1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <uapi/linux/sched/types.h> 11 #include <linux/sched/loadavg.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/wait_bit.h> 14 #include <linux/cpuset.h> 15 #include <linux/delayacct.h> 16 #include <linux/init_task.h> 17 #include <linux/context_tracking.h> 18 #include <linux/rcupdate_wait.h> 19 20 #include <linux/blkdev.h> 21 #include <linux/kprobes.h> 22 #include <linux/mmu_context.h> 23 #include <linux/module.h> 24 #include <linux/nmi.h> 25 #include <linux/prefetch.h> 26 #include <linux/profile.h> 27 #include <linux/security.h> 28 #include <linux/syscalls.h> 29 30 #include <asm/switch_to.h> 31 #include <asm/tlb.h> 32 #ifdef CONFIG_PARAVIRT 33 #include <asm/paravirt.h> 34 #endif 35 36 #include "sched.h" 37 #include "../workqueue_internal.h" 38 #include "../smpboot.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/sched.h> 42 43 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 44 45 /* 46 * Debugging: various feature bits 47 */ 48 49 #define SCHED_FEAT(name, enabled) \ 50 (1UL << __SCHED_FEAT_##name) * enabled | 51 52 const_debug unsigned int sysctl_sched_features = 53 #include "features.h" 54 0; 55 56 #undef SCHED_FEAT 57 58 /* 59 * Number of tasks to iterate in a single balance run. 60 * Limited because this is done with IRQs disabled. 61 */ 62 const_debug unsigned int sysctl_sched_nr_migrate = 32; 63 64 /* 65 * period over which we average the RT time consumption, measured 66 * in ms. 67 * 68 * default: 1s 69 */ 70 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 71 72 /* 73 * period over which we measure -rt task CPU usage in us. 74 * default: 1s 75 */ 76 unsigned int sysctl_sched_rt_period = 1000000; 77 78 __read_mostly int scheduler_running; 79 80 /* 81 * part of the period that we allow rt tasks to run in us. 82 * default: 0.95s 83 */ 84 int sysctl_sched_rt_runtime = 950000; 85 86 /* CPUs with isolated domains */ 87 cpumask_var_t cpu_isolated_map; 88 89 /* 90 * __task_rq_lock - lock the rq @p resides on. 91 */ 92 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 93 __acquires(rq->lock) 94 { 95 struct rq *rq; 96 97 lockdep_assert_held(&p->pi_lock); 98 99 for (;;) { 100 rq = task_rq(p); 101 raw_spin_lock(&rq->lock); 102 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 103 rq_pin_lock(rq, rf); 104 return rq; 105 } 106 raw_spin_unlock(&rq->lock); 107 108 while (unlikely(task_on_rq_migrating(p))) 109 cpu_relax(); 110 } 111 } 112 113 /* 114 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 115 */ 116 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 117 __acquires(p->pi_lock) 118 __acquires(rq->lock) 119 { 120 struct rq *rq; 121 122 for (;;) { 123 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 124 rq = task_rq(p); 125 raw_spin_lock(&rq->lock); 126 /* 127 * move_queued_task() task_rq_lock() 128 * 129 * ACQUIRE (rq->lock) 130 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 131 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 132 * [S] ->cpu = new_cpu [L] task_rq() 133 * [L] ->on_rq 134 * RELEASE (rq->lock) 135 * 136 * If we observe the old cpu in task_rq_lock, the acquire of 137 * the old rq->lock will fully serialize against the stores. 138 * 139 * If we observe the new CPU in task_rq_lock, the acquire will 140 * pair with the WMB to ensure we must then also see migrating. 141 */ 142 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 143 rq_pin_lock(rq, rf); 144 return rq; 145 } 146 raw_spin_unlock(&rq->lock); 147 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 148 149 while (unlikely(task_on_rq_migrating(p))) 150 cpu_relax(); 151 } 152 } 153 154 /* 155 * RQ-clock updating methods: 156 */ 157 158 static void update_rq_clock_task(struct rq *rq, s64 delta) 159 { 160 /* 161 * In theory, the compile should just see 0 here, and optimize out the call 162 * to sched_rt_avg_update. But I don't trust it... 163 */ 164 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 165 s64 steal = 0, irq_delta = 0; 166 #endif 167 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 168 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 169 170 /* 171 * Since irq_time is only updated on {soft,}irq_exit, we might run into 172 * this case when a previous update_rq_clock() happened inside a 173 * {soft,}irq region. 174 * 175 * When this happens, we stop ->clock_task and only update the 176 * prev_irq_time stamp to account for the part that fit, so that a next 177 * update will consume the rest. This ensures ->clock_task is 178 * monotonic. 179 * 180 * It does however cause some slight miss-attribution of {soft,}irq 181 * time, a more accurate solution would be to update the irq_time using 182 * the current rq->clock timestamp, except that would require using 183 * atomic ops. 184 */ 185 if (irq_delta > delta) 186 irq_delta = delta; 187 188 rq->prev_irq_time += irq_delta; 189 delta -= irq_delta; 190 #endif 191 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 192 if (static_key_false((¶virt_steal_rq_enabled))) { 193 steal = paravirt_steal_clock(cpu_of(rq)); 194 steal -= rq->prev_steal_time_rq; 195 196 if (unlikely(steal > delta)) 197 steal = delta; 198 199 rq->prev_steal_time_rq += steal; 200 delta -= steal; 201 } 202 #endif 203 204 rq->clock_task += delta; 205 206 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 207 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 208 sched_rt_avg_update(rq, irq_delta + steal); 209 #endif 210 } 211 212 void update_rq_clock(struct rq *rq) 213 { 214 s64 delta; 215 216 lockdep_assert_held(&rq->lock); 217 218 if (rq->clock_update_flags & RQCF_ACT_SKIP) 219 return; 220 221 #ifdef CONFIG_SCHED_DEBUG 222 if (sched_feat(WARN_DOUBLE_CLOCK)) 223 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 224 rq->clock_update_flags |= RQCF_UPDATED; 225 #endif 226 227 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 228 if (delta < 0) 229 return; 230 rq->clock += delta; 231 update_rq_clock_task(rq, delta); 232 } 233 234 235 #ifdef CONFIG_SCHED_HRTICK 236 /* 237 * Use HR-timers to deliver accurate preemption points. 238 */ 239 240 static void hrtick_clear(struct rq *rq) 241 { 242 if (hrtimer_active(&rq->hrtick_timer)) 243 hrtimer_cancel(&rq->hrtick_timer); 244 } 245 246 /* 247 * High-resolution timer tick. 248 * Runs from hardirq context with interrupts disabled. 249 */ 250 static enum hrtimer_restart hrtick(struct hrtimer *timer) 251 { 252 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 253 struct rq_flags rf; 254 255 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 256 257 rq_lock(rq, &rf); 258 update_rq_clock(rq); 259 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 260 rq_unlock(rq, &rf); 261 262 return HRTIMER_NORESTART; 263 } 264 265 #ifdef CONFIG_SMP 266 267 static void __hrtick_restart(struct rq *rq) 268 { 269 struct hrtimer *timer = &rq->hrtick_timer; 270 271 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 272 } 273 274 /* 275 * called from hardirq (IPI) context 276 */ 277 static void __hrtick_start(void *arg) 278 { 279 struct rq *rq = arg; 280 struct rq_flags rf; 281 282 rq_lock(rq, &rf); 283 __hrtick_restart(rq); 284 rq->hrtick_csd_pending = 0; 285 rq_unlock(rq, &rf); 286 } 287 288 /* 289 * Called to set the hrtick timer state. 290 * 291 * called with rq->lock held and irqs disabled 292 */ 293 void hrtick_start(struct rq *rq, u64 delay) 294 { 295 struct hrtimer *timer = &rq->hrtick_timer; 296 ktime_t time; 297 s64 delta; 298 299 /* 300 * Don't schedule slices shorter than 10000ns, that just 301 * doesn't make sense and can cause timer DoS. 302 */ 303 delta = max_t(s64, delay, 10000LL); 304 time = ktime_add_ns(timer->base->get_time(), delta); 305 306 hrtimer_set_expires(timer, time); 307 308 if (rq == this_rq()) { 309 __hrtick_restart(rq); 310 } else if (!rq->hrtick_csd_pending) { 311 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 312 rq->hrtick_csd_pending = 1; 313 } 314 } 315 316 #else 317 /* 318 * Called to set the hrtick timer state. 319 * 320 * called with rq->lock held and irqs disabled 321 */ 322 void hrtick_start(struct rq *rq, u64 delay) 323 { 324 /* 325 * Don't schedule slices shorter than 10000ns, that just 326 * doesn't make sense. Rely on vruntime for fairness. 327 */ 328 delay = max_t(u64, delay, 10000LL); 329 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 330 HRTIMER_MODE_REL_PINNED); 331 } 332 #endif /* CONFIG_SMP */ 333 334 static void init_rq_hrtick(struct rq *rq) 335 { 336 #ifdef CONFIG_SMP 337 rq->hrtick_csd_pending = 0; 338 339 rq->hrtick_csd.flags = 0; 340 rq->hrtick_csd.func = __hrtick_start; 341 rq->hrtick_csd.info = rq; 342 #endif 343 344 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 345 rq->hrtick_timer.function = hrtick; 346 } 347 #else /* CONFIG_SCHED_HRTICK */ 348 static inline void hrtick_clear(struct rq *rq) 349 { 350 } 351 352 static inline void init_rq_hrtick(struct rq *rq) 353 { 354 } 355 #endif /* CONFIG_SCHED_HRTICK */ 356 357 /* 358 * cmpxchg based fetch_or, macro so it works for different integer types 359 */ 360 #define fetch_or(ptr, mask) \ 361 ({ \ 362 typeof(ptr) _ptr = (ptr); \ 363 typeof(mask) _mask = (mask); \ 364 typeof(*_ptr) _old, _val = *_ptr; \ 365 \ 366 for (;;) { \ 367 _old = cmpxchg(_ptr, _val, _val | _mask); \ 368 if (_old == _val) \ 369 break; \ 370 _val = _old; \ 371 } \ 372 _old; \ 373 }) 374 375 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 376 /* 377 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 378 * this avoids any races wrt polling state changes and thereby avoids 379 * spurious IPIs. 380 */ 381 static bool set_nr_and_not_polling(struct task_struct *p) 382 { 383 struct thread_info *ti = task_thread_info(p); 384 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 385 } 386 387 /* 388 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 389 * 390 * If this returns true, then the idle task promises to call 391 * sched_ttwu_pending() and reschedule soon. 392 */ 393 static bool set_nr_if_polling(struct task_struct *p) 394 { 395 struct thread_info *ti = task_thread_info(p); 396 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 397 398 for (;;) { 399 if (!(val & _TIF_POLLING_NRFLAG)) 400 return false; 401 if (val & _TIF_NEED_RESCHED) 402 return true; 403 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 404 if (old == val) 405 break; 406 val = old; 407 } 408 return true; 409 } 410 411 #else 412 static bool set_nr_and_not_polling(struct task_struct *p) 413 { 414 set_tsk_need_resched(p); 415 return true; 416 } 417 418 #ifdef CONFIG_SMP 419 static bool set_nr_if_polling(struct task_struct *p) 420 { 421 return false; 422 } 423 #endif 424 #endif 425 426 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 427 { 428 struct wake_q_node *node = &task->wake_q; 429 430 /* 431 * Atomically grab the task, if ->wake_q is !nil already it means 432 * its already queued (either by us or someone else) and will get the 433 * wakeup due to that. 434 * 435 * This cmpxchg() implies a full barrier, which pairs with the write 436 * barrier implied by the wakeup in wake_up_q(). 437 */ 438 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 439 return; 440 441 get_task_struct(task); 442 443 /* 444 * The head is context local, there can be no concurrency. 445 */ 446 *head->lastp = node; 447 head->lastp = &node->next; 448 } 449 450 void wake_up_q(struct wake_q_head *head) 451 { 452 struct wake_q_node *node = head->first; 453 454 while (node != WAKE_Q_TAIL) { 455 struct task_struct *task; 456 457 task = container_of(node, struct task_struct, wake_q); 458 BUG_ON(!task); 459 /* Task can safely be re-inserted now: */ 460 node = node->next; 461 task->wake_q.next = NULL; 462 463 /* 464 * wake_up_process() implies a wmb() to pair with the queueing 465 * in wake_q_add() so as not to miss wakeups. 466 */ 467 wake_up_process(task); 468 put_task_struct(task); 469 } 470 } 471 472 /* 473 * resched_curr - mark rq's current task 'to be rescheduled now'. 474 * 475 * On UP this means the setting of the need_resched flag, on SMP it 476 * might also involve a cross-CPU call to trigger the scheduler on 477 * the target CPU. 478 */ 479 void resched_curr(struct rq *rq) 480 { 481 struct task_struct *curr = rq->curr; 482 int cpu; 483 484 lockdep_assert_held(&rq->lock); 485 486 if (test_tsk_need_resched(curr)) 487 return; 488 489 cpu = cpu_of(rq); 490 491 if (cpu == smp_processor_id()) { 492 set_tsk_need_resched(curr); 493 set_preempt_need_resched(); 494 return; 495 } 496 497 if (set_nr_and_not_polling(curr)) 498 smp_send_reschedule(cpu); 499 else 500 trace_sched_wake_idle_without_ipi(cpu); 501 } 502 503 void resched_cpu(int cpu) 504 { 505 struct rq *rq = cpu_rq(cpu); 506 unsigned long flags; 507 508 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 509 return; 510 resched_curr(rq); 511 raw_spin_unlock_irqrestore(&rq->lock, flags); 512 } 513 514 #ifdef CONFIG_SMP 515 #ifdef CONFIG_NO_HZ_COMMON 516 /* 517 * In the semi idle case, use the nearest busy CPU for migrating timers 518 * from an idle CPU. This is good for power-savings. 519 * 520 * We don't do similar optimization for completely idle system, as 521 * selecting an idle CPU will add more delays to the timers than intended 522 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 523 */ 524 int get_nohz_timer_target(void) 525 { 526 int i, cpu = smp_processor_id(); 527 struct sched_domain *sd; 528 529 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 530 return cpu; 531 532 rcu_read_lock(); 533 for_each_domain(cpu, sd) { 534 for_each_cpu(i, sched_domain_span(sd)) { 535 if (cpu == i) 536 continue; 537 538 if (!idle_cpu(i) && is_housekeeping_cpu(i)) { 539 cpu = i; 540 goto unlock; 541 } 542 } 543 } 544 545 if (!is_housekeeping_cpu(cpu)) 546 cpu = housekeeping_any_cpu(); 547 unlock: 548 rcu_read_unlock(); 549 return cpu; 550 } 551 552 /* 553 * When add_timer_on() enqueues a timer into the timer wheel of an 554 * idle CPU then this timer might expire before the next timer event 555 * which is scheduled to wake up that CPU. In case of a completely 556 * idle system the next event might even be infinite time into the 557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 558 * leaves the inner idle loop so the newly added timer is taken into 559 * account when the CPU goes back to idle and evaluates the timer 560 * wheel for the next timer event. 561 */ 562 static void wake_up_idle_cpu(int cpu) 563 { 564 struct rq *rq = cpu_rq(cpu); 565 566 if (cpu == smp_processor_id()) 567 return; 568 569 if (set_nr_and_not_polling(rq->idle)) 570 smp_send_reschedule(cpu); 571 else 572 trace_sched_wake_idle_without_ipi(cpu); 573 } 574 575 static bool wake_up_full_nohz_cpu(int cpu) 576 { 577 /* 578 * We just need the target to call irq_exit() and re-evaluate 579 * the next tick. The nohz full kick at least implies that. 580 * If needed we can still optimize that later with an 581 * empty IRQ. 582 */ 583 if (cpu_is_offline(cpu)) 584 return true; /* Don't try to wake offline CPUs. */ 585 if (tick_nohz_full_cpu(cpu)) { 586 if (cpu != smp_processor_id() || 587 tick_nohz_tick_stopped()) 588 tick_nohz_full_kick_cpu(cpu); 589 return true; 590 } 591 592 return false; 593 } 594 595 /* 596 * Wake up the specified CPU. If the CPU is going offline, it is the 597 * caller's responsibility to deal with the lost wakeup, for example, 598 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 599 */ 600 void wake_up_nohz_cpu(int cpu) 601 { 602 if (!wake_up_full_nohz_cpu(cpu)) 603 wake_up_idle_cpu(cpu); 604 } 605 606 static inline bool got_nohz_idle_kick(void) 607 { 608 int cpu = smp_processor_id(); 609 610 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 611 return false; 612 613 if (idle_cpu(cpu) && !need_resched()) 614 return true; 615 616 /* 617 * We can't run Idle Load Balance on this CPU for this time so we 618 * cancel it and clear NOHZ_BALANCE_KICK 619 */ 620 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 621 return false; 622 } 623 624 #else /* CONFIG_NO_HZ_COMMON */ 625 626 static inline bool got_nohz_idle_kick(void) 627 { 628 return false; 629 } 630 631 #endif /* CONFIG_NO_HZ_COMMON */ 632 633 #ifdef CONFIG_NO_HZ_FULL 634 bool sched_can_stop_tick(struct rq *rq) 635 { 636 int fifo_nr_running; 637 638 /* Deadline tasks, even if single, need the tick */ 639 if (rq->dl.dl_nr_running) 640 return false; 641 642 /* 643 * If there are more than one RR tasks, we need the tick to effect the 644 * actual RR behaviour. 645 */ 646 if (rq->rt.rr_nr_running) { 647 if (rq->rt.rr_nr_running == 1) 648 return true; 649 else 650 return false; 651 } 652 653 /* 654 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 655 * forced preemption between FIFO tasks. 656 */ 657 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 658 if (fifo_nr_running) 659 return true; 660 661 /* 662 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 663 * if there's more than one we need the tick for involuntary 664 * preemption. 665 */ 666 if (rq->nr_running > 1) 667 return false; 668 669 return true; 670 } 671 #endif /* CONFIG_NO_HZ_FULL */ 672 673 void sched_avg_update(struct rq *rq) 674 { 675 s64 period = sched_avg_period(); 676 677 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 678 /* 679 * Inline assembly required to prevent the compiler 680 * optimising this loop into a divmod call. 681 * See __iter_div_u64_rem() for another example of this. 682 */ 683 asm("" : "+rm" (rq->age_stamp)); 684 rq->age_stamp += period; 685 rq->rt_avg /= 2; 686 } 687 } 688 689 #endif /* CONFIG_SMP */ 690 691 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 692 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 693 /* 694 * Iterate task_group tree rooted at *from, calling @down when first entering a 695 * node and @up when leaving it for the final time. 696 * 697 * Caller must hold rcu_lock or sufficient equivalent. 698 */ 699 int walk_tg_tree_from(struct task_group *from, 700 tg_visitor down, tg_visitor up, void *data) 701 { 702 struct task_group *parent, *child; 703 int ret; 704 705 parent = from; 706 707 down: 708 ret = (*down)(parent, data); 709 if (ret) 710 goto out; 711 list_for_each_entry_rcu(child, &parent->children, siblings) { 712 parent = child; 713 goto down; 714 715 up: 716 continue; 717 } 718 ret = (*up)(parent, data); 719 if (ret || parent == from) 720 goto out; 721 722 child = parent; 723 parent = parent->parent; 724 if (parent) 725 goto up; 726 out: 727 return ret; 728 } 729 730 int tg_nop(struct task_group *tg, void *data) 731 { 732 return 0; 733 } 734 #endif 735 736 static void set_load_weight(struct task_struct *p) 737 { 738 int prio = p->static_prio - MAX_RT_PRIO; 739 struct load_weight *load = &p->se.load; 740 741 /* 742 * SCHED_IDLE tasks get minimal weight: 743 */ 744 if (idle_policy(p->policy)) { 745 load->weight = scale_load(WEIGHT_IDLEPRIO); 746 load->inv_weight = WMULT_IDLEPRIO; 747 return; 748 } 749 750 load->weight = scale_load(sched_prio_to_weight[prio]); 751 load->inv_weight = sched_prio_to_wmult[prio]; 752 } 753 754 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 755 { 756 if (!(flags & ENQUEUE_NOCLOCK)) 757 update_rq_clock(rq); 758 759 if (!(flags & ENQUEUE_RESTORE)) 760 sched_info_queued(rq, p); 761 762 p->sched_class->enqueue_task(rq, p, flags); 763 } 764 765 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 766 { 767 if (!(flags & DEQUEUE_NOCLOCK)) 768 update_rq_clock(rq); 769 770 if (!(flags & DEQUEUE_SAVE)) 771 sched_info_dequeued(rq, p); 772 773 p->sched_class->dequeue_task(rq, p, flags); 774 } 775 776 void activate_task(struct rq *rq, struct task_struct *p, int flags) 777 { 778 if (task_contributes_to_load(p)) 779 rq->nr_uninterruptible--; 780 781 enqueue_task(rq, p, flags); 782 } 783 784 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 785 { 786 if (task_contributes_to_load(p)) 787 rq->nr_uninterruptible++; 788 789 dequeue_task(rq, p, flags); 790 } 791 792 /* 793 * __normal_prio - return the priority that is based on the static prio 794 */ 795 static inline int __normal_prio(struct task_struct *p) 796 { 797 return p->static_prio; 798 } 799 800 /* 801 * Calculate the expected normal priority: i.e. priority 802 * without taking RT-inheritance into account. Might be 803 * boosted by interactivity modifiers. Changes upon fork, 804 * setprio syscalls, and whenever the interactivity 805 * estimator recalculates. 806 */ 807 static inline int normal_prio(struct task_struct *p) 808 { 809 int prio; 810 811 if (task_has_dl_policy(p)) 812 prio = MAX_DL_PRIO-1; 813 else if (task_has_rt_policy(p)) 814 prio = MAX_RT_PRIO-1 - p->rt_priority; 815 else 816 prio = __normal_prio(p); 817 return prio; 818 } 819 820 /* 821 * Calculate the current priority, i.e. the priority 822 * taken into account by the scheduler. This value might 823 * be boosted by RT tasks, or might be boosted by 824 * interactivity modifiers. Will be RT if the task got 825 * RT-boosted. If not then it returns p->normal_prio. 826 */ 827 static int effective_prio(struct task_struct *p) 828 { 829 p->normal_prio = normal_prio(p); 830 /* 831 * If we are RT tasks or we were boosted to RT priority, 832 * keep the priority unchanged. Otherwise, update priority 833 * to the normal priority: 834 */ 835 if (!rt_prio(p->prio)) 836 return p->normal_prio; 837 return p->prio; 838 } 839 840 /** 841 * task_curr - is this task currently executing on a CPU? 842 * @p: the task in question. 843 * 844 * Return: 1 if the task is currently executing. 0 otherwise. 845 */ 846 inline int task_curr(const struct task_struct *p) 847 { 848 return cpu_curr(task_cpu(p)) == p; 849 } 850 851 /* 852 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 853 * use the balance_callback list if you want balancing. 854 * 855 * this means any call to check_class_changed() must be followed by a call to 856 * balance_callback(). 857 */ 858 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 859 const struct sched_class *prev_class, 860 int oldprio) 861 { 862 if (prev_class != p->sched_class) { 863 if (prev_class->switched_from) 864 prev_class->switched_from(rq, p); 865 866 p->sched_class->switched_to(rq, p); 867 } else if (oldprio != p->prio || dl_task(p)) 868 p->sched_class->prio_changed(rq, p, oldprio); 869 } 870 871 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 872 { 873 const struct sched_class *class; 874 875 if (p->sched_class == rq->curr->sched_class) { 876 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 877 } else { 878 for_each_class(class) { 879 if (class == rq->curr->sched_class) 880 break; 881 if (class == p->sched_class) { 882 resched_curr(rq); 883 break; 884 } 885 } 886 } 887 888 /* 889 * A queue event has occurred, and we're going to schedule. In 890 * this case, we can save a useless back to back clock update. 891 */ 892 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 893 rq_clock_skip_update(rq, true); 894 } 895 896 #ifdef CONFIG_SMP 897 /* 898 * This is how migration works: 899 * 900 * 1) we invoke migration_cpu_stop() on the target CPU using 901 * stop_one_cpu(). 902 * 2) stopper starts to run (implicitly forcing the migrated thread 903 * off the CPU) 904 * 3) it checks whether the migrated task is still in the wrong runqueue. 905 * 4) if it's in the wrong runqueue then the migration thread removes 906 * it and puts it into the right queue. 907 * 5) stopper completes and stop_one_cpu() returns and the migration 908 * is done. 909 */ 910 911 /* 912 * move_queued_task - move a queued task to new rq. 913 * 914 * Returns (locked) new rq. Old rq's lock is released. 915 */ 916 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 917 struct task_struct *p, int new_cpu) 918 { 919 lockdep_assert_held(&rq->lock); 920 921 p->on_rq = TASK_ON_RQ_MIGRATING; 922 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 923 set_task_cpu(p, new_cpu); 924 rq_unlock(rq, rf); 925 926 rq = cpu_rq(new_cpu); 927 928 rq_lock(rq, rf); 929 BUG_ON(task_cpu(p) != new_cpu); 930 enqueue_task(rq, p, 0); 931 p->on_rq = TASK_ON_RQ_QUEUED; 932 check_preempt_curr(rq, p, 0); 933 934 return rq; 935 } 936 937 struct migration_arg { 938 struct task_struct *task; 939 int dest_cpu; 940 }; 941 942 /* 943 * Move (not current) task off this CPU, onto the destination CPU. We're doing 944 * this because either it can't run here any more (set_cpus_allowed() 945 * away from this CPU, or CPU going down), or because we're 946 * attempting to rebalance this task on exec (sched_exec). 947 * 948 * So we race with normal scheduler movements, but that's OK, as long 949 * as the task is no longer on this CPU. 950 */ 951 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 952 struct task_struct *p, int dest_cpu) 953 { 954 if (p->flags & PF_KTHREAD) { 955 if (unlikely(!cpu_online(dest_cpu))) 956 return rq; 957 } else { 958 if (unlikely(!cpu_active(dest_cpu))) 959 return rq; 960 } 961 962 /* Affinity changed (again). */ 963 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 964 return rq; 965 966 update_rq_clock(rq); 967 rq = move_queued_task(rq, rf, p, dest_cpu); 968 969 return rq; 970 } 971 972 /* 973 * migration_cpu_stop - this will be executed by a highprio stopper thread 974 * and performs thread migration by bumping thread off CPU then 975 * 'pushing' onto another runqueue. 976 */ 977 static int migration_cpu_stop(void *data) 978 { 979 struct migration_arg *arg = data; 980 struct task_struct *p = arg->task; 981 struct rq *rq = this_rq(); 982 struct rq_flags rf; 983 984 /* 985 * The original target CPU might have gone down and we might 986 * be on another CPU but it doesn't matter. 987 */ 988 local_irq_disable(); 989 /* 990 * We need to explicitly wake pending tasks before running 991 * __migrate_task() such that we will not miss enforcing cpus_allowed 992 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 993 */ 994 sched_ttwu_pending(); 995 996 raw_spin_lock(&p->pi_lock); 997 rq_lock(rq, &rf); 998 /* 999 * If task_rq(p) != rq, it cannot be migrated here, because we're 1000 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1001 * we're holding p->pi_lock. 1002 */ 1003 if (task_rq(p) == rq) { 1004 if (task_on_rq_queued(p)) 1005 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1006 else 1007 p->wake_cpu = arg->dest_cpu; 1008 } 1009 rq_unlock(rq, &rf); 1010 raw_spin_unlock(&p->pi_lock); 1011 1012 local_irq_enable(); 1013 return 0; 1014 } 1015 1016 /* 1017 * sched_class::set_cpus_allowed must do the below, but is not required to 1018 * actually call this function. 1019 */ 1020 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1021 { 1022 cpumask_copy(&p->cpus_allowed, new_mask); 1023 p->nr_cpus_allowed = cpumask_weight(new_mask); 1024 } 1025 1026 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1027 { 1028 struct rq *rq = task_rq(p); 1029 bool queued, running; 1030 1031 lockdep_assert_held(&p->pi_lock); 1032 1033 queued = task_on_rq_queued(p); 1034 running = task_current(rq, p); 1035 1036 if (queued) { 1037 /* 1038 * Because __kthread_bind() calls this on blocked tasks without 1039 * holding rq->lock. 1040 */ 1041 lockdep_assert_held(&rq->lock); 1042 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1043 } 1044 if (running) 1045 put_prev_task(rq, p); 1046 1047 p->sched_class->set_cpus_allowed(p, new_mask); 1048 1049 if (queued) 1050 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1051 if (running) 1052 set_curr_task(rq, p); 1053 } 1054 1055 /* 1056 * Change a given task's CPU affinity. Migrate the thread to a 1057 * proper CPU and schedule it away if the CPU it's executing on 1058 * is removed from the allowed bitmask. 1059 * 1060 * NOTE: the caller must have a valid reference to the task, the 1061 * task must not exit() & deallocate itself prematurely. The 1062 * call is not atomic; no spinlocks may be held. 1063 */ 1064 static int __set_cpus_allowed_ptr(struct task_struct *p, 1065 const struct cpumask *new_mask, bool check) 1066 { 1067 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1068 unsigned int dest_cpu; 1069 struct rq_flags rf; 1070 struct rq *rq; 1071 int ret = 0; 1072 1073 rq = task_rq_lock(p, &rf); 1074 update_rq_clock(rq); 1075 1076 if (p->flags & PF_KTHREAD) { 1077 /* 1078 * Kernel threads are allowed on online && !active CPUs 1079 */ 1080 cpu_valid_mask = cpu_online_mask; 1081 } 1082 1083 /* 1084 * Must re-check here, to close a race against __kthread_bind(), 1085 * sched_setaffinity() is not guaranteed to observe the flag. 1086 */ 1087 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1088 ret = -EINVAL; 1089 goto out; 1090 } 1091 1092 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1093 goto out; 1094 1095 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1096 ret = -EINVAL; 1097 goto out; 1098 } 1099 1100 do_set_cpus_allowed(p, new_mask); 1101 1102 if (p->flags & PF_KTHREAD) { 1103 /* 1104 * For kernel threads that do indeed end up on online && 1105 * !active we want to ensure they are strict per-CPU threads. 1106 */ 1107 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1108 !cpumask_intersects(new_mask, cpu_active_mask) && 1109 p->nr_cpus_allowed != 1); 1110 } 1111 1112 /* Can the task run on the task's current CPU? If so, we're done */ 1113 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1114 goto out; 1115 1116 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1117 if (task_running(rq, p) || p->state == TASK_WAKING) { 1118 struct migration_arg arg = { p, dest_cpu }; 1119 /* Need help from migration thread: drop lock and wait. */ 1120 task_rq_unlock(rq, p, &rf); 1121 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1122 tlb_migrate_finish(p->mm); 1123 return 0; 1124 } else if (task_on_rq_queued(p)) { 1125 /* 1126 * OK, since we're going to drop the lock immediately 1127 * afterwards anyway. 1128 */ 1129 rq = move_queued_task(rq, &rf, p, dest_cpu); 1130 } 1131 out: 1132 task_rq_unlock(rq, p, &rf); 1133 1134 return ret; 1135 } 1136 1137 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1138 { 1139 return __set_cpus_allowed_ptr(p, new_mask, false); 1140 } 1141 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1142 1143 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1144 { 1145 #ifdef CONFIG_SCHED_DEBUG 1146 /* 1147 * We should never call set_task_cpu() on a blocked task, 1148 * ttwu() will sort out the placement. 1149 */ 1150 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1151 !p->on_rq); 1152 1153 /* 1154 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1155 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1156 * time relying on p->on_rq. 1157 */ 1158 WARN_ON_ONCE(p->state == TASK_RUNNING && 1159 p->sched_class == &fair_sched_class && 1160 (p->on_rq && !task_on_rq_migrating(p))); 1161 1162 #ifdef CONFIG_LOCKDEP 1163 /* 1164 * The caller should hold either p->pi_lock or rq->lock, when changing 1165 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1166 * 1167 * sched_move_task() holds both and thus holding either pins the cgroup, 1168 * see task_group(). 1169 * 1170 * Furthermore, all task_rq users should acquire both locks, see 1171 * task_rq_lock(). 1172 */ 1173 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1174 lockdep_is_held(&task_rq(p)->lock))); 1175 #endif 1176 #endif 1177 1178 trace_sched_migrate_task(p, new_cpu); 1179 1180 if (task_cpu(p) != new_cpu) { 1181 if (p->sched_class->migrate_task_rq) 1182 p->sched_class->migrate_task_rq(p); 1183 p->se.nr_migrations++; 1184 perf_event_task_migrate(p); 1185 } 1186 1187 __set_task_cpu(p, new_cpu); 1188 } 1189 1190 static void __migrate_swap_task(struct task_struct *p, int cpu) 1191 { 1192 if (task_on_rq_queued(p)) { 1193 struct rq *src_rq, *dst_rq; 1194 struct rq_flags srf, drf; 1195 1196 src_rq = task_rq(p); 1197 dst_rq = cpu_rq(cpu); 1198 1199 rq_pin_lock(src_rq, &srf); 1200 rq_pin_lock(dst_rq, &drf); 1201 1202 p->on_rq = TASK_ON_RQ_MIGRATING; 1203 deactivate_task(src_rq, p, 0); 1204 set_task_cpu(p, cpu); 1205 activate_task(dst_rq, p, 0); 1206 p->on_rq = TASK_ON_RQ_QUEUED; 1207 check_preempt_curr(dst_rq, p, 0); 1208 1209 rq_unpin_lock(dst_rq, &drf); 1210 rq_unpin_lock(src_rq, &srf); 1211 1212 } else { 1213 /* 1214 * Task isn't running anymore; make it appear like we migrated 1215 * it before it went to sleep. This means on wakeup we make the 1216 * previous CPU our target instead of where it really is. 1217 */ 1218 p->wake_cpu = cpu; 1219 } 1220 } 1221 1222 struct migration_swap_arg { 1223 struct task_struct *src_task, *dst_task; 1224 int src_cpu, dst_cpu; 1225 }; 1226 1227 static int migrate_swap_stop(void *data) 1228 { 1229 struct migration_swap_arg *arg = data; 1230 struct rq *src_rq, *dst_rq; 1231 int ret = -EAGAIN; 1232 1233 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1234 return -EAGAIN; 1235 1236 src_rq = cpu_rq(arg->src_cpu); 1237 dst_rq = cpu_rq(arg->dst_cpu); 1238 1239 double_raw_lock(&arg->src_task->pi_lock, 1240 &arg->dst_task->pi_lock); 1241 double_rq_lock(src_rq, dst_rq); 1242 1243 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1244 goto unlock; 1245 1246 if (task_cpu(arg->src_task) != arg->src_cpu) 1247 goto unlock; 1248 1249 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1250 goto unlock; 1251 1252 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1253 goto unlock; 1254 1255 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1256 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1257 1258 ret = 0; 1259 1260 unlock: 1261 double_rq_unlock(src_rq, dst_rq); 1262 raw_spin_unlock(&arg->dst_task->pi_lock); 1263 raw_spin_unlock(&arg->src_task->pi_lock); 1264 1265 return ret; 1266 } 1267 1268 /* 1269 * Cross migrate two tasks 1270 */ 1271 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1272 { 1273 struct migration_swap_arg arg; 1274 int ret = -EINVAL; 1275 1276 arg = (struct migration_swap_arg){ 1277 .src_task = cur, 1278 .src_cpu = task_cpu(cur), 1279 .dst_task = p, 1280 .dst_cpu = task_cpu(p), 1281 }; 1282 1283 if (arg.src_cpu == arg.dst_cpu) 1284 goto out; 1285 1286 /* 1287 * These three tests are all lockless; this is OK since all of them 1288 * will be re-checked with proper locks held further down the line. 1289 */ 1290 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1291 goto out; 1292 1293 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1294 goto out; 1295 1296 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1297 goto out; 1298 1299 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1300 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1301 1302 out: 1303 return ret; 1304 } 1305 1306 /* 1307 * wait_task_inactive - wait for a thread to unschedule. 1308 * 1309 * If @match_state is nonzero, it's the @p->state value just checked and 1310 * not expected to change. If it changes, i.e. @p might have woken up, 1311 * then return zero. When we succeed in waiting for @p to be off its CPU, 1312 * we return a positive number (its total switch count). If a second call 1313 * a short while later returns the same number, the caller can be sure that 1314 * @p has remained unscheduled the whole time. 1315 * 1316 * The caller must ensure that the task *will* unschedule sometime soon, 1317 * else this function might spin for a *long* time. This function can't 1318 * be called with interrupts off, or it may introduce deadlock with 1319 * smp_call_function() if an IPI is sent by the same process we are 1320 * waiting to become inactive. 1321 */ 1322 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1323 { 1324 int running, queued; 1325 struct rq_flags rf; 1326 unsigned long ncsw; 1327 struct rq *rq; 1328 1329 for (;;) { 1330 /* 1331 * We do the initial early heuristics without holding 1332 * any task-queue locks at all. We'll only try to get 1333 * the runqueue lock when things look like they will 1334 * work out! 1335 */ 1336 rq = task_rq(p); 1337 1338 /* 1339 * If the task is actively running on another CPU 1340 * still, just relax and busy-wait without holding 1341 * any locks. 1342 * 1343 * NOTE! Since we don't hold any locks, it's not 1344 * even sure that "rq" stays as the right runqueue! 1345 * But we don't care, since "task_running()" will 1346 * return false if the runqueue has changed and p 1347 * is actually now running somewhere else! 1348 */ 1349 while (task_running(rq, p)) { 1350 if (match_state && unlikely(p->state != match_state)) 1351 return 0; 1352 cpu_relax(); 1353 } 1354 1355 /* 1356 * Ok, time to look more closely! We need the rq 1357 * lock now, to be *sure*. If we're wrong, we'll 1358 * just go back and repeat. 1359 */ 1360 rq = task_rq_lock(p, &rf); 1361 trace_sched_wait_task(p); 1362 running = task_running(rq, p); 1363 queued = task_on_rq_queued(p); 1364 ncsw = 0; 1365 if (!match_state || p->state == match_state) 1366 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1367 task_rq_unlock(rq, p, &rf); 1368 1369 /* 1370 * If it changed from the expected state, bail out now. 1371 */ 1372 if (unlikely(!ncsw)) 1373 break; 1374 1375 /* 1376 * Was it really running after all now that we 1377 * checked with the proper locks actually held? 1378 * 1379 * Oops. Go back and try again.. 1380 */ 1381 if (unlikely(running)) { 1382 cpu_relax(); 1383 continue; 1384 } 1385 1386 /* 1387 * It's not enough that it's not actively running, 1388 * it must be off the runqueue _entirely_, and not 1389 * preempted! 1390 * 1391 * So if it was still runnable (but just not actively 1392 * running right now), it's preempted, and we should 1393 * yield - it could be a while. 1394 */ 1395 if (unlikely(queued)) { 1396 ktime_t to = NSEC_PER_SEC / HZ; 1397 1398 set_current_state(TASK_UNINTERRUPTIBLE); 1399 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1400 continue; 1401 } 1402 1403 /* 1404 * Ahh, all good. It wasn't running, and it wasn't 1405 * runnable, which means that it will never become 1406 * running in the future either. We're all done! 1407 */ 1408 break; 1409 } 1410 1411 return ncsw; 1412 } 1413 1414 /*** 1415 * kick_process - kick a running thread to enter/exit the kernel 1416 * @p: the to-be-kicked thread 1417 * 1418 * Cause a process which is running on another CPU to enter 1419 * kernel-mode, without any delay. (to get signals handled.) 1420 * 1421 * NOTE: this function doesn't have to take the runqueue lock, 1422 * because all it wants to ensure is that the remote task enters 1423 * the kernel. If the IPI races and the task has been migrated 1424 * to another CPU then no harm is done and the purpose has been 1425 * achieved as well. 1426 */ 1427 void kick_process(struct task_struct *p) 1428 { 1429 int cpu; 1430 1431 preempt_disable(); 1432 cpu = task_cpu(p); 1433 if ((cpu != smp_processor_id()) && task_curr(p)) 1434 smp_send_reschedule(cpu); 1435 preempt_enable(); 1436 } 1437 EXPORT_SYMBOL_GPL(kick_process); 1438 1439 /* 1440 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1441 * 1442 * A few notes on cpu_active vs cpu_online: 1443 * 1444 * - cpu_active must be a subset of cpu_online 1445 * 1446 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1447 * see __set_cpus_allowed_ptr(). At this point the newly online 1448 * CPU isn't yet part of the sched domains, and balancing will not 1449 * see it. 1450 * 1451 * - on CPU-down we clear cpu_active() to mask the sched domains and 1452 * avoid the load balancer to place new tasks on the to be removed 1453 * CPU. Existing tasks will remain running there and will be taken 1454 * off. 1455 * 1456 * This means that fallback selection must not select !active CPUs. 1457 * And can assume that any active CPU must be online. Conversely 1458 * select_task_rq() below may allow selection of !active CPUs in order 1459 * to satisfy the above rules. 1460 */ 1461 static int select_fallback_rq(int cpu, struct task_struct *p) 1462 { 1463 int nid = cpu_to_node(cpu); 1464 const struct cpumask *nodemask = NULL; 1465 enum { cpuset, possible, fail } state = cpuset; 1466 int dest_cpu; 1467 1468 /* 1469 * If the node that the CPU is on has been offlined, cpu_to_node() 1470 * will return -1. There is no CPU on the node, and we should 1471 * select the CPU on the other node. 1472 */ 1473 if (nid != -1) { 1474 nodemask = cpumask_of_node(nid); 1475 1476 /* Look for allowed, online CPU in same node. */ 1477 for_each_cpu(dest_cpu, nodemask) { 1478 if (!cpu_active(dest_cpu)) 1479 continue; 1480 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1481 return dest_cpu; 1482 } 1483 } 1484 1485 for (;;) { 1486 /* Any allowed, online CPU? */ 1487 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1488 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1489 continue; 1490 if (!cpu_online(dest_cpu)) 1491 continue; 1492 goto out; 1493 } 1494 1495 /* No more Mr. Nice Guy. */ 1496 switch (state) { 1497 case cpuset: 1498 if (IS_ENABLED(CONFIG_CPUSETS)) { 1499 cpuset_cpus_allowed_fallback(p); 1500 state = possible; 1501 break; 1502 } 1503 /* Fall-through */ 1504 case possible: 1505 do_set_cpus_allowed(p, cpu_possible_mask); 1506 state = fail; 1507 break; 1508 1509 case fail: 1510 BUG(); 1511 break; 1512 } 1513 } 1514 1515 out: 1516 if (state != cpuset) { 1517 /* 1518 * Don't tell them about moving exiting tasks or 1519 * kernel threads (both mm NULL), since they never 1520 * leave kernel. 1521 */ 1522 if (p->mm && printk_ratelimit()) { 1523 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1524 task_pid_nr(p), p->comm, cpu); 1525 } 1526 } 1527 1528 return dest_cpu; 1529 } 1530 1531 /* 1532 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1533 */ 1534 static inline 1535 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1536 { 1537 lockdep_assert_held(&p->pi_lock); 1538 1539 if (p->nr_cpus_allowed > 1) 1540 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1541 else 1542 cpu = cpumask_any(&p->cpus_allowed); 1543 1544 /* 1545 * In order not to call set_task_cpu() on a blocking task we need 1546 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1547 * CPU. 1548 * 1549 * Since this is common to all placement strategies, this lives here. 1550 * 1551 * [ this allows ->select_task() to simply return task_cpu(p) and 1552 * not worry about this generic constraint ] 1553 */ 1554 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || 1555 !cpu_online(cpu))) 1556 cpu = select_fallback_rq(task_cpu(p), p); 1557 1558 return cpu; 1559 } 1560 1561 static void update_avg(u64 *avg, u64 sample) 1562 { 1563 s64 diff = sample - *avg; 1564 *avg += diff >> 3; 1565 } 1566 1567 void sched_set_stop_task(int cpu, struct task_struct *stop) 1568 { 1569 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1570 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1571 1572 if (stop) { 1573 /* 1574 * Make it appear like a SCHED_FIFO task, its something 1575 * userspace knows about and won't get confused about. 1576 * 1577 * Also, it will make PI more or less work without too 1578 * much confusion -- but then, stop work should not 1579 * rely on PI working anyway. 1580 */ 1581 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1582 1583 stop->sched_class = &stop_sched_class; 1584 } 1585 1586 cpu_rq(cpu)->stop = stop; 1587 1588 if (old_stop) { 1589 /* 1590 * Reset it back to a normal scheduling class so that 1591 * it can die in pieces. 1592 */ 1593 old_stop->sched_class = &rt_sched_class; 1594 } 1595 } 1596 1597 #else 1598 1599 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1600 const struct cpumask *new_mask, bool check) 1601 { 1602 return set_cpus_allowed_ptr(p, new_mask); 1603 } 1604 1605 #endif /* CONFIG_SMP */ 1606 1607 static void 1608 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1609 { 1610 struct rq *rq; 1611 1612 if (!schedstat_enabled()) 1613 return; 1614 1615 rq = this_rq(); 1616 1617 #ifdef CONFIG_SMP 1618 if (cpu == rq->cpu) { 1619 schedstat_inc(rq->ttwu_local); 1620 schedstat_inc(p->se.statistics.nr_wakeups_local); 1621 } else { 1622 struct sched_domain *sd; 1623 1624 schedstat_inc(p->se.statistics.nr_wakeups_remote); 1625 rcu_read_lock(); 1626 for_each_domain(rq->cpu, sd) { 1627 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1628 schedstat_inc(sd->ttwu_wake_remote); 1629 break; 1630 } 1631 } 1632 rcu_read_unlock(); 1633 } 1634 1635 if (wake_flags & WF_MIGRATED) 1636 schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1637 #endif /* CONFIG_SMP */ 1638 1639 schedstat_inc(rq->ttwu_count); 1640 schedstat_inc(p->se.statistics.nr_wakeups); 1641 1642 if (wake_flags & WF_SYNC) 1643 schedstat_inc(p->se.statistics.nr_wakeups_sync); 1644 } 1645 1646 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1647 { 1648 activate_task(rq, p, en_flags); 1649 p->on_rq = TASK_ON_RQ_QUEUED; 1650 1651 /* If a worker is waking up, notify the workqueue: */ 1652 if (p->flags & PF_WQ_WORKER) 1653 wq_worker_waking_up(p, cpu_of(rq)); 1654 } 1655 1656 /* 1657 * Mark the task runnable and perform wakeup-preemption. 1658 */ 1659 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1660 struct rq_flags *rf) 1661 { 1662 check_preempt_curr(rq, p, wake_flags); 1663 p->state = TASK_RUNNING; 1664 trace_sched_wakeup(p); 1665 1666 #ifdef CONFIG_SMP 1667 if (p->sched_class->task_woken) { 1668 /* 1669 * Our task @p is fully woken up and running; so its safe to 1670 * drop the rq->lock, hereafter rq is only used for statistics. 1671 */ 1672 rq_unpin_lock(rq, rf); 1673 p->sched_class->task_woken(rq, p); 1674 rq_repin_lock(rq, rf); 1675 } 1676 1677 if (rq->idle_stamp) { 1678 u64 delta = rq_clock(rq) - rq->idle_stamp; 1679 u64 max = 2*rq->max_idle_balance_cost; 1680 1681 update_avg(&rq->avg_idle, delta); 1682 1683 if (rq->avg_idle > max) 1684 rq->avg_idle = max; 1685 1686 rq->idle_stamp = 0; 1687 } 1688 #endif 1689 } 1690 1691 static void 1692 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1693 struct rq_flags *rf) 1694 { 1695 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1696 1697 lockdep_assert_held(&rq->lock); 1698 1699 #ifdef CONFIG_SMP 1700 if (p->sched_contributes_to_load) 1701 rq->nr_uninterruptible--; 1702 1703 if (wake_flags & WF_MIGRATED) 1704 en_flags |= ENQUEUE_MIGRATED; 1705 #endif 1706 1707 ttwu_activate(rq, p, en_flags); 1708 ttwu_do_wakeup(rq, p, wake_flags, rf); 1709 } 1710 1711 /* 1712 * Called in case the task @p isn't fully descheduled from its runqueue, 1713 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1714 * since all we need to do is flip p->state to TASK_RUNNING, since 1715 * the task is still ->on_rq. 1716 */ 1717 static int ttwu_remote(struct task_struct *p, int wake_flags) 1718 { 1719 struct rq_flags rf; 1720 struct rq *rq; 1721 int ret = 0; 1722 1723 rq = __task_rq_lock(p, &rf); 1724 if (task_on_rq_queued(p)) { 1725 /* check_preempt_curr() may use rq clock */ 1726 update_rq_clock(rq); 1727 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1728 ret = 1; 1729 } 1730 __task_rq_unlock(rq, &rf); 1731 1732 return ret; 1733 } 1734 1735 #ifdef CONFIG_SMP 1736 void sched_ttwu_pending(void) 1737 { 1738 struct rq *rq = this_rq(); 1739 struct llist_node *llist = llist_del_all(&rq->wake_list); 1740 struct task_struct *p, *t; 1741 struct rq_flags rf; 1742 1743 if (!llist) 1744 return; 1745 1746 rq_lock_irqsave(rq, &rf); 1747 update_rq_clock(rq); 1748 1749 llist_for_each_entry_safe(p, t, llist, wake_entry) 1750 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1751 1752 rq_unlock_irqrestore(rq, &rf); 1753 } 1754 1755 void scheduler_ipi(void) 1756 { 1757 /* 1758 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1759 * TIF_NEED_RESCHED remotely (for the first time) will also send 1760 * this IPI. 1761 */ 1762 preempt_fold_need_resched(); 1763 1764 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1765 return; 1766 1767 /* 1768 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1769 * traditionally all their work was done from the interrupt return 1770 * path. Now that we actually do some work, we need to make sure 1771 * we do call them. 1772 * 1773 * Some archs already do call them, luckily irq_enter/exit nest 1774 * properly. 1775 * 1776 * Arguably we should visit all archs and update all handlers, 1777 * however a fair share of IPIs are still resched only so this would 1778 * somewhat pessimize the simple resched case. 1779 */ 1780 irq_enter(); 1781 sched_ttwu_pending(); 1782 1783 /* 1784 * Check if someone kicked us for doing the nohz idle load balance. 1785 */ 1786 if (unlikely(got_nohz_idle_kick())) { 1787 this_rq()->idle_balance = 1; 1788 raise_softirq_irqoff(SCHED_SOFTIRQ); 1789 } 1790 irq_exit(); 1791 } 1792 1793 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1794 { 1795 struct rq *rq = cpu_rq(cpu); 1796 1797 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1798 1799 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1800 if (!set_nr_if_polling(rq->idle)) 1801 smp_send_reschedule(cpu); 1802 else 1803 trace_sched_wake_idle_without_ipi(cpu); 1804 } 1805 } 1806 1807 void wake_up_if_idle(int cpu) 1808 { 1809 struct rq *rq = cpu_rq(cpu); 1810 struct rq_flags rf; 1811 1812 rcu_read_lock(); 1813 1814 if (!is_idle_task(rcu_dereference(rq->curr))) 1815 goto out; 1816 1817 if (set_nr_if_polling(rq->idle)) { 1818 trace_sched_wake_idle_without_ipi(cpu); 1819 } else { 1820 rq_lock_irqsave(rq, &rf); 1821 if (is_idle_task(rq->curr)) 1822 smp_send_reschedule(cpu); 1823 /* Else CPU is not idle, do nothing here: */ 1824 rq_unlock_irqrestore(rq, &rf); 1825 } 1826 1827 out: 1828 rcu_read_unlock(); 1829 } 1830 1831 bool cpus_share_cache(int this_cpu, int that_cpu) 1832 { 1833 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1834 } 1835 #endif /* CONFIG_SMP */ 1836 1837 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1838 { 1839 struct rq *rq = cpu_rq(cpu); 1840 struct rq_flags rf; 1841 1842 #if defined(CONFIG_SMP) 1843 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1844 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1845 ttwu_queue_remote(p, cpu, wake_flags); 1846 return; 1847 } 1848 #endif 1849 1850 rq_lock(rq, &rf); 1851 update_rq_clock(rq); 1852 ttwu_do_activate(rq, p, wake_flags, &rf); 1853 rq_unlock(rq, &rf); 1854 } 1855 1856 /* 1857 * Notes on Program-Order guarantees on SMP systems. 1858 * 1859 * MIGRATION 1860 * 1861 * The basic program-order guarantee on SMP systems is that when a task [t] 1862 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1863 * execution on its new CPU [c1]. 1864 * 1865 * For migration (of runnable tasks) this is provided by the following means: 1866 * 1867 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1868 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1869 * rq(c1)->lock (if not at the same time, then in that order). 1870 * C) LOCK of the rq(c1)->lock scheduling in task 1871 * 1872 * Transitivity guarantees that B happens after A and C after B. 1873 * Note: we only require RCpc transitivity. 1874 * Note: the CPU doing B need not be c0 or c1 1875 * 1876 * Example: 1877 * 1878 * CPU0 CPU1 CPU2 1879 * 1880 * LOCK rq(0)->lock 1881 * sched-out X 1882 * sched-in Y 1883 * UNLOCK rq(0)->lock 1884 * 1885 * LOCK rq(0)->lock // orders against CPU0 1886 * dequeue X 1887 * UNLOCK rq(0)->lock 1888 * 1889 * LOCK rq(1)->lock 1890 * enqueue X 1891 * UNLOCK rq(1)->lock 1892 * 1893 * LOCK rq(1)->lock // orders against CPU2 1894 * sched-out Z 1895 * sched-in X 1896 * UNLOCK rq(1)->lock 1897 * 1898 * 1899 * BLOCKING -- aka. SLEEP + WAKEUP 1900 * 1901 * For blocking we (obviously) need to provide the same guarantee as for 1902 * migration. However the means are completely different as there is no lock 1903 * chain to provide order. Instead we do: 1904 * 1905 * 1) smp_store_release(X->on_cpu, 0) 1906 * 2) smp_cond_load_acquire(!X->on_cpu) 1907 * 1908 * Example: 1909 * 1910 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1911 * 1912 * LOCK rq(0)->lock LOCK X->pi_lock 1913 * dequeue X 1914 * sched-out X 1915 * smp_store_release(X->on_cpu, 0); 1916 * 1917 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1918 * X->state = WAKING 1919 * set_task_cpu(X,2) 1920 * 1921 * LOCK rq(2)->lock 1922 * enqueue X 1923 * X->state = RUNNING 1924 * UNLOCK rq(2)->lock 1925 * 1926 * LOCK rq(2)->lock // orders against CPU1 1927 * sched-out Z 1928 * sched-in X 1929 * UNLOCK rq(2)->lock 1930 * 1931 * UNLOCK X->pi_lock 1932 * UNLOCK rq(0)->lock 1933 * 1934 * 1935 * However; for wakeups there is a second guarantee we must provide, namely we 1936 * must observe the state that lead to our wakeup. That is, not only must our 1937 * task observe its own prior state, it must also observe the stores prior to 1938 * its wakeup. 1939 * 1940 * This means that any means of doing remote wakeups must order the CPU doing 1941 * the wakeup against the CPU the task is going to end up running on. This, 1942 * however, is already required for the regular Program-Order guarantee above, 1943 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1944 * 1945 */ 1946 1947 /** 1948 * try_to_wake_up - wake up a thread 1949 * @p: the thread to be awakened 1950 * @state: the mask of task states that can be woken 1951 * @wake_flags: wake modifier flags (WF_*) 1952 * 1953 * If (@state & @p->state) @p->state = TASK_RUNNING. 1954 * 1955 * If the task was not queued/runnable, also place it back on a runqueue. 1956 * 1957 * Atomic against schedule() which would dequeue a task, also see 1958 * set_current_state(). 1959 * 1960 * Return: %true if @p->state changes (an actual wakeup was done), 1961 * %false otherwise. 1962 */ 1963 static int 1964 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1965 { 1966 unsigned long flags; 1967 int cpu, success = 0; 1968 1969 /* 1970 * If we are going to wake up a thread waiting for CONDITION we 1971 * need to ensure that CONDITION=1 done by the caller can not be 1972 * reordered with p->state check below. This pairs with mb() in 1973 * set_current_state() the waiting thread does. 1974 */ 1975 raw_spin_lock_irqsave(&p->pi_lock, flags); 1976 smp_mb__after_spinlock(); 1977 if (!(p->state & state)) 1978 goto out; 1979 1980 trace_sched_waking(p); 1981 1982 /* We're going to change ->state: */ 1983 success = 1; 1984 cpu = task_cpu(p); 1985 1986 /* 1987 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1988 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1989 * in smp_cond_load_acquire() below. 1990 * 1991 * sched_ttwu_pending() try_to_wake_up() 1992 * [S] p->on_rq = 1; [L] P->state 1993 * UNLOCK rq->lock -----. 1994 * \ 1995 * +--- RMB 1996 * schedule() / 1997 * LOCK rq->lock -----' 1998 * UNLOCK rq->lock 1999 * 2000 * [task p] 2001 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2002 * 2003 * Pairs with the UNLOCK+LOCK on rq->lock from the 2004 * last wakeup of our task and the schedule that got our task 2005 * current. 2006 */ 2007 smp_rmb(); 2008 if (p->on_rq && ttwu_remote(p, wake_flags)) 2009 goto stat; 2010 2011 #ifdef CONFIG_SMP 2012 /* 2013 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2014 * possible to, falsely, observe p->on_cpu == 0. 2015 * 2016 * One must be running (->on_cpu == 1) in order to remove oneself 2017 * from the runqueue. 2018 * 2019 * [S] ->on_cpu = 1; [L] ->on_rq 2020 * UNLOCK rq->lock 2021 * RMB 2022 * LOCK rq->lock 2023 * [S] ->on_rq = 0; [L] ->on_cpu 2024 * 2025 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2026 * from the consecutive calls to schedule(); the first switching to our 2027 * task, the second putting it to sleep. 2028 */ 2029 smp_rmb(); 2030 2031 /* 2032 * If the owning (remote) CPU is still in the middle of schedule() with 2033 * this task as prev, wait until its done referencing the task. 2034 * 2035 * Pairs with the smp_store_release() in finish_lock_switch(). 2036 * 2037 * This ensures that tasks getting woken will be fully ordered against 2038 * their previous state and preserve Program Order. 2039 */ 2040 smp_cond_load_acquire(&p->on_cpu, !VAL); 2041 2042 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2043 p->state = TASK_WAKING; 2044 2045 if (p->in_iowait) { 2046 delayacct_blkio_end(); 2047 atomic_dec(&task_rq(p)->nr_iowait); 2048 } 2049 2050 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2051 if (task_cpu(p) != cpu) { 2052 wake_flags |= WF_MIGRATED; 2053 set_task_cpu(p, cpu); 2054 } 2055 2056 #else /* CONFIG_SMP */ 2057 2058 if (p->in_iowait) { 2059 delayacct_blkio_end(); 2060 atomic_dec(&task_rq(p)->nr_iowait); 2061 } 2062 2063 #endif /* CONFIG_SMP */ 2064 2065 ttwu_queue(p, cpu, wake_flags); 2066 stat: 2067 ttwu_stat(p, cpu, wake_flags); 2068 out: 2069 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2070 2071 return success; 2072 } 2073 2074 /** 2075 * try_to_wake_up_local - try to wake up a local task with rq lock held 2076 * @p: the thread to be awakened 2077 * @rf: request-queue flags for pinning 2078 * 2079 * Put @p on the run-queue if it's not already there. The caller must 2080 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2081 * the current task. 2082 */ 2083 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2084 { 2085 struct rq *rq = task_rq(p); 2086 2087 if (WARN_ON_ONCE(rq != this_rq()) || 2088 WARN_ON_ONCE(p == current)) 2089 return; 2090 2091 lockdep_assert_held(&rq->lock); 2092 2093 if (!raw_spin_trylock(&p->pi_lock)) { 2094 /* 2095 * This is OK, because current is on_cpu, which avoids it being 2096 * picked for load-balance and preemption/IRQs are still 2097 * disabled avoiding further scheduler activity on it and we've 2098 * not yet picked a replacement task. 2099 */ 2100 rq_unlock(rq, rf); 2101 raw_spin_lock(&p->pi_lock); 2102 rq_relock(rq, rf); 2103 } 2104 2105 if (!(p->state & TASK_NORMAL)) 2106 goto out; 2107 2108 trace_sched_waking(p); 2109 2110 if (!task_on_rq_queued(p)) { 2111 if (p->in_iowait) { 2112 delayacct_blkio_end(); 2113 atomic_dec(&rq->nr_iowait); 2114 } 2115 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2116 } 2117 2118 ttwu_do_wakeup(rq, p, 0, rf); 2119 ttwu_stat(p, smp_processor_id(), 0); 2120 out: 2121 raw_spin_unlock(&p->pi_lock); 2122 } 2123 2124 /** 2125 * wake_up_process - Wake up a specific process 2126 * @p: The process to be woken up. 2127 * 2128 * Attempt to wake up the nominated process and move it to the set of runnable 2129 * processes. 2130 * 2131 * Return: 1 if the process was woken up, 0 if it was already running. 2132 * 2133 * It may be assumed that this function implies a write memory barrier before 2134 * changing the task state if and only if any tasks are woken up. 2135 */ 2136 int wake_up_process(struct task_struct *p) 2137 { 2138 return try_to_wake_up(p, TASK_NORMAL, 0); 2139 } 2140 EXPORT_SYMBOL(wake_up_process); 2141 2142 int wake_up_state(struct task_struct *p, unsigned int state) 2143 { 2144 return try_to_wake_up(p, state, 0); 2145 } 2146 2147 /* 2148 * Perform scheduler related setup for a newly forked process p. 2149 * p is forked by current. 2150 * 2151 * __sched_fork() is basic setup used by init_idle() too: 2152 */ 2153 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2154 { 2155 p->on_rq = 0; 2156 2157 p->se.on_rq = 0; 2158 p->se.exec_start = 0; 2159 p->se.sum_exec_runtime = 0; 2160 p->se.prev_sum_exec_runtime = 0; 2161 p->se.nr_migrations = 0; 2162 p->se.vruntime = 0; 2163 INIT_LIST_HEAD(&p->se.group_node); 2164 2165 #ifdef CONFIG_FAIR_GROUP_SCHED 2166 p->se.cfs_rq = NULL; 2167 #endif 2168 2169 #ifdef CONFIG_SCHEDSTATS 2170 /* Even if schedstat is disabled, there should not be garbage */ 2171 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2172 #endif 2173 2174 RB_CLEAR_NODE(&p->dl.rb_node); 2175 init_dl_task_timer(&p->dl); 2176 init_dl_inactive_task_timer(&p->dl); 2177 __dl_clear_params(p); 2178 2179 INIT_LIST_HEAD(&p->rt.run_list); 2180 p->rt.timeout = 0; 2181 p->rt.time_slice = sched_rr_timeslice; 2182 p->rt.on_rq = 0; 2183 p->rt.on_list = 0; 2184 2185 #ifdef CONFIG_PREEMPT_NOTIFIERS 2186 INIT_HLIST_HEAD(&p->preempt_notifiers); 2187 #endif 2188 2189 #ifdef CONFIG_NUMA_BALANCING 2190 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2191 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2192 p->mm->numa_scan_seq = 0; 2193 } 2194 2195 if (clone_flags & CLONE_VM) 2196 p->numa_preferred_nid = current->numa_preferred_nid; 2197 else 2198 p->numa_preferred_nid = -1; 2199 2200 p->node_stamp = 0ULL; 2201 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2202 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2203 p->numa_work.next = &p->numa_work; 2204 p->numa_faults = NULL; 2205 p->last_task_numa_placement = 0; 2206 p->last_sum_exec_runtime = 0; 2207 2208 p->numa_group = NULL; 2209 #endif /* CONFIG_NUMA_BALANCING */ 2210 } 2211 2212 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2213 2214 #ifdef CONFIG_NUMA_BALANCING 2215 2216 void set_numabalancing_state(bool enabled) 2217 { 2218 if (enabled) 2219 static_branch_enable(&sched_numa_balancing); 2220 else 2221 static_branch_disable(&sched_numa_balancing); 2222 } 2223 2224 #ifdef CONFIG_PROC_SYSCTL 2225 int sysctl_numa_balancing(struct ctl_table *table, int write, 2226 void __user *buffer, size_t *lenp, loff_t *ppos) 2227 { 2228 struct ctl_table t; 2229 int err; 2230 int state = static_branch_likely(&sched_numa_balancing); 2231 2232 if (write && !capable(CAP_SYS_ADMIN)) 2233 return -EPERM; 2234 2235 t = *table; 2236 t.data = &state; 2237 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2238 if (err < 0) 2239 return err; 2240 if (write) 2241 set_numabalancing_state(state); 2242 return err; 2243 } 2244 #endif 2245 #endif 2246 2247 #ifdef CONFIG_SCHEDSTATS 2248 2249 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2250 static bool __initdata __sched_schedstats = false; 2251 2252 static void set_schedstats(bool enabled) 2253 { 2254 if (enabled) 2255 static_branch_enable(&sched_schedstats); 2256 else 2257 static_branch_disable(&sched_schedstats); 2258 } 2259 2260 void force_schedstat_enabled(void) 2261 { 2262 if (!schedstat_enabled()) { 2263 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2264 static_branch_enable(&sched_schedstats); 2265 } 2266 } 2267 2268 static int __init setup_schedstats(char *str) 2269 { 2270 int ret = 0; 2271 if (!str) 2272 goto out; 2273 2274 /* 2275 * This code is called before jump labels have been set up, so we can't 2276 * change the static branch directly just yet. Instead set a temporary 2277 * variable so init_schedstats() can do it later. 2278 */ 2279 if (!strcmp(str, "enable")) { 2280 __sched_schedstats = true; 2281 ret = 1; 2282 } else if (!strcmp(str, "disable")) { 2283 __sched_schedstats = false; 2284 ret = 1; 2285 } 2286 out: 2287 if (!ret) 2288 pr_warn("Unable to parse schedstats=\n"); 2289 2290 return ret; 2291 } 2292 __setup("schedstats=", setup_schedstats); 2293 2294 static void __init init_schedstats(void) 2295 { 2296 set_schedstats(__sched_schedstats); 2297 } 2298 2299 #ifdef CONFIG_PROC_SYSCTL 2300 int sysctl_schedstats(struct ctl_table *table, int write, 2301 void __user *buffer, size_t *lenp, loff_t *ppos) 2302 { 2303 struct ctl_table t; 2304 int err; 2305 int state = static_branch_likely(&sched_schedstats); 2306 2307 if (write && !capable(CAP_SYS_ADMIN)) 2308 return -EPERM; 2309 2310 t = *table; 2311 t.data = &state; 2312 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2313 if (err < 0) 2314 return err; 2315 if (write) 2316 set_schedstats(state); 2317 return err; 2318 } 2319 #endif /* CONFIG_PROC_SYSCTL */ 2320 #else /* !CONFIG_SCHEDSTATS */ 2321 static inline void init_schedstats(void) {} 2322 #endif /* CONFIG_SCHEDSTATS */ 2323 2324 /* 2325 * fork()/clone()-time setup: 2326 */ 2327 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2328 { 2329 unsigned long flags; 2330 int cpu = get_cpu(); 2331 2332 __sched_fork(clone_flags, p); 2333 /* 2334 * We mark the process as NEW here. This guarantees that 2335 * nobody will actually run it, and a signal or other external 2336 * event cannot wake it up and insert it on the runqueue either. 2337 */ 2338 p->state = TASK_NEW; 2339 2340 /* 2341 * Make sure we do not leak PI boosting priority to the child. 2342 */ 2343 p->prio = current->normal_prio; 2344 2345 /* 2346 * Revert to default priority/policy on fork if requested. 2347 */ 2348 if (unlikely(p->sched_reset_on_fork)) { 2349 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2350 p->policy = SCHED_NORMAL; 2351 p->static_prio = NICE_TO_PRIO(0); 2352 p->rt_priority = 0; 2353 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2354 p->static_prio = NICE_TO_PRIO(0); 2355 2356 p->prio = p->normal_prio = __normal_prio(p); 2357 set_load_weight(p); 2358 2359 /* 2360 * We don't need the reset flag anymore after the fork. It has 2361 * fulfilled its duty: 2362 */ 2363 p->sched_reset_on_fork = 0; 2364 } 2365 2366 if (dl_prio(p->prio)) { 2367 put_cpu(); 2368 return -EAGAIN; 2369 } else if (rt_prio(p->prio)) { 2370 p->sched_class = &rt_sched_class; 2371 } else { 2372 p->sched_class = &fair_sched_class; 2373 } 2374 2375 init_entity_runnable_average(&p->se); 2376 2377 /* 2378 * The child is not yet in the pid-hash so no cgroup attach races, 2379 * and the cgroup is pinned to this child due to cgroup_fork() 2380 * is ran before sched_fork(). 2381 * 2382 * Silence PROVE_RCU. 2383 */ 2384 raw_spin_lock_irqsave(&p->pi_lock, flags); 2385 /* 2386 * We're setting the CPU for the first time, we don't migrate, 2387 * so use __set_task_cpu(). 2388 */ 2389 __set_task_cpu(p, cpu); 2390 if (p->sched_class->task_fork) 2391 p->sched_class->task_fork(p); 2392 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2393 2394 #ifdef CONFIG_SCHED_INFO 2395 if (likely(sched_info_on())) 2396 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2397 #endif 2398 #if defined(CONFIG_SMP) 2399 p->on_cpu = 0; 2400 #endif 2401 init_task_preempt_count(p); 2402 #ifdef CONFIG_SMP 2403 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2404 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2405 #endif 2406 2407 put_cpu(); 2408 return 0; 2409 } 2410 2411 unsigned long to_ratio(u64 period, u64 runtime) 2412 { 2413 if (runtime == RUNTIME_INF) 2414 return BW_UNIT; 2415 2416 /* 2417 * Doing this here saves a lot of checks in all 2418 * the calling paths, and returning zero seems 2419 * safe for them anyway. 2420 */ 2421 if (period == 0) 2422 return 0; 2423 2424 return div64_u64(runtime << BW_SHIFT, period); 2425 } 2426 2427 /* 2428 * wake_up_new_task - wake up a newly created task for the first time. 2429 * 2430 * This function will do some initial scheduler statistics housekeeping 2431 * that must be done for every newly created context, then puts the task 2432 * on the runqueue and wakes it. 2433 */ 2434 void wake_up_new_task(struct task_struct *p) 2435 { 2436 struct rq_flags rf; 2437 struct rq *rq; 2438 2439 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2440 p->state = TASK_RUNNING; 2441 #ifdef CONFIG_SMP 2442 /* 2443 * Fork balancing, do it here and not earlier because: 2444 * - cpus_allowed can change in the fork path 2445 * - any previously selected CPU might disappear through hotplug 2446 * 2447 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2448 * as we're not fully set-up yet. 2449 */ 2450 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2451 #endif 2452 rq = __task_rq_lock(p, &rf); 2453 update_rq_clock(rq); 2454 post_init_entity_util_avg(&p->se); 2455 2456 activate_task(rq, p, ENQUEUE_NOCLOCK); 2457 p->on_rq = TASK_ON_RQ_QUEUED; 2458 trace_sched_wakeup_new(p); 2459 check_preempt_curr(rq, p, WF_FORK); 2460 #ifdef CONFIG_SMP 2461 if (p->sched_class->task_woken) { 2462 /* 2463 * Nothing relies on rq->lock after this, so its fine to 2464 * drop it. 2465 */ 2466 rq_unpin_lock(rq, &rf); 2467 p->sched_class->task_woken(rq, p); 2468 rq_repin_lock(rq, &rf); 2469 } 2470 #endif 2471 task_rq_unlock(rq, p, &rf); 2472 } 2473 2474 #ifdef CONFIG_PREEMPT_NOTIFIERS 2475 2476 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2477 2478 void preempt_notifier_inc(void) 2479 { 2480 static_key_slow_inc(&preempt_notifier_key); 2481 } 2482 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2483 2484 void preempt_notifier_dec(void) 2485 { 2486 static_key_slow_dec(&preempt_notifier_key); 2487 } 2488 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2489 2490 /** 2491 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2492 * @notifier: notifier struct to register 2493 */ 2494 void preempt_notifier_register(struct preempt_notifier *notifier) 2495 { 2496 if (!static_key_false(&preempt_notifier_key)) 2497 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2498 2499 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2500 } 2501 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2502 2503 /** 2504 * preempt_notifier_unregister - no longer interested in preemption notifications 2505 * @notifier: notifier struct to unregister 2506 * 2507 * This is *not* safe to call from within a preemption notifier. 2508 */ 2509 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2510 { 2511 hlist_del(¬ifier->link); 2512 } 2513 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2514 2515 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2516 { 2517 struct preempt_notifier *notifier; 2518 2519 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2520 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2521 } 2522 2523 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2524 { 2525 if (static_key_false(&preempt_notifier_key)) 2526 __fire_sched_in_preempt_notifiers(curr); 2527 } 2528 2529 static void 2530 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2531 struct task_struct *next) 2532 { 2533 struct preempt_notifier *notifier; 2534 2535 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2536 notifier->ops->sched_out(notifier, next); 2537 } 2538 2539 static __always_inline void 2540 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2541 struct task_struct *next) 2542 { 2543 if (static_key_false(&preempt_notifier_key)) 2544 __fire_sched_out_preempt_notifiers(curr, next); 2545 } 2546 2547 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2548 2549 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2550 { 2551 } 2552 2553 static inline void 2554 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2555 struct task_struct *next) 2556 { 2557 } 2558 2559 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2560 2561 /** 2562 * prepare_task_switch - prepare to switch tasks 2563 * @rq: the runqueue preparing to switch 2564 * @prev: the current task that is being switched out 2565 * @next: the task we are going to switch to. 2566 * 2567 * This is called with the rq lock held and interrupts off. It must 2568 * be paired with a subsequent finish_task_switch after the context 2569 * switch. 2570 * 2571 * prepare_task_switch sets up locking and calls architecture specific 2572 * hooks. 2573 */ 2574 static inline void 2575 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2576 struct task_struct *next) 2577 { 2578 sched_info_switch(rq, prev, next); 2579 perf_event_task_sched_out(prev, next); 2580 fire_sched_out_preempt_notifiers(prev, next); 2581 prepare_lock_switch(rq, next); 2582 prepare_arch_switch(next); 2583 } 2584 2585 /** 2586 * finish_task_switch - clean up after a task-switch 2587 * @prev: the thread we just switched away from. 2588 * 2589 * finish_task_switch must be called after the context switch, paired 2590 * with a prepare_task_switch call before the context switch. 2591 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2592 * and do any other architecture-specific cleanup actions. 2593 * 2594 * Note that we may have delayed dropping an mm in context_switch(). If 2595 * so, we finish that here outside of the runqueue lock. (Doing it 2596 * with the lock held can cause deadlocks; see schedule() for 2597 * details.) 2598 * 2599 * The context switch have flipped the stack from under us and restored the 2600 * local variables which were saved when this task called schedule() in the 2601 * past. prev == current is still correct but we need to recalculate this_rq 2602 * because prev may have moved to another CPU. 2603 */ 2604 static struct rq *finish_task_switch(struct task_struct *prev) 2605 __releases(rq->lock) 2606 { 2607 struct rq *rq = this_rq(); 2608 struct mm_struct *mm = rq->prev_mm; 2609 long prev_state; 2610 2611 /* 2612 * The previous task will have left us with a preempt_count of 2 2613 * because it left us after: 2614 * 2615 * schedule() 2616 * preempt_disable(); // 1 2617 * __schedule() 2618 * raw_spin_lock_irq(&rq->lock) // 2 2619 * 2620 * Also, see FORK_PREEMPT_COUNT. 2621 */ 2622 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2623 "corrupted preempt_count: %s/%d/0x%x\n", 2624 current->comm, current->pid, preempt_count())) 2625 preempt_count_set(FORK_PREEMPT_COUNT); 2626 2627 rq->prev_mm = NULL; 2628 2629 /* 2630 * A task struct has one reference for the use as "current". 2631 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2632 * schedule one last time. The schedule call will never return, and 2633 * the scheduled task must drop that reference. 2634 * 2635 * We must observe prev->state before clearing prev->on_cpu (in 2636 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2637 * running on another CPU and we could rave with its RUNNING -> DEAD 2638 * transition, resulting in a double drop. 2639 */ 2640 prev_state = prev->state; 2641 vtime_task_switch(prev); 2642 perf_event_task_sched_in(prev, current); 2643 /* 2644 * The membarrier system call requires a full memory barrier 2645 * after storing to rq->curr, before going back to user-space. 2646 * 2647 * TODO: This smp_mb__after_unlock_lock can go away if PPC end 2648 * up adding a full barrier to switch_mm(), or we should figure 2649 * out if a smp_mb__after_unlock_lock is really the proper API 2650 * to use. 2651 */ 2652 smp_mb__after_unlock_lock(); 2653 finish_lock_switch(rq, prev); 2654 finish_arch_post_lock_switch(); 2655 2656 fire_sched_in_preempt_notifiers(current); 2657 if (mm) 2658 mmdrop(mm); 2659 if (unlikely(prev_state == TASK_DEAD)) { 2660 if (prev->sched_class->task_dead) 2661 prev->sched_class->task_dead(prev); 2662 2663 /* 2664 * Remove function-return probe instances associated with this 2665 * task and put them back on the free list. 2666 */ 2667 kprobe_flush_task(prev); 2668 2669 /* Task is done with its stack. */ 2670 put_task_stack(prev); 2671 2672 put_task_struct(prev); 2673 } 2674 2675 tick_nohz_task_switch(); 2676 return rq; 2677 } 2678 2679 #ifdef CONFIG_SMP 2680 2681 /* rq->lock is NOT held, but preemption is disabled */ 2682 static void __balance_callback(struct rq *rq) 2683 { 2684 struct callback_head *head, *next; 2685 void (*func)(struct rq *rq); 2686 unsigned long flags; 2687 2688 raw_spin_lock_irqsave(&rq->lock, flags); 2689 head = rq->balance_callback; 2690 rq->balance_callback = NULL; 2691 while (head) { 2692 func = (void (*)(struct rq *))head->func; 2693 next = head->next; 2694 head->next = NULL; 2695 head = next; 2696 2697 func(rq); 2698 } 2699 raw_spin_unlock_irqrestore(&rq->lock, flags); 2700 } 2701 2702 static inline void balance_callback(struct rq *rq) 2703 { 2704 if (unlikely(rq->balance_callback)) 2705 __balance_callback(rq); 2706 } 2707 2708 #else 2709 2710 static inline void balance_callback(struct rq *rq) 2711 { 2712 } 2713 2714 #endif 2715 2716 /** 2717 * schedule_tail - first thing a freshly forked thread must call. 2718 * @prev: the thread we just switched away from. 2719 */ 2720 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2721 __releases(rq->lock) 2722 { 2723 struct rq *rq; 2724 2725 /* 2726 * New tasks start with FORK_PREEMPT_COUNT, see there and 2727 * finish_task_switch() for details. 2728 * 2729 * finish_task_switch() will drop rq->lock() and lower preempt_count 2730 * and the preempt_enable() will end up enabling preemption (on 2731 * PREEMPT_COUNT kernels). 2732 */ 2733 2734 rq = finish_task_switch(prev); 2735 balance_callback(rq); 2736 preempt_enable(); 2737 2738 if (current->set_child_tid) 2739 put_user(task_pid_vnr(current), current->set_child_tid); 2740 } 2741 2742 /* 2743 * context_switch - switch to the new MM and the new thread's register state. 2744 */ 2745 static __always_inline struct rq * 2746 context_switch(struct rq *rq, struct task_struct *prev, 2747 struct task_struct *next, struct rq_flags *rf) 2748 { 2749 struct mm_struct *mm, *oldmm; 2750 2751 prepare_task_switch(rq, prev, next); 2752 2753 mm = next->mm; 2754 oldmm = prev->active_mm; 2755 /* 2756 * For paravirt, this is coupled with an exit in switch_to to 2757 * combine the page table reload and the switch backend into 2758 * one hypercall. 2759 */ 2760 arch_start_context_switch(prev); 2761 2762 if (!mm) { 2763 next->active_mm = oldmm; 2764 mmgrab(oldmm); 2765 enter_lazy_tlb(oldmm, next); 2766 } else 2767 switch_mm_irqs_off(oldmm, mm, next); 2768 2769 if (!prev->mm) { 2770 prev->active_mm = NULL; 2771 rq->prev_mm = oldmm; 2772 } 2773 2774 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2775 2776 /* 2777 * Since the runqueue lock will be released by the next 2778 * task (which is an invalid locking op but in the case 2779 * of the scheduler it's an obvious special-case), so we 2780 * do an early lockdep release here: 2781 */ 2782 rq_unpin_lock(rq, rf); 2783 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2784 2785 /* Here we just switch the register state and the stack. */ 2786 switch_to(prev, next, prev); 2787 barrier(); 2788 2789 return finish_task_switch(prev); 2790 } 2791 2792 /* 2793 * nr_running and nr_context_switches: 2794 * 2795 * externally visible scheduler statistics: current number of runnable 2796 * threads, total number of context switches performed since bootup. 2797 */ 2798 unsigned long nr_running(void) 2799 { 2800 unsigned long i, sum = 0; 2801 2802 for_each_online_cpu(i) 2803 sum += cpu_rq(i)->nr_running; 2804 2805 return sum; 2806 } 2807 2808 /* 2809 * Check if only the current task is running on the CPU. 2810 * 2811 * Caution: this function does not check that the caller has disabled 2812 * preemption, thus the result might have a time-of-check-to-time-of-use 2813 * race. The caller is responsible to use it correctly, for example: 2814 * 2815 * - from a non-preemptable section (of course) 2816 * 2817 * - from a thread that is bound to a single CPU 2818 * 2819 * - in a loop with very short iterations (e.g. a polling loop) 2820 */ 2821 bool single_task_running(void) 2822 { 2823 return raw_rq()->nr_running == 1; 2824 } 2825 EXPORT_SYMBOL(single_task_running); 2826 2827 unsigned long long nr_context_switches(void) 2828 { 2829 int i; 2830 unsigned long long sum = 0; 2831 2832 for_each_possible_cpu(i) 2833 sum += cpu_rq(i)->nr_switches; 2834 2835 return sum; 2836 } 2837 2838 /* 2839 * IO-wait accounting, and how its mostly bollocks (on SMP). 2840 * 2841 * The idea behind IO-wait account is to account the idle time that we could 2842 * have spend running if it were not for IO. That is, if we were to improve the 2843 * storage performance, we'd have a proportional reduction in IO-wait time. 2844 * 2845 * This all works nicely on UP, where, when a task blocks on IO, we account 2846 * idle time as IO-wait, because if the storage were faster, it could've been 2847 * running and we'd not be idle. 2848 * 2849 * This has been extended to SMP, by doing the same for each CPU. This however 2850 * is broken. 2851 * 2852 * Imagine for instance the case where two tasks block on one CPU, only the one 2853 * CPU will have IO-wait accounted, while the other has regular idle. Even 2854 * though, if the storage were faster, both could've ran at the same time, 2855 * utilising both CPUs. 2856 * 2857 * This means, that when looking globally, the current IO-wait accounting on 2858 * SMP is a lower bound, by reason of under accounting. 2859 * 2860 * Worse, since the numbers are provided per CPU, they are sometimes 2861 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2862 * associated with any one particular CPU, it can wake to another CPU than it 2863 * blocked on. This means the per CPU IO-wait number is meaningless. 2864 * 2865 * Task CPU affinities can make all that even more 'interesting'. 2866 */ 2867 2868 unsigned long nr_iowait(void) 2869 { 2870 unsigned long i, sum = 0; 2871 2872 for_each_possible_cpu(i) 2873 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2874 2875 return sum; 2876 } 2877 2878 /* 2879 * Consumers of these two interfaces, like for example the cpufreq menu 2880 * governor are using nonsensical data. Boosting frequency for a CPU that has 2881 * IO-wait which might not even end up running the task when it does become 2882 * runnable. 2883 */ 2884 2885 unsigned long nr_iowait_cpu(int cpu) 2886 { 2887 struct rq *this = cpu_rq(cpu); 2888 return atomic_read(&this->nr_iowait); 2889 } 2890 2891 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2892 { 2893 struct rq *rq = this_rq(); 2894 *nr_waiters = atomic_read(&rq->nr_iowait); 2895 *load = rq->load.weight; 2896 } 2897 2898 #ifdef CONFIG_SMP 2899 2900 /* 2901 * sched_exec - execve() is a valuable balancing opportunity, because at 2902 * this point the task has the smallest effective memory and cache footprint. 2903 */ 2904 void sched_exec(void) 2905 { 2906 struct task_struct *p = current; 2907 unsigned long flags; 2908 int dest_cpu; 2909 2910 raw_spin_lock_irqsave(&p->pi_lock, flags); 2911 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2912 if (dest_cpu == smp_processor_id()) 2913 goto unlock; 2914 2915 if (likely(cpu_active(dest_cpu))) { 2916 struct migration_arg arg = { p, dest_cpu }; 2917 2918 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2919 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2920 return; 2921 } 2922 unlock: 2923 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2924 } 2925 2926 #endif 2927 2928 DEFINE_PER_CPU(struct kernel_stat, kstat); 2929 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2930 2931 EXPORT_PER_CPU_SYMBOL(kstat); 2932 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2933 2934 /* 2935 * The function fair_sched_class.update_curr accesses the struct curr 2936 * and its field curr->exec_start; when called from task_sched_runtime(), 2937 * we observe a high rate of cache misses in practice. 2938 * Prefetching this data results in improved performance. 2939 */ 2940 static inline void prefetch_curr_exec_start(struct task_struct *p) 2941 { 2942 #ifdef CONFIG_FAIR_GROUP_SCHED 2943 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 2944 #else 2945 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 2946 #endif 2947 prefetch(curr); 2948 prefetch(&curr->exec_start); 2949 } 2950 2951 /* 2952 * Return accounted runtime for the task. 2953 * In case the task is currently running, return the runtime plus current's 2954 * pending runtime that have not been accounted yet. 2955 */ 2956 unsigned long long task_sched_runtime(struct task_struct *p) 2957 { 2958 struct rq_flags rf; 2959 struct rq *rq; 2960 u64 ns; 2961 2962 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2963 /* 2964 * 64-bit doesn't need locks to atomically read a 64bit value. 2965 * So we have a optimization chance when the task's delta_exec is 0. 2966 * Reading ->on_cpu is racy, but this is ok. 2967 * 2968 * If we race with it leaving CPU, we'll take a lock. So we're correct. 2969 * If we race with it entering CPU, unaccounted time is 0. This is 2970 * indistinguishable from the read occurring a few cycles earlier. 2971 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2972 * been accounted, so we're correct here as well. 2973 */ 2974 if (!p->on_cpu || !task_on_rq_queued(p)) 2975 return p->se.sum_exec_runtime; 2976 #endif 2977 2978 rq = task_rq_lock(p, &rf); 2979 /* 2980 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2981 * project cycles that may never be accounted to this 2982 * thread, breaking clock_gettime(). 2983 */ 2984 if (task_current(rq, p) && task_on_rq_queued(p)) { 2985 prefetch_curr_exec_start(p); 2986 update_rq_clock(rq); 2987 p->sched_class->update_curr(rq); 2988 } 2989 ns = p->se.sum_exec_runtime; 2990 task_rq_unlock(rq, p, &rf); 2991 2992 return ns; 2993 } 2994 2995 /* 2996 * This function gets called by the timer code, with HZ frequency. 2997 * We call it with interrupts disabled. 2998 */ 2999 void scheduler_tick(void) 3000 { 3001 int cpu = smp_processor_id(); 3002 struct rq *rq = cpu_rq(cpu); 3003 struct task_struct *curr = rq->curr; 3004 struct rq_flags rf; 3005 3006 sched_clock_tick(); 3007 3008 rq_lock(rq, &rf); 3009 3010 update_rq_clock(rq); 3011 curr->sched_class->task_tick(rq, curr, 0); 3012 cpu_load_update_active(rq); 3013 calc_global_load_tick(rq); 3014 3015 rq_unlock(rq, &rf); 3016 3017 perf_event_task_tick(); 3018 3019 #ifdef CONFIG_SMP 3020 rq->idle_balance = idle_cpu(cpu); 3021 trigger_load_balance(rq); 3022 #endif 3023 rq_last_tick_reset(rq); 3024 } 3025 3026 #ifdef CONFIG_NO_HZ_FULL 3027 /** 3028 * scheduler_tick_max_deferment 3029 * 3030 * Keep at least one tick per second when a single 3031 * active task is running because the scheduler doesn't 3032 * yet completely support full dynticks environment. 3033 * 3034 * This makes sure that uptime, CFS vruntime, load 3035 * balancing, etc... continue to move forward, even 3036 * with a very low granularity. 3037 * 3038 * Return: Maximum deferment in nanoseconds. 3039 */ 3040 u64 scheduler_tick_max_deferment(void) 3041 { 3042 struct rq *rq = this_rq(); 3043 unsigned long next, now = READ_ONCE(jiffies); 3044 3045 next = rq->last_sched_tick + HZ; 3046 3047 if (time_before_eq(next, now)) 3048 return 0; 3049 3050 return jiffies_to_nsecs(next - now); 3051 } 3052 #endif 3053 3054 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3055 defined(CONFIG_PREEMPT_TRACER)) 3056 /* 3057 * If the value passed in is equal to the current preempt count 3058 * then we just disabled preemption. Start timing the latency. 3059 */ 3060 static inline void preempt_latency_start(int val) 3061 { 3062 if (preempt_count() == val) { 3063 unsigned long ip = get_lock_parent_ip(); 3064 #ifdef CONFIG_DEBUG_PREEMPT 3065 current->preempt_disable_ip = ip; 3066 #endif 3067 trace_preempt_off(CALLER_ADDR0, ip); 3068 } 3069 } 3070 3071 void preempt_count_add(int val) 3072 { 3073 #ifdef CONFIG_DEBUG_PREEMPT 3074 /* 3075 * Underflow? 3076 */ 3077 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3078 return; 3079 #endif 3080 __preempt_count_add(val); 3081 #ifdef CONFIG_DEBUG_PREEMPT 3082 /* 3083 * Spinlock count overflowing soon? 3084 */ 3085 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3086 PREEMPT_MASK - 10); 3087 #endif 3088 preempt_latency_start(val); 3089 } 3090 EXPORT_SYMBOL(preempt_count_add); 3091 NOKPROBE_SYMBOL(preempt_count_add); 3092 3093 /* 3094 * If the value passed in equals to the current preempt count 3095 * then we just enabled preemption. Stop timing the latency. 3096 */ 3097 static inline void preempt_latency_stop(int val) 3098 { 3099 if (preempt_count() == val) 3100 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3101 } 3102 3103 void preempt_count_sub(int val) 3104 { 3105 #ifdef CONFIG_DEBUG_PREEMPT 3106 /* 3107 * Underflow? 3108 */ 3109 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3110 return; 3111 /* 3112 * Is the spinlock portion underflowing? 3113 */ 3114 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3115 !(preempt_count() & PREEMPT_MASK))) 3116 return; 3117 #endif 3118 3119 preempt_latency_stop(val); 3120 __preempt_count_sub(val); 3121 } 3122 EXPORT_SYMBOL(preempt_count_sub); 3123 NOKPROBE_SYMBOL(preempt_count_sub); 3124 3125 #else 3126 static inline void preempt_latency_start(int val) { } 3127 static inline void preempt_latency_stop(int val) { } 3128 #endif 3129 3130 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3131 { 3132 #ifdef CONFIG_DEBUG_PREEMPT 3133 return p->preempt_disable_ip; 3134 #else 3135 return 0; 3136 #endif 3137 } 3138 3139 /* 3140 * Print scheduling while atomic bug: 3141 */ 3142 static noinline void __schedule_bug(struct task_struct *prev) 3143 { 3144 /* Save this before calling printk(), since that will clobber it */ 3145 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3146 3147 if (oops_in_progress) 3148 return; 3149 3150 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3151 prev->comm, prev->pid, preempt_count()); 3152 3153 debug_show_held_locks(prev); 3154 print_modules(); 3155 if (irqs_disabled()) 3156 print_irqtrace_events(prev); 3157 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3158 && in_atomic_preempt_off()) { 3159 pr_err("Preemption disabled at:"); 3160 print_ip_sym(preempt_disable_ip); 3161 pr_cont("\n"); 3162 } 3163 if (panic_on_warn) 3164 panic("scheduling while atomic\n"); 3165 3166 dump_stack(); 3167 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3168 } 3169 3170 /* 3171 * Various schedule()-time debugging checks and statistics: 3172 */ 3173 static inline void schedule_debug(struct task_struct *prev) 3174 { 3175 #ifdef CONFIG_SCHED_STACK_END_CHECK 3176 if (task_stack_end_corrupted(prev)) 3177 panic("corrupted stack end detected inside scheduler\n"); 3178 #endif 3179 3180 if (unlikely(in_atomic_preempt_off())) { 3181 __schedule_bug(prev); 3182 preempt_count_set(PREEMPT_DISABLED); 3183 } 3184 rcu_sleep_check(); 3185 3186 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3187 3188 schedstat_inc(this_rq()->sched_count); 3189 } 3190 3191 /* 3192 * Pick up the highest-prio task: 3193 */ 3194 static inline struct task_struct * 3195 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3196 { 3197 const struct sched_class *class; 3198 struct task_struct *p; 3199 3200 /* 3201 * Optimization: we know that if all tasks are in the fair class we can 3202 * call that function directly, but only if the @prev task wasn't of a 3203 * higher scheduling class, because otherwise those loose the 3204 * opportunity to pull in more work from other CPUs. 3205 */ 3206 if (likely((prev->sched_class == &idle_sched_class || 3207 prev->sched_class == &fair_sched_class) && 3208 rq->nr_running == rq->cfs.h_nr_running)) { 3209 3210 p = fair_sched_class.pick_next_task(rq, prev, rf); 3211 if (unlikely(p == RETRY_TASK)) 3212 goto again; 3213 3214 /* Assumes fair_sched_class->next == idle_sched_class */ 3215 if (unlikely(!p)) 3216 p = idle_sched_class.pick_next_task(rq, prev, rf); 3217 3218 return p; 3219 } 3220 3221 again: 3222 for_each_class(class) { 3223 p = class->pick_next_task(rq, prev, rf); 3224 if (p) { 3225 if (unlikely(p == RETRY_TASK)) 3226 goto again; 3227 return p; 3228 } 3229 } 3230 3231 /* The idle class should always have a runnable task: */ 3232 BUG(); 3233 } 3234 3235 /* 3236 * __schedule() is the main scheduler function. 3237 * 3238 * The main means of driving the scheduler and thus entering this function are: 3239 * 3240 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3241 * 3242 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3243 * paths. For example, see arch/x86/entry_64.S. 3244 * 3245 * To drive preemption between tasks, the scheduler sets the flag in timer 3246 * interrupt handler scheduler_tick(). 3247 * 3248 * 3. Wakeups don't really cause entry into schedule(). They add a 3249 * task to the run-queue and that's it. 3250 * 3251 * Now, if the new task added to the run-queue preempts the current 3252 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3253 * called on the nearest possible occasion: 3254 * 3255 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3256 * 3257 * - in syscall or exception context, at the next outmost 3258 * preempt_enable(). (this might be as soon as the wake_up()'s 3259 * spin_unlock()!) 3260 * 3261 * - in IRQ context, return from interrupt-handler to 3262 * preemptible context 3263 * 3264 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3265 * then at the next: 3266 * 3267 * - cond_resched() call 3268 * - explicit schedule() call 3269 * - return from syscall or exception to user-space 3270 * - return from interrupt-handler to user-space 3271 * 3272 * WARNING: must be called with preemption disabled! 3273 */ 3274 static void __sched notrace __schedule(bool preempt) 3275 { 3276 struct task_struct *prev, *next; 3277 unsigned long *switch_count; 3278 struct rq_flags rf; 3279 struct rq *rq; 3280 int cpu; 3281 3282 cpu = smp_processor_id(); 3283 rq = cpu_rq(cpu); 3284 prev = rq->curr; 3285 3286 schedule_debug(prev); 3287 3288 if (sched_feat(HRTICK)) 3289 hrtick_clear(rq); 3290 3291 local_irq_disable(); 3292 rcu_note_context_switch(preempt); 3293 3294 /* 3295 * Make sure that signal_pending_state()->signal_pending() below 3296 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3297 * done by the caller to avoid the race with signal_wake_up(). 3298 */ 3299 rq_lock(rq, &rf); 3300 smp_mb__after_spinlock(); 3301 3302 /* Promote REQ to ACT */ 3303 rq->clock_update_flags <<= 1; 3304 update_rq_clock(rq); 3305 3306 switch_count = &prev->nivcsw; 3307 if (!preempt && prev->state) { 3308 if (unlikely(signal_pending_state(prev->state, prev))) { 3309 prev->state = TASK_RUNNING; 3310 } else { 3311 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3312 prev->on_rq = 0; 3313 3314 if (prev->in_iowait) { 3315 atomic_inc(&rq->nr_iowait); 3316 delayacct_blkio_start(); 3317 } 3318 3319 /* 3320 * If a worker went to sleep, notify and ask workqueue 3321 * whether it wants to wake up a task to maintain 3322 * concurrency. 3323 */ 3324 if (prev->flags & PF_WQ_WORKER) { 3325 struct task_struct *to_wakeup; 3326 3327 to_wakeup = wq_worker_sleeping(prev); 3328 if (to_wakeup) 3329 try_to_wake_up_local(to_wakeup, &rf); 3330 } 3331 } 3332 switch_count = &prev->nvcsw; 3333 } 3334 3335 next = pick_next_task(rq, prev, &rf); 3336 clear_tsk_need_resched(prev); 3337 clear_preempt_need_resched(); 3338 3339 if (likely(prev != next)) { 3340 rq->nr_switches++; 3341 rq->curr = next; 3342 /* 3343 * The membarrier system call requires each architecture 3344 * to have a full memory barrier after updating 3345 * rq->curr, before returning to user-space. For TSO 3346 * (e.g. x86), the architecture must provide its own 3347 * barrier in switch_mm(). For weakly ordered machines 3348 * for which spin_unlock() acts as a full memory 3349 * barrier, finish_lock_switch() in common code takes 3350 * care of this barrier. For weakly ordered machines for 3351 * which spin_unlock() acts as a RELEASE barrier (only 3352 * arm64 and PowerPC), arm64 has a full barrier in 3353 * switch_to(), and PowerPC has 3354 * smp_mb__after_unlock_lock() before 3355 * finish_lock_switch(). 3356 */ 3357 ++*switch_count; 3358 3359 trace_sched_switch(preempt, prev, next); 3360 3361 /* Also unlocks the rq: */ 3362 rq = context_switch(rq, prev, next, &rf); 3363 } else { 3364 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3365 rq_unlock_irq(rq, &rf); 3366 } 3367 3368 balance_callback(rq); 3369 } 3370 3371 void __noreturn do_task_dead(void) 3372 { 3373 /* 3374 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 3375 * when the following two conditions become true. 3376 * - There is race condition of mmap_sem (It is acquired by 3377 * exit_mm()), and 3378 * - SMI occurs before setting TASK_RUNINNG. 3379 * (or hypervisor of virtual machine switches to other guest) 3380 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 3381 * 3382 * To avoid it, we have to wait for releasing tsk->pi_lock which 3383 * is held by try_to_wake_up() 3384 */ 3385 raw_spin_lock_irq(¤t->pi_lock); 3386 raw_spin_unlock_irq(¤t->pi_lock); 3387 3388 /* Causes final put_task_struct in finish_task_switch(): */ 3389 __set_current_state(TASK_DEAD); 3390 3391 /* Tell freezer to ignore us: */ 3392 current->flags |= PF_NOFREEZE; 3393 3394 __schedule(false); 3395 BUG(); 3396 3397 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3398 for (;;) 3399 cpu_relax(); 3400 } 3401 3402 static inline void sched_submit_work(struct task_struct *tsk) 3403 { 3404 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3405 return; 3406 /* 3407 * If we are going to sleep and we have plugged IO queued, 3408 * make sure to submit it to avoid deadlocks. 3409 */ 3410 if (blk_needs_flush_plug(tsk)) 3411 blk_schedule_flush_plug(tsk); 3412 } 3413 3414 asmlinkage __visible void __sched schedule(void) 3415 { 3416 struct task_struct *tsk = current; 3417 3418 sched_submit_work(tsk); 3419 do { 3420 preempt_disable(); 3421 __schedule(false); 3422 sched_preempt_enable_no_resched(); 3423 } while (need_resched()); 3424 } 3425 EXPORT_SYMBOL(schedule); 3426 3427 /* 3428 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3429 * state (have scheduled out non-voluntarily) by making sure that all 3430 * tasks have either left the run queue or have gone into user space. 3431 * As idle tasks do not do either, they must not ever be preempted 3432 * (schedule out non-voluntarily). 3433 * 3434 * schedule_idle() is similar to schedule_preempt_disable() except that it 3435 * never enables preemption because it does not call sched_submit_work(). 3436 */ 3437 void __sched schedule_idle(void) 3438 { 3439 /* 3440 * As this skips calling sched_submit_work(), which the idle task does 3441 * regardless because that function is a nop when the task is in a 3442 * TASK_RUNNING state, make sure this isn't used someplace that the 3443 * current task can be in any other state. Note, idle is always in the 3444 * TASK_RUNNING state. 3445 */ 3446 WARN_ON_ONCE(current->state); 3447 do { 3448 __schedule(false); 3449 } while (need_resched()); 3450 } 3451 3452 #ifdef CONFIG_CONTEXT_TRACKING 3453 asmlinkage __visible void __sched schedule_user(void) 3454 { 3455 /* 3456 * If we come here after a random call to set_need_resched(), 3457 * or we have been woken up remotely but the IPI has not yet arrived, 3458 * we haven't yet exited the RCU idle mode. Do it here manually until 3459 * we find a better solution. 3460 * 3461 * NB: There are buggy callers of this function. Ideally we 3462 * should warn if prev_state != CONTEXT_USER, but that will trigger 3463 * too frequently to make sense yet. 3464 */ 3465 enum ctx_state prev_state = exception_enter(); 3466 schedule(); 3467 exception_exit(prev_state); 3468 } 3469 #endif 3470 3471 /** 3472 * schedule_preempt_disabled - called with preemption disabled 3473 * 3474 * Returns with preemption disabled. Note: preempt_count must be 1 3475 */ 3476 void __sched schedule_preempt_disabled(void) 3477 { 3478 sched_preempt_enable_no_resched(); 3479 schedule(); 3480 preempt_disable(); 3481 } 3482 3483 static void __sched notrace preempt_schedule_common(void) 3484 { 3485 do { 3486 /* 3487 * Because the function tracer can trace preempt_count_sub() 3488 * and it also uses preempt_enable/disable_notrace(), if 3489 * NEED_RESCHED is set, the preempt_enable_notrace() called 3490 * by the function tracer will call this function again and 3491 * cause infinite recursion. 3492 * 3493 * Preemption must be disabled here before the function 3494 * tracer can trace. Break up preempt_disable() into two 3495 * calls. One to disable preemption without fear of being 3496 * traced. The other to still record the preemption latency, 3497 * which can also be traced by the function tracer. 3498 */ 3499 preempt_disable_notrace(); 3500 preempt_latency_start(1); 3501 __schedule(true); 3502 preempt_latency_stop(1); 3503 preempt_enable_no_resched_notrace(); 3504 3505 /* 3506 * Check again in case we missed a preemption opportunity 3507 * between schedule and now. 3508 */ 3509 } while (need_resched()); 3510 } 3511 3512 #ifdef CONFIG_PREEMPT 3513 /* 3514 * this is the entry point to schedule() from in-kernel preemption 3515 * off of preempt_enable. Kernel preemptions off return from interrupt 3516 * occur there and call schedule directly. 3517 */ 3518 asmlinkage __visible void __sched notrace preempt_schedule(void) 3519 { 3520 /* 3521 * If there is a non-zero preempt_count or interrupts are disabled, 3522 * we do not want to preempt the current task. Just return.. 3523 */ 3524 if (likely(!preemptible())) 3525 return; 3526 3527 preempt_schedule_common(); 3528 } 3529 NOKPROBE_SYMBOL(preempt_schedule); 3530 EXPORT_SYMBOL(preempt_schedule); 3531 3532 /** 3533 * preempt_schedule_notrace - preempt_schedule called by tracing 3534 * 3535 * The tracing infrastructure uses preempt_enable_notrace to prevent 3536 * recursion and tracing preempt enabling caused by the tracing 3537 * infrastructure itself. But as tracing can happen in areas coming 3538 * from userspace or just about to enter userspace, a preempt enable 3539 * can occur before user_exit() is called. This will cause the scheduler 3540 * to be called when the system is still in usermode. 3541 * 3542 * To prevent this, the preempt_enable_notrace will use this function 3543 * instead of preempt_schedule() to exit user context if needed before 3544 * calling the scheduler. 3545 */ 3546 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3547 { 3548 enum ctx_state prev_ctx; 3549 3550 if (likely(!preemptible())) 3551 return; 3552 3553 do { 3554 /* 3555 * Because the function tracer can trace preempt_count_sub() 3556 * and it also uses preempt_enable/disable_notrace(), if 3557 * NEED_RESCHED is set, the preempt_enable_notrace() called 3558 * by the function tracer will call this function again and 3559 * cause infinite recursion. 3560 * 3561 * Preemption must be disabled here before the function 3562 * tracer can trace. Break up preempt_disable() into two 3563 * calls. One to disable preemption without fear of being 3564 * traced. The other to still record the preemption latency, 3565 * which can also be traced by the function tracer. 3566 */ 3567 preempt_disable_notrace(); 3568 preempt_latency_start(1); 3569 /* 3570 * Needs preempt disabled in case user_exit() is traced 3571 * and the tracer calls preempt_enable_notrace() causing 3572 * an infinite recursion. 3573 */ 3574 prev_ctx = exception_enter(); 3575 __schedule(true); 3576 exception_exit(prev_ctx); 3577 3578 preempt_latency_stop(1); 3579 preempt_enable_no_resched_notrace(); 3580 } while (need_resched()); 3581 } 3582 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3583 3584 #endif /* CONFIG_PREEMPT */ 3585 3586 /* 3587 * this is the entry point to schedule() from kernel preemption 3588 * off of irq context. 3589 * Note, that this is called and return with irqs disabled. This will 3590 * protect us against recursive calling from irq. 3591 */ 3592 asmlinkage __visible void __sched preempt_schedule_irq(void) 3593 { 3594 enum ctx_state prev_state; 3595 3596 /* Catch callers which need to be fixed */ 3597 BUG_ON(preempt_count() || !irqs_disabled()); 3598 3599 prev_state = exception_enter(); 3600 3601 do { 3602 preempt_disable(); 3603 local_irq_enable(); 3604 __schedule(true); 3605 local_irq_disable(); 3606 sched_preempt_enable_no_resched(); 3607 } while (need_resched()); 3608 3609 exception_exit(prev_state); 3610 } 3611 3612 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3613 void *key) 3614 { 3615 return try_to_wake_up(curr->private, mode, wake_flags); 3616 } 3617 EXPORT_SYMBOL(default_wake_function); 3618 3619 #ifdef CONFIG_RT_MUTEXES 3620 3621 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3622 { 3623 if (pi_task) 3624 prio = min(prio, pi_task->prio); 3625 3626 return prio; 3627 } 3628 3629 static inline int rt_effective_prio(struct task_struct *p, int prio) 3630 { 3631 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3632 3633 return __rt_effective_prio(pi_task, prio); 3634 } 3635 3636 /* 3637 * rt_mutex_setprio - set the current priority of a task 3638 * @p: task to boost 3639 * @pi_task: donor task 3640 * 3641 * This function changes the 'effective' priority of a task. It does 3642 * not touch ->normal_prio like __setscheduler(). 3643 * 3644 * Used by the rt_mutex code to implement priority inheritance 3645 * logic. Call site only calls if the priority of the task changed. 3646 */ 3647 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3648 { 3649 int prio, oldprio, queued, running, queue_flag = 3650 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3651 const struct sched_class *prev_class; 3652 struct rq_flags rf; 3653 struct rq *rq; 3654 3655 /* XXX used to be waiter->prio, not waiter->task->prio */ 3656 prio = __rt_effective_prio(pi_task, p->normal_prio); 3657 3658 /* 3659 * If nothing changed; bail early. 3660 */ 3661 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3662 return; 3663 3664 rq = __task_rq_lock(p, &rf); 3665 update_rq_clock(rq); 3666 /* 3667 * Set under pi_lock && rq->lock, such that the value can be used under 3668 * either lock. 3669 * 3670 * Note that there is loads of tricky to make this pointer cache work 3671 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3672 * ensure a task is de-boosted (pi_task is set to NULL) before the 3673 * task is allowed to run again (and can exit). This ensures the pointer 3674 * points to a blocked task -- which guaratees the task is present. 3675 */ 3676 p->pi_top_task = pi_task; 3677 3678 /* 3679 * For FIFO/RR we only need to set prio, if that matches we're done. 3680 */ 3681 if (prio == p->prio && !dl_prio(prio)) 3682 goto out_unlock; 3683 3684 /* 3685 * Idle task boosting is a nono in general. There is one 3686 * exception, when PREEMPT_RT and NOHZ is active: 3687 * 3688 * The idle task calls get_next_timer_interrupt() and holds 3689 * the timer wheel base->lock on the CPU and another CPU wants 3690 * to access the timer (probably to cancel it). We can safely 3691 * ignore the boosting request, as the idle CPU runs this code 3692 * with interrupts disabled and will complete the lock 3693 * protected section without being interrupted. So there is no 3694 * real need to boost. 3695 */ 3696 if (unlikely(p == rq->idle)) { 3697 WARN_ON(p != rq->curr); 3698 WARN_ON(p->pi_blocked_on); 3699 goto out_unlock; 3700 } 3701 3702 trace_sched_pi_setprio(p, pi_task); 3703 oldprio = p->prio; 3704 3705 if (oldprio == prio) 3706 queue_flag &= ~DEQUEUE_MOVE; 3707 3708 prev_class = p->sched_class; 3709 queued = task_on_rq_queued(p); 3710 running = task_current(rq, p); 3711 if (queued) 3712 dequeue_task(rq, p, queue_flag); 3713 if (running) 3714 put_prev_task(rq, p); 3715 3716 /* 3717 * Boosting condition are: 3718 * 1. -rt task is running and holds mutex A 3719 * --> -dl task blocks on mutex A 3720 * 3721 * 2. -dl task is running and holds mutex A 3722 * --> -dl task blocks on mutex A and could preempt the 3723 * running task 3724 */ 3725 if (dl_prio(prio)) { 3726 if (!dl_prio(p->normal_prio) || 3727 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3728 p->dl.dl_boosted = 1; 3729 queue_flag |= ENQUEUE_REPLENISH; 3730 } else 3731 p->dl.dl_boosted = 0; 3732 p->sched_class = &dl_sched_class; 3733 } else if (rt_prio(prio)) { 3734 if (dl_prio(oldprio)) 3735 p->dl.dl_boosted = 0; 3736 if (oldprio < prio) 3737 queue_flag |= ENQUEUE_HEAD; 3738 p->sched_class = &rt_sched_class; 3739 } else { 3740 if (dl_prio(oldprio)) 3741 p->dl.dl_boosted = 0; 3742 if (rt_prio(oldprio)) 3743 p->rt.timeout = 0; 3744 p->sched_class = &fair_sched_class; 3745 } 3746 3747 p->prio = prio; 3748 3749 if (queued) 3750 enqueue_task(rq, p, queue_flag); 3751 if (running) 3752 set_curr_task(rq, p); 3753 3754 check_class_changed(rq, p, prev_class, oldprio); 3755 out_unlock: 3756 /* Avoid rq from going away on us: */ 3757 preempt_disable(); 3758 __task_rq_unlock(rq, &rf); 3759 3760 balance_callback(rq); 3761 preempt_enable(); 3762 } 3763 #else 3764 static inline int rt_effective_prio(struct task_struct *p, int prio) 3765 { 3766 return prio; 3767 } 3768 #endif 3769 3770 void set_user_nice(struct task_struct *p, long nice) 3771 { 3772 bool queued, running; 3773 int old_prio, delta; 3774 struct rq_flags rf; 3775 struct rq *rq; 3776 3777 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3778 return; 3779 /* 3780 * We have to be careful, if called from sys_setpriority(), 3781 * the task might be in the middle of scheduling on another CPU. 3782 */ 3783 rq = task_rq_lock(p, &rf); 3784 update_rq_clock(rq); 3785 3786 /* 3787 * The RT priorities are set via sched_setscheduler(), but we still 3788 * allow the 'normal' nice value to be set - but as expected 3789 * it wont have any effect on scheduling until the task is 3790 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3791 */ 3792 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3793 p->static_prio = NICE_TO_PRIO(nice); 3794 goto out_unlock; 3795 } 3796 queued = task_on_rq_queued(p); 3797 running = task_current(rq, p); 3798 if (queued) 3799 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3800 if (running) 3801 put_prev_task(rq, p); 3802 3803 p->static_prio = NICE_TO_PRIO(nice); 3804 set_load_weight(p); 3805 old_prio = p->prio; 3806 p->prio = effective_prio(p); 3807 delta = p->prio - old_prio; 3808 3809 if (queued) { 3810 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3811 /* 3812 * If the task increased its priority or is running and 3813 * lowered its priority, then reschedule its CPU: 3814 */ 3815 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3816 resched_curr(rq); 3817 } 3818 if (running) 3819 set_curr_task(rq, p); 3820 out_unlock: 3821 task_rq_unlock(rq, p, &rf); 3822 } 3823 EXPORT_SYMBOL(set_user_nice); 3824 3825 /* 3826 * can_nice - check if a task can reduce its nice value 3827 * @p: task 3828 * @nice: nice value 3829 */ 3830 int can_nice(const struct task_struct *p, const int nice) 3831 { 3832 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3833 int nice_rlim = nice_to_rlimit(nice); 3834 3835 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3836 capable(CAP_SYS_NICE)); 3837 } 3838 3839 #ifdef __ARCH_WANT_SYS_NICE 3840 3841 /* 3842 * sys_nice - change the priority of the current process. 3843 * @increment: priority increment 3844 * 3845 * sys_setpriority is a more generic, but much slower function that 3846 * does similar things. 3847 */ 3848 SYSCALL_DEFINE1(nice, int, increment) 3849 { 3850 long nice, retval; 3851 3852 /* 3853 * Setpriority might change our priority at the same moment. 3854 * We don't have to worry. Conceptually one call occurs first 3855 * and we have a single winner. 3856 */ 3857 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3858 nice = task_nice(current) + increment; 3859 3860 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3861 if (increment < 0 && !can_nice(current, nice)) 3862 return -EPERM; 3863 3864 retval = security_task_setnice(current, nice); 3865 if (retval) 3866 return retval; 3867 3868 set_user_nice(current, nice); 3869 return 0; 3870 } 3871 3872 #endif 3873 3874 /** 3875 * task_prio - return the priority value of a given task. 3876 * @p: the task in question. 3877 * 3878 * Return: The priority value as seen by users in /proc. 3879 * RT tasks are offset by -200. Normal tasks are centered 3880 * around 0, value goes from -16 to +15. 3881 */ 3882 int task_prio(const struct task_struct *p) 3883 { 3884 return p->prio - MAX_RT_PRIO; 3885 } 3886 3887 /** 3888 * idle_cpu - is a given CPU idle currently? 3889 * @cpu: the processor in question. 3890 * 3891 * Return: 1 if the CPU is currently idle. 0 otherwise. 3892 */ 3893 int idle_cpu(int cpu) 3894 { 3895 struct rq *rq = cpu_rq(cpu); 3896 3897 if (rq->curr != rq->idle) 3898 return 0; 3899 3900 if (rq->nr_running) 3901 return 0; 3902 3903 #ifdef CONFIG_SMP 3904 if (!llist_empty(&rq->wake_list)) 3905 return 0; 3906 #endif 3907 3908 return 1; 3909 } 3910 3911 /** 3912 * idle_task - return the idle task for a given CPU. 3913 * @cpu: the processor in question. 3914 * 3915 * Return: The idle task for the CPU @cpu. 3916 */ 3917 struct task_struct *idle_task(int cpu) 3918 { 3919 return cpu_rq(cpu)->idle; 3920 } 3921 3922 /** 3923 * find_process_by_pid - find a process with a matching PID value. 3924 * @pid: the pid in question. 3925 * 3926 * The task of @pid, if found. %NULL otherwise. 3927 */ 3928 static struct task_struct *find_process_by_pid(pid_t pid) 3929 { 3930 return pid ? find_task_by_vpid(pid) : current; 3931 } 3932 3933 /* 3934 * sched_setparam() passes in -1 for its policy, to let the functions 3935 * it calls know not to change it. 3936 */ 3937 #define SETPARAM_POLICY -1 3938 3939 static void __setscheduler_params(struct task_struct *p, 3940 const struct sched_attr *attr) 3941 { 3942 int policy = attr->sched_policy; 3943 3944 if (policy == SETPARAM_POLICY) 3945 policy = p->policy; 3946 3947 p->policy = policy; 3948 3949 if (dl_policy(policy)) 3950 __setparam_dl(p, attr); 3951 else if (fair_policy(policy)) 3952 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3953 3954 /* 3955 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3956 * !rt_policy. Always setting this ensures that things like 3957 * getparam()/getattr() don't report silly values for !rt tasks. 3958 */ 3959 p->rt_priority = attr->sched_priority; 3960 p->normal_prio = normal_prio(p); 3961 set_load_weight(p); 3962 } 3963 3964 /* Actually do priority change: must hold pi & rq lock. */ 3965 static void __setscheduler(struct rq *rq, struct task_struct *p, 3966 const struct sched_attr *attr, bool keep_boost) 3967 { 3968 __setscheduler_params(p, attr); 3969 3970 /* 3971 * Keep a potential priority boosting if called from 3972 * sched_setscheduler(). 3973 */ 3974 p->prio = normal_prio(p); 3975 if (keep_boost) 3976 p->prio = rt_effective_prio(p, p->prio); 3977 3978 if (dl_prio(p->prio)) 3979 p->sched_class = &dl_sched_class; 3980 else if (rt_prio(p->prio)) 3981 p->sched_class = &rt_sched_class; 3982 else 3983 p->sched_class = &fair_sched_class; 3984 } 3985 3986 /* 3987 * Check the target process has a UID that matches the current process's: 3988 */ 3989 static bool check_same_owner(struct task_struct *p) 3990 { 3991 const struct cred *cred = current_cred(), *pcred; 3992 bool match; 3993 3994 rcu_read_lock(); 3995 pcred = __task_cred(p); 3996 match = (uid_eq(cred->euid, pcred->euid) || 3997 uid_eq(cred->euid, pcred->uid)); 3998 rcu_read_unlock(); 3999 return match; 4000 } 4001 4002 static int __sched_setscheduler(struct task_struct *p, 4003 const struct sched_attr *attr, 4004 bool user, bool pi) 4005 { 4006 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4007 MAX_RT_PRIO - 1 - attr->sched_priority; 4008 int retval, oldprio, oldpolicy = -1, queued, running; 4009 int new_effective_prio, policy = attr->sched_policy; 4010 const struct sched_class *prev_class; 4011 struct rq_flags rf; 4012 int reset_on_fork; 4013 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4014 struct rq *rq; 4015 4016 /* The pi code expects interrupts enabled */ 4017 BUG_ON(pi && in_interrupt()); 4018 recheck: 4019 /* Double check policy once rq lock held: */ 4020 if (policy < 0) { 4021 reset_on_fork = p->sched_reset_on_fork; 4022 policy = oldpolicy = p->policy; 4023 } else { 4024 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4025 4026 if (!valid_policy(policy)) 4027 return -EINVAL; 4028 } 4029 4030 if (attr->sched_flags & 4031 ~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM)) 4032 return -EINVAL; 4033 4034 /* 4035 * Valid priorities for SCHED_FIFO and SCHED_RR are 4036 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4037 * SCHED_BATCH and SCHED_IDLE is 0. 4038 */ 4039 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4040 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4041 return -EINVAL; 4042 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4043 (rt_policy(policy) != (attr->sched_priority != 0))) 4044 return -EINVAL; 4045 4046 /* 4047 * Allow unprivileged RT tasks to decrease priority: 4048 */ 4049 if (user && !capable(CAP_SYS_NICE)) { 4050 if (fair_policy(policy)) { 4051 if (attr->sched_nice < task_nice(p) && 4052 !can_nice(p, attr->sched_nice)) 4053 return -EPERM; 4054 } 4055 4056 if (rt_policy(policy)) { 4057 unsigned long rlim_rtprio = 4058 task_rlimit(p, RLIMIT_RTPRIO); 4059 4060 /* Can't set/change the rt policy: */ 4061 if (policy != p->policy && !rlim_rtprio) 4062 return -EPERM; 4063 4064 /* Can't increase priority: */ 4065 if (attr->sched_priority > p->rt_priority && 4066 attr->sched_priority > rlim_rtprio) 4067 return -EPERM; 4068 } 4069 4070 /* 4071 * Can't set/change SCHED_DEADLINE policy at all for now 4072 * (safest behavior); in the future we would like to allow 4073 * unprivileged DL tasks to increase their relative deadline 4074 * or reduce their runtime (both ways reducing utilization) 4075 */ 4076 if (dl_policy(policy)) 4077 return -EPERM; 4078 4079 /* 4080 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4081 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4082 */ 4083 if (idle_policy(p->policy) && !idle_policy(policy)) { 4084 if (!can_nice(p, task_nice(p))) 4085 return -EPERM; 4086 } 4087 4088 /* Can't change other user's priorities: */ 4089 if (!check_same_owner(p)) 4090 return -EPERM; 4091 4092 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4093 if (p->sched_reset_on_fork && !reset_on_fork) 4094 return -EPERM; 4095 } 4096 4097 if (user) { 4098 retval = security_task_setscheduler(p); 4099 if (retval) 4100 return retval; 4101 } 4102 4103 /* 4104 * Make sure no PI-waiters arrive (or leave) while we are 4105 * changing the priority of the task: 4106 * 4107 * To be able to change p->policy safely, the appropriate 4108 * runqueue lock must be held. 4109 */ 4110 rq = task_rq_lock(p, &rf); 4111 update_rq_clock(rq); 4112 4113 /* 4114 * Changing the policy of the stop threads its a very bad idea: 4115 */ 4116 if (p == rq->stop) { 4117 task_rq_unlock(rq, p, &rf); 4118 return -EINVAL; 4119 } 4120 4121 /* 4122 * If not changing anything there's no need to proceed further, 4123 * but store a possible modification of reset_on_fork. 4124 */ 4125 if (unlikely(policy == p->policy)) { 4126 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4127 goto change; 4128 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4129 goto change; 4130 if (dl_policy(policy) && dl_param_changed(p, attr)) 4131 goto change; 4132 4133 p->sched_reset_on_fork = reset_on_fork; 4134 task_rq_unlock(rq, p, &rf); 4135 return 0; 4136 } 4137 change: 4138 4139 if (user) { 4140 #ifdef CONFIG_RT_GROUP_SCHED 4141 /* 4142 * Do not allow realtime tasks into groups that have no runtime 4143 * assigned. 4144 */ 4145 if (rt_bandwidth_enabled() && rt_policy(policy) && 4146 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4147 !task_group_is_autogroup(task_group(p))) { 4148 task_rq_unlock(rq, p, &rf); 4149 return -EPERM; 4150 } 4151 #endif 4152 #ifdef CONFIG_SMP 4153 if (dl_bandwidth_enabled() && dl_policy(policy)) { 4154 cpumask_t *span = rq->rd->span; 4155 4156 /* 4157 * Don't allow tasks with an affinity mask smaller than 4158 * the entire root_domain to become SCHED_DEADLINE. We 4159 * will also fail if there's no bandwidth available. 4160 */ 4161 if (!cpumask_subset(span, &p->cpus_allowed) || 4162 rq->rd->dl_bw.bw == 0) { 4163 task_rq_unlock(rq, p, &rf); 4164 return -EPERM; 4165 } 4166 } 4167 #endif 4168 } 4169 4170 /* Re-check policy now with rq lock held: */ 4171 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4172 policy = oldpolicy = -1; 4173 task_rq_unlock(rq, p, &rf); 4174 goto recheck; 4175 } 4176 4177 /* 4178 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4179 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4180 * is available. 4181 */ 4182 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4183 task_rq_unlock(rq, p, &rf); 4184 return -EBUSY; 4185 } 4186 4187 p->sched_reset_on_fork = reset_on_fork; 4188 oldprio = p->prio; 4189 4190 if (pi) { 4191 /* 4192 * Take priority boosted tasks into account. If the new 4193 * effective priority is unchanged, we just store the new 4194 * normal parameters and do not touch the scheduler class and 4195 * the runqueue. This will be done when the task deboost 4196 * itself. 4197 */ 4198 new_effective_prio = rt_effective_prio(p, newprio); 4199 if (new_effective_prio == oldprio) 4200 queue_flags &= ~DEQUEUE_MOVE; 4201 } 4202 4203 queued = task_on_rq_queued(p); 4204 running = task_current(rq, p); 4205 if (queued) 4206 dequeue_task(rq, p, queue_flags); 4207 if (running) 4208 put_prev_task(rq, p); 4209 4210 prev_class = p->sched_class; 4211 __setscheduler(rq, p, attr, pi); 4212 4213 if (queued) { 4214 /* 4215 * We enqueue to tail when the priority of a task is 4216 * increased (user space view). 4217 */ 4218 if (oldprio < p->prio) 4219 queue_flags |= ENQUEUE_HEAD; 4220 4221 enqueue_task(rq, p, queue_flags); 4222 } 4223 if (running) 4224 set_curr_task(rq, p); 4225 4226 check_class_changed(rq, p, prev_class, oldprio); 4227 4228 /* Avoid rq from going away on us: */ 4229 preempt_disable(); 4230 task_rq_unlock(rq, p, &rf); 4231 4232 if (pi) 4233 rt_mutex_adjust_pi(p); 4234 4235 /* Run balance callbacks after we've adjusted the PI chain: */ 4236 balance_callback(rq); 4237 preempt_enable(); 4238 4239 return 0; 4240 } 4241 4242 static int _sched_setscheduler(struct task_struct *p, int policy, 4243 const struct sched_param *param, bool check) 4244 { 4245 struct sched_attr attr = { 4246 .sched_policy = policy, 4247 .sched_priority = param->sched_priority, 4248 .sched_nice = PRIO_TO_NICE(p->static_prio), 4249 }; 4250 4251 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4252 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4253 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4254 policy &= ~SCHED_RESET_ON_FORK; 4255 attr.sched_policy = policy; 4256 } 4257 4258 return __sched_setscheduler(p, &attr, check, true); 4259 } 4260 /** 4261 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4262 * @p: the task in question. 4263 * @policy: new policy. 4264 * @param: structure containing the new RT priority. 4265 * 4266 * Return: 0 on success. An error code otherwise. 4267 * 4268 * NOTE that the task may be already dead. 4269 */ 4270 int sched_setscheduler(struct task_struct *p, int policy, 4271 const struct sched_param *param) 4272 { 4273 return _sched_setscheduler(p, policy, param, true); 4274 } 4275 EXPORT_SYMBOL_GPL(sched_setscheduler); 4276 4277 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4278 { 4279 return __sched_setscheduler(p, attr, true, true); 4280 } 4281 EXPORT_SYMBOL_GPL(sched_setattr); 4282 4283 /** 4284 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4285 * @p: the task in question. 4286 * @policy: new policy. 4287 * @param: structure containing the new RT priority. 4288 * 4289 * Just like sched_setscheduler, only don't bother checking if the 4290 * current context has permission. For example, this is needed in 4291 * stop_machine(): we create temporary high priority worker threads, 4292 * but our caller might not have that capability. 4293 * 4294 * Return: 0 on success. An error code otherwise. 4295 */ 4296 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4297 const struct sched_param *param) 4298 { 4299 return _sched_setscheduler(p, policy, param, false); 4300 } 4301 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4302 4303 static int 4304 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4305 { 4306 struct sched_param lparam; 4307 struct task_struct *p; 4308 int retval; 4309 4310 if (!param || pid < 0) 4311 return -EINVAL; 4312 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4313 return -EFAULT; 4314 4315 rcu_read_lock(); 4316 retval = -ESRCH; 4317 p = find_process_by_pid(pid); 4318 if (p != NULL) 4319 retval = sched_setscheduler(p, policy, &lparam); 4320 rcu_read_unlock(); 4321 4322 return retval; 4323 } 4324 4325 /* 4326 * Mimics kernel/events/core.c perf_copy_attr(). 4327 */ 4328 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4329 { 4330 u32 size; 4331 int ret; 4332 4333 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4334 return -EFAULT; 4335 4336 /* Zero the full structure, so that a short copy will be nice: */ 4337 memset(attr, 0, sizeof(*attr)); 4338 4339 ret = get_user(size, &uattr->size); 4340 if (ret) 4341 return ret; 4342 4343 /* Bail out on silly large: */ 4344 if (size > PAGE_SIZE) 4345 goto err_size; 4346 4347 /* ABI compatibility quirk: */ 4348 if (!size) 4349 size = SCHED_ATTR_SIZE_VER0; 4350 4351 if (size < SCHED_ATTR_SIZE_VER0) 4352 goto err_size; 4353 4354 /* 4355 * If we're handed a bigger struct than we know of, 4356 * ensure all the unknown bits are 0 - i.e. new 4357 * user-space does not rely on any kernel feature 4358 * extensions we dont know about yet. 4359 */ 4360 if (size > sizeof(*attr)) { 4361 unsigned char __user *addr; 4362 unsigned char __user *end; 4363 unsigned char val; 4364 4365 addr = (void __user *)uattr + sizeof(*attr); 4366 end = (void __user *)uattr + size; 4367 4368 for (; addr < end; addr++) { 4369 ret = get_user(val, addr); 4370 if (ret) 4371 return ret; 4372 if (val) 4373 goto err_size; 4374 } 4375 size = sizeof(*attr); 4376 } 4377 4378 ret = copy_from_user(attr, uattr, size); 4379 if (ret) 4380 return -EFAULT; 4381 4382 /* 4383 * XXX: Do we want to be lenient like existing syscalls; or do we want 4384 * to be strict and return an error on out-of-bounds values? 4385 */ 4386 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4387 4388 return 0; 4389 4390 err_size: 4391 put_user(sizeof(*attr), &uattr->size); 4392 return -E2BIG; 4393 } 4394 4395 /** 4396 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4397 * @pid: the pid in question. 4398 * @policy: new policy. 4399 * @param: structure containing the new RT priority. 4400 * 4401 * Return: 0 on success. An error code otherwise. 4402 */ 4403 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4404 { 4405 if (policy < 0) 4406 return -EINVAL; 4407 4408 return do_sched_setscheduler(pid, policy, param); 4409 } 4410 4411 /** 4412 * sys_sched_setparam - set/change the RT priority of a thread 4413 * @pid: the pid in question. 4414 * @param: structure containing the new RT priority. 4415 * 4416 * Return: 0 on success. An error code otherwise. 4417 */ 4418 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4419 { 4420 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4421 } 4422 4423 /** 4424 * sys_sched_setattr - same as above, but with extended sched_attr 4425 * @pid: the pid in question. 4426 * @uattr: structure containing the extended parameters. 4427 * @flags: for future extension. 4428 */ 4429 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4430 unsigned int, flags) 4431 { 4432 struct sched_attr attr; 4433 struct task_struct *p; 4434 int retval; 4435 4436 if (!uattr || pid < 0 || flags) 4437 return -EINVAL; 4438 4439 retval = sched_copy_attr(uattr, &attr); 4440 if (retval) 4441 return retval; 4442 4443 if ((int)attr.sched_policy < 0) 4444 return -EINVAL; 4445 4446 rcu_read_lock(); 4447 retval = -ESRCH; 4448 p = find_process_by_pid(pid); 4449 if (p != NULL) 4450 retval = sched_setattr(p, &attr); 4451 rcu_read_unlock(); 4452 4453 return retval; 4454 } 4455 4456 /** 4457 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4458 * @pid: the pid in question. 4459 * 4460 * Return: On success, the policy of the thread. Otherwise, a negative error 4461 * code. 4462 */ 4463 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4464 { 4465 struct task_struct *p; 4466 int retval; 4467 4468 if (pid < 0) 4469 return -EINVAL; 4470 4471 retval = -ESRCH; 4472 rcu_read_lock(); 4473 p = find_process_by_pid(pid); 4474 if (p) { 4475 retval = security_task_getscheduler(p); 4476 if (!retval) 4477 retval = p->policy 4478 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4479 } 4480 rcu_read_unlock(); 4481 return retval; 4482 } 4483 4484 /** 4485 * sys_sched_getparam - get the RT priority of a thread 4486 * @pid: the pid in question. 4487 * @param: structure containing the RT priority. 4488 * 4489 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4490 * code. 4491 */ 4492 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4493 { 4494 struct sched_param lp = { .sched_priority = 0 }; 4495 struct task_struct *p; 4496 int retval; 4497 4498 if (!param || pid < 0) 4499 return -EINVAL; 4500 4501 rcu_read_lock(); 4502 p = find_process_by_pid(pid); 4503 retval = -ESRCH; 4504 if (!p) 4505 goto out_unlock; 4506 4507 retval = security_task_getscheduler(p); 4508 if (retval) 4509 goto out_unlock; 4510 4511 if (task_has_rt_policy(p)) 4512 lp.sched_priority = p->rt_priority; 4513 rcu_read_unlock(); 4514 4515 /* 4516 * This one might sleep, we cannot do it with a spinlock held ... 4517 */ 4518 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4519 4520 return retval; 4521 4522 out_unlock: 4523 rcu_read_unlock(); 4524 return retval; 4525 } 4526 4527 static int sched_read_attr(struct sched_attr __user *uattr, 4528 struct sched_attr *attr, 4529 unsigned int usize) 4530 { 4531 int ret; 4532 4533 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4534 return -EFAULT; 4535 4536 /* 4537 * If we're handed a smaller struct than we know of, 4538 * ensure all the unknown bits are 0 - i.e. old 4539 * user-space does not get uncomplete information. 4540 */ 4541 if (usize < sizeof(*attr)) { 4542 unsigned char *addr; 4543 unsigned char *end; 4544 4545 addr = (void *)attr + usize; 4546 end = (void *)attr + sizeof(*attr); 4547 4548 for (; addr < end; addr++) { 4549 if (*addr) 4550 return -EFBIG; 4551 } 4552 4553 attr->size = usize; 4554 } 4555 4556 ret = copy_to_user(uattr, attr, attr->size); 4557 if (ret) 4558 return -EFAULT; 4559 4560 return 0; 4561 } 4562 4563 /** 4564 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4565 * @pid: the pid in question. 4566 * @uattr: structure containing the extended parameters. 4567 * @size: sizeof(attr) for fwd/bwd comp. 4568 * @flags: for future extension. 4569 */ 4570 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4571 unsigned int, size, unsigned int, flags) 4572 { 4573 struct sched_attr attr = { 4574 .size = sizeof(struct sched_attr), 4575 }; 4576 struct task_struct *p; 4577 int retval; 4578 4579 if (!uattr || pid < 0 || size > PAGE_SIZE || 4580 size < SCHED_ATTR_SIZE_VER0 || flags) 4581 return -EINVAL; 4582 4583 rcu_read_lock(); 4584 p = find_process_by_pid(pid); 4585 retval = -ESRCH; 4586 if (!p) 4587 goto out_unlock; 4588 4589 retval = security_task_getscheduler(p); 4590 if (retval) 4591 goto out_unlock; 4592 4593 attr.sched_policy = p->policy; 4594 if (p->sched_reset_on_fork) 4595 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4596 if (task_has_dl_policy(p)) 4597 __getparam_dl(p, &attr); 4598 else if (task_has_rt_policy(p)) 4599 attr.sched_priority = p->rt_priority; 4600 else 4601 attr.sched_nice = task_nice(p); 4602 4603 rcu_read_unlock(); 4604 4605 retval = sched_read_attr(uattr, &attr, size); 4606 return retval; 4607 4608 out_unlock: 4609 rcu_read_unlock(); 4610 return retval; 4611 } 4612 4613 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4614 { 4615 cpumask_var_t cpus_allowed, new_mask; 4616 struct task_struct *p; 4617 int retval; 4618 4619 rcu_read_lock(); 4620 4621 p = find_process_by_pid(pid); 4622 if (!p) { 4623 rcu_read_unlock(); 4624 return -ESRCH; 4625 } 4626 4627 /* Prevent p going away */ 4628 get_task_struct(p); 4629 rcu_read_unlock(); 4630 4631 if (p->flags & PF_NO_SETAFFINITY) { 4632 retval = -EINVAL; 4633 goto out_put_task; 4634 } 4635 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4636 retval = -ENOMEM; 4637 goto out_put_task; 4638 } 4639 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4640 retval = -ENOMEM; 4641 goto out_free_cpus_allowed; 4642 } 4643 retval = -EPERM; 4644 if (!check_same_owner(p)) { 4645 rcu_read_lock(); 4646 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4647 rcu_read_unlock(); 4648 goto out_free_new_mask; 4649 } 4650 rcu_read_unlock(); 4651 } 4652 4653 retval = security_task_setscheduler(p); 4654 if (retval) 4655 goto out_free_new_mask; 4656 4657 4658 cpuset_cpus_allowed(p, cpus_allowed); 4659 cpumask_and(new_mask, in_mask, cpus_allowed); 4660 4661 /* 4662 * Since bandwidth control happens on root_domain basis, 4663 * if admission test is enabled, we only admit -deadline 4664 * tasks allowed to run on all the CPUs in the task's 4665 * root_domain. 4666 */ 4667 #ifdef CONFIG_SMP 4668 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4669 rcu_read_lock(); 4670 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4671 retval = -EBUSY; 4672 rcu_read_unlock(); 4673 goto out_free_new_mask; 4674 } 4675 rcu_read_unlock(); 4676 } 4677 #endif 4678 again: 4679 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4680 4681 if (!retval) { 4682 cpuset_cpus_allowed(p, cpus_allowed); 4683 if (!cpumask_subset(new_mask, cpus_allowed)) { 4684 /* 4685 * We must have raced with a concurrent cpuset 4686 * update. Just reset the cpus_allowed to the 4687 * cpuset's cpus_allowed 4688 */ 4689 cpumask_copy(new_mask, cpus_allowed); 4690 goto again; 4691 } 4692 } 4693 out_free_new_mask: 4694 free_cpumask_var(new_mask); 4695 out_free_cpus_allowed: 4696 free_cpumask_var(cpus_allowed); 4697 out_put_task: 4698 put_task_struct(p); 4699 return retval; 4700 } 4701 4702 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4703 struct cpumask *new_mask) 4704 { 4705 if (len < cpumask_size()) 4706 cpumask_clear(new_mask); 4707 else if (len > cpumask_size()) 4708 len = cpumask_size(); 4709 4710 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4711 } 4712 4713 /** 4714 * sys_sched_setaffinity - set the CPU affinity of a process 4715 * @pid: pid of the process 4716 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4717 * @user_mask_ptr: user-space pointer to the new CPU mask 4718 * 4719 * Return: 0 on success. An error code otherwise. 4720 */ 4721 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4722 unsigned long __user *, user_mask_ptr) 4723 { 4724 cpumask_var_t new_mask; 4725 int retval; 4726 4727 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4728 return -ENOMEM; 4729 4730 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4731 if (retval == 0) 4732 retval = sched_setaffinity(pid, new_mask); 4733 free_cpumask_var(new_mask); 4734 return retval; 4735 } 4736 4737 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4738 { 4739 struct task_struct *p; 4740 unsigned long flags; 4741 int retval; 4742 4743 rcu_read_lock(); 4744 4745 retval = -ESRCH; 4746 p = find_process_by_pid(pid); 4747 if (!p) 4748 goto out_unlock; 4749 4750 retval = security_task_getscheduler(p); 4751 if (retval) 4752 goto out_unlock; 4753 4754 raw_spin_lock_irqsave(&p->pi_lock, flags); 4755 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4756 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4757 4758 out_unlock: 4759 rcu_read_unlock(); 4760 4761 return retval; 4762 } 4763 4764 /** 4765 * sys_sched_getaffinity - get the CPU affinity of a process 4766 * @pid: pid of the process 4767 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4768 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4769 * 4770 * Return: size of CPU mask copied to user_mask_ptr on success. An 4771 * error code otherwise. 4772 */ 4773 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4774 unsigned long __user *, user_mask_ptr) 4775 { 4776 int ret; 4777 cpumask_var_t mask; 4778 4779 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4780 return -EINVAL; 4781 if (len & (sizeof(unsigned long)-1)) 4782 return -EINVAL; 4783 4784 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4785 return -ENOMEM; 4786 4787 ret = sched_getaffinity(pid, mask); 4788 if (ret == 0) { 4789 size_t retlen = min_t(size_t, len, cpumask_size()); 4790 4791 if (copy_to_user(user_mask_ptr, mask, retlen)) 4792 ret = -EFAULT; 4793 else 4794 ret = retlen; 4795 } 4796 free_cpumask_var(mask); 4797 4798 return ret; 4799 } 4800 4801 /** 4802 * sys_sched_yield - yield the current processor to other threads. 4803 * 4804 * This function yields the current CPU to other tasks. If there are no 4805 * other threads running on this CPU then this function will return. 4806 * 4807 * Return: 0. 4808 */ 4809 SYSCALL_DEFINE0(sched_yield) 4810 { 4811 struct rq_flags rf; 4812 struct rq *rq; 4813 4814 local_irq_disable(); 4815 rq = this_rq(); 4816 rq_lock(rq, &rf); 4817 4818 schedstat_inc(rq->yld_count); 4819 current->sched_class->yield_task(rq); 4820 4821 /* 4822 * Since we are going to call schedule() anyway, there's 4823 * no need to preempt or enable interrupts: 4824 */ 4825 preempt_disable(); 4826 rq_unlock(rq, &rf); 4827 sched_preempt_enable_no_resched(); 4828 4829 schedule(); 4830 4831 return 0; 4832 } 4833 4834 #ifndef CONFIG_PREEMPT 4835 int __sched _cond_resched(void) 4836 { 4837 if (should_resched(0)) { 4838 preempt_schedule_common(); 4839 return 1; 4840 } 4841 return 0; 4842 } 4843 EXPORT_SYMBOL(_cond_resched); 4844 #endif 4845 4846 /* 4847 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4848 * call schedule, and on return reacquire the lock. 4849 * 4850 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4851 * operations here to prevent schedule() from being called twice (once via 4852 * spin_unlock(), once by hand). 4853 */ 4854 int __cond_resched_lock(spinlock_t *lock) 4855 { 4856 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4857 int ret = 0; 4858 4859 lockdep_assert_held(lock); 4860 4861 if (spin_needbreak(lock) || resched) { 4862 spin_unlock(lock); 4863 if (resched) 4864 preempt_schedule_common(); 4865 else 4866 cpu_relax(); 4867 ret = 1; 4868 spin_lock(lock); 4869 } 4870 return ret; 4871 } 4872 EXPORT_SYMBOL(__cond_resched_lock); 4873 4874 int __sched __cond_resched_softirq(void) 4875 { 4876 BUG_ON(!in_softirq()); 4877 4878 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4879 local_bh_enable(); 4880 preempt_schedule_common(); 4881 local_bh_disable(); 4882 return 1; 4883 } 4884 return 0; 4885 } 4886 EXPORT_SYMBOL(__cond_resched_softirq); 4887 4888 /** 4889 * yield - yield the current processor to other threads. 4890 * 4891 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4892 * 4893 * The scheduler is at all times free to pick the calling task as the most 4894 * eligible task to run, if removing the yield() call from your code breaks 4895 * it, its already broken. 4896 * 4897 * Typical broken usage is: 4898 * 4899 * while (!event) 4900 * yield(); 4901 * 4902 * where one assumes that yield() will let 'the other' process run that will 4903 * make event true. If the current task is a SCHED_FIFO task that will never 4904 * happen. Never use yield() as a progress guarantee!! 4905 * 4906 * If you want to use yield() to wait for something, use wait_event(). 4907 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4908 * If you still want to use yield(), do not! 4909 */ 4910 void __sched yield(void) 4911 { 4912 set_current_state(TASK_RUNNING); 4913 sys_sched_yield(); 4914 } 4915 EXPORT_SYMBOL(yield); 4916 4917 /** 4918 * yield_to - yield the current processor to another thread in 4919 * your thread group, or accelerate that thread toward the 4920 * processor it's on. 4921 * @p: target task 4922 * @preempt: whether task preemption is allowed or not 4923 * 4924 * It's the caller's job to ensure that the target task struct 4925 * can't go away on us before we can do any checks. 4926 * 4927 * Return: 4928 * true (>0) if we indeed boosted the target task. 4929 * false (0) if we failed to boost the target. 4930 * -ESRCH if there's no task to yield to. 4931 */ 4932 int __sched yield_to(struct task_struct *p, bool preempt) 4933 { 4934 struct task_struct *curr = current; 4935 struct rq *rq, *p_rq; 4936 unsigned long flags; 4937 int yielded = 0; 4938 4939 local_irq_save(flags); 4940 rq = this_rq(); 4941 4942 again: 4943 p_rq = task_rq(p); 4944 /* 4945 * If we're the only runnable task on the rq and target rq also 4946 * has only one task, there's absolutely no point in yielding. 4947 */ 4948 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4949 yielded = -ESRCH; 4950 goto out_irq; 4951 } 4952 4953 double_rq_lock(rq, p_rq); 4954 if (task_rq(p) != p_rq) { 4955 double_rq_unlock(rq, p_rq); 4956 goto again; 4957 } 4958 4959 if (!curr->sched_class->yield_to_task) 4960 goto out_unlock; 4961 4962 if (curr->sched_class != p->sched_class) 4963 goto out_unlock; 4964 4965 if (task_running(p_rq, p) || p->state) 4966 goto out_unlock; 4967 4968 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4969 if (yielded) { 4970 schedstat_inc(rq->yld_count); 4971 /* 4972 * Make p's CPU reschedule; pick_next_entity takes care of 4973 * fairness. 4974 */ 4975 if (preempt && rq != p_rq) 4976 resched_curr(p_rq); 4977 } 4978 4979 out_unlock: 4980 double_rq_unlock(rq, p_rq); 4981 out_irq: 4982 local_irq_restore(flags); 4983 4984 if (yielded > 0) 4985 schedule(); 4986 4987 return yielded; 4988 } 4989 EXPORT_SYMBOL_GPL(yield_to); 4990 4991 int io_schedule_prepare(void) 4992 { 4993 int old_iowait = current->in_iowait; 4994 4995 current->in_iowait = 1; 4996 blk_schedule_flush_plug(current); 4997 4998 return old_iowait; 4999 } 5000 5001 void io_schedule_finish(int token) 5002 { 5003 current->in_iowait = token; 5004 } 5005 5006 /* 5007 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5008 * that process accounting knows that this is a task in IO wait state. 5009 */ 5010 long __sched io_schedule_timeout(long timeout) 5011 { 5012 int token; 5013 long ret; 5014 5015 token = io_schedule_prepare(); 5016 ret = schedule_timeout(timeout); 5017 io_schedule_finish(token); 5018 5019 return ret; 5020 } 5021 EXPORT_SYMBOL(io_schedule_timeout); 5022 5023 void io_schedule(void) 5024 { 5025 int token; 5026 5027 token = io_schedule_prepare(); 5028 schedule(); 5029 io_schedule_finish(token); 5030 } 5031 EXPORT_SYMBOL(io_schedule); 5032 5033 /** 5034 * sys_sched_get_priority_max - return maximum RT priority. 5035 * @policy: scheduling class. 5036 * 5037 * Return: On success, this syscall returns the maximum 5038 * rt_priority that can be used by a given scheduling class. 5039 * On failure, a negative error code is returned. 5040 */ 5041 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5042 { 5043 int ret = -EINVAL; 5044 5045 switch (policy) { 5046 case SCHED_FIFO: 5047 case SCHED_RR: 5048 ret = MAX_USER_RT_PRIO-1; 5049 break; 5050 case SCHED_DEADLINE: 5051 case SCHED_NORMAL: 5052 case SCHED_BATCH: 5053 case SCHED_IDLE: 5054 ret = 0; 5055 break; 5056 } 5057 return ret; 5058 } 5059 5060 /** 5061 * sys_sched_get_priority_min - return minimum RT priority. 5062 * @policy: scheduling class. 5063 * 5064 * Return: On success, this syscall returns the minimum 5065 * rt_priority that can be used by a given scheduling class. 5066 * On failure, a negative error code is returned. 5067 */ 5068 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5069 { 5070 int ret = -EINVAL; 5071 5072 switch (policy) { 5073 case SCHED_FIFO: 5074 case SCHED_RR: 5075 ret = 1; 5076 break; 5077 case SCHED_DEADLINE: 5078 case SCHED_NORMAL: 5079 case SCHED_BATCH: 5080 case SCHED_IDLE: 5081 ret = 0; 5082 } 5083 return ret; 5084 } 5085 5086 /** 5087 * sys_sched_rr_get_interval - return the default timeslice of a process. 5088 * @pid: pid of the process. 5089 * @interval: userspace pointer to the timeslice value. 5090 * 5091 * this syscall writes the default timeslice value of a given process 5092 * into the user-space timespec buffer. A value of '0' means infinity. 5093 * 5094 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5095 * an error code. 5096 */ 5097 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5098 struct timespec __user *, interval) 5099 { 5100 struct task_struct *p; 5101 unsigned int time_slice; 5102 struct rq_flags rf; 5103 struct timespec t; 5104 struct rq *rq; 5105 int retval; 5106 5107 if (pid < 0) 5108 return -EINVAL; 5109 5110 retval = -ESRCH; 5111 rcu_read_lock(); 5112 p = find_process_by_pid(pid); 5113 if (!p) 5114 goto out_unlock; 5115 5116 retval = security_task_getscheduler(p); 5117 if (retval) 5118 goto out_unlock; 5119 5120 rq = task_rq_lock(p, &rf); 5121 time_slice = 0; 5122 if (p->sched_class->get_rr_interval) 5123 time_slice = p->sched_class->get_rr_interval(rq, p); 5124 task_rq_unlock(rq, p, &rf); 5125 5126 rcu_read_unlock(); 5127 jiffies_to_timespec(time_slice, &t); 5128 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5129 return retval; 5130 5131 out_unlock: 5132 rcu_read_unlock(); 5133 return retval; 5134 } 5135 5136 void sched_show_task(struct task_struct *p) 5137 { 5138 unsigned long free = 0; 5139 int ppid; 5140 5141 if (!try_get_task_stack(p)) 5142 return; 5143 5144 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5145 5146 if (p->state == TASK_RUNNING) 5147 printk(KERN_CONT " running task "); 5148 #ifdef CONFIG_DEBUG_STACK_USAGE 5149 free = stack_not_used(p); 5150 #endif 5151 ppid = 0; 5152 rcu_read_lock(); 5153 if (pid_alive(p)) 5154 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5155 rcu_read_unlock(); 5156 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5157 task_pid_nr(p), ppid, 5158 (unsigned long)task_thread_info(p)->flags); 5159 5160 print_worker_info(KERN_INFO, p); 5161 show_stack(p, NULL); 5162 put_task_stack(p); 5163 } 5164 5165 void show_state_filter(unsigned long state_filter) 5166 { 5167 struct task_struct *g, *p; 5168 5169 #if BITS_PER_LONG == 32 5170 printk(KERN_INFO 5171 " task PC stack pid father\n"); 5172 #else 5173 printk(KERN_INFO 5174 " task PC stack pid father\n"); 5175 #endif 5176 rcu_read_lock(); 5177 for_each_process_thread(g, p) { 5178 /* 5179 * reset the NMI-timeout, listing all files on a slow 5180 * console might take a lot of time: 5181 * Also, reset softlockup watchdogs on all CPUs, because 5182 * another CPU might be blocked waiting for us to process 5183 * an IPI. 5184 */ 5185 touch_nmi_watchdog(); 5186 touch_all_softlockup_watchdogs(); 5187 if (!state_filter || (p->state & state_filter)) 5188 sched_show_task(p); 5189 } 5190 5191 #ifdef CONFIG_SCHED_DEBUG 5192 if (!state_filter) 5193 sysrq_sched_debug_show(); 5194 #endif 5195 rcu_read_unlock(); 5196 /* 5197 * Only show locks if all tasks are dumped: 5198 */ 5199 if (!state_filter) 5200 debug_show_all_locks(); 5201 } 5202 5203 /** 5204 * init_idle - set up an idle thread for a given CPU 5205 * @idle: task in question 5206 * @cpu: CPU the idle task belongs to 5207 * 5208 * NOTE: this function does not set the idle thread's NEED_RESCHED 5209 * flag, to make booting more robust. 5210 */ 5211 void init_idle(struct task_struct *idle, int cpu) 5212 { 5213 struct rq *rq = cpu_rq(cpu); 5214 unsigned long flags; 5215 5216 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5217 raw_spin_lock(&rq->lock); 5218 5219 __sched_fork(0, idle); 5220 idle->state = TASK_RUNNING; 5221 idle->se.exec_start = sched_clock(); 5222 idle->flags |= PF_IDLE; 5223 5224 kasan_unpoison_task_stack(idle); 5225 5226 #ifdef CONFIG_SMP 5227 /* 5228 * Its possible that init_idle() gets called multiple times on a task, 5229 * in that case do_set_cpus_allowed() will not do the right thing. 5230 * 5231 * And since this is boot we can forgo the serialization. 5232 */ 5233 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5234 #endif 5235 /* 5236 * We're having a chicken and egg problem, even though we are 5237 * holding rq->lock, the CPU isn't yet set to this CPU so the 5238 * lockdep check in task_group() will fail. 5239 * 5240 * Similar case to sched_fork(). / Alternatively we could 5241 * use task_rq_lock() here and obtain the other rq->lock. 5242 * 5243 * Silence PROVE_RCU 5244 */ 5245 rcu_read_lock(); 5246 __set_task_cpu(idle, cpu); 5247 rcu_read_unlock(); 5248 5249 rq->curr = rq->idle = idle; 5250 idle->on_rq = TASK_ON_RQ_QUEUED; 5251 #ifdef CONFIG_SMP 5252 idle->on_cpu = 1; 5253 #endif 5254 raw_spin_unlock(&rq->lock); 5255 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5256 5257 /* Set the preempt count _outside_ the spinlocks! */ 5258 init_idle_preempt_count(idle, cpu); 5259 5260 /* 5261 * The idle tasks have their own, simple scheduling class: 5262 */ 5263 idle->sched_class = &idle_sched_class; 5264 ftrace_graph_init_idle_task(idle, cpu); 5265 vtime_init_idle(idle, cpu); 5266 #ifdef CONFIG_SMP 5267 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5268 #endif 5269 } 5270 5271 #ifdef CONFIG_SMP 5272 5273 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5274 const struct cpumask *trial) 5275 { 5276 int ret = 1; 5277 5278 if (!cpumask_weight(cur)) 5279 return ret; 5280 5281 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5282 5283 return ret; 5284 } 5285 5286 int task_can_attach(struct task_struct *p, 5287 const struct cpumask *cs_cpus_allowed) 5288 { 5289 int ret = 0; 5290 5291 /* 5292 * Kthreads which disallow setaffinity shouldn't be moved 5293 * to a new cpuset; we don't want to change their CPU 5294 * affinity and isolating such threads by their set of 5295 * allowed nodes is unnecessary. Thus, cpusets are not 5296 * applicable for such threads. This prevents checking for 5297 * success of set_cpus_allowed_ptr() on all attached tasks 5298 * before cpus_allowed may be changed. 5299 */ 5300 if (p->flags & PF_NO_SETAFFINITY) { 5301 ret = -EINVAL; 5302 goto out; 5303 } 5304 5305 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5306 cs_cpus_allowed)) 5307 ret = dl_task_can_attach(p, cs_cpus_allowed); 5308 5309 out: 5310 return ret; 5311 } 5312 5313 bool sched_smp_initialized __read_mostly; 5314 5315 #ifdef CONFIG_NUMA_BALANCING 5316 /* Migrate current task p to target_cpu */ 5317 int migrate_task_to(struct task_struct *p, int target_cpu) 5318 { 5319 struct migration_arg arg = { p, target_cpu }; 5320 int curr_cpu = task_cpu(p); 5321 5322 if (curr_cpu == target_cpu) 5323 return 0; 5324 5325 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5326 return -EINVAL; 5327 5328 /* TODO: This is not properly updating schedstats */ 5329 5330 trace_sched_move_numa(p, curr_cpu, target_cpu); 5331 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5332 } 5333 5334 /* 5335 * Requeue a task on a given node and accurately track the number of NUMA 5336 * tasks on the runqueues 5337 */ 5338 void sched_setnuma(struct task_struct *p, int nid) 5339 { 5340 bool queued, running; 5341 struct rq_flags rf; 5342 struct rq *rq; 5343 5344 rq = task_rq_lock(p, &rf); 5345 queued = task_on_rq_queued(p); 5346 running = task_current(rq, p); 5347 5348 if (queued) 5349 dequeue_task(rq, p, DEQUEUE_SAVE); 5350 if (running) 5351 put_prev_task(rq, p); 5352 5353 p->numa_preferred_nid = nid; 5354 5355 if (queued) 5356 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5357 if (running) 5358 set_curr_task(rq, p); 5359 task_rq_unlock(rq, p, &rf); 5360 } 5361 #endif /* CONFIG_NUMA_BALANCING */ 5362 5363 #ifdef CONFIG_HOTPLUG_CPU 5364 /* 5365 * Ensure that the idle task is using init_mm right before its CPU goes 5366 * offline. 5367 */ 5368 void idle_task_exit(void) 5369 { 5370 struct mm_struct *mm = current->active_mm; 5371 5372 BUG_ON(cpu_online(smp_processor_id())); 5373 5374 if (mm != &init_mm) { 5375 switch_mm(mm, &init_mm, current); 5376 finish_arch_post_lock_switch(); 5377 } 5378 mmdrop(mm); 5379 } 5380 5381 /* 5382 * Since this CPU is going 'away' for a while, fold any nr_active delta 5383 * we might have. Assumes we're called after migrate_tasks() so that the 5384 * nr_active count is stable. We need to take the teardown thread which 5385 * is calling this into account, so we hand in adjust = 1 to the load 5386 * calculation. 5387 * 5388 * Also see the comment "Global load-average calculations". 5389 */ 5390 static void calc_load_migrate(struct rq *rq) 5391 { 5392 long delta = calc_load_fold_active(rq, 1); 5393 if (delta) 5394 atomic_long_add(delta, &calc_load_tasks); 5395 } 5396 5397 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5398 { 5399 } 5400 5401 static const struct sched_class fake_sched_class = { 5402 .put_prev_task = put_prev_task_fake, 5403 }; 5404 5405 static struct task_struct fake_task = { 5406 /* 5407 * Avoid pull_{rt,dl}_task() 5408 */ 5409 .prio = MAX_PRIO + 1, 5410 .sched_class = &fake_sched_class, 5411 }; 5412 5413 /* 5414 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5415 * try_to_wake_up()->select_task_rq(). 5416 * 5417 * Called with rq->lock held even though we'er in stop_machine() and 5418 * there's no concurrency possible, we hold the required locks anyway 5419 * because of lock validation efforts. 5420 */ 5421 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5422 { 5423 struct rq *rq = dead_rq; 5424 struct task_struct *next, *stop = rq->stop; 5425 struct rq_flags orf = *rf; 5426 int dest_cpu; 5427 5428 /* 5429 * Fudge the rq selection such that the below task selection loop 5430 * doesn't get stuck on the currently eligible stop task. 5431 * 5432 * We're currently inside stop_machine() and the rq is either stuck 5433 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5434 * either way we should never end up calling schedule() until we're 5435 * done here. 5436 */ 5437 rq->stop = NULL; 5438 5439 /* 5440 * put_prev_task() and pick_next_task() sched 5441 * class method both need to have an up-to-date 5442 * value of rq->clock[_task] 5443 */ 5444 update_rq_clock(rq); 5445 5446 for (;;) { 5447 /* 5448 * There's this thread running, bail when that's the only 5449 * remaining thread: 5450 */ 5451 if (rq->nr_running == 1) 5452 break; 5453 5454 /* 5455 * pick_next_task() assumes pinned rq->lock: 5456 */ 5457 next = pick_next_task(rq, &fake_task, rf); 5458 BUG_ON(!next); 5459 put_prev_task(rq, next); 5460 5461 /* 5462 * Rules for changing task_struct::cpus_allowed are holding 5463 * both pi_lock and rq->lock, such that holding either 5464 * stabilizes the mask. 5465 * 5466 * Drop rq->lock is not quite as disastrous as it usually is 5467 * because !cpu_active at this point, which means load-balance 5468 * will not interfere. Also, stop-machine. 5469 */ 5470 rq_unlock(rq, rf); 5471 raw_spin_lock(&next->pi_lock); 5472 rq_relock(rq, rf); 5473 5474 /* 5475 * Since we're inside stop-machine, _nothing_ should have 5476 * changed the task, WARN if weird stuff happened, because in 5477 * that case the above rq->lock drop is a fail too. 5478 */ 5479 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5480 raw_spin_unlock(&next->pi_lock); 5481 continue; 5482 } 5483 5484 /* Find suitable destination for @next, with force if needed. */ 5485 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5486 rq = __migrate_task(rq, rf, next, dest_cpu); 5487 if (rq != dead_rq) { 5488 rq_unlock(rq, rf); 5489 rq = dead_rq; 5490 *rf = orf; 5491 rq_relock(rq, rf); 5492 } 5493 raw_spin_unlock(&next->pi_lock); 5494 } 5495 5496 rq->stop = stop; 5497 } 5498 #endif /* CONFIG_HOTPLUG_CPU */ 5499 5500 void set_rq_online(struct rq *rq) 5501 { 5502 if (!rq->online) { 5503 const struct sched_class *class; 5504 5505 cpumask_set_cpu(rq->cpu, rq->rd->online); 5506 rq->online = 1; 5507 5508 for_each_class(class) { 5509 if (class->rq_online) 5510 class->rq_online(rq); 5511 } 5512 } 5513 } 5514 5515 void set_rq_offline(struct rq *rq) 5516 { 5517 if (rq->online) { 5518 const struct sched_class *class; 5519 5520 for_each_class(class) { 5521 if (class->rq_offline) 5522 class->rq_offline(rq); 5523 } 5524 5525 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5526 rq->online = 0; 5527 } 5528 } 5529 5530 static void set_cpu_rq_start_time(unsigned int cpu) 5531 { 5532 struct rq *rq = cpu_rq(cpu); 5533 5534 rq->age_stamp = sched_clock_cpu(cpu); 5535 } 5536 5537 /* 5538 * used to mark begin/end of suspend/resume: 5539 */ 5540 static int num_cpus_frozen; 5541 5542 /* 5543 * Update cpusets according to cpu_active mask. If cpusets are 5544 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5545 * around partition_sched_domains(). 5546 * 5547 * If we come here as part of a suspend/resume, don't touch cpusets because we 5548 * want to restore it back to its original state upon resume anyway. 5549 */ 5550 static void cpuset_cpu_active(void) 5551 { 5552 if (cpuhp_tasks_frozen) { 5553 /* 5554 * num_cpus_frozen tracks how many CPUs are involved in suspend 5555 * resume sequence. As long as this is not the last online 5556 * operation in the resume sequence, just build a single sched 5557 * domain, ignoring cpusets. 5558 */ 5559 num_cpus_frozen--; 5560 if (likely(num_cpus_frozen)) { 5561 partition_sched_domains(1, NULL, NULL); 5562 return; 5563 } 5564 /* 5565 * This is the last CPU online operation. So fall through and 5566 * restore the original sched domains by considering the 5567 * cpuset configurations. 5568 */ 5569 } 5570 cpuset_update_active_cpus(); 5571 } 5572 5573 static int cpuset_cpu_inactive(unsigned int cpu) 5574 { 5575 if (!cpuhp_tasks_frozen) { 5576 if (dl_cpu_busy(cpu)) 5577 return -EBUSY; 5578 cpuset_update_active_cpus(); 5579 } else { 5580 num_cpus_frozen++; 5581 partition_sched_domains(1, NULL, NULL); 5582 } 5583 return 0; 5584 } 5585 5586 int sched_cpu_activate(unsigned int cpu) 5587 { 5588 struct rq *rq = cpu_rq(cpu); 5589 struct rq_flags rf; 5590 5591 set_cpu_active(cpu, true); 5592 5593 if (sched_smp_initialized) { 5594 sched_domains_numa_masks_set(cpu); 5595 cpuset_cpu_active(); 5596 } 5597 5598 /* 5599 * Put the rq online, if not already. This happens: 5600 * 5601 * 1) In the early boot process, because we build the real domains 5602 * after all CPUs have been brought up. 5603 * 5604 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5605 * domains. 5606 */ 5607 rq_lock_irqsave(rq, &rf); 5608 if (rq->rd) { 5609 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5610 set_rq_online(rq); 5611 } 5612 rq_unlock_irqrestore(rq, &rf); 5613 5614 update_max_interval(); 5615 5616 return 0; 5617 } 5618 5619 int sched_cpu_deactivate(unsigned int cpu) 5620 { 5621 int ret; 5622 5623 set_cpu_active(cpu, false); 5624 /* 5625 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5626 * users of this state to go away such that all new such users will 5627 * observe it. 5628 * 5629 * Do sync before park smpboot threads to take care the rcu boost case. 5630 */ 5631 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5632 5633 if (!sched_smp_initialized) 5634 return 0; 5635 5636 ret = cpuset_cpu_inactive(cpu); 5637 if (ret) { 5638 set_cpu_active(cpu, true); 5639 return ret; 5640 } 5641 sched_domains_numa_masks_clear(cpu); 5642 return 0; 5643 } 5644 5645 static void sched_rq_cpu_starting(unsigned int cpu) 5646 { 5647 struct rq *rq = cpu_rq(cpu); 5648 5649 rq->calc_load_update = calc_load_update; 5650 update_max_interval(); 5651 } 5652 5653 int sched_cpu_starting(unsigned int cpu) 5654 { 5655 set_cpu_rq_start_time(cpu); 5656 sched_rq_cpu_starting(cpu); 5657 return 0; 5658 } 5659 5660 #ifdef CONFIG_HOTPLUG_CPU 5661 int sched_cpu_dying(unsigned int cpu) 5662 { 5663 struct rq *rq = cpu_rq(cpu); 5664 struct rq_flags rf; 5665 5666 /* Handle pending wakeups and then migrate everything off */ 5667 sched_ttwu_pending(); 5668 5669 rq_lock_irqsave(rq, &rf); 5670 if (rq->rd) { 5671 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5672 set_rq_offline(rq); 5673 } 5674 migrate_tasks(rq, &rf); 5675 BUG_ON(rq->nr_running != 1); 5676 rq_unlock_irqrestore(rq, &rf); 5677 5678 calc_load_migrate(rq); 5679 update_max_interval(); 5680 nohz_balance_exit_idle(cpu); 5681 hrtick_clear(rq); 5682 return 0; 5683 } 5684 #endif 5685 5686 #ifdef CONFIG_SCHED_SMT 5687 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5688 5689 static void sched_init_smt(void) 5690 { 5691 /* 5692 * We've enumerated all CPUs and will assume that if any CPU 5693 * has SMT siblings, CPU0 will too. 5694 */ 5695 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5696 static_branch_enable(&sched_smt_present); 5697 } 5698 #else 5699 static inline void sched_init_smt(void) { } 5700 #endif 5701 5702 void __init sched_init_smp(void) 5703 { 5704 cpumask_var_t non_isolated_cpus; 5705 5706 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 5707 5708 sched_init_numa(); 5709 5710 /* 5711 * There's no userspace yet to cause hotplug operations; hence all the 5712 * CPU masks are stable and all blatant races in the below code cannot 5713 * happen. 5714 */ 5715 mutex_lock(&sched_domains_mutex); 5716 sched_init_domains(cpu_active_mask); 5717 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 5718 if (cpumask_empty(non_isolated_cpus)) 5719 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 5720 mutex_unlock(&sched_domains_mutex); 5721 5722 /* Move init over to a non-isolated CPU */ 5723 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 5724 BUG(); 5725 sched_init_granularity(); 5726 free_cpumask_var(non_isolated_cpus); 5727 5728 init_sched_rt_class(); 5729 init_sched_dl_class(); 5730 5731 sched_init_smt(); 5732 5733 sched_smp_initialized = true; 5734 } 5735 5736 static int __init migration_init(void) 5737 { 5738 sched_rq_cpu_starting(smp_processor_id()); 5739 return 0; 5740 } 5741 early_initcall(migration_init); 5742 5743 #else 5744 void __init sched_init_smp(void) 5745 { 5746 sched_init_granularity(); 5747 } 5748 #endif /* CONFIG_SMP */ 5749 5750 int in_sched_functions(unsigned long addr) 5751 { 5752 return in_lock_functions(addr) || 5753 (addr >= (unsigned long)__sched_text_start 5754 && addr < (unsigned long)__sched_text_end); 5755 } 5756 5757 #ifdef CONFIG_CGROUP_SCHED 5758 /* 5759 * Default task group. 5760 * Every task in system belongs to this group at bootup. 5761 */ 5762 struct task_group root_task_group; 5763 LIST_HEAD(task_groups); 5764 5765 /* Cacheline aligned slab cache for task_group */ 5766 static struct kmem_cache *task_group_cache __read_mostly; 5767 #endif 5768 5769 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5770 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5771 5772 void __init sched_init(void) 5773 { 5774 int i, j; 5775 unsigned long alloc_size = 0, ptr; 5776 5777 sched_clock_init(); 5778 wait_bit_init(); 5779 5780 #ifdef CONFIG_FAIR_GROUP_SCHED 5781 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5782 #endif 5783 #ifdef CONFIG_RT_GROUP_SCHED 5784 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5785 #endif 5786 if (alloc_size) { 5787 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5788 5789 #ifdef CONFIG_FAIR_GROUP_SCHED 5790 root_task_group.se = (struct sched_entity **)ptr; 5791 ptr += nr_cpu_ids * sizeof(void **); 5792 5793 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5794 ptr += nr_cpu_ids * sizeof(void **); 5795 5796 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5797 #ifdef CONFIG_RT_GROUP_SCHED 5798 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5799 ptr += nr_cpu_ids * sizeof(void **); 5800 5801 root_task_group.rt_rq = (struct rt_rq **)ptr; 5802 ptr += nr_cpu_ids * sizeof(void **); 5803 5804 #endif /* CONFIG_RT_GROUP_SCHED */ 5805 } 5806 #ifdef CONFIG_CPUMASK_OFFSTACK 5807 for_each_possible_cpu(i) { 5808 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5809 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5810 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5811 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5812 } 5813 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5814 5815 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5816 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5817 5818 #ifdef CONFIG_SMP 5819 init_defrootdomain(); 5820 #endif 5821 5822 #ifdef CONFIG_RT_GROUP_SCHED 5823 init_rt_bandwidth(&root_task_group.rt_bandwidth, 5824 global_rt_period(), global_rt_runtime()); 5825 #endif /* CONFIG_RT_GROUP_SCHED */ 5826 5827 #ifdef CONFIG_CGROUP_SCHED 5828 task_group_cache = KMEM_CACHE(task_group, 0); 5829 5830 list_add(&root_task_group.list, &task_groups); 5831 INIT_LIST_HEAD(&root_task_group.children); 5832 INIT_LIST_HEAD(&root_task_group.siblings); 5833 autogroup_init(&init_task); 5834 #endif /* CONFIG_CGROUP_SCHED */ 5835 5836 for_each_possible_cpu(i) { 5837 struct rq *rq; 5838 5839 rq = cpu_rq(i); 5840 raw_spin_lock_init(&rq->lock); 5841 rq->nr_running = 0; 5842 rq->calc_load_active = 0; 5843 rq->calc_load_update = jiffies + LOAD_FREQ; 5844 init_cfs_rq(&rq->cfs); 5845 init_rt_rq(&rq->rt); 5846 init_dl_rq(&rq->dl); 5847 #ifdef CONFIG_FAIR_GROUP_SCHED 5848 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 5849 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 5850 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 5851 /* 5852 * How much CPU bandwidth does root_task_group get? 5853 * 5854 * In case of task-groups formed thr' the cgroup filesystem, it 5855 * gets 100% of the CPU resources in the system. This overall 5856 * system CPU resource is divided among the tasks of 5857 * root_task_group and its child task-groups in a fair manner, 5858 * based on each entity's (task or task-group's) weight 5859 * (se->load.weight). 5860 * 5861 * In other words, if root_task_group has 10 tasks of weight 5862 * 1024) and two child groups A0 and A1 (of weight 1024 each), 5863 * then A0's share of the CPU resource is: 5864 * 5865 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 5866 * 5867 * We achieve this by letting root_task_group's tasks sit 5868 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 5869 */ 5870 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 5871 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 5872 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5873 5874 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 5875 #ifdef CONFIG_RT_GROUP_SCHED 5876 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 5877 #endif 5878 5879 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 5880 rq->cpu_load[j] = 0; 5881 5882 #ifdef CONFIG_SMP 5883 rq->sd = NULL; 5884 rq->rd = NULL; 5885 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 5886 rq->balance_callback = NULL; 5887 rq->active_balance = 0; 5888 rq->next_balance = jiffies; 5889 rq->push_cpu = 0; 5890 rq->cpu = i; 5891 rq->online = 0; 5892 rq->idle_stamp = 0; 5893 rq->avg_idle = 2*sysctl_sched_migration_cost; 5894 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 5895 5896 INIT_LIST_HEAD(&rq->cfs_tasks); 5897 5898 rq_attach_root(rq, &def_root_domain); 5899 #ifdef CONFIG_NO_HZ_COMMON 5900 rq->last_load_update_tick = jiffies; 5901 rq->nohz_flags = 0; 5902 #endif 5903 #ifdef CONFIG_NO_HZ_FULL 5904 rq->last_sched_tick = 0; 5905 #endif 5906 #endif /* CONFIG_SMP */ 5907 init_rq_hrtick(rq); 5908 atomic_set(&rq->nr_iowait, 0); 5909 } 5910 5911 set_load_weight(&init_task); 5912 5913 /* 5914 * The boot idle thread does lazy MMU switching as well: 5915 */ 5916 mmgrab(&init_mm); 5917 enter_lazy_tlb(&init_mm, current); 5918 5919 /* 5920 * Make us the idle thread. Technically, schedule() should not be 5921 * called from this thread, however somewhere below it might be, 5922 * but because we are the idle thread, we just pick up running again 5923 * when this runqueue becomes "idle". 5924 */ 5925 init_idle(current, smp_processor_id()); 5926 5927 calc_load_update = jiffies + LOAD_FREQ; 5928 5929 #ifdef CONFIG_SMP 5930 /* May be allocated at isolcpus cmdline parse time */ 5931 if (cpu_isolated_map == NULL) 5932 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 5933 idle_thread_set_boot_cpu(); 5934 set_cpu_rq_start_time(smp_processor_id()); 5935 #endif 5936 init_sched_fair_class(); 5937 5938 init_schedstats(); 5939 5940 scheduler_running = 1; 5941 } 5942 5943 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5944 static inline int preempt_count_equals(int preempt_offset) 5945 { 5946 int nested = preempt_count() + rcu_preempt_depth(); 5947 5948 return (nested == preempt_offset); 5949 } 5950 5951 void __might_sleep(const char *file, int line, int preempt_offset) 5952 { 5953 /* 5954 * Blocking primitives will set (and therefore destroy) current->state, 5955 * since we will exit with TASK_RUNNING make sure we enter with it, 5956 * otherwise we will destroy state. 5957 */ 5958 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 5959 "do not call blocking ops when !TASK_RUNNING; " 5960 "state=%lx set at [<%p>] %pS\n", 5961 current->state, 5962 (void *)current->task_state_change, 5963 (void *)current->task_state_change); 5964 5965 ___might_sleep(file, line, preempt_offset); 5966 } 5967 EXPORT_SYMBOL(__might_sleep); 5968 5969 void ___might_sleep(const char *file, int line, int preempt_offset) 5970 { 5971 /* Ratelimiting timestamp: */ 5972 static unsigned long prev_jiffy; 5973 5974 unsigned long preempt_disable_ip; 5975 5976 /* WARN_ON_ONCE() by default, no rate limit required: */ 5977 rcu_sleep_check(); 5978 5979 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 5980 !is_idle_task(current)) || 5981 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 5982 oops_in_progress) 5983 return; 5984 5985 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 5986 return; 5987 prev_jiffy = jiffies; 5988 5989 /* Save this before calling printk(), since that will clobber it: */ 5990 preempt_disable_ip = get_preempt_disable_ip(current); 5991 5992 printk(KERN_ERR 5993 "BUG: sleeping function called from invalid context at %s:%d\n", 5994 file, line); 5995 printk(KERN_ERR 5996 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 5997 in_atomic(), irqs_disabled(), 5998 current->pid, current->comm); 5999 6000 if (task_stack_end_corrupted(current)) 6001 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6002 6003 debug_show_held_locks(current); 6004 if (irqs_disabled()) 6005 print_irqtrace_events(current); 6006 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6007 && !preempt_count_equals(preempt_offset)) { 6008 pr_err("Preemption disabled at:"); 6009 print_ip_sym(preempt_disable_ip); 6010 pr_cont("\n"); 6011 } 6012 dump_stack(); 6013 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6014 } 6015 EXPORT_SYMBOL(___might_sleep); 6016 #endif 6017 6018 #ifdef CONFIG_MAGIC_SYSRQ 6019 void normalize_rt_tasks(void) 6020 { 6021 struct task_struct *g, *p; 6022 struct sched_attr attr = { 6023 .sched_policy = SCHED_NORMAL, 6024 }; 6025 6026 read_lock(&tasklist_lock); 6027 for_each_process_thread(g, p) { 6028 /* 6029 * Only normalize user tasks: 6030 */ 6031 if (p->flags & PF_KTHREAD) 6032 continue; 6033 6034 p->se.exec_start = 0; 6035 schedstat_set(p->se.statistics.wait_start, 0); 6036 schedstat_set(p->se.statistics.sleep_start, 0); 6037 schedstat_set(p->se.statistics.block_start, 0); 6038 6039 if (!dl_task(p) && !rt_task(p)) { 6040 /* 6041 * Renice negative nice level userspace 6042 * tasks back to 0: 6043 */ 6044 if (task_nice(p) < 0) 6045 set_user_nice(p, 0); 6046 continue; 6047 } 6048 6049 __sched_setscheduler(p, &attr, false, false); 6050 } 6051 read_unlock(&tasklist_lock); 6052 } 6053 6054 #endif /* CONFIG_MAGIC_SYSRQ */ 6055 6056 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6057 /* 6058 * These functions are only useful for the IA64 MCA handling, or kdb. 6059 * 6060 * They can only be called when the whole system has been 6061 * stopped - every CPU needs to be quiescent, and no scheduling 6062 * activity can take place. Using them for anything else would 6063 * be a serious bug, and as a result, they aren't even visible 6064 * under any other configuration. 6065 */ 6066 6067 /** 6068 * curr_task - return the current task for a given CPU. 6069 * @cpu: the processor in question. 6070 * 6071 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6072 * 6073 * Return: The current task for @cpu. 6074 */ 6075 struct task_struct *curr_task(int cpu) 6076 { 6077 return cpu_curr(cpu); 6078 } 6079 6080 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6081 6082 #ifdef CONFIG_IA64 6083 /** 6084 * set_curr_task - set the current task for a given CPU. 6085 * @cpu: the processor in question. 6086 * @p: the task pointer to set. 6087 * 6088 * Description: This function must only be used when non-maskable interrupts 6089 * are serviced on a separate stack. It allows the architecture to switch the 6090 * notion of the current task on a CPU in a non-blocking manner. This function 6091 * must be called with all CPU's synchronized, and interrupts disabled, the 6092 * and caller must save the original value of the current task (see 6093 * curr_task() above) and restore that value before reenabling interrupts and 6094 * re-starting the system. 6095 * 6096 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6097 */ 6098 void ia64_set_curr_task(int cpu, struct task_struct *p) 6099 { 6100 cpu_curr(cpu) = p; 6101 } 6102 6103 #endif 6104 6105 #ifdef CONFIG_CGROUP_SCHED 6106 /* task_group_lock serializes the addition/removal of task groups */ 6107 static DEFINE_SPINLOCK(task_group_lock); 6108 6109 static void sched_free_group(struct task_group *tg) 6110 { 6111 free_fair_sched_group(tg); 6112 free_rt_sched_group(tg); 6113 autogroup_free(tg); 6114 kmem_cache_free(task_group_cache, tg); 6115 } 6116 6117 /* allocate runqueue etc for a new task group */ 6118 struct task_group *sched_create_group(struct task_group *parent) 6119 { 6120 struct task_group *tg; 6121 6122 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6123 if (!tg) 6124 return ERR_PTR(-ENOMEM); 6125 6126 if (!alloc_fair_sched_group(tg, parent)) 6127 goto err; 6128 6129 if (!alloc_rt_sched_group(tg, parent)) 6130 goto err; 6131 6132 return tg; 6133 6134 err: 6135 sched_free_group(tg); 6136 return ERR_PTR(-ENOMEM); 6137 } 6138 6139 void sched_online_group(struct task_group *tg, struct task_group *parent) 6140 { 6141 unsigned long flags; 6142 6143 spin_lock_irqsave(&task_group_lock, flags); 6144 list_add_rcu(&tg->list, &task_groups); 6145 6146 /* Root should already exist: */ 6147 WARN_ON(!parent); 6148 6149 tg->parent = parent; 6150 INIT_LIST_HEAD(&tg->children); 6151 list_add_rcu(&tg->siblings, &parent->children); 6152 spin_unlock_irqrestore(&task_group_lock, flags); 6153 6154 online_fair_sched_group(tg); 6155 } 6156 6157 /* rcu callback to free various structures associated with a task group */ 6158 static void sched_free_group_rcu(struct rcu_head *rhp) 6159 { 6160 /* Now it should be safe to free those cfs_rqs: */ 6161 sched_free_group(container_of(rhp, struct task_group, rcu)); 6162 } 6163 6164 void sched_destroy_group(struct task_group *tg) 6165 { 6166 /* Wait for possible concurrent references to cfs_rqs complete: */ 6167 call_rcu(&tg->rcu, sched_free_group_rcu); 6168 } 6169 6170 void sched_offline_group(struct task_group *tg) 6171 { 6172 unsigned long flags; 6173 6174 /* End participation in shares distribution: */ 6175 unregister_fair_sched_group(tg); 6176 6177 spin_lock_irqsave(&task_group_lock, flags); 6178 list_del_rcu(&tg->list); 6179 list_del_rcu(&tg->siblings); 6180 spin_unlock_irqrestore(&task_group_lock, flags); 6181 } 6182 6183 static void sched_change_group(struct task_struct *tsk, int type) 6184 { 6185 struct task_group *tg; 6186 6187 /* 6188 * All callers are synchronized by task_rq_lock(); we do not use RCU 6189 * which is pointless here. Thus, we pass "true" to task_css_check() 6190 * to prevent lockdep warnings. 6191 */ 6192 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6193 struct task_group, css); 6194 tg = autogroup_task_group(tsk, tg); 6195 tsk->sched_task_group = tg; 6196 6197 #ifdef CONFIG_FAIR_GROUP_SCHED 6198 if (tsk->sched_class->task_change_group) 6199 tsk->sched_class->task_change_group(tsk, type); 6200 else 6201 #endif 6202 set_task_rq(tsk, task_cpu(tsk)); 6203 } 6204 6205 /* 6206 * Change task's runqueue when it moves between groups. 6207 * 6208 * The caller of this function should have put the task in its new group by 6209 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6210 * its new group. 6211 */ 6212 void sched_move_task(struct task_struct *tsk) 6213 { 6214 int queued, running, queue_flags = 6215 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6216 struct rq_flags rf; 6217 struct rq *rq; 6218 6219 rq = task_rq_lock(tsk, &rf); 6220 update_rq_clock(rq); 6221 6222 running = task_current(rq, tsk); 6223 queued = task_on_rq_queued(tsk); 6224 6225 if (queued) 6226 dequeue_task(rq, tsk, queue_flags); 6227 if (running) 6228 put_prev_task(rq, tsk); 6229 6230 sched_change_group(tsk, TASK_MOVE_GROUP); 6231 6232 if (queued) 6233 enqueue_task(rq, tsk, queue_flags); 6234 if (running) 6235 set_curr_task(rq, tsk); 6236 6237 task_rq_unlock(rq, tsk, &rf); 6238 } 6239 6240 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6241 { 6242 return css ? container_of(css, struct task_group, css) : NULL; 6243 } 6244 6245 static struct cgroup_subsys_state * 6246 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6247 { 6248 struct task_group *parent = css_tg(parent_css); 6249 struct task_group *tg; 6250 6251 if (!parent) { 6252 /* This is early initialization for the top cgroup */ 6253 return &root_task_group.css; 6254 } 6255 6256 tg = sched_create_group(parent); 6257 if (IS_ERR(tg)) 6258 return ERR_PTR(-ENOMEM); 6259 6260 return &tg->css; 6261 } 6262 6263 /* Expose task group only after completing cgroup initialization */ 6264 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6265 { 6266 struct task_group *tg = css_tg(css); 6267 struct task_group *parent = css_tg(css->parent); 6268 6269 if (parent) 6270 sched_online_group(tg, parent); 6271 return 0; 6272 } 6273 6274 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6275 { 6276 struct task_group *tg = css_tg(css); 6277 6278 sched_offline_group(tg); 6279 } 6280 6281 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6282 { 6283 struct task_group *tg = css_tg(css); 6284 6285 /* 6286 * Relies on the RCU grace period between css_released() and this. 6287 */ 6288 sched_free_group(tg); 6289 } 6290 6291 /* 6292 * This is called before wake_up_new_task(), therefore we really only 6293 * have to set its group bits, all the other stuff does not apply. 6294 */ 6295 static void cpu_cgroup_fork(struct task_struct *task) 6296 { 6297 struct rq_flags rf; 6298 struct rq *rq; 6299 6300 rq = task_rq_lock(task, &rf); 6301 6302 update_rq_clock(rq); 6303 sched_change_group(task, TASK_SET_GROUP); 6304 6305 task_rq_unlock(rq, task, &rf); 6306 } 6307 6308 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6309 { 6310 struct task_struct *task; 6311 struct cgroup_subsys_state *css; 6312 int ret = 0; 6313 6314 cgroup_taskset_for_each(task, css, tset) { 6315 #ifdef CONFIG_RT_GROUP_SCHED 6316 if (!sched_rt_can_attach(css_tg(css), task)) 6317 return -EINVAL; 6318 #else 6319 /* We don't support RT-tasks being in separate groups */ 6320 if (task->sched_class != &fair_sched_class) 6321 return -EINVAL; 6322 #endif 6323 /* 6324 * Serialize against wake_up_new_task() such that if its 6325 * running, we're sure to observe its full state. 6326 */ 6327 raw_spin_lock_irq(&task->pi_lock); 6328 /* 6329 * Avoid calling sched_move_task() before wake_up_new_task() 6330 * has happened. This would lead to problems with PELT, due to 6331 * move wanting to detach+attach while we're not attached yet. 6332 */ 6333 if (task->state == TASK_NEW) 6334 ret = -EINVAL; 6335 raw_spin_unlock_irq(&task->pi_lock); 6336 6337 if (ret) 6338 break; 6339 } 6340 return ret; 6341 } 6342 6343 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6344 { 6345 struct task_struct *task; 6346 struct cgroup_subsys_state *css; 6347 6348 cgroup_taskset_for_each(task, css, tset) 6349 sched_move_task(task); 6350 } 6351 6352 #ifdef CONFIG_FAIR_GROUP_SCHED 6353 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6354 struct cftype *cftype, u64 shareval) 6355 { 6356 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6357 } 6358 6359 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6360 struct cftype *cft) 6361 { 6362 struct task_group *tg = css_tg(css); 6363 6364 return (u64) scale_load_down(tg->shares); 6365 } 6366 6367 #ifdef CONFIG_CFS_BANDWIDTH 6368 static DEFINE_MUTEX(cfs_constraints_mutex); 6369 6370 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6371 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6372 6373 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6374 6375 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6376 { 6377 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6378 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6379 6380 if (tg == &root_task_group) 6381 return -EINVAL; 6382 6383 /* 6384 * Ensure we have at some amount of bandwidth every period. This is 6385 * to prevent reaching a state of large arrears when throttled via 6386 * entity_tick() resulting in prolonged exit starvation. 6387 */ 6388 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6389 return -EINVAL; 6390 6391 /* 6392 * Likewise, bound things on the otherside by preventing insane quota 6393 * periods. This also allows us to normalize in computing quota 6394 * feasibility. 6395 */ 6396 if (period > max_cfs_quota_period) 6397 return -EINVAL; 6398 6399 /* 6400 * Prevent race between setting of cfs_rq->runtime_enabled and 6401 * unthrottle_offline_cfs_rqs(). 6402 */ 6403 get_online_cpus(); 6404 mutex_lock(&cfs_constraints_mutex); 6405 ret = __cfs_schedulable(tg, period, quota); 6406 if (ret) 6407 goto out_unlock; 6408 6409 runtime_enabled = quota != RUNTIME_INF; 6410 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6411 /* 6412 * If we need to toggle cfs_bandwidth_used, off->on must occur 6413 * before making related changes, and on->off must occur afterwards 6414 */ 6415 if (runtime_enabled && !runtime_was_enabled) 6416 cfs_bandwidth_usage_inc(); 6417 raw_spin_lock_irq(&cfs_b->lock); 6418 cfs_b->period = ns_to_ktime(period); 6419 cfs_b->quota = quota; 6420 6421 __refill_cfs_bandwidth_runtime(cfs_b); 6422 6423 /* Restart the period timer (if active) to handle new period expiry: */ 6424 if (runtime_enabled) 6425 start_cfs_bandwidth(cfs_b); 6426 6427 raw_spin_unlock_irq(&cfs_b->lock); 6428 6429 for_each_online_cpu(i) { 6430 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6431 struct rq *rq = cfs_rq->rq; 6432 struct rq_flags rf; 6433 6434 rq_lock_irq(rq, &rf); 6435 cfs_rq->runtime_enabled = runtime_enabled; 6436 cfs_rq->runtime_remaining = 0; 6437 6438 if (cfs_rq->throttled) 6439 unthrottle_cfs_rq(cfs_rq); 6440 rq_unlock_irq(rq, &rf); 6441 } 6442 if (runtime_was_enabled && !runtime_enabled) 6443 cfs_bandwidth_usage_dec(); 6444 out_unlock: 6445 mutex_unlock(&cfs_constraints_mutex); 6446 put_online_cpus(); 6447 6448 return ret; 6449 } 6450 6451 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6452 { 6453 u64 quota, period; 6454 6455 period = ktime_to_ns(tg->cfs_bandwidth.period); 6456 if (cfs_quota_us < 0) 6457 quota = RUNTIME_INF; 6458 else 6459 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6460 6461 return tg_set_cfs_bandwidth(tg, period, quota); 6462 } 6463 6464 long tg_get_cfs_quota(struct task_group *tg) 6465 { 6466 u64 quota_us; 6467 6468 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6469 return -1; 6470 6471 quota_us = tg->cfs_bandwidth.quota; 6472 do_div(quota_us, NSEC_PER_USEC); 6473 6474 return quota_us; 6475 } 6476 6477 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6478 { 6479 u64 quota, period; 6480 6481 period = (u64)cfs_period_us * NSEC_PER_USEC; 6482 quota = tg->cfs_bandwidth.quota; 6483 6484 return tg_set_cfs_bandwidth(tg, period, quota); 6485 } 6486 6487 long tg_get_cfs_period(struct task_group *tg) 6488 { 6489 u64 cfs_period_us; 6490 6491 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6492 do_div(cfs_period_us, NSEC_PER_USEC); 6493 6494 return cfs_period_us; 6495 } 6496 6497 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6498 struct cftype *cft) 6499 { 6500 return tg_get_cfs_quota(css_tg(css)); 6501 } 6502 6503 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6504 struct cftype *cftype, s64 cfs_quota_us) 6505 { 6506 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6507 } 6508 6509 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6510 struct cftype *cft) 6511 { 6512 return tg_get_cfs_period(css_tg(css)); 6513 } 6514 6515 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6516 struct cftype *cftype, u64 cfs_period_us) 6517 { 6518 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6519 } 6520 6521 struct cfs_schedulable_data { 6522 struct task_group *tg; 6523 u64 period, quota; 6524 }; 6525 6526 /* 6527 * normalize group quota/period to be quota/max_period 6528 * note: units are usecs 6529 */ 6530 static u64 normalize_cfs_quota(struct task_group *tg, 6531 struct cfs_schedulable_data *d) 6532 { 6533 u64 quota, period; 6534 6535 if (tg == d->tg) { 6536 period = d->period; 6537 quota = d->quota; 6538 } else { 6539 period = tg_get_cfs_period(tg); 6540 quota = tg_get_cfs_quota(tg); 6541 } 6542 6543 /* note: these should typically be equivalent */ 6544 if (quota == RUNTIME_INF || quota == -1) 6545 return RUNTIME_INF; 6546 6547 return to_ratio(period, quota); 6548 } 6549 6550 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6551 { 6552 struct cfs_schedulable_data *d = data; 6553 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6554 s64 quota = 0, parent_quota = -1; 6555 6556 if (!tg->parent) { 6557 quota = RUNTIME_INF; 6558 } else { 6559 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6560 6561 quota = normalize_cfs_quota(tg, d); 6562 parent_quota = parent_b->hierarchical_quota; 6563 6564 /* 6565 * Ensure max(child_quota) <= parent_quota, inherit when no 6566 * limit is set: 6567 */ 6568 if (quota == RUNTIME_INF) 6569 quota = parent_quota; 6570 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6571 return -EINVAL; 6572 } 6573 cfs_b->hierarchical_quota = quota; 6574 6575 return 0; 6576 } 6577 6578 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6579 { 6580 int ret; 6581 struct cfs_schedulable_data data = { 6582 .tg = tg, 6583 .period = period, 6584 .quota = quota, 6585 }; 6586 6587 if (quota != RUNTIME_INF) { 6588 do_div(data.period, NSEC_PER_USEC); 6589 do_div(data.quota, NSEC_PER_USEC); 6590 } 6591 6592 rcu_read_lock(); 6593 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6594 rcu_read_unlock(); 6595 6596 return ret; 6597 } 6598 6599 static int cpu_stats_show(struct seq_file *sf, void *v) 6600 { 6601 struct task_group *tg = css_tg(seq_css(sf)); 6602 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6603 6604 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6605 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6606 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6607 6608 return 0; 6609 } 6610 #endif /* CONFIG_CFS_BANDWIDTH */ 6611 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6612 6613 #ifdef CONFIG_RT_GROUP_SCHED 6614 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6615 struct cftype *cft, s64 val) 6616 { 6617 return sched_group_set_rt_runtime(css_tg(css), val); 6618 } 6619 6620 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6621 struct cftype *cft) 6622 { 6623 return sched_group_rt_runtime(css_tg(css)); 6624 } 6625 6626 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6627 struct cftype *cftype, u64 rt_period_us) 6628 { 6629 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6630 } 6631 6632 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6633 struct cftype *cft) 6634 { 6635 return sched_group_rt_period(css_tg(css)); 6636 } 6637 #endif /* CONFIG_RT_GROUP_SCHED */ 6638 6639 static struct cftype cpu_files[] = { 6640 #ifdef CONFIG_FAIR_GROUP_SCHED 6641 { 6642 .name = "shares", 6643 .read_u64 = cpu_shares_read_u64, 6644 .write_u64 = cpu_shares_write_u64, 6645 }, 6646 #endif 6647 #ifdef CONFIG_CFS_BANDWIDTH 6648 { 6649 .name = "cfs_quota_us", 6650 .read_s64 = cpu_cfs_quota_read_s64, 6651 .write_s64 = cpu_cfs_quota_write_s64, 6652 }, 6653 { 6654 .name = "cfs_period_us", 6655 .read_u64 = cpu_cfs_period_read_u64, 6656 .write_u64 = cpu_cfs_period_write_u64, 6657 }, 6658 { 6659 .name = "stat", 6660 .seq_show = cpu_stats_show, 6661 }, 6662 #endif 6663 #ifdef CONFIG_RT_GROUP_SCHED 6664 { 6665 .name = "rt_runtime_us", 6666 .read_s64 = cpu_rt_runtime_read, 6667 .write_s64 = cpu_rt_runtime_write, 6668 }, 6669 { 6670 .name = "rt_period_us", 6671 .read_u64 = cpu_rt_period_read_uint, 6672 .write_u64 = cpu_rt_period_write_uint, 6673 }, 6674 #endif 6675 { } /* Terminate */ 6676 }; 6677 6678 struct cgroup_subsys cpu_cgrp_subsys = { 6679 .css_alloc = cpu_cgroup_css_alloc, 6680 .css_online = cpu_cgroup_css_online, 6681 .css_released = cpu_cgroup_css_released, 6682 .css_free = cpu_cgroup_css_free, 6683 .fork = cpu_cgroup_fork, 6684 .can_attach = cpu_cgroup_can_attach, 6685 .attach = cpu_cgroup_attach, 6686 .legacy_cftypes = cpu_files, 6687 .early_init = true, 6688 }; 6689 6690 #endif /* CONFIG_CGROUP_SCHED */ 6691 6692 void dump_cpu_task(int cpu) 6693 { 6694 pr_info("Task dump for CPU %d:\n", cpu); 6695 sched_show_task(cpu_curr(cpu)); 6696 } 6697 6698 /* 6699 * Nice levels are multiplicative, with a gentle 10% change for every 6700 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 6701 * nice 1, it will get ~10% less CPU time than another CPU-bound task 6702 * that remained on nice 0. 6703 * 6704 * The "10% effect" is relative and cumulative: from _any_ nice level, 6705 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 6706 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 6707 * If a task goes up by ~10% and another task goes down by ~10% then 6708 * the relative distance between them is ~25%.) 6709 */ 6710 const int sched_prio_to_weight[40] = { 6711 /* -20 */ 88761, 71755, 56483, 46273, 36291, 6712 /* -15 */ 29154, 23254, 18705, 14949, 11916, 6713 /* -10 */ 9548, 7620, 6100, 4904, 3906, 6714 /* -5 */ 3121, 2501, 1991, 1586, 1277, 6715 /* 0 */ 1024, 820, 655, 526, 423, 6716 /* 5 */ 335, 272, 215, 172, 137, 6717 /* 10 */ 110, 87, 70, 56, 45, 6718 /* 15 */ 36, 29, 23, 18, 15, 6719 }; 6720 6721 /* 6722 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 6723 * 6724 * In cases where the weight does not change often, we can use the 6725 * precalculated inverse to speed up arithmetics by turning divisions 6726 * into multiplications: 6727 */ 6728 const u32 sched_prio_to_wmult[40] = { 6729 /* -20 */ 48388, 59856, 76040, 92818, 118348, 6730 /* -15 */ 147320, 184698, 229616, 287308, 360437, 6731 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 6732 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 6733 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 6734 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 6735 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 6736 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 6737 }; 6738