xref: /linux/kernel/sched/core.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83 
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
90 
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 {
93 	unsigned long delta;
94 	ktime_t soft, hard, now;
95 
96 	for (;;) {
97 		if (hrtimer_active(period_timer))
98 			break;
99 
100 		now = hrtimer_cb_get_time(period_timer);
101 		hrtimer_forward(period_timer, now, period);
102 
103 		soft = hrtimer_get_softexpires(period_timer);
104 		hard = hrtimer_get_expires(period_timer);
105 		delta = ktime_to_ns(ktime_sub(hard, soft));
106 		__hrtimer_start_range_ns(period_timer, soft, delta,
107 					 HRTIMER_MODE_ABS_PINNED, 0);
108 	}
109 }
110 
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113 
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
115 
116 void update_rq_clock(struct rq *rq)
117 {
118 	s64 delta;
119 
120 	if (rq->skip_clock_update > 0)
121 		return;
122 
123 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 	rq->clock += delta;
125 	update_rq_clock_task(rq, delta);
126 }
127 
128 /*
129  * Debugging: various feature bits
130  */
131 
132 #define SCHED_FEAT(name, enabled)	\
133 	(1UL << __SCHED_FEAT_##name) * enabled |
134 
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
137 	0;
138 
139 #undef SCHED_FEAT
140 
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled)	\
143 	#name ,
144 
145 static const char * const sched_feat_names[] = {
146 #include "features.h"
147 };
148 
149 #undef SCHED_FEAT
150 
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 	int i;
154 
155 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 		if (!(sysctl_sched_features & (1UL << i)))
157 			seq_puts(m, "NO_");
158 		seq_printf(m, "%s ", sched_feat_names[i]);
159 	}
160 	seq_puts(m, "\n");
161 
162 	return 0;
163 }
164 
165 #ifdef HAVE_JUMP_LABEL
166 
167 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169 
170 #define SCHED_FEAT(name, enabled)	\
171 	jump_label_key__##enabled ,
172 
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176 
177 #undef SCHED_FEAT
178 
179 static void sched_feat_disable(int i)
180 {
181 	if (static_key_enabled(&sched_feat_keys[i]))
182 		static_key_slow_dec(&sched_feat_keys[i]);
183 }
184 
185 static void sched_feat_enable(int i)
186 {
187 	if (!static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194 
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 		size_t cnt, loff_t *ppos)
198 {
199 	char buf[64];
200 	char *cmp;
201 	int neg = 0;
202 	int i;
203 
204 	if (cnt > 63)
205 		cnt = 63;
206 
207 	if (copy_from_user(&buf, ubuf, cnt))
208 		return -EFAULT;
209 
210 	buf[cnt] = 0;
211 	cmp = strstrip(buf);
212 
213 	if (strncmp(cmp, "NO_", 3) == 0) {
214 		neg = 1;
215 		cmp += 3;
216 	}
217 
218 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 			if (neg) {
221 				sysctl_sched_features &= ~(1UL << i);
222 				sched_feat_disable(i);
223 			} else {
224 				sysctl_sched_features |= (1UL << i);
225 				sched_feat_enable(i);
226 			}
227 			break;
228 		}
229 	}
230 
231 	if (i == __SCHED_FEAT_NR)
232 		return -EINVAL;
233 
234 	*ppos += cnt;
235 
236 	return cnt;
237 }
238 
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 	return single_open(filp, sched_feat_show, NULL);
242 }
243 
244 static const struct file_operations sched_feat_fops = {
245 	.open		= sched_feat_open,
246 	.write		= sched_feat_write,
247 	.read		= seq_read,
248 	.llseek		= seq_lseek,
249 	.release	= single_release,
250 };
251 
252 static __init int sched_init_debug(void)
253 {
254 	debugfs_create_file("sched_features", 0644, NULL, NULL,
255 			&sched_feat_fops);
256 
257 	return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261 
262 /*
263  * Number of tasks to iterate in a single balance run.
264  * Limited because this is done with IRQs disabled.
265  */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267 
268 /*
269  * period over which we average the RT time consumption, measured
270  * in ms.
271  *
272  * default: 1s
273  */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275 
276 /*
277  * period over which we measure -rt task cpu usage in us.
278  * default: 1s
279  */
280 unsigned int sysctl_sched_rt_period = 1000000;
281 
282 __read_mostly int scheduler_running;
283 
284 /*
285  * part of the period that we allow rt tasks to run in us.
286  * default: 0.95s
287  */
288 int sysctl_sched_rt_runtime = 950000;
289 
290 
291 
292 /*
293  * __task_rq_lock - lock the rq @p resides on.
294  */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 	__acquires(rq->lock)
297 {
298 	struct rq *rq;
299 
300 	lockdep_assert_held(&p->pi_lock);
301 
302 	for (;;) {
303 		rq = task_rq(p);
304 		raw_spin_lock(&rq->lock);
305 		if (likely(rq == task_rq(p)))
306 			return rq;
307 		raw_spin_unlock(&rq->lock);
308 	}
309 }
310 
311 /*
312  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313  */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 	__acquires(p->pi_lock)
316 	__acquires(rq->lock)
317 {
318 	struct rq *rq;
319 
320 	for (;;) {
321 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 		rq = task_rq(p);
323 		raw_spin_lock(&rq->lock);
324 		if (likely(rq == task_rq(p)))
325 			return rq;
326 		raw_spin_unlock(&rq->lock);
327 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 	}
329 }
330 
331 static void __task_rq_unlock(struct rq *rq)
332 	__releases(rq->lock)
333 {
334 	raw_spin_unlock(&rq->lock);
335 }
336 
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 	__releases(rq->lock)
340 	__releases(p->pi_lock)
341 {
342 	raw_spin_unlock(&rq->lock);
343 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345 
346 /*
347  * this_rq_lock - lock this runqueue and disable interrupts.
348  */
349 static struct rq *this_rq_lock(void)
350 	__acquires(rq->lock)
351 {
352 	struct rq *rq;
353 
354 	local_irq_disable();
355 	rq = this_rq();
356 	raw_spin_lock(&rq->lock);
357 
358 	return rq;
359 }
360 
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363  * Use HR-timers to deliver accurate preemption points.
364  *
365  * Its all a bit involved since we cannot program an hrt while holding the
366  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367  * reschedule event.
368  *
369  * When we get rescheduled we reprogram the hrtick_timer outside of the
370  * rq->lock.
371  */
372 
373 static void hrtick_clear(struct rq *rq)
374 {
375 	if (hrtimer_active(&rq->hrtick_timer))
376 		hrtimer_cancel(&rq->hrtick_timer);
377 }
378 
379 /*
380  * High-resolution timer tick.
381  * Runs from hardirq context with interrupts disabled.
382  */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386 
387 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388 
389 	raw_spin_lock(&rq->lock);
390 	update_rq_clock(rq);
391 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 	raw_spin_unlock(&rq->lock);
393 
394 	return HRTIMER_NORESTART;
395 }
396 
397 #ifdef CONFIG_SMP
398 /*
399  * called from hardirq (IPI) context
400  */
401 static void __hrtick_start(void *arg)
402 {
403 	struct rq *rq = arg;
404 
405 	raw_spin_lock(&rq->lock);
406 	hrtimer_restart(&rq->hrtick_timer);
407 	rq->hrtick_csd_pending = 0;
408 	raw_spin_unlock(&rq->lock);
409 }
410 
411 /*
412  * Called to set the hrtick timer state.
413  *
414  * called with rq->lock held and irqs disabled
415  */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 	struct hrtimer *timer = &rq->hrtick_timer;
419 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420 
421 	hrtimer_set_expires(timer, time);
422 
423 	if (rq == this_rq()) {
424 		hrtimer_restart(timer);
425 	} else if (!rq->hrtick_csd_pending) {
426 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 		rq->hrtick_csd_pending = 1;
428 	}
429 }
430 
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 	int cpu = (int)(long)hcpu;
435 
436 	switch (action) {
437 	case CPU_UP_CANCELED:
438 	case CPU_UP_CANCELED_FROZEN:
439 	case CPU_DOWN_PREPARE:
440 	case CPU_DOWN_PREPARE_FROZEN:
441 	case CPU_DEAD:
442 	case CPU_DEAD_FROZEN:
443 		hrtick_clear(cpu_rq(cpu));
444 		return NOTIFY_OK;
445 	}
446 
447 	return NOTIFY_DONE;
448 }
449 
450 static __init void init_hrtick(void)
451 {
452 	hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456  * Called to set the hrtick timer state.
457  *
458  * called with rq->lock held and irqs disabled
459  */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 			HRTIMER_MODE_REL_PINNED, 0);
464 }
465 
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470 
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 	rq->hrtick_csd_pending = 0;
475 
476 	rq->hrtick_csd.flags = 0;
477 	rq->hrtick_csd.func = __hrtick_start;
478 	rq->hrtick_csd.info = rq;
479 #endif
480 
481 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 	rq->hrtick_timer.function = hrtick;
483 }
484 #else	/* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488 
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492 
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif	/* CONFIG_SCHED_HRTICK */
497 
498 /*
499  * resched_task - mark a task 'to be rescheduled now'.
500  *
501  * On UP this means the setting of the need_resched flag, on SMP it
502  * might also involve a cross-CPU call to trigger the scheduler on
503  * the target CPU.
504  */
505 #ifdef CONFIG_SMP
506 
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
510 
511 void resched_task(struct task_struct *p)
512 {
513 	int cpu;
514 
515 	assert_raw_spin_locked(&task_rq(p)->lock);
516 
517 	if (test_tsk_need_resched(p))
518 		return;
519 
520 	set_tsk_need_resched(p);
521 
522 	cpu = task_cpu(p);
523 	if (cpu == smp_processor_id())
524 		return;
525 
526 	/* NEED_RESCHED must be visible before we test polling */
527 	smp_mb();
528 	if (!tsk_is_polling(p))
529 		smp_send_reschedule(cpu);
530 }
531 
532 void resched_cpu(int cpu)
533 {
534 	struct rq *rq = cpu_rq(cpu);
535 	unsigned long flags;
536 
537 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 		return;
539 	resched_task(cpu_curr(cpu));
540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542 
543 #ifdef CONFIG_NO_HZ
544 /*
545  * In the semi idle case, use the nearest busy cpu for migrating timers
546  * from an idle cpu.  This is good for power-savings.
547  *
548  * We don't do similar optimization for completely idle system, as
549  * selecting an idle cpu will add more delays to the timers than intended
550  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551  */
552 int get_nohz_timer_target(void)
553 {
554 	int cpu = smp_processor_id();
555 	int i;
556 	struct sched_domain *sd;
557 
558 	rcu_read_lock();
559 	for_each_domain(cpu, sd) {
560 		for_each_cpu(i, sched_domain_span(sd)) {
561 			if (!idle_cpu(i)) {
562 				cpu = i;
563 				goto unlock;
564 			}
565 		}
566 	}
567 unlock:
568 	rcu_read_unlock();
569 	return cpu;
570 }
571 /*
572  * When add_timer_on() enqueues a timer into the timer wheel of an
573  * idle CPU then this timer might expire before the next timer event
574  * which is scheduled to wake up that CPU. In case of a completely
575  * idle system the next event might even be infinite time into the
576  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577  * leaves the inner idle loop so the newly added timer is taken into
578  * account when the CPU goes back to idle and evaluates the timer
579  * wheel for the next timer event.
580  */
581 void wake_up_idle_cpu(int cpu)
582 {
583 	struct rq *rq = cpu_rq(cpu);
584 
585 	if (cpu == smp_processor_id())
586 		return;
587 
588 	/*
589 	 * This is safe, as this function is called with the timer
590 	 * wheel base lock of (cpu) held. When the CPU is on the way
591 	 * to idle and has not yet set rq->curr to idle then it will
592 	 * be serialized on the timer wheel base lock and take the new
593 	 * timer into account automatically.
594 	 */
595 	if (rq->curr != rq->idle)
596 		return;
597 
598 	/*
599 	 * We can set TIF_RESCHED on the idle task of the other CPU
600 	 * lockless. The worst case is that the other CPU runs the
601 	 * idle task through an additional NOOP schedule()
602 	 */
603 	set_tsk_need_resched(rq->idle);
604 
605 	/* NEED_RESCHED must be visible before we test polling */
606 	smp_mb();
607 	if (!tsk_is_polling(rq->idle))
608 		smp_send_reschedule(cpu);
609 }
610 
611 static inline bool got_nohz_idle_kick(void)
612 {
613 	int cpu = smp_processor_id();
614 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616 
617 #else /* CONFIG_NO_HZ */
618 
619 static inline bool got_nohz_idle_kick(void)
620 {
621 	return false;
622 }
623 
624 #endif /* CONFIG_NO_HZ */
625 
626 void sched_avg_update(struct rq *rq)
627 {
628 	s64 period = sched_avg_period();
629 
630 	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 		/*
632 		 * Inline assembly required to prevent the compiler
633 		 * optimising this loop into a divmod call.
634 		 * See __iter_div_u64_rem() for another example of this.
635 		 */
636 		asm("" : "+rm" (rq->age_stamp));
637 		rq->age_stamp += period;
638 		rq->rt_avg /= 2;
639 	}
640 }
641 
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 	assert_raw_spin_locked(&task_rq(p)->lock);
646 	set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649 
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653  * Iterate task_group tree rooted at *from, calling @down when first entering a
654  * node and @up when leaving it for the final time.
655  *
656  * Caller must hold rcu_lock or sufficient equivalent.
657  */
658 int walk_tg_tree_from(struct task_group *from,
659 			     tg_visitor down, tg_visitor up, void *data)
660 {
661 	struct task_group *parent, *child;
662 	int ret;
663 
664 	parent = from;
665 
666 down:
667 	ret = (*down)(parent, data);
668 	if (ret)
669 		goto out;
670 	list_for_each_entry_rcu(child, &parent->children, siblings) {
671 		parent = child;
672 		goto down;
673 
674 up:
675 		continue;
676 	}
677 	ret = (*up)(parent, data);
678 	if (ret || parent == from)
679 		goto out;
680 
681 	child = parent;
682 	parent = parent->parent;
683 	if (parent)
684 		goto up;
685 out:
686 	return ret;
687 }
688 
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 	return 0;
692 }
693 #endif
694 
695 static void set_load_weight(struct task_struct *p)
696 {
697 	int prio = p->static_prio - MAX_RT_PRIO;
698 	struct load_weight *load = &p->se.load;
699 
700 	/*
701 	 * SCHED_IDLE tasks get minimal weight:
702 	 */
703 	if (p->policy == SCHED_IDLE) {
704 		load->weight = scale_load(WEIGHT_IDLEPRIO);
705 		load->inv_weight = WMULT_IDLEPRIO;
706 		return;
707 	}
708 
709 	load->weight = scale_load(prio_to_weight[prio]);
710 	load->inv_weight = prio_to_wmult[prio];
711 }
712 
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 	update_rq_clock(rq);
716 	sched_info_queued(p);
717 	p->sched_class->enqueue_task(rq, p, flags);
718 }
719 
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 	update_rq_clock(rq);
723 	sched_info_dequeued(p);
724 	p->sched_class->dequeue_task(rq, p, flags);
725 }
726 
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 {
729 	if (task_contributes_to_load(p))
730 		rq->nr_uninterruptible--;
731 
732 	enqueue_task(rq, p, flags);
733 }
734 
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 	if (task_contributes_to_load(p))
738 		rq->nr_uninterruptible++;
739 
740 	dequeue_task(rq, p, flags);
741 }
742 
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
744 
745 /*
746  * There are no locks covering percpu hardirq/softirq time.
747  * They are only modified in account_system_vtime, on corresponding CPU
748  * with interrupts disabled. So, writes are safe.
749  * They are read and saved off onto struct rq in update_rq_clock().
750  * This may result in other CPU reading this CPU's irq time and can
751  * race with irq/account_system_vtime on this CPU. We would either get old
752  * or new value with a side effect of accounting a slice of irq time to wrong
753  * task when irq is in progress while we read rq->clock. That is a worthy
754  * compromise in place of having locks on each irq in account_system_time.
755  */
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
758 
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
761 
762 void enable_sched_clock_irqtime(void)
763 {
764 	sched_clock_irqtime = 1;
765 }
766 
767 void disable_sched_clock_irqtime(void)
768 {
769 	sched_clock_irqtime = 0;
770 }
771 
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774 
775 static inline void irq_time_write_begin(void)
776 {
777 	__this_cpu_inc(irq_time_seq.sequence);
778 	smp_wmb();
779 }
780 
781 static inline void irq_time_write_end(void)
782 {
783 	smp_wmb();
784 	__this_cpu_inc(irq_time_seq.sequence);
785 }
786 
787 static inline u64 irq_time_read(int cpu)
788 {
789 	u64 irq_time;
790 	unsigned seq;
791 
792 	do {
793 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 		irq_time = per_cpu(cpu_softirq_time, cpu) +
795 			   per_cpu(cpu_hardirq_time, cpu);
796 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797 
798 	return irq_time;
799 }
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
802 {
803 }
804 
805 static inline void irq_time_write_end(void)
806 {
807 }
808 
809 static inline u64 irq_time_read(int cpu)
810 {
811 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812 }
813 #endif /* CONFIG_64BIT */
814 
815 /*
816  * Called before incrementing preempt_count on {soft,}irq_enter
817  * and before decrementing preempt_count on {soft,}irq_exit.
818  */
819 void account_system_vtime(struct task_struct *curr)
820 {
821 	unsigned long flags;
822 	s64 delta;
823 	int cpu;
824 
825 	if (!sched_clock_irqtime)
826 		return;
827 
828 	local_irq_save(flags);
829 
830 	cpu = smp_processor_id();
831 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 	__this_cpu_add(irq_start_time, delta);
833 
834 	irq_time_write_begin();
835 	/*
836 	 * We do not account for softirq time from ksoftirqd here.
837 	 * We want to continue accounting softirq time to ksoftirqd thread
838 	 * in that case, so as not to confuse scheduler with a special task
839 	 * that do not consume any time, but still wants to run.
840 	 */
841 	if (hardirq_count())
842 		__this_cpu_add(cpu_hardirq_time, delta);
843 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 		__this_cpu_add(cpu_softirq_time, delta);
845 
846 	irq_time_write_end();
847 	local_irq_restore(flags);
848 }
849 EXPORT_SYMBOL_GPL(account_system_vtime);
850 
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852 
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
855 {
856 	if (unlikely(steal > NSEC_PER_SEC))
857 		return div_u64(steal, TICK_NSEC);
858 
859 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860 }
861 #endif
862 
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866  * In theory, the compile should just see 0 here, and optimize out the call
867  * to sched_rt_avg_update. But I don't trust it...
868  */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 	s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874 
875 	/*
876 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 	 * this case when a previous update_rq_clock() happened inside a
878 	 * {soft,}irq region.
879 	 *
880 	 * When this happens, we stop ->clock_task and only update the
881 	 * prev_irq_time stamp to account for the part that fit, so that a next
882 	 * update will consume the rest. This ensures ->clock_task is
883 	 * monotonic.
884 	 *
885 	 * It does however cause some slight miss-attribution of {soft,}irq
886 	 * time, a more accurate solution would be to update the irq_time using
887 	 * the current rq->clock timestamp, except that would require using
888 	 * atomic ops.
889 	 */
890 	if (irq_delta > delta)
891 		irq_delta = delta;
892 
893 	rq->prev_irq_time += irq_delta;
894 	delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 	if (static_key_false((&paravirt_steal_rq_enabled))) {
898 		u64 st;
899 
900 		steal = paravirt_steal_clock(cpu_of(rq));
901 		steal -= rq->prev_steal_time_rq;
902 
903 		if (unlikely(steal > delta))
904 			steal = delta;
905 
906 		st = steal_ticks(steal);
907 		steal = st * TICK_NSEC;
908 
909 		rq->prev_steal_time_rq += steal;
910 
911 		delta -= steal;
912 	}
913 #endif
914 
915 	rq->clock_task += delta;
916 
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 		sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
921 }
922 
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
925 {
926 	u64 *cpustat = kcpustat_this_cpu->cpustat;
927 	unsigned long flags;
928 	u64 latest_ns;
929 	int ret = 0;
930 
931 	local_irq_save(flags);
932 	latest_ns = this_cpu_read(cpu_hardirq_time);
933 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 		ret = 1;
935 	local_irq_restore(flags);
936 	return ret;
937 }
938 
939 static int irqtime_account_si_update(void)
940 {
941 	u64 *cpustat = kcpustat_this_cpu->cpustat;
942 	unsigned long flags;
943 	u64 latest_ns;
944 	int ret = 0;
945 
946 	local_irq_save(flags);
947 	latest_ns = this_cpu_read(cpu_softirq_time);
948 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 		ret = 1;
950 	local_irq_restore(flags);
951 	return ret;
952 }
953 
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
955 
956 #define sched_clock_irqtime	(0)
957 
958 #endif
959 
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
961 {
962 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
964 
965 	if (stop) {
966 		/*
967 		 * Make it appear like a SCHED_FIFO task, its something
968 		 * userspace knows about and won't get confused about.
969 		 *
970 		 * Also, it will make PI more or less work without too
971 		 * much confusion -- but then, stop work should not
972 		 * rely on PI working anyway.
973 		 */
974 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975 
976 		stop->sched_class = &stop_sched_class;
977 	}
978 
979 	cpu_rq(cpu)->stop = stop;
980 
981 	if (old_stop) {
982 		/*
983 		 * Reset it back to a normal scheduling class so that
984 		 * it can die in pieces.
985 		 */
986 		old_stop->sched_class = &rt_sched_class;
987 	}
988 }
989 
990 /*
991  * __normal_prio - return the priority that is based on the static prio
992  */
993 static inline int __normal_prio(struct task_struct *p)
994 {
995 	return p->static_prio;
996 }
997 
998 /*
999  * Calculate the expected normal priority: i.e. priority
1000  * without taking RT-inheritance into account. Might be
1001  * boosted by interactivity modifiers. Changes upon fork,
1002  * setprio syscalls, and whenever the interactivity
1003  * estimator recalculates.
1004  */
1005 static inline int normal_prio(struct task_struct *p)
1006 {
1007 	int prio;
1008 
1009 	if (task_has_rt_policy(p))
1010 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 	else
1012 		prio = __normal_prio(p);
1013 	return prio;
1014 }
1015 
1016 /*
1017  * Calculate the current priority, i.e. the priority
1018  * taken into account by the scheduler. This value might
1019  * be boosted by RT tasks, or might be boosted by
1020  * interactivity modifiers. Will be RT if the task got
1021  * RT-boosted. If not then it returns p->normal_prio.
1022  */
1023 static int effective_prio(struct task_struct *p)
1024 {
1025 	p->normal_prio = normal_prio(p);
1026 	/*
1027 	 * If we are RT tasks or we were boosted to RT priority,
1028 	 * keep the priority unchanged. Otherwise, update priority
1029 	 * to the normal priority:
1030 	 */
1031 	if (!rt_prio(p->prio))
1032 		return p->normal_prio;
1033 	return p->prio;
1034 }
1035 
1036 /**
1037  * task_curr - is this task currently executing on a CPU?
1038  * @p: the task in question.
1039  */
1040 inline int task_curr(const struct task_struct *p)
1041 {
1042 	return cpu_curr(task_cpu(p)) == p;
1043 }
1044 
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 				       const struct sched_class *prev_class,
1047 				       int oldprio)
1048 {
1049 	if (prev_class != p->sched_class) {
1050 		if (prev_class->switched_from)
1051 			prev_class->switched_from(rq, p);
1052 		p->sched_class->switched_to(rq, p);
1053 	} else if (oldprio != p->prio)
1054 		p->sched_class->prio_changed(rq, p, oldprio);
1055 }
1056 
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 {
1059 	const struct sched_class *class;
1060 
1061 	if (p->sched_class == rq->curr->sched_class) {
1062 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 	} else {
1064 		for_each_class(class) {
1065 			if (class == rq->curr->sched_class)
1066 				break;
1067 			if (class == p->sched_class) {
1068 				resched_task(rq->curr);
1069 				break;
1070 			}
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * A queue event has occurred, and we're going to schedule.  In
1076 	 * this case, we can save a useless back to back clock update.
1077 	 */
1078 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 		rq->skip_clock_update = 1;
1080 }
1081 
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084 {
1085 #ifdef CONFIG_SCHED_DEBUG
1086 	/*
1087 	 * We should never call set_task_cpu() on a blocked task,
1088 	 * ttwu() will sort out the placement.
1089 	 */
1090 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092 
1093 #ifdef CONFIG_LOCKDEP
1094 	/*
1095 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 	 *
1098 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 	 * see set_task_rq().
1100 	 *
1101 	 * Furthermore, all task_rq users should acquire both locks, see
1102 	 * task_rq_lock().
1103 	 */
1104 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 				      lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1108 
1109 	trace_sched_migrate_task(p, new_cpu);
1110 
1111 	if (task_cpu(p) != new_cpu) {
1112 		p->se.nr_migrations++;
1113 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114 	}
1115 
1116 	__set_task_cpu(p, new_cpu);
1117 }
1118 
1119 struct migration_arg {
1120 	struct task_struct *task;
1121 	int dest_cpu;
1122 };
1123 
1124 static int migration_cpu_stop(void *data);
1125 
1126 /*
1127  * wait_task_inactive - wait for a thread to unschedule.
1128  *
1129  * If @match_state is nonzero, it's the @p->state value just checked and
1130  * not expected to change.  If it changes, i.e. @p might have woken up,
1131  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1132  * we return a positive number (its total switch count).  If a second call
1133  * a short while later returns the same number, the caller can be sure that
1134  * @p has remained unscheduled the whole time.
1135  *
1136  * The caller must ensure that the task *will* unschedule sometime soon,
1137  * else this function might spin for a *long* time. This function can't
1138  * be called with interrupts off, or it may introduce deadlock with
1139  * smp_call_function() if an IPI is sent by the same process we are
1140  * waiting to become inactive.
1141  */
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143 {
1144 	unsigned long flags;
1145 	int running, on_rq;
1146 	unsigned long ncsw;
1147 	struct rq *rq;
1148 
1149 	for (;;) {
1150 		/*
1151 		 * We do the initial early heuristics without holding
1152 		 * any task-queue locks at all. We'll only try to get
1153 		 * the runqueue lock when things look like they will
1154 		 * work out!
1155 		 */
1156 		rq = task_rq(p);
1157 
1158 		/*
1159 		 * If the task is actively running on another CPU
1160 		 * still, just relax and busy-wait without holding
1161 		 * any locks.
1162 		 *
1163 		 * NOTE! Since we don't hold any locks, it's not
1164 		 * even sure that "rq" stays as the right runqueue!
1165 		 * But we don't care, since "task_running()" will
1166 		 * return false if the runqueue has changed and p
1167 		 * is actually now running somewhere else!
1168 		 */
1169 		while (task_running(rq, p)) {
1170 			if (match_state && unlikely(p->state != match_state))
1171 				return 0;
1172 			cpu_relax();
1173 		}
1174 
1175 		/*
1176 		 * Ok, time to look more closely! We need the rq
1177 		 * lock now, to be *sure*. If we're wrong, we'll
1178 		 * just go back and repeat.
1179 		 */
1180 		rq = task_rq_lock(p, &flags);
1181 		trace_sched_wait_task(p);
1182 		running = task_running(rq, p);
1183 		on_rq = p->on_rq;
1184 		ncsw = 0;
1185 		if (!match_state || p->state == match_state)
1186 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 		task_rq_unlock(rq, p, &flags);
1188 
1189 		/*
1190 		 * If it changed from the expected state, bail out now.
1191 		 */
1192 		if (unlikely(!ncsw))
1193 			break;
1194 
1195 		/*
1196 		 * Was it really running after all now that we
1197 		 * checked with the proper locks actually held?
1198 		 *
1199 		 * Oops. Go back and try again..
1200 		 */
1201 		if (unlikely(running)) {
1202 			cpu_relax();
1203 			continue;
1204 		}
1205 
1206 		/*
1207 		 * It's not enough that it's not actively running,
1208 		 * it must be off the runqueue _entirely_, and not
1209 		 * preempted!
1210 		 *
1211 		 * So if it was still runnable (but just not actively
1212 		 * running right now), it's preempted, and we should
1213 		 * yield - it could be a while.
1214 		 */
1215 		if (unlikely(on_rq)) {
1216 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217 
1218 			set_current_state(TASK_UNINTERRUPTIBLE);
1219 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 			continue;
1221 		}
1222 
1223 		/*
1224 		 * Ahh, all good. It wasn't running, and it wasn't
1225 		 * runnable, which means that it will never become
1226 		 * running in the future either. We're all done!
1227 		 */
1228 		break;
1229 	}
1230 
1231 	return ncsw;
1232 }
1233 
1234 /***
1235  * kick_process - kick a running thread to enter/exit the kernel
1236  * @p: the to-be-kicked thread
1237  *
1238  * Cause a process which is running on another CPU to enter
1239  * kernel-mode, without any delay. (to get signals handled.)
1240  *
1241  * NOTE: this function doesn't have to take the runqueue lock,
1242  * because all it wants to ensure is that the remote task enters
1243  * the kernel. If the IPI races and the task has been migrated
1244  * to another CPU then no harm is done and the purpose has been
1245  * achieved as well.
1246  */
1247 void kick_process(struct task_struct *p)
1248 {
1249 	int cpu;
1250 
1251 	preempt_disable();
1252 	cpu = task_cpu(p);
1253 	if ((cpu != smp_processor_id()) && task_curr(p))
1254 		smp_send_reschedule(cpu);
1255 	preempt_enable();
1256 }
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1259 
1260 #ifdef CONFIG_SMP
1261 /*
1262  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263  */
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1265 {
1266 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267 	enum { cpuset, possible, fail } state = cpuset;
1268 	int dest_cpu;
1269 
1270 	/* Look for allowed, online CPU in same node. */
1271 	for_each_cpu(dest_cpu, nodemask) {
1272 		if (!cpu_online(dest_cpu))
1273 			continue;
1274 		if (!cpu_active(dest_cpu))
1275 			continue;
1276 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 			return dest_cpu;
1278 	}
1279 
1280 	for (;;) {
1281 		/* Any allowed, online CPU? */
1282 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283 			if (!cpu_online(dest_cpu))
1284 				continue;
1285 			if (!cpu_active(dest_cpu))
1286 				continue;
1287 			goto out;
1288 		}
1289 
1290 		switch (state) {
1291 		case cpuset:
1292 			/* No more Mr. Nice Guy. */
1293 			cpuset_cpus_allowed_fallback(p);
1294 			state = possible;
1295 			break;
1296 
1297 		case possible:
1298 			do_set_cpus_allowed(p, cpu_possible_mask);
1299 			state = fail;
1300 			break;
1301 
1302 		case fail:
1303 			BUG();
1304 			break;
1305 		}
1306 	}
1307 
1308 out:
1309 	if (state != cpuset) {
1310 		/*
1311 		 * Don't tell them about moving exiting tasks or
1312 		 * kernel threads (both mm NULL), since they never
1313 		 * leave kernel.
1314 		 */
1315 		if (p->mm && printk_ratelimit()) {
1316 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 					task_pid_nr(p), p->comm, cpu);
1318 		}
1319 	}
1320 
1321 	return dest_cpu;
1322 }
1323 
1324 /*
1325  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326  */
1327 static inline
1328 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329 {
1330 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1331 
1332 	/*
1333 	 * In order not to call set_task_cpu() on a blocking task we need
1334 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 	 * cpu.
1336 	 *
1337 	 * Since this is common to all placement strategies, this lives here.
1338 	 *
1339 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 	 *   not worry about this generic constraint ]
1341 	 */
1342 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1343 		     !cpu_online(cpu)))
1344 		cpu = select_fallback_rq(task_cpu(p), p);
1345 
1346 	return cpu;
1347 }
1348 
1349 static void update_avg(u64 *avg, u64 sample)
1350 {
1351 	s64 diff = sample - *avg;
1352 	*avg += diff >> 3;
1353 }
1354 #endif
1355 
1356 static void
1357 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1358 {
1359 #ifdef CONFIG_SCHEDSTATS
1360 	struct rq *rq = this_rq();
1361 
1362 #ifdef CONFIG_SMP
1363 	int this_cpu = smp_processor_id();
1364 
1365 	if (cpu == this_cpu) {
1366 		schedstat_inc(rq, ttwu_local);
1367 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 	} else {
1369 		struct sched_domain *sd;
1370 
1371 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372 		rcu_read_lock();
1373 		for_each_domain(this_cpu, sd) {
1374 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 				schedstat_inc(sd, ttwu_wake_remote);
1376 				break;
1377 			}
1378 		}
1379 		rcu_read_unlock();
1380 	}
1381 
1382 	if (wake_flags & WF_MIGRATED)
1383 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384 
1385 #endif /* CONFIG_SMP */
1386 
1387 	schedstat_inc(rq, ttwu_count);
1388 	schedstat_inc(p, se.statistics.nr_wakeups);
1389 
1390 	if (wake_flags & WF_SYNC)
1391 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1392 
1393 #endif /* CONFIG_SCHEDSTATS */
1394 }
1395 
1396 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397 {
1398 	activate_task(rq, p, en_flags);
1399 	p->on_rq = 1;
1400 
1401 	/* if a worker is waking up, notify workqueue */
1402 	if (p->flags & PF_WQ_WORKER)
1403 		wq_worker_waking_up(p, cpu_of(rq));
1404 }
1405 
1406 /*
1407  * Mark the task runnable and perform wakeup-preemption.
1408  */
1409 static void
1410 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1411 {
1412 	trace_sched_wakeup(p, true);
1413 	check_preempt_curr(rq, p, wake_flags);
1414 
1415 	p->state = TASK_RUNNING;
1416 #ifdef CONFIG_SMP
1417 	if (p->sched_class->task_woken)
1418 		p->sched_class->task_woken(rq, p);
1419 
1420 	if (rq->idle_stamp) {
1421 		u64 delta = rq->clock - rq->idle_stamp;
1422 		u64 max = 2*sysctl_sched_migration_cost;
1423 
1424 		if (delta > max)
1425 			rq->avg_idle = max;
1426 		else
1427 			update_avg(&rq->avg_idle, delta);
1428 		rq->idle_stamp = 0;
1429 	}
1430 #endif
1431 }
1432 
1433 static void
1434 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435 {
1436 #ifdef CONFIG_SMP
1437 	if (p->sched_contributes_to_load)
1438 		rq->nr_uninterruptible--;
1439 #endif
1440 
1441 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 	ttwu_do_wakeup(rq, p, wake_flags);
1443 }
1444 
1445 /*
1446  * Called in case the task @p isn't fully descheduled from its runqueue,
1447  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448  * since all we need to do is flip p->state to TASK_RUNNING, since
1449  * the task is still ->on_rq.
1450  */
1451 static int ttwu_remote(struct task_struct *p, int wake_flags)
1452 {
1453 	struct rq *rq;
1454 	int ret = 0;
1455 
1456 	rq = __task_rq_lock(p);
1457 	if (p->on_rq) {
1458 		ttwu_do_wakeup(rq, p, wake_flags);
1459 		ret = 1;
1460 	}
1461 	__task_rq_unlock(rq);
1462 
1463 	return ret;
1464 }
1465 
1466 #ifdef CONFIG_SMP
1467 static void sched_ttwu_pending(void)
1468 {
1469 	struct rq *rq = this_rq();
1470 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 	struct task_struct *p;
1472 
1473 	raw_spin_lock(&rq->lock);
1474 
1475 	while (llist) {
1476 		p = llist_entry(llist, struct task_struct, wake_entry);
1477 		llist = llist_next(llist);
1478 		ttwu_do_activate(rq, p, 0);
1479 	}
1480 
1481 	raw_spin_unlock(&rq->lock);
1482 }
1483 
1484 void scheduler_ipi(void)
1485 {
1486 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487 		return;
1488 
1489 	/*
1490 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 	 * traditionally all their work was done from the interrupt return
1492 	 * path. Now that we actually do some work, we need to make sure
1493 	 * we do call them.
1494 	 *
1495 	 * Some archs already do call them, luckily irq_enter/exit nest
1496 	 * properly.
1497 	 *
1498 	 * Arguably we should visit all archs and update all handlers,
1499 	 * however a fair share of IPIs are still resched only so this would
1500 	 * somewhat pessimize the simple resched case.
1501 	 */
1502 	irq_enter();
1503 	sched_ttwu_pending();
1504 
1505 	/*
1506 	 * Check if someone kicked us for doing the nohz idle load balance.
1507 	 */
1508 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 		this_rq()->idle_balance = 1;
1510 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1511 	}
1512 	irq_exit();
1513 }
1514 
1515 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516 {
1517 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518 		smp_send_reschedule(cpu);
1519 }
1520 
1521 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523 {
1524 	struct rq *rq;
1525 	int ret = 0;
1526 
1527 	rq = __task_rq_lock(p);
1528 	if (p->on_cpu) {
1529 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 		ttwu_do_wakeup(rq, p, wake_flags);
1531 		ret = 1;
1532 	}
1533 	__task_rq_unlock(rq);
1534 
1535 	return ret;
1536 
1537 }
1538 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539 
1540 bool cpus_share_cache(int this_cpu, int that_cpu)
1541 {
1542 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543 }
1544 #endif /* CONFIG_SMP */
1545 
1546 static void ttwu_queue(struct task_struct *p, int cpu)
1547 {
1548 	struct rq *rq = cpu_rq(cpu);
1549 
1550 #if defined(CONFIG_SMP)
1551 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 		ttwu_queue_remote(p, cpu);
1554 		return;
1555 	}
1556 #endif
1557 
1558 	raw_spin_lock(&rq->lock);
1559 	ttwu_do_activate(rq, p, 0);
1560 	raw_spin_unlock(&rq->lock);
1561 }
1562 
1563 /**
1564  * try_to_wake_up - wake up a thread
1565  * @p: the thread to be awakened
1566  * @state: the mask of task states that can be woken
1567  * @wake_flags: wake modifier flags (WF_*)
1568  *
1569  * Put it on the run-queue if it's not already there. The "current"
1570  * thread is always on the run-queue (except when the actual
1571  * re-schedule is in progress), and as such you're allowed to do
1572  * the simpler "current->state = TASK_RUNNING" to mark yourself
1573  * runnable without the overhead of this.
1574  *
1575  * Returns %true if @p was woken up, %false if it was already running
1576  * or @state didn't match @p's state.
1577  */
1578 static int
1579 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1580 {
1581 	unsigned long flags;
1582 	int cpu, success = 0;
1583 
1584 	smp_wmb();
1585 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1586 	if (!(p->state & state))
1587 		goto out;
1588 
1589 	success = 1; /* we're going to change ->state */
1590 	cpu = task_cpu(p);
1591 
1592 	if (p->on_rq && ttwu_remote(p, wake_flags))
1593 		goto stat;
1594 
1595 #ifdef CONFIG_SMP
1596 	/*
1597 	 * If the owning (remote) cpu is still in the middle of schedule() with
1598 	 * this task as prev, wait until its done referencing the task.
1599 	 */
1600 	while (p->on_cpu) {
1601 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602 		/*
1603 		 * In case the architecture enables interrupts in
1604 		 * context_switch(), we cannot busy wait, since that
1605 		 * would lead to deadlocks when an interrupt hits and
1606 		 * tries to wake up @prev. So bail and do a complete
1607 		 * remote wakeup.
1608 		 */
1609 		if (ttwu_activate_remote(p, wake_flags))
1610 			goto stat;
1611 #else
1612 		cpu_relax();
1613 #endif
1614 	}
1615 	/*
1616 	 * Pairs with the smp_wmb() in finish_lock_switch().
1617 	 */
1618 	smp_rmb();
1619 
1620 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1621 	p->state = TASK_WAKING;
1622 
1623 	if (p->sched_class->task_waking)
1624 		p->sched_class->task_waking(p);
1625 
1626 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627 	if (task_cpu(p) != cpu) {
1628 		wake_flags |= WF_MIGRATED;
1629 		set_task_cpu(p, cpu);
1630 	}
1631 #endif /* CONFIG_SMP */
1632 
1633 	ttwu_queue(p, cpu);
1634 stat:
1635 	ttwu_stat(p, cpu, wake_flags);
1636 out:
1637 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1638 
1639 	return success;
1640 }
1641 
1642 /**
1643  * try_to_wake_up_local - try to wake up a local task with rq lock held
1644  * @p: the thread to be awakened
1645  *
1646  * Put @p on the run-queue if it's not already there. The caller must
1647  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648  * the current task.
1649  */
1650 static void try_to_wake_up_local(struct task_struct *p)
1651 {
1652 	struct rq *rq = task_rq(p);
1653 
1654 	BUG_ON(rq != this_rq());
1655 	BUG_ON(p == current);
1656 	lockdep_assert_held(&rq->lock);
1657 
1658 	if (!raw_spin_trylock(&p->pi_lock)) {
1659 		raw_spin_unlock(&rq->lock);
1660 		raw_spin_lock(&p->pi_lock);
1661 		raw_spin_lock(&rq->lock);
1662 	}
1663 
1664 	if (!(p->state & TASK_NORMAL))
1665 		goto out;
1666 
1667 	if (!p->on_rq)
1668 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669 
1670 	ttwu_do_wakeup(rq, p, 0);
1671 	ttwu_stat(p, smp_processor_id(), 0);
1672 out:
1673 	raw_spin_unlock(&p->pi_lock);
1674 }
1675 
1676 /**
1677  * wake_up_process - Wake up a specific process
1678  * @p: The process to be woken up.
1679  *
1680  * Attempt to wake up the nominated process and move it to the set of runnable
1681  * processes.  Returns 1 if the process was woken up, 0 if it was already
1682  * running.
1683  *
1684  * It may be assumed that this function implies a write memory barrier before
1685  * changing the task state if and only if any tasks are woken up.
1686  */
1687 int wake_up_process(struct task_struct *p)
1688 {
1689 	return try_to_wake_up(p, TASK_ALL, 0);
1690 }
1691 EXPORT_SYMBOL(wake_up_process);
1692 
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1694 {
1695 	return try_to_wake_up(p, state, 0);
1696 }
1697 
1698 /*
1699  * Perform scheduler related setup for a newly forked process p.
1700  * p is forked by current.
1701  *
1702  * __sched_fork() is basic setup used by init_idle() too:
1703  */
1704 static void __sched_fork(struct task_struct *p)
1705 {
1706 	p->on_rq			= 0;
1707 
1708 	p->se.on_rq			= 0;
1709 	p->se.exec_start		= 0;
1710 	p->se.sum_exec_runtime		= 0;
1711 	p->se.prev_sum_exec_runtime	= 0;
1712 	p->se.nr_migrations		= 0;
1713 	p->se.vruntime			= 0;
1714 	INIT_LIST_HEAD(&p->se.group_node);
1715 
1716 #ifdef CONFIG_SCHEDSTATS
1717 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1719 
1720 	INIT_LIST_HEAD(&p->rt.run_list);
1721 
1722 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1724 #endif
1725 }
1726 
1727 /*
1728  * fork()/clone()-time setup:
1729  */
1730 void sched_fork(struct task_struct *p)
1731 {
1732 	unsigned long flags;
1733 	int cpu = get_cpu();
1734 
1735 	__sched_fork(p);
1736 	/*
1737 	 * We mark the process as running here. This guarantees that
1738 	 * nobody will actually run it, and a signal or other external
1739 	 * event cannot wake it up and insert it on the runqueue either.
1740 	 */
1741 	p->state = TASK_RUNNING;
1742 
1743 	/*
1744 	 * Make sure we do not leak PI boosting priority to the child.
1745 	 */
1746 	p->prio = current->normal_prio;
1747 
1748 	/*
1749 	 * Revert to default priority/policy on fork if requested.
1750 	 */
1751 	if (unlikely(p->sched_reset_on_fork)) {
1752 		if (task_has_rt_policy(p)) {
1753 			p->policy = SCHED_NORMAL;
1754 			p->static_prio = NICE_TO_PRIO(0);
1755 			p->rt_priority = 0;
1756 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 			p->static_prio = NICE_TO_PRIO(0);
1758 
1759 		p->prio = p->normal_prio = __normal_prio(p);
1760 		set_load_weight(p);
1761 
1762 		/*
1763 		 * We don't need the reset flag anymore after the fork. It has
1764 		 * fulfilled its duty:
1765 		 */
1766 		p->sched_reset_on_fork = 0;
1767 	}
1768 
1769 	if (!rt_prio(p->prio))
1770 		p->sched_class = &fair_sched_class;
1771 
1772 	if (p->sched_class->task_fork)
1773 		p->sched_class->task_fork(p);
1774 
1775 	/*
1776 	 * The child is not yet in the pid-hash so no cgroup attach races,
1777 	 * and the cgroup is pinned to this child due to cgroup_fork()
1778 	 * is ran before sched_fork().
1779 	 *
1780 	 * Silence PROVE_RCU.
1781 	 */
1782 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1783 	set_task_cpu(p, cpu);
1784 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785 
1786 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787 	if (likely(sched_info_on()))
1788 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1789 #endif
1790 #if defined(CONFIG_SMP)
1791 	p->on_cpu = 0;
1792 #endif
1793 #ifdef CONFIG_PREEMPT_COUNT
1794 	/* Want to start with kernel preemption disabled. */
1795 	task_thread_info(p)->preempt_count = 1;
1796 #endif
1797 #ifdef CONFIG_SMP
1798 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799 #endif
1800 
1801 	put_cpu();
1802 }
1803 
1804 /*
1805  * wake_up_new_task - wake up a newly created task for the first time.
1806  *
1807  * This function will do some initial scheduler statistics housekeeping
1808  * that must be done for every newly created context, then puts the task
1809  * on the runqueue and wakes it.
1810  */
1811 void wake_up_new_task(struct task_struct *p)
1812 {
1813 	unsigned long flags;
1814 	struct rq *rq;
1815 
1816 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1817 #ifdef CONFIG_SMP
1818 	/*
1819 	 * Fork balancing, do it here and not earlier because:
1820 	 *  - cpus_allowed can change in the fork path
1821 	 *  - any previously selected cpu might disappear through hotplug
1822 	 */
1823 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824 #endif
1825 
1826 	rq = __task_rq_lock(p);
1827 	activate_task(rq, p, 0);
1828 	p->on_rq = 1;
1829 	trace_sched_wakeup_new(p, true);
1830 	check_preempt_curr(rq, p, WF_FORK);
1831 #ifdef CONFIG_SMP
1832 	if (p->sched_class->task_woken)
1833 		p->sched_class->task_woken(rq, p);
1834 #endif
1835 	task_rq_unlock(rq, p, &flags);
1836 }
1837 
1838 #ifdef CONFIG_PREEMPT_NOTIFIERS
1839 
1840 /**
1841  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842  * @notifier: notifier struct to register
1843  */
1844 void preempt_notifier_register(struct preempt_notifier *notifier)
1845 {
1846 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847 }
1848 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849 
1850 /**
1851  * preempt_notifier_unregister - no longer interested in preemption notifications
1852  * @notifier: notifier struct to unregister
1853  *
1854  * This is safe to call from within a preemption notifier.
1855  */
1856 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857 {
1858 	hlist_del(&notifier->link);
1859 }
1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861 
1862 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863 {
1864 	struct preempt_notifier *notifier;
1865 	struct hlist_node *node;
1866 
1867 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869 }
1870 
1871 static void
1872 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 				 struct task_struct *next)
1874 {
1875 	struct preempt_notifier *notifier;
1876 	struct hlist_node *node;
1877 
1878 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 		notifier->ops->sched_out(notifier, next);
1880 }
1881 
1882 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1883 
1884 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885 {
1886 }
1887 
1888 static void
1889 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 				 struct task_struct *next)
1891 {
1892 }
1893 
1894 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1895 
1896 /**
1897  * prepare_task_switch - prepare to switch tasks
1898  * @rq: the runqueue preparing to switch
1899  * @prev: the current task that is being switched out
1900  * @next: the task we are going to switch to.
1901  *
1902  * This is called with the rq lock held and interrupts off. It must
1903  * be paired with a subsequent finish_task_switch after the context
1904  * switch.
1905  *
1906  * prepare_task_switch sets up locking and calls architecture specific
1907  * hooks.
1908  */
1909 static inline void
1910 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 		    struct task_struct *next)
1912 {
1913 	sched_info_switch(prev, next);
1914 	perf_event_task_sched_out(prev, next);
1915 	fire_sched_out_preempt_notifiers(prev, next);
1916 	prepare_lock_switch(rq, next);
1917 	prepare_arch_switch(next);
1918 	trace_sched_switch(prev, next);
1919 }
1920 
1921 /**
1922  * finish_task_switch - clean up after a task-switch
1923  * @rq: runqueue associated with task-switch
1924  * @prev: the thread we just switched away from.
1925  *
1926  * finish_task_switch must be called after the context switch, paired
1927  * with a prepare_task_switch call before the context switch.
1928  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929  * and do any other architecture-specific cleanup actions.
1930  *
1931  * Note that we may have delayed dropping an mm in context_switch(). If
1932  * so, we finish that here outside of the runqueue lock. (Doing it
1933  * with the lock held can cause deadlocks; see schedule() for
1934  * details.)
1935  */
1936 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1937 	__releases(rq->lock)
1938 {
1939 	struct mm_struct *mm = rq->prev_mm;
1940 	long prev_state;
1941 
1942 	rq->prev_mm = NULL;
1943 
1944 	/*
1945 	 * A task struct has one reference for the use as "current".
1946 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947 	 * schedule one last time. The schedule call will never return, and
1948 	 * the scheduled task must drop that reference.
1949 	 * The test for TASK_DEAD must occur while the runqueue locks are
1950 	 * still held, otherwise prev could be scheduled on another cpu, die
1951 	 * there before we look at prev->state, and then the reference would
1952 	 * be dropped twice.
1953 	 *		Manfred Spraul <manfred@colorfullife.com>
1954 	 */
1955 	prev_state = prev->state;
1956 	finish_arch_switch(prev);
1957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 	local_irq_disable();
1959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960 	perf_event_task_sched_in(prev, current);
1961 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 	local_irq_enable();
1963 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964 	finish_lock_switch(rq, prev);
1965 	finish_arch_post_lock_switch();
1966 
1967 	fire_sched_in_preempt_notifiers(current);
1968 	if (mm)
1969 		mmdrop(mm);
1970 	if (unlikely(prev_state == TASK_DEAD)) {
1971 		/*
1972 		 * Remove function-return probe instances associated with this
1973 		 * task and put them back on the free list.
1974 		 */
1975 		kprobe_flush_task(prev);
1976 		put_task_struct(prev);
1977 	}
1978 }
1979 
1980 #ifdef CONFIG_SMP
1981 
1982 /* assumes rq->lock is held */
1983 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984 {
1985 	if (prev->sched_class->pre_schedule)
1986 		prev->sched_class->pre_schedule(rq, prev);
1987 }
1988 
1989 /* rq->lock is NOT held, but preemption is disabled */
1990 static inline void post_schedule(struct rq *rq)
1991 {
1992 	if (rq->post_schedule) {
1993 		unsigned long flags;
1994 
1995 		raw_spin_lock_irqsave(&rq->lock, flags);
1996 		if (rq->curr->sched_class->post_schedule)
1997 			rq->curr->sched_class->post_schedule(rq);
1998 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1999 
2000 		rq->post_schedule = 0;
2001 	}
2002 }
2003 
2004 #else
2005 
2006 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007 {
2008 }
2009 
2010 static inline void post_schedule(struct rq *rq)
2011 {
2012 }
2013 
2014 #endif
2015 
2016 /**
2017  * schedule_tail - first thing a freshly forked thread must call.
2018  * @prev: the thread we just switched away from.
2019  */
2020 asmlinkage void schedule_tail(struct task_struct *prev)
2021 	__releases(rq->lock)
2022 {
2023 	struct rq *rq = this_rq();
2024 
2025 	finish_task_switch(rq, prev);
2026 
2027 	/*
2028 	 * FIXME: do we need to worry about rq being invalidated by the
2029 	 * task_switch?
2030 	 */
2031 	post_schedule(rq);
2032 
2033 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 	/* In this case, finish_task_switch does not reenable preemption */
2035 	preempt_enable();
2036 #endif
2037 	if (current->set_child_tid)
2038 		put_user(task_pid_vnr(current), current->set_child_tid);
2039 }
2040 
2041 /*
2042  * context_switch - switch to the new MM and the new
2043  * thread's register state.
2044  */
2045 static inline void
2046 context_switch(struct rq *rq, struct task_struct *prev,
2047 	       struct task_struct *next)
2048 {
2049 	struct mm_struct *mm, *oldmm;
2050 
2051 	prepare_task_switch(rq, prev, next);
2052 
2053 	mm = next->mm;
2054 	oldmm = prev->active_mm;
2055 	/*
2056 	 * For paravirt, this is coupled with an exit in switch_to to
2057 	 * combine the page table reload and the switch backend into
2058 	 * one hypercall.
2059 	 */
2060 	arch_start_context_switch(prev);
2061 
2062 	if (!mm) {
2063 		next->active_mm = oldmm;
2064 		atomic_inc(&oldmm->mm_count);
2065 		enter_lazy_tlb(oldmm, next);
2066 	} else
2067 		switch_mm(oldmm, mm, next);
2068 
2069 	if (!prev->mm) {
2070 		prev->active_mm = NULL;
2071 		rq->prev_mm = oldmm;
2072 	}
2073 	/*
2074 	 * Since the runqueue lock will be released by the next
2075 	 * task (which is an invalid locking op but in the case
2076 	 * of the scheduler it's an obvious special-case), so we
2077 	 * do an early lockdep release here:
2078 	 */
2079 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081 #endif
2082 
2083 	/* Here we just switch the register state and the stack. */
2084 	rcu_switch_from(prev);
2085 	switch_to(prev, next, prev);
2086 
2087 	barrier();
2088 	/*
2089 	 * this_rq must be evaluated again because prev may have moved
2090 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2091 	 * frame will be invalid.
2092 	 */
2093 	finish_task_switch(this_rq(), prev);
2094 }
2095 
2096 /*
2097  * nr_running, nr_uninterruptible and nr_context_switches:
2098  *
2099  * externally visible scheduler statistics: current number of runnable
2100  * threads, current number of uninterruptible-sleeping threads, total
2101  * number of context switches performed since bootup.
2102  */
2103 unsigned long nr_running(void)
2104 {
2105 	unsigned long i, sum = 0;
2106 
2107 	for_each_online_cpu(i)
2108 		sum += cpu_rq(i)->nr_running;
2109 
2110 	return sum;
2111 }
2112 
2113 unsigned long nr_uninterruptible(void)
2114 {
2115 	unsigned long i, sum = 0;
2116 
2117 	for_each_possible_cpu(i)
2118 		sum += cpu_rq(i)->nr_uninterruptible;
2119 
2120 	/*
2121 	 * Since we read the counters lockless, it might be slightly
2122 	 * inaccurate. Do not allow it to go below zero though:
2123 	 */
2124 	if (unlikely((long)sum < 0))
2125 		sum = 0;
2126 
2127 	return sum;
2128 }
2129 
2130 unsigned long long nr_context_switches(void)
2131 {
2132 	int i;
2133 	unsigned long long sum = 0;
2134 
2135 	for_each_possible_cpu(i)
2136 		sum += cpu_rq(i)->nr_switches;
2137 
2138 	return sum;
2139 }
2140 
2141 unsigned long nr_iowait(void)
2142 {
2143 	unsigned long i, sum = 0;
2144 
2145 	for_each_possible_cpu(i)
2146 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2147 
2148 	return sum;
2149 }
2150 
2151 unsigned long nr_iowait_cpu(int cpu)
2152 {
2153 	struct rq *this = cpu_rq(cpu);
2154 	return atomic_read(&this->nr_iowait);
2155 }
2156 
2157 unsigned long this_cpu_load(void)
2158 {
2159 	struct rq *this = this_rq();
2160 	return this->cpu_load[0];
2161 }
2162 
2163 
2164 /* Variables and functions for calc_load */
2165 static atomic_long_t calc_load_tasks;
2166 static unsigned long calc_load_update;
2167 unsigned long avenrun[3];
2168 EXPORT_SYMBOL(avenrun);
2169 
2170 static long calc_load_fold_active(struct rq *this_rq)
2171 {
2172 	long nr_active, delta = 0;
2173 
2174 	nr_active = this_rq->nr_running;
2175 	nr_active += (long) this_rq->nr_uninterruptible;
2176 
2177 	if (nr_active != this_rq->calc_load_active) {
2178 		delta = nr_active - this_rq->calc_load_active;
2179 		this_rq->calc_load_active = nr_active;
2180 	}
2181 
2182 	return delta;
2183 }
2184 
2185 static unsigned long
2186 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2187 {
2188 	load *= exp;
2189 	load += active * (FIXED_1 - exp);
2190 	load += 1UL << (FSHIFT - 1);
2191 	return load >> FSHIFT;
2192 }
2193 
2194 #ifdef CONFIG_NO_HZ
2195 /*
2196  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2197  *
2198  * When making the ILB scale, we should try to pull this in as well.
2199  */
2200 static atomic_long_t calc_load_tasks_idle;
2201 
2202 void calc_load_account_idle(struct rq *this_rq)
2203 {
2204 	long delta;
2205 
2206 	delta = calc_load_fold_active(this_rq);
2207 	if (delta)
2208 		atomic_long_add(delta, &calc_load_tasks_idle);
2209 }
2210 
2211 static long calc_load_fold_idle(void)
2212 {
2213 	long delta = 0;
2214 
2215 	/*
2216 	 * Its got a race, we don't care...
2217 	 */
2218 	if (atomic_long_read(&calc_load_tasks_idle))
2219 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2220 
2221 	return delta;
2222 }
2223 
2224 /**
2225  * fixed_power_int - compute: x^n, in O(log n) time
2226  *
2227  * @x:         base of the power
2228  * @frac_bits: fractional bits of @x
2229  * @n:         power to raise @x to.
2230  *
2231  * By exploiting the relation between the definition of the natural power
2232  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2233  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2234  * (where: n_i \elem {0, 1}, the binary vector representing n),
2235  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2236  * of course trivially computable in O(log_2 n), the length of our binary
2237  * vector.
2238  */
2239 static unsigned long
2240 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2241 {
2242 	unsigned long result = 1UL << frac_bits;
2243 
2244 	if (n) for (;;) {
2245 		if (n & 1) {
2246 			result *= x;
2247 			result += 1UL << (frac_bits - 1);
2248 			result >>= frac_bits;
2249 		}
2250 		n >>= 1;
2251 		if (!n)
2252 			break;
2253 		x *= x;
2254 		x += 1UL << (frac_bits - 1);
2255 		x >>= frac_bits;
2256 	}
2257 
2258 	return result;
2259 }
2260 
2261 /*
2262  * a1 = a0 * e + a * (1 - e)
2263  *
2264  * a2 = a1 * e + a * (1 - e)
2265  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2266  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2267  *
2268  * a3 = a2 * e + a * (1 - e)
2269  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2270  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2271  *
2272  *  ...
2273  *
2274  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2275  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2276  *    = a0 * e^n + a * (1 - e^n)
2277  *
2278  * [1] application of the geometric series:
2279  *
2280  *              n         1 - x^(n+1)
2281  *     S_n := \Sum x^i = -------------
2282  *             i=0          1 - x
2283  */
2284 static unsigned long
2285 calc_load_n(unsigned long load, unsigned long exp,
2286 	    unsigned long active, unsigned int n)
2287 {
2288 
2289 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2290 }
2291 
2292 /*
2293  * NO_HZ can leave us missing all per-cpu ticks calling
2294  * calc_load_account_active(), but since an idle CPU folds its delta into
2295  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2296  * in the pending idle delta if our idle period crossed a load cycle boundary.
2297  *
2298  * Once we've updated the global active value, we need to apply the exponential
2299  * weights adjusted to the number of cycles missed.
2300  */
2301 static void calc_global_nohz(void)
2302 {
2303 	long delta, active, n;
2304 
2305 	/*
2306 	 * If we crossed a calc_load_update boundary, make sure to fold
2307 	 * any pending idle changes, the respective CPUs might have
2308 	 * missed the tick driven calc_load_account_active() update
2309 	 * due to NO_HZ.
2310 	 */
2311 	delta = calc_load_fold_idle();
2312 	if (delta)
2313 		atomic_long_add(delta, &calc_load_tasks);
2314 
2315 	/*
2316 	 * It could be the one fold was all it took, we done!
2317 	 */
2318 	if (time_before(jiffies, calc_load_update + 10))
2319 		return;
2320 
2321 	/*
2322 	 * Catch-up, fold however many we are behind still
2323 	 */
2324 	delta = jiffies - calc_load_update - 10;
2325 	n = 1 + (delta / LOAD_FREQ);
2326 
2327 	active = atomic_long_read(&calc_load_tasks);
2328 	active = active > 0 ? active * FIXED_1 : 0;
2329 
2330 	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2331 	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2332 	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2333 
2334 	calc_load_update += n * LOAD_FREQ;
2335 }
2336 #else
2337 void calc_load_account_idle(struct rq *this_rq)
2338 {
2339 }
2340 
2341 static inline long calc_load_fold_idle(void)
2342 {
2343 	return 0;
2344 }
2345 
2346 static void calc_global_nohz(void)
2347 {
2348 }
2349 #endif
2350 
2351 /**
2352  * get_avenrun - get the load average array
2353  * @loads:	pointer to dest load array
2354  * @offset:	offset to add
2355  * @shift:	shift count to shift the result left
2356  *
2357  * These values are estimates at best, so no need for locking.
2358  */
2359 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2360 {
2361 	loads[0] = (avenrun[0] + offset) << shift;
2362 	loads[1] = (avenrun[1] + offset) << shift;
2363 	loads[2] = (avenrun[2] + offset) << shift;
2364 }
2365 
2366 /*
2367  * calc_load - update the avenrun load estimates 10 ticks after the
2368  * CPUs have updated calc_load_tasks.
2369  */
2370 void calc_global_load(unsigned long ticks)
2371 {
2372 	long active;
2373 
2374 	if (time_before(jiffies, calc_load_update + 10))
2375 		return;
2376 
2377 	active = atomic_long_read(&calc_load_tasks);
2378 	active = active > 0 ? active * FIXED_1 : 0;
2379 
2380 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2381 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2382 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2383 
2384 	calc_load_update += LOAD_FREQ;
2385 
2386 	/*
2387 	 * Account one period with whatever state we found before
2388 	 * folding in the nohz state and ageing the entire idle period.
2389 	 *
2390 	 * This avoids loosing a sample when we go idle between
2391 	 * calc_load_account_active() (10 ticks ago) and now and thus
2392 	 * under-accounting.
2393 	 */
2394 	calc_global_nohz();
2395 }
2396 
2397 /*
2398  * Called from update_cpu_load() to periodically update this CPU's
2399  * active count.
2400  */
2401 static void calc_load_account_active(struct rq *this_rq)
2402 {
2403 	long delta;
2404 
2405 	if (time_before(jiffies, this_rq->calc_load_update))
2406 		return;
2407 
2408 	delta  = calc_load_fold_active(this_rq);
2409 	delta += calc_load_fold_idle();
2410 	if (delta)
2411 		atomic_long_add(delta, &calc_load_tasks);
2412 
2413 	this_rq->calc_load_update += LOAD_FREQ;
2414 }
2415 
2416 /*
2417  * The exact cpuload at various idx values, calculated at every tick would be
2418  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2419  *
2420  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2421  * on nth tick when cpu may be busy, then we have:
2422  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2424  *
2425  * decay_load_missed() below does efficient calculation of
2426  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2427  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2428  *
2429  * The calculation is approximated on a 128 point scale.
2430  * degrade_zero_ticks is the number of ticks after which load at any
2431  * particular idx is approximated to be zero.
2432  * degrade_factor is a precomputed table, a row for each load idx.
2433  * Each column corresponds to degradation factor for a power of two ticks,
2434  * based on 128 point scale.
2435  * Example:
2436  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2437  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2438  *
2439  * With this power of 2 load factors, we can degrade the load n times
2440  * by looking at 1 bits in n and doing as many mult/shift instead of
2441  * n mult/shifts needed by the exact degradation.
2442  */
2443 #define DEGRADE_SHIFT		7
2444 static const unsigned char
2445 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2446 static const unsigned char
2447 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2448 					{0, 0, 0, 0, 0, 0, 0, 0},
2449 					{64, 32, 8, 0, 0, 0, 0, 0},
2450 					{96, 72, 40, 12, 1, 0, 0},
2451 					{112, 98, 75, 43, 15, 1, 0},
2452 					{120, 112, 98, 76, 45, 16, 2} };
2453 
2454 /*
2455  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2456  * would be when CPU is idle and so we just decay the old load without
2457  * adding any new load.
2458  */
2459 static unsigned long
2460 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2461 {
2462 	int j = 0;
2463 
2464 	if (!missed_updates)
2465 		return load;
2466 
2467 	if (missed_updates >= degrade_zero_ticks[idx])
2468 		return 0;
2469 
2470 	if (idx == 1)
2471 		return load >> missed_updates;
2472 
2473 	while (missed_updates) {
2474 		if (missed_updates % 2)
2475 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2476 
2477 		missed_updates >>= 1;
2478 		j++;
2479 	}
2480 	return load;
2481 }
2482 
2483 /*
2484  * Update rq->cpu_load[] statistics. This function is usually called every
2485  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2486  * every tick. We fix it up based on jiffies.
2487  */
2488 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2489 			      unsigned long pending_updates)
2490 {
2491 	int i, scale;
2492 
2493 	this_rq->nr_load_updates++;
2494 
2495 	/* Update our load: */
2496 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2497 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2498 		unsigned long old_load, new_load;
2499 
2500 		/* scale is effectively 1 << i now, and >> i divides by scale */
2501 
2502 		old_load = this_rq->cpu_load[i];
2503 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2504 		new_load = this_load;
2505 		/*
2506 		 * Round up the averaging division if load is increasing. This
2507 		 * prevents us from getting stuck on 9 if the load is 10, for
2508 		 * example.
2509 		 */
2510 		if (new_load > old_load)
2511 			new_load += scale - 1;
2512 
2513 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2514 	}
2515 
2516 	sched_avg_update(this_rq);
2517 }
2518 
2519 #ifdef CONFIG_NO_HZ
2520 /*
2521  * There is no sane way to deal with nohz on smp when using jiffies because the
2522  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2523  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2524  *
2525  * Therefore we cannot use the delta approach from the regular tick since that
2526  * would seriously skew the load calculation. However we'll make do for those
2527  * updates happening while idle (nohz_idle_balance) or coming out of idle
2528  * (tick_nohz_idle_exit).
2529  *
2530  * This means we might still be one tick off for nohz periods.
2531  */
2532 
2533 /*
2534  * Called from nohz_idle_balance() to update the load ratings before doing the
2535  * idle balance.
2536  */
2537 void update_idle_cpu_load(struct rq *this_rq)
2538 {
2539 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2540 	unsigned long load = this_rq->load.weight;
2541 	unsigned long pending_updates;
2542 
2543 	/*
2544 	 * bail if there's load or we're actually up-to-date.
2545 	 */
2546 	if (load || curr_jiffies == this_rq->last_load_update_tick)
2547 		return;
2548 
2549 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2550 	this_rq->last_load_update_tick = curr_jiffies;
2551 
2552 	__update_cpu_load(this_rq, load, pending_updates);
2553 }
2554 
2555 /*
2556  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2557  */
2558 void update_cpu_load_nohz(void)
2559 {
2560 	struct rq *this_rq = this_rq();
2561 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2562 	unsigned long pending_updates;
2563 
2564 	if (curr_jiffies == this_rq->last_load_update_tick)
2565 		return;
2566 
2567 	raw_spin_lock(&this_rq->lock);
2568 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2569 	if (pending_updates) {
2570 		this_rq->last_load_update_tick = curr_jiffies;
2571 		/*
2572 		 * We were idle, this means load 0, the current load might be
2573 		 * !0 due to remote wakeups and the sort.
2574 		 */
2575 		__update_cpu_load(this_rq, 0, pending_updates);
2576 	}
2577 	raw_spin_unlock(&this_rq->lock);
2578 }
2579 #endif /* CONFIG_NO_HZ */
2580 
2581 /*
2582  * Called from scheduler_tick()
2583  */
2584 static void update_cpu_load_active(struct rq *this_rq)
2585 {
2586 	/*
2587 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2588 	 */
2589 	this_rq->last_load_update_tick = jiffies;
2590 	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2591 
2592 	calc_load_account_active(this_rq);
2593 }
2594 
2595 #ifdef CONFIG_SMP
2596 
2597 /*
2598  * sched_exec - execve() is a valuable balancing opportunity, because at
2599  * this point the task has the smallest effective memory and cache footprint.
2600  */
2601 void sched_exec(void)
2602 {
2603 	struct task_struct *p = current;
2604 	unsigned long flags;
2605 	int dest_cpu;
2606 
2607 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2608 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2609 	if (dest_cpu == smp_processor_id())
2610 		goto unlock;
2611 
2612 	if (likely(cpu_active(dest_cpu))) {
2613 		struct migration_arg arg = { p, dest_cpu };
2614 
2615 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2616 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2617 		return;
2618 	}
2619 unlock:
2620 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2621 }
2622 
2623 #endif
2624 
2625 DEFINE_PER_CPU(struct kernel_stat, kstat);
2626 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2627 
2628 EXPORT_PER_CPU_SYMBOL(kstat);
2629 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2630 
2631 /*
2632  * Return any ns on the sched_clock that have not yet been accounted in
2633  * @p in case that task is currently running.
2634  *
2635  * Called with task_rq_lock() held on @rq.
2636  */
2637 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2638 {
2639 	u64 ns = 0;
2640 
2641 	if (task_current(rq, p)) {
2642 		update_rq_clock(rq);
2643 		ns = rq->clock_task - p->se.exec_start;
2644 		if ((s64)ns < 0)
2645 			ns = 0;
2646 	}
2647 
2648 	return ns;
2649 }
2650 
2651 unsigned long long task_delta_exec(struct task_struct *p)
2652 {
2653 	unsigned long flags;
2654 	struct rq *rq;
2655 	u64 ns = 0;
2656 
2657 	rq = task_rq_lock(p, &flags);
2658 	ns = do_task_delta_exec(p, rq);
2659 	task_rq_unlock(rq, p, &flags);
2660 
2661 	return ns;
2662 }
2663 
2664 /*
2665  * Return accounted runtime for the task.
2666  * In case the task is currently running, return the runtime plus current's
2667  * pending runtime that have not been accounted yet.
2668  */
2669 unsigned long long task_sched_runtime(struct task_struct *p)
2670 {
2671 	unsigned long flags;
2672 	struct rq *rq;
2673 	u64 ns = 0;
2674 
2675 	rq = task_rq_lock(p, &flags);
2676 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2677 	task_rq_unlock(rq, p, &flags);
2678 
2679 	return ns;
2680 }
2681 
2682 #ifdef CONFIG_CGROUP_CPUACCT
2683 struct cgroup_subsys cpuacct_subsys;
2684 struct cpuacct root_cpuacct;
2685 #endif
2686 
2687 static inline void task_group_account_field(struct task_struct *p, int index,
2688 					    u64 tmp)
2689 {
2690 #ifdef CONFIG_CGROUP_CPUACCT
2691 	struct kernel_cpustat *kcpustat;
2692 	struct cpuacct *ca;
2693 #endif
2694 	/*
2695 	 * Since all updates are sure to touch the root cgroup, we
2696 	 * get ourselves ahead and touch it first. If the root cgroup
2697 	 * is the only cgroup, then nothing else should be necessary.
2698 	 *
2699 	 */
2700 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2701 
2702 #ifdef CONFIG_CGROUP_CPUACCT
2703 	if (unlikely(!cpuacct_subsys.active))
2704 		return;
2705 
2706 	rcu_read_lock();
2707 	ca = task_ca(p);
2708 	while (ca && (ca != &root_cpuacct)) {
2709 		kcpustat = this_cpu_ptr(ca->cpustat);
2710 		kcpustat->cpustat[index] += tmp;
2711 		ca = parent_ca(ca);
2712 	}
2713 	rcu_read_unlock();
2714 #endif
2715 }
2716 
2717 
2718 /*
2719  * Account user cpu time to a process.
2720  * @p: the process that the cpu time gets accounted to
2721  * @cputime: the cpu time spent in user space since the last update
2722  * @cputime_scaled: cputime scaled by cpu frequency
2723  */
2724 void account_user_time(struct task_struct *p, cputime_t cputime,
2725 		       cputime_t cputime_scaled)
2726 {
2727 	int index;
2728 
2729 	/* Add user time to process. */
2730 	p->utime += cputime;
2731 	p->utimescaled += cputime_scaled;
2732 	account_group_user_time(p, cputime);
2733 
2734 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2735 
2736 	/* Add user time to cpustat. */
2737 	task_group_account_field(p, index, (__force u64) cputime);
2738 
2739 	/* Account for user time used */
2740 	acct_update_integrals(p);
2741 }
2742 
2743 /*
2744  * Account guest cpu time to a process.
2745  * @p: the process that the cpu time gets accounted to
2746  * @cputime: the cpu time spent in virtual machine since the last update
2747  * @cputime_scaled: cputime scaled by cpu frequency
2748  */
2749 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2750 			       cputime_t cputime_scaled)
2751 {
2752 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2753 
2754 	/* Add guest time to process. */
2755 	p->utime += cputime;
2756 	p->utimescaled += cputime_scaled;
2757 	account_group_user_time(p, cputime);
2758 	p->gtime += cputime;
2759 
2760 	/* Add guest time to cpustat. */
2761 	if (TASK_NICE(p) > 0) {
2762 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2763 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2764 	} else {
2765 		cpustat[CPUTIME_USER] += (__force u64) cputime;
2766 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2767 	}
2768 }
2769 
2770 /*
2771  * Account system cpu time to a process and desired cpustat field
2772  * @p: the process that the cpu time gets accounted to
2773  * @cputime: the cpu time spent in kernel space since the last update
2774  * @cputime_scaled: cputime scaled by cpu frequency
2775  * @target_cputime64: pointer to cpustat field that has to be updated
2776  */
2777 static inline
2778 void __account_system_time(struct task_struct *p, cputime_t cputime,
2779 			cputime_t cputime_scaled, int index)
2780 {
2781 	/* Add system time to process. */
2782 	p->stime += cputime;
2783 	p->stimescaled += cputime_scaled;
2784 	account_group_system_time(p, cputime);
2785 
2786 	/* Add system time to cpustat. */
2787 	task_group_account_field(p, index, (__force u64) cputime);
2788 
2789 	/* Account for system time used */
2790 	acct_update_integrals(p);
2791 }
2792 
2793 /*
2794  * Account system cpu time to a process.
2795  * @p: the process that the cpu time gets accounted to
2796  * @hardirq_offset: the offset to subtract from hardirq_count()
2797  * @cputime: the cpu time spent in kernel space since the last update
2798  * @cputime_scaled: cputime scaled by cpu frequency
2799  */
2800 void account_system_time(struct task_struct *p, int hardirq_offset,
2801 			 cputime_t cputime, cputime_t cputime_scaled)
2802 {
2803 	int index;
2804 
2805 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2806 		account_guest_time(p, cputime, cputime_scaled);
2807 		return;
2808 	}
2809 
2810 	if (hardirq_count() - hardirq_offset)
2811 		index = CPUTIME_IRQ;
2812 	else if (in_serving_softirq())
2813 		index = CPUTIME_SOFTIRQ;
2814 	else
2815 		index = CPUTIME_SYSTEM;
2816 
2817 	__account_system_time(p, cputime, cputime_scaled, index);
2818 }
2819 
2820 /*
2821  * Account for involuntary wait time.
2822  * @cputime: the cpu time spent in involuntary wait
2823  */
2824 void account_steal_time(cputime_t cputime)
2825 {
2826 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2827 
2828 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2829 }
2830 
2831 /*
2832  * Account for idle time.
2833  * @cputime: the cpu time spent in idle wait
2834  */
2835 void account_idle_time(cputime_t cputime)
2836 {
2837 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2838 	struct rq *rq = this_rq();
2839 
2840 	if (atomic_read(&rq->nr_iowait) > 0)
2841 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2842 	else
2843 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2844 }
2845 
2846 static __always_inline bool steal_account_process_tick(void)
2847 {
2848 #ifdef CONFIG_PARAVIRT
2849 	if (static_key_false(&paravirt_steal_enabled)) {
2850 		u64 steal, st = 0;
2851 
2852 		steal = paravirt_steal_clock(smp_processor_id());
2853 		steal -= this_rq()->prev_steal_time;
2854 
2855 		st = steal_ticks(steal);
2856 		this_rq()->prev_steal_time += st * TICK_NSEC;
2857 
2858 		account_steal_time(st);
2859 		return st;
2860 	}
2861 #endif
2862 	return false;
2863 }
2864 
2865 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2866 
2867 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2868 /*
2869  * Account a tick to a process and cpustat
2870  * @p: the process that the cpu time gets accounted to
2871  * @user_tick: is the tick from userspace
2872  * @rq: the pointer to rq
2873  *
2874  * Tick demultiplexing follows the order
2875  * - pending hardirq update
2876  * - pending softirq update
2877  * - user_time
2878  * - idle_time
2879  * - system time
2880  *   - check for guest_time
2881  *   - else account as system_time
2882  *
2883  * Check for hardirq is done both for system and user time as there is
2884  * no timer going off while we are on hardirq and hence we may never get an
2885  * opportunity to update it solely in system time.
2886  * p->stime and friends are only updated on system time and not on irq
2887  * softirq as those do not count in task exec_runtime any more.
2888  */
2889 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2890 						struct rq *rq)
2891 {
2892 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2893 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2894 
2895 	if (steal_account_process_tick())
2896 		return;
2897 
2898 	if (irqtime_account_hi_update()) {
2899 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2900 	} else if (irqtime_account_si_update()) {
2901 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2902 	} else if (this_cpu_ksoftirqd() == p) {
2903 		/*
2904 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2905 		 * So, we have to handle it separately here.
2906 		 * Also, p->stime needs to be updated for ksoftirqd.
2907 		 */
2908 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2909 					CPUTIME_SOFTIRQ);
2910 	} else if (user_tick) {
2911 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2912 	} else if (p == rq->idle) {
2913 		account_idle_time(cputime_one_jiffy);
2914 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2915 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2916 	} else {
2917 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2918 					CPUTIME_SYSTEM);
2919 	}
2920 }
2921 
2922 static void irqtime_account_idle_ticks(int ticks)
2923 {
2924 	int i;
2925 	struct rq *rq = this_rq();
2926 
2927 	for (i = 0; i < ticks; i++)
2928 		irqtime_account_process_tick(current, 0, rq);
2929 }
2930 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2931 static void irqtime_account_idle_ticks(int ticks) {}
2932 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2933 						struct rq *rq) {}
2934 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2935 
2936 /*
2937  * Account a single tick of cpu time.
2938  * @p: the process that the cpu time gets accounted to
2939  * @user_tick: indicates if the tick is a user or a system tick
2940  */
2941 void account_process_tick(struct task_struct *p, int user_tick)
2942 {
2943 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2944 	struct rq *rq = this_rq();
2945 
2946 	if (sched_clock_irqtime) {
2947 		irqtime_account_process_tick(p, user_tick, rq);
2948 		return;
2949 	}
2950 
2951 	if (steal_account_process_tick())
2952 		return;
2953 
2954 	if (user_tick)
2955 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2956 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2957 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2958 				    one_jiffy_scaled);
2959 	else
2960 		account_idle_time(cputime_one_jiffy);
2961 }
2962 
2963 /*
2964  * Account multiple ticks of steal time.
2965  * @p: the process from which the cpu time has been stolen
2966  * @ticks: number of stolen ticks
2967  */
2968 void account_steal_ticks(unsigned long ticks)
2969 {
2970 	account_steal_time(jiffies_to_cputime(ticks));
2971 }
2972 
2973 /*
2974  * Account multiple ticks of idle time.
2975  * @ticks: number of stolen ticks
2976  */
2977 void account_idle_ticks(unsigned long ticks)
2978 {
2979 
2980 	if (sched_clock_irqtime) {
2981 		irqtime_account_idle_ticks(ticks);
2982 		return;
2983 	}
2984 
2985 	account_idle_time(jiffies_to_cputime(ticks));
2986 }
2987 
2988 #endif
2989 
2990 /*
2991  * Use precise platform statistics if available:
2992  */
2993 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2994 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2995 {
2996 	*ut = p->utime;
2997 	*st = p->stime;
2998 }
2999 
3000 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3001 {
3002 	struct task_cputime cputime;
3003 
3004 	thread_group_cputime(p, &cputime);
3005 
3006 	*ut = cputime.utime;
3007 	*st = cputime.stime;
3008 }
3009 #else
3010 
3011 #ifndef nsecs_to_cputime
3012 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3013 #endif
3014 
3015 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3016 {
3017 	cputime_t rtime, utime = p->utime, total = utime + p->stime;
3018 
3019 	/*
3020 	 * Use CFS's precise accounting:
3021 	 */
3022 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3023 
3024 	if (total) {
3025 		u64 temp = (__force u64) rtime;
3026 
3027 		temp *= (__force u64) utime;
3028 		do_div(temp, (__force u32) total);
3029 		utime = (__force cputime_t) temp;
3030 	} else
3031 		utime = rtime;
3032 
3033 	/*
3034 	 * Compare with previous values, to keep monotonicity:
3035 	 */
3036 	p->prev_utime = max(p->prev_utime, utime);
3037 	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3038 
3039 	*ut = p->prev_utime;
3040 	*st = p->prev_stime;
3041 }
3042 
3043 /*
3044  * Must be called with siglock held.
3045  */
3046 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3047 {
3048 	struct signal_struct *sig = p->signal;
3049 	struct task_cputime cputime;
3050 	cputime_t rtime, utime, total;
3051 
3052 	thread_group_cputime(p, &cputime);
3053 
3054 	total = cputime.utime + cputime.stime;
3055 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3056 
3057 	if (total) {
3058 		u64 temp = (__force u64) rtime;
3059 
3060 		temp *= (__force u64) cputime.utime;
3061 		do_div(temp, (__force u32) total);
3062 		utime = (__force cputime_t) temp;
3063 	} else
3064 		utime = rtime;
3065 
3066 	sig->prev_utime = max(sig->prev_utime, utime);
3067 	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3068 
3069 	*ut = sig->prev_utime;
3070 	*st = sig->prev_stime;
3071 }
3072 #endif
3073 
3074 /*
3075  * This function gets called by the timer code, with HZ frequency.
3076  * We call it with interrupts disabled.
3077  */
3078 void scheduler_tick(void)
3079 {
3080 	int cpu = smp_processor_id();
3081 	struct rq *rq = cpu_rq(cpu);
3082 	struct task_struct *curr = rq->curr;
3083 
3084 	sched_clock_tick();
3085 
3086 	raw_spin_lock(&rq->lock);
3087 	update_rq_clock(rq);
3088 	update_cpu_load_active(rq);
3089 	curr->sched_class->task_tick(rq, curr, 0);
3090 	raw_spin_unlock(&rq->lock);
3091 
3092 	perf_event_task_tick();
3093 
3094 #ifdef CONFIG_SMP
3095 	rq->idle_balance = idle_cpu(cpu);
3096 	trigger_load_balance(rq, cpu);
3097 #endif
3098 }
3099 
3100 notrace unsigned long get_parent_ip(unsigned long addr)
3101 {
3102 	if (in_lock_functions(addr)) {
3103 		addr = CALLER_ADDR2;
3104 		if (in_lock_functions(addr))
3105 			addr = CALLER_ADDR3;
3106 	}
3107 	return addr;
3108 }
3109 
3110 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3111 				defined(CONFIG_PREEMPT_TRACER))
3112 
3113 void __kprobes add_preempt_count(int val)
3114 {
3115 #ifdef CONFIG_DEBUG_PREEMPT
3116 	/*
3117 	 * Underflow?
3118 	 */
3119 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3120 		return;
3121 #endif
3122 	preempt_count() += val;
3123 #ifdef CONFIG_DEBUG_PREEMPT
3124 	/*
3125 	 * Spinlock count overflowing soon?
3126 	 */
3127 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3128 				PREEMPT_MASK - 10);
3129 #endif
3130 	if (preempt_count() == val)
3131 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3132 }
3133 EXPORT_SYMBOL(add_preempt_count);
3134 
3135 void __kprobes sub_preempt_count(int val)
3136 {
3137 #ifdef CONFIG_DEBUG_PREEMPT
3138 	/*
3139 	 * Underflow?
3140 	 */
3141 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3142 		return;
3143 	/*
3144 	 * Is the spinlock portion underflowing?
3145 	 */
3146 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3147 			!(preempt_count() & PREEMPT_MASK)))
3148 		return;
3149 #endif
3150 
3151 	if (preempt_count() == val)
3152 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3153 	preempt_count() -= val;
3154 }
3155 EXPORT_SYMBOL(sub_preempt_count);
3156 
3157 #endif
3158 
3159 /*
3160  * Print scheduling while atomic bug:
3161  */
3162 static noinline void __schedule_bug(struct task_struct *prev)
3163 {
3164 	if (oops_in_progress)
3165 		return;
3166 
3167 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3168 		prev->comm, prev->pid, preempt_count());
3169 
3170 	debug_show_held_locks(prev);
3171 	print_modules();
3172 	if (irqs_disabled())
3173 		print_irqtrace_events(prev);
3174 	dump_stack();
3175 	add_taint(TAINT_WARN);
3176 }
3177 
3178 /*
3179  * Various schedule()-time debugging checks and statistics:
3180  */
3181 static inline void schedule_debug(struct task_struct *prev)
3182 {
3183 	/*
3184 	 * Test if we are atomic. Since do_exit() needs to call into
3185 	 * schedule() atomically, we ignore that path for now.
3186 	 * Otherwise, whine if we are scheduling when we should not be.
3187 	 */
3188 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3189 		__schedule_bug(prev);
3190 	rcu_sleep_check();
3191 
3192 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3193 
3194 	schedstat_inc(this_rq(), sched_count);
3195 }
3196 
3197 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3198 {
3199 	if (prev->on_rq || rq->skip_clock_update < 0)
3200 		update_rq_clock(rq);
3201 	prev->sched_class->put_prev_task(rq, prev);
3202 }
3203 
3204 /*
3205  * Pick up the highest-prio task:
3206  */
3207 static inline struct task_struct *
3208 pick_next_task(struct rq *rq)
3209 {
3210 	const struct sched_class *class;
3211 	struct task_struct *p;
3212 
3213 	/*
3214 	 * Optimization: we know that if all tasks are in
3215 	 * the fair class we can call that function directly:
3216 	 */
3217 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3218 		p = fair_sched_class.pick_next_task(rq);
3219 		if (likely(p))
3220 			return p;
3221 	}
3222 
3223 	for_each_class(class) {
3224 		p = class->pick_next_task(rq);
3225 		if (p)
3226 			return p;
3227 	}
3228 
3229 	BUG(); /* the idle class will always have a runnable task */
3230 }
3231 
3232 /*
3233  * __schedule() is the main scheduler function.
3234  */
3235 static void __sched __schedule(void)
3236 {
3237 	struct task_struct *prev, *next;
3238 	unsigned long *switch_count;
3239 	struct rq *rq;
3240 	int cpu;
3241 
3242 need_resched:
3243 	preempt_disable();
3244 	cpu = smp_processor_id();
3245 	rq = cpu_rq(cpu);
3246 	rcu_note_context_switch(cpu);
3247 	prev = rq->curr;
3248 
3249 	schedule_debug(prev);
3250 
3251 	if (sched_feat(HRTICK))
3252 		hrtick_clear(rq);
3253 
3254 	raw_spin_lock_irq(&rq->lock);
3255 
3256 	switch_count = &prev->nivcsw;
3257 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3258 		if (unlikely(signal_pending_state(prev->state, prev))) {
3259 			prev->state = TASK_RUNNING;
3260 		} else {
3261 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3262 			prev->on_rq = 0;
3263 
3264 			/*
3265 			 * If a worker went to sleep, notify and ask workqueue
3266 			 * whether it wants to wake up a task to maintain
3267 			 * concurrency.
3268 			 */
3269 			if (prev->flags & PF_WQ_WORKER) {
3270 				struct task_struct *to_wakeup;
3271 
3272 				to_wakeup = wq_worker_sleeping(prev, cpu);
3273 				if (to_wakeup)
3274 					try_to_wake_up_local(to_wakeup);
3275 			}
3276 		}
3277 		switch_count = &prev->nvcsw;
3278 	}
3279 
3280 	pre_schedule(rq, prev);
3281 
3282 	if (unlikely(!rq->nr_running))
3283 		idle_balance(cpu, rq);
3284 
3285 	put_prev_task(rq, prev);
3286 	next = pick_next_task(rq);
3287 	clear_tsk_need_resched(prev);
3288 	rq->skip_clock_update = 0;
3289 
3290 	if (likely(prev != next)) {
3291 		rq->nr_switches++;
3292 		rq->curr = next;
3293 		++*switch_count;
3294 
3295 		context_switch(rq, prev, next); /* unlocks the rq */
3296 		/*
3297 		 * The context switch have flipped the stack from under us
3298 		 * and restored the local variables which were saved when
3299 		 * this task called schedule() in the past. prev == current
3300 		 * is still correct, but it can be moved to another cpu/rq.
3301 		 */
3302 		cpu = smp_processor_id();
3303 		rq = cpu_rq(cpu);
3304 	} else
3305 		raw_spin_unlock_irq(&rq->lock);
3306 
3307 	post_schedule(rq);
3308 
3309 	sched_preempt_enable_no_resched();
3310 	if (need_resched())
3311 		goto need_resched;
3312 }
3313 
3314 static inline void sched_submit_work(struct task_struct *tsk)
3315 {
3316 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3317 		return;
3318 	/*
3319 	 * If we are going to sleep and we have plugged IO queued,
3320 	 * make sure to submit it to avoid deadlocks.
3321 	 */
3322 	if (blk_needs_flush_plug(tsk))
3323 		blk_schedule_flush_plug(tsk);
3324 }
3325 
3326 asmlinkage void __sched schedule(void)
3327 {
3328 	struct task_struct *tsk = current;
3329 
3330 	sched_submit_work(tsk);
3331 	__schedule();
3332 }
3333 EXPORT_SYMBOL(schedule);
3334 
3335 /**
3336  * schedule_preempt_disabled - called with preemption disabled
3337  *
3338  * Returns with preemption disabled. Note: preempt_count must be 1
3339  */
3340 void __sched schedule_preempt_disabled(void)
3341 {
3342 	sched_preempt_enable_no_resched();
3343 	schedule();
3344 	preempt_disable();
3345 }
3346 
3347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3348 
3349 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3350 {
3351 	if (lock->owner != owner)
3352 		return false;
3353 
3354 	/*
3355 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3356 	 * lock->owner still matches owner, if that fails, owner might
3357 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3358 	 * ensures the memory stays valid.
3359 	 */
3360 	barrier();
3361 
3362 	return owner->on_cpu;
3363 }
3364 
3365 /*
3366  * Look out! "owner" is an entirely speculative pointer
3367  * access and not reliable.
3368  */
3369 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3370 {
3371 	if (!sched_feat(OWNER_SPIN))
3372 		return 0;
3373 
3374 	rcu_read_lock();
3375 	while (owner_running(lock, owner)) {
3376 		if (need_resched())
3377 			break;
3378 
3379 		arch_mutex_cpu_relax();
3380 	}
3381 	rcu_read_unlock();
3382 
3383 	/*
3384 	 * We break out the loop above on need_resched() and when the
3385 	 * owner changed, which is a sign for heavy contention. Return
3386 	 * success only when lock->owner is NULL.
3387 	 */
3388 	return lock->owner == NULL;
3389 }
3390 #endif
3391 
3392 #ifdef CONFIG_PREEMPT
3393 /*
3394  * this is the entry point to schedule() from in-kernel preemption
3395  * off of preempt_enable. Kernel preemptions off return from interrupt
3396  * occur there and call schedule directly.
3397  */
3398 asmlinkage void __sched notrace preempt_schedule(void)
3399 {
3400 	struct thread_info *ti = current_thread_info();
3401 
3402 	/*
3403 	 * If there is a non-zero preempt_count or interrupts are disabled,
3404 	 * we do not want to preempt the current task. Just return..
3405 	 */
3406 	if (likely(ti->preempt_count || irqs_disabled()))
3407 		return;
3408 
3409 	do {
3410 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3411 		__schedule();
3412 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3413 
3414 		/*
3415 		 * Check again in case we missed a preemption opportunity
3416 		 * between schedule and now.
3417 		 */
3418 		barrier();
3419 	} while (need_resched());
3420 }
3421 EXPORT_SYMBOL(preempt_schedule);
3422 
3423 /*
3424  * this is the entry point to schedule() from kernel preemption
3425  * off of irq context.
3426  * Note, that this is called and return with irqs disabled. This will
3427  * protect us against recursive calling from irq.
3428  */
3429 asmlinkage void __sched preempt_schedule_irq(void)
3430 {
3431 	struct thread_info *ti = current_thread_info();
3432 
3433 	/* Catch callers which need to be fixed */
3434 	BUG_ON(ti->preempt_count || !irqs_disabled());
3435 
3436 	do {
3437 		add_preempt_count(PREEMPT_ACTIVE);
3438 		local_irq_enable();
3439 		__schedule();
3440 		local_irq_disable();
3441 		sub_preempt_count(PREEMPT_ACTIVE);
3442 
3443 		/*
3444 		 * Check again in case we missed a preemption opportunity
3445 		 * between schedule and now.
3446 		 */
3447 		barrier();
3448 	} while (need_resched());
3449 }
3450 
3451 #endif /* CONFIG_PREEMPT */
3452 
3453 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3454 			  void *key)
3455 {
3456 	return try_to_wake_up(curr->private, mode, wake_flags);
3457 }
3458 EXPORT_SYMBOL(default_wake_function);
3459 
3460 /*
3461  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3462  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3463  * number) then we wake all the non-exclusive tasks and one exclusive task.
3464  *
3465  * There are circumstances in which we can try to wake a task which has already
3466  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3467  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3468  */
3469 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3470 			int nr_exclusive, int wake_flags, void *key)
3471 {
3472 	wait_queue_t *curr, *next;
3473 
3474 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3475 		unsigned flags = curr->flags;
3476 
3477 		if (curr->func(curr, mode, wake_flags, key) &&
3478 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3479 			break;
3480 	}
3481 }
3482 
3483 /**
3484  * __wake_up - wake up threads blocked on a waitqueue.
3485  * @q: the waitqueue
3486  * @mode: which threads
3487  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3488  * @key: is directly passed to the wakeup function
3489  *
3490  * It may be assumed that this function implies a write memory barrier before
3491  * changing the task state if and only if any tasks are woken up.
3492  */
3493 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3494 			int nr_exclusive, void *key)
3495 {
3496 	unsigned long flags;
3497 
3498 	spin_lock_irqsave(&q->lock, flags);
3499 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3500 	spin_unlock_irqrestore(&q->lock, flags);
3501 }
3502 EXPORT_SYMBOL(__wake_up);
3503 
3504 /*
3505  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3506  */
3507 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3508 {
3509 	__wake_up_common(q, mode, nr, 0, NULL);
3510 }
3511 EXPORT_SYMBOL_GPL(__wake_up_locked);
3512 
3513 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3514 {
3515 	__wake_up_common(q, mode, 1, 0, key);
3516 }
3517 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3518 
3519 /**
3520  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3521  * @q: the waitqueue
3522  * @mode: which threads
3523  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3524  * @key: opaque value to be passed to wakeup targets
3525  *
3526  * The sync wakeup differs that the waker knows that it will schedule
3527  * away soon, so while the target thread will be woken up, it will not
3528  * be migrated to another CPU - ie. the two threads are 'synchronized'
3529  * with each other. This can prevent needless bouncing between CPUs.
3530  *
3531  * On UP it can prevent extra preemption.
3532  *
3533  * It may be assumed that this function implies a write memory barrier before
3534  * changing the task state if and only if any tasks are woken up.
3535  */
3536 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3537 			int nr_exclusive, void *key)
3538 {
3539 	unsigned long flags;
3540 	int wake_flags = WF_SYNC;
3541 
3542 	if (unlikely(!q))
3543 		return;
3544 
3545 	if (unlikely(!nr_exclusive))
3546 		wake_flags = 0;
3547 
3548 	spin_lock_irqsave(&q->lock, flags);
3549 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3550 	spin_unlock_irqrestore(&q->lock, flags);
3551 }
3552 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3553 
3554 /*
3555  * __wake_up_sync - see __wake_up_sync_key()
3556  */
3557 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3558 {
3559 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3560 }
3561 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3562 
3563 /**
3564  * complete: - signals a single thread waiting on this completion
3565  * @x:  holds the state of this particular completion
3566  *
3567  * This will wake up a single thread waiting on this completion. Threads will be
3568  * awakened in the same order in which they were queued.
3569  *
3570  * See also complete_all(), wait_for_completion() and related routines.
3571  *
3572  * It may be assumed that this function implies a write memory barrier before
3573  * changing the task state if and only if any tasks are woken up.
3574  */
3575 void complete(struct completion *x)
3576 {
3577 	unsigned long flags;
3578 
3579 	spin_lock_irqsave(&x->wait.lock, flags);
3580 	x->done++;
3581 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3582 	spin_unlock_irqrestore(&x->wait.lock, flags);
3583 }
3584 EXPORT_SYMBOL(complete);
3585 
3586 /**
3587  * complete_all: - signals all threads waiting on this completion
3588  * @x:  holds the state of this particular completion
3589  *
3590  * This will wake up all threads waiting on this particular completion event.
3591  *
3592  * It may be assumed that this function implies a write memory barrier before
3593  * changing the task state if and only if any tasks are woken up.
3594  */
3595 void complete_all(struct completion *x)
3596 {
3597 	unsigned long flags;
3598 
3599 	spin_lock_irqsave(&x->wait.lock, flags);
3600 	x->done += UINT_MAX/2;
3601 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3602 	spin_unlock_irqrestore(&x->wait.lock, flags);
3603 }
3604 EXPORT_SYMBOL(complete_all);
3605 
3606 static inline long __sched
3607 do_wait_for_common(struct completion *x, long timeout, int state)
3608 {
3609 	if (!x->done) {
3610 		DECLARE_WAITQUEUE(wait, current);
3611 
3612 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3613 		do {
3614 			if (signal_pending_state(state, current)) {
3615 				timeout = -ERESTARTSYS;
3616 				break;
3617 			}
3618 			__set_current_state(state);
3619 			spin_unlock_irq(&x->wait.lock);
3620 			timeout = schedule_timeout(timeout);
3621 			spin_lock_irq(&x->wait.lock);
3622 		} while (!x->done && timeout);
3623 		__remove_wait_queue(&x->wait, &wait);
3624 		if (!x->done)
3625 			return timeout;
3626 	}
3627 	x->done--;
3628 	return timeout ?: 1;
3629 }
3630 
3631 static long __sched
3632 wait_for_common(struct completion *x, long timeout, int state)
3633 {
3634 	might_sleep();
3635 
3636 	spin_lock_irq(&x->wait.lock);
3637 	timeout = do_wait_for_common(x, timeout, state);
3638 	spin_unlock_irq(&x->wait.lock);
3639 	return timeout;
3640 }
3641 
3642 /**
3643  * wait_for_completion: - waits for completion of a task
3644  * @x:  holds the state of this particular completion
3645  *
3646  * This waits to be signaled for completion of a specific task. It is NOT
3647  * interruptible and there is no timeout.
3648  *
3649  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3650  * and interrupt capability. Also see complete().
3651  */
3652 void __sched wait_for_completion(struct completion *x)
3653 {
3654 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3655 }
3656 EXPORT_SYMBOL(wait_for_completion);
3657 
3658 /**
3659  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3660  * @x:  holds the state of this particular completion
3661  * @timeout:  timeout value in jiffies
3662  *
3663  * This waits for either a completion of a specific task to be signaled or for a
3664  * specified timeout to expire. The timeout is in jiffies. It is not
3665  * interruptible.
3666  *
3667  * The return value is 0 if timed out, and positive (at least 1, or number of
3668  * jiffies left till timeout) if completed.
3669  */
3670 unsigned long __sched
3671 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3672 {
3673 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3674 }
3675 EXPORT_SYMBOL(wait_for_completion_timeout);
3676 
3677 /**
3678  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3679  * @x:  holds the state of this particular completion
3680  *
3681  * This waits for completion of a specific task to be signaled. It is
3682  * interruptible.
3683  *
3684  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3685  */
3686 int __sched wait_for_completion_interruptible(struct completion *x)
3687 {
3688 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3689 	if (t == -ERESTARTSYS)
3690 		return t;
3691 	return 0;
3692 }
3693 EXPORT_SYMBOL(wait_for_completion_interruptible);
3694 
3695 /**
3696  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3697  * @x:  holds the state of this particular completion
3698  * @timeout:  timeout value in jiffies
3699  *
3700  * This waits for either a completion of a specific task to be signaled or for a
3701  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3702  *
3703  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3704  * positive (at least 1, or number of jiffies left till timeout) if completed.
3705  */
3706 long __sched
3707 wait_for_completion_interruptible_timeout(struct completion *x,
3708 					  unsigned long timeout)
3709 {
3710 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3711 }
3712 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3713 
3714 /**
3715  * wait_for_completion_killable: - waits for completion of a task (killable)
3716  * @x:  holds the state of this particular completion
3717  *
3718  * This waits to be signaled for completion of a specific task. It can be
3719  * interrupted by a kill signal.
3720  *
3721  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3722  */
3723 int __sched wait_for_completion_killable(struct completion *x)
3724 {
3725 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3726 	if (t == -ERESTARTSYS)
3727 		return t;
3728 	return 0;
3729 }
3730 EXPORT_SYMBOL(wait_for_completion_killable);
3731 
3732 /**
3733  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3734  * @x:  holds the state of this particular completion
3735  * @timeout:  timeout value in jiffies
3736  *
3737  * This waits for either a completion of a specific task to be
3738  * signaled or for a specified timeout to expire. It can be
3739  * interrupted by a kill signal. The timeout is in jiffies.
3740  *
3741  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3742  * positive (at least 1, or number of jiffies left till timeout) if completed.
3743  */
3744 long __sched
3745 wait_for_completion_killable_timeout(struct completion *x,
3746 				     unsigned long timeout)
3747 {
3748 	return wait_for_common(x, timeout, TASK_KILLABLE);
3749 }
3750 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3751 
3752 /**
3753  *	try_wait_for_completion - try to decrement a completion without blocking
3754  *	@x:	completion structure
3755  *
3756  *	Returns: 0 if a decrement cannot be done without blocking
3757  *		 1 if a decrement succeeded.
3758  *
3759  *	If a completion is being used as a counting completion,
3760  *	attempt to decrement the counter without blocking. This
3761  *	enables us to avoid waiting if the resource the completion
3762  *	is protecting is not available.
3763  */
3764 bool try_wait_for_completion(struct completion *x)
3765 {
3766 	unsigned long flags;
3767 	int ret = 1;
3768 
3769 	spin_lock_irqsave(&x->wait.lock, flags);
3770 	if (!x->done)
3771 		ret = 0;
3772 	else
3773 		x->done--;
3774 	spin_unlock_irqrestore(&x->wait.lock, flags);
3775 	return ret;
3776 }
3777 EXPORT_SYMBOL(try_wait_for_completion);
3778 
3779 /**
3780  *	completion_done - Test to see if a completion has any waiters
3781  *	@x:	completion structure
3782  *
3783  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3784  *		 1 if there are no waiters.
3785  *
3786  */
3787 bool completion_done(struct completion *x)
3788 {
3789 	unsigned long flags;
3790 	int ret = 1;
3791 
3792 	spin_lock_irqsave(&x->wait.lock, flags);
3793 	if (!x->done)
3794 		ret = 0;
3795 	spin_unlock_irqrestore(&x->wait.lock, flags);
3796 	return ret;
3797 }
3798 EXPORT_SYMBOL(completion_done);
3799 
3800 static long __sched
3801 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3802 {
3803 	unsigned long flags;
3804 	wait_queue_t wait;
3805 
3806 	init_waitqueue_entry(&wait, current);
3807 
3808 	__set_current_state(state);
3809 
3810 	spin_lock_irqsave(&q->lock, flags);
3811 	__add_wait_queue(q, &wait);
3812 	spin_unlock(&q->lock);
3813 	timeout = schedule_timeout(timeout);
3814 	spin_lock_irq(&q->lock);
3815 	__remove_wait_queue(q, &wait);
3816 	spin_unlock_irqrestore(&q->lock, flags);
3817 
3818 	return timeout;
3819 }
3820 
3821 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3822 {
3823 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3824 }
3825 EXPORT_SYMBOL(interruptible_sleep_on);
3826 
3827 long __sched
3828 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3829 {
3830 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3831 }
3832 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3833 
3834 void __sched sleep_on(wait_queue_head_t *q)
3835 {
3836 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3837 }
3838 EXPORT_SYMBOL(sleep_on);
3839 
3840 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3841 {
3842 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3843 }
3844 EXPORT_SYMBOL(sleep_on_timeout);
3845 
3846 #ifdef CONFIG_RT_MUTEXES
3847 
3848 /*
3849  * rt_mutex_setprio - set the current priority of a task
3850  * @p: task
3851  * @prio: prio value (kernel-internal form)
3852  *
3853  * This function changes the 'effective' priority of a task. It does
3854  * not touch ->normal_prio like __setscheduler().
3855  *
3856  * Used by the rt_mutex code to implement priority inheritance logic.
3857  */
3858 void rt_mutex_setprio(struct task_struct *p, int prio)
3859 {
3860 	int oldprio, on_rq, running;
3861 	struct rq *rq;
3862 	const struct sched_class *prev_class;
3863 
3864 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3865 
3866 	rq = __task_rq_lock(p);
3867 
3868 	/*
3869 	 * Idle task boosting is a nono in general. There is one
3870 	 * exception, when PREEMPT_RT and NOHZ is active:
3871 	 *
3872 	 * The idle task calls get_next_timer_interrupt() and holds
3873 	 * the timer wheel base->lock on the CPU and another CPU wants
3874 	 * to access the timer (probably to cancel it). We can safely
3875 	 * ignore the boosting request, as the idle CPU runs this code
3876 	 * with interrupts disabled and will complete the lock
3877 	 * protected section without being interrupted. So there is no
3878 	 * real need to boost.
3879 	 */
3880 	if (unlikely(p == rq->idle)) {
3881 		WARN_ON(p != rq->curr);
3882 		WARN_ON(p->pi_blocked_on);
3883 		goto out_unlock;
3884 	}
3885 
3886 	trace_sched_pi_setprio(p, prio);
3887 	oldprio = p->prio;
3888 	prev_class = p->sched_class;
3889 	on_rq = p->on_rq;
3890 	running = task_current(rq, p);
3891 	if (on_rq)
3892 		dequeue_task(rq, p, 0);
3893 	if (running)
3894 		p->sched_class->put_prev_task(rq, p);
3895 
3896 	if (rt_prio(prio))
3897 		p->sched_class = &rt_sched_class;
3898 	else
3899 		p->sched_class = &fair_sched_class;
3900 
3901 	p->prio = prio;
3902 
3903 	if (running)
3904 		p->sched_class->set_curr_task(rq);
3905 	if (on_rq)
3906 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3907 
3908 	check_class_changed(rq, p, prev_class, oldprio);
3909 out_unlock:
3910 	__task_rq_unlock(rq);
3911 }
3912 #endif
3913 void set_user_nice(struct task_struct *p, long nice)
3914 {
3915 	int old_prio, delta, on_rq;
3916 	unsigned long flags;
3917 	struct rq *rq;
3918 
3919 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3920 		return;
3921 	/*
3922 	 * We have to be careful, if called from sys_setpriority(),
3923 	 * the task might be in the middle of scheduling on another CPU.
3924 	 */
3925 	rq = task_rq_lock(p, &flags);
3926 	/*
3927 	 * The RT priorities are set via sched_setscheduler(), but we still
3928 	 * allow the 'normal' nice value to be set - but as expected
3929 	 * it wont have any effect on scheduling until the task is
3930 	 * SCHED_FIFO/SCHED_RR:
3931 	 */
3932 	if (task_has_rt_policy(p)) {
3933 		p->static_prio = NICE_TO_PRIO(nice);
3934 		goto out_unlock;
3935 	}
3936 	on_rq = p->on_rq;
3937 	if (on_rq)
3938 		dequeue_task(rq, p, 0);
3939 
3940 	p->static_prio = NICE_TO_PRIO(nice);
3941 	set_load_weight(p);
3942 	old_prio = p->prio;
3943 	p->prio = effective_prio(p);
3944 	delta = p->prio - old_prio;
3945 
3946 	if (on_rq) {
3947 		enqueue_task(rq, p, 0);
3948 		/*
3949 		 * If the task increased its priority or is running and
3950 		 * lowered its priority, then reschedule its CPU:
3951 		 */
3952 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3953 			resched_task(rq->curr);
3954 	}
3955 out_unlock:
3956 	task_rq_unlock(rq, p, &flags);
3957 }
3958 EXPORT_SYMBOL(set_user_nice);
3959 
3960 /*
3961  * can_nice - check if a task can reduce its nice value
3962  * @p: task
3963  * @nice: nice value
3964  */
3965 int can_nice(const struct task_struct *p, const int nice)
3966 {
3967 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3968 	int nice_rlim = 20 - nice;
3969 
3970 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3971 		capable(CAP_SYS_NICE));
3972 }
3973 
3974 #ifdef __ARCH_WANT_SYS_NICE
3975 
3976 /*
3977  * sys_nice - change the priority of the current process.
3978  * @increment: priority increment
3979  *
3980  * sys_setpriority is a more generic, but much slower function that
3981  * does similar things.
3982  */
3983 SYSCALL_DEFINE1(nice, int, increment)
3984 {
3985 	long nice, retval;
3986 
3987 	/*
3988 	 * Setpriority might change our priority at the same moment.
3989 	 * We don't have to worry. Conceptually one call occurs first
3990 	 * and we have a single winner.
3991 	 */
3992 	if (increment < -40)
3993 		increment = -40;
3994 	if (increment > 40)
3995 		increment = 40;
3996 
3997 	nice = TASK_NICE(current) + increment;
3998 	if (nice < -20)
3999 		nice = -20;
4000 	if (nice > 19)
4001 		nice = 19;
4002 
4003 	if (increment < 0 && !can_nice(current, nice))
4004 		return -EPERM;
4005 
4006 	retval = security_task_setnice(current, nice);
4007 	if (retval)
4008 		return retval;
4009 
4010 	set_user_nice(current, nice);
4011 	return 0;
4012 }
4013 
4014 #endif
4015 
4016 /**
4017  * task_prio - return the priority value of a given task.
4018  * @p: the task in question.
4019  *
4020  * This is the priority value as seen by users in /proc.
4021  * RT tasks are offset by -200. Normal tasks are centered
4022  * around 0, value goes from -16 to +15.
4023  */
4024 int task_prio(const struct task_struct *p)
4025 {
4026 	return p->prio - MAX_RT_PRIO;
4027 }
4028 
4029 /**
4030  * task_nice - return the nice value of a given task.
4031  * @p: the task in question.
4032  */
4033 int task_nice(const struct task_struct *p)
4034 {
4035 	return TASK_NICE(p);
4036 }
4037 EXPORT_SYMBOL(task_nice);
4038 
4039 /**
4040  * idle_cpu - is a given cpu idle currently?
4041  * @cpu: the processor in question.
4042  */
4043 int idle_cpu(int cpu)
4044 {
4045 	struct rq *rq = cpu_rq(cpu);
4046 
4047 	if (rq->curr != rq->idle)
4048 		return 0;
4049 
4050 	if (rq->nr_running)
4051 		return 0;
4052 
4053 #ifdef CONFIG_SMP
4054 	if (!llist_empty(&rq->wake_list))
4055 		return 0;
4056 #endif
4057 
4058 	return 1;
4059 }
4060 
4061 /**
4062  * idle_task - return the idle task for a given cpu.
4063  * @cpu: the processor in question.
4064  */
4065 struct task_struct *idle_task(int cpu)
4066 {
4067 	return cpu_rq(cpu)->idle;
4068 }
4069 
4070 /**
4071  * find_process_by_pid - find a process with a matching PID value.
4072  * @pid: the pid in question.
4073  */
4074 static struct task_struct *find_process_by_pid(pid_t pid)
4075 {
4076 	return pid ? find_task_by_vpid(pid) : current;
4077 }
4078 
4079 /* Actually do priority change: must hold rq lock. */
4080 static void
4081 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4082 {
4083 	p->policy = policy;
4084 	p->rt_priority = prio;
4085 	p->normal_prio = normal_prio(p);
4086 	/* we are holding p->pi_lock already */
4087 	p->prio = rt_mutex_getprio(p);
4088 	if (rt_prio(p->prio))
4089 		p->sched_class = &rt_sched_class;
4090 	else
4091 		p->sched_class = &fair_sched_class;
4092 	set_load_weight(p);
4093 }
4094 
4095 /*
4096  * check the target process has a UID that matches the current process's
4097  */
4098 static bool check_same_owner(struct task_struct *p)
4099 {
4100 	const struct cred *cred = current_cred(), *pcred;
4101 	bool match;
4102 
4103 	rcu_read_lock();
4104 	pcred = __task_cred(p);
4105 	match = (uid_eq(cred->euid, pcred->euid) ||
4106 		 uid_eq(cred->euid, pcred->uid));
4107 	rcu_read_unlock();
4108 	return match;
4109 }
4110 
4111 static int __sched_setscheduler(struct task_struct *p, int policy,
4112 				const struct sched_param *param, bool user)
4113 {
4114 	int retval, oldprio, oldpolicy = -1, on_rq, running;
4115 	unsigned long flags;
4116 	const struct sched_class *prev_class;
4117 	struct rq *rq;
4118 	int reset_on_fork;
4119 
4120 	/* may grab non-irq protected spin_locks */
4121 	BUG_ON(in_interrupt());
4122 recheck:
4123 	/* double check policy once rq lock held */
4124 	if (policy < 0) {
4125 		reset_on_fork = p->sched_reset_on_fork;
4126 		policy = oldpolicy = p->policy;
4127 	} else {
4128 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4129 		policy &= ~SCHED_RESET_ON_FORK;
4130 
4131 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4132 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4133 				policy != SCHED_IDLE)
4134 			return -EINVAL;
4135 	}
4136 
4137 	/*
4138 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4139 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4140 	 * SCHED_BATCH and SCHED_IDLE is 0.
4141 	 */
4142 	if (param->sched_priority < 0 ||
4143 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4144 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4145 		return -EINVAL;
4146 	if (rt_policy(policy) != (param->sched_priority != 0))
4147 		return -EINVAL;
4148 
4149 	/*
4150 	 * Allow unprivileged RT tasks to decrease priority:
4151 	 */
4152 	if (user && !capable(CAP_SYS_NICE)) {
4153 		if (rt_policy(policy)) {
4154 			unsigned long rlim_rtprio =
4155 					task_rlimit(p, RLIMIT_RTPRIO);
4156 
4157 			/* can't set/change the rt policy */
4158 			if (policy != p->policy && !rlim_rtprio)
4159 				return -EPERM;
4160 
4161 			/* can't increase priority */
4162 			if (param->sched_priority > p->rt_priority &&
4163 			    param->sched_priority > rlim_rtprio)
4164 				return -EPERM;
4165 		}
4166 
4167 		/*
4168 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4169 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4170 		 */
4171 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4172 			if (!can_nice(p, TASK_NICE(p)))
4173 				return -EPERM;
4174 		}
4175 
4176 		/* can't change other user's priorities */
4177 		if (!check_same_owner(p))
4178 			return -EPERM;
4179 
4180 		/* Normal users shall not reset the sched_reset_on_fork flag */
4181 		if (p->sched_reset_on_fork && !reset_on_fork)
4182 			return -EPERM;
4183 	}
4184 
4185 	if (user) {
4186 		retval = security_task_setscheduler(p);
4187 		if (retval)
4188 			return retval;
4189 	}
4190 
4191 	/*
4192 	 * make sure no PI-waiters arrive (or leave) while we are
4193 	 * changing the priority of the task:
4194 	 *
4195 	 * To be able to change p->policy safely, the appropriate
4196 	 * runqueue lock must be held.
4197 	 */
4198 	rq = task_rq_lock(p, &flags);
4199 
4200 	/*
4201 	 * Changing the policy of the stop threads its a very bad idea
4202 	 */
4203 	if (p == rq->stop) {
4204 		task_rq_unlock(rq, p, &flags);
4205 		return -EINVAL;
4206 	}
4207 
4208 	/*
4209 	 * If not changing anything there's no need to proceed further:
4210 	 */
4211 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4212 			param->sched_priority == p->rt_priority))) {
4213 
4214 		__task_rq_unlock(rq);
4215 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4216 		return 0;
4217 	}
4218 
4219 #ifdef CONFIG_RT_GROUP_SCHED
4220 	if (user) {
4221 		/*
4222 		 * Do not allow realtime tasks into groups that have no runtime
4223 		 * assigned.
4224 		 */
4225 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4226 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4227 				!task_group_is_autogroup(task_group(p))) {
4228 			task_rq_unlock(rq, p, &flags);
4229 			return -EPERM;
4230 		}
4231 	}
4232 #endif
4233 
4234 	/* recheck policy now with rq lock held */
4235 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4236 		policy = oldpolicy = -1;
4237 		task_rq_unlock(rq, p, &flags);
4238 		goto recheck;
4239 	}
4240 	on_rq = p->on_rq;
4241 	running = task_current(rq, p);
4242 	if (on_rq)
4243 		dequeue_task(rq, p, 0);
4244 	if (running)
4245 		p->sched_class->put_prev_task(rq, p);
4246 
4247 	p->sched_reset_on_fork = reset_on_fork;
4248 
4249 	oldprio = p->prio;
4250 	prev_class = p->sched_class;
4251 	__setscheduler(rq, p, policy, param->sched_priority);
4252 
4253 	if (running)
4254 		p->sched_class->set_curr_task(rq);
4255 	if (on_rq)
4256 		enqueue_task(rq, p, 0);
4257 
4258 	check_class_changed(rq, p, prev_class, oldprio);
4259 	task_rq_unlock(rq, p, &flags);
4260 
4261 	rt_mutex_adjust_pi(p);
4262 
4263 	return 0;
4264 }
4265 
4266 /**
4267  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4268  * @p: the task in question.
4269  * @policy: new policy.
4270  * @param: structure containing the new RT priority.
4271  *
4272  * NOTE that the task may be already dead.
4273  */
4274 int sched_setscheduler(struct task_struct *p, int policy,
4275 		       const struct sched_param *param)
4276 {
4277 	return __sched_setscheduler(p, policy, param, true);
4278 }
4279 EXPORT_SYMBOL_GPL(sched_setscheduler);
4280 
4281 /**
4282  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4283  * @p: the task in question.
4284  * @policy: new policy.
4285  * @param: structure containing the new RT priority.
4286  *
4287  * Just like sched_setscheduler, only don't bother checking if the
4288  * current context has permission.  For example, this is needed in
4289  * stop_machine(): we create temporary high priority worker threads,
4290  * but our caller might not have that capability.
4291  */
4292 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4293 			       const struct sched_param *param)
4294 {
4295 	return __sched_setscheduler(p, policy, param, false);
4296 }
4297 
4298 static int
4299 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4300 {
4301 	struct sched_param lparam;
4302 	struct task_struct *p;
4303 	int retval;
4304 
4305 	if (!param || pid < 0)
4306 		return -EINVAL;
4307 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4308 		return -EFAULT;
4309 
4310 	rcu_read_lock();
4311 	retval = -ESRCH;
4312 	p = find_process_by_pid(pid);
4313 	if (p != NULL)
4314 		retval = sched_setscheduler(p, policy, &lparam);
4315 	rcu_read_unlock();
4316 
4317 	return retval;
4318 }
4319 
4320 /**
4321  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4322  * @pid: the pid in question.
4323  * @policy: new policy.
4324  * @param: structure containing the new RT priority.
4325  */
4326 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4327 		struct sched_param __user *, param)
4328 {
4329 	/* negative values for policy are not valid */
4330 	if (policy < 0)
4331 		return -EINVAL;
4332 
4333 	return do_sched_setscheduler(pid, policy, param);
4334 }
4335 
4336 /**
4337  * sys_sched_setparam - set/change the RT priority of a thread
4338  * @pid: the pid in question.
4339  * @param: structure containing the new RT priority.
4340  */
4341 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4342 {
4343 	return do_sched_setscheduler(pid, -1, param);
4344 }
4345 
4346 /**
4347  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4348  * @pid: the pid in question.
4349  */
4350 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4351 {
4352 	struct task_struct *p;
4353 	int retval;
4354 
4355 	if (pid < 0)
4356 		return -EINVAL;
4357 
4358 	retval = -ESRCH;
4359 	rcu_read_lock();
4360 	p = find_process_by_pid(pid);
4361 	if (p) {
4362 		retval = security_task_getscheduler(p);
4363 		if (!retval)
4364 			retval = p->policy
4365 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4366 	}
4367 	rcu_read_unlock();
4368 	return retval;
4369 }
4370 
4371 /**
4372  * sys_sched_getparam - get the RT priority of a thread
4373  * @pid: the pid in question.
4374  * @param: structure containing the RT priority.
4375  */
4376 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4377 {
4378 	struct sched_param lp;
4379 	struct task_struct *p;
4380 	int retval;
4381 
4382 	if (!param || pid < 0)
4383 		return -EINVAL;
4384 
4385 	rcu_read_lock();
4386 	p = find_process_by_pid(pid);
4387 	retval = -ESRCH;
4388 	if (!p)
4389 		goto out_unlock;
4390 
4391 	retval = security_task_getscheduler(p);
4392 	if (retval)
4393 		goto out_unlock;
4394 
4395 	lp.sched_priority = p->rt_priority;
4396 	rcu_read_unlock();
4397 
4398 	/*
4399 	 * This one might sleep, we cannot do it with a spinlock held ...
4400 	 */
4401 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4402 
4403 	return retval;
4404 
4405 out_unlock:
4406 	rcu_read_unlock();
4407 	return retval;
4408 }
4409 
4410 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4411 {
4412 	cpumask_var_t cpus_allowed, new_mask;
4413 	struct task_struct *p;
4414 	int retval;
4415 
4416 	get_online_cpus();
4417 	rcu_read_lock();
4418 
4419 	p = find_process_by_pid(pid);
4420 	if (!p) {
4421 		rcu_read_unlock();
4422 		put_online_cpus();
4423 		return -ESRCH;
4424 	}
4425 
4426 	/* Prevent p going away */
4427 	get_task_struct(p);
4428 	rcu_read_unlock();
4429 
4430 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4431 		retval = -ENOMEM;
4432 		goto out_put_task;
4433 	}
4434 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4435 		retval = -ENOMEM;
4436 		goto out_free_cpus_allowed;
4437 	}
4438 	retval = -EPERM;
4439 	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4440 		goto out_unlock;
4441 
4442 	retval = security_task_setscheduler(p);
4443 	if (retval)
4444 		goto out_unlock;
4445 
4446 	cpuset_cpus_allowed(p, cpus_allowed);
4447 	cpumask_and(new_mask, in_mask, cpus_allowed);
4448 again:
4449 	retval = set_cpus_allowed_ptr(p, new_mask);
4450 
4451 	if (!retval) {
4452 		cpuset_cpus_allowed(p, cpus_allowed);
4453 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4454 			/*
4455 			 * We must have raced with a concurrent cpuset
4456 			 * update. Just reset the cpus_allowed to the
4457 			 * cpuset's cpus_allowed
4458 			 */
4459 			cpumask_copy(new_mask, cpus_allowed);
4460 			goto again;
4461 		}
4462 	}
4463 out_unlock:
4464 	free_cpumask_var(new_mask);
4465 out_free_cpus_allowed:
4466 	free_cpumask_var(cpus_allowed);
4467 out_put_task:
4468 	put_task_struct(p);
4469 	put_online_cpus();
4470 	return retval;
4471 }
4472 
4473 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4474 			     struct cpumask *new_mask)
4475 {
4476 	if (len < cpumask_size())
4477 		cpumask_clear(new_mask);
4478 	else if (len > cpumask_size())
4479 		len = cpumask_size();
4480 
4481 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4482 }
4483 
4484 /**
4485  * sys_sched_setaffinity - set the cpu affinity of a process
4486  * @pid: pid of the process
4487  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4488  * @user_mask_ptr: user-space pointer to the new cpu mask
4489  */
4490 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4491 		unsigned long __user *, user_mask_ptr)
4492 {
4493 	cpumask_var_t new_mask;
4494 	int retval;
4495 
4496 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4497 		return -ENOMEM;
4498 
4499 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4500 	if (retval == 0)
4501 		retval = sched_setaffinity(pid, new_mask);
4502 	free_cpumask_var(new_mask);
4503 	return retval;
4504 }
4505 
4506 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4507 {
4508 	struct task_struct *p;
4509 	unsigned long flags;
4510 	int retval;
4511 
4512 	get_online_cpus();
4513 	rcu_read_lock();
4514 
4515 	retval = -ESRCH;
4516 	p = find_process_by_pid(pid);
4517 	if (!p)
4518 		goto out_unlock;
4519 
4520 	retval = security_task_getscheduler(p);
4521 	if (retval)
4522 		goto out_unlock;
4523 
4524 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4525 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4526 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4527 
4528 out_unlock:
4529 	rcu_read_unlock();
4530 	put_online_cpus();
4531 
4532 	return retval;
4533 }
4534 
4535 /**
4536  * sys_sched_getaffinity - get the cpu affinity of a process
4537  * @pid: pid of the process
4538  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4539  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4540  */
4541 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4542 		unsigned long __user *, user_mask_ptr)
4543 {
4544 	int ret;
4545 	cpumask_var_t mask;
4546 
4547 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4548 		return -EINVAL;
4549 	if (len & (sizeof(unsigned long)-1))
4550 		return -EINVAL;
4551 
4552 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4553 		return -ENOMEM;
4554 
4555 	ret = sched_getaffinity(pid, mask);
4556 	if (ret == 0) {
4557 		size_t retlen = min_t(size_t, len, cpumask_size());
4558 
4559 		if (copy_to_user(user_mask_ptr, mask, retlen))
4560 			ret = -EFAULT;
4561 		else
4562 			ret = retlen;
4563 	}
4564 	free_cpumask_var(mask);
4565 
4566 	return ret;
4567 }
4568 
4569 /**
4570  * sys_sched_yield - yield the current processor to other threads.
4571  *
4572  * This function yields the current CPU to other tasks. If there are no
4573  * other threads running on this CPU then this function will return.
4574  */
4575 SYSCALL_DEFINE0(sched_yield)
4576 {
4577 	struct rq *rq = this_rq_lock();
4578 
4579 	schedstat_inc(rq, yld_count);
4580 	current->sched_class->yield_task(rq);
4581 
4582 	/*
4583 	 * Since we are going to call schedule() anyway, there's
4584 	 * no need to preempt or enable interrupts:
4585 	 */
4586 	__release(rq->lock);
4587 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4588 	do_raw_spin_unlock(&rq->lock);
4589 	sched_preempt_enable_no_resched();
4590 
4591 	schedule();
4592 
4593 	return 0;
4594 }
4595 
4596 static inline int should_resched(void)
4597 {
4598 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4599 }
4600 
4601 static void __cond_resched(void)
4602 {
4603 	add_preempt_count(PREEMPT_ACTIVE);
4604 	__schedule();
4605 	sub_preempt_count(PREEMPT_ACTIVE);
4606 }
4607 
4608 int __sched _cond_resched(void)
4609 {
4610 	if (should_resched()) {
4611 		__cond_resched();
4612 		return 1;
4613 	}
4614 	return 0;
4615 }
4616 EXPORT_SYMBOL(_cond_resched);
4617 
4618 /*
4619  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4620  * call schedule, and on return reacquire the lock.
4621  *
4622  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4623  * operations here to prevent schedule() from being called twice (once via
4624  * spin_unlock(), once by hand).
4625  */
4626 int __cond_resched_lock(spinlock_t *lock)
4627 {
4628 	int resched = should_resched();
4629 	int ret = 0;
4630 
4631 	lockdep_assert_held(lock);
4632 
4633 	if (spin_needbreak(lock) || resched) {
4634 		spin_unlock(lock);
4635 		if (resched)
4636 			__cond_resched();
4637 		else
4638 			cpu_relax();
4639 		ret = 1;
4640 		spin_lock(lock);
4641 	}
4642 	return ret;
4643 }
4644 EXPORT_SYMBOL(__cond_resched_lock);
4645 
4646 int __sched __cond_resched_softirq(void)
4647 {
4648 	BUG_ON(!in_softirq());
4649 
4650 	if (should_resched()) {
4651 		local_bh_enable();
4652 		__cond_resched();
4653 		local_bh_disable();
4654 		return 1;
4655 	}
4656 	return 0;
4657 }
4658 EXPORT_SYMBOL(__cond_resched_softirq);
4659 
4660 /**
4661  * yield - yield the current processor to other threads.
4662  *
4663  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4664  *
4665  * The scheduler is at all times free to pick the calling task as the most
4666  * eligible task to run, if removing the yield() call from your code breaks
4667  * it, its already broken.
4668  *
4669  * Typical broken usage is:
4670  *
4671  * while (!event)
4672  * 	yield();
4673  *
4674  * where one assumes that yield() will let 'the other' process run that will
4675  * make event true. If the current task is a SCHED_FIFO task that will never
4676  * happen. Never use yield() as a progress guarantee!!
4677  *
4678  * If you want to use yield() to wait for something, use wait_event().
4679  * If you want to use yield() to be 'nice' for others, use cond_resched().
4680  * If you still want to use yield(), do not!
4681  */
4682 void __sched yield(void)
4683 {
4684 	set_current_state(TASK_RUNNING);
4685 	sys_sched_yield();
4686 }
4687 EXPORT_SYMBOL(yield);
4688 
4689 /**
4690  * yield_to - yield the current processor to another thread in
4691  * your thread group, or accelerate that thread toward the
4692  * processor it's on.
4693  * @p: target task
4694  * @preempt: whether task preemption is allowed or not
4695  *
4696  * It's the caller's job to ensure that the target task struct
4697  * can't go away on us before we can do any checks.
4698  *
4699  * Returns true if we indeed boosted the target task.
4700  */
4701 bool __sched yield_to(struct task_struct *p, bool preempt)
4702 {
4703 	struct task_struct *curr = current;
4704 	struct rq *rq, *p_rq;
4705 	unsigned long flags;
4706 	bool yielded = 0;
4707 
4708 	local_irq_save(flags);
4709 	rq = this_rq();
4710 
4711 again:
4712 	p_rq = task_rq(p);
4713 	double_rq_lock(rq, p_rq);
4714 	while (task_rq(p) != p_rq) {
4715 		double_rq_unlock(rq, p_rq);
4716 		goto again;
4717 	}
4718 
4719 	if (!curr->sched_class->yield_to_task)
4720 		goto out;
4721 
4722 	if (curr->sched_class != p->sched_class)
4723 		goto out;
4724 
4725 	if (task_running(p_rq, p) || p->state)
4726 		goto out;
4727 
4728 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4729 	if (yielded) {
4730 		schedstat_inc(rq, yld_count);
4731 		/*
4732 		 * Make p's CPU reschedule; pick_next_entity takes care of
4733 		 * fairness.
4734 		 */
4735 		if (preempt && rq != p_rq)
4736 			resched_task(p_rq->curr);
4737 	} else {
4738 		/*
4739 		 * We might have set it in task_yield_fair(), but are
4740 		 * not going to schedule(), so don't want to skip
4741 		 * the next update.
4742 		 */
4743 		rq->skip_clock_update = 0;
4744 	}
4745 
4746 out:
4747 	double_rq_unlock(rq, p_rq);
4748 	local_irq_restore(flags);
4749 
4750 	if (yielded)
4751 		schedule();
4752 
4753 	return yielded;
4754 }
4755 EXPORT_SYMBOL_GPL(yield_to);
4756 
4757 /*
4758  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4759  * that process accounting knows that this is a task in IO wait state.
4760  */
4761 void __sched io_schedule(void)
4762 {
4763 	struct rq *rq = raw_rq();
4764 
4765 	delayacct_blkio_start();
4766 	atomic_inc(&rq->nr_iowait);
4767 	blk_flush_plug(current);
4768 	current->in_iowait = 1;
4769 	schedule();
4770 	current->in_iowait = 0;
4771 	atomic_dec(&rq->nr_iowait);
4772 	delayacct_blkio_end();
4773 }
4774 EXPORT_SYMBOL(io_schedule);
4775 
4776 long __sched io_schedule_timeout(long timeout)
4777 {
4778 	struct rq *rq = raw_rq();
4779 	long ret;
4780 
4781 	delayacct_blkio_start();
4782 	atomic_inc(&rq->nr_iowait);
4783 	blk_flush_plug(current);
4784 	current->in_iowait = 1;
4785 	ret = schedule_timeout(timeout);
4786 	current->in_iowait = 0;
4787 	atomic_dec(&rq->nr_iowait);
4788 	delayacct_blkio_end();
4789 	return ret;
4790 }
4791 
4792 /**
4793  * sys_sched_get_priority_max - return maximum RT priority.
4794  * @policy: scheduling class.
4795  *
4796  * this syscall returns the maximum rt_priority that can be used
4797  * by a given scheduling class.
4798  */
4799 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4800 {
4801 	int ret = -EINVAL;
4802 
4803 	switch (policy) {
4804 	case SCHED_FIFO:
4805 	case SCHED_RR:
4806 		ret = MAX_USER_RT_PRIO-1;
4807 		break;
4808 	case SCHED_NORMAL:
4809 	case SCHED_BATCH:
4810 	case SCHED_IDLE:
4811 		ret = 0;
4812 		break;
4813 	}
4814 	return ret;
4815 }
4816 
4817 /**
4818  * sys_sched_get_priority_min - return minimum RT priority.
4819  * @policy: scheduling class.
4820  *
4821  * this syscall returns the minimum rt_priority that can be used
4822  * by a given scheduling class.
4823  */
4824 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4825 {
4826 	int ret = -EINVAL;
4827 
4828 	switch (policy) {
4829 	case SCHED_FIFO:
4830 	case SCHED_RR:
4831 		ret = 1;
4832 		break;
4833 	case SCHED_NORMAL:
4834 	case SCHED_BATCH:
4835 	case SCHED_IDLE:
4836 		ret = 0;
4837 	}
4838 	return ret;
4839 }
4840 
4841 /**
4842  * sys_sched_rr_get_interval - return the default timeslice of a process.
4843  * @pid: pid of the process.
4844  * @interval: userspace pointer to the timeslice value.
4845  *
4846  * this syscall writes the default timeslice value of a given process
4847  * into the user-space timespec buffer. A value of '0' means infinity.
4848  */
4849 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4850 		struct timespec __user *, interval)
4851 {
4852 	struct task_struct *p;
4853 	unsigned int time_slice;
4854 	unsigned long flags;
4855 	struct rq *rq;
4856 	int retval;
4857 	struct timespec t;
4858 
4859 	if (pid < 0)
4860 		return -EINVAL;
4861 
4862 	retval = -ESRCH;
4863 	rcu_read_lock();
4864 	p = find_process_by_pid(pid);
4865 	if (!p)
4866 		goto out_unlock;
4867 
4868 	retval = security_task_getscheduler(p);
4869 	if (retval)
4870 		goto out_unlock;
4871 
4872 	rq = task_rq_lock(p, &flags);
4873 	time_slice = p->sched_class->get_rr_interval(rq, p);
4874 	task_rq_unlock(rq, p, &flags);
4875 
4876 	rcu_read_unlock();
4877 	jiffies_to_timespec(time_slice, &t);
4878 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4879 	return retval;
4880 
4881 out_unlock:
4882 	rcu_read_unlock();
4883 	return retval;
4884 }
4885 
4886 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4887 
4888 void sched_show_task(struct task_struct *p)
4889 {
4890 	unsigned long free = 0;
4891 	unsigned state;
4892 
4893 	state = p->state ? __ffs(p->state) + 1 : 0;
4894 	printk(KERN_INFO "%-15.15s %c", p->comm,
4895 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4896 #if BITS_PER_LONG == 32
4897 	if (state == TASK_RUNNING)
4898 		printk(KERN_CONT " running  ");
4899 	else
4900 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4901 #else
4902 	if (state == TASK_RUNNING)
4903 		printk(KERN_CONT "  running task    ");
4904 	else
4905 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4906 #endif
4907 #ifdef CONFIG_DEBUG_STACK_USAGE
4908 	free = stack_not_used(p);
4909 #endif
4910 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4911 		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4912 		(unsigned long)task_thread_info(p)->flags);
4913 
4914 	show_stack(p, NULL);
4915 }
4916 
4917 void show_state_filter(unsigned long state_filter)
4918 {
4919 	struct task_struct *g, *p;
4920 
4921 #if BITS_PER_LONG == 32
4922 	printk(KERN_INFO
4923 		"  task                PC stack   pid father\n");
4924 #else
4925 	printk(KERN_INFO
4926 		"  task                        PC stack   pid father\n");
4927 #endif
4928 	rcu_read_lock();
4929 	do_each_thread(g, p) {
4930 		/*
4931 		 * reset the NMI-timeout, listing all files on a slow
4932 		 * console might take a lot of time:
4933 		 */
4934 		touch_nmi_watchdog();
4935 		if (!state_filter || (p->state & state_filter))
4936 			sched_show_task(p);
4937 	} while_each_thread(g, p);
4938 
4939 	touch_all_softlockup_watchdogs();
4940 
4941 #ifdef CONFIG_SCHED_DEBUG
4942 	sysrq_sched_debug_show();
4943 #endif
4944 	rcu_read_unlock();
4945 	/*
4946 	 * Only show locks if all tasks are dumped:
4947 	 */
4948 	if (!state_filter)
4949 		debug_show_all_locks();
4950 }
4951 
4952 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4953 {
4954 	idle->sched_class = &idle_sched_class;
4955 }
4956 
4957 /**
4958  * init_idle - set up an idle thread for a given CPU
4959  * @idle: task in question
4960  * @cpu: cpu the idle task belongs to
4961  *
4962  * NOTE: this function does not set the idle thread's NEED_RESCHED
4963  * flag, to make booting more robust.
4964  */
4965 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4966 {
4967 	struct rq *rq = cpu_rq(cpu);
4968 	unsigned long flags;
4969 
4970 	raw_spin_lock_irqsave(&rq->lock, flags);
4971 
4972 	__sched_fork(idle);
4973 	idle->state = TASK_RUNNING;
4974 	idle->se.exec_start = sched_clock();
4975 
4976 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4977 	/*
4978 	 * We're having a chicken and egg problem, even though we are
4979 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4980 	 * lockdep check in task_group() will fail.
4981 	 *
4982 	 * Similar case to sched_fork(). / Alternatively we could
4983 	 * use task_rq_lock() here and obtain the other rq->lock.
4984 	 *
4985 	 * Silence PROVE_RCU
4986 	 */
4987 	rcu_read_lock();
4988 	__set_task_cpu(idle, cpu);
4989 	rcu_read_unlock();
4990 
4991 	rq->curr = rq->idle = idle;
4992 #if defined(CONFIG_SMP)
4993 	idle->on_cpu = 1;
4994 #endif
4995 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4996 
4997 	/* Set the preempt count _outside_ the spinlocks! */
4998 	task_thread_info(idle)->preempt_count = 0;
4999 
5000 	/*
5001 	 * The idle tasks have their own, simple scheduling class:
5002 	 */
5003 	idle->sched_class = &idle_sched_class;
5004 	ftrace_graph_init_idle_task(idle, cpu);
5005 #if defined(CONFIG_SMP)
5006 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5007 #endif
5008 }
5009 
5010 #ifdef CONFIG_SMP
5011 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5012 {
5013 	if (p->sched_class && p->sched_class->set_cpus_allowed)
5014 		p->sched_class->set_cpus_allowed(p, new_mask);
5015 
5016 	cpumask_copy(&p->cpus_allowed, new_mask);
5017 	p->nr_cpus_allowed = cpumask_weight(new_mask);
5018 }
5019 
5020 /*
5021  * This is how migration works:
5022  *
5023  * 1) we invoke migration_cpu_stop() on the target CPU using
5024  *    stop_one_cpu().
5025  * 2) stopper starts to run (implicitly forcing the migrated thread
5026  *    off the CPU)
5027  * 3) it checks whether the migrated task is still in the wrong runqueue.
5028  * 4) if it's in the wrong runqueue then the migration thread removes
5029  *    it and puts it into the right queue.
5030  * 5) stopper completes and stop_one_cpu() returns and the migration
5031  *    is done.
5032  */
5033 
5034 /*
5035  * Change a given task's CPU affinity. Migrate the thread to a
5036  * proper CPU and schedule it away if the CPU it's executing on
5037  * is removed from the allowed bitmask.
5038  *
5039  * NOTE: the caller must have a valid reference to the task, the
5040  * task must not exit() & deallocate itself prematurely. The
5041  * call is not atomic; no spinlocks may be held.
5042  */
5043 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5044 {
5045 	unsigned long flags;
5046 	struct rq *rq;
5047 	unsigned int dest_cpu;
5048 	int ret = 0;
5049 
5050 	rq = task_rq_lock(p, &flags);
5051 
5052 	if (cpumask_equal(&p->cpus_allowed, new_mask))
5053 		goto out;
5054 
5055 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5056 		ret = -EINVAL;
5057 		goto out;
5058 	}
5059 
5060 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5061 		ret = -EINVAL;
5062 		goto out;
5063 	}
5064 
5065 	do_set_cpus_allowed(p, new_mask);
5066 
5067 	/* Can the task run on the task's current CPU? If so, we're done */
5068 	if (cpumask_test_cpu(task_cpu(p), new_mask))
5069 		goto out;
5070 
5071 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5072 	if (p->on_rq) {
5073 		struct migration_arg arg = { p, dest_cpu };
5074 		/* Need help from migration thread: drop lock and wait. */
5075 		task_rq_unlock(rq, p, &flags);
5076 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5077 		tlb_migrate_finish(p->mm);
5078 		return 0;
5079 	}
5080 out:
5081 	task_rq_unlock(rq, p, &flags);
5082 
5083 	return ret;
5084 }
5085 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5086 
5087 /*
5088  * Move (not current) task off this cpu, onto dest cpu. We're doing
5089  * this because either it can't run here any more (set_cpus_allowed()
5090  * away from this CPU, or CPU going down), or because we're
5091  * attempting to rebalance this task on exec (sched_exec).
5092  *
5093  * So we race with normal scheduler movements, but that's OK, as long
5094  * as the task is no longer on this CPU.
5095  *
5096  * Returns non-zero if task was successfully migrated.
5097  */
5098 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5099 {
5100 	struct rq *rq_dest, *rq_src;
5101 	int ret = 0;
5102 
5103 	if (unlikely(!cpu_active(dest_cpu)))
5104 		return ret;
5105 
5106 	rq_src = cpu_rq(src_cpu);
5107 	rq_dest = cpu_rq(dest_cpu);
5108 
5109 	raw_spin_lock(&p->pi_lock);
5110 	double_rq_lock(rq_src, rq_dest);
5111 	/* Already moved. */
5112 	if (task_cpu(p) != src_cpu)
5113 		goto done;
5114 	/* Affinity changed (again). */
5115 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5116 		goto fail;
5117 
5118 	/*
5119 	 * If we're not on a rq, the next wake-up will ensure we're
5120 	 * placed properly.
5121 	 */
5122 	if (p->on_rq) {
5123 		dequeue_task(rq_src, p, 0);
5124 		set_task_cpu(p, dest_cpu);
5125 		enqueue_task(rq_dest, p, 0);
5126 		check_preempt_curr(rq_dest, p, 0);
5127 	}
5128 done:
5129 	ret = 1;
5130 fail:
5131 	double_rq_unlock(rq_src, rq_dest);
5132 	raw_spin_unlock(&p->pi_lock);
5133 	return ret;
5134 }
5135 
5136 /*
5137  * migration_cpu_stop - this will be executed by a highprio stopper thread
5138  * and performs thread migration by bumping thread off CPU then
5139  * 'pushing' onto another runqueue.
5140  */
5141 static int migration_cpu_stop(void *data)
5142 {
5143 	struct migration_arg *arg = data;
5144 
5145 	/*
5146 	 * The original target cpu might have gone down and we might
5147 	 * be on another cpu but it doesn't matter.
5148 	 */
5149 	local_irq_disable();
5150 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5151 	local_irq_enable();
5152 	return 0;
5153 }
5154 
5155 #ifdef CONFIG_HOTPLUG_CPU
5156 
5157 /*
5158  * Ensures that the idle task is using init_mm right before its cpu goes
5159  * offline.
5160  */
5161 void idle_task_exit(void)
5162 {
5163 	struct mm_struct *mm = current->active_mm;
5164 
5165 	BUG_ON(cpu_online(smp_processor_id()));
5166 
5167 	if (mm != &init_mm)
5168 		switch_mm(mm, &init_mm, current);
5169 	mmdrop(mm);
5170 }
5171 
5172 /*
5173  * While a dead CPU has no uninterruptible tasks queued at this point,
5174  * it might still have a nonzero ->nr_uninterruptible counter, because
5175  * for performance reasons the counter is not stricly tracking tasks to
5176  * their home CPUs. So we just add the counter to another CPU's counter,
5177  * to keep the global sum constant after CPU-down:
5178  */
5179 static void migrate_nr_uninterruptible(struct rq *rq_src)
5180 {
5181 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5182 
5183 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5184 	rq_src->nr_uninterruptible = 0;
5185 }
5186 
5187 /*
5188  * remove the tasks which were accounted by rq from calc_load_tasks.
5189  */
5190 static void calc_global_load_remove(struct rq *rq)
5191 {
5192 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5193 	rq->calc_load_active = 0;
5194 }
5195 
5196 /*
5197  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5198  * try_to_wake_up()->select_task_rq().
5199  *
5200  * Called with rq->lock held even though we'er in stop_machine() and
5201  * there's no concurrency possible, we hold the required locks anyway
5202  * because of lock validation efforts.
5203  */
5204 static void migrate_tasks(unsigned int dead_cpu)
5205 {
5206 	struct rq *rq = cpu_rq(dead_cpu);
5207 	struct task_struct *next, *stop = rq->stop;
5208 	int dest_cpu;
5209 
5210 	/*
5211 	 * Fudge the rq selection such that the below task selection loop
5212 	 * doesn't get stuck on the currently eligible stop task.
5213 	 *
5214 	 * We're currently inside stop_machine() and the rq is either stuck
5215 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5216 	 * either way we should never end up calling schedule() until we're
5217 	 * done here.
5218 	 */
5219 	rq->stop = NULL;
5220 
5221 	/* Ensure any throttled groups are reachable by pick_next_task */
5222 	unthrottle_offline_cfs_rqs(rq);
5223 
5224 	for ( ; ; ) {
5225 		/*
5226 		 * There's this thread running, bail when that's the only
5227 		 * remaining thread.
5228 		 */
5229 		if (rq->nr_running == 1)
5230 			break;
5231 
5232 		next = pick_next_task(rq);
5233 		BUG_ON(!next);
5234 		next->sched_class->put_prev_task(rq, next);
5235 
5236 		/* Find suitable destination for @next, with force if needed. */
5237 		dest_cpu = select_fallback_rq(dead_cpu, next);
5238 		raw_spin_unlock(&rq->lock);
5239 
5240 		__migrate_task(next, dead_cpu, dest_cpu);
5241 
5242 		raw_spin_lock(&rq->lock);
5243 	}
5244 
5245 	rq->stop = stop;
5246 }
5247 
5248 #endif /* CONFIG_HOTPLUG_CPU */
5249 
5250 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5251 
5252 static struct ctl_table sd_ctl_dir[] = {
5253 	{
5254 		.procname	= "sched_domain",
5255 		.mode		= 0555,
5256 	},
5257 	{}
5258 };
5259 
5260 static struct ctl_table sd_ctl_root[] = {
5261 	{
5262 		.procname	= "kernel",
5263 		.mode		= 0555,
5264 		.child		= sd_ctl_dir,
5265 	},
5266 	{}
5267 };
5268 
5269 static struct ctl_table *sd_alloc_ctl_entry(int n)
5270 {
5271 	struct ctl_table *entry =
5272 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5273 
5274 	return entry;
5275 }
5276 
5277 static void sd_free_ctl_entry(struct ctl_table **tablep)
5278 {
5279 	struct ctl_table *entry;
5280 
5281 	/*
5282 	 * In the intermediate directories, both the child directory and
5283 	 * procname are dynamically allocated and could fail but the mode
5284 	 * will always be set. In the lowest directory the names are
5285 	 * static strings and all have proc handlers.
5286 	 */
5287 	for (entry = *tablep; entry->mode; entry++) {
5288 		if (entry->child)
5289 			sd_free_ctl_entry(&entry->child);
5290 		if (entry->proc_handler == NULL)
5291 			kfree(entry->procname);
5292 	}
5293 
5294 	kfree(*tablep);
5295 	*tablep = NULL;
5296 }
5297 
5298 static void
5299 set_table_entry(struct ctl_table *entry,
5300 		const char *procname, void *data, int maxlen,
5301 		umode_t mode, proc_handler *proc_handler)
5302 {
5303 	entry->procname = procname;
5304 	entry->data = data;
5305 	entry->maxlen = maxlen;
5306 	entry->mode = mode;
5307 	entry->proc_handler = proc_handler;
5308 }
5309 
5310 static struct ctl_table *
5311 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5312 {
5313 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5314 
5315 	if (table == NULL)
5316 		return NULL;
5317 
5318 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5319 		sizeof(long), 0644, proc_doulongvec_minmax);
5320 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5321 		sizeof(long), 0644, proc_doulongvec_minmax);
5322 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5323 		sizeof(int), 0644, proc_dointvec_minmax);
5324 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5325 		sizeof(int), 0644, proc_dointvec_minmax);
5326 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5327 		sizeof(int), 0644, proc_dointvec_minmax);
5328 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5329 		sizeof(int), 0644, proc_dointvec_minmax);
5330 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5331 		sizeof(int), 0644, proc_dointvec_minmax);
5332 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5333 		sizeof(int), 0644, proc_dointvec_minmax);
5334 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5335 		sizeof(int), 0644, proc_dointvec_minmax);
5336 	set_table_entry(&table[9], "cache_nice_tries",
5337 		&sd->cache_nice_tries,
5338 		sizeof(int), 0644, proc_dointvec_minmax);
5339 	set_table_entry(&table[10], "flags", &sd->flags,
5340 		sizeof(int), 0644, proc_dointvec_minmax);
5341 	set_table_entry(&table[11], "name", sd->name,
5342 		CORENAME_MAX_SIZE, 0444, proc_dostring);
5343 	/* &table[12] is terminator */
5344 
5345 	return table;
5346 }
5347 
5348 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5349 {
5350 	struct ctl_table *entry, *table;
5351 	struct sched_domain *sd;
5352 	int domain_num = 0, i;
5353 	char buf[32];
5354 
5355 	for_each_domain(cpu, sd)
5356 		domain_num++;
5357 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5358 	if (table == NULL)
5359 		return NULL;
5360 
5361 	i = 0;
5362 	for_each_domain(cpu, sd) {
5363 		snprintf(buf, 32, "domain%d", i);
5364 		entry->procname = kstrdup(buf, GFP_KERNEL);
5365 		entry->mode = 0555;
5366 		entry->child = sd_alloc_ctl_domain_table(sd);
5367 		entry++;
5368 		i++;
5369 	}
5370 	return table;
5371 }
5372 
5373 static struct ctl_table_header *sd_sysctl_header;
5374 static void register_sched_domain_sysctl(void)
5375 {
5376 	int i, cpu_num = num_possible_cpus();
5377 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5378 	char buf[32];
5379 
5380 	WARN_ON(sd_ctl_dir[0].child);
5381 	sd_ctl_dir[0].child = entry;
5382 
5383 	if (entry == NULL)
5384 		return;
5385 
5386 	for_each_possible_cpu(i) {
5387 		snprintf(buf, 32, "cpu%d", i);
5388 		entry->procname = kstrdup(buf, GFP_KERNEL);
5389 		entry->mode = 0555;
5390 		entry->child = sd_alloc_ctl_cpu_table(i);
5391 		entry++;
5392 	}
5393 
5394 	WARN_ON(sd_sysctl_header);
5395 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5396 }
5397 
5398 /* may be called multiple times per register */
5399 static void unregister_sched_domain_sysctl(void)
5400 {
5401 	if (sd_sysctl_header)
5402 		unregister_sysctl_table(sd_sysctl_header);
5403 	sd_sysctl_header = NULL;
5404 	if (sd_ctl_dir[0].child)
5405 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5406 }
5407 #else
5408 static void register_sched_domain_sysctl(void)
5409 {
5410 }
5411 static void unregister_sched_domain_sysctl(void)
5412 {
5413 }
5414 #endif
5415 
5416 static void set_rq_online(struct rq *rq)
5417 {
5418 	if (!rq->online) {
5419 		const struct sched_class *class;
5420 
5421 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5422 		rq->online = 1;
5423 
5424 		for_each_class(class) {
5425 			if (class->rq_online)
5426 				class->rq_online(rq);
5427 		}
5428 	}
5429 }
5430 
5431 static void set_rq_offline(struct rq *rq)
5432 {
5433 	if (rq->online) {
5434 		const struct sched_class *class;
5435 
5436 		for_each_class(class) {
5437 			if (class->rq_offline)
5438 				class->rq_offline(rq);
5439 		}
5440 
5441 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5442 		rq->online = 0;
5443 	}
5444 }
5445 
5446 /*
5447  * migration_call - callback that gets triggered when a CPU is added.
5448  * Here we can start up the necessary migration thread for the new CPU.
5449  */
5450 static int __cpuinit
5451 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5452 {
5453 	int cpu = (long)hcpu;
5454 	unsigned long flags;
5455 	struct rq *rq = cpu_rq(cpu);
5456 
5457 	switch (action & ~CPU_TASKS_FROZEN) {
5458 
5459 	case CPU_UP_PREPARE:
5460 		rq->calc_load_update = calc_load_update;
5461 		break;
5462 
5463 	case CPU_ONLINE:
5464 		/* Update our root-domain */
5465 		raw_spin_lock_irqsave(&rq->lock, flags);
5466 		if (rq->rd) {
5467 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5468 
5469 			set_rq_online(rq);
5470 		}
5471 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5472 		break;
5473 
5474 #ifdef CONFIG_HOTPLUG_CPU
5475 	case CPU_DYING:
5476 		sched_ttwu_pending();
5477 		/* Update our root-domain */
5478 		raw_spin_lock_irqsave(&rq->lock, flags);
5479 		if (rq->rd) {
5480 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5481 			set_rq_offline(rq);
5482 		}
5483 		migrate_tasks(cpu);
5484 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5485 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5486 
5487 		migrate_nr_uninterruptible(rq);
5488 		calc_global_load_remove(rq);
5489 		break;
5490 #endif
5491 	}
5492 
5493 	update_max_interval();
5494 
5495 	return NOTIFY_OK;
5496 }
5497 
5498 /*
5499  * Register at high priority so that task migration (migrate_all_tasks)
5500  * happens before everything else.  This has to be lower priority than
5501  * the notifier in the perf_event subsystem, though.
5502  */
5503 static struct notifier_block __cpuinitdata migration_notifier = {
5504 	.notifier_call = migration_call,
5505 	.priority = CPU_PRI_MIGRATION,
5506 };
5507 
5508 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5509 				      unsigned long action, void *hcpu)
5510 {
5511 	switch (action & ~CPU_TASKS_FROZEN) {
5512 	case CPU_STARTING:
5513 	case CPU_DOWN_FAILED:
5514 		set_cpu_active((long)hcpu, true);
5515 		return NOTIFY_OK;
5516 	default:
5517 		return NOTIFY_DONE;
5518 	}
5519 }
5520 
5521 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5522 					unsigned long action, void *hcpu)
5523 {
5524 	switch (action & ~CPU_TASKS_FROZEN) {
5525 	case CPU_DOWN_PREPARE:
5526 		set_cpu_active((long)hcpu, false);
5527 		return NOTIFY_OK;
5528 	default:
5529 		return NOTIFY_DONE;
5530 	}
5531 }
5532 
5533 static int __init migration_init(void)
5534 {
5535 	void *cpu = (void *)(long)smp_processor_id();
5536 	int err;
5537 
5538 	/* Initialize migration for the boot CPU */
5539 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5540 	BUG_ON(err == NOTIFY_BAD);
5541 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5542 	register_cpu_notifier(&migration_notifier);
5543 
5544 	/* Register cpu active notifiers */
5545 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5546 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5547 
5548 	return 0;
5549 }
5550 early_initcall(migration_init);
5551 #endif
5552 
5553 #ifdef CONFIG_SMP
5554 
5555 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5556 
5557 #ifdef CONFIG_SCHED_DEBUG
5558 
5559 static __read_mostly int sched_debug_enabled;
5560 
5561 static int __init sched_debug_setup(char *str)
5562 {
5563 	sched_debug_enabled = 1;
5564 
5565 	return 0;
5566 }
5567 early_param("sched_debug", sched_debug_setup);
5568 
5569 static inline bool sched_debug(void)
5570 {
5571 	return sched_debug_enabled;
5572 }
5573 
5574 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5575 				  struct cpumask *groupmask)
5576 {
5577 	struct sched_group *group = sd->groups;
5578 	char str[256];
5579 
5580 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5581 	cpumask_clear(groupmask);
5582 
5583 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5584 
5585 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5586 		printk("does not load-balance\n");
5587 		if (sd->parent)
5588 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5589 					" has parent");
5590 		return -1;
5591 	}
5592 
5593 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5594 
5595 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5596 		printk(KERN_ERR "ERROR: domain->span does not contain "
5597 				"CPU%d\n", cpu);
5598 	}
5599 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5600 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5601 				" CPU%d\n", cpu);
5602 	}
5603 
5604 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5605 	do {
5606 		if (!group) {
5607 			printk("\n");
5608 			printk(KERN_ERR "ERROR: group is NULL\n");
5609 			break;
5610 		}
5611 
5612 		/*
5613 		 * Even though we initialize ->power to something semi-sane,
5614 		 * we leave power_orig unset. This allows us to detect if
5615 		 * domain iteration is still funny without causing /0 traps.
5616 		 */
5617 		if (!group->sgp->power_orig) {
5618 			printk(KERN_CONT "\n");
5619 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5620 					"set\n");
5621 			break;
5622 		}
5623 
5624 		if (!cpumask_weight(sched_group_cpus(group))) {
5625 			printk(KERN_CONT "\n");
5626 			printk(KERN_ERR "ERROR: empty group\n");
5627 			break;
5628 		}
5629 
5630 		if (!(sd->flags & SD_OVERLAP) &&
5631 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5632 			printk(KERN_CONT "\n");
5633 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5634 			break;
5635 		}
5636 
5637 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5638 
5639 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5640 
5641 		printk(KERN_CONT " %s", str);
5642 		if (group->sgp->power != SCHED_POWER_SCALE) {
5643 			printk(KERN_CONT " (cpu_power = %d)",
5644 				group->sgp->power);
5645 		}
5646 
5647 		group = group->next;
5648 	} while (group != sd->groups);
5649 	printk(KERN_CONT "\n");
5650 
5651 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5652 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5653 
5654 	if (sd->parent &&
5655 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5656 		printk(KERN_ERR "ERROR: parent span is not a superset "
5657 			"of domain->span\n");
5658 	return 0;
5659 }
5660 
5661 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5662 {
5663 	int level = 0;
5664 
5665 	if (!sched_debug_enabled)
5666 		return;
5667 
5668 	if (!sd) {
5669 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5670 		return;
5671 	}
5672 
5673 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5674 
5675 	for (;;) {
5676 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5677 			break;
5678 		level++;
5679 		sd = sd->parent;
5680 		if (!sd)
5681 			break;
5682 	}
5683 }
5684 #else /* !CONFIG_SCHED_DEBUG */
5685 # define sched_domain_debug(sd, cpu) do { } while (0)
5686 static inline bool sched_debug(void)
5687 {
5688 	return false;
5689 }
5690 #endif /* CONFIG_SCHED_DEBUG */
5691 
5692 static int sd_degenerate(struct sched_domain *sd)
5693 {
5694 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5695 		return 1;
5696 
5697 	/* Following flags need at least 2 groups */
5698 	if (sd->flags & (SD_LOAD_BALANCE |
5699 			 SD_BALANCE_NEWIDLE |
5700 			 SD_BALANCE_FORK |
5701 			 SD_BALANCE_EXEC |
5702 			 SD_SHARE_CPUPOWER |
5703 			 SD_SHARE_PKG_RESOURCES)) {
5704 		if (sd->groups != sd->groups->next)
5705 			return 0;
5706 	}
5707 
5708 	/* Following flags don't use groups */
5709 	if (sd->flags & (SD_WAKE_AFFINE))
5710 		return 0;
5711 
5712 	return 1;
5713 }
5714 
5715 static int
5716 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5717 {
5718 	unsigned long cflags = sd->flags, pflags = parent->flags;
5719 
5720 	if (sd_degenerate(parent))
5721 		return 1;
5722 
5723 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5724 		return 0;
5725 
5726 	/* Flags needing groups don't count if only 1 group in parent */
5727 	if (parent->groups == parent->groups->next) {
5728 		pflags &= ~(SD_LOAD_BALANCE |
5729 				SD_BALANCE_NEWIDLE |
5730 				SD_BALANCE_FORK |
5731 				SD_BALANCE_EXEC |
5732 				SD_SHARE_CPUPOWER |
5733 				SD_SHARE_PKG_RESOURCES);
5734 		if (nr_node_ids == 1)
5735 			pflags &= ~SD_SERIALIZE;
5736 	}
5737 	if (~cflags & pflags)
5738 		return 0;
5739 
5740 	return 1;
5741 }
5742 
5743 static void free_rootdomain(struct rcu_head *rcu)
5744 {
5745 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5746 
5747 	cpupri_cleanup(&rd->cpupri);
5748 	free_cpumask_var(rd->rto_mask);
5749 	free_cpumask_var(rd->online);
5750 	free_cpumask_var(rd->span);
5751 	kfree(rd);
5752 }
5753 
5754 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5755 {
5756 	struct root_domain *old_rd = NULL;
5757 	unsigned long flags;
5758 
5759 	raw_spin_lock_irqsave(&rq->lock, flags);
5760 
5761 	if (rq->rd) {
5762 		old_rd = rq->rd;
5763 
5764 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5765 			set_rq_offline(rq);
5766 
5767 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5768 
5769 		/*
5770 		 * If we dont want to free the old_rt yet then
5771 		 * set old_rd to NULL to skip the freeing later
5772 		 * in this function:
5773 		 */
5774 		if (!atomic_dec_and_test(&old_rd->refcount))
5775 			old_rd = NULL;
5776 	}
5777 
5778 	atomic_inc(&rd->refcount);
5779 	rq->rd = rd;
5780 
5781 	cpumask_set_cpu(rq->cpu, rd->span);
5782 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5783 		set_rq_online(rq);
5784 
5785 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5786 
5787 	if (old_rd)
5788 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5789 }
5790 
5791 static int init_rootdomain(struct root_domain *rd)
5792 {
5793 	memset(rd, 0, sizeof(*rd));
5794 
5795 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5796 		goto out;
5797 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5798 		goto free_span;
5799 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5800 		goto free_online;
5801 
5802 	if (cpupri_init(&rd->cpupri) != 0)
5803 		goto free_rto_mask;
5804 	return 0;
5805 
5806 free_rto_mask:
5807 	free_cpumask_var(rd->rto_mask);
5808 free_online:
5809 	free_cpumask_var(rd->online);
5810 free_span:
5811 	free_cpumask_var(rd->span);
5812 out:
5813 	return -ENOMEM;
5814 }
5815 
5816 /*
5817  * By default the system creates a single root-domain with all cpus as
5818  * members (mimicking the global state we have today).
5819  */
5820 struct root_domain def_root_domain;
5821 
5822 static void init_defrootdomain(void)
5823 {
5824 	init_rootdomain(&def_root_domain);
5825 
5826 	atomic_set(&def_root_domain.refcount, 1);
5827 }
5828 
5829 static struct root_domain *alloc_rootdomain(void)
5830 {
5831 	struct root_domain *rd;
5832 
5833 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5834 	if (!rd)
5835 		return NULL;
5836 
5837 	if (init_rootdomain(rd) != 0) {
5838 		kfree(rd);
5839 		return NULL;
5840 	}
5841 
5842 	return rd;
5843 }
5844 
5845 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5846 {
5847 	struct sched_group *tmp, *first;
5848 
5849 	if (!sg)
5850 		return;
5851 
5852 	first = sg;
5853 	do {
5854 		tmp = sg->next;
5855 
5856 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5857 			kfree(sg->sgp);
5858 
5859 		kfree(sg);
5860 		sg = tmp;
5861 	} while (sg != first);
5862 }
5863 
5864 static void free_sched_domain(struct rcu_head *rcu)
5865 {
5866 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5867 
5868 	/*
5869 	 * If its an overlapping domain it has private groups, iterate and
5870 	 * nuke them all.
5871 	 */
5872 	if (sd->flags & SD_OVERLAP) {
5873 		free_sched_groups(sd->groups, 1);
5874 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5875 		kfree(sd->groups->sgp);
5876 		kfree(sd->groups);
5877 	}
5878 	kfree(sd);
5879 }
5880 
5881 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5882 {
5883 	call_rcu(&sd->rcu, free_sched_domain);
5884 }
5885 
5886 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5887 {
5888 	for (; sd; sd = sd->parent)
5889 		destroy_sched_domain(sd, cpu);
5890 }
5891 
5892 /*
5893  * Keep a special pointer to the highest sched_domain that has
5894  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5895  * allows us to avoid some pointer chasing select_idle_sibling().
5896  *
5897  * Also keep a unique ID per domain (we use the first cpu number in
5898  * the cpumask of the domain), this allows us to quickly tell if
5899  * two cpus are in the same cache domain, see cpus_share_cache().
5900  */
5901 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5902 DEFINE_PER_CPU(int, sd_llc_id);
5903 
5904 static void update_top_cache_domain(int cpu)
5905 {
5906 	struct sched_domain *sd;
5907 	int id = cpu;
5908 
5909 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5910 	if (sd)
5911 		id = cpumask_first(sched_domain_span(sd));
5912 
5913 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5914 	per_cpu(sd_llc_id, cpu) = id;
5915 }
5916 
5917 /*
5918  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5919  * hold the hotplug lock.
5920  */
5921 static void
5922 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5923 {
5924 	struct rq *rq = cpu_rq(cpu);
5925 	struct sched_domain *tmp;
5926 
5927 	/* Remove the sched domains which do not contribute to scheduling. */
5928 	for (tmp = sd; tmp; ) {
5929 		struct sched_domain *parent = tmp->parent;
5930 		if (!parent)
5931 			break;
5932 
5933 		if (sd_parent_degenerate(tmp, parent)) {
5934 			tmp->parent = parent->parent;
5935 			if (parent->parent)
5936 				parent->parent->child = tmp;
5937 			destroy_sched_domain(parent, cpu);
5938 		} else
5939 			tmp = tmp->parent;
5940 	}
5941 
5942 	if (sd && sd_degenerate(sd)) {
5943 		tmp = sd;
5944 		sd = sd->parent;
5945 		destroy_sched_domain(tmp, cpu);
5946 		if (sd)
5947 			sd->child = NULL;
5948 	}
5949 
5950 	sched_domain_debug(sd, cpu);
5951 
5952 	rq_attach_root(rq, rd);
5953 	tmp = rq->sd;
5954 	rcu_assign_pointer(rq->sd, sd);
5955 	destroy_sched_domains(tmp, cpu);
5956 
5957 	update_top_cache_domain(cpu);
5958 }
5959 
5960 /* cpus with isolated domains */
5961 static cpumask_var_t cpu_isolated_map;
5962 
5963 /* Setup the mask of cpus configured for isolated domains */
5964 static int __init isolated_cpu_setup(char *str)
5965 {
5966 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5967 	cpulist_parse(str, cpu_isolated_map);
5968 	return 1;
5969 }
5970 
5971 __setup("isolcpus=", isolated_cpu_setup);
5972 
5973 static const struct cpumask *cpu_cpu_mask(int cpu)
5974 {
5975 	return cpumask_of_node(cpu_to_node(cpu));
5976 }
5977 
5978 struct sd_data {
5979 	struct sched_domain **__percpu sd;
5980 	struct sched_group **__percpu sg;
5981 	struct sched_group_power **__percpu sgp;
5982 };
5983 
5984 struct s_data {
5985 	struct sched_domain ** __percpu sd;
5986 	struct root_domain	*rd;
5987 };
5988 
5989 enum s_alloc {
5990 	sa_rootdomain,
5991 	sa_sd,
5992 	sa_sd_storage,
5993 	sa_none,
5994 };
5995 
5996 struct sched_domain_topology_level;
5997 
5998 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5999 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6000 
6001 #define SDTL_OVERLAP	0x01
6002 
6003 struct sched_domain_topology_level {
6004 	sched_domain_init_f init;
6005 	sched_domain_mask_f mask;
6006 	int		    flags;
6007 	int		    numa_level;
6008 	struct sd_data      data;
6009 };
6010 
6011 /*
6012  * Build an iteration mask that can exclude certain CPUs from the upwards
6013  * domain traversal.
6014  *
6015  * Asymmetric node setups can result in situations where the domain tree is of
6016  * unequal depth, make sure to skip domains that already cover the entire
6017  * range.
6018  *
6019  * In that case build_sched_domains() will have terminated the iteration early
6020  * and our sibling sd spans will be empty. Domains should always include the
6021  * cpu they're built on, so check that.
6022  *
6023  */
6024 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6025 {
6026 	const struct cpumask *span = sched_domain_span(sd);
6027 	struct sd_data *sdd = sd->private;
6028 	struct sched_domain *sibling;
6029 	int i;
6030 
6031 	for_each_cpu(i, span) {
6032 		sibling = *per_cpu_ptr(sdd->sd, i);
6033 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6034 			continue;
6035 
6036 		cpumask_set_cpu(i, sched_group_mask(sg));
6037 	}
6038 }
6039 
6040 /*
6041  * Return the canonical balance cpu for this group, this is the first cpu
6042  * of this group that's also in the iteration mask.
6043  */
6044 int group_balance_cpu(struct sched_group *sg)
6045 {
6046 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6047 }
6048 
6049 static int
6050 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6051 {
6052 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6053 	const struct cpumask *span = sched_domain_span(sd);
6054 	struct cpumask *covered = sched_domains_tmpmask;
6055 	struct sd_data *sdd = sd->private;
6056 	struct sched_domain *child;
6057 	int i;
6058 
6059 	cpumask_clear(covered);
6060 
6061 	for_each_cpu(i, span) {
6062 		struct cpumask *sg_span;
6063 
6064 		if (cpumask_test_cpu(i, covered))
6065 			continue;
6066 
6067 		child = *per_cpu_ptr(sdd->sd, i);
6068 
6069 		/* See the comment near build_group_mask(). */
6070 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
6071 			continue;
6072 
6073 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6074 				GFP_KERNEL, cpu_to_node(cpu));
6075 
6076 		if (!sg)
6077 			goto fail;
6078 
6079 		sg_span = sched_group_cpus(sg);
6080 		if (child->child) {
6081 			child = child->child;
6082 			cpumask_copy(sg_span, sched_domain_span(child));
6083 		} else
6084 			cpumask_set_cpu(i, sg_span);
6085 
6086 		cpumask_or(covered, covered, sg_span);
6087 
6088 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6089 		if (atomic_inc_return(&sg->sgp->ref) == 1)
6090 			build_group_mask(sd, sg);
6091 
6092 		/*
6093 		 * Initialize sgp->power such that even if we mess up the
6094 		 * domains and no possible iteration will get us here, we won't
6095 		 * die on a /0 trap.
6096 		 */
6097 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
6098 
6099 		/*
6100 		 * Make sure the first group of this domain contains the
6101 		 * canonical balance cpu. Otherwise the sched_domain iteration
6102 		 * breaks. See update_sg_lb_stats().
6103 		 */
6104 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6105 		    group_balance_cpu(sg) == cpu)
6106 			groups = sg;
6107 
6108 		if (!first)
6109 			first = sg;
6110 		if (last)
6111 			last->next = sg;
6112 		last = sg;
6113 		last->next = first;
6114 	}
6115 	sd->groups = groups;
6116 
6117 	return 0;
6118 
6119 fail:
6120 	free_sched_groups(first, 0);
6121 
6122 	return -ENOMEM;
6123 }
6124 
6125 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6126 {
6127 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6128 	struct sched_domain *child = sd->child;
6129 
6130 	if (child)
6131 		cpu = cpumask_first(sched_domain_span(child));
6132 
6133 	if (sg) {
6134 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6135 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6136 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6137 	}
6138 
6139 	return cpu;
6140 }
6141 
6142 /*
6143  * build_sched_groups will build a circular linked list of the groups
6144  * covered by the given span, and will set each group's ->cpumask correctly,
6145  * and ->cpu_power to 0.
6146  *
6147  * Assumes the sched_domain tree is fully constructed
6148  */
6149 static int
6150 build_sched_groups(struct sched_domain *sd, int cpu)
6151 {
6152 	struct sched_group *first = NULL, *last = NULL;
6153 	struct sd_data *sdd = sd->private;
6154 	const struct cpumask *span = sched_domain_span(sd);
6155 	struct cpumask *covered;
6156 	int i;
6157 
6158 	get_group(cpu, sdd, &sd->groups);
6159 	atomic_inc(&sd->groups->ref);
6160 
6161 	if (cpu != cpumask_first(sched_domain_span(sd)))
6162 		return 0;
6163 
6164 	lockdep_assert_held(&sched_domains_mutex);
6165 	covered = sched_domains_tmpmask;
6166 
6167 	cpumask_clear(covered);
6168 
6169 	for_each_cpu(i, span) {
6170 		struct sched_group *sg;
6171 		int group = get_group(i, sdd, &sg);
6172 		int j;
6173 
6174 		if (cpumask_test_cpu(i, covered))
6175 			continue;
6176 
6177 		cpumask_clear(sched_group_cpus(sg));
6178 		sg->sgp->power = 0;
6179 		cpumask_setall(sched_group_mask(sg));
6180 
6181 		for_each_cpu(j, span) {
6182 			if (get_group(j, sdd, NULL) != group)
6183 				continue;
6184 
6185 			cpumask_set_cpu(j, covered);
6186 			cpumask_set_cpu(j, sched_group_cpus(sg));
6187 		}
6188 
6189 		if (!first)
6190 			first = sg;
6191 		if (last)
6192 			last->next = sg;
6193 		last = sg;
6194 	}
6195 	last->next = first;
6196 
6197 	return 0;
6198 }
6199 
6200 /*
6201  * Initialize sched groups cpu_power.
6202  *
6203  * cpu_power indicates the capacity of sched group, which is used while
6204  * distributing the load between different sched groups in a sched domain.
6205  * Typically cpu_power for all the groups in a sched domain will be same unless
6206  * there are asymmetries in the topology. If there are asymmetries, group
6207  * having more cpu_power will pickup more load compared to the group having
6208  * less cpu_power.
6209  */
6210 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6211 {
6212 	struct sched_group *sg = sd->groups;
6213 
6214 	WARN_ON(!sd || !sg);
6215 
6216 	do {
6217 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6218 		sg = sg->next;
6219 	} while (sg != sd->groups);
6220 
6221 	if (cpu != group_balance_cpu(sg))
6222 		return;
6223 
6224 	update_group_power(sd, cpu);
6225 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6226 }
6227 
6228 int __weak arch_sd_sibling_asym_packing(void)
6229 {
6230        return 0*SD_ASYM_PACKING;
6231 }
6232 
6233 /*
6234  * Initializers for schedule domains
6235  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6236  */
6237 
6238 #ifdef CONFIG_SCHED_DEBUG
6239 # define SD_INIT_NAME(sd, type)		sd->name = #type
6240 #else
6241 # define SD_INIT_NAME(sd, type)		do { } while (0)
6242 #endif
6243 
6244 #define SD_INIT_FUNC(type)						\
6245 static noinline struct sched_domain *					\
6246 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6247 {									\
6248 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6249 	*sd = SD_##type##_INIT;						\
6250 	SD_INIT_NAME(sd, type);						\
6251 	sd->private = &tl->data;					\
6252 	return sd;							\
6253 }
6254 
6255 SD_INIT_FUNC(CPU)
6256 #ifdef CONFIG_SCHED_SMT
6257  SD_INIT_FUNC(SIBLING)
6258 #endif
6259 #ifdef CONFIG_SCHED_MC
6260  SD_INIT_FUNC(MC)
6261 #endif
6262 #ifdef CONFIG_SCHED_BOOK
6263  SD_INIT_FUNC(BOOK)
6264 #endif
6265 
6266 static int default_relax_domain_level = -1;
6267 int sched_domain_level_max;
6268 
6269 static int __init setup_relax_domain_level(char *str)
6270 {
6271 	if (kstrtoint(str, 0, &default_relax_domain_level))
6272 		pr_warn("Unable to set relax_domain_level\n");
6273 
6274 	return 1;
6275 }
6276 __setup("relax_domain_level=", setup_relax_domain_level);
6277 
6278 static void set_domain_attribute(struct sched_domain *sd,
6279 				 struct sched_domain_attr *attr)
6280 {
6281 	int request;
6282 
6283 	if (!attr || attr->relax_domain_level < 0) {
6284 		if (default_relax_domain_level < 0)
6285 			return;
6286 		else
6287 			request = default_relax_domain_level;
6288 	} else
6289 		request = attr->relax_domain_level;
6290 	if (request < sd->level) {
6291 		/* turn off idle balance on this domain */
6292 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6293 	} else {
6294 		/* turn on idle balance on this domain */
6295 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6296 	}
6297 }
6298 
6299 static void __sdt_free(const struct cpumask *cpu_map);
6300 static int __sdt_alloc(const struct cpumask *cpu_map);
6301 
6302 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6303 				 const struct cpumask *cpu_map)
6304 {
6305 	switch (what) {
6306 	case sa_rootdomain:
6307 		if (!atomic_read(&d->rd->refcount))
6308 			free_rootdomain(&d->rd->rcu); /* fall through */
6309 	case sa_sd:
6310 		free_percpu(d->sd); /* fall through */
6311 	case sa_sd_storage:
6312 		__sdt_free(cpu_map); /* fall through */
6313 	case sa_none:
6314 		break;
6315 	}
6316 }
6317 
6318 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6319 						   const struct cpumask *cpu_map)
6320 {
6321 	memset(d, 0, sizeof(*d));
6322 
6323 	if (__sdt_alloc(cpu_map))
6324 		return sa_sd_storage;
6325 	d->sd = alloc_percpu(struct sched_domain *);
6326 	if (!d->sd)
6327 		return sa_sd_storage;
6328 	d->rd = alloc_rootdomain();
6329 	if (!d->rd)
6330 		return sa_sd;
6331 	return sa_rootdomain;
6332 }
6333 
6334 /*
6335  * NULL the sd_data elements we've used to build the sched_domain and
6336  * sched_group structure so that the subsequent __free_domain_allocs()
6337  * will not free the data we're using.
6338  */
6339 static void claim_allocations(int cpu, struct sched_domain *sd)
6340 {
6341 	struct sd_data *sdd = sd->private;
6342 
6343 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6344 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6345 
6346 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6347 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6348 
6349 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6350 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6351 }
6352 
6353 #ifdef CONFIG_SCHED_SMT
6354 static const struct cpumask *cpu_smt_mask(int cpu)
6355 {
6356 	return topology_thread_cpumask(cpu);
6357 }
6358 #endif
6359 
6360 /*
6361  * Topology list, bottom-up.
6362  */
6363 static struct sched_domain_topology_level default_topology[] = {
6364 #ifdef CONFIG_SCHED_SMT
6365 	{ sd_init_SIBLING, cpu_smt_mask, },
6366 #endif
6367 #ifdef CONFIG_SCHED_MC
6368 	{ sd_init_MC, cpu_coregroup_mask, },
6369 #endif
6370 #ifdef CONFIG_SCHED_BOOK
6371 	{ sd_init_BOOK, cpu_book_mask, },
6372 #endif
6373 	{ sd_init_CPU, cpu_cpu_mask, },
6374 	{ NULL, },
6375 };
6376 
6377 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6378 
6379 #ifdef CONFIG_NUMA
6380 
6381 static int sched_domains_numa_levels;
6382 static int *sched_domains_numa_distance;
6383 static struct cpumask ***sched_domains_numa_masks;
6384 static int sched_domains_curr_level;
6385 
6386 static inline int sd_local_flags(int level)
6387 {
6388 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6389 		return 0;
6390 
6391 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6392 }
6393 
6394 static struct sched_domain *
6395 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6396 {
6397 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6398 	int level = tl->numa_level;
6399 	int sd_weight = cpumask_weight(
6400 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6401 
6402 	*sd = (struct sched_domain){
6403 		.min_interval		= sd_weight,
6404 		.max_interval		= 2*sd_weight,
6405 		.busy_factor		= 32,
6406 		.imbalance_pct		= 125,
6407 		.cache_nice_tries	= 2,
6408 		.busy_idx		= 3,
6409 		.idle_idx		= 2,
6410 		.newidle_idx		= 0,
6411 		.wake_idx		= 0,
6412 		.forkexec_idx		= 0,
6413 
6414 		.flags			= 1*SD_LOAD_BALANCE
6415 					| 1*SD_BALANCE_NEWIDLE
6416 					| 0*SD_BALANCE_EXEC
6417 					| 0*SD_BALANCE_FORK
6418 					| 0*SD_BALANCE_WAKE
6419 					| 0*SD_WAKE_AFFINE
6420 					| 0*SD_PREFER_LOCAL
6421 					| 0*SD_SHARE_CPUPOWER
6422 					| 0*SD_SHARE_PKG_RESOURCES
6423 					| 1*SD_SERIALIZE
6424 					| 0*SD_PREFER_SIBLING
6425 					| sd_local_flags(level)
6426 					,
6427 		.last_balance		= jiffies,
6428 		.balance_interval	= sd_weight,
6429 	};
6430 	SD_INIT_NAME(sd, NUMA);
6431 	sd->private = &tl->data;
6432 
6433 	/*
6434 	 * Ugly hack to pass state to sd_numa_mask()...
6435 	 */
6436 	sched_domains_curr_level = tl->numa_level;
6437 
6438 	return sd;
6439 }
6440 
6441 static const struct cpumask *sd_numa_mask(int cpu)
6442 {
6443 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6444 }
6445 
6446 static void sched_numa_warn(const char *str)
6447 {
6448 	static int done = false;
6449 	int i,j;
6450 
6451 	if (done)
6452 		return;
6453 
6454 	done = true;
6455 
6456 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6457 
6458 	for (i = 0; i < nr_node_ids; i++) {
6459 		printk(KERN_WARNING "  ");
6460 		for (j = 0; j < nr_node_ids; j++)
6461 			printk(KERN_CONT "%02d ", node_distance(i,j));
6462 		printk(KERN_CONT "\n");
6463 	}
6464 	printk(KERN_WARNING "\n");
6465 }
6466 
6467 static bool find_numa_distance(int distance)
6468 {
6469 	int i;
6470 
6471 	if (distance == node_distance(0, 0))
6472 		return true;
6473 
6474 	for (i = 0; i < sched_domains_numa_levels; i++) {
6475 		if (sched_domains_numa_distance[i] == distance)
6476 			return true;
6477 	}
6478 
6479 	return false;
6480 }
6481 
6482 static void sched_init_numa(void)
6483 {
6484 	int next_distance, curr_distance = node_distance(0, 0);
6485 	struct sched_domain_topology_level *tl;
6486 	int level = 0;
6487 	int i, j, k;
6488 
6489 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6490 	if (!sched_domains_numa_distance)
6491 		return;
6492 
6493 	/*
6494 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6495 	 * unique distances in the node_distance() table.
6496 	 *
6497 	 * Assumes node_distance(0,j) includes all distances in
6498 	 * node_distance(i,j) in order to avoid cubic time.
6499 	 */
6500 	next_distance = curr_distance;
6501 	for (i = 0; i < nr_node_ids; i++) {
6502 		for (j = 0; j < nr_node_ids; j++) {
6503 			for (k = 0; k < nr_node_ids; k++) {
6504 				int distance = node_distance(i, k);
6505 
6506 				if (distance > curr_distance &&
6507 				    (distance < next_distance ||
6508 				     next_distance == curr_distance))
6509 					next_distance = distance;
6510 
6511 				/*
6512 				 * While not a strong assumption it would be nice to know
6513 				 * about cases where if node A is connected to B, B is not
6514 				 * equally connected to A.
6515 				 */
6516 				if (sched_debug() && node_distance(k, i) != distance)
6517 					sched_numa_warn("Node-distance not symmetric");
6518 
6519 				if (sched_debug() && i && !find_numa_distance(distance))
6520 					sched_numa_warn("Node-0 not representative");
6521 			}
6522 			if (next_distance != curr_distance) {
6523 				sched_domains_numa_distance[level++] = next_distance;
6524 				sched_domains_numa_levels = level;
6525 				curr_distance = next_distance;
6526 			} else break;
6527 		}
6528 
6529 		/*
6530 		 * In case of sched_debug() we verify the above assumption.
6531 		 */
6532 		if (!sched_debug())
6533 			break;
6534 	}
6535 	/*
6536 	 * 'level' contains the number of unique distances, excluding the
6537 	 * identity distance node_distance(i,i).
6538 	 *
6539 	 * The sched_domains_nume_distance[] array includes the actual distance
6540 	 * numbers.
6541 	 */
6542 
6543 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6544 	if (!sched_domains_numa_masks)
6545 		return;
6546 
6547 	/*
6548 	 * Now for each level, construct a mask per node which contains all
6549 	 * cpus of nodes that are that many hops away from us.
6550 	 */
6551 	for (i = 0; i < level; i++) {
6552 		sched_domains_numa_masks[i] =
6553 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6554 		if (!sched_domains_numa_masks[i])
6555 			return;
6556 
6557 		for (j = 0; j < nr_node_ids; j++) {
6558 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6559 			if (!mask)
6560 				return;
6561 
6562 			sched_domains_numa_masks[i][j] = mask;
6563 
6564 			for (k = 0; k < nr_node_ids; k++) {
6565 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6566 					continue;
6567 
6568 				cpumask_or(mask, mask, cpumask_of_node(k));
6569 			}
6570 		}
6571 	}
6572 
6573 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6574 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6575 	if (!tl)
6576 		return;
6577 
6578 	/*
6579 	 * Copy the default topology bits..
6580 	 */
6581 	for (i = 0; default_topology[i].init; i++)
6582 		tl[i] = default_topology[i];
6583 
6584 	/*
6585 	 * .. and append 'j' levels of NUMA goodness.
6586 	 */
6587 	for (j = 0; j < level; i++, j++) {
6588 		tl[i] = (struct sched_domain_topology_level){
6589 			.init = sd_numa_init,
6590 			.mask = sd_numa_mask,
6591 			.flags = SDTL_OVERLAP,
6592 			.numa_level = j,
6593 		};
6594 	}
6595 
6596 	sched_domain_topology = tl;
6597 }
6598 #else
6599 static inline void sched_init_numa(void)
6600 {
6601 }
6602 #endif /* CONFIG_NUMA */
6603 
6604 static int __sdt_alloc(const struct cpumask *cpu_map)
6605 {
6606 	struct sched_domain_topology_level *tl;
6607 	int j;
6608 
6609 	for (tl = sched_domain_topology; tl->init; tl++) {
6610 		struct sd_data *sdd = &tl->data;
6611 
6612 		sdd->sd = alloc_percpu(struct sched_domain *);
6613 		if (!sdd->sd)
6614 			return -ENOMEM;
6615 
6616 		sdd->sg = alloc_percpu(struct sched_group *);
6617 		if (!sdd->sg)
6618 			return -ENOMEM;
6619 
6620 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6621 		if (!sdd->sgp)
6622 			return -ENOMEM;
6623 
6624 		for_each_cpu(j, cpu_map) {
6625 			struct sched_domain *sd;
6626 			struct sched_group *sg;
6627 			struct sched_group_power *sgp;
6628 
6629 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6630 					GFP_KERNEL, cpu_to_node(j));
6631 			if (!sd)
6632 				return -ENOMEM;
6633 
6634 			*per_cpu_ptr(sdd->sd, j) = sd;
6635 
6636 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6637 					GFP_KERNEL, cpu_to_node(j));
6638 			if (!sg)
6639 				return -ENOMEM;
6640 
6641 			sg->next = sg;
6642 
6643 			*per_cpu_ptr(sdd->sg, j) = sg;
6644 
6645 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6646 					GFP_KERNEL, cpu_to_node(j));
6647 			if (!sgp)
6648 				return -ENOMEM;
6649 
6650 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6651 		}
6652 	}
6653 
6654 	return 0;
6655 }
6656 
6657 static void __sdt_free(const struct cpumask *cpu_map)
6658 {
6659 	struct sched_domain_topology_level *tl;
6660 	int j;
6661 
6662 	for (tl = sched_domain_topology; tl->init; tl++) {
6663 		struct sd_data *sdd = &tl->data;
6664 
6665 		for_each_cpu(j, cpu_map) {
6666 			struct sched_domain *sd;
6667 
6668 			if (sdd->sd) {
6669 				sd = *per_cpu_ptr(sdd->sd, j);
6670 				if (sd && (sd->flags & SD_OVERLAP))
6671 					free_sched_groups(sd->groups, 0);
6672 				kfree(*per_cpu_ptr(sdd->sd, j));
6673 			}
6674 
6675 			if (sdd->sg)
6676 				kfree(*per_cpu_ptr(sdd->sg, j));
6677 			if (sdd->sgp)
6678 				kfree(*per_cpu_ptr(sdd->sgp, j));
6679 		}
6680 		free_percpu(sdd->sd);
6681 		sdd->sd = NULL;
6682 		free_percpu(sdd->sg);
6683 		sdd->sg = NULL;
6684 		free_percpu(sdd->sgp);
6685 		sdd->sgp = NULL;
6686 	}
6687 }
6688 
6689 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6690 		struct s_data *d, const struct cpumask *cpu_map,
6691 		struct sched_domain_attr *attr, struct sched_domain *child,
6692 		int cpu)
6693 {
6694 	struct sched_domain *sd = tl->init(tl, cpu);
6695 	if (!sd)
6696 		return child;
6697 
6698 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6699 	if (child) {
6700 		sd->level = child->level + 1;
6701 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6702 		child->parent = sd;
6703 	}
6704 	sd->child = child;
6705 	set_domain_attribute(sd, attr);
6706 
6707 	return sd;
6708 }
6709 
6710 /*
6711  * Build sched domains for a given set of cpus and attach the sched domains
6712  * to the individual cpus
6713  */
6714 static int build_sched_domains(const struct cpumask *cpu_map,
6715 			       struct sched_domain_attr *attr)
6716 {
6717 	enum s_alloc alloc_state = sa_none;
6718 	struct sched_domain *sd;
6719 	struct s_data d;
6720 	int i, ret = -ENOMEM;
6721 
6722 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6723 	if (alloc_state != sa_rootdomain)
6724 		goto error;
6725 
6726 	/* Set up domains for cpus specified by the cpu_map. */
6727 	for_each_cpu(i, cpu_map) {
6728 		struct sched_domain_topology_level *tl;
6729 
6730 		sd = NULL;
6731 		for (tl = sched_domain_topology; tl->init; tl++) {
6732 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6733 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6734 				sd->flags |= SD_OVERLAP;
6735 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6736 				break;
6737 		}
6738 
6739 		while (sd->child)
6740 			sd = sd->child;
6741 
6742 		*per_cpu_ptr(d.sd, i) = sd;
6743 	}
6744 
6745 	/* Build the groups for the domains */
6746 	for_each_cpu(i, cpu_map) {
6747 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6748 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6749 			if (sd->flags & SD_OVERLAP) {
6750 				if (build_overlap_sched_groups(sd, i))
6751 					goto error;
6752 			} else {
6753 				if (build_sched_groups(sd, i))
6754 					goto error;
6755 			}
6756 		}
6757 	}
6758 
6759 	/* Calculate CPU power for physical packages and nodes */
6760 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6761 		if (!cpumask_test_cpu(i, cpu_map))
6762 			continue;
6763 
6764 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6765 			claim_allocations(i, sd);
6766 			init_sched_groups_power(i, sd);
6767 		}
6768 	}
6769 
6770 	/* Attach the domains */
6771 	rcu_read_lock();
6772 	for_each_cpu(i, cpu_map) {
6773 		sd = *per_cpu_ptr(d.sd, i);
6774 		cpu_attach_domain(sd, d.rd, i);
6775 	}
6776 	rcu_read_unlock();
6777 
6778 	ret = 0;
6779 error:
6780 	__free_domain_allocs(&d, alloc_state, cpu_map);
6781 	return ret;
6782 }
6783 
6784 static cpumask_var_t *doms_cur;	/* current sched domains */
6785 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6786 static struct sched_domain_attr *dattr_cur;
6787 				/* attribues of custom domains in 'doms_cur' */
6788 
6789 /*
6790  * Special case: If a kmalloc of a doms_cur partition (array of
6791  * cpumask) fails, then fallback to a single sched domain,
6792  * as determined by the single cpumask fallback_doms.
6793  */
6794 static cpumask_var_t fallback_doms;
6795 
6796 /*
6797  * arch_update_cpu_topology lets virtualized architectures update the
6798  * cpu core maps. It is supposed to return 1 if the topology changed
6799  * or 0 if it stayed the same.
6800  */
6801 int __attribute__((weak)) arch_update_cpu_topology(void)
6802 {
6803 	return 0;
6804 }
6805 
6806 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6807 {
6808 	int i;
6809 	cpumask_var_t *doms;
6810 
6811 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6812 	if (!doms)
6813 		return NULL;
6814 	for (i = 0; i < ndoms; i++) {
6815 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6816 			free_sched_domains(doms, i);
6817 			return NULL;
6818 		}
6819 	}
6820 	return doms;
6821 }
6822 
6823 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6824 {
6825 	unsigned int i;
6826 	for (i = 0; i < ndoms; i++)
6827 		free_cpumask_var(doms[i]);
6828 	kfree(doms);
6829 }
6830 
6831 /*
6832  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6833  * For now this just excludes isolated cpus, but could be used to
6834  * exclude other special cases in the future.
6835  */
6836 static int init_sched_domains(const struct cpumask *cpu_map)
6837 {
6838 	int err;
6839 
6840 	arch_update_cpu_topology();
6841 	ndoms_cur = 1;
6842 	doms_cur = alloc_sched_domains(ndoms_cur);
6843 	if (!doms_cur)
6844 		doms_cur = &fallback_doms;
6845 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6846 	err = build_sched_domains(doms_cur[0], NULL);
6847 	register_sched_domain_sysctl();
6848 
6849 	return err;
6850 }
6851 
6852 /*
6853  * Detach sched domains from a group of cpus specified in cpu_map
6854  * These cpus will now be attached to the NULL domain
6855  */
6856 static void detach_destroy_domains(const struct cpumask *cpu_map)
6857 {
6858 	int i;
6859 
6860 	rcu_read_lock();
6861 	for_each_cpu(i, cpu_map)
6862 		cpu_attach_domain(NULL, &def_root_domain, i);
6863 	rcu_read_unlock();
6864 }
6865 
6866 /* handle null as "default" */
6867 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6868 			struct sched_domain_attr *new, int idx_new)
6869 {
6870 	struct sched_domain_attr tmp;
6871 
6872 	/* fast path */
6873 	if (!new && !cur)
6874 		return 1;
6875 
6876 	tmp = SD_ATTR_INIT;
6877 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6878 			new ? (new + idx_new) : &tmp,
6879 			sizeof(struct sched_domain_attr));
6880 }
6881 
6882 /*
6883  * Partition sched domains as specified by the 'ndoms_new'
6884  * cpumasks in the array doms_new[] of cpumasks. This compares
6885  * doms_new[] to the current sched domain partitioning, doms_cur[].
6886  * It destroys each deleted domain and builds each new domain.
6887  *
6888  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6889  * The masks don't intersect (don't overlap.) We should setup one
6890  * sched domain for each mask. CPUs not in any of the cpumasks will
6891  * not be load balanced. If the same cpumask appears both in the
6892  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6893  * it as it is.
6894  *
6895  * The passed in 'doms_new' should be allocated using
6896  * alloc_sched_domains.  This routine takes ownership of it and will
6897  * free_sched_domains it when done with it. If the caller failed the
6898  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6899  * and partition_sched_domains() will fallback to the single partition
6900  * 'fallback_doms', it also forces the domains to be rebuilt.
6901  *
6902  * If doms_new == NULL it will be replaced with cpu_online_mask.
6903  * ndoms_new == 0 is a special case for destroying existing domains,
6904  * and it will not create the default domain.
6905  *
6906  * Call with hotplug lock held
6907  */
6908 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6909 			     struct sched_domain_attr *dattr_new)
6910 {
6911 	int i, j, n;
6912 	int new_topology;
6913 
6914 	mutex_lock(&sched_domains_mutex);
6915 
6916 	/* always unregister in case we don't destroy any domains */
6917 	unregister_sched_domain_sysctl();
6918 
6919 	/* Let architecture update cpu core mappings. */
6920 	new_topology = arch_update_cpu_topology();
6921 
6922 	n = doms_new ? ndoms_new : 0;
6923 
6924 	/* Destroy deleted domains */
6925 	for (i = 0; i < ndoms_cur; i++) {
6926 		for (j = 0; j < n && !new_topology; j++) {
6927 			if (cpumask_equal(doms_cur[i], doms_new[j])
6928 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6929 				goto match1;
6930 		}
6931 		/* no match - a current sched domain not in new doms_new[] */
6932 		detach_destroy_domains(doms_cur[i]);
6933 match1:
6934 		;
6935 	}
6936 
6937 	if (doms_new == NULL) {
6938 		ndoms_cur = 0;
6939 		doms_new = &fallback_doms;
6940 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6941 		WARN_ON_ONCE(dattr_new);
6942 	}
6943 
6944 	/* Build new domains */
6945 	for (i = 0; i < ndoms_new; i++) {
6946 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6947 			if (cpumask_equal(doms_new[i], doms_cur[j])
6948 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6949 				goto match2;
6950 		}
6951 		/* no match - add a new doms_new */
6952 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6953 match2:
6954 		;
6955 	}
6956 
6957 	/* Remember the new sched domains */
6958 	if (doms_cur != &fallback_doms)
6959 		free_sched_domains(doms_cur, ndoms_cur);
6960 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6961 	doms_cur = doms_new;
6962 	dattr_cur = dattr_new;
6963 	ndoms_cur = ndoms_new;
6964 
6965 	register_sched_domain_sysctl();
6966 
6967 	mutex_unlock(&sched_domains_mutex);
6968 }
6969 
6970 /*
6971  * Update cpusets according to cpu_active mask.  If cpusets are
6972  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6973  * around partition_sched_domains().
6974  */
6975 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6976 			     void *hcpu)
6977 {
6978 	switch (action & ~CPU_TASKS_FROZEN) {
6979 	case CPU_ONLINE:
6980 	case CPU_DOWN_FAILED:
6981 		cpuset_update_active_cpus();
6982 		return NOTIFY_OK;
6983 	default:
6984 		return NOTIFY_DONE;
6985 	}
6986 }
6987 
6988 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6989 			       void *hcpu)
6990 {
6991 	switch (action & ~CPU_TASKS_FROZEN) {
6992 	case CPU_DOWN_PREPARE:
6993 		cpuset_update_active_cpus();
6994 		return NOTIFY_OK;
6995 	default:
6996 		return NOTIFY_DONE;
6997 	}
6998 }
6999 
7000 void __init sched_init_smp(void)
7001 {
7002 	cpumask_var_t non_isolated_cpus;
7003 
7004 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7005 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7006 
7007 	sched_init_numa();
7008 
7009 	get_online_cpus();
7010 	mutex_lock(&sched_domains_mutex);
7011 	init_sched_domains(cpu_active_mask);
7012 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7013 	if (cpumask_empty(non_isolated_cpus))
7014 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7015 	mutex_unlock(&sched_domains_mutex);
7016 	put_online_cpus();
7017 
7018 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7019 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7020 
7021 	/* RT runtime code needs to handle some hotplug events */
7022 	hotcpu_notifier(update_runtime, 0);
7023 
7024 	init_hrtick();
7025 
7026 	/* Move init over to a non-isolated CPU */
7027 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7028 		BUG();
7029 	sched_init_granularity();
7030 	free_cpumask_var(non_isolated_cpus);
7031 
7032 	init_sched_rt_class();
7033 }
7034 #else
7035 void __init sched_init_smp(void)
7036 {
7037 	sched_init_granularity();
7038 }
7039 #endif /* CONFIG_SMP */
7040 
7041 const_debug unsigned int sysctl_timer_migration = 1;
7042 
7043 int in_sched_functions(unsigned long addr)
7044 {
7045 	return in_lock_functions(addr) ||
7046 		(addr >= (unsigned long)__sched_text_start
7047 		&& addr < (unsigned long)__sched_text_end);
7048 }
7049 
7050 #ifdef CONFIG_CGROUP_SCHED
7051 struct task_group root_task_group;
7052 #endif
7053 
7054 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
7055 
7056 void __init sched_init(void)
7057 {
7058 	int i, j;
7059 	unsigned long alloc_size = 0, ptr;
7060 
7061 #ifdef CONFIG_FAIR_GROUP_SCHED
7062 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7063 #endif
7064 #ifdef CONFIG_RT_GROUP_SCHED
7065 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7066 #endif
7067 #ifdef CONFIG_CPUMASK_OFFSTACK
7068 	alloc_size += num_possible_cpus() * cpumask_size();
7069 #endif
7070 	if (alloc_size) {
7071 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7072 
7073 #ifdef CONFIG_FAIR_GROUP_SCHED
7074 		root_task_group.se = (struct sched_entity **)ptr;
7075 		ptr += nr_cpu_ids * sizeof(void **);
7076 
7077 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7078 		ptr += nr_cpu_ids * sizeof(void **);
7079 
7080 #endif /* CONFIG_FAIR_GROUP_SCHED */
7081 #ifdef CONFIG_RT_GROUP_SCHED
7082 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7083 		ptr += nr_cpu_ids * sizeof(void **);
7084 
7085 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7086 		ptr += nr_cpu_ids * sizeof(void **);
7087 
7088 #endif /* CONFIG_RT_GROUP_SCHED */
7089 #ifdef CONFIG_CPUMASK_OFFSTACK
7090 		for_each_possible_cpu(i) {
7091 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7092 			ptr += cpumask_size();
7093 		}
7094 #endif /* CONFIG_CPUMASK_OFFSTACK */
7095 	}
7096 
7097 #ifdef CONFIG_SMP
7098 	init_defrootdomain();
7099 #endif
7100 
7101 	init_rt_bandwidth(&def_rt_bandwidth,
7102 			global_rt_period(), global_rt_runtime());
7103 
7104 #ifdef CONFIG_RT_GROUP_SCHED
7105 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7106 			global_rt_period(), global_rt_runtime());
7107 #endif /* CONFIG_RT_GROUP_SCHED */
7108 
7109 #ifdef CONFIG_CGROUP_SCHED
7110 	list_add(&root_task_group.list, &task_groups);
7111 	INIT_LIST_HEAD(&root_task_group.children);
7112 	INIT_LIST_HEAD(&root_task_group.siblings);
7113 	autogroup_init(&init_task);
7114 
7115 #endif /* CONFIG_CGROUP_SCHED */
7116 
7117 #ifdef CONFIG_CGROUP_CPUACCT
7118 	root_cpuacct.cpustat = &kernel_cpustat;
7119 	root_cpuacct.cpuusage = alloc_percpu(u64);
7120 	/* Too early, not expected to fail */
7121 	BUG_ON(!root_cpuacct.cpuusage);
7122 #endif
7123 	for_each_possible_cpu(i) {
7124 		struct rq *rq;
7125 
7126 		rq = cpu_rq(i);
7127 		raw_spin_lock_init(&rq->lock);
7128 		rq->nr_running = 0;
7129 		rq->calc_load_active = 0;
7130 		rq->calc_load_update = jiffies + LOAD_FREQ;
7131 		init_cfs_rq(&rq->cfs);
7132 		init_rt_rq(&rq->rt, rq);
7133 #ifdef CONFIG_FAIR_GROUP_SCHED
7134 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7135 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7136 		/*
7137 		 * How much cpu bandwidth does root_task_group get?
7138 		 *
7139 		 * In case of task-groups formed thr' the cgroup filesystem, it
7140 		 * gets 100% of the cpu resources in the system. This overall
7141 		 * system cpu resource is divided among the tasks of
7142 		 * root_task_group and its child task-groups in a fair manner,
7143 		 * based on each entity's (task or task-group's) weight
7144 		 * (se->load.weight).
7145 		 *
7146 		 * In other words, if root_task_group has 10 tasks of weight
7147 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7148 		 * then A0's share of the cpu resource is:
7149 		 *
7150 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7151 		 *
7152 		 * We achieve this by letting root_task_group's tasks sit
7153 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7154 		 */
7155 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7156 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7157 #endif /* CONFIG_FAIR_GROUP_SCHED */
7158 
7159 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7160 #ifdef CONFIG_RT_GROUP_SCHED
7161 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7162 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7163 #endif
7164 
7165 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7166 			rq->cpu_load[j] = 0;
7167 
7168 		rq->last_load_update_tick = jiffies;
7169 
7170 #ifdef CONFIG_SMP
7171 		rq->sd = NULL;
7172 		rq->rd = NULL;
7173 		rq->cpu_power = SCHED_POWER_SCALE;
7174 		rq->post_schedule = 0;
7175 		rq->active_balance = 0;
7176 		rq->next_balance = jiffies;
7177 		rq->push_cpu = 0;
7178 		rq->cpu = i;
7179 		rq->online = 0;
7180 		rq->idle_stamp = 0;
7181 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7182 
7183 		INIT_LIST_HEAD(&rq->cfs_tasks);
7184 
7185 		rq_attach_root(rq, &def_root_domain);
7186 #ifdef CONFIG_NO_HZ
7187 		rq->nohz_flags = 0;
7188 #endif
7189 #endif
7190 		init_rq_hrtick(rq);
7191 		atomic_set(&rq->nr_iowait, 0);
7192 	}
7193 
7194 	set_load_weight(&init_task);
7195 
7196 #ifdef CONFIG_PREEMPT_NOTIFIERS
7197 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7198 #endif
7199 
7200 #ifdef CONFIG_RT_MUTEXES
7201 	plist_head_init(&init_task.pi_waiters);
7202 #endif
7203 
7204 	/*
7205 	 * The boot idle thread does lazy MMU switching as well:
7206 	 */
7207 	atomic_inc(&init_mm.mm_count);
7208 	enter_lazy_tlb(&init_mm, current);
7209 
7210 	/*
7211 	 * Make us the idle thread. Technically, schedule() should not be
7212 	 * called from this thread, however somewhere below it might be,
7213 	 * but because we are the idle thread, we just pick up running again
7214 	 * when this runqueue becomes "idle".
7215 	 */
7216 	init_idle(current, smp_processor_id());
7217 
7218 	calc_load_update = jiffies + LOAD_FREQ;
7219 
7220 	/*
7221 	 * During early bootup we pretend to be a normal task:
7222 	 */
7223 	current->sched_class = &fair_sched_class;
7224 
7225 #ifdef CONFIG_SMP
7226 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7227 	/* May be allocated at isolcpus cmdline parse time */
7228 	if (cpu_isolated_map == NULL)
7229 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7230 	idle_thread_set_boot_cpu();
7231 #endif
7232 	init_sched_fair_class();
7233 
7234 	scheduler_running = 1;
7235 }
7236 
7237 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7238 static inline int preempt_count_equals(int preempt_offset)
7239 {
7240 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7241 
7242 	return (nested == preempt_offset);
7243 }
7244 
7245 void __might_sleep(const char *file, int line, int preempt_offset)
7246 {
7247 	static unsigned long prev_jiffy;	/* ratelimiting */
7248 
7249 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7250 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7251 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7252 		return;
7253 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7254 		return;
7255 	prev_jiffy = jiffies;
7256 
7257 	printk(KERN_ERR
7258 		"BUG: sleeping function called from invalid context at %s:%d\n",
7259 			file, line);
7260 	printk(KERN_ERR
7261 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7262 			in_atomic(), irqs_disabled(),
7263 			current->pid, current->comm);
7264 
7265 	debug_show_held_locks(current);
7266 	if (irqs_disabled())
7267 		print_irqtrace_events(current);
7268 	dump_stack();
7269 }
7270 EXPORT_SYMBOL(__might_sleep);
7271 #endif
7272 
7273 #ifdef CONFIG_MAGIC_SYSRQ
7274 static void normalize_task(struct rq *rq, struct task_struct *p)
7275 {
7276 	const struct sched_class *prev_class = p->sched_class;
7277 	int old_prio = p->prio;
7278 	int on_rq;
7279 
7280 	on_rq = p->on_rq;
7281 	if (on_rq)
7282 		dequeue_task(rq, p, 0);
7283 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7284 	if (on_rq) {
7285 		enqueue_task(rq, p, 0);
7286 		resched_task(rq->curr);
7287 	}
7288 
7289 	check_class_changed(rq, p, prev_class, old_prio);
7290 }
7291 
7292 void normalize_rt_tasks(void)
7293 {
7294 	struct task_struct *g, *p;
7295 	unsigned long flags;
7296 	struct rq *rq;
7297 
7298 	read_lock_irqsave(&tasklist_lock, flags);
7299 	do_each_thread(g, p) {
7300 		/*
7301 		 * Only normalize user tasks:
7302 		 */
7303 		if (!p->mm)
7304 			continue;
7305 
7306 		p->se.exec_start		= 0;
7307 #ifdef CONFIG_SCHEDSTATS
7308 		p->se.statistics.wait_start	= 0;
7309 		p->se.statistics.sleep_start	= 0;
7310 		p->se.statistics.block_start	= 0;
7311 #endif
7312 
7313 		if (!rt_task(p)) {
7314 			/*
7315 			 * Renice negative nice level userspace
7316 			 * tasks back to 0:
7317 			 */
7318 			if (TASK_NICE(p) < 0 && p->mm)
7319 				set_user_nice(p, 0);
7320 			continue;
7321 		}
7322 
7323 		raw_spin_lock(&p->pi_lock);
7324 		rq = __task_rq_lock(p);
7325 
7326 		normalize_task(rq, p);
7327 
7328 		__task_rq_unlock(rq);
7329 		raw_spin_unlock(&p->pi_lock);
7330 	} while_each_thread(g, p);
7331 
7332 	read_unlock_irqrestore(&tasklist_lock, flags);
7333 }
7334 
7335 #endif /* CONFIG_MAGIC_SYSRQ */
7336 
7337 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7338 /*
7339  * These functions are only useful for the IA64 MCA handling, or kdb.
7340  *
7341  * They can only be called when the whole system has been
7342  * stopped - every CPU needs to be quiescent, and no scheduling
7343  * activity can take place. Using them for anything else would
7344  * be a serious bug, and as a result, they aren't even visible
7345  * under any other configuration.
7346  */
7347 
7348 /**
7349  * curr_task - return the current task for a given cpu.
7350  * @cpu: the processor in question.
7351  *
7352  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7353  */
7354 struct task_struct *curr_task(int cpu)
7355 {
7356 	return cpu_curr(cpu);
7357 }
7358 
7359 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7360 
7361 #ifdef CONFIG_IA64
7362 /**
7363  * set_curr_task - set the current task for a given cpu.
7364  * @cpu: the processor in question.
7365  * @p: the task pointer to set.
7366  *
7367  * Description: This function must only be used when non-maskable interrupts
7368  * are serviced on a separate stack. It allows the architecture to switch the
7369  * notion of the current task on a cpu in a non-blocking manner. This function
7370  * must be called with all CPU's synchronized, and interrupts disabled, the
7371  * and caller must save the original value of the current task (see
7372  * curr_task() above) and restore that value before reenabling interrupts and
7373  * re-starting the system.
7374  *
7375  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7376  */
7377 void set_curr_task(int cpu, struct task_struct *p)
7378 {
7379 	cpu_curr(cpu) = p;
7380 }
7381 
7382 #endif
7383 
7384 #ifdef CONFIG_CGROUP_SCHED
7385 /* task_group_lock serializes the addition/removal of task groups */
7386 static DEFINE_SPINLOCK(task_group_lock);
7387 
7388 static void free_sched_group(struct task_group *tg)
7389 {
7390 	free_fair_sched_group(tg);
7391 	free_rt_sched_group(tg);
7392 	autogroup_free(tg);
7393 	kfree(tg);
7394 }
7395 
7396 /* allocate runqueue etc for a new task group */
7397 struct task_group *sched_create_group(struct task_group *parent)
7398 {
7399 	struct task_group *tg;
7400 	unsigned long flags;
7401 
7402 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7403 	if (!tg)
7404 		return ERR_PTR(-ENOMEM);
7405 
7406 	if (!alloc_fair_sched_group(tg, parent))
7407 		goto err;
7408 
7409 	if (!alloc_rt_sched_group(tg, parent))
7410 		goto err;
7411 
7412 	spin_lock_irqsave(&task_group_lock, flags);
7413 	list_add_rcu(&tg->list, &task_groups);
7414 
7415 	WARN_ON(!parent); /* root should already exist */
7416 
7417 	tg->parent = parent;
7418 	INIT_LIST_HEAD(&tg->children);
7419 	list_add_rcu(&tg->siblings, &parent->children);
7420 	spin_unlock_irqrestore(&task_group_lock, flags);
7421 
7422 	return tg;
7423 
7424 err:
7425 	free_sched_group(tg);
7426 	return ERR_PTR(-ENOMEM);
7427 }
7428 
7429 /* rcu callback to free various structures associated with a task group */
7430 static void free_sched_group_rcu(struct rcu_head *rhp)
7431 {
7432 	/* now it should be safe to free those cfs_rqs */
7433 	free_sched_group(container_of(rhp, struct task_group, rcu));
7434 }
7435 
7436 /* Destroy runqueue etc associated with a task group */
7437 void sched_destroy_group(struct task_group *tg)
7438 {
7439 	unsigned long flags;
7440 	int i;
7441 
7442 	/* end participation in shares distribution */
7443 	for_each_possible_cpu(i)
7444 		unregister_fair_sched_group(tg, i);
7445 
7446 	spin_lock_irqsave(&task_group_lock, flags);
7447 	list_del_rcu(&tg->list);
7448 	list_del_rcu(&tg->siblings);
7449 	spin_unlock_irqrestore(&task_group_lock, flags);
7450 
7451 	/* wait for possible concurrent references to cfs_rqs complete */
7452 	call_rcu(&tg->rcu, free_sched_group_rcu);
7453 }
7454 
7455 /* change task's runqueue when it moves between groups.
7456  *	The caller of this function should have put the task in its new group
7457  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7458  *	reflect its new group.
7459  */
7460 void sched_move_task(struct task_struct *tsk)
7461 {
7462 	int on_rq, running;
7463 	unsigned long flags;
7464 	struct rq *rq;
7465 
7466 	rq = task_rq_lock(tsk, &flags);
7467 
7468 	running = task_current(rq, tsk);
7469 	on_rq = tsk->on_rq;
7470 
7471 	if (on_rq)
7472 		dequeue_task(rq, tsk, 0);
7473 	if (unlikely(running))
7474 		tsk->sched_class->put_prev_task(rq, tsk);
7475 
7476 #ifdef CONFIG_FAIR_GROUP_SCHED
7477 	if (tsk->sched_class->task_move_group)
7478 		tsk->sched_class->task_move_group(tsk, on_rq);
7479 	else
7480 #endif
7481 		set_task_rq(tsk, task_cpu(tsk));
7482 
7483 	if (unlikely(running))
7484 		tsk->sched_class->set_curr_task(rq);
7485 	if (on_rq)
7486 		enqueue_task(rq, tsk, 0);
7487 
7488 	task_rq_unlock(rq, tsk, &flags);
7489 }
7490 #endif /* CONFIG_CGROUP_SCHED */
7491 
7492 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7493 static unsigned long to_ratio(u64 period, u64 runtime)
7494 {
7495 	if (runtime == RUNTIME_INF)
7496 		return 1ULL << 20;
7497 
7498 	return div64_u64(runtime << 20, period);
7499 }
7500 #endif
7501 
7502 #ifdef CONFIG_RT_GROUP_SCHED
7503 /*
7504  * Ensure that the real time constraints are schedulable.
7505  */
7506 static DEFINE_MUTEX(rt_constraints_mutex);
7507 
7508 /* Must be called with tasklist_lock held */
7509 static inline int tg_has_rt_tasks(struct task_group *tg)
7510 {
7511 	struct task_struct *g, *p;
7512 
7513 	do_each_thread(g, p) {
7514 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7515 			return 1;
7516 	} while_each_thread(g, p);
7517 
7518 	return 0;
7519 }
7520 
7521 struct rt_schedulable_data {
7522 	struct task_group *tg;
7523 	u64 rt_period;
7524 	u64 rt_runtime;
7525 };
7526 
7527 static int tg_rt_schedulable(struct task_group *tg, void *data)
7528 {
7529 	struct rt_schedulable_data *d = data;
7530 	struct task_group *child;
7531 	unsigned long total, sum = 0;
7532 	u64 period, runtime;
7533 
7534 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7535 	runtime = tg->rt_bandwidth.rt_runtime;
7536 
7537 	if (tg == d->tg) {
7538 		period = d->rt_period;
7539 		runtime = d->rt_runtime;
7540 	}
7541 
7542 	/*
7543 	 * Cannot have more runtime than the period.
7544 	 */
7545 	if (runtime > period && runtime != RUNTIME_INF)
7546 		return -EINVAL;
7547 
7548 	/*
7549 	 * Ensure we don't starve existing RT tasks.
7550 	 */
7551 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7552 		return -EBUSY;
7553 
7554 	total = to_ratio(period, runtime);
7555 
7556 	/*
7557 	 * Nobody can have more than the global setting allows.
7558 	 */
7559 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7560 		return -EINVAL;
7561 
7562 	/*
7563 	 * The sum of our children's runtime should not exceed our own.
7564 	 */
7565 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7566 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7567 		runtime = child->rt_bandwidth.rt_runtime;
7568 
7569 		if (child == d->tg) {
7570 			period = d->rt_period;
7571 			runtime = d->rt_runtime;
7572 		}
7573 
7574 		sum += to_ratio(period, runtime);
7575 	}
7576 
7577 	if (sum > total)
7578 		return -EINVAL;
7579 
7580 	return 0;
7581 }
7582 
7583 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7584 {
7585 	int ret;
7586 
7587 	struct rt_schedulable_data data = {
7588 		.tg = tg,
7589 		.rt_period = period,
7590 		.rt_runtime = runtime,
7591 	};
7592 
7593 	rcu_read_lock();
7594 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7595 	rcu_read_unlock();
7596 
7597 	return ret;
7598 }
7599 
7600 static int tg_set_rt_bandwidth(struct task_group *tg,
7601 		u64 rt_period, u64 rt_runtime)
7602 {
7603 	int i, err = 0;
7604 
7605 	mutex_lock(&rt_constraints_mutex);
7606 	read_lock(&tasklist_lock);
7607 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7608 	if (err)
7609 		goto unlock;
7610 
7611 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7612 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7613 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7614 
7615 	for_each_possible_cpu(i) {
7616 		struct rt_rq *rt_rq = tg->rt_rq[i];
7617 
7618 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7619 		rt_rq->rt_runtime = rt_runtime;
7620 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7621 	}
7622 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7623 unlock:
7624 	read_unlock(&tasklist_lock);
7625 	mutex_unlock(&rt_constraints_mutex);
7626 
7627 	return err;
7628 }
7629 
7630 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7631 {
7632 	u64 rt_runtime, rt_period;
7633 
7634 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7635 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7636 	if (rt_runtime_us < 0)
7637 		rt_runtime = RUNTIME_INF;
7638 
7639 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7640 }
7641 
7642 long sched_group_rt_runtime(struct task_group *tg)
7643 {
7644 	u64 rt_runtime_us;
7645 
7646 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7647 		return -1;
7648 
7649 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7650 	do_div(rt_runtime_us, NSEC_PER_USEC);
7651 	return rt_runtime_us;
7652 }
7653 
7654 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7655 {
7656 	u64 rt_runtime, rt_period;
7657 
7658 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7659 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7660 
7661 	if (rt_period == 0)
7662 		return -EINVAL;
7663 
7664 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7665 }
7666 
7667 long sched_group_rt_period(struct task_group *tg)
7668 {
7669 	u64 rt_period_us;
7670 
7671 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7672 	do_div(rt_period_us, NSEC_PER_USEC);
7673 	return rt_period_us;
7674 }
7675 
7676 static int sched_rt_global_constraints(void)
7677 {
7678 	u64 runtime, period;
7679 	int ret = 0;
7680 
7681 	if (sysctl_sched_rt_period <= 0)
7682 		return -EINVAL;
7683 
7684 	runtime = global_rt_runtime();
7685 	period = global_rt_period();
7686 
7687 	/*
7688 	 * Sanity check on the sysctl variables.
7689 	 */
7690 	if (runtime > period && runtime != RUNTIME_INF)
7691 		return -EINVAL;
7692 
7693 	mutex_lock(&rt_constraints_mutex);
7694 	read_lock(&tasklist_lock);
7695 	ret = __rt_schedulable(NULL, 0, 0);
7696 	read_unlock(&tasklist_lock);
7697 	mutex_unlock(&rt_constraints_mutex);
7698 
7699 	return ret;
7700 }
7701 
7702 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7703 {
7704 	/* Don't accept realtime tasks when there is no way for them to run */
7705 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7706 		return 0;
7707 
7708 	return 1;
7709 }
7710 
7711 #else /* !CONFIG_RT_GROUP_SCHED */
7712 static int sched_rt_global_constraints(void)
7713 {
7714 	unsigned long flags;
7715 	int i;
7716 
7717 	if (sysctl_sched_rt_period <= 0)
7718 		return -EINVAL;
7719 
7720 	/*
7721 	 * There's always some RT tasks in the root group
7722 	 * -- migration, kstopmachine etc..
7723 	 */
7724 	if (sysctl_sched_rt_runtime == 0)
7725 		return -EBUSY;
7726 
7727 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7728 	for_each_possible_cpu(i) {
7729 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7730 
7731 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7732 		rt_rq->rt_runtime = global_rt_runtime();
7733 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7734 	}
7735 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7736 
7737 	return 0;
7738 }
7739 #endif /* CONFIG_RT_GROUP_SCHED */
7740 
7741 int sched_rt_handler(struct ctl_table *table, int write,
7742 		void __user *buffer, size_t *lenp,
7743 		loff_t *ppos)
7744 {
7745 	int ret;
7746 	int old_period, old_runtime;
7747 	static DEFINE_MUTEX(mutex);
7748 
7749 	mutex_lock(&mutex);
7750 	old_period = sysctl_sched_rt_period;
7751 	old_runtime = sysctl_sched_rt_runtime;
7752 
7753 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7754 
7755 	if (!ret && write) {
7756 		ret = sched_rt_global_constraints();
7757 		if (ret) {
7758 			sysctl_sched_rt_period = old_period;
7759 			sysctl_sched_rt_runtime = old_runtime;
7760 		} else {
7761 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7762 			def_rt_bandwidth.rt_period =
7763 				ns_to_ktime(global_rt_period());
7764 		}
7765 	}
7766 	mutex_unlock(&mutex);
7767 
7768 	return ret;
7769 }
7770 
7771 #ifdef CONFIG_CGROUP_SCHED
7772 
7773 /* return corresponding task_group object of a cgroup */
7774 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7775 {
7776 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7777 			    struct task_group, css);
7778 }
7779 
7780 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7781 {
7782 	struct task_group *tg, *parent;
7783 
7784 	if (!cgrp->parent) {
7785 		/* This is early initialization for the top cgroup */
7786 		return &root_task_group.css;
7787 	}
7788 
7789 	parent = cgroup_tg(cgrp->parent);
7790 	tg = sched_create_group(parent);
7791 	if (IS_ERR(tg))
7792 		return ERR_PTR(-ENOMEM);
7793 
7794 	return &tg->css;
7795 }
7796 
7797 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7798 {
7799 	struct task_group *tg = cgroup_tg(cgrp);
7800 
7801 	sched_destroy_group(tg);
7802 }
7803 
7804 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7805 				 struct cgroup_taskset *tset)
7806 {
7807 	struct task_struct *task;
7808 
7809 	cgroup_taskset_for_each(task, cgrp, tset) {
7810 #ifdef CONFIG_RT_GROUP_SCHED
7811 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7812 			return -EINVAL;
7813 #else
7814 		/* We don't support RT-tasks being in separate groups */
7815 		if (task->sched_class != &fair_sched_class)
7816 			return -EINVAL;
7817 #endif
7818 	}
7819 	return 0;
7820 }
7821 
7822 static void cpu_cgroup_attach(struct cgroup *cgrp,
7823 			      struct cgroup_taskset *tset)
7824 {
7825 	struct task_struct *task;
7826 
7827 	cgroup_taskset_for_each(task, cgrp, tset)
7828 		sched_move_task(task);
7829 }
7830 
7831 static void
7832 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7833 		struct task_struct *task)
7834 {
7835 	/*
7836 	 * cgroup_exit() is called in the copy_process() failure path.
7837 	 * Ignore this case since the task hasn't ran yet, this avoids
7838 	 * trying to poke a half freed task state from generic code.
7839 	 */
7840 	if (!(task->flags & PF_EXITING))
7841 		return;
7842 
7843 	sched_move_task(task);
7844 }
7845 
7846 #ifdef CONFIG_FAIR_GROUP_SCHED
7847 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7848 				u64 shareval)
7849 {
7850 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7851 }
7852 
7853 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7854 {
7855 	struct task_group *tg = cgroup_tg(cgrp);
7856 
7857 	return (u64) scale_load_down(tg->shares);
7858 }
7859 
7860 #ifdef CONFIG_CFS_BANDWIDTH
7861 static DEFINE_MUTEX(cfs_constraints_mutex);
7862 
7863 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7864 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7865 
7866 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7867 
7868 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7869 {
7870 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7871 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7872 
7873 	if (tg == &root_task_group)
7874 		return -EINVAL;
7875 
7876 	/*
7877 	 * Ensure we have at some amount of bandwidth every period.  This is
7878 	 * to prevent reaching a state of large arrears when throttled via
7879 	 * entity_tick() resulting in prolonged exit starvation.
7880 	 */
7881 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7882 		return -EINVAL;
7883 
7884 	/*
7885 	 * Likewise, bound things on the otherside by preventing insane quota
7886 	 * periods.  This also allows us to normalize in computing quota
7887 	 * feasibility.
7888 	 */
7889 	if (period > max_cfs_quota_period)
7890 		return -EINVAL;
7891 
7892 	mutex_lock(&cfs_constraints_mutex);
7893 	ret = __cfs_schedulable(tg, period, quota);
7894 	if (ret)
7895 		goto out_unlock;
7896 
7897 	runtime_enabled = quota != RUNTIME_INF;
7898 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7899 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7900 	raw_spin_lock_irq(&cfs_b->lock);
7901 	cfs_b->period = ns_to_ktime(period);
7902 	cfs_b->quota = quota;
7903 
7904 	__refill_cfs_bandwidth_runtime(cfs_b);
7905 	/* restart the period timer (if active) to handle new period expiry */
7906 	if (runtime_enabled && cfs_b->timer_active) {
7907 		/* force a reprogram */
7908 		cfs_b->timer_active = 0;
7909 		__start_cfs_bandwidth(cfs_b);
7910 	}
7911 	raw_spin_unlock_irq(&cfs_b->lock);
7912 
7913 	for_each_possible_cpu(i) {
7914 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7915 		struct rq *rq = cfs_rq->rq;
7916 
7917 		raw_spin_lock_irq(&rq->lock);
7918 		cfs_rq->runtime_enabled = runtime_enabled;
7919 		cfs_rq->runtime_remaining = 0;
7920 
7921 		if (cfs_rq->throttled)
7922 			unthrottle_cfs_rq(cfs_rq);
7923 		raw_spin_unlock_irq(&rq->lock);
7924 	}
7925 out_unlock:
7926 	mutex_unlock(&cfs_constraints_mutex);
7927 
7928 	return ret;
7929 }
7930 
7931 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7932 {
7933 	u64 quota, period;
7934 
7935 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7936 	if (cfs_quota_us < 0)
7937 		quota = RUNTIME_INF;
7938 	else
7939 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7940 
7941 	return tg_set_cfs_bandwidth(tg, period, quota);
7942 }
7943 
7944 long tg_get_cfs_quota(struct task_group *tg)
7945 {
7946 	u64 quota_us;
7947 
7948 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7949 		return -1;
7950 
7951 	quota_us = tg->cfs_bandwidth.quota;
7952 	do_div(quota_us, NSEC_PER_USEC);
7953 
7954 	return quota_us;
7955 }
7956 
7957 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7958 {
7959 	u64 quota, period;
7960 
7961 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7962 	quota = tg->cfs_bandwidth.quota;
7963 
7964 	return tg_set_cfs_bandwidth(tg, period, quota);
7965 }
7966 
7967 long tg_get_cfs_period(struct task_group *tg)
7968 {
7969 	u64 cfs_period_us;
7970 
7971 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7972 	do_div(cfs_period_us, NSEC_PER_USEC);
7973 
7974 	return cfs_period_us;
7975 }
7976 
7977 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7978 {
7979 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7980 }
7981 
7982 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7983 				s64 cfs_quota_us)
7984 {
7985 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7986 }
7987 
7988 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7989 {
7990 	return tg_get_cfs_period(cgroup_tg(cgrp));
7991 }
7992 
7993 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7994 				u64 cfs_period_us)
7995 {
7996 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7997 }
7998 
7999 struct cfs_schedulable_data {
8000 	struct task_group *tg;
8001 	u64 period, quota;
8002 };
8003 
8004 /*
8005  * normalize group quota/period to be quota/max_period
8006  * note: units are usecs
8007  */
8008 static u64 normalize_cfs_quota(struct task_group *tg,
8009 			       struct cfs_schedulable_data *d)
8010 {
8011 	u64 quota, period;
8012 
8013 	if (tg == d->tg) {
8014 		period = d->period;
8015 		quota = d->quota;
8016 	} else {
8017 		period = tg_get_cfs_period(tg);
8018 		quota = tg_get_cfs_quota(tg);
8019 	}
8020 
8021 	/* note: these should typically be equivalent */
8022 	if (quota == RUNTIME_INF || quota == -1)
8023 		return RUNTIME_INF;
8024 
8025 	return to_ratio(period, quota);
8026 }
8027 
8028 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8029 {
8030 	struct cfs_schedulable_data *d = data;
8031 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8032 	s64 quota = 0, parent_quota = -1;
8033 
8034 	if (!tg->parent) {
8035 		quota = RUNTIME_INF;
8036 	} else {
8037 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8038 
8039 		quota = normalize_cfs_quota(tg, d);
8040 		parent_quota = parent_b->hierarchal_quota;
8041 
8042 		/*
8043 		 * ensure max(child_quota) <= parent_quota, inherit when no
8044 		 * limit is set
8045 		 */
8046 		if (quota == RUNTIME_INF)
8047 			quota = parent_quota;
8048 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8049 			return -EINVAL;
8050 	}
8051 	cfs_b->hierarchal_quota = quota;
8052 
8053 	return 0;
8054 }
8055 
8056 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8057 {
8058 	int ret;
8059 	struct cfs_schedulable_data data = {
8060 		.tg = tg,
8061 		.period = period,
8062 		.quota = quota,
8063 	};
8064 
8065 	if (quota != RUNTIME_INF) {
8066 		do_div(data.period, NSEC_PER_USEC);
8067 		do_div(data.quota, NSEC_PER_USEC);
8068 	}
8069 
8070 	rcu_read_lock();
8071 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8072 	rcu_read_unlock();
8073 
8074 	return ret;
8075 }
8076 
8077 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8078 		struct cgroup_map_cb *cb)
8079 {
8080 	struct task_group *tg = cgroup_tg(cgrp);
8081 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8082 
8083 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8084 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8085 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8086 
8087 	return 0;
8088 }
8089 #endif /* CONFIG_CFS_BANDWIDTH */
8090 #endif /* CONFIG_FAIR_GROUP_SCHED */
8091 
8092 #ifdef CONFIG_RT_GROUP_SCHED
8093 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8094 				s64 val)
8095 {
8096 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8097 }
8098 
8099 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8100 {
8101 	return sched_group_rt_runtime(cgroup_tg(cgrp));
8102 }
8103 
8104 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8105 		u64 rt_period_us)
8106 {
8107 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8108 }
8109 
8110 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8111 {
8112 	return sched_group_rt_period(cgroup_tg(cgrp));
8113 }
8114 #endif /* CONFIG_RT_GROUP_SCHED */
8115 
8116 static struct cftype cpu_files[] = {
8117 #ifdef CONFIG_FAIR_GROUP_SCHED
8118 	{
8119 		.name = "shares",
8120 		.read_u64 = cpu_shares_read_u64,
8121 		.write_u64 = cpu_shares_write_u64,
8122 	},
8123 #endif
8124 #ifdef CONFIG_CFS_BANDWIDTH
8125 	{
8126 		.name = "cfs_quota_us",
8127 		.read_s64 = cpu_cfs_quota_read_s64,
8128 		.write_s64 = cpu_cfs_quota_write_s64,
8129 	},
8130 	{
8131 		.name = "cfs_period_us",
8132 		.read_u64 = cpu_cfs_period_read_u64,
8133 		.write_u64 = cpu_cfs_period_write_u64,
8134 	},
8135 	{
8136 		.name = "stat",
8137 		.read_map = cpu_stats_show,
8138 	},
8139 #endif
8140 #ifdef CONFIG_RT_GROUP_SCHED
8141 	{
8142 		.name = "rt_runtime_us",
8143 		.read_s64 = cpu_rt_runtime_read,
8144 		.write_s64 = cpu_rt_runtime_write,
8145 	},
8146 	{
8147 		.name = "rt_period_us",
8148 		.read_u64 = cpu_rt_period_read_uint,
8149 		.write_u64 = cpu_rt_period_write_uint,
8150 	},
8151 #endif
8152 	{ }	/* terminate */
8153 };
8154 
8155 struct cgroup_subsys cpu_cgroup_subsys = {
8156 	.name		= "cpu",
8157 	.create		= cpu_cgroup_create,
8158 	.destroy	= cpu_cgroup_destroy,
8159 	.can_attach	= cpu_cgroup_can_attach,
8160 	.attach		= cpu_cgroup_attach,
8161 	.exit		= cpu_cgroup_exit,
8162 	.subsys_id	= cpu_cgroup_subsys_id,
8163 	.base_cftypes	= cpu_files,
8164 	.early_init	= 1,
8165 };
8166 
8167 #endif	/* CONFIG_CGROUP_SCHED */
8168 
8169 #ifdef CONFIG_CGROUP_CPUACCT
8170 
8171 /*
8172  * CPU accounting code for task groups.
8173  *
8174  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8175  * (balbir@in.ibm.com).
8176  */
8177 
8178 /* create a new cpu accounting group */
8179 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8180 {
8181 	struct cpuacct *ca;
8182 
8183 	if (!cgrp->parent)
8184 		return &root_cpuacct.css;
8185 
8186 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8187 	if (!ca)
8188 		goto out;
8189 
8190 	ca->cpuusage = alloc_percpu(u64);
8191 	if (!ca->cpuusage)
8192 		goto out_free_ca;
8193 
8194 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8195 	if (!ca->cpustat)
8196 		goto out_free_cpuusage;
8197 
8198 	return &ca->css;
8199 
8200 out_free_cpuusage:
8201 	free_percpu(ca->cpuusage);
8202 out_free_ca:
8203 	kfree(ca);
8204 out:
8205 	return ERR_PTR(-ENOMEM);
8206 }
8207 
8208 /* destroy an existing cpu accounting group */
8209 static void cpuacct_destroy(struct cgroup *cgrp)
8210 {
8211 	struct cpuacct *ca = cgroup_ca(cgrp);
8212 
8213 	free_percpu(ca->cpustat);
8214 	free_percpu(ca->cpuusage);
8215 	kfree(ca);
8216 }
8217 
8218 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8219 {
8220 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8221 	u64 data;
8222 
8223 #ifndef CONFIG_64BIT
8224 	/*
8225 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8226 	 */
8227 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8228 	data = *cpuusage;
8229 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8230 #else
8231 	data = *cpuusage;
8232 #endif
8233 
8234 	return data;
8235 }
8236 
8237 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8238 {
8239 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8240 
8241 #ifndef CONFIG_64BIT
8242 	/*
8243 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8244 	 */
8245 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8246 	*cpuusage = val;
8247 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8248 #else
8249 	*cpuusage = val;
8250 #endif
8251 }
8252 
8253 /* return total cpu usage (in nanoseconds) of a group */
8254 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8255 {
8256 	struct cpuacct *ca = cgroup_ca(cgrp);
8257 	u64 totalcpuusage = 0;
8258 	int i;
8259 
8260 	for_each_present_cpu(i)
8261 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8262 
8263 	return totalcpuusage;
8264 }
8265 
8266 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8267 								u64 reset)
8268 {
8269 	struct cpuacct *ca = cgroup_ca(cgrp);
8270 	int err = 0;
8271 	int i;
8272 
8273 	if (reset) {
8274 		err = -EINVAL;
8275 		goto out;
8276 	}
8277 
8278 	for_each_present_cpu(i)
8279 		cpuacct_cpuusage_write(ca, i, 0);
8280 
8281 out:
8282 	return err;
8283 }
8284 
8285 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8286 				   struct seq_file *m)
8287 {
8288 	struct cpuacct *ca = cgroup_ca(cgroup);
8289 	u64 percpu;
8290 	int i;
8291 
8292 	for_each_present_cpu(i) {
8293 		percpu = cpuacct_cpuusage_read(ca, i);
8294 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8295 	}
8296 	seq_printf(m, "\n");
8297 	return 0;
8298 }
8299 
8300 static const char *cpuacct_stat_desc[] = {
8301 	[CPUACCT_STAT_USER] = "user",
8302 	[CPUACCT_STAT_SYSTEM] = "system",
8303 };
8304 
8305 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8306 			      struct cgroup_map_cb *cb)
8307 {
8308 	struct cpuacct *ca = cgroup_ca(cgrp);
8309 	int cpu;
8310 	s64 val = 0;
8311 
8312 	for_each_online_cpu(cpu) {
8313 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8314 		val += kcpustat->cpustat[CPUTIME_USER];
8315 		val += kcpustat->cpustat[CPUTIME_NICE];
8316 	}
8317 	val = cputime64_to_clock_t(val);
8318 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8319 
8320 	val = 0;
8321 	for_each_online_cpu(cpu) {
8322 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8323 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8324 		val += kcpustat->cpustat[CPUTIME_IRQ];
8325 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8326 	}
8327 
8328 	val = cputime64_to_clock_t(val);
8329 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8330 
8331 	return 0;
8332 }
8333 
8334 static struct cftype files[] = {
8335 	{
8336 		.name = "usage",
8337 		.read_u64 = cpuusage_read,
8338 		.write_u64 = cpuusage_write,
8339 	},
8340 	{
8341 		.name = "usage_percpu",
8342 		.read_seq_string = cpuacct_percpu_seq_read,
8343 	},
8344 	{
8345 		.name = "stat",
8346 		.read_map = cpuacct_stats_show,
8347 	},
8348 	{ }	/* terminate */
8349 };
8350 
8351 /*
8352  * charge this task's execution time to its accounting group.
8353  *
8354  * called with rq->lock held.
8355  */
8356 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8357 {
8358 	struct cpuacct *ca;
8359 	int cpu;
8360 
8361 	if (unlikely(!cpuacct_subsys.active))
8362 		return;
8363 
8364 	cpu = task_cpu(tsk);
8365 
8366 	rcu_read_lock();
8367 
8368 	ca = task_ca(tsk);
8369 
8370 	for (; ca; ca = parent_ca(ca)) {
8371 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8372 		*cpuusage += cputime;
8373 	}
8374 
8375 	rcu_read_unlock();
8376 }
8377 
8378 struct cgroup_subsys cpuacct_subsys = {
8379 	.name = "cpuacct",
8380 	.create = cpuacct_create,
8381 	.destroy = cpuacct_destroy,
8382 	.subsys_id = cpuacct_subsys_id,
8383 	.base_cftypes = files,
8384 };
8385 #endif	/* CONFIG_CGROUP_CPUACCT */
8386