040 for (j = 0; j < n && !new_topology; j++) { 7041 if (cpumask_equal(doms_cur[i], doms_new[j]) 7042 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7043 goto match1; 7044 } 7045 /* no match - a current sched domain not in new doms_new[] */ 7046 detach_destroy_domains(doms_cur[i]); 7047 match1: 7048 ; 7049 } 7050 7051 n = ndoms_cur; 7052 if (doms_new == NULL) { 7053 n = 0; 7054 doms_new = &fallback_doms; 7055 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7056 WARN_ON_ONCE(dattr_new); 7057 } 7058 7059 /* Build new domains */ 7060 for (i = 0; i < ndoms_new; i++) { 7061 for (j = 0; j < n && !new_topology; j++) { 7062 if (cpumask_equal(doms_new[i], doms_cur[j]) 7063 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7064 goto match2; 7065 } 7066 /* no match - add a new doms_new */ 7067 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7068 match2: 7069 ; 7070 } 7071 7072 /* Remember the new sched domains */ 7073 if (doms_cur != &fallback_doms) 7074 free_sched_domains(doms_cur, ndoms_cur); 7075 kfree(dattr_cur); /* kfree(NULL) is safe */ 7076 doms_cur = doms_new; 7077 dattr_cur = dattr_new; 7078 ndoms_cur = ndoms_new; 7079 7080 register_sched_domain_sysctl(); 7081 7082 mutex_unlock(&sched_domains_mutex); 7083 } 7084 7085 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7086 7087 /* 7088 * Update cpusets according to cpu_active mask. If cpusets are 7089 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7090 * around partition_sched_domains(). 7091 * 7092 * If we come here as part of a suspend/resume, don't touch cpusets because we 7093 * want to restore it back to its original state upon resume anyway. 7094 */ 7095 static void cpuset_cpu_active(void) 7096 { 7097 if (cpuhp_tasks_frozen) { 7098 /* 7099 * num_cpus_frozen tracks how many CPUs are involved in suspend 7100 * resume sequence. As long as this is not the last online 7101 * operation in the resume sequence, just build a single sched 7102 * domain, ignoring cpusets. 7103 */ 7104 num_cpus_frozen--; 7105 if (likely(num_cpus_frozen)) { 7106 partition_sched_domains(1, NULL, NULL); 7107 return; 7108 } 7109 /* 7110 * This is the last CPU online operation. So fall through and 7111 * restore the original sched domains by considering the 7112 * cpuset configurations. 7113 */ 7114 } 7115 cpuset_update_active_cpus(true); 7116 } 7117 7118 static int cpuset_cpu_inactive(unsigned int cpu) 7119 { 7120 unsigned long flags; 7121 struct dl_bw *dl_b; 7122 bool overflow; 7123 int cpus; 7124 7125 if (!cpuhp_tasks_frozen) { 7126 rcu_read_lock_sched(); 7127 dl_b = dl_bw_of(cpu); 7128 7129 raw_spin_lock_irqsave(&dl_b->lock, flags); 7130 cpus = dl_bw_cpus(cpu); 7131 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7132 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7133 7134 rcu_read_unlock_sched(); 7135 7136 if (overflow) 7137 return -EBUSY; 7138 cpuset_update_active_cpus(false); 7139 } else { 7140 num_cpus_frozen++; 7141 partition_sched_domains(1, NULL, NULL); 7142 } 7143 return 0; 7144 } 7145 7146 int sched_cpu_activate(unsigned int cpu) 7147 { 7148 struct rq *rq = cpu_rq(cpu); 7149 unsigned long flags; 7150 7151 set_cpu_active(cpu, true); 7152 7153 if (sched_smp_initialized) { 7154 sched_domains_numa_masks_set(cpu); 7155 cpuset_cpu_active(); 7156 } 7157 7158 /* 7159 * Put the rq online, if not already. This happens: 7160 * 7161 * 1) In the early boot process, because we build the real domains 7162 * after all cpus have been brought up. 7163 * 7164 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7165 * domains. 7166 */ 7167 raw_spin_lock_irqsave(&rq->lock, flags); 7168 if (rq->rd) { 7169 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7170 set_rq_online(rq); 7171 } 7172 raw_spin_unlock_irqrestore(&rq->lock, flags); 7173 7174 update_max_interval(); 7175 7176 return 0; 7177 } 7178 7179 int sched_cpu_deactivate(unsigned int cpu) 7180 { 7181 int ret; 7182 7183 set_cpu_active(cpu, false); 7184 /* 7185 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 7186 * users of this state to go away such that all new such users will 7187 * observe it. 7188 * 7189 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might 7190 * not imply sync_sched(), so wait for both. 7191 * 7192 * Do sync before park smpboot threads to take care the rcu boost case. 7193 */ 7194 if (IS_ENABLED(CONFIG_PREEMPT)) 7195 synchronize_rcu_mult(call_rcu, call_rcu_sched); 7196 else 7197 synchronize_rcu(); 7198 7199 if (!sched_smp_initialized) 7200 return 0; 7201 7202 ret = cpuset_cpu_inactive(cpu); 7203 if (ret) { 7204 set_cpu_active(cpu, true); 7205 return ret; 7206 } 7207 sched_domains_numa_masks_clear(cpu); 7208 return 0; 7209 } 7210 7211 static void sched_rq_cpu_starting(unsigned int cpu) 7212 { 7213 struct rq *rq = cpu_rq(cpu); 7214 7215 rq->calc_load_update = calc_load_update; 7216 account_reset_rq(rq); 7217 update_max_interval(); 7218 } 7219 7220 int sched_cpu_starting(unsigned int cpu) 7221 { 7222 set_cpu_rq_start_time(cpu); 7223 sched_rq_cpu_starting(cpu); 7224 return 0; 7225 } 7226 7227 #ifdef CONFIG_HOTPLUG_CPU 7228 int sched_cpu_dying(unsigned int cpu) 7229 { 7230 struct rq *rq = cpu_rq(cpu); 7231 unsigned long flags; 7232 7233 /* Handle pending wakeups and then migrate everything off */ 7234 sched_ttwu_pending(); 7235 raw_spin_lock_irqsave(&rq->lock, flags); 7236 if (rq->rd) { 7237 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7238 set_rq_offline(rq); 7239 } 7240 migrate_tasks(rq); 7241 BUG_ON(rq->nr_running != 1); 7242 raw_spin_unlock_irqrestore(&rq->lock, flags); 7243 calc_load_migrate(rq); 7244 update_max_interval(); 7245 nohz_balance_exit_idle(cpu); 7246 hrtick_clear(rq); 7247 return 0; 7248 } 7249 #endif 7250 7251 void __init sched_init_smp(void) 7252 { 7253 cpumask_var_t non_isolated_cpus; 7254 7255 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7256 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7257 7258 sched_init_numa(); 7259 7260 /* 7261 * There's no userspace yet to cause hotplug operations; hence all the 7262 * cpu masks are stable and all blatant races in the below code cannot 7263 * happen. 7264 */ 7265 mutex_lock(&sched_domains_mutex); 7266 init_sched_domains(cpu_active_mask); 7267 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7268 if (cpumask_empty(non_isolated_cpus)) 7269 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7270 mutex_unlock(&sched_domains_mutex); 7271 7272 /* Move init over to a non-isolated CPU */ 7273 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7274 BUG(); 7275 sched_init_granularity(); 7276 free_cpumask_var(non_isolated_cpus); 7277 7278 init_sched_rt_class(); 7279 init_sched_dl_class(); 7280 sched_smp_initialized = true; 7281 } 7282 7283 static int __init migration_init(void) 7284 { 7285 sched_rq_cpu_starting(smp_processor_id()); 7286 return 0; 7287 } 7288 early_initcall(migration_init); 7289 7290 #else 7291 void __init sched_init_smp(void) 7292 { 7293 sched_init_granularity(); 7294 } 7295 #endif /* CONFIG_SMP */ 7296 7297 int in_sched_functions(unsigned long addr) 7298 { 7299 return in_lock_functions(addr) || 7300 (addr >= (unsigned long)__sched_text_start 7301 && addr < (unsigned long)__sched_text_end); 7302 } 7303 7304 #ifdef CONFIG_CGROUP_SCHED 7305 /* 7306 * Default task group. 7307 * Every task in system belongs to this group at bootup. 7308 */ 7309 struct task_group root_task_group; 7310 LIST_HEAD(task_groups); 7311 7312 /* Cacheline aligned slab cache for task_group */ 7313 static struct kmem_cache *task_group_cache __read_mostly; 7314 #endif 7315 7316 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7317 7318 void __init sched_init(void) 7319 { 7320 int i, j; 7321 unsigned long alloc_size = 0, ptr; 7322 7323 #ifdef CONFIG_FAIR_GROUP_SCHED 7324 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7325 #endif 7326 #ifdef CONFIG_RT_GROUP_SCHED 7327 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7328 #endif 7329 if (alloc_size) { 7330 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7331 7332 #ifdef CONFIG_FAIR_GROUP_SCHED 7333 root_task_group.se = (struct sched_entity **)ptr; 7334 ptr += nr_cpu_ids * sizeof(void **); 7335 7336 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7337 ptr += nr_cpu_ids * sizeof(void **); 7338 7339 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7340 #ifdef CONFIG_RT_GROUP_SCHED 7341 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7342 ptr += nr_cpu_ids * sizeof(void **); 7343 7344 root_task_group.rt_rq = (struct rt_rq **)ptr; 7345 ptr += nr_cpu_ids * sizeof(void **); 7346 7347 #endif /* CONFIG_RT_GROUP_SCHED */ 7348 } 7349 #ifdef CONFIG_CPUMASK_OFFSTACK 7350 for_each_possible_cpu(i) { 7351 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7352 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7353 } 7354 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7355 7356 init_rt_bandwidth(&def_rt_bandwidth, 7357 global_rt_period(), global_rt_runtime()); 7358 init_dl_bandwidth(&def_dl_bandwidth, 7359 global_rt_period(), global_rt_runtime()); 7360 7361 #ifdef CONFIG_SMP 7362 init_defrootdomain(); 7363 #endif 7364 7365 #ifdef CONFIG_RT_GROUP_SCHED 7366 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7367 global_rt_period(), global_rt_runtime()); 7368 #endif /* CONFIG_RT_GROUP_SCHED */ 7369 7370 #ifdef CONFIG_CGROUP_SCHED 7371 task_group_cache = KMEM_CACHE(task_group, 0); 7372 7373 list_add(&root_task_group.list, &task_groups); 7374 INIT_LIST_HEAD(&root_task_group.children); 7375 INIT_LIST_HEAD(&root_task_group.siblings); 7376 autogroup_init(&init_task); 7377 #endif /* CONFIG_CGROUP_SCHED */ 7378 7379 for_each_possible_cpu(i) { 7380 struct rq *rq; 7381 7382 rq = cpu_rq(i); 7383 raw_spin_lock_init(&rq->lock); 7384 rq->nr_running = 0; 7385 rq->calc_load_active = 0; 7386 rq->calc_load_update = jiffies + LOAD_FREQ; 7387 init_cfs_rq(&rq->cfs); 7388 init_rt_rq(&rq->rt); 7389 init_dl_rq(&rq->dl); 7390 #ifdef CONFIG_FAIR_GROUP_SCHED 7391 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7392 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7393 /* 7394 * How much cpu bandwidth does root_task_group get? 7395 * 7396 * In case of task-groups formed thr' the cgroup filesystem, it 7397 * gets 100% of the cpu resources in the system. This overall 7398 * system cpu resource is divided among the tasks of 7399 * root_task_group and its child task-groups in a fair manner, 7400 * based on each entity's (task or task-group's) weight 7401 * (se->load.weight). 7402 * 7403 * In other words, if root_task_group has 10 tasks of weight 7404 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7405 * then A0's share of the cpu resource is: 7406 * 7407 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7408 * 7409 * We achieve this by letting root_task_group's tasks sit 7410 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7411 */ 7412 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7413 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7414 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7415 7416 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7417 #ifdef CONFIG_RT_GROUP_SCHED 7418 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7419 #endif 7420 7421 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7422 rq->cpu_load[j] = 0; 7423 7424 #ifdef CONFIG_SMP 7425 rq->sd = NULL; 7426 rq->rd = NULL; 7427 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7428 rq->balance_callback = NULL; 7429 rq->active_balance = 0; 7430 rq->next_balance = jiffies; 7431 rq->push_cpu = 0; 7432 rq->cpu = i; 7433 rq->online = 0; 7434 rq->idle_stamp = 0; 7435 rq->avg_idle = 2*sysctl_sched_migration_cost; 7436 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7437 7438 INIT_LIST_HEAD(&rq->cfs_tasks); 7439 7440 rq_attach_root(rq, &def_root_domain); 7441 #ifdef CONFIG_NO_HZ_COMMON 7442 rq->last_load_update_tick = jiffies; 7443 rq->nohz_flags = 0; 7444 #endif 7445 #ifdef CONFIG_NO_HZ_FULL 7446 rq->last_sched_tick = 0; 7447 #endif 7448 #endif /* CONFIG_SMP */ 7449 init_rq_hrtick(rq); 7450 atomic_set(&rq->nr_iowait, 0); 7451 } 7452 7453 set_load_weight(&init_task); 7454 7455 #ifdef CONFIG_PREEMPT_NOTIFIERS 7456 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7457 #endif 7458 7459 /* 7460 * The boot idle thread does lazy MMU switching as well: 7461 */ 7462 atomic_inc(&init_mm.mm_count); 7463 enter_lazy_tlb(&init_mm, current); 7464 7465 /* 7466 * During early bootup we pretend to be a normal task: 7467 */ 7468 current->sched_class = &fair_sched_class; 7469 7470 /* 7471 * Make us the idle thread. Technically, schedule() should not be 7472 * called from this thread, however somewhere below it might be, 7473 * but because we are the idle thread, we just pick up running again 7474 * when this runqueue becomes "idle". 7475 */ 7476 init_idle(current, smp_processor_id()); 7477 7478 calc_load_update = jiffies + LOAD_FREQ; 7479 7480 #ifdef CONFIG_SMP 7481 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7482 /* May be allocated at isolcpus cmdline parse time */ 7483 if (cpu_isolated_map == NULL) 7484 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7485 idle_thread_set_boot_cpu(); 7486 set_cpu_rq_start_time(smp_processor_id()); 7487 #endif 7488 init_sched_fair_class(); 7489 7490 scheduler_running = 1; 7491 } 7492 7493 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7494 static inline int preempt_count_equals(int preempt_offset) 7495 { 7496 int nested = preempt_count() + rcu_preempt_depth(); 7497 7498 return (nested == preempt_offset); 7499 } 7500 7501 void __might_sleep(const char *file, int line, int preempt_offset) 7502 { 7503 /* 7504 * Blocking primitives will set (and therefore destroy) current->state, 7505 * since we will exit with TASK_RUNNING make sure we enter with it, 7506 * otherwise we will destroy state. 7507 */ 7508 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7509 "do not call blocking ops when !TASK_RUNNING; " 7510 "state=%lx set at [<%p>] %pS\n", 7511 current->state, 7512 (void *)current->task_state_change, 7513 (void *)current->task_state_change); 7514 7515 ___might_sleep(file, line, preempt_offset); 7516 } 7517 EXPORT_SYMBOL(__might_sleep); 7518 7519 void ___might_sleep(const char *file, int line, int preempt_offset) 7520 { 7521 static unsigned long prev_jiffy; /* ratelimiting */ 7522 7523 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7524 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7525 !is_idle_task(current)) || 7526 system_state != SYSTEM_RUNNING || oops_in_progress) 7527 return; 7528 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7529 return; 7530 prev_jiffy = jiffies; 7531 7532 printk(KERN_ERR 7533 "BUG: sleeping function called from invalid context at %s:%d\n", 7534 file, line); 7535 printk(KERN_ERR 7536 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7537 in_atomic(), irqs_disabled(), 7538 current->pid, current->comm); 7539 7540 if (task_stack_end_corrupted(current)) 7541 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7542 7543 debug_show_held_locks(current); 7544 if (irqs_disabled()) 7545 print_irqtrace_events(current); 7546 #ifdef CONFIG_DEBUG_PREEMPT 7547 if (!preempt_count_equals(preempt_offset)) { 7548 pr_err("Preemption disabled at:"); 7549 print_ip_sym(current->preempt_disable_ip); 7550 pr_cont("\n"); 7551 } 7552 #endif 7553 dump_stack(); 7554 } 7555 EXPORT_SYMBOL(___might_sleep); 7556 #endif 7557 7558 #ifdef CONFIG_MAGIC_SYSRQ 7559 void normalize_rt_tasks(void) 7560 { 7561 struct task_struct *g, *p; 7562 struct sched_attr attr = { 7563 .sched_policy = SCHED_NORMAL, 7564 }; 7565 7566 read_lock(&tasklist_lock); 7567 for_each_process_thread(g, p) { 7568 /* 7569 * Only normalize user tasks: 7570 */ 7571 if (p->flags & PF_KTHREAD) 7572 continue; 7573 7574 p->se.exec_start = 0; 7575 #ifdef CONFIG_SCHEDSTATS 7576 p->se.statistics.wait_start = 0; 7577 p->se.statistics.sleep_start = 0; 7578 p->se.statistics.block_start = 0; 7579 #endif 7580 7581 if (!dl_task(p) && !rt_task(p)) { 7582 /* 7583 * Renice negative nice level userspace 7584 * tasks back to 0: 7585 */ 7586 if (task_nice(p) < 0) 7587 set_user_nice(p, 0); 7588 continue; 7589 } 7590 7591 __sched_setscheduler(p, &attr, false, false); 7592 } 7593 read_unlock(&tasklist_lock); 7594 } 7595 7596 #endif /* CONFIG_MAGIC_SYSRQ */ 7597 7598 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7599 /* 7600 * These functions are only useful for the IA64 MCA handling, or kdb. 7601 * 7602 * They can only be called when the whole system has been 7603 * stopped - every CPU needs to be quiescent, and no scheduling 7604 * activity can take place. Using them for anything else would 7605 * be a serious bug, and as a result, they aren't even visible 7606 * under any other configuration. 7607 */ 7608 7609 /** 7610 * curr_task - return the current task for a given cpu. 7611 * @cpu: the processor in question. 7612 * 7613 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7614 * 7615 * Return: The current task for @cpu. 7616 */ 7617 struct task_struct *curr_task(int cpu) 7618 { 7619 return cpu_curr(cpu); 7620 } 7621 7622 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7623 7624 #ifdef CONFIG_IA64 7625 /** 7626 * set_curr_task - set the current task for a given cpu. 7627 * @cpu: the processor in question. 7628 * @p: the task pointer to set. 7629 * 7630 * Description: This function must only be used when non-maskable interrupts 7631 * are serviced on a separate stack. It allows the architecture to switch the 7632 * notion of the current task on a cpu in a non-blocking manner. This function 7633 * must be called with all CPU's synchronized, and interrupts disabled, the 7634 * and caller must save the original value of the current task (see 7635 * curr_task() above) and restore that value before reenabling interrupts and 7636 * re-starting the system. 7637 * 7638 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7639 */ 7640 void set_curr_task(int cpu, struct task_struct *p) 7641 { 7642 cpu_curr(cpu) = p; 7643 } 7644 7645 #endif 7646 7647 #ifdef CONFIG_CGROUP_SCHED 7648 /* task_group_lock serializes the addition/removal of task groups */ 7649 static DEFINE_SPINLOCK(task_group_lock); 7650 7651 static void sched_free_group(struct task_group *tg) 7652 { 7653 free_fair_sched_group(tg); 7654 free_rt_sched_group(tg); 7655 autogroup_free(tg); 7656 kmem_cache_free(task_group_cache, tg); 7657 } 7658 7659 /* allocate runqueue etc for a new task group */ 7660 struct task_group *sched_create_group(struct task_group *parent) 7661 { 7662 struct task_group *tg; 7663 7664 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7665 if (!tg) 7666 return ERR_PTR(-ENOMEM); 7667 7668 if (!alloc_fair_sched_group(tg, parent)) 7669 goto err; 7670 7671 if (!alloc_rt_sched_group(tg, parent)) 7672 goto err; 7673 7674 return tg; 7675 7676 err: 7677 sched_free_group(tg); 7678 return ERR_PTR(-ENOMEM); 7679 } 7680 7681 void sched_online_group(struct task_group *tg, struct task_group *parent) 7682 { 7683 unsigned long flags; 7684 7685 spin_lock_irqsave(&task_group_lock, flags); 7686 list_add_rcu(&tg->list, &task_groups); 7687 7688 WARN_ON(!parent); /* root should already exist */ 7689 7690 tg->parent = parent; 7691 INIT_LIST_HEAD(&tg->children); 7692 list_add_rcu(&tg->siblings, &parent->children); 7693 spin_unlock_irqrestore(&task_group_lock, flags); 7694 } 7695 7696 /* rcu callback to free various structures associated with a task group */ 7697 static void sched_free_group_rcu(struct rcu_head *rhp) 7698 { 7699 /* now it should be safe to free those cfs_rqs */ 7700 sched_free_group(container_of(rhp, struct task_group, rcu)); 7701 } 7702 7703 void sched_destroy_group(struct task_group *tg) 7704 { 7705 /* wait for possible concurrent references to cfs_rqs complete */ 7706 call_rcu(&tg->rcu, sched_free_group_rcu); 7707 } 7708 7709 void sched_offline_group(struct task_group *tg) 7710 { 7711 unsigned long flags; 7712 7713 /* end participation in shares distribution */ 7714 unregister_fair_sched_group(tg); 7715 7716 spin_lock_irqsave(&task_group_lock, flags); 7717 list_del_rcu(&tg->list); 7718 list_del_rcu(&tg->siblings); 7719 spin_unlock_irqrestore(&task_group_lock, flags); 7720 } 7721 7722 /* change task's runqueue when it moves between groups. 7723 * The caller of this function should have put the task in its new group 7724 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7725 * reflect its new group. 7726 */ 7727 void sched_move_task(struct task_struct *tsk) 7728 { 7729 struct task_group *tg; 7730 int queued, running; 7731 struct rq_flags rf; 7732 struct rq *rq; 7733 7734 rq = task_rq_lock(tsk, &rf); 7735 7736 running = task_current(rq, tsk); 7737 queued = task_on_rq_queued(tsk); 7738 7739 if (queued) 7740 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE); 7741 if (unlikely(running)) 7742 put_prev_task(rq, tsk); 7743 7744 /* 7745 * All callers are synchronized by task_rq_lock(); we do not use RCU 7746 * which is pointless here. Thus, we pass "true" to task_css_check() 7747 * to prevent lockdep warnings. 7748 */ 7749 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7750 struct task_group, css); 7751 tg = autogroup_task_group(tsk, tg); 7752 tsk->sched_task_group = tg; 7753 7754 #ifdef CONFIG_FAIR_GROUP_SCHED 7755 if (tsk->sched_class->task_move_group) 7756 tsk->sched_class->task_move_group(tsk); 7757 else 7758 #endif 7759 set_task_rq(tsk, task_cpu(tsk)); 7760 7761 if (unlikely(running)) 7762 tsk->sched_class->set_curr_task(rq); 7763 if (queued) 7764 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE); 7765 7766 task_rq_unlock(rq, tsk, &rf); 7767 } 7768 #endif /* CONFIG_CGROUP_SCHED */ 7769 7770 #ifdef CONFIG_RT_GROUP_SCHED 7771 /* 7772 * Ensure that the real time constraints are schedulable. 7773 */ 7774 static DEFINE_MUTEX(rt_constraints_mutex); 7775 7776 /* Must be called with tasklist_lock held */ 7777 static inline int tg_has_rt_tasks(struct task_group *tg) 7778 { 7779 struct task_struct *g, *p; 7780 7781 /* 7782 * Autogroups do not have RT tasks; see autogroup_create(). 7783 */ 7784 if (task_group_is_autogroup(tg)) 7785 return 0; 7786 7787 for_each_process_thread(g, p) { 7788 if (rt_task(p) && task_group(p) == tg) 7789 return 1; 7790 } 7791 7792 return 0; 7793 } 7794 7795 struct rt_schedulable_data { 7796 struct task_group *tg; 7797 u64 rt_period; 7798 u64 rt_runtime; 7799 }; 7800 7801 static int tg_rt_schedulable(struct task_group *tg, void *data) 7802 { 7803 struct rt_schedulable_data *d = data; 7804 struct task_group *child; 7805 unsigned long total, sum = 0; 7806 u64 period, runtime; 7807 7808 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7809 runtime = tg->rt_bandwidth.rt_runtime; 7810 7811 if (tg == d->tg) { 7812 period = d->rt_period; 7813 runtime = d->rt_runtime; 7814 } 7815 7816 /* 7817 * Cannot have more runtime than the period. 7818 */ 7819 if (runtime > period && runtime != RUNTIME_INF) 7820 return -EINVAL; 7821 7822 /* 7823 * Ensure we don't starve existing RT tasks. 7824 */ 7825 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7826 return -EBUSY; 7827 7828 total = to_ratio(period, runtime); 7829 7830 /* 7831 * Nobody can have more than the global setting allows. 7832 */ 7833 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7834 return -EINVAL; 7835 7836 /* 7837 * The sum of our children's runtime should not exceed our own. 7838 */ 7839 list_for_each_entry_rcu(child, &tg->children, siblings) { 7840 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7841 runtime = child->rt_bandwidth.rt_runtime; 7842 7843 if (child == d->tg) { 7844 period = d->rt_period; 7845 runtime = d->rt_runtime; 7846 } 7847 7848 sum += to_ratio(period, runtime); 7849 } 7850 7851 if (sum > total) 7852 return -EINVAL; 7853 7854 return 0; 7855 } 7856 7857 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7858 { 7859 int ret; 7860 7861 struct rt_schedulable_data data = { 7862 .tg = tg, 7863 .rt_period = period, 7864 .rt_runtime = runtime, 7865 }; 7866 7867 rcu_read_lock(); 7868 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7869 rcu_read_unlock(); 7870 7871 return ret; 7872 } 7873 7874 static int tg_set_rt_bandwidth(struct task_group *tg, 7875 u64 rt_period, u64 rt_runtime) 7876 { 7877 int i, err = 0; 7878 7879 /* 7880 * Disallowing the root group RT runtime is BAD, it would disallow the 7881 * kernel creating (and or operating) RT threads. 7882 */ 7883 if (tg == &root_task_group && rt_runtime == 0) 7884 return -EINVAL; 7885 7886 /* No period doesn't make any sense. */ 7887 if (rt_period == 0) 7888 return -EINVAL; 7889 7890 mutex_lock(&rt_constraints_mutex); 7891 read_lock(&tasklist_lock); 7892 err = __rt_schedulable(tg, rt_period, rt_runtime); 7893 if (err) 7894 goto unlock; 7895 7896 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7897 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7898 tg->rt_bandwidth.rt_runtime = rt_runtime; 7899 7900 for_each_possible_cpu(i) { 7901 struct rt_rq *rt_rq = tg->rt_rq[i]; 7902 7903 raw_spin_lock(&rt_rq->rt_runtime_lock); 7904 rt_rq->rt_runtime = rt_runtime; 7905 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7906 } 7907 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7908 unlock: 7909 read_unlock(&tasklist_lock); 7910 mutex_unlock(&rt_constraints_mutex); 7911 7912 return err; 7913 } 7914 7915 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7916 { 7917 u64 rt_runtime, rt_period; 7918 7919 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7920 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7921 if (rt_runtime_us < 0) 7922 rt_runtime = RUNTIME_INF; 7923 7924 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7925 } 7926 7927 static long sched_group_rt_runtime(struct task_group *tg) 7928 { 7929 u64 rt_runtime_us; 7930 7931 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7932 return -1; 7933 7934 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7935 do_div(rt_runtime_us, NSEC_PER_USEC); 7936 return rt_runtime_us; 7937 } 7938 7939 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 7940 { 7941 u64 rt_runtime, rt_period; 7942 7943 rt_period = rt_period_us * NSEC_PER_USEC; 7944 rt_runtime = tg->rt_bandwidth.rt_runtime; 7945 7946 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7947 } 7948 7949 static long sched_group_rt_period(struct task_group *tg) 7950 { 7951 u64 rt_period_us; 7952 7953 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7954 do_div(rt_period_us, NSEC_PER_USEC); 7955 return rt_period_us; 7956 } 7957 #endif /* CONFIG_RT_GROUP_SCHED */ 7958 7959 #ifdef CONFIG_RT_GROUP_SCHED 7960 static int sched_rt_global_constraints(void) 7961 { 7962 int ret = 0; 7963 7964 mutex_lock(&rt_constraints_mutex); 7965 read_lock(&tasklist_lock); 7966 ret = __rt_schedulable(NULL, 0, 0); 7967 read_unlock(&tasklist_lock); 7968 mutex_unlock(&rt_constraints_mutex); 7969 7970 return ret; 7971 } 7972 7973 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7974 { 7975 /* Don't accept realtime tasks when there is no way for them to run */ 7976 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7977 return 0; 7978 7979 return 1; 7980 } 7981 7982 #else /* !CONFIG_RT_GROUP_SCHED */ 7983 static int sched_rt_global_constraints(void) 7984 { 7985 unsigned long flags; 7986 int i; 7987 7988 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7989 for_each_possible_cpu(i) { 7990 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7991 7992 raw_spin_lock(&rt_rq->rt_runtime_lock); 7993 rt_rq->rt_runtime = global_rt_runtime(); 7994 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7995 } 7996 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7997 7998 return 0; 7999 } 8000 #endif /* CONFIG_RT_GROUP_SCHED */ 8001 8002 static int sched_dl_global_validate(void) 8003 { 8004 u64 runtime = global_rt_runtime(); 8005 u64 period = global_rt_period(); 8006 u64 new_bw = to_ratio(period, runtime); 8007 struct dl_bw *dl_b; 8008 int cpu, ret = 0; 8009 unsigned long flags; 8010 8011 /* 8012 * Here we want to check the bandwidth not being set to some 8013 * value smaller than the currently allocated bandwidth in 8014 * any of the root_domains. 8015 * 8016 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 8017 * cycling on root_domains... Discussion on different/better 8018 * solutions is welcome! 8019 */ 8020 for_each_possible_cpu(cpu) { 8021 rcu_read_lock_sched(); 8022 dl_b = dl_bw_of(cpu); 8023 8024 raw_spin_lock_irqsave(&dl_b->lock, flags); 8025 if (new_bw < dl_b->total_bw) 8026 ret = -EBUSY; 8027 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8028 8029 rcu_read_unlock_sched(); 8030 8031 if (ret) 8032 break; 8033 } 8034 8035 return ret; 8036 } 8037 8038 static void sched_dl_do_global(void) 8039 { 8040 u64 new_bw = -1; 8041 struct dl_bw *dl_b; 8042 int cpu; 8043 unsigned long flags; 8044 8045 def_dl_bandwidth.dl_period = global_rt_period(); 8046 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 8047 8048 if (global_rt_runtime() != RUNTIME_INF) 8049 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 8050 8051 /* 8052 * FIXME: As above... 8053 */ 8054 for_each_possible_cpu(cpu) { 8055 rcu_read_lock_sched(); 8056 dl_b = dl_bw_of(cpu); 8057 8058 raw_spin_lock_irqsave(&dl_b->lock, flags); 8059 dl_b->bw = new_bw; 8060 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8061 8062 rcu_read_unlock_sched(); 8063 } 8064 } 8065 8066 static int sched_rt_global_validate(void) 8067 { 8068 if (sysctl_sched_rt_period <= 0) 8069 return -EINVAL; 8070 8071 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 8072 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 8073 return -EINVAL; 8074 8075 return 0; 8076 } 8077 8078 static void sched_rt_do_global(void) 8079 { 8080 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 8081 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 8082 } 8083 8084 int sched_rt_handler(struct ctl_table *table, int write, 8085 void __user *buffer, size_t *lenp, 8086 loff_t *ppos) 8087 { 8088 int old_period, old_runtime; 8089 static DEFINE_MUTEX(mutex); 8090 int ret; 8091 8092 mutex_lock(&mutex); 8093 old_period = sysctl_sched_rt_period; 8094 old_runtime = sysctl_sched_rt_runtime; 8095 8096 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8097 8098 if (!ret && write) { 8099 ret = sched_rt_global_validate(); 8100 if (ret) 8101 goto undo; 8102 8103 ret = sched_dl_global_validate(); 8104 if (ret) 8105 goto undo; 8106 8107 ret = sched_rt_global_constraints(); 8108 if (ret) 8109 goto undo; 8110 8111 sched_rt_do_global(); 8112 sched_dl_do_global(); 8113 } 8114 if (0) { 8115 undo: 8116 sysctl_sched_rt_period = old_period; 8117 sysctl_sched_rt_runtime = old_runtime; 8118 } 8119 mutex_unlock(&mutex); 8120 8121 return ret; 8122 } 8123 8124 int sched_rr_handler(struct ctl_table *table, int write, 8125 void __user *buffer, size_t *lenp, 8126 loff_t *ppos) 8127 { 8128 int ret; 8129 static DEFINE_MUTEX(mutex); 8130 8131 mutex_lock(&mutex); 8132 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8133 /* make sure that internally we keep jiffies */ 8134 /* also, writing zero resets timeslice to default */ 8135 if (!ret && write) { 8136 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8137 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8138 } 8139 mutex_unlock(&mutex); 8140 return ret; 8141 } 8142 8143 #ifdef CONFIG_CGROUP_SCHED 8144 8145 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8146 { 8147 return css ? container_of(css, struct task_group, css) : NULL; 8148 } 8149 8150 static struct cgroup_subsys_state * 8151 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8152 { 8153 struct task_group *parent = css_tg(parent_css); 8154 struct task_group *tg; 8155 8156 if (!parent) { 8157 /* This is early initialization for the top cgroup */ 8158 return &root_task_group.css; 8159 } 8160 8161 tg = sched_create_group(parent); 8162 if (IS_ERR(tg)) 8163 return ERR_PTR(-ENOMEM); 8164 8165 sched_online_group(tg, parent); 8166 8167 return &tg->css; 8168 } 8169 8170 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8171 { 8172 struct task_group *tg = css_tg(css); 8173 8174 sched_offline_group(tg); 8175 } 8176 8177 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8178 { 8179 struct task_group *tg = css_tg(css); 8180 8181 /* 8182 * Relies on the RCU grace period between css_released() and this. 8183 */ 8184 sched_free_group(tg); 8185 } 8186 8187 static void cpu_cgroup_fork(struct task_struct *task) 8188 { 8189 sched_move_task(task); 8190 } 8191 8192 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8193 { 8194 struct task_struct *task; 8195 struct cgroup_subsys_state *css; 8196 8197 cgroup_taskset_for_each(task, css, tset) { 8198 #ifdef CONFIG_RT_GROUP_SCHED 8199 if (!sched_rt_can_attach(css_tg(css), task)) 8200 return -EINVAL; 8201 #else 8202 /* We don't support RT-tasks being in separate groups */ 8203 if (task->sched_class != &fair_sched_class) 8204 return -EINVAL; 8205 #endif 8206 } 8207 return 0; 8208 } 8209 8210 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8211 { 8212 struct task_struct *task; 8213 struct cgroup_subsys_state *css; 8214 8215 cgroup_taskset_for_each(task, css, tset) 8216 sched_move_task(task); 8217 } 8218 8219 #ifdef CONFIG_FAIR_GROUP_SCHED 8220 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8221 struct cftype *cftype, u64 shareval) 8222 { 8223 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8224 } 8225 8226 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8227 struct cftype *cft) 8228 { 8229 struct task_group *tg = css_tg(css); 8230 8231 return (u64) scale_load_down(tg->shares); 8232 } 8233 8234 #ifdef CONFIG_CFS_BANDWIDTH 8235 static DEFINE_MUTEX(cfs_constraints_mutex); 8236 8237 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8238 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8239 8240 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8241 8242 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8243 { 8244 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8245 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8246 8247 if (tg == &root_task_group) 8248 return -EINVAL; 8249 8250 /* 8251 * Ensure we have at some amount of bandwidth every period. This is 8252 * to prevent reaching a state of large arrears when throttled via 8253 * entity_tick() resulting in prolonged exit starvation. 8254 */ 8255 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8256 return -EINVAL; 8257 8258 /* 8259 * Likewise, bound things on the otherside by preventing insane quota 8260 * periods. This also allows us to normalize in computing quota 8261 * feasibility. 8262 */ 8263 if (period > max_cfs_quota_period) 8264 return -EINVAL; 8265 8266 /* 8267 * Prevent race between setting of cfs_rq->runtime_enabled and 8268 * unthrottle_offline_cfs_rqs(). 8269 */ 8270 get_online_cpus(); 8271 mutex_lock(&cfs_constraints_mutex); 8272 ret = __cfs_schedulable(tg, period, quota); 8273 if (ret) 8274 goto out_unlock; 8275 8276 runtime_enabled = quota != RUNTIME_INF; 8277 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8278 /* 8279 * If we need to toggle cfs_bandwidth_used, off->on must occur 8280 * before making related changes, and on->off must occur afterwards 8281 */ 8282 if (runtime_enabled && !runtime_was_enabled) 8283 cfs_bandwidth_usage_inc(); 8284 raw_spin_lock_irq(&cfs_b->lock); 8285 cfs_b->period = ns_to_ktime(period); 8286 cfs_b->quota = quota; 8287 8288 __refill_cfs_bandwidth_runtime(cfs_b); 8289 /* restart the period timer (if active) to handle new period expiry */ 8290 if (runtime_enabled) 8291 start_cfs_bandwidth(cfs_b); 8292 raw_spin_unlock_irq(&cfs_b->lock); 8293 8294 for_each_online_cpu(i) { 8295 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8296 struct rq *rq = cfs_rq->rq; 8297 8298 raw_spin_lock_irq(&rq->lock); 8299 cfs_rq->runtime_enabled = runtime_enabled; 8300 cfs_rq->runtime_remaining = 0; 8301 8302 if (cfs_rq->throttled) 8303 unthrottle_cfs_rq(cfs_rq); 8304 raw_spin_unlock_irq(&rq->lock); 8305 } 8306 if (runtime_was_enabled && !runtime_enabled) 8307 cfs_bandwidth_usage_dec(); 8308 out_unlock: 8309 mutex_unlock(&cfs_constraints_mutex); 8310 put_online_cpus(); 8311 8312 return ret; 8313 } 8314 8315 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8316 { 8317 u64 quota, period; 8318 8319 period = ktime_to_ns(tg->cfs_bandwidth.period); 8320 if (cfs_quota_us < 0) 8321 quota = RUNTIME_INF; 8322 else 8323 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8324 8325 return tg_set_cfs_bandwidth(tg, period, quota); 8326 } 8327 8328 long tg_get_cfs_quota(struct task_group *tg) 8329 { 8330 u64 quota_us; 8331 8332 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8333 return -1; 8334 8335 quota_us = tg->cfs_bandwidth.quota; 8336 do_div(quota_us, NSEC_PER_USEC); 8337 8338 return quota_us; 8339 } 8340 8341 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8342 { 8343 u64 quota, period; 8344 8345 period = (u64)cfs_period_us * NSEC_PER_USEC; 8346 quota = tg->cfs_bandwidth.quota; 8347 8348 return tg_set_cfs_bandwidth(tg, period, quota); 8349 } 8350 8351 long tg_get_cfs_period(struct task_group *tg) 8352 { 8353 u64 cfs_period_us; 8354 8355 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8356 do_div(cfs_period_us, NSEC_PER_USEC); 8357 8358 return cfs_period_us; 8359 } 8360 8361 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8362 struct cftype *cft) 8363 { 8364 return tg_get_cfs_quota(css_tg(css)); 8365 } 8366 8367 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8368 struct cftype *cftype, s64 cfs_quota_us) 8369 { 8370 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8371 } 8372 8373 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8374 struct cftype *cft) 8375 { 8376 return tg_get_cfs_period(css_tg(css)); 8377 } 8378 8379 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8380 struct cftype *cftype, u64 cfs_period_us) 8381 { 8382 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8383 } 8384 8385 struct cfs_schedulable_data { 8386 struct task_group *tg; 8387 u64 period, quota; 8388 }; 8389 8390 /* 8391 * normalize group quota/period to be quota/max_period 8392 * note: units are usecs 8393 */ 8394 static u64 normalize_cfs_quota(struct task_group *tg, 8395 struct cfs_schedulable_data *d) 8396 { 8397 u64 quota, period; 8398 8399 if (tg == d->tg) { 8400 period = d->period; 8401 quota = d->quota; 8402 } else { 8403 period = tg_get_cfs_period(tg); 8404 quota = tg_get_cfs_quota(tg); 8405 } 8406 8407 /* note: these should typically be equivalent */ 8408 if (quota == RUNTIME_INF || quota == -1) 8409 return RUNTIME_INF; 8410 8411 return to_ratio(period, quota); 8412 } 8413 8414 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8415 { 8416 struct cfs_schedulable_data *d = data; 8417 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8418 s64 quota = 0, parent_quota = -1; 8419 8420 if (!tg->parent) { 8421 quota = RUNTIME_INF; 8422 } else { 8423 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8424 8425 quota = normalize_cfs_quota(tg, d); 8426 parent_quota = parent_b->hierarchical_quota; 8427 8428 /* 8429 * ensure max(child_quota) <= parent_quota, inherit when no 8430 * limit is set 8431 */ 8432 if (quota == RUNTIME_INF) 8433 quota = parent_quota; 8434 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8435 return -EINVAL; 8436 } 8437 cfs_b->hierarchical_quota = quota; 8438 8439 return 0; 8440 } 8441 8442 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8443 { 8444 int ret; 8445 struct cfs_schedulable_data data = { 8446 .tg = tg, 8447 .period = period, 8448 .quota = quota, 8449 }; 8450 8451 if (quota != RUNTIME_INF) { 8452 do_div(data.period, NSEC_PER_USEC); 8453 do_div(data.quota, NSEC_PER_USEC); 8454 } 8455 8456 rcu_read_lock(); 8457 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8458 rcu_read_unlock(); 8459 8460 return ret; 8461 } 8462 8463 static int cpu_stats_show(struct seq_file *sf, void *v) 8464 { 8465 struct task_group *tg = css_tg(seq_css(sf)); 8466 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8467 8468 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8469 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8470 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8471 8472 return 0; 8473 } 8474 #endif /* CONFIG_CFS_BANDWIDTH */ 8475 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8476 8477 #ifdef CONFIG_RT_GROUP_SCHED 8478 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8479 struct cftype *cft, s64 val) 8480 { 8481 return sched_group_set_rt_runtime(css_tg(css), val); 8482 } 8483 8484 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8485 struct cftype *cft) 8486 { 8487 return sched_group_rt_runtime(css_tg(css)); 8488 } 8489 8490 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8491 struct cftype *cftype, u64 rt_period_us) 8492 { 8493 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8494 } 8495 8496 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8497 struct cftype *cft) 8498 { 8499 return sched_group_rt_period(css_tg(css)); 8500 } 8501 #endif /* CONFIG_RT_GROUP_SCHED */ 8502 8503 static struct cftype cpu_files[] = { 8504 #ifdef CONFIG_FAIR_GROUP_SCHED 8505 { 8506 .name = "shares", 8507 .read_u64 = cpu_shares_read_u64, 8508 .write_u64 = cpu_shares_write_u64, 8509 }, 8510 #endif 8511 #ifdef CONFIG_CFS_BANDWIDTH 8512 { 8513 .name = "cfs_quota_us", 8514 .read_s64 = cpu_cfs_quota_read_s64, 8515 .write_s64 = cpu_cfs_quota_write_s64, 8516 }, 8517 { 8518 .name = "cfs_period_us", 8519 .read_u64 = cpu_cfs_period_read_u64, 8520 .write_u64 = cpu_cfs_period_write_u64, 8521 }, 8522 { 8523 .name = "stat", 8524 .seq_show = cpu_stats_show, 8525 }, 8526 #endif 8527 #ifdef CONFIG_RT_GROUP_SCHED 8528 { 8529 .name = "rt_runtime_us", 8530 .read_s64 = cpu_rt_runtime_read, 8531 .write_s64 = cpu_rt_runtime_write, 8532 }, 8533 { 8534 .name = "rt_period_us", 8535 .read_u64 = cpu_rt_period_read_uint, 8536 .write_u64 = cpu_rt_period_write_uint, 8537 }, 8538 #endif 8539 { } /* terminate */ 8540 }; 8541 8542 struct cgroup_subsys cpu_cgrp_subsys = { 8543 .css_alloc = cpu_cgroup_css_alloc, 8544 .css_released = cpu_cgroup_css_released, 8545 .css_free = cpu_cgroup_css_free, 8546 .fork = cpu_cgroup_fork, 8547 .can_attach = cpu_cgroup_can_attach, 8548 .attach = cpu_cgroup_attach, 8549 .legacy_cftypes = cpu_files, 8550 .early_init = true, 8551 }; 8552 8553 #endif /* CONFIG_CGROUP_SCHED */ 8554 8555 void dump_cpu_task(int cpu) 8556 { 8557 pr_info("Task dump for CPU %d:\n", cpu); 8558 sched_show_task(cpu_curr(cpu)); 8559 } 8560 8561 /* 8562 * Nice levels are multiplicative, with a gentle 10% change for every 8563 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8564 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8565 * that remained on nice 0. 8566 * 8567 * The "10% effect" is relative and cumulative: from _any_ nice level, 8568 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8569 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8570 * If a task goes up by ~10% and another task goes down by ~10% then 8571 * the relative distance between them is ~25%.) 8572 */ 8573 const int sched_prio_to_weight[40] = { 8574 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8575 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8576 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8577 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8578 /* 0 */ 1024, 820, 655, 526, 423, 8579 /* 5 */ 335, 272, 215, 172, 137, 8580 /* 10 */ 110, 87, 70, 56, 45, 8581 /* 15 */ 36, 29, 23, 18, 15, 8582 }; 8583 8584 /* 8585 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8586 * 8587 * In cases where the weight does not change often, we can use the 8588 * precalculated inverse to speed up arithmetics by turning divisions 8589 * into multiplications: 8590 */ 8591 const u32 sched_prio_to_wmult[40] = { 8592 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8593 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8594 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8595 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8596 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8597 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8598 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8599 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8600 }; 8601