1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 #include "stats.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 #ifdef CONFIG_SCHED_DEBUG 123 /* 124 * Debugging: various feature bits 125 * 126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 127 * sysctl_sched_features, defined in sched.h, to allow constants propagation 128 * at compile time and compiler optimization based on features default. 129 */ 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 #undef SCHED_FEAT 136 137 /* 138 * Print a warning if need_resched is set for the given duration (if 139 * LATENCY_WARN is enabled). 140 * 141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 142 * per boot. 143 */ 144 __read_mostly int sysctl_resched_latency_warn_ms = 100; 145 __read_mostly int sysctl_resched_latency_warn_once = 1; 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 /* 149 * Number of tasks to iterate in a single balance run. 150 * Limited because this is done with IRQs disabled. 151 */ 152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 153 154 __read_mostly int scheduler_running; 155 156 #ifdef CONFIG_SCHED_CORE 157 158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 159 160 /* kernel prio, less is more */ 161 static inline int __task_prio(const struct task_struct *p) 162 { 163 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 164 return -2; 165 166 if (rt_prio(p->prio)) /* includes deadline */ 167 return p->prio; /* [-1, 99] */ 168 169 if (p->sched_class == &idle_sched_class) 170 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 171 172 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 173 } 174 175 /* 176 * l(a,b) 177 * le(a,b) := !l(b,a) 178 * g(a,b) := l(b,a) 179 * ge(a,b) := !l(a,b) 180 */ 181 182 /* real prio, less is less */ 183 static inline bool prio_less(const struct task_struct *a, 184 const struct task_struct *b, bool in_fi) 185 { 186 187 int pa = __task_prio(a), pb = __task_prio(b); 188 189 if (-pa < -pb) 190 return true; 191 192 if (-pb < -pa) 193 return false; 194 195 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 196 return !dl_time_before(a->dl.deadline, b->dl.deadline); 197 198 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 199 return cfs_prio_less(a, b, in_fi); 200 201 return false; 202 } 203 204 static inline bool __sched_core_less(const struct task_struct *a, 205 const struct task_struct *b) 206 { 207 if (a->core_cookie < b->core_cookie) 208 return true; 209 210 if (a->core_cookie > b->core_cookie) 211 return false; 212 213 /* flip prio, so high prio is leftmost */ 214 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 215 return true; 216 217 return false; 218 } 219 220 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 221 222 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 223 { 224 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 225 } 226 227 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 228 { 229 const struct task_struct *p = __node_2_sc(node); 230 unsigned long cookie = (unsigned long)key; 231 232 if (cookie < p->core_cookie) 233 return -1; 234 235 if (cookie > p->core_cookie) 236 return 1; 237 238 return 0; 239 } 240 241 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 242 { 243 rq->core->core_task_seq++; 244 245 if (!p->core_cookie) 246 return; 247 248 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 249 } 250 251 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 252 { 253 rq->core->core_task_seq++; 254 255 if (sched_core_enqueued(p)) { 256 rb_erase(&p->core_node, &rq->core_tree); 257 RB_CLEAR_NODE(&p->core_node); 258 } 259 260 /* 261 * Migrating the last task off the cpu, with the cpu in forced idle 262 * state. Reschedule to create an accounting edge for forced idle, 263 * and re-examine whether the core is still in forced idle state. 264 */ 265 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 266 rq->core->core_forceidle_count && rq->curr == rq->idle) 267 resched_curr(rq); 268 } 269 270 static int sched_task_is_throttled(struct task_struct *p, int cpu) 271 { 272 if (p->sched_class->task_is_throttled) 273 return p->sched_class->task_is_throttled(p, cpu); 274 275 return 0; 276 } 277 278 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 279 { 280 struct rb_node *node = &p->core_node; 281 int cpu = task_cpu(p); 282 283 do { 284 node = rb_next(node); 285 if (!node) 286 return NULL; 287 288 p = __node_2_sc(node); 289 if (p->core_cookie != cookie) 290 return NULL; 291 292 } while (sched_task_is_throttled(p, cpu)); 293 294 return p; 295 } 296 297 /* 298 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 299 * If no suitable task is found, NULL will be returned. 300 */ 301 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 302 { 303 struct task_struct *p; 304 struct rb_node *node; 305 306 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 307 if (!node) 308 return NULL; 309 310 p = __node_2_sc(node); 311 if (!sched_task_is_throttled(p, rq->cpu)) 312 return p; 313 314 return sched_core_next(p, cookie); 315 } 316 317 /* 318 * Magic required such that: 319 * 320 * raw_spin_rq_lock(rq); 321 * ... 322 * raw_spin_rq_unlock(rq); 323 * 324 * ends up locking and unlocking the _same_ lock, and all CPUs 325 * always agree on what rq has what lock. 326 * 327 * XXX entirely possible to selectively enable cores, don't bother for now. 328 */ 329 330 static DEFINE_MUTEX(sched_core_mutex); 331 static atomic_t sched_core_count; 332 static struct cpumask sched_core_mask; 333 334 static void sched_core_lock(int cpu, unsigned long *flags) 335 { 336 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 337 int t, i = 0; 338 339 local_irq_save(*flags); 340 for_each_cpu(t, smt_mask) 341 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 342 } 343 344 static void sched_core_unlock(int cpu, unsigned long *flags) 345 { 346 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 347 int t; 348 349 for_each_cpu(t, smt_mask) 350 raw_spin_unlock(&cpu_rq(t)->__lock); 351 local_irq_restore(*flags); 352 } 353 354 static void __sched_core_flip(bool enabled) 355 { 356 unsigned long flags; 357 int cpu, t; 358 359 cpus_read_lock(); 360 361 /* 362 * Toggle the online cores, one by one. 363 */ 364 cpumask_copy(&sched_core_mask, cpu_online_mask); 365 for_each_cpu(cpu, &sched_core_mask) { 366 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 367 368 sched_core_lock(cpu, &flags); 369 370 for_each_cpu(t, smt_mask) 371 cpu_rq(t)->core_enabled = enabled; 372 373 cpu_rq(cpu)->core->core_forceidle_start = 0; 374 375 sched_core_unlock(cpu, &flags); 376 377 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 378 } 379 380 /* 381 * Toggle the offline CPUs. 382 */ 383 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 384 cpu_rq(cpu)->core_enabled = enabled; 385 386 cpus_read_unlock(); 387 } 388 389 static void sched_core_assert_empty(void) 390 { 391 int cpu; 392 393 for_each_possible_cpu(cpu) 394 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 395 } 396 397 static void __sched_core_enable(void) 398 { 399 static_branch_enable(&__sched_core_enabled); 400 /* 401 * Ensure all previous instances of raw_spin_rq_*lock() have finished 402 * and future ones will observe !sched_core_disabled(). 403 */ 404 synchronize_rcu(); 405 __sched_core_flip(true); 406 sched_core_assert_empty(); 407 } 408 409 static void __sched_core_disable(void) 410 { 411 sched_core_assert_empty(); 412 __sched_core_flip(false); 413 static_branch_disable(&__sched_core_enabled); 414 } 415 416 void sched_core_get(void) 417 { 418 if (atomic_inc_not_zero(&sched_core_count)) 419 return; 420 421 mutex_lock(&sched_core_mutex); 422 if (!atomic_read(&sched_core_count)) 423 __sched_core_enable(); 424 425 smp_mb__before_atomic(); 426 atomic_inc(&sched_core_count); 427 mutex_unlock(&sched_core_mutex); 428 } 429 430 static void __sched_core_put(struct work_struct *work) 431 { 432 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 433 __sched_core_disable(); 434 mutex_unlock(&sched_core_mutex); 435 } 436 } 437 438 void sched_core_put(void) 439 { 440 static DECLARE_WORK(_work, __sched_core_put); 441 442 /* 443 * "There can be only one" 444 * 445 * Either this is the last one, or we don't actually need to do any 446 * 'work'. If it is the last *again*, we rely on 447 * WORK_STRUCT_PENDING_BIT. 448 */ 449 if (!atomic_add_unless(&sched_core_count, -1, 1)) 450 schedule_work(&_work); 451 } 452 453 #else /* !CONFIG_SCHED_CORE */ 454 455 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 456 static inline void 457 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 458 459 #endif /* CONFIG_SCHED_CORE */ 460 461 /* 462 * Serialization rules: 463 * 464 * Lock order: 465 * 466 * p->pi_lock 467 * rq->lock 468 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 469 * 470 * rq1->lock 471 * rq2->lock where: rq1 < rq2 472 * 473 * Regular state: 474 * 475 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 476 * local CPU's rq->lock, it optionally removes the task from the runqueue and 477 * always looks at the local rq data structures to find the most eligible task 478 * to run next. 479 * 480 * Task enqueue is also under rq->lock, possibly taken from another CPU. 481 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 482 * the local CPU to avoid bouncing the runqueue state around [ see 483 * ttwu_queue_wakelist() ] 484 * 485 * Task wakeup, specifically wakeups that involve migration, are horribly 486 * complicated to avoid having to take two rq->locks. 487 * 488 * Special state: 489 * 490 * System-calls and anything external will use task_rq_lock() which acquires 491 * both p->pi_lock and rq->lock. As a consequence the state they change is 492 * stable while holding either lock: 493 * 494 * - sched_setaffinity()/ 495 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 496 * - set_user_nice(): p->se.load, p->*prio 497 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 498 * p->se.load, p->rt_priority, 499 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 500 * - sched_setnuma(): p->numa_preferred_nid 501 * - sched_move_task(): p->sched_task_group 502 * - uclamp_update_active() p->uclamp* 503 * 504 * p->state <- TASK_*: 505 * 506 * is changed locklessly using set_current_state(), __set_current_state() or 507 * set_special_state(), see their respective comments, or by 508 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 509 * concurrent self. 510 * 511 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 512 * 513 * is set by activate_task() and cleared by deactivate_task(), under 514 * rq->lock. Non-zero indicates the task is runnable, the special 515 * ON_RQ_MIGRATING state is used for migration without holding both 516 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 517 * 518 * p->on_cpu <- { 0, 1 }: 519 * 520 * is set by prepare_task() and cleared by finish_task() such that it will be 521 * set before p is scheduled-in and cleared after p is scheduled-out, both 522 * under rq->lock. Non-zero indicates the task is running on its CPU. 523 * 524 * [ The astute reader will observe that it is possible for two tasks on one 525 * CPU to have ->on_cpu = 1 at the same time. ] 526 * 527 * task_cpu(p): is changed by set_task_cpu(), the rules are: 528 * 529 * - Don't call set_task_cpu() on a blocked task: 530 * 531 * We don't care what CPU we're not running on, this simplifies hotplug, 532 * the CPU assignment of blocked tasks isn't required to be valid. 533 * 534 * - for try_to_wake_up(), called under p->pi_lock: 535 * 536 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 537 * 538 * - for migration called under rq->lock: 539 * [ see task_on_rq_migrating() in task_rq_lock() ] 540 * 541 * o move_queued_task() 542 * o detach_task() 543 * 544 * - for migration called under double_rq_lock(): 545 * 546 * o __migrate_swap_task() 547 * o push_rt_task() / pull_rt_task() 548 * o push_dl_task() / pull_dl_task() 549 * o dl_task_offline_migration() 550 * 551 */ 552 553 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 554 { 555 raw_spinlock_t *lock; 556 557 /* Matches synchronize_rcu() in __sched_core_enable() */ 558 preempt_disable(); 559 if (sched_core_disabled()) { 560 raw_spin_lock_nested(&rq->__lock, subclass); 561 /* preempt_count *MUST* be > 1 */ 562 preempt_enable_no_resched(); 563 return; 564 } 565 566 for (;;) { 567 lock = __rq_lockp(rq); 568 raw_spin_lock_nested(lock, subclass); 569 if (likely(lock == __rq_lockp(rq))) { 570 /* preempt_count *MUST* be > 1 */ 571 preempt_enable_no_resched(); 572 return; 573 } 574 raw_spin_unlock(lock); 575 } 576 } 577 578 bool raw_spin_rq_trylock(struct rq *rq) 579 { 580 raw_spinlock_t *lock; 581 bool ret; 582 583 /* Matches synchronize_rcu() in __sched_core_enable() */ 584 preempt_disable(); 585 if (sched_core_disabled()) { 586 ret = raw_spin_trylock(&rq->__lock); 587 preempt_enable(); 588 return ret; 589 } 590 591 for (;;) { 592 lock = __rq_lockp(rq); 593 ret = raw_spin_trylock(lock); 594 if (!ret || (likely(lock == __rq_lockp(rq)))) { 595 preempt_enable(); 596 return ret; 597 } 598 raw_spin_unlock(lock); 599 } 600 } 601 602 void raw_spin_rq_unlock(struct rq *rq) 603 { 604 raw_spin_unlock(rq_lockp(rq)); 605 } 606 607 #ifdef CONFIG_SMP 608 /* 609 * double_rq_lock - safely lock two runqueues 610 */ 611 void double_rq_lock(struct rq *rq1, struct rq *rq2) 612 { 613 lockdep_assert_irqs_disabled(); 614 615 if (rq_order_less(rq2, rq1)) 616 swap(rq1, rq2); 617 618 raw_spin_rq_lock(rq1); 619 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 620 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 621 622 double_rq_clock_clear_update(rq1, rq2); 623 } 624 #endif 625 626 /* 627 * __task_rq_lock - lock the rq @p resides on. 628 */ 629 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 630 __acquires(rq->lock) 631 { 632 struct rq *rq; 633 634 lockdep_assert_held(&p->pi_lock); 635 636 for (;;) { 637 rq = task_rq(p); 638 raw_spin_rq_lock(rq); 639 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 640 rq_pin_lock(rq, rf); 641 return rq; 642 } 643 raw_spin_rq_unlock(rq); 644 645 while (unlikely(task_on_rq_migrating(p))) 646 cpu_relax(); 647 } 648 } 649 650 /* 651 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 652 */ 653 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 654 __acquires(p->pi_lock) 655 __acquires(rq->lock) 656 { 657 struct rq *rq; 658 659 for (;;) { 660 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 661 rq = task_rq(p); 662 raw_spin_rq_lock(rq); 663 /* 664 * move_queued_task() task_rq_lock() 665 * 666 * ACQUIRE (rq->lock) 667 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 668 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 669 * [S] ->cpu = new_cpu [L] task_rq() 670 * [L] ->on_rq 671 * RELEASE (rq->lock) 672 * 673 * If we observe the old CPU in task_rq_lock(), the acquire of 674 * the old rq->lock will fully serialize against the stores. 675 * 676 * If we observe the new CPU in task_rq_lock(), the address 677 * dependency headed by '[L] rq = task_rq()' and the acquire 678 * will pair with the WMB to ensure we then also see migrating. 679 */ 680 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 681 rq_pin_lock(rq, rf); 682 return rq; 683 } 684 raw_spin_rq_unlock(rq); 685 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 686 687 while (unlikely(task_on_rq_migrating(p))) 688 cpu_relax(); 689 } 690 } 691 692 /* 693 * RQ-clock updating methods: 694 */ 695 696 static void update_rq_clock_task(struct rq *rq, s64 delta) 697 { 698 /* 699 * In theory, the compile should just see 0 here, and optimize out the call 700 * to sched_rt_avg_update. But I don't trust it... 701 */ 702 s64 __maybe_unused steal = 0, irq_delta = 0; 703 704 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 705 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 706 707 /* 708 * Since irq_time is only updated on {soft,}irq_exit, we might run into 709 * this case when a previous update_rq_clock() happened inside a 710 * {soft,}IRQ region. 711 * 712 * When this happens, we stop ->clock_task and only update the 713 * prev_irq_time stamp to account for the part that fit, so that a next 714 * update will consume the rest. This ensures ->clock_task is 715 * monotonic. 716 * 717 * It does however cause some slight miss-attribution of {soft,}IRQ 718 * time, a more accurate solution would be to update the irq_time using 719 * the current rq->clock timestamp, except that would require using 720 * atomic ops. 721 */ 722 if (irq_delta > delta) 723 irq_delta = delta; 724 725 rq->prev_irq_time += irq_delta; 726 delta -= irq_delta; 727 psi_account_irqtime(rq->curr, irq_delta); 728 delayacct_irq(rq->curr, irq_delta); 729 #endif 730 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 731 if (static_key_false((¶virt_steal_rq_enabled))) { 732 steal = paravirt_steal_clock(cpu_of(rq)); 733 steal -= rq->prev_steal_time_rq; 734 735 if (unlikely(steal > delta)) 736 steal = delta; 737 738 rq->prev_steal_time_rq += steal; 739 delta -= steal; 740 } 741 #endif 742 743 rq->clock_task += delta; 744 745 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 746 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 747 update_irq_load_avg(rq, irq_delta + steal); 748 #endif 749 update_rq_clock_pelt(rq, delta); 750 } 751 752 void update_rq_clock(struct rq *rq) 753 { 754 s64 delta; 755 756 lockdep_assert_rq_held(rq); 757 758 if (rq->clock_update_flags & RQCF_ACT_SKIP) 759 return; 760 761 #ifdef CONFIG_SCHED_DEBUG 762 if (sched_feat(WARN_DOUBLE_CLOCK)) 763 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 764 rq->clock_update_flags |= RQCF_UPDATED; 765 #endif 766 767 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 768 if (delta < 0) 769 return; 770 rq->clock += delta; 771 update_rq_clock_task(rq, delta); 772 } 773 774 #ifdef CONFIG_SCHED_HRTICK 775 /* 776 * Use HR-timers to deliver accurate preemption points. 777 */ 778 779 static void hrtick_clear(struct rq *rq) 780 { 781 if (hrtimer_active(&rq->hrtick_timer)) 782 hrtimer_cancel(&rq->hrtick_timer); 783 } 784 785 /* 786 * High-resolution timer tick. 787 * Runs from hardirq context with interrupts disabled. 788 */ 789 static enum hrtimer_restart hrtick(struct hrtimer *timer) 790 { 791 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 792 struct rq_flags rf; 793 794 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 795 796 rq_lock(rq, &rf); 797 update_rq_clock(rq); 798 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 799 rq_unlock(rq, &rf); 800 801 return HRTIMER_NORESTART; 802 } 803 804 #ifdef CONFIG_SMP 805 806 static void __hrtick_restart(struct rq *rq) 807 { 808 struct hrtimer *timer = &rq->hrtick_timer; 809 ktime_t time = rq->hrtick_time; 810 811 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 812 } 813 814 /* 815 * called from hardirq (IPI) context 816 */ 817 static void __hrtick_start(void *arg) 818 { 819 struct rq *rq = arg; 820 struct rq_flags rf; 821 822 rq_lock(rq, &rf); 823 __hrtick_restart(rq); 824 rq_unlock(rq, &rf); 825 } 826 827 /* 828 * Called to set the hrtick timer state. 829 * 830 * called with rq->lock held and IRQs disabled 831 */ 832 void hrtick_start(struct rq *rq, u64 delay) 833 { 834 struct hrtimer *timer = &rq->hrtick_timer; 835 s64 delta; 836 837 /* 838 * Don't schedule slices shorter than 10000ns, that just 839 * doesn't make sense and can cause timer DoS. 840 */ 841 delta = max_t(s64, delay, 10000LL); 842 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 843 844 if (rq == this_rq()) 845 __hrtick_restart(rq); 846 else 847 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 848 } 849 850 #else 851 /* 852 * Called to set the hrtick timer state. 853 * 854 * called with rq->lock held and IRQs disabled 855 */ 856 void hrtick_start(struct rq *rq, u64 delay) 857 { 858 /* 859 * Don't schedule slices shorter than 10000ns, that just 860 * doesn't make sense. Rely on vruntime for fairness. 861 */ 862 delay = max_t(u64, delay, 10000LL); 863 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 864 HRTIMER_MODE_REL_PINNED_HARD); 865 } 866 867 #endif /* CONFIG_SMP */ 868 869 static void hrtick_rq_init(struct rq *rq) 870 { 871 #ifdef CONFIG_SMP 872 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 873 #endif 874 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 875 rq->hrtick_timer.function = hrtick; 876 } 877 #else /* CONFIG_SCHED_HRTICK */ 878 static inline void hrtick_clear(struct rq *rq) 879 { 880 } 881 882 static inline void hrtick_rq_init(struct rq *rq) 883 { 884 } 885 #endif /* CONFIG_SCHED_HRTICK */ 886 887 /* 888 * try_cmpxchg based fetch_or() macro so it works for different integer types: 889 */ 890 #define fetch_or(ptr, mask) \ 891 ({ \ 892 typeof(ptr) _ptr = (ptr); \ 893 typeof(mask) _mask = (mask); \ 894 typeof(*_ptr) _val = *_ptr; \ 895 \ 896 do { \ 897 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 898 _val; \ 899 }) 900 901 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 902 /* 903 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 904 * this avoids any races wrt polling state changes and thereby avoids 905 * spurious IPIs. 906 */ 907 static inline bool set_nr_and_not_polling(struct task_struct *p) 908 { 909 struct thread_info *ti = task_thread_info(p); 910 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 911 } 912 913 /* 914 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 915 * 916 * If this returns true, then the idle task promises to call 917 * sched_ttwu_pending() and reschedule soon. 918 */ 919 static bool set_nr_if_polling(struct task_struct *p) 920 { 921 struct thread_info *ti = task_thread_info(p); 922 typeof(ti->flags) val = READ_ONCE(ti->flags); 923 924 do { 925 if (!(val & _TIF_POLLING_NRFLAG)) 926 return false; 927 if (val & _TIF_NEED_RESCHED) 928 return true; 929 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 930 931 return true; 932 } 933 934 #else 935 static inline bool set_nr_and_not_polling(struct task_struct *p) 936 { 937 set_tsk_need_resched(p); 938 return true; 939 } 940 941 #ifdef CONFIG_SMP 942 static inline bool set_nr_if_polling(struct task_struct *p) 943 { 944 return false; 945 } 946 #endif 947 #endif 948 949 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 950 { 951 struct wake_q_node *node = &task->wake_q; 952 953 /* 954 * Atomically grab the task, if ->wake_q is !nil already it means 955 * it's already queued (either by us or someone else) and will get the 956 * wakeup due to that. 957 * 958 * In order to ensure that a pending wakeup will observe our pending 959 * state, even in the failed case, an explicit smp_mb() must be used. 960 */ 961 smp_mb__before_atomic(); 962 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 963 return false; 964 965 /* 966 * The head is context local, there can be no concurrency. 967 */ 968 *head->lastp = node; 969 head->lastp = &node->next; 970 return true; 971 } 972 973 /** 974 * wake_q_add() - queue a wakeup for 'later' waking. 975 * @head: the wake_q_head to add @task to 976 * @task: the task to queue for 'later' wakeup 977 * 978 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 979 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 980 * instantly. 981 * 982 * This function must be used as-if it were wake_up_process(); IOW the task 983 * must be ready to be woken at this location. 984 */ 985 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 986 { 987 if (__wake_q_add(head, task)) 988 get_task_struct(task); 989 } 990 991 /** 992 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 993 * @head: the wake_q_head to add @task to 994 * @task: the task to queue for 'later' wakeup 995 * 996 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 997 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 998 * instantly. 999 * 1000 * This function must be used as-if it were wake_up_process(); IOW the task 1001 * must be ready to be woken at this location. 1002 * 1003 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1004 * that already hold reference to @task can call the 'safe' version and trust 1005 * wake_q to do the right thing depending whether or not the @task is already 1006 * queued for wakeup. 1007 */ 1008 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1009 { 1010 if (!__wake_q_add(head, task)) 1011 put_task_struct(task); 1012 } 1013 1014 void wake_up_q(struct wake_q_head *head) 1015 { 1016 struct wake_q_node *node = head->first; 1017 1018 while (node != WAKE_Q_TAIL) { 1019 struct task_struct *task; 1020 1021 task = container_of(node, struct task_struct, wake_q); 1022 /* Task can safely be re-inserted now: */ 1023 node = node->next; 1024 task->wake_q.next = NULL; 1025 1026 /* 1027 * wake_up_process() executes a full barrier, which pairs with 1028 * the queueing in wake_q_add() so as not to miss wakeups. 1029 */ 1030 wake_up_process(task); 1031 put_task_struct(task); 1032 } 1033 } 1034 1035 /* 1036 * resched_curr - mark rq's current task 'to be rescheduled now'. 1037 * 1038 * On UP this means the setting of the need_resched flag, on SMP it 1039 * might also involve a cross-CPU call to trigger the scheduler on 1040 * the target CPU. 1041 */ 1042 void resched_curr(struct rq *rq) 1043 { 1044 struct task_struct *curr = rq->curr; 1045 int cpu; 1046 1047 lockdep_assert_rq_held(rq); 1048 1049 if (test_tsk_need_resched(curr)) 1050 return; 1051 1052 cpu = cpu_of(rq); 1053 1054 if (cpu == smp_processor_id()) { 1055 set_tsk_need_resched(curr); 1056 set_preempt_need_resched(); 1057 return; 1058 } 1059 1060 if (set_nr_and_not_polling(curr)) 1061 smp_send_reschedule(cpu); 1062 else 1063 trace_sched_wake_idle_without_ipi(cpu); 1064 } 1065 1066 void resched_cpu(int cpu) 1067 { 1068 struct rq *rq = cpu_rq(cpu); 1069 unsigned long flags; 1070 1071 raw_spin_rq_lock_irqsave(rq, flags); 1072 if (cpu_online(cpu) || cpu == smp_processor_id()) 1073 resched_curr(rq); 1074 raw_spin_rq_unlock_irqrestore(rq, flags); 1075 } 1076 1077 #ifdef CONFIG_SMP 1078 #ifdef CONFIG_NO_HZ_COMMON 1079 /* 1080 * In the semi idle case, use the nearest busy CPU for migrating timers 1081 * from an idle CPU. This is good for power-savings. 1082 * 1083 * We don't do similar optimization for completely idle system, as 1084 * selecting an idle CPU will add more delays to the timers than intended 1085 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1086 */ 1087 int get_nohz_timer_target(void) 1088 { 1089 int i, cpu = smp_processor_id(), default_cpu = -1; 1090 struct sched_domain *sd; 1091 const struct cpumask *hk_mask; 1092 1093 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1094 if (!idle_cpu(cpu)) 1095 return cpu; 1096 default_cpu = cpu; 1097 } 1098 1099 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1100 1101 guard(rcu)(); 1102 1103 for_each_domain(cpu, sd) { 1104 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1105 if (cpu == i) 1106 continue; 1107 1108 if (!idle_cpu(i)) 1109 return i; 1110 } 1111 } 1112 1113 if (default_cpu == -1) 1114 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1115 1116 return default_cpu; 1117 } 1118 1119 /* 1120 * When add_timer_on() enqueues a timer into the timer wheel of an 1121 * idle CPU then this timer might expire before the next timer event 1122 * which is scheduled to wake up that CPU. In case of a completely 1123 * idle system the next event might even be infinite time into the 1124 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1125 * leaves the inner idle loop so the newly added timer is taken into 1126 * account when the CPU goes back to idle and evaluates the timer 1127 * wheel for the next timer event. 1128 */ 1129 static void wake_up_idle_cpu(int cpu) 1130 { 1131 struct rq *rq = cpu_rq(cpu); 1132 1133 if (cpu == smp_processor_id()) 1134 return; 1135 1136 /* 1137 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1138 * part of the idle loop. This forces an exit from the idle loop 1139 * and a round trip to schedule(). Now this could be optimized 1140 * because a simple new idle loop iteration is enough to 1141 * re-evaluate the next tick. Provided some re-ordering of tick 1142 * nohz functions that would need to follow TIF_NR_POLLING 1143 * clearing: 1144 * 1145 * - On most architectures, a simple fetch_or on ti::flags with a 1146 * "0" value would be enough to know if an IPI needs to be sent. 1147 * 1148 * - x86 needs to perform a last need_resched() check between 1149 * monitor and mwait which doesn't take timers into account. 1150 * There a dedicated TIF_TIMER flag would be required to 1151 * fetch_or here and be checked along with TIF_NEED_RESCHED 1152 * before mwait(). 1153 * 1154 * However, remote timer enqueue is not such a frequent event 1155 * and testing of the above solutions didn't appear to report 1156 * much benefits. 1157 */ 1158 if (set_nr_and_not_polling(rq->idle)) 1159 smp_send_reschedule(cpu); 1160 else 1161 trace_sched_wake_idle_without_ipi(cpu); 1162 } 1163 1164 static bool wake_up_full_nohz_cpu(int cpu) 1165 { 1166 /* 1167 * We just need the target to call irq_exit() and re-evaluate 1168 * the next tick. The nohz full kick at least implies that. 1169 * If needed we can still optimize that later with an 1170 * empty IRQ. 1171 */ 1172 if (cpu_is_offline(cpu)) 1173 return true; /* Don't try to wake offline CPUs. */ 1174 if (tick_nohz_full_cpu(cpu)) { 1175 if (cpu != smp_processor_id() || 1176 tick_nohz_tick_stopped()) 1177 tick_nohz_full_kick_cpu(cpu); 1178 return true; 1179 } 1180 1181 return false; 1182 } 1183 1184 /* 1185 * Wake up the specified CPU. If the CPU is going offline, it is the 1186 * caller's responsibility to deal with the lost wakeup, for example, 1187 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1188 */ 1189 void wake_up_nohz_cpu(int cpu) 1190 { 1191 if (!wake_up_full_nohz_cpu(cpu)) 1192 wake_up_idle_cpu(cpu); 1193 } 1194 1195 static void nohz_csd_func(void *info) 1196 { 1197 struct rq *rq = info; 1198 int cpu = cpu_of(rq); 1199 unsigned int flags; 1200 1201 /* 1202 * Release the rq::nohz_csd. 1203 */ 1204 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1205 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1206 1207 rq->idle_balance = idle_cpu(cpu); 1208 if (rq->idle_balance && !need_resched()) { 1209 rq->nohz_idle_balance = flags; 1210 raise_softirq_irqoff(SCHED_SOFTIRQ); 1211 } 1212 } 1213 1214 #endif /* CONFIG_NO_HZ_COMMON */ 1215 1216 #ifdef CONFIG_NO_HZ_FULL 1217 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1218 { 1219 if (rq->nr_running != 1) 1220 return false; 1221 1222 if (p->sched_class != &fair_sched_class) 1223 return false; 1224 1225 if (!task_on_rq_queued(p)) 1226 return false; 1227 1228 return true; 1229 } 1230 1231 bool sched_can_stop_tick(struct rq *rq) 1232 { 1233 int fifo_nr_running; 1234 1235 /* Deadline tasks, even if single, need the tick */ 1236 if (rq->dl.dl_nr_running) 1237 return false; 1238 1239 /* 1240 * If there are more than one RR tasks, we need the tick to affect the 1241 * actual RR behaviour. 1242 */ 1243 if (rq->rt.rr_nr_running) { 1244 if (rq->rt.rr_nr_running == 1) 1245 return true; 1246 else 1247 return false; 1248 } 1249 1250 /* 1251 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1252 * forced preemption between FIFO tasks. 1253 */ 1254 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1255 if (fifo_nr_running) 1256 return true; 1257 1258 /* 1259 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1260 * if there's more than one we need the tick for involuntary 1261 * preemption. 1262 */ 1263 if (rq->nr_running > 1) 1264 return false; 1265 1266 /* 1267 * If there is one task and it has CFS runtime bandwidth constraints 1268 * and it's on the cpu now we don't want to stop the tick. 1269 * This check prevents clearing the bit if a newly enqueued task here is 1270 * dequeued by migrating while the constrained task continues to run. 1271 * E.g. going from 2->1 without going through pick_next_task(). 1272 */ 1273 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) { 1274 if (cfs_task_bw_constrained(rq->curr)) 1275 return false; 1276 } 1277 1278 return true; 1279 } 1280 #endif /* CONFIG_NO_HZ_FULL */ 1281 #endif /* CONFIG_SMP */ 1282 1283 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1284 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1285 /* 1286 * Iterate task_group tree rooted at *from, calling @down when first entering a 1287 * node and @up when leaving it for the final time. 1288 * 1289 * Caller must hold rcu_lock or sufficient equivalent. 1290 */ 1291 int walk_tg_tree_from(struct task_group *from, 1292 tg_visitor down, tg_visitor up, void *data) 1293 { 1294 struct task_group *parent, *child; 1295 int ret; 1296 1297 parent = from; 1298 1299 down: 1300 ret = (*down)(parent, data); 1301 if (ret) 1302 goto out; 1303 list_for_each_entry_rcu(child, &parent->children, siblings) { 1304 parent = child; 1305 goto down; 1306 1307 up: 1308 continue; 1309 } 1310 ret = (*up)(parent, data); 1311 if (ret || parent == from) 1312 goto out; 1313 1314 child = parent; 1315 parent = parent->parent; 1316 if (parent) 1317 goto up; 1318 out: 1319 return ret; 1320 } 1321 1322 int tg_nop(struct task_group *tg, void *data) 1323 { 1324 return 0; 1325 } 1326 #endif 1327 1328 void set_load_weight(struct task_struct *p, bool update_load) 1329 { 1330 int prio = p->static_prio - MAX_RT_PRIO; 1331 struct load_weight *load = &p->se.load; 1332 1333 /* 1334 * SCHED_IDLE tasks get minimal weight: 1335 */ 1336 if (task_has_idle_policy(p)) { 1337 load->weight = scale_load(WEIGHT_IDLEPRIO); 1338 load->inv_weight = WMULT_IDLEPRIO; 1339 return; 1340 } 1341 1342 /* 1343 * SCHED_OTHER tasks have to update their load when changing their 1344 * weight 1345 */ 1346 if (update_load && p->sched_class->reweight_task) { 1347 p->sched_class->reweight_task(task_rq(p), p, prio); 1348 } else { 1349 load->weight = scale_load(sched_prio_to_weight[prio]); 1350 load->inv_weight = sched_prio_to_wmult[prio]; 1351 } 1352 } 1353 1354 #ifdef CONFIG_UCLAMP_TASK 1355 /* 1356 * Serializes updates of utilization clamp values 1357 * 1358 * The (slow-path) user-space triggers utilization clamp value updates which 1359 * can require updates on (fast-path) scheduler's data structures used to 1360 * support enqueue/dequeue operations. 1361 * While the per-CPU rq lock protects fast-path update operations, user-space 1362 * requests are serialized using a mutex to reduce the risk of conflicting 1363 * updates or API abuses. 1364 */ 1365 static DEFINE_MUTEX(uclamp_mutex); 1366 1367 /* Max allowed minimum utilization */ 1368 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1369 1370 /* Max allowed maximum utilization */ 1371 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1372 1373 /* 1374 * By default RT tasks run at the maximum performance point/capacity of the 1375 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1376 * SCHED_CAPACITY_SCALE. 1377 * 1378 * This knob allows admins to change the default behavior when uclamp is being 1379 * used. In battery powered devices, particularly, running at the maximum 1380 * capacity and frequency will increase energy consumption and shorten the 1381 * battery life. 1382 * 1383 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1384 * 1385 * This knob will not override the system default sched_util_clamp_min defined 1386 * above. 1387 */ 1388 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1389 1390 /* All clamps are required to be less or equal than these values */ 1391 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1392 1393 /* 1394 * This static key is used to reduce the uclamp overhead in the fast path. It 1395 * primarily disables the call to uclamp_rq_{inc, dec}() in 1396 * enqueue/dequeue_task(). 1397 * 1398 * This allows users to continue to enable uclamp in their kernel config with 1399 * minimum uclamp overhead in the fast path. 1400 * 1401 * As soon as userspace modifies any of the uclamp knobs, the static key is 1402 * enabled, since we have an actual users that make use of uclamp 1403 * functionality. 1404 * 1405 * The knobs that would enable this static key are: 1406 * 1407 * * A task modifying its uclamp value with sched_setattr(). 1408 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1409 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1410 */ 1411 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1412 1413 static inline unsigned int 1414 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1415 unsigned int clamp_value) 1416 { 1417 /* 1418 * Avoid blocked utilization pushing up the frequency when we go 1419 * idle (which drops the max-clamp) by retaining the last known 1420 * max-clamp. 1421 */ 1422 if (clamp_id == UCLAMP_MAX) { 1423 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1424 return clamp_value; 1425 } 1426 1427 return uclamp_none(UCLAMP_MIN); 1428 } 1429 1430 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1431 unsigned int clamp_value) 1432 { 1433 /* Reset max-clamp retention only on idle exit */ 1434 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1435 return; 1436 1437 uclamp_rq_set(rq, clamp_id, clamp_value); 1438 } 1439 1440 static inline 1441 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1442 unsigned int clamp_value) 1443 { 1444 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1445 int bucket_id = UCLAMP_BUCKETS - 1; 1446 1447 /* 1448 * Since both min and max clamps are max aggregated, find the 1449 * top most bucket with tasks in. 1450 */ 1451 for ( ; bucket_id >= 0; bucket_id--) { 1452 if (!bucket[bucket_id].tasks) 1453 continue; 1454 return bucket[bucket_id].value; 1455 } 1456 1457 /* No tasks -- default clamp values */ 1458 return uclamp_idle_value(rq, clamp_id, clamp_value); 1459 } 1460 1461 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1462 { 1463 unsigned int default_util_min; 1464 struct uclamp_se *uc_se; 1465 1466 lockdep_assert_held(&p->pi_lock); 1467 1468 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1469 1470 /* Only sync if user didn't override the default */ 1471 if (uc_se->user_defined) 1472 return; 1473 1474 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1475 uclamp_se_set(uc_se, default_util_min, false); 1476 } 1477 1478 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1479 { 1480 if (!rt_task(p)) 1481 return; 1482 1483 /* Protect updates to p->uclamp_* */ 1484 guard(task_rq_lock)(p); 1485 __uclamp_update_util_min_rt_default(p); 1486 } 1487 1488 static inline struct uclamp_se 1489 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1490 { 1491 /* Copy by value as we could modify it */ 1492 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1493 #ifdef CONFIG_UCLAMP_TASK_GROUP 1494 unsigned int tg_min, tg_max, value; 1495 1496 /* 1497 * Tasks in autogroups or root task group will be 1498 * restricted by system defaults. 1499 */ 1500 if (task_group_is_autogroup(task_group(p))) 1501 return uc_req; 1502 if (task_group(p) == &root_task_group) 1503 return uc_req; 1504 1505 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1506 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1507 value = uc_req.value; 1508 value = clamp(value, tg_min, tg_max); 1509 uclamp_se_set(&uc_req, value, false); 1510 #endif 1511 1512 return uc_req; 1513 } 1514 1515 /* 1516 * The effective clamp bucket index of a task depends on, by increasing 1517 * priority: 1518 * - the task specific clamp value, when explicitly requested from userspace 1519 * - the task group effective clamp value, for tasks not either in the root 1520 * group or in an autogroup 1521 * - the system default clamp value, defined by the sysadmin 1522 */ 1523 static inline struct uclamp_se 1524 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1525 { 1526 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1527 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1528 1529 /* System default restrictions always apply */ 1530 if (unlikely(uc_req.value > uc_max.value)) 1531 return uc_max; 1532 1533 return uc_req; 1534 } 1535 1536 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1537 { 1538 struct uclamp_se uc_eff; 1539 1540 /* Task currently refcounted: use back-annotated (effective) value */ 1541 if (p->uclamp[clamp_id].active) 1542 return (unsigned long)p->uclamp[clamp_id].value; 1543 1544 uc_eff = uclamp_eff_get(p, clamp_id); 1545 1546 return (unsigned long)uc_eff.value; 1547 } 1548 1549 /* 1550 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1551 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1552 * updates the rq's clamp value if required. 1553 * 1554 * Tasks can have a task-specific value requested from user-space, track 1555 * within each bucket the maximum value for tasks refcounted in it. 1556 * This "local max aggregation" allows to track the exact "requested" value 1557 * for each bucket when all its RUNNABLE tasks require the same clamp. 1558 */ 1559 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1560 enum uclamp_id clamp_id) 1561 { 1562 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1563 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1564 struct uclamp_bucket *bucket; 1565 1566 lockdep_assert_rq_held(rq); 1567 1568 /* Update task effective clamp */ 1569 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1570 1571 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1572 bucket->tasks++; 1573 uc_se->active = true; 1574 1575 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1576 1577 /* 1578 * Local max aggregation: rq buckets always track the max 1579 * "requested" clamp value of its RUNNABLE tasks. 1580 */ 1581 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1582 bucket->value = uc_se->value; 1583 1584 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1585 uclamp_rq_set(rq, clamp_id, uc_se->value); 1586 } 1587 1588 /* 1589 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1590 * is released. If this is the last task reference counting the rq's max 1591 * active clamp value, then the rq's clamp value is updated. 1592 * 1593 * Both refcounted tasks and rq's cached clamp values are expected to be 1594 * always valid. If it's detected they are not, as defensive programming, 1595 * enforce the expected state and warn. 1596 */ 1597 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1598 enum uclamp_id clamp_id) 1599 { 1600 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1601 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1602 struct uclamp_bucket *bucket; 1603 unsigned int bkt_clamp; 1604 unsigned int rq_clamp; 1605 1606 lockdep_assert_rq_held(rq); 1607 1608 /* 1609 * If sched_uclamp_used was enabled after task @p was enqueued, 1610 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1611 * 1612 * In this case the uc_se->active flag should be false since no uclamp 1613 * accounting was performed at enqueue time and we can just return 1614 * here. 1615 * 1616 * Need to be careful of the following enqueue/dequeue ordering 1617 * problem too 1618 * 1619 * enqueue(taskA) 1620 * // sched_uclamp_used gets enabled 1621 * enqueue(taskB) 1622 * dequeue(taskA) 1623 * // Must not decrement bucket->tasks here 1624 * dequeue(taskB) 1625 * 1626 * where we could end up with stale data in uc_se and 1627 * bucket[uc_se->bucket_id]. 1628 * 1629 * The following check here eliminates the possibility of such race. 1630 */ 1631 if (unlikely(!uc_se->active)) 1632 return; 1633 1634 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1635 1636 SCHED_WARN_ON(!bucket->tasks); 1637 if (likely(bucket->tasks)) 1638 bucket->tasks--; 1639 1640 uc_se->active = false; 1641 1642 /* 1643 * Keep "local max aggregation" simple and accept to (possibly) 1644 * overboost some RUNNABLE tasks in the same bucket. 1645 * The rq clamp bucket value is reset to its base value whenever 1646 * there are no more RUNNABLE tasks refcounting it. 1647 */ 1648 if (likely(bucket->tasks)) 1649 return; 1650 1651 rq_clamp = uclamp_rq_get(rq, clamp_id); 1652 /* 1653 * Defensive programming: this should never happen. If it happens, 1654 * e.g. due to future modification, warn and fix up the expected value. 1655 */ 1656 SCHED_WARN_ON(bucket->value > rq_clamp); 1657 if (bucket->value >= rq_clamp) { 1658 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1659 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1660 } 1661 } 1662 1663 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1664 { 1665 enum uclamp_id clamp_id; 1666 1667 /* 1668 * Avoid any overhead until uclamp is actually used by the userspace. 1669 * 1670 * The condition is constructed such that a NOP is generated when 1671 * sched_uclamp_used is disabled. 1672 */ 1673 if (!static_branch_unlikely(&sched_uclamp_used)) 1674 return; 1675 1676 if (unlikely(!p->sched_class->uclamp_enabled)) 1677 return; 1678 1679 for_each_clamp_id(clamp_id) 1680 uclamp_rq_inc_id(rq, p, clamp_id); 1681 1682 /* Reset clamp idle holding when there is one RUNNABLE task */ 1683 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1684 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1685 } 1686 1687 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1688 { 1689 enum uclamp_id clamp_id; 1690 1691 /* 1692 * Avoid any overhead until uclamp is actually used by the userspace. 1693 * 1694 * The condition is constructed such that a NOP is generated when 1695 * sched_uclamp_used is disabled. 1696 */ 1697 if (!static_branch_unlikely(&sched_uclamp_used)) 1698 return; 1699 1700 if (unlikely(!p->sched_class->uclamp_enabled)) 1701 return; 1702 1703 for_each_clamp_id(clamp_id) 1704 uclamp_rq_dec_id(rq, p, clamp_id); 1705 } 1706 1707 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1708 enum uclamp_id clamp_id) 1709 { 1710 if (!p->uclamp[clamp_id].active) 1711 return; 1712 1713 uclamp_rq_dec_id(rq, p, clamp_id); 1714 uclamp_rq_inc_id(rq, p, clamp_id); 1715 1716 /* 1717 * Make sure to clear the idle flag if we've transiently reached 0 1718 * active tasks on rq. 1719 */ 1720 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1721 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1722 } 1723 1724 static inline void 1725 uclamp_update_active(struct task_struct *p) 1726 { 1727 enum uclamp_id clamp_id; 1728 struct rq_flags rf; 1729 struct rq *rq; 1730 1731 /* 1732 * Lock the task and the rq where the task is (or was) queued. 1733 * 1734 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1735 * price to pay to safely serialize util_{min,max} updates with 1736 * enqueues, dequeues and migration operations. 1737 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1738 */ 1739 rq = task_rq_lock(p, &rf); 1740 1741 /* 1742 * Setting the clamp bucket is serialized by task_rq_lock(). 1743 * If the task is not yet RUNNABLE and its task_struct is not 1744 * affecting a valid clamp bucket, the next time it's enqueued, 1745 * it will already see the updated clamp bucket value. 1746 */ 1747 for_each_clamp_id(clamp_id) 1748 uclamp_rq_reinc_id(rq, p, clamp_id); 1749 1750 task_rq_unlock(rq, p, &rf); 1751 } 1752 1753 #ifdef CONFIG_UCLAMP_TASK_GROUP 1754 static inline void 1755 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1756 { 1757 struct css_task_iter it; 1758 struct task_struct *p; 1759 1760 css_task_iter_start(css, 0, &it); 1761 while ((p = css_task_iter_next(&it))) 1762 uclamp_update_active(p); 1763 css_task_iter_end(&it); 1764 } 1765 1766 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1767 #endif 1768 1769 #ifdef CONFIG_SYSCTL 1770 #ifdef CONFIG_UCLAMP_TASK_GROUP 1771 static void uclamp_update_root_tg(void) 1772 { 1773 struct task_group *tg = &root_task_group; 1774 1775 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1776 sysctl_sched_uclamp_util_min, false); 1777 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1778 sysctl_sched_uclamp_util_max, false); 1779 1780 guard(rcu)(); 1781 cpu_util_update_eff(&root_task_group.css); 1782 } 1783 #else 1784 static void uclamp_update_root_tg(void) { } 1785 #endif 1786 1787 static void uclamp_sync_util_min_rt_default(void) 1788 { 1789 struct task_struct *g, *p; 1790 1791 /* 1792 * copy_process() sysctl_uclamp 1793 * uclamp_min_rt = X; 1794 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1795 * // link thread smp_mb__after_spinlock() 1796 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1797 * sched_post_fork() for_each_process_thread() 1798 * __uclamp_sync_rt() __uclamp_sync_rt() 1799 * 1800 * Ensures that either sched_post_fork() will observe the new 1801 * uclamp_min_rt or for_each_process_thread() will observe the new 1802 * task. 1803 */ 1804 read_lock(&tasklist_lock); 1805 smp_mb__after_spinlock(); 1806 read_unlock(&tasklist_lock); 1807 1808 guard(rcu)(); 1809 for_each_process_thread(g, p) 1810 uclamp_update_util_min_rt_default(p); 1811 } 1812 1813 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1814 void *buffer, size_t *lenp, loff_t *ppos) 1815 { 1816 bool update_root_tg = false; 1817 int old_min, old_max, old_min_rt; 1818 int result; 1819 1820 guard(mutex)(&uclamp_mutex); 1821 1822 old_min = sysctl_sched_uclamp_util_min; 1823 old_max = sysctl_sched_uclamp_util_max; 1824 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1825 1826 result = proc_dointvec(table, write, buffer, lenp, ppos); 1827 if (result) 1828 goto undo; 1829 if (!write) 1830 return 0; 1831 1832 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1833 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1834 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1835 1836 result = -EINVAL; 1837 goto undo; 1838 } 1839 1840 if (old_min != sysctl_sched_uclamp_util_min) { 1841 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1842 sysctl_sched_uclamp_util_min, false); 1843 update_root_tg = true; 1844 } 1845 if (old_max != sysctl_sched_uclamp_util_max) { 1846 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1847 sysctl_sched_uclamp_util_max, false); 1848 update_root_tg = true; 1849 } 1850 1851 if (update_root_tg) { 1852 static_branch_enable(&sched_uclamp_used); 1853 uclamp_update_root_tg(); 1854 } 1855 1856 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1857 static_branch_enable(&sched_uclamp_used); 1858 uclamp_sync_util_min_rt_default(); 1859 } 1860 1861 /* 1862 * We update all RUNNABLE tasks only when task groups are in use. 1863 * Otherwise, keep it simple and do just a lazy update at each next 1864 * task enqueue time. 1865 */ 1866 return 0; 1867 1868 undo: 1869 sysctl_sched_uclamp_util_min = old_min; 1870 sysctl_sched_uclamp_util_max = old_max; 1871 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1872 return result; 1873 } 1874 #endif 1875 1876 static void uclamp_fork(struct task_struct *p) 1877 { 1878 enum uclamp_id clamp_id; 1879 1880 /* 1881 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1882 * as the task is still at its early fork stages. 1883 */ 1884 for_each_clamp_id(clamp_id) 1885 p->uclamp[clamp_id].active = false; 1886 1887 if (likely(!p->sched_reset_on_fork)) 1888 return; 1889 1890 for_each_clamp_id(clamp_id) { 1891 uclamp_se_set(&p->uclamp_req[clamp_id], 1892 uclamp_none(clamp_id), false); 1893 } 1894 } 1895 1896 static void uclamp_post_fork(struct task_struct *p) 1897 { 1898 uclamp_update_util_min_rt_default(p); 1899 } 1900 1901 static void __init init_uclamp_rq(struct rq *rq) 1902 { 1903 enum uclamp_id clamp_id; 1904 struct uclamp_rq *uc_rq = rq->uclamp; 1905 1906 for_each_clamp_id(clamp_id) { 1907 uc_rq[clamp_id] = (struct uclamp_rq) { 1908 .value = uclamp_none(clamp_id) 1909 }; 1910 } 1911 1912 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1913 } 1914 1915 static void __init init_uclamp(void) 1916 { 1917 struct uclamp_se uc_max = {}; 1918 enum uclamp_id clamp_id; 1919 int cpu; 1920 1921 for_each_possible_cpu(cpu) 1922 init_uclamp_rq(cpu_rq(cpu)); 1923 1924 for_each_clamp_id(clamp_id) { 1925 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1926 uclamp_none(clamp_id), false); 1927 } 1928 1929 /* System defaults allow max clamp values for both indexes */ 1930 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1931 for_each_clamp_id(clamp_id) { 1932 uclamp_default[clamp_id] = uc_max; 1933 #ifdef CONFIG_UCLAMP_TASK_GROUP 1934 root_task_group.uclamp_req[clamp_id] = uc_max; 1935 root_task_group.uclamp[clamp_id] = uc_max; 1936 #endif 1937 } 1938 } 1939 1940 #else /* !CONFIG_UCLAMP_TASK */ 1941 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1942 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1943 static inline void uclamp_fork(struct task_struct *p) { } 1944 static inline void uclamp_post_fork(struct task_struct *p) { } 1945 static inline void init_uclamp(void) { } 1946 #endif /* CONFIG_UCLAMP_TASK */ 1947 1948 bool sched_task_on_rq(struct task_struct *p) 1949 { 1950 return task_on_rq_queued(p); 1951 } 1952 1953 unsigned long get_wchan(struct task_struct *p) 1954 { 1955 unsigned long ip = 0; 1956 unsigned int state; 1957 1958 if (!p || p == current) 1959 return 0; 1960 1961 /* Only get wchan if task is blocked and we can keep it that way. */ 1962 raw_spin_lock_irq(&p->pi_lock); 1963 state = READ_ONCE(p->__state); 1964 smp_rmb(); /* see try_to_wake_up() */ 1965 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 1966 ip = __get_wchan(p); 1967 raw_spin_unlock_irq(&p->pi_lock); 1968 1969 return ip; 1970 } 1971 1972 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1973 { 1974 if (!(flags & ENQUEUE_NOCLOCK)) 1975 update_rq_clock(rq); 1976 1977 if (!(flags & ENQUEUE_RESTORE)) { 1978 sched_info_enqueue(rq, p); 1979 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 1980 } 1981 1982 uclamp_rq_inc(rq, p); 1983 p->sched_class->enqueue_task(rq, p, flags); 1984 1985 if (sched_core_enabled(rq)) 1986 sched_core_enqueue(rq, p); 1987 } 1988 1989 void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1990 { 1991 if (sched_core_enabled(rq)) 1992 sched_core_dequeue(rq, p, flags); 1993 1994 if (!(flags & DEQUEUE_NOCLOCK)) 1995 update_rq_clock(rq); 1996 1997 if (!(flags & DEQUEUE_SAVE)) { 1998 sched_info_dequeue(rq, p); 1999 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2000 } 2001 2002 uclamp_rq_dec(rq, p); 2003 p->sched_class->dequeue_task(rq, p, flags); 2004 } 2005 2006 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2007 { 2008 if (task_on_rq_migrating(p)) 2009 flags |= ENQUEUE_MIGRATED; 2010 if (flags & ENQUEUE_MIGRATED) 2011 sched_mm_cid_migrate_to(rq, p); 2012 2013 enqueue_task(rq, p, flags); 2014 2015 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2016 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2017 } 2018 2019 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2020 { 2021 WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING); 2022 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2023 2024 dequeue_task(rq, p, flags); 2025 } 2026 2027 /** 2028 * task_curr - is this task currently executing on a CPU? 2029 * @p: the task in question. 2030 * 2031 * Return: 1 if the task is currently executing. 0 otherwise. 2032 */ 2033 inline int task_curr(const struct task_struct *p) 2034 { 2035 return cpu_curr(task_cpu(p)) == p; 2036 } 2037 2038 /* 2039 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2040 * mess with locking. 2041 */ 2042 void check_class_changing(struct rq *rq, struct task_struct *p, 2043 const struct sched_class *prev_class) 2044 { 2045 if (prev_class != p->sched_class && p->sched_class->switching_to) 2046 p->sched_class->switching_to(rq, p); 2047 } 2048 2049 /* 2050 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2051 * use the balance_callback list if you want balancing. 2052 * 2053 * this means any call to check_class_changed() must be followed by a call to 2054 * balance_callback(). 2055 */ 2056 void check_class_changed(struct rq *rq, struct task_struct *p, 2057 const struct sched_class *prev_class, 2058 int oldprio) 2059 { 2060 if (prev_class != p->sched_class) { 2061 if (prev_class->switched_from) 2062 prev_class->switched_from(rq, p); 2063 2064 p->sched_class->switched_to(rq, p); 2065 } else if (oldprio != p->prio || dl_task(p)) 2066 p->sched_class->prio_changed(rq, p, oldprio); 2067 } 2068 2069 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2070 { 2071 if (p->sched_class == rq->curr->sched_class) 2072 rq->curr->sched_class->wakeup_preempt(rq, p, flags); 2073 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2074 resched_curr(rq); 2075 2076 /* 2077 * A queue event has occurred, and we're going to schedule. In 2078 * this case, we can save a useless back to back clock update. 2079 */ 2080 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2081 rq_clock_skip_update(rq); 2082 } 2083 2084 static __always_inline 2085 int __task_state_match(struct task_struct *p, unsigned int state) 2086 { 2087 if (READ_ONCE(p->__state) & state) 2088 return 1; 2089 2090 if (READ_ONCE(p->saved_state) & state) 2091 return -1; 2092 2093 return 0; 2094 } 2095 2096 static __always_inline 2097 int task_state_match(struct task_struct *p, unsigned int state) 2098 { 2099 /* 2100 * Serialize against current_save_and_set_rtlock_wait_state(), 2101 * current_restore_rtlock_saved_state(), and __refrigerator(). 2102 */ 2103 guard(raw_spinlock_irq)(&p->pi_lock); 2104 return __task_state_match(p, state); 2105 } 2106 2107 /* 2108 * wait_task_inactive - wait for a thread to unschedule. 2109 * 2110 * Wait for the thread to block in any of the states set in @match_state. 2111 * If it changes, i.e. @p might have woken up, then return zero. When we 2112 * succeed in waiting for @p to be off its CPU, we return a positive number 2113 * (its total switch count). If a second call a short while later returns the 2114 * same number, the caller can be sure that @p has remained unscheduled the 2115 * whole time. 2116 * 2117 * The caller must ensure that the task *will* unschedule sometime soon, 2118 * else this function might spin for a *long* time. This function can't 2119 * be called with interrupts off, or it may introduce deadlock with 2120 * smp_call_function() if an IPI is sent by the same process we are 2121 * waiting to become inactive. 2122 */ 2123 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2124 { 2125 int running, queued, match; 2126 struct rq_flags rf; 2127 unsigned long ncsw; 2128 struct rq *rq; 2129 2130 for (;;) { 2131 /* 2132 * We do the initial early heuristics without holding 2133 * any task-queue locks at all. We'll only try to get 2134 * the runqueue lock when things look like they will 2135 * work out! 2136 */ 2137 rq = task_rq(p); 2138 2139 /* 2140 * If the task is actively running on another CPU 2141 * still, just relax and busy-wait without holding 2142 * any locks. 2143 * 2144 * NOTE! Since we don't hold any locks, it's not 2145 * even sure that "rq" stays as the right runqueue! 2146 * But we don't care, since "task_on_cpu()" will 2147 * return false if the runqueue has changed and p 2148 * is actually now running somewhere else! 2149 */ 2150 while (task_on_cpu(rq, p)) { 2151 if (!task_state_match(p, match_state)) 2152 return 0; 2153 cpu_relax(); 2154 } 2155 2156 /* 2157 * Ok, time to look more closely! We need the rq 2158 * lock now, to be *sure*. If we're wrong, we'll 2159 * just go back and repeat. 2160 */ 2161 rq = task_rq_lock(p, &rf); 2162 trace_sched_wait_task(p); 2163 running = task_on_cpu(rq, p); 2164 queued = task_on_rq_queued(p); 2165 ncsw = 0; 2166 if ((match = __task_state_match(p, match_state))) { 2167 /* 2168 * When matching on p->saved_state, consider this task 2169 * still queued so it will wait. 2170 */ 2171 if (match < 0) 2172 queued = 1; 2173 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2174 } 2175 task_rq_unlock(rq, p, &rf); 2176 2177 /* 2178 * If it changed from the expected state, bail out now. 2179 */ 2180 if (unlikely(!ncsw)) 2181 break; 2182 2183 /* 2184 * Was it really running after all now that we 2185 * checked with the proper locks actually held? 2186 * 2187 * Oops. Go back and try again.. 2188 */ 2189 if (unlikely(running)) { 2190 cpu_relax(); 2191 continue; 2192 } 2193 2194 /* 2195 * It's not enough that it's not actively running, 2196 * it must be off the runqueue _entirely_, and not 2197 * preempted! 2198 * 2199 * So if it was still runnable (but just not actively 2200 * running right now), it's preempted, and we should 2201 * yield - it could be a while. 2202 */ 2203 if (unlikely(queued)) { 2204 ktime_t to = NSEC_PER_SEC / HZ; 2205 2206 set_current_state(TASK_UNINTERRUPTIBLE); 2207 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2208 continue; 2209 } 2210 2211 /* 2212 * Ahh, all good. It wasn't running, and it wasn't 2213 * runnable, which means that it will never become 2214 * running in the future either. We're all done! 2215 */ 2216 break; 2217 } 2218 2219 return ncsw; 2220 } 2221 2222 #ifdef CONFIG_SMP 2223 2224 static void 2225 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2226 2227 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2228 { 2229 struct affinity_context ac = { 2230 .new_mask = cpumask_of(rq->cpu), 2231 .flags = SCA_MIGRATE_DISABLE, 2232 }; 2233 2234 if (likely(!p->migration_disabled)) 2235 return; 2236 2237 if (p->cpus_ptr != &p->cpus_mask) 2238 return; 2239 2240 /* 2241 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2242 */ 2243 __do_set_cpus_allowed(p, &ac); 2244 } 2245 2246 void migrate_disable(void) 2247 { 2248 struct task_struct *p = current; 2249 2250 if (p->migration_disabled) { 2251 p->migration_disabled++; 2252 return; 2253 } 2254 2255 guard(preempt)(); 2256 this_rq()->nr_pinned++; 2257 p->migration_disabled = 1; 2258 } 2259 EXPORT_SYMBOL_GPL(migrate_disable); 2260 2261 void migrate_enable(void) 2262 { 2263 struct task_struct *p = current; 2264 struct affinity_context ac = { 2265 .new_mask = &p->cpus_mask, 2266 .flags = SCA_MIGRATE_ENABLE, 2267 }; 2268 2269 if (p->migration_disabled > 1) { 2270 p->migration_disabled--; 2271 return; 2272 } 2273 2274 if (WARN_ON_ONCE(!p->migration_disabled)) 2275 return; 2276 2277 /* 2278 * Ensure stop_task runs either before or after this, and that 2279 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2280 */ 2281 guard(preempt)(); 2282 if (p->cpus_ptr != &p->cpus_mask) 2283 __set_cpus_allowed_ptr(p, &ac); 2284 /* 2285 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2286 * regular cpus_mask, otherwise things that race (eg. 2287 * select_fallback_rq) get confused. 2288 */ 2289 barrier(); 2290 p->migration_disabled = 0; 2291 this_rq()->nr_pinned--; 2292 } 2293 EXPORT_SYMBOL_GPL(migrate_enable); 2294 2295 static inline bool rq_has_pinned_tasks(struct rq *rq) 2296 { 2297 return rq->nr_pinned; 2298 } 2299 2300 /* 2301 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2302 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2303 */ 2304 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2305 { 2306 /* When not in the task's cpumask, no point in looking further. */ 2307 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2308 return false; 2309 2310 /* migrate_disabled() must be allowed to finish. */ 2311 if (is_migration_disabled(p)) 2312 return cpu_online(cpu); 2313 2314 /* Non kernel threads are not allowed during either online or offline. */ 2315 if (!(p->flags & PF_KTHREAD)) 2316 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2317 2318 /* KTHREAD_IS_PER_CPU is always allowed. */ 2319 if (kthread_is_per_cpu(p)) 2320 return cpu_online(cpu); 2321 2322 /* Regular kernel threads don't get to stay during offline. */ 2323 if (cpu_dying(cpu)) 2324 return false; 2325 2326 /* But are allowed during online. */ 2327 return cpu_online(cpu); 2328 } 2329 2330 /* 2331 * This is how migration works: 2332 * 2333 * 1) we invoke migration_cpu_stop() on the target CPU using 2334 * stop_one_cpu(). 2335 * 2) stopper starts to run (implicitly forcing the migrated thread 2336 * off the CPU) 2337 * 3) it checks whether the migrated task is still in the wrong runqueue. 2338 * 4) if it's in the wrong runqueue then the migration thread removes 2339 * it and puts it into the right queue. 2340 * 5) stopper completes and stop_one_cpu() returns and the migration 2341 * is done. 2342 */ 2343 2344 /* 2345 * move_queued_task - move a queued task to new rq. 2346 * 2347 * Returns (locked) new rq. Old rq's lock is released. 2348 */ 2349 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2350 struct task_struct *p, int new_cpu) 2351 { 2352 lockdep_assert_rq_held(rq); 2353 2354 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2355 set_task_cpu(p, new_cpu); 2356 rq_unlock(rq, rf); 2357 2358 rq = cpu_rq(new_cpu); 2359 2360 rq_lock(rq, rf); 2361 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2362 activate_task(rq, p, 0); 2363 wakeup_preempt(rq, p, 0); 2364 2365 return rq; 2366 } 2367 2368 struct migration_arg { 2369 struct task_struct *task; 2370 int dest_cpu; 2371 struct set_affinity_pending *pending; 2372 }; 2373 2374 /* 2375 * @refs: number of wait_for_completion() 2376 * @stop_pending: is @stop_work in use 2377 */ 2378 struct set_affinity_pending { 2379 refcount_t refs; 2380 unsigned int stop_pending; 2381 struct completion done; 2382 struct cpu_stop_work stop_work; 2383 struct migration_arg arg; 2384 }; 2385 2386 /* 2387 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2388 * this because either it can't run here any more (set_cpus_allowed() 2389 * away from this CPU, or CPU going down), or because we're 2390 * attempting to rebalance this task on exec (sched_exec). 2391 * 2392 * So we race with normal scheduler movements, but that's OK, as long 2393 * as the task is no longer on this CPU. 2394 */ 2395 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2396 struct task_struct *p, int dest_cpu) 2397 { 2398 /* Affinity changed (again). */ 2399 if (!is_cpu_allowed(p, dest_cpu)) 2400 return rq; 2401 2402 rq = move_queued_task(rq, rf, p, dest_cpu); 2403 2404 return rq; 2405 } 2406 2407 /* 2408 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2409 * and performs thread migration by bumping thread off CPU then 2410 * 'pushing' onto another runqueue. 2411 */ 2412 static int migration_cpu_stop(void *data) 2413 { 2414 struct migration_arg *arg = data; 2415 struct set_affinity_pending *pending = arg->pending; 2416 struct task_struct *p = arg->task; 2417 struct rq *rq = this_rq(); 2418 bool complete = false; 2419 struct rq_flags rf; 2420 2421 /* 2422 * The original target CPU might have gone down and we might 2423 * be on another CPU but it doesn't matter. 2424 */ 2425 local_irq_save(rf.flags); 2426 /* 2427 * We need to explicitly wake pending tasks before running 2428 * __migrate_task() such that we will not miss enforcing cpus_ptr 2429 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2430 */ 2431 flush_smp_call_function_queue(); 2432 2433 raw_spin_lock(&p->pi_lock); 2434 rq_lock(rq, &rf); 2435 2436 /* 2437 * If we were passed a pending, then ->stop_pending was set, thus 2438 * p->migration_pending must have remained stable. 2439 */ 2440 WARN_ON_ONCE(pending && pending != p->migration_pending); 2441 2442 /* 2443 * If task_rq(p) != rq, it cannot be migrated here, because we're 2444 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2445 * we're holding p->pi_lock. 2446 */ 2447 if (task_rq(p) == rq) { 2448 if (is_migration_disabled(p)) 2449 goto out; 2450 2451 if (pending) { 2452 p->migration_pending = NULL; 2453 complete = true; 2454 2455 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2456 goto out; 2457 } 2458 2459 if (task_on_rq_queued(p)) { 2460 update_rq_clock(rq); 2461 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2462 } else { 2463 p->wake_cpu = arg->dest_cpu; 2464 } 2465 2466 /* 2467 * XXX __migrate_task() can fail, at which point we might end 2468 * up running on a dodgy CPU, AFAICT this can only happen 2469 * during CPU hotplug, at which point we'll get pushed out 2470 * anyway, so it's probably not a big deal. 2471 */ 2472 2473 } else if (pending) { 2474 /* 2475 * This happens when we get migrated between migrate_enable()'s 2476 * preempt_enable() and scheduling the stopper task. At that 2477 * point we're a regular task again and not current anymore. 2478 * 2479 * A !PREEMPT kernel has a giant hole here, which makes it far 2480 * more likely. 2481 */ 2482 2483 /* 2484 * The task moved before the stopper got to run. We're holding 2485 * ->pi_lock, so the allowed mask is stable - if it got 2486 * somewhere allowed, we're done. 2487 */ 2488 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2489 p->migration_pending = NULL; 2490 complete = true; 2491 goto out; 2492 } 2493 2494 /* 2495 * When migrate_enable() hits a rq mis-match we can't reliably 2496 * determine is_migration_disabled() and so have to chase after 2497 * it. 2498 */ 2499 WARN_ON_ONCE(!pending->stop_pending); 2500 preempt_disable(); 2501 task_rq_unlock(rq, p, &rf); 2502 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2503 &pending->arg, &pending->stop_work); 2504 preempt_enable(); 2505 return 0; 2506 } 2507 out: 2508 if (pending) 2509 pending->stop_pending = false; 2510 task_rq_unlock(rq, p, &rf); 2511 2512 if (complete) 2513 complete_all(&pending->done); 2514 2515 return 0; 2516 } 2517 2518 int push_cpu_stop(void *arg) 2519 { 2520 struct rq *lowest_rq = NULL, *rq = this_rq(); 2521 struct task_struct *p = arg; 2522 2523 raw_spin_lock_irq(&p->pi_lock); 2524 raw_spin_rq_lock(rq); 2525 2526 if (task_rq(p) != rq) 2527 goto out_unlock; 2528 2529 if (is_migration_disabled(p)) { 2530 p->migration_flags |= MDF_PUSH; 2531 goto out_unlock; 2532 } 2533 2534 p->migration_flags &= ~MDF_PUSH; 2535 2536 if (p->sched_class->find_lock_rq) 2537 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2538 2539 if (!lowest_rq) 2540 goto out_unlock; 2541 2542 // XXX validate p is still the highest prio task 2543 if (task_rq(p) == rq) { 2544 deactivate_task(rq, p, 0); 2545 set_task_cpu(p, lowest_rq->cpu); 2546 activate_task(lowest_rq, p, 0); 2547 resched_curr(lowest_rq); 2548 } 2549 2550 double_unlock_balance(rq, lowest_rq); 2551 2552 out_unlock: 2553 rq->push_busy = false; 2554 raw_spin_rq_unlock(rq); 2555 raw_spin_unlock_irq(&p->pi_lock); 2556 2557 put_task_struct(p); 2558 return 0; 2559 } 2560 2561 /* 2562 * sched_class::set_cpus_allowed must do the below, but is not required to 2563 * actually call this function. 2564 */ 2565 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2566 { 2567 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2568 p->cpus_ptr = ctx->new_mask; 2569 return; 2570 } 2571 2572 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2573 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2574 2575 /* 2576 * Swap in a new user_cpus_ptr if SCA_USER flag set 2577 */ 2578 if (ctx->flags & SCA_USER) 2579 swap(p->user_cpus_ptr, ctx->user_mask); 2580 } 2581 2582 static void 2583 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2584 { 2585 struct rq *rq = task_rq(p); 2586 bool queued, running; 2587 2588 /* 2589 * This here violates the locking rules for affinity, since we're only 2590 * supposed to change these variables while holding both rq->lock and 2591 * p->pi_lock. 2592 * 2593 * HOWEVER, it magically works, because ttwu() is the only code that 2594 * accesses these variables under p->pi_lock and only does so after 2595 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2596 * before finish_task(). 2597 * 2598 * XXX do further audits, this smells like something putrid. 2599 */ 2600 if (ctx->flags & SCA_MIGRATE_DISABLE) 2601 SCHED_WARN_ON(!p->on_cpu); 2602 else 2603 lockdep_assert_held(&p->pi_lock); 2604 2605 queued = task_on_rq_queued(p); 2606 running = task_current(rq, p); 2607 2608 if (queued) { 2609 /* 2610 * Because __kthread_bind() calls this on blocked tasks without 2611 * holding rq->lock. 2612 */ 2613 lockdep_assert_rq_held(rq); 2614 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2615 } 2616 if (running) 2617 put_prev_task(rq, p); 2618 2619 p->sched_class->set_cpus_allowed(p, ctx); 2620 2621 if (queued) 2622 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2623 if (running) 2624 set_next_task(rq, p); 2625 } 2626 2627 /* 2628 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2629 * affinity (if any) should be destroyed too. 2630 */ 2631 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2632 { 2633 struct affinity_context ac = { 2634 .new_mask = new_mask, 2635 .user_mask = NULL, 2636 .flags = SCA_USER, /* clear the user requested mask */ 2637 }; 2638 union cpumask_rcuhead { 2639 cpumask_t cpumask; 2640 struct rcu_head rcu; 2641 }; 2642 2643 __do_set_cpus_allowed(p, &ac); 2644 2645 /* 2646 * Because this is called with p->pi_lock held, it is not possible 2647 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2648 * kfree_rcu(). 2649 */ 2650 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2651 } 2652 2653 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2654 int node) 2655 { 2656 cpumask_t *user_mask; 2657 unsigned long flags; 2658 2659 /* 2660 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2661 * may differ by now due to racing. 2662 */ 2663 dst->user_cpus_ptr = NULL; 2664 2665 /* 2666 * This check is racy and losing the race is a valid situation. 2667 * It is not worth the extra overhead of taking the pi_lock on 2668 * every fork/clone. 2669 */ 2670 if (data_race(!src->user_cpus_ptr)) 2671 return 0; 2672 2673 user_mask = alloc_user_cpus_ptr(node); 2674 if (!user_mask) 2675 return -ENOMEM; 2676 2677 /* 2678 * Use pi_lock to protect content of user_cpus_ptr 2679 * 2680 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2681 * do_set_cpus_allowed(). 2682 */ 2683 raw_spin_lock_irqsave(&src->pi_lock, flags); 2684 if (src->user_cpus_ptr) { 2685 swap(dst->user_cpus_ptr, user_mask); 2686 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2687 } 2688 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2689 2690 if (unlikely(user_mask)) 2691 kfree(user_mask); 2692 2693 return 0; 2694 } 2695 2696 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2697 { 2698 struct cpumask *user_mask = NULL; 2699 2700 swap(p->user_cpus_ptr, user_mask); 2701 2702 return user_mask; 2703 } 2704 2705 void release_user_cpus_ptr(struct task_struct *p) 2706 { 2707 kfree(clear_user_cpus_ptr(p)); 2708 } 2709 2710 /* 2711 * This function is wildly self concurrent; here be dragons. 2712 * 2713 * 2714 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2715 * designated task is enqueued on an allowed CPU. If that task is currently 2716 * running, we have to kick it out using the CPU stopper. 2717 * 2718 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2719 * Consider: 2720 * 2721 * Initial conditions: P0->cpus_mask = [0, 1] 2722 * 2723 * P0@CPU0 P1 2724 * 2725 * migrate_disable(); 2726 * <preempted> 2727 * set_cpus_allowed_ptr(P0, [1]); 2728 * 2729 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2730 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2731 * This means we need the following scheme: 2732 * 2733 * P0@CPU0 P1 2734 * 2735 * migrate_disable(); 2736 * <preempted> 2737 * set_cpus_allowed_ptr(P0, [1]); 2738 * <blocks> 2739 * <resumes> 2740 * migrate_enable(); 2741 * __set_cpus_allowed_ptr(); 2742 * <wakes local stopper> 2743 * `--> <woken on migration completion> 2744 * 2745 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2746 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2747 * task p are serialized by p->pi_lock, which we can leverage: the one that 2748 * should come into effect at the end of the Migrate-Disable region is the last 2749 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2750 * but we still need to properly signal those waiting tasks at the appropriate 2751 * moment. 2752 * 2753 * This is implemented using struct set_affinity_pending. The first 2754 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2755 * setup an instance of that struct and install it on the targeted task_struct. 2756 * Any and all further callers will reuse that instance. Those then wait for 2757 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2758 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2759 * 2760 * 2761 * (1) In the cases covered above. There is one more where the completion is 2762 * signaled within affine_move_task() itself: when a subsequent affinity request 2763 * occurs after the stopper bailed out due to the targeted task still being 2764 * Migrate-Disable. Consider: 2765 * 2766 * Initial conditions: P0->cpus_mask = [0, 1] 2767 * 2768 * CPU0 P1 P2 2769 * <P0> 2770 * migrate_disable(); 2771 * <preempted> 2772 * set_cpus_allowed_ptr(P0, [1]); 2773 * <blocks> 2774 * <migration/0> 2775 * migration_cpu_stop() 2776 * is_migration_disabled() 2777 * <bails> 2778 * set_cpus_allowed_ptr(P0, [0, 1]); 2779 * <signal completion> 2780 * <awakes> 2781 * 2782 * Note that the above is safe vs a concurrent migrate_enable(), as any 2783 * pending affinity completion is preceded by an uninstallation of 2784 * p->migration_pending done with p->pi_lock held. 2785 */ 2786 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2787 int dest_cpu, unsigned int flags) 2788 __releases(rq->lock) 2789 __releases(p->pi_lock) 2790 { 2791 struct set_affinity_pending my_pending = { }, *pending = NULL; 2792 bool stop_pending, complete = false; 2793 2794 /* Can the task run on the task's current CPU? If so, we're done */ 2795 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2796 struct task_struct *push_task = NULL; 2797 2798 if ((flags & SCA_MIGRATE_ENABLE) && 2799 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2800 rq->push_busy = true; 2801 push_task = get_task_struct(p); 2802 } 2803 2804 /* 2805 * If there are pending waiters, but no pending stop_work, 2806 * then complete now. 2807 */ 2808 pending = p->migration_pending; 2809 if (pending && !pending->stop_pending) { 2810 p->migration_pending = NULL; 2811 complete = true; 2812 } 2813 2814 preempt_disable(); 2815 task_rq_unlock(rq, p, rf); 2816 if (push_task) { 2817 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2818 p, &rq->push_work); 2819 } 2820 preempt_enable(); 2821 2822 if (complete) 2823 complete_all(&pending->done); 2824 2825 return 0; 2826 } 2827 2828 if (!(flags & SCA_MIGRATE_ENABLE)) { 2829 /* serialized by p->pi_lock */ 2830 if (!p->migration_pending) { 2831 /* Install the request */ 2832 refcount_set(&my_pending.refs, 1); 2833 init_completion(&my_pending.done); 2834 my_pending.arg = (struct migration_arg) { 2835 .task = p, 2836 .dest_cpu = dest_cpu, 2837 .pending = &my_pending, 2838 }; 2839 2840 p->migration_pending = &my_pending; 2841 } else { 2842 pending = p->migration_pending; 2843 refcount_inc(&pending->refs); 2844 /* 2845 * Affinity has changed, but we've already installed a 2846 * pending. migration_cpu_stop() *must* see this, else 2847 * we risk a completion of the pending despite having a 2848 * task on a disallowed CPU. 2849 * 2850 * Serialized by p->pi_lock, so this is safe. 2851 */ 2852 pending->arg.dest_cpu = dest_cpu; 2853 } 2854 } 2855 pending = p->migration_pending; 2856 /* 2857 * - !MIGRATE_ENABLE: 2858 * we'll have installed a pending if there wasn't one already. 2859 * 2860 * - MIGRATE_ENABLE: 2861 * we're here because the current CPU isn't matching anymore, 2862 * the only way that can happen is because of a concurrent 2863 * set_cpus_allowed_ptr() call, which should then still be 2864 * pending completion. 2865 * 2866 * Either way, we really should have a @pending here. 2867 */ 2868 if (WARN_ON_ONCE(!pending)) { 2869 task_rq_unlock(rq, p, rf); 2870 return -EINVAL; 2871 } 2872 2873 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2874 /* 2875 * MIGRATE_ENABLE gets here because 'p == current', but for 2876 * anything else we cannot do is_migration_disabled(), punt 2877 * and have the stopper function handle it all race-free. 2878 */ 2879 stop_pending = pending->stop_pending; 2880 if (!stop_pending) 2881 pending->stop_pending = true; 2882 2883 if (flags & SCA_MIGRATE_ENABLE) 2884 p->migration_flags &= ~MDF_PUSH; 2885 2886 preempt_disable(); 2887 task_rq_unlock(rq, p, rf); 2888 if (!stop_pending) { 2889 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2890 &pending->arg, &pending->stop_work); 2891 } 2892 preempt_enable(); 2893 2894 if (flags & SCA_MIGRATE_ENABLE) 2895 return 0; 2896 } else { 2897 2898 if (!is_migration_disabled(p)) { 2899 if (task_on_rq_queued(p)) 2900 rq = move_queued_task(rq, rf, p, dest_cpu); 2901 2902 if (!pending->stop_pending) { 2903 p->migration_pending = NULL; 2904 complete = true; 2905 } 2906 } 2907 task_rq_unlock(rq, p, rf); 2908 2909 if (complete) 2910 complete_all(&pending->done); 2911 } 2912 2913 wait_for_completion(&pending->done); 2914 2915 if (refcount_dec_and_test(&pending->refs)) 2916 wake_up_var(&pending->refs); /* No UaF, just an address */ 2917 2918 /* 2919 * Block the original owner of &pending until all subsequent callers 2920 * have seen the completion and decremented the refcount 2921 */ 2922 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2923 2924 /* ARGH */ 2925 WARN_ON_ONCE(my_pending.stop_pending); 2926 2927 return 0; 2928 } 2929 2930 /* 2931 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2932 */ 2933 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2934 struct affinity_context *ctx, 2935 struct rq *rq, 2936 struct rq_flags *rf) 2937 __releases(rq->lock) 2938 __releases(p->pi_lock) 2939 { 2940 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2941 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2942 bool kthread = p->flags & PF_KTHREAD; 2943 unsigned int dest_cpu; 2944 int ret = 0; 2945 2946 update_rq_clock(rq); 2947 2948 if (kthread || is_migration_disabled(p)) { 2949 /* 2950 * Kernel threads are allowed on online && !active CPUs, 2951 * however, during cpu-hot-unplug, even these might get pushed 2952 * away if not KTHREAD_IS_PER_CPU. 2953 * 2954 * Specifically, migration_disabled() tasks must not fail the 2955 * cpumask_any_and_distribute() pick below, esp. so on 2956 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2957 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2958 */ 2959 cpu_valid_mask = cpu_online_mask; 2960 } 2961 2962 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2963 ret = -EINVAL; 2964 goto out; 2965 } 2966 2967 /* 2968 * Must re-check here, to close a race against __kthread_bind(), 2969 * sched_setaffinity() is not guaranteed to observe the flag. 2970 */ 2971 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2972 ret = -EINVAL; 2973 goto out; 2974 } 2975 2976 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2977 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 2978 if (ctx->flags & SCA_USER) 2979 swap(p->user_cpus_ptr, ctx->user_mask); 2980 goto out; 2981 } 2982 2983 if (WARN_ON_ONCE(p == current && 2984 is_migration_disabled(p) && 2985 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2986 ret = -EBUSY; 2987 goto out; 2988 } 2989 } 2990 2991 /* 2992 * Picking a ~random cpu helps in cases where we are changing affinity 2993 * for groups of tasks (ie. cpuset), so that load balancing is not 2994 * immediately required to distribute the tasks within their new mask. 2995 */ 2996 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 2997 if (dest_cpu >= nr_cpu_ids) { 2998 ret = -EINVAL; 2999 goto out; 3000 } 3001 3002 __do_set_cpus_allowed(p, ctx); 3003 3004 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3005 3006 out: 3007 task_rq_unlock(rq, p, rf); 3008 3009 return ret; 3010 } 3011 3012 /* 3013 * Change a given task's CPU affinity. Migrate the thread to a 3014 * proper CPU and schedule it away if the CPU it's executing on 3015 * is removed from the allowed bitmask. 3016 * 3017 * NOTE: the caller must have a valid reference to the task, the 3018 * task must not exit() & deallocate itself prematurely. The 3019 * call is not atomic; no spinlocks may be held. 3020 */ 3021 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3022 { 3023 struct rq_flags rf; 3024 struct rq *rq; 3025 3026 rq = task_rq_lock(p, &rf); 3027 /* 3028 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3029 * flags are set. 3030 */ 3031 if (p->user_cpus_ptr && 3032 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3033 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3034 ctx->new_mask = rq->scratch_mask; 3035 3036 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3037 } 3038 3039 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3040 { 3041 struct affinity_context ac = { 3042 .new_mask = new_mask, 3043 .flags = 0, 3044 }; 3045 3046 return __set_cpus_allowed_ptr(p, &ac); 3047 } 3048 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3049 3050 /* 3051 * Change a given task's CPU affinity to the intersection of its current 3052 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3053 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3054 * affinity or use cpu_online_mask instead. 3055 * 3056 * If the resulting mask is empty, leave the affinity unchanged and return 3057 * -EINVAL. 3058 */ 3059 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3060 struct cpumask *new_mask, 3061 const struct cpumask *subset_mask) 3062 { 3063 struct affinity_context ac = { 3064 .new_mask = new_mask, 3065 .flags = 0, 3066 }; 3067 struct rq_flags rf; 3068 struct rq *rq; 3069 int err; 3070 3071 rq = task_rq_lock(p, &rf); 3072 3073 /* 3074 * Forcefully restricting the affinity of a deadline task is 3075 * likely to cause problems, so fail and noisily override the 3076 * mask entirely. 3077 */ 3078 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3079 err = -EPERM; 3080 goto err_unlock; 3081 } 3082 3083 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3084 err = -EINVAL; 3085 goto err_unlock; 3086 } 3087 3088 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3089 3090 err_unlock: 3091 task_rq_unlock(rq, p, &rf); 3092 return err; 3093 } 3094 3095 /* 3096 * Restrict the CPU affinity of task @p so that it is a subset of 3097 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3098 * old affinity mask. If the resulting mask is empty, we warn and walk 3099 * up the cpuset hierarchy until we find a suitable mask. 3100 */ 3101 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3102 { 3103 cpumask_var_t new_mask; 3104 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3105 3106 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3107 3108 /* 3109 * __migrate_task() can fail silently in the face of concurrent 3110 * offlining of the chosen destination CPU, so take the hotplug 3111 * lock to ensure that the migration succeeds. 3112 */ 3113 cpus_read_lock(); 3114 if (!cpumask_available(new_mask)) 3115 goto out_set_mask; 3116 3117 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3118 goto out_free_mask; 3119 3120 /* 3121 * We failed to find a valid subset of the affinity mask for the 3122 * task, so override it based on its cpuset hierarchy. 3123 */ 3124 cpuset_cpus_allowed(p, new_mask); 3125 override_mask = new_mask; 3126 3127 out_set_mask: 3128 if (printk_ratelimit()) { 3129 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3130 task_pid_nr(p), p->comm, 3131 cpumask_pr_args(override_mask)); 3132 } 3133 3134 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3135 out_free_mask: 3136 cpus_read_unlock(); 3137 free_cpumask_var(new_mask); 3138 } 3139 3140 /* 3141 * Restore the affinity of a task @p which was previously restricted by a 3142 * call to force_compatible_cpus_allowed_ptr(). 3143 * 3144 * It is the caller's responsibility to serialise this with any calls to 3145 * force_compatible_cpus_allowed_ptr(@p). 3146 */ 3147 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3148 { 3149 struct affinity_context ac = { 3150 .new_mask = task_user_cpus(p), 3151 .flags = 0, 3152 }; 3153 int ret; 3154 3155 /* 3156 * Try to restore the old affinity mask with __sched_setaffinity(). 3157 * Cpuset masking will be done there too. 3158 */ 3159 ret = __sched_setaffinity(p, &ac); 3160 WARN_ON_ONCE(ret); 3161 } 3162 3163 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3164 { 3165 #ifdef CONFIG_SCHED_DEBUG 3166 unsigned int state = READ_ONCE(p->__state); 3167 3168 /* 3169 * We should never call set_task_cpu() on a blocked task, 3170 * ttwu() will sort out the placement. 3171 */ 3172 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3173 3174 /* 3175 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3176 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3177 * time relying on p->on_rq. 3178 */ 3179 WARN_ON_ONCE(state == TASK_RUNNING && 3180 p->sched_class == &fair_sched_class && 3181 (p->on_rq && !task_on_rq_migrating(p))); 3182 3183 #ifdef CONFIG_LOCKDEP 3184 /* 3185 * The caller should hold either p->pi_lock or rq->lock, when changing 3186 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3187 * 3188 * sched_move_task() holds both and thus holding either pins the cgroup, 3189 * see task_group(). 3190 * 3191 * Furthermore, all task_rq users should acquire both locks, see 3192 * task_rq_lock(). 3193 */ 3194 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3195 lockdep_is_held(__rq_lockp(task_rq(p))))); 3196 #endif 3197 /* 3198 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3199 */ 3200 WARN_ON_ONCE(!cpu_online(new_cpu)); 3201 3202 WARN_ON_ONCE(is_migration_disabled(p)); 3203 #endif 3204 3205 trace_sched_migrate_task(p, new_cpu); 3206 3207 if (task_cpu(p) != new_cpu) { 3208 if (p->sched_class->migrate_task_rq) 3209 p->sched_class->migrate_task_rq(p, new_cpu); 3210 p->se.nr_migrations++; 3211 rseq_migrate(p); 3212 sched_mm_cid_migrate_from(p); 3213 perf_event_task_migrate(p); 3214 } 3215 3216 __set_task_cpu(p, new_cpu); 3217 } 3218 3219 #ifdef CONFIG_NUMA_BALANCING 3220 static void __migrate_swap_task(struct task_struct *p, int cpu) 3221 { 3222 if (task_on_rq_queued(p)) { 3223 struct rq *src_rq, *dst_rq; 3224 struct rq_flags srf, drf; 3225 3226 src_rq = task_rq(p); 3227 dst_rq = cpu_rq(cpu); 3228 3229 rq_pin_lock(src_rq, &srf); 3230 rq_pin_lock(dst_rq, &drf); 3231 3232 deactivate_task(src_rq, p, 0); 3233 set_task_cpu(p, cpu); 3234 activate_task(dst_rq, p, 0); 3235 wakeup_preempt(dst_rq, p, 0); 3236 3237 rq_unpin_lock(dst_rq, &drf); 3238 rq_unpin_lock(src_rq, &srf); 3239 3240 } else { 3241 /* 3242 * Task isn't running anymore; make it appear like we migrated 3243 * it before it went to sleep. This means on wakeup we make the 3244 * previous CPU our target instead of where it really is. 3245 */ 3246 p->wake_cpu = cpu; 3247 } 3248 } 3249 3250 struct migration_swap_arg { 3251 struct task_struct *src_task, *dst_task; 3252 int src_cpu, dst_cpu; 3253 }; 3254 3255 static int migrate_swap_stop(void *data) 3256 { 3257 struct migration_swap_arg *arg = data; 3258 struct rq *src_rq, *dst_rq; 3259 3260 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3261 return -EAGAIN; 3262 3263 src_rq = cpu_rq(arg->src_cpu); 3264 dst_rq = cpu_rq(arg->dst_cpu); 3265 3266 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3267 guard(double_rq_lock)(src_rq, dst_rq); 3268 3269 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3270 return -EAGAIN; 3271 3272 if (task_cpu(arg->src_task) != arg->src_cpu) 3273 return -EAGAIN; 3274 3275 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3276 return -EAGAIN; 3277 3278 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3279 return -EAGAIN; 3280 3281 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3282 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3283 3284 return 0; 3285 } 3286 3287 /* 3288 * Cross migrate two tasks 3289 */ 3290 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3291 int target_cpu, int curr_cpu) 3292 { 3293 struct migration_swap_arg arg; 3294 int ret = -EINVAL; 3295 3296 arg = (struct migration_swap_arg){ 3297 .src_task = cur, 3298 .src_cpu = curr_cpu, 3299 .dst_task = p, 3300 .dst_cpu = target_cpu, 3301 }; 3302 3303 if (arg.src_cpu == arg.dst_cpu) 3304 goto out; 3305 3306 /* 3307 * These three tests are all lockless; this is OK since all of them 3308 * will be re-checked with proper locks held further down the line. 3309 */ 3310 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3311 goto out; 3312 3313 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3314 goto out; 3315 3316 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3317 goto out; 3318 3319 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3320 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3321 3322 out: 3323 return ret; 3324 } 3325 #endif /* CONFIG_NUMA_BALANCING */ 3326 3327 /*** 3328 * kick_process - kick a running thread to enter/exit the kernel 3329 * @p: the to-be-kicked thread 3330 * 3331 * Cause a process which is running on another CPU to enter 3332 * kernel-mode, without any delay. (to get signals handled.) 3333 * 3334 * NOTE: this function doesn't have to take the runqueue lock, 3335 * because all it wants to ensure is that the remote task enters 3336 * the kernel. If the IPI races and the task has been migrated 3337 * to another CPU then no harm is done and the purpose has been 3338 * achieved as well. 3339 */ 3340 void kick_process(struct task_struct *p) 3341 { 3342 guard(preempt)(); 3343 int cpu = task_cpu(p); 3344 3345 if ((cpu != smp_processor_id()) && task_curr(p)) 3346 smp_send_reschedule(cpu); 3347 } 3348 EXPORT_SYMBOL_GPL(kick_process); 3349 3350 /* 3351 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3352 * 3353 * A few notes on cpu_active vs cpu_online: 3354 * 3355 * - cpu_active must be a subset of cpu_online 3356 * 3357 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3358 * see __set_cpus_allowed_ptr(). At this point the newly online 3359 * CPU isn't yet part of the sched domains, and balancing will not 3360 * see it. 3361 * 3362 * - on CPU-down we clear cpu_active() to mask the sched domains and 3363 * avoid the load balancer to place new tasks on the to be removed 3364 * CPU. Existing tasks will remain running there and will be taken 3365 * off. 3366 * 3367 * This means that fallback selection must not select !active CPUs. 3368 * And can assume that any active CPU must be online. Conversely 3369 * select_task_rq() below may allow selection of !active CPUs in order 3370 * to satisfy the above rules. 3371 */ 3372 static int select_fallback_rq(int cpu, struct task_struct *p) 3373 { 3374 int nid = cpu_to_node(cpu); 3375 const struct cpumask *nodemask = NULL; 3376 enum { cpuset, possible, fail } state = cpuset; 3377 int dest_cpu; 3378 3379 /* 3380 * If the node that the CPU is on has been offlined, cpu_to_node() 3381 * will return -1. There is no CPU on the node, and we should 3382 * select the CPU on the other node. 3383 */ 3384 if (nid != -1) { 3385 nodemask = cpumask_of_node(nid); 3386 3387 /* Look for allowed, online CPU in same node. */ 3388 for_each_cpu(dest_cpu, nodemask) { 3389 if (is_cpu_allowed(p, dest_cpu)) 3390 return dest_cpu; 3391 } 3392 } 3393 3394 for (;;) { 3395 /* Any allowed, online CPU? */ 3396 for_each_cpu(dest_cpu, p->cpus_ptr) { 3397 if (!is_cpu_allowed(p, dest_cpu)) 3398 continue; 3399 3400 goto out; 3401 } 3402 3403 /* No more Mr. Nice Guy. */ 3404 switch (state) { 3405 case cpuset: 3406 if (cpuset_cpus_allowed_fallback(p)) { 3407 state = possible; 3408 break; 3409 } 3410 fallthrough; 3411 case possible: 3412 /* 3413 * XXX When called from select_task_rq() we only 3414 * hold p->pi_lock and again violate locking order. 3415 * 3416 * More yuck to audit. 3417 */ 3418 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3419 state = fail; 3420 break; 3421 case fail: 3422 BUG(); 3423 break; 3424 } 3425 } 3426 3427 out: 3428 if (state != cpuset) { 3429 /* 3430 * Don't tell them about moving exiting tasks or 3431 * kernel threads (both mm NULL), since they never 3432 * leave kernel. 3433 */ 3434 if (p->mm && printk_ratelimit()) { 3435 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3436 task_pid_nr(p), p->comm, cpu); 3437 } 3438 } 3439 3440 return dest_cpu; 3441 } 3442 3443 /* 3444 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3445 */ 3446 static inline 3447 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3448 { 3449 lockdep_assert_held(&p->pi_lock); 3450 3451 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3452 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3453 else 3454 cpu = cpumask_any(p->cpus_ptr); 3455 3456 /* 3457 * In order not to call set_task_cpu() on a blocking task we need 3458 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3459 * CPU. 3460 * 3461 * Since this is common to all placement strategies, this lives here. 3462 * 3463 * [ this allows ->select_task() to simply return task_cpu(p) and 3464 * not worry about this generic constraint ] 3465 */ 3466 if (unlikely(!is_cpu_allowed(p, cpu))) 3467 cpu = select_fallback_rq(task_cpu(p), p); 3468 3469 return cpu; 3470 } 3471 3472 void sched_set_stop_task(int cpu, struct task_struct *stop) 3473 { 3474 static struct lock_class_key stop_pi_lock; 3475 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3476 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3477 3478 if (stop) { 3479 /* 3480 * Make it appear like a SCHED_FIFO task, its something 3481 * userspace knows about and won't get confused about. 3482 * 3483 * Also, it will make PI more or less work without too 3484 * much confusion -- but then, stop work should not 3485 * rely on PI working anyway. 3486 */ 3487 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3488 3489 stop->sched_class = &stop_sched_class; 3490 3491 /* 3492 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3493 * adjust the effective priority of a task. As a result, 3494 * rt_mutex_setprio() can trigger (RT) balancing operations, 3495 * which can then trigger wakeups of the stop thread to push 3496 * around the current task. 3497 * 3498 * The stop task itself will never be part of the PI-chain, it 3499 * never blocks, therefore that ->pi_lock recursion is safe. 3500 * Tell lockdep about this by placing the stop->pi_lock in its 3501 * own class. 3502 */ 3503 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3504 } 3505 3506 cpu_rq(cpu)->stop = stop; 3507 3508 if (old_stop) { 3509 /* 3510 * Reset it back to a normal scheduling class so that 3511 * it can die in pieces. 3512 */ 3513 old_stop->sched_class = &rt_sched_class; 3514 } 3515 } 3516 3517 #else /* CONFIG_SMP */ 3518 3519 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3520 3521 static inline bool rq_has_pinned_tasks(struct rq *rq) 3522 { 3523 return false; 3524 } 3525 3526 #endif /* !CONFIG_SMP */ 3527 3528 static void 3529 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3530 { 3531 struct rq *rq; 3532 3533 if (!schedstat_enabled()) 3534 return; 3535 3536 rq = this_rq(); 3537 3538 #ifdef CONFIG_SMP 3539 if (cpu == rq->cpu) { 3540 __schedstat_inc(rq->ttwu_local); 3541 __schedstat_inc(p->stats.nr_wakeups_local); 3542 } else { 3543 struct sched_domain *sd; 3544 3545 __schedstat_inc(p->stats.nr_wakeups_remote); 3546 3547 guard(rcu)(); 3548 for_each_domain(rq->cpu, sd) { 3549 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3550 __schedstat_inc(sd->ttwu_wake_remote); 3551 break; 3552 } 3553 } 3554 } 3555 3556 if (wake_flags & WF_MIGRATED) 3557 __schedstat_inc(p->stats.nr_wakeups_migrate); 3558 #endif /* CONFIG_SMP */ 3559 3560 __schedstat_inc(rq->ttwu_count); 3561 __schedstat_inc(p->stats.nr_wakeups); 3562 3563 if (wake_flags & WF_SYNC) 3564 __schedstat_inc(p->stats.nr_wakeups_sync); 3565 } 3566 3567 /* 3568 * Mark the task runnable. 3569 */ 3570 static inline void ttwu_do_wakeup(struct task_struct *p) 3571 { 3572 WRITE_ONCE(p->__state, TASK_RUNNING); 3573 trace_sched_wakeup(p); 3574 } 3575 3576 static void 3577 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3578 struct rq_flags *rf) 3579 { 3580 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3581 3582 lockdep_assert_rq_held(rq); 3583 3584 if (p->sched_contributes_to_load) 3585 rq->nr_uninterruptible--; 3586 3587 #ifdef CONFIG_SMP 3588 if (wake_flags & WF_MIGRATED) 3589 en_flags |= ENQUEUE_MIGRATED; 3590 else 3591 #endif 3592 if (p->in_iowait) { 3593 delayacct_blkio_end(p); 3594 atomic_dec(&task_rq(p)->nr_iowait); 3595 } 3596 3597 activate_task(rq, p, en_flags); 3598 wakeup_preempt(rq, p, wake_flags); 3599 3600 ttwu_do_wakeup(p); 3601 3602 #ifdef CONFIG_SMP 3603 if (p->sched_class->task_woken) { 3604 /* 3605 * Our task @p is fully woken up and running; so it's safe to 3606 * drop the rq->lock, hereafter rq is only used for statistics. 3607 */ 3608 rq_unpin_lock(rq, rf); 3609 p->sched_class->task_woken(rq, p); 3610 rq_repin_lock(rq, rf); 3611 } 3612 3613 if (rq->idle_stamp) { 3614 u64 delta = rq_clock(rq) - rq->idle_stamp; 3615 u64 max = 2*rq->max_idle_balance_cost; 3616 3617 update_avg(&rq->avg_idle, delta); 3618 3619 if (rq->avg_idle > max) 3620 rq->avg_idle = max; 3621 3622 rq->idle_stamp = 0; 3623 } 3624 #endif 3625 3626 p->dl_server = NULL; 3627 } 3628 3629 /* 3630 * Consider @p being inside a wait loop: 3631 * 3632 * for (;;) { 3633 * set_current_state(TASK_UNINTERRUPTIBLE); 3634 * 3635 * if (CONDITION) 3636 * break; 3637 * 3638 * schedule(); 3639 * } 3640 * __set_current_state(TASK_RUNNING); 3641 * 3642 * between set_current_state() and schedule(). In this case @p is still 3643 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3644 * an atomic manner. 3645 * 3646 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3647 * then schedule() must still happen and p->state can be changed to 3648 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3649 * need to do a full wakeup with enqueue. 3650 * 3651 * Returns: %true when the wakeup is done, 3652 * %false otherwise. 3653 */ 3654 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3655 { 3656 struct rq_flags rf; 3657 struct rq *rq; 3658 int ret = 0; 3659 3660 rq = __task_rq_lock(p, &rf); 3661 if (task_on_rq_queued(p)) { 3662 if (!task_on_cpu(rq, p)) { 3663 /* 3664 * When on_rq && !on_cpu the task is preempted, see if 3665 * it should preempt the task that is current now. 3666 */ 3667 update_rq_clock(rq); 3668 wakeup_preempt(rq, p, wake_flags); 3669 } 3670 ttwu_do_wakeup(p); 3671 ret = 1; 3672 } 3673 __task_rq_unlock(rq, &rf); 3674 3675 return ret; 3676 } 3677 3678 #ifdef CONFIG_SMP 3679 void sched_ttwu_pending(void *arg) 3680 { 3681 struct llist_node *llist = arg; 3682 struct rq *rq = this_rq(); 3683 struct task_struct *p, *t; 3684 struct rq_flags rf; 3685 3686 if (!llist) 3687 return; 3688 3689 rq_lock_irqsave(rq, &rf); 3690 update_rq_clock(rq); 3691 3692 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3693 if (WARN_ON_ONCE(p->on_cpu)) 3694 smp_cond_load_acquire(&p->on_cpu, !VAL); 3695 3696 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3697 set_task_cpu(p, cpu_of(rq)); 3698 3699 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3700 } 3701 3702 /* 3703 * Must be after enqueueing at least once task such that 3704 * idle_cpu() does not observe a false-negative -- if it does, 3705 * it is possible for select_idle_siblings() to stack a number 3706 * of tasks on this CPU during that window. 3707 * 3708 * It is OK to clear ttwu_pending when another task pending. 3709 * We will receive IPI after local IRQ enabled and then enqueue it. 3710 * Since now nr_running > 0, idle_cpu() will always get correct result. 3711 */ 3712 WRITE_ONCE(rq->ttwu_pending, 0); 3713 rq_unlock_irqrestore(rq, &rf); 3714 } 3715 3716 /* 3717 * Prepare the scene for sending an IPI for a remote smp_call 3718 * 3719 * Returns true if the caller can proceed with sending the IPI. 3720 * Returns false otherwise. 3721 */ 3722 bool call_function_single_prep_ipi(int cpu) 3723 { 3724 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3725 trace_sched_wake_idle_without_ipi(cpu); 3726 return false; 3727 } 3728 3729 return true; 3730 } 3731 3732 /* 3733 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3734 * necessary. The wakee CPU on receipt of the IPI will queue the task 3735 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3736 * of the wakeup instead of the waker. 3737 */ 3738 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3739 { 3740 struct rq *rq = cpu_rq(cpu); 3741 3742 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3743 3744 WRITE_ONCE(rq->ttwu_pending, 1); 3745 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3746 } 3747 3748 void wake_up_if_idle(int cpu) 3749 { 3750 struct rq *rq = cpu_rq(cpu); 3751 3752 guard(rcu)(); 3753 if (is_idle_task(rcu_dereference(rq->curr))) { 3754 guard(rq_lock_irqsave)(rq); 3755 if (is_idle_task(rq->curr)) 3756 resched_curr(rq); 3757 } 3758 } 3759 3760 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3761 { 3762 if (!sched_asym_cpucap_active()) 3763 return true; 3764 3765 if (this_cpu == that_cpu) 3766 return true; 3767 3768 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3769 } 3770 3771 bool cpus_share_cache(int this_cpu, int that_cpu) 3772 { 3773 if (this_cpu == that_cpu) 3774 return true; 3775 3776 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3777 } 3778 3779 /* 3780 * Whether CPUs are share cache resources, which means LLC on non-cluster 3781 * machines and LLC tag or L2 on machines with clusters. 3782 */ 3783 bool cpus_share_resources(int this_cpu, int that_cpu) 3784 { 3785 if (this_cpu == that_cpu) 3786 return true; 3787 3788 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3789 } 3790 3791 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3792 { 3793 /* 3794 * The BPF scheduler may depend on select_task_rq() being invoked during 3795 * wakeups. In addition, @p may end up executing on a different CPU 3796 * regardless of what happens in the wakeup path making the ttwu_queue 3797 * optimization less meaningful. Skip if on SCX. 3798 */ 3799 if (task_on_scx(p)) 3800 return false; 3801 3802 /* 3803 * Do not complicate things with the async wake_list while the CPU is 3804 * in hotplug state. 3805 */ 3806 if (!cpu_active(cpu)) 3807 return false; 3808 3809 /* Ensure the task will still be allowed to run on the CPU. */ 3810 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3811 return false; 3812 3813 /* 3814 * If the CPU does not share cache, then queue the task on the 3815 * remote rqs wakelist to avoid accessing remote data. 3816 */ 3817 if (!cpus_share_cache(smp_processor_id(), cpu)) 3818 return true; 3819 3820 if (cpu == smp_processor_id()) 3821 return false; 3822 3823 /* 3824 * If the wakee cpu is idle, or the task is descheduling and the 3825 * only running task on the CPU, then use the wakelist to offload 3826 * the task activation to the idle (or soon-to-be-idle) CPU as 3827 * the current CPU is likely busy. nr_running is checked to 3828 * avoid unnecessary task stacking. 3829 * 3830 * Note that we can only get here with (wakee) p->on_rq=0, 3831 * p->on_cpu can be whatever, we've done the dequeue, so 3832 * the wakee has been accounted out of ->nr_running. 3833 */ 3834 if (!cpu_rq(cpu)->nr_running) 3835 return true; 3836 3837 return false; 3838 } 3839 3840 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3841 { 3842 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3843 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3844 __ttwu_queue_wakelist(p, cpu, wake_flags); 3845 return true; 3846 } 3847 3848 return false; 3849 } 3850 3851 #else /* !CONFIG_SMP */ 3852 3853 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3854 { 3855 return false; 3856 } 3857 3858 #endif /* CONFIG_SMP */ 3859 3860 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3861 { 3862 struct rq *rq = cpu_rq(cpu); 3863 struct rq_flags rf; 3864 3865 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3866 return; 3867 3868 rq_lock(rq, &rf); 3869 update_rq_clock(rq); 3870 ttwu_do_activate(rq, p, wake_flags, &rf); 3871 rq_unlock(rq, &rf); 3872 } 3873 3874 /* 3875 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3876 * 3877 * The caller holds p::pi_lock if p != current or has preemption 3878 * disabled when p == current. 3879 * 3880 * The rules of saved_state: 3881 * 3882 * The related locking code always holds p::pi_lock when updating 3883 * p::saved_state, which means the code is fully serialized in both cases. 3884 * 3885 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3886 * No other bits set. This allows to distinguish all wakeup scenarios. 3887 * 3888 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3889 * allows us to prevent early wakeup of tasks before they can be run on 3890 * asymmetric ISA architectures (eg ARMv9). 3891 */ 3892 static __always_inline 3893 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3894 { 3895 int match; 3896 3897 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3898 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3899 state != TASK_RTLOCK_WAIT); 3900 } 3901 3902 *success = !!(match = __task_state_match(p, state)); 3903 3904 /* 3905 * Saved state preserves the task state across blocking on 3906 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3907 * set p::saved_state to TASK_RUNNING, but do not wake the task 3908 * because it waits for a lock wakeup or __thaw_task(). Also 3909 * indicate success because from the regular waker's point of 3910 * view this has succeeded. 3911 * 3912 * After acquiring the lock the task will restore p::__state 3913 * from p::saved_state which ensures that the regular 3914 * wakeup is not lost. The restore will also set 3915 * p::saved_state to TASK_RUNNING so any further tests will 3916 * not result in false positives vs. @success 3917 */ 3918 if (match < 0) 3919 p->saved_state = TASK_RUNNING; 3920 3921 return match > 0; 3922 } 3923 3924 /* 3925 * Notes on Program-Order guarantees on SMP systems. 3926 * 3927 * MIGRATION 3928 * 3929 * The basic program-order guarantee on SMP systems is that when a task [t] 3930 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3931 * execution on its new CPU [c1]. 3932 * 3933 * For migration (of runnable tasks) this is provided by the following means: 3934 * 3935 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3936 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3937 * rq(c1)->lock (if not at the same time, then in that order). 3938 * C) LOCK of the rq(c1)->lock scheduling in task 3939 * 3940 * Release/acquire chaining guarantees that B happens after A and C after B. 3941 * Note: the CPU doing B need not be c0 or c1 3942 * 3943 * Example: 3944 * 3945 * CPU0 CPU1 CPU2 3946 * 3947 * LOCK rq(0)->lock 3948 * sched-out X 3949 * sched-in Y 3950 * UNLOCK rq(0)->lock 3951 * 3952 * LOCK rq(0)->lock // orders against CPU0 3953 * dequeue X 3954 * UNLOCK rq(0)->lock 3955 * 3956 * LOCK rq(1)->lock 3957 * enqueue X 3958 * UNLOCK rq(1)->lock 3959 * 3960 * LOCK rq(1)->lock // orders against CPU2 3961 * sched-out Z 3962 * sched-in X 3963 * UNLOCK rq(1)->lock 3964 * 3965 * 3966 * BLOCKING -- aka. SLEEP + WAKEUP 3967 * 3968 * For blocking we (obviously) need to provide the same guarantee as for 3969 * migration. However the means are completely different as there is no lock 3970 * chain to provide order. Instead we do: 3971 * 3972 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3973 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3974 * 3975 * Example: 3976 * 3977 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3978 * 3979 * LOCK rq(0)->lock LOCK X->pi_lock 3980 * dequeue X 3981 * sched-out X 3982 * smp_store_release(X->on_cpu, 0); 3983 * 3984 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3985 * X->state = WAKING 3986 * set_task_cpu(X,2) 3987 * 3988 * LOCK rq(2)->lock 3989 * enqueue X 3990 * X->state = RUNNING 3991 * UNLOCK rq(2)->lock 3992 * 3993 * LOCK rq(2)->lock // orders against CPU1 3994 * sched-out Z 3995 * sched-in X 3996 * UNLOCK rq(2)->lock 3997 * 3998 * UNLOCK X->pi_lock 3999 * UNLOCK rq(0)->lock 4000 * 4001 * 4002 * However, for wakeups there is a second guarantee we must provide, namely we 4003 * must ensure that CONDITION=1 done by the caller can not be reordered with 4004 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4005 */ 4006 4007 /** 4008 * try_to_wake_up - wake up a thread 4009 * @p: the thread to be awakened 4010 * @state: the mask of task states that can be woken 4011 * @wake_flags: wake modifier flags (WF_*) 4012 * 4013 * Conceptually does: 4014 * 4015 * If (@state & @p->state) @p->state = TASK_RUNNING. 4016 * 4017 * If the task was not queued/runnable, also place it back on a runqueue. 4018 * 4019 * This function is atomic against schedule() which would dequeue the task. 4020 * 4021 * It issues a full memory barrier before accessing @p->state, see the comment 4022 * with set_current_state(). 4023 * 4024 * Uses p->pi_lock to serialize against concurrent wake-ups. 4025 * 4026 * Relies on p->pi_lock stabilizing: 4027 * - p->sched_class 4028 * - p->cpus_ptr 4029 * - p->sched_task_group 4030 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4031 * 4032 * Tries really hard to only take one task_rq(p)->lock for performance. 4033 * Takes rq->lock in: 4034 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4035 * - ttwu_queue() -- new rq, for enqueue of the task; 4036 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4037 * 4038 * As a consequence we race really badly with just about everything. See the 4039 * many memory barriers and their comments for details. 4040 * 4041 * Return: %true if @p->state changes (an actual wakeup was done), 4042 * %false otherwise. 4043 */ 4044 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4045 { 4046 guard(preempt)(); 4047 int cpu, success = 0; 4048 4049 if (p == current) { 4050 /* 4051 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4052 * == smp_processor_id()'. Together this means we can special 4053 * case the whole 'p->on_rq && ttwu_runnable()' case below 4054 * without taking any locks. 4055 * 4056 * In particular: 4057 * - we rely on Program-Order guarantees for all the ordering, 4058 * - we're serialized against set_special_state() by virtue of 4059 * it disabling IRQs (this allows not taking ->pi_lock). 4060 */ 4061 if (!ttwu_state_match(p, state, &success)) 4062 goto out; 4063 4064 trace_sched_waking(p); 4065 ttwu_do_wakeup(p); 4066 goto out; 4067 } 4068 4069 /* 4070 * If we are going to wake up a thread waiting for CONDITION we 4071 * need to ensure that CONDITION=1 done by the caller can not be 4072 * reordered with p->state check below. This pairs with smp_store_mb() 4073 * in set_current_state() that the waiting thread does. 4074 */ 4075 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4076 smp_mb__after_spinlock(); 4077 if (!ttwu_state_match(p, state, &success)) 4078 break; 4079 4080 trace_sched_waking(p); 4081 4082 /* 4083 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4084 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4085 * in smp_cond_load_acquire() below. 4086 * 4087 * sched_ttwu_pending() try_to_wake_up() 4088 * STORE p->on_rq = 1 LOAD p->state 4089 * UNLOCK rq->lock 4090 * 4091 * __schedule() (switch to task 'p') 4092 * LOCK rq->lock smp_rmb(); 4093 * smp_mb__after_spinlock(); 4094 * UNLOCK rq->lock 4095 * 4096 * [task p] 4097 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4098 * 4099 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4100 * __schedule(). See the comment for smp_mb__after_spinlock(). 4101 * 4102 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4103 */ 4104 smp_rmb(); 4105 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4106 break; 4107 4108 #ifdef CONFIG_SMP 4109 /* 4110 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4111 * possible to, falsely, observe p->on_cpu == 0. 4112 * 4113 * One must be running (->on_cpu == 1) in order to remove oneself 4114 * from the runqueue. 4115 * 4116 * __schedule() (switch to task 'p') try_to_wake_up() 4117 * STORE p->on_cpu = 1 LOAD p->on_rq 4118 * UNLOCK rq->lock 4119 * 4120 * __schedule() (put 'p' to sleep) 4121 * LOCK rq->lock smp_rmb(); 4122 * smp_mb__after_spinlock(); 4123 * STORE p->on_rq = 0 LOAD p->on_cpu 4124 * 4125 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4126 * __schedule(). See the comment for smp_mb__after_spinlock(). 4127 * 4128 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4129 * schedule()'s deactivate_task() has 'happened' and p will no longer 4130 * care about it's own p->state. See the comment in __schedule(). 4131 */ 4132 smp_acquire__after_ctrl_dep(); 4133 4134 /* 4135 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4136 * == 0), which means we need to do an enqueue, change p->state to 4137 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4138 * enqueue, such as ttwu_queue_wakelist(). 4139 */ 4140 WRITE_ONCE(p->__state, TASK_WAKING); 4141 4142 /* 4143 * If the owning (remote) CPU is still in the middle of schedule() with 4144 * this task as prev, considering queueing p on the remote CPUs wake_list 4145 * which potentially sends an IPI instead of spinning on p->on_cpu to 4146 * let the waker make forward progress. This is safe because IRQs are 4147 * disabled and the IPI will deliver after on_cpu is cleared. 4148 * 4149 * Ensure we load task_cpu(p) after p->on_cpu: 4150 * 4151 * set_task_cpu(p, cpu); 4152 * STORE p->cpu = @cpu 4153 * __schedule() (switch to task 'p') 4154 * LOCK rq->lock 4155 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4156 * STORE p->on_cpu = 1 LOAD p->cpu 4157 * 4158 * to ensure we observe the correct CPU on which the task is currently 4159 * scheduling. 4160 */ 4161 if (smp_load_acquire(&p->on_cpu) && 4162 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4163 break; 4164 4165 /* 4166 * If the owning (remote) CPU is still in the middle of schedule() with 4167 * this task as prev, wait until it's done referencing the task. 4168 * 4169 * Pairs with the smp_store_release() in finish_task(). 4170 * 4171 * This ensures that tasks getting woken will be fully ordered against 4172 * their previous state and preserve Program Order. 4173 */ 4174 smp_cond_load_acquire(&p->on_cpu, !VAL); 4175 4176 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4177 if (task_cpu(p) != cpu) { 4178 if (p->in_iowait) { 4179 delayacct_blkio_end(p); 4180 atomic_dec(&task_rq(p)->nr_iowait); 4181 } 4182 4183 wake_flags |= WF_MIGRATED; 4184 psi_ttwu_dequeue(p); 4185 set_task_cpu(p, cpu); 4186 } 4187 #else 4188 cpu = task_cpu(p); 4189 #endif /* CONFIG_SMP */ 4190 4191 ttwu_queue(p, cpu, wake_flags); 4192 } 4193 out: 4194 if (success) 4195 ttwu_stat(p, task_cpu(p), wake_flags); 4196 4197 return success; 4198 } 4199 4200 static bool __task_needs_rq_lock(struct task_struct *p) 4201 { 4202 unsigned int state = READ_ONCE(p->__state); 4203 4204 /* 4205 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4206 * the task is blocked. Make sure to check @state since ttwu() can drop 4207 * locks at the end, see ttwu_queue_wakelist(). 4208 */ 4209 if (state == TASK_RUNNING || state == TASK_WAKING) 4210 return true; 4211 4212 /* 4213 * Ensure we load p->on_rq after p->__state, otherwise it would be 4214 * possible to, falsely, observe p->on_rq == 0. 4215 * 4216 * See try_to_wake_up() for a longer comment. 4217 */ 4218 smp_rmb(); 4219 if (p->on_rq) 4220 return true; 4221 4222 #ifdef CONFIG_SMP 4223 /* 4224 * Ensure the task has finished __schedule() and will not be referenced 4225 * anymore. Again, see try_to_wake_up() for a longer comment. 4226 */ 4227 smp_rmb(); 4228 smp_cond_load_acquire(&p->on_cpu, !VAL); 4229 #endif 4230 4231 return false; 4232 } 4233 4234 /** 4235 * task_call_func - Invoke a function on task in fixed state 4236 * @p: Process for which the function is to be invoked, can be @current. 4237 * @func: Function to invoke. 4238 * @arg: Argument to function. 4239 * 4240 * Fix the task in it's current state by avoiding wakeups and or rq operations 4241 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4242 * to work out what the state is, if required. Given that @func can be invoked 4243 * with a runqueue lock held, it had better be quite lightweight. 4244 * 4245 * Returns: 4246 * Whatever @func returns 4247 */ 4248 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4249 { 4250 struct rq *rq = NULL; 4251 struct rq_flags rf; 4252 int ret; 4253 4254 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4255 4256 if (__task_needs_rq_lock(p)) 4257 rq = __task_rq_lock(p, &rf); 4258 4259 /* 4260 * At this point the task is pinned; either: 4261 * - blocked and we're holding off wakeups (pi->lock) 4262 * - woken, and we're holding off enqueue (rq->lock) 4263 * - queued, and we're holding off schedule (rq->lock) 4264 * - running, and we're holding off de-schedule (rq->lock) 4265 * 4266 * The called function (@func) can use: task_curr(), p->on_rq and 4267 * p->__state to differentiate between these states. 4268 */ 4269 ret = func(p, arg); 4270 4271 if (rq) 4272 rq_unlock(rq, &rf); 4273 4274 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4275 return ret; 4276 } 4277 4278 /** 4279 * cpu_curr_snapshot - Return a snapshot of the currently running task 4280 * @cpu: The CPU on which to snapshot the task. 4281 * 4282 * Returns the task_struct pointer of the task "currently" running on 4283 * the specified CPU. If the same task is running on that CPU throughout, 4284 * the return value will be a pointer to that task's task_struct structure. 4285 * If the CPU did any context switches even vaguely concurrently with the 4286 * execution of this function, the return value will be a pointer to the 4287 * task_struct structure of a randomly chosen task that was running on 4288 * that CPU somewhere around the time that this function was executing. 4289 * 4290 * If the specified CPU was offline, the return value is whatever it 4291 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4292 * task, but there is no guarantee. Callers wishing a useful return 4293 * value must take some action to ensure that the specified CPU remains 4294 * online throughout. 4295 * 4296 * This function executes full memory barriers before and after fetching 4297 * the pointer, which permits the caller to confine this function's fetch 4298 * with respect to the caller's accesses to other shared variables. 4299 */ 4300 struct task_struct *cpu_curr_snapshot(int cpu) 4301 { 4302 struct task_struct *t; 4303 4304 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4305 t = rcu_dereference(cpu_curr(cpu)); 4306 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4307 return t; 4308 } 4309 4310 /** 4311 * wake_up_process - Wake up a specific process 4312 * @p: The process to be woken up. 4313 * 4314 * Attempt to wake up the nominated process and move it to the set of runnable 4315 * processes. 4316 * 4317 * Return: 1 if the process was woken up, 0 if it was already running. 4318 * 4319 * This function executes a full memory barrier before accessing the task state. 4320 */ 4321 int wake_up_process(struct task_struct *p) 4322 { 4323 return try_to_wake_up(p, TASK_NORMAL, 0); 4324 } 4325 EXPORT_SYMBOL(wake_up_process); 4326 4327 int wake_up_state(struct task_struct *p, unsigned int state) 4328 { 4329 return try_to_wake_up(p, state, 0); 4330 } 4331 4332 /* 4333 * Perform scheduler related setup for a newly forked process p. 4334 * p is forked by current. 4335 * 4336 * __sched_fork() is basic setup used by init_idle() too: 4337 */ 4338 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4339 { 4340 p->on_rq = 0; 4341 4342 p->se.on_rq = 0; 4343 p->se.exec_start = 0; 4344 p->se.sum_exec_runtime = 0; 4345 p->se.prev_sum_exec_runtime = 0; 4346 p->se.nr_migrations = 0; 4347 p->se.vruntime = 0; 4348 p->se.vlag = 0; 4349 p->se.slice = sysctl_sched_base_slice; 4350 INIT_LIST_HEAD(&p->se.group_node); 4351 4352 #ifdef CONFIG_FAIR_GROUP_SCHED 4353 p->se.cfs_rq = NULL; 4354 #endif 4355 4356 #ifdef CONFIG_SCHEDSTATS 4357 /* Even if schedstat is disabled, there should not be garbage */ 4358 memset(&p->stats, 0, sizeof(p->stats)); 4359 #endif 4360 4361 init_dl_entity(&p->dl); 4362 4363 INIT_LIST_HEAD(&p->rt.run_list); 4364 p->rt.timeout = 0; 4365 p->rt.time_slice = sched_rr_timeslice; 4366 p->rt.on_rq = 0; 4367 p->rt.on_list = 0; 4368 4369 #ifdef CONFIG_SCHED_CLASS_EXT 4370 init_scx_entity(&p->scx); 4371 #endif 4372 4373 #ifdef CONFIG_PREEMPT_NOTIFIERS 4374 INIT_HLIST_HEAD(&p->preempt_notifiers); 4375 #endif 4376 4377 #ifdef CONFIG_COMPACTION 4378 p->capture_control = NULL; 4379 #endif 4380 init_numa_balancing(clone_flags, p); 4381 #ifdef CONFIG_SMP 4382 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4383 p->migration_pending = NULL; 4384 #endif 4385 init_sched_mm_cid(p); 4386 } 4387 4388 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4389 4390 #ifdef CONFIG_NUMA_BALANCING 4391 4392 int sysctl_numa_balancing_mode; 4393 4394 static void __set_numabalancing_state(bool enabled) 4395 { 4396 if (enabled) 4397 static_branch_enable(&sched_numa_balancing); 4398 else 4399 static_branch_disable(&sched_numa_balancing); 4400 } 4401 4402 void set_numabalancing_state(bool enabled) 4403 { 4404 if (enabled) 4405 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4406 else 4407 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4408 __set_numabalancing_state(enabled); 4409 } 4410 4411 #ifdef CONFIG_PROC_SYSCTL 4412 static void reset_memory_tiering(void) 4413 { 4414 struct pglist_data *pgdat; 4415 4416 for_each_online_pgdat(pgdat) { 4417 pgdat->nbp_threshold = 0; 4418 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4419 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4420 } 4421 } 4422 4423 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4424 void *buffer, size_t *lenp, loff_t *ppos) 4425 { 4426 struct ctl_table t; 4427 int err; 4428 int state = sysctl_numa_balancing_mode; 4429 4430 if (write && !capable(CAP_SYS_ADMIN)) 4431 return -EPERM; 4432 4433 t = *table; 4434 t.data = &state; 4435 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4436 if (err < 0) 4437 return err; 4438 if (write) { 4439 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4440 (state & NUMA_BALANCING_MEMORY_TIERING)) 4441 reset_memory_tiering(); 4442 sysctl_numa_balancing_mode = state; 4443 __set_numabalancing_state(state); 4444 } 4445 return err; 4446 } 4447 #endif 4448 #endif 4449 4450 #ifdef CONFIG_SCHEDSTATS 4451 4452 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4453 4454 static void set_schedstats(bool enabled) 4455 { 4456 if (enabled) 4457 static_branch_enable(&sched_schedstats); 4458 else 4459 static_branch_disable(&sched_schedstats); 4460 } 4461 4462 void force_schedstat_enabled(void) 4463 { 4464 if (!schedstat_enabled()) { 4465 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4466 static_branch_enable(&sched_schedstats); 4467 } 4468 } 4469 4470 static int __init setup_schedstats(char *str) 4471 { 4472 int ret = 0; 4473 if (!str) 4474 goto out; 4475 4476 if (!strcmp(str, "enable")) { 4477 set_schedstats(true); 4478 ret = 1; 4479 } else if (!strcmp(str, "disable")) { 4480 set_schedstats(false); 4481 ret = 1; 4482 } 4483 out: 4484 if (!ret) 4485 pr_warn("Unable to parse schedstats=\n"); 4486 4487 return ret; 4488 } 4489 __setup("schedstats=", setup_schedstats); 4490 4491 #ifdef CONFIG_PROC_SYSCTL 4492 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4493 size_t *lenp, loff_t *ppos) 4494 { 4495 struct ctl_table t; 4496 int err; 4497 int state = static_branch_likely(&sched_schedstats); 4498 4499 if (write && !capable(CAP_SYS_ADMIN)) 4500 return -EPERM; 4501 4502 t = *table; 4503 t.data = &state; 4504 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4505 if (err < 0) 4506 return err; 4507 if (write) 4508 set_schedstats(state); 4509 return err; 4510 } 4511 #endif /* CONFIG_PROC_SYSCTL */ 4512 #endif /* CONFIG_SCHEDSTATS */ 4513 4514 #ifdef CONFIG_SYSCTL 4515 static struct ctl_table sched_core_sysctls[] = { 4516 #ifdef CONFIG_SCHEDSTATS 4517 { 4518 .procname = "sched_schedstats", 4519 .data = NULL, 4520 .maxlen = sizeof(unsigned int), 4521 .mode = 0644, 4522 .proc_handler = sysctl_schedstats, 4523 .extra1 = SYSCTL_ZERO, 4524 .extra2 = SYSCTL_ONE, 4525 }, 4526 #endif /* CONFIG_SCHEDSTATS */ 4527 #ifdef CONFIG_UCLAMP_TASK 4528 { 4529 .procname = "sched_util_clamp_min", 4530 .data = &sysctl_sched_uclamp_util_min, 4531 .maxlen = sizeof(unsigned int), 4532 .mode = 0644, 4533 .proc_handler = sysctl_sched_uclamp_handler, 4534 }, 4535 { 4536 .procname = "sched_util_clamp_max", 4537 .data = &sysctl_sched_uclamp_util_max, 4538 .maxlen = sizeof(unsigned int), 4539 .mode = 0644, 4540 .proc_handler = sysctl_sched_uclamp_handler, 4541 }, 4542 { 4543 .procname = "sched_util_clamp_min_rt_default", 4544 .data = &sysctl_sched_uclamp_util_min_rt_default, 4545 .maxlen = sizeof(unsigned int), 4546 .mode = 0644, 4547 .proc_handler = sysctl_sched_uclamp_handler, 4548 }, 4549 #endif /* CONFIG_UCLAMP_TASK */ 4550 #ifdef CONFIG_NUMA_BALANCING 4551 { 4552 .procname = "numa_balancing", 4553 .data = NULL, /* filled in by handler */ 4554 .maxlen = sizeof(unsigned int), 4555 .mode = 0644, 4556 .proc_handler = sysctl_numa_balancing, 4557 .extra1 = SYSCTL_ZERO, 4558 .extra2 = SYSCTL_FOUR, 4559 }, 4560 #endif /* CONFIG_NUMA_BALANCING */ 4561 }; 4562 static int __init sched_core_sysctl_init(void) 4563 { 4564 register_sysctl_init("kernel", sched_core_sysctls); 4565 return 0; 4566 } 4567 late_initcall(sched_core_sysctl_init); 4568 #endif /* CONFIG_SYSCTL */ 4569 4570 /* 4571 * fork()/clone()-time setup: 4572 */ 4573 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4574 { 4575 int ret; 4576 4577 __sched_fork(clone_flags, p); 4578 /* 4579 * We mark the process as NEW here. This guarantees that 4580 * nobody will actually run it, and a signal or other external 4581 * event cannot wake it up and insert it on the runqueue either. 4582 */ 4583 p->__state = TASK_NEW; 4584 4585 /* 4586 * Make sure we do not leak PI boosting priority to the child. 4587 */ 4588 p->prio = current->normal_prio; 4589 4590 uclamp_fork(p); 4591 4592 /* 4593 * Revert to default priority/policy on fork if requested. 4594 */ 4595 if (unlikely(p->sched_reset_on_fork)) { 4596 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4597 p->policy = SCHED_NORMAL; 4598 p->static_prio = NICE_TO_PRIO(0); 4599 p->rt_priority = 0; 4600 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4601 p->static_prio = NICE_TO_PRIO(0); 4602 4603 p->prio = p->normal_prio = p->static_prio; 4604 set_load_weight(p, false); 4605 4606 /* 4607 * We don't need the reset flag anymore after the fork. It has 4608 * fulfilled its duty: 4609 */ 4610 p->sched_reset_on_fork = 0; 4611 } 4612 4613 scx_pre_fork(p); 4614 4615 if (dl_prio(p->prio)) { 4616 ret = -EAGAIN; 4617 goto out_cancel; 4618 } else if (rt_prio(p->prio)) { 4619 p->sched_class = &rt_sched_class; 4620 #ifdef CONFIG_SCHED_CLASS_EXT 4621 } else if (task_should_scx(p)) { 4622 p->sched_class = &ext_sched_class; 4623 #endif 4624 } else { 4625 p->sched_class = &fair_sched_class; 4626 } 4627 4628 init_entity_runnable_average(&p->se); 4629 4630 4631 #ifdef CONFIG_SCHED_INFO 4632 if (likely(sched_info_on())) 4633 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4634 #endif 4635 #if defined(CONFIG_SMP) 4636 p->on_cpu = 0; 4637 #endif 4638 init_task_preempt_count(p); 4639 #ifdef CONFIG_SMP 4640 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4641 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4642 #endif 4643 return 0; 4644 4645 out_cancel: 4646 scx_cancel_fork(p); 4647 return ret; 4648 } 4649 4650 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4651 { 4652 unsigned long flags; 4653 4654 /* 4655 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4656 * required yet, but lockdep gets upset if rules are violated. 4657 */ 4658 raw_spin_lock_irqsave(&p->pi_lock, flags); 4659 #ifdef CONFIG_CGROUP_SCHED 4660 if (1) { 4661 struct task_group *tg; 4662 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4663 struct task_group, css); 4664 tg = autogroup_task_group(p, tg); 4665 p->sched_task_group = tg; 4666 } 4667 #endif 4668 rseq_migrate(p); 4669 /* 4670 * We're setting the CPU for the first time, we don't migrate, 4671 * so use __set_task_cpu(). 4672 */ 4673 __set_task_cpu(p, smp_processor_id()); 4674 if (p->sched_class->task_fork) 4675 p->sched_class->task_fork(p); 4676 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4677 4678 return scx_fork(p); 4679 } 4680 4681 void sched_cancel_fork(struct task_struct *p) 4682 { 4683 scx_cancel_fork(p); 4684 } 4685 4686 void sched_post_fork(struct task_struct *p) 4687 { 4688 uclamp_post_fork(p); 4689 scx_post_fork(p); 4690 } 4691 4692 unsigned long to_ratio(u64 period, u64 runtime) 4693 { 4694 if (runtime == RUNTIME_INF) 4695 return BW_UNIT; 4696 4697 /* 4698 * Doing this here saves a lot of checks in all 4699 * the calling paths, and returning zero seems 4700 * safe for them anyway. 4701 */ 4702 if (period == 0) 4703 return 0; 4704 4705 return div64_u64(runtime << BW_SHIFT, period); 4706 } 4707 4708 /* 4709 * wake_up_new_task - wake up a newly created task for the first time. 4710 * 4711 * This function will do some initial scheduler statistics housekeeping 4712 * that must be done for every newly created context, then puts the task 4713 * on the runqueue and wakes it. 4714 */ 4715 void wake_up_new_task(struct task_struct *p) 4716 { 4717 struct rq_flags rf; 4718 struct rq *rq; 4719 4720 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4721 WRITE_ONCE(p->__state, TASK_RUNNING); 4722 #ifdef CONFIG_SMP 4723 /* 4724 * Fork balancing, do it here and not earlier because: 4725 * - cpus_ptr can change in the fork path 4726 * - any previously selected CPU might disappear through hotplug 4727 * 4728 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4729 * as we're not fully set-up yet. 4730 */ 4731 p->recent_used_cpu = task_cpu(p); 4732 rseq_migrate(p); 4733 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4734 #endif 4735 rq = __task_rq_lock(p, &rf); 4736 update_rq_clock(rq); 4737 post_init_entity_util_avg(p); 4738 4739 activate_task(rq, p, ENQUEUE_NOCLOCK); 4740 trace_sched_wakeup_new(p); 4741 wakeup_preempt(rq, p, WF_FORK); 4742 #ifdef CONFIG_SMP 4743 if (p->sched_class->task_woken) { 4744 /* 4745 * Nothing relies on rq->lock after this, so it's fine to 4746 * drop it. 4747 */ 4748 rq_unpin_lock(rq, &rf); 4749 p->sched_class->task_woken(rq, p); 4750 rq_repin_lock(rq, &rf); 4751 } 4752 #endif 4753 task_rq_unlock(rq, p, &rf); 4754 } 4755 4756 #ifdef CONFIG_PREEMPT_NOTIFIERS 4757 4758 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4759 4760 void preempt_notifier_inc(void) 4761 { 4762 static_branch_inc(&preempt_notifier_key); 4763 } 4764 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4765 4766 void preempt_notifier_dec(void) 4767 { 4768 static_branch_dec(&preempt_notifier_key); 4769 } 4770 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4771 4772 /** 4773 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4774 * @notifier: notifier struct to register 4775 */ 4776 void preempt_notifier_register(struct preempt_notifier *notifier) 4777 { 4778 if (!static_branch_unlikely(&preempt_notifier_key)) 4779 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4780 4781 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4782 } 4783 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4784 4785 /** 4786 * preempt_notifier_unregister - no longer interested in preemption notifications 4787 * @notifier: notifier struct to unregister 4788 * 4789 * This is *not* safe to call from within a preemption notifier. 4790 */ 4791 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4792 { 4793 hlist_del(¬ifier->link); 4794 } 4795 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4796 4797 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4798 { 4799 struct preempt_notifier *notifier; 4800 4801 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4802 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4803 } 4804 4805 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4806 { 4807 if (static_branch_unlikely(&preempt_notifier_key)) 4808 __fire_sched_in_preempt_notifiers(curr); 4809 } 4810 4811 static void 4812 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4813 struct task_struct *next) 4814 { 4815 struct preempt_notifier *notifier; 4816 4817 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4818 notifier->ops->sched_out(notifier, next); 4819 } 4820 4821 static __always_inline void 4822 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4823 struct task_struct *next) 4824 { 4825 if (static_branch_unlikely(&preempt_notifier_key)) 4826 __fire_sched_out_preempt_notifiers(curr, next); 4827 } 4828 4829 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4830 4831 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4832 { 4833 } 4834 4835 static inline void 4836 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4837 struct task_struct *next) 4838 { 4839 } 4840 4841 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4842 4843 static inline void prepare_task(struct task_struct *next) 4844 { 4845 #ifdef CONFIG_SMP 4846 /* 4847 * Claim the task as running, we do this before switching to it 4848 * such that any running task will have this set. 4849 * 4850 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4851 * its ordering comment. 4852 */ 4853 WRITE_ONCE(next->on_cpu, 1); 4854 #endif 4855 } 4856 4857 static inline void finish_task(struct task_struct *prev) 4858 { 4859 #ifdef CONFIG_SMP 4860 /* 4861 * This must be the very last reference to @prev from this CPU. After 4862 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4863 * must ensure this doesn't happen until the switch is completely 4864 * finished. 4865 * 4866 * In particular, the load of prev->state in finish_task_switch() must 4867 * happen before this. 4868 * 4869 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4870 */ 4871 smp_store_release(&prev->on_cpu, 0); 4872 #endif 4873 } 4874 4875 #ifdef CONFIG_SMP 4876 4877 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4878 { 4879 void (*func)(struct rq *rq); 4880 struct balance_callback *next; 4881 4882 lockdep_assert_rq_held(rq); 4883 4884 while (head) { 4885 func = (void (*)(struct rq *))head->func; 4886 next = head->next; 4887 head->next = NULL; 4888 head = next; 4889 4890 func(rq); 4891 } 4892 } 4893 4894 static void balance_push(struct rq *rq); 4895 4896 /* 4897 * balance_push_callback is a right abuse of the callback interface and plays 4898 * by significantly different rules. 4899 * 4900 * Where the normal balance_callback's purpose is to be ran in the same context 4901 * that queued it (only later, when it's safe to drop rq->lock again), 4902 * balance_push_callback is specifically targeted at __schedule(). 4903 * 4904 * This abuse is tolerated because it places all the unlikely/odd cases behind 4905 * a single test, namely: rq->balance_callback == NULL. 4906 */ 4907 struct balance_callback balance_push_callback = { 4908 .next = NULL, 4909 .func = balance_push, 4910 }; 4911 4912 static inline struct balance_callback * 4913 __splice_balance_callbacks(struct rq *rq, bool split) 4914 { 4915 struct balance_callback *head = rq->balance_callback; 4916 4917 if (likely(!head)) 4918 return NULL; 4919 4920 lockdep_assert_rq_held(rq); 4921 /* 4922 * Must not take balance_push_callback off the list when 4923 * splice_balance_callbacks() and balance_callbacks() are not 4924 * in the same rq->lock section. 4925 * 4926 * In that case it would be possible for __schedule() to interleave 4927 * and observe the list empty. 4928 */ 4929 if (split && head == &balance_push_callback) 4930 head = NULL; 4931 else 4932 rq->balance_callback = NULL; 4933 4934 return head; 4935 } 4936 4937 struct balance_callback *splice_balance_callbacks(struct rq *rq) 4938 { 4939 return __splice_balance_callbacks(rq, true); 4940 } 4941 4942 static void __balance_callbacks(struct rq *rq) 4943 { 4944 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4945 } 4946 4947 void balance_callbacks(struct rq *rq, struct balance_callback *head) 4948 { 4949 unsigned long flags; 4950 4951 if (unlikely(head)) { 4952 raw_spin_rq_lock_irqsave(rq, flags); 4953 do_balance_callbacks(rq, head); 4954 raw_spin_rq_unlock_irqrestore(rq, flags); 4955 } 4956 } 4957 4958 #else 4959 4960 static inline void __balance_callbacks(struct rq *rq) 4961 { 4962 } 4963 4964 #endif 4965 4966 static inline void 4967 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4968 { 4969 /* 4970 * Since the runqueue lock will be released by the next 4971 * task (which is an invalid locking op but in the case 4972 * of the scheduler it's an obvious special-case), so we 4973 * do an early lockdep release here: 4974 */ 4975 rq_unpin_lock(rq, rf); 4976 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4977 #ifdef CONFIG_DEBUG_SPINLOCK 4978 /* this is a valid case when another task releases the spinlock */ 4979 rq_lockp(rq)->owner = next; 4980 #endif 4981 } 4982 4983 static inline void finish_lock_switch(struct rq *rq) 4984 { 4985 /* 4986 * If we are tracking spinlock dependencies then we have to 4987 * fix up the runqueue lock - which gets 'carried over' from 4988 * prev into current: 4989 */ 4990 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4991 __balance_callbacks(rq); 4992 raw_spin_rq_unlock_irq(rq); 4993 } 4994 4995 /* 4996 * NOP if the arch has not defined these: 4997 */ 4998 4999 #ifndef prepare_arch_switch 5000 # define prepare_arch_switch(next) do { } while (0) 5001 #endif 5002 5003 #ifndef finish_arch_post_lock_switch 5004 # define finish_arch_post_lock_switch() do { } while (0) 5005 #endif 5006 5007 static inline void kmap_local_sched_out(void) 5008 { 5009 #ifdef CONFIG_KMAP_LOCAL 5010 if (unlikely(current->kmap_ctrl.idx)) 5011 __kmap_local_sched_out(); 5012 #endif 5013 } 5014 5015 static inline void kmap_local_sched_in(void) 5016 { 5017 #ifdef CONFIG_KMAP_LOCAL 5018 if (unlikely(current->kmap_ctrl.idx)) 5019 __kmap_local_sched_in(); 5020 #endif 5021 } 5022 5023 /** 5024 * prepare_task_switch - prepare to switch tasks 5025 * @rq: the runqueue preparing to switch 5026 * @prev: the current task that is being switched out 5027 * @next: the task we are going to switch to. 5028 * 5029 * This is called with the rq lock held and interrupts off. It must 5030 * be paired with a subsequent finish_task_switch after the context 5031 * switch. 5032 * 5033 * prepare_task_switch sets up locking and calls architecture specific 5034 * hooks. 5035 */ 5036 static inline void 5037 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5038 struct task_struct *next) 5039 { 5040 kcov_prepare_switch(prev); 5041 sched_info_switch(rq, prev, next); 5042 perf_event_task_sched_out(prev, next); 5043 rseq_preempt(prev); 5044 fire_sched_out_preempt_notifiers(prev, next); 5045 kmap_local_sched_out(); 5046 prepare_task(next); 5047 prepare_arch_switch(next); 5048 } 5049 5050 /** 5051 * finish_task_switch - clean up after a task-switch 5052 * @prev: the thread we just switched away from. 5053 * 5054 * finish_task_switch must be called after the context switch, paired 5055 * with a prepare_task_switch call before the context switch. 5056 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5057 * and do any other architecture-specific cleanup actions. 5058 * 5059 * Note that we may have delayed dropping an mm in context_switch(). If 5060 * so, we finish that here outside of the runqueue lock. (Doing it 5061 * with the lock held can cause deadlocks; see schedule() for 5062 * details.) 5063 * 5064 * The context switch have flipped the stack from under us and restored the 5065 * local variables which were saved when this task called schedule() in the 5066 * past. 'prev == current' is still correct but we need to recalculate this_rq 5067 * because prev may have moved to another CPU. 5068 */ 5069 static struct rq *finish_task_switch(struct task_struct *prev) 5070 __releases(rq->lock) 5071 { 5072 struct rq *rq = this_rq(); 5073 struct mm_struct *mm = rq->prev_mm; 5074 unsigned int prev_state; 5075 5076 /* 5077 * The previous task will have left us with a preempt_count of 2 5078 * because it left us after: 5079 * 5080 * schedule() 5081 * preempt_disable(); // 1 5082 * __schedule() 5083 * raw_spin_lock_irq(&rq->lock) // 2 5084 * 5085 * Also, see FORK_PREEMPT_COUNT. 5086 */ 5087 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5088 "corrupted preempt_count: %s/%d/0x%x\n", 5089 current->comm, current->pid, preempt_count())) 5090 preempt_count_set(FORK_PREEMPT_COUNT); 5091 5092 rq->prev_mm = NULL; 5093 5094 /* 5095 * A task struct has one reference for the use as "current". 5096 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5097 * schedule one last time. The schedule call will never return, and 5098 * the scheduled task must drop that reference. 5099 * 5100 * We must observe prev->state before clearing prev->on_cpu (in 5101 * finish_task), otherwise a concurrent wakeup can get prev 5102 * running on another CPU and we could rave with its RUNNING -> DEAD 5103 * transition, resulting in a double drop. 5104 */ 5105 prev_state = READ_ONCE(prev->__state); 5106 vtime_task_switch(prev); 5107 perf_event_task_sched_in(prev, current); 5108 finish_task(prev); 5109 tick_nohz_task_switch(); 5110 finish_lock_switch(rq); 5111 finish_arch_post_lock_switch(); 5112 kcov_finish_switch(current); 5113 /* 5114 * kmap_local_sched_out() is invoked with rq::lock held and 5115 * interrupts disabled. There is no requirement for that, but the 5116 * sched out code does not have an interrupt enabled section. 5117 * Restoring the maps on sched in does not require interrupts being 5118 * disabled either. 5119 */ 5120 kmap_local_sched_in(); 5121 5122 fire_sched_in_preempt_notifiers(current); 5123 /* 5124 * When switching through a kernel thread, the loop in 5125 * membarrier_{private,global}_expedited() may have observed that 5126 * kernel thread and not issued an IPI. It is therefore possible to 5127 * schedule between user->kernel->user threads without passing though 5128 * switch_mm(). Membarrier requires a barrier after storing to 5129 * rq->curr, before returning to userspace, so provide them here: 5130 * 5131 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5132 * provided by mmdrop_lazy_tlb(), 5133 * - a sync_core for SYNC_CORE. 5134 */ 5135 if (mm) { 5136 membarrier_mm_sync_core_before_usermode(mm); 5137 mmdrop_lazy_tlb_sched(mm); 5138 } 5139 5140 if (unlikely(prev_state == TASK_DEAD)) { 5141 if (prev->sched_class->task_dead) 5142 prev->sched_class->task_dead(prev); 5143 5144 /* Task is done with its stack. */ 5145 put_task_stack(prev); 5146 5147 put_task_struct_rcu_user(prev); 5148 } 5149 5150 return rq; 5151 } 5152 5153 /** 5154 * schedule_tail - first thing a freshly forked thread must call. 5155 * @prev: the thread we just switched away from. 5156 */ 5157 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5158 __releases(rq->lock) 5159 { 5160 /* 5161 * New tasks start with FORK_PREEMPT_COUNT, see there and 5162 * finish_task_switch() for details. 5163 * 5164 * finish_task_switch() will drop rq->lock() and lower preempt_count 5165 * and the preempt_enable() will end up enabling preemption (on 5166 * PREEMPT_COUNT kernels). 5167 */ 5168 5169 finish_task_switch(prev); 5170 preempt_enable(); 5171 5172 if (current->set_child_tid) 5173 put_user(task_pid_vnr(current), current->set_child_tid); 5174 5175 calculate_sigpending(); 5176 } 5177 5178 /* 5179 * context_switch - switch to the new MM and the new thread's register state. 5180 */ 5181 static __always_inline struct rq * 5182 context_switch(struct rq *rq, struct task_struct *prev, 5183 struct task_struct *next, struct rq_flags *rf) 5184 { 5185 prepare_task_switch(rq, prev, next); 5186 5187 /* 5188 * For paravirt, this is coupled with an exit in switch_to to 5189 * combine the page table reload and the switch backend into 5190 * one hypercall. 5191 */ 5192 arch_start_context_switch(prev); 5193 5194 /* 5195 * kernel -> kernel lazy + transfer active 5196 * user -> kernel lazy + mmgrab_lazy_tlb() active 5197 * 5198 * kernel -> user switch + mmdrop_lazy_tlb() active 5199 * user -> user switch 5200 * 5201 * switch_mm_cid() needs to be updated if the barriers provided 5202 * by context_switch() are modified. 5203 */ 5204 if (!next->mm) { // to kernel 5205 enter_lazy_tlb(prev->active_mm, next); 5206 5207 next->active_mm = prev->active_mm; 5208 if (prev->mm) // from user 5209 mmgrab_lazy_tlb(prev->active_mm); 5210 else 5211 prev->active_mm = NULL; 5212 } else { // to user 5213 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5214 /* 5215 * sys_membarrier() requires an smp_mb() between setting 5216 * rq->curr / membarrier_switch_mm() and returning to userspace. 5217 * 5218 * The below provides this either through switch_mm(), or in 5219 * case 'prev->active_mm == next->mm' through 5220 * finish_task_switch()'s mmdrop(). 5221 */ 5222 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5223 lru_gen_use_mm(next->mm); 5224 5225 if (!prev->mm) { // from kernel 5226 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5227 rq->prev_mm = prev->active_mm; 5228 prev->active_mm = NULL; 5229 } 5230 } 5231 5232 /* switch_mm_cid() requires the memory barriers above. */ 5233 switch_mm_cid(rq, prev, next); 5234 5235 prepare_lock_switch(rq, next, rf); 5236 5237 /* Here we just switch the register state and the stack. */ 5238 switch_to(prev, next, prev); 5239 barrier(); 5240 5241 return finish_task_switch(prev); 5242 } 5243 5244 /* 5245 * nr_running and nr_context_switches: 5246 * 5247 * externally visible scheduler statistics: current number of runnable 5248 * threads, total number of context switches performed since bootup. 5249 */ 5250 unsigned int nr_running(void) 5251 { 5252 unsigned int i, sum = 0; 5253 5254 for_each_online_cpu(i) 5255 sum += cpu_rq(i)->nr_running; 5256 5257 return sum; 5258 } 5259 5260 /* 5261 * Check if only the current task is running on the CPU. 5262 * 5263 * Caution: this function does not check that the caller has disabled 5264 * preemption, thus the result might have a time-of-check-to-time-of-use 5265 * race. The caller is responsible to use it correctly, for example: 5266 * 5267 * - from a non-preemptible section (of course) 5268 * 5269 * - from a thread that is bound to a single CPU 5270 * 5271 * - in a loop with very short iterations (e.g. a polling loop) 5272 */ 5273 bool single_task_running(void) 5274 { 5275 return raw_rq()->nr_running == 1; 5276 } 5277 EXPORT_SYMBOL(single_task_running); 5278 5279 unsigned long long nr_context_switches_cpu(int cpu) 5280 { 5281 return cpu_rq(cpu)->nr_switches; 5282 } 5283 5284 unsigned long long nr_context_switches(void) 5285 { 5286 int i; 5287 unsigned long long sum = 0; 5288 5289 for_each_possible_cpu(i) 5290 sum += cpu_rq(i)->nr_switches; 5291 5292 return sum; 5293 } 5294 5295 /* 5296 * Consumers of these two interfaces, like for example the cpuidle menu 5297 * governor, are using nonsensical data. Preferring shallow idle state selection 5298 * for a CPU that has IO-wait which might not even end up running the task when 5299 * it does become runnable. 5300 */ 5301 5302 unsigned int nr_iowait_cpu(int cpu) 5303 { 5304 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5305 } 5306 5307 /* 5308 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5309 * 5310 * The idea behind IO-wait account is to account the idle time that we could 5311 * have spend running if it were not for IO. That is, if we were to improve the 5312 * storage performance, we'd have a proportional reduction in IO-wait time. 5313 * 5314 * This all works nicely on UP, where, when a task blocks on IO, we account 5315 * idle time as IO-wait, because if the storage were faster, it could've been 5316 * running and we'd not be idle. 5317 * 5318 * This has been extended to SMP, by doing the same for each CPU. This however 5319 * is broken. 5320 * 5321 * Imagine for instance the case where two tasks block on one CPU, only the one 5322 * CPU will have IO-wait accounted, while the other has regular idle. Even 5323 * though, if the storage were faster, both could've ran at the same time, 5324 * utilising both CPUs. 5325 * 5326 * This means, that when looking globally, the current IO-wait accounting on 5327 * SMP is a lower bound, by reason of under accounting. 5328 * 5329 * Worse, since the numbers are provided per CPU, they are sometimes 5330 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5331 * associated with any one particular CPU, it can wake to another CPU than it 5332 * blocked on. This means the per CPU IO-wait number is meaningless. 5333 * 5334 * Task CPU affinities can make all that even more 'interesting'. 5335 */ 5336 5337 unsigned int nr_iowait(void) 5338 { 5339 unsigned int i, sum = 0; 5340 5341 for_each_possible_cpu(i) 5342 sum += nr_iowait_cpu(i); 5343 5344 return sum; 5345 } 5346 5347 #ifdef CONFIG_SMP 5348 5349 /* 5350 * sched_exec - execve() is a valuable balancing opportunity, because at 5351 * this point the task has the smallest effective memory and cache footprint. 5352 */ 5353 void sched_exec(void) 5354 { 5355 struct task_struct *p = current; 5356 struct migration_arg arg; 5357 int dest_cpu; 5358 5359 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5360 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5361 if (dest_cpu == smp_processor_id()) 5362 return; 5363 5364 if (unlikely(!cpu_active(dest_cpu))) 5365 return; 5366 5367 arg = (struct migration_arg){ p, dest_cpu }; 5368 } 5369 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5370 } 5371 5372 #endif 5373 5374 DEFINE_PER_CPU(struct kernel_stat, kstat); 5375 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5376 5377 EXPORT_PER_CPU_SYMBOL(kstat); 5378 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5379 5380 /* 5381 * The function fair_sched_class.update_curr accesses the struct curr 5382 * and its field curr->exec_start; when called from task_sched_runtime(), 5383 * we observe a high rate of cache misses in practice. 5384 * Prefetching this data results in improved performance. 5385 */ 5386 static inline void prefetch_curr_exec_start(struct task_struct *p) 5387 { 5388 #ifdef CONFIG_FAIR_GROUP_SCHED 5389 struct sched_entity *curr = p->se.cfs_rq->curr; 5390 #else 5391 struct sched_entity *curr = task_rq(p)->cfs.curr; 5392 #endif 5393 prefetch(curr); 5394 prefetch(&curr->exec_start); 5395 } 5396 5397 /* 5398 * Return accounted runtime for the task. 5399 * In case the task is currently running, return the runtime plus current's 5400 * pending runtime that have not been accounted yet. 5401 */ 5402 unsigned long long task_sched_runtime(struct task_struct *p) 5403 { 5404 struct rq_flags rf; 5405 struct rq *rq; 5406 u64 ns; 5407 5408 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5409 /* 5410 * 64-bit doesn't need locks to atomically read a 64-bit value. 5411 * So we have a optimization chance when the task's delta_exec is 0. 5412 * Reading ->on_cpu is racy, but this is OK. 5413 * 5414 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5415 * If we race with it entering CPU, unaccounted time is 0. This is 5416 * indistinguishable from the read occurring a few cycles earlier. 5417 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5418 * been accounted, so we're correct here as well. 5419 */ 5420 if (!p->on_cpu || !task_on_rq_queued(p)) 5421 return p->se.sum_exec_runtime; 5422 #endif 5423 5424 rq = task_rq_lock(p, &rf); 5425 /* 5426 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5427 * project cycles that may never be accounted to this 5428 * thread, breaking clock_gettime(). 5429 */ 5430 if (task_current(rq, p) && task_on_rq_queued(p)) { 5431 prefetch_curr_exec_start(p); 5432 update_rq_clock(rq); 5433 p->sched_class->update_curr(rq); 5434 } 5435 ns = p->se.sum_exec_runtime; 5436 task_rq_unlock(rq, p, &rf); 5437 5438 return ns; 5439 } 5440 5441 #ifdef CONFIG_SCHED_DEBUG 5442 static u64 cpu_resched_latency(struct rq *rq) 5443 { 5444 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5445 u64 resched_latency, now = rq_clock(rq); 5446 static bool warned_once; 5447 5448 if (sysctl_resched_latency_warn_once && warned_once) 5449 return 0; 5450 5451 if (!need_resched() || !latency_warn_ms) 5452 return 0; 5453 5454 if (system_state == SYSTEM_BOOTING) 5455 return 0; 5456 5457 if (!rq->last_seen_need_resched_ns) { 5458 rq->last_seen_need_resched_ns = now; 5459 rq->ticks_without_resched = 0; 5460 return 0; 5461 } 5462 5463 rq->ticks_without_resched++; 5464 resched_latency = now - rq->last_seen_need_resched_ns; 5465 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5466 return 0; 5467 5468 warned_once = true; 5469 5470 return resched_latency; 5471 } 5472 5473 static int __init setup_resched_latency_warn_ms(char *str) 5474 { 5475 long val; 5476 5477 if ((kstrtol(str, 0, &val))) { 5478 pr_warn("Unable to set resched_latency_warn_ms\n"); 5479 return 1; 5480 } 5481 5482 sysctl_resched_latency_warn_ms = val; 5483 return 1; 5484 } 5485 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5486 #else 5487 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5488 #endif /* CONFIG_SCHED_DEBUG */ 5489 5490 /* 5491 * This function gets called by the timer code, with HZ frequency. 5492 * We call it with interrupts disabled. 5493 */ 5494 void sched_tick(void) 5495 { 5496 int cpu = smp_processor_id(); 5497 struct rq *rq = cpu_rq(cpu); 5498 struct task_struct *curr = rq->curr; 5499 struct rq_flags rf; 5500 unsigned long hw_pressure; 5501 u64 resched_latency; 5502 5503 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5504 arch_scale_freq_tick(); 5505 5506 sched_clock_tick(); 5507 5508 rq_lock(rq, &rf); 5509 5510 update_rq_clock(rq); 5511 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5512 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5513 curr->sched_class->task_tick(rq, curr, 0); 5514 if (sched_feat(LATENCY_WARN)) 5515 resched_latency = cpu_resched_latency(rq); 5516 calc_global_load_tick(rq); 5517 sched_core_tick(rq); 5518 task_tick_mm_cid(rq, curr); 5519 5520 rq_unlock(rq, &rf); 5521 5522 if (sched_feat(LATENCY_WARN) && resched_latency) 5523 resched_latency_warn(cpu, resched_latency); 5524 5525 perf_event_task_tick(); 5526 5527 if (curr->flags & PF_WQ_WORKER) 5528 wq_worker_tick(curr); 5529 5530 #ifdef CONFIG_SMP 5531 if (!scx_switched_all()) { 5532 rq->idle_balance = idle_cpu(cpu); 5533 sched_balance_trigger(rq); 5534 } 5535 #endif 5536 } 5537 5538 #ifdef CONFIG_NO_HZ_FULL 5539 5540 struct tick_work { 5541 int cpu; 5542 atomic_t state; 5543 struct delayed_work work; 5544 }; 5545 /* Values for ->state, see diagram below. */ 5546 #define TICK_SCHED_REMOTE_OFFLINE 0 5547 #define TICK_SCHED_REMOTE_OFFLINING 1 5548 #define TICK_SCHED_REMOTE_RUNNING 2 5549 5550 /* 5551 * State diagram for ->state: 5552 * 5553 * 5554 * TICK_SCHED_REMOTE_OFFLINE 5555 * | ^ 5556 * | | 5557 * | | sched_tick_remote() 5558 * | | 5559 * | | 5560 * +--TICK_SCHED_REMOTE_OFFLINING 5561 * | ^ 5562 * | | 5563 * sched_tick_start() | | sched_tick_stop() 5564 * | | 5565 * V | 5566 * TICK_SCHED_REMOTE_RUNNING 5567 * 5568 * 5569 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5570 * and sched_tick_start() are happy to leave the state in RUNNING. 5571 */ 5572 5573 static struct tick_work __percpu *tick_work_cpu; 5574 5575 static void sched_tick_remote(struct work_struct *work) 5576 { 5577 struct delayed_work *dwork = to_delayed_work(work); 5578 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5579 int cpu = twork->cpu; 5580 struct rq *rq = cpu_rq(cpu); 5581 int os; 5582 5583 /* 5584 * Handle the tick only if it appears the remote CPU is running in full 5585 * dynticks mode. The check is racy by nature, but missing a tick or 5586 * having one too much is no big deal because the scheduler tick updates 5587 * statistics and checks timeslices in a time-independent way, regardless 5588 * of when exactly it is running. 5589 */ 5590 if (tick_nohz_tick_stopped_cpu(cpu)) { 5591 guard(rq_lock_irq)(rq); 5592 struct task_struct *curr = rq->curr; 5593 5594 if (cpu_online(cpu)) { 5595 update_rq_clock(rq); 5596 5597 if (!is_idle_task(curr)) { 5598 /* 5599 * Make sure the next tick runs within a 5600 * reasonable amount of time. 5601 */ 5602 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5603 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5604 } 5605 curr->sched_class->task_tick(rq, curr, 0); 5606 5607 calc_load_nohz_remote(rq); 5608 } 5609 } 5610 5611 /* 5612 * Run the remote tick once per second (1Hz). This arbitrary 5613 * frequency is large enough to avoid overload but short enough 5614 * to keep scheduler internal stats reasonably up to date. But 5615 * first update state to reflect hotplug activity if required. 5616 */ 5617 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5618 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5619 if (os == TICK_SCHED_REMOTE_RUNNING) 5620 queue_delayed_work(system_unbound_wq, dwork, HZ); 5621 } 5622 5623 static void sched_tick_start(int cpu) 5624 { 5625 int os; 5626 struct tick_work *twork; 5627 5628 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5629 return; 5630 5631 WARN_ON_ONCE(!tick_work_cpu); 5632 5633 twork = per_cpu_ptr(tick_work_cpu, cpu); 5634 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5635 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5636 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5637 twork->cpu = cpu; 5638 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5639 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5640 } 5641 } 5642 5643 #ifdef CONFIG_HOTPLUG_CPU 5644 static void sched_tick_stop(int cpu) 5645 { 5646 struct tick_work *twork; 5647 int os; 5648 5649 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5650 return; 5651 5652 WARN_ON_ONCE(!tick_work_cpu); 5653 5654 twork = per_cpu_ptr(tick_work_cpu, cpu); 5655 /* There cannot be competing actions, but don't rely on stop-machine. */ 5656 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5657 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5658 /* Don't cancel, as this would mess up the state machine. */ 5659 } 5660 #endif /* CONFIG_HOTPLUG_CPU */ 5661 5662 int __init sched_tick_offload_init(void) 5663 { 5664 tick_work_cpu = alloc_percpu(struct tick_work); 5665 BUG_ON(!tick_work_cpu); 5666 return 0; 5667 } 5668 5669 #else /* !CONFIG_NO_HZ_FULL */ 5670 static inline void sched_tick_start(int cpu) { } 5671 static inline void sched_tick_stop(int cpu) { } 5672 #endif 5673 5674 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5675 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5676 /* 5677 * If the value passed in is equal to the current preempt count 5678 * then we just disabled preemption. Start timing the latency. 5679 */ 5680 static inline void preempt_latency_start(int val) 5681 { 5682 if (preempt_count() == val) { 5683 unsigned long ip = get_lock_parent_ip(); 5684 #ifdef CONFIG_DEBUG_PREEMPT 5685 current->preempt_disable_ip = ip; 5686 #endif 5687 trace_preempt_off(CALLER_ADDR0, ip); 5688 } 5689 } 5690 5691 void preempt_count_add(int val) 5692 { 5693 #ifdef CONFIG_DEBUG_PREEMPT 5694 /* 5695 * Underflow? 5696 */ 5697 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5698 return; 5699 #endif 5700 __preempt_count_add(val); 5701 #ifdef CONFIG_DEBUG_PREEMPT 5702 /* 5703 * Spinlock count overflowing soon? 5704 */ 5705 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5706 PREEMPT_MASK - 10); 5707 #endif 5708 preempt_latency_start(val); 5709 } 5710 EXPORT_SYMBOL(preempt_count_add); 5711 NOKPROBE_SYMBOL(preempt_count_add); 5712 5713 /* 5714 * If the value passed in equals to the current preempt count 5715 * then we just enabled preemption. Stop timing the latency. 5716 */ 5717 static inline void preempt_latency_stop(int val) 5718 { 5719 if (preempt_count() == val) 5720 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5721 } 5722 5723 void preempt_count_sub(int val) 5724 { 5725 #ifdef CONFIG_DEBUG_PREEMPT 5726 /* 5727 * Underflow? 5728 */ 5729 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5730 return; 5731 /* 5732 * Is the spinlock portion underflowing? 5733 */ 5734 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5735 !(preempt_count() & PREEMPT_MASK))) 5736 return; 5737 #endif 5738 5739 preempt_latency_stop(val); 5740 __preempt_count_sub(val); 5741 } 5742 EXPORT_SYMBOL(preempt_count_sub); 5743 NOKPROBE_SYMBOL(preempt_count_sub); 5744 5745 #else 5746 static inline void preempt_latency_start(int val) { } 5747 static inline void preempt_latency_stop(int val) { } 5748 #endif 5749 5750 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5751 { 5752 #ifdef CONFIG_DEBUG_PREEMPT 5753 return p->preempt_disable_ip; 5754 #else 5755 return 0; 5756 #endif 5757 } 5758 5759 /* 5760 * Print scheduling while atomic bug: 5761 */ 5762 static noinline void __schedule_bug(struct task_struct *prev) 5763 { 5764 /* Save this before calling printk(), since that will clobber it */ 5765 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5766 5767 if (oops_in_progress) 5768 return; 5769 5770 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5771 prev->comm, prev->pid, preempt_count()); 5772 5773 debug_show_held_locks(prev); 5774 print_modules(); 5775 if (irqs_disabled()) 5776 print_irqtrace_events(prev); 5777 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5778 pr_err("Preemption disabled at:"); 5779 print_ip_sym(KERN_ERR, preempt_disable_ip); 5780 } 5781 check_panic_on_warn("scheduling while atomic"); 5782 5783 dump_stack(); 5784 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5785 } 5786 5787 /* 5788 * Various schedule()-time debugging checks and statistics: 5789 */ 5790 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5791 { 5792 #ifdef CONFIG_SCHED_STACK_END_CHECK 5793 if (task_stack_end_corrupted(prev)) 5794 panic("corrupted stack end detected inside scheduler\n"); 5795 5796 if (task_scs_end_corrupted(prev)) 5797 panic("corrupted shadow stack detected inside scheduler\n"); 5798 #endif 5799 5800 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5801 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5802 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5803 prev->comm, prev->pid, prev->non_block_count); 5804 dump_stack(); 5805 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5806 } 5807 #endif 5808 5809 if (unlikely(in_atomic_preempt_off())) { 5810 __schedule_bug(prev); 5811 preempt_count_set(PREEMPT_DISABLED); 5812 } 5813 rcu_sleep_check(); 5814 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5815 5816 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5817 5818 schedstat_inc(this_rq()->sched_count); 5819 } 5820 5821 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5822 struct rq_flags *rf) 5823 { 5824 #ifdef CONFIG_SMP 5825 const struct sched_class *class; 5826 /* 5827 * We must do the balancing pass before put_prev_task(), such 5828 * that when we release the rq->lock the task is in the same 5829 * state as before we took rq->lock. 5830 * 5831 * We can terminate the balance pass as soon as we know there is 5832 * a runnable task of @class priority or higher. 5833 */ 5834 for_balance_class_range(class, prev->sched_class, &idle_sched_class) { 5835 if (class->balance(rq, prev, rf)) 5836 break; 5837 } 5838 #endif 5839 5840 put_prev_task(rq, prev); 5841 } 5842 5843 /* 5844 * Pick up the highest-prio task: 5845 */ 5846 static inline struct task_struct * 5847 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5848 { 5849 const struct sched_class *class; 5850 struct task_struct *p; 5851 5852 if (scx_enabled()) 5853 goto restart; 5854 5855 /* 5856 * Optimization: we know that if all tasks are in the fair class we can 5857 * call that function directly, but only if the @prev task wasn't of a 5858 * higher scheduling class, because otherwise those lose the 5859 * opportunity to pull in more work from other CPUs. 5860 */ 5861 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5862 rq->nr_running == rq->cfs.h_nr_running)) { 5863 5864 p = pick_next_task_fair(rq, prev, rf); 5865 if (unlikely(p == RETRY_TASK)) 5866 goto restart; 5867 5868 /* Assume the next prioritized class is idle_sched_class */ 5869 if (!p) { 5870 put_prev_task(rq, prev); 5871 p = pick_next_task_idle(rq); 5872 } 5873 5874 /* 5875 * This is the fast path; it cannot be a DL server pick; 5876 * therefore even if @p == @prev, ->dl_server must be NULL. 5877 */ 5878 if (p->dl_server) 5879 p->dl_server = NULL; 5880 5881 return p; 5882 } 5883 5884 restart: 5885 put_prev_task_balance(rq, prev, rf); 5886 5887 /* 5888 * We've updated @prev and no longer need the server link, clear it. 5889 * Must be done before ->pick_next_task() because that can (re)set 5890 * ->dl_server. 5891 */ 5892 if (prev->dl_server) 5893 prev->dl_server = NULL; 5894 5895 for_each_active_class(class) { 5896 p = class->pick_next_task(rq); 5897 if (p) 5898 return p; 5899 } 5900 5901 BUG(); /* The idle class should always have a runnable task. */ 5902 } 5903 5904 #ifdef CONFIG_SCHED_CORE 5905 static inline bool is_task_rq_idle(struct task_struct *t) 5906 { 5907 return (task_rq(t)->idle == t); 5908 } 5909 5910 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5911 { 5912 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5913 } 5914 5915 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5916 { 5917 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5918 return true; 5919 5920 return a->core_cookie == b->core_cookie; 5921 } 5922 5923 static inline struct task_struct *pick_task(struct rq *rq) 5924 { 5925 const struct sched_class *class; 5926 struct task_struct *p; 5927 5928 for_each_active_class(class) { 5929 p = class->pick_task(rq); 5930 if (p) 5931 return p; 5932 } 5933 5934 BUG(); /* The idle class should always have a runnable task. */ 5935 } 5936 5937 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5938 5939 static void queue_core_balance(struct rq *rq); 5940 5941 static struct task_struct * 5942 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5943 { 5944 struct task_struct *next, *p, *max = NULL; 5945 const struct cpumask *smt_mask; 5946 bool fi_before = false; 5947 bool core_clock_updated = (rq == rq->core); 5948 unsigned long cookie; 5949 int i, cpu, occ = 0; 5950 struct rq *rq_i; 5951 bool need_sync; 5952 5953 if (!sched_core_enabled(rq)) 5954 return __pick_next_task(rq, prev, rf); 5955 5956 cpu = cpu_of(rq); 5957 5958 /* Stopper task is switching into idle, no need core-wide selection. */ 5959 if (cpu_is_offline(cpu)) { 5960 /* 5961 * Reset core_pick so that we don't enter the fastpath when 5962 * coming online. core_pick would already be migrated to 5963 * another cpu during offline. 5964 */ 5965 rq->core_pick = NULL; 5966 return __pick_next_task(rq, prev, rf); 5967 } 5968 5969 /* 5970 * If there were no {en,de}queues since we picked (IOW, the task 5971 * pointers are all still valid), and we haven't scheduled the last 5972 * pick yet, do so now. 5973 * 5974 * rq->core_pick can be NULL if no selection was made for a CPU because 5975 * it was either offline or went offline during a sibling's core-wide 5976 * selection. In this case, do a core-wide selection. 5977 */ 5978 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5979 rq->core->core_pick_seq != rq->core_sched_seq && 5980 rq->core_pick) { 5981 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5982 5983 next = rq->core_pick; 5984 if (next != prev) { 5985 put_prev_task(rq, prev); 5986 set_next_task(rq, next); 5987 } 5988 5989 rq->core_pick = NULL; 5990 goto out; 5991 } 5992 5993 put_prev_task_balance(rq, prev, rf); 5994 5995 smt_mask = cpu_smt_mask(cpu); 5996 need_sync = !!rq->core->core_cookie; 5997 5998 /* reset state */ 5999 rq->core->core_cookie = 0UL; 6000 if (rq->core->core_forceidle_count) { 6001 if (!core_clock_updated) { 6002 update_rq_clock(rq->core); 6003 core_clock_updated = true; 6004 } 6005 sched_core_account_forceidle(rq); 6006 /* reset after accounting force idle */ 6007 rq->core->core_forceidle_start = 0; 6008 rq->core->core_forceidle_count = 0; 6009 rq->core->core_forceidle_occupation = 0; 6010 need_sync = true; 6011 fi_before = true; 6012 } 6013 6014 /* 6015 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6016 * 6017 * @task_seq guards the task state ({en,de}queues) 6018 * @pick_seq is the @task_seq we did a selection on 6019 * @sched_seq is the @pick_seq we scheduled 6020 * 6021 * However, preemptions can cause multiple picks on the same task set. 6022 * 'Fix' this by also increasing @task_seq for every pick. 6023 */ 6024 rq->core->core_task_seq++; 6025 6026 /* 6027 * Optimize for common case where this CPU has no cookies 6028 * and there are no cookied tasks running on siblings. 6029 */ 6030 if (!need_sync) { 6031 next = pick_task(rq); 6032 if (!next->core_cookie) { 6033 rq->core_pick = NULL; 6034 /* 6035 * For robustness, update the min_vruntime_fi for 6036 * unconstrained picks as well. 6037 */ 6038 WARN_ON_ONCE(fi_before); 6039 task_vruntime_update(rq, next, false); 6040 goto out_set_next; 6041 } 6042 } 6043 6044 /* 6045 * For each thread: do the regular task pick and find the max prio task 6046 * amongst them. 6047 * 6048 * Tie-break prio towards the current CPU 6049 */ 6050 for_each_cpu_wrap(i, smt_mask, cpu) { 6051 rq_i = cpu_rq(i); 6052 6053 /* 6054 * Current cpu always has its clock updated on entrance to 6055 * pick_next_task(). If the current cpu is not the core, 6056 * the core may also have been updated above. 6057 */ 6058 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6059 update_rq_clock(rq_i); 6060 6061 p = rq_i->core_pick = pick_task(rq_i); 6062 if (!max || prio_less(max, p, fi_before)) 6063 max = p; 6064 } 6065 6066 cookie = rq->core->core_cookie = max->core_cookie; 6067 6068 /* 6069 * For each thread: try and find a runnable task that matches @max or 6070 * force idle. 6071 */ 6072 for_each_cpu(i, smt_mask) { 6073 rq_i = cpu_rq(i); 6074 p = rq_i->core_pick; 6075 6076 if (!cookie_equals(p, cookie)) { 6077 p = NULL; 6078 if (cookie) 6079 p = sched_core_find(rq_i, cookie); 6080 if (!p) 6081 p = idle_sched_class.pick_task(rq_i); 6082 } 6083 6084 rq_i->core_pick = p; 6085 6086 if (p == rq_i->idle) { 6087 if (rq_i->nr_running) { 6088 rq->core->core_forceidle_count++; 6089 if (!fi_before) 6090 rq->core->core_forceidle_seq++; 6091 } 6092 } else { 6093 occ++; 6094 } 6095 } 6096 6097 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6098 rq->core->core_forceidle_start = rq_clock(rq->core); 6099 rq->core->core_forceidle_occupation = occ; 6100 } 6101 6102 rq->core->core_pick_seq = rq->core->core_task_seq; 6103 next = rq->core_pick; 6104 rq->core_sched_seq = rq->core->core_pick_seq; 6105 6106 /* Something should have been selected for current CPU */ 6107 WARN_ON_ONCE(!next); 6108 6109 /* 6110 * Reschedule siblings 6111 * 6112 * NOTE: L1TF -- at this point we're no longer running the old task and 6113 * sending an IPI (below) ensures the sibling will no longer be running 6114 * their task. This ensures there is no inter-sibling overlap between 6115 * non-matching user state. 6116 */ 6117 for_each_cpu(i, smt_mask) { 6118 rq_i = cpu_rq(i); 6119 6120 /* 6121 * An online sibling might have gone offline before a task 6122 * could be picked for it, or it might be offline but later 6123 * happen to come online, but its too late and nothing was 6124 * picked for it. That's Ok - it will pick tasks for itself, 6125 * so ignore it. 6126 */ 6127 if (!rq_i->core_pick) 6128 continue; 6129 6130 /* 6131 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6132 * fi_before fi update? 6133 * 0 0 1 6134 * 0 1 1 6135 * 1 0 1 6136 * 1 1 0 6137 */ 6138 if (!(fi_before && rq->core->core_forceidle_count)) 6139 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6140 6141 rq_i->core_pick->core_occupation = occ; 6142 6143 if (i == cpu) { 6144 rq_i->core_pick = NULL; 6145 continue; 6146 } 6147 6148 /* Did we break L1TF mitigation requirements? */ 6149 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6150 6151 if (rq_i->curr == rq_i->core_pick) { 6152 rq_i->core_pick = NULL; 6153 continue; 6154 } 6155 6156 resched_curr(rq_i); 6157 } 6158 6159 out_set_next: 6160 set_next_task(rq, next); 6161 out: 6162 if (rq->core->core_forceidle_count && next == rq->idle) 6163 queue_core_balance(rq); 6164 6165 return next; 6166 } 6167 6168 static bool try_steal_cookie(int this, int that) 6169 { 6170 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6171 struct task_struct *p; 6172 unsigned long cookie; 6173 bool success = false; 6174 6175 guard(irq)(); 6176 guard(double_rq_lock)(dst, src); 6177 6178 cookie = dst->core->core_cookie; 6179 if (!cookie) 6180 return false; 6181 6182 if (dst->curr != dst->idle) 6183 return false; 6184 6185 p = sched_core_find(src, cookie); 6186 if (!p) 6187 return false; 6188 6189 do { 6190 if (p == src->core_pick || p == src->curr) 6191 goto next; 6192 6193 if (!is_cpu_allowed(p, this)) 6194 goto next; 6195 6196 if (p->core_occupation > dst->idle->core_occupation) 6197 goto next; 6198 /* 6199 * sched_core_find() and sched_core_next() will ensure 6200 * that task @p is not throttled now, we also need to 6201 * check whether the runqueue of the destination CPU is 6202 * being throttled. 6203 */ 6204 if (sched_task_is_throttled(p, this)) 6205 goto next; 6206 6207 deactivate_task(src, p, 0); 6208 set_task_cpu(p, this); 6209 activate_task(dst, p, 0); 6210 6211 resched_curr(dst); 6212 6213 success = true; 6214 break; 6215 6216 next: 6217 p = sched_core_next(p, cookie); 6218 } while (p); 6219 6220 return success; 6221 } 6222 6223 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6224 { 6225 int i; 6226 6227 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6228 if (i == cpu) 6229 continue; 6230 6231 if (need_resched()) 6232 break; 6233 6234 if (try_steal_cookie(cpu, i)) 6235 return true; 6236 } 6237 6238 return false; 6239 } 6240 6241 static void sched_core_balance(struct rq *rq) 6242 { 6243 struct sched_domain *sd; 6244 int cpu = cpu_of(rq); 6245 6246 guard(preempt)(); 6247 guard(rcu)(); 6248 6249 raw_spin_rq_unlock_irq(rq); 6250 for_each_domain(cpu, sd) { 6251 if (need_resched()) 6252 break; 6253 6254 if (steal_cookie_task(cpu, sd)) 6255 break; 6256 } 6257 raw_spin_rq_lock_irq(rq); 6258 } 6259 6260 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6261 6262 static void queue_core_balance(struct rq *rq) 6263 { 6264 if (!sched_core_enabled(rq)) 6265 return; 6266 6267 if (!rq->core->core_cookie) 6268 return; 6269 6270 if (!rq->nr_running) /* not forced idle */ 6271 return; 6272 6273 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6274 } 6275 6276 DEFINE_LOCK_GUARD_1(core_lock, int, 6277 sched_core_lock(*_T->lock, &_T->flags), 6278 sched_core_unlock(*_T->lock, &_T->flags), 6279 unsigned long flags) 6280 6281 static void sched_core_cpu_starting(unsigned int cpu) 6282 { 6283 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6284 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6285 int t; 6286 6287 guard(core_lock)(&cpu); 6288 6289 WARN_ON_ONCE(rq->core != rq); 6290 6291 /* if we're the first, we'll be our own leader */ 6292 if (cpumask_weight(smt_mask) == 1) 6293 return; 6294 6295 /* find the leader */ 6296 for_each_cpu(t, smt_mask) { 6297 if (t == cpu) 6298 continue; 6299 rq = cpu_rq(t); 6300 if (rq->core == rq) { 6301 core_rq = rq; 6302 break; 6303 } 6304 } 6305 6306 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6307 return; 6308 6309 /* install and validate core_rq */ 6310 for_each_cpu(t, smt_mask) { 6311 rq = cpu_rq(t); 6312 6313 if (t == cpu) 6314 rq->core = core_rq; 6315 6316 WARN_ON_ONCE(rq->core != core_rq); 6317 } 6318 } 6319 6320 static void sched_core_cpu_deactivate(unsigned int cpu) 6321 { 6322 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6323 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6324 int t; 6325 6326 guard(core_lock)(&cpu); 6327 6328 /* if we're the last man standing, nothing to do */ 6329 if (cpumask_weight(smt_mask) == 1) { 6330 WARN_ON_ONCE(rq->core != rq); 6331 return; 6332 } 6333 6334 /* if we're not the leader, nothing to do */ 6335 if (rq->core != rq) 6336 return; 6337 6338 /* find a new leader */ 6339 for_each_cpu(t, smt_mask) { 6340 if (t == cpu) 6341 continue; 6342 core_rq = cpu_rq(t); 6343 break; 6344 } 6345 6346 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6347 return; 6348 6349 /* copy the shared state to the new leader */ 6350 core_rq->core_task_seq = rq->core_task_seq; 6351 core_rq->core_pick_seq = rq->core_pick_seq; 6352 core_rq->core_cookie = rq->core_cookie; 6353 core_rq->core_forceidle_count = rq->core_forceidle_count; 6354 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6355 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6356 6357 /* 6358 * Accounting edge for forced idle is handled in pick_next_task(). 6359 * Don't need another one here, since the hotplug thread shouldn't 6360 * have a cookie. 6361 */ 6362 core_rq->core_forceidle_start = 0; 6363 6364 /* install new leader */ 6365 for_each_cpu(t, smt_mask) { 6366 rq = cpu_rq(t); 6367 rq->core = core_rq; 6368 } 6369 } 6370 6371 static inline void sched_core_cpu_dying(unsigned int cpu) 6372 { 6373 struct rq *rq = cpu_rq(cpu); 6374 6375 if (rq->core != rq) 6376 rq->core = rq; 6377 } 6378 6379 #else /* !CONFIG_SCHED_CORE */ 6380 6381 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6382 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6383 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6384 6385 static struct task_struct * 6386 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6387 { 6388 return __pick_next_task(rq, prev, rf); 6389 } 6390 6391 #endif /* CONFIG_SCHED_CORE */ 6392 6393 /* 6394 * Constants for the sched_mode argument of __schedule(). 6395 * 6396 * The mode argument allows RT enabled kernels to differentiate a 6397 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6398 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6399 * optimize the AND operation out and just check for zero. 6400 */ 6401 #define SM_NONE 0x0 6402 #define SM_PREEMPT 0x1 6403 #define SM_RTLOCK_WAIT 0x2 6404 6405 #ifndef CONFIG_PREEMPT_RT 6406 # define SM_MASK_PREEMPT (~0U) 6407 #else 6408 # define SM_MASK_PREEMPT SM_PREEMPT 6409 #endif 6410 6411 /* 6412 * __schedule() is the main scheduler function. 6413 * 6414 * The main means of driving the scheduler and thus entering this function are: 6415 * 6416 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6417 * 6418 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6419 * paths. For example, see arch/x86/entry_64.S. 6420 * 6421 * To drive preemption between tasks, the scheduler sets the flag in timer 6422 * interrupt handler sched_tick(). 6423 * 6424 * 3. Wakeups don't really cause entry into schedule(). They add a 6425 * task to the run-queue and that's it. 6426 * 6427 * Now, if the new task added to the run-queue preempts the current 6428 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6429 * called on the nearest possible occasion: 6430 * 6431 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6432 * 6433 * - in syscall or exception context, at the next outmost 6434 * preempt_enable(). (this might be as soon as the wake_up()'s 6435 * spin_unlock()!) 6436 * 6437 * - in IRQ context, return from interrupt-handler to 6438 * preemptible context 6439 * 6440 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6441 * then at the next: 6442 * 6443 * - cond_resched() call 6444 * - explicit schedule() call 6445 * - return from syscall or exception to user-space 6446 * - return from interrupt-handler to user-space 6447 * 6448 * WARNING: must be called with preemption disabled! 6449 */ 6450 static void __sched notrace __schedule(unsigned int sched_mode) 6451 { 6452 struct task_struct *prev, *next; 6453 unsigned long *switch_count; 6454 unsigned long prev_state; 6455 struct rq_flags rf; 6456 struct rq *rq; 6457 int cpu; 6458 6459 cpu = smp_processor_id(); 6460 rq = cpu_rq(cpu); 6461 prev = rq->curr; 6462 6463 schedule_debug(prev, !!sched_mode); 6464 6465 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6466 hrtick_clear(rq); 6467 6468 local_irq_disable(); 6469 rcu_note_context_switch(!!sched_mode); 6470 6471 /* 6472 * Make sure that signal_pending_state()->signal_pending() below 6473 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6474 * done by the caller to avoid the race with signal_wake_up(): 6475 * 6476 * __set_current_state(@state) signal_wake_up() 6477 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6478 * wake_up_state(p, state) 6479 * LOCK rq->lock LOCK p->pi_state 6480 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6481 * if (signal_pending_state()) if (p->state & @state) 6482 * 6483 * Also, the membarrier system call requires a full memory barrier 6484 * after coming from user-space, before storing to rq->curr; this 6485 * barrier matches a full barrier in the proximity of the membarrier 6486 * system call exit. 6487 */ 6488 rq_lock(rq, &rf); 6489 smp_mb__after_spinlock(); 6490 6491 /* Promote REQ to ACT */ 6492 rq->clock_update_flags <<= 1; 6493 update_rq_clock(rq); 6494 rq->clock_update_flags = RQCF_UPDATED; 6495 6496 switch_count = &prev->nivcsw; 6497 6498 /* 6499 * We must load prev->state once (task_struct::state is volatile), such 6500 * that we form a control dependency vs deactivate_task() below. 6501 */ 6502 prev_state = READ_ONCE(prev->__state); 6503 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6504 if (signal_pending_state(prev_state, prev)) { 6505 WRITE_ONCE(prev->__state, TASK_RUNNING); 6506 } else { 6507 prev->sched_contributes_to_load = 6508 (prev_state & TASK_UNINTERRUPTIBLE) && 6509 !(prev_state & TASK_NOLOAD) && 6510 !(prev_state & TASK_FROZEN); 6511 6512 if (prev->sched_contributes_to_load) 6513 rq->nr_uninterruptible++; 6514 6515 /* 6516 * __schedule() ttwu() 6517 * prev_state = prev->state; if (p->on_rq && ...) 6518 * if (prev_state) goto out; 6519 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6520 * p->state = TASK_WAKING 6521 * 6522 * Where __schedule() and ttwu() have matching control dependencies. 6523 * 6524 * After this, schedule() must not care about p->state any more. 6525 */ 6526 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6527 6528 if (prev->in_iowait) { 6529 atomic_inc(&rq->nr_iowait); 6530 delayacct_blkio_start(); 6531 } 6532 } 6533 switch_count = &prev->nvcsw; 6534 } 6535 6536 next = pick_next_task(rq, prev, &rf); 6537 clear_tsk_need_resched(prev); 6538 clear_preempt_need_resched(); 6539 #ifdef CONFIG_SCHED_DEBUG 6540 rq->last_seen_need_resched_ns = 0; 6541 #endif 6542 6543 if (likely(prev != next)) { 6544 rq->nr_switches++; 6545 /* 6546 * RCU users of rcu_dereference(rq->curr) may not see 6547 * changes to task_struct made by pick_next_task(). 6548 */ 6549 RCU_INIT_POINTER(rq->curr, next); 6550 /* 6551 * The membarrier system call requires each architecture 6552 * to have a full memory barrier after updating 6553 * rq->curr, before returning to user-space. 6554 * 6555 * Here are the schemes providing that barrier on the 6556 * various architectures: 6557 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6558 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6559 * on PowerPC and on RISC-V. 6560 * - finish_lock_switch() for weakly-ordered 6561 * architectures where spin_unlock is a full barrier, 6562 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6563 * is a RELEASE barrier), 6564 * 6565 * The barrier matches a full barrier in the proximity of 6566 * the membarrier system call entry. 6567 * 6568 * On RISC-V, this barrier pairing is also needed for the 6569 * SYNC_CORE command when switching between processes, cf. 6570 * the inline comments in membarrier_arch_switch_mm(). 6571 */ 6572 ++*switch_count; 6573 6574 migrate_disable_switch(rq, prev); 6575 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6576 6577 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6578 6579 /* Also unlocks the rq: */ 6580 rq = context_switch(rq, prev, next, &rf); 6581 } else { 6582 rq_unpin_lock(rq, &rf); 6583 __balance_callbacks(rq); 6584 raw_spin_rq_unlock_irq(rq); 6585 } 6586 } 6587 6588 void __noreturn do_task_dead(void) 6589 { 6590 /* Causes final put_task_struct in finish_task_switch(): */ 6591 set_special_state(TASK_DEAD); 6592 6593 /* Tell freezer to ignore us: */ 6594 current->flags |= PF_NOFREEZE; 6595 6596 __schedule(SM_NONE); 6597 BUG(); 6598 6599 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6600 for (;;) 6601 cpu_relax(); 6602 } 6603 6604 static inline void sched_submit_work(struct task_struct *tsk) 6605 { 6606 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6607 unsigned int task_flags; 6608 6609 /* 6610 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6611 * will use a blocking primitive -- which would lead to recursion. 6612 */ 6613 lock_map_acquire_try(&sched_map); 6614 6615 task_flags = tsk->flags; 6616 /* 6617 * If a worker goes to sleep, notify and ask workqueue whether it 6618 * wants to wake up a task to maintain concurrency. 6619 */ 6620 if (task_flags & PF_WQ_WORKER) 6621 wq_worker_sleeping(tsk); 6622 else if (task_flags & PF_IO_WORKER) 6623 io_wq_worker_sleeping(tsk); 6624 6625 /* 6626 * spinlock and rwlock must not flush block requests. This will 6627 * deadlock if the callback attempts to acquire a lock which is 6628 * already acquired. 6629 */ 6630 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6631 6632 /* 6633 * If we are going to sleep and we have plugged IO queued, 6634 * make sure to submit it to avoid deadlocks. 6635 */ 6636 blk_flush_plug(tsk->plug, true); 6637 6638 lock_map_release(&sched_map); 6639 } 6640 6641 static void sched_update_worker(struct task_struct *tsk) 6642 { 6643 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6644 if (tsk->flags & PF_BLOCK_TS) 6645 blk_plug_invalidate_ts(tsk); 6646 if (tsk->flags & PF_WQ_WORKER) 6647 wq_worker_running(tsk); 6648 else if (tsk->flags & PF_IO_WORKER) 6649 io_wq_worker_running(tsk); 6650 } 6651 } 6652 6653 static __always_inline void __schedule_loop(unsigned int sched_mode) 6654 { 6655 do { 6656 preempt_disable(); 6657 __schedule(sched_mode); 6658 sched_preempt_enable_no_resched(); 6659 } while (need_resched()); 6660 } 6661 6662 asmlinkage __visible void __sched schedule(void) 6663 { 6664 struct task_struct *tsk = current; 6665 6666 #ifdef CONFIG_RT_MUTEXES 6667 lockdep_assert(!tsk->sched_rt_mutex); 6668 #endif 6669 6670 if (!task_is_running(tsk)) 6671 sched_submit_work(tsk); 6672 __schedule_loop(SM_NONE); 6673 sched_update_worker(tsk); 6674 } 6675 EXPORT_SYMBOL(schedule); 6676 6677 /* 6678 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6679 * state (have scheduled out non-voluntarily) by making sure that all 6680 * tasks have either left the run queue or have gone into user space. 6681 * As idle tasks do not do either, they must not ever be preempted 6682 * (schedule out non-voluntarily). 6683 * 6684 * schedule_idle() is similar to schedule_preempt_disable() except that it 6685 * never enables preemption because it does not call sched_submit_work(). 6686 */ 6687 void __sched schedule_idle(void) 6688 { 6689 /* 6690 * As this skips calling sched_submit_work(), which the idle task does 6691 * regardless because that function is a NOP when the task is in a 6692 * TASK_RUNNING state, make sure this isn't used someplace that the 6693 * current task can be in any other state. Note, idle is always in the 6694 * TASK_RUNNING state. 6695 */ 6696 WARN_ON_ONCE(current->__state); 6697 do { 6698 __schedule(SM_NONE); 6699 } while (need_resched()); 6700 } 6701 6702 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6703 asmlinkage __visible void __sched schedule_user(void) 6704 { 6705 /* 6706 * If we come here after a random call to set_need_resched(), 6707 * or we have been woken up remotely but the IPI has not yet arrived, 6708 * we haven't yet exited the RCU idle mode. Do it here manually until 6709 * we find a better solution. 6710 * 6711 * NB: There are buggy callers of this function. Ideally we 6712 * should warn if prev_state != CONTEXT_USER, but that will trigger 6713 * too frequently to make sense yet. 6714 */ 6715 enum ctx_state prev_state = exception_enter(); 6716 schedule(); 6717 exception_exit(prev_state); 6718 } 6719 #endif 6720 6721 /** 6722 * schedule_preempt_disabled - called with preemption disabled 6723 * 6724 * Returns with preemption disabled. Note: preempt_count must be 1 6725 */ 6726 void __sched schedule_preempt_disabled(void) 6727 { 6728 sched_preempt_enable_no_resched(); 6729 schedule(); 6730 preempt_disable(); 6731 } 6732 6733 #ifdef CONFIG_PREEMPT_RT 6734 void __sched notrace schedule_rtlock(void) 6735 { 6736 __schedule_loop(SM_RTLOCK_WAIT); 6737 } 6738 NOKPROBE_SYMBOL(schedule_rtlock); 6739 #endif 6740 6741 static void __sched notrace preempt_schedule_common(void) 6742 { 6743 do { 6744 /* 6745 * Because the function tracer can trace preempt_count_sub() 6746 * and it also uses preempt_enable/disable_notrace(), if 6747 * NEED_RESCHED is set, the preempt_enable_notrace() called 6748 * by the function tracer will call this function again and 6749 * cause infinite recursion. 6750 * 6751 * Preemption must be disabled here before the function 6752 * tracer can trace. Break up preempt_disable() into two 6753 * calls. One to disable preemption without fear of being 6754 * traced. The other to still record the preemption latency, 6755 * which can also be traced by the function tracer. 6756 */ 6757 preempt_disable_notrace(); 6758 preempt_latency_start(1); 6759 __schedule(SM_PREEMPT); 6760 preempt_latency_stop(1); 6761 preempt_enable_no_resched_notrace(); 6762 6763 /* 6764 * Check again in case we missed a preemption opportunity 6765 * between schedule and now. 6766 */ 6767 } while (need_resched()); 6768 } 6769 6770 #ifdef CONFIG_PREEMPTION 6771 /* 6772 * This is the entry point to schedule() from in-kernel preemption 6773 * off of preempt_enable. 6774 */ 6775 asmlinkage __visible void __sched notrace preempt_schedule(void) 6776 { 6777 /* 6778 * If there is a non-zero preempt_count or interrupts are disabled, 6779 * we do not want to preempt the current task. Just return.. 6780 */ 6781 if (likely(!preemptible())) 6782 return; 6783 preempt_schedule_common(); 6784 } 6785 NOKPROBE_SYMBOL(preempt_schedule); 6786 EXPORT_SYMBOL(preempt_schedule); 6787 6788 #ifdef CONFIG_PREEMPT_DYNAMIC 6789 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6790 #ifndef preempt_schedule_dynamic_enabled 6791 #define preempt_schedule_dynamic_enabled preempt_schedule 6792 #define preempt_schedule_dynamic_disabled NULL 6793 #endif 6794 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6795 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6796 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6797 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6798 void __sched notrace dynamic_preempt_schedule(void) 6799 { 6800 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6801 return; 6802 preempt_schedule(); 6803 } 6804 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6805 EXPORT_SYMBOL(dynamic_preempt_schedule); 6806 #endif 6807 #endif 6808 6809 /** 6810 * preempt_schedule_notrace - preempt_schedule called by tracing 6811 * 6812 * The tracing infrastructure uses preempt_enable_notrace to prevent 6813 * recursion and tracing preempt enabling caused by the tracing 6814 * infrastructure itself. But as tracing can happen in areas coming 6815 * from userspace or just about to enter userspace, a preempt enable 6816 * can occur before user_exit() is called. This will cause the scheduler 6817 * to be called when the system is still in usermode. 6818 * 6819 * To prevent this, the preempt_enable_notrace will use this function 6820 * instead of preempt_schedule() to exit user context if needed before 6821 * calling the scheduler. 6822 */ 6823 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6824 { 6825 enum ctx_state prev_ctx; 6826 6827 if (likely(!preemptible())) 6828 return; 6829 6830 do { 6831 /* 6832 * Because the function tracer can trace preempt_count_sub() 6833 * and it also uses preempt_enable/disable_notrace(), if 6834 * NEED_RESCHED is set, the preempt_enable_notrace() called 6835 * by the function tracer will call this function again and 6836 * cause infinite recursion. 6837 * 6838 * Preemption must be disabled here before the function 6839 * tracer can trace. Break up preempt_disable() into two 6840 * calls. One to disable preemption without fear of being 6841 * traced. The other to still record the preemption latency, 6842 * which can also be traced by the function tracer. 6843 */ 6844 preempt_disable_notrace(); 6845 preempt_latency_start(1); 6846 /* 6847 * Needs preempt disabled in case user_exit() is traced 6848 * and the tracer calls preempt_enable_notrace() causing 6849 * an infinite recursion. 6850 */ 6851 prev_ctx = exception_enter(); 6852 __schedule(SM_PREEMPT); 6853 exception_exit(prev_ctx); 6854 6855 preempt_latency_stop(1); 6856 preempt_enable_no_resched_notrace(); 6857 } while (need_resched()); 6858 } 6859 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6860 6861 #ifdef CONFIG_PREEMPT_DYNAMIC 6862 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6863 #ifndef preempt_schedule_notrace_dynamic_enabled 6864 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6865 #define preempt_schedule_notrace_dynamic_disabled NULL 6866 #endif 6867 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6868 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6869 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6870 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6871 void __sched notrace dynamic_preempt_schedule_notrace(void) 6872 { 6873 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6874 return; 6875 preempt_schedule_notrace(); 6876 } 6877 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6878 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6879 #endif 6880 #endif 6881 6882 #endif /* CONFIG_PREEMPTION */ 6883 6884 /* 6885 * This is the entry point to schedule() from kernel preemption 6886 * off of IRQ context. 6887 * Note, that this is called and return with IRQs disabled. This will 6888 * protect us against recursive calling from IRQ contexts. 6889 */ 6890 asmlinkage __visible void __sched preempt_schedule_irq(void) 6891 { 6892 enum ctx_state prev_state; 6893 6894 /* Catch callers which need to be fixed */ 6895 BUG_ON(preempt_count() || !irqs_disabled()); 6896 6897 prev_state = exception_enter(); 6898 6899 do { 6900 preempt_disable(); 6901 local_irq_enable(); 6902 __schedule(SM_PREEMPT); 6903 local_irq_disable(); 6904 sched_preempt_enable_no_resched(); 6905 } while (need_resched()); 6906 6907 exception_exit(prev_state); 6908 } 6909 6910 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6911 void *key) 6912 { 6913 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 6914 return try_to_wake_up(curr->private, mode, wake_flags); 6915 } 6916 EXPORT_SYMBOL(default_wake_function); 6917 6918 void __setscheduler_prio(struct task_struct *p, int prio) 6919 { 6920 if (dl_prio(prio)) 6921 p->sched_class = &dl_sched_class; 6922 else if (rt_prio(prio)) 6923 p->sched_class = &rt_sched_class; 6924 #ifdef CONFIG_SCHED_CLASS_EXT 6925 else if (task_should_scx(p)) 6926 p->sched_class = &ext_sched_class; 6927 #endif 6928 else 6929 p->sched_class = &fair_sched_class; 6930 6931 p->prio = prio; 6932 } 6933 6934 #ifdef CONFIG_RT_MUTEXES 6935 6936 /* 6937 * Would be more useful with typeof()/auto_type but they don't mix with 6938 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 6939 * name such that if someone were to implement this function we get to compare 6940 * notes. 6941 */ 6942 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 6943 6944 void rt_mutex_pre_schedule(void) 6945 { 6946 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 6947 sched_submit_work(current); 6948 } 6949 6950 void rt_mutex_schedule(void) 6951 { 6952 lockdep_assert(current->sched_rt_mutex); 6953 __schedule_loop(SM_NONE); 6954 } 6955 6956 void rt_mutex_post_schedule(void) 6957 { 6958 sched_update_worker(current); 6959 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 6960 } 6961 6962 /* 6963 * rt_mutex_setprio - set the current priority of a task 6964 * @p: task to boost 6965 * @pi_task: donor task 6966 * 6967 * This function changes the 'effective' priority of a task. It does 6968 * not touch ->normal_prio like __setscheduler(). 6969 * 6970 * Used by the rt_mutex code to implement priority inheritance 6971 * logic. Call site only calls if the priority of the task changed. 6972 */ 6973 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6974 { 6975 int prio, oldprio, queued, running, queue_flag = 6976 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6977 const struct sched_class *prev_class; 6978 struct rq_flags rf; 6979 struct rq *rq; 6980 6981 /* XXX used to be waiter->prio, not waiter->task->prio */ 6982 prio = __rt_effective_prio(pi_task, p->normal_prio); 6983 6984 /* 6985 * If nothing changed; bail early. 6986 */ 6987 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6988 return; 6989 6990 rq = __task_rq_lock(p, &rf); 6991 update_rq_clock(rq); 6992 /* 6993 * Set under pi_lock && rq->lock, such that the value can be used under 6994 * either lock. 6995 * 6996 * Note that there is loads of tricky to make this pointer cache work 6997 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6998 * ensure a task is de-boosted (pi_task is set to NULL) before the 6999 * task is allowed to run again (and can exit). This ensures the pointer 7000 * points to a blocked task -- which guarantees the task is present. 7001 */ 7002 p->pi_top_task = pi_task; 7003 7004 /* 7005 * For FIFO/RR we only need to set prio, if that matches we're done. 7006 */ 7007 if (prio == p->prio && !dl_prio(prio)) 7008 goto out_unlock; 7009 7010 /* 7011 * Idle task boosting is a no-no in general. There is one 7012 * exception, when PREEMPT_RT and NOHZ is active: 7013 * 7014 * The idle task calls get_next_timer_interrupt() and holds 7015 * the timer wheel base->lock on the CPU and another CPU wants 7016 * to access the timer (probably to cancel it). We can safely 7017 * ignore the boosting request, as the idle CPU runs this code 7018 * with interrupts disabled and will complete the lock 7019 * protected section without being interrupted. So there is no 7020 * real need to boost. 7021 */ 7022 if (unlikely(p == rq->idle)) { 7023 WARN_ON(p != rq->curr); 7024 WARN_ON(p->pi_blocked_on); 7025 goto out_unlock; 7026 } 7027 7028 trace_sched_pi_setprio(p, pi_task); 7029 oldprio = p->prio; 7030 7031 if (oldprio == prio) 7032 queue_flag &= ~DEQUEUE_MOVE; 7033 7034 prev_class = p->sched_class; 7035 queued = task_on_rq_queued(p); 7036 running = task_current(rq, p); 7037 if (queued) 7038 dequeue_task(rq, p, queue_flag); 7039 if (running) 7040 put_prev_task(rq, p); 7041 7042 /* 7043 * Boosting condition are: 7044 * 1. -rt task is running and holds mutex A 7045 * --> -dl task blocks on mutex A 7046 * 7047 * 2. -dl task is running and holds mutex A 7048 * --> -dl task blocks on mutex A and could preempt the 7049 * running task 7050 */ 7051 if (dl_prio(prio)) { 7052 if (!dl_prio(p->normal_prio) || 7053 (pi_task && dl_prio(pi_task->prio) && 7054 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7055 p->dl.pi_se = pi_task->dl.pi_se; 7056 queue_flag |= ENQUEUE_REPLENISH; 7057 } else { 7058 p->dl.pi_se = &p->dl; 7059 } 7060 } else if (rt_prio(prio)) { 7061 if (dl_prio(oldprio)) 7062 p->dl.pi_se = &p->dl; 7063 if (oldprio < prio) 7064 queue_flag |= ENQUEUE_HEAD; 7065 } else { 7066 if (dl_prio(oldprio)) 7067 p->dl.pi_se = &p->dl; 7068 if (rt_prio(oldprio)) 7069 p->rt.timeout = 0; 7070 } 7071 7072 __setscheduler_prio(p, prio); 7073 check_class_changing(rq, p, prev_class); 7074 7075 if (queued) 7076 enqueue_task(rq, p, queue_flag); 7077 if (running) 7078 set_next_task(rq, p); 7079 7080 check_class_changed(rq, p, prev_class, oldprio); 7081 out_unlock: 7082 /* Avoid rq from going away on us: */ 7083 preempt_disable(); 7084 7085 rq_unpin_lock(rq, &rf); 7086 __balance_callbacks(rq); 7087 raw_spin_rq_unlock(rq); 7088 7089 preempt_enable(); 7090 } 7091 #endif 7092 7093 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7094 int __sched __cond_resched(void) 7095 { 7096 if (should_resched(0)) { 7097 preempt_schedule_common(); 7098 return 1; 7099 } 7100 /* 7101 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 7102 * whether the current CPU is in an RCU read-side critical section, 7103 * so the tick can report quiescent states even for CPUs looping 7104 * in kernel context. In contrast, in non-preemptible kernels, 7105 * RCU readers leave no in-memory hints, which means that CPU-bound 7106 * processes executing in kernel context might never report an 7107 * RCU quiescent state. Therefore, the following code causes 7108 * cond_resched() to report a quiescent state, but only when RCU 7109 * is in urgent need of one. 7110 */ 7111 #ifndef CONFIG_PREEMPT_RCU 7112 rcu_all_qs(); 7113 #endif 7114 return 0; 7115 } 7116 EXPORT_SYMBOL(__cond_resched); 7117 #endif 7118 7119 #ifdef CONFIG_PREEMPT_DYNAMIC 7120 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7121 #define cond_resched_dynamic_enabled __cond_resched 7122 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7123 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7124 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7125 7126 #define might_resched_dynamic_enabled __cond_resched 7127 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7128 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7129 EXPORT_STATIC_CALL_TRAMP(might_resched); 7130 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7131 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7132 int __sched dynamic_cond_resched(void) 7133 { 7134 klp_sched_try_switch(); 7135 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7136 return 0; 7137 return __cond_resched(); 7138 } 7139 EXPORT_SYMBOL(dynamic_cond_resched); 7140 7141 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7142 int __sched dynamic_might_resched(void) 7143 { 7144 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7145 return 0; 7146 return __cond_resched(); 7147 } 7148 EXPORT_SYMBOL(dynamic_might_resched); 7149 #endif 7150 #endif 7151 7152 /* 7153 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7154 * call schedule, and on return reacquire the lock. 7155 * 7156 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7157 * operations here to prevent schedule() from being called twice (once via 7158 * spin_unlock(), once by hand). 7159 */ 7160 int __cond_resched_lock(spinlock_t *lock) 7161 { 7162 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7163 int ret = 0; 7164 7165 lockdep_assert_held(lock); 7166 7167 if (spin_needbreak(lock) || resched) { 7168 spin_unlock(lock); 7169 if (!_cond_resched()) 7170 cpu_relax(); 7171 ret = 1; 7172 spin_lock(lock); 7173 } 7174 return ret; 7175 } 7176 EXPORT_SYMBOL(__cond_resched_lock); 7177 7178 int __cond_resched_rwlock_read(rwlock_t *lock) 7179 { 7180 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7181 int ret = 0; 7182 7183 lockdep_assert_held_read(lock); 7184 7185 if (rwlock_needbreak(lock) || resched) { 7186 read_unlock(lock); 7187 if (!_cond_resched()) 7188 cpu_relax(); 7189 ret = 1; 7190 read_lock(lock); 7191 } 7192 return ret; 7193 } 7194 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7195 7196 int __cond_resched_rwlock_write(rwlock_t *lock) 7197 { 7198 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7199 int ret = 0; 7200 7201 lockdep_assert_held_write(lock); 7202 7203 if (rwlock_needbreak(lock) || resched) { 7204 write_unlock(lock); 7205 if (!_cond_resched()) 7206 cpu_relax(); 7207 ret = 1; 7208 write_lock(lock); 7209 } 7210 return ret; 7211 } 7212 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7213 7214 #ifdef CONFIG_PREEMPT_DYNAMIC 7215 7216 #ifdef CONFIG_GENERIC_ENTRY 7217 #include <linux/entry-common.h> 7218 #endif 7219 7220 /* 7221 * SC:cond_resched 7222 * SC:might_resched 7223 * SC:preempt_schedule 7224 * SC:preempt_schedule_notrace 7225 * SC:irqentry_exit_cond_resched 7226 * 7227 * 7228 * NONE: 7229 * cond_resched <- __cond_resched 7230 * might_resched <- RET0 7231 * preempt_schedule <- NOP 7232 * preempt_schedule_notrace <- NOP 7233 * irqentry_exit_cond_resched <- NOP 7234 * 7235 * VOLUNTARY: 7236 * cond_resched <- __cond_resched 7237 * might_resched <- __cond_resched 7238 * preempt_schedule <- NOP 7239 * preempt_schedule_notrace <- NOP 7240 * irqentry_exit_cond_resched <- NOP 7241 * 7242 * FULL: 7243 * cond_resched <- RET0 7244 * might_resched <- RET0 7245 * preempt_schedule <- preempt_schedule 7246 * preempt_schedule_notrace <- preempt_schedule_notrace 7247 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7248 */ 7249 7250 enum { 7251 preempt_dynamic_undefined = -1, 7252 preempt_dynamic_none, 7253 preempt_dynamic_voluntary, 7254 preempt_dynamic_full, 7255 }; 7256 7257 int preempt_dynamic_mode = preempt_dynamic_undefined; 7258 7259 int sched_dynamic_mode(const char *str) 7260 { 7261 if (!strcmp(str, "none")) 7262 return preempt_dynamic_none; 7263 7264 if (!strcmp(str, "voluntary")) 7265 return preempt_dynamic_voluntary; 7266 7267 if (!strcmp(str, "full")) 7268 return preempt_dynamic_full; 7269 7270 return -EINVAL; 7271 } 7272 7273 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7274 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7275 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7276 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7277 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 7278 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 7279 #else 7280 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7281 #endif 7282 7283 static DEFINE_MUTEX(sched_dynamic_mutex); 7284 static bool klp_override; 7285 7286 static void __sched_dynamic_update(int mode) 7287 { 7288 /* 7289 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7290 * the ZERO state, which is invalid. 7291 */ 7292 if (!klp_override) 7293 preempt_dynamic_enable(cond_resched); 7294 preempt_dynamic_enable(might_resched); 7295 preempt_dynamic_enable(preempt_schedule); 7296 preempt_dynamic_enable(preempt_schedule_notrace); 7297 preempt_dynamic_enable(irqentry_exit_cond_resched); 7298 7299 switch (mode) { 7300 case preempt_dynamic_none: 7301 if (!klp_override) 7302 preempt_dynamic_enable(cond_resched); 7303 preempt_dynamic_disable(might_resched); 7304 preempt_dynamic_disable(preempt_schedule); 7305 preempt_dynamic_disable(preempt_schedule_notrace); 7306 preempt_dynamic_disable(irqentry_exit_cond_resched); 7307 if (mode != preempt_dynamic_mode) 7308 pr_info("Dynamic Preempt: none\n"); 7309 break; 7310 7311 case preempt_dynamic_voluntary: 7312 if (!klp_override) 7313 preempt_dynamic_enable(cond_resched); 7314 preempt_dynamic_enable(might_resched); 7315 preempt_dynamic_disable(preempt_schedule); 7316 preempt_dynamic_disable(preempt_schedule_notrace); 7317 preempt_dynamic_disable(irqentry_exit_cond_resched); 7318 if (mode != preempt_dynamic_mode) 7319 pr_info("Dynamic Preempt: voluntary\n"); 7320 break; 7321 7322 case preempt_dynamic_full: 7323 if (!klp_override) 7324 preempt_dynamic_disable(cond_resched); 7325 preempt_dynamic_disable(might_resched); 7326 preempt_dynamic_enable(preempt_schedule); 7327 preempt_dynamic_enable(preempt_schedule_notrace); 7328 preempt_dynamic_enable(irqentry_exit_cond_resched); 7329 if (mode != preempt_dynamic_mode) 7330 pr_info("Dynamic Preempt: full\n"); 7331 break; 7332 } 7333 7334 preempt_dynamic_mode = mode; 7335 } 7336 7337 void sched_dynamic_update(int mode) 7338 { 7339 mutex_lock(&sched_dynamic_mutex); 7340 __sched_dynamic_update(mode); 7341 mutex_unlock(&sched_dynamic_mutex); 7342 } 7343 7344 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7345 7346 static int klp_cond_resched(void) 7347 { 7348 __klp_sched_try_switch(); 7349 return __cond_resched(); 7350 } 7351 7352 void sched_dynamic_klp_enable(void) 7353 { 7354 mutex_lock(&sched_dynamic_mutex); 7355 7356 klp_override = true; 7357 static_call_update(cond_resched, klp_cond_resched); 7358 7359 mutex_unlock(&sched_dynamic_mutex); 7360 } 7361 7362 void sched_dynamic_klp_disable(void) 7363 { 7364 mutex_lock(&sched_dynamic_mutex); 7365 7366 klp_override = false; 7367 __sched_dynamic_update(preempt_dynamic_mode); 7368 7369 mutex_unlock(&sched_dynamic_mutex); 7370 } 7371 7372 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7373 7374 static int __init setup_preempt_mode(char *str) 7375 { 7376 int mode = sched_dynamic_mode(str); 7377 if (mode < 0) { 7378 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7379 return 0; 7380 } 7381 7382 sched_dynamic_update(mode); 7383 return 1; 7384 } 7385 __setup("preempt=", setup_preempt_mode); 7386 7387 static void __init preempt_dynamic_init(void) 7388 { 7389 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7390 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7391 sched_dynamic_update(preempt_dynamic_none); 7392 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7393 sched_dynamic_update(preempt_dynamic_voluntary); 7394 } else { 7395 /* Default static call setting, nothing to do */ 7396 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7397 preempt_dynamic_mode = preempt_dynamic_full; 7398 pr_info("Dynamic Preempt: full\n"); 7399 } 7400 } 7401 } 7402 7403 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7404 bool preempt_model_##mode(void) \ 7405 { \ 7406 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7407 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7408 } \ 7409 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7410 7411 PREEMPT_MODEL_ACCESSOR(none); 7412 PREEMPT_MODEL_ACCESSOR(voluntary); 7413 PREEMPT_MODEL_ACCESSOR(full); 7414 7415 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7416 7417 static inline void preempt_dynamic_init(void) { } 7418 7419 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7420 7421 int io_schedule_prepare(void) 7422 { 7423 int old_iowait = current->in_iowait; 7424 7425 current->in_iowait = 1; 7426 blk_flush_plug(current->plug, true); 7427 return old_iowait; 7428 } 7429 7430 void io_schedule_finish(int token) 7431 { 7432 current->in_iowait = token; 7433 } 7434 7435 /* 7436 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7437 * that process accounting knows that this is a task in IO wait state. 7438 */ 7439 long __sched io_schedule_timeout(long timeout) 7440 { 7441 int token; 7442 long ret; 7443 7444 token = io_schedule_prepare(); 7445 ret = schedule_timeout(timeout); 7446 io_schedule_finish(token); 7447 7448 return ret; 7449 } 7450 EXPORT_SYMBOL(io_schedule_timeout); 7451 7452 void __sched io_schedule(void) 7453 { 7454 int token; 7455 7456 token = io_schedule_prepare(); 7457 schedule(); 7458 io_schedule_finish(token); 7459 } 7460 EXPORT_SYMBOL(io_schedule); 7461 7462 void sched_show_task(struct task_struct *p) 7463 { 7464 unsigned long free = 0; 7465 int ppid; 7466 7467 if (!try_get_task_stack(p)) 7468 return; 7469 7470 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7471 7472 if (task_is_running(p)) 7473 pr_cont(" running task "); 7474 #ifdef CONFIG_DEBUG_STACK_USAGE 7475 free = stack_not_used(p); 7476 #endif 7477 ppid = 0; 7478 rcu_read_lock(); 7479 if (pid_alive(p)) 7480 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7481 rcu_read_unlock(); 7482 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", 7483 free, task_pid_nr(p), task_tgid_nr(p), 7484 ppid, read_task_thread_flags(p)); 7485 7486 print_worker_info(KERN_INFO, p); 7487 print_stop_info(KERN_INFO, p); 7488 show_stack(p, NULL, KERN_INFO); 7489 put_task_stack(p); 7490 } 7491 EXPORT_SYMBOL_GPL(sched_show_task); 7492 7493 static inline bool 7494 state_filter_match(unsigned long state_filter, struct task_struct *p) 7495 { 7496 unsigned int state = READ_ONCE(p->__state); 7497 7498 /* no filter, everything matches */ 7499 if (!state_filter) 7500 return true; 7501 7502 /* filter, but doesn't match */ 7503 if (!(state & state_filter)) 7504 return false; 7505 7506 /* 7507 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7508 * TASK_KILLABLE). 7509 */ 7510 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7511 return false; 7512 7513 return true; 7514 } 7515 7516 7517 void show_state_filter(unsigned int state_filter) 7518 { 7519 struct task_struct *g, *p; 7520 7521 rcu_read_lock(); 7522 for_each_process_thread(g, p) { 7523 /* 7524 * reset the NMI-timeout, listing all files on a slow 7525 * console might take a lot of time: 7526 * Also, reset softlockup watchdogs on all CPUs, because 7527 * another CPU might be blocked waiting for us to process 7528 * an IPI. 7529 */ 7530 touch_nmi_watchdog(); 7531 touch_all_softlockup_watchdogs(); 7532 if (state_filter_match(state_filter, p)) 7533 sched_show_task(p); 7534 } 7535 7536 #ifdef CONFIG_SCHED_DEBUG 7537 if (!state_filter) 7538 sysrq_sched_debug_show(); 7539 #endif 7540 rcu_read_unlock(); 7541 /* 7542 * Only show locks if all tasks are dumped: 7543 */ 7544 if (!state_filter) 7545 debug_show_all_locks(); 7546 } 7547 7548 /** 7549 * init_idle - set up an idle thread for a given CPU 7550 * @idle: task in question 7551 * @cpu: CPU the idle task belongs to 7552 * 7553 * NOTE: this function does not set the idle thread's NEED_RESCHED 7554 * flag, to make booting more robust. 7555 */ 7556 void __init init_idle(struct task_struct *idle, int cpu) 7557 { 7558 #ifdef CONFIG_SMP 7559 struct affinity_context ac = (struct affinity_context) { 7560 .new_mask = cpumask_of(cpu), 7561 .flags = 0, 7562 }; 7563 #endif 7564 struct rq *rq = cpu_rq(cpu); 7565 unsigned long flags; 7566 7567 __sched_fork(0, idle); 7568 7569 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7570 raw_spin_rq_lock(rq); 7571 7572 idle->__state = TASK_RUNNING; 7573 idle->se.exec_start = sched_clock(); 7574 /* 7575 * PF_KTHREAD should already be set at this point; regardless, make it 7576 * look like a proper per-CPU kthread. 7577 */ 7578 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7579 kthread_set_per_cpu(idle, cpu); 7580 7581 #ifdef CONFIG_SMP 7582 /* 7583 * It's possible that init_idle() gets called multiple times on a task, 7584 * in that case do_set_cpus_allowed() will not do the right thing. 7585 * 7586 * And since this is boot we can forgo the serialization. 7587 */ 7588 set_cpus_allowed_common(idle, &ac); 7589 #endif 7590 /* 7591 * We're having a chicken and egg problem, even though we are 7592 * holding rq->lock, the CPU isn't yet set to this CPU so the 7593 * lockdep check in task_group() will fail. 7594 * 7595 * Similar case to sched_fork(). / Alternatively we could 7596 * use task_rq_lock() here and obtain the other rq->lock. 7597 * 7598 * Silence PROVE_RCU 7599 */ 7600 rcu_read_lock(); 7601 __set_task_cpu(idle, cpu); 7602 rcu_read_unlock(); 7603 7604 rq->idle = idle; 7605 rcu_assign_pointer(rq->curr, idle); 7606 idle->on_rq = TASK_ON_RQ_QUEUED; 7607 #ifdef CONFIG_SMP 7608 idle->on_cpu = 1; 7609 #endif 7610 raw_spin_rq_unlock(rq); 7611 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7612 7613 /* Set the preempt count _outside_ the spinlocks! */ 7614 init_idle_preempt_count(idle, cpu); 7615 7616 /* 7617 * The idle tasks have their own, simple scheduling class: 7618 */ 7619 idle->sched_class = &idle_sched_class; 7620 ftrace_graph_init_idle_task(idle, cpu); 7621 vtime_init_idle(idle, cpu); 7622 #ifdef CONFIG_SMP 7623 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7624 #endif 7625 } 7626 7627 #ifdef CONFIG_SMP 7628 7629 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7630 const struct cpumask *trial) 7631 { 7632 int ret = 1; 7633 7634 if (cpumask_empty(cur)) 7635 return ret; 7636 7637 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7638 7639 return ret; 7640 } 7641 7642 int task_can_attach(struct task_struct *p) 7643 { 7644 int ret = 0; 7645 7646 /* 7647 * Kthreads which disallow setaffinity shouldn't be moved 7648 * to a new cpuset; we don't want to change their CPU 7649 * affinity and isolating such threads by their set of 7650 * allowed nodes is unnecessary. Thus, cpusets are not 7651 * applicable for such threads. This prevents checking for 7652 * success of set_cpus_allowed_ptr() on all attached tasks 7653 * before cpus_mask may be changed. 7654 */ 7655 if (p->flags & PF_NO_SETAFFINITY) 7656 ret = -EINVAL; 7657 7658 return ret; 7659 } 7660 7661 bool sched_smp_initialized __read_mostly; 7662 7663 #ifdef CONFIG_NUMA_BALANCING 7664 /* Migrate current task p to target_cpu */ 7665 int migrate_task_to(struct task_struct *p, int target_cpu) 7666 { 7667 struct migration_arg arg = { p, target_cpu }; 7668 int curr_cpu = task_cpu(p); 7669 7670 if (curr_cpu == target_cpu) 7671 return 0; 7672 7673 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7674 return -EINVAL; 7675 7676 /* TODO: This is not properly updating schedstats */ 7677 7678 trace_sched_move_numa(p, curr_cpu, target_cpu); 7679 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7680 } 7681 7682 /* 7683 * Requeue a task on a given node and accurately track the number of NUMA 7684 * tasks on the runqueues 7685 */ 7686 void sched_setnuma(struct task_struct *p, int nid) 7687 { 7688 bool queued, running; 7689 struct rq_flags rf; 7690 struct rq *rq; 7691 7692 rq = task_rq_lock(p, &rf); 7693 queued = task_on_rq_queued(p); 7694 running = task_current(rq, p); 7695 7696 if (queued) 7697 dequeue_task(rq, p, DEQUEUE_SAVE); 7698 if (running) 7699 put_prev_task(rq, p); 7700 7701 p->numa_preferred_nid = nid; 7702 7703 if (queued) 7704 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7705 if (running) 7706 set_next_task(rq, p); 7707 task_rq_unlock(rq, p, &rf); 7708 } 7709 #endif /* CONFIG_NUMA_BALANCING */ 7710 7711 #ifdef CONFIG_HOTPLUG_CPU 7712 /* 7713 * Ensure that the idle task is using init_mm right before its CPU goes 7714 * offline. 7715 */ 7716 void idle_task_exit(void) 7717 { 7718 struct mm_struct *mm = current->active_mm; 7719 7720 BUG_ON(cpu_online(smp_processor_id())); 7721 BUG_ON(current != this_rq()->idle); 7722 7723 if (mm != &init_mm) { 7724 switch_mm(mm, &init_mm, current); 7725 finish_arch_post_lock_switch(); 7726 } 7727 7728 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7729 } 7730 7731 static int __balance_push_cpu_stop(void *arg) 7732 { 7733 struct task_struct *p = arg; 7734 struct rq *rq = this_rq(); 7735 struct rq_flags rf; 7736 int cpu; 7737 7738 raw_spin_lock_irq(&p->pi_lock); 7739 rq_lock(rq, &rf); 7740 7741 update_rq_clock(rq); 7742 7743 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7744 cpu = select_fallback_rq(rq->cpu, p); 7745 rq = __migrate_task(rq, &rf, p, cpu); 7746 } 7747 7748 rq_unlock(rq, &rf); 7749 raw_spin_unlock_irq(&p->pi_lock); 7750 7751 put_task_struct(p); 7752 7753 return 0; 7754 } 7755 7756 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7757 7758 /* 7759 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7760 * 7761 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7762 * effective when the hotplug motion is down. 7763 */ 7764 static void balance_push(struct rq *rq) 7765 { 7766 struct task_struct *push_task = rq->curr; 7767 7768 lockdep_assert_rq_held(rq); 7769 7770 /* 7771 * Ensure the thing is persistent until balance_push_set(.on = false); 7772 */ 7773 rq->balance_callback = &balance_push_callback; 7774 7775 /* 7776 * Only active while going offline and when invoked on the outgoing 7777 * CPU. 7778 */ 7779 if (!cpu_dying(rq->cpu) || rq != this_rq()) 7780 return; 7781 7782 /* 7783 * Both the cpu-hotplug and stop task are in this case and are 7784 * required to complete the hotplug process. 7785 */ 7786 if (kthread_is_per_cpu(push_task) || 7787 is_migration_disabled(push_task)) { 7788 7789 /* 7790 * If this is the idle task on the outgoing CPU try to wake 7791 * up the hotplug control thread which might wait for the 7792 * last task to vanish. The rcuwait_active() check is 7793 * accurate here because the waiter is pinned on this CPU 7794 * and can't obviously be running in parallel. 7795 * 7796 * On RT kernels this also has to check whether there are 7797 * pinned and scheduled out tasks on the runqueue. They 7798 * need to leave the migrate disabled section first. 7799 */ 7800 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7801 rcuwait_active(&rq->hotplug_wait)) { 7802 raw_spin_rq_unlock(rq); 7803 rcuwait_wake_up(&rq->hotplug_wait); 7804 raw_spin_rq_lock(rq); 7805 } 7806 return; 7807 } 7808 7809 get_task_struct(push_task); 7810 /* 7811 * Temporarily drop rq->lock such that we can wake-up the stop task. 7812 * Both preemption and IRQs are still disabled. 7813 */ 7814 preempt_disable(); 7815 raw_spin_rq_unlock(rq); 7816 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7817 this_cpu_ptr(&push_work)); 7818 preempt_enable(); 7819 /* 7820 * At this point need_resched() is true and we'll take the loop in 7821 * schedule(). The next pick is obviously going to be the stop task 7822 * which kthread_is_per_cpu() and will push this task away. 7823 */ 7824 raw_spin_rq_lock(rq); 7825 } 7826 7827 static void balance_push_set(int cpu, bool on) 7828 { 7829 struct rq *rq = cpu_rq(cpu); 7830 struct rq_flags rf; 7831 7832 rq_lock_irqsave(rq, &rf); 7833 if (on) { 7834 WARN_ON_ONCE(rq->balance_callback); 7835 rq->balance_callback = &balance_push_callback; 7836 } else if (rq->balance_callback == &balance_push_callback) { 7837 rq->balance_callback = NULL; 7838 } 7839 rq_unlock_irqrestore(rq, &rf); 7840 } 7841 7842 /* 7843 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7844 * inactive. All tasks which are not per CPU kernel threads are either 7845 * pushed off this CPU now via balance_push() or placed on a different CPU 7846 * during wakeup. Wait until the CPU is quiescent. 7847 */ 7848 static void balance_hotplug_wait(void) 7849 { 7850 struct rq *rq = this_rq(); 7851 7852 rcuwait_wait_event(&rq->hotplug_wait, 7853 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7854 TASK_UNINTERRUPTIBLE); 7855 } 7856 7857 #else 7858 7859 static inline void balance_push(struct rq *rq) 7860 { 7861 } 7862 7863 static inline void balance_push_set(int cpu, bool on) 7864 { 7865 } 7866 7867 static inline void balance_hotplug_wait(void) 7868 { 7869 } 7870 7871 #endif /* CONFIG_HOTPLUG_CPU */ 7872 7873 void set_rq_online(struct rq *rq) 7874 { 7875 if (!rq->online) { 7876 const struct sched_class *class; 7877 7878 cpumask_set_cpu(rq->cpu, rq->rd->online); 7879 rq->online = 1; 7880 7881 for_each_class(class) { 7882 if (class->rq_online) 7883 class->rq_online(rq); 7884 } 7885 } 7886 } 7887 7888 void set_rq_offline(struct rq *rq) 7889 { 7890 if (rq->online) { 7891 const struct sched_class *class; 7892 7893 update_rq_clock(rq); 7894 for_each_class(class) { 7895 if (class->rq_offline) 7896 class->rq_offline(rq); 7897 } 7898 7899 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7900 rq->online = 0; 7901 } 7902 } 7903 7904 /* 7905 * used to mark begin/end of suspend/resume: 7906 */ 7907 static int num_cpus_frozen; 7908 7909 /* 7910 * Update cpusets according to cpu_active mask. If cpusets are 7911 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7912 * around partition_sched_domains(). 7913 * 7914 * If we come here as part of a suspend/resume, don't touch cpusets because we 7915 * want to restore it back to its original state upon resume anyway. 7916 */ 7917 static void cpuset_cpu_active(void) 7918 { 7919 if (cpuhp_tasks_frozen) { 7920 /* 7921 * num_cpus_frozen tracks how many CPUs are involved in suspend 7922 * resume sequence. As long as this is not the last online 7923 * operation in the resume sequence, just build a single sched 7924 * domain, ignoring cpusets. 7925 */ 7926 partition_sched_domains(1, NULL, NULL); 7927 if (--num_cpus_frozen) 7928 return; 7929 /* 7930 * This is the last CPU online operation. So fall through and 7931 * restore the original sched domains by considering the 7932 * cpuset configurations. 7933 */ 7934 cpuset_force_rebuild(); 7935 } 7936 cpuset_update_active_cpus(); 7937 } 7938 7939 static int cpuset_cpu_inactive(unsigned int cpu) 7940 { 7941 if (!cpuhp_tasks_frozen) { 7942 int ret = dl_bw_check_overflow(cpu); 7943 7944 if (ret) 7945 return ret; 7946 cpuset_update_active_cpus(); 7947 } else { 7948 num_cpus_frozen++; 7949 partition_sched_domains(1, NULL, NULL); 7950 } 7951 return 0; 7952 } 7953 7954 int sched_cpu_activate(unsigned int cpu) 7955 { 7956 struct rq *rq = cpu_rq(cpu); 7957 struct rq_flags rf; 7958 7959 /* 7960 * Clear the balance_push callback and prepare to schedule 7961 * regular tasks. 7962 */ 7963 balance_push_set(cpu, false); 7964 7965 #ifdef CONFIG_SCHED_SMT 7966 /* 7967 * When going up, increment the number of cores with SMT present. 7968 */ 7969 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7970 static_branch_inc_cpuslocked(&sched_smt_present); 7971 #endif 7972 set_cpu_active(cpu, true); 7973 7974 if (sched_smp_initialized) { 7975 sched_update_numa(cpu, true); 7976 sched_domains_numa_masks_set(cpu); 7977 cpuset_cpu_active(); 7978 } 7979 7980 /* 7981 * Put the rq online, if not already. This happens: 7982 * 7983 * 1) In the early boot process, because we build the real domains 7984 * after all CPUs have been brought up. 7985 * 7986 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7987 * domains. 7988 */ 7989 rq_lock_irqsave(rq, &rf); 7990 if (rq->rd) { 7991 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7992 set_rq_online(rq); 7993 } 7994 rq_unlock_irqrestore(rq, &rf); 7995 7996 return 0; 7997 } 7998 7999 int sched_cpu_deactivate(unsigned int cpu) 8000 { 8001 struct rq *rq = cpu_rq(cpu); 8002 struct rq_flags rf; 8003 int ret; 8004 8005 /* 8006 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8007 * load balancing when not active 8008 */ 8009 nohz_balance_exit_idle(rq); 8010 8011 set_cpu_active(cpu, false); 8012 8013 /* 8014 * From this point forward, this CPU will refuse to run any task that 8015 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8016 * push those tasks away until this gets cleared, see 8017 * sched_cpu_dying(). 8018 */ 8019 balance_push_set(cpu, true); 8020 8021 /* 8022 * We've cleared cpu_active_mask / set balance_push, wait for all 8023 * preempt-disabled and RCU users of this state to go away such that 8024 * all new such users will observe it. 8025 * 8026 * Specifically, we rely on ttwu to no longer target this CPU, see 8027 * ttwu_queue_cond() and is_cpu_allowed(). 8028 * 8029 * Do sync before park smpboot threads to take care the RCU boost case. 8030 */ 8031 synchronize_rcu(); 8032 8033 rq_lock_irqsave(rq, &rf); 8034 if (rq->rd) { 8035 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8036 set_rq_offline(rq); 8037 } 8038 rq_unlock_irqrestore(rq, &rf); 8039 8040 #ifdef CONFIG_SCHED_SMT 8041 /* 8042 * When going down, decrement the number of cores with SMT present. 8043 */ 8044 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8045 static_branch_dec_cpuslocked(&sched_smt_present); 8046 8047 sched_core_cpu_deactivate(cpu); 8048 #endif 8049 8050 if (!sched_smp_initialized) 8051 return 0; 8052 8053 sched_update_numa(cpu, false); 8054 ret = cpuset_cpu_inactive(cpu); 8055 if (ret) { 8056 balance_push_set(cpu, false); 8057 set_cpu_active(cpu, true); 8058 sched_update_numa(cpu, true); 8059 return ret; 8060 } 8061 sched_domains_numa_masks_clear(cpu); 8062 return 0; 8063 } 8064 8065 static void sched_rq_cpu_starting(unsigned int cpu) 8066 { 8067 struct rq *rq = cpu_rq(cpu); 8068 8069 rq->calc_load_update = calc_load_update; 8070 update_max_interval(); 8071 } 8072 8073 int sched_cpu_starting(unsigned int cpu) 8074 { 8075 sched_core_cpu_starting(cpu); 8076 sched_rq_cpu_starting(cpu); 8077 sched_tick_start(cpu); 8078 return 0; 8079 } 8080 8081 #ifdef CONFIG_HOTPLUG_CPU 8082 8083 /* 8084 * Invoked immediately before the stopper thread is invoked to bring the 8085 * CPU down completely. At this point all per CPU kthreads except the 8086 * hotplug thread (current) and the stopper thread (inactive) have been 8087 * either parked or have been unbound from the outgoing CPU. Ensure that 8088 * any of those which might be on the way out are gone. 8089 * 8090 * If after this point a bound task is being woken on this CPU then the 8091 * responsible hotplug callback has failed to do it's job. 8092 * sched_cpu_dying() will catch it with the appropriate fireworks. 8093 */ 8094 int sched_cpu_wait_empty(unsigned int cpu) 8095 { 8096 balance_hotplug_wait(); 8097 return 0; 8098 } 8099 8100 /* 8101 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8102 * might have. Called from the CPU stopper task after ensuring that the 8103 * stopper is the last running task on the CPU, so nr_active count is 8104 * stable. We need to take the tear-down thread which is calling this into 8105 * account, so we hand in adjust = 1 to the load calculation. 8106 * 8107 * Also see the comment "Global load-average calculations". 8108 */ 8109 static void calc_load_migrate(struct rq *rq) 8110 { 8111 long delta = calc_load_fold_active(rq, 1); 8112 8113 if (delta) 8114 atomic_long_add(delta, &calc_load_tasks); 8115 } 8116 8117 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8118 { 8119 struct task_struct *g, *p; 8120 int cpu = cpu_of(rq); 8121 8122 lockdep_assert_rq_held(rq); 8123 8124 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8125 for_each_process_thread(g, p) { 8126 if (task_cpu(p) != cpu) 8127 continue; 8128 8129 if (!task_on_rq_queued(p)) 8130 continue; 8131 8132 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8133 } 8134 } 8135 8136 int sched_cpu_dying(unsigned int cpu) 8137 { 8138 struct rq *rq = cpu_rq(cpu); 8139 struct rq_flags rf; 8140 8141 /* Handle pending wakeups and then migrate everything off */ 8142 sched_tick_stop(cpu); 8143 8144 rq_lock_irqsave(rq, &rf); 8145 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8146 WARN(true, "Dying CPU not properly vacated!"); 8147 dump_rq_tasks(rq, KERN_WARNING); 8148 } 8149 rq_unlock_irqrestore(rq, &rf); 8150 8151 calc_load_migrate(rq); 8152 update_max_interval(); 8153 hrtick_clear(rq); 8154 sched_core_cpu_dying(cpu); 8155 return 0; 8156 } 8157 #endif 8158 8159 void __init sched_init_smp(void) 8160 { 8161 sched_init_numa(NUMA_NO_NODE); 8162 8163 /* 8164 * There's no userspace yet to cause hotplug operations; hence all the 8165 * CPU masks are stable and all blatant races in the below code cannot 8166 * happen. 8167 */ 8168 mutex_lock(&sched_domains_mutex); 8169 sched_init_domains(cpu_active_mask); 8170 mutex_unlock(&sched_domains_mutex); 8171 8172 /* Move init over to a non-isolated CPU */ 8173 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8174 BUG(); 8175 current->flags &= ~PF_NO_SETAFFINITY; 8176 sched_init_granularity(); 8177 8178 init_sched_rt_class(); 8179 init_sched_dl_class(); 8180 8181 sched_smp_initialized = true; 8182 } 8183 8184 static int __init migration_init(void) 8185 { 8186 sched_cpu_starting(smp_processor_id()); 8187 return 0; 8188 } 8189 early_initcall(migration_init); 8190 8191 #else 8192 void __init sched_init_smp(void) 8193 { 8194 sched_init_granularity(); 8195 } 8196 #endif /* CONFIG_SMP */ 8197 8198 int in_sched_functions(unsigned long addr) 8199 { 8200 return in_lock_functions(addr) || 8201 (addr >= (unsigned long)__sched_text_start 8202 && addr < (unsigned long)__sched_text_end); 8203 } 8204 8205 #ifdef CONFIG_CGROUP_SCHED 8206 /* 8207 * Default task group. 8208 * Every task in system belongs to this group at bootup. 8209 */ 8210 struct task_group root_task_group; 8211 LIST_HEAD(task_groups); 8212 8213 /* Cacheline aligned slab cache for task_group */ 8214 static struct kmem_cache *task_group_cache __ro_after_init; 8215 #endif 8216 8217 void __init sched_init(void) 8218 { 8219 unsigned long ptr = 0; 8220 int i; 8221 8222 /* Make sure the linker didn't screw up */ 8223 #ifdef CONFIG_SMP 8224 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8225 #endif 8226 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8227 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8228 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8229 #ifdef CONFIG_SCHED_CLASS_EXT 8230 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8231 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8232 #endif 8233 8234 wait_bit_init(); 8235 8236 #ifdef CONFIG_FAIR_GROUP_SCHED 8237 ptr += 2 * nr_cpu_ids * sizeof(void **); 8238 #endif 8239 #ifdef CONFIG_RT_GROUP_SCHED 8240 ptr += 2 * nr_cpu_ids * sizeof(void **); 8241 #endif 8242 if (ptr) { 8243 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8244 8245 #ifdef CONFIG_FAIR_GROUP_SCHED 8246 root_task_group.se = (struct sched_entity **)ptr; 8247 ptr += nr_cpu_ids * sizeof(void **); 8248 8249 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8250 ptr += nr_cpu_ids * sizeof(void **); 8251 8252 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8253 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8254 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8255 #ifdef CONFIG_RT_GROUP_SCHED 8256 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8257 ptr += nr_cpu_ids * sizeof(void **); 8258 8259 root_task_group.rt_rq = (struct rt_rq **)ptr; 8260 ptr += nr_cpu_ids * sizeof(void **); 8261 8262 #endif /* CONFIG_RT_GROUP_SCHED */ 8263 } 8264 8265 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 8266 8267 #ifdef CONFIG_SMP 8268 init_defrootdomain(); 8269 #endif 8270 8271 #ifdef CONFIG_RT_GROUP_SCHED 8272 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8273 global_rt_period(), global_rt_runtime()); 8274 #endif /* CONFIG_RT_GROUP_SCHED */ 8275 8276 #ifdef CONFIG_CGROUP_SCHED 8277 task_group_cache = KMEM_CACHE(task_group, 0); 8278 8279 list_add(&root_task_group.list, &task_groups); 8280 INIT_LIST_HEAD(&root_task_group.children); 8281 INIT_LIST_HEAD(&root_task_group.siblings); 8282 autogroup_init(&init_task); 8283 #endif /* CONFIG_CGROUP_SCHED */ 8284 8285 for_each_possible_cpu(i) { 8286 struct rq *rq; 8287 8288 rq = cpu_rq(i); 8289 raw_spin_lock_init(&rq->__lock); 8290 rq->nr_running = 0; 8291 rq->calc_load_active = 0; 8292 rq->calc_load_update = jiffies + LOAD_FREQ; 8293 init_cfs_rq(&rq->cfs); 8294 init_rt_rq(&rq->rt); 8295 init_dl_rq(&rq->dl); 8296 #ifdef CONFIG_FAIR_GROUP_SCHED 8297 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8298 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8299 /* 8300 * How much CPU bandwidth does root_task_group get? 8301 * 8302 * In case of task-groups formed through the cgroup filesystem, it 8303 * gets 100% of the CPU resources in the system. This overall 8304 * system CPU resource is divided among the tasks of 8305 * root_task_group and its child task-groups in a fair manner, 8306 * based on each entity's (task or task-group's) weight 8307 * (se->load.weight). 8308 * 8309 * In other words, if root_task_group has 10 tasks of weight 8310 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8311 * then A0's share of the CPU resource is: 8312 * 8313 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8314 * 8315 * We achieve this by letting root_task_group's tasks sit 8316 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8317 */ 8318 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8319 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8320 8321 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 8322 #ifdef CONFIG_RT_GROUP_SCHED 8323 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8324 #endif 8325 #ifdef CONFIG_SMP 8326 rq->sd = NULL; 8327 rq->rd = NULL; 8328 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8329 rq->balance_callback = &balance_push_callback; 8330 rq->active_balance = 0; 8331 rq->next_balance = jiffies; 8332 rq->push_cpu = 0; 8333 rq->cpu = i; 8334 rq->online = 0; 8335 rq->idle_stamp = 0; 8336 rq->avg_idle = 2*sysctl_sched_migration_cost; 8337 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8338 8339 INIT_LIST_HEAD(&rq->cfs_tasks); 8340 8341 rq_attach_root(rq, &def_root_domain); 8342 #ifdef CONFIG_NO_HZ_COMMON 8343 rq->last_blocked_load_update_tick = jiffies; 8344 atomic_set(&rq->nohz_flags, 0); 8345 8346 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8347 #endif 8348 #ifdef CONFIG_HOTPLUG_CPU 8349 rcuwait_init(&rq->hotplug_wait); 8350 #endif 8351 #endif /* CONFIG_SMP */ 8352 hrtick_rq_init(rq); 8353 atomic_set(&rq->nr_iowait, 0); 8354 8355 #ifdef CONFIG_SCHED_CORE 8356 rq->core = rq; 8357 rq->core_pick = NULL; 8358 rq->core_enabled = 0; 8359 rq->core_tree = RB_ROOT; 8360 rq->core_forceidle_count = 0; 8361 rq->core_forceidle_occupation = 0; 8362 rq->core_forceidle_start = 0; 8363 8364 rq->core_cookie = 0UL; 8365 #endif 8366 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8367 } 8368 8369 set_load_weight(&init_task, false); 8370 8371 /* 8372 * The boot idle thread does lazy MMU switching as well: 8373 */ 8374 mmgrab_lazy_tlb(&init_mm); 8375 enter_lazy_tlb(&init_mm, current); 8376 8377 /* 8378 * The idle task doesn't need the kthread struct to function, but it 8379 * is dressed up as a per-CPU kthread and thus needs to play the part 8380 * if we want to avoid special-casing it in code that deals with per-CPU 8381 * kthreads. 8382 */ 8383 WARN_ON(!set_kthread_struct(current)); 8384 8385 /* 8386 * Make us the idle thread. Technically, schedule() should not be 8387 * called from this thread, however somewhere below it might be, 8388 * but because we are the idle thread, we just pick up running again 8389 * when this runqueue becomes "idle". 8390 */ 8391 init_idle(current, smp_processor_id()); 8392 8393 calc_load_update = jiffies + LOAD_FREQ; 8394 8395 #ifdef CONFIG_SMP 8396 idle_thread_set_boot_cpu(); 8397 balance_push_set(smp_processor_id(), false); 8398 #endif 8399 init_sched_fair_class(); 8400 init_sched_ext_class(); 8401 8402 psi_init(); 8403 8404 init_uclamp(); 8405 8406 preempt_dynamic_init(); 8407 8408 scheduler_running = 1; 8409 } 8410 8411 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8412 8413 void __might_sleep(const char *file, int line) 8414 { 8415 unsigned int state = get_current_state(); 8416 /* 8417 * Blocking primitives will set (and therefore destroy) current->state, 8418 * since we will exit with TASK_RUNNING make sure we enter with it, 8419 * otherwise we will destroy state. 8420 */ 8421 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8422 "do not call blocking ops when !TASK_RUNNING; " 8423 "state=%x set at [<%p>] %pS\n", state, 8424 (void *)current->task_state_change, 8425 (void *)current->task_state_change); 8426 8427 __might_resched(file, line, 0); 8428 } 8429 EXPORT_SYMBOL(__might_sleep); 8430 8431 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8432 { 8433 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8434 return; 8435 8436 if (preempt_count() == preempt_offset) 8437 return; 8438 8439 pr_err("Preemption disabled at:"); 8440 print_ip_sym(KERN_ERR, ip); 8441 } 8442 8443 static inline bool resched_offsets_ok(unsigned int offsets) 8444 { 8445 unsigned int nested = preempt_count(); 8446 8447 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8448 8449 return nested == offsets; 8450 } 8451 8452 void __might_resched(const char *file, int line, unsigned int offsets) 8453 { 8454 /* Ratelimiting timestamp: */ 8455 static unsigned long prev_jiffy; 8456 8457 unsigned long preempt_disable_ip; 8458 8459 /* WARN_ON_ONCE() by default, no rate limit required: */ 8460 rcu_sleep_check(); 8461 8462 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8463 !is_idle_task(current) && !current->non_block_count) || 8464 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8465 oops_in_progress) 8466 return; 8467 8468 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8469 return; 8470 prev_jiffy = jiffies; 8471 8472 /* Save this before calling printk(), since that will clobber it: */ 8473 preempt_disable_ip = get_preempt_disable_ip(current); 8474 8475 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8476 file, line); 8477 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8478 in_atomic(), irqs_disabled(), current->non_block_count, 8479 current->pid, current->comm); 8480 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8481 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8482 8483 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8484 pr_err("RCU nest depth: %d, expected: %u\n", 8485 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8486 } 8487 8488 if (task_stack_end_corrupted(current)) 8489 pr_emerg("Thread overran stack, or stack corrupted\n"); 8490 8491 debug_show_held_locks(current); 8492 if (irqs_disabled()) 8493 print_irqtrace_events(current); 8494 8495 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8496 preempt_disable_ip); 8497 8498 dump_stack(); 8499 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8500 } 8501 EXPORT_SYMBOL(__might_resched); 8502 8503 void __cant_sleep(const char *file, int line, int preempt_offset) 8504 { 8505 static unsigned long prev_jiffy; 8506 8507 if (irqs_disabled()) 8508 return; 8509 8510 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8511 return; 8512 8513 if (preempt_count() > preempt_offset) 8514 return; 8515 8516 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8517 return; 8518 prev_jiffy = jiffies; 8519 8520 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8521 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8522 in_atomic(), irqs_disabled(), 8523 current->pid, current->comm); 8524 8525 debug_show_held_locks(current); 8526 dump_stack(); 8527 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8528 } 8529 EXPORT_SYMBOL_GPL(__cant_sleep); 8530 8531 #ifdef CONFIG_SMP 8532 void __cant_migrate(const char *file, int line) 8533 { 8534 static unsigned long prev_jiffy; 8535 8536 if (irqs_disabled()) 8537 return; 8538 8539 if (is_migration_disabled(current)) 8540 return; 8541 8542 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8543 return; 8544 8545 if (preempt_count() > 0) 8546 return; 8547 8548 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8549 return; 8550 prev_jiffy = jiffies; 8551 8552 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8553 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8554 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8555 current->pid, current->comm); 8556 8557 debug_show_held_locks(current); 8558 dump_stack(); 8559 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8560 } 8561 EXPORT_SYMBOL_GPL(__cant_migrate); 8562 #endif 8563 #endif 8564 8565 #ifdef CONFIG_MAGIC_SYSRQ 8566 void normalize_rt_tasks(void) 8567 { 8568 struct task_struct *g, *p; 8569 struct sched_attr attr = { 8570 .sched_policy = SCHED_NORMAL, 8571 }; 8572 8573 read_lock(&tasklist_lock); 8574 for_each_process_thread(g, p) { 8575 /* 8576 * Only normalize user tasks: 8577 */ 8578 if (p->flags & PF_KTHREAD) 8579 continue; 8580 8581 p->se.exec_start = 0; 8582 schedstat_set(p->stats.wait_start, 0); 8583 schedstat_set(p->stats.sleep_start, 0); 8584 schedstat_set(p->stats.block_start, 0); 8585 8586 if (!dl_task(p) && !rt_task(p)) { 8587 /* 8588 * Renice negative nice level userspace 8589 * tasks back to 0: 8590 */ 8591 if (task_nice(p) < 0) 8592 set_user_nice(p, 0); 8593 continue; 8594 } 8595 8596 __sched_setscheduler(p, &attr, false, false); 8597 } 8598 read_unlock(&tasklist_lock); 8599 } 8600 8601 #endif /* CONFIG_MAGIC_SYSRQ */ 8602 8603 #if defined(CONFIG_KGDB_KDB) 8604 /* 8605 * These functions are only useful for KDB. 8606 * 8607 * They can only be called when the whole system has been 8608 * stopped - every CPU needs to be quiescent, and no scheduling 8609 * activity can take place. Using them for anything else would 8610 * be a serious bug, and as a result, they aren't even visible 8611 * under any other configuration. 8612 */ 8613 8614 /** 8615 * curr_task - return the current task for a given CPU. 8616 * @cpu: the processor in question. 8617 * 8618 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8619 * 8620 * Return: The current task for @cpu. 8621 */ 8622 struct task_struct *curr_task(int cpu) 8623 { 8624 return cpu_curr(cpu); 8625 } 8626 8627 #endif /* defined(CONFIG_KGDB_KDB) */ 8628 8629 #ifdef CONFIG_CGROUP_SCHED 8630 /* task_group_lock serializes the addition/removal of task groups */ 8631 static DEFINE_SPINLOCK(task_group_lock); 8632 8633 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8634 struct task_group *parent) 8635 { 8636 #ifdef CONFIG_UCLAMP_TASK_GROUP 8637 enum uclamp_id clamp_id; 8638 8639 for_each_clamp_id(clamp_id) { 8640 uclamp_se_set(&tg->uclamp_req[clamp_id], 8641 uclamp_none(clamp_id), false); 8642 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8643 } 8644 #endif 8645 } 8646 8647 static void sched_free_group(struct task_group *tg) 8648 { 8649 free_fair_sched_group(tg); 8650 free_rt_sched_group(tg); 8651 autogroup_free(tg); 8652 kmem_cache_free(task_group_cache, tg); 8653 } 8654 8655 static void sched_free_group_rcu(struct rcu_head *rcu) 8656 { 8657 sched_free_group(container_of(rcu, struct task_group, rcu)); 8658 } 8659 8660 static void sched_unregister_group(struct task_group *tg) 8661 { 8662 unregister_fair_sched_group(tg); 8663 unregister_rt_sched_group(tg); 8664 /* 8665 * We have to wait for yet another RCU grace period to expire, as 8666 * print_cfs_stats() might run concurrently. 8667 */ 8668 call_rcu(&tg->rcu, sched_free_group_rcu); 8669 } 8670 8671 /* allocate runqueue etc for a new task group */ 8672 struct task_group *sched_create_group(struct task_group *parent) 8673 { 8674 struct task_group *tg; 8675 8676 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8677 if (!tg) 8678 return ERR_PTR(-ENOMEM); 8679 8680 if (!alloc_fair_sched_group(tg, parent)) 8681 goto err; 8682 8683 if (!alloc_rt_sched_group(tg, parent)) 8684 goto err; 8685 8686 alloc_uclamp_sched_group(tg, parent); 8687 8688 return tg; 8689 8690 err: 8691 sched_free_group(tg); 8692 return ERR_PTR(-ENOMEM); 8693 } 8694 8695 void sched_online_group(struct task_group *tg, struct task_group *parent) 8696 { 8697 unsigned long flags; 8698 8699 spin_lock_irqsave(&task_group_lock, flags); 8700 list_add_rcu(&tg->list, &task_groups); 8701 8702 /* Root should already exist: */ 8703 WARN_ON(!parent); 8704 8705 tg->parent = parent; 8706 INIT_LIST_HEAD(&tg->children); 8707 list_add_rcu(&tg->siblings, &parent->children); 8708 spin_unlock_irqrestore(&task_group_lock, flags); 8709 8710 online_fair_sched_group(tg); 8711 } 8712 8713 /* RCU callback to free various structures associated with a task group */ 8714 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8715 { 8716 /* Now it should be safe to free those cfs_rqs: */ 8717 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8718 } 8719 8720 void sched_destroy_group(struct task_group *tg) 8721 { 8722 /* Wait for possible concurrent references to cfs_rqs complete: */ 8723 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8724 } 8725 8726 void sched_release_group(struct task_group *tg) 8727 { 8728 unsigned long flags; 8729 8730 /* 8731 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 8732 * sched_cfs_period_timer()). 8733 * 8734 * For this to be effective, we have to wait for all pending users of 8735 * this task group to leave their RCU critical section to ensure no new 8736 * user will see our dying task group any more. Specifically ensure 8737 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 8738 * 8739 * We therefore defer calling unregister_fair_sched_group() to 8740 * sched_unregister_group() which is guarantied to get called only after the 8741 * current RCU grace period has expired. 8742 */ 8743 spin_lock_irqsave(&task_group_lock, flags); 8744 list_del_rcu(&tg->list); 8745 list_del_rcu(&tg->siblings); 8746 spin_unlock_irqrestore(&task_group_lock, flags); 8747 } 8748 8749 static struct task_group *sched_get_task_group(struct task_struct *tsk) 8750 { 8751 struct task_group *tg; 8752 8753 /* 8754 * All callers are synchronized by task_rq_lock(); we do not use RCU 8755 * which is pointless here. Thus, we pass "true" to task_css_check() 8756 * to prevent lockdep warnings. 8757 */ 8758 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8759 struct task_group, css); 8760 tg = autogroup_task_group(tsk, tg); 8761 8762 return tg; 8763 } 8764 8765 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 8766 { 8767 tsk->sched_task_group = group; 8768 8769 #ifdef CONFIG_FAIR_GROUP_SCHED 8770 if (tsk->sched_class->task_change_group) 8771 tsk->sched_class->task_change_group(tsk); 8772 else 8773 #endif 8774 set_task_rq(tsk, task_cpu(tsk)); 8775 } 8776 8777 /* 8778 * Change task's runqueue when it moves between groups. 8779 * 8780 * The caller of this function should have put the task in its new group by 8781 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8782 * its new group. 8783 */ 8784 void sched_move_task(struct task_struct *tsk) 8785 { 8786 int queued, running, queue_flags = 8787 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8788 struct task_group *group; 8789 struct rq *rq; 8790 8791 CLASS(task_rq_lock, rq_guard)(tsk); 8792 rq = rq_guard.rq; 8793 8794 /* 8795 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 8796 * group changes. 8797 */ 8798 group = sched_get_task_group(tsk); 8799 if (group == tsk->sched_task_group) 8800 return; 8801 8802 update_rq_clock(rq); 8803 8804 running = task_current(rq, tsk); 8805 queued = task_on_rq_queued(tsk); 8806 8807 if (queued) 8808 dequeue_task(rq, tsk, queue_flags); 8809 if (running) 8810 put_prev_task(rq, tsk); 8811 8812 sched_change_group(tsk, group); 8813 8814 if (queued) 8815 enqueue_task(rq, tsk, queue_flags); 8816 if (running) { 8817 set_next_task(rq, tsk); 8818 /* 8819 * After changing group, the running task may have joined a 8820 * throttled one but it's still the running task. Trigger a 8821 * resched to make sure that task can still run. 8822 */ 8823 resched_curr(rq); 8824 } 8825 } 8826 8827 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8828 { 8829 return css ? container_of(css, struct task_group, css) : NULL; 8830 } 8831 8832 static struct cgroup_subsys_state * 8833 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8834 { 8835 struct task_group *parent = css_tg(parent_css); 8836 struct task_group *tg; 8837 8838 if (!parent) { 8839 /* This is early initialization for the top cgroup */ 8840 return &root_task_group.css; 8841 } 8842 8843 tg = sched_create_group(parent); 8844 if (IS_ERR(tg)) 8845 return ERR_PTR(-ENOMEM); 8846 8847 return &tg->css; 8848 } 8849 8850 /* Expose task group only after completing cgroup initialization */ 8851 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8852 { 8853 struct task_group *tg = css_tg(css); 8854 struct task_group *parent = css_tg(css->parent); 8855 8856 if (parent) 8857 sched_online_group(tg, parent); 8858 8859 #ifdef CONFIG_UCLAMP_TASK_GROUP 8860 /* Propagate the effective uclamp value for the new group */ 8861 guard(mutex)(&uclamp_mutex); 8862 guard(rcu)(); 8863 cpu_util_update_eff(css); 8864 #endif 8865 8866 return 0; 8867 } 8868 8869 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8870 { 8871 struct task_group *tg = css_tg(css); 8872 8873 sched_release_group(tg); 8874 } 8875 8876 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8877 { 8878 struct task_group *tg = css_tg(css); 8879 8880 /* 8881 * Relies on the RCU grace period between css_released() and this. 8882 */ 8883 sched_unregister_group(tg); 8884 } 8885 8886 #ifdef CONFIG_RT_GROUP_SCHED 8887 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8888 { 8889 struct task_struct *task; 8890 struct cgroup_subsys_state *css; 8891 8892 cgroup_taskset_for_each(task, css, tset) { 8893 if (!sched_rt_can_attach(css_tg(css), task)) 8894 return -EINVAL; 8895 } 8896 return 0; 8897 } 8898 #endif 8899 8900 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8901 { 8902 struct task_struct *task; 8903 struct cgroup_subsys_state *css; 8904 8905 cgroup_taskset_for_each(task, css, tset) 8906 sched_move_task(task); 8907 } 8908 8909 #ifdef CONFIG_UCLAMP_TASK_GROUP 8910 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 8911 { 8912 struct cgroup_subsys_state *top_css = css; 8913 struct uclamp_se *uc_parent = NULL; 8914 struct uclamp_se *uc_se = NULL; 8915 unsigned int eff[UCLAMP_CNT]; 8916 enum uclamp_id clamp_id; 8917 unsigned int clamps; 8918 8919 lockdep_assert_held(&uclamp_mutex); 8920 SCHED_WARN_ON(!rcu_read_lock_held()); 8921 8922 css_for_each_descendant_pre(css, top_css) { 8923 uc_parent = css_tg(css)->parent 8924 ? css_tg(css)->parent->uclamp : NULL; 8925 8926 for_each_clamp_id(clamp_id) { 8927 /* Assume effective clamps matches requested clamps */ 8928 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 8929 /* Cap effective clamps with parent's effective clamps */ 8930 if (uc_parent && 8931 eff[clamp_id] > uc_parent[clamp_id].value) { 8932 eff[clamp_id] = uc_parent[clamp_id].value; 8933 } 8934 } 8935 /* Ensure protection is always capped by limit */ 8936 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 8937 8938 /* Propagate most restrictive effective clamps */ 8939 clamps = 0x0; 8940 uc_se = css_tg(css)->uclamp; 8941 for_each_clamp_id(clamp_id) { 8942 if (eff[clamp_id] == uc_se[clamp_id].value) 8943 continue; 8944 uc_se[clamp_id].value = eff[clamp_id]; 8945 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 8946 clamps |= (0x1 << clamp_id); 8947 } 8948 if (!clamps) { 8949 css = css_rightmost_descendant(css); 8950 continue; 8951 } 8952 8953 /* Immediately update descendants RUNNABLE tasks */ 8954 uclamp_update_active_tasks(css); 8955 } 8956 } 8957 8958 /* 8959 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 8960 * C expression. Since there is no way to convert a macro argument (N) into a 8961 * character constant, use two levels of macros. 8962 */ 8963 #define _POW10(exp) ((unsigned int)1e##exp) 8964 #define POW10(exp) _POW10(exp) 8965 8966 struct uclamp_request { 8967 #define UCLAMP_PERCENT_SHIFT 2 8968 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 8969 s64 percent; 8970 u64 util; 8971 int ret; 8972 }; 8973 8974 static inline struct uclamp_request 8975 capacity_from_percent(char *buf) 8976 { 8977 struct uclamp_request req = { 8978 .percent = UCLAMP_PERCENT_SCALE, 8979 .util = SCHED_CAPACITY_SCALE, 8980 .ret = 0, 8981 }; 8982 8983 buf = strim(buf); 8984 if (strcmp(buf, "max")) { 8985 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 8986 &req.percent); 8987 if (req.ret) 8988 return req; 8989 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 8990 req.ret = -ERANGE; 8991 return req; 8992 } 8993 8994 req.util = req.percent << SCHED_CAPACITY_SHIFT; 8995 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 8996 } 8997 8998 return req; 8999 } 9000 9001 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9002 size_t nbytes, loff_t off, 9003 enum uclamp_id clamp_id) 9004 { 9005 struct uclamp_request req; 9006 struct task_group *tg; 9007 9008 req = capacity_from_percent(buf); 9009 if (req.ret) 9010 return req.ret; 9011 9012 static_branch_enable(&sched_uclamp_used); 9013 9014 guard(mutex)(&uclamp_mutex); 9015 guard(rcu)(); 9016 9017 tg = css_tg(of_css(of)); 9018 if (tg->uclamp_req[clamp_id].value != req.util) 9019 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9020 9021 /* 9022 * Because of not recoverable conversion rounding we keep track of the 9023 * exact requested value 9024 */ 9025 tg->uclamp_pct[clamp_id] = req.percent; 9026 9027 /* Update effective clamps to track the most restrictive value */ 9028 cpu_util_update_eff(of_css(of)); 9029 9030 return nbytes; 9031 } 9032 9033 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9034 char *buf, size_t nbytes, 9035 loff_t off) 9036 { 9037 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9038 } 9039 9040 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9041 char *buf, size_t nbytes, 9042 loff_t off) 9043 { 9044 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9045 } 9046 9047 static inline void cpu_uclamp_print(struct seq_file *sf, 9048 enum uclamp_id clamp_id) 9049 { 9050 struct task_group *tg; 9051 u64 util_clamp; 9052 u64 percent; 9053 u32 rem; 9054 9055 scoped_guard (rcu) { 9056 tg = css_tg(seq_css(sf)); 9057 util_clamp = tg->uclamp_req[clamp_id].value; 9058 } 9059 9060 if (util_clamp == SCHED_CAPACITY_SCALE) { 9061 seq_puts(sf, "max\n"); 9062 return; 9063 } 9064 9065 percent = tg->uclamp_pct[clamp_id]; 9066 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9067 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9068 } 9069 9070 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9071 { 9072 cpu_uclamp_print(sf, UCLAMP_MIN); 9073 return 0; 9074 } 9075 9076 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9077 { 9078 cpu_uclamp_print(sf, UCLAMP_MAX); 9079 return 0; 9080 } 9081 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9082 9083 #ifdef CONFIG_FAIR_GROUP_SCHED 9084 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9085 struct cftype *cftype, u64 shareval) 9086 { 9087 if (shareval > scale_load_down(ULONG_MAX)) 9088 shareval = MAX_SHARES; 9089 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 9090 } 9091 9092 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9093 struct cftype *cft) 9094 { 9095 struct task_group *tg = css_tg(css); 9096 9097 return (u64) scale_load_down(tg->shares); 9098 } 9099 9100 #ifdef CONFIG_CFS_BANDWIDTH 9101 static DEFINE_MUTEX(cfs_constraints_mutex); 9102 9103 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9104 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9105 /* More than 203 days if BW_SHIFT equals 20. */ 9106 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9107 9108 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9109 9110 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9111 u64 burst) 9112 { 9113 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9114 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9115 9116 if (tg == &root_task_group) 9117 return -EINVAL; 9118 9119 /* 9120 * Ensure we have at some amount of bandwidth every period. This is 9121 * to prevent reaching a state of large arrears when throttled via 9122 * entity_tick() resulting in prolonged exit starvation. 9123 */ 9124 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9125 return -EINVAL; 9126 9127 /* 9128 * Likewise, bound things on the other side by preventing insane quota 9129 * periods. This also allows us to normalize in computing quota 9130 * feasibility. 9131 */ 9132 if (period > max_cfs_quota_period) 9133 return -EINVAL; 9134 9135 /* 9136 * Bound quota to defend quota against overflow during bandwidth shift. 9137 */ 9138 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9139 return -EINVAL; 9140 9141 if (quota != RUNTIME_INF && (burst > quota || 9142 burst + quota > max_cfs_runtime)) 9143 return -EINVAL; 9144 9145 /* 9146 * Prevent race between setting of cfs_rq->runtime_enabled and 9147 * unthrottle_offline_cfs_rqs(). 9148 */ 9149 guard(cpus_read_lock)(); 9150 guard(mutex)(&cfs_constraints_mutex); 9151 9152 ret = __cfs_schedulable(tg, period, quota); 9153 if (ret) 9154 return ret; 9155 9156 runtime_enabled = quota != RUNTIME_INF; 9157 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9158 /* 9159 * If we need to toggle cfs_bandwidth_used, off->on must occur 9160 * before making related changes, and on->off must occur afterwards 9161 */ 9162 if (runtime_enabled && !runtime_was_enabled) 9163 cfs_bandwidth_usage_inc(); 9164 9165 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9166 cfs_b->period = ns_to_ktime(period); 9167 cfs_b->quota = quota; 9168 cfs_b->burst = burst; 9169 9170 __refill_cfs_bandwidth_runtime(cfs_b); 9171 9172 /* 9173 * Restart the period timer (if active) to handle new 9174 * period expiry: 9175 */ 9176 if (runtime_enabled) 9177 start_cfs_bandwidth(cfs_b); 9178 } 9179 9180 for_each_online_cpu(i) { 9181 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9182 struct rq *rq = cfs_rq->rq; 9183 9184 guard(rq_lock_irq)(rq); 9185 cfs_rq->runtime_enabled = runtime_enabled; 9186 cfs_rq->runtime_remaining = 0; 9187 9188 if (cfs_rq->throttled) 9189 unthrottle_cfs_rq(cfs_rq); 9190 } 9191 9192 if (runtime_was_enabled && !runtime_enabled) 9193 cfs_bandwidth_usage_dec(); 9194 9195 return 0; 9196 } 9197 9198 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9199 { 9200 u64 quota, period, burst; 9201 9202 period = ktime_to_ns(tg->cfs_bandwidth.period); 9203 burst = tg->cfs_bandwidth.burst; 9204 if (cfs_quota_us < 0) 9205 quota = RUNTIME_INF; 9206 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9207 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9208 else 9209 return -EINVAL; 9210 9211 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9212 } 9213 9214 static long tg_get_cfs_quota(struct task_group *tg) 9215 { 9216 u64 quota_us; 9217 9218 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9219 return -1; 9220 9221 quota_us = tg->cfs_bandwidth.quota; 9222 do_div(quota_us, NSEC_PER_USEC); 9223 9224 return quota_us; 9225 } 9226 9227 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9228 { 9229 u64 quota, period, burst; 9230 9231 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9232 return -EINVAL; 9233 9234 period = (u64)cfs_period_us * NSEC_PER_USEC; 9235 quota = tg->cfs_bandwidth.quota; 9236 burst = tg->cfs_bandwidth.burst; 9237 9238 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9239 } 9240 9241 static long tg_get_cfs_period(struct task_group *tg) 9242 { 9243 u64 cfs_period_us; 9244 9245 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9246 do_div(cfs_period_us, NSEC_PER_USEC); 9247 9248 return cfs_period_us; 9249 } 9250 9251 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9252 { 9253 u64 quota, period, burst; 9254 9255 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9256 return -EINVAL; 9257 9258 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9259 period = ktime_to_ns(tg->cfs_bandwidth.period); 9260 quota = tg->cfs_bandwidth.quota; 9261 9262 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9263 } 9264 9265 static long tg_get_cfs_burst(struct task_group *tg) 9266 { 9267 u64 burst_us; 9268 9269 burst_us = tg->cfs_bandwidth.burst; 9270 do_div(burst_us, NSEC_PER_USEC); 9271 9272 return burst_us; 9273 } 9274 9275 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9276 struct cftype *cft) 9277 { 9278 return tg_get_cfs_quota(css_tg(css)); 9279 } 9280 9281 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9282 struct cftype *cftype, s64 cfs_quota_us) 9283 { 9284 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9285 } 9286 9287 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9288 struct cftype *cft) 9289 { 9290 return tg_get_cfs_period(css_tg(css)); 9291 } 9292 9293 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9294 struct cftype *cftype, u64 cfs_period_us) 9295 { 9296 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9297 } 9298 9299 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9300 struct cftype *cft) 9301 { 9302 return tg_get_cfs_burst(css_tg(css)); 9303 } 9304 9305 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9306 struct cftype *cftype, u64 cfs_burst_us) 9307 { 9308 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9309 } 9310 9311 struct cfs_schedulable_data { 9312 struct task_group *tg; 9313 u64 period, quota; 9314 }; 9315 9316 /* 9317 * normalize group quota/period to be quota/max_period 9318 * note: units are usecs 9319 */ 9320 static u64 normalize_cfs_quota(struct task_group *tg, 9321 struct cfs_schedulable_data *d) 9322 { 9323 u64 quota, period; 9324 9325 if (tg == d->tg) { 9326 period = d->period; 9327 quota = d->quota; 9328 } else { 9329 period = tg_get_cfs_period(tg); 9330 quota = tg_get_cfs_quota(tg); 9331 } 9332 9333 /* note: these should typically be equivalent */ 9334 if (quota == RUNTIME_INF || quota == -1) 9335 return RUNTIME_INF; 9336 9337 return to_ratio(period, quota); 9338 } 9339 9340 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9341 { 9342 struct cfs_schedulable_data *d = data; 9343 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9344 s64 quota = 0, parent_quota = -1; 9345 9346 if (!tg->parent) { 9347 quota = RUNTIME_INF; 9348 } else { 9349 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9350 9351 quota = normalize_cfs_quota(tg, d); 9352 parent_quota = parent_b->hierarchical_quota; 9353 9354 /* 9355 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9356 * always take the non-RUNTIME_INF min. On cgroup1, only 9357 * inherit when no limit is set. In both cases this is used 9358 * by the scheduler to determine if a given CFS task has a 9359 * bandwidth constraint at some higher level. 9360 */ 9361 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9362 if (quota == RUNTIME_INF) 9363 quota = parent_quota; 9364 else if (parent_quota != RUNTIME_INF) 9365 quota = min(quota, parent_quota); 9366 } else { 9367 if (quota == RUNTIME_INF) 9368 quota = parent_quota; 9369 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9370 return -EINVAL; 9371 } 9372 } 9373 cfs_b->hierarchical_quota = quota; 9374 9375 return 0; 9376 } 9377 9378 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9379 { 9380 struct cfs_schedulable_data data = { 9381 .tg = tg, 9382 .period = period, 9383 .quota = quota, 9384 }; 9385 9386 if (quota != RUNTIME_INF) { 9387 do_div(data.period, NSEC_PER_USEC); 9388 do_div(data.quota, NSEC_PER_USEC); 9389 } 9390 9391 guard(rcu)(); 9392 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9393 } 9394 9395 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9396 { 9397 struct task_group *tg = css_tg(seq_css(sf)); 9398 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9399 9400 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9401 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9402 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9403 9404 if (schedstat_enabled() && tg != &root_task_group) { 9405 struct sched_statistics *stats; 9406 u64 ws = 0; 9407 int i; 9408 9409 for_each_possible_cpu(i) { 9410 stats = __schedstats_from_se(tg->se[i]); 9411 ws += schedstat_val(stats->wait_sum); 9412 } 9413 9414 seq_printf(sf, "wait_sum %llu\n", ws); 9415 } 9416 9417 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9418 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9419 9420 return 0; 9421 } 9422 9423 static u64 throttled_time_self(struct task_group *tg) 9424 { 9425 int i; 9426 u64 total = 0; 9427 9428 for_each_possible_cpu(i) { 9429 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9430 } 9431 9432 return total; 9433 } 9434 9435 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9436 { 9437 struct task_group *tg = css_tg(seq_css(sf)); 9438 9439 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9440 9441 return 0; 9442 } 9443 #endif /* CONFIG_CFS_BANDWIDTH */ 9444 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9445 9446 #ifdef CONFIG_RT_GROUP_SCHED 9447 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9448 struct cftype *cft, s64 val) 9449 { 9450 return sched_group_set_rt_runtime(css_tg(css), val); 9451 } 9452 9453 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9454 struct cftype *cft) 9455 { 9456 return sched_group_rt_runtime(css_tg(css)); 9457 } 9458 9459 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9460 struct cftype *cftype, u64 rt_period_us) 9461 { 9462 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9463 } 9464 9465 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9466 struct cftype *cft) 9467 { 9468 return sched_group_rt_period(css_tg(css)); 9469 } 9470 #endif /* CONFIG_RT_GROUP_SCHED */ 9471 9472 #ifdef CONFIG_FAIR_GROUP_SCHED 9473 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9474 struct cftype *cft) 9475 { 9476 return css_tg(css)->idle; 9477 } 9478 9479 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9480 struct cftype *cft, s64 idle) 9481 { 9482 return sched_group_set_idle(css_tg(css), idle); 9483 } 9484 #endif 9485 9486 static struct cftype cpu_legacy_files[] = { 9487 #ifdef CONFIG_FAIR_GROUP_SCHED 9488 { 9489 .name = "shares", 9490 .read_u64 = cpu_shares_read_u64, 9491 .write_u64 = cpu_shares_write_u64, 9492 }, 9493 { 9494 .name = "idle", 9495 .read_s64 = cpu_idle_read_s64, 9496 .write_s64 = cpu_idle_write_s64, 9497 }, 9498 #endif 9499 #ifdef CONFIG_CFS_BANDWIDTH 9500 { 9501 .name = "cfs_quota_us", 9502 .read_s64 = cpu_cfs_quota_read_s64, 9503 .write_s64 = cpu_cfs_quota_write_s64, 9504 }, 9505 { 9506 .name = "cfs_period_us", 9507 .read_u64 = cpu_cfs_period_read_u64, 9508 .write_u64 = cpu_cfs_period_write_u64, 9509 }, 9510 { 9511 .name = "cfs_burst_us", 9512 .read_u64 = cpu_cfs_burst_read_u64, 9513 .write_u64 = cpu_cfs_burst_write_u64, 9514 }, 9515 { 9516 .name = "stat", 9517 .seq_show = cpu_cfs_stat_show, 9518 }, 9519 { 9520 .name = "stat.local", 9521 .seq_show = cpu_cfs_local_stat_show, 9522 }, 9523 #endif 9524 #ifdef CONFIG_RT_GROUP_SCHED 9525 { 9526 .name = "rt_runtime_us", 9527 .read_s64 = cpu_rt_runtime_read, 9528 .write_s64 = cpu_rt_runtime_write, 9529 }, 9530 { 9531 .name = "rt_period_us", 9532 .read_u64 = cpu_rt_period_read_uint, 9533 .write_u64 = cpu_rt_period_write_uint, 9534 }, 9535 #endif 9536 #ifdef CONFIG_UCLAMP_TASK_GROUP 9537 { 9538 .name = "uclamp.min", 9539 .flags = CFTYPE_NOT_ON_ROOT, 9540 .seq_show = cpu_uclamp_min_show, 9541 .write = cpu_uclamp_min_write, 9542 }, 9543 { 9544 .name = "uclamp.max", 9545 .flags = CFTYPE_NOT_ON_ROOT, 9546 .seq_show = cpu_uclamp_max_show, 9547 .write = cpu_uclamp_max_write, 9548 }, 9549 #endif 9550 { } /* Terminate */ 9551 }; 9552 9553 static int cpu_extra_stat_show(struct seq_file *sf, 9554 struct cgroup_subsys_state *css) 9555 { 9556 #ifdef CONFIG_CFS_BANDWIDTH 9557 { 9558 struct task_group *tg = css_tg(css); 9559 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9560 u64 throttled_usec, burst_usec; 9561 9562 throttled_usec = cfs_b->throttled_time; 9563 do_div(throttled_usec, NSEC_PER_USEC); 9564 burst_usec = cfs_b->burst_time; 9565 do_div(burst_usec, NSEC_PER_USEC); 9566 9567 seq_printf(sf, "nr_periods %d\n" 9568 "nr_throttled %d\n" 9569 "throttled_usec %llu\n" 9570 "nr_bursts %d\n" 9571 "burst_usec %llu\n", 9572 cfs_b->nr_periods, cfs_b->nr_throttled, 9573 throttled_usec, cfs_b->nr_burst, burst_usec); 9574 } 9575 #endif 9576 return 0; 9577 } 9578 9579 static int cpu_local_stat_show(struct seq_file *sf, 9580 struct cgroup_subsys_state *css) 9581 { 9582 #ifdef CONFIG_CFS_BANDWIDTH 9583 { 9584 struct task_group *tg = css_tg(css); 9585 u64 throttled_self_usec; 9586 9587 throttled_self_usec = throttled_time_self(tg); 9588 do_div(throttled_self_usec, NSEC_PER_USEC); 9589 9590 seq_printf(sf, "throttled_usec %llu\n", 9591 throttled_self_usec); 9592 } 9593 #endif 9594 return 0; 9595 } 9596 9597 #ifdef CONFIG_FAIR_GROUP_SCHED 9598 9599 static unsigned long tg_weight(struct task_group *tg) 9600 { 9601 return scale_load_down(tg->shares); 9602 } 9603 9604 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9605 struct cftype *cft) 9606 { 9607 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9608 } 9609 9610 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9611 struct cftype *cft, u64 cgrp_weight) 9612 { 9613 unsigned long weight; 9614 9615 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9616 return -ERANGE; 9617 9618 weight = sched_weight_from_cgroup(cgrp_weight); 9619 9620 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9621 } 9622 9623 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9624 struct cftype *cft) 9625 { 9626 unsigned long weight = tg_weight(css_tg(css)); 9627 int last_delta = INT_MAX; 9628 int prio, delta; 9629 9630 /* find the closest nice value to the current weight */ 9631 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9632 delta = abs(sched_prio_to_weight[prio] - weight); 9633 if (delta >= last_delta) 9634 break; 9635 last_delta = delta; 9636 } 9637 9638 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9639 } 9640 9641 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9642 struct cftype *cft, s64 nice) 9643 { 9644 unsigned long weight; 9645 int idx; 9646 9647 if (nice < MIN_NICE || nice > MAX_NICE) 9648 return -ERANGE; 9649 9650 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9651 idx = array_index_nospec(idx, 40); 9652 weight = sched_prio_to_weight[idx]; 9653 9654 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9655 } 9656 #endif 9657 9658 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9659 long period, long quota) 9660 { 9661 if (quota < 0) 9662 seq_puts(sf, "max"); 9663 else 9664 seq_printf(sf, "%ld", quota); 9665 9666 seq_printf(sf, " %ld\n", period); 9667 } 9668 9669 /* caller should put the current value in *@periodp before calling */ 9670 static int __maybe_unused cpu_period_quota_parse(char *buf, 9671 u64 *periodp, u64 *quotap) 9672 { 9673 char tok[21]; /* U64_MAX */ 9674 9675 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9676 return -EINVAL; 9677 9678 *periodp *= NSEC_PER_USEC; 9679 9680 if (sscanf(tok, "%llu", quotap)) 9681 *quotap *= NSEC_PER_USEC; 9682 else if (!strcmp(tok, "max")) 9683 *quotap = RUNTIME_INF; 9684 else 9685 return -EINVAL; 9686 9687 return 0; 9688 } 9689 9690 #ifdef CONFIG_CFS_BANDWIDTH 9691 static int cpu_max_show(struct seq_file *sf, void *v) 9692 { 9693 struct task_group *tg = css_tg(seq_css(sf)); 9694 9695 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9696 return 0; 9697 } 9698 9699 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9700 char *buf, size_t nbytes, loff_t off) 9701 { 9702 struct task_group *tg = css_tg(of_css(of)); 9703 u64 period = tg_get_cfs_period(tg); 9704 u64 burst = tg->cfs_bandwidth.burst; 9705 u64 quota; 9706 int ret; 9707 9708 ret = cpu_period_quota_parse(buf, &period, "a); 9709 if (!ret) 9710 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 9711 return ret ?: nbytes; 9712 } 9713 #endif 9714 9715 static struct cftype cpu_files[] = { 9716 #ifdef CONFIG_FAIR_GROUP_SCHED 9717 { 9718 .name = "weight", 9719 .flags = CFTYPE_NOT_ON_ROOT, 9720 .read_u64 = cpu_weight_read_u64, 9721 .write_u64 = cpu_weight_write_u64, 9722 }, 9723 { 9724 .name = "weight.nice", 9725 .flags = CFTYPE_NOT_ON_ROOT, 9726 .read_s64 = cpu_weight_nice_read_s64, 9727 .write_s64 = cpu_weight_nice_write_s64, 9728 }, 9729 { 9730 .name = "idle", 9731 .flags = CFTYPE_NOT_ON_ROOT, 9732 .read_s64 = cpu_idle_read_s64, 9733 .write_s64 = cpu_idle_write_s64, 9734 }, 9735 #endif 9736 #ifdef CONFIG_CFS_BANDWIDTH 9737 { 9738 .name = "max", 9739 .flags = CFTYPE_NOT_ON_ROOT, 9740 .seq_show = cpu_max_show, 9741 .write = cpu_max_write, 9742 }, 9743 { 9744 .name = "max.burst", 9745 .flags = CFTYPE_NOT_ON_ROOT, 9746 .read_u64 = cpu_cfs_burst_read_u64, 9747 .write_u64 = cpu_cfs_burst_write_u64, 9748 }, 9749 #endif 9750 #ifdef CONFIG_UCLAMP_TASK_GROUP 9751 { 9752 .name = "uclamp.min", 9753 .flags = CFTYPE_NOT_ON_ROOT, 9754 .seq_show = cpu_uclamp_min_show, 9755 .write = cpu_uclamp_min_write, 9756 }, 9757 { 9758 .name = "uclamp.max", 9759 .flags = CFTYPE_NOT_ON_ROOT, 9760 .seq_show = cpu_uclamp_max_show, 9761 .write = cpu_uclamp_max_write, 9762 }, 9763 #endif 9764 { } /* terminate */ 9765 }; 9766 9767 struct cgroup_subsys cpu_cgrp_subsys = { 9768 .css_alloc = cpu_cgroup_css_alloc, 9769 .css_online = cpu_cgroup_css_online, 9770 .css_released = cpu_cgroup_css_released, 9771 .css_free = cpu_cgroup_css_free, 9772 .css_extra_stat_show = cpu_extra_stat_show, 9773 .css_local_stat_show = cpu_local_stat_show, 9774 #ifdef CONFIG_RT_GROUP_SCHED 9775 .can_attach = cpu_cgroup_can_attach, 9776 #endif 9777 .attach = cpu_cgroup_attach, 9778 .legacy_cftypes = cpu_legacy_files, 9779 .dfl_cftypes = cpu_files, 9780 .early_init = true, 9781 .threaded = true, 9782 }; 9783 9784 #endif /* CONFIG_CGROUP_SCHED */ 9785 9786 void dump_cpu_task(int cpu) 9787 { 9788 if (cpu == smp_processor_id() && in_hardirq()) { 9789 struct pt_regs *regs; 9790 9791 regs = get_irq_regs(); 9792 if (regs) { 9793 show_regs(regs); 9794 return; 9795 } 9796 } 9797 9798 if (trigger_single_cpu_backtrace(cpu)) 9799 return; 9800 9801 pr_info("Task dump for CPU %d:\n", cpu); 9802 sched_show_task(cpu_curr(cpu)); 9803 } 9804 9805 /* 9806 * Nice levels are multiplicative, with a gentle 10% change for every 9807 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9808 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9809 * that remained on nice 0. 9810 * 9811 * The "10% effect" is relative and cumulative: from _any_ nice level, 9812 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9813 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9814 * If a task goes up by ~10% and another task goes down by ~10% then 9815 * the relative distance between them is ~25%.) 9816 */ 9817 const int sched_prio_to_weight[40] = { 9818 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9819 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9820 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9821 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9822 /* 0 */ 1024, 820, 655, 526, 423, 9823 /* 5 */ 335, 272, 215, 172, 137, 9824 /* 10 */ 110, 87, 70, 56, 45, 9825 /* 15 */ 36, 29, 23, 18, 15, 9826 }; 9827 9828 /* 9829 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 9830 * 9831 * In cases where the weight does not change often, we can use the 9832 * pre-calculated inverse to speed up arithmetics by turning divisions 9833 * into multiplications: 9834 */ 9835 const u32 sched_prio_to_wmult[40] = { 9836 /* -20 */ 48388, 59856, 76040, 92818, 118348, 9837 /* -15 */ 147320, 184698, 229616, 287308, 360437, 9838 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 9839 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 9840 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 9841 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 9842 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 9843 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 9844 }; 9845 9846 void call_trace_sched_update_nr_running(struct rq *rq, int count) 9847 { 9848 trace_sched_update_nr_running_tp(rq, count); 9849 } 9850 9851 #ifdef CONFIG_SCHED_MM_CID 9852 9853 /* 9854 * @cid_lock: Guarantee forward-progress of cid allocation. 9855 * 9856 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 9857 * is only used when contention is detected by the lock-free allocation so 9858 * forward progress can be guaranteed. 9859 */ 9860 DEFINE_RAW_SPINLOCK(cid_lock); 9861 9862 /* 9863 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 9864 * 9865 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 9866 * detected, it is set to 1 to ensure that all newly coming allocations are 9867 * serialized by @cid_lock until the allocation which detected contention 9868 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 9869 * of a cid allocation. 9870 */ 9871 int use_cid_lock; 9872 9873 /* 9874 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 9875 * concurrently with respect to the execution of the source runqueue context 9876 * switch. 9877 * 9878 * There is one basic properties we want to guarantee here: 9879 * 9880 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 9881 * used by a task. That would lead to concurrent allocation of the cid and 9882 * userspace corruption. 9883 * 9884 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 9885 * that a pair of loads observe at least one of a pair of stores, which can be 9886 * shown as: 9887 * 9888 * X = Y = 0 9889 * 9890 * w[X]=1 w[Y]=1 9891 * MB MB 9892 * r[Y]=y r[X]=x 9893 * 9894 * Which guarantees that x==0 && y==0 is impossible. But rather than using 9895 * values 0 and 1, this algorithm cares about specific state transitions of the 9896 * runqueue current task (as updated by the scheduler context switch), and the 9897 * per-mm/cpu cid value. 9898 * 9899 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 9900 * task->mm != mm for the rest of the discussion. There are two scheduler state 9901 * transitions on context switch we care about: 9902 * 9903 * (TSA) Store to rq->curr with transition from (N) to (Y) 9904 * 9905 * (TSB) Store to rq->curr with transition from (Y) to (N) 9906 * 9907 * On the remote-clear side, there is one transition we care about: 9908 * 9909 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 9910 * 9911 * There is also a transition to UNSET state which can be performed from all 9912 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 9913 * guarantees that only a single thread will succeed: 9914 * 9915 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 9916 * 9917 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 9918 * when a thread is actively using the cid (property (1)). 9919 * 9920 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 9921 * 9922 * Scenario A) (TSA)+(TMA) (from next task perspective) 9923 * 9924 * CPU0 CPU1 9925 * 9926 * Context switch CS-1 Remote-clear 9927 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 9928 * (implied barrier after cmpxchg) 9929 * - switch_mm_cid() 9930 * - memory barrier (see switch_mm_cid() 9931 * comment explaining how this barrier 9932 * is combined with other scheduler 9933 * barriers) 9934 * - mm_cid_get (next) 9935 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 9936 * 9937 * This Dekker ensures that either task (Y) is observed by the 9938 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 9939 * observed. 9940 * 9941 * If task (Y) store is observed by rcu_dereference(), it means that there is 9942 * still an active task on the cpu. Remote-clear will therefore not transition 9943 * to UNSET, which fulfills property (1). 9944 * 9945 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 9946 * it will move its state to UNSET, which clears the percpu cid perhaps 9947 * uselessly (which is not an issue for correctness). Because task (Y) is not 9948 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 9949 * state to UNSET is done with a cmpxchg expecting that the old state has the 9950 * LAZY flag set, only one thread will successfully UNSET. 9951 * 9952 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 9953 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 9954 * CPU1 will observe task (Y) and do nothing more, which is fine. 9955 * 9956 * What we are effectively preventing with this Dekker is a scenario where 9957 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 9958 * because this would UNSET a cid which is actively used. 9959 */ 9960 9961 void sched_mm_cid_migrate_from(struct task_struct *t) 9962 { 9963 t->migrate_from_cpu = task_cpu(t); 9964 } 9965 9966 static 9967 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 9968 struct task_struct *t, 9969 struct mm_cid *src_pcpu_cid) 9970 { 9971 struct mm_struct *mm = t->mm; 9972 struct task_struct *src_task; 9973 int src_cid, last_mm_cid; 9974 9975 if (!mm) 9976 return -1; 9977 9978 last_mm_cid = t->last_mm_cid; 9979 /* 9980 * If the migrated task has no last cid, or if the current 9981 * task on src rq uses the cid, it means the source cid does not need 9982 * to be moved to the destination cpu. 9983 */ 9984 if (last_mm_cid == -1) 9985 return -1; 9986 src_cid = READ_ONCE(src_pcpu_cid->cid); 9987 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 9988 return -1; 9989 9990 /* 9991 * If we observe an active task using the mm on this rq, it means we 9992 * are not the last task to be migrated from this cpu for this mm, so 9993 * there is no need to move src_cid to the destination cpu. 9994 */ 9995 guard(rcu)(); 9996 src_task = rcu_dereference(src_rq->curr); 9997 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 9998 t->last_mm_cid = -1; 9999 return -1; 10000 } 10001 10002 return src_cid; 10003 } 10004 10005 static 10006 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10007 struct task_struct *t, 10008 struct mm_cid *src_pcpu_cid, 10009 int src_cid) 10010 { 10011 struct task_struct *src_task; 10012 struct mm_struct *mm = t->mm; 10013 int lazy_cid; 10014 10015 if (src_cid == -1) 10016 return -1; 10017 10018 /* 10019 * Attempt to clear the source cpu cid to move it to the destination 10020 * cpu. 10021 */ 10022 lazy_cid = mm_cid_set_lazy_put(src_cid); 10023 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10024 return -1; 10025 10026 /* 10027 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10028 * rq->curr->mm matches the scheduler barrier in context_switch() 10029 * between store to rq->curr and load of prev and next task's 10030 * per-mm/cpu cid. 10031 * 10032 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10033 * rq->curr->mm_cid_active matches the barrier in 10034 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10035 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10036 * load of per-mm/cpu cid. 10037 */ 10038 10039 /* 10040 * If we observe an active task using the mm on this rq after setting 10041 * the lazy-put flag, this task will be responsible for transitioning 10042 * from lazy-put flag set to MM_CID_UNSET. 10043 */ 10044 scoped_guard (rcu) { 10045 src_task = rcu_dereference(src_rq->curr); 10046 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10047 /* 10048 * We observed an active task for this mm, there is therefore 10049 * no point in moving this cid to the destination cpu. 10050 */ 10051 t->last_mm_cid = -1; 10052 return -1; 10053 } 10054 } 10055 10056 /* 10057 * The src_cid is unused, so it can be unset. 10058 */ 10059 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10060 return -1; 10061 return src_cid; 10062 } 10063 10064 /* 10065 * Migration to dst cpu. Called with dst_rq lock held. 10066 * Interrupts are disabled, which keeps the window of cid ownership without the 10067 * source rq lock held small. 10068 */ 10069 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10070 { 10071 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10072 struct mm_struct *mm = t->mm; 10073 int src_cid, dst_cid, src_cpu; 10074 struct rq *src_rq; 10075 10076 lockdep_assert_rq_held(dst_rq); 10077 10078 if (!mm) 10079 return; 10080 src_cpu = t->migrate_from_cpu; 10081 if (src_cpu == -1) { 10082 t->last_mm_cid = -1; 10083 return; 10084 } 10085 /* 10086 * Move the src cid if the dst cid is unset. This keeps id 10087 * allocation closest to 0 in cases where few threads migrate around 10088 * many CPUs. 10089 * 10090 * If destination cid is already set, we may have to just clear 10091 * the src cid to ensure compactness in frequent migrations 10092 * scenarios. 10093 * 10094 * It is not useful to clear the src cid when the number of threads is 10095 * greater or equal to the number of allowed CPUs, because user-space 10096 * can expect that the number of allowed cids can reach the number of 10097 * allowed CPUs. 10098 */ 10099 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10100 dst_cid = READ_ONCE(dst_pcpu_cid->cid); 10101 if (!mm_cid_is_unset(dst_cid) && 10102 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) 10103 return; 10104 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10105 src_rq = cpu_rq(src_cpu); 10106 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10107 if (src_cid == -1) 10108 return; 10109 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10110 src_cid); 10111 if (src_cid == -1) 10112 return; 10113 if (!mm_cid_is_unset(dst_cid)) { 10114 __mm_cid_put(mm, src_cid); 10115 return; 10116 } 10117 /* Move src_cid to dst cpu. */ 10118 mm_cid_snapshot_time(dst_rq, mm); 10119 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10120 } 10121 10122 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10123 int cpu) 10124 { 10125 struct rq *rq = cpu_rq(cpu); 10126 struct task_struct *t; 10127 int cid, lazy_cid; 10128 10129 cid = READ_ONCE(pcpu_cid->cid); 10130 if (!mm_cid_is_valid(cid)) 10131 return; 10132 10133 /* 10134 * Clear the cpu cid if it is set to keep cid allocation compact. If 10135 * there happens to be other tasks left on the source cpu using this 10136 * mm, the next task using this mm will reallocate its cid on context 10137 * switch. 10138 */ 10139 lazy_cid = mm_cid_set_lazy_put(cid); 10140 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10141 return; 10142 10143 /* 10144 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10145 * rq->curr->mm matches the scheduler barrier in context_switch() 10146 * between store to rq->curr and load of prev and next task's 10147 * per-mm/cpu cid. 10148 * 10149 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10150 * rq->curr->mm_cid_active matches the barrier in 10151 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10152 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10153 * load of per-mm/cpu cid. 10154 */ 10155 10156 /* 10157 * If we observe an active task using the mm on this rq after setting 10158 * the lazy-put flag, that task will be responsible for transitioning 10159 * from lazy-put flag set to MM_CID_UNSET. 10160 */ 10161 scoped_guard (rcu) { 10162 t = rcu_dereference(rq->curr); 10163 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10164 return; 10165 } 10166 10167 /* 10168 * The cid is unused, so it can be unset. 10169 * Disable interrupts to keep the window of cid ownership without rq 10170 * lock small. 10171 */ 10172 scoped_guard (irqsave) { 10173 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10174 __mm_cid_put(mm, cid); 10175 } 10176 } 10177 10178 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10179 { 10180 struct rq *rq = cpu_rq(cpu); 10181 struct mm_cid *pcpu_cid; 10182 struct task_struct *curr; 10183 u64 rq_clock; 10184 10185 /* 10186 * rq->clock load is racy on 32-bit but one spurious clear once in a 10187 * while is irrelevant. 10188 */ 10189 rq_clock = READ_ONCE(rq->clock); 10190 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10191 10192 /* 10193 * In order to take care of infrequently scheduled tasks, bump the time 10194 * snapshot associated with this cid if an active task using the mm is 10195 * observed on this rq. 10196 */ 10197 scoped_guard (rcu) { 10198 curr = rcu_dereference(rq->curr); 10199 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10200 WRITE_ONCE(pcpu_cid->time, rq_clock); 10201 return; 10202 } 10203 } 10204 10205 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10206 return; 10207 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10208 } 10209 10210 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10211 int weight) 10212 { 10213 struct mm_cid *pcpu_cid; 10214 int cid; 10215 10216 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10217 cid = READ_ONCE(pcpu_cid->cid); 10218 if (!mm_cid_is_valid(cid) || cid < weight) 10219 return; 10220 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10221 } 10222 10223 static void task_mm_cid_work(struct callback_head *work) 10224 { 10225 unsigned long now = jiffies, old_scan, next_scan; 10226 struct task_struct *t = current; 10227 struct cpumask *cidmask; 10228 struct mm_struct *mm; 10229 int weight, cpu; 10230 10231 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 10232 10233 work->next = work; /* Prevent double-add */ 10234 if (t->flags & PF_EXITING) 10235 return; 10236 mm = t->mm; 10237 if (!mm) 10238 return; 10239 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10240 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10241 if (!old_scan) { 10242 unsigned long res; 10243 10244 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10245 if (res != old_scan) 10246 old_scan = res; 10247 else 10248 old_scan = next_scan; 10249 } 10250 if (time_before(now, old_scan)) 10251 return; 10252 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10253 return; 10254 cidmask = mm_cidmask(mm); 10255 /* Clear cids that were not recently used. */ 10256 for_each_possible_cpu(cpu) 10257 sched_mm_cid_remote_clear_old(mm, cpu); 10258 weight = cpumask_weight(cidmask); 10259 /* 10260 * Clear cids that are greater or equal to the cidmask weight to 10261 * recompact it. 10262 */ 10263 for_each_possible_cpu(cpu) 10264 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10265 } 10266 10267 void init_sched_mm_cid(struct task_struct *t) 10268 { 10269 struct mm_struct *mm = t->mm; 10270 int mm_users = 0; 10271 10272 if (mm) { 10273 mm_users = atomic_read(&mm->mm_users); 10274 if (mm_users == 1) 10275 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10276 } 10277 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10278 init_task_work(&t->cid_work, task_mm_cid_work); 10279 } 10280 10281 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10282 { 10283 struct callback_head *work = &curr->cid_work; 10284 unsigned long now = jiffies; 10285 10286 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10287 work->next != work) 10288 return; 10289 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10290 return; 10291 task_work_add(curr, work, TWA_RESUME); 10292 } 10293 10294 void sched_mm_cid_exit_signals(struct task_struct *t) 10295 { 10296 struct mm_struct *mm = t->mm; 10297 struct rq *rq; 10298 10299 if (!mm) 10300 return; 10301 10302 preempt_disable(); 10303 rq = this_rq(); 10304 guard(rq_lock_irqsave)(rq); 10305 preempt_enable_no_resched(); /* holding spinlock */ 10306 WRITE_ONCE(t->mm_cid_active, 0); 10307 /* 10308 * Store t->mm_cid_active before loading per-mm/cpu cid. 10309 * Matches barrier in sched_mm_cid_remote_clear_old(). 10310 */ 10311 smp_mb(); 10312 mm_cid_put(mm); 10313 t->last_mm_cid = t->mm_cid = -1; 10314 } 10315 10316 void sched_mm_cid_before_execve(struct task_struct *t) 10317 { 10318 struct mm_struct *mm = t->mm; 10319 struct rq *rq; 10320 10321 if (!mm) 10322 return; 10323 10324 preempt_disable(); 10325 rq = this_rq(); 10326 guard(rq_lock_irqsave)(rq); 10327 preempt_enable_no_resched(); /* holding spinlock */ 10328 WRITE_ONCE(t->mm_cid_active, 0); 10329 /* 10330 * Store t->mm_cid_active before loading per-mm/cpu cid. 10331 * Matches barrier in sched_mm_cid_remote_clear_old(). 10332 */ 10333 smp_mb(); 10334 mm_cid_put(mm); 10335 t->last_mm_cid = t->mm_cid = -1; 10336 } 10337 10338 void sched_mm_cid_after_execve(struct task_struct *t) 10339 { 10340 struct mm_struct *mm = t->mm; 10341 struct rq *rq; 10342 10343 if (!mm) 10344 return; 10345 10346 preempt_disable(); 10347 rq = this_rq(); 10348 scoped_guard (rq_lock_irqsave, rq) { 10349 preempt_enable_no_resched(); /* holding spinlock */ 10350 WRITE_ONCE(t->mm_cid_active, 1); 10351 /* 10352 * Store t->mm_cid_active before loading per-mm/cpu cid. 10353 * Matches barrier in sched_mm_cid_remote_clear_old(). 10354 */ 10355 smp_mb(); 10356 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); 10357 } 10358 rseq_set_notify_resume(t); 10359 } 10360 10361 void sched_mm_cid_fork(struct task_struct *t) 10362 { 10363 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10364 t->mm_cid_active = 1; 10365 } 10366 #endif 10367 10368 #ifdef CONFIG_SCHED_CLASS_EXT 10369 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10370 struct sched_enq_and_set_ctx *ctx) 10371 { 10372 struct rq *rq = task_rq(p); 10373 10374 lockdep_assert_rq_held(rq); 10375 10376 *ctx = (struct sched_enq_and_set_ctx){ 10377 .p = p, 10378 .queue_flags = queue_flags, 10379 .queued = task_on_rq_queued(p), 10380 .running = task_current(rq, p), 10381 }; 10382 10383 update_rq_clock(rq); 10384 if (ctx->queued) 10385 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10386 if (ctx->running) 10387 put_prev_task(rq, p); 10388 } 10389 10390 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10391 { 10392 struct rq *rq = task_rq(ctx->p); 10393 10394 lockdep_assert_rq_held(rq); 10395 10396 if (ctx->queued) 10397 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10398 if (ctx->running) 10399 set_next_task(rq, ctx->p); 10400 } 10401 #endif /* CONFIG_SCHED_CLASS_EXT */ 10402