1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 76 #include <asm/switch_to.h> 77 #include <asm/tlb.h> 78 #include <asm/irq_regs.h> 79 #include <asm/mutex.h> 80 #ifdef CONFIG_PARAVIRT 81 #include <asm/paravirt.h> 82 #endif 83 84 #include "sched.h" 85 #include "../workqueue_sched.h" 86 #include "../smpboot.h" 87 88 #define CREATE_TRACE_POINTS 89 #include <trace/events/sched.h> 90 91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 92 { 93 unsigned long delta; 94 ktime_t soft, hard, now; 95 96 for (;;) { 97 if (hrtimer_active(period_timer)) 98 break; 99 100 now = hrtimer_cb_get_time(period_timer); 101 hrtimer_forward(period_timer, now, period); 102 103 soft = hrtimer_get_softexpires(period_timer); 104 hard = hrtimer_get_expires(period_timer); 105 delta = ktime_to_ns(ktime_sub(hard, soft)); 106 __hrtimer_start_range_ns(period_timer, soft, delta, 107 HRTIMER_MODE_ABS_PINNED, 0); 108 } 109 } 110 111 DEFINE_MUTEX(sched_domains_mutex); 112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 113 114 static void update_rq_clock_task(struct rq *rq, s64 delta); 115 116 void update_rq_clock(struct rq *rq) 117 { 118 s64 delta; 119 120 if (rq->skip_clock_update > 0) 121 return; 122 123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 124 rq->clock += delta; 125 update_rq_clock_task(rq, delta); 126 } 127 128 /* 129 * Debugging: various feature bits 130 */ 131 132 #define SCHED_FEAT(name, enabled) \ 133 (1UL << __SCHED_FEAT_##name) * enabled | 134 135 const_debug unsigned int sysctl_sched_features = 136 #include "features.h" 137 0; 138 139 #undef SCHED_FEAT 140 141 #ifdef CONFIG_SCHED_DEBUG 142 #define SCHED_FEAT(name, enabled) \ 143 #name , 144 145 static const char * const sched_feat_names[] = { 146 #include "features.h" 147 }; 148 149 #undef SCHED_FEAT 150 151 static int sched_feat_show(struct seq_file *m, void *v) 152 { 153 int i; 154 155 for (i = 0; i < __SCHED_FEAT_NR; i++) { 156 if (!(sysctl_sched_features & (1UL << i))) 157 seq_puts(m, "NO_"); 158 seq_printf(m, "%s ", sched_feat_names[i]); 159 } 160 seq_puts(m, "\n"); 161 162 return 0; 163 } 164 165 #ifdef HAVE_JUMP_LABEL 166 167 #define jump_label_key__true STATIC_KEY_INIT_TRUE 168 #define jump_label_key__false STATIC_KEY_INIT_FALSE 169 170 #define SCHED_FEAT(name, enabled) \ 171 jump_label_key__##enabled , 172 173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 174 #include "features.h" 175 }; 176 177 #undef SCHED_FEAT 178 179 static void sched_feat_disable(int i) 180 { 181 if (static_key_enabled(&sched_feat_keys[i])) 182 static_key_slow_dec(&sched_feat_keys[i]); 183 } 184 185 static void sched_feat_enable(int i) 186 { 187 if (!static_key_enabled(&sched_feat_keys[i])) 188 static_key_slow_inc(&sched_feat_keys[i]); 189 } 190 #else 191 static void sched_feat_disable(int i) { }; 192 static void sched_feat_enable(int i) { }; 193 #endif /* HAVE_JUMP_LABEL */ 194 195 static ssize_t 196 sched_feat_write(struct file *filp, const char __user *ubuf, 197 size_t cnt, loff_t *ppos) 198 { 199 char buf[64]; 200 char *cmp; 201 int neg = 0; 202 int i; 203 204 if (cnt > 63) 205 cnt = 63; 206 207 if (copy_from_user(&buf, ubuf, cnt)) 208 return -EFAULT; 209 210 buf[cnt] = 0; 211 cmp = strstrip(buf); 212 213 if (strncmp(cmp, "NO_", 3) == 0) { 214 neg = 1; 215 cmp += 3; 216 } 217 218 for (i = 0; i < __SCHED_FEAT_NR; i++) { 219 if (strcmp(cmp, sched_feat_names[i]) == 0) { 220 if (neg) { 221 sysctl_sched_features &= ~(1UL << i); 222 sched_feat_disable(i); 223 } else { 224 sysctl_sched_features |= (1UL << i); 225 sched_feat_enable(i); 226 } 227 break; 228 } 229 } 230 231 if (i == __SCHED_FEAT_NR) 232 return -EINVAL; 233 234 *ppos += cnt; 235 236 return cnt; 237 } 238 239 static int sched_feat_open(struct inode *inode, struct file *filp) 240 { 241 return single_open(filp, sched_feat_show, NULL); 242 } 243 244 static const struct file_operations sched_feat_fops = { 245 .open = sched_feat_open, 246 .write = sched_feat_write, 247 .read = seq_read, 248 .llseek = seq_lseek, 249 .release = single_release, 250 }; 251 252 static __init int sched_init_debug(void) 253 { 254 debugfs_create_file("sched_features", 0644, NULL, NULL, 255 &sched_feat_fops); 256 257 return 0; 258 } 259 late_initcall(sched_init_debug); 260 #endif /* CONFIG_SCHED_DEBUG */ 261 262 /* 263 * Number of tasks to iterate in a single balance run. 264 * Limited because this is done with IRQs disabled. 265 */ 266 const_debug unsigned int sysctl_sched_nr_migrate = 32; 267 268 /* 269 * period over which we average the RT time consumption, measured 270 * in ms. 271 * 272 * default: 1s 273 */ 274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 275 276 /* 277 * period over which we measure -rt task cpu usage in us. 278 * default: 1s 279 */ 280 unsigned int sysctl_sched_rt_period = 1000000; 281 282 __read_mostly int scheduler_running; 283 284 /* 285 * part of the period that we allow rt tasks to run in us. 286 * default: 0.95s 287 */ 288 int sysctl_sched_rt_runtime = 950000; 289 290 291 292 /* 293 * __task_rq_lock - lock the rq @p resides on. 294 */ 295 static inline struct rq *__task_rq_lock(struct task_struct *p) 296 __acquires(rq->lock) 297 { 298 struct rq *rq; 299 300 lockdep_assert_held(&p->pi_lock); 301 302 for (;;) { 303 rq = task_rq(p); 304 raw_spin_lock(&rq->lock); 305 if (likely(rq == task_rq(p))) 306 return rq; 307 raw_spin_unlock(&rq->lock); 308 } 309 } 310 311 /* 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 313 */ 314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 315 __acquires(p->pi_lock) 316 __acquires(rq->lock) 317 { 318 struct rq *rq; 319 320 for (;;) { 321 raw_spin_lock_irqsave(&p->pi_lock, *flags); 322 rq = task_rq(p); 323 raw_spin_lock(&rq->lock); 324 if (likely(rq == task_rq(p))) 325 return rq; 326 raw_spin_unlock(&rq->lock); 327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 328 } 329 } 330 331 static void __task_rq_unlock(struct rq *rq) 332 __releases(rq->lock) 333 { 334 raw_spin_unlock(&rq->lock); 335 } 336 337 static inline void 338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 339 __releases(rq->lock) 340 __releases(p->pi_lock) 341 { 342 raw_spin_unlock(&rq->lock); 343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 344 } 345 346 /* 347 * this_rq_lock - lock this runqueue and disable interrupts. 348 */ 349 static struct rq *this_rq_lock(void) 350 __acquires(rq->lock) 351 { 352 struct rq *rq; 353 354 local_irq_disable(); 355 rq = this_rq(); 356 raw_spin_lock(&rq->lock); 357 358 return rq; 359 } 360 361 #ifdef CONFIG_SCHED_HRTICK 362 /* 363 * Use HR-timers to deliver accurate preemption points. 364 * 365 * Its all a bit involved since we cannot program an hrt while holding the 366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 367 * reschedule event. 368 * 369 * When we get rescheduled we reprogram the hrtick_timer outside of the 370 * rq->lock. 371 */ 372 373 static void hrtick_clear(struct rq *rq) 374 { 375 if (hrtimer_active(&rq->hrtick_timer)) 376 hrtimer_cancel(&rq->hrtick_timer); 377 } 378 379 /* 380 * High-resolution timer tick. 381 * Runs from hardirq context with interrupts disabled. 382 */ 383 static enum hrtimer_restart hrtick(struct hrtimer *timer) 384 { 385 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 386 387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 388 389 raw_spin_lock(&rq->lock); 390 update_rq_clock(rq); 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 392 raw_spin_unlock(&rq->lock); 393 394 return HRTIMER_NORESTART; 395 } 396 397 #ifdef CONFIG_SMP 398 /* 399 * called from hardirq (IPI) context 400 */ 401 static void __hrtick_start(void *arg) 402 { 403 struct rq *rq = arg; 404 405 raw_spin_lock(&rq->lock); 406 hrtimer_restart(&rq->hrtick_timer); 407 rq->hrtick_csd_pending = 0; 408 raw_spin_unlock(&rq->lock); 409 } 410 411 /* 412 * Called to set the hrtick timer state. 413 * 414 * called with rq->lock held and irqs disabled 415 */ 416 void hrtick_start(struct rq *rq, u64 delay) 417 { 418 struct hrtimer *timer = &rq->hrtick_timer; 419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 420 421 hrtimer_set_expires(timer, time); 422 423 if (rq == this_rq()) { 424 hrtimer_restart(timer); 425 } else if (!rq->hrtick_csd_pending) { 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 427 rq->hrtick_csd_pending = 1; 428 } 429 } 430 431 static int 432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 433 { 434 int cpu = (int)(long)hcpu; 435 436 switch (action) { 437 case CPU_UP_CANCELED: 438 case CPU_UP_CANCELED_FROZEN: 439 case CPU_DOWN_PREPARE: 440 case CPU_DOWN_PREPARE_FROZEN: 441 case CPU_DEAD: 442 case CPU_DEAD_FROZEN: 443 hrtick_clear(cpu_rq(cpu)); 444 return NOTIFY_OK; 445 } 446 447 return NOTIFY_DONE; 448 } 449 450 static __init void init_hrtick(void) 451 { 452 hotcpu_notifier(hotplug_hrtick, 0); 453 } 454 #else 455 /* 456 * Called to set the hrtick timer state. 457 * 458 * called with rq->lock held and irqs disabled 459 */ 460 void hrtick_start(struct rq *rq, u64 delay) 461 { 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 463 HRTIMER_MODE_REL_PINNED, 0); 464 } 465 466 static inline void init_hrtick(void) 467 { 468 } 469 #endif /* CONFIG_SMP */ 470 471 static void init_rq_hrtick(struct rq *rq) 472 { 473 #ifdef CONFIG_SMP 474 rq->hrtick_csd_pending = 0; 475 476 rq->hrtick_csd.flags = 0; 477 rq->hrtick_csd.func = __hrtick_start; 478 rq->hrtick_csd.info = rq; 479 #endif 480 481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 482 rq->hrtick_timer.function = hrtick; 483 } 484 #else /* CONFIG_SCHED_HRTICK */ 485 static inline void hrtick_clear(struct rq *rq) 486 { 487 } 488 489 static inline void init_rq_hrtick(struct rq *rq) 490 { 491 } 492 493 static inline void init_hrtick(void) 494 { 495 } 496 #endif /* CONFIG_SCHED_HRTICK */ 497 498 /* 499 * resched_task - mark a task 'to be rescheduled now'. 500 * 501 * On UP this means the setting of the need_resched flag, on SMP it 502 * might also involve a cross-CPU call to trigger the scheduler on 503 * the target CPU. 504 */ 505 #ifdef CONFIG_SMP 506 507 #ifndef tsk_is_polling 508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) 509 #endif 510 511 void resched_task(struct task_struct *p) 512 { 513 int cpu; 514 515 assert_raw_spin_locked(&task_rq(p)->lock); 516 517 if (test_tsk_need_resched(p)) 518 return; 519 520 set_tsk_need_resched(p); 521 522 cpu = task_cpu(p); 523 if (cpu == smp_processor_id()) 524 return; 525 526 /* NEED_RESCHED must be visible before we test polling */ 527 smp_mb(); 528 if (!tsk_is_polling(p)) 529 smp_send_reschedule(cpu); 530 } 531 532 void resched_cpu(int cpu) 533 { 534 struct rq *rq = cpu_rq(cpu); 535 unsigned long flags; 536 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 538 return; 539 resched_task(cpu_curr(cpu)); 540 raw_spin_unlock_irqrestore(&rq->lock, flags); 541 } 542 543 #ifdef CONFIG_NO_HZ 544 /* 545 * In the semi idle case, use the nearest busy cpu for migrating timers 546 * from an idle cpu. This is good for power-savings. 547 * 548 * We don't do similar optimization for completely idle system, as 549 * selecting an idle cpu will add more delays to the timers than intended 550 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 551 */ 552 int get_nohz_timer_target(void) 553 { 554 int cpu = smp_processor_id(); 555 int i; 556 struct sched_domain *sd; 557 558 rcu_read_lock(); 559 for_each_domain(cpu, sd) { 560 for_each_cpu(i, sched_domain_span(sd)) { 561 if (!idle_cpu(i)) { 562 cpu = i; 563 goto unlock; 564 } 565 } 566 } 567 unlock: 568 rcu_read_unlock(); 569 return cpu; 570 } 571 /* 572 * When add_timer_on() enqueues a timer into the timer wheel of an 573 * idle CPU then this timer might expire before the next timer event 574 * which is scheduled to wake up that CPU. In case of a completely 575 * idle system the next event might even be infinite time into the 576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 577 * leaves the inner idle loop so the newly added timer is taken into 578 * account when the CPU goes back to idle and evaluates the timer 579 * wheel for the next timer event. 580 */ 581 void wake_up_idle_cpu(int cpu) 582 { 583 struct rq *rq = cpu_rq(cpu); 584 585 if (cpu == smp_processor_id()) 586 return; 587 588 /* 589 * This is safe, as this function is called with the timer 590 * wheel base lock of (cpu) held. When the CPU is on the way 591 * to idle and has not yet set rq->curr to idle then it will 592 * be serialized on the timer wheel base lock and take the new 593 * timer into account automatically. 594 */ 595 if (rq->curr != rq->idle) 596 return; 597 598 /* 599 * We can set TIF_RESCHED on the idle task of the other CPU 600 * lockless. The worst case is that the other CPU runs the 601 * idle task through an additional NOOP schedule() 602 */ 603 set_tsk_need_resched(rq->idle); 604 605 /* NEED_RESCHED must be visible before we test polling */ 606 smp_mb(); 607 if (!tsk_is_polling(rq->idle)) 608 smp_send_reschedule(cpu); 609 } 610 611 static inline bool got_nohz_idle_kick(void) 612 { 613 int cpu = smp_processor_id(); 614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 615 } 616 617 #else /* CONFIG_NO_HZ */ 618 619 static inline bool got_nohz_idle_kick(void) 620 { 621 return false; 622 } 623 624 #endif /* CONFIG_NO_HZ */ 625 626 void sched_avg_update(struct rq *rq) 627 { 628 s64 period = sched_avg_period(); 629 630 while ((s64)(rq->clock - rq->age_stamp) > period) { 631 /* 632 * Inline assembly required to prevent the compiler 633 * optimising this loop into a divmod call. 634 * See __iter_div_u64_rem() for another example of this. 635 */ 636 asm("" : "+rm" (rq->age_stamp)); 637 rq->age_stamp += period; 638 rq->rt_avg /= 2; 639 } 640 } 641 642 #else /* !CONFIG_SMP */ 643 void resched_task(struct task_struct *p) 644 { 645 assert_raw_spin_locked(&task_rq(p)->lock); 646 set_tsk_need_resched(p); 647 } 648 #endif /* CONFIG_SMP */ 649 650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 652 /* 653 * Iterate task_group tree rooted at *from, calling @down when first entering a 654 * node and @up when leaving it for the final time. 655 * 656 * Caller must hold rcu_lock or sufficient equivalent. 657 */ 658 int walk_tg_tree_from(struct task_group *from, 659 tg_visitor down, tg_visitor up, void *data) 660 { 661 struct task_group *parent, *child; 662 int ret; 663 664 parent = from; 665 666 down: 667 ret = (*down)(parent, data); 668 if (ret) 669 goto out; 670 list_for_each_entry_rcu(child, &parent->children, siblings) { 671 parent = child; 672 goto down; 673 674 up: 675 continue; 676 } 677 ret = (*up)(parent, data); 678 if (ret || parent == from) 679 goto out; 680 681 child = parent; 682 parent = parent->parent; 683 if (parent) 684 goto up; 685 out: 686 return ret; 687 } 688 689 int tg_nop(struct task_group *tg, void *data) 690 { 691 return 0; 692 } 693 #endif 694 695 static void set_load_weight(struct task_struct *p) 696 { 697 int prio = p->static_prio - MAX_RT_PRIO; 698 struct load_weight *load = &p->se.load; 699 700 /* 701 * SCHED_IDLE tasks get minimal weight: 702 */ 703 if (p->policy == SCHED_IDLE) { 704 load->weight = scale_load(WEIGHT_IDLEPRIO); 705 load->inv_weight = WMULT_IDLEPRIO; 706 return; 707 } 708 709 load->weight = scale_load(prio_to_weight[prio]); 710 load->inv_weight = prio_to_wmult[prio]; 711 } 712 713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 714 { 715 update_rq_clock(rq); 716 sched_info_queued(p); 717 p->sched_class->enqueue_task(rq, p, flags); 718 } 719 720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 721 { 722 update_rq_clock(rq); 723 sched_info_dequeued(p); 724 p->sched_class->dequeue_task(rq, p, flags); 725 } 726 727 void activate_task(struct rq *rq, struct task_struct *p, int flags) 728 { 729 if (task_contributes_to_load(p)) 730 rq->nr_uninterruptible--; 731 732 enqueue_task(rq, p, flags); 733 } 734 735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 736 { 737 if (task_contributes_to_load(p)) 738 rq->nr_uninterruptible++; 739 740 dequeue_task(rq, p, flags); 741 } 742 743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 744 745 /* 746 * There are no locks covering percpu hardirq/softirq time. 747 * They are only modified in account_system_vtime, on corresponding CPU 748 * with interrupts disabled. So, writes are safe. 749 * They are read and saved off onto struct rq in update_rq_clock(). 750 * This may result in other CPU reading this CPU's irq time and can 751 * race with irq/account_system_vtime on this CPU. We would either get old 752 * or new value with a side effect of accounting a slice of irq time to wrong 753 * task when irq is in progress while we read rq->clock. That is a worthy 754 * compromise in place of having locks on each irq in account_system_time. 755 */ 756 static DEFINE_PER_CPU(u64, cpu_hardirq_time); 757 static DEFINE_PER_CPU(u64, cpu_softirq_time); 758 759 static DEFINE_PER_CPU(u64, irq_start_time); 760 static int sched_clock_irqtime; 761 762 void enable_sched_clock_irqtime(void) 763 { 764 sched_clock_irqtime = 1; 765 } 766 767 void disable_sched_clock_irqtime(void) 768 { 769 sched_clock_irqtime = 0; 770 } 771 772 #ifndef CONFIG_64BIT 773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq); 774 775 static inline void irq_time_write_begin(void) 776 { 777 __this_cpu_inc(irq_time_seq.sequence); 778 smp_wmb(); 779 } 780 781 static inline void irq_time_write_end(void) 782 { 783 smp_wmb(); 784 __this_cpu_inc(irq_time_seq.sequence); 785 } 786 787 static inline u64 irq_time_read(int cpu) 788 { 789 u64 irq_time; 790 unsigned seq; 791 792 do { 793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 794 irq_time = per_cpu(cpu_softirq_time, cpu) + 795 per_cpu(cpu_hardirq_time, cpu); 796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 797 798 return irq_time; 799 } 800 #else /* CONFIG_64BIT */ 801 static inline void irq_time_write_begin(void) 802 { 803 } 804 805 static inline void irq_time_write_end(void) 806 { 807 } 808 809 static inline u64 irq_time_read(int cpu) 810 { 811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 812 } 813 #endif /* CONFIG_64BIT */ 814 815 /* 816 * Called before incrementing preempt_count on {soft,}irq_enter 817 * and before decrementing preempt_count on {soft,}irq_exit. 818 */ 819 void account_system_vtime(struct task_struct *curr) 820 { 821 unsigned long flags; 822 s64 delta; 823 int cpu; 824 825 if (!sched_clock_irqtime) 826 return; 827 828 local_irq_save(flags); 829 830 cpu = smp_processor_id(); 831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 832 __this_cpu_add(irq_start_time, delta); 833 834 irq_time_write_begin(); 835 /* 836 * We do not account for softirq time from ksoftirqd here. 837 * We want to continue accounting softirq time to ksoftirqd thread 838 * in that case, so as not to confuse scheduler with a special task 839 * that do not consume any time, but still wants to run. 840 */ 841 if (hardirq_count()) 842 __this_cpu_add(cpu_hardirq_time, delta); 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 844 __this_cpu_add(cpu_softirq_time, delta); 845 846 irq_time_write_end(); 847 local_irq_restore(flags); 848 } 849 EXPORT_SYMBOL_GPL(account_system_vtime); 850 851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 852 853 #ifdef CONFIG_PARAVIRT 854 static inline u64 steal_ticks(u64 steal) 855 { 856 if (unlikely(steal > NSEC_PER_SEC)) 857 return div_u64(steal, TICK_NSEC); 858 859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal); 860 } 861 #endif 862 863 static void update_rq_clock_task(struct rq *rq, s64 delta) 864 { 865 /* 866 * In theory, the compile should just see 0 here, and optimize out the call 867 * to sched_rt_avg_update. But I don't trust it... 868 */ 869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 870 s64 steal = 0, irq_delta = 0; 871 #endif 872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 874 875 /* 876 * Since irq_time is only updated on {soft,}irq_exit, we might run into 877 * this case when a previous update_rq_clock() happened inside a 878 * {soft,}irq region. 879 * 880 * When this happens, we stop ->clock_task and only update the 881 * prev_irq_time stamp to account for the part that fit, so that a next 882 * update will consume the rest. This ensures ->clock_task is 883 * monotonic. 884 * 885 * It does however cause some slight miss-attribution of {soft,}irq 886 * time, a more accurate solution would be to update the irq_time using 887 * the current rq->clock timestamp, except that would require using 888 * atomic ops. 889 */ 890 if (irq_delta > delta) 891 irq_delta = delta; 892 893 rq->prev_irq_time += irq_delta; 894 delta -= irq_delta; 895 #endif 896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 897 if (static_key_false((¶virt_steal_rq_enabled))) { 898 u64 st; 899 900 steal = paravirt_steal_clock(cpu_of(rq)); 901 steal -= rq->prev_steal_time_rq; 902 903 if (unlikely(steal > delta)) 904 steal = delta; 905 906 st = steal_ticks(steal); 907 steal = st * TICK_NSEC; 908 909 rq->prev_steal_time_rq += steal; 910 911 delta -= steal; 912 } 913 #endif 914 915 rq->clock_task += delta; 916 917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 919 sched_rt_avg_update(rq, irq_delta + steal); 920 #endif 921 } 922 923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 924 static int irqtime_account_hi_update(void) 925 { 926 u64 *cpustat = kcpustat_this_cpu->cpustat; 927 unsigned long flags; 928 u64 latest_ns; 929 int ret = 0; 930 931 local_irq_save(flags); 932 latest_ns = this_cpu_read(cpu_hardirq_time); 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 934 ret = 1; 935 local_irq_restore(flags); 936 return ret; 937 } 938 939 static int irqtime_account_si_update(void) 940 { 941 u64 *cpustat = kcpustat_this_cpu->cpustat; 942 unsigned long flags; 943 u64 latest_ns; 944 int ret = 0; 945 946 local_irq_save(flags); 947 latest_ns = this_cpu_read(cpu_softirq_time); 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 949 ret = 1; 950 local_irq_restore(flags); 951 return ret; 952 } 953 954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 955 956 #define sched_clock_irqtime (0) 957 958 #endif 959 960 void sched_set_stop_task(int cpu, struct task_struct *stop) 961 { 962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 963 struct task_struct *old_stop = cpu_rq(cpu)->stop; 964 965 if (stop) { 966 /* 967 * Make it appear like a SCHED_FIFO task, its something 968 * userspace knows about and won't get confused about. 969 * 970 * Also, it will make PI more or less work without too 971 * much confusion -- but then, stop work should not 972 * rely on PI working anyway. 973 */ 974 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 975 976 stop->sched_class = &stop_sched_class; 977 } 978 979 cpu_rq(cpu)->stop = stop; 980 981 if (old_stop) { 982 /* 983 * Reset it back to a normal scheduling class so that 984 * it can die in pieces. 985 */ 986 old_stop->sched_class = &rt_sched_class; 987 } 988 } 989 990 /* 991 * __normal_prio - return the priority that is based on the static prio 992 */ 993 static inline int __normal_prio(struct task_struct *p) 994 { 995 return p->static_prio; 996 } 997 998 /* 999 * Calculate the expected normal priority: i.e. priority 1000 * without taking RT-inheritance into account. Might be 1001 * boosted by interactivity modifiers. Changes upon fork, 1002 * setprio syscalls, and whenever the interactivity 1003 * estimator recalculates. 1004 */ 1005 static inline int normal_prio(struct task_struct *p) 1006 { 1007 int prio; 1008 1009 if (task_has_rt_policy(p)) 1010 prio = MAX_RT_PRIO-1 - p->rt_priority; 1011 else 1012 prio = __normal_prio(p); 1013 return prio; 1014 } 1015 1016 /* 1017 * Calculate the current priority, i.e. the priority 1018 * taken into account by the scheduler. This value might 1019 * be boosted by RT tasks, or might be boosted by 1020 * interactivity modifiers. Will be RT if the task got 1021 * RT-boosted. If not then it returns p->normal_prio. 1022 */ 1023 static int effective_prio(struct task_struct *p) 1024 { 1025 p->normal_prio = normal_prio(p); 1026 /* 1027 * If we are RT tasks or we were boosted to RT priority, 1028 * keep the priority unchanged. Otherwise, update priority 1029 * to the normal priority: 1030 */ 1031 if (!rt_prio(p->prio)) 1032 return p->normal_prio; 1033 return p->prio; 1034 } 1035 1036 /** 1037 * task_curr - is this task currently executing on a CPU? 1038 * @p: the task in question. 1039 */ 1040 inline int task_curr(const struct task_struct *p) 1041 { 1042 return cpu_curr(task_cpu(p)) == p; 1043 } 1044 1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1046 const struct sched_class *prev_class, 1047 int oldprio) 1048 { 1049 if (prev_class != p->sched_class) { 1050 if (prev_class->switched_from) 1051 prev_class->switched_from(rq, p); 1052 p->sched_class->switched_to(rq, p); 1053 } else if (oldprio != p->prio) 1054 p->sched_class->prio_changed(rq, p, oldprio); 1055 } 1056 1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1058 { 1059 const struct sched_class *class; 1060 1061 if (p->sched_class == rq->curr->sched_class) { 1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1063 } else { 1064 for_each_class(class) { 1065 if (class == rq->curr->sched_class) 1066 break; 1067 if (class == p->sched_class) { 1068 resched_task(rq->curr); 1069 break; 1070 } 1071 } 1072 } 1073 1074 /* 1075 * A queue event has occurred, and we're going to schedule. In 1076 * this case, we can save a useless back to back clock update. 1077 */ 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 1079 rq->skip_clock_update = 1; 1080 } 1081 1082 #ifdef CONFIG_SMP 1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1084 { 1085 #ifdef CONFIG_SCHED_DEBUG 1086 /* 1087 * We should never call set_task_cpu() on a blocked task, 1088 * ttwu() will sort out the placement. 1089 */ 1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 1092 1093 #ifdef CONFIG_LOCKDEP 1094 /* 1095 * The caller should hold either p->pi_lock or rq->lock, when changing 1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1097 * 1098 * sched_move_task() holds both and thus holding either pins the cgroup, 1099 * see set_task_rq(). 1100 * 1101 * Furthermore, all task_rq users should acquire both locks, see 1102 * task_rq_lock(). 1103 */ 1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1105 lockdep_is_held(&task_rq(p)->lock))); 1106 #endif 1107 #endif 1108 1109 trace_sched_migrate_task(p, new_cpu); 1110 1111 if (task_cpu(p) != new_cpu) { 1112 p->se.nr_migrations++; 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1114 } 1115 1116 __set_task_cpu(p, new_cpu); 1117 } 1118 1119 struct migration_arg { 1120 struct task_struct *task; 1121 int dest_cpu; 1122 }; 1123 1124 static int migration_cpu_stop(void *data); 1125 1126 /* 1127 * wait_task_inactive - wait for a thread to unschedule. 1128 * 1129 * If @match_state is nonzero, it's the @p->state value just checked and 1130 * not expected to change. If it changes, i.e. @p might have woken up, 1131 * then return zero. When we succeed in waiting for @p to be off its CPU, 1132 * we return a positive number (its total switch count). If a second call 1133 * a short while later returns the same number, the caller can be sure that 1134 * @p has remained unscheduled the whole time. 1135 * 1136 * The caller must ensure that the task *will* unschedule sometime soon, 1137 * else this function might spin for a *long* time. This function can't 1138 * be called with interrupts off, or it may introduce deadlock with 1139 * smp_call_function() if an IPI is sent by the same process we are 1140 * waiting to become inactive. 1141 */ 1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1143 { 1144 unsigned long flags; 1145 int running, on_rq; 1146 unsigned long ncsw; 1147 struct rq *rq; 1148 1149 for (;;) { 1150 /* 1151 * We do the initial early heuristics without holding 1152 * any task-queue locks at all. We'll only try to get 1153 * the runqueue lock when things look like they will 1154 * work out! 1155 */ 1156 rq = task_rq(p); 1157 1158 /* 1159 * If the task is actively running on another CPU 1160 * still, just relax and busy-wait without holding 1161 * any locks. 1162 * 1163 * NOTE! Since we don't hold any locks, it's not 1164 * even sure that "rq" stays as the right runqueue! 1165 * But we don't care, since "task_running()" will 1166 * return false if the runqueue has changed and p 1167 * is actually now running somewhere else! 1168 */ 1169 while (task_running(rq, p)) { 1170 if (match_state && unlikely(p->state != match_state)) 1171 return 0; 1172 cpu_relax(); 1173 } 1174 1175 /* 1176 * Ok, time to look more closely! We need the rq 1177 * lock now, to be *sure*. If we're wrong, we'll 1178 * just go back and repeat. 1179 */ 1180 rq = task_rq_lock(p, &flags); 1181 trace_sched_wait_task(p); 1182 running = task_running(rq, p); 1183 on_rq = p->on_rq; 1184 ncsw = 0; 1185 if (!match_state || p->state == match_state) 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1187 task_rq_unlock(rq, p, &flags); 1188 1189 /* 1190 * If it changed from the expected state, bail out now. 1191 */ 1192 if (unlikely(!ncsw)) 1193 break; 1194 1195 /* 1196 * Was it really running after all now that we 1197 * checked with the proper locks actually held? 1198 * 1199 * Oops. Go back and try again.. 1200 */ 1201 if (unlikely(running)) { 1202 cpu_relax(); 1203 continue; 1204 } 1205 1206 /* 1207 * It's not enough that it's not actively running, 1208 * it must be off the runqueue _entirely_, and not 1209 * preempted! 1210 * 1211 * So if it was still runnable (but just not actively 1212 * running right now), it's preempted, and we should 1213 * yield - it could be a while. 1214 */ 1215 if (unlikely(on_rq)) { 1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1217 1218 set_current_state(TASK_UNINTERRUPTIBLE); 1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1220 continue; 1221 } 1222 1223 /* 1224 * Ahh, all good. It wasn't running, and it wasn't 1225 * runnable, which means that it will never become 1226 * running in the future either. We're all done! 1227 */ 1228 break; 1229 } 1230 1231 return ncsw; 1232 } 1233 1234 /*** 1235 * kick_process - kick a running thread to enter/exit the kernel 1236 * @p: the to-be-kicked thread 1237 * 1238 * Cause a process which is running on another CPU to enter 1239 * kernel-mode, without any delay. (to get signals handled.) 1240 * 1241 * NOTE: this function doesn't have to take the runqueue lock, 1242 * because all it wants to ensure is that the remote task enters 1243 * the kernel. If the IPI races and the task has been migrated 1244 * to another CPU then no harm is done and the purpose has been 1245 * achieved as well. 1246 */ 1247 void kick_process(struct task_struct *p) 1248 { 1249 int cpu; 1250 1251 preempt_disable(); 1252 cpu = task_cpu(p); 1253 if ((cpu != smp_processor_id()) && task_curr(p)) 1254 smp_send_reschedule(cpu); 1255 preempt_enable(); 1256 } 1257 EXPORT_SYMBOL_GPL(kick_process); 1258 #endif /* CONFIG_SMP */ 1259 1260 #ifdef CONFIG_SMP 1261 /* 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1263 */ 1264 static int select_fallback_rq(int cpu, struct task_struct *p) 1265 { 1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); 1267 enum { cpuset, possible, fail } state = cpuset; 1268 int dest_cpu; 1269 1270 /* Look for allowed, online CPU in same node. */ 1271 for_each_cpu(dest_cpu, nodemask) { 1272 if (!cpu_online(dest_cpu)) 1273 continue; 1274 if (!cpu_active(dest_cpu)) 1275 continue; 1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1277 return dest_cpu; 1278 } 1279 1280 for (;;) { 1281 /* Any allowed, online CPU? */ 1282 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1283 if (!cpu_online(dest_cpu)) 1284 continue; 1285 if (!cpu_active(dest_cpu)) 1286 continue; 1287 goto out; 1288 } 1289 1290 switch (state) { 1291 case cpuset: 1292 /* No more Mr. Nice Guy. */ 1293 cpuset_cpus_allowed_fallback(p); 1294 state = possible; 1295 break; 1296 1297 case possible: 1298 do_set_cpus_allowed(p, cpu_possible_mask); 1299 state = fail; 1300 break; 1301 1302 case fail: 1303 BUG(); 1304 break; 1305 } 1306 } 1307 1308 out: 1309 if (state != cpuset) { 1310 /* 1311 * Don't tell them about moving exiting tasks or 1312 * kernel threads (both mm NULL), since they never 1313 * leave kernel. 1314 */ 1315 if (p->mm && printk_ratelimit()) { 1316 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1317 task_pid_nr(p), p->comm, cpu); 1318 } 1319 } 1320 1321 return dest_cpu; 1322 } 1323 1324 /* 1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1326 */ 1327 static inline 1328 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1329 { 1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1331 1332 /* 1333 * In order not to call set_task_cpu() on a blocking task we need 1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1335 * cpu. 1336 * 1337 * Since this is common to all placement strategies, this lives here. 1338 * 1339 * [ this allows ->select_task() to simply return task_cpu(p) and 1340 * not worry about this generic constraint ] 1341 */ 1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1343 !cpu_online(cpu))) 1344 cpu = select_fallback_rq(task_cpu(p), p); 1345 1346 return cpu; 1347 } 1348 1349 static void update_avg(u64 *avg, u64 sample) 1350 { 1351 s64 diff = sample - *avg; 1352 *avg += diff >> 3; 1353 } 1354 #endif 1355 1356 static void 1357 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1358 { 1359 #ifdef CONFIG_SCHEDSTATS 1360 struct rq *rq = this_rq(); 1361 1362 #ifdef CONFIG_SMP 1363 int this_cpu = smp_processor_id(); 1364 1365 if (cpu == this_cpu) { 1366 schedstat_inc(rq, ttwu_local); 1367 schedstat_inc(p, se.statistics.nr_wakeups_local); 1368 } else { 1369 struct sched_domain *sd; 1370 1371 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1372 rcu_read_lock(); 1373 for_each_domain(this_cpu, sd) { 1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1375 schedstat_inc(sd, ttwu_wake_remote); 1376 break; 1377 } 1378 } 1379 rcu_read_unlock(); 1380 } 1381 1382 if (wake_flags & WF_MIGRATED) 1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1384 1385 #endif /* CONFIG_SMP */ 1386 1387 schedstat_inc(rq, ttwu_count); 1388 schedstat_inc(p, se.statistics.nr_wakeups); 1389 1390 if (wake_flags & WF_SYNC) 1391 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1392 1393 #endif /* CONFIG_SCHEDSTATS */ 1394 } 1395 1396 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1397 { 1398 activate_task(rq, p, en_flags); 1399 p->on_rq = 1; 1400 1401 /* if a worker is waking up, notify workqueue */ 1402 if (p->flags & PF_WQ_WORKER) 1403 wq_worker_waking_up(p, cpu_of(rq)); 1404 } 1405 1406 /* 1407 * Mark the task runnable and perform wakeup-preemption. 1408 */ 1409 static void 1410 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1411 { 1412 trace_sched_wakeup(p, true); 1413 check_preempt_curr(rq, p, wake_flags); 1414 1415 p->state = TASK_RUNNING; 1416 #ifdef CONFIG_SMP 1417 if (p->sched_class->task_woken) 1418 p->sched_class->task_woken(rq, p); 1419 1420 if (rq->idle_stamp) { 1421 u64 delta = rq->clock - rq->idle_stamp; 1422 u64 max = 2*sysctl_sched_migration_cost; 1423 1424 if (delta > max) 1425 rq->avg_idle = max; 1426 else 1427 update_avg(&rq->avg_idle, delta); 1428 rq->idle_stamp = 0; 1429 } 1430 #endif 1431 } 1432 1433 static void 1434 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1435 { 1436 #ifdef CONFIG_SMP 1437 if (p->sched_contributes_to_load) 1438 rq->nr_uninterruptible--; 1439 #endif 1440 1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1442 ttwu_do_wakeup(rq, p, wake_flags); 1443 } 1444 1445 /* 1446 * Called in case the task @p isn't fully descheduled from its runqueue, 1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1448 * since all we need to do is flip p->state to TASK_RUNNING, since 1449 * the task is still ->on_rq. 1450 */ 1451 static int ttwu_remote(struct task_struct *p, int wake_flags) 1452 { 1453 struct rq *rq; 1454 int ret = 0; 1455 1456 rq = __task_rq_lock(p); 1457 if (p->on_rq) { 1458 ttwu_do_wakeup(rq, p, wake_flags); 1459 ret = 1; 1460 } 1461 __task_rq_unlock(rq); 1462 1463 return ret; 1464 } 1465 1466 #ifdef CONFIG_SMP 1467 static void sched_ttwu_pending(void) 1468 { 1469 struct rq *rq = this_rq(); 1470 struct llist_node *llist = llist_del_all(&rq->wake_list); 1471 struct task_struct *p; 1472 1473 raw_spin_lock(&rq->lock); 1474 1475 while (llist) { 1476 p = llist_entry(llist, struct task_struct, wake_entry); 1477 llist = llist_next(llist); 1478 ttwu_do_activate(rq, p, 0); 1479 } 1480 1481 raw_spin_unlock(&rq->lock); 1482 } 1483 1484 void scheduler_ipi(void) 1485 { 1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1487 return; 1488 1489 /* 1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1491 * traditionally all their work was done from the interrupt return 1492 * path. Now that we actually do some work, we need to make sure 1493 * we do call them. 1494 * 1495 * Some archs already do call them, luckily irq_enter/exit nest 1496 * properly. 1497 * 1498 * Arguably we should visit all archs and update all handlers, 1499 * however a fair share of IPIs are still resched only so this would 1500 * somewhat pessimize the simple resched case. 1501 */ 1502 irq_enter(); 1503 sched_ttwu_pending(); 1504 1505 /* 1506 * Check if someone kicked us for doing the nohz idle load balance. 1507 */ 1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1509 this_rq()->idle_balance = 1; 1510 raise_softirq_irqoff(SCHED_SOFTIRQ); 1511 } 1512 irq_exit(); 1513 } 1514 1515 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1516 { 1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1518 smp_send_reschedule(cpu); 1519 } 1520 1521 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1522 static int ttwu_activate_remote(struct task_struct *p, int wake_flags) 1523 { 1524 struct rq *rq; 1525 int ret = 0; 1526 1527 rq = __task_rq_lock(p); 1528 if (p->on_cpu) { 1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1530 ttwu_do_wakeup(rq, p, wake_flags); 1531 ret = 1; 1532 } 1533 __task_rq_unlock(rq); 1534 1535 return ret; 1536 1537 } 1538 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1539 1540 bool cpus_share_cache(int this_cpu, int that_cpu) 1541 { 1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1543 } 1544 #endif /* CONFIG_SMP */ 1545 1546 static void ttwu_queue(struct task_struct *p, int cpu) 1547 { 1548 struct rq *rq = cpu_rq(cpu); 1549 1550 #if defined(CONFIG_SMP) 1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1553 ttwu_queue_remote(p, cpu); 1554 return; 1555 } 1556 #endif 1557 1558 raw_spin_lock(&rq->lock); 1559 ttwu_do_activate(rq, p, 0); 1560 raw_spin_unlock(&rq->lock); 1561 } 1562 1563 /** 1564 * try_to_wake_up - wake up a thread 1565 * @p: the thread to be awakened 1566 * @state: the mask of task states that can be woken 1567 * @wake_flags: wake modifier flags (WF_*) 1568 * 1569 * Put it on the run-queue if it's not already there. The "current" 1570 * thread is always on the run-queue (except when the actual 1571 * re-schedule is in progress), and as such you're allowed to do 1572 * the simpler "current->state = TASK_RUNNING" to mark yourself 1573 * runnable without the overhead of this. 1574 * 1575 * Returns %true if @p was woken up, %false if it was already running 1576 * or @state didn't match @p's state. 1577 */ 1578 static int 1579 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1580 { 1581 unsigned long flags; 1582 int cpu, success = 0; 1583 1584 smp_wmb(); 1585 raw_spin_lock_irqsave(&p->pi_lock, flags); 1586 if (!(p->state & state)) 1587 goto out; 1588 1589 success = 1; /* we're going to change ->state */ 1590 cpu = task_cpu(p); 1591 1592 if (p->on_rq && ttwu_remote(p, wake_flags)) 1593 goto stat; 1594 1595 #ifdef CONFIG_SMP 1596 /* 1597 * If the owning (remote) cpu is still in the middle of schedule() with 1598 * this task as prev, wait until its done referencing the task. 1599 */ 1600 while (p->on_cpu) { 1601 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1602 /* 1603 * In case the architecture enables interrupts in 1604 * context_switch(), we cannot busy wait, since that 1605 * would lead to deadlocks when an interrupt hits and 1606 * tries to wake up @prev. So bail and do a complete 1607 * remote wakeup. 1608 */ 1609 if (ttwu_activate_remote(p, wake_flags)) 1610 goto stat; 1611 #else 1612 cpu_relax(); 1613 #endif 1614 } 1615 /* 1616 * Pairs with the smp_wmb() in finish_lock_switch(). 1617 */ 1618 smp_rmb(); 1619 1620 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1621 p->state = TASK_WAKING; 1622 1623 if (p->sched_class->task_waking) 1624 p->sched_class->task_waking(p); 1625 1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1627 if (task_cpu(p) != cpu) { 1628 wake_flags |= WF_MIGRATED; 1629 set_task_cpu(p, cpu); 1630 } 1631 #endif /* CONFIG_SMP */ 1632 1633 ttwu_queue(p, cpu); 1634 stat: 1635 ttwu_stat(p, cpu, wake_flags); 1636 out: 1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1638 1639 return success; 1640 } 1641 1642 /** 1643 * try_to_wake_up_local - try to wake up a local task with rq lock held 1644 * @p: the thread to be awakened 1645 * 1646 * Put @p on the run-queue if it's not already there. The caller must 1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1648 * the current task. 1649 */ 1650 static void try_to_wake_up_local(struct task_struct *p) 1651 { 1652 struct rq *rq = task_rq(p); 1653 1654 BUG_ON(rq != this_rq()); 1655 BUG_ON(p == current); 1656 lockdep_assert_held(&rq->lock); 1657 1658 if (!raw_spin_trylock(&p->pi_lock)) { 1659 raw_spin_unlock(&rq->lock); 1660 raw_spin_lock(&p->pi_lock); 1661 raw_spin_lock(&rq->lock); 1662 } 1663 1664 if (!(p->state & TASK_NORMAL)) 1665 goto out; 1666 1667 if (!p->on_rq) 1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1669 1670 ttwu_do_wakeup(rq, p, 0); 1671 ttwu_stat(p, smp_processor_id(), 0); 1672 out: 1673 raw_spin_unlock(&p->pi_lock); 1674 } 1675 1676 /** 1677 * wake_up_process - Wake up a specific process 1678 * @p: The process to be woken up. 1679 * 1680 * Attempt to wake up the nominated process and move it to the set of runnable 1681 * processes. Returns 1 if the process was woken up, 0 if it was already 1682 * running. 1683 * 1684 * It may be assumed that this function implies a write memory barrier before 1685 * changing the task state if and only if any tasks are woken up. 1686 */ 1687 int wake_up_process(struct task_struct *p) 1688 { 1689 return try_to_wake_up(p, TASK_ALL, 0); 1690 } 1691 EXPORT_SYMBOL(wake_up_process); 1692 1693 int wake_up_state(struct task_struct *p, unsigned int state) 1694 { 1695 return try_to_wake_up(p, state, 0); 1696 } 1697 1698 /* 1699 * Perform scheduler related setup for a newly forked process p. 1700 * p is forked by current. 1701 * 1702 * __sched_fork() is basic setup used by init_idle() too: 1703 */ 1704 static void __sched_fork(struct task_struct *p) 1705 { 1706 p->on_rq = 0; 1707 1708 p->se.on_rq = 0; 1709 p->se.exec_start = 0; 1710 p->se.sum_exec_runtime = 0; 1711 p->se.prev_sum_exec_runtime = 0; 1712 p->se.nr_migrations = 0; 1713 p->se.vruntime = 0; 1714 INIT_LIST_HEAD(&p->se.group_node); 1715 1716 #ifdef CONFIG_SCHEDSTATS 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1718 #endif 1719 1720 INIT_LIST_HEAD(&p->rt.run_list); 1721 1722 #ifdef CONFIG_PREEMPT_NOTIFIERS 1723 INIT_HLIST_HEAD(&p->preempt_notifiers); 1724 #endif 1725 } 1726 1727 /* 1728 * fork()/clone()-time setup: 1729 */ 1730 void sched_fork(struct task_struct *p) 1731 { 1732 unsigned long flags; 1733 int cpu = get_cpu(); 1734 1735 __sched_fork(p); 1736 /* 1737 * We mark the process as running here. This guarantees that 1738 * nobody will actually run it, and a signal or other external 1739 * event cannot wake it up and insert it on the runqueue either. 1740 */ 1741 p->state = TASK_RUNNING; 1742 1743 /* 1744 * Make sure we do not leak PI boosting priority to the child. 1745 */ 1746 p->prio = current->normal_prio; 1747 1748 /* 1749 * Revert to default priority/policy on fork if requested. 1750 */ 1751 if (unlikely(p->sched_reset_on_fork)) { 1752 if (task_has_rt_policy(p)) { 1753 p->policy = SCHED_NORMAL; 1754 p->static_prio = NICE_TO_PRIO(0); 1755 p->rt_priority = 0; 1756 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1757 p->static_prio = NICE_TO_PRIO(0); 1758 1759 p->prio = p->normal_prio = __normal_prio(p); 1760 set_load_weight(p); 1761 1762 /* 1763 * We don't need the reset flag anymore after the fork. It has 1764 * fulfilled its duty: 1765 */ 1766 p->sched_reset_on_fork = 0; 1767 } 1768 1769 if (!rt_prio(p->prio)) 1770 p->sched_class = &fair_sched_class; 1771 1772 if (p->sched_class->task_fork) 1773 p->sched_class->task_fork(p); 1774 1775 /* 1776 * The child is not yet in the pid-hash so no cgroup attach races, 1777 * and the cgroup is pinned to this child due to cgroup_fork() 1778 * is ran before sched_fork(). 1779 * 1780 * Silence PROVE_RCU. 1781 */ 1782 raw_spin_lock_irqsave(&p->pi_lock, flags); 1783 set_task_cpu(p, cpu); 1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1785 1786 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1787 if (likely(sched_info_on())) 1788 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1789 #endif 1790 #if defined(CONFIG_SMP) 1791 p->on_cpu = 0; 1792 #endif 1793 #ifdef CONFIG_PREEMPT_COUNT 1794 /* Want to start with kernel preemption disabled. */ 1795 task_thread_info(p)->preempt_count = 1; 1796 #endif 1797 #ifdef CONFIG_SMP 1798 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1799 #endif 1800 1801 put_cpu(); 1802 } 1803 1804 /* 1805 * wake_up_new_task - wake up a newly created task for the first time. 1806 * 1807 * This function will do some initial scheduler statistics housekeeping 1808 * that must be done for every newly created context, then puts the task 1809 * on the runqueue and wakes it. 1810 */ 1811 void wake_up_new_task(struct task_struct *p) 1812 { 1813 unsigned long flags; 1814 struct rq *rq; 1815 1816 raw_spin_lock_irqsave(&p->pi_lock, flags); 1817 #ifdef CONFIG_SMP 1818 /* 1819 * Fork balancing, do it here and not earlier because: 1820 * - cpus_allowed can change in the fork path 1821 * - any previously selected cpu might disappear through hotplug 1822 */ 1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1824 #endif 1825 1826 rq = __task_rq_lock(p); 1827 activate_task(rq, p, 0); 1828 p->on_rq = 1; 1829 trace_sched_wakeup_new(p, true); 1830 check_preempt_curr(rq, p, WF_FORK); 1831 #ifdef CONFIG_SMP 1832 if (p->sched_class->task_woken) 1833 p->sched_class->task_woken(rq, p); 1834 #endif 1835 task_rq_unlock(rq, p, &flags); 1836 } 1837 1838 #ifdef CONFIG_PREEMPT_NOTIFIERS 1839 1840 /** 1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1842 * @notifier: notifier struct to register 1843 */ 1844 void preempt_notifier_register(struct preempt_notifier *notifier) 1845 { 1846 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1847 } 1848 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1849 1850 /** 1851 * preempt_notifier_unregister - no longer interested in preemption notifications 1852 * @notifier: notifier struct to unregister 1853 * 1854 * This is safe to call from within a preemption notifier. 1855 */ 1856 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1857 { 1858 hlist_del(¬ifier->link); 1859 } 1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1861 1862 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1863 { 1864 struct preempt_notifier *notifier; 1865 struct hlist_node *node; 1866 1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1868 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1869 } 1870 1871 static void 1872 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1873 struct task_struct *next) 1874 { 1875 struct preempt_notifier *notifier; 1876 struct hlist_node *node; 1877 1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1879 notifier->ops->sched_out(notifier, next); 1880 } 1881 1882 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1883 1884 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1885 { 1886 } 1887 1888 static void 1889 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1890 struct task_struct *next) 1891 { 1892 } 1893 1894 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1895 1896 /** 1897 * prepare_task_switch - prepare to switch tasks 1898 * @rq: the runqueue preparing to switch 1899 * @prev: the current task that is being switched out 1900 * @next: the task we are going to switch to. 1901 * 1902 * This is called with the rq lock held and interrupts off. It must 1903 * be paired with a subsequent finish_task_switch after the context 1904 * switch. 1905 * 1906 * prepare_task_switch sets up locking and calls architecture specific 1907 * hooks. 1908 */ 1909 static inline void 1910 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1911 struct task_struct *next) 1912 { 1913 sched_info_switch(prev, next); 1914 perf_event_task_sched_out(prev, next); 1915 fire_sched_out_preempt_notifiers(prev, next); 1916 prepare_lock_switch(rq, next); 1917 prepare_arch_switch(next); 1918 trace_sched_switch(prev, next); 1919 } 1920 1921 /** 1922 * finish_task_switch - clean up after a task-switch 1923 * @rq: runqueue associated with task-switch 1924 * @prev: the thread we just switched away from. 1925 * 1926 * finish_task_switch must be called after the context switch, paired 1927 * with a prepare_task_switch call before the context switch. 1928 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1929 * and do any other architecture-specific cleanup actions. 1930 * 1931 * Note that we may have delayed dropping an mm in context_switch(). If 1932 * so, we finish that here outside of the runqueue lock. (Doing it 1933 * with the lock held can cause deadlocks; see schedule() for 1934 * details.) 1935 */ 1936 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1937 __releases(rq->lock) 1938 { 1939 struct mm_struct *mm = rq->prev_mm; 1940 long prev_state; 1941 1942 rq->prev_mm = NULL; 1943 1944 /* 1945 * A task struct has one reference for the use as "current". 1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1947 * schedule one last time. The schedule call will never return, and 1948 * the scheduled task must drop that reference. 1949 * The test for TASK_DEAD must occur while the runqueue locks are 1950 * still held, otherwise prev could be scheduled on another cpu, die 1951 * there before we look at prev->state, and then the reference would 1952 * be dropped twice. 1953 * Manfred Spraul <manfred@colorfullife.com> 1954 */ 1955 prev_state = prev->state; 1956 finish_arch_switch(prev); 1957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1958 local_irq_disable(); 1959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1960 perf_event_task_sched_in(prev, current); 1961 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1962 local_irq_enable(); 1963 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1964 finish_lock_switch(rq, prev); 1965 finish_arch_post_lock_switch(); 1966 1967 fire_sched_in_preempt_notifiers(current); 1968 if (mm) 1969 mmdrop(mm); 1970 if (unlikely(prev_state == TASK_DEAD)) { 1971 /* 1972 * Remove function-return probe instances associated with this 1973 * task and put them back on the free list. 1974 */ 1975 kprobe_flush_task(prev); 1976 put_task_struct(prev); 1977 } 1978 } 1979 1980 #ifdef CONFIG_SMP 1981 1982 /* assumes rq->lock is held */ 1983 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1984 { 1985 if (prev->sched_class->pre_schedule) 1986 prev->sched_class->pre_schedule(rq, prev); 1987 } 1988 1989 /* rq->lock is NOT held, but preemption is disabled */ 1990 static inline void post_schedule(struct rq *rq) 1991 { 1992 if (rq->post_schedule) { 1993 unsigned long flags; 1994 1995 raw_spin_lock_irqsave(&rq->lock, flags); 1996 if (rq->curr->sched_class->post_schedule) 1997 rq->curr->sched_class->post_schedule(rq); 1998 raw_spin_unlock_irqrestore(&rq->lock, flags); 1999 2000 rq->post_schedule = 0; 2001 } 2002 } 2003 2004 #else 2005 2006 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 2007 { 2008 } 2009 2010 static inline void post_schedule(struct rq *rq) 2011 { 2012 } 2013 2014 #endif 2015 2016 /** 2017 * schedule_tail - first thing a freshly forked thread must call. 2018 * @prev: the thread we just switched away from. 2019 */ 2020 asmlinkage void schedule_tail(struct task_struct *prev) 2021 __releases(rq->lock) 2022 { 2023 struct rq *rq = this_rq(); 2024 2025 finish_task_switch(rq, prev); 2026 2027 /* 2028 * FIXME: do we need to worry about rq being invalidated by the 2029 * task_switch? 2030 */ 2031 post_schedule(rq); 2032 2033 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2034 /* In this case, finish_task_switch does not reenable preemption */ 2035 preempt_enable(); 2036 #endif 2037 if (current->set_child_tid) 2038 put_user(task_pid_vnr(current), current->set_child_tid); 2039 } 2040 2041 /* 2042 * context_switch - switch to the new MM and the new 2043 * thread's register state. 2044 */ 2045 static inline void 2046 context_switch(struct rq *rq, struct task_struct *prev, 2047 struct task_struct *next) 2048 { 2049 struct mm_struct *mm, *oldmm; 2050 2051 prepare_task_switch(rq, prev, next); 2052 2053 mm = next->mm; 2054 oldmm = prev->active_mm; 2055 /* 2056 * For paravirt, this is coupled with an exit in switch_to to 2057 * combine the page table reload and the switch backend into 2058 * one hypercall. 2059 */ 2060 arch_start_context_switch(prev); 2061 2062 if (!mm) { 2063 next->active_mm = oldmm; 2064 atomic_inc(&oldmm->mm_count); 2065 enter_lazy_tlb(oldmm, next); 2066 } else 2067 switch_mm(oldmm, mm, next); 2068 2069 if (!prev->mm) { 2070 prev->active_mm = NULL; 2071 rq->prev_mm = oldmm; 2072 } 2073 /* 2074 * Since the runqueue lock will be released by the next 2075 * task (which is an invalid locking op but in the case 2076 * of the scheduler it's an obvious special-case), so we 2077 * do an early lockdep release here: 2078 */ 2079 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2080 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2081 #endif 2082 2083 /* Here we just switch the register state and the stack. */ 2084 rcu_switch_from(prev); 2085 switch_to(prev, next, prev); 2086 2087 barrier(); 2088 /* 2089 * this_rq must be evaluated again because prev may have moved 2090 * CPUs since it called schedule(), thus the 'rq' on its stack 2091 * frame will be invalid. 2092 */ 2093 finish_task_switch(this_rq(), prev); 2094 } 2095 2096 /* 2097 * nr_running, nr_uninterruptible and nr_context_switches: 2098 * 2099 * externally visible scheduler statistics: current number of runnable 2100 * threads, current number of uninterruptible-sleeping threads, total 2101 * number of context switches performed since bootup. 2102 */ 2103 unsigned long nr_running(void) 2104 { 2105 unsigned long i, sum = 0; 2106 2107 for_each_online_cpu(i) 2108 sum += cpu_rq(i)->nr_running; 2109 2110 return sum; 2111 } 2112 2113 unsigned long nr_uninterruptible(void) 2114 { 2115 unsigned long i, sum = 0; 2116 2117 for_each_possible_cpu(i) 2118 sum += cpu_rq(i)->nr_uninterruptible; 2119 2120 /* 2121 * Since we read the counters lockless, it might be slightly 2122 * inaccurate. Do not allow it to go below zero though: 2123 */ 2124 if (unlikely((long)sum < 0)) 2125 sum = 0; 2126 2127 return sum; 2128 } 2129 2130 unsigned long long nr_context_switches(void) 2131 { 2132 int i; 2133 unsigned long long sum = 0; 2134 2135 for_each_possible_cpu(i) 2136 sum += cpu_rq(i)->nr_switches; 2137 2138 return sum; 2139 } 2140 2141 unsigned long nr_iowait(void) 2142 { 2143 unsigned long i, sum = 0; 2144 2145 for_each_possible_cpu(i) 2146 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2147 2148 return sum; 2149 } 2150 2151 unsigned long nr_iowait_cpu(int cpu) 2152 { 2153 struct rq *this = cpu_rq(cpu); 2154 return atomic_read(&this->nr_iowait); 2155 } 2156 2157 unsigned long this_cpu_load(void) 2158 { 2159 struct rq *this = this_rq(); 2160 return this->cpu_load[0]; 2161 } 2162 2163 2164 /* Variables and functions for calc_load */ 2165 static atomic_long_t calc_load_tasks; 2166 static unsigned long calc_load_update; 2167 unsigned long avenrun[3]; 2168 EXPORT_SYMBOL(avenrun); 2169 2170 static long calc_load_fold_active(struct rq *this_rq) 2171 { 2172 long nr_active, delta = 0; 2173 2174 nr_active = this_rq->nr_running; 2175 nr_active += (long) this_rq->nr_uninterruptible; 2176 2177 if (nr_active != this_rq->calc_load_active) { 2178 delta = nr_active - this_rq->calc_load_active; 2179 this_rq->calc_load_active = nr_active; 2180 } 2181 2182 return delta; 2183 } 2184 2185 static unsigned long 2186 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2187 { 2188 load *= exp; 2189 load += active * (FIXED_1 - exp); 2190 load += 1UL << (FSHIFT - 1); 2191 return load >> FSHIFT; 2192 } 2193 2194 #ifdef CONFIG_NO_HZ 2195 /* 2196 * For NO_HZ we delay the active fold to the next LOAD_FREQ update. 2197 * 2198 * When making the ILB scale, we should try to pull this in as well. 2199 */ 2200 static atomic_long_t calc_load_tasks_idle; 2201 2202 void calc_load_account_idle(struct rq *this_rq) 2203 { 2204 long delta; 2205 2206 delta = calc_load_fold_active(this_rq); 2207 if (delta) 2208 atomic_long_add(delta, &calc_load_tasks_idle); 2209 } 2210 2211 static long calc_load_fold_idle(void) 2212 { 2213 long delta = 0; 2214 2215 /* 2216 * Its got a race, we don't care... 2217 */ 2218 if (atomic_long_read(&calc_load_tasks_idle)) 2219 delta = atomic_long_xchg(&calc_load_tasks_idle, 0); 2220 2221 return delta; 2222 } 2223 2224 /** 2225 * fixed_power_int - compute: x^n, in O(log n) time 2226 * 2227 * @x: base of the power 2228 * @frac_bits: fractional bits of @x 2229 * @n: power to raise @x to. 2230 * 2231 * By exploiting the relation between the definition of the natural power 2232 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2233 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2234 * (where: n_i \elem {0, 1}, the binary vector representing n), 2235 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2236 * of course trivially computable in O(log_2 n), the length of our binary 2237 * vector. 2238 */ 2239 static unsigned long 2240 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2241 { 2242 unsigned long result = 1UL << frac_bits; 2243 2244 if (n) for (;;) { 2245 if (n & 1) { 2246 result *= x; 2247 result += 1UL << (frac_bits - 1); 2248 result >>= frac_bits; 2249 } 2250 n >>= 1; 2251 if (!n) 2252 break; 2253 x *= x; 2254 x += 1UL << (frac_bits - 1); 2255 x >>= frac_bits; 2256 } 2257 2258 return result; 2259 } 2260 2261 /* 2262 * a1 = a0 * e + a * (1 - e) 2263 * 2264 * a2 = a1 * e + a * (1 - e) 2265 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2266 * = a0 * e^2 + a * (1 - e) * (1 + e) 2267 * 2268 * a3 = a2 * e + a * (1 - e) 2269 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2270 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2271 * 2272 * ... 2273 * 2274 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2275 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2276 * = a0 * e^n + a * (1 - e^n) 2277 * 2278 * [1] application of the geometric series: 2279 * 2280 * n 1 - x^(n+1) 2281 * S_n := \Sum x^i = ------------- 2282 * i=0 1 - x 2283 */ 2284 static unsigned long 2285 calc_load_n(unsigned long load, unsigned long exp, 2286 unsigned long active, unsigned int n) 2287 { 2288 2289 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2290 } 2291 2292 /* 2293 * NO_HZ can leave us missing all per-cpu ticks calling 2294 * calc_load_account_active(), but since an idle CPU folds its delta into 2295 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2296 * in the pending idle delta if our idle period crossed a load cycle boundary. 2297 * 2298 * Once we've updated the global active value, we need to apply the exponential 2299 * weights adjusted to the number of cycles missed. 2300 */ 2301 static void calc_global_nohz(void) 2302 { 2303 long delta, active, n; 2304 2305 /* 2306 * If we crossed a calc_load_update boundary, make sure to fold 2307 * any pending idle changes, the respective CPUs might have 2308 * missed the tick driven calc_load_account_active() update 2309 * due to NO_HZ. 2310 */ 2311 delta = calc_load_fold_idle(); 2312 if (delta) 2313 atomic_long_add(delta, &calc_load_tasks); 2314 2315 /* 2316 * It could be the one fold was all it took, we done! 2317 */ 2318 if (time_before(jiffies, calc_load_update + 10)) 2319 return; 2320 2321 /* 2322 * Catch-up, fold however many we are behind still 2323 */ 2324 delta = jiffies - calc_load_update - 10; 2325 n = 1 + (delta / LOAD_FREQ); 2326 2327 active = atomic_long_read(&calc_load_tasks); 2328 active = active > 0 ? active * FIXED_1 : 0; 2329 2330 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2331 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2332 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2333 2334 calc_load_update += n * LOAD_FREQ; 2335 } 2336 #else 2337 void calc_load_account_idle(struct rq *this_rq) 2338 { 2339 } 2340 2341 static inline long calc_load_fold_idle(void) 2342 { 2343 return 0; 2344 } 2345 2346 static void calc_global_nohz(void) 2347 { 2348 } 2349 #endif 2350 2351 /** 2352 * get_avenrun - get the load average array 2353 * @loads: pointer to dest load array 2354 * @offset: offset to add 2355 * @shift: shift count to shift the result left 2356 * 2357 * These values are estimates at best, so no need for locking. 2358 */ 2359 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2360 { 2361 loads[0] = (avenrun[0] + offset) << shift; 2362 loads[1] = (avenrun[1] + offset) << shift; 2363 loads[2] = (avenrun[2] + offset) << shift; 2364 } 2365 2366 /* 2367 * calc_load - update the avenrun load estimates 10 ticks after the 2368 * CPUs have updated calc_load_tasks. 2369 */ 2370 void calc_global_load(unsigned long ticks) 2371 { 2372 long active; 2373 2374 if (time_before(jiffies, calc_load_update + 10)) 2375 return; 2376 2377 active = atomic_long_read(&calc_load_tasks); 2378 active = active > 0 ? active * FIXED_1 : 0; 2379 2380 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2381 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2382 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2383 2384 calc_load_update += LOAD_FREQ; 2385 2386 /* 2387 * Account one period with whatever state we found before 2388 * folding in the nohz state and ageing the entire idle period. 2389 * 2390 * This avoids loosing a sample when we go idle between 2391 * calc_load_account_active() (10 ticks ago) and now and thus 2392 * under-accounting. 2393 */ 2394 calc_global_nohz(); 2395 } 2396 2397 /* 2398 * Called from update_cpu_load() to periodically update this CPU's 2399 * active count. 2400 */ 2401 static void calc_load_account_active(struct rq *this_rq) 2402 { 2403 long delta; 2404 2405 if (time_before(jiffies, this_rq->calc_load_update)) 2406 return; 2407 2408 delta = calc_load_fold_active(this_rq); 2409 delta += calc_load_fold_idle(); 2410 if (delta) 2411 atomic_long_add(delta, &calc_load_tasks); 2412 2413 this_rq->calc_load_update += LOAD_FREQ; 2414 } 2415 2416 /* 2417 * The exact cpuload at various idx values, calculated at every tick would be 2418 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2419 * 2420 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2421 * on nth tick when cpu may be busy, then we have: 2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2423 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2424 * 2425 * decay_load_missed() below does efficient calculation of 2426 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2427 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2428 * 2429 * The calculation is approximated on a 128 point scale. 2430 * degrade_zero_ticks is the number of ticks after which load at any 2431 * particular idx is approximated to be zero. 2432 * degrade_factor is a precomputed table, a row for each load idx. 2433 * Each column corresponds to degradation factor for a power of two ticks, 2434 * based on 128 point scale. 2435 * Example: 2436 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2437 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2438 * 2439 * With this power of 2 load factors, we can degrade the load n times 2440 * by looking at 1 bits in n and doing as many mult/shift instead of 2441 * n mult/shifts needed by the exact degradation. 2442 */ 2443 #define DEGRADE_SHIFT 7 2444 static const unsigned char 2445 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2446 static const unsigned char 2447 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2448 {0, 0, 0, 0, 0, 0, 0, 0}, 2449 {64, 32, 8, 0, 0, 0, 0, 0}, 2450 {96, 72, 40, 12, 1, 0, 0}, 2451 {112, 98, 75, 43, 15, 1, 0}, 2452 {120, 112, 98, 76, 45, 16, 2} }; 2453 2454 /* 2455 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2456 * would be when CPU is idle and so we just decay the old load without 2457 * adding any new load. 2458 */ 2459 static unsigned long 2460 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2461 { 2462 int j = 0; 2463 2464 if (!missed_updates) 2465 return load; 2466 2467 if (missed_updates >= degrade_zero_ticks[idx]) 2468 return 0; 2469 2470 if (idx == 1) 2471 return load >> missed_updates; 2472 2473 while (missed_updates) { 2474 if (missed_updates % 2) 2475 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2476 2477 missed_updates >>= 1; 2478 j++; 2479 } 2480 return load; 2481 } 2482 2483 /* 2484 * Update rq->cpu_load[] statistics. This function is usually called every 2485 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2486 * every tick. We fix it up based on jiffies. 2487 */ 2488 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, 2489 unsigned long pending_updates) 2490 { 2491 int i, scale; 2492 2493 this_rq->nr_load_updates++; 2494 2495 /* Update our load: */ 2496 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2497 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2498 unsigned long old_load, new_load; 2499 2500 /* scale is effectively 1 << i now, and >> i divides by scale */ 2501 2502 old_load = this_rq->cpu_load[i]; 2503 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2504 new_load = this_load; 2505 /* 2506 * Round up the averaging division if load is increasing. This 2507 * prevents us from getting stuck on 9 if the load is 10, for 2508 * example. 2509 */ 2510 if (new_load > old_load) 2511 new_load += scale - 1; 2512 2513 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2514 } 2515 2516 sched_avg_update(this_rq); 2517 } 2518 2519 #ifdef CONFIG_NO_HZ 2520 /* 2521 * There is no sane way to deal with nohz on smp when using jiffies because the 2522 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 2523 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 2524 * 2525 * Therefore we cannot use the delta approach from the regular tick since that 2526 * would seriously skew the load calculation. However we'll make do for those 2527 * updates happening while idle (nohz_idle_balance) or coming out of idle 2528 * (tick_nohz_idle_exit). 2529 * 2530 * This means we might still be one tick off for nohz periods. 2531 */ 2532 2533 /* 2534 * Called from nohz_idle_balance() to update the load ratings before doing the 2535 * idle balance. 2536 */ 2537 void update_idle_cpu_load(struct rq *this_rq) 2538 { 2539 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2540 unsigned long load = this_rq->load.weight; 2541 unsigned long pending_updates; 2542 2543 /* 2544 * bail if there's load or we're actually up-to-date. 2545 */ 2546 if (load || curr_jiffies == this_rq->last_load_update_tick) 2547 return; 2548 2549 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2550 this_rq->last_load_update_tick = curr_jiffies; 2551 2552 __update_cpu_load(this_rq, load, pending_updates); 2553 } 2554 2555 /* 2556 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. 2557 */ 2558 void update_cpu_load_nohz(void) 2559 { 2560 struct rq *this_rq = this_rq(); 2561 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2562 unsigned long pending_updates; 2563 2564 if (curr_jiffies == this_rq->last_load_update_tick) 2565 return; 2566 2567 raw_spin_lock(&this_rq->lock); 2568 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2569 if (pending_updates) { 2570 this_rq->last_load_update_tick = curr_jiffies; 2571 /* 2572 * We were idle, this means load 0, the current load might be 2573 * !0 due to remote wakeups and the sort. 2574 */ 2575 __update_cpu_load(this_rq, 0, pending_updates); 2576 } 2577 raw_spin_unlock(&this_rq->lock); 2578 } 2579 #endif /* CONFIG_NO_HZ */ 2580 2581 /* 2582 * Called from scheduler_tick() 2583 */ 2584 static void update_cpu_load_active(struct rq *this_rq) 2585 { 2586 /* 2587 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). 2588 */ 2589 this_rq->last_load_update_tick = jiffies; 2590 __update_cpu_load(this_rq, this_rq->load.weight, 1); 2591 2592 calc_load_account_active(this_rq); 2593 } 2594 2595 #ifdef CONFIG_SMP 2596 2597 /* 2598 * sched_exec - execve() is a valuable balancing opportunity, because at 2599 * this point the task has the smallest effective memory and cache footprint. 2600 */ 2601 void sched_exec(void) 2602 { 2603 struct task_struct *p = current; 2604 unsigned long flags; 2605 int dest_cpu; 2606 2607 raw_spin_lock_irqsave(&p->pi_lock, flags); 2608 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2609 if (dest_cpu == smp_processor_id()) 2610 goto unlock; 2611 2612 if (likely(cpu_active(dest_cpu))) { 2613 struct migration_arg arg = { p, dest_cpu }; 2614 2615 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2616 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2617 return; 2618 } 2619 unlock: 2620 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2621 } 2622 2623 #endif 2624 2625 DEFINE_PER_CPU(struct kernel_stat, kstat); 2626 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2627 2628 EXPORT_PER_CPU_SYMBOL(kstat); 2629 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2630 2631 /* 2632 * Return any ns on the sched_clock that have not yet been accounted in 2633 * @p in case that task is currently running. 2634 * 2635 * Called with task_rq_lock() held on @rq. 2636 */ 2637 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2638 { 2639 u64 ns = 0; 2640 2641 if (task_current(rq, p)) { 2642 update_rq_clock(rq); 2643 ns = rq->clock_task - p->se.exec_start; 2644 if ((s64)ns < 0) 2645 ns = 0; 2646 } 2647 2648 return ns; 2649 } 2650 2651 unsigned long long task_delta_exec(struct task_struct *p) 2652 { 2653 unsigned long flags; 2654 struct rq *rq; 2655 u64 ns = 0; 2656 2657 rq = task_rq_lock(p, &flags); 2658 ns = do_task_delta_exec(p, rq); 2659 task_rq_unlock(rq, p, &flags); 2660 2661 return ns; 2662 } 2663 2664 /* 2665 * Return accounted runtime for the task. 2666 * In case the task is currently running, return the runtime plus current's 2667 * pending runtime that have not been accounted yet. 2668 */ 2669 unsigned long long task_sched_runtime(struct task_struct *p) 2670 { 2671 unsigned long flags; 2672 struct rq *rq; 2673 u64 ns = 0; 2674 2675 rq = task_rq_lock(p, &flags); 2676 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2677 task_rq_unlock(rq, p, &flags); 2678 2679 return ns; 2680 } 2681 2682 #ifdef CONFIG_CGROUP_CPUACCT 2683 struct cgroup_subsys cpuacct_subsys; 2684 struct cpuacct root_cpuacct; 2685 #endif 2686 2687 static inline void task_group_account_field(struct task_struct *p, int index, 2688 u64 tmp) 2689 { 2690 #ifdef CONFIG_CGROUP_CPUACCT 2691 struct kernel_cpustat *kcpustat; 2692 struct cpuacct *ca; 2693 #endif 2694 /* 2695 * Since all updates are sure to touch the root cgroup, we 2696 * get ourselves ahead and touch it first. If the root cgroup 2697 * is the only cgroup, then nothing else should be necessary. 2698 * 2699 */ 2700 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; 2701 2702 #ifdef CONFIG_CGROUP_CPUACCT 2703 if (unlikely(!cpuacct_subsys.active)) 2704 return; 2705 2706 rcu_read_lock(); 2707 ca = task_ca(p); 2708 while (ca && (ca != &root_cpuacct)) { 2709 kcpustat = this_cpu_ptr(ca->cpustat); 2710 kcpustat->cpustat[index] += tmp; 2711 ca = parent_ca(ca); 2712 } 2713 rcu_read_unlock(); 2714 #endif 2715 } 2716 2717 2718 /* 2719 * Account user cpu time to a process. 2720 * @p: the process that the cpu time gets accounted to 2721 * @cputime: the cpu time spent in user space since the last update 2722 * @cputime_scaled: cputime scaled by cpu frequency 2723 */ 2724 void account_user_time(struct task_struct *p, cputime_t cputime, 2725 cputime_t cputime_scaled) 2726 { 2727 int index; 2728 2729 /* Add user time to process. */ 2730 p->utime += cputime; 2731 p->utimescaled += cputime_scaled; 2732 account_group_user_time(p, cputime); 2733 2734 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 2735 2736 /* Add user time to cpustat. */ 2737 task_group_account_field(p, index, (__force u64) cputime); 2738 2739 /* Account for user time used */ 2740 acct_update_integrals(p); 2741 } 2742 2743 /* 2744 * Account guest cpu time to a process. 2745 * @p: the process that the cpu time gets accounted to 2746 * @cputime: the cpu time spent in virtual machine since the last update 2747 * @cputime_scaled: cputime scaled by cpu frequency 2748 */ 2749 static void account_guest_time(struct task_struct *p, cputime_t cputime, 2750 cputime_t cputime_scaled) 2751 { 2752 u64 *cpustat = kcpustat_this_cpu->cpustat; 2753 2754 /* Add guest time to process. */ 2755 p->utime += cputime; 2756 p->utimescaled += cputime_scaled; 2757 account_group_user_time(p, cputime); 2758 p->gtime += cputime; 2759 2760 /* Add guest time to cpustat. */ 2761 if (TASK_NICE(p) > 0) { 2762 cpustat[CPUTIME_NICE] += (__force u64) cputime; 2763 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 2764 } else { 2765 cpustat[CPUTIME_USER] += (__force u64) cputime; 2766 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 2767 } 2768 } 2769 2770 /* 2771 * Account system cpu time to a process and desired cpustat field 2772 * @p: the process that the cpu time gets accounted to 2773 * @cputime: the cpu time spent in kernel space since the last update 2774 * @cputime_scaled: cputime scaled by cpu frequency 2775 * @target_cputime64: pointer to cpustat field that has to be updated 2776 */ 2777 static inline 2778 void __account_system_time(struct task_struct *p, cputime_t cputime, 2779 cputime_t cputime_scaled, int index) 2780 { 2781 /* Add system time to process. */ 2782 p->stime += cputime; 2783 p->stimescaled += cputime_scaled; 2784 account_group_system_time(p, cputime); 2785 2786 /* Add system time to cpustat. */ 2787 task_group_account_field(p, index, (__force u64) cputime); 2788 2789 /* Account for system time used */ 2790 acct_update_integrals(p); 2791 } 2792 2793 /* 2794 * Account system cpu time to a process. 2795 * @p: the process that the cpu time gets accounted to 2796 * @hardirq_offset: the offset to subtract from hardirq_count() 2797 * @cputime: the cpu time spent in kernel space since the last update 2798 * @cputime_scaled: cputime scaled by cpu frequency 2799 */ 2800 void account_system_time(struct task_struct *p, int hardirq_offset, 2801 cputime_t cputime, cputime_t cputime_scaled) 2802 { 2803 int index; 2804 2805 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 2806 account_guest_time(p, cputime, cputime_scaled); 2807 return; 2808 } 2809 2810 if (hardirq_count() - hardirq_offset) 2811 index = CPUTIME_IRQ; 2812 else if (in_serving_softirq()) 2813 index = CPUTIME_SOFTIRQ; 2814 else 2815 index = CPUTIME_SYSTEM; 2816 2817 __account_system_time(p, cputime, cputime_scaled, index); 2818 } 2819 2820 /* 2821 * Account for involuntary wait time. 2822 * @cputime: the cpu time spent in involuntary wait 2823 */ 2824 void account_steal_time(cputime_t cputime) 2825 { 2826 u64 *cpustat = kcpustat_this_cpu->cpustat; 2827 2828 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 2829 } 2830 2831 /* 2832 * Account for idle time. 2833 * @cputime: the cpu time spent in idle wait 2834 */ 2835 void account_idle_time(cputime_t cputime) 2836 { 2837 u64 *cpustat = kcpustat_this_cpu->cpustat; 2838 struct rq *rq = this_rq(); 2839 2840 if (atomic_read(&rq->nr_iowait) > 0) 2841 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 2842 else 2843 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 2844 } 2845 2846 static __always_inline bool steal_account_process_tick(void) 2847 { 2848 #ifdef CONFIG_PARAVIRT 2849 if (static_key_false(¶virt_steal_enabled)) { 2850 u64 steal, st = 0; 2851 2852 steal = paravirt_steal_clock(smp_processor_id()); 2853 steal -= this_rq()->prev_steal_time; 2854 2855 st = steal_ticks(steal); 2856 this_rq()->prev_steal_time += st * TICK_NSEC; 2857 2858 account_steal_time(st); 2859 return st; 2860 } 2861 #endif 2862 return false; 2863 } 2864 2865 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 2866 2867 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2868 /* 2869 * Account a tick to a process and cpustat 2870 * @p: the process that the cpu time gets accounted to 2871 * @user_tick: is the tick from userspace 2872 * @rq: the pointer to rq 2873 * 2874 * Tick demultiplexing follows the order 2875 * - pending hardirq update 2876 * - pending softirq update 2877 * - user_time 2878 * - idle_time 2879 * - system time 2880 * - check for guest_time 2881 * - else account as system_time 2882 * 2883 * Check for hardirq is done both for system and user time as there is 2884 * no timer going off while we are on hardirq and hence we may never get an 2885 * opportunity to update it solely in system time. 2886 * p->stime and friends are only updated on system time and not on irq 2887 * softirq as those do not count in task exec_runtime any more. 2888 */ 2889 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2890 struct rq *rq) 2891 { 2892 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2893 u64 *cpustat = kcpustat_this_cpu->cpustat; 2894 2895 if (steal_account_process_tick()) 2896 return; 2897 2898 if (irqtime_account_hi_update()) { 2899 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; 2900 } else if (irqtime_account_si_update()) { 2901 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; 2902 } else if (this_cpu_ksoftirqd() == p) { 2903 /* 2904 * ksoftirqd time do not get accounted in cpu_softirq_time. 2905 * So, we have to handle it separately here. 2906 * Also, p->stime needs to be updated for ksoftirqd. 2907 */ 2908 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2909 CPUTIME_SOFTIRQ); 2910 } else if (user_tick) { 2911 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2912 } else if (p == rq->idle) { 2913 account_idle_time(cputime_one_jiffy); 2914 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 2915 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); 2916 } else { 2917 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2918 CPUTIME_SYSTEM); 2919 } 2920 } 2921 2922 static void irqtime_account_idle_ticks(int ticks) 2923 { 2924 int i; 2925 struct rq *rq = this_rq(); 2926 2927 for (i = 0; i < ticks; i++) 2928 irqtime_account_process_tick(current, 0, rq); 2929 } 2930 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 2931 static void irqtime_account_idle_ticks(int ticks) {} 2932 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2933 struct rq *rq) {} 2934 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2935 2936 /* 2937 * Account a single tick of cpu time. 2938 * @p: the process that the cpu time gets accounted to 2939 * @user_tick: indicates if the tick is a user or a system tick 2940 */ 2941 void account_process_tick(struct task_struct *p, int user_tick) 2942 { 2943 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2944 struct rq *rq = this_rq(); 2945 2946 if (sched_clock_irqtime) { 2947 irqtime_account_process_tick(p, user_tick, rq); 2948 return; 2949 } 2950 2951 if (steal_account_process_tick()) 2952 return; 2953 2954 if (user_tick) 2955 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2956 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 2957 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 2958 one_jiffy_scaled); 2959 else 2960 account_idle_time(cputime_one_jiffy); 2961 } 2962 2963 /* 2964 * Account multiple ticks of steal time. 2965 * @p: the process from which the cpu time has been stolen 2966 * @ticks: number of stolen ticks 2967 */ 2968 void account_steal_ticks(unsigned long ticks) 2969 { 2970 account_steal_time(jiffies_to_cputime(ticks)); 2971 } 2972 2973 /* 2974 * Account multiple ticks of idle time. 2975 * @ticks: number of stolen ticks 2976 */ 2977 void account_idle_ticks(unsigned long ticks) 2978 { 2979 2980 if (sched_clock_irqtime) { 2981 irqtime_account_idle_ticks(ticks); 2982 return; 2983 } 2984 2985 account_idle_time(jiffies_to_cputime(ticks)); 2986 } 2987 2988 #endif 2989 2990 /* 2991 * Use precise platform statistics if available: 2992 */ 2993 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 2994 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2995 { 2996 *ut = p->utime; 2997 *st = p->stime; 2998 } 2999 3000 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 3001 { 3002 struct task_cputime cputime; 3003 3004 thread_group_cputime(p, &cputime); 3005 3006 *ut = cputime.utime; 3007 *st = cputime.stime; 3008 } 3009 #else 3010 3011 #ifndef nsecs_to_cputime 3012 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) 3013 #endif 3014 3015 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 3016 { 3017 cputime_t rtime, utime = p->utime, total = utime + p->stime; 3018 3019 /* 3020 * Use CFS's precise accounting: 3021 */ 3022 rtime = nsecs_to_cputime(p->se.sum_exec_runtime); 3023 3024 if (total) { 3025 u64 temp = (__force u64) rtime; 3026 3027 temp *= (__force u64) utime; 3028 do_div(temp, (__force u32) total); 3029 utime = (__force cputime_t) temp; 3030 } else 3031 utime = rtime; 3032 3033 /* 3034 * Compare with previous values, to keep monotonicity: 3035 */ 3036 p->prev_utime = max(p->prev_utime, utime); 3037 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); 3038 3039 *ut = p->prev_utime; 3040 *st = p->prev_stime; 3041 } 3042 3043 /* 3044 * Must be called with siglock held. 3045 */ 3046 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 3047 { 3048 struct signal_struct *sig = p->signal; 3049 struct task_cputime cputime; 3050 cputime_t rtime, utime, total; 3051 3052 thread_group_cputime(p, &cputime); 3053 3054 total = cputime.utime + cputime.stime; 3055 rtime = nsecs_to_cputime(cputime.sum_exec_runtime); 3056 3057 if (total) { 3058 u64 temp = (__force u64) rtime; 3059 3060 temp *= (__force u64) cputime.utime; 3061 do_div(temp, (__force u32) total); 3062 utime = (__force cputime_t) temp; 3063 } else 3064 utime = rtime; 3065 3066 sig->prev_utime = max(sig->prev_utime, utime); 3067 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); 3068 3069 *ut = sig->prev_utime; 3070 *st = sig->prev_stime; 3071 } 3072 #endif 3073 3074 /* 3075 * This function gets called by the timer code, with HZ frequency. 3076 * We call it with interrupts disabled. 3077 */ 3078 void scheduler_tick(void) 3079 { 3080 int cpu = smp_processor_id(); 3081 struct rq *rq = cpu_rq(cpu); 3082 struct task_struct *curr = rq->curr; 3083 3084 sched_clock_tick(); 3085 3086 raw_spin_lock(&rq->lock); 3087 update_rq_clock(rq); 3088 update_cpu_load_active(rq); 3089 curr->sched_class->task_tick(rq, curr, 0); 3090 raw_spin_unlock(&rq->lock); 3091 3092 perf_event_task_tick(); 3093 3094 #ifdef CONFIG_SMP 3095 rq->idle_balance = idle_cpu(cpu); 3096 trigger_load_balance(rq, cpu); 3097 #endif 3098 } 3099 3100 notrace unsigned long get_parent_ip(unsigned long addr) 3101 { 3102 if (in_lock_functions(addr)) { 3103 addr = CALLER_ADDR2; 3104 if (in_lock_functions(addr)) 3105 addr = CALLER_ADDR3; 3106 } 3107 return addr; 3108 } 3109 3110 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3111 defined(CONFIG_PREEMPT_TRACER)) 3112 3113 void __kprobes add_preempt_count(int val) 3114 { 3115 #ifdef CONFIG_DEBUG_PREEMPT 3116 /* 3117 * Underflow? 3118 */ 3119 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3120 return; 3121 #endif 3122 preempt_count() += val; 3123 #ifdef CONFIG_DEBUG_PREEMPT 3124 /* 3125 * Spinlock count overflowing soon? 3126 */ 3127 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3128 PREEMPT_MASK - 10); 3129 #endif 3130 if (preempt_count() == val) 3131 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3132 } 3133 EXPORT_SYMBOL(add_preempt_count); 3134 3135 void __kprobes sub_preempt_count(int val) 3136 { 3137 #ifdef CONFIG_DEBUG_PREEMPT 3138 /* 3139 * Underflow? 3140 */ 3141 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3142 return; 3143 /* 3144 * Is the spinlock portion underflowing? 3145 */ 3146 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3147 !(preempt_count() & PREEMPT_MASK))) 3148 return; 3149 #endif 3150 3151 if (preempt_count() == val) 3152 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3153 preempt_count() -= val; 3154 } 3155 EXPORT_SYMBOL(sub_preempt_count); 3156 3157 #endif 3158 3159 /* 3160 * Print scheduling while atomic bug: 3161 */ 3162 static noinline void __schedule_bug(struct task_struct *prev) 3163 { 3164 if (oops_in_progress) 3165 return; 3166 3167 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3168 prev->comm, prev->pid, preempt_count()); 3169 3170 debug_show_held_locks(prev); 3171 print_modules(); 3172 if (irqs_disabled()) 3173 print_irqtrace_events(prev); 3174 dump_stack(); 3175 add_taint(TAINT_WARN); 3176 } 3177 3178 /* 3179 * Various schedule()-time debugging checks and statistics: 3180 */ 3181 static inline void schedule_debug(struct task_struct *prev) 3182 { 3183 /* 3184 * Test if we are atomic. Since do_exit() needs to call into 3185 * schedule() atomically, we ignore that path for now. 3186 * Otherwise, whine if we are scheduling when we should not be. 3187 */ 3188 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 3189 __schedule_bug(prev); 3190 rcu_sleep_check(); 3191 3192 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3193 3194 schedstat_inc(this_rq(), sched_count); 3195 } 3196 3197 static void put_prev_task(struct rq *rq, struct task_struct *prev) 3198 { 3199 if (prev->on_rq || rq->skip_clock_update < 0) 3200 update_rq_clock(rq); 3201 prev->sched_class->put_prev_task(rq, prev); 3202 } 3203 3204 /* 3205 * Pick up the highest-prio task: 3206 */ 3207 static inline struct task_struct * 3208 pick_next_task(struct rq *rq) 3209 { 3210 const struct sched_class *class; 3211 struct task_struct *p; 3212 3213 /* 3214 * Optimization: we know that if all tasks are in 3215 * the fair class we can call that function directly: 3216 */ 3217 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 3218 p = fair_sched_class.pick_next_task(rq); 3219 if (likely(p)) 3220 return p; 3221 } 3222 3223 for_each_class(class) { 3224 p = class->pick_next_task(rq); 3225 if (p) 3226 return p; 3227 } 3228 3229 BUG(); /* the idle class will always have a runnable task */ 3230 } 3231 3232 /* 3233 * __schedule() is the main scheduler function. 3234 */ 3235 static void __sched __schedule(void) 3236 { 3237 struct task_struct *prev, *next; 3238 unsigned long *switch_count; 3239 struct rq *rq; 3240 int cpu; 3241 3242 need_resched: 3243 preempt_disable(); 3244 cpu = smp_processor_id(); 3245 rq = cpu_rq(cpu); 3246 rcu_note_context_switch(cpu); 3247 prev = rq->curr; 3248 3249 schedule_debug(prev); 3250 3251 if (sched_feat(HRTICK)) 3252 hrtick_clear(rq); 3253 3254 raw_spin_lock_irq(&rq->lock); 3255 3256 switch_count = &prev->nivcsw; 3257 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3258 if (unlikely(signal_pending_state(prev->state, prev))) { 3259 prev->state = TASK_RUNNING; 3260 } else { 3261 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3262 prev->on_rq = 0; 3263 3264 /* 3265 * If a worker went to sleep, notify and ask workqueue 3266 * whether it wants to wake up a task to maintain 3267 * concurrency. 3268 */ 3269 if (prev->flags & PF_WQ_WORKER) { 3270 struct task_struct *to_wakeup; 3271 3272 to_wakeup = wq_worker_sleeping(prev, cpu); 3273 if (to_wakeup) 3274 try_to_wake_up_local(to_wakeup); 3275 } 3276 } 3277 switch_count = &prev->nvcsw; 3278 } 3279 3280 pre_schedule(rq, prev); 3281 3282 if (unlikely(!rq->nr_running)) 3283 idle_balance(cpu, rq); 3284 3285 put_prev_task(rq, prev); 3286 next = pick_next_task(rq); 3287 clear_tsk_need_resched(prev); 3288 rq->skip_clock_update = 0; 3289 3290 if (likely(prev != next)) { 3291 rq->nr_switches++; 3292 rq->curr = next; 3293 ++*switch_count; 3294 3295 context_switch(rq, prev, next); /* unlocks the rq */ 3296 /* 3297 * The context switch have flipped the stack from under us 3298 * and restored the local variables which were saved when 3299 * this task called schedule() in the past. prev == current 3300 * is still correct, but it can be moved to another cpu/rq. 3301 */ 3302 cpu = smp_processor_id(); 3303 rq = cpu_rq(cpu); 3304 } else 3305 raw_spin_unlock_irq(&rq->lock); 3306 3307 post_schedule(rq); 3308 3309 sched_preempt_enable_no_resched(); 3310 if (need_resched()) 3311 goto need_resched; 3312 } 3313 3314 static inline void sched_submit_work(struct task_struct *tsk) 3315 { 3316 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3317 return; 3318 /* 3319 * If we are going to sleep and we have plugged IO queued, 3320 * make sure to submit it to avoid deadlocks. 3321 */ 3322 if (blk_needs_flush_plug(tsk)) 3323 blk_schedule_flush_plug(tsk); 3324 } 3325 3326 asmlinkage void __sched schedule(void) 3327 { 3328 struct task_struct *tsk = current; 3329 3330 sched_submit_work(tsk); 3331 __schedule(); 3332 } 3333 EXPORT_SYMBOL(schedule); 3334 3335 /** 3336 * schedule_preempt_disabled - called with preemption disabled 3337 * 3338 * Returns with preemption disabled. Note: preempt_count must be 1 3339 */ 3340 void __sched schedule_preempt_disabled(void) 3341 { 3342 sched_preempt_enable_no_resched(); 3343 schedule(); 3344 preempt_disable(); 3345 } 3346 3347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3348 3349 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 3350 { 3351 if (lock->owner != owner) 3352 return false; 3353 3354 /* 3355 * Ensure we emit the owner->on_cpu, dereference _after_ checking 3356 * lock->owner still matches owner, if that fails, owner might 3357 * point to free()d memory, if it still matches, the rcu_read_lock() 3358 * ensures the memory stays valid. 3359 */ 3360 barrier(); 3361 3362 return owner->on_cpu; 3363 } 3364 3365 /* 3366 * Look out! "owner" is an entirely speculative pointer 3367 * access and not reliable. 3368 */ 3369 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 3370 { 3371 if (!sched_feat(OWNER_SPIN)) 3372 return 0; 3373 3374 rcu_read_lock(); 3375 while (owner_running(lock, owner)) { 3376 if (need_resched()) 3377 break; 3378 3379 arch_mutex_cpu_relax(); 3380 } 3381 rcu_read_unlock(); 3382 3383 /* 3384 * We break out the loop above on need_resched() and when the 3385 * owner changed, which is a sign for heavy contention. Return 3386 * success only when lock->owner is NULL. 3387 */ 3388 return lock->owner == NULL; 3389 } 3390 #endif 3391 3392 #ifdef CONFIG_PREEMPT 3393 /* 3394 * this is the entry point to schedule() from in-kernel preemption 3395 * off of preempt_enable. Kernel preemptions off return from interrupt 3396 * occur there and call schedule directly. 3397 */ 3398 asmlinkage void __sched notrace preempt_schedule(void) 3399 { 3400 struct thread_info *ti = current_thread_info(); 3401 3402 /* 3403 * If there is a non-zero preempt_count or interrupts are disabled, 3404 * we do not want to preempt the current task. Just return.. 3405 */ 3406 if (likely(ti->preempt_count || irqs_disabled())) 3407 return; 3408 3409 do { 3410 add_preempt_count_notrace(PREEMPT_ACTIVE); 3411 __schedule(); 3412 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3413 3414 /* 3415 * Check again in case we missed a preemption opportunity 3416 * between schedule and now. 3417 */ 3418 barrier(); 3419 } while (need_resched()); 3420 } 3421 EXPORT_SYMBOL(preempt_schedule); 3422 3423 /* 3424 * this is the entry point to schedule() from kernel preemption 3425 * off of irq context. 3426 * Note, that this is called and return with irqs disabled. This will 3427 * protect us against recursive calling from irq. 3428 */ 3429 asmlinkage void __sched preempt_schedule_irq(void) 3430 { 3431 struct thread_info *ti = current_thread_info(); 3432 3433 /* Catch callers which need to be fixed */ 3434 BUG_ON(ti->preempt_count || !irqs_disabled()); 3435 3436 do { 3437 add_preempt_count(PREEMPT_ACTIVE); 3438 local_irq_enable(); 3439 __schedule(); 3440 local_irq_disable(); 3441 sub_preempt_count(PREEMPT_ACTIVE); 3442 3443 /* 3444 * Check again in case we missed a preemption opportunity 3445 * between schedule and now. 3446 */ 3447 barrier(); 3448 } while (need_resched()); 3449 } 3450 3451 #endif /* CONFIG_PREEMPT */ 3452 3453 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3454 void *key) 3455 { 3456 return try_to_wake_up(curr->private, mode, wake_flags); 3457 } 3458 EXPORT_SYMBOL(default_wake_function); 3459 3460 /* 3461 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3462 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3463 * number) then we wake all the non-exclusive tasks and one exclusive task. 3464 * 3465 * There are circumstances in which we can try to wake a task which has already 3466 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3467 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3468 */ 3469 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3470 int nr_exclusive, int wake_flags, void *key) 3471 { 3472 wait_queue_t *curr, *next; 3473 3474 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3475 unsigned flags = curr->flags; 3476 3477 if (curr->func(curr, mode, wake_flags, key) && 3478 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3479 break; 3480 } 3481 } 3482 3483 /** 3484 * __wake_up - wake up threads blocked on a waitqueue. 3485 * @q: the waitqueue 3486 * @mode: which threads 3487 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3488 * @key: is directly passed to the wakeup function 3489 * 3490 * It may be assumed that this function implies a write memory barrier before 3491 * changing the task state if and only if any tasks are woken up. 3492 */ 3493 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3494 int nr_exclusive, void *key) 3495 { 3496 unsigned long flags; 3497 3498 spin_lock_irqsave(&q->lock, flags); 3499 __wake_up_common(q, mode, nr_exclusive, 0, key); 3500 spin_unlock_irqrestore(&q->lock, flags); 3501 } 3502 EXPORT_SYMBOL(__wake_up); 3503 3504 /* 3505 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3506 */ 3507 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 3508 { 3509 __wake_up_common(q, mode, nr, 0, NULL); 3510 } 3511 EXPORT_SYMBOL_GPL(__wake_up_locked); 3512 3513 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3514 { 3515 __wake_up_common(q, mode, 1, 0, key); 3516 } 3517 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3518 3519 /** 3520 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3521 * @q: the waitqueue 3522 * @mode: which threads 3523 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3524 * @key: opaque value to be passed to wakeup targets 3525 * 3526 * The sync wakeup differs that the waker knows that it will schedule 3527 * away soon, so while the target thread will be woken up, it will not 3528 * be migrated to another CPU - ie. the two threads are 'synchronized' 3529 * with each other. This can prevent needless bouncing between CPUs. 3530 * 3531 * On UP it can prevent extra preemption. 3532 * 3533 * It may be assumed that this function implies a write memory barrier before 3534 * changing the task state if and only if any tasks are woken up. 3535 */ 3536 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3537 int nr_exclusive, void *key) 3538 { 3539 unsigned long flags; 3540 int wake_flags = WF_SYNC; 3541 3542 if (unlikely(!q)) 3543 return; 3544 3545 if (unlikely(!nr_exclusive)) 3546 wake_flags = 0; 3547 3548 spin_lock_irqsave(&q->lock, flags); 3549 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3550 spin_unlock_irqrestore(&q->lock, flags); 3551 } 3552 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3553 3554 /* 3555 * __wake_up_sync - see __wake_up_sync_key() 3556 */ 3557 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3558 { 3559 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3560 } 3561 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3562 3563 /** 3564 * complete: - signals a single thread waiting on this completion 3565 * @x: holds the state of this particular completion 3566 * 3567 * This will wake up a single thread waiting on this completion. Threads will be 3568 * awakened in the same order in which they were queued. 3569 * 3570 * See also complete_all(), wait_for_completion() and related routines. 3571 * 3572 * It may be assumed that this function implies a write memory barrier before 3573 * changing the task state if and only if any tasks are woken up. 3574 */ 3575 void complete(struct completion *x) 3576 { 3577 unsigned long flags; 3578 3579 spin_lock_irqsave(&x->wait.lock, flags); 3580 x->done++; 3581 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3582 spin_unlock_irqrestore(&x->wait.lock, flags); 3583 } 3584 EXPORT_SYMBOL(complete); 3585 3586 /** 3587 * complete_all: - signals all threads waiting on this completion 3588 * @x: holds the state of this particular completion 3589 * 3590 * This will wake up all threads waiting on this particular completion event. 3591 * 3592 * It may be assumed that this function implies a write memory barrier before 3593 * changing the task state if and only if any tasks are woken up. 3594 */ 3595 void complete_all(struct completion *x) 3596 { 3597 unsigned long flags; 3598 3599 spin_lock_irqsave(&x->wait.lock, flags); 3600 x->done += UINT_MAX/2; 3601 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3602 spin_unlock_irqrestore(&x->wait.lock, flags); 3603 } 3604 EXPORT_SYMBOL(complete_all); 3605 3606 static inline long __sched 3607 do_wait_for_common(struct completion *x, long timeout, int state) 3608 { 3609 if (!x->done) { 3610 DECLARE_WAITQUEUE(wait, current); 3611 3612 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3613 do { 3614 if (signal_pending_state(state, current)) { 3615 timeout = -ERESTARTSYS; 3616 break; 3617 } 3618 __set_current_state(state); 3619 spin_unlock_irq(&x->wait.lock); 3620 timeout = schedule_timeout(timeout); 3621 spin_lock_irq(&x->wait.lock); 3622 } while (!x->done && timeout); 3623 __remove_wait_queue(&x->wait, &wait); 3624 if (!x->done) 3625 return timeout; 3626 } 3627 x->done--; 3628 return timeout ?: 1; 3629 } 3630 3631 static long __sched 3632 wait_for_common(struct completion *x, long timeout, int state) 3633 { 3634 might_sleep(); 3635 3636 spin_lock_irq(&x->wait.lock); 3637 timeout = do_wait_for_common(x, timeout, state); 3638 spin_unlock_irq(&x->wait.lock); 3639 return timeout; 3640 } 3641 3642 /** 3643 * wait_for_completion: - waits for completion of a task 3644 * @x: holds the state of this particular completion 3645 * 3646 * This waits to be signaled for completion of a specific task. It is NOT 3647 * interruptible and there is no timeout. 3648 * 3649 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3650 * and interrupt capability. Also see complete(). 3651 */ 3652 void __sched wait_for_completion(struct completion *x) 3653 { 3654 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3655 } 3656 EXPORT_SYMBOL(wait_for_completion); 3657 3658 /** 3659 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3660 * @x: holds the state of this particular completion 3661 * @timeout: timeout value in jiffies 3662 * 3663 * This waits for either a completion of a specific task to be signaled or for a 3664 * specified timeout to expire. The timeout is in jiffies. It is not 3665 * interruptible. 3666 * 3667 * The return value is 0 if timed out, and positive (at least 1, or number of 3668 * jiffies left till timeout) if completed. 3669 */ 3670 unsigned long __sched 3671 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3672 { 3673 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3674 } 3675 EXPORT_SYMBOL(wait_for_completion_timeout); 3676 3677 /** 3678 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3679 * @x: holds the state of this particular completion 3680 * 3681 * This waits for completion of a specific task to be signaled. It is 3682 * interruptible. 3683 * 3684 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3685 */ 3686 int __sched wait_for_completion_interruptible(struct completion *x) 3687 { 3688 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3689 if (t == -ERESTARTSYS) 3690 return t; 3691 return 0; 3692 } 3693 EXPORT_SYMBOL(wait_for_completion_interruptible); 3694 3695 /** 3696 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3697 * @x: holds the state of this particular completion 3698 * @timeout: timeout value in jiffies 3699 * 3700 * This waits for either a completion of a specific task to be signaled or for a 3701 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3702 * 3703 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3704 * positive (at least 1, or number of jiffies left till timeout) if completed. 3705 */ 3706 long __sched 3707 wait_for_completion_interruptible_timeout(struct completion *x, 3708 unsigned long timeout) 3709 { 3710 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3711 } 3712 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3713 3714 /** 3715 * wait_for_completion_killable: - waits for completion of a task (killable) 3716 * @x: holds the state of this particular completion 3717 * 3718 * This waits to be signaled for completion of a specific task. It can be 3719 * interrupted by a kill signal. 3720 * 3721 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3722 */ 3723 int __sched wait_for_completion_killable(struct completion *x) 3724 { 3725 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3726 if (t == -ERESTARTSYS) 3727 return t; 3728 return 0; 3729 } 3730 EXPORT_SYMBOL(wait_for_completion_killable); 3731 3732 /** 3733 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3734 * @x: holds the state of this particular completion 3735 * @timeout: timeout value in jiffies 3736 * 3737 * This waits for either a completion of a specific task to be 3738 * signaled or for a specified timeout to expire. It can be 3739 * interrupted by a kill signal. The timeout is in jiffies. 3740 * 3741 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3742 * positive (at least 1, or number of jiffies left till timeout) if completed. 3743 */ 3744 long __sched 3745 wait_for_completion_killable_timeout(struct completion *x, 3746 unsigned long timeout) 3747 { 3748 return wait_for_common(x, timeout, TASK_KILLABLE); 3749 } 3750 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3751 3752 /** 3753 * try_wait_for_completion - try to decrement a completion without blocking 3754 * @x: completion structure 3755 * 3756 * Returns: 0 if a decrement cannot be done without blocking 3757 * 1 if a decrement succeeded. 3758 * 3759 * If a completion is being used as a counting completion, 3760 * attempt to decrement the counter without blocking. This 3761 * enables us to avoid waiting if the resource the completion 3762 * is protecting is not available. 3763 */ 3764 bool try_wait_for_completion(struct completion *x) 3765 { 3766 unsigned long flags; 3767 int ret = 1; 3768 3769 spin_lock_irqsave(&x->wait.lock, flags); 3770 if (!x->done) 3771 ret = 0; 3772 else 3773 x->done--; 3774 spin_unlock_irqrestore(&x->wait.lock, flags); 3775 return ret; 3776 } 3777 EXPORT_SYMBOL(try_wait_for_completion); 3778 3779 /** 3780 * completion_done - Test to see if a completion has any waiters 3781 * @x: completion structure 3782 * 3783 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3784 * 1 if there are no waiters. 3785 * 3786 */ 3787 bool completion_done(struct completion *x) 3788 { 3789 unsigned long flags; 3790 int ret = 1; 3791 3792 spin_lock_irqsave(&x->wait.lock, flags); 3793 if (!x->done) 3794 ret = 0; 3795 spin_unlock_irqrestore(&x->wait.lock, flags); 3796 return ret; 3797 } 3798 EXPORT_SYMBOL(completion_done); 3799 3800 static long __sched 3801 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3802 { 3803 unsigned long flags; 3804 wait_queue_t wait; 3805 3806 init_waitqueue_entry(&wait, current); 3807 3808 __set_current_state(state); 3809 3810 spin_lock_irqsave(&q->lock, flags); 3811 __add_wait_queue(q, &wait); 3812 spin_unlock(&q->lock); 3813 timeout = schedule_timeout(timeout); 3814 spin_lock_irq(&q->lock); 3815 __remove_wait_queue(q, &wait); 3816 spin_unlock_irqrestore(&q->lock, flags); 3817 3818 return timeout; 3819 } 3820 3821 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3822 { 3823 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3824 } 3825 EXPORT_SYMBOL(interruptible_sleep_on); 3826 3827 long __sched 3828 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3829 { 3830 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3831 } 3832 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3833 3834 void __sched sleep_on(wait_queue_head_t *q) 3835 { 3836 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3837 } 3838 EXPORT_SYMBOL(sleep_on); 3839 3840 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3841 { 3842 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3843 } 3844 EXPORT_SYMBOL(sleep_on_timeout); 3845 3846 #ifdef CONFIG_RT_MUTEXES 3847 3848 /* 3849 * rt_mutex_setprio - set the current priority of a task 3850 * @p: task 3851 * @prio: prio value (kernel-internal form) 3852 * 3853 * This function changes the 'effective' priority of a task. It does 3854 * not touch ->normal_prio like __setscheduler(). 3855 * 3856 * Used by the rt_mutex code to implement priority inheritance logic. 3857 */ 3858 void rt_mutex_setprio(struct task_struct *p, int prio) 3859 { 3860 int oldprio, on_rq, running; 3861 struct rq *rq; 3862 const struct sched_class *prev_class; 3863 3864 BUG_ON(prio < 0 || prio > MAX_PRIO); 3865 3866 rq = __task_rq_lock(p); 3867 3868 /* 3869 * Idle task boosting is a nono in general. There is one 3870 * exception, when PREEMPT_RT and NOHZ is active: 3871 * 3872 * The idle task calls get_next_timer_interrupt() and holds 3873 * the timer wheel base->lock on the CPU and another CPU wants 3874 * to access the timer (probably to cancel it). We can safely 3875 * ignore the boosting request, as the idle CPU runs this code 3876 * with interrupts disabled and will complete the lock 3877 * protected section without being interrupted. So there is no 3878 * real need to boost. 3879 */ 3880 if (unlikely(p == rq->idle)) { 3881 WARN_ON(p != rq->curr); 3882 WARN_ON(p->pi_blocked_on); 3883 goto out_unlock; 3884 } 3885 3886 trace_sched_pi_setprio(p, prio); 3887 oldprio = p->prio; 3888 prev_class = p->sched_class; 3889 on_rq = p->on_rq; 3890 running = task_current(rq, p); 3891 if (on_rq) 3892 dequeue_task(rq, p, 0); 3893 if (running) 3894 p->sched_class->put_prev_task(rq, p); 3895 3896 if (rt_prio(prio)) 3897 p->sched_class = &rt_sched_class; 3898 else 3899 p->sched_class = &fair_sched_class; 3900 3901 p->prio = prio; 3902 3903 if (running) 3904 p->sched_class->set_curr_task(rq); 3905 if (on_rq) 3906 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3907 3908 check_class_changed(rq, p, prev_class, oldprio); 3909 out_unlock: 3910 __task_rq_unlock(rq); 3911 } 3912 #endif 3913 void set_user_nice(struct task_struct *p, long nice) 3914 { 3915 int old_prio, delta, on_rq; 3916 unsigned long flags; 3917 struct rq *rq; 3918 3919 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3920 return; 3921 /* 3922 * We have to be careful, if called from sys_setpriority(), 3923 * the task might be in the middle of scheduling on another CPU. 3924 */ 3925 rq = task_rq_lock(p, &flags); 3926 /* 3927 * The RT priorities are set via sched_setscheduler(), but we still 3928 * allow the 'normal' nice value to be set - but as expected 3929 * it wont have any effect on scheduling until the task is 3930 * SCHED_FIFO/SCHED_RR: 3931 */ 3932 if (task_has_rt_policy(p)) { 3933 p->static_prio = NICE_TO_PRIO(nice); 3934 goto out_unlock; 3935 } 3936 on_rq = p->on_rq; 3937 if (on_rq) 3938 dequeue_task(rq, p, 0); 3939 3940 p->static_prio = NICE_TO_PRIO(nice); 3941 set_load_weight(p); 3942 old_prio = p->prio; 3943 p->prio = effective_prio(p); 3944 delta = p->prio - old_prio; 3945 3946 if (on_rq) { 3947 enqueue_task(rq, p, 0); 3948 /* 3949 * If the task increased its priority or is running and 3950 * lowered its priority, then reschedule its CPU: 3951 */ 3952 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3953 resched_task(rq->curr); 3954 } 3955 out_unlock: 3956 task_rq_unlock(rq, p, &flags); 3957 } 3958 EXPORT_SYMBOL(set_user_nice); 3959 3960 /* 3961 * can_nice - check if a task can reduce its nice value 3962 * @p: task 3963 * @nice: nice value 3964 */ 3965 int can_nice(const struct task_struct *p, const int nice) 3966 { 3967 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3968 int nice_rlim = 20 - nice; 3969 3970 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3971 capable(CAP_SYS_NICE)); 3972 } 3973 3974 #ifdef __ARCH_WANT_SYS_NICE 3975 3976 /* 3977 * sys_nice - change the priority of the current process. 3978 * @increment: priority increment 3979 * 3980 * sys_setpriority is a more generic, but much slower function that 3981 * does similar things. 3982 */ 3983 SYSCALL_DEFINE1(nice, int, increment) 3984 { 3985 long nice, retval; 3986 3987 /* 3988 * Setpriority might change our priority at the same moment. 3989 * We don't have to worry. Conceptually one call occurs first 3990 * and we have a single winner. 3991 */ 3992 if (increment < -40) 3993 increment = -40; 3994 if (increment > 40) 3995 increment = 40; 3996 3997 nice = TASK_NICE(current) + increment; 3998 if (nice < -20) 3999 nice = -20; 4000 if (nice > 19) 4001 nice = 19; 4002 4003 if (increment < 0 && !can_nice(current, nice)) 4004 return -EPERM; 4005 4006 retval = security_task_setnice(current, nice); 4007 if (retval) 4008 return retval; 4009 4010 set_user_nice(current, nice); 4011 return 0; 4012 } 4013 4014 #endif 4015 4016 /** 4017 * task_prio - return the priority value of a given task. 4018 * @p: the task in question. 4019 * 4020 * This is the priority value as seen by users in /proc. 4021 * RT tasks are offset by -200. Normal tasks are centered 4022 * around 0, value goes from -16 to +15. 4023 */ 4024 int task_prio(const struct task_struct *p) 4025 { 4026 return p->prio - MAX_RT_PRIO; 4027 } 4028 4029 /** 4030 * task_nice - return the nice value of a given task. 4031 * @p: the task in question. 4032 */ 4033 int task_nice(const struct task_struct *p) 4034 { 4035 return TASK_NICE(p); 4036 } 4037 EXPORT_SYMBOL(task_nice); 4038 4039 /** 4040 * idle_cpu - is a given cpu idle currently? 4041 * @cpu: the processor in question. 4042 */ 4043 int idle_cpu(int cpu) 4044 { 4045 struct rq *rq = cpu_rq(cpu); 4046 4047 if (rq->curr != rq->idle) 4048 return 0; 4049 4050 if (rq->nr_running) 4051 return 0; 4052 4053 #ifdef CONFIG_SMP 4054 if (!llist_empty(&rq->wake_list)) 4055 return 0; 4056 #endif 4057 4058 return 1; 4059 } 4060 4061 /** 4062 * idle_task - return the idle task for a given cpu. 4063 * @cpu: the processor in question. 4064 */ 4065 struct task_struct *idle_task(int cpu) 4066 { 4067 return cpu_rq(cpu)->idle; 4068 } 4069 4070 /** 4071 * find_process_by_pid - find a process with a matching PID value. 4072 * @pid: the pid in question. 4073 */ 4074 static struct task_struct *find_process_by_pid(pid_t pid) 4075 { 4076 return pid ? find_task_by_vpid(pid) : current; 4077 } 4078 4079 /* Actually do priority change: must hold rq lock. */ 4080 static void 4081 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 4082 { 4083 p->policy = policy; 4084 p->rt_priority = prio; 4085 p->normal_prio = normal_prio(p); 4086 /* we are holding p->pi_lock already */ 4087 p->prio = rt_mutex_getprio(p); 4088 if (rt_prio(p->prio)) 4089 p->sched_class = &rt_sched_class; 4090 else 4091 p->sched_class = &fair_sched_class; 4092 set_load_weight(p); 4093 } 4094 4095 /* 4096 * check the target process has a UID that matches the current process's 4097 */ 4098 static bool check_same_owner(struct task_struct *p) 4099 { 4100 const struct cred *cred = current_cred(), *pcred; 4101 bool match; 4102 4103 rcu_read_lock(); 4104 pcred = __task_cred(p); 4105 match = (uid_eq(cred->euid, pcred->euid) || 4106 uid_eq(cred->euid, pcred->uid)); 4107 rcu_read_unlock(); 4108 return match; 4109 } 4110 4111 static int __sched_setscheduler(struct task_struct *p, int policy, 4112 const struct sched_param *param, bool user) 4113 { 4114 int retval, oldprio, oldpolicy = -1, on_rq, running; 4115 unsigned long flags; 4116 const struct sched_class *prev_class; 4117 struct rq *rq; 4118 int reset_on_fork; 4119 4120 /* may grab non-irq protected spin_locks */ 4121 BUG_ON(in_interrupt()); 4122 recheck: 4123 /* double check policy once rq lock held */ 4124 if (policy < 0) { 4125 reset_on_fork = p->sched_reset_on_fork; 4126 policy = oldpolicy = p->policy; 4127 } else { 4128 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 4129 policy &= ~SCHED_RESET_ON_FORK; 4130 4131 if (policy != SCHED_FIFO && policy != SCHED_RR && 4132 policy != SCHED_NORMAL && policy != SCHED_BATCH && 4133 policy != SCHED_IDLE) 4134 return -EINVAL; 4135 } 4136 4137 /* 4138 * Valid priorities for SCHED_FIFO and SCHED_RR are 4139 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4140 * SCHED_BATCH and SCHED_IDLE is 0. 4141 */ 4142 if (param->sched_priority < 0 || 4143 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 4144 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 4145 return -EINVAL; 4146 if (rt_policy(policy) != (param->sched_priority != 0)) 4147 return -EINVAL; 4148 4149 /* 4150 * Allow unprivileged RT tasks to decrease priority: 4151 */ 4152 if (user && !capable(CAP_SYS_NICE)) { 4153 if (rt_policy(policy)) { 4154 unsigned long rlim_rtprio = 4155 task_rlimit(p, RLIMIT_RTPRIO); 4156 4157 /* can't set/change the rt policy */ 4158 if (policy != p->policy && !rlim_rtprio) 4159 return -EPERM; 4160 4161 /* can't increase priority */ 4162 if (param->sched_priority > p->rt_priority && 4163 param->sched_priority > rlim_rtprio) 4164 return -EPERM; 4165 } 4166 4167 /* 4168 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4169 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4170 */ 4171 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 4172 if (!can_nice(p, TASK_NICE(p))) 4173 return -EPERM; 4174 } 4175 4176 /* can't change other user's priorities */ 4177 if (!check_same_owner(p)) 4178 return -EPERM; 4179 4180 /* Normal users shall not reset the sched_reset_on_fork flag */ 4181 if (p->sched_reset_on_fork && !reset_on_fork) 4182 return -EPERM; 4183 } 4184 4185 if (user) { 4186 retval = security_task_setscheduler(p); 4187 if (retval) 4188 return retval; 4189 } 4190 4191 /* 4192 * make sure no PI-waiters arrive (or leave) while we are 4193 * changing the priority of the task: 4194 * 4195 * To be able to change p->policy safely, the appropriate 4196 * runqueue lock must be held. 4197 */ 4198 rq = task_rq_lock(p, &flags); 4199 4200 /* 4201 * Changing the policy of the stop threads its a very bad idea 4202 */ 4203 if (p == rq->stop) { 4204 task_rq_unlock(rq, p, &flags); 4205 return -EINVAL; 4206 } 4207 4208 /* 4209 * If not changing anything there's no need to proceed further: 4210 */ 4211 if (unlikely(policy == p->policy && (!rt_policy(policy) || 4212 param->sched_priority == p->rt_priority))) { 4213 4214 __task_rq_unlock(rq); 4215 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4216 return 0; 4217 } 4218 4219 #ifdef CONFIG_RT_GROUP_SCHED 4220 if (user) { 4221 /* 4222 * Do not allow realtime tasks into groups that have no runtime 4223 * assigned. 4224 */ 4225 if (rt_bandwidth_enabled() && rt_policy(policy) && 4226 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4227 !task_group_is_autogroup(task_group(p))) { 4228 task_rq_unlock(rq, p, &flags); 4229 return -EPERM; 4230 } 4231 } 4232 #endif 4233 4234 /* recheck policy now with rq lock held */ 4235 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4236 policy = oldpolicy = -1; 4237 task_rq_unlock(rq, p, &flags); 4238 goto recheck; 4239 } 4240 on_rq = p->on_rq; 4241 running = task_current(rq, p); 4242 if (on_rq) 4243 dequeue_task(rq, p, 0); 4244 if (running) 4245 p->sched_class->put_prev_task(rq, p); 4246 4247 p->sched_reset_on_fork = reset_on_fork; 4248 4249 oldprio = p->prio; 4250 prev_class = p->sched_class; 4251 __setscheduler(rq, p, policy, param->sched_priority); 4252 4253 if (running) 4254 p->sched_class->set_curr_task(rq); 4255 if (on_rq) 4256 enqueue_task(rq, p, 0); 4257 4258 check_class_changed(rq, p, prev_class, oldprio); 4259 task_rq_unlock(rq, p, &flags); 4260 4261 rt_mutex_adjust_pi(p); 4262 4263 return 0; 4264 } 4265 4266 /** 4267 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4268 * @p: the task in question. 4269 * @policy: new policy. 4270 * @param: structure containing the new RT priority. 4271 * 4272 * NOTE that the task may be already dead. 4273 */ 4274 int sched_setscheduler(struct task_struct *p, int policy, 4275 const struct sched_param *param) 4276 { 4277 return __sched_setscheduler(p, policy, param, true); 4278 } 4279 EXPORT_SYMBOL_GPL(sched_setscheduler); 4280 4281 /** 4282 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4283 * @p: the task in question. 4284 * @policy: new policy. 4285 * @param: structure containing the new RT priority. 4286 * 4287 * Just like sched_setscheduler, only don't bother checking if the 4288 * current context has permission. For example, this is needed in 4289 * stop_machine(): we create temporary high priority worker threads, 4290 * but our caller might not have that capability. 4291 */ 4292 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4293 const struct sched_param *param) 4294 { 4295 return __sched_setscheduler(p, policy, param, false); 4296 } 4297 4298 static int 4299 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4300 { 4301 struct sched_param lparam; 4302 struct task_struct *p; 4303 int retval; 4304 4305 if (!param || pid < 0) 4306 return -EINVAL; 4307 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4308 return -EFAULT; 4309 4310 rcu_read_lock(); 4311 retval = -ESRCH; 4312 p = find_process_by_pid(pid); 4313 if (p != NULL) 4314 retval = sched_setscheduler(p, policy, &lparam); 4315 rcu_read_unlock(); 4316 4317 return retval; 4318 } 4319 4320 /** 4321 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4322 * @pid: the pid in question. 4323 * @policy: new policy. 4324 * @param: structure containing the new RT priority. 4325 */ 4326 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4327 struct sched_param __user *, param) 4328 { 4329 /* negative values for policy are not valid */ 4330 if (policy < 0) 4331 return -EINVAL; 4332 4333 return do_sched_setscheduler(pid, policy, param); 4334 } 4335 4336 /** 4337 * sys_sched_setparam - set/change the RT priority of a thread 4338 * @pid: the pid in question. 4339 * @param: structure containing the new RT priority. 4340 */ 4341 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4342 { 4343 return do_sched_setscheduler(pid, -1, param); 4344 } 4345 4346 /** 4347 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4348 * @pid: the pid in question. 4349 */ 4350 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4351 { 4352 struct task_struct *p; 4353 int retval; 4354 4355 if (pid < 0) 4356 return -EINVAL; 4357 4358 retval = -ESRCH; 4359 rcu_read_lock(); 4360 p = find_process_by_pid(pid); 4361 if (p) { 4362 retval = security_task_getscheduler(p); 4363 if (!retval) 4364 retval = p->policy 4365 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4366 } 4367 rcu_read_unlock(); 4368 return retval; 4369 } 4370 4371 /** 4372 * sys_sched_getparam - get the RT priority of a thread 4373 * @pid: the pid in question. 4374 * @param: structure containing the RT priority. 4375 */ 4376 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4377 { 4378 struct sched_param lp; 4379 struct task_struct *p; 4380 int retval; 4381 4382 if (!param || pid < 0) 4383 return -EINVAL; 4384 4385 rcu_read_lock(); 4386 p = find_process_by_pid(pid); 4387 retval = -ESRCH; 4388 if (!p) 4389 goto out_unlock; 4390 4391 retval = security_task_getscheduler(p); 4392 if (retval) 4393 goto out_unlock; 4394 4395 lp.sched_priority = p->rt_priority; 4396 rcu_read_unlock(); 4397 4398 /* 4399 * This one might sleep, we cannot do it with a spinlock held ... 4400 */ 4401 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4402 4403 return retval; 4404 4405 out_unlock: 4406 rcu_read_unlock(); 4407 return retval; 4408 } 4409 4410 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4411 { 4412 cpumask_var_t cpus_allowed, new_mask; 4413 struct task_struct *p; 4414 int retval; 4415 4416 get_online_cpus(); 4417 rcu_read_lock(); 4418 4419 p = find_process_by_pid(pid); 4420 if (!p) { 4421 rcu_read_unlock(); 4422 put_online_cpus(); 4423 return -ESRCH; 4424 } 4425 4426 /* Prevent p going away */ 4427 get_task_struct(p); 4428 rcu_read_unlock(); 4429 4430 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4431 retval = -ENOMEM; 4432 goto out_put_task; 4433 } 4434 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4435 retval = -ENOMEM; 4436 goto out_free_cpus_allowed; 4437 } 4438 retval = -EPERM; 4439 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE)) 4440 goto out_unlock; 4441 4442 retval = security_task_setscheduler(p); 4443 if (retval) 4444 goto out_unlock; 4445 4446 cpuset_cpus_allowed(p, cpus_allowed); 4447 cpumask_and(new_mask, in_mask, cpus_allowed); 4448 again: 4449 retval = set_cpus_allowed_ptr(p, new_mask); 4450 4451 if (!retval) { 4452 cpuset_cpus_allowed(p, cpus_allowed); 4453 if (!cpumask_subset(new_mask, cpus_allowed)) { 4454 /* 4455 * We must have raced with a concurrent cpuset 4456 * update. Just reset the cpus_allowed to the 4457 * cpuset's cpus_allowed 4458 */ 4459 cpumask_copy(new_mask, cpus_allowed); 4460 goto again; 4461 } 4462 } 4463 out_unlock: 4464 free_cpumask_var(new_mask); 4465 out_free_cpus_allowed: 4466 free_cpumask_var(cpus_allowed); 4467 out_put_task: 4468 put_task_struct(p); 4469 put_online_cpus(); 4470 return retval; 4471 } 4472 4473 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4474 struct cpumask *new_mask) 4475 { 4476 if (len < cpumask_size()) 4477 cpumask_clear(new_mask); 4478 else if (len > cpumask_size()) 4479 len = cpumask_size(); 4480 4481 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4482 } 4483 4484 /** 4485 * sys_sched_setaffinity - set the cpu affinity of a process 4486 * @pid: pid of the process 4487 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4488 * @user_mask_ptr: user-space pointer to the new cpu mask 4489 */ 4490 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4491 unsigned long __user *, user_mask_ptr) 4492 { 4493 cpumask_var_t new_mask; 4494 int retval; 4495 4496 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4497 return -ENOMEM; 4498 4499 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4500 if (retval == 0) 4501 retval = sched_setaffinity(pid, new_mask); 4502 free_cpumask_var(new_mask); 4503 return retval; 4504 } 4505 4506 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4507 { 4508 struct task_struct *p; 4509 unsigned long flags; 4510 int retval; 4511 4512 get_online_cpus(); 4513 rcu_read_lock(); 4514 4515 retval = -ESRCH; 4516 p = find_process_by_pid(pid); 4517 if (!p) 4518 goto out_unlock; 4519 4520 retval = security_task_getscheduler(p); 4521 if (retval) 4522 goto out_unlock; 4523 4524 raw_spin_lock_irqsave(&p->pi_lock, flags); 4525 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4526 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4527 4528 out_unlock: 4529 rcu_read_unlock(); 4530 put_online_cpus(); 4531 4532 return retval; 4533 } 4534 4535 /** 4536 * sys_sched_getaffinity - get the cpu affinity of a process 4537 * @pid: pid of the process 4538 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4539 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4540 */ 4541 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4542 unsigned long __user *, user_mask_ptr) 4543 { 4544 int ret; 4545 cpumask_var_t mask; 4546 4547 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4548 return -EINVAL; 4549 if (len & (sizeof(unsigned long)-1)) 4550 return -EINVAL; 4551 4552 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4553 return -ENOMEM; 4554 4555 ret = sched_getaffinity(pid, mask); 4556 if (ret == 0) { 4557 size_t retlen = min_t(size_t, len, cpumask_size()); 4558 4559 if (copy_to_user(user_mask_ptr, mask, retlen)) 4560 ret = -EFAULT; 4561 else 4562 ret = retlen; 4563 } 4564 free_cpumask_var(mask); 4565 4566 return ret; 4567 } 4568 4569 /** 4570 * sys_sched_yield - yield the current processor to other threads. 4571 * 4572 * This function yields the current CPU to other tasks. If there are no 4573 * other threads running on this CPU then this function will return. 4574 */ 4575 SYSCALL_DEFINE0(sched_yield) 4576 { 4577 struct rq *rq = this_rq_lock(); 4578 4579 schedstat_inc(rq, yld_count); 4580 current->sched_class->yield_task(rq); 4581 4582 /* 4583 * Since we are going to call schedule() anyway, there's 4584 * no need to preempt or enable interrupts: 4585 */ 4586 __release(rq->lock); 4587 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4588 do_raw_spin_unlock(&rq->lock); 4589 sched_preempt_enable_no_resched(); 4590 4591 schedule(); 4592 4593 return 0; 4594 } 4595 4596 static inline int should_resched(void) 4597 { 4598 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4599 } 4600 4601 static void __cond_resched(void) 4602 { 4603 add_preempt_count(PREEMPT_ACTIVE); 4604 __schedule(); 4605 sub_preempt_count(PREEMPT_ACTIVE); 4606 } 4607 4608 int __sched _cond_resched(void) 4609 { 4610 if (should_resched()) { 4611 __cond_resched(); 4612 return 1; 4613 } 4614 return 0; 4615 } 4616 EXPORT_SYMBOL(_cond_resched); 4617 4618 /* 4619 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4620 * call schedule, and on return reacquire the lock. 4621 * 4622 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4623 * operations here to prevent schedule() from being called twice (once via 4624 * spin_unlock(), once by hand). 4625 */ 4626 int __cond_resched_lock(spinlock_t *lock) 4627 { 4628 int resched = should_resched(); 4629 int ret = 0; 4630 4631 lockdep_assert_held(lock); 4632 4633 if (spin_needbreak(lock) || resched) { 4634 spin_unlock(lock); 4635 if (resched) 4636 __cond_resched(); 4637 else 4638 cpu_relax(); 4639 ret = 1; 4640 spin_lock(lock); 4641 } 4642 return ret; 4643 } 4644 EXPORT_SYMBOL(__cond_resched_lock); 4645 4646 int __sched __cond_resched_softirq(void) 4647 { 4648 BUG_ON(!in_softirq()); 4649 4650 if (should_resched()) { 4651 local_bh_enable(); 4652 __cond_resched(); 4653 local_bh_disable(); 4654 return 1; 4655 } 4656 return 0; 4657 } 4658 EXPORT_SYMBOL(__cond_resched_softirq); 4659 4660 /** 4661 * yield - yield the current processor to other threads. 4662 * 4663 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4664 * 4665 * The scheduler is at all times free to pick the calling task as the most 4666 * eligible task to run, if removing the yield() call from your code breaks 4667 * it, its already broken. 4668 * 4669 * Typical broken usage is: 4670 * 4671 * while (!event) 4672 * yield(); 4673 * 4674 * where one assumes that yield() will let 'the other' process run that will 4675 * make event true. If the current task is a SCHED_FIFO task that will never 4676 * happen. Never use yield() as a progress guarantee!! 4677 * 4678 * If you want to use yield() to wait for something, use wait_event(). 4679 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4680 * If you still want to use yield(), do not! 4681 */ 4682 void __sched yield(void) 4683 { 4684 set_current_state(TASK_RUNNING); 4685 sys_sched_yield(); 4686 } 4687 EXPORT_SYMBOL(yield); 4688 4689 /** 4690 * yield_to - yield the current processor to another thread in 4691 * your thread group, or accelerate that thread toward the 4692 * processor it's on. 4693 * @p: target task 4694 * @preempt: whether task preemption is allowed or not 4695 * 4696 * It's the caller's job to ensure that the target task struct 4697 * can't go away on us before we can do any checks. 4698 * 4699 * Returns true if we indeed boosted the target task. 4700 */ 4701 bool __sched yield_to(struct task_struct *p, bool preempt) 4702 { 4703 struct task_struct *curr = current; 4704 struct rq *rq, *p_rq; 4705 unsigned long flags; 4706 bool yielded = 0; 4707 4708 local_irq_save(flags); 4709 rq = this_rq(); 4710 4711 again: 4712 p_rq = task_rq(p); 4713 double_rq_lock(rq, p_rq); 4714 while (task_rq(p) != p_rq) { 4715 double_rq_unlock(rq, p_rq); 4716 goto again; 4717 } 4718 4719 if (!curr->sched_class->yield_to_task) 4720 goto out; 4721 4722 if (curr->sched_class != p->sched_class) 4723 goto out; 4724 4725 if (task_running(p_rq, p) || p->state) 4726 goto out; 4727 4728 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4729 if (yielded) { 4730 schedstat_inc(rq, yld_count); 4731 /* 4732 * Make p's CPU reschedule; pick_next_entity takes care of 4733 * fairness. 4734 */ 4735 if (preempt && rq != p_rq) 4736 resched_task(p_rq->curr); 4737 } else { 4738 /* 4739 * We might have set it in task_yield_fair(), but are 4740 * not going to schedule(), so don't want to skip 4741 * the next update. 4742 */ 4743 rq->skip_clock_update = 0; 4744 } 4745 4746 out: 4747 double_rq_unlock(rq, p_rq); 4748 local_irq_restore(flags); 4749 4750 if (yielded) 4751 schedule(); 4752 4753 return yielded; 4754 } 4755 EXPORT_SYMBOL_GPL(yield_to); 4756 4757 /* 4758 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4759 * that process accounting knows that this is a task in IO wait state. 4760 */ 4761 void __sched io_schedule(void) 4762 { 4763 struct rq *rq = raw_rq(); 4764 4765 delayacct_blkio_start(); 4766 atomic_inc(&rq->nr_iowait); 4767 blk_flush_plug(current); 4768 current->in_iowait = 1; 4769 schedule(); 4770 current->in_iowait = 0; 4771 atomic_dec(&rq->nr_iowait); 4772 delayacct_blkio_end(); 4773 } 4774 EXPORT_SYMBOL(io_schedule); 4775 4776 long __sched io_schedule_timeout(long timeout) 4777 { 4778 struct rq *rq = raw_rq(); 4779 long ret; 4780 4781 delayacct_blkio_start(); 4782 atomic_inc(&rq->nr_iowait); 4783 blk_flush_plug(current); 4784 current->in_iowait = 1; 4785 ret = schedule_timeout(timeout); 4786 current->in_iowait = 0; 4787 atomic_dec(&rq->nr_iowait); 4788 delayacct_blkio_end(); 4789 return ret; 4790 } 4791 4792 /** 4793 * sys_sched_get_priority_max - return maximum RT priority. 4794 * @policy: scheduling class. 4795 * 4796 * this syscall returns the maximum rt_priority that can be used 4797 * by a given scheduling class. 4798 */ 4799 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4800 { 4801 int ret = -EINVAL; 4802 4803 switch (policy) { 4804 case SCHED_FIFO: 4805 case SCHED_RR: 4806 ret = MAX_USER_RT_PRIO-1; 4807 break; 4808 case SCHED_NORMAL: 4809 case SCHED_BATCH: 4810 case SCHED_IDLE: 4811 ret = 0; 4812 break; 4813 } 4814 return ret; 4815 } 4816 4817 /** 4818 * sys_sched_get_priority_min - return minimum RT priority. 4819 * @policy: scheduling class. 4820 * 4821 * this syscall returns the minimum rt_priority that can be used 4822 * by a given scheduling class. 4823 */ 4824 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4825 { 4826 int ret = -EINVAL; 4827 4828 switch (policy) { 4829 case SCHED_FIFO: 4830 case SCHED_RR: 4831 ret = 1; 4832 break; 4833 case SCHED_NORMAL: 4834 case SCHED_BATCH: 4835 case SCHED_IDLE: 4836 ret = 0; 4837 } 4838 return ret; 4839 } 4840 4841 /** 4842 * sys_sched_rr_get_interval - return the default timeslice of a process. 4843 * @pid: pid of the process. 4844 * @interval: userspace pointer to the timeslice value. 4845 * 4846 * this syscall writes the default timeslice value of a given process 4847 * into the user-space timespec buffer. A value of '0' means infinity. 4848 */ 4849 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4850 struct timespec __user *, interval) 4851 { 4852 struct task_struct *p; 4853 unsigned int time_slice; 4854 unsigned long flags; 4855 struct rq *rq; 4856 int retval; 4857 struct timespec t; 4858 4859 if (pid < 0) 4860 return -EINVAL; 4861 4862 retval = -ESRCH; 4863 rcu_read_lock(); 4864 p = find_process_by_pid(pid); 4865 if (!p) 4866 goto out_unlock; 4867 4868 retval = security_task_getscheduler(p); 4869 if (retval) 4870 goto out_unlock; 4871 4872 rq = task_rq_lock(p, &flags); 4873 time_slice = p->sched_class->get_rr_interval(rq, p); 4874 task_rq_unlock(rq, p, &flags); 4875 4876 rcu_read_unlock(); 4877 jiffies_to_timespec(time_slice, &t); 4878 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4879 return retval; 4880 4881 out_unlock: 4882 rcu_read_unlock(); 4883 return retval; 4884 } 4885 4886 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4887 4888 void sched_show_task(struct task_struct *p) 4889 { 4890 unsigned long free = 0; 4891 unsigned state; 4892 4893 state = p->state ? __ffs(p->state) + 1 : 0; 4894 printk(KERN_INFO "%-15.15s %c", p->comm, 4895 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4896 #if BITS_PER_LONG == 32 4897 if (state == TASK_RUNNING) 4898 printk(KERN_CONT " running "); 4899 else 4900 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4901 #else 4902 if (state == TASK_RUNNING) 4903 printk(KERN_CONT " running task "); 4904 else 4905 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4906 #endif 4907 #ifdef CONFIG_DEBUG_STACK_USAGE 4908 free = stack_not_used(p); 4909 #endif 4910 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4911 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), 4912 (unsigned long)task_thread_info(p)->flags); 4913 4914 show_stack(p, NULL); 4915 } 4916 4917 void show_state_filter(unsigned long state_filter) 4918 { 4919 struct task_struct *g, *p; 4920 4921 #if BITS_PER_LONG == 32 4922 printk(KERN_INFO 4923 " task PC stack pid father\n"); 4924 #else 4925 printk(KERN_INFO 4926 " task PC stack pid father\n"); 4927 #endif 4928 rcu_read_lock(); 4929 do_each_thread(g, p) { 4930 /* 4931 * reset the NMI-timeout, listing all files on a slow 4932 * console might take a lot of time: 4933 */ 4934 touch_nmi_watchdog(); 4935 if (!state_filter || (p->state & state_filter)) 4936 sched_show_task(p); 4937 } while_each_thread(g, p); 4938 4939 touch_all_softlockup_watchdogs(); 4940 4941 #ifdef CONFIG_SCHED_DEBUG 4942 sysrq_sched_debug_show(); 4943 #endif 4944 rcu_read_unlock(); 4945 /* 4946 * Only show locks if all tasks are dumped: 4947 */ 4948 if (!state_filter) 4949 debug_show_all_locks(); 4950 } 4951 4952 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4953 { 4954 idle->sched_class = &idle_sched_class; 4955 } 4956 4957 /** 4958 * init_idle - set up an idle thread for a given CPU 4959 * @idle: task in question 4960 * @cpu: cpu the idle task belongs to 4961 * 4962 * NOTE: this function does not set the idle thread's NEED_RESCHED 4963 * flag, to make booting more robust. 4964 */ 4965 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4966 { 4967 struct rq *rq = cpu_rq(cpu); 4968 unsigned long flags; 4969 4970 raw_spin_lock_irqsave(&rq->lock, flags); 4971 4972 __sched_fork(idle); 4973 idle->state = TASK_RUNNING; 4974 idle->se.exec_start = sched_clock(); 4975 4976 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4977 /* 4978 * We're having a chicken and egg problem, even though we are 4979 * holding rq->lock, the cpu isn't yet set to this cpu so the 4980 * lockdep check in task_group() will fail. 4981 * 4982 * Similar case to sched_fork(). / Alternatively we could 4983 * use task_rq_lock() here and obtain the other rq->lock. 4984 * 4985 * Silence PROVE_RCU 4986 */ 4987 rcu_read_lock(); 4988 __set_task_cpu(idle, cpu); 4989 rcu_read_unlock(); 4990 4991 rq->curr = rq->idle = idle; 4992 #if defined(CONFIG_SMP) 4993 idle->on_cpu = 1; 4994 #endif 4995 raw_spin_unlock_irqrestore(&rq->lock, flags); 4996 4997 /* Set the preempt count _outside_ the spinlocks! */ 4998 task_thread_info(idle)->preempt_count = 0; 4999 5000 /* 5001 * The idle tasks have their own, simple scheduling class: 5002 */ 5003 idle->sched_class = &idle_sched_class; 5004 ftrace_graph_init_idle_task(idle, cpu); 5005 #if defined(CONFIG_SMP) 5006 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5007 #endif 5008 } 5009 5010 #ifdef CONFIG_SMP 5011 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 5012 { 5013 if (p->sched_class && p->sched_class->set_cpus_allowed) 5014 p->sched_class->set_cpus_allowed(p, new_mask); 5015 5016 cpumask_copy(&p->cpus_allowed, new_mask); 5017 p->nr_cpus_allowed = cpumask_weight(new_mask); 5018 } 5019 5020 /* 5021 * This is how migration works: 5022 * 5023 * 1) we invoke migration_cpu_stop() on the target CPU using 5024 * stop_one_cpu(). 5025 * 2) stopper starts to run (implicitly forcing the migrated thread 5026 * off the CPU) 5027 * 3) it checks whether the migrated task is still in the wrong runqueue. 5028 * 4) if it's in the wrong runqueue then the migration thread removes 5029 * it and puts it into the right queue. 5030 * 5) stopper completes and stop_one_cpu() returns and the migration 5031 * is done. 5032 */ 5033 5034 /* 5035 * Change a given task's CPU affinity. Migrate the thread to a 5036 * proper CPU and schedule it away if the CPU it's executing on 5037 * is removed from the allowed bitmask. 5038 * 5039 * NOTE: the caller must have a valid reference to the task, the 5040 * task must not exit() & deallocate itself prematurely. The 5041 * call is not atomic; no spinlocks may be held. 5042 */ 5043 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 5044 { 5045 unsigned long flags; 5046 struct rq *rq; 5047 unsigned int dest_cpu; 5048 int ret = 0; 5049 5050 rq = task_rq_lock(p, &flags); 5051 5052 if (cpumask_equal(&p->cpus_allowed, new_mask)) 5053 goto out; 5054 5055 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 5056 ret = -EINVAL; 5057 goto out; 5058 } 5059 5060 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { 5061 ret = -EINVAL; 5062 goto out; 5063 } 5064 5065 do_set_cpus_allowed(p, new_mask); 5066 5067 /* Can the task run on the task's current CPU? If so, we're done */ 5068 if (cpumask_test_cpu(task_cpu(p), new_mask)) 5069 goto out; 5070 5071 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 5072 if (p->on_rq) { 5073 struct migration_arg arg = { p, dest_cpu }; 5074 /* Need help from migration thread: drop lock and wait. */ 5075 task_rq_unlock(rq, p, &flags); 5076 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 5077 tlb_migrate_finish(p->mm); 5078 return 0; 5079 } 5080 out: 5081 task_rq_unlock(rq, p, &flags); 5082 5083 return ret; 5084 } 5085 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 5086 5087 /* 5088 * Move (not current) task off this cpu, onto dest cpu. We're doing 5089 * this because either it can't run here any more (set_cpus_allowed() 5090 * away from this CPU, or CPU going down), or because we're 5091 * attempting to rebalance this task on exec (sched_exec). 5092 * 5093 * So we race with normal scheduler movements, but that's OK, as long 5094 * as the task is no longer on this CPU. 5095 * 5096 * Returns non-zero if task was successfully migrated. 5097 */ 5098 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 5099 { 5100 struct rq *rq_dest, *rq_src; 5101 int ret = 0; 5102 5103 if (unlikely(!cpu_active(dest_cpu))) 5104 return ret; 5105 5106 rq_src = cpu_rq(src_cpu); 5107 rq_dest = cpu_rq(dest_cpu); 5108 5109 raw_spin_lock(&p->pi_lock); 5110 double_rq_lock(rq_src, rq_dest); 5111 /* Already moved. */ 5112 if (task_cpu(p) != src_cpu) 5113 goto done; 5114 /* Affinity changed (again). */ 5115 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 5116 goto fail; 5117 5118 /* 5119 * If we're not on a rq, the next wake-up will ensure we're 5120 * placed properly. 5121 */ 5122 if (p->on_rq) { 5123 dequeue_task(rq_src, p, 0); 5124 set_task_cpu(p, dest_cpu); 5125 enqueue_task(rq_dest, p, 0); 5126 check_preempt_curr(rq_dest, p, 0); 5127 } 5128 done: 5129 ret = 1; 5130 fail: 5131 double_rq_unlock(rq_src, rq_dest); 5132 raw_spin_unlock(&p->pi_lock); 5133 return ret; 5134 } 5135 5136 /* 5137 * migration_cpu_stop - this will be executed by a highprio stopper thread 5138 * and performs thread migration by bumping thread off CPU then 5139 * 'pushing' onto another runqueue. 5140 */ 5141 static int migration_cpu_stop(void *data) 5142 { 5143 struct migration_arg *arg = data; 5144 5145 /* 5146 * The original target cpu might have gone down and we might 5147 * be on another cpu but it doesn't matter. 5148 */ 5149 local_irq_disable(); 5150 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 5151 local_irq_enable(); 5152 return 0; 5153 } 5154 5155 #ifdef CONFIG_HOTPLUG_CPU 5156 5157 /* 5158 * Ensures that the idle task is using init_mm right before its cpu goes 5159 * offline. 5160 */ 5161 void idle_task_exit(void) 5162 { 5163 struct mm_struct *mm = current->active_mm; 5164 5165 BUG_ON(cpu_online(smp_processor_id())); 5166 5167 if (mm != &init_mm) 5168 switch_mm(mm, &init_mm, current); 5169 mmdrop(mm); 5170 } 5171 5172 /* 5173 * While a dead CPU has no uninterruptible tasks queued at this point, 5174 * it might still have a nonzero ->nr_uninterruptible counter, because 5175 * for performance reasons the counter is not stricly tracking tasks to 5176 * their home CPUs. So we just add the counter to another CPU's counter, 5177 * to keep the global sum constant after CPU-down: 5178 */ 5179 static void migrate_nr_uninterruptible(struct rq *rq_src) 5180 { 5181 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); 5182 5183 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; 5184 rq_src->nr_uninterruptible = 0; 5185 } 5186 5187 /* 5188 * remove the tasks which were accounted by rq from calc_load_tasks. 5189 */ 5190 static void calc_global_load_remove(struct rq *rq) 5191 { 5192 atomic_long_sub(rq->calc_load_active, &calc_load_tasks); 5193 rq->calc_load_active = 0; 5194 } 5195 5196 /* 5197 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5198 * try_to_wake_up()->select_task_rq(). 5199 * 5200 * Called with rq->lock held even though we'er in stop_machine() and 5201 * there's no concurrency possible, we hold the required locks anyway 5202 * because of lock validation efforts. 5203 */ 5204 static void migrate_tasks(unsigned int dead_cpu) 5205 { 5206 struct rq *rq = cpu_rq(dead_cpu); 5207 struct task_struct *next, *stop = rq->stop; 5208 int dest_cpu; 5209 5210 /* 5211 * Fudge the rq selection such that the below task selection loop 5212 * doesn't get stuck on the currently eligible stop task. 5213 * 5214 * We're currently inside stop_machine() and the rq is either stuck 5215 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5216 * either way we should never end up calling schedule() until we're 5217 * done here. 5218 */ 5219 rq->stop = NULL; 5220 5221 /* Ensure any throttled groups are reachable by pick_next_task */ 5222 unthrottle_offline_cfs_rqs(rq); 5223 5224 for ( ; ; ) { 5225 /* 5226 * There's this thread running, bail when that's the only 5227 * remaining thread. 5228 */ 5229 if (rq->nr_running == 1) 5230 break; 5231 5232 next = pick_next_task(rq); 5233 BUG_ON(!next); 5234 next->sched_class->put_prev_task(rq, next); 5235 5236 /* Find suitable destination for @next, with force if needed. */ 5237 dest_cpu = select_fallback_rq(dead_cpu, next); 5238 raw_spin_unlock(&rq->lock); 5239 5240 __migrate_task(next, dead_cpu, dest_cpu); 5241 5242 raw_spin_lock(&rq->lock); 5243 } 5244 5245 rq->stop = stop; 5246 } 5247 5248 #endif /* CONFIG_HOTPLUG_CPU */ 5249 5250 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5251 5252 static struct ctl_table sd_ctl_dir[] = { 5253 { 5254 .procname = "sched_domain", 5255 .mode = 0555, 5256 }, 5257 {} 5258 }; 5259 5260 static struct ctl_table sd_ctl_root[] = { 5261 { 5262 .procname = "kernel", 5263 .mode = 0555, 5264 .child = sd_ctl_dir, 5265 }, 5266 {} 5267 }; 5268 5269 static struct ctl_table *sd_alloc_ctl_entry(int n) 5270 { 5271 struct ctl_table *entry = 5272 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5273 5274 return entry; 5275 } 5276 5277 static void sd_free_ctl_entry(struct ctl_table **tablep) 5278 { 5279 struct ctl_table *entry; 5280 5281 /* 5282 * In the intermediate directories, both the child directory and 5283 * procname are dynamically allocated and could fail but the mode 5284 * will always be set. In the lowest directory the names are 5285 * static strings and all have proc handlers. 5286 */ 5287 for (entry = *tablep; entry->mode; entry++) { 5288 if (entry->child) 5289 sd_free_ctl_entry(&entry->child); 5290 if (entry->proc_handler == NULL) 5291 kfree(entry->procname); 5292 } 5293 5294 kfree(*tablep); 5295 *tablep = NULL; 5296 } 5297 5298 static void 5299 set_table_entry(struct ctl_table *entry, 5300 const char *procname, void *data, int maxlen, 5301 umode_t mode, proc_handler *proc_handler) 5302 { 5303 entry->procname = procname; 5304 entry->data = data; 5305 entry->maxlen = maxlen; 5306 entry->mode = mode; 5307 entry->proc_handler = proc_handler; 5308 } 5309 5310 static struct ctl_table * 5311 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5312 { 5313 struct ctl_table *table = sd_alloc_ctl_entry(13); 5314 5315 if (table == NULL) 5316 return NULL; 5317 5318 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5319 sizeof(long), 0644, proc_doulongvec_minmax); 5320 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5321 sizeof(long), 0644, proc_doulongvec_minmax); 5322 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5323 sizeof(int), 0644, proc_dointvec_minmax); 5324 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5325 sizeof(int), 0644, proc_dointvec_minmax); 5326 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5327 sizeof(int), 0644, proc_dointvec_minmax); 5328 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5329 sizeof(int), 0644, proc_dointvec_minmax); 5330 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5331 sizeof(int), 0644, proc_dointvec_minmax); 5332 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5333 sizeof(int), 0644, proc_dointvec_minmax); 5334 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5335 sizeof(int), 0644, proc_dointvec_minmax); 5336 set_table_entry(&table[9], "cache_nice_tries", 5337 &sd->cache_nice_tries, 5338 sizeof(int), 0644, proc_dointvec_minmax); 5339 set_table_entry(&table[10], "flags", &sd->flags, 5340 sizeof(int), 0644, proc_dointvec_minmax); 5341 set_table_entry(&table[11], "name", sd->name, 5342 CORENAME_MAX_SIZE, 0444, proc_dostring); 5343 /* &table[12] is terminator */ 5344 5345 return table; 5346 } 5347 5348 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5349 { 5350 struct ctl_table *entry, *table; 5351 struct sched_domain *sd; 5352 int domain_num = 0, i; 5353 char buf[32]; 5354 5355 for_each_domain(cpu, sd) 5356 domain_num++; 5357 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5358 if (table == NULL) 5359 return NULL; 5360 5361 i = 0; 5362 for_each_domain(cpu, sd) { 5363 snprintf(buf, 32, "domain%d", i); 5364 entry->procname = kstrdup(buf, GFP_KERNEL); 5365 entry->mode = 0555; 5366 entry->child = sd_alloc_ctl_domain_table(sd); 5367 entry++; 5368 i++; 5369 } 5370 return table; 5371 } 5372 5373 static struct ctl_table_header *sd_sysctl_header; 5374 static void register_sched_domain_sysctl(void) 5375 { 5376 int i, cpu_num = num_possible_cpus(); 5377 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5378 char buf[32]; 5379 5380 WARN_ON(sd_ctl_dir[0].child); 5381 sd_ctl_dir[0].child = entry; 5382 5383 if (entry == NULL) 5384 return; 5385 5386 for_each_possible_cpu(i) { 5387 snprintf(buf, 32, "cpu%d", i); 5388 entry->procname = kstrdup(buf, GFP_KERNEL); 5389 entry->mode = 0555; 5390 entry->child = sd_alloc_ctl_cpu_table(i); 5391 entry++; 5392 } 5393 5394 WARN_ON(sd_sysctl_header); 5395 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5396 } 5397 5398 /* may be called multiple times per register */ 5399 static void unregister_sched_domain_sysctl(void) 5400 { 5401 if (sd_sysctl_header) 5402 unregister_sysctl_table(sd_sysctl_header); 5403 sd_sysctl_header = NULL; 5404 if (sd_ctl_dir[0].child) 5405 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5406 } 5407 #else 5408 static void register_sched_domain_sysctl(void) 5409 { 5410 } 5411 static void unregister_sched_domain_sysctl(void) 5412 { 5413 } 5414 #endif 5415 5416 static void set_rq_online(struct rq *rq) 5417 { 5418 if (!rq->online) { 5419 const struct sched_class *class; 5420 5421 cpumask_set_cpu(rq->cpu, rq->rd->online); 5422 rq->online = 1; 5423 5424 for_each_class(class) { 5425 if (class->rq_online) 5426 class->rq_online(rq); 5427 } 5428 } 5429 } 5430 5431 static void set_rq_offline(struct rq *rq) 5432 { 5433 if (rq->online) { 5434 const struct sched_class *class; 5435 5436 for_each_class(class) { 5437 if (class->rq_offline) 5438 class->rq_offline(rq); 5439 } 5440 5441 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5442 rq->online = 0; 5443 } 5444 } 5445 5446 /* 5447 * migration_call - callback that gets triggered when a CPU is added. 5448 * Here we can start up the necessary migration thread for the new CPU. 5449 */ 5450 static int __cpuinit 5451 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5452 { 5453 int cpu = (long)hcpu; 5454 unsigned long flags; 5455 struct rq *rq = cpu_rq(cpu); 5456 5457 switch (action & ~CPU_TASKS_FROZEN) { 5458 5459 case CPU_UP_PREPARE: 5460 rq->calc_load_update = calc_load_update; 5461 break; 5462 5463 case CPU_ONLINE: 5464 /* Update our root-domain */ 5465 raw_spin_lock_irqsave(&rq->lock, flags); 5466 if (rq->rd) { 5467 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5468 5469 set_rq_online(rq); 5470 } 5471 raw_spin_unlock_irqrestore(&rq->lock, flags); 5472 break; 5473 5474 #ifdef CONFIG_HOTPLUG_CPU 5475 case CPU_DYING: 5476 sched_ttwu_pending(); 5477 /* Update our root-domain */ 5478 raw_spin_lock_irqsave(&rq->lock, flags); 5479 if (rq->rd) { 5480 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5481 set_rq_offline(rq); 5482 } 5483 migrate_tasks(cpu); 5484 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5485 raw_spin_unlock_irqrestore(&rq->lock, flags); 5486 5487 migrate_nr_uninterruptible(rq); 5488 calc_global_load_remove(rq); 5489 break; 5490 #endif 5491 } 5492 5493 update_max_interval(); 5494 5495 return NOTIFY_OK; 5496 } 5497 5498 /* 5499 * Register at high priority so that task migration (migrate_all_tasks) 5500 * happens before everything else. This has to be lower priority than 5501 * the notifier in the perf_event subsystem, though. 5502 */ 5503 static struct notifier_block __cpuinitdata migration_notifier = { 5504 .notifier_call = migration_call, 5505 .priority = CPU_PRI_MIGRATION, 5506 }; 5507 5508 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5509 unsigned long action, void *hcpu) 5510 { 5511 switch (action & ~CPU_TASKS_FROZEN) { 5512 case CPU_STARTING: 5513 case CPU_DOWN_FAILED: 5514 set_cpu_active((long)hcpu, true); 5515 return NOTIFY_OK; 5516 default: 5517 return NOTIFY_DONE; 5518 } 5519 } 5520 5521 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5522 unsigned long action, void *hcpu) 5523 { 5524 switch (action & ~CPU_TASKS_FROZEN) { 5525 case CPU_DOWN_PREPARE: 5526 set_cpu_active((long)hcpu, false); 5527 return NOTIFY_OK; 5528 default: 5529 return NOTIFY_DONE; 5530 } 5531 } 5532 5533 static int __init migration_init(void) 5534 { 5535 void *cpu = (void *)(long)smp_processor_id(); 5536 int err; 5537 5538 /* Initialize migration for the boot CPU */ 5539 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5540 BUG_ON(err == NOTIFY_BAD); 5541 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5542 register_cpu_notifier(&migration_notifier); 5543 5544 /* Register cpu active notifiers */ 5545 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5546 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5547 5548 return 0; 5549 } 5550 early_initcall(migration_init); 5551 #endif 5552 5553 #ifdef CONFIG_SMP 5554 5555 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5556 5557 #ifdef CONFIG_SCHED_DEBUG 5558 5559 static __read_mostly int sched_debug_enabled; 5560 5561 static int __init sched_debug_setup(char *str) 5562 { 5563 sched_debug_enabled = 1; 5564 5565 return 0; 5566 } 5567 early_param("sched_debug", sched_debug_setup); 5568 5569 static inline bool sched_debug(void) 5570 { 5571 return sched_debug_enabled; 5572 } 5573 5574 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5575 struct cpumask *groupmask) 5576 { 5577 struct sched_group *group = sd->groups; 5578 char str[256]; 5579 5580 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5581 cpumask_clear(groupmask); 5582 5583 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5584 5585 if (!(sd->flags & SD_LOAD_BALANCE)) { 5586 printk("does not load-balance\n"); 5587 if (sd->parent) 5588 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5589 " has parent"); 5590 return -1; 5591 } 5592 5593 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5594 5595 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5596 printk(KERN_ERR "ERROR: domain->span does not contain " 5597 "CPU%d\n", cpu); 5598 } 5599 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5600 printk(KERN_ERR "ERROR: domain->groups does not contain" 5601 " CPU%d\n", cpu); 5602 } 5603 5604 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5605 do { 5606 if (!group) { 5607 printk("\n"); 5608 printk(KERN_ERR "ERROR: group is NULL\n"); 5609 break; 5610 } 5611 5612 /* 5613 * Even though we initialize ->power to something semi-sane, 5614 * we leave power_orig unset. This allows us to detect if 5615 * domain iteration is still funny without causing /0 traps. 5616 */ 5617 if (!group->sgp->power_orig) { 5618 printk(KERN_CONT "\n"); 5619 printk(KERN_ERR "ERROR: domain->cpu_power not " 5620 "set\n"); 5621 break; 5622 } 5623 5624 if (!cpumask_weight(sched_group_cpus(group))) { 5625 printk(KERN_CONT "\n"); 5626 printk(KERN_ERR "ERROR: empty group\n"); 5627 break; 5628 } 5629 5630 if (!(sd->flags & SD_OVERLAP) && 5631 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5632 printk(KERN_CONT "\n"); 5633 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5634 break; 5635 } 5636 5637 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5638 5639 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5640 5641 printk(KERN_CONT " %s", str); 5642 if (group->sgp->power != SCHED_POWER_SCALE) { 5643 printk(KERN_CONT " (cpu_power = %d)", 5644 group->sgp->power); 5645 } 5646 5647 group = group->next; 5648 } while (group != sd->groups); 5649 printk(KERN_CONT "\n"); 5650 5651 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5652 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5653 5654 if (sd->parent && 5655 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5656 printk(KERN_ERR "ERROR: parent span is not a superset " 5657 "of domain->span\n"); 5658 return 0; 5659 } 5660 5661 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5662 { 5663 int level = 0; 5664 5665 if (!sched_debug_enabled) 5666 return; 5667 5668 if (!sd) { 5669 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5670 return; 5671 } 5672 5673 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5674 5675 for (;;) { 5676 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5677 break; 5678 level++; 5679 sd = sd->parent; 5680 if (!sd) 5681 break; 5682 } 5683 } 5684 #else /* !CONFIG_SCHED_DEBUG */ 5685 # define sched_domain_debug(sd, cpu) do { } while (0) 5686 static inline bool sched_debug(void) 5687 { 5688 return false; 5689 } 5690 #endif /* CONFIG_SCHED_DEBUG */ 5691 5692 static int sd_degenerate(struct sched_domain *sd) 5693 { 5694 if (cpumask_weight(sched_domain_span(sd)) == 1) 5695 return 1; 5696 5697 /* Following flags need at least 2 groups */ 5698 if (sd->flags & (SD_LOAD_BALANCE | 5699 SD_BALANCE_NEWIDLE | 5700 SD_BALANCE_FORK | 5701 SD_BALANCE_EXEC | 5702 SD_SHARE_CPUPOWER | 5703 SD_SHARE_PKG_RESOURCES)) { 5704 if (sd->groups != sd->groups->next) 5705 return 0; 5706 } 5707 5708 /* Following flags don't use groups */ 5709 if (sd->flags & (SD_WAKE_AFFINE)) 5710 return 0; 5711 5712 return 1; 5713 } 5714 5715 static int 5716 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5717 { 5718 unsigned long cflags = sd->flags, pflags = parent->flags; 5719 5720 if (sd_degenerate(parent)) 5721 return 1; 5722 5723 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5724 return 0; 5725 5726 /* Flags needing groups don't count if only 1 group in parent */ 5727 if (parent->groups == parent->groups->next) { 5728 pflags &= ~(SD_LOAD_BALANCE | 5729 SD_BALANCE_NEWIDLE | 5730 SD_BALANCE_FORK | 5731 SD_BALANCE_EXEC | 5732 SD_SHARE_CPUPOWER | 5733 SD_SHARE_PKG_RESOURCES); 5734 if (nr_node_ids == 1) 5735 pflags &= ~SD_SERIALIZE; 5736 } 5737 if (~cflags & pflags) 5738 return 0; 5739 5740 return 1; 5741 } 5742 5743 static void free_rootdomain(struct rcu_head *rcu) 5744 { 5745 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5746 5747 cpupri_cleanup(&rd->cpupri); 5748 free_cpumask_var(rd->rto_mask); 5749 free_cpumask_var(rd->online); 5750 free_cpumask_var(rd->span); 5751 kfree(rd); 5752 } 5753 5754 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5755 { 5756 struct root_domain *old_rd = NULL; 5757 unsigned long flags; 5758 5759 raw_spin_lock_irqsave(&rq->lock, flags); 5760 5761 if (rq->rd) { 5762 old_rd = rq->rd; 5763 5764 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5765 set_rq_offline(rq); 5766 5767 cpumask_clear_cpu(rq->cpu, old_rd->span); 5768 5769 /* 5770 * If we dont want to free the old_rt yet then 5771 * set old_rd to NULL to skip the freeing later 5772 * in this function: 5773 */ 5774 if (!atomic_dec_and_test(&old_rd->refcount)) 5775 old_rd = NULL; 5776 } 5777 5778 atomic_inc(&rd->refcount); 5779 rq->rd = rd; 5780 5781 cpumask_set_cpu(rq->cpu, rd->span); 5782 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5783 set_rq_online(rq); 5784 5785 raw_spin_unlock_irqrestore(&rq->lock, flags); 5786 5787 if (old_rd) 5788 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5789 } 5790 5791 static int init_rootdomain(struct root_domain *rd) 5792 { 5793 memset(rd, 0, sizeof(*rd)); 5794 5795 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5796 goto out; 5797 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5798 goto free_span; 5799 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5800 goto free_online; 5801 5802 if (cpupri_init(&rd->cpupri) != 0) 5803 goto free_rto_mask; 5804 return 0; 5805 5806 free_rto_mask: 5807 free_cpumask_var(rd->rto_mask); 5808 free_online: 5809 free_cpumask_var(rd->online); 5810 free_span: 5811 free_cpumask_var(rd->span); 5812 out: 5813 return -ENOMEM; 5814 } 5815 5816 /* 5817 * By default the system creates a single root-domain with all cpus as 5818 * members (mimicking the global state we have today). 5819 */ 5820 struct root_domain def_root_domain; 5821 5822 static void init_defrootdomain(void) 5823 { 5824 init_rootdomain(&def_root_domain); 5825 5826 atomic_set(&def_root_domain.refcount, 1); 5827 } 5828 5829 static struct root_domain *alloc_rootdomain(void) 5830 { 5831 struct root_domain *rd; 5832 5833 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5834 if (!rd) 5835 return NULL; 5836 5837 if (init_rootdomain(rd) != 0) { 5838 kfree(rd); 5839 return NULL; 5840 } 5841 5842 return rd; 5843 } 5844 5845 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5846 { 5847 struct sched_group *tmp, *first; 5848 5849 if (!sg) 5850 return; 5851 5852 first = sg; 5853 do { 5854 tmp = sg->next; 5855 5856 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5857 kfree(sg->sgp); 5858 5859 kfree(sg); 5860 sg = tmp; 5861 } while (sg != first); 5862 } 5863 5864 static void free_sched_domain(struct rcu_head *rcu) 5865 { 5866 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5867 5868 /* 5869 * If its an overlapping domain it has private groups, iterate and 5870 * nuke them all. 5871 */ 5872 if (sd->flags & SD_OVERLAP) { 5873 free_sched_groups(sd->groups, 1); 5874 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5875 kfree(sd->groups->sgp); 5876 kfree(sd->groups); 5877 } 5878 kfree(sd); 5879 } 5880 5881 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5882 { 5883 call_rcu(&sd->rcu, free_sched_domain); 5884 } 5885 5886 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5887 { 5888 for (; sd; sd = sd->parent) 5889 destroy_sched_domain(sd, cpu); 5890 } 5891 5892 /* 5893 * Keep a special pointer to the highest sched_domain that has 5894 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5895 * allows us to avoid some pointer chasing select_idle_sibling(). 5896 * 5897 * Also keep a unique ID per domain (we use the first cpu number in 5898 * the cpumask of the domain), this allows us to quickly tell if 5899 * two cpus are in the same cache domain, see cpus_share_cache(). 5900 */ 5901 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5902 DEFINE_PER_CPU(int, sd_llc_id); 5903 5904 static void update_top_cache_domain(int cpu) 5905 { 5906 struct sched_domain *sd; 5907 int id = cpu; 5908 5909 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5910 if (sd) 5911 id = cpumask_first(sched_domain_span(sd)); 5912 5913 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5914 per_cpu(sd_llc_id, cpu) = id; 5915 } 5916 5917 /* 5918 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5919 * hold the hotplug lock. 5920 */ 5921 static void 5922 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5923 { 5924 struct rq *rq = cpu_rq(cpu); 5925 struct sched_domain *tmp; 5926 5927 /* Remove the sched domains which do not contribute to scheduling. */ 5928 for (tmp = sd; tmp; ) { 5929 struct sched_domain *parent = tmp->parent; 5930 if (!parent) 5931 break; 5932 5933 if (sd_parent_degenerate(tmp, parent)) { 5934 tmp->parent = parent->parent; 5935 if (parent->parent) 5936 parent->parent->child = tmp; 5937 destroy_sched_domain(parent, cpu); 5938 } else 5939 tmp = tmp->parent; 5940 } 5941 5942 if (sd && sd_degenerate(sd)) { 5943 tmp = sd; 5944 sd = sd->parent; 5945 destroy_sched_domain(tmp, cpu); 5946 if (sd) 5947 sd->child = NULL; 5948 } 5949 5950 sched_domain_debug(sd, cpu); 5951 5952 rq_attach_root(rq, rd); 5953 tmp = rq->sd; 5954 rcu_assign_pointer(rq->sd, sd); 5955 destroy_sched_domains(tmp, cpu); 5956 5957 update_top_cache_domain(cpu); 5958 } 5959 5960 /* cpus with isolated domains */ 5961 static cpumask_var_t cpu_isolated_map; 5962 5963 /* Setup the mask of cpus configured for isolated domains */ 5964 static int __init isolated_cpu_setup(char *str) 5965 { 5966 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5967 cpulist_parse(str, cpu_isolated_map); 5968 return 1; 5969 } 5970 5971 __setup("isolcpus=", isolated_cpu_setup); 5972 5973 static const struct cpumask *cpu_cpu_mask(int cpu) 5974 { 5975 return cpumask_of_node(cpu_to_node(cpu)); 5976 } 5977 5978 struct sd_data { 5979 struct sched_domain **__percpu sd; 5980 struct sched_group **__percpu sg; 5981 struct sched_group_power **__percpu sgp; 5982 }; 5983 5984 struct s_data { 5985 struct sched_domain ** __percpu sd; 5986 struct root_domain *rd; 5987 }; 5988 5989 enum s_alloc { 5990 sa_rootdomain, 5991 sa_sd, 5992 sa_sd_storage, 5993 sa_none, 5994 }; 5995 5996 struct sched_domain_topology_level; 5997 5998 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5999 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 6000 6001 #define SDTL_OVERLAP 0x01 6002 6003 struct sched_domain_topology_level { 6004 sched_domain_init_f init; 6005 sched_domain_mask_f mask; 6006 int flags; 6007 int numa_level; 6008 struct sd_data data; 6009 }; 6010 6011 /* 6012 * Build an iteration mask that can exclude certain CPUs from the upwards 6013 * domain traversal. 6014 * 6015 * Asymmetric node setups can result in situations where the domain tree is of 6016 * unequal depth, make sure to skip domains that already cover the entire 6017 * range. 6018 * 6019 * In that case build_sched_domains() will have terminated the iteration early 6020 * and our sibling sd spans will be empty. Domains should always include the 6021 * cpu they're built on, so check that. 6022 * 6023 */ 6024 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 6025 { 6026 const struct cpumask *span = sched_domain_span(sd); 6027 struct sd_data *sdd = sd->private; 6028 struct sched_domain *sibling; 6029 int i; 6030 6031 for_each_cpu(i, span) { 6032 sibling = *per_cpu_ptr(sdd->sd, i); 6033 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6034 continue; 6035 6036 cpumask_set_cpu(i, sched_group_mask(sg)); 6037 } 6038 } 6039 6040 /* 6041 * Return the canonical balance cpu for this group, this is the first cpu 6042 * of this group that's also in the iteration mask. 6043 */ 6044 int group_balance_cpu(struct sched_group *sg) 6045 { 6046 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 6047 } 6048 6049 static int 6050 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6051 { 6052 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6053 const struct cpumask *span = sched_domain_span(sd); 6054 struct cpumask *covered = sched_domains_tmpmask; 6055 struct sd_data *sdd = sd->private; 6056 struct sched_domain *child; 6057 int i; 6058 6059 cpumask_clear(covered); 6060 6061 for_each_cpu(i, span) { 6062 struct cpumask *sg_span; 6063 6064 if (cpumask_test_cpu(i, covered)) 6065 continue; 6066 6067 child = *per_cpu_ptr(sdd->sd, i); 6068 6069 /* See the comment near build_group_mask(). */ 6070 if (!cpumask_test_cpu(i, sched_domain_span(child))) 6071 continue; 6072 6073 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6074 GFP_KERNEL, cpu_to_node(cpu)); 6075 6076 if (!sg) 6077 goto fail; 6078 6079 sg_span = sched_group_cpus(sg); 6080 if (child->child) { 6081 child = child->child; 6082 cpumask_copy(sg_span, sched_domain_span(child)); 6083 } else 6084 cpumask_set_cpu(i, sg_span); 6085 6086 cpumask_or(covered, covered, sg_span); 6087 6088 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 6089 if (atomic_inc_return(&sg->sgp->ref) == 1) 6090 build_group_mask(sd, sg); 6091 6092 /* 6093 * Initialize sgp->power such that even if we mess up the 6094 * domains and no possible iteration will get us here, we won't 6095 * die on a /0 trap. 6096 */ 6097 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 6098 6099 /* 6100 * Make sure the first group of this domain contains the 6101 * canonical balance cpu. Otherwise the sched_domain iteration 6102 * breaks. See update_sg_lb_stats(). 6103 */ 6104 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6105 group_balance_cpu(sg) == cpu) 6106 groups = sg; 6107 6108 if (!first) 6109 first = sg; 6110 if (last) 6111 last->next = sg; 6112 last = sg; 6113 last->next = first; 6114 } 6115 sd->groups = groups; 6116 6117 return 0; 6118 6119 fail: 6120 free_sched_groups(first, 0); 6121 6122 return -ENOMEM; 6123 } 6124 6125 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6126 { 6127 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6128 struct sched_domain *child = sd->child; 6129 6130 if (child) 6131 cpu = cpumask_first(sched_domain_span(child)); 6132 6133 if (sg) { 6134 *sg = *per_cpu_ptr(sdd->sg, cpu); 6135 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 6136 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 6137 } 6138 6139 return cpu; 6140 } 6141 6142 /* 6143 * build_sched_groups will build a circular linked list of the groups 6144 * covered by the given span, and will set each group's ->cpumask correctly, 6145 * and ->cpu_power to 0. 6146 * 6147 * Assumes the sched_domain tree is fully constructed 6148 */ 6149 static int 6150 build_sched_groups(struct sched_domain *sd, int cpu) 6151 { 6152 struct sched_group *first = NULL, *last = NULL; 6153 struct sd_data *sdd = sd->private; 6154 const struct cpumask *span = sched_domain_span(sd); 6155 struct cpumask *covered; 6156 int i; 6157 6158 get_group(cpu, sdd, &sd->groups); 6159 atomic_inc(&sd->groups->ref); 6160 6161 if (cpu != cpumask_first(sched_domain_span(sd))) 6162 return 0; 6163 6164 lockdep_assert_held(&sched_domains_mutex); 6165 covered = sched_domains_tmpmask; 6166 6167 cpumask_clear(covered); 6168 6169 for_each_cpu(i, span) { 6170 struct sched_group *sg; 6171 int group = get_group(i, sdd, &sg); 6172 int j; 6173 6174 if (cpumask_test_cpu(i, covered)) 6175 continue; 6176 6177 cpumask_clear(sched_group_cpus(sg)); 6178 sg->sgp->power = 0; 6179 cpumask_setall(sched_group_mask(sg)); 6180 6181 for_each_cpu(j, span) { 6182 if (get_group(j, sdd, NULL) != group) 6183 continue; 6184 6185 cpumask_set_cpu(j, covered); 6186 cpumask_set_cpu(j, sched_group_cpus(sg)); 6187 } 6188 6189 if (!first) 6190 first = sg; 6191 if (last) 6192 last->next = sg; 6193 last = sg; 6194 } 6195 last->next = first; 6196 6197 return 0; 6198 } 6199 6200 /* 6201 * Initialize sched groups cpu_power. 6202 * 6203 * cpu_power indicates the capacity of sched group, which is used while 6204 * distributing the load between different sched groups in a sched domain. 6205 * Typically cpu_power for all the groups in a sched domain will be same unless 6206 * there are asymmetries in the topology. If there are asymmetries, group 6207 * having more cpu_power will pickup more load compared to the group having 6208 * less cpu_power. 6209 */ 6210 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 6211 { 6212 struct sched_group *sg = sd->groups; 6213 6214 WARN_ON(!sd || !sg); 6215 6216 do { 6217 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6218 sg = sg->next; 6219 } while (sg != sd->groups); 6220 6221 if (cpu != group_balance_cpu(sg)) 6222 return; 6223 6224 update_group_power(sd, cpu); 6225 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 6226 } 6227 6228 int __weak arch_sd_sibling_asym_packing(void) 6229 { 6230 return 0*SD_ASYM_PACKING; 6231 } 6232 6233 /* 6234 * Initializers for schedule domains 6235 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6236 */ 6237 6238 #ifdef CONFIG_SCHED_DEBUG 6239 # define SD_INIT_NAME(sd, type) sd->name = #type 6240 #else 6241 # define SD_INIT_NAME(sd, type) do { } while (0) 6242 #endif 6243 6244 #define SD_INIT_FUNC(type) \ 6245 static noinline struct sched_domain * \ 6246 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 6247 { \ 6248 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 6249 *sd = SD_##type##_INIT; \ 6250 SD_INIT_NAME(sd, type); \ 6251 sd->private = &tl->data; \ 6252 return sd; \ 6253 } 6254 6255 SD_INIT_FUNC(CPU) 6256 #ifdef CONFIG_SCHED_SMT 6257 SD_INIT_FUNC(SIBLING) 6258 #endif 6259 #ifdef CONFIG_SCHED_MC 6260 SD_INIT_FUNC(MC) 6261 #endif 6262 #ifdef CONFIG_SCHED_BOOK 6263 SD_INIT_FUNC(BOOK) 6264 #endif 6265 6266 static int default_relax_domain_level = -1; 6267 int sched_domain_level_max; 6268 6269 static int __init setup_relax_domain_level(char *str) 6270 { 6271 if (kstrtoint(str, 0, &default_relax_domain_level)) 6272 pr_warn("Unable to set relax_domain_level\n"); 6273 6274 return 1; 6275 } 6276 __setup("relax_domain_level=", setup_relax_domain_level); 6277 6278 static void set_domain_attribute(struct sched_domain *sd, 6279 struct sched_domain_attr *attr) 6280 { 6281 int request; 6282 6283 if (!attr || attr->relax_domain_level < 0) { 6284 if (default_relax_domain_level < 0) 6285 return; 6286 else 6287 request = default_relax_domain_level; 6288 } else 6289 request = attr->relax_domain_level; 6290 if (request < sd->level) { 6291 /* turn off idle balance on this domain */ 6292 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6293 } else { 6294 /* turn on idle balance on this domain */ 6295 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6296 } 6297 } 6298 6299 static void __sdt_free(const struct cpumask *cpu_map); 6300 static int __sdt_alloc(const struct cpumask *cpu_map); 6301 6302 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6303 const struct cpumask *cpu_map) 6304 { 6305 switch (what) { 6306 case sa_rootdomain: 6307 if (!atomic_read(&d->rd->refcount)) 6308 free_rootdomain(&d->rd->rcu); /* fall through */ 6309 case sa_sd: 6310 free_percpu(d->sd); /* fall through */ 6311 case sa_sd_storage: 6312 __sdt_free(cpu_map); /* fall through */ 6313 case sa_none: 6314 break; 6315 } 6316 } 6317 6318 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6319 const struct cpumask *cpu_map) 6320 { 6321 memset(d, 0, sizeof(*d)); 6322 6323 if (__sdt_alloc(cpu_map)) 6324 return sa_sd_storage; 6325 d->sd = alloc_percpu(struct sched_domain *); 6326 if (!d->sd) 6327 return sa_sd_storage; 6328 d->rd = alloc_rootdomain(); 6329 if (!d->rd) 6330 return sa_sd; 6331 return sa_rootdomain; 6332 } 6333 6334 /* 6335 * NULL the sd_data elements we've used to build the sched_domain and 6336 * sched_group structure so that the subsequent __free_domain_allocs() 6337 * will not free the data we're using. 6338 */ 6339 static void claim_allocations(int cpu, struct sched_domain *sd) 6340 { 6341 struct sd_data *sdd = sd->private; 6342 6343 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6344 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6345 6346 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6347 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6348 6349 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6350 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6351 } 6352 6353 #ifdef CONFIG_SCHED_SMT 6354 static const struct cpumask *cpu_smt_mask(int cpu) 6355 { 6356 return topology_thread_cpumask(cpu); 6357 } 6358 #endif 6359 6360 /* 6361 * Topology list, bottom-up. 6362 */ 6363 static struct sched_domain_topology_level default_topology[] = { 6364 #ifdef CONFIG_SCHED_SMT 6365 { sd_init_SIBLING, cpu_smt_mask, }, 6366 #endif 6367 #ifdef CONFIG_SCHED_MC 6368 { sd_init_MC, cpu_coregroup_mask, }, 6369 #endif 6370 #ifdef CONFIG_SCHED_BOOK 6371 { sd_init_BOOK, cpu_book_mask, }, 6372 #endif 6373 { sd_init_CPU, cpu_cpu_mask, }, 6374 { NULL, }, 6375 }; 6376 6377 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6378 6379 #ifdef CONFIG_NUMA 6380 6381 static int sched_domains_numa_levels; 6382 static int *sched_domains_numa_distance; 6383 static struct cpumask ***sched_domains_numa_masks; 6384 static int sched_domains_curr_level; 6385 6386 static inline int sd_local_flags(int level) 6387 { 6388 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 6389 return 0; 6390 6391 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 6392 } 6393 6394 static struct sched_domain * 6395 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 6396 { 6397 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6398 int level = tl->numa_level; 6399 int sd_weight = cpumask_weight( 6400 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 6401 6402 *sd = (struct sched_domain){ 6403 .min_interval = sd_weight, 6404 .max_interval = 2*sd_weight, 6405 .busy_factor = 32, 6406 .imbalance_pct = 125, 6407 .cache_nice_tries = 2, 6408 .busy_idx = 3, 6409 .idle_idx = 2, 6410 .newidle_idx = 0, 6411 .wake_idx = 0, 6412 .forkexec_idx = 0, 6413 6414 .flags = 1*SD_LOAD_BALANCE 6415 | 1*SD_BALANCE_NEWIDLE 6416 | 0*SD_BALANCE_EXEC 6417 | 0*SD_BALANCE_FORK 6418 | 0*SD_BALANCE_WAKE 6419 | 0*SD_WAKE_AFFINE 6420 | 0*SD_PREFER_LOCAL 6421 | 0*SD_SHARE_CPUPOWER 6422 | 0*SD_SHARE_PKG_RESOURCES 6423 | 1*SD_SERIALIZE 6424 | 0*SD_PREFER_SIBLING 6425 | sd_local_flags(level) 6426 , 6427 .last_balance = jiffies, 6428 .balance_interval = sd_weight, 6429 }; 6430 SD_INIT_NAME(sd, NUMA); 6431 sd->private = &tl->data; 6432 6433 /* 6434 * Ugly hack to pass state to sd_numa_mask()... 6435 */ 6436 sched_domains_curr_level = tl->numa_level; 6437 6438 return sd; 6439 } 6440 6441 static const struct cpumask *sd_numa_mask(int cpu) 6442 { 6443 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6444 } 6445 6446 static void sched_numa_warn(const char *str) 6447 { 6448 static int done = false; 6449 int i,j; 6450 6451 if (done) 6452 return; 6453 6454 done = true; 6455 6456 printk(KERN_WARNING "ERROR: %s\n\n", str); 6457 6458 for (i = 0; i < nr_node_ids; i++) { 6459 printk(KERN_WARNING " "); 6460 for (j = 0; j < nr_node_ids; j++) 6461 printk(KERN_CONT "%02d ", node_distance(i,j)); 6462 printk(KERN_CONT "\n"); 6463 } 6464 printk(KERN_WARNING "\n"); 6465 } 6466 6467 static bool find_numa_distance(int distance) 6468 { 6469 int i; 6470 6471 if (distance == node_distance(0, 0)) 6472 return true; 6473 6474 for (i = 0; i < sched_domains_numa_levels; i++) { 6475 if (sched_domains_numa_distance[i] == distance) 6476 return true; 6477 } 6478 6479 return false; 6480 } 6481 6482 static void sched_init_numa(void) 6483 { 6484 int next_distance, curr_distance = node_distance(0, 0); 6485 struct sched_domain_topology_level *tl; 6486 int level = 0; 6487 int i, j, k; 6488 6489 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6490 if (!sched_domains_numa_distance) 6491 return; 6492 6493 /* 6494 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6495 * unique distances in the node_distance() table. 6496 * 6497 * Assumes node_distance(0,j) includes all distances in 6498 * node_distance(i,j) in order to avoid cubic time. 6499 */ 6500 next_distance = curr_distance; 6501 for (i = 0; i < nr_node_ids; i++) { 6502 for (j = 0; j < nr_node_ids; j++) { 6503 for (k = 0; k < nr_node_ids; k++) { 6504 int distance = node_distance(i, k); 6505 6506 if (distance > curr_distance && 6507 (distance < next_distance || 6508 next_distance == curr_distance)) 6509 next_distance = distance; 6510 6511 /* 6512 * While not a strong assumption it would be nice to know 6513 * about cases where if node A is connected to B, B is not 6514 * equally connected to A. 6515 */ 6516 if (sched_debug() && node_distance(k, i) != distance) 6517 sched_numa_warn("Node-distance not symmetric"); 6518 6519 if (sched_debug() && i && !find_numa_distance(distance)) 6520 sched_numa_warn("Node-0 not representative"); 6521 } 6522 if (next_distance != curr_distance) { 6523 sched_domains_numa_distance[level++] = next_distance; 6524 sched_domains_numa_levels = level; 6525 curr_distance = next_distance; 6526 } else break; 6527 } 6528 6529 /* 6530 * In case of sched_debug() we verify the above assumption. 6531 */ 6532 if (!sched_debug()) 6533 break; 6534 } 6535 /* 6536 * 'level' contains the number of unique distances, excluding the 6537 * identity distance node_distance(i,i). 6538 * 6539 * The sched_domains_nume_distance[] array includes the actual distance 6540 * numbers. 6541 */ 6542 6543 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6544 if (!sched_domains_numa_masks) 6545 return; 6546 6547 /* 6548 * Now for each level, construct a mask per node which contains all 6549 * cpus of nodes that are that many hops away from us. 6550 */ 6551 for (i = 0; i < level; i++) { 6552 sched_domains_numa_masks[i] = 6553 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6554 if (!sched_domains_numa_masks[i]) 6555 return; 6556 6557 for (j = 0; j < nr_node_ids; j++) { 6558 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6559 if (!mask) 6560 return; 6561 6562 sched_domains_numa_masks[i][j] = mask; 6563 6564 for (k = 0; k < nr_node_ids; k++) { 6565 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6566 continue; 6567 6568 cpumask_or(mask, mask, cpumask_of_node(k)); 6569 } 6570 } 6571 } 6572 6573 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6574 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6575 if (!tl) 6576 return; 6577 6578 /* 6579 * Copy the default topology bits.. 6580 */ 6581 for (i = 0; default_topology[i].init; i++) 6582 tl[i] = default_topology[i]; 6583 6584 /* 6585 * .. and append 'j' levels of NUMA goodness. 6586 */ 6587 for (j = 0; j < level; i++, j++) { 6588 tl[i] = (struct sched_domain_topology_level){ 6589 .init = sd_numa_init, 6590 .mask = sd_numa_mask, 6591 .flags = SDTL_OVERLAP, 6592 .numa_level = j, 6593 }; 6594 } 6595 6596 sched_domain_topology = tl; 6597 } 6598 #else 6599 static inline void sched_init_numa(void) 6600 { 6601 } 6602 #endif /* CONFIG_NUMA */ 6603 6604 static int __sdt_alloc(const struct cpumask *cpu_map) 6605 { 6606 struct sched_domain_topology_level *tl; 6607 int j; 6608 6609 for (tl = sched_domain_topology; tl->init; tl++) { 6610 struct sd_data *sdd = &tl->data; 6611 6612 sdd->sd = alloc_percpu(struct sched_domain *); 6613 if (!sdd->sd) 6614 return -ENOMEM; 6615 6616 sdd->sg = alloc_percpu(struct sched_group *); 6617 if (!sdd->sg) 6618 return -ENOMEM; 6619 6620 sdd->sgp = alloc_percpu(struct sched_group_power *); 6621 if (!sdd->sgp) 6622 return -ENOMEM; 6623 6624 for_each_cpu(j, cpu_map) { 6625 struct sched_domain *sd; 6626 struct sched_group *sg; 6627 struct sched_group_power *sgp; 6628 6629 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6630 GFP_KERNEL, cpu_to_node(j)); 6631 if (!sd) 6632 return -ENOMEM; 6633 6634 *per_cpu_ptr(sdd->sd, j) = sd; 6635 6636 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6637 GFP_KERNEL, cpu_to_node(j)); 6638 if (!sg) 6639 return -ENOMEM; 6640 6641 sg->next = sg; 6642 6643 *per_cpu_ptr(sdd->sg, j) = sg; 6644 6645 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6646 GFP_KERNEL, cpu_to_node(j)); 6647 if (!sgp) 6648 return -ENOMEM; 6649 6650 *per_cpu_ptr(sdd->sgp, j) = sgp; 6651 } 6652 } 6653 6654 return 0; 6655 } 6656 6657 static void __sdt_free(const struct cpumask *cpu_map) 6658 { 6659 struct sched_domain_topology_level *tl; 6660 int j; 6661 6662 for (tl = sched_domain_topology; tl->init; tl++) { 6663 struct sd_data *sdd = &tl->data; 6664 6665 for_each_cpu(j, cpu_map) { 6666 struct sched_domain *sd; 6667 6668 if (sdd->sd) { 6669 sd = *per_cpu_ptr(sdd->sd, j); 6670 if (sd && (sd->flags & SD_OVERLAP)) 6671 free_sched_groups(sd->groups, 0); 6672 kfree(*per_cpu_ptr(sdd->sd, j)); 6673 } 6674 6675 if (sdd->sg) 6676 kfree(*per_cpu_ptr(sdd->sg, j)); 6677 if (sdd->sgp) 6678 kfree(*per_cpu_ptr(sdd->sgp, j)); 6679 } 6680 free_percpu(sdd->sd); 6681 sdd->sd = NULL; 6682 free_percpu(sdd->sg); 6683 sdd->sg = NULL; 6684 free_percpu(sdd->sgp); 6685 sdd->sgp = NULL; 6686 } 6687 } 6688 6689 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6690 struct s_data *d, const struct cpumask *cpu_map, 6691 struct sched_domain_attr *attr, struct sched_domain *child, 6692 int cpu) 6693 { 6694 struct sched_domain *sd = tl->init(tl, cpu); 6695 if (!sd) 6696 return child; 6697 6698 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6699 if (child) { 6700 sd->level = child->level + 1; 6701 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6702 child->parent = sd; 6703 } 6704 sd->child = child; 6705 set_domain_attribute(sd, attr); 6706 6707 return sd; 6708 } 6709 6710 /* 6711 * Build sched domains for a given set of cpus and attach the sched domains 6712 * to the individual cpus 6713 */ 6714 static int build_sched_domains(const struct cpumask *cpu_map, 6715 struct sched_domain_attr *attr) 6716 { 6717 enum s_alloc alloc_state = sa_none; 6718 struct sched_domain *sd; 6719 struct s_data d; 6720 int i, ret = -ENOMEM; 6721 6722 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6723 if (alloc_state != sa_rootdomain) 6724 goto error; 6725 6726 /* Set up domains for cpus specified by the cpu_map. */ 6727 for_each_cpu(i, cpu_map) { 6728 struct sched_domain_topology_level *tl; 6729 6730 sd = NULL; 6731 for (tl = sched_domain_topology; tl->init; tl++) { 6732 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6733 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6734 sd->flags |= SD_OVERLAP; 6735 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6736 break; 6737 } 6738 6739 while (sd->child) 6740 sd = sd->child; 6741 6742 *per_cpu_ptr(d.sd, i) = sd; 6743 } 6744 6745 /* Build the groups for the domains */ 6746 for_each_cpu(i, cpu_map) { 6747 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6748 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6749 if (sd->flags & SD_OVERLAP) { 6750 if (build_overlap_sched_groups(sd, i)) 6751 goto error; 6752 } else { 6753 if (build_sched_groups(sd, i)) 6754 goto error; 6755 } 6756 } 6757 } 6758 6759 /* Calculate CPU power for physical packages and nodes */ 6760 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6761 if (!cpumask_test_cpu(i, cpu_map)) 6762 continue; 6763 6764 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6765 claim_allocations(i, sd); 6766 init_sched_groups_power(i, sd); 6767 } 6768 } 6769 6770 /* Attach the domains */ 6771 rcu_read_lock(); 6772 for_each_cpu(i, cpu_map) { 6773 sd = *per_cpu_ptr(d.sd, i); 6774 cpu_attach_domain(sd, d.rd, i); 6775 } 6776 rcu_read_unlock(); 6777 6778 ret = 0; 6779 error: 6780 __free_domain_allocs(&d, alloc_state, cpu_map); 6781 return ret; 6782 } 6783 6784 static cpumask_var_t *doms_cur; /* current sched domains */ 6785 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6786 static struct sched_domain_attr *dattr_cur; 6787 /* attribues of custom domains in 'doms_cur' */ 6788 6789 /* 6790 * Special case: If a kmalloc of a doms_cur partition (array of 6791 * cpumask) fails, then fallback to a single sched domain, 6792 * as determined by the single cpumask fallback_doms. 6793 */ 6794 static cpumask_var_t fallback_doms; 6795 6796 /* 6797 * arch_update_cpu_topology lets virtualized architectures update the 6798 * cpu core maps. It is supposed to return 1 if the topology changed 6799 * or 0 if it stayed the same. 6800 */ 6801 int __attribute__((weak)) arch_update_cpu_topology(void) 6802 { 6803 return 0; 6804 } 6805 6806 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6807 { 6808 int i; 6809 cpumask_var_t *doms; 6810 6811 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6812 if (!doms) 6813 return NULL; 6814 for (i = 0; i < ndoms; i++) { 6815 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6816 free_sched_domains(doms, i); 6817 return NULL; 6818 } 6819 } 6820 return doms; 6821 } 6822 6823 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6824 { 6825 unsigned int i; 6826 for (i = 0; i < ndoms; i++) 6827 free_cpumask_var(doms[i]); 6828 kfree(doms); 6829 } 6830 6831 /* 6832 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6833 * For now this just excludes isolated cpus, but could be used to 6834 * exclude other special cases in the future. 6835 */ 6836 static int init_sched_domains(const struct cpumask *cpu_map) 6837 { 6838 int err; 6839 6840 arch_update_cpu_topology(); 6841 ndoms_cur = 1; 6842 doms_cur = alloc_sched_domains(ndoms_cur); 6843 if (!doms_cur) 6844 doms_cur = &fallback_doms; 6845 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6846 err = build_sched_domains(doms_cur[0], NULL); 6847 register_sched_domain_sysctl(); 6848 6849 return err; 6850 } 6851 6852 /* 6853 * Detach sched domains from a group of cpus specified in cpu_map 6854 * These cpus will now be attached to the NULL domain 6855 */ 6856 static void detach_destroy_domains(const struct cpumask *cpu_map) 6857 { 6858 int i; 6859 6860 rcu_read_lock(); 6861 for_each_cpu(i, cpu_map) 6862 cpu_attach_domain(NULL, &def_root_domain, i); 6863 rcu_read_unlock(); 6864 } 6865 6866 /* handle null as "default" */ 6867 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6868 struct sched_domain_attr *new, int idx_new) 6869 { 6870 struct sched_domain_attr tmp; 6871 6872 /* fast path */ 6873 if (!new && !cur) 6874 return 1; 6875 6876 tmp = SD_ATTR_INIT; 6877 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6878 new ? (new + idx_new) : &tmp, 6879 sizeof(struct sched_domain_attr)); 6880 } 6881 6882 /* 6883 * Partition sched domains as specified by the 'ndoms_new' 6884 * cpumasks in the array doms_new[] of cpumasks. This compares 6885 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6886 * It destroys each deleted domain and builds each new domain. 6887 * 6888 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6889 * The masks don't intersect (don't overlap.) We should setup one 6890 * sched domain for each mask. CPUs not in any of the cpumasks will 6891 * not be load balanced. If the same cpumask appears both in the 6892 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6893 * it as it is. 6894 * 6895 * The passed in 'doms_new' should be allocated using 6896 * alloc_sched_domains. This routine takes ownership of it and will 6897 * free_sched_domains it when done with it. If the caller failed the 6898 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6899 * and partition_sched_domains() will fallback to the single partition 6900 * 'fallback_doms', it also forces the domains to be rebuilt. 6901 * 6902 * If doms_new == NULL it will be replaced with cpu_online_mask. 6903 * ndoms_new == 0 is a special case for destroying existing domains, 6904 * and it will not create the default domain. 6905 * 6906 * Call with hotplug lock held 6907 */ 6908 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6909 struct sched_domain_attr *dattr_new) 6910 { 6911 int i, j, n; 6912 int new_topology; 6913 6914 mutex_lock(&sched_domains_mutex); 6915 6916 /* always unregister in case we don't destroy any domains */ 6917 unregister_sched_domain_sysctl(); 6918 6919 /* Let architecture update cpu core mappings. */ 6920 new_topology = arch_update_cpu_topology(); 6921 6922 n = doms_new ? ndoms_new : 0; 6923 6924 /* Destroy deleted domains */ 6925 for (i = 0; i < ndoms_cur; i++) { 6926 for (j = 0; j < n && !new_topology; j++) { 6927 if (cpumask_equal(doms_cur[i], doms_new[j]) 6928 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6929 goto match1; 6930 } 6931 /* no match - a current sched domain not in new doms_new[] */ 6932 detach_destroy_domains(doms_cur[i]); 6933 match1: 6934 ; 6935 } 6936 6937 if (doms_new == NULL) { 6938 ndoms_cur = 0; 6939 doms_new = &fallback_doms; 6940 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6941 WARN_ON_ONCE(dattr_new); 6942 } 6943 6944 /* Build new domains */ 6945 for (i = 0; i < ndoms_new; i++) { 6946 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6947 if (cpumask_equal(doms_new[i], doms_cur[j]) 6948 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6949 goto match2; 6950 } 6951 /* no match - add a new doms_new */ 6952 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6953 match2: 6954 ; 6955 } 6956 6957 /* Remember the new sched domains */ 6958 if (doms_cur != &fallback_doms) 6959 free_sched_domains(doms_cur, ndoms_cur); 6960 kfree(dattr_cur); /* kfree(NULL) is safe */ 6961 doms_cur = doms_new; 6962 dattr_cur = dattr_new; 6963 ndoms_cur = ndoms_new; 6964 6965 register_sched_domain_sysctl(); 6966 6967 mutex_unlock(&sched_domains_mutex); 6968 } 6969 6970 /* 6971 * Update cpusets according to cpu_active mask. If cpusets are 6972 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6973 * around partition_sched_domains(). 6974 */ 6975 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6976 void *hcpu) 6977 { 6978 switch (action & ~CPU_TASKS_FROZEN) { 6979 case CPU_ONLINE: 6980 case CPU_DOWN_FAILED: 6981 cpuset_update_active_cpus(); 6982 return NOTIFY_OK; 6983 default: 6984 return NOTIFY_DONE; 6985 } 6986 } 6987 6988 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6989 void *hcpu) 6990 { 6991 switch (action & ~CPU_TASKS_FROZEN) { 6992 case CPU_DOWN_PREPARE: 6993 cpuset_update_active_cpus(); 6994 return NOTIFY_OK; 6995 default: 6996 return NOTIFY_DONE; 6997 } 6998 } 6999 7000 void __init sched_init_smp(void) 7001 { 7002 cpumask_var_t non_isolated_cpus; 7003 7004 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7005 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7006 7007 sched_init_numa(); 7008 7009 get_online_cpus(); 7010 mutex_lock(&sched_domains_mutex); 7011 init_sched_domains(cpu_active_mask); 7012 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7013 if (cpumask_empty(non_isolated_cpus)) 7014 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7015 mutex_unlock(&sched_domains_mutex); 7016 put_online_cpus(); 7017 7018 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7019 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7020 7021 /* RT runtime code needs to handle some hotplug events */ 7022 hotcpu_notifier(update_runtime, 0); 7023 7024 init_hrtick(); 7025 7026 /* Move init over to a non-isolated CPU */ 7027 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7028 BUG(); 7029 sched_init_granularity(); 7030 free_cpumask_var(non_isolated_cpus); 7031 7032 init_sched_rt_class(); 7033 } 7034 #else 7035 void __init sched_init_smp(void) 7036 { 7037 sched_init_granularity(); 7038 } 7039 #endif /* CONFIG_SMP */ 7040 7041 const_debug unsigned int sysctl_timer_migration = 1; 7042 7043 int in_sched_functions(unsigned long addr) 7044 { 7045 return in_lock_functions(addr) || 7046 (addr >= (unsigned long)__sched_text_start 7047 && addr < (unsigned long)__sched_text_end); 7048 } 7049 7050 #ifdef CONFIG_CGROUP_SCHED 7051 struct task_group root_task_group; 7052 #endif 7053 7054 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 7055 7056 void __init sched_init(void) 7057 { 7058 int i, j; 7059 unsigned long alloc_size = 0, ptr; 7060 7061 #ifdef CONFIG_FAIR_GROUP_SCHED 7062 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7063 #endif 7064 #ifdef CONFIG_RT_GROUP_SCHED 7065 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7066 #endif 7067 #ifdef CONFIG_CPUMASK_OFFSTACK 7068 alloc_size += num_possible_cpus() * cpumask_size(); 7069 #endif 7070 if (alloc_size) { 7071 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7072 7073 #ifdef CONFIG_FAIR_GROUP_SCHED 7074 root_task_group.se = (struct sched_entity **)ptr; 7075 ptr += nr_cpu_ids * sizeof(void **); 7076 7077 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7078 ptr += nr_cpu_ids * sizeof(void **); 7079 7080 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7081 #ifdef CONFIG_RT_GROUP_SCHED 7082 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7083 ptr += nr_cpu_ids * sizeof(void **); 7084 7085 root_task_group.rt_rq = (struct rt_rq **)ptr; 7086 ptr += nr_cpu_ids * sizeof(void **); 7087 7088 #endif /* CONFIG_RT_GROUP_SCHED */ 7089 #ifdef CONFIG_CPUMASK_OFFSTACK 7090 for_each_possible_cpu(i) { 7091 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 7092 ptr += cpumask_size(); 7093 } 7094 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7095 } 7096 7097 #ifdef CONFIG_SMP 7098 init_defrootdomain(); 7099 #endif 7100 7101 init_rt_bandwidth(&def_rt_bandwidth, 7102 global_rt_period(), global_rt_runtime()); 7103 7104 #ifdef CONFIG_RT_GROUP_SCHED 7105 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7106 global_rt_period(), global_rt_runtime()); 7107 #endif /* CONFIG_RT_GROUP_SCHED */ 7108 7109 #ifdef CONFIG_CGROUP_SCHED 7110 list_add(&root_task_group.list, &task_groups); 7111 INIT_LIST_HEAD(&root_task_group.children); 7112 INIT_LIST_HEAD(&root_task_group.siblings); 7113 autogroup_init(&init_task); 7114 7115 #endif /* CONFIG_CGROUP_SCHED */ 7116 7117 #ifdef CONFIG_CGROUP_CPUACCT 7118 root_cpuacct.cpustat = &kernel_cpustat; 7119 root_cpuacct.cpuusage = alloc_percpu(u64); 7120 /* Too early, not expected to fail */ 7121 BUG_ON(!root_cpuacct.cpuusage); 7122 #endif 7123 for_each_possible_cpu(i) { 7124 struct rq *rq; 7125 7126 rq = cpu_rq(i); 7127 raw_spin_lock_init(&rq->lock); 7128 rq->nr_running = 0; 7129 rq->calc_load_active = 0; 7130 rq->calc_load_update = jiffies + LOAD_FREQ; 7131 init_cfs_rq(&rq->cfs); 7132 init_rt_rq(&rq->rt, rq); 7133 #ifdef CONFIG_FAIR_GROUP_SCHED 7134 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7135 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7136 /* 7137 * How much cpu bandwidth does root_task_group get? 7138 * 7139 * In case of task-groups formed thr' the cgroup filesystem, it 7140 * gets 100% of the cpu resources in the system. This overall 7141 * system cpu resource is divided among the tasks of 7142 * root_task_group and its child task-groups in a fair manner, 7143 * based on each entity's (task or task-group's) weight 7144 * (se->load.weight). 7145 * 7146 * In other words, if root_task_group has 10 tasks of weight 7147 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7148 * then A0's share of the cpu resource is: 7149 * 7150 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7151 * 7152 * We achieve this by letting root_task_group's tasks sit 7153 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7154 */ 7155 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7156 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7157 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7158 7159 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7160 #ifdef CONFIG_RT_GROUP_SCHED 7161 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 7162 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7163 #endif 7164 7165 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7166 rq->cpu_load[j] = 0; 7167 7168 rq->last_load_update_tick = jiffies; 7169 7170 #ifdef CONFIG_SMP 7171 rq->sd = NULL; 7172 rq->rd = NULL; 7173 rq->cpu_power = SCHED_POWER_SCALE; 7174 rq->post_schedule = 0; 7175 rq->active_balance = 0; 7176 rq->next_balance = jiffies; 7177 rq->push_cpu = 0; 7178 rq->cpu = i; 7179 rq->online = 0; 7180 rq->idle_stamp = 0; 7181 rq->avg_idle = 2*sysctl_sched_migration_cost; 7182 7183 INIT_LIST_HEAD(&rq->cfs_tasks); 7184 7185 rq_attach_root(rq, &def_root_domain); 7186 #ifdef CONFIG_NO_HZ 7187 rq->nohz_flags = 0; 7188 #endif 7189 #endif 7190 init_rq_hrtick(rq); 7191 atomic_set(&rq->nr_iowait, 0); 7192 } 7193 7194 set_load_weight(&init_task); 7195 7196 #ifdef CONFIG_PREEMPT_NOTIFIERS 7197 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7198 #endif 7199 7200 #ifdef CONFIG_RT_MUTEXES 7201 plist_head_init(&init_task.pi_waiters); 7202 #endif 7203 7204 /* 7205 * The boot idle thread does lazy MMU switching as well: 7206 */ 7207 atomic_inc(&init_mm.mm_count); 7208 enter_lazy_tlb(&init_mm, current); 7209 7210 /* 7211 * Make us the idle thread. Technically, schedule() should not be 7212 * called from this thread, however somewhere below it might be, 7213 * but because we are the idle thread, we just pick up running again 7214 * when this runqueue becomes "idle". 7215 */ 7216 init_idle(current, smp_processor_id()); 7217 7218 calc_load_update = jiffies + LOAD_FREQ; 7219 7220 /* 7221 * During early bootup we pretend to be a normal task: 7222 */ 7223 current->sched_class = &fair_sched_class; 7224 7225 #ifdef CONFIG_SMP 7226 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7227 /* May be allocated at isolcpus cmdline parse time */ 7228 if (cpu_isolated_map == NULL) 7229 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7230 idle_thread_set_boot_cpu(); 7231 #endif 7232 init_sched_fair_class(); 7233 7234 scheduler_running = 1; 7235 } 7236 7237 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7238 static inline int preempt_count_equals(int preempt_offset) 7239 { 7240 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7241 7242 return (nested == preempt_offset); 7243 } 7244 7245 void __might_sleep(const char *file, int line, int preempt_offset) 7246 { 7247 static unsigned long prev_jiffy; /* ratelimiting */ 7248 7249 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7250 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7251 system_state != SYSTEM_RUNNING || oops_in_progress) 7252 return; 7253 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7254 return; 7255 prev_jiffy = jiffies; 7256 7257 printk(KERN_ERR 7258 "BUG: sleeping function called from invalid context at %s:%d\n", 7259 file, line); 7260 printk(KERN_ERR 7261 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7262 in_atomic(), irqs_disabled(), 7263 current->pid, current->comm); 7264 7265 debug_show_held_locks(current); 7266 if (irqs_disabled()) 7267 print_irqtrace_events(current); 7268 dump_stack(); 7269 } 7270 EXPORT_SYMBOL(__might_sleep); 7271 #endif 7272 7273 #ifdef CONFIG_MAGIC_SYSRQ 7274 static void normalize_task(struct rq *rq, struct task_struct *p) 7275 { 7276 const struct sched_class *prev_class = p->sched_class; 7277 int old_prio = p->prio; 7278 int on_rq; 7279 7280 on_rq = p->on_rq; 7281 if (on_rq) 7282 dequeue_task(rq, p, 0); 7283 __setscheduler(rq, p, SCHED_NORMAL, 0); 7284 if (on_rq) { 7285 enqueue_task(rq, p, 0); 7286 resched_task(rq->curr); 7287 } 7288 7289 check_class_changed(rq, p, prev_class, old_prio); 7290 } 7291 7292 void normalize_rt_tasks(void) 7293 { 7294 struct task_struct *g, *p; 7295 unsigned long flags; 7296 struct rq *rq; 7297 7298 read_lock_irqsave(&tasklist_lock, flags); 7299 do_each_thread(g, p) { 7300 /* 7301 * Only normalize user tasks: 7302 */ 7303 if (!p->mm) 7304 continue; 7305 7306 p->se.exec_start = 0; 7307 #ifdef CONFIG_SCHEDSTATS 7308 p->se.statistics.wait_start = 0; 7309 p->se.statistics.sleep_start = 0; 7310 p->se.statistics.block_start = 0; 7311 #endif 7312 7313 if (!rt_task(p)) { 7314 /* 7315 * Renice negative nice level userspace 7316 * tasks back to 0: 7317 */ 7318 if (TASK_NICE(p) < 0 && p->mm) 7319 set_user_nice(p, 0); 7320 continue; 7321 } 7322 7323 raw_spin_lock(&p->pi_lock); 7324 rq = __task_rq_lock(p); 7325 7326 normalize_task(rq, p); 7327 7328 __task_rq_unlock(rq); 7329 raw_spin_unlock(&p->pi_lock); 7330 } while_each_thread(g, p); 7331 7332 read_unlock_irqrestore(&tasklist_lock, flags); 7333 } 7334 7335 #endif /* CONFIG_MAGIC_SYSRQ */ 7336 7337 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7338 /* 7339 * These functions are only useful for the IA64 MCA handling, or kdb. 7340 * 7341 * They can only be called when the whole system has been 7342 * stopped - every CPU needs to be quiescent, and no scheduling 7343 * activity can take place. Using them for anything else would 7344 * be a serious bug, and as a result, they aren't even visible 7345 * under any other configuration. 7346 */ 7347 7348 /** 7349 * curr_task - return the current task for a given cpu. 7350 * @cpu: the processor in question. 7351 * 7352 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7353 */ 7354 struct task_struct *curr_task(int cpu) 7355 { 7356 return cpu_curr(cpu); 7357 } 7358 7359 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7360 7361 #ifdef CONFIG_IA64 7362 /** 7363 * set_curr_task - set the current task for a given cpu. 7364 * @cpu: the processor in question. 7365 * @p: the task pointer to set. 7366 * 7367 * Description: This function must only be used when non-maskable interrupts 7368 * are serviced on a separate stack. It allows the architecture to switch the 7369 * notion of the current task on a cpu in a non-blocking manner. This function 7370 * must be called with all CPU's synchronized, and interrupts disabled, the 7371 * and caller must save the original value of the current task (see 7372 * curr_task() above) and restore that value before reenabling interrupts and 7373 * re-starting the system. 7374 * 7375 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7376 */ 7377 void set_curr_task(int cpu, struct task_struct *p) 7378 { 7379 cpu_curr(cpu) = p; 7380 } 7381 7382 #endif 7383 7384 #ifdef CONFIG_CGROUP_SCHED 7385 /* task_group_lock serializes the addition/removal of task groups */ 7386 static DEFINE_SPINLOCK(task_group_lock); 7387 7388 static void free_sched_group(struct task_group *tg) 7389 { 7390 free_fair_sched_group(tg); 7391 free_rt_sched_group(tg); 7392 autogroup_free(tg); 7393 kfree(tg); 7394 } 7395 7396 /* allocate runqueue etc for a new task group */ 7397 struct task_group *sched_create_group(struct task_group *parent) 7398 { 7399 struct task_group *tg; 7400 unsigned long flags; 7401 7402 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7403 if (!tg) 7404 return ERR_PTR(-ENOMEM); 7405 7406 if (!alloc_fair_sched_group(tg, parent)) 7407 goto err; 7408 7409 if (!alloc_rt_sched_group(tg, parent)) 7410 goto err; 7411 7412 spin_lock_irqsave(&task_group_lock, flags); 7413 list_add_rcu(&tg->list, &task_groups); 7414 7415 WARN_ON(!parent); /* root should already exist */ 7416 7417 tg->parent = parent; 7418 INIT_LIST_HEAD(&tg->children); 7419 list_add_rcu(&tg->siblings, &parent->children); 7420 spin_unlock_irqrestore(&task_group_lock, flags); 7421 7422 return tg; 7423 7424 err: 7425 free_sched_group(tg); 7426 return ERR_PTR(-ENOMEM); 7427 } 7428 7429 /* rcu callback to free various structures associated with a task group */ 7430 static void free_sched_group_rcu(struct rcu_head *rhp) 7431 { 7432 /* now it should be safe to free those cfs_rqs */ 7433 free_sched_group(container_of(rhp, struct task_group, rcu)); 7434 } 7435 7436 /* Destroy runqueue etc associated with a task group */ 7437 void sched_destroy_group(struct task_group *tg) 7438 { 7439 unsigned long flags; 7440 int i; 7441 7442 /* end participation in shares distribution */ 7443 for_each_possible_cpu(i) 7444 unregister_fair_sched_group(tg, i); 7445 7446 spin_lock_irqsave(&task_group_lock, flags); 7447 list_del_rcu(&tg->list); 7448 list_del_rcu(&tg->siblings); 7449 spin_unlock_irqrestore(&task_group_lock, flags); 7450 7451 /* wait for possible concurrent references to cfs_rqs complete */ 7452 call_rcu(&tg->rcu, free_sched_group_rcu); 7453 } 7454 7455 /* change task's runqueue when it moves between groups. 7456 * The caller of this function should have put the task in its new group 7457 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7458 * reflect its new group. 7459 */ 7460 void sched_move_task(struct task_struct *tsk) 7461 { 7462 int on_rq, running; 7463 unsigned long flags; 7464 struct rq *rq; 7465 7466 rq = task_rq_lock(tsk, &flags); 7467 7468 running = task_current(rq, tsk); 7469 on_rq = tsk->on_rq; 7470 7471 if (on_rq) 7472 dequeue_task(rq, tsk, 0); 7473 if (unlikely(running)) 7474 tsk->sched_class->put_prev_task(rq, tsk); 7475 7476 #ifdef CONFIG_FAIR_GROUP_SCHED 7477 if (tsk->sched_class->task_move_group) 7478 tsk->sched_class->task_move_group(tsk, on_rq); 7479 else 7480 #endif 7481 set_task_rq(tsk, task_cpu(tsk)); 7482 7483 if (unlikely(running)) 7484 tsk->sched_class->set_curr_task(rq); 7485 if (on_rq) 7486 enqueue_task(rq, tsk, 0); 7487 7488 task_rq_unlock(rq, tsk, &flags); 7489 } 7490 #endif /* CONFIG_CGROUP_SCHED */ 7491 7492 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7493 static unsigned long to_ratio(u64 period, u64 runtime) 7494 { 7495 if (runtime == RUNTIME_INF) 7496 return 1ULL << 20; 7497 7498 return div64_u64(runtime << 20, period); 7499 } 7500 #endif 7501 7502 #ifdef CONFIG_RT_GROUP_SCHED 7503 /* 7504 * Ensure that the real time constraints are schedulable. 7505 */ 7506 static DEFINE_MUTEX(rt_constraints_mutex); 7507 7508 /* Must be called with tasklist_lock held */ 7509 static inline int tg_has_rt_tasks(struct task_group *tg) 7510 { 7511 struct task_struct *g, *p; 7512 7513 do_each_thread(g, p) { 7514 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7515 return 1; 7516 } while_each_thread(g, p); 7517 7518 return 0; 7519 } 7520 7521 struct rt_schedulable_data { 7522 struct task_group *tg; 7523 u64 rt_period; 7524 u64 rt_runtime; 7525 }; 7526 7527 static int tg_rt_schedulable(struct task_group *tg, void *data) 7528 { 7529 struct rt_schedulable_data *d = data; 7530 struct task_group *child; 7531 unsigned long total, sum = 0; 7532 u64 period, runtime; 7533 7534 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7535 runtime = tg->rt_bandwidth.rt_runtime; 7536 7537 if (tg == d->tg) { 7538 period = d->rt_period; 7539 runtime = d->rt_runtime; 7540 } 7541 7542 /* 7543 * Cannot have more runtime than the period. 7544 */ 7545 if (runtime > period && runtime != RUNTIME_INF) 7546 return -EINVAL; 7547 7548 /* 7549 * Ensure we don't starve existing RT tasks. 7550 */ 7551 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7552 return -EBUSY; 7553 7554 total = to_ratio(period, runtime); 7555 7556 /* 7557 * Nobody can have more than the global setting allows. 7558 */ 7559 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7560 return -EINVAL; 7561 7562 /* 7563 * The sum of our children's runtime should not exceed our own. 7564 */ 7565 list_for_each_entry_rcu(child, &tg->children, siblings) { 7566 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7567 runtime = child->rt_bandwidth.rt_runtime; 7568 7569 if (child == d->tg) { 7570 period = d->rt_period; 7571 runtime = d->rt_runtime; 7572 } 7573 7574 sum += to_ratio(period, runtime); 7575 } 7576 7577 if (sum > total) 7578 return -EINVAL; 7579 7580 return 0; 7581 } 7582 7583 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7584 { 7585 int ret; 7586 7587 struct rt_schedulable_data data = { 7588 .tg = tg, 7589 .rt_period = period, 7590 .rt_runtime = runtime, 7591 }; 7592 7593 rcu_read_lock(); 7594 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7595 rcu_read_unlock(); 7596 7597 return ret; 7598 } 7599 7600 static int tg_set_rt_bandwidth(struct task_group *tg, 7601 u64 rt_period, u64 rt_runtime) 7602 { 7603 int i, err = 0; 7604 7605 mutex_lock(&rt_constraints_mutex); 7606 read_lock(&tasklist_lock); 7607 err = __rt_schedulable(tg, rt_period, rt_runtime); 7608 if (err) 7609 goto unlock; 7610 7611 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7612 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7613 tg->rt_bandwidth.rt_runtime = rt_runtime; 7614 7615 for_each_possible_cpu(i) { 7616 struct rt_rq *rt_rq = tg->rt_rq[i]; 7617 7618 raw_spin_lock(&rt_rq->rt_runtime_lock); 7619 rt_rq->rt_runtime = rt_runtime; 7620 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7621 } 7622 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7623 unlock: 7624 read_unlock(&tasklist_lock); 7625 mutex_unlock(&rt_constraints_mutex); 7626 7627 return err; 7628 } 7629 7630 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7631 { 7632 u64 rt_runtime, rt_period; 7633 7634 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7635 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7636 if (rt_runtime_us < 0) 7637 rt_runtime = RUNTIME_INF; 7638 7639 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7640 } 7641 7642 long sched_group_rt_runtime(struct task_group *tg) 7643 { 7644 u64 rt_runtime_us; 7645 7646 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7647 return -1; 7648 7649 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7650 do_div(rt_runtime_us, NSEC_PER_USEC); 7651 return rt_runtime_us; 7652 } 7653 7654 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7655 { 7656 u64 rt_runtime, rt_period; 7657 7658 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7659 rt_runtime = tg->rt_bandwidth.rt_runtime; 7660 7661 if (rt_period == 0) 7662 return -EINVAL; 7663 7664 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7665 } 7666 7667 long sched_group_rt_period(struct task_group *tg) 7668 { 7669 u64 rt_period_us; 7670 7671 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7672 do_div(rt_period_us, NSEC_PER_USEC); 7673 return rt_period_us; 7674 } 7675 7676 static int sched_rt_global_constraints(void) 7677 { 7678 u64 runtime, period; 7679 int ret = 0; 7680 7681 if (sysctl_sched_rt_period <= 0) 7682 return -EINVAL; 7683 7684 runtime = global_rt_runtime(); 7685 period = global_rt_period(); 7686 7687 /* 7688 * Sanity check on the sysctl variables. 7689 */ 7690 if (runtime > period && runtime != RUNTIME_INF) 7691 return -EINVAL; 7692 7693 mutex_lock(&rt_constraints_mutex); 7694 read_lock(&tasklist_lock); 7695 ret = __rt_schedulable(NULL, 0, 0); 7696 read_unlock(&tasklist_lock); 7697 mutex_unlock(&rt_constraints_mutex); 7698 7699 return ret; 7700 } 7701 7702 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7703 { 7704 /* Don't accept realtime tasks when there is no way for them to run */ 7705 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7706 return 0; 7707 7708 return 1; 7709 } 7710 7711 #else /* !CONFIG_RT_GROUP_SCHED */ 7712 static int sched_rt_global_constraints(void) 7713 { 7714 unsigned long flags; 7715 int i; 7716 7717 if (sysctl_sched_rt_period <= 0) 7718 return -EINVAL; 7719 7720 /* 7721 * There's always some RT tasks in the root group 7722 * -- migration, kstopmachine etc.. 7723 */ 7724 if (sysctl_sched_rt_runtime == 0) 7725 return -EBUSY; 7726 7727 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7728 for_each_possible_cpu(i) { 7729 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7730 7731 raw_spin_lock(&rt_rq->rt_runtime_lock); 7732 rt_rq->rt_runtime = global_rt_runtime(); 7733 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7734 } 7735 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7736 7737 return 0; 7738 } 7739 #endif /* CONFIG_RT_GROUP_SCHED */ 7740 7741 int sched_rt_handler(struct ctl_table *table, int write, 7742 void __user *buffer, size_t *lenp, 7743 loff_t *ppos) 7744 { 7745 int ret; 7746 int old_period, old_runtime; 7747 static DEFINE_MUTEX(mutex); 7748 7749 mutex_lock(&mutex); 7750 old_period = sysctl_sched_rt_period; 7751 old_runtime = sysctl_sched_rt_runtime; 7752 7753 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7754 7755 if (!ret && write) { 7756 ret = sched_rt_global_constraints(); 7757 if (ret) { 7758 sysctl_sched_rt_period = old_period; 7759 sysctl_sched_rt_runtime = old_runtime; 7760 } else { 7761 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7762 def_rt_bandwidth.rt_period = 7763 ns_to_ktime(global_rt_period()); 7764 } 7765 } 7766 mutex_unlock(&mutex); 7767 7768 return ret; 7769 } 7770 7771 #ifdef CONFIG_CGROUP_SCHED 7772 7773 /* return corresponding task_group object of a cgroup */ 7774 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7775 { 7776 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7777 struct task_group, css); 7778 } 7779 7780 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp) 7781 { 7782 struct task_group *tg, *parent; 7783 7784 if (!cgrp->parent) { 7785 /* This is early initialization for the top cgroup */ 7786 return &root_task_group.css; 7787 } 7788 7789 parent = cgroup_tg(cgrp->parent); 7790 tg = sched_create_group(parent); 7791 if (IS_ERR(tg)) 7792 return ERR_PTR(-ENOMEM); 7793 7794 return &tg->css; 7795 } 7796 7797 static void cpu_cgroup_destroy(struct cgroup *cgrp) 7798 { 7799 struct task_group *tg = cgroup_tg(cgrp); 7800 7801 sched_destroy_group(tg); 7802 } 7803 7804 static int cpu_cgroup_can_attach(struct cgroup *cgrp, 7805 struct cgroup_taskset *tset) 7806 { 7807 struct task_struct *task; 7808 7809 cgroup_taskset_for_each(task, cgrp, tset) { 7810 #ifdef CONFIG_RT_GROUP_SCHED 7811 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7812 return -EINVAL; 7813 #else 7814 /* We don't support RT-tasks being in separate groups */ 7815 if (task->sched_class != &fair_sched_class) 7816 return -EINVAL; 7817 #endif 7818 } 7819 return 0; 7820 } 7821 7822 static void cpu_cgroup_attach(struct cgroup *cgrp, 7823 struct cgroup_taskset *tset) 7824 { 7825 struct task_struct *task; 7826 7827 cgroup_taskset_for_each(task, cgrp, tset) 7828 sched_move_task(task); 7829 } 7830 7831 static void 7832 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7833 struct task_struct *task) 7834 { 7835 /* 7836 * cgroup_exit() is called in the copy_process() failure path. 7837 * Ignore this case since the task hasn't ran yet, this avoids 7838 * trying to poke a half freed task state from generic code. 7839 */ 7840 if (!(task->flags & PF_EXITING)) 7841 return; 7842 7843 sched_move_task(task); 7844 } 7845 7846 #ifdef CONFIG_FAIR_GROUP_SCHED 7847 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7848 u64 shareval) 7849 { 7850 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7851 } 7852 7853 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7854 { 7855 struct task_group *tg = cgroup_tg(cgrp); 7856 7857 return (u64) scale_load_down(tg->shares); 7858 } 7859 7860 #ifdef CONFIG_CFS_BANDWIDTH 7861 static DEFINE_MUTEX(cfs_constraints_mutex); 7862 7863 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7864 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7865 7866 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7867 7868 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7869 { 7870 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7871 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7872 7873 if (tg == &root_task_group) 7874 return -EINVAL; 7875 7876 /* 7877 * Ensure we have at some amount of bandwidth every period. This is 7878 * to prevent reaching a state of large arrears when throttled via 7879 * entity_tick() resulting in prolonged exit starvation. 7880 */ 7881 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7882 return -EINVAL; 7883 7884 /* 7885 * Likewise, bound things on the otherside by preventing insane quota 7886 * periods. This also allows us to normalize in computing quota 7887 * feasibility. 7888 */ 7889 if (period > max_cfs_quota_period) 7890 return -EINVAL; 7891 7892 mutex_lock(&cfs_constraints_mutex); 7893 ret = __cfs_schedulable(tg, period, quota); 7894 if (ret) 7895 goto out_unlock; 7896 7897 runtime_enabled = quota != RUNTIME_INF; 7898 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7899 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7900 raw_spin_lock_irq(&cfs_b->lock); 7901 cfs_b->period = ns_to_ktime(period); 7902 cfs_b->quota = quota; 7903 7904 __refill_cfs_bandwidth_runtime(cfs_b); 7905 /* restart the period timer (if active) to handle new period expiry */ 7906 if (runtime_enabled && cfs_b->timer_active) { 7907 /* force a reprogram */ 7908 cfs_b->timer_active = 0; 7909 __start_cfs_bandwidth(cfs_b); 7910 } 7911 raw_spin_unlock_irq(&cfs_b->lock); 7912 7913 for_each_possible_cpu(i) { 7914 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7915 struct rq *rq = cfs_rq->rq; 7916 7917 raw_spin_lock_irq(&rq->lock); 7918 cfs_rq->runtime_enabled = runtime_enabled; 7919 cfs_rq->runtime_remaining = 0; 7920 7921 if (cfs_rq->throttled) 7922 unthrottle_cfs_rq(cfs_rq); 7923 raw_spin_unlock_irq(&rq->lock); 7924 } 7925 out_unlock: 7926 mutex_unlock(&cfs_constraints_mutex); 7927 7928 return ret; 7929 } 7930 7931 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7932 { 7933 u64 quota, period; 7934 7935 period = ktime_to_ns(tg->cfs_bandwidth.period); 7936 if (cfs_quota_us < 0) 7937 quota = RUNTIME_INF; 7938 else 7939 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7940 7941 return tg_set_cfs_bandwidth(tg, period, quota); 7942 } 7943 7944 long tg_get_cfs_quota(struct task_group *tg) 7945 { 7946 u64 quota_us; 7947 7948 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7949 return -1; 7950 7951 quota_us = tg->cfs_bandwidth.quota; 7952 do_div(quota_us, NSEC_PER_USEC); 7953 7954 return quota_us; 7955 } 7956 7957 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7958 { 7959 u64 quota, period; 7960 7961 period = (u64)cfs_period_us * NSEC_PER_USEC; 7962 quota = tg->cfs_bandwidth.quota; 7963 7964 return tg_set_cfs_bandwidth(tg, period, quota); 7965 } 7966 7967 long tg_get_cfs_period(struct task_group *tg) 7968 { 7969 u64 cfs_period_us; 7970 7971 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7972 do_div(cfs_period_us, NSEC_PER_USEC); 7973 7974 return cfs_period_us; 7975 } 7976 7977 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7978 { 7979 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7980 } 7981 7982 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7983 s64 cfs_quota_us) 7984 { 7985 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7986 } 7987 7988 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7989 { 7990 return tg_get_cfs_period(cgroup_tg(cgrp)); 7991 } 7992 7993 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7994 u64 cfs_period_us) 7995 { 7996 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7997 } 7998 7999 struct cfs_schedulable_data { 8000 struct task_group *tg; 8001 u64 period, quota; 8002 }; 8003 8004 /* 8005 * normalize group quota/period to be quota/max_period 8006 * note: units are usecs 8007 */ 8008 static u64 normalize_cfs_quota(struct task_group *tg, 8009 struct cfs_schedulable_data *d) 8010 { 8011 u64 quota, period; 8012 8013 if (tg == d->tg) { 8014 period = d->period; 8015 quota = d->quota; 8016 } else { 8017 period = tg_get_cfs_period(tg); 8018 quota = tg_get_cfs_quota(tg); 8019 } 8020 8021 /* note: these should typically be equivalent */ 8022 if (quota == RUNTIME_INF || quota == -1) 8023 return RUNTIME_INF; 8024 8025 return to_ratio(period, quota); 8026 } 8027 8028 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8029 { 8030 struct cfs_schedulable_data *d = data; 8031 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8032 s64 quota = 0, parent_quota = -1; 8033 8034 if (!tg->parent) { 8035 quota = RUNTIME_INF; 8036 } else { 8037 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8038 8039 quota = normalize_cfs_quota(tg, d); 8040 parent_quota = parent_b->hierarchal_quota; 8041 8042 /* 8043 * ensure max(child_quota) <= parent_quota, inherit when no 8044 * limit is set 8045 */ 8046 if (quota == RUNTIME_INF) 8047 quota = parent_quota; 8048 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8049 return -EINVAL; 8050 } 8051 cfs_b->hierarchal_quota = quota; 8052 8053 return 0; 8054 } 8055 8056 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8057 { 8058 int ret; 8059 struct cfs_schedulable_data data = { 8060 .tg = tg, 8061 .period = period, 8062 .quota = quota, 8063 }; 8064 8065 if (quota != RUNTIME_INF) { 8066 do_div(data.period, NSEC_PER_USEC); 8067 do_div(data.quota, NSEC_PER_USEC); 8068 } 8069 8070 rcu_read_lock(); 8071 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8072 rcu_read_unlock(); 8073 8074 return ret; 8075 } 8076 8077 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 8078 struct cgroup_map_cb *cb) 8079 { 8080 struct task_group *tg = cgroup_tg(cgrp); 8081 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8082 8083 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 8084 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 8085 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 8086 8087 return 0; 8088 } 8089 #endif /* CONFIG_CFS_BANDWIDTH */ 8090 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8091 8092 #ifdef CONFIG_RT_GROUP_SCHED 8093 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 8094 s64 val) 8095 { 8096 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 8097 } 8098 8099 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 8100 { 8101 return sched_group_rt_runtime(cgroup_tg(cgrp)); 8102 } 8103 8104 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 8105 u64 rt_period_us) 8106 { 8107 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 8108 } 8109 8110 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 8111 { 8112 return sched_group_rt_period(cgroup_tg(cgrp)); 8113 } 8114 #endif /* CONFIG_RT_GROUP_SCHED */ 8115 8116 static struct cftype cpu_files[] = { 8117 #ifdef CONFIG_FAIR_GROUP_SCHED 8118 { 8119 .name = "shares", 8120 .read_u64 = cpu_shares_read_u64, 8121 .write_u64 = cpu_shares_write_u64, 8122 }, 8123 #endif 8124 #ifdef CONFIG_CFS_BANDWIDTH 8125 { 8126 .name = "cfs_quota_us", 8127 .read_s64 = cpu_cfs_quota_read_s64, 8128 .write_s64 = cpu_cfs_quota_write_s64, 8129 }, 8130 { 8131 .name = "cfs_period_us", 8132 .read_u64 = cpu_cfs_period_read_u64, 8133 .write_u64 = cpu_cfs_period_write_u64, 8134 }, 8135 { 8136 .name = "stat", 8137 .read_map = cpu_stats_show, 8138 }, 8139 #endif 8140 #ifdef CONFIG_RT_GROUP_SCHED 8141 { 8142 .name = "rt_runtime_us", 8143 .read_s64 = cpu_rt_runtime_read, 8144 .write_s64 = cpu_rt_runtime_write, 8145 }, 8146 { 8147 .name = "rt_period_us", 8148 .read_u64 = cpu_rt_period_read_uint, 8149 .write_u64 = cpu_rt_period_write_uint, 8150 }, 8151 #endif 8152 { } /* terminate */ 8153 }; 8154 8155 struct cgroup_subsys cpu_cgroup_subsys = { 8156 .name = "cpu", 8157 .create = cpu_cgroup_create, 8158 .destroy = cpu_cgroup_destroy, 8159 .can_attach = cpu_cgroup_can_attach, 8160 .attach = cpu_cgroup_attach, 8161 .exit = cpu_cgroup_exit, 8162 .subsys_id = cpu_cgroup_subsys_id, 8163 .base_cftypes = cpu_files, 8164 .early_init = 1, 8165 }; 8166 8167 #endif /* CONFIG_CGROUP_SCHED */ 8168 8169 #ifdef CONFIG_CGROUP_CPUACCT 8170 8171 /* 8172 * CPU accounting code for task groups. 8173 * 8174 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 8175 * (balbir@in.ibm.com). 8176 */ 8177 8178 /* create a new cpu accounting group */ 8179 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp) 8180 { 8181 struct cpuacct *ca; 8182 8183 if (!cgrp->parent) 8184 return &root_cpuacct.css; 8185 8186 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 8187 if (!ca) 8188 goto out; 8189 8190 ca->cpuusage = alloc_percpu(u64); 8191 if (!ca->cpuusage) 8192 goto out_free_ca; 8193 8194 ca->cpustat = alloc_percpu(struct kernel_cpustat); 8195 if (!ca->cpustat) 8196 goto out_free_cpuusage; 8197 8198 return &ca->css; 8199 8200 out_free_cpuusage: 8201 free_percpu(ca->cpuusage); 8202 out_free_ca: 8203 kfree(ca); 8204 out: 8205 return ERR_PTR(-ENOMEM); 8206 } 8207 8208 /* destroy an existing cpu accounting group */ 8209 static void cpuacct_destroy(struct cgroup *cgrp) 8210 { 8211 struct cpuacct *ca = cgroup_ca(cgrp); 8212 8213 free_percpu(ca->cpustat); 8214 free_percpu(ca->cpuusage); 8215 kfree(ca); 8216 } 8217 8218 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 8219 { 8220 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8221 u64 data; 8222 8223 #ifndef CONFIG_64BIT 8224 /* 8225 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 8226 */ 8227 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8228 data = *cpuusage; 8229 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8230 #else 8231 data = *cpuusage; 8232 #endif 8233 8234 return data; 8235 } 8236 8237 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 8238 { 8239 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8240 8241 #ifndef CONFIG_64BIT 8242 /* 8243 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8244 */ 8245 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8246 *cpuusage = val; 8247 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8248 #else 8249 *cpuusage = val; 8250 #endif 8251 } 8252 8253 /* return total cpu usage (in nanoseconds) of a group */ 8254 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8255 { 8256 struct cpuacct *ca = cgroup_ca(cgrp); 8257 u64 totalcpuusage = 0; 8258 int i; 8259 8260 for_each_present_cpu(i) 8261 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8262 8263 return totalcpuusage; 8264 } 8265 8266 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8267 u64 reset) 8268 { 8269 struct cpuacct *ca = cgroup_ca(cgrp); 8270 int err = 0; 8271 int i; 8272 8273 if (reset) { 8274 err = -EINVAL; 8275 goto out; 8276 } 8277 8278 for_each_present_cpu(i) 8279 cpuacct_cpuusage_write(ca, i, 0); 8280 8281 out: 8282 return err; 8283 } 8284 8285 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8286 struct seq_file *m) 8287 { 8288 struct cpuacct *ca = cgroup_ca(cgroup); 8289 u64 percpu; 8290 int i; 8291 8292 for_each_present_cpu(i) { 8293 percpu = cpuacct_cpuusage_read(ca, i); 8294 seq_printf(m, "%llu ", (unsigned long long) percpu); 8295 } 8296 seq_printf(m, "\n"); 8297 return 0; 8298 } 8299 8300 static const char *cpuacct_stat_desc[] = { 8301 [CPUACCT_STAT_USER] = "user", 8302 [CPUACCT_STAT_SYSTEM] = "system", 8303 }; 8304 8305 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8306 struct cgroup_map_cb *cb) 8307 { 8308 struct cpuacct *ca = cgroup_ca(cgrp); 8309 int cpu; 8310 s64 val = 0; 8311 8312 for_each_online_cpu(cpu) { 8313 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8314 val += kcpustat->cpustat[CPUTIME_USER]; 8315 val += kcpustat->cpustat[CPUTIME_NICE]; 8316 } 8317 val = cputime64_to_clock_t(val); 8318 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); 8319 8320 val = 0; 8321 for_each_online_cpu(cpu) { 8322 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8323 val += kcpustat->cpustat[CPUTIME_SYSTEM]; 8324 val += kcpustat->cpustat[CPUTIME_IRQ]; 8325 val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; 8326 } 8327 8328 val = cputime64_to_clock_t(val); 8329 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); 8330 8331 return 0; 8332 } 8333 8334 static struct cftype files[] = { 8335 { 8336 .name = "usage", 8337 .read_u64 = cpuusage_read, 8338 .write_u64 = cpuusage_write, 8339 }, 8340 { 8341 .name = "usage_percpu", 8342 .read_seq_string = cpuacct_percpu_seq_read, 8343 }, 8344 { 8345 .name = "stat", 8346 .read_map = cpuacct_stats_show, 8347 }, 8348 { } /* terminate */ 8349 }; 8350 8351 /* 8352 * charge this task's execution time to its accounting group. 8353 * 8354 * called with rq->lock held. 8355 */ 8356 void cpuacct_charge(struct task_struct *tsk, u64 cputime) 8357 { 8358 struct cpuacct *ca; 8359 int cpu; 8360 8361 if (unlikely(!cpuacct_subsys.active)) 8362 return; 8363 8364 cpu = task_cpu(tsk); 8365 8366 rcu_read_lock(); 8367 8368 ca = task_ca(tsk); 8369 8370 for (; ca; ca = parent_ca(ca)) { 8371 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8372 *cpuusage += cputime; 8373 } 8374 8375 rcu_read_unlock(); 8376 } 8377 8378 struct cgroup_subsys cpuacct_subsys = { 8379 .name = "cpuacct", 8380 .create = cpuacct_create, 8381 .destroy = cpuacct_destroy, 8382 .subsys_id = cpuacct_subsys_id, 8383 .base_cftypes = files, 8384 }; 8385 #endif /* CONFIG_CGROUP_CPUACCT */ 8386